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Preface

The second Workshop on “Quality and Reliability of Large-Eddy Simulations”,
QLES2009, was held at the University of Pisa from September 9 to September 11,
2009. Its predecessor, QLES2007, was organized in 2007 in Leuven (Belgium). The
focus of QLES2009 was on issues related to predicting, assessing and assuring the
quality of LES. The development of computational resources and the correspond-
ing tendency to apply LES-methodologies to turbulent flow problems of significant
complexity, such as arise in various applications in technology and in many natural
flows, makes the issue of assessing and optimizing the quality of LES predictions
a timely challenge. Different error sources are present in LES, which are mainly
related to physical modeling (especially as regards subgrid scales), to numerical dis-
cretization techniques, to boundary-condition treatment, and to grid resolution and
design. These errors may interact in a complex non-linear manner, eventually leading
to unpredictable and unexpected effects on LES results.

To establish the credibility of LES as a tool for innovation in industrial flow appli-
cations and for the study of complex-physics problems, clear standards and criteria
to assess and predict the quality and the reliability of the simulation results should be
devised. To this aim, an understanding of the non-linear accumulation and interac-
tion of the different errors arising in large-eddy simulations, and of their dependence
on the different simulation parameters, is required. This is also crucial for the de-
velopment of methodologies and techniques aimed at controlling the different errors
and, hence, at optimizing the quality of LES results.

The main goal of QLES2009 was to enhance the knowledge on error sources and
on their interaction in LES and to devise criteria for the prediction and optimization
of simulation quality, by bringing together mathematicians, physicists and engineers
and providing a platform specifically addressing these aspects for LES.

In total 64 participants from 12 countries registered for the workshop. The ma-
jority of participants was from academia and research institutes. In addition, several
companies and consultancy agencies were represented.

QLES2009 gathered 7 invited lectures, held by speakers from different scientific
fields: Johan Meyers (Katholieke Universiteit Leuven, Belgium), Thierry Poinsot
(Institut de Mécanique des Fluides de Toulouse, CNRS, France), Philippe Spalart
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(Boeing Commercial Airplanes, USA), Marc Parlange and Chad Higgins (Ecole
Polythecnique Fédérale de Lausanne, Switzerland), Andreas M. Kempf (Imperial
College London, United Kingdom), Lars Davidson (Chalmers University, Sweden),
Jean-Luc Guermond (Texas A&M University, USA).

Johan Meyers presented an overview of recent developments of the “error-
landscape” methodology, aimed at investigating the quality and reliability of large-
eddy simulations by constructing a full response surface of the LES error behavior.
Thierry Poinsot illustrated the application of LES to the simulation of complex re-
acting flows and discussed issues related to the reliability and the repeatability of
LES results for such applications. Philippe Spalart drew the attention to a careful
grid generation and optimization as a key issue to obtain accurate and reliable LES
predictions for external flows. Marc Parlange and Chad Higgins described recent a-
priori tests of models for subgrid-scale processes in stable and unstable atmospheric
boundary-layers, carried out by using data from field experiments. Jean-Luc Guer-
mond reviewed the mathematical properties of the 3D incompressible Navier-Stokes
equations and their relation to LES. He also illustrated how the notion of suitable
weak solutions can be used to devise LES closure models. Andreas Kempf discussed
quality issues and the possibility of using quality indicators and error-charts in com-
bustion LES, for which the presence of a wide range of chemical and mixing scales
makes the assessment of simulation quality and reliability even more challenging
than for “fluid-flow only” LES. Finally, Lars Davidson addressed the issue of how to
estimate the resolution of LES simulations of recirculating flows.

Next to the invited lectures, 33 contributed presentations were selected by a Sci-
entific Committee of experts.

From the presentations and the discussions held during the workshop, it was
clear that the tendency to apply LES to various, very complex, industrial and en-
vironmental problems, already observed during the previous QLES workshop, fur-
ther enhanced in the last two years. Several examples of such complex applications,
comprising atmospheric and geophysical problems, particle-laden flows, combus-
tion, aeronautical engines or conductive fluids and plasmas, were shown during the
workshop, and LES was generally found to be able to give satisfactory results. It
was also made clear, however, that this requires a profound knowledge of the prob-
lem and a careful combination of physical modeling, numerics, grid resolution and
quality. Although SGS modeling is still felt as the most critical issue in LES, several
contributions were given at the workshop on the sensitivity of the quality of LES
results also to numerical methods, boundary conditions treatment and grid resolu-
tion. Recent developments and applications of methodologies aimed at understand-
ing, predicting and minimizing error dynamics in LES were also presented.

In the spirit of the QLES series, this workshop gave a stimulating contribution
to the development of higher standards for the assurance of quality and reliability
of large-eddy simulations. Critical and open issues remain in order to increase the
accessibility of LES to non-specialist users. As also highlighted at QLES2007, the
development of a fully consistent theory on errors in LES, comprising the defini-
tion of mathematically sound quantitative error measurements and the simulation or
modeling of error dynamics, is certainly needed. A related crucial issue is the sensi-
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tivity of the LES results to different parameters. This sensitivity analysis is compli-
cated for LES by some peculiar features: for instance, grid independence can only
be reached in the DNS limit and even the complete repeatability of a LES simula-
tion may be questionable due to round-off errors, which may be a source of random
disturbances, especially in massively parallel simulations. However, from a practical
viewpoint, the main difficulty is that it is not affordable to carry out a large number
of LES simulations, especially for complex applications, due to the large computa-
tional costs of each simulation. Thus, the development of tools aimed at estimating
LES sensitivity from a limited number of simulations is required to obtain significant
achievements in this direction. As previously mentioned, progress in these fields has
been reported at QLES2009, but there is still room for development.

The present book contains the written contributions to QLES2009 and is divided
in three parts, which reflect the main topics addressed at the workshop: (i) SGS
modeling and discretization errors; (ii) Assessment and reduction of computational
errors; (iii) Mathematical analysis and foundation for SGS modeling.

Financial support was provided, on a European scale, by COST Action P20
‘LESAID’ (LES-Advanced Industrial Design) and ERCOFTAC (European Research
Community on Flow, Turbulence and Combustion), and, locally, by the University
of Pisa. This support was essential for the organization of this event and is gratefully
acknowledged.

Finally, we gratefully acknowledge the help of the members of the scientific
committee: N.A. Adams (Technische Universität München, Germany), V. Armenio
(Università di Trieste, Italy), A. Boguslawski (Politechnika Czestochowska, Poland),
D. Carati (Université Libre de Bruxelles, Belgium), D. Drikakis (Cranfield Univer-
sity, United Kingdom), J. Fröhlich (Technical University of Dresden, Germany),
C. Fureby (FOI, and Chalmers, Sweden), J.G.M. Kuerten (Eindhoven University
of Technology, The Netherlands), A. Soldati (Università di Udine, Italy) and G. S.
Winckelmans (Université Catholique de Louvain, Belgium).

Pisa, Maria-Vittoria Salvetti
February 2010 Bernard J. Geurts

Johan Meyers
Pierre Sagaut
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Buonarroti 1/c, I-56127, Pisa, Italy

Christophe Bogey
LMFA, UMR CNRS 5509, Ecole
Centrale de Lyon, 69134 Ecully, France

Andrzej Boguslawski
Institute of Thermal Machinery,
Czestochowa University of Technol-
ogy, Al. Armii Krajowej 21, 42-200
Czestochowa, Poland

Fred C. Bosveld
Royal Netherlands Meteorolog-
ical Institute KNMI, De Bilt,
The Netherlands

Michael Breuer
Helmut-Schmidt-Universität Hamburg,
22043 Hamburg, Germany

Bryan A. Burkholder
School of Meteorology, University of
Oklahoma, 120 David L. Boren Blvd.,
Norman, OK, USA 73072

Daniele Carati
Statistical and Plasma Physics Labo-
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Roma 29, 81031 Aversa (CE), Italy

Jordan A. Denev
Institut für Technische Chemie und
Polymerchemie, Universität Karlsruhe,
76128 Karlsruhe, Germany

Alain Dervieux
INRIA, 2004 Route des lucioles, BP 93,
06902 Sophia Antipolis, France

Giuliano De Stefano
Dip. Ingegneria Aerospaziale e Mecca-
nica, Seconda Università di Napoli, Via
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Modena, Italy

Suresh Menon
School of Aerospace Engineering,
Georgia Institute of Technology, 270
Ferst Drive, Atlanta, GA, 30332-0150,
USA

F. Merz
Max-Planck-Institut für Plasmaphysik,
Boltzmannstr. 2, D-85748 Garching,
Germany

Johan Meyers
Department of Mechanical Engineer-
ing, Katholieke Universiteit Leuven,
Celestijnenlaan 300A, B3001 Leuven,
Belgium

Pablo Mininni
National Center for Atmospheric
Research Boulder, Colorado, USA;
Departamento de Fı́sica, Facultad
de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, Buenos
Aires, Argentina

Arnold F. Moene
Meteorology and Air Quality Group,
Wageningen University, PO Box 47,
Wageningen, The Netherlands

P. Morel
Statistical and Plasma Physics Labo-
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Part I

SGS modeling and discretization errors



Error-landscape assessment of large-eddy simulations:
a review

Johan Meyers

Department of Mechanical Engineering, Katholieke Universiteit Leuven Celestijnenlaan
300A, B3001 Leuven, Belgium. johan.meyers@mech.kuleuven.be

Summary. A review is presented of the error-landscape methodology. This approach eval-
uates the error-response surface of large-eddy simulations (LES) to essential model and nu-
merical parameters by a systematic variation of these parameters. Using an error landscape
constructed for LES of decaying homogeneous isotropic turbulence, it is shown that the deter-
mination of LES quality based on one error measure alone, can lead to misleading results, re-
lated to underlying error-balancing mechanisms. This problem can be avoided by considering
a range of errors simultaneously, emphasizing different scales in the solution. Subsequently,
the error-landscape method is further illustrated by comparing different numerical discretiza-
tions for Smagorinsky LES. Finally, a more complex case, i.e. a high (infinite) Reynolds num-
ber boundary layer, is considered.

Key words: Quality, reliability, large-eddy simulation, homogeneous isotropic turbulence,
atmospheric boundary layer, Smagorinsky model

1 Introduction

Several LES (large-eddy simulation) studies have been published in the past, demon-
strating the high level of accuracy with which turbulent flow predictions can be
attained, without having to resort to the excessive requirements on computational
resources imposed by direct numerical simulations. However, the setup and use of
large-eddy simulations requires a profound knowledge of fluid mechanics, numeri-
cal techniques, and the application under consideration. The susceptibility of LES to
errors in modeling, in numerics, and in the treatment of boundary conditions, can be
quite large and the nonlinear accumulation of these different errors over time, often
leads to intricate and unpredictable situations. Therefore, error-behavior of large-
eddy simulation, and the assurance of quality in LES has recently gained consider-
able attention [1, 2, 3, 4]. These studies aim to formulate a rigorous standard for the
assessment of accuracy and reliability in LES.

One of the tracks explored for the study of quality and reliability of large-eddy
simulations, is based on a systematic variation of influencing parameters (e.g., model
constants and grid resolution), such that a full response surface of the LES error

M.V. Salvetti et al. (eds.), Quality and Reliability of Large-Eddy Simulations II,
ERCOFTAC Series 16, DOI 10.1007/978-94-007-0231-8 1,
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behavior is obtained [5, 6, 2, 7]. The current paper gives a review of this ‘error-
landscape’ methodology. First of all, it is demonstrated that the evaluation of LES
quality is best performed using a series of flow properties that are sensitive to various
scales of the flow. Examples are given where a careless selection of error definitions
may lead to an incorrect evaluation of simulation quality.

The error-landscape methodology can also facilitate the formulation of new in-
sights in the behavior of subgrid-scale models, numerical discretization, and their
interaction. In this context, some changes have been proposed to the Smagorinsky
model in Refs. [8, 6], leading to better low-Reynolds-number behavior of the model.
In the current work we will demonstrate the error-landscape approach by using it as a
platform for the comparison of different discretization methods in Smagorinsky LES
(cf. also Ref. [2]). Results presented are based on LES of decaying homogeneous
isotropic turbulence with reference data obtained from direct numerical simulations
[5]. The error-landscape can also be a very useful tool when experimental reference
data are used: the reader is referred to Ref. [7] for a full discussion, where the high-
Reynolds number grid-turbulence data of Kang et al. [9] were used as experimental
reference in combination with the error-landscape approach.

Finally, an extensive variation of all influencing parameters in large-eddy simu-
lations of more complex cases can become infeasible when too much parameters are
involved. Nevertheless, a systematic variation of some parameters can still be very
useful. An example is given on a calibration of the Smagorinsky model for high-
Reynolds-number boundary-layer flows, where it is demonstrated that good logarith-
mic velocity profiles and turbulence spectra can be obtained when the Smagorinsky
coefficient and near wall damping are appropriately selected.

The paper is further organized as follows. First, in Section 2 the error-landscape
methodology is reviewed. In §2.1 the basic principles are explained. Subsequently,
in §2.2 the error-balancing mechanisms are highlighted, and the importance of in-
cluding a range of errors in the analysis is discussed. In §2.3 the method is used
to compare different numerical discretizations of Smagorinsky LES. Next, in Sec-
tion 3, a systematic variation of model parameters in LES of a high-Reynolds-number
boundary-layer is presented, identifying model-parameter regions where both the
velocity profile and the velocity spectra are well predicted. Finally, a summary is
presented in Section 4.

2 Error landscapes and multi-objective refinement trajectories

2.1 The basic principles

In the current section, the error-landscape methodology, first introduced in Ref. [5],
and later refined in Ref. [6, 2], is reviewed. The methodology is based on a system-
atic variation of relevant LES setup parameters such that a full response surface, a
so-called error landscape, of the LES error behavior can be constructed. Next to a
large set of LES runs, the methodology requires a reference case, for which a di-
rect numerical simulation has been used in Ref. [5, 6, 2] (the use of experimental
reference data is addressed in Ref. [7]).
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The error-landscape approach is here demonstrated based on decaying homo-
geneous isotropic turbulence, and a DNS reference at Reλ = 100 is used [5]. The
large-eddy simulations employ a standard Smagorinsky model, i.e.

τM
sgs = 2(CsΔ)2(S :S)S, (1)

with S the strain-rate tensor (Si j = (∂ui/∂x j +∂u j/∂xi)/2), Δ = h the grid-spacing,
and Cs the Smagorinsky constant.

A systematic variation of the Smagorinsky constant Cs and the grid resolution
N ∼ 1/h is carried out, such that an error landscape can be constructed. Central to
this approach is the reduction of the results of a simulation to one single number,
quantifying the ‘error’ of that simulation with respect to the reference. Initially, in
[5] this error was defined as the L2 norm of the difference between the kinetic energy
of the LES with the filtered DNS integrated in time, i.e.

δE =
(∫ T

0

[
ELES(t)−Eref(t)

]2
dt

/∫ T

0
Eref(t)

2dt

)1/2

, (2)

with ELES the kinetic energy of the DNS data filtered (projected) onto the LES grid.
An example of the resulting error landscape is presented in Figure 1(a). It is clear
from this figure that the error δE is very sensitive to a good selection of Cs at a given
resolution N. However, once such an error landscape is constructed, an optimal Ĉs(N)
trajectory for that given LES code (and for the given error definition) emerges.

When evaluating the error landscape based on resolved enstrophy E instead of
resolved kinetic energy E in Figure 1(b), it is apparent that the ‘optimal refinement
trajectory’ Ĉs(N) depends on the error definition. In order to investigate this in a more
systematic way, the error definition is formalized, such that a range of definitions can
be easily included. Recognizing that E(t) =

∫
E(k, t)dk (with E(k) the 3D energy

spectrum at time t, and k the wavenumber), and E (t) =
∫

k2E(k, t)dk (cf., e.g., Pope
2000 [10]), we introduce a set of errors errors Dp (p = −1 to 2) which are based on
weighted integrals of the energy spectrum, i.e.,

Dp (N,Cs) =

⎡
⎢⎣
∫ T

0

{∫ kc
0 kp (ELES(k)−EEXP(k)) dk

}2
dt

∫ T
0

{∫ kc
0 kpEEXP(k) dk

}2
dt

⎤
⎥⎦

1/2

, (3)

with kc = π/Δ the grid cut-off frequency. Depending on the values of p, this ap-
proach defines errors on large-scale properties (p = −1,0) as well as resolved fine-
scale properties (p = 1,2). For p = −1, 0, and 2, it is readily shown that Dp re-
spectively represents the relative error on the integral length scale δL , the resolved
turbulent kinetic energy δE , and the resolved enstrophy δE (cf. Ref. [2] for details).

In order to include a series of errors Dp in a systematic approach, the notion of
near-optimal regions and a multi-objective refinement trajectory was introduced in
[6]. The near optimal region Ωp related to Dp(N,Cs) is defined as

Ωp(a) =

{
N ∈ N; Cs ∈ R

+
∣∣∣ Dp(N,Cs)

Dp(N,Ĉ(p)
s (N))

≤ a

}
, (4)



6 Johan Meyers

Fig. 1. Error landscapes of LES employing the Smagorinsky model. Errors are shown for δE
(a) and δE (b). The different simulations that were conducted are indicated by (•).

Fig. 2. ‘Near optimal’ regions based on Dp (p = −1 to 2) for Smagorinsky LES. Different
‘near optimal’ regions are displayed in gray and semitransparent, such that regions with over-
lap appear with darker shades of gray. The curves (—), (−−), (−·), and (· · · ) respectively mark
the boundaries of the D−1(= δL ), D0(= δE), D1 and D2(= δE ) ‘near optimal’ regions. Sym-
bols (�,•,�,�) correspond respectively to the optimal refinement strategies for the different
error definitions.

with Ĉ(p)
s (N)) the optimal refinement trajectory related to the error measure Dp, and

where we select a = 1.2 [2]. Hence, Ωp defines a area around Ĉ(p)
s (N) where the

error is close to optimal with respect to Dp.
In Figure 2, the near optimal regions are displayed for p = −1 to 2, based on

Smagorinsky LES using a second order discretization (for more on the discretiza-
toin, see Section 2.3). The figure shows that near-optimal regions can overlap, hence
leading to a multi-objective optimal region, where several errors are simultaneously
(near) optimal. It is now further useful to define a multi-objective optimal refine-
ment trajectory, by an appropriate weighting of different errors. To this end, a global
weighted error is defined as [2]
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D̃(N,Cs) =
∑p

[
Dp (N,Cs)

/
Dp

(
N,Ĉ(p)

s (N)
)]

∑p

[
1
/

Dp

(
N,Ĉ(p)

s (N)
)] , (5)

Based on D̃(N,Cs), a multi-objective optimal refinement trajectory C̃s(N) is defined.
One of the ideas introduced in the context of the error-landscape methodology

is that a fair comparison of LES codes (i.e. the combination of discretization and
model) should be based on comparing the LES codes along there respective multi-
objective refinement trajectories, such that every LES method is known to be op-
erating at its best [6, 2]. Before pursuing this idea further with an example in Sec-
tion 2.3, the existence of multi-objective optimal regions, and the relevance of a
multi-objective optimal refinement trajectory in case a multi-objective optimal re-
gion does not exist, are discussed in the next subsection.

2.2 Error balancing and error definitions

In Figure 2 a multi-objective optimal region was found for N > 40. For lower reso-
lutions, no overlap exists between the different near-optimal regions. While explor-
ing different numerical discretizations, more extreme cases (without overlap) were
found [2], and an example is given in Figure 3(a) using a 4th order 2nd order mixed
discretization (cf. next subsection, and Ref. [2] for details). Now, a multi-objective
optimal region only exists for N > 64; at lower resolutions optimal settings for one
flow property are not necessary optimal for other flow properties. The reasons for
this are further explored in Figure 3.

In order to understand the lack of a multi-objective optimal region in Figure 3(a),
a series of three-dimensional energy spectra is plotted in Figure 3(c) for a range of
Cs values, and for N = 64, and the DNS reference is also displayed. Two LES spec-
tra are highlighted, one resulting from a Cs selection near the optimal setting for a
minimal error on the kinetic energy, and the other similarly for the resolved enstro-
phy. It is appreciated that the ‘optimal’ result for the kinetic energy is a quite poor
prediction of the DNS spectrum. However, the level of energy (resulting from inte-
grating this spectrum over wavenumbers) is close to the total resolved DNS energy,
since the strong under prediction of the LES spectrum in the low-wavenumber range
is compensated with a pile-up of energy in the high-wavenumber range of the spec-
trum. Hence, in this example, the low error on the total resolved energy is due to a
balancing of errors in the energy spectrum. Similar balancing mechanisms have been
identified in Ref. [11] for poorly resolved direct numerical simulations of turbulent
channel flow.

In order to avoid this type of balancing in wavenumber space, a more robust
error definition may be used, which penalizes incorrect spectral distributions, and
corresponds to [2]

dp (N,Cs) =

[
∑x/M

∫ kc
0 k2p (ELES(k)−EEXP(k))

2 dk

∑x/M
∫ kc

0 k2p(EEXP(k))2 dk

]1/2

. (6)
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Fig. 3. (a,b) ‘Near optimal’ regions based on Dp, and dp respectively (p = −1 to 2) for
Smagorinsky LES using a 4–2 discretization (cf. next section for details). Lines and symbels
for (a) and (b) as in Figure 2. (c) Cs dependence of LES spectra (at the end of the simulation)

for N = 64. Cs = · · · . Bold lines – (—): DNS reference; (−−) optimal coefficient Ĉ(0)
s (N = 64)

for kinetic energy; (−·): optimal coefficient Ĉ(2)
s (N = 64) for resolved enstrophy.

In Figure 3(b), the near-optimal regions based on the new definition dp are displayed.
Now it is appreciated that a multi-objective optimal region exist over the whole range
of simulation resolutions.

2.3 A comparison of numerical methods

The effect of the numerical discretization on Smagorinsky LES of homogeneous
isotropic turbulence is now assessed using the error-landscape framework (cf. Ref. [2]
for more details). Four different discretizations are considered: the convective terms
are discretized using either a second-order or a fourth-order scheme, and similarly
for the viscous (and subgrid-scale) terms. Hence, four different combinations are
possible, i.e. a 2–2, 2–4, 4–2, and 4–4 scheme, with the first number the order of the
convective discretization, and the second the order of the viscous and subgrid-scale-
model discretization.
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Fig. 4. (a) Multi-objective refinement strategies C̃s as function of the resolution N for the 2–2
scheme (—� ), the 4–2 scheme (−·� ), the 2–4 scheme (· · ·� ), and the 4–4 scheme (−−◦ ). (Opens
symbols): using {Dp}; (Closed symbols): using {dp}. (b) Comparisons of relative errors D−1,
along the respective multi-objective optimal refinement strategies C̃D for the 2–2 scheme (—� ),
the 4–2 scheme (−·� ), the 2–4 scheme (· · ·� ), and the 4–4 scheme (−−◦ ).

In a first step, the near-optimal regions and multi-objective optimal refinement
trajectories are determined either using the error definition Dp or dp. In Figure 4(a)
the multi-objective optimal trajectories are displayed for both error definitions, and
for the four different discretization schemes (near-optimal regions are not shown
here, except for the 2–2 scheme in Figure 2, and for the 4–2 scheme in Figure 3).
These results show that multi-objective optimal refinement trajectories based on Dp

and dp are close together, irrespective of the fact that some of the Dp errors may be
subject to ‘error balancing’. Hence, as long as a series of error measures is included in
the determination of a multi-objective optimal trajectory, the results are independent
of the selected error definition (Dp or dp).

Following one of the key ideas behind the error-landscape methodology (cf.
§2.1), a ‘fair’ comparison between the different numerical methods (for Smagorin-
sky LES) is now performed by evaluating their errors along their respective multi-
objective optimal refinement trajectories. Results are shown in Figure 4(b) (similar
results are obtained based on other error measures in Ref. [2]). It is now striking that
the 2–2 method is giving the lowest errors closely followed by the 4–4 discretization.
Further, the use of ‘equal-order’ finite volume methods (2–2 and 4–4) appears to be
advisable over the ‘mixed-order’ methods.

3 Error-landscape results for a high-Reynolds-number boundary
layer

In the previous section, the error-landscape methodology was demonstrated for de-
caying homogeneous isotropic turbulence and Smagorinsky LES, based on a system-
atic variation of two set-up parameters, i.e. the model constant and the resolution.
In case the model or the test case becomes more complex, the number of relevant
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parameters quickly becomes too large to perform a comprehensive variation of all
parameters. Nevertheless, a systematic variation of some set-up parameters may still
be very relevant. In the current section, high-Reynolds number boundary-layer LES
are considered for a fixed grid. It is demonstrated that a systematic variation of model
parameters is useful: in the current study, this provided a calibration of the Smagorin-
sky model and its near-wall damping for further use in atmospheric-boundary-layer
simulations of wind farms (cf. Ref. [12]).

Large-eddy simulations of a boundary layer are performed at infinite Reynolds
number, and a wall roughness z0/H = 10−4. The filtered Navier–Stokes equations are
discretized using a pseudo-spectral Fourier discretization in stream and span wise di-
rections x, and y, and a 4th order energy-conservative finite-volume discretization[13]
is used in the normal direction z. A standard Smagorinksy model is used. The com-
putational box size is 2π ×π ×1 (taking H = 1), and all simulations are performed
on a 64×64×48 mesh.

Since a high Reynolds number boundary layer is considered (i.e. the viscosity is
set to zero in the simulations), the near-wall layer cannot be resolved, and a high-
Reynolds-number boundary condition is required. At the bottom surface, we use
a classic ‘imposed wall stress’ boundary condition relating the wall stress to the
velocity at the first grid-point using the standard log (Monin-Obukhov) similarity
law [14]:

τw1 = −
(

κ
lnz/z0,lo

)2(̂̃u2
+̂̃v2)0.5 ̂̃u (7)

τw2 = −
(

κ
lnz/z0,lo

)2(̂̃u2
+̂̃v2)0.5 ̂̃v, (8)

where the hat on ̂̃u and ̂̃v represents a local average obtained by filtering the LES
velocity field with filter width 4Δ (see Bou-Zeid et al. [15] for more details about
such filtering). On the top boundary, a symmetry condition is used.

A constant-coefficient Smagorinsky model is known to be too dissipative near the
wall, where a length scale λ ∼ z is expected instead of a constant length scale CsΔ .
Consequently, Mason and Thomson [16] proposed a adaptation of the Smagorinsky
length CsΔ near the wall corresponding to

λ−n = [CsΔ ]−n +[κ(z+ z0)]−n. (9)

In the current work, a systematic variation of Cs and n is considered, keeping the
resolution constant. In Figure 5, the error on the mean-velocity profile is presented,
defined by

δU =
1
uτ

(∫ [
ULES(z) −

1
κ

log(z/z0)
]2

dz/H

)1/2

, (10)

with ULES(z) the time-averaged mean-velocity profile predicted by the large-eddy
simulations. The Smagorinsky constant Cs is varied between 0.09 and 0.15, and n
between 1 and 3. From this Figure, it is appreciated that an optimal setting of Cs very
much depends on n.
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Fig. 5. Smagorinsky LES of a high-Reynolds-number boundary layer: error on the mean veloc-
ity profile as function of Cs and n. The different simulations that were conducted are indicated
by (•).

Three different Cs–n combinations are now investigated in more detail in Fig-
ure 6. First of all, consider Cs = 0.15, and n = 2 (A Smagorinsky constant Cs = 0.15
roughly corresponds to the Lilly value for the current grid—i.e., the well-known
Cs = 0.17 value should be corrected for the shape of the grid cut-off filter, cf.
Ref. [17, 8, 6]). It is appreciated in Figure 5 that this combination does not result in
a low error on the mean velocity profile, and this is further confirmed in Figure 6(a),
where a large log-layer mismatch is visible for this case.

In Figure 6(b) the streamwise energy spectra are displayed at different heights for
the Cs = 0.15, n = 2 case. Close to the wall, the tails of the spectra should collapse
(in log–log scaling) onto a -1 slope, while further away from the wall (where the
turbulence becomes homogeneous isotropic) a collapse onto a -5/3 slope is expected
(see, e.g. Ref [18]). As clear from the figure, the -5/3 slope far from the wall is well
recovered, but close to the wall, the tails of the spectra drop too fast, indicating that
the Smagorinsky model is too dissipative in this region.

A second large-eddy simulation displayed in Figure 6 uses Cs = 0.09, and keeps
n = 2. Lowering the Smagorinsky constant is a solution often used to rectify too high
dissipation near the wall, and Figure 5 confirms that Cs = 0.09, and n = 2 is situated
in a ‘near optimal’ zone. Figure 6(a) further illustrates this, showing the improvement
of the mean velocity profile over the Cs = 0.15 case. When the stream-wise energy
spectra are studied in more detail in Figure 6(c), it is clear that the tails of the spectra
near the wall collapse better. However, now the -5/3 slope of the spectra for from the
wall is not apparent anymore. This is a clear indication of a Smagorinsky constant



12 Johan Meyers

Fig. 6. Smagorinsky LES of the high-Reynolds-number boundary layer. (a) Mean velocity
profiles; (—): Cs = 0.15, n = 2; (−−): Cs = 0.09, n = 2; (−·): Cs = 0.14, n = 1; (−−, in gray):
log law. (b,c,d) Stream-wise energy spectra respectively for Cs = 0.15, n = 2; Cs = 0.09, n = 2;
and Cs = 0.14, n = 1.

which is not well selected for the (nearly) homogeneous isotropic turbulence far from
the wall.

Consequently, for a good ‘far-wall’ behavior a Smagorinsky constant closer to the
Lilly value is required. The error-landscape in Figure 5 is useful for selecting such a
value: it is appreciated that a combination Cs = 0.14 and n = 1 is also situated in an
optimal Cs–n region. Figure 6(a) also shows the velocity profile for this case, which
matches the theoretical log-profile quite well. The stream-wise velocity spectra for
Cs = 0.14 and n = 1 are plotted in Figure 6(d). Now, good spectra are obtained both
close to the wall and in the ‘far-wall’ field.

4 Summary

A review of the error-landscape methodology has been presented. This method relies
on a systematic variation of model and numerical parameters in large-eddy simu-
lations, and helps gaining insight in the complex interaction between numerics and
modeling. First of all, LES of decaying homogeneous isotropic turbulence was used
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to illustrate the basic principles. It was shown that error definitions matter, and that
a reliable quality analysis of LES should rely on a range of errors emphasizing both
large and small scales in the resolved solution: an analysis based on one error only
can be misleading due to possible error-balancing mechanisms. As an illustration,
the error-landscape method was used to compare different discretization variants for
Smagorinsky LES. Finally, a tuned-down version of the methodology was employed
to elaborate an error landscape for Smagorinsky LES of high (infinite) Reynolds
number boundary layers, varying the Smagorinsky constant and the wall damping
exponent in Mason and Thomson’s [16] wall damping function. This analysis high-
lighted the importance of a sufficiently high Smagorinsky constant for correct −5/3
spectral slopes in the ‘far-wall’ region of the simulation. Using the constructed error
response surface, a combination of Cs = 0.14 and n = 1 was found to give quite good
velocity profiles and stream-wise energy spectra.
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Numerical and physical instabilities in massively
parallel LES of reacting flows
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Summary. LES of reacting flows is rapidly becoming mature and providing levels of preci-
sion which can not be reached with any RANS (Reynolds Averaged) technique. In addition
to the multiple subgrid scale models required for such LES and to the questions raised by
the required numerical accurcay of LES solvers, various issues related the reliability, mesh
independence and repetitivity of LES must still be addressed, especially when LES is used
on massively parallel machines. This talk discusses some of these issues: (1) the existence of
non physical waves (known as ‘wiggles’ by most LES practitioners) in LES, (2) the effects of
mesh size on LES of reacting flows, (3) the growth of rounding errors in LES on massively
parallel machines and more generally (4) the ability to qualify a LES code as ‘bug free’ and
‘accurate’. Examples range from academic cases (minimum non-reacting turbulent channel)
to applied configurations (a sector of an helicopter combustion chamber).

Key words: Combustion, Large-Eddy Simulation

1 Introduction

This paper focuses on the quality of LES in terms of mesh dependency and repet-
itivity, especially for reacting flows. LES codes are now routinely used to simulate
combustion and more specifically to predict instabilities (mostly due to acoustics)
in reacting flows [43, 23]. The fact that flames can couple with acoustics has been
known for a long time [27], even though it is still not fully understood. Since acoustic
waves can propagate in any direction in subsonic flows (which is the case in most
combustors), they can create a feedback from any point of the flow to any other point,
thereby creating multiple paths for absolute instabilities. More importantly, combus-
tion instabilities are difficult to predict and are usually discovered at a late stage
during the development of engine programmes so that they represent a significant
industrial risk. These instabilities take various forms.

(1) In steady combustors like gas turbines, instabilities can lead to oscillations of
all flow parameters, reaching levels which are incompatible with the normal opera-
tion of the chamber. They have been the source of multiple failures in rocket engines,
as early as the Saturne or the Ariane 4 project, in aircraft engines (main chamber of
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post combustion chamber), in industrial gas turbines and furnaces, etc. Fig. 1 shows
an example of simulation of ‘mild’ oscillation in a gas turbine [10] where the flame
position (visualized by an isosurface of temperature colored by axial velocity) pul-
sates at four instants of a cycle occuring at 120 Hz).

Fig. 1. Snapshots of flame position (isosurface of temperature) during one oscillation cycle at
120 Hz in an industrial gas turbine [10].

(2) In piston engines or in pulse combustors (such as the one used in German
V 1 rocket during the second world war) where an external periodic motion or tim-
ing is imposed, instabilities take other forms: the most famous one is cycle-to-cycle
variations. Fig. 2 shows LES results [28] in a four-valve four-stroke engine where all
phases are explicitly computed (intake, compression, combustion, exhaust). Fig. 2
displays the reaction rate at exactly the same crank angle for various cycles: none of
these cycles is similar. In extreme cases, certain cycles can actually not ignite or not
burn at all. The source of these differences is obviously some type of instability. It
can be an intrinsic bifurcation of the flow within the chamber or a coupling with the
acoustic waves in the intake and exhaust pipes of the engine.

Predicting and controlling combustion instabilities is a major challenge for com-
bustion research. Today, the most promising path is LES [23, 19, 32] something
which was impossible 10 years ago with classical Reynolds Averaged Navier -Stokes
methods. Evaluating the error margins associated to such LES is becoming a criti-
cal question. Multiple ‘instabilities’ are found in combustion LES. Instabilities exist
in individual flame fronts and lead to the formation of cells and of various unstable
modes depending on molecular transport of chemical species and heat [43, 4]. Like
any shear flow, reacting flows are submitted to hydrodynamic modes [7, 13] and
to vortex formation. But acoustics play the first role in reacting flows: by coupling
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Fig. 2. Snapshots of reaction rate in a simulation of piston engine at four successive cycles for
the same crank angle. None of them is the same.

with heat release, they are the source of most combustion instabilities [43, 23]. In-
stabilities are present in the physical problem studied but they are also present in the
numerical methods used to simulate these mechanisms. Most high-fidelity numeri-
cal schemes required for Computational Fluid Dynamics exhibit low dissipation and
therefore multiple non-physical instabilities (wiggles) arise which can require signif-
icant efforts to be kept under control [40, 33, 23]. Finally, CFD for reacting flowss are
performed today on massively parallel machines: these architectures coupled with
centered schemes for turbulent flows lead to an additional type of instability linked
to the growth of rounding errors and to a new type of instability where the solution
depends on unexpected parameters such as the commutativity errors of addition, the
initial condition or the number of processors.

All these phenomena are ‘instabilities’ even though they correspond to different
mechanisms. In some cases, they can couple: for example, in LES of combustion
instabilities, the first issue is to be able to control the non-physical waves due to the
high-order spatial scheme as well as the rounding errors due to massively parallel
computing. This paper describes numerical instabilities found in LES (Section 2),
proposes an analysis of the repetitivity of LES especially on parallel machines (Sec-
tion 3) and ends with a study of the influence of mesh size on the LES of a sector of
a gas turbine combustion chamber (Section 4).

2 Numerical waves in LES of reacting flows

Predicting combustion instabilities requires an accurate computation of all waves
mentioned in the previous section. Unfortunately, LES (like DNS and unlike RANS)
can propagate other waves: these numerical waves (called Q waves [40, 33, 23])
are a significant difficulty for most high-fidelity simulations. Q waves are produced
by sharp gradients, approximate initial conditions, boundary conditions, etc. They
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interact with physical waves, making LES difficult and sensitive to unexpected be-
haviors. Knowing how Q waves interact with physics is a necessary exercice but one
which is not often discussed because studying wiggles is not an exciting topic and
also because most RANS codes use excessive artificial viscosity and large turbulent
viscosity levels (due to turbulence models) which kill all numerical waves (they also
kill all acoustic waves and hydrodynamic modes...) Methods which can compute
accurately waves must use centered schemes and low turbulent viscosity levels. A
convenient way to illustrate this point is to compare the various viscosities playing a
role in a CFD code:

• The laminar viscosity ν is the only true flow characteristic and it defines the true
Reynolds number of the flow: Rereal = UL/ν where U and L are a reference
velocity and length of the flow respectively.

• In CFD codes, a turbulent viscosity νt is added through the model for turbulent
fluctuations.

• Many CFD codes1 also add an artificial viscosity νa or upwind (dissipative)
schemes. An important dissipation is also introduced by large time steps and
implicit schemes which are commonly used in RANS.

Adding two viscosities νt and νa to the true viscosity ν leads to a lower Reynolds
number really seen by the code:

Recode = UL/(ν +νt +νa) (1)

which is much smaller than Rereal . In RANS formulations, the turbulent viscosity
introduced by models such as the k-ε model can reach 1000 times the physical vis-
cosity while very high levels of artificial viscosity νa are used for robustness and
speed. As a result, RANS results are steady: in other words, laminar. Of course, the
local viscosity is tuned to match the mean characteristics of the mean turbulent flow
but the turbulent character of the flow is completely lost. At the other end of the
spectrum, DNS methods strive to use νa = νt = 0 so that Recode = Rereal . LES for-
mulations have to use non-zero values for νa and νt but these must be kept to very
small values.

Method Physical Numerical Turbulent Capacity to
viscosity viscosity viscosity propagate waves

DNS 1 0 0 excellent
LES 1 1 to 10 5 to 50 good

RANS 1 10 to 500 100 to 1000 none

Table 1. Orders of magnitude of physical, numerical and turbulent viscosity in DNS, LES and
RANS codes. All values are scaled by the laminar viscosity.

1 Certain numerical methods introduce dissipation terms which are not second order and
are more difficult to compare to other viscosities: the well-known Jameson approach for
example uses a fourth-order dissipation. They are not discussed here.
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Table 1 shows typical levels of physical viscosity, turbulent viscosity νt and artifi-
cial viscosity νa ( scaled by the laminar viscosity) reached in a combustion chamber
for a standard regime. Note that viscosity affects all scales and not only the small
scales. For example, acoustic waves are very strongly dissipated in a RANS code be-
cause the turbulent viscosity acts on them too. A less pleasant implication of Table 1
is that, as soon as high-fidelity methods such as DNS or LES are developed, they
have to avoid large values of turbulent and artificial viscosities. This requires small
mesh sizes, high-order schemes, small time steps [5, 33, 23]. These improvements
unfortunately, also make these methods sensitive to numerical Q waves [34, 40, 23].

3 The growth of rounding errors in LES

The main strength of LES compared to classical Reynolds Averaged (RANS) meth-
ods is that compressible LES explicitly captures large scale unsteady motions due to
turbulence and the instability modes found in reacting flows. An often ignored as-
pect of this feature is that LES is also submitted to a well-known feature of turbulent
flows: the exponential separation of trajectories [39] implies that the flow solution
exhibited by LES is very sensitive to any “small perturbations”:

• Rounding errors are an unavoidable forcing for the Navier-Stokes equations and
may lead to LES variability. The study of error growth in finite precision com-
putations is an important topic in applied mathematics [37, 3] but has found few
applications in multidimensional fluid mechanics because of the complexity of
the codes used in CFD.

• Initial conditions are a second source of LES results variability: these conditions
are often unknown and any small change in initial conditions may trigger signifi-
cant changes in the LES solution. Boundary conditions, in particular the unsteady
velocity profiles imposed at inlets and outlets, can have the same effect as initial
conditions but are not studied here.

• Due to its large computational resource requirements, modern LES heavily re-
lies on parallel computing. However, in codes using domain decomposition, it
is also an additional “noise” source in the Navier-Stokes equations especially at
partition interfaces. Even in explicit codes, where the algorithm is independent
of the number of processors, the different summation orders with which a nodal
value is reconstructed at partition interfaces, may induce non-associativity errors.
For example, in explicit codes on unstructured meshes using cell vertex methods
[31], the residual at one node is obtained by adding the weighted residuals of
the surrounding cells. In some cases, summation may yield distinct results for
floating-point accumulation: the rounding errors in (a+b)+c and in a+(b+c)
may be different [11]. After thousands of iterations, the LES result may be af-
fected. Since these rounding errors are induced by non deterministic message
arrival at partition interfaces, such behaviour may occur for any CFD code, re-
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gardless of the numerical scheme and lead to results which depend on the number
of processors used for the LES.2

• Even on a single processor, internal parameters of the partitioning algorithm may
couple with rounding errors. For example, a different reordering of nodes using
the Cuthill-McKee (CM) or the reverse Cuthill-McKee (RCM) algorithm [6, 16]
may produce the same solution divergence.

LES solutions are known to have a meaning only in a statistical manner [25]:
observing that the solution of a given LES/DNS at a given instant changes when the
rounding errors or the initial conditions change is not really surprising. It is however
a difficulty in the practical use of LES: running the same simulation on two different
machines or one machine with a different number of processors or slightly different
initial conditions can lead to totally different instantaneous results. For steady flows
in the mean, statistics should not depend on these changes and mean profiles must
be identical. However, when the objective of the LES is unsteady phenomena such
as ignition or quenching in a combustor [36], knowing that results depend on these
parameters is certainly a sobering thought. This section tries to address these issues
and answer a simple question [35]: how does the solution produced by LES depend
on the number of processors used to run the simulation? On the initial condition? On
internal details of the algorithm?

The configuration is a rectangular channel computed with a fully explicit LES
code [21]. The following section then gives a systematic description of the effects of
rounding errors in two flows: a turbulent channel and a laminar Poiseuille flow.

3.1 Effects of the number of processors on LES

This first example is the LES of a rectangular fully developed turbulent channel of
dimensions: 75x25x50 mm (Fig. 3). An homogeneous force is applied to a peri-
odic channel flow to provide momentum; random disturbances are added to trigger
transition to turbulence. There are no boundary conditions except for the walls in y
direction. The Reynolds number is Reτ = δuτ/ν = 1500, where δ is half the channel
height and uτ the friction velocity at the wall: uτ = (τwall/ρ)1/2 with τwall being the
wall stress. The mesh contains 303 hexahedral elements, it is not refined at walls.
The first grid point is at a reduced distance y+ = yuτ/ν ≈ 100 of the wall. The sub-
grid model is the Smagorinsky model and a law-of-the-wall is used at the walls [30].
The initial condition corresponds to a snapshot of the flow at a given instant, long
after turbulence was initialized so that it is fully established. The computation is per-
formed with an explicit code where domain decomposition is such that the method is
perfectly equivalent on any number of processors. The Recursive Inertial Bisection
(RIB) [38] algorithm is used to partition the grid and the Cuthill-McKee algorithm
is the default graph reordering strategy. The scheme is the Lax-Wendroff scheme
[12]. Additional tests using a third-order Taylor-Galerkin scheme [5] led to the same
conclusions.

2 The case of implicit codes [18, 17, 8] or in space (such as compact schemes) [15, 1, 34] is
not considered here.
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Table 2. Summary of turbulent LES runs (fully developed turbulent channel).

Run Nbr Init. Precision Graph CFL
Id proc cond. ordering λ

TC1 4 Fixed Double CM 0.7
TC2 8 Fixed Double CM 0.7
TC3 1 Fixed Double CM 0.7
TC4 1 Modif. Double CM 0.7
TC5 1 Fixed Double RCM 0.7
TC6 4 Fixed Double CM 0.35
TC7 8 Fixed Double CM 0.35
TC8 4 Fixed Simple CM 0.7
TC9 8 Fixed Simple CM 0.7
TC10 28 Fixed Quadr. CM 0.7
TC11 32 Fixed Quadr. CM 0.7

Fig. 3. Schematic of a periodic channel. The upper and lower boundaries consist of walls, all
other boundaries are pairwise periodic.

(a) Run with 4 processors (b) Run with 8 processors

Fig. 4. Instantaneous field of axial velocity in the central plane of the channel at t+ = 7.68. a)
run TC1 (4 processors), b) run TC2 (8 processors).
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Figs. 4 and 5 show fields of axial velocity in the central plane of the channel
at two instants after the initialization. Two simulations performed on respectively
4 (TC1) and 8 processors (TC2) with identical initial conditions and meshes are
compared (Table 2 and 3). The instants correspond to (in wall units) t+ = 7.68 and
t+ = 26.11 respectively where t+ = uτ t/δ . Obviously, the two flow fields observed
at t+ = 7.68 are identical. Flow fields start to diverge after t+ = 15 and at t+ = 26.11,
the instantaneous flow fields obtained in TC1 and TC2 are totally different (Figs. 5).
Even though the instantaneous flow fields are different, statistics remain the same:
mean and root mean square axial velocity profiles averaged over t+ ≈ 60 are identical
for both simulations (Figs. 6).

(a) Run with 4 processors (b) Run with 8 processors

Fig. 5. Instantaneous field of axial velocity in the central plane of the channel at t+ = 26.11.
a) run TC1 (4 processors), b) run TC2 (8 processors).

(a) Mean velocity (b) RMS velocity

Fig. 6. Comparison of the mean (left) root mean square (right) velocity profiles for TC1 (4
processors) and TC2 (8 processors) simulations over half channel height.

3.2 Sensitivity of LES in laminar and turbulent flows

To understand how LES can produce diverging instantaneous results such as those
shown above, tests were performed to investigate the effects of various aspects of the
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methodology: laminar/turbulent baseline flow, number of processors, initial condi-
tion, graph ordering, time step and machine precision. The objective is to quantify
differences between two LES solutions produced by a couple of simulations in Ta-
ble 2 and 3. Let u1 and u2 be the scalar fields of two given instantaneous solutions at
the same instant. A proper method to compare them is to use the iteration evolution
of the following norms: Nmax provides the maximum local velocity difference in the
field between two solutions while Nmean yields a volumetrically averaged difference
between the two solutions. Note that performing any of the LES of Table 2 twice on
the same machine with the same number of processors, the same initial conditions
and the same partition algorithm leads to exactly the same solution, Nmax and Nmean

being zero to machine accuracy. In that sense, the LES remains fully deterministic.
However, this is true only if the order of operations at interfaces is not determined by
the order of message arrival so that summations are always carried out in the same
order. Otherwise, the randomness induced by the non-deterministic order of message
arrival is enough to induce diverging solutions. The following test is to compare a
turbulent channel flow studied in the previous section and a laminar flow. A three-
dimensional Poiseuille flow in a pipe geometry was used as test case. The flow is
laminar and the Reynolds number based on the bulk velocity and diameter is approx-
imately 500. The boundary conditions are periodic at the inlet/outlet and no-slip at
the duct walls. A constant axial pressure gradient is imposed in the entire domain.

Table 3. Summary of laminar runs (Poiseuille flow).

Run Nbr Init. Precision Graph CFL
Id proc cond. ordering λ

LP1 4 Fixed Double CM 0.7
LP2 8 Fixed Double CM 0.7

Fig. 7. Effects of turbulence. Differences between solutions: Nmax (open symbols) and Nmean

(closed symbols) vs iteration. Squares: differences between TC1 and TC2 (turbulent channel).
Circles: differences between LP1 and LP2 (laminar flow).
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Figure 7 shows the evolutions of Nmax and Nmean versus iteration for runs
TC1/TC2 and LP1/LP2. The only parameter tested here is a change of the num-
ber of processors. As expected from the snapshots of Figs. 4–5, the simulations are
sensitive to a change in the number of processors and the solutions of TC1 and TC2
diverge rapidly leading to a maximum difference of 20 m/s and a mean difference
of 3-4 m/s after 90,000 iterations. The stagnation of absolute and mean differences
between TC1/TC2 simply implies that after 90,000 iterations solutions have become
fully uncorrelated. On the other hand, the difference between the laminar simula-
tions LP1 and LP2 hardly increases and levels off when reaching values of the order
or 10−12. This is expected since there is obviously only one stable solution for the
Poiseuille flow: laminar flows do not induce exponential divergence of trajectories.
This test case confirms that the turbulent character of the flow is the source of the
divergence of solutions.

The basic mechanism leading to Figs. 4–5 is that the turbulent flow acts as an
amplifier for rounding errors generated by the fact that the mesh is decomposed dif-
ferently in TC1 and TC2. This implies a different ordering when adding the contri-
butions to a cell residual for nodes at partition interfaces. This random noise roughly
starts at machine accuracy (Fig. 7) at a few points in the flow and grows continuously
if the flow is turbulent.

The previous results show that turbulence combined with a different domain de-
composition is sufficient to lead to different instantaneous flow realizations. A pertur-
bation in initial conditions has the same effect as domain decomposition as verified
in runs TC3 and TC4 which are run on one processor only, thereby eliminating issues
linked to parallel implementation. The only difference between TC3 and TC4 is that
in TC4, the initial solution is identical to TC3 except at one random point where a
10−16 perturbation is applied to the streamwise velocity component. Solutions ex-
hibited the same divergence [35]. Finally, the results of Senoner et al [35] show that
the numerical scheme and the time step do not influence the growth rate of the solu-
tions difference: for example, simulations TC6 and TC7 are performed with a time
step reduced by a factor 2 compared to simulations TC1 and TC2. TC6 and TC7 are
carried out on respectively 4 and 8 processors. The norms between TC6 and TC7 are
similar to the other cases.

A last test to verify that the solutions divergence depends primarily on rounding
errors is to perform the same computation with simple/quadruple precision instead of
double precision. Simulations TC1 and TC2 were repeated using single precision in
runs TC8 and TC9 (Table 2) and quadruple precision in TC10 and TC11. Results are
compared to the difference between TC1 and TC2. Figure 8 shows that the solution
differences for TC8/TC9 and TC10/TC11 roughly start from the respective machine
accuracies (differences of 10−6 for single precision after one iteration, differences
of 10−30 for quadruple precision after one iteration) and increase exponentially with
the same growth rate before reaching the same difference levels for all three cases.
Higher precision computations cannot prevent the exponentional divergence of tra-
jectories but only delay it.
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Fig. 8. Effects of machine accuracy. Differences between solutions: Nmax (open symbols) and
Nmean (closed symbols) vs iteration. Squares: differences between TC1 and TC2 (double pre-
cision). Circles: differences between TC8 and TC9 (single precision). Triangles: differences
between TC10 and TC11 (quadruple precision).

4 Mesh effects in LES of gas turbine chamber

4.1 Objectives

The last topic discussed here is related to mesh dependency effects in LES of reacting
flows. Multiple authors have underlined the importance of this point for LES [29, 25].
LES depend on mesh resolution (unlike RANS) and produce grid independent results
only if the mesh is sufficiently refined. LES must then satisfy multiple properties:
time-averaged values must converge, Root Mean Square (RMS) resolved values must
increase when the mesh cell size decreases and the SGS turbulence level diminishes,
the resolved velocity spectra must fill towards larger wave-numbers. In practice,
these behaviors are expected to be controlled by the LES models, the flow Reynolds
number, the grid resolution as well as the accuracy of the numerical solver (in the
context of implicit filtering [29, 9, 24]). Mesh dependency analysis of non-reacting
LES predictions has recently been addressed [42, 20, 26] and quality criteria have
been proposed for a posteriori evaluation of the LES flow predictions [25, 41, 14].

For reacting flows, the computer power needed to simulate realistic geometries
is so large that the grids used for LES are are usually still too coarse to resolve all
flow zones: multiplying the number of grid points by a significant factor to verify the
effects of grid resolution on the LES results was impossible until very recent times.
Very few LES of reacting flows have been devoted to mesh dependency in simple
configurations [42, 20, 26] and none of them has addressed this issue in complex
geometry combustors. The situation has changed in the last two years: porting LES
codes on massively parallel machines in the Top 20 list has allowed a sudden increase
of power for combustion computations. Speed-ups of nearly 95 percent obtained on 2
to 10 000 processors allow to address the problem of mesh dependency by perform-
ing one ‘coarse grid’ simulation with a reasonable mesh (typically 1.5 million cells)
and then comparing it with an ‘intermediate grid’ simulation (8 times more cells)
and finally with a ‘fine grid’ simulation (32 times more cells). In the present work,
the mesh dependency of the LES predictions is studied for a helicopter combustion
chamber [2].
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4.2 Target configuration

The configuration (Fig. 9) corresponds to a helicopter combustion chamber where
fuel is injected using an inverted cane injection system, also called pre-vaporizer. The
computational domain focuses on a 36 degree section of a full annular reverse-flow
combustion chamber designed by Turbomeca (Safran group). A premixed gaseous
mixture of C10H16 enters the chamber through the pre-vaporizer, Fig. 9 (a) & (b).
Fresh gases are consumed in the primary zone, delimited by the chamber dilution
holes and the liner dome of the combustion chamber, Fig. 9 (a). To ensure full com-
bustion, this region of the chamber is fed with air by primary jets located on the inner
liner, Fig. 9 (b). Burnt gases are then cooled by dilution jets or cooling films located
on the inner and outer liners as well as on the return bend of the combustion chamber.
Multi-perforated plates also ensure local wall cooling in areas of the chamber shown
on Fig. 9 (b).

Fig. 9. Combustion chamber: (a) 3D view and (b) side view.

‘Coarse’ ‘Intermediate’ ‘Fine’
Total number of points 230,118 1,875,835 7,661,005
Total number of cells 1,242,086 10,620,245 43,949,682
Max. cell volume [m3] 3.12 10−8 8.97 10−9 4.05 10−9

Min. cell volume [m3] 1.81 10−11 8.29 10−12 1.18 10−12

Time step [s] 1.52 10−7 0.88 10−7 0.49 10−7

Averaging time [ms] 10 10 10
Number of iterations for averaging 65,790 108,695 204,082
CPU time(hours) for a 10ms LES 315 4,550 30,200

Table 4. Mesh characteristics.

The combustion regime expected in such burners mixes rich partially premixed
flames in the chamber primary zone (the gases injected in the canes can be consid-
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ered as premixed gases at an equivalence ratio of 3.17) and diffusion flames in the
dilution region: i.e. RQL concept. A turbulent combustion model able to handle both
regimes is therefore needed and the DTF model offers this capacity [30, 19, 36].
The meshes are refined in the primary zone, particularly in the lower part where
combustion occurs, and in the regions of cooling films (Table 4). The Navier-Stokes
Characteristic Boundary Conditions (NSCBC) [21, 22] are applied on boundaries to
control the acoustic behavior of the system. Walls are adiabatic and are treated with
a turbulent law-of-the-wall. Side boundaries of the computational domain are axi-
periodic. The operating point corresponds to cruising conditions and is the same for
the three grids. The cost of the three computations for the same physical time goes
from 315 hours on the coarse mesh to 30,200 on the fine one.

4.3 Instantaneous flow topology and flame structure

A crucial requirement for the LES method when applied in such complex configu-
rations is the right prediction of the combustion phenomenon. Modelling, which is
needed to supply proper combustion enhancement due to lack of interactions at the
unresolved scales, is paramount in that context. If improperly parameterized, a tur-
bulent combustion model can yield different flame positions for LES computed with
different mesh resolutions.

Figure 10 compares instantaneous fields of temperature for the three resolutions.
The cutting plane goes through one of the pre-vaporizer outlets (Plane 1, Fig. 9)
and is colored by the instantaneous field of temperature scaled by the inlet mean
temperature. The observations drawn for the axial component of the velocity field
also apply to Fig. 10: the temperature fields are clearly enriched with increasing grid
resolution and the impact on the temperature levels seems reduced.

4.4 Mean flow results

Figure 11 shows the mean temperature field scaled by the inlet temperature. Grid
resolution has an impact in various highly localized regions and some discrepancies
are detected, especially in the mean temperature fields of Fig. 11. The improved mesh
quality of the intermediate and fine grids makes the flow behave differently in near-
wall regions where the chamber flow interacts with the flow issuing from cooling
devices. For example, the thermal boundary layer created by the multi-perforated
plates (Zone 1 and 3 on Fig. 11 (a)) on the intermediate mesh is thinner than the one
on the coarse grid. Likewise, the penetration of the cooling film located in the upper
part of the liner dome is different on the coarse grid. Despite these discrepancies, the
agreement between these sets of predictions underlines mesh independence of the
first moments for these calculations.

The paper of Boudier et al [2] provides more comparisons showing that velocity
and temperature fields are well converged on the medium and fine grids while the
reaction rate field continues to evolve when the grid is refined. This is not surprising
as reaction rates are essentially subgrid scale quantities: increasing the mesh resolu-
tion allows to capture more wrinkling. However, the flame position does not change
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Fig. 10. Instantaneous temperature field scaled by the mean inlet temperature and obtained on
(a) the coarse grid, (b) the intermediate one and (c) the fine one.

and even the acoustic activity in the chamber remains reasonably independent of the
mesh.

5 Conclusions

This paper has shown that any turbulent flow computed by LES exhibits significant
sensitivity to parameters such as initial solution, number of processors, message or-
dering. This sensitivity leads to instantaneous turbulent solutions which can be totally
different while laminar flows are almost insensitive to these parameters. The diver-
gence of solutions is due to the well known- exponential separation of trajectories in
turbulent flows and to the non-deterministic rounding errors induced by different do-
main decompositions or different ordering of operations. More generally any change
in the code lines affecting rounding errors will have the same effects. These results
confirm the expected nature of LES [25] in which solutions are meaningful only in a
statistical sense and instantaneous values can not be used for analysis. However, on
a more practical level, they point out various difficulties to develop LES codes:

• Repeating the results of a given LES after modifying the code and verifying that
instantaneous solutions have not changed is not always possible. Since any pro-
gramming error will also lead to a change in instantaneous solutions, identifying
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Fig. 11. Mean temperature field (scaled by the mean temperature at the pre-vaporizer inlet)
obtained on (a) the coarse grid, on (b) the intermediate grid and on (c) the fine grid.

errors introduced by new lines will require a detailed analysis based on average
fields (and not on instantaneous fields) and a significant loss of time.

• Verifying an LES code on a parallel machine is a difficult task: running the code
on different numbers of processors will lead to different solutions and make com-
parisons impossible.

• Porting a LES code from one machine to another will also produce different solu-
tions for turbulent runs, making comparison and validations of new architectures
difficult.

When used on a complete reacting simulation of a sector of combustion cham-
bers, the same conclusions are reached: instantaneous solutions can differ but the
mean flow can be consistently captured with LES. The quality of the models them-
selves and of the numerical method accuracy was evaluated by repeating the same
LES on three different meshes ranging from 1.4 million to 40 million cells and a
reasonable mesh independency was observed even though more resolved wrinkling
is observed when the mesh resolution is increased. More generally, these results
demonstrate that the concept of “quality” in LES will require much more detailed
studies and tools than what has been used up to now in Reynolds Averaged simula-
tions. Instabilities appearing in a given LES on a given computer can have sources
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which were not expected at first sight (like the number of processors). Mastering
these instabilities will be an important task to get the full power of LES techniques.
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resolution on large eddy simulation of reacting flows in complex geometry combustors.
Combust. Flame, 155(1-2):196–214, 2008.
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Quality Issues of Combustion LES
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Summary. Combustion LES requires additional modelling of physics beyond the flow-field
only. These additional models lead to further quality issues and an even stronger need to quan-
tify the errors. The present paper illustrates stability problems, the need for consistent mod-
elling in premixed and non-premixed combustion, and shows how RANS models that have
frequently been applied to LES can lead to strong conceptual errors. The paper then outlines
the application of Meyer’s error landscape approach to a complex non-premixed flame, and
mentions several error-indicators that have been developed for situations where no experimen-
tal reference data is available.

Key words: Combustion, Large-Eddy Simulation, Quality, Reliability

1 Introduction

Fossil fuels are the major source of primary energy today, but alternatives must be
sought due to the growing need for cheap energy, the predicted depletion of oil re-
serves, and the need to reduce pollution and combat global warming. Pollutant emis-
sions can be lowered dramatically through newly developed combustion modes like
lean premixed, stratified, and mild combustion. To counter global warming, fossil fu-
els can be replaced through carbon-neutral bio-mass; the oxidiser can be substituted
through pure oxygen, so that carbon dioxide is the only major combustion product,
which can be captured and sequestered (CCS) under ground. The new combustion
modes, oxidisers and fuels require more expensive, complicated, and heavy combus-
tors, and often lead to flame instability that did not occur in classical non-premixed
flames. The successful deployment of the new technologies can only be achieved
through a detailed understanding generated from experiments and simulation. How-
ever, measurements in flames are notoriously difficult due to the aggressive environ-
ment and the generally poor optical access; in the case of pulverised coal or bio-mass
firing, flame diagnostics are almost impossible. Overall, the difficulty in measuring
the data and the need for safe, clean, and affordable energy are strong incentives for
detailed, quality-managed combustion simulations.

M.V. Salvetti et al. (eds.), Quality and Reliability of Large-Eddy Simulations II,
ERCOFTAC Series 16, DOI 10.1007/978-94-007-0231-8 3,
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1.1 Modes of Combustion

Most existing large-eddy simulations have been performed for single-phase combus-
tion, where air is used to oxidise gaseous fuels like hydrogen, methane, or natural gas.
One normally distinguishes the premixed and the non-premixed combustion modes,
although most engineering applications burn a partially premixed fuel/air mixture.
In non-premixed combustion, a homogeneous fuel air mixture enters the combustion
chamber, where a thin premixed flame front propagates through the reactants. The
conditions of premixed combustion are ‘well-defined’ since the fuel and oxidiser are
perfectly mixed on a molecular level, so a flame can be tuned to minimise the emis-
sion of pollutants like carbon monoxide (CO) or nitric oxides (NOx). As a result,
premixed flames are often used in advanced low-emission combustors, although the
stabilisation of premixed flames is often difficult. In some cases, strong accoustic in-
stabilities have been observed in premixed flames, which can destroy the combustion
device.

In the non-premixed mode, fuel and oxidiser are only mixed in the combustion
chamber, where the fast chemical reaction is limited by the rate of molecular mix-
ing. Such non-premixed flames are safe and stable, as only a very small amount of
combustible mixture is available in the mixing layer at any time. However, pollutant
formation is much harder to control as the fuel-air mixture is no longer well-defined.
In recent years, non-premixed flames were often replaced with premixed flames to
meet newly introduced pollution legislation.

In real engineering applications such as gas turbines or internal combustion en-
gines, one usually encounters some level of premixing and inhomogenity, so that the
flames will burn in a partially premixed way. However, the mode of combustion de-
termines which combustion models can be used and hence what level of error will
result.

2 Combustion LES

The major quality problem with Combustion LES is the introduction of a wide range
of chemical and mixing time-scales, that increase the computational cost and require
additional closure modelling.

However, most combustion devices are relatively ‘LES friendly’, as the hard-to-
model near-wall flow is usually of little interest near the flames: a burner is usually
designed to minimise the heat-load on the flame’s confinement and to keep the flame
from extinguishing near walls, which would otherwise lead to the emission of un-
burned hydrocarbons. This means that in many combustion devices, the flow near
walls can be ignored, or at least does not need to be described accurately. However,
walls can be critical for certain burner geometries, for flame stabilisation, and for
the occurance of flash-backs, and very accurate wall-modelling may be required if
such phenomena are to be investigated. A further reason for the ‘LES friendliness’ of
many combustion devices is that classical non-premixed combustors are usually de-
signed to burn stably for a wide range of operating conditions in terms of flow rate,
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pressure, and fuel composition. The result is a very robust flame for which small
errors in the simulation should not alter the results too much.

However, Combustion LES often suffers from numerical instability due to the
large density gradients between the burned and unburned gases, and the rapid expan-
sion due to heat release. Instabilities are also related to the description of convec-
tive transport, where non-oscillating schemes must be applied for reactive scalars to
avoid excessive fluctuations in dependent quantities. An example would be the den-
sity’s dependence on mixture fraction f , a scalar that describes the mixing of fuel ( f
= 1) and oxidiser ( f = 0). For many fuels, the stoichiometric mixture fraction is so
low (e.g. fst ≈ 0.055 for methane) that an absolute error of only 0.05 could reduce
the density from that of ambient air to that at adiabatic flame temperature.

Extending large-eddy simulation for chemically reacting flows requires changes
to the flow-solver, which must cope with variable density and viscosity. For air flames
at atmospheric pressure, density ratios of eight between the unburned fuel or oxidiser
and the hot burned gas are common. In many cases, the reactants and products will
only be separated by a thin premixed flame front, so that density ‘jumps’ can occur
that are similar to shocks in super-sonic flows. The resulting gradients and curvatures
require that scalar convection is discretised by non-oscillating schemes such as ENO
or TVD. Although the density field of a flame is very inhomogeneous, most simu-
lations still apply a low-Mach assumption to achieve a less restrictive CFL criterion
for the time-step width. In such cases, ‘incompressible’ is interpreted as ∂ρ/∂ p = 0
with ∂ρ/∂T < 0. The high temperature resulting from combustion will significantly
increase viscosity, which can impose severe limits for the time-step width, in particu-
lar when cylindrical grids are used. (Such grids are very common as most laboratory
flames are stabilised on axi-symmetric burners.) The density and viscosity depend
on the chemical state and must be provided from the combustion model. In general,
only combustion models are suitable for LES where the density does not depend too
sensitively on other variables, as strong spurious expansion may induce velocities
much higher than what is physically realistic, leading to serious stability problems.

2.1 Modelling in the limit of very fine grids

Normally, combustion and diffusive transport occur on scales that are too small to be
resolved, leading to a closure problem that is often as hard as for RANS methods.
However, one will often achieve sufficient resolution to locally resolve transport and
reaction, and the models must remain consistent even for very fine grid resolutions.
Ensuring this consistency is particulary hard for classical RANS models that are now
applied with LES.

Convergence to DNS for premixed combustion

The need for a model to stay consistent in the limit of very fine grids (i.e. approach-
ing DNS) can easily be outlined for premixed flames. For premixed flames, a clas-
sical approach is based on the Bray-Moss Libby (BML) [6] concept that a premixed
flame is sufficiently thin to treat it as an interface between reactants and combustion
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products, which means that the probability of finding species that undergo reaction
becomes zero. This assumption holds well for RANS simulations and for LES on
coarse grids, but many simulations will actually resolve the typical flame thickness
of the order of 0.1 mm. In such highly resolved large-eddy simulations, combus-
tion models that are based on the BML analysis will lead to large errors near the
flame-front. Most flame surface density (FSD) models (e.g. [1, 4, 8]) as well as the
G-equation level-set approach [22, 24] fall in this category, and while they have
proven to be elegant and successful in RANS simulation, great care is required in
their application to highly resolved LES.

Convergence to DNS for non-premixed combustion

In non-premixed combustion, a flame is established at the mixing-layer between fuel
and oxidiser, where stoichiometric conditions can be found. Non-premixed combus-
tion is limited by the rate of mixing, which means that fuel and oxidiser are assumed
to react as soon as they meet, since the mixing takes far longer than the reaction.
In many cases, non-premixed combustion is modelled using a flamelet approach ac-
cording to Williams [28] and Peters [21] or the CMC technique of Bilger [2] and
Klimenko [17], using Bilger’s mixture fraction [3]. The mixture fraction f gives the
local ratio of atomic mass from the fuel nozzle to the atomic mass from the air-
coflow, for which a transport equation must be solved.

In LES, the subgrid distribution of the mixture fraction is not known. However,
the thermo-chemistry depends on the mixture fraction in a non-linear way so the
a subgrid distribution must be known to calculate the filtered chemical state. (For
example, the temperature in an LES cell of mixture fraction 0.5 would be different
if the ‘left’ half was filled with fuel and the ‘right’ half was filled with air, or if the
entire cell was filled with a homogeneous and hence burned mixture). It is common
practise to use the mixture fraction mean and variance to parameterise an assumed
distribution based on β -functions, Gaussian fuctions and top-hat functions. (A Dirac
function would correspond to a fully resolved DNS.) Most large-eddy simulations
(including those by the author) of non-premixed combustion have so far used the
β -function in the same way as in RANS.

However, Oefelein and Frank [12] have recently performed a very detailed exper-
imental and computational analysis of instantaneous scalar fields, in which they con-
firm that very small scalar dissipation structures exist, which are very hard to model.
However, they have also observed that many of these scalar dissipation structures
correspond to mixing between very similar mixture fractions, so that the mixture
fraction distribution within an LES cell can be relatively narrow. Such a narrow dis-
tribution is somewhat inconsistent with the β -function that would normally assume
a mixture fraction distribution between zero and one.

Floyd et al. [11] have further analysed the implications of using a β -function
in LES. They found that the β -function is much less compatible with LES than
with RANS, due to the conceptual differences between the two approaches. The
β -function leads to strong contradictions in the LES context, whereas it is a very
powerful and elegant model for RANS. Floyd et al. [11] have shown that in the LES
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context, a β -function would imply infinite scalar gradients and hence infinite rates of
scalar dissipation and mixing. It is also well known that a β -function is not suitable
for multi-stream mixing unless an additional equation is solved, but this constraint
is less severe for RANS than for LES, where areas of relatively homogeneous mix-
ture can be found throughout the computational domain. Such locally homogeneous
areas cannot be described by a β -function that always spans over the entire mixture
fraction range, from zero to one. Floyd et al. [11] have tried to analyse how severe
this constraint is by applying the assumed β -function model and the Smagorinsky
model to a synthetic scalar field based on a sine wave of wave-length λ as shown
in Fig. 1. For this field, an FDF that spans the entire mixture fraction range (like the
β -function) can only be justified if the filter-width Δ is larger than one half the wave-
length (Δ > 1/2λ ). However, Pope’s recommendation that an LES should resolve at
least 80% of energy can only be achieved for filters smaller than a certain threshold.
For a top-hat filtered sine-wave, the energy content of the filtered wave decays with
filter width Δ according to eq. 1:

Esin(x)

Esin(x)
=
(

2
Δ

sin
Δ
2

)2

(1)

According to Eq. 1, approximately 80 % of energy is left for a filter-width of one
quarter of the wave-length (π/2), so that the filter must be finer than this (Δ < 1/4λ ).
There is therefore no filter width Δ for which the β -function could be consistent with
an LES – as illustrated in Fig. 2.

Interestingly, with LES one can circumvent the before-mentioned problems of
the β FDF by assuming a much simpler top-hat FDF, which also offers computa-
tional advantages. Firstly, a top-hat FDF is much easier to accurately integrate than
a β -function for situations where the variance approaches its minimum or maximum
values. Secondly, pre-integrating a lookup table with a top-hat FDF does not add a
new dimension to the original table as would be the case with a β -function, so that
effectively the dimensionality of the lookup table will be one half that of a table for
the β -function. This greatly reduces the memory requirements in situations where
more than one parameter affect the thermo-chemical state [11].

3 Quantifying Errors

To manage the quality of combustion LES, similar methods are available as for non-
reactive LES. With LES becoming available in many commercial CFD codes, indus-
try becomes interested in applying LES and as a result, the quality of these simula-
tions must be managed.

3.1 Quality Estimators and Error Estimators

In recent years, several error-indicators have been developed for LES, which attempt
to provide insight into whether a given simulation should be trusted. Such error in-
dicators would ideally be available in a truely predictive way, without requiring any
further reference data.
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Fig. 1. A filtered and an unfiltered sine wave. A filter-width of at least Δ = λ/2 = π is required
to cover the entire mixture fraction range 0 ≤ f ≤ 1. The (tophat-) filter width Δ must not be
larger than Δ ≈ λ/4 = π/2 to maintain 80% of scalar energy. The shaded bands have a width
of π/2 = λ/4.

Fig. 2. Ranges of validity for the Smagorinsky model and for the β FDF model for a wave
of wave-length λ according to [11]. There is no filter-size Δ for which both models can be
applied at the same time.

The currently existing indicators (e.g. [7, 16, 19]) are useful and can help to
appreciate the problems in a given LES. A positive assessment from any of these
indices is possibly a necessary requirement for an accurate LES, but a high quality
index is not a sufficient criterion: most error-estimators are necessarily based on
modelled quantities, which cannot be relied upon if the grid is coarse. Hence, an
error-indicator may imply that a solution is ‘good’ where in reality, the grid was
under-resolved.

For combustion LES, there are some special issues with these error-indicators.
Firstly, combustion LES normally relies on stabilised numerical descriptions, for ex-
ample using time-implicit schemes or total variation diminishing schemes to avoid
numerical oscillations in the scalar fields. These ‘stabilised schemes’ can induce ar-
tificial dissipation beyond the physical dissipation due to molecular viscosity and
turbulent viscosity. As a result, an error-estimator that is (even implicitly) based on
viscosities will be biased by the effect of ‘numerical viscosity’ and numerical dissi-
pation, so that the error-estimator would over-estimate a simulation’s quality.
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The heat release due to combustion induces expansion of the gases, and very
often excessive expansion results from numerical errors in both the mixing and com-
bustion models. These increased velocity fluctuations will contribute to the resolved
velocity fluctuations while hardly contributing to the turbulent viscosity, so that an
error-estimator would be likely to over-estimate the level of quality.

Overall, error estimators are a very useful step towards quality managed LES,
and they can help to identify insufficient grid resolution. However, one must not rely
on such quality estimates; they are not sufficient. In particular, such indicators must
not be used to compare or tune LES subgrid models, as the ‘highest’ quality would
falsely be observed for the (eddy-viscosity) model yielding the smallest turbulent
viscosity: if an error-estimator was abused to tune the Smagorinsky constant Cs, the
resulting optimal value would be determined as Cs = 0, at least if the simulation
remains stable.

3.2 The Error Landscape

Fig. 3. Configuration of the Sydney Bluff-Body Burner [9, 10]. A jet in the centreline pro-
vides fuel that is burned in the recirculation zone downstream of the cylindrical bluff-body. A
coflow-provides the oxidiser to the recirculation zone.

A very interesting approach for the analysis of computational errors is based on
the concept of an error landscape, as demonstrated by Meyers et al. [19] for decaying
homogeneous isotropic turbulence. The approach is currently extended [15] for the
complex variable density flow in the Sydney Bluff-Body flame [9, 10, 13] illustrated
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in Fig. 3. The error landscape is normally based on deviations from DNS results,
but it can also be calculated in comparison to experimental data [5, 14]. The result-
ing error landscape can help analyse computational and modelling errors, but as it
needs a set of reference data, it is not a complete tool for the quality management of
predictive simulations.

Fig. 4. Concentration of the hydroxyl (OH) radical for different values of the Smagorinsky
constant (Cs = 0.173 as suggested by Lilly [18]). In its excited state (OH*), hydroxyl emits
UV light.

For the Sydney bluff body flame, error landscapes were constructed for seven
different values of the Smagorinsky parameter [0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 2.0] ·
Cs = 0.173 [18] and five different sets of grids with [0.3,0.625,1.48,5,40] million
cells and resolutions of [2.5,2.0,1.5,1.0,0.5] mm. Constructing the error landscape
required a total of 35 simulations and 2.7 years of CPU time, which is approximately
half the computational cost that would be required for the ‘next’ grid refinement to
0.25 mm resolution with 320 million cells. The simulations were performed using the
efficient parallel PsiPhi LES program, which permitted simulations with 40 million
cells on 12 CPUs in only 3200 CPU hours. An overview of all simulations is given
in table 3.2.

Figure 4 illustrates the effect of the Smagorinsky parameter Cs on the concentra-
tion of the hydroxyl radical OH, that only exists close to the flame-front. For large Cs,
the flame is hardly wrinkled as the eddy viscosity has dampened most of the small
scale turbulence.

Figures 5 and 6 show a comparison of the radial velocity fluctuations predicted
at different axial positions x/D for different grid resolutions and for two extrem
values of the Smagorinsky constant Cs = 0.043 (Fig. 5) and Cs = 0.346 (Fig. 6).
As expected, the fluctuation levels are largely over-predicted for the small model-
constant that results in insufficient dissipation (Fig. 5), whereas the effect of too
much dissipation can be clearly seen in Fig. 6. For both (extreme) values of Cs, the
results converge with grid-refinement towards the experimental data.
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Figures 7 and 8 show a comparison similar to that in figs. 5 and 6, albeit for
the mean temperature. These plots clearly show that the mean temperatures are sig-
nificantly less affected by the Smagorinksy constant than the velocity fluctuations,
although the differences between the grid resolutions are still significant.

The error landscapes were calculated for the means and fluctuations of the three
velocity components, of mixture fraction, and of the temperatures. Figure 9 shows
an overall error landscape that was calculated based on an equal weighting of the
different (normalised) quantities [15]. The error landscapes are consistent with that
presented by Meyers et al. [2], showing the expected large errors on coarse grids
and for extreme values of the Smagorinsky parameter, with a minimum for the op-
timal Smagorinsky value. However, the landscape is no longer smooth for coarse
grids, implying that the error only converges in a predictable monotonic way for
fine grid-resolutions. In turn, this non-monotonic convergence implies that quality-
indices calculated from coarse-grid simulations cannot be expected to be accurate,
stressing that a positive result from any error-estimator is not sufficient.

Table 1. A total of 2.7 CPU years were used for the following simulations. (Cs = 0.173)

# cells Δ 1
4Cs

1
2Cs

3
4Cs Cs

5
4Cs

6
4Cs 2Cs CPU

mm t/h t/h t/h t/h t/h t/h t/h cores

320k 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1
625k 2.0 6 6 6 6 6 6 6 1

1.48M 1.5 28 28 28 28 28 28 28 4
5.00M 1.0 150 150 150 150 150 150 150 4
40.0M 0.5 3.2k 3.2k 3.2k 3.2k 3.2k 3.2k 3.2k 3×4

t/h 3.4k 3.4k 3.4k 3.4k 3.4k 3.4k 3.4k

4 Conclusions

This paper has outlined the need for combustion LES, and the major modes of non-
premixed, partially premixed, and premixed combustion were described. Some spe-
cial features of combustion LES that affect the simulation error were highlighted, in
particular the need for stabilising numerical discretisation schemes. The paper illus-
trated that even though combustion typically occurs on very small scales that require
modelling just like RANS techniques, combustion models developed for the RANS
of high Reynolds number flow can often not be used in LES, as these models do not
converge properly with grid refinement. These convergence problems were discussed
in great detail for the classical assumed β FDF, which has been demonstrated to only
be appropriate in situations where the filter-width is coarser than it should be for an
accurate LES. The paper also discussed the applicability of error-indicators, and con-
cludes that the resulting error-indices are not a sufficient indication for an accurate
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Fig. 5. Fluctuations in the radial velocity for a very low Smagorinksy constant of Cs = 0.043;
showing the expected over-estimation of the fluctuation level. The computational data was
sampled at the same points as the experiments.

Fig. 6. Fluctuations in the radial velocity for a very high Smagorinksy constant of Cs = 0.346;
showing the expected under-estimation of the fluctuation level. The computational data was
sampled at the same points as the experiments.
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Fig. 7. Mean temperature fields resulting from a very low Smagorinksy constant of Cs = 0.043.
The computational data was sampled at the same points as the experiments.

Fig. 8. Mean temperature fields resulting from a very high Smagorinksy constant of Cs =
0.346. The computational data was sampled at the same points as the experiments.
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Fig. 9. Global error landscape calculated as the mean of the normalised individual error land-
scapes.

simulation, and that the error-estimators can be expected to be less reliable in com-
bustion LES. Finally, the paper outlines the application of Meyers’ error landscape
approach to the simulation of a flame, where the reference data was not obtained
from DNS but rather from experiments. The error landscapes obtained were found
to be consistent with those generated by Meyers for turbulence dissipation; albeit the
landscapes in the complex flows have somewhat less distinct features than Meyers’
error landscape.
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Summary. The analysis of the subgrid energy transfer which is traditionally accomplished
with the turbulent kinetic energy [1], and with the energy spectrum [2], is performed by a scale
energy balance. A generalized Kolmogorov equation for filtered velocity field will be applied
and discussed. The results will show which are the effects of subgrid scales on the resolved
motion in both physical and scale space, singling out the prominent role of the filter scale
compared to the cross-over scale between production dominated scales and inertial range, lc,
and the reverse energy cascade region ΩB.

Key words: Filtered Kolmogorov equation, Subgrid-energy transfer

1 Introduction

In the Large Eddy Simulation the energy carrying structures that are directly affected
by the boundary conditions are computed explicitly, while the small scales are mod-
eled. Since the small scales tend to be more homogeneous and isotropic than the
large ones, it is thought that relatively simple and universal models can be used to
describe them. The most important feature of such models should be their ability
to reproduce accurately the energy transfer between resolved and unresolved scales.
Most used LES models assume that the main role of the subgrid scales is to remove
energy from the large scales and dissipate it via viscous forces accordingly to the
idea of an inertial range in the spectrum. Indeed, as asserted by the 4/5 law, in the
inertial range the energy flux is independent of the scale under consideration, is from
large to small scales and it is equal to the energy dissipation. This picture is claimed
to be highly universal and most of the LES models attempt to reproduce it.

This approach has given good results in homogeneous and in unbounded shear
flows but less in wall flows where difficulties arise. Indeed, in this case an energy
cascade through scales and spatial momentum transfer occur simultaneously and a
model should be able to capture subgrid scale effects on both these energy processes.
Furthermore, as recently quantified in Marati et al. [3], in wall-turbulence the picture
of the Richardson energy cascade is strongly modified and a reverse energy cascade
is observed in the buffer layer.
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A tool for the study of these phenomena is the equation for the filtered second
order structure function. This generalized Kolmogorov equation allows to describe
the scale-dependent dynamics when spatial fluxes and inhomogeneity are present.
Furthermore, it is possible to quantify how the framework of the classical energy
cascade is modified by anisotropy and inhomogeneity. This is a crucial point in a
context of subgrid energy transfer modeling.

2 Analysis of the Direct Numerical Simulation data base

The present data set is a turbulent channel flow at Reτ = uτh/ν = 300, where uτ is
the friction velocity, ν is the kinematic viscosity and h is half the channel height.
The simulations have been carried out with a pseudo-spectral code. Details of the
numerical scheme can be found in [4]. The computational domain is 2πh×2h×πh
with 512×193×256 grid points respectively, corresponding to a resolution in wall
units in the homogeneous directions of Δx+ = Δz+ = 3.64, suited to investigate the
velocity field up to the dissipative scale.

Energy transfer, production and dissipation are the relevant processes in turbu-
lence. They take place in various ranges of scales and, for inhomogeneous flows, may
change appreciably in different flow regions. As a consequence, a full understanding
of these interacting phenomena requires a detailed description of the processes oc-
curring simultaneously in physical and scale space. To analyze the energy content of
a given scale as function of the spatial position, we study the second order structure
function 〈δu2〉, where δu2 = δuiδui and δui = ui(xs + rs)−ui(xs) is the fluctuating
velocity increment. It can be thought as a scale energy at r =

√
rsrs. It is a function

of the separation vector ri and of the mid-point Xci = 1/2(x′i + xi), allowing to de-
scribe the scale-dependent energy processes in the presence of inhomogeneity. The
governing equation of 〈δu2〉 in wall flows is the generalized Kolmogorov equation
[5], which for a flow with longitudinal mean velocity U(y) reads

∂ 〈δu2δui〉
∂ ri

+
∂ 〈δu2δU〉

∂ rx
+2〈δuδv〉

(
dU
dy

)∗
+

∂ 〈v∗δu2〉
∂Yc

=

−4〈ε∗〉+2ν
∂ 2〈δu2〉
∂ ri∂ ri

− 2
ρ

∂ 〈δ pδv〉
∂Yc

+
ν
2
∂ 2〈δu2〉
∂Yc

2 (1)

where an asterisk denotes a mid-point average, i.e. u∗i = (ui(x′s)+ ui(xs))/2 and the
Yc dependence is associated with inhomogeneity. A numerical analysis of equation 1
was performed in [3] and in the following paragraphs for the sake of clarity we will
report a similar analysis performed on this new dataset. The generalized equation 1
can also be rewritten as

∇r ·Φr(r,Yc)+
d

dYc
Φc(r,Yc) = s(r,Yc) (2)

where Φr = 〈δu2δu〉 + 〈δu2δU〉 − 2ν∇r〈δu2〉, Φc = 〈v∗δu2〉 + 2〈δ pδv〉/ρ −
νd〈δu2〉/2dYc and s = 2〈δuδv〉(dU/dy)∗ −4〈ε∗〉. Two kind of scale-energy fluxes
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Fig. 1. Scale energy balance 3 in the log-layer y+ = 160 (left) and in the buffer layer y+ = 20
(right). −Πe (solid line), Ee (dashed line) and −Tr (dashed-dotted line).

appear, namely Φr which identifies the transfer through the scales and Φc which is
the flux of scale energy in physical space. These fluxes balance with a source term s
which accounts for energy production and dissipation.

To highlight the scale processes , it is useful to consider the r-averaged form of 1.
In a channel flow however the integration over a ball of radius r is unfeasible, hence
the r-average is performed on a square domain of side r belonging to wall parallel
planes. The r-averaged form of 1 follows as

Tr +Π +Tc = E +Dr +P+Dc (3)

where Tr, Dr are the contributions to the scale transfer due to the inertial fluctua-
tions and viscous diffusion. Tc, Dc and P are the inhomogeneous contributions to
the spatial flux related to the inertial fluctuations, viscous diffusion and pressure-
velocity correlation. Π is the energy production by mean shear and E is the dissipa-
tion. It is useful to group together some terms of 3 in a sort of effective production,
Πe = Π + Tc −P and modified dissipation rate, Ee = E + Dr + Dc. Therefore, the
r-averaged balance can be rewritten as Πe(r,Yc)+Tr(r,Yc) = Ee(r,Yc), whose analy-
sis permits us to characterize the different regions of the channel in term of scale by
scale dynamics.

In the logarthmic layer, the large-scale production range is followed by a range
dominated by the inertial energy cascade which is closed by dissipation, see left plot
of Fig. 1. A cross-over scale lc which splits scales into an inertial range at small r
from a production dominated range at large r is identified as Π(lc,Yc) = Tr(lc,Yc). lc
is dimensionally related to the shear scale Ls =

√
ε/|S3| which is found crucial for

the small scale isotropy recovery [6] and for the subgrid scale stresses modelization
[7]. Instead, in the buffer layer a direct scale-energy cascade at small scales and an
inverse cascade at large scales exists see also right plot of Fig. 2. More details about
the reverse energy cascade can be found in [3] [2]. Such process can be related to the
dynamics of the coherent structures which live in this region and are responsible to
build up Reynolds stresses with regeneration cycle of large structures and breakdown
to small scales.

