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Foreword

In our fast moving society, the use of the computer will become more and more
extensive. The “material” things will be more and more supported by the “virtual”
situations, which will facilitate our life.

Science is the first actor in this direction, and thus of course, the use of computer
methods affect all scientific sectors, within this “internal” dialogue between com-
puter science and the other disciplines, looking for possible applications. The Nobel
prize for Chemistry in 2013 recognized the formidable progress in chemistry related
to the use of advanced, complex modelling approaches in chemistry.

It is easy to imagine that the so-called QSAR/QSPR methods will increase their
role. A few decades ago they were a subject of studies of a very restricted, but
active group of scientists, who dedicated their time to anticipate some of the pillars
of the QSAR/QSPR field. Today, QSAR/QSPR are mentioned not only by a close
group of scientists in their research, but are debated by a growing number of
stakeholders looking for the opportunities offered by this field. For instance,
industry and regulators discuss the use of the QSAR/QSPR models.

Since the amount of data on chemicals is increasing exponentially, the use of
QSAR/QSPR models will become a need, for the purpose to manage the data and
extract useful lessons processing the data.

However, all these requirements and expectations have to be supported by a
sound theoretical basis and by an updated treatment of the field. For these reasons, I
welcome the contribution that is offered by this timely book.

Emilio Benfenati
Istituto di Ricerche Farmacologiche Mario Negri
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Preface

Quantitative structure–activity/property relationship (QSAR/QSPR) modelling has
been used in medicinal chemistry and computational toxicology for a long time. It
offers an in silico tool for the development of predictive models towards various
activity and property endpoints of a series of chemicals using the response data that
have been determined through experiments and molecular structure information
derived computationally or sometimes from experiments. Once developed and
validated, such models may be used for prediction of the response endpoint(s) for
new and untested chemicals and also for obtaining a mechanistic interpretation
of the structure–activity/property relationships. Although these techniques have
been successful in many lead optimization and risk assessment problems, their use
was previously limited to specific groups of researchers in the chemical sciences.
With the easy availability of QSAR-related software tools, QSAR/QSPR modelling
is now being exercised by a wider class of researchers; however, some of the users
might not have proper background theoretical knowledge in the area. It is desired
that QSAR/QSPR users should not depend solely on the available software for
model development; instead, they should have a basic working knowledge of the
theoretical aspects and principles of QSAR/QSPR modelling so that they can
develop statistically valid and predictive models which can be meaningfully
interpreted.

QSAR/QSPR of the present day is different from what it was during the initial
days of its evolution in the form of “Classical QSAR”. With the introduction of
newer (and higher dimensional) descriptors, the use of sophisticated chemometric
tools and rigorous validation strategies and integration with other ligand and
structure-based approaches, QSAR/QSPR of the present day is a recognized sci-
entific discipline. QSAR/QSPR is also finding newer applications in diverse fields
such as modelling properties/toxicities of nanomaterials, ionic liquids, chemical
mixtures, cosmetics, etc., making this an area of potential interest.
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In this brief, we aim at introducing the fundamental concepts of QSAR/QSPR
modelling in a nutshell to students of Chemical Sciences. The basic concepts
seeded into the mind of the students would be a primer for the development of their
further knowledge in the area through practical modelling exercises and/or addi-
tional readings.

Kolkata Kunal Roy
December 2014 Supratik Kar

Rudra Narayan Das
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Chapter 1
QSAR/QSPR Modeling: Introduction

Abstract Development of predictive quantitative structure–activity relationship
(QSAR) models plays a significant role in the design of purpose-specific fine
chemicals including pharmaceuticals. Considering the wide application of different
types of chemicals in human life, QSAR modeling is a useful tool for prediction of
biological activity, physicochemical property, and toxicological responses of
untested chemical compounds. Descriptors play a crucial role in the development of
any QSAR model since they represent quantitatively the encoded chemical infor-
mation. They not only help in the derivation of a mathematical correlation between
the chemical structure information and the response of interest, but also enable
exploration of the mechanistic aspect involved in a biochemical process. QSAR
analysis is now widely employed as a rational tool for the prediction and design of
chemicals of health benefits, industrial/laboratory process, or household applications.

Keywords Descriptors � Physicochemical � Electronic � Structural � Topological �
Quantum chemical

1.1 Introduction

Chemistry plays an important role in defining the behavioral manifestations of
chemical compounds. Development of suitable techniques which allow modifica-
tion of the chemical features of molecules is very useful not only in the field of
chemistry but also in other branches of natural sciences. Quantitative structure–-
activity relationship (QSAR) modeling is one such technique that allows the
interdisciplinary exploration of knowledge on compounds covering the aspects of
chemistry, physics, biology, and toxicology. It provides a formalism for developing
mathematical correlation between the chemical features and the behavioral mani-
festations of (structurally) similar compounds. The entire technique is defined on
the basis of a strong mathematical algorithm, and it provides a reasonable basis for
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establishing a predictive correlation model. Apart from providing a mathematical
correlation, QSAR technique also enables the exploration of chemical features
encoded within descriptors. Descriptors being the quantitative numbers represent
attributes of the chemicals and aid in the establishment of a mathematical corre-
lation. Hence, different types of descriptors play a significant role in the identifi-
cation as well as analysis of the chemical basis involved in a process under
consideration. The descriptors also allow the user to modify or ‘fine-tune’ the
existing chemical behavior into a desired one by suitable changes in chemical
structures. Furthermore, such analysis employs chemical information from rela-
tively small number of chemicals in deriving a mathematical correlation while
allows the prediction of the same response for a large number of chemicals. This
particular characteristic is highly important when dealing with biological (or toxi-
cological) data that involve ethical issues related to animal experiment. The QSAR
technique proves to be a valuable alternative method in this perspective and is
encouraged for the design and development of biologically active molecules as well
as in predictive toxicology analysis. The QSAR formalism is also widely employed
to serve different purposes of material science toward the design and development
of purpose-specific novel and/or alternative chemicals. It may be very interesting to
note that historically the earliest inception for the ideology of QSAR modeling
emerged from the simple concept of a correlation between response and chemical
nature of molecules which remains the same even today after various developments
and nourishments in the QSAR algorithmic basis. Broadly, the two main purposes
of QSAR can be identified as the development of a mathematical equation or model
and the explanation of the modeled chemical features as encoded in descriptors.
Presently, development of predictive QSAR models on various endpoints is pro-
posed by different international authorities as a reliable tool of exploring chemical
knowledge following a rational basis [1].

1.2 What Is QSAR/QSPR Modeling?

1.2.1 Definition and Formalism

QSAR modeling on a set of structurally related chemicals refers to the development
of a mathematical correlation between a chemical response and quantitative
chemical attributes defining the features of the analyzed molecules. Hence, such
study attempts to establish a mathematical formalism between the behavior of a
chemical, i.e., chemical response and a set of quantitative chemical attributes which
may be extracted from the chemical structures using suitable experimental or the-
oretical means. The naming of the study depends upon the nature of the response
(also known as ‘endpoint’) being modeled giving rise to three major classes,
namely quantitative structure–property/activity/toxicity relationship (QSPR/QSAR/
QSTR) studies considering the modeling of physicochemical property, biological
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activity, and toxicological data, respectively. The nomenclature can also be
employed to define some more specific endpoints such as quantitative structure–-
cytotoxicity relationship to denote modeling of cytotoxicity of chemicals. On the
other hand, QSPR, i.e., quantitative structure–property relationship modeling, can
be employed to designate all such related techniques as any type of biological and
toxicological as well as physicochemical behavior may be considered as the
‘property’ of a given chemical. However, we shall use the term ‘QSAR’ to denote
all such studies. Since a mathematical relationship is developed, such studies allow
the prediction of molecular behavior for new chemicals or even hypothetical
molecules. Therefore, the basic formalism of QSAR technique can be mathemati-
cally represented as follows:

Biological activity ¼ f ðChemical attributesÞ ð1:1Þ

The basic ideology for the phrase ‘chemical attribute’ is to denote the features that
define the behavioral manifestation, i.e., response of the analyzed chemical com-
pounds. In other words, the chemical attributes are the fundamental information of
the chemicals which control the response under study. Since the aim was to develop
a mathematical correlation, these features or attributes are precise quantitative
chemical information that might be derived using an experimental analysis or
suitable theoretical algorithm that diagnoses chemistry of the molecules. Some-
times, information obtained from both the theoretical as well as experimental basis
is employed. It is often observed that the behavioral manifestation of any chemical
species can be explained by its physicochemical properties which represent the
intrinsic molecular nature such as melting point, boiling point, and surface tension.
Hence, the chemical attributes in Eq. (1.1) is often described in terms of the
information derived directly from the chemical structure and the physicochemical
information usually derived using experimental techniques leading to the following
expression [1].

Response ¼ f ðchemical structure, physicochemical propertyÞ ð1:2Þ

Considering the employment of a series of chemical information in presence/
absence of physicochemical features, the QSAR equation for a specific response
can be mathematically stated as follows:

Y ¼ a0 þ a1X1 þ a2X2 þ a3X3 þ � � � þ anXn ð1:3Þ

Since we are talking in terms of a mathematical correlation, such equations are
better explained in terms of variables. Here, Y is the dependent variable representing
the response being modeled, i.e., activity/property/toxicity while X1, X2,…, Xn are the
independent variables denoting different structural features or physicochemical
properties in the form of numerical quantities or descriptors and a1, a2,…, an are the
contributions of individual descriptors to the response with a0 being a constant.
Hence, we can see that the physicochemical properties can not only be employed as a
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dependent or response variable giving a structure–property relationship, i.e., QSPR,
but they might also be used as independent or predictor variables. QSAR studies may
even employ one response parameter, e.g., activity/toxicity as predictor variable for
the modeling of another type of activity/toxicity endpoint. Such studies are named as
quantitative activity–activity relationship (QAAR) or quantitative toxicity–toxicity
relationship (QTTR) or quantitative property–property relationship (QPPR) model-
ing, as appropriate. It will be interesting to note that although the modeled response
should be quantitative in order to develop a regression model, it might also be cate-
gorical entities which may be used for development of classification models. How-
ever, the predictor variables in QSAR modeling should always be quantitative.

The QSAR analysis is principally aimed at quantification of chemical infor-
mation followed by developing a suitable interpretative relationship addressing a
given response. The extracted chemical or physicochemical information can be
utilized for modification of chemical structures leading to the ‘fine-tuning’ of the
properties and biological response, e.g., decreased lipophilicity, enhanced activity,
and reduced toxicological manifestation. Thus, mathematics here serves as a tool
for deriving a suitable relationship which is then exploited as per the requirement of
the designer [2]. On a much broader perspective, QSAR studies encompasses
avenues of chemistry and physics accounting for intrinsic molecular nature,
mathematics and statistics for modeling and calculation, and biology to encompass
the involved biochemical interaction. Thus, predictive mathematical models are
developed exploring the knowledge of chemistry and biology in a rational way to
meet the desired need of the chemicals. Different concepts and perspectives of
mathematics are tacitly used in order to derive predictive QSAR models which may
be used for prediction of endpoint data of a large number of untested chemicals. It
might be envisaged that the role of mathematics in QSAR analysis is to provide an
abstract backbone for developing a characteristic correlation between chemistry and
biology of the investigated chemicals.

The QSAR study can be visualized to comprise of three simple steps, namely (a)
data preparation, (b) data processing, and (c) data interpretation for a set of
chemicals. The quantitative data are obtained from two major components, namely
the response or endpoint to be addressed and the predictor or independent variables
(i.e., X variables) defining the chemical attributes. The response data can be activity
(e.g., anti-malarial, anti-oxidant, anti-arrhythmic, anti-HIV, and anti-cancer),
property (e.g., aqueous solubility, n-octanol/water partition coefficient, melting
point, surface tension, critical micelle concentration value, and chromatographic
retention), or toxicological (e.g., organ- or disease-specific acute/chronic toxicity
outcomes such as carcinogenicity, skin-irritation, genotoxicity, and hepatotoxicity
as well as toxicity toward environment in terms of death of specific indicator
organisms such as Tetrahymena, daphnids, bacteria, fungi, and fish) behavior of
chemical compounds. The first step, i.e., the preparation of data involves
arrangement and conversion of the data in a suitable form. The response data for
various biological and toxicological endpoints are usually obtained in two forms,
namely ‘dose-fixed response’ pattern where the dose or concentration of a chemical
required to produce a desired fixed response is measured and ‘response-fixed dose’

4 1 QSAR/QSPR Modeling: Introduction



pattern in which the response elicited by a chemical at a fixed dose (concentration)
is opted for. An example of the first pattern may be EC50 (effective concentration in
50 % population), IC50 (concentration required for inhibition of 50 % population),
LD50 (the dose required to kill half of the total population), etc. Since response
values for these analyses being obtained from multiple assays at different dose or
concentration levels of chemicals, these (i.e., doses required to elicit a fixed
response) are preferably used as the independent variable (Y) in QSAR studies.
Hence, a model can be developed from the information of varying concentrations of
chemicals required to exhibit a fixed biological (or toxicological) response. One
important treatment of the response variable is its logarithmic transformation
allowing conversion of a wide range of response data (activity/property/toxicity)
into a smaller scale. Another reason for this logarithmic data conversion is that
biological/toxicological data give a parabolic curve for the dose–response rela-
tionship while the corresponding log dose–response relationship for the same data
yields a sigmoidal curve that bears a linear middle portion rendering the modeling
easy. It might be noted that the unit for the concentration of chemicals is expressed
in molar terms, i.e., M, mM, μM, and nM and hence a chemical eliciting a fixed
response at a lower concentration (C) than others actually possesses higher activity
or toxicity profile. Hence, activity or toxicity profile of chemicals bears an inverse
relationship with their concentration. For all practical purposes, an inverse of the
concentration term is usually employed for modeling biological or toxicological
data, i.e., log1/C or −logC. A data set of chemicals subjected to QSAR analysis is
also expected to possess a sufficiently wide range of response data spanning at least
3–4 log units. Furthermore, all the compounds employed for a specific modeling
operation are supposed to have a same mechanism of action toward the chosen
response. The quantitative data for the predictor variables are obtained from
experimental observations usually comprising of different physicochemical mea-
sures as well as theoretical calculations. The theoretical computation involves
consideration of chemical theories that might be appended with a suitable encoding
algorithm. Finally, a data matrix is prepared in which rows present different
chemicals in the data set while the response variable and several independent
predictor variables are presented in columns. Following the preparation of the data,
the modeler needs to process it toward the goal of developing a mathematical
equation or model. It may be noted that the data-processing step usually includes
several pretreatment operations prior to model development such as removal of
inter-correlated features and division of data set which have been discussed in later
parts of this book. The data matrix comprising of response and descriptors can be
subjected to linear as well as nonlinear model development in combination with a
suitable feature selection algorithm. Multiple linear regression (MLR) and partial
least squares (PLS) are the representative techniques for the development of linear
correlation models while genetic algorithm (GA), stepwise algorithm, etc. can serve
methods for variable selection (i.e., feature selection). The nonlinear modeling
approaches include artificial neural network (ANN), support vector machine (SVM)
and so on. As we can see that the data-processing step including model develop-
ment involves handling a significant amount of data, such studies should be
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associated with proper statistical tests. QSAR studies employ computation of
several statistical measures and metrics to characterize the quality, stability, and
validation of the models. The final operation, i.e., the interpretation of the devel-
oped model, is very crucial and it requires a thorough knowledge on the bio-
chemical aspects of the molecules toward the response being modeled. It might be
noted that QSAR modeling eventually attempts to establish a chemical basis for
specific phenomena such as activity, property, or toxicity by the development of a
suitable correlation equation or model. Since, all the chemicals in a data set are
assumed to act via same mode of action with respect to a specific response,
establishing a mechanistic foundation opens two doors: (a) prediction of the
response of existing untested or new chemicals and (b) design and development of
completely new chemicals possessing the desired activity/property/toxicity profile.
The incorporation of a mathematical algorithm makes the QSAR technique a sound
and rational tool [1, 2]. Figure 1.1 presents a simple overview of the QSAR
formalism.

Encoding of the chemical features in QSAR analysis is done using a suitable
mathematical algorithm. The aim was to perform a definite diagnosis of chemical
structural features followed by the derivation of quantitative numbers also known as
‘descriptors.’ These descriptors carry explicit structural information and are used to
establish a correlation with a response of interest. Hence, in a simple terminology,
descriptors provide the basis for quantitative depiction of chemical structure, i.e.,

Fig. 1.1 A simple schematic overview of the formalism of QSAR
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quantitative numbers derived from a suitable mathematical operation of chemical
information. Now, considering the mathematical basis involved in the quantifica-
tion of chemical information, descriptors can present the dimension of the corre-
sponding QSAR analysis. Since, the extraction of chemical information involves
several hypothetical assumptions, QSAR study can be overviewed from a dimen-
sional perspective. In Fig. 1.2, we have outlined QSAR techniques obtained using
varying dimensional chemical information. However, based on the mathematical
algorithm involved for developing a quantitative correlation, QSAR analysis can be
conveniently classified into regression and classification types. The former type of
analysis explicitly involves quantitative response values while in case of the clas-
sification analysis, one can perform classification of the data into predefined groups
or classes. Figure 1.3 shows the mentioned QSAR methods with representative
examples in each case.

1.2.2 Objectives of QSAR: Key Features

The principal objective of any QSAR analysis lies in the rational development of a
mathematical model accompanied with the exploration of the chemical information
involved therein. Such modeling always uses comparatively less amount of data of

Fig. 1.2 The dimensional perspective of QSAR technique
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chemical response and allows the prediction for a relatively large number of
compounds. This provides an opportunity for this technique to be utilized in various
fields. Table 1.1 briefly summarizes the potential key features of the QSAR for-
malism with an overview of the corresponding applications thereof.

1.2.3 Background

Chemistry serves an essential role for the interdisciplinary exploration of knowl-
edge on the behavioral manifestation of chemicals. Different types of chemicals
influence the lives of the human being covering the aspects of industrial use,

Fig. 1.3 Types of QSAR analysis based on the employed mathematical algorithm for developing
correlation
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Table 1.1 An overview of the key features of the QSAR formalism

Sl.
No.

The key objectives and related
implications

Brief description

1 Prediction of given response:
activity/property/toxicity

A mathematical model is developed with the aim
of predicting response of structurally similar
chemicals. Usually the prediction is performed for
chemicals not included in developing the models.
Such chemicals are termed as test set or external
set chemicals. Usually a chemical applicability
domain is developed using the modeling set
(training set) and the prediction of any untested or
a new chemical lying within the domain is
considered reliable

2 Reduction and replacement of
experimental (laboratory)
animals

A QSAR study reduces animal experimentation
during the preclinical stages of development of
drugs since it uses limited chemical response data.
The same advantage is also applied in predictive
toxicology modeling. Based on the ‘3R’ concept
of Russell and Burch, namely replacement,
reduction, and refinement of animal experiment in
scientific studies, QSAR appears to provide a
valuable alternative solution to such ethical issue.
Authoritative bodies such as ECVAM, REACH
regulation of European Union, office of toxic
substances of US-EPA, and OECD propose the
use of QSAR as studies alternative to in vivo
experiment

3 Virtual screening of library data Since QSAR leads to the development of an
explicit mathematical equation, it can be
employed for the screening of chemical library
comprising of a large number of compounds. The
information derived from descriptors can be
utilized as reasonable filtering conditions toward
the selection of desired compounds. Examples of
some commonly used chemical library are ZINC,
DUD benchmark, PubChem, ChemBank,
ChEMBL, DrugBank, and Inter-bioscreen.

4 Diagnosis of mechanism The nature of descriptive information encoded by
the descriptors plays a crucial role in this
perspective. Establishment of a probable
mechanistic interpretation involves defined
knowledge on the endpoint especially if it is
biological or toxicological. The extracted
chemical information is correlated with the
corresponding response of interest considering
the coefficient of the variables.

5 Categorization of data A classification algorithm of QSAR allows
discrimination of chemicals into groups when the
response data are categorical. Such operation is
primarily important in the assessment of chemical

(continued)
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laboratory and institutional applications, as well as household consumption. Hence,
it has been a goal of the scientific community to study and search for the infor-
mation that defines the behavior of the chemicals. The structure–activity relation-
ship emerged as a notion for establishing a link between the chemical structures and
their elicited response in a quantitative manner. It will be interesting to note that
development of different chemical principles has assisted in the development of
QSAR studies. Before going into the details of historical development of the QSAR
paradigm, we would like to discuss a few basic dogma of chemistry of compounds.
Chemicals are governed by different types of forces and energies that control their
physicochemical behavior and the elicited response thereof. Attractive and repul-
sive forces are the resultant outcomes of intra- and inter-molecular bonding energies
of chemicals under the influence of their electronic orbital interactions. All forces
must be in an energetically favorable state of balance for the initiation of any kind
of molecular interaction. It is to be noted that the attraction (cohesion between
similar entities or adhesion between different entities) and repulsion forces might
operate simultaneously during a molecular interaction. Considering the biological
(and toxicological) response elicited by chemicals, different types of forces play a
crucial role for instituting interaction between a chemical and a biomolecule. The
physicochemical nature of compounds can be described by three principle phe-
nomena, namely hydrophobic, steric, and electronic effects while various bonding
interactions include covalent bond, hydrogen bond, ionic interaction, and dipolar
interaction. All these forces and interactions function accordingly when a chemical
interferes with a biological system and thereby elicits suitable response. Table 1.2
presents an overview of the mentioned forces and bonding interactions [3, 4].

Table 1.1 (continued)

Sl.
No.

The key objectives and related
implications

Brief description

toxicity where categorization of data into different
levels of hazard such as high, low, and moderate
seem useful

6 Optimization of lead molecules One of the principle objectives of the QSAR
study is the design of purpose-specific chemicals
with desired response value. This principle is
highly useful during the structural optimization of
‘lead’ molecules in a drug-designing project in
order to get molecules with desired properties.
QSAR studies along with other in silico methods
can be suitably used toward the successful design
and development of drug molecules

7 Structural refinement of synthetic
target molecules

It is possible to incorporate the findings of
previous QSAR observations during the structural
modification process. In a study, Hansch depicted
the use of prior knowledge of lipophilicity in
eliminating the CNS side effect of the drug
Sulmazole [Hansch C. Drug Inf J
1984;18:115–22]
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The name of Mendeleev may be cited as one of the earliest scientists in the field
of chemistry who used the concept of chemical correlation in 1870s by formulating
the rule of eight. It is believed that the ideology of QSAR emerged in the field of
toxicology and later it was supported by experiments in physical organic chemistry.
With the progress of time, the concept of chemical correlation became firm in
presence of strong mathematical formalisms and with advancements of chemical
and physical principles. Cros observed the toxicity of primary alcohols to be cor-
related with their aqueous solubility in 1863 which implicates that the initial fun-
damental basis for QSAR modeling was emerged from the toxicological study.
However, Crum-Brown and Fraser are considered to be the pioneer in the realm of
QSAR modeling who represented physiological action in terms of ‘chemical con-
stitution’ using a mathematical expression (Eq. 2.1) in 1868, although the phrase
‘chemical constitution’ was not a well-explained concept at that time.

