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Preface

Selection procedures used in plant breeding have gradually developed over a
very long time span, in fact since settled agriculture was first undertaken.
Nowadays these procedures range from very simple mass selection methods,
sometimes applied in an ineffective way, to indirect trait selection based on
molecular markers. The procedures differ in costs as well as in genetic effi-
ciency. In contrast to the genetic efficiency, costs depend on the local conditions
encountered by the breeder. The genetic progress per unit of money invested
varies consequently from site to site. This book considers consequently only
the genetic efficiency, i.e. the rate of progress to be expected when applying
a certain selection procedure.

If a breeder has a certain breeding goal in mind, a selection procedure should
be chosen. A wise choice requires a wellfounded opinion about the response
to be expected from any procedure that might be applied. Such an opinion
should preferably be based on the most appropriate model when considering
the crop and the trait (or traits) to be improved. Sometimes little knowledge
is available about the genetic control of expression of the trait(s). This applies
particularly in the case of quantitative variation in the traits. It is, therefore,
important to be familiar with methods for the elucidation of the inheritance
of the traits of interest. This means, in fact, that the breeder should be able
to develop population genetic and quantitative genetic models that describe
the observed mode of inheritance as satisfactorily as possible.

The genetic models are generally based, by necessity, on simplifying assump-
tions. Quite often one assumes:

• a diploid behaviour of the chromosomes;
• an independent segregation of the pairs of homologous chromosomes at

meiosis, or, more rigorously, independent segregation of the alleles at the
loci controlling the expression of the considered trait;

• independence of these alleles with regard to their effects on the expression
of the trait;

• a regular mode of reproduction within plants as well as among plants
belonging to the same population; and/or

• the presence of not more than two alleles per segregating locus.

Such simplifying assumptions are made as a compromise between, on the
one hand, the complexity of the actual genetic control, and, on the other hand,
the desire to keep the model simple. Often such assumptions can be tested
and so validated or revoked, but, of course, as the assumptions deviate more
from the real situation, decisions made on the basis of the model will be less
appropriate.

ix



x Preface

The decisions concern choices with regard to:

• selection methods, e.g. mass selection versus half sib family selection;
• selection criteria, e.g. grain yield per plant versus yield per ear;
• experimental design, e.g. testing of each of N candidates in a single plot

versus testing each of only 1
2N candidates in two plots; or

• data adjustment, e.g. moving mean adjustment versus adjustment of obser-
vations on the basis of observations from plots containing a standard variety.

In fact such decisions are often made on disputable grounds, such as experi-
ence, tradition, or intuition. This explains why breeders who deal in the same
region with the same crop work in divergent ways. Indeed, their breeding
goals may differ, but these goals themselves are often based on a subjective
judgement about the ideotype (ideal type of plant) to be pursued.

In this book, concepts from plant breeding, population genetics, quantitative
genetics, probability theory and statistics are integrated. The reason for this
is to help provide a basis on which to make selection more professional, in
such a way that the chance of being successful is increased. Success can, of
course, never be guaranteed because the best theoretical decision will always
be made on the basis of incomplete and simplifying assumptions. Nevertheless,
the authors believe that a breeder familiar with the contents of this book is
in a better position to be successful than a breeder who is not!



Preface to the Second Edition

New and upgraded paragraphs have been added throughout this edition. They
have been added because it was felt, when using the first edition as a course
book, that many parts could be improved according to a didactical point of
view. It was, additionally, felt that – because of the increasing importance of
molecular markers – more attention had to be given the use of markers (Section
12.3.2). In connection with this, quantitative genetic theory has, compared
to the first edition, been more extensively developed for loci represented by
multiple alleles (Sections 8.3.3 and 8.3.4).

It was stimulating to receive suggestions from interested readers. These
suggestions have given rise to many improvements. Especially the many
and useful suggestions from Ir. Ed G.J. van Paassen, Ir. Joël Schwarz,
Dr. Hans-Peter Piepho, Dr. Mohamed Mahdi Sohani and Dr. L.R. Verdooren
are acknowledged.
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Chapter 1
Introduction

This chapter provides an overview of basic concepts and statistical tools under-
lying the development of population and quantitative genetics theory. These
branches of genetics are of crucial importance with regard to the understand-
ing of equilibria and shifts in (i) the genotypic composition of a population
and (ii) the mean and variation exhibited by the population. In order to keep
the theory to be developed manageable, two assumptions are made throughout
the book, i.e. absence of linkage and absence of epistasis. These assumptions
concern traits with quantitative variation.

Knowledge of population genetics, quantitative genetics, probability theory
and statistics is indispensable for understanding equilibria and shifts with
regard to the genotypic composition of a population, its mean value and its
variation.

The subject of population genetics is the study of equilibria and shifts
of allele and genotype frequencies in populations. These equilibria and shifts
are determined by five forces:

• Mode of reproduction of the considered crop
The mode of reproduction is of utmost importance with regard to the
breeding of any particular crop and the maintenance of already available
varieties. This applies both to the natural mode of reproduction of the crop
and to enforced modes of reproduction, like those applied when producing
a hybrid variety. In plant breeding theory, crops are therefore classified into
the following categories: cross-fertilizing crops (Chapter 2), self-fertilizing
crops (Chapter 3), crops with both cross- and self-fertilization (Section 3.4)
and asexually reproducing crops. In Section 2.1 it is explained that even
within a specific population, traits may differ with regard to their mode of
reproduction. This is further elaborated in Chapter 4.

• Selection (Chapters 6 and 12)
• Mutation (Section 6.2)
• Immigration of plants or pollen, i.e. immigration of alleles (Section 6.2)
• Random variation of allele frequencies (Chapter 7)

A population is a group of (potentially) interbreeding plants occurring in
a certain area, or a group of plants originating from one or more common
ancestors. The former situation refers to cross-fertilizing crops (in which case
the term Mendelian population is sometimes used), while the latter group
concerns, in particular, self-fertilizing crops. In the absence of immigration the
population is said to be a closed population. Examples of closed popula-
tions are

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 1–5. 1
c© 2008 Springer.



2 1 Introduction

• A group of plants belonging to a cross-fertilizing crop, grown in an isolated
field, e.g. maize or rye (both pollinated by wind), or turnips or Brussels
sprouts (both pollinated by insects)

• A collection of lines of a self-fertilizing crop, which have a common origin,
e.g. a single-cross, a three-way cross, a backcross

The subject of quantitative genetics concerns the study of the effects of
alleles and genotypes and of their interaction with environmental conditions.

Population genetics is usually concerned with the probability distribution of
genotypes within a population (genotypic composition), while quantitative
genetics considers phenotypic values (and statistical parameters dealing with
them, especially mean and variance) for the trait under investigation. In fact
population genetics and quantitative genetics are applications of probability
theory in genetics. An important subject is, consequently, the derivation of
probability distributions of genotypes and the derivation of expected geno-
typic values and of variances of genotypic values. Generally, statistical analy-
ses comprise estimation of parameters and hypothesis testing. In quantitative
genetics statistics is applied in a number of ways. It begins when consider-
ing the experimental design to be used for comparing entries in the breeding
programme. Section 11.2 considers the estimation of interesting quantitative
genetic parameters, while Chapter 12 deals with the comparison of candidates
grown under conditions which vary in a trend.

Considered across the entries constituting a population (plants, clones, lines,
families) the expression of an observed trait is a random variable. If the
expression is represented by a numerical value the variable is generally termed
phenotypic value, represented by the symbol p.

Note 1.1 In this book random variables are underlined.

Two genetic causes for variation in the expression of a trait are distinguished.
Variation controlled by so-called major genes, i.e. alleles that exert a read-
ily traceable effect on the expression of the trait, is called qualitative varia-
tion. Variation controlled by so-called polygenes, i.e. alleles whose individual
effects on a trait are small in comparison with the total variation, is called
quantitative variation. In Note 1.2 it is elaborated that this classification
does not perfectly coincide with the distinction between qualitative traits
and quantitative traits.

The former paragraph suggests that the term gene and allele are synonyms.
According to Rieger, Michaelis and Green (1991) a gene is a continuous region
of DNA, corresponding to one (or more) transcription units and consisting of
a particular sequence of nucleotides. Alternative forms of a particular gene
are referred to as alleles. In this respect the two terms ‘gene’ and ‘allele’ are
sometimes interchanged. Thus the term ‘gene frequency’ is often used instead
of the term ‘allele frequency’. The term locus refers to the site, alongside
a chromosome, of the gene/allele. Since the term ‘gene’ is often used as a
synonym of the term ‘locus’, we have tried to avoid confusion by preferential
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use of the terms ‘locus’ and ‘allele’ (as a synonym of the word gene) where
possible.

In the case of qualitative variation, the phenotypic value p of an entry
(plant, line, family) belonging to a genetically heterogeneous population is
a discrete random variable. The phenotype is then exclusively (or to a
largely traceable degree) a function f of the genotype, which is also a random
variable G. Thus

p = f(G)

It is often desired to deduce the genotype from the phenotype. This is
possible with greater or lesser correctness, depending for example on the degree
of dominance and sometimes also on the effect of the growing conditions on
the phenotype. A knowledge of population genetics suffices for an insight into
the dynamics of the genotypic composition of a population with regard to a
trait with qualitative variation: application of quantitative genetics is then
superfluous.

Note 1.2 All traits can show both qualitative and quantitative variation.
Culm length in cereals, for instance, is controlled by dwarfing genes with
major effects, as well as by polygenes. The commonly used distinction
between qualitative traits and quantitative traits is thus, strictly speak-
ing, incorrect. When exclusively considering qualitative variation, e.g. with
regard to the traits in pea (Pisum sativum) studied by Mendel, this book
describes the involved trait as a trait showing qualitative variation. On the
other hand, with regard to traits where quantitative variation dominates –
and which are consequently mainly discussed in terms of this variation – one
should realize that they can also show qualitative variation. In this sense the
following economically important traits are often considered to be ‘quanti-
tative characters’:

• Biomass
• Yield with regard to a desired plant product
• Content of a desired chemical compound (oil, starch, sugar, protein,

lysine) or an undesired compound
• Resistance, including components of partial resistance, against biotic or

abiotic stress factors
• Plant height

In the case of quantitative variation p results from the interaction of a
complex genotype, i.e. several to many loci are involved, and the specific
growing conditions are important. In this book, by complex genotype we mean
the sum of the genetic constitutions of all loci affecting the expression of the
considered trait. These loci may comprise loci with minor genes (or poly-
genes), as well as loci with major genes, as well as loci with both. With regard
to a trait showing quantitative variation, it is impossible to classify individual
plants, belonging to a genetically heterogeneous population, according to their
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genotypes. This is due to the number of loci involved and the complicating
effect on p of (some) variation in the quality of the growing conditions. It is,
thus, impossible to determine the number of plants representing a specified
complex genotype. (With regard to the expression of qualitative variation this
may be possible!). Knowledge of both population genetics and quantitative
genetics is therefore required for an insight into the inheritance of a trait with
quantitative variation.

The phenotypic value for a quantitative trait is a continuous random
variable and so one may write

p = f(G, e)

Thus the phenotypic value is a function f of both the complex genotype (rep-
resented by G) and the quality of the growing conditions (say environment,
represented by e). Even in the case of a genetically homogeneous group of
plants (a clone, a pure line, a single-cross hybrid) p is a continuous random
variable. The genotype is a constant and one should then write

p = f(G, e)

Regularly in this book, simplifying assumptions will be made when developing
quantitative genetic theory. Especially the following assumptions will often be
made:

(i) Absence of linkage of the loci controlling the studied trait(s)
(ii) Absence of epistatic effects of the loci involved in complex genotypes.

These assumptions will now be considered.

Absence of linkage
The assumption of absence of linkage for the loci controlling the trait of
interest, i.e. the assumption of independent segregation, may be questionable
in specific cases, but as a generalisation it can be justified by the following
reasoning.

Suppose that each of the n chromosomes in the genome contains M loci

affecting the considered trait. This implies presence of n groups of
(

M
2

)
pairs

of loci consisting of loci which are more strongly or more weakly linked. The
proportion of pairs consisting of linked loci among all pairs of loci amounts
then to

n

(
M
2

)
(

nM
2

) =
n.M !

2!(M − 2)!
× 2!(nM − 2)!

(nM)!
=

M − 1
nM − 1

=
1 − 1

M

n − 1
M

For M = 1 this proportion is 0; for M = 2 it amounts to 0.077 for rye (Secale
cereale, with n = 7) and to 0.024 for wheat (Triticum aestivum, with n = 21);
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for M = 3 it amounts to 0.100 for rye and to 0.032 for wheat. For M → ∞
the proportion is 1

n ; i.e. 0.142 for rye and 0.048 for wheat.
One may suppose that loci located on the same chromosome, but on different

sides of the centromere, behave as unlinked loci. If each of the n chromosomes
contains m(= 1

2M) relevant loci on each of the two arms then there are 2n

groups of
(

m
2

)
pairs consisting of linked loci. Thus considered, the proportion

of pairs consisting of linked loci amounts to

2n

(
m
2

)
(

2nm
2

) =
2n.m!

2!(m − 2)!
× 2!(2nm − 2)!

(2nm)!
=

1 − 1
m

2n − 1
m

For m = 1 this proportion is 0; for m = 2 it amounts to 0.037 for rye and to
0.012 for wheat; for m = 3 it amounts to 0.049 for rye and to 0.016 for wheat.
For m → ∞ the proportion is 1

2n ; i.e. 0.071 for rye and 0.024 for wheat.
For the case of an even distribution across all chromosomes of the polygenic

loci affecting the considered trait it is concluded that the proportion of pairs
of linked loci tends to be low. (In an autotetraploid crop the chromosome
number amounts to 2n = 4x. The reader might like to consider what this
implies for the above expressions.)

Absence of epistasis
Absence of epistasis is another assumption that will be made regularly in this
book, notably in Sections 8.3.2 and 10.1. It implies additivity of the effects
of the single-locus genotypes for the loci affecting the level of expression for
the considered trait. The genotypic value of some complex genotype consists
then of the sum of the genotypic value of the complex genotype with regard
to all non-segregating loci, here represented by m, as well as the sum of the
contributions due to the genotypes for each of the K segregating polygenic
loci B1-b1, . . . , BK-bK . Thus

GB1-b1,...,BK-bK
= m + G′

B1-b1 + . . . + G′
BK-bK

(1.1)

where G′ is defined as the contribution to the genotypic value, relative to the
population mean genotypic value, due to the genotype for the considered locus
(Section 8.3.3). The assumption implies the absence of inter-locus interac-
tion, i.e. the absence of epistasis (in other words: absence of non-allelic
interaction). It says that the effect of some genotype for some locus Bi − bi

in comparison to another genotype for this same locus does not depend at all
on the complex genotype determined by all other relevant loci.

In this book, in order to clarify or substantiate the main text, theoretical
examples and results of actual experiments are presented. Notes provide short
additional information and appendices longer, more complex supplementary
information or mathematical derivations.



Chapter 2
Population Genetic Effects
of Cross-fertilization

Cross-fertilization produces populations consisting of a mixture of plants with
a homozygous or heterozygous (complex) genotype. In addition, the effects of
a special form of cross-fertilization, i.e. panmixis, are considered. It is shown
that continued panmixis leads sooner or later to a genotypic composition which
is completely determined by the allele frequencies. The allele frequencies do
not change in course of the generations but the haplotypic and genotypic com-
position may change considerably. This process is described for diploid and
autotetraploid crops.

2.1 Introduction

There are several mechanisms promoting cross-pollination and, consequently,
cross-fertilization. The most important ones are

• Dioecy, i.e. male and female gametes are produced by different plants.

Asparagus Asparagus officinalis L.
Spinach Spinacia oleracea L.
Papaya Carica papaya L.
Pistachio Pistacia vera L.
Date palm Phoenix dactylifera L.

• Monoecy, i.e. male and female gametes are produced by separate flowers
occurring on the same plant.

Banana Musa spp.
Oil palm Elaeis guineensis Jacq.
Fig Ficus carica L.
Coconut Cocos nucifera L.
Maize Zea mays L.
Cucumber Cucumis sativus L.

In musk melon (Cucumis melo L.) most varieties show andromonoecy, i.e.
the plants produce both staminate flowers and bisexual flowers, whereas other
varieties are monoecious.

• Protandry, i.e. the pollen is released before receptiveness of the stigmata.

Leek Allium porrum L.
Onion Allium cepa L.

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 7–32. 7
c© 2008 Springer.
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Carrot Daucus carota L.
Sisal Agave sisalana Perr.

• Protogyny, i.e. the stigmata are receptive before the pollen is released.

Tea Camellia sinensis (L.) O. Kuntze
Avocado Persea americana Miller
Walnut Juglans nigra L.
Pearl millet Pennisetum typhoides L. C. Rich.

• Self-incompatibility, i.e. a physiological barrier preventing normal pollen
grains fertilizing eggs produced by the same plant.

Cacao Theobroma cacao L.
Citrus Citrus spp.
Tea Camellia sinensis L. O. Kuntze
Robusta coffee Coffea canephora Pierre ex Froehner
Sugar beets Beta vulgaris L.
Cabbage, kale Brassica oleracea spp.
Rye Secale cereale L.
Many grass species, e.g. perennial ryegrass (Lolium perenne L.)

• Flower morphology

Fig Ficus carica L.
Primrose Primula veris L.
Common buckwheat Fagopyrum esculentum Moench.
and probably in the Bird of Paradise flower Strelitzia reginae Banks

Effects with regard to the haplotypic and genotypic composition of a popu-
lation due to (continued) reproduction by means of panmixis will now be
derived for a so-called panmictic population. Panmictic reproduction occurs
if each of the next five conditions apply:

(i) Random mating
(ii) Absence of random variation of allele frequencies
(iii) Absence of selection
(iv) Absence of mutation
(v) Absence of immigration of plants or pollen

In the remainder of this section the first two features of panmixis are more
closely considered.

Random mating
Random mating is defined as follows: in the case of random mating the
fusion of gametes, produced by the population as a whole, is at random with
regard to the considered trait. It does not matter whether the mating occurs
by means of crosses between pairs of plants combined at random, or by means
of open pollination.
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Open pollination in a population of a cross-fertilizing (allogamous) crop
may imply random mating. This depends on the trait being considered. One
should thus be careful when considering the mating system. This is illustrated
in Example 2.1.

Example 2.1 Two types of rye plants can be distinguished with regard
to their epidermis: plants with and plants without a waxy layer. It seems
justifiable to assume random mating with regard to this trait. With regard
to time of flowering, however, the assumption of random mating may be
incorrect. Early flowering plants will predominantly mate inter se and hardly
ever with late flowering plants. Likewise late flowering plants will tend to
mate with late flowering plants and hardly ever with early flowering ones.
With regard to this trait, so-called assortative mating (see Section 4.1)
occurs.

One should, however, realize that the ears of an individual rye plant are
produced successively. The assortative mating with regard to flowering date
may thus be far from perfect. Also, with regard to traits controlled by loci
linked to the locus (or loci) controlling incompatibility, e.g. in rye or in
meadow fescue (Festuca pratensis), perfect random mating will therefore
probably not occur.

Selection may interfere with the mating system. Plants that are resistant
to an agent (e.g. disease or chemical) will mate inter se (because susceptible
plants are eliminated). Then assortative mating occurs due to selection.

Crossing of neighbouring plants implies random mating if the plants reached
their positions at random; crossing of contiguous inflorescences belonging to
the same plant (geitonogamy) is, of course, a form of selfing.

Random mating does not exclude a fortuitous relationship of mating plants.
Such relationships will occur more often with a smaller population size. If a
population consists, generation after generation, of a small number of plants,
it is inevitable that related plants will mate, even when the population is main-
tained by random mating. Indeed, mating of related plants yields an increase
in the frequency of homozygous plants, but in this situation the increase in the
frequency of homozygous plants is also due to another cause: fixation occurs
because of non-negligible random variation of allele frequencies. Both causes
of the increase in homozygosity are due to the small population size (and not
to the mode of reproduction).

This ambiguous situation, so far considered for a single population, occurs
particularly when numerous small subpopulations form together a large
superpopulation. In each subpopulation random mating, associated with
non-negligible random variation of the allele frequencies, may occur, whereas
in the superpopulation as a whole inbreeding occurs. Example 2.2 provides an
illustration.
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Example 2.2 A large population of a self-fertilizing crop, e.g. an F2 or
an F3 population, consists of numerous subpopulations each consisting of a
single plant. Because the gametes fuse at random with regard to any trait,
one may state that random mating occurs within each subpopulation. At
the level of the superpopulation, however, selfing occurs.

Selfing is impossible in dioecious crops, e.g. spinach (Spinacia oleracea).
Inbreeding by means of continued sister × brother crossing may then be
applied. This full sib mating at the level of the superpopulation may imply
random mating within subpopulations consisting of full sib families (see
Section 3.1).

Seen from the level of the superpopulation, inbreeding occurs if related plants
mate preferentially. This may imply the presence of subpopulations, repro-
ducing by means of random mating. If very large, the superpopulation will
retain all alleles. The increasing homozygosity rests on gene fixation in the
subpopulations. If, however, only a single full sib family produces offspring
by means of open pollination, implying crossing of related plants, then the
population as a whole (in this case just a single full sib family) is still said to
be maintained by random mating.

Absence of random variation of allele frequencies
The second characteristic of panmixis is absence of random variation of allele
frequencies from one generation to the next. This requires an infinite effective
size of the population, originating from an infinitely large sample of gametes
produced by the present generation. Panmixis thus implies a deterministic
model. In populations consisting of a limited number of plants, the allele
frequencies vary randomly from one generation to the next. Models describing
such populations are stochastic models (Chapter 7).

2.2 Diploid Chromosome Behaviour and Panmixis

2.2.1 One Locus with Two Alleles

The majority of situations considered in this book involve a locus represented
by not more than two alleles. This is certainly the case in diploid species in
the following populations:

• Populations tracing back to a cross between two pure lines, say, a single
cross

• Populations obtained by (repeated) backcrossing (if, indeed, both the donor
and the recipient have a homozygous genotype)

It is possibly the case in populations tracing back to a three-way cross or
a double cross. It is improbable in other populations, like populations of
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cross-fertilizing crops, populations tracing back to a complex cross, landraces,
multiline varieties.

To keep (polygenic) models simple, it will often be assumed that each of the
considered loci is represented by only two alleles. Quite often this simplification
will violate reality. The situation of multiple allelic loci is explicitly considered
in Sections 2.2.2 and 8.3.3.

If the expression for the trait of interest is controlled by a locus with two
alleles A and a (say locus A-a) then the probability distribution of the geno-
types occurring in the considered population is often described by

Genotype
aa Aa AA

Probability f0 f1 f2

One may represent the probability distribution (in this book mostly the term
genotypic composition will be used) by the row vector (f0, f1, f2). The
symbol fj represents the probability that a random plant contains j A-alleles
in its genotype for locus A-a, where j may be equal to 0, 1 or 2. It has become
custom to use the word genotype frequency to indicate the probability of
a certain genotype and for that reason the symbol f is used.

The plants of the described population produce gametes which have either
haplotype a or haplotype A. (Throughout this book the term haplotype is
used to indicate the genotype of a gamete.) The probability distribution of
the haplotypes of the gametes produced by the population is described by

Haplotype
a A

Probability g0 g1

The symbol gj represents the probability that a random gamete contains j A-
alleles in its haplotype for locus A-a, where j may be equal to 0 or 1. The row
vector (g0, g1) describes, in a condensed way, the haplotypic composition
of the gametes. The habit to use the symbol q instead g0 and the symbol p
instead of g1 is followed in this book whenever a single locus is considered.
The term allele frequency will be used to indicate the probability of the
considered allele.

So far it has been assumed that the allele frequencies are known and here-
after the theory is further developed without considering the question of how
one arrives at such knowledge. In fact allele frequencies are often unknown.
When one would like to estimate them one might do that in the following
way. Assume that a random sample of N plants is comprised of the following
numbers of plants of the various genotypes:

Genotype
aa Aa AA

Number of plants n0 n1 n2
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For any value for N the frequencies q and p of alleles a and A may then be
estimated as

q =
2n0 + n1

2N
and p =

n1 + 2n2

2N
Throughout the book the expressions ‘the probability that a random plant
has genotype Aa’, or ‘the probability of genotype Aa’, or ‘the frequency of
genotype Aa’ are used as equivalents. This applies likewise for the expressions
‘the probability that a gamete has haplotype A’, or ‘the probability of A’.

Fusion of a random female gamete with a random male gamete yields a
genotype specified by j, the number of A alleles in the genotype. (The number
of a alleles in the genotype amounts – of course – to 2 − j.) The probability
that a plant with genotype aa results from the fusion is in fact equal to the
probability of the event that j assumes the value 0. The quantity j assumes
thus a certain value (0 or 1 or 2) with a certain probability. This means that
j is a random variable.

The probability distribution for j, i.e. for the genotype frequencies, is given
by the binomial probability distribution:

P (j = j) =
(

2
j

)
pjq2−j

Fusion of two random gametes therefore yields

• With probability q2 a plant with genotype aa
• With probability 2pq a plant with genotype Aa
• With probability p2 a plant with genotype AA

The probabilities for the multinomial probability distribution of plants with
these genotypes may be represented in a condensed form by the row vec-
tor (q2, 2pq, p2). This notation represents also the genotypic composition to
be expected for the population obtained after panmixis in a population with
gene frequencies (q, p). In the case of panmixis there is a direct relationship
between the gene frequencies in a certain generation and the genotypic com-
position of the next generation (see Fig. 2.1). Thus if the genotype frequencies
f0, f1 and f2 of a certain population are equal to, respectively, q2, 2pq and p2,
the considered population has the so-called Hardy–Weinberg (genotypic)
composition. The actual genotypic composition is then equal to the compo-
sition expected after panmixis. With continued panmixis, populations of later
generations will continue to have the Hardy–Weinberg composition. Therefore
such composition may be indicated as the Hardy–Weinberg equilibrium.
The names of Hardy (1908) and Weinberg (1908) are associated with this
genotypic composition, but it was in fact derived by Castle in 1903 (Keeler,
1968).

With two alleles per locus the maximum frequency of plants with the Aa
genotype in a population originating from panmixis is 1

2 for p = q = 1
2

(Fig. 2.1). This occurs in F2 populations of self-fertilizing crops. The F2 origi-
nates from selfing of individual plants of the F1, but because each plant of the
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Fig. 2.1 The frequency of plants with genotype aa, Aa or AA in the population obtained

by panmixis in a population with gene frequency PA

F1 has the same genotype, panmixis within each plant coincides with panmixis
of the F1 as a whole. (The F1 itself may be due to bulk crossing of two pure
lines; the proportion of heterozygous plants amounts then to 1.)

The Hardy–Weinberg genotypic composition constitutes the basis for the
development of population genetic theory for cross-fertilizing crops. It is
obtained by an infinitely large number of pairwise fusions of random eggs
with random pollen, as well as by an infinitely large number of crosses involv-
ing pairs of random plants. One may also say that it is expected to occur both
after pairwise fusions of random eggs and pollen, and when crossing plants at
random.

In a number of situations two populations are crossed as bulks. One may
call this bulk crossing. One population contributes the female gametes (con-
taining the eggs) and the other population the male gametes (the pollen,
containing generative nuclei in the pollen tubes). In such a case, crosses within
each of the involved populations do not occur. A possibly unexpected case of
bulk crossing is described in Note 2.1.

Note 2.1 Selection among plants after pollen distribution, e.g. selection with
regard to the colour of the fruits (if fruit colour is maternally determined),
implies a special form of bulk crossing: the rejected plants are then excluded
as effective producers of eggs (these plants will not be harvested), whereas
all plants (could) have been effective as producers of pollen. The results, to
be derived hereafter, in the main text, for a bulk cross of two populations
with different allele frequencies, are applied in Section 6.3.5.

A bulk cross is of particular interest if the haplotypic composition of the eggs
differs from the haplotypic composition of the pollen. Thus if population I,
with allele frequencies (q1, p1), contributes the eggs and population II, with
allele frequencies (q2, p2), the pollen, then the expected genotypic composition
of the obtained hybrid population, in row vector notation, is

(q1q2, p1q2 + p2q1, p1p2) (2.1)
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This hybrid population does not result from panmixis. The frequency of allele
A is

p = 1
2 (p1q2 + p2q1) + p1p2 = 1

2p1q2 + 1
2p1p2 + 1

2p2q1 + 1
2p1p2

= 1
2p1(q2 + p2) + 1

2p2(q1 + p1) = 1
2 (p1 + p2) (2.2)

as
q2 + p2 = q1 + p1 = 1

N.B. Further equations based on p + q = 1 are elaborated in Note 2.2.

Note 2.2 When deriving Equation (2.2) the equation p + q = 1 was used. On
the basis of the latter equation several other equations, applied throughout
this book, can be derived:

q2 + 2pq + p2 = 1 (2.3)
p − q = 2p − 1 = 1 − 2q (2.4)

(p − q)2 = (p2 − 2pq + q2) = 1 − 4pq (2.5)

p2 − q2 = (p + q)(p − q) = p − q = f2 − f0 (2.6)

p − q + 2pq = p2 − q2 + 2pq = p2 + 2pq − q2 = 1 − 2q2 (2.7)

and

p4 + p3q + pq3 + q4 − (p − q)2 = p3 + q3 − p2 + 2pq − q2

= p2(p − 1) + q2(q − 1) + 2pq

= −p2q − pq2 + 2pq

= −pq(p + q − 2) = 2pq (2.8)

Panmictic reproduction of this hybrid population produces offspring with
the Hardy–Weinberg genotypic composition. The hybrid population contains,
compared to the offspring population, an excess of heterozygous plants. The
excess is calculated as the difference in the frequencies of heterozygous plants:

(p1q2 + p2q1) − 2pq = (p1q2 + p2q1) − 2[12 (p1 + p2) 1
2 (q1 + q2)

= 1
2 (p1q2 + p2q1 − p1q1 − p2q2)

= 1
2 (p1 − p2)(q2 − q1) = 1

2 (p1 − p2)2 (2.9)

This square is positive, unless p1 = p2. Thus the hybrid does indeed contain an
excess of heterozygous plants. Example 2.3 illustrates that the superiority of
hybrid varieties might (partly) be due to this excess. This is further elaborated
in Section 9.4.1. Example 2.4 pays attention to the case of both inter- and
intra-mating of two populations.



2.2 Diploid Chromosome Behaviour and Panmixis 15

Example 2.3 It is attractive to maximize the frequency of hybrid plants
whenever they have a superior genotypic value. This is applied when pro-
ducing single-cross hybrid varieties by means of a bulk cross between two
well-combining pure lines. If p1 = 1 (thus q1 = 0) in one parental line and
p2 = 0 (thus q2 = 1) in the other, the excess of the frequency of heterozygous
plants will be at its maximum, because 1

2 (p1−p2)2 attains then its maximum
value, i.e. 1

2 . The genotypic composition of the single-cross hybrid is (0, 1,
0). Equation (2.2) implies that panmictic reproduction of this hybrid yields a
population with the Hardy-Weinberg genotypic composition (1

4 , 1
2 , 1

4 ). The
excess of heterozygous plants in the hybrid population is thus indeed 1

2 .
(Panmictic reproduction of a hybrid population tends to yield a population
with a reduced expected genotypic value; see Section 9.4.1).

The excess of heterozygous plants is low when one applies bulk crossing
of similar populations. At p1 = 0.6 and p2 = 0.7, for example, the hybrid
population has the genotypic composition (0.12; 0.46; 0.42), with p = 0.65.
The corresponding Hardy–Weinberg genotypic composition is then (0.1225;
0.4550; 0.4225) and the excess of heterozygous plants is only 0.005.

As early as 1908 open-pollinating maize populations were crossed in the
USA with the aim of producing superior hybrid populations. This had
already been suggested in 1880 by Beal. Shull (1909) was the first to suggest
the production of single-cross hybrid varieties by crossing pure lines.

Example 2.4 Two populations of a cross-fertilizing crop, e.g. perennial
rye grass, are mixed. The mixture consists of a portion, P , of population I
material and a portion, 1−P , of population II material. In the mixture both
mating between and within the populations occur. When assuming

• simultaneous flowering,
• simultaneous ripening,
• equal fertility of the plants of both populations and
• random mating

the proportion of hybrid seed is 2P (1 − P ); see Foster (1971). For P = 1
2

this proportion is maximal, i.e. 1
2 .

2.2.2 One Locus with more than Two Alleles

Multiple allelism does not occur in the populations considered so far. How-
ever, multiple allelism is known to occur in self- and cross-fertilizing crops (see
Example 2.5). It may further be expected in three-way-cross hybrids, and their
offspring, as well as in mixtures of pure lines (landraces or multiline varieties).
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Example 2.5 The intensity of the anthocyanin colouration in lettuce
(Lactuca sativa), a self-fertilizing crop, is controlled by at least three alleles.

The colour and location of the white leaf spots of white clover (Trifolium
repens), a cross-fertilizing crop, are controlled by a multiple allelic locus. The
expression for these traits appears to be controlled by a locus with at least
11 alleles. Another locus, with at least four alleles, controls the red leaf spots
(Julén, 1959). (White clover is an autotetraploid crop with a gametophytic
incompatibility system and a diploid chromosome behaviour; 2n = 4x = 32).

The frequencies (f) of the genotypes AiAj (with i ≤ j; j = 1, . . . , n) for the
multiple allelic locus A1-A2- . . . -An attain their equilibrium values following
a single round of panmictic reproduction. The genotypic composition is then:

Genotype
A1A1. . . AiAj . . . AnAn

f p1
2 2pipj pn

2

The proportion of homozygous plants is minimal for pj = 1
n (for j = 1, . . . , n)

and amounts then to n
(

1
n

)2 = 1
n ; see Falconer (1989, pp. 388–389).

2.2.3 Two Loci, Each with Two Alleles

In Section 2.2.1 it was shown that a single round of panmictic reproduction
produces immediately the Hardy–Weinberg genotypic composition with regard
to a single locus. It is immediately attained because the random fusion of pairs
of gametes implies random fusion of separate alleles, whose frequencies are con-
stant from one generation to the next. For complex genotypes, i.e. genotypes
with regard to two or more loci (linked or not), however, the so-called link-
age equilibrium is only attained after continued panmixis. Presence of the
Hardy–Weinberg genotypic composition for separate loci does not imply pres-
ence of linkage equilibrium! (Example 2.7 illustrates an important exception
to this rule.)

In panmictic reproduction the frequencies of complex genotypes follow from
the frequencies of the complex haplotypes. Linkage equilibrium is thus attained
if the haplotype frequencies are constant from one generation to the next. For
this reason ‘linkage equilibrium’ is also indicated as gametic phase equilib-
rium. In this section it is derived how the haplotypic frequencies approach
their equilibrium values in the case of continued panmixis. This implies that
the tighter the linkage the more generations are required. However, even for
unlinked loci a number of rounds of panmictic reproduction are required to
attain linkage equilibrium. The genotypic composition in the equilibrium does
not depend at all on the strength of the linkage of the loci involved. The
designation ‘linkage equilibrium’ is thus not very appropriate.
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To derive how the haplotype frequencies approach their equilibrium, the
notation introduced in Section 2.2.1 must be extended. We consider loci A-a
and B-b, with frequencies p and q for alleles A and a and frequencies r and
s for alleles B and b. The recombination value is represented by rc. This
parameter represents the probability that a gamete has a recombinant hap-
lotype (see Section 2.2.4). Independent segregation of the two loci occurs at
rc = 1

2 , absolute linkage at rc = 0. Example 2.6 illustrates the estimation of rc

in the case of a testcross with a line with a homozygous recessive (complex)
genotype.

The haplotype frequencies are determined at the meiosis. The haplotypic
composition of the gametes produced by generation Gt−1 is described by

Haplotype
ab aB Ab AB

f g00,t g01,t g10,t g11,t

The last subscript (t) in the symbol for the haplotype frequencies indicates
the rank of the generation to be formed in a series of generations generated
by panmictic reproduction (t = 1, 2, . . .); see Note 2.3.

Example 2.6 The spinach variety Wintra is susceptible to the fungus Per-
onospora spinaciae race 2 and tolerant to Cucumber virus 1. It was crossed
with spinach variety Nores, which is resistant to P. spinaciae race 2 but
sensitive to Cucumber virus 1. The loci controlling the host-pathogen rela-
tions are A − a and B − b. The genotype of Wintra is aaBB and the geno-
type of Nores AAbb. The offspring, with genotype AaBb, were crossed with
the spinach variety Eerste Oogst (genotype aabb), which is susceptible to
P. spinaciae race 2 and sensitive to Cucumber virus 1. On the basis of the
reaction to both pathogens a genotype was assigned to each of the 499 plants
resulting from this testcross (Eenink, 1974):

Genotype
aabb aaBb Aabb AaBb Total

Frequency
• Observed 61 190 194 54 499
• Expected 124.75 124.75 124.75 124.75 499

The expected frequencies are calculated on the basis of the null hypothesis
stating that the two involved loci are unlinked. The expected 1

2 :12 segregation
ratio was confirmed by a goodness of fit test for each separate locus. The
specified null hypothesis is, of course, rejected. The two loci are clearly linked.
The value estimated for rc is

61 + 54
499

= 0.23
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Note 2.3 In this book the last subscript in the symbols for the genotype
and haplotype frequencies indicate the generation number. If it is t it refers
to population Gt, i.e. the population obtained by panmictic reproduction of
t successive generations.

Population G1, resulting from panmictic reproduction in a single-cross
hybrid, has the same genotypic composition as the F2 population resulting
from selfing plants of the single-cross hybrid. To standardize the numbering
of generations of cross-fertilizing crops and those of self-fertilizing crops, the
population resulting from the first reproduction by means of selfing might be
indicated by S1 (rather than by the more common indication F2). To avoid
confusion this will only be done when appropriate, e.g. in Section 3.2.1.

The last subscript in the symbols for the haplotype frequencies of the
gametes giving rise to S1 are taken to be 1. The same applies to the fre-
quencies of the genotypes in S1. This system for labelling generations of
gametophytes and sporophytes was also adopted by Stam (1977).

Population G0 is thus some initial population, obtained after a bulk cross
or simply by mixing. It produces gametes with the haplotypic composition
(g00,1; g01,1; g10,1; g11,1).

In the absence of selection, allele frequencies do not change. This implies

g10,1 + g11,1 = g10,2 + g11,2 = . . . = p

for allele A, and similar equations for the frequencies of alleles a,B and b.
It was already noted that the haplotype frequencies in successive generations

will be considered. In the appendix of this section it is shown that the following
recurrent relations apply:

g00,t+1 = g00,t − rcdt (2.10a)

g01,t+1 = g01,t + rcdt (2.10b)

g10,t+1 = g10,t + rcdt (2.10c)

g11,t+1 = g11,t − rcdt (2.10d)

where the definition of dt follows from

2dt := f11C,t − f11R,t (2.11)

where ‘:=’ means: ‘is defined as’, and t = 1, 2, 3, . . .
N.B. In Note 3.6 it is shown that Equations (2.10a–d) also apply to self-
fertilizing crops. The recurrent equations show that the haplotype frequencies
do not change from one generation to the next if rc = 0 or if dt = 0. Such
constancy of the haplotypic composition implies constancy of the genotypic
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composition. It implies presence of linkage equilibrium. Linkage equilibrium is
thus immediately established by a single round of panmictic reproduction for
loci with rc = 0. This situation coincides with the case of a single locus with
four alleles.

The symbol f11C indicates the frequency of AB/ab-plants, i.e. doubly het-
erozygous plants in coupling phase (C-phase); the symbol f11R represents
the frequency of Ab/aB-plants, i.e. doubly heterozygous plants in repulsion
phase (R-phase).

In the case of panmixis the following equations apply:

f11C,t = 2(g11,t g00,t)

f11R,t = 2(g10,t g01,t)

In that case we get
dt = (g11,t g00,t) − (g10,t g01,t) (2.12)

This parameter is called coefficient of linkage disequilibrium. It appears
in the following derivation:

g11,t = g11,t(g10,t + g01,t + g11,t + g00,t) = (g10,t g01,t + g10,t g11,t

+ g11,t g01,t + g2
11,t) + (g11,t g00,t − g10,t g01,t)

= (g10,t + g11,t)(g01,t + g11,t) + dt = pr + dt

Equation (2.10d) may thus be rewritten as

pr + dt+1 = (pr + dt) − rcdt

which implies not only
dt+1 = (1 − rc)dt

but of course also
dt = (1 − rc)t−1d1 (2.13)

for t = 2, 3, . . .
The derivation above (and similar derivations for the other haplotype fre-

quencies) implies

dt = g11,t − pr = −(g10,t − ps) = −(g01,t − qr) = g00,t − qs

Because 1
2 ≤ (1− rc) ≤ 1, continued panmixis implies continued decrease of

dt. The decrease is faster for smaller values of 1−rc, i.e. for higher values of rc.
Independent segregation, i.e. rc = 1

2 , yields the fastest reduction, viz. halving
of dt by each panmictic reproduction. The value of dt eventually attained,
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i.e. dt = 0, implies that linkage equilibrium is attained, i.e. constancy of the
haplotype frequencies. The haplotype frequencies have then a special value,
viz.

g00 = qs

g01 = qr

g10 = ps

g11 = pr

The equilibrium frequencies of the haplotypes are equal to the products of
the frequencies of the alleles involved, and the equilibrium frequencies of the
complex genotypes are equal to the products of the Hardy–Weinberg frequen-
cies of the single-locus genotypes for the loci involved. The strength of the
linkage between the loci is irrelevant with regard to the genotypic composi-
tion in the equilibrium. It only affects the number of generations of panmictic
reproduction required to ‘attain’ the equilibrium.

Table 2.1 presents the equilibrium frequencies of complex genotypes and
phenotypes for the simultaneously considered loci A-a and B-b.

Table 2.1 Equilibrium frequencies of (a) complex genotypes and (b) phe-

notypes in the case of complete dominance. The equilibrium is attained after

continued panmictic reproduction

(a) Genotypes

bb Bb BB

aa q2s2 2q2rs q2r2 q2

Aa 2pqs2 4pqrs 2pqr2 2pq

AA p2s2 2p2rs p2r2 p2

s2 2rs r2 1

(b) Phenotypes

bb B.

aa q2s2 q2(1 − s2) q2

A. (1 − q2)s2 (1 − q2)(1 − s2) (1 − q2)

s2 1 − s2

The foregoing is illustrated in Example 2.7, which deals with the production
of a single-cross hybrid variety and the population resulting from its offspring
as obtained by panmictic reproduction. Example 2.8 illustrates the production
of a synthetic variety and a few of its offspring generations as obtained by
continued random mating.
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Example 2.7 Cross AB
AB × ab

ab yields a doubly heterozygous genotype in the
coupling phase, i.e. AB

ab , whereas cross Ab
Ab ×

aB
aB yields a doubly heterozygous

genotype in the repulsion phase, i.e. Ab
aB . In both cases the single-cross hybrid

variety, say population G0, is heterozygous for the loci A-a and B-b. It
produces gametes with the following haplotypic composition:

Haplotype
ab aB Ab AB d1

f in general g00,1 g01,1 g10,1 g11,1

for G0 in C-phase: 1
2
− 1

2
rc

1
2
rc

1
2
rc

1
2
− 1

2
rc

1
4
(1 − 2rc)

for G0 in R-phase: 1
2
rc

1
2
− 1

2
rc

1
2
− 1

2
rc

1
2
rc − 1

4
(1− 2rc)

The quantity d1 is calculated according to Equation (2.12). This yields for
G0 in C-phase

d1 = 1
4 (1 − rc)2 − 1

4r2
c = 1

4 (1 − 2rc)

The value for d1 is in the interval (0, 1
4 ) or in the interval (− 1

4 , 0). In G1 the
absolute value of d1 is at a maximum. Continued panmictic reproduction
gives, in G∞, the linkage equilibrium pertaining to p = q = r = s = 1

2 .
Table 2.2 presents the genotypic composition of population G1 resulting from
a single panmictic reproduction of either G0 in C-phase or in R-phase, as
well as the genotypic composition of population G∞ resulting from continued
panmixis.

Starting with a single-cross hybrid, the quantity d1 is equal to zero for
loci with rc = 1

2 . Then a single generation of panmictic reproduction pro-
duces a population in linkage equilibrium. This remarkable result applies
even in the case of selfing of the hybrid variety. (In Section 2.2.1 it has already
been indicated that the result of selfing of F1 plants coincides with the result
of panmixis among F1 plants). Thus for unlinked loci panmictic reproduction
(or selfing) of a single-cross hybrid immediately yields a population in link-
age equilibrium. Continued panmictic reproduction does not yield further
shifts in haplotype and genotype frequencies. This means that it is useless
to apply random mating in the F2 of a self-fertilizing crop with the goal of
increasing the frequency of plants with a recombinant genotype.

On the basis of the frequencies of the phenotypes for two traits (each with
two levels of expression) showing qualitative variation, one can easily deter-
mine whether or not a certain population is in linkage equilibrium. It is,
however, impossible to conclude whether or not the loci involved are linked.
Only test crosses between individual plants with the phenotype A · B· and
plants with genotype aabb will give evidence about this.
N.B. By ‘phenotype A · B·’ is meant the phenotype due to genotype AABB,
AaBB, AABb or AaBb.
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Table 2.2 The genotypic composition of G1, both for G0 in coupling phase and in repulsion

phase, and of G∞

Genotypic composition

Genotype G1 for G0 in C-phase G1 for G0 in R-phase G∞
aabb 1

4
(1 − rc)2

1
4
r2
c

1
16

aaBb 1
2
rc(1 − rc)

1
2
rc(1 − rc)

2
16

aaBB 1
4
r2
c

1
4
(1 − rc)2

1
16

Aabb 1
2
rc(1 − rc)

1
2
rc(1 − rc)

2
16

AB/ab 1
2
(1 − rc)2

1
2
r2
c

2
16

Ab/aB 1
2
r2
c

1
2
(1 − rc)2

2
16

AaBB 1
2
rc(1 − rc)

1
2
rc(1 − rc)

2
16

AAbb 1
4
r2
c

1
4
(1 − rc)2

1
16

AABb 1
2
rc(1 − rc)

1
2
rc(1 − rc)

2
16

AABB 1
4
(1 − rc)2

1
4
r2
c

1
16

Example 2.8 A synthetic variety is planned to be produced by intermating
five clones of a self-incompatible grass species. Because crosses within each
of the five components are excluded, the synthetic variety is produced by
outbreeding. It is, therefore, due to a complex bulk cross. The obtained plant
material is designated as Syn1 (or G0 in the present context). The five clones
have the following genotypes for the two unlinked loci B1-b1 and B2-b2: clone
1: b1b1b2b2; clones 2 and 3: B1B1b2b2, and clones 4 and 5: B1B1B2B2.
The genotypic composition of Syn1 can be derived from the following scheme:

♂♀ b1b1b2b2 B1B1b2b2 B1B1b2b2 B1B1B2B2 B1B1B2B2

b1b1b2b2 - B1b1b2b2 B1b1b2b2 B1b1B2b2 B1b1B2b2

B1B1b2b2 B1b1b2b2 - B1B1b2b2 B1B1B2b2 B1B1B2b2

B1B1b2b2 B1b1b2b2 B1B1b2b2 - B1B1B2b2 B1B1B2b2

B1B1B2B2 B1b1B2b2 B1B1B2b2 B1B1B2b2 - B1B1B2B2

B1B1B2B2 B1b1B2b2 B1B1B2b2 B1B1B2b2 B1B1B2B2 -

Table 2.3 presents the genotype frequencies in a few relevant generations.
When deriving these it was assumed that incompatibility can be neglected
when considering continued panmictic reproduction starting in G0. The por-
tion of homozygous plants in G0,G1,G2 and G∞ amounts to 0.2; 0.35; 0.3508
and 0.3536, respectively. The excess of heterozygous plants in comparison to
the linkage equilibrium amounts therefore to 0.1536; 0.0036 and 0.0028 in
G0,G1 and G2, respectively. (This concerns plants which are heterozygous
for one or two loci. For each single locus the Hardy–Weinberg genotypic
composition occurs in G1 and all later generations).
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Table 2.3 The genotypic composition of plant material obtained when creating

and maintaining an imaginary synthetic variety (see Example 2.8). P indicates the

parental clones, G0 indicates population Syn1, G1 indicates Syn2, G2 indicates

Syn3 and G∞ indicates Syn∞
Frequency

Genotype P G0 G1 G2 G∞
b1b1b2b2 0.2 0.0225 0.0182 0.0144

b1b1B2b2 0.0150 0.0176 0.0192

b1b1B2B2 0.0025 0.0042 0.0064

B1b1b2b2 0.2 0.1350 0.1256 0.1152

B1B2/b1b2 0.2 0.1050 0.0904 0.0768

B1b2/b1B2 0.0450 0.0605 0.0768

B1b1B2B2 0.0350 0.0436 0.0512

B1B1b2b2 0.4 0.1 0.2025 0.2162 0.2304

B1B1B2b2 0.4 0.3150 0.3116 0.3072

B1B1B2B2 0.4 0.1 0.1225 0.1122 0.1024

APPENDIX: The haplotype frequencies in generation t

In this appendix, first is derived an equation relating the frequency of gametes
with haplotype ab in generation t + 1 to its frequency in generation t, i.e.
Equation (2.10a). Thereafter an equation describing the haplotype frequencies
in generations due to continued panmictic reproduction, starting with a single-
cross hybrid, is derived.

The frequency of gametes with haplotype ab
The relevant genotypes, their frequencies (in general, as well as after panmixis)
and the haplotypic composition of the gametes they produce are:

Genotype frequency Haplotype frequency
Genotype in general after panmixis ab aB Ab AB
aabb f00 g00

2 1 0 0 0
Aabb f10 2g00g10

1
2 0 1

2 0
AAbb f20 g10

2 0 0 1 0
aaBb f01 2g00g01

1
2

1
2 0 0

AB
ab f11C 2g00g11

1
2

1
2rc

1
2rc

1
2

− 1
2rc − 1

2rc
Ab
aB f11R 2g10g01

1
2rc

1
2

1
2

1
2rc

− 1
2rc − 1

2rc

AABb f21 2g01g11 0 0 1
2

1
2

aaBB f02 g01
2 0 1 0 0

AaBB f12 2g01g11 0 1
2 0 1

2
AABB f22 g11

2 0 0 0 1
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The frequency of gametes with haplotype ab, produced by generation Gt, are
equal to

g00,t+1 = f00,t + 1
2f10,t + 1

2f01,t + 1
2 (1 − rc)f11C,t + 1

2rcf11R,t

= f00,t + 1
2f10,t + 1

2f01,t + 1
2f11C,t − rcdt

One may derive likewise

g01,t+1 = f02,t + 1
2f01,t + 1

2f12,t + 1
2f11R,t + rcdt

g10,t+1 = f20,t + 1
2f10,t + 1

2f21,t + 1
2f11R,t + rcdt

g11,t+1 = f22,t + 1
2f21,t + 1

2f12,t + 1
2f11C,t − rcdt

Panmictic reproduction of generation Gt yields generation Gt+1. The geno-
typic composition of Gt+1 is described by the frequencies given by the third
column of the previous table. Inclusion of these genotype frequencies in the
above equation for g00,t+1 gives

g00,t+1 = g2
00,t + g00,t g10,t + g00,t g01,t + g00,t g11,t − rcdt

= g00,t(g00,t + g10,t + g01,t + g11,t) − rcdt = g00,t − rcdt

where, according to Equation (2.12)

dt = (g11,t g00,t − g10,t g01,t)

Similarly one can derive

g01,t+1 = g01,t + rcdt

g10,t+1 = g10,t + rcdt

g11,t+1 = g11,t − rcdt

The haplotype frequencies in generations due to continued panmictic reproduc-
tion, starting with a single-cross hybrid
In the case of panmictic reproduction starting from a single-cross hybrid there
will be a symmetry in the haplotype frequencies such that

g00,t = g11,t

and
g01,t = g10,t = 1

2 − g11,t

Derivation of g11,t suffices then to obtain the frequencies of all haplotypes with
regard to two segregating loci. An equation presenting g11,t immediately for
any value for t will now be derived.

If the genotype of the single-cross hybrid is AB
ab , i.e. coupling phase, the

genotypic composition of the initial population G0 is simply described by
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f11C,0 = 1, if it is Ab
aB the genotypic composition of G0 is described by f11R,0 =

1. Equation (2.11) yields then
d0 = 1

2

in the former case, and
d0 = −1

2

in the latter case. The frequency of gametes with the AB haplotype among
the gametes produced by the single-cross amounts to

g11,1 = 1
2 (1 − rc)

and
g11,1 = 1

2rc

respectively (see Example 2.7). In Example 2.7 it was also derived that

d1 = 1
4 (1 − 2rc)

for G0 in C-phase and that

d1 = −1
4 (1 − 2rc)

for G0 in R-phase.
The frequencies of AB haplotypes in the case of continued panmixis follow

from Equation (2.10d) combined with Equation (2.13):

g11,t+2 = g11,t+1 − rcdt+1 = g11,t+1 − rc(1 − rc)td1

= g11,t − rc(1 − rc)t−1d1 − rc(1 − rc)td1

= g11,1 − rcd1[(1 − rc)0 + . . . + (1 − rc)t]

The terms within the brackets form a convergent geometric series. The sum
of such terms is given by the expression

a
1 − qn

1 − q

where a is the first term, q is the multiplying factor and n is the number of
terms. In the present situation this sum amounts to

1 − (1 − rc)t+1

rc

Thus
g11,t+2 = g11,1 − d1[1 − (1 − rc)t+1] (2.14)

For rc = 1
2 we got d1 = 0. Then

g11,t+2 = g11,1 = 1
4
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This implies that linkage equilibrium is present after one generation with
panmictic reproduction!

For G0 in C-phase, Equation (2.14) can be rewritten as

g11,t+2 = 1
2 (1 − rc) − 1

4 (1 − 2rc)[1 − (1 − rc)t+1] (2.14C)

Thus
g11,2 = 1

2 (1 − rc) − 1
4rc(1 − 2rc) = 1

2r2
c − 3

4rc + 1
2

For G0 in R-phase, Equation (2.14) can be transformed into

g11,t+2 = 1
2rc + 1

4 (1 − 2rc)[1 − (1 − rc)t+1] (2.14R)

This implies

g11,2 = 1
2rc + 1

4rc(1 − 2rc) = − 1
2r2

c + 3
4rc

g11,3 = 1
2rc + 1

4 (1 − 2rc)[1 − (1 − rc)2] = 1
2r3

c − 1 1
4r2

c + rc

These equations are of relevance with regard to the question of whether it
is advantageous, when it is aimed to promote the frequency of plants with a
genotype due to recombination, to apply random mating in an F2 population
of a self-fertilizing crop (see Section 3.2.2).

2.2.4 More than Two Loci, Each with Two or more Alleles

Attention is given to linkage involving three loci. A few aspects which play an
important role with regard to linkage maps, for example of molecular markers,
are considered along with the frequencies of complex genotypes after continued
panmixis.

Linkage involving three loci
Three loci A-a, B-b and C-c are considered. These loci occur in this order
along a chromosome. The segments AB,BC and AC are distinguished. Effec-
tive recombination of alleles belonging to loci A-a and B-b requires that the
number of crossover events in segment AB is an odd number. The probability
of recombination is called recombination value, designated by the symbol
rc, or by the symbol rAB or simply by r (depending on the context).

With an even number of times of crossing-over in segment AB there is no
(effective) recombination. The probability of this event is 1 − rAB .

There is (effective) recombination of alleles belonging to loci A-a and C-c if
there is either (effective) crossing-over in segment AB, but not in segment BC;
or if there is (effective) crossing-over in segment BC, but not in segment AB.
If the occurrence of recombination in one chromosome segment has no effect
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on the recombination value for the adjacent segment the following relation
applies:

rAC = rAB(1 − rBC) + rBC(1 − rAB) = rAB + rBC − 2rABrBC

This situation is likely for loci that are not too closely linked. The situation
where recombination in one segment depresses the probability of recombina-
tion in an adjacent segment is called chiasma interference. A more general
expression for rAC is thus:

rAC = rAB + rBC − 2(1 − δ)rABrBC ,

where δ is the interference parameter, ranging from 0 (no interference) through
1 (complete interference). It shows that rAC is higher at higher values for δ.

Recombination values are additive if

2(1 − δ)rABrBC = 0

i.e. if δ = 1 and/or rABrBC = 0. In other cases they are not additive. These
conditions imply that recombination values are mostly not additive. They are,
consequently, inappropriate to measure distances between loci.

The hypothesis of independence of crossing-over in segments AB and BC,
i.e. the hypothesis of absence of chiasma interference, can be tested by means
of a goodness-of-fit test. Among N plants, the expected number of plants with
a genotype which is due to double crossing-over amounts, according to this
hypothesis, to rABrBCN . It is compared to the observed number. The ratio

observed number

expected number

is called coefficient of coincidence. When there is independency it is equal
to 1. Its complement, i.e.

1 − observed number

expected number

estimates δ. Its value is positive if the observed number of plants with the
recombinant genotype is smaller than the number expected at independency:
the presence of a chiasma in the one segment hinders the formation of a
chiasma in the other segment.

The actual distance between loci, say the map distance m, measures the
total number of cross-over events (both odd and even numbers) between the
loci. This distance is an additive measure. It can only approximately be deter-
mined from recombination values. Haldane (1919) developed an approxima-
tion for the situation in the absence of interference (δ = 0). His mapping
function is

m = − ln(1 − 2rc)
2

,
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where m represents the expected number of cross-over events in the considered
segment (Kearsey and Pooni, 1996; pp. 127–130). As the map distance is
mostly expressed in centiMorgans (cM), this function is often written as

m = −50 ln(1 − 2rc)

An approximation which takes interference into account is called Kosambi’s
mapping function (Kosambi, 1944).

Frequencies of complex genotypes after continued panmixis
It can be shown (Bennett, 1954) that continued panmixis eventually leads to
an equilibrium of the frequencies of complex genotypes for three or more loci,
each with two or more alleles. The equilibrium is characterized by haplotype
frequencies equal to the products of the frequencies of the alleles involved.
Linkage equilibrium for one or more pairs of loci does not imply equilibrium
of the frequencies of complex genotypes for three or more loci. Equilibrium of
the frequencies for complex genotypes implies, however, linkage equilibrium
for all pairs of loci.

2.3 Autotetraploid Chromosome Behaviour and Panmixis

The implications of panmixis in an autotetraploid crop will only be considered
for a single locus with two alleles. This is to keep the mathematical derivations
simple. It will be shown that the equilibrium frequencies of the genotypes
are not obtained after a single panmictic reproduction. At equilibrium the
frequencies of the genotypes and the haplotypes are equal to the products of
the frequencies of the alleles involved.

Among cross-fertilizing autotetraploid crops the more important represen-
tatives are alfalfa (Medicago sativa L.; 2n = 4x = 32) and cocksfoot (Dactylis
glomerata L.; 2n = 4x = 28). Additionally, highbush blueberry (Vaccinium
corymbosum L.; 2n = 4x = 48) might be mentioned. Leek (Allium porrum L.;
2n = 4x = 32) is an autotetraploid crop with a tendency to a diploid behaviour
of the chromosomes (Potz, 1987). Among ornamentals several autotetraploid
species occur, e.g. Freesia hybrida, Cyclamen persicum Mill. (2n = 4x = 48)
and Begonia semperflorens. Also, artificial autotetraploid crops have been
made, e.g. rye (Secale cereale L.; 2n = 4x = 28) and perennial rye grass
(Lolium perenne L.; 2n = 4x = 28). In 1977 about 500,000 ha of autotetraploid
rye were grown in the former Soviet Union. Sweet potato, i.e. Ipomoea batatas
var. littoralis (2n = 4x = 60) or I. batatas var. batatas (2n = 6x = 90), may
be considered as a cross-fertilizing crop (due to self-incompatibility), but it is
mainly vegetatively propagated.

Under certain conditions double reduction may occur in autotetraploid
crops, in which case (parts of) sister chromatids end up in the same gamete.
The resulting haplotype is homozygous for the loci involved. The process of
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double reduction causes the frequency of homozygous genotypes and haplo-
types to be somewhat higher than in absence of double reduction. Blakeslee,
Belling and Farnham (1923) discovered the phenomenon in autotetraploid
jimson weed (Datura stramonium L.; 2n = 4x = 48): a triplex plant (with
genotype AAAa) produced some nulliplex offspring after crossing with a nul-
liplex (genotype aaaa). This is only possible if the triplex plant produces aa
gametes. The process of double reduction is an interesting phenomenon, but
in a quantitative sense it is of no importance. For this reason we assume that
double reduction does not occur.

The autotetraploid genotypes to be distinguished for locus A-a are aaaa
(nulliplex), Aaaa (simplex), AAaa (duplex), AAAa (triplex) and AAAA
(quadruplex). In each cell these genotypes contain JA alleles and 4 − Ja
alleles. At meiosis two of these four alleles are sampled to produce a gamete.
The haplotypes that can be produced by an autotetraploid plant containing
JA alleles can be described by j, the number of A alleles that they contain,
where j = 0, 1 or 2. The conditional probability distribution for j, given that
the parental genotype contains JA alleles, is a hypergeometric probability
distribution:

P (j = j|J) =

(
J
j

)(
4 − J
2 − j

)
(

4
2

) =
1
6

(
J
j

)(
4 − J
2 − j

)

The probability that a triplex plant (i.e. J = 3) produces a gamete with
haplotype Aa (i.e. j = 1) is therefore

P (j = 1|J = 3) =
1
6

(
3
1

)(
1
1

)
=

1
2

Table 2.4 presents, for each autotetraploid genotype, the haplotypic composi-
tion, i.e. the probability distribution for the haplotypes produced.

The genotypic composition of a tetraploid population is described like that
of a diploid population. Thus in the case of autotetraploid species the row

Table 2.4 The haplotypic composition of the gametes

produced by each of the five autotetraploid genotypes that

can be distinguished for locus A-a

Haplotype

Genotype aa Aa AA

aaaa 1 0 0

Aaaa 1
2

1
2

0

AAaa 1
6

4
6

1
6

AAAa 0 1
2

1
2

AAAA 0 0 1
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vector (f0, f1, f2, f3, f4) is used. The equilibrium frequencies of the genotypes
are attained as soon as the haplotype frequencies are stable. Therefore the
haplotypic composition of successive generations with panmictic reproduction
will be monitored.

Some initial population G0 produces gametes with haplotypic composition:

Haplotype
aa Aa AA

f g0,1 g1,1 g2,1

The frequency of a is
q = g0,1 + 1

2g1,1

and that of A is
p = 1

2g1,1 + g2,1

Panmictic reproduction of G0 yields population G1 with the following geno-
typic composition:

Genotype
aaaa Aaaa AAaa AAAa AAAA

f g0,1
2 2g0,1g1,1 g1,1

2 + 2g0,1g2,1 2g1,1g2,1 g2,1
2

The haplotypic composition of the gametes produced by G1 is:

Haplotype
aa Aa AA

f g0,2 g1,2 g2,2

According to Table 2.4 the following applies:

g1,2 = 1
2 (2g0,1g1,1) + 2

3 (g1,1
2 + 2g0,1g2,1) + 1

2 (2g1,1g2,1)

= 2
3

(
3
2g0,1g1,1 + 3

2g1,1g2,1 + g1,1
2 + 2g0,1g2,1

)
= 2

3

[
2(g0,1 + 1

2g1,1)(1
2g1,1 + g2,1) + 1

2g1,1(g0,1 + g1,1 + g2,1)
]

= 2
3 (2pq + 1

2g1,1)

Generally
g1,t+1 = 2

3 (2pq + 1
2g1,t) (2.15)
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The frequencies of the genotypes have attained their equilibrium (e) values as
soon as the frequencies of the haplotypes are constant. The latter implies:

g1,e = 2
3 (2pq + 1

2g1,e),

i.e.
g1,e = 2pq

The haplotype frequencies are then

g0,e = q − 1
2g1,e = q − pq = q2

g1,e = 2pq

g2,e = p − 1
2g1,e = p − pq = p2

The genotypic composition in equilibrium is consequently

Genotype
aaaa Aaaa AAaa AAAa AAAA

f q4 4pq3 6p2q2 4p3q p4

This composition is also given by the probability distribution for J , the number
of A alleles in the autotetraploid genotype:

P (J = J) =
(

4
J

)
pJq4−J

The deviation from the equilibrium is measured by the quantity dt, which mea-
sures the excess or deficit of the frequency of gametes with the Aa haplotype
with regard to their equilibrium frequency. Thus dt is defined as follows:

dt := g1,t − g1,e (2.16)

The rate of decrease of dt indicates how fast the equilibrium is approached.
Equations (2.16) and (2.15) yield

dt+1 = g1,t+1 − g1,e = 2
3 (2pq + 1

2g1,t) − 2pq = 1
3 (g1,t − g1,e) = 1

3dt

One round of panmictic reproduction produces a population in which the
deviation amounts only to 1

3 of the deviation in the preceding population.
The equilibrium is approached in an asymptotic way. Example 2.9 gives an
illustration.
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Example 2.9 The approach of the equilibrium is considered for an initial
population G0 with genotypic composition (0.04; 0; 0.72; 0; 0.24). The hap-
lotype frequencies are:

g0,1 = 0.04 + 0.12 = 0.16
g1,1 = 0.48

g2,1 = 0.12 + 0.24 = 0.36

Thus q = 0.4 and p = 0.6. This implies that:

g0,1 = q2 = g0,e

g1,1 = 2pq = g1,e

g2,1 = p2 = g2,e

Generation G1 will therefore have the equilibrium composition: (0.0256;
0.1536; 0.3456; 0.3456; 0.1296).

For a more advanced treatment of the population genetic theory of cross-
fertilizing crops with an autotetraploid behaviour of the chromosomes the
reader is referred to Seyffert (1960). Finally, it is emphasized once again that
in this section it was assumed that the population contains only two different
alleles for the segregating locus. In fact more alleles may occur in such a way
that plants with three or four different alleles per locus are present, viz. plants
with genotype AiAiAjAk or AiAjAkAl, respectively. Quiros (1982) reported
such genotypes for isozyme loci in alfalfa. Some claims have been made that
plants with a heterozygous genotype containing three or four different alleles
for the considered locus, are more vigorous than plants with a heterozygous
genotype containing one or two alleles (Busbice and Wilsie, 1966).



Chapter 3
Population Genetic Effects
of Inbreeding

Because of the agronomic importance of self-fertilizing crops, some population
genetic effects of continued selfing will be considered. Also other inbreeding
systems, e.g. parent × offspring mating and full sib mating, will get attention.
Continued inbreeding yields populations consisting of a mixture of plants with
homozygous genotypes. The decrease of the frequency of heterozygous plants is
described for both diploid and autotetraploid crops. It is shown that continued
inbreeding eventually leads to a genotypic composition which is approximately
determined by the initial haplotype frequencies. As perfect selfing is an ideal-
ization, also some attention is given to reproduction by means of a mixture of
self-fertilization and cross-fertilization.

3.1 Introduction

Inbreeding occurs if mating plants are, on the average, more related than
random pairs of plants. A more than average relatedness of the mating plants
is thus a prerequisite. Relatedness implies, of course, that the plants involved
share one or more ancestors. The strength of the inbreeding depends on the
degree of relatedness (Note 3.1) of the mating plants. It has already been noted
in Section 2.1 that mating of related plants may occur in random mating, but
in that case it occurs as a matter of chance.

Note 3.1 Several yardsticks for measuring the degree of relatedness exist, a
common one being the probability that an allele of a certain locus in some
plant is identical by descent to an arbitrary allele at that same locus in its
mate (Falconer and MacKay, 1996, p. 58). In regular systems of inbreeding
the degree of relatedness of the mating plants is uniform across all pairs of
mating plants. In this book no attention is given to the determination of the
degree of relatedness.
Regular systems of inbreeding are far more common in plant breeding than
irregular systems. No attention will, therefore, be given to irregular systems
of inbreeding.

The counterpart of inbreeding is outbreeding. With outbreeding mating
plants are on the average less related than random pairs of plants. Self-
incompatibility is a natural cause for outbreeding as related plants tend to
have a similar genotype at the incompatibility locus/loci. After intercrossing,

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 33–58. 33
c© 2008 Springer.
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such plants will produce no (or few) offspring. Artificial forms of outbreeding
are

• Bulk crossing of two unrelated populations (Section 2.2.1)
• Selection of parents to be crossed in such a way that inbreeding is avoided

as much as possible

Outbreeding occurs also in the case of immigration.
The population genetic effect of inbreeding is a decrease in the frequency of

heterozygous plants. This involves all loci, for all traits. (Random mating, on
the other hand, is a mode of reproduction that may occur for certain traits
and may simultaneously be absent for other traits). When starting with an
F2 population and considering segregating loci, the frequency of heterozygous
plants is the same for all loci. This applies to the successive generations of the
superpopulation (see Section 2.1). Each subpopulation consists of few plants:
in the case of selfing only a single plant, in the case of full sib mating only pairs
of plants. Within these separate subpopulations reproduction is by means of
random mating. The random variation of the gene frequencies occurring in
small populations (Chapter 7) causes the subpopulations to vary with regard
to the frequencies of heterozygous plants: not only for different loci, but also
for the same locus. Individual plants of the F2 (or F3, etc.) populations vary
therefore in the number of heterozygous loci.

In diploid crops procedures for the production of doubled haploid lines
(DH-lines) allow the production of pure lines from heterozygous parents in a
single generation. Doubling of the number of chromosomes of haploid plants,
generated by parthenogenesis or by anther culture, yields immediately
complete homozygosity. For dioecious crops as well as for self-fertilizing crops
with a long juvenile phase, e.g. Coffea arabica L., this approach is an attractive
alternative to continued inbreeding.

Tissue culture techniques for the regeneration of plants from anthers or
microspores have been developed, for example in wheat, barley, rice and oil-
seed rape. Also elimination of paternal chromosomes, occurring when making
Hordeum vulgare L. × H. bulbosum L. or Triticum aestivum L. × Zea mays
L. crosses, permits production of DH-lines. (The paternal chromosomes are
lost in a few cell divisions of the hybrid zygote/embryo.) Note 3.2 comments
further on DH-methods.

Note 3.2 DH-lines are mostly obtained directly from the gametes produced
by the F1-plants. This has a few drawbacks

• Recombination is restricted to the F1 meiosis
• The proportion of DH-lines that are rejected because of poor performance

is high. This is undesirable because of the cost of producing DH-lines.

To avoid these drawbacks one may use gametes from plants obtained by
backcrossing the F1 or one may use F2- or even F3-plants. (The latter
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allows selection among F2-plants, followed by selection among F3-lines in
the seedling stage). In vitro selection among the haploid embryos appeared
to be feasible (Snape, 1997): the size and degree of embryo differentiation
predicted which embryos would produce vigorous seedlings. Additionally the
growth rate of the embryos was positively correlated with yield performance
in the field r = 0.3, but this has found little practical application).

Continued self-fertilization is the natural mode of reproduction of self-
fertilizing crops. There are many economically important self-fertilizing crops.
A number of these are

Barley Hordeum vulgare L.
Oats Avena sativa L.
Wheat Triticum aestivum L.
Rice Oryza sativa L.
Sorghum Sorghum bicolor (L.) Moench.
Finger millet Eleusine coracana (L.) Gaertn.
Pea Pisum sativum L.
Cowpea Vigna unguiculata (L.) Walp.
Dry bean Phaseolus vulgaris L.
Soybean Glycine max (L.) Merr.
Peanut Arachis hypogaea L.
Cotton Gossypium spp.
Arabica coffee Coffea arabica L.
Lettuce Lactuca sativa L.
Tomato Lycopersicon esculentum Mill.
Okra Abelmoschus esculentus (L.) Moench.
Sweet pepper Capsicum annuum L.

Self-fertilization is not always 100% in most of these autogamous crops, e.g.
cotton, okra, sorghum. (The amount of outcrossing in sorghum is about 6%.)
Section 3.5 considers the genotypic composition of populations reproducing by
a mixture of self-fertilization and cross-fertilization.

Breeders regularly apply inbreeding in cross-fertilizing crops. They may have
various reasons for doing this:

• The development of pure lines (mostly by continued selfing) for use as
parents in the breeding of hybrid varieties, e.g. in maize or cucumber

• To promote the efficiency of elimination of an undesired recessive gene
(Section 6.3.2)

• Maintenance of a genic male sterile ‘line’ (Note 3.3).

Note 3.3 FS-mating occurs also when a maintaining a genic male sterile
barley ‘line’: male sterile plants are harvested after having been pollinated
by their male fertile full sibs. (This is also applied in the case of recurrent
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selection in self-fertilizing cereals (Koch and Degner, 1977)). Thus the har-
vesting of a female plant (say genotype mm) implies harvest of seed due to
the cross mm × Mm (where Mm represents the genotype assumed for her-
maphroditic plants). The genotypic composition of the obtained FS-family
is (1

2 , 1
2 , 0). Repeated application of this procedure implies repeated FS-

mating.

The most powerful form of inbreeding of cross-fertilizing crops, e.g. dioecious
crops, occurs with repeated crossing of the type

(i) full sib × full sib, i.e. full sib mating, or
(ii) parent ×

× offspring.

Full sib mating
The offspring due to a cross of two genotypes constitutes a family. The plants
belonging to the family share both their maternal and their paternal parent.
With regard to each other these plants are full sibs. Together they form a full
sib family (FS-family). Crossing of plants belonging to the same FS-family
is called full sib mating (FS-mating).

FS-mating may be used when inbreeding of dioecious crops, such as spinach
or asparagus, is the aim. It occurs spontaneously in the case of open pollina-
tion within FS-families grown in isolation. This is applied in hermaphroditic,
monoecious or dioecious crops in the case of separated FS-family selection
(Section 6.3.3). Note 3.3 describes how FS-mating is applied when maintain-
ing a genic male sterile ‘line’.

Parent ×
× offspring mating

In this book the notation A×
×B indicates the cross A×B and/or the reciprocal

cross B × A. Parent ×
× offspring crosses, i.e. so-called PO-mating, can only

be applied to perennial crops such as oil palm (producing gametes from the
age of 4–5 years for many years; see Note 3.4) or asparagus (with a juvenile
phase lasting two years). The parent is still alive when its offspring reach the
reproductive phase.

Note 3.4 Oil palm (Elaeis guineensis Jacq.) is not really a dioecious crop.
Each individual palm continuously alternates phases when the palm pro-
duces exclusively female inflorescences and then a phase of exclusively male
inflorescences. By storing pollen it is possible to apply self-fertilization.

Repeated backcrossing implies continued application of crosses of the type
‘recurrent parent ×

× offspring’. In the absence of selection the genotype of
the offspring becomes identical to the genotype of the recurrent parent (if the
recurrent parent has a homozygous genotype) or to the genotypic composition
of the possible lines obtained by selfing of the recurrent parent (if the recurrent
parent is heterozygous, see Section 4.2).
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In this chapter only loci segregating for not more than two alleles per locus
will be considered. A justification for this was given in Section 2.2.1. For an
extensive treatment of the population genetics theory of inbreeding the reader
is referred to Allard, Jain and Workman (1968).

3.2 Diploid Chromosome Behaviour and Inbreeding

3.2.1 One locus with two alleles

With continued inbreeding of any (infinitely) large population the genotype
frequencies will change from one generation to the other until the frequency
of plants with a heterozygous genotype has become zero. Starting from the
initial population G0 with genotypic composition (f0,0, f1,0, f2,0), eventually a
population with genotypic composition (q, 0, p) will be obtained. Table 3.1 (a)

Table 3.1 The frequency of genotypes aa, Aa and AA in the case of continued

selfing

(a) Starting with some arbitrary genotypic composition

Genotype

Generation aa Aa AA

S0 f0 f1 f2

S1 f0 + 1
4
f1

1
2
f1 f2 + 1

4
f1

S2 f0 + ( 1
4

+ 1
8
)f1

1
4
f1 f2 + ( 1

4
+ 1

8
)f1

S3 f0 + ( 1
4

+ 1
8

+ 1
16

)f1
1
8
f1 f2 + ( 1

4
+ 1

8
+ 1

16
)f1

·
·
S∞ q 0 p

(b) Starting with F1, i.e. a population with genotypic composition (0, 1, 0)

Generation Inbreeding Panmictic Genotype
(t) Population coefficient (F ) index (P ) aa Aa AA

0 S0(= F1) −1 2 0 1 0

1 S1(= F2) 0 1 1
4

1
2

1
4

2 S2(= F3) 1
2

1
2

3
8

2
8

3
8

3 S3(= F4) 3
4

1
4

7
16

2
16

7
16

4 S4(= F5) 7
8

1
8

15
32

2
32

15
32

5 S5(= F6) 15
16

1
16

31
64

2
64

31
64

6 S6(= F7) 31
32

1
32

63
128

2
128

63
128

7 S7(= F8) 63
64

1
64

127
256

2
256

127
256

∞ S∞(= F∞) 1 0 1
2

0 1
2
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illustrates this for inbreeding by means of continued selfing. It appears that
the genotype frequencies approach, in an asymptotic manner, the gene and
haplotype frequencies.

Often the frequency of heterozygous plants in generation t, i.e. f1,t, is
written in the form

2pq(1 − Ft)

(Wright, 1951). In this expression the factor 1−Ft describes the deviation from
the Hardy–Weinberg frequency. The factor is called the panmictic index,
sometimes designated by the symbol P . This implies that P = 1 − Ft. The
parameter Ft, say ‘script F’, is the inbreeding coefficient (or fixation
index) pertaining to generation t.

When starting with an F1 population, F2 is the first generation due to
self-fertilization. For this reason the F2 population is chosen to be generation
1. (Its genotypic composition is equal to the genotypic composition of the
population obtained by panmictic reproduction of the F1; Note 2.4.) Successive
generations may be indicated by G1,G2, . . ., but in the case of continued selfing
the designations S1,S2,S3, . . . are used as well (Table 3.1).

A general description of the genotypic composition of any population (inbred
or not) is now given by

Genotype
aa Aa AA

f q2 + pqFt 2pq(1 − Ft) p2 + pqFt

(3.1)

In several other books, e.g. Falconer and MacKay (1996), the inbreeding
coefficient is defined as the probability that the two alleles at any loci of a
plant are identical by descent. This would mean that the inbreeding coefficient
of an F2 population obtained from cross AA × aa is equal to 1

2 , because 50%
of the plants contain, for locus A-a, alleles that are identical by descent (this
concerns plants with genotype aa or AA). In this book the parameter F
is used to quantify the deviations from the Hardy–Weinberg frequencies. In
an F2 population such deviations are absent and accordingly its inbreeding
coefficient is 0. In Note 3.5 it is shown that our definition of the inbreeding
coefficient F can be interpreted as the coefficient of correlation of numerical
values, e.g. gene-effects, assigned to the haplotypes of the uniting gametes.
This is based on the following consideration. With random mating the gene
effects of the haplotypes of fusing female and male gametes are independent;
in the absence of random mating they are interdependent. With inbreeding
they tend to be similar; with outbreeding they tend to be different.

Breeding of self-fertilizing crops starts mostly with crossing of homozygous
lines. For all loci for which the parental lines have a different homozygous
genotype the genotype of the F1 is heterozygous. For these loci p = q = 1

2
and then the expressions in (3.1) simplify to



3.2 Diploid Chromosome Behaviour and Inbreeding 39

Note 3.5 When assigning arbitrary numerical values to haplotypes of the
gametes one can calculate the coefficient of correlation between the value
assigned to the haplotype of an egg and the value assigned to the haplo-
type of the pollen grain fusing with it. This is elaborated for the multiple
allelic locus B1-B2- · · · -Bn, with allele frequencies p1, p2, · · · , pn.

The genotypic composition is given in the central part of the following
two-way table. The margins of the table present the haplotypic composi-
tions of the gametes, as well as the numerical values α1, · · · , αn assigned
to haplotypes B1, · · · , Bn. (One may, e.g., use the gene effects as defined in
Section 8.3.3).

The value of a female gamete is represented by random variable x, the
value of a male gamete by random variable y.

Haplotype pollen (y)
B1(α1) B2(α2) · · · · Bn(αn)

Haplotype B1(α1) p1
2 + p1(1 − p1)F p1p2(1 − F ) p1pn(1 − F ) p1

egg (x)

B2(α2) p1p2(1 − F ) p2
2 + p2(1 − p2)F ) p2pn(1 − F ) p2

·
Bn(αn) pnp1(1 − F ) pnp2(1 − F ) pn

2 + pn(1 − pn)F pn

p1 p2 pn 1
The random variables x and y are isomorous; thus Ex = Ey,Ex2 = Ey2 and
σx = σy. The expression for the coefficient of correlation simplifies therefore
as follows:

ρx,y =
cov(x, y)

σxσy
=

Ex y − (Ex)2

Ex2 − (Ex)2

As Ex y =
n∑

i=1

[
pi

2 + pi(1 − pi)F
]
α2

i +
n∑

i=1

n∑
j=1:j �=i

pipj(1 − F )αiαj , (Ex)2 =
(

n∑
i=1

piαi

)2

, and Ex2 =
n∑

i=1

piαi
2 it follows that

Ex·y−(Ex)2 =F

⎡
⎣ n∑

i=1

pi(1 − pi)αi
2 −

n∑
i=1

n∑
j=1;j �=i

pipjαiαj

⎤
⎦=F (Ex2 − (Ex)2).

This implies that ρ = F ; the coefficient of correlation appears to be equal
to the inbreeding coefficient!

Genotype
aa Aa AA

f 1
4 (1 + Ft) 1

2 (1 − Ft) 1
4 (1 + Ft)

(3.2)

As f1,0 = 1
2 (1−F0) = 1, it follows that F0 = −1, i.e. a negative value for the

inbreeding coefficient. The panmictic index of the F1 amounts for heterozygous
loci to P0 = 2.
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In the remainder of this section the decrease in the frequency of heterozygous
plants is considered for the three most important regular inbreeding systems,
viz. self-fertilization, full sib mating and parent × offspring mating. To measure
this decrease the parameter λ is defined:

λ =
2pq(1 − Ft)

2pq(1 − Ft−1)
=

1 − Ft

1 − Ft−1
(3.3)

This parameter indicates the frequency of heterozygous plants as a proportion
of this frequency in the preceding generation. At a smaller value for λ the
decrease of f1 is stronger. In the case of selfing the values for λ do not depend
on t; they are approximately constant when applying full sib mating or parent
× offspring. Then λ1 = λ2 = · · · = λt. This implies

f1,t = λf1,t−1 = λ2f1,t−2 = λtf1,0

Self-fertilization
In the F2 generation, the first generation generated by selfing, the genotype
frequencies coincide with the Hardy-Weinberg frequencies. Thus f1,1 = 2pq,
implying that F1, the inbreeding coefficient of F2, is zero. In population F∞,
approximately obtained after a very large number of generations reproducing
by means of selfing, there is complete homozygosity, i.e. f1,∞ = 0, implying
that F∞, the inbreeding coefficient of F∞, is 1.

The decrease of f1, due to continued selfing, is indicated in Table 3.1(a).
The table shows that f1 is halved by each round of reproduction by means of
selfing. Thus

1 − Ft = 1
2 (1 − Ft−1)

implying
Ft = 1

2 (1 + Ft−1) (3.4)

With regard to continued selfing the expression

1 − Ft = 1
2 (1 − Ft−1)

or
Pt = 1

2Pt−1

implies
Pt = (1

2 )tP0 = (1
2 )t−1

i.e.
Ft = 1 − ( 1

2 )t−1 (3.5)

(see Table 3.1(b)). At all other systems of inbreeding the reduction of f1 is
smaller. The minimum value for λ is thus attained with selfing. It amounts to
λS = 1

2 .
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Full sib mating and parent × offspring mating
Li (1976, pp. 312–317) showed that for both full sib mating and parent ×
offspring mating, the relation

f1,t+2 = 1
2f1,t+1 + 1

4f1,t (3.6)

applies.
Consider an initial population with genotypic composition (0,1,0), thus

f1,0 = 1. In this population plants are crossed in pairwise combinations. In the
next generation the genotypic composition of the population obtained, which
consists of full sib families, is expected to be ( 1

2 , 1
4 , 1

2 ), with f1,1 = 1
2 . Con-

tinued full sib mating, within the continuously generated FS-families, gives,
according to Equation (3.6)

f1,2 = 1
2 ( 1

2 ) + 1
4 (1) = 1

2 , i.e. λ2 = 1
f1,3 = 1

2 ( 1
2 ) + 1

4 ( 1
2 ) = 3

8 , i.e. λ3 = 3
4 = 0.75

f1,4 = 1
2 ( 3

8 ) + 1
4 ( 1

2 ) = 5
16 , i.e. λ4 = 5

6 = 0.8333, etc.

The first round of inbreeding (full sib mating or parent × offspring mating)
does not give a decrease of the frequency of heterozygous plants (λ2 = 1).
Indeed, with full sib mating first FS-families have to be generated.

It appears that λ approaches asymptotically the value λFS = λPO = 0.809.
As (0.809)3 = 0.53 ≈ 1

2 , three generations of reproduction by means of FS-
mating or parent × offspring mating give the same reduction in f1 as a single
round of reproduction by selfing.

3.2.2 A pair of linked loci

In Chapter 1 it was shown that linkage may be expected to play a relatively
unimportant role in the inheritance of quantitative traits. It was said that,
throughout this book, absence of linkage would be assumed. It is, nevertheless,
useful to be familiar with some implications of linkage. An important reason
for this is the study of the linkage of loci affecting a quantitative trait with
molecular markers.

Consider haplotypes ab, aB, Ab or AB for the two loci A-a and B-b
with recombination value rc. Continued selfing, starting with an F1 with the
heterozygous genotype AaBb, yields in the absence of selection ‘symmetric’
haplotype frequencies:

g11,t = g00,t

and
g01,t = g10,t
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Because
g11,t + g10,t = pA = 1

2

we get
g10,t = 1

2 − g11,t

This implies that, when one knows g11,t, one also knows g10,t, g01,t and g00,t.
It suffices thus to consider only the frequency of gametes with the AB haplo-
type. This is particularly of interest when considering F∞. This population is
described by

Genotype

aabb AAbb aaBB AABB
f f00,∞ f20,∞ f02,∞ f22,∞

Only plants with the AABB genotype are capable of producing gametes with
the AB haplotype. Thus g11,∞ = f22,∞. The haplotypic composition of the
gametes produced by this population is

Haplotype

ab Ab aB AB
g g00,∞(= g11,∞) g10,∞(= 1

2 − g11,∞) g01,∞(= 1
2 − g11,∞) g11,∞

There are thus good reasons to consider the frequency of gametes with the
AB haplotype. In Note 3.6 the following relation between the frequencies of
AB-haplotypes in two successive generations is derived:

Note 3.6 The frequency of AB haplotypes, i.e. g11, is considered for the
case of continued autogamous reproduction. (To promote readability the
recombination value is – in this section – mostly just indicated by the symbol
r). The genotypes capable of producing AB haplotypes, their frequencies in
generation t and the haplotypic composition of the gametes they produce are

Haplotype

Genotype f ab aB Ab AB
AABB f22,t 0 0 0 1
AABb f21,t 0 0 1

2
1
2

AaBB f12,t 0 1
2 0 1

2

AB/ab f11C,t
1
2 (1 − r) 1

2r 1
2r 1

2 (1 − r)
Ab/aB f11R,t

1
2r 1

2 (1 − r) 1
2 (1 − r) 1

2r

Then

g11,t+1 = f22,t + 1
2f21,t + 1

2f12,t + 1
2 (1 − r)f11C,t + 1

2rf11R,t

= f22,t + 1
2f21,t + 1

2f12,t − 1
2r(f11C,t − f11R,t)

= f22,t + 1
2f21,t + 1

2f12,t + 1
2f11C,t − rdt (3.7)
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where, according to Equation (2.11), dt is defined as

dt = 1
2 (f11C,t − f11R,t)

and

f22,t =f22,t−1 + 1
4f21,t−1 + 1

4f12,t−1 + 1
4 (1 − r)2f11C,t−1 + 1

4r2f11R,t−1

(3.8)

f21,t = 1
2f21,t−1 + 1

2r(1 − r)f11C,t−1 + 1
2r(1 − r)f11R,t−1 (3.9)

f12,t = 1
2f12,t−1 + 1

2r(1 − r)f11C,t−1 + 1
2r(1 − r)f11R,t−1 (3.10)

f11C,t = 1
2 (1 − r)2f11C,t−1 + 1

2r2f11R,t−1 (3.11)

f11R,t = 1
2r2f11C,t−1 + 1

2 (1 − r)2f11R,t−1 (3.12)

Thus

g11,t+1 = f22,t−1 + (1
4 + 1

4 )f21,t−1 + (1
4 + 1

4 )f12,t−1 + [14 (1 − r)2

+ 1
4r(1 − r) + 1

4r(1 − r) + 1
4 (1 − r)2]f11C,t−1

+ [14r2 + 1
4r(1 − r) + 1

4r(1 − r) + 1
4r2]f11R,t−1 − rdt

= f22,t−1 + 1
2f21,t−1 + 1

2f12,t−1

+ ( 1
2 − r + 1

2r2 + 1
2r − 1

2r2)f11C,t−1

+ ( 1
2r2 + 1

2r − 1
2r2)f11R,t−1 − rdt

= f22,t−1 + 1
2f21,t−1 + 1

2f12,t−1 + 1
2 (1 − r)f11C,t−1

+ 1
2rf11R,t−1 − rdt

= g11,t − rdt (3.13)

(This equation is identical to Equation (2.10d), derived for the case of con-
tinued panmictic reproduction.)

g11,t+1 = g11,t − rcdt (3.13)

Equation (3.13) applies at continued self-fertilization. It is identical to Equa-
tion (2.10d) applying at continued panmictic reproduction. One should realize,
however, that with panmictic reproduction the relation between dt+1 and dt

was derived to be
dt+1 = (1 − rc)dt

(see Equation (2.13)). For autogamous reproduction, however, the relation
between dt and dt−1 can be shown (see Note 3.7) to be

dt+1 =
(

1 − 2rc

2

)
dt (3.14)
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Note 3.7 In the case of (continued) selfing, plants with a doubly heterozy-
gous genotype, in the coupling phase or in the repulsion phase, can only
be produced by doubly heterozygous parents, one can easily derive from
Table 2.2 that:

f11C,t+1 = 2
(

1 − r

2

)2

f11C,t + 2
(r

2

)2

f11R,t (3.15)

f11R,t+1 = 2
(

1 − r

2

)2

f11R,t + 2
(r

2

)2

f11C,t (3.16)

Thus:

f11,t+1 =

[
2
(

1 − r

2

)2

+ 2
(r

2

)2
]

(f11C,t + f11R,t)

= (r2 − r + 1
2 )f11,t =

[(
r − 1

2

)2 + 1
4

]
f11,t

Equation (2.11), i.e.

dt+1 = 1
2 (f11C,t+1 − f11R,t+1)

yields thus

dt+1 = 1
4 [(1 − r)2 − r2](f11C,t − f11R,t)

This gives Equation (3.14), viz.

dt+1 =
(

1 − 2rc

2

)
dt

implying:
dt =

(
1 − 2rc

2

)t−1

d1 (3.17)

Equations (3.13) and (3.14) yield for the case of continued selfing:

g11,t+1 = g11,t − rc

(
1 − 2rc

2

)
dt−1 (3.18)

The parameter dt is still, as defined in Equation (2.11), equal to
1
2 (f11C,t − f11R,t). Equation (3.18) shows that, unless dt = 0 or rc = 1

2 ,
the haplotype frequencies will change from one generation to the next.

The genotypic composition of F∞, for F1 in coupling phase as well as in
repulsion phase, depends directly on Equation (3.19), viz.

g11,∞ = f22,∞ = g11,1 −
(

2r

1 + 2r

)
d1 (3.19)

which is derived in Note 3.8.
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Note 3.8 Equation (3.13) combined with Equation (3.17) yields in the case
of continued selfing

g11,t+1 − g11,t = −rd1

(
1 − 2r

2

)t−1

Repeated application of this equation results via

g11,2 − g11,1 = −rd1

(
1 − 2r

2

)0

g11,3 − g11,2 = −rd1

(
1 − 2r

2

)1

·
·

g11,t+1 − g11,t = −rd1

(
1 − 2r

2

)t−1

in

g11,t+1 − g11,1 = −rd1

t−1∑
j=0

(
1 − 2r

2

)j

The sum of the terms of this geometric series is

1 −
(

1−2r
2

)t−1

1 −
(

1−2r
2

) =
2

1 + 2r

[
1 −

(
1 − 2r

2

)t−1
]

Thus

g11,t+1 = g11,1 − r

(
2

1 + 2r

)
· d1 ·

[
1 −

(
1 − 2r

2

)t−1
]

implying

g11,∞ = f22,∞ = g11,1 −
(

2r

1 + 2r

)
d1

The quantity to be substituted in Equation (3.19) for d1 amounts, according
to Example 2.7, to 1

4 (1−2r) for F1 in the coupling phase and to −1
4 (1−2r) for

F1 in the repulsion phase. Equation (3.19) yields thus for F1 in the coupling
phase:

g11,∞ = f22,∞ =
(

1 − r

2

)
−
(

2r

1 + 2r

)(
1 − 2r

4

)
=

1
2(1 + 2r)

(3.20)

For F1 in the repulsion phase we get

g11,∞ = f22,∞ =
(r

2

)
+
(

2r

1 + 2r

)(
1 − 2r

4

)
=

2r

2(1 + 2r)
(3.21)
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Table 3.2 The genotypic composition of F∞ with regard to the complex

genotypes for the two linked loci A-a and B-b

(a) F1 in coupling phase

bb Bb BB

aa
1

2(1 + 2rc)
0

2rc

2(1 + 2rc)
1
2

Aa 0 0 0 0

AA
2rc

2(1 + 2rc)
0

1

2(1 + 2rc)
1
2

1
2

0 1
2

1

(b) F1 in repulsion phase

bb Bb BB

aa
2rc

2(1 + 2rc)
0

1

2(1 + 2rc)
1
2

Aa 0 0 0 0

AA
1

2(1 + 2rc)
0

2rc

2(1 + 2rc)
1
2

1
2

0 1
2

1

Table 3.2 presents the genotypic composition of F∞. It may be compared
with Table 2.1 presenting the genotypic composition obtained after continued
panmixis.

In the case of linkage (0 < rc < 1
2 ) the frequencies of the haplotypes change

in the course of the generations. For gametes with the AB haplotype the
difference between g11,1 and g11,∞ amounts to

g11,∞ − g11,1 =
(

2r

1 + 2r

)
d1

This amounts, according to Example 2.7, for F1 in the coupling phase to
(

2r

1 + 2r

)(
1 − 2r

4

)
=

r(1 − 2r)
2(1 + 2r)

and for F1 in the repulsion phase to
(

2r

1 + 2r

)(
2r − 1

4

)
=

r(2r − 1)
2(1 + 2r)

These differences are for 0 < rc < 1
2 generally quite small. For rc = 1

4 , for
instance, it amounts for F1 in the repulsion phase to g11,1 − g11,∞ = 1

8 − 1
6 =

−0.0417.
We consider now the frequency of plants with a genotype obtained by cross-

ing two parents. It may, for example, be desired to obtain genotype AABB
from an initial cross of genotypes AAbb and aaBB. The frequency of AABB
plants amounts in population F2 to f22,1 = 1

4rc
2 (Table 2.2). Equation (3.8)
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Fig. 3.1 The frequency of plants with genotype AABB as a function of the recombination
value rc. Considered are populations obtained by crossing of genotypes AAbb and aaBB
followed by (i) continued self-fertilization until F∞, (ii) selfing until F3, (iii) selfing until F2,
(iv) continued panmixis until linkage equilibrium, (v) continued panmixis followed by one
round of reproduction by means of selfing, or (vi) doubling of the number of chromosomes
in the gametes produced by F1

yields for t = 2 the frequency of plants with genotype AABB in F3. When
substituting the F2 genotype frequencies presented in Table 2.2 one gets for
an F1 in the repulsion phase:

f22,2 = 1
4r2 + 1

8r(1 − r) + 1
8r(1 − r) + 1

8r2(1 − r)2 + 1
8 (1 − r)2r2

= 1
4r + 1

4r2 − 1
2r3 + 1

4r4 (3.22)

This amounts, for unlinked loci, to f22,2 = 9
64 =

(
3
8

)2 = f00,2. According to
Equation (3.21) the frequency of AABB plants in F∞ is 2r

2(1+2r) .
Because 2r

2(1+2r) ≤ 1
2(1+2r) , plants with one of the parental genotypes will

outnumber plants with this recombinant genotype to a greater extent as link-
age is stronger, i.e. as rc is smaller. In Figure 3.1 curves (i), (ii) and (iii) show
the values for f22 in F∞,F3 and F2 as a function of rc. Recombination of alleles
belonging to two different loci can only occur at meiosis of doubly heterozy-
gous genotypes. In populations of cross-fertilizing crops, doubly heterozygous
genotypes tend to be permanently present; in populations of self-fertilizing
crops they disappear.

One should, however, be careful when speaking about ‘the recombining
effect of cross-fertilization’. This is illustrated for loci A-a and B-b.

Continued panmictic reproduction gives eventually, at linkage equilibrium,
f22 = p2r2. This amounts for p = r = 1

2 to 1
16 , whatever the recombination

value (Fig. 3.1(iv)). For tightly linked loci, with rc < 1
14 , genotype AABB will

indeed occur with a higher frequency in populations in linkage equilibrium
than in populations obtained by continued selfing. For less tightly linked loci,
i.e. rc > 1

14 , the frequency of AABB will, however, be higher in F∞. Thus one
should not decide rashly to increase the frequency of plants with a recombi-
nant genotype by the application of random mating in F2,F3, . . . populations
of a self-fertilizing crop (Bos, 1977). With regard to unlinked loci continued
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random mating will only result in the genotypic composition of F2, because
for unlinked loci the F2 population obtained by selfing will have the linkage
equilibrium composition (see Example 2.7).

Selection in a cross-fertilizing crop is more efficient when increasing the
frequency of homozygous recombinant genotypes by selfing. According to Note
3.9 a single round of reproduction by means of self-fertilization in a population
in linkage equilibrium gives

f22 =
5 − 2r + 2r2

32

(Fig. 3.1(v))

Note 3.9 Consider a population in linkage equilibrium. It is obtained by pan-
mictic reproduction starting with a single-cross hybrid variety. With regard
to loci A-a and B-B a single round of reproduction by means of selfing
results, according to Equation (3.8), in the following frequency of plants
with genotype AABB:

f22 = 1
16 + 1

4 · 1
8 + 1

4 · 1
8 + 1

4r2 · 1
8 + 1

4 (1 − r)2 · 1
8 = 5−2r+2r2

32

For r = 1
2 this amounts to 9

64 , i.e.
(

3
8

)2. It is the same value as obtained, from
Equation (3.22), for an F3. The single reproduction by means of selfing gives
thus the genotypic composition of an F3. This illustrates that the genotypic
composition of the population in linkage equilibrium is equal to the genotypic
composition for pairs of unlinked loci in an F2.

In a diploid crop, doubling the number of chromosomes of haploid plants is
the fastest way to attain complete homozygosity. The frequency of plants with
the desired recombinant genotype then amounts to 1

2rc, i.e. 2
rc

times as high
as in F2 (Fig. 3.1(vi)).

The frequency of doubly heterozygous plants is greatly reduced with repro-
duction by means of selfing. Depending on the recombination value, a sin-
gle round of selfing reduces this frequency to only 1

4 to 1
2 of the frequency

of plants with the AaBb genotype in the preceding generation. Note 3.8
shows that the remaining portion of doubly heterozygous plants amounts to
f11,t+1
f11,t

= (r − 1
2 )2 + 1

4 , which amounts to 1
4 for rc = 1

2 and to 1
2 for rc = 0.

This reduction of the frequency of heterozygous plants is even stronger for
more complex genotypes: a single round of selfing reduces the frequency of
the complex genotype consisting of a heterozygous single-locus genotype for
each of k unlinked loci to the portion (1

2 )k of its preceding value.
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3.2.3 Two or more unlinked loci, each with two alleles

Independent segregation occurs when the recombination value is equal to 1
2 .

Some population genetical implications of continued selfing with regard to
unlinked loci are thus easily obtained from results derived in Section 3.2.2.

Two unlinked loci
Consider the haplotypes ab, aB,Ab or AB for the two unlinked loci A-a and
B-b. Equation (3.18) shows that absence of linkage implies constancy of the
haplotype frequencies:

g00,t+1 = g00,t

g01,t+1 = g01,t

g10,t+1 = g10,t

g11,t+1 = g11,t

This applies for any genotypic composition of the initial population. An appli-
cation is described in Note 3.10. The haplotypic composition of the gametes
produced by populations S0,S1, . . . ,S∞ remains thus constant across the
generations. This implies that the genotypic composition of S∞ immediately
follows from the haplotypic composition of the gametes produced by S0:

Note 3.10 When breeding a non-perennial cross-fertilizing crop, selection
among plants on the basis of a progeny test (see Section 6.3.6) is impossi-
ble because the candidate plants cannot be maintained. In such cases these
plants are selfed: their S1-lines produce gametes with the same haplotypic
composition as they do themselves. Indeed: haplotypic compositions can be
maintained by means of selfing. This is applied in recurrent selection for
general combining ability as well as in reciprocal recurrent selection (see
Section 11.3.2).

Genotype

aabb aaBB AAbb AABB
f g00 g01 g10 g11

The constancy of the haplotypic composition in the case of continued selfing
is in striking contrast to the continuous change, until linkage equilibrium is
attained, of the haplotypic composition in the case of continued panmixis.
Notwithstanding the stability of the haplotype frequencies the genotype fre-
quencies change drastically: the frequencies of heterozygous plants decrease
and those of homozygous plants increase. The frequencies of the complex geno-
types only become stable if heterozygous plants no longer occur.

When starting with an F1 the frequencies of the complex genotypes follow
directly from the frequencies of the single-locus genotypes given by Equation
(3.2). (It should be realized that in cross-fertilizing crops this rule applies only
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Table 3.3 The frequencies of complex and single-locus genotypes for the unlinked

loci A-a and B-b in generation t(= 1, 2, 3, . . . ,∞) produced by selfing for t generations

since the F1 population

Genotype for locus B-b

bb Bb BB

Genotype

for locus

A-a:

aa
1

16
(1 + Ft)2

1

8
(1 − Ft

2)
1

16
(1 + Ft)2

1
4
(1 + Ft)

Aa
1

8
(1 − Ft

2) 1/4(1 − Ft)2
1

8
(1 − Ft

2) 1
2
(1 − Ft)

AA
1

16
(1 + Ft)2

1

8
(1 − Ft

2)
1

16
(1 + Ft)2

1
4
(1 + Ft)

1
4
(1 + Ft)

1
2
(1 − Ft)

1
4
(1 + Ft) 1

in linkage equilibrium). Thus Table 3.3 presents the genotypic composition
with regard to the complex genotypes for two unlinked loci of any generation
obtained by (continued) selfing starting with an F1.

K unlinked loci
It is, in general, impossible to determine how many loci control the phenotypic
expression of a certain trait, e.g. culm length in wheat. The reason for this is
that the contribution due to non-segregating loci cannot be assessed: if one
crosses some line P1 with genotype AabbccDD with regard to the trait under
consideration with line P2 with genotype aabbCCdd then the contribution
due to locus B-b cannot be assessed. Thus it might appear that three instead
of four loci are responsible for the genetic control of the trait. In fact only
the number of segregating loci, i.e. the number of loci for which the two
homozygous parents have a different genotype with regard to the trait under
consideration, can be studied. This number is an interesting quantity, upon
which the size of an F2 generation (or a later generation) may be based. It
is speculated that the analysis of (quantitative trait) loci based on molecular
markers is going to substitute biometrical methods for estimating the number
of segregating loci. When generating a large number of molecular markers one
can localize (and count) polygenes with relatively large phenotypic effects on
the studied trait.

We consider, for the case of K unlinked loci, the probability that a plant
contains for k of these loci a heterozygous single-locus genotype and for the
remaining K−k loci a homozygous genotype. This probability is given by the
binomial probability distribution function:

P (k = k) =
(

K
k

)
·
(

1 − Ft

2

)k (1 + Ft

2

)K−k

The probability of a completely homozygous plant is

P (k = 0) =
(

1 + Ft

2

)K
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Table 3.4 The probability of a completely homozygous plant in generation

Gt(t = 1, . . . , 7), obtained after t successive generations with reproduction by

means of selfing, when considering K = 1, . . . , 14 unlinked loci. Gt corresponds

to generation Ft+1

t

K 1 2 3 4 5 6 7

1 0.500 0.750 0.875 0.938 0.969 0.984 0.992

2 0.250 0.563 0.766 0.879 0.938 0.969 0.984

3 0.125 0.422 0.670 0.824 0.909 0.954 0.977

4 0.063 0.316 0.586 0.772 0.881 0.939 0.969

5 0.031 0.237 0.513 0.724 0.853 0.924 0.962

6 0.016 0.178 0.449 0.679 0.827 0.910 0.954

7 0.008 0.133 0.393 0.637 0.801 0.896 0.947

8 0.004 0.100 0.344 0.597 0.776 0.882 0.939

9 0.002 0.075 0.301 0.559 0.751 0.868 0.932

10 0.001 0.056 0.263 0.524 0.728 0.854 0.925

11 0.000 0.042 0.230 0.492 0.705 0.841 0.917

12 0.000 0.032 0.201 0.461 0.683 0.828 0.910

13 0.000 0.024 0.176 0.432 0.662 0.815 0.903

14 0.000 0.018 0.154 0.405 0.641 0.802 0.896

or, when applying Equation (3.5)

[
1 + 1 − ( 1

2 )t−1

2

]K

=
[
1 − ( 1

2 )t
]K =

(
2t − 1

2t

)K

(3.23)

Table 3.4 presents this probability for K = 1, . . . , 14 and t = 1, . . . , 7. Allard
(1960, Fig. 6.1) gives a graphical presentation of these probabilities.

The expected value of k, the number of loci with a heterozygous single-locus
genotype in a random plant, is

Ek = K · 1
2 (1 − Ft) = 1

2K( 1
2 )t−1 = (1

2 )tK

It is 1
2K in an F2 plant, 1

4K in an F3 plant, etc.
The variance of k is

var(k) = K · 1
2 (1 − Ft) · 1

2 (1 + Ft)

= 1
4K(1 − F 2

t ) = 1
4K[1 − {1 − ( 1

2 )t−1}2]

= 1
4K[1 − {1 − ( 1

2 )t + (1
4 )t−1}] = [(1

2 )t−2 − ( 1
4 )t]K

Example 3.1 illustrates an application to an F5 population.
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Example 3.1 The probability distribution for k, the number of loci with a
heterozygous single-locus genotype, among K = 3 loci is derived for plants
belonging to an F5 population. The relevant inbreeding coefficient is then
F4 = 1 − ( 1

2 )3 = 7
8 . The probability distribution is then

P (k = k) =
(

3
k

)
·
(

1
16

)k (15
16

)K−k

This gives:

P(k = 0) = 0.8240
P(k = 1) = 0.1648
P(k = 2) = 0.0110
P(k = 3) = 0.0002

The expected value of k, Ek, is (1
2 )4 ·3 = 0.1875 and the variance of k across

the F5-plants amounts to var(k) = [(1
2 )4 − ( 1

4 )3] · 3 = 0.176. (Otherwise:
var(k) = Ek2 − (Ek)2 = [0.1648 + 0.0110 × 22 + 0.0002 × 32] − (0.1875)2 =
0.176).

3.3 Autotetraploid Chromosome Behaviour
and Self-Fertilization

Spontaneous self-fertilization as the natural mode of reproduction occurs
rather rarely among crops with an autotetraploid chromosome behaviour. The
somatic chromosome number of quinoa (Chenopodium quinoa) is 2n = 36.
The basic chromosome number for the genus Chenopodium is x = 9. This
suggests that quinoa is a tetraploid. Ward (2000) found for the same locus
both diploid and tetraploid behaviour. Simmonds (1976) reported that selfing
predominates, without evident inbreeding depression.