In a context of Large Eddy Simulation, the so-called subgrid dissipation is in-
terpreted as the rate of energy flux between scales in the inertial range. Therefore,
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Fig. 2. Left: characteristics lenght scales in the channel; the cross-over scale lc (circle) and the
reverse energy cascade plane ΩB (grey region). Right: energy cascade, Tr(r+,y+).

most of the LES models attempt to reproduce the energy cascade assuming isotropy
and homogeneity at small scales of any flows. In wall-turbulence the scale dynam-
ics is dominated by the spatial energy flux and production by mean shear and these
processes strongly modify the energy cascade up to a reverse energy cascade in the
buffer layer. Therefore, the assumption of a inertial range without production and
spatial fluxes drops out when dealing with wall flows and should be taken into ac-
count in LES models.

In order to rationalize the present scenario it is suitable to identify the various
regions of the (r+,Y +

c )-plane where the relevant processes take place. Firstly the
curve lc(y+) identifies a production dominated region at large r+. Second, the region
ΩB of the plane (r,y) where the energy cascade term changes sign leading to a re-
verse energy cascade from small to large scales. The reverse energy cascade will be
shown responsible of the bakward energy transfer observed in Large Eddy Simula-
tion. This phenomena leads to the opposite energy exchange between subgrid and
resolved scales usually reproduced by the LES models which are based on the clas-
sical Richarson energy cascade. Both lc and ΩB are shown in the left plot of Fig. 2
as function of the wall distance.

3 The Kolmogorov equation for filtered velocity field

The analysed data are filtered with respect to the wall-parallel directions, using a
sharp cutoff filter in wavenumber space, whose corresponding scales in the homoge-
neous directions are equal to l+F = 20,30,60. This filter allows to divide the turbulent
kinetic energy into the sum of the resolved energy and subgrid energy without the
cross-product, i.e. 〈u2〉 = 〈ū2〉+ 〈u2

sgs〉 and 2〈ūusgs〉 = 0 where 〈·〉 stands for aver-
age in the homogeneous directions. The evolution equation of the resolved turbulent
kinetic energy, 〈ū2

i 〉, is

1
2

d
dy

〈ū2
i v̄〉+ 〈ūv̄〉dU

dy
= − 1

ρ
d
dy

〈 p̄v̄〉+ ν
2

d2

dy2 〈ū
2
i 〉−〈ε̄〉− d

dy
〈ūiτi,2〉−〈εsgs〉 (4)
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Fig. 3. Left: y-behavior of production and dissipation. Right: subgrid dissipation 〈εsgs〉 and in
the inset [(P− P̄)− (D− D̄)]. DNS (solid line), l+F = 20 (dotted line), l+F = 30 (dashed line)
and l+F = 60 (dashed-dotted line).

where τi j = uiu j − ūiū j are the subgrid stresses, ε̄ = ν(∂ ūi/∂x j)(∂ ūi/∂x j) is the
resolved viscous pseudo-dissipation, εsgs = −τi j S̄i j is the subgrid dissipation with
S̄i j = 1/2(∂ ūi/∂x j +∂ ū j/∂xi) the resolved strain-rate tensor.

In analogy with 1, the evolution equation of filtered second order structure func-
tion, 〈δ ū2〉 = δ ūiδ ūi, for a turbulent channel flow reads as

∂ 〈δ ū2δ ūi〉
∂ ri

+
∂ 〈δ ū2δU〉

∂ rx
+2〈δ ūδ v̄〉

(
dU
dy

)∗
+

∂ 〈v̄∗δ ū2〉
∂Yc

= −4〈ε∗〉

+2ν
∂ 〈δ ū2〉
∂ ri∂ ri

− 2
ρ

∂ 〈δ p̄δ v̄〉
∂Yc

+
ν
2
∂ 2〈δ ū2〉
∂Yc

2 −4〈ε∗sgs〉−4
∂ 〈τ∗i jδ ūi〉

∂ r j
− ∂ 〈δτi2δ ūi〉

∂Yc
. (5)

Equation 5 allows to analyze how the resolved processes change as function of lF in
different regions and scale range and to appreciate the subgrid stresses both in phys-
ical and scale space. The three new terms represent the exchange of energy between
grid and subgrid scales, a redistribution of resolved scale energy in the spectrum of
scales and in physical space, respectively.

The r-averaged form of equation 5 follows as,

T̄r +T sgs
r + Π̄ + T̄c +T sgs

c = Ē + D̄r + P̄+ D̄c +Esgs (6)

where together with the processes of Eq. 3 the effects of subgrid stresses are the
redistribution of energy in scales, T sgs

r , and physical space, T sgs
c and the draining or

sourcing of resolved energy, Esgs. It is useful again to group together some terms and
the r-averaged balance 6 follows as

(
Π̄e +T sgs

c

)
+(T̄r +T sgs

r ) = (Ēe +Esgs) . (7)

In the following, a detailed analysis of the scale balance 6 is performed. Energy
transfer in the resolved motion will be discussed and emphasis will be spend on the
action of the subgrid stresses on the resolved motion in both physical and scale space,
underlining the prominent role of the filter scale compared to the cross-over scale lc
and the region of reverse energy cascade ΩB(r,y).
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Fig. 4. Scale-energy balance at y+ = 160 (top) and y+ = 12 (bottom), for l+F = 30. Left: terms
of 7. Filtered field: Ēe dashed line, −Π̄e solid line, −T̄r dashed dotted line, −T̄ sgs

r dotted
line, −T̄ sgs

c dashed-dashed-dotted line and Ēsgs dashed-dotted-dotted line. Unfiltered field: Ee

triangle down, −Πe triangle up and −Tr circle. Right: effective production. Filtered field: −Π̄
solid line, −P̄ dotted line, −T̄c dashed line and −T sgs

c dashed-dotted line. Unfiltered field:
−Π circle, −P triangle down and −Tc triangle up. Inset: effective dissipation. Filtered field:
Ē solid line, Esgs dashed line, D̄r dashed-dotted line and D̄c dotted line. Unfiltered field: E
diamonds, Dr circle and Dc square. The vertical solid and dashed line are lc and lF .

In the left panel of Fig. 3 the resolved energy production by mean shear 〈ūv̄〉dU/dy
and the resolved viscous dissipation 〈ε̄〉 are shown for the three values of the filter
length l+F . In the core flow, the former remains unaltered and a depletion of the lat-
ter at increasing filter scale is observed. Whereas, approaching the wall both these
quantities decrease with l+F , indeed, as the shear scale diminishes, Ls ≈ ky+, the pro-
duction involves more and more the subgrid scales. The right panel of Fig. 3 shows
〈εsgs〉 at the same values of l+F . From the inspection of the plot the role of the subgrid
scale energy dissipation is deduced. Resolved turbulent kinetic energy is drained in
the core flow and in the viscous sublayer while in the buffer layer, for the larger filter
scales, it becomes opposite in sign in an increasing region, implying that the subgrid
scales feed the large scale of motion, i.e. a backward energy transfer occurs.

The backward energy transfer can be related to the excess of turbulent energy
in the subgrid scales. Let us consider, [(P− P̄)− (D− D̄)], where P̄ = 〈ūv̄〉dU/dy,
D̄ = ε̄ and P = 〈uv〉dU/dy, D = ε . This quantity represents somehow the net balance
of energy production and dissipation acting in the subgrid scales. From the inset in
the right panel of Fig.3, it is observed that dissipation is dominant in the subgrid
scales in the core flow and the viscous sublayer, whereas, in the buffer layer, produc-
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tion overcomes the viscous effects. The corrispondance between the region where
[(P− P̄)− (D− D̄)] > 0 and the region where εsgs > 0 is remarkable.

The scale energy balance 6 in the log-layer is shown in the top part of Fig. 4. At
this location the filter scale is always smaller than the cross-over scale, lF < lc, see
2, and the subgrid scale dynamic reduces to the Richardson energy cascade. Such
condition leads to a preservation of the statistical properties of the filtered field, i.e.
Ee ≈ Ēe +Esgs, Πe ≈ Π̄e +T sgs

c , Tr ≈ T̄r +T sgs
r . Indeed, for lF < lc the energy produc-

tion in the subgrid scales is negligible and the resolved energy production equals the
unfiltered process, Π ≈ Π̄ . Therefore, the rate of energy exchange between resolved
and subgrid motion, Esgs, is exclusively determined by the viscous dissipation in the
subgrid scales, implying that E ≈ Ē +Esgs. The role of the filter position in the log-
layer is exploited in the top panels of Fig. 5. The same phenomenology is observed
also in the bulk of the flow, not shown here, where lc → ∞.

The budget in the buffer layer is reported for y+ = 12, corresponding to the peak
of the production. In this region the cross-over scale is very small and the filter scale
is always larger than lc. Furthermore the filter scale lies in a range of scales where a
reverse energy transfer occurs, see ΩB in 2.

From the bottom of Fig. 4, it is shown that a large part of the production acts in
the subgrid scales, Π̄ Π . Indeed, approaching the wall lc reaches the Kolmogorov
scale η , as shown in Fig.2 and the rate of energy exchange between grid/subgrid
motion, Esgs, is not determined by the viscous dissipation, but by the balance be-
tween production and dissipation in the subgrid scales, therefore Ē +Esgs  E. The
resolved field cannot reproduce the unfiltered dynamics because most of the pro-
cesses act in the subgrid scales and, in the buffer layer, the role of Esgs is strongly
modified up to a backward energy transfer, Esgs > 0. The position of filter scale for
y+ = 12 lies in the reverse energy cascade region, ΩB, leading to an energy flux from
subgrid to resolved scales. In this range the nonlinear interactions in the resolved
scales do not reproduce the energy flux across scales, Tr, and the spatial flux Tc.
Whereas, the subgrid stresses significantly act in the energy redistribution with T sgs

r

and T sgs
c meaning that most of the resolved processes depends on the scales below

l+F that, in the wall region, are those responsible for the coherent structures. Infact,
from the bottom plots of Fig. 5, it is interesting to observe that the role of T sgs

r and
T sgs

c for l+F = 60 is very significant to capture the energy redistribution mechanisms,
while for l+F = 30 is negligible. Indeed, only for l+F = 60 the subgrid scales lies in
the reverse energy cascade region, ΩB. The effects of nonlinear interactions T sgs

r are
shown in the left plots of Fig. 6 as function of the wall-distance, where also Tr and
T̄r appear. In the core flow the transfer is only due to the nonlinear interactions in the
resolved scales, T̄r, while T sgs

r is negligible, also for other scales and filters consid-
ered. Whereas approaching the wall, the subgrid interactions, T sgs

r , becomes more
and more significant. This analysis performed for the spatial fluxes Tc, T̄c and T sgs

c

lead to similar conclusions.
The common interpretation of Esgs = −τi j S̄i j is a measure of the rate of energy

transfer between scales larger and smaller than l+F . Indeed, from the right plot of
Fig. 6 showing 〈Esgs〉 for different filter lengths and wall distances, it is noticeable
that as lF approaches η , 〈Esgs〉 decreases since a larger fraction of dissipation occurs
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Fig. 5. Filter scale effects at y+ = 220 (top) and y+ = 25 (bottom). Left: l+F = 30: −Π̄e solid
line, Ēe dashed line and −T̄r dashed-dotted line. l+F = 60: −Π̄e triangle up, Ēe triangle down
and −T̄r circle. Right: l+F = 30: −T sgs

r solid line, −T sgs
c dashed-dotted line and Esgs dashed

line. l+F = 60: −T sgs
r circle, −T sgs

c triangle up and Esgs triangle down.

Fig. 6. Left: y-behaviour of Tr (solid line), T̄r (dotted line) and T sgs
r (dashed line) for r+ = 30

and l+F = 30. Right: Esgs(lF ) at different wall distances (right). The filled symbols correspond
to lF/lc = 1.

due to the resolved flow. When lF/η is large, 〈Esgs〉 increases monotonically up to
approach the crossover scale, lF/lc ≈ 1 where a maximum is observed. At higher
Reynolds number a plateau is expected whose extension measures the amplitude of
the inertial range.
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Fig. 7. Right: y-behavior of Esgs estimated with exact subgrid stresses (solid line) and with
Smagorinsky (dashed line) and Smagorinsky shear-improved (dotted line). Left: T̄r and T sgs

r
evaluated with the Smagorinsky (symbols), Smagorinsky shear-improved (lines) and with the
filtered DNS (solid lines). l+F = 30

4 Assessment of the LES models

In this section, the filtered Kolmogorov equation 5 will be presented as a new tool
for the assessment of LES models. According to the previous analysis, LES mod-
els should reproduce a backward energy transfer in the wall region if l+F lies in ΩB.
Hence, it is expected that dissipative models are not able to capture the correct sub-
grid stresses. Nonetheless, well-known isotropic eddy-viscosity models will be anal-
ysed. Moreover, a sharp Fourier cutoff in the homogeneous directions will be used
even if this is a very anisotropic filter.

Accordingly to the idea of isotropic recovery at small scales of all type of flow
for sufficiently large Reynolds number, the eddy viscosity models assume that the
energy exchange between resolved and subgrid scales is similar to the viscous dis-
sipation leading to subgrid stresses in the form, τi j − 1/3τkkδi j = −2νT S̄i j. Infact,
when isotropic conditions are recovered, equation 1 leads to an energy exchange
between resolved and subgrid scales,

∂ 〈δu2δui〉
∂ ri

∣∣∣∣
lF

= −4ν〈Si jSi j〉 (8)

which is similar to Esgs evaluated with eddy-viscosity, i.e. Esgs = −8νT 〈S̄i jS̄i j〉.
In this context, the classical Smagorinsky model assumes that νT = (CslF)2|S̄|

producing a non-zero eddy-viscosity in laminar flow regions. To alleviate these de-
ficiencies for wall-bounded flows, the Smagorinsky constant Cs is often multiplied
by a damping factor depending on the wall-normal distance. In other models like
Smagorinsky shear-improved [8], the eddy-viscosity takes into account mean-shear
effects and naturally decreases to zero at the wall, i.e. νT = (CslF)2(|S̄| − |〈S̄〉|).
These two models will be here considered.

The predicted subgrid stresses for l+F = 30 lead to a redistribution effect in phys-
ical and scale space, T sgs

r and T sgs
c , which are always negligible also in the buffer

when lF is in the region of the reverse energy transfer ΩB, see left panel of Fig. 7.
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No differences between the two models are observed in the predicted very small T sgs
r

and T sgs
c . Moreover the exchange between resolved and subgrid scales, right panel of

Fig. 7, is unable to reproduce the physical processes in the buffer layer. Indeed, the
assumption of an inertial range drops near the wall where the isotropic homogeneous
recovery is not present even at small scales, leading to the impossibility for both the
models to reproduce Esgs which exhibits a backward energy transfer. The relevant
difference between the two models is that Smagorinsky shear-improved model esti-
mates a lower value of Esgs, meaning that this model works better in the wall region.

5 Conclusions

A generalized Kolmogorov equation specialized for filtered velocity field has been
applied to filtered DNS data and to LES models. The results single out the prominent
role of the filter scale compared to the cross-over scale, lc, and the reverse cascade
region, ΩB, and the incapability of the eddy-viscosity models to reproduce the fil-
tered near-wall physics. The present tool appears to be appropriate to test the validity
of LES models to capture the relevant processes occurring in wall-turbulence both in
physical and scale space.

References
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A computational study of turbulent flow separation for
a circular cylinder using skin friction boundary
conditions
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Summary. In this paper we present a computational study of turbulent flow separation for
a circular cylinder at high Reynolds numbers. We use a stabilized finite element method to-
gether with skin friction boundary conditions, where we study flow separation with respect
to the decrease of a friction parameter. In particular, we consider the case of zero friction
corresponding to pure slip boundary conditions, for which we observe an inviscid separation
mechanism of large scale streamwise vortices, identified in our earlier work. We compare
our computational results to experiments for very high Reynolds numbers. In particular, we
connect the pattern of streamwise vorticity in our computations to experimental findings of
spanwise 3d cell structures reported in the literature.

Key words: Turbulent boundary layer, flow separation, General Galerkin method, a posteriori
error estimation, adaptive finite element method, skin friction boundary conditions

1 Introduction

The choice of boundary conditions at a solid wall is critical for accurate modeling
of turbulent flow, in particular to capture flow separation phenomena. Since full res-
olution of a turbulent boundary layer is out of reach, the standard way to handle the
problem is to divide the computational domain into: (i) an interior part, and (ii) a
boundary layer. In the boundary layer a simplified model of the flow is used to pro-
vide boundary conditions to the equations to be solved in the interior part. Boundary
conditions may be in the form of velocities or stresses, and the coupling between (i)
and (ii) may be one-way from (ii) to (i), or more closely coupled. Boundary layer
models are developed based on experimental data (e.g. velocity profiles or skin fric-
tion stresses), theory or computation (in a multiscale framework). Here we note in
particular Detached-eddy simulation [21] used for high Reynolds number separated
flow. There are also approaches relying on the numerical method to handle bound-
ary layer modeling, e.g. by a weak implementation of the no slip velocity boundary
conditions [16, 12]. For an overview of boundary layer modeling, see [1, 17].

M.V. Salvetti et al. (eds.), Quality and Reliability of Large-Eddy Simulations II,
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Viscous effects in the boundary layer are traditionally used as a mechanism to
explain flow separation, not only for low Reynolds numbers Re but also for high Re
where otherwise inertial effects dominate [19]. In particular, viscous effects in the
boundary layer are often presented as the resolution of the d’Alembert paradox [20],
seemingly disqualifying the inviscid Euler equations with slip boundary conditions
as a model for high Re flow. The significance of the boundary layer for explaining
turbulent flow separation was questioned in [11], where instead a mechanism for
inviscid separation was suggested based on exponential growth of streamwise vor-
ticity at separation. In particular, a new resolution of the d’Alembert paradox was
presented based on this instability of potential solutions at separation.

In [6, 11] preliminary computations for a circular cylinder showed that using
a stabilized finite element method, which we refer to as a General Galerkin (G2)
method, with slip boundary conditions, thus without the boundary layer, flow sep-
aration was observed with significant drag, in qualitative agreement with the high
Re experimental data available in the literature [22]. In this paper we follow up the
predictions of [11] for a circular cylinder at high Re, in the form of a computational
study where the goal is to (i) verify the results in [11] using two different adaptive
G2 methods, and (ii) to quantitatively determine drag for a circular cylinder with
slip boundary conditions. We use adaptive mesh refinement based on quantitative a
posteriori error estimation, taking into consideration both numerical errors from dis-
cretization and modeling errors from numerical stabilization. We note that using slip
boundary conditions corresponds to an approximation of small skin friction by zero
skin friction, and thus in particular this small skin friction is not part of the model
and cannot be determined.

If indeed a slip boundary condition, without the boundary layer, is a good model
for high Re flow separation, this would mean a breakthrough for turbulence simula-
tion, which would open for new advanced simulations in aero- and hydrodynamics.
We conclude the paper by comparing the computational results using slip boundary
conditions with experimental results for very high Re, where in particular we connect
the pattern of streamwise vorticity in our computations to experimental findings of
spanwise 3d cell structures.

2 Computational model

As the basic model for incompressible Newtonian fluid flow we consider the Navier–
Stokes equations (NSE) with constant kinematic viscosity ν > 0, enclosed in Ω ⊂R

3

over a time interval I = (0,T ]:

u̇+(u ·∇)u+∇p−νΔu = f , (x, t) ∈Ω × I,

∇ ·u = 0, (x, t) ∈Ω × I, (1)

u(x,0) = u0(x), x ∈Ω ,

with u(x, t) the velocity vector and p(x, t) the pressure, u0(x) initial data and f (x, t) a
body force. The stress tensor σi j = −νεi j(u)+ pδi j, with strain rate tensor εi j(u) =
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1/2(∂ui/∂x j + ∂u j/∂xi) and δi j the Kronecker delta function, and the relative im-
portance of viscous and inertial effects in the flow is determined by the Reynolds
number Re = UL/ν , where U and L are characteristic velocity and length scales.

The mathematical theory of NSE for small ν does not guarantee existence of
classical solutions, and in particular there are many open problems regarding the
limit ν → 0. For ν = 0 the system of equations (1) is referred to as the Euler equa-
tions, for which particular solutions can be constructed under certain assumptions
(e.g. potential solutions), but no general existence result is known.

For the turbulence simulations in this paper we use cG(1)cG(1), a G2 method
with linear interpolation in space and time described e.g. in [9] and demonstrated
for turbulence benchmark problems in [4, 10, 5, 8]. cG(1)cG(1) is an adaptive finite
element method with a posteriori error control, without any large eddy simulation
filtering of NSE or subgrid models, but with a numerical stabilization dissipating
kinetic energy proportional to the NSE residual.

For ν = 0, cG(1)cG(1) solutions connects to the mathematical concepts of a suit-
able weak solution [18, 3], or a dissipative weak Euler solution [2], with dissipation
from local non-smoothness of the solution, here in terms of residuals which are large
for non-smooth solutions.

3 Turbulent boundary layers

In our work [6, 7, 11] on boundary layer modeling we have chosen to apply a skin
friction stress as boundary condition, where we either use a weak implementation
[14, 16, 6], or we apply the no penetration (slip) boundary condition strongly together
with a weak implementation of the friction boundary condition. That is, we append
the Navier-Stokes equations (1) with the following boundary conditions:

u ·n = 0, (2)

u · τk +β−1nTστk = 0, k = 1,2, (3)

for (x, t) ∈ Γsolid × I, with n = n(x) an outward unit normal vector, and τk = τk(x)
orthogonal unit tangent vectors of the solid boundary Γsolid . We use matrix notation
with all vectors v being column vectors and the corresponding row vector is denoted
vT . The equation (3) corresponds to Navier’s slip law where the friction parameter β
can be related to a slip length, and if the tangent velocity u ·τk ∼ 1 then β ∼ Fh

f , with

Fh
f the skin friction stress of a computed solution on a mesh of size h.

With skin friction boundary conditions, the rate of kinetic energy dissipation in
cG(1)cG(1) has a contribution of the form

2

∑
k=1

∫ T

0

∫
Γsolid

|β 1/2u · τk|2 ds dt,

from the kinetic energy which is dissipated as friction in the boundary layer. We note
that since experimental studies indicate that skin friction vanish with increasing Re
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(normalizing the velocity and length scales), we model Re → ∞ by β ∼ Fh
f → 0,

so that the dissipative effect of the boundary layer vanish with Re. This connects to
the original idea of Euler of modeling high Re flow by an inviscid model with slip
boundary conditions. Using a G2 method for high Re where numerical dissipation
dominates the dissipation from the viscous term, we may as well drop the viscous
term altogether so that we effectively have the Euler equations. The question is now
if we for high Re similarly can drop the skin friction term at the boundary, resulting
in the slip boundary condition of the Euler equations?

4 Experimental results

As the Reynolds number increases different regions of the flow past a cylinder un-
dergoes transition to turbulence; the wake, shear layers and finally boundary layers,
causing a delayed separation and the so called drag crisis. In his treatise of flow
around circular cylinders [22], Zdravkovich refers to this high Re regime as the fully
turbulent state, and notes an “almost total lack of data” for this regime. The reason
is that to perform a high Re experiment either the length scale or the velocity need to
be increased, and whereas the size of wind tunnels sets a limit for the length scale,
compressibility effects limit the velocity that can be used while still considering the
flow to be incompressible.

But even though the use of wind tunnel experiments is limited for flow with
very high Re, this regime is the relevant one for a range of important applications;
from aerodynamics of cars and airplanes, to civil, offshore and wind engineering,
and geophysical flow.

Although limited, there are some experimental results available, from which con-
clusions can be drawn about the flow at these high Re, of particular interest here are
the following observations [22]:

1. Transition to turbulence in the boundary layers causes a delayed separation, with
associated decrease in mean drag of almost a factor 3; the so called drag crisis.

2. Associated with drag crisis is that the eddy formation in the wake is delayed
about 2-3 diameters downstream.

3. Large scale three dimensional wake structures are formed, of the same size as
the diameter, referred to as a spanwise cell pattern [15, 13] (with some pictures
also reproduced at p.182 in [22]).

In the next section we present computational results where an increasing Re is
modeled by decreasing the friction parameter β , with the goal of simulating drag
crisis by reproducing the characteristics of 1-3 above, without resolving the turbulent
boundary layers.

5 Computational results

We now report results from a computational study of the turbulent flow past a circular
cylinder at high Re. In particular we assume Re to be high enough for the numerical
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dissipation in cG(1)cG(1) to dominate the dissipation from the viscous term in NSE,
which is neglected in the computations. This assumption is consistent with a law of
finite dissipation with kinetic energy dissipation independent of Re beyond a certain
Re.

The computational domain is shown in Fig. 1, with D = 0.1, where we use an
inflow boundary condition of constant unit inflow velocity from left to right, and a
standard zero stress outflow boundary condition.

Fig. 1. The geometry of the test problem.

We compute over a time interval I = (0,50D), and to minimize the mesh de-
pendency of the computational results, we employ two different mesh refinement
strategies where we in each adaptive iteration refine 10% of the cells in the mesh
based on the size of: (A) an error indicator for drag from duality based a posteriori
error estimation, see e.g. [5], or (B) the L2-norm of the mesh size times the residual
of NSE for each cell.

In Fig. 2-4 we show the solution at final time T = 50D for the finest mesh using
mesh refinement criterion (A), in Fig. 5-6 we show the drag coefficient averaged over
the time interval [40D,50D] for (A) and (B), and in Fig. 7 we show a long time simu-
lation of drag (normalized as the drag coefficient) for the finest mesh corresponding
to (A).

6 Discussion and summary

From the computational results we find that as the friction parameter β is reduced,
corresponding to increasing Re, the separation of the flow is changing from a laminar
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Fig. 2. Velocity vectors at surface of cylinder; for β = 10−1, β = 10−2, β = 10−3 and β = 0
(from top to bottom).
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Fig. 3. Pressure isosurfaces; for β = 10−1, β = 10−2, β = 10−3 and β = 0 (from top to
bottom).
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Fig. 4. Velocity streamlines; for β = 10−1, β = 10−2, β = 10−3 and β = 0 (from top to
bottom).
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Fig. 5. Drag coefficient cD for adaptively refined meshes; (A) duality based refinement (left)
and (B) residual based refinement (right), with β = 10−1 (‘-.’), β = 10−2 (‘..’), β = 10−3 (‘–’)
and β = 0 (‘solid’).

Fig. 6. Time series of drag (normalized as cD) for the finest computational meshes; (A) duality
based refinement (left) and (B) residual based refinement (right), with β = 10−1 (‘-.’), β =
10−2 (‘..’), β = 10−3 (‘–’) and β = 0 (‘solid’).

separation at top and bottom of the cylinder, into an inviscid separation in streamwise
vorticity described in [11], with drag from suction in the center of the streamwise
vortices. We note that the streamwise vorticity rolls are arranged in a zig-zag pattern
at the back of the cylinder, where the number of of vortex rolls appears to be inde-
pendent of the mesh resolution, with a fixed distance of about the diameter of the
cylinder. Further, we note little difference between the solutions for β < 10−3. There
is a striking resemblance of these vortex structures to the spanwise cell patterns re-
ported from experiments [15, 13, 22]. The streamwise vorticity is also consistent
with the experimental observation that eddy formation in the wake is delayed 2-3
diameters downstream [22].

Studying convergence of drag in Fig. 5 we find that for the case of β = 10−1

with laminar separation; drag converges fast towards the expected value of cD ≈ 1.1,
but for smaller β we cannot observe a clear convergence, even if the duality based
refinement criterion (A) appears to show faster convergence than the residual based
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Fig. 7. Long time series of (normalized as cD) drag for the finest computational mesh with
duality based refinement (A) and β = 0.

refinement (B). To improve convergence, there are two obvious actions to take: (i) to
further refine the mesh a number of iterations, and (ii) to increase the time interval
over which drag is averaged. We are currently continuing this computational study
on an IBM Blue Gene/L machine with 2048 processors to address (i)-(ii).

For the finest mesh of (A) we compute for a longer time to get better statistics,
which gives a value for drag of cD ≈ 0.4±10%, consistent with experimental results
for drag crisis. This value of cD is smaller than what we obtained from preliminary
computations in [6, 11]. The computations in [6, 11] differs from the current com-
putations in that one and the same mesh was used for all different β , whereas in
this study the mesh was refined adaptively with respect to (A) and (B) for each β
separately.

Although this is an ongoing investigation, with in particular more computational
studies needed, the results of the computational study in this paper together with the
linear stability analysis in [11], consistent with available experimental data, suggests
a reinterpretation of the role of the boundary layer for turbulent flow separation. We
are lead to the following conjectures:

• The boundary layer is not needed to explain flow separation for high Re, where
instead inviscid separation in streamwise vorticity is dominating.

• We can model flow separation corresponding to the transition from a laminar to a
turbulent boundary layer (drag crisis) by varying the friction parameter β in the
simple skin friction boundary model (2)-(3).

• For many important applications in aero- and hydrodynamics, pure slip boundary
conditions (β = 0) can give an accurate model of flow separation.

The boundary layer model (2)-(3) is not capable of predicting skin friction, but
instead takes skin friction as data. The skin friction data can come from experiments,
theory, or computation, but a key point is that the sensitivity of flow separation with
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respect to skin friction data appears to be small for high Re. The exact point of
transition to turbulence in the boundary layer for high Re appears to be of minor
importance for prediction of flow separation, as separation of a laminar boundary
layer for high Re leads to an immediate reattachment as a turbulent boundary layer.
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Summary. In [15] the large eddy simulation with stochastic modeling of the sub-grid accel-
eration (LES-SSAM) for homogeneous turbulence was proposed. The main motivation of this
approach is to account for intermittency of the flow at sub-grid scales, by emphasizing the
role of sub-grid acceleration. In this paper, we develop further this approach in order to sim-
ulate a high Reynolds number channel flow. We proposed a new sub-grid acceleration model
for channel flow. This model introduces explicitly the cross-channel correlation of subgrid
velocity gradients and includes two parameters: the Reynolds number based on the friction
velocity, and the channel half-width. The objective is to assess the capability of this model in
comparison to the standard large-eddy simulation (LES) and to direct numerical simulation
(DNS).

Key words: large-eddy simulation, sub-grid acceleration, stochastic model, intermittency,
turbulent channel flow

1 Introduction

The structure of well-developed turbulent wall layer in the channel flow is highly
intermittent. Close to the wall, the low-speed regions are interleaved with tiny zones
of high-speed motion. The main role in this intermittency is attributed to quasi-
streamwise vortices formed in the near-wall layer [1, 8, 19].

Their anisotropic dynamics are Reynolds-number dependent. Sweeps from the
outer layer toward the wall induce strong variations of the wall-normal velocity. The
cross-channel correlation in the turbulent velocity field is amplified by merging of
near-wall small-scale structures and their eruptions towards the outer region [6, 7,
18].

For a high Reynolds flow, the LES at moderate resolution has to be combined
with a SGS model for the non-resolved turbulent motion. The majority of SGS mod-
els are focused on simulation of turbulent stresses generated by the non-resolved
velocity field [3, 10, 14]. In these models the structure of subgrid flow is supposed
to be independent of the Reynolds number, i.e. to be not intermittent. Therefore the
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approach recently proposed by Sabelnikov [15] is focused directly on the stochastic
modeling of the subgrid acceleration (LES-SSAM).

It was shown, by Kolmogorov’s scaling, that, for a given filter width Δ , the non-
resolved acceleration may be substantially greater than the resolved acceleration:
(akak)/(a′ia

′
i) ≈ (η/Δ)2/3, where ak and a′i represent resolved and non-resolved ac-

celerations and η = L/Re3/4
L is the Kolmogorov’s length scale. This implies that

in any SGS model, which is aimed to introduce the intermittency effects, the non-
resolved acceleration must be a key variable. This motivated us to set up a new
stochastic model for the subgrid acceleration of wall bounded flow. The aim of this
paper is to assess the capability of the new model to reproduce the near-wall behavior
compared to a standard LES and DNS.

2 LES-SSAM approach and model formulation

In the LES-SSAM framework of Sabelnikov [15], it is consider that the total instan-
taneous acceleration, governed by the Navier-Stokes equations, can be represented
by the sum of two parts: ai = ai + a′i. The first part represents the spatially filtered

total acceleration: ai = ∂ui
∂ t + ∂ukui

∂xk
, and is equivalent, with spatial filtering of the

Navier-Stokes equations, to:

ai ≡
dui

dt
= − 1

ρ
∂ p
∂xi

+νΔui ;
∂uk

∂xk
= 0 (1)

with ν the kinematic viscosity. The second part is associated with the total accelera-
tion in the residual field and is considered as a stochastic variable. In the LES-SSAM
approach, eq. 1 is modeled in the framework of the classical LES approach. The
resulting model-equation, which reconstructs an approximation for the non-filtered
velocity field, writes then as:

∂ ûi

∂ t
+ ûk

∂ ûi

∂xk
= − 1

ρ
∂ p̂
∂xi

+
∂

∂xk
(ν +νt)

(
∂ ûi

∂xk
+

∂ ûk

∂xi

)
+ â′i ;

∂ ûk

∂xk
= 0 (2)

where •̂ represents a synthetic field and νturb is given by an eddy viscosity model
(e.g. the Smagorinsky subgrid model).

In [15] a model have been introduced for subgrid scale acceleration in isotropic
and homogeneous turbulent flow. For further development of the LES-SSAM ap-
proach, we propose a new model for turbulent channel flow. We introduce the sep-
aration of variables for the non-resolved acceleration â′i . On the basis of our DNS
for turbulent channel flow (see table 1) and experiences [9, 11, 12], |a|, the modulus
of the subgrid acceleration and ei its orientation, are two independent random vari-
ables, characterized by long memory and rapid decorrelation, respectively. Then the
non-resolved acceleration is written as:

â′i = |a|ei (3)
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For |a|, our proposal is to emulate the modulus of the non-resolved acceleration
in the following form:

|a| = fδyu2
∗/ν (4)

where δy is the cell size in the normal to the wall direction and u∗ the friction velocity,
u2
∗/ν ≡ ∂u

∂y |wall; so δyu2
∗/ν will be considered as a typical normal to wall velocity

increment in the near to wall region. f is the subgrid frequency, considered as a
stochastic variable. The frequency f is supposed to have a stochastic evolution from
the wall to the outer flow driven by the non-dimensional parameter τ defined as
follows:

τ = −ln

(
h− y

h

)
(5)

where h is the channel half-width, and y is the wall distance (y = 0 : τ = 0 and
y → h : τ → ∞). The near-wall region is characterized by strong velocity gradients
(high values of f ), which decrease in mean toward the outer flow through the highly
intermittent boundary layer. Thereby we assumed that with increasing of the nor-
mal distance from the wall, the frequency f is changing by a random independent
multiplier α (0 < α < 1), governed by distribution q(α),

∫ 1
0 q(α)dα = 1, which is

in principle unknown. In other words, we apply the fragmentation stochastic pro-
cess under scaling symmetry for the frequency f . From [4], we derive the following
stochastic equation corresponding to this process:

d f =
(
〈lnα〉+ 〈ln2α〉/2

)
f dτ +

√
〈ln2α〉/2 f dW (τ) (6)

where 〈lnkα〉 =
∫ 1

0 q(α)lnkαdα ; k = 1,2, and dW (τ) is the Wiener process
(〈dW (τ)〉 = 0 and 〈dW (τ)2〉 = dτ , with τ given by eq. 5). In the present study,
parameters are chosen in the following form:

−〈lnα〉 = 〈ln2α〉 = Re1/3
+ (7)

where Re+ is the Reynolds number, based on the friction velocity and the chan-
nel half-width. The starting condition, τ = 0, for this stochastic process (the first
grid cell on the wall) is given as follows. We introduce the characteristic value
of the frequency f at the wall f+ = λ/u∗, where λ is determined, as a Taylor-
like scale, which can be estimated by the Kolmogorov’s scaling in the framework
of definitions of wall parameters. The Reynolds number, based on friction veloc-

ity, is Re+ = u∗h/ν = h/y0 ≈ Re3/4
h where y0 is the thickness of the viscous layer,

and Reh is the Reynolds number based on the center-line velocity. One then yields:

λ ≈ hRe−1/2
h ≈ hRe−2/3

+ . Similar to Kolmogorov-Oboukhov 62, the starting condi-
tion for the random path given by eq. 6 is sampled from the stationary log-normal
distribution of f / f+:

P0 ( f / f+) =
f+

f
√

2πσ2
e
−

(ln( f / f+)−μ)2

2σ2 (8)
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with parameters σ2 = ln2 and μ = − 1
2σ

2, such that 〈 f 〉 = (〈 f 2〉− 〈 f 〉2)1/2 = f+.
The stochastic process giving by eq. 6 with initial condition from eq. 8 will relax
f from a log-normal distribution at the wall (τ = 0) to the power distribution as
the distance to the wall increases (τ → ∞). The evolution through the channel, for
distributions of the frequency predicted by the stochastic equation can be compared
with the evolution of the frequency computed from DNS, via eq. 4. According to
fig. 1a SSAM ensures a good relaxation of the frequency, as the distance to the wall
increases.

Fig. 1. (a) Distribution of f/ f+ from SSAM (cross) and comparison with DNS (line) at
Re+ = 590, for several distances from the wall. (b) Variance of θ for small scale acceleration
from DNS (line) for Re+ = 180, 590 and 1000 and from SSAM (cross). Straight line denote
the variance of θ for an isotropic orientation.

In order to emulate the orientation vector of the subgrid scale acceleration, ei,
we consider a random walk evolving on the surface of a sphere of unity radius.
The orientation vector may be defined by two angles which are longitude φ and
latitude θ : ⎧⎨

⎩
ex = cos(θ)cos(φ)
ey = sin(θ)
ez = cos(θ)sin(φ)

(9)

The φ angle characterizes the direction in the streamwise-spanwise (x,z) plan, and
the other one, θ , defines the orientation in relation to the normal to wall direction
(θ = 0 means acceleration is parallel to the wall, and θ = ±π/2 means accelera-
tion is normal to the wall), as can be seen on fig 2. First the computation of ei from
DNS was performed. The result are shown in fig. 1b. It is seen that ei relaxes toward
isotropy with increasing distance from the wall. Note that in the case of full isotropy,
the distributions of θ and φ are respectively given by Pisotropic(θ) = cos(θ)/2 and
Pisotropic(φ) = π/2.

In order to represent this tendency towards isotropy, we implement a Brownian
motion on the sphere. This motion will defines the evolution of the unit vector ei.
Each increment de of the random walk is given by
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Fig. 2. Coordinate system.

de = ζe×dW(dy+) (10)

where dW(y+) is a 3-D Wiener process (〈dW(y+)〉 = 0 and 〈dW(y+)2〉 = dy+,
with y+ the distance to the wall in wall unit) and × denotes the vector product. The
constant ζ is given to be consitant with the evolution of orientation vector computed
from DNS. We choose ζ = 25 which is the characterisic thickness (in wall unit) of
the layer near the wall where the orientation is strongly anisotropic. As the distance
to the wall increases the random walk covers all the surface of the sphere, ensuring
the relaxation towards isotropy for the subgrid scale acceleration orientation. This
process is initialized on the wall with:

{
Pθ (θ ,y+ = 0) = δ (θ)
Pφ (φ ,y+ = 0) = 1/2π if 0 ≤ φ < 2π (11)

where Pθ and Pφ are the distribution of θ and φ respectively, and δ is the Dirac
distribution, i.e. the orientation vector at the wall is parallel to the wall. The initial
condition 11 is coherent with DNS. On fig. 1b we present the evolution of the vari-
ance of θ given by eq. 9, eq. 10 and eq. 11 and the one computed from the small-scale
acceleration of DNS. Good agreement with the DNS is achieved.

3 Numerical Results and discussion

In order to make a posteriori tests of this subgrid scale model for acceleration we ran
simulations of a pressure driven turbulent channel flow for three Reynolds numbers:
Re+ = 590, 1000 et 2000. We used a pseudo-spectral method with integration in time
by the explicit Adam-Basforth algorithm for convective terms, and by semi-implicit
algorithm for diffusion terms. Further details about the computational code can be
found in [2].

The results of LES-SSAM tests have been compared with standard LES and
DNS. We used our own DNS data as well as the DNS data from Moser et al. [13]
and from Hoyas and Jiménez [5]. For LES and LES-SSAM simulations the classi-
cal Smagorinsky model with a wall damping function for the turbulent viscosity has
been applied [16]:
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Table 1. Summery of parameters used for numerical simulations

Name Re+ Rec Nx ×Ny ×Nz Δx+ ×Δy+ ×Δz+ Cs A/h
DNS 587 12490 384×257×384 7.2× (0.04 ∼ 7.2)×3.6 - -

DNS [13] 587 12547 384×257×384 9.7× (0.04 ∼ 7.2)×4.8 - -
LES 587 14160 64×65×64 87× (0.71 ∼ 29)×29 0.16 0.015

LES-SSAM 587 12760 64×65×64 87× (0.71 ∼ 29)×29 0.16 0.015
DNS 1000 22250 512×385×512 8.2× (0.03 ∼ 8.3)×4.1 - -

DNS [5] 934 20960 3072×385×2304 7.6× (0.06 ∼ 7.6)×3.8 - -
LES 1000 25430 96×97×96 99× (0.53 ∼ 33)×33 0.16 0.009

LES-SSAM 1000 23380 96×97×96 99× (0.53 ∼ 33)×33 0.16 0.009
LES 1000 25500 64×65×64 147× (1.2 ∼ 49)×49 0.2 0.015

LES-SSAM 1000 23700 64×65×64 147× (1.2 ∼ 49)×49 0.2 0.015
DNS [5] 2003 48680 6144×633×4608 8.2×8.9×4.1 - -

LES 2000 49350 128×129×128 147× (0.60 ∼ 49)×49 0.16 0.006
LES-SSAM 2000 48950 128×129×128 147× (0.60 ∼ 49)×49 0.16 0.006

LES 2000 52640 64×65×64 295× (2.4 ∼ 98)×98 0.2 0.015
LES-SSAM 2000 49050 64×65×64 295× (2.4 ∼ 98)×98 0.2 0.015

νturb = (CsΔ fVD)2|S|
|S| = (2Si jSi j)

1/2

fVD = 1− e−y/A
(12)

with Cs the Smagorinsky constant, Δ = (Δx×Δy×Δz)1/3 the typical cell size, Si j =
1
2

(
∂ui
∂x j

+ ∂u j
∂xi

)
the resolved rate of strain tensor, fV D the Van Driest function and A

the constant controlling the damping of fV D. The constant A is computed in order
to fulfill the suggestion of Shur et al. [17] for the subgrid length-scale � definition:
� = min(y,Δ), y is the distance to the nearest wall. We choose A such that Δ fV D ∼
min(y,Δ) by least square regression. The parameters used for these simulations are
summarized in table 1.

Note that in this code, Reynolds number are imposed via the setting of ν and
− 1

ρ
∂P
∂xi

(the mean pressure gradient). One may use Dean’s correlation (Dean, 1978):

ν = 0.110UchRe−1.1296
+ and − 1

ρ
∂P
∂xi

= Re2
+ν2/h3, with Uc the center-line velocity, to

choose suitable values. As shown in table 1, the Reynolds numbers computed from
LES-SSAM are closer to the DNS than the ones computed by LES. For a given set of
parameters (ν and − 1

ρ
∂P
∂xi

), LES-SSAM improves both center-line velocity and mass
flow rate estimations.

For simplicity reasons, in the following, we only present results from LES-SSAM
and LES with a 64×65×64 grid for the three Reynolds numbers. It should be noted
that for finer resolutions the differences between LES-SSAM and standard LES are
less pronounced, but still present.

Fig. 3a shows evolution of the mean velocity across the channel. As pointed out
in table 1 it is clear that LES-SSAM improves mean flow rate estimation as well
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as center-line velocity prediction. Moreover the mean velocity profile follows the
logarithmic law contrary to LES.

On fig. 3 profiles of the standard deviation for streamwise, spanwise and normal
to wall velocities are also presented. Standard deviations of streamwise velocity are
notably improved. The peak position obtained by LES-SSAM is closer to the DNS
than the one obtained with LES. For the spanwise velocity standard deviation the
improvement is less visible. However, note that the shape of the profile obtained by
LES-SSAM is closer to the DNS one, even if it is overestimated. Finally, the normal
to the wall velocity standard deviation is slightly improved in comparison with LES.

Fig. 3. (a) Streamwise mean velocity for Re+ = 590, Re+ = 1000 and Re+ = 2000 from
bottom to top, respectively, shifted by 10 wall units upward. Standard deviation of streamwise
(u), spanwise (w) and normal to the wall (v) velocity, for (b) Re+ = 590, (c) Re+ = 1000 and
(d) Re+ = 2000 Square: LES; cross: LES-SSAM; dash: DNS (only for Re+ = 590 and Re+ =
1000); dots: DNS from [13] for Re+ = 590 and from [5] for Re+ = 1000 and Re+ = 2000.

Fig. 4a illustrates the computation of turbulent and viscous stresses, τturb =
−ρ〈u′v′〉 and τvisc = −ρν〈 ∂u

∂y 〉, respectively (〈.〉 denotes ensemble average). The
results are presented as ratios τturb/(τturb + τvisc) and τvisc/(τturb + τvisc). Here again
the advantage of the LES-SSAM approach versus the classical LES is explicitly seen,
and can be interpreted as a better estimation of momentum fluxes in the normal to
the wall direction. In addition to this, from fig. 4a it can be seen that close to the wall
the viscous stress is dominant, whereas as we move away from the wall the turbu-
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lent stress becomes preponderant. The LES-SSAM approach enables improvement
of both the viscous and the turbulent stress away and close to the wall.

Velocity spectra are shown on fig. 4b. From this figure we can see that the anoma-
lous small scale (high wave number) damping inherent to LES can be reduced by
LES-SSAM. Fig. 4c represents the evolution of the longitudinal autocorrelation co-
efficient for the streamwise velocity component along the channel. Improvement of
the decorrelation length can be seen, indicating that integral length scales, and so the
size of strucutres in the near wall, computed by LES-SSAM are closer to DNS than
in the classical LES.

This result is mainly due to the fact that decorrelation is ensured by small scale
fluctuations modelled with LESS-SSAM as seen by the spectra on fig. 4b.

Fig. 4. (a) Fractions of turbulent τturb =−ρ〈u′v′〉 and viscous τvisc =−ρν〈 ∂u
∂y 〉 stresses com-

pared to the total one τtot = τvisc +τturb. (b) Normalized longitudinal 1-D spectra of normal to
wall velocity for y+ = 20. (c) Longitudinal autocorrelation of streamwise velocity at y+ = 5.
(d) Distribution of spanwise acceleration at y+ = 5. Re+ = 1000. Square: LES; cross: LES-
SSAM; dash: DNS; dots: DNS from [5] (uniquely for (b)).

Fig. 4d illustrates the distribution of the spanwise acceleration. The distributions
obtained by DNS present stretched tails, as a manifestation of intermittency. From
fig. 4d it can be seen that in agreement with the DNS, the distributions of the az,
obtained by LES-SSAM, present the stretched tails, while these distributions com-
puted by LES stay close to the Gaussian distribution. By introducing the LES-SSAM
model, small scale intermittency is included in the modelling of the acceleration.
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4 Conclusion

In the framework of the LES-SSAM approach, a new SGS model is proposed for the
subfilter scale acceleration in order to include the intermittency effects in the near-
wall region of a high-Reynolds number channel flow. In this model, the modulus and
the orientation of the non resolved acceleration are considered as two independent
stochastic variables. The modulus is a function of a subgrid frequency given by a
fragmentation stochastic process under the scaling symmetry. The mean and standard
deviation of the process are functions of the Reynolds number. For the orientation of
the acceleration a random walk evolving on the surface of a sphere is proposed. The
orientation of the acceleration is such that away from the wall the process relaxes
towarss isotropy. This was chosen in agreement with the DNS.

The results for the model proposed here are compared with DNS data (Re+ =
590, 1000 and 2000) and standard LES. The comparisons show that mass flow rate
estimations and mean velocity profiles are improved by introducing the LES-SSAM
model. In addition to this a better prediction near the wall of the streamwise standard
deviation, the viscous and turbulent stresses are obtained with LES-SSAM. Small
scale dumping inherent to LES is avoided with LES-SSAM. Finally, improved lon-
gitudinal velocity decorelation is obtained as well as the prediction of the stretched
tails in the acceleration distribution.
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Summary. This paper is focused on the role of integral-based Finite Volume (FV) discretiza-
tions in Large Eddy Simulation of turbulence. The integral-based form implicitly induces the
top-hat filtering on the balanced variable. This leads us to rewrite also a different decom-
position of the fluxes. As a consequence, the development of a new Germano identity can
be achieved having some advantages over the classical differential-based form. However, the
dynamic procedure requires an explicit test-filtering on a computational grid that, to be op-
timal, requires an evaluation of the shape of the numerical filter induced by the FV-based
discretization. Therefore, the goal of this paper is the theoretical study of the effective filter
shape induced by some 3D Finite Volume reconstructions. The induced shape and width are
analyzed by means of a modified wavenumber-like analysis that is applied in the 3D Fourier
space. Some schemes are considered and the differences in terms of either velocity or flux
interpolations on either staggered or non-staggered grids are derived and analyzed.

Key words: Implicit Filtering, Finite Volume Methods, Germano identity

1 Introduction

Large Eddy Simulation (LES) of turbulence is based on the separation between large
(resolved) and Sub-Grid Scale (unresolved) flow contributions, obtained by means of
the application of a low-pass filtering operator on the Navier-Stokes equations. As a
matter of fact, often the filtering procedure remains nothing but a formalism in writ-
ing the LES equations in continuous form. Indeed, in the so-called implicit filtering
approach, the discretization of both domain and differential operators is practically
used as built-in filtering, see Refs. [1-4]. Thus, numerical representation of the fil-
tered variables is associated with a finite number of well-resolved scales so that any
discrete model can induce significant alterations of the expected resolved flow dy-
namics. Despite the additional computational effort and loss of resolution, in order
to filter numerical errors and unambiguously identify the shape, the use of explicit
filtering technique (pre-filtering) was analysed in [5-7].
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This paper illustrates a part of a wider theoretical analysis on the use of the Fi-
nite Volume (FV) methods for performing LES. A FV-based approach is feasible
for problems of engineering interest. Commercial codes supplied with modern SGS
modelling (e.g., the dynamic Smagorisky modelling) are now available. These codes
exploit the implicit FV-based filtering procedure. Following [8], for FV-based meth-
ods, one recognizes three different levels of approximation: interpolation, differen-
tiation and integration. The FV approach leads to solve discrete equation models
which allow any balanced quantity, to be a-priori conserved, no matter what the ac-
tual accuracy order of the method is in effect. On the contrary, it is well known that
other methods such as Spectral Methods (SM) and Finite Difference (FD) methods
do not automatically possesses such property.

When FV methods are based on the integral form of the equations (often the
discretization of the divergence form is also denoted FV approximation), any flux
reconstruction always drives us to approximate uniquely1 the top-hat filtered vari-
able associated to the local volume average over a small domain of linear measure
Δ , e.g. see Refs. [9-11]. The computation of surface integrals of the fluxes must be
considered acting as “volume filter”. Furthermore, the use of the integral-based fil-
tered equation requires a specific decomposition between resolved and SGS fluxes
and it induces to re-expressing the Germano identity for the dynamic SGS mod-
elling, e.g. see Refs. [11, 12, 19]. Actually, the use of a numerical method implies
the introduction of the characteristic domain discretization length h, which further
induces the implicit grid-filtering associated to the Nyquist cut-off frequency π/h.
In LES practice, the only length h is defined by the user while the effective filter
length Δ implicitly depends on the chosen numerical method. Thus, the scalar pa-
rameter Q = Δ/h, also addressed in literature as subfilter resolution see Refs. [1,
13-15], is introduced. To perform the dynamic SGS modelling, a proper choice of
the test-filtering length is consequent to the value Q resulting from the chosen FV
method.

In order to analyze the filter shape induced by a discretization, in analogy with
the modified wavenumber analysis, the 3D numerical transfer functions in effects for
each non linear numerical flux function are deduced. Several FV formulas of sec-
ond and higher order of accuracy are analysed, for both non-staggered and staggered
centred collocation in the velocity components. The guideline of the analysis is the
following: once deduced the exact FV-based transfer function its effective width is
parameterized by the sub-filter parameter, that is Δ = Qh. Then it is compared to the
numerical ones, trying to find some value of the parameter Q that minimizes the error.
This study on implicit filtering appears distinctive from those performed by other au-
thors, e.g. see Refs. [14-16], that analysed combined filtering effects by considering
the role of the local truncation error (LTE) in the modified differential equation. In
fact, those studies are based on the discretization of the divergence formulation not
of the integral one, confirming that such form induces a someway undeterminable
filter shape.

1 Deconvolution procedures that, while retaining the same range of frequencies, would be
able to recover the spectral content of the resolved scale, are not considered.
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A number of interesting issues, helpful for discerning the relevance of the built-in
filter in a LES application, are addressed. They are the understanding of the practical
scales separation and the consequent dynamic SGS modelling. The optimal choice
of the test-filter length is influenced by the effective width of the primary filter that
is induced by the FV discretization. Last, it is worthwhile remarking that using DNS
data would be more realistic when the fields are post-filtered by means of a filter
function that mimics at best the implicit filter in effect in the LES.

2 Integral versus differential-based filtered equations in
continuous form

For the sake of simplicity, let us consider the multi-dimensional Burgers equation
written in integral form

∂
∂ t

∫

Ω(x)

v dx′ +
∫

∂Ω(x)

n ·F(v) dS
(
x′
)

= 0 , (1)

being v(x, t) the point-wise velocity field, F(v) = vv−2ν∇sv the total flux, Ω is an
elementary volume, ∂Ω is its frontier, n is the normal unit vector outward oriented.

In LES approach, the low-pass filtering (no time-filtering is here considered)
can be expressed as the convolution product between the unfiltered point-wise
velocity and some suitable filter function G, e.g. see [1-4], that is v(x, t;Δ ) =∫
R3

G(x−x′; Δ) v(x′, t)dx′ ≡ G ∗ v, Δ being the characteristic filter width. The

convolution product corresponds to have v̂(kw, t;Δ) = Ĝ(kw;Δ) v̂(kw, t) in Fourier
space, Ĝ being the transfer function, kw being the wavenumbers vector. Thus, if the
elementary volume is homogeneous in space, the velocity field averaged over an
elementary box-volume, having linear homogeneous measure Δ , is written as

v(x, t;Δ ) =
1
Δ 3

z+Δ/2∫

z−Δ/2

dz′
y+Δ/2∫

y−Δ/2

dy′
x+Δ/2∫

x−Δ/2

v(x′, t) dx′ . (2)

It is equivalent to the convolution with the top-hat filter kernel, its transfer func-
tion being a smooth function in the wavenumber space [1-4]. Note that, in the con-
tinuous form, the top-hat filtered field (2) remains formally composed by infinite
Fourier components, the transfer function having an infinite number of zeros. There-
fore, both filtered and unfiltered continuous velocity fields possess an infinite number
of Fourier components. In such sense, they belong to the same functional space.

According to the historical Schumann’s approach, the integral-based Eq. (1) has
the mathematical counterpart expressed by the filtered differential equation

∂v
∂ t

+ ∇ ·F(v) = 0 . (3)

Now, the key-point to bear in mind is that the LES equations are usually rewritten
in differential form. This is obtained by commuting filtering and divergence operator
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in (3). Besides, when commutation property does not apply, one works using special
commutative filters [1-4]. Thus, after the decomposition in resolved FR (v) = v v−
2ν∇sv and unresolved FU (v,v) = (v v−vv) fluxes, the classical divergence form of
the differential filtered equation is obtained

∂v
∂ t

+ ∇ ·FR (v) = ∇ ·FU (v,v) . (4)

The closure procedure involves modelling of the non-linear SGS flux by intro-
ducing an approximation FU (v,v)∼= FSGS (v). If used, an explicit filtering procedure
is generally applied for such a formulation, e.g. [5-7].

Conversely, let us remark that in FV-based approximation of (1), one never re-
quires to discretize the divergence operator but only integrals of the flux. Further-
more, one does not need to commuting filtering and differentiation. Indeed, after
a proper decomposition of the total flux F in the resolvable FR (v) and irresolv-
able fluxes T(v,v) = (v v−vv)− (2ν∇sv−2ν∇sv), the integral-based equation (3)
writes as2

∂v
∂ t

+ ∇ ·FR (v) = ∇ ·T(v,v) . (5)

One sees that T is very different from FU both in the non-linear term and in the
presence of a residual part coming from the diffusive flux. As for the differential
form, SGS modelling means to approximate T(v,v) ∼= TSGS (v).

Note that in Eq. (4) the filtering operation is never explicitly applied, unless one
decides to use an explicit filtering formulation, e.g. [1]. Provided that for Eq. (4) the
top-hat filter function G is (formally) specified, it and Eq. (5) are mathematically
equivalent, governing the same filtered velocity. Actually, if for (4) some other filter
function is specified, such as the Gaussian or the spectral cut-off filter, that would let
unchanged its expression but it is no longer equivalent to (5). Practically, the type of
filtering in the differential Eq. (4) is driven only by the chosen SGS modelling. Con-
versely, the integral-based Eq. (5) univocally implies the application of the solely
top-hat filter and it is characterised by the explicit presence of the filtered fluxes. As
explained in the next section, only when the computational grid is introduced it im-
plicitly acts as additional sharp cut-off at the Nyquist frequency π/h. This way, the
expected continuous transfer function is actually modified by the numerical errors
and truncated by the grid-filtering. The discrete filtered velocity vector will be con-
sidered equivalent to the exact solution of the continuous modified filtered equation.
In this sense, the discrete set of velocity values associated to each FV is considered
as the collocated-values of a modified filtered function.

In the framework of implicit filtering approaches, we can address some differ-
ences between the two (continuous) forms of equations: a) prescribing only the in-
tegral filtered equation (5) does allow us to univocally identify the type of filter,
conversely this is not true for Eq. (4); b) the resolved flux is the same in both formu-
lations but the unresolved flux is not; c) a consequent difference appears in devel-
oping the dynamic procedure for computing either the tensors FSGS (v) or TSGS (v).

2 Use of integral or over bar symbolisms will depend on the necessity of exposition.
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It is well known that, by modelling the former tensor, the classical Germano iden-
tity M−F̃U= L is used. Here, tilde symbol indicates the test-filtering over charac-
teristic length Δ̃ > Δ , M being the subtest-scale tensor and L = ṽ v − ṽṽ is the
known Leonard tensor [1-4]. Then, the identity for the eddy viscosity model rewrites
as

−2CΔ̃ 2
∣∣∣S̃
∣∣∣∇sṽ+2Δ 2 ˜

(
C
∣∣S∣∣∇sv

)∼= Ld , (6)

|S| = (2∇sv : ∇sv)1/2, Ld being the deviatoric part of L. The modelling coefficient
is then somehow arbitrarily extracted from test-filtering [1-4].

On the other hand, starting from the integral-based form (3), by applying the
top-hat test-filter of width Δ̃ > Δ , one gets the new integral-based exact subtest-
scale tensor [11, 12, 19] M′ = −[2ν(∇sv−∇sṽ) + (ṽ ṽ−vv)]. It is worthwhile
noticing that M′ drives us to get also a new resolved term L′ = (v v− ṽ ṽ) −
2ν(∇sv−∇sṽ), such that the Germano identity for the integral-based formulation
writes as M′

d −Td = L′
d . The eddy-viscosity modelling coefficient can be deter-

mined by assuming the same coefficient and the same rate of dissipation at grid and

test-level (scale-invariance hypothesis), that is νLES =CεΔ
4/3

and ν ′
LES =Cε Δ̃ 4/3 be-

ing Cε ≡ C2/3ε1/3 with ε the dissipation rate. Thus, the integral-based counterpart
of (6) is expressed as

2νLES

(
∇sv−α4/3∇sṽ

)
= L′

d , (7)

where α ≡ Δ̃/Δ , which is the only input parameter the dynamic procedure de-
pends upon, is the ratio of the test to FV-based implicit filter width and νLES =
νLES(x, t;Δ ; Δ̃). Owing to the present integral formulation, the practical determi-
nation of νLES does not require now to arbitrarily extract the model coefficient out
of the filtering operation. The problem with implicit filtering approaches is that we
know exactly only the computational grid step-size h, not the effective filter length Δ
thus a proper value α must be evaluated in some way. Besides, in order to practically
evaluate the test-filtered velocity ṽ on the computational grid, one needs to estimate
the ratio Δ̃/h = (Δ̃/Δ)(Δ/h) = αQ thus an estimation of Q is required, the latter be-
ing implicitly defined by the type of numerical scheme. Thus, let us now introduce
the discretization analysis.

3 Integral versus differential-based discrete filtered equations.
Analysis of the implicit filtering

Let us briefly denote with ∇ · (∗)d
a certain type of FV-based spatial discretization

(from now on, superscript d will denote only spatial discretization), here consid-
ered according to [8] in terms of the numerical approximation of the integral-based
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Eq. (5). The discrete integral-based LES equation that defines the evolution of the
discrete filtered velocity, say vd , is written as

∂vd

∂ t
+ ∇ ·Fd

R

(
vd
)d

= ∇ ·Td
SGS

(
vd
)d

, (8)

having defined the discrete resolved flux Fd
R = vdvd − 2ν∇dvd . The velocity vd is,

therefore, representative of a finite-dimensional state-vector possessing only a finite
number of length scales, bounded by the smallest computational size associated to
the Nyquist frequency h/π . Actually, also the resolved Fourier components of vd

are affected by the smooth shape of the built-in numerical filter, the relevance of
the smoothing and its difference from the theoretical top-hat one, depending on the

accuracy of the discretization of ∇ · (∗)d
.

It is worthwhile remarking that, in CFD literature, the discretization of the diver-
gence form (4), that is

∂vd

∂ t
+ ∇d ·Fd

R = ∇d ·Fd
SGS , (9)

is also denoted as FV discretization, e.g. see [13, 14]. In “traditional” LES solution,
Eq. (9) is used and it is accepted that both the computational grid and the discretiza-
tion operators implicitly act as filtering to the characteristic turbulent wavenumbers
range. For example, while using the SM approach, the filter is implicitly assumed
to be the sharp cut-off associated to the truncated Fourier series that approximates
the velocity vd . Conversely, in FD approximations, the effective shape of the trans-
fer function depends on the type of the discretization methods used for ∇d · (∗) and
there is no theoretical reason to find an approximation to the exact top-hat transfer
function3, as it has been also reviewed in Refs. [1, 6, 9, 10, 14]. This ambiguity is
reflected in the sub-filter stress that contains the full information on the filter. That
is, defining an SGS model for the unresolved tensor is equivalent to define a filter
function [13-16].

At a fixed time and in a discrete set of points, one can analyze the discrepancy be-
tween the exact (5) and the discrete (8) top-hat filtered acceleration fields according
to

∂v
∂ t

− ∂vd

∂ t
= −
[(

∇ ·FR −∇ ·FR
d
)

+∇ ·
(
FR −Fd

R

)d]
+
[
∇ ·T−∇ ·Td

SGS

d
]

.

(10)
The first term in the first square brackets, that is the difference between the con-

tinuous and the discrete filtered divergence operators, applied on the continuous re-
solved flux, is the classical LTE associated to the FV discretization, e.g. see [17].

3 Rigorously speaking, one should distinguish the class of discrete filtered velocity vd in
case of either FD or FV classes of discretizations. However, in order to not complicate the
notation, no other symbols will be used.
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The second term represents the difference of the discrete filtered divergence oper-
ator when applied on the continuous and the discrete resolved total flux due to a
“sampling filtering” effect. In fact, the flux Fd

R is sampled on the computational grid,
therefore possesses a finite numbers of length scales. The term in the second square
bracket could be further expressible by means of two concurrent contributions. In
fact, the so-called computational turbulent stress tensor, is the full closure problem
at the level of the effective spatial discretization [13, 14].

For the sake of brevity, here only the LTE term in (10) is analysed. Six different
FV-based schemes are considered. The 3D numerical transfer functions induced by
each discretization are deduced and compared to the exact top-hat transfer function.
Indeed, the continuous convective term in (5) can be expressed according to

∂ (u jui)
∂x j

= I
±∞

∑
l,m,n

±∞

∑
p,q,r

p′jĜx
(

p′,q′,r′;Δ
)

û j (p,q,r) ûi (l,m,n)e
I

3
∑

k=1
p′kxk

, (11)

having defined Ĝx (p′,q′,r′;Δ) ≡ Ĝ(p′;Δ) Ĝ(q′;Δ) Ĝ(r′;Δ), beingĜ(χ;Δ) ≡
sin(χΔ/2)/(χΔ/2) = sin(χQh/2)/(χQh/2) with p′ = (p+ l), q′ = (q+m), r′ =
(r +n) and p′ = p′1, q′ = p′2, r′ = p′3. The considered FV schemes are denotes as
follows: NSFII : a second order accurate scheme on non-staggered grid, obtained by
choosing the mean value formula for the discrete integral and the linear interpola-
tion for the non-linear flux reconstruction; NSVII : as above, apart from the linear
interpolation that is performed separately on each velocity components; SVII : same
as NSVII but with the velocity components defined on staggered (MAC-like) grid;
NSFII−IV : a hybrid second-fourth order accurate scheme on non-staggered grid, ob-
tained by choosing the mean value formula for the discrete integral operators and the
cubic lagrangian interpolation for the non-linear flux function; NSRII : the second
order scheme on non-staggered collocation reported in Ref. [13], based on transver-
sal reconstruction.; NSRIV : same as NSRII but at fourth order accuracy [13]. These
latter two schemes are based on the discretization of the differential form (9).

The numerical transfer functions (for the sake of brevity the expressions are
not reported here), obtained by means of a modified wavenumber-like analysis,
are reported in Figs. 1. The plots are obtained by forcing the constraint 0 ≤ ξ =
η = ζ ≤ π , where ξ = p′h,η = q′h,ζ = r′h, and compared to the exact one
Ĝx = [sin(ξQ/2)/(ξQ/2)]3, plotted for Q=1 and 2. In the expression of the transfer
functions induced by the NSV schemes there is the presence of the wavenumber l that
remains outside the sum p′ = (p+ l) and is therefore used as plotting parameter. The
plots for NSF (1a) and NSV (1b) become coincident for lh = 0 (ξ = p′h = ph), as
verified by inspection of expression of the respective transfer functions. Both curves
stay close to the exact one for the Q= 1 value, this fact somehow contradicting the
expected result Q= 2 one knows from the classical 1D analysis [1, 5, 6]. However,
for non-vanishing values lh (that is 0 < ξ − ph ≤ π/2), the case NSV produces spuri-
ous frequencies inherent to the appearance of aliasing terms (and triadic-interaction
appearing from the non-linear terms, see [1]). A deep analysis of the aliasing errors
in the case of either flux or velocity interpolation is addressed in Ref. [18]. The case
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SV, plotted in Fig. 1c, has the same accuracy order of the NSF and NSV schemes,
allowing us to discern the effect of the staggered collocation. Though, compared to
NSV, there is the evidence of other wavenumbers that remain outside of the sums
p′,q′,r′. Perhaps, on a side, when l jh = 0, pih = ξ , the curve SV corresponds to the
one NSF in Fig. 1a while on the other side, for lh=0, to NSV in Fig. 1b. Besides,
when l jh = pih = ξ , the curve SV tends to be close to the curve Q= 2 while be-
coming largely overestimated the curve Q= 1 for l jh = pih = 0. Such effects are a
manifestation of the supplementary transversal interpolations of the velocity product
required by the staggered grid.

Considering now the NSFII−IV and NSR schemes, they are characterized by trans-
fer functions depending exclusively on the sums p′,q′,r′. Only the curve shown in
Fig. 1e, for the NSRII scheme, shows a good approximation of the exact top-hat fil-
tering for Q=2. The accuracy order is the same of NSFII but for NSRII the trapezoidal
rule, associated to the transverse second order accurate multidimensional interpola-
tion, is used. This results in a more isotropic resolution of the transfer function for
any wavenumber p′,q′,r′, hence NSRII appears a suitable multidimensional approx-
imation of the top-hat filtering for Q=2. On the other hand, both schemes NSFII−IV

and NSRIV are built in such a way that the accuracy is increased only for the recon-
struction of the flux not for the discretization of the integrals. As a consequence, a
better approximation of the sharp cut-off filter (at low wavenumbers) but not a better
approximation of the exact top-hat filter is obtained. When compared to the exact
transfer function at Q= 1, both plots in the Fig. 1d and 1f show an overestimation
of the spectral content at low wavenumbers whereas Fig. 1e describes a slight un-
derestimation of the exact case for Q= 2. Namely, despite the fact that the fourth
order accurate formula NSRIV is indicated in literature as a “finite-volume” one [13,
14], since there is no the congruent fourth order surface integration [8], it has to
be considered as suitable discretization of the differential term in divergence form
not of the integral based counterpart. In such case, the implicit filter can be consid-
ered by itself a higher order filter, closer to the identity operator not to the top-hat
one, as addressed in Refs. [1-4, 9, 10, 14]. Accordingly, the figure 1f is indicative
of the fact that the shape of the resulting transfer function appears, actually, like a
“deconvolution-based” counterpart of the top-hat one.

The quantitative analysis of the effective filter width is a rather controversial
issue and was object of several proposals, e.g., see Refs. [1, 6, 14], some exploiting
one-dimensional expressions to characterize the filter kernel. A criterion is the 1/2
rule that consists in interpreting the wavenumber ke f f , for which the filter transfer
function gets the value Ĝ

(
ke f f ;Δe f f

)
= 0.5, as the effective cut-off frequency. The

filter width in physical space is then estimated simply as Δe f f = π/ke f f . Therefore,
an estimation of the sub-resolution parameter Q can be obtained according to such
criterion, by reconsidering the previous 1-D curves in Figs. 1 and evaluating Q =
Δe f f /h = π/

(
ke f f h

)
= π/ξe f f . Obviously, considering the constraint ξ = η = ζ

is a further source of approximation. From the plots shown in Figs. 1a− f we can
evaluate that the NSFII , NSVII , SVII schemes (this latter two evaluated in absence
of spurious wavenumbers) produce Q ∼= 1.67. On the other hand, one gets Q ∼= 1.28,
Q ∼= 3.14 and Q ∼= 1.99 for NSFII−IV , NSRII , NSRIV , respectively.
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4 Further tasks and conclusions

The comprehensive analysis of the numerical filters induced by a FV method requires
considering also the discretization of diffusive terms as well as the analysis of the
SGS modelling. In order to discern the modelling errors from numerical errors, it is
suitable to rewrite the SGS term according to

[
∇ ·T(v,v)−∇ ·Td

SGS

d
]

=
[
∇ ·T(v,v)−∇ ·TSGS (v)

]
+

+
[
∇ · (·)−∇ · (·)d

]
TSGS (v)+∇ ·

[
TSGS (v)−Td

SGS

]d
, (12)

having denoted with TSGS (v) the modelled unresolved tensor expressed in contin-
uous form. Therefore, the term in the first square brackets of (12) represents the
modelling error (a continuous term), the second one is its LTE contribution and the
third one is the equivalent of the discretization error due to grid sampling.

Both dynamic procedure and scale similarity SGS modelling require performing
test-filtering over a certain length. Actually, the distinctive feature arises from the
adoption of the FV-based integral formulation. Considering, for the sake of simplic-
ity, only the modelling error of the scale similarity case, one obtains

e mod
i j (x;Δ ,Δex) =

∂ (u jui −u jui)
∂x j

−
∂
(

u j
Δex ui

Δex −u jui

)
∂x j

= I
±∞

∑
l,m,n

±∞

∑
p,q,r

p′jÊ
mod

x (p,q,r, l,m,n;Δ ,Δex)û j (p,q,r) ûi (l,m,n)e
I

3
∑

k=1
p′kxk

. (13)

The modelling error function was expressed in the wavenumbers space according
to

Ê mod
x (p,q,r, l,m,n;Δ ,Δex) ≡ Ĝx (p′,q′,r′;Δ)

{
Γ̂x (p,q,r, l,m,n;Δ)

−
[
Ĝx (p,q,r;Δex) Ĝx (l,m,n;Δex)−1

][
Γ̂x (p,q,r, l,m,n;Δ)+1

]}
,

(14)

being Γ̂x (p,q,r, l,m,n;Δ) ≡ Ĝx (p,q,r;Δ) Ĝx (l,m,n;Δ)−1. Here, the notation f
Δex

takes in to account for the “explicit” test-filtering. In principle, the explicit filter-
ing can be arbitrarily chosen to be the top-hat filter, having width Δex = αΔ . The
optimal choice of the test-filter length is influenced by the effective width of the
primary filter that is induced by the FV discretization. The minimizing of (14) de-
pends therefore on the α ratio once an effective numerical filter length Δ has been
estimated.
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Fig. 1. Implicit transfer functions induced by the FV-based discretization of the convective
term plotted versus the analytical one Ĝx for Q = 1 (dot line) and 2 (continuous line), by
defining ξ = p′h, η = q′h, ζ = r′h and forcing the constraint 0 ≤ ξ = η = ζ ≤ π .
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Last but not least, comparisons with DNS data could be more realistic when the
fields are post-filtered by means of a numerical filter function that mimics at best the
effective implicit filter induced in effect by the FV scheme. Some preliminary FV-
based LES solutions, obtained with the new dynamic procedure (7), are presented in
Ref. [19].
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Summary. The work addresses to a better comprehension of the error assessment in LES due
to the coupling between the model and the numerical discretisation.

The possibility to reduce the interactions between the error sources is investigated through
the use of an algebraic function correlating the characteristics length of the subgrid model Δe

to the subgrid scale Δ related to the grid discretization, incrementing the ratio between the two
where the scales are poorly resolved.

The analysis, considering a range of grid resolutions as well as subfilter models, has been
performed starting from database sets which have been reconstructed with ordinary kriging to
estimate the sensitiveness of the strategy with respect to the simulation parameters. The results
indicate that a reduction in the error cost function can be achieved for most subfilter models
and that the approach looks quite stable for a moderate range of the grid resolution.

Key words: Large-eddy Simulation, anisotropic filtering, errors interaction

1 Introduction

The main concern regarding LES in industrial applications is the definition of criteria
for the error assessment, as the increasing computational resources make LES an
operable tool to the simulation of High-Reynolds complex flows.

In traditional LES the filter is associated to the grid discretisation and the nu-
merical method: the scales smaller than the geometric width Δ are not captured by
the simulation and are defined as subgrid scales [1].

While Δ is actually straightforward defined on structured isotropic grids, its def-
inition may be arguable when dealing with anisotropic or unstructured grids, as in
most industrial applications.

The problem has been approached by many authors ([2], [3]) but all the proposals
till now presented about this topic focus on the geometry and do not take into account
the flow behaviour.

A second characteristic length, referred as ΔSGS, is introduced in the simulation
by the SGS model to relate the modeled scales to the computed ones: a common
approach is to set this width equal to Δ . As the SGS model is not per f ect, i.e. it does
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not reproduce all the physical characteristic of the subgrid scales, an error source
is introduced in the system: the way it interacts with the numerical error is largely
unpredictable due to strongly non-linear error dynamics. Furthermore Ghosal [5]
showed that the numerical error is of the same order of the modelling error for most
of the wave numbers and proposed as a possible solution the combination of pre-
filtering and high order schemes. Since this approach increases noticeably the com-
putational cost and the complexity of the problem, the main idea of our work is the
adoption of a modified effective ΔSGS , in the following Δe, computed considering
a local increase with respect to the geometric width Δ and extending it only where
needed. In particular, the Δe adopted in the SGS models is taken as the product of
the geometric width by a function, fUAED, which characterizes the local resolution in
terms of presence of the smallest scales, where the interactions between numerical
and model errors are particularly strong. This kind of approach should reduce the
interaction between the two main sources of error and produce a lower discretisation
dependence of the error itself.

This approach has been intensively tested to check its robustness when coupled
with different subgrid-scales models, numerical discretisations or grids.

The paper is structured as follows: in section 2 LES and filtering approaches
are presented as well as an exhaustive explanation of the universal anisotropic Δe

(UAED) approach is furnished. The main results by the application of the anisotropic
Δe to two different test cases are summed up in section 3, while in the last section 4
conclusions are drawn.

2 Theoretical LES

2.1 The filtering operation

We consider here Newtonian, incompressible, three-dimensional and time-dependent
flows. The scales separation in LES is achieved by the application of a scale high-
pass filter, which is mathematically formulated as a convolution product in the phys-
ical space. In traditional LES this separation is connected to the grid discretization
and Δ is the correlated physical length that separates the resolved scales from the
unresolved ones: in this context the scales not resolved due to a not sufficient grid
resolution are supposed to be filtered and thus modelled adding the τSGS term to the
momentum equation.

2.2 LES Models

In the following analysis four different models have been tested to check their sen-
sitiveness to the application of the UAED filtering approach. The model chosen are
the One-equation Turbulent Energy Model [6], the Smagorinsky Model [7], the Vari-
ational multi-scale approach [8] applied to the Smagorinsky one and the WALE
model [9].
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It is actually useful to remark that, as each model relate in a different way the
νSGS with Δe, we can expect that the overall results will be sensitive of the different
coupling between model and UAED. In the following sections, the models will be
respectively refereed ans ONE, SM, V MS and WALE.

2.3 UAED Approach

This paper focuses on the possibility to mask the numerical error by means of the
model one, as it generally looks like that Δe/Δ > 1 is beneficial for pursuing a global
error reduction and the application of a Δe significantly higher than the Δ produces
grid-independent numerical solutions [10].

A high ratio value is not anyway necessary on the whole physical domain, but
just locally where the numerical error becomes large if compared to the model error,
a situation most common when estimating the resolution of the smallest resolved
scales. The strategy we are proposing relies indeed on the possibility to extend the
effective width Δe only where the scales are poorly resolved through the definition
of an algebraic function relating Δe and Δ :

fUAED =
Δe

Δ
= 1+CUAED Θ tanh(Ψ)

1
Θ (1)

Θ and Ψ are respectively a parameter estimating the global and local resolution,
while CUAED is a constant. The shape of the function fUAED for a value of CUAED = 5
is presented in figure 1(a).

The parameter Ψ is an indicator of the wavelength of the resolved scales: as the
parameter increases, smaller scales are locally present. Since vorticity is a quantity
which clearly indicates the presence of small scales, we decided to define the param-
eter Ψ as the normalised magnitude of the vorticity vector

Ψ = 4

√
ω

max(ω)
(2)

the fourth root of Ψ being chosen as in that condition UAED results less case sensi-
tive and a greater part of the volume is affected by the anisotropic filtering, fig. 1(b).

While the parameter Ψ is a field parameter, i.e. every computational cell has
its own Ψ value, the parameter Θ is a scalar indicating the global resolution of the
system, and his value determines the shape and the intensity of the function fUAED.
The form factorΘ , defined by the eq. 3, shapes the curve tending to flatten it out when
vorticity increases (which is the case of well-resolved LES) while ensures a strong
effect on most of the scales when the field is poorly resolved, as from picture 1(a).

Θ =
2< Ū >

2

< Ū >
2 + l2< ω >2

(3)

l is taken as twice the characteristic length of the test case and Ū is the velocity
magnitude. <> denotes a spatial average.
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Fig. 1. Algebraic fUAED function (a) and Volume pdf integrated from Ψ to 1 (b).

3 Applications and results

The approach described in section 2.3 has been tested on two different test cases, the
plane channel flow and the round jet flow. Five different hexahedral structured grids,
in the following named from 1 to 5, have been used to test the sensitiveness of the
UAED approach to different resolutions.

As we followed the definition of geometric Δ proposed by Deardorff [2], we
decided to build up the grids applying an isotropic coarsening between each one and
the subsequent with a constant ratio

√
2, starting from a first grid able to well-resolve

the flow field. Considering that grid 1 is the starting grid, its is quite simple to observe
that grid 5 presents cells with the geometric Δ 4 times larger. Details regarding each
test case grids are reported in the next sections. The time step for the simulations has
been set constant and has been chosen to guarantee a Courant number lesser than
0.5; as the time step has a filtering effect over the solution, it has been scaled in the
same way the physical dimensions have been coarsened.

CUAED 0 2 4 8 16 32

Table 1. CUAED constants used in the preliminary analysis.

The simulations have been performed on a finite volume solver in Gaussian formu-
lation using the Crank-Nicholson second order scheme in time and a centred second
order scheme in space.

A first set of preliminary simulations have been carried out, combining the 4
models with 6 different values of the constant CUAED, as in table 1. A response sur-
face to value the quality of the results has been generated through the interpolation
of the starting matrix using ordinary kriging [11] with the goal to find an optimum
value for each model.

A second set of simulations has then been performed, combining the 4 different
models with the 5 computational grids. As in the preliminary case, a response sur-
face has been generated interpolating the resulting matrix with ordinary kriging to
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describe the behaviour of the cost function F:

F = 0.5εU +0.25εd +0.25εs (4)

εU =
∫

V

(ULES −UDNS)2

U2
DNS

dV (5)

εd = 3
√

εuu · εvv · εww (6)

εs =
√

εuv · εuw (7)

εi j =
∫

V

(RLES
i j −RDNS

i j )2

(RDNS
i j )2

dV (8)

where U is the time averaged streamwise velocity and Ri j represents the generic
component of the Reynolds stress tensor.

The main concern about kriging application was the definition of a consistent
length scale regarding the constant, the models and the grids. First of all, in each
analysis the length scale has been set equal for both axes, as to get square matrices,
then we defined different partitions for each parameter. When dealing with the mod-
els, the length scale has been equally divided while when dealing with the constant it
has been linearly divided with the constant value. The same approach has been con-
served for the parameter set on the grid length scale, which has been divided linearly
with the coarsening ratio.

Plane Channel Flow

The results of the simulations in a plane channel flow at Reτ = 395 are here illus-
trated.The computations were carried out on structured grids with constant spacing
in the streamwise and spanwise direction and hyperbolic spacing in the wall-normal
direction. The ratio between contiguous cells volumes is always lesser than 1.1 and
it tends towards the unity approaching the wall. The main characteristics of the grids
are presented in table 2. In the present analysis, the x axis is coincident with the
streamwise direction, the y axis with the wall-normal direction, the z axis with the
spanwise direction and the computational domain is taken equal to 2πh × 2h × πh,
being h the channel half-width.
As clear from the data in the table, not all the grids are able to capture the necessary
scales to correctly simulate the flow at the wall: since our research activity aimed
at checking how error behaves more than trying to reduce the error, we decided to
strictly keep the concept of isotropically coarsening the grid even in the wall-normal
direction.

The one-equation and the Smagorinsky model do not behave correctly approach-
ing at the wall, as νSGS does not correctly scale: for this reason, the models have
been corrected with the addition of a Van Driest damping term. The results are com-
pared with the DNS data by Kim [12] and the statistical moments contributing to the
definition of the cost function F have been normalised over the computed uτ .

Two series of simulations have been carried out; in the first one both the con-
vective and the diffusive term were discretised with centred second-order schemes,
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Grid nr of cells Δx+ Δy+ Δz+

1 80 X 100 X 100 30 1.5 → 15 12
2 56 X 70 X 70 42.5 2.1 → 21 17
3 40 X 50 X 50 60 3 → 30 24
4 28 X 35 X 35 85 4.2 → 42 34
5 20 X 25 X 25 120 6 → 60 48

Table 2. Main characteristics of the grids used for the Plane Channel Flow case.

while in the second one they were discretised with a centred fourth-order scheme.
Both sets of preliminary simulations where performed on grid 3 to limit the compu-
tational resources needed.

Figure 2 shows the cost function F isocontours normalised in each row by the
value of F at CUAED = 0. The application of UAED in combination with the Van Dri-
est damping deteriorates the quality of the results, and the phenomenon gets worse
increasing the value of CUAED: this is probably due to the fact that the beneficial ef-
fect that the Van Driest damping performs combined to the model, which imposes a
decrease of Δe towards the wall, is counteracted by UAED which increases the Δe

dimensions in the boundary layer. This behaviour is connected to a sensible dete-
rioration in uτ predictions for the model corrected with the Van Driest Damping.A
sensible reduction of the error is instead observed for both the discretisation schemes
when UAED is combined with variational multi-scale model, while WALE produces
more accurate results only when second-order schemes are used. These results may
be justified by the fact that in the variational multiscale-approach the model acts only
over the small scales, while the WALE model acts on all the flow scales: a high value
of the constant CUAED combined with a high order scheme makes the model error to
mask completely the smaller numerical error.

The optimum value for the constant CUAED has been chosen through a minimum
analysis of the cost function, represented by the dotted line in figure 2 (a) and (b):
as the best value of CUAED for the models corrected with the Van Driest damping
is actually 0, we anyway set a symbolic value of 1 as, although we expect that the
results will be worst than without the application of UAED, our aim is to test the
stability of the error when Δe is modified.

Following the optimum CUAED value definition for each model, a database of
simulations has been generated crossing the model applied and the grid resolution.
The same database has been replicated without the anisotropic filter and furthermore
a set of coarse DNS has been simulated too, for a result of 45 simulations for each
of the discretisation schemes used.

The uτ response surface resulting from second order traditional LES database is
presented in fig. 3 (a): the data, normalised on the uτ value computed by Kim [12],
look quite similar for all the models and deteriorate as the grid coarsens. Models
used in combination with the Van Driest damping produce slightly more accurate
results as scale resolution decreases if compared to the other models or coarse DNS.
UAED approach combined with the optimum constant did not perturb significantly
uτ predictions, while the fourth order scheme application produces more accurate
results as shown in fig. 3 (b).



Reduced interactions between error sources through anisotropic filtering 97

Fig. 2. F response surface on grid 3 using second (a) and fourth (b) order schemes.

Fig. 3. Second order uτ response surface (a) and uτ ratio between second and fourth order
prediction (b).

In picture 4 the cost function F normalised with the corresponding values com-
puted through standard LES is presented. The most interesting result is a quite good
consistency for the “refined” part of the response surface, meaning that the approach
is actually able to adapt itself through the variation of the global shape parameter Θ
to the correct level of smoothing. Conversely, the main problem emerging from this
analysis is indeed that the behaviour becomes quite unpredictable when UAED is
combined with coarse grids and it is arguable if this happens for a poor resolution of
the boundary layer or if the approach does not work properly in presence of a large
numerical error.