/ ¼ f ðCÞ ð1:4Þ

This observation was followed by Richardson who observed a proportional
relationship of narcotic effects of primary alcohols with their molecular weight in
1869. Reynolds and Richet were the next to observe the correlational behavior of
chemical nature with corresponding physiological response. Further confidence to
the mathematical relationship proposed by Crum-Brown and Fraser was added by
Meyer, Overton, and Baum though their work of correlating biological potency of
narcotic substances with olive oil/water partition coefficient. It will be noteworthy
to mention here that following extended studies, Overton depicted a proportionate
mechanistic relationship between increased chain length of the studied compounds
and their narcotic behavior in tadpole. Furthermore, he reported different toxico-
logical outcomes of morphine in human and tadpoles and considered a change in
the structure of protein in the studied genus. At the beginning of the twentieth
century, Traube [5] observed surface tension of chemicals to be related with their
narcotic potency which was later modified by Seidell [6] by depicting a similar
correlation when solubility and partition coefficient measures were considered [7].
Hence, we can see that the initial observations of QSAR analysis stemmed from
toxicological studies and the correlating parameters were principally physico-
chemical attributes. In 1933, Ferguson added a thermodynamic basis to it by pro-
posing the narcosis behavior to be linked with the relative saturation of the
substance in the applied phase. The next notable development was the exploration
of the ionization of chemical species. Albert et al. [8] reported his decisive work on
the ionization and shape of aminoacridine compounds in correlating their bacte-
riostatic potential [7]. This was followed by Bell and Roblin who also performed
similar studies on sulfonamides in 1942. The study of developing quantitative
descriptors for mathematical correlation models was put into light by Hammett who
introduced the decisive electronic substituent constant measure Hammett sigma (σ)
in relating the relative reaction rate of meta- and para-substituted benzoic acid
derivatives. This study represents an essential foothold since it was the first
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Table 1.2 An overview of the various forces and bonding interactions involved

Type of force/bonding
interaction

Brief description

The physicochemical effects

Hydrophobic effect Important for eliciting activity/toxicity in biological systems.
Also crucial in estimating process efficiency in case of
industrial chemicals. Measurement of n-octanol/water
partition coefficient gives a good measure of this feature in the
biological system. Computationally derived measures, viz.
CLOGP, MLOGP, AlogP98, etc. can be determined for the
whole molecules, while it is also possible to compute
hydrophobicity contributions of individual fragments

Electronic effect This includes different types of dispersion forces, charge
transfer complex formation, ionic interaction, inductive effect,
hydrogen bonding, polarization effect, acid-base catalytic
property, etc. and facilitates interaction with biological
receptor systems

Steric effect Such effects correlate with the spatial arrangement of
molecules in the three-dimensional space. These are important
in monitoring binding of chemicals to biological receptor
cavity

The bonding interactions

Covalent bond Such bonding presents the strongest interaction (in the
biological system) formed by shared electrons between each
of the two participating atoms. In the context of biological
receptors, formation of covalent bond between receptor and
ligand (chemical) depicts irreversible binding. It has a strength
of 50–150 kcal/mol

Ionic bond This involves electrostatic attraction force between two
oppositely charged ions. It bears a strength of 5–10 kcal/mol
and hence much less stronger than covalent bond in the
biological system. The decrease in strength of the bond is
proportional to the squared distance between the participating
atoms

Hydrogen bond (H-bond) This is a weak bonding force with a strength of 2–5 kcal/mol.
Such bond formation takes place between a hydrogen atom
attached to a strongly electronegative atom and another atom
of higher electronegativity. Atoms such as O, N, S, and F can
take part in such bond formation in an intra- (same molecule)
as well as an inter-molecular (different molecule) fashion.
Hydrogen bonds play a very important role in exploring
binding of a ligand to its biological receptor. H-bonds stabilize
the structure of DNA and hence control its functional
characteristics. A H-bond is highly directional at the donor
atom (i.e., donating atomic H) and such bonding is controlled
by the orbital spatial distribution of the acceptor site (i.e.,
accepting atomic H) along with a dipolar orientation of the
donor group

Hydrophobic force
(continued)
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Table 1.2 (continued)

Type of force/bonding
interaction

Brief description

It measures the dislikeness of molecules toward water.
Involvement of such force leads to a favorable change in
entropy of a system. Addition of a chemical possessing a
nonpolar group in water limits the free Brownian movement
of water molecules which is overcome by the reduction of
contact of water with the nonpolar interface causing
aggregation of the chemical. Addition of a –CH2– group
imparts a strength of 0.37 kcal/mol to a molecule due to
hydrophobic force

van der Waals interaction Such force is relatively weak with a strength varying from 0.5
to 1 kcal/mol and is nonionic in nature. Presence of
electronegative atoms such as O and N in molecule cause
drawl of the electron cloud toward themselves leading to the
formation of a partial positive (δ+) and a partial negative (δ−)
charge, i.e., dispersion of charges within the molecule. Two
such participating molecules establish a weak bonding
interaction. The involved forces are characterized as Keesom
force, Debye force, London force, etc. depending on the
nature of the established dipole interaction

Pi–pi (π–π) stacking
interaction

This is a special type of non-covalent attractive force taking
place between unsaturated systems such as arenes. Here, two
planar molecules lead to the formation of a stacked geometric
complex involving a non-covalent bonding interaction such
that the solvent exposed surface area of the complex is
minimized. Usually three stacked geometries are identified,
viz. parallel-displaced, T-shaped edge-to-face, and eclipsed
face-to-face

Charge transfer complex This is an electron-donor and electron-acceptor complex
formed between Lewis bases and Lewis acids. Charge transfer
complexes are identified by specific absorption band in the
UV-visible range which is different than both the donor and
acceptor moieties

Orbital overlapping
interaction

Overlapping of pi orbitals leads to the formation of
dipole–dipole force of attraction. The π-orbital electron cloud
in an aromatic system imparts a negative charge above and
below the ring while keeping the equatorial hydrogen atoms
positively charged and thereby allowing a dipole–dipole-type
interaction between two aromatic systems due to overlap of
orbital electron densities. Presence of a lone electron pair
containing substituent in aromatic system can influence such
bonding

Ion-dipole and ion-induced
dipole interaction

Such forces have been found to influence the aqueous
solubility of crystalline systems considering water as a dipolar
molecule. Here, the cationic and anionic parts of a molecule,
respectively, interact with the partially negatively charged
oxygen and partially positively charged hydrogen atom of
water molecule
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established linear free energy relationship (LFER) in the QSAR modeling paradigm
as shown by the following equations:

logðkX=kHÞ ¼ q � rX ð1:5Þ

logðKX=KHÞ ¼ q � rX ð1:6Þ

here kH and kX are the rate constant terms for unsubstituted and substituted benzoic
acid derivatives, respectively, while KH and KX denote their respective equilibrium
constants. σX represents the Hammett electronic constant of the substituent X, and ρ
is the reaction constant term. Since ionization constant terms have been employed
to depict σ, the above-mentioned equations are related to the popular free energy
equation (see below) and termed as the LFER model.

DG0 ¼ �RT ln K ð1:7Þ

In Eq. (1.7), G denotes Gibbs free energy change, R is the ideal gas constant, and
T is the ideal temperature (in Kelvin). Taft devised the first steric descriptor, i.e., the
Taft steric parameter ES in this LFER formalism defining the rates of base- and
acid-catalyzed hydrolysis of aliphatic esters and provided an option for separating
the effects of polar, steric, and resonance contributions. The next pioneering con-
tribution was the development of Hansch equation in the early 1960s. Corwin
Hansch is also credited the title of the ‘Father of modern QSAR’ who performed
studies on plant growth regulators using relative hydrophobicity measure of sub-
stituent (π). The linear form of the equation was devised by Fujita and Hansch by
the incorporation of Hammett constant term. A general form of the equation is
presented below which has undergone several modifications in subsequent times.

log 1=C ¼ k1pþ k2rþ k3Es þ k0 ð1:8Þ

Here, k0 represents a constant and k1, k2, and k3 are the coefficient terms of the
respective equation variables. Considering the ‘random walk process’ by drug
molecules inside a biological system, Hansch formulated a parabolic relationship
which was later extended by incorporating electronic and steric parameters. Both
the equations are presented below:

log 1=C ¼ �aðlogPÞ2 þ b logPþ constant ð1:9Þ

log 1=C ¼ �aðlogPÞ2 þ b logPþ qrþ dEs þ constant ð1:10Þ

Free and Wilson instituted another approach of QSAR model development on a
series of congeneric chemicals by using summed contribution of the parent moiety
and structural fragments to represent biological activity.

BA ¼
X

aixi þ l ð1:11Þ
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Here, μ represents the contribution of the parent moiety while ai denotes the con-
tribution of individual structural fragments with the indicator variable xi showing
their presence (xi = 1) or absence (xi = 0). This equation was later modified by Fujita
and Ban who implemented logarithmic activity term to keep the response variable
at same level with other free energy terminologies. Considering the scope of this
chapter, we will not go into an exhaustive discussion on historical avenues of
QSAR modeling. The mentioned discoveries have been pioneering ones and we can
see that how the idealism of correlation of ‘chemical constituents’ with response
became a mathematical relationship through the journey involving physicochemical
and thermodynamic concepts [7]. Following the development of the LFER model,
the mathematical basis for QSAR was well established. Mathematical principles
have much more profound impact on theoretical chemistry including QSAR anal-
ysis. In the late 1940s, studies on ‘chemical graph theory’ that involves concepts of
mathematics and chemistry led to the development of quantitative descriptors on a
purely theoretical basis. Wiener and Platt were the first to develop graph theory-
based quantitative topological variables in 1947 known as Wiener index and Platt
index, respectively, and reported predictive QSPR models on boiling points of
hydrocarbons. This study opened a complete new possibility in the field of theo-
retical chemistry especially with reference to QSAR formalism that subsequently
led to the developments of minimum topological difference (MTD) method of
Simon, connectivity index parameters by Randić, Kier and Hall, and many more.
This graph theoretic depiction of chemical structures were purely on two-dimen-
sional basis and simultaneous studies on three-dimensional molecular geometry
also led to the development of different three-dimensional attributes. Presently,
several hundreds to thousands of algorithms are presented to encode molecular
features and generate quantitative descriptors employing varying dimensionality,
which can be used for QSAR modeling using various statistical methods. However,
it will be interesting to note that the sole objective of all such methods and tech-
niques remains the same that initially started with the journey of finding a clue to
correlate response with ‘chemical constitution’ which was a mere composition
considered at that time [1, 2, 7]. Figure 1.4 summarizes the pioneering achieve-
ments that led to the historical evolution of the QSAR formalism.

1.2.4 Importances of QSAR

Although the development of predictive QSAR/QSPR/QSTR models appears to be
a relatively simple task, it has got enormous applications in serving the need of
scientific fraternity. It has always been a matter of curiosity that how it is possible
for different chemical agents to exert different response profile, and sometimes it is
rather astonishing that even the same chemical can elicit different biological actions.
Hence, the chemical features appear to be very crucial in determining behavior of
chemicals. QSAR techniques can provide several advantages in terms of model
predictivity and utilization of limited experimental resources, employing less
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computational time. Such features encourage the use of QSAR and related tech-
niques in costly research programs such as drug-discovery and development where
it can provide valuable information by aiding rational designing strategy with
minimal cost involvement. Furthermore, since the QSAR technique can allow the
prediction of a chemical response of relatively large number of compounds (within
the chemical domain) by using response data of limited number of chemicals, it is
widely employed in predictive toxicology analysis for the assessment of chemical
hazards. Figure 1.5 depicts an overview of the representative advantages provided
by QSAR modeling studies. It may be noted that QSAR helps in achieving efficient,
effective, safe, and environmentally benign chemicals and processes thereof and
thereby facilitates a ‘sustainable chemical’ process [2].

Fig. 1.4 A summary of the pioneering discoveries that led to the gradual evolution of the QSAR
study
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1.2.5 QSAR and Regulatory Perspectives

The idealism of developing predictive models using the QSAR techniques is being
acknowledged and prescribed by several international regulatory bodies. The fol-
lowing aspects are addressed by different regulatory bodies with the aim of per-
forming risk assessment of chemicals.

1. Assessment of chemical hazard: It comprises identification as well as dose—
response characterization of hazard, including classification and labeling of the
chemicals.

2. Assessment of exposure.
3. Assessment of hazard and exposure.
4. Identification of persistent, bioaccumulative, and toxic (PBT) as well as very

persistent and very bioaccumulative (vPvB) chemicals.

It is obvious that determination of chemical toxicity involves a sound amount of
animal experiments in order to generate reliable chemical response data. Hence, it is
one of the prime objectives of any hazard assessment strategy to search for suitable
alternative method that will reduce animal experimentation. QSAR plays a sig-
nificant role in this context since it employs comparatively less amount of response
data and can predict the same for a large number of chemicals. The QSAR tech-
nique complies with the ‘3R’ principle of Russell and Burch, namely replacement,
reduction, and refinement of animals in biological experiments and aids in

Fig. 1.5 The major advantages obtained from QSAR modeling analysis
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regulatory assessment by performing prioritization of chemicals as well as filling of
data gaps. Furthermore, modeling of categorical data (if present) becomes an
important aspect here since the toxicological response of chemicals can be cate-
gorized into several groups or classes and hence designating different levels of
hazards, viz. high, moderate, low, etc. The regulatory agencies which purport the
use of QSAR as a valid alternative strategy to animal experiment include the
European Centre for the Validation of Alternative Methods (ECVAM) of the
European Union, the Office of Toxic Substances of the US Environmental Pro-
tection Agency (US-EPA), the Agency for Toxic Substances and Disease Registry
(ATSDR), and the Council for International Organizations of Medical Sciences.
The European Commission introduced the REACH (Registration, Evaluation,
Authorization, and Restriction of Chemicals) regulations in 2006 with an aim of
performing systemic evaluation of toxicological hazard of existing as well as new
chemicals (imported or produced) and identified QSAR as an alternative method for
toxicity testing of animals. The organization of economic cooperation and devel-
opment (OECD) proposed a set of five point seminal guidelines in 2004 for the
proper development and validation of predictive QSAR models by its member
countries [9]. With the passage of time, QSAR studies have become an essential
part of regulatory assessment on a global perspective, and various countries have
developed their own ‘expert systems’ for determining chemical hazards. Expert
systems are the computational applications providing a subject-matter expertise to
non-experts by the use of definite logical reasoning. Different expert systems
contain models on toxicological endpoints that are prepared and maintained by
professional personnel as trusted systems with a suitable user interface such that any
unknown or new chemical can easily be tested of its toxicity or categorical-hazard
using the existing knowledge-base. Table 1.3 gives a representative overview of
some commonly used QSAR expert systems.

1.2.6 Applications of QSAR

Chemicals represent an indispensable part of human necessity considering varying
applications spanning from laboratory to industrial processes as well as household
usage. QSAR presents a suitable option in the rational monitoring of activity/
property/toxicity of chemicals and hence is useful in a wide variety of applications.
Since fine-tuning of the behavioral nature of chemicals gives fruitful results for a
significantly large class of chemicals involving pharmaceuticals, agrochemicals,
perfumeries, analytical reagents, solvents, surface modifying agents, etc., the
application area and possibility of the QSAR technique is enormous. In a global
perspective, the chemicals modeled using the QSAR method can be overviewed in
three major types, namely chemicals of health benefits (drugs, pharmaceuticals,
food ingredients, etc.), chemicals involved in industrial/laboratory processes (sol-
vents, reagents, etc.), and the chemicals posing hazardous outcome [persistent
organic pollutants (POPs), toxins, xenobiotics, carcinogents, volatile organic
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compounds (VOCs), etc.]. In Fig. 1.6, we have attempted to divide the employment
of QSAR application in three broad areas, namely drug designing, material science,
and predictive toxicology. Some potential areas of material science which can be
addressed by employing predictive QSAR modeling have been depicted in Fig. 1.7,
while Fig. 1.8 shows some representative endpoints addressed by the QSAR
technique in the sphere of assessing predictive toxicology. It might be interesting to
note that apart from modeling biological activity and toxicity endpoints, the drug-
designing paradigm involves modeling of ADME which aims to monitor the
pharmacokinetic profile of drug candidates prior to its synthesis and thereby
enhancing the efficacy of the designed compounds inside biological system.

Table 1.3 A representative overview of some QSAR expert systems

Expert
system

Web-address Expert system Web-address

Open source systems (free) Commercial systems (paid)

QSAR
TOOLBOX
(OECD)

http://www.qsartoolbox.org/ Derek Nexus http://www.
lhasalimited.org/
products/derek-nexus.
htm

Lazar http://lazar.in-silico.de/predict HazardExpert http://www.
compudrug.com/
hazardexpertpro

Toxtree http://ihcp.jrc.ec.europa.eu/
our_labs/eurl-ecvam/
laboratories-research/
predictive_toxicology/qsar_
tools/toxtree

The BfR
Decision
Support
System (DSS)

http://www.
tandfonline.com/doi/
pdf/10.1080/
10629360701304014

VEGA http://www.vega-qsar.eu/ TOPKAT http://www.
sciencedirect.com/
science/article/pii/
0027510794901252

DEMETRA http://www.demetra-tox.net/ MCASE and
CASE Ultra

http://www.multicase.
com/

EPI Suite™ http://www.epa.gov/opptintr/
exposure/pubs/episuite.htm

Leadscope http://www.leadscope.
com/

TEST http://www.epa.gov/nrmrl/std/
qsar/qsar.html

TerraQSAR™ http://www.terrabase-
inc.com/

OncoLogic™ http://www.epa.gov/oppt/sf/
pubs/oncologic.htm

ACD/
Percepta

http://www.acdlabs.
com/products/
percepta/physchem_
adme_tox/

MolCode
Toolbox

http://www.molcode.
com/

TIMES http://oasis-lmc.org/
products/software/
times.aspx
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Assessment of toxicity of chemicals principally involves two options, namely
assessment of systemic toxicity as well as the monitoring of ecotoxicological
hazard. Drugs and pharmaceuticals are capable of posing toxicity to the specific
organ system, e.g., hepatotoxicity, cardiovascular toxicity, and nephrotoxicity,
while they can also be of serious concern in an environmental perspective since
wastewater stream containing even trace amount of such compounds can lead to
damage in the ecosystem. Physiologically based pharmacokinetic (PBPK) modeling
is another potential area that involves modeling of chemicals such as VOCs using

Fig. 1.6 The broad application areas addressed by QSAR modeling studies

Fig. 1.7 Some representative
endpoints addressed by
QSAR analysis in the field of
material science
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physicochemical (logP) as well as biochemical parameters (Michaelis constant Km,
maximal velocity Vmax, hepatic clearance, etc.).

Hence, we can see that the simple ideology of QSAR, i.e., development of a
suitable mathematical correlation between the chemical attributes and a response of
interest, can be of significant application to serve the human community. Consid-
ering the rising health hazard issues and other environmental damage, modern
technologies are aimed toward the establishment of a ‘sustainable’ and ‘green’
ecosystem that deals with chemical processes that ensure environmental benevo-
lence in terms of efficiency, effectiveness, and safety concerns. QSAR plays an
encouraging role in achieving this environmental greenness through the design and
development of process-specific chemicals with reduced (or no) hazardous
outcomes.

Drug design and development remain the utmost important area addressed by the
QSAR formalism. The challenge faced in this perspective is quite higher since the
development of a drug molecule is a time consuming as well as costly procedure.
Furthermore, the rate of success is also very low since the chance of rejection is
very high at any stage of the development paradigm. Figure 1.9 presents an
overview of the steps involved in the development of a drug molecule starting from
its initial developmental stage. QSAR study can speed up this discovery process by
providing rational information on the chemistry of the investigational molecules
covering the issues of its contribution to pharmacological behavior, ADME prop-
erty as well as the toxic outcomes. QSAR can provide valuable information at the
stages of design and development and preclinical study, thereby facilitating
the outcomes of clinical research and the subsequent approval process. It may be
noted that since biomolecular activity involves complex interaction involving

Fig. 1.8 Some representative
endpoints addressed by
QSAR study in the realm of
predictive toxicology analysis
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Fig. 1.9 Different phases involved in the development of a drug

Fig. 1.10 Interplay of
different in silico techniques
with predictive QSAR
modeling study
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ligand-receptor attributes inside the living system, the development of potential lead
molecules would certainly utilize some other techniques as well, namely molecular
docking, pharmacophore modeling cheminformatics, and virtual screening along
with the QSAR technique. Such techniques are useful in establishing a suitable
biochemical correlation for the discovery of drug candidates and can also be applied
to other fields as well like toxicophore analysis. Figure 1.10 shows the interplay
among various in silico techniques including the QSAR algorithm successfully
deployed toward the design of target molecules.

Application of the QSAR technique in combination with other in silico methods
has been very fruitful in the drug-discovery paradigm, and some representative
examples of such designed drug molecules which were later approved by the US
Food and Drug Administration (US-FDA) as drug entities are presented in
Fig. 1.11.

Fig. 1.11 Representative examples of drugs designed and developed using different in silico
techniques including QSAR modeling analysis. Under individual drugs, the information shown
includes the disease indication, the year of US-FDA approval, the proprietary name, and the
manufacturing company, respectively
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1.3 What Are Descriptors?

1.3.1 Definition

A QSAR model can be expressed as a simple mathematical equation which can
correlate the properties (physicochemical/biological/toxicological) of molecules
employing diverse computationally or experimentally derived quantitative param-
eters termed as ‘descriptors.’ The descriptors are correlated with the experimental
properties (response) using a variety of chemometric tools in order to obtain a
statistically significant QSAR model. Molecular descriptors are the ‘terms that
characterize specific information of a studied molecule.’ They are the ‘numerical
values associated with the chemical constitution for correlation of chemical
structure with various physical properties, chemical reactivity or biological
activity.’ The developed equation should provide a significant insight into the
essential structural requisites of the molecules which contribute to the biological
response of the studied molecules [10]. In other words, the response of a chemical
can be mathematically presented as the function of descriptors (Eq. 1.12).

Response activity/property/toxicityð Þ
¼ f Molecular information extracted using chemical structure or physicochemical propertyð Þ
¼ f Descriptorsð Þ

ð1:12Þ

An ideal descriptor should possess the following features for the construction of
a reliable QSAR model:

1. A descriptor should be relevant to a broad class of compounds.
2. A descriptor must be correlated with the studied biological responses while

illustrating insignificant correlation with other descriptors.
3. Calculation of the descriptor should be fast and independent of experimental

properties.
4. A descriptor should produce different values for structurally dissimilar mole-

cules, even if the structural differences are little.
5. A descriptor should possess physical interpretability to determine the query

features for the studied compounds.

A schematic illustration is presented in Fig. 1.12 to depict the steps how a
chemical structure is employed to compute descriptors and then utilized in QSAR
model development.

1.3.2 Types of Descriptors

Descriptors can be of different types depending on the method of their computation
or determination: physicochemical (hydrophobic, steric, or electronic), structural
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(frequency of occurrence of a substructure), topological, electronic (molecular
orbital calculations), geometric (molecular surface area calculation), or simple
indicator parameters (dummy variables). In a broader perspective, descriptors
(specifically, physicochemical descriptors) can be classified into two major groups:
(1) substituent constants and (2) whole molecular descriptors [11, 12]. Substituent
constants are basically physicochemical descriptors which are designed on the basis
of factors, which govern the physicochemical properties of chemical entities. Whole
molecular descriptors are expansions of the substituent constant approach, but
many of them are also derived from experimental approaches.

Descriptors may also be classified based on dimensions. Table 1.4 gives a useful
illustration of commonly used molecular descriptors based on dimensions. It is

Fig. 1.12 Schematic illustration to show how chemical structures are employed to compute
descriptors and QSAR model development
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interesting to point out that we have confined our discussion here from 0D- to
3D-descriptors only, though higher dimensional descriptors are also available.

1.3.2.1 2D-Descriptors

Topological

Topological descriptors are calculated based on the graphical representation of
molecules and thus they neither require estimation of any physicochemical prop-
erties nor need the rigorous calculations involved in the derivation of the quantum
chemical descriptors. The structure representation of the molecule depends on its
2D-graphical topology indicating the position of the individual atoms and the
bonded connections among them. The formulation of these descriptors is based
upon the characterization of chemical structure by graph theory. The graph theoretic
determination of the molecular structure involves vertices symbolizing atoms and
the covalent bonds representing the edges [13]. In Table 1.5, we have presented the
most commonly used topological descriptors along with their formal mathematical
definitions briefly, due to their widespread use in QSAR model development.

Structural Parameters

Detailed list of structural descriptors [11] is given in Table 1.6.

Physicochemical Parameters

Physicochemical parameters are designed on the basis of factors, which govern the
physical and chemical properties of chemical entities. Due to change in physico-
chemical properties, absorption, distribution, transport, metabolism, and elimina-
tion, behavior of bioactive chemical entities may be changed. The important
physicochemical factors affecting bioactivity of drugs and chemical include
hydrophobicity, electronic, and steric character of the whole molecules and also the

Table 1.4 Different descriptors employed in the QSAR study based on dimension

Dimension of
descriptors

Parameters

0D-descriptors Constitutional indices, molecular property, atom and bond count

1D-descriptors Fragment counts, fingerprints

2D-descriptors Topological parameters, structural parameters, physicochemical
parameters including thermodynamic descriptors

3D-descriptors Electronic parameters, spatial parameters, molecular shape analysis
parameters, molecular field analysis parameters and receptor surface
analysis parameters
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Table 1.5 A representative overview of topological descriptors used in QSAR model
development

Descriptors type Mathematical definition

Balaban J index J ¼ M
lþ1

P
all edges didj

� ��0:5

where M is the number of edges, μ represents cyclomatic number
and δi (or δj) can be defined as: di ¼

P
j¼1 dij

Bond/edge connectivity
indices

2¼ PP2
l¼1 d eið Þd ej

� �� ��0:5
l

where δ(e) corresponds to edge degree and is summed (l) over all
the p2 adjacent edges.