Quite a few autotetraploid crops, e.g. durum wheat (Triticum durum; 2n =
4x = 28) or coffee (Coffea arabica; 2n = 4x = 44), have a diploid chromo-
some behaviour. For other crops, e.g. European potato (Solanum tuberosum;
2n = 4x = 48) or wild barley (Hordeum bulbosum; 2n = 4x = 28), there
may be a more or less perfect autotetraploid chromosome behaviour, imply-
ing that exclusively quadrivalents are being formed at meiosis. Artificial self-
fertilization may be applied in a man-made autotetraploid crop such as rye
(Secale cereale; 2n = 4x = 28), which is self-incompatible in its natural diploid
condition.

In this section attention is only given to the simple situation of a single
segregating locus with two alleles. It is assumed that double reduction does
not occur.
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The genotypic composition of some initial generation, say S0, is

Genotype
aaaa Aaaa AAaa AAAa AAAA
nulliplex simplex duplex triplex quadruplex

f f0 f1 f2 f3 f4

Its gene frequencies are

p = 1
4f1 + 1

2f2 + 3
4f3 + f4 (3.24)

and
q = 1 − p

It is first verified that the gene frequencies remain constant from one genera-
tion to the next (such constancy is to be expected in the absence of selection).
In order to do this, Table 3.5 is used. This table presents, for each possible
autotetraploid genotype, and according to the haplotype frequencies presented
in Table 2.4, the genotypic composition of the line obtained by selfing.

The allele frequencies in the parental population follow from Equation
(3.24). Across the total of the lines obtained from this parental population
the frequency of allele A is

1
4

(
1
2f1 + 2

9f2

)
+ 1

2

(
1
4f1 + 1

2f2 + 1
4f3

)
+ 3

4

(
2
9f2 + 1

2f3

)
+
(

1
36f2 + 1

4f3 + f4

)
= 1

4f1 + 1
2f2 + 3

4f3 + f4

This is equal to the frequency in the parental population. The genotypic
composition of S∞ will thus be:

Genotype
aaaa Aaaa AAaa AAAa AAAA

f q 0 0 0 p

How fast do the frequencies of plants with a heterozygous genotype and of
gametes with a heterozygous haplotype decrease with (continued) selfing?

Table 3.5 The genotypic composition of the line obtained by selfing

an autotetraploid genotype

Parent Genotypic composition of line

genotype f aaaa Aaaa AAaa AAAa AAAA

aaaa f0 1 0 0 0 0

Aaaa f1
1
4

1
2

1
4

0 0

AAaa f2
1
36

2
9

1
2

2
9

1
36

AAAa f3 0 0 1
4

1
2

1
4

AAAA f4 0 0 0 0 1
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In order to answer this question, first the decrease of g1, i.e. the frequency
of gametes with haplotype Aa is considered and thereafter the decrease of fh.
i.e. the frequency of heterozygous plants. From Table 2.4 it can be derived
that

g1,t+1 = 1
2f1,t + 4

6f2,t + 1
2f3,t (3.25)

Thus, similarly

g1,t+2 = 1
2f1,t+1 + 4

6f2,t+1 + 1
2f3,t+1 = 1

2

(
1
2f1,t + 2

9f2,t

)
+ 4

6

(
1
4f1,t + 1

2f2,t + 1
4f3,t

)
+ 1

2

(
2
9f2,t + 1

2f3,t

)
= 5

12f1,t + 5
9f2,t + 5

12f3,t = 5
6g1,t+1 (3.26)

This implies that each population obtained by selfing still produces 5
6 of the

proportion of gametes with the Aa haplotype which was produced by the
previous generation.

Now the frequency of plants with a heterozygous genotype is considered.
This frequency is designated by fh. Thus

fh,t := f1,t + f2,t + f3,t

As

f1,t+2 = 1
2f1,t+1 + 2

9f2,t+1

f2,t+2 = 1
4f1,t+1 + 1

2f2,t+1 + 1
4f3,t+1

f3,t+2 = 2
9f2,t+1 + 1

2f3,t+1

the decrease of fh at (continued) selfing is described by:

fh,t+2 = 3
4f1,t+1 + 17

18f2,t+1 + 3
4f3,t+1

= fh,t+1 −
(

1
4f1,t+1 + 1

18f2,t+2 + 1
4f3,t+1

)

= fh,t+1 −
[

1
4

(
1
2f1,t + 2

9f2,t

)
+ 1

18

(
1
4f1,t + 1

2f2,t + 1
4f3,t

)

+ 1
4

(
2
9f2,t + 1

2f3,t

) ]
= fh,t+1 − 5

36 (f1,t + f2,t + f3,t)

= fh,t+1 − 5
36fh,t (3.27)

We consider the decrease of the frequency of heterozygous plants for an initial
population consisting exclusively of duplex plants. The genotypic composition
of S0 is then (0, 0, 1, 0, 0), with fh,0 = 1. According to Table 3.5, fh,1 amounts
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Table 3.6 The frequency in generation t of plants with a heterozygous

genotype, viz. fh,t, in the case of continued self-fertilization in an autote-

traploid population, starting with a population exclusively consisting of

duplex plants. The parameter λs indicates the portion of heterozygous

plants which remained

Generation t fh,t λS =
fh,t

fh,t−1

S0 0 1

S1 1 17
18

= 0.9444 0.9444

S2 2 29
36

= 0.8056 0.8529

S3 3 437
648

= 0.6744 0.8372

S4 4 729
1296

= 0.5625 0.8341

then to 2
9 + 1

2 + 2
9 = 17

18 . Table 3.6 presents the frequency of plants with a
heterozygous genotype in successive generations, as calculated from Equation
(3.27).

The frequency of heterozygous plants as a proportion of the frequency in
the preceding generation, i.e.

λS =
fh,t

fh,t−1

is also presented in Table 3.6. It appears that λS converges to a constant value,
viz. to 5

6 = 0.8333. This implies, per round of reproduction by selfing, the same
constant (relative) decrease in the frequency of heterozygous plants as derived
from the frequency of heterozygous gametes; see Equation (3.26).

In this phase, reproduction by means of self-fertilization for n successive
generations reduces fh,t to

fh,t+n =
(

5
6

)n

fh,t

The frequency of heterozygous plants is halved if
(

5
6

)n = 0.5, i.e. if

n =
ln(0.5)

ln(0.8333)
= 3.8

Starting with an initial population with genotypic composition (0, 0, 1, 0, 0)
the decrease of the frequency of heterozygous plants is even less: in S4, fh,4 is
still larger than 1

2 (Table 3.6).
When comparing the decrease in the frequency of plants with a heterozygous

genotype occurring at selfing of a diploid crop and such decrease at selfing of
a diploid crop and such decrease at selfing of a tetraploid crop it is clear that
the decrease is quite slow in the case of tetraploidy. Continued FS-mating in a
diploid crop gives a somewhat faster decrease in the frequency of heterozygous
plants than continued selfing of a tetraploid crop.
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A more comprehensive treatment of population genetical effects of selfing
in an autotetraploid population is given by Seyffert (1959).

3.4 Self-Fertilization and Cross-Fertilization

There are many crops which are neither completely autogamous nor alloga-
mous:

Broad bean Vicia faba L.
Oil-seed rape Brassica napus L.
Lupin Lupinus luteus L.
Sorghum Sorghum bicolor (L.) Moench.
Cotton Gossypium hirsutum L.
Safflower Carthamus tinctorius L.

The genotypic composition resulting from this mixture of modes of repro-
duction is considered. The portion of the eggs which develops into a zygote
after selfing is represented by s and the portion which develops into a
zygote after cross-fertilization by k = 1 − s.

A general description of the genotypic composition of the plants of genera-
tion t is

Genotype
aa Aa AA

f q2 + pqFt 2pq(1 − Ft) p2 + pqFt

The portion s = 1 − k of the plants in generation t + 1 originates then from
selfing. Its genotypic composition is

Genotype
aa Aa AA

f q2 + pqFt + 1
2pq(1 − Ft) pq(1 − Ft) p2 + pqFt + 1

2pq(1 − Ft)

The portion k of the plants in generation t+1 originates from random mating.
Its genotypic composition is

Genotype
aa Aa AA

f q2 2pq p2

Among all offspring the frequency of plants with a heterozygous genotype is
then

f1,t+1 = 2pq(1 − Ft+1) = (1 − k) · pq(1 − Ft) + k · 2pq
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implying

1 − Ft+1 = 1
2 (1 − k)(1 − Ft) + k

2 − 2Ft+1 = 1 − k − Ft + kFt + 2k

2Ft+1 = 1 − k + Ft − kFt = (1 − k)(1 + Ft)
Ft+1 = 1

2s(1 + Ft) (3.28)

As required, this expression coincides at s = 1 with Equation (3.4).
We now consider the situation that s is constant from one generation to the

next. In the case of equilibrium, successive generations have identical genotypic
compositions. Then Ft = Ft+1 = Ft+2 = . . . = Fe. Equation (3.28) implies
then

2Fe = s(1 + Fe) = s + sFe

i.e.
Fe(2 − s) = s

Thus
Fe =

s

2 − s
(3.29)

In the equilibrium (e) the genotypic composition is

Genotype

aa Aa AA

f q2 + pqFe 2pq(1 − Fe) p2 + pqFe

The relation between Fe and s, i.e. Equation (3.29), is almost linear in the
range of possible values for s (Fig. 3.2): Fe roughly equals s.

We now consider, for the case of p = q = 1
2 , the effect on the genotypic

composition of a continued change in the mode of reproduction. First the

Fig. 3.2 The equilibrium value of the inbreeding coefficient as a function of the portion of
reproduction by means of self-fertilization
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population genetical effect of some cross-fertilization, i.e. k > 0, in an – until
then - exclusively self-fertilizing crop (e.g. wheat) is considered; thereafter we
consider the population genetical effect of some selfing, i.e. s > 0, in an – until
then – exclusively cross-fertilizing crop.

Some cross-fertilization in a self-fertilizing crop
Assume that in an F∞-population, with genotypic composition (1

2 , 0, 1
2 ),

from some generation onward always 10% of the offspring result from cross-
fertilization (i.e. k = 0.1), e.g. because the population is maintained in a dif-
ferent environment. In this case the frequency of heterozygous plants increases
from f1 = 0 to f1,e = 0.09. Some cross-fertilization in a self-fertilizing crop
gives thus a non-negligible increase in the frequency of heterozygous plants.
According to Equation (3.28) the successive generations will have the following
coefficients of inbreeding:

F1 = 0.900
F2 = 0.855
F3 = 0.835
F4 = 0.826

·
Fe = 0.818

It is concluded that equilibrium is approached slowly.

Some self-fertilization in a cross-fertilizing crop
We consider a panmictic population with genotypic composition ( 1

4 , 1
2 , 1

4 ).
From some generation onward always 10% of the offspring is due to selfing
(i.e. s = 0.1). This results in a reduction of the frequency of heterozygous
plants: at s = 0.1 it reduces from f1 = 0.50 to f1,e = 0.47. It can be derived
that

F1 = 0.050
F2 = 0.053

·
Fe = 0.053

In this situation the equilibrium is attained almost immediately.
Workman and Allard (1962) studied the equilibrium with regard to two

segregating loci, attained in the case of simultaneous occurrence of selfing and
cross-fertilization, for unlinked loci. Weir and Cockerham (1973) did so for
linked loci.



Chapter 4
Assortative Mating and Disassortative
Mating

It is reasonable to assume that if two intermating plants resemble each other
more, with regard to some trait, than two random plants, then their geno-
types for the involved loci will tend to be similar. The population genetic effect
of such assortative mating is a decrease of the frequency of plants with a het-
erozygous genotype. With disassortative mating the intermating plants will
tend to resemble each other less than two random plants. The population
genetic effect of repeated backcrossing is also considered in this chapter as
repeated backcrossing may be considered as a particular application of disas-
sortative mating.

4.1 Introduction

Assortative mating occurs if intermating plants tend to resemble each other
more, with regard to some trait, than two random plants. It implies a positive
correlation between the mating plants of their phenotypic values for the trait
involved. The genotypes of these plants for the loci controlling the expression
for the trait will therefore tend, in general, to be similar. With disassortative
mating, the mating plants will have a negative correlation of their phenotypic
values for the considered trait: the mating plants tend to resemble each other
less than random plants.

It is obvious that the trait involved in the resemblance should be expressed
before pollen distribution. Thus assortative and disassortative mating are only
conceivable for traits such as colour of hypocotyls (e.g. in radish, Raphanus
sativus var. radicula L.), flower colour (e.g. in Brussels sprouts, Brassica oler-
acea L. var. gemmifera DC., Example 4.1), anther colour (e.g. in maize, Zea
mays L.), number of tillers (e.g. in rye, Secale cereale L.), date of flowering
(Example 4.2).

Example 4.1 When producing hybrid seed of Brussels sprouts, by making
use of sporophytic self-incompatibility, rows of plants representing inbred
line A, with genotype SaSa, are intermixed with rows of plants representing
inbred line B, with genotype SbSb. The pure lines involved may differ with
regard to shape and size of the ultraviolet-coloured honey guide (which is
invisible for the human eye). However, bees, responsible for the pollination,
observe such differences. They tend to visit either flowers of the SaSa pure
line or flowers of the SbSb pure line. Thus the bees apply assortative mating,
which is counter-productive when the aim is to produce hybrid seed.

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 59–67. 59
c© 2008 Springer.
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Example 4.2 Assortative mating occurs in cross-fertilizing crops, e.g.
perennial ryegrass (Lolium perenne L.), spontaneously with regard to date
of flowering. This phenomenon has attracted a lot of attention in ecolog-
ical population genetics. The rare, very early flowering plants on the one
hand, and the rare, very late flowering plants, on the other hand, are then
at a disadvantage. In the case of self-incompatibility, these plants will have a
reduced seed-set, due to the scarcity of nearby cross-compatible plants. Such
selection against both extreme phenotypes is called stabilizing selection.

Plants may produce flowers over an extended period of time. This applies
especially to wild plant species, but also to certain cultivated grass species
or rye, certainly when grown at a low plant density. The crossing between
flowers, or inflorescences, flowering at the same time does then, due to the
overlap of flowering periods of different plants, imply rather imperfect assor-
tative mating.

Some authors, e.g. Allard (1960, p. 203) and Strickberger (1976, p. 789), have
used the term ‘phenotypic assortative mating’ when considering the present
form of assortative mating. They used the term ‘genotypic assortative mating’
where this book deals with inbreeding. It is questionable whether it is useful to
distinguish between two forms of assortative mating: phenotypic resemblance
implies at least some genotypic resemblance, especially in the case of quali-
tative variation. Li (1976) used the terms ‘positive’ and ‘negative assortative
mating’ instead of assortative and disassortative mating.

The population genetic effect of assortative mating with regard to some trait
is a decreased frequency of plants with a heterozygous genotype for the loci
affecting the trait, as well as their linked neighbours. Experience shows that
for loci controlling traits that have no relationship with fitness (Section 6.1),
a decreased frequency of plants with a heterozygous genotype is not associ-
ated with inbreeding depression. Inbreeding gives for all loci a decrease in
the frequency of plants with a heterozygous genotype and so affects fitness
traits and so may result in inbreeding depression. Assortative mating, how-
ever, exclusively decreases heterozygosity for loci controlling the expression
for the trait involved in the resemblance.

Selection efficiency is promoted by an increased frequency of homozygous
genotypes (Section 6.3.2). Assortative mating may thus be a useful tool: in the
case of self-incompatibility or dioecy a breeder could apply assortative mating
to increase the frequency of homozygous plants, e.g. with respect to the locus
controlling the colour of the hypocotyl of radish.

With qualitative variation the small number of different phenotypes can
easily be distinguished. Thus for the colour of the hypocotyl of radish one
may distinguish white and red. The plants can be classified according to the
expression for the considered trait. The phenotypes of the plants belonging to
the same class are equivalent. Then, with assortative mating, the coefficient
of correlation of the phenotypic values of the mating plants will approach the



4.1 Introduction 61

value 1. The rate of decrease of the frequency of plants heterozygous for the
loci involved will then be similar to this rate in the case of self-fertilization.

With quantitative variation the level of expression may behave as a contin-
uous, random variable. This applies to traits such as single plant yield, plant
height, or (to a lesser degree) date of flowering or number of tillers. Plants
grouped into the same class of phenotypic values have roughly the same phe-
notype. In this case the coefficient of correlation of the phenotypic values of
the mating plants will tend to be less than 1.

It should be clear that the rate of decrease of heterozygosity due to assor-
tative mating strongly depends on the nature of the variation: qualitative or
quantitative.

Qualitative variation

In the case of qualitative variation the relation between genotype and pheno-
type is more direct than in the case of quantitative variation: the classification
of plants according to their phenotype tends to reflect the underlying geno-
types. The population genetic effect of assortative mating resembles then the
population genetic effect of selfing and the frequency of heterozygous plants
decreases rather fast.

Quantitative variation

With quantitative variation the relation between genotype and phenotype
is disturbed by variation in the quality of the growing conditions: in that
situation it is impossible to classify plants on the basis of their phenotype
in such a way that all plants in some class have the same genotype, or to
distinguish genotypes in such a way that all plants with a specified genotype
belong to the same class of phenotypes. In addition, the same phenotype
can be produced by a wide range of different genotypes and thus, from both
causes, it implies only a loose relationship between phenotype and genotype,
which rules out attainment of complete homozygosity by means of continued
assortative mating.

For both categories of variation the relation between genotype and pheno-
type is additionally disturbed by dominance, because different genotypes may
then give rise to the same phenotype.

Disassortative mating implies crossing of plants belonging to different
phenotypic classes; especially the two extreme classes. It may result in plant
material with phenotypes mainly distributed around the mid-parent value.

Maintenance of small populations, e.g. accessions in a gene bank, requires
care to prevent inconspicuous change of the genotypic composition, due to
random variation of the allele frequencies (Chapter 7). Disassortative mating
of early flowering plants with late flowering plants may be applied to maintain
the typical average flowering time of some accession. In natural populations
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plants with extreme phenotypes, e.g. very early flowering plants and very late
flowering plants, may have a reduced fitness (Example 4.2).

Mating of plants with a different sex may be considered as disassorta-
tive mating. In this book some population genetic theory dealing with sex-
expression is developed in Chapter 5.

Some authors classify the phenomenon of incompatibility among disas-
sortative mating (Karlin, 1968; Crow and Kimura, 1970, p. 166) Two forms of
incompatibility may be distinguished: homomorphic and heteromorphic.
In contrast to heteromorphic incompatibility, homomorphic incompatibility is
not associated with anatomical differences. In cabbages homomorphic incom-
patibility is used to produce hybrid varieties (Example 4.1). Heteromorphic
incompatibility may occur as heterostyly, e.g. in primrose (Primula sp.).
This provision indeed leads to disassortative mating with regard to flower
structure (Note 4.1).

Note 4.1 In primrose and buckwheat (Fagopyrum esculentum Moench.)
heterostyly occurs: there are short-styled plants (‘thrum’) and long-styled
plants (‘pin’). Darwin noted that Primula spp. plants are pollinated by bees
or moths possessing a long proboscis. If an insect collects nectar from a plants
producing the thrum type of flowers it will pick up pollen around the base
of its proboscis. Upon further feeding this pollen may be deposited on the
long stigma of plants producing the pin type of flowers. If so, the insect may
pick up pollen near the tip of its proboscis. This might later be deposited on
the short stigma of thrum flowers of other plants.

The heterostyly is in fact associated with sporophytic self-incompatibility.
Primrose and buckwheat are thus both obligatory allogamous crops.

Often two populations that compensate each other with regard to the
expression for one or more traits are crossed. The aim of this initial cross is to
introduce from one parent the gene(s) inducing a desired expression for some
trait into the other parent, which is an otherwise acceptable genotype (or
population). The initial cross is followed by a programme of repeated back-
crossing, in which plants with the improved expression are, generation after
generation, selected to be crossed with the parent to be improved. Because of
the disassortative mating involved in this procedure, repeated backcrossing is
treated in this chapter (Section 4.2). In fact disassortative mating is a mode of
reproduction that may occur within some populations. Repeated backcrossing
could therefore also have been considered in Section 2.2.1, where bulk crossing
was introduced.

In some crops sexual dimorphism (Chapter 5) occurs. It is possible that
each plant can be classified as either a female or as male plant (this situation
is called dioecy); or one may distinguish female plants and hermaphroditic
plants, which may be monoecious or not.
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4.2 Repeated Backcrossing

A breeder may wish to improve an otherwise acceptable genotype by the
incorporation of a specific major gene. For example

• It may be desired to improve the resistance of a rice variety or a lettuce
variety against a new race of some disease.

• When breeding a hybrid variety it might be useful to develop a male sterile
pure line which is genotypically identical to the pure line used as the pater-
nal parent of the hybrid, except for its idiotype at the locus and cytoplasm
controlling pollen development. Then one should transform the male fertile
pure line into a male sterile line. This is done by pollination of a male sterile
line by the paternal pure line parent. The obtained progeny is repeatedly,
i.e. generation after generation, backcrossed with the male fertile pure line.
(The latter line is called: maintainer line. It is, of course, maintained by
continued selfing. In Note 3.3 a somewhat different procedure for main-
taining a male sterile line was mentioned, viz. full sib mating followed by
harvesting of the male sterile plants. This procedure is applied with recur-
rent selection in self-fertilizing crops).

The genotype to be improved is called (for reasons that will become clear
hereafter): recurrent parent. It may be a pure line (possibly a variety of a
self-fertilizing crop or a pure line used in the production of a hybrid variety
of a cross-fertilizing crop) or a clone. The allele determining the desired trait
is designated by R. It belongs to locus R-r and is to be incorporated into the
recurrent parent. The latter is therefore crossed with a donor line containing
the desired allele, but otherwise resembling the recurrent parent as much as
possible. For all loci for which the recurrent parent and the donor line have a
different genotype (save locus R-r), one wants to retain the genotype of the
recurrent parent. These loci may or may not be linked with locus R-r.

With the introduction of the desired allele R, alleles belonging to other loci –
which are possibly linked to locus R-r – are introduced as well. This phenom-
enon is called linkage drag. Many of these unintentionally introduced alleles
will be undesirable. Often the breeder is not even aware of the introduction
of such undesirable alleles, e.g. alleles belonging to loci controlling bitterness
of the seeds).

Repeated backcrossing of the material under development with the
recurrent parent, is applied in order to replace the dragged alleles step by step
with the alleles of the recurrent parent. In this way a so-called near isogenic
line is developed.

The rate of the replacement is considered for the simple situation of dom-
inance of the desired allele, to be introduced from the donor, over the recur-
rent parent allele that is to be replaced. Each of all the other loci, for which
a possibly unfavourable allele was introduced, is represented by locus B-β.
The actual (and favoured) genotype of the variety is represented by BB; the
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genotype of the donor by ββ. For the time being it is assumed that selection is
only applied with regard to the trait controlled by locus R-r. Then it does not
matter which allele of locus B-β is dominant, or whether the locus controls a
trait that is expressed before or after pollen distribution. The recombination
value for loci R-r and B-β is rc. Its value depends on the specific locus which
is represented by B-β. For most loci rc will amount to 1

2 . The slower the (rate
of) replacement of allele β by allele B, the higher the number of backcross
generations required to restore genotype BB for all loci represented by B-β.

Allele R is introduced by crossing the recurrent parent (say P1, with geno-
type rB/rB) with a donor (say P2, with genotype Rβ/Rβ). The obtained F1

has genotype rB/Rβ. The haplotypic composition of the gametes produced
by F1 is

Haplotype
rB rβ RB Rβ

f 1
2 (1 − rc) 1

2rc
1
2rc

1
2 (1 − rc)

The first backcross, P1
×
×F1, results in a population (usually designated as

BC1) with genotypic composition:

Genotype
rB/rB rβ/rB RB/rB Rβ/rB

f 1
2 (1 − rc) 1

2rc
1
2rc

1
2 (1 − rc)

Elimination of plants with genotype rr transforms population BC1 into pop-
ulation BC1

′. The genotypic composition of BC1
′ and the haplotypic compo-

sition of the gametes produced by each genotype in BC1
′ are

Genotypic com-
position of BC1

Haplotypic composition of the gametes
produced by each genotype

genotype f rB rβ RB Rβ

RB/rβ rc
1
2 0 1

2 0

Rβ/rB 1 − rc
1
2 (1 − rc) 1

2rc
1
2rc

1
2 (1 − rc)

The haplotypic composition of the gametes produced by BC1
′ as a whole is

Haplotype
rB rβ RB Rβ

f 1
2rc + 1

2 (1 − rc)2 1
2rc(1 − rc) 1

2rc + 1
2rc(1 − rc) 1

2 (1 − rc)2
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The second backcross, i.e. P1
×
×BC1, yields population BC2 with genotypic

composition:

Genotype
rB/rB rβ/rB RB/rB Rβ/rB

f 1
2rc + 1

2 (1 − rc)2 1
2rc(1 − rc) 1

2rc + 1
2rc(1 − rc) 1

2 (1 − rc)2

Because all BC1
′-plants have genotype Rr, half of the BC2-plants will have

genotype rr. Elimination of the latter plants yields population BC′
2 with geno-

typic composition:

Genotype
RB/rB Rβ/rB

f 1 − (1 − rc)2 (1 − rc)2

Likewise, population BC′
t contains genotype Rβ/rB with frequency (1− rc)t.

The frequency of plants with genotype Rβ/rB in population BCt
′ is thus

(1 − rc)t. For rc = 1
2 this amounts to (1

2 )t. The frequency of genotype RB/rB
amounts then to 1 − (1

2 )t. The probability that a line, obtained by selfing in
population BCt

′ a random plant, might segregate for locus B − β is (1− rc)t.
We consider now the K unlinked loci B1 −β1, B2 −β2, . . . , BK −βK . Locus

R-r is not linked with any of these. Then in population BC′
t the frequency of

plants with the desired complex genotype will amount to

[
1 −

(
1
2

)t
]K

=
[
2t − 1

2t

]K

(4.1)

This expression is equal to Expression (3.23), tabulated in Table 3.4 for K =
1, . . . , 14 and t = 1, . . . , 7. When considering K = 7 loci Table 3.4 shows
that in population BC5

′ the frequency of plants with the complex genotype
RrB1B1B2B2 . . . B7B7 amounts to 0.801. In population BC6

′ it is already
0.896. When considering K = 14 loci the frequency of plants with genotype
RrB1B1 . . . B14B14 amounts to 0.641 in population BC5

′ and to 0.802 in pop-
ulation BC6

′.
The frequency of plants with a complex genotype deviating for one or more

of the loci B1-β1, . . . , BK-βK from the genotype of the recurrent parent will
amount to:

1 −
[
2t − 1

2t

]K

This equation gives the probability that a line, obtained by selfing a random
plant taken from population BCt

′, might segregate for one or more of the K
loci. Such segregation will also appear from a difference, for at least one trait,
between plants of the line and the recurrent parent.

It may be concluded that, even for unlinked loci, five generations of back-
crossing yield an insufficient reduction in the frequency of plants containing
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at one or more loci an undesired allele. One or more additional backcross gen-
erations already implies a considerable reduction, especially for ‘large’ values
for K. One should, of course, minimize K. This can be done by using as the
donor a genotype that resembles the recurrent parent as closely as possible.

An additional criterion for choosing a donor, follows from the dominance
relationships among the alleles at the B-β loci. With regard to loci for which
the recurrent parent allele B is not dominant over the donor allele β, one might
distinguish, among the plants with genotype Rr, plants with genotype RrBB
and plants with genotype RrBβ. Selection of plants with genotype RrBB
implies then elimination of allele β. Selection, particularly marker-assisted
selection (Section 12.3.2), among the plants with genotype Rr, of plants with
the genotype of the recurrent parent (BB) reduces consequently the number
of backcross generations required to attain the desired frequency of plants
with genotype RrBB. Markers strongly linked to locus B-β and/or locus R-
r are particularly useful. Among donor lines which differ from the recurrent
parent with regard to their genotype for K loci, one should choose the donor
containing a dominant allele at the highest number of these loci. Different
donor lines can, in this respect, be compared by considering the similarity
of the F1 and the donor: the greater the similarity, the larger the number of
dominant donor alleles.

Until now the recurrent parent was assumed to have a homozygous geno-
type. When dealing with vegetatively propagated crops (such as apple,
rhubarb, shallots, asparagus) the recurrent parent may be heterozygous for
some locus B-b-β. The cross between the recurrent parent (with genotype Bb)
and a donor (with genotype ββ) yields an F1 with the following genotypic
composition

Genotype
Bβ bβ

f 1
2

1
2

The frequencies of genotypes and alleles in BC1
′,BC2

′ and BC3
′ then amount

to:

Genotype Allele
bb Bb BB bβ Bβ b B β

f in BC1
′ : 1

8
1
4

1
8

1
4

1
4

3
8

3
8

1
4

in BC2
′ : 3

16
3
8

3
16

1
8

1
8

7
16

7
16

1
8

in BC3
′ : 7

32
7
16

7
32

1
16

1
16

15
32

15
32

1
16

It will be clear that repeated backcrossing to a heterozygous recurrent parent
is expected to result in a BC∞

′ population with genotypic composition;

Genotype
bb Bb BB

f 1
4

1
2

1
4
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with regard to locus B-b-β. BC∞
′ is thus not identical to the recurrent

parent, but to its S1 lines. The same applies to the two loci B1-b1-β1 and
B2-b2-β2, which may be linked or not, if the genotype of the recurrent parent
is B1b1B2b2.

Bos (1980) considered backcrossing in autotetraploid crops. In population
BCt

′ the frequency of plants containing the unintentionally introduced allele
β was derived to be (1

2 )t−1 if loci R-r and B-β are unlinked. Thus, compared
with diploid crops, one additional backcross generation is required in order to
obtain the same degree of replacement of β by B.



Chapter 5
Population Genetic Effect of Selection
with regard to Sex Expression

Breeders may consider the use of male sterility when developing hybrid vari-
eties or when making complex bulk crosses. The frequency of male sterile plants
is then an interesting topic, especially when the involved crop is grown because
of seed yield. Male sterile plants may have a reduced seed-set and consequently
a reduced fitness as compared to male fertile plants. Selection with regard to
sex expression is therefore an issue of practical relevance.

5.1 Introduction

The types of sex expression distinguished for our purposes are

• Hermaphroditism, in contrast to
• Sex differentiation (sexual dimorphism)

Hermaphroditism is the most common form of sex expression among plant
species. It means that the reproductive organs of both sexes are present in
the same flower, i.e. a bisexual flower (this situation is indicated by the
symbol �), or in different flowers occurring on the same plant. In the latter
case a flower contains either male or female organs; this situation is called
monoecy, indicated by the symbol ♂♀. Monoecy occurs in crops such as

Maize Zea mays L.
Castorbean Ricinus communis L.
Cucumber Cucumis sativus L.
Plane trees Platanus occidentalis L.
Alder Alnus glutinosa Gartn.
Hazelnut Corylus avellana L.

The types of sex differentiation to be distinguished are

• Dioecy
• Gynodioecy

Dioecy means that plants either exclusively produce female flowers (these are
female plants, indicated by ♀), or exclusively male flowers (these are the male
plants, indicated by ♂).

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 69–76. 69
c© 2008 Springer.
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Well-known dioecious crops are

Spinach Spinacia oleracea L.
Asparagus Asparagus officinalis L.
Hemp Cannabis sativa L.
Hops Humulus lupulus L.
Poplar Populus nigra L.
Date Phoenix dactylifera L.
Kiwi Actinidia deliciosa (A. Chev.) [C.F. Liang & A.R. Ferguson]
Papaya Carica papaya L.

Gynodioecy means that female plants as well as hermaphroditic plants occur.
Thus a gynodioecious maize population consists of male sterile plants, i.e.
female plants, as well as ‘normal’ plants. This situation is considered in
Section 5.2.

It has been demonstrated that sex expression, both in plants and animals, is
due to rather diverse mechanisms, ranging from a more or less clear-cut XY -
XX-mechanism to sex expression determined by environmental conditions
(Example 5.1).

Example 5.1 In cucumber four types of sex expression may occur:
monoecy, gynoecy, and andromonoecy (plants have male and hermaphroditic
flowers) and hermaphroditism. Modern cucumber cultivars produce exclu-
sively female flowers: their fruits develop parthenocarpic. The sex expression
is affected by treatment with gibberellic acid or silvernitrate. These sub-
stances promote the development of male flowers. This allows the selfing
required for maintenance of pure lines used in hybrid varieties.

The population genetic effect of selection with regard to sex expression is thus
necessarily derived on the basis of simplifying assumptions about the genetic
control of sex expression. In this chapter implications of specific assumptions
about the genetic control of dioecy or gynodioecy are elaborated.

Assumed genetic control of dioecy

A ‘homozygous’ genotype is assumed to give rise to a female plant, viz. XX
in the case of sex chromosomes or mm in the case of a locus M -m controlling
sex expression. A ‘heterozygous’ genotype (XY or Mm) is assumed to give
rise to a male plant:

Genotype
mm (or: XX) Mm (or: XY )

sex ♀ ♂
f 1

2
1
2
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The genotypic composition ( 1
2 , 1

2 , 0) results from the harvesting of female
plants which have been pollinated by male plants. This genotypic composition
will apply whatever the initial frequencies of male and female plants.

Assumed genetic control of gynodioecy

Gynodioecy occurs in the situation of cytoplasmic male sterility or in the
situation of genic male sterility. The idiotypic basis for cytoplasmic male
sterility is assumed to be

Idiotype
(S)rr (·)Rr (·)RR

sex ♀ � or ♂♀ � or ♂♀
The symbol (S) designates presence of male-sterility-inducing cytoplasm, the
symbol (·) presence of any cytoplasm. The latter symbol represents thus both
(S) and (N), i.e. the presence of normal cytoplasm. Locus R-r is the male
fertility restoring locus.

The genetic basis for genic male sterility is assumed to be

Genotype
mm Mm MM

sex ♀ � or ♂♀ � or ♂♀
In the case of gynodioecy there is selection against the male-sterility-inducing
allele (this is allele m; or – in the presence of (S) cytoplasm – allele r). Male
sterile plants are unable to transmit this allele to the next generation via
pollen. The decrease in the frequency of male sterile plants is considered in
Section 5.2.

5.2 The Frequency of Male Sterile Plants

Allogamous crops

In cross-fertilizing crops male sterile plants may have a normal (complete) seed
set. The selection against the male-sterility-inducing allele, say m, is then due
to the incapability of plants with genotype mm to transmit allele m via the
pollen to the next generation. Only plants with genotype MM or Mm produce
pollen. Eggs are produced by all plants, whatever the genotype. The frequency
of male sterile plants in this situation is considered in Section 5.2.1.

Elimination of male sterility may be a breeding objective because of a low
seed-set on the male sterile. Male sterile plants, which may be conspicuous
because of their low seed-set, are then not harvested. This implies that plants
with genotype mm not only fail to produce pollen, but – effectively – then
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also fail to produce eggs. Only male fertile plants are harvested. In successive
generations the genotypic composition with regard to locus M -m coincides
then with the genotypic composition with regard to locus A-a in the case
of continued mass selection, before pollen distribution, against plants with
genotype aa. The decrease in the frequency of gene m proceeds, therefore, as
in Example 6.11.

Autogamous crops

Incomplete seed-set is certainly to be expected for male sterile plants belonging
to a self-fertilizing crop. In Section 5.2.2 attention is given to natural selection
against male sterility in an autogamous crop.

In the case of recurrent selection in a self-fertilizing crop (Note 3.3), only
male sterile plants are harvested. This guarantees that the harvested seeds
resulted from intercrossing. Then, effectively, plants with genotype MM or
Mm produce the pollen and plants with genotype mm the eggs. This situa-
tion coincides effectively with dioecy. It leads immediately to the equilibrium
frequencies (1

2 , 1
2 , 0), whatever the seed-set of male sterile plants may be.

5.2.1 Complete seed-set of the male sterile plants

The situation of complete seed-set of male sterile plants of a cross-fertilizing
crop resembles the case of mass selection, after pollen distribution, against
plants with genotype aa: such plants are not harvested and, consequently,
do not transmit allele a via eggs; pollen, however, is produced by all plants,
whatever the genotype. In successive generations the genotypic composi-
tion with regard to locus M -m is, consequently, equal to the genotypic
composition with regard to locus A-a in the case of mass selection, after
pollen distribution, against plants with genotype aa. This is illustrated in
Example 6.12.

Consider now a gynodioecious population of a cross-fertilizing crop, e.g.
maize: female plants have idiotype (S)rr and hermaphroditic plants idiotype
(N)rr. The relative frequencies of female plants and hermaphroditic plants
will then not change if these two categories of plants have equal seed-set. The
problem described in Note 5.1 pertains to this situation.

Note 5.1 In a gynodioecious population of a cross-fertilizing crop the female
plants are assumed to have idiotype (S)rr and the hermaphroditic plants
idiotype (N)rr. Derive, for this situation, how the idiotypic composition with
regard to some locus A-a is expected to develop if the initial frequencies of
(N)aa and (S)AA are both 1

2 .
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5.2.2 Incomplete seed-set of the male sterile plants

In the case of cytoplasmic male sterility in a self-fertilizing crop the incomplete
seed-set of the male sterile plants, due to insufficient pollination, implies reduc-
tion of the frequency of plants with the (S) cytoplasm. With cleistogamy, i.e.
the flowers remain closed at pollination time, there is no seed-set at all. Plants
with the (S) cytoplasm do then not produce any offspring. The (S) cytoplasm
will then not be transmitted to the next generation. It is immediately lost.

In the remainder of this section attention is given to genic male sterility in
a self-fertilizing crop. It is assumed that all seeds produced by hermaphroditic
plants, i.e. by plants with genotype Mm or MM , are due to self-fertilization.
For these plants the value for k, i.e. the portion of the eggs that develop into
a zygote after cross-fertilization (Section 3.5) is zero. The seeds produced by
male sterile plants, i.e. plants with genotype mm, are due to cross-fertilization.
It is rather common that male sterile plants produce flowers that are more
widely opened than flowers produced by male fertile plants, but nevertheless
they tend to produce less seeds than male fertile plants. The relative seed-
set or – in more general population genetic terms – the relative fitness of
plants with genotype mm is represented by the factor w0. (The relative fit-
ness is also designated by 1 − s0, or briefly by 1 − s, where s represents the
so-called selection coefficient for plants with genotype mm; see also Section 6.1.)
Example 5.2 gives an example.

Example 5.2 Even for a crop like spring barley, k appears to be positive.
Jain and Allard (1960) observed k = 0.02 for hermaphroditic barley plants.
The seed-set of male sterile barley plants is rather variable. For the conditions
in Davis, California, Jain and Suneson (1964) reported a maximum seed-
set of 0.40; i.e. s ≥ .6. For Wageningen, The Netherlands, Baltjes (1975)
reported a maximum seed-set of 0.20; i.e. s ≥ 0.8.

Different parental genotypes produce different numbers of offspring. The effec-
tive (relative) frequencies (fe) of parental genotypes are calculated from their
actual frequencies in the following way:

Genotype
mm Mm MM

f f0,t f1,t f2,t

w 1 − s 1 1
fe

(1−s)f0,t

1−sf0,t

f1,t

1−sf0,t

f2,t

1−sf0,t

Plants with genotype Mm or MM are assumed to produce offspring by spon-
taneous self-fertilization:

• The genotypic composition of the offspring of plants with genotype Mm is
( 1
4 , 1

2 , 1
4 ).

• The genotypic composition of the offspring of plants with genotype MM is
(0, 0, 1).
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Plants with genotype mm produce offspring by cross-fertilization. The haplo-
typic composition of the pollen produced by generation t is

Haplotype
m M

f g0,t+1 g1,t+1

where

g0,t+1 =
1
2f1,t

1 − f0,t
and g1,t+1 =

1
2f1,t + f2,t

1 − f0,t

The genotypic composition of the offspring of plants with genotype mm is
(g0,t+1, g1,t+1, 0). Altogether the genotypic composition of generation t+1, in
terms of the genotype frequencies in generation t is

Genotype
mm Mm MM

f

1
2 f1,t(1−s)f0,t

1−f0,t
+ 1

4 f1,t

1−sf0,t

( 1
2 f1,t+f2,t)(1−s)f0,t

1−f0,t
+ 1

2 f1,t

1−sf0,t

1
2 f1,t+f2,t

1−sf0,t
(5.1)

The frequency of plants with genotype Mm decreases due to self-fertilization
but, on the other hand, it increases due to cross-fertilization of plants with
genotype mm. The frequency of plants with genotype MM can only increase.
The eventual genotypic composition is thus (0, 0, 1). This limit is approached
more quickly when the seed-set of plants with genotype mm is lower, i.e. s is
larger. Example 5.3 illustrates the reduction of f0 for a few values for s.

Example 5.3 Table 5.1 presents f0, i.e. the frequency plants with genotype
mm. It does so for several values of s and for successive generations, starting
with an initial population with the genotypic composition of an F2, i.e. ( 1

4 ,
1
2 , 1

4 ). The column headed by ‘s = 0’ represents complete seed-set of male
sterile plants. The column headed by ‘s = 1’, representing complete sterility,
illustrates how f0 is reduced by mass selection in a self-fertilizing crop against
plants with genotype mm. The column headed ‘Observed frequency’ presents
actual data obtained from barley, Composite Cross XXI (Example 5.4). The
frequencies presented in this column and in the column headed ‘s = 0.8’ are
depicted in Fig. 5.1. It appears that f0 decreased in later generations less
than calculated for s = 0.8: from population F8 onward the actual values
for f0 were somewhat higher than the calculated values. Some tentative
explanations for this are given at the end of the present section.

Suneson (1956) advocated the so-called evolutionary plant breeding method. It
is based on the thought that natural selection in a genetically heterogeneous
population favours, for certain traits, the same phenotypes as preferred by the
breeder. The improvement of the population will be slow, but in the long run
sufficient for obtaining attractive plant material. Example 5.4 provides some
results.
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Table 5.1 The (expected) frequency of male sterile plants (with genotype mm) in suc-

cessive generations. The genotypic composition of the initial population is ( 1
4
, 1

2
, 1

4
). The

relative fitness of the male sterile plants is 1−s. The column headed by ‘Observed frequency’

presents actual data obtained from barley (Baltjes, 1975)

Frequency of male sterile plants expected for Observed

Population s = 0 s = 0.6 s = 0.8 s = 1 frequency

F2 0.250 0.250 0.250 0.250

F3 0.208 0.186 0.177 0.167

F4 0.159 0.124 0.122 0.100 0.060

F5 0.125 0.082 0.069 0.056

F6 0.098 0.054 0.042 0.029 0.037

F7 0.078 0.035 0.025 0.015 0.023

F8 0.062 0.023 0.015 0.008 0.020

F9 0.016 0.009 0.010

F10 0.010 0.005 0.013

F11 0.003

F12 0.002 0.010

F13 0.001 0.006

(i)

(ii)

Fig. 5.1 The frequency of male sterile plants, with genotype mm, in successive generations.
The genotypic composition of the original population was ( 1

4
, 1

2
, 1

4
). (i) Data calculated for

a relative fitness of the male sterile plants equal to 1 − s = 0.2, and (ii) observed data in
barley (Baltjes, 1975)

Example 5.4 To test the ‘evolutionary plant breeding method ’ hypothesis,
Suneson developed broad base populations by open pollination of male sterile
lines. He developed Composite Cross XXI by growing 6200 spring barley
varieties next to male sterile barley plants. The seed harvested from the male
sterile plants was used as the source population. This population was grown
for many years/generations. Baltjes (1975) studied, within the same growing
season, many generations, as derived in Wageningen, The Netherlands. A
significant improvement in resistance to powdery mildew appeared. As for
yield, however, no clear effect was observed: relative to the check variety
Zephyr, the F4 population yielded 75.7% and the F13 population 83.7%.
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Baltjes (1975) observed that f0 decreased in later generations less than
calculated for s = 0.8: from F8 onward the actual frequency of plants with
genotype mm was somewhat higher than the calculated frequency. Two
tentative explanations are presented:

1. The relative fitness of male sterile plants may increase in the course of the
generations. Thus seed-set improves. This could be due to more intense
pollination because of the increase in the frequency of male fertile plants.
Indeed, Jain and Suneson (1964) reported a seed-set of 40% in generation
F18 and a seed-set of 60% in generation F21. They, therefore, assumed a
higher relative fitness of male sterile plants at a lower frequency of such
plants: 1 − s was taken to be 0.6 − f0.

2. Male sterile plants (genotype mm) produce offspring heterozygous for many
loci. Due to this highly heterozygous background-genotype these offspring
(genotype mm or Mm), may tend to be more vigorous than the more
homozygous plants (genotype mm, Mm or MM) obtained after selfing.
Constancy of q, the frequency of gene m, may occur if its potential decrease,
because of reduced fertility of mm plants, is offset by its potential increase,
due to greater vitality of mm plants belonging to the heterozygous offspring
of plants with genotype mm (Jain and Suneson, 1964).



Chapter 6
Selection with Regard to a Trait
with Qualitative Variation

Plant breeding aims at the genetic improvement of plant material. Thus among
candidates for selection (clones, (pure) lines, hybrids, families or individual
plants) those resembling most closely the ideal of the breeder are selected.
The genetic improvement due to selection often deviates from the ultimate
goal. One of the causes is that natural selection interferes with the artifi-
cial selection. Thus the phenotype(s) favoured by the breeder (under artifi-
cial selection) may differ from the phenotype(s) best prepared for ‘the struggle
for life’ (under natural selection). Another cause for a disappointing result
from artificial selection is the fact that the phenotype of a candidate is a poor
indicator of the quality of its genotype. The phenotype may give a misleading
impression of the genotype because of dominance, of epistasis or because of the
growing conditions.

This chapter considers impacts of artificial selection on the genotypic com-
position with regard to traits with qualitative variation. Some attention is given
to effects of natural selection. Selection with regard to traits with quantitative
variation is considered in later chapters.

6.1 Introduction

The genotypic composition of a population may change from one generation
to the next because of

• The mode of reproduction
This cause for a change in the genotypic composition was considered in
Chapters 2, 3 and 4. The change is not associated with changes of the allele
frequencies.

• Selection
This cause was briefly considered in the previous chapter. It will be thor-
oughly further elaborated in the present chapter, as well as in later chapters.
The change is associated with changes of the allele frequencies.

• Random variation of allele frequencies
This cause is due to a small population size. It is elaborated in Chapter 7.

In Chapter 1 it was indicated that all traits can show qualitative variation
as well as quantitative variation. Nevertheless, the effect of selection will be
considered separately for these two types of variation. Thus in the present
chapter impacts of selection on the genotypic composition for traits exhibiting
exclusively qualitative variation are considered.

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 77–106. 77
c© 2008 Springer.
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In practice, selection often aims at improvement of traits with quantitative
variation. Then one may apply within lines or families, that are acceptable
for the considered trait, additional single-plant selection for that trait (this
is called: combined selection, see Section 14.3.1). Alternatively, one may
select with regard to an additional trait among the acceptable lines or families
(this is called: simultaneous selection, see Section 12.1). The efficiency of
selection for traits with quantitative variation is often (very) low. For such
selection special procedures may be considered which are dealt with separately,
especially from Chapter 12 onward.

In Chapters 2 and 3 the development, in the course of the generations, of
the genotypic composition of a population was derived on the basis of the
implicit assumption that different genotypes possess the same vitality and the
same fertility. In the present chapter this assumption is dropped: genotypes are
assumed to differ with regard to their vitality and/or fertility. This is done with
the intention of allowing models more accurately describe the development of
the genotypic composition. A drawback is that such models will apply in
a narrower range of situations, as different selection strategies, i.e. different
patterns of genetic variation in vitality and fertility, require different models.

Selection occurs if genotypes of the zygotes differ with regard to fitness,
i.e. the expected number of (viable) seeds to be produced in the adult plant
stage of these genotypes. The expected number of seeds is, of course, the prod-
uct of the probability that a zygote with the considered genotype develops
into an adult, reproducing a plant and the average number of seeds produced
by such a plant. The probability that a zygote with a certain genotype sur-
vives until the adult plant stage is the so-called vitality (v) component of
the fitness (W ) of this genotype. It depends on the success of germination,
the competitive ability as a seedling, the growth rate, etc. The average num-
ber of seeds produced by an adult plant with the considered genotype is the
so-called fertility (φ) component of the fitness of this genotype. This number
depends on the number of ovules, the number of pollen grains, the efficiency
of fertilization, etc. Variation among genotypes with regard to fitness implies
selection.

To derive the impact of selection on the genotypic composition we consider
the fitnesses (W ) of the genotypes for some locus A-a. This locus may, for
example, control the taste of fruits or seeds (sweet or bitter). The fitnesses of
these genotypes are considered for the situation where genotypes aa, Aa and
AA have the same background genotypes, which do not interact differentially
with the genotypes for locus A-a. As in Section 2.2.1 the suffix j of the fitness
parameter Wj indicates the number of A alleles in the involved genotype.
Example 6.1-a shows how differences between genotypes with regard to vitality
and fertility affect the genotypic composition.

The fitnesses of genotypes aa and AA are often related to the fitness of
genotype Aa. This yields relative fitness, say wj , where w1 = 1. Instead
of wj one may write 1 − sj , where sj is the so-called selection coefficient.
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Example 6.1-a An imaginary example of natural selection with regard to
a trait with qualitative variation is elaborated for the F2 and F3 generations
of a self-fertilizing species. The initial cross involved genotypes aa and AA.
All plants of population F1 have genotype Aa and have, therefore, the same
fitness. The vitalities of zygotes with genotype aa, Aa and AA are assumed to
be 1

2 , 1 and 1
2 , respectively. The fertilities of adult plants with these genotypes

are arbitrarily assumed to be 32, 48 and 24, respectively. The fitnesses of
the three genotypes are thus 16, 48 and 12. The genotypic compositions,
expressed in absolute numbers of plants (#), in successive phases are

Genotype

aa Aa AA
F1: # zygotes – 1 –

# reproducing plants – 1 –
# seeds per plant – 48 –

F2: # zygotes 12 24 12
# reproducing plants 6 24 6
# seeds per plant 32 48 24

F3: # zygotes 6×32+ 1
4
(24×48) 1

2
(24 × 48) 6 × 24 + 1

4
(24 × 48)

= 480 = 576 = 432
f : zygotes 0.3226 0.3871 0.2903

The zygotic frequency of allele A in F2 is 0.5. In F3 it is 1
2 (0.3871)+0.2903 =

0.4839. The frequency of allele A is thus a little bit reduced due to natural
selection: genotype AA has a smaller fitness than genotype aa.

In the absence of selection the genotypic composition of F3 would have
been (0.375, 0.250, 0.375). Due to the high fitness of plants with genotype
Aa, the reduction of the frequency of plants with genotype Aa due to selfing
is considerably diminished.

With regard to the fitness-affecting locus A-a the considered population in its
initial state, prior to the selection, is described by

Genotype
aa Aa AA

f f0 f1 f2

W W0 W1 W2

w w0 = W0
W1

= 1 − s0 1 w2 = W2
W0

= 1 − s2

Example 6.1-b gives a numerical illustration.

Example 6.1-b The 12 F2 zygotes with genotype aa, see Example 6.1-a,
contributed eventually 6 × 32 = 192 seeds to the F3. The expected number
of seeds eventually to be produced by a zygote with genotype aa is thus 16.
Equally, the fitness of a zygote with genotype Aa amounts to 24×48

24 = 48; of
a zygote with genotype AA it is 6×24

12 = 12. The relative fitnesses of zygotes
with genotype aa, Aa or AA are 1

3 , 1 and 1
4 , respectively, implying that

s0 = 2
3 and s2 = 3

4 .
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The expected relative fitness of a zygote can easily be derived from the
above scheme:

Ew = f0w0 + f1w1 + f2w2 (6.1)

For a specific zygote, the product of its zygotic frequency and its fitness mea-
sures the effective genotype frequency, fe. To induce the sum of these
effective genotype frequencies to be equal to 1, one should calculate fe,j as:

fe,j =
wjfj

Ew
(6.2)

Example 6.1 is expressed in absolute numbers of plants. Example 6.2 presents
the same data in terms of (relative) effective genotype frequencies.

Example 6.2 The expected relative fitness of an F2-zygote is Ew = 1
3×

1
4+

1× 1
2 + 1

4 ×
1
4 = 0.6458. It is used to calculate, according to Equation (6.2),

the effective genotype frequencies in F2. The zygotic genotype frequencies
in F3 are derived from the effective genotype frequencies in F2 as for normal
self-fertilization. This proceeds as follows

Genotype
aa Aa AA

w 1
3 1 1

4

F2: zygotes: f 1
4

1
2

1
4

fe 0.1290 0.7742 0.0968
F3: zygotes: f 0.3226 0.3871 0.2903

The resulting figures are equal to those derived in Example 6.1-a on the basis
of absolute numbers of plants.

In the case of artificial selection certain genotypes do not produce offspring
at all, whereas other genotypes produce the ‘normal’ number of offspring. Such
selection is said to be complete. With natural selection certain genotypes
produce systematically more offspring than others. Such selection is said to
be incomplete (Example 6.3).

Example 6.3 Locus A-a controls the taste of fruits. Plants with genotype
aa produce sweet fruits, whereas plants with genotype Aa or AA produce
bitter fruits. The relative fitnesses (w) of the genotypes, in the case of natural
selection as well as in the case of artificial selection, could consequently be

Genotype
aa Aa AA

w: With natural selection: 1
2 1 1

With artificial selection: 1 0 0

In self-fertilizing crops the number of offspring of a plant can be determined
unambiguously. For cross-fertilizing crops, however, it is virtually impossible
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to control and/or to count the number of offspring of a plant via its pollen.
It is much easier to determine the number of offspring of a plant via its eggs.
Therefore in the following, attention is primarily given to the number of off-
spring of a plant via its eggs. The term complete selection, as mentioned
above, applies to this situation. Thus the expected number of seeds produced
by a genotype, i.e. offspring via the female gametes, is taken to be decisive for
the fitness of the genotype.

For traits with quantitative variation the actual selection will generally fail
to be complete. Thus when it is aimed to select plants with genotype Aa or
AA, due to the growing conditions, several (or many) of the selected plants
will have genotype aa. For traits with qualitative variation, however, the ideal
of complete selection may be closely approached (Example 6.4).

Example 6.4 In order to select plants with a genotype yielding resis-
tance to some disease one may inoculate seedlings representing a segregating
population with the pathogen. The susceptible plants (possibly with geno-
type rr) are eliminated and the resistant plants (possibly with genotype Rr
or RR) survive.

A somewhat hidden form of natural selection concerns selection among hap-
lotypes (in the gametophytic phase). An extreme form of such selection is
gametophytic self-incompatibility. In this case the fitness to be associated with
some haplotype, specified by its S-allele, depends on the frequency of the con-
sidered allele. (This is an example of frequency-dependent fitness selection,
see Section 6.2.) Another example of gametophytic selection is certation, i.e.
different haplotypes have different pollen tube growth rates (Example 6.5).

Example 6.5 For maize plants with genotype Rf1rf1Rf2rf2 it has been
observed that pollen grains containing two male-fertility-restoring alleles in
their haplotype, i.e. pollen grains with haplotype Rf1Rf2, were more likely
to fertilize an egg than pollen grains containing only one male-fertility-
restoring allele (with haplotype rf1Rf2) (Josephson, 1962).

Apart from incompatibility systems, gametophytic selection is a rare phenom-
enon. This is no surprise because such selection eliminates alleles, endowing
the pollen with a low vitality. Thus in this book it is assumed that gameto-
phytic selection does not produce disturbing effects and hence will be ignored.

Selection implies that different genotypes differ (systematically) in fitness.
Indeed, Lerner (1958, p. 5) spoke about ‘non-random differential reproduction
of genotypes’. It results in a change in allele frequencies. Selection within a
single pure line or within a single clone is useless as a breeding procedure,
because it will not yield a change in allele frequencies. For sanitary reasons
such selection may, however, be very useful: elimination of virus-infected plants
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from a seed potato field contributes greatly to the performance of the crop
grown from the seed potatoes.

The goal of artificial selection, i.e. the production of a cultivar better
adapted to demands of growers or consumers, has seldom coincided with the
goal of natural selection, i.e. improvement of fitness (Example 6.6).

Example 6.6 In the breeding of lettuce or cabbage, artificial selection aims
at a well-developed head, whereas natural selection may aim at an undis-
turbed development of the inflorescence. Similarly, artificial selection favours
short culms in wheat or rice, whereas natural selection may favour long culms
endowing a high competitive ability. Seed shattering is advantageous under
natural conditions, but in a cultivar it is an undesired trait. The goals of
artificial selection and natural selection may coincide for other traits, such
as winter hardiness of cereals or mildew resistance in barley.

Especially when applying the bulk breeding method in self-fertilizing crops,
natural selection may be a ‘nuisance’ to the breeder. In the bulk breeding pro-
cedure the phase of inbreeding (about five generations of selfing) precedes
the phase of selection. During the inbreeding phase artificial selection is not
applied, but natural selection may eliminate attractive genotypes. Effects of
natural selection may be minimized during this phase, for example by apply-
ing a wide interplant distance and/or harvesting the same number of inflores-
cences, fruits or seeds from each of a large number of plants. In the selection
phase artificial selection is expected to be relatively efficient, because the geno-
types of the offspring obtained from the selected plants are identical to the
(homozygous) genotypes of the selected plants. (For this reason selection in
the case of identical reproduction, see Section 8.1, is relatively efficient).

The single goal of the inbreeding phase is indeed development of homozy-
gous plant material, because such material allows selection among plants with
identical reproduction. It is attractive to shorten the duration of the inbreed-
ing phase. This is possible by application of the so-called single seed descent
(SSD-) method, proposed by Goulden (1939), and especially by means of
doubling the number of chromosomes of haploid plants (DH-method, see
Section 3.1).

The SSD-method was not applied until about 1970. To avoid selection, from
each plant (in F2 and later generations) only a single seed is used to grow the
next generation. Since the plants are not required to produce more than just
a single seed they may be grown in a regime allowing a fast succession of the
generations. Thus in spring cereals three or four generations may be grown in
one year. Natural selection will not occur in as far as it is due to differences
in fertility.

The SSD- and the DH-methods have the following advantages over the
conventional way of attaining complete homozygosity:
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• The development of homozygous plant material requires less time and space
• The methods avoid, when developing pure lines, unintentional selection of

(possibly vigorous) heterozygous plants as parents for the next generation
(such a selection would delay the progress of the inbreeding process; see
Example 6.1-a).

Example 6.7 shows that differences between SSD and DH lines cannot easily
be explained.

Example 6.7 Caligari, Powell and Jinks (1987) compared for each of five
spring barley crosses 20 pure lines, obtained from the DH-method, with 40
pure lines obtained from the SSD-method. The means of the DH-lines and
the SSD-lines were different for a number of characters. Differential (natural)
selection during the production of the two types of lines was shown to be
less likely as a cause. It was concluded that linked, epistatic loci controlling
these traits were the main cause for these differences. Apparently (natural)
selection was avoided by the application of the SSD-method.

The former conclusion may be questioned as linkage does only give rise
to small differences between the genotypic compositions of the DH-lines and
the SSD-lines. (This follows from the comparison of g11,1 and g11,∞; see
Section 3.2.2.)

The conclusions drawn when comparing results of application of the SSD-
method with results of application of conventional breeding procedures appear
to be divergent: in some cases the SSD-method was superior (see Example 6.8),
in other cases the two approaches were equivalent or the SSD-method was
inferior.

Example 6.8 Van Oeveren (1993; p. 91) compared

(i) ‘Early selection, with early generation cross selection’; and
(ii) Bulk breeding ‘where selection is postponed to a more homozygous

generation’ (obtained by application of the SSD-method).

In procedure (i) the choice of the crosses (‘cross selection’) was based on
F3-derived estimates of both the cross mean and the between line variance
(Section 11.2.3). It was followed by line selection. This study led to the con-
clusion (p. 97; loc. cit.) that ‘early cross selection is not an efficient way of
breeding. · · · the main source of error is the difference in growing conditions
between the F3-selection environment and the predicted F∞-environment’.

With procedure (ii) effects of intergenotypic competition were largely
avoided because the differences in growing conditions between the selection
environment and the commercial production environment were relatively
small. Van Oeveren (1993; p. 97) concluded: ‘The procedure of single seed
descent can produce superior inbred lines in a more consistent, cheaper and
faster way’.
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6.2 The Maintenance of Genetic Variation

In applied plant breeding there is continuous interest in the introduction
of new genetic variation. Sources for extending the genetic variation with
regard to some crop species are natural populations of the same species or of
related species. (Genetic transformation is a rather recently developed way
for extending the genetic variation to be exploited for crop improvement.)
Often such natural populations appear to accommodate a wealth of genetic
diversity. Genetic variation may also be maintained in breeding populations
of cultivated crops. This is remarkable, because natural (and/or artificial)
selection occurs generation after generation and one might speculate that this
implies a continuous reduction of genetic variation. In the absence of human
intervention genetic variation is/was, however, often maintained, notwith-
standing the continuous selection. With regard to cultivated crops one might
even state that plant breeding has stimulated the development and mainte-
nance of a wide genetic diversity. It seems that human interference promotes
an increase of the genetic diversity in the involved crop. (In contrast to this,
wild plant and animal species suffer from genetic erosion because of annihila-
tion of ecological niches due to human activities. In recent times many species
have become completely extinct.)

Ecological population genetics studies the mechanisms responsible for the
maintenance genetic diversity. In this section four mechanisms (tentatively)
explaining this seemingly paradoxical situation are elaborated, namely

1. overdominance,
2. frequency-dependent fitness,
3. recurrent mutations and
4. immigration of pollen or plants.

Overdominance

Crumpacker (1967) and Allard, Jain and Workman (1968) have presented, for
cross-fertilizing and self-fertilizing crops respectively, examples of overdomi-
nance with regard to traits controlled by a single locus. Reduced probability
of recombination alongside a certain chromosome segment gives rise to a gene
cluster. If the loci belonging to the cluster control the same trait, an oligogenic
basis for overdominance is present. (In humans such a gene cluster has been
shown to control the immune system). These few examples do not represent
the common situation.

A more realistic concept is pseudo-overdominance, due to alleles linked
in repulsion phase. An example is a chromosome segment behaving as a single
allele (because recombination within the segment hardly ever occurs). Crossing
of two homozygous genotypes, differing for such segment, yields an offspring
heterozygous for this segment which, consequently, may exceed both homo-
zygous parents; see Example 9.10.
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In 1917 Jones had already stated that hybrid vigour could be due to the
assembling of favourable alleles from each of both parents in one genotype.
Linkage of such favourable alleles to unfavourable alleles hampers fixation of
the superior heterozygous F1-genotype into an equivalent homozygous geno-
type. However, it does not exclude such fixation. Results of experiments using
electrophoresis substantiate the concept of pseudo-overdominance.

Notwithstanding the previous remarks, many population genetical models,
aimed at explaining genetic polymorphisms, have been developed on the basis
of a single locus. Population genetic theory (Li, 1976, p. 419) shows that for
loci with overdominance, i.e. s0 > 0 and s2 > 0, a stable equilibrium of
the genotypic composition may occur, notwithstanding the selection. Thus a
genetic polymorphism is maintained, and – in contrast to what was said
at the beginning of this chapter – the genotypic composition may be stable,
notwithstanding selection. The equilibrium allele frequencies can be derived
to be

qe =
s2

s0 + s2
and pe =

s0

s0 + s2
(6.3)

thus 0 < pe < 1 (see, however, Note 6.1).

Note 6.1 One may criticize the derivation undertlying Equation (6.3) on
two grounds:

1) It is based on the assumption that the preceding generation had the
Hardy–Weinberg genotypic composition. This composition applies in the
case of mass selection occurring before pollen distribution. Selection with
regard to vitality is thus, implicitly, assumed not to occur.

2) Overdominance with regard to a single locus is a rare event.

Frequency-dependent fitness

The concept of frequency-dependent fitness is based on the fascinating obser-
vation that it is, under constant ecological conditions, both rare for plants
(or animals) with a certain genotype to be completely extinct as well as rare
that the frequency of plants with the considered genotype grows unrestricted.
Apparently, there are mechanisms regulating the number of individuals with
a certain genotype in such a way, that the number increases if it is low and
that it decreases if it is high (see Example 6.9).

Example 6.9 Two examples of frequency-dependent fitness are mentioned
here:

1. The seed-set of male sterile barley plants (with genotype mm) may
depend on the frequency of such plants. Section 5.2.2 refers to the relation
w0 = 0.6 − f0.
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2. In the case of self-incompatibility, a low frequency of a genotype for the
incompatibility locus/loci tends to be associated with a higher fitness of
the genotype than the fitness of a genotype with a higher frequency.

A tentative explanation for genotypes to have a frequency-dependent fitness
is as follows. Plants with the same genotype tend to have similar demands, at
the same time. These demands are specific for the genotype. Among the plants
with a certain genotype, more plants will survive the ‘struggle’ for the same,
restrictedly available resources, as the genotype’s frequency is lower. Plants
with a genotype with a relatively low frequency may thus tend to have a rela-
tively high fitness. This phenomenon might apply to genotypes adapted to rare
environmental conditions. Such genotypes are favoured by selection. Mather
(1973) called such selection disruptive selection. It may lead to distinct types
or it may be balanced by stabilizing selection, for example by the geno-
type adapted to rare environmental conditions becoming increasingly common.

Recurrent mutations

Mutations are, in fact, the ultimate source of all genetic diversity. However,
their frequencies are generally very low (see Note 6.2). Thus in the equilibrium
between the production of a new allele and its elimination, if it does not give
rise to a better adapted phenotype, the new allele will have a (very) low
frequency. It is concluded that recurrent mutations should not be considered
as a quantitatively important factor for maintenance of genetic diversity.

Note 6.2 The frequency of the occurrence of a mutation is very low.
Furthermore, one should realize that a mutant allele is not transmitted to
the next generation when the mutation occurs outside the chain of cells con-
necting two generations, the so-called germ-line. Such mutations have no
population genetical implications. This concerns mutations in cells of roots,
stems, leaves, style, stigma, seed coat, connectivum, etc.

Immigration of pollen or plants

The effect of immigration of pollen or plants on the genotypic composition of
the considered population depends on

• the difference in the allele frequencies of ‘donor’ and ‘recipient’ and
• the extent of the immigration

Both factors may play a role in legislation concerning mutual isolation
distances required at the multiplication of seed of varieties of cross-fertilizing
crops.

It is emphasized here that introgression means the incorporation by cross-
ing and repeated backcrossing of alleles originating from a different species.
This may occur spontaneously or as a breeding activity.
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Alleles may immigrate into a population in different ways:

(i) Flow of pollen, transported by wind or by insects
(ii) Mixing, intended or not, of seed lots representing different varieties

Flow of pollen

We define q as the frequency of allele a in the recipient, qm as the frequency
of a among the immigrating pollen, and m as the proportion of immigrating
pollen among the effective male gametes. The frequency, q′, of the effective
pollen grains with haplotype a is

q′ = (1 − m)q + mqm

The case of immigrating pollen situation can be considered as a form of bulk
crossing (Section 2.2.1). According to Equation (2.2) the frequency of a in the
‘hybrid’ population will be

q1 = 1
2 (q + q′) = 1

2 [q + (1 − m)q + mqm] = q + 1
2m(qm − q)

Thus
∆q = q1 − q = 1

2m(qm − q)

This expression contains both factors mentioned before. For qm = q or for
m = 0 the allele frequency will not change. For m > 0 the expression yields
of course ∆q > 0 if qm > q and ∆q < 0 if qm < q.

If immigration occurs generation after generation, selection aiming at the
elimination of allele a will never succeed. Then, notwithstanding selection, a
genetic polymorphism is maintained.

Mixing of seed

This case is considered as immigration of sporophytes. For a diploid crop one
can then derive:

∆q = m(qm − q)

In certain situations immigration of sporophytes is applied intentionally, e.g.
as a remedy against genetic erosion in populations of a small size.

6.3 Artificial Selection

6.3.1 Introduction

When applying selection in a self-fertilizing crop it is irrelevant whether the
trait is expressed before or after pollen distribution: the plants selected are
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simultaneously selected both as female and as male plants. For annual cross-
fertilizing crops, however, the time of expression of the trait of interest, i.e.
before or after pollen distribution, and consequently the time of the selection,
has important impact on the efficiency of the selection. If the trait is expressed
after pollen distribution, there is no selection with regard to the plants as
male parents. All plants contribute pollen from which the next generation
is generated. The selection implies selection among plants as female parents.
Only the selected plants contribute eggs from which the next generation is
generated. Example 6.10 mentions for each of a few cross-fertilizing crops a
trait that is expressed either before or after pollen distribution.

Example 6.10 Traits of cross-fertilizing crops expressed before pollen
distribution are

• The colour of the midrib of leaves of maize plants: brown-midrib plants
have a lower lignin content than green-midrib plants and are more easily
digested as silage maize (Barrière and Argillier, 1993)

• The coleoptile colour of seedlings of rye
• The reaction of spinach plants to inoculation with Perenospora spinaciae

Traits of these crops expressed after pollen distribution are

• The colour of the cob of the ears of maize plants
• The colour of the kernels produced by rye plants
• The shape of the seeds produced by spinach plants (they can be smooth

or prickly)

If the genetic control of the trait of interest is characterized by incomplete
dominance the genotype of each plant (be it aa, Aa or AA) can be derived
from its phenotype. A population exclusively consisting of plants with the
desired genotype can then, under certain conditions, easily be obtained. These
conditions concern the mode of reproduction of the crop and/or the time of
the expression of the trait. Such easy and successful selection is possible:

• If the crop is a self-fertilizing species
• If the crop is a cross-fertilizing species, and if the trait is expressed before

pollen distribution
• If the crop is a cross-fertilizing species, if the trait is expressed after pollen

distribution and if the species permits selfing to be carried out successfully.
(If the latter is impossible, e.g. due to dioecy or self-incompatibility, one
could cross random plants in pairwise combinations. Later, after expression
of the trait, one may harvest the seeds due to crosses where both plants
involved appear to have the desired genotype.)

Because the case of incomplete dominance will not impose problems, in
the present chapter attention is only given to procedures for selection with
regard to a trait with qualitative variation, controlled by a single locus
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accommodating an allele with complete dominance. The desired expres-
sion for the considered trait may be due to

(i) Genotype aa
In this case allele A is to be eliminated from the population

(ii) Genotypes Aa and AA
In this case allele a is to be eliminated from the population.

Initially, it will be assumed that the candidates (lines, families or populations)
consist of an infinitely large number of plants. In practice, however, the candi-
dates will consist of a limited number of plants. Thus the minimal acceptable
number of plants per candidate will also be considered.

Selection for genotype aa

If the trait is expressed before pollen distribution, mass selection before pollen
distribution suffices to eliminate the undesired allele A at once. If the trait is
expressed after pollen distribution selfing of a large number of plants is most
appropriate. As soon as the trait is expressed, one may harvest the plants that
appear to have genotype aa. If selfing is impossible, one can cross random
plants pairwise. After expression of the trait one may harvest the seed due to
crosses where both involved plants appear to have genotype aa.

To reduce the probability of a non-negligible shift in the frequencies of alleles
at loci not affecting the selected trait, a high number of plants with genotype
aa should be retained.

Selection for genotype AA

If the desired trait expression is due to genotype AA or Aa, selection is required
to eliminate the recessive allele a, which may hide in heterozygous genotypes.
Sections 6.3.2 to 6.3.6 are dedicated to this task. In these sections procedures
are elaborated for different situations, i.e. whether

• Self-fertilization is possible or not
• The trait is expressed before or after pollen distribution

Line selection (Section 6.3.2) is the most efficient selection method if self-
fertilization is possible. It allows for complete elimination of allele a within
a short period of time. If self-fertilization is impossible, a less efficient selec-
tion method should be used. Ranked according to decreasing efficiency (in a
genetical sense) attention will be given to

• Full sib family selection (Section 6.3.3)
• Half sib family selection (Section 6.3.4)
• Mass selection (Section 6.3.5)

A somewhat different approach is genotype assessment on the basis of a
progeny test (Section 6.3.6): selection among the candidate plants only takes
place after having determined their genotype from their offspring.
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The general features of line selection are the following:

1. In as far as they are cultivated, the lines are evaluated as a whole. Lines
containing plants with genotype aa are eliminated.

2. Within retained lines, single-plant selection is either applied (combined
selection) or omitted.

3. The next generation is grown in separate plots tracing back to:

• seed produced by separate plants selected in retained lines (this proce-
dure is called pedigree selection) or

• seed produced by separate accepted lines.

The general features of family selection are

1. In as far as they are cultivated, the families are evaluated as a whole.
Families containing plants with genotype aa are eliminated.

2. Within retained families, single-plant selection is either applied or omitted
(the latter situation is elaborated in Sections 6.3.3 and 6.3.4).

3. The next generation is grown on separate plots tracing back to:

• seed produced by separate plants belonging to the evaluated (and
retained) families,

• seed produced by the evaluated (and retained) families or
• seed produced by sibs of the evaluated (and retained) families (sib

selection; see Note 6.3)

Note 6.3 Reasons to apply sib selection are

1. The evaluation is destructive or requires a cultivation procedure deviating
from the one preferred for seed production, e.g. radish.

2. At the evaluation, possibly at several locations, interfamily pollination
may occur spontaneously. It is, of course, preferable to prevent pollination
of retained families by eliminated families. This is applied in the remnant
seed procedure (Section 6.3.4), as well as at modified ear-to-row selection
(Section 14.3.1).

In Section 3.1, the terms full sib family (FS-family) and full sib mating
(FS-mating) were defined. In the case of self-incompatibility, the pairwise
crossing, required to produce an FS-family, occurs spontaneously by growing
together, but isolated from other plant material, two cross-compatible, syn-
chronously flowering genotypes. In grass breeding this is applied by growing
pairs of clones in isolation. Each FS-family constitutes a subpopulation in the
sense of Section 2.1. Thus FS-mating occurs if, within each of a number of
FS-families, either plants are crossed in pairs or if open pollination occurs.
FS-family selection is applied predominantly in crops such as sugar beet (Beta
vulgaris L.), grasses and oil palm.

Open pollination yields, after separate harvesting of the involved plants,
half sib families. These HS-families consist of plants that are each other’s
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half sibs because they descend from the same maternal parent, but possibly
from different paternal parents. (In animal breeding it is common that the
individuals belonging to the same HS-family descend from the same father.
The situation of a common father is, of course, also possible in plant breeding.)
HS-family selection is commonly applied in crops like rye, maize or grasses.

The general features of mass selection are
1. Individual plants are rejected or selected on the basis of their phenotype.

(For traits with quantitative variation each plant’s phenotype might be
evaluated on the basis of a comparison with the phenotypes of other,
unrelated plants.)

2. The offspring of all selected plants are grown in bulk.

To describe the effect of selection, the meaning of the notation introduced in
Note 2.4 is somewhat modified. The last subscript in a symbol representing
a haplotype or a genotype frequency still refers to the rank of the generation
to be generated, but in Section 6.3 this rank indicates the number of preced-
ing generations exposed to selection. The symbol designating a population as
retained after selection, differs from the symbol designating the original popu-
lation (before the selection), by addition of a prime.

6.3.2 Line selection

The trait is expressed before pollen distribution

In the source population, say G0, plants with the acceptable phenotype, due
to genotype Aa or AA, are selfed. These plants are separately harvested. The
line selection starts thus with mass selection. The offspring are grown and
evaluated ear-to-row, i.e. as separate lines. Segregating lines in this generation,
i.e. in population G1, descend from parents with genotype Aa. These lines
are eliminated before pollen release. The retained subset of lines constitutes
population G1

′. It does not anymore contain allele a.
This efficient selection procedure can be applied to self-fertilizing crops as

well as to cross-fertilizing crops. In strictly self-fertilizing crops, it does not
even matter whether the trait under selection is expressed before or after
pollen distribution. In cross-fertilizing crops the non-segregating lines may
interpollinate to cancel the decrease of the frequency of heterozygous plants
due to the selfing. This eliminates possible inbreeding effects with regard to
quantitative traits.

The trait is expressed after pollen distribution

It was stated above that in strictly self-fertilizing crops the time of the expres-
sion of the trait under selection, i.e. before or after pollen release, does not
matter. The present paragraph concerns, therefore, cross-fertilizing crops.
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The procedure starts with the selfing of many plants of population G0. After
expression of the trait of interest, one can distinguish plants with genotype
AA or Aa from plants with genotype aa. Elimination of plants with genotype
aa yields population G0

′. The line selection starts thus with mass selection.
The further pathway of the procedure depends on whether a ‘small’ or a

‘large’ number of seeds are obtained after selfing of a retained plant. Note 6.4
considers the question ‘What is a large number of seeds?’

Note 6.4 The number of plants evaluated per line, say N , is often small;
possibly simply due to the fact that the enforced selfings yield small numbers
of seeds. Hopefully it is large enough for the probability of absence of plants
with genotype aa, in a line obtained from an Aa plant, to be small. The value
for N , such that this probability is not more than 0.01, is interesting. Say,
k = the number of plants with genotype aa among the N plants in a line.
The probability of absence of plants with genotype aa, in a line obtained
from an Aa plant, is:

P (k = 0|parental genotype Aa) =
(

3
4

)N

For N > 16, this probability is less than 0.01.

• A small number of seeds are available per line
Population G1 consists of ear-to-row grown, mutually isolated lines. Open
pollination occurs spontaneously within each line. After expression of the
trait of interest, one can distinguish segregating lines, descended from plants
with genotype Aa, from non-segregating lines, descended from plants with
genotype AA. The set of non-segregating lines constitute population G1

′.
Allele a is absent in this population.
Population G1

′ is harvested in bulk. The seeds constitute population G2.
Spontaneous open pollination in G2 eliminates the deficit of heterozygous
plants, which is due to the selfing and/or within-line open pollination.

• A large number of seeds are available per line
If the selfing of the plants yields large numbers of seeds, the remnant seed
procedure can be applied. Per line a part of the seed representing the line
is grown and evaluated ear-to-row. Open pollination among the lines con-
stituting population G1 may occur. After expression of the trait of interest,
one can identify the non-segregating lines. (These constitute population
G1

′). Allele a is absent in G1
′. Remnant seed representing the lines con-

stituting population G1
′ is bulked. Spontaneous open pollination among

the plants constituting the bulk removes the deficit of heterozygous plants
which is due to the selfing.
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In both the above procedures allele a is absent already in population G1
′.

However, the second approach avoids the laborious mutual isolation of the
lines required for the first approach.

A trait of an autotetraploid crop expressed after pollen distribution

In generation G0 many plants are selfed. After expression of the trait of inter-
est, but before harvest time, plants with genotype aaaa are discarded. Popu-
lation G1 consists thus of lines originating from plants with genotype Aaaa,
AAaa, AAAa or AAAA. (Table 3.5 presents for each parental genotype the
genotypic composition of the line). The lines constituting generation G1 are
grown in mutual isolation. Lines obtained from a parental plant with genotype
Aaaa or AAaa will segregate (see, however, Note 6.5).

Note 6.5 In population G1 the number of plants per line, say N , should of
course be large enough to ensure that the probability of absence of nulliplex
plants in lines obtained from Aaaa or AAaa plants is small.

Say, k = the number of nulliplex plants among the N plants in the line.
Then:

P (k = 0|parental genotype Aaaa) =
(

3
4

)N

P (k = 0|parental genotype AAaa) =
(

35
36

)N

These probabilities are less than 0.01 for N > 16, and N > 163, respectively.
The number of plants per line should thus amount at least to 163 to identify
(and consequently eliminate) lines descending from Aaaa or AAaa.

Population G1
′ consists of the subset of lines obtained from plants with geno-

type AAAa or AAAA. Random mating occurs within each line belonging to
G1

′. The haplotypic composition of the gametes produced by a line obtained
from a AAAa plant can be derived to be

Haplotype
aa Aa AA

f 1
24

10
24

13
24

The genotypic composition of the progeny of this line is

Genotype
aaaa Aaaa AAaa AAAa AAAA

f 1
576

20
576

126
576

260
576

169
576

This implies that the probability that not a single aaaa plant occurs in the
progeny is high if the progeny size is (rather) small. One may accept that risk
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and bulk the progenies from lines descending from AAAa with the progenies
from lines descending from AAAA. (Complete elimination of allele a may be
pursued by genotype assessment, see Note 6.6.)

Note 6.6 Lines descending from AAAa can be distinguished from lines
descending from AAAA, by separate pollination of aaaa plants with pollen
collected from each line.

The genotypic composition of families obtained from AAAa is

Genotype
aaaa Aaaa AAaa AAAa AAAA

f 1
24

10
24

13
24 0 0

Families consisting of at least 109 plants are then required to ensure that

P (k = 0|line from AAAa)

is less than 0.01.

6.3.3 Full sib family selection

FS-family selection is a very efficient procedure. It deserves application when-
ever the efforts required to produce the families are not unsurmountable. The
crossing should thus not be too laborious. In crops where a successful pollina-
tion yields only one seed one might consider the application of half sib family
selection to half sib families obtained by open pollination, but one should
realize that this cheap alternative is rather inefficient (see Section 6.3.4). In
self-incompatible crops yielding only one seed after a successful pollination
(like in grasses or rye) the production of large numbers of seed per cross does
not require large efforts if one bags together one or more inflorescences of the
two plants to be crossed.

The trait is expressed before pollen distribution

The genotypic composition of the original population G0 is (f0,0, f1,0, f2,0).
Plants with genotype aa will not be involved in a pairwise cross. This implies
that mass selection, transforming G0 into G0

′, with genotypic composi-
tion (0, f1,0

′, f2,0
′), is applied prior to the pairwise crossing generating the

FS-families.
With regard to pairwise crosses between plants with genotype Aa or AA

one can distinguish three types of crosses. Table 6.1 presents for each type of
cross its frequency and the genotypic composition of the obtained FS-family.
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Table 6.1 Pairwise crosses between plants with genotype Aa or AA: the types

of crosses, their frequencies and the genotypic composition of the obtained FS-

families

Genotype

Type of cross Frequency aa Aa AA Segregation visible

1.Aa × Aa f1
′2 1

4
1
2

1
4

yes

2.AA×
×Aa 2f ′

1f ′
2 0 1

2
1
2

no

3.AA × AA f ′2
2 0 0 1 no

FS-families of type 1 will segregate before pollen distribution with a proba-
bility of at least 0.99 if they consist of at least 16 plants. Elimination of such
families transforms population G1 into population G1

′. The families consti-
tuting G1

′ are grown in mutual isolation. (The reason for this is explained
in Note 6.7). Population G2 consists then of family-derived bulks. In con-
trast to bulks tracing back to a cross of type 3, bulks tracing back to a
type 2 cross may contain aa plants. For this reason, the bulks are separately
grown and evaluated. The genotypic composition of a bulk descending from
a type 2 FS-family is

(
1
16 , 6

16 , 9
16

)
. If such bulks consist of at least 72 plants,

they will segregate before pollen distribution with a probability of at least
0.99 (Why?). Elimination of these bulks before pollen distribution transforms
population G2 into population G2

′, consisting of bulks descending from type
3 FS-families.

This procedure leads to absence of allele a in generation G2
′. (With line

selection, Section 6.3.2, this goal is already attained in population G1
′.) The

slight inbreeding in generation G1
′ is undone by random mating (across bulks)

in population G2
′. FS-family selection involving a single generation with

FS-mating is thus an attractive selection procedure for obligatory cross-
fertilizing crops.

Note 6.7 Mutual isolation of the FS-families is applied because type 2 fami-
lies contain the a allele to be eliminated. Such families should not pollinate
type 3 families.

Isolation enforces random mating within each of the families constituting
G1

′, i.e. FS-mating at the level of the superpopulation. It may be replaced
by a number of pairwise crosses within each acceptable family. The seeds
resulting from these crosses are bulked per family. For the rest the procedure
proceeds as described in this section.

The effect of avoiding FS-mating, by not applying in population G1
′ mutual

isolation of the non-segregating families of type 2 and 3, is now considered.
The genotypic compositions of populations G1 and G1

′ are (f0,1, f1,1, f2,1)
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and (0, f1,1
′, f2,1

′), respectively, where

f1,1
′ =

1
2

(
2f1,0

′f2,0
′)

1 − f1,0
′2 =

f1,0
′

1 + f1,0
′

because f2,0
′ = 1 − f1,0

′ and, consequently, f2,1
′ = 1

1+f1,0
′ .

The haplotypic composition of the gametes produced by population G1
′

is (g0,2, g1,2), where

g0,2 = q1
′ = 1

2f1,1
′ =

1
2f1,0

′

1 + f1,0
′ =

q0
′

1 + 2q0
′

This implies

qt
′ =

qt−1
′

1 + 2qt−1
′ =

qt−2
′

1+2qt−2
′

1 + 2
(

qt−2′

1+2qt−2
′

) =
qt−2

′

1 + 4qt−2
′

thus

qt
′ =

q0
′

1 + 2tq0
′ (6.4)

Effectively the absence of mutual isolation implies pairwise crossing of plants,
belonging to non-segregating families, with genotype Aa or AA. It is an
ineffective procedure: complete elimination of allele a is only asymptoti-
cally attained! Application of this procedure in practical breeding, e.g. in
sugar beet breeding aiming at quantitative traits like sugar content and root
weight, is in fact inefficient.

We consider now h, i.e. the number of generations with FS-family selec-
tion with regard to a trait expressed before pollen distribution required to
half q0

′, the initial frequency of allele a, when avoiding FS-mating. The above
equation implies

qh
′ =

q0
′

1 + 2hq0
′ =

q0
′

2

Thus
1 + 2hq0

′ = 2

if
h =

1
2q0

′ (6.5)

To reduce the probability of random fixation (see Chapter 7), the number
of non-segregating bulks should amount to at least 25.
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The trait is expressed after pollen distribution

A large number of plants belonging to population G0 is used for making pair-
wise crosses. After expression of the trait, crosses involving one or two plants
with genotype aa are eliminated. The plants involved in the other crosses are
retained as population G0

′. In this way only the three types of FS-families
distinguished in Table 6.1 occur in population G1. Because these types differ
with regard to the frequency of allele a, the families constituting G1 are grown
in mutual isolation to enforce FS-mating. (Note 6.7 indicates that the mutual
isolation of the families may be replaced by controlled pairwise crossing within
each FS-family).

FS-families of type 1 will segregate after pollen distribution. These families
are eliminated. The retained families constitute generation G1

′. They are sep-
arately harvested as family-derived bulks. In generation G2 these bulks are
grown in mutual isolation. Bulks descending from a type 2 cross will segregate
after pollen distribution. These bulks are to be eliminated. The other bulks,
constituting generation G2

′, do not contain allele a. The seeds produced by
these bulks can be pooled. This selection procedure leads to absence of allele
a in population G2

′. (With line selection, Section 6.3.2, this goal is already
attained in population G1

′.)
Open pollination in generation G3 will eliminate the homozygosity due to

the inbreeding enforced by the mutual isolation of the FS-families and the
bulks.

The mutual isolation of the family-derived bulks constituting population G2

may be omitted if each family-derived bulk is represented by a large amount
of seed. A part of this seed (at least 72 seeds per bulk) is used to identify
in generation G2 bulks not containing allele a. After expression of the trait,
mixing of remnant seed representing non-segregating bulks yields generation
G2

′, in which allele a is absent.
In the present as well as in the previous section a few efficient selection

procedures were described in just a few words. One should realize, however,
that their execution can be quite laborious. Three aspects are briefly consid-
ered:

(i) Mutual isolation implies a lot of additional work.
It is interesting to compare procedures employing mutual isolation of the
FS-families (and implying enforced FS-mating) with procedures avoid-
ing such isolation. In Note 6.7 the comparison was elaborated for traits
expressed before pollen distribution. We now consider FS-family selection
with regard to a trait expressed after pollen distribution in the absence
of mutual isolation of the families.

In each generation pairwise crosses are made at random, within as
well as between FS-families. After expression of the trait only crosses
involving plants belonging to non-segregating families are retained. Thus,
effectively only plants with genotype Aa or AA belonging to families of
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type 2 or 3 are crossed. This coincides with the ineffective procedure
described in Note 6.7.

(ii) To reduce the probability of random fixation with regard to loci not
involved in the genetic control of the considered trait, one should start in
generation G0 with making a lot of selfings (when applying line selection)
or a lot of crosses (when applying FS-family selection).

(iii) To identify – with some minimum probability – potentially segregating
lines, families or family-derived bulks, the number of plants representing
such entries should not be to small. Above it was said that family-derived
bulks should consist of at least 72 plants. For oil palm this requires, at a
commercial plant density, about 5,000m2 per entry!

6.3.4 Half sib family selection

The trait is expressed before pollen distribution

As with FS-family selection with regard to a trait expressed before pollen
distribution, the genotypic composition of the initial population G0, i.e.
(f0,0, f1,0, f2,0), is first transformed by mass selection into that of G0

′, i.e.
(0, f1,0

′, f2,0
′). Open pollination among the plants constituting G0

′ yields two
types of HS-families at harvest. Table 6.2 gives their genotypic compositions.

These families are grown and evaluated ear-to-row. Elimination, before
pollen distribution, of segregating HS-families, i.e. type 1 families, transforms
population G1 into G1

′. The genotypic composition of G1
′ is (0, f1,1

′, f2,1
′)

with
q1

′ = 1
2f1,1

′ = 1
2q0

′

A single generation with HS-family selection leads thus to halving of the
frequency of allele a. This implies for continued HS-family selection:

qt
′ = (1

2 )tq0
′ (6.6)

Complete elimination of allele a is only asymptotically attained. The effort
required for a progressively smaller decrease of the frequency of allele a

Table 6.2 Open pollination among plant with genotype Aa or AA: the mater-

nal genotypes, their frequencies and the genotypic composition of the obtained HS-

families

Maternal genotype Frequency Genotypic composition of Segregation visible

the obtained HS-family

aa Aa AA

1. Aa f1,0
′ 1

2
q0

′ 1
2

1
2
p0

′ yes

2. AA f2,0
′ 0 q0

′ p0
′ no
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becomes progressively greater, see Note 6.8. This approach (and the pro-
cedure described hereafter) is very inefficient when the aim is to eliminate
completely a recessive allele.

Note 6.8 In population Gt+1 the genotypic composition of a type 1 HS-
family is (1

2qt
′, 1

2 , 1
2pt

′). The probability that a type 1 HS-family consisting
of N plants does not segregate is (1− 1

2qt
′)N . Identification of a type 1 HS-

family with a probability of at least 0.01 requires that the family size is at
least log(0.01)

log(1− 1
2 qt

′)
. The smaller qt

′ the higher the required number of plants

per HS-family. For qt
′ = 0.05 it should be 182 plants, and for qt

′ = 0.01 it
should be as many as 919 plants.

Identification of potentially segregating HS-families requires thus ever
increasing family sizes!

The trait is expressed after pollen distribution

If the trait is expressed after pollen distribution one should prevent inter-
pollination between type 1 and type 2 HS-families (Table 6.2). This may be
done by:

1. mutual isolation of the HS-families or
2. application of the remnant seed procedure.

Mutual isolation of the HS-families

Mutual isolation of the HS-families constituting population G1 imposes HS-
mating within each family. After expression of the trait, type 1 families and
type 2 families can be distinguished. Elimination of type 1 families transforms
population G1 into G1

′. Plants in G1
′ are separately harvested and their seed is

grown ear-to-row in generation G2. Mutual isolation induces again HS-mating.
Effectively only type 2 families, harvested from in type 2 families from plants
with genotype AA, are retained. Type 1 families are eliminated.

The initial population G0 is transformed by mass selection into G0
′ with

genotypic composition (0, f1,0
′, f2,0

′). HS-family selection after expression
of the trait transforms population G1 into G1

′ with genotypic composition
(0, f1,1

′, f2,1
′), with

q1
′ = 1

2f1,1
′ = 1

2q0

Within the type 2 families of population G1
′, the frequency of pollen with

haplotype a is q1
′. This implies that the frequency of Aa plants in the type 2

families constituting population G2 is q1
′. Thus

q2
′ = 1

2q1
′

Except after the HS-family selection in population G1, this procedure implies

qt+1
′ = 1

2qt
′
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The reduction of the frequency of allele a is thus 50% per generation when
applying the present procedure for HS-family selection with regard to a trait
expressed after pollen distribution. The efforts required for such progressively
smaller reductions become progressively larger. The reduction requires con-
tinued HS-mating. The eventual goal, i.e. complete elimination of allele a is
only asymptotically attained. It is concluded that this procedure is not to be
recommended.

Application of the remnant seed procedure

Application of the remnant seed procedure is quite common for traits
expressed after pollen distribution. With this procedure each HS-family is
sown at two dates in such a way that the first sown part of each family can
be evaluated before the later sown part distributes pollen. On the basis of
observations concerning the first sown set of families, one eliminates, before
pollen distribution, all type 1 families from the later sown set. For annual crops
the sowing of the two sets of families may occur in two successive years. The
progress is then rather slow. A faster procedure is cultivation of the first and
the second set in such a way that an additional growing season is not required.
This may imply use of a greenhouse or cultivation in the other hemisphere.

The reduction of the frequency of allele a is the same as the reduction at
selection with regard to a trait expressed before pollen distribution. The fre-
quency of allele a thus obeys Equation (6.6). However, the procedure requires
more effort than selection with regard to a trait expressed before pollen
distribution, and it tends to last longer.

In comparison to mutual isolation of the HS-families, the remnant seed
procedure has the advantage of avoiding continued HS-mating as well as the
efforts required for mutual isolation. Note 6.9 concerns some historical facts
as well as some concluding remarks concerning HS-family selection.

Note 6.9 The terms ‘ear-to-row selection’ (Allard, 1960, p. 189) and ‘mod-
ified ear-to-row selection’ (Lonnquist, 1964) only imply separate cultivation
of progenies. Because mutual isolation is not necessarily required these terms
are meaningless in the context of breeding procedures. Poehlman and Sleper
(2006) used the term ‘ear-to-row breeding’ for a procedure (in fact for the
so-called Ohio-method for ear-to-row breeding), that we refer to as rem-
nant seed procedure. This procedure is originally due to the German breeder
Roemer. With the so-called Illinois-method of ear-to-row breeding the best
plants are selected from the best families (in this book this is called: com-
bined selection). One should, consequently, be careful with using the term
‘ear-to-row selection’. The separate sowing of lines or families may, however,
efficiently be called ‘ear-to-row planting’.

None of the HS-family selection procedures leads to complete elimination
of allele a within a few generations. The frequency of a approaches the value 0



6.3 Artificial Selection 101

asymptotically. Certainly application of line selection or FS-family selection
in stead of HS-family selection is to be advised.

Again (like at the end of Section 6.3.3) attention is drawn to the probabil-
ity of fixation: to keep this probability small the number of type 2 HS-families
should never be less than 25.

6.3.5 Mass selection

In the case of mass selection, open pollination occurs. The haplotype fre-
quencies among the female gametes may then deviate from the haplotype
frequencies among the male gametes. Thus parameters are introduced to
designate female and male haplotype frequencies. Table 6.3 describes the
process of selection in terms of these parameters.

For the eggs giving rise to population Gt+1, the frequencies of haplotypes
a and A are represented by e0,t+1 and e1,t+1, respectively. They are equal to
the allele frequencies in population Gt

′, the part of parental population Gt

surviving the mass selection. For the pollen giving rise to population Gt+1,

Table 6.3 The process of mass selection and the notation used to indicate generations

and to describe genotypic compositions, allele frequencies and haplotypic compositions
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the frequencies of haplotypes a and A are represented by s0,t+1 and s1,t+1,
respectively. They adopt the following values:

• In the case of selection with regard to a trait expressed before pollen dis-
tribution they are equal to the allele frequencies in generation Gt

′.
• In the case of selection with regard to a trait expressed after pollen distrib-

ution they are equal to the allele frequencies in generation Gt, the original
parental population.

The trait is expressed before pollen distribution

The initial population G0, with genotypic composition (q0
2, 2p0q0, p0

2) is
transformed before pollen distribution into population G0

′, with genotypic
composition (0, f1,0

′, f2,0
′) and allele frequencies:

q0
′ = 1

2f1,0
′ =

p0q0

1 − q0
2

=
q0

1 + q0

and
p0

′ = 1 − q0
′ =

1
1 + q0

The haplotypic composition of the gametes produced by G0
′ is (g0,1, g1,1),

where g0,1 = q0
′ and g1,1 = p0

′. Thus q1, the frequency of allele a in population
G1, is equal to q0

′, or
q1 =

q0

1 + q0

Likewise one can derive

q2 =
q1

1 + q1
=

q0
1+q0

1 + q0
1+q0

=
q0

1 + 2q0

For Gt this means
qt =

q0

1 + tq0
(6.7)

This equation resembles Equation (6.4), derived for continued FS-family selec-
tion with regard to a trait expressed before pollen distribution at avoidance
of FS-mating.

As in Note 6.7, the number of generations required to half the initial
frequency of allele a is considered. Equation (6.7) implies

qh =
q0

1 + hq0
= 1

2q0

This applies if
h =

1
q0

(6.8)

When q0 ≈ 1 the frequency of allele a is approximately halved when applying
mass selection for a single generation, but if q0 ≈ 0 mass selection should be
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applied for numerous generations for that (which then implies a very small
actual reduction of q). It is noteworthy that the present value for h is twice
that derived for FS-family selection in absence of FS-mating (Equation (6.5)).

The reduction of the frequency of allele a due to elimination, before pollen
distribution, of plants with genotype aa is illustrated in Example 6.11.

Example 6.11 A trait expressed before pollen distribution and controlled
by locus A-a is considered. Plants with genotype aa are eliminated prior to
pollen distribution. The frequency of allele a in populations G1,G2,G3 and
G4 is calculated by means of Equation (6.7) for each of three values of q in
the initial population (see also Example 6.12). This yields

q
G0 0.80 0.50 0.20
G1 0.44 0.33 0.17
G2 0.31 0.25 0.14
G3 0.24 0.20 0.13
G4 0.19 0.17 0.11

It appears that the reduction of the frequency of allele a is greater as q is
higher. For q0 = 0.2, four generations with mass selection do not yet suffice
to halve the initial allele frequency.

The lessening in the reduction of the frequency of a is caused by the fact that
relatively more and more a alleles remain hidden in heterozygous genotypes.
The total frequency of a alleles is q2 + pq. An ever increasing portion, i.e.

pq

q2 + pq
= p

occurs in heterozygous plants, which are not eliminated.
Complete elimination of allele a is achieved asymptotically. Mass selection

is only efficient in improving a population as long as the population contains
plants with the undesired phenotype in a high frequency.

The trait is expressed after pollen distribution

Population Gt, with genotypic composition (f0,t, f1,t, f2,t), is transformed by
selection into Gt

′, with genotypic composition (0, f1,t
′, f2,t

′). According to
Table 6.3, the haplotypic composition of the effective pollen produced by Gt,
i.e. (s0,t+1, s1,t+1), is equal to (qt, pt). The effective eggs are produced by Gt

′.
Their haplotypic composition, i.e. (e0,t+1, e1,t+1), is equal to (qt

′, pt
′), where

qt
′ = 1

2f1,t
′. The genotypic composition of Gt+1 is (q1qt

′, qtpt
′ + qt

′pt, ptpt
′).
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Example 6.12 A trait expressed after pollen distribution and controlled
by locus A-a is considered. Plants with genotype aa are eliminated after
pollen distribution. The frequency of gene a in populations G1,G2,G3 and
G4 is calculated for each of three values of q in the original population. This
yields

q
G0 0.80 0.50 0.20
G1 0.62 0.42 0.18
G2 0.52 0.36 0.17
G3 0.43 0.31 0.16
G4 0.37 0.28 0.15

According to Equation (2.2), derived for the population resulting from a bulk
cross, the frequency in Gt+1 of allele a is qt+1 = 1

2 (qt + qt
′).

A simple formula to express qt in terms of t and q0 does not exist.
Calculations corresponding to the selection process should thus be carried
out repeatedly in order to derive qt. Results of such calculations are given by
Example 6.12.

Comparison of Examples 6.11 and 6.12 shows that, for the same value for q0,
the reduction of the frequency of the undesired allele a,∆q = q0−q1, is twice as
large as at mass selection after pollen distribution. For example the reduction
from 0.50 to 0.33 for mass selection before pollen distribution is twice as large
as that from 0.50 to 0.42 for mass selection after pollen distribution.

Generally, it may be stated that mass selection with regard to a trait
expressed after pollen distribution should only be applied as long as the fre-
quency of a is larger than 1

2 . For smaller values of q its reduction due to
selection is too small to be of practical significance. (By the way the reduc-
tion of the frequency of allele m, which conditions in homozygous state male
sterility, see Section 5.2.1, proceeds like the reduction of allele a under the
conditions considered here.)

6.3.6 Progeny testing

With the remnant seed procedure, the genetic quality of a (parental) plant is
derived from the performance of its progeny. When dealing with an annual
plant species, the parent plants do not exist any more at the time when
the performance of their offspring is known. The selection, on the basis of
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the observed performances, is then necessarily among sibs of the evaluated
progenies. With recurrent selection procedures the selection programme is
continued on the basis of S1-lines representing the parent plants producing
well-performing families. (A justification for this was given in Section 3.2.3,
see Note 3.10.)

When, however, vegetative maintenance of the parent plants is possible, the
parents might still be available after the evaluation of their progeny. In this
situation it does not matter whether the trait is expressed before or after
pollen distribution. The selection among the (parental) candidate plants is
based on the performances of their offspring.

For many crops, vegetative maintenance after the first reproductive phase
is possible. It occurs spontaneously with perennial crops, but it may also
be imposed by applying some intervention, e.g. tissue culture. In the case
of vegetative maintenance one may decide, on the basis of the performance
of their offspring, which parental plants deserve to be selected. The selection
is based on a progeny test. In animal breeding this is a frequently applied
procedure. Among crops the procedure may be applied to herbaceous species
(such as grasses, potato (Solanum tuberosum L.), asparagus), but especially
to woody species, such as coconut (Cocos nucifera L.), oil palm (Elaeis guine-
nensis Jacq.), or Robusta coffee (Coffea canephora Pierre ex Froener).

The offspring to be evaluated can be of different types, viz.

• S1-lines
• FS-families obtained from pairwise crosses, e.g. in the case of a diallel set

of crosses or when test-crossing candidate plants with a homozygous
recessive genotype

• HS-families obtained after open pollination, possibly as part of a polycross

To reduce the probability of random fixation the number of progenies should
be high enough to retain for continued breeding work at least about 25 parental
genotypes.

S1-lines

Progeny testing involving S1-lines is a very effective procedure. It allows for
easy and complete elimination of allele a, because it allows for discrimination
between parental plants with genotype AA and parental plants with genotype
Aa.

FS-families

FS-families are obtained by pairwise crosses between parental plants with
genotype Aa or AA. On the basis of the progenies one can distinguish
parental plants with genotype AA from parental plants with genotype Aa (see
Example 6.13).
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Example 6.13 FS-families resulting from a diallel set of crosses, excluding
selfings and reciprocal crosses, may segregate (s) or may not segregate (ns)
with regard to their genotype for locus A-a.

Consider the FS-families from such set of crosses involving parental
plants P1, . . . ,P5, all with phenotype A·,

�����♂
♀

P2 P3 P4 P5

P1 ns ns ns ns
P2 s ns s
P3 ns s
P4 ns

If both parents are heterozygous, the involved FS-family will segregate. Thus
parents P2,P3 and P5 must have genotype Aa. These parents should be
eliminated. Further breeding work is done with the remaining parents. (If
none of the FS-families segregates, no more than one of the parents will have
genotype Aa.)

Test-crossing of each of N parental plants with a plant with the recessive
genotype aa is a simpler procedure for identifying parents with genotype AA
among parents with phenotype A·. Instead of 1

2N(N −1) FS-families obtained
with a diallel set of crosses, only N FS-families have to be produced and
evaluated. Furthermore the family size required for identification of potentially
segregating families is only 7 (instead of 16).

HS-families

In the case of a polycross, a HS-family is harvested for each participating
parental genotype, represented either by a single plant or by a clone. On the
basis of an evaluation of the HS-families one can distinguish parents with
genotype AA from parents with genotype Aa. Allele a can be completely
eliminated by a single generation with application of progeny testing. In
the case of a dioecious crop both female and male genotypes/clones should
function as a polygamic parent. (Why?)

In fact polycrosses or diallel crosses are predominantly applied to determine
general and specific combining ability with regard to quantitative variation.
They are applied when the aim is to develop a synthetic variety or a hybrid
variety. Test-crossing is mainly applied in linkage studies. Thus the proce-
dures described in this section are hardly used in practice when the aim is
to eliminate allele a. Progeny testing is, however, an important procedure for
improving traits with quantitative variation, e.g. in oil palm.



Chapter 7
Random Variation of Allele Frequencies

A small population size is due to a small number of effective fusions between a
female and a male gamete. In this case the population is based on a small sam-
ple of male and female gametes. The sampling process implies that the allele
frequencies behave as random variables. The probability that the frequency of a
certain allele becomes either zero or one, this is called fixation, is larger as the
population size is smaller. Due to the process of sampling of a small number
of gametes, the genetic diversity becomes inevitably smaller in course of the
generations. The probability of gene fixation will be shown to depend on the
population size and on the mode of reproduction.

7.1 Introduction

In the preceding chapters it was mostly (implicitly) assumed that the consid-
ered population consisted of infinitely large numbers of plants. In this chapter,
population genetic effects of a restricted number of plants, which constitute
a genetically heterogeneous population, are considered. At a small population
size the allele frequencies for loci controlling traits not under selection pres-
sure behave as random variables. This applies to all loci in the case of lines or
families maintained, at a breeding institution or in a gene bank, in the absence
of selection. It also applies to loci controlling traits which are not under selec-
tion pressure, and which are not linked to other loci controlling traits under
selection pressure.

Random variation of the allele frequencies implies variation in the genotypic
composition from one generation to the next. The smaller the population size,
the higher the probability of a certain difference between the actual allele
and/or genotype frequencies and their values expected when assuming that
the population size is infinite (see Example 7.1 and 7.2).

In the course of the generations, the probability that the frequency of
some allele of some locus assumes either the value 0 or 1, say: the proba-
bility of gene fixation, increases steadily. Such fixation implies loss of genetic
variation. This may be conspicuous with regard to a trait with qualitative
variation (e.g. the colour of cabbage heads), or inconspicuous with regard
to a trait with quantitative variation (e.g. protein content of the achenes of
sunflower).

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 107–117. 107
c© 2008 Springer.
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Example 7.1 An F2-population consists of N plants, n of which have a
homozygous genotype (aa or AA). The random variable n has a binomial
probability distribution with parameters p, equal to 1

2 , and N . In shorthand

n � b( 1
2 , N)

The expected value of n is
En = 1

2N

The probability that n deviates more than 10% from its expected value
amounts to

P

( |n − 1
2N |

N
> 0.1

)
= 2P (n − 1

2N > 0.1N) = 2P (n > 0.6N)

For N = 10 this amounts to 0.344 (Pearson and Hartley, 1970, Table 37).
For large values of N the probability distribution for n can satisfactorily be
approximated by

En +
√

1
2 × 1

2 × Nχ = 1
2N + 1

2

√
Nχ

where χ represents the standard normal distribution N (0, 1). This implies
that, for N = 100, the above probability can be approximated by

2P (n > 60) ≈ 2P (50 + 5χ > 59.5) = 2P (χ > 1.9) = 0.057

(Pearson and Hartley, 1970, Table 1).
The probability that the actual number of homozygous plants deviates

more than 10% from its expected values is thus shown to depend strongly
on the population size.