Round Jet Flow

In this section, the results of the analysis carried out on a round jet flow test case
are presented. A maximum Reynolds number, referenced to the peak of the mean
streamwise velocity profile and the initial jet diameter, up to ReD = 21000, has been
considered. The computations have been performed on five different structured grids,
on the same regular domain defined by [0,15D]× [−5.5D,5.5D]× [−5.5D,5.5D],
the most refined one being discretised as the finest grid of Sagaut and Lê [13]. The
discretisation on each cross section (y,z planes in Table 3) along the streamwise
direction has been kept constant in the jet zone, while gaussian-shaped coarsening
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Fig. 4. Error response surface of UAED LES compared to traditional LES for second order (a)
and fourth order (b) accuracy.

has been applied outwards. Along the streamwise direction x, a constant increment
has been applied, while the dimension of the first cell layer has been chosen in order
to comply with the advice in [14, 15]. More details are summarised in table 3.

As far as the jet inlet boundary surface is concerned, particular attention has been
paid to the correct setting of the velocity profile: a flat, 1m/s streamwise velocity
profile has been imposed outwards the jet region, while inside a hyperbolic-tangent
function [14] has been set:

u(r)
Ure f

=
1
2

(
1− tanh

[
rjet

4θjet

{
r

rjet
−

rjet

r

}])
. (9)

Moreover, a white-noise-spectrum turbulent fluctuation has been imposed on the
whole inlet surface reference velocity field, adding up to, respectively, 4% along the
x axis and 0.1% in the radial directions, in agreement with the tabulated experimental
data [16].

Jet zone Outwards Jet inlet Outlet
Grid nr of cells Δy = Δz Δy = Δz Δx Δx
1 100 X 120 X 120 D/36 1.00D D/16 0.3D
2 70 X 85 X 85 D/25 1.15D D/12 0.4D
3 50 X 60 X 60 D/18 1.35D D/8 0.6D
4 35 X 42 X 42 D/13 1.60D D/6 0.85D
5 25 X 30 X 30 D/9 1.90D D/4 1.2D

Table 3. Main characteristics of the grids used for the Round Jet case.

The results of the computations have been compared with detailed experimental
data from the Ercoftac Database [16]. Since the test case does not present a periodic
behaviour in the streamwise direction, the cost function F has been evaluated as the
mean value of the cost functions defined on four yz planes at x/D = 0.2;2.0;4.0;8.0
respectively.
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Fig. 5. F response surface on grid 3 (a) and on the five grids with optimum CUAED values (b)
for the Round Jet test case.

Figure 5 (a) shows the response surface of the cost function F on grid 3, crossing
the four models and the six CUAED values previously introduced, and normalised as
in section 3. The thick dotted line identifies the optimum value of CUAED on the
response surface, depending on the model chosen. From the figure, the reduction
in cost function F due to UAED is strong for each of the models, and approaches
30% and 50% circa, for the variational multi-scale and the one-equation models,
respectively. Another interesting feature is that the optimum value of CUAED seems
to be quite independent on the model chosen, and anyway it is generally included
in the [2,4] range. The only slightly different behaviour is seen for the coupling of
UAED with the WALE model, where the optimum is reached at CUAED = 12 circa;
nevertheless, in this case the behaviour of UAED is much more straight along the
CUAED range, and a reduction in F by approximately 10% can be achieved even for it
being in the optimum range identified for the other models. The UAED performance
deteriorates as CUAED increases to values greater than eight.

The behaviour of the error cost function F on each grid, obtained setting the
optimum CUAED value for each of the models considered, has been reconstructed
through kriging and plotted in figure 5 (b), normalised with respect to traditional
LES. As it appears from the response surface, the application of UAED produces a
stable global error reduction as the grid is refined; the total reduction in cost function
adding up to more than 50% on the plain LES value. On the other side, a drawback
of the UAED seems that, the approach unpredictably affects the results on coarse
grids, as – even if in a framework of increasing error for each of the models – it
appears much more stable when in presence of VMS or WALE, while instead the
normalised cost function rapidly climbs up to values greater than 4 when adopting
the one-equation and the Smagorinsky models.

4 Concluding Remarks

A local extension of the subgrid wavelength Δe in LES has been investigated.
Different grid resolutions, models and discretisation schemes have been con-

sidered on two well established test cases and the results have been compared to
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DNS/experimental data. The analysis of the error cost function stresses how this ap-
proach is beneficial for shear flows and can be effective even for wall-bounded flows,
if the model can correctly scale νSGS at the wall. The approach looks able to adapt
itself to produce adequate wavelength extension when dealing with reasonable phys-
ical resolution, while it leads to unpredictable results when applied to really coarse
grids: as a high Θ induces a strong effect even at low Ψ values, probably the large
scales of motion come to be affected by UAED at low resolution.
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Summary. The paper presents the results of the LES computations of the flow between rotat-
ing discs using high-order numerical code. The results of simulation for fully turbulent flow,
obtained using various subgrid models (dynamic Smagorinsky [6], WALE [11] and HPF [18])
are compared with available DNS data. Besides the averaged quantities an additional atten-
tion was devoted to the temporal evolution of the flow field. The dynamic Smagorinsky and
WALE models can be regarded as a parameter free while in the case of HPF model a high-pass
filtering procedure requires some parameters which influence the model behavior. We found
that in this type of flow this procedure should be directly related to the numerical scheme ap-
plied. Otherwise the results depend on the initial flow conditions and the predicted evolution
of turbulent flow may be distorted.

Key words: subgrid modeling, rotating cavity, instability

1 Introduction

Flows in the cavities between rotating discs are the subject of a constant interest be-
cause they appear in many practical applications, among others in the turbomachines
(turbines or compressors) but also in many applications in process engineering. Al-
though, in general, both discs could rotate in a co-rotating or counter-rotating sys-
tems, the most common situation, at least in the turbomachinery, is a flow resulting
from the rotor-stator interaction. In real applications the cavity between the rotor
and stator most often must be classified as a complex geometry due to the fact, that
the disc, shaft and shroud design is affected by the need for mechanical or thermal
stress minimization. Numerical simulations of such a flow taking into account com-
plex geometry and an unsteady flow behavior would require a prohibitively large
computational time, especially when considering LES approach. Hence, the major-
ity of numerical studies of this flow type was performed using a simplified geometry
composed of two flat discs and two cylinders, the inner one called shaft and the
outer one called the shroud. This type of configuration is one of the simplest where
the the boundary layers are three-dimensional (3D) giving possibility to study the
influence of the 3D mean flow structures on the transition process and turbulence
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structure. A common feature of these flows is the coexistence of regions where the
flow is laminar, transitional or turbulent with strong inhomogeneity effects - these
are the reasons why the simulations with classical Reynolds Averaged Navier-Stokes
approach had only limited success.

Despite the simple geometry the flow in the cavity between rotating and station-
ary discs is controlled by a variety of geometrical parameters like cylinders radii,
cavity aspect ratio or type of the confinement understood as the cylinders attached
to the rotor or stator. Although numerous theoretical and computational works on
this flow type [2, 5, 8, 13, 14, 15, 21] have not led to full understanding of the tran-
sition process, it seems that they revealed fundamental flow features. In the limit
of high rotation the flow between the infinite rotating and stationary infinite discs
is of Batchelor type and consists of two layers separated by an inviscid rotating
core. Close to the rotating disc the Ekman layer is established while on the sta-
tionary disc the Bödewadt type layer is formed. The transition in both layers is re-
lated to type I and type II generic linear instabilities studied by the stability theory
[14] and identified experimentally [5, 8, 13]. The Ekman layer is more stable hence
the first transition to unsteadiness appears in the boundary layer on stationary disc.
Type I instability mechanism is manifested in the form of the system of travelling
spiral vortices while type II instability leads to the system of axi-symmetric vor-
tex rings traveling toward the inner disc. The particular flow structure, number of
present vortices, critical Reynolds numbers, range of Reynolds numbers for which
both flow structures could coexist depend on the confinement geometry but in many
cases both unstable modes could be identified. The studies mentioned above con-
sidered mainly isothermal flows while in practical applications the non-isothermal
conditions are also of primary importance. The weakly non-isothermal flow between
the rotating discs was recently studied numerically using DNS/LES approach by
Tuliszka-Sznitko and Zielinski [21].

The main goal of the present LES studies of the flow between the rotating and
stationary discs was to evaluate sensitivity of the mean and transient flow character-
istics depending on the subgrid scale model applied. Apart from the simple geometry
the flow in rotating cavity is very demanding from the point of view of LES compu-
tations. This is because the subgrid models used in LES have to cope with laminar,
transitional and turbulent flow conditions. Lygren and Andersson [1] performed com-
parative LES study in a sector of a rotor-stator cavity applying three eddy-viscosity
type models, i.e. the dynamic Smagorinsky [6] and two mixed models of Zang [23]
and Vreman [22]. Comparing to DNS results they found that the mixed model of
Vreman gives the best overall results, however, they also suggested that in order
to get better agreement the subgrid modeling should be improved. Severac et al.
[17] and Severac and Serre [16] applied the spectral vanishing viscosity (SVV) tech-
nique [20] in their pseudo-spectral Chebyshev-Fourier code. As the SVV technique
maintains spectral convergence of the pseudo-spectral code, their results obtained
for moderate (Re = 7× 104 [17]) and high Reynolds numbers (Re = O(105,106)
[16, 17]) were in very good agreement with both DNS and experimental data. The
pseudo-spectral methods together with SVV are however limited to relatively simple
geometries, considerably different from those in real applications, where they cannot
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be applied without special treatment. Therefore, in most cases the finite volume or
finite difference codes are used which do not imply special requirements on spectral
behavior of the damping terms. Choosing from tens of existing subgrid models, in
the present study we performed the LES computations using well known dynamic
Smagorinsky model [6] and two relatively new but already well established models
proposed by Nicoud and Ducros [11] (WALE - Wall Adapting Local Eddy) and Stolz
et al. [18, 19] (HPF - High-Pass Filtered) Smagorinsky model. These models belong
to the so-called eddy viscosity (subgrid viscosity) type [7, 12], where the subgrid
stress tensor

τi j = uiu j −uiu j (1)

is modeled as

τi j − τkkδi j = 2νtSi j with Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(2)

The overbar in the above equations denotes LES filtering procedure and Si j is the
strain rate tensor. The differences in subgrid modeling rely on how the subgrid vis-
cosity is evaluated, and so, in the case of dynamic Smagorinsky model the expression

is νt = (CdΔ)2
√

2Si jSi j, where the model parameter Cd is adjusted dynamically de-
pending on local flow parameters. In the case of WALE approach we would have
[11]

νt = (CwΔ)2

(
ℑd

i jℑd
i j

)3/2

(
Si jSi j

)5/2 +
(
ℑd

i jℑd
i j

)5/4
(3)

where

ℑd
i j =

1
2

(
g2

i j +g2
ji

)
− 1

3
δi jg

2
kk with gi j =

∂ui

∂x j
(4)

and the model constant Cw equals to 0.5. Finally, the HPF model reads as

νt = (ChΔ)2
√

2S
HPF
i j S

HPF
i j (5)

where the strain rate tensor S
HPF
i j is calculated using high-pass filtered velocity field,

which is obtained by subtracting low-pass explicitly filtered quantities from the un-
filtered ones. Additionally, the deformation tensor in Eq.2 is also computed as S

HPF
i j .

The model constant Ch and the shape of the filter are the model parameters. The
high-pass filtering procedure permits to select a range of scales which are important
in calculation of the subgrid viscosity, however, as we will be shown in next sections,
this freedom may also lead to unexpected model behavior.

The models chosen appear to be very accurate in channel and pipe flows but
except for the dynamic Smagorinsky model the authors did not find literature data
concerning their application in rotating geometries. In view of the LES computations
of flow in rotating cavities this paper may be regarded as an extension of the work of
Lygren and Andersson [1] .
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2 Computational domain and numerical method

Computational domain is shown in Fig. 1, the radius of the inner (called shaft) and
outer (called shroud) cylinders are denoted by R0 and R1. The radial extent of the an-
nular cavity between the cylinder is ΔR = R1−R0 that related to the cavity height 2h
defines the parameter called aspect ratio L = ΔR/2h. The aspect ratio parameter to-
gether with the so-called curvature parameter, defined as Rm = R1+R0

ΔR , fully describes
the cavity geometry. The Reynolds number is defined as Re =ΩR2

1/ν , where Ω is the
angular velocity of the upper disc and ν is the kinematic viscosity. In general, both
the inner and/or outer cylinder can rotate or can be stationary. The motion inside the
cavity is described by the Navier-Stokes and continuity equations for incompressible
fluid. The equations are written in the cylindrical coordinate system (r,θ , z) in the
velocity (Vr,Vθ ,Vz) and pressure formulation. The non-slip boundary conditions are
assumed on the walls. The angular velocity of the upper disc and the velocity of the
rotating cylinder is computed as Vθ = Ωr, where r is the local radius, the remaining
velocity components are equal to zero. The numerical algorithm is based on the pro-
jection method [4], where the divergence free velocity field is obtained during the
correction step after evaluation of the pressure field from the Poisson equation. The
Poisson equation in the cylindrical coordinate system is first transformed into the
periodic direction and then the diagonalization technique is applied leading to a set
of one dimensional systems which are solved by a direct method. The Navier-Stokes
equations are advanced in time with three step Runge-Kutta method, the spatial dis-
cretisation is performed using the Fourier pseudo-spectral method [3] in the periodic
direction and 6-th order compact scheme [10] in the axial and radial directions. With-
out the subgrid model the algorithm becomes unstable for higher Reynolds number
and therefore to prevent this instability we explicitly filter the solution every time
step. The stabilizing low-pass filter was tuned in such a way that it acts on the small-
est resolved scales only. The stabilizing filter was applied in the directions of the
compact discretization (i.e. axial and radial) and it ensured stable high order solu-
tions. Therefore, we could expect that the role of the subgrid modeling should lead
to an improvement of the solutions accuracy but not to the stabilization of solution.

2.1 Parameters of HPF subgrid model

The high-pass filtering quantities uHPF are obtained by subtracting low-pass explic-
itly filtered quantities ũ = G ∗ u from the unfiltered ones u, i.e. uHPF = H ∗ u =
(I −G) ∗ u, where G denotes low-pass filter. Detailed analysis of high-pass filtered
Smagorinsky model together with the high and low-pass filtering procedures applied
in subgrid modeling may be found in [9]. We remind that in our numerical code at
the end of each time step we apply additional stabilizing low-pass filtering proce-
dure (uLPF = L ∗ u). This modifies a range of scales which are used in HPF model,
because the quantities which are then high-pass filtered are in fact uLPF and not u.
The transfer functions of the stabilizing low-pass filter (L̂(u)), the second order low-
pass filter Ĝ(u) and high-pass filters (Ĥ(u)) and Ĥ(uLPF)) are shown in Fig. 2. The
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Fig. 1. Computational domain.

Fig. 2. Transfer function of the stabilizing low-pass filter (L̂(u)) (dash-dot line), second order
low-pass filter Ĝ(u) (dashed line) and high-pass filters: Ĥ(u) (line with squares) and Ĥ(uLPF )
(line with triangles).

combination of stabilizing low-pass procedure with HPF model was verified in pe-
riodic channel flow computations with Reτ = 180 and 395 leading to the accurate
results.

3 Results and discussion

The test case studied corresponds to DNS results of Severac and Serre [16] for the
cavity parameters L = 5 and Rm = 5 with Re = 7× 104 and both the inner and the
outer cylinder are stationary. The Reynolds number chosen is above the critical value
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and according to the DNS results both unstable modes should coexist. The simula-
tions were started impulsively from Re = 2×104 and then the Reynolds number was
increased every time step up to Re = 7×104 after about 30 rotations. Computations
were performed starting from two different initial velocity fields: 1) zero mean and
zero fluctuating velocity; 2) zero mean and random fluctuating velocity with am-
plitude equal to 1% of the maximum angular velocity component. In this paper we
present the results for the first case only, where substantial differences exist, in the
second case the results for all models are very similar. Figure 3 shows complexity
of the flow field, it illustrates the instantaneous isosurface of axial velocity after 150
rotations at constant rotational speed obtained with three subgrid models considered
as well as without any subgrid model. As can be seen from Fig. 3 without the subgrid
model the axi-symmetric vortices traveling toward the inner cylinder are reproduced
while spiral vortices manifesting the instability of type I are not present. Similar re-

Fig. 3. Instantaneous isosurfaces of the axial velocity component for various subgrid models.

sults are obtained for HPF model, the spiral vortices are not seen in the figure and
they can only be found after very careful selection of the isosurface, but even then
they are revealed by a very weak wrinkles on the vortex rings located close to the
outer disc. Very small influence of the HPF model is probably caused by the sta-
bilizing filtering procedure, which to some extent removes the part of the spectrum
which is then used in the HPF model. Indeed, when the the small scales are absent,
then the subgrid viscosity is close to zero because in Smagorinsky model the strain
rate tensor is calculated using velocity field with partially removed small scales. In
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the case of dynamic Smagorinsky and WALE models a significant influence of the
model is visible. One can see that the regular spiral vortices corresponding to the in-
stability of type I appeared, while the vortex rings are located only very close to the
inner cylinder and reveal axi-symmetric shape. In this case one can easily distinguish
between both unstable modes. The time series and the spectrum of the axial veloc-
ity component obtained for HPF and WALE models in the mid-radius of the cavity
r = R0 +(R1 −R0)/2 and approximately at the edge of the Bödewadt layer (z = 0.2)
are shown in Fig. 4. A periodical character of the flow is established after the ini-
tial transient solution, it can be seen that in both cases there is a basic frequency
equal to 0.44Ω . This frequency is related to the axi-symmetric vortex (type II insta-
bility) traveling toward the inner cylinder. In the case of the solution obtained with
the HPF model this vortex is followed by smaller and also axi-symmetric vortices
characterized by doubled frequencies. These smaller structures disappear in the re-
sults obtained with WALE and dynamic Smagorinsky models and therefore one may
say that there are substantial qualitative differences between the HPF and WALE or
dynamic Smagorinsky models. Additionally, we notice that the values of the radial
velocity for the WALE model (the same concerns dynamic Smagorinsky model) are
negative for the whole probing time while in the case of the HPF model the radial
velocity oscillates close to zero. This is because the unstable stator layer is thicker

Fig. 4. Time series and spectrum of the radial velocity components at mid-radius of the cavity
r = R0 +(R1 −R0)/2 and z = 0.2 obtained for HPF and WALE models.

in the case of WALE model and this can bee seen in Fig. 5, where the instantaneous
contours of the radial velocity component are presented for both subgrid models.
The white regions correspond to the values lower than −0.05 and the arrow shows
the point where the time signal shown in Fig. 4 was registered. Not surprisingly, the
evident differences in instantaneous solutions have direct consequences in the mean
velocity profiles, as can be seen from the comparison of the mean azimuthal and ra-
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Fig. 5. Instantaneous contours of the radial velocity obtained for HPF and WALE models.
White regions correspond to negative values lower than -0.05.

dial velocity profiles along the axial direction at mid-radius with DNS results, this
comparison is presented in Fig. 6. One can notice that the HPF model gives results
rather far from those obtained with the WALE and dynamic Smagorinsky models,
which are in fact in good agreement with DNS data. The azimuthal velocity is best
predicted by the WALE model, whereas the dynamic Smagorinsky model seems to
be the most accurate in the case of predicting the radial velocity component. Notice-
able discrepancies are only observed for radial velocity profile at z = 0.2−0.5, this
corresponds to the transient region which encloses the Bödewadt layer and a part of
the inner homogenous flow with zero radial velocity and constant mean azimuthal
velocity. The peak value of the radial velocity at z = 0.1 predicted by the WALE
model is also underestimated.

The velocity profiles obtained with HPF model seem to correspond to a higher
Reynolds number for which both the Ekman and Bödewadt layer are thiner. Indeed,
the effective Reynolds number which is based on the effective viscosity (molecular
+ subgrid visocity) is higher in the case of the HPF model because the values of sub-
grid viscosity are small. To some extent this can explain discrepancies in the results
obtained and it seems that the values of subgrid viscosity (and subgrid tensor) are
too small to act effectively on the flow field because its influence is suppressed by
stabilizing procedure.

4 Conclusions

The LES computations of the flow inside the rotating cavity were performed show-
ing the influence of various subgrid modeling approaches applied. In the case of
dynamic Smagorinsky and WALE models the results obtained were similar and re-
mained in good agreement with DNS data. On the other hand the results obtained
with the high-pass filtered Smagorinsky model did not reproduce correctly the tur-
bulence characteristics of the flow and were close to the results obtained without any
subgrid model.This was however obtained for a particular case when the simulations
were started from the zero initial velocity field, and a it was mentioned in the pa-
per, in calculations starting from the disturbed flow field all the models produced to
very similar results. This is because the turbulence “injected“ at the initial stage is
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Fig. 6. Axial profiles of the azimuthal (a) and radial (b) components of the mean velocity at
mid-radius.

strong enough to amplify both types of instabilities, i.e. the circular rings and the
spiral structures. The latter structures were not present when computations were per-
formed with HPF model or without any subgrid model. The simulations performed
with HPF model could be probably improved by more careful choice of the high-pass
filtering and stabilization procedure, which is planned as a future task.
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research grant COST/78/2006 founded by Polish Ministry of Science. The authors are

grateful to the Cyfronet Comp. Center and TASK Comp. Center for access to the computing
resources.

References

1. Anderson H.I., Lygren M. Large eddy simulation of the turbulent flow between a rotating
and stationay discs. ZAMP, 55:268–281, 2004.

2. Anderson H.I., Lygren M. LES of open rotor-stator flow. I. J. Heat and Fluid Flow,
27:551–557, 2006.

3. Canuto C., Hussaini M.Y., Quarteroni A., and Zang T.A. Spectral methods in fluid dy-
namics. Springer-Verlag, 1988.

4. Fletcher C.A.J. Comp. Techniques for Fluid Dynamics. Springer-Verlag, 1991.
5. Gauthier G., Gondret P., Moisy F. and Rabaud M. Instabilities in the flow between co-

and counter-rotating disks. J. Fluid Mech., 471:1–21, 2002.
6. Moin P., Germano M., Piomelli U. and Cabot W. A dynamic subgrid scale eddy viscosity

model. Phys. Fluids A, 3:1760, 1991.
7. Geurts B.J. Elements of Direct and Large-Eddy Simulation. Edwards, 2003.
8. Itoh M., Yamada Y., Imao S., Gonda M. Experiments on turbulent flow due to an enclosed

rotating disc. Exp. Therm. Fluid Sci., 5:359, 1992.
9. Jeanmart H. and Winckelmans G. Investigation of eddy-viscosity models modified using

discrete filters: A simplified “regularized variational multiscale model” and an “enhanced
field model”. Phys. Fluids 19, 055110, 2007.



110 Artur Tyliszczak and Andrzej Boguslawski

10. Lele S.K. Compact finite difference with spectral-like resolution. J. Comput. Phys.,
103:16–42, 1992.

11. Nicoud F. and Ducros F. Subgrid-Scale Stress Modelling Based on the Square of the
Velocity Gradient Tensor. Flow, Turb. Comb., 62:183–200, 1999.

12. Sagaut P. Large eddy simulation for incompressible flows. Springer, 2001.
13. Schouveiler L., Le Gal P. and Chauve, M. Instabilities of the flow between a rotating and

stationary disk. J. Fluid Mech., 443:329–350, 2001.
14. Serre, E., Tuliszka-Sznitko, E. and Bontoux. Coupled numerical and theoretical study

of the transition flow between a rotating and stationary disk. Phys. Fluids, 16:688–707,
2004.

15. Severac E., Poncet S., Serre E. and Chauve M-P. Large eddy simulation and measurements
of turbulent enclosed rotor-stator flows. Phys. Fluids, 19?, 2007.

16. Severac E., Serre E. A spectral vanishing viscosity for the LES of turbulent flows within
rotating cavities. J. Comput. Phys., 226:1234–1255, 2007.

17. Severac E., Serre E., Bontoux P., Launder B. Large Eddy Simulations of Transitional
Rotor-Stator Flows using Spectral Vanishing Viscosity Techniques. In DLES VI, editors:
Lamballais E., Friedrich R., Geurts B.J. and Metais O., ERCOFTAC, 217–224. Springer,
2006.

18. Stolz S., Schalatter P. and Kleiser L. High-pass filtered eddy-viscosity models for large-
eddy simulations of transitional and turbulent flows. Phys. Fluids, 17, 2005.

19. Stolz S., Schalatter P., Meyer D. and Kleiser L. High-pass filtered eddy viscosity models
for LES. In DLES V, editors: Friedrich R., Geurts B.J., Metais O., KLUWER, 2004.

20. Tadmor E. Convergence of spectral methods for nonlinear conservation laws. SIAM J.
Numer. Anal., 26–30, 1989.

21. Tuliszka-Sznitko E., Zielinski A. DNS/LES of Transitional Flow in Rotating Cavity. I. J.
Transport Phenomena, 10:223–234, 2008.

22. Vreman B., Geurts B., Kuerten H. On the formulation of the dynamic mixed subgrid-scale
model. Phys. Fluids, 6:4057, 1994.

23. Zang Y., Street R., Koseff J.R. A dynamic mixed subgrid-scale model and its application
to turbulent recirculating flows. Phys. Fluids, 5:3186, 1993.



A priori analysis of an Isothermal, Turbulent
Two-Phase Flow

Alessandro Pecenko1 and J. G. M. Kuerten1

Department of Mechanical Engineering, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
a.pecenko@tue.nl j.g.m.kuerten@tue.nl

Summary. A novel approach to the simulation of isothermal, turbulent two-phase (liq-
uid/vapour) flow of one substance is presented. The two-phase flow is modeled with a “one-
fluid” formulation by means of a diffuse-interface concept and of the frame-invariant Korteweg
tensor of capillary stresses at the interface. A single system of compressible Navier-Stokes
equations can be written for the whole flow domain, the fluid properties being described by
continuous functions of the mass density. The Van der Waals equation of state accounts for the
variation of pressure with density at a given value of temperature slightly below the critical
isotherm. After description of the numerical method, results of the Direct Numerical Simula-
tion of a classic benchmark problem are shown. Next, two-phase subgrid terms related to the
nonlinear pressure and capillary terms are studied by means of an a priori analysis based on
DNS results, and a subgrid model for these terms is proposed.

Key words: Two-phase, diffuse interface, Korteweg tensor, Van der Waals, subgrid terms,
a priori analysis.

1 Introduction

The numerical simulation of multiphase flows generally involves physical and math-
ematical issues that are absent in single-phase flows since they arise from the pres-
ence of thin interfaces. Physically, they represent regions of the flow domain where,
within a small but finite thickness, density, temperature, pressure, viscosity and other
quantities vary rapidly but smoothly between their respective bulk-phase values.

The diffuse-interface approach, historically developed in a thermodynamically
consistent theory by Van der Waals [1], seems, therefore, the most suitable for a
two-phase flow of one substance in the vicinity of the critical point, which repre-
sents the upper limit of liquid-vapor equilibria before the liquid phase vanishes and
the interface becomes infinitely spread. The only order parameter that describes the
transition between the bulk phases is the mass density ρ . A unique set of govern-
ing equations for the whole flow domain can be written if the right-hand side of the
momentum equation incorporates the divergence of a second-order, frame-invariant
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tensor, called Korteweg tensor. This tensor represents capillary stresses at the inter-
face, and depends on the density and its spatial derivatives [2]. It can be shown that
such a tensor, even in the more general case of density-dependent fluid properties
and of compressible flow, is non-dissipative. In isothermal conditions, the set of gov-
erning equations consists of the continuity and of the momentum equation, plus an
equation of state, which is taken in the Van der Waals form.

When the two-phase flow is turbulent and a Large Eddy approach is adopted
for the numerical simulation, the filtering operator yields as many subgrid terms
as the nonlinear terms present in the equations. In a two-phase flow with Van der
Waals equation of state and Korteweg tensor, the pressure and the components of the
capillary tensor are nonlinear. Hence, they generate “non-classic” subgrid terms for
which the literature does not provide as many well-assessed models as for the typical
single-phase subgrid terms. Therefore, we have performed an a priori analysis for the
new subgrid terms, based on a model that we have devised ad hoc and that we here
call “capillarity model”.

The contents of this paper are as follows. In Sect. 2, the capillary stress tensor
and the governing equations are shown. In Sect. 3, the numerical method adopted
for the Direct Numerical Simulation of an isothermal, two-phase, single-component
flow with diffuse interface is described. Results for a classic problem are shown in
Sect. 4. In Sect. 5, we propose a model for the subgrid terms related to the presence
of the diffuse interface. The a priori analysis of the modeled subgrid terms is made on
the basis of the test simulation previously discussed. Finally, in Sect. 6 conclusions
are drawn and future steps are stated.

2 Governing equations

From a thermodynamic point of view, the notion of phase boundary as a diffuse inter-
face can be related to the interfacial Helmholtz free energy, which can be expressed
(see [1] [3]) by means of the local density gradient. Based on the variational concept
that the extrema of density functionals like the free energy correspond to states of
equilibrium, the two-phase equilibrium condition of a single-component fluid can
be found by minimizing the total Helmholtz free energy of the system. In [4], it is
recalled how such requirement, under the constraint of total mass conservation, is
equivalent to the following conservation law:

∇ ·T = 0 , (1)

T being a second-order, frame-invariant tensor representing capillary stresses at the
interface and commonly called Korteweg tensor [2]. In the most general case, it can
be shown that this tensor is given by

T = {−p + ρK∇2ρ +
1
2
(K +ρKρ)|∇ρ|2}I − K∇ρ⊗∇ρ (2)

where p is the thermodynamic pressure, I is the identity tensor, K = K(ρ) is a cap-
illarity coefficient commonly called gradient energy coefficient, and Kρ denotes its
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derivative with respect to the density. Since our work is restricted to isothermal con-
ditions, the dependence of K on temperature is ignored.

The whole fluid domain can be treated as a continuum, where mass density plays
the role of phase-field function, provided that the fluid properties are reasonably well
approximated in both phases by continuous functions of the density. Hence, a unique
function μ(ρ) for the dynamic viscosity has to be assumed. Here we have taken the
linear approximation

μ(ρ) = c1ρ ,

where c1 is a proportionality coefficient that can be obtained from experimental val-
ues of the dynamic viscosity at the given temperature and for the given substance.
For K(ρ) we take

K =
c2

ρ
,

c2 being a positive constant. Although there is no or little physical justification for
this choice, it has two advantages. First, as can be seen from (2), this choice leads to
the simplest form of the Korteweg tensor, as the term for the square gradient norm
vanishes. Thus

T = {−p + c2∇2ρ}I − c2

ρ
∇ρ⊗∇ρ . (3)

Second, it leads to a linear highest order derivative term in T, which simplifies
subgrid modeling. Moreover, the possible values of the macroscopic quantity re-
lated to capillarity, namely the surface tension, are not restricted by the choice made
for K(ρ).

The full system of governing equations reads in conservative form for an isother-
mal two-phase flow of a single-component fluid

ρt + ∇ · (ρu) = 0 (4)

(ρu)t + ∇ · (ρuu) = ∇ · (d + T) (5)

p = p(ρ) , (6)

u denoting the velocity, d the usual viscous stress tensor for a Newtonian fluid, and
p(ρ) the Van der Waals equation of state.

3 Numerical method for DNS

The system of equations (4)-(6) is strongly nonlinear: besides the convective term,
the capillary tensor components, even with the assumption (3), are nonlinear, as well
the viscous stresses and the pressure term. The latter is of the form

p(ρ) =
RT

M−bρ
ρ − a

M2 ρ
2 (7)

where R is the gas constant, T is the prescribed value of temperature, M the molar
mass, a and b two constant coefficients experimentally determined for the given sub-
stance. Although this equation represents qualitatively the behaviour of a fluid below
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the condensation point and above the saturation point, each isotherm in nearly criti-
cal conditions contains an unphysical region of negative compressibility d p/dρ < 0.
This is a possible source of intense, high-frequency oscillations, which can lead to
severe stability problems in a numerical simulation. Hence, the choice of the time
integration scheme has to be such that these oscillations are not amplified. To this
purpose, we have adopted a three-stage, third-order accurate Runge-Kutta scheme
based on the Total Variation Diminishing concept [5]. Such a scheme has proved to
give stable results also in the unstable region of the solution domain.

For the space discretization we have used a central finite-volume scheme, glob-
ally accurate up to the second order, on a uniform Cartesian grid.

The time step Δ t has been chosen according to the Courant-Friedrichs-Lewy
condition

Δ t ≤ CΔx

(
d p
dρ

)− 1
2

,

where C is an empirical constant value smaller that unity, and (d p/dρ)−1/2 is the
reciprocal of the speed of sound at the prescribed temperature. Other characteristic
velocities are negligible in the test case that we have considered. Therefore, they do
not affect the CFL condition significantly.

4 DNS results

The benchmark test simulation that we here present and that we have used as refer-
ence for the a priori analysis of the interfacial subgrid terms, is the so-called single-
drop retraction. It is well known that in the absence of gravity and other external
forces, a drop of liquid in a closed vessel filled with the saturated vapor of the same
component must have, at stationary conditions, a spherical shape. In fact, the latter
is the only shape that allows static mechanical equilibrium to hold in every point of
the interface, as described by the classic Laplace-Young equation

pl − pv =
2
R
σ (8)

where the left-hand side is strictly positive. The pressure of the liquid pl and that of
its saturated vapor pv differ by a quantity (2/R)σ , where R is the radius of the drop
and and σ represents the value of the surface tension at equilibrium.

In Figs. 1-2 we show the results of the simulation. The initial condition consists of
a drop of ellipsoidal shape surrounded by vapor, with a diffuse interface separating
the two phases. The velocity field is zero everywhere. The nonuniform curvature
causes the onset of a reshaping of the drop, which eventually reaches the spherical
form when local mechanical equilibrium is restored (Fig. 1). This state represents
the steady solution since the total free energy has a minimum. A uniform pressure
jump across the interface is established (Fig. 2), and surface tension can therefore be
computed by means of (8) and compared with the analytical value given by [6]
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σ = 2
∫ ρl

ρv

[
1
2

K(ρ)Δ f (ρ)
] 1

2

dρ . (9)

Here ρv, ρl are the values of the density in the vapor and in the liquid bulk phase
respectively, and Δ f (ρ) represents the change in the Helmholtz free energy when a
unit volume of a mixture of liquid and vapor at equilibrium of average density ρ is
converted into a single-phase unit volume with the same density. The estimation of
Δ f (ρ) can be easily done once the temperature is assigned and the equation of state
known [6]. The numerical and the analytical value of the surface tension are found
to differ by only 0.3% on a sufficiently fine grid.

Fig. 1. Retraction of an ellipsoidal drop surrounded by quiescent saturated vapour, under the
effect of capillary forces, represented on a symmetry plane. a initial state. b final equilibrium
state. The interface is represented by means of density isolines. Time t is expressed in arbitrary
units.

Fig. 2. Retraction of a drop in the absence of external forces. a steady solution for the pressure
as a function of the Cartesian coordinate x on a line passing through the center of the drop.
The spikes are physical and due to the local equilibrium stress tensor. b pressure field in the
steady state in the same plane as in Fig. 1.



116 Alessandro Pecenko and J. G. M. Kuerten

5 A priori analysis of the interfacial subgrid terms

In Sect. 4, we have briefly described a method of solution for the two-phase isother-
mal set of equations (4)-(6), and we have shown, as an example of numerical appli-
cation, a classic test case.

If Large Eddy Simulation is applied to two-phase flow, new subgrid terms stem
from the filtering operation of the nonlinear pressure and capillary terms. This im-
plies that, apart from the well-known subgrid stress tensor for the case of a single-
phase flow, a subgrid pressure term and several subgrid capillary terms appear. To
devise a model for these unknown quantities, the first step is to carry out an a priori
study of the subgrid terms based on results from Direct Numerical Simulation. Here
we present the results that we have obtained for the well-assessed case of the drop
retraction. Although it is not a highly turbulent flow case, we postulate that the sub-
grid terms related to the pressure and capillary terms do not strongly depend on the
type of flow.

The analysis has been conducted as follows. We have performed two direct nu-
merical simulations for the drop retraction problem on 4003 and 2003 grid nodes
respectively, and we have filtered the results on 503 grid nodes in both cases. Hence,
we can characterize the two filtered DNS by simply referring to their filter width,
namely Δ = 8Δx for the finer grid and Δ = 4Δx for the coarser grid.

The type of filter that we have used is the so-called “top-hat” filter, which we
denote with a bar sign over the filtered quantities. Since the flow is compressible, we
use the Favre filter for the velocity components ui, yielding

ui =
ρui

ρ̄
,

so that no subgrid terms appear in the filtered continuity equation. The latter, there-
fore, reads

ρ̄t = −(ρ̄ u j)x j , (10)

where we adopt the usual convention of repeated indices and denote time derivative
with the subscript t and space derivatives with the subscript x j.

The filtered momentum equation, recalling (3), reads

(ρ̄ ui)t = −(ρ̄ ui u j)x j − (ρ̄τi j)x j − [p(ρ̄)]xi − [p(ρ)− p(ρ̄)]xi + [di j(ρ̄, u)]x j +

+ [di j(ρ,u)−di j(ρ̄, u)]x j − [K(ρ̄)(ρ̄)xi(ρ̄)x j ]x j − [K(ρ)ρxiρx j +

− K(ρ̄)(ρ̄)xi(ρ̄)x j ]x j + (c2∇2ρ̄)xi (11)

where the unknown subgrid terms are the turbulent stress tensor τi j, which represents
the subgrid convective term, the subgrid viscous tensor (di j(ρ,u)− di j(ρ̄, u)), the
subgrid pressure psg = p(ρ)− p(ρ̄), and the subgrid capillary terms

[K(ρ)(∇ρ⊗∇ρ)]sg = K(ρ)ρxiρx j − K(ρ̄)(ρ̄)xi(ρ̄)x j .

As a first step, the exact values of all subgrid terms have been evaluated, showing
(Fig. 3) that the two-phase subgrid terms obtained by filtering the Van der Waals
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equation of state and the Korteweg tensor are the most important. Such a conclusion
holds for both DNS on the finer and on the coarser grid, hence we will focus on the
subgrid contributions arising from these two terms. Furthermore, the Figure shows
that there is no substantial difference between finer and coarser grid for the pres-
sure and the capillary subgrid terms. The viscous and the convective subgrid terms,
instead, are affected by the grid size, since they depend also on the velocity field.

Fig. 3. Retraction of a drop in the absence of external forces: comparison of the L2-norms of
the exact subgrid terms for the DNS with 4003 nodes (solid lines) and for the DNS with 2003

nodes (dashed lines), versus time (in arbitrary units). From top to bottom: pressure, capillary,
viscous, convective subgrid terms.

These subgrid terms have been compared with the values given by the similarity
model [7] (denoted from now on with the superscript SM) and the gradient model
[8] (superscript GM). The SM has provided the best approximation for the capillary
terms, while the GM has given the best result for the pressure, as shown in Figs. 4-5.
The figures show that the correlation coefficients hardly depend on the grid size used
in the DNS.

However, we have noticed a significant difference in magnitude between the ex-
act value and the approximation, both for the pressure and for the capillary subgrid
terms. Therefore, an extra model that we have devised ad hoc and that we here call
capillarity model (CM) has been added:

psg = pGM
sg +Cp (Ca)2 K(ρ̄)|∇ρ̄|2 (12)

[K(ρ)(∇ρ⊗∇ρ)]sg = [K(ρ)(∇ρ⊗∇ρ)]SM
sg +Cc(Ca)2K(ρ̄)(∇ρ̄⊗∇ρ̄) , (13)

where Ca ∼ Δ/L is a nondimensional parameter of the simulation called the Cahn
number, representing the effect of the filter on the interface length scale, and Cp, Cc

are the constants of the model, which we have evaluated by a least-square minimiza-
tion of the following quantities (CM denoting the last terms on the r.h.s. of (12)(13))

(psg − [psg]GM+CM) + [K(ρ)(∇ρ⊗∇ρ)]sg I−{[K(ρ)(∇ρ⊗∇ρ)]sg}SM+CMI
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Fig. 4. Retraction of a drop in the absence of external forces. Pressure subgrid term. a correla-
tion coefficients for the gradient model approximation vs. time. b correlation coefficients for
the similarity model approximation vs. time. Solid lines: DNS with 4003 nodes. Dashed lines:
DNS with 2003 nodes.

Fig. 5. Retraction of a drop in the absence of external forces. Capillary subgrid tensor. a cor-
relation coefficients for the gradient model approximation vs. time. b correlation coefficients
for the similarity model approximation vs. time. Solid lines: DNS with 4003 nodes. Dashed
lines: DNS with 2003 nodes. Top lines: diagonal terms. Bottom lines: off-diagonal terms.

since they appear in each of the three scalar momentum equations (the superscripts
being a short formal notation for the sum of the modeled subgrid contributions to
pressure and capillary terms respectively). Note that the tensor of the subgrid capil-
lary stresses also contains nondiagonal terms.

Since the test case is symmetric, we show results only for the scalar momentum
equation in the x direction, where, for the sum of pressure and diagonal capillary
subgrid terms, exact and modeled values are shown for the case Δ = 8Δx in Fig. 6 as
isolines on the (x,y)−symmetry plane. The correlation coefficient between the total
exact subgrid tensor and the total model value appears to be between 0.97 and 0.98.
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Fig. 6. Retraction of a drop in the absence of external forces. Sum of pressure and diagonal
capillary subgrid terms on the (x,y)−symmetry plane of the drop. a exact distribution from
filtered DNS with filter width Δ = 8Δx. b modeled distribution on the basis of the approxima-
tions (12)(13).

6 Conclusions

We have explored the possibility of modeling the nonconventional two-phase subgrid
terms stemming from a diffuse-interface approach, for use in Large Eddy Simulation
of two-phase flows. To do so, we have first devised a stable numerical method that
calculates the solution of the governing equations for an isothermal liquid-vapor flow
of a pure component in the vicinity of the critical point, when the presence of the di-
viding surface is taken into account by means of a stress tensor. We have then made
a few assumptions, concerning in particular the functional dependence on density of
the capillarity coefficient, and we have presented results for Direct Numerical Sim-
ulation of a liquid drop retracting to its equilibrium spherical shape by capillarity.
The choice of this test case is two-fold: it allows a clear validation of the numerical
method by means of a comparison between the theoretical and the numerical value
of the surface tension, and, after filtering the results, it emphasizes the importance
of adequate modeling the pressure and capillary subgrid terms, since these terms ap-
pear to be the most important among the subgrid contributions, but also those for
which well-assessed models are not, to our knowledge, yet available. The approxi-
mation that we have here proposed for the interfacial subgrid terms, is a combination
of “classic” single-phase models, typically used to approximate the turbulent stress
tensor, and of a “nonclassic” contribution that we have called capillarity model. An
a priori analysis made for two simulations of the same test case with different mesh
refinement has shown that such a combination of models provides a very high corre-
lation, for both finer and coarser grid.

Currently, we are working on the a posteriori validation of our model for the
same flow problem. Next, we will test the model on other turbulent, two-phase flow
examples and, eventually, we will apply it to the LES of high Reynolds two-phase
flows.
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Summary. The results of a novel procedure for a posteriori testing show that the predictions
of a dynamic model for the subfilter variance are sensitive to accumulated errors in the evolu-
tion of the filtered scalar field as well as to numerical errors incurred in evaluating the variance
model at a single time step. Tests were performed on homogeneous, isotropic filtered scalar
fields simulated using exact and modified wavenumbers corresponding to second, fourth, and
sixth order accurate finite difference schemes. The sixth order scheme showed close agreement
with the spectral method in terms of the distribution of predicted subfilter variance values,
which were assessed using nonparametric techniques. The second order scheme produced, on
average, substantially higher values of subfilter variance. Valid methods for comparing mod-
els were sought that account for the variability of statistical estimates made from a spatially
correlated sample, and some preliminary approaches were presented.

Key words: subfilter scalar variance, nonparametric statistics, subfilter model error analysis

1 Introduction

In conserved scalar methods for large eddy simulation of non-premixed combustion,
the subfilter scalar variance indicates the degree of small-scale mixing. The subfilter
variability of scalar values is approximated by a beta distribution, which is fully
specified by the values of the filtered scalar and subfilter scalar variance. However,
the subfilter variance, defined as Z′2 = Z2 −Z

2
, must itself be modeled. A common

modeling approach uses an algebraic relation of the form Z′2 = CΔ2∇Z ·∇Z, where
the coefficient C may be determined dynamically [9, 1]. Since combustion is highly
sensitive to the mixing process, small errors in variance estimation can lead to large
errors in species concentrations.

Because of the gradient-squared dependency of the dynamic model, it has been
inferred that finite difference methods result in underestimation of the variance in
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actual simulations using grid-based filtering. However, DNS-based a priori tests [5]
have indicated that this explanation is too simplistic. In fact, finite difference im-
plementation of the dynamic procedure resulted in overestimation of the model co-
efficient, partially canceling the numerical underprediction of the gradient-squared
quantity. While such static tests on DNS data are useful in isolating specific sources
of error in subfilter variance estimation, they are not necessarily indicative of the er-
rors encountered in LES simulations because they do not account for the interaction
of the variance model with an LES-evolved filtered scalar field. Initial results suggest
that the effect of errors in the filtered scalar evolution on subfilter variance prediction
is significant relative to effects due solely to subfilter variance model implementation
[6].

A second reason why a priori tests may lack extensibility to LES results is that
a DNS field provides only one sample of the small scale turbulence that could corre-
spond to a given filtered field. Generally, however, interest is focused on estimating
one-point statistics rather than the statistics of the field per se, and spatial averages
over homogeneous directions are used in place of ensemble averages. Most meth-
ods for estimating one-point statistics assume independent and identically distributed
data. While the latter criterion is usually satisfied , the former cannot be. Both real
and simulated turbulence fields, obviously, exhibit correlation in space and time. If
methods based on independent samples are applied to correlated data, it should be
with the awareness that the effective sample size is significantly reduced. With a
smaller sample, it becomes more important to distinguish between sample estimates
and the actual population value of a statistic and to provide some quantification of
the uncertainty of the estimate. This is a point that has been largely neglected in a
priori tests of subfilter models.

2 Details of LES Computations

To study the effect of numerical error in scalar evolution on subfilter variance pre-
diction, we have formulated a novel a posteriori computational experiment. A pseu-
dospectral code for simulation of homogeneous isotropic turbulence was modified
to solve a governing equation for the filtered scalar field with exact and modified
wavenumbers. A computational domain of 2563 grid points was used for all simula-
tions presented here. Second order central (CD-2), fourth order central (CD-4), and
sixth order Padé (P-6) schemes were considered for both the convection and diffusion
operators as well as computation of a common dynamic eddy diffusivity model [8].
The grid size Δx was set equal to the filter width Δ in the modified wavenumber ex-
pressions. Filter widths of 8η and 16η were considered, where η is the Kolmogorov
length. Filtered velocities were supplied by explicit filtering of a DNS velocity field,
which was forced at the large scales to maintain Reλ = 80. The initial conditions
for all filtered scalar evolutions were obtained by filtering the initial conditions of a
DNS-resolution scalar with Sc = 1. All scalar fields were decaying, and simulations
were carried out over a period of about one eddy turn-over time, τ , as calculated from
the DNS velocity field.
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Two analytically equivalent forms of the filtered scalar transport equation were
considered, as the accuracy of the diffusion operator in finite difference implementa-
tions of the equation has been recently noted as an important factor in the prediction
of subfilter variance [6]. The filtered scalar transport equation is frequently solved in
the form

∂Z
∂ t

+ui
∂Z
∂xi

=
∂
∂xi

[
(D+Dt)

∂Z
∂xi

]
(1)

which will be referred to as the conventional formulation. However, second deriva-
tive terms are approximated more accurately by a single application of a second
derivative scheme than by two applications of a first derivative scheme. This sug-
gests that Eq. 1 be written in a modified formulation as

∂Z
∂ t

+ui
∂Z
∂xi

=
∂ (D+Dt)

∂xi

∂Z
∂xi

+(D+Dt)
∂ 2Z

∂x2
i

(2)

Modified wavenumbers for lower order finite difference schemes deviate signif-
icantly from the ideal value, causing the diffusion operator to be less effective at
small scales [7]. Higher order schemes possess modified wavenumbers that are close
to the ideal value for a larger portion of the spectrum, thereby increasing accuracy.
The form of the diffusion term in Eq. 2 is motivated by the fact that the modified
wavenumber-squared representation of a second derivative scheme is more accurate
at high wavenumbers than the square of the modified wavenumber of a first derivative
scheme of the same nominal order of accuracy.

A recently developed dynamic subfilter variance model [1] was implemented for
each scalar with the same scheme used to solve its transport equation. This model,
like its predecessor [9], calculates an averaged model coefficient over homogeneous
directions according to C = 〈L M 〉/〈MM 〉 where 〈·〉 indicates a volume average
in the present context. The quantities L and M are calculated at the level of a test

filter, Δ̂. The Leonard term has the form L = Ẑ
2 − Ẑ

2
, while the model’s gradient-

based term is given by M = Δ̂∇Ẑ ·∇Ẑ.
The predictions of the subfilter variance model in the a posteriori setting must

be compared across scalar fields without recourse to the kind of point-wise measure-
ments applicable in a priori tests because the different numerical schemes induce
different subfilter scalar fluxes. We focus here on comparing distributions of subfilter
variance values. Since there is no evidence for a parametric form of the distribution,
non-parametric approaches, accounting for the correlation of the data, are necessary.
Details of the methods are provided below.

3 Results

Fig. 1 compares spectra of filtered scalar fields at t = 0.7τ to assess the effects of
errors in the diffusion operator. Comparison with the filtered DNS scalar spectrum
indicates that the subfilter flux model is too diffusive when implemented exactly, as in
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the spectral LES solution. For reference, simulations were also performed using the
exact convection operator and their spectra computed. Convective term errors most
noticeably affect the middle range of wavenumbers, especially for the second order
scheme, while errors in the diffusive term are manifested at the highest wavenumbers
as an accumulation of energy. Lack of diffusion at these scales is apparent even when
an exact convective operator is used, albeit less severe. The modified diffusion term
in Eq. 2 clearly is more effective at removing small scale energy.

All results presented below are for scalar fields evolved using the same scheme
for convection and diffusion operators. We next examine the extent to which the
subfilter variance field is spatially correlated and how the degree of correlation is
affected by the choice of filter width and numerical scheme.

Fig. 1. Scalar spectra at t=0.7τ for filtered DNS (black) and LES evolved with spectral (gray),
CD-2 (dashed), CD-4 (dotted), and P-6 (dash-dot) schemes using (a) Eq. 1 (b) Eq. 2

3.1 Patterns of spatial correlation

The semivariogram is widely used in geostatistical applications for describing the
pattern of correlation in a spatial data set, such as some random scalar field Y (x)
which satisfies the conditions of intrinsic stationarity. That is, increments Y (x)−
Y (x′) are second-order stationary, having constant (zero) mean and a covariance C
dependent only on the lag vector [3, 10]. A homogeneous isotropic Y (x) fulfills the
requirements of second-order stationarity and so automatically satisfies the weaker
conditions of intrinsic stationarity. The term semivariogram refers both to the quan-
tity

γ(x−x′) =
1
2

Var
[
Y (x)−Y (x′)

]
(3)

and to the plot of γ versus the lag h = x− x′; in the first sense it is identical to the
structure function [3]. In the isotropic case, with h = ||h|| , γ(h) = Var[Y ]−C(h),
so the semivariogram provides the same information as the covariance function, and
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yields the variance of Y as its asymptotic value. Additionally, it is straightforward to
calculate an unbiased estimate γ̂ . To prevent confusion with the (̂·) notation for test
filtering, estimated quantities will hereafter use the same symbol as the true value.
All results should be understood as estimated values.

In Fig. 2 a few points stand out. The lag, reported in terms of the grid spacing
Δx, at which the asymptotic value is reached is greater for the Δ = 16η cases and the
approach is uniformly more gradual, indicating greater smoothness of the field. This,
however, does not mean that the range of subfilter variance values is narrower. On the
contrary, the variances of the subfilter variance values are several times greater for
the Δ = 16η data at all times analyzed. Between t = 0.1τ and t = 0.3τ (not shown),
the variance increases for all calculation methods,. This reflects the transition of the
scalar fields from their initial state to one mixed on intermediate scales. By t = 0.7τ
the variance of Z′2 calculated from the second order central scheme increases, while
it decreases for all other subfilter variance fields. The increase in Var[Z′2] is much
greater for the case evolved using Eq. 1.

In the analysis of Markov fields, coding methods have been used to generate in-
dependent data. Essentially, the field is divided into disjoint sets of points containing
no neighbors on the grid [2]. Although coding methods are obviously not strictly
applicable here, they suggest winnowing the data to eliminate highly correlated pairs
of points. In the current case, requiring zero correlation between points thins the data
too severely. Instead, values are sampled at intervals of 16Δx apart so that only weak
levels of correlation remain. The resulting data is approximated as independent.

It should be noted that failure to account for correlation of data points when ana-
lyzing isotropic data does not significantly modify the estimates of mean quantities.
Because points are correlated to each other in a uniform manner, each carries the
same statistical weight in calculating an average. More care, however, is due when
calculating measures of dispersion about the mean [3, 10] (such as estimates of ir-
reducible error in model analyses using optimal estimator concepts), although the
specific implications for data characteristic of turbulence will require further study.

3.2 Evolution of subfilter variance distributions

Quantile-quantile (q-q) plots provide a means of comparing two distributions with-
out assuming a parametric form while avoiding ad hoc bin assignments necessary for
constructing histograms. The p quantile ζp indicates the value of a random variable ζ
at which its cumulative distribution function, F , equals p, i.e. it satisfies F(ζp) = p.
In Fig. 3, quantiles of the modeled subfilter variances are plotted against quantiles
of the exact DNS subfilter variance. A match between the distributions is indicated
when the q-q plot forms a 45 degree line. Departures from that line can be used to
diagnose the differences between the distribution. Provided the distributions are of
the same shape, a linear plot is still formed. A difference in the location parameter
(for example, the mean of the normal distribution) shifts the intercept of the line. In-
equality of the scale parameter (e.g, the variance of the normal distribution) modifies
the slope. More general differences in the shape of the distribution are manifested by
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Fig. 2. Semivariograms of the subfilter variance field computed with exact DNS variance
(black) and modeled variance from filtered DNS scalar (gray) and LES scalars evolved using
spectral (gray dots), CD-2 (dashed), CD-4 (black dots), and P-6 (dash-dot) schemes at t =
0.7τ . (a) Δ=8η , Eq. 1 (b) Δ=8η , Eq. 2 (c) Δ=16η , Eq. 1 (d) Δ=16η , Eq. 2

a nonlinear q-q plot [4]. It appears that the differences in the subfilter variance dis-
tributions can be largely explained by changes in the scale parameter, which accords
with the results of Section 3.1.

In Figs. 3 and 4, symbols indicate the position of specific quantile estimates.
These are the 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.925, 0.95, and 0.975
quantiles. The distribution of subfilter variance values is strongly left-skewed. Re-
sults are shown for Δ = 8η simulations only, as the Δ = 16η results are qualitatively
very similar.

Initially, the differences between the modeled Z′2 quantiles are small for all but
the highest quantiles examined and agree fairly well with the distribution of exact
subfilter variance from the DNS. As the scalar fields evolve, the disparities between
the distributions of modeled subfilter variance increase (Fig. 3).

Before pursuing the causes and implications of these findings, it should be re-
called that the plots show estimated quantiles, based on a limited sample. Confidence
intervals for the data can be obtained through bootstrap techniques [4, 3] if we con-
tinue to treat the data as independent. Fig. 4 plots differences of the estimated p
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quantiles Z′2model
p − Z′2exact

p and their 95 percent confidence intervals. These confi-
dence intervals are obtained by forming 1000 random resamples of the original data
and repeating the quantile difference calculations for each sample. The results are
then sorted in ascending order, with the 25th and 975th values forming the lower
and upper bounds. The behavior of the quantile differences is consistent with the
hypothesis of a scale change between the modeled and exact differences, with some
more complex changes perhaps occurring in the extreme right tails. The confidence
intervals of the differences overlap at their edges in several areas, but do support the
claim that the second order scheme results in a different subfilter variance distribu-
tion than the fourth or sixth order schemes. Fig. 5 provides another indication of the
uncertainty of the quantile estimates. In addition to the data used in Fig. 3(a), alter-
native samples of the CD-2 and exact subfilter variance fields, formed by selecting
points at the same interval but with a different starting point, are plotted as dashed
lines. Intersample variability is clearly evident, but does not meaningfully alter our
assessment of the scheme’s performance. Also shown is the result when all points in
the field are used for the quantile calculations. As expected, it does not differ greatly
from the other estimates for this kind of statistic with this kind of data.

It is found that the model coefficient calculated by a dynamic procedure [1] in-
creases with decreasing order of the numerical scheme. Qualitatively, the same rela-
tionship is found in a priori analysis [5]. However, the differences increase in time
in the a posteriori case (Fig. 6), a feature that was not strongly apparent for a pri-
ori results at different times. Additionally, the coefficient predicted by second and
fourth order accurate finite difference methods strongly depends on the form of the
diffusion term in the filtered scalar equation.

In a priori tests, lower order schemes produce larger coefficient values by under-
estimating the gradient-based term M of the closure. In the a posteriori case, evolu-
tion using lower order schemes shifts the bulk of the distribution of the Leonard term
L to higher values, as shown in Fig. 7(a). A higher value implies greater filtered
scalar energy near the cutoff lengthscale, a feature that can be readily inferred from
the scalar spectrum (Fig. 1). This result is a direct consequence of the increased er-
rors in finite difference schemes at high wavenumbers, as quantified by the modified
wavenumber of the discretization. Although higher values of L are associated with
higher (exact) values of M , finite difference errors cause underestimation of M that
roughly balances the error of the scalar evolution (Fig. 7(b)).

4 Conclusions

A posteriori tests of a dynamic subfilter variance model show that errors in the nu-
merical solution of the filtered scalar field can have significant effects on model pre-
dictions. Lower order schemes produce higher values of the model coefficient C ,
as observed in a priori tests of finite difference model implementation. While in the
DNS-based tests this effect resulted solely from underestimation of the gradient term
M , the most important factor in the current LES-based tests is the general increase
in the Leonard term L . The average rise in values of L can be attributed in part to
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Fig. 3. Quantiles of modeled subfilter variance from Δ=8η filtered DNS (circle) and LES using
spectral (square), CD-2 (triangle), CD-4 (diamond), and P-6 (star) schemes plotted against
quantiles of exact DNS variance at t=0.7τ . (a) Filtered scalar evolved with Eq. 1 (b) Filtered
scalar evolved with Eq. 2

Fig. 4. Estimated quantile differences (solid lines) and 95% bootstrap confidence intervals
(dashed lines) for subfilter variance of Δ=16η , Eq. 2 case at t=0.7τ . Exact DNS quantiles
are subtracted from quantiles of modeled variance from filtered DNS (circle) and LES using
spectral (square), CD-2 (triangle), CD-4 (diamond), and P-6 (star) methods. (a) 0.05 to 0.5
quantiles (b) 0.5 to 0.975 quantiles

poor representation of the diffusion operator at high wavenumbers by finite differ-
ence methods. This problem can be ameliorated by adopting the modified (although
analytically equivalent) form of the filtered scalar transport equation given in Eq. 2.

Model comparisons were made on the basis of estimated one-point statistics. Val-
ues of subfilter variance were found to be highly correlated over a distance of several
grid points, which can be problematic when using statistical methods that assume in-
dependent data. Although the statistical estimates considered here did not appear to
be affected by the correlation of the data, this issue seems to warrant further attention
for other quantities of interest in subfilter model tests. A method for estimating confi-
dence intervals of the sample statistics was presented, which can guide expectations
when generalizing the results of tests to other data.
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Fig. 5. Quantile plots of data from CD-2 and exact subfilter variance fields of equivalent size
and spacing to the samples used in Fig. 3 (dashed) as well as to plot formed from full data set
(solid)

Fig. 6. Model coefficient C plotted against normalized time τ . Results are for filtered DNS
(circle) and LES using spectral (square), CD-2 (triangle), CD-4 (diamond), and P-6 (star)
methods to solve Eq. 1 (open symbols) and Eq. 2 (filled symbols). (a) Δ=8η (b) Δ=16η

Fig. 7. Quantiles of terms of the dynamic closure at t=0.7τ for Δ=8η filtered scalars evolved
with Eq. 2 using spectral (square), CD-2 (triangle), CD-4 (diamond), and P-6 (star) schemes
are plotted against quantiles of terms evaluated from filtered DNS. (a) L (b) M
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Summary. The role of subgrid scale (SGS) viscosity is investigated in LES and VMS-LES
simulations of the flow around a circular cylinder at Re = 20000 on unstructured grids. The
separation between the largest and the smallest resolved scales in the VMS formulation is
obtained through a variational projection operator and finite-volume cell agglomeration. Two
different non-dynamic eddy-viscosity SGS models are used both in classical LES and in VMS-
LES. The sensitivity of the results to different parameters, such as the value of the SGS model
input coefficient or the agglomeration level and to numerical viscosity in VMS-LES, is also
addressed. Finally, a possible indicator of quality of the LES and VMS-LES predictions is
examined.

Key words: Variational multiscale LES, circular cylinder, unstructured grids

1 Introduction

Thanks to the development of computational capabilities, nowadays large-eddy sim-
ulation (LES) is becoming an increasingly used tool also for engineering and indus-
trial applications, at least for those flows for which the RANS approach encounters
difficulties in giving accurate predictions. Paradigmatic examples of such flows are
bluff-body wakes. The success of a large-eddy simulation depends on the combina-
tion and interaction of different factors, viz. the numerical discretization (which also
provides filtering when no explicit one is applied), the grid refinement and quality,
and the physical closure model. On the other hand, all these aspects can be seen
as possible sources of error in LES, in particular in simulations oriented to indus-
trial or engineering applications, which are often characterized by low-order non-
conservative numerical schemes and coarse grid resolutions.

The present work is part of a research activity aimed at investigating the role of
different sources of error, namely numerical viscosity, SGS modeling and unstruc-
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tured grid resolution, both in classical LES and in Variational Multiscale (VMS) LES
approaches, used together with an industrial numerical set-up. This industrial numer-
ical set-up is based on a mixed finite-volume/finite-element discretization on unstruc-
tured grids, second-order accurate in space (see, e.g, [1]). The used VMS approach is
the one proposed in [2], in which the projection operator in the largest resolved scale
space is defined through finite-volume cell agglomeration. A key feature of VMS-
LES is that the SGS model is only added to the smallest resolved scales. We adopt
the so called small-small formulation, i.e. the SGS term is also computed as a func-
tion of the smallest resolved scales only. Two different eddy-viscosity SGS models
are considered, both for classical LES and VMS-LES, viz. the classical Smagorinsky
one [3] and the Wall-Adapting Local Eddy-Viscosity (WALE) model [4]. The same
values of the model constant are used for both LES and VMS-LES.

In a previous work (see e.g. [5]), we applied the methodology briefly described
above to the flow around a circular cylinder at a Reynolds number of 3900. This
flow was chosen since it is a well documented benchmark and contains most of the
difficulties encountered in the simulation of bluff-body flows also for more complex
configurations at higher Reynolds numbers, at least for laminar natural boundary-
layer separation. Moreover, the application of the VMS-LES approach to this class
of flows is not documented in the literature, at least to our knowledge. In this previ-
ous study the used small-small VMS approach was found to significantly reduce the
amount of SGS viscosity introduced by each of the considered SGS models with re-
spect to that given by the same model in classical LES. This was observed for all the
considered resolutions, and on the coarser grid this lead to a general improvement
of the results. Conversely, on the finer grid, the VMS approach improved only the
results obtained by the WALE model, which was observed to be generally more dis-
sipative than the Smagorinsky one. The results of this previous analysis thus indicate
that the SGS model, i.e. the amount of introduced SGS viscosity, has a significant
impact on the results, also in the VMS-LES approach. Finally, the results of this pre-
vious study also gave an a posteriori support that the numerical viscosity introduced
in our approach (which is proportional to high-order space derivatives and tuned by
an ad-hoc parameter to the minimum amount needed to stabilize the simulations)
does not give significant negative effects or interactions with the SGS model.

In the present contribution we present the results of the same analysis carried out
for the flow around a circular cylinder, still in the laminar boundary-layer separation
regime, but at Re = 20000, in order to investigate whether the previous findings hold
when the Reynolds number is increased or, conversely, Reynolds number effects
should be taken into account. Moreover, we examine a possible indicator of quality of
the LES predictions [6] and we explore the possibility of using this type of indicator
to devise criteria for adaptation of the SGS model constants both in LES and VMS-
LES.
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2 Methodology

The filtered Navier-Stokes equations for compressible flows and in conservative form
are considered. In our simulations, filtering is implicit, i.e. the numerical discretiza-
tion of the equations is considered as a filter operator (grid filter).

In modeling the SGS terms resulting from filtering the Navier-Stokes equations,
we assumed that low compressibility effects are present in the SGS fluctuations and
that heat transfer and temperature gradients are moderate. Thus, the only retained
SGS term in the momentum equation is the classical SGS stress tensor. More details
about the simplifying assumptions can be found in [7].

Two different eddy-viscosity SGS models are used in the present work to express
the SGS stress tensor and to close the LES equations. The first one is the classical
Smagorinsky model [3], in which the eddy viscosity is defined as follows:

μsgs = ρ (CsΔ)2
∣∣∣S̃
∣∣∣ , (1)

where Δ is the filter width, Cs is a constant that must be a priori assigned and∣∣∣S̃
∣∣∣=
√

2S̃i jS̃i j (repeated indexes imply summation and the tilde indicates the Favre

filtering). The value typically used for shear flows of Cs = 0.1 is adopted herein. The
Wall-Adapting Local Eddy-Viscosity (WALE) SGS model proposed by Nicoud and
Ducros [4] is also considered. The eddy-viscosity μsgs of this model is defined by:

μsgs = ρ(CWΔ)2(S̃i j
d
S̃i j

d
)

3
2 [(S̃i jS̃i j)
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)
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with S̃i j
d

being the symmetric part of the tensor gi j
2 = gikgk j, where gi j = ∂ ũi/∂x j.

As indicated in [4], the constant CW is set to 0.5.
To complete the definition of the SGS viscosity, the grid filter width must be

specified. Since filtering is implicitly applied by the numerical discretization, there
is no unique rigorous definition of the filter width. The following expression is often
used in LES on unstructured grids:

Δ ( j) = Vol1/3
j (3)

where Vol j is the volume of the jth grid element. Another option is to consider the
length of the largest side of each grid element, as follows:

Δ ( j) = maxi=1,...,6

(
Δ ( j)

i

)
(4)

Δ ( j)
i being the length of the ith side of the jth element.

The numerical solver (AERO) used for the present simulations is based on a
mixed finite-element/finite-volume discretization of the flow equations on unstruc-
tured tetrahedral grids. The numerical scheme is vertex-centered, i.e. all the un-
knowns are computed at the nodes. Around each vertex i, a finite-volume cell Ci

is built by using the rule of medians. The diffusive terms are discretized using P1
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Galerkin finite elements on the tetrahedrons, whereas finite-volumes are used for the
convective terms. The numerical approximation of the convective fluxes at the inter-
face of neighboring cells is based on the Roe scheme with low-Mach precondition-
ing. To obtain second-order accuracy in space, the Monotone Upwind Scheme for
Conservation Laws reconstruction method (MUSCL) is used, in which the Roe flux
is expressed as a function of reconstructed values of W at each side of the interface
between two cells. We refer to [1] for details on the definition of these reconstructed
values. We just emphasize that particular attention has been paid to the dissipative
properties of the resulting scheme, since this is a key point for its successful use in
LES. The numerical dissipation provided by the scheme used in the present work is
made of sixth-order space derivatives and thus is concentrated on a narrow-band of
the highest frequencies. This is expected to limit the interactions between numerical
and SGS dissipation, which is proportional to second-order space derivatives. More-
over, a parameter γ directly controls the amount of introduced numerical viscosity
and can be explicitly tuned in order to reduce it to the minimal amount needed to
stabilize the simulation.

Time advancing is carried out through an implicit linearized method, based on a
second-order accurate backward difference scheme and on a first-order approxima-
tion of the Jacobian matrix.

More details on the numerical ingredients used in the present work can be found
e.g. in [1] and [8].

In the VMS approach the flow variables are decomposed as follows: W =
W +W ′ +W SGS, where W are the largest resolved scales (LRS), W ′ the smallest
resolved scales (SRS) and W SGS are unresolved scales. In VMS-LES the effect of
W SGS is provided by a closure model as in classical LES, but this model only acts on
W ′, while the Navier-Stokes model is preserved for W . In other words, given an ap-
proximation space Vh, the unmodified Navier-Stokes system for W is discretized on
a coarser subspace of Vh by means of a Galerkin formulation. In the complementary
space, a SGS model which applies only on the SRS variables is introduced. In the
present study, we follow the VMS approach proposed by Koobus and Farhat [2] for
the simulation of compressible turbulent flows through a finite volume/finite element
discretization on unstructured tetrahedral grids. Let ψl be the finite-volume basis
functions and φl the finite-element basis functions associated to the used grid. In or-
der to obtain the VMS flow decomposition, these can be expressed as: ψl = ψ l +ψ ′

l
and φl = φ l +φ ′

l , in which the overbar denotes the basis functions spanning the finite
dimensional space of the LRS scales and the prime those spanning the SRS space. As
in [2], the basis functions of the LRS space are defined through a projector operator
in the LRS space, based on spatial average on macro cells [2]. The macro-cells are
obtained by a process known as agglomeration [9].

For our VMS-LES simulations, the closure term is provided by the same SGS
models as used in classical LES previously described. This term is computed as a
function of the smallest resolved scales W ′, we thus adopt the so-called small-small
approach [10]. The same values of the SGS model input parameters as for classical
LES are used for VMS-LES. For the WALE model, we tested an additional value of
Cw, in order to preliminarily investigate the sensitivity to this parameter. We empha-
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size again that in VMS-LES the closure term is added only to the smallest resolved
scales; in our approach this is done through Galerkin projection in the SRS space
above defined. We refer to [2, 11] for more details about this VMS-LES methodol-
ogy.

3 Application and results

Classical and VMS large eddy simulations were carried out of the flow around a
circular cylinder, at a Reynolds number, based on the cylinder diameter, D, and the
free-stream velocity, equal to 20000.

The computational domain is such that −10 ≤ x/D ≤ 25, −20 ≤ y/D ≤ 20 and
−π/2≤ z/D≤ π/2, where x, y and z denote the streamwise, transverse and spanwise
directions respectively, the cylinder center being located at x = y = 0. Characteristic
based conditions are used at the inflow and outflow as well as on the lateral surfaces.
In the spanwise direction periodic boundary conditions are applied and on the cylin-
der surface no-slip is imposed. The freestream Mach number is set equal to 0.1 in
order to make a sensible comparison with incompressible simulations in the litera-
ture. As previously mentioned, preconditioning is used to deal with the low Mach
number regime. The flow domain is discretized by an unstructured tetrahedral grid
of approximately 1.8×106 nodes. The averaged distance of the nearest point to the
cylinder boundary corresponds to y+ ≈ 1.

A first series of LES and VMS-LES simulations has been carried out with the two
different SGS models. The effect of the filter width definition (see Sec. 2) has also
been investigated in LES with the Smagorinsky model. Finally, a simulation with no
SGS model, only relying on numerical viscosity, has been carried out. The parame-
ter controlling the numerical viscosity, γ is set equal to 0.3 in all these simulations.
The other main simulation parameters are summarized in Tab. 1, together with some
bulk flow quantities, which are compared to the experimental data of [12] and [13]
and to the results of previous LES in the literature [14], carried out with dynamic
eddy-viscosity and mixed SGS models. Fig. 1a shows the mean pressure coefficient
distribution at the cylinder obtained in the different simulations, compared to the
experimental data of [12]. Mean quantities are obtained by averaging in the homoge-
neous spanwise direction and in time over 20 vortex-shedding cycles. From Fig. 1a
and Tab.1 rather important differences can be observed in the predictions of the mean
pressure and of the aerodynamic forces acting on the cylinder given by the present
simulations. As analyzed in [14], the different predictions are related to different
location, intensity and dimensions of the vortices detaching from the cylinders. As
more these vortices form closer to the cylinder and are intense, as more their induc-
tion over the cylinder rear part is non-uniform, the Cp becomes non-uniform in this
zone, the base pressure (Cpb) decreases, the drag (Cd) increases and the amplitude
of the time oscillations of lift (CLrms) increase. This type of behavior is obtained in
the LES with the WALE model, in both the VMS-LES simulations and in the one
with no SGS model. Conversely, the LES simulations with the Smagorinsky model,
and in particular the one with the filter width defined by Eq. (3), are characterized by
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vortices forming more downstream and being less intense, and this gives a more uni-
form Cp distribution in the rear part of the cylinder, larger base pressure, lower drag
and amplitude of the time oscillations of lift and longer mean recirculation bubble
(lr). These results are in partial disagreement to the observations made at Re=3900
([5, 15]). Indeed, it was observed that, for an adequate grid resolution, the pressure
distribution and the aerodynamic forces acting on the cylinder obtained in the dif-
ferent LES and VMS-LES simulations were quite similar, except than for the LES
with the WALE model, which was found to be characterized by an excessive SGS
dissipation also in the region near the cylinder. This low sensitivity at Re=3900 may
be an effect of the very low Reynolds number: since at this Re the vortices detaching
from the cylinder form rather downstream, differences observed in the location and
intensity of these vortices obtained in the various simulations do not affect too much
the pressure and the forces over the cylinder. Conversely, as previously discussed
and as shown in [14], at Re=20000 differences in the location and intensity of these
vortices, which form closer to the cylinder than at Re=3900, have a strong impact on
pressure and aerodynamic loads.

Table 1. Simulation and bulk flow parameters obtained in classical and VMS-LES large-eddy
simulations. Cd is the mean drag coefficient, CLrms is the r.m.s. of the time variation of the lift
coefficient, lr is the mean bubble recirculation length, Cpb is the value of the mean pressure
coefficient in the rear part of the cylinder.

Simulation Δ (l) Cd CLrms lr -Cpb

LES Smagorinsky Eq. (4) 1.22 0.388 0.97 1.16
LES Smagorinsky Eq. (3) 1.03 0.097 1.60 0.92
VMS-LES Smagorinsky Eq. (3) 1.29 0.523 0.81 1.26
LES WALE Eq. (4) 1.34 0.606 0.74 1.26
VMS-LES WALE Eq. (3) 1.36 0.690 0.67 1.36
With no model – 1.38 0.648 0.68 1.40

Salvatici et al. [14] [0.94,1.28] [0.17,0.65] [0.7,1.4] [0.83,1.38]

Experiments [12, 13] 1.1 [0.4,0.6] – 1.03

At Re=3900 a strong correlation between the SGS viscosity introduced in each
simulation and the transition of the shear layers detaching from the cylinder was ob-
served. As larger was the introduced SGS viscosity as closer to the cylinder the tran-
sition of the shear layers occured and the vortices formed, this leading to a smaller
mean recirculation bubble length. Let us analyze now whether this correlation holds
at Re=20000. Figs. 2 and 3 show instantaneous isocontours of μSGS/μ obtained in
the different simulations in Tab. 1. The considered instants all correspond to peaks
in the time variation of CL. As observed at Re=3900, for the considered flow and
the adopted values of the model constants, the WALE model is more dissipative than
the Smagorinsky one, while the small-small VMS approach used herein significantly
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Fig. 1. Mean pressure coefficient distribution at the cylinder. (a) Simulations with the
Smagorinsky model and with no SGS model. (b) Simulations with the WALE model.

reduces the introduced SGS viscosity for both the SGS models. We also recall that
in VMS-LES the SGS viscosity acts only the smallest resolved scales. As for the
sensitivity to the definition of Δ , it can be seen by comparing Fig. 2a and Fig. 2b that
the definition (3) leads to a reduction of the introduced SGS viscosity with respect
to (4), although less important than that observed in VMS formulation (Fig. 3a). The
same qualitative observations can be made by looking at the mean value of μSGS

(not shown here for sake of brevity). Keeping in mind this behavior of μSGS, from
the analysis of Fig. 1a and Tab.1 it is clear that for the present flow there is no clear
correlation between the introduced SGS viscosity and the shear-layer instability and
consequently the formation of detaching vortices, the pressure distribution and the
aerodynamic loads on the cylinder. For instance, LES and VMS-LES with the WALE
model are characterized by a strongly different μSGS but they provide rather similar
results, while significant differences are found in the predictions of LES and VMS-
LES when the Smagorinsky model is used. Also, there is not a clear trend as far as
the agreement with the experimental data is concerned.

Let us now examine a possible indicator of the quality of the LES predictions,
based on the introduced SGS viscosity, as defined in [6]:
< QIμ >=

[
1+αμ (< μsgs > /μ)n]−1

, with αμ = 0.05 and n = 0.53. In [6] it was ar-
gued that a good LES simulation should be characterized by

〈
QIμ
〉
≥ 0.8. In [6] also

the numerical viscosity was accounted for in the definition of
〈
QIμ
〉
; as a first ap-

proximation we neglect it herein. Moreover, for the considered type of flows, which
are unsteady independently of turbulent fluctuations, it makes sense to also look at
the instantaneous behavior of the SGS viscosity. We thus computed also the values
of QIμ for various instants, by using the instantaneous values of μsgs. Tab. 2 shows
the minimum values in the computational domain of QIμ (at the same instant as in
Figs. 2-3) and of

〈
QIμ
〉

for the simulations in Tab. 1. First of all, note the differences
between the values of the quality indicator computed by instantaneous and averaged
μSGS; for instance, for the LES with the WALE model, if the instantaneous values of
QIμ are considered, there are zones in the field in which the quality requirement is not
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Fig. 2. Instantaneous isocontours of μSGS/μ in LES simulations. (a) Smagorinsky model, Δ
defined by Eq. (3); (b) Smagorinsky model, Δ defined by Eq. (4); (c) WALE model. Isocon-
tours range from 0 (white) to 30 (dark grey). The actual maxima in panel (c) are of the order
of 220.

Fig. 3. Instantaneous isocontours of μSGS/μ in VMS-LES simulations. (a) Smagorinsky
model; (b) WALE model. The isocontours range from 0 (white) to 6 (dark grey). The actual
maxima of μSGS/μ for the WALE model are however of the order of 30.

satisfied, in correspondence to the large peaks of μSGS/μ observed in Fig. 2c. Since,
these peaks are smeared out by averaging, the quality requirement is conversely sat-
isfied in the same simulation if we look at < QIμ >. In any case, this criterion does
not seem to be of much help, since it is respected in most of the simulations.

Table 2. Minimum values in the computational domain of instantaneous and averaged QIμ .

Simulation min(QIμ ) min(< QIμ >)

LES Smag. + Eq. (3) 0.813 0.875
LES Smag. + Eq. (4) 0.776 0.826
LES WALE 0.533 0.833
VMS-LES Smag. 0.885 0.923
VMS-LES WALE 0.768 0.870
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Finally, a preliminary analysis of the sensitivity to different simulation param-
eters was carried out focussing on the VMS-LES approach with the WALE model.
The characteristics of the different carried-out simulations are reported in Tab. 3. The
relative mean pressure distribution at the cylinder is shown in Fig. 1b. The sensitivity
of the predictions to the considered parameters is rather low. As for γ , i.e. the pa-
rameter controlling the numerical viscosity, this is in agreement with the findings at
Re=3900 and of our previous works [7, 1]. More surprising is the low sensitivity to
the value of the SGS model constant and to the level of agglomeration, which con-
trols the range of the scales at which the SGS model is added. This aspect deserves
further investigation, possibly exploring a wider range of variation of the parameters.

Table 3. Bulk flow parameters obtained using VMS-LES WALE. See the caption of Tab. 1 for
the meaning of symbols.

Simulation γ cw cell agglom. Cd lr -Cpb

VMS-LES WALE 1 0.3 0.5 1 level 1.36 0.67 1.36
VMS-LES WALE 2 0.3 0.25 1 level 1.42 0.62 1.45
VMS-LES WALE 3 0.2 0.5 1 level 1.39 0.67 1.41
VMS-LES WALE 5 0.3 0.5 2 levels 1.38 0.68 1.39
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Summary. Model intercomparisons are one possible method to gain confidence in Large-
Eddy Simulation (LES) as a viable tool to study turbulence in the atmospheric boundary-layer.
This paper discusses the setup and some results of two intercomparison cases focussing on the
stably stratified nocturnal boundary-layer. Furthermore, options for the specification of new
intercomparison cases based on data, but with less complex forcings are discussed.

Key words: Model intercomparison, Stable Boundary-Layer, Large-Eddy Simulation

1 Model intercomparison as a means of quality assurance

Model intercomparisons are one possible method to gain confidence in Large-Eddy
Simulation (LES) as a viable tool to study turbulence in the atmospheric boundary-
layer. By comparing the outcomes of different models run for a common set of initial
and boundary conditions, as well as forcings, common strengths and weaknesses
of models can be identified (regarding subgrid models, numerics and resolution).
Since different atmospheric conditions emphasize the skill of different parts of the
models, intercomparisons have been performed for a wide variety of situations: the
convective boundary-layer [10], the neutral boundary-layer [1], different types of
cloudy conditions (in particular stratocumulus and shallow cumulus cases, [9, 11])
and recently the stable boundary layer [5].

In the context of LES, one of the characteristics of stable boundary layers (SBL’s)
is the mere absence of large eddies. Furthermore, the levels of turbulent kinetic en-
ergy are low due to the suppression of vertical motion by the stable stratification. Due
to these two aspects, the role of the subgrid model tends to be much larger in LES of
SBL’s than it is for convective or sheared boundary layers. Furthermore, the risk of
losing any resolved turbulence exists if the subgrid model is overly dissipative.

M.V. Salvetti et al. (eds.), Quality and Reliability of Large-Eddy Simulations II,
ERCOFTAC Series 16, DOI 10.1007/978-94-007-0231-8 13,
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Fig. 1. Characteristic stability of the three GABLS intercomparison cases, depicted in the
scaling diagram of [6].

2 GABLS intercomparisons

As a part of the GEWEX Atmospheric Boundary Layer Study (GABLS, [7]), a series
of model intercomparisons has been organized for SBL cases. In all intercomparisons
a single-column model intercomparison case was defined, whereas a LES case was
defined in the first and third intercomparison (see Table 1 for some characteristics
and Figure 1 for a comparison of the stability classes of the three cases). It is clear
that the cases have increased in terms of the complexity of their setup.

2.1 Setup and results from GABLS-1

The GABLS-1 case [5] was inspired by the idealized setup of [8]: a moderately stable
arctic SBL (with zi/L ≈ 2, where zi is the height of the SBL and L is the Obukhov
length). The forcing consisted of a constant geostrophic wind of 8 m/s and a constant
cooling rate of 0.25 K per hour for the surface temperature.

A number of lessons were learned from the GABLS-1 intercomparison case.
The subgrid model played a role down to resolutions of 2 meter. Furthermore, local
similarity relationships were confirmed by the models. Finally, the fact that no ob-
servational data were available for direct validation proved to be dissatisfying. The
importance of the GABLS-1 case as a benchmark is illustrated by the fact that [5]
has been cited over 40 times in three years.
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Table 1. Characteristics of the three GABLS model intercomparisons.

GABLS-1 GABLS-2 GABLS-3

SCM/LES both SCM only both
Forcing Ugeo = 8ms−1, Ugeo = 3ms−1, Ugeo = f (t,z),

∂Ts
∂ t = −0.25Khr−1, Vgeo = −9ms−1, Vgeo = f (t,z),

Ts = f (t) T0.25 = f (t), q0.25 = f (t) (LES)
surface scheme (SCM)
Large-scale advection of
u, v, T and q

Time 9 hours (night) 59 hours 24 hours (SCM)
9 hours (LES,
night-day transition)

Character idealized case inspired by as close to observations
CASES data as possible

2.2 Setup and results of GABLS-3

The GABLS-3 case [4] is based on observations at Cabauw (The Netherlands) and
not only covers the night-time period, but the night-to-day transition as well. Fur-
thermore, the case is more stable than the GABLS-1, having a typical zi/L of 4 to 5.
In that sense, the case is more challenging for LES models.

In order to enable a validation of the results with observations, the initial con-
ditions, boundary conditions and forcings have been chosen to resemble reality as
closely as possible . The forcings (including time-dependent geostrophic wind as
well as advection of heat, moisture and momentum) have been derived from a com-
bination of surface pressure field observations, tower observations and 3D weather
model simulations, but were idealized by omitting all short term variability (see also
[3]).

The participating groups were required to run their model at least at a common
resolution of 6.25 meter (equivalent to 128 points in each direction in a domain of
800 meter cubed). Some groups ran at higher resolutions, up to 1 meter, so that the
dependence of the results on grid size (and relative importance of subgrid models)
can be investigated. The present authors have also investigated the impact of the
order of the advection scheme used.

In total 11 groups have submitted results by January 2009 (in the Figures the
groups are indicated by a number, for the moment anonymously). Detailed analysis
of the results from different models (focussing on subgrid models, numerics and
resolution) is currently ongoing. Some preliminary results are shown in Figure 2 and
3. The profile of the components of the mean wind corresponds well between the
different models, and match well with the observations below 200 m. A clear low-
level jet is visible, but especially at the height of the velocity maxima the models
show the largest discrepancy. Since the details of the inertial oscillation strongly
depend on the initial conditions, this may in part be due to the way the models spin
up from the initial profile with random variations superimposed. When we turn to
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some turbulence statistics, the profiles of the variance of horizontal and vertical wind
speed show large differences between the models (no validation data included yet).
Further analysis is required to clarify the causes of these discrepancies (and others)
and to enable improvement of LES models.

Fig. 2. Results for GABLS-3 LES intercomparison case: profile of mean horizontal wind speed
east-west compeonent (left) and north-south component (average over 4th hour of simulation,
around sunrise).

Fig. 3. Results for GABLS-3 LES intercomparison case: profile variance of horizontal wind
speed (left) and vertical wind speed (right) (average over 4th hour of simulation, around sun-
rise). Note that only the resolved part of the variance is given.
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3 How to deal with complex forcings

For the GABLS-3 case the forcings were derived from observations and 3-D model
results. However, they were idealized for the definition of the final case setup. In
this section we will explore other options regarding forcings (mainly momentum)
for realistic cases.

3.1 More realistic, more complex forcings

Fig. 4. Forcings for GABLS-3 LES intercomparison case: time-dependence of geostrophic
forcing (lines with symbols are best estimates based on best available data; lines are idealized
forcings as used in the LES intercomparison).

The momentum forcings as used in the GABLES-3 case were idealized versions
of the diagnosed detailed forcings. The momentum forcings are shown in Figure 4
and 5. At certain moments there are large differences between the best estimates and
the actual forcings used in the intercomparison case. These differences in forcings
are reflected in the results of the LES simulations as well. This is shown in Figure
6 for the wind speed and direction at 200 meter height. The results for the original
forcings show a nearly circular inertial oscillation (with an amplitude of 4 m/s), with
a large discrepancy with the observations between 2 and 5 GMT. On the other hand,
the modified forcings result in hodograph that more closely follows that observations.
Hence, for a one-to-one validation of simulation results with data the details of the
forcings matter. Still, a clear discrepancy remains. Thus there are variations in the
wind field that are apparently not captured by the forcings.