E-state index Si ¼ Ii þ DIi
where Ii is an intrinsic state parameter and ΔIi is the perturbation
factor. Both the terms are defined as:

Ii ¼ 2=Nð Þ2dmþ1½ �
d and DIi ¼

P
j6¼1

Ii�Ijð Þ
r2ij

where N is the principal quantum number and rij being the
topological distance between atoms i and j

Extended bond/edge
connectivity indices

m2t ¼
P

s

Q
i d eið Þ½ ��0:5

s
where m represents the order of the index, t is the type of fragment
and δ(ei) is the degree of the edge ei

Extended topochemical
atom (ETA) indices

Some basic ETA indices definitions are given below

a ¼ Z�Zv

Zv � 1
PN�1

, b ¼ Rxrþ Rypþ d, ci ¼ ai
bi
, ½g�i ¼

P
j6¼i

cicj
r2ij

� �0:5
,

e ¼ �aþ 0:3� Zv, w ¼ a
e

where, α is the core count, β is the valence electron mobile (VEM)
count, γ is the VEM vertex count, η is an atom level index, ε is an
electronegativity count, and ψ is a measure of hydrogen bonding
propensity parameter. Z and Zv are the respective atomic number
and valence electron number; PN corresponds to periodic number;
σ and π are the representation of sigma and pi bond, respectively,
with their contributions being x and y; δ gives a measure of the
resonating lone pair electron in an aromatic system; rij is the
topological distance between two atoms

Kappa shape indices 1j ¼ 2
1P1

maxPmin
1Pið Þ2 ; 2 j ¼ 2

2P2
maxPmin
2Pið Þ2 ; 3 j ¼ 2

3P3
maxPmin
3Pið Þ2

where, the numbers of one, two, and three path lengths are denoted
by 1Pi,

2Pi and
3Pi, respectively. Furthermore, the maximum and

minimum path lengths of a specific type may be represented in
terms of the number of atoms (A) and thus the corresponding
kappa shape indices can be defined as follows:
1Pmax ¼ A A� 1ð Þð Þ=2; 1 Pmin ¼ A� 1ð Þ
1j ¼ A A�1ð Þ2

1Pið Þ2 ; 2 j ¼ A�1ð Þ A�2ð Þ2
2Pið Þ2 ; 3 j ¼ A�1ð Þ A�3ð Þ2

3Pið Þ2 for odd value of

A and, 3j ¼ A�2ð Þ2 A�3ð Þ
3Pið Þ2 for even value of A

Kappa modified (alpha)
shape indices

The kappa indices are modified by using an α term which is
defined as: ax ¼ rx

rCsp3
� 1, where rx and rCsp

3 are the covalent radii of

the atom x and sp3 hybridized carbon atom, respectively. The
corresponding alpha-modified kappa shape indices are defined

(continued)
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Table 1.5 (continued)

Descriptors type Mathematical definition

below: 1ja ¼ Aþað Þ Aþa�1ð Þ2
1Piþað Þ2 ; 2 ja ¼ Aþa�1ð Þ Aþa�2ð Þ2

2Piþað Þ2 ; 3 ja ¼
Aþa�1ð Þ Aþa�3ð Þ2

3Piþað Þ2 for odd A values and 3ja ¼ Aþa�2ð Þ2 Aþa�3ð Þ
3Piþað Þ2 for even

A values

Molecular connectivity
index

mvt ¼
Pnm

j¼1
mSj

where, nm represents the number of t type subgraphs of order
m. The term mSj may be defined as follows:
mSj ¼

Qmþ1
i¼1 dið Þ�0:5

j and δi for the ith atoms may be defined as:
di ¼ ri � hj, where, σi is the number of valence electrons in σ
orbital of the ith atom and hi represents the number of hydrogen
atoms attached to vertex i

Randic branching index
(χ)

v ¼ P
all edges didj

� ��0:5

where, δi and δj represent the number of other non-hydrogen atoms
bonded to atoms (vertices) i and j, respectively, forming an edge ij

Subgraph count index It is the number of sub-graphs of a given type and order. Subgraph
count index is classified from zero order to third order (SC_0,
SC_1, SC_2, SC_3). It is notable that third-order sub-graphs are
divided into three types on the basis of path, cluster, and ring
(SC_3_P, SC_3_C, SC_3_CH)

Valence molecular
connectivity index

mvvt ¼
Pnm

j¼1
mSvj

Here, the corresponding term δv is defined as: dvi ¼
Zv
i �hð Þ

Z�Zv
i �1ð Þ, where

Z and Zv are the atomic number and the total number of valence
electron, respectively, for the ith vertex

Wiener index (W)
W ¼ 1

2

PN
i¼1

PN
j¼1

dij

where N is the number of vertices or atoms and δij is the distance
matrix of the shortest possible path between vertices i and j

Zagreb group indices Zagreb ¼ P
i d

2
i

where δi is the valency of vertex atom i

Table 1.6 Structural parameters used in the development of QSAR models

Parameters Explanation

Chiral centers It counts the number of chiral centers (R or S) in a molecule

Molecular weight
(MW)

It is the simple molecular weight of a chemical entity

Rotatable bonds
(Rotlbonds)

This descriptor counts the number of bonds in the molecule having
rotations which are considered to be meaningful for molecular
mechanics. All terminal H atoms are ignored

H-bond donor It counts the number of groups or moieties capable of donating
hydrogen bonds

H-bond acceptor This descriptor calculates the number of hydrogen-bond acceptors
present in the molecule
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substituents present in the molecules [14–16]. Some formal definitions of physi-
cochemical descriptors commonly used as predictor variables in QSAR analysis are
shown in Table 1.7.

Indicator Variables

Indicator variables have been employed in QSAR models due to their simplicity.
Substructure-based descriptors can be easily employed as indicator variables. Two
sets of compounds which differ from each other only by a substructure existing in
one set but not the other can be studied as an entire set when using an indicator
variable. The major limitation of this variable is that this approach should only be
employed when the two sets of compounds are identical in every respect, except for
the substructure being coded with the indicator variable.

Thermodynamic Descriptors

The most commonly used thermodynamic descriptors [11] in QSAR models are
described in Table 1.8.

1.3.2.2 3D-Descriptors

Electronic Parameters

Electronic descriptors are defined in terms of atomic charges and are used to
describe electronic aspects both of the whole molecule and of particular regions,
such as atoms, bonds, and molecular fragments. Electrical charges in the molecule
are the driving force of electrostatic interactions, and it is well known that local
electron densities or charges play a fundamental role in many chemical reactions
and physicochemical properties [11]. The electronic descriptors used in the present
studies are summarized in Table 1.9.

Spatial Parameters

Spatial parameters comprise a series of descriptors calculated based on the spatial
arrangement of the molecules and the surface occupied by them. The list of spatial
descriptors [11] is summarized in Table 1.10.
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Table 1.7 Formal definitions of most commonly used physicochemical descriptors in QSAR
analysis

Parameter Definitions

Parameters defining hydrophobic nature

Partition coefficient logP ¼ logKo=w ¼ log ½C�n�octanol
½C�water

where C is the concentration of a solute in the respective
mentioned phase (water or n-octanol). Usually,
compounds having log P value more or less than 1 are
considered to be hydrophobic and hydrophilic,
respectively.

Hydrophobicity constant (π) pX ¼ logPX � logPH

where PX and PH are the partition coefficient values of the
compound with and without specific substituent,
respectively. Positive value of π of a given substituent
imparts lipophilic character to a molecule and vice versa

Parameters defining electronic nature

Hammett substituent constant (σ) rX ¼ log KX=KHð Þ
where X is a substituent, and KX and KH are the
equilibrium or dissociation constant with and without the
substituent, respectively. Two parameters, namely σm and
σp are widely used representing the respective values for
meta and para substituents in an aromatic system

Acid dissociation constant Acid dissociation constant can be explained by following
equation:

Ka ¼ ½A��½Hþ�
½HA�

where A− is the conjugate base of acid HA and H+ is the
proton. The negative logarithmic function (pKa) is used
for the modeling purpose and can be defined as:
pKa ¼ � log10 Ka. It is usually determined using the
famous Henderson Hasselbalch equation:

pKa ¼ pH � log ½A��
½HA�

where, pH is the negative logarithmic concentration of H+

ion, i.e., pH ¼ � log½Hþ�
Parameters defining steric nature

Taft’s steric factor (Es) Es ¼ log kX � log k0
where k0 and kX are the rate constants of hydrolysis of an
organic compound without having and having substituent
X, respectively. The parameter Es gives a measure of
intramolecular steric effect of substituents

Charton’s steric parameter (ν) and
van der Waals radius

Charton found that Taft’s steric (ES) constant is linearly
dependent on the van der Waals radius of the substituent,
which led to the development of the Charton’s steric
parameter (υX). Taft also pointed out that Es varies
parallel to the atom group radius. The Charton’s steric
parameter can be defined as: tX ¼ rX � rH ¼ rX � 1:20
where, rX and rH are the minimum van der Waals radii of
the substituent and hydrogen, respectively

(continued)
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Table 1.7 (continued)

Parameter Definitions

Molar refractivity MR ¼ n2�1
n2þ2

� 	
�MW

q

where n represents refractive index, molecular weight is
denoted by MW, and ρ is the density of the molecule.
Molar refractivity provides a measure of volume occupied
by an atom or a group

Verloop STERIMOL parameters Verloop and coworkers developed STERIMOL
parameters, which are a set of five descriptors (L, B1, B2,
B3, and B4) in order to describe the shape of a
substituent. L is the length of the substituent along the
axis of the bond between the first atom of the substituent
and the parent molecule. The width parameters B1–B4
are all orthogonal to L and form an angle of 90o with each
other. The large number of parameters required to define
each substituent, and the large number of compounds
necessary to incorporate all the parameters into a QSAR,
resulted in pruning of the descriptors to L, B1 and B5
with B1 as the smallest and B5 the largest width
parameter, which does not have any directional
relationship to L

Parachor An important whole molecular parameter defining the
steric nature is parachor which can be explained by
following equation

PA ¼ c1=4 � MW
qL�qV

where γ is the surface tension of the liquid, MW is the
molecular weight, and ρL and ρV are the respective
densities of the liquid and vapor state. Parachor depends
on molecule volume

Table 1.8 Thermodynamic parameters used in the development of QSAR models

Descriptor Description

AlogP Log of the partition coefficient using Ghose & Crippen’s method

AlogP98 The AlogP98 descriptor is an implementation of the atom-type-based AlogP
method

Alogp_atypes The 120 atom types defined in the calculation of AlogP98 are available as
descriptors. Each AlogP98 atom-type value represents the number of atoms of
that type in the molecule

Fh2o Desolvation free energy for water derived from a hydration shell model
developed by Hopfinger

Foct Desolvation free energy for octanol derived from a hydration shell model
developed by Hopfinger

Hf Heat of formation
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Molecular Shape Analysis (MSA) Descriptors

The MSA descriptors are used to determine the molecular shape commonality [11].
Most commonly used MSA descriptors are following: difference volume (DIFFV),
common overlap steric volume (COSV), common overlap volume ratio (Fo), non-
common overlap steric volume (NCOSV), and root mean square to shape reference
(ShapeRMS). A detailed explanation of these MSA descriptors is provided in
Chap. 3.

Table 1.9 Electronic descriptors employed in the construction of QSAR models

Parameters Explanations

Sum of atomic polarizabilities It is the summation of atomic polarizabilities (Ai). The
polarizabilities are calculated as follows:
Pa ¼

P
i Ai

The coefficient, A, is used for calculation of molecular
mechanics

Dipole moment (dipole) This 3D-descriptor represents the strength and orientation
behavior of a molecule in an electrostatic field. Both the
magnitude and the components (X, Y, Z) of the dipole
moment are calculated. It is determined by using partial
atomic charges and atomic coordinates

Highest occupied molecular
orbital (HOMO) energy

It is the highest energy level in the molecule that contains
electrons. When a molecule acts as a Lewis base (an
electron-pair donor) in bond formation, the electrons are
supplied from this orbital. It measures the nucleophilicity
of a molecule

Lowest unoccupied molecular
orbital (LUMO) energy

It is the lowest energy level in the molecule that contains
no electrons. When a molecule acts as a Lewis acid (an
electron-pair acceptor) in bond formation, incoming
electron pairs are received in this orbital. It measures the
electrophilicity of a molecule

Superdelocalizability (Sr) It is an index of reactivity in aromatic hydrocarbons,
represented as follows:

Sr ¼ 2
Pm

j¼1
c2jr
ej

� 	
Sr = superdelocalizability at position r, ej ¼
bonding energy coefficient in jth molecular orbital
(eigenvalue), c = molecular orbital coefficient at position r
in the HOMO, m = index of the HOMO
The index is based on the idea that early interaction of the
molecular orbitals of two reactants may be regarded as a
mutual perturbation, so that the relative energies of the
two orbitals change together and maintain a similar degree
of overlap as the reactants approach one another
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Molecular Field Analysis (MFA) Parameters

The MFA formalism computes probe interaction energies on a rectangular grid
around a collection of active molecules. The surface is generated from a ‘Shape
Field.’ The atomic coordinates of the contributing models are used to compute field
values on each point of a 3D-grid. MFA evaluates the energy between a probe (H+

or CH3) and a molecular model at a series of points defined by a rectangular grid.
Fields of molecules are represented using grids in MFA and each energy associated
with an MFA grid point can serve as input for the calculation of a QSAR [17].

Table 1.10 Spatial parameters used in the development of QSAR models

Parameters Explanation

Radius of gyration
(RadOfGyration)

RadOfGyration is a measure of the size of an object, a surface, or
an ensemble of points. It is calculated as the root mean square
distance of the objects’ parts from either its center of gravity or an
axis. This can be calculated as follows:

RadofGyration ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP x2i þy2i þz2ið Þ

N

� �s

here, N is the number of atoms and x, y, z are the atomic
coordinates relative to the center of mass

Jurs descriptors The descriptors combine shape and electronic information to
characterize molecules. These descriptors are calculated by
mapping atomic partial charges on solvent-accessible surface areas
of individual atoms

Shadow indices These indices help to characterize the shape of the molecules.
These are calculated by projecting the molecular surface on three
mutually perpendicular planes, i.e., XY, YZ, and XZ. Descriptors
depend not only on conformation but also on the orientation of
molecule. Molecules are rotated to align principal moments of
inertia with X, Y, and Z axes

Molecular surface area
(area)

It is a 3D-descriptor that describes the van der Waals area of a
molecule. It measures the extent to which a molecule exposes
itself to the external environment. It is related to binding,
transport, and solubility

Density This 3D-descriptor is the ratio of molecular weight to molecular
volume. This descriptor represents the type of atoms and how
tightly they are packed in a molecule. It is related to transport and
melt behavior

Principal moment of
inertia (PMI)

The moments of inertia are computed for a series of straight lines
through the center of mass. These are associated with the principal
axes of the ellipsoid. If all three moments are equal, the molecule
is considered to be a symmetrical top

Molecular volume (Vm) This 3D-descriptor is the volume inside the contact surface. It is
related to binding and transport
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Receptor Surface Analysis (RSA) Parameters

The energies of interaction between the receptor surface model and each molecular
model can be used as descriptors for generating QSARs [17]. The surface points
that organize as triangle meshes in the construction of the RSA store these prop-
erties as associated scalar values. Receptor surface models provide compact,
quantitative descriptors, which capture three-dimensional information of interaction
energies in terms of steric and electrostatic fields at each surface point. A detailed
explanation of these RSA descriptors is provided in Chap. 3.

Table 1.11 List of software tools and online platforms for computation of molecular descriptors

Software/online
platform

Weblink

Cerius2 http://accelrys.com/

CODESSA PRO http://www.codessa-pro.com/index.htm

Discovery studio http://accelrys.com/

DRAGON http://www.talete.mi.it/products/dragon_description.htm

E-Dragon at
VCCLAB

http://www.vcclab.org/lab/edragon/

GRID http://www.moldiscovery.com/soft_grid.php

JME Molecular Editor http://www.molinspiration.com/jme/index.html

Linux4Chemistry http://www.linux4chemistry.info/

MOE http://www.chemcomp.com/software.htm

MOLCONN-Z http://www.edusoft-lc.com/molconn/

MOLE db http://michem.disat.unimib.it/mole_db/

MOLGEN-QSPR http://www.molgen.de/?src=documents/molgenqspr.html

OCHEM https://ochem.eu/home/show.do

OpenBabel http://openbabel.org/

PaDEL-Descriptor http://padel.nus.edu.sg/software/padeldescriptor/

PCLIENT http://www.vcclab.org/lab/pclient/

QSARModel http://www.molcode.com/

QuaSAR http://www.chemcomp.com/feature/qsar.htm

SYBYL-X http://tripos.com/index.php?family=modules,SimplePage&page=
SYBYL-X

TsarTM http://www.accelrys.com/products/tsar/tsar.html

Unscrambler X http://www.camo.com/rt/Products/Unscrambler/unscrambler.html

V-Life MDS http://www.vlifesciences.com/products/VLifeMDS/Product_
VLifeMDS.php
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1.3.3 Software Tools and Online Platforms

QSAR is gaining popularity among the researchers with the development of new
and advanced software tools and online platforms which allow them to determine
the molecular structural features responsible for compounds activity/property/tox-
icity. Table 1.11 shows a representative list of most commonly employed software
tools and online platforms for the generation of descriptors from molecular
structures.

1.4 Conclusion

Development of techniques to fine-tune and modify the chemistry of compounds
provides an enormous opportunity toward the development of purpose-specific
chemicals. The search for the answer to the query how different chemicals elicit
different responses and even the same chemical shows varying behavioral features
has led to the exploration of different chemical attributes. Predictive QSAR mod-
eling technique provides an option for developing a mathematical basis for the
elicited chemical responses. Since the generated basis is highly rational on the
ground of chemical information, such techniques are widely employed to maneuver
the needs of the industry as well as academia. The drug-discovery paradigm
involving costly and time-consuming steps can be easily rationalized and put under
suitable basis using QSAR and other suitable in silico techniques in the preclinical
research programmes. The QSAR technique also enables optimization of chemical
operations by enhancing the selectivity of various process chemicals. Furthermore,
the QSAR technique has profound applications in the risk assessment paradigm
considering the minimal engagement of ethical issues related to animal experiment
while using regression or classification-based predictive mathematical models.
Among other components, descriptors present one of the crucial elements of the
QSAR formalism. The ultimate diagnosis of chemical features is preserved in the
form of quantitative numbers as descriptors which enables the identification of
mechanism of action of a given biochemical process and any modification thereof.
It should be noted that ‘no’ single descriptor can provide any universal solution to
chemical problems. Sometimes, the nature of endpoints becomes the determining
parameter in choosing suitable descriptors. Although a wide variety of descriptors
are available for use, the goal of a modeler should be toward the use or development
of descriptors which are easily computable giving an explicit amount of chemical
information. Hence, one of the major goals of the modeler should not only be
directed toward the development of a good mathematical correlation between
response and descriptors, but it should also provide a suitable explanation of the
result, i.e., a mechanistic overview such that the QSAR formalism can be used as a
rational chemical designing tool instead a ‘black-box’ method of deriving a
mathematical correlation involving a series of abstract mathematical algorithms.

1.3 What Are Descriptors? 35



References

1. Todeschini R, Consonni V, Gramatica P (2009) Chemometrics in QSAR. In: Brown S, Tauler
R, Walczak R (eds) Comprehensive chemometrics, vol 4. Elsevier, Oxford, pp 129–172

2. Tute MS (1990) History and objectives of quantitative drug design. In: Hansch C, Sammes
PG, Taylor JB (eds) Comprehensive medicinal chemistry, vol 4. Pergamon Press, Oxford,
pp 1–31

3. Sinko PJ (ed) (2011) Martin’s physical pharmacy and pharmaceutical sciences, 6th edn.
Lippincott Williams & Wilkins, Baltimore

4. Daniels TC, Jorgensen EC (1982) Physicochemical properties in relation to biological action.
In: Doerge RF (ed) Wilson and Gisvold’s textbook of organic medicinal and pharmaceutical
chemistry, 8th edn. J.B. Lippincott Co., Pennsylvania

5. Traube J (1904) Theorie der Osmose and Narkose. Pflüg Arch Physiol 105:541–558
6. Seidell A (1912) A new bromine method for the determination of thymol, salicylates, and

similar compounds. Am Chem J 47:508−526
7. Selassie CD (2003) History of quantitative structure-activity relationships. In: Abraham DJ

(ed) Burger’s medicinal chemistry and drug discovery, vol 1., Drug DiscoveryWiley, New
York, pp 1–48

8. Albert A, Rubbo SD, Goldacre R (1941) Correlation of basicity and antiseptic action in an
acridine series. Nature 147:332−333

9. Fjodorova N, Novich M, Vrachko M, Smirnov V, Kharchevnikova N, Zholdakova Z, Novikov
S, Skvortsova N, Filimonov D, Poroikov V, Benfenati E (2008) Directions in QSAR modeling
for regulatory uses in OECD member countries, EU and in Russia. J Environ Sci Health Part C
Environ Carcinog Ecotoxicol Rev 26:201–236

10. Guha R, Willighagen E (2012) A survey of quantitative descriptions of molecular structure.
Curr Top Med Chem 12:1946–1956

11. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH,
Weinheim

12. Livingstone DJ (2000) The characterization of chemical structures using molecular properties.
A survey. J Chem Inf Comput Sci 40:195–209

13. Roy K, Das RN (2014) A review on principles, theory and practices of 2D-QSAR. Current
Drug Metabol 15:346–379

14. Taylor PJ (1991) Quantitative drug design. the rational design, mechanistic study and
therapeutic applications of chemical compounds. In: Hansch C, Sammes PG, Taylor JB (eds)
Comprehensive medicinal chemistry, vol 4. Pergamon Press, Oxford; pp 241–294

15. Rekker R (1977) The hydrophobic fragmental constant. Elsevier, Amsterdam
16. Hansch C, Leo A, Hoekman D (1995) Exploring QSAR vol 2: hydrophobic, electronic and

steric constants. ACS, Washington DC
17. Hopfinger AJ, Tokarsi JS (1997) In: Charifson PS (ed) Practical applications of computer-

aided drug design. Marcel Dekker, New York, pp 105–164

36 1 QSAR/QSPR Modeling: Introduction



Chapter 2
Statistical Methods in QSAR/QSPR

Abstract QSAR/QSPR studies are aimed at developing correlation models using a
response of chemicals (activity/property) and chemical information data in a sta-
tistical approach. The regression- and classification-based strategies are employed
to serve the purpose of developing models for quantitative and graded response
data, respectively. In addition to the conventional methods, various machine
learning tools are also useful for QSAR/QSPR modeling analysis especially for
studies involving high-dimensional and complex chemical information data bearing
a nonlinear relationship with the response under consideration.

Keywords Applicability domain � Chemometric tools � Classification � MLR �
Model development � OECD � Validation

2.1 Introduction

QSAR/QSPR models represent mathematical equations correlating the response of
chemicals (activity/property) with their structural and physicochemical information
in the form of numerical quantities, i.e., descriptors. Suitable statistical methods are
deployed to derive a robust mathematical correlation involving small to large
number of variables. Various regression- and classification-based methods are used
for this purpose. Regression-based approaches are employed when the response
data of chemicals are entirely numerical, i.e., quantitative, while qualitative or semi-
quantitative chemical response(s) are modeled using classification techniques. It
may be noted that the descriptors in both the cases of regression- and classification-
based methods will be explicitly quantitative values. The regression-based methods
enable the quantitative prediction of the response (activity/property), while classi-
fication methods allow categorization of the data points into several groups or
classes such as highly active and less active. In addition to the conventional
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methods, machine learning-based methods are also useful in developing QSAR/
QSPR models. It may be noted that the machine learning tools employing artificial
intelligence can also be used to solve regression- and classification-based problems.
Now, apart from the model development formalisms, various statistical tools are
also useful for feature selection from a large matrix of descriptor data. The feature
selection tools enable the use of suitable and relevant descriptors for a particular
response, thereby removing noises from the analysis. Furthermore, the descriptor
data matrix can also be subjected to various pruning methods to reduce intercor-
related and redundant chemical information. The developed QSAR models are also
subjected to several validation tests to check for the reliability of the developed
correlation models. After its development, a QSAR model is usually verified by
employing multiple statistical validation strategies giving an estimation of its pre-
dictivity and stability. According to the OECD guidelines, the development of a
QSAR model should comply with unambiguous algorithm strategies and the model
should pass various testes model fitness, robustness, and predictivity. The present
chapter gives an account of various statistical tools used for the data pretreatment,
feature selection, model development, and validation of QSAR/QSPR models.

2.2 Chemometric Tools

Chemometrics is the chemical discipline that uses statistical methods to design
optimal procedures, experiments, and objects, and to provide maximum chemical
information by analyzing chemical data.

2.2.1 Various Chemometric Tools Used in QSAR/QSPR

QSAR/QSPR is basically a statistical approach correlating the response property or
activity data with descriptors encoding chemical information. Such correlation may
be derived either in a regression-based approach (in cases where the response
property is quantitative and available in a continuous scale) or a classification-based
approach (in cases where the response property is graded or semi-quantitative).

The most commonly used regression-based approaches are as follows:

• Multiple linear regression (MLR)
• Partial least squares (PLS)

Some of the common classification-based approaches are as follows:

• Linear discriminant analysis (LDA)
• Cluster analysis
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Machine learning tools such as artificial neural network, support vector machine
are also very effective in developing predictive models, particularly handling with
high-dimensional and complex chemical information data showing a nonlinear
relationship with the response(s) of the chemicals. Some of the more popular and
commonly used chemometric tools will be briefly discussed in this chapter.
However, before any statistical model building method is applied, the QSAR/QSPR
data table may be required to be pretreated followed by application of a suitable
feature selection method.

2.2.2 Pretreatment of the Data Table

While preparing a QSAR table, care should be taken to ensure that the molecular
structures have been correctly drawn or imported, the biological activity (or other
response) data have been taken from an authentic source (and they have permissible
experimental errors) and the descriptor values have been computed using a vali-
dated software. The response data for a QSAR modeling set should ideally have a
normal distribution pattern. While clubbing two or more data sets, care must be
taken to ensure that all experiments performed to determine the response values
have used the same protocol. Care should also be taken to avoid duplicates in the
data set. The correct tautomeric form of the structure of the compounds should also
be considered. For computation of 3D descriptors, appropriate structure optimiza-
tion should have been carried out.

When a large number of descriptors have been calculated, an appropriate method
to remove less important or redundant descriptors should be applied. One can omit
the descriptors with a constant value for all observations and the descriptors
showing a very low variance. Only one descriptor among those showing high
mutual intercorrelation should be retained. Descriptors showing a very low corre-
lation with the response may also be omitted in order to thin the descriptor pool. In
some cases, a suitable scaling of the descriptors may also be required.