Example 7.2 Assume that seeds, obtained by harvesting a number of
plants in bulk, represent a population with genotypic composition (0.1, 0.1,
0.8) for locus A-a, i.e. p = 0.85. Next season N plants are grown. These
consist of n0 plants with genotype aa, n1 plants with genotype Aa and n2

plants with genotype AA. The probability distribution for n0, n1 and n2 is
given by the multinomial probability distribution function:

P (n0 = n0; n1 = n1; n2 = n2|Σni = N) =
N !

n0!n1!n2!
0.1n00.1n10.8n2

For N = 10 the probability P (n0 = 1;n1 = 0;n2 = 9), implying p = 0.9,
is 0.1343. The probability P (n0 = 0;n1 = 0;n2 = 10), implying P = 0.95,
is also 0.1343. The probability of fixation is P (n0 = 0;n1 = 0;n2 = 10) +
P (n0 = 10;n1 = 0;n2 = 0) = 0.1074.

For N = 100 the probability of fixation, i.e. P (n0 = 0;n1 = 0;
n2 = 100) + P (n0 = 100;n1 = 0;n2 = 0) is only 2.04 × 10−10, and therefore
effectively nil.
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A remedy to cure loss of genetic variation is re-introduction of the original
plant material or partial exchanges with other collections.

Some aspects of the random variation of allele frequencies, including fixa-
tion, are now illustrated for the most simple situation, namely a population
with a constant size of N = 2 plants. We consider p, the frequency of allele
A of some locus A-a. There is no selection with regard to the trait(s) affected
by this locus. The probability distribution of p will be derived for successive
generations. The values which may be assumed by p are 0, 1

4 , 1
2 , 3

4 or 1. Fix-
ation implies p = 0 or p = 1. We consider Pf , the probability of fixation:
Pf = P (p = 0) + P (p =1). It will be shown that – for the described situation –
Pf increases monotonously in the course of the generations.

The probability distribution to be derived is P (p = p), where p may assume
the value 0, 1

4 , 1
2 , 3

4 or 1. It is derived from the probability distribution P (k =
k) of k, i.e. the number of gametes with haplotype A among the four gametes
giving rise, after random fusion of these gametes, to the next generation. The
probability distribution P (k = k) of k, instead of the probability distribution
P (p = p) of p, is considered because of the relation p = 1

4k.
It is assumed that the frequency of allele A in population G0, i.e. the initial

population, is equal to 1
2 . Thus p0 = q0 = 1

2 . The probability distribution
P (p

1
= p1) of p

1
, the allele frequency in population G1, follows from the

probability distribution function for k, i.e.

P (k = k) =
(

4
k

)(
1
2

)k ( 1
2

)4−k =
(

4
k

)(
1
2

)4

Thus

k P (k = k) p1(= 1
4k) P (p

1
= p1)

0 1
16 0 1

16

1 4
16

1
4

4
16

2 6
16

1
2

6
16

3 4
16

3
4

4
16

4 1
16 1 1

16

The probability distribution of p
1

is depicted in Fig. 7.1.
Because Ek = 4 × 1

2 = 2 it follows that Ep
1

= 1
2 = p0. The probability of

fixation in population G1 is

Pf,1 = 2
(

1
16

)
= 0.125

whereas
P (p

1
�= p0) = P (p

1
�= 1

2 ) =
10
16

= 0.625.

The probability distribution of p
2
, i.e. the frequency of allele A in the next

generation (in population G2) depends on the value assumed in population G1
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Fig. 7.1 The probability distribution of p
t
, the frequency of allele A in generation Gt

(t = 1, 2, 3, or 4) obtained by continued random mating starting in generation G0 with
allele frequency p0 = 0.5. The population size is always N = 2 plants

by p
1
. Thus for each possible value for p1 there exists a conditional probabil-

ity distribution for p
2
, namely P (p

2
= p2|p1). The unconditional probability

P (p
2

= p2) is equal to the expected value of P (p
2

= p2|p1), calculated across
all values possible for p1. Thus

P (p
2

= p2) =
∑
∀p1

P (p
2

= p2|p1) · P (p
1

= p1)

Because p
2

= 1
4k, the probability distribution P (p

2
= p2|p1) is identical to

the probability distribution P (k = k|p1). Thus we calculate

P (k = k) =
∑
∀p1

[(
4
k

)
p1

k(1 − p1)4−k · P (p
1

= p1)
]

Each possible value for k implies a specific value for p2. Thus, for each possible
value for k, the above sum of products can be calculated as the matrix product

of two vectors, viz. a row vector, consisting of the probabilities
(

4
k

)
p1

k(1 −
p1)4−k as calculated for each of the five possible values for p1, and a column
vector, say P1, presenting the probability distribution P (p

1
= p1) for each

possible value for p1.
For example, for k = 0, which implies p

2
= 0, the appropriate row vector is

(
4
0

)(
0
4

)0(4
4

)4

;
(

4
0

)(
1
4

)0(3
4

)4

;
(

4
0

)(
2
4

)0(2
4

)4

;

(
4
0

)(
3
4

)0(1
4

)4

;
(

4
0

)(
4
4

)0(0
4

)4

i.e. (
1; 81

256 ; 16
256 ; 1

256 ; 0
)
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Likewise one gets for k = 2 the following row vector
(

4
2

)(
0
4

)2(4
4

)2

;
(

4
2

)(
1
4

)2(3
4

)2

;
(

4
2

)(
2
4

)2(2
4

)2

;

(
4
2

)(
3
4

)2(1
4

)2

;
(

4
2

)(
4
4

)2(0
4

)2

i.e. (
0; 54

256 ; 96
256 ; 54

256 ; 0
)

The five row vectors constitute the so-called transition matrix T, i.e.
⎛
⎜⎜⎜⎜⎜⎜⎝

1 81
256

16
256

1
256 0

0 108
256

64
256

12
256 0

0 54
256

96
256

54
256 0

0 12
256

64
256

108
256 0

0 1
256

16
256

81
256 1

⎞
⎟⎟⎟⎟⎟⎟⎠

The probability distribution P (p
2

= p2), represented by the column vector
P2, is obtained by multiplying T and the column vector P1:

P2 = TP1

Likewise
P3 = TP2 = TTP1

N.B. Even P1 may be calculated from P1 = TP0, where P0
′ = (0, 0, 1, 0, 0).

The probability that p
2

is 0, i.e. P (p
2

= 0), is equal to the matrix product of
the first row of T and the column vector P1:

(
1 81

256
16
256

1
256 0

)
·P1 =

(
1 × 1

16 + 81
256 × 4

16 + 16
256 × 6

16 + 1
256 × 4

16

)
= 0.1660

Altogether the following probability distributions P (p = p) can be derived for
the successive generations G1,G2,G3 and G4:

p
0 1/4 1/2 3/4 1 Pf

G1 0.0625 0.2500 0.3750 0.2500 0.0625 0.1250
G2 0.1660 0.2109 0.2461 0.2109 0.1660 0.3320
G3 0.2489 0.1604 0.1812 0.1604 0.2489 0.4978
G4 0.3116 0.1205 0.1356 0.1205 0.3116 0.6232

Fig. 7.1 presents these probability distributions graphically.
For all generations Ep

t
= p0 = 1

2 . It appears that Pf , the probability
of fixation, increases continuously. The probability that fixation has not yet
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occurred, i.e. Pnf = 1 − Pf , amounts in these first four generations to 0.875,
0.668, 0.502 and 0.377 respectively. It decreases continuously. This decrease is
further considered. To measure it, the parameter ψ is defined:

ψ =
Pnf,t

Pnf,t−1
=

1 − Pf,t

1 − Pf,t−1
(7.1)

The parameter ψ indicates the value of Pnf relative to its value in the pre-
ceding generation. For the considered generations of the elaborated situation
it assumes the following values:

0.668
0.875

= 0.7634;
0.502
0.668

= 0.7515 :
0.377
0.502

= 0.7510

These values converge to 0.75.
It can be shown (see e.g. Li (1976, pp. 552–557)) that ψ converges to the

appropriate value for
1 − 1

2N
(7.2)

In the words of Li (1976, p. 552) the parameter ψ measures ‘the decay of
variability’. This decay is small for values near to 1. In Note 7.1 the loss of
genetic variation due to random variation of the allele frequencies is compared
with the reduction of the frequency of heterozygous plants due to inbreeding.

Note 7.1 The parameter ψ is similar to the parameter λ representing the
frequency of heterozygous plants relative to this frequency in the preceding
generation, see Equation (3.3). A population size of N = 1 implies neces-
sarily selfing. In the case of continued selfing the expected number of loci
with a heterozygous single-locus genotype measure is halved each generation
(Section 3.2.1). Indeed, at this population size the probability that fixation
with regard to a certain locus has not yet occurred is halved each generation.

The stable value of ψ is thus given by

ψ =
Pnf,t

Pnf,t−1
= 1 − 1

2N
(7.3)

Equation (7.3) yields for the elaborated example 1 − 1
4 = 3

4 . This value is
already closely approximated by the ratio of the Pnf values for generations
G4 and G3. The part of Pnf,t−1 which applies to generation Gt is

(
1 − 1

2N

)
.

Thus
Pnf,t =

(
1 − 1

2N

)
Pnf,t−1 = Pnf,t−1 −

1
2N

· Pnf,t−1 (7.4)

implying
1 − Pf,t = (1 − Pf,t−1) −

1
2N

· (1 − Pf,t−1)

or
Pf,t − Pf,t−1 =

1
2N

· (1 − Pf,t−1) =
1

2N
· Pnf,t−1 (7.5)

For a population consisting out of N = 2 plants, the random variation of the
allele frequencies might imply that the frequencies of some allele A amount in
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successive generations to p0 = 1
2 , p1 = 1

4 , p2 = 1
2 , p3 = 1

2 , p4 = p5 = p6 =
. . . = p∝ = 1. The fixation occurring from generation 3 to 4 means that from
then onward the genetic variation for this locus is lost. Indeed, in populations
consisting of a restricted number of plants the allele frequencies vary from one
generation to the next until fixation occurs. The random variation of the allele
frequencies is called random genetic drift.

Pf increases steadily. This implies that loss of alleles, belonging to loci
controlling traits that are not subject to selection, is inevitable. The expected
number of generations until fixation occurs is considered in Note 7.2.

Note 7.2 If a population with initial allele frequencies (p0, q0) is reproduced
generation after generation on the basis of N plants, the expected number
of generations until fixation occurs is

T = −4N[p0 ln(p0) + q0 ln(q0)]

(Ewens, 1969, p. 58). This expression attains a maximum value at q0 = p0 =
1
2 . Then T = −4N ln(1

2 ) = 2.77N ; i.e. 5.5 generations for N = 2 and 27.7
generations for N = 10. For q0 = 0.95 the formula yields T = 0.79N and for
q0 = 0.995 it yields T = 0.126N . For this last situation fixation is expected
to occur in one generation in a population with size N = 8.

The population becomes thus genetically uniform (in homozygous condi-
tion!) for an ever increasing number of loci. Notwithstanding the presence
of random mating the population genetic, and consequently the quantitative
genetic, effect is the same as the effect of continued inbreeding. A population
consisting of a small number plants will thus ‘suffer’ from the small popula-
tion size. This applies especially to traits with quantitative variation: the mean
value for the considered trait will change in a way similar to that occurring
with continued inbreeding (see Example 7.3).

When the population size varies from one generation to the next, the
ratio of the probabilities that fixation has not yet occurred in the considered
populations of generations t and t− 1 may be rewritten as Pnf,t = ψtPnf,t−1,
where

Example 7.3 Omolo and Russell (1971) checked whether the maize variety
‘Krug’ could be maintained by means of open pollination of a population
consisting of fewer than the usual number of 500 plants. They compared the
kernel yield of populations maintained from 1962 up to 1966 on the basis of
500, 200, 80, 32 or 13 plants. In 1967 seed multiplication on the basis of 150
plants occurred, followed in 1968 by a yield trial. The results are presented
in Table 7.1.
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It appears that loss of genetic diversity, i.e. fixation of random alleles,
caused a non-negligible yield reduction.

Table 7.1 The reduction of kernel yield occurring when maintaining the maize variety
Krug by means of open pollination of N plants in the growing seasons of 1962 up to
1966, followed by multiplication in 1967 on the basis of 150 plants. (source: Omolo and
Russell, 1971)

Maintenance
population size

Kernel yield
(kg/ha)

Reduction of kernel yield
(kg/ha)

∝ (check) 5350
500 5150 200
200 5020 330
80 4290 1060
32 3970 1380
13 4330 1020

ψt =
Pnf,t

Pnf,t−1
= 1 − 1

2Nt

The probability that fixation has not yet occurred across T generations can
then be calculated according to

Ψ =
T∏

t=1

ψt =
T∏

t=1

(
1 − 1

2Nt

)

If for each generation the population size is such that ψt ≈ 1, then also Ψ ≈ 1.
However, if ψt ≈ 0 for at least one generation/population then also Ψ ≈ 0.
This implies that continued maintenance, intended to occur on the basis of
many plants but failing at least once, leads to a drastic decrease of Pnf : smaller
population sizes are the most critical ones with regard to the decrease of Pnf

(see Example 7.4).

Example 7.4 For three successive generations the sizes of some popula-
tion are N1 = 500, N2 = 6 and N3 = 500. Thus

Ψ =
(

1 − 1
1000

)(
1 − 1

12

)(
1 − 1

1000

)
= 0.9148

This path-way of maintenance yields the same decrease of Pnf as three
successive generations consisting of 17.1 plants, viz.

(
1 − 1

34.2

)3

= 0.9148.

Thus one may say that the effective population size amounts to 17.1
plants.
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For the study described in Example 7.3 the decrease of Pnf between 1961
and 1968 can be derived from

Ψ =
(

1 − 1
64

)5 (
1 − 1

300

)
= 0.9212

Smaller population sizes are the most critical ones with regard to the
decrease of Pnf .

7.2 The Effect of the Mode of Reproduction on the Probability
of Fixation

The effect of the mode of reproduction on the probability of fixation is
illustrated in Example 7.5.

Example 7.5 The probability of fixation, Pf , is considered for three
different modes of reproduction of a population consisting of four plants.
The considered population is assumed to consist of four plants, viz. one plant
with genotype aa, two plants with genotype Aa and one plant with geno-
type AA. The genotypic composition of the next generation is then expected
to be

Genotype
aa Aa AA

f : After selfing 3
8

1
4

3
8

After panmixis 1
4

1
2

1
4

After outbreeding: 5
24

14
24

5
24

In accordance with Section 3.1 outbreeding is here assumed to imply ran-
dom interplant pollination where self-fertilization is excluded (as in self-
incompatible cross-fertilizing crops). Check for yourself that the foregoing
genotypic compositions are indeed to be expected at the described situa-
tion).

The probability of fixation due to the small population size amounts
to 2

(
3
8

)4 = 0.0396 after selfing, to 2
(

1
4

)4 = 0.0078 after panmixis and to
2
(

5
24

)4 = 0.0038 after outbreeding. This shows that Pf depends clearly on
the mode of reproduction. For outbreeding it is minimal.

According to Equation (7.5) the increase of Pf is a simple function of N .
A more general expression is

Pf,t − Pf,t−1 =
1

2Ne
Pnf,t−1 (7.6)
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where Ne is the effective population size, i.e. the effective number of repro-
ducing plants. The latter quantity is calculated from the actual number of
reproducing plants. It is the number such that the increase of Pf calculated
on the basis of Equation (7.6) is equal to the increase of Pf calculated from
the actual numbers of plants. In Example 7.4 it is, for instance, shown that
successive population sizes of 500, 6 and 500 plants yield the same increase of
Pf as three generations with a constant (effective) size of 17.1 plants.

Li (1976, pp. 559–562) presents for diverse situations formulae for calculat-
ing Ne from the actual number(s) of plants. Three situations are considered:

• Random mating:
Ne = N (7.7)

• Random mating where each parental plants contributes two gametes to
constitute the next generation:

Ne = 2N − 1 (7.8)

• Dioecy, where Nf represents the number of female parents and Nm the
number of male parents:

Ne =
4NfNm

Nf + Nm
(7.9)

Example 7.6 considers the maximum value of Ne for a given total number of
female and male plants.

Example 7.6 Equation (7.9) applies to dioecious crops, maintained on the
basis of N = Nf + Nm plants. As Nf = N − Nm, the maximum value for
Ne can be calculated by determining the derivative of Ne to Nm:

d
dNm

(
4Nm(N − Nm)

N

)
=

4N − 8Nm

N
= 4 − 8Nm

N

The second derivative of Ne to Nm is negative (it is −8
N ). Thus Ne is maximal

for Nm = 1
2N = Nf , which yields Ne = N . For Nm = 5 and Nf = 25

Equation (7.9) yields Ne = 16.7, whereas the same population size with
Nm = Nf = 15 yields Ne = 30.

It is generally desired that Ne is not less than about 30 to 50: for Ne = 30,
Equation (7.3) yields ψ = 0.9833; for Ne = 50 it yields ψ = 0.99. An effective
population size of less than 30 plants is considered too small: e.g. Ne = 10
yields ψ = 0.95. These minimal values for Ne are primarily based on the
consideration that the accumulated reduction of Pnf , due to continued main-
tenance of a population with a small population size, should be restricted.
The minimum does not assure complete absence of ‘damage’ (Example 7.3).

Equation (7.9) may also be applied to situations other than dioecy. In the
case of HS-family selection a selected family may consist of n plants. These
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descend from Nf = 1 maternal parent and Nm paternal parents, where Nm is
unknown. Thus

Ne =
4Nm

Nm + 1
For Nm = 1 we get Ne = 2, and for Nm → ∞ we get Ne = 4. (In fact
1 ≤ Nm ≤ min(n,N).) The effective number of parents of a single HS-family
is thus at least two and at most four.

With regard to the possibility of fixation of alleles of loci controlling traits
not subjected to selection, one should, in the case of family selection, select
such numbers of families that the value of Ne is acceptable. This should be
reconciled with the wish to apply the highest possible intensity of selection.
The problems involved when searching a compromise have been considered by
Vencovsky and Godoi (1976).

When applying continued family selection, one should realize that the effec-
tive number of ancestors may be smaller than supposed. Thus 100 families
in generation t may descend from 100 plants belonging to only 25 families in
generation t − 1. These 25 families may have been obtained from 25 plants
belonging to only 10 families in generation t−2; etc. It will be clear that such
a pedigree may lead to strong shifts in the allele frequencies of loci controlling
traits that are not under conscious selective pressure. The associated probabil-
ity of fixation tends to be higher in the case of family selection than in the case
of mass selection. Further, it will tend to be higher when selecting among fam-
ilies which are evaluated in reproductive isolation, than when selecting among
non-separated families. It will also be higher when selecting before pollen dis-
tribution than when selecting after pollen distribution. The effective number
of parents, grandparents, great grandparents, etc. of the plants occurring in
some population is generally unknown. It depends on the previous breeding
history:

• Presence or absence of selection
• Presence or absence of a few widely diverging pedigrees originating from

successful ancestors (combined with the extinction of other pedigrees)
• Selection before or after pollen distribution
• Presence or absence of separation of the families

All this inhibits expression of the reduction of Pnf in exact and simple for-
mulae. One should, nevertheless, be aware of the process of a gradual loss of
genetic diversity. This applies not only to continued maintenance of entries
belonging to a collection of accessions of a cross-fertilizing crop, but also to
the long-term maintenance of landraces of self-fertilizing crops.



Chapter 8
Components of the Phenotypic Value
of Traits with Quantitative Variation

Many of the important traits of horticultural or agricultural crops display quan-
titative variation. The phenotypic values observed for such a trait tend to
depend both on the quality of the growing conditions as well as on the (com-
plex) genotype with regard to loci affecting the trait. The goal of horticulturists
and agronomists is the manipulation of the growing conditions in such a way
that the performance of the crop better obeys the goals of the growers and con-
sumers. The goal of breeders is improvement, by means of selection, of the
(average) genotypic value concerning the trait. For breeders it is, therefore,
important to have some understanding of the degree in which the phenotypic
expression of traits with quantitative variation is due to the genetic make-up.
Breeders should select the candidates with the most attractive genotypic values,
not those with the most attractive phenotypic values. The partitioning of the
phenotypic values of the candidates into components, including components of
the genotypic value, is therefore a topic to be considered seriously.

8.1 Introduction

In the context of this book, genetic variation with regard to a certain trait is
of prime interest, both with regard to genetic analysis or in plant breeding.
The variation may be such that only two distinct phenotypic classes occur,
e.g. male plants versus female plants. Otherwise it may also be such that one
can easily distinguish several different levels of expression, e.g. for the number
of ears produced by different wheat plants (this is called quasi-continuous
variation). In this chapter attention is mainly given to traits with a truly
continuous variation of expression, e.g. for the grain yield of separate wheat
plants or for the length of their longest culm.

A characteristic feature of a trait showing quantitative variation is the
great range in expression. Even in absence of genetic variation, like in a clone,
a pure line or an F1-hybrid, there is a wide range of phenotypic values. In a
genetically heterogeneous population, the variation is such that it is impossible
to classify plants according to their genotype simply on the basis of their
phenotypic values.

With regard to traits with qualitative variation the former is reasonably
possible (however, dominance is a disturbing factor). This allows determi-
nation of the frequency of plants with a certain genotype. Classification of
plants (and counting the number of plants in each class) is often applied with
regard to traits like flower colour (white or blue in flax) or with regard to

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 119–172. 119
c© 2008 Springer.
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the presence or absence of a band at a certain position (in a lane of bands
in a gel characterizing an individual plant). In the genetic analysis of such
traits one studies segregation data, i.e. the numbers of plants in the various
discrete phenotypic classes. The expression of traits with qualitative variation
is mainly controlled by so-called major genes.

N.B. The locus controlling presence or absence of a band at a certain posi-
tion in a lane of bands is responsible for a qualitative trait. If different bar
codes, i.e. different patterns of bands being present or absent, can be shown
to be associated with different levels of expression of a trait with quantita-
tive variation one may call the polymorphism (a certain band is present or
absent) a marker. Such an association is due to linkage of the locus control-
ling the marker phenotypes, i.e. presence or absence of a band at a certain
position in the lane of bands, with one or more loci affecting the trait with
the quantitative variation. Because marker assisted selection is based on such
associations, the phenomenon of linkage is given proper attention in this book;
notwithstanding the ‘proof’ (see Chapter 1) that linkage plays a minor role in
the inheritance of polygenic traits.

Quantitative variation is due to two causes, which may act simultaneously:

1. Variation in the quality of the growing conditions and
2. Genetic variation

Variation in the quality of the growing conditions

Whenever the genotype only partly controls the phenotypic expression,
variation in the quality of the growing conditions induces variation in phe-
notypic expression. The size of the phenotypic variation within genetically
homogeneous plant material reflects the balance between the strength of the
genetic control of the expression and the size of the effects of variation in the
quality of the growing conditions. Different genotypes may, with the same
variation in the quality of the growing conditions, show different phenotypic
variation (see Example 8.9).

Genetic variation

The expression of traits with quantitative variation can be affected genetically
by a large number of loci. Within a common genetic background, different
single-locus genotypes may give rise to small differences in expression, but
differences in expression of different complex genotypes, i.e. the aggregate
genotype with regard to all relevant polygenic loci together, may be large.
(In recent years the term quantitative trait loci (QTL) (Thoday, 1976)
has become popular). Not all quantitative variation is due to many loci. For
example, a yield component like number of seeds per plant may be expected
to be affected by a smaller number of loci than grain yield itself.

In Chapter 1 it was emphasized that characters can show qualitative varia-
tion as well as quantitative variation. Quantitative variation is often expressed
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for characters of great biological and economic importance. Some examples
include

1. Plant height: tallness is desired in flax (Linum usitatissimum L.); a reduced
height is desired in cereals such as rye, wheat and rice (Oryza sativa L.).

2. Yield of some chemical compound (per plant or per unit area): sugar, oil,
protein, lysine, vitamins, drugs.

3. Yield of some botanical component

• Dry seeds (in cereals, bean, oil flax)
• Fresh fruits (apple (Malus spp.), peach (Prunus persica L.), strawberry

(Fragaria ananassa Duch.), tomato (Lycopersicon esculentum Mill.),
paprika (Capsicum annuum L.), pumpkin (Cucurbita maxima Duch.
ex Lam))

• Tubers (potato (Solanum tuberosum L.), sweet potato (Ipomoea batatas
(L.) Lam.))

• Roots (carrots (Daucus carota L.)).
The yield of seeds, fruits and tubers reflects the fertility component of
fitness (Section 6.1). Indeed, fitness is an important quantitative trait.

4. Yield of (nearly) the whole plant: timber, silage maize, forage grasses.
5. Earliness, i.e. date of flowering or date of maturity. Some national lists of

varieties classify varieties according to their earliness (for example potato,
maize, Brussels sprouts, radish (Raphanus sativus L.)).

6. Partial resistance against diseases or pests or tolerance against stress
(drought, heat, frost).

Quantitative genetic theory (or biometrical genetics) aims to describe the
inheritance of quantitative variation by means of as few parameters as possible.
The items of interest are the effects of genotypes. Thus we may distinguish
the population genetical effect of inbreeding, viz. reduction of the frequency
of heterozygous plants, from its possible quantitative genetic effect, i.e. the
phenotypic expression of plants with a more homozygous genotype.

The basis for quantitative genetic theory, aiming to describe the inheri-
tance of quantitative characters by the smallest acceptable number of para-
meters, has been laid by Fisher (1918), Wright (1921) and Haldane (1932).
They defined important parameters, such as additive genetic effect, degree
of dominance and genetic correlation. Procedures to estimate these parame-
ters for certain traits of certain crops (and their actual estimates) followed
later. The founders of this work were, in animal breeding Lush (1945), Lerner
(1950, 1958) and Henderson (1953) and, in plant breeding, Comstock and
Robinson (1948), Mather (1949), Hayman (1954), Jinks (1954), Griffing (1956)
and Finlay and Wilkinson (1963).

Quantitative genetic theory is based on the effects of so-called Mendelian
genes, i.e. genes located on the chromosomes. It dates, therefore, from after
the appreciation (since 1900) of Mendel’s explanation of the inheritance of
qualitative variation for a number of traits in peas. Before 1900 there was
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already extensive research into the inheritance of traits with quantitative
variation. Notably Galton, a cousin of Charles Darwin, and Pearson tried to
gain understanding by comparing parents and their offspring. They established
that tall fathers tend to produce sons who are indeed tall, but generally not
as tall as their fathers. This phenomenon was called regression, a term that
nowadays occupies a central position in statistics. Around 1910 the Mendelian
basis of quantitative characters had already been shown. The study of Nilsson-
Ehle (1909) is well known, he explained variation, i.e. segregation, for kernel
colour of wheat and oats on the basis of three polygenic loci. Other classical
studies are those by East (1910, 1916) on the inheritance of the corolla length
of flowers of Nicotiana longiflora Cav.

Manuals that contributed greatly to the spreading of knowledge of quanti-
tative genetic theory are those by Falconer (1989) or Falconer and MacKay
(1996), with an emphasize on cross-fertilizing species (domesticated animals),
and Mather and Jinks (1977, 1982) or Kearsey and Pooni (1996), emphasizing
self-fertilizing crops.

Continuous variation occurs despite the fact that genetic information is
transmitted by means of discrete units, the genes. This continuous variation
is due to the overlap of the frequency distributions of the phenotypic values
for different genotypes. Nilsson-Ehle (1909) was able, through careful obser-
vation, to associate very narrow ranges of expression for the intensity of grain
colour of wheat with certain genotypes (at superficial observation continuous
variation seemed to exist).

Figure 8.1 illustrates how observations for some trait, for each of the three
genotypes for locus B-b affecting the trait, could be distributed in a sample
taken from an F2-population. Compared to the genetic variation, there is a
small effect of variation in growing conditions. On the basis of the phenotypic

Intensity of the flower colour

100

80

60

40

20

0

N
um

be
r 

of
 p

la
nt

s

bb

Bb

BB

Fig. 8.1 The numbers of plants, in an F2-population, with specified intensities of the colour
of the flowers. The population segregates for locus B-b affecting flower colour intensity. The
ranges of the phenotypic values for the three genotypes bb, Bb and BB just fail to overlap
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value of a plant one can correctly assign a genotype to it. Locus B-b controls,
in this case, qualitative variation. The genetic control of the trait can then be
understood from the segregation ratio.

One can also use a statistical tool to determine whether or not a trait with
quantitative variation is affected by a locus with major genes. In the latter case
the locus induces the frequency distribution to be multimodal. A locus with
major genes is then indicated if the null hypothesis assuming a unimodal dis-
tribution, i.e. H0: ‘no major genes segregating’, is rejected when tested against
the alternative hypothesis Ha: ‘major genes segregating’ (see Schut, 1998).

The mere demonstration of the presence of a locus with major gene effects
does, of course, not indicate the identity of the locus. It is, however, possible
to identify an individual locus affecting the phenotypic values for a trait with
quantitative variation by means of molecular markers. In that context such
loci are often designated as QTLs (quantitative trait loci) rather than as poly-
genes. QTLs may not just be identified, their effects can also be ascertained
(see Section 12.3.1, dealing with marker-assisted selection). All this might
imply that the distinction between loci with major genes and polygenic loci
(or the corresponding distinction between traits with quantitative variation
and traits with qualitative variation) will become outdated.

If the effect of variation in growing conditions is large compared to the
effect of genetic variation, the ranges of expression for plants with genotype
bb or Bb or BB overlap (Fig. 8.2). Then it is impossible to assign unam-
biguously a genotype to each plant on the basis of its phenotypic value.
Segregation ratios cannot be established. This complicates the elucidation

Fig. 8.2 The numbers of plants, in an F2-population, with specified intensities of the colour
of the flowers. The population segregates for locus B-b affecting flower colour intensity.
The ranges for the phenotypic values for the three genotypes bb, Bb and BB overlap to a

great extent



124 8 Components of the Phenotypic Value of Traits with Quantitative Variation

of the genetic control underlying quantitative variation. Quantitative genetic
analysis consists, in this case, of interpreting estimates of statistical para-
meters in quantitative genetical terms. This is based on population genetic
assumptions and inferences:

(a) If the mean phenotypic value of the offspring of parents P1 and P2 does
not differ significantly from the mid-parent phenotypic value, the genetic
control of the involved trait is assumed to be additive (see Example 9.2
for details).

(b) The estimate of the regression of HS-family mean phenotypic values on
their maternal plant phenotypic values is taken to be an estimate of the
heritability in the narrow sense of the considered trait (see Section 11.2.2
for details).

The shape of the frequency distribution of the phenotypic values for a trait
with quantitative variation tends often towards the shape of a normal distrib-
ution (see Fig. 8.2). This is mainly due to a normal distribution of the contri-
butions of the environmental conditions to the phenotypic value. In genetically
homogeneous plant material a normal distribution is entirely due to a normal
distribution of the environmental conditions. Examples 8.13 and 8.15 show
that segregating populations may also tend to show a normal distribution for
phenotypic values in the absence of variation of environmental conditions.

The size of the phenotypic (or genotypic) quantitative variation may be
measured by different yardsticks:

1. The range, i.e. the absolute value of the difference between the lowest
(smallest) and the highest (largest) phenotypic value encountered.
This yardstick should only be used as a rough descriptor of the variation
because the value obtained for the range depends on the sample size.

2. The standard deviation or its square, the variance.
These two popular yardsticks are scale dependent and should thus always
be used with an indication of the scale of measurement. For example, when
expressed as standard deviation the variation of plant height measured
in centimetres is 2.54 times as high as when measured in inches; when
expressed as variance this factor is (2.54)2 = 6.4516.

3. The coefficient of phenotypic variation (νcp), i.e. the ratio of the
standard deviation of the phenotypic values (σp) and its expectation (Ep) of
the phenotypic values; thus: νcp := σp

Ep
. This yardstick is scale independent.

It allows a meaningful comparison of the variation of several traits of plants
belonging to the same population, as well as a comparison of the variation
for the same trait as expressed by different populations (of the same or
different crops). This is illustrated in Example 8.1.

The size of the phenotypic variation for a character displaying quantitative
variation depends on:
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Example 8.1 Table 8.1 presents the range for culm length, i.e. plant height,
for the genetically homogeneous spring wheat variety Peko, as well as for two
genetically heterogeneous populations of winter rye.

Table 8.1 Mean phenotypic value (p̄) and range of phenotypic values (w) for culm length
and grain yield of plants belonging to the pure-line spring wheat variety Peko (data of

Wageningen, The Netherlands, 1971; plants grown in a 15 × 25 cm2 rectangular pattern
of plant positions) and of diploid and tetraploid winter rye plants (data of Wageningen,

growing season 1977–1978; plants grown in a regular triangular pattern of plant positions

with an interplant distance of 15 cm) N : sample size

Culm length (cm) Grain yield (decigram)
N p̄ w N p̄ w

spring wheat: 1,099 93.4 43

winter rye: 2n = 2x: 5,111 158.8 143 5,107 102.2 315
2n = 4x: 4,473 179.7 164 4,471 89.9 345

Table 8.2 presents, for the same plant material, as well as a maize popula-
tion, estimates of the phenotypic variance and the coefficient of phenotypic
variation.

Table 8.2 Estimated variance (s2) and coefficient of phenotypic variation (νĉp) for plant

height, grain yield and length and area of the fourth leaf from the top of spring wheat

(Table 8.1), diploid and tetraploid winter rye (Table 8.1) and maize plants (data from

Wageningen, The Netherlands, 1973; 1049 plants grown in a 40 × 67.5 cm rectangular

pattern of plant positions)

Fourth leaf from the top

Plant height (cm) Grain yield (g) Length (cm) Area (cm2)
s2 νĉp s2 νĉp s2 νĉp s2 νĉp

Spring wheat 36 0.06

Winter rye: 2n = 2x 156.3 0.08 1,296 0.35

2n = 4x 372.5 0.11 3,249 0.64

Maize: 285.6 0.12 252,000 0.47 42.3 0.09 8,208 0.17

One may conclude that within the populations the variation for grain yield
is higher than that for plant height. The variation for plant height in the
maize population appeared to be twice as large in the maize population as
in the pure line spring wheat variety.

1. The particular crop and the trait under consideration.
The size of the phenotypic variation may also be associated with the level
of expression of the trait. Thus the variation in flowering date of an early
flowering pure line may tend to be smaller than the variation in a late
flowering date of an early flowering pure line may tend to be smaller than
the variation in a late flowering line. The phenomenon is also illustrated by
Example 8.9: short pure lines of maize tend to have a smaller phenotypic
variation for plant height than tall single cross hybrid varieties.
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2. The size of the genetic variation.
It may seem a paradox but this variation depends on the environmental
conditions. The effect of plant density on the genetic variance is illustrated
in Example 8.8.

3. The size of the variation in growing conditions.
Early in this section it was already indicated that different genotypes may
differ in their responses to variation in growing conditions. The latter vari-
ation is, nevertheless, mostly measured by the phenotypic variation, for the
trait of interest, among the plants constituting a genetically homogeneous
population. It is only rarely measured directly by measuring the variation
for physical growth factors, e.g. soil temperature or oxygen content of
the soil.

In this book attention is focussed on

• The mean genotypic value, designated by EG or by µg
• The genetic variance, designated by var(G) or by σg

2.

Breeders manipulate these parameters in such a way that the mean/expected
genotypic value is changed in the desired direction. The manipulation may
involve the mode of reproduction, especially when producing hybrid varieties
by crossing pure lines. The large influence of the inbreeding coefficient will
appear. When applying selection the genetic variance is exploited, in fact it is
reduced, in order to attain the breeding goal.

In the case of a normal distribution of the genotypic values this distribution
is completely specified by the parameters µg and σg. If accurate estimates of
these parameters are available, one can derive properties of the population for
the trait under study (see, for example, Section 11.1 with regard to selection
intensity). Section 8.3.2 provides a genetic explanation for the occurrence of
the frequently encountered (approximately) normal distribution.

Normality of the observed distribution does not necessarily imply the
presence of many segregating loci. Even in the absence of variation in growing
conditions, it is, even for three or four segregating loci, already necessary that
a rather large number of plants are observed in order to prove the significance
of departures from normality. According to Thoday and Thompson (1976)
the sample size required would amount to 500 to 1,000 plants.

Instead of the symmetric shape of the normal distribution of the phenotypic
values, one may observe an asymmetric, skew distribution. Indeed, for traits
such as date of flowering or yield, a deviation from normality is often observed.
For date of flowering this may be due to variation in the daily temperatures.
The distribution for yield often shows positive skewness, which, according
to Spitters (1979, p. 91) is due to interplant competition. In the absence of
competition, i.e. at a very low plant density, the distribution is normal or
practically normal.

In the case of negative skewness there is a long tail at the left-hand side of
the distribution (see Example 8.14). Then the expected phenotypic value is
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smaller than the median phenotypic value, i.e. the value such that 50% of
the observed phenotypic values is smaller than this value and 50% is larger.
With positive skewness there is a long tail at the right. Then the expected
phenotypic value is larger than the median. For asymmetric distributions the
median is often preferred as a measure for the central value, because in contrast
to the expectation the median is not affected by outliers.

The skewness of the distribution of grain yield of individual plants of small
cereals grown at high plant density follows from the strong correlation between
grain yield and number of ears (this correlation was estimated to be 0.90 for
winter rye, grown at the rather low plant density of 51.3 plants/m2 (Bos, 1981,
p. 16)). At high plant density the values tend to have a Poisson distribution.
The positive skewness can often be eliminated by some transformation, e.g.
a logarithmic transformation or the square root transformation.

As general features of traits with quantitative variation we may note:

1. Presence of continuous phenotypic variation.
This may be due to continuous variation in the quality of the growing
conditions.

2. An approximate normal distribution.
This can be explained from a polygenic genetic basis (Section 8.3.2), and/or
a normal probability distribution of the quality of the growing conditions.

3. Occurrence of inbreeding depression at a positive value of F (inbreeding
coefficient) and of heterosis at F < 0.
Especially in cross-fertilizing crops the mean phenotypic value of most
quantitative traits is negatively affected by inbreeding and positively by
outbreeding.

4. The phenotypic values for different quantitatively varying traits are
correlated.
This is discussed and illustrated in Example 8.2. The correlation implies
that selection with regard to one trait may give rise to changes in the
performance for other traits (Chapter 12).

Example 8.2 A well-known positive correlation in cereals is that between
grain yield and plant height. This positive correlation has not prevented
the development of high yielding, short-statured wheat varieties replacing
the former lower yielding, taller varieties. This correlation is in part due
to variation in competitive ability: at high plant density highly competitive
plants produce long culms and many tillers, whereas plants with a poor
competitive ability produce short culms and many tillers, whereas plants
with a poor competitive ability produce short culms and few tillers.

Bos (1981, p. 94 and 124) estimated this coefficient of correlation for
winter rye populations grown in the growing season 1977–78. He obtained
for a diploid population r = 0.31 (N = 102) and for an autotetraploid
population r = 0.53 (N = 4, 471).
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Yield is a trait of prime importance and generally displays quantitative varia-
tion. It is determined not only by the pattern of reactions with regard to exter-
nal conditions (such as presence or absence of pathogens, pests and drought,
the temperature, the actual photo period, the amount of fertilizers, etc.), but
also by the internal control of the distribution of the products of photosyn-
thesis (and their reallocation at grain filling and maturation). An aim is often
to increase yield by improvement of the yield components and by improved
resistance to biotic and abiotic factors reducing the yield. The notion of yield
components is somewhat developed in Example 8.3.

Example 8.3 Yield components receive a lot of attention, especially in
cereals. The grain yield (Y ) is the product of X1 := number of ears per plant;
X2 := number of spikelets per ear; X3 := number of grains per spikelet; and
X4 := single-grain weight.

In contrast to Y and its components, the harvest index (Y /biomass),
is hardly affected by the plant density, i.e. by the strength of interplant
competition.

The opinion that the quantitative variation in certain traits is determined
(directly or indirectly) by many loci is supported by the results of some long-
lasting selection experiments: after apparently successful selection, continued
for 50 or more generations, the genetic variation was still not exhausted
(Example 8.4).

Example 8.4 Dudley, Lambert and Alexander (1974) reported that after
70 generations of selection in maize the mean phenotypic values for high
protein (HP), low protein (LP), high oil (HO) and low oil (LO) content
amounted, in the populations obtained by continued selection, to 215%,
23%, 341% and 14%, respectively, of the means of the original population
(with 10.9% protein and 4.7% oil).

Selection had not yet exhausted the genetic variation: a comparison of
the last six generations of the HP, LP, HO and LO populations grown in
1970 and 1971 showed significant differences among the generations. Further-
more, significant genetic variation among half sib families of the sixty-fifth
generation was established.

A correlated response to selection was only found for oil and protein
content in the LP population, where the reduction in protein to 4.5% was
accompanied by a significant reduction in oil content. As a result of increased
oil fertility, protein content increased in both HO and LO.

Selection had a marked effect on kernel weight and appearance of the
plant material: kernels of HP and HO were small and vitreous, with those
of HP being the smaller. In contrast, kernels of LP and LO were larger and
had a high content of soft starch. Kernels of LO were the largest.
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In the breeding of self-fertilizing crops it is of utmost importance that the F2

population (and so its predecessor, the F1) consists of many plants. In this case
it may contain one or more plants with a highly heterozygous genotype capable
of generating homozygous offspring that perform in a superior way when grown
in the absence of variation for competitive ability. The breeder is charged with
the task of identifying, in such a large heterogeneous F2 population, plants
with the genotype with this capability. As a matter of fact it is virtually
impossible to fulfil this task fully: mostly there is hardly a correlation between
the yield of F2 plants and the yield obtained from the corresponding F3 lines
(Example 8.5, Section 18.3). Chapter 17 summarizes retrospectively the causes
for the low efficiency of selection.

Example 8.5 McGinnes and Shebeski (1968) estimated the correlation
between F2 plant yield and F3 line yield for wheat to amount to only 0.13.
Similar research has been reported by DePauw and Shebeski (1973), Hamblin
and Donald (1974) and Whan, Rathjen and Knight (1981) and Whan, Knight
and Rathjen (1982).

Inefficiency of selection results from

1. Non-identical reproduction.
2. Variation in the quality of the growing conditions, e.g. variation in soil

fertility.
3. Competition.
4. Inaccuracy of the observations underlying the selection. This applies espe-

cially to visual assessment of the candidates.

Non-identical reproduction as a cause for inefficient selection

Identical reproduction occurs when the genotype of the offspring obtained
from some entry is identical to the genotype of its parent. It occurs at asexual
reproduction of clones, at selfing of pure lines, and at re-production (by making
the underlying crosses again) of single-cross hybrids. In this case the compo-
sition of a population is constant in successive generations.

A genetic cause for a disappointing response to selection is non-identical
reproduction of the selected entries, i.e. single plants, lines or families.
By this is meant that the genotypes of the entries selected on the basis of their
phenotype (these entries constitute generation Gt

′), are not identically repro-
duced and do, consequently, not reoccur unaltered in generation Gt+1. For
example, in the F2 many plants are heterozygous for many loci. This heterozy-
gosity may give rise to heterosis. If so, then preferentially highly heterozygous
F2 plants will be selected. These will produce less heterozygous offspring whose
performance is inferior when compared to their parents. This mechanism
applies of course also to cross-fertilizing crops: excellent (i.e. possibly strongly
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heterozygous) plants are likely to generate less heterozygous and consequently
less excellent offspring.

Selection at a situation with identical reproduction occurs when selecting
among clones, among completely homozygous plants of a self-fertilizing crop
or among test hybrids when developing a single cross hybrid.

Variation in growing conditions as a cause for inefficient selection

Growing conditions always vary across the candidates. Therefore, when com-
paring entries, care should be taken to ensure that the growing conditions
experienced by different candidates are equal (or taken into account). Only
then can the candidates be ranked reliably according to their ‘genetic quality’.
Therefore Fisher (1935) advocated

1. Comparison of entries within blocks
A block consists of a number of plots that offer, it is hoped, equal growing
conditions. If this applies comparisons among entries, occurring within the
same block, offer unbiased estimates of genetic differences. (In practice,
however, growing conditions tend to vary within large blocks).

2. Randomization
The candidates to be tested are assigned at random to the plots within
each block. This removes correlation between the genotypic values of the
candidates and quality of their growing conditions, e.g. the growth pattern
of the direct neighbours.

3. Replication
Replication allows not only estimation of the error variance, and conse-
quently application of statistical tests, but it promotes also the accuracy of
the estimation of the genotypic values of the tested candidates. Replicated
testing of all candidates is often impossible, for example, because

(a) Certain candidates can only be represented by a single plant (this applies
to F2 plants) or by a small number of plants (this applies to F3 lines,
e.g. of peas).

(b) Because of limitations in the capacity for testing candidates, replicated
testing of all candidates is prohibited.

Inability to apply replicated testing, as well as the notion that uniformity
of the growing conditions within the blocks is an idealization, have stimu-
lated interest in evaluation procedures employing incomplete block designs
and/or non-replicated evaluation. These latter procedures make use of stan-
dard plots (Section 14.3.2) or moving means (Section 14.3.3). They are
based on the fact that adjacent plots provide growing conditions that are more
similar in quality than non-adjacent plots. (This does not include the quality
of the growing conditions as determined by the strength of the competition
exerted by candidates evaluated at directly adjacent plots (Chapter 15)).
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Competition as a cause for inefficient selection

Competition reduces the efficiency of selection of genetically superior candi-
dates from a genetically heterogeneous population of candidates. Candidates
with a strong competitive ability, which are apt to be selected, may perform
disappointingly when grown in the absence of variation in competitive ability
(Chapter 15; Spitters, 1979, pp. 9–10).

Inaccuracy of the observations as a cause of inefficient selection

Inaccuracy of the observations underlying the selection contributes to the
inefficiency of selection. It works out like random variation in the quality of
the growing conditions. It occurs especially when evaluating candidates on
the basis of visual assessment. This topic is elaborated in Chapter 14, notably
Section 14.3.1.

In summary, one may say that the task of a breeder is very difficult because
selection is on the basis of the phenotype of the candidates. The offspring of
the selected candidates may perform differently to their parents. This is due
to the fact that the parent and offspring have different genotypes (except in
the case of identical reproduction) and/or due to different growing conditions.
Therefore it is sometimes said that selection concerning quantitative variation
is not so much a science but more an art.

Chapters 8 to 12 of this book aim to indicate how an answer can be obtained
to the following questions:

1. What part of the observed phenotypic variation is due to genetic variation?
In other words: how large is the heritability? The answer to this question
indicates how efficient selection may be expected to be.

2. How large will the expected response to selection be when applying a certain
selection intensity?
The answer will, of course, depend on the efficiency of the selection and on
the amount of genetic variation available.

3. How large is the probability that the genotypic value of a random plant,
to be sampled from the F∞ population still to be developed, exceeds the
genotypic value of a standard variety?

8.2 Components of the Phenotypic Value

The expression observed for a quantitative trait of some candidate is mostly
indicated by a numerical value, the phenotypic value (p). Example 8.6 shows
that the decision about how to assign numerical values, e.g. the value p = 0,
to a certain level of expression may be arbitrary.
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Example 8.6 With regard to the reaction of a genotype to inoculation with
a certain pathogen one may indicate ‘not susceptible’ by p = 0, and ‘very
susceptible’ by p = 10. This is rather arbitrary because one could also follow
the principle of assigning low values to undesired expressions and high values
to desired expressions. Then ‘very susceptible’ would be coded as p = 0 and
‘not susceptible’ as p = 10 (This system is followed in the Dutch lists of
varieties).

With regard to date of flowering p may indicate the number of days from
sowing to flowering, or the number of days from May 1 to flowering, etc.

For traits like yield, plant height, protein content etc. there is a natural origin,
i.e. the phenotypic value specified by p = 0. But then the scale of measure-
ment still has to be chosen, e.g. yield in grams or kilograms, plant height in
centimetres or inches, fruit size in gram or in centimetres.

The phenotypic value of an entry results from the interaction of the complex
genotype of the observed entry and its growing conditions. It is useless to
describe this dependency by p = f(G, e) because the function describing how
the phenotypic value is determined by the (complex) genotype (G) and by
the growing conditions (e) is unknown. Quantitative genetic theory is not
dedicated to clarifying the function relating phenotypic value to genotype
and environment. Instead, quantitative genetic theory was developed from the
side of the phenotypic values. On the basis of the phenotypic values observed
for plants sharing a not further specified complex genotype, one assigns a
genotypic value to the complex genotype. In Section 8.3 ways are developed
to partition this genotypic value into contributions due to the single-locus
genotype for each separate relevant locus.

The distinction, first made by Johansson (1909), between the genotype of a
plant and its phenotype has been very fruitful. It showed that the relationship
between genotype and phenotype varies: the presence of a certain allele does
not always give rise to a phenotypically observable effect in comparison to the
absence of that allele. Thus in the case of complete dominance of allele B over
allele b the genotypes Bb and BB will give rise to identical phenotypes in the
case of qualitative variation.

The phenotypic expression of a allele may also depend on the growing
conditions or on plant-associated factors, e.g. age or sex. Sometimes only a
portion of the plants with a certain genotype shows the phenotype that ‘should
be expressed’. This portion is called penetrance. The genetic background of
this phenomenon is not considered further; it is only mentioned to show that
a genotype may give rise to diverse phenotypes. Allard (1960, p. 66) gives an
example.

In connection with the notions of ‘phenotype’ and ‘genotype’ the notions
of phenotypic value (p) and genotypic value (G) have been defined. The
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parameter p represents the observation obtained from a single entry, i.e. a
single plant or a single plot containing certain plant material. Genotypic
value is defined as the expected phenotypic value of the considered genotype
(gt) at the considered macro-environmental conditions (E). Thus:

G = E(p|gt, E)

The macro-environmental conditions are specified by the combination of site,
growing season and applied cultivation regime (in Chapter 14 special attention
is given to plant density).

The genotypic value of a certain genotype, grown under specified macro-
environmental conditions, can be estimated by the arithmetic mean of the
phenotypic values calculated across all n plants with the considered genotype
and grown under the considered conditions:

Ĝ =

n∑
i=1

pi

n
= p̄

If identical reproduction is impossible, each genotype is represented by only
one plant (n = 1). In that case Ĝ = p. This estimate is of course very inaccurate
(a way-out is suggested below). If, however, identical reproduction is possible,
e.g. when dealing with a clone, a pure line or a single cross hybrid, n may be
very large and accurate estimation of G is possible (see Example 8.7).

Example 8.7 The phenotypic value for plant height of some plant belong-
ing to the spring wheat variety Peko, grown in 1971 at a 15×25 cm2 pattern of
plant positions, is 109 cm. The genotypic value of Peko, when grown at these
macro-environmental conditions, was estimated to be 93.4 cm (Table 8.1).

In Example 9.1 it is shown that in the case of absence of dominance and
epistasis the expected phenotypic (and genotypic) value of the plants belonging
to the line obtained from some plant Pi is equal to the genotypic value of that
plant. Thus:

Ep
L(Pi)

= EGL(Pi)
= GPi

Likewise, Example 9.2 shows, for the same conditions, that the expected phe-
notypic value of the plants belonging to the full sib family obtained from some
cross Pi ×Pj is equal to the mean genotypic value of the two parental plants:

Ep
FS(Pi×Pj)

= EGFSij
=

1
2
(GPi

+ GPj
)

If the full sib families FSij , FSik and FSjk are obtained from plants Pi, Pj

and Pk, and if a ‘reasonable number’ of plants of these families are grown and
observed, one may obtain accurate estimates for EGFSij

, EGFSik
and EGFSjk

.
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Then one may derive from the above equation estimates of the genotypic
values of the parental plants. Van der Vossen (1974) applied progeny testing
in order to be able to estimate the genotypic values of oil palm genotypes
represented by a single tree.

The genotypic value of a genotype applies only to the specified macro-
environmental growing conditions. This means that the genotypic value
assigned to a genotype depends on the macro-environment. As a consequence,
the variance of the genotypic values depends on the growing conditions. This
is illustrated in Example 8.8.

Example 8.8 Spitters (1979, Tables 25, 27, 28 and 38) grew, in 1977,
12 different spring barley varieties at four different macro-environmental
conditions:

1. as pure lines at a plant density of 80 (plants/m2);
2. as mixtures also at a density of 80;
3. as mixtures at a plant density of only 3.2; and
4. as pure lines at commercial plant density (about 180 plants/m2, the

amount of seed was 110 kg/ha).

The yield and rank number of each variety under each of the four conditions
are summarized in Table 8.3.

Table 8.3 Grain yield (in g/plant; for condition 4 in g/row) and rank (from 1 = lowest

to 12 = highest) of 12 spring barley varieties grown in 1977 under four different conditions

(see text) (source: Spitters, 1979, Tables 25, 27, 28, 38)

Condition

1 2 3 4

Variety yield rank yield rank yield rank yield rank

Varunda 5.3 6.5 5.1 5.5 41 4 150 5
Tamara 5.7 10 7.8 12 53 11 165 11.5
Belfor 5.3 6.5 5.4 9.5 57 12 161 10
Aramir 6.1 12 5.3 7.5 49 8 154 7
Camilla 5.0 5 5.4 9.5 50 9 165 11.5
G. Promise 4.5 1 4.9 4 40 2.5 132 4
Balder 4.8 4 5.1 5.5 42 5.5 156 8.5
WZ 5.5 8 4.8 3 51 10 151 6
Goudgerst 4.7 3 7.7 11 42 5.5 131 3
L98 6.0 11 3.5 2 40 2.5 106 1
Titan 4.6 2 1.6 1 37 1 109 2
Bigo 5.6 9 5.3 7.5 45 7 156 8.5

Ḡ = 5.26 Ḡ = 5.16 Ḡ = 45.6
s2
g = 2.65 s2

g = 39.0

It appears that the genotypic value depends on the plant density (com-
pare conditions 1 and 4) and, for a certain plant density, on the presence
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or absence of genetic variation for competitive ability (compare conditions 1
and 2). This dependency affects the genetic variance. Thus the variance of
the genotypic values presented in Table 8 is 0.269 (g/plant)2 at condition 1
and 2.43 (g/plant)2 at condition 2.

Goudgerst had a relatively low genotypic value for grain yield when
grown as a pure line but a relatively high genotypic value when grown in
mixtures. For other genotypes grown as pure lines, plant density had an
important impact on genotypic value, e.g. L98. The ranking of the varieties
at low plant density differed strongly from the ranking at commercial plant
density. Thus important effects of genotype × density interaction are evident.

According to our definition of the genotypic value, the quality of the macro-
environmental conditions affects the genotypic value: the same genotype will
thus have different genotypic values in different macro-environments. The
ranking of a set of genotypes according to their genotypic values in one envi-
ronment may thus differ from their ranking in another environment. Such
genotype × environment interaction implies that one should not make
statements such as ‘the single-cross hybrid of inbred lines A and B shows mid-
parent heterosis with regard to number of grains per ear’, or ‘variety P1 yields
better than variety P2

′ without specifying the macro-environmental conditions
for which the statement is made. In Chapter 13 attention is given to the phe-
notypic values of genotypes in different macro-environments. That situation
requires a somewhat different definition for the notion of genotypic value.

Here, as well as in all other chapters, except Chapter 13, the situation of
absence of variation in macro-environmental conditions is considered. This
implies that the genotypic values (and consequently their variance) are not
affected by a change of macro-environment. Differences between populations,
in fact differences between different generations of the same population, with
regard to their expected genotypic values or their genetic variances are then
not due to differences between the growing conditions prevailing in the differ-
ent growing seasons.

The difference between the phenotypic value assigned to an entry (a plant
or an entry grown as a plot) and the genotypic value assigned to the entry, is
attributed to the complex of environmental conditions to which the considered
entry is exposed. This difference is called environmental deviation (e).
Thus

e = p − G
When considering a number of entries sharing the same genotype we can write

e = p − G

The expected value of the environmental deviation is, due to the definition of
the genotypic value, necessarily equal to 0:

Ee = E(p − G) = (Ep) − G = G − G = 0
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For a genetically homogeneous group of plants the expression

p = G + e

implies
Ep = E(G + e) = G

and
var(p) = var(e)

For a genetically heterogeneous population of entries the expression

p = G + e (8.1)

implies
Ep = E(G + e) = EG

and
var(p) = var(G + e) = var(G) + var(e) + 2cov(G, e)

In the case of a random exposure of the genotypes of the entries to the micro-
environmental conditions the random variables G and e are independently
distributed across the entries. This implies cov(G, e) = 0. Randomization thus
induces absence of correlation of genotypic value and environmental deviation.
It implies

var(p) = var(G) + var(e) (8.2)

In words: the phenotypic variance (variance of the phenotypic values) is
equal to the genetic variance (variance of the genotypic values) plus the
environmental variance (variance of the environmental deviations).

The simple model described by Equation (8.1), i.e. p = G + e, results from
the way of defining the environmental deviation. Other models may also be
considered as a basis for developing a quantitative genetic theory, e.g.:

1. p = G · e
This simplifies by logarithmic transformation, i.e. log(p) = log(G) + log(e),
into p′ = G + e′.

2. p = c(µ + G) + e, (Spitters, 1979, p. 51, where µ is the population mean
and c the genetically determined competitive ability, see Section 15.1).

A high value for the environmental variance, or for the (dimensionless!) envi-
ronmental coefficient of variation (νce = σe

Ep
), does not necessarily mean that

the plants are exposed to very variable growing conditions. The environmental
variance as such is a poor yardstick for measuring the variation in the growing
conditions. If a genotype shows a large environmental variance, it could mean
that it has a small capacity to buffer its phenotypic values against a relatively
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small variation in the growing conditions. (Canalization is buffering of the
phenotypic values in such a way that variation in growing conditions does not
give rise to phenotypic variation: all tulip plants belonging to a certain clonal
variety produce a flower with the same colour intensity, notwithstanding varia-
tion in micro-environmental conditions.) Indeed, the genotype determines how
the phenotypic values of the plants with the considered genotype vary under
some range of growing conditions. Some genotypes give rise to more stable
phenotypes than others: they show, for the same variation in growing condi-
tions, a smaller environmental variance than other genotypes. Such genotypes
are said to posses a higher physiological homeostasis. (The latter is sometimes
claimed to be associated with a higher heterozygosity. That would confer a
higher average fitness value across various micro-environmental conditions as
compared to more homozygous genotypes, see Section 13.2 for a more detailed
discussion.)

Association, across different genotypes, of Ep and var(p) in such a way
that the coefficient of phenotypic variation (vcp) is constant is called a scale
effect. Generally, a logarithmic transformation then leads to equal variances
(Falconer, 1989, p. 294). The estimates for vcp given in Table 8.4 are nearly
constant; however, those for the inbred lines are the highest.

If some genetically uniform entry (a clone, a pure line or a single cross
hybrid) is grown in different fields, the environmental variances with regard
to some trait, as estimated for each separate field, indicate how the variation
for the trait is affected by the variation in the growing conditions as offered by
each field. Example 8.9 illustrates a relation between the average phenotypic
value and the phenotypic variance. It also discusses the possible relationship
with the degree of heterozygosity.

8.3 Components of the Genotypic Value

8.3.1 Introduction

The complex genotype affecting the phenotypic value of an entry for a trait
with quantitative variation consists of the aggregate, across all relevant loci,
of the single-locus genotype for each relevant locus. These relevant loci com-
prise segregating loci, contributing to the genetic variation in the consid-
ered population, as well as non-segregating loci (for which all plants in the
population have the same (homozygous) genotype). It is often (sometimes
implicitly) assumed that each segregating locus segregates for only two alle-
les. The situations where this restriction can be justified were indicated in
Section 2.2.1.
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Example 8.9 For the same field, plants of the potato variety Bintje were
less buffered with regard to yield per plant against variation in the growing
conditions than plants of the spring wheat variety Peko for plant height. The
coefficients of environmental variation amounted to 0.25 and 0.06 (Table 8.2),
respectively.

Van Cruchten (1973) measured the height (in centimetres; from the soil
to the lowest branch of the male inflorescence) of maize plants. He did so
for four inbred lines (W, X, Y and Z), for two single-cross hybrids (WX
and YZ) and for the double-cross hybrid (WXYZ, produced by crossing the
single-cross hybrids). He estimated for each entry Ep, var(p) and vcp (These
parameters can, except for WXYZ, be interpreted as G, var(e) and vce〉. The
results are summarized in Table 8.4.

Table 8.4 Estimates for Ep, var(p) and vcp for plant height (in centimetres) in maize

Material p̄ sp
2 vĉp

W 103.8 185 0.13
X 121.1 256 0.13
Y 80.5 90.3 0.12
Z 111.6 285.6 0.15
WX 177.6 424.4 0.12
YZ 141.2 240.3 0.11
WXYZ 188.2 475.3 0.12

Across these seven entries the coefficient of correlation between p̄ and
s2

p amounted to 0.95. There is thus a very clear indication of occurrence of a
scale effect. The values for sp

2 reflect the balance of this positive relation and
the negative relation between the inbreeding coefficient and the stability.

This latter relation is observed or assumed by some researchers.
Falconer’s question ‘What then is the cause of some characters being more
variable in inbreds than in hybrids?’ (Falconer, 1989, p. 269) suggests a neg-
ative relation between inbreeding coefficient and stability. Also Allard and
Bradshaw (1964) conclude that the size of var(e) depends on the degree
of heterozygosity of the genotype: ‘In outbreeding species there is a good
deal of work which indicates that buffering is conspicuously a property of a
heterozygote . . . In inbreeding species there is evidence that buffering can
be a property of specific genotypes not associated with heterozygosity’. This
topic is further discussed in Section 13.2.

In quantitative genetic theory developed for a locus represented by only two
alleles, the three genotypes for some locus may be coded as follows:

1. The homozygous genotype with the lower genotypic value may be coded by
A2A2

2. The heterozygous genotype by A1A2

3. The homozygous genotype with the higher genotypic value by A1A1

Falconer (1989, p. 112) used this coding. These codes do not reveal whether
dominance occurs or, when it occurs, which of the two alleles is dominant.
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In the present book locus B-b represents any locus affecting the expression
for the considered quantitative trait. The coding of the genotypes is as follows:

1. The homozygous genotype giving rise to the lower genotypic value is
coded bb

2. The heterozygous genotype is coded Bb
3. The homozygous genotype with the higher genotypic value is coded BB

With this coding system the notation reveals nothing about dominance. How-
ever, in Section 9.4.1 it is shown that, if dominance occurs, allele B tends to
be the dominant allele. It is, indeed, shown that unidirectional dominance
is to be expected, i.e. allele B is the dominant allele for most of the k rele-
vant loci B1-b1, . . . , Bk-bk. This implies that for many traits the (population)
genetic and the quantitative genetic implications of the codes coincide. This
is not the case if ambidirectional dominance occurs, i.e. for some relevant
loci allele B is dominant and for other relevant loci allele b. Ambidirectional
dominance has been established for certain traits, e.g. in wheat for date of
anthesis and for compactness of the ear.

Quantitative genetic analysis predominantly reveals effects emerging from
segregating loci. The contribution to the phenotypic values due to the common
complex genotype for all non-segregating loci, sometimes indicated as genetic
background, is measured by an important quantitative genetic parameter,
viz. m (Section 8.3.2).

One may generally state that k segregating loci, say B1-b1, . . . , Bk-bk, affect
the variation for the considered trait. The value for k varies from trait to trait
and for a given trait from population to population. An arbitrary locus from
this set of loci is locus Bi-bi. In short, we let locus B-b represent any of the
segregating loci.

Different systems have been adopted for the partitioning of genotypic values
in meaningful components. They aim at the derivation of simple expressions
for expectations and variances of genotypic values in terms of their compo-
nents. Section 8.3.2 deals with the socalled F∞-metric for partitioning of the
genotypic value. It applies well to situations where loci are represented by only
two alleles. According to Section 2.2.1 this is common in populations of self-
fertilizing crops. For situations with multiple allelism, which is to be expected
in populations of cross-fertilizing crops, partitioning of the genotypic value in
the additive genotypic value and the dominance deviation is appropriate, see
Section 8.3.3. The latter components will also be written in terms of F∞-metric
parameters. Because of that, first attention is given to the F∞-metric.

8.3.2 Partitioning of Genotypic Values According to the F∞-metric

In the F∞-metric the genotypic values for the three genotypes for locus B-b
are partitioned in terms of the parameters m, a and d, where



140 8 Components of the Phenotypic Value of Traits with Quantitative Variation

m := 1
2 (Gbb + GBB)

a := 1
2 (GBB − Gbb)

d := GBb − m

These definitions allow the following partitioning of the genotypic values:

Genotype
bb Bb BB

G m − a m + d m + a

Due to its definition, component m is called the midparent value. This para-
meter represents the contribution to the genotypic values due to the genetic
background. In fact the F∞-metric owes its name to the way of defining m for
any number of segregating loci.

The parameter a describes the deviations of the genotypic value of the
homozygous genotypes from the midparent value:

a = GBB − m = m − Gbb

Because of the system of coding of the genotypes, the inequality GBB > Gbb

applies. Thus a ≥ 0.
The parameter d indicates the deviation of the genotypic value of the

heterozygous genotype from the midparent value:

d = GBb − m

If d = 0 then GBb = m = 1
2 (Gbb + GBB): the genotypic value of Bb is interme-

diate with regard to those of bb and BB. This absence of dominance implies
additivity of allele effects. If GBb−Gbb �= GBB−GBb the genotypic value of Bb
is not intermediate. Then the effect of the second allele present in a genotype
depends on the first allele. This phenomenon is sometimes called intra-locus-
interaction, but it is more commonly called dominance. In the F∞-metric it
is, in the case of dominance, impossible to consider the genotypic value as the
sum of the effects of the two alleles involved in the genotype. Because dom-
inance is a common phenomenon one should, within the F∞-metric system
of partitioning of genotypic values, avoid the use of the word allele-effect.
Within the alternative system for partitioning genotypic values, developed in
Section 8.3.3, use of the term allele-effect is legitimate, even in the presence of
dominance.

The degree of dominance follows from the comparison of a and d:

d < −a: overdominance of b

d = −a: complete dominance of b

−a < d < 0: incomplete dominance of b

d = 0: no dominance, i.e. additivity

0 < d < a: incomplete dominance of B
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d = a: complete dominance of B

d > a: overdominance of B (see Note 8.1)

Note 8.1 From about 1910 Shull and East formulated hypotheses to explain
heterosis, the phenomenon that heterozygous plant material performs bet-
ter than its homozygous parents. Because overdominance at the level of
single-locus genotypes is a rare phenomenon (Section 6.2), an explanation of
heterosis on the basis of single-locus overdominance is inappropriate. How-
ever, in Section 9.4.1 it will be explained that heterosis is to be expected at
any degree of dominance provided that d > 0.

Example 8.10 illustrates how one may assign numerical values to the parame-
ters m, a and d.

Example 8.10 For the following genotypic values

Genotype
b1b1 B1b1 B1B1

G 12 14 16

one can derive: m = 1
2 (12 + 16) = 14, a1 = 1

2 (16 − 12) = 2 and
d1 = 14 − 14 = 0.
For

Genotype
b2b2 B2b2 B2B2

G 7 15 15

we get m = 1
2 (7 + 15) = 11, a2 = 1

2 (15 − 7) = 4, d2 = 15 − 11 = 4.

Example 8.11 shows that it may be difficult to decide about presence or
absence of dominance.

Example 8.11 The size of tomatoes may be measured by their weight
as well as by their diameter. The two different scales of measurement give
rise to different genotypic values and to different degrees of dominance. This
is illustrated by means of data on fruit size of tomato species and of their
interspecific hybrid. MacArthur and Butler (1938) measured fruit size by
determining fruit weight (w; in g) and obtained the following results:

Fruit size (g)
Cross P1 P2 F1

1 1.1 12.1 4.2
2 1.1 54.1 7.4
3 1.1 152.4 10.1
4 12.4 112.6 35.5
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It may be concluded that, as measured by weight, small fruit size tends to
be dominant.

When measuring fruit size by r, the radius of the spherical fruits, and
approximating r (in cm) by r =

(
0.75w

π

) 1
3 we get

Fruit size (cm)
Cross P1 P2 F1

1 0.640 1.424 1.001
2 0.640 2.346 1.209
3 0.640 3.314 1.341
4 1.436 2.996 2.039

According to this scale of measurement there is hardly any dominance for
fruit size.

Yield is a complex trait. In its simplest form it is the product of number
of fruits and single fruit weight. The genetic control of each of these two
components may be expected to be more direct and more simple than the
(indirect) genetic control of yield itself. Tables 9.3 and 9.4 present for each of
these components examples of intermediate phenotypic values of the offspring,
compared to the parents, whereas heterosis appears to occur with regard to
yield.

Now the partitioning of genotypic values according to the F∞-metric is
extended to complex genotypes consisting of single-locus genotypes for each
of the K segregating polygenic loci B1-b1, . . . , BK-bK .

First the situation of K = 2 is considered. The genotypic value of some com-
plex genotype for loci B1-b1 and B2-b2, designated as GB1-b1,B2-b2 , is assumed
to consist of the sum of

• the genotypic value of the complex genotype for all non-segregating loci,
say m;

• a contribution due to the genotype for locus B1-b1, say G′
B1-b1;

• a contribution due to the genotype for locus B2-b2, say G′
B2-b2 and

• the effect of interaction of the single-locus genotypes for loci B1-b1 and
B2-b2, say iB1-b1,B2-b2.

Thus
GB1-b1,B2-b2 = m + G′

B1-b1 + G′
B2-b2 + iB1-b1,B2-b2 (8.3)

If iB1-b1,B2-b2, say i , is zero for each of the nine complex genotypes, the
genotypic value of a complex genotype simply consists of m+G′

B1-b1+G′
B2-b2.

The contribution of the single-locus genotype for locus B1-b1 to the genotypic
value of the complex genotype does then not depend on the genotype for locus
B2-b2. The difference GB1b1.. –Gb1b1.. is then equal to G′

B1b1 –G′
b1b1, whatever
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the genotype for locus B2-b2 is. This may be called additivity of single-
locus genotype effects.

If i �= 0 for one or more of the nine complex genotypes, inter-locus-
interaction, more commonly called epistasis, is present. In that case one
cannot specify single-locus genotype effects, and then one should not use the
term genotype-effect. (Note 8.2 indicates that the meaning of the word
epistasis depends on the context).

Note 8.2 For qualitative variation the term epistasis has a more specific
meaning than for quantitative variation, where it indicates the presence of
any form of inter-locus-interaction (which is also indicated as non-allelic
interaction).

Example 8.12 illustrates (a) the partitioning of the genotypic values of complex
genotypes in terms of the parameters m, a and d, and (b) how to conclude
about the presence or the absence of epistasis.

Example 8.12 The scheme below provides the genotypic values for the
nine complex genotypes possible for loci B3-b3 and B4-b4:

b3b3 B3b3 B3B3

b4b4 11 13 13
B4b4 12 14 14
B4B4 12 14 14

It appears that epistasis is absent.
The value of m is calculated as the mean genotypic value across the four

homozygous genotypes: m = 1
4 (11 + 13 + 12 + 14) = 12.5.

At both loci there is complete dominance: a3 = d3 = 1; a4 = d4 = 1
2 .

The next scheme provides the genotypic values for the nine complex
genotypes for loci B5-b5 and B6-b6:

b5b5 B5b5 B5B5

b6b6 11 11 11
B6b6 11 13 13
B6B6 11 13 13

It appears that GB5B5b6b6−Gb5b5b6b6 = 0, whereas GB5B5B6B6−Gb5b5B6B6 =
2. This means that the effect of genotype B5B5 in comparison to b5b5 depends
on the genotype for locus B6-b6. Inter-locus-interaction of the two loci is
demonstrated. Epistasis is present.

Epistasis occurs – of course – in the hypothetical situation where the mar-
ginal contribution of genotype BB, in comparison to genotype bb, to the geno-
typic value of complex genotypes is smaller as the total number of B alleles
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present at the K-1 other loci is higher. This hypothesis, resembling the law of
diminishing returns, was put forward by Rasmusson (1933). Physiological lim-
its with regard to the expression of quantitative variation certainly induce the
occurrence of epistasis, implying that it will become harder to realize further
progress by selection as this physiological limit is more closely approximated.

Epistasis should generally be expected because the genotypic value for some
trait is ultimately due to genotypes for loci controlling successive steps of a
metabolic process: the homozygous genotype b1b1 for the mutant allele b1 may
block the process, influencing the effect of genotype B2B2 in comparison to
genotype b2b2.

So far, the interaction of the single-locus genotypes for loci B1-b1 and
B2-b2, was generally indicated by iB1-b1,B2-b2. The interaction effects occur-
ring within pairs of single-locus genotypes when considering the nine complex
genotypes possible for K = 2 will be represented by logical symbols: aa, ad,
da and dd (Kearsey and Pooni, 1996, p. 225).

• aa represents the effect of interaction of a homozygous genotype for locus
B1-b1 and a homozygous genotype for locus B2-b2

• ad represents the effect of interaction of a homozygous genotype for locus
B1-b1 and a heterozygous genotype for locus B2-b2

• da represents the effect of interaction of a heterozygous genotype for locus
B1-b1 and a homozygous genotype for locus B2-b2

• dd represents the effect of interaction of a heterozygous genotype for locus
B1-b1 and a heterozygous genotype for locus B2-b2

Table 8.5 presents the partitioning of the genotypic values for the nine complex
genotypes possible for K = 2.

Partitioning of the genotypic value of a complex genotype requires in the
case of occurrence of epistasis thus extra parameters. When two alleles seg-
regate for each of the K loci 3K different complex genotypes can be distin-
guished. To partition unambiguously the genotypic values of each of these 3K

genotypes in total 3K parameters are required. One of these is m. This para-
meter occurs in the partitioning of each genotypic value. It functions as the
origin. In the so-called F∞-metric m is equal to the unweighted mean geno-
typic value across the 2K complex homozygous genotypes. It is due to the
complex genotype with regard to all non-segregating loci. The 3K − 1 other

Table 8.5 The partitioning of the genotypic values of the nine complex genotypes with

regard to loci B1-b1 and B2-b2
Genotype for locus B1-b1

b1b1 B1b1 B1B1

Genotype for locus B2-b2: b2b2: m − a1 − a2 + aa m + d1 − a2 − da m + a1 − a2 − aa

B2b2 m − a1 + d2 − ad m + d1 + d2 + dd m + a1 + d2 + ad

B2B2 m − a1 + a2 − aa m + d1 + a2 + da m + a1 + a2 + aa

m: Origin, the unweighted mean across the four homozygous genotypes.
a1, d1, a2 and d2: Parameters for main effects of single-locus genotypes.
aa, ad, da and dd: Parameters for effects of interaction within pairs of single-locus genotypes.
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parameters designate main effects due to single-locus genotypes and effects of
interaction within pairs, within triplets, within quartets, etc. of such single-
locus genotypes.

For K = 3 loci the 33 − 1 = 26 parameters for main effects and interaction
effects are

• Per locus: a and d; in total 3 × 2 = 6 parameters
• Per pair of loci: aa, ad, da and dd; in total 3 × 4 = 12 parameters
• Per triplet of loci: aaa, aad, ada, daa, add, dad, dda and ddd; in total

1 × 8 = 8 parameters

The genotypic value of genotype B1b1B2B2b3b3 is thus partitioned as

m + d1 + a2 − a3 + da12 − da13 − aa23 − daa123.

Generally the 3K − 1 parameters for main effects and interaction effects are

• Per locus: 2; across K loci in total: 2K

• Per pair of loci: 4; across
(

K
2

)
pairs in total 22

(
K
2

)

• Per triplet of loci: 8; across
(

K
3

)
triplets in total 23

(
K
3

)
, etc.

Altogether this adds up to

K∑
i=1

(
K
i

)
2i =

[
K∑

i=0

(
K
i

)
2i

]
− 1

Because
K∑

i=0

(
K
i

)
xi = (1 + x)K

the former sum is 3K − 1.
The number of parameters quickly becomes unmanageable for even small

values for K: for K = 3 it is 26, but for K = 7 it is already 2186. Effects of
interactions within groups of three or more single-locus genotypes are therefore
mostly neglected, in which case there remain

2K + 22

(
K
2

)
= 2K + 2K(K − 1) = 2K2

parameters; i.e. 18 if K = 3 and 98 if K = 7.
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With regard to further development of the quantitative genetic theory, a
choice between two options has to be made:

1. Development of the quantitative genetic theory on the basis of a complete
partitioning of the genotypic values, or on the basis of partitioning of the
genotypic values while neglecting effects of interactions within groups of
three or more single-locus genotypes. In the latter situation only main-
effect parameters and parameters for the interaction within pairs of single-
locus genotypes are considered. The major drawback of this option is the
complexity of mathematical expressions for expectations and variances of
genotypic values in terms of these parameters.

2. Development of the theory on the basis of the assumption that inter-locus
interaction does not occur. The drawback is that such quantitative genetic
theory cannot fully be justified in those cases where epistasis occurs. Then
conclusions on the basis of applications of the theory will be false and
decisions may be inappropriate.

In this book the second option is chosen. Thus absence of epistasis is assumed
throughout the book. The number of parameters then amounts to only 2K +1.
In connection with the also generally applied assumption of absence of linkage
(Chapter 1), the present assumption yields relatively simple algebraic deriva-
tions and expressions for EG and var(G). The reader is referred to Mather
and Jinks (1982) or Kearsey and Pooni (1996) for a development of the
theory based on the assumption that epistasis is present. Note 8.3 consid-
ers some findings and opinions related to the choice between the two above
options.

Note 8.3 Jana (1971), Jana and Seyffert (1971, 1972) and Forkman and
Seyffert (1977) considered whether the assumption of absence of epistasis
can be justified. They did so by spectrophotometric determination of the
content of anthocyanins in fresh flowers of common stock, Matthiola incana
(L.) R. Br. From this point of view the trait showed quantitative variation.
The genotype for the one, two or three relevant segregating loci was, however,
known in the studied plant material, whereas the genetic background was
uniform for all plants.

Earlier studies, involving an analysis in terms of gene-frequency depen-
dent gene and interaction effects, were reanalysed by Jana (1971) in terms
of the F∞-metric parameters a, d, aa, ad, da and dd. It was established
systematically that the original analyses led to an underestimation of the
contribution of interaction effects in comparison to the analysis on the basis
of the F∞-metric.

Forkman and Seyffert (1977) established the law of the diminishing
returns: ‘The phenotypic response to allelic substitutions follows the charac-
teristics of a saturation curve.’
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For breeders it is important to know whether epistasis occurs or not.
They may be interested in the genetic control of the heterosis expressed by a
single cross-hybrid. Is the heterosis due to pseudo-overdominance or is it due
to epistasis? The former requires crossing-over with regard to tightly linked
loci to obtain superior homozygous genotypes; the latter may be exploited
by developing and selecting a homozygous genotype. With regard to epis-
tasis, Gardner and Lonnquist (1966) made the following remark: ‘Although
epistasis does not appear to be an important source of genetic variation in
open-pollinated varieties of corn, this does not mean that epistasis is unim-
portant in corn breeding. Epistasis may be very important indeed in the
hybrid produced by crossing two inbred lines.’

It is, indeed, useful to distinguish the relative contribution of epistatic
effects to the genotypic values, and the relative contribution of epistatic
effects to the variance of these genotypic values. In this book, like those of
Hallauer and Miranda (1981) or Falconer and MacKay (1996), it is taken for
granted that the major part of the genotypic value of a complex genotype is
due to the effects of single-locus genotypes.

The origin in the F∞-metric is m, i.e. the contribution to the genotypic value
due to the common genotype for all non-segregating loci. From Table 8.5 it
can be understood that it is equal to the unweighted mean genotypic value
across the 2K complex homozygous genotypes with regard to all segregating
loci. In the case of absence of linkage and absence of selection the frequency
of each homozygous genotype will be (1

2 )K in F∞. Then

m = EGF∞ = Ep
F∞ (8.4)

This implies that one may estimate m by pF∞. In Section 11.2.3 the estimation
of m is more extensively considered.

Because m is defined for homozygous genotypes the interpretation of m is
obscure when dealing with cross-fertilizing crops. In the absence of dominance,
the value of m applying to the plants of a FS-family can be estimated by
the mid-parent value (see Example 9.2): all plants belonging to this family
share the genetic background consisting of the homozygous complex genotype
shared by the two parents. This value of m applies only to a restricted group
of plants; another value of m will apply to the plants of another FS-family.
The estimation of the value of m for populations consisting of mixtures of
FS-families or HS-families is thus not straightforward.

At the end of this section it will be explained, by considering the F2

generation of a self-fertilizing crop (which is identical to the offspring of a
single-cross hybrid), why the probability distribution of the genotypic values
for the quantitative variation of a trait tends to the normal distribution.
For populations with different segregation ratios as well as for panmictic
populations, irrespective of the allele frequencies of the segregating polygenic
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loci, a similar explanation of the commonly observed tendency of a normal
distribution can be developed.

The explanation can be understood by considering two models for the dis-
tribution of the genotypic values. Both models assume segregation for K
unlinked, non-epistatic isomeric loci, i.e. loci with equal single-locus effects;
thus a1 = a2 = . . . = aK and d1 = d2 = . . . = dK , say a, respectively d.

• Model 1: Absence of dominance, d = 0
• Model 2: Presence of complete dominance: d = a

Model 1: Absence of dominance

In the absence of dominance the genotypic value of some genotype is a simple
function of the number of B and b alleles in its complex genotype involving K
relevant loci. The number of B alleles in the complex genotype is designated
by j and the number of b alleles by 2K − j, where the random variable j
may adopt any value in the range 0, 1, 2, . . . , 2K. The genotypic value of some
random plant is:

G = m + (j − K)a

The expected genotypic value and the genetic variance, i.e. the variance of
the genotypic values of the plants, amount then to

EG = m + (Ej − K)a

and
var(G) = a2var(j)

The probability distribution for j in the F2 population is in fact a binomial
distribution, i.e.

P (j = j) =
(

2K
j

)(
1
2

)j (1
2

)2K−j

=
(

2K
j

)(
1
4

)K

with

Ej = 2K · 1
2 = K

var(j) = 2K · 1
2 · 1

2 = 1
2K

Thus

EG = m

var(G) = 1
2Ka2
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The former is illustrated in Example 8.13.

Example 8.13 For K = 4 isomeric loci, m = 10, a = 1 and d = 0, the
genotypic values and their probability distribution in an F2 population are:

j G P (j = j)
0 6 0.0039
1 7 0.0313
2 8 0.1094
3 9 0.2188
4 10 0.2734
5 11 0.2188
6 12 0.1094
7 13 0.0313
8 14 0.0039

Then EG = 10(= Ep) and var(G) = 1
2 · 4 · 12 = 2.

Model 2: Presence of complete dominance

In the presence of complete dominance some complex genotype may consist
of k loci with single-locus with genotype B; i.e. BB or Bb, and (K − k)
loci with single-locus genotype bb, where k may adopt any value in the range
0, 1, 2, . . . ,K. The genotypic value of such genotype is then

G = m + (2k − K)a

implying
EG = m + (2Ek − K)a

and
var(G) = 4a2var(k)

The probability distribution for k in an F2 population is also in this case a
binomial distribution, viz.

P (k = k) =
(

K
k

)(
3
4

)k (1
4

)K−k

with
Ek = 3

4K
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and
var(k) =

3
16

K

implying

EG = m + (2 · 3
4 · K − K)a = m + 1

2Ka

var(G) = 3
4Ka2

Example 8.14 provides an illustration.

Example 8.14 For K = 4 isomeric loci, m = 10 and a = d = 1, the
genotypic values and their probability distribution in an F2 population are:

K G P (k = k)
0 6 0.0039
1 8 0.0469
2 10 0.2109
3 12 0.4219
4 14 0.3164

Then EG = 10+2 = 12(= Ep) and var(G) = 3
4 ·4 ·12 = 3. Thus EGF2 �= m in

the presence of dominance. The probability distribution is skew; the modal
genotypic value is 12.

The probability distribution presented in Example 8.14 is skewed. This is
caused by the dominance in combination with a low value for K.

In the preceding two models the probability distributions for the genotypic
values are given by the binomial distribution. For high values for K this
distribution can be approximated by the normal distribution, because the
central limit theorem states that for K → ∞ the distribution of

j − Ej

σj

converges to the standard normal distribution χ, or N(0, 1). Thus

P (j = j) = P(j − 1
2 < j < j + 1

2 )

can be approximated by

P

(
j − 1

2 − Ej

σj
< χ <

j + 1
2 − Ej

σj

)
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The approximation is illustrated by Example 8.15.

Example 8.15 In Example 8.13, dealing with K = 4, P (j = 5) was cal-
culated to be 0.2188. The approximation on the basis of the central limit
theorem yields

P

(
4.5 − 4√

2
< χ <

5.5 − 4√
2

)
= P (0.354 < χ < 1.06) = 0.2186

Likewise, the distribution of the ratio G−EG
σg

can be approximated by the
standard normal distribution if K → ∞. For model 1, assuming absence of
dominance, this implies

G − EG
σg

=
[m + (j − k)a] − [m + (Ej − k)a]

aσj
=

j − Ej

σj
� χ

The distribution of the genotypic values will thus be approximately normal,
especially for higher values for K. The approximation is better as the polygenic
trait is controlled by more segregating loci and/or in absence of dominance
for a larger portion of the relevant loci.

8.3.3 Partitioning of Genotypic Values into their Additive
Genotypic Value and their Dominance Deviation

In this book quantitative genetic theory is developed on the basis of the para-
meters partitioning genotypic values according to the F∞-metric. For self-
fertilizing crops the F∞-metric is applied to partition the genotypic values
of separate genotypes with the aim to derive simple expressions for EG and
var(G), i.e. the expected genotypic value and the variance of the genotypic
value of the genotypes in the studied population. For cross-fertilizing crops the
genotypic values may also be partitioned by the parameters of the F∞-metric.
However, an alternative system for partitioning has found general application.
In this system each genotypic value is partitioned into the sum of the so-
called additive genotypic value, here designated by the symbol γ, and the
so-called dominance deviation, here designated by δ. Then EG and var(G)
may be expressed in terms of γ and δ. The components γ and δ as well as
their variances will be derived in the present section.

Compared to the parameters a and d of the F∝-metric, the components
γ and δ have an important drawback: they are frequency-dependent (see
Note 8.4). Thus, for a given genotype, their values change if the frequency of
that genotype changes. They change if the locus affects a trait subjected to
selection! The components γ and δ, which will be described in terms of a and
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d, are thus functions of the allele frequencies. Notwithstanding this drawback,
attention is given to the development of quantitative genetic theory of cross-
fertilizing crops on the basis of the components γ and δ. Application of this
partitioning in the case of multiple allelism, which should be anticipated for
cross-fertilizing crops, is straightforward. Multiple allelism is to be expected in
populations of cross-fertilizing crops. Presence of only two alleles for a certain
locus is then a special case, which occurs – for example – in the generations
tracing back to a single cross hybrid.

Note 8.4 Frequency-dependent components of the genotypic value describ-
ing epistasis have also been elaborated (Cockerham, 1954; Kempthorne,
1957; Weber, 1978). The partitioning of the genotypic values occurs in a way
similar to the so-called least squares method of estimation in linear regres-
sion. Thus the variance of interaction components is minimized, implying
that the additive genetic variance is maximized. The relative size of the so-
called interaction variance leads then to an underestimation of the relative
importance of the contribution of the epistatic component to the genotypic
value (see also Note 8.3).

The partitioning gives rise to the important concepts of breeding value
(Section 8.3.4), a quantity closely related to the additive genotypic value, and
that of additive genetic variance, which is the variance of the additive
genotypic values. The latter is an important yardstick for the perspectives of
further improvement of the expected genotypic value by means of selection.

The partitioning of a genotypic value is into the additive genotypic value
(γ) and the dominance deviation (δ). (For the simple case of two alleles
these components of G will also be expressed in terms of the F∞-metric para-
meters a and d). In this section the components of the genotypic value and of
the genotypic variance will be considered for only one segregating locus. The
conditions required for a straightforward extension of the derived expressions
to the case of K segregating loci are discussed in Section 10.1.

Multiple alleles, random mating

First the partitioning of the genotypic values of the genotypes occurring
with regard to the multiple allelic locus B1-B2- · · · -Bn, with allele frequen-
cies p1, p2, · · · , pn, is considered.

In the present section the genotypic value Gij of some genotype BiBj is
partitioned according to the commonly used linear model for data in a two-
way table. Absence of reciprocal differences is assumed. This implies that it
is irrelevant whether allele Bi entered the genotype via an egg or via a pollen
grain. This assumption gives rise to the following linear model for Gij :

Gij = µ + αi + αj + δij ; i, j = 1, . . . , n
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where

µ = EG = the expected genotypic value
αi = the main effect of allele Bi

αj = the main effect of allele Bj

δij = the effect of intra-locus interaction of alleles Bi and Bj .

In the present context the main effects are called allele effects (or ‘average
effects’; or additive effects) and the intra-locus interaction effects are called:
dominance deviations.

Some of the derivations following hereafter simplify when considering

Gij
′ = Gij − µ

where Gij
′ represents the so-called reduced genotypic value. For this reason µ

is first derived.
The genotypic composition of the population due to a single round of

panmictic reproduction follows from the two-way table below. The vertical
margins of the table present the haplotypic composition of the eggs; the
horizontal margins present the haplotypic composition of the pollen; the cen-
tral part provides the genotypic composition of the obtained population.

Haplotypic composition of the pollen

B1 B2 . . . Bn

Haplotypic composition B1 p1
2 B1B1 p1p2 B1B2 p1pn B1Bn p1

of the eggs B2 p2p1 B2B1 p2
2 B2B2 p2pn B2Bn p2

. .
Bn pnp1 BnB1 pnp2 BnB2 pn

2 BnBn pn

p1 p2 · · · pn 1

Application of the representation of the genotypic composition used in
Section 2.2.2, for i = 1, . . . , n and j = i, . . ., n:

Genotype
B1B1 . . . BiBj . . . BnBn

f p1
2 2pipj pn

2

G G11 Gij Gnn

yields the following expression for the expected genotypic value

µ = EG = p1
2G11 + . . . + 2pipjGij + . . . + pn

2Gnn

When deriving EG2 in a similar way, one may calculate the variance of the
genotypic values in the following way:

var(G) = EG2 − µ2
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(The concepts ‘expected genotypic value’ and ‘genotypic variance’ are exten-
sively discussed in Chapter 9 and 10, respectively). With regard to the reduced
genotypic values we get:

EG′ = E(G − µ) = 0

var(G′) = var(G) = EG′2 − (EG′)2 = EG′2

The main effect of allele Bi is defined to be equal to the (conditional) expec-
tation of the reduced genotypic value of plants containing allele Bi. Thus

αi = E
(
G′

ij |Bi

)
= p1Gi1

′ + p2Gi2
′ + · · · + pnGin

′ =
n∑

j=1

pjGij
′ =

n∑
j=1

pjGji
′

(8.5)
The breeding value (bv) of genotype BiBj is now defined as the sum of

the effects of the alleles present in the genotype. Thus

bvij := αi + αj

The additive genotypic value (γ) of genotype BiBj is defined as: EG plus
its breeding value. Thus

γij := µ + bvij = µ + αi + αj (8.6)

The expected value of the main effect of an allele, calculated across all alleles
belonging to the involved locus, is calculated as follows:

Eα = p1α1 + · · · + pnαn = p1

⎛
⎝ n∑

j=1

pjG1j
′

⎞
⎠ + · · · + pn

⎛
⎝ n∑

j=1

pjG′
nj

⎞
⎠

Thus

Eα = p1p1G11
′ + p1p2G12

′ + . . . + pnpn−1Gnn−1
′ + pnpnGnn

′ = EG′ = 0 (8.7)

This implies Eγ = µ.
The dominance deviation of a genotype is defined to be equal to the

difference between its genotypic value and its additive genotypic value. The
dominance deviation of genotype BiBj is thus:

δij := Gij − γij = Gij − (EG + αi + αj) = Gij
′ − αi − αj (8.8)

The expected value of δ across all genotypes for the considered locus is equal to

Eδ = E[G − (EG + α + α)] = 0

Altogether the pursued partitioning of the genotypic value of genotype
BiBj is

Gij = γij + δij

In general
G = γ + δ (8.9)
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Example 8.16 illustrates the present partitioning for locus B − b − β.

Example 8.16 A population with the Hardy–Weinberg genotypic compo-
sition with regard to locus B-b-β, where pB = 1

2 , pb = 1
4 and pβ = 1

4 , is
considered.

Genotype
BB bb ββ Bb Bβ bβ

f 1
4

1
16

1
16

1
4

1
4

1
8

G 10 8 6 10 9 7
Thus

µ =
1
4
× 10 + · · · + 1

8
× 7 = 9,EG2 =

1
4
× 102

+ · · · + 1
8
× 72 = 82.625, and σ2

g = 82.625 − 92 = 1.625

The two-way table below describes the origin of the population: the horizon-
tal margins and the vertical margins present the haplotypic compositions of
the gametes underlying the genotypes, the central part presents the geno-
types and their reduced genotypic values G′ = G − µ = G − 9.

Haplotypic composition of the pollen
B b β

Haplotypic composition B BB 1 Bb 1 Bβ 0 1
2

of the eggs: b Bb 1 bb −1 bβ −2 1
4

β Bβ 0 bβ −2 ββ −3 1
4

1
2

1
4

1
4 1

The main effects of alleles B, b and β are calculated from this table in the
following way:

αB = 1
2 × 1 + 1

4 × 1 + 1
4 × 0 = 3

4

αb = 1
2 × 1 + 1

4 × (−1) + 1
4 × (−2) = − 1

4

αβ = 1
2 × 0 + 1

4 × (−2) + 1
4 × (−3) = −1 1

4

Check Eα = 1
2 × 3

4 + 1
4 × (− 1

4 ) + 1
4 × (−1 1

4 ) = 0

After having determined the allele effects one can partition the genotypic
values:

Genotype
BB bb ββ Bb Bβ bβ

f 1
4

1
16

1
16

1
4

1
4

1
8

G 10 8 6 10 9 7
γ 10.5 8.5 6.5 9.5 8.5 7.5
δ −0.5 −0.5 −0.5 0.5 0.5 −0.5
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The variance of the additive genotypic values is called additive genetic
variance, usually designated by σ2

a. It is equal to

var(γ) = var(EG + α + α) = 2var(α) = 2Eα2 (8.10)

(Because of random fusion of female and male gametes the effects of the mater-
nal and paternal alleles are uncorrelated. Their covariance is then zero.) The
additive genetic variance, i.e. the variance of the additive genotypic values, is
thus twice the variance of the main effects of the alleles.

The variance of the dominance deviations, usually called dominance
variance and designated by σ2

d, is equal to Eδ2.
The variance of the genotypic values, usually called genetic variance and

designated by σ2
g , is

var(G) = var(γ + δ) = var(γ) + var(δ) + 2cov(γ, δ).

In Note 8.5 it is shown that cov(γ, δ) = 0. This implies

var(G) = var(γ) + var(δ) (8.11)

Note 8.5 The covariance of the additive genotypic value and the dominance
deviation can be shown to be zero:

cov(γ, δ) = cov(γ − µ,G − γ) = E[(γ − µ) · (G − γ)]

as
[E(γ − µ)] · [E(G − γ)] = 0

Thus

cov(γ, δ) =
n∑

i=1

n∑
j=1

pipj(αi + αj)
(
Gij

′ − αi − αj

)

=
n∑

i=1

n∑
j=1

pipjαiGij
′ +

n∑
i=1

n∑
j=1

pipjαjGij
′ −

n∑
i=1

n∑
j=1

pipj(αi + αj)2

As
αi + αj = γij − µ = γij − Eγ

the last term is equal to

E(γ − Eγ)2 = var(γ)
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Thus

cov(γ, δ) =
n∑

i=1

piαi

⎛
⎝ n∑

j=1

pjGij
′

⎞
⎠+

n∑
j=1

pjαj

(
n∑

i=1

piGij
′
)

− var(γ)

=
n∑

i=1

piαi
2 +

n∑
j=1

pjαj
2 − var(γ) = 2Eα2 − var(γ) = 0.

Example 8.17 illustrates the calculation of the genetic variance and its com-
ponents for the situation of Example 8.16.

Example 8.17 For the population described in Example 8.16, the additive
genotypic variance amounts to:

var(γ) = 1
4 × (10.5)2 + · · · + 1

8 × (7.5)2 − 92 = 1.375

This is indeed equal to

2E(α)2 = 2

[
1
2 × ( 3

4 )2 + 1
4 × (− 1

4 )2 + 1
4 ×

(
−1

1
4

)2
]

= 2 × 0.6875 = 1.375.

As
Eδ = 1

4 × (−0.5) + · · · + 1
8 × (−0.5) = 0

the dominance variance is equal to:

var(δ) = 1
4 × (−0.5)2 + · · · + 1

8 × (−0.5)2 = 0.25.

It is thus confirmed that var(G) = var(γ)+var(δ). This follows also from the
fact that the covariance of γ and δ, i.e.

cov(γ, δ) = E(γ · δ) = 1
4 × 10.5 × (−0.5) + 1

16

×8.5 × (−0.5) + · · · + 1
8 × 7.5 × (−0.5)

is equal to 0.

The partitioning developed here may seem rather abstract. In practice,
however, the additive genotypic value can be estimated rather easily. Consider,
for example, the result of open pollination of a plant with genotype BiBj
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Haplotypic composition of the pollen

B1 B2 . . . Bn Expected genotypic
p1 p2 pn value of the offspring

Haplotype Bi p1 BiB1 p2 BiB2 pn BiBn µ + αi

of the egg: Bj p1 BjB1 p2 BjB2 pn BjBn µ + αj

The expected genotypic value of the offspring due to open pollination of a
plant with genotype BiBj is thus equal to

E(G|BiBj) = µ + 1
2αi + 1

2αj = 1
2µ + 1

2γij

This implies that
γij = 2E(G|BiBj) − µ,

i.e. that
γij − µ = αi + αj = 2[E(G|BiBj) − µ] (8.12)

Earlier in this section, the latter quantity was defined as the breeding value
of genotype BiBj (see also Section 8.3.4).

An unbiased estimate of γij , i.e. the additive genotypic value of an open
pollinated plant with genotype BiBj , is thus twice the mean phenotypic value
of its offspring minus the mean phenotypic value of all plants in the (offspring)
population:

γ̂ij = 2pHSij
− p

The difference between an unbiased estimate of the genotypic value of this
plant and the unbiased estimate of its additive genotypic value is an unbiased
estimate of its dominance deviation δij :

δ̂ij = Ĝ − γ̂ij

The difference between the expected genotypic values of the plants belonging
to the HS-families obtained after open pollination of two different plants, with
genotypes BiBj and BkBl, is equal to half the difference between the additive
genotypic values of these plants:

E(G|BiBj) − E(G|BkBl) = 1
2 (γij − γkl)

As cov(γ, δ) = 0 (see Note 8.5), the covariance of the genotypic value of an
open pollinated (maternal) plant (GM ) and the expected genotypic value of
the members of the HS-family produced by this plant (GHS|M ) is

cov(GM ,GHS|M ) = cov(γ + δ, 1
2µ + 1

2γ) = 1
2var(γ) = 1

2σ2
a (8.13)
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Two alleles, random mating

Early in this section it was said that, in the simple case of two alleles per seg-
regating locus, the additive genotypic value (γ) and the dominance deviation
(δ) can be expressed in terms of the F∞-metric parameters a and d. This will
now be elaborated.

Locus B-b, with allele frequencies p and q, is considered for a population with
the Hardy–Weinberg genotypic composition. This population originates from
random combination of female and male gametes according to the following
scheme:

Haplotypic composition of the pollen
b B

Haplotypic composition b q2bb qpBb q
of the eggs: B pqBb p2BB p

q p 1

Thus
Genotype
bb Bb BB

f q2 2pq p2

G m − a m + d m + a

The expected genotypic value is

EG = q2(m − a) + 2pq(m + d) + p2(m + a)
= m + (p2 − q2)a + 2pqd = m + (p − q)a + 2pqd (8.14)

The effects of alleles b and B are

αb = q(m − a) + p(m + d) − [m + (p − q)a + 2pqd]
= −qa + pd − (p − q)a − 2pqd = −pa + (p − 2pq)d
= −p[a − (p − q)d] (8.15)

and

αB = q(m + d) + p(m + a) − [m + (p − q)a + 2pqd]
= qd + pa − pa + qa − 2pqd = qa + (q − 2pq)d
= q[a − (p − q)d] (8.16)

Half the difference between the additive genotypic values of the homozygous
genotypes BB and bb amounts to

1
2 (γBB − γbb) = αB − αb = (q + p)[a − (p − q)d] = a − (p − q)d (8.17)

For panmictic populations this expression indicates the so-called ‘average
effect of an allele substitution’, viz. substitution of allele b by allele B. It
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is designated by αRM. It occurs in many relevant mathematical expressions
derived in quantitative genetic theory applying to the situation of n = 2 alleles
representing the considered locus.

As αb = −pαRM and αB = qαRM, the following partitioning of the genotypic
values is obtained:

Genotype

bb Bb BB

f q2 2pq p2

j 0 1 2

G m − a m + d m + a

γ µ − 2pαRM µ − (p − q)αRM µ + 2qαRM

δ m − a − [µ − 2pαRM] m + d − [µ − (p − q)αRM] m + a − [µ + 2qαRM]

It appears that γ is equal to µ + (j − 2p)αRM, i.e.

bv = γ − µ = (j − 2p)αRM = (j − 2p)[a − (p − q)d] (8.18)

This implies that var(bv) = var(γ) = σa
2.

Note 8.7 shows that var(j) = 2pq in the case of random mating. The additive
genetic variance amounts thus to

var(γ) = α2
RMvar(j) = 2pqα2

RM

The partitioning is illustrated in Example 8.18.

Example 8.18 The following panmictic population is considered:

Genotype
bb Bb BB

f 0.36 0.48 0.16
G 11.5 13.5 13.5

Thus p = 0.4, q = 0.6,m = 12.5, a = d = 1, i.e. complete dominance.

µ = 0.36 × 11.5 + 0.48 × 13.5 + 0.16 × 13.5 = 12.78
var(G) = 0.36(11.5)2 + 0.64(13.5)2 − (12.78)2 = 0.9216

Because
αRM = a − (p − q)d = 1 − (0.4 − 0.6) × 1 = 1.2

it follows that

αb = −pαRM = −0.4 × 1.2 = −0.48
αB = qαRM = 0.6 × 1.2 = 0.72
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The genotypic values are then partitioned in the following way:

Genotype
bb Bb BB

f 0.36 0.48 0.16
G 11.5 13.5 13.5
γ 12.78 + 2 × (−0.48) = 11.82 12.78 − 0.48 12.78 + 2

+0.72 = 13.02 ×0.72 = 14.22
δ 11.5 − 11.82 = −0.32 13.5 − 13.02 13.5 − 14.22

= 0.48 = −0.72

Thus

var(γ) = 0.36(11.82)2 + 0.48(13.02)2 + 0.16(14.22)2 − (12.78)2 = 0.6912

which is equal to
2pqα2

RM = 2(0.4)(0.6)(1.2)2

Two alleles, inbreeding

Section 2.1.1 specified situations where only two alleles per locus segregate.
This is especially to be expected in the case of continued selfing starting in an
F1. In Note 8.6 it is derived that the allele effects, expressed in terms of the
F∝-metric parameters a and d, are then follows:

αb = −p

[
a − (p − q)

(
1 − F

1 + F

)
d

]
(8.19)

αB = q

[
a − (p − q)

(
1 − F

1 + F

)
d

]
(8.20)

Note 8.6 An inbred population may be described as follows:

Genotype
bb Bb BB

f q2 + pqF 2pq(1 − F ) p2 + pqF
G m − a m + d m + a
γ µ + 2αb µ + αb + αB µ + 2αB

where

µ = m+(−q2−pqF +p2+pqF )a+2pq(1−F )d = m+(p−q)a+2pq(1−F )d
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The additive genotypic values are fitted to the genotypic values in such a
way, that the expected value of the square of the deviations is minimal. Thus:

E(G − γ)2 = (q2 + pqF )(m − a − µ − 2αb)2 + 2pq(1 − F )

×(m + d − µ − αb − αB)2 + (p2 + pqF )(m + a − µ − 2αB)2

is minimal for the values assigned to αb and αB . The derivatives of E(G−γ)2

to αb and αB are then zero, i.e.

−4(q2 + pqF )(m − a − µ − 2αb) − 4pq(1 − F )(m + d − µ − αb − αB) = 0,

and

−4pq(1 − F )(m + d − µ − αb − αB) − 4(p2 + pqF )(m + a − µ − 2αB) = 0

or

8(q2 + pqF )αb + 4pq(1 − F )(αb + αB)

= 4(q2 + pqF )(m − a − µ) + 4pq(1 − F )(m + d − µ), (a)

and

4pq(1 − F )(αb + αB) + 8(p2 + pqF )αB

= 4pq(1 − F )(m + d − µ) + 4(p2 + pqF )(m + a − µ) (b)

Summation of equations (a) and (b) yields on the right hand side:

4[(q2 + pqF )(m − a − µ) + 8pq(1 − F )(m + d − µ)

+4(p2 + pqF )(m + a − µ)] = 4[µ − µ] = 0,

and on the left hand side:

8αb[q2 + pqF + pq(1 − F )] + 8αB [pq(1 − F ) + p2 + pqF ] = 8(qαb + pαB)

This implies
Eα = qαb + pαB = 0

Division of equations (a) and (b) by 4q and 4p, respectively, yields

αb[2q + 2pF + p(1 − F )] + αBp(1 − F )

= (q + pF )(m − a − µ) + p(1 − F )(m + d − µ),
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and

αbq(1 − F ) + αB [q(1 − F ) + 2p + 2qF ]
= q(1 − F )(m + d − µ) + (p + qF )(m + a − µ)

As

2q + pF + p = 1 + q + (1 − q)F = 1 + F + (1 − F )q,

and

q + 2p + qF = 1 + p + (1 − p)F = 1 + F + (1 − F )p,

these equations can be rewritten as:

αb(1 + F ) + (1 − F )(qαb + pαB)
= (q + pF + p − pF )m − (q + pF )a

+ p(1 − F )d − [m + (p − q)a + 2pq(1 − F )d],

and

αB(1 + F ) + (1 − F )(qαb + pαB)
= (q − pF + p + pF )m + (p + qF )a

+ q(1 − F )d − [m + (p − q)a + 2pq(1 − F )d],

i.e. as

αb(1 + F ) = −(q + pF + p − q)a + p(1 − F )(1 − 2q)d
= −p(1 + F )a + p(p − q)(1 − F )d,

and

αB(1 + F ) = (p + qF − p + q)a + q(1 − F )(1 − 2p)d
= q(1 + F )a − q(p − q)(1 − F )d,

respectively.
The allele effects giving the minimum value of E(G − γ)2 are thus:

αb = −p

[
a − (p − q)

(
1 − F

1 + F

)
d

]
and αB = q

[
a − (p − q)

(
1 − F

1 + F

)
d

]
.

This still implies that

Eα = qαb + pαB = 0
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For an inbred population the ‘average effect of the gene substitution’ (αF )
amounts to

αF = αB − αb = a − (p − q)
(

1 − F

1 + F

)
d (8.21)

We have now arrived at the situation where the inbred population can be
described as follows:

Genotype
bb Bb BB

f q2 + pqF 2pq(1 − F ) p2 + pqF
j 0 1 2
G m − a m + d m + a
γ µ + 2αb + 0(αB − αb) µ + 2αb + 1(αB − αb) µ + 2αb + 2(αB − αb)

This scheme shows that
γ = µ + 2αb + jαF

In Note 8.7 it is derived that

var(j) = 2pq(1 + F )

thus
var(γ) = σ2

aF = 2pq(1 + F )α2
F

As

αF =
(

1 − F

1 + F

)
a − (p − q)

(
1 − F

1 + F

)
d + a −

(
1 − F

1 + F

)
a

=
(

1 − F

1 + F

)
αRM +

(1 + F )a − (1 − F )a
1 + F

=
(

1 − F

1 + F

)
αRM +

(
2F

1 + F

)
a

= αRM +
1

1 + F
(2Fa + (1 − F )αRM − (1 + F )αRM)

= αRM +
2F

1 + F
(a − αRM) = αRM +

2F

1 + F
(p − q)d

it follows that
αF = αRM

if F = 0, if d = 0, or if p = q = 1
2 .