3.2 Ensemble and composite cases

Although the time-dependence of the forcings for the GABLS-3 case seems to be
complex, analysis of similar nights has revealed that some of the variation is system-
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Fig. 5. Forcings for GABLS-3 LES intercomparison case: time-dependence of momentum ad-
vection (lines with symbols are best estimates based on best available data; lines are idealized
forcings as used in the LES intercomparison).

Fig. 6. Hodograph of windspeed at height of 203 meter (model) and 200 meter (data). Left:
the result of the original forcings. Right, the same run, but with geostrophic forcings as well
as momentum advection defined according to 4 and 5. Each symbol signifies a 5 minute mean
and symbols are sepearated in time by 30 miniutes: first symbol at 0:30 GMT).

atic between nights (see [2]). In [2] two ways to deal with possibly incomplete forc-
ings are dealt with (in the context of single-column modelling). The first method is
to select a number of nights with similar characteristics. Although for the individual
nights considerable discrepancies occur between model and observations, the mean
of the model simulations appears to agree well with the mean of the observations.

This leads to the second method. The availability of a number of similar nights in
the extensive data base of the Cabauw site enables the specification of a composite
case description. In such a composite both forcings and validation data are averaged.
This reduces the variability in the forcings and the observations, while retaining the
realism of the case.
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4 Conclusion

The main conclusions from the two LES intercomparison exercises and the develop-
ments with respect to the specification of composite cases are:

• Model intercomparisons for the stable boundary layer are useful exercises, but
they should go beyond the validation of mean profiles, as these are strongly re-
strained by external forcings. In the analysis care is required to distinguish which
part of the modelled dynamics is due to the exernal forcings and what part is
produced by the model itself.

• To enable validation of model intercomparisons the open nature of the atmo-
spheric system makes complex forcings necessary. However, this makes the case
less useful as a simple benchmark.

• The use of an ensemble of similar cases will reduce random variations, while
retaining a realistic case description.
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Evaluating Subgrid-Scale Models for Large-Eddy
Simulation of Turbulent Katabatic Flow
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Summary. The performance of commonly used subgrid-scale (SGS) models is evaluated for
large-eddy simulation (LES) of turbulent katabatic flow. The very stable stratification and
strong low-level shear in this flow provide a stringent test for SGS models. Using an a poste-
riori testing procedure, the SGS models’ performance in reproducing turbulence statistics and
spectra in katabatic flow is investigated.

Key words: Large-Eddy Simulation, Subgrid-Scale Models, Katabatic Flow, A Posteriori
Testing

1 Introduction

Over the past few decades, large-eddy simulation (LES) has become an invaluable
tool for investigating the structure and characteristics of atmospheric boundary layer
flows [1]. While encouraging results have been obtained from LES of neutrally strat-
ified and unstable (convective) boundary layers, questions still remain concerning
the reliability of LES for reproducing stably-stratified turbulent boundary layers [2].
Under stably-stratified conditions, the characteristic length scale of the small-scale
turbulent motions decrease, placing a larger burden on the subgrid-scale model em-
ployed.

A plethora of subgrid/subfilter scale (SGS/SFS) models exist for wide variety
of applied problems in atmospheric dynamics. Reliable simulations have been per-
formed in moderately stable boundary layers and have been successfully compared
to observational data [3]. However, no single SGS model appears significantly more
appropriate than another for a broad range of grid spacings. Typically, intercompar-
isons test LES performance against direct numerical simulation (DNS) or measure-
ment data. However, LES is run at much coarser resolutions than DNS and outputs
from the two simulation techniques may not be directly comparable. Similarly, LES
may not incorporate all of the phenomena present in real flows when compared to
observational data. To fairly evaluate the performance of the SGS models, we em-
ploy an a posteriori testing procedure [4][5]. To perform this type of procedure, the
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statistical behavior of the flow reproduced by LES is compared to filtered DNS data
for an identically forced flow.

We employ the a posteriori testing procedure in simulations of a shallow jet-like
flow developing along a cooled planar slope (katabatic flow). The earliest solutions
to this flow type can be traced back to studies by Prandtl [6], where the Boussinesq
equations of motion were solved analytically for a laminar slope flow in a stably-
stratified environment. The Prandtl solution is characterized by a strong near-surface
jet and weaker upslope flow aloft. It is no surprise that the turbulent counterpart
of this flow is particularly difficult for LES, given the strong flow shear near the
surface accompanied by strong stable stratification. To futher complicate matters, no
complete similarity theory has been developed yet for flows along sloping terrain
[7]. These factors only compound the problems LES is known to have near bounding
surfaces, where the characteristic length scales of turbulent motions can be close to
the LES filter width [8]. Katabatic and anabatic (heated slope) flows have actually
been numerically investigated using LES with two different SGS closures [9][10],
but the question regarding the optimal closure of LES for katabatic flows remains
unresolved.

2 Governing Equations and Closures

Following [6][11], we simulate a katabatic flow over a doubly-inifinite sloping sur-
face which is inclined at a constant angle α with respect to the horizontal. In DNS,
we solve the Boussinesq equations of motion and thermodynamic energy in rotated
coordinates analagous to the ones adopted in [12][13] (Fig. 1). In the rotated coordi-
nate system, x = x1 points in the downslope direction, y = x2 lies in the cross-slope
direction, and z = x3 is oriented normal to the slope.

In LES, we use the same rotated coordinates and solve the filtered Boussinesq
equations of motion and thermodynamic energy,

∂ ũi

∂ t
+ ũ j

∂ ũi

∂x j
= b̃(−δi1sinα +δi3cosα)+ν

∂ ũi

∂x j∂x j
− ∂τi j

∂x j
− 1

ρ
∂ ¯̃p
∂xi

, (1)

Fig. 1. Orientation of the coordinate system used (left) and a cross-sectional view of an ide-
alized katabatic flow (right). The thin solid lines illustrate the stratification of the base-state
environment (θ∞), which is characterized by θ increasing linearly with height.
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∂ b̃
∂ t

+ ũ j
∂ b̃
∂x j

= −N2(−ũ1sinα + ũ3cosα)+κ
∂ 2b̃

∂x j∂x j
− ∂B j

∂x j
, (2)

∂ ũi

∂xi
= 0, (3)

with
τi j = ũiu j − ũiũ j, (4)

B j = b̃u j − b̃ũ j, (5)

¯̃p = p̃+
2
3

E, (6)

where (̃...) indicates a quantity filtered using a top-hat filter, N is the Brunt-Vaisala
frequency (which is set to a constant value), τi j is the subgrid momentum flux (neg-
ative of the subgrid stress tensor), B j is the subgrid buoyancy flux, p̃ is the filtered
pressure, ¯̃p is the modified pressure, and E is the subgrid/subfilter turbulence ki-
netic energy (TKE). The top-hat filter width, Δ , is taken to be equal to the LES grid
spacing. Buoyancy is defined as

b = g
θ −θ∞

θr
, (7)

where g is gravitational acceleration, θ is potential temperature, θr is a constant
reference potential temperature, and θ∞ is the environmental potential temperature
which is taken to vary linearly with height. To close the system of filtered equations,
τi j and B j must be parameterized in terms of the resolved flow fields.

One of the earliest SGS models used for meteorological applications was the
Smagorinsky model [14], which employs the assumption of a balance between shear
production and the dissipation of subgrid TKE. As a result, the SGS stress tensor is
taken proportional to the resolved strain rate tensor:

νT = [CSΔ ]2S̃, (8)

τi j = Eδi j −2νT S̃i j, (9)

where S̃ =
√

2S̃i jS̃i j and CS is known as the Smagorinsky coefficient. Using a sharp
cutoff filter in the inertial subrange and assuming the Kolmogorov scaling, CS was
found to be roughly 0.17 [15]. The value of CS has also been found to vary signifi-
cantly depending on the type of flow simulated [8]. A value around 0.2 is commonly
used in atmospheric contexts [1]. While reasonable results can be attained using the
Smagorinsky model, the underlying assumption that the SGS stress tensor is pro-
portional to the strain rate is a critical one, and may not necessarily be valid in all
applications. The model is also known to be overly dissipative, especially near the
surface. Despite its inherent disadvantages, this SGS model is still implemented as a
baseline model in LES of many atmospheric flows because of its simplicity.

Deardorff [16] considered another form of the subgrid TKE balance by including
buoyancy effects and subgrid energy transport. The subgrid TKE is then calculated
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as a prognostic variable from a simplified version of its governing equation [17] and
is used to parameterize the eddy viscosity locally through

νT = CDl
√

E, (10)

κT = (1+
2l
Δ

)νT , (11)

l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δ
∂ b̃

∂ z
≤ 0,

min[Δ ,0.5
√

E/(∂ b̃/∂ z)]
∂ b̃

∂ z
> 0.

(12)

The adopted dependence of the mixing length on the stratification (Eq. 12) is used
to decrease the turbulent length scale when stable stratification is encountered. The
parameter CD was set to 0.12 in [16]. Even though [16] used this l scaling factor
within stratocumulus cloud layers, it is currently implemented in many SGS models
that are used in general atmospheric applications.

Both considered formulations, however, do not account for the backscatter of
energy from small scales to larger scales, which may be important in parameteriz-
ing the SGS motions [18][19][20]. To counteract the overly dissipative nature of the
schemes proposed by [14] and [16], some form of non-linear or stochastic backscat-
tering mechanism has been suggested for simulations of stable boundary layers in
[1][21]. The original stochastic backscattering model of [19] was computationally
exhaustive and did not match Monin-Obukhov similarity near the surface. Sullivan
[22] argued that this backscatter behavior could be accounted for by using adequate
grid resolution and less dissipative SGS closures. A two-part model was proposed, in
which the near-surface region was controlled by the mean shear and the region away
from the surface followed the closure [16]:

τi j = −2νT
′γ S̃i j −2ν̄T 〈S̃i j〉+Eδi j, (13)

where 〈...〉 represents averaging in homogeneous directions (slope-parallel planes in
the case of laterally homogeneous flow), νT

′ is the fluctuating field-eddy viscosity,
ν̄T is the mean-field eddy viscosity, and γ is the isotropy factor:

γ =
S̃′

〈S̃〉+ S̃′
, (14)

where S̃′ is the fluctuating strain rate. The calculation of the isotropy factor allows a
smooth transition from an ensemble-average approach near the ground to the base-
line subgrid TKE model of [16] in the main portion of the flow. The SGS buoyancy
flux was found to be important in moderately stable conditions and was later included
in the two-part formulation [23].

Another method to modify the classic Smagorinsky model is to dynamically cal-
culate CS. This approach employs a larger filter width, for example, Δ̂ = 2Δ , and
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then uses the filtered fields to calculate the Smagorinsky coefficient using the Ger-
mano identity [24]. Rather than specifying the coefficient, the SGS model essentially
calculates its optimal value from the resolved fields. To statistically minimize the er-
ror and find this optimal value, averaging over some homogeneous direction must
be applied [25]. Preferably, this averaging should be performed over Lagrangian
paths or over the nearest grid cell neighbors in homogeneous directions [26]. A third,
even larger filter width, Δ̃ = 2Δ̂ = 4Δ , can be introduced to make the model scale-
dependent using a power-law relation between filter widths [27][28]. Even though
the dynamic versions of the original Smagorinsky type-closure can essentially adjust
the characteristic length scale of the subgrid-scale motions, it cannot reproduce the
backscattering and anisotropy necessary to correctly simulate the turbulence in the
stable boundary layer [21].

3 Model setup and flow characteristics

The DNS code used in our study is described in [11]. It uses second-order in space
finite difference approximations of spatial derivatives and a leapfrog scheme with
a weak Asselin filter for time advancement. The modified pressure is computed di-
agnostically at every time step by a Poisson solver. The LES uses the same core
of the computational code, but employs various SGS algorithms for solving the fil-
tered Boussinesq equations. Table 1 lists the different subgrid closures that have
been incorporated in the LES and tested in the present study. The naming conven-
tion adopted for the various SGS closures is as follows: Smagorinsky (S63) [14], the
two-part model (S94) [22], and the scale-invariant dynamic model (PA00) [27][28].
In the case of the Deardorff [16] closure, two versions are employed; one using the
l-scaling factor given in Eq. 12 (D80) and another that takes Δ to be the mixing
length regardless of the stratification [D80 (no N)]. The LES with no SGS closure,
commonly referred to as a quasi-DNS, is abbreviated as qDNS. For the filtered DNS
output, the abbreviation is of fDNS is taken. The LES runs are carried out with grid
sizes of 32×32×100, while the DNS is run on the grid 128×128×400. This gives
the LES a degraded resolution by a factor of four. The filtering procedures used in
the a posteriori test are described in Sect. 4.

To generate the katabatic flow in the simulations, a buoyancy flux of −0.5 m2s−3

is imposed at the surface. The boundary conditions for the DNS are taken to be no-
slip and impermeable at the surface and zero-gradient for all variables at the top of
the domain. The Prandtl number, Pr = ν/κ , is taken to be unity. In the LES, Monin-
Obukhov similarity is applied to formulate surface boundary conditions in the runs
with for D80, D80 (no N), and S94, while pure no-slip are used in the runs with S63,
qDNS, and PA00. Small random perturbations are added to the surface forcing to
excite instabilities and encourage the flow to become turbulent. Figure 2 shows the
DNS output of the downslope velocity component, averaged over planes parallel to
the surface, as a function of time and slope-normal height for a slope of 60◦. The
flow exhibits a characteristic oscillation in time with a period of 2π/(Nsinα), as has
been observed in previous katabatic flow studies [13].
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Table 1. List of abbreviations for different DNS/LES runs. The asterisk indicates that the
mixing length scaling factor in Eq. 12 was not used.

Abbreviation Type (citation)

DNS DNS
fDNS DNS (filtered to LES grid)
qDNS LES (no closure)
S63 LES [14]
D80 LES [16]
D80 (no N) LES [16]*
S94 LES [22]
PA00 LES [27][28]

Fig. 2. DNS results of downslope velocity in a katabatic flow along a 60◦ sloping surface. The
bold contour demarcates the transition between positive and negative values of the along-slope
component of velocity.

The two parameters that completely determine the flow in this case are α and
|F0|ν−1N−2, where F0 is the buoyancy flux imposed at the surface [13][29]. The
characteristic length, velocity, and buoyancy scales of the flow in the present study
are given, respectively, by

ls =
√
|F0|N−3, us =

√
|F0|N−1, bs =

√
|F0|N. (15)
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Taking the governing parameters for the flow to be F0 = −0.5 m2s−3, N =
1 s−1,and ν = 10−4 m2s−1, we obtain |F0|ν−1N−2 = 5000 with characteristic scales
ls = 0.71 m, us = 0.71 ms−1, and bs = 0.71 ms−2. Alternatively, we can choose
other parameter values provided that |F0|/νN2 = 5000, which would result in ex-
actly the same scaled flow solutions. For example, selecting values commonly
found in atmospheric applications such as N = 10−2 s−1, ν = 0.1 m2s−1, and F0 =
−0.05 m2s−3, our characteristic scales become ls2 = 220 m, us2 = 2.2 ms−1, and
bs2 = 0.022 ms−2. Throughout the paper, we use the first set of scales to present
results in a dimensional form.

4 A Posteriori Testing

A posteriori testing is commonly used to compare LES flow statistics to the those
provided by a DNS of an identically forced flow. Since DNS typically has a higher
resolution than LES, the DNS fields must be filtered down to the LES grid. To do this,
a top-hat filter that has the width of the LES filter is applied. The effect of filtering
the DNS output to the LES grid is shown in the top two panels of Fig. 3. It is seen
that some of the smaller-scale features are lost through the filtering operation, but
the overall visual characteristics of the flow do not change significantly. Since the
filtered DNS output would be the best field LES could ever reproduce at a degraded
resolution, it is taken as a reference flow field.

Normally, differences found in comparing an LES output to the filtered DNS
results could potentially originate from different SGS models, numerical discretiza-
tions in space, time advancement schemes, or resolutions [4]. In our case, since each
LES run is completed using identical numerical schemes, virtually all of the differ-
ences are expected to originate from the SGS models. In Fig. 3, we can see that near
the surface, all tested SGS closures tend to organize the near-surface flow into large-
scale structures which are absent in the filtered DNS field. This could be due to the
over-dissipative nature found in some of the schemes, but also may be an effect of
the insufficient grid resolution near the surface. The level depicted in Fig. 3 is only
the 8th point above the surface for LES, while it is the 32nd point above the ground
for DNS. It is likely the problems that LES has near bounding surfaces in moder-
ate to high Reynolds number flows are still observed at this level above the lower
boundary. The dynamic closure and the qDNS share the most visual similarities with
the filtered DNS output. This may be due to the the schemes being under-dissipative,
which is briefly discussed below.

The one-dimensional velocity spectra shown in Fig. 4 demonstrate that most of
the SGS closures produce the desired general spectral characteristics. The velocity
spectra are calculated according to [30] and are averaged in time over at least six os-
cillations (see Fig. 2). This smooths the spectra making them easier to interpret. Near
the surface, LES spectra obtained with S63 and S94 schemes are almost identical to
the fDNS spectrum. The one spectrum that does not exhibit reasonable behavior is
from the qDNS, which follows the -5/3 line at exceedingly high wavenumbers. In the
plot with their dissipation spectra, D11(k) = 2νk2E11(k), turbulence in the qDNS is
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Fig. 3. Horizontal contour plot of downslope velocity on a plane parallel to the sloping surface.
Each panel starting at the top left and going to the right and down, shows a) the output from
DNS, b) the DNS output filtered to the LES grid, c) qDNS, d) S63, e) D80, f) D80 (no N), g)
S94, and h) PA00. In each plot, the LES grid spacing is illustrated by the thin black lines.
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found to be dissipating improperly. Most of the energy in this spectrum dissipates at
wavenumbers very close to the Kolmogorov scale. All of the SGS closure schemes
show reasonable spectral dissipation properties, as most of the dissipation occurs at
wavenumbers much smaller than the Kolmogorov scale. The discrepancies between
the different SGS closures become smaller with height, as the LES is able to resolve
the motions at these levels. However, the D80 TKE-based schemes appear to be
slightly over-dissipative, even at substantial distances from the slope. For katabatic
flows, the S63 scheme performance appears to be reasonable, at least once turbu-
lence has already developed. As has been previously reported, the dynamic model is
under-dissipative close to the surface [27], but performs reasonably well in regions
away from the surface.

Fig. 4. Time-averaged normalized u1 spectra at DNS level 32 (LES level 8) (top, left) and their
respective dissipation spectra (top,right). The same is shown at level 160 in the bottom two
panels.

From Fig. 5, we conclude that LES is roughly capable of reproducing the correct
flow in terms of mean velocity and buoyancy which are obtained by averaging over
planes parallel to the surface and over six oscillations in time. Not surprisingly, the
LES performance is worse for higher order statistics, as is seen for the total turbulent
fluxes and the variances, especially near the surface. When comparing the ratios of
the total contribution of each velocity variance to the to total velocity component
variance, we can see that the fDNS exhibits 〈ũ′1u′1〉 that is about 3 times larger than

〈ũ′3u′3〉, where the angle brackets here denote the combined spatial (over planes paral-
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Fig. 5. Temporal and planar-averaged profiles (〈...〉) of a) 〈ũ1〉, b) 〈b̃〉, c) 〈ũ′1u′1〉, d) 〈ũ′3u′3〉,
e) 〈ũ′1u′3〉, and f) 〈ũ′3b′〉 as a function of z.

lel to the slope) and temporal (over several flow oscillations) averaging. Meanwhile,
LES tends to have larger ratios of variance components, with 〈ũ′1u′1〉 being about a

factor of 4.5 - 10 times larger than 〈ũ′3u′3〉. Near the surface, the TKE-based SGS
closures generate a pronounced spike in vertical velocity variance. An analysis of
the subgrid TKE budget (not shown) reveals that the near-surface shear production
associated with the katabatic jet is responsible for the spike. Some of the SGS models
tested (especially the S63 model) also tend to over-predict the slightly negative verti-
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cal momentum flux near the surface that is observed in the DNS output. Interestingly,
for the buoyancy related fields, the LES with no SGS model (qDNS) outperformed
some LES with SGS formulations. It should be noted that the correction of the Sul-
livan [22] scheme for scalars implemented in [23] was not tested.

5 Conclusions

Overall, the performance of the basic SGS closures employed by LES for atmo-
spheric applications is acceptable for mean fields, but degrades noticeably when
it comes to higher-order statistics (particularly buoyancy fluxes). Near the ground,
where the SGS contributions compose the largest portion of the total fluxes and vari-
ances, the different closures produce highly variable results. The over-production of
subgrid TKE by the shear close to the surface causes errors in the models based on
[16] and especially affect the vertical velocity variance. Also, many of the tested
schemes drastically overestimate the negative momentum flux near the ground. A
majority of the tested schemes are able to capture the anisotropy of the flow in the
along-slope direction, though this feature of the flow is also slightly overestimated
by the LES.

With respect to velocity spectra, the [22] and [14] schemes perform the best near
the ground, while the dynamic and two-part models perform better in turbulent re-
gions of the flow away from the surface. Even though the solution produced by the
qDNS remains stable, it exhibits a build-up of energy as well as unrealistic dissipa-
tion at high wavelengths. The schemes based on [16] are found to be over-dissipative,
and flow statistics slightly improved when the mixing length stratification adjustment
after [16] is not used.

The extension of testing toward other SGS models will constitute the scope of
future studies. Updating the time advancement schemes in both DNS and LES is
also planned. The influence of the varying slope angle on the performance of the
SGS models in LES of katabatic flows should be studied as well.
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Large-eddy simulation of pyroclastic density currents
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Summary. We investigate the dynamics of turbulent pyroclastic density currents (PDCs) by
adopting a 3D, Eulerian-Eulerian multiphase flow model, in which solid particles are treated as
a continuum and the grain-size distribution is simplified by assuming two particulate phases.
The turbulent sub-grid stress of the gas phase is modelled within the framework of Large-
Eddy Simulation (LES) by means of a eddy-viscosity model together with a wall closure.
Despite the significant numerical diffusion associated to the upwind method adopted for the
Finite-Volume discretization, numerical simulations demonstrate the need of adopting a Sub-
Grid Scale (SGS) model, while revealing the complex interplay between the grid and the SGS
filter sizes. We also analyse the relationship between the averaged flow dynamic pressure and
the action exerted by the PDC on a cubic obstacle, to evaluate the impact of a PDC on a
building. Numerical results suggest that the average flow dynamic pressure can be used as
a proxy for the force per unit surface acting on the building envelope (Fig. 5), even for such
steeply stratified flows. However, it is not possible to express such proportionality as a constant
coefficient such as the drag coefficient in a steady-state current. The present results indeed
indicate that the large epistemic and aleatory uncertainty on initial and boundary conditions
has an impact on the numerical predictions which is comparable to that of grid resolution.

Key words: Large-Eddy Simulation, pyroclastic density currents, numerical simulation, mul-
tiphase flows

1 Introduction

Pyroclastic density currents (PDCs) are high-temperature, high-velocity particle-
laden flows that propagate along the flanks of a volcano under the effect of their
density contrast with respect to the atmosphere. They are made up of volcanic gases
and fragments of magma and rocks, ranging in size from a few microns to several
decimeters, with variable density and shape, which are the product of the fragmenta-
tion of the liquid magma during its decompression along the volcanic conduit. PDCs
can be generated by the instability and collapse of a volcanic jet (pyroclastic flows
and surges), by the collapse and crumbling of a lava dome (block-and-ash flows) or
by the lateral explosion of a pressurized magma body (directed blasts). Solid particles
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within the current tend to segregate leading to a steep density stratification, with solid
concentrations ranging from dense packing at the base (volume fraction > 50%) to
very dilute (volume fraction << 1%) on the top boundary [1, 9, 16]. PDCs dynamics
are controlled by the competing effects of sedimentation and turbulent mixing. Par-
ticles are suspended by turbulence in the more diluted part of the current, whereas
in the basal layer they are mainly supported by fluid pressure and particle collision,
since the increasing solid concentration dampens turbulent fluctuations [2].

PDCs are among the most hazardous volcanic phenomena, due to their fast em-
placement and destructive nature. One of the main objectives of volcanology is there-
fore to make a quantitative assessment of their dynamics, in order to mitigate their
impact on the inhabited areas around active, explosive volcanoes. Unfortunately,
PDCs are difficult to measure, even indirectly, and most of the information on their
dynamics is related to the study of their deposits. On the other hand, analogue exper-
iments are only partially useful, because of the difficulty of scaling. Theoretical and
computational models thus represents a unique opportunity to deepen our knowledge
of the fluid dynamics of these volcanic flows.

In the last years, thanks to the rapid development and availability of parallel su-
percomputers, 3D multiphase flow simulation of volcanic plumes and PDCs have be-
come a viable tool for volcanological research [4, 10, 15]. Numerical results demon-
strated the ability to catch the intrinsically 3D dynamics of the turbulent mixing, the
instability of the gas-particle volcanic plume and the complex interaction of PDCs
with 3D topographic features [5].

The need of simulating such non-steady-state processes over a wide range of
spatial scales (from a few metres up to tens of km) and the difficulty of increasing the
number of discretization elements to directly simulate all turbulent scales, make the
Large Eddy Simulation (LES) approach promising [7, 12]. Nevertheless, the highly
polydisperse nature of volcanic flows and the coexistence of several dynamic regimes
(from dense to dilute, from high to low Mach number, from turbulent to granular
flows), increases the complexity of the model and makes it difficult to achieve a
high numerical accuracy. The estimate of the uncertainty associated to the numerical
discretization and to the physical modeling becomes thus important to assess the
quality of the results and the reliability of hazard estimates. The present work intends
to give a contribution to this issue by investigating the role of grid resolution and of
SGS modeling in the LES simulation of PDCs and of their impact on buildings.

2 Overview of the physical and numerical model

The dynamics of the eruptive mixture is modelled by adopting an Eulerian-Eulerian
multiphase flow model. Accordingly, gas and particulate phases are treated as con-
tinua and balance equations for mass, momentum, and energy are solved accounting
for advective transport, viscous dissipation, body forces and interphase momentum
and energy transfers. An equation of state and a Newtonian stress tensor are pre-
scribed for each phase in order to close the set of coupled partial differential equa-
tions (PDE). More details about the physical model can be found in [9].
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A LES approach to turbulence is adopted where the Sub-Grid Scale (SGS)
stresses for the gas phase are modeled through the Smagorinsky closure [13]. At
the wall boundary, a roughness closure for the filter length is specified [7]. For solid
particles, physical and rheological properties, as well as interactions between them,
are described by using semi-empirical correlations validated in the laboratory, and
no SGS model is imposed.

The transport equations are solved by a Finite-Volumes (FV) technique on a 3D,
staggered grid in Cartesian coordinates. Convective fluxes are discretized through
a second-order upwind method, based on MUSCL reconstruction of fluxes at the
cell boundaries. Diffusive fluxes are computed explicitly by a second-order centered
scheme. The non-linear system of discretized PDEs is solved by applying an itera-
tive procedure based on the Implicit Multi Field (ICE-IMF) algorithm [3]. Mass and
momentum equations and the interphase coupling are solved through a semi-implicit
(predictor-corrector) algorithm, by adopting a point-relaxation (SOR) technique. En-
ergy equations are solved explicitly by a first-order Euler scheme. Although it is well
known that upwind FV schemes are affected by a considerable numerical diffusion
[12], a cheap and robust numerical technique is required for the study of the dynam-
ics of both subsonic and supersonic multiphase flows, with a low to high degree of
phase coupling, such as those encountered in volcanic phenomena.

The numerical algorithm is parallelized by adopting a domain-decomposition
strategy and the Message Passing Interface (MPI) [4].

3 3D simulation of a stratified PDC

The model above is applied to the numerical simulation of the propagation of a PDC
in a rectangular box of size Lx = 5 km, Ly = Lz = 1, with steady-state inlet conditions
on the left (x=0) boundary (Fig. 1a). Initial PDC thickness is equal to 100 m. In this
application, the grain-size distribution is approximated with two particle phases of
30 and 500 μm, with densities of 2500 and 1000 kg/m3, representative of volcanic
ash and pumice, respectively. Initial conditions are comparable with those occuring
in Plinian eruptions and derive from the large-scale simulations of the collapse of
a volcanic jet [5], resulting in an estimated bulk Reynolds number of the current
exceeding 107. The initial velocity of both gas and particulate phases is 25 m/s and
temperature equals 573 K. The flow pressure at the inlet is equal to the atmospheric
pressure, so that it must adjust to balance the mixture hydrostatic load immediately
after the injection in the domain. The inlet volumetric fractions of particles of 30 and
500 μm are, respectively, 0.65×10−3 and 1.625×10−3, corresponding to solid bulk
densities of 1.625 kg/m3 for both particulate and about 0.6 kg/m3 for the gas. The
resulting flow dynamics pressure Pd = 0.5ρmv2

m is about 1.25 kPa.
We analyze hereafter the influence of the computational grid size (dx,dy,dz),

of the Smagorinsky coefficient (Cs) and of the filter width (Δ ). The values of these
parameters considered herein are summarized in Table 1.

The propagation of a PDC (see Fig.1) is characterized by the formation of a cur-
rent head (the PDC nose), the development of a Kelvin-Helmoltz (KH) instability
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Run name dx=dy [m] dz [m] Cs Δ [m]

A1 10 2-20 0.1 [5.8:12.6]

A2 10 2-20 0.0 [5.8:12.6]

A3 10 2-20 0.1 10

A4 20 2-20 0.1 [9.3:20.0]

B1 20 4-40 0.1 [11.7:25.2]

B2 20 4-40 0.0 [11.7:25.2]

B3 20 4-40 0.2 [11.7:25.2]

C1 10 10 0.1 10

Table 1. Grid and turbulence model parameters adopted in 3D simulations of pyroclastic den-
sity currents. Δ is the filter width, which is equal to (dx ·dy ·dz)1/3 (minimum and maximum
values are indicated) in all simulations except A3, where it is constant. The time step is 0.01
s, corresponding to a CFL of about 0.1 for the finest mesh. Roughness length is equal to 1m
in all simulations.

(that generates transversal eddies at the upper interface between the current and the
atmosphere) and the Lobe-and-Cleft (LC) instability (which is associated to the en-
gulfment of air by the flow front that generates positive bouyancy at the current head
[8]). The highest resolution that was affordable for 3D simulation (run A1 in Tab. 1)
qualitatively reproduce the phenomenology of the PDC propagation, as shown in
Fig.1.

Increasing the minimum vertical grid size to 4 m (B1 run, Fig. 2a) significantly
reduces the intensity of the LC instability, although the overall PDC structure is cap-
tured. A dramatic change in the PDC large-scale behaviour is observed (Fig. 2b)
when the vertical grid size is too coarse to describe the boundary layer and the PDC
head structure (C1 run). In this case, LC instability is damped out, the flow is con-
siderably faster and the number of KH rolls is largely reduced.

Concerning the effect of the SGS model parameters, model parameters, fixing the
filter length scale to 10 m (A3 run, Fig. 2c) does not significantly influence the large-
scale structure of the PDC, whereas removing the model by imposing the Smagorin-
sky constant Cs = 0.0 (A2 run, Fig. 2d) completely changes the PDC dynamics. In
the latter case, the lower viscosity in the model produces a much thinner boundary
layer profile, so that the horizontal momentum transferred to the basal layer by the
effect of the sedimentation is not dissipated. As a result, the flow head develops a
wedgelike shape that causes a suppression of the LC instability mechanism, since it
inhibits the entrainment of atmospheric air from the bottom.

The vertical profile of a PDC results from the concurrent effect of the wall
shear stress (that generates a boundary layer), sedimentation (that decreases the mix-
ture density at the current top while concentrating particles at the base) and air
entrainment. In Fig.3 we present the profiles of dynamic pressure of the mixture
Pd = 1/2ρmv2

m, averaged in time, at 1.5 km from the inlet and along the central axis
(the uniform value at the inlet is also displayed for reference). Simulations A1 and B1
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Fig. 1. Structure of the pyroclastic density current represented by the isosurface of the gas
temperature (T=323 K) at 50 s (a) and 100 s (b) from the flow injection, for simulation A1.
The isolines of the gas temperature, every 50 K, are also plotted on the front (y=0) plane.
Gridding every 200 m.

Fig. 2. Effect of the grid size and SGS filter size on the numerical results. Isosurface of the gas
temperature for B1 at 100 s (a), C1 at 88 s (b), A3 at 100 s (c) and A2 at 75 s (d). See Table 1
and Figure 1 for parameters and comparisons.

give comparable results, whereas run C1 significantly underresolves the flow bound-
ary layer and underestimates the concentration gradient near the wall. Interestingly,
a similar net effect is observed when the SGS model is removed at higher resolu-
tion (A2 run). In this latter case (A2), the finer vertical grid size is responsible for
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the steeper concentration gradient and the reduced shear stress near the wall, which
prevent the formation of the PDC nose, air entrainment from the head and the subse-
quent growth of the LC instability. As a result, the concentration profile is controlled
by the sedimentation rate only and the current maintains a “constant settling zone”
(with top-hat profile) for longer (see also Fig. 2d).

Simulations with a coarser mesh (B1-B2) seem less sensitive to the SGS model,
probably because of the larger numerical diffusion associated to the grid.

The value of dynamic pressure in the first cell above the ground (reported in
the legend of Fig. 3) increases on finer grids, reflecting the strong sensitivity of the
concentration to the cell size (also observed in 2D simulations [9]). This value should
then be considered carefully, also because the multiphase flow formulation at high
concentration do not account for particle-particle friction.

Although direct measurements of PDC profiles are presently out of our technical
possibilities, future studies should try to make the present results more quantitative,
by comparing numerical to laboratory experiments (e.g. [6]).

Fig. 3. Time-averaged vertical profile of the flow dynamic pressure at 1.5 km from the inlet.
Time averaging is performed from the time of passage of the front up to 100 s. The value
in the first computational cell above ground (Pd-base), omitted for the sake of plot clarity, is
reported in the legend on the right, together with the vertically averaged value (Pd-av) over a
flow thickness of 100 m.

4 Flow-building interaction

We finally present here the application of the 3D multiphase flow model to the analy-
sis of the impact of a PDC on a building. Such study is mainly motivated by the need
of estimating the action of the flow on a structure engulfed by a PDC and to design



LES of pyroclastic density currents 167

appropriate mitigation actions [19]. The damage on the infrastructures is also often
utilized as an indirect measure of the maximum flow dynamic pressure [17]. How-
ever, the interaction between a PDC and a building is considerably complicated by
1) the presence of solid particles in a wide range of sizes and densities, 2) the strati-
fied nature of PDCs and 3) the transient nature of the PDC emplacement. Therefore,
the relationship between the (average) flow dynamic pressure and the action on the
structure needs further investigation.

Numerical simulation have been performed by adding an obstacle of 20× 20×
20 m3 at 1.5 km from the inlet, in the same simulation conditions described above.
Numerical results describe the flow separation on the building edge, the reattach-
ment of the current downstream and the formation of a complex and unsteady eddy
structure (Fig.4).

Fig. 4. Vortex structure around a cubic obstacle engulfed by a PDC, within the A1 run. The
streamlines represent gas velocity on the (a) longitudinal (xz) and (b) horizontal (xy) planes at
half width and heigth, respectively and at 50 s. The grid size of 2 m is also represented within
the obstacle.

The time-dependent action on the obstacle has been computed by integrating the
pressure field along the building envelope. The PDC action on the building fluctuates
around 2 kPa (consistent with the estimate of the average dynamic pressure, around
1.5 kPa) but it is significantly underestimated in the lowest resolution run C1.
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Fig. 5. Drag force per unit surface as a function of time. Black lines refer to A1 (solid), B1
(dashed) and C1 (dotted) runs. The grey, solid line refer to the A1 run with only one particle
class of 30 μm and the same mixture density.

The effect of a change of the particle diameter has been also estimated for com-
parison and plotted (in grey) in Fig. 5, since the grain-size distribution represents one
of the eruptive parameters most subject to uncertainty. The associated uncertainty in
the computed drag force is of the same order of magnitude of the error associated to
the grid size, thus making it difficult to estimate a unique relationship between the
flow action and the dynamic pressure for PDCs.

5 Conclusions

Numerical results suggest that, despite the significant numerical diffusion associated
to the upwind discretization, the LES subgrid model is needed to reproduce the qual-
itative behaviour of PDC (particularly the formation of a turbulent flow head with a
nose structure and the development of KH and LC instabilities). In the adopted sim-
ulation conditions, the medium-resolution (4-40 m) mesh is able to resolve the flow
boundary layer and to catch the qualitative behaviour of a PDC, giving a comparably
good estimate of the flow action on a cubic obstacle. For the purpose of large-scale
impact analysis (where the grid resolution cannot fully resolve the flow at an urban
scale [5]) the averaged flow dynamic pressure results to be an acceptable proxy for
the force per unit surface acting on the building envelope, although simulation C1
(the lowest resolution investigated with 10 m grid size) significantly underestimate it
of a factor of 2-3. Present results also show that the effect of a change in the grain-
size distribution may be comparable to that associated to the numerical grid and SGS
filter size.
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Physical and numerical models in volcanology are indeed subject to a variety
of uncertainties. The multiphase formulation of the eruptive mixture dynamics is
not univocal and intial and boundary conditions are subject to a large epistemic and
aleatory uncertainty [18]. This implies that the absolute verification and validation
of a model is inherently impossibile [14, 11]. Moreover, in the study of explosive
eruptions it is difficult to test the congruence of numerical models to observational
data, given the rarity of the events and their catastrophic nature.

However, numerical models can be used for sensitivity analyses, to elucidate the
relative importance of model variables, and to compare single realizations in order
to identify the most important eruptive parameters that define an eruptive scenario.
Within this context, the assessment of quality and reliability of model results ap-
pears as an extraordinary challenge in which numerical benchmarking should be
accompanied by an effort in combining modelling with uncertainty analysis, through
statistical techniques leading to the construction of response surfaces relative to the
variation of the different simulation parameters and possibly to their optimization.
To this aim, however, the improvement of remote measurement techniques is also
needed, to better characterize a natural phenomenon to which we have incomplete
access.
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Summary. Large-eddy simulation of a turbulent, non-isothermal channel flow is performed.
The Lagrangian approach is followed to compute the dispersed phase (heavy particles) under
the assumption of one-way momentum and energy coupling with the carrier phase. A stochas-
tic model for the residual fluid velocity along the particle trajectories is applied to account for
subfilter flow effects on particles. It is shown that both the particle dynamics and temperature
are affected by the model. Results for the carrier and dispersed phases are presented in terms
of their velocity and thermal statistics. The need for further model improvement is discussed.

Key words: Two-phase dispersed flow, Heat transfer, Large-eddy simulation,
Lagrangian-Eulerian approach, Subgrid-scale effects on particles

1 Introduction

Turbulent two-phase flows with the dispersed phase are quite common in various
industrial situations, including chemical, process, and power engineering. Exam-
ples include liquid fuel and coal powder combustion, spray cooling, heterogeneous
catalytic processes, spray dryers, etc. Since the physical and chemical phenomena
occurring there are often controlled by the instantaneous flow structure, the statis-
tical (RANS-based) approaches face difficulties. Nowadays, large eddy simulation
(LES), although much more computationally demanding, becomes feasible for some
of those applications [8].

In the Lagrangian-Eulerian studies of turbulent polydispersed flows, LES is used
as the carrying phase solver to resolve more energetic (larger) flow scales. Naturally,
questions arise as to the importance of the subgrid-scale (SGS), or subfilter, fluid flow
and heat transfer on the behaviour of the dispersed phase. As discussed in a number
of recent publications, the LES filtering and subsequent modelling of SGS terms
may impact the statistics of particle locations (so-called preferential concentration)
[17, 13, 6], turbulent energy and inter-particle collision rates [1], particle velocities
and deposition rates in wall-bounded flows [21, 5, 14]. Consequently, the particle
cooling, heating or evaporation rates may be affected as well [10].
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In the paper, both velocity and temperature of particles are of interest. Following
our previous work on SGS particle dispersion models [14] and a recent DNS study
on the particle thermal correlations [3], we consider a wall-bounded, geometrically-
simple turbulent flow (plane channel). To the best of the authors’ knowledge, the
impact of SGS particle dispersion models on the particle thermal statistics has not
been studied so far. The main aim of the present contribution is to discuss these issues
and to present results obtained to date for the case of a heated/cooled channel flow
(no net heating of the fluid) laden with particles. The SGS dispersion model is added
to the particle equation of motion and its effects on particle velocity and temperature
are illustrated for several values of particle inertia. Some comparisons with available
DNS data are also provided.

2 Physical problem statement and closure relationships

We consider the particle motion one-way coupled with the wall-bounded, non-
isothermal, turbulent fluid flow of constant density. The large-scale (filtered) fluid
velocity and temperature fields, Ū f (x, t) and T̄f (x, t), are computed in the LES ap-
proach [12]. The dynamic (Germano-Lilly) model is used to determine the sub-
filter viscosity νt in the modelled SGS stress term of the filtered N-S equations,
spatially-smoothed with a filter scale Δ̄ . This is done through νt = CGΔ̄ 2|S̄| where
|S̄| = (2S̄i jS̄i j)1/2 is the scale of the resolved strain rate and the Germano parameter
CG is computed from double filtering and subsequent averaging over the homogene-
ity directions.

The temperature, treated as a passive scalar in the flow, is governed by

∂ T̄f

∂ t
+Ū f ,i

∂ T̄f

∂xi
=

∂
∂xi

[(
ν f

Pr
+

νt

Prt

)
∂ T̄f

∂xi

]
. (1)

In the filtered energy equation for fluid, Eq. (1), the subfilter thermal diffusivity
νt/Prt is used to close the SGS heat flux term. It is determined with the assumed
turbulent Prandtl number of Prt = 0.98.

As far as the dispersed phase is concerned, the particle tracking approach is fol-
lowed. We have used a simplified particle equation of motion where only the drag
term is retained. This is generally accepted for the case of heavy particles, ρp � ρ f .
To improve the predictions of particle wall deposition, the use of the lift force term
is recommended [21, 14]. For the present computation with no deposition, elastic
rebound of particles with no temperature change upon the wall collision is assumed
as the boundary condition. The drag force is based on the particle velocity Up and
the fluid velocity along particle trajectory, U∗

f = U f (xp, t). In practice, velocity U∗
f

is interpolated from the fluid solution known at mesh points; trilinear interpolation
is applied for the present work. The incurred error has not been assessed here; yet,
lower-order interpolation may act as additional filtering/smoothing [5].

Analogously, the evolution of particle temperature Tp accounts for heating or
cooling by the carrier phase and includes the fluid temperature at the particle loca-
tion, T ∗

f = Tf (xp, t). So, for the present case the equations of particle evolution are:



SGS effects on dispersed particles in LES of heated channel flow 173

dxp

dt
= Up ,

dUp

dt
= fD

U∗
f −Up

τp
,

dTp

dt
= fθ

T ∗
f −Tp

τθ
. (2)

The particle momentum relaxation time is defined as τp = (ρp/ρ f )(d2
p/18ν f ); fD =

1 + 0.15Re0.687
p is the empirical drag correction factor; in this expression, Rep =

dp|U∗
f −Up|/ν f is the particle Reynolds number (based on the particle diameter dp,

the relative particle velocity, and the kinematic viscosity of the carrier fluid, ν f ). The
particle Stokes number is conveniently defined in wall-bounded flows as St = τ+

p
(viscous scaling). Then, the particle thermal relaxation time in Eq. (2) is expressed
as τθ = (ρpcp/ρ f c f )(d2

p/12α f ) where the fluid thermal diffusivity is α f = ν f /Pr.
The correction factor fθ in Eq. (2) is determined by the Ranz-Marshall correlation

for the Nusselt number: fθ = Nu/2 = 1+0.3Re1/2
p Pr1/3. So, apart from the particle

Stokes number τ+
p , another control parameter for a non-isothermal motion of the

dispersed phase in the flow is the non-dimensional particle thermal relaxation time
τ+
θ = Pr(3cp)/(2c f )τ+

p .
The simplest treatment of the particulate phase (“regular LES”) is to replace in

Eqs. (2) the instantaneous fields “seen” by particle, U∗
f and T ∗

f , by the filtered, or
large-scale, fields Ū∗

f and T̄ ∗
f with the residual scales neglected. Alternatively, with

the account of SGS fluid motions, the velocity “seen” by the particles is taken as
Ū∗

f + u∗
f . In this case the residual velocity “seen”, u∗

f , is introduced to model the
impact of the subfilter flow on the dispersed phase motion. The issue, here called
the SGS particle dispersion, is a subject of ongoing debate and modelling efforts,
eg., based on approximate deconvolution ideas [10, 5, 18] or stochastic approaches
[13, 19].

In the present computations we used a stochastic model for the residual fluid
velocity along particle trajectories. The model, originally proposed for homogeneous
turbulence [13], is now briefly recalled. It is based on the Langevin-type equation
and is constructed with the subgrid velocity and time scales of the fluid “seen” by
the particle:

du∗i = −u∗i
τ∗L

dt +

√
2σ2

sg

τ∗L
dWi (3)

where dWi is an increment of the Wiener process. To estimate the velocity scale
of subfilter fluid motions, σsg = ( 2

3 ksg)1/2, the residual turbulent energy content of
the carrier phase was approximated as ksg = CIΔ̄ 2|S̄|2 and the dynamic procedure
(with double filtering) was applied to determine the proportionality parameter CI

[16]. The subfilter time scale is estimated as τ∗L = CsgΔ̄/σsg. The model constant
Csg = O(1) accounts for the uncertainty concerning the time scale of the residual
velocity autocorrelation. Various choices of Csg, ranging from 0.002 to 1.0, were
considered through its impact on the particle turbulent energy and deposition rate;
cf. [14] for results.

Both treatments (“regular LES” and LES with SGS particle dispersion) were
used in particle tracking reported in the present contribution. Note that the fluid tem-
perature along particle trajectories, T ∗

f , in Eq. (2c) is approximated by the filtered
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quantity T̄f (xp, t). We argue that a part of the subfilter effects on particle tempera-
ture is already accounted for through the SGS dispersion model for velocity “seen”.
For a fully consistent approach, a correct choice would be T ∗

f = T̄ ∗
f +θ ∗

f where the
subfilter fluid temperature along particle trajectories, θ ∗

f , should be modelled as well
(like u∗

f ). Yet, stochastic temperature models of the diffusion type are more complex
than those for velocity, because of the scalar boundedness constraint, cf. [15]. On the
other hand, approximate deconvolution for temperature seems more straightforward,
cf. [10]. In the present paper, no attempt to model θ ∗

f has been made. We note, how-
ever, that the stochastic modelling of temperature in one-phase turbulent flows with
heat transfer has been addressed both in the context of statistical approaches (one-
point PDF method, [15]) and for the LES coupled with FDF scalar modelling [20].
In RANS of non-isothermal flows, stochastic models were proposed at the discrete
time level, cf. [2] and references therein.

3 Numerical solution

A fully-developed turbulent channel flow is computed for Reτ = 150 (a benchmark
test case of the COST Action LES-AID, [7]). The pressure-driven flow was assumed
periodic in the streamwise and spanwise directions. The size of the flow domain
in the streamwise (x), wall-normal (y) and spanwise (z) directions was 4πh× 2h×
(4/3)πh, discretised with 64× 84× 64 FV meshes. Our earlier experience [16, 14]
has shown that a coarser mesh deteriorates the quality of fluid statistics resulting from
the finite volume code applied for the present LES computations. For the purpose, we
used a finite volume, academic solver of second-order accuracy (FASTEST3D code
– courtesy of Prof. M. Schäfer, TU Darmstadt, Germany). The mesh size Δy+ (in
wall units) varied from 0.17 at the wall up to 10 at the centerline. In the periodicity
directions, the mesh was uniform with Δx+ = 29.5 and Δz+ = 9.8. At the walls,
isotemperature b.c. were imposed with respective temperatures TL and TH , resulting
in a heat flux from the colder to the hotter wall with no net heating of the fluid. The
fluid Prandtl number was Pr = 0.7 (air).

Computations were performed with the time step Δ t+=0.11; the total simulation
time was t+f ∼ 2.4 · 104 (about 240000 time steps) and the non-isothermal case was

switched on from t+T ∼ 0.5 · 104. A statistically-steady state has been achieved for
the fluid velocity field. Results for thermal statistics suggest that a somewhat longer
integration time may still be needed to collect quality time-averages. As the indicator
of convergence, Fig. 1(a) shows the symmetrised profiles of the fluid temperature
variance at some time instants.

Particle-related variables are determined by integrating Eqs. (2) in time until t+p ∼
2 · 104 since their injection in the flow. Altogether, 200000 particles were tracked
for each St. Here again, we have first checked how the simulations attain a steady
state. The fluctuating temperature variance at the channel centerline, 〈θ 2

p〉CL, was
computed for particles of various St; results are shown in Fig. 1(b) together with
the corresponding quantity for fluid, 〈θ 2

f 〉. Since 〈θ 2
p〉CL in a steady-state is expected

to be a decreasing function of St, the statistics for smaller particles (St = 1 and 5)
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Fig. 1. LES of heated channel flow at Reτ =150: convergence of the computation. (a) fluid
temperature fluctuation variance at selected time instants (from 80000 to 140000 time steps);
(b) time records of the fluctuating temperature variance (fluid and particles) at the channel
centerline.

seem close to converged, unlike those for St = 125 where probably a much longer
computation time is needed.

Then, statistics of the particulate phase: cross-stream profile of the particle num-
ber density, mean velocity and temperature profiles, intensity of velocity and temper-
ature fluctuations, and fluctuating velocity-temperature correlations were computed.
Results were taken as time averages over t+p,av ∼ 103.

4 Computation results and discussion

The fluid and particle velocity statistics resulting from the LES have already been
reported in [14]; the particle deposition mass flux has also been analysed there. Here,
we recall and illustrate the issue of the SGS dispersion modelling effects on the r.m.s.
particle fluctuating velocity in Fig. 2. Because of the isotropic character of the model,
the increase of the wall-normal component is relatively larger. For the computations
reported here, the model constant has been chosen to Csg = 1 which is probably the
upper bound of values, judging by the reconstruction of turbulent particle energy.

In the present contribution we focus on the thermal statistics. First, we re-
port results for the fluid temperature, compared to the DNS reference data for the
heated/cooled channel [9]. All statistical quantities are suitably normalised with uτ
and the friction temperature θτ (the non-dimensional wall surface heat flux qw), de-
fined as θτ = qw/(ρ f c f uτ) = (α f /uτ)(dT/dy)w so that T + = Pry+ in the viscous
conductive sublayer.

The mean fluid temperature profile is shown in Fig. 3(a) and compared to DNS
[11] for Pr = 0.7. The r.m.s. of the fluctuating fluid temperature is shown in Fig.
3(b) and compared to available DNS data [9] at Pr = 1 (please note that the r.m.s.
θ+

f values from LES are rescaled with the Prandtl number to confirm the correct
profile in the viscosity-affected region). The correlation coefficients of fluctuating
temperature and fluctuating velocity components are shown in Fig. 3(c,d). In general,
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Fig. 2. Effect of the SGS particle dispersion model for the fluid “seen” on the r.m.s. fluctuating
particle velocity for St = 5: a) streamwise component, b) wall-normal component. Regular
LES: solid lines; LES with the SGS particle dispersion model (with Csg = 1.0): dot-dashed
lines; DNS data of Marchioli et al. [7]: (•).

Fig. 3. LES of heated channel flow at Reτ = 150 and Pr = 0.7, results for fluid: (a) the resolved
mean temperature; (b) the r.m.s. of fluid temperature fluctuation; (c) the correlation coefficient
of u f and θ f ; (d) correlation coefficient of v f and θ f . LES results: lines; DNS reference data,
symbols: [11] for Pr=0.7 (•, plot a), [9] for Pr=1 (•, plots b, c-d), and Pr=0.3 (�, plots c-d).

the LES results for the fluid temperature statistics are in a reasonable agreement with
DNS.

Results for regular LES of particle-laden flow are shown in Fig. 4. The mean
temperature profiles for fluid and particles (plot a) are very close to each other and the
SGS particle dispersion model does not affect them (results not shown). The profiles
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Fig. 4. Fluid and particle thermal statistics across the channel: a) the mean temperature profile,
b) the r.m.s. of temperature fluctuations.

Fig. 5. Effect of the SGS particle dispersion model for the fluid “seen” on the r.m.s. fluctuating
particle temperature, for: a) St = 1, b) St = 5. Regular LES: solid lines; LES with the SGS
particle dispersion model (with Csg = 1.0): dot-dashed lines.

of the fluctuating temperature r.m.s. (plot b) differ for fluid and heavy particles: with
increase of St, the fluctuation intensity tends to increase in the wall region, but lies
below that of fluid at the channel centerline (the results for St = 25, not yet fully
converged, should be looked at with caution).

Next, we analyse the impact of the SGS dispersion model on the particle temper-
ature. In particular, Fig. 5 shows the impact of the SGS dispersion model on thermal
statistics from a regular LES study; the fluctuating temperature variance seems to
become somewhat flatter throughout the channel (except at the walls, held isother-
mal). Because of the limited computer resources, we have taken the momentum and
energy relaxation times equal for all particle classes: τ+

θ = τ+
p = St.

As far as the results for particle tracking with the SGS particle dispersion model
are concerned, Fig. 6 contains the turbulent heat flux components of the dispersed
phase. Here again (cf. Fig. 2), the impact of the model is more significant for the
wall-normal component of turbulent heat flux. Moreover, particles of St = 5 seem
to be more responding. This may be due to preferential concentration effects in the
near-wall region [14], but further work is needed on this issue. Next, we computed
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the non-dimensional components of the turbulent heat flux for fluid and particles
in the form of the correlation coefficients, like in Fig. 3(c,d). Results are presented
in Fig. 7 for particles of St = 1 and 25; those for St = 5 (not shown for the sake
of picture clarity) are situated in-between. It should be noticed that the correlation
coefficients for particles are generally larger than those for fluid and increase with
St. Yet, the temperature-velocity correlation is found to decreases as the effect of the
SGS dispersion model, specially in the near-wall region.

To sum up: as the results for statistical moments indicate, the SGS particle dis-
persion model modifies not only particle velocity statistics but some of the thermal
statistics as well; as expected, the impact of the SGS model is tangible for smaller-
inertia particles (such as St = 5).

Fig. 6. Turbulent heat flux components for the dispersed phase, St = 1 (lines) and St = 5 (lines
with open symbols): (a) streamwise, (b) wall-normal. Solid lines: regular LES, dash-dotted
lines: LES with SGS particle dispersion.

Fig. 7. The correlation coefficients of fluctuating velocity and temperature in LES of particle-
laden flow, St=1 and 25: (a) streamwise, (b) wall-normal. Fluid: lines. Particles: regular LES
(lines with black symbols), LES with SGS dispersion model (lines with empty symbols).
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5 Concluding remarks

In the paper, we considered a non-isothermal channel flow with the dispersed phase.
In the LES computation with Lagrangian particle tracking, we applied the Langevin
stochastic model for residual fluid velocity along the particle trajectories to study the
impact of SGS dispersion effects on the particle thermal statistics. As already stated
before [13], the model is able to restore some statistical quantities (like the turbulent
kinetic energy of the particulate phase), yet it tends to be too diffusive as far as the
particle preferential concentration is concerned.

We have presented LES results for the carrier and dispersed phases and compared
them to available reference data from DNS of a heated/cooled channel. The effect
of SGS particle dispersion modelling on the temperature r.m.s. and the fluctuating
temperature-velocity correlations for the dispersed phase has clearly been shown.
On the contrary, no SGS model for the subfilter temperature at particle locations has
been proposed so far. The possible need for an additional SGS modelling of thermal
effects via a specific closure, directly in the particle energy equation, remains an open
issue.

A next-term objective will be a sound modelling of the SGS flow effects on mass
transfer processes in the particulate phase (evaporation, chemical reactions). Also,
the LES computation is underway for a channel flow heated at both sides. For that
case, detailed DNS fluid data are available [4] and some DNS reference results exist
for the dispersed phase for a selection of relaxation times τp and τθ . Comparison
with [3] is intended to analyse the impact of the SGS dispersion model on particle
thermal statistics.
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Summary. The Euler-Lagrange approach, based on Direct Numerical Simulation (DNS) and
Large-Eddy Simulation (LES) for the fluid, is applied to particle-laden turbulent flow in a
channel. Explicit subgrid modeling of the turbulent stresses is adopted, while the particle mo-
tion includes small turbulent scales based on approximate deconvolution of the LES field.
Results for turbulent flow in a channel at Reτ = 150 are discussed, focusing on one-way
coupled point-particle statistics at three Stokes numbers. DNS provides a point of reference
for assessing LES with different sub-filter eddy-viscosity models: Smagorinsky, Van Driest-
Smagorinsky and the dynamic model are studied. Clustering and segregation of particles near
the wall, due to turbophoresis, is strongly related to the quality of the LES velocity field and
the approximate reconstruction of the smaller resolved scales. It is shown that deconvolution
up to second order allows to better describe the particle statistics near a solid wall; deconvo-
lution at higher order yields rather marginal additional improvements.

Key words: Large-Eddy Simulation, Direct Numerical Simulation, multiphase flow, approx-
imate deconvolution

1 Introduction

Turbulent flows laden with a large number of small particles is fundamental to a
multitude of environmental and industrial processes, e.g., the formation of clouds,
combustion of coal, catalytic cracking of oil, etc. Accurate prediction of the behav-
ior of particles in a turbulent flow can be obtained using Direct Numerical Simula-
tion (DNS) [12]. However, such simulations are too costly for frequent application
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in problems of realistic complexity. This constitutes a major pacing item for the fur-
ther development of Large-Eddy Simulation (LES) to also include the dynamics of
large ensembles of discrete point particles [5, 18]. Such extensions of LES introduce
challenges with respect to capturing the stresses that arise from small-scale turbulent
motions, as well as challenges related to incorporating small-scale turbulence into
the motion of the particles. Several important aspects of particle-turbulence interac-
tions have been found by [13, 14, 15] and [16]. In this paper we focus on the relation
between the quality of the LES field and the predicted point particle statistics. Spe-
cial emphasis is given to assess improvements in the particle dynamics that can be
obtained by adopting approximate deconvolution [2, 3] to represent small scale dy-
namics for the discrete particles.

In recent years, large-eddy simulation for turbulent flow has become focused on
multiphase applications, including particle-laden flow [1]. This poses new challenges
to the representation of small-scale turbulent motion, as the aim shifts toward cap-
turing the dispersion of inertial particles that are embedded in the flow. On the one
hand, the flow-coarsening in LES facilitates the simulation of the primary features
of complex turbulent flow at high Reynolds numbers. On the other hand, this flow-
coarsening takes out much of the small-scale turbulent contributions to the motion
of particles. The problem that arises from the flow-coarsening is ‘how to restore the
effects of a range of turbulent scales on the particle motion’ so that several impor-
tant statistics of the embedded particle-swarm are adequately represented. We focus
on the relevance of one particular strategy, that of approximate deconvolution of the
LES velocity field [2, 3] and consider the effectiveness of this strategy for particles
at low as well as high Stokes numbers, i.e, a very high and a rather small agility of
the particles to respond to local changes in the turbulent flow.

The motion of particles that respond slowly to the flow because of their large
inertia, i.e., large relaxation time, will not be influenced much by the small turbu-
lent scales. At the other extreme, particles that closely follow details in the flow will
require a highly resolved turbulent velocity field. The approximate deconvolution
method can be used to reconstruct some of the smaller resolved scales in an LES.
As shown in [4, 5] such reconstruction allows to better describe clustering of par-
ticles near a solid wall. This deconvolution approach should be adequate by itself
for inertial particles with large relaxation time. However, with decreasing relaxation
time, the dependence of the particle motion on small scales in the flow increases.
We investigate to what extent an increase in the order of approximate deconvolution
leads to an extension of the range of particle relaxation times that can be simulated
accurately. We closely follow work in [6] and apply this strategy to turbulent flow
in a channel while concentrating on statistics of the particle clustering and segrega-
tion near the wall. Deconvolution can only approximately reconstruct resolved scales
on the LES grid. In cases where the motion of the particles also depends to a large
extent on scales that are smaller than the LES resolution, or in case the LES field
does not capture important flow structures near the wall, approximate deconvolution
is not expected to yield improvements. In such situations additional sub-filter scale
modeling for the particle motion may be required [7, 8].
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The organization of this paper is as follows: in Section 2 we introduce the math-
ematical model, Section 3 is devoted to a discussion of the simulation results and
concluding remarks are collected in Section 4.

2 Mathematical model

In this section we describe the Stokes dynamics of the discrete embedded particles
and sketch the fluid-mechanical treatment of the continuous phase in DNS and LES
context.

Detailed simulation of wall-bounded turbulent particle-laden flow can be based
on the Euler-Lagrange point-particle approach [17]. Particles are dispersed in a
pressure-driven fluid flow, assumed to be incompressible and Newtonian. We restrict
to very small volume fractions and assume that the size of the particles is consider-
ably smaller than the local Kolmogorov length-scale in the turbulent flow. In such
situations the particles have a negligible feedback coupling on the turbulence and the
one-way coupling formulation for the particle phase can be employed [12].

The motion of the particles in the turbulent flow is obtained by time-accurate
tracking of their trajectories. The instantaneous transfer of momentum from the con-
tinuous fluid phase to the discrete particle phase is dominated by Stokes drag. This is
determined by the velocity of the particle and that of the surrounding fluid at the loca-
tion of the particle. For small heavy particles the equation of motion for the location
x and velocity v can be written as [1]:

dx(t)
dt

= v(t) ;
dv
dt

= Cd
Rep

24
1
τv

(u(x(t), t)−v(t)) (1)

where u(x(t), t) is the velocity of the fluid at the location of the particle. The particle
drag coefficient Cd and the hydrodynamic particle relaxation time τv, are defined as:

Cd =
24

Rep
, τv =

ρp

ρ f

D2
p

18ν
(2)

in terms of the particle Reynolds number Rep = | (u−v) | Dp/ν . In these expres-
sions ρp and ρ f are the particle and fluid mass densities, Dp is the diameter of the
particles. The expression for Cd is valid only for small Rep.

The continuous-phase, represented by conservation of mass and momentum, is
solved using DNS and LES [1] for incompressible flow. We adopt a geometry of the
problem as sketched in Fig. 1. The position, flow, and particle quantities are normal-
ized by the channel half-width, δ , and the friction velocity, uτ . The particle motion is
obtained using a second-order Adams-Bashforth scheme for the time-advancement,
and a tri-linear interpolation for the velocity. Periodic boundary conditions are im-
posed in streamwise and spanwise directions.

The filtered continuity and Navier-Stokes equations, that are the basis for LES of
the continuous phase are:
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Fig. 1. Computational domain of particle-laden channel flow.

∇ ·u = 0 (3)

Du
Dt

= −∇P
ρ f

+
1

Re
∇2u−∇ · τ (4)

where the overbar denotes the spatially filtered flow variable, ρ f is the fluid density
and Re is the fluid Reynolds number, while P denotes the pressure. The influence
of the subgrid motion on the resolved fluid-velocity is represented by the turbulent
stress-tensor, τ . In components this tensor is given by

τi j = uiu j −uiu j (5)

In LES the tensor τ is parameterized by a sub-filter model. Here we will consider
eddy-viscosity models in which

τi j −
δi j

3
τkk = −2νtSi j (6)

The trace τkk of the turbulent stress tensor is incorporated in the pressure term. In the
Smagorinsky model [9] the turbulent eddy-viscosity νt is modeled by analogy to the
mixing length hypothesis:

νt = CSΔ 2|S| (7)

where CS is the Smagorinsky coefficient, Δ is the filter width, and |S| is the magnitude
of the strain rate tensor defined as:

|S| =
(
2Si jSi j

)1/2 where Si j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
(8)

The Smagorinsky model contributes to the dissipative fluxes in the LES equa-
tions. Near the solid walls of the channel this model is known to exaggerate the
dissipation, up to the point of preventing transition to turbulence, e.g., in a temporal
mixing layer [19]. To counteract this tendency, the turbulent eddy-viscosity νt may
be directly damped near the walls. A well-known example of this strategy is van Dri-
est damping in which the constant CS is replaced by CS(1− exp(−y+/A)) where y+

measures the wall-normal distance in terms of wall-coordinates and A = 25 [10].
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A more elegant method to damp the overly dissipative Smagorinsky model in a
turbulent boundary layer is obtained as a by-product of the dynamic procedure [11].
This approach is based on the well-known Germano identity which relates the tur-
bulent sub-filter tensor τ and its ‘test-filtered’ analog to a resolved stress tensor. By
requiring optimal compliance of an assumed model with this identity it becomes
possible to automatically adapt the eddy-viscosity coefficient in response to the de-
veloping flow. So, instead of assuming a fixed valued CS or a given damping of CS

near a wall, the dynamic procedure yields a self-adaptive dynamic eddy-viscosity
coefficient. It is known that this eddy-viscosity reduces to zero in the viscous sub-
layer near a solid wall, thereby avoiding the excessive dissipation that arises with the
Smagorinsky model.

After closure of the LES equations by assuming a particular sub-filter model,
a smoothed representation of the turbulent flow will be obtained from actual sim-
ulations. This velocity field u will contain a range of length-scales reflecting the
turbulent flow. The smaller resolved scales will be considerably attenuated as a re-
sult of the sub-filter model. This lack of small-scale motion will have its impact on
the dispersion of point-particles in the LES field. A strategy to recover some of the
smaller scales involves approximate deconvolution or ‘defiltering’. In this paper we
quantify to what extent the recovered small scale dynamics improves the correspon-
dence of LES and DNS. Denoting the filter by L, i.e., u = L(u) we may express the
approximate inverse in terms of a truncated geometric series expansion:

L−1 =
(

I − (I −L)
)−1

≈
N

∑
k=0

(I −L)k ≡ L−1
N (9)

where I denotes the identity operator. Here we introduced the N-th order approxima-
tion L−1

N that can be implemented in terms of repeated filter application. The lowest

order approximations are L−1
0 (u) = u, L−1

1 (u) = 2u−u and L−1
2 (u) = 3u−3u + u.

The reconstruction of large scales, i.e., Fourier components for which kΔ  1 is very
accurate. With increasing kΔ the reconstruction will be incomplete. In case higher
order inversion is used one may expect this to be more accurate but also computa-
tionally more expensive. A proper balance should be struck between these conflicting
requirements. We turn to this in the next section.

3 Turbulent statistics and deconvolution

In this section we first present turbulent statistics for the fluid flow as obtained with
the Smagorinsky model, the Van Driest-Smagorinsky model and the dynamic model.
Then we proceed with a discussion of the particle statistics, first without the use of
the approximate deconvolution and subsequently with approximate deconvolution.

Simulations were performed in a computational domain as sketched in Fig. 1
with 64×64×48 control volumes for LES and 128×128×64 in case of DNS. For
the streamwise and spanwise directions the grid spacing is uniform, and for the wall
normal direction a hyperbolic-tangent stretching has been used. The shear Reynolds
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number of the flow was Reτ=150 based on the shear velocity and half channel height.
In order to obtain good statistics for particles in these simulations we used 1.5 106

particles for the DNS and one order less for LES.
The simulations were first advanced until a statistically steady turbulent flow was

reached. In this flow the particles were initialized at random positions and with the
local velocity as initial velocity. The particles need to adapt to the new velocity which
usually takes a few times the particle response time. Subsequently the particle statis-
tics is gathered, which requires significant computational effort, particularly since
the particle concentration converges very slowly near the walls [1]. The statistics for
the fluid and particles were averaged for 100δ/uτ .

In the following we compare results of DNS with various LES, using the follow-
ing labeling: (a) LES with a value of CS implies the use of Smagorinsky’s model at
that CS, (b) with additional label ‘V-D’ in cases where Van Driest damping of the
Smagorinsky eddy-viscosity is used and (c) dynamic if the dynamic eddy-viscosity
model is adopted. In all simulations we use the LES velocity field in the Stokes
drag law to advance the particles, unless otherwise stated. If use is made of approx-
imate deconvolution in the particle dynamics then the Stokes drag law is based on
u∗ = L−1

N (u) where u is obtained using the dynamic model. We incorporate N = 0,
N = 1 or N = 2 for the approximate deconvolution reconstruction.

In Fig. 2 the streamwise fluid velocity component and its fluctuations are pre-
sented as a function of the wall normal coordinate for various sub-filter models. The
Smagorinsky model yields considerable errors (Fig. 2(b)), which are mainly due to
the overestimated near wall dissipation as can be seen by comparison with the results
obtained with the dynamic and the Van Driest damped case (Fig. 2(a)). The stream-
wise velocity fluctuations are slightly under-predicted in case no sub-filter model
is used (CS = 0). Better results are obtained using the dynamic model and the Van
Driest damped model at CS = 0.05 and 0.1 (Fig. 2(c)). Too large values of CS in com-
bination with Van Driest yield too high fluctuation levels. The use of Smagorinsky’s
model is seen to affect mainly the location at which the turbulent fluctuation levels
are highest (Fig. 2(d)).

In Fig. 3(a-d) the streamwise and wall-normal particle velocity fluctuations are
presented for Stokes number St = 1. The streamwise velocity fluctuations are under-
predicted without any model or in case the dynamic model is used. Van Driest damp-
ing can give under-prediction as well as over-prediction depending on the value of
CS - this allows to work with an optimized eddy-viscosity coefficient (Fig. 3(a)).
The use of Smagorinsky’s model is seen to yield a peak value further away from the
wall as CS is increased - the peak is also broader as CS is higher (Fig. 3(b)). For the
wall-normal particle velocity fluctuations all studied sub-filter models under-predict
the fluctuation levels. In fact, the results without sub-filter model are best among
the models studied (Fig. 3(c-d)). The particle wall-normal velocity is also closely
related to the particle concentration profile near the channel walls. As can be seen in
Fig. 3(e-f) all models under-predict the particle accumulation. The highest concen-
tration was observed for the case when no sub-filter model was used; apparently the
small-scale turbulent fluctuations near the wall are very important for proper predic-
tion of turbophoresis.
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Fig. 2. Fluid velocity (a), (b) and fluctuations (c), (d) for the streamwise component comparing
various sub-filter models with DNS results at Reτ = 150. For the labeling of the LES models
see main text.

The introduction of approximate deconvolution can improve the particle statis-
tics relative to the case where particle trajectories are based on the LES velocity field
alone. This is illustrated for dynamic model in Fig. 4. All components of the velocity
fluctuations show an improved correspondence with DNS when approximate decon-
volution is used. Second order deconvolution yields the largest improvement. This
is also reflected in a better representation of the particle concentration in the near
wall region. The benefit of using N = 1 deconvolution relative to no deconvolution
(N = 0) is larger than using one additional order of deconvolution. Using even higher
order deconvolution seems not to be justified by the additional computational effort.

The benefit of the ADM for heavier particles at St = 5 and St = 25 was also
studied. At St = 5 the deconvolution method yields improvements over using the
dynamic model alone. At St = 25 the particles are so heavy that small turbulent
scales are quite unimportant for their dynamics - using the dynamic model with or
without deconvolution was then found to be close to using no model or DNS.

4 Conclusion

In this paper the Euler-Lagrange framework has been used to simulate the point-
particle dynamics with fluid flow represented using LES and DNS. The relevance of
the near-wall velocity fluctuations was studied in relation to the particle clustering.
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Fig. 3. Particle streamwise (a) and (b) and wall-normal (c) and (d) velocity fluctuations. Par-
ticle concentration (e) and (f). We used a particle Stokes number St = 1 and compare various
LES models with DNS.

At low Stokes numbers the use of small-scale turbulent velocity deconvolution was
found to be important for the particle statistics. The predicted particle dynamics us-
ing approximate deconvolution were found to agree better with DNS data compared
to cases without deconvolution. However, the particle statistics based on the dynamic
model including approximate deconvolution were found to be only just as good as
those obtained in case no sub-filter model was used. Concerning the ADM approxi-
mation order it was found that N=2 give the best results for most of the cases studied
and higher order doesn’t improve results significant. At higher Stokes number the
relevance of the smaller turbulent scales is less pronounced and LES results for tur-
bophoresis were found to correspond closely to DNS data, quite independent of the
sub-filter model that was used, as long as the near wall dissipation was not overesti-
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Fig. 4. Particle streamwise, wall-normal and spanwise velocity fluctuations (a, b, c respec-
tively) together with particle concentration (d) at particle Stokes number St = 1 illustrating
the use of the deconvolution method.

mated too much. This implies that Van Driest damping and the dynamic procedure
proved to be quite reliable while the Smagorinsky model was found less accurate.
In contrast to other work in present paper lower (second) order of interpolation for
particle velocity has been used. But quality of the results compare to LES results of
other Authors due to deconvolution remain the same as forth order interpolation[4].
Because the ADM can only models the effects of the resolved scales it is possible
that with second order interpolation some additional benefit of defiltering was cancel
and more scales can be retrieve with more accurate interpolation.
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Summary. Current capabilities of Large-Eddy Simulation (LES) in Eulerian-Lagrangian
studies of dispersed flows are limited by the modeling of the Sub-Grid Scale (SGS) turbulence
effects on particle dynamics. In this paper, the possibility is examined to account explicitly for
SGS effects by incorporating ad-hoc closure models in the Lagrangian equations of particle
motion. Specifically, a candidate model based on approximate deconvolution is considered
and applied to particle-laden turbulent channel flow. Results show that, even if the fraction of
SGS turbulent kinetic energy for the fluid velocity field (not resolved in LES) is recovered,
quantitative prediction of local segregation and, in turn, of near-wall accumulation may still
be inaccurate. This failure indicates that reconstructing the correct amount of fluid and particle
velocity fluctuations is not enough to reproduce the effect of SGS turbulence on particles and
that further information on the flow structure at the sub-grid scales must be incorporated.

Key words: Lagrangian Tracking of particles in LES, Approximate Deconvolution, Segrega-
tion, Deposition

1 Introduction

Turbulent dispersed flows in boundary layers are crucial in a number of industrial
and environmental applications. In this context, a key information for practical ap-
plications is the rate at which the particles are transported to, deposited at, and re-
entrained from the wall by turbulence. Direct numerical simulation studies (see [1]
and references therein) have shown that all these phenomena are governed by the
strong correlation existing between coherent flow structures, local particle segrega-
tion and subsequent deposition phenomena. Specifically, inertial particles are ini-
tially segregated and accumulated into specific flow regions close to the walls and
only afterwards are driven to the walls, where deposition eventually occurs. Mod-
eling these physical mechanisms in numerical methods coarser than in DNS is non
trivial. Lagrangian tracking of particles in flow fields obtained from Large-Eddy Sim-
ulation (LES) represents a potentially useful tool for practical applications; however,
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the full capabilities of LES to accurately predict near wall accumulation and prefer-
ential segregation are still to be proven. Critical issues are: (i) How does the subgrid
scale (SGS) turbulence affect particle dispersion? (ii) How should these SGS ef-
fects be modeled in order to obtain accurate prediction of the selective response of
different-inertia particles?

In previous papers [2, 3], we investigated these issues focusing on a well-known
archetypal instance of wall bounded flow, i.e particle-laden channel flow. Using a
Eulerian-Lagrangian approach, we benchmarked a-priori and a-posteriori LES at
shear Reynolds number† Reτ = 150 against reference pseudo-spectral DNS data per-
forming tests with and without SGS closure models in the particle motion equations
[2, 3]. In agreement with other recent studies (see e.g. [4]), it was found that LES
tends to underestimate local particle segregation and, in turn, deposition fluxes and
near-wall accumulation. The main conclusions drawn from [2, 3] were the following:
(i) It is necessary to identify a way to model the effects of the filtered SGS flow veloc-
ity fluctuations on particle motion; and (ii) introduction of a SGS closure model for
particles that is able to reintroduce the correct amount of fluid velocity fluctuations
in the particle motion equations may not be sufficient to warrant accurate prediction
of near-wall particle accumulation.

Based upon these conclusions, in this paper results obtained from a-posteriori
tests performed at Reτ = 300 are discussed to investigate if previous findings also
hold at higher Reynolds numbers. These tests may provide useful indications of the
most important features which should be incorporated in SGS closure models for
particles such as, for instance, the level of information about the flow field required
at the sub-grid level and/or the necessity to include explicit Reynolds number/particle
inertia dependencies in the model. Tests may also assist in highlighting the physical
reasons for the observed lack of accuracy in predicting near-wall particle accumula-
tion.

2 Problem Formulation and Numerical Methodology

The physical problem considered in this study is particle dispersion in fully-developed
turbulent channel flow. The carrier fluid is air with density ρ = 1.3 kg m−3 and kine-
matic viscosity ν = 15.7×10−6 m2 s−1. Both DNS and LES have been performed.
The governing equations solved for are standard Continuity and Navier-Stokes equa-
tions written for incompressible Newtonian fluid. In LES, these equations were
smoothed with a filter function of width Δ : The closure for such filtered equations
is provided by the dynamic SGS model of Germano et al. [5]. A pseudo-spectral
method [6], based on transforming the field variables into wavenumber space, us-
ing Fourier representations for the periodic streamwise and spanwise directions and

† The shear Reynolds number for the considered channel flow configuration is defined as
Reτ = uτh/ν where uτ is the shear (or friction) velocity, h is the half channel height, and ν
is fluid kinematic viscosity. The shear velocity is defined as uτ =

√
τw/ρ), where τw is the

mean shear stress at the wall and ρ is fluid density.
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Chebychev representation for the wall-normal (non-homogeneous) direction, was
used to integrate the governing equations. A two level, explicit Adams-Bashforth
scheme for the non-linear terms, and an implicit Crank-Nicolson method for the vis-
cous terms are employed for time advancement in both DNS and LES. All variables
are taken in dimensionless form, and expressed in wall units by combining uτ , ν and
ρ . The reference geometry consists of two infinite flat parallel walls: the origin of
the coordinate system is located at the center of the channel and the x−, y− and z−
axes point in the streamwise, spanwise and wall-normal directions respectively. Pe-
riodic boundary conditions are imposed on the fluid velocity field in x and y, no-slip
boundary conditions are imposed at the walls. The calculations were performed on a
computational domain of size 4πh×2πh×2h in x, y and z respectively. In this paper,
statistics obtained performing particle tracking in LES at a shear Reynolds number
Reτ = 300 will be shown (for details on statistics - and simulation parameters - at
Reτ = 150 the reader is referred to [2, 3]). The number of grid points used to dis-
cretize the computational domain is 256× 256× 257 in DNS, 128× 128× 129 in
fine (e.g. well-resolved) LES, and 64×64×129 in coarse LES, respectively.

Particles have density ρp = 1000 kg m−3 and are treated as pointwise rigid
spheres injected at concentration low enough to consider dilute flow conditions: one-
way coupling between the two phases is thus assumed and particle-particle colli-
sions are neglected. Particle motion is described by a set of ordinary differential
equations for particle velocity and position. For particles much heavier than the fluid
(ρp/ρ � 1) the most significant forces are Stokes drag and buoyancy. However, our
aim here is to minimize the number of degrees of freedom by keeping the simulation
setting as simplified as possible; thus the effect of gravity has also been neglected.
With the above assumptions, the following equations in vector form are obtained:

dx
dt

= v ,
dv
dt

=
v−u@p

τp
(1+0.15Re0.687

p ) , (1)

where x is particle position, v is particle velocity, u@p is fluid velocity at particle
position, τp = ρpd2

p/18μ is the particle response time, and Rep = dp|v− u@p|/ν
is the particle Reynolds number, ρp and dp being particle density and particle di-
ameter respectively. When no SGS model is used in the particle motion equations,
u@p is obtained by interpolation of the filtered fluid velocity u issued by LES. When
Approximate Deconvolution (AD) is applied to ū, then u@p is set equal to the decon-
volved fluid velocity, u∗, whose components are obtained as u∗i =∑N

α=0(I−G)α ∗ui ,
where G is the (invertible) filter kernel and N is the series truncation parameter (fol-
lowing [7] we fixed N = 5). Although the filter implicitly applied by the numerical
discretization in the homogeneous directions is the Fourier cut-off filter, the decon-
volution procedure requires a smooth filter to be effective (see e.g. [7]). Among the
possible analytic and discrete smooth filters, a top-hat filter was applied in this work
and deconvolution is carried out only in the homogeneous directions.

To calculate particle trajectories in the flow field, we have coupled a Lagrangian
tracking routine with the DNS/LES flow solver. The routine solves for Eqs. (1) using
6th-order Lagrangian polynomials to interpolate fluid velocities at particle position;
with this velocity the equations of particle motion are advanced in time using a 4th-
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St τp (s) d+
p dp (μm) V +

s = g+ ·St Re+
p = V +

s ·d+
p /ν+

1 0.283 ·10−3 0.153 10.2 0.0118 0.00275
4 1.132 ·10−3 0.306 20.4 0.0472 0.01444
5 1.415 ·10−3 0.342 22.8 0.0590 0.02018

20 5.660 ·10−3 0.684 45.6 0.2358 0.16129
25 7.075 ·10−3 0.765 51.0 0.2948 0.22552
100 28.30 ·10−3 1.530 102.0 1.1792 1.80418

Table 1. Particle parameters for the simulations.

order Runge-Kutta scheme. The timestep size used for particle tracking was chosen
to be equal to the timestep size used for the fluid, δ t+ = 0.045; the total tracking time
was, for each particle set, t+ = 4050. Particle initial distribution is homogeneous over
the computational domain and their initial velocity is set equal to that of the fluid at
the particle initial position. Periodic boundary conditions are imposed on particles
moving outside the computational domain in the homogeneous directions, perfectly-
elastic collisions at the smooth walls were assumed when the particle center was at a
distance lower than one particle radius from the wall. For the simulations presented
here, large samples of O(105) particles, characterized by different response times,
were considered. Table 1 shows all relevant particle parameters, including the particle
Stokes number St = τ+

p = τp/τ f , where τ f = ν/u2
τ is the viscous timescale of the

flow.

3 Particle tracking in LES flow fields at Reτ = 300

In this section, we compare velocity statistics for the two phases to highlight the
effect of using a closure model in the equation of particle motion. We thus show
results obtained from LES with AD (u@p = u∗) to those obtained from LES without
AD (u@p = ū), using DNS results (u@p = u) as reference.

Fig. 1 compares the Root Mean Square (RMS) values of the fluid velocity stream-
wise and wall-normal components. The spanwise component is not shown for sake
of brevity. For the fine LES, the LES velocity fields without AD (dotted line) are
characterized by a fluctuation level in good agreement with the DNS one (solid line),
except for the wall-normal component, for which LES noticeably underestimates
the RMS values. As discussed in [4], this is already a source of error in predicting
turbophoresis and may lead to significant underestimation of wall particle concen-
tration. The use of AD (open circles) leads to an increase of the fluid velocity RMS
with respect to standard LES. For the wall-normal component the correct RMS level
is recovered. However, for the remaining components the deconvolved fluid velocity
field is characterized by a slight overshoot of fluctuations. As discussed in [2, 3],
in the coarse LES case the LES fluid velocity field is already characterized by quite
large RMS values. AD increases further the fluid velocity fluctuations and, therefore,
amplifies the disagreement with DNS.
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Fig. 1. RMS of fluid velocity fluctuations. Streamwise RMS at top; wall-normal RMS at bot-
tom. Left-hand panels: fine LES; right-hand panels: coarse LES.

Similar considerations can be made for the RMS values of particle velocities.
As an example, Figs. 2 and 3 show the RMS values of streamwise and wall-normal
velocities for the St = 1 and the St = 25 particles. When LES is well-resolved (fine
LES, Fig. 2), AD improves the agreement with DNS for particle wall-normal veloc-
ity, even though the streamwise component is still slightly overestimated. For coarse
LES (Fig. 3), the RMS values are always overestimated, and the overshoot becomes
larger when AD is applied to the fluid velocity fields. The effect produced by AD on
velocity statistics in the wall-normal direction is also visible on the instantaneous par-
ticle concentration profiles, shown in Fig. 4. In all cases, AD improves the agreement
with DNS [4, 8]. Prediction of the deposition velocity (not shown) also improves.

This is not surprising when LES is well-resolved, since AD proved its capability
to recover the correct level of fluctuations for the wall-normal velocity component
of both phases (see Figs. 1c and 2c-d). As previously mentioned and as discussed
in [4], this is a key issue to have a good prediction of turbophoresis. In the case of
coarse LES, this improvement was less expected and may be due to error compensa-
tion: the large overestimation of RMS values of both fluid and particle wall-normal
velocity obtained with AD might compensate the inadequate description in LES of
the physical mechanism leading to turbophoresis, due to inaccurate rendering of the
interaction between wall turbulence structures and particles (see Sec. 4). Finally, the
effect of AD on segregation is shown in Fig. 5 by means of the maximum value
attained by the segregation parameter D in the near wall region. The segregation pa-
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Fig. 2. RMS of particle velocity fluctuations: fine LES versus DNS. Top: streamwise RMS;
bottom: wall-normal RMS. Left column: St = 1; right column: St = 25.

Fig. 3. RMS of particle velocity fluctuations: coarse LES versus DNS. Panels and columns as
in Fig. 2.
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Fig. 4. Instantaneous particle concentration profiles. Top: St = 1; bottom: St = 25. Left col-
umn: fine LES; right column: coarse LES.

rameter is computed as D = (σ −σPoisson)/m, where m is the mean particle number
density and σ and σPoisson represent the standard deviations for the measured parti-
cle number density distribution and for the Poisson distribution respectively. Tech-
nical details on the computation of its maximum value, Dmax, can be found in [1].
Here, it suffices to remind that positive values of Dmax are related to segregation of
particles: specifically, larger values of Dmax correspond to larger deviation from ran-
domness in particle spatial distribution and thus indicate stronger segregation. Fig.
5 demonstrates that AD improves the agreement with DNS, yet segregation is still
underestimated. This result, shown here for the near-wall region but observed also
in the center of the channel, is of particular importance because it provides an ex-
planation for the observed underestimation of particle near-wall accumulation (Fig.
4). As mentioned in the Introduction, particle dispersion in wall-bounded flows can
be envisioned as a hierarchical multi-step process where segregation of particles by
the near-wall turbulence structures assists in near-wall accumulation, which in turn
assists in deposition [1]. According to this chain of events, if segregation is under-
predicted, then all subsequent phenomena will be underpredicted.