2.2.3 Feature Selection

The selection of appropriate descriptors for model development from a pool of a
large number of descriptors is an important step in QSAR modeling. Such selection
may be done in a variety of ways, including stepwise selection (using a suitable
stepping criterion, e.g., ‘F-for-inclusion’ and ‘F-for-exclusion’ based on partial
F-statistic), all possible subset selection, genetic method, and factor analysis.
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2.2.4 Multiple Linear Regression

Multiple linear regression or MLR [1] is a commonly used method in QSAR due to
its simplicity, transparency, reproducibility, and easy interpretability. The gen-
eralized expression of an MLR equation will be like the following:

Y ¼ a0 þ a1 � X1 þ a2 � X2 þ a3 � X3 þ � � � þ an � Xn ð2:1Þ

In the above expression, Y is the response or dependent variable, X1, X2, …, Xn

are descriptors (features or independent variables) present in the model with the
corresponding regression coefficients a1, a2, …, an, respectively, and a0 is the
constant term of the model. The interpretation of contribution of individual
descriptors X1, X2, …, Xn is straightforward depending on the corresponding
coefficient value and its algebraic sign. Each regression coefficient should be sig-
nificant at p < 0.05 which can be checked from a ‘t’ test. The descriptors present in
an MLR model should not be much intercorrelated. For a statistically reliable
model, the number of observations and number of descriptors should bear a ration
of at least 5:1. A MLR model that fits well the given data will lead to a scatter plot
(observed vs. calculated) showing a minimum deviation of the points from the line
of fit (Fig. 2.1). The quality of a MLR model is determined from a number of
metrics as described below.

Fig. 2.1 A scatter plot of the
observed and calculated
activity for an MLR model
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1. Determination coefficient (R2)
One can define the determination coefficient (R2) in the following manner:

R2 ¼ 1�
P

Yobs � Ycalcð Þ2P
Yobs � Yobs
� �2 ð2:2Þ

In the above equation, Yobs stands for the observed response value, while Ycalc is
the model-derived calculated response and Yobs is the average of the observed
response values. For the ideal model, the sum of squared residuals being 0, the
value of R2 is 1. As the value of R2 deviates from 1, the fitting quality of the model
deteriorates. The square root or R2 is the multiple correlation coefficient (R).

2. Adjusted R2 (Ra
2)

If one goes on increasing the number of descriptors in a model for a fixed
number of observations, R2 values will always increase, but this will lead to a
decrease in the degree of freedom and low statistical reliability. Thus, a high
value of R2 is not necessarily as indication of a good statistical model that fits
well the available data. To reflect the explained variance (the fraction of the data
variance explained by the model) in a better way, adjusted R2 which has been
defined in the following manner:

R2
a ¼

N � 1ð Þ � R2 � p
N � 1� p

ð2:3Þ

In the above expression, p is the number of predictor variables used in the
model development.

3. Variance ratio (F)
To judge the overall significance of the regression coefficients, the variance ratio
(the ration of regression mean square to deviations mean square) can be defined as
follows:

F ¼

P
Ycalc��Yð Þ2
pP

Yobs�Ycalcð Þ2
N�p�1

ð2:4Þ

The F value has two degrees of freedom: p, N − p − 1. The computed F value of
a model should be significant at p < 0.05. For overall significance of the
regression coefficients, the F value should be high.

4. Standard error of estimate (s)
For a good model, the standard error of estimate of Y should be low and this is
defined as follows:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yobs � Ycalcð Þ2
N � p� 1

s
ð2:5Þ

It has a degree of freedom of N − p − 1.
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Note that development of MLR models and computation of various statistical
metrics can be done by the use of an open access tool available at http://dtclab.
webs.com/software-tools and http://teqip.jdvu.ac.in/QSAR_Tools/ and also from
the site http://aptsoftware.co.in/DTCMLRWeb/index.jsp.

2.2.5 Partial Least Squares (PLS)

While handling a large number of intercorrelated and noisy descriptors for a limited
number of data points, PLS is a better choice over MLR. PLS, being a general-
ization of MLR [2], tries to extract the latent variables (LV), which are functions of
the original variables, accounting for as much of the underlying factor variation as
possible while modeling the responses. Before the analysis, the X- and Y-variables
are often transformed to make their distributions fairly symmetrical. The response
variables are usually logarithmically transformed and the X variables should be
scaled appropriately. The linear PLS finds a few new variables (latent variables),
which are linear combinations of the original variables. When the number of LVs is
equal to the number of variables, the PLS model becomes same as the MLR model.
A strict test of the predictive significance of each PLS component is necessary, and
then stopping addition of new components when components start to be non-
significant. Cross-validation (CV) is a practical and reliable way to test this pre-
dictive significance. A PLS equation can be expressed in the same form as in MLR;
thus contributions of individual descriptors to the response can be easily found out.

2.2.6 Linear Discriminant Analysis

LDA [3] can separate two or more classes of objects and can thus be used for
classification problems. LDA performs the same task as MLR by predicting an
outcome when the response property has graded values and molecular descriptors
are continuous variables. LDA explicitly attempts to model the difference between
the classes of data. In a two-group situation, the predicted membership is calculated
by computing a discriminant function (DF) score for each case (Fig. 2.2). Then,
cases with DF values smaller than the cutoff value are classified as belonging to one
group, while those with values larger are classified into the other group. The DF
may take the following form:

DF ¼ c1 � X1 þ c2 � X2 þ � � � þ cm � Xm þ a ð2:6Þ

where DF is the discriminate function, which is a linear combination (sum) of the
discriminating variables, c is the discriminant coefficient or weight for that variable,
X is respondent’s score for that variable, a is a constant, m is the number of
predictor variables. The c’s are unstandardized discriminant coefficients analogous
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to the beta coefficients in the regression equation. These c’s maximize the distance
between the means of the criterion (dependent) variable. Good predictors tend to
have large standardized coefficients. After using an existing set of data to calculate
the DF and classify cases, any new cases (test samples) can then be classified.

In a stepwise DF analysis, the model is built step-by-step. Specifically, at each
step all variables are reviewed and evaluated to determine which one will contribute
most to the discrimination between groups. That variable will then be included in
the model, and the process starts again.

2.2.7 Cluster Analysis

Unlike LDA, cluster analysis [4] requires no prior knowledge about which elements
belong to which clusters. The clusters are defined through an analysis of the data.
Cluster analysis maximizes the similarity of cases within each cluster while max-
imizing the dissimilarity between groups that are initially unknown.

The hierarchical cluster analysis finds relatively homogeneous clusters of cases
based on dissimilarities or distances among objects. The most straightforward and
generally accepted way of computing distances between objects in a multi-
dimensional space is to compute the Euclidean distances or the squared Euclidean
distance. It starts with each case as a separate cluster and then combines the clusters
sequentially, reducing the number of clusters at each step until only one cluster is
left. A hierarchical tree diagram or dendrogram (Fig. 2.3) can be generated to show
the linkage points: the clusters are linked at increasing levels of dissimilarity.

Fig. 2.2 Distribution of
compounds in two groups
using a discrimination
function DF in a LDA
analysis

2.2 Chemometric Tools 43



The k-means clustering is a non-hierarchical method of clustering which can be
used when the number of clusters present in the objects or cases is known. It is an
unsupervised method of centroid-based clustering. In general, the k-means method
will produce the exact k different clusters. The method defines k centroids, one for
each cluster, placed as much as possible far away from each other. The next step is
to take each point belonging to a given data set and associate it to the nearest
centroid. When no point is pending, the positions of the k centroids are recalculated.
This procedure is repeated until the centroids no longer move.

2.3 Quality Metrics

2.3.1 Importance of Metrics for Determination of Quality
of QSAR Models

Advancement in fast and economical computational resources makes it feasible to
compute a large number of descriptors using various software tools. As a conse-
quence, one cannot deny the risk of chance correlations with the increasing number
of variables included in the QSAR model as compared to the limited number of
compounds usually employed for the model development [5]. On the other hand,
employing miscellaneous optimization tools, it is feasible to get models that can fit
well the experimental data but there always remains a chance of overfitting. Fitting
of data does not corroborate a good predictability of the model as the former is a
parameter for the statistical quality of the model. This is the main reason why
validation tools must be applied on the developed QSAR model to check its pre-
dictivity for new untested molecules. A flowchart for the method of development of
a dependable QSAR model along with the various validation methods with the
metrics commonly used are demonstrated in Fig. 2.4.

Fig. 2.3 Example of a
dendrogram

44 2 Statistical methods in QSAR/QSPR



2.3.2 Types of Validation

2.3.2.1 The OECD Principles

The OECD principles are the best possible outline of the essential points to be
addressed while developing reliable and reproducible QSAR models [6]. The
principles were formulated by QSAR experts in a meeting held in Setúbal, Portugal,
in March 2002 as the guidelines for the validation of QSAR models, in particular
for regulatory purposes. These principles were later approved by the OECD
member countries, QSAR and regulatory communities at the 37th Joint Meeting of
the Chemicals Committee and Working Party on Chemicals, Pesticides and
Biotechnology in November 2004. The five guidelines adopted by the OECD
denoting validity of QSAR model are as follows:

• Principle 1—A defined endpoint
• Principle 2—An unambiguous algorithm
• Principle 3—A defined domain of applicability

Fig. 2.4 Fundamental steps for the generation of a QSAR model and employed validation
methods

2.3 Quality Metrics 45



• Principle 4—Appropriate measures of goodness-of-fit, robustness and
predictivity

• Principle 5—A mechanistic interpretation, if possible.

The present challenge in the process of development of a QSAR model is no
longer in developing a model that is statistically sound to predict the activity within
the training set, but in developing a model with the capability to accurately predict
the activity of new chemicals.

2.3.2.2 Internal Validation

Internal validation of a QSAR model is performed based on the molecules used in
the model development. It involves activity prediction of the studied molecules
followed by estimation of parameters for detecting the precision of predictions. To
judge the quality and goodness-of-fit of the model, internal validation is an ideal
technique. But, the major disadvantage of this approach is the lack of predictability
of the model when it is applied to a new data set [7].

2.3.2.3 External Validation

One cannot judge the predictability of the developed model from internal validation
for an entirely new set of compounds, as internal validation considers the chemicals
belonging to the same set of compounds used for model development. Thus for
external validation, the available data set is usually divided into training and test
sets, then subsequently a model is developed with the training set, and then the
constructed model is employed to check the external validation employing the test
set molecules which are not utilized in the model development process. The
external validation ensures the predictability and applicability of the developed
QSAR model for the prediction of untested molecules [8].

Selection of Training and Test Sets

In general, the division of the data set into training and test sets must be executed in
such a manner that points representing both training and test sets are dispersed
within the entire descriptor space occupied by the whole data set and each point of
the test set is near to at least one compound of the training set. The following
approaches are mostly employed by the QSAR practitioners for the selection of the
training and test sets [8]:

1. Random selection: The data set may be divided by a mere random selection
process.

2. Based on Y-response: This approach is based on the activity (Y-response)
sampling. The complete range of the response is divided into bins and
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compounds belonging to each bin are assigned to the training or test sets ran-
domly or in customized way.

3. Based on X-response: Properties and structural similarity of the molecules are
considered for the grouping of similar compounds. After that, a predecided
fraction of compounds is assigned to the training or test set manually or in some
regular way.

Most commonly employed tools for the rational division of the data sets are:

• k-Means clustering,
• Kohonen’s self-organizing map selection,
• statistical molecular design,
• Kennard–Stone selection,
• sphere exclusion, and
• extrapolation-oriented test set selection.

Note that the division of a data set using some common algorithms can be easily
done by the use of an open access tool available at http://teqip.jdvu.ac.in/QSAR_
Tools/.

Applicability Domain (AD)

1. Concept of the AD
The AD is defined as a theoretical region in the chemical space constructed by
both the model descriptors and modeled response. The applicability domain
plays a crucial role for estimating the uncertainty in the prediction of a particular
compound based on how similar it is to the compounds employed to construct
the QSAR model. Therefore, the prediction of a modeled response using QSAR
is applicable only if the compound being predicted falls within the AD of the
model as it is unfeasible to predict the whole universe of compounds using a
single QSAR model [9].

2. Types of the AD approaches
The most commonly employed techniques for estimating interpolation regions
in a multivariate space are as follows:

(a) Ranges in the descriptor space,
(b) geometrical methods,
(c) distance-based methods,
(d) probability density distribution, and
(e) range of the response variable.

The first four approaches are based on the methodology used for interpolation
space characterization in the model descriptor space. On the contrary, the last one
depends solely on response space of the training set molecules. A compound can be
identified out of the AD, if: (a) at least one descriptor is out of range for the ranges
approach and (b) the distance between the chemical and the center of the training
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data set exceeds the threshold for distance approaches. The threshold for all kinds of
distance methods is the largest distance between the training set data points and the
center of the training data set.

2.3.3 Validation Metrics for Regression-Based QSAR Models

2.3.3.1 Metrics for Internal Validation

The most commonly employed internal metrics are discussed below [10]:

1. Leave-one-out (LOO) cross-validation
To determine the LOO cross-validation, the training set is primarily modified by
eliminating one compound from the set. The QSAR model is then rebuilt based
on the remaining molecules of the training set using the descriptor combination
originally selected, and the activity of the deleted compound is computed based
on the resulting QSAR equation. This cycle is repeated until all the molecules of
the training set have been deleted once, and the predicted activity data obtained
for all the training set compounds are used for the calculation of various internal
validation parameters. Finally, the model predictivity is judged using the pre-
dicted residual sum of squares (PRESS) and cross-validated R2 (Q2) for the
model while the value of standard deviation of error of prediction (SDEP) is
calculated from PRESS.

PRESS ¼
X

Yobs � Ypred
� �2 ð2:7Þ

SDEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PRESS

n

r
ð2:8Þ

Q2 ¼ 1�
P

YobsðtrainÞ � YpredðtrainÞ
� �2

P
YobsðtrainÞ � Y training
� �2 ¼ 1� PRESSP

YobsðtrainÞ � Y training
� �2 ð2:9Þ

In Eqs. (2.7)–(2.9), Yobs and Ypred correspond to the observed and LOO-
predicted activity values, n refers to the number of observations, Yobs(train) is the
observed activity, Ypred(train) is the predicted activity of the training set molecules
based on the LOO technique. The threshold value of Q2 is 0.5.

2. Leave-many-out (LMO) cross-validation
The basic principle of the LMO technique or leave-some-out (LSO) technique is
that a definite portion of the training set is held out and eliminated in each cycle.
For each cycle, the model is constructed based on the remaining molecules (and
using the originally selected descriptors) and then the activity of the deleted
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compounds is predicted using the developed model. After all the cycles have
been completed, the predicted activity values of the compounds are used for the
calculation of the LMO-Q2.

3. True Q2

Hawkins et al. [11] proposed the concept of ‘true Q2’ parameter, calculated
based on application of the variable selection strategy at each validation cycle.
The parameter may be a better tool for assessing model predictivity, chiefly in
the case of small data sets, compared to the traditional approach of the splitting
of the data set into training and test sets.

4. The rm2 metric for internal validation
An acceptable value of Q2 does not inevitably indicate that the predicted activity
data lie in close propinquity to the observed ones although there may exist a
good overall correlation between the values. Thus, to obviate this problem and
to better indicate the model predictability, the rm2 metrics introduced by Roy
et al. [12] may be computed by the following equations:

rm2 ¼
rm2 þ r0m

2
� �

2
ð2:10Þ

Drm
2 ¼ rm

2 � r0m
2

��� ��� ð2:11Þ

Here, rm2 ¼ r2 � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r20
� �q� �

and r02m ¼ r2 � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r00

2� �q� 	
. The

parameters r2 and r0
2 are the squared correlation coefficients between the

observed and (leave-one-out) predicted values of the compounds with and
without intercept, respectively. The parameter r00

2 bears the same meaning but
uses the reversed axes.
The rm2 is the average value of rm2 and r0m

2, and Dr2m is the absolute difference

between rm2 and r0m
2. In case of internal validation of the training set, the rm2ðLOOÞ

andDrm2ðLOOÞ parameters can be employed and it has been shown that the value of

Drm2ðLOOÞ should preferably be lower than 0.2 provided that the value of rm2ðLOOÞ
is more than 0.5. Roy et al. [13] proposed that the calculation of the rm

2 metrics
should be based on the scaled values of the observed and the predicted response
data. The scaling may be done based on the following equation.

Scaled Yi ¼
Yi � Ymin obsð Þ

Ymax obsð Þ � Ymin obsð Þ
ð2:12Þ

Here, Yi refers to the observed/predicted response for the ith (1, 2, 3, …, n)
compound in the training/test set. Besides these, Ymax(obs) and Ymin(obs) indicate
the maximum and minimum values, respectively, for the observed response in
the training set compounds.
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To make the calculation of rm
2 metrics easier, a web application known as ‘rm

2

calculator’ (http://aptsoftware.co.in/rmsquare) has been also developed.
5. True rm

2
(LOO)

In case of LOO-CV, rm
2 is calculated based on the LOO-predicted activity values

of the training set and the parameter is referred to as rm
2

(LOO), while the true rm
2

(LOO) value is obtained from the model developed from the undivided data set
after the application of variable selection strategy at each cycle of validation
[14]. The ‘true rm

2
(LOO)’ metric may reflect characteristics of external validation

without loss of chemical information.
6. Metrics for chance correlation: Y-randomization

Y-randomization is performed in order to ensure the robustness of the developed
QSAR model. In the Y-randomization test, validation is performed by permuting
the response values (Y) with respect to the X matrix which has been kept
unaltered. This method is generally performed in two different ways: (a) process
randomization and (b) model randomization performed at varying confidence
levels. The deviation in the values of the squared mean correlation coefficient of
the randomized model (Rr

2) from the squared correlation coefficient of the non-
random model (R2) is reflected in the value of cRp

2 parameter computed from the
following equation [15]:

cR2
p ¼ R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

r

q
ð2:13Þ

The threshold value of cRp
2 is 0.5. For a QSAR model having the corresponding

value above the stated limit, it might be considered that the model is not
obtained by chance only.

2.3.3.2 Metrics for External Validation

1. Predictive R2 R2
pred orQ

2
F1ð Þ

� �
The R2

pred reflects the degree of correlation between the observed and predicted
activity data of the test set.

R2
pred ¼ 1�

P
Yobs testð Þ � Ypred testð Þ
� �2P
YobsðtestÞ � Y training
� �2 ð2:14Þ

Here, Yobs(test) and Ypred(test) are the observed and predicted activity data for the
test set compounds, while Y training indicates the mean observed activity of the
training set molecules. Thus, models with values of R2

pred above the stipulated
value of 0.5 are considered to be well predictive.
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2. Golbraikh and Tropsha’s criteria
Golbraikh and Tropsha [16] proposed a set of parameters for determining the
external predictability of QSAR model. According to Golbraikh and Tropsha,
models are considered satisfactory, if all of the following conditions are satisfied:

(a) Q2
training [ 0:5:

(b) R2
test [ 0:6:

(c) r2 � r20
r2

\ 0:1 and 0:85 � k� 1:15 or

r2 � r020
r2

\ 0:1 and 0:85 � k0 � 1:15:

(d) r20 � r00
2�� ��\0:3:

The meaning of the r2 and r0
2 terms is already discussed in the ‘rm

2 metric for
internal validation’ section.
3. The rm

2
(test) metric for external validation

In order to verify the propinquity between the observed and predicted data, the
parameter rm

2
(test), similar to rm

2
(LOO) used in internal validation, has been

developed by Roy et al. [12]. The value of rm
2
(test) is calculated using the squared

correlation coefficients between the observed and predicted activity of the test
set compounds. For the acceptable prediction, the value of Δrm

2
(test) should

preferably be lower than 0.2 provided that the value of rm2
ðtestÞ is more than 0.5.

More interestingly, Roy and coworkers established that this tool can be extended
to the entire data set employing the LOO-predicted activity for the training set
and predicted activity for the test set compounds. These parameters have been

referred to as rm2
ðoverallÞ and Δrm

2
(overall) which reflect the predictive ability of the

model for the entire data set.
4. RMSEP

External predictive ability of a QSAR model may further be determined by root
mean square error in prediction (rmsep) given by Eq. (2.15).

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

yobs testð Þ � ypred testð Þ
� �2

next

s
ð2:15Þ

Here, next refers to the number of test set compounds.
5. Q2

F2ð Þ

Q2
F2ð Þ is based on prediction of test set compounds (Q2

F2ð Þ ) proposed by

Schüürmann et al. [17] as given by Eq. (2.16).

Q2
F2ð Þ ¼ 1�

P
Yobs testð Þ � Ypred testð Þ
� �2
P

Yobs testð Þ � Y test
� �2 ð2:16Þ
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Here, �Ytest refers to the mean observed data of the test set compounds.
A threshold value 0.5 is defined for this parameter.

6. Q2
F3ð Þ

The Q2
F3ð Þmetric with a threshold value of 0.5, for validation of a QSAR model

has been proposed by Consonni et al. [18]. This parameter is defined as follows:

Q2
ðF3Þ ¼ 1�

P
Yobs testð Þ � YpredðtestÞ
� �2h i.

nextP
Yobs trainð Þ � �Ytrain
� �2h i.

ntr
ð2:17Þ

where ntr refers to the number of compounds in the training set. However,
although the value of Q2

F3ð Þ measures the model predictability, it is sensitive to

training set data selection and tends to penalize models fitted to a very
homogeneous data set even if predictions are close to the truth.

7. Concordance correlation coefficient (CCC)
The CCC parameter can be calculated in order to check the model reliability by
the following equation [19]:

qc ¼
2
Pn

i¼1 xobs testð Þ � xobs testð Þ
� �

ypred testð Þ � ypred testð Þ
� �

Pn
i¼1 xobs testð Þ � xobs testð Þ

� �2þPn
i¼1 ypred testð Þ � ypred testð Þ

� �2þ n xobs testð Þ � ypred testð Þ
� �

ð2:18Þ

In the above equation, xobs(test) and ypred(test) correspond to the observed and
predicted values of the test compounds, n is the number of chemicals, and
xobs testð Þ and ypred testð Þ correspond to the averages of the observed and predicted
values, respectively, for the test compounds. The ideal value of CCC should be
equal to 1.

The rm2
ðrankÞ metric

In order to assess the closeness between the order of the predicted activity and that
of the observed activity, the r2m rankð Þ parameter was developed. The r2m rankð Þ metric is

computed based on the correlation of the ranks generated for the observed and the
predicted response data. An ideal ranking where the observed and the predicted
response data perfectly match with each other yields zero difference between the
two values for each molecule, and the r2m rankð Þ metric attains a value of unity.

r2m rankð Þ ¼ r2rankð Þ � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2rankð Þ � r20 rankð Þ

q� �
ð2:19Þ
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2.3.4 Validation Metrics Employed in Classification-Based
QSAR

Validation metrics can assess the performance of the classification-based models in
terms of accurate qualitative prediction of the dependent variable. Commonly
applied metrics for classification-based QSAR models are illustrated below [20]:

2.3.4.1 Parameters for Goodness-of-Fit and Quality Determination

1. Wilks lambda (λ) statistics
The Wilks lambda is a metric for the testing of significance of a discriminant
model function and determined as the ratio of within group sum of squares and
total sum of squares, i.e., within-category to total dispersion.

Wilks k ¼ Within group sum of squares
Total sum of squares

ð2:20Þ

The Wilks lambda value spans from 0 to 1, where 0 corresponds to good level
of discrimination and 1 refers to no discrimination.

2. Canonical index (Rc)
The quantification of the strength of the relationship between the dependent and
independent variables is articulated as a canonical correlation coefficient.

Rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ki

1þ ki

s
ð2:21Þ

Here, λi is referred as eigen value of the matrix.
3. Chi-square (χ2)

The quality of classification-based model is also judged using the chi-square (χ2)
statistic.

v2 ¼
Xt

i¼1

ðfi � FiÞ2
Fi

ð2:22Þ

where fi is observed response, Fi is predicted response, and t is the number of
observations.

4. Squared Mahalanobis distance
The square of Mahalanobis distance is calculated for the determination of
probability of a compound to be classified in a definite group in the discriminant
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space for LDA. In a multivariate normal distribution with covariance matrix Σ,
the Mahalanobis distance between any two data points xi and xj can be defined
as follows:

dmahalanobis xi; xj
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xj
� �TX �1 xi � xj

� �q
ð2:23Þ

where xi and xj are two random data points, T is transpose of a matrix, and Σ−1

is inverse of the covariance matrix.

2.3.4.2 Metrics for Model Performance Parameters

1. Sensitivity, Specificity, and Accuracy
The compounds classified employing the classification-based QSAR model can
be divided into four categories based on a comparison between the predicted and
observed response:

(a) True positives (TP): the active compounds which have been correctly
predicted as actives,

(b) False negatives (FN): this class includes the active compounds which have
been erroneously classified as inactives,

(c) False positives (FP): this class comprises the inactive compounds wrongly
classified as actives,

(d) True negatives (TN): this class accounts for the inactive compounds which
have been accurately predicted as inactives.

Based on the two-by-two confusion matrix, the following metrics can be
computed to evaluate the classifier model performance and classification
capability.