The equation
σaF

2 = (1 + F )σa
2

applies thus only if p = q = 1
2 .

In Note 8.7 it is shown that cov(γ, δ) = 0 also applies in the case of inbreed-
ing. The partitioning

G = γ + δ
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implies then
var(G) = var(γ) + var(δ)

Expressions for var(G), var(γ) and var(δ) in terms of the parameters a and d
are also derived in Note 8.7. This gives

var(γ) = 2pq(1 + F )
[
a − (p − q)

(
1 − F

1 + F

)
d

]2

and (8.22)

and
var(δ) = 4pq

(
1 − F

1 + F

)
d2

[
F + pq(1 − F )2

]
(8.23)

Note 8.7 The following scheme allows the determination of a few important
quantitative genetic parameters:

Genotype
bb Bb BB

f f0 = q2 + pqF f1 = 2pq(1 − F ) f2 = p2 + pqF
G m − a m + d m + a
j 0 1 2
γ µ + 2αb µ + 2αb + αF µ + 2αb + 2αF

δ Gbb − µ − 2αb GBb − µ − 2αb − αF GBB − µ − 2αb − 2αF

The scheme shows that
γ = µ + 2αb + jαF

and that
δ = G − µ − 2αb + jαF

Thus

cov(γ, δ) = cov(jαF ,G − jαF ) = −αF
2var(j) + αF cov(j,G)

The quantity cov(γ, δ) is obtained via derivations of var(j) and cov(j,G):

var(j) = Ej2 − (Ej)2 = f1 + 4f2 − (f1 + 2f2)2

= 2p + 2f2 − (2p)2 = 2f2 + 2p(1 − 2p) = 2f2 − 2p(p − q)

= 2p2 + 2pqF − 2p2 + 2pq = 2pq(1 + F )

cov(j,G) = E(j.G) − (Ej)µ = f1(m + d) + 2f2(m + a)

− [2p][m + (f2 − f0)a + f1d]

= (f1 + 2f2)m + f1d + 2f2a − [2p][m + (f2 − f0)a + f1d]
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= 2pm + f1d + 2f2a − 2pm − 2p(p2 + pqF − q2 − pqF )a − 2pf1d

= (1 − 2p)f1d + [2f2 − 2p(p − q)]a

= −2pq(1 − F )(p − q)d + [2p2 + 2pqF − 2p2 + 2pq]a

= 2pq(1 + F )a − 2pq(p − q)(1 − F )d

= 2pq(1 + F )
[
a − (p − q)

(
1 − F

1 + F

)
d

]
= 2pq(1 + F )αF

Thus:
cov(γ, δ) = −2pq(1 + F )αF

2 + 2pq(1 + F )αF
2 = 0

Now expressions for var(G), var(γ) and var(δ) as applying to inbred popula-
tions will be derived. The expression for var(δ) is obtained by subtracting
var(γ) from var(G).

As var(G) = var(G − m) = E(G − m)2 − [E(G − m)]2, var(G) is derived
from the following scheme:

Genotype
bb Bb BB

G − m −a d a
f q2 + pqF 2pq(1 − F ) p2 + pqF

Thus:

var(G) = (q2 + pqF )a2 + 2pq(1 − F )d2 + (p2 + pqF )a2

−[(p − q)a + 2pq(1 − F )d]2

= 2pqa2 + 2pqFa2 + 2pq(1 − F )d2 − 4pq(1 − F )

(p − q)ad − 4p2q2(1 − F )2d2

= 2pq[(1 + F )a2 + (1 − F )d2 − 2(1 − F )(p − q)ad−2pq(1 − F )2d2]

= 2pq(1 + F )
[
a2 − 2

(
1 − F

1 + F

)
(p − q)ad

]

+2pq
[
(1 − F )d2 − 2pq(1 − F )2d2

]

= 2pq(1 + F )
[
a −

(
1 − F

1 + F

)
(p − q)d

]2

−2pqd2

[
(p − q)2

(1 − F )2

1 + F
+ 2pq(1 − F )2 − (1 − F )

]
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The first term in this expression was shown to be equal to var(γ). As var(δ) =
var(G) − var(γ), it follows that

var(δ) = −2pq

(
1 − F

1 + F

)
d2

[
(1 − F )(1 − 4pq) + 2pq(1 − F 2) − (1 + F )

]

= −2pq

(
1 − F

1 + F

)
d2

(
1 − 4pq − F + 4pqF + 2pq − 2pqF 2 − 1 − F

)

= −2pq

(
1 − F

1 + F

)
d2

(
−2pq − 2F + 4pqF − 2pqF 2

)

= 4pq

(
1 − F

1 + F

)
d2

[
F + pq(1 − 2F + F 2)

]

= 4pq

(
1 − F

1 + F

)[
F + pq(1 − F )2

]
d2

Example 8.19 shows the partitioning of G in the case of an inbred population.

Example 8.19 Selfing of the population described in Example 8.18 yields
the following population:

Genotype
bb Bb BB

f 0.48 0.24 0.28
G 11.5 13.5 13.5

Thus p = 0.4, q = 0.6,F = 0.5,m = 12.5 and a = d = 1.

µ = m + (p − q)a + 2pq(1 − F )d = 12.5 − 0.2 + 0.24 = 12.54

The latter is of course equal to 0.48 × 11.5 + 0.52 × 13.5.

var(G) = 0.48 × 11.52 + 0.52 × 13.52 − (12.54)2 = 0.9984

αF =
[
a − (p − q)

(
1 − F

1 + F

)
d

]
= 1 + 0.2 ×

(
0.5
1.5

)
= 1.0667

Thus

αb = −pαF = −0.4 × 1.0667 = −0.4267
αB = qαF = 0.6 × 1.0667 = 0.64
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This yields

Genotype
bb Bb BB

f 0.48 0.24 0.28
G 11.5 13.5 13.5
γ 12.54+ 12.54 − 0.4267 12.54+

2(−0.4267) = 11.6866 +0.64 = 12.7533 2(0.64) = 13.82
δ −0.1866 0.7467 −0.32

Where

Eγ = 0.48 × 11.6866 + 0.24 × 12.7533 + 0.28 × 13.82 = 12.54 = µ

var(γ) = 0.8193

Eδ = 0
var(δ) = 0.1791

Thus
var(γ) + var(δ) = 0.8193 + 0.1791 = 0.9984 = var(G)

Up to now we have considered the components of the genotypic value (and
the components of the genotypic variance) for only one segregating locus.
The conditions for extending Equations (8.22) and (8.23) to the case of K
segregating loci are discussed in Section 10.1. In actual situations the number
of relevant loci and the number of alleles at each of these loci are unknown.
The present derivations, see also Kempthorne (1957), can thus not directly be
applied. However, the partitioning G = γ + δ is of practical interest because
of the relation between the additive genotypic value (Equation (8.6)) and the
so-called breeding value (Equation (8.12)). This relation is more extensively
considered in Section 8.3.4.

8.3.4 Breeding Value: A Concept Dealing
with Cross-fertilizing Crops

In the previous section the concept of breeding value was introduced as a
rather abstract quantity applying in the case of random mating (see Equation
(8.12) for its definition). The practical implications of this quantity for the
estimation of the prospects of successful selection are, however, great. For
this reason some more aspects of the concept are considered in this section,
whereas Section 11.3 gives attention to its application.
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Breeders aim to select plants producing superior progenies. This is rela-
tively easy in the case of identical reproduction as the breeder should then
simply identify candidates with superior genotypes. The present section gives
attention to the much more demanding task of the identification among the
candidate of plants producing superior offspring after cross-fertilization, e.g.
identification of inbred lines producing, after crossing, heterotic hybrids. The
best approach is to select among the candidate plants on the basis of the
performance of their offspring. This occurs in the case of progeny testing
(Section 6.3.6). The latter requires maintenance of the parental plants, so that
these are still present after the evaluation of their offspring. Such maintenance
is possible:

• Vegetatively, either spontaneously for perennial crops or artificially by
vegetative reproduction (by means of tissue culture, for instance)

• Sexually, as a (pure) line (this is of relevance when developing a hybrid
variety)

The present section is dedicated to the situation where the offspring is obtained
by crossing of candidates with a so-called tester population. The progenies
are HS-families.

Mostly the tester population coincides with the population to which the
candidates belong. Then the allele frequencies of the tester population are
designated by p and q. Open pollination, as in the case of a polycross, is the
simplest way of producing the offspring.

The tester population may also be a different population. This is called inter-
population testing (see Section 11.3). Then its allele frequencies are designated
p′ and q′. The aggregate of all test-crosses is then equal to a bulk cross (Sec-
tion 2.2.1). This situation applies to top-crossing as well as to reciprocal
recurrent selection (Section 11.3). Top-crossing involves pollination of a set
of (pure) lines, which have been emasculated, by haplotypically diverse pollen.
This pollen may have been produced by a single-cross hybrid (SC-hybrid) or by
a genetically heterogeneous population. (In the case of early testing, young
lines are involved in the top-cross (Section 11.5.2).) Both polycross and top-
cross can contribute to the development of a synthetic variety (Section 9.4.3).

Assume that I candidates are crossed with the tester population. The
progeny test involves then I HS-families. HS-families performing (far) bet-
ter than average descend from parents to be selected. Because all candidates
have been pollinated by the same tester population the superiority of a HS-
family is assumed to be due to its maternal parent. Thus twice the superiority
of a HS-family over the mean performance across all HS-families measures the
superiority of its maternal parent. Indeed the genetic superiority of a candi-
date (possibly a single plant) appears from its offspring. The breeding value
(bv) of some (maternal) parent is therefore defined as:

bv := 2(GHS − EGHS) (8.24)
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In the former section, breeding value was defined as the sum of the main effects
of the alleles (Equation (8.12)):

γij − µ = αi + αj = 2[E(G|BiBj) − µ]

The present definition is at the level of expression of quantitative variation
in the trait. The quantity GHS in Equation (8.24), i.e. the genotypic value of
the HS-family obtained from the parent, is equivalent to the expected geno-
typic value of the plants representing the HS-family. The quantity EGHS, i.e.
the expected genotypic value of the HS-families, is at intrapopulation testing,
equivalent to µ = EG (see below). The present definition will now be elabo-
rated in terms of quantitative genetic parameters for a single locus, i.e. locus
B − b. Table 8.6 presents for this locus the result of pollination of the plants
belonging to some population by the tester population.

The genotypic composition of the aggregate of all HS-families is equal to
the result of bulk crossing, viz. (qq′, pq′ + p′q, pp′) (Equation (2.1)). Thus

EG = EGHS = m + (pp′ − qq′)a + (pq′ + p′q)d (8.25)

Equation (8.18) provides the breeding values for interpopulation testing. The
derivation of the breeding values for interpopulation testing, see Table 8.6, is
illustrated for genotype BB. Thus:

bv2 = 2[{m + p′a + q′d} − {m − (pp′ − qq′)a − (pq′ + p′q)d}]
= 2[(p′ − pp′ + qq′)a + (q′ − pq′ − p′q)d] = 2[(p′q + qq′)a + (qq′ − p′q)d]

= 2q[a − (p′ − q′)d] = (2 − 2p)[a − (p′ − q′)d]

The part
a − (p′ − q′)d

is a function of the allele frequencies in the tester population. In the case of
interpopulation progeny testing it will be designated by α′ and in the case of
intrapopulation progeny testing by α. Thus

α′ = a − (p′ − q′)d (8.26a)
α = a − (p − q)d (8.26b)

Table 8.6 The expected genotypic value, i.e. GHS, of the HS-family obtained

when pollinating maternal plants by a tester population. The derivation of the

breeding values (bv) of the parental plants is explained in the text

Genotypic composition

Parental population of the HS-families

gt f G bv bb Bb BB GHS

bb f0 m − a (0 − 2p)α′ q′ p′ 0 m − q′a + p′d

Bb f1 m + d (1 − 2p)α′ 1
2
q′ 1

2
1
2
p′ m + 1

2
(p′−q′)a+ 1

2
d

BB f2 m + a (2 − 2p)α′ 0 q′ p′ m + p′a + q′d
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The latter equation was in Equation (8.17) presented as the average effect of
a gene substitution.

The breeding values presented in Table 8.6 for genotypes bb and Bb can
be derived in a similar way. General expressions for the breeding value of a
candidate with a genotype containing jB alleles are thus

bvj = (j − 2p)α′ (8.27a)
bvj = (j − 2p)α (8.27b)

Note 8.8 presents a few additional remarks about the topics allele effect and
average effect of a gene substitution.

Note 8.8 The breeding value of a genotype for locus B − b depends not
only on the allele frequencies p′ and q′ in the tester population, but also on
the allele frequencies p and q in the population of plants to be tested. The
allele frequencies p and q change in the case of selection then the breeding
values will change as well. Thus, just like the additive genotypic value and
the dominance deviation, the breeding value is also a frequency-dependent
parameter.

The breeding value of genotype bb is due to 2 b alleles. Thus the so-called
average effect of a single b allele, say αb

′, is

αb
′ = 1

2bv0 = −pα′

Likewise αB
′, i.e. the average effect of a single B allele, is

αB
′ = 1

2bv0 = qα′

The difference of the average effects of alleles B and b is

αB
′ − αb

′ = qα′ + pα′ = α′

For this reason α′ is sometimes called: the average effect of a gene
substitution.

The quantities αb
′ and αB

′ allow partitioning of the breeding values of
the genotypes in terms of the effects of the involved alleles:

Genotype
bb Bb BB

bv 2αb
′ αb

′ + αB
′ 2αB

′

In Section 8.3.3 the parameters αb
′ and αB

′ were called allele effects.
They are only meaningful in the context of abstract quantitative genetic
theory. These effects are frequency-dependent. They change when selection
is applied.
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As Ej = 2p (Note 8.7), it follows from Equation (8.27a) that

Ebv = E(j − 2p)α′ = 0

This follows also from the definition of the breeding value (Equation (8.24)):

Ebv = 2E(GHS − EGHS) = 0

As
bv = γ − µ

(Equation (8.18)), it also follows that

var(bν) = var(γ) = αRM
2var(j) = 2pqαRM

2 = σa
2 (8.28)

From Equation (8.24) it is further derived that:

var(bν) = 4var(GHS) = σa
2 (8.29)

Example 8.20 provides an illustration of the calculation of a few of the intro-
duced parameters.

Example 8.20 We consider once more Example 8.12. In the case of
intrapopulation testing Equation (8.26b) yields for locus B3-b3, with a =
d = 1 (complete dominance), at p = 0.4, q = 0.6:

α = 1 − (0.4 − 0.6)1 = 1.2

The allele effects, see Equations (8.15) and (8.16), amount then to:

α0 = −0.4(1.2) = −0.48,

and
α1 = 0.6(1.2) = 0.72;

and the breeding value, see Equations (8.6) and (8.27b), to:

bν0 = 2(−0.48) = −0.96 = (0 − 0.8)(1.2),
bν1 = −0.48 + 0.72 = 0.24 = (1 − 0.8)(1.2),

and
bν2 = 2(0.72) = 1.44 = (2 − 0.8)(1.2).

It appears that genotype BB has the highest breeding value.
One may further calculate:

Ebν = 0.36(−0.96) + 0.48(0.24) + 0.16(1.44) = 0.0,

and

var(bν) = E(bν)2 = 0.36(−0.96)2 + 0.48(0.24)2 + 0.16(1.44)2 = 0.6912.



Chapter 9
Effects of the Mode of Reproduction
on the Expected Genotypic Value

In section 8.1 it was emphasized that this book focusses attention on the mean
genotypic value as well as on the genetic variance. Breeders manipulate these
parameters in such a way that the mean genotypic value is changed in the
desired direction. The manipulation may involve the mode of reproduction. For
this reason this chapter considers the influence of the coefficient of inbreeding
on the mean genotypic value. The important quantitative genetic phenomena
heterosis and inbreeding depression indicate that the effect of the mode of
reproduction on the mean genotypic value is considerable. The relation between
the inbreeding coefficient and the mean genotypic value is therefore considered
for both random mating and inbreeding.

9.1 Introduction

In Note 8.6 the following equation was derived for some inbred population with
regard to the expected genotypic value of the genotypes for some segregating
locus B-b:

EG = m + (p − q)a + 2pq(1 − F )d (9.1)

The equation shows that EG can be changed by

1. changing p and q, i.e. by selection and
2. changing the inbreeding coefficient, F .

In this chapter attention is focussed on the effects of F , i.e. of the mode of
reproduction, on EG.

In the case of the absence of epistasis the genotypic value of any complex
genotype can be written as a sum of contributions due to the single-locus
genotypes for the relevant loci (Chapter 1, Section 8.3.2). Consequently, the
expected genotypic value with regard to complex genotypes is equal to
the sum, across the K relevant loci, of the expected contributions due to the
single-locus genotypes

EG = m +
K∑

i=1

(pi − qi)ai + 2(1 − F )
K∑

i=1

piqidi (9.2)

The presence or absence of linkage of the involved loci is irrelevant with regard
to this expression.

According to Equation (9.2), the absence of inbreeding depression and/or
heterosis indicates absence of directional dominance (Section 9.4.1). In the
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absence of (directional) dominance, Equation (9.2) simplifies. Certain useful
applications of the equation can then be justified (Examples 9.1 to 9.3).

Example 9.1 The expected genotypic value of the line obtained by selfing
some plant Pi, say EGL(Pi)

, is derived. Loci for which Pi, is homozygous do
not segregate. Only the K relevant loci, heterozygous in Pi, need attention.
For each of these loci the line segregates with genotypic composition ( 1

4 , 1
2 ,

1
4 ). The aggregate contributions of these loci to GPi

and EGL(Pi)
are

K∑
i=1

di and 1
2

K∑
i=1

di,

respectively.
In the case of absence of dominance at each of the K loci or absence of

directional dominance (both cases imply d1 = d2 = . . . = dK = 0), we get

GPi = EGL(Pi)

In this situation, the mean phenotypic value of the plants representing the
line is an unbiased estimate for GPi.

Example 9.2 The expected genotypic value of the FS-family obtained by
crossing plants Pi and Pj , say: EGFSij , is considered. This is done for all loci
affecting the considered trait.

Loci for which Pi and Pj have the same homozygous genotype do not
segregate in the FS-family. Their contribution to GPi,GPj and EGFSij is
represented by the common parameter m.

Now

• let loci B1-b1, . . . , BI -bI indicate the I loci for which both Pi and Pj are
heterozygous,

• let loci BI+1-bI+1, . . . , BI+J -bI+J indicate the J loci for which one parent
has the heterozygous genotype and the other parent the homozygous geno-
type with the lower genotypic value,

• let loci BI+J+1-bI+J+1, . . . , BI+J+K-bI+J+K indicate the K loci for which
one parent has the heterozygous genotype and the other parent the
homozygous genotype with the higher genotypic value and

• let loci BI+J+K+1-bI+J+K+1, . . . , BI+J+K+L-bI+J+K+L indicate the L
loci for which the parents have different homozygous genotypes.
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The expected genotypic value of the FS-family amounts then to

EGFSij
= m + 1

2

I∑
i=1

di + 1
2

I+J∑
i=I+1

(−ai + di) + 1
2

I+J+K∑
i=I+J+1

(ai + di)

+
I+J+K+L∑

i=I+J+K+1

di

The mean of the genotypic values of the parents, i.e. the mid-parent
genotypic value, is

1
2 (GPi

+ GPj
) = 1

2

[
2m + 2

I∑
i=1

di +
I+J∑

i=I+1

(−ai + di) +
I+J+K∑

i=I+J+1

(ai + di)

]

For the case of absence of dominance, i.e. for di = 0 for each segregating
locus, it is thus derived that

EGFSij
= 1

2 (GPi
+ GPj

) = m − 1
2

I+J∑
i=I+1

ai + 1
2

I+J+K∑
i=I+J+1

ai (9.3)

If a set of plants is crossed pairwise, the average phenotypic values of the
obtained FS-families can be used to get unbiased estimates of the genotypic
values of individual parental plants on the basis of Equation (9.3), provided
epistasis and dominance do not occur.

Example 9.3 In the framework of a quantitative genetic analysis of some
trait of a self-fertilizing crop, the F1 is sometimes backcrossed (BC) with both
of its parents. These parents may have a different homozygous genotype for
K loci. Now

• let loci B1-b1, . . . , BI -bI indicate the I loci for which P1 has the homozy-
gous genotype with the higher genotypic value and P2 the homozygous
genotype with the lower genotypic value and

• let loci BI+1-bI+1, . . . , BI+J -bI+J indicate the J(= K − I) remaining loci
for which P1 has the homozygous genotype with the lower genotypic value
and P2 the homozygous genotype with the higher genotypic value.

The expected genotypic value of BC1, the family resulting from the cross
between F1 and P1, is

EGBC1
= m + 1

2

I∑
i=1

(ai + di) + 1
2

I+J∑
i=I+1

(−ai + di)
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The expected genotypic value of BC2, the family resulting from the cross
between F1 and P2, is

EGBC2
= m + 1

2

I∑
i=1

(−ai + di) + 1
2

I+J∑
i=I+1

(ai + di)

The average of the expected genotypic values of BC1 and BC2 is

EGBC = m + 1
2

I∑
i=1

di + 1
2

I+J∑
i=I+1

di = m + 1
2

K∑
i=1

di (9.4)

9.2 Random Mating

A single round with panmictic reproduction implies for each locus F = 0.
With continued panmixis the genotypic composition with regard to single-
locus genotypes will be constant from then on. Equation (9.1) simplifies for
continued random mating to:

EG = m + (p − q)a + 2pqd (9.5)

This equation expresses the contribution of any segregating locus to the
expected genotypic value with regard to complex genotypes. In the case of
absence of epistasis, that value is equal to the sum, across the K relevant loci,
of the contributions due to the single-locus genotypes:

EG = m +
K∑

i=1

(pi − qi)ai + 2
K∑

i=1

piqidi (9.6)

Thus, notwithstanding the fact that the genotypic composition with regard
to complex genotypes will continue to change from generation to generation,
until linkage equilibrium is attained, the expected genotypic value will be
constant from G1, the very first generation obtained by random mating. This
is illustrated in Example 9.4. According to this result continued reproduction
by means of random mating of plant material descending from a hybrid variety
affects the expected genotypic value only when comparing the hybrid, say G0,
and G1. Only in the presence of selection and/or epistasis will the expected
genotypic value continue to change from generation to generation.

The effect of selection on the expected genotypic value appears from the
relationship between EG and the allele frequency p of the considered locus.
When studying this relationship, or preferably that between

EG − m = (p − q)a + 2pqd
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Example 9.4 Loci B3-b3 and B4-b4 (see Example 8.12) are considered for
allele frequencies p3 = 0.4 and p4 = 0.8. The genotypic values of the complex
genotypes and the single-locus genotype frequencies are:

b3b3 B3b3 B3B3 fB4-b4
b4b4 11 13 13 0.04
B4b4 12 14 14 0.32
B4B4 12 14 14 0.64
fB3-b3 0.36 0.48 0.16 1.00

Epistasis is absent, whereas m = 12.5, a3 = d3 = 1, a4 = d4 = 0.5.
According to Equation (9.6) the expected genotypic value is

EG = 12.5 + (0.4 − 0.6) × 1 + (0.8 − 0.2) × 0.5 + 2 × 0.4 × 0.6 × 1
+ 2 × 0.8 × 0.2 × 0.5 = 13.24.

This result can also be obtained directly from the above scheme, assuming
that the population is in linkage equilibrium (which is in fact not known):

EG = 0.36 × 0.04 × 11 + . . . + 0.16 × 0.64 × 14 = 13.24

and p, one may distinguish

1. Loci with d < −a
2. Loci with −a ≤ d < 0
3. Loci with d = 0
4. Loci with 0 < d ≤ a
5. Loci with d > a

For any locus with d = 0,EG − m is a linear function of p:

EG − m = (2p − 1)a = −a + 2ap (9.7)

For such loci the expected genotypic value is higher as the allele frequency is
higher.

For loci with d �= 0 the quantity EG − m is a quadratic function of p:

EG − m = (2p − 1)a + 2p(1 − p)d = −a + 2p(a + d) − 2p2d

= −a − 2d

[
p2 − p(a + d)

d

]
= −a − 2d

[
p − a + d

2d

]2

+ 2d

[
a + d

2d

]2

= −a +
(a + d)2

2d
− 2d

[
p − a + d

2d

]2

= −a +
(a + d)2

2d
− 2d

[
p − a + d

2d

]2

(9.8)
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The expected genotypic value has then a minimum or a maximum as a function
of p when the first derivative is zero, i.e. when

−4d

[
p − a + d

2d

]
= 0,

thus for

p =
a + d

2d
(9.9)

This value of the allele frequency will be indicated by the symbol pm, the
optimum frequency of allele B.

The second derivative, i.e. −4d, is negative for d > 0 (in which case the
expected genotypic value has a maximum); it is positive for d < 0 (in which
case the expected genotypic value has a minimum). Whether or not the maxi-
mum or the minimum value can be obtained depends on whether or not pm

is in the range of possible values for p, i.e. 0 ≤ p ≤ 1. This latter condition
requires that

0 ≤ a + d

2d
≤ 1

or

1. It requires for d > 0 that d ≥ a, i.e. (over)dominance of allele B relative
to allele b. With complete dominance (d = a) the expected genotypic value
attains its maximum at pm = 1, at d > a the maximum is attained at
0 < pm < 1.

2. It requires for d < 0 that d ≤ −a, i.e. (over)dominance of allele b relative
to allele B. With complete dominance (d = −a) the expected genotypic
value attains its minimum at pm = 0, at d < −a the minimum is attained
at 0 < pm < 1.

According to Equation (9.8) the maximum or minimum value of EG − m
amounts to

−a +
(a + d)2

2d
=

a2 + d2

2d
(9.10)

Example 9.5 illustrates for several loci (all with a = 2, but varying with regard
to the degree of dominance), the relationship between the allele frequency and
the expected genotypic value.

Example 9.5 We consider loci B1-b1, . . . , B5-b5, with a1 = a2 = . . . =
a5 = 2 and d1 = −3, d2 = −1, d3 = 0, d4 = 1 and d5 = 3.

According to Equation (9.9) the value of EG − m is for locus B1-b1

minimal for pm = 1
6 = 0.167. It amounts then (see Equation (9.10)) to

−2.17, see Figure 9.1(i).
Figure 9.1(ii) illustrates the relationship between EG−m for locus B2-b2.

For locus B3 − b3 the relationship is linear. It is given by Equation (9.7) and
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Fig. 9.1 The relation between the frequency of allele B and the expected genotypic value

relative to m, i.e. EG − m, for loci B1-b1, . . . , B5-b5, with a1 = a2 = . . . = a5 = 2 and

d1 = −3, d2 = −1, d3 = 0, d4 = 1 and d5 = 3

illustrated by Figure 9.1(iii). Locus B4-b4 illustrates the situation for a locus
with incomplete dominance of allele B: see Figure 9.1(iv). Locus B5-b5 is a
locus with overdominance of allele B.

For this locus the maximum value of EG −m amounts to 2.17 (at
pm = 5

6 = 0.833), see Fig. 9.1(v).

9.3 Self-Fertilization

In self-fertilizing crops the frequencies of complex and single-locus genotypes
change from generation to generation until complete homozygosity is attained.
Consequently the expected genotypic value changes over the generations. This
process is considered for the generations obtained by continued selfing of plant
material descending from a cross between two pure lines. In the case of absence
of selection the allele frequencies stay constant at p = q = 1

2 for each segre-
gating locus. Equation (9.2) simplifies then into

EG = m +
1
2
(1 − F )

K∑
i=1

di (9.11)

Table 9.1 presents EG for a number of interesting generations.
Using the expressions for EG in Table 9.1, one may predict on the basis of

estimates of m and
K∑

i=1

di, the expected genotypic value of any generation.

This is illustrated in Example 9.6.
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Table 9.1 The expected genotypic value (EG)

of successive generations of a self-fertilizing crop.

The inbreeding coefficients (Ft) are derived from

Table 3.1b

Generation (t) Population Ft EG

0 F1 −1 m +
K∑

i=1

di

1 F2 0 m + 1
2

K∑
i=1

di

2 F3
1
2

m + 1
4

K∑
i=1

di

3 F4
3
4

m + 1
8

K∑
i=1

di

4 F5
7
8

m + 1
16

K∑
i=1

di

5 F6
15
16

m + 1
32

K∑
i=1

di

6 F7
31
32

m + 1
64

K∑
i=1

di

7 F8
63
64

m + 1
128

K∑
i=1

di

·
∞ F∞ 1 m

Example 9.6 The famous maize breeder, Jones, collected data for ear
length, plant height and grain yield of 2 pure lines, their single cross hybrid
and later generations obtained by selfing of random plants (Jones, 1924,
1939). The data for ear length and plant height were obtained in 1923, those
for grain yield are means across tests during up to six seasons. Table 9.2
presents summaries of these observations.

Table 9.2 The observed mean phenotypic values and their predictions for ear length

(in cm), plant height (in inches) and grain yield (in bu/acre) of a number of generations

of maize (source: Jones, 1924, pp. 413–417, 1939)

Observations Predictions
Generation Ear length Plant height Grain yield Ear length Plant Grain

height yield

P1 8.4 67.9 19.5

P2 10.7 58.3 19.6
F1 16.2 94.6 101.2
F2 14.1 82.0 69.1 12.9 78.9 60.4
F3 14.7 77.6 42.7 11.2 71.0 40.0
F4 12.1 76.8 44.1 10.4 67.0 29.8
F5 9.4 67.4 22.5 10.0 65.1 24.7
F6 9.9 63.1 27.3 9.8 64.1 22.1
F7 11.0 59.6 24.5 9.6 63.6 20.8
F8 10.7 58.8 27.2 9.6 63.3 20.2
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Assuming absence of epistasis one can estimate m and
K∑

i=1

di in the following
way:

• m̂ = 1
2 (pP1 + pP2), see Section 11.2.3,

•
K∑

i=1

d̂i = pF1 − m̂, see Table 9.1.

This yields

Ear length Plant height Grain yield
m̂ 9.55 63.1 19.55
K∑

i=1

d̂i 6.65 31.5 81.65

Using these estimates, derived from P1,P2 and F1, one may predict for any
later generation the expected genotypic value on the basis of expressions for
EG presented in Table 9.1. The predictions are presented in Table 9.2.

Some predictions deviate clearly from their observed value. This may be
due to

• Genotype × season interaction, especially when considering ear length or
plant height

• Unconscious selection
• Epistasis.

The expected genotypic value of the F2 appears to be equal to the average of
the expected genotypic values of backcross families BC1 and BC2, see Equation
(9.4). This identity applies only in the absence of epistasis. This condition
provides a possibility to test the hypothesis that epistasis does not occur. In
the present context this hypothesis states

E
[
p

F2
− 1

2

(
p

BC1
+ p

BC1

)]
= 0

The test of this hypothesis and other similar tests are called scaling tests.
They are applied in quantitative genetic studies and provide a simple way
of deciding how reliable predictions may be if they assume a model without
interaction.

In Chapter 3 some attention was given to inbreeding procedures yielding
complete homozygosity sooner than obtained by continued self-fertilization
of plants grown under normal growing conditions, namely the single-seed
descent method (SSD; Section 6.1) as well as the production of doubled haploid
lines (DH; Section 3.1). In a population genetic sense the SSD-method con-
sists in fact of continued self-fertilization. Table 9.1 presents thus the expected
genotypic value of the plant material obtained by the SSD-method.
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In the case of unlinked loci the haplotypic frequencies do not change
from generation to generation (Section 3.2.3). This means that the haplo-
typic composition of the gametes produced by some F1 genotype reflects the
genotypic composition of the F∞ population obtained from it by continued
self-fertilization. Doubling of the number of chromosomes of the haploid plants
generated from the gametes produced by the F1 yields thus a population with
the genotypic composition of the F∞ population.

Both the SSD- and the DH-method yield thus a homozygous population of
which the expected genotypic value is equal to EG = m.

A breeding programme of a self-fertilizing crop may consist of crossing two
pure lines followed by selection in the segregating generations. Multiple het-
erozygous plants may then produce offspring with an attractive recombinant
genotype. As the frequency of multiple heterozygous plants decreases very fast
in the case of continued selfing, this approach may soon reach a deadlock due
to the lack of ample opportunities for recombination.

Errors in the selection are then irreparable. If the breeder crosses genotype
BiBibjbj with bibiBjBj and selects accidentally, possibly due to a low heri-
tability, in F2 or any later generation, not a single plant with genotype Bi ·Bj ;
then (s)he has eliminated the possibility of obtaining genotype BiBiBjBj in
any forthcoming generation.

The breeder of a self-fertilizing crop should, therefore

1. Provide opportunities to allow suitable recombinants to be formed.
(Example 9.7 shows that continued crossing and selection increase the
probability of generating the best possible genotype.)

Example 9.7 Assume that a breeder has four phenotypically equivalent
pure lines at his disposal. The lines differ genotypically. (This may appear
from the F2 s of a diallel cross.) Assume further that the quantitative vari-
ation in the considered trait is controlled by 10 loci and that the complex
genotypes of the four pure lines are:

Pure line Genotype
A B1B1 b2b2 b3b3 B4B4 b5b5 B6B6 b7b7 b8b8 b9b9 B10B10

B b1b1 B2B2 b3b3 B4B4 b5b5 b6b6 B7B7 b8b8 b9b9 B10B10

C B1B1 b2b2 B3B3 b4b4 b5b5 B6B6 b7b7 b8b8 b9b9 B10B10

D b1b1 b2b2 B3B3 B4B4 B5B5 b6b6 b7b7 b8b8 b9b9 B10B10

One may conclude that these four lines represent a restricted source of genetic
diversity: as for loci 8, 9 and 10 there is no genetic variation. The best obtain-
able genotype is B1B1B2B2B3B3B4B4B5B5B6B6B7B7b8b8b9b9B10B10. If
the breeder only has available lines A, B and C, the best possible genotype
is B1B1B2B2B3B3B4B4b5b5B6B6B7B7b8b8b9b9B10B10.

Emerson and Smith (1950) aimed to increase the number of grain rows
per ear of maize. They started with seven inbred lines of maize, all producing
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ears with 12 rows. By continued crossing and selection they developed lines
with 22 rows. This result was obtained after establishing that the seven
initial inbred lines differed genetically for the studied trait.

2. Maintain desirable combinations intact
3. Select attractive types at an early stage

The opportunities for successful breeding are amplified by starting the selec-
tion not in plant material resulting from a single cross, but in plant material
resulting from a three-way cross, i.e. F1 × P3, or from a multiple cross (Bos,
1987). Lists of varieties show that many varieties of self-fertilizing crops have
indeed been developed from complex crosses.

Selfing of plants of cross-fertilizing crops yields mostly poor-performing off-
spring. This is due to a homozygous genotype, at one or more loci, for unde-
sirable (often recessive) alleles. (Maize breeders may be prepared to observe
this phenomenon and, therefore, incorrectly consider vigorous S1 plants to be
the product of contamination.)

Elimination of such undesirable alleles may give rise to much better perform-
ing homozygous plant material. Indeed, inbreeding combined with selection
may yield attractive homozygous plant material (see Example 9.8).

Example 9.8 Genter (1982) started a selection programme with the single-
cross hybrid of the contrasting maize inbred lines Va17 and Va29. F2 plants
were crossed in pairs. The FS-families obtained, constituting population C0,
were tested in replicated trials. Crossing of the best families yielded popu-
lation C1. From then on the ‘best’ plants from one row were crossed with
the ‘best’ plants from the other row. This was continued until C9. The yield
increased from 60% of the original single-cross hybrid up to 104%, i.e. 5% per
cycle. The general combining ability (see Section 11.5.2) of families belong-
ing to C4 and C5 with six testers was better than that of the original hybrid.
The same applied to C8 families. In this generation selfings were made.
Some of the lines obtained yielded better than FS-families obtained from
the same plants.

The existence of self-fertilizing crops that perform well and which may have
evolved from cross-fertilizing predecessors, form a convincing example. Inbred
lines that perform well have been developed for more-or-less cross-fertilizing
crops, such as cucumber, sunflower (Helianthus annuus L.), onion (Allium cepa
L.) and cotton (Gossypium hirsutum L.), or for even obligatory cross-fertilizing
crops such as Brussels sprouts (Brassica oleracea var. gemmifera DC.; Kearsey,
1984). Development of plant material containing B-alleles at many loci may be
pursued by mild forms of inbreeding, allowing some recombination, combined
with selection.

Certain cucurbits are monoecious. This promotes outcrossing. Neverthe-
less, Genter (1967) reported that selfing hardly ever resulted in inbreeding
depression, a phenomenon treated in Section 9.4. He supposed that in the
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past often just a single plant was harvested to obtain seed for the next gener-
ation. Thus continued HS-mating, a mild form of inbreeding, combined with
a mild selection, may have given rise to well-performing inbred lines of this
group of cross-fertilizing crops. Also Jensen (1970) advocated for self-fertilizing
crops the combination of continued selection and repeated crossing. According
to him, important shortcomings of conventional cereal breeding procedures are

• the segregating population, obtained by crossing only two homozygous
parental lines, affords insufficient genetic variation and

• after the first cross and segregation the probability of further recombination
decreases rapidly.

9.4 Inbreeding Depression and Heterosis

9.4.1 Introduction

Inbreeding depression and heterosis are phenomena which may occur at pos-
itive and negative values of the inbreeding coefficient (F ) of the considered
plant material, respectively. These phenomena may occur if F deviates from
0. Their size appears from the difference between the expected genotypic value
(EG) at the value for F in force and the expected genotypic value of the same
plant material at F = 0(EGRM). For self-fertilizing crops the latter is for
p = q = 1

2 equal to EGF2; for cross-fertilizing crops it is equal to the expected
genotypic value of the population with the Hardy–Weinberg genotypic compo-
sition corresponding to the actual gene frequencies. The inbreeding depression
or heterosis amounts thus to:

EG − EGRM

According to Equations (9.2) and (9.6) this yields
[
m +

K∑
i=1

(pi − qi)ai + 2(1−F )
K∑

i=1

piqidi

]
−
[
m +

K∑
i=1

(pi − qi)ai + 2
K∑

i=1

piqidi

]

= −2F
K∑

i=1

piqidi (9.12)

If EG − EGRM = 0 at F �= 0 there is a strong indication of absence of
dominance at the relevant loci. If EG − EGRM �= 0 at F > 0, inbreeding
depression occurs, whereas EG − EGRM �= 0 at F < 0 implies the presence
of heterosis.

At F �= 0 the frequency of heterozygous plants is 2pq(1−F ), at F = 0 it is
2pq. The difference is −2Fpq, i.e. there is a deficit of heterozygous plants at
F > 0 and an excess at F < 0. Considered in this way inbreeding depression
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and heterosis are due to a deficit or an excess of heterozygous plants, measured
in comparison with the Hardy–Weinberg frequency.

It has been observed that continued selfing is very often associated with
a decreasing average phenotypic value (Hayes, Immer and Smith, 1955, pp.
76–79; Allard, 1960, pp. 213–219); Falconer, 1989, pp. 248–249). This applies
especially to cross-fertilizing crops. Thus there is a general tendency for Σpiqidi

to be positive, implying that d > 0 for most loci or for many of the most impor-
tant loci. This unidirectional dominance of the alleles giving, in homozy-
gous genotypes, rise to higher genotypic values has already been mentioned in
Section 8.3.1.

There is an obvious reason to measure both inbreeding depression and
heterosis in comparison to the performance of the corresponding population
with the Hardy–Weinberg genotypic composition. In a cross-fertilizing crop,
such as maize, heterosis is relevant if the outbred plant material performs
better than conventional open-pollinating varieties. (Likewise, heterosis of self-
fertilizing crops is measured by comparing the performance of F1 hybrids to
the performance of conventional pure line varieties.) Measuring heterosis in
a cross-fertilizing crop in comparison to the performance of pure lines would
not be of practical interest. Superiority of an F1 hybrid over its homozygous
parents is called hybrid vigour. In self-fertilizing crops hybrid vigour is less
conspicuous than in cross-fertilizing crops and is hardly exploited. The F2

and later generations may show transgression. This means that the segre-
gating population contains plants with a genotypic value outside the range of
the genotypic values expressed by the homozygous parents. If transgression
does not occur one may conclude that the population did either not comprise
enough plants in relation to the number of segregating loci to give rise to such
genotypes, or that the involved parents represented already the genotypes with
the extreme genotypic values.

Equation (9.12) shows that among the segregating loci only loci with di �= 0
contribute to inbreeding depression or heterosis. Thus only such loci get atten-
tion in Section 9.4. Furthermore, the equation also shows that these two phe-
nomena are linearly related to F and that they are affected by

1. The allele frequencies of the relevant loci
2. The number of relevant loci.

The effect of the allele frequencies
For p = q = 1

2 , which applies to plant material derived from an F1, Equation
(9.12) simplifies to

EG − EGRM = −1
2
F

K∑
i=1

di (9.13)

For other values for pi and qi the product piqi is less than 1
4 , causing the

absolute value of EG − EGRM to be less than
∣∣∣− 1

2F
∑K

i=1 di

∣∣∣. Inbreeding
depression and heterosis are consequently most pronounced at p = q = 1

2 .
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The effect of the number of loci
For a smaller number of segregating loci, i.e. a smaller value for parameter
K in Equation (9.12), the inbreeding depression or heterosis will be smaller
than for a higher number of segregating loci. It is, indeed, not a good idea
to develop a hybrid variety from related pure lines. In self-fertilizing crops
fixation of alleles giving rise to homozygous genotypes with high genotypic
values is pursued. Thus, for such crops inbreeding depression and heterosis are
understandably smaller than for cross-fertilizing crops. This may also explain
why the recently started selection from cross-fertilizing crops for inbred lines
that perform well has been rather successful. Due to this, seed representing
single-cross hybrids of maize can economically be produced.

At F = 1 the inbreeding depression will be at its maximum, viz.
−2

∑K
i=1 piqidi. For pi = 1

2 for all relevant loci this amounts to − 1
2

∑K
i=1 di.

At F = −1, implying pi = 1
2 for all relevant loci, heterosis will be at its

maximum, viz. 1
2

∑K
i=1 di. These extreme values for F are approached with a

rate depending on the mode of reproduction.
With regard to the extreme values for inbreeding depression or heterosis, one

should also take into consideration K, the number of relevant loci. Equation
(3.23) indicates that the probability that a plant is completely homozygous is(

1+Ft

2

)K
. This probability is smaller as K is larger. In the process of inbreed-

ing it will amount to 0.99 or more, sooner when K is small than when K is
large. Thus at low values for K the maximum inbreeding depression is reached
relatively quickly. According to Allard (1960, Fig. 18.1), Jones established the
maximum inbreeding depression for plant height in maize as early as in the
S5 population; for yield, in contrast, it had not yet occurred by S20.

According to Equation (9.12) EG−EGRM depends linearly on F . Crow and
Kimura (1970, p. 79–80) derived that EG − EGRM is a quadratic function of
F in the occurrence of epistasis. A non-linear relation between the observed
inbreeding depression and F may thus be due to epistasis (see Example 9.9).

Example 9.9 Hallauer and Sears (1973) studied the effect of continued
selfing, in the absence of selection, on the mean phenotypic value (p), in the
various generations, for 10 different traits of maize. Propagation by single-
seed descent was applied at a plant density of 2.9 (plants/m2) in S0, . . . ,S3 or
3.87 in S4, . . . ,S7. The lines were evaluated in 1969 and 1970 at five locations
and at a density of 4.14 (plants/m2).

The linear relation between p and F across the eight generations was
significant for each of the ten studied traits; at least 92% of the variation for
a trait could be explained by the variation for F . For yield (y, in kg/ha) the
relation was ŷ = 6548 − 4494F , at a coefficient of correlation estimated to
be 0.998.
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The quadratic relation between p and F was significant for six traits,
but not for yield. It accounted for less than 4% of the variation in p.

The predominantly linear relation between p and F shows that epistasis
was of minor importance.

In Section 3.4 it was shown that selfing in autotetraploid crops leads to a
slow decrease in the frequency of heterozygous plants. Yet a single round of
reproduction by means of selfing of a natural cross-fertilizing autotetraploid
population yields strong inbreeding depression. Allard (1960, p. 217) reported
for alfalfa that the S1 yielded 32% less than the original variety. Busbice
and Wilsie (1966) attributed the strong inbreeding depression to the strong
reduction of the frequency of plants with a tri- or tetra-allelic heterozygous
genotype, i.e. BBβb or BBβb. In artificially made autotetraploid plant mate-
rial, e.g. rye, the inbreeding depression is less than in natural autotetraploid
material. The difference is attributed to the lower frequency of plants with a
tri- or tetra-allelic heterozygous genotype in artificial autotetraploid popula-
tions, but it might equally be due to the expression of deleterious recessive
genes.

Both inbreeding depression and heterosis are due to unidirectional domi-
nance of B-alleles, i.e. incomplete dominance, complete dominance, or even
overdominance. Jinks (1981) concluded that the failure to find examples of
‘true’ overdominance is general. Thus, if epistatic effects are absent or of
minor importance, inbreeding depression and heterosis will mainly occur in
the case of dispersion of alleles with (in)complete dominance. This implies
that it should be possible to develop pure lines performing as well as F1

hybrids.

N.B. The phenomenon of pseudo-overdominance may give rise to erroneous
conclusions about the genetic control of the considered trait. This is illus-
trated by Example 9.10.

Example 9.10 Consider loci B1-b1 and B2-b2, with m = 2, a1 = d1 =
a2 = d2 = 1, i.e. complete dominance at both loci. The genotypic values of
genotypes b1b1b2b2, B1B1b2b2, b1b1B2B2 and B1B1B2B2 are 0, 2, 2 and 4,
respectively.

Both the cross B1B1b2b2×b1b1B2B2 and the cross b1b1b2b2×B1B1B2B2

yield an F1 with genotype B1b1B2b2 with G = 4.
If the two loci are strongly linked (rc ≈ 0) cross B1B1b2b2×b1b1B2B2 will

segregate in the F2 with a 1:1 segregation ratio with EG = 3, which could
be explained as due to a single locus with overdominance. Cross b1b1b2b2 ×
B1B1B2B2 will segregate in the F2 with a 3:1 segregation ratio, which could
be explained as due to a single locus with complete dominance.
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Heterosis is exploited by developing varieties containing an excess of heterozy-
gous plants in comparison to their frequency at the Hardy–Weinberg equilib-
rium. Such excess occurs after bulk crossing (Section 2.2.1). The heterosis of
the plant material obtained by the bulk cross is:

1
2

K∑
i=1

(p1i − p1i)2di (9.14)

where
1
2
(p1i − p1i)2

represents the excess of plants with genotype Bibi if the difference in the
frequency of allele Bi between the two parental populations amounts to p1i −
p2i (see Equation (2.9)).

Equation (9.14) implies that heterosis will be large:

1. If (p1i−p2i)2 is large. A bulk cross involving contrasting pure lines, i.e. lines
with genotypes bibi and BiBi, yields the maximum value for (p1i − p2i)2,
viz. 1. The resulting plant material is then heterozygous (and genetically
uniform).

2. If K is large, i.e. if the parental populations, preferably pure lines, have a
different homozygous single-locus genotype for a high number of loci.

3. If the parental populations, preferably pure lines with a different homozy-
gous single-locus genotype for many loci, have homozygous genotypes for
alleles differing in such a way that di is at its maximum. This should be
pursued by trial and error.

According to Note 9.1 the above conditions describe, in quantitative genetic
terms, the requirements for a high specific combining ability (see Section
11.5.2).

Note 9.1 It is to be expected that a superior hybrid will result from crossing
pure lines differing in such a way that both K and di are large. It is then
roughly correct to say that such lines have a high specific combining ability
(Section 11.5.2). In fact, however, the concept of specific combining ability
is defined in the framework of a statistical analysis. Its quantitative genetic
interpretation is not straightforward.

Heterosis with regard to a complex trait, i.e. a trait of which the genetic
variation is the result of the variation of a number of component traits, may
tentatively be explained on the basis of additive inheritance (absence of domi-
nance) of the components. The explanation is clarified by considering yield (Y )
data of some crop, where yield is determined by number of fruits and (average)
single fruit weight. When observing each candidate plant with regard to the
following traits:
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A: number of fruits

B: number of harvested grammes of product, i.e. yield (thus: B = Y )

One may, in the following way, calculate phenotypic values of the yield
components X1 and X2:

X1 = A : number of fruits per plant of the considered candidate

X2 =
B

A
: single fruit weight

Thus
Y = A × B

A
= B (9.15)

A specific case which pointed to the importance of components of complex
characters, was the unexpected superiority of hybrids between African and
Asian oil-palms. The latter were also of African origin but had undergone sev-
eral generations of selection under totally different climatic conditions. Under
African conditions, the local palms produced a high number of small bunches,
whereas the imported Asian palms produced a few very large bunches. The
hybrid was intermediate for both number and average weight of the bunches.
This resulted in an overall yield far exceeding the mid-parent value.

It has often observed that parents having mutually complementing pheno-
typic values with regard to yield components, produce a single-cross hybrid
with heterosis for yield or other complex characters. Example 9.11 illustrates
this phenomenon for a self-fertilizing and a cross-fertilizing crop. It has become
known as recombinative heterosis (Mac Key, 1976).

Example 9.11 Tables 9.3 and 9.4 illustrate the phenomenon of recombi-
native heterosis for a self-fertilizing and a cross-fertilizing crop, respectively.

For each of the two yield components the mean phenotypic value of the
offspring lies within the range of the parental phenotypic values. Table 9.3
shows for both yield components incomplete dominance of the lower level of
expression. In Table 9.4 this applies to one of the components. Yet in both
tables the yield of the offspring exceeds those of the parents.

Table 9.3 The plant yield of single tomato plants, as the product of the number of fruits

per plant and the mean single fruit weight of two pure lines and their single-cross hybrid

(source: Powers, 1944)

Material Number of fruits Fruit weight (g) Plant yield (g)

P2 4.4 138 607

F1 44.5 55 2,428

P1 109.1 17 1,868
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Table 9.4 The yearly bunch yield of single oil-palm trees as the product of the yearly

number of bunches per palm and the mean single bunch weight of 2 tenera palms and

their offspring (source: Van der Vossen, 1974, Table 12)

Material Number of bunches Bunch weight (kg) Bunch yield

1.2229T 5.8 7.1 41.2

32.2612T × 1.2229T 8.5 6.3 53.6

32.2612T 16.3 2.8 45.6

One may speculate with regard to this phenomenon as follows. The yield
of a plant may be assumed to be at its maximum if all organs and functions
are mutually tuned. This may occur if the plant has an intermediate pheno-
typic value for each of a number of yield components, e.g. number of stems,
number of flowers per stem, number of seeds per flower and seed size. If the
intermediate phenotypic values for the components are due to heterozygous
single-locus genotypes, it is understandable that plants with a heterozygous
complex genotype have a superior value for the complex character.

The idea that a complex trait, e.g. grain yield, should be indirectly improved
via improvement of its components may lead to an interest in the physiological
processes underlying the complex trait. Thus, in addition to plant architectural
features, e.g. ear size, crop physiological parameters may be used to describe
the features of the ideal genotype, the so-called ideotype. The ideotype for
rice is, for instance, characterized by erect leaves, compact and large panicles
on a short and firm culm, a vigorous root system and absence of unproductive
tillers.

An ideotype may be designed on the basis of estimates of the crop physi-
ological parameters that are relevant to the crop growth model used. These
estimates are usually obtained from evaluation of a limited set of genotypes.
After having designed an ideotype, crop physiologists simply advise breeders
to create it. In practice there are, however, complications: the majority of the
traits that are to be assessed with this approach are hard to measure with the
required accuracy. The assessment, for example, of the rate of reallocation of
dry matter from stems and leaves to seeds is not feasible in a segregating pop-
ulation with many genotypes, each of which is represented by a single plant or
by, at most, a small number of plants. Selection for such traits is thus mostly
beyond the breeder’s capability (Stam, 1998).

Furthermore it is assumed when designing an ideotype that parameter
values can be combined at will in a single genotype. The possible existence of
constraints, e.g. lack of genetic variation, and correlations among the parame-
ters, especially correlations due to pleiotropic loci, is ignored.

Sparnaaij and Bos (1993) and Bos and Sparnaaij (1993) considered the
analysis of complex characters as well as the phenomenon of recombinative
heterosis and its prediction.
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Equation (9.12) shows that inbreeding depression is due to a deficit of
heterozygous plants in comparison with their Hardy-Weinberg frequency.
Random variation of allele frequencies also leads to a decrease in the frequency
of heterozygous plants. If Pnf,0 designates the probability that fixation with
regard to locus Bi-bi has not yet occurred in the initial population, Pnf,t

is expected to be ψPnf,0, where ψ represents the remaining part of Pnf,0

(Section 7.1).
The initial contribution of locus Bi-bi to EG is (pi−qi)ai+2piqidi. At fixation

of genotype BiBi, which occurs with probability pi, the contribution is ai; at
fixation of genotype bibi, which occurs with probability qi, it is −ai. Thus, at
fixation, the expected contribution of this locus is (pi−qi)ai. Consequently, at
fixation due to random variation of allele frequencies its expected contribution
to ‘inbreeding’ depression amounts to −2piqidi. The expected depression, due
to fixation, is thus equal to the depression occurring in the case of continued
inbreeding.

9.4.2 Hybrid Varieties

Comparison of a number of the annual Dutch lists of varieties shows both
an increase in the total number of varieties for grain and silage maize, and a
gradual shift in the most frequently included type of variety. The increase in
the total number of varieties reflects the increase in acreage since 1970. Appar-
ently breeders responded by offering more and more varieties. The main type
of variety offered changed simultaneously: from open-pollinating varieties via
double-cross hybrids (DC-hybrid) and threeway-cross hybrids (TC-hybrids)
to single-cross hybrids (SC-hybrid) (Table 9.5).

Table 9.5 The number of varieties of grain and silage maize included in Dutch

lists of recommended varieties and their distribution across open-pollinating vari-

eties (OP), double-cross (DC), threeway-cross (TC) and single-cross (SC) hybrid

varieties

Type of variety

Year OP DC TC SC Total

1967 4 4 0 0 8

1977 0 3 6 0 9

1980 0 2 8 0 10

1984 0 1 12 0 13

1988 0 2 14 0 16

1990 0 2 19 0 21

1992 0 2 19 3 24

1994 0 1 26 16 43

1996 0 0 19 17 36

1998 0 0 19 19 38
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The table shows that, in the past, DC-hybrids were more popular than SC-
hybrids. Because DC-hybrid seed is produced by a vigorous SC-hybrid, it
was much cheaper than SC-hybrid seed. (The latter is produced by an inbred
line suffering from inbreeding depression). At present, however, relatively high
yielding pure lines are available as maternal parent of a SC-hybrid. Already
in 1980 about 80% of the acreage of maize grown in the Corn Belt of the USA
consisted of SC-hybrids.

Two reasons for the present popularity of SC-hybrids are

1. Farmers prefer their greater uniformity
2. Breeders prefer to evaluate the lower number of all conceivable SC-hybrids

instead of all conceivable TC- or DC-hybrids (see below)

Numbers of conceivable SC-, TC- and DC-hybrids
When having available N promising inbred lines, one might produce and test

•
(
N
2

)
SC-hybrids

•
(
N
2

)
(N − 2) TC-hybrids

As each of the
(
N
2

)
SC-hybrids may be crossed with any of the (N − 2)

remaining inbred lines, the number of TC-hybrids is (N − 2) times the
number of SC-hybrids.

• 3
(
N
4

)
DC-hybrid

This number is derived as follows. Each of the
(
N
2

)
SC-hybrids may be

crossed with any of the
(
N−2

2

)
SC-hybrids among the (N − 2) remain-

ing inbred lines. When reciprocal crosses are not distinguished, this yields
1
2

(
N
2

)(
N−2

2

)
= 3

(
N
4

)
DC-hybrids, i.e. 1

4 (N − 2)(N − 3) times the number of
SC-hybrids.

Example 9.12 shows that it is demanding or even impossible to produce and
to test all conceivable TC- and DC-hybrids when N becomes larger than 15.

Example 9.12 The number of SC-hybrids, TC-hybrids and DC-hybrids
that may be produced on the basis of N inbred lines amounts for N = 5, 15
and 50 to

N Number of
SC-hybrids

Number of
TC-hybrids

Number of
DC-hybrids

5 10 30 15
15 105 1365 4095
50 1225 58800 690900

Thus the five inbred lines V, W, X, Y and Z may give rise to 10 different
SC-hybrids, viz. VW, VX, VY, VZ, WX, WY, WZ, XY, XZ and YZ. When
making TC-hybrids each of these may be crossed with any of the three
inbred lines not already used as its parent, e.g. VW may be crossed with X,



9.4 Inbreeding Depression and Heterosis 193

Y or Z. Alternatively, when making DC-hybrids one may cross each of the 10
SC-hybrids with any of the

(
3
2

)
= 3 SC-hybrids among the three remaining

inbred lines. Pooling of reciprocal crosses yields 3
(
5
4

)
= 15 DC-hybrids.

The costs of producing 1 tonne of SC-hybrid maize seeds are not necessarily
higher than those required to produce 1 tonne of TC- or DC-hybrid seed, the
reasons being:

1. Because of mutual isolation of maize fields, grown for maintenance of
inbreds or their crossing, the production of TC- or DC-hybrid seed is more
demanding than the production of SC-hybrid seed: to produce DC-hybrid
seed at least seven isolated fields are required, instead of three when
producing SC-hybrid seed (check this for yourself).

2. For a given successful SC-hybrid the alleles may be reshuffled to produce a
new maternal and a new paternal inbred line, such that the new maternal
line has a higher seed yield (Koutsika-Sotiriou, Bos and Fasoulas, 1990).

Of course, growers will be interested in the performance of G1, i.e. the plant
material obtained by open pollination in the hybrid variety. If the performance
of G1 would be satisfactory, they might decide to grow G1-, G2-, etc. material.

In the case of the absence of epistasis a single round of panmictic repro-
duction will yield plant material (G1) with an expected genotypic value equal
to that of any later generation obtained by panmixis, i.e. equal to EGRM

(Section 9.2). Then the reduction in the performance, occurring when growing
G1,G2, etc. instead of the hybrid, is EGhybrid − EGRM, which is equal to the
heterosis as defined by Equation (9.12). Example 9.13 illustrates the reduction
occurring when growing plant material obtained by panmictic reproduction of
a hybrid. In addition to the reduction in performance, the plant material will
show a reduced uniformity.

Example 9.13 The four homozygous genotypes b3b3b4b4, b3b3B4B4,
B3B3b4b4 and B3B3B4B4 of Example 8.12 may be coded W, X, Y and Z.

TC-hybrid YZ · W is produced by crossing SC-hybrid YZ, which has
genotype B3B3B4b4, with inbred line W. The genotypic composition of
hybrid YZ · W is described by

Genotype
B3b3B4b4 B3b3b4b4

f 1
2

1
2

G 14 13

Thus the expected genotypic value of the TC-hybrid is

EGYZ·W = 1
2 (14 + 13) = 13.5
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Its allele frequencies are p3 = 1
2 and p4 = 1

4 . As m = 12.5, a3 = d3 = 1 and
a4 = d4 = 1

2 (Example 8.12), Equation (9.6) yields

EGRM = 12.5 + (1
2 − 1

2 )1 + (1
4 − 3

4 ) 1
2 + 2[ 12 · 1

2 · 1 + 1
4 · 3

4 · 1
2 ] = 12.94

Thus the heterosis amounts to 13.5 − 12.94 = 0.56. This is the reduction of
the performance when growing G1,G2, etc. obtained by continued panmictic
reproduction starting with TC-hybrid YZ · W.

If the number of SC-hybrid plants is insufficient to produce the desired
amount of DC-hybrid seed, one may apply open pollination within both of
the SC-hybrids underlying the DC-hybrid. Next the two G1s are crossed. This
procedure yields plant material with (approximately) the same genotypic com-
position as expected when crossing the two SC-hybrids. The explanation for
this is as follows. The population resulting from open pollination of a SC-
hybrid is identical to the population resulting from self-fertilization of the
SC-hybrid. When applying selfing, the haplotype frequencies with regard to
unlinked loci do not change. (In the case of linkage the change is insignificant,
see Section 3.2.2). Thus a single round of panmictic reproduction of each of
the two SC-hybrids hardly affects the genotypic composition of the DC-hybrid
to be produced.

Prediction of the performances of TC-hybrids and DC-hybrids
Example 9.12 illustrated that it is, even for a rather low number of inbred
lines (N), impossible to produce and to test all

(
N
2

)
(N − 2) TC- or all 3

(
N
4

)
DC-hybrids. The remainder of this section is dedicated to a way out: it has
become a routine to predict, on the basis of data about the performances of
the SC-hybrids, the performance of any conceivable TC- or DC-hybrid. This
prediction can indeed be made for each TC- and DC-hybrid if data about all
SC-hybrids are available. The TC- or DC-hybrids with the most favourable
predicted performances are subsequently actually produced and tested.

The predictions are based on the following equations:

• For TC-hybrid XY · Z:

EGXY ·Z = 1
2 (GXZ + GYZ) (9.16)

• For DC-hybrid WX · YZ:

EGWX·YZ = 1
4 (GWY + GWZ + GXY + GXZ) (9.17)

The performance of TC-hybrid XY · Z, i.e. GXY · Z, is therefore predicted as

1
2 (ĜXZ + ĜYZ) (9.18)

and the performance of DC-hybrid WX · YZ, i.e. GWX ·YZ, as

1
4 (ĜWY + ĜWZ + ĜXY + ĜYZ) (9.19)
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The performances predicted according to Equations (9.18) and (9.19) will be
best if the performances of the SC-hybrids occurring in the equations are the
best. The SC-hybrids to be used to produce the best possible TC- or DC-
hybrid should thus not have the best possible performances.

The reliability of Equations (9.16) and (9.17) will now be illustrated for the
case of absence of epistasis, implying that presence or absence of linkage is
irrelevant. The illustration is only elaborated for loci B1-b1 and B2-b2.

The genotypes assumed for pure lines W, X, Y and Z are

Line code Genotype Genotypic value (G)
W B1B1B2B2 m + a1 + a2

X B1B1b2b2 m + a1 − a2

Y b1b1B2B2 m − a1 + a2

Z b1b1b2b2 m − a1 − a2

This yields the following SC-hybrids:

Hybrid code Genotype Genotypic value (G)
WX B1B1B2b2 m + a1 + d2

WY B1b1B2B2 m + d1 + a2

WZ B1b1B2b2 m + d1 + d2

XY B1b1B2b2 m + d1 + d2

XZ B1b1b2b2 m + d1 − a2

YZ b1b1B2b2 m − a1 + d2

TC-hybrid XY · Z is then described by

Genotype
b1b1b2b2 B1b1b2b2 b1b1B2b2 B1b1B2b2

f 1
2rc

1
2 (1 − rc) 1

2 (1 − rc) 1
2rc

G m − a1 − a2 m + d1 − a2 m − a1 + d2 m + d1 + d2

Its expected genotypic value is

EGXY·Z = m + a1(− 1
2rc − 1

2 + 1
2rc) + d1( 1

2 − 1
2rc + 1

2rc)
+ a2(− 1

2rc − 1
2 + 1

2rc) + d2( 1
2 − 1

2rc + 1
2rc)

= m − 1
2a1 + 1

2d1 − 1
2a2 + 1

2d2

It is easily verified that this is equal to

1
2 (GXZ + GYZ) = 1

2 [(m + d1 − a2) + (m − a1 + d2)]

Similarly DC-hybrid WX · YZ is described by

Genotype
B1b1b2b2 B1b1B2b2 B1b1B2B2

f 1
4

1
2

1
4

G m + d1 − a2 m + d1 + d2 m + d1 + a2
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Its expected genotypic value is

EGWX·YZ = m + d1 + 1
2d2

This is equal to

1
4 (GWY + GWZ + GXY + GXZ) = 1

4 [(m + d1 + a2) + (m + d1 + d2)
+ (m + d1 + d2) + (m + d1 − a2)]

= m + d1 + 1
2d2

In this way it is illustrated that, for the case of absence of epistasis, the
prediction is unbiased.

The expressions to predict TC- or DC-hybrid performances are due to Jenk-
ins (1934). Applications were elaborated by Allard (1960, pp. 271–274) and
Hallauer and Miranda (1981, pp. 352–357).

The predictions are based on estimates of the genotypic values of SC-
hybrids. Inaccuracy of these estimates may lead to incorrect predictions. Other
causes for differences between predicted and actual performances may be

• Genotype × environment interaction: the prediction may be based on obser-
vations made in 2007 whereas the verification occurred in 2008, possibly at
a different location

• Maternal effects
• Presence of epistasis

Unexpected behaviour of plant material may determine the failure or the
success of a breeder. Thus the predictions should be used as rough indications.
Ample actual evaluation of promising hybrids, during several years and at
several locations, is always required.

Example 9.14 shows (for N = 4) the prediction, on the basis of data about
the performances of each of the six SC-hybrids, of the performances of all 12
conceivable TC-hybrids and all three conceivable DC-hybrids.

Example 9.14 The genotypic values of the
(
N
2

)
= 6 SC-hybrids conceiv-

able for N = 4 inbred lines W, X, Y and Z were estimated to amount to

GWX = 14

GWY = 13

GWZ = 14

GXY = 14

GXZ = 7

GYZ = 10
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According to Equation (9.18) the predictions of the expected genotypic
values of the

(
N
2

)
(N − 2) = 12 TC-hybrids amount to

ĜWX·Y = 1
2 (13 + 14) = 13.5

ĜWX·Z = 1
2 (14 + 7) = 10.5

ĜWY·X = 1
2 (14 + 14) = 14

ĜWY·Z = 1
2 (13 + 10) = 11.5

ĜWZ·X = 1
2 (14 + 7) = 10.5

ĜWZ·Y = 1
2 (13 + 10) = 11.5

ĜXY·W = 1
2 (14 + 13) = 13.5

ĜXY·Z = 1
2 (7 + 10) = 8.5

ĜXZ·W = 1
2 (14 + 14) = 14

ĜXZ·Y = 1
2 (14 + 10) = 12

ĜYZ·W = 1
2 (13 + 14) = 13.5

ĜYZ·X = 1
2 (14 + 7) = 10.5

According to Equation (9.19) the predictions of the expected genotypic
values of the 3

(
N
4

)
= 3 DC-hybrids are

ĜWX·YZ = 1
4 (13 + 14 + 14 + 7) = 12

ĜWY·XZ = 1
4 (14 + 14 + 14 + 10) = 13

ĜWZ·XY = 1
4 (14 + 13 + 7 + 10) = 11

Thus the most promising TC-hybrids are WY · X and XZ · W. These are as
good as the best three SC-hybrids WX, WZ and XY. The most promising
DC-hybrid is WY · XZ. This hybrid has a lower performance than the best
SC- or TC-hybrid).

The inferior SC-hybrid XZ is identified as a parent of promising TC- or
DC-hybrids.

Its parental pure lines X and Z give mostly rise to good-performing
SC-hybrids, e.g. WX, WZ and XY, when crossed with pure lines W or Y.

9.4.3 Synthetic Varieties

Hermaphroditic cross-fertilizing crops exist in which neither a reliable system
of cytoplasmic male sterility occurs, nor incompatibility, e.g. some herbage
crops. The breeding and maintenance of hybrid varieties is then greatly ham-
pered. In other crops hybrid varieties may be developed but are not actually
produced because the additional costs for the grower, due to the more expen-
sive hybrid seed, are not repaid by the additional yield or by the advantage of
greater uniformity.
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In these situations the breeding of a synthetic variety may be considered.
Characteristic features of synthetic varieties are

1. Syn1, i.e. generation 1 of the synthetic variety, is obtained by open
pollination as occurring in a polycross.

2. The components are maintained by identical reproduction.
3. Syn1 and later generations, i.e. Syn2, Syn3, etc., produce offspring by open

pollination.

Production of Syn1 by a polycross
The n parental components with a good combining ability may be identified
on the basis of a polycross (see Section 6.3.6). Generally a good general com-
bining ability requires unrelatedness. However, to develop a rather uniform
synthetic variety the components should be phenotypically similar and, con-
sequently, may have a similar genotype. This requirement may hamper the
composition of a set of good combining components. For date of flowering the
components should, by definition, be similar in any case.

Maintenance of the components by identical reproduction
The maintenance of the components by identical reproduction (see Section 8.1)
may be done by vegetative reproduction (in grasses) or by continued sib
mating (e.g. in rye). This implies that the components are mostly clones or
inbred populations.

Production of Syn2, Syn3, etc. by open pollination
A synthetic variety is required to have a fairly constant performance when
comparing successive generations. In the absence of epistasis a reduction of the
expected genotypic value will only occur from Syn1 to Syn2 (see Example 9.15).
Further reductions in later generations should be attributed to epistasis and/or
(natural) selection.

Example 9.15 Inoue and Kaneko (1976, Table 27) observed the grain yield
(in qu/ha) of successive generations of a synthetic variety of maize:

pSyn1 = 60.5
pSyn2 = 50.2
pSyn3 = 49.7
pSyn4 = 50.4

Geiger, Diener and Singh (1981) present data concerning the performance
of successive generations of synthetic varieties of rye.
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When having N potential components available, the total number of conceiv-
able synthetic varieties based on n components, where n = 2, or 3, or . . . , N ,
amounts to:

N∑
n=2

(
N

n

)
=

N∑
n=0

(
N

n

)
− N − 1 = 2N − N − 1

This implies that already for N = 15, the development of as many as 32,752
different synthetic varieties may be considered. Prediction of the performances
of synthetic varieties is thus very desirable. Such prediction is possible on the
basis of the observed performances of material resulting from pairwise crosses
between the components involved in the conceived synthetic variety. This is
shown in Note 9.2.

Note 9.2 Assume panmictic reproduction of the set of n components. The
expected genotypic value of the obtained plant material will then be

EGRM =

n∑
i=1

n∑
j=1

GFij

n2
=

n∑
i=1

n∑
j �=i

GFij
+

n∑
i=1

GFii

n2

where

• GFij designates the genotypic value of Fij , the plant material obtained
from crossing maternal component i with paternal component j, and

• GFii the genotypic value of Fii, the plant material obtained from selfing
component i.

In the case of inbred (thus homozygous) parents

n∑
i=1

GFii

n

is equal to the mean genotypic value of the parents, say EGP. The mean
genotypic value of the plant material obtained from the crosses (these are
hybrids in the case of homozygous parents) is equal to

n∑
i=1

n∑
j �=i

GFij

n(n − 1)

say EGF1. It is, in fact the mean genotypic value of the synthetic variety
obtained in the case of outbreeding. Thus EGF1 = EGSyn1.
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Altogether it is derived that

EGRM =
(

n − 1
n

)(
1

n(n − 1)

) n∑
i=1

n∑
j �=i

GFij
+

1
n
·

n∑
i=1

GFii

n

=
(

n − 1
n

)
EGF1

+
1
n

EGP = EGF1
−

EGF1
− EGP

n

Plant material obtained by panmixis has the Hardy–Weinberg genotypic
composition. Thus the former expression presents EGSyn2 and may be read as

EGSyn2
= EGSyn1

−
EGSyn1

− EGP

n
(9.20)

implying

EGSyn1
− EGRM =

EGSyn1
− EGP

n
(9.21)

The latter equation is illustrated in Example 9.16.

Example 9.16 Example 2.8, dealing with a polycross involving n = 5
components, is once more considered with regard to the complex genotypes
with regard to the two loci B1-b1 and B2-b2. The genotypic values of the
complex genotypes are

b2b2 B2b2 B2B2

b1b1 5.5 13.5 13.5
B1b1 7.5 15.5 15.5
B1B1 9.5 17.5 17.5

The values of the components of the genotypic values are: a1 = 2, d1 = 0,
a2 = d2 = 4, as in Example 8.10. From Table 2.3 the following derivations
can be made: p1 = 0.8, q1 = 0.2, p2 = 0.4 and q2 = 0.6. Equation (9.6) yields
then:

EGRM(= EGRM) = 11.5+(0.8−0.2)2+(0.4−0.6)4+2×0.4×0.6×4 = 13.82

From Table 2.3 we may calculate

EGP = 0.2 × 5.5 + 0.4 × 9.5 + 0.4 × 17.5 = 11.9, and
EGSyn1 = 0.2 × 7.5 + 0.2 × 15.5 + 0.1 × 9.5 + 0.4 × 17.5 + 0.1 × 17.5 = 14.3.

This implies that
EG

Syn1
−EG

P

n is equal to 14.3−11.9
5 = 0.48, which, according

to Equation (9.21), indeed is equal to EGSyn1 − EGRM = 14.3 − 13.82.
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The n parental components need to be maintained in mutual isolation.
Syn1 is produced by mixed growing of the components followed by harvest, in
bulk, of the seed produced after open pollination. The grower may purchase
Syn1 material, but will mostly buy Syn2 and grow then several generations.
If growers buy exclusively Syn2 the reduction in performance from Syn1 to
Syn2 is only the breeder’s concern. Despite this reduction, Syn2 should still
perform attractively.

Syn2 is obtained by random mating, implying EGSyn2 = EGRM. The reduc-
tion in the performance occurring from Syn1 to Syn2 is thus equal to the
heterosis of Syn1 in comparison to Syn2. Wright (1922) derived Equation
(9.20), describing the heterosis of a synthetic variety developed from n parental
components, with expected genotypic value EGP. The equation implies that
one may predict EGSyn2 by

pSyn1 −
(

pSyn1 − pP

n

)
(9.22)

and the heterosis of Syn1 by
pSyn1 − pP

n
(9.23)

The five assumptions underlying the derivation of Equation (9.20) (Note 9.2)
are

1. Syn1 originates from outbreeding, i.e. intercomponent crossing of the n
parental components, in the absence of intracomponent crossing.

This assumption can be justified if the components are self-incompatible,
e.g. clones of grasses. The outbreeding causes an excess of heterozygous
plants in Syn1 compared to their Hardy–Weinberg equilibrium frequency
occurring in Syn2 or later generations. This excess gives rise to heterosis.

2. A diploid behaviour of the chromosomes.
For many polyploid herbage crops, such as grasses or alfalfa, synthetic

varieties have been developed. Thus this assumption cannot be justified for
all crops for which synthetic varieties are developed.

3. The components are homozygous, at least for the loci controlling the traits
considered by the breeder (the latter may be accomplished by assortative
mating).

In practice the components are often only partly inbred (possibly
because of presence of self-incompatibility).

4. Absence of epistasis.
5. Syn2 originates from panmixis.

This assumption may even be justified in the presence of self-
incompatibility. The gametophytic incompatibility occurring in grasses
is due to two multiple allelic loci: the S- and the Z-locus. Syn1 is expected
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to produce, at gametogenesis, so many different haplotypes – each consist-
ing of a unique combination of an S- and a Z-allele – that the frequency
of incompatible pollinations can be neglected.

Predictions of the performance of Syn2 or predictions of the heterosis of Syn1,
on the basis of Equations (9.22) and (9.23), respectively, may be inaccurate
or biased. Reasons for this are

• Genotype × environment interaction, as mentioned in Example 9.6
• Inappropriateness of one or more of the assumptions used in the derivation

of Equation (9.21).

Prediction on the basis of Equation (9.22) or (9.23) is indeed inappropriate in
certain situations. Alternative expressions applying to specific situations have
therefore been developed. Gallais (1967), for instance, developed an expression
for self-compatible components, which are consequently partially inbred. His
expression contains the inbreeding coefficient, making allowance for the appro-
priate degree of inbreeding. Gallais (1967, 2003) also developed expressions for
autotetraploid crops. These take into consideration

• preferential fertilization, which has been shown to occur in alfalfa;
• epistasis and
• linkage.

Busbice (1969, 1970) proposed a general expression which can be applied at

• Several levels of ploidy
• Several degrees of relatedness of the parental components
• Several degrees of self-incompatibility

Example 9.16 derived the heterosis to be expected for a Syn1 variety at specific
allele frequencies and specific genotypic values. An expression for the hetero-
sis of Syn1 for the general case, but taking five assumptions into account,
was shown to yield the same result. Indeed, Example 9.16 does not prove the
usefulness for breeding practice of Equation (9.21). Such usefulness, however,
appears from Example 9.17.

The components involved in a synthetic variety should preferentially be
chosen on the basis of a test of the progenies resulting from pairwise crosses.
A drawback of selecting among parental components on the basis of a polycross
is elaborated in Section 11.3.

Example 9.17 Table 9.6 presents results of a study by Neal (1935) concern-
ing grain yield data of maize lines and hybrids. The data allow calculation
of the heterosis by comparing the grain yield of the hybrids with the grain
yield of G1 i.e. the material obtained from open pollination in the hybrid.
For SC-hybrids the actual heterosis amounted to 62.8−44.2 = 18.6 bu/acre.
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Table 9.6 The grain yield of maize material: pure lines used to produce hybrids, the
hybrids themselves and the offspring obtained by open pollination in the hybrids,

say G1 (source: Neal, 1935)

Grain yield
Type of parental G1

hybrid lines hybrids observed predicted∗)
SC 23.7 62.8 44.2 43.2
TC 23.8 64.2 49.3 50.7
DC 25.0 64.1 54.0 54.3

∗) predicted by using Equation (9.22)

The heterosis predicted on the basis of Equation (9.23) amounted for
SC-hybrids: (62.8−23.7)/2 = 19.6. Then the predicted grain yield of the G1

material is 62.8 − 19.6 = 43.2 bu/acre.
Kiesselbach (1960) observed no further reduction in the case of continued

reproduction by means of open pollination. This suggests absence of
epistasis.

Mostly a synthetic variety is based on 6, 7 or 8 components. As n is smaller,
EGSyn1 could be higher, but this may be offset by an increase of (EGSyn1 −
EGP)/n. There is, apparently, an optimum value for n. Becker (1982, 1988)
reviewed the topic of synthetic varieties, including published optimal and
actual values for n.



Chapter 10
Effects of the Mode of Reproduction
on the Genetic Variance

This book focusses on the mean genotypic value as well as on the genetic
variance. Breeders seek desired changes of the mean genotypic value. Presence
of genetic variance is a prerequisite for success if the change is pursued by
selection. The magnitude of the genetic variance, a measure for the diversity of
the genotypic values of the candidates, depends on the genotypic composition
of the population subjected to selection. At given allele frequencies, the coeffi-
cient of inbreeding is decisive for the genotypic composition. The effect of the
mode of reproduction, the major factor determining the coefficient of inbreed-
ing, on the genetic variance is therefore considered for both random mating
and inbreeding.

10.1 Introduction

In the absence of epistasis the genotypic value of a complex genotype with
regard to loci B1−b1, . . . , BK −bK can be written as the sum of contributions
due to the relevant single-locus genotypes (Section 8.3.2):

GB1−b1,...,BK−bK
= m +

K∑
i=1

G′
Bi−bi

or

G = m +
K∑

i=1

G′
i

Then

var(G) = var

(
K∑

i=1

G′
i

)

If cov(G′
i,G′

j) = 0 for all i �= j = 1, . . . , K this simplifies to

var(G) =
K∑

i=1

var
(
G′

i

)
(10.1)

implying that the variance of the genotypic values for a polygenically deter-
mined trait can be written as the sum of the contributions due to relevant
single-locus genotypes.

The condition cov
(
G′

i,G
′
j

)
= 0 applies if G′

i and G′
j are independent

random variables, i.e. if the probability of a certain genotype for locus Bi − bi

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 205–223. 205
c© 2008 Springer.
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does not depend on the genotype for locus Bj − bj . Such independency is
present:

• in cross-fertilizing crops if the considered population is in linkage equilib-
rium;

• in self-fertilizing crops in the populations designated as F2,F3, etc. in the
case of unlinked loci (see, for example, Table 3.3).

In these situations the effect of the mode of reproduction on var(G) depends
exclusively on its effect on the contribution of separate loci to var(G). Thus
implications of random mating and (continued) self-fertilization for Equations
(8.22) and (8.23) are considered in Sections 10.2 and 10.3, respectively.

10.2 Random Mating

We consider the genetic variance for a quantitatively varying trait, which is
controlled by non-epistatic loci. For a population with the linkage equilib-
rium genotypic composition, var(G) is easily obtained by summation across
all relevant single loci (Equation (10.1)). Because F = 0 we consider

Genotype
bb Bb BB

f q2 2pq p2

G m − a m + d m + a

Substitution of F = 0 in Equations (8.22) and (8.23) gives

var(G) = var(γ) + var(δ) = 2pq[a − (p − q)d]2 + 4p2q2d2 (10.2)

Extension to the case of K loci for a population in linkage equilibrium yields:

var(G) = 2
K∑

i=1

piqi [ai − (pi − qi)di]
2 + 4

K∑
i=1

p2
i q

2
i d2

i (10.3)

The part
2
∑

i

piqi [ai − (pi − qi)di]
2 (10.4)

is the additive genetic variance at F = 0. It will be indicated by σa
2 (Sec-

tion 8.3.3). The part
4
∑

i

p2
i q

2
i d2

i (10.5)

is the dominance variance at F = 0, which will be indicated by σd
2

(Section 8.3.3). Thus
σg

2 := σa
2 + σd

2
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In the absence of selection p and q are constant, implying constancy of var(G).
Note 10.1 presents an interesting application of Equation 10.3.
Example 10.1 illustrates the calculation of the genotypic variance and its com-
ponents.

Note 10.1 For unlinked loci the plant material obtained by open pollination
within a single cross hybrid variety is in linkage equilibrium for pi = 1

2 ; i =
1, . . . , K. Substitution of these allele frequencies into Equation (10.3) yields

var(G) =
1
2

K∑
i=1

ai
2 +

1
4

K∑
i=1

di
2 (10.6)

The genotypic composition of the obtained population is identical to
the genotypic composition of an F2 population of a self-fertilizing crop.
Table 10.3 presents, indeed, the above equation for var(G) for an F2 pop-
ulation.

Example 10.1 The genotypic variance is calculated for Example 9.4 by
application of the definition for variance. Thus

var(G) = EG2 − (EG)2

where:

EG2 = 0.36 × 0.04 × 112 + 0.48 × 0.04 × 132 + · · ·
+ 0.16 × 0.64 × 142 = 176.2576

(EG)2 = (13.24)2 = 175.2976

This yields
var(G) = 0.96

Application of Equations (10.4) and (10.5) yields:

• for locus B3 − b3 with p3 = 0.4, q3 = 0.6, a3 = d3 = 1:

2× 0.4× 0.6[1− (0.4− 0.6)]2 + 4× 0.42 × 0.62 = 0.6912 + 0.2304 = 0.9216

and
• for locus B4 − b4 with p4 = 0.8, q4 = 0.2, a4 = d4 = 1

2 :

2 × 0.8 × 0.2[12 − (0.8 − 0.2) × 1
2 ]2 + 4 × 0.82 × 0.22 × ( 1

2 )2

= 0.0128 + 0.0256 = 0.0384
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Altogether this yields

σa
2 = 0.6912 + 0.0128 = 0.704

σd
2 = 0.2304 + 0.0256 = 0.256

σg
2 = 0.704 + 0.256 = 0.960

N.B. At the end of Section 8.3.4 it was shown that, in the case of intrapop-
ulation progeny testing, σa

2 is equal to the variance of the breeding values.
It is very desirable to know σa

2 because it is the numerator in the ratio σa
2

σp
2 ,

which is called heritability in the narrow sense, designated by hn
2. This

ratio is a scale-independent quantity, which plays an important role in the
theory of selection methods: it is possible to predict the response to selection
when hn

2 is known (Section 11.1).
Example 10.1 shows that even in the case of complete dominance σ2

a may
be (considerably) larger than σ2

d. For d = a it can be shown that this applies
if the frequency of allele B is less than 2

3 . Figure 10.1 illustrates σg
2, σa

2 and
σd

2 for incomplete dominance, i.e. for a = 2 and d = 1, which corresponds to
Fig. 9.1, graph (iv), and also for complete dominance, viz. for a = d = 2.

Figure 10.1 shows that in the case of incomplete dominance σa
2 is by far

the larger component of σg
2.

The additive genetic variance is 0:

• if p = 0,
• if p = 1
• if a − (p − q)d = a − (2p − 1)d = 0,

i.e. if p = a+d
2d = pm, the frequency of allele B for loci where d > a, such that

the expected genotypic value attains its maximum if d > 0 or its minimum
if d < 0 (see Section 9.2). One should realize that the above conditions for
σa

2 = 0 imply absence of opportunities for further improvement of EG by
selection.

By pollinating (and harvesting) the plants of some generation in a proper
way, one can partition the genotypic variance (see Equation (10.2)) such that
σa

2 (Equation (10.4)), the component deserving special interest, can be esti-
mated. Two estimation procedures that require only a small effort are elabo-
rated. They apply to the two modes of reproduction of cross-fertilizing crops
most frequently employed:

1. Open pollination followed by separate harvesting of random plants, which
yields HS-families (see Section 10.2.1).

2. Pairwise crossing of random plants followed by separate harvesting of the
pairs of plants involved in a certain cross. This yields FS-families (see Sec-
tion 10.2.2).
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Fig. 10.1 The relation between the frequency of allele B and σg
2, σa

2 and σd
2 for (a)

a = 2 and d = 1 (incomplete dominance) and (b) a = d = 2 (complete dominance)
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The present chapter considers for both situations the partitioning of σg
2 into

genetic variance between families and genetic variance within families. The
partitioning is done in such a way that these components are written in terms
of σa

2 and σd
2. Separate evaluation of either the HS- or the FS-families enables

the estimation of σa
2. Actual experiments, required to estimate σa

2 are dealt
with in Section 11.2.2

10.2.1 Partitioning of σg
2 in the case of open pollination

In the case of open pollination one may partition var(G) as

var(G) = var(GHS) + var(G(HS)) (10.7)

where

• var(GHS) designates the genetic variance between HS-families, i.e. the
variance of the genotypic values of the HS-families, where GHS is defined to
be equal to the expected genotypic value of the plants representing some
HS-family. Thus one may write

GHS = E(G|HS)

• var(G(HS)) designates the expected genetic variance within HS-families.

N.B. In the above the formulation ‘expected genetic variance within HS-
families’ is incidentally used. Indeed the genetic variance within a HS-family
depends on the genotype of its maternal parent.

In Section 8.3.4, Equation (8.29), it was derived that

var(GHS) = 1
4σa

2 (10.8)

This implies that
var(G(HS)) = 3

4σa
2 + σd

2 (10.9)

In addition to Equation (10.8), it is also possible to estimate σa
2 on the

basis of the relationship between parents and offspring. Thus we consider the
phenotypic value of random maternal plants, say p

M
, as well as the phenotypic

values of the HS-families they produce after open pollination, say p
HS

, where
p
HS

is the expected phenotypic value calculated across the plants constituting
the considered HS-family. The relation between p

M
and p

HS
is of course of

interest. In Note 10.2 it is shown that

cov(p
M

, p
HS

) = 1
2σa

2 (10.10)

Thus, when evaluating HS-families derived from random plants, estimates for
σa

2 are
4vâr(GHS) (10.11)
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and
2côv(p

M
, p

HS
) (10.12)

Equations (10.8) and (10.10) imply a quantitative genetical interpretation of
the statistical parameters var(GHS) and cov(p

M
, p

HS
) in terms of σa

2. The
conditions required to justify such an interpretation will now be considered. It
will, all things being considered, be concluded that a possible bias in Equation
(10.10) tends to be smaller than a possible bias in Equation (10.8). Then esti-
mation of σa

2 according to Equation (10.12) is to be preferred over estimation
according to Equation (10.11).

Note 10.2 When assigning individual plants at random to positions in
the field, the covariance of a plant’s genotypic value and the environmental
deviation of the HS-family, obtained by open pollination of the plant, is zero:
cov(GM, eHS) = 0. Also the covariance of the plant’s environmental devia-
tion and the genotypic value of the HS-family, obtained by open pollination
of the plant, is zero: cov(eM,GHS) = 0. Likewise cov(eM, eHS) = 0. All this
implies

cov(p
M

, p
HS

) = cov[(G + e)M, (G + e)HS] = cov(GM,GHS)

Of course
EGHS = E[E(G|HS)] = EG

When considering some locus B − b, Equation (9.5) implies

EGHS = EGM = EG = m + (p − q)a + 2pqd

The parameter cov(GM,GHS) = E(GM · GHS) − (EGM) · (EGHS) is derived
from Table 10.1.

Table 10.1 The relationship between the genotypic value of a maternal plant (GM) and

the genotypic value of the corresponding HS-family (GHS), i.e. the expected genotypic

value of the plants constituting the considered HS-family

HS-family

Maternal plant Genotypic composition

genotype f GM bb Bb BB GHS

bb q2 m − a q p 0 m − qa + pd

Bb 2pq m + d 1
2
q 1

2
1
2
p m + 1

2
(p − q)a + 1

2
d

BB p2 m + a 0 q p m + pa + qd

As the constant m may be neglected, this yields

q2(−a)(−qa + pd)+ pq(d)[(p − q)a+ d] + p2(a)(pa+ qd)− [(p − q)a+ 2pqd]2

= [q3 + p3 − (p − q)2]a2 − pq[q − (p− q)− p + 4(p− q)]ad+ (pq − 4p2q2)d2
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When applying Equation (2.8) this is simplified into:

pqa2 − 2pq(p − q)ad + pq(1 − 4pq)d2 = pq[a − (p − q)d]2

Thus
cov(p

M
, p

HS
) = 1

2σ2
a

The interpretation of the statistical parameters in the left hand side of
Equations (10.8) and (10.10) in terms of the quantitative genetic parameter
σ2

a in the right-hand side can only be justified if the following conditions apply:

1. Absence of epistasis
2. The genotypic composition of the parental population is in linkage equilib-

rium
3. The parents produce offspring by means of panmixis
4. Absence of extra-chromosomal genetic variation affecting the genotypic val-

ues
5. Absence of genotype × environment interaction
6. Absence of covariance of genotypic value and environmental deviation

In the following, consequences of violations of these conditions are considered
in detail. This results in the conclusion that Equation (10.12) gives rise to a
smaller bias when estimating σ2

a than Equation (10.11).

Presence of epistasis

In the presence of epistasis Equations (10.8) and (10.10) are incorrect. This is
illustrated by the effect of interaction of single-locus genotypes when consid-
ering only two loci. Falconer (1989, p. 157) presents for this case the following
equations:

var(GHS) = 1
4σ2

a + 1
16σ2

aa

and
cov(GM,GHS) = 1

2σ2
a + 1

4σ2
aa

where σ2
aa represents the genetic variance due to interaction between homozy-

gous single-locus genotypes (see parameter aa in Table 8.5). When using Equa-
tion (10.11) to estimate σ2

a, the bias amounts to 1
4σ2

aa; when using Equation
(10.12) it amounts to 1

2σ2
aa, i.e. twice as high. Presence of epistasis implies

overestimation of σ2
a, especially when using Equation (10.12).

Parental population not in linkage equilibrium

Linkage equilibrium is required to justify the summation of single-locus genetic
variances applied when determining the genetic variance for complex geno-
types (Section 10.1). If the parental population is not in linkage equilibrium,
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Equations (10.8) and (10.10) are incorrect. The bias occurring when estimat-
ing σ2

a by using Equation (10.11) or (10.12), will be relatively large in recently
composed populations and in the case of selection.

Offspring not produced by panmixis

Panmixis implies, among other things, absence of selection. This means that
the parental plants represent some specific population and that all parental
genotypes produce the same number of offspring. In reality genotypes differ
in fitness.

To be able to grow a progeny, the maternal plants should produce a certain
minimum number of seeds. Plants not producing that minimum number are
passed over. This may imply selection. What is the effect of this with regard to
estimating σ2

a? Falconer (1989, p. 183) said: ‘The selection causes the variance
between the parents to be reduced and consequently the covariance of sibs to
be reduced’. In other words: the variance among the HS-families is reduced.
Then the actual value of σ2

a will be underestimated, especially when estimat-
ing σ2

a on the basis of Equation (10.11). According to Kempthorne (1957, p.
329) the opinion that selection does not result in a biased estimate of σ2

a ‘will
be true only if the regression of y on x is linear throughout the range of x’. In
connection with this the statement that ‘for non-normal frequency distribu-
tions, the regression generally deviates from linearity’ (Spitters, 1979; p. 217),
deserves attention.

The presence of so-called outcrossing devices may also disturb panmixis.
Thus incompatibility, as in grass species, Brassica oleracea L. and rye, yields
– compared to the Hardy – Weinberg genotypic composition – an excess of
heterozygous plants. On the other hand, an excessive amount of selfing, imply-
ing a deficit of heterozygous plants, will occur in monoecious crops, such as
maize, particularly if there is calm weather during the period of pollen release.

In summary, it is concluded that the bias due to (artificial) selection leads
to an underestimation of σ2

a when using Equation (10.11).

Presence of extra-chromosomal genetic variation

The notion that extra-chromosomal factors affect plant development has
evolved only slowly. Such factors may imply that the genotypic value of a plant
is not only due to nuclear genes but to plasmagenes as well. One can make
allowance for this by partitioning the genotypic value in the following way:

G = Gn + Gp

Then, in the case of absence of covariance of the contributions due to nuclear
alleles and plasmagenes, one may derive

var(GHS) = var[(Gn + Gp)HS] = var(GnHS) + var(GpHS) = 1
4σ2

a + var(Gp)
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and

cov(p
M

, p
HS

) = cov[(Gn + Gp)M, (Gn + Gp)HS]

= cov(GnM,GnHS) + cov(GpM,GpHS) = 1
2σ2

a + var(Gp)

Equations (10.11) and (10.12) will, consequently, yield a biased estimate of σ2
a

if condition 4 does not apply. Because of the coefficients 4 and 2 in Equations
(10.11) and (10.12), respectively, the bias due to using Equation (10.11) is
larger than the bias due to using Equation (10.12).

Of course, var(GHS) may be estimated correctly if plasmagenes play a role,
and successful selection may be partly due to selection for effects of plasma-
genes, but interpretation of côv(p

M
, p

HS
) or v̂ar(GHS) in terms of σ2

a is then
incorrect.

Variation among families may partly be due to variation in the physiologi-
cal conditions of the maternal plants at harvest time (e.g. the degree of seed
maturity). Effects of common environments are then to be expected. These
include not only maternal effects, but also developmental time trends, as dif-
ferent families experience different environmental conditions at the same stage
of development.

Presence of genotype × environment interaction

Interaction of genotype and macro-environmental conditions affects var(GHS).
In Chapter 13 it is shown that effects of such interactions are included in the
genotypic values of the HS-families when evaluating these only in a single grow-
ing season. Such interaction biases the estimate of σ2

a when based on Equation
(10.11). However, it does not bias the estimate based on Equation (10.12)
because cov(p

M
, p

HS
) is not affected by genotype × growing season interac-

tion if the maternal plants and the corresponding HS-families are evaluated
in different growing seasons. Equation (10.11) tends thus to yield estimates of
σ2

a more biased by g × e interaction than Equation (10.12). Estimates of σ2
a

due to Equation (10.11) tend, consequently, to be larger than estimates due
to Equation (10.12). This is supported by data presented in Example 11.11.
Casler (1982) stressed that overestimation of the heritability in the narrow
sense (h2

n) is to be expected, when estimating h2
n on the basis of regression of

offspring on parent where offspring and parents are grown in the same season.
(The latter is possible in the case of vegetative maintenance.)

Presence of covariance of genotypic value and environmental deviation

Presence of covariance of genotypic value and environmental deviation implies
presence across the families of a negative or a positive correlation of genotypic
value and the quality of growing conditions. Proper randomization, ensuring
that the entries to be evaluated are assigned positions in the field in a random
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way, warrants absence of such a correlation and contributes to avoidance of a
biassed estimate of σ2

a.

10.2.2 Partitioning of σg
2 in the case of pairwise crossing

Pairwise crossing yield FS-families. When evaluating these families var(G) is
partitioned as

var(G) = var(GFS) + var(G(FS)) (10.13)

where

• var(GFS) designates the genetic variance between FS-families, i.e. the vari-
ance of the genotypic values of the FS-families, where GFS is defined to
be equal to the expected genotypic value of the plants representing some
FS-family. One may write

GFS = E(G|FS)

• var(G(FS)) designates the expected genetic variance within FS-families.

N.B. The formulation ‘expected genetic variance within FS-families’ is inci-
dentally used.

Indeed, the genetic variance within a FS-family depends on the genotypes
of its parents. In Note 10.3 it is derived that

var(GFS) = 1
2σ2

a + 1
4σ2

d (10.14)

implying:
var(G(FS)) = 1

2σ2
a + 3

4σ2
d (10.15)

Note 10.3 For reasons similar to those applying to HS-families (see Note
10.2) one may write with regard to randomly crossed pairs of plants and the
resulting FS-families

cov(p
P
, p

FS
) = cov(GP,GFS)

Likewise, it applies that

EGFS = E[E(G|FS)] = EG

Thus, when considering some locus B − b, Equation (9.5) implies

EGFS = EGP = EG = m + (p − q)a + 2pqd
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where
GP designates the expected genotypic value of a pair of randomly crossed
parents.

The genetic variance between FS-families, i.e. var(GFS), is derived from
Table 10.2.

Table 10.2 The relationship between the average genotypic value of two parental

plants (GP) and the genotypic value of the corresponding FS-family (GFS), i.e.

the expected genotypic value of the plants constituting the considered FS-family

Parental plants FS-family

Genotypic composition

cross f GP bb Bb BB GFS

bb × bb q4 m − a 1 0 0 m − a

bb × Bb 4pq3 m − 1
2
a + 1

2
d 1

2
1
2

0 m − 1
2
a + 1

2
d

bb × BB 2p2q2 m 0 1 0 m + d

Bb × Bb 4p2q2 m + d 1
4

1
2

1
4

m + 1
2
d

Bb × BB 4p3q m + 1
2
a + 1

2
d 0 1

2
1
2

m + 1
2
a + 1

2
d

BB × BB p4 m + a 0 0 1 m + a

Thus var(GFS) = EG2
FS − (EG)2

= q4(−a)2 + 4pq3(− 1
2a + 1

2d)2 + 2p2q2d2 + 4p2q2( 1
2d)2

+4p3q( 1
2a + 1

2d)2 + p4(a)2 − [(p − q)a + 2pqd]2

= [q4 + pq3 + p3q + p4 − (p − q)2]a2 + [−2pq3 + 2p3q − 4pq(p − q)]ad

+[pq3 + 2p2q2 + p2q2 + p3q − 4p2q2]d2

Application of Equation (2.8) and some simplifications yield:

var(GFS) = pqa2 − 2pq[q2 − p2+2(p − q)]ad + pq(q2 + 2pq + pq + p2−4pq)d2

= pqa2 − 2pq(p − q)ad + pq(1 − 4pq)d2 + p2q2d2

According to Note 10.2 this is equal to:

var(GFS) = 1
2σ2

a + 1
4σ2

d

Besides on the basis of Equations (10.14) and (10.15), one may also esti-
mate σ2

a on the basis of the relationship between pairs of parents and their
offspring. Thus we consider the average phenotypic values of random pairs of
parental plants, say p

p
, as well as the phenotypic values of the FS-families they

produce after pairwise crossing, say p
FS

, where p
FS

is the mean phenotypic
value calculated across the plants constituting the considered FS-family. The
relationship between p

P
and p

FS
is thus considered. In Note 10.4 it is derived

that
cov(p

P
, p

FS
) = 1

2σ2
a (10.16)
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Note 10.4 Table 10.2 is used to derive cov(GP,GFS).

cov(GP,GFS) = E(GP · GFS) − (EGP) · (EGFS)

= q4(−a)2 + 4pq3(− 1
2a + 1

2d)2 + 4p2q2( 1
2d2)

+4p3q( 1
2a + 1

2d)2 + p4a2 − [(p − q)a + 2pqd]2

= [p4 + p3q + pq3 + q4 − (p − q)2]a2 + [2p3q − 2pq3 − 4pq(p − q)]ad

+[p3q + 2p2q2 + pq3 − 4p2q2]d2

According to Equation (2.8) and some derivations in Note 10.3 this is
equal to:

pqa2 − 2pq(p − q)ad + pq(p2 + 2pq + q2 − 4pq)d2 = 1
2σ2

a.

Thus
cov(p

P
, p

FS
) = 1

2σ2
a

Thus, when evaluating FS-families derived from random pairs of plants, esti-
mates for σ2

a are:
3vâr(GFS) − vâr(G(FS)) (10.17)

and
2côv(p

P
, p

FS
) (10.18)

10.3 Self-Fertilization

When dealing with the breeding of a self-fertilizing crop, the decision concern-
ing the initial crosses to be made should be made with great care. This was
already emphasized in Section 9.3 and is further considered in Section 11.4.
Of course the parents should be chosen such that the goal of the breeding
programme might be attained. This in turn requires the development of a
well-defined goal. One should thus be able to specify in what degree certain
characters are desired to change. Often the breeder will distinguish between
short-term and long-term objectives. With regard to short-term objectives it
might be best to choose parents that will produce, in the segregating popula-
tions obtained after the initial crossing, lines approaching the specified goals
as close as possible. This simply means that the parents should be similar to
the target genotype. For long-term-objective breeding it is most important to
cross divergent lines, such that sufficient genetic variation is generated in the
segregating generations.

Mostly the choice of parents to be crossed is made on subjective grounds.
Efforts to find reliable, objective grounds for parental selection employing
mathematical tools (encompassing the calculation of genetic distances between
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parents, component analysis (see Bos and Sparnaaij (1993)), index selection
or even artificial intelligence) have not been entirely successful. Certainly the
important traits of the potential parents need to be evaluated.

It is assumed that the successive generations of a certain population trace
back to an initial cross between two pure lines. As long as selection does
not occur, the allele frequencies of segregating loci will be p = q = 1

2 . The
genotypic composition of generation t, where t = 1 for population F2 (see
Tables 3.1 and 9.1), is then completely determined by the inbreeding coefficient
Ft. In as far as the K relevant segregating loci are unlinked and non-epistatic,
the variance of the genotypic values of the complex genotypes is equal to
the sum of contributions due to single loci. The size of these single-locus
contributions follows from substituting p = q = 1

2 in Equations (8.22) and
(8.23). The genotypic variance of any generation is consequently:

var(G) = 1
2 (1 + Ft)

K∑
i=1

ai
2 +

(
1−Ft

1+Ft

) K∑
i=1

di
2
[
Ft + 1

4 (1 − Ft)2
]

= 1
2 (1 + Ft)

K∑
i=1

ai
2 +

(
1−Ft

1+Ft

) (
1
2 (1 + Ft)

)2 K∑
i=1

di
2

= 1
2 (1 + Ft)

K∑
i=1

ai
2 + 1

4

(
1 − F 2

t

) K∑
i=1

di
2 (10.19)

It appears that var(G) consists of two components,
∑

i ai
2 and

∑
i di

2, with
coefficients depending on the inbreeding coefficient Ft, i.e. on the considered
generation. (The expected genotypic value was also shown to be a simple
function of Ft, see Equation (9.11).)

With continued selfing the value of Ft in successive generations follows
from Equation (3.4), i.e. Ft = 1

2 (1 + Ft−1), where the inbreeding coefficient
of generation 1, i.e. F2, is 0. Substitution of the appropriate value for Ft in
Equation (10.19) yields the genotypic variance in a certain generation of a
self-fertilizing crop (Table 10.3)
If ∑

i

ai
2 ≥

∑
i

di
2

var(G) will gradually increase in course of the generations.
Component

∑
i ai

2 of var(G) is equal to var(GF∞). It represents the genetic
variance of the completely homozygous plant material eventually obtained if,
indeed, selection is not applied. Knowledge of var(GF∞) i.e. of

∑
i ai

2, in an
early stage of the breeding process, before selection has even started, is of
great interest to the breeder because it allows calculation of the probability of
occurrence, in the F∞-population yet to be obtained, of plant material with a
superior genotypic value (Section 11.4.2). For this reason estimation of

∑
i ai

2

in an early generation, on the basis of partitioning of var(G), is considered.
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Table 10.3 The genotypic variance (var(G)) of successive

generations of a self-fertilizing crop. The inbreeding coeffi-

cients (Ft) are derived from Table 3.1b

Generation Population Ft var(G)

0 F1 −1 0

1 F2 0 1
2

∑
i
ai

2 + 1
4

∑
i
di

2

2 F3
1
2

3
4

∑
i
ai

2 + 3
16

∑
i
di

2

3 F4
3
4

7
8

∑
i
ai

2 + 7
64

∑
i
di

2

4 F5
7
8

15
16

∑
i
ai

2 + 15
256

∑
i
di

2

·
∞ F∞ 1

∑
i
ai

2

The partitioning is elaborated in Section (10.3.1); the actual estimation of∑
i ai

2 is dealt with in Section 11.2.3.
N.B. The quantity

∑
i di

2 is not of much practical interest because this com-
ponent of var(G) is due to heterozygous plants, which are bound to disappear
with continued self-fertilization. It plays however a role in efforts to estimate
the range of genotypic values (see Section 11.4.2).

10.3.1 Partitioning of σg
2 in the case of self-fertilization

In the partitioning of var(G) allowing estimation of
∑

i ai
2, separate plants,

representing generation t, i.e. representing population Ft+1, produce the lines
constituting generation t + 1 (population Ft+2). Then the genotypic variance
in population Ft+2 may be partitioned as

var(G) = var(GL) + var(G(L))

where

• var(G(L)) designates the genetic variance between lines, i.e. the variance of
the genotypic values of the lines, where GL is defined to be equal to the
expected genotypic value of the plants representing some line.

• var(G(L)) designates the expected genetic variance within lines. (The for-
mulation ‘expected genetic variance within lines’ is used, as the genetic
variance within a line depends on the number of heterozygous loci in the
parental plant. This number varies across the plants (see Section 3.2.3). The
genetic variance within a line will, consequently, vary across the lines.)

In Note 10.5 it is derived that the genetic variance between the lines consti-
tuting population Ft+2 can be written as

var(GL) = 1
2 (1 + Ft)

∑
i

ai
2 + 1

16 (1 − Ft
2)
∑

i

di
2 (10.20)
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Note 10.5 The components var(GL) and var(G(L)) of var(G) are derived
for the lines obtained by self-fertilization of plants representing generation t
(population Ft+1). The derivation proceeds with the help of Table 10.4.