Note how particles characterized by higher values of Dmax show a stronger ten-
dency toward near-wall accumulation. These results are consistent with previous
findings at Reτ = 150 [2, 3], and indicate that Reynolds number effects are not im-
portant for small to moderate values of this parameter. Further simulations at higher
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Fig. 5. Maximum value of the segregation parameter, Dmax, in the near wall region (0 ≤ z+ ≤
5) as a function of particle Stokes number, St: coarse LES versus DNS.

Reynolds numbers (Reh
τ ≥ 600) and for larger particles (St ≥ 100) are under way to

explore a broader range of parameters in the (Reτ , St) space.

4 Discussion

In this Section we will try to provide possible physical explanations for the observed
inability of Lagrangian particle tracking in LES fields to quantitatively reproduce
segregation phenomena and to capture the wall-accumulation effect. The figures
shown in the following have been obtained at Reτ = 150, but analogous considera-
tions can be made for Reτ = 300. Fig. 6 shows a cross-sectional view of particles and
vortical structures as captured by DNS (top panel) and by LES (bottom panel). Parti-
cles are drawn as circles, larger than the real scale for visualization purposes. Vortical
structures are rendered using streamwise vorticity isosurfaces: the green isosurface
identifies a clockwise rotating quasi-streamwise vortex, whereas the red isosurface
identifies a counter-clockwise rotating quasi-streamwise vortex. Differences in the
vortical structures between DNS and LES are quite evident, both near the wall and
in the center of the channel: Subgrid scales are filtered in LES and, therefore, vorti-
cal structures are not properly captured if not fully ignored at the finest flow scales.
As a consequence, modifications in particles interaction with these structures are ex-
pected: indeed, Fig. 6 shows that particles in LES exhibit a more persistent stability
against non-homogeneous distribution and near-wall concentration, suggesting the
occurrence of a less efficient interaction between the two phases.

Inaccurate rendering of the turbulence structures may be discussed also on a more
quantitative basis. In terms of energy, for instance. In Fig. 7 the one-dimensional en-
ergy spectrum sampled from DNS and LES at two different locations of the channel
(z+ = 150 in the core flow region and z+ = 25 in the near-wall region) are compared.
Also shown (dot-dashed lines) are the estimated response frequencies which charac-
terize each considered particle set, these frequencies being proportional to 1/τp. As
obvious, LES resolves for a smaller range of frequencies, preventing particles from
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Fig. 6. Front view of particle instantaneous distribution and turbulent structures in the channel:
DNS (top) versus LES (bottom: DNS (top) versus LES (bottom).

Fig. 7. One-dimensional (streamwise) frequency spectrum for turbulent channel flow com-
puted at (a) z+ = 25 and at (b) z+ = 150. Red: DNS, green: LES.

being exposed to ever-increasing turbulent frequencies, i.e. to smaller and smaller
flow scales. Clearly, this introduces a filtering error everywhere in the flow domain
(not only near the wall). In the near-wall region, the frequencies removed in the LES
flow field correspond to those with which smaller-inertia particles, characterized by
low values of St, preferentially interact. Near the center of the channel, the LES cut-
off frequency tends to decrease so that removed frequencies become close to those
with which larger-inertia particles preferentially interact (see for instance the St = 5
particles).

Another source of error affecting particle behavior over a large range of St in the
entire flow domain is due to the energy content at the resolved scales, which is lower
in LES than in DNS. Even though there are cases in which AD can reintroduce the
correct amount of fluid energy filtered out at the resolved scales, it is not expected



200 Cristian Marchioli, Maria Vittoria Salvetti and Alfredo Soldati

(in principle) to retrieve the amount of energy filtered out at the subgrid scales. This
means that use of AD as closure model for particle tracking in LES is not expected to
provide the information on the flow field at the subgrid level which (in our opinion) is
necessary to reproduce particle-fluid interaction and to ensure accurate quantitative
prediction of the dispersion phenomena.
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Summary. In Large-Eddy Simulation (LES), scalar fluctuations are decomposed into a re-
solved part and a complementary Sub-Grid Scale (SGS) part. Accordingly, it is usually as-
sumed that the scalar energy contained in these two parts sum up, so that the time average of
the scalar energy equals the time average of the resolved part of the scalar energy to which
the time average of the SGS scalar variance is added. Conditions are discussed under which
an additional residual term must be added to close this scalar energy budget. For this residual
term to stay at a moderate level, the LES filter must be small enough compared to the inte-
gral length-scale of the scalar field, a condition that is verified from a canonical manufactured
turbulent scalar solution. A mesh-quality criterion is derived from these observations and the
minimum Reynolds number that a Direct Numerical Simulation (DNS) should feature for SGS
scalar variance to be accurately studied from a priori filtering is obtained as a corollary.

Key words: Large-Eddy Simulation, Sub-Grid Scale scalar energy, Scalar variance

1 Introduction

In both chemically frozen flow mixing problems and reactive flows, as turbulent
flames, scalars are used to trace the details of mass and energy distributions. Large-
Eddy Simulation (LES) uses space filtered scalars; the instantaneous signal is de-
composed into a space filtered quantity to which a Sub-Grid Scale (SGS) fluctuation
is added. The precise modeling of this SGS fluctuation may be of great importance if
scalars are associated to strongly non-linear phenomena, as chemical sources, whose
space filtered values strongly deviate from the one calculated with LES resolved
scalars only.

One option consists in introducing a measure of the SGS scalar activity based
on the SGS scalar variance. The objective of this paper is to discuss spurious effects
affecting SGS scalar variance when the LES mesh is too coarse. In particular, using
a simple scaling analysis and a canonical turbulent scalar manufactured solution, it is
discussed how the LES mesh can be optimized to ensure that the SGS scalar variance
is fully representative of the SGS scalar energy.
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The scalar energy decomposition into its resolved and SGS parts is first intro-
duced, then in a subsequent section a global scalar scaling is discussed on the basis
of a turbulent resolution criterion. A manufactured scalar solution is proposed and
the response of SGS scalar energy to filtering is examined to discuss a mesh opti-
mization criterion. In a final part, some implications on Reynolds number of Direct
Numerical Simulation (DNS) databases chosen to perform a priori studies of SGS
variance are reported. Constant density is assumed in this study, Reynolds averaging
is thus adopted for all the developments.

2 Scalar energy decomposition

Let us consider a scalar φ(x, t), which may be passive or subjected to chemical reac-
tion, its balance equation reads:

∂ρφ
∂ t

+∇ · (uφ) = ∇ ·
(
ρDφ∇φ

)
+ ω̇φ (1)

where ρ denotes the density, u is the velocity vector and Dφ the diffusion coeffi-
cient used to express molecular diffusion with a Fick law. A spatial filter GΔ (x) of
characteristic size Δ is applied to all the fields [1, 2, 3],

φ(x, t) =
+∞∫

−∞

φ(x′, t)GΔ (x− x′)dx′ (2)

The scalar is then decomposed into an LES resolved part to which a SGS fluctuation
is added:

φ(x, t) = φ(x, t)+ rφ (3)

Squaring this relation and filtering it leads to an expression for the filtered unresolved
energy of the scalar:

r2
φ =
(
φ 2 −φ 2

)
+φ 2 +φ 2 −2φφ (4)

= φv + rv (5)

where
φv =

(
φ 2 −φ 2

)
(6)

is the SGS variance of the scalar φ and

rv = φ 2 +φ 2 −2φφ (7)

a residual contribution, which depends on the convolution between the exact topol-
ogy of the scalar field and the filter GΔ . In the particular case where

φ 2 = φφ = φ 2
(8)
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the filtered unresolved scalar energy is equal to the SGS variance,

r2
φ = φv (9)

a quantity that is widely used in turbulent combustion modeling to calibrate the im-
pact of SGS unresolved fluctuations of species and temperature on chemical reac-
tions and turbulent micro-mixing [4, 5, 6].

Time averaging of the scalar signal, is introduced and denoted 〈φ〉; adding
and subtracting terms to cancel their contribution, a straightforward relation is de-
rived [7]:

Φv =
〈
φ 2〉−〈φ〉2 =

〈
φ 2
〉
−
〈
φ
〉2 +
〈
φ 2
〉
−
〈
φ 2
〉

+
〈
φ 2〉−〈φ 2

〉
+
〈
φ
〉2 −〈φ 2〉 (10)

This may be cast in:

Φv =
〈
φ 2
〉
−
〈
φ
〉2 + 〈φv〉+Rv (11)

with
Rv =

〈
φ 2〉−〈φ 2

〉
+
〈
φ
〉2 −〈φ 2〉 (12)

Or again using Eq. (5)

Φv =
〈
φ 2
〉
−
〈
φ
〉2 +
〈

r2
φ

〉
−〈rv〉+Rv (13)

In Eqs. (11) and (13), the time averaged scalar energy
〈
φ 2
〉
− 〈φ〉2 has been

decomposed into a resolved part,

TR =
〈
φ 2
〉
−
〈
φ
〉2

(14)

plus a SGS part,

〈φv〉+Rv =
〈

r2
φ

〉
−〈rv〉+Rv (15)

The usual decomposition into resolved and SGS parts,

Φv =
〈
φ 2〉−〈φ〉2 = TR + 〈φv〉 (16)

with the SGS part estimated from the SGS variance, is thus valid only if Rv = 〈rv〉 =
0, otherwise one should write:

Φv =
〈
φ 2〉−〈φ〉2 = TR + 〈φv〉+Rv (17)

From the relation (10), this is achieved if [7]:
〈
φ
〉

= 〈φ〉 = 〈φ〉 (18)

and
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〈
φ 2
〉

= 〈φ 2〉 =
〈
φ 2〉 (19)

In Eqs. (18) and (19), the first equality is valid because space filtering and time
averaging commute. The second equality holds only if the filtering operation has no
impact on time average quantities, which is the case if:

δT =
max(〈φ〉)−min(〈φ〉)

max(|∇〈φ〉 |) >> Δ (20)

where δT is the characteristic length scale of the time average scalar signal (or scalar
integral length scale) [7]. A critical value βR of the ratio

β =
Δ
δT

(21)

must therefore exists, so that for the condition:

β < βR (22)

the SGS scalar variance is a good approximation of the unresolved scalar energy, i.e.
Rv and 〈rv〉 vanish.

3 Scalar scaling

Simulation resolution criterions have been defined in the literature to measure the
resolution departure between a given LES and its equivalent DNS [8, 9, 10]. The
time average of the turbulent kinetic energy is denoted K and its SGS part kSGS.
They may be related as

kSGS = ζK (23)

to then assume that a sufficiently resolved LES is obtained for ζ < 0.2 [9]. The LES
filter is usually applied in the inertial range,

K3/2

�T
∝

k3/2
SGS

Δ
(24)

Further assuming that the scalar field integral length scale is of the order of �T , these
relation provides:

β = ζ 3/2 (25)

The scalar criterion equivalent to the 80% of velocity fluctuations resolved in LES
would then read:

β < βR = 0.09 ; Δ < 0.09δT (26)

It is anticipated that for β < βR, the high resolution of the scalar field allows for
neglecting the Rv term in Eq. (11). This is now verified from a manufactured scalar
field solution.
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4 Method of Manufactured Solution (MMS) for SGS scalar
energy scaling

Canonical or synthetic problems have been used in various contexts to analyze the
response of numerical methods to physical signals [11, 12]. To study SGS scalar
energy, a scalar field may be manufactured so that it mimics the flickering of a
scalar iso-surface within a turbulent flow. This is done by randomly moving over
the characteristic length δT a one-dimensional zero-to-one scalar distribution that
reads,

φ(x, t) = FL(x− xL(t)) (27)

xL(t) = xo +ξ (t)δT (28)

with

FL(x) =
1
2

(1− tanh [2(xo − x)/δL]) (29)

xo is the reference position of the time average scalar signal, xL(t) is the position of
the scalar signal within the manufactured turbulent scalar brush at time t, and, ξ (t) is
a random Gaussian distribution. δL is the characteristic thickness of the instantaneous
scalar jump (Fig. 1).

Fig. 1. Representative MMS scalar signal, δT /δL = α/β = 160.

The corresponding time averaged signal is:

〈φ〉(x) =
x∫

−∞

P(x∗L)dx∗L (30)
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Fig. 2. Line: Φv/max(Φv). Line with circle: TR/max(Φv). Dash-line: 〈φv〉/max(Φv). Line
with open square: (TR + 〈φv〉)/max(Φv).
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with P(x∗L) the probability density function (pdf) of the scalar signal positions. The
manufactured solution is operated over a duration t = T c, so that P(x∗L) is statistically
converged.

The manufactured solution is convoluted with a Gaussian-type filter, the ratios
α = Δ/δL and β = Δ/δT are varied and the terms of relation (17) are collected.

5 Time averaged scalar variance signal and mesh optimization

Figure 2 shows profiles of Φv, TR and 〈φv〉 for three values of β =Δ/δT . As expected,
the SGS variance grows with the filter size and for the smallest value β = 0.15, the
relation Φv = TR + 〈φv〉 is verified across the turbulent scalar brush, with however a
small departure at both ends of the signal (i.e. for 〈φ〉→ 0 and 〈φ〉→ 1). Increasing β
to 0.25, this departure spreads toward the center of the scalar brush, and for β = 0.75,
there does not exist a single point where the SGS scalar energy is well captured by
the time averaged SGS variance.

The residual term Rv of Eq. (17) is averaged across the turbulent scalar signal
and normalized to get a single measure of its contribution for each α and β values,

[Rv] =

+∞∫
−∞

Rv(x)dx

+∞∫
−∞

Φv(x)dx
(31)

Figure 3 displays [Rv] versus β for various α . Up to more than 20% of the scalar
energy is contained in Rv for β ≈ 0.7. Overall, when Δ → δT , the difference between
the SGS variance and the SGS energy grows. This trend does not depend much on
the value of α . For β < βR = 0.1, Rv represents less than 1% of Φv. Recovering the
first estimation found in the above section from the resolution criterion.

A simple mesh optimization procedure emerges from these observations. After
conducting a preliminary LES on a given mesh, a first set of statistics can be col-
lected to compute the distribution δT (x). At locations where Δ > βRδT , the mesh
should certainly be refined to avoid approaching a too coarse LES regime, likely to
be followed by spurious accumulation of residual contributions in the SGS energy
budget. This is particularly true when the SGS scalar variance is used to presume the
shape of a filtered probability density function, which is assumed to be representative
of r2

φ , the SGS fluctuations of the scalar field.

6 DNS minimum Reynolds number for Rv to vanish

Under the hypothesis δT ≈ �T , the ratio α/β may be written:

α
β

=
Δ
δL

× δT

Δ
=

δT

ηk
× ηk

δL
≈

Re3/4
�T

Ka1/2
(32)
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Fig. 3. Normalized residual term [Rv] from MMS. Line with Circle: α = Δ/δL = 2; Square:
α = 3; Triangle up: α = 4; Triangle down: α = 5.

where Re�T = (u′�T )/ν is the turbulent Reynolds number based on �T , u′ is the char-
acteristic velocity fluctuation and ν is the kinematic viscosity. Ka = (δL/ηk)2 is a
Karlovitz number defined as the ratio between the characteristic thickness of the
scalar signal and ηk, the Kolmogorov scale. If the scalar is used to track a thin re-
action zone, as for instance in the case of a premixed flame, δL is fixed by thermo-
chemistry coupled with molecular diffusion and in the thin reaction zone turbulent
combustion regime, 1 < Ka < 100 [13]. It is therefore usual to observe values of
Ka > 1 in real combustion systems.

Let us consider a free round jet whose bulk velocity is Ub and its injection diam-
eter is D, the Reynolds number of this jet may be written:

ReD =
UbD
ν

=
Ub

u′
D
�T

Re�T (33)

With these relations, the condition β < βR brings the following constraint on the
Reynolds number,

ReD > ReDR =
Ub

u′
D
�T

(
α
βR

Ka1/2
)4/3

(34)

For Ub/u′ = 10, D/�T = 1 and βR = 0.1, this relation becomes:

ReDR = 215
(
αKa1/2

)4/3
(35)

Based on Eq. (35), Fig. (4) provides α values depending on Ka, that could be used
to define a filter size Δ = αδL to perform a priori LES tests from a DNS of a round
jet of bulk Reynolds number ReDc , ensuring that SGS scalar variance equals the SGS
scalar energy. It is seen that for Ka = 10 and Δ = 10δL, the jet Reynolds number
should be above 10,000, and even greater values of ReD are required to filter the
scalar signal above 10 times its characteristic thickness.
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Fig. 4. α and Ka values imposed by Eq. (35) for ReDR = 1000 (line), ReDR = 10,000 (dot-
ted), ReDR = 20,000 (dashed), ReDR = 30,000 (dotted-dashed) ReDR = 40,000 (double dotted-
dashed).

7 Summary

Time averaging of SGS unresolved scalar fluctuations does not always sum up to zero
and this has implication for scalar SGS energy. For instance, the SGS scalar variance
is not systematically equal to the SGS scalar unresolved energy. However, from a
simple scaling analysis and using a scalar manufactured solution, it is shown that
applying a constraint on scalar resolution, the usual decomposition of scalar energy
into resolved and SGS parts can be time averaged to recover the full time averaged
scalar energy.

Typically, the LES filter size should stay ten time smaller than the characteristic
length of the time averaged scalar signal. This result is useful to guide in scalar LES
mesh optimization and to determine the minimum Reynolds number that DNS should
feature to allow for accurate SGS energy a priori tests using SGS scalar variance.
This analysis can be extended to cases where the flow mass density evolves with
scalars [14].
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Summary. The Large Eddy Simulation (LES) approach of tracking predetermined sets of
droplets via individual computational parcels is assessed for its accuracy and applicability
in the dilute regime. Non-reacting particle dispersion in isotropic turbulence and turbulent
temporal mixing layers are initially investigated for a range of particles in parcels and Stokes
numbers. It is found that the parcel approximation may be valid for a range of Stokes numbers
depending upon the particle dispersion growth rate. Spray combustion in the wake of a bluff-
body and swirl stabilized combustion in a gas turbine combustor are also studied and results
suggest that a limited range of particles per parcels and cutoff radius can be used safely without
incurring excessive errors in the predictions.

Key words: Large-eddy Simulation, Spray dispersion, Turbulent Combustion

1 Introduction

Simulation of spray combustion using LES poses modelling, computational and nu-
merical challenges some of which are interrelated. Both Eulerian and Lagrangian
methods are used to solve for the dispersed phase within an Eulerian gas phase. The
Eulerian approach is computationally less intensive but poses problems in the ap-
plication of boundary conditions, loss of droplet-identity and subgrid closure. The
Lagrangian formulation is computationally more intensive since particles are explic-
itly tracked. However, applying boundary conditions is easier, polydisperse sprays
can be simulated, and closures for particle-subgrid interaction can be included. Most
importantly, comparison with droplet data is facilitated due to its discrete nature. In
this paper, the Lagrangian method will be discussed.

When using the Lagrangian approach to simulate realistic fuel flow rate, particles
of the order of 106 may have to be tracked [1], and this can be computationally
intractable for most applications. To reduce the cost, statistically similar group of
droplets are tracked by a “parcel” [2, 3, 4]. In this approach, the center of mass of
parcel is tracked so that its constituent particles assume the properties of the parcel.
This permits substantial computational savings while capturing the global features
of droplet dispersion and combustion, but can also lead to erroneous predictions.
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Another cost saving assumption in reacting flows is to assume that particles or parcels
below a cut-off radius, Rc undergo phase change abruptly. A larger Rc substantially
reduces the number of small particles to be tracked but can also introduce errors if
it is chosen too large. Although other simulation parameters such as grid resolution,
test conditions, and geometrical complexity are all important, the sensitivity of the
results to the chosen values for the particles-per-parcel ratio, ξ and the cut-off radius
Rc is the primary focus of this paper.

2 Formulation

Using Favre-filtering, f̃ = ρ f/ρ̄ , the compressible LES equations for mass, momen-
tum, energy, species and subgrid kinetic energy (ksgs) are:

∂
∂ t

(Θρ̄) +
∂

∂x j
(Θρ̄ ũ j) = ˜̇ρs (1)

∂
∂ t

(Θρ̄ ũi) +
∂
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(
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i j

)]
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= ˜̇Ss,k +Θω̇k (4)

∂
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(Θρ̄ksgs) +
∂
∂xi

[Θ (ρ̄ ũksgs)] =
∂
∂xi

(
ρ̄Cμ Δ̄

√
ksgsΘ

∂ksgs

∂xi

)
−

Θ

(
τsgs

i j
∂ ũi

∂x j
+Cε ρ̄

(ksgs)3/2

Δ̄

)
+Fs,k (5)

Here, Θ is the fluid volume fraction, and ρ , ui, E, p, Yk and ω̇k are respectively,
the density, the velocity components, the total energy per unit mass, the pressure,
the kth species mass fraction and production rate. The closure of the subgrid quanti-
ties (denoted by superscript sgs) is obtained by a localized dynamic ksgs model and

given elsewhere [2, 5]. The dispersed phase source terms ˜̇ρs,
˜̇Fs,i,
˜̇Qs,
˜̇Si,k and Fs,k are

discussed further below.
For reaction rate closure, a subgrid Eddy Breakup model (SEBU) [6] and a more

comprehensive subgrid mixing- combustion closure based on the linear-eddy mixing
model [2, 3, 5] have been used in the past and comparisons between the models as
well as with experimental data have been reported. For the present study, the SEBU
closure is employed due to its computational ease and since the current focus is only
on the sensitivity of the modeling of the dispersed phase. This study considers a
n−heptane-air mixture, with a global one-step mechanism for the combustion cases.

The equations for the dispersed phase are solved in the Lagrangian frame of ref-
erence. For injector applications, primary and secondary break-up models should be
included [5] but since these models bring with them additional empirical parame-
ters and uncertainties, we use the dilute approximation [7] here. It will be shown
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later that except for the immediate vicinity of the injectors in the reacting cases, this
assumption is reasonable and valid.

The Lagrangian governing equations for the dispersed phase [8] are:

ẋi,d = ui,d (6)

u̇i,d = (3CDμRed)/
(
16ρdr2

d

)
(ui −ui,d) (7)

ṁd = −ṁRed=0{1+[0.278
√

RedSc1/3]/[1+1.232/(RedSc4/3)]1/2} (8)

md CdṪd = hdπd2
d(T̃ −Td)− ṁdLv (9)

Here, (̇) indicates time derivative, and the subscripts, i and d correspond to coordinate
index and the dispersed phase, respectively with ṁRed=0 in Eq. 8 representing surface
vaporization rate under quiescent conditions as described in Patel and Menon [5].
The drag coefficient, CD is obtained from empirical correlations and the Reynolds
number is based on the slip-velocity between the gas and the droplets, droplet diam-
eter (dd) and the carrier viscosity [7]. These equations assume that the Kolmogorov
length scale is larger than the size of the droplets.

The effect of turbulence on the dispersed phase, is included by the Stochastic
Separated Flow (SSF) model [2, 7] in which, a velocity fluctuation is added to the
resolved fluid velocities at the droplet locations according to ui = ũi + X

√
2ksgs/3

with X , a random number generated from a uniform distribution with zero mean. It
can be shown that this approach provides an important correction to the particle path
due to the subgrid turbulent fluctuations. Finally, the source terms are obtained by a
filtering process using a top hat filter:

⎛
⎜⎜⎜⎜⎜⎜⎝
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∑ndṁd
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]
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[
ṁdhv,s −hdπd2

d

(
T̃ −T

)]
∑ndṁd

∑nd

[
˜̇Fs,iui − ˜̇Fs,iũi

]

⎞
⎟⎟⎟⎟⎟⎠

(10)

Here, nd is the number of particles per parcel, ui,d , ρd , rd are the velocity, density
and radius of the ith particle, respectively. The summation above is over all parcels
within the computational volume defined by Δ̂ 3.

3 Results and Discussions

The gas phase equations are discretized using a finite volume based scheme that
is fourth order accurate in space and second order accurate in time. The particle
equations are integrated using a fourth-order Runge-Kutta time-integration scheme.
A massively parallel multi-block solver using a domain decomposition technique is
employed for all studies. For two-phase LES, achieving true load-balance is chal-
lenging since large portions of the domain may have no droplets. Currently, there are
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two popular MPI communication methods to parallelize the Lagrangian phase: point-
to-point and gather-scatter. In the former, only particles in the ghost cells are com-
municated to their adjacent neighbors. While the communications and the per-core
memory requirement may scale linearly, book-keeping is time consuming. Further-
more, point-to-point communication involves three steps: (1) declaration of intent
to communicate, (2) the size of the message to be communicated and (3) the actual
message itself. These steps performed at the end of each time step induce additional
latency. However, due to the smaller communication load relative to the method de-
scribed below, the overall performance of this method is expected to be superior
especially for a large number of parcels.

The gather-scatter communications (used here) is based on a master-slave para-
digm that involves a designated processor taking charge of the majority of book-
keeping operations. This requires entire droplet data to be gathered in that processor.
To hold this information, a global buffer equal to the number of parcels in the system
is allocated in all processors, and updated information on particle-location in the
buffer are communicated back to all slaves at each time step. Doing so results in a
core-invariant MPI communication time and book-keeping time. Although the gain
in increasing the number of cores is only marginal (up to 20% speedup), the time
for particle treatment nevertheless scales linearly with cores since this is a function
of total parcel count of each core. However as mentioned above, the challenges in
load-balancing the two phases simulataneously remain and are problem-dependent.
Future studies will report on a more careful comparison of both these methods of
communication in conjunction with optimal load-balancing strategies.

3.1 Isotropic Turbulence

LES of isotropic turbulence with a monodisperse distribution of non-evaporating
inertial particles on a 323 grid is used to study the effect of Stokes number (defined
as the ratio of droplet time to flow time, St = τp/τ f ) and ξ . Here, the particle response
time is defined as τp =

(
d2

pρp
)
/(18νρ) and the flow time is the Kolmogorov time.

The flow is initialized by filtering a 2563 DNS simulation at Rλ = 140, and a range of
St = 0.1−10 are considered (although only a few are reported below). It is confirmed
that neither the dilute assumption nor the particle size to Kolmogorov ratio limitation
are violated. Four ξ cases: 1 (baseline), 2, 4 and 8 are considered in such a way that
the total mass and volume of the dispersed phase remains constant.

For the cases studied, no appreciable differences are seen in the total kinetic en-
ergy decay of the gas phase. St effects are clearly seen and the trends match those of
previous studies [9], e.g., small particles reduce the energy decay rate, larger particles
increase the energy decay rate, and somewhere in-between there is no effect. The ξ
also has very little effect on global particle velocity statistics but does effect the spa-
tial distribution of particles within the domain. To quantify the differences the root

mean square of particle number per cell [10]: Nrms =
√

1/Nc ∑Nc
i=1 N2

i is computed,
where Ni is the number of particles inside a cell and Nc is the number of non-vacant
cells. Figure 1 shows that based on dispersion characteristics, the parcel approxima-
tion is more valid for larger St. Though these differences in dispersion have little
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effect on the gas field for non-evaporating particles, they could be significant for re-
acting case since the location of evaporating fuel droplets impacts fuel-air mixing
and the flame location. These issues are revisited below in the reacting studies.

Fig. 1. Nrms for isotropic turbulence

3.2 Temporal Mixing Layer

The TML offers a simple test case to study the effect of large coherent structures on
particle dispersion and, cases similar to [10] are simulated. A 4π3 box with a 643

mesh, and an initialization that combines the most unstable mode with 3D isotropic
fluctuations [11] is used. The length scales and time scales are respectively chosen
based on the initial vorticity thickness, δw and the free-stream velocity difference,
ΔU . Three cases are chosen at St0 = 0.1, 1 and 10 [St0 = τp/(δw/ΔU)] with an
initialization of 64× 8× 64 core of cells with monodisperse parcels. The behavior
of parcel-dispersion as the initial shear-layer rolls up into coherent structures is St
dependent; Parcels with small St follow the carrier phase more closely and therefore
penetrate the region within the coherent structures, whereas parcels with larger St
tend to accumulate in regions of high strain and low vorticity. The dispersion patterns
shown in Fig. 2(a)] for different St are in good qualitative agreement with previous
studies [10]. The distribution of droplets colored with their local St [= τp/(δw/urel)]
are shown for different St0 in Fig. 2(a). The dispersion is quantified for different St0
for the ξ = 1 case in Fig. 2(b), and calculated based on the average radii of separation
of particle-groups originating from the same cell as a function of time. Eighty-five
percent of all particle-groups have separation distances less than r85, which is plot-
ted on the y-axis against the normalized time. It is seen that the two lower St0 cases
disperse at a relatively rapid rate compared with the St0 = 10 case. The slow growth
rate of the St0 = 10 case suggests that the parcel approximation for such heavy parti-
cles may be justified for a larger fraction of their overall residence time, whereas for
the lighter particles the parcel approximation is valid for a relatively smaller fraction
of their residence time. These results are in agreement with observations of Section
3.1. The general trends of Fig. 3 are comparable with the isotropic case (Fig. 1),
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Fig. 2. Droplet distribution where every 4th parcel is plotted(left) for St0 = 0.1 (top), St0 = 1
(middle) and St0 = 10 (bottom); Dispersion (right) in terms of r85 (see text) is plotted against
time.

Fig. 3. Nrmsfor the temporal mixing layer

though relatively more error is seen for ξ = 8 for St0 = 10. This can be explained
by Fig. 2(a) showing St ∼ St0/10, differing from the isotropic case where St ∼ St0.
Hence for St0 = 10, there is large error for ξ = 8 similar to what is seen for St0 = 1.0
in the isotropic case.

In the following two sections we address these issues by considering vaporization
and combustion in relatively complex combustor configurations.

Bluff Body Stabilized Combustion

A blunt bluff-body of height D in a rectangular duct is considered with fuel injected
through diametrically opposite injectors placed on the bluff-body shoulder with an
injector radius of 0.014D located a distance, D upstream of the trailing edge. Charac-
teristic boundary conditions for inflow and outflow, periodic conditions in spanwise,
and adiabatic walls are used except for the bluff-body base where an isothermal con-
dition of T = 2100K is imposed. The fuel mass flow rate is 0.576 g/s based on sto-
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ichiometric composition at 870K and 1 atm. The injection velocity and temperature
are 10 m/s and 286K. A log-normal distribution with a Sauter Mean Diameter (SMD)
of 30μm and σ of 0.5 is used for the spray. The computational domain consists of

Fig. 4. Instantaneous (left) and time averaged (right) (over 2τ) temperature contours for Case
1 to 4 (top to bottom).

nearly 2.4M cells with grid clustering in regions of high shear. The dilute approxi-
mation is violated only in the immediate vicinity of the injectors in approximately
300 LES cells per injector. To allow for proper mass distribution, a filter width of
Δ̂ = 3Δ is employed near the injectors. Dispersion of droplets and the preheating
effects result in satisfying the dilute regime requirements in the rest of the domain.
Four cases are discussed: Case 1: ξ = 8, Rc = 4 μm, Case 2: ξ = 8 and Rc = 1 μm,
Case 3: ξ = 4 and Rc = 4 μm, and Case 4: ξ = 4 and Rc = 1 μm. The instantaneous
(overlaid with droplet distribution), and time averaged temperature distributions are
shown in Figs. 4(a) and 4(b), respectively. It is seen that for all four cases, droplets
tend to follow the peripheries of the large scale structures in the wake, and 95%
of droplets are consumed within 4D. Two distinct burning regions are identified in
Fig. 4(b): a near-wake (O(1− 2D)) just downstream of the recirculation and a far-
wake region. Analysis of flame-brush plotted over droplet distribution (not shown)
shows that particles near cutoff radii are concentrated in a v-shaped near-wake re-
gion within 1D whereas the large droplets are concentrated along the jet trajectory.
However, little or no burning occurs in these regions hinting at an indirect effect of
the cut-off radius through vaporization. The entrainment and mixing of the vapor-
ized fuel in the region in-between leads to subsequent burning further downstream.
The entrainment of droplets into the wake depends on the droplet St which in this
case depends on the injection procedure (a small ξ leads to a better sampling of
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Fig. 5. Mean temperature profiles at different axial stations

the distribution) and the cut-off radius (as in the TML, small droplets follow flow-
field closely). The combination of these two factors result in the observations seen in
Figs. 4(a) and 4(b).

The Cases 1-4 involve tracking of 250,000, 310,000, 600,000 and 650,000
parcels and computational times of 1, 1.08, 1.9 and 2.16 units, respectively. The
time-averaged temperature distribution for these cases are plotted in Fig. 5. It is seen
that while some near-field differences are seen among the cases, at x = 12D all cases
except Case 1 collapse indicating reasonable exit plane profiles (typically a key de-
sign parameter). Thus, a relatively inexpensive engineering simulation with minimal
error (when measured near the exit) can be performed with low Rc and a high ξ for
this class of problems. The bluff-body configuration may qualify when considering
the fact that dispersion of droplets is relatively limited in a cross-flow environment
when compared to those found in swirling flows. Design considerations such as the
distance of the entrainment region from the injectors and the droplet life-time need
to be taken into account while fixing the cut-off radius.

3.3 Lean Direct Injection Combustor

The final case is LES of a swirl stabilized lean direction injection (LDI) combus-
tor. This rig operates at atmospheric pressure with an air mass flow rate of 0.49
kg/min and a fuel mass flow rate of 0.0276 kg/min giving a global equivalence ratio
of φ = 0.75. Details of the combustor geometry can be found in [3]. Fuel droplets
are injected based on a log normal distribution with SMD = 25μm. The Rc effect is
minimal with the choice of Rc = 0.1 nm.

We compare results from three cases with ξ = 1, 4 and 8. The Nrms for ξ = 1
near the injector is slightly higher than one while downstream, it is closer to unity,
indicating a more disperse flow. For ξ = 8, Nrms becomes 8 showing that the parcel
representation is accurate, i.e., the parcels are spread out sufficiently enough to not
compound the inherent errors associated with the parcel approximation. The average
St based on slip velocity and swirl cup diameter for all ξ values were approximately
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10 for all particles in the domain. Based on the problems analyzed earlier, this also
suggests the parcel approximation is appropriate. At any given instant, over 90% of

Fig. 6. Instantaneous temperature and particle locations; Mean fuel mass fraction

the particles vaporize and mix within one swirl cup diameter of the injector. Fig-
ure 6(a) shows a snapshot of the temperature and droplets in the combustor, while
Fig. 6(b) shows the mean fuel mass fraction as a function of axial distance for all
ξ . The average error for ξ = 4 is approximately 1.5% whereas the average error for
ξ = 8 is nearly 12%. While the ξ = 8 simulation is within engineering accuracy lim-
its, the ξ = 4 is more than twice as accurate for around twice the cost. These results
and previous work with a kerosene fueled LDI using between ξ = 1 and ξ = 5 [3]
show that swirl-stabilized combustors are ideal candidates for the parcel approach.
The inherent compactness of the flame ensures relatively short drop lifetimes and
high velocity swirling air at the injection point yield St > 1.

4 Conclusions

This paper discusses some of the issues for spray combustion LES. Both non-reacting
and reacting cases are studied. It is shown in the non-reacting canonical cases that
the dispersion within clusters of initially close single particle-parcels depend on the
Stokes number. Simulations of spray combustion in a swirl combustor and bluff-body
stabilized flame holder reveal the effects of the parcel/finite-drop size assumptions.
For the bluff-body flame, with proper choice of Rc and ξ , the computational time
can be brought down significantly at a relatively small expense of accuracy. The
prolongation of droplet-life through a reduced Rc is especially helpful in simulations
with limited dispersion characteristics thereby justifying the choice of a relatively
high parcel density. In the LDI combustor, where the cutoff is near zero, increasing
the ξ value is also shown to be acceptable in the 1-5 range.
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Summary. In this LES study, an algebraic flame surface wrinkling model based on the
progress variable gradient approach is validated for lean premixed turbulent propane/air flames
measured on VOLVO test rig. These combustion results are analyzed for uncertainty in the so-
lution using two quality assessment techniques.

1 Introduction

Lean premixed combustion technology offers reduction in NOx and other pollutant
emissions. Modelling of such combustion phenomena is a non-trivial task because
of the interaction between turbulence and chemical reaction. In the last two decades,
several reaction models namely eddy dissipation concept or turbulent flame speed
closure [1] have been developed and tested for several flame configurations. In the
present study, we use an algebraic flame surface wrinkling model [2] based on the
reaction progress variable approach developed and validated against Bunsen-like
flames and sudden expansion dump combustor is used here.

In general, the accuracy of numerical flame results depends substantially on the
accuracy of the prediction of flow quantities. Therefore, in the present work, in addi-
tion to the investigation of flame characteristics using three turbulence closures and
two combustion models, we also perform estimation of quality of these results using
two different numerical grids.

The outline of the paper is as follows. In modelling part, the turbulence closures,
reaction models and LES quality assessment methods are explained. In the next sec-
tion, geometrical details, numerical mesh and boundary conditions are described. In
Results and Discussion, simulated non-reacting and reacting flow results are com-
pared with experimental data and analyzed for the quality and error of the solution.
And, finally, of course, conclusions are drawn.
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2 Governing equations and modelling

In LES, the filtering process of Reynolds-based Navier-Stokes equations effectively
filters out eddies whose scales are smaller than the filter width or grid spacing used
in the computations. The resulting equations govern the dynamics of large eddies.
The Favre filtering of the continuity and momentum equations results in [4][5][6][7]

∂ρ
∂xi

+
∂
∂xi

(ρ ũi) = 0 (1)

∂ρ ũi

∂ t
+

∂
∂xi

(ρ ũiũ j) = − ∂ p
∂xi

+
∂
∂xi

[
τmol

i j − τsub
i j

]
(2)

τsub
i j = ρ (uiu j − ũiũ j) (3)

Here the spatial commutation errors due to the varying, implicit filter width Δ =
h = V 1/3, where h is a characteristic grid width and V is the cell volume, have been
neglected. The subgrid scale stresses are modelled with three different approaches,
the standard Smagorinsky model with constant Cs = 0.1, the dynamic Smagorinsky
model and a one equation model for the subgrid scale kinetic energy, Ksgs.

2.1 Premixed turbulent combustion model

A well-known approach to describe turbulent premixed flames is in terms of a com-
bustion progress variable c, which is ‘0 ’ in reactants and ‘1 ’ in products. The trans-
port equation for the Favre-filtered progress variable c̃, with gradient assumption for
the scalar turbulent flux, is

∂
∂ t

(ρ c̃)+
∂

∂xk
(ρukc) =

∂
∂xk

(
ρ
(

νsgs

Scsgs
+ν
)

∂ c̃
∂xk

)
+ ẇc (4)

where ρ is the mean gas density, ν and νsgs are the molecular and subgrid kinematic
viscosities, Scsgs(= 0.7) is the subgrid Schmidt number and ẇc is the mean reaction
source term, ẇc = ρuSL0I0 ∑. Here SL0 is the unstretched laminar burning velocity,
I0(= 1) the flame stretch factor and ∑ the average flame surface density.

A RANS-based Algebraic Flame Surface Wrinkling (AFSW) model in which ∑
is modelled with an algebraic relation for the flame-surface-wrinkling factor AT /A,
with embedded pressure effects, is used

ẇc = ρuSL
AT

A
|∇c̃| (5)

the flame-wrinkling ratio transformed to subgrid quantities and the LES formulated
reaction model is

AΔ
T

A
=

SΔ
T

SL0
= 1+

0.46

e(Le−1) ReΔ0.25
(

u′sgs

SL0

)0.3(
p
p0

)0.2

(6)
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Le - is the Lewis number of the fuel-air mixture
p/p0 - normalized operating pressure

u′sgs - subgrid turbulence fluctuation u′sgs = cSΔ
∣∣∣S̃
∣∣∣,

ReΔ
t - subgrid Reynolds number ReΔ

t = u′sgscSΔ/ν

In addition to the AFSW model, the Turbulent Flame speed Closure (TFC) of
Zimont [1] is used in the LES context.

2.2 LES quality assessment

Two grid estimators

A few quality assessment methods are available for estimation of the uncertainty
of LES results. Here, evaluation of data is performed using the Index of Quality
for LES (LES IQ), determined as a local quantity in the computational domain. In
the following, quality assessment is based on the total kinetic energy relations. The
LES IQ is given as a function of total and resolved kinetic energies. More related
details can be found in [9][10].

Combined model and grid variation

In the implicit filtering approach with h = Δ , separation of individual contribution
of modelling and numerics to the error is difficult as both strongly interact with each
other. The approach assesses the quality of LES data by systematic grid and model
variation. Again, more related details can be found in [11].

3 Geometry, grids and boundary conditions

The VOLVO test rig (Fig. 1) [3] has a channel of 1000 (25H) mm long, 240 mm (6H)
wide and 120 (2H) mm high. The bluff body flame stabilizer is located approximately
318 mm from the inlet. It has a cross section of equilateral triangle with 40 mm
(H) edge length and creates recirculation of hot burned gases which helps flame
stabilization.

Initial cold flow conditions are inlet velocity U0 = 17 m/s, turbulence intensity
5% and temperature T at 288 K. For combustion flow, the inlet velocity and temper-
ature of the premixed propane/air mixture with constant equivalence ratio of 0.6 at
1 bar are U0 = 35 m/s and T = 600 K, at 1 atm. Inflow turbulence is generated with
turbulence intensity of 5% and length scale 8.4 mm by using spectral code method.
At the outlet a constant pressure is prescribed, with top and bottom as solid walls. In
the lateral direction periodic conditions are imposed.

For the three-dimensional domain, two-block structured hexahedral meshes are
created. Three numerical testing setups for computations use three types of grids
having uniform maximum expansion ratio of 1.05 which are termed as fine, coarse
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Fig. 1. Computational domain of VOLVO test rig, marked A, B and C data points are 38, 150
and 350 mm from the stabilizer

and very coarse with 2.4 million, 1.2 million and 300,000 grid points, respectively.
With the first two grids contribute to the study of index of resolution quality and er-
ror assessment of LES results, the third grid type helps in the evaluation of effect of
poor grid of same data. Simulations are carried out with FLUENT [12] and the two
reaction models are implemented through user programming. For time and space dis-
cretization, implicit second order and bounded second order schemes are employed
with convergence criteria and time steps of 1e-06s and 3e-05s, respectively, for CFL
of 0.5. Each LES case is run for ten flow-through times of which the first half is used
to get a quasi periodic flow and the second half for statistical averaging of output
data.

4 Results and discussion

The LES results of non-reacting or cold flow are presented and discussed below, fol-
lowed by combusting flow data. For cold flow, investigations are carried out in three
stages: 1) by employing three popular turbulence subgrid Smagorinsky (SM), dy-
namic Smagorinsky (DS) and one-equation Ksgs (KSGS) closures with coarse grid,
2) with the Smagorinksy closure by grid variation between 1.2 and 2.4 million(2.4
m), and 3) with the Smagorinsky closure using very coarse grid. For sake of com-
pleteness, we present some interesting 3D URANS data to complement discussion
of above results.

4.1 Non-reacting flow: subgrid scale closures

All the three turbulence subgrid scale closures whilst predict similar results for mean
streamwise velocities at the axial positions A, B and C, the corresponding lateral
mean velocities show deviation from each other especially at line B. At this position
B, the KSGS model overpredicts significantly. These results are not presented here.

In Figure 2, the corresponding RMS velocities are shown. Both the DS and KSGS
models overpredict the streamwise fluctuations close to the bluff body at line A.
Here, the SM model shows better agreement with the experiments. At line B only
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Fig. 2. Normalized RMS velocity (urms/U0) and (vrms/U0) at lines A, B and C for different
subgrid scale models

the KSGS model over predicts urms/U0, Figure 2. The lateral velocity fluctuations
close to the bluff body are best reproduced by the KSGS model while the SM and DS
model results are too small, Figure 2. Further away from the body these two models
show better agreement with the experiments, while the KSGS model overpredicts
vrms/U0. URANS with standard k-ε model with 1.2 million grid points (1.2 m) pre-
dicts large differences in turbulence quantities in comparison with experiments [13].

4.2 Non-reacting flow: Influence of mesh resolution

The influence of the mesh resolution on the LES results is examined qualitatively
for the standard Smagorinsky model. To that end, additional simulations were run on
the fine mesh. These simulations results are compared with the ones obtained on the
coarse mesh along the lines A, B and C. The local filter width changes from 2.1 mm
to 1.65 mm at position A, from 2.7 mm to 2.15 mm and from 3.0 mm to 2.65 mm, at
successive positions, respectively. Fig. 3 shows RMS (urms/U0,vrms/U0) velocities.
At position A noticeable difference in RMS velocities are observed between these
two grids, while at positions B and C the grid influence diminishes. At position A,
the vrms/U0 peak could not be completely replicated in both mesh cases. However,
further mesh refinement is likely to yield better prediction, as can be seen in Figure 3.

Fig. 3. Normalized RMS velocity (urms/U0) and (vrms/U0) at lines A, B and C for the
standard Smagorinsky model for coarse and fine grids
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4.3 Non-reacting flow: Effect of poor grid resolution

With very coarse grid, turbulent quantities are over predicted in comparison with ex-
perimental data. Instantaneous flow fields in the bottom image in Fig. 4 shows that
the rotating eddies past the bluff body (of size H) are active in the axial direction
of up to 8H downstream. Here, the eddies continue to exist longer distances as a re-
sult of low resolved strain rate leading to low dissipation rate, as discussed in [9]. In
other words, owing to insufficient resolution in the spanwise direction, these rotating
structures are not only incoherent but also disappear faster. Fig. 5, shows that nor-
malized urms and vrms velocities are almost two times higher than the corresponding
measured values in positions A and C. At position B, it is even higher by a factor of
three.

Fig. 4. Instantaneous isosurfaces of mean streamwise velocity with coarse grid of 1.2 m (top),
and very coarse grid 300,000 (bottom) cells, Smagorinsky model

Fig. 5. Normalized u-RMS velocity (urms/U0) at lines A, B and C for the standard Smagorin-
sky model, very coarse grid

4.4 Reacting flows

Combusting flows in the bluff body stablized configuration are studied using the
AFSW and the TFC reaction models with the Smagorinsky closure. It is interesting
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to compare the flow patterns using pressure fields past the stabilizer with that of cold
case. Figure 6 depicts isosurfaces of pressure for both cases. For nonreacting flows,
the negative pressure, with respect to reference value of 1 bar, is 150 Pa while it
drops to as low as 900 Pa for reacting flows. In the latter case, a longer recirculation
zone which is four times that in the former case, favours stabilization of triangular-
stabilized flame.

Fig. 6. Computed instantaneous isosurfaces of pressure for non-reacting flow (top-left),
and instantaneous pressure (bottom-left), instantaneous and averaged isosurfaces of reaction
progress variable (right) with coarse grid and AFSW model

Shown in Fig. 6 are the instantaneous as well as averaged reaction progress vari-
able obtained with the AFSW reaction model. From these isosurfaces, the onset of
vortex shedding behind the main combustion region is clearly visible. Close to the
bluff body up to 4H, the flamelet is not disturbed by the length scales equal to bluff
body dimension H. After distance of 4H along downstream, vortex shedding with
three wrinkling periods expanding along width-wise and length-wise in the stream
direction. Along downstream, within the length scale of H existence of small rotating
eddies enhances fresh interaction between unburned and burned gases.

Figure 7 shows profiles of reaction progress variable in positions A, B and C from
the AFSW and the TFC models with coarse grid. Both of them very well replicate
experimental trends in first two positions A and B, but show larger differences for
position C. The models show improved results with grid refinement.

For the very coarse grid situation, the recirculation region is 3H which is smaller
than that observed with coarse grid. The poor resolution results pronounce that the
attachment of the flame to the wall surface occurs relatively earlier. From Fig. 8, it
is noticeable that due to relatively shorter region of combustion products, the phase
of distribution and interaction of burned gas with fresh premixed fuel/air mixture
diminishes, leading to under prediction of reaction rates at B and C.

4.5 LES quality assessment based on Celik et al. approach

Accuracy of the LES results is estimated using the quantity index of resolution qual-
ity LES IQ using two popular techniques. First, the quality assessment technique by
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Fig. 7. Left-end three plots: Comparison of reaction progress variable using the AFSW and the
TFC combustion models in combination the classic Smagorinsky turbulence closure. Right-
end three plots: Comparison of progress variable for the coarse and fine grids with the AFSW
and the Smagorinsky model

Fig. 8. Computed instantaneous isosurfaces of reaction progress variable with the AFSW re-
action model for very coarse grid (left). The effect of grid on reaction progress variable, shown
for coarse and very coarse grid points (right)

Celik et al. [9][10] is based on turbulent kinetic energy for combined data from two
1.2 m and 2.4 m grid cell cases. Figure 9 shows the quality of LES solution for the
Smagorinsky model. The LES IQ are calculated along y axis and averaged; for 2.4 m
cells is 86%, 77% & 83% and for 1.2 m cells is 91%, 85% & 89% for positions A, B
and C, respectively. This approach is conditioned for estimating the grid dependency
error, where as it offers little choice for model errors.

Figure 9 gives some indication of necessary modifications that need to be carried
out for mesh refinement around the flame zone where the quality drops down to
50-65%. For coarse grid at position B, where recirculation of hot gases terminates,
LES IQ falls to as low as 60%. For the farthest position C from the flame zone,
LES IQ again creeps up to 75-85%, perhaps because of decrease in turbulence level
in this region.

4.6 LES error assessment based on the Klein approach

The three-grid based approach by Klein [11] gives more information on both nu-
merical as well as model errors. The predicted errors are presented in Fig. 10 in
absolute values, normalized with velocity. For non-reacting flow, both errors appear



LES of Triangular-stabilized Lean Premixed Turbulent Flames 229

Fig. 9. Approach by Celik et al. prediction of LES IQ for non reacting (left) and reacting flow
(right) with 1.2m cells, Smagorinsky, AFSW models.

Fig. 10. Klein approach for predicting error with the Smagorinsky model for non reacting
(left) and reacting flow (right) with AFSW model, 1.2 million cells.

to be considerably larger at position A close to bluff body. However, it appears to
diminish along downstream sidetowards the outlet. These predicted error profiles are
shown in Fig. 10. For reacting flows, the Klein approach shows that the total error
increases from A to B due to shift in the recirculation zone towards the downstream
side (Fig. 10).

5 Conclusion

The algebraic flame surface wrinkling model in the large-eddy simulation context
was successfully compared and validated with the experimental data on VOLVO test
rig triangular-stabilized flame configuration and with numerical results from the pop-
ular turbulent flame speed closure. The LES quality assessment of non-reacting and
reacting flow data were performed using two techniques proposed by Celik et al. and
by Klein. Whilst the non-combusting flows were well-resolved on the coarse mesh,
it tends to show that even the fine mesh used in this study was found to be locally
insufficient for the combusting flows. With the Celik approach, the LES index of res-
olution quality for the fine mesh decreased to approximately 50-60% in the flamelet
region, whereas it was as high as 90% in cold flow scenario. The approach by Klein
showed that depending on the recirculation region both numerical and modelling er-
rors rise near the bluff-body region (38 mm from the stabilizer) in the non-reacting
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case, while they appear at relatively four times away from the stabilizing point in
combustion flows as a result both preheating of unburned premixed mixture and re-
action heat release. Finally, analysis of the effect of poor grid resolution on LES
predictions showed that shorter attachment region past the flame stabilization zone
leads to lower reaction rates.
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Summary. Recent developments in large scale computer architectures allow Large Eddy
Simulation (LES) to be considered for the prediction of turbulent reacting flows in geome-
tries encountered in industry. To do so, various difficulties must be overcome and the first one
is to ensure that proper meshes can be used for LES. Indeed, the quality of meshes is known
to be a critical factor in LES of reacting flows. This issue becomes even more crucial when
LES is used to compute large configurations such as full annular combustion chambers. Vari-
ous analysis of mesh effects on LES results have been published before but all are limited to
single-sector computational domains. However, real annular gas-turbine engines contain ten
to twenty of such sectors and LES must also be used in such full chambers for the study of
ignition or azimuthal thermo-acoustic interactions. Instabilities (mostly azimuthal modes in-
volving the full annular geometry) remain a critical issue to aeronautical or power-generation
industries and LES seems to be a promising path to properly apprehend such complex unsteady
couplings. Based on these observations, mesh effects on LES in a full annular gas-turbine com-
bustion chamber (including its casing) is studied here in the context of its azimuthal thermo-
acoustic response. To do so, a fully compressible, multi-species reacting LES is used on two
meshes yielding two fully unsteady turbulent reacting predictions of the same configuration.
The two tetrahedra meshes contain respectively 38 and 93 millions cells. Limit-cycles as ob-
tained by the two LES are gauged against each other for various flow quantities such as mean
velocity profiles, flame position and temperature fields. The thermo-acoustic limit-cycles are
observed to be relatively indepedent of the grid resolution which comforts the use of LES tools
to provide insights and understanding of the mechanisms triggering the coupling between the
system acoustic eigenmodes and combustion.

Key words: Large-Eddy Simulation, Turbulent Reacting Flows, Reliability, Complex Geom-
etry

1 Introduction

The recent leap to petascale computer architectures (cf. TOP5003) allows to consider
Large Eddy Simulation (LES) as a promising tool to predict turbulent reactive flows

3 http://www.top500.org

M.V. Salvetti et al. (eds.), Quality and Reliability of Large-Eddy Simulations II,
ERCOFTAC Series 16, DOI 10.1007/978-94-007-0231-8 22,
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in complex geometries. In the past decade, LES prooved to predict reacting flows
[1, 2, 3] as well as the stability of flames [4] and flame-acoustic interactions [5, 6].
The development of massively parallel architectures permits to include more and
more details in the simulations. In the particular field of annular gas turbines, which
typically comprise ten to twenty sectors, computing the full chamber including all
sectors stayed out of reach until very recently. Today, leadership class machines en-
ables such computations by running LES codes on thousands of processors [7, 8, 9],
providing key insights to phenomena such as ignition or azimuthal thermo-acoustic
instabilities.

A fundamental but seldom addressed issue is the effects of mesh resolution on
such LES results. As LES of such applications is based on an implicit filtering of the
governing equations by the grid size, the question of mesh dependency is of utmost
importance [10, 11]. Yet, most studies focusing on mesh dependency consider aca-
demic configurations [12, 13] or single sector configurations [14] and the right reso-
lution for a complete burner remains an open question. Boudier et al [14] presented
results obtained with the same numerical tool used here and draw the conclusion that
independence upon the mesh resolution for the combustion quantities is difficult to
obtain and that mesh resolution can have an impact on local combustion regimes.

In the present study, a mesh dependency study of a full annular helicopter cham-
ber is performed with two grids respectively composed of 38 and 93 million ele-
ments. Evaluation of LES is made by comparing the results in terms of mean, fluc-
tuating fields and Sub-Grid Scale (SGS) quantities. Finally and because the target
configuration is subject to a self-excited azimuthal mode, grid effects on the result-
ing limit-cycle are gauged.

2 Numerical tools

In this paper, a fully compressible unstructured explicit code is used to solve the reac-
tive multi-species Navier-Stokes equations [14]. A third order finite element scheme
is used for both time and space advancement [15]. SGS tensor is modeled by a clas-
sical Smagorinsky approach [16]. Boundary conditions are implemented through the
NSCBC formulation [17] and wall boundaries use a logarithmic wall-law approach.

Chemistry is computed by means of a reduced one-step mechanism for JP-10 / air
flames, JP-10 being a surrogate for kerosen. This mechanism is fitted to match the
full scheme behaviour for equivalence ratios between 0.4 and 1.5 [14]. Five species
are explicitly transported and solved for: JP-10, O2,CO2,H2O and N2. To better cap-
ture flame/turbulence interactions, the Dynamic Thickened Flame (DTF) model is
used [18]. The flame SGS wrinkling and interactions are supplied by an efficiency
function [18].

3 Target configuration

The configuration (Fig. 1) considered throughout this study is a full annular reverse-
flow helicopter gas turbine demonstrator designed by Turbomeca (Safran group). The
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combustion chamber is equipped with fifteen swirlers, each swirler consisting of two
co-annular counter-rotating swirl stages. The whole chamber is computed with its
casing, which helps avoiding uncertainties on the boundary conditions. Indeed, the
calculated domain starts immediately after the compressor’s outlet, and extends to a
chocked nozzle corresponding to the throat of the high pressure distributor (Fig. 1).
Fuel is supposed to be totally vaporized and only gaseous phase is computed. Air
inflow feeds the combustion chamber through the swirlers, cooling films and dilu-
tion holes. Multi-perforated walls used to cool the liners are taken into account by a
homogeneous boundary condition [19]. Note that this configuration, contrary to the
one considered by Boudier et al [14], has strong swirled flow induced by each burner
and is thus almost fully premixed.

Two grids with different resolutions are compared to assess the impact of mesh
resolution on LES: a light one that comprises 37.7 million tetrahedral cells and a fine
one, composed of 93.1 million tetrahedral cells. Refinement between the light and
fine grid is homogeneous so as to retain a similar grid topology (Fig. 2).

Fig. 1. 3/4 view of the fully annular combustion chamber and boundary conditions shown on
a single sector.

4 Results and discussion

The lighter grid has been run on 2,048 cores on a SGI Altix Ice 3 equipped with
Intel Xeon 3GHz CPUs4. The LES of 0.1 seconds physical time required around
400,000 CPU hours. The fine grid case has been run on 4,096 cores on a IBM Blue
Gene/P5 and almost 3,000,000 CPU hours were required to simulate 30 ms physical
time. Figure 3 displays a resulting instantaneous prediction along with the geometry.

4 http://www.genci.fr - http://www.cines.fr
5 http://www.alcf.anl.gov

http://www.genci.fr
http://www.cines.fr
http://www.alcf.anl.gov
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Fig. 2. Mesh resolution for the lighter (38 million cells - left) and the fine (93 million cells -
right) grids, as obtained on a transversal cut passing through the swirlers’ axis and showing
only one sector.

Azimuthal pressure fluctuations can be observed on this figure, indicating the pres-
ence of an azimuthal mode. Convergence will first be checked in terms of mean flow
quantities and behavior of the SGS models before conducting a brief analysis of the
effects of mesh resolution on the azimuthal mode.

Fig. 3. Translucent part of the geometry along with pressure fluctuations on a cylinder con-
taining all burners axis and a temperature isosurface representing the flame front, as obtained
on the lighter grid.
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Fig. 4. Mean axial velocity fields for the lighter (38 million cells - left) and the fine (93 million
cells - right) grids. Velocities are normalized by the inlet velocity.

4.1 Mesh dependency in terms of mean flow

Due to the intrinsic properties of LES, two instantaneous fields issued by two LES of
the same problem may differ for various reasons [10, 20, 21]. However, one expects
similar LES to converge towards the same statistics. Temporally averaged fields and
standard deviation (RMS) fields are thus compared in this section to quantify the
dependency of LES regarding mesh resolution.

The temporal averaging for both cases has been done over 13.8 ms, correspond-
ing to 10 flow-through times, based on the mass flow rate and the primary zone
volume, thus ensuring statistically converged values with regards to the main flow
direction. However, a weak but non-negligible azimuthal motion exists in this annu-
lar configuration, the mean azimuthal velocity in the chamber casing being of the
order of 1 m/s. An estimation of one flow-through time in the azimuthal direction is
0.5 s or 16 million iterations for the fine grid. Such a calculation would cost over 40
million CPU hours on a IBM BlueGene/P and remains out of reach. To improve the
statistics, a spatial sector-to-sector averaging over the fifteen sectors is done.

Figure 4 shows the mean axial velocity scaled by the inlet velocity on a transver-
sal cut passing through the swirlers’ axis. The flow topology between the two grids
is very similar with a strong recirculating zone that extends from the nose of the in-
jector to the primary dilution jets (highlighted as zone 1 on Fig. 4). High velocity
zones at the exit of the swirler are retrieved with both meshes, as well as the upper
and lower high speed regions of the primary zone. The cooling films present similar
shapes. The main discrepancies between the two fields are observed for the penetra-
tion of the primary dilution jets (highlighted as zones 2 on Fig. 4) and for the lower
part of the high speed zone just downstream of the primary zone.

Figure 5 presents the mean temperature field scaled by the inlet temperature.
Very good agreement is found between the two grids. The mean flame position is
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identical, indicating proper behavior of the combustion model. The thermal boundary
layers created by the multiperforated walls and the cooling films are retrieved on
both grids. Similarly to Fig. 4, dissimilarities between the two meshes are seen for
the penetration of the primary dilution jets. Figure 6 confirms these conclusions by
displaying profiles of the mean temperature at five different axial positions from the
exit of the swirler.

Fig. 5. Mean temperature fields for the lighter (38 million cells - left) and the fine (93 million
cells - right) grids. Temperatures are normalized by the inlet temperature.

Figure 7 gives more insights on the way combustion occurs by showing the Prob-
ability Density Function (PDF) of the instantaneous resolved equivalence ratio in re-
acting zones, i.e. zones where the local heat release is higher than a threshold defined
with regards to the maximum heat release [14]. PDFs obtained on both meshes are
almost similar. Most of the combustion takes place in lean premixed zones, with a
strong peak at an equivalence ratio of φ = 0.35. This emphasizes the proper use of
the fitted one-step chemical scheme as most flame elements burn under lean con-
ditions. Another peak is located at φ = 1 and stems from the presence of diffusion
flamelets. A weaker peak appears around φ = 1.5 and corresponds to rich premixed
flames created close to the fuel injection. To quantify the effects of mesh resolution
on the DTF model, Fig. 8 presents the percentage of total grid points as function of
the thickening factor for both meshes. As expected, there is a shift towards lower
thickening as the grid is refined while preserving the shape of both curves. On the
lighter grid, 18.34% of the total grid points are affected by thickening (i.e. where
the flame is localized), with a maximum thickening factor of 81.5 and a mean value
of 18.77. For the fine grid, 14.93% of the total grid points involve reaction, with a
maximum thickening factor of 62.5 and a mean value of 15.28. Even if the flame
is obviously better resolved on the fine grid, the combustion regime appears to be
the same for the two cases, which ensures independent flame response to acoustic
perturbations. Note that resolved RMS velocity and temperature fields on the two
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Fig. 6. Mean temperature profiles at 5 different axial positions from the exit of the swirler: 0,
0.75, 1.5, 3 and 4.5 swirler diameters. Temperatures are normalized by the inlet temperature
and lengths are normalized by the swirler diameter.

considered grids (not shown here) exhibit very good agreement, confirming the pre-
vious findings. This conclusion is very different from the one drawn by Boudier et
al [14] where a premixed inverted cane injection system is simulated. In this study,
combustion shifts from mostly lean to a balance between diffusion and lean pre-
mixed flames as the grid is refined. This enforces the fact that proper behavior of the
combustion model depends on the configuration.

4.2 Mesh dependency of the thermo-acoustic instabilities

The considered configuration is subject to self-established azimuthal thermo-acoustic
instabilities. An observation of the pressure spectra (not shown here) reveals a mode
around 750 Hz for both meshes. To get some insights on the impacts of mesh reso-
lution on such a mode, PRMS

Pmean
are plotted in Fig. 9 for both meshes along a line con-

taining all swirlers’ axis and located in front of all burners’ exits. The same structure
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Fig. 7. Probability density function of local equivalence ratio in reacting zones on the lighter
(38 million cells - left) and fine (93 million - right) grids.

Fig. 8. Distribution of thickening factor on the lighter (38 million cells) and fine (93 million)
grids.

is retrieved, with sinusoidally shaped pressure fluctuations, indicating sectors sub-
ject to almost no fluctuations and other sectors subject to strong pressure fluctuations
(of the order of 2% of the chamber mean pressure). The amplitude of the pressure
fluctuations is reduced for the fine grid when compared to the lighter one. Such ob-
servations ensure that the prediction obtained by LES for such an instability is quite
robust and insensitive to grid resolution. Ongoing analyses are being conducted to
identify the leading flow mechanisms triggering this instability.

5 Conclusion

A mesh dependency study of a fully annular helicopter gas turbine has been per-
formed using massively parallel LES on two grids, respectively comprising 38 and
93 million tetrahedra. The predictions obtained are very similar in terms of mean
flow. The DTF combustion model is shown to behave adequately on this type of
almost fully premixed configuration. A self-established azimuthal mode naturally
develops in both computations and the resulting thermo-acoustic limit-cycles are ob-
served to be independent of the grid resolution, which partly qualifies LES for such
critical industrial problems.
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Fig. 9. PRMS
Pmean

on a line passing by all burners’ axis for the lighter (38 million cells) and the fine
(93 million cells) grids.
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Summary. The extension of LES methods to the MHD description of conductive fluids and
plasmas as well as the kinetic description of small scales of turbulence in plasmas is presented.
The results obtained during the last decade in the framework of MHD equations will highlight
and motivate the current try to perform filtered gyrokinetic simulations.

Key words: Quality, Reliability, Large-Eddy Simulation, MHD, gyro-kinetics, Plasma.

1 Introduction

Large eddy simulations (LES) consists in an arbitrary scale separation between the
large scales structures that are computed directly and the small scale phenomena that
are not captured by the numerical grid and must be modeled. It is reasonably justi-
fied when turbulence is well developed and various modelling approaches have been
proposed in order to take into account the effect of the small and unresolved fluid
motions on the large scale dynamics. Although turbulent phenomena are observed
in various type of systems, LES have been developed mainly for fluids described
by the Navier-Stokes equations with considerable efforts to extend this technique to
chemically reactive fluids and, in particular, to combustion.

In this work, we are interested in the extension of LES to electrically conductive
fluids that may interact with electromagnetic fields. Electrically conductive fluids as
well as plasmas can be described either as continuous media by fluid-type equations
or as large sets of interacting particles using kinetic approaches. In both cases, the
interactions between matter and electromagnetic fields have to be taken into account
by coupling the equations of mechanics to the Maxwell equations and may lead to
complex turbulent phenomena.

In the continuous media description, this coupling yields the magnetohydrody-
namics (MHD). Extension of LES to MHD is technically easy and has been suc-
cessfully proposed [1, 2]. Indeed, the evolution of the magnetic field is driven by the
induction equation which is quite similar to the Navier-Stokes equation. However,
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because kinetic energy can be transformed into magnetic energy in MHD, the non-
linear transfers are physically more complex and modelling the small scales requires
some reformulation that will be briefly reviewed in Section 2.

Despite kinetic and MHD equations describe the same system, they are signif-
icantly different as far as their structure and basic assumptions are concerned. In
systems for which collisions are rare (low density plasmas or gases for instance), the
continuous medium description is not necessarily valid. It is then often necessary to
use kinetic approaches describing the evolution of the velocity probability distribu-
tion. This distribution corresponds to the probability to observe a particle at a given
position with a given velocity, so that it is defined in a six-dimensional phase space.
In presence of a strong magnetic field, taking advantage of the rapid helical motion of
charged particles, one velocity variable can sometimes be eliminated establishing gy-
rokinetic model. The resulting five dimensional problem remains however extremely
demanding in terms of computational power. Indeed, the resolution needed to capture
all the physically relevant phenomena may be very high. In recent simulations [3],
up to 768 x 384 x 16 grid points have been used for the spatial domain in order to
describe both ion and electron typical scales and up to 64 x 16 points (or more) to
discretize the velocity space. Also, differences in time scales characterizing various
phenomena impose that converged simulations must use a very large number of time
steps.

The objective of our study is to use a much lower resolution than the one imposed
by the physics of the problem studied using the kinetic codes. This is achieved by
developing a framework that is very similar to the one developed in LES for fluid tur-
bulence. Adapting subgrid scale modelling approaches to kinetic equations however
requires significant efforts that will be discussed into details in Section 3.

2 Extension of LES approaches to MHD

Many electrically conductive fluids – including plasmas – can be described within
the framework of the magnetohydrodynamics (MHD). In this presentation, the flow
will be assumed to be incompressible so that the balance equations read:

∂tv = −∇ · (vv−bb)+νΔv−∇p , (1)

∂tb = −∇ · (vb−bv)+ηΔb , (2)

∇ ·v = ∇ ·b = 0 . (3)

These equation are written here with the fluid velocity v and the magnetic field b
both expressed in Alfvén speed units (the constant mass density is rescaled to unity).
The total pressure p is obtained by imposing the incompressibility of v (3). The dis-
sipation coefficients are the kinematic viscosity ν and the magnetic diffusivity η .
The balance between the linear and the nonlinear term in the induction equation (2)
defines the magnetic Reynolds number Rm = v0�0/η (v0 and �0 being a character-
istic flow velocity and length scale, respectively). Simulation of MHD processes are
thus not only limited by the grid requirement related to the velocity field but also by
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the necessity to properly capture the magnetic field. For instance, direct numerical
simulations (DNS) of three-dimensional MHD turbulence on today’s supercomput-
ers [4, 5, 6] are limited to values of Rm that are still several orders of magnitude
lower than the ones found in nature, e.g., in the solar convection zone. There is thus
a double motivation for developing LES techniques for this type of problem.

As usual, the large scale fields that will be directly computed in LES for MHD
are assumed to be obtained from the complete field by means of a filtering operator
that will be noted · · ·. The filtered equations for v and b thus read:

∂tv = −∇ · (vv−bb)+ν�v−∇p−∇.τv , (4)

∂tb = −∇ · (vb−bv)+η�b−∇.τb , (5)

∇ ·v = ∇ ·b = 0 , (6)

where two unknown terms, usually referred to as subgrid-scale or filtered-scale stress
tensors, are introduced by the filtering operation: τv = (vv− vv)− (bb− bb) and
τb = (vb−vb)− (bv−bv). These tensors account for the subgrid-scale effects that
have to be modeled. The kinetic Ev = v ·v/2 and magnetic Eb = b ·b/2 energy bal-
ance can easily be derived and are expressed as follows:

∂tEv = Dν −Tvb −Dv−sgs , (7)

∂tEb = Dη −Tbv −Db−sgs , (8)

where Tvb represents the transfer of energy from v to b in the large scales. Because the
total energy is conserved by the nonlinearities, this terms is exactly the opposite of
the transfer of energy from b to v : Tvb =−Tbv. The other terms represent the viscous
dissipation Dν , the Joule dissipation Dη and the subgrid scale dissipation of kinetic
energy Dv−sgs and of magnetic energy Db−sgs. Like in Navier-Stokes turbulence,
the main effect of the subgrid scales in MHD has been assumed to dissipate the
correct amount of energy and the subgrid scale tensor have been modeled using eddy
viscosity and eddy magnetic diffusivity terms:

τv
i j = −νt (∂ jvi +∂iv j)

τb
i j = −ηt

(
∂ jbi −∂ib j

)
Smagorinsky eddy viscosity models have been tested for νt and extended to the eddy
magnetic resistivity. It should be noted however that, due to the structure of the in-
duction equation, the subgrid scale tensor τb is anti-symmetric. It is thus assumed to
be proportional to the anti-symmetric part of the magnetic field gradient tensor. Re-
markably, the components of this tensor are simply the current j since j = ∇×b/μ0

where μ0 is the magnetic permeability. This relation is directly derived from the
Maxwell equations by neglecting the displacement current. Based on this analysis,
the eddy magnetic diffusivity has been assumed to be proportional to the square of
the grid size Δ and to the amplitude of the anti-symmetric part of the magnetic field
gradient tensor which reduces to ηt ∝ Δ 2|j|. The proportionality constant as well as
the Smagorinsky constant that appears in −νt have been derived using the dynamic
procedure [7]. This approach has been successfully tested for both forced and decay-
ing MHD homogeneous turbulence [1, 2, 8].
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3 Extension of LES approaches to kinetic equations

Kinetic Vlasov-type equations are more complex than the fluid balance equations.
They represent the evolution of a velocity distribution function g(r,v, t) that now
depends explicitly on the velocity v as well as on the position r. We consider only
one species of particles for simplicity, but the following discussion trivially extends
to multi-species systems. Kinetic equations can be written as follows:

∂g(r,v, t)
∂ t

= −
(

v.
∂
∂r

+
1
m

F.
∂
∂v

)
g(r,v, t)+C , (9)

where m is the mass of the particles and F is the force acting on these particles, which
in plasma physics is related to the electromagnetic fields E and B through the Lorentz
force. The force F may contain a part F0 that is independent of the distribution func-
tion when external electromagnetic fields are imposed. It also normally contains a
part Fg that is proportional to g and that represents the average effect of the other
particle. Finally, C represents the collision term. Without discussing the structure of
the collision term (that might be represented by a linear or a quadratic function of g),
a typical kinetic equation has thus the structure:

∂tg = L(g)+N(g,g) (10)

where L is a linear operator than contains both the advection term −
(

v. ∂
∂r

)
g and

the external force term F0. The nonlinear term is due to the averaged internal force
term Fg. Assuming, like in many gyrokinetic codes, that the distribution function g
can be split into a local equilibrium distribution G0 (independent of time but that can
depend on the position) and a fluctuation function δg, the equation for δg reads:

∂tδg = S +L (δg)+N (δg,δg) (11)

The source term S is due to the gradient of the equilibrium distribution function. The
linear term L contains contributions from the advection term, the external forcing
and the coupling between the equilibrium distribution and δg in the nonlinear term
N in (10). The nonlinear N term is basically the same as the original nonlinear term
N but depends only on the fluctuating distribution function. Filtering this equation
in space requires some care since the quantity S and the operator L may depend
explicitly on the position because they depend on the local equilibrium distribution
G0. However, in most cases, it is reasonable to assume that G0 varies very slowly
with space when compared to the fluctuating distribution δg. Hence, it is reasonable
to assume that S = S and L (δg) = L (δg) and applying a spatial filter to the
equation (11) leads to:

∂tδg = S +L (δg)+N (δg,δg)+T (12)

where the new term due to the subgrid-scale fluctuation of the distribution δg reads:

T = N (δg,δg)−N (δg,δg) (13)

There is thus a clear formal analogy between equations (12) and (4, 5).
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3.1 Conservation laws in Gyrokinetic equations

Gyrokinetic solvers deal with equations that have exactly the same structure as
Eq. (11), we refer the reader for more explanations on foundations of gyrokinetic
theory to the very exhaustive paper by Brizard and Hahm [9]. Applying a filter to
the gyrokinetic equation will thus lead to equations similar to (12). The design of
models for the subgrid-scale term T should, like in fluid equations, also be influ-
enced by their expected role on ideal invariant balance. The difficulty is of course
to identify which ideal invariant has to be considered. Fortunately, there has been
a lot of efforts in the last years devoted to the derivation of conservation laws in
gyrokinetic equations [9]. Independently of the present approach, the existence of
conserved quantities by the gyrokinetic equations is very important in assessing the
accuracy of the numerical solvers [10, 11].

In a recent paper [12], Schekochihin et al have discussed in details the energy
balance in gyrokinetic simulations. They pointed out that, although conservation of
energy is indeed important, the conservation of the free energy, mixing entropy and
energy, presents much more similarities with kinetic energy conservation in fluid
equations. In the kinetic description of a plasma, the power ε =

∫
E.Jext injected in

or removed from the system by the externally imposed electric current Jext modifies
the sum of the kinetic energy,

K =
∫

dvdrg(r,v, t)
m |v|2

2
(14)

and of the energy stored in the electromagnetic field

W =
∫

dr
|E|2 + |B|2

8πε0
, (15)

leading to the following simple equation:

d
dt

E =
d
dt

(W +K) ≡ ε (16)

Using this energy balance for designing subgrid-scale models for T would lead to
two difficulties. First, as pointed out by Schekochihin et al, the energy transfers be-
tween electromagnetic field and kinetic energy of the particles remain reversible.
They do not lead to a mechanism in which an irreversible dissipation such as vis-
cous effects in fluid mechanics ends a possible energy cascade mechanism. Second,
it should be noted that the electric and magnetic fields are linearly proportional to
g(r,v, t) through the Maxwell equations. Hence, W is a quadratic function of g(r,v, t)
while K is linear in g(r,v, t). The total conserved quantity K +W mixes thus two
terms with a quite different mathematical nature and this is very different from the
kinetic energy in Navier-Stokes turbulence or the total (kinetic +magnetic) energy in
magneto-hydrodynamics.

Let us now introduce the free energy F = E −T S. Where the total entropy S =
−kB

∫
dvdrg lng can be re-expressed in terms of the equilibrium and the fluctuating

parts of the distribution function by keeping only terms up to order two in δg:
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S = −kB

∫
dvdr

[
g lnG0 +δg+

1
2
(
δg
G0 )2

]
, (17)

If we assume that the local equilibrium distribution G0 is Maxwellian, then the first
entropy term exactly cancels the kinetic energy K in the expression for F . The sec-
ond entropy term simply represents the normalisation of the fluctuating distribution
function and is assumed to be a constant that will disappear from the free energy
balance. The evolution of F can then be re-written as:

d
dt

(W +TδS) = ε−T Kc (18)

where

δS = −kB

∫
dvdr

1
2
(
δg
G0 )2 , (19)

This balance equation shares most of the properties of the kinetic energy balance in
fluids described by the Navier-Stokes or the MHD equations (7, 8). The conserved
quantity W +TδS is not affected by the nonlinear term in the gyrokinetic equations.
This conserved quantity is a sum of terms that are positive definite and quadratic in
the distribution function δg. The evolution of W +TδS is due to the effect of external
mechanisms (that, in most of the interesting cases, will sustain the fluctuations) and
an irreversible dissipation mechanism that tends to destroy the fluctuations through
the collisional processes.

Due to the gyrokinetic ordering, the expression for the electromagnetic energy W
takes a slightly different form in the gyrokinetic formalism. It is usually split into two
parts W φ and W A, that are related respectively to the electric scalar potential φ and to
the magnetic vector potential A. Moreover, the entropic term F ≡ TδS is normally
the sum over all species. Finally, in most gyrokinetic simulations, the source term
is actually due to the equilibrium gradient and will be noted G . However its role is
the same and it injects free energy in the system. Finally, the temperature is usually
lumped into the definition of the collision term K ≡ TKc so that the free energy
balance in gyrokinetic equations is usually presented as:

d
dt

(F +W φ +W A) = G −K (20)

3.2 Filtered Gyrokinetic simulation

From the above analysis, it is easily understood that, in absence of collisions, the
entropy balance will not reach a steady state. However, collisionless numerical ex-
periences are routinely performed using gyrokinetic codes. In order to compensate
for the increase of free energy due to the external constraints, artificial dissipative
mechanisms are then added to the equations [11]. These artificial terms play in fact
exactly the same role as the subgrid-scale term T and could be regarded as rather
crude subgrid-scale models in filtered gyrokinetic simulation. The major difference
is that the subgrid-scale models are intended to represent a larger fraction of the un-
resolved physics and not necessarily only the collisional scales. So, the equation that
is effectively solved in gyrokinetic code reads:
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∂tδg = S +L (δg)+N (δg,δg)+D(δg, p̃) , (21)

where the artificial dissipative term D(δg, p̃) depends on the distribution function
and on parameters p̃ that have to be adjusted to remove the correct amount of free
energy. There is a striking analogy with the equation 12 if we interpret the artificial
dissipative term as a subgrid-scale model. hence, the filtered gyrokinetic equation
that we will analyse reads:

∂tδg = S +L (δg)+N (δg,δg)+M (δg, p̃,Δ) (22)

in which the unknown subgrid-scale term T is replaced by a model M (δg, p̃,Δ)
that depends on the filtered distribution δg on some parameters p̃ and on the grid
size needed for capturing the filtered distribution evolution.

In a preliminary study, the influence of a lack of resolution in gyrokinetic simu-
lation has been analysed. These results have been obtained using the Cyclone Base
Case set of parameters that is a reference commonly used in the Tokamak plasma
community in order to compare the results obtained from various gyrokinetic solvers
[13]. The CBC studies the ion temperature gradient turbulence (ITG) in magnetised
plasmas typical of Tokamaks. ITG are controlled by the temperature (LT ) and density
(Ln) gradient lengths along the minor radius of the Tokamak. The natural coordinates
system in a Tokamak is defined by the radius r, the toroidal angle φ and the poloidal
angle θ and the geometry is defined by the minor r1 and the major r2 radii. The
magnetic field admits two components along poloidal and toroidal angles and one
can then define the security factor q(r) =

∫ 2π
0 dθBφ/(2πBθ ) that measures the ratio

between these components. The radial gradient of the security factor defines the mag-
netic shear parameter ŝ(r) = (r/q)dq/dr. The Cyclone Base Case key parameters are
given in the following table:

parameter R/LT R/Ln q ŝ

value 6.9 2.2 1.4 0.8

The simulations have been performed using the Gyrokinetic Electromagnetic Nu-
merical Experiment (GENE) code, that is one of the most widely used Eulerian gy-
rokinetic codes. Eulerian method consists in computing the gyrokinetic equations on
a fixed grid in phase space. A review of the numerical and theoretical key features
of the GENE code can be found in reference [14]3. The simulations presented here
are made using a fluxtube approximation that consists in considering a simulation
box very close to a magnetic field line [14, 15], allowing to neglect the variations of
equilibrium quantities across the box. The anisotropy due to the presence of a strong
magnetic field allows to distinguish between directions parallel (z for physical space,
v‖ for velocity) and perpendicular (x, y for physical space, μ for the magnetic mo-
mentum μ = mv2

⊥/2B0 linked to the modulus of the perpendicular velocity) to the
field lines. The standard grid for the CBC study with GENE is summarized in the
following table:

3 http://miami.uni-muenster.de/servlets/DerivateServlet/Derivate-4856/diss merz.pdf

http://miami.uni-muenster.de/servlets/DerivateServlet/Derivate-4856/diss_merz.pdf
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direction x y z v‖ μ
number of grid points 64 16 16 32 8

Figure (1) represents the spectrum of the electrostatic potential |φ | along the mi-
nor radius of the torus. The fully resolved Cyclone Base Case is represented by the
black curve with a grid of nx = 64 points, ny = 16 points for the spatial directions
perpendicular to the magnetic field. We used three different factors to decrease res-
olution along both y and x: 3/4 (dashed red), 2 (blue) and 4 (red). Without entering

Fig. 1. Electric potential spectra for various grid resolution in the cyclone base case.

the details of the results, it is observed for instance that the spectrum of the electric
scalar potential (very close to the energy term Wφ ) is mostly affected in the small-
est resolved scales while the large resolved scales are reasonably reproduced by an
under-resolved simulation. This is reminiscent from under-resolved DNS of fluid
turbulence in which the large scales are still reasonably reproduced while energy is
piling up in scales close to the grid resolution.

4 Conclusions

The extension of LES ideas to describe turbulence in electrically conductive media
has been discussed. When the system can be described using a fluid formalism, the
extension of LES to MHD has already been discussed. However, when the fluid
description is not appropriate (low density gases or plasmas), the LES framework
needs to be extended to kinetic approaches. We have established a formalism for this
purpose. It is based on a formal analogy between kinetic and fluid equations in terms
of structure and of conserved quantities. This analogy is summarised in the following
table.
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description variable(s) conserved quantity
Navier Stokes v kinetic energy: Ev

MHD v, b total energy: Ev +Eb

Gyrokinetics δg free energy: TδS +W φ +W A

Moreover, preliminary runs without model tend to show that the lack of resolu-
tion affects kinetic equations in a way that is quite similar to what is observed in fluid
turbulence. In particular, a piling up of energy is observed close to the grid resolu-
tion. At this stage, no model has been tested yet. However, stabilising terms are often
artificially introduced in kinetic codes when collisions are neglected. The structure
of these terms should provide a reasonable guide for the expected structure of the
subgrid scale terms while the approach developed here could provide some rational
for the introduction of these artificial terms.
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Assessment and reduction of computational errors
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Summary. A few years ago we introduced a nomenclature for grid regions in Detached-
Eddy Simulations (DES) of external flows: the RANS, Focus, Euler, and Departure Regions
[1]. These may help organize grid generation and error estimation/reduction. We have four
purposes here: to point out that most of these concepts apply to LES, if not to DNS, and are
not truly limited to external flows; to discuss what really defines a DNS for external flows, and
even for internal flows with inflow-outflow conditions; to ask whether the SGS model should
be sensitized to increasing grid spacing along the flow, hoping to achieve stable simulations of
“real-life flows” with energy-conserving differencing, which is definitely not the norm today;
and finally to present an initial study of an explicit definition of the boundary between Focus
Region and Departure Region. The long-term goal is to extend automatic grid adaptation to
the turbulence-resolving approaches.

Key words: Grid Generation, Accuracy, Turbulence Modelling

1 Introduction

Large-Eddy Simulation and its hybrids with RANS are rapidly expanding towards
complex applications, which is very gratifying but can also produce some chaos, and
even a backlash when work that is not careful enough is publicized or introduced in
designs which then prove faulty. This concern is central to the organisation of QLES
(although complex flows are not the only ones considered), but curiously the list of
topics either for 2007 or 2009 does not contain grid design, which is however our
primary focus here. Fewer than ten out of thirty-three papers this week highlight grid
issues, and only two have adaptation. In our opinion, the grid is just as important
as the solver, and is arguably more important than the SGS model, except very near
walls.

A factor in how research topics are chosen is that SGS research is more pub-
lishable and less dependent on heavy software than grid research. Grid-generation
technology and practices have much control both over the accuracy of research sim-
ulations and over the practicality and reliability of LES in engineering practice. Once
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the geometry has any complexity, and even for simple shapes when they cause mas-
sive separation, there is much latitude on where to “spend” the grid points, and sharp
differences in the true resolution requirements at different points. As a result, grids
generated with too little regard for these facts are wasteful.

In addition, the long-term goal of the CFD community must be automatic gener-
ation of grids with little waste, grids which will necessarily depend on the flow and
not just the geometry; in other words, be adaptive. For this to develop, the thinking
needs to be organized as well as possible, and to attract some degree of consensus.
Note that as of 2009, adaptation is not the norm even for steady RANS solutions,
especially not in commercial solvers. The benefits in time savings and in accuracy
will be extensive. It is an active research area, but an arduous one, with deep open
questions including the balance between solver tolerance for very uneven grids and
smoothness in grid generation, and the option between heuristic adaptation strate-
gies and more systematic ones, often based on adjoint formulations. Of course, since
many flows contain boundary layers, thin shear layers, and possibly shocks, isotropic
adaptation cannot be sufficient.

A dominant interest of the authors is in hybrid RANS-LES methods and espe-
cially DES, but significant overlap with grid design in LES and DNS has become
clear. Similarly, some of the thinking which is unavoidable in external flows be-
cause of the unbounded domain proved to have some logic in internal flows as well.
This little-explored territory led to a paper containing more “vision/speculation” than
“finished products,” with three sections made up of remarks with strategic or “philo-
sophical” aspects, and a fourth with a much more concrete nature and a proposal
which may contribute in due time to grid adaptation.

Fig. 1. Sketch of grid regions in the DES of an airfoil, with flow coming from above.