Sensitivity ¼ Recall ¼ TP
TPþ FN

ð2:24Þ

Specificity ¼ TN
TNþ FP

ð2:25Þ

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

ð2:26Þ

2. F-measure and Precision
The F-measure refers to the harmonic mean of recall and precision, where recall
refers to the accuracy of real prediction and precision defines the accuracy of a
predicted class.
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F-measure ¼ 2 Recallð Þ Precisionð Þ
Recall þ Precision

ð2:27Þ

Precision ¼ TP
TPþ FP

¼ fp rate ð2:28Þ

3. G-means
Combining sensitivity and specificity into a single parameter via the geometric
mean (G-means) allows for a straightforward way to assess the model’s ability
to perfectly classify active and inactive samples using the formula:

G-means ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity� Specificity

p
ð2:29Þ

4. Cohen’s κ
Cohen’s kappa (κ) can be employed to determine the agreement between
classification (predicted) models and known classifications. It can be defined as
follows:

Cohen’s j ¼ Pr að Þ � Pr eð Þ
1� Pr eð Þ ð2:30Þ

PrðaÞ ¼ TPþ TNð Þ
TPþ FPþ FNþ TNð Þ ð2:31Þ

Pr eð Þ ¼ TPþ FPð Þ � TPþ FNð Þf g þ TNþ FPð Þ � TNþ FNð Þf g
TPþ FNþ FPþ TNð Þ2 ð2:32Þ

Here, Pr(a) is the relative observed agreement between the predicted
classification of the model and the known classification, and Pr(e) is the
hypothetical probability of chance agreement. Cohen’s kappa analysis returns
values between −1 (no agreement) and 1 (complete agreement).

5. Matthews correlation coefficient (MCC)
The MCC is regarded as a balanced measure which can be employed even if the
classes are of diverse sizes. The MCC is simply a correlation coefficient between
the observed and predicted binary classifications, and it returns a value between
−1 and +1. A coefficient of +1 signifies a perfect prediction, 0 an average
random prediction, and −1 an inverse prediction. The MCC can be computed
directly from the confusion matrix using the formula:
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MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp ð2:33Þ

The meaning of TP, TN, FP, and FN are already discussed.

2.3.5 Parameters for Receiver Operating Characteristics
(ROC) Analysis

1. ROC curve
The ROC curve is a visual illustration of the success and error observed in a
classification model. The curve is plotted taking true positive rate (tp) on the y-
axis and false-positive rate (fp) on the x-axis, and the characteristics of the curve
provides easier recognition of the precision of prediction [21].

tp rate � Positives active moleculesð Þ correctly classified
Total postives

¼ Sensitivity

ð2:34Þ

fp rate ¼ Negatives inactive compoundsð Þ incorrectly classified
Total negatives

¼ 1� specificity ð2:35Þ

The ROC curve signifies the number of objects the classifier identifies correctly
as well as the number wrongly identified by the classifier.

2. ROCED and ROCFIT
Two metrics based on distances in a ROC curve for the selection of classifi-
cation models with an correct balance in both training and test sets, namely the
ROC graph Euclidean distance (ROCED) and the ROC graph Euclidean dis-
tance corrected with fitness function (FIT(λ)) or Wilks λ (ROCFIT), are also
used [22]. The Euclidean distance between the perfect and a real classifier (di)
expressed as a function of their respective values of sensitivity and specificity is

d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sep � Ser
� �2þ Spp � Spr

� �2
r

ð2:36Þ

where Sep and Ser are the respective sensitivity values of the perfect and the real
classifier, while Spp and Spr represent the specificity values of the perfect and
real classifier, respectively. Since the sensitivity and specificity for a perfect
classifier takes values of 1, the Euclidean distance can be expressed as
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d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Serð Þ2þ 1� Sprð Þ2

q
ð2:37Þ

ROCED ¼ d1 � d2j j þ 1ð Þ � d1 þ d2ð Þ � d2 þ 1ð Þ ð2:38Þ

where d1 and d2 are representation of the distances in a ROC graph for the
training and test sets, respectively. ROCED takes values between 0 (perfect
classifier) and 4.5 (random classifier).
A new parameter ROCFIT has also been introduced. ROCFIT is defined as
follows:

ROCFIT ¼ ROCED
Wilks kð Þ ð2:39Þ

2.3.5.1 Metrics for Pharmacological Distribution Diagram (PDD)

The PDD is a frequency distribution plot of a dependent variable where expectancy
values of the variable are plotted in the y-axis against numeric intervals of the
variable in the x-axis [23]. This graph visually signifies the overlapping regions of
the categories, e.g., positives and negatives. For a classification case comprising
two classes such as actives and inactives (or positives and negatives), two terms
named ‘active expectancy’ and ‘inactive expectancy’ may be defined as below
where the denominator is added with a numerical value of 100 to avoid division by
zero:

Activity expectancy ¼ Ea ¼ Percentage of actives
Percentage of inactives þ 100ð Þ ð2:40Þ

Inactivity expectancy ¼ Ei ¼ Percentage of inactives
Percentage of activesþ 100ð Þ ð2:41Þ

where ‘a’ and ‘i’ are the number of occurrences of active and inactive compounds at
a specific range.

2.4 Conclusion

The QSAR/QSPR modeling technique involves the use of a significant number of
statistical tools and hence requires a good knowledge of chemometrics. The
developed QSAR model can furnish linear as well as nonlinear relationship
between the response and chemical attributes through regression-based as well as
classification-based analyses. Since, quantitative mathematical relationships are
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established, validation of the models using a suitable statistical algorithm becomes
essential to confirm the stability and predictivity of the models. The judgment for
the choice of method depends upon a multitude of factors including the response to
be modeled, the nature of the training set data, the type of descriptors used and also
its numbers, and even the objective of the analysis.
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Chapter 3
QSAR/QSPR Methods

Abstract QSAR/QSPR analysis started with different classical approaches
constituting the core concept of predictive modeling analysis in the context of
structure–activity relationships. Such classical techniques have been based on
various postulates and hypotheses. With the passage of time, various dimensional
features have taken an important role in diagnosis of chemical information and
thereby in the development of successful QSAR/QSPR models. Development of
computer technology has provided an essential support for easy and accurate
implementation of complex molecular modeling calculations and data generation.
The present chapter provides an account of the classical QSAR/QSPR approaches
along with glimpses of two- and three-dimensional QSAR/QSPR techniques. The
impact of the usage of computer and computational chemistry techniques in the
paradigm of QSAR/QSPR has also been discussed.

Keywords 3D-QSAR � CoMFA � CoMSIA � Free–Wilson model � Fujita–Ban
modification � LFER model � MSA � Topology � Graph theory � Simulation �
Molecular mechanics � Density function theory � Quantum mechanics

3.1 Introduction

The QSAR/QSPR research in its present form stemmed originally from the classical
approaches of Hansch analysis and de novo mathematical models of Free and
Wilson. There are several prerequisites which should be met before a QSAR/QSPR
analysis on a particular data set of chemical compounds can be performed.

1. The biological activity data should be of equiresponse type. If it is not so, the
data should be adjusted to obtain this effect.

2. The biological activity of all the compounds under consideration should have
been measured under the same conditions.

3. The congeners used for model development should be closely similar to ensure
same mechanism of action for all compounds.

© The Author(s) 2015
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4. The contributions of the substituent groups to the selected response should be
intrinsically additive.

5. It is also desirable to use a low number of descriptors and a large number of data
points allowing maximum degrees of freedom and higher statistical significance.

6. Some compounds may be required to be omitted from the data set due to outlier
behavior (showing a large difference between the observed and calculated
values).

7. Precaution should be taken in selection of the data to avoid ill-conditioned
matrices.

Different dimensions have a good impact toward the development of predictive
QSAR models. Dimension, in mathematical language, refers to the number of
coordinates employed for identifying an object in it. Dimension in QSAR study
provides chemical information of a molecule and aids in the development of
quantitative descriptors. Following classical methods of QSAR analysis, imple-
mentation of various dimensional perspectives has explored means for structural
diagnosis and the computed attributes thereof. Graph theoretical approach based on
two-dimensional basis is one such unique method of molecular representation. The
descriptors derived from this approach are known as topological parameters. The
implementation of chemical graphs for deriving topological descriptors started in
the middle of twentieth century. In the 1980s, the concept of three-dimensional
analysis in relation to QSAR modeling emerged and a more realistic picture of the
molecular environment was obtained. QSAR methods using two-dimensional fea-
tures are principally ligand-based, while the three-dimensional attributes allow
ligand as well as structure-based analysis. Even, various higher dimensional
methods (i.e., more than three) are nowadays exercised by the researchers. It will be
noteworthy to mention that exploration of computer technology has provided an
essential platform to QSAR analysis by allowing complex molecular simulation
operations. Accurate computation of simple-to-complex descriptors can be easily
carried out using suitable software algorithm in computers. Furthermore, the
visualization graphics in computer also helps in better molecular understanding.

3.2 De Novo Models

De novo QSAR models are the mathematical models which do not require com-
putation of any descriptors encoding chemical information on molecular structure.
Indicator parameters (having a binary value 0 or 1) representing presence or
absence of a group at a particular position are used for development of the models.
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3.2.1 Free–Wilson Model

In 1964, Free and Wilson [1] developed an additive mathematical model based on
the measurement of contributions of different substituents at specified positions of a
congeneric series of compounds to the biological activity. The original model did
not use logarithmic transformation of the biological activity as is done in the current
QSAR practice. For Free–Wilson model development, the data set should be a
congeneric series having substituents at specified (and at least two) positions.
Additionally, a particular substituent should occur at least twice at a particular
position of the data set. The basic assumption of the Free–Wilson model is that the
contribution of a particular group at a specified position of the congeneric series of
compounds is same in all such compounds without considering the cross-interaction
terms. Mathematically, Free–Wilson model can be represented in the following
expression [2, 3]:

BA ¼
X

GiXi þ l ð3:1Þ

In the above equation, BA is biological activity, Gi is the contribution of a particular
group i, while Xi indicates presence or absence (value 1 or 0) of a particular
group. The constant μ is the contribution of the parent moiety. The net contribution
of all the substituents occurring at a particular position is considered zero (this is
known as symmetry restriction). This constraint helps to achieve unique solutions
for the substituent constants.

3.2.2 Fujita–Ban Model

This is a modification [4] of the original Free–Wilson model. It differs from the
Free–Wilson model in three aspects. In the Fujita–Ban method, the activity con-
tribution of a substituent relative to that of ‘H’ at each position is considered unlike
the Free–Wilson model, where ‘H’ is considered as a substituent to the parent
moiety. This obviates the requirement of symmetry equations in the Fujita–Ban
model, thus simplifying calculations. Moreover, in the Fujita–Ban model, the
constant term signifies the response value of the unsubstituted compound, while in
the Free–Wilson model, it is the contribution of the parent moiety. Finally, the
Free–Wilson model does not use log-transformed response value, while log of
activity is considered as the response in the Fujita–Ban model. Mathematically, the
Fujita–Ban model can be expressed as the following:

logA ¼
X

GiXi þ logA0 ð3:2Þ
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In the above equation, logA is the log-transformed activity of the substituted
compound, while logA0 is the log-transformed activity of the unsubstituted com-
pound. Gi is the contribution of the ith substituent to the activity relative to H and Xi

is a binary variable having a value 1 (presence of ith substituent) or zero (absence of
ith substituent).

The advantage of the Free–Wilson and Fujita–Ban models is that they do not
require computation of any descriptors. Information on mere presence or absence of
groups at particular position can lead to development of the models which may give
the first-hand information about the trend of structure–activity relationship. However,
the problem of these models is that they cannot be used for prediction of activity of the
compounds containing substituents which are not present in the modeling set.

3.3 Property-Based QSAR

3.3.1 LFER Approach of Hansch

Physicochemical properties of chemical compounds have been widely used as
descriptors in QSAR/QSPR studies. There are three main categories of physico-
chemical properties (for either whole molecules or substituents) used for modeling:
hydrophobic, electronic, and steric. The property-based QSAR approach was
originally developed and promoted to the medicinal chemists by Prof. C Hansch
through his linear free energy-related (LFER) approach.

The LFER approach of Hansch using physicochemical descriptors and sub-
stituent constants has its origin in the work of Hammett [5] in physical organic
chemistry.

Hammett defined an electronic substituent constant σ for the hydrolysis rates of
benzoic acid derivatives in the following expression:

log KX=KH

� �
¼ qr ð3:3Þ

In the above equation, KX and KH are the equilibrium constants (or rate constants)
for the reactions of substituted and unsubstituted benzoic acids, respectively, ρ is a
constant dependent on type and conditions of the reaction as well as the nature of
compounds, σ is an electronic substituent constant depending on its nature and
position of the substituent. Equation (3.3) may be rewritten as

logKX ¼ qrþ logKH ð3:4Þ

Note that Hammett σ is applicable for meta- and para-aromatic substituents. In
analogy to the Hammett σ equation, Hansch and Fujita [6] introduced another
substituent constant π in the following manner:
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pX ¼ log PX=PH

� �
ð3:5Þ

In the above equation, πX is the hydrophobic substituent constant of substituent X,
while PX and PH are (n-octanol–water) partition coefficients of substituted and
unsubstituted compounds.

Hansch observed a parabolic dependence of the biological activity (Fig. 3.1) on
the hydrophobicity or hydrophobicity constant.

log 1=C ¼ ap� bp2 þ c ð3:6Þ

or

log 1=C ¼ a logP� b logPð Þ2þc ð3:7Þ

Equation (3.7) uses the hydrophobicity term logP for the whole molecules.
On using both electronic and hydrophobic substituent constant terms, a generalized

expression of Hansch equation can be shown as follows:

log 1=C ¼ k1p� k2p
2 þ k3rþ k4 ð3:8Þ

Fig. 3.1 A parabolic
relationship of the biological
activity with logP (or π)
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Additional terms may be added to the above expression. For example, when a
steric Es is important, Eq. (3.8) may take the following form:

log 1=C ¼ k1p� k2p
2 þ k3rþ k4Es þ k5 ð3:9Þ

All descriptors appearing in the final model should have statistically significant
regression coefficients; otherwise, such terms should be omitted. In selecting the
physicochemical parameters to be used in the QSAR models, one should check the
possibility of intercorrelation among various pairs of substituent constants.

The Hansch model is a very general approach, as any kind of drug–receptor
interactions is caused by factors which can be broadly categorized into any one or
more of hydrophobic, electronic, and steric factors. The Hansch model is applicable
for closely related congeners and a given biological activity. It is based on the
following postulates:

(i) The drug molecules reach the receptor site via a ‘random walk’ process.
(ii) The drug molecules bind with the receptor forming a complex.
(iii) The drug–receptor complex undergoes a chemical reaction or conformational

change for the desired activity.
(iv) The drugs in a congeneric series should act through the same mechanism of

action.

The descriptors (physicochemical properties for whole molecules or substitu-
ents) in the Hansch model have values in a continuous scale; thus, this approach
may be used for prediction of the response for compounds having such substituents
not present in the modeling set.

The Hansch approach has been very successful in QSAR studies of drugs and
other biologically active chemicals. There are many successful applications of this
approach reported in the literature [7]. By approximating the physicochemical
properties with measured or theoretical values, one may be able to use the method
as a measure to determine the relative importance and role of each factor in the
biological mechanism. However, this approach is applicable only to closely related
congeners sharing a common mechanism of action.

3.3.2 The Mixed Approach

The Hansch approach and the Fujita–Ban model can be combined to a mixed
approach. If for one definite region of the molecule, a Hansch correlation can be
obtained for the substituents, while substituents in another position of the molecule
must be treated by Free–Wilson analysis (using indicator variables for the presence
or absence of substituents at particular positions), the Fujita–Ban model and the
Hansch approach can be combined to a mixed approach as given in the following
expression [7]:
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log 1=C ¼ k1pþ k2rþ
X

GiXi þ c ð3:10Þ

In Eq. (3.10), k1π + k2σ is the Hansch part for the substituents Yj and
P

GiXi is the
(modified) Free–Wilson part for the substituents Xi (with Gi being corresponding
group contributions), while c is the theoretically predicted activity value of the
unsubstituted parent compound (X = Y = H) or of an arbitrarily chosen reference
compound.

3.4 Graph Theoretical Approach

3.4.1 Introduction to Graph Theory

The formalism of QSAR modeling studies began with the use of physicochemical
properties as descriptors which was followed by the application of graph theoretical
concept. The concept of graph originates from mathematics and usually confers to
the collection of a set of objects in a plane and their binary relationship. The
inclusion of this mathematical concept into chemistry enables depiction of chemical
objects in plane which are atoms, bonds, groups, etc. Hence, the mathematical
graphs are transcribed to ‘chemical graphs’ when information of molecular struc-
tures is used. The two basic elements of chemical graphs are ‘vertex’ and ‘edge’
which depict a connected molecular structure. Atoms are represented by vertex,
while edges correspond to covalent chemical bonds. This process enables a special
pattern of representation of molecular structure known as hydrogen-suppressed or
hydrogen-depleted molecular graphs meaning that a molecular structure is to be
represented using vertices and edges without the portrayal of explicit hydrogen
atoms [8]. In Fig. 3.2, it is shown that the hydrogen-suppressed molecular graph of
isopentane comprises five vertices (atoms) and four edges (bonds). We can see that
graph theoretical formalism provides a two-dimensional molecular representation
and the information derived thereof will primarily be of the same nature.
Furthermore, because of the two-dimensional nature, the graph theoretical molec-
ular representation does not require computation of any specific bond length or
angle. It may be noted that simple dots or points are used for vertex representation
of carbon atoms, while heteroatoms are represented by their symbols (with added
H-atom if any like –OH, –NH2, etc.).

3.4.2 Matrix and Chemical Graphs

The use of chemical graph theory became a useful concept in the paradigm of
QSAR analysis when the graphical depiction of molecular structure was incorpo-
rated into a mathematical matrix that led into the derivation of suitable molecular
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descriptors. Matrices can be identified as the arrays of numbers or some other
mathematical objects which can be used as an abstract platform for the algorithmic
encoding of a desired problem. In the context of graph theoretical chemistry,
matrices are developed using the connectivity information of chemical structures
and are treated with suitable algebraic operators to derive two-dimensional
descriptors known as topological indices or topological descriptors. Therefore, a
matrix enables the codification of chemical graphs in the form of numbers which
might be subjected to operators for the derivation of topological descriptors [9, 10].

The formation of a graph theoretical matrix is based on the bonded connections
between atoms. By the use of a suitable formalism such as adjacency and distance,
the connectivity in a molecular graph can be in the form of numbers which are used
as the elements of a matrix. Figure 3.3 shows the formation of a distance matrix
(vertex-based) for the molecule isobutane and the corresponding steps taken are
depicted as follows:

Fig. 3.2 Hydrogen-suppressed chemical graph of isopentane molecule showing its vertex and
edge

Fig. 3.3 An example of topological distance-based matrix formation for the molecule isobutane
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(i) Drawing of the chemical structure of the molecule using vertices and edges
without showing the hydrogen atoms. For the isobutane molecule, the number
of vertices (here carbon atom) is four, while the number of edges is three
(sigma bonds)

(ii) An arbitrary numbering of the vertex elements
(iii) Determination of the desired distance or adjacency information
(iv) Development of the matrix using the counted values

Two types of matrices, namely distance-based and adjacency-based, are com-
monly encountered in defining chemical graph theory-related problems although
another miscellaneous group can be identified. Each type of matrices further com-
prises several subgroups which are treated with mathematical operators to give single
quantitative information. In the section below, the formal definition along with the
examples of some representative graph theoretical matrices is presented [8–11].

(a) Vertex-adjacency matrix: The vertex-adjacency matrix of a connected
molecular graph G can be defined as follows:

Av Gð Þ½ �ij ¼ 1 when i 6¼ j and eij 2 E Gð Þ i:e:; vertices i and j are adjacent

¼ 0 when i ¼ 0 and eij 62 E Gð Þ
ð3:11Þ

where eij is the edge defined by the vertices i and j, and E(G) is the set of edges
present in the connected molecular graph G. Figure 3.4 shows the elements of
vertex-adjacency matrix for the compound n-propane.

(b) Edge-adjacency matrix: The edge-adjacency matrix of a connected graph
G may be represented as follows:

Ae Gð Þ½ �ij ¼ 1 when eij 2 E Gð Þ i:e:; edges i and j are adjacent

¼ 0 when eij 62 E Gð Þ ð3:12Þ

Fig. 3.4 Vertex-adjacency matrix elements for the molecule n-propane
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where edge eij is constituted by vertices i and j in a molecule comprising of E
(G) set of graph edges. Figure 3.5 shows the vertex-adjacency matrix elements
for the sample compound n-butane.
Vertex-adjacency matrix enables the differentiation of specific type of graph
unlike edge-adjacency matrix that could not separate between non-isomorphic
graphs.

(c) Vertex-distance matrix: For a connected molecular graph G, the vertex-dis-
tance matrix can be defined as follows:

D Gð Þ½ �ij ¼ dij
� �

min if i 6¼ j

¼ 0 if i ¼ j
ð3:13Þ

where (dij)min denotes the minimum topological distance between vertices
i and j. The vertex-distance matrix elements for the compound isobutane are
shown in Fig. 3.6.

Fig. 3.5 Edge-adjacency matrix elements for the molecule n-butane

Fig. 3.6 Vertex-distance matrix elements for the molecule isobutane
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(d) Edge-distance matrix: The edge-distance matrix for a connected molecular
graph G may be defined as follows:

D Gð Þ½ �ij ¼ dij
� �

min if i 6¼ j

¼ 0 if i ¼ j
ð3:14Þ

where the minimum topological distance between edges i and j is denoted by
(dij)min. Figure 3.7 denotes the elements for the edge-adjacency matrix of the
sample compound 2-butanol.
Hence, we can see that similar formalism can be used for deriving matrices
based on the count of vertex as well as edge of chemical graphs. In the next few
examples, the derived matrices are based on the features of the graph vertices.

(e) Distance-complement matrix: It may be defined as depicted below.

Dc Gð Þ½ �ij ¼ V � D Gð Þ½ �ij if i 6¼ j

¼ 0 if i ¼ j
ð3:15Þ

where V represents the number of vertices in a connected molecular graph G.
Figure 3.8 depicts an element of the distance-complement matrix for the
compound n-pentane.

(f) Reciprocal distance matrix: This matrix is also known as ‘Harary matrix (or
vertex-Harary matrix)’ and can be defined as follows:

RD Gð Þ½ �ij ¼ 1= D Gð Þ½ �ij if i 6¼ j

¼ 0 if i ¼ j
ð3:16Þ

where the topological graph distance between vertices i and j is denoted by
[D(G)]ij. Elements of the reciprocal distance matrix for the sample molecule
2-methylpentane has been furnished in Fig. 3.9.

Fig. 3.7 Edge distance matrix elements for the molecule 2-butanol
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(g) Distance-path matrix: It may be defined as follows.

Dp Gð Þ� �
ij ¼ D Gð Þ½ �ij D Gð Þ½ �ijþ1

� �.
2 if i 6¼ j

¼ 0 if i ¼ j
ð3:17Þ

where D(G)ij denotes the distance matrix element of vertices i and j. Here, all
possible internal paths between vertices i and j are considered in the matrix
Dp(G)ij. A sample distance-path matrix element for the molecule 2,3-
dimethylbutane has been presented in Fig. 3.10.

(h) Detour matrix: This matrix is derived using path length in a connected
molecular graph. The longest possible distance in a molecular graph is des-
ignated as ‘detour distance’ which is also known as the elongation. The matrix
may be defined as follows:

Fig. 3.8 Distance-complement matrix elements for the molecule n-pentane

Fig. 3.9 Reciprocal distance matrix elements for the molecule 2-methylpentane
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D Gð Þ½ �ij ¼ max l pij
� �� �

if i 6¼ j
¼ 0 if i ¼ j

ð3:18Þ

where the path is denoted by pij, l(pij) corresponds to the length of the path,
and max(l(pij)) corresponds to the longest path length between vertices i and j.
Figure 3.11 depicts a representative example of the detour matrix elements for
the compound 1,2-dimethylcyclopropane.

It may be observed that the diagonal elements of an adjacency as well as dis-
tance-based matrix give zero value.

Fig. 3.10 Distance-path matrix elements for the molecule 2,3-dimethylbutane

Fig. 3.11 Detour matrix elements for the molecule 1,2-dimethylcyclopropane
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3.4.3 Topological Descriptors

Topological descriptors are the numerical quantities derived from graph theoretical
matrices. The phrase ‘topology’ brings a new ground of molecular perception in
theoretical chemistry by allowing a suitable mode of molecular encryption. It will
be noteworthy to mention that topological descriptors are the first theoretically
derived predictor variables used in QSAR modeling analysis. The perception of
topology instigates from mathematics and bears conceptual similarity with ‘rubber
sheet geometry,’ i.e., the surface of a topological object retains its property like
rubber even after the application of forces, viz. twist, bend, and pull but not tearing
of course [10–12]. Topological descriptors enable preservation of the properties
bearing an identical value for the isomorphic graphs. Topological descriptors can be
classified into two major groups as follows [13]:

(a) Topostructural indices: They provide emphasis on adjacency and graph the-
oretical distance among participating atoms.

(b) Topochemical indices: Along with topology, such indices judge other chem-
ical attributes, namely atom identity, hybridization state, number of core or
valence electron.