Table 10.4 The relationship between the genotypic value of a parental plant

occurring in generation t, i.e. G
P
, and the genotypic value of the corresponding

line (G
L
), i.e. the expected genotypic value of the plants constituting the con-

sidered line; as well as the expected genetic variance within the line, i.e. var(G
(L)

)

Line

Parental plant Genotypic composition

genotype f GP bb Bb BB GL var(G
(L)

)

bb 1
4
(1 + Ft) m − a 1 0 0 m − a 0

Bb 1
2
(1 − Ft) m + d 1

4
1
2

1
4

m + 1
2
d 1

2
a2 + 1

4
d2

BB 1
4
(1 + Ft) m + a 0 0 1 m + a 0

The quantity to be derived is

var(GL) = var(GL − m) = E(GL − m)2 − [E(GL − m)]2

where

E(GL − m)2 = 1
4 (1 + Ft)(−a)2 + 1

2 (1 − Ft)(1
2d)2

+ 1
4 (1 + Ft)a2 = 1

2 (1 + Ft)a2 + 1
8 (1 − Ft)d2

and
[E(GL − m)]2 = [12 (1 − Ft)(1

2d)]2 = 1
16 (1 − Ft)2d2

This yields
var(GL) = 1

2 (1 + Ft)a2 + 1
16 (1 − Ft

2)d2

It is easy to see that the expected genetic variance within lines amounts to

var(G(L) = 1
4 (1 − Ft)a2 + 1

8 (1 − Ft)d2

and the expected genetic variance within these lines as

var(G(L)) = 1
4 (1 − Ft)

∑
i

ai
2 + 1

8 (1 − Ft)
∑

i

di
2 (10.21)

The appropriate value of the coefficient of inbreeding is the value applying
to the parental generation, i.e. generation t. The derivation in Note 10.5 is
in terms of a single locus. In Section 10.1 it was explained that the resulting
equations can be extended to any number of unlinked, non-epistatic loci.
Verification of the equation

var(G) = var(GL) + var(G(L))
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proceeds for Equations (10.20) and (10.21), which are in terms of the
inbreeding coefficient of the parental population (generation t), as follows:

var(GL) + var(G(L) = 1
2 (1 + Ft)

∑
i

ai
2 + 1

16 (1 − F 2
t )

∑
i

di
2

+ 1
4 (1 − Ft)

∑
i

ai
2 + 1

8 (1 − Ft)
∑

i

di
2

=
(

3
4 + 1

4Ft

)∑
i

ai
2 +

(
3
16 − 1

8Ft − 1
16Fi

2
)∑

i

di
2

(10.22)

As Equation (3.4), i.e.
Ft = 1

2 (1 + Ft−1)

implies
Ft+1 = 1

2 (1 + Ft)

we get
Ft = 2Ft+1 − 1

Substitution in Equation (10.22) of

Ft

by
2Ft+1 − 1

yields the following equation for var(G) in terms of generation t + 1:

var(G) =
[
3
4 + 1

4 (2Ft+1 − 1)
]∑

i

ai
2 +

[
3
16 − 1

8 (2Ft+1 − 1)

− 1
16 (2Ft+1 − 1)2

]∑
i

di
2

= 1
2 (1 + Ft+1)

∑
i

ai
2 + 1

4 (1 − Ft+1
2)
∑

i

di
2

This equation is in accordance with Equation (10.19).
For reasons similar to those applying to HS-families (see Note 10.2) one

may write with regard to random parental plants and their lines, i.e. their
offspring obtained by selfing,

cov(p
P
, p

L
) = cov(GP,GL)

The covariance between the genotypic value of a random parental plant
occurring in generation t, and the expected genotypic value of the line
obtained from the plant is derived in Note 10.6.
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Note 10.6 In the absence of correlation of genotypic value and environmen-
tal deviation the following applies to the covariance of p

P
and p

L
:

cov(p
P
, p

L
) = cov(GP,GL)

Using Table 10.4 one can derive

cov(GP,GL) = E(GP · GL) − (EGP) · (EGL)

= 1
2 (1+ Ft)a2 + 1

4 (1−Ft)d2 −[ 12 (1−Ft)d][14 (1−Ft)d]

= 1
2 (1 + Ft)a2 + (1 − Ft

2)d2

It appears that

cov(p
P

, p
L
) = 1

2 (1 + Ft)
∑

i

ai
2 + 1

8 (1 − F 2
t )

∑
i

di
2 (10.23)

The gradual increase in over the course of the generations of var(G), at
∑

i

ai
2 ≥

∑
i

di
2

is the result of a progressing increase of var(GL) and decrease of var(G(L)).
The earliest opportunity for generating lines is offered by the F2 popula-

tion, generation 1. The appropriate value of the inbreeding coefficient, to be
substituted in Equations (10.20), (10.21) and (10.23), is then F1, i.e. 0. This
yields

var(GLF3) = 1
2

∑
i

ai
2 + 1

16

∑
di

2 (10.24)

var(G(LF3)) = 1
4

∑
i

ai
2 + 1

8

i∑
i

di
2 (10.25)

Indeed

var(GF3) = var(GLF3) + var(G(LF3)) = 3
4

∑
i

ai
2 + 3

16

∑
i

di
2

(as indicated by Table 10.3)
An unbiased estimate for

∑
i ai

2, based on the equation

2var(GLF3) − var(G(LF3)) = 3
4

∑
i

ai
2 (10.26)

requires estimates of var(GLF3) and var(G(LF3)). It is rather demanding to
get accurate and unbiased estimates of these genetic variance components.
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An alternative procedure for estimating
∑

i ai
2 is therefore proposed in

Section 11.2.3.
The covariance between p

PF2
, i.e. the phenotypic value of a random F2

plant, and p
LF3

, i.e. the phenotypic value of the derived F3-line, is

cov(p
PF2

, p
LF3

) = 1
2

∑
i

ai
2 + 1

8

∑
i

di
2 (10.27)

The quantity ∑
i

di
2

can be estimated from the equation

2var(G(LF3)) − var(GLF3) = 3
16

∑
i

di
2 (10.28)

The latter equation might be used to estimate, from an estimate for
∑

i di
2,

the quantity
∑

i ai (see Section 11.4.2).
In studies dedicated to the estimation of

∑
i ai

2 or
∑

i di
2, the estimator is

often based on different equations in terms of
∑

i ai
2 or

∑
i di

2. Estimation
of

∑
i ai

2 = var(GF∞) from data obtained from plants belonging to an earlier
generation than F∞ is possible in various ways, but an estimate on the basis
of F3 plant material, due to an unbiased estimator, is considered to be most
attractive because that estimate can be obtained far ahead of the actual pres-
ence of the F∞ population. In this case

∑
i ai

2 is estimated from Equation
(10.26):

2var(GLF3) − var(G(LF3)) = 3
4

∑
i

ai
2

It requires estimation of var(GLF3) and of var(G(LF3)). It is rather demanding
to get accurate and unbiased estimates of these variance components. A pos-
sible approach could be to estimate each of these genetic variance components
by subtracting from the corresponding estimates of phenotypic variance an
appropriate estimate of the environmental variance.

For plant breeders this approach is unattractive because it requires too large
an effort. In Section 11.2.3 a procedure for estimating

∑
i ai

2 from F3 plant
material is described that

• fits into a regular breeding programme,
• avoids separate estimation of components of environmental variance and
• yields an accurate estimate.



Chapter 11
Applications of Quantitative Genetic
Theory in Plant Breeding

In the preceding chapters dealing with traits with quantitative variation, a num-
ber of important concepts were introduced, such as phenotypic value and geno-
typic value (Chapter 8), expected genotypic value (Chapter 9) and genotypic
variance (Chapter 10). The present chapter focusses on applications of these
concepts that are important in the context of this book. Thus the response to
selection, both its predicted and its actual value, is considered. The prediction
of the response is based on estimates of the heritability. Procedures for the
estimation of this quantity are elaborated for plant material that can identi-
cally be reproduced (clones of crops with vegetative reproduction, pure lines of
self-fertilizing crops and single-cross hybrids). It is shown how the heritability
value depends on the number of replications.

In addition to the partitioning of the genotypic value in terms of parame-
ters defined in the framework of the F∞-metric (Section 8.3.2), or in terms
of additive genotypic value and dominance deviation (Section 8.3.3), here the
rather straightforward partitioning in terms of general combining ability and
specific combining ability is elaborated.

11.1 Prediction of the Response to Selection

When dealing with selection with regard to quantitative variation the concepts
of selection differential, designated by S, and response to selection,
designated by R, play a central role. These concepts, see also Fig. 11.1, are
defined as follows:

S : = Ep
s,t

− Ep
t

(11.1)

R : = Ep
t+1

− Ep
t

(11.2)

where

• Ep
s,t

designates the expected phenotypic value of the candidates (plants,
clones, families or lines) in generation t of the considered population with
a phenotypic value greater than the phenotypic value minimally required
for selection (pmin). Ep

s,t
designates thus the expected phenotypic value of

the selected candidates.
• Ep

t
designates the expected phenotypic value calculated across all candi-

dates belonging to generation t of the population subjected to selection.
• Ep

t+1
designates the expected phenotypic value calculated across the off-

spring of the selected candidates.

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 225–287. 225
c© 2008 Springer.
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Fig. 11.1 The density function for the phenotypic value p in generation t and in generation
t + 1, obtained by selecting in generation t all candidates with a phenotypic value greater
than pmin. The selection differential (S) in generation t and the response to the selection (R)

are indicated. The shaded area represents the probability that a candidate has a phenotypic

value larger than the minimally required phenotypic value (pmin)

In Section 8.2 it was derived that

Ep = EG

This implies that one may write EGt instead of Ep
t

and EGt+1 instead of
Ep

t+1
.

The quantities Ep
s,t

,Ep
t

and Ep
t+1

, i.e. the quantities S and R, can be
estimated from the phenotypic values of a random sample of the (selected)
candidates and their offspring, i.e. from pt, ps,t and pt+1, As the symbol R̂ will
be used to indicate the predicted response to selection, the values estimated
for S and R will be written in terms of pt, ps,t and pt+1.
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The response to selection is now considered for three situations:

1. The hypothetical case of absence of environmental deviations, as well as
absence of dominance and epistasis

2. Absence of environmental deviations, presence of dominance and/or
epistasis

3. Presence of environmental deviations, dominance and/or epistasis

Absence of environmental deviations, dominance and epistasis

In the absence of environmental deviations, dominance and epistasis, both
the genotypic value and the phenotypic value of a candidate can be described
by a linear combination of the parameters a1, . . . , aK defined in Section 8.3.2.
Selection of candidates with the highest possible phenotypic value implies
selection of candidates with genotype B1B1 . . . BKBK and with genotypic

value m +
K∑

i=1

ai. The offspring of these candidates will have the same phe-

notypic and genotypic value as their parents. This applies to self-fertilizing
crops as well as cross-fertilizing crops, when the selection occurs before pollen
distribution. Under the described conditions R will be equal to S.

Absence of environmental deviations, presence of dominance and/or epistasis

In the case of absence of environmental deviations but presence of dominance
and/or epistasis, selected candidates, with the same highest possible pheno-
typic value, may have a homozygous or a heterozygous genotype. Then the
offspring of the selected candidates are expected to comprise plants with geno-
type bb for one or more loci, giving rise to an inferior phenotypic value com-
pared to that of the selected candidates. In the case of complete dominance, for
instance, candidates with the highest possible phenotypic value for a trait con-
trolled by loci B1−b1 and B2−b2 will have genotype B1 ·B2·. Selection of such
candidates will yield offspring including plants with genotype b1b1b2b2, b1b1B2·
or B1 · b2b2, having an inferior genotypic and phenotypic value. Under these
conditions R will be less than S.

Presence of environmental deviations, dominance and/or epistasis

In actual situations environmental deviations, dominance and epistasis should
be expected to be present. Among the selected candidates their phenotypic
values will tend to be (much) higher than their genotypic values. Furthermore,
except in the case of identical reproduction, the genotypic composition of the
selected candidates will deviate from that of their offspring. Under these
conditions R will be (much) smaller than S.

Selected maternal plants coincide with the selected paternal plants in the
case of self-fertilizing crops, as well as in case of hermaphroditic cross-fertilizing
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crops if the selection is applied before pollen distribution. In other situations,
the set of selected maternal parents providing the eggs differs from the set
of selected paternal parents providing the pollen. Then one should determine
Sf for the candidates selected as maternal parents and Sm for the candidates
selected as paternal parents. Because both sexes contribute equal numbers of
gametes to generate the next generation we may write

S = 1
2 (Sf + Sm) (11.3)

Equation (11.3) does not only apply at selection in dioecious crops, but also
when selecting in hermaphroditic cross-fertilizing crops when the selection is
done after pollen distribution. In the latter case there is no selection with
regard to paternal parents. This implies Sm = 0 and consequently S = 1

2Sf .
Actual situations tend to be more complicated. Consider selection before

pollen distribution with regard to some trait X. In the case of an association
between the expression for trait X and the expression for trait Y, the selection
differential for X implies a correlated selection differential with regard to
Y, say CS. Thus

CSY := Ep
Ys,t

− Ep
Y,t

(11.4)

where

• Ep
Ys,t

designates the expected phenotypic value with regard to trait Y of
the candidates selected in generation t because their phenotypic value with
regard to trait X being greater than minimally phenotypic value (pXmin)
and

• Ep
t

designates the expected phenotypic value with regard to trait Y cal-
culated across all candidates belonging to generation t of the population
subjected to selection with regard to trait X.

When considering a linear relationship between the phenotypic values for traits
X and Y, the coefficient of regression of p

Y
on p

X
, i.e.

βpY ,pX
=

cov(p
Y

, p
X

)
var(p

X
)

may be used to write
CSY = βpY ,pX

SX

The indirect selection (see Section 12.3) for trait Y, via trait X, may be
followed, after pollen distribution, by direct selection for Y. The effective
selection differential for Y comprises then a correlated selection differential.
Example 11.1 presents an illustration.

Example 11.1 Van Hintum and Van Adrichem (1986) applied selection in
two populations of maize with the goal of improving biomass.

Population A consisted of 1184 plants. Mass selection for biomass (say
trait Y) was applied at the end of the growing season, i.e. after pollen
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distribution. The mean biomass (in g/plant), calculated across all plants,
was pY = 245 g. For the 60 selected plants it amounted to pYs = 446 g. Thus

Sf = 446 − 245 = 201 g

and
Sm = 0g

This implies
SY = 1

2 (201 + 0) = 100.5 g.

Population B consisted of 1163 plants. Immediately prior to pollen dis-
tribution the following was done. The volumes of the plants (say trait X)
were roughly calculated from their stalk diameter and their height. The 181
plants with the highest phenotypic values for X were identified. These plants
were selected as paternal parents. The 982 other plants were emasculated
by removing the tassels. At the end of the growing season among all 1163
plants, the 60 plants with the highest biomass were selected. For the 1163
plants of population B it was found that:

pY = 246 g,

and
pX = 599 cm3.

For the 181 plants selected as paternal parents (because of superiority for
X) it was established that:

pYs = 320 g,

pXs = 983 cm3,

and
CSYm

= 320 − 246 = 74 g.

For the 60 plants selected for Y the following was established:

pYs = 418 g

pXs = 931 cm3

and
SYf = 418 − 246 = 172 g

The selection differential in population B amounted thus to

SY = 1
2 (74 + 172) = 123 g

Due to the correlated selection differential because of selection among the
paternal parents with regard to trait X, this is clearly higher than the selec-
tion differential in population A.
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If the considered trait has a normal distribution, Ep
s,t

, i.e. the expected
phenotypic value of those candidates with a phenotypic value larger than the
value minimally required for selection, may be calculated prior to the actual
selection. This will now be elaborated.

A normal distribution of the phenotypic values for some trait is often desi-
gnated by

p = N(µ, σ2)

where

• µ = Ep, and
• σ2 = var(p).

Standardization, i.e. the transformation of p into z according to

p − µ

σ
= z

implies that z has a standard normal distribution characterized by

µz = 0 and
σz = 1.

Thus

z = N(0, 1).

Selection of candidates with a phenotypic value exceeding the phenotypic value
minimally required for selection (pmin) is called truncation selection. Selec-
tion of superior performing candidates up to a proportion v implies applying
a value for pmin such, that

v = P (p > pmin)

Standardization of pmin yields the standardized minimum phenotypic
value zmin:

zmin =
pmin − µ

σ
(11.5)

Thus
v = P

(
p > pmin

)
= P (z > zmin) =

∫ ∞

zmin

f(z).dz

where
f(z) =

1√
2π

e−
1
2 z2

is the density function of the standard normal random variate z.
In Fig. 11.1 the shaded area corresponds with v. Most statistical handbooks

(e.g. Kuehl, 2000, Table I) contain for the standard normal random variate z
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a table presenting zmin such P(z > zmin) is equal to some specified value v.
Then one can calculate pmin according to

pmin = µ + σzmin (11.6)

Example 11.2 gives an illustration of this.

Example 11.2 It was desired to select the 168 best yielding plants from
the 5016 winter rye plants occurring at the central plant positions of the pop-
ulation which is mentioned in Example 11.7. The proportion to be selected
amounted thus to:

v =
168
5016

= 0.0335

The standardized minimum phenotypic value zmin should thus obey:

0.0335 = P(z > zmin)

According to the appropriate statistical table, his implies

zmin = 1.83.

The mean and the standard deviation of the phenotypic values for grain
yield were calculated to be 50 dg and 28.9 dg, respectively. When assuming
a normal distribution for grain yield, substitution of these values in Equa-
tion (11.5) yielded:

pmin = 50 + (28.9 × 1.83) = 102.9 dg.

To measure the selection differential in a scale-independent yardstick, a
parameter, called selection intensity and designated by the symbol i, has
been defined:

i =
S

σ
(11.7)

There is a simple relationship between the proportion of selected candidates
(v) and i if the phenotypic values of the considered trait follow a normal
distribution, namely

i =
f(zmin)

v
(11.8)

where f(zmin) represents the value at z = zmin of the density function of the
standard normal random variate z. Equation (11.8) is derived in Note 11.1.

Note 11.1 Equation (11.6) implies that, in the case of a normal distribution
of the phenotypic values, the expected phenotypic value of candidates with
a phenotypic value larger than pmin amounts to

Ep
s,t

= E(p|p > pmin) = µ + σEzs,t

where
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• pmin may be obtained from Equation (11.5)
• Ezs,t = E(z|z > zmin), where zmin follows from Equation (11.5)

The quantity Ezs,t is now derived.
The density function of the conditional random variable (z|z > zmin) is

f(z|z > zmin) =
f(z)

P (z > zmin)
=

f(z)
v

Thus

Ezs = E(z|z > zmin) =
∫ ∞

z=zmin

zf(z|z > zmin)dz =
∫ ∞

zmin

z
f(z)

v
dz

=
1

v
√

2π
·
∫ ∞

zmin

ze−
1
2 z2

dz =
1

v
√

2π
·
∫ ∞

zmin

e−
1
2 z2

d

(
1
2
z2

)

=
−1

v
√

2π

[
e−

1
2 z2

]∞
z=zmin

=
−1

v
√

2π

[
0 − e−

1
2 z2

min

]
=

f(zmin)
v

This means that

Ep
s,t

= µ + σ

[
f(zmin)

v

]

Because µ = Ep, Equation (11.1) can be written as

S = σ

[
f(zmin)

v

]

Thus when applying truncation selection with regard to a trait with a normal
distribution and selecting the proportion v the selection intensity is:

i =
f(zmin)

v
= Ezs,t

One can easily calculate i for any value for v and next Ep
s,t

= µ + σi, see
Example 11.3. Falconer (1989, Appendix Table A) presents a table for the rela-
tion between i and v.

Example 11.3 In Example 11.2 it was derived that the standardized mini-
mum phenotypic value zmin is 1.83 when selecting the proportion v = 0.0335.
In the case of a normal distribution of the phenotypic values the selection
intensity amounts then to

f(1.83)
0.0335

=
1√
2π

e−
1
2 (1.83)2

0.0335
=

0.3989 × 0.1874
0.0335

= 2.232
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Thus
Ep

s
= 50 + 28.9 × 2.232 = 114.5 dg.

Among the 168 plants with the highest grain yield, the grain yield of the
plant with the lowest phenotypic value amounted to 102 dg. The actual mini-
mum phenotypic value was thus 102 dg. Their mean grain yield amounted
to 117.5 dg, implying

S = 117.5 − 50 = 67.5 dg

and
i =

67.5
28.9

= 2.34

Also the measurement of the response to selection (R) deserves closer
consideration. It requires determination of Ep in the two successive generations
t and t + 1. To exclude an effect of different growing conditions these two
generations should preferably be grown in the same growing season. This is
possible by

1. Testing simultaneously plant material representing generation t + 1 (say
population P′

t+1), obtained by harvesting candidates selected in genera-
tion t, and – from remnant seed – plant material representing generation t
(say population Pt)

2. Testing simultaneously plant material representing generation t + 1,
obtained by harvesting candidates selected in generation t (population
P′

t+1), and plant material, also representing generation t + 1, obtained by
harvesting in generation t random candidates (population Pt+1)

Simultaneous testing of populations P ′
t+1 and Pt

Measurement of R by simultaneous testing of populations P′
t+1 and Pt will

be biased if these populations differ due to other causes than the selection.
Such differences may be due to

• the fact that the remnant seed is older and has, consequently, lost viability;
• the remnant seed representing Pt was produced under conditions deviat-

ing from the conditions prevailing when producing the seed representing
P′

t+1 or
• a difference in the genotypic compositions of P′

t+1 and Pt which is not due
to the selection. This is to be expected when dealing with self-fertilizing
crops: P′

t+1 tends to contain a reduced frequency of heterozygous plants in
comparison to Pt.
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When testing populations P′
t+1 and Pt simultaneously, no allowance is made

for the possible quantitative genetic effect of the reduction of heterozygosity
occurring in self-fertilizing crops.

Simultaneous testing of populations P ′
t+1 and Pt+1

The causes for the bias mentioned above do not apply to simultaneous testing
of populations P′

t+1 and Pt. Furthermore, this method allows – for cross-
fertilizing crops – estimation of the coefficient of regression of the phenotypic
value of offspring on parental phenotypic value. Such an estimate may be
interpreted in terms of the narrow sense heritability (Section 11.2.2).

One should realize that R as defined by Equation (11.2) does not represent

a lasting response to selection if
K∑

i=1

di �= 0. For self-fertilizing crops popula-

tions after generation t + 1, obtained in the absence of selection, will – due
to the ongoing reduction of the frequency of heterozygous plants – tend to
have an expected genotypic value deviating from Ep

t+1
= Ep

t
+ R. The same

applies to selection after pollen distribution in cross-fertilizing crops: popula-
tion P′

t+1 results then from a bulk cross and will, consequently, contain an
excess of heterozygous plants compared to population Pt+2 obtained – in the
absence of selection – from population P′

t+1. In the case of selection before
pollen distribution, population P′

t+1 is in Hardy–Weinberg equilibrium and
P′

t+1 and Pt+2 will then, in the absence of epistasis, have the same expected
genotypic value.

A procedure to predict R is, of course, of great interest to breeders, because
such prediction may be used as a basis for a decision with regard to further
breeding efforts dedicated to the plant material in question.

As the prediction is based on linear regression theory, a few important
aspects of that theory are reminded. In the case of linear regression of y on x
the y-value for some x-value is predicted by

ŷ = α + βx,

where

β =
cov(x, y)
var(x)

=
E(x · y) − (Ex) · (Ey)

Ex2 − (Ex)2
(11.9)

and, because of
Ey = α + β · Ex

the intercept α is equal to
α = Ey − β.Ex (11.10)

Thus
ŷ = (Ey − β · Ex) + βx = Ey + β(x − Ex) (11.11)

implying
ŷ − Ey = β(x − Ex) (11.12)
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This means in the present context

Ep
t+1

− Ep
t
= β(Ep

s,t
− Ep

t
)

or
R = βS (11.13)

It is common practice to substitute parameter β in Equation (11.13) either by
the wide or by the narrow sense heritability:

1. In the case of identical reproduction, this applies when dealing with clones,
pure lines and single-cross hybrids, β is substituted by the ratio σg

2

σp
2 , i.e.

the heritability in the wide sense, commonly designated by hw
2. Thus

R = hw
2S (11.14)

In this situation the genotypes of the selected entries are preserved. Note
11.2 presents the derivation of Equation (11.14).

2. In the case of non-identical reproduction of the selected candidate plants
of a cross-fertilizing crop β is substituted by σa

2

σp
2 , i.e. the heritability in

narrow sense, commonly designated by hn
2. Thus

R = hn
2S (11.15)

The possible bias introduced with this substitution is taken for granted.

In Note 11.2 a few interesting results of quantitative genetic theory are derived,
namely that amongst the candidates

• the coefficient of correlation of G and p, i.e. ρg,p, is equal to the square root
of the heritability in the wide sense:

ρg,p = hw (11.16)

• the coefficient of regression of G on p, i.e. β, is equal to the heritability in
the wide sense:

β = hw
2 (11.17)

Note 11.2 The degree of linear association of the genotypic value (G) and
the phenotypic value (p) is of course of interest with regard to the success
of selection. Indeed, selection intends to improve the expected genotypic
value by selecting plants with superior phenotypic values. The coefficient
of correlation measures the degree of linear association. In the absence of
covariance of genotypic value and environmental deviation, thus at

cov(G, e) = 0,



236 11 Applications of Quantitative Genetic Theory in Plant Breeding

the coefficient of correlation of G and p, i.e. ρg,p, amounts to

ρg,p =
cov(G, p)

σgσp
=

cov(G,G + e)
σgσp

=
σg

2

σgσp
=

σg

σp
= hw

The coefficient of regression of G on p, i.e. β, amounts to

β =
cov(G, p)

σp
2

=
cov(G,G + e)

σp
2

=
σg

2

σp
2

= hw
2

At identical reproduction, the regression of p
O

, i.e. the phenotypic value of
the offspring, on p

P
, i.e. the phenotypic value of the parent, amounts to

cov(p
O

, p
P

)
var(p

P
)

=
cov(GO,GP )

var(p
P

)
=

σg
2

σp
2

= hw
2

Equation (11.12) can be rewritten as

ŷ − Ey =
cov(x, y)

σx
2

· (x − Ex)

Thus, if one substitutes in
cov(x, y)

σx
2

x by p
P
, y by p

O
, x − Ex by S, and ŷ − Ey by R, one gets

R = hw
2S (11.18)

In addition to this it is interesting to know that within candidates

• the coefficient of correlation of the additive genotypic value (γ, see Sec-
tion 8.3.3) and p, i.e. ργ,p, is equal to the square root of the heritability in
the narrow sense:

ργ,p = hn (11.19)
(see Note 11.3)

Note 11.3 The coefficient of correlation of the additive genotypic value (γ)
and p, i.e. ργ,p, is considered. Application of Equation (8.9), i.e.

G = γ + δ

implies

ργ,p =
cov(γ, p)

σaσp
=

cov(γ, γ + δ + e)
σaσp

=
σa

2

σaσp
=

σa

σp
= hn
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Because S = iσ (see Equation (11.7), Equation (11.13) can also be written as

R = β.iσ

Equation (11.14) can thus be written as

R = hw
2iσp = ihw

(
σg

σp

)
σp = ihwσg (11.20)

When selecting, after pollen distribution, in a cross-fertilizing crop one can
similarly write

R = 1
2 ihn

2σp = 1
2 ihn

(
σa

σp

)
σp = 1

2 ihnσa (11.21)

Higher selection intensities occur at lower proportions of selected plants. One
should thus be careful when using the terms ‘selection intensity’ and ‘propor-
tion selected candidates.’

In the situation of non-identical reproduction of plants belonging to an early
segregating population of a self-fertilizing crop substitution of β by the heri-

tability cannot be justified. If, in this case,
K∑

i=1

di �= 0, then Ep
t+1

will deviate

from Ep
t
, even in the absence of selection. This is due to the autonomous

process of progressing inbreeding. According to Equation (11.13), however,
absence of selection, i.e. S = 0, would imply R = 0, i.e. Ep

t+1
= Ep

t
. Pre-

diction of R at S �= 0 on the basis of the heritability is not possible in this
situation.

If β is estimated to be b, then the response to selection with selection dif-
ferential S is predicted to be

R̂ = bS (11.22)

In practice, estimation of β involves estimation of either hw
2 or hn

2. This is
possible

1. On the basis of estimates of the components of variance involved in the
heritability. (examples are given in Section 11.2.1)

2. By means of estimation of the coefficient of regression of the phenotypic
value of offspring on the phenotypic value of their parent(s) (Section 11.2.2)

It is emphasized that a high heritability does not necessarily imply a large
genetic variance, nor that a large genetic variance necessarily implies a high
heritability. At h2 = 1 the ratio R/S amounts to 1, whereas at h2 = 0 it is 0.
The quantity h2, a scale independent parameter, indicates thus the efficiency
of the selection. The difference between S and R amounts to

S − R = S − h2S = (1 − h2)S (11.23)

The part (1 − h2) of the selection differential does thus not give rise to a
selection response. As hw

2 ≥ hn
2 (this follows from the previous definitions of
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hw
2 and hn

2), the non-responding part of S will be smaller at identical repro-
duction of the selected candidates than at cross-fertilization of the selected
candidates.

As
Ep

s
= E(p|p > pmin)

one may write

Ep
s

= E(G|p > pmin) + E(e|p > pmin) = EGs + Ees

Thus

S = Ep
s
− Ep = EGs + Ees − Ep = (EGs − EG) + (Ees − Ee)

The quantity
EGs − EG

represents the genetic superiority of the selected candidates. At identical repro-
duction it is equal to R, the response to selection, i.e. to hw

2S. The remainder,
Ees−Ee = Ees (as Ee = 0), is due to fortuitous favourable growing conditions
of the selected candidates.
Then

Ees = S − R = (1 − hw
2)S = ew

2S

when defining

ew
2 =

var(e)
var(p)

= 1 − hw
2 (11.24)

This implies that selected candidates tend to have a positive environmental
deviation. Their phenotypic superiority S is partly due to superior growing
conditions, i.e. ew

2S, and partly due to genetic superiority, i.e. hw
2S.

The heritability value depends on the way the evaluation of the candidates
is carried out. When each candidate genotype is represented by just a single
plant the heritability of the candidates will be (considerably) smaller than
when each candidate genotype is represented by a (large) number of plants
(either or not evaluated on replicated plots). According to Equations (11.14)
and (11.15), the response to directional selection depends on the heritability
as well as on the selection differential. With regard to the former parameter,
as applying to the situation where each candidate is represented by a single
plant, the following rule of thumb guideline for selection in a cross-fertilizing
crop may be given:

• At a single-plant value for hn
2 amounting at least 0.40, mass selection will

be successful
• At a single-plant value for hn

2 in the interval 0.15 < hn
2 < 0.40, family

selection may offer good prospects (depending on the extensiveness of the
evaluation of the candidates)
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• At a single-plant value for hn
2 amounting less than 0.15, successful selection

requires such great evaluation efforts that it is advised

(a) to introduce new genetic variation
(b) to stop dedicating efforts to the considered plant material
(c) to assess the trait in a new way

It is admitted that these decision rules are only based on the heritability.
The decision actually made by a breeder may also be based on additional
considerations.

Phenotypic values and, consequently, genotypic values depend highly on the
macro-environmental growing conditions. Thus not only the phenotypic and
genotypic variance depend on the macro-environmental conditions (Exam-
ple 8.8), but also the heritability (Example 11.4).

Example 11.4 When growing tomatoes outdoors, a quick and uniform
emergence after sowing is desired. This may be pursued by selection. El Sayed
and John (1973) studied, therefore, the heritability of speed of emergence
under different temperature regimes. The following estimates were obtained:

Temperature regime ĥ2

Simulation of 10 years’ average daily ambient maximum and minimum temperature 0.35

55◦ F constant temperature 0.55

daily 16h 80◦ F and 8h 63◦ F 0.64

50◦ F constant temperature 0.68

It is concluded that the temperature regime affects the heritability.

This leads to the following general question: At what macro-environmental
conditions, i.e. the conditions prevailing during a certain growing season
(year) at a certain site, is the efficiency of selection maximal? This topic is
of course very important in the context of this book. It is also considered
in Sections 12.3.3 and 15.2.1. Here three suggested answers are only briefly
considered:

1. Macro-environmental conditions maximizing σg
2 or h2

2. Macro-environmental conditions identical to those of the target environ-
ment, i.e. the conditions applied by a major group of growers

3. Macro-environmental conditions characterized by absence of interplant
competition, i.e. use of a very low plant density

Macro-environmental conditions maximizing σg
2 or h2

It can be said that a breeder should look for macro-environmental conditions
such, that the heritability is high. This requires the macro-environment to be
uniform, i.e. σe

2 is small, and the genetic contrasts to be large, i.e. σg
2 is large.
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However, for different traits different sets of macro-environmental conditions
may then be required (see Example 11.6). For example: selection for a high
yield per plant may require a low plant density, but selection for a high yield
per m2 may require a high plant density.

For traits with a negligible genotype × environment interaction the selection
may be done on the basis of testing in a single environment. Thus in order to
select in oats for resistance against the crown rust disease, a number of oat
genotypes may be inoculated in the laboratory with crown rust fungal spores.
This maximizes the heritability of the degree of susceptibility (differences in
the susceptibility do not show up in the absence of the disease). Then (on
the assumption that laboratory tests are reflected in field performance) all
resistant oat genotypes are expected to be resistant under commercial growing
conditions. For traits with important g×e interaction, however, selection in the
single macro-environment yielding maximum heritability may imply selection
of genotypes that do not perform in a superior way in the target environment.

In Example 11.5 it is reported that differences among entries were larger
under favourable growing conditions than under unfavourable conditions.

Example 11.5 In 1980 and 1981 Castleberry, Crum and Krull (1984) com-
pared maize varieties bred in six different decades, viz.:

• ten open pollinating varieties bred 1930–40,
• three DC-hybrid varieties bred 1940–50,
• one DC- and two SC-hybrids bred 1950–60,
• three DC-, one TC- and one SC-hybrid bred 1960–70,
• two TC- and two SC-hybrids bred 1970–80 and
• two SC-hybrids bred 1980–90.

The comparison occurred at

• different locations
• high as well as at low soil fertility
• in the presence and in the absence of irrigation

For each decade-group the mean grain yield (in kg/ha) across the involved
varieties was determined and plotted against the pertaining year (decade).
The coefficient of regression was estimated to be b = 82 kg/ha. This figure
represents the increase of the grain yield per year. Modern varieties yielded
better than old varieties, both under intensive and extensive growing condi-
tions (also reported in Example 13.10).

In the present context it is of special interest that the differences among
the six groups of varieties were larger under favourable growing conditions,
where the yield ranged from 6 to 12 t/ha, than under unfavourable condi-
tions, where the yield ranged from 4.5 to 8.5 t/ha. The authors advised con-
sequently to evaluate yield potentials under favourable growing conditions
and to test for stress-tolerance in separate tests.
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Macro-environmental conditions identical to those of the target environment

The suggestion to select under macro-environmental conditions identical to
those of the target environment is generally accepted as a good guideline. How-
ever, with regard to plant density this suggestion implies a problem: due to
the intergenotypic competition occurring when selecting under the high plant
density applied at commercial cultivation, candidates may be selected that
perform disappointingly when grown per se, i.e. in the absence of intergeno-
typic competition. Intergenotypic competition is a phenomenon which does
not show up in the target environment provided by farmers growing geneti-
cally uniform varieties. With regard to competition it is, in fact, impossible to
apply selection under conditions identical to those of the target environment.
This topic is further considered in Section 12.3.3.

Fasoulas and Tsaftaris (1975) suggested that breeders should provide
favourable growing conditions when selecting. The latter seems to be sup-
ported by the results of the experiment mentioned in Example 11.5, but
the example also supports the idea that selection should be done under
macro-environmental conditions similar to those of the target environment.
Example 12.11 illustrates that selection aiming to increase grain yield under
less-favourable conditions was the most effective when applied under the poor
conditions of the target environment.

Macro-environmental conditions characterized by absence of interplant
competition

The idea of avoiding interplant competition by applying a very low plant den-
sity is supported by the problem indicated in the former paragraph. Gotoh
and Osanai (1959) and Fasoulas and Tsaftaris (1975) advocated application
of selection at such a low plant density that interplant competition does
not occur.

An objection against selecting at a very low plant density is its inefficiency
if genotype × plant density interaction occurs. Thus some (e.g. Spitters, 1979,
p. 117) have defended the opinion that selection should be applied at the plant
density of commercial cultivation. This, however, would generate the problem
of intergenotypic competition, a problem not occurring at a very low plant
density (see the previous paragraph). Example 11.6 reports some experimental
results.

Example 11.6 Vela-Cardenas and Frey (1972) established that a high
plant density was optimal when selecting for reduced plant height of oats
and that a low density was optimal when selecting for a high number of
spikelets per panicle. When selecting for a larger kernel size all studied
macro-environmental conditions were equally suited. Thus a general guide-
line cannot be derived from this study. The same applies to an empirical
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study by Pasini and Bos (1990a,b) dedicated to the plant density to be
preferred when selecting for a high grain yield in spring rye. They could
not unambiguously substantiate a preference for either a high or a very low
plant density. However, weak indications in favour of a low plant density
were obtained.

The predicted response to selection as calculated from Equation (11.14) or
(11.15) should only be considered as a rough indication. Example 11.7 shows
that the discrepancy between the predicted response and the actual response
may be considerable.

Example 11.7 In a population of winter rye consisting of 5263 plants,
the 168 plants with the highest grain yield were selected (see Bos, 1981,
Chapter 3). Because:

p = 50decigrams(dg)

and
ps = 117.5 dg,

the selection differential, Equation (11.3), amounted to

S = 1
2 (67.5 + 0.0) = 33.75 dg.

The narrow sense heritability was estimated to be 0.048 (see Exam-
ple 11.10). The predicted response to the selection amounted thus to:

R̂ = 0.048 × 33.75 = 1.6 dg, i.e. 3.2%.

The average grain yield of the offspring of 84 random plants was 56.95 dg,
whereas the average yield of the offspring of the 168 selected plants was
59.8 dg. The actual response to the selection was thus 2.85 dg, i.e. 5.0%.

Four reasons for such a discrepancy are mentioned here:

1. If linkage and/or epistasis occur, estimators for the heritability based on
the assumption of their absence are biased.

2. The estimators of the heritability have some inaccuracy.
3. The macro-environmental conditions experienced by population Pt, the

population subjected to selection, may differ from those experienced by
population P′

t+1, the population obtained from the selected candidates.
This relates both to imposed conditions, such as plant density, and uncon-
trollable conditions, such as climatic conditions. The actual response,
appearing from a comparison of populations P′

t+1 and Pt, is then to
be regarded as a correlated response due to indirect selection Pt

(Section 12.3). In this situation the result of deliberate selection is some-
times hardly better than the result of ‘selection at random’.
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4. Because the phenotypic values for different quantitatively varying traits
tend to be correlated (Section 8.1), selection with regard to a certain trait
implies indirect selection with regard to other, related traits. The correlated
response to such indirect selection may turn out to be negative with regard
to pursuing a certain ideotype.

The indirect selection for biomass of maize, via selection for plant volumes
(see Example 11.1), for instance, gave rise to a population susceptible to
lodging. In the long-lasting selection programme of maize described in
Example 8.4, selection for oil content implied indirect selection with regard
to many other traits. A correlated response to selection was observed for:
grain yield, earliness, plant height, tillering, etc.

Notwithstanding the often observed discrepancy between the predicted and
the actual response to selection, the relation R = βS is for plant breeders one
of the most useful results of quantitative genetic theory. Based on this rela-
tionship the concept of realized heritability, designated as hr

2, has been
defined. It is calculated after having established the actual response to selec-
tion at some selection differential. When selecting among identical reproducing
candidates, or when selecting before pollen distribution in a population of a
cross-fertilizing crop the definition is

hr
2 =

R

S

When selecting after pollen distribution in a population of a cross-fertilizing
crop this definition turns out to be equivalent to

hr
2 =

2R

Sf

Because R has already been established, the quantity hr
2 can not be used

to predict R. It indicates afterwards the efficiency of the applied selection
procedure.

11.2 The Estimation of Quantitative Genetic Parameters

The main activity of a plant breeder does not consist of making quantitative
genetic studies of a number of traits, but the development of new varieties.
This means that breeders are unwilling to dedicate great efforts to the esti-
mation of quantitative genetic parameters. Thus only estimation procedures
demanding hardly any additional effort, fitting in a regular breeding pro-
gramme, are presented in this section.

First attention is given to some problems involved in obtaining appropriate
estimates of var(e), the environmental variance. Because of these problems,
in the present section procedures for estimating var(G) or h2 not requiring
estimation of var(e) are emphasized.
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Breeders may measure the phenotypic variation for a trait of some geneti-
cally heterogeneous population. They may do so by estimating var(p). How-
ever, their main interest lies in exploiting the genetic variation. As

var(G) = var(p) − var(e) (11.25)

an appropriate way to estimate var(G) consists of subtracting vâr(e) from
vâr(p).

The estimate for var(e) should be derived from similar but genetically homo-
geneous plant material, grown in the same macro-environmental conditions as
the population of interest. A complication arises if the genotypes differ in
their capacity to buffer variation in the growing conditions. Then the candi-
dates representing one genotype are more (or less) affected by the prevailing
variation in the quality of the micro-environmental growing conditions than
the candidates plants representing another genotype. This was already dealt
with in Example 8.9 and its preceding text.

To account for this, the environmental variance assigned to the F2 popula-
tion of a self-fertilizing crop is sometimes estimated to be:

1
4vâr(p

P1
) + 1

2vâr(p
F1

) + 1
4vâr(p

P2
) (11.26)

Plants of the F2 generation are more heterozygous than those of P1 or P2, but
less than those of the F1. Heterogeneity among plants of the F1 may be partly
due to the manipulations applied to produce the F1 seed, i.e. emasculation
and pollination of the parent (instead of spontaneous selfing). Manipulation
certainly contributes to heterogeneity in the case of cloning. Thus the usual
way of cloning (e.g. of grass or rye plants) gives clones such that the within-
clone phenotypic variance overestimates the environmental variance appro-
priate to the segregating plant material not subjected to the manipulation
required for the cloning. Example 11.8 illustrates the present concern of using
a non-representative estimate of var(e).

Example 11.8 A straightforward estimate of var(e) for the maize material
described in Example 8.9 is

vâr(e) = 1
6 (185 + 256 + 90.3 + 285.6 + 424.4 + 240.3) = 246.9 (cm)2

This yields for the DC-hybrid WXYZ:

vâr(G) = 475.3 − 246.9 = 228.4 (cm)2

and
ĥw

2 = 228.4
475.3 = 0.48
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This approach is risky because of the positive relationship between p and
vâr(p). Thus a higher estimate for the environmental variance of the DC-
hybrid than 246.9 cm2 is likely to be more appropriate. That would imply a
lower value for hw

2.

11.2.1 Plant Material with Identical Reproduction

Clones, pure lines and single-cross hybrids can be reproduced with the same
genotype. For such plant material, estimation of the heritability in the wide
sense may proceed as elaborated in this section.

A random sample consisting of I genotypes is taken from a population of
entries with identical reproduction; I > 1. Each sampled genotype is evaluated
by growing it in J plots, each containing K plants; J > 1,K ≥ 1. These plots
may be assigned to

1. A completely randomized experiment
2. Randomized (complete) blocks.

Table 11.1 presents the analysis of variance for either design.
The test of the null hypothesis H0: “σg

2 = 0” requires calculation of the
F value, MSg/MSr. This value is compared with critical values tabulated for
different levels of significance.

Unbiased estimates of σ2 and σg
2 are

σ̂2 = MSr (11.27)

σ̂2
g =

MSg − MSr

J
(11.28)

Table 11.1 The structure of the analysis of variance of data

obtained from I genotypes evaluated at J plots

(a) Completely randomized experiment

Source of variation df SS MS E(MS)

Genotypes I − 1 SSg MSg σ2 + Jσg
2

Residual I(J − 1) SSr MSr σ2

(b) Randomized complete block design

Source of variation df SS MS E(MS)

Blocks J − 1 SSb MSb σ2 + Iσb
2

Genotypes I − 1 SSg MSg σ2 + Jσg
2

Residual (J − 1)(I − 1) SSr MSr σ2
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For each entry the mean phenotypic value calculated across the J plots con-
stitutes the basis for the decision to select it or not. Thus the appropriate
environmental variance when testing each genotype at each of J plots is

σ2
e =

σ2

J

The wide sense heritability is thus

hw
2 =

σg
2

σg
2 + σe

2
=

σg
2

σg
2 + σ2

J

(11.29)

It should be noted that substitution of the unbiased estimates for σe
2 and

for σg
2 in Equation (11.29) does not yield an unbiased estimate for hw

2.
Example 11.8 illustrates the estimation of a few statistical parameters with an
interesting quantitative genetic interpretation.

Example 11.8 A random sample of I = 3 genotypes were evaluated in
each of J = 4 blocks. The observations were

Block
1 2 3 4 Total

Genotype 1 6 8 7 6 27
2 6 6 5 5 22
3 7 9 8 7 31
Total 19 23 20 18 80

An analysis of variance of these data as if resulting from a completely ran-
domized experiment (Table 11.1(a)), yields

Source of variation df SS MS E(MS)
Genotypes 2 10.17 5.09 σ2 + 4σg

2

Residual 9 6.50 0.722 σ2

The F value, i.e. 5.09/0.722 = 7.05, indicates that the null hypothesis H0:
σg

2 = 0 is rejected (P < 0.025). The estimates of the variance components
are

σ̂2 = 0.722,

and
σ̂g

2 = 1.09.

According to these estimates the (biased!) estimate of hw
2 amounts to 0.86.

Analysis of variance of these data according to a randomized complete
block design yields

Source of variation df SS MS E(MS)
Blocks 3 4.67 1.56 σ2 + 3σb

2

Genotypes 2 10.17 5.09 σ2 + 4σg
2

Residual 6 1.83 0.305 σ2
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The F value, i.e. 16.7, indicates that the null hypothesis H0: σg
2 = 0 is

rejected (P < 0.005). The F value for the blocks, i.e. 5.1, indicates that the
null hypothesis H0: σb

2 = 0 is rejected (P < 0.05). The estimates of the
variance components are

σ̂2 = 0.305,

and
σ̂2

g = 1.196.

According to these estimates the biased estimate of hw
2 amounts to 0.94.

Partitioning of the trial field in blocks yielded a somewhat higher heritability,
implying a somewhat higher efficiency of selection.

According to the F value for genotypes and its significance level, the
power of the randomized block design was higher than that of the completely
randomized experiment.

The intention of replicated testing of entries in several plots is a reduction
of the environmental variance. This induces the heritability to be higher at
higher values for J . The ratio

hJ
2

h1
2 ,

i.e. the heritability when testing each entry in several plots to the heritability
when testing each entry at a single plot, is now considered.

In doing so, in the remainder of this section symbols with the subscript
1 refer to non-replicated testing (J = 1), and symbols with the subscript J
to replicated testing (J ≥ 2). The heritability appropriate when testing each
entry at each of J plots is thus designated by

hJ
2 =

σg
2

σJ
2

(11.30)

where σJ
2 represents the phenotypic variance of the means of the entries across

J plots, i.e.

σJ
2 = σg

2 +
(

σ2

J

)
(11.31)

Then
h1

2 =
σg

2

σg
2 + σ2

=
σg

2

σ1
2

(11.32)

which implies
σg

2 = h1
2σ1

2,

and
σ2 = σ1

2 − σg
2 = σ1

2 − h1
2σ1

2.

Thus

σJ
2 = h1

2σ1
2 +

(
σ1

2 − h1
2σ1

2

J

)
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Table 11.2 The ratio of the heritability

when testing each entry at J plots to the heri-

tability when testing each entry at a single

plot (h1
2), for several values for h1

2 and J

h1
2

J 0.1 0.2 0.3 0.4 0.5

2 1.82 1.67 1.54 1.43 1.33

3 2.50 2.14 1.88 1.67 1.50

4 3.08 2.50 2.11 1.82 1.60

or
σJ

2

σ1
2

= h1
2 +

(
1 − h1

2

J

)
=

1 + h1
2(J − 1)
J

(11.33)

From Equations (11.30) and (11.32) it follows that

hJ
2

h1
2 =

σ1
2

σJ
2

=
J

1 + h1
2(J − 1)

(11.34)

Table 11.2 presents the ratio hJ
2

h1
2 for several values for h1

2 and J .
Especially for a (very) low value for h1

2 application of additional replications
may be rewarding because of the large (relative) increase of the heritability.
The largest relative improvement occurs when applying J = 2 instead of
J = 1. Thus potato breeders should consider a system where each first-year-
clone is represented by 2 seed potatoes instead of only 1, which is customary;
see Pfeffer et al. (1982).

As a general conclusion it is stated that replicated testing promotes the
efficiency of selection. If the replicated testing involves different macro-
environments it gives an indication of the stability as well.

In Section 16.1 attention is given to the optimum number of replications,
say Jopt. It is the number of replications giving rise to the maximum response
to selection at a fixed number of plots. The ratio hJ

2/h1
2 is shown to play a

crucial role in the derivation of Jopt.
In connection with the foregoing, we consider the ratio

σb
2

σb
2 + σw

2
(11.35)

where

σb
2 represents the between-entry component of variance and

σw
2 the within-entry component of variance.

The ratio may be considered if from each entry J > 1 observations are
available. This occurs in perennial crops, such as apple and oil palm, when
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observing in successive years the yield per year of individual plants. The quan-
titative genetic interpretations of these components of variance are

σw
2: environmental variance in course of time and

σb
2: genetic variance + variance due to variation in permanent

environmental conditions (because of the permanent posi-
tion in the field).

In statistics the ratio is called intraclass correlation coefficient or
repeatability (Snedecor and Cochran, 1980, p. 243). The numerator of
the ratio tends to be larger than σg

2, which causes the ratio to be larger
than hw

2.
In certain situations estimation of h2 is not as easy as estimation of the

repeatability. Then one may simply estimate the repeatability as this quantity
indicates the upper limit of hw

2.
Observations repeated in the course of time do not only allow estimation of

the repeatability or the heritability, they also indicate the stability, for instance
the presence or absence of certain genotype × year interaction effects.

11.2.2 Cross-fertilizing Crops

In the introduction to Section 11.2 it was indicated that procedures for esti-
mating var(G) or h2 not requiring separate estimation of var(e) will be consi-
dered. In Section 10.2 it was concluded that estimation of the additive genetic
variance (σa

2) on the basis of regression, i.e. according to Equation (10.12),
is to be preferred over estimation on the basis of an analysis of variance, i.e.
according to Equation (10.11). However, for the sake of completeness first the
estimation of σa

2 and h2 on the basis of an analysis of variance is briefly
considered.

Estimation on the basis of an analysis of variance

Estimation of σa
2 on the basis of an analysis of variance, i.e. according to

Equation (10.8), is now considered. The number of HS-families in the random
sample taken from the whole set of HS-families is designated by the symbol I.
These I families are evaluated by means of a randomized complete block design
involving J blocks, each consisting of I plots of K plants; I > 1, J > 1,K ≥ 1.
Table 11.3 presents the structure of the analysis of variance.

Variance component σ2
f , i.e. var(GHS), is estimated as

vâr(GHS) =
MSf − MSr

J
(11.36)



250 11 Applications of Quantitative Genetic Theory in Plant Breeding

Table 11.3 The analysis of variance of data obtained from I HS-

families each evaluated at J plots, distributed across J blocks

Source of variation df SS MS E(MS)

Blocks J − 1 SSb MSb σ2 + Iσb
2

HS-families I − 1 SSf MSf σ2 + Jσf
2

Residual (J − 1)(I − 1) SSr MSr σ2

and next σa
2, according to Equation (10.11), as

σ̂2
a = 4vâr(GHS) (11.37)

When selecting among the families on the basis of their mean phenotypic value
calculated across the J plots, the heritability may be estimated according to
Equation (11.29). Example 11.9 gives an illustration.

Example 11.9 I = 3 HS-families were evaluated in each of J = 2 blocks.
The observations were

Block
1 2 Total

Family 1 15.8 16.4 32.2
2 18.2 17.4 35.6
3 17.4 16.6 34.0
Total 51.4 50.4 101.8

Analysis of variance of these data according to a randomized complete block
design yields

Source of variation df SS MS E(MS)
Blocks 1 0.167 0.167 σ2 + 3σb

2

Families 2 2.893 1.447 σ2 + 2σf
2

Residual 2 0.654 0.327 σ2

According to the estimates σ̂2 = 0.327 and σ̂2
f = 0.560, the biased estimate

of h2 – as applying to way in which the HS-families were evaluated – amounts
to 0.77. The additive genetic variance is estimated to be 4 × 0.560 = 2.24.

Estimation on the basis of regression analysis

In the present section, emphasis is on estimation of σa
2 and hn

2 on the basis
of regression of the phenotypic value of offspring on the phenotypic value of
parents.

The statistical meaning of the regression coefficient β is that it indicates how
the performance of offspring are expected to change with a one-unit change in
the performance of parents. In this respect the response to selection is directly
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at issue. Note 11.4 gives attention to the problem of the shape of the function
to be fitted when considering the relationship between offspring and parents.

Note 11.4 The graph relating the genotypic value of the offspring and the
phenotypic value of the parents may be expected to be a sigmoid curve
instead of a straight line. This is explained as follows.

Indeed, across the whole population Ee = 0 due to Ep = EG. However,
in Section 11.1, it was shown that

Ees = E(e|p > pmin) = ew
2S > 0.

When selecting candidates with a low phenotypic value one may, likewise,
derive

Ees = E(e|p < pmax) = ew
2S < 0.

Thus the regression coefficient estimated on the basis of a random sample of
parental candidates and their offspring may overestimate the performance
of the offspring of selected candidates having a phenotypic values located in
the tail of the distribution.

1. Regression of HS-family performance on maternal plant performance.
In the case of open pollination, the paternal plants cannot be identified. Then
only the coefficient of regression of HS-family performance on maternal plant
performance can be estimated. According to Equation (10.10) σa

2 and hn
2

may then be estimated on the basis of the following expressions:

σa
2 = 2cov(p

M
, p

HS
) (11.38)

hn
2 =

σa
2

σp
2

=
2cov(p

M
, p

HS
)

var(p
M

)
= 2βHS,M (11.39)

Example 11.10 gives an illustration.

Example 11.10 In the growing season 1975–76 a population of winter
rye plants comprising 5263 plants was grown (Bos, 1981). The mean pheno-
typic value for grain yield was p = 50dg. After harvest a random sample of
84 plants was taken under the condition that each random plant produced
enough seeds to grow the required number of offspring. The average grain
yield of these 84 plants amounted to 56.95 dg.

In 1976–77 the offspring of each random plant was grown as a single-
row plot of 20 plants, in each of two blocks. The coefficient of regression of
offspring on maternal parent was estimated to be b = 0.024. The heritability
in the narrow sense of grain yield of individual plants was thus estimated to
be 0.048. The estimated coefficient of correlation amounted only to r = 0.04.
It did not differ significantly from 0.

N.B. Absence of selection was one the conditions, considered in
Section 10.2.1, to justify interpretation of estimates of statistical parameters
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in terms of quantitative genetical parameters. The reason for this is that
the relationship between offspring and selected parents may differ from that
between offspring and parents in the absence of selection. It may thus, even
when the relationship would have been significant, be questioned whether
the obtained estimate for hn

2 yields an unbiased prediction of the response
to selection.

2. Regression of FS-family performance on parental performance.
In the case of pairwise crosses one may estimate the coefficient of regression of
FS-family performance on the mean performance across both parents. Accord-
ing to Equation (10.16) σa

2 and hn
2 can then be estimated on the basis of the

following expressions:

σa
2 = 2cov(p

P
, p

FS
) (11.40)

hn
2 =

σa
2

σp
2

=
2cov(p

P
, p

FS
)

2var(p
P

)
= βFS,P (11.41)

A discussion in Section 10.2.1 suggests that estimates of σa
2 according to

Equation (11.37) will tend to be higher than estimates according to Equation
(11.38) or (11.40). Example 11.11 presents results of a comparison of the two
ways of estimating σa

2.

Example 11.11 Bos (1981, p. 138) estimated σa
2 both on the basis of

regression, i.e. Equation (11.38), and on the basis of an analysis of variance,
i.e. Equation (11.37). The estimates were calculated from data from ran-
dom samples of plants taken from a population of winter rye subjected to
continued selection aiming at higher grain yield and reduced plant height.
The estimates concerned grain yield (in dg) and plant height (in cm). The
following estimates were obtained:

Growing season of
the parental plants Grain yield Plant height

Regression Anova Regression Anova
1974–75 215.5 268.0 63.3 87.6
1975–76 24.9 193.2 41.7 71.6
1976–77 476.6 0.0 99.6 131.9
1977–78 95.7 54.2 64.0 56.6

For five of the eight pairs of estimates the ‘anova-estimate’ appeared to be
higher than the corresponding ‘regression-estimate’.

With open pollination each plant will predominantly be pollinated by a few of
its neighbours. If each plant was pollinated by only one neighbour, var(GHS)
would in fact be equal to var(GFS). Equations (10.8), i.e. var(GHS) = 1

4σa
2,

and (10.14), i.e. var(GFS) = 1
2σa

2 + 1
4σd

2, show that pollination by a few
neighbours tends to cause an upward bias when estimating σa

2 by 4vâr(GHS).
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Polycrosses aim to produce real panmixis. This is promoted by planting the
plants representing the involved clones at positions according to the patterns
proposed by Oleson and Oleson (1973) and Oleson (1976). In these patterns
each clone has each other clone equally often as a neighbour; if desired, even
equally often as a neighbour in each of the four directions of the wind. Morgan
(1988) presents schemes for N clones, each represented by N2 plants. These
schemes consist of N squares of N × N plants. Each clone has each other
clone N times as a direct neighbour in each of the four directions of the
wind, and N − 2 times as a direct neighbour in each of the four intermediate
directions. Each clone is N − 1 times its own direct neighbour in each of the
four intermediate directions.

Comstock and Robinson (1948, 1952) proposed mating designs yielding
progenies in such a way that the estimates for σa

2 or σd
2 are unbiased. These

mating designs are known as North Carolina mating design I, II and III. They
require effort, especially the making of additional crosses, not coinciding with
normal breeding procedures. For this reason these designs are not considered
further here.

The degree of linear association of two random variables, x and y, is mea-
sured by the coefficient of correlation, say ρx,y. The linear relation itself is
described by the function

ŷ = α + βx, (11.42)

where

β is the coefficient of regression of y on x and

ŷ is the value predicted for y if x assumes the value x.

In the preceding text the regression of offspring performance (y) on parental
plant performance (x) was considered. The parental plants and their offspring
are usually evaluated in different growing seasons, i.e. under different macro-
environmental conditions. Thus Ex may differ from Ey and var(x) may differ
from var(y). For this reason one may consider standardization of the obser-
vations obtained from parents and offspring prior to the calculation of the
regression coefficients α and β. In Note 11.5 it is shown that the coefficient of
regression of standardized values for y, i.e. zy, on standardized values for x,
i.e. zx, is equal to the coefficient of correlation of x and y. Thus calculation of
the coefficient of regression of zy on zx yields the same figure as calculation
of the coefficient of correlation of x and y. For this reason Frey and Horner
(1957) introduced for ρ the term heritability in standard units.

N.B. Frey and Horner (1957) calculated the coefficient of regression
of offspring on parent for oats, a self-fertilizing crop. However, for self-
fertilizing crops a simple quantitative genetic interpretation of β in terms
of ‘the’ heritability is not possible (see Section 11.1). Nevertheless Smith
and Kinman (1965) presented a relationship allowing the derivation of the
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Note 11.5 Standardization of the variable x yields the variable zx:

zx =
x − µx

σx

Likewise one may determine

zy =
y − µy

σ

We now calculate β′, i.e. the coefficient of regression of zy on zx.
Equation (11.42) implies that

var(ŷ) = var(α + βx) = β2var(x) =
cov2(x, y)

var(x) × var(y)
× var(y) = ρ2var(y)

(11.43)
When regressing zy on zx, Equation (11.43) implies

(β′)2var(zx) = ρ2(zx, zy)var(zy)

Since
var(zx) = var(zy) = 1

and
ρ(zx, zy) = ρx,y

Equation (11.43) can be simplified to

β′ = ρx,y (11.44)

heritability from β. It is questionable whether that relationship is correct. In
this book it is taken for granted that the bias due to inbreeding depression does
not justify prediction of the response to selection in segregating generations
of a self-fertilizing crop.

11.2.3 Self-fertilizing Crops

First attention will be given to the estimation of m, the origin in the
F∞-metric. It is the contribution to the genotypic value due to the com-
mon genotype for all non-segregating loci. It is equal to the unweighted mean
genotypic value across the 2K complex homozygous genotypes with regard to
the K segregating loci (Section 8.3.2).

If epistasis does not occur, one may estimate m in a very direct way. This
can be justified for any value for K, but here the justification is elaborated
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for only two loci B1-b1 and B2-b2 (which may be linked). According to its
definition we have

m = 1
4 (Gb1b1b2b2 + GB1B1b2b2 + Gb1b1B2B2 + GB1B1B2B2)

Absence of epistasis means

GB1-b1,B2-b2 = m + G′
B1-b1 + G′

B2-b2

(Equations (1.1) and (8.3)). This implies

m = 1
4 (m + G′

b1b1 + G′
b2b2 + m + G′

B1B1 + G′
b2b2 + m + G′

b1b1 + G′
B2B2

+ m + G′
B1B1 + G′

B2B2)
= 1

2 (2m + G′
b1b1 + G′

b2b2 + G′
B1B1 + G′

B2B2)
= 1

2 (Gb1b1b2b2 + GB1B1B2B2) = 1
2 (Gb1b1B2B2 + GB1B1b2b2)

= 1
2 (GP1 + GP2)

if P1 and P2 are the homozygous genotypes which were crossed to give rise to
the considered segregating plant material. Example 11.12 illustrates this.

Example 11.12 If the genotype of P1 is b1b1B2B2b3b3 and that of
P2 B1B1b2b2B3B3, then the genotypic values of P1 and P2 are, in the absence
of epistasis, partitioned as

GP1 = m − a1 + a2 − a3

and
GP2 = m + a1 − a2 + a3

yielding
1
2 (GP1 + GP2) = m

whatever the degree of linkage of these three loci.

Generally absence of epistasis implies

m = 1
2 (GP1 + GP2) (11.45)

This allows estimation of m by

m̂ = 1
2

(
pP1

+ pP2

)
(11.46)

whatever the strength of linkage of the involved loci. An interesting application
of the present result is illustrated in Section 11.4.2.

In Section 10.3 interest in
∑

i ai
2 was explained. It was shown that from

F3 plant material an unbiased estimate of
∑

i at
2 can be derived based on

Equation (10.26), i.e.

2var(GLF3) − var(G(LF3)) = 3
4

∑
i

ai
2
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This would require estimation of var(GLF3) and of var(G(LF3)). It is rather
demanding to get accurate and unbiased estimates of these variance com-
ponents. A possible approach could be estimation of each of these genetic
variance components by subtracting from the corresponding estimates of phe-
notypic variance an appropriate estimate of the environmental variance. For
plant breeders this approach is unattractive because it requires too large an
effort. The present section presents a procedure for estimating

∑
i ai

2 from F3

plant material that

• fits into a regular breeding programme,
• avoids separate estimation of components of environmental variance and
• yields an accurate estimate.

This is all attained by estimating var(GLF3) for a random sample of F3 lines
and estimating

∑
i ai

2 by 2vâr(GLF3).
Variance component var(GLF3) can be estimated on the basis of a very

simple experimental design. This proceeds as follows. Each of I F3 lines, which
are obtained in the absence of selection from I F2 plants, is evaluated at J
plots, each comprising K plants; I > 1, J > 1,K ≥ 1. The J plots per F3 line
are distributed across J complete blocks. The structure of the appropriate
analysis of variance is presented in Table 11.4.

An unbiased estimate for σl
2 is

vâr(GLF3) =
MSl − MSr

J

According to Equation (10.24) the quantitative genetic interpretation of
σl

2 is
var(GLF3) = 1

2

∑
i

ai
2 + 1

16

∑
i

di
2

Thus estimation of
∑
i

ai
2 by

∑
i

â2
i = 2vâr(GLF3) (11.47)

Table 11.4 The analysis of variance of data obtained from I F3 lines evaluated

at J plots, distributed across J blocks

Source of variation df SS MS E(MS)

Blocks J − 1 SSb MSb σ2 + Iσb
2

F3 lines I − 1 SSl MSl σ2 + Jσl
2

Residual (J − 1)(I − 1) SSr MSr σ2
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implies the use of a biased estimator. However, in many cases – depending on
the heritability in F∞, the experimental design and the size of

∑
i di

2 – this
estimator is much more accurate than an unbiased estimator (Van Ooijen,
1989). Then the probability of correct ranking of F3,F4, etc. populations with
regard to

∑
i a2

i is larger.
This estimation procedure requires replicated testing (J ≥ 2). Replicated

testing can be attractive because non-replicated testing implies confounding of
line effects and plot effects, including effects of intergenotypic competition (see
Note 11.6). Replicated testing claims, however, a part of the testing capacity
and requires for some crops that the plants of the F2 population are grown at a
low plant density in order to guarantee that these produce a sufficient amount
of seed for replicated testing of the F3 lines. The response to selection when
evaluating F3 lines at J ≥ 2 plots instead of only a single plot is considered
in Chapter 16.

Note 11.6 Intergenotypic competition tends to enlarge var(G), Example 8.8.
Intergenotypic competition between F3 lines may thus be responsible for a
part of var(GLF3). However, the F∞ lines to be developed are to be used in
large fields were intergenotypic competition does not cause inflation of the
genetic variance. The variance of the genotypic values of the pure lines, i.e.∑

i a2
i , is therefore overestimated by vâr(GLF3) if intergenotypic competition

occurs.

11.3 Population Genetic and Quantitative Genetic Effects
of Selection Based on Progeny Testing

Section 8.3.3 introduced the concept of breeding value as a rather abstract
quantity applying in the case of random mating (see Equation (8.12)). In
Section 8.3.4 it was emphasized that the concept is of great importance when
selectingamongcandidatesonthebasisprogenytesting.Thepresentsectionaims
to clarify population genetic and quantitative genetic effects of such selection.

The progenies to be evaluated are obtained by crossing of candidates with
a so-called tester population. In Section 3.2.2 it was shown that, in the case
of selfing, haplotype frequencies hardly change in course of the generations.
Thus it does not matter so much whether one evaluates the breeding value of
individual plants or the breeding value of lines derived from these plants. The
obtained progenies are HS-families.

The tester population may be

1. The population to which the candidates belong (intrapopulation testing)
2. Another population (interpopulation testing)
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Intrapopulation testing

In the case of intrapopulation testing the allele frequencies of the tester popu-
lation are equal to the allele frequencies of the population of candidates: p and
q. Open pollination, as in the case of a polycross, is of course the simplest way
of obtaining the progenies.

Interpopulation testing

When applying interpopulation testing, the tester population is another
population than the population of candidates. Its allele frequencies are desig-
nated p′ and q′. The aggregate of all families resulting from the test-crosses
is then equal to the population resulting from bulk crossing (Section 2.2.1).
Interpopulation testing occurs at top-crossing and at reciprocal recur-
rent selection (Section 11.3). In top-crossing a set of (pure) lines, which
have been emasculated, are pollinated by haplotypically diverse pollen, pos-
sibly produced by an SC-hybrid or by a genetically heterogeneous popula-
tion. At so-called early testing, young lines are involved in the top-cross
(Section 11.5.2).

With regard to the candidates being tested, we now consider

1. The effect of the allele frequencies in the tester population on the ranking
of the candidates with regard to their breeding value

2. The effect of selection of candidates with a high breeding value on the allele
frequencies and, as a consequence, the expected genotypic value

The effect of the allele frequencies in the tester population on the ranking
of the candidate genotypes with regard to their breeding value

When selecting (parental) plants with regard to their breeding values, plants
with the most attractive (possibly: the highest) breeding values are selected.
However, the ranking of the breeding values of plants with genotype bb, Bb
or BB is not straightforward. It depends on the frequency of allele B in the
tester population. This complicating factor is now considered.

The selection among the candidates is based on the quality of their off-
spring, i.e. on their breeding value. Table 8.6 shows that, for a given allele
frequency (p), the ranking of the candidates with regard to their breeding
value depends on whether α′ (Equation (8.26a)) is positive, zero or negative.
The ranking depends thus on whether

a′ = a − (p′ − q′)d = a − (2p′ − 1)d = (a + d) − 2p′d (11.48)

is positive, zero or negative. This depends for a given locus, i.e. for given values
for a and d, on p′, the gene frequency in the tester population. The values for
p′ making α′ either positive, or zero or negative will now be derived. Because
of the tendency that d ≥ 0 for most of the loci (Section 9.4.1), these values



11.3 Population Genetic and Quantitative Genetic Effects 259

will only be derived for loci with d ≥ 0. When considering Equation (11.48)
it is easily derived that

• α′ > 0: for loci with 0 ≤ d ≤ a, if 0 ≤ p′ < 1; and
for loci with d > a if p′ < pm, where pm = a+d

2d
(Equation (9.9))

• α′ = 0: for loci with d = a if p′ = 1; and
for loci with d > a if p′ = pm, i.e. if the
expected genotypic value of the tester popula-
tion is at its maximum for such loci

• α′ < 0: for loci with d > a if p′ > pm.

The reader is reminded that pm is the allele frequency giving rise to the
maximum of EG in the case of the Hardy–Weinberg genotypic composition
(Section 9.2). At d = a it amounts to 1, whereas d > a implies 0 < pm < 1.
Example 11.13 illustrates how α′ depends on p′.

Example 11.13 Equation (11.48) describes how α′ depends, for given val-
ues for a and d, on the allele frequency p′ in the tester population. We
consider the equation for loci B3-b3, B4-b4 and B5-b5, with a3 = a4 = a5 = 2
and d3 = 0, d4 = 1 and d5 = 3 of Example 9.5. According to Equation (9.9)
EG − m attains for the locus with overdominance, i.e. locus B5-b5, a maxi-
mum value if pm = 0.833. Figure 11.2 depicts α′ as a function of p′ for the
three loci.

Fig. 11.2 The average effect of an allele substitution, i.e. α′, as a function of p′, the

frequency of allele B in the tester population, for loci B3-b3, B4-b4 and B5-b5, with a3 =

a4 = a5 = 2 and d3 = 0(i), d4 = 1(ii) and d5 = 3(iii)
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Ranking of the candidate genotypes for increasing breeding value,
i.e. increasing value for

bvj = (j − 2p)α′,

yields thus

• if α′ > 0
bvbb < bvBb < bvBB , or: bv0 < bv1 < bv2

• if α′ = 0
bv0 = bv1 = bv2

Ranking is impossible for loci with d ≥ a, if p′ = pm,
• if α′ < 0

bv2 < bv1 < bv0

Example 11.14 provides a numerical illustration of the foregoing.

Example 11.14 Locus B5-b5 of Example 11.13, with a = 2 and d = 3 is
further considered (similar to Example 8.20). For this locus we have pm =
0.833. We may calculate, according to Equation (8.26a), the average effect
of an allele substitution for a population with p = 0.875 and q = 0.125:

α′ = 2 − (0.875 − 0.125)3 = −0.25

The allele effects (Equations (8.15) and (8.16) are thus

α′
0 = −0.875(−0.25) = 0.21875

α′
1 = 0.125(−0.25) = −0.03125

and the breeding values (Equation (8.6) or (8.27b):

bv0 = 2(0.21875) = 0.4375 = (0 − 1.75)(−0.25)
bv1 = 0.21875 + (−0.03125) = 0.1875 = (1 − 1.75)(−0.25)

and
bv2 = 2(−0.03125) = −0.0625 = (2 − 1.75)(−0.25)

Because d > a and p′ > pm genotype bb is indeed the genotype with the
highest breeding value.

In Section 11.2.2 it was shown how one might estimate var(bν) = σ2
a. In the

case of a high value for var(bν) prospects for successful selection are good. One
may help achieve that by using an appropriate tester population as well as
uniform environmental conditions in the progeny test. The choice of the tester
is especially relevant for loci with overdominance or pseudo-overdominance.
One should avoid using, with respect to such loci, a tester with p′ ≈ pm, as
such a tester would yield equivalent progenies. Figure 11.2 shows that α′, and
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consequently var(bν), is smaller as p′ approaches either 1 or pm. The former
concerns loci with (in)complete dominance, the latter loci with overdominance.
In both these cases the tester population will have a high expected genotypic
value.

In practice it has often been observed that σa
2 does not decrease when

applying selection (Hallauer and Miranda, 1981, p. 137; Bos, 1981, p. 91).

The effect of selection of candidates with a high breeding value on the expected
genotypic value

In the context of progeny testing, the goal of the selection of candidates with
a high breeding value is improvement of the genotypic value expected for the
population subjected to the selection. It will be shown that this goal can not
always be attained.

When combining the preceding text and the implications of Fig. 9.1, it can
be deduced that selection of candidate plants with a high breeding value
implies

• if α′ > 0
An increase of p. This is associated with an increase of EG if 0 ≤ d ≤ a, or
if d > a as long as p < pm. It is associated with a decrease of EG if d > a
and p > pm.

• if α′ = 0
No change in p, i.e. no change in EG.

• if α′ < 0
A decrease of p. This is associated with an increase of EG as long as p > pm.
It is associated with a decrease of EG if p < pm.

It is assumed that absence of overdominance is the rule. The usual situation
of presence of partial dominance or additivity, i.e. 0 ≤ d ≤ a, implies then
preferential selection of plants with genotype BB, i.e. an increase of p until
p = 1. This is associated with an increase of EG.
For the relatively rare loci with overdominance (d > a) three situations
concerning the tester population, namely p′ = pm, p′ < pm and p′ > pm,
have to be distinguished:

1. p′ = pm

A tester population with p′ = pm prohibits meaningful progeny testing for
the involved loci: the progeny test does not allow successful selection among
the candidates with regard to their breeding values.

2. p′ < pm

In this case the tester produces pollen with haplotype b in such a frequency
that candidates with genotype BB tend to yield superior offspring, if indeed
d > a. Such candidates will be selected on the basis of the progeny test.
The frequency of gene B will consequently increase.
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3. p′ > pm

When using a tester population with p′ > pm, candidates with genotype
bb tend to produce superior offspring. Selection on the basis of the progeny
test implies then a decrease of the frequency of allele B.

The above three situations for loci with overdominance require a more detailed
treatment, both for

1. intrapopulation progeny testing and for
2. interpopulation progeny testing.

Intrapopulation progeny testing

Figure 11.3 illustrates how the allele frequency p will change, starting from
the initial value p0, in the case of continued selection of candidates with a
high breeding values. This is done for a locus with p0 > pm as well as for
a locus with p0 < pm. The actual value of pm depends, of course, on the
values for a and d of the considered locus. In both cases p approaches pm

asymptotically. The closer pm is approached, the smaller the differences in
breeding and the smaller the heritability, i.e. the less efficient the selection.
The changes in p become then smaller. At p = pm all genotypes have the
same breeding value. In that situation the expected genotypic value (EG) is
maximal. Further improvement is then impossible.

Figure 11.4 depicts the same initial situation. Now, however, it is assumed
that the selection results immediately in gene fixation, i.e. in p1 = 0 (if p0 >
pm) or in p1 = 1 (if p0 < pm). This may occur when selecting only a few can-
didate genotypes on the basis of testing progenies obtained from a polycross.

Fig. 11.3 The presumed frequency of allele B in successive generations with selection,

based on intrapopulation testing, of candidates with a high breeding value; for a locus with
p0 > pm as well as a locus with p0 < pm in the case of continuous change of p
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Fig. 11.4 The presumed frequency of allele B in successive generations when selecting,
based on intrapopulation testing, candidates with a high breeding value; for a locus with
p0 > pm as well as a locus with p0 < pm in the case of fixation after selection in generation 0

If the aim is to develop a synthetic variety the result may be disappointing:
the maximum value for EG will never be attained.

Still another possibility is that selection starting with p0 < pm gives suc-
cessively rise to p1 > pm, p2 < pm, p3 > pm, etc. (or that selection starting
with p0 > pm gives successively rise to p1 < pm, p2 > pm, p3 < pm, etc.). Then
p oscillates around pm. Notwithstanding the presence of genetic variation the
selection results in at most a small progress of EG, associated with dampening
of the oscillation.

Interpopulation progeny testing

Interpopulation progeny testing occurs when applying recurrent selection (for
general combining ability or specific combining ability, Section 11.5) or recip-
rocal recurrent selection. In this paragraph attention is focussed on recipro-
cal recurrent selection (RRS). In RRS two populations, say A and B, are
involved. Plants in population A are selected because of their breeding values
when using population B as tester. Likewise, and simultaneously, plants in
population B are selected because of their breeding values when using popula-
tion A as tester. (In an annual crop such as maize the S1 lines obtained from
the plants appearing to have a superior breeding value are used to continue
the programme.)

It is likely that the allele frequencies of populations A and B differ more
as these populations are less related. If indeed the allele frequencies are very
different, it is probable that

pA > pm > pB , or – at a different labelling of the populations – that pA < pm < pB ,
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where pA designates the allele frequency in population A and pB the allele
frequency in population B. The first situation implies testing of candidates
representing population A with a population with pB such that

α′ = (a + d) − 2pBd > 0

(see Equation (11.48)). Selection in population A will then tend to yield an
increase of pA. It also implies testing of candidates representing population B
with a tester with pA such that α′ < 0. Selection in population B tends then
to yield an decrease of pB . These tendencies are illustrated in Fig. 11.5.

Continued selection will then, eventually, yield the desired goal, viz. two
populations mutually adapted such that a bulk cross between them yields,
with regard to loci affecting the considered trait and with d > a, exclusively
heterotic, heterozygous plants.

Figure 11.6 depicts the development of the allele frequencies if the initial
value of pA is equal to pm. This implies for the candidates genotypes in pop-
ulation B that α′ = 0. Effective selection of candidates with a high breeding
value is then impossible in population B. The results eventually obtained
is, however, the same as in Fig. 11.5. This may even occur if pA < pm and
pB 	 pA. Then, due to the first cycle of reciprocal recurrent selection, p may
be increased in both populations such, that pA > pm and pB < pm (Fig. 11.7).

To help ensure that populations A and B have very different allele frequen-
cies with regard to a large number of loci with d > a, these populations may
be chosen on the basis of an evaluation of the performance of plant material
produced by bulk crossing of a number of populations. Eligible populations
are: open pollinating varieties, synthetic varieties, DC-, TC- and SC-hybrid
varieties. If for a certain locus pA and pB are very similar, interpopulation

Fig. 11.5 The presumed frequency of allele B in successive cycles of reciprocal recurrent
selection in populations A and B, for a locus with an initial allele frequency (p0) such that
p0 > pm in population A and p0 < pm in population B
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Fig. 11.6 The presumed frequency of allele B in successive cycles of reciprocal recurrent
selection in populations A and B, for a locus with an initial allele frequency (p0) such that
p0 = pm in population A and p0 < pm in population B

Fig. 11.7 The presumed frequency of allele B in successive cycles of reciprocal recurrent
selection in populations A and B, for a locus with strongly different initial allele frequencies
(but both smaller than pm)

progeny testing resembles intrapopulation progeny testing. The selection will
then, in both populations, induce p to approach pm. (This is illustrated in
Fig. 11.8 for pA ≈ pB , where both are less than pm). The result of continued
selection will then be two populations with the Hardy-Weinberg genotypic
composition, thus two populations with EG being equal to its maximum, i.e.

m +
a2 + d2

2d

(Equation (9.10)). For loci with d > a this maximum is less than m + d.
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Fig. 11.8 The presumed frequency of allele B in successive cycles of reciprocal recurrent
selection in populations A and B, for a locus for which the initial allele frequencies are very
similar

The ultimate goal of reciprocal recurrent selection is plant material obtained
by a bulk cross of the improved populations. The expected genotypic value of
that plant material is, due to the presence of genetic variation, less than the
highest possible genotypic value m+d, i.e. the genotypic value of the heterotic
heterozygous genotype.

11.4 Choice of Parents and Prediction of the Ranking of Crosses

Prior to actual selection among evaluated candidates, the breeder selects
among conceivable crosses. Parents will only be crossed if the progeny to be
obtained are expected to be promising enough to be rewarding for the efforts
of the crossing work. It is, of course, very attractive to be able to determine
beforehand which crosses have the highest chance of producing a commercially
desirable cultivar. This allows valuable time and efforts to be concentrated on
crosses with a higher probability of producing desirable genotypes. A cross
prediction method is, of course, only useful to a plant breeder if it is effective
in handling large numbers of crosses.

Crops differ considerably with regard to the amount of work involved in a
pollination. A single pollination of a cucumber flower, for instance, may yield
hundreds of seeds. In contrast, the efforts required for the pollination of a
single wheat ear, for instance, are considerable. A single pollination requires
emasculation, in time, of the flowers alongside the ear to be pollinated, bagging
of the ear, collection of the pollen and its transfer to the stigma of the flowers to
be pollinated, and bagging again. Additionally the breeder should administrate
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the parents involved in the pollination. All this work will, hopefully, result in
only one seed per pollinated flower. It should be clear that it may be wise to
consider seriously the crosses to be made.

Often crosses are made on the basis of implicit expert knowledge, but the
choice may be supported by explicit information. Schut (1998) distinguished
five sources of such information:

1. Information about the phenotypes of the potential parents.
2. Information about the genotypes of the potential parents with regard to

traits with known genetic control.
3. Information about differences between the potential parents with regard to:

• their geographic origin,
• their pedigrees
• their values for a set of traits.

The size of the difference is thought to indicate the number of heterozygous
loci in the F1. This number is, in its turn, thought to determine the heterosis
in the F1 and/or the genetic variance in the segregating generations. Crossing
of distantly related lines with desired genotypic values for the relevant traits,
which are due to different genotypes, is expected to increase the probability
of transgression in the segregating populations.

N.B. Transgression occurs if the segregating population contains with
regard to some trait one or more lines with a phenotypic value outside the
range given by the parental phenotypic values.

Pedigree data offer an opportunity to calculate the degree of relatedness of
related parents. Such data are, however, often incomplete or unreliable.

The pedigree information can be quantified by a measure of relatedness of
two potential parents, for instance by the coefficient of coancestry (Falconer,
1989).

The traits information may concern:

• agronomic traits,
• morphologic traits,
• biochemical traits (like isozymes, storage proteins) or
• molecular markers.

For agronomic and morphologic traits expressed in a continuous or ordi-
nal scale one can quantify the difference between parents by calculating the
Euclidean distance or the generalized distance (Snedecor and Cochran, 1980).
For biochemical and molecular marker data one may use the following measure
for genetic similarity of genotypes i and j:

gsif =
2Nij

Ni + Nj
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where

Nij = number of bands present in both i and j

Ni = number of bands present in i

Nj = number of bands present in j

Transgression may occur at a large genetic distance between potential parents.
The greater the distance (up to a certain limit), the larger the number of
segregating loci and the larger the probability of transgression.

4. Information about the performance as a parent of the pursued genotype(s).
Such information is obtained from earlier breeding cycles or earlier test
crosses (for example a diallel cross yielding information about general com-
bining ability and about specific combing ability (Section 11.5.2)).

5. Information about the performance of early generation progenies from
crosses involving the potential parents. From these one can estimate the
mean and the variance as expected to apply to later generations.

Sources 1 and 2 deal with qualitative traits, such as growth habit of barley
lines, viz. erectoides versus nutans. Sources 3–5 deal with information about
quantitative traits. Parents are crossed in such a way that weaknesses of one
parent are compensated for by the other parent.

Jensen (1988, pp. 423–444, 449–469) reviewed the topic of choosing parents
extensively. Indeed, the association between genetic distance and probability
of transgression has often been studied. A number of scientists advocated the
crossing of parents with a low genetic similarity, but experimental evidence
supporting this advice is scarce (Example 11.16). Crossing of divergent lines
often yields populations with a low mean performance due to one of the parents
involved. Linkage groups of favourable genes are broken at meiosis of the
heterozygous plants. Such groups are difficult to recover in later generations.

Brown and Caligari (1989) studied cross prediction based on evaluation of
parental genotypes, or their offspring obtained after selfing. Thus mid-parent
phenotypic values, i.e.

1
2 (pP1 + pP2)

and mid-line phenotypic values, i.e.

1
2 (pL(P1) + pL(P2))

were used as predictions.
In Section 9.1 it was shown that the latter two procedures may be expected

to be reliable for traits where dominance does not play a role in the genetic
control. Example 11.15 provides some results.

Example 11.15 Brown and Caligari (1989) analysed data from an experi-
ment with potatoes. According to the rank correlation coefficient, cross
rank – in the second clonal year – for breeder’s preference and for total
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yield appeared to be best predicted by seedling performance (r = 0.48 and
0.95, respectively). For mean tuber weight and number of tubers (these are
the two yield components), the predictions based on mid-line values turned
out to be the best (with r = 0.68 and 0.80, respectively). This may indi-
cate the presence of an additive mode of inheritance for yield components.
(This phenomenon underlies the explanation of hybrid vigour by the theory
of recombinative heterosis (Section 9.4.1).)

Example 11.16 presents some results of a study to procedures for cross predic-
tion based on relationship measures.

It has to be emphasized that information sources 4 and 5 do, in fact, not
provide information with regard to crosses still to be made. They merely
indicate which already existing segregating populations are most promising.

Example 11.16 In order to be able to draw general conclusions, Schut
(1998) studied 20 cross populations resulting from crosses involving 18
European two-row spring barley varieties. Each population was represented
by 48 pure lines, developed by continued selfing applied in the absence of
selection. (Such sets of lines are called recombinant inbred lines; RILs).
The RILs were tested along with their parents by means of 10-row plots in
each of 7 environments, distributed over two years. Four traits were studied:
plant height, flowering time, thousand kernel weight and grain yield.

For each pair of parents underlying the cross populations four relation-
ship measures were calculated

• Genetic similarity (gs) based on marker data (Section 12.3.2)
• Coefficient of coancestry (f) based on pedigree data
• Morphologic distance (md)
• Agronomic distance(ad) based on multi-environment data for several

agronomic traits

The study resulted into the following correlations, estimated across the 18
pairs of parents and the 18 cross populations, between the relationship of
the parents and the variance between the RILs with regard to the studied
traits:

• The correlations between 1−gs and the variances were generally positive,
but rarely significant. This disappointing result was said to be due to
a poor genomic representation of the genes affecting the traits by the
markers.

• The correlations between 1 − f and the variances were positive but non-
significant. (This concerned only those ten crosses for which reliable pedi-
gree data were available).

• The correlations between md and the variances were non-significant.
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• The correlations between ad and the variances were mainly positive and
sometimes significant. The correlations between ad for just height or just
flowering date and RIL variance for height, respectively flowering time
were significant.

Combined relationship measures generally had the highest correlations with
RIL variance. Schut concluded, altogether, that the studied correlations were
not high enough to be useful for practical breeding.

With regard to that topic, crosses, in fact segregating populations, may be
ranked according to some criterion. In a self-fertilizing crop crosses may, for
instance, be ranked according to

• Their ability to give rise to entries with a genotypic value exceeding some
minimum, say Gmin. This may involve ranking of crosses with regard to
P(G > Gmin), i.e. the probability that the genotypic value of some obtained
genotype exceeds Gmin. The probabilities are then predicted on the basis
of estimates of m and

∑
i

a2
i .

• The observed proportion of (F3) lines with a mean phenotypic value exceed-
ing Gmin.

Reliability of the prediction of the performance of the progenies to be obtained
when crossing parents is, of course, very desirable. Genotype by environment
interaction is, of course, a disturbing phenomenon. If such interaction occurs,
predictions on the basis of data collected in a certain macro-environment (year
and/or location) will be of little value for other macro-environments. Further-
more the reliability of cross prediction methods is questionable in as far as the
estimators of the statistical parameters are biased and/or inaccurate.

In the case of a normal probability distribution of the genotypic values, i.e.

G = N(EG, σ2
g),

one can predict P (G > Gmin) on the basis of estimates of EG and σ2
g . This is

elaborated for plant material with identical reproduction (Section 11.4.1) and
for self-fertilizing crops (Section 11.4.2).

Cross prediction with regard to several traits deserves attention because
selection is rarely focussed on only a single trait. The probability that an inbred
line has a satisfactory genotypic value for two or more traits simultaneously
cannot be calculated as the product of the probabilities for the separate traits,
unless the traits are not correlated. Multivariate cross prediction procedures
require, in addition to knowledge of m and of

∑
i a2

i for each character, also
knowledge of the genetic correlation coefficient, ρg (Section 12.2), between each
pair of characters. Powell et al. (1985b) present an application of multivariate
cross prediction methods.
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11.4.1 Plant Material with Identical Reproduction

This section gives attention to the prediction of the ranking of crosses deal-
ing with plant material with identical reproduction, e.g. clones, pure lines
(especially DH-lines). The conditions required for a reliable prediction of the
probability that the genotypic value of some genotype exceeds some minimum,
i.e. P (G > Gmin), are

1. A normal distribution of the genotypic values
2. Absence of genotype × environment interactions

When estimating EG by p and var(G) on the basis of a completely randomized
experiment or randomized (complete) blocks (Section 11.2.1), one may predict
P (G > Gmin) by:

P

(
G − p√
vâr(G)

>
Gmin − p√

vâr(G)

)
= P

(
χ >

Gmin − p

σ̂g

)
= 1 − Φ

(
Gmin − p

σ̂g

)

(11.49)
This probability can be read from a table presenting values of the standard
normal distribution. The probability can be predicted for each of a number
of families (‘crosses’) and this allows ranking of the crosses. The coefficient of
correlation between predicted rank and actual rank indicates the reliability of
the prediction. Examples 11.17 and 11.18 give illustrations.

Example 11.17 In 1981, Caligari and Brown (1986) raised, for each of eight
potato crosses, seedlings in 10 cm square pots in a glasshouse. In 1982 each
genotype that produced sufficient tubers was grown in a field experiment. In
1983, i.e. the second clonal year, each cross was represented by 70 randomly
chosen clones. These were grown in a field in Blythbank in two randomized
complete blocks consisting of three-tuber plots. Both in 1981 and 1983 potato
breeders assigned, on the basis of visual assessment of tubers, to each clone
a phenotypic value for ‘preference score’. From these data values for p and
σ̂p (for 1981) and for p and σ̂g (for 1983) were obtained for each cross.

For the 1981 data of cross C1, for instance, these values were: p = 4.36
and σ̂p = 1.52. Thus for the minimal acceptable preference score Gmin = 5
one can calculate

P

(
χ >

5 − 4.36
1.52

)
= P (χ > 0.421) = 0.337

For the seven other crosses the following probabilities were estimated:

C2 : 0.274,C3 : 0.176,C4 : 0.251,C5 : 0.015,C6 : 0.192,

C7 : 0.281, and C8 : 0.117.
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For the glasshouse conditions of 1981 the crosses could thus be ranked as:

C5 < C8 < C3 < C6 < C4 < C2 < C7 < C1

For the 1983 data of C1, P (G > Gmin) can likewise be predicted to
amount to 0.119. The actual proportions of clones with a preference score of
at least 5 amounted to 0.217 in 1981 (the average of the estimated probabil-
ities amounted then to 0.205) and to 0.157 in 1983.

The coefficient of correlation, across the eight crosses, between the pre-
dicted probabilities and the observed proportions were 0.96 in 1981 (the
average of the estimated probabilities amounted then to 0.205) and 0.91
in 1983. The coefficient of correlation between probabilities predicted on
the basis of the 1981 data (which were obtained from seedlings raised in a
glasshouse) and the proportions observed in 1983 was as high as 0.59.

It was concluded that p and σ̂ estimated from the data in any environ-
ment provided a good prediction of the number of clones in each cross that
would exceed some defined minimum preference score.

Example 11.18 Fifty-two Solanum tuberosum crosses were chosen delib-
erately to represent the range, in commercial breeding material, with regard
to their preference scores. In the spring of 1984, eighty seedlings from each
cross were sown into seed pans and later transplanted into 10 cm square pots
(Brown et al., 1988). Two tubers were taken from each genotype to be used
in 1985, the first clonal year.

In 1985 the 52 crosses were grown in each of four completely randomized
blocks in Blythbank and in Murrays. Each plot contained 15 genotypes,
together representing the involved family. After assessment, the produce from
each of the 52×4×15 = 3,120 genotypes was used in 1986, the second clonal
year.

In 1986 each cross was represented by 40 clones at Blythbank and by 20
clones, a subsample of the 40 clones evaluated at Blythbank, at Murrays. At
each site each clone was grown as a four-plant, single-row plot.

Each year the mean value per clone for the visually assessed breeder’s
preference score of the tubers was determined. The minimal acceptable score
was 5.

For Blythbank the coefficient of correlation between the mean score for
each of the 52 families in 1985 and those in 1986 amounted to 0.91; the
correlation between the results from Blythbank (1985 data) and Murrays
(1986 data) was 0.70. From the 52 × 40 = 2, 080 clones that were grown in
Blythbank in both years, 222 scored at least 5 in 1985, 181 did so in 1986,
but only 69 did so in both years. Thus 181 − 69 = 112 (i.e. 62%) of the
second clonal year selections would have been discarded in the first year.
This implies that a high proportion of potentially desirable clones would
have been lost if individual clone selection was practised in 1985!
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For each site/year combination the following quantities were determined
per family: p, σ̂p and the prediction of P (G > 5). The coefficient of correla-
tion, across the 52 crosses, between site/year combinations ranged for p from
0.70 to 0.89. For the prediction of P (G > 5) it ranged from 0.59 to 0.76. All
correlations were highly significant and it should thus be possible to identify
the ‘better’ crosses on the basis of data from seedlings grown in pots.

11.4.2 Self-fertilizing Plant Material

If the genotypic values of the homozygous genotypes in an F∞ population of a
self-fertilizing crop have a normal distribution, the probability distribution of
G is completely specified by EG and σ2

g . Under the conditions specified below,
one may predict these parameters from data collected from the parents and
from a random sample of F3 lines. Then one may predict the probability that
the genotypic value of an F∞ plant exceeds Gmin.

The conditions required for a reliable prediction are the following:

1. A normal distribution of the genotypic values
2. Absence of epistasis
3. Absence of linkage
4. Absence of genotype × environment interactions

If condition 1 applies the probability distribution of the genotypic values of
the plants in population F∞ is given by

G = N(m, var(GF∞))

Condition 2 is required to estimate parameter m by means of Equation (11.46):

m̂ = 1
2

(
pP1

+ pP2

)
If conditions 2 and 3 are satisfied, var(GF∞) is equal to

∑
i a2

i (Table 10.3).
A biased but relatively accurate estimate of this quantity is 2vâr(GLF3) (Equa-
tion (11.47)). The probability distribution of F∞ can thus be predicted.

An interesting application, i.e. prediction of P (G > Gmin), requires con-
dition 4. If the condition applies, the probability that some F∞ plant to be
obtained in the future has a genotypic value exceeding Gmin, is predicted by:

P

⎛
⎝ G − m̂√

vâr(GF∞
)

>
Gmin − m̂√
vâr(GF∞

)

⎞
⎠ = P

(
χ >

Gmin − m̂

σ̂g

)
= 1−Φ

(
Gmin − m̂

σ̂g

)

(11.50)

Calculation of this probability may be rewarding. When for two segregating
populations the means m1 and m2 and the genetic variances vâr1(GF∞) and
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vâr2(GF∞) differ such, that m1 > m2 and vâr1(GF∞) < vâr2(GF∞), then it
is of interest to calculate P (G > Gmin) for each population. Example 11.19
illustrates calculation of P (G > Gmin), Example 11.20 discusses some results.

Example 11.19 It is shown how one may calculate the probability that
the genotypic value of some plant, belonging to an F∞ population to be
developed, lies outside the range between the genotypic values of the two
parents, i.e. P (G < GP2) + P (G > GP1), where GP2 < GP1.

In the case of a normal probability distribution of the genotypic values,
the probability distribution is symmetric around m. As Equation (11.45)

m = 1
2 (GP1 + GP2)

implies
GP1 − m = m − GP2,

i.e. GP1 is as much larger than m as GP2 is smaller than m, it follows that

P (G < GP2) = P (G > GP1)

This means that

P (G < GP2) + P (G > GP1) = 2P (G > GP1)

This probability is equal to

2P

⎛
⎝ G − m̂√

vâr(GF∞
)

>
GP1 − m̂√
vâr(GF∞

)

⎞
⎠ = 2P

(
χ >

GP1 − m̂

σ̂g

)
= 1−2Φ

(
GP1 − m̂

σ̂g

)

Jinks and Pooni (1976) present three applications where predicted prob-
abilities and actual proportions coincided fairly well. Their first application
concerned a cross of two pure lines of Nicotiana rustica L. For plant height,
as observed in 1954 and measured in inches, they reported

m̂ = 43.29,

vâr(GF∞) = (5.69)2, and
GP1 = 44.69.

This yields for the above probability

2P

(
χ >

44.69 − 43.29
5.69

)
= 0.81
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In the same season 20 random inbred lines representing F10 were grown.
The season’s growing conditions were intermediate in a group of 16 growing
seasons. The average plant height of the 20 lines amounted to 44.56. Eight
lines were shorter than P2 and 10 lines were taller than P1. Thus the actual
proportion of lines outside the range of parental genotypic values was 0.9.

Example 11.20 Schut (1998) studied the F4 and F∞ generation of 20
barley crosses. For each cross both the F4 and the F∞ generation were rep-
resented by 48 lines tracing back to the same set of 48 F2 plants. The F4

lines were tested at two locations in 1994; the related ‘recombinant inbred
lines’ (RILs) were tested at two locations in 1995 and at four locations in
1996. Schut (1998; p. 33) found that the yields of the 20 RIL populations,
each averaged over the six environments, were only moderately correlated
(r = 0.42) with the yields of the 20 F4 populations. Mid-parent values,
based on small plot yield data from the same two trials as the F4 evaluation
showed a similar correlation (r = 0.45) with the yields of the RIL popula-
tions. Mid-parent values based on 1994 yield data from large plots at the
same locations showed, however, a much higher correlation (r = 0.70). This
correlation is about equal to the correlation between RIL population yields
and mid-parent yields based on large plots in the same six environments
where the RIL populations were tested (r = 0.71).

Schut concluded that a labourious early generation small plot yield
assessment offered hardly any perspective for practical breeding, neither for
selection within crosses nor for selection between crosses.

Schut predicted for the F∞ generation of each of the 20 cross populations
P (G > Gmin), with Gmin = average yield of three standard cultivars. These
probabilities were correlated with the observed proportion of RILs yielding
more than Gmin. The correlations were virtually absent when estimating m
on the basis of the small plot trials of 1994, either the mid-parent value
or the F4 population mean (Schut, 1998; p. 37). When estimating m on the
basis of mid-parent values of large plot trials in six environments, the average
rank correlation was only 0.22. Also directly observed proportions of F4 lines
yielding in the small plot trial more than Gmin were not clearly related with
the observed proportions in the F∞ generation.

In addition to the foregoing, one may perhaps wish to predict the genotypic
values of the two extreme homozygous genotypes (Jinks and Perkins, 1972).
These values are

m −
∑

i

ai and m +
∑

i

ai

Prediction of these values requires estimates of m and
∑
i

ai. The latter quan-

tity may be estimated when assuming a constant degree of dominance across
all relevant loci, i.e.:

di

ai
= c
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Then one may derive

∑
i

di ·

√√√√√
∑
i

a2
i∑

i

d2
i

=
∑

di ·
√ ∑

a2
i

c2
∑

a2
i

=
∑

di ·
1
c

=
∑

di ·
∑

ai∑
di

=
∑

i

ai

According to Table 9.1, the quantity
∑

i di may be estimated by

ĜF1 − m̂

The quantity ∑
i

a2
i

is estimated as
2vâr(GLF3)

(Equation (11.47))
and ∑

i

di
2

can, for instance, be estimated on the basis of Equations (10.24), (10.25) or
(10.27). The reliability of this approach for estimating

∑
i ai is questionable.

In the case of presence of one or more loci with additive effects, for instance,
it yields a false result. Example 11.21 provides an illustration.

Example 11.21 Jinks and Perkins (1972) observed plant height (in inches)
of Nicotiana rustica plants. They obtained from their data the following
estimates: ∑

i

d̂i = 6.11

∑
i

â2
i = 30.69

∑
i

d̂2
i = 4.08

Thus ∑
i

âi =
6.11√

4.08
30.69

= 16.76

implying for the genotypic values a predicted range of 33.5.
Starting with 100 F2 plants, 82 F8 lines were obtained with a plant height

ranging from 34.53 to 61.49. Thus the actual range amounted to 26.96.
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11.5 The Concept of Combining Ability as Applied to Pure Lines

11.5.1 Introduction

The genetic quality of a genotype appears often poorly from the phenotype
of the plant(s) representing the genotype, especially when the genotype is
represented by only a single or a few plants. An alternative way of assessing the
genetic quality of the genotype is by means of evaluation of progeny obtained
from it. Indeed, in cross-fertilizing crops the application of selection based on
progeny testing, i.e. selection for breeding value, is quite common. Candidate
genotypes, representing some genetically heterogeneous population, are then
pollinated by a tester population producing pollen with a diverse haplotypic
composition (Section 11.3). Candidate genotypes yielding the best progenies
are selected.

With regard to sets of pure lines something similar may be applied. The
genetic quality of a pure line is then assessed on the basis of the progeny
obtained by crossing the line with a tester population (in the present case
consisting of a set of pure lines). This procedure may be applied to a self-
fertilizing crop but also to a cross-fertilizing crop. The latter situation applies
when testing pure lines with the goal to develop a hybrid variety. Candidate
genotypes producing the best performing offspring are said to have the highest
combining ability. The crossing design of the lines to be assessed may consist
of a diallel cross, sometimes indicated as: a diallel set of crosses. In this case
all N pure lines are crossed in pairwise combinations. The diallel cross is said
to be complete if each line is crossed with all other lines. This will yield N2

progenies, viz. N S1-lines due to selfing, and N2-N FS-families due to pairwise
crosses. If selfing is omitted and reciprocal crosses are not made only 1

2N(N -1)
FS-families will be obtained.

In this book it is assumed that the N candidate genotypes are pure lines.
They may be designated as P1,P2, . . . ,PN . The progenies may be coded as
Fij , where

• i refers to maternal parent Pi; with i = 1, . . ., N
• j refers to paternal parent Pj ; with j = 1, . . ., N

Each progeny may be represented by a single plant or by a number of plants
that are either cultivated as individually randomized plants or as J plots each
containing K plants. The quantitative genetic interpretation of the observa-
tion characterizing the single cross hybrid progeny Fij may thus range from
‘the phenotypic value of a single plant representing the hybrid’ to ‘a precise
estimate of the genotypic value of the hybrid’. For this reason the observation
will be designated by the general symbol xij . Table 11.5 presents a summary
of the observations derived from all progenies resulting from a complete diallel
cross.
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Table 11.5 The observation xij characterizing progeny Fij

obtained from a complete diallel cross involving pure lines

P1, . . . , PN ; i, j = 1, . . . , N . The margins of the table provide for

each maternal parent as well as for paternal parent the mean progeny

performance

Paternal parent

P1 . . ... Pj . . ... PN

Maternal parent: P1 x11 . . ... x1j . . ... x1N x̄1.

· · · · ·
· · · · ·
Pi xi1 . . ... xij . . ... xiN x̄i.

· · · · ·
· · · · ·
· · · · ·
PN xN1 . . ... xNj . . ... xNN x̄N .

x̄.1 . . ... x̄.j . . ... x̄.N x̄..

The set of progenies occurring in row i, i.e. {Fi1, . . . ,FiN}, or the set of
progenies occurring in column j, i.e. {F1j , . . . ,FNj}, forms an HS-family,
which may be designated by Fi. and F.j , respectively. A row as well as a
column comprises the observations from all progenies descending from the
same maternal parent or the same paternal parent, respectively. The average
across row i, say x̄i., or across column j, say x̄.j , represents the mean across
the single cross hybrids constituting HS-family Fi. or F.j , respectively.

If the total number of 1
2N(N -1) progenies is unmanageably large, or if the

breeder fails to produce all of them, for instance due to asynchronous flow-
ering, a partial diallel cross (or incomplete diallel cross) may be made.
This partial diallel cross may produce progenies according to a structured
scheme, such as used for a balanced incomplete block design or an α-design,
see Example 19.3, or it may produce progenies according to an unstructured
(‘wild’) crossing design. In the former case the maternal parents play the role
of the treatments and the paternal parents the role of the incomplete blocks.
Care must be taken for a wild crossing design that it is a connected design
(John, 1971; Breure and Verdooren, 1995).

In this book two reasons for making a diallel cross are elaborated

1. Prediction of the performance of a TC- or a DC-hybrid variety of a cross-
fertilizing crop (Section 9.4.2). This application plays an important role in
practical plant breeding aiming at the development of a hybrid variety.

2. Determination of the general combining ability of a pure line and/or the
specific combining ability of a pair of pure lines. This application occurs
rather frequently at research stations, possibly in the framework of the
development of a new variety (Section 11.5.2).
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11.5.2 General and Specific Combining Ability

It is of interest to know whether or not a pure line possesses a good general
combining ability (gca), with regard to a tester population; or whether two
pure lines have a good specific combining ability (sca) or not. (The precise
definitions of these quantities are developed hereafter, see Equations (11.53)
and (11.54)). It should thus be clear that the main interest when applying an
analysis in terms of gca and sca is not in the progenies but in their parents.
An analysis of a diallel cross in these terms is, indeed, a special way of progeny
testing.

When applying a diallel cross the tester population consists of the set of
inbred lines involved in the diallel cross. For inbred line i the value obtained for

x̄i.-x̄..

where
x̄.. designates the overall mean progeny phenotypic value,
may be considered as an estimate of its general combining ability. Thus the
general combining ability of a pure line is indeed estimated from the perfor-
mance of its offspring in comparison to the overall mean performance.

One may subtract from the expected genotypic value, calculated across all
progenies descending from pure line i, the expected genotypic value calculated
across all progenies. The quantity obtained is similar to the breeding value of
line i, except for the factor 2 occurring in Equation (8.24). The variance of the
gca values is, consequently, similar to the variance of the breeding values. One
should, nevertheless, be cautious. The concepts of additive genotypic value,
breeding value, additive genotypic variance and variance of the breeding values
are applied in the context of panmictic populations. Only in that situation
Equation (8.28), i.e.

σa
2 = var(bν),

applies. In contrast the concepts of gca and sca apply to a different context,
viz. to pure lines involved in a diallel cross.

The concepts of gca and sca are also used in other contexts than diallel
crosses, e.g. recurrent selection for gca, recurrent selection for sca, reciprocal
recurrent selection. The concepts have, consequently, been defined in different
ways. Sprague and Tatum (1942), who introduced the terms gca and sca, used
definitions different from those proposed by Griffing (1956). The approach of
the latter, which is considered here, is similar to the one used for the statistical
analysis of a two-way table. An analysis of the data resulting from a diallel
cross in terms of gca and sca is thus primarily a statistical analysis. A two-way
table may be analysed on the basis of a simple linear model

Exij = µ + αi + βj + γij
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Such a model is also used for data obtained from a randomized complete
block experiment such as used to compare the performances of a number of
genotypes.

Griffing’s parametrization of the genotypic value Gij of the single cross
hybrid obtained by pollinating maternal parent i by paternal parent j is:

Gij = µ + gcai + gcaj + scaij (11.51)

where

µ = the overall mean

gcai = the general combining ability of parent Pi

gcaj = the general combining ability of parent Pj

scaij = the specific combining ability of parents Pi and Pj

In the case of a complete diallel cross yielding N2 progenies the formulae for
estimating the parameters µ, gcai and scaij in Equation (11.51) are straight-
forward:

µ̂ = x̄.. =

N∑
i=1

N∑
j=1

xij

N2
(11.52)

gĉai = 1
2 (xi. + xi) − µ̂ =

N∑
j=1

xij+
N∑

j=1

xji

2N − µ̂ (11.53)
sĉaij = 1

2 (xij + xji) − gĉai − gĉaj − µ̂ (11.54)

It is easily shown that the sum of the gca values is zero, namely

N∑
i=1

gĉai = 1
2

N∑
i=1

(xi. + xi) − Nµ̂ =

N∑
i=1

N∑
j=1

xij +
N∑

j=1

N∑
i=1

xji

2N
− Nµ̂ =

2N2µ̂

2N
− Nµ̂ = 0

This implies that the average gca value is bound to be zero. Likewise it is
easily shown that for any line, for instance line i, the sum of the sca values is
zero:

N∑
j=1

sĉaij =
N∑

j=1

( 1
2 (xij + xji) − gĉai − gĉaj − µ̂) = 1

2 (xi. + x.i) − Ngĉai − Nµ̂

= Ngĉai − Ngĉai = 0

Griffing (1956) elaborated the appropriate statistical analysis of data charac-
terizing the progenies evolving from four different designs of a diallel cross,
i.e. data from

1. The N2 progenies obtained from a complete diallel cross
2. All parental pure lines plus all FS-families, reciprocals excluded, i.e.