Grid Design and the Fate of Eddies in External Flows 255

2 Grid Regions in DES, LES, and DNS

The “Young Person’s Guide to DES Grids” is easily available as a NASA report
[1], and the method contained in it will be called the “YPG approach.” Figure 1 is
a sketch from that report, and we use here the same nomenclature of RANS Region
or RR, Focus Region or FR, Departure Region or DR, and Euler Region or ER, to
which it will help to add VR for Vortical Region (this creates a conflict with “VR”
for Viscous Region in the YPG, but the Viscous Region is not discussed here). At
any instant, the VR is simply the complement of the ER, of course. However in the
design of a stationary grid, the VR must be defined as the region which is visited by
vorticity at any time during the simulation, and then the ER as its complement. This
is because the resolution needs of VR are more demanding than those of the ER.
This will be illustrated.

Fig. 2. Block-structured grid generated for airfoil [2].

Figure 2 shows an early example of grid design in DES, accomplished within
the constraints of a block-structured solver with overset capability. Recall that the
flow comes from above; this is the wing of a tilt-rotor aircraft during hover, with
down-wash from the rotors. The Euler Region is most visible, in being coarser; the
spacing in the z direction was also larger than in the other regions. The wasteful
aspect that is not seen, of course, is that the entire simulation used a single time step,
far shorter than the ER would need (however, the number of points in the ER is not
dominant). The block in contact with the airfoil, with an unusual “snail” topology,
covers the RANS region and part of the Focus Region. It extends into the ER above
the airfoil, much farther than necessary for accuracy, but the advantage was to contain
the number of blocks. The lower block covers part of the FR, and the Departure
Region. Gradual coarsening is seen in the DR.
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If an LES is considered, there is no pure RANS Region the way there is in a DES,
where it includes the attached boundary layer on the upstream side of the airfoil. Still,
if the LES has wall modelling, the very-near-wall layer will have a model with RANS
character, and the grid will usually have RANS proportions, i.e., large cell aspect
ratios. In a DNS, there is no such region at all; the cell aspect ratios are much larger
than 1, but not unlimited nor Reynolds-number dependent. On the other hand, all
simulations have an Euler Region, devoid of small eddies, and the most economical
grid will have fairly coarse spacing in the ER.

The less obvious border is between the FR and DR. Recall that the DR is a re-
gion downstream of the bodies in which we accept poorer and poorer resolution,
even though it contains turbulence. Having the grid spacing prevent the resolution of
the smallest eddies is fundamental in LES, but not in DNS. Yet, all DNS of exter-
nal flows has a DR, under another name or no name. The alternative to this would
be to have a domain short enough to afford full DNS resolution everywhere, with
an outflow boundary condition placed closely enough to keep the grid count under
control. However, such conditions are crude and interfere with vortex shedding and
similar phenomena, and the consensus seems clear that it is better to have a large do-
main with gradually expanding grid cells, and to push the outflow condition far away
from the body. Most probably, in the DNS to date, the DR has effectively operated
in Implicit LES (ILES) mode, that is, some feature of the numerics stabilized the
simulation, as opposed to viscosity acting at the Kolmogorov length scale η which
is not resolved any more. It could have been logical to declare that the DR was an
LES region appended to a DNS, and activated an SGS model only in that region.
Hoffman clearly recognized this concept, using the name DNS/LES, and counting
on numerical stabilization in the effective DR [3].

Similar grid-design decisions face the scientist for some internal flows. Consider
a backward-facing step flow, and the position of the downstream boundary of the
simulation. If we insist on “DNS quality” over the entire domain, in simple terms on
resolving η and the wall viscous scale ν/uτ , much effort will be spent on the region,
well past reattachment, where it is intuitively clear the small-scale turbulence cannot
influence the step region. Again, one option is to end the domain close to the reat-
tachment line with an outflow condition; the other option is to let the grid coarsen,
arguing that only the larger eddies have a “dialogue” with the region upstream. The
developing inaccuracy in skin friction, due to under-resolving the near-wall layer,
will hardly be felt. Therefore, DNS resolution is not needed, and the best use of re-
sources is to declare this region as a DR. This could also be viewed as a combination
of DNS and LES. The resolution is testable in both regions: comparing results with
different enough grid spacings provides meaningful indications of the residual er-
rors (purely numerical in the DNS region, mixed numerical/SGS modelling in the
LES region). Therefore, a thorough demonstration of accuracy is possible. This is
although the order of convergence has no reasons to be the same in the two regions;
in fact, to our knowledge, convergence according to a theoretical order of accuracy
has never been demonstrated in a DNS or LES complex enough to be interesting. To
begin with, it is usually impossible to reduce the scatter due to a finite time sample
to levels such that grid convergence could be observed at all.
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3 Requirements for a Simulation to be a DNS

DNS first developed primarily in homogeneous turbulence, with periodic conditions
and uniform grids. This kept the criteria for “DNS Quality” very simple: the grid
spacing (a single number) and time step had to be small enough in Kolmogorov
viscous units. The assumption was not of an exact numerical solution, but that nu-
merical errors were negligible. When DNS progressed to channels, the attitude was
and still is much the same. There is agreement that a DNS contains no empirical
modelling, and numerical errors are negligible, which is verified by running at least
one case with a resolution finer than the standard, in all four directions. After that,
usually when progressing to higher Reynolds numbers, guidelines are applied either
in wall units or Kolmogorov units; in short, in viscous units. The simulation is highly
accurate everywhere. Yet we have just argued that this attitude is not sustainable in
external flows, and in some internal but inflow-outflow cases, and suggested that ap-
pending an LES region to a DNS is not illogical, at least downstream. It has not been
formally applied to our knowledge; we rather presume that numerical dissipation
has been at play. A proper study of that type would include grid-refinement studies
in both regions, or for the DNS region the respect of established guidelines in viscous
units, and also varying the DNS-LES interface position.

While planning a large DNS of pipe flow (for which they did not find the CPU
time), the authors had reflections which are related to the ones just applied to external
and inflow-outflow cases, even though the DNS was to be periodic in the streamwise
direction. The overwhelming interest was in the Law of the Wall and Karman con-
stant κ , so that the core region (say r/R < 0.6 with obvious notation) only needed
to support the Reynolds shear stress that coupled with the wall layer. Therefore, re-
solving η in the core region of the pipe was not essential to the understood purpose
of the study. Was it needed, then? Or could a genuine “DNS” aimed only at the wall
layer be assembled with classical DNS in the wall region, and LES in the core re-
gion, thus reducing the cost? Boundary-layer DNS could lead to similar reflections:
is the viscous superlayer resolved accurately, and does it need to be? This depends
on the exact purpose of the study. Since some estimates make the viscous super-layer
as thin as the viscous sub-layer, it certainly has not been resolved at any interesting
Reynolds number.

Even in the law-of-the-wall region of the pipe, the dissipation range was not
needed in itself; only the Reynolds shear stress, which is of course dominated by
large eddies. If so, it made sense to let the grid spacing Δ grow proportionally to
y, the distance from the wall, whereas η grows closely to y1/4. At the very large
y+ values which were hoped for, this made some difference. Again, this does not
deny the need for grid-refinement studies, but the difference between a systematic
grid refinement with Δ ∝ y and one with Δ ∝ y1/4 is deep. This DNS may yet be
conducted, although recent trends in DNS directed at the Karman constant are very
discouraging; the Reynolds numbers needed are far higher than expected even a few
years ago.

A similar and less controversial example is as follows. Some DNS studies have
focused on the mean velocity and Reynolds-stress tensor. Others have instead fo-
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cused on predictions of the dissipation tensor, to provide data for Reynolds-stress-
transport models. It is clear that calculating these two tensors to the same accuracy
does not require quite the same resolution; the dissipation tensor is more demanding.
Thus, no DNS is exact, and the appropriate resolution depends on the purpose of the
study, including the region of interest, the quantities of interest, and probably other
features.

4 Sub-Grid-Scale Modelling in Coarsening Resolution

We have seen that resolved turbulence routinely needs to be convected into coarser
grid regions, certainly for external flows and also for some internal ones. This de-
mands the trouble-free destruction of the eddies too small for the grid spacing. The
same applies to sound waves; it is not practical to track all such waves all the way
to the outer boundaries, which gives great value to the Ffowcs-Williams-Hawkings
equation, applied with permeable surfaces made rather tight around the turbulent re-
gion. The irrotational region outside the FWH surface can be viewed as a DR for
waves, and jumps or even rapid increases in Δ pose a real danger of reflections. A
study of the acoustic energy propagating into the outer layers of the grid revealed a
steep decline, albeit for a wave with relatively short wavelength [4].

Fig. 3. Airfoil at 60◦ angle of attack. a) location of points in the wake, and b) corresponding
spectra.

Vanella, Piomelli & Balaras carefully addressed this phenomenon, but for step
changes in resolution, and that between regions each having a uniform grid [5]. They
also considered refinement as well as coarsening; not surprisingly, refinement was
trouble-free, as the energy cascade simply extended itself when the grid spacing and
accordingly the eddy viscosity decreased. Their position was that, when coarsening,
the SGS model ideally should be adjusted to make the energy removal uneventful. In
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some versions of the model, they used knowledge of the step in Δ a short distance
upstream of that change, a similar idea to that of using the derivative of the grid
spacing, as proposed here. At first sight, their use of centered differencing schemes
left little room for error, but in the end they focused on accuracy and did not report
any problems with numerical stability.

Figure 3a shows a line of points in the FR and DR behind a stalled airfoil, at
which frequency spectra were calculated. For the present qualitative purposes, Tay-
lor’s hypothesis is sufficient to illustrate the behaviour of wave-number spectra, es-
pecially since the velocity does not vary widely. Still, flow visualisations show that
these points are bathed in turbulence for most of the time, but not all: they spend
brief periods in irrotational fluid. This intermittency means that the signals are not
homogeneous in time; as a result, even results from very fine grids and high Reynolds
numbers may not contain an inertial range. Here, the spectra for the first few points
are actually rather consistent with a −5/3 slope.

The comparison in Figure 3b displays the gradual “shortening” of the spectrum
as the grid coarsens farther from the airfoil, as well as the absence of energy pile-up.
In this region the differencing scheme is very close to centered: a weighted average
of 4th-order centered and at most 10% of the 5th-order upwind one. From the first to
the last point, Δ increases by a ratio of about 7.5, and the frequency of the apparent
steep spectral drop drops by a factor of about 5, which is not a perfect fit, but makes
the connection plausible. The Nyquist frequency associated with the time step is
St ≈ 17, therefore well above the value where the spectrum drops; therefore, time-
integration errors are not a factor in this region (the first spectrum reaches St = 7 in
the figure, but the spectral density is down by 12 orders of magnitude).

This simulation was continued with a fully centered scheme, and rapidly deteri-
orated, with spurious short waves invading the wake and expanding into the irrota-
tional region, as seen in figure 4b. This is in spite of implicit time integration. This
confirms that the weighted scheme used is close to optimal [6].

Fig. 4. Vorticity in: a) normal simulation, and b) continuation with centered differencing.

A revealing way to measure numerical dissipation may be as follows. Consider
the simple convection of a wave in one dimension, and the effect of upwind differ-
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encing on its amplitude after it travels by one wave-length (in other words, after one
period). This depends on the resolution, and we pick a resolution with 10 points per
wave-length as a compromise. In the past, we have indicated that using 7 points pro-
vides useful accuracy with our schemes; on the other hand, some careful studies with
other schemes have concluded to the need for 30 points, if not more. Some of these
studies were based on very sensitive problems, such as the growth of near-neutral TS
waves, and may therefore be unduly pessimistic.

For the first-order upwind scheme, the damping after one period is by 85% in
amplitude. It is extreme. For the energy, that is 97.75%, but we will use amplitude.
For the second-order upwind scheme, the damping is 31%, which is still intense.
The third-order and fifth-order upwind-biased schemes give 12% and 1%, respec-
tively. When a weighted average with any centered scheme is used, the damping
can become almost negligible. Using a 10% weight for the fifth-order upwind-biased
scheme, which has been common and stable enough for the focus region in our stud-
ies, leads to only 0.1% damping (and 0.5% with 7 points per wave). Thus the scheme
is not rigorously energy-conserving, but comes extremely close to it for all but the
shortest waves. For instance, a wave with only 3 points in it will have 38% damping;
thus, the high order of accuracy makes the damping extremely selective.

Returning to the second-order upwind scheme, using 30 points gives a small
damping of 1.5%, but comparing with 10, the number of grid points in 3D has in-
creased by a huge ratio. The same second-order scheme with only a 10% weight
gives only 3% damping with 10 points per wave. Thus, it is unfortunate that very
few codes with the LES option offer the possibility of blending centered and upwind
schemes. We recognize the extreme difficulty in obtaining better than second-order
accuracy in unstructured codes, but blending two schemes does not appear as chal-
lenging. On the other hand, organizing the different blending weights in different
regions of the domain is not trivial. Therefore, even to experiment with such an op-
tion requires access to the source code, and adds to the complexity of designing the
LES study.

This transport into coarser grid has served as a justification for the use of numeri-
cal schemes, either monotone or upwind-biased, which do not conserve energy. This
refers to the spatial discretisation, and the effects of temporal discretisation are left
for future work, although we just remarked that the time step is effectively very short
in the DR. It is very common for external-flow turbulence-resolving simulations not
to be stable with energy-conserving schemes. The simulations which are stable then
take on some of the nature of ILES, if only in some regions. Codes with switches be-
tween an upwind-biased scheme in the RR and ER and a much-less biased scheme in
the FR and DR are in routine use and very valuable as just dicussed [6]. On the other
hand, it would be conceptually closer to perfection to have an energy-conserving
scheme, and task the SGS model with the energy removal (the amount removed
would therefore be accessible to calculation, which is not the case with numerical
dissipation). We will now attempt an estimate of the magnitude of this effect, in an
inertial range.

In this concept, in simple terms of energy, the SGS model accounts both for the
energy cascade, as usual, and the needed removal of short waves. Ideally, the first
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role represents interaction with non-resolved waves; it is fairly localized near the
high end of the spectrum, but not in a simple way. Ideally, the second role would be
very localized, acting only at the extreme end of the spectrum. Applied in Fourier
space, it could be a “top-hat” filter, trimming the end of the spectrum. This implies
that an eddy viscosity would not be very truthful, since it is far being local in Fourier
space.

The SGS model in its first role consumes energy at the rate ε (we are assuming a
large cell turbulent Reynolds number, so that the resolved dissipation is negligible).
For the second role, let Δ be the grid spacing. If the grid cells are far from isotropic,
let it be the larger dimension. The resolved turbulence is responding to a positive
value of DΔ/Dt, the Lagrangian derivative of the grid spacing (for waves rather than
eddies, the rate of change of Δ at a speed U ± c would be relevant). We assume that
the shape of the end of the resolved spectrum is invariant; in other words, the energy
distribution in and beyond the inertial range is Cε2/3k−5/3 f (k/kmax) where C is the
Kolmogorov constant, kmax is the cut-off wave-number and f a function over [0,1]
with f (x) → 1 when x → 0. Its shape is not trivial, because it can be controlled both
by spatial and temporal discretisation, not to mention the Smagorinsky or similar
constant. Figure 3b does not contradict the idea of an invariant shape, but a larger
sample and a firm inertial range would be needed to be precise.

Fig. 5. Flow past an airfoil. a) Velocity contours, showing level of activity within grid cells; b)
estimate of coarsening-related energy removal, normalized by true dissipation (equ. 3).

The grid-related energy-removal rate then results from integrating the spec-
trum up to kmax, which is spatially-varying and inversely proportional to Δ so that
D(logkmax)/Dt = −D(logΔ)/Dt. We then have

Dkres

Dt
= −C′ ε2/3 Δ−1/3 DΔ

Dt
(1)

where C′ is a constant of order 1, related to the Kolmogorov constant and to the LES
spectrum shape f . This equation does not give the total derivative of kres; only the
rate related to grid spacing. The ratio of the two rates is

1
ε

Dkres

Dt
= C′ ε−1/3 Δ−1/3 DΔ

Dt
(2)
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and will be used to get a sense of the relative intensity of the two phenomena.
We first note that this ratio decreases if the grid is refined by a uniform ratio,

because it is proportional to D(Δ 2/3)/Dt. This is reassuring: the issue vanishes dur-
ing grid convergence. On the other hand, ε is not easy to estimate. We have νtSi jSi j

where νSGS is the sub-grid viscosity and Si j the strain tensor, but another measure
may be more revealing and accessible. The velocity variations over one grid cell,
which we will denote by u′Δ , are proportional to ε1/3Δ 1/3, so that we have for the
ratio in (2):

1
ε

Dkres

Dt
=

C′′

u′Δ

DΔ
Dt

= C′′ U
u′Δ

(SR−1), (3)

where C′′ is also a constant of order 1, and SR is the stretching ratio from one cell to
the next in the direction of the velocity U . A common value for SR in the wall layer,
for the wall-normal spacing, is 1.25, but good grids in the FR often require values
below 1.1, if not below 1.05 [7].

The values of u′Δ , tentatively defined in each cell as umax −umin + vmax − vmin +
wmax −wmin, as not as small as expected; see figure 5a, in which the quantity is of-
ten 1/2 of the freestream velocity. As a consequence, the values of U/u′Δ (SR− 1)
are generally much below 1, as seen in figure 5b. If u′Δ is defined as the rms within
the cell instead of the max−min definition, the values are of course smaller, but
still not  U . If the constant C′′ is of order unity as we presumed, this shows that
on the present grid, the energy-removal effect is of small magnitude relative to the
dissipation, and therefore the need for stabilized differencing schemes may not be
attributable to it. It should be easily compensated by a moderate turn-up of the end
of the spectrum, which raises the dissipation of the resolved field (since both νt and
Si jSi j increase). This thought is consistent with the findings of Vanella et al. This
issue may deserve more precise estimates, but the determination of f and C′′ re-
quires an inertial range, which is rarely found except in simulations of homogeneous
turbulence, which in turn are done with centered differencing and uniform grids.

At this stage, we have not tried and are not proposing a model for this grid-
coarsening effect, merely suggesting it for reflection. We consider that an ILES char-
acter is very acceptable in the DR, whereas ideally we would prefer to have no nu-
merical dissipation at all in the FR.

5 Explicit Determination of Grid Regions: an Exercise

Automatic grid adaptation will, sooner or later, apply to LES and other turbulence-
resolving approaches, like it has with great usefulness to the full-potential equations
and is slowly developing for steady Navier-Stokes work. Adaptation shortens the
user time and reduces the dependence of the results on the user’s skills and patience.
It can also improve accuracy for a given computing cost. However, as of today, we
know of very few examples of automatic adaptation in DNS or LES [3]. We are only
presenting a concept which may be one component of such a system. It relates to the
YPG Approach.
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The goal is to determine the Departure Region quantitatively. This information
can then be used to allow gentle but sustained grid stretching in the DR, while the
grid in the FR has a much more uniform target spacing. A plausible definition of the
FR is that it contains turbulent eddies which may now or in the future interact with
the region of interest. Here, this “region of interest” will be taken to be the immediate
vicinity of the airfoil. For a backward-facing step, the analogous region could be the
near-wall layer in the recirculation bubble, which is the sensitive region; it could also
include a few lines of points across the separated region. The definition depends on
the purpose of the study.

Fig. 6. Flow past an airfoil. a) Instantaneous vorticity; b) maximum vorticity during run; c)
reverse trajectories; d) streamlines of the average flow field.

The idea, then, is to calculate reverse trajectories from that region of interest. In
simple terms, together these trajectories will outline the region from which particles
(eddies) may travel to impact the region of interest. We call this the Contact Region
(CR). It is stationary; we are not envisioning time-varying grids yet. It is calculated
after the simulation and is expensive in terms of storage, because a time-dependent
3D field is stored. As a result, it is practical only on a grid coarser than the one on
which the primary simulation is conducted. This will be a precursor simulation. In
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the present one, the grid is 142*101*35 and the time step 0.03c/U∞. Running such
simulations is very good practice in any case, even if the grid generation is manual,
and grid generation is rapidly reaching a capability such that little user time will be
wasted in doing this (and of course little CPU time, the resolution being coarser in
all four directions).

The CR is not a new concept added to the YPG list. It is a mathematical rather
than a descriptive definition. Similarly, we are here seeking a mathematical descrip-
tion of the ER. The use of trajectories and of the concept of “contact” appears sim-
plistic, knowing that pressure interactions occur at a distance, but recall that we are
after the issue of suppressing small eddies, in other words of displacing vorticity by
a small distance. Thus, vorticity is most representative of the physics at play, and it
is a transported quantity.

Here, we are considering a flow which is homogeneous in the z direction, which
makes it easier to outline the CR without a huge time sample. It is defined in the x-y
plane and extruded. In this paper, it is only visual, but a workable definition in a code
will be to tag every grid cell which has been visited by a trajectory, and then fill in
the likely gaps to arrive at a contiguous area or volume.

Another step in the YPG Approach is to identify the Euler Region. Its elemen-
tary definition is simple: the region never visited by non-zero vorticity. For this, the
maximum vorticity magnitude ωmax during the simulation is recorded, and the ER
defined by a low threshold for ωmax. Again, here, the max is taken both over t and z.
This is illustrated in figures 6a and 6b. The peak vorticity ωmax behaves as expected,
and setting a threshold around 1×U∞/c is effective.

Figure 6c shows the reverse trajectories from a thin layer on top of the airfoil,
located at y = 0.007c. The starting points are distributed uniformly spanwise, and
the trajectories cover a time interval of 35c/U∞.

The reverse trajectories naturally extend to ∞ upstream and therefore enter the
Euler Region. Therefore, the Contact Region gives somewhat of an over-estimate of
the extent of the Focus Region. In addition, they are seen to form a bundle, over one
chord wide, upstream. The reason is engulfment of irrotational fluid by the turbulent
region. This makes the CR based on trajectories overlap with the ER; the true FR is
smaller than the CR. The indications it provides are still very concrete regarding the
shape and extent of the FR: convincingly, it has an oblong shape truncated by the
airfoil, and ends near y/c = 2.

When treating this flow with the YPG Approach, the RANS Region is easily
outlined along the wall, and ωmax helps pick its thickness on the lower side of the
airfoil. On the upper side, the RR blends into the FR, which is the intersection of
the CR and the Vortical Region. The DR is then the intersection of the VR and the
complement of the CR.

The exercise is convincing visually, which was helped by the homogeneity in z,
but simple recipes to use the definitions in an automatic system were given. Naturally,
such a system will need many decisions on the grid spacing itself, starting with the
target FR spacing Δ0, the first wall-normal spacing, stretching ratios particularly in
the FR and DR, and so on. If using a flexible grid-generation package, the spacing in
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Fig. 7. Flow past tandem cylinders. a) Vortical and Euler regions; b) reverse trajectories.

the ER can be significantly larger than in the VR, including in z. Only the time step
is fully shared.

The relationship between the CR and the more established concept of Recircula-
tion Region is studied with figures 6c and 6d. The latter shows the streamlines of the
Reynolds-averaged LES flow field. This mean flow being two-dimensional, a closed
region or “bubble” dominated by two large circulation regions exists. Its extent is
not too different from that of the CR, although it is smaller as could be expected,
and the strictly-defined “bubble” (delimited by streamlines which make contact with
the body) does not have the upstream “bundle.” It also fails to include edge regions
which are visited by vorticity and turbulence.

Fig. 8. Flow past tandem cylinders. Vortical region, reverse trajectories, and dashed line ten-
tative Focus Region.
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The CR concept also accounts for interference between bodies, as illustrated in
figure 7 for tandem cylinders. Both cylinders were declared as Regions of Interest.
The second cylinder then “emits” a fairly wide CR which bridges the two bodies.
However, the CR is narrower than the VR, which is quite wide past the second cylin-
der; this will help save on the number of grid points. Note that the mean streamlines
as in figure 6d would fail to bridge the two cylinders; thus the CR concept is demon-
strating its potential, and plausibility relative to intuition.

Some day, simulations of an airplane will be aimed at whether the turbulence
created by a wing spoiler causes buffet on the horizontal tail, or the wake of the nose
landing gear disturbs an air inlet or ram-air turbine, and it is possible the present CR
concept will be helpful. Other examples would be multiple road vehicles.

6 Outlook

We have provided material which has some preliminary and inconclusive aspects,
but we hope is somewhat stimulating. We are fairly confident in this for the QLES
community, but not as much about the wider turbulence/CFD community. It appears
that only about 100 copies of the bound proceedings are sold outside of the QLES
members, which is small. Naturally, this does not account for the “soft” copies of
articles disseminated by internet, but presumably these reach only readers which are
already connected to a QLES contributor. A valid question is how best to boost the
quality of the turbulent CFD in the widest circles we can.

Journal articles derived from the work of QLES contributors must have a read-
ership much larger than 100. Personal exchanges at QLES meeting are also often
substantial and productive, thus contributing to research quality. Yet, informal sur-
veys suggest that much of the “turbulence knowledge” CFD users outside academia
apply actually travels with the CFD codes they use rather than literature they read.
The users extensively consult the support staff of the CFD vendors or the govern-
ment scientists who write and maintain the codes, for instance at DLR and NASA.
The commercial companies have strong incentives to point at the ease of use of their
products, which include the turbulence treatments. This creates a danger of over-
selling these treatments, which we all know to be shaky in many respects, turbulence
being “the chief outstanding difficulty of our subject” according to Bradshaw’s 1994
article, still fully applicable today [8]. One task of the turbulence research specialists
is to decrease the incidence of poor “plug and play” practices, without discouraging
the use of CFD or even the use of cutting-edge approaches.

Publishing accessible overview articles, with impartial and candid discussions
of the state-of-the-art, is not so easy and is a good path. Contributing to the doc-
umentation which travels with the codes could be another. We find that most CFD
companies have retained and grown some very competent turbulent-CFD experts,
blending genuine scientific attitudes with commercial urges. The same is true for
government code suppliers. QLES-type specialists should use every opportunity to
collaborate with them, and possibly to directly contribute to the documentation they
attach to their products. This appropriately goes beyond the intellectual pleasure and
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the prestige of publishing at high level, to educate “in real time” the ever-widening
ranks of turbulent CFD practitioners.
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Summary. How should the resolution of an LES be estimated? There exist guidelines for
boundary layers for how to create a grid in terms of the grid size expressed in viscous units.
However, in other flow regions there are few – if any – guidelines for how to generate a
grid that ensures accurate results. Worse, it is not even clear how to estimate the resolution
after having carried out an LES. The present study evaluates the following quantities: energy
spectra, dissipation energy spectra, two-point correlations, the ratio of SGS shear stress to
resolved shear stress, the ratio of the SGS viscosity to the molecular and the ratio of the
SGS dissipation due to the resolved fluctuating velocity gradients to that due to the mean
velocity gradients. Two flows are analyzed, namely the flow in a plane asymmetric diffuser
and decaying grid turbulence. The main conclusions are that two-point correlations are the best
way to estimate the resolution and that energy spectra are not suitable. It is usually assumed
that the SGS dissipation takes place at wavenumbers close to cut-off. The present work shows
that this idealized picture is not true, but that the SGS dissipation takes place at rather low
wavenumbers.

Key words: LES, resolution, two-point correlations, energy spectra, dissipation energy spec-
tra, decaying grid turbulence

1 Introduction

After having carried out a Large Eddy Simulation, the question arises: how do we
know that the resolution is sufficient? Or – at least – how do we estimate the resolu-
tion? For attached boundary layer flows, numerical experiments reported in the liter-
ature indicate that the streamwise and spanwise resolution in viscous units should be
approximately 100 and 30, respectively; further, the center of the wall-adjacent cells
should be located not more than one viscous unit away from the wall. However, in
flow regions outside attached boundary layers, there are few guidelines for how to
create a sufficiently fine mesh.

After having carried out an LES simulation, there are a number of ways to es-
timate the resolution. Energy spectra are frequently used to find out whether the
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resolved turbulence satisfies the −5/3 decay. The ratio of the SGS to resolved tur-
bulence is another quantity; if is is small, it may indicate that the resolution is good.
Two-point correlations are also useful for estimating the resolution. If they fall to
zero over a separation distance of a few cells, it means that no turbulence is resolved
at all; if, on the other hand, they fall to zero over five to ten cells, this is an indication
that the largest scales are reasonably well resolved. Another option for evaluating
the resolution is to evaluate the SGS dissipation. This dissipation takes place either
through the mean flow or through the resolved fluctuations. In RANS, the entire dis-
sipation takes place through the mean flow while in LES it takes places through both
the mean flow and resolved fluctuations. Finally, dissipation energy spectra can be
created that show the wavenumbers at which the SGS dissipation takes place.

The different ways of estimating resolution mentioned above were evaluated in
[5] for fully developed channel flow. In the present study, we use these methods to
evaluate the resolution of an LES of recirculating flow and of decaying grid turbu-
lence.

2 Equations

2.1 The momentum equations

The incompressible momentum equation with an added SGS viscosity reads

∂ ūi

∂ t
+

∂
∂x j

(ūiū j) = − 1
ρ

∂ p̄
∂xi

+
∂

∂x j

(
(ν +νsgs)

∂ ūi

∂x j

)
(1)

2.2 The turbulence model

The dynamic Smagorinsky is used, which reads

νsgs = CΔ 2|s̄|, s̄i j =
1
2

(
∂ ūi

∂x j
+

∂ ū j

∂xi

)
, |s̄| = (2s̄i j s̄i j)

1/2 (2)

The dynamic coefficient is computed as

C = − 〈Li jMi j〉z

〈2Mi jMi j〉z

Mi j =
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s |
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)
, Li j ≡

︷ ︷
ūiū j −

︷︷̄
u i

︷︷̄
u j

(3)

where ︷︷. and 〈.〉z denote test filtering and spanwise averaging, respectively. The
dynamic coefficient is limited to avoid negative total viscosity, i.e. ν +νsgs ≥ 0.
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2.3 The Numerical Method

An incompressible, finite volume code is used [6]. For space discretization, central
differencing is used for all terms in the momentum equations. The Crank-Nicolson
scheme (with α = 0.5) is used. Convective boundary conditions are used at the outlet.
The numerical procedure is based on an implicit, fractional step technique with a
multigrid pressure Poisson solver [7] and a non-staggered grid arrangement.

2.4 Inlet boundary conditions

A fluctuating velocity field is generated each time step using a synthetic isotropic
turbulence generator [4]. The velocity fields are independent of each other, however,
and their time correlation will thus be zero. This is unphysical. To create correlation
in time, new fluctuating velocity fields, U ′

i , are computed based on an asymmetric
time filter.

U ′m
i = aU ′m−1

i +bu′mi . (4)

Here, m denotes the time step number, and a = exp(−Δ t/T ); Δ t and T denote
the computational time step and a prescribed turbulent time scale, respectively. The
asymmetric time filter resembles the spatial digital filter presented in [9]. The second
coefficient is taken as b = (1−a2)0.5 which ensures that 〈U ′2

i 〉 = 〈u′2i 〉 (〈·〉 denotes
averaging). The time correlation of U ′

i will be equal to exp(−Δ t/T ), and thus Eq. 4
is a convenient way to prescribe the turbulent time scale of the fluctuations. The inlet
boundary conditions are prescribed as

ūi(0,y,z, t) = Ui,in(y)+U ′m
i (y,z) (5)

Ui,in(y) denotes the mean inlet profile, which is taken from a DNS of fully developed
channel flow at Reτ = 500. For greater detail, see [4].

The turbulent length scale and time scale are set to Lt = 0.1H/2 and T =
0.05(H/2)/uτ ,in (see Fig. 1), respectively. The RMS amplitudes of the inlet fluc-
tuations are scaled so that urms,in = vrms,in = wrms,in = uτ .

The synthetic fluctuations created with the method presented above yield homo-
geneous turbulence in the inlet plane, i.e. urms,in, vrms,in, and wrms,in are constant (and
equal) across the entire inlet plane. The fluctuations must be reduced near the wall so
that they go smoothly to zero as the wall is approached; this is done for n/H � 0.016,
where n is the distance to the closest wall.

3 Results

3.1 Diffuser

The configuration is an asymmetric plane diffuser with Reynolds number Re =
Ub,inH/ν = 18000, see Fig. 1. The opening angle is 10o. The inlet bulk velocity,
the channel height at the inlet and the density are set to one, so that ν = 1/Re. The



272 Lars Davidson

dynamic Smagorinsky model is used, and predictions are compared with experi-
ments [1]. The mesh in the x−y plane has 256×64 (Nx ×Ny) or 512×64 cells (two
cells in the x direction in the latter mesh correspond to one cell in the former mesh).
In the z direction, Nz = 32, 64 or 128. In the inlet region, the friction Reynolds num-
ber based on half the channel height is approximately 500, which gives a spanwise
grid size of Δz+ = (125,62,31) for Nz = (32,64,128). The time step is Δ t = 0.023
for Nx = 512 and Δ t = 0.039 for Nx = 256; this results in a maximum instantaneous
Courant number of 1.9. Time averaging is carried out over approximately 60 000
time steps. All simulations are made on a Linux PC using a single core. One or two
global iterations are required each time step to reach convergence. The CPU time for
the finest mesh (512×64×128) is 45s per time step (two iterations per time step).

Fig. 1. Plane asymmetric diffuser (not to scale). L1 = 7.9H, L = 21H, L2 = 28H. The spanwise
width is zmax = 4H. The origin of x− y− z is at the lower wall at the entrance of the diffuser.

Figure 2 compares the predicted velocity profiles with experiments [1]. The
agreement is not especially good for any resolution. LES simulations were also pre-
sented in [11]. Their meshes were similar; they employed the same turbulence model
and their domain was shorter but had the same spanwise extent. They did use a finer
mesh in the wall-normal direction and different inlet boundary conditions. However,
the aim of the present work is not to achieve as good an agreement with experiments
as possible but to evaluate the resolution for different grids.

The resolved shear stresses are presented in Fig. 3. The agreement is reasonable
for x ≥ 13H but the stresses are overpredicted compared with experiments for x ≤
6H. All resolutions give very similar shear stresses.

Below we will make a detailed comparison of the flow at one streamwise position
where the flow is attached (x = −H) and one where the flow exhibits incipient sepa-
ration (x = 20H). At x = −H the ratio of streamwise to the spanwise cell side is 0.3
for Nz = 32 and Nx = 512; at x = 20H the corresponding ratio is one. Figures 4 and 5
show the shear stresses. As can be seen, the spanwise resolution is very important
in the attached boundary layer, but the effect of the streamwise resolution is almost
negligible. Also the spanwise resolution is unimportant in the incipient separation
region, and all grids give virtually identical resolved shear stresses. Since it is seen
that the streamwise resolution has no effect, we concentrate hereafter on comparing
the spanwise grid resolutions for the coarse streamwise grid (Nx = 256).

Figure 6 presents the two-point correlation (Bww(ẑ) = 〈w′(z)w′(z− ẑ)〉). The cor-
relations are presented at x =−H (attached flow) and x = 20H (incipient separation)



How to estimate the resolution of an LES of recirculating flow 273

Fig. 2. 〈ū〉/Ub,in profiles. Top: Nx = 256 cells; bottom: Nx = 512 cells. : Nz = 32; :
Nz = 64; : Nz = 128; markers: experiments [1].

Fig. 3. 〈u′v′〉/U2
b,in profiles. Top: Nx = 256 cells; bottom: Nx = 512 cells. For legend, see

caption in Fig. 2. Markers: experiments [1].

at y locations for which the magnitude of the resolved shear stress is large (see Figs. 4
and 5). The resolution for the coarse grid (Nz = 32) is indicated by markers in Fig. 6.
As can be seen, the normalized two-point correlation at x =−H (Fig. 6a) for Nz = 32
falls to 0.1 within a separation distance of two cells. This means that the largest scales
are resolved by only two cells, i.e. they are not resolved at all. For the medium mesh
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Fig. 4. 〈u′v′〉/U2
b,in profiles. x = −H. Left: Nx = 256 cells; right: Nx = 512 cells. For legend,

see caption in Fig. 2.

Fig. 5. 〈u′v′〉/U2
b,in profiles. x = 20H. Left: Nx = 256 cells; right: Nx = 512 cells. For legend,

see caption in Fig. 2.

(Nz = 64) and the fine mesh (Nz = 128), the two-point correlations fall to 0.1 within
four and eight cells, respectively. Clearly, both the coarse and medium meshes are
too coarse. The resolution however is good in the separation region (Fig. 6b). Even
in the case of the coarse grid, the largest scales are covered by some ten cells.

The integral length scale, Lint,w, is computed from the two-point correlations as

Lint,w(x,y, ẑ) =
1

w(x,y)2
rms

∫ zlimit

0
〈w′(x,y,z, t)w′(x,y,z, t)〉dẑ (6)

where the averaging 〈.〉 is done, as usual, in time (t) and the spanwise direction (z).
The upper boundary of the integral, zlimit , is zmax or when the normalized two-point
correlation falls below a small value (= 10−4). As can be seen in Fig. 7, Lint,w is
reduced when the grid is refined. Figure 7 also confirms that the spanwise domain is
sufficiently large, since Lint,w < 0.5zmax = 2H.

The energy spectra corresponding to the two-point correlations (Fig. 6) are shown
in Fig. 8. The smallest wavenumber is κz,min = 2π/zmax = 2π/4H = 1.57/H. The
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Fig. 6. Normalized two-point correlation Bww(ẑ)/w2
rms. Nx = 256. Left: x = −H, y = 0.15H;

right: x = 20H, y = −2.9H. Markers on the solid line show the coarse resolution. For legend,
see caption in Fig. 2.

Fig. 7. Integral length scale, Lint,w computed from Bww, see Eq. 6. (y−ylow)/(yhigh −ylow) =
0.15. For legend, see caption in Fig. 2.

largest wavenumber must be resolved by more than two cells, which for Nz = 32
gives κz,max < 2π/(2Δz) � 25/H. The decay of Eww with wavenumber is small for
the coarse mesh. However, the energy spectra for the medium and the fine mesh
exhibit a decay versus wavenumber close to −5/3, indicating that the turbulence
is well resolved. Still, as seen from the two-point correlation, the largest scales on
the medium mesh are resolved by only four cells, which must be considered to be
insufficient. Hence, it seems that energy spectra are not suitable for estimating the
resolution. The energy spectra all exhibit a pile-up of energy at the largest wavenum-
ber, and this indicates that the SGS dissipation is too small at these wavenumbers.

In the incipient separation region, Fig. 8b, all spectra show a decay slightly larger
than −5/3, indicating a sufficient resolution. This indication agrees with the two-
point correlations (Fig. 6b) for which it was seen that the largest scales are resolved
by at least ten cells, even on the coarse mesh.

The energy spectra, Eww(κz), presented in Fig. 8 were obtained by Fourier trans-
forming (FFT) the corresponding two-point correlation, Bww(ẑ). This can be done
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Fig. 8. Energy spectra Eww(kz). The thick dashed line shows −5/3 slope. Nx = 256. Left:
x = −H, y = 0.15H; right: x = 20H, y = −2.9H. For legend, see caption in Fig. 2.

Fig. 9. Energy spectra Eww( f ) vs. frequency. The thick dashed line shows −5/3 slope. Nx =
256. Left: x = −H, y = 0.15H; right: x = 20H, y = −2.9H. For legend, see caption in Fig. 2.

only if z is a homogeneous coordinate direction, i.e. if the predictions were carried
out using periodic boundary conditions in the z direction. This is of course not the
case in general. The only way to create energy spectra is generally to Fourier trans-
form the time history of a variable (e.g. a velocity component) at a given point.
The time signal is usually chopped up into small segments, making an FFT of each
segment using an overlap of the segments and then averaging the spectra of all seg-
ments. Special treatment is given here to make the signal in each segment periodic.
Here, the pwelch command in Matlab is used setting the length of each segment
to NT = 256 (the time signal was created by sampling every fifth time step). The
pwelch command reads

[pw1 fw1] = pwelch(w1,NT, [], [],1/(5∗dt));

where w1, f w1, pw1 and dt denote the resolved spanwise velocity, w′, the frequency,
the square of the Fourier coefficients and the computational time step, respectively.
The length of the w1 vector is approximately 10000.
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Fig. 10. Ratio of SGS to resolved Reynolds shear stress. Nx = 256. Left: x = −H; right:
x = 20H. For legend, see caption in Fig. 2.

Fig. 11. Ratio of SGS to physical viscosity. Nx = 256. Left: x = −H; right: x = 20H. For
legend, see caption in Fig. 2.

Figure 9 presents the spectra versus frequency. At x =−H, all spectra are flat for
f smaller than 1Hz; for larger frequencies, they exhibit a −5/3 decay or steeper. At
x = 20H, the spectra for the three resolutions are very similar and exhibit a rather
steep decay for f > 0.1Hz. The steep decay is related to the fact that the time signal
has been sampled with a frequency higher than that corresponding to a local Courant
number of one. The vertical lines in Fig. 9b show the frequency based on the time
averaged velocity over the spatial grid size, 〈ū〉/Δx. Frequencies above this threshold
correspond to “over-resolution” in time, i.e. the local Courant number is smaller than
one. In Fig. 9a the Courant number based on the sampling frequency (every fifth
time step), is close to three, i.e. the frequency, 〈ū〉/Δx, is equal to approximately 14.
The conclusion drawn from the spectra presented in Figs. 8 and 9 is that they do
not present a reliable picture of the resolution. Considering Fig. 9a it seems that all
three simulations are well resolved, and Fig. 8a indicates that the prediction with the
medium mesh is well resolved. However, the two-point correlation (Fig. 6a) shows
that it is only the simulation on the fine mesh (Nz = 128) that is reasonably well
resolved.
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Fig. 12. Exact (left) and approximated (right) dissipation energy spectra of a spanwise com-
ponent of viscous dissipation versus spanwise wavenumber. For legend, see caption in Fig. 2.
x = −H, y = 0.15H

The relation between modelled (SGS) and resolved turbulence can be used as an
estimate of how well the turbulence is resolved. Large SGS stresses could indicate
a poorly resolved simulation. Figure 10 presents the ratio of the SGS shear stress to
the resolved one. As can be seen, the SGS shear stress is negligible in the incipi-
ent separation region while it reaches values of approximately 25% in the turbulent
boundary layer at x = −H for the coarse mesh.

Figure 11 shows the ratio of the turbulent viscosity to the physical one. For the
coarse mesh, the ratio reaches a value of approximately 12 in the incipient separation
region while it is three times smaller (approximately 4) in the attached flow region.
Both ratios 〈τsgs,12〉/〈u′v′〉 and 〈νsgs〉/ν behave consistently: the better the resolu-
tion, the smaller they are. However, the ratio 〈νsgs〉/ν is larger at x = 20H than at
x = −H which should indicate that the turbulence is worse resolved at the former
location than at the latter which is incorrect. Hence, this quantity is not reliable for
estimating the resolution.

It is commonly assumed that the SGS dissipation is largest at wavenumbers close
to the cut-off. To investigate at which wavenumber the SGS dissipation does takes
place, we will investigate the dissipation energy spectra. Since the spanwise coordi-
nate, z, is a homogeneous coordinate direction, it is suitable to investigate the energy
spectrum of the spanwise component of the SGS dissipation including a spanwise
derivative, for example ∂w′/∂ z. A discrete Fourier transform of ∂w′/∂ z is formed as

D̂z(kz) =
1
Nz

Nz

∑
n=1

∂w′(n)
∂ z[

cos

(
2π(n−1)(kz −1)

Nz

)
− ısin

(
2π(n−1)(kz −1)

Nz

)] (7)

where D̂z are the complex Fourier coefficients of ∂w′/∂ z. Then the power spectral
density (PSD) of ∂w′/∂ z, i.e. D̂z ∗ D̂∗

z , where superscript ∗ denotes a complex con-
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Fig. 13. Exact (left) and approximated (right) dissipation energy spectra of a spanwise com-
ponent of viscous dissipation versus spanwise wavenumber. For legend, see caption in Fig. 2.
x = 20H, y = −2.9H

Fig. 14. Instantaneous velocity. Left: x = −H, y = 0.15H; right: x = 20H, y = −2.9H. ,
◦: Nk = 32, w̄; , +: Nk = 64, w̄−0.1; , �: Nk = 128, w̄+0.13.

jugate, can be formed. The time-averaged value of (∂w′/∂ z)2 can be computed both
in physical and wavenumber space, i.e.〈(

∂w′

∂ z

)2
〉

=
Nz

∑
kz=1

〈D̂z ∗ D̂∗
z 〉 =

Nz

∑
kz=1

PSD

(
∂w′

∂ z

)
(8)

The square of the Fourier coefficients, i.e. D̂z ∗ D̂∗
z , is computed, and time and span-

wise averaged at run-time in the LES code.
The viscous dissipation corresponding to ∂w′/∂ z for x = −H is shown in

Fig. 12a. As can be seen, it is largest at surprisingly small wavenumbers. In the

inertial subrange with a κ−5/3
z behaviour, the viscous dissipation should – according

to Eq. 9 – vary as κ1/3
z .

For x = −H the peaks of the spectra occur at kz = 7, kz = 9 and kz = 9 for
the coarse, medium and fine mesh, respectively (the first wavenumber represents
the mean, which is equal to zero). This means that derivative ∂w′/∂ z′ is largest for
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Fig. 15. Exact dissipation energy spectra of the SGS dissipation, versus spanwise wavenumber.
Left: x = −H, y = 0.15H; right: x = 20H, y = −2.9H. For legend, see caption in Fig. 2.

a length scale of � = zmax/6 � 5 cells, zmax/8 = 8 cells and zmax/8 = 16 cells for
the coarse, medium and fine mesh, respectively. In the incipient separation region
the derivatives are largest at even larger length scales (Fig. 13a), which is reason-
able, since the large scales are much larger and better resolved (see the two-point
correlations in Fig. 6); we obtain � = zmax/3 � 10 cells, � = zmax/2 = 32 cells and
� = zmax/2 = 64 cells for the coarse, medium and fine mesh, respectively.

The spanwise component of the viscous dissipation, εwz, can also — in theory —
be obtained from [8]

εwz = 2ν

〈(
∂w′

∂ z

)2
〉

= 2ν
∂ 2Bww(ẑ)

∂ ẑ2

∣∣∣∣
ẑ=0

= 2ν
Nz

∑
kz=1

κ2
z Eww(kz) (9)

where κz = 2π(kz − 1)/zmax. However, this relation is not satisfied at the discrete
level, because derivative ∂w′/∂ z cannot be evaluated exactly in a finite-volume ap-
proach; the expression in Eq. 9 is based on an exact evaluation of the derivative. The
viscous dissipation, εwz, for x = −H is presented in Fig. 12b. In theory, the spectra
presented in Figs. 12a and 12b should be equivalent. However, as can be seen, there
is a large discrepancy between the spectra, especially at high wavenumbers. This
discrepancy is a measure of the insufficient accuracy of the finite volume method for
evaluating ∂w′/∂ z at high wavenumbers (small scales).

Figure 13 presents the exact and approximated spectra in the incipient separation
region. The picture is much the same: the maximum dissipation takes place at small
wavenumbers, and there is a discrepancy between the exact and the approximated
spectra, although the difference is smaller than for x =−H. The difference is actually
very small for the fine mesh (Nk = 128), which indicates that the resolution is good
(which is correct judging from the two-point correlation). Comparison of the exact
and the approximated spectra could be an interesting approach estimating resolution.
Unfortunately, it requires a homogeneous flow direction.

To get a more visual picture of how well the spanwise velocity component is
resolved, Fig. 14 presents the w′ velocity at one chosen instant. As can be seen,
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the coarse grid results are very poorly resolved and the profile exhibits odd-even
oscillations. Each peak is resolved by at least two nodes at the medium mesh, but
the velocity profile does not look physical. The finest mesh shows a tendency to be
well resolved. The situation at x = 20H is completely different. The velocity profiles
on both the medium and the fine grid are very well resolved. The w′ profile obtained
with the coarse grid exhibits some odd-even oscillations but its behavior generally
seems to be physical. It should be pointed out that the information from instantaneous
pictures can be misleading and that it is safer to look at time-averaged quantities.

We present energy spectra of the spanwise derivative of w′ in Figs. 12 and 13 and
we assume that these spectra are representative for the spectra of the SGS dissipation.
Let us check this assumption. To analyze the spectra of the total dissipation, a DFT
is created by replacing ∂w′/∂ z in Eq. 7 with the square-root of the instantaneous

dissipation, i.e. ε1/2
sgs,inst (see Eq. 10). Figure 15 presents the energy spectra of the

SGS dissipation. The first wavenumber, which corresponds to εsgs,mean (see Eq. 11),
is omitted. The peaks are located at approximately the same κz as those in Figs. 12
and 13, but the peaks in the former ones are more dominant x = −H. The amplitude
in the SGS spectra also differ more for the different grids than those in Figs. 12 and
13; this is most likely related to the different SGS viscosities for the different grids,
see Fig. 11.

Contrary to the case in RANS, where the main role of the turbulence viscosity is
to act as a diffusion term in the momentum equation, the main objective of the SGS
viscosity in LES is to dissipate resolved turbulent kinetic energy, kres = 0.5〈u′iu′i〉. The
contribution of diffusion of the SGS viscosity in LES is usually negligible compared
to that of the resolved turbulence. The SGS dissipation term in the kres reads [3]

ε ′sgs =
〈

(τi j,sgs −〈τi j,sgs〉)
∂u′i
∂x j

〉
=
〈(

νsgs
∂ui

∂x j

)′ ∂u′i
∂x j

〉

=
〈
νsgs

∂ ūi

∂x j

∂ ūi

∂x j

〉
−
〈
νsgs

∂ ūi

∂x j

〉〈
∂ ūi

∂x j

〉
= εsgs −

〈
νsgs

∂ ūi

∂x j

〉〈
∂ ūi

∂x j

〉 (10)

where the right side on the first line is obtained because the cross-diffusion term has
been omitted in the momentum equations (see Eq. 1). The SGS viscosity also appears
in the dissipation term in the K equation, see Fig. 16, which reads [3]

εsgs,mean = 〈τi j,sgs〉
∂ 〈ūi〉
∂x j

=
〈
νsgs

∂ ūi

∂x j

〉
∂ 〈ūi〉
∂x j

(11)

which sometimes may be approximated as

εsgs,mean,approx = 〈νsgs〉
∂ 〈ūi〉
∂x j

∂ 〈ūi〉
∂x j

(12)

In the same manner, Eq. 10 may sometimes be estimated as

ε ′sgs,approx =
〈
νsgs

∂ ūi

∂x j

∂ ūi

∂x j

〉
−〈νsgs〉

〈
∂ ūi

∂x j

〉〈
∂ ūi

∂x j

〉
(13)
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Fig. 16. Transfer of kinetic turbulent energy between time-averaged, resolved and SGS kinetic
energy. K = 1

2 〈ūi〉〈ūi〉 and kres = 1
2 〈u′iu′i〉 denote time-averaged kinetic and resolved turbulent

kinetic energy, respectively. ksgs denotes time-averaged SGS kinetic energy. The dissipations,
ε ′sgs and εsgs,mean, are defined in Eqs. 10 and 11.

Fig. 17. Ratio of dissipation due to resolved fluctuations, ε ′sgs, to total SGS dissipation, εsgs =
εsgs,mean + ε ′sgs. Left: x = −H; right: x = 20H. For legend, see caption in Fig. 2.

It is found that the approximations, Eqs. 12 and 13, agree within 10% with their
corresponding exact expressions in Eqs. 11 and 10. However, when the turbulent
viscosity is large – such as in the URANS region in hybrid LES-RANS [5] – the
approximation is inaccurate.

The transfer of turbulent kinetic energy is illustrated in Fig. 16. The right part
of the figure (i.e. ε ′sgs) vanishes in RANS whereas it dominates in a well-resolved
LES. Hence, to estimate how well the turbulence is resolved, it may be interesting
to compare ε ′sgs and εsgs,mean. This is done in Fig. 17. At x = −H, ratio ε ′sgs/εsgs is
larger than 60%, even for the coarse mesh, for y > 0.1. In the incipient separation
region The ratio is larger than 94% in the incipient separation region for all three
meshes. Ratio ε ′sgs/εsgs – like that of shear stresses (Fig. 10) and viscosities (Fig. 11)
– behaves consistently when the resolution is refined, but it is difficult to define a
value above which the flow can be defined to be well resolved.
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Fig. 18. Decaying grid turbulence. Energy spectra. t = 2. : fine LES; : DNS; :
coarse LES; Marker: experiments [2]. The thick dashed line shows −5/3 slope.

Fig. 19. Decaying grid turbulence. Dissipation energy spectra. t = 2. Exact (left) and approx-
imated (right). : fine LES; : DNS; : coarse LES.

3.2 Decaying isotropic grid turbulence

Above it was found that the peak of the SGS dissipation for the diffuser flow is largest
at relatively low wavenumbers. This section discussed LES and DNS of decaying
isotropic grid turbulence. The objective is to investigate at which wavenumbers the
dissipation takes place for DNS and well-resolved LES.

The initial velocity field at t = 0 is generated from the experimental energy spec-
trum [2] using the synthetic method in [4]. The domain is a cubic box of side 2π .
Three computations were carried out:

1. fine LES using a Smagorinsky model with CS = 0.1 on a 1283 grid;
2. DNS on a 1283 grid;
3. coarse LES using a Smagorinsky model with CS = 0.1 on a 643 grid.

Figure 18 presents the one-dimensional energy spectra computed from the two-
point correlations. The predicted amplitudes are scaled so that u2

rms agrees with the
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Fig. 20. Energy spectra. SGS dissipation according to the idealized picture (a) and SGS dissi-
pation according to the present work (b).

experimental value; the scaling factors are approximately equal to two. All spectra
agree fairly well with the experimental spectrum and they have a −5/3 decay over
a rather large wavenumber range (the fine grid more than a decade). All predicted
spectra exhibit a pile-up of energy at the largest wavenumbers. The pile-up is, as
expected, smallest for LES on the 1283 mesh because the fine resolution together
with the SGS model helps to dissipate the smallest scales. On the coarse 643 grid, the
resolution is too coarse and the SGS model does not succeed in introducing sufficient
SGS dissipation at the smallest scales to compensate for the poor resolution.

Figure 19a shows that the peak of the fluctuating velocity gradients occurs
at wavenumbers kz = 14, kz = 14 and kz = 12 for the fine LES, the DNS and
the coarse LES, respectively. This gives length scales of � = zmax/13 � 9 cells,
zmax/13 � 9 cells and � = zmax/11 � 6 cells, respectively. As expected, we find that
the SGS model on both the the fine and the coarse mesh moves the location of the
peak in the fluctuating velocity gradients towards slightly smaller wavenumbers com-
pared to the DNS. Moreover, it can be seen that the LES on the fine and coarse grids
gives the same location of the peak, indicating that – except for the smallest scales –
the coarse resolution is sufficient.

The approximated spectra in Fig. 19b all exhibit a maximum at the highest
wavenumbers. This is in accordance with the pile-up of energy in the energy spectra,
confirming that the smallest scales are not well resolved on any grid.

In conclusion, it is found that also for DNS and well-resolved LES, the dissipa-
tion takes place at surprisingly small wavenumbers.

4 Concluding remarks

Various ways of estimating resolution in recirculating flow have been considered.
It is concluded that the most useful quantity for estimating resolution are two-

point correlations. They show by how many cells the largest scales are resolved. It is
then up to the CFD user to judge how many cells are required; at least eight to ten
cells seems to be reasonable.
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The energy spectra do not give reliable information about the resolution.
The ratio of the SGS to the molecular viscosity, 〈νsgs〉/ν , and the ratio of the SGS

to the resolved shear stress behave consistently upon grid refinement, i.e. they de-
crease. However, the ratio 〈νsgs〉/ν indicates incorrectly that the turbulence is better
resolved in the attached flow region of the diffuser than in the incipient flow region.
Hence, the ratio 〈νsgs〉/ν is not a reliable quantity for estimating the resolution.

Energy spectra of resolved fluctuating gradients and SGS dissipation give infor-
mation about the wavenumbers at which the SGS dissipation takes place. It is com-
monly assumed that the SGS dissipation occurs close to the cut-off wavenumber, see
Fig. 20a. The present study (as was found also for channel flow in [5]), however,
show that this idealized picture is not true. Instead the SGS dissipation takes place
at rather low wavenumbers, see Fig. 20b. Note that this conclusion does not apply
for spectral methods for which the relation Eq. 9 is valid; in these methods ε ∝ κ1/3

applies in the inertial region, see for example [10]. In the present study the length
scales related to the peaks of the SGS dissipation correspond to approximately 10
cells (spanwise direction) in attached flow and much more in the incipient separation
region. This was confirmed in DNS and well-resolved LES of decaying grid turbu-
lence. The disadvantage of these quantities is that they can only be used in flows that
possess a homogeneous direction, which is seldom the case in real flows.

Time-averaged velocity gradients and the resolved fluctuating velocity gradient
both contribute to SGS dissipation, denoted by εsgs,mean and ε ′sgs, respectively. The
latter is zero in RANS, whereas it dominates in well-resolved LES. Hence, the ratio
ε ′sgs/(ε ′sgs + εsgs,mean) may be useful in evaluating resolution. It is found that this
ratio is very large in recirculating flow (more than 94%), revealing good resolution.
However, as mentioned with respect to the ratio of the shear stresses and and the
viscosities, it is difficult to give any recommendations for threshold values.
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Summary. The performance of a class of explicit and implicit dynamic finite difference
schemes [3, 2] is investigated for the Large-Eddy Simulation of the three-dimensional Taylor-
Green Vortex flow [1], in which the dynamic Smagorinsky model and the small-small mul-
tiscale Smagorinsky model are used. The numerical errors and the modeling errors and their
interactions are investigated.
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LES, Taylor-Green Vortex

1 Dynamic Finite Difference Approximations

1.1 Construction

Assume a vector field u(x, t) defined in continuum space R
q, q ∈ {1,2,3}. To sim-

plify the notation, we restrict the formulas to one spatial dimension q = 1 and we do
not write explicitly the dimension in time, such that u(x, t) = u(x) , x ∈ R. Consider
further a one-dimensional uniform Cartesian node distribution with spacing Δ . Con-
sider the Taylor series expansion of the kth-order implicit central finite difference
approximation for the nth derivative of the continuous and infinitely differentiable
field u(x) , x ∈ R, in a node x = xi.

q

∑
l=−q

αl
∂ nu
∂xn (xi+l) =

r

∑
j=−r

β j

Δ n u
(
xi+ j

)
+

∞

∑
k′=k

c∗k′,nΔ
k′ ∂ k′+nu

∂xk′+n
(xi) , (1)

in which αl and β j represent the implicit and explicit weighting coefficients, and c∗k′,n
denote the truncation series coefficients. Note that explicit schemes form a subclass,
for which αl = 0, ∀l �= 0. Consider further a similar kth-order implicit finite dif-
ference approximation for the nth partial derivative on the same computational grid
with grid spacing Δ , but expressed as if the grid resolution were αΔ , α ∈ N such
that the stencil width for the explicit part is 2αr+1 whereas that for the implicit part
is 2αq+1. The Taylor series expansion then reads
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q

∑
l=−q

αl
∂ nu
∂xn (xi+αl)=

r

∑
j=−r

β j

(αΔ)n u(xi+α j)+
∞

∑
k′=k

c∗k′,n (αΔ)k′ ∂ k′+nu

∂xk′+n
(xi) . (2)

We proceed by dicretisation of the leading order truncation term in expressions (1)
and (2), and replacing the theoretical coefficient c∗k,n with a new coefficient ck,n,
which we determine by comparing the Taylor expansions on both resolutions. In-
troducing further a blending factor f in the discretized leading order truncation term
of the coarse resolution equation (as done in [3, 2]), the finite difference schemes are
written as

q

∑
l=−q

αl
∂ nu
∂xn (xi+l) ≈

r

∑
j=−r

β j

Δ n u
(
xi+ j

)
+ ck,nΔ k δ k+nu

δxk+n

∣∣∣∣
Δ

(3)

q

∑
l=−q

αl
∂ nu
∂xn (xi+αl) ≈

r

∑
j=−r

β j

(αΔ)n u
(
xi+α j

)

+ ck,n (αΔ)k

{
f
δ k+nu
δxk+n

∣∣∣∣
αΔ

+(1− f )
δ k+nu
δxk+n

∣∣∣∣
Δ}

. (4)

The purpose of the blending factor f will be explained later. The truncation error
O
(
Δ k
)
, related to expression (3), is given by

∞

∑
k′=k

c∗k′,nΔ
k′ ∂ k′+nu

∂xk′+n
− ck,nΔ k

{
∂ k+nu
∂xk+n −

∞

∑
k′=2

c∗k′,k+nΔ
k′ ∂ k′+k+nu

∂xk′+k+n

}
. (5)

A similar expression can be found for the truncation error of (4). Assume now that
the discrete non-smooth field u(x) is characterized by a cutoff wavenumber κc > 0,
such that the spectral content on the computational grid (related to the smoothness of
u) is limited to the range [0,κc/κmax]. Then, one can understand that an optimal value
for ck,n may be found, for which a norm of the magnitude of (5) is minimal in the
spatial domain. This is equivalent of minimizing the dispersion error of the resulting
central finite difference scheme, weighted with the energy spectrum of u(x), over
the interval [0,κc/κmax]. Such a value of ck,n, generally results in a finite difference
approximation of order O

(
Δ k
)
, unless ck,n = c∗k,n, for which it yields O

(
Δ k+2

)
.

This approach, which is equivalent to the Dispersion-Relation Preserving approach,
is more advantageous than increasing the order of accuracy a priori [6]. It was shown
in [3] that the optimal coefficient ck,n can be determined by minimizing the difference
between the truncated equations (3) and (4). Subtracting (3) and (4), the following
symbolic expression for the difference between both approximations is obtained

E = L + ck,nM = O
(
(αΔ)k

)
−O
(
Δ k
)

. (6)

The terms L and M, which are readily found by identification in the former subtrac-
tion, can be further simplified [2], yielding
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L = c∗k,n
(
αk −1

)
Δ k δ k+nu

δxk+n

∣∣∣∣
Δ

(7)

M =
(

1−αk
)
Δ k δ k+nu

δxk+n

∣∣∣∣
Δ

−αkΔ k f

{
c∗2,k+n

(
1−α2)Δ 2 δ k+n+2u

δxk+n+2

∣∣∣∣
Δ}

(8)

where c∗2,k+n is a constant coefficient known from the Taylor series expansion. The
optimal coefficient ck,n can then be determined from (6) by minimizing E using a
least squares approach, i.e. ∂

∂ck,n

〈
E 2
〉

= 0, where 〈·〉 denotes an averaging operator,

resulting in the dynamic coefficient

cdyn
k,n = − 〈LM〉

〈MM〉 . (9)

In the current work, only global spatial averaging is considered for the finite differ-
ence schemes. Once cdyn

k,n is calculated, its value can be used in the finite difference
approximation (3). However, since an explicit finite difference approximation for the
(k +n)th derivative is used, the stencil of (3) is then strictly required for this implicit
scheme. This is remedied by substituting the explicit (k +n)th derivative by an im-
plicit formulation, which is equivalent of writing (3) immediately in its most compact
formulation. We finally obtain the compact implicit discretization

q

∑
l=−q

[
αl −

cdyn
k,n

c∗k,n

(
αl −α ′

l

)] ∂ nu
∂xn (xi+l) ≈

r

∑
j=−r

β j

Δ n

[
1−

cdyn
k,n

c∗k,n

]
u
(
xi+ j

)

+
cdyn

k,n

c∗k,n

r+1

∑
j=−r−1

β ′
j

Δ n u
(
xi+ j

)
, (10)

where α ′
l and β ′

j denote the weighting coefficients of the k +2nd-order implicit finite
difference approximation. Although for the higher derivatives in (7) and (8) again
compact Padé schemes may be used, in this work they are obtained using explicit
approximations for reasons of simplicity. The resulting dynamic scheme (10) has a
formal order of accuracy k unless cdyn

k,n = c∗k,n, which would lead to order k +2.

1.2 High-Reynolds Calibration.

In the following, the role of f and its impact on the resulting coefficient cdyn
k,n are

briefly discussed

1. If f = 0, one notices that cdyn
k,n = c∗k,n, regardless the specific spectral character-

istics of u. Then, expression (10) is an approximation with formal asymptotic
order of accuracy O

(
Δ k+2

)
, which makes the dynamic procedure equivalent to

Richardson’s Extrapolation.
2. Assuming a very smooth field u(x) for which κc/κmax → 0, the difference (6)

may be considered negligible, i.e. E ≈ 0, such that the dynamic coefficient can
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be obtained directly from (6). Applying a small perturbation analysis on this
expression [2], showed that if κc/κmax → 0, the blending factor approaches its
asymptotic value

f ∗ =
1−αk

αk (1−α2)

c∗k+2,n + c∗k,nc∗2,k+n

c∗k,nc∗2,k+n
�= 0, (11)

3. If κc/κmax � 0, one may determine the optimal value of the blending factor f
by calibrating the modified wavenumber κ ′

n
n (κ) of scheme (10), in which the

ratio (9) is transformed in Fourier space [2], for a turbulent spectrum at Re → ∞
with fixed filter-to-grid cutoff ratio κc/κmax, such that the dispersion errors are
minimal in the range [0,κc/κmax]. The obtained value of f guarantees that the
dynamic scheme reaches maximum performance for a Large-Eddy Simulation
at high Reynolds numbers with a maximum filter-to-grid cutoff ratio κc/κmax.
Following [2], the optimal value for the blending factor f is calculated by solving

∂
∂ f

∫ π
Δ

0

(
κn −κ ′

n
n (κ, f )

)2
Eu (κ)dκ = 0. (12)

where Eu (κ) represents the energy spectrum of the flow field u(x). An idealized
and simplified inertial range spectrum for homogeneous isotropic turbulence is
introduced [2], defined as

Eu (κ) = [1−H (κ−κc)]κ−β =
{

κ−β κ < κc

0 κ > κc
, (13)

where β determines the slope of the inertial range and the cutoff wavenumber κc

indicates the highest appearing wavenumber in the (resolved) field u(x). Since
the dynamic finite difference schemes are applied for the pressure derivatives
as well as the velocity derivatives in the Navier-Stokes equations, they are cali-
brated using the appropriate values of β that correspond to the inertial range of
respectively the turbulent velocity u(x), i.e. β = −5/3, and the turbulent pres-
sure field p(x), i.e. β =−7/3. Table 1, gives on overview of the blending factors,
as well as the corresponding value of the dynamic coefficient at κc = 2

3κmax, for
the 2nd - and 4th -order explicit and the 4th -order implicit dynamic finite dif-
ference schemes which are investigated in this work. Note that for β = 0, the
coefficients ck,n, used in the 2nd - and 4th -order explicit and the 4th -order im-
plicit DRP schemes, are obtained directly.

2 Taylor-Green Vortex Setup

The Taylor-Green Vortex, considered as a challenging prototype system that de-
scribes the production of small-scale eddies due to the mechanism of vortex-line
stretching in homogeneous isotropic turbulence [1], was selected to examine the
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n = 1 n = 2

Slope Scheme f cdyn
k,1 f cdyn

k,2

β = − 5
3

Explicit k = 2 0.2555 −0.3088 0.2339 −0.1310
Explicit k = 4 0.2298 0.0740 0.2241 0.0203
Implicit k = 4 0.1241 0.0121 0.1363 0.0069

β = − 7
3

Explicit k = 2 0.2654 −0.2966 0.2353 −0.1293
Explicit k = 4 0.2329 0.0724 0.2248 0.0201
Implicit k = 4 0.1261 0.0120 0.1370 0.0069

β = 0
Explicit k = 2 −0.3344 −0.1345
Explicit k = 4 0.0775 0.0206
Implicit k = 4 0.0119 0.0069

Table 1. Numerically obtained optimal blending factors f and corresponding values of cdyn
k,n

for the inertial range model spectrum at κc = 2
3κmax.

performance of the developed dynamic finite difference approximations. Accord-
ing to Brachet et al. [1], the Taylor-Green Vortex is defined as the periodic three-
dimensional incompressible flow, governed by the Navier-Stokes equations and
the continuity equation which develops from a single initial vortex structure. The
Reynolds number is set to Re = 1500, which corresponds to a Reynolds number
based on the transversal Taylor micro-scale Reλ ≈ 55.

The DNS-solution will serve here as a reference solution against which the var-
ious LES-solutions are compared. The system of equations is directly solved on a
uniform computational grid with 2563 nodes (1283 Fourier modes). These settings
compare well to those of Brachet et al. [1], who used a uniform grid with N3 = 2563

for DNS with Reynolds numbers up to Re = 3000.
The Large-Eddy Simulation is performed on a uniform computational grid with

643 nodes and with grid cutoff wavenumber κmax = π/Δ = 32. The LES equa-
tions that describe the filtered variables u(x, t) and p(x, t) are solved in the double-
decomposition framework. This implies that the nonlinear term and the residual-
stress tensor τ i j = uiu j−uiu j are filtered explicitely with a sharp cutoff filter. This ap-
proach is motivated by two arguments. First, explicit filtering up to κc = 2

3κmax allows
to rigorously preclude aliasing. Secondly, the explicit filtering procedure eliminates
numerical discretization errors in the high-wavenumber region [κc,κmax]. Two resid-
ual stress models for τ i j are considered in this work. First, the dynamic Smagorin-

sky model is used, in which τ i j = −2νeSi j = −2C2
s Δ 2

c S Si j and C2
s is determined by

the dynamic Germano procedure. Secondly, the small-small multiscale Smagorinsky

model is used τ i j = −2
(
νeS′′i j

)′′
= −2C2

s,mΔ 2
c

(
S′′S′′i j

)′′
in which (.)′′, denotes the

band-pass filter [λc,κc] and Cs,m =Csγ
[
γ4/3 −1

]−3/4
, with γ = κc/λc and Cs ≈ 0.17.

The cutoff wavenumber λc that determines the secondary sharp cutoff filter in the dy-
namic procedure or the sharp cutoff scale-separation filter in the multiscale model is
determined as λc = κc/2 = κmax/3.
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For the DNS and the spectral LES, the partial derivatives in the equations are
evaluated in Fourier space by a pseudo-spectral method in order to exclude finite dif-
ference errors from the solution. Further, the skew-symmetric formulation is adopted
for the discretization of the nonlinear term such that it conserves the kinetic energy.
The Navier-Stokes equations are solved by means of the pressure-correction algo-
rithm, in which the pressure is obtained from a Poisson equation. The time stepping is
performed with the explicit low-storage 4-stage Runge-Kutta method with standard
coefficients

[
1
4 , 1

3 , 1
2 ,1
]
. In order to guarantee the numerical accuracy of the adopted

Runge-Kutta time stepping method, a sufficiently small time step Δ t = 0.005 was
chosen for both the DNS and the LES, such that the dispersion and dissipation errors
related to this method remain sufficiently low. For the Large-Eddy Simulations with
the dynamic finite difference schemes, each partial derivative in the Navier-Stokes
equations or the Poisson equation is discretized by the appropriate dynamic finite dif-
ference approximation. The implementation involves the calculation of 36 dynamic
coefficients which can be evaluated at each Runge-Kutta step, that is 4 times per
time step. Since this would lead inevitably to a significant computational overhead,
the coefficients are evaluated every 10th time step, which is expected to be suffi-
cient. The computational overhead is only 1.7% in comparison with DRP schemes
of comparable accuracy.

3 Quality-Assessment

3.1 Error definitions

In order to separate modeling and numerical errors, the error decomposition method
of Vreman et al. [7] and Meyers et al. [4, 5] is adopted. For a specific flow variable
φ , the total error on φ , εφ , is decomposed into a modeling error contribution εφ ,model ,
defined as the difference between φ obtained in the DNS and that of the spectral
LES, and a numerical error contribution εφ ,num, defined as the difference between φ
obtained in the spectral LES and the finite difference LES. The mathematics-based
error norms are then defined as

kεφ (t) =
∫∫∫ κmax

0
Eεφ (κκκ , t)dκκκ =

∫∫∫ κmax

0
ε̂φ (κκκ , t) ε̂φ

∗ (−κκκ, t)dκκκ . (14)

whereas the physics-based error norms are given by

εφ (t) = Δφ =
∫∫∫ κmax

0
κκκ−qΔEu (κκκ , t)dκκκ (15)

in which the parameter q = −1,0,2 determines the specific physics-related quantity
φ , i.e. integral length scale L11, kinetic energy k or dissipation rate ε . Remark that the
sign of εφ could be either positive or negative, enabling to see interactions between
different error sources.
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Fig. 1. The global magnitude kεu,num of the numerical errors on the resolved velocity field
u(x, t), obtained from the Large-Eddy Simulation of the Taylor-Green Vortex with the dy-
namic Smagorinsky model: the laminar stages of the Taylor-Green flow at times 0 ≤ t ≤ 5
(left) and the transitional and turbulent stages at times 5 ≤ t ≤ 14.25 (right). (◦) 2nd -order;
(�) 4th -order; (�) 6th -order; (�) 8th -order; (�) 10th -order; (�) 6th -order Padé; (•) 2nd

-order explicit DRP; (	) 4th -order explicit DRP; (�) 4th -order DRP Padé; (−−−−−) 2nd

-order explicit dynamic; (−−−) 4th -order explicit dynamic; (−·−·) 4th -order dynamic Padé.

3.2 Modeling errors, numerical errors and their interactions

Figure 1 displays the global magnitude of the numerical errors (related to L2-norm)
on the resolved velocity field u(x, t), obtained from the Large-Eddy Simulation with
the dynamic Smagorinsky model. Analogous results were obtained with the Multi-
scale model. It is observed that the dynamic schemes recover the asymptotic order of
accuracy (O

(
Δ k+2

)
) in the early stages of the simulation, i.e t ≤ 2, where the flow is

still smooth and resolved with DNS-resolution. This is in contrast to the Dispersion-
Relation Preserving schemes (O

(
Δ k
)
), which are suboptimal in these situations,

since they have an a priori optimization to a fully developed uniform spectrum. As
soon as the resolution of the computational grid becomes inadequate to resolve all
scales in the flow (the simulation shifts from DNS-resolution to LES-resolution at
t ≈ 2), the dynamic schemes adapt to the instantaneous solution and achieve an
accuracy which is at least as good, or better than that of the Dispersion-Relation
Preserving schemes at all times 2 ≤ t ≤ 14.25. Studying the results in more detail,
the 2nd -order explicit dynamic scheme is observed to achieve the accuracy of the
8th -order central scheme, which is better than that of the corresponding 2nd -order
DRP scheme. The 4th -order explicit dynamic scheme obtains slightly better quality
than the corresponding DRP scheme, which fluctuates between that of the 8th - and
10th -order standard scheme, although the difference becomes very small. Further,
the performance of the 4th -order dynamic implicit finite difference approximation
almost collapses with that of the 4th -implicit DRP Padé scheme and both clearly
outperform all other schemes, including the standard tridiagonal Padé scheme.
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Fig. 2. Numerical error (left) and total error (right) on the kinetic energy k, in the Large-Eddy
Simulation of the Taylor-Green Vortex flow with the multiscale Smagorinsky model model at
t ≥ 7. (◦) 2nd -, (�) 4th -, (�) 6th -, (�) 8th - and (�) 10th -order standard schemes; (�) 6th

-order Padé; (•) 2nd - and (	) 4th -order explicit DRP schemes; (�) 4th -order DRP Padé;
(−−−−−) 2nd - and (−−−) 4th -order explicit dynamic schemes; (−·−·) 4th -order dynamic
Padé.

The impact of the numerics on the kinetic energy k (t) is demonstrated in Figure
2. Results on L11 (t) and ε (t) are very similar. Results are only shown for the tur-
bulent period of the flow at 7 ≤ t ≤ 14.25, since at earlier times the dynamic finite
difference schemes reduce to their asymptotic counterparts. Hence the behaviour
of the dynamic schemes in the early stages is no different from that in the previ-
ous discussion despite the different error measures. It is observed that the numeri-
cal errors of the standard asymptotic finite difference schemes are negative, which
indicates a significant reduction in the dissipation due to numerics. In contrast, the
numerical errors related to the dynamic finite difference schemes and the Dispersion-
Relation Preserving schemes remain positive during the simulation, indicating an
increased dissipation due to the numerics. However, the magnitudes of the errors
are significantly smaller for the dynamic and DRP schemes than for the standard
schemes. Adapting the finite difference schemes for the smallest resolved scales
such that the global dispersion error is minimized remains therefore advantageous.
Hence, the general conclusions that applied to the mathematics-based errors remain
valid for the physics-based errors. One observes that the dynamic finite difference
schemes generally perform better than their Dispersion-Relation Preserving coun-
terparts. This good performance is mainly attributed to the ability of the dynamic
schemes to adapt to changing flow properties and to their high-Reynolds calibra-
tion.

However, a better numerical accuracy does not necessarily lead to a better over-
all performance, as demonstrated by the total error in Figure 2. We observe that
both eddy-viscosity models are too dissipative, despite the use of a multiscale tech-
nique or a dynamic procedure, resulting in a positive sign for the modeling error. As
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a consequence, cancellation of numerical errors and modeling errors are witnessed
for the standard finite difference schemes, due to their opposite signs. This confirms
the results in [4]. It was shown in [4, 2] that these cancellations depend on the spe-
cific quantity that is examined. For instance, the 2nd -order standard scheme leads to
the smallest errors for the kinetic energy, followed by the 4th - and 6th -order stan-
dard scheme. In contrast, the higher-order standard schemes, the Dispersion-Relation
Preserving schemes and the dynamic finite difference schemes, which are believed
to have better spectral characteristics, do not perform as well. Since the numerical
errors of the dynamic and DRP schemes have the same sign as the modeling errors,
they reinforce each other. We note that for subgrid models which have the opposite
sign for the modeling error than of those of eddy-viscosity models, the modeling
errors and numerical errors of the standard schemes would probably reinforce each
other, whereas the modeling errors would cancel out the numerical errors related
to the optimized schemes. Hence, cancellation of different errors depends not only
on the type of numerical schemes, but also on the type of subgrid model. Finally,
it was observed that the multiscale model leads to smaller total errors than the dy-
namic model due to the smaller modeling error contribution. Despite this, only minor
evidence was found that the multiscale model benefits from using more accurate nu-
merical methods, since the modeling errors are still dominant in comparison with the
numerical errors. Hence, the total error will only decrease with increasing numerical
accuracy if the numerical error contributions are dominant and the modeling error
contributions are negligible.

4 Conclusions

In the present work, the performance of a class of explicit and implicit dynamic
finite difference schemes, developed in [3], was assessed for the Large-Eddy Simu-
lations of the Taylor-Green Vortex at Re = 1500, using the dynamic and multiscale
Smagorinsky models. The dynamic schemes succeeded in achieving an optimal ac-
curacy for all resolved scales of motion in the flow at any time, rather than focusing
only on the asymptotic order of accuracy for the largest resolved scales. In contrast
to the DRP schemes, the dynamic schemes systematically recover their potential
asymptotic order of accuracy, provided that all scales of motion in the flow field
are very well resolved on the computational grid. If the flow contains marginally
resolved scales, the dynamic schemes adapt themselves and act similarly to the
DRP schemes. The results showed clearly that the tested dynamic finite difference
schemes obtain lower numerical errors than the standard asymptotic finite difference
schemes, and even the corresponding DRP-schemes, with the same stencil support.
Despite the substantial improvement in numerical accuracy, the dynamic schemes
and other high-order schemes do not necessarily provide a more accurate solution
of the Large-Eddy Simulation, due to advantageous cancellation between numerical
errors and modeling errors for less accurate schemes, although this effect depends
on the type of subgrid model being used.
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with explicit filtering
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Summary. Stochastic Coherent Adaptive Large-Eddy Simulation is a novel approach to the
numerical simulation of turbulence, based upon the wavelet thresholding filter, where the co-
herent energetic eddies are solved while modelling the influence of the less energetic back-
ground flow. In this study, in order to examine the quality and reliability of the method, addi-
tional explicit wavelet filtering is introduced by considering two different filtering levels: the
physical level, which controls the turbulence model, and the numerical level that is responsi-
ble for the accuracy of the numerical simulations. The theoretical basis for explicit filtering
and consistent dynamic modelling is given, and some preliminary numerical experiments are
presented.

Key words: Adaptive Large-Eddy Simulation, Explicit/Implicit Wavelet Filtering, Dynamic
modelling

1 Introduction

The stochastic coherent adaptive large-eddy simulation (SCALES) method is a novel
approach to the numerical simulation of turbulence, where the more energetic coher-
ent eddies are solved, while modelling the effect of the less energetic background
flow [1]. The formal decomposition between resolved coherent and residual coher-
ent/incoherent motions is obtained through the application of wavelet-based filtering.
The space-time evolution of the resolved coherent velocity field is governed by the
wavelet-filtered Navier-Stokes equations, where – similarly to any other LES ap-
proach – the effect of the unknown residual stresses is modelled.

In order to solve the SCALES governing equations in a computationally efficient
manner, the dynamically adaptive wavelet collocation method (AWCM) is used, e.g.
[2]. The AWCM procedure is a variable high-order finite-difference method that ex-
ploits the same wavelet-based filter to automatically adapt the computational grid to
the numerical solution, in both location and scale.

To date, the filtering effect induced by the use of the AWCM has been exploited to
implicitly define the filtered-velocity in the SCALES approach, without performing
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any additional explicit filtering operation. Along this line, the residual stresses have
been referred to and treated as subgrid-scale (SGS) stresses, e.g. [3]. It is worth
noting that the fundamental issue regarding the interaction between LES filtering,
SGS modelling, and numerical errors becomes even more important in the SCALES
approach, where the numerical solver allows for the automatic mesh refinement in
flow regions with inadequate SGS dissipation.

In this study, in order to examine the quality and reliability of the SCALES
methodology, the additional explicit wavelet-filtering procedure is introduced. That
is, two different thresholding levels are clearly considered: the physical level, which
controls the turbulence model, and the numerical level that is solely responsible for
the accuracy of the numerical method. The theoretical basis for SCALES with ex-
plicit filtering is given and some preliminary numerical experiments are carried out
for decaying homogeneous turbulence at moderate Reynolds-number.

2 Explicit wavelet-filtering approach

2.1 Wavelet-filtered velocity

The formal separation between resolved and unresolved flow structures is obtained
through wavelet threshold filtering (WTF), which is performed by applying the
wavelet-transform to the unfiltered velocity field, zeroing the wavelet coefficients be-
low a given threshold, and transforming back to the physical space, e.g. [1, 4]. This
way, the turbulent velocity field is decomposed into two different parts: a coherent
more energetic velocity field and a residual less energetic coherent/incoherent one,
i.e., ui = ui

>ε +u′i, where ui
>ε stands for the wavelet-filtered velocity. Depending on

the choice of the WTF level ε that is dictated by the desired turbulence resolution,
a relatively small number of wavelets are retained in representing the filtered field
ui

>ε .
The high compression property of the wavelet-based decomposition is illustrated

in Table 1, where the percentage of active wavelets and retained energy/enstrophy are
reported as a function of the WTF level for a given turbulent velocity field. The field
considered is a realization of a statistically stationary turbulent flow at Reλ = 126 (λ
being the Taylor microscale) provided by a pseudo-spectral DNS [5]. For instance,
by retaining less than 1% of the 5123 available wavelets, one is able to capture more
than 99% of the energy and almost 90% of the DNS enstrophy.

Table 1. Percentage of active wavelets and retained energy/enstrophy for different WTF levels

level ε wavelets energy enstrophy

0.45 0.11% 97.8% 66.0%
0.35 0.26% 99.0% 78.4%
0.25 0.61% 99.5% 87.0%
0.15 1.86% 99.9% 95.1%
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Fig. 1. Energy spectra for wavelet-filtered velocity fields at different levels of resolution (WTF
level ε = 0.15, 0.25, 0.35, and 0.45)

Furthermore, one of the distinctive features of WTF stands in the ability to cap-
ture coherent energetic eddies of any size. For this reason, the small scale turbulence
can be represented – at least partially – by the wavelet-filtered field. This is illustrated
in Figure 1, where the energy spectra corresponding to different filtering levels are
reported for the above mentioned DNS field.

2.2 Wavelet-filtered equations

The governing equations for SCALES of incompressible turbulent flows are repre-
sented by the following wavelet-filtered continuity and Navier-Stokes equations:

∂ui
>ε

∂xi
= 0, (1)

∂ui
>ε

∂ t
+

∂ui
>ε u j

>ε

∂x j
= − 1

ρ
∂ p>ε

∂xi
+ν

∂ 2ui
>ε

∂x j∂x j
− ∂τi j

∂x j
, (2)

where the unknown subgrid-scale (SGS) stresses

τi j = uiu
>ε
j −u>ε

i u>ε
j (3)

need modelling.
From the mathematical point of view, once the SGS stress tensor is given as a

function of the resolved velocity ui
>ε and suitable initial conditions are provided,
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Fig. 2. Percent of retained wavelets for different numerical thresholds (labels as in Table 2)

the SCALES governing equations can be solved using any numerical method. In
practice, equation (2) is solved using the dynamically adaptive wavelet collocation
method, where the WTF procedure is exploited to automatically adapt the com-
putational grid to the numerical solution, in both location and scale, e.g. [2]. The
use of the AWCM procedure involves an unavoidable built-in filtering effect asso-
ciated to the wavelet numerical threshold εg that is used to control the numerical
errors. When this induced filtering operation is exploited to unambiguously define
the wavelet-filtered velocity assuming ε = εg, there is no reason to discern between
explicit and implicit wavelet-filtering, e.g. [3]. However, since the choice of a rel-
atively high threshold level εg could affect the accuracy of the numerical simula-
tions, alternatively, one can consider two different superimposed levels of filtering:
explicit-filtering at ε and implicit-filtering at εg < ε . The use of such an approach
results in adding extra computational modes beyond the modes that are strictly nec-
essary for the desired SCALES solution, but less than in simulations with smaller ε ,
since the energy cascade is broken by the model.

Considering SCALES with explicit filtering, the momentum equation can be
written in the following explicit-filtered form

∂ui
>ε

∂ t
+

∂ui
>ε u j

>ε

∂x j

>ε

= − 1
ρ

∂ p>ε

∂xi
+ν

∂ 2ui
>ε

∂x j∂x j
−

∂τ>ε
i j

∂x j
, (4)

where
τ>ε

i j = uiu
>ε
j −u>ε

i u>ε
j

>ε
(5)

can be referred to as subfilter-scale (SFS) stresses.
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Fig. 3. Resolved kinetic energy for different numerical thresholds (labels as in Table 2)

2.3 Subfilter-scale model

The closure models used in the past for SCALES of turbulent flows should be con-
sistently revised in order to be applied in conjunction with explicit-filtering. For in-
stance, following the eddy-viscosity dynamic Smagorinsky modelling approach pro-
posed in [6], the deviatoric part of the SFS turbulent stress tensor is approximated as

τ>ε
i j

∗ ∼= −2CSΔ 2ε2
∣∣∣S>ε
∣∣∣S>ε

i j

>ε
, (6)

where Si j
>ε = 1/2(∂ui

>ε/∂x j +∂u j
>ε/∂xi) is the filtered rate-of-strain tensor,∣∣∣S>ε

∣∣∣= (2Si j
>ε

Si j
>ε
)1/2

, and Δ is the characteristic explicit-filter length-scale.