Figure 3.12 shows the determination of topological distance for two represen-
tative molecules. The journey of topological descriptors started with Wiener index
and Platt index both of which were derived in 1947 and employed for QSPR
modeling on properties of paraffin hydrocarbons. An account of some commonly
used representative descriptors derived using topological formalism has been pre-
sented in the section of Descriptors in Chap. 2. Here, in Table 3.1 we have

Fig. 3.12 Method of
determining topological
distance for representative
molecules
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attempted to present the computed values of some of the indices along with their
corresponding graph theoretical matrix.

Topological descriptors give highly reproducible chemical information in less
time and with limited resources since they are derived from definite graph theo-
retical mathematical operators employing simple molecular representation. Hence,
such descriptors are especially useful while dealing with a large volume of
chemicals such as virtual screening study. It is to be mentioned that although
topological descriptors are essentially derived from hydrogen-suppressed chemical
graph theoretical formalism corresponding to two-dimensional molecular geometry,
various weighting schemes can be easily incorporated in it. Sometimes topological
descriptors are argued as weak since the formalism does not consider 3D features
such as volume, surface area, and density which are known to depict intrinsic
molecular nature. However, some of the researchers have shown the topological
descriptors not to be completely devoid of spatial three-dimensional characteristics.
The bonding schemes as defined in the topological formalism can be related to
three-dimensional geometrical feature which is identified as ‘topography’ [12].
Stankevich and coworkers [14] showed a quantum chemical basis for the chi (χ)
indices in terms of an energy dependence depicted by molecular electron density of
conjugated hydrocarbons. The connectivity index of Randić has also been subjected
to correlation with Hückel molecular orbital (HMO) parameters giving interpreta-
tion for electronic and vibrational molecular energy [15].

3.4.4 Applications

Although we have so far discussed the implication of chemical graphs toward the
derivation of quantitative molecular descriptors, such graphs can be useful in other
purposes too, namely canonical coding, constitutional symmetry perception, reaction
graph, synthon graph, and optimal planning graph. However, considering the focus of
this chapter, we shall stick to the descriptors, i.e., topological descriptors derived from
chemical graphs. Like other descriptors, various topological indices represent ligand-
based features. Because of algorithmic simplicity and speedier computation, topo-
logical descriptors are widely used in various issues related to chemical responses.
They have suitable application in the drug designing paradigm involving virtual
screening and identification of leads, lead optimization, prediction of physico-
chemical property, and risk assessment of chemicals. However, in many instances,
the use of topological descriptors alone might yield models with limited interpret-
ability. Simultaneous use of thermodynamic, three-dimensional, or sometimes even
one-dimensional descriptors along with topological predictors can improve the
interpretative and predictive nature of a developed QSAR model [10, 11].
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3.5 Three-Dimensional QSAR

3.5.1 In Silico Representation of Molecular Structure

The advancements in theoretical chemistry are aided by various computer-based
applications. The implication of computer here is mainly twofold, namely analysis
and storage of data. The analysis functionality enables visualization, computation of
chemical information, development of models including their validation, as well as
various other structure-based studies. All these different purposes are served by the
use of specific software tools. The use of computer technology for solving problems
in chemistry is usually known as ‘computational chemistry.’ It is imperative that the
complex chemical analysis as well as data processing jobs performed using in silico
environment is highly accurate and involves minimal laboratory resources. A brief
overview of the fundamental operations performed using various computer-based
applications is discussed below.

(a) Structure drawing and visualization:
Computers provide a suitable graphical user interface for visualizing molecular
structures and thereby enhancing the chemical perceptiveness of the user. The
drawing of molecular structures is usually performed in a workspace supplied
with chemical drawing/sketching tools such as atoms, bonds, chains, various
templates for rings, amino acids, conjugated aromatic system, and fused aro-
matic system. The sketched chemical structure is encoded by suitable coordi-
nates in the backgroundwhich undergoes graphical conversion into images, thus
allowing the user to obtain a hypothetical visualization of the drawn molecule.
A particular chemical structure can be pictured in different graphical forms,
namely Corey–Pauling–Koltun (CPK), stick, ball and stick, space fill, mesh, and
ribbon. The ribbon representation is usually applied for macromolecules such as
proteins and nucleic acids. In Fig. 3.13, we have provided different graphical
visualization of the drug molecule ibuprofen. Various commercial software
packages not only include different color coding for atoms and bonds for
attractive and better visualization but also provide other features such as IUPAC
naming, elemental analysis, and descriptor calculation. Names of some software
tools for drawing of chemical structure are ChemDraw (http://www.
cambridgesoft.com/Ensemble_for_Chemistry/ChemDraw/), IsisDraw (http://
mdl-isis-draw.updatestar.com/), MarvinSketch (https://www.chemaxon.com/),
ChemSketch (http://www.acdlabs.com/products/draw_nom/draw/chemsketch/),
MedChem Designer (http://www.simulations-plus.com/Default.aspx), etc.
The visualization functionality has a greater impact in understanding recep-
tor–ligand interactions in structure-based modeling studies. Many commercial
software packages allow three-dimensional visualization of ligand molecule as
well as receptor. Such visualization is very helpful for understanding the
molecular interaction taking place inside the complex biological system. It
might be noted here that the visualization plane in a normal computer is two-
dimensional, and hence, a three-dimensional object is displayed by using
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suitable modifications with respect to the axes such as change in density of
color coding and change in apparent bond length (i.e., toward and away from
the user). Chem3D (http://www.cambridgesoft.com/Ensemble_for_Chemistry/
ChemDraw/), Discovery Studio (http://accelrys.com/products/discovery-
studio/), Sybyl (http://tripos.com/index.php), HyperChem (http://www.hyper.
com/), Maestro (http://www.schrodinger.com/Maestro/), etc., are some of the
commercial software platforms enabling three-dimensional view of chemical/
biological objects.

(b) Calculation and simulation:
Computer provides a stable and user-friendly environment for performing a
large number of simple-to-complex computational analyses. Encoding of var-
ious formulae involving the concepts of chemistry, physics, and mathematics in
software programs has enabled an in-depth study of the electronic environment
of molecules at the orbital and suborbital levels. Various software programs also
allow encoding of mathematical formula for the computation of chemical
attributes (i.e., descriptors) useful in QSAR analysis. The mathematical for-
malism of any descriptor is encoded in the software platform using a suitable
logical algorithm followed by the implementation of a graphical user interface
such that the user can derive the computed data from simple molecular inputs.
The simulation feature of computational chemistry also allows energy-based

Fig. 3.13 Sample graphical visualization forms for the compound ibuprofen: a ball and stick,
b stick, c wireframe, d spacefilling models
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calculations as well as execution of structure-based studies, and this may be
attributed to the molecular mechanics (MM) and quantum mechanics based
calculations. It can be noted that computation of descriptors for QSAR studies
may or may not involve energy minimization operation (if they are lower in
dimension than 3D), while 3D descriptors may be derived from the computed
molecular mechanical and quantum mechanical features.

(c) Data analysis and storage:
Cheminformatics studies involve generation of a significant amount of data
and hence require a suitable platform for their management. QSAR analysis
uses data of two major natures, the response value of chemicals and
descriptors. For a large data set of chemicals, the generated data matrix
becomes very large. Use of a logic-based software algorithm can easily handle
such large matrix of data and gives accurate results. The determination of
different validation metrics can also easily be done from computer operated
software tools. Furthermore, computer allows the user for storage of chemical
data in suitable formats which can be called in at any time by the user.

Figure 3.14 shows the importance of computer in combining the knowledge of
chemistry along with other natural scientific disciplines, namely physics, mathe-
matics, and biology.

Fig. 3.14 A presentation of incorporation of chemical knowledge into computer
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3.5.2 Computational Chemistry for Property Simulation

3.5.2.1 Conformational Analysis

‘Conformation’ can be designated as different arrangements of atoms in a molecule
which is interconvertible by performing rotation about single bonds. Free rotation
about sigma bond (σ) leads to a change in energy among different conformers of a
molecule. According to the Newman projection, a simple molecule like butane can
exist either in energetically favored staggered conformation or in unfavorable
eclipsed conformation. However, numerous possible conformations can exist
between these two and are known as skew conformations. The torsional strain of a
molecule increases as it undergoes a rotational change from the staggered to the
eclipsed conformation and become energetically unfavorable. The forces influ-
encing conformational stability of a molecule include van der Waals force,
dipole–dipole interaction and hydrogen bonding. Now, the behavioral expression of
chemicals especially with respect to biological (and toxicological) response is
crucially determined by the suitable arrangement of the atoms in a molecule in the
three-dimensional space, and hence, conformational analysis plays an essential role
in monitoring the nature of the chemical. Conformational analysis of a molecule
aims in determining the minimum energy, i.e., the energetically stable form of a
molecule by congregating knowledge on the flexibility of a bioactive chemical like
a drug [16]. Conformational analysis has an immense importance in-silico studies
such as molecular docking, screening of chemical library, and optimization of leads.

The identification of a low-energy molecular conformer is done by performing a
‘search’ operation using a specific algorithmic approach such as systematic search
method, model-building method, random approach, distance geometry-based
method, and Monte Carlo method. The principle objective is the computation of
variation of torsion angle (systemic and stochastic), stochastic variation of Cartesian
coordinates, stochastic variation of internuclear distances, flipping, flapping, flexing
of rings or mapping of the rings onto generic shapes, etc.

3.5.2.2 Energy Minimization

Minimization of the potential energy of a molecule is essential for the determination
of the stable molecular arrangement in the three-dimensional spaces. Various energy
components such as stretching, bending, and torsion comprise the potential energy of
a molecule, and as soon as a minimization algorithm is run in a computational
platform, it immediately reaches to a minimum energy value known as ‘local energy
minimum,’ and it could stop at that step if the used minimization method is not
absolutely exhaustive. The stable conformer obtained at this stage is structurally
closest to the starting molecule. Now, use of an algorithm that increase molecular
strain can assist in overcoming this energy barrier and lead to the most stable con-
former of a molecule termed as ‘global energy minimum.’ Determination of the
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potential energy hypersurface of a stable molecule enables proper estimation of its
behavior. Molecular dynamics (MD), a molecular modeling technique, allows
resolving the most stable conformer of a molecule. Now, considering the biological
activity of a participating molecule, it will be more interesting to put emphasis on the
conformer that gives desired biological output. Such conformer may be termed as the
‘bioactive conformer’ and studies have depicted that it might be different from that of
the ‘most active conformer’which is considered as biologically potent. However, the
biologically active conformer of a molecule usually stays in a zone close to the most
active one. The bioactive conformation of amolecule is usually represented by the co-
crystal geometry of the ligand molecule bound at a receptor site. However, the most
stable conformer can be considered as the biologically active one if co-crystallized
ligand is absent. Determination of global energyminimum of a ligandmolecule along
with its co-crystal geometry allows the user to perform comparative studies. In
Fig. 3.15, the different stages of energy minimization operation have been presented.

It is to be noted that conformation analysis is used for the identification of
minimum energy structures, while other simulation methods such as MD and
Monte Carlo simulation lead to an assembly of states comprising of structures not at
energy minima. The Monte Carlo simulation and MD methods, however, can be
used as a part of the conformational search operation.

3.5.2.3 Molecular Mechanics

MM is a simulation operation which employs equations of ‘classical physics’
enabling the computation of various bonded attributes such as bond stretching,
angle bending, and torsional energy along with other non-bonded features. MM
considers the attractive and repulsive forces to control the relative positions of the

Fig. 3.15 Depiction of the
change in potential energy of
a sample molecule
undergoing energy
minimization operation
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nuclei of the atoms constituting a structure [17, 18]. The potential energy of a given
molecule can be represented by the following simplified equation (Eq. 3.19).

ETotal ¼
X

EStretchingþ
X

EBendþ
X

Evan der Waalsþ
X

ECoulombicþ
X

ETorsion

ð3:19Þ

Here, a mechanical model is hypothesized considering that spheres representing
atoms are joined by mechanical springs representing covalent bonds. The energy
terminologies shown in Eq. (3.19) have been formally defined in Table 3.2. The
interaction and energy functionalities explained by classical physics are also termed
as ‘force fields.’ The steric energy for a molecule is first determined employing
force fields followed by the adjustment of conformational stability leading to the
minimization of the steric energy. A MM operation can be executed (i) by using a
commercial force field program (in a computer) as well as (ii) by exercising a
molecular modeling program that assembles predefined structural fragments. While
running a minimization algorithm, a molecule undergoes twisting in order to
account for the steric hindrance and attractive forces, and hence, its coordinates are
changed. By the use of a suitable graphical package (as available in many com-
mercial programs), the minimization process can be recorded in the form of a video
showing gradual conformational change in a structure with respect to the steric
strain. MM2, MM3, MMFF, Amber, Dreiding, UFF, etc., are the examples of some
force fields employed in molecular mechanical calculations.

3.5.2.4 Molecular Dynamics

This simulation technique enables mimicking the dynamic behavior of a molecule
unlike other techniques such as MM that deals with static molecules at 0 K tem-
perature, i.e., frozen state. MD technique is an in silico simulation operation
allowing the prediction of time evolution of an interacting particular system [19].
This involves numerical integration operation using Newton’s equation of motion
followed by quantification of molecular properties in a given time frame. MD
calculation can be achieved by using the following approaches.

(a) Classical mechanical formalism: Here, molecules are denoted by classical ‘ball
and stick’ model where atoms represent soft balls while elastic sticks depict
bonds. Laws of classical mechanics are employed for calculations.

(b) Quantum mechanical formalism: It was pioneered by Car and Parinello’s
quantum nature of chemical bond and is also known as the ‘first-principles’
MD simulation. The bonding in a chemical system is determined using
quantum calculations, while the ions (nuclei with the inner electrons) are
subjected to classical operation.

The five different conditions defining MD simulation consist of boundary con-
dition, initial condition, force calculation, integrator/ensemble, and property

3.5 Three-Dimensional QSAR 83



calculation. The method requires the input of a set of initial conditions representing
initial position, particle velocity, and the interaction potential among the particles
which is followed by solving a series of equations of motion for all considered
particles. The force Fi acting upon the ith particle having mass mi at the time

Table 3.2 Formal definition of the energy terms that are used to designate the total energy of a
molecule

Force/
treatment

Equation Brief details

Torsion ETorsion ¼ 1
2 k/ 1þ cosm /þ /offsetð Þ½ �

where ϕoffset is the ideal torsion angle
relative to a staggered conformation of
two atoms and kϕ represents the energy
barrier for rotation about the torsion
angle ϕ. The periodicity of rotation is
denoted by ‘m’

Torsional energy presents the energy
required for free rotation of a sigma
bond. The dihedral angle depicting the
relative orientation of the atoms is the
‘torsion angle.’ The following figure
shows the torsion angle ϕ between two
sample atoms in a staggered
conformation

φ

Bond
stretching

EStretching ¼ 1
2 kstretch � r � r0ð Þ2

where the ideal and stretched bond
lengths are, respectively, denoted by r0
and r, and kstretch is a force constant
giving a measure of the strength of the
spring, i.e., bond

Hooke’s law can be employed for the
computation of bond stretching energy
considering a covalent bond to be
made up of a spring. However, Morse
function containing complex
mathematical terms also allows
computation of bond stretching

Angle
bending

EBend ¼ 1
2 kh � h� h0ð Þ2

where the ideal bond angle is denoted
by θ0 and θ is the bond angle in the
bend position

The ideal bending angle is the angle
formed by three consecutive atoms at
their minimum energy position.
Bending angle θ can be represented as
follows:

van der
Waals force

EvdW ¼ e� rmin
r

� �12�2� rmin
r

� �6h i
Here, at minimum energy value ε, rmin

presents the distance between atoms
i and j, while the actual distance
between the atoms is r

The van der Waals force of interaction
can be represented by Lennard–Jones
potential equation where the first term
bearing power 6 {()6} represents forces
of attraction and the term with 12th
power {()12} denotes short-range
repulsive forces involved

Coulombic
force

ECoulombic ¼ qi�qj
D�rij

where qi and qj represent the point
charges on atoms i and j, respectively,
with rij being the distance between
them. D denotes the dielectric constant
of the medium

It measures the effect of charges
between two points. The attractive or
repulsive interaction between two
atoms i and j separated by distance rij
may be denoted as:

84 3 QSAR/QSPR Methods



t among a set of interacting particle can be denoted by the following equation based
on the principles of classical mechanics.

Fi ¼ mi
d2ri tð Þ
dt2

ð3:20Þ

where riðtÞ is the position vector of the ith particle and can be represented as
ri tð Þ ¼ xi tð Þ; yi tð Þ; zi tð Þf g. The integration form of Newton’s force equation provides
the position riðt þ DtÞ at time ðt þ DtÞ for the already-known positions at time t, and
it can be mathematically presented as follows:

ri t þ Dtð Þ ffi 2ri tð Þ � ri t � Dtð Þ þ Fi tð Þ
mi

Dt2 ð3:21Þ

Alternative leapfrog, velocity Verlet scheme, etc., can be employed for the
computation of velocity. Usually, the trajectories give an infinitesimal small inte-
gration step, e.g., at the subfemtosecond scale for simulating bonds possessing light
atoms to ensure the stability of the integration. Incorporation of improvement
algorithms such as RESPA, SHAKE, RATTLE, and LINCS enhance the perfor-
mance of MD simulation.

3.5.2.5 Quantum Mechanics

The Basic Formalism

Quantum mechanics is pioneered by Erwin Schrödinger during the study on a
mathematical expression correlating motion and energy of electron [20]. The
electrons were assumed to depict the wave property in Schrödinger’s formalism,
and hence, the equations are termed as ‘wave equations,’ while the series of
solutions derived thereof are named ‘wave functions.’ Wave functions are repre-
sented as time-dependent state function for designating the nature and property of a
molecular system. The basic proposition of Schrödinger wave nature of electron can
be represented by the following equation.

Hw ¼ Ew ð3:22Þ

where w represents the time-dependent wave function, H being the Hamiltonian
operator, while E represents energy. The total potential and kinetic energy of all the
particles of the molecular structure is actually denoted by the term Ew. Accounting
for the three-dimensional movement of electrons in space defined by x-, y- and z-
axes, the following differential equation can be more appropriate:

@2w
@x2

þ @2w
@y2

þ @2w
@z2

þ 8p2m
h2

E � Vð Þw ¼ 0 ð3:23Þ
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where m denotes mass, h represents Planck’s constant, and the total and potential
energy are represented by E and V, respectively. By the use of Laplacian operator ∇2

for the partial differentials, the previous equation can be represented as given below:

r2wþ 8p2m
h2

E � Vð Þw ¼ 0 ð3:24Þ

The quantum mechanical principles consider the following assumptions for
defining the electronic nature.

(i) Nuclei of atoms are ‘motionless’ considering fast motion of the electrons. This
renders the nuclear energy to be separated from energy of the electrons.

(ii) An electron is characterized by its ‘independent’ movement which assumes an
average influence of other electrons as well as the nuclei.

Considering the effects of only kinetic and potential energy terms, the
Schrödinger equation can be simplified in the following equation in which the
summed contribution of kinetic energy term K and potential energy term U denotes
the total energy E.

Hw ¼ K þ Uð Þ � w ð3:25Þ

Computation for H involves lengthy and complex operation, and actually for
molecules containing more than 50 atoms, such treatment is not economically
viable. For a simple molecule hydrogen (H2) possessing two electron and two
nuclei, the Hamiltonian operator H is given by eight terms as shown below:

H ¼ � 1
2
� V

2
1 �

1
2
� V

2
2 þ

1
R1R2

� 1
R1r1

� 1
R1r2

� 1
R2r1

� 1
R2r2

þ 1
r1r2

ð3:26Þ

where the kinetic energy expressions for electrons 1 and 2 are represented by 1
2V

2
1

and 1
2V

2
2, respectively, while r1 and r2 represent the position of two electrons and

the positions of their respective nuclei are denoted by R1 and R2.
The quantum chemical calculations can be performed by using ab initio method,

density function theory (DFT)-based calculations as well as semi-empirical calcu-
lations. The quantum chemical ab initio formalism (i.e., from the beginning)
attempts to furnish absolute solution to the equations characterized by high-quality
accurate results using a convergent approach. However, such process becomes
complex for medium-to-large-sized molecules. In order to reduce the computation
burden as well as cost involved, various less important terms are eliminated from
calculation by applying assumptions. The DFT method gives a favorable perfor-
mance considering the accuracy of result, cost, and time involved, whereas cal-
culations involving semi-empirical assumptions are reasonably fast and applicable
to large chemical systems although their accuracy is lower than that of the others.
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The Born–Oppenheimer Approximation

Born and Oppenheimer [21] introduced this approximation (BO approximation) to
reduce the computational burden of solving time-dependent wave equation of
Schrödinger. Here, the kinetic energy terms for the nuclei are neglected by
assuming the nucleus to be stationery with respect to the electrons. That is, BO
approximation considers the electronic motion and the nuclear motion to be sep-
arated, and hence, the wave functions of electrons are dependent on the position of
nucleus, and not on its velocity. Considering the position of electrons as ri and the
position of nucleus as Ri, the following equation can be written:

wmolecule ri;Rj
� � ¼ welectrons ri;Rj

� � � wnuclei Rj
� � ð3:27Þ

The example of a benzene molecule may be cited here. Benzene structure
consists of 42 electrons and 12 nuclei, and therefore, a partial differential eigenvalue
equation of 162 variables will be obtained while dealing with the energy and
molecular wave functions using Schrödinger equation. Such difficulty in calculation
can be eased by the employment of BO approximation.

The Hartree–Fock Approximation

The Hartree–Fock (HF) approximation is attributed to the decisive contribution of
Hartree [22] and Fock [23]. This operation is also known as the ‘self-consistent field
(SCF)’ method. Hartree formulated an approximation for a many-electron wave
function system by using the products of single particle functions which can be
depicted as follows:

w r1; r2; . . .; rnð Þ ¼ /1 r1ð Þ � /2 r2ð Þ � � � � � /n rnð Þ ð3:28Þ

where w r1; r2; . . .; rnð Þ is a many-electron wave function with ri denoting coordi-
nates and spins of the particles. Each of the functions /i rið Þ corresponds to one-
electron, i.e., one-particle Schrödinger equation and for a total number of
N electrons, Hartree defined it as follows:

� 1
2
Dþ v rð Þ þ

XN
j¼1;j 6¼1

Z
/j r

0ð Þ�� ��2
r � r0j j dr

0
" #

/i rð Þ ¼ Ei/i rð Þ ð3:29Þ

where v(r) corresponds to the nuclear charge measure Z which can be defined as:
v rð Þ ¼ �Z=r. Here, an electron is assumed under the ‘SCF’ at the ith state that is
determined by all electrons but the ith one. The HF approximation experiences
violation of exclusion principle due to the non-orthogonal nature of the functions
/iðrÞ. ‘Anti-symmetrized modification,’ ‘Fermi statistics inclusion,’ ‘configuration
interaction (CI),’ etc., represent the modifications as well as extensions incorporated
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into the HF formalism. A HF equation is iteratively solved using suitable algo-
rithmic platform in computer.

Density Function Theory (DFT)

The DFT [24] considers the electronic motions as ‘uncorrelated,’ while a local
approximation of the free electrons can be used to represent the kinetic energy.
Thomas and Fermi provided the initial concept of DFT which can be furnished by
the following integral: n rð Þ ¼ N

R
dr2. . .

R
drNw � r; r2; . . .; rNð Þ � w r; r2; . . .; rNð Þ;

where the density of the electron is denoted by n(r). The DFT formalism evolved
and went under refinement while addressing drawbacks of the HF approximation.
The theorem for DFT was provided by Hohenberg and Kohn which was later
simplified by Levy. For a system with N electrons moving in an external potential
Vext(r), the Hamiltonian operator H can be represented as follows:

H ¼ T þ Vee þ
XN
i¼1

Vext rið Þ ð3:30Þ

where the kinetic energy and the electron–electron interaction operators are,
respectively, represented by T and Vee. If wGS represents the wave function and
nGS(r) the density, the ground-state energy EGS can be mathematically formulated
as follows:

EGS ¼
Z

drVext rð ÞnGS rð Þ þ hwGS T þ Veej jwGSi

¼
Z

drVext rð ÞnGS rð Þ þ F nGS½ �
ð3:31Þ

where Vext(r) represents the external potential, while F[n] denotes a density func-
tional such that it is not dependent to any specific system or external potential.
Kohn and Sham used local density (LD) approximation to the limiting case of a
slowly varying density and provided a means for solving Schrödinger equation for a
fictitious system of non-interacting particles (Eq. 3.32).

ELD
xc ¼

Z
dr n rð Þ exc n rð Þ½ � ð3:32Þ

where εxc[n] represents the exchange and correlation energy per particle of a
homogeneous electron gas possessing density n.

The problem of non-locality of single particle exchange potential in HF
approximation is overcome by Kohn–Sham local density approximation. DFT
enables computation of vibrational frequencies, atomization energies, ionization
energies, electric and magnetic properties, reaction paths, etc.
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Semi-empirical Analysis

Semi-empirical analysis assumption of the quantum chemical analysis employs
integral approximations and parameterizations aiming to reduce the complexity of
solving Schrödinger wave equation. Such hypothesis can operate for larger
molecular systems although with ‘less accurate’ computation outcomes. The semi-
empirical calculations start with the ab initio method and soon after speeds up the
computation by avoiding various less important terms and features thereof.
However, in order to compensate the assumptive errors, such methods use empirical
parameters with calibration against reliable theoretical or experimental data and
hence are termed as the ‘semi-empirical’ techniques [25].