N S1-lines and 1
2N(N − 1) FS-families
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3. All FS-families, reciprocals included, i.e. N(N − 1) FS-families
4. All FS-families, reciprocals excluded, i.e. 1

2N(N − 1) FS-families

Both the analysis of variance according to a linear model assuming fixed effects
and the analysis according to a linear model assuming random effects were
elaborated (Kuehl, 2000, p. 148, 183–190). According to the model assuming
fixed effects, the parents involved in the evaluated progenies are the subjects
of study, whereas with the model assuming random effects interest is primarily
in the population of pure lines represented by the random sample consisting
of the N parents whose progenies were evaluated.

Designs 2 and 4 do not allow estimation of reciprocal differences, which may,
for instance, be due to maternal effects via plasmagenes.
In Section 11.5.1 it was said that the genetic quality of a genotype might
appear from an evaluation of its progeny. In the present section attention is
focussed on progeny obtained from a diallel cross. An alternative for such
progeny is the progeny obtained by selfing. Indeed, whenever a candidate
has a valuable genotype its genetic value will appear from the quality of its
offspring. The performance of offspring obtained by selfing is not at all affected
by the tester genotype. Deleterious recessive genes hiding in the candidate
genotype to be tested will clearly be exposed in the line obtained by selfing
the candidate. For this reason, the authors are of the opinion that progeny
testing of candidate genotypes by means of progenies obtained from selfing
is a good alternative for progeny testing using progenies obtained from a
diallel cross: it saves a lot of efforts (less crossing work, fewer progenies to
be evaluated) and absence of disturbing tester effects (but possibly disturbing
inbreeding effects due to the selfing; selfing might even be impossible due to
self-incompatibility). Examples 11.22 and 11.23 support the opinion.

Example 11.22 Kinman and Sprague (1945) collected the grain yield data
(in bushel per acre) of the progenies resulting from a maize diallel cross of
the pure lines presented in Table 11.6.

Table 11.6 The grain yield (in bu/acre) of 10 pure lines of maize, i.e. ĜP, and the

average grain yield of their offspring obtained from a diallel cross, say ĜHS. The rank,

from lowest (1) to highest (10), is given in brackets (source: Kinman and Sprague (1945))

Line ĜP ĜHS

CI14 2.7 (1) 61.6 (1)

Oh04 15.1 (2) 69.7 (3)

WV7 20.1 (3) 68.1 (2)

38-11 26.5 (4) 80.5 (8)

WF9 28.5 (5.5) 76.3 (5.5)

Oh07 28.5 (5.5) 78.4 (7)

Hy 31.9 (7) 71.2 (4)

B2 39.0 (8) 82.5 (9)

R46 39.8 (9) 76.3 (5.5)

K159 49.8 (10) 82.7 (10)
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The coefficient of correlation of ĜP and ĜHS estimated from these data is
0.85, whereas the rank correlation is 0.74. In this example gca and perfor-
mance per se are clearly related. Hallauer and Miranda (1981, pp. 281–283)
concluded, on the basis of a literature review, that such a positive relation
generally exists.

Example 11.23 Genter and Alexander (1962) reported to have been suc-
cessful in improving gca by selection of the best S1 lines of maize.

N.B. It is rather strange to report that gca has been improved as the
average gca value is equal to zero.

In some cases intercrossing of the best lines yielded an improved population.
Therefore, selection for an improved performance of S1 lines plays a role of
some importance in maize breeding (Hallauer and Miranda, 1981, p. 227).

N.B. The described procedure implies selection of the best S1-lines. It is
to be distinguished from so-called simple recurrent selection. In the
latter procedure many plants are selfed. Only plants that are attractive
both for traits expressed before and for traits expressed after pollen dis-
tribution are harvested. Thus the best parental plants are selected. In the
next generation the S1 lines tracing back to these plants are intercrossed
without paying attention to the trait(s) to be improved.

Horner et al. (1973) applied so-called S2 progeny selection in maize. With
regard to ear yield, the 10-12 best S2 lines were selected out of 60 S2 lines
(first cycle) or out of 100 S2 lines (later cycles). The selected lines were
intercrossed to start a new ‘cycle’. Across five cycles, progress of 2% per cycle
was obtained. This progress was measured with plant material obtained from
crosses with genetically heterogeneous testers.

When selecting with regard to ear yield of families obtained by cross-
ing S1 plants (first cycle) or S1 lines (later cycles) with an inbred line, the
progress amounted to 4% per cycle.

In Section 11.5.1 it was said that the genetic quality of a pure line can be
assessed from the progenies resulting from a diallel cross in a way similar
to the assessment of the breeding value of an open pollinating candidate.
Indeed, an analysis of the data resulting from a diallel cross in terms of gca
and sca is primarily a statistical analysis. It is, however, interesting to com-
pare the pure line quantities gca and sca with the open pollinating candidate
quantities breeding (bv) value and dominance deviation (δ). For this reason the
quantitative genetic interpretation of the concepts gca and sca is developed
(better than the rough quantitative genetic interpretation of sca given in
Note 9.1).
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The concept of breeding value applies to segregating populations of cross-
fertilizing crops; the concept of general or specific combining ability applies to
sets of pure lines. There is, nevertheless, a rather close relationship between
these concepts. In the absence of epistasis the expressions for gca and sca for
a polygenic trait consist of the sum, across the involved loci, of the contribu-
tions due to individual loci. This requires the presence of linkage equilibrium
when dealing with expressions for the variances of gca or sca. (Section 10.1).
The expressions of interest are thus derived from the expressions for locus
B-b, affecting quantitative variation in a trait of an open pollinating pop-
ulation from which pure lines have been extracted. The relevant genotypic
compositions are then

Genotype
bb Bb BB

f : In a panmictic population (RM): q2 2pq p2

In a set of pure lines (L): q 0 p

The expected genotypic values are

EGRM = m + (p − q)a + 2pqd

EGL = m + (p − q)a

A diallel cross yields FS-families. The genotypic composition of the aggre-
gate of all FS-families is equal to the genotypic composition of the panmictic
population. Thus EGFS = EGRM.

The genotypic composition of the HS-family obtained from a line with geno-
type bb, i.e. the set of all FS-families obtained from that line, is

Genotype
bb Bb BB

f q p 0

The genotypic composition of the HS-family obtained from a line with geno-
type BB is

Genotype
bb Bb BB

f 0 q p

The general combining abilities of genotypes bb and BB may be designated
by gca0 and gca2, respectively. They are equal to EGHS − EGRM. Thus

gca0 = q(m − a) + p(m + d) − [m + (p − q)a + 2pqd] = pd − pa − 2pqd

= −p(a − d + 2qd) = −p[a − (1 − 2q)d] = −p[a − (p − q)d] = −pα

It can likewise be shown that

gca2 = q(m + d) + p(m + a) − [m + (p − q)a + 2pqd] = qα
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Comparison of the above results with Table 8.6 show very simple relations
between the above gca values and the bv values of the (homozygous) genotypes:

gca = 1
2bν = 1

2 (γ − EG) (11.55)

and
bν = 2gca

The expected gca value, calculated across all homozygous genotypes, is easily
obtained from the genotypic composition of the pure lines schema:

Genotype
bb BB

f q p
gca −pα qα

Thus
Egca = q(−pα) + p(qα) = 0 (11.56)

Furthermore

var(gca) = E(gca)2 − [E(gca)]2 = E(gca)2 = qp2α2 + pq2α2 = pqα2 = 1
2σa

2

(11.57)

N.B. The results expressed by Equations (11.56) and (11.57) may not be
derived, via Equation (11.55), from Ebν and var(bν) as the latter quantities
apply to panmictic populations. Equation (11.55) would, for instance, yield:
var(gca) = 1

4var(bν) = 1
4σa

2.

In the scheme below, the margins provide the relative frequencies of the mater-
nal and paternal pure lines involved in the diallel cross (and their genotypes);
the central part provides the relative frequencies of the various FS-families
resulting from the diallel cross (and their genotypic compositions):

q(bb) p(BB)
q(bb) q2(1, 0, 0) pq(0, 1, 0)
p(BB) pq(0, 1, 0) p2(0, 0, 1)

The genotypic value of (genetically uniform!) FS-families with genotypic com-
position (1,0,0) is m− a = G0. It is m + d = G1 for FS-families with genotypic
composition (0,1,0) and m+a = G2 for FS-families with genotypic composition
(0,0,1).

The specific combining ability of genotypes bb and bb, of genotypes bb and
BB, and of genotypes BB and BB are now designated by sca00, sca02 and
sca22, respectively. According to Equation (11.51), they are equal to

scaij = Gij − µ − gcai − gcaj ,

i.e. to
GFSij − µ − gcaPi − gcaPj
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According to Equation (8.8) the dominance deviation of a genotype belonging
to a panmictic population is equal to the difference between its genotypic value
and its additive genotypic value, where the additive genotypic value is equal
to µ + bv (Equation (8.18)). Thus

δ = G − γ = G − µ − bv

This implies

sca00 = G0 − µ − 2gca0 = G0 − µ − bv0 = δ0

sca02 = G1 − µ − 1
2bv0 − 1

2bv2 = G1 − µ − bv1 = δ1

sca22 = G2 − µ − 2gca2 = G2 − µ − bv2 = δ2

The sca value of a pair of homozygous genotypes appears thus to be equal to
the dominance deviation of the corresponding F1 genotype. Alternatively, the
other way around – the dominance deviation of a genotype is equal to the sca
value of its homozygous parents.

The variance of the sca values of pairs of lines is calculated from the prob-
ability distribution of the various pairs of lines and their sca values, i.e.

Pair of lines
(bb, bb) (bb,BB) (BB,BB)

f q2 2pq q2

sca δ0 δ1 δ2

This means that
Esca = Eδ = 0

and
var(sca) = var(δ) = σd

2

(see Section 8.3.3 and Equation (10.5)). Furthermore Equation (11.51) implies
that the variance of the genotypic values of the progenies obtained from the
complete diallel cross is equal to

var(G) = var(gca
M

) + var(gca
P
) + var(sca) = σa

2 + σd
2 (11.58)

where M and P refer to the maternal and paternal lines, respectively.
In conclusion, the quantitative genetic interpretation of the statistical quan-

tities gca and sca is in terms of breeding values, additive genotypic values and
dominance deviations. In the absence of overdominance one may state that the
gca value of a line will be high if it has, for many loci, the homozygous geno-
type BB, giving rise to a good performance. Then lines with a good gca will
tend to have a good performance per se. Improvement of gca can then simply
be pursued by elimination of undesired recessive alleles, e.g. by line selection
(see Examples 11.22 and 11.23). This means that a diallel cross, made with
the single goal to evaluate gca values, is a waste. The observation that a cross
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between certain inbred line yields an unexpectedly good performing offspring
is, nevertheless, of direct significance when developing a SC-hybrid variety.

The gca of a pure line and the sca of a pair of pure lines depend on the set
of pure lines used as a tester. Thus, estimates of gca and sca derived from a
particular diallel cross do not apply to other sets of pure lines. In this sense
estimation of gca and sca is of minor significance. For an incomplete diallel
cross one may, however, predict the genotypic value Gij of any FS-family Fij

which was not actually generated, by

Ĝij = x.. + gĉai + gĉaj

If the sca effects, i.e. the dominance deviations, are of minor importance, this
approach may save considerable efforts otherwise to be dedicated to cross-
ing and testing. It is speculated that this possibility of predicting progeny
performance is insufficiently exploited.

The timing of the estimation of the combining ability of inbred lines deserves
attention. In maize breeding it is still current procedure to develop pure lines
by selfing for 5-7 generations. Until this stage only some visual selection is
applied, but – because it has often been observed that the performances of
inbred lines do not predict precisely enough the performance of the SC-hybrid
to be obtained from these lines – the selection is useless with regard to the
performances of the hybrids to be made. Thereafter the combining abilities of
the more or less pure lines are determined.

Effort-saving shortcuts are, of course, attractive. Consequently, it is of inter-
est to check how well the performances of progenies obtained by crossing
‘young’ inbred lines predict the performances of the hybrids obtained by cross-
ing pure lines tracing back to these young lines. The limits of the potentials
of the inbred lines derived from some S0 plant are a priori determined by the
genotype of the S0-plant. Thus a reliable procedure for early assessment of the
potentials of lines under development would be of great value. It would allow
breeders to devote more efforts to selection among lines from S0 plants that
appeared to be promising.

Jenkins (1935) came to the conclusion that the ‘genetic values’ of inbred
lines, evaluated by testing progenies obtained from top-crosses, are deter-
mined early in the inbreeding process. This led to the evaluation procedure
called early testing. It was aimed at the identification of young lines deserv-
ing further development. Example 11.24 provides some results.

Example 11.24 Hallauer and Lopez- Perez (1979) studied the reliability
of early testing on the basis of 50 S1 lines and derived S8 lines. As a yard-
stick, the coefficient of correlation of the performances of progenies obtained
from the S1 lines and the performances of corresponding progenies obtained
from the S8 lines was used. These coefficients of correlation were estimated
when using four different types of testers. This yielded
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• r = 0.17 − 0.20 with tester I, a genetically heterogeneous population
related to the tested lines,

• r = 0.35 with tester II, an unrelated inbred line,
• r = 0.42 with tester III, an related low yielding inbred line; and
• r = 0.56 with tester IV, a related high yielding line.

The rather low coefficients of correlation imply that early testing is not very
reliable. In a few cases only three of the top six S1 lines were related with
the top six S8 lines. The progeny from the S1 line related to the S8 line
producing the best progeny performed worse than the average calculated
across the progenies from all S1 lines.

As expected, the variation among the progenies was greater when using
tester III or IV than when using tester I. Furthermore, the variation among
the progenies from the S8 lines was greater than the variation among the
progenies from the S1 lines. Progenies from the unrelated tester tended to
be the best.

One may conclude as follows: an unrelated elite inbred line, which could
be used as parent of a hybrid, may be a good tester. Inbred lines having
a good specific combining ability with regard to this tester will then be
identified. Possibly a hybrid variety may be developed on the basis of test-
crosses between the tested lines and this tester.



Chapter 12
Selection for Several Traits

In the preceding chapter only selection with regard to a single trait was considered.
One may say that, in practice, selection generally involves several traits. An
inexperienced breeder might assume that he is selecting with regard to just a single
quantitatively varying trait, for instance biomass yield of maize (Example 11.1),
whereas (s)he is, in fact, selecting with regard to a set of mutually correlated
traits (see end of Section 11.1). Selection, indeed, is often indirect.

With regard to traits with quantitative variation breeders always apply
indirect selection. They select among candidates on the basis of observed
phenotypic values, whereas the trait of interest concerns the genotypic val-
ues underlying the observed phenotypic values. Recently, indirect selection
based on molecular markers has become an important new tool to improve the
efficiency of selection with regard to traits with quantitative variation.

The smallest set of mutually correlated traits consists of two traits. The
selected trait is the trait as observed under the macro-environmental conditions
applying to the population subjected to selection, and the other trait is the same
trait but then as expressed under different macro-environmental conditions.

This chapters deals with various aspects related to selection for several traits.

12.1 Introduction

In practice breeders generally select with regard to several traits. These may
involve qualitative as well as quantitative variation. Procedures for selection
with regard to several traits, multiple selection, may be classified according
to several criteria. We consider here two criteria for classifying methods of
multiple selection:

1. The timing of the multiple selection: successively or simultaneously and
2. The motive to apply multiple selection: unintentional or intentional.

Successive or simultaneous multiple selection

If the selection concerns different traits in the first few generations than in later
generations, so-called tandem selection is applied. This common approach
is applied because initially the number of candidates, each represented by a
small number of plants, is very high. Thus in the first generations selection is
focussed on:

(i) Traits having a relatively high heritability with the number of plants avail-
able per candidate

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 289–323. 289
c© 2008 Springer.
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(ii) Traits which are reasonably easily assessed

In later generations the number of candidates is considerably smaller. Each
candidate may then be represented by such a high number of plants that
the heritability is high enough to make the selection efforts rewarding.
Example 12.1 specifies for a few crops traits selected in earlier and in later
generations.

Example 12.1 In cereal breeding attention is initially focussed on traits
like disease resistance or plant habit. With regard to the latter either
seedlings with a prostrate or seedlings with an erect growth habit are
selected. Thereafter candidates are subjected to selection for grain yield,
a trait with a relatively low heritability. In potato breeding selection may
start with simultaneous selection for eye depth and colour of the tuber. Later
on, and especially in the latest stage, tuber yield is considered.

With simultaneous selection several traits are considered in the same
generation. This approach is also commonly applied. A specific procedure,
called independent-culling-levels selection, is elaborated in Section 12.5.

Unintentional or intentional multiple selection

Unintentional multiple selection may occur even if the breeder intends to select
for just one trait. The response to the pursued single-trait selection may then
be associated with so-called correlated responses to selection with regard
to other traits. This is due to associations between the trait considered by the
breeder and other traits (see Example 12.2).

Example 12.2 In the long-lasting selection programme of maize described
in Example 8.4, the direct selection for either high or low oil or protein con-
tent implied unintentional indirect selection with regard to many other
traits. A correlated response to selection was observed for grain yield, earli-
ness, plant height, tillering, etc.

Intentional multiple selection is applied in various ways. Visual selection for
an abstract trait like ‘general impression’ or ‘breeder’s preference’ is charac-
teristic for the non-formal way. In Section 12.5 two formal forms of intentional
multiple selection are considered:

• Index selection: With index selection some index value is assigned to each
candidate. This index value indicates the aggregate value of each candidate
across several traits. The selection itself consists of truncation selection
among the candidates with regard to their index values.

• Independent-culling-levels selection (ICL-selection): With truncation
selection all plants performing – with regard to some trait – better than a
certain minimum phenotypic value are selected (Section 11.1). ICL-selection
is an extension of truncation selection. It implies simultaneous application
of minimum phenotypic values for several traits.
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Unlike the treatment in Chapter 6 of selection for variation determined by a
single qualitative locus, it is virtually impossible to describe the process of
multiple selection in algebraic expressions. The process differs from crop to
crop, for a given crop from stage to stage, and for a given stage from breeder
to breeder. It is, in fact, impossible to present a general description of genetic
progress. Thus the present chapter deals predominantly with the introduction
of two new concepts, viz. genetic correlation (Section 12.2) and indirect
selection (Section 12.3).

12.2 The Correlation Between the Phenotypic or Genotypic
Values of Traits with Quantitative Variation

A clear linear association of the phenotypic values for trait X and the pheno-
typic values for trait Y implies a high value for the phenotypic correlation
ρp(X,Y). Indeed, the coefficient of correlation measures the degree of linear
relationship between two traits. In fact, the commonly experienced associa-
tion of phenotypic values for different characters is one of the characteristic
features of traits with quantitative traits. This association may be due to

1. A functional relationship
2. Pleiotropy and/or linkage
3. Variation in environmental conditions

A functional relationship between different traits

In Example 8.3 the functional relationship between phenotypic values for grain
yield (Y) of cereals and phenotypic values for its components X1, X2, X3 and
X4 was described by:

p
Y

= p
X1

· p
X2

· p
X3

· p
X4

Such relationship implies an association between, for example, the phenotypic
values for traits X1 and Y. The question may be raised as to whether a complex
trait such as Y is directly affected by specific loci or whether its expression is
due to loci affecting the components.

Pleiotropy and/or linkage

An allele with pleiotropic effects affects the genotypic value of, sometimes,
apparently unrelated traits. This phenomenon gives rise to a genetic syndrome.
Pleiotropy and linkage are genetic causes for the occurrence of association of
phenotypic values for different quantitative traits.

If some plants have a genotype for a pleiotropic locus affecting traits X and
Y both in a favourable way and others a genotype affecting both traits in an
unfavourable way, then the genotypic values for X and Y will be positively
correlated.
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In the case of linkage disequilibrium, the probability distribution of the
genotypes for locus B1-b1 affecting trait T1 and the probability distribution
of the genotypes for locus B2-b2 affecting trait T2 are not independent. This
implies correlation of the genotypic values for traits T1 and T2 (in as far as
affected only by these loci). In the presence of linkage equilibrium with regard
to these loci, there will be no genotypic correlation, unless the involved loci
have pleiotropic effects with regard to the considered traits.

Example 12.3 considers these two causes for traits to be associated.

Example 12.3 In Fig. 12.1 locus B-b has pleiotropic effects with regard to
traits X1 and X2. Locus H-h is pleiotropic with regard to traits X1 and X3

and loci D-d and G-g are pleiotropic with regard to traits X2 and X3. These
pleiotropic effects induce phenotypic correlation of traits X1 and X2, X1 and
X3 and X2 and X3. Trait X4 is controlled by the non-pleiotropic loci I-i, J-j
and K-k.

Fig. 12.1 The genetic control of the quantitative traits X1, X2, X3 and X4 by the loci

A-a, . . . , K-k. The dashed box encloses linked loci
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Variation in environmental conditions

Variation in the quality of growing conditions induces correlation of the phe-
notypic values for different traits. Such variation induces covariance of the
environmental deviations: certain plants grow under favourable conditions for
traits X and Y and others under unfavourable conditions.

In genetically homogeneous plant material the coefficient of phenotypic cor-
relation between traits X and Y has a special interpretation. The correlation
of p

X
= GX + eX and p

Y
= GY + eY is then equal to the correlation of the

environmental deviations:

ρp =
cov(p

X
, p

Y
)

σpX · σpY

=
cov(eX, eY)
σeX · σeY

= ρe

The parameter ρe is called the environmental correlation. Example 12.4
describes an interesting cause for environmental correlation, namely interplant
competition.

Example 12.4 In a genetically uniform variety of a cereal crop, the coef-
ficient of correlation of grain yield and plant height of separate plants tends
to be positive. This might be due to variation in seed size. Some plants origi-
nate from large kernels giving rise to early emergence and/or large seedlings.
These plants tend to have a higher grain yield and to be taller than plants
originating from small seeds. This cause for a positive correlation applies
especially in the presence of interplant competition, i.e. at high plant den-
sity. However, whatever the plant density may be, variation in soil fertility
will always induce a positive correlation: tall and high-yielding plants will
develop at good positions, whereas short and low-yielding plants will occur
at poor positions.

The relationship between ρp(X,Y), the genetic correlation ρg(X,Y) and
the environmental correlation ρe(X,Y) will now be derived. In statistics
ρ, the coefficient of correlation of the random variables x and y, is defined as

ρ :=
cov(x, y)
σx · σy

Thus
cov(x, y) = ρσxσy

This is applied to an elaborated expression for ρp:

ρp(X,Y) =
cov(p

X
, p

Y
)

σpX · σpY

=
cov(GX + eX,GY + eY)

σpX · σpY

If, due to randomization, the covariance of the genotypic value and the envi-
ronmental deviation is zero, ρp(X,Y) is equal to

cov(GX,GY) + cov(eX, eY)
σpX · σpY
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This is rewritten into
ρgσgXσgY + ρeσeXσeY

σpX · σpY

= ρghXhY + ρeeXeY (12.1)

where
h =

σg

σp

and
e =

σe

σp

Thus
e2 =

σe
2

σp
2

=
σp

2 − σg
2

σp
2

= 1 − h2

and
e =

√
1 − h2

(see also Equation (11.24)). If hX = hY = 0, i.e. eX = eY = 1, Equation
(12.1) yields ρp = ρe. Thus, as shown before, the coefficient of phenotypic
correlation occurring in genetically uniform plant material is to be interpreted
as the coefficient of environmental correlation.

The environmental variance for some trait may differ from genotype to
genotype (Example 8.9). Likewise, the environmental correlation of two traits
may vary across genotypes.

The phenotypic correlation in a genetically heterogeneous population
depends on both the genetic and the environmental correlation. These may
have very different values, even values of opposite signs.

Estimation of ρp, ρg or ρe may require considerable effort. In Section 12.4
several procedures for obtaining estimates, designated by rp, rg and re, respec-
tively, are elaborated.

12.3 Indirect Selection

In the case of genetic correlation between traits X and Y, the mean phenotypic
value with regard to trait Y of the candidates selected for trait X will differ
from the mean phenotypic value of all candidates. The difference is called
correlated selection differential (see Equation (11.4)). The selection for
trait X will thus not only yield a selection response with regard to trait X itself
but, due to the correlated selection differential, also a correlated response
(CR) with regard to trait Y. The response to such indirect selection is the
topic of the present section. It will be compared to the response to direct
selection for Y.

Indirect selection is in fact always applied as the selection for some trait
involves phenotypic values, whereas the target of the selection is improve-
ment with regard to genotypic values. Application of indirect selection is thus
unavoidable.
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When applied deliberately, indirect selection may be defined as selec-
tion with regard to some trait X with the target to attain some selection
response with regard to trait Y. Trait X serves then as the so-called auxil-
iary trait; trait Y is the target trait, often yield. To be able to compare the
response to indirect selection with the response to direct selection the concept
of relative selection efficiency has been developed (Section 12.3.1).

Indirect selection may be applied deliberately. A specific application is index
selection (Section 12.5). It may also be applied because of economic reasons,
especially the saving of time. Three examples are given:

1. A breeder might select among inoculated seedlings in order to improve adult
plant resistance.

2. Woody crops, such as coffee or oil palm, have a long lasting juvenile phase.
Yield is only expressed after a number of years. Selection among juvenile
plants with regard to juvenile plant traits related to yield, may then be
considered. Thus juvenile girth width at breast height may indicate adult
plant production.

3. The breeder might select among seedlings on the basis of observation of
markers predicting adult plant performance. This is specifically pursued
when applying marker-assisted selection (Section 12.3.2). Such selection
may be applied, not just because of saving time but also because of its
high relative selection efficiency.

Indirect selection is also applied when the selection occurs under condi-
tions deviating from the conditions provided in plant production practice
(Section 12.3.3).

12.3.1 Relative selection efficiency

Equation (11.13) indicates how the response to selection for trait X, say RX,
to be expected at a certain selection differential with regard to this trait, say
SX, can be predicted, viz.

RX = βSX,

where the quantitative genetic meaning of β depends on the situation. In
the case of selecting candidates with identical reproduction β is equal to the
heritability of X in the wide sense

(
hw

2
)
, in the case of selection of candidates

belonging to a cross-fertilizing crop (non-identical reproduction) β is equal to
the heritability of X in the narrow sense

(
hn

2
)
.

We now consider, both for the case of identical reproduction of the selected
candidates and for the case of non-identical reproduction by means of cross-
fertilization of the selected candidates:

1. The correlated response, with regard to trait Y, say CRY , to be expected at
a selection differential, amounting to SX, with regard to trait X. Analogous
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to Equation (11.13) we write

CRY = β′SX, (12.2)

The quantitative meaning of β′ is derived for both situations.
2. The ratio

CRY

RY
(12.3)

This ratio is called relative selection efficiency (RSE ). If RSE > 1
one may consider application of indirect selection for Y instead of direct
selection. The selection is then for the auxiliary trait X in order to improve
target trait Y. Indirect selection may thus be applied because it offers
better prospects than direct selection.

Identical reproduction of the selected candidates

At identical reproduction of the selected candidates the quantitative genetic
meaning of β′ is

β′ =
cov(GY, p

X
)

var(p
X
)

=
cov(GY,GX)

var(p
X
)

=
cov(GY,GX)

σgX · σgY

· σgX

σpX

· σgY

σpX

= ρg · hwX · σgY

σpX

This yields

CRY = ρg · hwX · σgY

σpX

· SX = iX · ρg · hwX · σgY

σpX

· σpX = iXρghwXσgY (12.4)

The relative selection efficiency is thus

RSE =
iXρghwXσgY

iYhwYσgY

=
iX
iY

· ρg · hwX

hwY

(12.5)

Cross-fertilization of the selected candidates

At cross-fertilization of the selected candidates the quantitative genetic mean-
ing of β′ is

β′ =
cov(γ

Y
, p

X
)

var(p
X
)

=
cov(γ

Y
, γ

X
)

var(p
X
)

=
cov(γ

Y
, γ

X
)

σaY · σaX

· σaX

σpX

· σaY

σpX

= ρa · hnX · σaY

σpX

where γ represents the additive genotypic value (Equation (8.6)) and where
ρa(X, Y) is the so-called additive genetic correlation of traits X and Y.
This parameter can be related to a parameter called coheritability of traits X
and Y, see Note 12.1.
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Note 12.1 We define now a parameter, called co-heritability in the wide
sense of traits X and Y (coh2

w(X,Y)), for the case of identical reproduc-
tion, viz.

cohw
2(X,Y) :=

cov(g
Y
, g

X
)

σpX · σpY

=
covg(X,Y)
σpX · σpY

,

as well as a parameter, called co-heritability in the narrow sense of
traits X and Y (coh2

n(X,Y)), for the case of the non-identical reproduction
occurring in a cross-fertilizing crop, viz.

cohn
2(X,Y) :=

cov(γ
Y
, γ

X
)

σpX · σpY

=
cova(X,Y)
σpX · σpY

(12.6)

Thus
cov(X,Y) = coh2(X,Y) · σpX · σpY

As
cov(X,Y) = ρ(X,Y) · σX · σY

the above definitions imply

coh2
w(X,Y) = ρg(X,Y) · hwX · hwY (12.7a)

and
coh2

n(X,Y) = ρa(X,Y) · hnX · hnY . (12.7b)

respectively.

The correlated response to selection amounts thus to

CRY = iX · ρa · hnX · σaY

σpX

· σpX = iXρahnXσaY (12.8)

The relative selection efficiency is thus

RSE =
iXρahnXσaY

iYhnYσaY

=
iX
iY

· ρa · hnX

hnY

(12.9)

Equation (12.9) resembles Equation (12.5) very closely.
The conditions yielding RSE > 1 are

1. ρg > hY
hX

at iX ≈ iY
This condition applies with a strong genetic correlation of traits X and Y
and when hX

2 
 hY
2, i.e. when the target trait has a very low heritability

compared to the heritability of the auxiliary trait.
2. iX > iY at ρg ≈ hY

hX

This condition may apply when dealing with a dioecious crop. The auxil-
iary trait X may be expressed by both male and female plants, whereas the
target trait Y is only expressed by female plants, e.g. seed or fruit yield (see
Example 12.5).
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Example 12.5 Breure (1986) considered improvement of oil palm yield per
ha by selecting palms with a high bunch index (BI), i.e. the proportion of
the above-ground dry matter per palm used for fruit bunches (Y). In fact he
considered indirect selection for Y. It appeared that the heritability of both
BI and Y was quite low in the material tested. An additional problem is that
pisifera palms, i.e. the male parents of the presently cultivated tenera palms,
can not be selected for BI and/or Y as they are mostly female sterile. Pisifera
selection concerns therefore general impression based on visual observations.
Other selection criteria are therefore desired. Breure studied a few potential
auxiliary traits:

• Magnesium content of the leaves of pisifera palms. In magnesium defi-
cient areas the Leaf Magnesium status (LMG) was found to be positively
correlated with yield, whereas it also has a high heritability.

• Sex ratio (SR), i.e. the ratio of the number of female inflorescences to the
total number.

• Leaf are ration (LAR), i.e. the ratio of new leaf are produced to new dry
matter used for vegetative growth.

Breure applied multiple linear egression of data for Y, as observed for tenera
palms on parental data for LMG, SR and LAR. He found that 80% of the
variance for Y in the offspring was exclusively accounted for by LMG of both
parents, with LMG of pisifera being most important (66% of the variance
explained). The use of LMG values of effectively male pisifera palms looked
thus promising for indirect selection.

In the case of dioecy we have

iX = 1
2 (imX + ifX)

and, because imY = 0:

iY = 1
2 (imY + ifY) = 1

2 ifY

Example 12.6 gives, for a dioecious crop, a theoretical illustration of a situation
with iX > iY.

Example 12.6 We consider a population of a dioecious crop consisting of
500 male and 500 female plants. Trait Y is the target trait which is expressed
by female plants after pollen distribution; X is an auxiliary trait which is
expressed by all plants before pollen distribution. One may select 50 plants
with regard to trait Y. These plants, i.e. 10% of the female plants, have
already been pollinated in the absence of selection among the male plants.
According to Falconer (1989; Appendix Table A) this implies iY = 1

2 ifY =
1
2 (1.755) = 0.8775. Selection of 50 plants with regard to X, i.e. 5%, implies
iX = 2.063. In this situation iX

iY
= 2.35, which may imply that RSE > 1.
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The situation RSE > 1 may of course especially occur if both of the former
conditions apply. Example 12.7 summarizes some practical results of applica-
tion of indirect selection.

Example 12.7 For five seasons Lonnquist (1967) applied indirect selection
with regard to grain yield by selecting for prolificacy in the open-pollinating
maize variety Hays Golden. In each season a selection field comprising 4000
to 5000 plants was grown. The plant density was only 2 plants per m2. This
promotes the expression of prolificacy. From each of the circa 200 selected
prolific plants, i.e. about 5%, one ear was harvested. The result of each
selection cycle was established by means of a yield trial with at least 10
replicates and including the original variety as a check. Each yield trial lasted
3 years and was grown at a plant density of 3.45 plants/m2.

Regression of the relative yield, i.e. the grain yield expressed as percent-
age of the grain yield of Hays Golden, on the rank of the selection cycle
showed a progress of 6.3% per cycle. The progress due to direct selection
of 10% of the plants, measured in the same way, was 3.8% per cycle. (This
favourable result of indirect selection may have been due to the higher selec-
tion intensity as well as to the low plant density applied in the yield trial).

In oat indirect selection for grain yield via selection for harvest index, i.e.
grain yield/biomass, was 43% as effective as direct selection (Rosielle and
Frey, 1975). However, indirect selection was expected to retain lines with a
more favourable combination of yield, plant height and heading date than
the lines expected to be retained with direct selection for yield.

Indirect selection may even be attractive if RSE < 1. It may be applied to
save time and/or effort. Time is saved if selection for a trait, expressed in an
early ontogenetic phase, is applied in order to get improvement with regard
to an adult plant trait. In resistance breeding this form of indirect selection
is common practice. In many cases it has been established that seedling resis-
tance and adult plant resistance are strongly correlated. Barley seedlings may,
for instance, be selected for partial resistance to barley leaf rust (Puccinia
hordei) in order to improve the resistance of adult plants.

Especially for crops with a long-lasting juvenile phase, breeders are inter-
ested in juvenile plant traits correlated with the target trait(s) expressed by
adult plants. For woody crops, such as apple, coffee or oil palm, often the girth
width of the stem at breast height is used as an auxiliary trait. Effort is saved
if the auxiliary trait is easier to assess than the target trait.

12.3.2 The use of markers

One may generalize that direct selection tends to be inefficient with regard
to traits with quantitative variation. Chapter 17 summarizes causes for this
challenging situation. As a way-out breeders may consider indirect selection
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by selecting for marker phenotypes. Such selection is, of course, only of interest
if it gives rise to a rewarding correlated response with regard to the target trait.

A marker with regard to some quantitative trait is a trait such that differ-
ent phenotypic values/classes of the marker trait are associated with different
mean phenotypic values of the quantitative trait of interest. In the present
context markers are auxiliary traits used for indirect selection with regard to
a target trait. The association requires linkage between the locus (or the loci)
controlling the marker and the locus (or the loci) affecting the target trait.
(For random mating populations even the more demanding condition of link-
age disequilibrium is required). The probability distribution for the genotypes
for the locus controlling the marker and the probability distribution for any
locus affecting the target trait should thus be interdependent. Only in that
case a (positive or a negative) covariance, i.e. an association, between marker
and target trait may occur (Section 10.1).

The marker may be a plant trait that is visually observed, for instance
flower colour. It may also be the product of a genotype for a certain locus,
for instance a polypeptide or a protein. An important category of markers are
the so-called molecular markers. In this case the marker is neither a plant
trait nor a gene product; the marker consists of (cloned parts of) the DNA
itself. The presence or the absence of a certain band in the lane obtained by
gel electrophoresis involving some genotype characterizes the studied entry.

With the aid of molecular marker techniques it has become possible to
identify individual loci affecting quantitative traits (Stam, 1998). This greatly
improves the understanding of the genetic control of quantitative traits. It
permits the assessment of the degree to which related traits are controlled
by the same or by distinct loci. (Thus a locus affecting kernel size may or
may not coincide with a locus affecting grain yield.) Or it may appear, when
growing a certain population in a range of environments, that some of the loci
affecting a trait are expressed in all environments, whereas other loci are only
expressed in specific conditions. The latter loci are responsible for genotype
× environment interaction (Manneh, 2004).

If polymorphic, a molecular marker reflects small differences in the DNA
sequence that are observed as the presence or the absence of a band at a certain
position in the lane. This implies that molecular markers have a heritability
which is equal to one: the presence or the absence of the band is completely
determined by the genotype. A further advantage is that the marker pheno-
types (or genotypes; h2 = 1!) can already be determined from DNA extracted
from seedlings. It is tempting to assume that the relative efficiency of so-called
marker-assisted selection, often indicated as MAS, tends to be larger than
one: RSE > 1.

It was already emphasized that a polymorphism, appearing when a set of
genotypes segregates with regard to the presence or the absence of a band at a
certain position in a gel alongside the lanes, can only be used as a marker if the
genotypes where the band is present have a higher or a lower mean phenotypic
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value for one or more target traits than the genotypes where the band is absent.
This requires that the involved population is in linkage disequilibrium. For
the sake of illustration such associations are here only elaborated for an F2

population, as well as for sets of pure lines obtained in the absence of selection,
either by some procedure to generate doubled haploids (DH) or by continued
selfing (F∞). Weber and Wricke (1994) consider associations occurring in some
other populations: F3 populations, backcross families, backcrosses selfed, F1

top cross.
Let locus X-x designate the locus controlling variation in a marker, i.e. vari-

ation with regard to the auxiliary trait X, and locus Y -y, a locus affecting
variation with regard to the target trait Y. Locus Y -y is often called a quanti-
tative trait locus (QTL). These two loci are linked with recombination value r,
where 0 < r ≤ 1

2 . The genotypic compositions of the considered populations,
as obtained from the initial cross xxyy ×XXY Y , are derived from Tables 2.2
and 3.2:

Genotype

xxyy xxY y xxY Y Xxyy XxY y XxY Y Xxyy XXY y XXY Y

G − m −a d a −a d a −a d a

f : F2
1
4
(1 − r)2 1

2
r(1 − r) 1

4
r2 1

2
r(1 − r) 1

2
(1 − r)2 1

2
r(1 − r) 1

4
r2 1

2
r(1 − r) 1

4
(1 − r)2

+ 1
2
r2

DH 1
2
(1 − r) 0 1

2
r 0 0 0 1

2
r 0 1

2
(1 − r)

F∞ 1
2(1+2r)

0 2r
2(1+2r)

0 0 0 2r
2(1+2r)

0 1
2(1+2r)

The plants/lines are classified according to their genotype for locus X-x and
the expected genotypic value with regard to trait Y is determined for each
class. Association, i.e. different classes have different (conditional) expected
genotypic values, will be shown to be present if locus X-x is linked with locus
Y -y, i.e. if r < 1/2.

F2 population

The probability that an F2 plant belongs to marker class xx is 1
4 . The (con-

ditional) expected genotypic value of such plants amounts to:

E(G|xx) = (1 − r)2(m − a) + 2r(1 − r)(m + d) + r2(m + a)

= m − a[(1 − r)2 + r2] + 2r(1 − r)d
= m − (1 − 2r)a + 2r(1 − r)d

Likewise
E(G|Xx) = m + (1 − 2r + 2r2)d

and
E(G|XX) = m + (1 − 2r)a + 2r(1 − r)d
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The (conditional) expected genotypic values of the three marker classes are
equal if loci X-x and Y -y are unlinked, i.e. if r = 1

2 :

E(G|xx) = E(G|Xx) = E(G|XX) = m + 1
2d

They are different if loci X-x and Y -y are linked, i.e. r < 1
2 . For genotypes

XX and xx the expected difference is

E(G|XX) − E(G|xx) = 2(1 − 2r)a = (1 − 2r)(GY Y − Gyy) (12.10)

Example 12.8 shows for an F2 population how different marker genotypes give
rise to different expected genotypic values with regard to trait Y because of
linkage between the marker locus X-x and some locus Y -y affecting trait Y.

Example 12.8 An F2 population segregates for locus Y -y, affecting a
quantitative trait (with m = 80, a = 20 and d = 0), as well as for locus X-x,
controlling a marker. In the homozygous parental genotypes these loci were
linked (with recombination value r = 0.2) in coupling phase. According to
Table 2.2 the genotypic composition of the F2 is:

Genotype
xxyy xxY y xxY Y Xxyy XxY y XxY Y Xxyy XXY y XXY Y

f 0.16 0.08 0.01 0.08 0.34 0.08 0.01 0.08 0.16
G 60 80 100 60 80 100 60 80 100

Thus:

E(G|xx) = 4(0.16 × 60 + 0.08 × 80 + 0.01 × 100) = 68
E(G|Xx) = 2(0.08 × 60 + 0.34 × 80 + 0.08 × 100) = 80

and
E(G|XX) = 4(0.01 × 60 + 0.08 × 80 + 0.16 × 100) = 92

It can easily be verified that these conditional expected genotypic values are
equal to m − (1 − 2r)a, m, and m + (1 − 2r)a, respectively. The difference
between the expected genotypic value of plants in marker class XX and
plants in marker class xx is equal to 92 − 68 = 24, i.e. to 2(1 − 2r)a.

DH lines

Among DH lines of marker class xx the expected genotypic value is

E(G|xx) = m + (1 − r)(−a) + r(a) = m + (1 − 2r)(−a)

and likewise

E(G|XX) = m + r(−a) + (1 − r)a = m + (1 − 2r)a

Thus

E(G|XX) − E(G|xx) = 2(1 − 2r)a = (1 − 2r)(GY Y − Gyy) (12.11)
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F∞ lines

For F∞ lines it can be derived that

E(G|xx) = m − (1 − 2r)a
1 + 2r

and
E(G|XX) = m +

(1 − 2r)a
1 + 2r

This implies that

E(G|XX) − E(G|xx) =
2(1 − 2r)a

1 + 2r
=

1 − 2r

1 + 2r
(GY Y − Gyy) (12.12)

For any marker the expected contrast between the genotypic values of classes
xx and XX as obtained for DH lines is equal to the expected contrast as
obtained for F2 plants. This contrast is expected to be larger than the corre-
sponding contrast for F∞ lines. However, when comparing a set of DH lines
with a set of F∞ lines it depends on the marker, i.e. on r, which set of lines
gives rise to the larger contrast between the considered marker classes.

Linkage, i.e. 0 < r < 1
2 , is shown to be present if the mean phenotypic values

of plants representing different marker classes differ significantly. Equations
(12.10) to (12.12) show that both r and a (or GY Y −Gyy) affect the size of the
difference between marker classes XX and xx.

Knowledge about linkage between a marker and a QTL requires that a
marker linkage map is available. Such a map is constructed by studying the
co-segregation of pairs of markers in the offspring generation(s) obtained after
crossing two genotypes. The estimated recombination values serve as a basis
to assign each marker to a linkage group and to determine its best-fitting
position within the group. Computer programs have been developed to assist
with the determination of the best-fitting position among other markers within
the group; see e.g. Stam and Van Ooijen (1995).

The position on the linkage map assigned to a QTL affecting the considered
quantitative trait depends on the degree of association between genotypes of
markers closely linked to the QTL with trait values. By scanning the markers
alongside an ordered map for their association with the trait values a likely
map position is assigned to each QTL (Van Ooijen and Maliepaard, 1995).
Simultaneously the effects of the genes at the QTL are estimated. Indeed, the
contrasts like those specified by Equations (12.10) to (12.12) depend both on
the parameters a and d for locus Y -y and on r, the recombination value of
the marker locus and the involved QTL. In Note 12.2 it is shown how one
may obtain separate estimates for both the position of a QTL and its genetic
effect.

Note 12.2 Separate estimation of r and a or d is possible by considering
two linked marker loci X1-x1 and X2-x2, with known recombination value
r, which embrace locus Y -y. The recombination value of loci X1-x1 and Y -y
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is designated by r1 and the recombination value of loci X2-x2 and Y -y is
designated by r2. Here only the situation of absence of chiasma interference
(Section 2.2.4) is elaborated; thus: r = r1 + r2 − 2r1r2.

The determination of the position of locus Y -y relative to the positions
of the flanking marker loci is called interval mapping. The procedure is
illustrated for DH lines as obtained from the initial cross x1x1yyx2x2 ×
X1X1Y Y X2X2. The genotypic composition of the set of DH lines follows
from the haplotypic composition of the gametes produced by the F1:

Genotype f G
x1x1Y Y x2x2

1
2r1r2 m + a

x1x1yyx2x2
1
2 (1 − r1)(1 − r2) m − a

X1X1Y Y x2x2
1
2 (1 − r1)r2 m + a

X1X1yyx2x2
1
2r1(1 − r2) m − a

x1x1Y Y X2X2
1
2r1(1 − r2) m + a

x1x1yyX2X2
1
2 (1 − r1)r2 m − a

X1X1Y Y X2X2
1
2 (1 − r1)(1 − r2) m + a

X1X1yyX2X2
1
2r1r2 m − a

The above genotypes have been ordered according to their (homozygous)
marker genotypes. The frequencies of the marker genotypes are:

Genotype f

x1x1x2x2
1
2
r1r2 + 1

2
(1 − r1)(1 − r2) = 1

2
[1 − (r1 + r2 − 2r1r2)] = 1

2
(1 − r)

X1X1x2x2
1
2
(1 − r1)r2 + 1

2
r1(1 − r2) = 1

2
(r1 + r2 − 2r1r2) = 1

2
r

x1x1X2X2
1
2
r1(1 − r2) + 1

2
(1 − r1)r2 = 1

2
r

X1X1X2X2
1
2
(1 − r1)(1 − r2) + 1

2
r1r2 = 1

2
(1 − r)

The conditional expected genotypic values of each marker class amount
then to:

E(G|x1x1x2x2) = m +
[r1r2 − (1 − r1)(1 − r2)]a

1 − r
= m − (1 − r1 − r2)a

1 − r

E(G|X1X1x2x2) = m +
[(1 − r1)r2 − r1(1 − r2)]a

r
= m − (r1 − r2)a

r

E(G|x1x1X2X2) = m +
[r1(1 − r2) − (1 − r1)r2]a

r
= m +

(r1 − r2)a
r

E(G|X1X1X2X2) = m +
[(1 − r1)(1 − r2) − r1r2]a

1 − r
= m +

(1 − r1 − r2)a
1 − r

The position of the QTL can be estimated, i.e. r1 and, due to the equation
r = r1 +r2−2r1r2, implicitly r2, can be estimated by applying linear regres-
sion. For each of a number of tentative values for r1 the regressor values
are calculated. These are the values for the coefficients of a in the above
expressions, i.e. for − 1−r1−r2

1−r ,− r1−r2
r , r1−r2

r and 1−r1−r2
1−r . Then, indeed, for
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each tentative value for r1 the trait values of the DH-lines are regressed onto
these regressor values. Among all regression analyses the one yielding the
smallest residual sum of squares of deviations is taken to indicate the most
appropriate value for r1 (Kearsey and Pooni, 1996). The values estimated,
according to this regression analysis, for the intercept is an estimate for m
and the value estimated for the slope is an estimate for a. This procedure
is repeated for other adjacent pairs of markers, viz. X2-x2 and X3-x3,X3-x3

and X4-x4 etc., in order to find the most likely position(s) of the QTL.

A QTL identified in the offspring of a particular cross may or may not be
expressed in the offspring of another cross. Two reasons for this can be brought
forward (Stam, 1998):

1. The QTL detected in the offspring of the first cross does not segregate in
the offspring of the second cross because the parents involved in this second
cross have the same homozygous genotype.

2. The expression of the QTL depends on the genetic background, which may
vary from one pair of parents to the next.

When growing a certain population in a range of environmental conditions it
may appear that some of the QTLs are expressed in all environments, whereas
others are only expressed in specific conditions. The latter QTLs are respon-
sible for genotype × environment interaction.

Since the major part of the nuclear DNA is non-coding, most markers are
phenotypically neutral: presence or absence of a band has no effect on the
phenotype. A polymorphic band may thus only be identified as a marker
in sensu stricto, i.e. the mean phenotypic values of plants/lines belonging to
different marker classes differ significantly. The following two factors determine
the level of significance:

1. The accuracy of the estimates of the expected genotypic values of the
marker classes.
The expected genotypic value of a marker class is more accurately estimated
by its mean phenotypic values as the number of entries sampled within the
marker class is higher. Additionally the accuracy depends on the heritability
of the trait, i.e. on the extensiveness of the evaluation (in the field or in
the glasshouse) of the involved genotypes. The heritability will be higher
when evaluating the genotypes in larger plots and/or in a higher number
of replications. DH and F∞ lines are therefore of special interest for QTL
mapping

2. The size of the contrast between marker classes.
It has been shown that a contrast depends on the strength of the linkage
between the marker locus and the involved QTL: a contrast tends to be
larger as r is closer to 0, i.e. as (1− 2r) is larger. Furthermore the contrast
depends on the involved QTL: the larger its values for a (and d), the larger
the contrast.
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Marker-assisted selection

When the genetic control of the target trait is monogenic (or oligogenic)
marker-assisted selection consists of selection of the candidates belonging to
the marker class associated with the most attractive mean phenotypic value
for trait Y. Alternatively, one may try to incorporate the attractive allele for
trait Y by means of repeated backcrossing focussed on the introduction of the
allele at ‘locus’ X-x linked to this attractive allele. This is only manageable if

1. There is strong linkage between ‘locus’ X-x and locus Y -y
2. The expression for trait Y is controlled by a small number of loci (Dudley,

1993)

When dealing with a polygenic target trait, the breeder may select for mark-
ers tagging favourable QTL alleles (and not with regard to the phenotype).
Favourable alleles tagging different QTLs are then accumulated. In this way
fruit size increasing QTL alleles occurring in a wild species of tomato (Lycop-
ersicon pimpinellifolium Mill.) were efficiently transferred to lines of cultivated
tomato (L. esculentum Mill.).

Marker-assisted selection may involve prediction of the genotypic values of
the candidates on the basis of marker data. The prediction might be based
on multiple linear regression of trait data on the markers, which – in this
case – serve as regressors. The trait data should be derived from an evalu-
ation of plant material under growing conditions identical to those applied
in commercial cultivation. Thus, preferentially, the evaluation should involve
large, replicated plots. In the regression analysis several, or even many, poly-
morphic bands should be evaluated as a marker with regard to the target
trait. Example 12.9 illustrates such linear regression approach and suggests
how marker data can assist in choosing pairs of parents to be crossed.

Example 12.9 Bos and Qi (1997) studied a set of 103 pure lines of barley.
These were obtained after crossing cultivar Vada (P1) and L94 (an exotic
line, P2) and developed by continued selfing in the absence of selection. They
assigned numerical values to the regressors in the following way: if a genotype
showed a band at a position identical to the position of a band in parent P1,
whereas that band did not occur in parent P2, the genotype got the score 1
for this marker; otherwise it got the score 0. If the genotype showed a band
at a position identical to the position of a band in P2, whereas that band
did not occur in P1, the genotype got the score 0; otherwise it got the score
1. Altogether this coding rule simply implies that a genotype got score 1 for
the considered band position in the case of similarity to P1 and score 0 in
the case of similarity to P2.

When regressing (with backward elimination of markers) data for date
of anthesis (y) on 74 polymorphic AFLP-markers (x1, . . . , x74) the following
regression function was obtained:

ŷ = −4.37 − 3.29x1 + 4.7x2 + 4.09x3 + 3.15x4
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The adjusted coefficient of multiple determination amounted to Radj
2 = 0.68.

The regressors x1, · · · , x4 represent four markers. The coefficient −3.29
of the first marker implies that a pure line with a marker genotype like Vada
is expected to have a 3.29 days earlier anthesis than a pure line with a marker
genotype like L94. A breeder dealing with the described plant material and
pursuing a later date of anthesis, might select lines with marker genotype 0,
1,1 and 1, resp. for the four markers in the regression function. The expected
date of anthesis of a line with such a complex marker genotype is 7.57 days;
i.e. 7.57 days later than the overall mean date of anthesis. If the set of pure
lines would not contain a line with the genotype coded as 0111, the breeder
might try to generate it by crossing lines that are selected such that the line
with the pursued genotype might occur in the set of pure lines obtained after
crossing them. Thus cross 1000 × 0111 is expected to produce a line with
genotype 0111 with a probability of (1

2 )4 = 0.0625 if indeed the four markers
would segregate independently.

12.3.3 Selection under Conditions Deviating from the Conditions
Provided in Plant Production Practice

This section gives attention to reasons for applying indirect selection as dis-
cussed before. Breeders aim to develop plant material performing better under
the conditions applied by professional farmers or horticulturists. The improve-
ment with regard to the target trait is pursued by means of selection for that
trait as expressed in the growing conditions required for efficient selection. For
example, the selection may occur at a plant density that is low compared to
the plant density applied by growers. Such a difference in growing conditions
means that the actual selection should be considered as indirect selection for
the target trait. Examples 12.10 and 12.11 give illustrations.

Example 12.10 Arboleda-Rivera and Compton (1974) applied mass selec-
tion in maize under three different conditions:

1. Selection in the rainy season
When evaluating under rainy season conditions the response to direct
selection is measured. It amounted to 10.5% per cycle for yield and to
8.8% per cycle for number of ears per plant. When testing in the dry
season the improvement due to ‘indirect’ selection was only 0.8% for yield
and 1.0% for number of ears per plant

2. Selection in the dry season
When evaluating in the dry season the response per cycle amounted to
2.5% for yield and to 4.4% for number of ears per plant. When testing in
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the rainy season the progress per cycle was 7.6% for yield and 11.4% for
number of ears per plant.

3. Selection in both seasons
When evaluated in the rainy season the increase of yield was 5.3% and
that of number of ears 7.0%. In the dry season the progress for yield was
1.1% per cycle, whereas for number of ears per plant it was 3.3%.

Example 12.11 Ceccarelli, Grando and Impiglia (1998) studied the effi-
ciency of direct selection of barley in stress environments in comparison with
indirect selection in near-optimum environments followed by testing under
stress conditions. They classified a certain environment, i.e. year-location
combination, as a stress or a non-stress environment depending on whether
the average grain yield of all lines tested in the particular environment was
one or more standard deviations lower or higher than the average grain yield
across all 8–10 (this depended on the set of lines) studied year-location com-
binations.

Lines were selected for high yield under stress (the YS set of lines) or
non-stress (the YNS set of lines) during three growing seasons. All selected
lines together with six checks were grown during four successive growing
seasons in a total of 21 year-location combinations with average grain yield
ranging from 0.35 to 4.86 t.ha−1.

The YS-lines yielded under stress 27% to 54% higher than the YNS-lines,
with the top YS-lines yielding under stress between 16% and 30% more than
the top YNS-lines. Under stress, the best YNS line ranked only 19th for yield.

The study showed that the most effective way to increase grain yield
under less-favourable conditions was to select in the target environment.
Direct selection in the target environment may, however, be difficult or
costly to implement if the target environment is remote or in an area with
little infrastructure. One way to reach such areas is through decentralized-
participatory breeding, an approach which brings genetic diversity to farm-
ers (before it is reduced by selection in an environment very different from
farmers’ fields such as experiment stations).

The relative efficiency of selection under conditions deviating from the con-
ditions provided by growers is now considered. The phenotypic value p

Y
rep-

resents an observation under grower’s conditions, whereas p
X

represents the
phenotypic value for the same trait (of the same genotype) but now observed
under the growing conditions provided by the breeder. We consider first the
correlation of p

X
and p

Y
across a set of genotypes. In the case of absence of

covariance of genotypic value and environmental deviation one can derive:

ρp(X,Y) =
cov(p

X
, p

Y
)

σpX · σpY

=
cov(GX, GY)

σpX · σpY

= ρg · σgX

σpX

· σgY

σpY

= ρghwXhwY

(12.13)
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This equation coincides with Equation (12.1) if ρe = 0, i.e. if cov(eX, eY) = 0
(as well as with Equation (12.7a)). It is substituted into Equation (12.5),
describing the ratio of the response to indirect selection for Y, via selection
for X, and the response to direct selection for Y:

RSE =
iX
iY

· ρg · hwX

hwY

=
iX
iY

· ρp · hwX

hwXh2
wX

=
iX
iY

· ρp · 1
h2

wY

(12.14)

At iX = iY the relative loss in potential selection response, due to selec-
tion under conditions deviating from the conditions prevailing in practice,
amounts to

RY − CRY

RY
= 1 − RSE = 1 −

(
ρp · 1

hwY
2

)
(12.15)

It amounts thus to 100(1−RSE)% and it will be large if RSE is small, i.e. if
ρp is small and/or hY

2 is high. Example 12.12 gives an illustration.

Example 12.12 Kramer, van Ooijen and Spitters (1982) considered the
grain yield of spring wheat genotypes. These genotypes were evaluated on
the basis of two plot types:

1. 2 m long single-row-plots, interrow distance 20.8 cm
2. 6 m long six-row-plots, interrow distance 25 cm

Because of the virtual absence of intergenotypic competition it was assumed
that the six-row-plots provide commercial growing conditions. For the six-
row-plots the heritability was estimated to be 0.88. Furthermore the estimate
for ρp amounted to 0.31. Then the relative selection efficiency amounts to

RSE =
iX
iY

· 0.31
0.88

i.e. for iX = iY to 0.35. In this experiment the loss in potential selection
response due to selection on the basis of single-row-plots was 65%. Appar-
ently interplot competition is an important cause for a bias when evaluating
candidates on the basis of single-row-plots.

The relative selection efficiency measures the quality, with regard to the
response to selection, of the growing conditions provided by a breeder in com-
parison to the quality of the growing conditions in the target environment. The
‘deficit’ in selection response, due to the use of sub-optimal growing conditions,
can be calculated if ρp(X,Y) and hw

2(Y) are known. To be able to estimate
these parameters the considered set of genotypes should be evaluated under
both types of environmental conditions. The efforts required for this are rarely
made and the criterion measuring the relative efficiency of selection under
conditions deviating from the conditions provided by growers is rarely used.
In fact, statements about optimum conditions for selection (Section 11.1 and
hereafter) are often merely opinions. This is partly due to the fact that a
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breeder aims to develop plant material well adapted to a wide range of con-
ditions instead of a single well-defined target environment. Furthermore, one
should realize that optimum conditions may differ from trait to trait.

The opinions about the optimum conditions for selection to be discussed
here concern

1. Plant density
2. Quality of the growing conditions

Optimum plant density for selection

There is no general agreement about the optimum plant density for selection.
Spitters (1979, p. 117) advocated selection at high plant density. Fasoulas
(1981, p. 58), however, preferred a density so low that interplant competition
does not occur.

Both points of view are, in fact, merely opinions and are not based on
experimental evidence. Bos (1981, p. 150) re-analysed data of Spitters’ exper-
iments with barley and concluded in favour of a low plant density. Fasoulas
and Tsaftaris (1975, p. 29) and Kyriakou and Fasoulas (1985) concluded with-
out reserve that a very low density, e. g. only 1.43 plants per m2 for wheat,
is to be preferred. However, on the basis of experiments with spring rye,
Pasini and Bos (1990a,b) were very reservedly in favour of a very low density.
Bussemakers and Bos (1999) concluded that mass selection should be applied
at the high plant density used in commercial practice (Example 15.6).

It is concluded that a clear-cut advice with regard to the plant density to
be applied in selection cannot yet be given. The topic is considered further in
Section 15.2.1.

Optimum quality of growing conditions for selection

It is admitted that plant density is an aspect of the growing conditions. It
was, however, thought to be appropriate to consider plant density separately
in a discussion on optimum conditions for selection.

Also with regard to the quality of the growing conditions there is no general
agreement about what conditions are optimal for selection. Fasoulas (1973,
p. 23) concluded that the growing conditions in the selection field should per-
mit unrestricted growth and development of the plant material. McVetty and
Evans (1980), on the other hand, stated that for selection in wheat that it
did not matter whether selection occurred under optimum, i.e. non-stress,
conditions or not. Rosielle and Hamblin (1981) do not generalize. They fol-
lowed Equation (12.5) when stating: ‘The situation most favourable to plant
breeders would be one in which genetic variances in stress environments are
greater than those in non-stress environments and genetic correlations between
yields in stress and non-stress environments are highly positive’. A well-known
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application of this statement is selection for disease resistance under the stress
conditions due to artificial inoculation.

12.4 Estimation of the Coefficient of Phenotypic, Environmental,
Genetic or Additive Genetic Correlation

This section gives attention to the estimation of coefficients of correla-
tion. Some of these coefficients may be interpreted in quantitative genetic
terms. This can only be justified if a number of assumptions apply (see
Section 10.2.1). When estimating, on the basis of different procedures, one
may encounter variable, strange and/or unreliable estimates. Indeed, the esti-
mation procedures may differ with regard to their bias. They may also differ
with regard to their accuracy (which mainly depends on the sample size), see
Example 12.20.

Estimation of ρp

The coefficient of phenotypic correlation of traits X and Y concerns the pheno-
typic values for these traits. It is estimated on the basis of a sample of plants
representing the population of interest. Because phenotypic values can easily
be obtained, the estimation of ρp is straightforward (see Example 12.13).

Example 12.13 For individual cereal plants the phenotypic values for grain
yield and plant height can easily be obtained.

Bos (1981, p.35 and p. 78) studied in winter rye the phenotypic correla-
tion of grain yield and plant height. Plants belonging to different generations
of an open pollinating population subjected to selection for high grain yield
and reduced plant height were observed. These plants were grown in the sea-
sons 1974–75 and 1977–78. The estimates amounted to rp = 0.52(n = 57)
and rp = 0.30(n = 200).

Estimation of ρe

The environmental correlation of traits X and Y is the correlation of the
environmental deviations of the considered candidates with regard to these
traits.

In genetically homogeneous plant material the phenotypic correlation is to
be interpreted as the environmental correlation (Section 12.2). For such plant
material ρe can be estimated in the same way as ρp (Example 12.13).

In other plant material ρe may be estimated from Equation (12.1). This is
illustrated in Example 12.14.
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Example 12.14 Van der Vossen (1974, p. 28, 45) studied, in oil palm, the
genetic control of number of bunches (trait X) and mean single bunch weight
(trait Y).

He estimated the narrow sense heritability of these traits by means of
offspring-midparent regression. This yielded ĥ2

nX
= 0.512 and ĥ2

nY
= 0.206.

The genetic correlation coefficient was estimated to be rg = −0.584 (see
Example 12.15) and the phenotypic correlation coefficient was estimated to
be rp = −0.59. When assuming hn

2 = hw
2, the environmental correlation

coefficient can be estimated from Equation (12.1):

−0.59 = −0.584 × 0.716 × 0.454 + re × 0.699 × 0.891

This yields re = −0.643.

Estimation of ρg

The genetic correlation of traits X and Y is the correlation of the genotypic
values for X and Y. Reliable information about genotypic values is rarely
available. Thus ρg is mostly evaluated in an indirect way. The procedure to
be applied is dictated mainly by the nature of the plant material processed
by the breeder or the researcher. The following procedures to estimate ρg are
elaborated:

1. Estimation on the basis of the genotypic values
2. Estimation by using genetically uniform plant material
3. Estimation from the relative selection efficiency

Estimation of ρg from genotypic values

It may be demanding to obtain unbiased and accurate estimates of genotypic
values. Kearsey and Pooni (1996, p. 288) described the following procedure.

Each of I genotypes is represented by J plants. (This implies that one is
dealing with clones, pure lines or F1 hybrids). Each of these IJ plants is
assigned a position in the field by means of single plant randomization. For
each set of J plants half the number of plants are sampled to be observed with
regard to trait X and the remainder is observed with regard to trait Y. Then
the genotypic values GX and GY are estimated for each genotype (by means of
pX and pX, respectively). The correlation of pX and pY is then exclusively due
to genetic variation among the J genotypes. The estimate r(pX, pY) of these
correlation may then be interpreted as an estimate of ρg(X,Y), especially for
J → ∞.

This procedure is not only demanding but may yield an estimate biased
with regard to the coefficient of genetic correlation applying to the growing
conditions of commercial practice. Estimation of ρg on the basis of estimates
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of genotypic values may thus tend to be unreliable. Example 12.15 describes
estimation of ρg according to this procedure.

Example 12.15 Van der Vossen (1974, p. 45) established for 52 palms the
genotypic values for number of bunches (trait X) and mean single bunch
weight (trait Y). These values were obtained by applying a procedure out-
lined in Example 9.2. This procedure is based on the assumption of absence
of dominance. Thus the genetic correlation coefficient could be estimated
directly from the estimates of the genotypic values. This yielded rg = −0.584.

Estimation of ρg by using genetically uniform plant material

One may estimate for some genetically heterogeneous population the pheno-
typic variances for traits X and Y as well as the phenotypic covariance of these
traits. Additionally genetically uniform plant material may be used to estimate
the environmental variances of these traits and the environmental covariance.
By subtracting the latter estimates from the corresponding estimates for the
former parameters one obtains estimates for the genetic variances and the
covariance. From these one can calculate an estimate for ρg. The procedure is
illustrated by Example 12.16.

Example 12.16 Weber and Moorthy (1952) studied the relation between
100-grain-weight (trait X) and oil content (trait Y) in soybean.

For a genetically heterogeneous F2 population they obtained

vâr(p
X
) = 2.28,

vâr(p
Y
) = 0.54

and
côv(p

X
, p

Y
) = −0.26,

yielding

rp =
−0.26

1.51 × 0.73
= −0.23

For genetically homogeneous plant material they got the following estimates;

vâr(eX) = 1.05,

vâr(eY) = 0.24

and
côv(eX, eY) = −0.09.
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Thus ρe was estimated to be

re =
−0.09

1.025 × 0.490
= −0.18

Because
var(p) = var(G) + var(e)

and

cov(p
X
, p

Y
) = cov(GX + eX,GY + eY) = cov(GX,GY) + cov(eX, eY),

they also got

vâr(GX) = 2.28 − 1.05 = 1.23,

vâr(GY) = 0.54 − 0.24 = 0.30

and
côv(GX,GY) = −0.26 − (−0.09) = −0.17.

This yields

rg =
−0.17

1.11 × 0.55
= −0.28

Estimation of ρg from the relative selection efficiency

One may estimate ρg when knowing the relative selection efficiency and the
heritability values in the wide sense of traits X and Y (see Equation (12.5)).
Example 12.19 illustrates a similar procedure for the estimation of ρa.

Estimation of ρa

The additive genetic correlation (ρa) was defined in Section 12.3.1. The fol-
lowing procedures to estimate ρa are elaborated:

1. Estimation by regressing offspring data on maternal parent data
2. Estimation on the basis of an analysis of covariance
3. Estimation from the relative selection efficiency

Estimation of ρa on the basis of regression of the performance of offspring on
the performance of maternal plants

According to Equation (10.10), which applies to cross-fertilizing species, the
additive genetic variance for trait X is equal to

2cov(p
MX

, p
HSX

)
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Analogous to this, cov(γ
X
, γ

Y
), i.e. the additive genetic covariance of traits

X and Y (say cova(X,Y)), of a cross-fertilizing species is taken to be equal to

cova(X,Y) = cov(p
MX

, p
HSY

) + cov(p
MY

, p
HSX

) (12.16)

when calculating the arithmetic mean across the two covariances, and to

cova(X,Y) =
√

cov(p
MX

, p
HSY

) · cov(p
MY

, p
HSX

) (12.17)

when calculating the geometric mean across the 2 covariances.
The additive genetic correlation, i.e.

ρa(X,Y) =
cova(X,Y)
σaX · σaY

(12.18)

is then estimated on the basis of estimates for cova(X,Y),σ2
aX

and σ2
aY

.
N. B. When estimating cova(X,Y) on the basis of Equation (12.18) it gets the
sign (+ or −) obtained when applying Equation (12.17) or the sign obtained
for the estimate of ρp. Example 12.17 illustrates the procedure.

Example 12.17 Bos (1981, Table 9 and p. 35) studied the inheritance
of plant height (trait X) and grain yield (trait Y) in an open-pollinating
population of winter rye, consisting of 5260 plants, This was done on the basis
of a random sample of 57 plants and their offspring. The parents were grown
during the season 1974–75 and their offspring during the season 1975–76.
The regression of the mean performance of HS-families on the performance
of their maternal parents was calculated.

For trait X the following was obtained:

côv(p
M

, p
HS

) = 31.67 cm2, i.e.σ̂2
a = 63.34 cm2

and
vâr(p

M
) = 163.58 cm2.

Equation (11.39) yields thus

ĥ
2

nX
=

2(31.67)
163.58

= 0.387

For trait Y it was derived that

côv(p
M

, p
HS

) = 107.7 dg2, i.e.σ̂2
a = 215.5 dg2

and
vâr(p

M
) = 4869.1 dg2

Thus
ĥ2

nY
= 0.044
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The covariances of X and Y were estimated to be

côv(p
MX

, p
HSY

) = 9.9 cm · dg,

and
côv(p

MY
, p

HSX
) = 69.1 cm · dg.

The estimate of ρa according to Equation (12.16) is then

ra =
9.9 + 69.1√

63.34 × 215.5
= 0.68

and that according to Equation (12.17) is

ra =
2
√

9.9 × 69.1√
63.34 × 215.5

= 0.45

Estimation of ρa on the basis of an analysis of (co)variance

The additive genetic variance of trait X, say σ2
aX can be estimated on the

basis of an analysis of variance of HS-families obtained from open pollination
in the sampled population (Table 11.3). It is estimated according to Equation
(11.37).

In a similar way, one may estimate the additive genetic covariance of traits
X and Y (cova(X,Y)) on the basis of an analysis of covariance. Instead of
calculating sums of squares for each of the traits X and Y, as in the analysis
of variance, one should calculate similar sums of products. Table 12.1 presents
the analysis of covariance that applies when I HS-families are tested in each
of J blocks.

The additive genetic covariance of X and Y is thus estimated by

côva(X,Y) = 4côv(GHSX
,GHSY

) =
4(MPf − MPr)

J
(12.19)

Table 12.1 The structure of the analysis of covariance of data

obtained from a randomized complete block experiment with I HS-

families, each evaluated, for two traits, in each of J blocks. The columns

headed by SP, MP and E(MP) present sums of products, mean prod-

ucts and expectations of the mean products.

Source of covariation df SP MP E(MP)

Blocks J − 1 SPb MPb covr + Icovb

HS-families I − 1 SPf MPf covr + Jcovf

Residual (J − 1)(I − 1) SPr MPr covr
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The procedure is illustrated by Example 12.18.

Example 12.18 Bos (1981, p. 94) estimated for a population of winter rye
plants the additive genetic correlation of plant height (trait X) and grain
yield (trait Y). HS-families were obtained by harvesting of a random sample
of 102 winter rye plants taken from an open-pollinating population of 5, 111
plants grown in the season 1977–78. Each HS-family was grown in the next
season as a single-row plot in each of two complete blocks.

The analyses of variance yielded

σ̂
2
a(X) = 56.56 cm2,

and
σ̂2

a(Y) = 54.12 dg2.

The analysis of covariance yielded

côva(X,Y) = −15.76 cmdg.

Thus:
ra =

−15.76√
56.56 × 54.12

= −0.28

Estimation of ρa from the relative selection efficiency

When knowing the relative selection efficiency and the heritability values in the
narrow sense of traits X and Y one may estimate ρa on the basis of Equation
(12.9). Example 12.19 illustrates the procedure.

Example 12.19 Bos (1981, Tables 34 and 30) grew, during the season
1976–77, a diploid population of winter rye. Plants with a high grain yield
(trait X) were selected. The response to selection was measured according
to the second procedure mentioned in Section 11.1. This yielded:

RX = 69.45 − 65.66 = 3.79 dg

With regard to plant height (trait Y), a correlated response was observed:

CRY = 147.1 − 146.42 = 0.68 cm.

The heritability values in the narrow sense of these two traits were estimated
to be

ĥ2
n(X) = 0.034

and
ĥ2

n(Y) = 0.43
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According to Equation (12.3) the relative selection efficiency amounted to

CRY

RX
=

0.68
3.79

= 0.179 cm/dg

The additive genetic coefficient of correlation (ρa) can then be estimated
from Equation (12.9), i.e.

RSE = ρa · hnX

hnY

It was estimated to be
ra =

0.179√
0.034
0.43

= 0.64

In the first paragraph of this section it was remarked that estimation of ρg or
ρa may yield rather different values. This is, in fact, a general experience, even
when estimating for the same population. The phenomenon is illustrated by
Example 12.20. It is due to inaccuracy and/or bias of the involved estimators,
as well as to differences between the estimators with regard to their accuracy
and/or bias. Thus estimates obtained for ρg or ρa should only be used as rough
indications when considering the efficiency of indirect selection.

Example 12.20 In the preceding examples the following estimates for the
correlation of plant height and grain yield of winter rye plants belonging to
the same population (be it under selection) were obtained:

Example 12.13: rp = 0.52 or 0.30

Example 12.17: ra = 0.68 or 0.45

Example 12.18: ra = −0.28

Example 12.19: rg = 0.64

These are rather different estimates for more or less the same parameters
estimated for more or less the same populations.

12.5 Index Selection and Independent-Culling-Levels Selection

Index selection is a form of indirect selection for a complex trait. It aims to
realize a correlated response to selection with regard to some complex target
trait Y, e.g. financial yield, by selecting candidates which are superior with
regard to an abstract trait I, the index. For each candidate the (phenotypic)
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index value pI is calculated from a linear function of the phenotypic values
p
1
, p

2
, . . . , p

n
for auxiliary traits X1,X2, . . . ,Xn. Thus:

p
I
= β1p1

+ β2p2
+ . . . + βnp

n
=

n∑
i=1

βip = β′p (12.20)

where

β′ = a 1 × n vector of unknown coefficients and

p = a n × 1 vector of phenotypic values for the n auxiliary traits

In fact the target of the selection is improvement of GY, the genotypic value
with regard to the complex target trait Y. The quantity GY is defined as

GY = w1G1 + w2G2 + . . . + wnGn (12.21)

where

Gi = the genotypic value for trait Xi and

wi = the the relative economic weight of Xi.

The coefficients β1, . . . ,βn, in Equation (12.20) have to be determined in such
a way, that GY is maximally increased. Smith (1936) derived for the case of
a linear relation between GY and pI that maximum progress with regard to
GY, when selecting for p

I
, is attained at a maximum value for ρ(p

I
,GY), i.e.

the coefficient of correlation of p
I

and GY. This occurs when substituting in
Equation (12.20) values for βi equal to be the solution to the equation

Pβ = Gw (12.22)

where

P := the n × n-matrix of phenotypic variances and covariances

G := the n × n-matrix of genotypic variances and covariances

w := the n × 1-vector of relative economic weights

When having determined P , G and w, the solution for the βs is given by

b = P−1Gw

Thus the value to be assigned to βi depends on

• the relative economic weight of trait Xi
• the phenotypic and genetic variance of Xi and
• the phenotypic and genetic covariances of Xi with the other traits.
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When knowing the population parameters an optimum index can be deter-
mined. Generally, of course, one has to estimate, on the basis of an evaluation
of a random sample from the plant material to be improved, the variances and
covariances. Determination of the estimated index is then rather demanding

The assignment of economic weights may also offer problems because the
financial yield of a crop depends on the prices of yield components which vary
from site to site and from year to year. These yield components can be the
yield of tomatoes or cucumbers in different weight or size classes. For sugar
beets the financial yield depends on gross yield as well as sugar content. For
cereals it depends on grain and straw yield. It is still more complicated when
the traits concern different aspects. In wheat, for instance, protein content
and flour yield are related to grain quality, whereas grain yield concerns grain
quantity.

An alternative approach for determining relative economic weights proceeds
as follows. The breeder determines values for w1, . . . , wn on the basis of mul-
tiple regression of the economic value of an entry on the phenotypic values for
traits X1, . . . ,Xn (Cotterill and Jackson, 1985). Thus for each trait involved in
the regression one obtains an estimate for the corresponding regression coeffi-
cient. This regression coefficient indicates the increase in the economic value
of a candidate expected at a one-unit increase for the considered trait. When
breeding woody crops or fruit-producing perennial crops, one may tend to
include traits that can be observed in an early ontogenetic stage, whereas the
economic value is determined for adult plants.

If reliable estimates for the phenotypic and genetic variances and covariances
are not available the estimated relative economic weights may be used as
coefficients in Equation (12.20):

p
I
=

n∑
i=1

wip = w′p (12.23)

This is the so-called base index. It requires only determination of the eco-
nomic weights (of the genotypic values) of the considered traits.

Because of the problems mentioned above, the assignment of relative eco-
nomic weights or of coefficients occurs often in a different, sometimes rather
intuitive way. A few examples are mentioned.

A weight-free multiplicative index is the so-called Elston-index (see Baker,
1986), i.e.

p
I
=

n∏
i=1

(p
i
− pmin,i)

where

pmin,i := the minimally acceptable phenotypic value for trait Xi.

When applying the method of ‘desired genetic gains’ one should indi-
cate for each trait included in the index the desired relative progress. If pd
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designates the vector of relative progresses desired, the vector of coefficients
used in Equation (12.20) in order to calculate the phenotypic index values is
taken to be

b = G−1pd

According to Equation (12.22) this implies

w = G−1Pb = G−1PG−1pd

The last approach mentioned here is the method of ‘equal emphasis on each
trait’. In this method the phenotypic standard deviations of the traits are
taken into consideration by taking:

wi =
1

σPi

Many different procedures for index selection have thus been proposed. The
evaluation of the relative merits of these procedures is a demanding task. In
this section the topic of index selection is therefore only briefly introduced.
For an extensive treatment the reader is referred to Baker (1986). Because of
the problems encountered with optimum and estimated indices, Baker seems
to suggest that application of a base index or a weight-free index is to be pre-
ferred. Example 12.21 presents some results of application of index selection.

Genetic improvement due to index selection may be negligible due to inad-
equacy of the estimates of phenotypic and genetic variances and covariances.
Thus results may be obtained that are not better than those obtained when
applying visual selection for general impression.

Example 12.21 Brim, Johnson and Cockerham (1959) illustrated the
application of index selection in soybean, where oil and protein content
are the most important components of yield. They calculated, for a 1.0
(for oil yield in g/plot) : 0.6 (for protein yield in g/plot) price ratio, the
genetic improvement expected from selecting the 5% top of the F3 lines.
Only expected responses were reported.

Elgin, Hill and Zeiders (1970) applied, for five generations, four selection
procedures in alfalfa. The procedures were: tandem selection (Section 12.1),
ICL-selection, estimated index and base index. Selection was for resistance
against four foliar diseases and for good regrowth after harvest. At the end
of the study an evaluation trial was conducted. Twenty four entries were
evaluated:

• each of the five generation for each selection procedure;
• the original population developed from an intercross of 45 randomly

selected plants each of variety DuPuits and variety Vernal;
• a hybrid of DuPuits and Vernal; and
• the two parental varieties.
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In addition to measuring the traits, the total merit of each entry was cal-
culated. With regard to this trait, the response to base index selection was
clearly better than the results of the other selection procedures.

De Wolff (1972, p. 51, 42) derived for maize the index

p
I
= 1.53p

1
− 0.398p

2
+ 0.416p

3
+ 6.14p

4

The traits involved in this index are

X1: number of days from planting until the appearance of the
tassel;

X2: number of leaves;

X3: length (in cm) of the 8th leaf from the top; and

X4: largest width (in cm) of the 8th leaf from the top.

This index contains traits that can be observed before pollen distribution.
This allows indirect selection for yield via traits observed in both male and
female parents.

The estimates of the heritability values and of the genetic correlations
with yield amounted to:

h2 r
Trait: X1 0.75 0.40

X2 0.84 0.18
X3 0.46 0.57
X4 0.32 0.85

Independent-culling-levels selection is a form of intentional simultaneous
selection. It consists of truncation selection with regard to each of several
traits. Thus for each trait, a phenotypic value minimally required for selection
(pmin) is determined. A candidate is rejected if its phenotypic value does not
exceed pmin for one or more traits, whatever its quality for all other traits. In
contrast to index selection, independent-culling-levels selection does not allow
mutual compensation of favourable and unfavourable phenotypic values for
different traits. Example 12.22 reports about an application.

Example 12.22 In a study to the efficiency of cross-prediction procedures
in potato breeding (Brown and Caligari, 1988), one of these procedures
considered the frequency, in each of eight subsamples, of clones satisfying
independent-culling-levels for:

• total tuber weight;
• number of tubers;
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• mean tuber weight; and
• (the visually assessed score for) regularity of tuber shape.

(For each of the eight crosses a subsample consisting of 25 random clones was
studied). Independent-culling-levels selection was applied with pmin = p̄, for
each of the four traits across all 200 clones. For each cross population, the
frequency of ‘surviving’ clones was the basis for the prediction of the number
of superior clones expected to occur in (much) larger samples.

Some suggestions for choosing pmin values are

• Choose the pmin values in such a way that their standardized values are
the same for all traits. Then the different traits are subjected to the same
intensity of selection (if indeed each trait has a normal probability distrib-
ution).

• Choose the pmin values in such a way that the ratios of their standardized
values are equal to the ratios of their heritability values.

• Choose the intensities of selection in such a way that their ratios are equal
to the ratios of the heritability values.

Until now the merits of suggestions with regard to independent-culling-level
selection, such as the preceding ones, have not been studied.



Chapter 13
Genotype × Environment Interaction

The genotypic value of some candidate was defined to be equal to the expected
phenotypic value at given macro-environmental conditions. This means that
the genotypic value of a given candidate depends on the macro-environmental
growing conditions. It also means that differences between candidates depend
on the macro-environmental conditions. This phenomenon is called genotype
by environment interaction (g × e interaction). It may even mean that rank-
ing of candidates according to their genotypic value depends on the macro-
environmental growing conditions. The latter is a disturbance to breeders, who
generally want to select candidates performing, under diverse conditions, in a
superior way. The phenomenon is also disturbing when testing varieties devel-
oped for hopefully a wide range of conditions. This chapter elaborates some
relevant aspects of g × e interaction.

13.1 Introduction

Until now it was consistently assumed that all plants of all generations are
exposed to the same macro-environmental growing conditions. This is, of
course, only appropriate if one is interested in the performance of genotypes in
a specific macro-environment, say macro-environment k. The partitioning of
the phenotypic value of some candidate in this macro-environment was given
by Equation (8.1), i.e.

p = G + e,

The genotypic value of the candidate was defined as

G = E(p|gt, Ek)

were the genotype of the candidate (gt) and the macro-environmental condi-
tions (Ek) of the evaluation are specified. A particular macro-environment is
characterized by the growing conditions of a particular location, a particular
growing season (or year) or the combination of a particular location and a
particular year. Additionally it may be characterized by the growing condi-
tions due to some temperature regime, e.g. in a glasshouse, some amount of
fertilizer, some plant density, etc.

The quality of the macro-environmental growing conditions is thus reflected
by the genotypic value. Indeed, the genotypic value of the considered genotype
depends not only on the macro-environmental conditions, but possibly also
on the effect of interaction of the considered genotype and the considered
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macro-environment. An appropriate linear model for the genotypic value of
genotype j grown in macro-environment k is thus

Gjk = µ + Gj + Ek + (GE)jk (13.1)

where

µ := the mean across all considered genotypes and macro-
environments

Gj := the main effect of genotype j; j = 1, 2, . . . , J
Ek := the main effect of macro-environment k; k = 1, 2, . . . ,K

(this quantity is sometimes indicated as environmental
index) and

(GE)jk := the effect of the interaction of genotype j and macro-
environment k

The model above is similar to the linear model for partitioning of the genotypic
value in terms of general and specific combining ability (Equation (11.51)).
Similarly, the model given by Equation contains a parameter µ, defined such
that the means of the contributions Gj , Ek and (GE)jk to Gjk are zero. Thus
the mean value of Gj across the J genotypes, the mean value of Ek across the
K macro-environments and the mean value of (GE)jk across all JK combi-
nations of a genotype and a macro-environment are all zero.

The model given by Equation (13.1) implies that the difference between the
genotypic values of genotypes j and j′ in macro-environment k does not only
depend on the main effects of the considered genotypes but also on the effect
of their interactions with the considered macro-environment:

Gjk − Gj′k = [Gj + (GE)jk] − [Gk′ + (GE)j′k] (13.2)

This implies that a genotypic value is due to confounding of a main geno-
type effect and an effect of g × e interaction. One can only estimate Gj and
(GE)jk separately when testing genotype j in a set of macro-environments.
It also implies that estimates of var(G) based on data from a single macro-
environment overestimate var(G), i.e. the variance of genotypic values across
macro-environments. Comstock and Moll (1963) indicated that var(G) tends
to be smaller if the macro-environments are more diverse.

In macro-environment k the difference between the genotypic values of geno-
types j and j′ will be different from that in macro-environment k′. Interaction
may thus give rise to different rankings of the genotypes (of candidates or of
established varieties) in different macro-environments. This is illustrated by
Examples 13.1, 13.2 and 13.3.
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Example 13.1 Cuany et al. (1970), in Frey (1971), observed the yield of
three maize cultivars in two macro-environments, viz. application of irriga-
tion or not (Table 13.1).

Table 13.1 The grain yield of three maize cultivars in the presence and absence of

irrigation (source: Cuany et al. (1970) in Frey, 1971)

Grain yield (kg/ha)

Type of cultivar Cultivar Under irrigation Rainfed

open pollinating Phillips 67 7,965 2,069

hybrid Pioneer 3579 12,105 1,756

hybrid Nebr. 501D 13,305 2,132

Under irrigation the grain yields of the hybrids were much higher than that
of the open pollinating variety. In the absence of irrigation, however, the
yields of the two cultivar types were equivalent.

Example 13.2 Table 8.3 showed the ranking for grain yield of 12 barley
varieties grown at four macro-environmental conditions. The ranking of the
varieties was different at these conditions, showing genotype × environment
interaction had considerable effects.

This chapter considers the performances of genotypes in different macro-
environments. Different rankings of candidates or established varieties in
different macro-environments are of relevance for breeders and growers,
respectively. Breeders aim to develop varieties that, averaged across a number
of growing seasons, excel at least in one region or in one soil type. Exploitation
of GE effects may contribute to the development of a successful varieties.
It requires the breeder’s imagination with regard to possible target environ-
ments of the variety to be developed (e.g. reduced application of pesticides).
One may generalize that the selection should preferably be carried out under
the growing conditions characteristic for this target environment, but the
reader is reminded to some problems with respect to the topic of optimal
macro-environmental conditions for selection (Section. 11.1).

Example 13.3 teaches us that one should not make statements such as ‘the
hybrid is heterotic’, or ‘variety P1 yields better than variety P2’ without spec-
ifying the macro-environment for which the statement is made.

Growers will choose the best variety considering the growing conditions they
can provide. However, the seasonal growing conditions are generally unpre-
dictable. Descriptive lists of varieties containing useful information from vari-
ety tests assist growers when they make their choice (Example 13.4).
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Example 13.3 At each of two locations the grain yield of pure line varieties
P1 and P2 and their F1 is considered as a function of the amount of nitrogen
fertilizer (Fig. 13.1).

Fig. 13.1 The grain yield of three genotypes, i.e. P1, P2 and F1, at a range of nitrogen

fertilizer levels both at location A and location B

At location A the yield of the F1 exceeds that of both parents at each level of
nitrogen. At location B the yield of the F1 exceeds those of both parents only
for a small range of nitrogen fertilizer levels. For most of the other amounts
it exceeds the parental mean (see also Knight, 1973).
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Example 13.4 The annually issued Dutch list of varieties of arable crops
presents for winter wheat varieties recommendations per soil type (clay,
sand). The lists of varieties of vegetables grown in the open gives, for instance
for endive, advice about cultivation period (spring, summer, early autumn,
late autumn).

13.2 Stability Parameters

The phenomenon of g× e interaction is clearly experienced, by plant breeders
as well as by growers, when growing the same varieties or candidate varieties
(‘candivars’) in several macro-environments (several years and/or locations).
Assume that each of J entries (inbred lines, clones, hybrids, or even open
pollinating varieties) is tested in each of K environments. Then the separate
observations pjk do not show an clear pattern if they are arranged such that
the observations from a certain macro-environment occur in a column and the
observations for a certain entry in a row (Fig. 13.2).

A clearer pattern appears when applying the linear regression analysis pro-
posed by Finlay and Wilkinson (1963): first for each macro-environment the
mean performance p·k across the J entries is calculated. This allows ranking
of the K macro-environments according to p·k.

Fig. 13.2 The phenotypic value pjk for some trait of entry (j = 1, . . . , J) in macro-
environment k(k = 1, . . . , K)
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Fig. 13.3 The linear regression of the phenotypic values (pjk and pj′k) of genotypes A and
B, respectively, on the environmental values (p·k) of J = 5 macro-environments

N. B. Analogous to the definition of the genotypic value one may call p·k the
environmental value of environment k. The difference p·k −p.. estimates
Ek, the environmental index of environment k; see Equation (13.1). The
difference pj. − p.. estimates Gj .

When calculating for entry j (where j = 1, or 2, or . . . , or J) the linear
regression of pjk on p·k across the K environments it is usually observed that
the performances pjk of entry j do well fit to a linear regression line (Fig. 13.3).

In connection with the preceding regression analysis, Eberhart and Russell
(1966) have defined the following stability parameters for genotype j:

• bj := the regression coefficient in the linear regression function Ĝjk = aj +
bjp·k and

• s2
j := the residual variance when applying the linear regression.

They consider genotype j to be stable if the regression analysis yields a regres-
sion coefficient bj (nearly) equal to 1 and a residual variance sj

2 (nearly) equal
to 0. According to this ‘definition’ of stability one can conclude from Fig. 13.3
that genotype A is more stable than genotype B. The preceding is illustrated
by Example 13.5.

Example 13.5 The analysis of g× e interaction by means of linear regres-
sion on the environmental value is illustrated on the basis of data presented
by Mitchell and Lucanus (1962). These data concern the relative growth rate
(RGR), i.e. the increase of dry matter per day (in %), of J = 3 grass species
(Lolium perenne L., Holcus lanatus L., and Paspalum dilatatum Poir.) at
each of K = 6 temperatures and a photoperiod of 16 hours. The data are
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Temperature (◦F)
45 55 65 75 85 95 pj.

Species: Lolium perenne 9 16 18 16 11 2 12
Holcus lanatus 9 15 19 22 15 1 13.5

Paspalum dilatatum 5 9 17 22 25 11 14.8
p·k 7.7 13.3 18.0 20.0 17.0 4.7 13.4

Fig. 13.4 The relation between relative growth rate and temperature (left) or environ-

mental value (right) for the three grass species Lolium perenne (Lp), Holcus lanatus (Hl)

and Paspalum dilatatum (Pd)

Figure 13.4 (left) illustrates the RGR values as a function of the temperature.
Linear regression of pjk on p·k resulted into

Lp: Ĝ = 0.87 + 0.83p·k r = 0.85 s2 = 12.49
Hl : Ĝ = −2.46 + 1.19p·k r = 0.96 s2 = 5.12
Pd : Ĝ = 1.58 + 0.99p·k r = 0.77 s2 = 30.85

Figure 13.4 (right) shows the regression lines. The intersections indicate dif-
ferent rankings of the grass species with regard to their RGR values at dif-
ferent temperatures: at 55◦ F L. perenne is the species with the greatest
RGR, but at 85◦ F it is the species with the smallest RGR. With regard to
the mean RGR across the six temperatures the three species did not dif-
fer significantly. P. dilatatum is the most stable species when considering
the regression coefficient, but H. lanatus is the most stable species when
considering the residual variance (see Knight, 1970, for further comments).

Genotypes complying with the mean of all tested genotypes are not nec-
essarily stable with regard to another definition of stability, for instance the
within genotype variation across the macro-environments.

In the regression analysis presented here the quantity p·k is a biological
measure of the quality of the macro-environment. It encompasses ‘all’ environ-
mental factors. Of course, environmental and physiological conditions clearly
affecting the trait of interest, e.g. presence or absence of a pathogen, should
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be studied separately in order to see how different entries respond specifically
to them and to check if responses to different factors are correlated (Caligari,
1993). If the stability of genotypes can be measured then it should be possible
to study the genetic control of this attribute as a character in its own right.
In Drosophila and in Nicotiana it has, indeed, been shown to be possible to
manipulate by selection the expected genotypic value and the stability of the
trait of interest independently.

The opinion that high degrees of heterozygosity or genetic heterogeneity
induce yield stability is common. Lerner (1958; p. 100) remarked that ‘het-
erozygotes are better buffered, i.e. are less responsive to environmental stresses
than homozygotes, as far as traits directly related to fitness are concerned’.
The usual explanation for this hypothesis is that heterozygosity acts as a buffer
against environmental variation (Lynch and Walsh, 1998; p. 116). The idea
was given credence by studies concerning SC-hybrids, TC-hybrids and DC-
hybrids of the cross-fertilizing crops maize (Hühn and Zimmer, 1983; Schnell
and Becker, 1986) and rye (Becker, Geiger and Morgenstern, 1982) and of the
mainly self-fertilizing crop sorghum (Reich and Atkins, 1970; Patanothai and
Atkins, 1971). However, the differences within types of hybrids were mostly
larger than differences among types of hybrids: it appeared to be possible to
select within each type of hybrid (very) stable hybrids. See Example 13.6.

Example 13.6 Soliman and Allard (1991) studied the hypothesis that nat-
ural selection in genetically heterogeneous populations of barley results in
high-yielding, stable plant material. They used the composite cross popula-
tions CCII (generations 13, 23 and 45), CCV (generations 5, 10, 21 and 30)
and CCXXI (generations 5, 9, 14 and 16); see Example 5.4.

A steady increase in grain yield over generations appeared (e.g. 16%
increase in population CCII in 11 generations). However, the yield levels of
the advanced generations were not commercially attractive and could not
justify their release as heterogeneous cultivars.

The study involved also five cultivars. A regression coefficient larger than
1 was obtained for four out of the five cultivars and for only three out of the
11 CC generations. The regression coefficient deviated significantly from 1
for four cultivars and for only two CC generations. The residual variances
were much higher for the cultivars than for the CC generations.

The authors assumed that genetic diversity often leads to stability at
varying environmental conditions.

Faris, de Araujo and Lira (1981) studied the grain yield of several sorghum
varieties in a number of macro-environments. They found a high coefficient
of correlation between the mean yield across all macro-environments and the
regression coefficient (r = 0.94). This phenomenon has been further analysed
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by Hardwick (1981). It implies that a genotype with a high mean yield tends
to respond better than average to high-input conditions.
Example 13.7 illustrates the phenomenon.

Example 13.7 Powell et al. (1986) obtained, in a study dealing with 20
doubled haploid (DH) lines and 40 single-seed-descent (SSD) lines, in some
cases, i.e. for some traits of some crosses, a positive correlation between the
mean performance across the four macro-environments and the regression
coefficient or the ‘environmental sensitivity’. The latter being measured as
the (estimated) phenotypic standard deviation of the performances obtained
in the macro-environments. It was concluded that sensitivity could be treated
as a character. Univariate and bivariate cross predictions (Section 11.4),
based on data from the DH lines and involving mean performance and
environmental sensitivity, appeared to agree reasonably good with observed
numbers of SSD lines.

When analysing g×e interaction one should realize that the interaction effects
may be larger or smaller depending on the set of genotypes and the set of
macro-environments. The individual contribution of each genotype to the total
interaction variance or to the mean sum of squares for interaction has there-
fore been studied. Procedures to do this have been described by Plaisted and
Peterson (1959) and by Wricke (1964), respectively.

13.3 Applications in Plant Breeding

This section gives attention to three applications of concepts introduced in
the preceding two sections, namely

1. Prediction of the performance of an entry for macro-environmental condi-
tions not earlier experienced by the entry

2. Evaluation of the relative contributions of new varieties and better cultiva-
tion practices to yield increases

3. A decision rule for acceptance or rejection of a new candidate variety

Prediction of the performance under macro-environmental conditions new
to the entry of interest

If one knows for entry j the linear relationship between pjk and p.k i.e. if one
knows the regression coefficients aj and bj , it is possible to predict the entry’s
genotypic value of in some macro-environment k, provided that one knows the
environmental value p.k of the macro-environment. The predicted genotypic
value is

Ĝj = aj + bjp.k (13.3)



334 13 Genotype × Environment Interaction

Thus one may calculate whether a new variety is expected to perform better
than a standard variety in a macro-environment where it was not yet tested.
Example 13.8 illustrates the procedure.

Example 13.8 Hayward and Vivero (1984) studied perennial rye grass
(Lolium perenne L.). They tested 25 progenies as well as the standard vari-
ety S23. Different macro-environmental conditions were provided. These con-
sisted of combinations of two growing seasons and three different degrees of
interplant competition, viz.

• Spaced plants (50 × 50 cm2/plant)
• Rows (10 × 60 cm2/per plant)
• Miniplots (40 seedlings at an area measuring 38 × 50 cm2)

The seventh macro-environment consisted of 1× 2m2 plots, sown at a stan-
dard rate of 25 kg/ha.

For each entry the regression coefficients aj and bj were calculated on the
basis of data from the first six macro-environments. The yield of S23 from the
1×2m2 plot was used as p.7, the environmental value characterizing macro-
environment 7. The yield of progeny j(j = 1, . . . , 25) at such 1 × 2m2 plot
was predicted by Equation (13.3). For 20 of the 25 progenies the difference
between the predicted yield and the actual yield was insignificant.

Although Example 13.8 suggests differently, the prediction of the performance
of an entry in a macro-environment where it has not yet been tested may
be unreliable. This is certainly the case with a low coefficient of correlation
across the entries between the regression coefficients aj and bj(j = 1, . . . , J)
calculated for one set of macro-environments and the regression coefficients
a′

j and b′j calculated for another set of macro-environments. This is illustrated
by Example 13.9.

Example 13.9 Fatunla and Frey (1976) studied the performance of 180
unselected lines of oats with different levels of phosphorus fertilizer (say:
P-environments) as well with different levels of nitrogen fertilizer (say N-
environments). Across the lines there was no significant coefficient of corre-
lation between the regression coefficients calculated for the P-environments
and the regression coefficients calculated for the N-environments.

Becker (1981) calculated the coefficient of correlation between the coeffi-
cients of regression obtained for the year 1979 and those obtained for the year
1980. For maize he obtained r = 0.65∗(J = 14), for barley r = −0.07(J = 18)
and for oats r = 0.16(J = 27).
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The relative contributions of new varieties and better cultivation practices
to yield increases

It is desirable to know whether the efforts to improve plant performance by
means of plant breeding have paid off. Determination of the relative contribu-
tion of new varieties to yield increases is, therefore, of interest. Example 13.10
gives an illustration.
Example 13.10 Duvick (1992) studied the relative contribution of plant
breeding to the improvement of grain yield of maize in Iowa on the basis
of hybrids introduced from 1930 to 1989. He estimated the total grain yield
improvement to be 100 kg/ha/year. The genetic contribution, adjusted to
average on-farm yield levels, was 56 kg/ha/year, i.e. 56%. The genetically
determined yield improvement was due to improvements in resistance to root
lodging, stalk lodging, premature plant death and barrenness. New hybrids
responded better to high plant densities. They were consistently superior
to the older hybrids in low-yield environments. ‘Selection has pre-adapted
today’s hybrids to lower-input agriculture and harsher growing conditions.’
Duvick speculated that yields in the USA will continue to rise in the fore-
seeable future by about 55 kg/ha/year (≈ 1 % per year).

Due to g × e interaction it is, in fact, not easy to establish to what extend
yields become higher due to improved varieties and to what extend they
become higher due to improved agricultural practice. An approach to arrive
at an estimate is described in Example 13.11.

Example 13.11 The difference between the value of the regression func-
tion for the present standard variety, i.e. the value obtained from Equation
(13.3), and the value for the former standard variety, at the optimum grow-
ing conditions for the former standard variety, may be used to measure the
(genetic) contribution to yield improvement. When dividing this difference
by the number of years since the former standard variety was grown with
the same area as occupied at present by the present standard variety one
obtains the mean yearly yield improvement due to variety improvement.
Pinthus (1972) calculated for the replacement of wheat variety FA 8193 by
new semi-dwarf varieties an yield increase of 55–75 kg/ha/year.

A decision rule for acceptance or rejection of a new candidate variety

Now a decision rule, which may play a role when a decision about the accep-
tance or the rejection of a new candidate variety is to be made, is considered.

In an extensive trial each candidate variety may be tested in each of B
blocks per location, at each of L locations per year, for each of Y years. Each
‘candivar’ is then evaluated on the basis of its average performance, i.e. its
mean phenotypic value, across BLY plots. This mean phenotypic value is a
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random variable with some residual variance σ2. It can be derived that

σ2 =
σ2

e

BLY
+

σ2
gly

LY
+

σ2
gl

L
+

σ2
gy

Y
(13.4)

where

σ2
e := the residual variance of a single plot observation;

σ2
gly := variance due to genotype × location × year interaction effects;

σ2
gl := variance due to genotype × location interaction effects; and

σ2
gy := variance due to genotype × year interaction effects.

The optimum combination of values for B,L and Y , i.e. the combination
of values minimizing σ2 at a given, fixed value of BLY, has frequently been
considered. Of course such an optimum can only be calculated on the basis of
estimates of the relevant components of variance. Such estimates apply to a
specific trait of a specific crop observed for a specific set of entries and macro-
environments. Generalization is not possible. The optimum values mentioned
in Example 13.12 should be considered as rough indications.

Example 13.12 Rasmussen and Lambert (1961) studied grain yield data of
six commercially grown barley varieties, as obtained when grown in the years
1954, 1956, 1957 and 1958 at eight locations widely scattered in Minnesota.
The estimates of the variance components were

σ̂2
e = 42.78, σ̂2

gly = 15.97, σ̂2
gl = 0.22 and σ̂2

gy = 3.99

For a constant number of plots, e.g. BLY = 54, the allocation across B,L
and Y which results in the smallest residual variance σ2 will be most efficient
ignoring time and costs. Considering time and costs, the most advantageous
testing scheme for Minnesota was stated to be B = 3, L = 6 and Y = 3.
It was observed that reduction of B, at fixed values of L and Y , yielded a
relatively small increase of σ2. Thus, practically, the optimum consists of a
certain combination of values for L and Y at B = 2.

Schutz and Bernard (1967) concluded from a yield test of soybean, in
the eastern part of the USA, that one may substitute years by locations. In
their opinion, selection in a practical breeding programme is rarely based on
testing for longer than two years. For L somewhere between 10 and 15, σ2

would already be small enough to have a test with a great power, allowing
elimination of low-yielding entries.

In extensive tests the yield y
C

of some candidate variety C is compared to y
S
,

i.e. the mean yield of S standard varieties. The difference

d = y
C
− y

S
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where
y
S

=
(

y
1

+ · · · + y
S

S

)

is thus considered.
The rule for the decision to accept candidate C is: C is released as a new

cultivar if d > D. What value should then be chosen for D, the so-called
critical difference?

The following approach may be followed to determine D. It is assumed that
d is a random variable with the normal distribution N(Ed,σ2

d),
where

Ed := the true, but unknown difference

σ2
d := var(d) = var(y

C
− y

S
) = var(y

C
) + var(y

S
) = σ2

(
1 +

1
S

)

It is reasonable to require the probability P (d > D) to be small if Ed = 0, i.e.
if d = N(0,σ2

d). In that situation the probability P (d > D) is equal to

P (σdZ > D) = P (Z >
D

σd
)

where
Z represents the standard normal variable with the distribution N(0, 1).

This permits calculation of D provided that one knows σ2.
The requirement that P (d > D) would amount only 0.025 (or less) if the true

difference is zero, implies the requirement that D/σd would amount to 1.96σd

(or more). The decision rule is then as follows: C is accepted if d > 1.96σd; C
is rejected if d < 1.96σd. Example 13.13 gives an illustration.

Example 13.13 Patterson et al. (1977) considered grain yield (in t/ha)
of spring barley. They summarized 169 tests involving 26 locations, 8 years
and 27 varieties. The relevant components of variance were estimated to be:

σ̂2
e = 0.1101, σ̂2

gly = 0.0561, σ̂2
gl = 0.0084, σ̂2

gy = 0.0322

The mean grain yield was 4.96 t/ha.
The critical difference D is calculated for a test involving B = 3 blocks at

each of L = 10 locations during each of Y = 3 years. Then σ2 can, according
to Equation (13.4), be calculated to be equal to

0.1101
90

+
0.0561

30
+

0.0084
10

+
0.032

3
= 0.0146(t/ha)2

More than 2/3 of this, i.e. the amount 0.032/3 = 0.0107, is due to genotype
× year interaction. Thus, unless Y is increased, σ2 will always be larger than
0.0107; whatever the values for B and L.
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For Ed = 0, P (d > D) = 0.025 and S = 2 the critical difference is
1.96

√
1.5 × 0.0146 = 0.290 t/ha, i.e. 100(0.290/4.96) = 5.8% of the mean

grain yield calculated for all 169 tests. Thus, if the true superiority of C
compared to two standard varieties is nil, the probability that y

C
yields at

least 0.29 t/ha higher than the average of the standard varieties (and that C
is consequently accepted for release) is only 0.025.



Chapter 14
Selection with Regard to a Trait
with Quantitative Variation

In Chapter 6 the topic of selection was introduced. The contrast between natural
selection and artificial selection was elaborated. Methods for artificial selection
with regard to a trait with qualitative variation were considered in an order of
decreasing efficiency. Special attention was given to the question whether the
trait under selection is expressed before or after pollen distribution.

The present chapter pays attention to selection with regard to a trait with
quantitative variation. The selection is aimed at improving the average geno-
typic value, but the actual selection among the entries (plants, clones, lines,
hybrids, families) is based on the phenotypic values of the candidates. In order
to improve the efficiency of such indirect selection the breeder should make
efforts to evaluate the candidates in such a way that the coefficient of cor-
relation between the phenotypic value (the auxiliary trait) and the genotypic
value (the target trait) is as high as possible. Procedures to promote this are
elaborated in the present chapter. Such procedures can be classified according
to the way of evaluation of the candidate genotype. Section 14.2 gives attention
to procedures concerning the evaluation of entries on the basis of single plants
(single plant evaluation); Section 14.3 considers procedures for the evaluation
of candidates on the basis of plots such that the plants occurring in a certain
plot represent a certain candidate (plot evaluation).

14.1 Disclosure of Genotypic Values in the Case of A Trend
in the Quality of the Growing Conditions

In order apply selection successfully a breeder should be able to identify can-
didates with a superior genotype. This requires disclosure of genotypic values
hidden beyond the observable phenotypic values. Variation of the phenotypic
values is due to variation of genotypic values as well as variation in the grow-
ing conditions. The effects of variation in growing conditions appear from
the phenotypic variation exhibited by a clone, a pure line or a single cross
hybrid. It appears from the (phenotypic) variation shown in the absence of
genetic variation. In Section 8.2 the latter was called environmental variation,
measured by the environmental variance. The variation may show up as plant-
to-plant variation or as plot-to-plot variation.

An entry is selected when showing an attractive, superior phenotypic value.
This may be due to a superior genotype and/or to favourable growing condi-
tions. Variation in the quality of the growing conditions detracts, consequently,

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 339–379. 339
c© 2008 Springer.
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from the ability of the breeder to identify candidates with a superior genotype.
The quality of the growing conditions may vary at random or it may vary with
a trend.

In this book it is preferred to use the term ‘quality of the growing conditions’
rather than the term ‘soil fertility’. The reason for this is that the former term
is considered to have a broader scope than the second term. It includes, for
instance, the presence or the absence of shade or of soil-born pests. Random
environmental variation includes thus not only plant-to-plant or plot-to-
plot variation in soil fertility, but also variation in the strength of the com-
petition experienced. With homogeneous soil fertility the latter depends on
the amount of seed sown (both in kg/ha and in number of seeds per ha)
as well as seed quality (as determined by seed size and germination ability).
Variation for these factors may induce variation in the date of emergence and
subsequently give rise to variation in the number and the size of neighbouring
plants, occurring within a certain circle around the considered plant(s). The
detrimental effects of interplant or interplot competition on the efficiency of
selection are considered in Chapter 15.