The residual stress tensor at the test-filter level is defined as the following analog
of (5)

T
>2ε
i j = uiu j

>2ε −u>2ε
i u>2ε

j

>2ε
, (7)

where (·)>2ε
corresponds to the wavelet test filter at twice the threshold. Since the

wavelet filter is a projection operator it satisfies (·)>ε>2ε
≡ (·)>2ε

.
Therefore, by filtering (5) at the test filter level and combining it with (7),

the following modified Germano identity for the known Leonard stresses is ob-
tained:
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Fig. 4. Energy spectra at t = 0.05 for different numerical thresholds (labels as in Table 2)

L
>2ε
i j ≡ T

>2ε
i j − τi j

>2ε = ui
>εu j

>ε>2ε −ui
>2ε u j

>2ε>2ε
. (8)

Exploiting the model (6) and the analogous relation for the test filtered SFS stresses
that is

T
>2ε
i j

∗ ∼= −2CSΔ 2 (2ε)2
∣∣∣S>2ε

∣∣∣S>2ε
i j

>2ε
, (9)

one obtains

2CSΔ 2ε2
∣∣∣S>ε
∣∣∣S>ε

i j

>2ε
−2CSΔ 2 (2ε)2

∣∣∣S>2ε
∣∣∣S>2ε

i j

>2ε
= L

>2ε
i j

∗
. (10)

Finally, a least square solution to (10) leads to the following equation for determining
the Smagorinsky model coefficient:

2ε2Δ 2CS =
〈L>2ε

i j

∗
M

>2ε
i j 〉

〈M>2ε
hk M

>2ε
hk 〉

, (11)

where

M
>2ε
i j ≡

∣∣∣S>ε
∣∣∣S>ε

i j

>2ε
−4
∣∣∣S>2ε

∣∣∣Si j
>2ε>2ε

, (12)

and 〈·〉 denotes volume averaging that is performed to make the numerical solution
stable.
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Fig. 5. Resolved kinetic energy for different numerical thresholds in log-log scale (labels as in
Table 2)

3 Numerical experiments

In order to make some experiments for SCALES with explicit-filtering, the numerical
simulation of incompressible homogeneous decaying turbulence is considered. The
initial velocity field is provided by the above-mentioned statistically steady pseudo-
spectral DNS solution at Reλ = 126 that is obtained by solving the unfiltered Navier-
Stokes equations, supplied with the random forcing scheme of Eswaran & Pope [8],
with 2563 Fourier modes. The same pseudo-spectral code with the same resolution
is used to produce a reference DNS solution for the present decaying case (for dis-
cussion SDNS) as in [5].

It is worth noting that the initial Reynolds-number is too low to allow for an ex-
tended inertial range in the energy spectrum. Nevertheless, as illustrated in Figure 1,
the theoretical −5/3 slope for the inertial scaling regime is well represented by the
SDNS solution.

Due to the finite difference nature of the wavelet-based solver, the initial SCALES
resolution is doubled in each direction with respect to SDNS, in order to re-
tain approximately the same initial energy content. For this reason, SCALES is
run using a maximum resolution corresponding to 5123 grid points (or, equiv-
alently, wavelets). However, the actual number of wavelets used in the simula-
tion is very low with respect to the above maximum value, owing to the high
compression property of the wavelet-transform-based method discussed in Sec-
tion 2.1. In addition, due to the decaying nature of the turbulent flow consid-
ered, a great number of wavelets is only required during the initial period, with a
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Fig. 6. Total dissipation for different numerical thresholds (labels as in Table 2)

gradual decrease of the necessary level of numerical resolution as turbulence de-
cays.

In this preliminary study, a number of calculations are performed for a given ex-
plicit WTF level, which is ε = 0.30, and different numerical thresholds, ranging from
εg = 0.25 down to εg = 0.15. The wavelet-filter at threshold ε is explicitly applied
upon the resolved velocity field step-by-step during the simulation, which is prac-
tically equivalent to solving (4). Given ε , with the progressive improvement of the
numerical accuracy, a grid-independent SCALES solution is approached for decreas-
ing εg. This way, one can examine the pure combined effect of “physical” filtering
and SGS modelling.

Some interesting results are illustrated for a time interval corresponding to ap-
proximately one SDNS initial eddy-turnover time. This short time is however suffi-
cient to have a significant decay in the Reynolds-number that becomes Reλ ∼= 72. As
further reference, the SCALES solution corresponding to εg = 0.30 without any ex-
plicit filtering is considered in the following (for discussion I-030). All the solutions
presented are summarized in Table 2.

Table 2. SCALES calculations performed

label εg ε explicit

E-015 0.15 0.30 yes
E-020 0.20 0.30 yes
E-025 0.25 0.30 yes
I-030 0.30 0.30 no
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Fig. 7. Modelled dissipation for different numerical thresholds (labels as in Table 2)

As expected, the number of wavelets retained in the calculation increases with
the decrease of εg. However, even for the smallest value of εg, the percent of ac-
tive wavelets is less than 1% of the total number of available wavelets, as illustrated
in Figure 2. The energy decay for the different solutions is reported in Figure 3,
while the energy spectra at a given time instant (t = 0.05) are illustrated in Fig-
ure 4.

Owing to the preliminary character of the present experiments, the time interval
for the SCALES solutions is too short to capture the self-similarity regime that exists
for homogeneous isotropic decaying turbulence, e.g. [9]. In fact, the decay exponent
varies in time during the first period of the decay, while it is expected to be constant
at large time instants. By plotting the energy decay in log-log scale, as illustrated
in Figure 5, the constant decay exponent can be empirically estimated to be about
−1.22 for the SDNS solution.

The time histories of total dissipation (resolved plus modelled) and modelled dis-
sipation alone are depicted in Figures 6 and 7, respectively. The spectral distribution
of resolved dissipation is plotted in Figure 8. As discussed for the energy decay, sim-
ilarly, the self-similarity regime for the energy dissipation rate can not be observed.
By plotting the total dissipation in log-log scale, as illustrated in Figure 9, the corre-
sponding constant decay exponent can be empirically estimated at large time instants
to be about −1.86 for the SDNS solution.

By making a comparison with the implicit-filtering approach, it appears that the
additional wavelet-filtering applied upon the SCALES solution induces additional
dissipation of kinetic energy. This built-in extra dissipation should be taken into ac-
count when considering the energy budget, as well as the flow statistics that involve
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Fig. 8. Resolved dissipation spectra at t = 0.05 for different numerical thresholds (labels as in
Table 2)

Fig. 9. Total dissipation for different numerical thresholds in log-log scale (labels as in Table
2)

dissipation scales like, for instance, the Taylor-scale Reynolds-number reported in
Figure 10.

For decreasing εg, the SCALES solution appears to depart from SDNS, ap-
proaching a grid-independent solution that represents the ideal evolution of the
wavelet-filtered velocity field corresponding to the most energetic coherent ed-
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Fig. 10. Taylor-scale Reynolds-number for different numerical thresholds (labels as in Table 2)

dies (as defined by the prescribed WTF level). An even lower numerical threshold
should be considered to make this behavior more evident. Given ε , the SFS dis-
sipation provided by the modelling procedure does not depend upon the grid res-
olution determined by the choice of εg, while the resolved dissipation tends to be
lower, corresponding to the reduced enstrophy contained in the explicitly-filtered
field. In the coarse-grid case (I-030), in absence of explicit-filtering (ε = εg), the
model automatically compensates for the lack of dissipation owing to the adap-
tive nature of the SCALES approach. However, in this case the picture becomes
very complex and, in order to make it possible to better discern between the
filtering and the numerical issues, the explicit-filtering procedure seems prefer-
able.

4 Concluding remarks

In this work, the SCALES method is applied with superimposed explicit filtering.
The study of the effect of numerical thresholding level on the accuracy and com-
putational efficiency of SCALES is carried out. The explicit filtering allows the
analysis of the quality and reliability of SCALES solutions with respect to ideal
grid-independent calculations, thus enhancing our knowledge about the strong in-
teractions between wavelet-compression and modelled turbulent dissipation in the
wavelet-based numerical simulations of turbulence. Another possibility that will be
examined in the future consists in varying the SFS threshold ε for a given very small
value of εg. The use of a smaller SFS thresholding level would increase the number
of resolved coherent structures, and the influence of the model would become less
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important, since the coherent eddies dynamics would be captured by the resolved
modes.
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Summary. In complex turbulent flows the length scale varies substantially over the compu-
tational domain. When modelling such flows with large eddy simulation (LES) this must be
accounted for. In the present paper a self-adaptive method is presented to adjust the step size of
the computational grid to the local resolution requirements of an LES. An r−adaptive method
is used involving a moving mesh PDE. Different physically motivated monitor functions are
proposed, most of them closely related to LES, and applied to the turbulent flow over periodic
hills.

Key words: large eddy simulation, moving mesh, adaptivity, separated flow, periodic hills

1 Introduction

Comparing the results of an LES to those of a DNS, very good agreement can be
obtained in some cases, in other cases deviations are observed. These depend on the
details of the LES and on the quantity considered. The LES error essentially contains
two components, the discretization error and the modelling error, which are intermin-
gled but can be separated in tests [5]. While their ratio grossly depends on the ratio
of the filer size to the grid size, both decrease if the grid is refined. This leads to
the idea of reducing the error of an LES by optimally refining the grid, i.e. position-
ing a given number of grid points in an optimal way using a self-adaptive method.
Adaptive methods comprise three ingredients, a PDE solver, a method to accomplish
local changes in grid resolution and a measure or indicator for the need of refine-
ment. Different algorithms to generate local refinement have been developed. These
comprise h-refinement (usually by locally inserting grid points), p-refinement (by
increasing the local order of the discretization), and r-refinement (by redistributing
the given points in space). The latter is employed here as it leaves the data structure
unchanged during the simulation.

The basic element of each r-adaptive method is the strategy according to which
the grid points are moved. The localization-based method employed in the present

M.V. Salvetti et al. (eds.), Quality and Reliability of Large-Eddy Simulations II,
ERCOFTAC Series 16, DOI 10.1007/978-94-007-0231-8 28,
© Springer Science+Business Media B.V. 2011

309

mailto:claudia.hertel@tu-dresden.de
mailto:jochen.froehlich@tu-dresden.de
http://dx.doi.org/10.1007/978-94-007-0231-8_28


310 Claudia Hertel and Jochen Fröhlich

paper defines directly the grid points by using the concept of the moving mesh PDE
by Russell et al. [6] which links the distribution of grid points to the so-called monitor
function.

In contrast to laminar flows or statistical turbulence modelling, changes in local
resolution do not only affect the discretization error but also the equation to be solved
itself, via the subgrid-scale modelling term. Refinement criteria therefore have to be
LES-specific. In the present work several physically motivated criteria are proposed
which are particularly easy to evaluate.

Two attitudes can be followed when adapting the grid in an LES: One is to op-
timize the grid for the instantaneous solution, the other is to optimize in a statistical
sense. The latter leads to a two-phase procedure consisting of a first phase in which
the LES is conducted and the grid adapted according to statistical data and a second
phase where the optimized grid is frozen and the final statistics are accumulated.
This attitude is followed here, but the former can be obtained with exactly the same
method by just a change in parameters (τ in (4) below).

2 Numerical framework and LES modelling

The filtered Navier-Stokes equations on curvilinear coordinates are solved using a
collocated variable arrangement on block-structured grids. Time integration is ac-
complished by a fractional step method, consisting of a Runge Kutta scheme as
predictor and a pressure-correction equation as corrector. In space, a Finite Volume
method with central interpolation is employed to discretize the governing equations.
To account for moving grids, the ALE (arbitrary Lagrangian Eulerian) framework
has been implemented. The momentum equation then reads [3]

d
dt

∫
V (t)

ρ ui dV +
∫

V (t)
ρ

∂ [ui (u j −uN, j)]
∂x j

dV (1)

= −
∫

V (t)

∂ p
∂xi

dV +
∫

V (t)

∂τi j

∂x j
dV +

∫
V (t)

fi dV ,

where uN,i specifies the grid velocity and V (t) the time dependent volume of the
computational cells. When dicretizing (1) the Space Conservation Law has to be
fulfilled to guarantee that the discrete values of the grid velocity uN,i are calculated
in a way consistent with the change of volume over time of each cell [2].

Subgrid-scale modelling is accomplished using the Smagorinsky model [8] with
a constant of CS = 0.1. Since the grid is intentionally coarse, a wall function is em-
ployed [10].

3 Moving Mesh PDE

The r-adaptive method employed controls the positions x of the computational grid
in physical space by minimizing a mesh adaption functional [7]
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I[ξξξ , t] =
1
2

∫
Sp

3

∑
i=1

(∇ξ i)T G−1∇ξ idx (2)

where ξξξ = ξξξ (x, t) is the uniformly discretized computational space and x = x(ξξξ , t)
the inverse mapping. The monitor function G is a 3× 3 symmetric positive definite
matrix, proportional to the density of grid points. To achieve equally distributed and
regular grids with respect to G a Moving Mesh Partial Differential Equation (MM-
PDE), resulting from minimizing the functional (2), can be devised [7]

τ
∂x
∂ t

= P

⎡
⎢⎢⎢⎣

3

∑
i=1

3

∑
j=1

(ai ·G−1a j)︸ ︷︷ ︸
Ai j

∂ 2x
∂ξ i ∂ξ j −

3

∑
i=1

(
ai · ∂G−1

∂ξ i ai
)

︸ ︷︷ ︸
Bi

∂x
∂ξ i

⎤
⎥⎥⎥⎦ . (3)

In this equation, ai =�ξ i identifies the contravariant basis vectors (� is the gradient
with respect to x), τ the time scaling parameter for the grid velocity and Ai j, Bi co-
efficients depending on both, the physical information G, and geometrical quantities
ai.

Choosing G = ωI , with I the identity matrix, reduces the adaption criterion to
the choice of the scalar monitor function ω [11]. For the local scaling parameter P
in (3) a combination of the coefficients Aii and Bi is used to guarantee an equal order
of magnitude of the coefficients of the MMPDE over the domain. With these choices
(3) becomes

τ
∂x
∂ t

=
1√

∑i

(
A2

ii +B2
i

) 1
ω2

3

∑
i=1

3

∑
j=1

(ai ·a j)
∂

∂ξ i

(
ω

∂x
∂ξ j

)
. (4)

The shape of the boundary is fixed throughout the simulation but the grid points are
able to move on the boundary. The grid movement in tangential direction at the walls
is linked directly to the movement of the wall nearest points to achieve orthogonal
grids at the wall.

Equation (4) is discretized by a Finite Difference formulation for the cell corner
coordinates. Using cell centers as unknowns as employed for velocities and pressure
is not possible because given these, a valid grid can only be computed in exceptional
cases. For the spatial discretization central differences are used and the Euler implicit
scheme is employed in time.

4 Choice of the monitor function

The heart of each moving mesh method is the monitor function and hence the Quan-
tity of Interest ψ (QoI) according to which the MMPDE tries to equidistribute the
grid. In the present paper the monitor function ω has the form

ω(ξ ,η) =

√
1+α

(
ψ

ψmax

)2

. (5)
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In each time step the QoI ψ is scaled with the maximum value in the domain ψmax

to achieve ω ∈
[

1;
√

1+α
]
. The parameter α is chosen once and for all to scale the

maximum value of ω . Different choices of ψ were tested.

Gradient of velocity:

ψ = �〈u〉 . (6)

Here, 〈u〉 is the time- and z-averaged streamwise velocity component. The grid re-
finement hence should take place in flow regions where the gradient is high.

Turbulent viscosity:

ψ =
〈νt〉

〈νt〉+ 〈ν〉 (7)

Here, ν is the molecular viscosity and νt the modelled viscosity, predicted by the
Smagorinsky model. This criterion aims to equidistribute the ratio of modelled to
total dissipation, very closely related to the ratio of SGS dissipation εt to total dissi-
pation εμ , the subgrid-activity parameter defined in [5]

s =
〈εt〉

〈εt〉+ 〈εμ〉
. (8)

Modelled turbulent kinetic energy (TKE):

ψ =
〈ksgs〉

〈kres〉+ 〈ksgs〉
(9)

According to the basic idea of LES this criterion tries to achieve a uniform distribu-
tion of the percentage of modeled TKE over the domain. To evaluate the modelled
TKE of the subgrid-scales an approach from Berselli, Iliescu and Layton [1] is used
by setting

ksgs ≈
(

21/3 −1
)

0.5
∣∣ū− ¯̄u

∣∣2 . (10)

Here, ū is the resolved velocity of the LES, while ¯̄u is obtained from an explicit fil-
tering operation using weights of 1/8 for the point itself and 1/16,1/32,1/64 for the
neighbour points. The resolved TKE is determined as kres = (u′iu

′
i + v′iv

′
i +w′

iw
′
i)/2.

This model for ksgs leads to unwanted, non physically high values of ψ in regions
where kres is vanishing. Two remedies of ψ were tested. The first approach is de-
signed to avoid the division by very low values by adding a constant to the local
value:

ψ =
〈ksgs〉

〈ktot〉+C ktot,max
. (11)

Two values of C were tested here: C = 0.1 and C = 0.001.
The second variant replaces the local TKE by the maximum in the domain:

ψ =
〈ksgs〉

ktot,max
. (12)
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5 Application to the flow over periodic hills

The method proposed above was implemented in the in-house code LESOCC2 and
applied to the turbulent flow over periodic hills [4, 9]. The configuration is a channel
with hill-shaped constrictions as depicted in Fig. 1 with Lx = 9h, Ly = 3.035h. The
flow is supposed to be periodic in streamwise and spanwise direction (Lz = 4.5h).

Fig. 1. Two-dimensional slice of the geometry investigated and initial grid.

To demonstrate the improvements achievable by using an MMPDE, a coarse grid
is chosen on purpose. It consists of 89×33×49 grid points (135168 cells) in x−, y−
and z−direction, respectively. The simulations were conducted with Reh = 10595,
based on the bulk velocity at the hill crest and the hill height h. The same physical and
numerical parameters are used throughout. The adaption was run with α = 50, τ =
1.0 and only the QoI changed. All simulations started with the same well converged
solution on the stationary grid displayed in Fig. 1. They were performed over 10000
time steps, with the grid being adapted every 100 time steps. Towards the end of
these simulations the increments of the grid points became very small. Grid adaption
was then turned off and the statistics were accumulated over 50 flow-through-times.
In the simulations below ksgs in (9)-(12) was determined by averaging in spanwise
direction.

Final grid and monitor function

The corner grid points of the initial grid of each QoI tested are shown in Fig. 2(a-
e) together with the monitor function ω at the first time step. The final grids of the
adaption are shown on the right side of Fig. 2.

The gradient of the streamwise velocity 〈u〉 generates a monitor function with
peak values close to the surface of the hill crest. The grid is hence refined substan-
tially in this region so that the separation region is well resolved. Low values of ω
elsewhere in the domain redistribute the grid points almost equally (compare Fig.
2(a) and Fig. 2(f)).

The monitor function (7) using the turbulent viscosity shows a smoother distri-
bution of ω as can be seen in Fig. 2(b). The grid is refined near the hill crest, but with
the turbulent viscosity being zero at a solid wall no refinement in normal direction at
the wall can be achieved. The grid there is coarsed instead as displayed in Fig. 2(g).
For the monitor function based on the modelled TKE different results are obtained
for the variants introduced in Sec. 4. The results in Fig. 2(i) and 2(k), for (11), where
a constant is added to the resolved TKE in the denominator, show only slight dif-
ferences in the grids obtained. In both cases the maximum of the monitor function,
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Fig. 2. Initial grid together with monitor function ω at the first time step (left) and the final
grid after 100 adaptions (right). QoI: (a,f) gradient of streamwise velocity; (b,g) turbulent
viscosity; (c,h) modelled TKE (12); (d,i) modelled TKE (11) with C = 0.1; (e,k) modelled
TKE (11) with C = 0.001.

and hence the maximum for grid refinement, is situated downstream of the separa-
tion point and in the recirculation area. The second variant related to the modelled
TKE, (12), leads to grid refinement in the shear layer resulting from a maximum of
the monitor function ω in that region. Similar to (7), the criteria (11), (12) yield low
values of the monitor function at walls and hence large cells at the walls.

Properties of mean flow on adapted grids

The correct determination of the separation and reattachement point of the flow has
a strong influence on the overall quality of the LES of the turbulent hill flow [9]. The
values obtained with the present simulations are reported in Table 1.
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Table 1. Separation and reattachement points for simulations on final adapted grids compared
to the data of Fröhlich et al. [4]

fine grid initial �〈u〉 〈νt 〉
〈νtot 〉 (12) (11) (11)

[4] grid C=0.1 C=1e−3

xsep/h 0.2 0.5 0.3 0.65 0.45 0.55 0.55

xrea/h 4.6 3.1 4.7 2.6 3.4 3.1 2.85

Comparing separation and reattachement point for the simulation using the initial
grid without any adaption to the reference values shows, that the separation point
from the curved surface is calculated too far downstream and hence the recirculation
area is too small. The flow reattaches too early. All QoIs tested except the gradient of
streamwise velocity according to (6) do not improve the prediction of the separation
point substantially in the present setup. For the monitor function (6) a separation and
reattachement point close to the results of Fröhlich et al. [4] is achieved, due to the
fine grid resolution in wall normal and tangential direction at the hill crest.

Fig. 3. Averaged streamwise velocity at position x/h = 2.0 in the middle of the recirculation
area.

This trend can also be seen in the streamwise velocity at x/h = 2.0 plotted in Fig.
3 as an example. This position is located in the middle of the recirculation area so
that the effect of the separation point on the downstream flow can be seen. The well
predicted separation point obtained with the gradient monitor function (6) results
in a well calculated velocity profile in the recirculation area. As for the initial grid,
the profiles obtained with the QoIs containing the modelled TKE or the turbulent
viscosity show too small recirculation areas. The worst separation point was obtained
with (7), which is in line with the profile of 〈u〉 showing no improvement compared
to the initial grid in that case. For the modelled TKE (12) a slight improvement of the
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Fig. 4. Reynolds stress 〈u′v′〉 at position x/h = 2.0 in the middle of the recirculation area.

separation point can be achieved (Table 1), also visible in the velocity profile where
the grid refinement in the shear layer brings further improvement.

In Fig. 4, the Reynolds shear stress 〈u′v′〉 is shown for the same position as the
velocity profiles. The solution obtained with the initial grid and no adaption shows a
wrong vertical position for the maximum value, i.e. the free shear layer on top of the
recirculation zone is not obtained at the correct position. The biggest improvement
can again be achieved by the monitor function based on the mean streamwise velocity
gradient. The biggest differences in position and maximum value of the Reynolds
stress 〈u′v′〉 compared to [4] are obtained for the turbulent viscosity as QoI due to
the deficient position of the separation point and, like for the velocity gradient, too
few grid points in the shear layer. For the monitor functions containing the modelled
TKE only small changes in the distribution of 〈u′v′〉 can be seen. For the modified
variant (12) a slight improvement is obtained coming from the better resolution of
the shear layer, but still the result is dominated by the position of the separation
point.

Computational costs

When evaluating the improvements obtained with the r-adaptive method the compu-
tational costs are of interest. All simulations were performed on one processor of the
SGI Altix at ZIH, Dresden (ccNUMA architecture, dual core Itanium 2, 1.6 GHz).
Two issues determine the computational efficiency, the convergence behaviour of the
Poisson solver in each time step and the size of the time step. Already during the first
part of the simulations, where the adaption was performed, differences in the com-
putation time were noticed. since the grid is distorted differently by the used criteria,
the convergence behaviour is different in the simulations. Hence, although the same
number of time steps was executed, the computation time differs. It is longest for the
adaption using the gradient of the averaged velocity (6), needing 6.5 hours, while the
shortest was the one using the turbulent viscosity (7) with 5.3 hours. The time used
to solve the MMPDE was less than 3% of the simulation time for all criteria.
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Table 2. Time step size and computation time in the second phase of the simulations.

initial �〈u〉 〈νt〉
〈νtot 〉 (12) (11) (11)

grid C=0.1 C=1e−3

time step [×10−2] 2.069 1.512 1.736 1.760 1.717 1.786

CPU time [hours] 13.0 19.0 13.6 15.2 13.75 14.0

Table 2 provides information about the second phase of the simulations where
the grid resulting from the respective adaption was frozen and averages accumulated
over 50 flow-through times. The size of the time step was adjusted automatically
to comply with the CFL-limit and the diffusion limit of the time scheme. The local
clustering of points in specific regions led to a reduction in all cases considered.
Although criteria (7) and (11) yield a time step about 20% smaller than for the initial
grid, the CPU time requirement is only increased by about 5% due to the different
convergence behaviour. The grid obtained with (6) yields the largest CPU cost due
to the small cells at the crest reducing Δ t and the somewhat slower convergence.

6 Conclusions

In the present study, the grid of an LES was adapted to the statistical properties of the
flow according to several quantities of interest. In the applications it was observed
that the LES-specific quantities, like those based on kres, νt etc. were not as successful
as the criterion based on the gradient of the mean streamwise velocity as the latter
substantially clusters the points in the separation region. Adaption for the core and
the near-wall region hence seem to have different requirements. Simulations with
blended criteria are under way.
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Summary. Large-eddy simulations are performed using low-dissipation numerical schemes
combined with a relaxation filtering as subgrid dissipation to investigate the influence of the
Reynolds number and the grid resolution on self-similar turbulent circular jets. Three jets
with the same initial parameters except for the diameters yielding Reynolds numbers of 1800,
3600 and 11000 are first considered. Then two additional jets at Reynolds number 3600 are
calculated using coarser grids in the turbulent flow regions. Energy dissipation and filtering
activity are examined in the different simulations, and mean and turbulent properties of the
jets are compared.

Key words: Large-Eddy Simulation, relaxation filtering, jet, Reynolds number

1 Introduction

This work deals with the influence of the Reynolds number and grid resolution on
self-similar jets computed by large-eddy simulations based on relaxation filtering
(LES-RF) [1, 2], in which a high-order filtering is applied to the flow variables
to relaxe energy. It is the continuation of an LES of a jet at Reynolds number
ReD = 11000, which provided results in good agreement with measurements by Pan-
chapakesan and Lumley [3] for a jet at the same Reynolds number [2].

The first motivation of this work is to assess the LES methodology by exam-
ining the way in which the filtering activity adjusts to the physical and numerical
parameters of the simulations. The LES method, or similar methods, have been
applied successfully by different research teams [1, 2, 4, 5, 6, 7], but its limita-
tions are still to be clearly evidenced. One important question when using LES is
in particular whether it is possible to reproduce and investigate Reynolds number
effects [1, 8] with the subgrid modelling that is implemented. The second motiva-
tion of the present work is therefore to study the influence of the Reynolds num-
ber on the self-similar turbulent jets using the LES-RF approach. The impact of
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the Reynolds number on jet flow development has indeed been shown, experimen-
tally [9, 10, 11, 12, 13, 14], as well as numerically [1], to be significant up to
Reynolds numbers around ReD = u jD/ν � 104, where u j and D are the jet inlet
velocity and diameter, and ν is the kinematic molecular viscosity.

Thus, in order to deal with the effects of the Reynolds number, two jets with
the same conditions as the jet at ReD = 11000, but with different diameters yielding
lower Reynolds numbers of 1800 and 3600, are considered. Then, two other jets
at ReD = 3600, in which coarser grids are used in the turbulent flow regions, are
calculated. In this way, the variations of the results with the Reynolds number are
explored at a fixed grid resolution, those with the grid resolution at a fixed Reynolds
number.

In this paper, the main parameters of the simulations are first defined. Then vor-
ticity fields are shown, the filtering activity in the different LES is discussed, and
some preliminary comparisons between the mean and turbulent properties of the jets
are reported.

2 Methods and parameters

2.1 LES methodology

The flow governing equations are the 3-D Cartesian filtered compressible Navier-
Stokes equations, rearranged by Vreman et al. [15, 16] in the following form

∂ρ
∂ t

+
∂ρ ũ j

∂x j
= 0 (1)

∂ρ ũi

∂ t
+

∂ρ ũiũ j

∂x j
= − ∂ p

∂xi
+

∂ τ̃i j

∂x j
(2)

∂ρ ẽt

∂ t
+

∂ ((ρ ẽt + p)ũ j)
∂x j

= −∂ q̃ j

∂x j
+

∂ τ̃i j ũi

∂x j
(3)

where ρ represents the density, ui the velocity, p the pressure, τi j the viscous stress
tensor, et the total energy density, and q j the heat flux. The overbar denotes a fil-
tered quantity, and the filtering is assumed to commute with time and spatial deriva-
tives. The tilde denotes a quantity calculated from the filtered variables ρ , ρui and
p. Thus the calculated velocity is ũi = ρui/ρ (Favre filtering), and the calculated
total energy is ρ ẽt = p/(γ − 1) + ρ ũiũi/2 for a perfect gas, where γ is the spe-
cific heat ratio. The viscous stress tensor is defined by τ̃i j = 2μ̃(s̃i j − s̃kkδi j/3) with
s̃i j = (∂ ũi/∂x j + ∂ ũ j/∂xi)/2. The viscosity μ̃ = μ(T̃ ) is provided by Sutherland’s
law, and the temperature T̃ is obtained using the state equation p = ρrT̃ . The heat
flux is given by q̃ j =−λ∂ T̃/∂x j where λ = μ̃cp/σ is the thermal conductivity, σ is
the Prandtl number and cp the specific heat at constant pressure.

In the present LES methodology, the effects of the energy-dissipating subgrid
scales are taken into account by the application of a high-order/selective filtering
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to the flow variables ρ , ρui and p, to relaxe energy through the smaller scales dis-
cretized, without affecting significantly the scales accurately resolved [1]. This LES
methodology based on relaxation filtering (LES-RF) was in particular developed to
avoid an artificial decrease of the effective Reynolds number of the flow, as it might
be the case with modellings involving eddy viscosity [8].

During the simulations, the terms in the budgets for the turbulent kinetic energy,
including the dissipation induced by the relaxation filtering, are all computed ex-
plicitly from the LES equations. The application of the filtering to the momentum
variables can indeed be integrated into the right-hand side of equation (2), in the
following way

∂ρ ũi

∂ t
+

∂ρ ũiũ j

∂x j
= − ∂ p

∂xi
+

∂ τ̃i j

∂x j
+D j

s f (ρui) (4)

where D j
s f is the filtering operator in the j-th direction. More details can be found in

a recent paper [2].

2.2 Numerical algorithm

The LES equations (1), (2) and (3) are solved using low-dissipation and low-
dispersion explicit schemes [17]. Fourth-order 11-point finite differences are im-
plemented for spatial discretization, and a second-order 6-stage low-storage Runge-
Kutta algorithm is applied for time integration. The relaxation filtering is carried
out using an explicit second-order 11-point filter designed to damp only the shortest
waves resolved by the grid, discretized by fewer than four points per wavelength. It
is applied with a constant strength, every second iteration, which was found to be
sufficient in previous jet simulations [8] because of the very small time steps due to
the explicit time integration.

2.3 Simulation definition

Round jets with the same inflow parameters, including shear-layer thickness and
forcing, but with different diameters yielding ReD = 1800, ReD = 3600 and ReD =
11000, are simulated. Computational domains extending up to 90, 120 and 150 jet
radii r0 in the downstream direction are used, respectively, so that a part of the self-
similarity region of the jets is calculated.

In the three jets referred to as jetRe1800, jetRe3600 and jetRe11000 in table 1,
only the Reynolds number varies, and the grid properties are the same. A uniform
axial grid spacing Δx = r0/4 is in particular specified in the downstream direction
for x ≥ 25r0, see for instance the exhaustive description of jetRe11000 in [2].

In the two additional cases jetRe3600dx2 and jetRe3600dx4 reported in table 1,
the Reynolds number and conditions are the same as in jetRe3600, but the axial grid
spacing is stretched at a rate of 2% from x = 45r0 to reach, farther downstream,
Δx = r0/2 for x ≥ 58r0 in jetRe3600dx2 and Δx = r0 for x ≥ 84r0 in jetRe3600dx4.
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Table 1. Simulation parameters: jet diameter-based Reynolds numbers ReD, mesh spacings
Δx in the self-similarity flow regions, numbers of grid points (nx,ny,nz) and of time steps nt ,
simulation times T normalized by D/u j.

Reference ReD Δx nx ×ny ×nz nt Tu j/D
jetRe1800 1800 r0/4 411×211×211 1.6×106 0.79×105

jetRe3600 3600 r0/4 531×261×261 1.6×106 0.79×105

jetRe11000 11000 r0/4 651×261×261 2.8×106 1.34×105

jetRe3600dx2 3600 r0/2 383×261×261 1.4×106 0.69×105

jetRe3600dx4 3600 r0 321×261×261 1.3×106 0.64×105

3 Results

3.1 Vorticity snapshots

Mean flow and turbulence properties, including the second-order and third-order ve-
locity moments, and the energy budgets, have been evaluated from the LES flow
fields. First illustrations are given here by vorticity snapshots.

In figure 1 displaying vorticity obtained for jetRe11000 and jetRe1800, the ef-
fects of the Reynolds number on the turbulent transition, and on the turbulent scales
can be seen. At higher Reynolds number, the transition occurs more rapidly, and
more fine scales are visible.

Fig. 1. Snapshots of vorticity norm normalized by the jet diameter and the centerline mean
velocity, |ω|D/uc, in the plane z = 0, for jetRe11000 (left) and jetRe1800 (right). The color
scale ranges for levels from 0.4 to 2.

In figure 2 showing vorticity for jetRe3600, jetRe3600dx2 and jetRe3600dx4, the
impact of the grid resolution on the downstream turbulence appears to be significant.
The use of coarser grids progressively removes the smaller turbulent structures for
x ≥ 120r0. These scales are especially damped in jetRe3600dx4, for which Δx = r0

in the downstream region.

3.2 Energy dissipation and filtering activity

In the present LES, dissipation is the sum of the viscous and filtering dissipations,
whose contributions vary with the Reynolds number and the grid resolution. To study
this point, the variations along the jet axis of the subgrid-activity parameter [18], that
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Fig. 2. Snapshots of vorticity norm |ω|D/uc in the plane z = 0, for jetRe3600 (top), je-
tRe3600dx2 (bottom left) and jetRe3600dx4 (bottom right). Same color scale as in figure 1.

is the filtering-activity parameter here, are presented in figure 3. They are calculated
from the budgets for the turbulent energy as the ratio between the filtering dissipation
and the total dissipation.

On the left graph, as expected from previous results [1], the filtering activity
is found to increase with the Reynolds number. At x = 90r0 for example, filtering is
responsible for about 40% of the energy dissipation in jetRe11000, but only for about
10% in jetRe1800. In the three jets with different Reynolds numbers, the filtering
activity also becomes lower as the jets develop in the downstream direction with
growing turbulent length scales.

The right graph shows the effects of the grid coarsening on the filtering activ-
ity. The mesh stretching, beginning at x = 45r0, leads to a strengthening of the
contribution of the relaxation filtering to the energy dissipation. In jetRe3600, je-
tRe3600dx2 and jetRe3600dx4, one thus finds filtering activities of 0.47, 0.26 and
0.18 at x = 120r0, as the axial mesh spacings are respectively Δx = r0/4, Δx = r0/2
and Δx = r0 in the downstream flow region.

To illustrate the spatial resolution in the present LES, the ratios between typical
turbulence length scales and the axial mesh spacing Δx are represented in figure 4.
The axial integral length scale is evaluated from the scaling law L f = 0.0385x ob-
served experimentally in [19] as well as numerically in [20], while the transverse
Taylor scale and the Kolmogorov scale are calculated using the relations of isotropic

turbulence, λg = (15L f ν/[u′u′]1/2)1/2 and η = (L1/4
f (ν/[u′u′]1/2)3/4, respectively,

where the brackets denote time averaging.
The length scales increase as the jet develops. This is shown in the left figure

dealing with the three simulations jetRe1800, jetRe3600 and jetRe11000 in which
the same uniform axial mesh spacing is used. It is moreover interesting to observe
that, far downstream in the self-similarity regions of these three jets, the integral
length scales are well resolved (L f ≥ 10Δx), and the Taylor scales are discretized
(λg ≥ 2Δx).



324 C. Bogey, C. Bailly

Fig. 3. Variations along the jet centerline of the filtering-activity parameter s calculated
from the turbulent kinetic energy. Left: for jetRe11000, jetRe3600,

jetRe1800; and right: for jetRe3600, jetRe3600dx2, je-
tRe3600dx4.

This is unfortunately not the case in the right figure with coarser mesh spacings.
More precisely, the LES resolution is poor but acceptable in jetRe3600dx2, and in-
sufficient in jetRe3600dx4. At x = 90r0, one can indeed notice that L f = 6.9Δx and
λg = 3.7Δx in jetRe3600dx2, and L f = 3.5Δx and λg = Δx in jetRe3600dx4. In the
latter simulation, the integral length scale is therefore not accurately resolved, and
might be affected by the relaxation filtering.

Fig. 4. Variations along the jet centerline of the ratios between the axial integral length scale,
the transverse Taylor and Kolmogorov scales, and the axial mesh spacing: thick lines L f /Δx,
thin lines λg/Δx, grey lines η/Δx. Left: for jetRe11000, jetRe3600,

jetRe1800; and right: for jetRe3600, jetRe3600dx2, je-
tRe3600dx4.

3.3 Mean and turbulent jet development

To characterize the jet mean flows, the variations of the centerline mean axial velocity
uc are considered. In self-preserving jets, it has indeed been evidenced that
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uc

u j
= B× D

(x− x0)
(5)

where B is the decay constant, and x0 denotes a virtual origin. The variations of the
jet half-width are not displayed here because of the limited size of the paper, but they
provide similar results.

The profiles obtained in the present jets for u j/uc are plotted in figure 5. In all
cases, linear increases are observed sufficiently far in the downstream direction, sug-
gesting that the mean flow is self-similar. In addition, the self-similar mean flow
appears in the left figure to develop at a lower rate at higher Reynolds number, in
agreement with the experimental data obtained for plane jets by Deo et al. [13]. The
influence of the grid resolution in the right figure finally seems quite weak.

Fig. 5. Variations of the inverse of centerline mean axial velocity u j/uc. Left: for
jetRe11000, jetRe3600, jetRe1800; and right: for jetRe3600,

jetRe3600dx2, jetRe3600dx4.

To quantify properties of the mean flow self-similarity, the local decay constant
B′ is evaluated from the profiles of figure 5 in the following way

1
B′ =

d(u j/uc)
d(x/D)

(6)

and they are represented in figure 6. In all jets, after a transitional period, the local
decay constant tends to an asymptotic value in the downstream direction, which indi-
cates self-similarity. Constants B = 5.8, B = 6.1 and B = 6.4 are thus determined in
the three jets of the left graph, jetRe1800, jetRe3600, and jetRe11000, with varying
Reynolds numbers. The similar variations of B′ in the right graph for the three jets at
same Reynolds number also support that the self-similar jet mean flow depend only
weakly on the LES resolution.

The turbulent jet flow features are now examined by presenting in figure 7 and 8
the centerline profiles of the axial and radial turbulent intensities [u′u′]1/2/uc and
[v′v′]1/2/uc. In this way the axial locations at which the turbulent jets achieve self-
similarity can in particular be determined.
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Fig. 6. Axial variations of the inverse of local decay constant 1/B′. Left: for je-
tRe11000, jetRe3600, jetRe1800; and right: for jetRe3600,

jetRe3600dx2, jetRe3600dx4.

In the left figures dealing with the three jets with varying Reynolds numbers, the
establishment of self-similarity, obtained when turbulent intensities are constant on
the jet axis, is shown to occur more slowly at higher Reynolds number, i.e. at farther
axial distance, in agreement with experimental and numerical results [1, 11]. More
quantitatively, self-similarity seems to be reached around x = 60r0 in jetRe1800,
x = 70r0 in jetRe3600 and x = 120r0 in jetRe11000. It should also be noted that very
close asymptotic values are observed in the three jets.

The right figures show that the grid resolution can affect the turbulent intensities
in the jet self-similarity region. With respect to jetRe3600, the alterations are mod-
erate in jetRe3600dx2, but appreciable in jetRe3600dx4. The self-similarity of the
turbulent flow in the latter jet is even not well established because, instead of remain-
ing constant, both axial and radial components of the turbulent intensities decrease
on the jet axis far from the inflow. This could be expected because of the insuffi-
cient resolution of the turbulent length scales in jetRe3600dx4, already discussed in
previous section.

Fig. 7. Variations of centerline axial turbulence intensities [u′u′]1/2/uc. Left: for
jetRe11000, jetRe3600, jetRe1800; and right: for jetRe3600,

jetRe3600dx2, jetRe3600dx4.
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Fig. 8. Variations of centerline radial turbulence intensities [v′v′]1/2/uc. Left: for
jetRe11000, jetRe3600, jetRe1800; and right: for jetRe3600,

jetRe3600dx2, jetRe3600dx4.

4 Concluding remarks

The present paper provides preliminary results on the influence of the Reynolds
number and grid resolution on round turbulent jets simulated by LES based on re-
laxation filtering. The subgrid or filtering activity is first shown to adjust by itself
to the Reynolds number, to the grid resolution and to the development of the tur-
bulent length scales of the flow in the different computations. The effects of the
Reynolds number are noted to be especially significant on the characteristics of the
self-preserving mean flows, and on the distance required to achieve self-similarity of
the turbulent flows, in agreement with experimental findings. The effects of the grid
resolution are however rather weak on the mean flow features, but appreciable on the
turbulence features. A decrease of the turbulent intensities is in particular observed
for insufficient grid resolution.
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An Examination of the Spatial Resolution
Requirements for LES of a Compressible Jet

James R. DeBonis1

NASA Glenn Research Center, Cleveland, Ohio 44135 james.r.debonis@nasa.gov

Summary. This work examines the grid requirements necessary for a properly resolved large-
eddy simulation (LES) of a compressible jet. The numerical scheme used for the analysis
and its corresponding computational grid are used to estimate, a priori, the resolution of the
simulation. This estimated resolution, expressed in terms of wave number, is compared to the
resolution in the turbulent spectra obtained from the simulation. Two levels of grid resolution
are examined. The solution yields good agreement with experimental data for mean flow and
first-order turbulent statistics. The estimated resolution of the analysis properly predicts the
trends with respect to the computed turbulent spectra.

Key words: spatial discretization, grid resolution, jet flow

1 Introduction

Large-eddy simulation (LES) is becoming a widely used tool in the fluid dynamics
community. The technique offers the promise of improved predictions and increased
information for turbulent flows over the well established Reynolds Averaged Navier-
Stokes (RANS) methods. The key to an accurate LES is the proper resolution of
the large-scale turbulent structures which dominate the flow. The resolution of these
structures is determined by a combination of the numerical scheme and computa-
tional grid used. Determining how much grid is necessary for an accurate analysis is
done by trial and error, a computationally expensive undertaking.

Fourier analysis has been used to analyze the properties of numerical schemes
[1]. This technique has been useful in both developing and identifying high fidelity
numerical schemes for LES. The present work extends this idea by mapping the
resolution of the numerical scheme onto the computational grid to give an a priori
estimate of the simulation’s resolution at every point in the domain. This estimated
resolution is then compared to the actual resolution of the turbulent spectra extracted
from the simulation. If the required resolution of the turbulent spectra necessary for
an accurate LES simulation can be established for a given type of flow, this technique
offers a simple tool to construct quality grids.

M.V. Salvetti et al. (eds.), Quality and Reliability of Large-Eddy Simulations II,
ERCOFTAC Series 16, DOI 10.1007/978-94-007-0231-8 30,
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The flow considered here is a Mach 0.9 jet. The prediction of turbulent jet flows
is of great interest to the aerospace community. Researchers throughout the world are
attempting to reduce the noise emitted by jet engines. Understanding and modeling
the noise producing mechanism of the jet is critical to this effort. Reynolds Averaged
Navier-Stokes (RANS) methods fail to accurately predict the turbulent structure of
the jet [2]. LES has the potential to improve the accuracy of the predictions and can
provide additional turbulent information. In this work, a high-resolution numerical
scheme is used to model the jet flow. The resolution of the scheme is determined
and mapped onto the computational grids. Solutions for two computational grids are
obtained and compared to experiment. Finally the estimated resolution is compared
to the resolution computed from the turbulent spectra.

2 Numerical Method

The code used in this study, WRLES (Wave Resolving Large-Eddy Simulation),
is a special purpose large-eddy simulation code that uses high-resolution temporal
and spatial discretization schemes to accurately simulate the convection of turbulent
structures. The code solves the compressible Favre-filtered Navier-Stokes equations.
It was developed at the NASA Glenn Research Center for the study of turbulent jets,
but can be applied to other flows.

The code uses a family of explicit Runge-Kutta time stepping schemes written in
a general M-stage 2-N storage formulation[3]. One-stage is required for each order of
accuracy desired. Additional stages can be used to increase accuracy or alternatively,
to reduce dispersion error. The 4-stage, 3rd-order scheme of Carpenter and Kennedy
is used in this study[4].

Central differencing is used for the spatial discretization because of its non-
dissipative properties. This helps ensure the accurate convection of turbulence. Both
standard nth-order central difference stencils, designed to minimize truncation error,
and Dispersion Relation Preserving (DRP) stencils are available in the code. The
code can accommodate stencils up to 13 points. DRP schemes, originally developed
by Tam[5], are designed to minimize the dispersion error in the simulation. They do
this by sacrificing the scheme’s formal order of accuracy in favor of lower dispersion
at smaller wave numbers. The 13 point DRP scheme of Bogey and Bailly[6] is used
here.

This lack of dissipation in central differencing makes the schemes unstable. In
order to ensure a stable solution without adversely affecting the resolving properties
of the scheme, solution filtering is used. This is a low-pass filter that leaves the low
wavenumber structures, well resolved by the simulation, untouched. It removes the
high wavenumber structures that are not properly resolved and can cause instability.
The filter must be properly matched to the differencing scheme, so that the filter re-
moves only those waves that are not properly computed. Bogey and Bailly developed
filters to match their DRP stencils. For the standard central difference schemes the
filters of Kennedy and Carpenter [7] are implemented in the code.
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3 Estimating Spatial Resolution

Fourier analysis has been used to evaluate the ability of numerical schemes to re-
solve wave motion [1]. The technique analyzes the numerical scheme on the one-
dimensional convection equation and can provide the scheme’s behavior in terms
of dissipative and dispersive errors. The effect of the temporal discretization is not
considered here.

Fig. 1. Properties of the numerical scheme

Fourier analysis shows that central difference schemes have no inherent dissi-
pation, and thus are ideally suited for LES calculations. They do however produce
dispersive errors. Figure 1(a) shows the phase error, written as the ratio of numer-
ical phase speed to actual phase speed, c∗/c, versus wavenumber per grid spacing,
(κΔx), for both standard 8th, 10th and 12th order schemes and the equivalent stencil
width DRP schemes from Bogey and Bailly. They chose 5 · 10−4 as the maximum
phase error level corresponding to a “properly resolved” wave. Using this error level,
the maximum resolvable wave number per grid spacing, (κΔx)max, is determined for
each stencil.

The damping functions, D(κΔx), are shown in figure 1(b) for the standard filters
of Kennedy and Carpenter [7] and the DRP filters derived by Bogey and Bailly to
match their difference stencils. The damping is zero until it reaches a “cutoff” wave
number, where it rapidly increases, effectively removing all the structures of higher
waves numbers. Since filters typically also utilize a coefficient, σ , to regulate the
amount of damping, the total amount of dissipation is σD(κΔx). The cutoff wave
number, (κΔx)cut is the wave number where the total amount of dissipation exceeds
5 · 10−4, the same error level used for the differencing schemes. A typical damping
coefficient of 0.2 is used here.
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The maximum resolvable wave number for each scheme is plotted against the
stencil size as solid lines in figure 2. The cutoff wave number of the corresponding
filter is plotted as a dashed line. For a stable solution, the cutoff wave number of

Fig. 2. Cutoff wave numbers for schemes and filters

the filter should be less than the maximum resolvable wave number of the numer-
ical scheme. This ensures that all of the structures within the domain are properly
resolved. For the standard schemes, the filter’s cutoff is too high, leaving improperly
resolved structures in the flowfield. For these schemes, shifting the order of the fil-
ter down to the next level should insure a stable solution. Figure 2 clearly illustrates
superior resolution offered by the DRP schemes.

For the numerical schemes used here, the filter limits the resolution of the simu-
lation and the cutoff wave number, (κΔx)cut , should be used in the estimation proce-
dure. For schemes without an explicit filter, (κΔx)max would be used. For each grid
cell, the spacing in each direction (Δx, Δy, and Δz) is computed and the limiting,
maximum, spacing is chosen. The cutoff wave number per grid spacing can then
be mapped on the grid to provide the maximum resolvable wave number at every
point in the computational domain. This technique provides an a priori estimate of
resolution for a given analysis. As a better understanding of the resolution required
for a successful LES is gained, this technique may prove to be a useful tool in the
construction of computational grids and the selection of numerical schemes.

4 Modeling the Mach 0.9 Jet

The geometry and corresponding experimental data used for this study was from
the 2 inch diameter Acoustic Reference Nozzle (ARN) tested at the NASA Glenn
Research Center by Bridges and Wernet [8]. The jet Reynolds number, Re j =
ρ jUjD j/μ j, from the experiment was approximately 2 million. In order to reduce
the range of turbulent scales in the simulation, the Reynolds number of the simula-
tion was reduced to 50,000.
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The computational grid (figure 3) models the internal and external nozzle geome-
try from plenum to exit. The majority of grid points are placed in the area of interest,
downstream of the nozzle exit in the plume region. The grid extends 40 jet diameters,
D j, downstream of the nozzle exit and 30 diameters radially from the centerline. Two
different grid densities were examined (table 1). The baseline grid contained 3.5 mil-

Grid Interior of Nozzle Exterior of Nozzle Nozzle Plume Total
baseline 45 x 55 x 102 45 x 65 x 102 196 x 148 x 102 3,509,616
refined 45 x 55 x 132 45 x 65 x 132 294 x 148 x 132 6,456,384

Table 1. Dimensions of the computational grid

lion grid points. The smallest grid spacing was in the radial direction due to the the
clustering near solid walls. The ability to resolve a three-dimensional turbulent eddy
is limited by the largest grid spacing in each of the three directions. Therefore the
refined grid maintained the radial grid spacing and added additional points in both
the axial and azimuthal directions to improve overall resolution.

Fig. 3. Baseline computational grid

The resolution of the simulation was estimated using the technique outlined in
section 3. Contours of the estimated resolvable wave number in a streamwise plane
through the center of the jet is shown in figure 4. The wavenumber is nondimension-
alized by the jet diameter, a reasonable estimate of the maximum turbulent length
scale. In the jet plume, the resolution varies with axial distance from the jet exit,
and is constant in the radial and azimuthal directions, indicating that the axial grid
spacing is the limiting factor.

Total pressure and total temperature, consistent with a Mach 0.9 cold jet, were
specified at the inflow of the nozzle plenum. Freestream conditions were specified
using a farfield characteristic boundary condition. The experiment had no freestream
velocity, but a very low Mach number, 0.05, was specified at the computation’s
farfield boundary to maintain stability. Static pressure was specified at the outflow
and at x/D j > 30, the grid spacing is gradually increased and a sixth-order filter is
applied to remove spurious reflections. The centerline of the computation is treated
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Fig. 4. Contours of estimated resolvable wave number, (κD j)est

using Hixon’s approach [9]. This method avoids stability problems by creating a
difference stencil that spans the singularity at the jet centerline.

5 Results

Solutions for both grids were computed using hybrid MPI/OpenMP parallel process-
ing on a Linux cluster. No sub-grid scale model was used and the solution relies on
the dissipation of the filter to represent the sub-grid scales.

A time step of approximately 2.45 · 10−8 seconds was used. An instantaneous
flowfield was saved every 2.5 · 10−5 seconds, yielding frequency resolution up to
20kHz. A total of 2,048 instantaneous flowfields were saved, representing 0.0512
seconds of physical time. The saved solution files were post processed to obtain,
mean flow, turbulent statistics and turbulent spectra.

5.1 Prediction of the Flowfield

Instantaneous Mach number contours for the refined grid are shown in figure 5. The
flow is dominated by turbulent mixing. The turbulent structures range in size from
the order of the nozzle lip thickness to larger than the nozzle diameter. In general
the size of the structures increases with distance from the nozzle exit. The thin void
along the centerline of the domain is an artifact of the centerline boundary condition.

Fig. 5. Contours of Instantaneous Mach number, M
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The prediction of the mean velocity along the jet centerline for both grids is com-
pared to experiment in figure 6. Agreement with experiment is excellent for both grid
levels. For the baseline grid, the end of the potential core (the point where the velocity
begins to decay) is predicted upstream of the experimental position. The refined grid
prediction of the end of the potential core compares well with experiment. Down-
stream of the potential core, both grids do a good job of predicting the centerline
velocity decay up to x/D j = 15. Beyond this point irregularities in the experimental
data make comparison difficult.

Fig. 6. Centerline velocity profiles

Axial, u′/Uj, and radial, v′/Uj, turbulent intensities on the jet centerline, for both
grids, are shown in figure 7. On the baseline grid, the axial intensity levels are over
predicted and the radial intensity levels are under predicted. Grid refinement im-
proves both predictions, decreasing the axial intensity and increasing the radial in-
tensity. Note that the prediction of radial intensity was improved by refining the axial
and azimuthal grid spacing. This illustrates the importance of resolving the turbulent
structures in all three computational directions and suggests that isotropic grid cells
are ideal for LES.

5.2 Resolution of the Turbulent Structures

Turbulent spectra were computed at three locations in the jet mixing layer. The points
were located on the jet lip line, r/D j = 0.5 at three axial locations, x/D j = 4, 7, and
10. At each of these points, the three velocity components for each saved solution
were extracted, yielding a time history of the velocity. The data was converted to
instantaneous turbulent kinetic energy and was processed using a Fast Fourier Trans-
form. This yielded a turbulent spectrum in the frequency domain. The flow was as-
sumed to be statistically stationary and Taylor’s hypothesis [10] was used to convert
the frequency domain to the spatial domain.
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Fig. 7. Centerline turbulent intensities

Plots of the turbulent spectra for both grids are shown in figure 8. The majority
of the turbulent energy is contained in the small wave number/large-scale structures.
At larger wave numbers the energy decays with a −5/3 slope for a short period,
consistent with turbulence theory. Beyond this point the energy decays more rapidly,
most likely the effect of the filter.

Fig. 8. Turbulent spectra

The spectra was used to determine the maximum resolved wave number in the
flow at each position. This wave number was chosen at the point where the spectra
deviated from the theoretical −5/3 decay. Table 2 contains the estimated resolvable
wave number based on the grid and numerical scheme and the actual resolved wave
number computed from the spectra. The computed results do not match the estimates.
However, for the six cases considered the ratio between the estimated and computed
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numbers is very similar, ranging from 4.23 to 4.70. This fact lends credence to the
estimating technique. There are several assumptions inherent in the estimates that
would alter the overall level of the estimated wave number. Foremost is the ad hoc
selection of the “properly resolved” error level. It is also important to note that the
resolution scales properly with grid refinement. At a given axial position, the ratio
between refined and baseline grid estimated wave number is nearly identical to that
same ratio computed from the spectra.

Baseline Grid Refined Grid

x/D j 4 7 10 4 7 10
Estimate 14.1 10.6 8.70 20.0 15.4 13.1
From Spectra 3.33 2.31 1.85 4.58 3.33 2.81
Ratio 4.23 4.59 4.70 4.37 4.62 4.66

Table 2. Resolved wave number, κD j

6 Summary and Conclusions

A high resolution numerical scheme was used to perform a large-eddy simulation
of a Mach 0.9 jet. A four-stage third-order low-dispersion Runge-Kutta scheme was
used for the temporal discretization and the 13-point Dispersion Relation Preserving
scheme of Bogey and Bailley [6] was used for the spatial discretization. A filter de-
signed to match the spatial discretization scheme was used to maintain stability and
to represent the sub-grid scale dissipation. Fourier analysis of the spatial discretiza-
tion scheme was used to characterize the ability of the scheme to resolve waves on
a computational grid. This information was applied to the computational grid used
in the study to obtain an a priori estimate of the resolution of the turbulent struc-
tures.

Two different grids were examined, a baseline grid (3.5 million points) and a
refined grid (6.5 million points), which increased the resolution in the axial and
azimuthal directions. The results of the computation were compared to the exper-
imental data of Bridges and Wernet [8]. Excellent agreement was obtained for the
mean flow properties at both grid resolutions. Good agreement was achieved for the
turbulent intensities for the baseline grid and the agreement improved significantly
with grid refinement. The grid refinement suggests that grid cells that tend toward
isotropic are ideal for predicting turbulent quantities.

Turbulent energy spectra were obtained at three points in the flowfield for both
grids. The spectra appear reasonable and reproduce the theoretical −5/3 slope tur-
bulent decay for a small range of wave numbers. The spectra was used to determine
the actual resolution of the computation. This data was compared to the estimated
resolution. The absolute values of the resolved wave numbers did not agree, but the
estimates appear to properly predict the trends. This technique of estimating the res-
olution appears to be a reasonable method to help construct computational grids and
estimate resources needed for a large-eddy simulation.
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A Computational Uncertainty Analysis of LES/DNS:
towards building a reliable engineering turbulence
prediction capability
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Summary. A computational uncertainty analysis is conducted for turbulence simulation. The
major sources of error, the model error and the numerical errors, are analyzed strictly based
on the physical nature of turbulence. Through these analyses, a clear technical roadmap is laid
out towards building a reliable engineering turbulence simulation capability.

Key words: Computational Uncertainty Analysis, Direct Numerical Simulation, Large-eddy
Simulation, Multi-grid Technique

1 Introduction

To develop a reliable engineering turbulence prediction capability, the identification
and quantification of uncertainty in a turbulence simulation are critically important.
The current analysis is aimed at a precise evaluation of the major sources of er-
ror and the development of relevant technologies to minimize or to eliminate these
errors. The major sources of error in a turbulence simulation are classified as the
physical, or model, errors and the numerical errors. The physical error is inherently
associated with the physical model governing the turbulence phenomenon, which
are broadly classified as Reynolds Averaged Navier-Stokes (RANS), Large Eddy
Simulation (LES) and Direct Numerical Simulation (DNS). These physical models,
based on which a flow solver is developed, govern the accuracy and quality of the
simulation. For numerical errors, three sources can be identified: (1) the numerical
discretization; (2) the solution procedure and (3) the initial and boundary conditions.

In the current paper, the errors from RANS, LES and DNS models are analyzed
based on their physical nature and are qualitatively evaluated by DNS results in [1].
An analysis of the turbulence isotropy properties led to reevaluating the validity of
the turbulent eddy-viscosity, a well-known fundamental assumption in both RANS
closure models and LES sub-grid scale (SGS) models. The importance of eliminating
discretization errors is demonstrated through the grid-dependence study conducted
in [1]. Verification and validation of the DNS results led to the discovery of the
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‘law-of-the-corners’ formulation for the streamwise velocity, as opposed to the ‘law-
of-the-wall’ [2].

As indicated in Xu et al. [3], when solving the incompressible unsteady N-S
equations, solution convergence for the momentum equations is relatively easy and
the majority of the CPU time is spent solving the pressure Poisson equation. A robust
convergence acceleration technique, i.e. the flexible-cycle additive-correction multi-
grid (FCAC-MG) method, was developed to drive the residuals of pressure Poisson
equation down to a satisfactory level. This solution technology was originally devel-
oped for simple geometry flows and the current research extends this technique to
complex geometry flows, including flow past a rectangular block and flow past an
airfoil.

Also, the current research addresses the importance of obtaining realistic tur-
bulent inflow conditions. Towards this end, the temporal LES/DNS simulation ca-
pability, developed based on the FCAC-MG method, provides a powerful tool to
generate realistic turbulent inflow conditions. The spatial simulation of an airfoil in
a fully-developed turbulent channel demonstrated the importance and uniqueness of
applying the temporal approach to obtain realistic turbulent inflow conditions.

In summary, the aforementioned technology development enabled the establish-
ment of a reliable turbulence simulation capability, including the generation of re-
alistic turbulent inflow for a relevant flow geometry and accurate spatial simulation
capturing the turbulence in a complex flow configuration.

2 Model Error Analysis for RANS, LES

The RANS model is based on the averaging procedure proposed by [4], leading
to the RANS equations to solve the mean flow field. The effects of turbulence are
lumped into the Reynolds stresses, giving rise to the well-known turbulence closure
problem. Kolmogorov [5] proposed a generalized form of Boussinesq’s hypothesis,
ρu′iu

′
j = Aδi j +μT (∂ui/∂x j +∂u j/∂xi), relating the Reynolds stress to the strain of

mean velocity based on an analogy of the motions between fluid particles and tur-
bulent eddies. The turbulent eddy viscosity, μT , then became the foundation of the
RANS model. The accuracy of RANS is primarily dependent on μT in a turbulence
closure model, while the grid resolution plays only a limited role. Based on DNS data
[1], the validity of μT can be directly interrogated so that the errors from a RANS
or LES model can be more clearly understood. The major postulation in the consti-
tutive equation for a Newtonian fluid is the isotropy assumption [6] resulting in the
reduction of the stress-strain coefficient tensor Ei jkm in τi j = Ei jkmskm to two scalar
invariants (μ , λ ) known as the first and second coefficients of viscosity. The isotropy
assumption of turbulent eddy motions implicitly contained in the Boussinesq hypoth-
esis becomes a disputable issue. DNS data [1] allow a direct check of the validity of
this assumption. Figure 1(1) gives the flow configuration of a square annular duct
that contains three representative regions: the flat-wall along the wall-bisector and
the concave and convex corners along corner-bisector. Figure 1(2) shows two groups
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of probing points where the turbulent energy spectra (TES) were collected. Figures
2 and 3 provide the TES in three spatial directions at these points.

Fig. 1. (1) Flow configuration of square annular duct; (2) TES probing points

Fig. 2. TES along the wall-bisector (Group I)

Fig. 3. TES along the corner-bisector (Group II)

Strong anisotropies are the dominant features in the entire flow domain for the
large-scale motions, with wavenumbers ranging from 1 to 10. Therefore, the turbu-
lent eddy viscosity concept is not valid for these motion scales, which is the major
cause of failure for RANS models. As demonstrated in Figure 2-(2) and 3-(2), the
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homogeneous turbulence away from the wall and corners is characterized by strong
anisotropy and flow-configuration dependence in large-scale motions. As the energy
cascades down to smaller scales, the TES unanimously approach an isotropic state.
This observation suggests the validity of applying a scalar eddy viscosity in these re-
gions to represent the turbulence motions at sufficiently small scales. The current re-
sults indicate that these small scales roughly consist of motions beyond a wavenum-
ber of 30. Wavenumbers between 10 and 30 are in the transition regime characterized
by the Kolmogorov -5/3 law. However, in the near-wall and near-corner regions, the
anisotropy of the turbulence motions persists even at small scales, as shown in Figure
2-(1), (3) and 3-(1), (3), which implies that the conventional (scalar) eddy viscosity
is not sufficient to represent the turbulence motions at small scales in specific re-
gions, such as the near-wall and near-corners. A more general form of Boussinesq’s
hypothesis, ρu′iu

′
j = Aδi j +μTi jkm(∂uk/∂xm +∂um/∂xk), could be a solution, where

the repeated sub-indices, k and m, imply the Einstein summation.
Based on the above analysis, a more general form of turbulence eddy viscosity,

i.e. the tensor form of eddy viscosity, is recommended for future research of turbu-
lence closure model in RANS and SGS model in LES. This recommendation permits
a sufficient address of the prominent anisotropic features of turbulence motions.

3 Analysis of Discretisation Errors

Before discretising the governing equations of RANS, LES or DNS models, proper
numerical algorithms, including both temporal and spatial schemes, need to be se-
lected and these schemes must be capable of correctly reflecting the physical nature
of the flow phenomenon, typically represented by an elliptic, parabolic or hyper-
bolic equation. If the numerical algorithms are properly selected and correctly im-
plemented, the discretisation errors can be minimized using high-order schemes, and
can be driven asymptotically to zero as the grid becomes more refined. Since, in gen-
eral, an analytical solution does not exist, the appropriate and practical way to check
the discretisation errors is to perform a grid-dependence study.

The current paper makes use of the DNS results in [1], see Figure 1(a), to demon-
strate the reduction of discretisation errors through grid refinement. The DNS re-
sults at a grid size of 256× 258× 258 were compared with LES results at a grid
of 130× 130× 130. The mean streamwise velocity along the wall-bisector and the
corner-bisector, as seen in Figure 4(1) and (2), is the quantity to check, since the
‘law-of-the-wall’ can be applied for validation. The comparisons demonstrate a tan-
gible amount of grid dependence between the solutions of the LES and DNS grids.
Also, the velocity profiles exhibit the salient feature of boundary-layer type flows
along both the wall and corner bisectors, i.e. high velocity gradients in the near-wall
and near-corner (both concave and convex) regions and mild gradients away from
these regions. To validate that the current grid refinement made the solution asymp-
totically approach the right physics, the ‘law-of-the-wall’ from von Karman [2] is
applied to the velocity profile along the wall bisector near both the inner and outer
walls, shown in Figure 4(3). The comparison shows the grid-diffusion effects of the
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coarse (LES) grid, which cause an over-prediction of the streamwise velocity com-
pared to the logarithmic distribution set by the ‘law-of-the-wall’. The solution with
the DNS grid, through effective reducing of the discretisation errors, exhibits a per-
fect match with the ‘law-of-the-wall’ relation in both the viscous sub-layer and the
turbulent outer-layer of the flat walls.

Fig. 4. Streamwise velocity profiles along the (1) corner bisector,(2) wall bisector, (3) valida-
tion against ‘law-of-the-wall’ along wall bisector, (4) ‘law-of-the concave corner’, (5) ‘law-
of-the convex corner’ and (6) Comparison of ‘law-of-the-wall’ and ‘law-of-the-corner’
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For reference, these abbreviations are used in the legends of the following figures:
SQD: square duct; AND: annular duct; WBS: wall bisector; CBS: corner bisector;
CCC: concave corner; CVC: convex corner; INW: inner wall; OTW: outer wall.

By plotting the velocity profiles on the logarithmic scale along the corner bisector
near the concave and convex 90◦ corners, ‘law-of-the-corner’ type of formulations
can be derived, which reveal the prominent damping and enhancing effects of the
concave and convex corners, respectively. Comparisons of the velocity profiles, near
the wall in Figure 4(3) and near the corners in Figure 4(4) and (5), demonstrate that
the grid refinement effectively reduced the coarse grid diffusion effects, that gen-
erally cause over-prediction of streamwise velocity, and made the solution approach
the correct physics. These analyses led to the discovery of two new types of boundary
layers, the concave 90◦ corner and convex 90◦ corner boundary layers. For the con-
cave 90◦ corner, see Figure 4(4), the velocity profile along the corner bisector yields
a formulation, i.e. U+ = d+

n (1− e−d+
n /25), 0 ≤ d+

n ≤ 20 and U+ = 2.5ln(d+
n )+6.5,

30 ≤ d+
n ≤ 100, giving a non-dimensional shear stress, ∂U+/∂d+

n , equal to zero at
concave corner. Similar formulation for the convex 90◦ corner, as displayed in Figure
4(5), is obtained along the corner bisector, i.e. U+ = d+

n (1+e−d+
n /5)1.8, 0 ≤ d+

n ≤ 10
and U+ = 2.5ln(d+

n ) + 8.0, 20 ≤ d+
n ≤ 100 which gives a non-dimensional shear

stress, ∂U+/∂d+
n , equal to 3.257 at the convex-corner tip. The plot in Figure 4(6)

indicates that the flat-plate boundary layer is actually the neutral curve (zero sec-
ondary flow case) in between the concave and convex corner boundary layers and
the mechanisms of this phenomenon are closely related to the prominent effects of
turbulence-driven secondary flow as detailed in [1].

4 Analysis of Solution Errors

The algebraic systems resulting from a discretisation method are generally sparse
and quite large due to the grid resolution requirement. These algebraic systems of
equations must be tackled by an iterative method rather than a direct method. There-
fore, the unavoidable solution errors associated with an iterative method become an-
other major source of uncertainty in the solution. When solving the incompressible
unsteady N-S equation, the pressure Poisson equation takes most of the CPU time
since these equations tend to be stiff and ill-conditioned. The importance of driving
the pressure Poisson equation residue down to a satisfactory level is manifested by
the fact that the residue level is a direct indication of how the numerical results sat-
isfy the mass conservation law. So far, the fast Poisson solvers used in LES/DNS, [7],
are subjected to some major restrictions to allow the fast Fourier transform and/or
a cyclic reduction algorithm to be applied. To achieve the same performance as a
fast Poisson solver without being subjected to these restrictions, a robust FCAC-MG
convergence acceleration technique was first developed in Xu et al. [3] for simple ge-
ometric flows. The major advantage of a flexible-cycle over the conventional V or W
cycles is that the computations on a given grid level always have the opportunity to
move up or down one grid level, depending on whether the residual reduction on the
current grid level is satisfied. This flexibility makes the flexible-cycle scheme more
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efficient in the corrections between the fine and coarse grids. The additive-correction
scheme preserves the integral conservation property on all multi-grid levels. This
conservation property is particularly important in truthfully reflecting the turbulence
physics based on conservation laws. Therefore, as a combination of these two solu-
tion strategies, the FCAC-MG acceleration technique is highly efficient, reliable and
robust, making it feasible for CPU-intensive computations in LES/DNS.

Fig. 5. Flow configurations around (1) 2-D rectangular block; (2) 2-D airfoil

Fig. 6. (1) The initial immersed boundary grid around an airfoil without AMR cutting; (2) The
grid with four levels of AMR cutting

To extend the FCAC-MG technique to complex geometric flows, the flow solver
was first developed to handle the immersed Cartesian geometry, such as the flow
past rectangular block in a confined chamber, see Figure 5(1). To further develop the
solution technology to immersed curvilinear geometry, as illustrated by an airfoil in
Figure 5(2), the Immersed Boundary (IB) method and Adaptive Mesh Refinement
(AMR) technology, first reported in [8], was implemented into the LES/DNS solver
and coupled with the FCAC-MG method. To achieve the geometry adaptation, an
algorithm was developed to identify the cutting cells that intersect the flow geom-
etry and the flow domain is then divided into three group of meshes, namely, (1)
fluid cells, (2) cutting cells and (3) solid cells, as seen in Figure 5(2) represented
by the green, yellow and red colors. An AMR method was developed to refine pro-
gressively the cutting cells so that the airfoil geometry in Figure 6(1) could be more
accurately represented by the AMR grid. Figure 6(1) presents the initial immersed
boundary grid without AMR cutting and Figure 6(2) provides the grid with four lev-
els of AMR refinement that capture more accurately the airfoil geometry. The solu-
tion technology based on this AMR refinement grid is currently under development.
Towards this end, based on the discovery that no solution errors should be tolera-
ble at coarsest multigrid level, a fast direct solver at the coarsest grid was developed
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for a general immersed flow-structure topology represented by the cutting cells. Fig-
ure 7 illustrates a general sparse matrix structure at the coarsest multigrid level with
a mesh of Nx ×Ny ×Nz = 5× 5× 4 including boundary points. This development
guarantees the FCAC-MG method is capable of driving the residues of both mass
and momentum equations down to the machine error. Figure 8(1) and (2) present a
typical convergence history and one flexible-cycle of multigrid iteration. As an initial
approximation, the simulation was conducted on the grid without AMR grid cutting.
Figure 9(1) demonstrates that the current LES/DNS code is capable of qualitatively
capturing the unsteady vortex wake generated even by a rough grid representation of
airfoil geometry.

Fig. 7. Sparse matrix pattern at the coarsest grid level in multigrid

5 Importance of the initial and boundary conditions in LES/DNS

One of the most challenging issues in computational fluid dynamics (CFD) is pre-
scribing accurate initial and boundary conditions that carry the correct physics and
reflect realistic flow conditions ([9], [10]). This issue in conventional RANS simula-
tions has not received adequate attention primarily for two reasons: (1) most RANS
calculations are aimed at resolving flows in a steady state so that an uniform flow
assumption for the initial and inflow boundary conditions was sufficient, and (2) the
errors introduced by a RANS model often prevail over the incorrectness of the ini-
tial and boundary conditions and, therefore, a higher accuracy in these conditions
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Fig. 8. (1) Convergence histories for the momentum and pressure Poisson equations and (2) a
cycle pattern of the FCAC-MG for the flow past rectangular block

was not justified. However, the issue must be unequivocally resolved in LES/DNS
since the target of these simulations is to resolve the detailed spectra of the unsteady
turbulence motions.

In this regard, the temporal simulation, as reported in [14] and [15], can be used
to generate realistic turbulent inflow which is imposed onto the inlet surface of a
relevant spatial simulation. This strategy was applied in the current paper to simu-
late the turbulent flow past an airfoil in a plane channel, as depicted in Figure 9(2).
The current simulation made use of the results obtained in a separate DNS of plane
channel flow to generate the inlet conditions for the flow past airfoil.

Fig. 9. Unsteady vortex shedding of airfoil (1) uniform inflow; (2) fully-developed turbulent
inflow

Figure 9(2) presents the airfoil in the environment of fully developed turbulence
in the confined channel. Comparing with the airfoil flow in uniform inflow condition
in Figure 9(1), the inflow turbulence has a significant impact on the flow patterns
both on airfoil surfaces and on the airfoil wake shedding. Due to the incoming tur-
bulence, the flow on the surface of the airfoil tends to have an early transition to
turbulence and causes a significant shortening the length of the airfoil wake. For the
uniform inflow case, the vortex shedding occurred beyond the trailing edge of the air-
foil. However, under the turbulent inflow condition, the vortex shedding took place
before the trailing edge, giving rise to a lot of flow separations, reattachment and
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subsequently vortices rolling on the surface of the airfoil. All these observations can
be seen vividly by the animation of the vortices evolution, as illustrated in Figures
10 and 11.

Fig. 10. Unsteady vortex shedding of airfoil at time instant I

Fig. 11. Unsteady vortex shedding of airfoil at time instant II

6 Conclusions

A computational uncertainty analysis was conducted for generic turbulence simu-
lation using RANS, LES and DNS. The sources of errors, namely, the model error
and the numerical errors, were identified and analyzed. Technologies were devel-
oped to minimize or to eliminate these errors. To reduce model error, a more general
form of eddy viscosity, i.e. the tensor form eddy viscosity, is recommended to ad-
dress the anisotropic nature of turbulence motions. The adaptive mesh refinement
(AMR) technology, both geometric and solution adaptive methods, is proposed to
smartly reduce the discretization error. To eliminate the solution error, particularly



A Computational Uncertainty Analysis of LES/DNS 349

for complex geometry flows, FCAC-MG solution technology is applied to immersed
boundary method coupled with the AMR technique. The importance of the realistic
turbulent inflow is qualitatively demonstrated through the flow past an airfoil in a
channel. These research and development laid out a technical road map for the fu-
ture LES/DNS practice, which is expected to promote the quality of LES/DNS. More
quantitative comparisons for specific flow will be provided in future work.
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Summary. We apply the error-landscape analysis to turbulent non-premixed combustion in
a bluff-body flame and investigate the error-reduction that can be achieved by adopting the
SIPI algorithm (successive inverse polynomial interpolation) for direct optimization of the
combined effect of discretization and modeling errors. Small scale turbulent flow aspects are
modeled using the Smagorinsky model and a flamelet formulation is adopted for the combus-
tion process. A systematic study of numerical predictions at various resolutions and different
levels of subgrid dissipation is conducted, providing an overview of partial error-cancellation.
The general structure of the error-landscape is similar to that found for single phase homoge-
neous isotropic flow - the application of SIPI results in a considerable reduction of the total
error (15-50 % improvement in relative error) after a small number of iterations. The SIPI
approach provides an impression of the sensitivity of predictions on numerical and modeling
parameters.

Key words: turbulence, non-premixed combustion, error-landscape, successive inverse poly-
nomial interpolation

1 Introduction

An assessment of the reliability with which primary turbulent flow phenomena and
process steps in non-premixed combustion can be predicted using large-eddy simu-
lation (LES) is a central issue that needs to be addressed in order to properly support
the application of LES to flow problems of realistic complexity. The overall reli-
ability is influenced, on the one hand, by the accuracy with which the small-scale
turbulence and combustion are modeled, and, on the other hand, by the error that
arises from the spatial and temporal discretization. Resolving this issue of reliability
of LES is a central pacing item in the development of LES toward a design tool of
industrial interest.
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In this paper, we present a computational error-analysis of large-eddy simula-
tion applied to turbulent non-premixed combustion. We extend the error-landscape
approach [1] to heterogeneous turbulence. The geometry of the Sydney bluff-body
flame is adopted, while the Smagorinsky model [2] and a flamelet formulation [3]
are used for the turbulent stresses and the combustion contributions respectively.
We quantify the total simulation error relative to experimental data [4]. The total
simulation error displays a general structure that is in many respects comparable to
that found for homogeneous decaying turbulence - it is indicative of a partial can-
cellation of errors due to modeling and due to discretization. This property can be
adopted to computationally reduce error levels using an automated algorithmic ap-
proach. We present results based on the SIPI method (successive inverse polynomial
interpolation) and illustrate the level of error-reduction that can be achieved and the
computational overhead that is required.

Turbulent combustion presents major challenges to computational modeling
strategies. Compared to the turbulent flow of a simple fluid such as air, combus-
tion considerably increases the complexity of the problem. A variety of modeling
strategies has been developed, addressing (i) the dynamic consequences of small-
scale turbulent motions, (ii) the resulting multitude of chemical transformations that
constitute the total combustion, and (iii) the complete coupling between these nonlin-
ear processes. Such modeling is aimed at reducing the complexity of the underlying
dynamical system to allow simulation at a strongly reduced spatial resolution, i.e.,
at manageable computational costs. However, these modeling steps also introduce
sources of error into the computations. In addition, the spatial discretization that is
used to represent the governing equations will be a source of simulation error, which
is particularly relevant at modest resolution of the smaller resolved scales, as is often
the case in realistic LES [5]. Finally, these sources of error combine nonlinearly and
may result in significant error-accumulation under certain simulation conditions.

The organization of this paper is as follows. A brief introduction to the simula-
tion of a turbulent non-premixed Sydney flame is provided in Section 2. The error-
landscape analysis of this flow problem is presented in Section 3. The errors due to
modeling and discretization were found to partially cancel. This provides the oppor-
tunity to adopt the SIPI algorithm (successive inverse polynomial interpolation) to
iteratively optimize the total error that occurs. The application of SIPI is illustrated
in Section 4. Concluding remarks are collected in Section 5.

2 Simulation of a turbulent bluff-body flame

In this section we introduce the mathematical model and the numerical method used
for simulation of a turbulent non-premixed Sydney flame. Some flow visualization is
given of the flame structure that is obtained.

A smoothed description of the turbulent flow associated with a combustion pro-
cess arises from the application of a spatial filter, denoted by an overbar. Associated
with this the density weighted Favre averaging is also employed, e.g., to obtain the
smoothed velocity field; this is denoted by a tilde. The spatially filtered Navier Stokes
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equations are solved together with the continuity equation:

∂
∂ t

(ρ ũi)+
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∂x j
(ρ ũiu j) = (1)
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The flow is described by velocity ui, pressure p and density ρ . The kinematic vis-
cosity is denoted by ν . We will restrict ourselves to low Mach numbers - in these
conditions the density ρ is variable but independent of the pressure p. The momen-
tum equation as given in (1) contains a closure problem in view of the occurrence of
contributions ũiu j. These can not be expressed in terms of the Favre averaged veloc-
ities. Instead the approximate form ũiũ j is identified next to the unresolved sub-grid
stresses τsgs

i j according to ũiu j = ũiũ j + τsgs
i j . The unknown subgrid stress tensor τsgs

i j
is modeled through Smagorinsky’s eddy viscosity model [2]:
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The turbulent viscosity is obtained from the deformation rate tensor

νt = (CSΔ)2
√

2S̃i jS̃i j with S̃i j =
1
2

(
∂ ũ j

∂xi
+

∂ ũi

∂x j

)
(4)

Here we introduced the Smagorinsky coefficient CS next to the filter-width parameter
Δ . Often Δ is taken equal to the grid-spacing. Various values have been suggested for
the Smagorinsky constant CS - a typical reference value is 0.17. In this paper we will
treat CS as an adjustable parameter and use this degree of freedom to obtain improved
accuracy of predictions. Various more refined sub-grid models have been proposed
in literature [6]. For the Sydney flame the use of a fine resolution in combination
with the Smagorinsky model was found to be a good point of departure for the pur-
pose of this paper, i.e., the assessment of the reliability of a particular computational
modeling of a turbulent non-premixed combustion process.

We consider non-premixed combustion that is limited by the rate at which fuel
and oxidizer mix. For such processes we may assume these species to react as soon as
they come together. We incorporate combustion using a flamelet approach according
to Williams [11] and Peters [3], based on Bilger’s mixture fraction [12]. The mixture
fraction f represents the local ratio of atomic mass from the fuel nozzle to the atomic
mass from the air-coflow. The evolution of the mixture fraction is obtained from
solving
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This equation includes an eddy-diffusivity term to represent the unresolved scalar
fluxes from the turbulent viscosity νt and the turbulent Schmidt-number σt = Dt/νt ≈
0.7 [13] which relates the turbulent diffusivity to the turbulent viscosity. The mixture
fraction is important for the evaluation of the tabulated flamelet description.

The numerical simulations are based on the PsiPhi LES code for general trans-
ported scalars Φ and derived quantitiesΨ , using algorithms similar to the flowsi code
[14, 15]. The code uses a Low-Mach assumption to solve the Favre Filtered Navier
Stokes equations on a collocated Cartesian grid which consists of cubical cells. The
PsiPhi code applies a low storage Runge-Kutta scheme that is third order accurate for
linear problems. In PsiPhi, diffusion discretization schemes of both 2nd and 4th order
accuracy are available. For convection, a 2nd order central scheme is used. For scalar
transport, numerical oscillations must be prevented through non-oscillatory schemes.
We employ a TVD (Total Variation Diminishing) scheme that blends a second order
central scheme with a first order upwind scheme. Avoiding numerical oscillation is
particularly important for the mixture-fraction.

The test-case considered here is the turbulent non-premixed bluff-body burner
designed at Sydney university [4]. For this burner, both flow-field and scalar data
are available. The Sydney burner consists of an axial bluff-body located in an open
wind-tunnel, causing air recirculation down-stream of the bluff-body. A circular hole
in the center of the bluff-body ejects gaseous fuel into the recirculation zone, leading
to a stabilized flame. We focus on the test-case ‘HM1e’ with a co-flow velocity of
Uco = 35 m/s, a jet velocity of Uj = 108 m/s, and a fuel composition of 50% [vol.]
methane and 50% [vol.] hydrogen.

The Sydney Bluff Body Flame has been discretized on a computational domain
of 200 mm in axial direction and 160 mm in each of the lateral directions, using cubic
cells on grids of [40.0, 14.1, 5.0, 1.8, 0.63] million cells. Several simulations were
performed on each of these grids for different values of the Smagorinsky parameter
CS. Fig. 1 shows snapshots of the flame region at a resolution of 5 M cells and differ-
ent Smagorinsky parameters. We observe that a considerable increase in CS relative
to the reference value of 0.173 induces a significant smoothing of the smaller scales
in the flame. More small scales appear in the snapshots at lower values of CS. How-
ever, from these snapshots it is not possible to identify which of these simulations is
actually the more accurate one. Intuitively, too much smoothing will imply a problem
that is not hindered much by discretization errors. Conversely, a problem in which
many small scales are kept may rely less on the quality of the sub-grid model and
hence be also less affected by possible errors in the small-scale modeling. However,
a very smooth flow will rely more on proper representation of the small scales by
the sub-grid model while a lively small-scale turbulent flow may be affected by dis-
cretization errors. Where to strike an optimal balance between these sources of error
is not easy to answer. However, following the error-landscape approach[1] a system-
atic framework is offered with which the total simulation error can be assessed via
numerical experimentation. We performed this analysis for the Sydney flame and
briefly sketch some findings in the next section.
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Fig. 1. Instantaneous temperature fields of the Sydney bluff-body flame for four different
model constants CS using 5 M cells. The figure shows how larger model coefficients suppress
the smallest structures through overemphasized diffusion. With the smallest model coefficient,
cell-sized structures which induce large numerical errors become important.

3 Error landscape analysis of a turbulent combustion

In this section we introduce the error-landscape approach and apply this to the Syd-
ney bluff body flame. We confront the simulations with experimental data [4, 16].
The basic structure of the error-landscape will be sketched afterwards in combina-
tion with the possibility for computational error-reduction.

The introduction of a sub-grid model to represent the small-scale turbulent mo-
tions and a spatial discretization method to evaluate the derivatives in the governing
equations constitute sources of error. Their theoretical assessment in LES is ham-
pered by the fact that practical LES is routinely executed at marginal sub-grid reso-
lutions and at fairly large filter-widths. Correspondingly, both numerical and model-
ing errors are expected to be large and do not lend themselves for an analysis based
on Taylor expansions and Richardson extrapolation. Rather, a direct simulation ap-
proach is adhered to. From a systematic variation of important system parameters
associated with numerical and modeling errors a precise assessment of the total sim-
ulation error can be obtained.

In any large-eddy simulation the numerical flow prediction will be influenced by
the interplay between sources arising from flaws in the sub-filter model and errors
due to the numerical treatment at marginal sub-filter resolution. For strongly turbu-
lent flow it is unclear how these sources of error will accumulate. This introduces the
issue of reliability of a given LES. For the Smagorinsky model as adopted in this pa-
per, a detailed impression of the total error behavior in a given flow may be obtained
by considering the total error as a function of the numerical resolution N ∼ 1/h and
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the Smagorinsky parameter CS, taking the filter-width equal to the grid-spacing. Any
simulation in particular is then characterized by its combination (CS,N). Correspond-
ingly, one may label the total error E in this way. From contour-plots of E as function
of CS and N one may infer under what conditions on the model parameter and/or the
numerical resolution one may expect a given level of error. Such a contour-plot of
E(CS,N) will be referred to as an error-landscape. It requires a systematic collection
of individual LES on a grid of (CS,N) points. From such a study one may, afterwards,
identify the ‘optimal refinement’ strategy, which specifies the value of ĈS at which
the total error is minimal at given N.

Fig. 2. Error-landscape obtained for the error in the streamwise velocity u (a) and rms(u).
Simulations were performed at grid-spacings of 0.5,1.0,1.5,2.0,2.5 (mm) and a range of CS
values. The errors are defined relative to experimental data obtained at a number of spatial
locations.