HMO method for the generation of molecular orbital values of unsaturated
molecules using π-electronic formalism can be identified as the oldest form of semi-
empirical approach. However, the Hückel-type methods use one-electron integrals
and are also non-iterative in nature. The Pariser–Parr–Pople ideology depicts the
electronic spectra of unsaturated molecules using anti-symmetrized products of
quantitative atomic orbital integrals bearing the core Hamiltonian. This method
institutes the idea of zero differential overlap along with the charged sphere form of
atomic orbitals. People showed that the neglect of differential overlap in electron
interaction integral without further adjustments is not constant to simple transfor-
mation of the atomic orbital basis set such as the s and p orbital replacement by
hybrids or the rotation of axes. Modern approaches based on the semi-empirical
formalism employ methods of neglect of diatomic differential overlap (NDDO),
intermediate neglect of differential overlap (INDO), with the complete neglect of
differential overlap (CNDO) [25]. Some of the methods have been briefly discussed
in Table 3.3.

It will be noteworthy to mention that among different platforms allowing
molecular simulation operations, Gaussian software (http://www.gaussian.com/)
allows scrupulous theoretical computation involving the ab initio formalism (HF,
MP2, etc.), density functional theory (HFB, PW91, PBE, G96, LYP, VWN5, etc.),
semi-empirical techniques (AM1, MNDO, PM3, PM6, etc.), MM (Amber,
Dreiding, UFF), and other hybrid methods (G1, G2, G2MP2, G3, G3B3, G4,
G4MP2, MPW1PW91, B2PLYP, B3LYP, etc.). The Gaussian software addition-
ally characterizes the wave functions using various ‘basis sets,’ namely STO-3G, 3-
21G, 6-21G, 4-31G, and 6-31G. This software is also the oldest one in this genre
and is accredited to John Pople and his research group [26] who released the first
version in the year 1970 (Gaussian70).

3.5.3 Examples of 3D-QSAR

The aim of any 3D-QSAR is to establish the relationship between biological
activity and spatially localized steric, electrostatic, lipophilic, and hydrogen-bond-
ing properties of chemicals. The 3D-QSAR approaches are computationally more
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Table 3.3 A representative view of different schemes which have been implemented in semi-
empirical/self-consistent quantum chemical calculations

Sl.
No.

Abbreviated
name

Full form of the
technique

Brief note

1 LCAOSCF LCAO self-consistent
function

Provides self-consistent function
approximation using LCAO method. Here,
energy minimization is facilitated by the
coefficient of the orbitals

2 CNDO Complete neglect of
differential overlap

CNDO and NDDO are the simplified
forms of LCAOSCF using the
approximation of neglecting differential
overlap. CNDO does not consider any
differential overlap in all the basis sets.
That is, here a product of two different
atomic orbitals corresponding to a specific
electron is always ‘neglected’ in electron
interaction integrals

3 NDDO Neglect of diatomic
differential overlap

It corresponds to the product of pairs of
atomic orbitals of different atoms that have
been neglected in certain electron
repulsion integral

4 INDO Intermediate neglect of
differential overlap

It represents the neglect of the differential
overlap in the integral of all electron
interaction except those using one center
only, i.e., the retention of one-center
product of different atomic orbital in only
one-center integral. It is of an intermediate
complexity between CNDO and NDDO
methods

5 MINDO Modified intermediate
neglect of differential
overlap

It considers a common value in order to
represent the two-center electron repulsion
integral between the atomic orbitals of a
chosen atomic pair

6 MNDO Modified neglect of
diatomic overlap

Here, the approximation has been applied
to the closed shell molecules and their
valence electrons which are assumed to
move in a constant core field composed of
the nuclei and inner shell electrons

7 AM1 Austin Model 1 An approximation of NDDO that uses
nuclear–nuclear core repulsion function
(CRF) for approximation of two electron
integrals to mimic the van der Waals
interaction

8 PM3 Parametric Method 3 It uses a Hamiltonian operator like AM1,
but institutes a different parameterization
strategy involving a large number of
molecular properties. H-bonds are well
assessed although non-physical
hydrogen–hydrogen attraction causes
trouble
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expensive than the 2D-QSAR approaches. The 3D-QSAR techniques are broadly
divided into two classes based on the alignment strategy of the studied molecules.

1. Alignment-based techniques:

• Comparative molecular field analysis (CoMFA),
• Self-organizing molecular field analysis (SOMFA),
• Comparative molecular similarity indices analysis (CoMSIA),
• Receptor surface analysis (RSA), and
• Molecular shape analysis (MSA).

2. Alignment-independent techniques:

• Comparative molecular moment analysis (CoMMA),
• Weighted holistic invariant molecular (WHIM) descriptor analysis,
• VolSurf,
• Compass,
• Comparative spectral analysis (CoSA), and
• Grid-independent descriptors (GRIND)

In the present chapter, we have discussed the most commonly and successfully
used methods only.

3.5.3.1 CoMFA

Perception of CoMFA

The CoMFA is a molecular field-based, alignment-dependent, ligand-based 3D-
QSAR method which generates a quantitative relationship of molecular structures
and its biological response [27, 28]. This method considers ligand properties such
as steric and electrostatic energies, and resulting favorable and unfavorable
receptor–ligand interaction. In CoMFA, all aligned ligands are placed in an energy
grid and by placing an appropriate probe at each lattice point, energies are com-
puted. The resultant energy computed at each unit point corresponds to electrostatic
(Coulombic) and steric (van der Waals) properties. These calculated values serve as
descriptors which are then correlated with biological responses employing linear
regression methods such as partial least squares (PLS).

Formalism of CoMFA

The methodology of the CoMFA is described below:

I. First, a set of ligands known to bind in the same binding mode and binding
pocket of a receptor are taken and their structures are drawn.

II. Then, energy minimization is carried out and the bioactive conformation of
each molecule is generated.
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III. Thereafter, all the molecules are superimposed employing either manual or
automated methods in a manner defined by the supposed mode of interaction
with the receptor.

IV. Thereafter, the overlaid compounds are positioned in the center of a lattice grid
with a spacing of 2 Å.

V. The steric and electrostatic field intensities are calculated in the 3D space
around the molecules with different probe groups positioned at all intersec-
tions of the lattice. Computation of the steric field follows the Lennard–Jones
equation, and computation of electrostatic field follows the Coulombic inter-
action equation.

VI. The interaction energy (descriptors) is correlated with the biological response
employing the PLS tool.

VII. Interactive graphics consisting of colored contour plots are generated for the
easy interpretation of the results.

The CoMFA methodology is schematically depicted in Fig. 3.16.

Factors Responsible for the Performance of CoMFA

There are miscellaneous factors [28] concerned for quality of the constructed
CoMFA model and these are explained in Table 3.4.

Fig. 3.16 Flowchart of basic
steps of the CoMFA
methodology
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Table 3.4 Factors governing the quality of a CoMFA model

Factors Significance

Biological data • All molecules should belong to a congeneric series
• Compounds should possess the same mechanism of action
and same or at least equivalent binding mode
• The biological responses of molecules should correlate to
their binding affinity, and their specified biological responses
should be assessable
• Experimental responses should be measured employing
standardized and uniform protocols and preferably from a
defined endpoint and single laboratory
• The activity values of all compounds should be in same
units of measurement (binding/functional/IC50/Ki)
• The ranges of biological responses should be as large as
possible, keeping the mode of action identical

Optimization of 3D structure Molecular mechanics: It does not explicitly consider the
electronic motion, and therefore, they are fast, accurate, and
can be employed for large molecules
Quantum mechanics or ab initio: It takes into account the
3D-distribution of electrons around the nuclei and thus is
extremely precise. These methods are time-consuming,
computationally intensive, and they cannot handle large
molecules
Semi-empirical: Semi-empirical quantum methods attempt to
address two restrictions, namely slow speed and unsuitability
for large molecules of the quantum mechanical calculations
by omitting certain integrals based on experimental data,
such as ionization energies of atoms, or dipole moments of
molecules. Modern semi-empirical models are based on the
Neglect of Diatomic Differential Overlap (NDDO) methods
such as MNDO, AM1, PM3, and PDDG/PM3

Conformational search analysis • Systematic search (or grid search)
• Monte Carlo
• Random search
• Molecular dynamics
• Simulated annealing
• Distance geometry algorithm
• Genetic and evolutionary algorithms

Determination of bioactive
conformations

X-ray crystallography: The precise 3D structure of the
macromolecules can be obtained from the X-ray crystal
structure. Drug–receptor complexes generated by this
method offer the exact information
NMR spectroscopy: The 3D structural data are obtained in
solution and it is a method of selection when the molecule
cannot be crystallized through experimental ways, as in case
of the membrane bound receptors or receptors which have
not yet been isolated due to stability, resolution, or other
issues

Alignment of molecules • Atom overlapping-based superimposition
• Binding sites-based superimposition
• Field/pseudofield-based superimposition
• Pharmacophore-based superimposition
• Multiple conformer-based superimposition

(continued)

3.5 Three-Dimensional QSAR 93



Display and Interpretation of Results

The results are displayed for a CoMFA model by two ways:

(a) Coefficient contour plots: It portrays vital regions in space around the
compounds where specific structural modifications appreciably vary with the
response. In CoMFA, two types of contours are shown for each interaction
energy field: (i) the positive and (ii) negative contours which are depicted by
some specific colors.

(b) Plots from PLS models: Two types of plots are generally created: (i) score
plots and (ii) loading/weight plots. The score plots between biological
response (Y-scores) and latent variables (X-scores) show relationships between
the activity and the structures, whereas plots of latent variables (X-scores)
display the similarity/dissimilarity between the molecules, and their clustering
predispositions.

Advantages and Drawbacks of CoMFA

The CoMFA has the ability to design of new ligands in the structure–activity
correlation problems. Along with a good number of advantages, a CoMFA model is
not free from limitations also (Table 3.5).

Table 3.4 (continued)

Factors Significance

Computation of molecular
interaction energy fields

• The standard size of the grid spacing is 2 Å. The grid
spacing is inversely proportional to the accuracy of
calculations. As the grid spacing decreases to 1 Å or less, the
calculations become more extensive
• The distinctive size of the grid box is 3–4 Å larger than the
union surface of the overlaid compounds. As the
electrostatic/Coulombic interactions are long-range in nature,
a larger grid box may be required. It is true for steric/van der
Waals interactions also
• The interaction energies are computed using probes. The
probe may be a small molecule like water, or a chemical
fragment such as a methyl group. The electrostatic energies
are calculated with H+ probe, whereas a sp3 hybridized
carbon atom with an effective radius of 1.53 Å and a +1.0
charge is used as probe for including the steric energies
• In CoMFA, the standard Lennard–Jones function is utilized
to model the van der Waals interactions, whereas
electrostatic interactions are determined by the Coulomb’s
law
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3.5.3.2 CoMSIA

Idea of CoMSIA

The CoMSIA is a ligand-based, alignment-dependent and linear 3D-QSAR method
[29]. The major difference between CoMFA and CoMSIA is that molecular simi-
larity is considered in case of CoMSIA. The CoMFA concentrates on the alignment
of compounds and may lead to fault in alignment sensitivity and interpretation of
electrostatic and steric potential. To overcome the problem, Gaussian potentials are
utilized in CoMSIA fields. The usual energy grid box is created and similar probes
are positioned throughout the grid lattice. In addition, solvent reliant molecular
entropic (hydrophobicity) term is also included in the CoMSIA. To analyze the
property of molecules, a common probe is placed and similarity at each grid point is
computed. In CoMSIA, five different similarity fields are calculated at regular-
spaced grid points for the aligned molecules.

• Steric,
• Electrostatic,
• Hydrophobic,
• Hydrogen bond donor, and
• Hydrogen bond acceptor.

Table 3.5 Commonly encountered advantages and limitations of the CoMFA model

Advantages Physicochemical features such as steric and electrostatic forces involved in
ligand–receptor interactions

Applicable to any series of molecules for which alignable models can be
constructed and whose desired property is believed to result from alignment-
dependent non-covalent molecular interactions

Each CoMFA parameter represents the interaction energy of an entire ligand,
not just the interaction of a more or less randomly selected substructure of the
ligand

The only inputs needed are models of all the molecules, their lattice description,
and usually, an explicit ‘alignment rule’

Interpretation through the ‘coefficient contour’ map

Limitations Consideration of too many variables such as overall orientation, lattice
placement, step size, and probe atom type

Appropriate only for in vitro data

Hydrophobicity is not well-quantified

Low signal-to-noise ratio due to many ineffectual field variables

Improbability in choice of molecules and variables

Fragmented contour maps with variable selection procedures

Flaws in potential energy functions

Cutoff limits are utilized
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Methodology of CoMSIA

The general formalism of the CoMSIA technique is illustrated below:

(a) Conformer generation is performed for the studied molecules.
(b) Energy minimization of the molecules is performed and then partial atomic

charges of the molecules are calculated.
(c) After that, the training set molecules are aligned based on the points of

alignment of the most active compound (template molecule).
(d) Thereafter, molecular interactions based on the five physicochemical proper-

ties are calculated using a common probe atom with 1 Å radius (can be
extended by 2.0 Å in all directions), charge +1, hydrophobicity +1, hydrogen
bond donor and acceptor properties +1.

(e) Subsequently, the PLS approach is employed to derive the 3D-QSAR models
using the correlation between similarity factors and biological response.

(f) The results are illustrated in the form of contour maps which differentiate the
favorable and unfavorable regions for the five different interaction fields.

The basic steps involved in the CoMSIA methodology are illustrated in
Fig. 3.17.

Fig. 3.17 The entire
formalism of the CoMSIA
technique
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Advantages of CoMSIA

The CoMSIA technique provides following unique advantages:

• The ‘Gaussian distribution of similarity indices’ overcomes the unanticipated
changes in grid-based probe–atom interactions.

• The choice of similarity probe includes steric and electrostatic potential fields as
well as hydrogen bonding and hydrophobic fields.

• The effect of the solvent entropic provisions can also be included by employing
a hydrophobic probe.

• The CoMSIA contours indicate those areas within the region occupied by the
ligands that ‘favor’ or ‘oppose’ the occurrence of a group with a particular
physicochemical property or response.

3.5.3.3 MSA

Concept of the MSA

The MSA technique is employed to identify the biologically relevant conformation
without knowledge of the receptor geometry [30]. The MSA is an alignment-
dependent approach which incorporates conformational flexibility and shape data
into the 3D-QSAR. Multiple conformations of each molecule can be generated
using the conformational search method. A conformer of the most active compound
selected as a shape reference compound to which all the structures in the study
compounds can be aligned through pairwise superpositioning. This alignment
procedure looks at molecules as points and lines and uses the techniques of graph
theory to identify patterns. It finds the largest subset of atoms in the shape reference
compound that is shared by all the structures in the study table and uses this subset
for alignment. A rigid fit of atom pairings is performed to superimpose each
structure so that it overlays the shape reference compound.

Methodology of the MSA

The MSA is an iterative process, in which the molecular shape similarities and other
descriptors are employed to generate a QSAR model with best possible statistical
significance. The process consists of seven fundamental steps as mentioned below:

1. The first step is the generation of conformers and energy minimization of each
structure to be investigated.

2. The next step generates a structure that corresponds to the structure present in
the rate-limiting step for the biological action. The step is known as ‘hypothe-
sizing an active conformer.’

3. Then, a shape reference compound is identified which is used when shape
descriptors are calculated for the study matrix. Generally, the most active
compound is considered as the reference compound.
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4. The fourth step in MSA is to execute pairwise molecular superpositions to find
out what and how atoms of data set compounds are equivalent to atoms in the
shape reference compound.

5. The fifth step is measuring molecular shape commonality to compare the
properties that two molecules have in common.

6. In this step, the researcher can also add other molecular properties to the descriptor
matrix by calculating spatial, electronic, thermodynamic descriptors, etc.

7. The final step is the construction of a QSAR equation by the application of genetic
function approximation (GFA) or genetic partial least squares (G/PLS) methods.

MSA Descriptors

The MSA descriptors are used to determine the molecular shape commonality.
Most commonly used MSA descriptors are incorporated in Table 3.6.

3.5.3.4 RSA

Concept of the RSA

The RSA [31] is a helpful tool when the 3D structure of the receptor is unidentified,
since one can construct a hypothetical model of the receptor site using RSA. RSA
varies from pharmacophore models in that the RSA approach tries to capture
necessary information about the receptor, while the pharmacophore captures
information about the commonality of compounds that bind to a receptor. The
model embodies essential information about the hypothetical receptor site as a 3D
surface with associated properties such as follows:

• Hydrophobicity,
• Partial charge,

Table 3.6 Commonly employed MSA descriptors

Descriptors Definitions

DIFFV (difference volume) Difference between the volume of the individual molecule and
the volume of the shape reference compound

Fo (common overlap volume
ratio)

Common overlap steric volume descriptor divided by the
volume of the individual molecule

NCOSV (non-common
overlap steric volume)

Volume of the individual molecule and the common overlap
steric volume

ShapeRMS (rms to shape
reference)

This is root mean square (rms) deviation between the
individual molecule and the shape reference compound

COSV (common overlap
steric volume)

Common volume between each individual molecule and the
molecule selected as the reference compound

SRVol (volume of shape
reference compound)

This is the volume of the shape reference compound
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• Electrostatic (ELE) potential,
• Van der Waals (VDW) potential, and
• Hydrogen bonding propensity.

Receptor surface models provide compact quantitative descriptors which capture
3D information of interaction energies in the form of steric and electrostatic fields at
each surface point.

Methodology of the RSA

The fundamental steps of RSA are as follows:

1. First, conformers of the compounds are generated and energy minimization is
performed

2. Then, compounds are superimposed in their bioactive conformation
3. Thereafter, a receptor-complementary surface is created employing shape fields

which encloses a volume common to all the aligned compounds and which
represents their collective molecular shape.

4. Then, assumed chemical properties of the receptor at every surface point are
calculated.

5. Finally, CoMFA models are constructed by GFA or G/PLS correlating the
surface properties with the biological response of the studied molecules.

RSA Descriptors

The RSA descriptors signify the energy of interactions between each point on the
receptor surface and each model. The frequently used RSA descriptors are illus-
trated in Table 3.7.

Miscellaneous

Relatively less used 3D-QSAR methods are discussed in Table 3.8 [32]. For a better
understanding of readers, these discussed methods are classified into two sections,
alignment-based and alignment-independent models.

Table 3.7 A complete list of RSA descriptors

Descriptors Definitions

IntraEnergy Molecular internal energy inside the receptor

InterEleEnergy Non-bond electrostatic energy between a molecule and the receptor

InterVDWEnergy Non-bond van der Waals energy between a molecule and the receptor

InterEnergy Total non-bond energy between a molecule and the receptor

MinIntraEnergy Molecular internal energy minimized without receptor

StrainEnergy Molecular strain energy within the receptor and the molecule minimized
without the receptor model
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Table 3.8 A bird’s-eye view idea on miscellaneous 3D-QSAR methods

3D-QSAR methods Concept/explanation

Alignment-based 3D-QSAR model

Adaptation of the fields for molecular
comparison (AFMoC)

The AFMoC is a 3D-QSAR method that considers
fields derived from the protein environments and
known as a ‘reverse’ CoMFA approach or ‘Inverted
CoMFA’ derived from the potential scoring function.
The protein-specific potential fields are generated into
binding sites, which are employed for the prediction
of binding affinity

Genetically evolved receptor
modeling (GERM)

The GERM is helpful for developing 3D models of
macromolecular binding sites in the nonexistence of
experimental structure such as X-ray crystallography
and NMR spectroscopy or homology-modeled
structure of the target receptor. The key constraint for
GERM is that all the aligned conformers should be
enclosed into the receptor active site, allocating them
as a shell of atoms. The allocated shells of atoms are
considered an explicit set atom (aliphatic H, aliphatic
C, polar H, etc.) and matched at the receptor active
site analogous to those originate in the receptor active
site. The drawback of the GERM methodology is that
it considers only a single conformation of each ligand
in the training set as well as its single orientation in
the binding site

Hint interaction field analysis (HIFA) The HIFA is a newly developed approach employing
calculation of empirical hydrophobic interactions.
Due to the introduction of hydrophobicity calculation
in CoMFA, the predicative capability of this method
has enhanced. It computes key hydrophobic features
which are atom-based analogs of the fragment
constant

Molecular quantum similarity
measures (MQSM)

The MQSM is defined by the vectors of the electronic
density function as descriptors, which represent the
similarity using molecular quantum similarity
measures. The MQSM is optimized by translating and
rotating molecular pairs so as to make the most of the
overlap of their molecular electronic density. The
methodology is based on the quantification of the
similarity between two molecules using the first order
density functions of both studied systems

Self-organizing molecular field
analysis (SOMFA)

The SOMFA technique has similarities to the
molecular similarity analysis and CoMFA. It has also
similarities with the hypothetical active site lattice
(HASL) method. The ‘mean centered activity’ is
crucial in SOMFA

Voronoi field analysis (VFA) In the VFA technique, Voronoi field variables are
assigned to each of the Voronoi polyhedra created by
dividing the superimposed molecular space but not to
each of the lattice points like CoMFA

(continued)
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Table 3.8 (continued)

3D-QSAR methods Concept/explanation

Alignment-independent QSAR model

Comparative molecular moment
analysis (CoMMA)

The CoMMA technique addresses second-order
moments of the shape, mass distribution and charge
distributions. The moments relate to center of the
mass and center of the dipole. The CoMMA
descriptors comprise principal moments of inertia,
magnitudes of dipole moment and principal
quadrupole moment. Descriptors relating charge to
mass distributions are defined, i.e., magnitudes of
projections of dipole upon principal moments of
inertia and displacement between center of mass and
center of dipole

Comparative spectral analysis
(CoSA)

The CoSA has employed molecular spectroscopy
techniques for the identification of the 3D molecular
descriptors of chemicals. The molecular spectra are
employed to predict biological activity of the 3D
structures. The spectroscopic method generally
comprises following techniques: proton (1H)-NMR,
carbon (13C)-NMR, IR, and mass spectrometry

Compass Compass automatically chooses conformations and
alignments of molecules. In this approach, each
molecule is represented by a different set of feature
values. Three types of features, steric, hydrogen-bond
donor and acceptor features, are used in the Compass
approach. Steric distances are computed from the
sampling points to the adjacent atom. Donor and
acceptor feature values are calculated as the distance
from the sampling points scattered near the surface of
the molecules to the nearest hydrogen bond donor and
acceptor groups, respectively

VolSurf The VolSurf approach depends on probing the grid
around the molecule with specific probes. The
resulting lattice boxes are employed to calculate the
descriptors relying on volumes or surfaces of 3D
contours, defined by the same value of the probe
molecule interaction energy. By using various probes
and cutoff values of the energy, different molecular
properties can be quantified

Weighted holistic invariant
molecular (WHIM) descriptor
analysis

WHIM descriptors offer the invariant information by
utilizing the principal component analysis (PCA) on
the constructed coordinates (Cartesian coordinates
around x-, y-, z-axes) of the atoms constituting the
molecule. This converts the molecule into the space
that captures the most variance. In this space,
numerous statistics are computed and they serve as
directional descriptors, including variance,
proportions, symmetry, and kurtosis
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3.6 Conclusion

The classical approaches of Free–Wilson and Hansch analyses constitute the fun-
damental basis of QSAR/QSPR modeling. These classical techniques were based
on ligand-based design strategies and suffer from various drawbacks. However,
such methods provided a conceptual platform for predictive modeling analysis, and
even today suitably modified versions of these techniques are used by researchers.
With the advancement of knowledge in chemistry, various dimensional perspec-
tives provided theoretical analysis of molecular features following ligand as well as
structure-based formalisms. The use of computer as an abstract platform of per-
forming various QSAR/QSPR operations has undoubtedly speeded up the research
findings by allowing accurate and reliable molecular modeling analysis and data
treatment.
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Chapter 4
Newer Directions in QSAR/QSPR

Abstract The QSAR/QSPR technique is now a widely practiced tool in chemical
research both in the industry and academia. Because of the enormous potential
applications of predictive modeling analysis, various newer methods have recently
been developed to improve the usefulness and applicability of QSAR techniques.
Binary QSAR, hologram QSAR (HQSAR), group-based QSAR (G-QSAR), mul-
tivariate image analysis (MIA)-based QSAR (MIA-QSAR), etc., are some of the
new approaches in the realm of QSAR formalisms. Furthermore, QSAR techniques
are also employed in various newer research areas in addition to the conventional
drug design and predictive toxicology paradigm. QSAR models have been observed
to be fruitful in modeling various property endpoints in the field of material
informatics. In addition to that, predictive modeling of properties and/or toxicities
of nanoparticles (NPs), cosmetics, peptides, ionic liquids, phytochemicals, etc., also
represents the emerging application areas of the QSAR technique. This present
chapter gives an overview of both the new methods and new application areas of
QSAR studies.