In some cases the degree of damage caused by nematodes, insects, snails,
slugs, birds, mice, etc., could be considered as random environmental variation,
but often the degree of such damage will vary with a trend.

Environmental variation with a trend implies a gradient in the field,
this may be soil fertility, moisture content or the abundance of soil-borne
pathogens and pests (e.g. nematodes). The contribution to the phenotypic
value which is due to a trend in the quality of the growing conditions can be
eliminated from the phenotypic value, given the right adjustment procedure.
The means that the phenotypic value observed for some candidate, say p, is
adjusted into a phenotypic value which takes the trend in the quality of the
growing conditions into account, say p′.

The type of adjustment depends on whether single plants are evaluated or
whether group of plants (clones, lines, families or hybrids) are evaluated by
means of plots. In any case an adjustment is sought such that the coefficient
of correlation of p′ and the genotypic value (G) of the considered candidates is
higher than the coefficient of correlation of p and G. The adjustment procedure
is thus required to yield

ρp′,g > ρp,g (14.1)
According to Note 11.2 this means that the adjustment procedure should
succeed in yielding an increase of the heritability in the broad sense, viz.

hw
2(p′) > hw

2(p) (14.2)

In Section 14.2 procedures that aim to eliminate the contribution due to a
plant-to-plant trend in the quality of the growing conditions are considered
in connection with single-plant evaluation. In Section 14.3 procedures aimed
at eliminating the effect of a plot-to-plot trend in the quality of the growing
conditions are considered in connection with plot evaluation (of clones, lines
or families tested at ≥ 1 plot).
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The environmental variation remaining after adjustment of the phenotypic
values with regard to a trend in the quality of the growing conditions is random
environmental variation. This cannot be eliminated as a cause for inefficient
selection.

14.2 Single-Plant Evaluation

Single-plant evaluation is an essential part of mass selection. In Sections 6.3.1
and 6.3.5 mass selection for qualitative variation in a trait was considered. Here
mass selection with regard to quantitative variation in a trait is examined.
In the present context the two features of mass selection can be described as
follows:

1. Depending on its phenotypic value, possibly in comparison to the phe-
notypic values of (nearby) other plants, every plant is either selected or
rejected. The phenotypic value may be carefully measured, mechanically
determined or visually assessed.

2. The selected plants produce seeds by their natural mode of reproduction.
These seeds are bulked.

Attractive features of mass selection are (Lonnquist, 1964)

• The practical feasibility of the procedure is unsurpassable.
• Selection can be applied in each generation. The progress per generation

obtained when applying mass selection may therefore be high compared to
than the progress per generation obtained with selection procedures requir-
ing more than one generation per ‘cycle’.

• A high selection intensity (Section 11.1) does not necessarily imply that
a large (random) change in allele frequencies, for loci not affected by the
selection, have a high probability. This is due to the fact that, for a given
cost, the number of candidates that can be evaluated as single plants is much
higher than the number of candidates that can be evaluated by means of
plots. In other words: with mass selection a high selection intensity does,
because of the high number of selected candidates, not necessarily imply a
low effective population size (Section 7.2).

A weak point of mass selection is the following. In the case of single-plant eval-
uation the phenotypic value of an individual plant poorly reflects its genotypic
value. The correlation of the phenotypic value p of a plants and its genotypic
value G, i.e. ρ(p,G), tends to be low. The efficiency of mass selection tends
thus to be low (h2 is low) as compared to the efficiency of selection procedures
based on evaluation of the candidates by means of plots. This is an important
drawback of mass selection. Mass selection does not easily lead to complete
exploitation of genetic variation for loci affecting the trait under selection
pressure.
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The efficiency of mass selection is thus at its minimum if the selection does
not involve an attempt to eliminate the effect of a plant-to-plant trend in the
quality of the growing conditions. In order to improve its efficiency one may
adjust the phenotypic values for this type of variation in the quality of the
growing conditions. Thus instead of selection for p, the selection will be for p′.
As was indicated in the previous section (Equation (14.1)), this adjustment
is required to yield ρ(p′,G) > ρ(p,G). Some simple adjustment procedures
will now be elaborated. The adjustments consist simply of comparison of the
phenotypic values of the candidate plants with the phenotypic values of other,
unrelated plants, comparison with

• all other candidate plants: truncation selection (this section);
• nearby plants representing some standard variety (Section 14.2.1);
• nearby candidate plants: fixed-grid selection (Section 14.2.2) and
• direct neighbouring candidate plants: moving-grid selection (Sec-

tion 14.2.3).

Adjustments of phenotypic values aiming at elimination of the contributions
due to random environmental variation or to genotype × micro-environment
interaction are bound to fail. Random environmental variation comprises vari-
ation in the strength of interplant competition (possibly due to variation in
seed size). It is also due to irregular occurrence of puddles, clods, stones, leaves,
weeds, snails, slugs, mice, rabbits, etc.

When considering the response to mass selection, it is useful to distin-
guish short-term and long-term responses. Due to its low efficiency, short-term
responses tend to be of minor importance. The improvement attained in one
generation can be annihilated in the next generation. The plants selected in
one generation may involve a sample of genotypes different from the genotypes
of the plants selected in the previous or the next generation. This is due to
the fact that growing conditions vary from one generation to the next. The
locations (and thus the soil conditions) may vary, but seasonal conditions will
certainly vary. Due to effects of genotype × macro-environment interaction
plants selected in one macro-environment (season) may represent genotypes
that would be neglected when considering their phenotypes in another macro-
environment (season).

Thus mass selection does not tend to give rise to apparent progress from one
generation to the next. Long-term responses may, nevertheless, be impressive.
Application of mass selection for a large number of generations may yield
considerable changes in plant appearance. This is illustrated by Example 14.1.

Example 14.1 Some form of mass selection will have been applied since
the onset of plant domestication. Great long-term effects appear from the
enormous differences between present-day ears of maize and the eldest, sub-
fossilic ears found in southern Mexico, dating from about 5200 BC. Not
only has ear size been increased considerably, but also the area where maize
cultivation can be successfully carried out.
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Another example is the high sugar content (about 17%) of present-day
sugar beet. The sugar beet grown around AD 1825 had a sugar content of
only about 7.5%.

These impressive results are due to the long-lasting continuation of the
selection. The domestication of the sugar beet is, nevertheless, a relatively
recent development. Oil palm is a still more recently developed crop; espe-
cially when one counts the number of generations since the onset of the
domestication. Responses to long-term selection experiments in maize have
been described by Dudley, Lambert and Alexander (1974) (Example 8.4),
and Gardner (1978).

14.2.1 Use of Plants Representing a Standard Variety

If the plants belonging to the population subjected to selection are grown in
rows, one may insert at certain plant positions within the rows plants repre-
senting standard variety S. The adjustment consists then of calculating:

p′ = p − p̄
s

(14.3)

where

p := the phenotypic value of the considered candidate plant

p̄
s

:= the mean phenotypic value calculated across nearby plants
representing the standard variety S.

After having adjusted the phenotypic values in this way, truncation selection
for p′ is applied. Plants with an adjusted phenotypic value exceeding the esti-
mated genotypic value of the standard variety, as represented by plants grown
at similar conditions, as much as possible are then selected.

This adjustment requires availability of at least one genetically uniform
standard variety. It also requires extra efforts and space. Especially because of
the latter requirement, this adjustment procedure is not applied in the case of
single-plant evaluation. The authors, at least, are not aware of its application.
It is, however, commonly applied when selecting among clones, lines or families
(where the candidates are evaluated by means of plots, see Section 14.3.2).

14.2.2 Use of Fixed Grids

The detrimental effect on the efficiency of mass selection of variation in the
quality of the growing conditions can be (partly) eliminated by dividing the
selection field into parts such that the growing conditions are more uniform
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Table 14.1 The analysis of variance of data obtained from

the K plants sampled from each of G grids, each containing K′

plants

Source of variation df SS MS E(MS)

Between grids G − 1 SSb MSb σw
2 + Kσb

2

Within grids G(K − 1) SSw MSw σw
2

within each of these so-called grids than across the whole field. The breeder may
then select the most attractive plants within each grid. This selection procedure
is called grid selection. The improvement of the efficiency of the selection
appears from the increase of the heritability. This is elaborated as follows.

Assume that K plants are sampled from each of the G grids containing K ′

plants. The structure of the analysis of variance of the phenotypic values is
then described by Table 14.1. The heritability will now be considered both for
truncation selection (selection of the most attractive plants across the whole
selection field) and for grid selection (selection of the most attractive plants
within each of the grids). It will appear that the heritability can be described
in terms of the variance components σw

2 and σb
2 occurring in the E(MS)

column of Table 14.1.
In order to develop some theory it is useful to define the following variances:

• var(G) :=the variance of the genotypic values of individual plants
• var(e(G)):=the environmental variance of individual plants within a grid
• var(eG) :=the variance of the environmental conditions provided by the

grids

The quantitative genetic interpretations of σw
2 and σb

2 depend on the
involved plant material:

(i) if all GK plants would have the same genotype, the quantitative genetic
interpretation of σw

2 would be: var(e(G)); for σb
2 it would be: var(eG);

(ii) if each of the G grids would contain the same sample of K genotypes the
quantitative genetic interpretation of σw

2 would be: var(e(G)) + var(G);
for σb

2 it would be: var(eG);
(iii) if each of the G grids would contain a different sample of K genotypes the

quantitative genetic interpretation of σw
2 would be: var(e(G)) + var(G);

for σb
2 it would be: var(eG) + var(G)/K.

Situation (iii) represents, of course, the actual situation in the breeder’s prac-
tice. If the grids contained many plants, i.e. if K → ∞, then the contribution
of var(G)/K to σb

2 would approach zero, implying that σb
2 is then asymp-

totically equal to var(eG).
The broad sense heritability as applying to the situation of truncation selec-

tion, say hw
2(T), is

var(G)
var(G) + var(e)

(14.4)
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where var(e) = var(e(G)) + var(eG).
The broad sense heritability as applying to the situation of grid selection, say
hw

2(G), is
var(G)

var(G) + var(e(G))
(14.5)

If σb
2 > 0, i.e. if var(eG)+var(G)/K > 0, the within grid heritability hw

2(G)
is higher than the across grids heritability hw

2(T) and then grid selection will
be more efficient than truncation selection. Testing of the null hypothesis H0:

‘σb
2 = 0’ against the alternative hypothesis Ha: ‘σb

2 > 0’ is thus recommended
before choosing between truncation selection and grid selection.

Several publications have reported positively on grid selection, e.g. Gardner
(1961, 1978) dealing with maize (Example 14.2), and Verhalen, Baker and
McNew (1975) dealing with cotton. These positive experiences stimulated the
application of grid selection, especially in the USA, where – because of the suc-
cess of hybrid maize – since 1925 no attention had been given to improvement
of the efficiency of traditional mass selection, i.e. truncation selection.

Example 14.2 Gardner (1961) applied grid selection within the open-
pollinating maize variety Hays Golden. Grids consisting of 40 plants were
used. In each grid the four best-yielding plants were selected. Application
of grid selection for four generations raised the yield from 79.3 bushels/acre
to 97.4 bushels/acre (1 bushel/acre corresponds to about 63 kg/ha). The
response to the selection varied considerably across the generations. The
average response per generation was presented in two ways:

1. As the coefficient of regression of the relative yield, i.e. the yield expressed
as a percentage of the yield of the original variety, on the generation of
selection. This amounted to a response of 3.9% per generation.

2. As the geometric mean response per generation. The total response across
four generations amounted to 22.8%; the geometric mean response per
generation was thus 5.3%.

Although grid selection tends to be more efficient than truncation selection,
if indeed σb

2 > 0, it sometimes yielded inferior results (Example 14.3).

Example 14.3 After applying grid selection for five or six generations,
Hallauer and Sears (1969) could not establish a significant response with
regard to grain yield of maize. They assumed that this was due to the fact
that the response was evaluated at three locations, differing from the location
where the selection was applied.

Bos (1981, p. 56 and p. 73) applied, in a population of winter rye, grid
selection as well as truncation selection. For the selection in 1976 he obtained
as response for grain yield 4% and 6.5%, respectively; for 1977 these figures
were 0% and 6%.
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In the preceding studies the null hypothesis H0: ‘σb
2 = 0’ was not

tested. For an experiment with autotetraploid winter rye Bos (1981, p. 153)
established highly significant differences among grids when considering culm
length, number of ears, grain yield and straw weight.

This may be due to two causes (Bos, 1983b):

1. Selection of a fixed number of plants, i.e. k plants, in each grid, or
2. A sub-optimal division of the selection field into grids.

In order to avoid these causes for getting a disappointing result of grid selection
it is suggested:

1. To select within the grids a variable number of candidates and
2. To give attention to a proper way of division of the selection field into grids

The number of plants selected in each grid

The number of plants in a grid having a superior genotype, and therefore
deserving to be selected, is a random variable k, possibly with a Poisson dis-
tribution. According to the procedure originally suggested for grid selection,
however, a fixed number of plants (say k) was to be selected in each grid. For
some grids this number will be larger than the number of candidate plants
deserving selection and for some other grids it will be smaller. Grid selection
may, for this reason, give rise to a lower response than truncation selection,
especially if σb

2 ≈ 0.
To avoid this drawback of selecting of a fixed number of plants in each

grid, a modification of the originally described procedure for grid selection is
suggested. After division of the selection field into grids, the phenotypic values
(p) of the candidate plants are transformed into adjusted phenotypic values
(p′). This is followed by truncation selection, across the whole population
(i.e. across all grids), for with regard to p′. This induces the number of plants
selected in a grid to vary from grid to grid.

Two related, grid specific, transformations are suggested:

1.
p′

ij
= p

ij
− p

i
(14.6)

and
2.

p′
ij

=
p

ij
− p

i

si

(14.7)

where

p
ij

:= the phenotypic value of plant j in grid i

p
i

:= the mean phenotypic value across the plants in grid i (This quantity
estimates the quality of the growing conditions provided by grid i)
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si := (the estimator of) the phenotypic standard deviation of the plants
in grid i

The transformations eliminate, by calculating p
ij
− p

i
, the grid-to-grid vari-

ation in the quality of the growing conditions as a source of environmental
variation.

The effect of variation between grids with regard to σw
2, i.e. with regard

to var(e(G)) + var(G), is now considered. If σw
2 is small because of a small

value of var(e(G)), the efficiency of within-grid selection is high (see Equation
(14.5)). If σw

2 is large because of a large value of var(e(G)) it will be low.
Transformation according to Equation (14.6) will, however, result in selection
of relatively small numbers of plants in homogeneous grids (σw

2 small) and
in selection of relatively high numbers of plants in heterogeneous grids (σw

2

large). Indeed, at equal values for pi, the probability P (p
ij

− pi > pmin)
will be larger for a heterogeneous grid, i.e. a grid with a large value for si,
than for a homogeneous grid. This transformation tends thus to give rise to a
positive relation between var(e(G)) and the number of plants selected in the
involved grid. Transformation according to Equation (14.7) aims to avoid this
dependence of the number of plants selected from a grid on the environmental
variance within the grid. It is thus appropriate when grids vary with regard
to var(e(G)) + var(G).

In a statistical context transformation according to Equation (14.7) implies
calculation of t values. Bos (1983b) and Casler (1992) reported more or less
positively about selection of plants with high within-grid t values.

The division of the field into grids

In order to promote the efficiency of grid selection the borders of the grids
should be chosen such that σb

2, in fact especially var(eG), is as large as pos-
sible. However, clear-cut changes in the quality of the growing conditions do
rarely show up. Thus it is mostly impossible to choose borders coinciding with
such lines of demarcation. On the other hand, it is certain that an arbitrary
division of the selection field in grids is sub-optimal. Reliable and easy to apply
guidelines for an optimal choice of the size, the shape and the orientation of
the grids are as yet not available. Weber and Stam (1988) and Weinbaum
et al. (1990) considered the problem of how to determine the optimum grid
size. Here only a few aspects concerning the optimum grid size, in terms of
area as well as the number of plants per grid, are considered.

The environmental variance consists of var(e(G)) + var(eG). With smaller
grids variance component var(eG) will tend to become smaller and compo-
nent var(eG) will tend to become larger. The efficiency of grid selection will
thus tend to improve with smaller grids. However, one should not draw the
conclusion that the grids should be as small as possible. Smaller grids con-
tain a smaller number of plants. The mean phenotypic value p

i
of the plants
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occurring within grid i becomes then a less accurate estimator of the quality
of the growing conditions provided by the grid.

When large grids are used var(e(G)) will be large. This implies a relatively
low efficiency of grid selection. When using grids containing many plants the
grids will hardly vary with regard to var(G). Grid to grid variation in σw

2

must then be due to variation in var(e(G)). The second transformation seems
thus appropriate when using grids containing many plants.

14.2.3 Use of Moving Grids

In the preceding section it was remarked that borders of grids seldomly coin-
cide with clear-cut changes of the quality of the growing conditions. An alter-
native approach to marking out grids, i.e. to form groups of candidate plants
subjected to more or less identical growing conditions, is to consider each
plant in its turn as the centre of a grid. Each of the so-called moving grids
comprises then a number of plants, say K, subjected to growing conditions
similar to those experienced by the central plant.

In connection with the use of moving grids the breeder may select according
to two options:

1. The breeder selects the plants with the highest adjusted phenotypic values
2. The breeder selects central plants surpassing all other plants in their grid

Selection of the plants with the highest adjusted phenotypic values

The phenotypic value of candidate plant i is adjusted by calculating

p
i
′ = p

i
− p

i
(14.8)

where

p
i
:= the phenotypic value of candidate plant i

p
i
:= the mean phenotypic value of the plants occurring in

grid i, i.e. the group of plants among which plant i occu-
pies the central position

One may question whether p
i

should be calculated across all K plants in the
grid or across the K ′ = K − 1 neighbours of the candidate plant in the centre
of the grid. When defining

S := the sum of the phenotypic values of all K plants in the grid
S′ := S − p, i.e. the sum of the phenotypic values of across the

K ′ neighbours of the central plant
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Equation (14.8) implies

p′ = p − S

K
=

Kp − S

K
=

K ′p − (S − p)
K

=
K ′p − S′

K
=

K ′

K

(
p − S′

K ′

)

Thus, except for the constant coefficient K ′/K, which is close to 1 the two ways
of calculating p′ are equivalent. With regard to the ranking of the adjusted
phenotypic values it does not matter whether or not pi comprises the consid-
ered central plant.

An alternative to the adjustment according to Equation (14.8) is developed
as follows. Linear regression of p

i
on p

i
is applied to predict the phenotypic

value of plant i on the basis of pi. The phenotypic value predicted for a con-
ceptual plant occurring in the centre of grid i amounts then to

p̂i = a + bpi (14.9)

where

a := the intercept

b := the slope of the linear regression line

The adjusted phenotypic value of candidate plant i may then be calculated as

p
i
′ = p

i
− p̂

i
= p

i
− (a + bp

i
) (14.10a)

Because the intercept a is a constant it suffices to calculate

p
i
′ = p

i
− bp

i
(14.10b)

Adjustment according to Equation (14.8) is, of course, a special case of the
adjustment according to Equation (14.10).

N. B. 1. One may argue that the regression of p
i
on p

i
should be regression

through the origin, i.e.
p̂

i
= bp

i
,

instead of regression with an intercept (Equation (14.9)). Then Equations
(14.10a) and (14.10b) can not even contain an intercept.
N. B. 2. Instead of the adjustment given by Expression (14.8) one may
consider the transformation

p
i
′ = 100

(
p

i

p
i

)
(14.11)

The transformations aim to adjust the phenotypic values of the candidate
plants for the effect of the quality of the growing conditions provided by the
grid, estimated by p

i
. The so-called moving mean adjustment results in

detrending, i.e. in elimination of the contributions to the phenotypic values
which are due to a trend in the quality of the growing conditions. After having



350 14 Selection with Regard to a Trait with Quantitative Variation

adjusted the phenotypic values, all candidate plants are subjected to trunca-
tion selection with regard to p′.
In the remainder of this section some comments with regard to the efficiency
of adjustment procedures are elaborated. It is reminded that the adjustments
pursue

ρp′,g

to be higher than
ρp,g

(see Section 14.1).
An adjustment intends to increase the heritability by means of a reduction of
the environmental variance. Thus the adjustment aims at

var(e′) < var(e) (14.12)

where
var(e′) := the environmental variance after adjustment, and

var(e) := the environmental variance in the absence of adjustment.

Yates (1936) remarked with regard to the adjustment according to Equa-
tion (14.11) that ‘percentages are unlikely to possess any advantages over
differences’. He considered adjustment according to Equation (14.8) to be less
effective than adjustment according to Equation (14.10).

Spitters (1979, p. 201) showed how one may develop insight with regard
to the topic of efficiency of adjustment procedures. He studied the quality of
the moving mean adjustment involving plants occurring alongside a row. The
adjustment was based on the two nearest neighbours. Thus

p
i
′ = p

i
− 1

2 (p
i−1

+ p
i+1

)

where pi−1, pi and pi+1 designate the phenotypic values of three contiguous
plants. This means

var(p′) = 3
2var(p) − 2cov(p

i
, p

i+1
) + 1

2cov(p
i−1

, p
i+1

) (14.13)

In the absence of genetic variation the environmental variance after adjustment
amounts thus to

3
2var(e) − 2cov(ei, ei+1) + 1

2cov(ei−1, ei+1) (14.14)

The adjustment leads to an increase of the environmental variance because of

(i) the environmental variances of the neighbours, as well as
(ii) the covariance of the environmental deviations of the neighbours.

It leads to a decrease of the environmental variance in the case of a positive
covariance of the environmental deviations of adjacent plants. This covariance
may tend to be positive because neighbours are subjected to about the same
growing conditions, but it might be negative due to interplant competition.
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The adjustment will thus not always give rise to a reduction of the environ-
mental variance.

Spitters also considered the variance of the adjusted environmental devia-
tions in the presence of genetic variation. For that case var(e′) is increased
by a genetic component arising from the genetic variation among the plants
involved in the moving grid. He derived that the pursued goal of adjust-
ment, i.e.

var(e′) < var(e),

applies if
ρpi,pi+1 − 1

4ρpi−1,pi+1 > 1
4

This implies that successful adjustment requires a rather strong coefficient
of correlation of the phenotypic values of direct neighbours. Otherwise the
adjustment gives rise to over-correction of the phenotypic values.

Bos (1981, p. 145) derived, for a regular triangular pattern of plant positions,
that the condition var(e′) < var(e) applies if

ρpi,pi
> 1

2

(
σpi

σpi

)

Example 14.4 shows interplant competition to be a disturbing factor with
regard to the efficiency of moving grid adjustment.

Example 14.4 Bos and Hennink (1991) performed an experimental veri-
fication of the merits of the adjustments according to Equations (14.8) and
(14.10). They did so by studying the relationship between the adjusted phe-
notypic values of candidate plants (p′) and the mean phenotypic values,
calculated across the offspring of these plants obtained by open pollination
(p

HS
). If it is true that p reveals the underlying genotypic value G worse than

p′, then the coefficient of correlation between p and p
HS

(ρp,pHS) will tend to
be lower than the coefficient of correlation between p′ and p

HS
(ρp′,pHS).

This tendency did, however, not show up in the verification for traits like
height or grain yield of winter rye plants. The candidate plants were grown
in a regular triangular pattern of plant positions with an interplant distance
of 15 cm (implying a plant density of 51.3 plants per m2). For plant height,
for instance, Bos and Hennink got rp,pHS = 0.47(n = 269). With Equation
(14.8) and (14.10) they got rp′,pHS = 0.43 and 0.45, respectively.

Bos and Hennink (1991) assumed that interplant competition was the main
cause for the failure of the adjustments according to Equations (14.8) and
(14.10) to attain their goal, i.e.

ρp′,g > ρp,g

(Section 14.1).
They concluded that these adjustments can only be effective in the virtual
absence of intergenotypic competition. This requires, for single plant selection,
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an extremely low plant density, whereas selection among candidates tested by
means of plots would require evaluation by means of multi-row plots.

Example 14.4 illustrates that the coefficient of correlation between p
i

and
p

i
deserves attention. A moving mean adjustment aims to eliminate the con-

tribution to the phenotypic value that is due to a trend in the quality of the
growing conditions. Such a trend may become apparent from estimates for
ρpi,pi

. In the absence of interplant competition, i.e. at a (very) low plant den-
sity, the correlation is expected to be positive (if, indeed, a trend in the quality
of the growing conditions is present). At high plant density the actual value
of the coefficient of correlation indicates the balance between a positive effect
on ρ due to a trend in the quality of the growing conditions and a negative
effect due to interplant competition. Example 14.5 presents some estimates for
ρpi,pi

.

Example 14.5 Kira, Ogawa and Sakazaki (1953) estimated ρp,p for
1-aureole grids (see Fig. 14.1). This was done for plant weight of soybeans
at each of four different plant densities. Table 14.2 presents some of their
estimates.

Table 14.2 The coefficient of correlation between the weight of soybean plants and the

average weight of their six neighbours (source: Kira, Ogawa and Sakazaki, 1953)

Plant density (plants/m2)

28.9 51.3 115.5 461.9 Mean

Days after sowing: 12 0.15 0.02 −0.22∗ 0.12 0.02

31 0.58 0.16 0.65∗∗ 0.21∗ 0.40

84 0.29 0.74∗∗ 0.55∗∗ 0.53

Mean 0.34 0.31 0.33 0.17

Many of these estimates were not statistically significant, especially at 12
days after sowing. There was, however, a tendency to get lower coefficients of
correlation at higher plant densities, i.e. at stronger interplant competition.
The stronger competition at a later ontogenetic stage did not give rise to a
decrease of the coefficient of correlation.

Fasoulas (1981, p.71) grew maize plants at a density of only 0.8
plants/m2. He estimated the coefficient of correlation between the yield of
the central plant and the mean yield of all seven plants in the 1-aureole grid.
Very high estimates were reported, viz. r = 0.64 and r = 0.91. These esti-
mates were, of course, inflated by the inclusion in p of the phenotypic value
of the central plant.

For winter rye plants grown at a density of 51.3, Bos (1981, p. 145)
obtained for 1-aureole grids for culm length r = 0.29, and for grain yield
r = 0.28. The estimates were higher as the considered area, across which
ρp,p was estimated, was larger.



14.2 Single-Plant Evaluation 353

Bos and Hennink (1991) estimated ρp,p for grain yield of winter rye
plants grown in a regular triangular pattern of plant positions with an inter-
plant distance of 15 cm. They obtained rp,p = 0.06 (ns, n = 269). This low
coefficient was explained by assuming an important negative effect due to
interplant competition. They estimated the coefficient of correlation between
grain yield per plant and the number of plants in the involved 3-aureole grid
(thus K ≤ 19): rp,K = −0.29. Plants with a smaller number of neighbours
tend thus to perform better than plants with a higher number of neighbours.
This implies that the number of neighbours of candidate plants should be
taken into account when applying some mass selection method.

Selection of central plants surpassing all other plants in their grid

The breeder may decide to select central plants surpassing all other plants in
their grid. Application of this principle is considered in connection with the use
of a regular triangular pattern of plant positions. Fasoulas (1973) introduced
for this procedure the term honeycomb selection: each plant in its turn
is compared with neighbours occurring in the grid formed by the central
plant and a number of surrounding plants. These surrounding plants occur
at plant positions alongside 1, 2, 3, etc. aureoles around the centre of the
grid. Figure 14.1 illustrates the regular triangular pattern of plant positions

Fig. 14.1 A regular triangular pattern of plant positions. Each plant in its turn is con-
sidered as a candidate and compared to the plants occurring alongside one (grid A), two
(grid B) or three (grid C) surrounding aureoles
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as well as grids consisting of 1 + 6 = 7 plant positions (grid A, one aureole),
1+(2×6) = 13 plant positions (grid B, two aureoles) or 1+(3×6) = 19 (grid C,
three aureoles) plant positions. These grids have a more or less circular shape.
The orientation of the grid is then irrelevant; their size is considered below.

The principle of selecting a central plant, if it performs better than all other
plants in its grid, may also be applied at other patterns of plant positions.
With a square pattern of plant positions a grid will consist of 1 + 4 = 5
plant positions (one aureole), 1 + (2 × 4) = 9 plant positions (two aureoles),
1 + (3 × 4) = 13 plant positions (three aureoles), etc.

The idea underlying honeycomb selection is that the plants in a grid experi-
ence similar growing conditions. There is a strong indication that the central
plant is genetically superior with regard to the considered trait, if it performs
better than each of its fellow grid members.

In the first publications on honeycomb selection (Fasoulas, 1973; Fasoulas
and Tsaftaris, 1975) grids involving only one aureole were recommended. Bos
(1981, p. 144) concluded, on the basis of results of application of honeycomb
selection (see Example 14.5a), that 1-aureole grids contain too small a num-
ber of plant positions: the great random plant-to-plant environmental vari-
ation within such small grids did, apparently, hardly imply that phenotypic
superiority of a central plant was due to genetic superiority. Stam (1984) and
Kyriakou and Fasoulas (1985) recommended the use of grids involving three
aureoles.

Example 14.5a Bos (1981) applied 1-aureole honeycomb selection in win-
ter rye. The intended plant density was 51.3 plants/m2. Plants with a culm
length less than the average culm length of their fellow grid members but
yielding better than each of these were selected.

The results confirmed the common experience that the response to mass
selection for a single generation is highly affected by incidental circum-
stances. Thus the cumulative response to honeycomb selection continued for
three successive generations was evaluated at an intended plant density of
225 plants/m2 (which is close to normal). The rye plants descending from the
selected plants produced culms with a 6.1% reduced length, whereas their
grain yield was 4.3% higher (Bos, 1981; Table 73). It was concluded that,
notwithstanding the positive correlation of culm length and grain yield, the
selection resulted in changes in the desired directions.

Fasoulas (1973) suggested growing, at specified positions in the triangular
pattern of plant positions, plants representing some standard variety. This
allows comparison of the phenotypic value of each candidate plant with the
average phenotypic value of the three nearest standard plants (Fasoulas and
Tsaftaris, 1975). This modification of honeycomb selection is in fact an appli-
cation of the procedure described in Section 14.2.1.



14.3 Evaluation of Candidates by Means of Plots 355

14.3 Evaluation of Candidates by Means of Plots

14.3.1 Introduction

Clones, lines, hybrids and families are mostly evaluated by means of plots. Such
evaluation occurs especially when applying line selection or family selection.
In Sections 6.3.2 to 6.3.4 aspects of such selection were considered with regard
to traits with qualitative variation. In connection with the topic of evaluation
by means of plots, line and family selection are now considered with regard
to traits with quantitative variation. The three main features of line or family
selection are:

1. Each candidate is judged on the basis of its average performance across all
plants representing the candidate. An entry is selected or rejected depend-
ing on this average performance. Mostly each candidate is tested at J(≥ 1)
plots, each containing K(≥ 1) plants.

2. Within selected families, single-plant selection is either applied or omitted.
In the former case the selected plants are the parents of the lines or the
families to be evaluated the next generation. They are, in contrast to mass
selection, not exclusively selected on the basis of their own phenotypic value.
The performance of the line or the family to which they belong plays an
important role. Combined selection is thus common in connection with
line or family selection with regard to quantitative variation. One may, for
instance, select the best 10 plants in each of the best 10% of the lines or
families.
In the latter case, seeds produced by a random sample of plants, either or
not separately harvested, are used to grow lines or families to be evaluated
in the next generation.

3. The next generation is grown in separate plots tracing back to

• Seed produced by the evaluated plants themselves (this could be indi-
vidually selected plants)

• Seed produced by the evaluated (and selected) families
• Seed produced by sibs of the evaluated (and selected) families (this is

called sib selection)

New varieties are released continuously because they are superior as com-
pared to the already existing varieties. However, their performance is not
always clearly superior. Their attractive performance may merely be due to an
improved resistance instead of an improved complex genotype with regard to
loci directly controlling the performance, possibly with regard to yield (if such
loci do exist at all). Excluding hybrid varieties, spectacular breakthroughs
with regard to yield are rare.

In the breeding of self-fertilizing crops, selection for qualitative variation
usually starts in the first segregating generations. Selection for resistance
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against diseases, pests or abiotic stress factors may start already in popu-
lations representing the F2, the F3 or the F4 generation. Later on, from F4

onwards, selection is focussed on quantitative variation in traits. This strategy
is, in fact, a form of tandem selection (Section 12.1).

Within a general framework for the selection in self- or cross-fertilizing crops,
many different approaches can be followed. These concern

• The number of evaluated candidates (lines of families)
• The number of plots (J) used to evaluate each candidate
• The number of plants evaluated per candidate
• The number of selected candidates
• The number of plants harvested or selected within the selected candidates
• The procedure for data adjustment aiming at improvement of the efficiency

of selection

First some remarks are made with regard to J , the number of plots used to
evaluate each candidate. Application of J = 1 may be due to

• the small amount of seed produced per (selected?) parental plant and/or
• the (very) large number of candidates.

Adjustment for a plot-to-plot trend in the quality of the growing conditions
deserves certainly attention when evaluating the candidates on the basis of
non-replicated plots. Such an adjustment may make use of

• Standard plots, i.e. plots containing a standard variety (Section 14.3.2)
• A moving mean (Section 14.3.3).

The adjustment aims at improvement of the efficiency of the selection, i.e. at
an increase of the heritability.

Replicated testing of the candidates (J > 1 may be applied when the
selected plants produce sufficient amounts of seed and/or when it is permit-
ted due to a reduced number of candidates. Replicated testing within a given
macro-environment aims to increase the heritability (Section 11.2.1). Repli-
cated testing across several macro-environments, i.e. several growing seasons
and/or locations, should be applied when wide adaptation or stability across
different macro-environments is pursued. A selection procedure employing
replicated testing of families obtained by open pollination in an annual crop,
namely modified ear-to-row selection, is now described. The procedure
has successfully been applied in maize.

Each of the I candidate HS-families is tested at J ≥ 3 locations. The aver-
age performance across these locations is determined for each candidate and
used as a measure of the quality of the candidate. With this yardstick effects
of genotype × location are cancelled out. At an additional location the five
most attractive open-pollinated plants are preliminary selected in each can-
didate family. As soon as the average performance across the J locations is
known, the top 20% of the families can be identified and then the five most
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attractive plants within these families, as identified at the additional location,
are eventually selected. This procedure is not only a clear example of com-
bined selection but also of sib selection. A ‘cycle’ lasts one generation. The
procedure is illustrated in Example 14.6.

Example 14.6 Lonnquist (1964) introduced the modified ear-to-row selec-
tion procedure in order to improve grain yield of maize (Fig. 14.2).

Fig. 14.2 A scheme representing modified ear-to-row selection. At locations 1, 2 and

3 all families (A, B, C, . . . ) are tested. The families with the best average performance

across the three locations are identified as being best (here family C among families A,

. . . , D). At location 4 all families are grown as rows of plants to be emasculated, alternated

by rows consisting of a mixture of all families (indicated by M). The latter rows are the

so-called pollinator rows. In the best families the best-performing plants are selected (here

five plants in family C)

Each HS-family was tested at three locations. The procedure was applied
for four generations to the open-pollinating maize variety Hays Golden. The
response to the selection was 9.44% per ‘cycle’ (Webel and Lonnquist, 1967).

A drawback of modified ear-to-row selection is the participation of inferior
families in the open pollination. To avoid this one could adopt a modifica-
tion similar to the remnant seed procedure (Section 6.3.4). Thus after the first
season the best families are identified. In the second season a mixture of rem-
nant seed, representing these best families, is grown in the pollinator rows
(Compton and Comstock, 1976).
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In Section 16.1 the optimal number of replications when using plots of a fixed
size is considered. Replicated testing may, however, impose the use of smaller
plots than would be applied in the case of non-replicated testing. Thus the plot
size, especially the number of rows per plot, may be affected by the number
of replications. Section 16.2 deals with the size and the shape of the plots.

The replications may coincide with (complete) blocks. Then randomization
of the entries across each complete block (or in sets of incomplete blocks
accommodating all entries) instead of randomization across all available plots
should be applied. In Chapter 19 the application of complete and incomplete
blocks is considered.

Breeders pursuing the same goal for the same crop tend to apply very dif-
ferent approaches. There is, apparently, no unambiguous guideline to choose
the most appropriate procedure. The remainder of this section serves to give
an impression of the diversity of the approaches. For an annual crop a ‘cycle’
of family selection may involve three growing seasons:

• First season: selection of the plants yielding the families to be evaluated.
Depending on the trait(s) to be improved the selection may occur both
before and after pollen distribution.

• Second season: evaluation of the families and identification of the best fam-
ilies.

• Third season: intercrossing of the best families. These are grown once again
from remnant seed. The families may be grown as a mixture.

Mostly the activities of the first and third season take place in the same season.
Then a single cycle consists of

• First season: intercrossing of families previously identified to be the best.
These families are grown from remnant seed. The families may be grown
as a mixture. Among the plants representing these best families the best
plants are selected. These yield the families to be evaluated.

• Second season: evaluation of the families and identification of the best fam-
ilies.

Depending on the crop and the trait to be improved a further acceleration may
be possible: about 4–8 weeks after the sowing the families to be evaluated,
these families are sown again from remnant seed. The sowing occurs ear-to-
row in order to be able to intercross plants of families that appear to excel for
traits expressed early in the ontogenesis of the crop. For example: by growing
two generations per year Singh, Khehra and Dhillon (1986) could complete
four ‘cycles’ of selection with regard to the number of ears of individual maize
plants within two years.

The number of entries to be evaluated (I) or the number of plots (I × J)
may be determined by the number of plots from which observations can be
obtained. Harvesting, weighing and measuring are especially time-consuming.
The manageable number of plots can drastically be increased if unbiased and
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accurate visual assessment of the trait of interest is possible. In that case
visual selection, i.e. selection based on the visual assessment, may success-
fully be applied. Results of visual selection as applied by breeders and layman
(Example 14.7) or by just breeders (Example 14.8) are now given.

Example 14.7 In 1971 Townley-Smith and co-workers tested 251 wheat
lines, both in Swift Current and Regina (Saskatchewan, Canada) (Townley-
Smith, Hurd and McBean, 1973). In each third plot the standard variety
Neepawa was grown. Immediately before harvest the lines were assessed
visually for yielding ability. The 25% of the lines presumed to be best were
tagged. This was done independently by wheat breeders, by their assistants
and by scientists from other disciplines. After the harvest the lines were
ranked for their actual grain yield.

It appeared that both in Swift Current and Regina each person had
tagged at least one line from each class containing 10% of the ranked lines.
For each person the average yield of the tagged lines was higher than the
average yield of all lines, but many of the really outstanding lines were not
tagged at all.

The breeders’ tagging was worse than the assistants’. More lines than
were to be expected in the case of tagging at random were tagged in com-
mon by several breeders. Their assessment was apparently based on having
in mind a similar ideotype for traits such as culm length, uniformity, etc.,
whereas that ideotype did not appear to imply a high actual grain yield.

Persons tagging both in Swift Current and Regina often tagged the same
lines in both locations. This applied especially to the breeders.

It was concluded that variation for morphological traits could be distin-
guished by visual assessment, but that this did not lead to an unbiased and
accurate judgement of grain yield.

14.3.2 Use of Plots Containing a Standard Variety

In the former section it was emphasized that adjustment of data resulting
from a non-replicated evaluation of candidates deserves special attention in
the presence of a plot-to-plot trend in the quality of the growing conditions.
The adjustment may be on the basis of standard plots, i.e. plots con-
taining a standard variety (this section) or on the basis of moving means
(Section 14.3.3). Non-replicated testing may be unavoidable because of lack of
seed or because replicated testing is not feasible due to the high number of
candidates.

These adjustment procedures can, of course, also be incorporated in repli-
cated tests (Example 14.18). The efficiency of an adjustment procedure may
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then be measured by comparison of the F value for candidates, calculated in
an analysis of variance of the unadjusted phenotypic values, to the F value
calculated in an analysis of variance of adjusted phenotypic values.

Example 14.8 Brown et al. (1984) studied the efficiency of visual selection
in potato. In 1981, 200 seedlings, obtained from each of eight crosses, were
grown in an aphid-proof glasshouse (in 10 cm square pots). Each plant/pot
was harvested individually. Four potato breeders assessed the 1600 geno-
types visually according to a 1–9 scale of increasing desirability. The visual
assessment took into account all the features observed to provide an overall
measure of commercial suitability.

In the spring of 1982 the harvested tubers were planted in the field. Two
sites were used: W (a ware production site) and S (a high-grade seed site).
At each site two completely randomized blocks were planted; each plot being
a single plant. From the 1600 initial genotypes, 224 failed to produce any
tubers and 122 produced only one tuber. The single-tuber clones were only
grown at site S. All genotypes represented by two or more tubers were grown
in at least one block at each site. The largest tuber was grown in block 1 at
site S, the next two largest were grown at site W, and the smallest of the four
was planted in block 2 at site S. The S trial contained 1600 − 224 = 1376
genotypes in block 1, the W trial 1600 − 224 − 122 = 1254 genotypes in
block 1. Only 824 genotypes were grown in all four blocks. Each plant was
harvested by hand. The four breeders assessed each plant.

The correlation coefficient of the scores, within each of the three year-site
combinations, ranged from 0.34 (breeders 1 and 4 for the seedlings) to 0.84
(breeders 1 and 3 for the W trial). The four breeders were thus in reasonably
good agreement as to what should be selected in each environment.

The coefficient of correlation between the mean scores of the four breed-
ers for the glasshouse and the W or the S trial amounted to 0.29 and 0.26,
respectively. Of the clones that would have been discarded as a seedling,
24% would have been selected at either S, M or both sites; of the clones that
would have been selected as a seedling 41% would have been selected at one
or both of the sites. One of the seedlings that was assessed as a 1 by all the
breeders had a first-clonal-year score of 8.5 at site S and 7.8 at site W. It was
concluded that visual selection of seedlings was not very efficient. (However,
significant correlations between yield data (total tuber weight or mean tuber
weight) recorded in the glasshouse and in the first-clonal-year suggest that
seedling selection for yield characters can be effective (Brown and Caligari,
1986).

In 1983 it was not possible to grow all the material that had been han-
dled previously and in this second-clonal-year each family was represented
by 70 randomly chosen clones. These were grown at sites S and W in two
completely randomised blocks with each clone in each block represented by
a three-tuber plot. The mean breeder’s preference score was calculated for
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each of the eight families on the basis of 70 clones that were grown in all
three years. Brown, Caligari and MacKay (1987) estimated for these means
the rank correlation across the 8 families between the five year-site com-
binations. These correlations suggested that breeders should grow samples
of clones representing many families and then identify the families with the
highest rankings for mean preference score. The corresponding crosses should
then be made again, such that a much larger family size is obtained. This
suggestion comes close to cross prediction (Section 11.4): identification of
crosses having a high probability of producing desirable genotypes.

The repeatability of the visual preference scores for individual clones
over generations was shown to be very low. It was concluded that selection
of individual clones should not be practised in the early generations.

Mostly candidates are evaluated together with one or more proven varieties
serving as a standard by growing them in contiguous plots arranged in strips.
The standard plots may be distributed within the strips in a regular or in
an irregular pattern. In the regular pattern each third, or each fifth, or each
seventh, or . . . ., etc. plot is a standard plot. In the irregular pattern a certain
number of plots are assigned at random to the standard variety.

The adjustment may consist of calculating

p′
i
= p

i
− p̄

iS
(14.15)

where

p
i

:= the phenotypic value of the candidate occurring at plot i; and
p

iS
:= the weighted mean phenotypic value of standard plots near to

plot i.

The adjustment is followed by truncation selection with regard to p′.
The symbol p̂i is introduced for the phenotypic value predicted for the

standard variety when it would occur at plot i. Its value is calculated on
the basis of phenotypic values obtained from standard plots near to plot i.
This quantity may be used in a more general equation for adjustment of the
phenotypic value of the candidate actually occurring at plot i, namely

p′
i
= p

i
− p̂i (14.16)

In the case of a regular pattern of the positions of standard plots there occur
n candidate plots in between two standard plots. One may calculate p̂i then
on the basis of some assumption with regard to the trend in the quality of the
growing conditions. This is illustrated for the following three assumptions:

1. A constant quality of the growing conditions in the neighbourhood of each
standard plot

2. A linear trend in the quality of the growing conditions between two standard
plots
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Fig. 14.3 The phenotypic values (p) obtained from a trial field consisting of a strip of 15
plots. Entry S is a standard variety grown at each third plot; entries C1, . . . , C10 are 10
candidates

3. A smooth, curvilinear trend in the quality of the growing conditions across
the whole field

N. B. With appropriate modifications the adjustments elaborated in the
following may also be applied in case of an irregular distribution of the
positions of the standard plots.

A constant quality of the growing conditions in the neighbourhood of each
standard plot

In the case of a constant quality of the growing conditions in the neighbour-
hood of each standard plot, each candidate’s phenotypic value is adjusted
according to Equation (14.16) with taking for p̂i simply the phenotypic value
of the nearest standard plot. The procedure is applied to the data provided
by Figure 14.3 and illustrated by Example 14.9.

Example 14.9 Fig. 14.3 illustrates a trial field consisting of a strip of 15
contiguous plots. The evaluation involves 10 plots used to evaluate candi-
dates C1, . . . ,C10 and five plots grown with standard variety S. The 10 can-
didates may be randomized across the 10 plots reserved for them, but this
is not required. Because S is grown in each third plot, each standard plot is
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surrounded by two candidate plots. When taking for p̂i the phenotypic value
obtained from the nearest standard plot, the adjusted phenotypic values are:

Candidate
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

p′ −1 −3 −2 −1 −2 0 1 1 1 2

According to this adjustment procedure, the best candidate is C10.

A linear trend in the quality of the growing conditions between two standard
plots

In the case of a linear trend in the quality of the growing conditions between
two standard plots the phenotypic value predicted for plot i(p̂i) is calculated as
the weighted mean of the phenotypic values of its two nearest standard plots.
The procedure is applied to the data provided by Figure 14.3 and illustrated
by Example 14.10.

Example 14.10 When assuming a linear trend in the quality of the growing
conditions between two standard plots, one may predict the phenotypic value
for a standard variety grown on plot i(p̂i) in the following way. For the data
of the trial described by Figure 14.3 the phenotypic value of the standard
variety as predicted for plot 3, for instance, is

p̂3 = 2
3 (10) + 1

3 (11) = 10.33

Equation (14.16) yields then

p3
′ = 7 − 10.33 = −3.33

For plot 4 the adjusted phenotypic value p′4 is calculated to be

9 − [13 (10) + 2
3 (11)] = −1.67

The adjusted phenotypic values are thus:

Candidate
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

p′ −0.67 −3.33 −1.67 −1.33 −1.67 0 1 1.33 0.67 2.33

As in Example 14.9, candidate C10 appears to have the highest adjusted
phenotypic value also with the present adjustment procedure.
N. B. The adjusted phenotypic values for C1 and C10 were calculated by
extending the trend between plots 2 and 5 and the trend between plots 11
and 14, respectively.
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A smooth, curvilinear trend in the quality of the growing conditions across the
whole field

When assuming a smooth, curvilinear trend in the quality of the growing con-
ditions one may plot the phenotypic values of the standard plots against their
plot numbers and sketch a smooth line indicating for each plot the phenotypic
value predicted for the standard variety (p̂i). The predicted phenotypic values
may also be obtained by fitting some polynomial function to the phenotypic
values obtained for the standard plots. The adjustment procedure is applied
to the data provided by Figure 14.3 and illustrated by Example 14.11.

Example 14.11 Let i represent the plot number. The function

p̂i = 8.57 + 0.73i − 0.04i2

can then be calculated to predict, on the basis of a quadratic function in i, the
phenotypic value of standard variety S at plot i. The function was obtained
by regressing the actual phenotypic values of the standard variety on their
plot numbers (see Figure 14.3). The adjusted value for plot 3 amounts then
to

p′3 = 7 − [8.57 + 0.73(3) − 0.04(32)] = −3.4

The complete set of adjusted phenotypic values of the candidates is:

Candidate
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

p′ −0.26 −3.4 −1.85 −1.51 −1.72 0.1 1.13 1.43 0.7 2.48

The actual phenotypic values of candidates C7,C8 and C10 amounted to
13. However, according to its adjusted phenotypic values candidate C10 is
consistently identified as the one with the highest adjusted phenotypic value
in Examples 14.9 to 11.

Federer (1956) defined the fertility index f
i

of plot i (which contains the
standard variety), namely

f
i
:= p

iS
− p

S
(14.17)

where

p
iS

:= the actual phenotypic value of the standard variety at plot i
p
S

:= the mean phenotypic value across all plots containing the stan-
dard variety

The quantity fi indicates for each plot containing the standard variety the
quality of the growing conditions it provides.

When assuming a linear trend in the quality of the growing conditions
between two standard plots one may calculate the fertility index of each can-
didate plot. Regression of the phenotypic values obtained from the candidate
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plots on their fertility indices may be used to predict a phenotypic value for
candidate plot i:

p̂i = a + bfi

The adjusted phenotypic value of the candidate occurring at plot i is then
calculated as

pi
′ = pi − p̂i = pi − (a + bfi)

or, when neglecting the intercept a, as

p′i = pi − bfi (14.18)

This equation is similar to Equation (14.10).
It is once more emphasized that adjustments aim at improvement of the evalu-
ation of the genotypic values of candidates, i.e. at ρp′,g being larger than ρp,g.
Such an improvement may appear from the heritability of p′ being higher than
the heritability of p. In plant breeding practice it is, however, often taken for
granted that this goal is attained. Example 14.12 illustrates an unreliable way
of establishing whether or not the desired goal is attained.

Example 14.12 Shebeski (1970) expressed the grain yield of individual
plots sown with spring wheat lines as a percentage of the grain yield obtained
from nearby standard plots. (Thus an adjustment similar to Expression
(14.3) was applied.) This yielded a coefficient of correlation between F3 lines
and their F5 progenies as high as r = 0.84. Pembina was the standard variety
for the F3 lines, and Manitou was the standard for the F5 progenies. Briggs
and Shebeski (1971) advised the selection of F3 lines with a high grain yield
per se as well as a high relative yield compared to a nearby standard.

One may consider for a certain site a uniformity trial, i.e. a ‘trial’ where all
plots contain the same genotype. A high coefficient of correlation between the
data obtained from adjacent plots in this trial does not warrant that adjust-
ment of candidate data – on the basis of plots containing a standard variety – is
efficient at this site: when different candidates are tested at contiguous single-
row plots, interplot competition may disturb the quality of the adjustment. (In
Section 14.2.3 it was remarked that the change of the environmental variance
due to adjustment, namely an increase or a decrease, depends on the com-
bined effect of a trend in the quality of the growing conditions and the effect
of intergenotypic competition.) Example 14.13 provides some data concerning
the correlation between data obtained from adjacent standard plots.

Example 14.13 Briggs and Shebeski (1968) obtained a highly significant
coefficient of correlation, i.e. r = 0.64, between the yields of standard plots
separated 2.7 m. The coefficient of correlation clearly declined at larger dis-
tances between the standard plots. At a distance of 19.2 m (in two exper-
iments) or 35.7 m (in a third experiment) the correlation was insignificant;
viz. r = 0.08 in the former case.
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Hadjichristodoulou and Della (1976) studied protein content of durum
wheat. They estimated coefficients of correlation between standard plots.
These were high and significant (0.31 − 0.74) for plots 0.6 m apart, but
decreased rapidly with increasing distances between the standard plots. Sig-
nificant coefficients of correlation were not obtained at distances of 6 m or
larger.

High values for the soil heterogeneity index (Section 16.2.3) imply a weak
correlation between data of contiguous plots: they imply a weak trend in
the quality of the growing conditions. When defining over-adjustment as the
situation where the residual variance in the analysis of variance is higher
in the presence of the adjustment than in its absence, Baker and McKenzie
(1967) deduced from a theoretical study that Equation (14.15) leads to
over-adjustment if the soil-heterogeneity index is larger than 0.5. They also
considered adjustment in a way similar to the adjustment given by Equation
(14.10), namely

p′
i
= p

i
− bp

iS
, (14.19)

This adjustment yielded in all studied cases a reduction of the residual vari-
ance. The study confirmed the validity of the positive opinion of Yates (1936)
about Equation (14.10) relative to Equation (14.8). The results of the the-
oretical study were more-or-less confirmed by an experimental verification
(Example 14.14).

Example 14.14 Baker and McKenzie (1967) compared oat lines to a stan-
dard variety grown in every second plot. Single-row plots were used.

In 1964 adjustment resulted in all cases in an increased residual variance,
but especially when Equation (14.15) was applied. In 1965 adjustment gave
rise to a decrease of the residual variance, especially when Equation (14.19)
was used. The reduction was at most only 14%. The additional costs, due
to growing the standard variety at every second plot, could thus not be
justified. Baker and McKenzie concluded that adjustment on the basis of
regularly inserted standard plots is risky.

Early in the twentieth century the use of standard plots was quite popular.
Later, the established opinion was that the accuracy of the evaluation of can-
didates could be increased sufficiently by using smaller, but more frequently
repeated plots. Thus in 1921 a Committee on Standardization of Field Exper-
iments, set up by the American Society of Agronomy, recommended not to
make use of standard plots anymore (Kempton, 1984). The present authors
support the opinion that adjustment on the basis of standard plots must be
critically considered. The reasons for this opinion are the following:
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1. The standard plots require an additional part of the trial field and addi-
tional attention.

2. The observations on a standard variety include contributions of genotype ×
location and genotype × season interactions which are specific for the stan-
dard variety. The adjusted values of the candidates apply, consequently,
only when using the involved standard variety and under the conditions
provided by the location and the season. A change of standard variety may
affect the ranking of the adjusted values of the candidates. Generalization
of the ranking of the candidates to other macro-environmental conditions,
i.e. to other locations and/or years, is thus risky. The standard variety
actually used may thus be inappropriate for regional or international tests.
Furthermore standard varieties tend to have a short life span.

3. Dominating random plot-to-plot variation in the quality of the growing
conditions may obliterate the course of the trend. The predicted value p̂
(Equation 14.16) may then be based on an incorrect assumption about the
course of the trend. This gives rise to the application of an inappropriate
procedure for data adjustment on the basis of plots containing a standard
variety.

4. Sometimes the quality of evaluation of candidates on the basis of adjusted
data is worse than the quality of evaluation on the basis of unadjusted data.
Then the goal of the adjustment, namely

ρp′,g > ρp,g,

is not attained. This may appear from comparison of the F value for can-
didates, calculated in an analysis of variance of the unadjusted phenotypic
values, to the F value calculated in an analysis of variance of adjusted
phenotypic values.

Notwithstanding the above objections, breeders generally agree that standard
plots should be included in an evaluation of candidates in order to be able to
perform – throughout the growing season – a visual assessment.

14.3.3 Use of Moving Means

When the number of candidates is to be counted in hundreds instead of in tens,
it is unavoidable that the trial field provides heterogeneous growing conditions.
Mostly the variation in the quality of the growing conditions occurs partly at
random and partly with a trend.

The observation obtained from plot i, i.e. p
i
, is thus likely to contain a

contribution due to a trend in the quality of the growing conditions. One may
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eliminate this contribution by adjustment according to

p′
i
= p

i
− p

i
(14.20)

or
p′

i
= p

i
− bp

i
(14.21)

where

p
i

:= the mean of the observations obtained from the k plots surround-
ing plot i, the considered (central) plot

b := the estimate of the coefficient of regression of p
i

on p
i

N. B. 1. One may consider regression through the origin.
N. B. 2. Equations (14.20) and (14.21) are identical to Equations

(14.8) and (14.10), respectively, but the meaning of p
i

depends on the context.

The idea underlying these adjustment procedures is that the phenotypic value
expected for plot i can reliably be predicted by p

i
or by bp

i
. Indeed, the mov-

ing mean should provide an adequate impression of the quality of the growing
conditions offered by plot i. There should be a high correlation (r > 0.5)
between p

i
(or p

iS
) and p

i
(Mak, Harvey and Berdahl, 1978). Yates (1936)

suggested application of analysis of covariance in which p
i

or p
iS

is used as a
covariate: linear regression of p

i
on the covariate, after elimination of replica-

tion and candidate effect, yields the regression coefficient b. Over-adjustment
is avoided if b differs significantly from zero. This should warrant that the
adjusted value (p′

i
), i.e. the difference between p

i
and its predicted value (p̂i),

is a better indicator of the genotypic value of the candidate occurring at plot
i than the unadjusted phenotypic value.

Example 14.15 illustrates how a moving mean may show a trend in the
quality of the growing conditions.

Example 14.15 In a spring wheat breeding programme at Swift Current,
Saskatchewan, F2-derived F4 lines were evaluated. The plots consisted of four
rows. They were separated by two rows sown with winter wheat, staying in
the vegetative phase. The plot size was 2.7m2. The plots were arranged
in strips containing 42 plots. Grain yield per plot was measured in grams.
Fig. 14.4 depicts, for one of the strips, the grain yields as well as the moving
mean grain yields calculated across k = 6 nearby plots (Bos and De Pauw,
1984).
Especially the moving means suggest the presence of a trend in the quality
of the growing conditions. It was speculated that this was due to unevenness
of the field surface, which gives rise to variation in soil moisture content.
In the semi-arid conditions of Swift Current such variation is reflected by
variation in grain yield.
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Fig. 14.4 The grain yield (in g/ plot) obtained in a spring wheat trial consisting of

42 plots alongside a strip. The moving mean, calculated across six neighbour plots, is

depicted as a smooth line

Examples 14.16 and 14.17 report about the efficiency of adjustment based on
moving mean data as compared to adjustment based on standard plot data.

In Example 14.16 the moving mean adjustment was clearly superior, as
compared to the standard plot adjustment, with regard to reduction of the
error variance. This supports the validity of Baker and McKenzie’s conclusion
(Example 14.14).

Example 14.16 Townley-Smith and Hurd (1973) tested a series of experi-
mental spring wheat lines: five series with frequently repeated standard plots
at Swift Current in either 1969 and 1970 (with r = 2 or 3) and eight series
without frequently repeated standard plots at four locations in 1970. They
applied the following adjustments of the phenotypic value pi of plot i:

• p′
1i

= p
i
− p

i
, the moving mean adjustment (Equation (14.20)), involving

k = 2(2)20 neighbour plots
• p′

2i
= p

i
− p

iS
, the standard plot adjustment (Equation (14.15))

The relative efficiency of the adjustments was measured by dividing the error
variances obtained from standard analyses of variance of the data for pi (say:
s2), p′1i (say: s2

1) and p′2i (say: s2
2). For series A, for example, it was found

that s2
1/s2 = 2038/3728 = 0.547 (at k = 8).

In contrast to adjustment p′2i, adjustment p′1i consistently reduced the
error variance: its relative efficiency ranged from 0.55 for k = 8 (in series A)
to 0.95 for k = 10.

In comparison to the adjustments according to Equations (14.20) and
(14.15), those according to Equations (14.21) and (14.19) did not yield an
additional reduction of the error variance, except when the adjustment was
made on the basis of only two standard plots.
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Example 14.17 Mak, Harvey and Berdahl (1978) tested, in 1974, 143
homozygous barley lines by means of three randomized complete blocks.
Each single-row plot consisted of 20 plant positions. The inter-row distance
amounted to 30.5 cm, the intra-row distance to 24 cm. Each third plot con-
tained the standard variety Bonanza. Grain yield and protein content of the
10 central plants in each plot were determined.

The test was repeated in 1975 with 142 lines and two standard vari-
eties (Bonanza and Hector), which were alternately grown at each third
plot. Within each single-row plot 150 kernels were sown. The plot length
was 366 cm, the plot width, i.e. the inter-row distance, 30.5 cm. A 12 × 12
partially balanced lattice with two replicates (see Chapter 19) was used as
the experimental design. For each plot grain yield and protein content were
determined.

The data obtained from plot i were adjusted on the basis of:

1. The moving mean of the observations obtained from k = 2(2)12 nearby
plots (p

i
), namely equal numbers of plots on each side of plot i, except at

the end of the strip of plots where the appropriate number of plot nearest
to plot i was used. Thus

p′
11i

=
p

i

p
i

(percentage adjustment) and p′
12i

= p
i
−bp

i
(covariance adjustment)

2. The mean of the observations obtained from two nearby standard plots
(p

is
). Thus

p′
21i

=
p

i

p
is

(percentage adjustment) and p′
22i

= p
i
−bp

is
(covariance adjustment)

The coefficient of residual variation (cve) was used to compare the evaluation
procedures.
Only cve values for grain yield, as obtained with k = 6, are given:

cve cve11 cve12 cve21 cve22

1974 0.24 0.32 0.23 0.28 0.23
1975 0.18 0.17 0.15 0.17 0.15

In 1974 the percentage adjustments (adjustments 11 and 21) failed. This was
avoided by the covariance adjustments (adjustments 12 and 22). In 1975 the
covariance adjustments gave, in comparison to the percentage adjustments,
a relatively large reduction of cve.

It is concluded that percentage adjustments perform badly to poor. (This
was already remarked by Yates, 1936). In contrast, covariance adjustments
perform poor to good: cve was reduced by nearly 20%.
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In Example 14.17 adjustment using a moving mean was superior, as compared
to adjustment on the basis of standard plot data, with regard to reduction
of the coefficient of residual variation. Additionally moving mean adjustments
have the advantages that the number of candidates is not limited, that repli-
cation is not necessary and that one does not have to grow standard plots.

The optimum value for k, say: kopt, i.e. the value giving rise to a minimum
error variance of the adjusted data, depends on the nature of the variation in
the quality of the growing conditions. This variation may be fine- or coarse-
grained. It varies from trial to trial and from location to location. In the
case of a fine-grained pattern, a high value for k may imply that p

i
is a biased

estimator of the quality of the growing conditions at plot i. However, a smaller
value for k implies a higher mean squared error of p

i
. Indeed, the accuracy of p

i
as an estimator of the quality of the growing conditions at plot i depends on the
genetic variation among the (fortuitous) set of involved candidate genotypes.

The value of kopt depends thus both on the pattern of variation in the quality
of the growing conditions and the genetic diversity among the k involved
candidates. Guidelines to derive kopt are not (yet) available. It is taken for
granted that k ≈ 8, a commonly applied value, is a reasonable choice. This
value can be used in a moving mean adjustment, but to run an analysis of
variance for several other values for k (if indeed J , the number of plots per
candidate, is at least 2) is so little work, that any improvement with regard
to a (further) reduction of the error variance is worth the effort.

Canadian wheat breeders have pioneered work on data adjustment on the
basis of standard plots and moving means. Knott (1972) found that both of
these adjustment procedures yielded, in comparison to absence of adjustment,
reduced residual variances and higher F values in the statistical test. Townley-
Smith and Hurd (1973) reported consistently reduced residual variances only
when adjusting on the basis of moving mean data (Example 14.16).

Provided that replicated testing is applied, the quality of an adjustment
procedure may also be measured in another way. With replicated testing one
can estimate, for adjusted as well as for unadjusted data, the coefficient of cor-
relation, across the candidates, between the data from different replications.
An adjustment improves the quality of an evaluation if the coefficient of cor-
relation obtained for adjusted data is higher than the coefficient of correlation
obtained for unadjusted data. Results reporting with regard to this yardstick
are given by Example 14.18.

Example 14.18 Mitchell, Baker and Knott (1982) estimated the coeffi-
cient of correlation, across a number of wheat lines, between grain yield
data obtained from different replications. For two experiments they obtained
for the unadjusted yield data: r = 0.30 and r = 0.35. After moving mean
adjustment (with k = 6) they obtained for both experiments r = 0.47. This
implies that the adjusted phenotypic values give a more consistent, but still
unsatisfying, impression of the genotypic values of the candidates than the
unadjusted phenotypic values.
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Bos and De Pauw (1984) studied yield data for seven series of lines
of Triticale or tetraploid or hexaploid wheat. They applied moving mean
adjustment with k = 8 (but for end plots k amounted to 4 to 8). This
tended to give rise to an increase of the coefficient of correlation. The increase
ranged from −0.01 (at an ‘increase’ from r = 0.62 to r = 0.61) to 0.28 (at
an increase from r = 0.12 to r = 0.40). The unweighted average increase of
the coefficient of correlation amounted to 0.10.

It is concluded that moving mean adjustment is more efficient than stan-
dard plot adjustment. An additional advantage of moving mean adjustment,
compared to standard plot adjustment, is the (much) smaller number of
standard plots to be inserted in the tests. Finally, the second disadvantage of
standard plot adjustment (see the end of Section 14.3.2), hardly plays a role
in moving mean adjustment: the interactions of the genotypes involved in the
moving mean with the location and the season will largely cancel out among
these genotypes.

A minor drawback of the moving mean adjustment is the necessity to obtain
observations from each plot, even from apparently inferior plant material.

In recent years the merits of more complicated adjustment procedures have
been studied, both theoretically and experimentally. Because they require
replicated testing (J ≥ 2) these procedures are less relevant in the context
of Section 14.3. For historical reasons only the proposal of Papadakis (1937)
is introduced.

The quality of the growing conditions at plot i, say ei, may be estimated
by subtracting from p

i
, i.e. the phenotypic value of the candidate tested at

plot i, the estimate of the genotypic value of this candidate (Ĝ). The latter
value is estimated by calculating the mean phenotypic value across all plots
containing the considered genotype. Thus:

êi = p
i
− Ĝ (14.22)

The quantity ê may be calculated for each plot. Papadakis adjusted p
j
, the

phenotypic value of the candidate occurring at plot j, on the basis of infor-
mation about the two adjacent plots i and k. The sum êi + êk was thus used
as covariate when adjusting p

j
by means of an analysis of covariance.

This adjustment did not raise attention until about 1970. From the nineteen
eighties it became suddenly the subject of study of many statisticians (see, for
example, Wilkinson et al., 1983). Example 14.19 reports about an application
of estimating the environmental deviation according to Equation (14.22).

Example 14.19 Shorter and Butler (1985) adjusted yield data of F2-
derived F4 and F5 lines of peanuts (Arachis hypogaea L.) by means of analysis
of covariance.

1. The phenotypic values were adjusted according to Equation 14.21, by
using as covariate p

i
, i.e. the moving mean calculated across the observa-

tions obtained from k nearby plots. These values are designated by p′
1i

.
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2. They also calculated ei, i.e. the moving mean of the estimates of the
environmental values, calculated according to Equation (14.22), across k
nearby plots. From these values they obtained adjusted phenotypic values,
say p′

2i
, in the following way:

p′
2i

= p
i
− bei

The values studied for k were 2, 4, 6,. . . , 14. In most cases adjustment yielded
a reduction of the error variance. In 4 of the 8 tests adjustment p′

1i
surpassed

adjustment p′
2i

, in two tests the reverse occurred. The optimal value for k
ranged from 4 to 14.

Comparison of the group of lines selected on the basis of p′
1i

with the
group of lines selected on the basis of p′

2i
showed that these two groups

coincided largely for k > 6. (The test involved only J = 2 replications. The
mean squared errors of the estimators for g and ei are then rather high.
This low value for J may explain why p′

2i
did not give rise to a lower error

variance than p′
1i

).

It may be questioned whether a moving mean adjustment requires complete
randomization. This should carefully be considered. If the breeder wishes to
distinguish different classes of plant material, e.g. classes differing in earliness,
plant height, etc., he or she will avoid complete randomization and test related
or similar entries as groups together. The candidates belonging to the same
group will tend to have similar genotypes. The entries selected, either or not
on the basis of a moving mean adjustment, may then represent entries tested
at plots affording favourable growing conditions.

It is, however, concluded that phenotypic values adjusted on the basis of
a moving mean adjustment tend to yield better indications of the genotypic
values of the candidates than phenotypic values adjusted on the basis of data
from plots containing a standard variety.

The appendix illustrates how a few moving mean adjustment procedures
perform with regard to disclosing genotypic values of candidates.

APPENDIX: A study to the relative merits of adjustment
procedures involving moving means

In this appendix some procedures for the adjustment of phenotypic values
on the basis of moving means are illustrated by means of an artificial exam-
ple. The relative merits of the procedures are presented simply as ‘food for
thought’, not as well established results.
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We consider the following model for the phenotypic value of the candidate
occurring at plot i:

p
i
= Gi + Ei + ei (14.23)

where

Ei := the contribution due to the quality of the growing condi-
tions varying with a trend

ei := the contribution due to the quality of the growing condi-
tions varying at random.

The variables p
i

and Gi have their usual meaning
Table 14.3 presents for plot i, where i = 1, . . . , 36, the phenotypic value (p

i
)

as well as its components Gi, Ei and ei. The values for Gi and for ei. were
drawn from the normal distributions N(10,1) and N(0,1), respectively. The
values for Ei were simply calculated as 10sin(10i). For plot 6, for example, E6

was calculated to amount to 4sin(60) = 3.46. The 18 candidates were coded
1 to 18. They were tested in each of two blocks: block I comprised plots, 1, . . . ,
18 and block II comprised plots 19, . . . , 36. The 36 plots occurred alongside
one strip.

The table shows that candidates 8, 5 and 9 have the highest genotypic
values. According to the phenotypic values candidates 8, 9 and 10, occurring
in neighbouring plots, are the most attractive.

Table 14.4 presents, for each candidate, the values for p
i

and p
i
. The latter

values are averages calculated across k = 6 nearby plots. These nearby plots
are usually plots i− 3, i− 2, i− 1, i + 1, i + 2 and i + 3, but for the end plots,
i.e. plot 1, 2, 3, 4, 5, or 6, they are the six plots nearest to the considered
plot. (For end plots one may, as an alternative, calculate p

i
also from only the

three, four or five plots within three plots distance.)
The candidates with the lowest and the highest mean phenotypic values

are candidate 17 and 5, respectively. The candidates with the lowest and the
highest genotypic values are candidates 18 and 8, respectively. The coefficient
of correlation of p

i
and p

i
, where i = 1, . . ., 36, can be estimated to amount

to 0.81∗∗; amply larger than 0.50, the minimum required for successful appli-
cation of a moving mean adjustment (Mak, Harvey and Berdahl, 1978). The
coefficient of correlation of G and p amounts to 0.78 in block 1 and to 0.60 in
block 2.

We now consider adjustment on the basis of the moving mean (p
i
), namely

adjustment on the basis of Equation (14.20):

p
1i

′ = p
i
− p

i

The adjusted phenotypic values are presented by Table 14.4. The coefficients
of correlation of G and p1

′ amount to 0.65 both in block 1 and block 2. Adjust-
ment of individual plot data was thus not clearly advantageous for the con-
sidered data.
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Table 14.3 A trial field consisting of a strip of 36 plots (i =

1, . . . , 36), i.e. two blocks of 18 plots each. Indicated are the phe-

notypic values (pi) of the 18 tested candidates and their compo-

nents Gi, Ei and ei

Plot (i) Candidate Gi Ei ei pi

1 1 9.70 0.69 0.03 10.42

2 2 9.24 1.37 0.87 11.48

3 3 9.48 2.00 0.13 11.61

4 4 8.44 2.57 1.97 12.98

5 5 11.39 3.06 0.49 14.94

6 6 9.66 3.46 −1.42 11.70

7 7 10.88 3.76 −0.52 14.12

8 8 12.38 3.94 0.24 16.56

9 9 11.25 4.00 0.24 15.49

10 10 9.73 3.94 1.51 15.18

11 11 8.41 3.76 −0.99 11.18

12 12 10.24 3.46 −0.40 13.30

13 13 10.65 3.06 −0.81 12.90

14 14 9.64 2.57 0.33 12.54

15 15 10.05 2.00 −0.87 11.18

16 16 9.10 1.37 −1.81 8.66

17 17 8.49 0.69 −1.78 7.40

18 18 8.16 0.00 1.19 9.35

19 9 11.25 −0.69 −0.89 9.67

20 6 9.66 −1.37 0.03 8.32

21 5 11.39 −2.00 1.55 10.94

22 16 9.10 −2.57 −0.37 6.16

23 3 9.48 −3.06 −1.03 5.39

24 13 10.65 −3.46 2.09 9.28

25 12 10.24 −3.76 1.23 7.71

26 11 8.41 −3.94 −0.36 4.11

27 2 9.24 −4.00 −0.69 4.55

28 14 9.64 −3.94 −1.75 3.95

29 8 12.38 −3.76 −0.14 8.48

30 4 8.44 −3.46 1.42 6.40

31 7 10.88 −3.06 −2.02 5.80

32 17 8.49 −2.57 0.62 6.54

33 18 8.16 −2.00 −0.55 5.61

34 1 9.70 −1.37 1.82 10.15

35 10 9.73 −0.69 −0.27 8.77

36 15 10.05 0.00 −1.65 8.40

When analysing the averages across the two blocks, the coefficient of corre-
lation of G and p amounts to 0.83 and the coefficient of correlation of G and
p
1
′ to 0.76. These figures illustrate for the present data that replicated testing

is advantageous, but data adjustment did not give further improvement of the
quality of the evaluation.
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Table 14.4 A summary per candidate of the data presented in Table 14.3. The symbol pi

represents the moving mean across six nearby plots; p1
′ represents the adjusted phenotypic

value calculated according to Equation (14.20)

Candidate Block 1 Block 2 Averages across the

two blocks

G p pi p1
′ p pi p1

′ p pi p1
′

1 9.70 10.42 12.81 −2.39 10.15 6.92 3.23 10.29 9.87 0.42

2 9.24 11.48 12.63 −1.15 4.55 6.65 −2.10 8.02 9.64 −1.63

3 9.48 11.61 12.61 −1.00 5.39 7.75 −2.36 8.50 10.18 −1.68

4 8.44 12.98 12.38 0.60 6.40 5.82 0.58 9.69 9.10 0.59

5 11.39 14.94 13.08 1.86 10.94 8.03 2.91 12.94 10.56 2.39

6 9.66 11.70 14.28 −2.58 8.32 8.15 0.17 10.01 11.22 −1.21

7 10.88 14.12 14.48 −0.36 5.80 6.85 −1.05 9.96 10.67 −0.70

8 12.38 16.56 13.77 2.79 8.48 5.22 3.26 12.52 9.50 3.03

9 11.25 15.49 13.67 1.82 9.67 8.47 1.20 12.58 11.07 1.51

10 9.73 15.18 13.93 1.25 8.77 7.15 1.62 11.98 10.54 1.44

11 8.41 11.18 14.33 −3.15 4.11 6.56 −2.45 7.65 10.45 −2.80

12 10.24 13.30 13.08 0.22 7.71 5.57 2.14 10.51 9.33 1.18

13 10.65 12.90 12.01 0.89 9.28 6.48 2.80 11.09 9.25 1.85

14 9.64 12.54 10.77 1.77 3.95 6.17 −2.22 8.25 8.47 −0.23

15 10.05 11.18 10.69 0.49 8.40 6.00 2.40 9.79 8.35 1.45

16 9.10 8.66 10.51 −1.85 6.16 8.55 −2.39 7.41 9.53 −2.12

17 8.49 7.40 9.95 −2.55 6.54 7.53 −0.99 6.97 8.74 −1.77

18 8.16 9.35 9.36 −0.01 5.61 7.67 −2.06 7.48 8.52 −1.04

Mean 12.46 6.97 9.72

The candidates with the lowest and the highest mean adjusted phenotypic
values are candidates 11 and 8, respectively.
Now adjustment according to Equation (14.21) is considered. Linear regression
of p

i
on p

i
(i = 1, . . . , 36) yields

p̂i = 0.968 + 0.904pi

with r = 0.81. The covariance adjusted phenotypic values are calculated as

p
2i

′ = p
i
− 0.904p

i

These values are presented in Table 14.5.
The coefficient of correlation of G and p

2i
′ amounts to 0.69 in block 1 (i =

1, . . . , 18), and to 0.65 in block 2 (i = 19, . . . , 36). These values are only
marginally higher than the corresponding coefficients of correlation of G and
p
1i

′. Across all plots the coefficient of correlation is 0.66. The coefficient of
correlation of G and p2

′ amounts to 0.77. This is only marginally higher than
the coefficient of correlation of G and p1

′.
The candidates with the lowest and the highest mean adjusted phenotypic

values are again candidates 11 and 8, respectively.
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Table 14.5 A summary per candidate of the data

presented in Table 14.3. The symbol p2
′ represents the

adjusted phenotypic value calculated according to Equa-

tion (14.21)

p2
′

Candidate G Block 1 Block 2 p2
′

1 9.70 −1.16 3.89 1.37

2 9.24 0.06 −1.46 −0.70

3 9.48 0.21 −1.62 −0.70

4 8.44 1.79 1.14 1.46

5 11.39 3.12 3.68 3.40

6 9.66 −1.21 0.95 −0.13

7 10.88 1.03 −0.39 0.32

8 12.38 4.11 3.76 3.94

9 11.25 3.13 2.01 2.57

10 9.73 2.59 2.31 2.45

11 8.41 −1.77 −1.82 −1.80

12 10.24 1.48 2.67 2.08

13 10.65 2.04 3.42 2.73

14 9.64 2.80 −1.63 0.59

15 10.05 1.52 2.98 2.25

16 9.10 −0.84 −1.57 −1.21

17 8.49 −1.59 −0.27 −0.93

18 8.16 0.89 −1.32 −0.22

According to Mak, Harvey and Berdahl (1978) contributions to the moving
mean which are due to the block and to the candidate should be eliminated
prior to the calculation of the adjusted phenotypic values. This requires cal-
culation of p′(i, j) according to

p′(i, j) = p(i, j) − p(·, j) − p(i, ·) + p(·, ·)

where
p(i, j) := the moving mean value calculated for candidate i as occurring in
block j

· implies calculation of the mean across the involved block and/or candidate.

For candidate 1 in block 1 it can, for example (see Table 14.4), be derived that
p′(1, 1) amounts to

p′(1, 1) = 12.81 − 12.46 − 9.87 + 9.72 = 0.20

Altogether this yields the data presented by Table 14.6.
Linear regression across the two blocks of p

i
on p

i
′ yields

p̂i = 9.75 + 0.736p
i
′



378 14 Selection with Regard to a Trait with Quantitative Variation

Table 14.6 A summary per candidate of the data presented in Table 14.3. The

symbol p′ represents the moving mean adjusted for block and genotype effect; p3
′

represents the adjusted phenotypic value according to Equation (14.24)

Block 1 Block 2

Candidate G p p′ p3
′ p p′ p3

′ p3
′

1 9.70 10.42 0.20 10.27 10.15 −0.20 10.30 10.29

2 9.24 11.48 0.25 11.30 4.55 −0.24 4.73 8.02

3 9.48 11.61 −0.31 11.84 5.39 0.32 5.15 8.50

4 8.44 12.98 0.54 12.58 6.40 −0.53 6.79 9.69

5 11.39 14.94 −0.22 15.10 10.94 0.22 10.78 12.94

6 9.66 11.70 0.32 11.46 8.32 −0.32 8.56 10.01

7 10.88 14.12 1.07 13.33 5.80 −1.07 6.59 9.96

8 12.38 16.56 1.53 15.43 8.48 −1.53 9.61 12.52

9 11.25 15.49 −0.14 15.59 9.67 0.15 9.56 12.58

10 9.73 15.18 0.65 14.70 8.77 −0.64 9.24 11.97

11 8.41 11.18 1.14 10.34 4.11 −1.14 4.95 7.65

12 10.24 13.30 1.01 12.56 7.71 −1.01 8.45 10.51

13 10.65 12.90 0.02 12.89 9.28 −0.02 9.29 11.09

14 9.64 12.54 −0.44 12.86 3.95 0.45 3.62 8.24

15 10.05 11.18 −0.40 11.47 8.40 0.40 8.11 9.79

16 9.10 8.66 −1.76 9.96 6.16 1.77 4.86 7.41

17 8.49 7.40 −1.53 8.53 6.54 1.54 5.41 6.97

18 8.16 9.35 −1.90 10.75 5.61 1.90 4.21 7.48

with r = 0.21ns. The symbol p̂i represents the phenotypic value, predicted
on the basis of the trend in the quality of the growing conditions, for the
candidate tested at plot i, irrespective of its genotype. This trend is indicated
by the moving mean p

i
′.

To evaluate the genotypic value of the candidate occurring at that plot i
(Gi = p

i
−Ei − ei; see Equation (14.23)) as well as possible one may consider

the difference between p
i

and p̂i (like in Equations (14.10a) and (14.10b)):

p
3i

′ = p
i
− p̂

i
= p

i
− 0.736p

i
′ (14.24)

Table 14.6 presents the phenotypic values adjusted in this way. For these
adjusted phenotypic values the coefficient of correlation with the genotypic
values amounts to r = 0.83, i.e. higher than the correlations of p

i
, or p

1i
′,

or p
2i

′ and G. The candidates with the lowest and the highest mean adjusted
phenotypic values are now candidates 17 and 5, respectively (like for p

1i
′).

The replicated testing permits the estimation of the phenotypic values pre-
sented in Table 14.3 as well as, for corresponding adjusted phenotypic values,
analyses of variance. These give rise to the following values for the estimates
of the error variance (s2) and for the F value (F ):
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s2 F
p 3.123 2.318∗

p
1
′ 2.204 2.699∗

p
2
′ 2.126 2.799∗

p
3
′ 2.074 3.587∗∗

These results apply to the data presented by Table 14.3. They show that adjust-
ment may give rise to reduction of the error variance and – consequently –
higher F values. The power of the test is promoted by the data adjustment.
It is, however, emphasized that these results are been obtained for a specific
set of data.



Chapter 15
Reduction of the Detrimental Effect
of Allocompetition on the Efficiency
of Selection

In the early generations of a plant breeding programme selection is mostly based
on observations of individual plants or on small plots. This is due to lack of
seed, to large numbers of candidates to be tested, and/or to limited resources.
The efficiency of selection for yield tends then to be very low. Low or even
negative correlations between yields of single plants and their progenies have
been reported.

Variation in the quality of the growing conditions is one of the factors
responsible for such low efficiency of selection. Chapter 14 deals with proce-
dures to improve the efficiency of selection under such conditions. Intergeno-
typic competition is another factor responsible for the low efficiency of selec-
tion among candidates represented by individual plants or by small plots. The
best competing candidates tend to have the highest phenotypic values for yield.
This implies that preferentially candidates with a high competitive ability are
selected instead of candidates with a high potential yield in the absence of
intergenotypic competition. Indeed, competitive ability, as expressed in a genet-
ically heterogeneous population grown at a high plant density, tends to be neg-
atively correlated with yielding capacity at high plant density in the absence of
genetic variation.

For this reason selection in the absence of competition, i.e. selection at a
very low plant density, has been advocated. In contrast it has been stated that
at low plant density the bias due to competitive ability, which occurs when
selecting at high plant density, is replaced by a bias due to genotype × density
interaction: selection at low plant density would imply selection of candidates
only performing in a superior way when grown at low plant density.

This chapter gives attention to the negative effect of intergenotypic compe-
tition on the efficiency of selection. It is shown how the breeder might reduce
the detrimental effect.

15.1 Introduction

The environmental conditions of a plant comprise both physical growth fac-
tors and the growth habits of neighbouring plants. Interference between plants
consists usually of competition for the same growth requisites, like water, light
and mineral nutrients. These are present in a limited supply. The competition
between plants for the limited resources result in an uneven sharing of these
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c© 2008 Springer.
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resources (Spitters, 1979, p. 1). The competition is stronger as the plant den-
sity, i.e. the number of plants per unit area, is higher or as, at a given plant
density, the canopy of the plants increase or the amount of resources is reduced.

Commercial cultivation of crops generally consists of the growing of mono-
cultures at high plant density. These monocultures consist of genetically homo-
geneous plant material, viz. clones or pure lines, in the case of vegetatively
reproducing plant material or self-fertilizing crops. In the case of many cross-
fertilizing crops, however, they also consist of genetically homogeneous plant
material, viz. single-cross hybrid varieties, or of fairly homogeneous plant
material, viz. (in decreasing order):

• Three-way cross hybrids
• Double-cross hybrids
• Synthetic varieties
• Open pollinating varieties

The cultivation at high plant density implies the presence of strong interplant
competition. Because of the absence of genetic variation (or nearly so) the
competition is called intragenotypic competition, or isocompetition. Iso-
competition is thus competition among plants with the same genotype. It con-
cerns competition within clones, pure lines and single-cross hybrids. It is the
competition commonly occurring within cultivars.

When developing new varieties, breeders often apply in the selection field,
the physical growing conditions prevailing in commercial cultivation. Selection
occurs, consequently, at high plant density, i.e. in the presence of interplant
competition among genetically diverse candidates. (With regard to the latter
conditions, the conditions in the selection field differ from the conditions occur-
ring at commercial cultivation.) The individual plants, clones, lines, families
or hybrids are thus evaluated when being subjected to intergenotypic com-
petition (or allocompetition). Allocompetition is thus competition among
candidates with different genotypes. It is the competition commonly occurring
in breeding nurseries.

Caligari (1980) pointed out that plants of more related genotypes tend to
compete more strongly than plants of unlike genotype: the closer the genetic
relationship between plants, the more similar, at a given date, their require-
ments from the environment. This implies that, at the same plant density
and at the same amount of nutrients, isocompetition may have more severe
effects with regard to fitness, i.e. with regard to the proportion of surviving
plants (vitality) and/or the number of viable seeds produced (fertility), than
allocompetition.

The strength of isocompetition or allocompetition may be measured in the
following way. When plant material representing the same single genotype
is grown in a series of densities and the studied character, for instance the
portion of surviving plants or the average single-plant biomass, shows a linear
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regression on the density the regression coefficient bm provides a measure of
the strength of isocompetition (Mather and Caligari, 1981).

Effects of allocompetition have been studied by growing mixtures of different
genotypes, or even different species, which can be identified in the mixtures.
If a variable number (x) of plants with genotype B is added to a reference
number of plants with genotype A, one may calculate bd, i.e. the regression
on x of the expression of the character observed on the plants representing
genotype A. The difference bd − bm provides then a means of measuring the
relative strength of allocompetition as it affects A.

In this chapter attention is focussed on allocompetition as a factor interfer-
ing with artificial selection. Numerous studies of the effect of allocompetition
on the efficiency of selection have been conducted with commercial varieties
(reviewed by Spitters, 1979). These cultivars represent genotypes that survived
during their development the full selection process. They have been selected
and were, consequently, successful under allocompetition. They also have been
tested and selected under isocompetition. Studies involving mixtures of com-
mercial varieties are thus not representative of sets of random inbred lines
(as obtained by single-seed descent or by doubling the chromosome number
of haploid plants). This should be kept in mind when appreciating results of
competition experiments (Powell et al., 1985a).

Another common feature of competition studies is the use of a restricted
number of genotypes. This usually arises from the practical difficulty of han-
dling a large number of different genotypes but does give rise to concern about
the representiveness of the sample of genotypes to more general situations.

In groups of plants which are in competition with one another, each plant
plays a dual part: it exerts competitive pressure on its fellows and at the
same time it responds to competitive pressure from them. It is possible to
quantify the competitive pressure exerted (aggression) and the response to
the competitive pressure experienced (response) (Mather and Caligari, 1983).
However, for a particular genotype it is the balance between these forces that
determines whether it will survive. The most successful competitor is likely to
be one that combines strong aggression with a low response (Hill et al., 1987).
It has been shown that aggression and response can vary independently. This
implies that each of these two items is subject to its own genetic control. They
should, therefore, be separately adjustable by selection (Powell et al., 1985a).

As competition concerns both below- and above-ground factors, competitive
ability concerns both below-ground and above-ground aspects of plant growth
(Example 15.1).

Example 15.1 Satorre and Snaydon (1992) used boxes to separate
the effects of above-ground (shoot) and below-ground (root) competition
between a barley, wheat or oats variety and the common wild oat (Avena
fatua). They found that the severity of root competition was greater than
the severity of shoot competition. Thus competition for soil resources was
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greater than that for aerial resources. Indeed, soil resources are often limit-
ing. The most marked effect of root competition from A. fatua was on the
number of grains per ear. All three cereal species were more competitive
than A. fatua, which has a slow early root development.

The differences in shoot competitive ability between the cereals were
only partially related to plant height.

In this chapter the balance between aggression and response is indicated as
competitive ability. Ideas about how to deal with competition are exposed
without elaborating procedures for estimating aggression, response or com-
petitive ability.

Following Spitters (1979), in this chapter the terms monoculture and
mixture are used with a more restricted meaning: the term monoculture will
refer to genetically homogeneous plant material (mostly a pure line variety)
and the term mixture to genetically heterogeneous plant material. Thus within
a monoculture isocompetition will occur exclusively; whereas allocompetition
will occur within a mixture.

The competitive ability of a certain candidate (grown as a single plant or
as a plot) is expressed if the candidate interferes with surrounding candidates.
With a regular pattern of plant positions each plant has the same number of
neighbours within a certain distance. Then the competitive ability of a plant
is not confounded with the number of neighbours.

In the literature it is often reported that traits like biomass, ear weight
and grain yield per plant are strongly affected by competition. Number of
ears per plant is influenced to a somewhat lower degree. In the experiments
described by Spitters (1979), traits like number of grains per ear or harvest
index were hardly affected by competition. The competitive ability was not
clearly related to any of these traits. Sakai (1961) concluded from his exper-
iments that ‘competitive ability was not associated with morphological traits
which might be supposed to favour competition’. Spitters remarks that in his
experiments ‘differences in competitive ability between barley genotypes could
be mainly ascribed to differences in juvenile growth.’ And: ‘Relating com-
petitive ability to characters that express themselves late in the development
is doomed to fail’ (Spitters, 1979, p. 186). Also in this book it is assumed
that, at a regular pattern of plant positions, the competitive ability is mainly
determined by juvenile growth.

At a high plant density and at a regular pattern of plant positions, the
success of the juvenile growth is determined by the following factors:

1. Pre-seedling conditions like
• Seed size
• Depth of sowing
• Orientation of the seed after being sown, e.g. upside down or not
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These conditions are mainly of an environmental nature. They affect the
date of emergence. This is a very important factor with regard to the success
of juvenile growth. Harper (1977, p. 165) stated: ‘The advantage which an
early emerging seedling gains is far greater than can be accounted for merely
by the greater time that it has been allowed to grow’.

2. Juvenile plant traits like
• Date of emergence
• Growth rate of the seedling
• (Early) plant height

These conditions are mainly genetically controlled. The first two aspects con-
cern juvenile plant growth. Successful juvenile growth may be due to an early
germination of the seeds. The seedlings grow quickly and develop into leafy,
early shooting plants. Early plant height may determine the competitive abil-
ity, but it may reflect its effect as well. It is a matter of speculation whether
it is a cause of or a consequence from variation in competitive ability.

Variation with regard to the factors mentioned above induces variation in
the success of juvenile growth. It induces variation in competitive ability.
In cereals, and many other crops, a positive correlation between plant height
and yield is commonly observed, both in monocultures and in mixtures. It
may be due to variation in competitive ability.

The status for each of the six factors mentioned above may be due to
environmental conditions or to a combination of environmental conditions
and genetic disposition. In monocultures the variation in competitive ability
is entirely due to environmental variation for these factors. In mixtures it
is due to environmental and genetic variation with regard to these factors.
Example 15.2 presents some data concerning the correlation between juvenile
and/or adult plant traits.

Example 15.2 Evans and Bhatt (1977) found for wheat a high positive
coefficient of correlation (r = 0.73) between the weights of the kernels and
the vigour of the seedlings emerging from these.

Soetono and Donald (1980) studied, in barley, the relationship between
date of emergence and plant performance. They found that the date of emer-
gence significantly affected plant weight and number of grains. The earlier
plants to emerge were larger at day 70 and at day 90 than those that emerged
later. This applied to each of three plant densities.

Bos and Kleikamp (1985) studied, in spring rye, how variation in pre-
seedling factors gave rise to variation for some adult plant traits, viz. number
of tillers, plant height and grain yield. At a plant density of 205.3 plants/m2

the coefficient of correlation between initial seed weight and plant yield
amounted to 0.44; at a density of 51.3 it was 0.49.

Brown and Caligari (1986) established that the coefficient of correlation
between the weight of a potato tuber, produced by a seedling, and the total
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weight produced by the first-year-clonal plant obtained from it, ranged from
0.15 (site S, block 2) to 0.49 (site S, block 1) (see also Example 14.8). How-
ever, a number of genotypes performing well in the first clonal year had only
a few very small tubers produced by the ‘parental’ seedling.

As explained, the competitive ability in a regular pattern of plant positions, is
due to several factors. If, additionally, an irregular pattern of plant positions
applies, the competitive ability is determined in an even more complicated
way (Example 15.3).

Example 15.3 Knight (1983) observed plants belonging to a wheat cultivar
broadcasted at a density of 180 kernels/m2. The effect of date of emergence
and the area available for each plant, including the shape and the position
in that area of the considered plant, on plant weight and grain yield was
studied. The relationship between date of emergence and plant performance
was clearly negative. For a fixed date of emergence, however, the variation
in plant performance was enormous.

The area per plant ranged from 2 to 249 cm2. The average area was
61.0 cm2, implying a density of 164 plants/m2. The coefficients of correlation
between plant area and plant weight (r = 0.36) or plant area and grain
yield (r = 0.35) were highly significant. Plants occupying the same area
varied greatly in performance.

The strength of the competition experienced by each individual plant
was quantified in the following way. Across all neighbours within a distance
of either 10 or 20 cm around the considered plant the sum:

z =
∑

i

(
yi

di
θ

)

was calculated for θ = 0, 1
2 , 1 and 2, where

yi := the performance of neighbour plant i; and
di := the distance between neighbour plant i and the considered plant,

The coefficient of correlation between the performance of a plant and
its z value was negative. At a radius of 10 cm the distance hardly played a
role because for θ = 0, 1

2 and 1 the coefficient of correlation only ranged from
−0.22 to −0.34. At a radius of 20 cm the values 1

2 and 1 for θ yielded stronger
correlations (range −0.08 to −0.40) than the values 0 and 2 (r ranging from
−0.04 to −0.32).

Multiple linear regression of grain yield or plant weight on date of emer-
gence, plant area and z showed plant area to be the most important predictor,
but the average value for the coefficient of determination amounted to only
0.14. Simultaneously the three predictors explained only 19% of the variation
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for plant performance. Date of emergence explained only 3.8%. The shape of
the available area and the position of the plant in that area did not appear
to be good predictors.

The frequency distribution of the observations obtained for a trait may give
evidence of the strength of the interplant competition. Characteristic features
of the frequency distribution are: mean, variance and skewness. At increased
strength of interplant competition, due to ongoing growth or increased plant
density, the frequency distribution for plant weight tends to show a stronger
positive skewness (Spitters, 1979, p. 91).

Many breeders tend to provide, in the selection field, the growing conditions
prevailing under commercial cultivation. This includes use of a high plant den-
sity. Candidates represented either by single plants or by small plots with a
high competitive ability will then behave in a superior way. Such entries will
be selected. It is questionable, however, whether genotypes with a strong com-
petitive ability will perform in a superior way when grown as monoculture.
The superiority shown by a candidate when grown in a mixture of genotypes
does not necessarily imply superiority if the candidate is grown as a monocul-
ture, i.e. as a variety per se. Candidates with a successful juvenile growth will
only out-yield other candidates when occurring in a mixture (see Example 8.8,
columns 2 and 4, especially variety Goudgerst).

Fasoulas (1981) held the opinion that allocompetition should be avoided
when evaluating plant material with the aim to select genotypes that have
high yields when grown as monoculture. In his view, selection should occur at
a very low plant density. Fasoulas stated that it is impossible for breeders to
provide in the selection field the growing conditions prevailing at commercial
cultivation, because the required plant density implies allocompetition whereas
isocompetition will occur at commercial cultivation.

According to Fasoulas, inefficiency of truncation selection at high plant
density is primarily due to the failure to disclose Gmono, i.e. the genotypic
value under monoculture conditions. The unmasking of Gmono is said to require
absence of interplant competition. Differences in performance are then not due
to differences in competitive ability, but to differences in growing conditions
and/or genotype.

Selection of superior genotypes, e.g. by means of honeycomb selection at a
very low plant density, may yield varieties that are superior with regard to
Gmono. An important condition is, of course, that the ranking of the genotypes
is density independent, i.e. that genotype × plant density interaction does not
occur. Fasoulas (1981) observed absence of such interaction (Example 15.4).

Example 15.4 Fasoulas (1981, p. 50) studied the grain yield of seven
maize hybrids. He found that the ranking at a low density, viz. 1.4 plants/m2,
coincided with the ranking at the density of commercial cultivation.
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An F2 population of cotton was grown at a plant density of 1.4. The F3
lines derived from honeycomb selected plants of the F2 generation were tested
at three plant densities: 4, 8 and 16 plants/m2. At each density the F3 lines
descending from highly productive F2 plants were also highly productive.

Fasoulas concluded from the results of his experiments that one should not
fear that the ranking at low plant density (absence of competition) deviates
from the ranking in monoculture at high plant density (presence of isocom-
petition). Fasoulas and Tsaftaris (1975) did not dare to draw this conclusion
for genetically heterogeneous varieties (of crops such as grasses, beet and rye)
implying presence of allocompetition.

Spitters (1979, p. 77), reviewing the literature on experiments with self-
fertilizing cereals, mentioned the occurrence of genotype × plant density inter-
action. He himself also observed such interaction, see Example 15.5.

Example 15.5 Table 8.3 presents another illustration of the occurrence of
genotype × plant density interaction. Comparison of conditions 1 and 4, i.e.
cultivation at low and at high plant density respectively, shows a strong effect
of the plant density on the ranking of barley variety L98. The coefficient of
correlation between the ranks at the two densities amounted to 0.24 (and to
0.55 in the absence of L98).

Kelker and Briggs (1979) concluded that it is impossible to recommend for
selection one single plant density, which is optimal with regard to all traits
of interest. Crosbie and Mock (1979) found that the performance at a high
plant density of genotypes selected at a lower plant density was disappointing.
Faris and De Pauw (1981) reported the presence of genotype × plant density
interaction in spring wheat. Bussemakers and Bos (1999) concluded on the
basis of experiments lasting five generations that mass selection should be
applied at the plant density used in commercial cultivation (Example 15.6).

Example 15.6 Bussemakers and Bos (1999) studied the effect of interplant
distance on the efficiency of honeycomb selection in spring rye by performing
five generations of selection at two interplant distances, viz. 100 cm (imply-
ing absence of intergenotypic competition) and 15 cm (implying presence of
intergenotypic competition). The offspring of plants selected either at low or
at high plant density were compared, both at high and at low plant density,
with offspring of plant taken at random from the original population.

At high plant density offspring of plants selected at high density per-
formed better than the original population for most of the characters
observed on a per plant basis.

At low plant density offspring of plants selected either at high or at low
plant density performed better than the original population for the charac-
ters recorded on a per plant basis. The selections differed, however, signifi-
cantly from each other: the offspring of plants selected at low plant density
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performed better. As the latter did not occur athigh density genotype ×
plant density interaction was indicated.

The authors concluded that mass selection should be applied at the plant
density used in commercial cultivation.

Spitters (1979, p. 248) described the questions to be considered when studying
the detrimental effects of environmental variation and allocompetition on the
efficiency of selection: “Selection occurs in a heterogeneous population; one
tries to choose the genotypes that perform best in monoculture. Therefore, the
central question is: to what extent are the genotypes with the highest yield in
monoculture in generation t + 1 chosen when selection is for the phenotypes
yielding highest in a mixture in generation t? The central question is split into
three:

(1) To what extent are the highest yielding phenotypes in the mixture in
generation t also the highest yielding genotypes in that mixture in that
generation?

(2) To what extent are the genotypes that give the highest yield in the mixture
in generation t also the genotypes yielding highest in monoculture in that
generation?

(3) To what extent do the genotypes selected in generation t maintain their
expected monoculture yield in generation t + 1?

The first question refers to the degree to which the genotypes with the highest
yield in the mixture are identified by selection in that mixture. The progress
that is made for yielding ability in that mixture is called the direct response
to selection. The second question defines the effect of intergenotypic competi-
tion on the outcome of selection. Selection for yield in the mixture leads to a
correlated response for monoculture yield. The third question concerns the
effect of heterozygosity and mode of reproduction”. The possible complicating
effect of genotype × environment interaction can, of course, be added.

Section 15.2 deals with procedures that aim to reduce the detrimental
effect of interplant competition on the efficiency of individual plant selection.
Section 15.3 deals with procedures aimed at reduction of the detrimental
effect of interplot competition on the efficiency of selection among candidates
evaluated on the basis of plots.

15.2 Single-Plant Evaluation

The detrimental effect of competition on the response to selection can be quan-
tified by applying the theory developed for indirect selection (Section 12.3).
In this section it is shown how this can be done.
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In Section 15.1 it was questioned to what extent the candidates with the best
phenotypic values in the mixture in generation t are also the candidates with
the best genotypic values in that mixture in that generation. The response to
selection in that mixture in that generation was called the direct response
to selection. It is

Rmix = EGmix,s − EGmix (15.1)

where
EGmix,s := the expected value of Gmix,s, i.e. the expected genotypic value

in mixture, calculated across the selected plants
EGmix := the expected value of Gmix, calculated across all candidate

plants

Rmix is the average genetic superiority of the selected plants under the envi-
ronmental conditions, especially the strength of the allocompetition, to which
the plants constituting the mixture are subjected.

In Section 15.1 also the relationship between the genotypic values of the can-
didates in the mixture in generation t and their genotypic values in monocul-
ture in generation t was questioned. This concerns the correlated response
to selection, i.e. the response when cultivating the selected candidates in mono-
culture, i.e. in the absence of allocompetition. It is measured by

CRmono = EGmono,s − EGmono (15.2)

where

EGmono,s := the expected value of Gmono,s, i.e. the expected genotypic
value in monoculture, calculated across the selected plants

EGmono := the expected value of Gmono, calculated across all candi-
date plants

Example 15.7 illustrates the calculation of Rmix and CRmono. The example
shows that the plants selected under competition did not represent genotypes
yielding higher in the absence of competition. The effect of allocompetition
nullified the monoculture response to selection. In Example 8.8 it was illus-
trated that, due to allocompetition, var(Gmix) tends to be much greater than
var(Gmono).

Example 15.7 Spitters (1979, pp. 159–167) applied single-plant selection
in a mixture of 12 homozygous barley varieties. The mixture was grown at
a pattern of 5 × 25 cm2, i.e. at a density of 80 plants/m2. The selection
field consisted of five grids. Each variety was represented by eight plants in
each grid. The 10 top-yielding plants were selected in each grid. Altogether
5 × 10 = 50 out of 12 × 5 × 8 = 480 plants were selected. Because the
variety to which each selected plant belonged could be identified, fi, i.e. the
relative frequency of variety i(i = 1, . . . , 12) among the selected plants could
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be determined. The quantity p
mix,i

, i.e. the mean phenotypic value of the
40 plants representing variety i, was used as estimator of Gmix,i. Table 15.1
presents the data required to calculate various quantities.

Table 15.1 Grain yield (in g / plant) and rank (from 1 = lowest to 12 = highest) of 12

spring barley varieties grown in 1977 under two different conditions (see text). The symbol

fi represents the relative frequency of variety i(i = 1, . . . , 12) among the 50 selected plants

(source: Spitters, 1979, Tables 25, 27, Figure 32)

Variety (i) Condition

Monoculture Mixture

yield rank yield rank fi

Varunda 5.3 6.5 5.1 5.5 0.04

Tamara 5.7 10 7.8 12 0.26

Belfor 5.3 5.3 6.5 5.4 9.5 0.06

Aramir 6.1 12 5.3 7.5 0.04

Camilla 5.0 5 5.4 9.5 0.06

G. Promise 4.5 1 4.9 4 0.02

Balder 4.8 4 5.1 5.5 0.08

WZ 5.5 8 4.8 3 0.04

Goudgerst 4.7 3 7.7 11 0.26

L98 6.0 11 3.5 2 0.02

Titan 4.6 2 1.6 1 0.00

Bigo 5.6 9 5.3 7.5 0.12

Gmono = 5.26 Gmix = 5.16

Column 2 of the table presents for each variety the estimate of Gmix,i for
grain yield. Thus EGmix can be estimated to be

∑
i

pmix,i

12
= 5.16 g/plant,

and EGmix,s can be estimated to be

∑
i

fipmix,i = 6.498 g/plant

The direct response to selection (Equation (15.1)) is then

Rmix = 6.50 − 5.16 = 1.34 g/plant.

Because the varieties were simultaneously grown as monocultures at a
density of 80 Spitters could use p

mono,i
, i.e. the mean phenotypic value of 200

plants representing variety i, as estimator of Gmono,i. Column 2 of Table 15.1
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presents for each variety the estimate of Gmono,i for grain yield. Thus EGmono
can be estimated to be ∑

i

pmono,i

12
= 5.26 g/plant,

and EGmono,s can be estimated to be

∑
i

fipmono,i = 5.26 g/plant.

Equation (15.2) implies then that the correlated response to selection
amounted to

CRmono = 0.00 g/plant

The selection under allocompetition was not at all effective with regard to
monoculture yield! The main reason for this was that as many as 26% of the
selected plants belonged to variety Goudgerst. The monoculture grain yield
genotypic value (Gmono) of this variety is, however, very low, viz. 4.7 g/plant.

Caligari and Powell (1986), reporting on an experiment with spring barley,
stated: ‘The results reinforce the general theme that early-generation selection
should be avoided in barley breeding programmes. . . . if selection is practised
in early generations, when genotypes are present in heterogeneous mixtures,
its effects will be confounded with the effects of competition in its broadest
sense’.

The genotypes with the highest Gmix values are thus not necessarily also
the genotypes with the highest Gmono values. Selection in a mixture aiming
at improvement of monoculture performance is a form of indirect selection
(Section 12.3). The predicted response in monoculture to selection in mixture
is described by Equation (12.4), i.e. in the present context by

CRmono = imixρgmix,gmonohwmixσgmono (15.3)

Example 15.8 presents an application.

Example 15.8 Spitters (1979, p. 164) presents the following estimates for
the genetic parameters in Equation (15.3):

rgmix,gmono = 0.11

(This estimate is obtained from the data in Table 15.1.)

sgmono = 0.47 g/plant

and
ĥwmix = 0.54
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At imix = 1.76 (this applies when selecting 10 %, Section 11.1) Equation
(15.3) yields

CRmono = 1.76 × 0.11 × 0.47 × 0.54 = 0.05 g/plant

This is very close to the actual correlated response to selection calculated in
Example 15.7, i.e. 0.00 g/plant.

The direct response to selection, i.e. the response in mixture, can be
predicted on the basis of Equation (11.20), viz.:

Rmix = imixhmix
2σpmix

For

imix = 1.76,

ĥ2
mix = 0.29

and
spmix = 2.94 g/plant

the predicted direct response amounts to

R = 1.76 × 0.29 × 2.94 = 1.5 g/plant

This comes very close to the actual direct response, i.e. 1.34 g/plant.

15.2.1 The Optimum Plant Density

The topic of the optimum plant density for selection was already briefly
touched upon in Section 12.3.3. Different opinions exist with regard to this
topic. Spitters (1979, p. 117) concluded that selection can best be carried out
at the plant density applied for commercial cultivation. Fasoulas (1981), on
the other hand, advocated selection in the absence of allocompetition.

Experimental evidence is scarce and inconsistent. With regard to honey-
comb selection in cereals Bos (1981, pp.150), Mitchell, Baker and Knott (1982)
and Pasini and Bos (1990a,b) obtained weak indications that selection should
be done at a (very) low plant density. Bussemakers and Bos (1999), see
Example 15.6, however, concluded that mass selection can best be carried
out at the plant density applied by growers.