Keywords Binary QSAR � Cosmetics � G-QSAR � HQSAR � Inverse QSAR �
MIA-QSAR � Mixture toxicity � Nanomaterials � Peptides � Phytochemistry

4.1 Introduction

The QSAR/QSPR modeling technique provides an opportunity for the rational
design of chemicals. With the availability of various response data (activity/prop-
erty/toxicity) of diverse chemical compounds, such modeling approach has been
employed to monitor different scientific issues related to behavioral manifestations
of chemicals. Historically, the beginning of the QSAR formalism took place in
modeling various toxicological endpoints, while later it was profusely used in the
field of physical organic chemistry addressing the property data. The pharmaco-
logical activity data have also been modeled to a significant extent by the
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researchers in this field. With the passage of time, QSAR has become a well
practiced study to predict and/or fine-tune physicochemical properties, activity
potential, and toxicological hazard of chemicals in relation with structures. Other
than just providing a logical correlation of data, QSAR also enables nurturing the
mechanistic basis involved in a biological, toxicological, or physicochemical pro-
cess. This feature has enabled the use and application of QSAR/QSPR techniques to
a greater extent in different areas of chemical sciences. Presently, various interna-
tional regulatory authorities propose the use of QSAR techniques as a suitable
alternative strategy to in vivo biological (and toxicological) experimentation.
Specific regulations and ‘expert systems’ have also been presently developed by
various countries. Hence, it may be observed that the QSAR analysis is presently
used by a broader part of the scientific community, and with the aim of enhancing
the performance of this formalism, various newer techniques have evolved. The
concept of specialized molecular fragments has been implemented in relatively new
techniques, namely hologram QSAR (HQSAR) [1, 2] and group-based QSAR
(G-QSAR) [3]. The multivariate image analysis (MIA)-based QSAR (MIA-QSAR)
[4] method also presents a new QSAR method based on the attributes of two-
dimensional image of molecular structures. Among other new QSAR techniques
[5], we can mention about LQTA–QSAR, eQSAR, and novel approaches such as
FB-QSAR, FS-QSAR, SOM-QSAR, QUASAR (5D-QSAR), and 6D-QSAR.
Along with the development of various techniques, the newer application oppor-
tunities of the QSAR technique in chemical research have also come into the light.
QSAR actually presents a ligand-based approach of exploring structural features of
chemicals responsible for an activity or property. However, it has been observed to
be very fruitful in the paradigm of ‘lead designing’ when used in combination with
structure-based approaches. With the acceptance of different international regula-
tory agencies, QSAR is presently considered as a reliable tool in the risk assessment
of chemicals. Traditionally, the QSAR technique has been used to a significant
extent in modeling therapeutic activity of drug candidates and toxicity profile of
chemicals along with the prediction of various physicochemical parameters. Suc-
cessful application of QSAR also includes the design and development of agro-
chemicals. Apart from these, QSAR is presently employed in various emerging
fields [6]. Modeling of different property endpoints in material informatics can be
cited in this regard. QSAR is being successfully used for modeling response data
derived from cosmetics, peptides, phytochemicals, catalysts, polymers, ceramics,
novel chemicals such as nanoparticles (NPs) (such as fullerenes, metal oxide
nanoparticles, and carbon nanotubes), ionic liquids, and supercritical carbon
dioxide. It is to be noted that the mentioned areas do not give an exhaustive list for
the newer application areas of QSAR technique. The formalism of QSAR can also
be used to address newer fields in chemical research based on the intuitive
experimental design and the purpose involved.
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4.2 Newer Methods

4.2.1 HQSAR

4.2.1.1 Perception of HQSAR

Hologram QSAR (HQSAR) is a 2D fragment-based newer technique dependent on
the concept of employing molecular substructures expressed in a binary pattern
(i.e., 2D fingerprints) as descriptors in QSAR models [1]. HQSAR does not require
any physicochemical descriptors or 3D structures to generate the structure–activity
model. Thus, 2D structures and biological activity are employed as inputs, and the
structures are converted to all possible linear, branched, and overlapping fragments.
The generated fragments are assigned to integer values using a cyclic redundancy
check algorithm. These integer values are used to make an integer array of fixed
length. These arrays are considered as molecular hologram, and space occupancies
of the molecular holograms are utilized as descriptors. Finally, partial least squares
(PLS) regression is used to construct the model which is validated by the leave-one-
out method. The obtained model equation should be like the following:

Ai ¼ C þ
XL

i¼1

XilCil ð4:1Þ

where Ai is the activity of compound i, Xil is the hologram occupancy value at
position i or bin l, C is a constant, Cil is the coefficient for the corresponding bin
from the PLS run, and L is the hologram length.

4.2.1.2 Methodology

The HQSAR methodology consists of three fundamental steps [2]:

(i) Generation of substructural fragments for each of the training set molecules,
(ii) Representation of the structural fragments in the form of holograms,
(iii) Thereafter, correlation of the molecular holograms with the activity data of the

training set molecules employing the PLS tool to generate a HQSAR model.

A graphical depiction of creation of molecular holograms and a HQSAR model
is illustrated in Fig. 4.1.

4.2.1.3 HQSAR Parameters

The performance of HQSAR models can be influenced by a number of parameters
considering hologram generation.
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• Hologram length: The hologram length is a user-defined parameter which
controls the number of bins in the hologram fingerprint.

• Fragment size: Fragment size controls the minimum and maximum lengths of
fragments to be included in the hologram fingerprint.

• Fragment distinction: HQSAR allows fragments to be distinguished based on
various parameters such as atoms, bonds, connections, hydrogens, chirality,
donor, and acceptor.

4.2.1.4 Application of HQSAR Models

The major application of the HQSAR study is to explore individual atomic con-
tribution to molecular bioactivity with a visual display of active centers in the

Fig. 4.1 A schematic
diagram of HQSAR
methodology
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compounds. The HQSAR has been successfully applied in various stages of drug
discovery process in recent times.

• Versatile tool in drug design: Along with the prediction of potency and affinity
of new compounds, HQSAR models are capable of providing constructive
insights into the relationships between structural fragments and biological
activity.

• A flexible tool for virtual screening (VS): The basic approach of HQSAR can
be delicately applied in the VS strategies for the identification of hits. In case of
large data sets generated by combinatorial chemistry and high-throughput
screening (HTS) techniques, there are a variety of applications of HQSAR.

• Pharmacokinetic/pharmacodynamic studies and ADME prediction: The
HQSAR patterns of substructural fragments could also be helpful in pharma-
cokinetic studies comparing conventional mechanism-based pharmacodynamic
modeling. The recognized substructural patterns for a particular group of
compounds can be utilized as ADME filters in design of chemical library and
VS.

4.2.1.5 Advantages of HQSAR

The technique offers the following advantages:

• HQSAR provides a precise prediction of the activity of untested molecules.
• The technique eliminates the need for generation of 3D structures, putative

binding conformations, and molecular alignments.
• The approach provides a visual display of the active centers in compounds

indicating the fragments contributing maximally to the activity profile of the
compounds.

4.2.2 G-QSAR

4.2.2.1 Idea Behind Group-based QSAR (G-QSAR)

G-QSAR [3] is a fragment-based QSAR tool which is capable of establishing a
correlation of chemical group variation at diverse molecular sites of interest with
the consequent biological activity. The G-QSAR technique forms a mathematical
equation between the activity and descriptors computed for a variety of molecular
fragments of interest using specific fragmentation rules. The novelty of the
G-QSAR approach lies in the interpretation of the indispensable requisites of the
different substituents by suggesting not only the imperative descriptors but also
reflecting the site where one has to optimize for the design of new active
compounds.
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4.2.2.2 G-QSAR Methodology

The G-QSAR techniques can be accurately described in three steps as discussed
below:

(a) Fragmentation of compounds: The first and foremost step of the G-QSAR
technique is the fragmentation of compounds under study. In case of a set of
congeneric molecules, the number of fragmentation sites depends on the
substituents present in the core scaffold. For a non-congeneric set of mole-
cules, fragmentation of a set of molecules is performed using a predefined set
of rules.

(b) Descriptor computation of individual fragment: The next step is the compu-
tation of descriptors for each fragment of a given molecule in the following
manner: At first, 2D/3D descriptors are calculated for fragments present in
individual molecules in the data set, and secondly, along with the 2D/3D
descriptors, cross-interaction terms between diverse fragments are also
computed.

(c) Construction of G-QSAR model: The final step is the selection of the best
possible set of descriptors from the entire pool of descriptors to create the
QSAR model. For the selection of an optimal subset of descriptors, various
variable selection methods (stepwise forward, stepwise forward-backward,
stepwise backward, simulated annealing method, genetic algorithm, etc.) can
be employed. Tools such as multiple linear regression (MLR), principal
component regression (PCR), PLS, k-nearest neighbor, and neural networks,
are used to develop the final QSAR model. Figure 4.2 represents a complete
schematic diagram of the G-QSAR methodology.

4.2.2.3 Advantage of G-QSAR

The major advantage of the G-QSAR technique is that it considers the substituent
interactions as fragment specific descriptors to account for the fragment interactions
in the QSAR model. Other 2D-QSAR approaches are capable of suggesting only
important fragments, whereas the G-QSAR approach can reflect the crucial
descriptors along with the site where it has to be optimized for the design of new
molecules.

4.2.2.4 Application of G-QSAR Model

The G-QSAR technique offers identification of required structural modifications at
specific substitution sites and also provides a predictive model for the future pre-
diction of new chemical entities (NCE). The site specific precisions along with the
interpretation of fragments are determined from the G-QSAR model.
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• Drug design employing requisite fragments: G-QSAR models are capable of
generating information about the fragments which contribute significantly to the
variation in activity. Analysis of the fragments with the reference chemical
structure can provide essential information for the new drug design.

• Scaffold hopping and lead optimization: G-QSAR is independent of 3D
conformations and alignment of the molecules and can be employed tacitly for
scaffold hopping and lead optimization by employing descriptors of selected
fragment(s) of active molecules.

• Solution of ‘inverse QSAR’ problem: G-QSAR addresses ‘inverse QSAR’
problem which offers a systematic method to design molecules that satisfy
QSAR necessities and thereby design active molecules.

• Prediction of activity response through mathematical equation: The
G-QSAR method can be efficiently applied for the prediction of databases from
different classes of activities.

Fig. 4.2 Fundamental steps
of G-QSAR methodology
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4.2.3 MIA-QSAR

4.2.3.1 Concept of MIA-QSAR

MIA has one of the most widespread practical applications in the fields of scientific
imaging. The MIA is a type of multivariate regression method that is based on data
sets obtained from 2D images. Freitas et al. [4] have constructed a simplified QSAR
method based on 2D images of congeneric series of compounds. In MIA-QSAR,
2D images are employed for the generation of pixels for individual compounds of
the studied data set. Thereafter, the computed pixels of individual images are
considered as descriptors which are correlated with the respective biological
response for the generation of QSAR models. The MIA-QSAR is capable of testing
a good number of compounds with diverse substituents in order to verify the
variation of activity for the specific group of compounds. This is a direct visual tool
to predict biological activity in a quantitative way for a series of molecules with
congenericity.

4.2.3.2 Methodology of MIA-QSAR

(a) Computation of descriptors: The 2D image generated information (here,
pixels) is used as descriptors for the MIA-QSAR. As described earlier, in case
of MIA-QSAR, multivariate images are employed for computation of
descriptors. In case of multivariate images, each image is a 3D array with
height × width × wavelength dimensions. For instance, the most common type
of multivariate images presents a color image where wavelengths corre-
sponding to red, green, and blue lights are measured, respectively. Thus,
dimensions of the 3D array of these types of images are expressed as
height × width × 3 (where 3 represents red, green, and blue wavelengths).
After generating binaries of each image, they are superimposed to create a
tensor. The generated tensor is unfolded in order to use two-way analysis.
Therefore, the generated 2D matrix for the whole data set can be utilized as the
total pool of descriptors.

(b) Model generation: The descriptor matrix formed by the pixels is consequently
decomposed into a score vector s1 and a weight vector w1. The score vector is
determined to have the property of maximum covariance with the dependent
variable y. The score vectors then replace the original variables as regressors.
Due to the implication of pixels as descriptors, the problem of collinearity and
noise is a serious concern for MIA-QSAR. Methods such as principal com-
ponent analysis and PLS regression can be used to avoid the use of collinear
descriptors as these methods generate new orthogonal descriptors resulting in
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better robust and predictive models. Then, the final descriptor matrix is cor-
related with the biological response value by means of any suitable chemo-
metric tools. The generated equation from the training set of compounds
should be employed for the prediction of test set and subsequently utilized for
the recognition of critical structural requisites for the enhanced activity. The
methodology of MIA-QSAR is depicted in a schematic diagram in Fig. 4.3.

Fig. 4.3 Flowchart of MIA-QSAR formalism
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4.2.3.3 Advantages of MIA-QSAR

• MIA-QSAR is a simple and fast 2D-QSAR technique.
• It is possible to design molecules with diverse substituents.
• It is capable of predicting any modeled response in a direct or visual way

especially for a congeneric series of molecules.
• The approach does not require 3D alignment as well as conformational analysis.

4.2.3.4 Drawbacks of MIA-QSAR

As the descriptor calculation in MIA-QSAR is solely dependent on the 2D images
of individual molecules, therefore, drawing and representation of molecular struc-
ture has a decisive role to play in the development of statistically robust and
interpretable models. Factors which may influence the descriptor calculation are
illustrated below.

• Font size in the drawn structures
• Font type used in the drawn structures (Arial, Times New Roman, Comic Sans

MS, etc.)
• Representation of substituents (for example, an ethoxy group can presented in

the form of OEt or OC2H5)
• Image saving format [format: images can be saved in different standard format

such as joint photographic experts group (JPEG), tagged image file format
(TIFF), bitmap (BMP), and portable network graphics (PNG)].

As a consequence, with the change of font type and size, depiction of substit-
uents as well as image saving format, pixel numbers will vary for not only each
substituent but also for the whole molecule. The mentioned problems may largely
influence the consistency of MIA-QSAR.

4.2.3.5 Application of MIA-QSAR

• MIA-QSAR can be successfully applied in the activity prediction.
• Recognition of crucial structural attributes for activity profile of a specific class

of compounds is possible which leads to further NCE design and creation of
database for future.

• The created databases may be employed for future scaffold hopping and lead
optimization without applying conformational analysis or any alignment
techniques.
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4.2.4 Binary QSAR

4.2.4.1 Concept of Binary QSAR

The beginning of combinatorial chemistry for the development of large chemical
libraries constrained scientist to discover fast approaches for assaying millions of
chemicals at a go. For this purpose, the HTS is an ideal technique. There is always a
chance of error prone results in this method, and on the other hand, the conventional
QSAR approaches require more homogenous compounds with a continuous
activity data. To address the existing problems in traditional QSAR techniques and
to handle a large number of binary data from HTS, the ‘binary QSAR’ method was
implemented, which can handle data from HTS [7]. The method considers binary
activity measurements in the form of actives or inactives and computed molecular
descriptor vectors as input. A Bayesian inference technique is used to predict
whether or not a new compound will be active or inactive.

4.2.4.2 Methodology of Binary QSAR

In a simplified explanation, binary QSAR correlates compound structures
employing molecular descriptors, with a ‘binary’ expression of activity (i.e.,
1 = active and 0 = inactive), and computes a probability distribution for active and
inactive compounds in the training set. This function can then be employed to
predict active compounds for a given target in a test set. The methodology of the
binary QSAR is illustrated below:

(i) Representation of individual compound structure.
(ii) Computation of molecular descriptors and construction of a matrix table

consisting of descriptors and biological response of corresponding
compounds.

(iii) Then, the original molecular descriptors are transformed to a decorrelated and
normalized set of descriptors. The desired probability density is then
approximated by applying Bayes’ theorem and assuming that the transformed
descriptors are mutually independent.

(iv) Finally, construction of binary QSAR model employing any suitable che-
mometric tools.

A simplified flowchart of binary QSAR is presented in Fig. 4.4.

4.2.4.3 Advantage of Binary QSAR

The major advantage of this method is that it is useful for prioritizing compounds
for HTS, for construction of combinatorial libraries, and for screening and syn-
thesizing virtual libraries.
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4.2.4.4 Drawbacks of Binary QSAR

Binary QSAR assigns a probability to a compound to be active in a particular test
setting, but it cannot predict specific modifications of lead compounds to enhance
their activity. Therefore, binary QSAR is not an alternative to classical QSAR
analysis. Another drawback is the complexity of interpreting the importance of
descriptors in the constructed model.

4.2.5 Miscellaneous Methods

Comparatively new, emerging, and less employed QSAR techniques are listed in
the Table 4.1 for a better understanding of these approaches for future research [5].

Fig. 4.4 Complete methodology of binary QSAR
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Table 4.1 Miscellaneous newer QSAR methods

Methods Concept/explanation

Ensemble QSAR (eQSAR) It is a novel QSAR technique which addresses the significance
of low-energy conformers in QSAR analysis defined as
ensemble QSAR (eQSAR). The term ‘‘ensemble’’ depicts the
efforts at imitating the conformational space of the ligand by
using a finite set of low-energy conformations. The originality
of this method is that the biological response is modeled as a
function of physicochemical description initiating from an
ensemble of low-energy (active) conformers, rather than as a
property generated from the single lowest energy gas phase
conformer. The methodology is capable of predicting whether
a particular structural modification would improve or hinder
drug binding

Fragment-based QSAR
(FB-QSAR)

The FB-QSAR is an extension of both the Free–Wilson QSAR
and the classical 2D-QSAR. The novelty of the new method is
that the compound is partitioned into several fragments based
on their substitutions. The response of the molecules is
correlated with the physicochemical properties of the
molecular fragments through two sets of coefficients
(physicochemical properties and weight factors of the
molecular fragments) in the linear free-energy equations

Fragment similarity-based
QSAR (FS-QSAR)

The FS-QSAR was developed to determine the major
restriction of the original Free-Wilson method by introducing
the fragment similarity concept in the linear regression
equation. In case of FS-QSAR, the fragment similarity
calculation was carried out by the similarity. The method used
the lowest or highest eigenvalues computed from
BCUT-matrices, which contained partial charges of individual
atoms and their atomic connection information in each
individual fragments

LQTA–QSAR Laboratório de Quimiometria Teórica e Aplicada (LQTA)
investigates the main features of CoMFA and 4D-QSAR
paradigms where conformational flexibility is commonly
studied. This approach creates conformational ensemble profile
(CEP) for each compound instead of only one conformation.
After that, the molecular dynamics (MD) trajectories and
topology information retrieved from the GROMACS free
package are used for the calculation of 3D descriptors. The
GROMACS computes the intermolecular interaction energies
at each grid point considering probes and all aligned
conformations resulting from MD simulations. These
interaction energies are the independent variables or
descriptors which are employed in the QSAR analysis.
The LQTA-QSAR is an open access tool for the scientific
community at http://lqta.iqm.unicamp.br

(continued)
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4.3 Future Scope

4.3.1 What to Expect in the Coming Days

Though QSAR is basically a ligand-based statistical approach, a combination of
QSAR with receptor-based approaches has demonstrated useful applications and
success for optimization of drug candidates. QSAR is also useful for pharmaco-
kinetic data modeling. QSAR/QSPR has emerged as an alternative method for risk

Table 4.1 (continued)

Methods Concept/explanation

Receptor-dependent (RD)
4D-QSAR

Receptor-dependent 4D-QSAR is a relatively new approach in
QSAR where experimental techniques like X-ray
crystallography, NMR spectroscopy and homology modeling
are utilized to find out 3D structures of macromolecules. The
3D structure is determined and the binding site for the ligand is
predicted which permits to know the binding and alignment
modes of ligands. The basic aim of the RD 4D-QSAR study is
to map the ligand–receptor interaction mode

Receptor-independent (RI)
4D-QSAR

The RI 4D-QSAR is employed either to find the
pharmacophoric features of the ligand or to figure out the
projected changes in ligand structure. The aim of RI 4D-QSAR
is to attain maximum structural information from the developed
model. The advantage of RI is that it will design and construct
pharmacophoric features of the substituents and design and
map rational base for substituent placement on the scaffold
which can be employed as an initial filter in virtual screening

SOM 4D-QSAR The self-organizing map (SOM) is a machine learning tool
employed to classify the data according to the similarity. It is a
common type of artificial neural network (ANN) which is
frequently used in the QSAR due to its precision and simple
interpretation. This method is applicable for experiments where
an active bound conformation is searched taking into account
conformation flexibility

5D-QSAR (QUASAR) It considers the multiple expression of ligand topology to study
conformation, isosteriomer, and protonation, while orientation
is the new dimension added to 4D-QSAR as it can be
represented in multiple induced fit and referred as the
5D-QSAR analysis

6D-QSAR 6D-QSAR study considers the solvation function in QSAR
analysis which is an expansion of the QUASAR (5D-QSAR)
where employing the consideration of simulations for different
solvation models

7D-QSAR One more dimension has been added to the 6D-QSAR to
introduce another higher dimension QSAR (7D-QSAR). The
7D-QSAR analysis comprises real receptor or target-based
receptor model data
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assessment of chemicals in the context of environmental safety. Starting with the
classical Hansch and Free–Wilson approaches, QSAR/QSPR has gradually evolved
with time through refinement of approaches, use of newer descriptors, application
of diverse chemometric tools, employment of rigorous validation tests, and inte-
gration with receptor structure information.

4.3.2 Newer Application Areas of QSAR/QSPR

Apart from its use in ligand optimization in the context of drug discovery and
predictive risk assessment in ecotoxicology, there are several new emerging fields
[6] in which QSAR/QSPR is finding its application. Herein, we list some other
areas which will find potential applications of QSAR/QSPR in the coming days.

4.3.2.1 QSAR of Nanoparticles

NPs have found a wide range of applications in industrial sectors and different fields
of human life. QSAR modeling might be applicable for the comprehensive risk
exposure and assessment of NPs at the early stage of their development. A new
term ‘nano-QSAR’ has recently been coined. Efforts should be made to develop
new descriptors and methodologies for developing QSAR models for this special
class of chemicals.

4.3.2.2 QSAR of Mixture Toxicity

In the environment, different chemicals remain in a mixture form, which may
behave in a different way from the pure chemicals due to the interactions with and
effects of other chemicals. It will be an important and interesting research area to
develop QSAR models for predicting toxicity of mixtures. The QSAR modeling of
mixtures requires the use of appropriate descriptors. Efforts are to be directed to the
development of new descriptors and the improvement of existing QSAR approa-
ches for mixtures.

4.3.2.3 QSAR of Peptides

Antimicrobial peptides have recently drawn significant attention as an alternative
class of antimicrobial therapeutics. However, their structure–activity relationships
(SAR) are not well understood largely because of substantial diversity in their
structures and their non-specific mechanism of action. There is possibility of
application of QSAR in further understanding their SAR.
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4.3.2.4 QSAR of Cosmetics

QSAR modeling may emerge as one of the leading alternatives of animal studies for
testing of safety and risk assessment of cosmetics. The various toxicological end-
points for the development of QSAR models relevant to cosmetics are as follows:
acute toxicity, skin irritation and corrosion, skin sensitization, dermal absorption,
mutagenicity/genotoxicity, carcinogenicity, reproductive toxicity, etc.

4.3.2.5 QSAR of Ionic Liquids

Ionic liquids, a relatively new class of chemicals promoted as green solvents, have
diverse application in synthetic chemistry, electrochemistry, analytical chemistry,
separation and extraction, and other engineering and biological applications. The
experimental property and/or toxicity data have been reported only for a small
fraction of them. QSPR/QSAR of ionic liquids may help to design suitable com-
bination of cations and anions leading to ‘greener’ solvents with desirable prop-
erties and reduced toxicities.

4.3.2.6 Material Informatics

The theory of QSPR modeling may be applied to different areas of material sciences
such as rubber chemistry and chemistry of fullerenes, catalysis, and biomaterials.

4.3.2.7 Interspecies Toxicity Modeling

Interspecies toxicity correlations provide a tool for estimating a contaminant’s
sensitivity with known levels of uncertainty for a diversity of different species. This
approach can be applied for reduction of animal testing by gathering and extrap-
olating information from tested to untested species, as well as from tested to
untested chemicals.

4.3.2.8 QSAR of Phytochemicals

There is an increasing use of novel plant products and chemical libraries based on
phytochemicals in drug discovery programs. However, only a limited number of in
silico models have been reported so far in the literature based on phytochemicals.
There is ample scope of application of QSAR modeling in the field of phyto-
chemicals for exploring newer drug candidates.
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4.4 Conclusion

The journey of the QSAR/QSPR study has traversed a long path starting with the
classical approaches of Hammett, Taft, Hansch, and Free–Wilson. The gradual
evolution of the formalism has included the development of new dimensional
concepts, new descriptors, various chemometric tools as well as statistical valida-
tion criteria. The findings of the QSAR/QSPR study are also enriched by its
combined use with various structure-based approaches. The refinement also
involves various newer QSAR techniques intending to provide more prompt and
accurate information on the chemical attributes. QSAR has now evolved as a
distinct scientific discipline on its own merit. Along with the application in the
optimization of ligands in drug discovery and predictive risk assessment, the QSAR
method has been found to be useful in various other emerging research areas. The
seminal guidelines prescribed by the OECD have enabled the users to develop
robust and predictive QSAR models. Further introspection of biological, toxico-
logical as well as physicochemical endpoints can enhance the application oppor-
tunities of the QSAR idealism.
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