Kyriakou and Fasoulas (1985) reported unambiguous results. At the ‘high’
plant density of 51.3 winter rye plants per m2, the response to honeycomb
selection was negative at each of three selection intensities. At the plant density
of 1.4 plants/m2 they got, however, a positive response for each selection
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intensity. (The plant density used in commercial cultivation of cereals is about
250 plants/m2). The relationship between the response to selection and the
selection intensity was negative at the high plant density and positive at the
low plant density. Example 15.9 present some details concerning a study to
the optimum plant density for selection.

Example 15.9 Kramer (1983) simulated selection fields by mixing 12
spring wheat lines. These lines were similar for plant height and date of
flowering and maturity, but for each plant in the selection fields the line to
which it belonged could be identified visually. The mixtures were grown at
plant densities of 400, 100, 44, 25 and 6.25 plants/m2. The selection fields
consisted of 12 grids, and each grid of four plants from each of the 12 lines.
(At the 6.25 density each grid contained only one plant from each line). The
12 lines were also evaluated in monoculture. The trait studied was grain
yield (in g/m2).

Table 15.2 presents estimates for Ep, var(e), var(G) and rgmix,gmono .

Table 15.2 Estimates, for grain yield (in g/m2) of spring wheat, of mean yield

(Ep), var(e), var(G) and rgmix,gmono . Data for the derived quantities hw, vce, vcg and the

relative selection efficiency (RSE) are also presented (source: Kramer, 1983)

Estimated Plant density of the mixture (plants/m2)

parameter 400 100 44 25 6.25 Monoculture

Ep 356 402 356 334 203 379

var(e) 21,248 17,430 11,945 10,100 25,401 521

var(G) 3,018 1,584 1,422 849 413 280

rgmix,gmono 0.10 0.40 0.04 0.64 0.33

ĥw 0.35 0.29 0.33 0.28 0.37 0.59

vce 0.41 0.33 0.31 0.30 0.25 0.06

vcg 0.15 0.10 0.11 0.09 0.10 0.04

RSE 0.06 0.20 0.02 0.30 0.21

From the figures for RSE, i.e. the ratio of the correlated monoculture
response to selection in mixture and the monoculture response to selection
in monoculture, it appears that the indirect selection was very inefficient,
whatever the plant density. A tendency for a higher efficiency at a lower
plant density may, however, be calculated: r = −0.49.

15.2.2 Measures to Reduce the Detrimental Effect
of Allocompetition

Spitters (1979, pp. 176–192) reviewed the literature on suggestions to reduce
or avoid the detrimental effect of allocompetition on the efficiency of mass
selection. The considered suggestions are:



15.2 Single-Plant Evaluation 395

1. Application of a very low plant density in the selection field
2. Use of seeds or tubers with a uniform size or weight
3. Application of a pattern of plant positions such that alongside each row

plants belonging to the population to be improved are alternated with
plants belonging to a standard variety

4. Application of indirect selection for monoculture yield

Application of a very low plant density in the selection field

In the presence of interplant competition there is a tendency for plants with a
high competitive ability to be selected. Generally the genotype of such plants
does not give rise to a superior yield performance in monoculture. One may
try to avoid this detrimental effect on the monoculture yield response of allo-
competition by applying a very low plant density. However, the effect of geno-
type × plant density interaction may then take over as a cause of inefficiency
of the mass selection. This could imply that selection at low plant density
yields disappointing results, when growing the selected candidates in mono-
culture at high plant density. Example 15.10 presents results of a study where
the genotype with the highest monoculture yield was neither predominantly
selected at high plant density nor at low plant density.

Example 15.10 Spitters (1979, pp.167–176) cultivated a mixture of 12
barley varieties both at plant densities of both 80 and 3.2plants/m2. The
mixture contained varieties like Goudgerst, which has a fast emergence and
development, and Titan and L98, which have slower juvenile growth.

At the high plant density, large differences in grain yield occurred. The
coefficient of genetic variation (vcg) amounted to vcg =

√
2.04/5.69 = 0.25.

Tamara and Goudgerst plants performed best and were predominantly
selected.

At the low plant density the differences in grain yield were much smaller.
The coefficient of genetic variation amounted to vc =

√
33.5/45.5 = 0.13, i.e.

half as high as at the high plant density. Here Belfor and Tamara plants were
predominantly selected.

According to Table 8.3, column 9, the monoculture yield rank at high
plant density was 11.5 for Tamara, 3 for Goudgerst, and 10 for Belfor (1 =
lowest; 12 = highest).

It can be concluded that the detrimental effect of competition at high
plant density, due to variation in date of emergence and/or date of anthesis,
was a greater nuisance than the disturbing effect of genotype × plant density
interaction.

Across the 12 varieties the coefficient of correlation between mixture
yield and monoculture yield at high plant density amounted, at high plant
density of the mixture, to −0.11 and at low density of the mixture to 0.39.
These estimates did not differ significantly from 0, but they suggest the
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application of selection at low plant density. However, one should keep in
mind that this study involved a mixture of varieties, i.e. a mixture of geno-
types that survived during their development the full selection process. These
genotypes have been selected and were, consequently, successful under allo-
competition. They also have been tested and selected under isocompetition
(Section 15.1).

Use of seeds or tubers with a uniform size or weight

Especially at a high plant density, plants developing from larger seeds (or
tubers) tend to surpass plants emerging from smaller seeds (or tubers). This
has been observed both within and across genotypes (Example 15.2). The
detrimental effect of allocompetition on the efficiency of single-plant selection,
in as far as it is due to differences in size or weight of seeds or tubers, may
thus be reduced by grading the seeds or the tubers with regard to their size
or weight and using a uniform portion to grow the selection field. However,
there is a danger to this. The selected candidates may represent genotypes
not deserving to be selected when grown according the commercial practice of
planting less strictly graded material.

Alternated growth of plants belonging to the population to be improved and
plants belonging to a standard variety

The use of a selection field where plants belonging to the population to be
improved are alternated with standard plants might reduce the detrimental
effect of allocompetition because it eliminates variation in the strength of the
competition experienced by the candidate plants.

Alternating candidate plants with standard plants has two clear disadvan-
tages.

1. It doubles the area of the selection field. This implies testing at less uniform
soil conditions field. It also implies doubling of the amount of costs. This
must be the reason why this measure is hardly applied in the case of single-
plant evaluation.

2. The competitive ability of a candidate plant relative to adjacent standard
plants will vary among the candidate plants. It will depend on the stan-
dard variety and it is not necessarily positively correlated with monoculture
performance.

Example 15.11 reports about the results of an application of the measure.

Example 15.11 Spitters (1979, p. 178, Table 25) studied the effectivity of
this measure by means of mixtures of 12 barley varieties. Within separate
rows 12 plants, one from each variety, were alternated with plants of the
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standard variety Varunda. Besides, the 12 varieties were grown in a normal
mixture. Both types of mixture were grown at a density of 80 plants/m2.
For ear weight, the coefficient of correlation across the 12 varieties between
their ratio of normal-mixture yield to alternated-mixture yield and their
competitive ability amounted to r = 0.76. Thus the ear weight of a variety
with a strong competitive ability tended to be higher in the normal mixture
than in the alternated mixture, and – conversely – the ear weight of a variety
with a weak competitive ability tended to be lower in the normal mixture
than in the alternated mixture.

This tendency was not confirmed by another experiment. Altogether
Spitters concluded that alternating candidate and standard plants is use-
less to reduce the detrimental effect of allocompetition on the efficiency of
selection.

Application of indirect selection for monoculture yield

In Section 15.2 indirect selection for monoculture yield at high plant density,
via selection for a trait observed in mixture, was considered. Of course one does
not know in advance which trait should be used as auxiliary trait. One may
speculate that mixture yield will tend to be the best. Then the detrimental
effect of allocompetition on the efficiency of selection cannot further be reduced
by indirect selection.

Spitters (1979, pp. 187–192) proposed harvest index (grain yield/biomass,
HI ) as auxiliary trait for indirect selection aiming at high monoculture yield at
high plant density (Ymono). He established for barley that the harvest index of a
given genotype is not affected by the strength of (allo)competition experienced.
Thus

HImix = HImono (15.4)

for the considered genotype. If, additionally, monoculture biomass (Bmono) is
constant across genotypes, then the relation

Ymono = Bmono × HImono = const. × HImix (15.5)

implies for the considered genotype that Ymono is linearly related to its value
for HImix. This applies whatever the genotype.

On the basis of this – somewhat speculative – reasoning, indirect selection
for Ymono via selection for HImix is promising. The degree to which Bmono is
really constant across genotypes is, of course, decisive. Example 15.12 supports
the reliability of using HImix as auxiliary trait.

Example 15.12 Nass (1980) pursued a higher grain yield in spring wheat.
He applied indirect selection in F2 populations by selecting for a high harvest
index. This was done at normal plant density (59 seeds/m alongside a row)
and at low plant density (6 seeds/m). The indirect selection was successful,
especially at normal plant density.
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15.3 Evaluation of Candidates by Means of Plots

In the early phase of a selection programme the number of candidates (clones,
lines or families) is still high. The candidates may then be evaluated by mean of
plots, often consisting of a single row of plants. The result of the evaluation is
then affected by allocompetition among the candidates. Also in this situation
allocompetition has a detrimental effect on the efficiency of the selection. This
is illustrated by Example 15.13.

Example 15.13 Spitters (1979, pp.210–219, Table 38, Fig. 44) evaluated
12 barley varieties by means of single-row plots. Each plot had a size of
0.2×2m2 and was sown with 100 kernels belonging to a single variety. Each
complete block comprised 12 plots. Twelve blocks, located alongside one
strip, formed a grid. Four of such grids comprised altogether 4×12×12 = 576
plots.

When applying grid selection, the varieties Tamara and Bigo were most
frequently selected. In monoculture at commercial plant density these vari-
eties ranked 11.5 and 8.5 (when 1 = lowest and 12 = highest) (Table 8.3, col-
umn 9). Camilla, also with monoculture rank number 11.5, was not selected.
However, L98 and Goudgerst, ranking with regard to monoculture yield only
1 and 3, were selected.

As in the case of mass selection (Example 15.8) a fair similarity between
the actual direct response (Rmix) and the predicted direct response (R̂mix)
appeared: when selecting within each grid the top 10% of the candidates both
Rmix and R̂mix amounted to 17%. However, the actual correlated response
under monoculture conditions (CRmono) amounted to only 8%.

Spitters (1979, pp. 13–16, 225–232) discussed suggestions in the literature
that aim at reducing or avoiding the detrimental effect of allocompetition
on the efficiency of selection of candidates evaluated by means of plots. The
considered suggestions were

1. Use of multi-row plots
2. Selection on the basis of the observations obtained from the central row(s)

of multirow plots
3. Use of a large interplot distance
4. Evaluation of candidates on the basis of single-row plots alternated with

single-row plots containing a standard variety
5. Application of indirect selection for monoculture yield
6. Grouping of candidates, which are similar with regard to a trait affecting

competitive ability, followed by within-group evaluation
7. Growing of a fixed number of plants per plot
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Use of multirow plots

Yield data from multirow plots estimate the monoculture yield performance
with a smaller mean squared error than yield data from single-row plots, imply-
ing reduction of the residual variance of yield per unit area (Section 16.2.3).
The use of multirow plots gives thus rise to a higher heritability, i.e. to a
higher efficiency of the selection. However, the use of multirow plots may
imply reduction of the number of replications.

The size of the plots is further considered in Section 16.2.

Selection on the basis of the observations obtained from the central row(s)
of multirow plots

Yield data from the central row(s) of multirow plots yield an unbiased esti-
mate of monoculture yield performance. The involved mean squared error of
yield per unit area is, however, larger than the mean squared error of yield
per unit area as calculated for the whole plot. Spitters (1979, p. 226) derived,
in mathematical terms, the condition for selection based on observations rep-
resenting the whole plot to have a higher response than selection based on
observations obtained from the central row(s). He concluded that selection on
the basis of whole plot yield data tends be give rise to a higher response than
selection based on central row(s) yield data. For his own experiments Spitters
established that selection based on three-row plot data was to be preferred.
Apparently the advantage of a smaller residual variance of yield per unit area
applying to whole-plot yield data was larger than the disadvantage of the bias
due to allocompetition. Example 15.14 describes an experiment dedicated to
the present issue.

Example 15.14 Bradshaw (1986) tested 29 fodder kale (Brassica oleracea
var. acephala (D.C) Alef.) varieties by means of single-row plots as well as
by means of five-row plots where only the central row was harvested. The
coefficient of correlation across the varieties between the yield data obtained
for the two methods of evaluation amounted only to 0.20. When considering
only single-row plots, the coefficient of correlation between yield and plant
height amounted to 0.89, for the other evaluation procedure it was 0.19ns.

According to this experiment selection for yield on the basis of obser-
vations obtained from single-row plots is inefficient. When using such yield
data as a basis for selection tall types may be favoured. This could imply an
increased risk of lodging.

Use of a large interplot distance

Allocompetition does not occur if a large interplot distance, including the
area used as an alley, is applied. A bias of the evaluation of the monoculture
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performance, occurring in the presence of allocompetition, is then eliminated.
However, the use of a large interplot distance may be accompanied by intro-
duction of a bias due to genotype × interplot distance interaction.

According to Spitters (1979, pp. 227–228) the bias replacement is nearly
complete. He argued that evaluation by means of single-row plots should occur
at the row spacing applied in commercial cultivation. Example 15.15 describes
a situation where a large interplot distance is applied as a routine.

Example 15.15 In the semi-arid conditions of Central Canada the soil
moisture in the alleys around the plots provides advantageous growing con-
ditions for the plants at the periphery of the plots. To prevent effects of a
differential response of spring wheat candidates to the space provided by the
alleys around the plots, at the Swift Current Research Station these alleys
are drilled (in the spring!) with winter wheat, which stays – because ver-
nalization does not occur – in the vegetative growing stage. An improved
accessibility of the trial is an additional advantage of this measure.

Evaluation of candidates on the basis of single-row plots alternated with single-
row plots containing a standard variety

Spitters (1979, p. 228) considered the alternating of single-row candidate plots
with single-row plots containing a standard variety with an intermediate com-
petitive ability. The only effect of the common ‘genetic’ environment of all
candidates he observed was a reduction of the environmental variance to the
level occurring in monoculture. This advantage is small and it is questioned
whether it cancels out the increase of the environmental variance due to the
doubling of the area of the trial field (which implies also a doubling of the costs
of the evaluation). Example 15.16 describes experiments where genotypes were
evaluated in a common genetic environment.

Example 15.16 Bradshaw (1986) evaluated the yield potential of 16 fodder
kale varieties by means of five-row plots. The row length was 6 m, the interrow
distance 0.5 m. Graded seed was used for a 6.25 cm seed spacing within the
rows. Three evaluation procedures were compared in an experiment with
three replication:

1. Within each plot rows 1, 2, 4 and 5 contained the short variety Maris
Kestril, whereas row 3 was planted with the variety to be evaluated.

2. Within each plot rows 1, 2, 4 and 5 contained the tall variety Vulcan,
whereas row 3 was planted with the variety to be evaluated.

3. Within each plot all five rows are planted with the variety to be evaluated.

The coefficient of correlation, across the varieties, between the yield data
obtained from evaluation procedures 1 and 3 amounted to only 0.56; for
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procedures 2 and 3 it amounted to 0.64. There was a statistically significant
cultivar × guard variety interaction. The evaluation of the varieties by means
of single-row plots cultivated in between four-row standard plots did thus not
reflect the ranking at monoculture conditions as appearing from evaluation
procedure 3. It was concluded that the use of single distinct cultivar to
guard single-row plots was not a satisfactory solution to the problem of
interplot competition. The competition for water during the dry weather in
the summer was probably more important than shading by a tall variety in
the autumn.

Spitters (1979, p. 243) compared in his barley experiments two evalua-
tion procedures:

1. Single-row plots
2. Single-row plots alternated with single-row standard

With procedure 1 the environmental variance was somewhat higher than
with procedure 2. The genetic variance was somewhat lower. This gave rise to
a lower heritability. Procedure 1 yielded altogether a slightly lower correlated
monoculture response than procedure 2.

Evaluation of candidates such that these are subjected to the same com-
petitive stress is pursued by an experimental design called nearest neighbour
balance (Dyke and Shelley, 1976). In this design each candidate has each of
the other candidates equally often as neighbour to the left and to the right.
For eight entries, for example, this design consists of

7(72385614)(47512683)(35467821)(17324865)(58741362)(28431576)
(64253718)(81634527)7

The eight complete blocks are represented within brackets. The very first and
the very last plots, both containing candidate 7, are required for the balance.
Such a balance may be required when the candidates differ in plant height.
The degree of exposure of a candidate to the sun is then fully due to the plant
height of the considered candidate and not to the plant height of neighbours.

Due to the required costs and/or seed, this design will only rarely be used
by a plant breeder.

Indirect selection for monoculture yield

If the mixture harvest index of a candidate is equal to its monoculture harvest
index (Spitters, 1979, p. 229), i.e. HImix = HImono, then the detrimental effect
of allocompetition on the efficiency of selection may be avoided by indirect
selection for monoculture yield (Ymono) via selection for HImix. This is based
on Equation (15.5)

Ymono = Bmono × HImono = Bmono × HImix
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where Bmono represents biomass in monoculture. The relative efficiency of such
indirect selection depends on the coefficient of genetic correlation between
Ymono and HImix(ρg(Ymono,HImix)) and on the ratio of the heritability of
HImix to the heritability of Ymono (Section 12.3). If Bmono is constant across
the candidates, i.e. ρg(Ymono,HImix) = 1, then

Ymono = Bmono × HImono = const. × HImix

Spitters (1979, p. 191) admitted that the assumption of constancy of biomass
across genotypes was not always valid, but harvest index was found not to be
influenced by allocompetition, nor by isocompetition. The relative efficiency
of the indirect selection is high if h2(HImix) is (much) larger then h2(Ymono).

Grouping of entries, which are similar with regard to a trait affecting compet-
itive ability, followed by within-group evaluation

Grouping of candidates having a similar competitive ability can be pursued
by grouping them according to traits such as seed size, seed quality, date
of emergence, growth habit (e.g. prostrate or erect), plant height or date of
maturity. Plant height is often considered as a trait indicating competitive
ability. Thus lines of cereals, for example Triticale, may be grouped accord-
ing to their genotype for height reducing loci (Kempton et al., 1986). When
selecting the most attractive candidates within each group, instead of selecting
among ungrouped candidates, the breeder avoids selection of candidates which
are attractive because of their competitive ability relative to their neighbours.

Growing of a fixed number of plants per plot

Within a certain range of plant densities the competitive ability of a candi-
date being tested in a certain plot is higher as the number of plants in that
plot is higher. Variation among plots in the number of plants they contain
contributes, consequently, to a competitional bias of the evaluation. One may
try to eliminate variation in competitive ability, in as far as determined by
variation in the number of germinating seeds per plot, by sowing in each plot
the same number of germinating seeds.

The number of plants per plot will, nevertheless, vary for several reasons.
At an insufficient depth of sowing germinating seeds may be consumed (by
birds, mice, etc.) or seedlings may wither. Too great a depth of sowing may
lead to unsuccessful emergence. After emergence other accidents may happen.
Sometimes plants are damaged or (partly) consumed by snails, mice, birds,
moles, rabbits, hares, etc.

Plants take advantage of any nearby unoccupied plant position. This occurs
especially within rows, but also between rows. This compensation hampers
correct adjustment for variation in number of plants per plot. A positive cor-
relation is to be expected between plot yield and number of plants in the plot.
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Evaluation of candidates on the basis of plot yield is then biased. Simultane-
ously, the correlation between mean single-plant yield, calculated across the
plants in a plot, and the number of plants in the plot may be negative. Eval-
uation of candidates on the basis of mean single plant yield per plot is then
biased as well. Example 15.17 presents some estimates of coefficients of such
correlations.

Example 15.17 Bos (1981, Table 42) reported positive coefficients of cor-
relation across plots between the number of winter rye plants per plot and
total grain yield per plot (r ranging from 0.22 to 0.38) as well as negative
coefficients of correlation between number of plants per plot and yield per
plant (r ranging from −0.12 to −0.35).

Adjustment of the yield of a plot by an analysis of covariance, using the number
of plants in the plot as covariate, may be incorrect if the number of plants in
the plot reflects the intrinsic genotypic value of the candidate occurring at the
considered plot, e.g. for seed quality. Thus one should first study whether the
candidates differ significantly with regard to the trait used as covariate.



Chapter 16
Optimizing the Evaluation
of Candidates by means of Plots

At the end of Section 8.1 it was indicated why selection tends to be an inef-
ficient process. Section 12.1 presented additional causes for this phenomenon.
Breeders should therefore make efforts to promote the efficiency of selection in
a situation where opportunities to be successful are apparently unfavourable.

In the two preceding chapters the topic of disclosure of the genotypic val-
ues of candidates in situations where their phenotypic values strongly depend
on the quality of the growing conditions, including the strength of the com-
petition exerted by nearby fellow candidates, has been thoroughly considered.
However, the evaluation of the genotypic values of candidates needs also to be
optimized with regard to other points of view. A few of these are considered in
this chapter.

The optimum number of plots per candidate, i.e. the optimum number of
replications, is considered in Section 16.1. Section 16.2 gives attention to the
size, the shape and the positioning of the test plots. The optimum plot size
from an economic point of view is also considered (Section 16.2.3).

16.1 The Optimum Number of Replications

In the initial phases of a breeding programme the number of candidates to be
evaluated is often very large. Selection is then mostly based on a single-site,
single-year evaluation of the candidates. For such an evaluation a choice with
regard to J , the number of plots per candidates, i.e. the number of replications,
should be based on consideration of the following aspects:

1. The total number of plots allowed to evaluate candidates representing the
considered crop

2. The optimum size and shape of the plots
3. The amount of seed available per candidate

These aspects should preferably be considered simultaneously. The number of
replications that can actually be applied, whatever the optimum number of
replications, is, for instance, limited by Jmax, i.e. the ratio of the amount
of seed available per candidate to the amount of seed required for a single
plot. The latter amount of seed depends, of course, on the plot size. (The
latter subject is considered in Section 16.2.)

To avoid the complications arising when considering these three aspects with
regard to the choice of J simultaneously, the second aspect is considered in a
separate section. The present section considers therefore a way to determine

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 405–420. 405
c© 2008 Springer.
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the optimum value for J , say Jopt, in the situation where total number of
plots allowed to evaluate candidates representing the considered crop (N) is
given. Mostly N is limited. It is often determined by policy makers higher in
the hierarchy of the organization than the breeder.

The question facing the breeder is then: How to allocate these N plots?
Should (s)he use them for a non-replicated test of N candidates, or for a test
in duplicate of only 1

2N candidates? When evaluating each candidate by means
of J plots, the number of candidates that can be evaluated (CJ) amounts to

CJ =
N

J
(16.1)

The quantity Jopt is defined as the value for J such, that the ratio of the
response to selection expected when selecting among CJ candidates each eval-
uated by means of J plots (RJ), to the response to selection expected when
selecting among N candidates, each evaluated at a single plot (R) is maximal.
The present section gives thus attention to optimizing the number of replica-
tions from a genetic point of view. Section 16.2.3 considers the determination
of Jopt from an economic point of view.

N.B. In this section symbols without a subscript refer to non-replicated
testing (J = 1) and symbols supplied with the subscript J to replicated
testing (J ≥ 2).

When applying Equation (11.20) the value for J yielding the maximum value
for the ratio

RJ

R
=

hJ
2SJ

h2S
=

iJhJ
2σJ

ih2σ
(16.2)

is taken to be Jopt. In the present section Jopt is derived for the situation
where each of the candidates is evaluated by means of J = 1, or 2, or 3 or 4
plots. A larger number of plots per candidate is considered to be unrealistic.

Jopt is derived under the following conditions:

1. The number of plots used in the evaluation (N) is fixed. It does not depend
on the number of replications. Thus

N = CJ × J

2. The amount of seed allocated to a plot does thus not depend on the number
of replications. In other words: the plot size does not depend on J .

3. The breeder decides beforehand to select the n most attractive candidates,
whatever the number of candidates being evaluated. Thus the portion

vJ =
n

CJ
(16.3)

is selected. Equation (16.3) implies that this portion is equal to J times the
portion (v) that would be selected when evaluating N candidates:

vJ = J
( n

N

)
= Jv (16.4)
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N.B. It is useless to have derived a value for Jopt larger than Jmax, where
Jmax is equal to Jmax = Available amount of seed

Amount of seed required per plot

In Section 11.2.1 it was indicated that the residual variance of a mean across
J plots is

σ2

J

The largest marginal decrease of the residual variance of the mean occurs
when applying J = 2 instead of J = 1.

N.B. It is, by the way, impossible to estimate the residual variance applying
to a single-plot observation (σ2) at J = 1.

As J increases the power of statistical tests, for instance tests of hypotheses
with regard to equivalence of candidates, increases.

The ratio given by Equation (16.2) is now considered with regard to the
elements h2,σ and i, respectively.

1. Equation (11.34) presents the ratio of the heritability when evaluating
each candidate on the basis of J plots to the heritability applying to non-
replicated testing, namely

hJ
2

h2
=

J

1 + h2(J − 1)
(16.5)

2. Equation (11.33) presents the ratio of the phenotypic variance of candidate
means across J plots to their phenotypic variance at non-replicated testing,
namely

σJ
2

σ2
=

1 + h2(J − 1)
J

(16.6)

where
σJ

2 = σg
2 +

σ2

J

3. According to Equation (16.1), a higher number of replicates, i.e. a higher
value for J , implies – at a fixed number of plots (N) – a lower number of
candidates. At a fixed number of selected candidates (n) the latter implies
(Equation (16.3)) an increase of the portion of selected candidates, i.e. a
reduction of the selection intensity (i).

When selecting the portion v from a population with a normal distribution
for the considered trait, the appropriate standardized minimum phenotypic
value (zmin, Section 11.1) can be read from tables in statistical handbooks
(for example Pearson and Hartley, 1970, Table 16.1). According to Expression
(11.8) this selection implies a selection intensity equal to:

i =
f(zmin)

v
=

1
v
√

2π
e−

1
2 zmin

2
(16.7)
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Table 16.1 The ratio of the expected response to selection of

n candidates when testing each of CJ (= N/J) candidates at J

plots to the expected response to selection of n candidates when

testing each of N candidates at a single plot. The proportion of

selected candidates amounts to vJ = n/CJ = Jv and v = n/N ,

respectively (source: Bos, 1983a)

h2

v vJ J 0.1 0.2 0.3 0.4 0.5

0.005 0.01 2 1.244 1.192 1.145 1.103 1.066

0.005 0.015 3 1.380 1.278 1.195 1.127 1.069

0.005 0.02 4 1.468 1.323 1.214 1.128 1.059

0.01 0.02 2 1.223 1.171 1.125 1.084 1.048

0.01 0.03 3 1.344 1.244 1.164 1.097 1.041

0.01 0.04 4 1.415 1.276 1.171 1.088 1.021

0.02 0.04 2 1.200 1.149 1.104 1.064 1.028

0.02 0.06 3 1.296 1.200 1.123 1.059 1.005

0.02 0.08 4 1.347 1.214 1.114 1.035 0.972

0.03 0.06 2 1.180 1.130 1.085 1.046 1.011

0.03 0.09 3 1.258 1.165 1.090 1.028 0.975

0.03 0.12 4 1.289 1.162 1.066 0.991 0.930

0.04 0.08 2 1.163 1.114 1.070 1.031 0.997

0.04 0.12 3 1.224 1.133 1.066 0.999 0.948

0.04 0.16 4 1.240 1.118 1.026 0.953 0.894

0.05 0.10 2 1.146 1.097 1.054 1.016 0.982

0.05 0.15 3 1.192 1.104 1.032 0.973 0.942

0.05 0.20 4 1.191 1.073 0.985 0.915 0.859

0.06 0.12 2 1.132 1.084 1.042 1.004 0.970

0.06 0.18 3 1.162 1.076 1.006 0.949 0.900

0.06 0.24 4 1.145 1.032 0.948 0.880 0.826

Thus
iJ
i

=
f(zmin,J )

vJ

f(zmin)
v

=
f(zmin,J)
Jf(zmin)

=
e−

1
2 (zmin,J

2−zmin
2)

J
(16.8)

Altogether, the ratio given by Equation (16.2) is equal to:

RJ

R
=

e−
1
2 (zmin,J

2−zmin
2)

J
·
√

J

1 + h2(J − 1)
(16.9)

With regard to the part of the expression under the square root one can easily
see that this part is larger, at h2 < 1, as J increases. It is smaller at higher
values for h2.

The parameters zmin and zmin,J , and consequently the ratio RJ/R, can be
obtained for any value for J at any value for v. Example 16.1 illustrates the
calculation of RJ/R. Table 16.1 presents the ratio for a number of values for
v, J and h2.
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Example 16.1 For v = 0.005 the standardized minimum phenotypic
value amounts to zmin = 2.576 (Falconer, 1989, Appendix, Table A). For
J = 2, i.e. v2 = 0.01, it amounts to zmin,2 = 2.326. Thus

i2
i

=
e−1/2(2.3262−2.5762)

2
= 0.923

At h2 = 0.10 and J = 2 Equation (16.5) yields
√

2
1 + 0.1

= 1.348

Then
R2

R
= 0.923 × 1.348 = 1.244

(see also Table 16.1). Apparently duplicated testing yields at h2 =
0.10 a 24.4% higher expected response to selection than selection, on the
basis of non-replicated testing, of the same number of entries from twice the
number of candidates.

The optimum value for J is found by looking, in Table 16.1, for the highest
value for the ratio RJ/R. This is illustrated by Example 16.2.

Example 16.2 In a fictitious breeding programme the heritability of some
trait of some population of candidates amounts under non-replicated testing
to h2 = 0.30. The number of plots available for testing amounts to N = 450.
Selection of n = 18 candidates implies v = 0.04. Table 16.1 presents then
relevant data with regard to the table below

N n J CJ vJ RJ/R
450 18 1 450 0.04 1.000
450 18 2 225 0.08 1.070
450 18 3 150 0.12 1.066
450 18 4 112 0.16 1.026

The table shows that a higher response to selection may be expected if less
than 450 candidates are tested: selection of 18 candidates when evaluating
each of 225 candidates by means of two plots is expected to yield a 7%
higher response. When testing each of 150 candidates in three plots, or each
of only 112 candidates in four plots, selection of the best 18 candidates is
expected to yield a 6.6% and a 2.6% higher response, respectively. Thus at
N = 450, h2 = 0.3 and n = 18 the optimal value for J is 2. For h2 = 0.2 and
h2 = 0.1 one may derive from Table 16.1 that Jopt amounts to 3 and 4 (or
perhaps even more!), respectively. At h2 = 0.5 the table presents Jopt = 1.
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The part of the potential response which is not realized when testing
with a lower or with a higher value for J than Jopt can also be derived from
Table 16.1. At N = 450, n = 18 and h2 = 0.2 one can determine Jopt to be
3. The non-exploited part of the potential selection response due to testing
with J = 2 amounts then to

100
(

1 − 1.114
1.133

)
= 1.7%

Comparison of R4, due to selecting the portion v4 = 0.02, and R2, due to
selecting the same portion (v2 = 0.02) from twice the number of candidates,
shows that J = 4 is expected to yield a higher response to selection than
J = 2 (at twice the number of candidates) for each value considered for h2;
see lines 3 and 4 in Table 16.1.

When selecting 8% of the candidates, testing with four replications is to
be preferred over testing with two replications for each considered value for
h2 up to 0.4. For h2 = 0.5 the optimum value for J is 1.

16.2 The Shape, Positioning and Size of the Test Plots

16.2.1 General considerations

If, for each candidate, the amount of seed available suffices to grow N rows
of a fixed length, one may allocate the seed in different ways. The amount
of seed allows to grow J plots each consisting of K rows, on the condition
that JK = N . The one extreme is testing each candidate by means of a
single, i.e. a non-replicated, N -row plot. The other extreme consists of testing
each candidate by means of N single-row plots. The determination of the
optimum plot size in an economic sense (Kopt) is considered in Section 16.2.4.
It requires a yardstick for measuring the trend in soil fertility, i.e. a part of
the soil heterogeneity. This subject is considered in Section 16.2.3.

Ideal trial fields, in the open or in glasshouses, provide uniform growing
conditions across their whole area. Such trial fields do not exist if their area is
‘somewhat large’. In the latter situation the trial field will contain better and
poorer sections. These sections may change in time; their contours may depend
on the (previous) crop. When evaluating candidates the breeder should try to
make allowance for this source of variation. The latter is only possible in as
far as the quality of the growing conditions varies from plant-to-plant or from
plot-to-plot according to a known pattern (Chapter 14). Random plant-to-
plant or plot-to-plot variation in the quality of the growing conditions causes
the estimates of the genotypic values of the candidates to be biased.
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Additionally, evaluation of candidates by means of small plots tends to
yield a biased assessment of their monoculture performances. Example 16.3,
however, illustrates that this is not always the case.

Example 16.3 Caligari, Brown and Manhood (1985) studied the plot size
and the number of replications to be used in potato breeding. Plot size was
determined by the number of rows of a given length, i.e. six plant positions
alongside 270 cm, per plot. The intra-row distance was 75 cm. The basic plot
size was a single row. Six clones and four plot sizes, viz. one, two, four and
eight rows, were examined. Each clone was represented by two single-row
plots, two two-row plots, one four-row plot and one eight-row plot in each
of two blocks. No evidence of any effect of plot size (or its interaction with
genotype) was found when using mean yield per row as the observation
characterizing a plot. There was no evidence of any difference between the
yields obtained from outer or inner rows; nor did competition from adjacent
rows appear to have any effect.

With regard to the single-row and the two-row plots the effect of increas-
ing the number of replicates, while the number of rows is fixed, was also
studied. The residual standard deviation decreased with increasing replica-
tion according to what should be expected. It was concluded that the most
efficient procedure for potato yield trials consists of using single-row plots
with as many replicates grown as can be handled.

These results cannot be taken as providing a definitive answer for all
such trials. They do, however, show that the generally accepted opinion of
‘the larger the plot the better’, because ‘bigger plots reflect more accurately
agricultural conditions’, is not necessarily correct.

Example 16.3 refers to the mathematical fact that the environmental vari-
ance of a candidate, i.e. σ2/J , is at its smallest when evaluating single plant
plots with a very high value for J . However, this ignores possible agricul-
tural or biological differences that are introduced by growing single plants as
opposed to plots which contain more than one plant (Caligari, Brown and
Manhood, 1985).

Notwithstanding Example 16.3, there is often a bias in the estimate of the
monoculture performance of a candidate when estimating this performance
by means of small plots. It may be caused by effects of genotype × density
interaction due to alleys and to effects of interplot competition (Chapter 15).
It is smaller as larger test plots are used: a candidate shows its monoculture
performance more precisely under a larger test plot than in a smaller test plot.
Section 16.2 considers shape, positioning and size of the plots. This topic is
also covered by LeClerg et al. (1962, pp. 111–126) and by Gomez and Gomez
(1976, pp. 203–222).

Example 16.4 shows how one may determine empirically the quality of the
evaluation of the monoculture yields of candidates by means of small plots.
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Example 16.4 Kramer, van Ooijen and Spitters (1982) studied the effect of
plot size on the quality of the evaluation of the monoculture performance of
16 homozygous spring wheat lines. In order to determine the latter, the lines
were cultivated in six-row plots. The length of the rows was 6 m, the inter-
row distance was 0.25 m. Yield data obtained from four complete blocks was
taken to represent monoculture performance, i.e. the performance at com-
mercial cultivation. They were used to measure the quality of the evaluation
of the 16 lines by means of small plots.

Four complete blocks were used to study four types of small plots, namely

Number
of rows

Inter-row
distance (m)

Yield evaluated
on the basis of∗

Plot type: 1 1 0.208 C, D
2 1 0.416 C, D
3 3 0.208 A, B, C, D
4 6 0.208 A, B, C, D

∗A: all rows; B: the central row(s), i.e. one or four rows; C: 1.5 m of the row
length; D: the whole length of the row(s)

The length of the rows was 2 m. The number of kernels sown per m2 was
250, except for plot type 2, where it amounted to 125.

The quality of the evaluation of the monoculture performance of the
lines, by means of a particular type of small plot, was measured by the coef-
ficient of phenotypic correlation (r), estimated across the 16 lines, between
small plot yield and monoculture yield at ‘commercial cultivation’. The high-
est coefficient of correlation for each of a number of different evaluation
procedures amounted to:

Plot type Yield of area Yield adjusted for r
1 D number of plants 0.5
2 C number of plants 0.65
3 B 0.75
3 A number of plants 0.78
4 A 0.88
4 B interplot competition 0.92

For plot types 3 and 4 it hardly mattered whether all rows were harvested
or only the central row(s). Certainly the rows should be harvested across
their whole length.

In some situations breeders decide to use large (or wide) plots. This decision
may be made because of

1. The available equipment,
2. The wish to reduce the effect of interplot competition, and/or
3. Interest in traits that are best expressed in large plots, e.g. lodging resis-

tance.
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The decision may imply application of a low number of replications. This is
undesirable in the presence of soil heterogeneity (Section 16.2.3).

In practice breeders often use small plots. They may do so because of the
following reasons:

1. Per candidate only a small amount of seed is available
2. They wish to evaluate a large number of candidates when having available

limited resources

A small amount of seed per candidate

In the case of selection among candidates obtained from single plants the
amount of tubers or seed per candidate tends to be limited. For crops such
as peas (Pisum sativum L.) or field beans (Vicia faba L.) individual plants
produce a small number of seeds. F3 lines will then consist of a small number
of plants and evaluation of F3 lines by means of large plots is then prohibited.
The F3 lines are then to be tested in small plots or one may decide to evaluate
F2-derived F4 lines by means of large, possibly replicated plots.

Evaluation of a large number of candidates

Breeders tend to prefer evaluation of a large number of candidates by means
of small plots over evaluation of a smaller number of candidates by means
of larger plots or by means of replicated testing. The theory developed in
Section 16.1 allows a check of whether evaluation of as large a number of
candidates as possible (namely N), considering the number of plots the breeder
is allowed to plant (N), is to be recommended.

16.2.2 Shape and Positioning of the Plots

When dividing the trial field into blocks, a part of the residual sum of squares
showing up when applying a completely randomized experiment can be shown
to be due to differences between the blocks. This may endow statistical tests
involving the randomized block experiment with a larger power: more pairs of
candidates can be shown to consist of non-equivalent candidates.

The partitioning of the trial field into blocks should be done such that as
much as possible of the residual sum of squares, which would show up when
applying a completely randomized experiment instead of randomized block
design, is assigned to the blocks.

If one does not know the trend in the quality of the growing conditions, it
may be best to use square blocks containing square plots. An advantage of
square plots is their minimum circumference at a given size. This minimizes
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effects of allocompetition. (It is, regrettably, admitted that breeders commonly
decide to apply oblong plots because of the equipment available for drilling,
maintenance and harvesting).

If the trend in the quality of the growing conditions is known, the blocks
should be oblong, with their longitudinal axis parallel to the soil fertility con-
tour lines. This ensures a minimum residual (within blocks) sum of squares
and a maximum between blocks sum of squares. The power of statistical tests
is further promoted by adapting the positioning of the plots to the direction
of the trend in the quality of the growing conditions. Oblong plots should thus
be positioned with their longitudinal axis perpendicular to the ‘soil fertility
contour line’:

soil fertility low

|
|
|
↓

soil fertility high

Beside statistical arguments, economic considerations with regard to size,
shape and orientation of plots also play a role. The plot size is equal to the
product of its length and its width. For economic reasons the width of the
plots is often determined by the available equipment for drilling, maintenance
and harvesting. Then the length of the plots is decisive for its size and its
shape. Size and shape of the test plots are then directly related.

The size (and shape) to be recommended for test plots have not only been
studied generally (Hatheway, 1958), but also for

• Special crops, e.g. for tobacco (Crews, Jones and Mason, 1963) or sugar
beet (Jaggard, 1975)

• Groups of crops, e.g. horticultural crops (Ferguson, 1962).

16.2.3 Yardsticks to Measure Soil Heterogeneity

Soil heterogeneity, i.e. variation in the quality of the growing conditions, is
often studied by means of a so-called uniformity trial. Then all plots contain
the same genetically uniform plant material. Such studies have shown that the
growing conditions provided by a particular field may appear homogeneous
when observed in some season and for some trait of some crop, but they may
appear heterogeneous when observed in a different season or for some trait
of a different crop. For a given crop, different traits may differ with regard
to their capacity to bring soil heterogeneity to light. Flower colour of tulip
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plants respond less to the quality of the growing conditions than the size of
the tulip plants. The reader is thus reminded to the fact that the environmental
variance depends on the genotype considered and, within a given genotype,
on the trait considered (Sections 8.1, 8.2). This implies that measurement of
the soil heterogeneity is not a straightforward activity.

The subject of measuring soil heterogeneity has been considered by LeClerg,
Leonard and Clark (1962, pp. 105–107). Here the theory developed by
Fairfield-Smith (1938) for a uniformity trial is presented. The basic area
unit plays a role in this approach. This basic area unit may be:

• the area occupied by a single plant
• the area occupied by a single row or
• simply 1m2.

The plot size can then be expressed as the number of basic area units. A plot
size amounting to K means that the plot consists of K subplots, each with an
area of one basic area unit.

Let xi represent the yield of subplot i(i = 1, . . . , K) within a plot, and let

X =
K∑

i=1

xi

represent the total yield of the plot. Because a uniformity trial is studied one
may assume that the same error variance, var(x), applies to different subplots.

It is quite common to express the yield of a plot in g/m2, or even in t/ha.
Thus one may calculate for each plot the quantity

y
K

=
X

K

where y
K

represents the plot yield per unit area when dealing with plots of
size K. Then

var(y
K

) = var

(
X

K

)
=

var(X)
K2

(16.10)

The relation between var(y
K

) and K, both in the absence and in the pres-
ence of a trend, is now considered.

1. In the absence of a trend, the yields of subplots belonging to the same plot
are stochastically independent, i.e. cov(xi, xi′) = 0. This implies that

var(y
K

) =
var(x1 + . . . + xK)

K2
=

Kvar(x)
K2

=
var(x)

K
=

var(y
1
)

K
(16.11)

2. In the presence of a trend, i.e. cov(xi, xi′) > 0, implies

var(y
K

) =
K ′var(X)

K2
(16.12)
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where, due to the positive covariances of the observations obtained from
subplots belonging to the same plot,

K ′ > K

A general expression for the relation between var(y
K

) and K, is thus

var(y
K

) =
var(x)
K
(

K
K′

) =
var(y

1
)

Kb
(16.13)

where b = 1 (absence of a trend) or b < 1 (presence of a trend). The para-
meter b is the so-called soil heterogeneity index. Example 16.5 assists in
understanding parameter b.

Example 16.5 At K = 4 and K ′ = 4.44, i.e. at K
K′ = 0.9, the denominator

K
(

K
K′

)
amounts to 4 × 0.9 = 3.6036. The appropriate value parameter b is

then calculated from b log(4) = log(3.6036). This yields b = 0.9247.

Equation (16.13) implies

log(var(y
K

)) = log(var(y
1
)) − b log(K) (16.14)

If var(y
K

) is estimated for different plot sizes, i.e. for different values for K,
one may estimate b by means of linear regression of log(var(y

K
)) on log(K).

This is illustrated by Example 16.6.

Example 16.6 Gomez and Gomez (1976; p. 208) analysed a uniformity
trial with rice. Grain yield (in g/m2) was determined for basic units of 1 ×
1m2. The following scheme presents a part of the data:

842 844 808 822 979 954
803 841 870 970 943 914
773 782 860 822 932 971
912 887 815 937 844 661
874 792 803 793 818 799
908 875 899 788 867 790

Different vertical or horizontal combinations of the N = 36 basic area units
yield different plot sizes (K; in m2) and accordingly different numbers of
plots (J = N/K). For each possible value for K first the grain yield y

K
(in

g/m2) was calculated for each of the J plots and next var(y
K

) was estimated.
This yielded the following values:
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Plot size (K) Number of plots (J) vâr(y
K

)

1 × 1 = 1 36 4, 818
2 × 1 = 2 18 2, 028
1 × 2 = 2 18 3, 611
3 × 1 = 3 12 3, 179
1 × 3 = 3 12 2, 418
2 × 2 = 4 9 1, 509
6 × 1 = 6 6 464
1 × 6 = 6 6 707
2 × 3 = 6 6 1, 704
3 × 2 = 6 6 2, 909
3 × 3 = 9 4 2, 518

For the four plots of 9m2 one gets, for instance:

824.78 923
862.78 810.78

Then one can calculate: vâr(y
9
) = 2518.

Linear regression of 10 log(vâr(y
K

)) on 10 log(K) yielded

10lôg(vâr(y
K

)) = 3.634 − 0.6025 × 10 log(K)

The estimate of the soil heterogeneity index amounted thus to 0.6025.
Uniformity trials have rarely been carried out over several years at the

same site. Data on the stability of the soil heterogeneity index are thus scarce.
Koch and Rigney (1951) reported for three years: 0.65, 0.42 and 0.67 for one
experiment; and 0.56, 0.68 and 0.76 for another experiment. Apparently the
parameter b varied both across sites and across years within site. The crop
and the observed traits will also have played a role.

For a trial field with a very strong trend in the quality of the growing conditions
the covariance of the performances observed for adjacent basic area units, i.e.
cov(xi, xi′), will be high. The value of b will then be much smaller than 1, it
might possibly be a value close to 0. An increase of the plot size, i.e. an increase
of log(K), yields then hardly a decrease of var(y

K
) (Equation (16.14)). Then

var(y
K

) ≈ var(y
1
). In this situation it is advisable to apply small plots and

a high number of replications, or to use a different trial field with a weaker
trend in the quality of the growing conditions. In such a trial field an increase
of K leads to a decrease of var(y

K
). At b = 1, i.e. in the absence of a trend in

the quality of the growing conditions, Equation (16.11) applies. In that case
var(y

K
) is equal to the variance of the average across K separate plots each

of size 1.
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Occurrence of a soil heterogeneity index larger than 1 may seems improb-
able. It requires the covariance between the performances observed for adja-
cent plots in a uniformity trial to be negative. This indicates isocompetition
between the plots. Example 16.7 describes a situation where this occurred.

Example 16.7 Spitters (1979, p. 235) found that in his experiments with
barley that the grain yield of subplots (in this case single-row plots) varied
with a trend. Rows 1 and 6 of a sowing pass yielded systematically better
than the intermediate rows obtained from the 6 six-row sowing drill. It was
guessed that this phenomenon was caused by a wider distance between rows
due to different sowing passes than between rows due to the same sowing
pass. It might also be explained from better growing conditions in rows 1 and
6 due to soil compaction in the wheel track of the drill.

Absence of a trend in the quality of the growing conditions does not nec-
essarily imply absence of heterogeneity. With irregular plot-to-plot variation
in the quality of the growing conditions the covariance of the performances
observed for adjacent basic area units might be near to zero. This implies a
soil heterogeneity index of near to one. One should thus not rush to the con-
clusion that the trial field provides uniform growing conditions. This may be
one of the reasons why b is seldom determined in plant breeding practice. But
undoubtedly the effort required to perform and to analyse a uniformity trial
is the main reason.

Estimation of the soil heterogeneity index on the basis of an experimen-
tal design dedicated to the evaluation of candidates is therefore an attractive
alternative. Gomez and Gomez (1976, pp. 214–218) illustrated the estimation
of b from a split-plot design. Lin and Binns (1984) estimated b from a random-
ized complete block design. They showed how the accuracy of the evaluation
can be improved by increasing K, when keeping J constant, or by the use of
incomplete blocks.

Notwithstanding the ambiguity in the interpretation of the soil heterogene-
ity index, the index in introduced because of its role in the determination of
the optimum plot size from an economic point of view (Section 16.2.4).

Sometimes the measurement of a trend in the quality of the growing con-
ditions has been attempted by calculating, for a uniformity trial, the coeffi-
cient of correlation between the yields obtained from pairs of adjacent plots
(Example 16.8).

Example 16.8 Pijper (1981) estimated for a uniformity trial using the
barley variety Varunda the coefficient of correlation between the biomass
data of pairs of adjacent rows. For 1976 the mean of six estimates of the
coefficient of correlation, each based on 90 pairs of adjacent rows, amounted
to 0.2. For 1977 the mean of four estimates, each based on 72 pairs of adjacent
rows, amounted to −0.09.
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Example 16.7 showed that isocompetition between single-row plots may
occur. To eliminate this effect, the coefficient of correlation between pairs of
rows separated by a single row was also estimated. This yielded, for 1976,
r = 0.22 and for 1977 r = 0.01. Thus in 1977 the coefficient of correlation
between pairs of adjacent rows was reduced by isocompetition.

Pijper also considered two-row plots. Then the mean coefficient of corre-
lation between pairs of adjacent plots amounted, for 1976, to 0.51 and for
1977 to 0.28. This shows that the biomass of two-row plots is less affected by
isocompetition and random variation than the biomass of single-row plots.

In all cases the 1976 estimate was higher than the 1977 estimate.

However, the interpretation of this yardstick is not unambiguous:

• A high coefficient of correlation implies that the soil fertilities of adjacent
plots are similar. Simultaneously the range, across a large distance, in the
quality of the growing conditions may be wide.

• A low coefficient of correlation implies that the qualities of the growing
conditions of adjacent plots tend to be different, but simultaneously the
range in the quality of the growing conditions across a large distance may
be narrow.

It is concluded that the coefficient of correlation is a poor yardstick to measure
soil heterogeneity.

16.2.4 The Optimum Plot Size from an Economic Point of View

From an economic point of view, the optimum plot size (Kopt) at a given soil
heterogeneity index b, is the plot size such, that the total of the costs of the
evaluation of a candidate is minimal per unit information. The determination
of Kopt, at a given value for b, is elaborated in the present section.

In this book the residual variance of single-plot yield data, say X (in g
or in kg), was designated by σ2. The residual variance of the mean value
across J plots of a candidate amounts then to σ2/J (Section 11.2.1). With
these representations the area of the plot can be anything (Section 16.2.3).
When expressing yield in g/m2 or in t/ha, the yield was represented by y

K
,

with residual single-plot variance represented by var(y
K

) and with residual
variance of the mean across J plots equal to var(y

K
)/J . All these variances

are scale-dependent. For this reason the scale independent quantity vc = σ/µ
is a better indicator of the accuracy of the observations.

The reciprocal of the residual variance of the mean across J plots, i.e.
J/var(y

K
), is called the precision or the information (Steel and Torrie,

1980, p. 123) of the evaluation. It is a meaningful yardstick for the accuracy of



420 16 Optimizing the Evaluation of Candidates by means of Plots

the observations: the larger this quantity, i.e. the smaller the residual variance
of the mean, the larger the accuracy of the evaluation. An increase of the
information is realized by:

1. Increasing J , i.e. the number of plots per candidate. An increase of J implies
an increase of the cost of the evaluation proportional to the relative increase
of the number of replications. The parameter C1 is introduced to designate
the fixed cost of an additional plot of a given candidate.

2. Increasing K, i.e. the size, in standard area units, of a plot. An increase of
K may tend to reduce). This type of increase involves costs proportional
to the plot size. The parameter C2 designates for a given plot the cost of
increasing the size of the plot with an additional standard area unit.

The total costs of the evaluation of a candidate by means of J plots, each of
size K, is then

J(C1 + KC2) (16.15)

They amount per unit of information to

J(C1 + KC2)(
J

var(y
K

)

) = var(y
K

) · (C1 + KC2) (16.16)

The minimum value of the costs of evaluation of a candidate per unit of
information occurs if the derivative of this function to K is zero.

Substitution of Equation (16.13) transforms Equation (16.16) into

var(y
1
) · (C1 + KC2)

Kb
(16.17)

Differentiation to K yields:

var(y
1
)
[
−bK−b−1C1 + (1 − b)K−bC2

]
=

var(y
1
)

Kb

[
−bC1

K
+ (1 − b)C2

]

(16.18)

• At b = 1, i.e. in the absence of a trend in the quality of the growing
conditions, the plot size is optimal if

C1

K
= 0

This occurs approximately at K → ∞.
• At b < 1 the derivative is zero for

Kopt =
b

1 − b
· C1

C2
(16.19)

At C1 low and C2 high, the optimum plot size is smaller than for a high
ratio of C1 to C2. Swallow and Wehner (1986), dealing with the testing of
cucumber, present an application of the present theory.



Chapter 17
Causes of the Low Efficiency
of Selection

The effect of improvements in agricultural techniques and of the introduction
of higher-yielding varieties has often been studied. The results may seem unim-
pressive compared to the progress due to scientific advances with other fields
of application. (However one should not overlook the fact that such, indeed,
low annual progresses have been maintained for decades and decades).

This chapter summarizes causes for the low efficiency of selection in a look-
ing back manner.

Sneep and Hendriksen (1979, p. 421) summarized some data concerning
increases of yield attained in agriculture. They wrote: ‘In the USA no improve-
ment whatsoever has been obtained for beans and only a moderate improve-
ment for soya beans but the results for maize and groundnuts are very good.
In The Netherlands the increase over the high yield levels already attained in
1930 is partly due to improvement in cultivation techniques and partly to the
introduction of higher yielding varieties. By considering the two factors sep-
arately it is possible to show that the yield increase due to the introduction
of better varieties since 1980 was 0.8% per year for potatoes and 0.4% per
year for sugar yield of sugar beets. For spring wheat the yield increase due to
breeding has been shown to be 1% per year over the same period. . . . Similar
calculations were made in England. . . . The increase in yield due to breeding
was 1.8% per year over a period of 30 years in wheat, accounting for 67% of
the total yield increase. For barley the corresponding figures are 1% per year
and 50% of the total increase’.

In Section 8.1 it was already indicated that selection tends to be an ineffi-
cient process. This was attributed to

1. Non-identical reproduction
2. Variation in the quality of the growing conditions
3. Competition

Non-identical reproduction as a cause for inefficient selection
In the case of identical reproduction the genotypic composition of a population
does not change from generation to generation. This occurs at asexual repro-
duction of clones, at selfing of pure lines, and at re-production (by making the
underlying crosses again) of single-cross hybrids.

Non-identical reproduction of the selected candidates is a genetic cause for a
disappointing response to selection. The genotypes of the selected candidates
are not identically reproduced and do, consequently, not reoccur unaltered in

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 421–428. 421
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the next generation. This occurs when selecting among heterozygous candi-
dates representing a self-fertilizing crop and when selecting among candidates
representing a cross-fertilizing crop.

This cause of inefficiency of selection does not occur when selecting among
clones, among completely homozygous candidates of a self-fertilizing crop or
among test hybrids when developing a single cross hybrid.

Variation in the quality of the growing conditions as a cause for inefficient
selection

In order to rank candidates according to their genetic quality, the breeder
should make effort to compare the candidates in identical growing conditions.
To pursue this, the breeder might compare the candidates within blocks. Addi-
tional tools are randomization and replication.

Uniformity of the growing conditions within blocks is an idealization. This
implies that ranking of candidates according to their genotypic value is impos-
sible. It is, therefore, unavoidable that candidates with a superior genotypic
value are overlooked, whereas candidates with a genotypic value not justifying
selection are selected. This applies even more strongly to evaluation procedures
employing incomplete block designs and/or non-replicated evaluation proce-
dures using standard plots (Section 14.3.2) or moving means (Section 14.3.3).

Competition as a cause for inefficient selection

Variation among candidates in allocompetitive ability reduces the efficiency of
selection of candidates with a genetically superior monoculture performance.
Candidates with a strong competitive ability are apt to be selected. They
may perform disappointingly when grown in monoculture, i.e. in the absence
of variation in competitive ability (Chapter 15).

Rasmusson (1987) mentioned four additional causes for an impeded
improvement of plant material with regard to traits with quantitative varia-
tion. They apply because of interrelationships of the traits.

1. The requirement of a harmonically tuned sizes of different organs, e.g. ear
size and leaf area. Selection efforts not in consonance with this requirement
are expected to be less successful than efforts respecting such harmony.

2. Due to a physiological limit there is mutual compensation between or within
organs with regard to their number or size. Thus an increase of the number
of ears per rye plant is associated with

• a decrease of single kernel weight and/or
• a decrease of the ear size, i.e. the number of grains per ear.

3. Pleiotropy (Section 12.2): some genotype with regard to a pleiotropic locus
may be favourable with regard to one trait but unfavourable with regard
to another trait.
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4. The genotype giving rise to a favourable expression of the studied trait may
fail to yield an attractive expression in a different genetic background.

The response to selection is mostly low, certainly if each candidate is evaluated
by means of only one small plot. Looking back to topics elaborated in preceding
chapters the following general causes for a low efficiency of selection, additional
to those presented above, can be summarized:

1. In the early phases of a breeding programme breeders usually want to test
large numbers of candidates. Because of this, and possibly also because at
that stage there is usually only a small amount of plant material per candi-
date available, the evaluation is done in a single macro-environment. In the
presence of genotype × environment interaction one may then tend to select
candidates that do not perform in a superior way when grown in another
macro-environment. A higher response to selection may be expected if the
selection is based on tests covering at least two growing seasons at two or
more locations. This is illustrated in Example 18.3.

2. Evaluation of candidates by means of small plots implies not only an
inaccurate but, due to allocompetition, also a biased estimation of the
monoculture performances of the candidates. Selection based on mixture
performance tends thus to yield a disappointingly low correlated response
for monoculture performance. Examples 15.7 and 15.8 show that this reason
for inefficient selection can be quit important.

3. Usually selection occurs under growing conditions deviating from the
conditions provided in commercial farming. Certainly the candidates are
subjected to allocompetition, whereas the breeders pursues selection of
candidates with a good performance in the absence of such competition.
This means that it is unavoidable that the breeder applies indirect selec-
tion, which tends to be less efficient than direct selection (see Sections 12.3
and 12.3.1). It implies reduction of the potential response to selection
(see Example 15.7). Section 12.3.3 considered the relative loss in potential
selection response due to indirect, instead of direct selection.

For cross-fertilizing crops one may add the following cause. When selecting
after pollen distribution, the next generation (Gt+1) will contain, compared
to later generations (Gt+k, where k ≥ 2), an excess of heterozygous plants
(Section 2.2.1). If dominance plays a role in the inheritance of the considered
trait the lasting response to selection cannot be measured by comparison of
the performances of generations t and t + 1. Such a comparison would yield
a biased estimation of the realized response to selection because generation
t + 1 will contain an excess of heterozygous plants. The lasting response to
selection should, therefore, be measured as

R = EGt+2 − EGt,

i.e. from comparison of the performances of generations t + 2 (if obtained in
the absence of selection in generation t + 1) and t.
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For self-fertilizing crops one may also consider a specific cause for inefficiency
of selection. Selection, among heterogeneous and heterozygous plant mater-
ial, of candidates producing – in later generations – pure lines with superior
monoculture performance, may yield disappointing results. This could (partly)
be due to the following. In the case of dominance (and when selecting in an
‘early’ segregating generation), especially plants or lines with a higher than
average level of heterozygosity may tend to be selected. The plants descending
from the selected candidates will be more homozygous than the selected can-
didates. There performance may, consequently, differ from the performance
of their parents. This is a special drawback of selecting in early generations.
Selection in an advanced generation does not suffer from this drawback and
may, therefore, be expected to be more efficient. This is illustrated in the next
chapter (Example 18.1).

The next section focuses on the fact that the probability of coincidence of the
candidate with the highest phenotypic value, i.e. the candidate favoured by the
breeder, with the candidate with the highest genotypic value, may be (consid-
erably) less than 1. The selection performed by the breeder is then incorrect.
The section shows once more that the candidate(s) favoured by a breeder are
not necessarily the candidates with the most attractive genotypic values.

17.1 Correct Selection

When comparing K candidates usually the null hypothesis H0: ‘the genotypic
values of the K candidates are equal’ is tested. Example 17.1 illustrates the
situation facing a breeder in the case of equivalence of the candidates.

Example 17.1 The expected value of a single draw from a standard normal
distribution is 0. If one takes two draws the expected value of the largest of
the two is 0.564. The expected value of the largest draw in a sample of 10 is
1.539; in a sample of 100 it is 2.51 (Pearson and Hartley, 1972, Table 9).

Consider now a yield trial involving 100 candidates. Assume that for
each candidate the genotypic value for yield amounts to 5000 kg/ha and
that the standard deviation of the mean yield across the B plots, which are
distributed over B blocks, amounts for each candidate to 200 kg/ha. Then
the highest phenotypic value expected for yield will amount to

5000 + (1.539 × 200) = 5502 kg/ha

and the lowest expected phenotypic value to

5000 − (1.539 × 200) = 4498 kg/ha.
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The above null hypothesis is usually tested against the alternative hypo-
thesis Ha: ‘the genotypic values of the K candidates are not equal’. Such a
test hardly makes sense.

If the candidates are truly different (and for what other reason would one
want to compare them), it is reasonable to expect differences, however small
these may be. Acceptance of H0 indicates that the power of the test was
apparently insufficient; i.e. the numbers of locations (L), of years (Y ), and/or
of blocks per test (B) were too small to succeed in rejection of H0.

What to do in case of rejection of H0? The main interest of a breeder is not
in acceptance or rejection of H0 but in the identification of the candidate with
the most attractive (expected) genotypic value. The statistical approach to
this problem is indicated by the term statistical selection. If the main goal
of an evaluation trial is indeed identification of the candidate with the most
attractive genotypic value, then that goal should be pursued explicitly. Statis-
tical selection procedures aim at goals such as selection of the best candidate,
or selection of a subset of candidates, containing the best candidate. These
procedures are hardly applied in present plant breeding practice. Practition-
ers are used to applying analysis of variance techniques. However, statistical
selection procedures deserve recognition as useful tools.

The present section introduces the subject of ranking and selection proce-
dures. The concept of correct selection and its probability are introduced by
Example 17.2.

Example 17.2 Assume that 11 candidates are tested. Ten of these are
equivalent. They have the same (expected) genotypic value, −1, and their
phenotypic variance is 1. Candidate 11 has a genotypic value equal to 0 and
its phenotypic variance is 1.

Correct selection (CS) is defined as selection of the candidate with the
most attractive genotypic value. In the present case P (CS), i.e. the probabil-
ity of correct selection, is the probability that the phenotypic value observed
for candidate 11 is larger than the largest phenotypic value observed for the
ten other candidates.

It can be derived that P (CS) is only 0.324 at B = 1 (Gauch and Zobel,
1989). At random selection, i.e. selection in the absence of testing, P (CS) =
1
11 = 0.091. Gauch and Zobel commented: ‘Frequently selection tasks are
considerably more difficult than may be recognized’.

Two procedures will be described: the indifference zone approach of selection
and the subset selection procedure.

Indifference zone approach of selection

The indifference zone procedure (Bechhofer, 1954) proceeds as follows.
The genotypic values of the K candidates are G1, . . . ,GK . These candidates are
assumed to have the same phenotypic variances, viz. σp

2. Correct selection,
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i.e. selection of the candidate with the highest genotypic value, is pursued
by selecting the candidate with the highest observed mean phenotypic value
across the B plots.

The probability of correct selection, P (CS), is considered. It depends
on σp

2, B, K and δ = G[K] − G[K−1], i.e. the difference between the highest
genotypic value, G[K], and the highest but one genotypic value, G[K-1]. One
may require that:

P (CS) ≥ P ∗

where
1
K

< P ∗ < 1

if δ is at least δ∗.
The probability of selecting the candidate with the highest genotypic value

is at least P ∗, whenever the genotypic value of this candidate is at least δ∗

units higher than the genotypic value of the second best candidate.
The minimum for P (CS) is attained for the least favourable situation, i.e.

for the situation where K-1 candidates have the same genotypic value, whereas
one candidate has a genotypic value at least δ∗ units higher. (This situation
was considered in Example 17.2). Example 17.3 illustrates how one may cal-
culate δ∗.

Example 17.3 Van der Laan and Verdooren (1990) illustrated an applica-
tion of the indifference zone approach. They used magnesium content of leaf
17 (LMG, in %) data of tenera oil palm families. This trait was shown to be
clearly related to fresh bunch yield of the families (Example 12.5). The stan-
dard deviation of this trait was known to be 0.0186. The data were obtained
from an experiment involving K = 10 families evaluated by means of B = 4
randomized complete blocks containing 16 palms per plot. The average LMG
values (p) of the ten families are summarized below:

Family p Rank number
1 0.212 [5]
2 0.222 [7]
3 0.242 [8]
4 0.204 [3]
5 0.210 [4]
6 0.186 [2]
7 0.218 [6]
8 0.244 [9]
9 0.162 [1]
10 0.248 [10]

The least favourable situation is given by G[1] = . . . = G[9] = G[10]−δ∗. When
choosing the minimum probability of correct selection, P ∗, to be equal to
0.90, the quantity δ∗ can be calculated to be
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δ∗ =
τ × 0.0186√

B
=

2.9829 × 0.0186
2

= 0.0277

where τ = 2.9829 is obtained from Dickinson-Gibbons, Olkin and Sobel,
(1977).

Otherwise one can determine the value for B needed for δ∗ = 0.020. This
value amounts to

B =
(

τ × σ

δ∗
)2

=
(

2.9829 × 0.0186
0.020

)2

= 7.7

It appears that this is a value not commonly applied in plant breeding
practice.

The minimal probability P ∗ of correct selection can only be guaranteed if B
is high enough. The value for B such that the conditions posed by the choices
for P ∗ and δ∗ are met at given values for K and σp

2 can be derived (Van der
Laan and Verdooren, 1990). It is the number of blocks to be used when apply-
ing the indifference zone approach of selection. If σp

2 is unknown an initial
experiment is required to get the estimate s2 which is used to determine B.

Subset selection

The subset selection procedure (Gupta, 1956) aims to select a subset from
the K candidates, including (with a certain probability) the candidate with
the most attractive genotypic value. Candidate k(k = 1, . . . , K) is included in
this subset if its mean phenotypic value across the B plots (pk) exceeds

max
1≤j≤K

(pj) −
τ × σ√

B
(17.1)

where the numeric value of τ must be determined such that

P (CS) ≥ P ∗

for all possible genotypic values of the K candidates.
For this case it can be shown that the least favourable situation is the

situation where all candidates have the same genotypic value. Appropriate
values for τ are given by Dickinson-Gibbons, Olkin and Sobel, (1977).

The number of candidates in the subset is random. It depends on the (com-
mon) residual variance (σ2) and on B. Its expected value should, of course,
be as small as possible. The size of the subset reflects the confidence in iden-
tification of the most attractive candidate. A large subset means that the
candidates have similar genotypic values and/or that B is small.
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If σp
2 is unknown, one may include in the subset candidate k if its mean

phenotypic value exceeds

max
1≤j≤K

(pj) −
τ × sp√

B

where sp
2 is an unbiased estimate of the residual variance σp

2 based on ν
degrees of freedom. The parameter τ has been tabulated for different values
for K, ν and P ∗ (Dickinson-Gibbons, Olkin and Sobel, 1977)

Example 17.4 illustrates how the subset selection procedure proceeds.

Example 17.4 When applying the subset selection procedure to the data
given by Example 17.3, the breeder will select the families for which pk is
larger than

0.248 − τ × 0.0186√
4

As for P ∗ = 0.90 the appropriate value for τ amounts to 2.9829, the breeder
will select all candidates with a mean phenotypic value for leaf Magnesium
content (in %) larger than

0.248 − 2.9829 × 0.0186
2

= 0.220

The subset of selected candidates will thus consist of candidates 2, 3, 8
and 10.



Chapter 18
The Optimum Generation to Start
Selection for Yield of a Self-Fertilizing
Crop

There are theoretical reasons as well as reasons of a practical nature to start,
in a self-fertilizing crop, selection for yield in an early segregating generation.

However, in advanced generations the coefficient of correlation between
related lines belonging to successive generations is, due to the greater number
of homozygous loci, stronger. This implies that the selection is more efficient
in later generations than in earlier generations. From a genetic point of view
it is, therefore, efficient to postpone the starting point of the selection to a
later generation.

This chapter considers the dilemma concerning the optimal generation to
start selection in a self-fertilizing crop.

18.1 Introduction

For self-fertilizing crops it is difficult to arrive at a decision with regard to the
generation in which selection for a trait showing quantitative variation should
be started.

Section 18.2 presents several reasons to start the selection in an early segre-
gating generation. These are either of a theoretical or a practical nature. How-
ever, the coefficient of correlation with regard to the considered trait between
related lines belonging to successive generations is, due to the greater number
of homozygous loci, stronger in later generations. This suggests that selec-
tion in later generations is more efficient. From a genetic point of view it is,
therefore, efficient to postpone the starting point of the selection to a later
generation. Section 18.3 considers the pros-and-cons of starting selection for
yield in later generations.

Example 18.1 describes an experiment allowing verification of opinions with
regard to the question in which generation selection for a trait with quantita-
tive variation should start.

Example 18.1 Whan, Knight and Rathjen (1982) observed grain yield of
wheat lines representing the F3, F4, F5 and F6 populations obtained from two
initial crosses. The lines were developed in the absence of selection, i.e. by
‘random selection’. This allows calculation cf the response to selection that
would have been realized when starting the selection in a certain generation.
When measuring the response to the selection, the level of heterozygosity
did not play a role because the yield of the plant material obtained after
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selection (population P′
t+1, Section 11.1) was compared to the yield of the

lines retained by random selection (population Pt+1). By using remnant seed,
all lines of all populations were tested both in the same and in successive
seasons and both at the same and at different locations.

The result of the simulated selection was established:

1. In the same growing season and at the same location, i.e. at the conditions
prevailing at selection;

2. In the same season but at a different location and
3. At the same location but in a different season.

Response to selection in the same season and at the same location

The response to selection among lines derived from plants of the F2, the F3 or
the F4 population was favourable. Offspring of F3 lines in generations F4, F5

and F6 showed progressive inbreeding depression. The response to selection
among F3 lines, when selecting on the basis of the average grain yield of
the descending F4 lines (progeny testing), was higher than the response to
selection among F3 lines, when selecting on the basis of the yield of the
F3-lines per se. The latter selection was not very efficient.

Response to selection in the same season but at a different location

When evaluated at a different location, the response to selection was satis-
fying for only one of the two initial crosses. The response to selection of F3

lines, when selecting on the basis of progeny testing, did not surpass anymore
the response to selection with regard to the yield of the lines per se. Line ×
location interaction was clearly present.

Response to selection at the same location but in a different season

When evaluated in a different year the response to selection was very low.
Apparently large effects of line × year interaction applied. The response to
line selection in generations F3, F4 or F5 did not show a clear trend.

A conclusion with regard to the optimum generation to start selection
could not be drawn. The important effects of line × year and line × location
interaction showed, however, that the selection should be based on tests
across different macro-environments.

18.2 Reasons to Start Selection for Yield in an Early Generation

Negative effects of line × year interaction on the response to selection with
regard to a trait with quantitative variation (Example 18.1) can be reduced by
evaluating the candidates for several successive seasons. As the latter tends to
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cause a delay in the release of a new variety one may start the selection in an
earlier generation. This reason for an early start of selection is of a practical
nature. It was suggested by Whan, Knight and Rathjen (1982). (Alternatively
one may apply breeding techniques reducing the time required to attain com-
plete homozygosity. Such techniques, e.g. single-seed descent (Section 6.1) or
doubling the chromosome number of haploid plants (Section 3.1), tend to be
applied more and more often).

Theoretical considerations as well, may induce breeders to start selection
in an early generation. Here the views developed by Shebeski (1970) are pre-
sented. Shebeski tried to explain why a spectacular breakthrough with regard
to yield is attained so rarely. In his view it is caused by either too small a
population size or by the inability of the breeder to identify plants or lines
with a superior genotype. He elaborated the following reasoning.

Yield is a trait affected by many loci. Each chromosome arm may be
assumed to contain at least one relevant locus. Then grain yield of bread
wheat is controlled by at least 42 more-or-less independently segregating
loci (Chapter 1). If two wheat varieties, which have a different homozygous
genotype with regard to 25 of such loci, are crossed, the probability that a
plant of the F2 generation has genotype BB or Bb for each of the 25 loci
amounts to

( 3
4 )25 = 0.00075

Thus it is expected that 1 out of 1329 plants of the F2 has the complex
genotype B1 · B2 · . . . B25·, where · indicates the presence – at the considered
locus – of either allele b or B. The probability that a plant of the F2 generation
has a different genotype is 0.99925.

The probability that a plant has genotype BB or Bb for each of the 25 loci
amounts in the F3 to

( 5
8 )25 = 0.0000079

Then 1 out of 126,765 plants of the F3 is expected to have genotype B1 ·
B2 · . . . B25·. In the F4 this expected relative frequency amounts to 1 out of
1,765,781 plants!

Apparently the probability that a plant has a genotype capable of produc-
ing in a later generation a plant with the best possible complex genotype
B1B1B2B2 . . . B25B25, is highest in the F2 generation.

This theoretical consideration suggests to start selection of plants or lines
capable of generating the best possible genotype as early as possible, i.e. in
generation F2 and F3, respectively. Example 18.2 illustrates that it is difficult
to realize this goal in a practical situation. It shows the inefficiency of mass
selection for yield considered in Section 14.2.

Example 18.2 Shebeski (1970) reported that each of four breeders
selected, apparently visually, in each of 11 F2 populations of wheat, each
of which consisted of about 10,000 plants, the 10 best plants. The 440 F3
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lines descending from the 4×11×10 = 440 selected F2 plants were separately
tested adjacent to standard plots containing the offspring of plants selected
at random from the corresponding F2 population. About 50% of the F3 lines
yielded better than the corresponding standard.

Apparently the highest-yielding plants in the F2 populations were rarely
plants with a superior genotypic value. Selection of individual, possibly
highly heterozygous, plants of an F2 population is then in vain.

Shebeski (1970) continued his reasoning as follows. Assume that the breeder
succeeds in retaining, possibly together with other plants of the F2 generation,
a plant of the F2 with the complex genotype B1 · B2 · . . . B25·. This plant is
expected have genotype BB at 25 × 1/3 ≈ 8 of the 25 considered loci and
genotype Bb at the other 17 loci. The probability that a plant of population
F2 has such a complex genotype is, in fact, equal to

25!
0!17!8!

(
1
4

)0 (2
4

)17 (1
4

)8

=
(

25
17

)(
1
2

)17 (1
4

)8

= 0.0001259

This means that one out of 7943 plants may be expected to have this complex
genotype. The genotypic composition of the F3 line descending from it, is equal
to the genotypic composition of an F2 population segregating for 17 unlinked
loci. The probability that a plant, belonging to this F3 line, has genotype
B· for each of the 17 loci for which the F2 parent plant had a heterozygous
genotype, amounts to

( 3
4 )17 = 0.0075

Thus 1 out of 133 plants of the considered F3 line is expected to have a
genotype capable of producing in a later generation a plant with complex
genotype B1B1B2B2 . . . B25B25.

In the absence of selection among the plants in the F2 population, it is
expected that one out 7,943 F3 lines will descend from an F2 plant with the
considered complex genotype. When each F3 line would consist of 133 plants
it is, in the absence of selection, expected that one F4 line will descend from a
plant of the F3 generation with genotype BB for eight loci and genotype B·
for the other 17 loci. As the efficiency of mass selection for yield within the
F3 must be expected to be very low, each of the best F3 lines will give rise to
many F4 lines to be tested.

This reasoning suggests extensive testing, associated with selection, in the
early segregating generations. Sneep (1977) supported Shebeski’s plea. It is in
contrast to the conventional approach in cereal breeding.

A main weakness of conventional breeding is that it does not rectify the
error arising from not selecting in the F2, F3 or F4 population at least one
plant with genotype B· for all relevant loci. This shortcoming can be adjusted
by intercrossing in later generations (Section 9.3).
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18.3 Reasons to Start Selection for Yield
in an Advanced Generation

Plants belonging to an early segregating generation of a self-fertilizing crop
vary with regard to the number of loci, affecting yield, with a heterozygous
genotype. If a high number of loci with a heterozygous genotype is associated
with a high genotypic value for the complex genotype, and consequently with
a high phenotypic value, selection in an early generation implies preferential
selection of highly heterozygous plants or lines. The genotypes of the off-
spring obtained from the selected candidates will be more homozygous than
the selected candidates themselves. The performance of the offspring may
then be disappointing. The coefficient of correlation, across lines, between the
performance of a line and the performance of its offspring is, consequently,
expected to be lower in an early segregating generation than in an advanced
generation. The efficiency of selection in an advanced generations tends thus
to be higher. (The higher efficiency of selection in the case of identical was
already emphasized in Section 6.1.)

Additionally, the quantity of seed available per candidate may be larger
in the more advanced generations. The amount of seed representing an F3

line depends on the amount of seed produced by the parental F2 plant. It is
less than the amount of seed representing the corresponding F2-derived F4

line. In its turn the latter amount is less then the amount of seed available
when evaluating a pure line. Monoculture performance (Section 15.1) is thus
better evaluated in a more advanced generation. The genotypic values of the
candidates may then be estimated more accurately and with a lower bias than
in earlier generations.

The above reasoning suggests postponing extensive testing, associated
with selection, to advanced generations. This is supported by Example 18.3,
Table 3(a), but the described experiment also teaches, once more, how dis-
turbing effects of genotype × macro-environment interaction may be.

Example 18.3 Whan, Rathjen and Knight (1981) observed grain yield
of wheat lines representing the F3,F4,F5 and F6 populations of two ini-
tial crosses. The lines were developed in the absence of selection (see also
Example 18.1).

In 1975 F3 lines and their corresponding F2-derived F4 lines were tested
in Roseworthy by means of two-row plots, 2 m long. Moving mean adjustment
of the data, involving 14 contiguous plots, was applied. In 1976 the same lines
as well as F5 and F6 lines were tested, both in Roseworthy and in Mortlock,
by means of four-row plots, 2.5 m long. The data were adjusted on the basis
of the mean across two contiguous standard plots.

Table 18.1(a) shows that the coefficient of correlation, across lines,
between the grain yield of a line in generation t (Ft line) and the mean grain
yield of the corresponding Ft−1-derived Ft+1 lines was higher as t was higher.
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The coefficient of correlation between the grain yield of a line in genera-
tion t and the mean grain yield of the corresponding Ft−1-derived Ft+k lines
k generations later was for k = 1 (Table 18.1(a)) higher than for k = 2 or 3
(Table 18.1(b)). The coefficient of correlation tended to be higher for higher
values for t. At k = 3 some correlations were not significant.

Table 18.1 Coefficients of correlation, across lines, concerning grain yield of related
wheat lines evaluated in different generations. Data obtained in 1976, in Roseworthy
and Mortlock (source: Whan, Rathjen and Knight, 1981)

Generations Roseworthy Mortlock Pooled

(a) F3 − F4 0.59 0.44 0.51

F4 − F5 0.62 0.57 0.68

F5 − F6 0.69 0.75 0.78

(b) F3 − F5 0.38 0.28 0.39

F4 − F6 0.34 0.49 0.42

F3 − F6 0.25 0.28 0.29

(c) F4 − F5 0.61 0.56 0.62

F5 − F6 0.46 0.76 0.63

F4 − F6 0.28 0.53 0.42

(a) The coefficient of correlation between a line and its offspring one

generation later.

(b) The coefficient of correlation between a line and its offspring two

or three generations later.

(c) The coefficient of correlation between an F2-derived F4 or F5 line

and its offspring one or two generations later.

The separate lines were tested by means of non-replicated plots. This
was expected to give rise to relatively low coefficients of correlation. Thus the
coefficient of correlation between the mean, per F2 plant, across the F2-derived
F4 or F5 lines and the mean across the corresponding F2-derived F5 or F6 lines
was also estimated. Table 18.1(c) shows that in this way higher coefficients of
correlation were obtained; compare e.g. rF4,F5 = 0.62 to rF3,F5 = 0.39.

The coefficient of correlation, across lines, between 1976 grain yield in
Roseworthy and in Mortlock was rather low (Table 18.2). When considering
the same plant material, the correlation was relatively high for F3-derived
F4 lines and for F4-derived F5 lines.

Table 18.2 Coefficients of correlation concerning grain yield of related wheat lines in
Roseworthy and Mortlock. Data obtained in 1976 (source: Whan, Rathjen and Knight,
1981)

Mortlock

Same material F4 F5 F6

Roseworthy F3 0.19 0.26 0.21 0.24
F4 0.42 0.24 0.34 0.17
F5 0.54 0.34 0.45

F4 0.36 0.29 0.21

F5 0.28 0.19
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Table 18.3 Coefficients of correlation concerning grain yield, in

different years and/or locations, of related wheat lines and their off-

spring. Data obtained in 1975 in Roseworthy and in 1976 in Rosewor-

thy and Mortlock (source: Whan, Rathjen and Knight, 1981)

1976

Roseworthy Mortlock

F4 F5 F6 F4 F5 F6

Roseworthy, 1975 F3 0.12 0.00 0.16 0.18 0.00 0.03

F4 0.12 −0.13 0.23 0.21 0.05 0.11

The coefficient of correlation between the 1975 yield and the 1976 grain
yield in Roseworthy or in Mortlock was also estimated. Table 18.3 shows
that these correlations were very low. Apparently the effects of line × year
interaction were very large. This was already noted in Example 18.1, sub 3.

The coefficient of correlation, across the lines, between the grain yield of
an F3 line, or the mean grain yield of F2-derived F4 lines, and the mean grain
yield of the corresponding F2-derived F5-lines (Table 18.3: r1975R,1976R =
0.00 and −0.13, respectively). This may be due to using in 1975 and 1976
different test and adjustment procedures.

In this experiment the coefficient of correlation between different gener-
ations was more strongly reduced by line × year interaction than by line ×
location interaction (compare Table 18.2 to Table 18.3). It is tentatively con-
cluded that the coefficient of correlation was more strongly decreased by line
× year or line × location interaction than by a change in the heterozygosity
(compare Tables 18.2 and 18.3 to Table 18.1).

Shebeski (1970) evaluated grain yield of F3 lines of wheat by means of
750 plants per line. In order to reduce the effect of allocompetition, a large
interplot distance (60 cm) was applied and a standard variety was grown
adjacent to each line. Shebeski estimated the coefficient of correlation, across
the lines, between the grain yield of an F3 line and the grain yield of the
corresponding F2-derived F5 line to be as high as 0.85.

Early in this section it was explained why it is difficult in an early segre-
gating generation to identify genotypes capable of producing, in later gener-
ations, homozygous lines with superior monoculture performance. Thus it is
often decided to delay intense selection for yield until pure lines are available.
Pure lines can be developed

1. by conventional inbreeding, mostly continued selfing;
2. by application of the single seeddescentmethod (SSD-method; Section 7.1) or
3. by doubling the number of chromosomes of haploid plants (DH-method;

Section 3.1). The DH-method yields pure lines which are the products of
recombination during one generation, whereas selfing and the SSD-method
yield pure lines which are the product of recombination during several
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generations of sexual reproduction. Example 18.4 presents a comparison,
on the basis of the performances of the obtained lines, between the three
procedures for developing (pure) lines.

Example 18.4 Powell, Caligari and Thomas (1986) compared 92 F4 lines
tracing back to 20 randomly chosen F2 plants, 54 random F4-derived F7 lines
(obtained by application of the SSD-method) and 18 F1-derived DH-lines.
The initial cross involved the spring barley varieties Universe and Mazurka.
The 164 lines were tested in each of two randomized complete blocks. Each
single-row plot consisted of up to 10 seeds, sown at 5 cm spacings, with a
wheat guard plant at each end. The rows were spaced 22.5 cm apart. From
each plot five randomly chosen plants were observed.

The mean phenotypic values of the three types of lines differed signifi-
cantly for

• number of grains per ear on the main stem,
• final plant height,
• yield of grain on the main stem and
• thousand grain weight.

For these traits the F4 lines scored higher than the SSD- or the DH-lines.
This could be due to dominance effects in the still heterozygous F4 lines
(such effects would reduce the response to early generation selection). The
DH-lines had a lower value for thousand grain weight than the SSD-lines.
This could be due to epistasis and, if epistasis is present, to linkage.

The three types of lines did not differ significantly for the estimates of
var(GF∞) for the studied traits.

It was concluded that the choice between the use of F4 and DH- or SSD-
lines should be made on non-genetic considerations, such as the cost of each
method. An increase in the frequency of plants with a desirable recombinant
genotype, resulting from early generation selection, is the only condition for
to favour pedigree selection.



Chapter 19
Experimental Designs
for the Evaluation
of Candidate Varieties

Selection for a trait with quantitative variation is often based on a comparison
of the candidates with regard to the trait. The probability of correct selec-
tion is higher as the environmental conditions under which the candidates are
compared are more similar. For this reason breeders always seek trial fields
providing growing conditions as uniform as possible. When knowing the plant-
to-plant or the plot-to-plot trend in the quality of the growing conditions, the
breeder may adjust the phenotypic values observed for the candidates according
to a procedure dedicated to the elimination of the contribution of the trend to
these values (Chapter 14).

Sometimes there is not a gradual trend in the quality of the growing condi-
tions, but a rather sudden, sometimes even clear-cut change. Such a change
may be due to physical properties of the field, e.g. the moisture content in the
presence of a slope, or it may be due to effects of the cultivation regime in the
previous growing season, e.g. cultivation of different crops in different parts
of the trial field, or application of a different crop husbandry in different parts
of the field, even when growing the same crop, e.g. different dates of harvest.
In the situation of a sudden change in the quality of the growing conditions,
the breeder may partition the trial field in different parts, usually called blocks
(Section 8.1), which are assumed to provide uniform growing conditions.

How should a breeder or how should testing authorities compare candidates,
which are evaluated in different blocks, in an unbiased way with regard to their
genotypic values? How should one compare candidates without being disturbed
by the fact that not all of them have been tested under the same conditions?
This problem plays especially a role in the stage of variety testing, when a
correct comparison is of utmost importance.

This chapter introduces experimental designs designed to provide unbiased
comparisons of candidates, possibly candidate varieties, in the case of repli-
cated testing of the candidates by means of incomplete blocks, i.e. by means of
blocks not accommodating all candidates, whereas different blocks provide dif-
ferent growing conditions. Problems concerning the estimation of differences
between candidates and testing their significance are not considered. These
topics belong to a special branch of statistics, i.e. design and analysis of exper-
iments.

Partitioning of the trial field into blocks, allows partitioning of the residual
sum of squares occurring in a completely randomized experiment into the
between-block sum of squares and the residual within-block sum of squares. If
each block contains a plot for each of the t candidates, a so-called randomized

I. Bos and P. Caligari, Selection Methods in Plant Breeding – 2nd Edition, 437–443. 437
c© 2008 Springer.



438 19 Experimental Designs for the Evaluation of Candidate Varieties

complete block design is used. In that case the classification of the data
according to the blocks and the classification according to the candidates are
orthogonal. This allows partitioning of the total sum of squares according to
Pythagoras.

When using a randomized complete block design the residual variance of
the difference between candidate mean values is the same for all pairs of
candidates. This is a property of so-called balanced designs. Because the
candidates are all tested in the same set of r blocks the comparisons of the
candidates are not biased by block effects.

Indeed, comparison of candidates by means of blocks such that each block
accommodates all candidates is very attractive. Blocks providing uniform
growing conditions, including the harvest conditions, allow then unbiased and
accurate comparison of the genotypic values of the candidates.

Often, however, the number of candidates is so large that one may not
anymore assume that a block accommodating all candidates provides uniform
growing conditions. Larger blocks tend to provide less uniform growing condi-
tions than smaller blocks. The residual (within-block) variance (σ2) applying
to individual plots of such blocks tends to be larger than the residual variance
applying to smaller blocks. This means that the residual variance of the dif-
ference of the mean phenotypic values of candidates i and j, both evaluated
in the same r complete blocks, viz.

var(p
i· − p

j·) =
2σ2

r
(19.1)

tends to be large. The power of the test of H0: ‘The genotypic values Gi and
Gj of candidates i and j are equivalent’ is then small.

In order to have a test with a reasonable power, the number of candidates
tested by means of a randomized complete block design should not be too
high. This number depends, of course, on the plot size: the larger the plot
size, the larger the block at a given number of plots per bock. If the actual
value of t, i.e. the number of candidates, is ‘high’, e.g. larger than 15, the
use of incomplete blocks should be considered. In this case each incomplete
block accommodates only k of the t candidates (k < t). The complete set of
all t candidates is then tested by means of a number of incomplete blocks.
The total number of these incomplete blocks, say b, exceeds, of course, r, the
number of replicates.

The use of incomplete blocks may imply that the contrast of the phenotypic
values of candidates i and j, i.e.

p
i· − p

j·

is a biased estimator of the difference of the genotypic values of these candi-
dates.

This is illustrated by the following example. Assume that t = 4 candidates
are tested by means of two incomplete blocks each accommodating b = 3
candidates:
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Block
1 2

Candidate 1: x
2: x x
3: x x
4: x

The expected value of the difference of the mean phenotypic values of can-
didates 2 and 3, i.e. is equal to

E(p
2· − p

3·) = 1
2E(p

21
+ p

22
− p

31
− p

32
)

= 1
2 ([µ + α2 + β1] + [µ + α2 + β2] − [µ + α3 + β1] − [µ + α3 + β2])

= α2 − α3 = G2 − G3

The difference of the mean phenotypic values is thus an unbiased estimate of
the difference of the genotypic values.

The expected value of the difference of the phenotypic values of candidate
1, in block 1, and candidate 4, in block 2, amounts to

[µ + α1 + β1] − [µ + α4 + β2] = [α1 + β1] − [α4 + β2]

The difference of the phenotypic values of candidates 1 and 4 is thus not an
unbiased estimate of the difference of their genotypic values.

An unbiased estimate of the difference G1 − G4 consists of the contrast

(p
11

− p
21

) − (p
42

− p
22

)

This appears as follows

E[(p
11

− p
21

) − (p
42

− p
22

)]

= ([µ + α1 + β1] − [µ + α2 + β1]) − ([µ + α4 + β2] − [µ + α2 + β2])
= (α1 − α2) − (α4 − α2) = G1 − G4

The use of incomplete blocks does, consequently, not exclude unbiased esti-
mation of contrasts of genotypic values, but the accuracy of the unbiased
estimates will vary across the estimators. In this case the experimental design
is called unbalanced. The residual variance of the difference of the pheno-
typic values of candidates tested within the same block(s) will be lower than
the residual variance of the difference of the phenotypic values of candidates
tested in different blocks.

It is self-evident that the residual variances of differences of phenotypic
values of candidates should be as low and as uniform as possible. Therefore,
experimental designs employing incomplete blocks have been developed having
the property that the residual variance of the difference of the phenotypic
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values is equal to a constant value or, depending on the considered pair of
candidates, to one out of a very small number of different values.

The category of experimental designs with one constant value for the
residual variance of the difference of the phenotypic values of candidates for
all pairs of candidates is indicated as balanced incomplete block (BIB)
designs. Experimental designs where the residual variance of the difference
between the phenotypic values of candidates may adopt one out of only two
different values are indicated as partially balanced incomplete blocks
(PBIB). Depending on the considered pair of candidates, the two candidates
occur together in either λ1 blocks or in λ2 blocks. Example 19.1 illustrates an
incomplete block design where the values λ1 = 0 and λ2 = 1 apply.

Example 19.1 Cochran and Cox (1957, p. 453) describe the following
experimental design:

Block
1 2 3 4 5 6 7 8 9

Candidate 1: x x x
2: x x x
3: x x x
4: x x x
5: x x x
6: x x x
7: x x x
8: x x x
9: x x x

The design is specified by the parameters t = 9, k = 3, r = 3 and b = 9.
Candidates 1 and 2 occur only together in block 1 (λ = 1). Candidates 1
and 3 also occur only once together (also in block 1) and so do candidates
2 and 3. Candidates 1 and 4 occur once together (in block 4). Candidates 6
and 8 do not occur together with candidate 1 in the same block. For these
pairs of candidates the value of λ amounts to 0.

The residual variance of the difference between the phenotypic values of two
candidates adopts the lower value if λ2 applies to the pair of candidates and
the higher value if λ1 applies.

The manuals by Cochran and Cox (1957) and Kuehl (2000) are important
sources of information about incomplete block designs. They present references
to balanced and partially balanced experimental designs for combinations of
values for t and k. In order to accommodate a given number of candidates,
which are to be evaluated by means of incomplete blocks consisting of a more-
or-less predetermined size, adaptation of t and/or k may be required. If several
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designs can be used, designs where combinations of incomplete blocks coincide
with replicates are to be preferred. The grouping into complete replications
is handy in the management of an experiment belonging to this category
of so-called resolvable designs. It allows management of large trials on a
replication-by-replication basis.

A special group of BIBs consists of the so-called balanced lattice designs.
These are characterized by special values for t, k and r, viz.

t = 9, 16, 25, 49, 64 or 81

whereas
k =

√
t and r = k + 1

Balanced lattice designs belong to the category of resolvable designs.
One may try to modify the number of candidates into one of the values for

t mentioned before by adding or eliminating one or a few candidates. Another
way-out is the use of a so-called rectangular lattice, where

t = k(k + 1) for k = 3(1)9

These designs are not balanced but may be considered as PBIBs for practical
purposes. Still another solution is provided by the cubic lattices, where

t = k3 for k = 3(1)10 and r = 3 or a multiple of 3

The requirement
r = k + 1

for a balanced lattice may be too demanding. Since the lattice designs are
resolvable, one or more of the replicate groups may be eliminated to get a
partially balanced lattice design. Thus, in practice, smaller values for r are
applied. Designs with r = 2 are called simple lattice; those with r = 3,
triple lattice (Example 19.1 provides a triple lattice design); those with
r = 4, quadruple lattice. Cochran and Cox (1957, pp. 428–38) present
designs for the lattices.

Incomplete block designs intend to reduce the residual variance of the dif-
ference between the mean phenotypic values of two candidates as compared to
its value when using a randomized complete block design. The efficiency of an
incomplete block design relative to using a randomized complete block design
appears from the ratio of the residual variances of the difference between the
mean phenotypic values of two candidates. Example 19.2 deals with a com-
parison of analysis of data according to a lattice design with the analysis
according to a randomized complete block design.

Example 19.2 Mak, Harvey and Berdahl (1978) compared a statistical
analysis of data according to a lattice design with the analysis according to
a randomized complete block design (Example 14.17). The efficiency of data
adjustment was the main subject of the study.
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Analysis of the data according to a lattice design yielded for grain yield
a relative efficiency (RE) of 1.16 and for protein content RE = 1.27. Analysis
of covariance, with the moving mean as covariate, yielded at the complete
block approach for yield, when involving eight neighbours, RE = 1.25 and
for protein content, when involving 10 neighbours, RE = 1.23.

The results suggest that an analysis as a randomized block design, com-
bined with an analysis of covariance using a moving mean as covariate, is a
good substitute if – for the actual value of t – a partially balanced lattice
design cannot be applied.

Kuehl (2000) provides plans for small experiments (t ≤ 11) and gives refer-
ences to plans for other values for t, as well as to computer programmes devel-
oping incomplete block design plans, including so-called alpha designs (α
designs). The latter category of designs were developed by Patterson, Williams
and Hunter (1978). A feature that these designs share with lattice designs is
that combinations of incomplete blocks coincide with replicates. However, this
does not imply that t is a multiple of k.

For k = 4(1)8 and t = 26, for instance, there is no α-design, such that each
block contains the same number of candidates. One should then apply two
block sizes, e.g. two blocks with k1 = 5 and four blocks with k2 = k1 − 1 = 4.
The use of two block sizes, such that k2 = k1−1, is a typical but not necessary
feature of certain α-designs.

Patterson, Williams and Hunter (1978) described the construction of α-
designs starting from s (the number of blocks within a complete replicate), k
and r. The restrictions are

k ≤ s, t ≤ sk and t < 100

The number of replicates is r = 2, 3 or 4. An α-design is called an α(0, 1)-
design if, depending on the considered pair of candidates, the two candidates
occur together in either 0 blocks or in one block. Likewise there are α(0, 1, 2)-
designs.

Alpha designs are most effective if k <
√

t, i.e. if k2 < t. This condition
means for situations with t = ks, that they are most effective if k2 < ks, i.e.
if k < s. When k > s some pairs of candidates occur together in a block in
more than one replicate.

A computer programme generating optimal α-designs for t = 2(1)500 has
been made available by Williams and Talbot (1993).

Note 19.1 describes how plans for incomplete block designs may be
used when designing an incomplete crossing scheme. This is illustrated by
Example 19.3.
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Note 19.1 If it is not feasible to make a complete diallel or factorial cross,
one may consider intercrossing the lines to be studied according to an exper-
imental design using incomplete blocks. Thus, if t maternal genotypes and
b paternal genotypes are to be test crossed, each maternal genotype may
be pollinated by r paternal genotypes and each paternal genotype should
pollinate k maternal genotypes.

Example 19.3 Melchinger (1984) made an incomplete factorial set of
crosses involving t = 11 maternal dent maize lines and b = 11 paternal
flint maize lines. The lines were crossed according to the balanced incom-
plete block design with k = r = 6 given by Cochran and Cox (1957, plan
11.20) as well as Kuehl (2000, Plan 9A.16). Thus paternal line 1 pollinated
the six maternal lines 4, 6, 7, 9, 10 and 11.

When using (in)complete blocks the selected experimental design requires ran-
domization at several stages:

1. The code numbers 1,2,. . . , t are assigned at random to the t candidates.
2. The k entries that, according to the design, are to be evaluated in a certain

(in)complete block are assigned at random to the k plots in the block.
For a resolvable design, where combinations of blocks coincide with a com-
plete replicate, this is followed by:

3. Within each replicate, the s incomplete blocks are assigned to random posi-
tions.
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Stabilität von Doppel- und Dreiweghybriden bei Mais. Z. Pflanzenzüchtg., 91, 246–252.
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Lupton, F.G.H. (1961). Studies in the breeding of self- pollinating cereals. 3. Further studies

in cross prediction. Euphytica, 10, 209–224.
Lush, J.L. (1945). Animal Breeding Plans, Iowa State College Press.



452 References

Lynch, M. and Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. Sinnauer
Associates.

MacArthur, J.W. and Butler, L. (1938). Size inheritance and geometric growth processes in
the tomato fruit. Genetics, 23, 253–268.

Mac Key, J. (1976). Genetic and evolutionary principles of heterosis. p. 17–33. Heterosis in
plant breeding. Proc. 7th Congr. Eucarpia, Budapest.

Mak, C., Harvey, B.L. and Berdahl, J.D. (1978). An evaluation of control plots and moving
means for error control in barley nurseries. Crop Sci., 18, 870–873.

Manneh, B. (2004). Genetic, physiological and modelling approaches towards tolerance to
salinity and low nitrogen supply in rice (Oryza sativa L.), PhD Thesis, Wageningen
University.

Mather, K. (1949). Biometrical genetics. Methuen, London.
Mather, K. (1973). Genetical Structure of Populations. Chapman, London.
Mather, K. and Caligari, P.D.S. (1981). Competitive interactions in Drosophila

melanogaster. II. Measurement of competition. Heredity, 46, 239–254.
Mather, K. and Caligari, P.D.S. (1983). Pressure and response in competitive interactions.

Heredity, 51, 435–454.
Mather, K. and Jinks, J.L. (1977). Introduction to Biometrical Genetics, Chapman, London.
Mather, K. and Jinks, J.L. (1982). Biometrical Genetics, 3rd edn, Chapman, London.
McGinnes, R.C. and Shebeski, L.H. (1968). The reliability of single plant selection for

yield in F2, in Proceedings of the International Wheat Genetics Symposium, Canberra
(eds. K.W. Finlay and K.W. Shepherd), Butterworths, London, pp. 410–415.

McVetty, P.B.E. and Evans, L.E. (1980). Breeding methodology in wheat. II. Productivity,
harvest index, and height measured on F2 spaced plants for yield selection in spring
wheat. Crop Sci., 20, 587–589.

Melchinger, A.E. (1984). Analysis of incomplete factorial mating designs. Vortr.
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Index

Ability
competitive 384
general combining 188, 280
specific combining 280

Additivity 140
across loci 5, 143

Adjustment 348
over- 366
moving mean 349, 359, 367

Allele(s) 2
multiple 15, 152

Allogamous crops 9
Analysis, regression 250
Assessment, visual 359
Aureole 352
Autogamous crops 35
Autotetraploid 28, 52, 93

Background, genetic 139
Balance, nearest neighbour 401
Bisexual 69
Block(s) 130

balanced incomplete 440
incomplete 438
partially balanced incomplete

440
randomized complete 438

Breeding, ear-to-row 100
Bulk

breeding method 82
crossing 13

Canalization 137
Candidate 335
Certation 81
Chiasma interference 27
Cleistogamy 73
Coefficient

correlation 235, 311
inbreeding 38, 39
regression 250, 330
selection 78

Coheritability 297
Coincidence, coefficient of 27
Combining ability

general 188, 280
specific 280

Competition 131, 381
allo- 382
intergenotypic 382
intragenotypic 382
iso- 382

Composition
genotypic 11
haplotypic 11
Hardy-Weinberg (HW) 12

Conditions
macro-environmental 133
micro-environmental 136

Covariance, additive genetic 315
Correlated selection differential 228
Correlation

additive genetic 296
environmental 293
genetic 293
intraclass 249
phenotypic 291

Cross(es)
bulk 13
composite 74
diallel (set of) 105, 271
partial diallel 278
poly- 105, 198
(repeated) back- 63
test- 106
top- 169

Decision rule 335
Density, plant 393
Design(s)

alpha (α) 442
balanced 438

Deviation
dominance 140
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Deviation (Continued)
environmental 135
standard 124

Depression, inbreeding 184
Difference, critical 337
Differential, correlated selection 228
Dimorphy, sex 69
Dioecy 69
Distance, map 27
Distribution

binomial probability 12
hypergeometric probability 29
normal 124

Dominance 140
ambidirectional 139
complete 140
degree of 140
incomplete 140
unidirectional 139

Donor line 63
Double reduction 28
Drag, linkage 63
Drift, random (genetic) 113
Duplex 29

Ear-to-row breeding 100
Effect

average 153
fixed 281
gene- 153
genotype- 143
maternal 196, 214
random 281
scale 137

Effective
(genotype) frequency 73, 80
number 116
(population) size 10, 114, 116

Efficiency, relative selection 296
Environment 4
Environmental

deviation 135
index 326
variance 136
variation 138, 332

Epistasis 5, 143
Equilibrium

gametic phase 16
Hardy-Weinberg (HW) 12
linkage 16
stable 85

Evaluation
plot 340
single-plant 341

Family
full sib (FS) 36
half sib (HS) 90

Fertility index 364
Fitness

frequency-dependent 85
relative 73, 78

Fixation 107
index 38
probability of 109

Frequency
allele 11
effective (genotype) 73, 80
gene 12
genotype 11
haplotype 23
optimum allele 178

Frequency-dependence 85, 151
Function, mapping 28

Geitonogamy 9
Gene(s), see also Allele(s)

major 2, 120
Mendelian 121
minor 3
plasma- 213
poly- 2, 123

Genetic(s)
ecological population 84
population 1
quantitative 2
variance 136

Genotype, complex 3
Genotype× environment interaction

135
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Germline 86
Grid(s)

fixed 342
moving 342

Growth, juvenile 384
Gynodioecy 70

Half sib (HS) family 90
Haplotype 11
Hardy-Weinberg (HW) genotypic

composition 12
Heritability

in standard units 253
narrow sense 235
realized 243
wide/broad sense 235

Hermaphroditism 69
Heterogeneity, soil 414
Heterosis 141, 184

recombinative 189
Heterostyly 62
Hybrid

double-cross 191, 192
single-cross 191, 192
threeway-cross 191, 192
vigour 85, 185

Ideotype 190
Idiotype 63
Immigration 86
Inbreeding 33

coefficient 38, 39
Incompatibility 62

heteromorphic 62
homomorphic 62

Index
base 320
Elston 320
environmental 326
fertility 364
fixation 38
optimum 320
panmictic 38
soil heterogeneity 415

Information 419

Intensity, selection 231
Interaction

genotype× environment 135,
326

inter-locus 5, 143
intra-locus 140
non-allelic 5, 143

Interval mapping 304
Introgression 86
Isogenic 63
Isomeric loci 148

Lattice
balanced 441
cubic 441
quadruple 441
rectangular 441
simple 441
triple 441

Line
donor 63
germ- 86
maintainer 63
male sterile inbred 35, 63

Linkage
drag 63
equilibrium 16

Loci/Locus
isomeric 148
polygenic 120
quantitative trait (QT) 120, 301

Maintainer line 63
Maintenance, vegetative 105
Male sterile inbred line 35, 63
Marker, molecular 300
Maternal effect 196, 214
Mating

assortative 9, 59
disassortative 59
full sib (FS) 36
half sib (HS) 99
parent-offspring (PO) 36
random 8

Matrix, transition 111
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Mean, moving 349
Method

bulk breeding 82
doubled haploid (DH) 34
single seed descent (SSD) 82

Metric, F∞- 139
Midparent value 140
Mixture 384
Model

deterministic 10
stochastic 10

Monoculture 384
Monoecy 69
Mutation(s), recurrent 86

Nearest neighbour balance 401
Non-allelic interaction 5, 143
Nulliplex 29
Number, effective 116

Outbreeding 33
Over-correction 351
Overdominance 140

pseudo- 84, 140

Panmictic index 38
Panmixis 8
Parent, recurrent 63
Penetrance 132
Phase

coupling 19
repulsion 19

Phenotypic variance 136
Pleiotropy 291
Plant(s), standard 354
Plant density 393
Plot(s)

standard 359
sub- 414
test 410

Polygenic loci 120
Polymorphism, genetic 85
Population

closed 1
Mendelian 1

panmictic 8
sub- 9
super- 9
tester 169

Precision 419
Prediction, cross 266
Procedure

indifference zone 425
remnant seed 100
statistical selection 425
subset selection 427

Qualitative variation 2, 119
Quantitative

genetic theory 2, 121
trait loci (QTL) 120, 301
variation 2, 119

Randomization 130
Range 124
Recurrent parent 63
Reduction, double 28
Repeatability 249
Replication 130, 405
Reproduction

identical 129
mode of 1
non-identical 129

Scale effect 137
Scaling test 181
Selection

artificial 80, 87
coefficient 78
combined 78, 355
complete 81
correct 424
correlated response to 290, 390
differential 225
directional 238
direct response to 390
disruptive 86
efficiency 237, 295, 421
family 89, 355
fixed grid 342



Index 461

frequency-dependent 81
full sib (FS) family 90, 94
gametophytic 81
grid 344
half sib (HS) family 98
honeycomb 353
incomplete 80
independent-culling-levels 322
index 318
indirect 228, 242, 294
intensity 231
line 90, 91, 355
marker-assisted 300
mass 91, 341
modified ear-to-row 356
moving grid 342
multiple 289
natural 80
pedigree 90
reciprocal recurrent 258, 263
recurrent 169, 263
response to 225
sib 355
simple recurrent 282
simultaneous 290
stabilizing 60
tandem 289
truncation 230, 322
visual 290, 359

Self-fertilization 35
Simplex 29
Single seed descent 82
Size, effective (population) 10, 114,

116
Stability parameter 330
Standardization 230
Statistics 1
Sterility

cytoplasmic male 71
genic male 73

Test, scaling 181
Testing

early 169
non-replicated 247, 406

progeny 105, 257
replicated 130, 247, 356, 406

Theory, probability 1
quantitative genetic 1

Trait
auxiliary 295
target 295

Transformation
logarithmic 127
square root 127

Transgression 185
Trial, uniformity 365
Triplex 29

Value
additive genotypic 151, 152, 154
breeding 152, 154, 169
environmental 330
genotypic 133
midparent 140
phenotypic 2, 131
recombination 17

Variable
continuous random 4
discrete random 3

Variance
additive genetic 152, 160
dominance 155
environmental 136
genetic 136
interaction 152
phenotypic 136

Variation
coefficient of 136
continuous 119
environmental 136
qualitative 2, 119
quantitative 1, 119
random 1, 107

Variety
hybrid 191
synthetic 197

Vegetative maintenance 105
Vigour, hybrid 85, 185
Vitality 78
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