A crucial element in the error-landscape approach is the measure that is adopted
to quantify the total error. This aspect is dependent on the particular flow and ap-
plication that is being investigated. In this paper we investigate the total simulation
error in terms of differences that occur in mean and root-mean-square properties of
the flow, such as velocity components, temperature and mixture fraction, relative to
the experimental findings. We can express the error in terms of individual properties
or as a weighted average of several of them simultaneously. In Fig. 2 we present
the error-landscape evaluated for the mean and rms streamwise velocity component.
Experimental data for these velocity profiles are available at a number of locations
- taking the discrete L2-norm of the difference between these profiles and the LES
results yields an impression of the total simulation error as function of spatial reso-
lution and Smagorinsky constant. We observe that the error increases very rapidly in
the mean in case the spatial resolution drops below a certain level. In addition, the
use of very low and very high values of CS induces an increase in the total simulation
error. In between, a striking valley structure develops, which is more pronounced at
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coarser resolutions. This valley structure in the error landscape is indicative of partial
error cancellation [1].

Fig. 3. Error-landscape obtained for the combined error in the streamwise velocity u, the
spanwise velocity v, the temperature T̃ and the mixture fraction f̃ . Each error-component
was normalized by its respective maximum and subsequently added with equal weight (a). A
collection of cross-sections of the error E at constant spatial resolution is shown in (b): h =
0.5,1.0,1.5,2.0,2.5 mm plotted solid, dash, dash-dot, dot and solid with circle respectively.

A number of flow properties is available experimentally for error-analysis, in-
cluding temperature, mixture fraction and spanwise velocity. Each of these quanti-
ties yields quite different error-landscapes. A more complete assessment arises from
error measures that include an appropriate mixture of such physical quantities. This
also provides flexibility in assigning different weights to different flow properties to
reflect application specific emphasis. As an illustration we show the combined er-
ror in streamwise and spanwise velocity, temperature and mixture fraction in Fig. 3.
In order to include errors in various quantities that may be of different magnitudes,
we combine basic error-landscapes in the individual flow properties, normalized by
their maximal value. An equal weighing of these normalized error-landscapes shows
a ‘valley-structure’. The error-behavior is expressed accurately in terms of the graphs
of error versus CS at a number of resolutions in Fig. 3(b). We observe that the overall
error-levels increase with decreasing resolution. Moreover, a local minimum of the
total error can be appreciated for values of the Smagorinsky coefficient of about 0.1-
0.2, depending on the spatial resolution that was adopted. In some cases the reduction
in relative error compared to the lower value of CS = 0.05 is as high as 40-50 % and
quite localized around a specific CS-value. At other resolutions the benefit of adapt-
ing CS is less clear and a more shallow minimum is observed. This error-structure
is reminiscent to that established for homogeneous, isotropic, decaying turbulence
[7, 8]. To automatically obtain a reduced error-level, we may employ an iterative
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successive inverse polynomial interpolation (SIPI) optimization procedure [9]. We
turn to this in the next section.

4 Computational error optimization using SIPI

In this section we illustrate an algorithm with which optimal model coefficients at
fixed spatial resolution can be obtained iteratively. Instead of recording an entire
error-landscape and identifying optimal CS values only afterwards, one may directly
optimize the total simulation error.

The algorithm proceeds in a few steps. The first task is to determine an inter-
val of CS values that contains the optimum. This can be determined by performing
two simulations, one at CS considerably higher than suggested in literature and one
at a much smaller value. Here we take the upper boundary to be CS,up = 2CS,Lilly

where CS,Lilly = 0.173, and the lower boundary at CS,low = CS,Lilly/4. These settings
correspond to simulations that are too smooth (upper boundary) or only modestly
smoothed. The first iteration is then performed at CS = (CS,up +CS,low)/2, after which
we have obtained three measurements of the error at their corresponding CS values.
Further refinements can be obtained using the SIPI minimization algorithm - this
approach is preferred as it does not require derivatives of the error E [10]. At fixed
resolution N3 locally around its minimum E(CS) can be approximated by a parabola
in CS. Based on the three initial iterations we may construct such an interpolating
parabola and perform a new iteration at a CS value that corresponds to the mini-
mum of this parabola. On an interval around the minimum where the error function
is strictly convex, this algorithm will be guaranteed to converge - in practice 5-6
iterations are quite sufficient to approximate the optimum with fair accuracy.

In Fig. 4 we show the iteration process at different spatial resolutions. The it-
eration process rapidly converges to a value that is near a local minimum of the
error-landscape. If the error-landscape is very flat the iterations suggest quite large
values of CS. In such cases the precise value of CS is not very critical and very dissi-
pative sub-grid modeling is still acceptable. The SIPI procedure automatically yields
suggestions for an optimal CS at which the error is (much) smaller compared to
CS = CS,Lilly/4. The benefit of SIPI as measured in terms of the error-reduction rel-
ative to the lower bound for CS varies from about 25% at the highest resolution to
about 50 % for intermediate resolutions and about 15 % at the coarsest resolutions.
Interestingly, the optimal CS increases for h = 2.5,2.0,1.5,1.0 mm and jumps to a
value around 0.1 for h = 0.5 mm. It appears that only at h = 0.5 mm all dynamically
relevant scales are represented - a full DNS may be hypothesized to require another
factor 3-6 more grid-points at which the optimal CS ≈ 0.

5 Concluding remarks

In this paper we presented large-eddy simulations of turbulent, non-premixed com-
bustion that arises in a bluff-body burner known in literature as the Sydney bluff-
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Fig. 4. SIPI convergence for the total simulation error E shown using simulated SIPI based on
error-data obtained at grid-spacing 0.5,1.0,1.5,2.0,2.5 mm from bottom to top, labeled with
solid and dashed curves consecutively. After the first three iterations, subsequent iterands are
labeled with ◦, ∗, +, diamond and square.

body flame [4]. The Smagorinsky model was adopted to represent the small turbu-
lent motions and a flamelet model was adopted to describe the combustion process.
The influence of a Smagorinsky coefficient that is either too high or too low was
illustrated on the basis of selected snapshots. This provides a first impression of
the effect of errors due to the discretization and errors due to shortcomings in the
sub-grid model. In order to quantify the errors in more detail the error-landscape
approach was used [1]. Using a definition of the total simulation error relative to ex-
perimental data, a concise overview of the reliability of LES of this problem can be
arrived at. The error-landscape that was obtained showed a qualitative similarity with
the ‘valley-structure’ that was seen in an analysis of LES of homogeneous isotropic
turbulence. This also provides the opportunity to directly reduce the error-level by
a carefully generated sequence of simulations. Such a SIPI approach was found to
reduce the error by 15-50 % depending on the spatial resolution that was adopted.
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Summary. The turbulent flow over periodically arranged geometrically two-dimensional hills
in a channel at a Reynolds number of Re = 37,000 has been considered as benchmark case
for various eddy-resolving methods. The aim of this study is to assess various LES models
and numerical approaches in a turbulent flow detaching from a curved surface. We compare
results of a Cartesian grid solver using the immersed boundary method with various curvilinear
approaches ranging from standard eddy-viscosity subgrid-scale models to hybrid LES-RANS
models. The results are validated by a recent experiment conducted in a water channel by
particle image velocimetry and laser-Doppler anemometry.

Key words: Quality, Reliability, Large-Eddy Simulation, Hybrid LES-RANS

1 Introduction

Large-Eddy Simulation of complex aerodynamic configurations heavily stresses
available computer hardware and codes through excessive grid refinement necessary
to resolve the immediate wall layer. The scaling of the viscous layer with Reynolds
number leads to a severe bottleneck if flows at high Reynolds numbers are to be
predicted. Furthermore, complex high Reynolds number flows are difficult to predict
because of the representation of the geometric details. Concerning the representa-
tion of the geometry, several grid systems have been developed, Cartesian Immersed
Boundary (IBM), Curvilinear Body Fitted and unstructured grids. In this study, we
consider the former two by comparing results from three different flow solvers, a
Cartesian IBM code (MGLET, [11]) a curvilinear code that allows for a hybrid
method (LESOCC, [2]) and a curvilinear code with a recently developed wavelet-
based subgrid-scale model (LESOCC2, [7]).

While IBM methods are able to represent highly complex shapes with many ge-
ometric details, they have problems to refine the grid close to a wall if the wall is not
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aligned with the grid. This problem results in poor wall shear stress predictions if
not two (or even three in the general case) directions are refined at the wall. Conse-
quently, it has been found in a previous study at a low Reynolds number that an IBM
method requires a larger total number of grid cells than a curvilinear one. We expect
that with increasingly thinner viscous sublayers, i.e. with higher Reynolds numbers,
this problem would be more severe. The performance of an IBM method together
with three different sub-grid scale models is checked by the flow solver MGLET.
We compare standard Smagorinsky [13], the WALE subrid-scale model [10] and a
Lagrangian dynamic model [9].

As an alternative to explicit wall functions, hybrid methods have become popular
in recent years. Hybrid methods, such as Detached Eddy Simulation (DES) promise
to save resources in the wall layer by applying Reynolds Averaged (RANS) models
in the wall layer and LES outside. Since at high Reynolds numbers, wall units can
not be resolved by a grid that resolves the large scales of the outer flow, the spatial
filter performed by this grid tends towards a Reynolds filter thus justifying RANS
modeling close to the wall. Issues of these so-called hybrid methods are the location
and definition of the interface between RANS and LES zone and the low-Reynolds
modification of the terms in the applied model equations. A recent development of
Jaffrezic and Breuer [6] showed excellent results for the considered flow case at a
lower Reynolds number. We assess this approach, a combination of Schumann’s one-
equation subgrid-scale model in the LES zone with an explicit algebraic Reynolds
stress model in the RANS zone in comparison with a pure LES with Schumann’s
model by the curvilinear code LESOCC.

A recently proposed wavelet-based eddy-viscosity subgrid-scale model [4] is
checked in comparison to the standard Smagorinsky model with the curvilinear code
LESOCC2. In this model the eddy-viscosity is set proportional to the wavelet-details
from a two-level biorthonormal wavelet decomposition of the velocity vector.

2 Test case

We consider in this paper the flow over a periodic arrangement of smoothly con-
toured two-dimensional hills featuring important details of flow separation from a
curved surface with subsequent reattachment (see Figure 1). It goes back to the ex-
periments of Almeida et al. [1], but has been modified by Mellen et al. [8] to be
more suitable for numerical simulations. Consequently, it has been extensively stud-
ied over the past few years e.g. [3, 5] and used as basis for workshops on turbulence
modeling. Up to now, highly resolved LES and DNS are available for Reynolds num-
bers Re ≤ 10,595 that can be regarded as reference solutions [3]. In addition, an ex-
periment corresponding to this new setup was designed at the Technische Universität
München in order to provide experimental reference data up to Re = 37,000 [12]. In
this experiment, careful checks have been made to validated the measurement tech-
niques (PIV and LDA). Two-dimensionality of the flow in the middle of the channel
has been proven for Re ≥ 10,595.
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Fig. 1. Geometry of periodic hills in a channel.

Fig. 2. Dependence of averaged velocity profiles on Reynolds number. Experiment by Rapp
[12]. x/h = 0.05 (left) and x/h = 4.0 (right).

The flow field reveals all structural features of separating and reattaching flows
including curved streamlines, highly unsteady separation and reattachment lines, a
fluctuating shear layer above the separation zone giving rise to Kelvin-Helmholtz
vortices and strongly amplified fluctuations. On the windward side of the hill the
flow is accelerated with a maximal wall shear stress occurring approximately in the
upper third of the hill slope. Two secondary separation zones were observed at Re =
10,595, one in front of the hill and one at the hill crest. A detailed analysis of the
flow field was reported by Fröhlich et al. [5] and Breuer et al. [3].

Of special interest for this study is the Reynolds number dependence of the flow
field. As can be seen in Figure 2, the mean streamwise velocity profiles develop
an overshoot directly above the hill crest (x/h = 0.05) with increasing Reynolds
number. Above Re = 19,000 the profile is flat towards the upper wall over the hill.
The separation point moves upwards with increasing Reynolds number. Close to the
reattachment point (x/h = 4.0) we see again the flatter velocity profiles at the higher
Reynolds numbers. The two positions shown in Figure 2 reveal the most pronounced
Reynolds number dependent features of the averaged velocity field. These are also
the positions at which the strongest deviations between different simulations have
been observed in previous studies.
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3 Numerical details

The codes used in this assessment have been developed for LES of turbulent flows
and validated in a number of studies. All codes use finite-volume discretizations with
standard central second-order spatial approximations for this study and Runge-Kutta
time advancement. The purpose of this study is to assess what can be achieved with
relatively coarse grids. In this context, it is of major interest, how the performance of
the schemes changes with increasing Reynolds number.

The two curvilinear codes use grids that are refined towards the wall and result in
106 (LESOCC2) and 1.5 ·106 (LESOCC) cells, respectively. The most critical point
concerning resolution is at the maximal wall shear stress at the windward side of
the hill. The spacings Δy+

max that could be achieved by these grids are rather coarse
for Re = 37,000 (see table 1). For the Cartesian method it is even more difficult
to achieve a full wall resolution at that point with a comparable number of cells. We
performed a resolution study with two different grids, one with 2 ·106 (2M), the other
with 3.8 ·106 (4M) cells. The achievable wall resolutions at the point of maximal wall
stress are very coarse. However, it has to be noted that the length over which this wall
stress is acting upon the flow field is very short, approximately one half hill heights.
In all other positions, the wall resolutions can be regarded as sufficient.

Table 1. Main parameters of grids used in this study. X : streamwise; Y : wall normal; Z: span-
wise direction. Wall resolution Δy+

max at point of maximal wall shear stress.

Code NX ×NY ×NZ Δy+
max(10,595) Δy+

max(37,000)

MGLET (4M) 216×168×104 11 30
MGLET (2M) 176×120×96 32 88
LESOCC 160×160×60 1 3.4
LESOCC2 160×100×60 4.3 11.8

4 Results

The focus of this study lies on the capability of the different modeling approaches
to accurately predict the size and shape of the separation downstream of the hill at a
medium Reynolds number. It can be stated that all methods succeed in qualitatively
predicting the separation zone. The main difference between the various models and
approaches can be seen in the time averaged streamwise velocity profiles at the hill
crest x/h = 0.05 and the reattachment region x/h = 4.0 which are discussed in the
remainder.

The performance of the IBM method is discussed for Re = 10,595 and Re =
37,000 (Figures 3 and 4). The overall accordance is satisfying. The peak over the
hill crest that was measured in the experiment is not reached by the simulations
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at Re = 10,595. Especially the Smagorinsky model (SMA) seems to underpredict
this feature. This underprediction goes in hand with a delayed reattachment (see
x/h = 4.0). The Lagrangian subgrid-scale model (LAG) performs best at the lower
Reynolds number. At the higher Reynolds number, the WALE model (WAL) per-
forms a little better than the Lagrangian one but both are fully satisfying over the
hill crest and at the point of reattachment. The Lagrangian model with 2 · 106 (2M)
cells even outperforms the Smagorinsky model at twice the number of cells. But both
reattach too late. The comparison between experiment and simulation is better at the
higher Reynolds number than at the lower one. This is surprising as the resolution of
the viscous layer is much worse at the higher Reynolds number and no wall model
was used.

The performance of the curvilinear codes is checked at Re = 37,000 (Figure 5).
Concerning the overshoot over the hill crest there are two different solutions, the
finer grid (1.5M) comes closer to the experiment than the coarser one (1M). It seems
that a too small overshoot over the hill crest goes in hand with a too long reattach-
ment length. The hybrid model (HYB) performs similar to Schumann’s model (SCH)
with a slightly longer recirculation zone. The wavelet-based model (WAV) is slightly
better than the Smagorinsky model. To check the performance of the curvilinear
schemes at Re = 10,595, we plot profiles from Smagorinsky (LESOCC2, 1M-SMA),
wavelet-based (LESOCC2, 1M-WAV) and dynamic Smagorinsky (LESOCC, 12M-
DSM). Note, that the latter one was computed on a 12 · 106-cells mesh that is fine
enough so that the effect of SGS models disappears [3]. This simulation can be re-
garded as reference for LES at this Reynolds number as no significant change of the
results can be expected at higher resolutions. At this Reynolds number, the standard
Smagorinsky model performs nearly as well on one million as the dynamic one on
12 million cells. The wavelet-based model is a little too dissipative at the wall as no
damping of the SGS-viscosity was undertaken. This issue has already been identified
for further improvements of this model. Note that Van Driest damping was used for
the Smagorinsky model.

The assessment of the averaged velocity profiles over the hill crest and close to
reattachment reveals the observation that an underprediction of the overshoot above
the hill crest results in a longer recirculation zone in the lee of the hill. This behavior
can not fully be explained by the values of the total shear stresses (resolved plus
modeled) at the hill crest (Figure 7). The higher Reynolds shear stress values come
together with a longer separation bubble. This is counterintuitive but can be explained
by the fact that the momentum transport over the shear layer bounding the separation
zone is due to the fluctuations in that shear layer which start over the hill crest in a
very thin layer. This layer is represented by the sharp shear stress peak immediately
above the wall that was not measured in the experiment, presumably due to resolution
problems. Thus the large peak in the middle of the channel is a remainder of upstream
processes. It can be concluded that it is responsible for the shape of the velocity
profile in the bulk of the flow which was observed to be more or less flat in the various
simulations. If the shear stresses are strong, the overshoot just over the crest of the hill
is damped due to increased momentum transfer from the bulk to the location of the
overshoot. This conclusion is supported by the fact that all results with lower peak
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(overshoot) values directly over the hill crest show an increased level of Reynolds
shear stress in the bulk.

Now let’s examine the behavior of the individual methods upstream of the hill
which is supposed to be important for the shape of the velocity profile above the
crest. The windward side of the hill is characterized by a strong acceleration of the
bulk velocity by a factor of 3/2. An examination of the Reynolds shear stresses at the
middle of the hill slope at x/h = 8.0 reveals a nearly perfect match of all methods
with the measurements at y/h ≥ 1.5 (not shown). In this region the streamlines are
nearly parallel (compare Figure 1). Below, the numerical results deviate from the
experiment. Reaching towards the lower wall, the streamlines are more and more
aligned with the hill slope. The momentum transfer perpendicular to the streamlines
can therefore only be examined in a coordinate system that is aligned with the wall
which is done in the following.

The Reynolds number dependence of the shear stress that is evident from the ex-
periment is hardly predicted by the numerical schemes (Figures 8 and 9). Note that
in these figures, on the left hand side the numerical results should coincide with the
lower Reynolds number (hollow symbols) and on the right hand side, they should
match the higher Reynolds number (full symbols). While in the experiment the shear
stress drops by a factor of 3/2 from Re = 10,595 to Re = 37,000, this drop is not ob-
served in most of the models. In the Cartesian code, the Lagrangian and the WALE
models drop by some amount but not like the experimental values. At the lower
Reynolds number, the values are mainly too small, at the higher one too large. The
results from the Smagorinsky model seem to be independent of the Reynolds num-
ber, an observation that can also be made in the curvilinear codes. Those results lie
generally above the experimental ones except for the high resolution simulation with
12 ·106 cells (12M-DSM) at Re = 10,595. The main trend is that the higher the mo-
mentum transport perpendicular to the streamlines is, the lower is the overshoot just
above the hill crest. This is explained by the fact that this overshoot is an inviscid
effect that is attenuated by strong shear stresses upstream. The excessive near-wall
bump apparent in the IBM method is a consequence of the poor near-wall resolution
of this method. Its effect on the velocity profiles remains limited as the overall level
remains small.

5 Conclusions

The present study compares several eddy resolving approaches for numerical simu-
lation of turbulent flow with experimental data at low to medium Reynolds number
flow over periodically arranged hills. Special attention is placed on the Reynolds
number dependence of the results. The following observations could be done.

The acceleration and streamline curvature at the windward side of the hill gen-
erates an overshoot in the velocity profile above the hill crest. This is an inviscid
effect. Viscous and turbulent stresses attenuate this overshoot. Both, viscous and
turbulent stresses decrease with increasing Reynolds number, consequently the over-
shoot increases with Reynolds number. Various methods were not able to reproduce
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Fig. 3. Comparison of averaged velocities from MGLET with experimental data at Re =
10,595. Experiment by Rapp [12]. x/h = 0.05 (left) and x/h = 4.0 (right).

Fig. 4. Comparison of averaged velocities from MGLET with experimental data at Re =
37,000. Experiment by Rapp [12]. x/h = 0.05 (left) and x/h = 4.0 (right).

this Reynolds number dependence, especially the classical Smagorinsky model. The
successful models include the Lagrangian dynamic, the WALE and the newly de-
veloped wavelet-based model as well as Schumann’s model with or without hybrid
wall modeling. It has to be mentioned that the hybrid wall modeling tested in this
study represents a promising way as the interface between RANS and LES zone
does not have to be defined a priori and a smooth transition is achieved at the inter-
face. Van Driest damping is required when the wall resolution is in the range of ten
wall units. The newly proposed wavelet-based model still has to be tested with Van
Driest damping although it’s results are fully satisfying.

A correct prediction of the maximum wall shear stress, which is difficult for IBM
methods seems to have less impact on the global results at higher Reynolds numbers
than at lower ones. This can be explained by the ratio of wall shear stress to wall
pressure which shifts in favor of the wall pressure at higher Reynolds numbers. As
a consequence, results at higher Reynolds number are less prone to immediate wall
resolution than to overall grid resolution in the bulk of the flow. In this respect, the
penalty of Cartesian IBM methods concerning wall resolution is less severe for this
flow when Reynolds number is high.



368 Manhart et al.

Fig. 5. Comparison of averaged velocities from LESOCC and LESOCC2 with experimental
data at Re = 37,000. Experiment by Rapp [12]. x/h = 0.05 (left) and x/h = 4.0 (right).

Fig. 6. Comparison of averaged velocities from LESOCC and LESOCC2 with experimental
data at Re = 10,595. Experiment by Rapp [12]. x/h = 0.05 (left) and x/h = 4.0 (right).

Fig. 7. Comparison of Reynolds shear stress from MGLET (left) and LESOCC and LESOCC2
(right) with experimental data at Re = 37,000. Experiment by Rapp [12]. x/h = 0.05.
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Fig. 8. Comparison of Reynolds shear stresses from MGLET at x/h = 8.0 in a coordinate
system aligned with the wall. Experiment by Rapp [12]. Re = 10,595 (left) and Re = 37,000
(right).

Fig. 9. Comparison of Reynolds shear stresses from LESOCC and LESOCC2 at x/h = 8.0 in
a coordinate system aligned with the wall. Experiment by Rapp [12]. Re = 10,595 (left) and
Re = 37,000 (right).
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Summary. This paper focuses on the notion of suitable weak solutions for the three-dimen-
sional incompressible Navier–Stokes equations and discusses the relevance of this notion to
Computational Fluid Dynamics. The purpose of the paper is twofold (i) to recall basic math-
ematical properties of the three-dimensional incompressible Navier-Stokes equations and to
show how they relate to LES (ii) to introduce an entropy viscosity technique based on the
notion of suitable weak solution and to illustrate numerically this concept.
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1 Introduction

The question addressed in this paper is that of constructing approximate solutions to
the three-dimensional incompressible Navier-Stokes equations using under-resolved
meshes. The use of under-resolved meshes cannot be avoided when the Reynolds
number is large, which is very often the case in engineering situations. At the present
time, simulating time-dependent flows at Reynolds numbers greater than a few thou-

sands is a challenging task due to the heuristic Kolmogorov estimate O(R9/4
e ) for the

total number of degrees of freedom which is required to simulate flows at a given
value of Re.

In the wake of [6, 12, 9], the objective of this paper is to show that the notion
of suitable weak solutions introduced by Scheffer [22] is a sound, firm, mathemat-
ical ground which could be useful to LES modelers to build energetically coherent
theories.
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This paper is organized in four parts. In the first part (Section 2) we recall basic
mathematical properties of suitable weak solutions and we mention some new results
regarding the approximation of these solutions. We want to draw the attention of
the community on the fact that, contrary to finite elements/volumes/differences and
wavelets, at the time of this writing it is still unknown whether Fourier-based DNS
in the periodic cube produce weak solutions that are suitable. In other words there
is still no mathematical proof that Fourier-based DNS is energetically consistent.
Considering the importance of Fourier-based DNS in CFD, this theoretical gap is
worrisome.

In the second part of this paper (Section 3) we propose a model that aims at
controlling the energy balance at the grid scale in a way which is consistent with the
notion of suitable solutions, i.e., suitable solution are locally dissipative. The key idea
consists of adding a numerical viscosity proportional to the default to equilibrium
in the local energy equation. This model henceforth referred to as LES or entropy
viscosity has been proposed in [10, 9].

In the third part (Section 4) we test the entropy viscosity technique on some scalar
nonlinear conservations laws using various discrete settings comprising Fourier ex-
pansions and finite elements.

The entropy viscosity technique is adapted to the compressible Euler equations
in the fourth part of this paper (Section 5).

The test reported in Section 4 and Section 5 should convince the reader that com-
puting a numerical viscosity proportional to the entropy residual is a very efficient
stabilization technique. We conjecture that this method should be a good candidate
for LES and could provide a reasonable mathematical background for LES.

2 Suitable weak solutions

2.1 The Navier-Stokes problem

Let Ω be a connected, open, bounded domain in R
3 and consider the time-dependent

incompressible Navier–Stokes equations in Ω
⎧⎪⎨
⎪⎩

∂tu+u·∇u+∇p−R−1
e Δu = f in QT ,

∇·u = 0 in QT ,

u|t=0 = u0, u periodic or u|Γ = 0,

(1)

where QT = Ω × (0,T ) is the space-time domain, Γ is the boundary of Ω , and Re is
the Reynolds number.

Spaces of R
3-valued functions on Ω and R

3-valued functions are denoted in
bold fonts. The Euclidean norm in R

3 is denoted | · |. In the following c is a generic
constant which may depend on the data f, u0, Re, Ω , T. The value of c may vary at
each occurrence. Whenever E is a normed space, ‖ · ‖E denotes a norm in E.
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2.2 Suitable weak solutions

It is known since Leray [18] and Hopf [13] that weak solutions to (1) exist, but the
question of uniqueness of these solutions is still open. The major obstacle in the way
is that the a priori energy estimates obtained so far do not preclude the occurrence of
so-called vorticity bursts reaching scales smaller than the Kolmogorov scale.

Uniqueness is intimately related to smoothness. A very interesting approached to
the smoothness question has been developed by Scheffer [22]. The idea is to study the
Hausdorff measure of the singular set of weak solutions (the singular set is composed
of those points in time and space where the solution is not essentially bounded in
any neighborhood of these points). Proving that the measure of the singular set is
zero would amount to proving that there is no singularity. To carry out this program
Scheffer introduced the notion of suitable weak solutions which boils down to the
following

Definiton 1 Let (u, p), u ∈ L2((0,T );H1(Ω))∩L∞((0,T );L2(Ω)),
p ∈ D ′((0,T );L2(Ω)), be a weak solution to the Navier-Stokes equation (1). The
pair (u, p) is said to be suitable if the local energy balance

∂t( 1
2 u2)+∇·(( 1

2 u2 + p)u)−R−1
e Δ( 1

2 u2)+R−1
e (∇u)2 − f ·u ≤ 0 (2)

is satisfied in the distributional sense, i.e., in D ′(QT ;R+).

It is remarkable that the above inequality is similar to entropy conditions for conser-
vation laws. Think of it as an entropy inequality where the kinetic energy would play
the role of an entropy.

Suitable weak solutions are known to exist always. They can be constructed by
regularizing the nonlinear term (i.e., Leray regularization) and passing to the limit.
With this notion Scheffer was able to derive a bound from above of some Hausdorff
measure of the singular set. The remarkable fact about this result is that it cannot (yet)
be obtained without invoking suitability, i.e., it is not known if every weak solution
satisfies (2). The result of Scheffer has been improved by Caffarelli-Kohn-Nirenberg
and is now referred as the Caffarelli-Kohn-Nirenberg Theorem [3, 20] in the litera-
ture. In a nutshell, this result asserts that the one-dimensional Hausdorff measure of
the set of singularities of a suitable weak solution is zero. In other words, if singular-
ities exist, they must lie on a space-time set whose dimension is smaller than that of a
space-time line. To the present time, this is the best partial regularity result available
for the Navier–Stokes equations. For any practical purpose, this theorem asserts that
suitable weak solutions are almost classical. The word “almost” is important here;
although suitable weak solutions are the most regular solutions known to exist, they
may still have singular points, i.e., be not classical.

2.3 Direct Numerical Simulations (DNS)

Since DNS is the highest court in LES-land, one is certainly entitled to ask whether
limits of DNS solutions (as the mesh-size go to zero) are suitable. This may seem to
be a dumb question to ask, but surprisingly the answer is not yet totally clear.
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To formalize an answer to the above question let us assume that the velocity
and pressure are approximated in some discrete spaces Xh and Mh, respectively (h
denoting the mesh-size). We now introduce a notion of discrete commutator.

Definiton 2 The space Xh (resp. Mh) is said to have the discrete commutator prop-
erty if there is an operator Ph ∈ L (H1

0(Ω);Xh) (resp. Qh ∈ L (H1(Ω);Mh)) such

that the following holds for all φ in W 2,∞
0 (Ω) and all vh ∈ Xh (resp. all qh ∈ Mh)

‖φvh −Ph(φvh)‖Hl(Ω) ≤ ch1+m−l‖vh‖Hm(Ω)‖φ‖W m+1,∞(Ω), 0 ≤ l ≤ m ≤ 1

‖φqh −Qh(φqh)‖Hl(Ω) ≤ ch1+m−l‖qh‖Hm(Ω)‖φ‖W m+1,∞(Ω) .

When Ph (resp. Qh) is a projector, the above definition is an estimate of the oper-
ator norm of the commutator [Φ ,Ph] := Φ◦Ph −Ph◦Φ where Φ(v) := φv. This prop-
erty is also called ’super-approximation’ in the finite element literature [12, 14, 15].
The discrete commutator property is known to hold in discrete spaces where there
exist projectors that have local approximation properties, see Bertoluzza [2]. It is
known to hold for finite elements and wavelets.

The best available results so far concerning the construction of suitable weak
solution as limits of DNS solution is summarized in the following

Theorem 1 ([7, 8]) If Xh and Mh have the discrete commutator property (in addition
to having the usual reasonable approximation properties), the pair (uh, ph) conver-
gences, up to subsequences, to a suitable weak solution to (1).

In a nutshell this theorem says that DNS solutions based on finite elements and
wavelets (and very likely finite volumes and finite differences, splines, etc.) converge
to suitable weak solutions.

One may then wonder if DNS solutions based on Fourier approximation in the
periodic cube also converge to suitable solutions. Surprisingly enough, this is still
unknown at the time of this writing. The main obstacle in the way is that the discrete
commutator property does not hold for Fourier approximations. Actually, counter-
examples to the discrete commutator property can be constructed. We are then led to
seriously consider the following

Open question 1 Do Fourier-based DNS solutions converge to suitable weak solu-
tion as the degree of the approximation goes to infinity?

I think this question should equally attract the interest of mathematicians and
DNS specialists. For mathematicians, investigating this problem might be a way to
set a wedge that could separate the class of suitable weak solutions from that of those
that are weak only. For CFD specialists, it would certainly be re-assuring to know
that Fourier-based DNS solutions locally dissipate energy correctly.

One way to interpret the above results is that Finite Elements, Wavelets, Finite
Differences, etc. have enough built-in numerical dissipation to help the energy cas-
cade to go in the right direction, i.e., the energy at extremely fine scales is always
dissipated when using approximation methods having local interpolation properties.
Contrary to Finite Elements, wavelets, etc. the Fourier technique is so accurate that it
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does not induce enough numerical diffusion to counteract the Gibbs-Wilbraham phe-
nomenon. Whether energy is correctly dissipated locally for Fourier approximations
is still a mystery. The key here is the lack of localization.

2.4 More open questions for DNS

Let us finish this section by bringing the following open question to the attention of
the DNS community

Open question 2 Do weak solutions to the Navier-Stokes equation satisfy the global
energy balance?

Again, this question may seem ridiculous, but global energy balance has not yet been
proved for large data (initial or forcing term). The DNS community could contribute
to solving this question by verifying the global energy balance of DNS solutions as
the mesh size is refined.

Of course, calling uh the DNS solution, it is clear that any DNS algorithm can be
tweaked so that global energy balance is exact

1
2
‖uh(T )‖2

L2(Ω) +
∫ T

0
R−1

e ‖∇uh(t)‖L2(Ω) dt =
1
2
‖u0‖2

L2(Ω). (3)

This is not the point. Unless it can be proved someday that uh converges strongly
to some u in L2((0,T );H1(Ω)), there is no reason for the limit solution, say u, to
satisfy the equality in (3). The best that can be deduced is the inequality

1
2
‖u(T )‖2

L2(Ω) +
∫ T

0
R−1

e ‖∇u(t)‖L2(Ω) dt ≤ 1
2
‖u0‖2

L2(Ω). (4)

More precisely, although ∇uh converges weakly to ∇u in L2(Ω), it is possible
that limh→0 ‖∇uh‖L2(Ω) �→ ‖∇u‖L2(Ω). To understand the difficulty, set h = 1/N and
consider of the function

vh(x) = sin(2πx/h), x ∈ (0,1). (5)

Clearly vh→0 weakly in L2(0,1) as h→0, but ‖vh‖L2(0,1)=1 and ‖ limh→0 vh‖L2(0,1)=
0. In other words limh→0 ‖vh‖L2(0,1) �= ‖ limh→0 vh‖L2(0,1). It is remarkable though
that any amount of smoothing is sufficient to transform weak convergence into
strong convergence. Hence, extending vh by zero over R it can be shown that
limh→0 ‖ϕε ∗vh‖L2(0,1) = ‖ limh→0 ϕε ∗vh‖L2(0,1) for any reasonable smoothing ker-
nel ϕ and any ε > 0.

Upon setting uh(t) := ϕε ∗uh(t), DNS simulations could help solve the above
question by verifying whether the following holds for all times T

1
2
‖uh(T )‖2

L2(Ω) +
∫ T

0
R−1

e ‖∇uh(t)‖L2(Ω) dt ≈ 1
2
‖u0‖2

L2(Ω) (6)

for small resolutions (i.e., h → 0) and any ε � h, say ε = hα with α ∈ (0,1).
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3 Proposal for a LES model based on suitability

The goal of this section is to explore some implications the notion of suitable so-
lutions may have when it comes to approximate the Navier-Stokes equations on a
finite grid. In other words, since limh→0 is a mathematical dream which is unachiev-
able with the computing power currently available, can we anyway draw something
useful from the existence of suitable solutions?

3.1 Practical interpretation of the notion of suitable solution

At high Reynolds numbers CFD is always under-resolved. In other words, even if one
uses a discrete setting admitting a discrete commutator property, the results of Theo-
rem 1 is useless for practical purposes since the approximate solution thus calculated
may be far from a (the?) suitable solution. The limit h → 0 is an ideal situation from
which practical CFD simulations are usually far. Then, one may ask oneself what is
the use of the notion of suitable solutions? Is it a notion that we should care about in
CFD?

To answer the above question, let us rephrase the definition of suitability. Let u,
p be a weak solution of the Navier-Stokes equations in the Leray class. Let us define
the residual of the momentum equation

R(x, t) := ∂tu−R−1
e Δu+u·∇u+∇p− f. (7)

u, p being a weak solution means that the residual R(x, t) is zero in the distribution
sense. Is it then clear that the power of the residual, R(x, t)·u, is zero? Well, no, since
it is not known whether u is smooth enough to be tested against R(x, t), i.e., it is not
clear whether the integral

∫ T
0

∫
Ω R(x, t)·u(x, t)dxdt makes sense.

Consider the one-dimensional inviscid Burgers equation ∂tu + 1
2∂x(u2) = 0 for

instance. In the distribution sense 0 = R(x, t) := ∂tu + 1
2∂x(u2), but the unique en-

tropy equation is, among all the weak solutions, the only one that satisfies R(x, t)u =
1
2∂tu2 + 1

3∂x(u3) ≤ 0. It is indeed true that the product R(x, t)u = 0 at points (x, t)
where u is smooth, but in shocks R(x, t)u is a negative Dirac measure. More pre-
cisely consider the following solution u(x, t) = 1−H(x− 1

2 t) where H is the Heavi-
side function, x ∈ (−∞,+∞) and t ≥ 0. One easily verifies that u solves the Burgers
equations with initial data u0(x) = 1−H(x), i.e., R(x, t) = 0, but 1

2∂tu2 + 1
3∂x(u3) =

− 1
12δ (x− 1

2 t) �= 0, where δ is the Dirac measure. This example may help the reader
to understand why the open question (2) is still open and might not have an ob-
vious answer. When approximating the solutions of the Burgers equation, one can
certainly come up with algorithms that are energy preserving (i.e.,

∫ ∞
−∞

1
2 u2

h(x, t)dx =∫ ∞
−∞

1
2 u2

0(x)dx). Using such a technique would be a disastrous idea, since the energy
preserving solution to the Burgers equation is not the correct one.

The definition of a suitable solution can be rephrased as follows: A suitable so-
lution is one for which the power of the residual is negative in the distribution sense
in QT . , i.e.,

∂t( 1
2 u2)+∇·(( 1

2 u2 + p)u)−R−1
e Δ( 1

2 u2)+R−1
e (∇u)2 − f ·u ≤ 0, (8)
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The reader may verify by himself that indeed, (8) is formally equivalent to
R(x, t)·u ≤ 0, (the term “formally” meaning: in the optimistic hypothesis that u and
p are smooth functions). In other words, if singularities occur, suitable solutions are
such that these singularities dissipate energy.

3.2 What happens in under-resolved simulations?

Let us now focus our attention on under-resolved numerical simulations. Being
under-resolved in a space-time region means that the numerical solution experiences
large gradients that cannot be correctly represented by the mesh in the region in ques-
tion. In other words, for all practical purpose, the numerical solution is singular at the
considered mesh scale (i.e., behaves like a singular one on the available mesh). As
time progresses the large unresolved gradients are likely to produce even larger gra-
dients through nonlinear interactions, i.e., we have to deal with energy accumulation
at the grid scale. The question is non-longer to determine whether the solution(s) to
the Navier-Stokes equation is (are) classical or not (a debate that a pragmatic reader
may think to be of remote academic interest), it just now amounts to deciding what
to do with a quasi-singular numerical solution.

Let us rephrase the situation in mathematical terms. Let (uh, ph) be the approxi-
mate velocity and the approximate pressure, the subscript h representing the typical
mesh-size. Let Dh(x, t) be the numerical residual of the energy (entropy) equation

Dh(x, t) := ∂t( 1
2 u2

h)+∇·(( 1
2 u2

h + ph)uh)−R−1
e Δ( 1

2 u2
h)+R−1

e (∇uh)2 − f ·uh. (9)

Being under-resolved in a neighborhood of (x0, t0) means that Dh(x0, t0) is signif-
icantly larger than the consistency error of the method. If locally the power of the
numerical singularity is negative, i.e., Dh(x0, t0)≤ 0, we do not have anything to fear
since energy is cascading down and is eventually lost in the subgrid scales, a sce-
nario in agreement with the Kolmogorov cascade. On the other hand if the numerical
singularity produces energy, i.e., Dh(x0, t0) > 0, all the bets are off since the situ-
ation is out of control and, by analogy with a shock that would produce energy, is
unphysical.

In conclusion ensuring that Dh(x0, t0)≤ 0 is a highly desirable feature. If it could
be enforced everywhere in the domain, that would mean that the energy gently cas-
cades down in the subgrid scales and is eventually dissipated. Rephrased in eddy
terms, this condition would guaranty that every eddy of size similar to the mesh-size
would eventually be dissipated. Hence in under-resolved situations, one should wish
the approximate solution to be suitable in the discrete sense, i.e.,

Dh(x, t) ≤ 0, ∀(x, t) ∈ QT . (10)

The above discussion leads us to propose the following tentative definition for
LES

Definiton 3 A LES solution is an approximation of the Navier-Stokes equation that
satisfies (10).
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3.3 A LES model based on suitability

Of course (10) cannot be enforced in addition to the discrete momentum conserva-
tion and the discrete mass conservation. But, similarly to the entropy condition for
nonlinear conservation laws, (10) can be incorporated in the algorithm that calculates
the pair (uh, ph).

Possibilities are numerous, but the technique that we propose is to use (10) to
construct an artificial viscosity by setting

νh(x, t) := min
(

cmax|uh(x, t)|h(x),ch2(x)
|Dh(x, t))|
‖u2

h‖L∞(Ω)

)
, (11)

where h(x) is the local mesh size in the neighborhood of x, ‖u2
h‖L∞(Ω) is the

maximum norm of u2
h (this is just a normalizing term), cmax ≈ 0.5 and c are ad-

justable constants. The momentum equation is then be modified by adding the term
−∇·(νh(x, t)∇uh). The quantity cmax|uh(x, t)|h(x) is the viscosity that would be in-
duced by first-order up-winding on a uniform Cartesian grid. Definition (11) im-
plies that the LES viscosity never exceeds the first-order up-wind viscosity. When
the mesh is fine enough to resolve all the scales, the quantity |Dh(x, t))| is of the
same order as the consistency error of the numerical method which is used and
h(x)2|Dh(x, t))| is far smaller than the first-order up-wind viscosity. This observa-
tion implies that νh(x, t) is a consistent viscosity, i.e., it vanishes when all the scales
are resolved. The LES viscosity is active only in under-resolved region if spurious
energy is generated at the mesh scale, i.e., when energy seems to be coming up from
subgrid scales. Note that the LES viscosity as defined in (11) may be oscillatory, so
that a smoothing (local averaging) may be required.

4 Numerical illustrations for scalar conservation laws

Our goal in this section is to describe how the LES viscosity model proposed above
can be used to solve nonlinear scalar conservations laws. We change the terminology
by renaming the LES viscosity an entropy viscosity.

4.1 Scalar conservation equations

We consider the equation
∂tu+∇·f(u) = 0 (12)

subject to the initial condition u|t=0 = u0 and the appropriate boundary conditions.
In some cases we will solve the Cauchy problem (restricted to a bounded domain)
and in other cases we will specify the corresponding boundary conditions. It is well
known that the Cauchy or the initial boundary value problem has a unique entropy
solution (see [16, 1]) which satisfies an additional set of differential inequalities

∂tE(u)+∇·F(u) ≤ 0 (13)
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for any pair of functions E(u) and F(u) such that E is convex and F(u) =∫
E ′(u)f′(u)du. The function E is called entropy and F is the associated entropy flux.

The most well known pairs are the Kružkov’s pairs generated by Ec(u) = |u− c|,
where c is any arbitrary constant. It is known that E(u) = 1

2 u2 is enough to select the
unique entropy solution when f is convex.

4.2 The algorithm

Assume that we have at hand a finite element mesh Th and that the local approxima-
tion is done using polynomials of degree at most k. We first assume that the time is
continuous. The entropy viscosity method proceeds as follows:

• Compute the entropy residual, Dh(u) := ∂tE(u)+∇·F(u)
• For each cell K ∈ Th compute the local mesh size: hK = diam(K)/k.
• Let E(uh) be the average entropy over the domain. On each cell, construct a

viscosity associated with the entropy residual:

νE := cE h2
K‖Dh‖L∞(K)/‖E(uh)−E(uh)‖L∞(Ω)

• On each cell, compute an upper bound of the viscosity based on the maximum
local wave speed: βK = ‖|f′(u)|‖∞,K , where | · | is the Euclidean norm:

νmax := cmaxhKβK

• Define the entropy viscosity on each mesh cell K:

νh := min(νmax,νE) (14)

If required, one may smooth the thus obtained entropy viscosity. This is espe-
cially useful when high order approximations are concerned, i.e. if k > 2 (see the
companion paper [11]).

• Solution method: Galerkin + entropy viscosity:
∫
Ω

(∂tuh +∇·f(uh)vh dx+∑
K

∫
K
νh∇uh ·∇vh dx = 0, ∀vh

The time marching can be done with an explicit Runge-Kutta method (RK3 or RK4).
Denoting un

h, un−1
h and un−2

h , the approximations of u at time tn, tn−1 and tn−2, one
simple possibility to evaluate the entropy residual consists of setting

Dh = 1
2Δ t (3E(un

h)−4E(un−1
h )+E(un−2

h ))+∇·F(un
h), (15)

which is formally second-order accurate in time.
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Fig. 1. Burgers. Initial data (left); P1 approximation at t = 0.5, 3 104 nodes (right)

4.3 Inviscid Burgers equation

To numerically illustrate the above algorithm we first consider the inviscid Burgers
equation in two space dimensions with f(u) = 1

2 (u2,u2) and E(u) = 1
2 u2. The initial

data is piecewise constant in the four quadrants of R
2 +( 1

2 , 1
2 ); u0 = −1, −0.2, 0.5,

0.8 in the top right, top left, bottom left, and bottom right quadrant, respectively.
The field u0 is shown in the left panel of Figure 1. The solution computed with P1

elements (3 104
P1 nodes) is shown in the right panel of Figure 1.

We perform convergence tests in the square (0,1)2. The tests are done with P1

and P2 Lagrange finite elements on unstructured Delaunay meshes. The solution is
computed at t = 0.5 and the error is measured in the L1- and L2-norm. We report
in Table 1 the results obtained with P1 and P2 Lagrange finite elements on various
meshes. The quantity h refers to the typical mesh-size for each mesh. The time step-
ping is done using the SSP RK3 method, see [5]. The entropy residual is computed
with the explicit BDF2 formula (15) based on the three previous time levels. The
coefficients cmax and c in (14) are cmax = 0.4/k and cE = 1. As expected, the con-

vergence rates in the L1- and L2-norms are close to the theoretical O(h) and O(h
1
2 )

orders, respectively. These orders are optimal since the solution is in BV only.
We now redo the above convergence tests with Fourier expansions, see [11] for

details on the algorithm. The results are reported in Table 2. The computation is
done by extending the computational domain by symmetry about the axes {x = 1}
and {y = 1} and the initial data is extended so as to make the extension periodic.
The time marching is done by using the standard Runge-Kutta scheme (RK4). The
nonlinearity is de-aliased using the 3

2 -padding rule. The entropy viscosity is made
explicit and computed by using the BDF2 formula (15) based on the three previous
time levels. The entropy viscosity is computed in the physical space at the Fourier
nodes. The coefficients cmax and c in (14) are cmax = 0.5 and cE = 8. Here again we
observe quasi-optimal convergence rates both in L1- and L2-norms.
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h
P1 P2

L2 rate L1 rate L2 rate L1 rate
5.00E-2 2.3651E-1 – 9.3661E-2 – 1.8068E-1 – 5.2531E-2 –
2.50E-2 1.7653E-1 0.422 4.9934E-2 0.907 1.2956E-1 0.480 2.7212E-2 0.949
1.25E-2 1.2788E-1 0.465 2.5990E-2 0.942 9.5508E-2 0.440 1.4588E-2 0.899
6.25E-3 9.3631E-2 0.449 1.3583E-2 0.936 6.8806E-2 0.473 7.6435E-3 0.932
3.12E-3 6.7498E-2 0.472 6.9797E-3 0.961 – – – –

Table 1. Convergence tests for the inviscid Burgers equation. P1 approximation (left), P2
approximation (right).

N h=1/N L1 rate L2 rate
36 2.78E-2 1.92E-2 – 1.02E-1 –
72 1.39E-2 9.99E-3 0.94 7.28E-2 0.49
144 6.94E-3 5.34E-3 0.89 5.41E-2 0.43
288 3.47E-3 2.79E-3 0.95 3.80E-2 0.51

Table 2. Convergence tests for Burgers. Fourier approximation.

4.4 KPP rotating wave

We now illustrate the capability of the entropy viscosity method to deal with non-
convex fluxes by solving the two dimensional scalar conservation law

∂tu+∇ · f(u) = 0, f(u) = (sinu,cosu) (16)

subject to the following initial condition

u(x,y,0) = u0(x,y) =

{
3.5π, x2 + y2 < 1;

0.25π, otherwise.
(17)

This test proposed in [17] is a challenging exercise to many high-order numerical
schemes because the exact solution has a two-dimensional composite wave struc-
ture. For example the central-upwind schemes based on WENO5, Minmod 2 and
SuperBee reconstructions fail this test case, see [17] for details.

The solution is computed at t = 1.0 and is shown in Figure 2. The left panel
shows the reference solution from [17] on a Cartesian grid 400×400, i.e., h = 0.01.
This solution is computed using an adaptive WENO5/Minmod 1 reconstruction; the
Minmod 1 reconstruction is used only in the transition zones where the flux con-
vexity changes and WENO5 is used everywhere else. The center panel shows the
P2 approximation using the entropy viscosity on a quasi-uniform mesh of mesh size
h = 0.0125. The composite wave is captured well and the accuracy of the P2 approx-
imation is similar to that of the reference solution. The right panel shows the ratio of
the entropy viscosity to the first-order upwind viscosity, which is very small outside
the shock and saturates to 1 in the shock, as expected. This panel illustrates quite
well the auto-adaption property of the entropy viscosity.
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Fig. 2. KPP rotating wave. Left: adaptive WENO5/Minmod 1 from [17] on Cartesian grid
Δx = Δy = 1

100 ; Center: entropy-viscosity P2 approximation, h = 0.0125; Right: Ratio of the
entropy viscosity to its maximum value.

5 Numerical illustration for the Euler equations

We extend in this section the entropy viscosity method to the compressible gas dy-
namics for perfect gases.

5.1 The Euler equations

We consider the Euler equations for a perfect gas. These equations state the conser-
vation of mass, momentum and energy (see, e.g. [19] for an overview) and can be
put into the following conservative form:

∂tc+∇·(f(c)) = 0, c =

⎛
⎝ρ

m
E

⎞
⎠ , f(c) =

⎛
⎝ m

m⊗ m
ρ + pI

m
ρ (E + p)

⎞
⎠ (18)

where the independent variables are the density ρ , the momentum vector field m and
the total energy E. The velocity vector field u is defined by u := m/ρ . The symbol I

denotes the identity matrix in R
d . The pressure is expressed via the equation of state

of ideal gases:

p = ρT, with T = (γ−1)
(

E
ρ
− 1

2
u2
)

(19)

where γ is the adiabatic constant and T is the temperature. We also introduce the
entropy functional

S(p,ρ) =
ρ

γ−1
log(p/ργ). (20)

This quantity satisfies the following inequality

∂tS +∇·(uS) ≥ 0, (21)

with equality if all the fields are smooth.



From suitable weak solutions to entropy viscosity 385

5.2 Description of the algorithm for finite elements

The main idea of the algorithm consists of introducing an artificial viscosity and
an artificial thermal diffusivity in the spirit of the compressible Navier-Stokes equa-
tions, i.e., we augment the Euler system with additional viscous fluxes. This idea has
been investigated in [10] in one space dimension using Fourier expansions for space
approximation. The algorithm that we presently use is slightly simplified.

This algorithm proceeds similarly to what is described in §4.2 for scalar conser-
vation laws. At each time step we do the following: (i) we evaluate the residual of
the entropy equation, (ii) we compute the associated artificial viscosities, (iii) then
we update the mass, momentum, and total energy, the fluxes being augmented with
the following viscous flux

fvisc(ch) =

⎛
⎝ 0

−μh∇uh

−μh∇( 1
2 u2

h)−κh∇Th

⎞
⎠ . (22)

Let us now be more specific. Let Δ t be the time step and let cn
h, cn−1

h , etc. be the
approximations of the solution at times tn, tn−1, etc. We define the physical entropy

Sn
h = ρn

h
γ−1 log(pn

h/(ρn
h )γ). Then the task consists of evaluating the residual for the

entropy conservation equation. One possible option consists of setting,

Dh = 1
2Δ t (3Sn

h −4Sn−1
h +Sn−2

h )+∇·(un
hSn

h). (23)

which is formally second-order accurate. For each mesh cell K in Th we first com-
pute the entropy viscosity associated with the residual:

μS = cE h2
K‖ρh‖L∞(K)‖Dh‖L∞(K). (24)

Note that μS has the dimension of a transport coefficient times a density and that
no normalization is needed, since the log coming in the definition of the physical
entropy is dimensionless.

For the maximum value of the viscosity we use:

μmax = cmaxh2
K‖ρn

h ((un
h)

2 + γT n
h )

1
2 ‖L∞(K) (25)

Thus, the first-order upwind viscosity is roughly estimated to be hKcmax‖ρn
h ((un

h)
2 +

γT n
h )

1
2 ‖L∞(K), where ((un

h)
2 +γT n

h )
1
2 is an estimation of the local wave speed. Taking

cmax = 1
2 would roughly amount to limit the viscosity with the first-order upwind

viscosity on uniform Cartesian grids.
Finally, we set:

μh = min(μmax,μS) (26)

κh = P
μh

γ−1
. (27)
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In the previous expressions the tunable coefficients cmax and cE depend on the
time-marching technique and on the space approximation method, but are indepen-
dent of the time step Δ t and the mesh-size h. The coefficient P is an artificial Prandtl
number which can be chosen to of order 1.

This approach has gives satisfactory results, but still with some small spurious
oscillations of the solution. We have checked that one way to improve the situation
is to add an artificial diffusion term for the density. Improvements may indeed be
obtained by augmenting the continuity equation with a dissipation term, which vis-
cosity, say νh, is again linked to μh, i.e., νh = Pρμh/‖ρh‖L∞(K).

5.3 Mach 3 step

We illustrate the algorithm described above by considering the Mach 3 flow in a
wind tunnel with a forward facing step. This benchmark test has been proposed by
Emery [4]. The geometry of the domain is shown in Figure 3. The initial conditions
are specified in terms of the primitive variables

(ρ,u, p)T (x,y,0) = (1.4,(3.0,0.0),1.0)T . (28)

These initial conditions are also prescribed as inflow boundary conditions along the
{x=0} axis. The outflow boundary at {x=3} is free. The slip condition u·n = 0 is
specified on the solid wall of the tunnel where n is the unit outward normal on ∂Ω .
This problem was popularized by Woodward and Colella’s extensive study [23] of
the performance of various numerical methods in the presence of strong shocks.

We show in Figure 3 the density field at t = 4 on two different meshes with P1

Lagrange finite elements. The results shown in the left panels have been obtained on a
mesh composed of 4813 P1 nodes and the results shown in the right panels have been
obtained on a mesh composed of 893468 P1 nodes. These computations have been
done with cmax = 0.25, cE = 1, P = 0.1 and Pρ = 0.1. The tests have been run with
CFL = 0.5. Our solutions agree, at least in the eye-ball norm, with other reference
solutions that can be found in the literature. The contact discontinuity emerging from
the three-shock interaction point is present in both simulations and is captured quite
accurately. A Kelvin-Helmholtz instability develops along the contact discontinuity
on the refined mesh.

Fig. 3. Mach 3 step, density, t = 4, density, P1 approximation. Left: h = 0.25, 4813 P1 nodes.
Right: h = 0.003, 893468 P1 nodes.

As reported in [23] we have observed that the way the velocity boundary condi-
tion is implemented in the vicinity of the corner of the step somewhat influences the
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quality of the solution. We do not enforce any boundary condition at the node at the
corner of the step in the computations shown in Figure 3; enforcing the slip condition
at this point implies u = 0, which is too strong a constraint.

5.4 Double Mach reflection

We now solve the so-called double Mach reflection problem at Mach 10. This prob-
lem, popularized by Woodward and Colella (see [23] for complete description), in-
volves a Mach 10 shock in air (γ = 1.4) that impinges a wall with a 60 degree an-
gle. The undisturbed air ahead of the shock has density 1.4 and pressure 1. The
computational domain is Ω = (0,4)×(0,1). The reflecting wall lies at the bottom
of the domain and starts at x = 1

6 , i.e., free slip boundary condition is enforced on
{x ≥ 1

6 ,y = 0}. The shock makes a 60 degree angle with the x-axis. Outflow bound-
ary conditions are enforced at {0 ≤ x < 1

6 ,y = 0} and {x = 4}. The values along the
top boundary {y = 1}) are set to describe the motion of the initial Mach 10 shock.
The flow is computed at time t = 0.2

The control parameters of the entropy viscosity are cmax = 0.25, cE = 0.25, P =
0.075 and Pρ = 0. The tests have been run with CFL = 0.5

We show in Figure 4 the solution computed with P1 Lagrange polynomials on
a mesh composed of 453969 nodes. The left panel displays the density field in the
region 0≤ x≤ 3. The right panel shows a close up view of the density in the region of
the three-shock interaction point. To evaluate the influence of the control parameter
cE we show in the bottom panel the density field computed with cE = 1. The overall
features are unchanged but using cE = 1 slightly smeared the roll-up of the front jet
and removed small oscillations.

Fig. 4. Double Mach reflection at t = 0.2, M = 10, density field, 453969 P1 nodes. Left: global
view. Right: close up view in the region of three-shock interaction point. Top: cE = 0.25.
Bottom: cE = 1
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5.5 A Riemann problem with Fourier approximation

We finish this series of tests by showing how the method performs with the Fourier
approximation. The algorithm is the same as that described in Section 5.2, without
using any stabilization term for the density, see [11].

The technique is validated by solving the benchmark problem number 12 from
[21]. It is a two-dimensional Riemann problem set in R

2. In the restricted computa-
tional domain (0,1)2 the initial set of data is defined as follows:

p = 1, ρ = 4/5, u = (0,0) 0 < x < 1/2, 0 < y < 1/2,

p = 1, ρ = 1, u = (3/
√

17,0) 0 < x < 1/2, 1/2 < y < 1,

p = 1, ρ = 1, u = (0.,3/
√

17), 1/2 < x < 1, 0 < y < 1/2,

p = 2/5, ρ = 17/32, u = (0,0), 1/2 < x < 1, 0.5 < y < 1.

(29)

Proceeding as in Section 4.3, the problem is first made periodic by extending the
computational domain to (0,2)2, and the initial data are extended by symmetry about
the axes {x = 1} and {y = 1}. The solution is computed at time t = 0.2.

The time marching algorithm is the same as in Section 4.3. The nonlinear terms
are de-aliased. The control parameters for the entropy viscosity are cmax = 1

2 , cE =
20, and P = 1.

We show in Figure 5 results obtained with 400 Fourier modes in each direction,
i.e. with 400 grid-points in (0,1)2. They compare well with those obtained with other
more sophisticated shock capturing methods, see [21].

Fig. 5. Riemann problem # 12, t = 0.2, 400×400 grid-points. Left: Density, 0.528 ≤ ρh ≤
1.707. Right: Viscosity, 0 ≤ μh < 3.410−3.

6 Conclusions

We have recalled basic mathematical properties of the three-dimensional incom-
pressible Navier-Stokes equations and showed how they might relate to LES. Some
fundamental questions regarding Fourier-based DNS have been raised. The notion of
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suitable solution lead us to introduce the new concept of entropy viscosity. The key
idea consists of adding a numerical viscosity proportional to the default to equilib-
rium in the local energy equation. To evaluate this idea we have applied it to nonlinear
conservation laws and showed that it is very efficient and very simple to implement.
The entropy viscosity concept seems promising and is a potential candidate for LES.
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A new deconvolution approach
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Summary. A new deconvolution method recently proposed by author [1] is developed and
applied to the differential filters [2, 3], in the context of the large eddy simulation of turbulent
flows and the related subgrid scale modeling.

Key words: Large-Eddy Simulation, Subgrid Scale Modeling, Deconvolution Methods

1 Introduction

One basic problem of the Large Eddy Simulation of turbulent flows is to express the
filtered value 〈 f (a)〉g of a function f (a)

〈 f (a)〉g = G [ f (a)] (1)

in terms of the computed set of the filtered quantities 〈a〉g

〈a〉g = G [a] (2)

where G is a generic filtering operator that we assume linear and constant preserving

〈a+b〉g = 〈a〉g + 〈b〉g ; 〈k〉g = k (3)

where k is a constant. If the filter G is explicitly given and is provided with an inverse
operator D = G−1, formally we can write

f (a) = f (a∗) (4)

where
a∗ = D [〈a〉g] (5)

and the problem is formally solved by the explicit relation

〈 f (a)〉g = G [ f (D [〈a〉g])] (6)
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We remark that due to the numerical discretization usually only some part of the
original field can be recovered, and approximate deconvolution operators D∗ ∼ G−1

coupled with some additional regularization [4] are usually adopted. Functional con-
tributions [5] like the Smagorinsky model or associated dynamic versions have been
proposed and validated [6, 7]. Here we will not enter in such kind of problems and
we refer to recent books and papers devoted to the mathematical and the compu-
tational aspects of the deconvolution methods applied to the large eddy simulation
of turbulent flows [8, 9]. The main interest of this paper is to develop a different
deconvolution approach recently proposed by the author [1]. We remark that in the
large eddy simulation we are not particularly interested to the reconstruction of the
original quantity a from the filtered quantities 〈a〉g but mainly to derive from 〈a〉g

the filtered function 〈 f (a)〉g. As a consequence the proposed new deconvolution ap-
proach is based on the direct application of D both to 〈a〉g and to the filtered function
〈 f (a)〉g. We can write

f ∗(a) = f (a∗) (7)

where
f ∗(a) = D [〈 f (a)〉g] (8)

and the new explicit final relation is the following

D [〈 f (a)〉g] = f (D [〈a〉g]) (9)

In particular we will consider the following quantities

q = f (a)− f (a)
s = f (D [ā])−D [ f (a)] (10)

where we have introduced the equivalent notation

· · · = 〈· · · 〉g = G [· · · ] (11)

If we apply the usual deconvolution we have

q = s̄ (12)

while if we apply the new deconvolution method expressed by (9) we obtain

D [q] = s (13)

and we will call filtered deconvolution the first one given by (12), and defiltered
deconvolution the second one given by (13).

2 Application of the new deconvolution method to LES

In the following we will examine the peculiarities of such new approach in the case
of a generic inverse filter given by
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D = I + εL (14)

where I is the identity operator, ε a constant and L a generic linear difference
operator such that

〈a+b〉l = 〈a〉l + 〈b〉l ; 〈k〉l = 0 (15)

where k is a constant. In this case if we apply to the quantity q

q = f (a)− f (a)

the defiltered deconvolution expressed by (13) we have

s = D [q] = q+ εL [q] (16)

and we can explicitly write

s = f (D [ā])−D [ f (a)] = f (a+ εL [a])− ( f (a)+ εL [ f (a)]) (17)

Let us now consider in more detail the proposed new defiltered deconvolution
(16) and let us remark first of all that in the trivial case of f (a) = a we obviously
have q = s = 0. More important in the context of the nonlinear terms related to the
fluid flows is the case f (a) = uiuk, where ui are the cartesian components of the
velocity field. In this case we have

f (a) = uiuk

qik = uiuk − ūiūk

sik = D [qik] = ε (ūiL [ūk]+ ūkL [ūi]−L [ūiūk])+ ε2L [ūi]L [ūk] (18)

and more generally we can apply this new deconvolution approach directly to the
Navier-Stokes equations for an incompressible flow. In the case of the continuity
operator

f (a) = C [uk] =
∂uk

∂xk
(19)

we have
∂uk

∂xk
− ∂ ūk

∂xk
= q

s = D [q] = ε
(

∂ (L [ūk])
∂xk

−L

[
∂ ūk

∂xk

])
(20)

and if we consider the momentum operator

f (a) = Ni [uk, p] =
∂ui

∂ t
+

∂ (uiuk)
∂xk

+
∂ p
∂xi

−ν
∂ 2ui

∂xk∂xk
(21)

we can write

Ni [uk, p]−Ni [ūk, p̄] =
∂qik

∂xk
+qi
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where

qik = uiuk − ūiūk

sik = D [qik] = ε (ūiL [ūk]+ ūkL [ūi]−L [ūiūk])+ ε2L [ūi]L [ūk] (22)

and where

qi =
∂ui

∂ t
− ∂ ūi

∂ t
+

∂ (uiuk)
∂xk

− ∂uiuk

∂xk
+

+
∂ p
∂xi

− ∂ p̄
∂xi

−ν
∂ 2ui

∂xk∂xk
−ν

∂ 2ūi

∂xk∂xk

si = D [qi] = ε
(

∂ (L [ūi])
∂ t

−L

[
∂ ūi

∂ t

])
+ ε
(

∂ (L [uiuk])
∂xk

−L

[
∂ (uiuk)
∂xk

])
+

+ ε
(

∂ (L [p̄])
∂xi

−L

[
∂ p̄
∂xi

])
− εν

(
∂ 2 (L [ūi])
∂xk∂xk

−L

[
∂ 2ūk

∂xk∂xi

])
(23)

We remark that for incompressible flows we have

∂uk

∂xk
= 0 ; Ni [uk, p] = 0 (24)

so that as regards the continuity equation we can formally write

∂ ūk

∂xk
= −q

q+ εL [q] = s (25)

and as regards the momentum equation we can formally write

∂ ūi

∂ t
+

∂ (ūiūk)
∂xk

+
∂ p̄
∂xi

−ν
∂ 2ūi

∂xk∂xk
= −∂qik

∂xk
−qi

qi + εL [qi] = si

qik + εL [qik] = sik (26)

It is worth noting that q and qi are subgrid contributions due to the non homogeneity
of the filter, and in particular they are null in the case the filter commutes with the
time and the space derivatives. The subgrid contributions expressed by qi j are due to
the nonlinearity of the convective term, and they can be read as usual as the subgrid
stresses associated to the particular filtering operator.
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3 Application of the new deconvolution method to the differential
filters

Let us now consider particular difference operators L given by a linear differential
form [2] in space and time expressed by the relation

L =
∂
∂ t

+ vm
∂

∂xm
+αmn

∂ 2

∂xm∂xn
+ · · · (27)

and we recall that a differential filter D

D = I + εL

is formally defined [3] as the inverse D = G−1 of a filtering operator G

〈a〉g = G [a] =
∫

G(x−x′, t − t ′) a(x′, t ′) dx ′dt ′ (28)

where G(x−x′, t − t ′) is the Green’s function associated to the differential operator
D . We remark that in this case the constant ε has the dimension of a time and the
relations (25,26) become evolutionary equations for q,qi and qik given by

∂q
∂ t

+ vm
∂q
∂xm

+αmn
∂ 2q

∂xm∂xn
+ · · · = s−q

ε

∂qi

∂ t
+ vm

∂qi

∂xm
+αmn

∂qi

∂xm∂xn
+ · · · = si −qi

ε
∂qik

∂ t
+ vm

∂qik

∂xm
+αmn

∂qik

∂xm∂xn
+ · · · = sik −qik

ε
(29)

If the filter is non homogeneous the coefficients vm and αmn depends on space
and time, and we have

∂L

∂ t
−L

∂
∂ t

=
∂vm

∂ t
∂

∂xm
+

∂αmn

∂ t
∂ 2

∂xm∂xn
+ · · ·

∂L

∂xi
−L

∂
∂xi

=
∂vm

∂xi

∂
∂xm

+
∂αmn

∂xi

∂ 2

∂xm∂xn
+ · · · (30)

In the following we will only consider the homogeneous case, with constant coeffi-
cients. In this case s,q,si and qi are identically null.

4 The new deconvolution approach applied to the low-pass filter

The simplest differential filter is the low pass filter in time [10]. Its inverse is given
by

D = I + ε
∂
∂ t

(31)
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so that in this case we simply have

L =
∂
∂ t

(32)

and it is easy to derive the associated equation for the subgrid stresses qi j

∂qi j

∂ t
=

si j −qi j

ε
(33)

where

si j = ε2 ∂ ūi

∂ t

∂ ū j

∂ t
(34)

It is interesting to derive from (33) the equation for the subgrid kinetic energy

K =
ukuk − ūkūk

2
=

qkk

2

We have
∂K
∂ t

= −K
ε

+ ε
∂ ūk

∂ t
∂ ūk

∂ t
(35)

and we see that the dissipation of the subgrid kinetic energy is based on a relaxation
term, while the production is related to the time derivatives of the velocity. We remark
that in the equilibrium conditions, ε → 0, we have

qi j ∼ si j = ε2 ∂ ūk

∂ t
∂ ūk

∂ t
(36)

5 The new deconvolution approach applied to the parabolic filter

Another interesting differential filter is the parabolic one [10]. Its inverse is given by

D = I + ε
(

∂
∂ t

−α
∂ 2

∂x2
m

)
(37)

so that in this case we have

L =
∂
∂ t

−α
∂ 2

∂x2
m

(38)

The associated equation for the subgrid stresses qi j is given by

∂qi j

∂ t
−α

∂ 2qi j

∂x2
m

=
si j −qi j

ε
(39)

where now

si j = 2εα
∂ ūi

∂xm

∂ ū j

∂xm
+

+ ε2
(

∂ ūi

∂ t

∂ ū j

∂ t
−α

∂ ūi

∂ t

∂ 2ū j

∂x2
m
−α

∂ ū j

∂ t
∂ 2ūi

∂x2
m

+α2 ∂ ūi

∂x2
m

∂ 2ū j

∂x2
m

)
(40)
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We remark that in the limit ε → 0 we simply have

si j = 2εα
∂ ūi

∂xm

∂ ū j

∂xm
(41)

so that we can write the equation for the subgrid kinetic energy

K =
ukuk − ūkūk

2
=

qkk

2

in the simple form
∂K
∂ t

−α
∂ 2K
∂x2

m
= −K

ε
+α

∂ ūk

∂xm

∂ ūk

∂xm
(42)

We see that in the case of the parabolic filter the dissipation of the subgrid kinetic
energy is based on a relaxation term, while the production is related to the velocity
gradient. Finally it is worth noticing that in the equilibrium conditions, ε → 0, we
have

qi j ∼ si j = 2εα
∂ ūi

∂xm

∂ ū j

∂xm
(43)

that corresponds to the well known gradient model.

6 The new deconvolution approach applied to the convective filter

Let us now consider a convective-diffusive filter [10] whose inverse is given by the
differential equation

D = I + ε
(

∂
∂ t

+ vm
∂

∂xm
−α

∂ 2

∂x2
m

)
(44)

so that in this case we have

L =
∂
∂ t

+ vm
∂

∂xm
−α

∂ 2

∂x2
m

(45)

The associated equation for the subgrid stresses qi j is given by

∂qi j

∂ t
+ vm

∂
∂xm

−α
∂ 2qi j

∂x2
m

=
si j −qi j

ε
(46)

and it is interesting to notice that in the limit ε → 0 the source terms si j are the same
of the parabolic filter, given by (40), so that we can finally write

∂K
∂ t

+ vm
∂K
∂xm

−α
∂ 2K
∂x2

m
= −K

ε
+α

∂ ūk

∂xm

∂ ūk

∂xm
(47)
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7 Conclusions

A new deconvolution approach [1] recently proposed by the author has been applied
to the differential filters. It results that the associated subgrid stresses are in this case
given by evolutionary equations in time. In particular have been examined in detail
the low-pass filter in time, the parabolic filter and a general convective-diffusive filter.
The evolutionary equations of the subgrid kinetic energy associated to these filters
are particularly interesting. They show that for these filters the dissipation of the
subgrid kinetic energy is given by a relaxation term, while the production term is
related to the velocity gradient and to the velocity derivative in time.
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Summary. In this paper we propose a new Large Eddy Simulation model derived by approx-
imate deconvolution obtained by means of wave-number asymptotic expansions. This LES
model is designed for oceanic flows and in particular to simulate mixing of fluids with differ-
ent temperatures, density or salinity. The model -which exploits some ideas well diffused in
the community- is based on a suitable horizontal filtering of the equations. We prove a couple
of a-priori estimates, showing certain mathematical properties and we present also the results
of some preliminary numerical experiments.

Key words: Stratified flows, Rational/Clark LES model, Boussinesq equations, LES in do-
mains with boundary

1 Introduction

Mixing is one of the most important processes to understand transport of pollutants as
well as the details of thermohaline circulation. Despite the increase in computational
power, the scales in the ocean circulation can not be all resolved simultaneously.
Basin models are configured for O(1000km) to O(10km), and regional or coastal
models from O(100km) to O(1km), requiring both sub-grid-scale parametrization.
However, there exist small-scale ocean flows (which take place below this inher-
ently coarse numerical resolution) that often play a significant role in an accurate
representation of the large ocean scales. More precise motivations for the study of
this physical problem and the requirement of suitable numerical methods to handle
all scales is explained for instance in [24, 26]. To a first approximation, the mixing
phenomena can be described mathematically by means of the Boussinesq system of
partial differential equations:
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∂tu+∇ · (u⊗u)− 1
Re

Δu+∇p = − 1
Fr2 ρ

′e3, with ∇ ·u = 0,

∂tρ ′ +∇ · (ρ ′ u)− 1
RePr

Δρ ′ = 0.

(1)

The unknowns (u, p,ρ ′) are velocity, pressure, and “salinity perturbation,” respec-
tively, and e3 = (0,0,1). The non-dimensional parameters are the Reynolds number
Re, the Prandtl number Pr, and the Froude number Fr. The problem we consider
takes naturally place in an elongated domain (We model the small portion of the
ocean we consider as a parallelepiped)

D :=
{

x ∈ R
3 : −π < x1,x2 < π, −d < x3 < d

}
with d << 1,

hence the boundary is flat and we enforce periodic boundary conditions on the “hor-
izontal variables” xh := (x1,x2). We use the subscript “h” to denote differential op-
erators acting only on the horizontal variables. In particular, we use the following
notation

Δh := ∂ 2
x1

+∂ 2
x2

and ∇h := (∂x1 ,∂x2).

One of the features (which is well-know by practitioners) of this problem is that
filtering seems to be required only in the horizontal directions, because the mixing
takes place mainly along these two directions. In a previous work [3] we started
analyzing it by means of stochastic parametrization and Itô’s calculus. Since the
problem we have in mind is that of stratified fluids, another justification for the use
of horizontal viscosities/filtering comes from the study of Ekman boundary layers
for rotating fluids (see [9] and references therein) and in particular the system of the
Navier-Stokes equations with partial viscosity:

∂tu+∇ · (u⊗u)− 1
Re

Δhu+∇p = f, with ∇ ·u = 0.

These are the main modeling motivations for the anisotropic LES method (2) we will
introduce. Other motivations, which are consequences of the mathematical proper-
ties, will be explained in the sequel, but another peculiarity of the new method we
propose is that we do not need artificial boundary conditions. The objective of the
present paper is to propose a new LES method, to prove existence of suitable classes
of solutions, and to compare the results with some 3D simulations performed with
other LES methods.

2 An anisotropic Large Eddy Simulation model

One of the earliest LES models is the “Gradient” method (known also as Taylor
or Clark method and introduced in [10, 21]) which is based on an approximation
of the subgrid-scale term by means of asymptotic expansion in wave-numbers. In
the Gradient model the turbulent stress-tensor is τττG(w,w) = α2∇w∇wT , where[
∇w∇wT

]
i j := ∑3

k=1 ∂xk wi ∂xk w j. The derivation of this model and the basic results
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regarding the mathematical analysis are collected in [5]. It is well-known that in-
stabilities occur in the numerical implementation and that some kind of smoothing
must be added in order to have effective simulations, see [17]. In particular, a fil-
tered version of the Gradient method is called Rational or4 Clark-α method, and the
stress-tensor reads as

τττR-C(w,w) = (I−α2Δ)−1α2∇w∇wT ,

cf. [31, 32, 33, 34]. The Rational method has been derived [16] by a rational ap-
proximation of wave-numbers, while the Clark-α method is based on analogies with
the Helmholtz filtering. The mathematical analysis of these models can be found
in [4, 8]. Following the approach described in the introduction we consider a smooth-
ing acting only in the horizontal variables, which can be performed by means of

convolution with the following kernel: gα(x) = 1
πα2 Exp

(
− x2

1+x2
2

α2

)
. By taking the 2D

Fourier Transform, by performing the Taylor series expansion, and by neglecting
terms which are formally of order of α4 one gets (apart multiplicative constants) the
following expression for the subgrid-scale term τττhG(w,w) = α2∇hw∇hwT , where[
∇hw∇hwT

]
i j := α2 ∑2

k=1 ∂xk wi ∂xk w j. We will mainly consider the “horizontal ver-
sion” of the Rational-Clark-α method,

τττhR-C(w,w) = (I−α2Δh)−1α2∇hw∇hwT .

From the computational point of view the inversion of a horizontal Laplacian is less
time/memory consuming than the usual one, but the main advantage of the use of
the horizontal Laplacian is that there is no need to introduce extra/artificial boundary
conditions for the Helmholtz operator and that the value w on the boundary of the
domain D can be imposed. The issue of the boundary conditions for LES models
is generally very complex, cf. [5, Ch. 9]. The challenging property of our approach
based on horizontal filtering is that part of the problem (due also to the particular
shape of the domain) is overcome. In the sequel, we sketch the main mathematical
properties of the space filtered Navier-Stokes equations approximated by the “hori-
zontal Rational/Clark” model

∂tw+∇ · (w⊗w)− 1
Re

Δw+∇ · (I−α2Δh)−1α2∇hw∇hwT +∇q = f, (2)

with ∇ ·w = 0. It seems that the LES model and the viscous term in equation (2)
have different forms. Indeed, the viscous term retains its original 3D form, whereas
the LES model displays the horizontal filtering operation. This difference, however,
is only in form, since the Laplace operator in the viscous term is applied to w, which
is the horizontally filtered velocity. Thus, both the viscous term and the LES model in
equation (2) include the horizontal filtering operation, the former implicitly (through
w), and the latter explicitly. The reason for the dependence on the horizontal filter is
displayed explicitly in the LES model and is due to the nonlinear term ∇ · (w⊗w);

4 The two methods differ by a multiplicative factor, which is nevertheless critical for the
well-posedness results, see Remark 2 and also Section 5.
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since the Laplacian is linear, the differentiation and filtering operators commute, and
thus the only dependence on horizontal filtering in the viscous term is through w.
Full details on the horizontal filtering, in conjunction with other LES models (with
more appealing and neat mathematical properties) will appear in [2].

2.1 Some properties of the horizontal Rational/Clark model

Given a vector field f, an “averaged” field u is defined by solving the following
horizontal Helmholtz-Stokes problem:

u−α2Δhu+∇q = f, with ∇ ·u = 0 in D,

u ·n = 0 on ∂D,
(3)

and throughout the paper α > 0 will be a fixed number. We use the notation

L2(D) :=
{
φ : D → R, xh-periodic, measurable, with

∫
D
|φ |2dx < +∞

}
,

and L
2 := (L2(D))3. We use the same symbol ‖ .‖ for the norm in both spaces. Next,

by setting ∂D :=
{

x ∈ R
3 : −π < x1,x2 < π, x3 = ±d

}
we can define

H
1
h :=
{

u ∈ L2 : ∇hu ∈ (L2(D))6, ∇ ·u ∈ L2(D), u ·n = 0 in H−1/2(∂D)
}
,

where n denotes the exterior unit normal vector on ∂D. Observe also that since u has
divergence in L2(D), then ∂u3

∂x3
= −∇h ·uh = − ∂u1

∂x1
− ∂u2

∂x2
∈ L2(D). This shows that

some extra-regularity for the vertical component of the velocity is obtained for free,
and this is another interesting mathematical advantage.

Lemma 1 (See [2]). Let f ∈ L
2 and α > 0. Then, there exists a unique (u,q) ∈ H

1
h ×

L2(D)/R solution of (3) and a constant c = c(α) such that

‖u‖+α‖∇hu‖+α‖∇u3‖+‖q‖ ≤ c‖f‖.

Remark 1. A relevant point (for a rigorous proof see [2]) is that if ∇ · f = 0 and if
f is tangential to the boundary, one can prove that q = 0. Consequently, the two
operators coincide and one has to solve three uncoupled Helmholtz problem, instead
of the Stokes problem, since the field (I−α2Δh)−1f, turns out to be divergence-free.
This motivates the name Helmholtz-Stokes. In particular, in the sequel the operator
(I−α2Δh)−1 appearing in the various equations is the horizontalHelmholtz one.

What is most important for understanding the mathematical properties of solutions
of (2) is the following lemma.

Lemma 2. For all sufficiently smooth vector fields w on D, xh-periodic, such that
∇ ·w = 0 in D and w ·n = 0 on ∂D, it holds∫

D

[
∇ · (w⊗w)+∇ · (I−α2Δh)−1α2∇hw∇hwT ] · (I−α2Δh)wdx = 0.
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Proof. The proof is obtained by direct integration by parts (cf. [4, 8]). In fact, as
usual

∫
D ∇ · (w⊗w) ·wdx = 0; next, observe that

∫
D
∇ · (w⊗w) · (−α2Δhw) = α2

2

∑
k=1

∫
D
∂xk

[
(w ·∇)w

]
(∂xk w)

= α2
3

∑
i, j=1

2

∑
k=1

∫
D
∂xk w j∂x j w

i∂xk wi dx,

since one term vanishes by integration by parts. Moreover, we have
∫

D
∇ · (I−α2Δh)−1α2∇hw∇hwT · (I−α2Δh)w = α2

∫
D
∇ ·
(
∇hw∇hwT )w,

since in our setting the operator (I−α2Δh) is self-adjoint. Finally, a further integra-
tion by parts (possible since w ·n = 0 on ∂D) shows that

α2
∫

D
∇ ·
(
∇hw∇hwT )w = −α2

∫
D

3

∑
i, j=1

2

∑
k=1

∂xk wi∂xk w j∂x j w
i,

and adding together the various terms we end the proof. ��

Remark 2. Lemma 2 shows that (I−α2Δh)w is a “good multiplier” but again it is
relevant (concerning the boundary conditions) that it involves only derivatives in
the horizontal directions. Moreover, it is important to note that the Rational model
corresponds to the following stress-tensor

τττRLES(w,w) = (I− α2

2
Δ)−1α2∇w∇wT

In this case the “good multiplier” is (I− α2

2 Δ)w but the factor α2/2 does not imply
that the cancellation of the nonlinearities, as in Lemma 2. Results in [1, 4] show that
the term ∇ · (I− α2

2 Δ)−1α2∇w∇wT plays the same role (in terms of Sobolev spaces
inequalities) of the convective term, not allowing for global-in-time estimates. This is
one of the subtle differences between the Clark-α and the Rational Model. Obviously
the same difference occurs also for the horizontal version of both methods.

The main result concerning system (2) is the following.

Theorem 1. Let be given w0 ∈ H
1
h, and f ∈ L2(0,T ;L2). Then, there exists a solution

w (xh-periodic and vanishing on ∂D) in the sense of distributions to system (2) such
that

w, ∇hw, ∇w3 ∈ L∞(0,T ;L2)∩L2(0,T ;H1). (4)

Proof. We sketch the proof, that is based on the usual Galerkin method. We look
for an approximate solution wm = ∑m

k=1 ck(t)Ek(x), where Ek(x) are eigenfunc-
tion of the Stokes operator with our boundary conditions. The explicit form of the
eigenfunctions is know, see [23, 29], but for our purposes it is enough to observe
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that they are of the type ei(k1x1+k2x2) f (x3), for k1,k2 ∈ Z and for certain smooth
f , vanishing at x3 = ±d. This is relevant, since ΔhEk still is an eigenfunction.
Hence, the a priori estimate obtained by testing the equation by (I − α2Δh)wm

is completely justified. By performing standard integrations by parts (possible by
xh-periodicity) we get

∫
D ∂twm · (I − α2Δh)wm = 1

2
d
dt

(
‖wm‖2 + α2‖∇hwm‖2

)
and

also −
∫

D Δwm · (I−α2Δh)wm = ‖∇wm‖2 + α2‖∇∇hwm‖2. Hence, application of
Lemma 2 shows the following differential inequality for wm:

1
2

d
dt

(
‖wm‖2 +α2‖∇hwm‖2)+ 1

Re

(
‖∇wm‖2 +α2‖∇∇hwm‖2)≤ c‖f‖2.

Uniform bounds in m∈N and other standard arguments, see e.g.. [11], can be used to
prove that (a sub-sequence of) wm converges (as m → +∞) towards a solution of (2).
Regularity of w3 follows from ∇ ·w = 0. ��

Remark 3. The solution w has regularity properties which lie “in between” those of
weak and strong solutions for the NSE (In particular we are missing the control
of ∂x3 w in L∞(0,T ;L2).) Consequently, we are not able to prove uniqueness within
this class of solutions. In addition, one cannot start a bootstrapping argument to im-
prove the regularity of w: By using as test function (I−α2Δh)2wm (the counter-
part of the H2-estimates in [8]) one does not get good a priori estimates. Roughly
speaking, it seems that multipliers which are good for ∇ · (w⊗w) are not good for

∇ · (I− α2

2 Δ)−1α2∇hw∇hwT and vice-versa. Based on these observations we think
that this is not the best model (at least from the point of view of uniqueness and
stability of solutions) to be implemented with the horizontal filtering. Much better
theoretical results can be proved in the framework of Approximate Deconvolution
Models (ADM), à la Stolz & Adams, see [30, 20, 2]). With these models the spe-
cial expression of the stress-tensor allows us to prove uniqueness, using the same
multiplier and just the regularity in (4).

3 On the Boussinesq system

We consider now the Boussinesq system (1) and we study a LES model in which
the velocity equation is filtered, while not the equation for the salinity. We use this
approach because results of [13, 19] show that in presence of nonzero viscosity (and
also with vanishing diffusivity) the classical conditions which ensure regularity of
the NSE imply the continuation of smooth solutions of (1). Improved theoretical
results on this topic will appear in a forthcoming paper [6]. Here, we consider the
following horizontal LES model for the Boussinesq system (still with ∇ ·w = 0)

∂tw+∇ · (w⊗w)− 1
Re

Δw+∇ · (I−α2Δh)−1α2∇hw∇hwT +∇q = − 1
Fr2 ρ

′e3,

∂tρ ′ +∇ · (ρ ′ w)− 1
RePr

Δρ ′ = 0.

(5)
With the same Galerkin approach of Sec. 2.1 one proves the following result.
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Theorem 2. Let be given (w0,ρ ′
0)∈H

1
h×L2. Then, there exists a weak solution to (5)

(xh-periodic and with w vanishing on ∂D) such that

w, ∇hw, ∇w3, ρ ′ ∈ L∞(0,T ;L2)∩L2(0,T ;H1).

The proof, is based on the following a-priori estimate (obtained by using as test
function ((I−α2Δh)w,ρ ′) and by performing some integrations by parts)

1
2

d
dt

(
‖w‖2 +α2‖∇hw‖2 +‖ρ ′‖2)+ 1

Re

(
‖∇w‖2 +α2‖∇∇hw‖2)

+‖∇ρ ′‖2 ≤ c(‖ρ‖2 +‖f‖2),

and by using the same standard tools as before. Also in this case we are not able to
prove uniqueness, since the control of the whole ∇w is missing.

In the next section we explain how the results can be improved by changing
the class of models we consider. In particular, here we are testing the horizontal
Rational/Clark method since it is the one for which we have at disposal a numerical
code to perform preliminary assessment and we can precisely compare the results
with those previously obtained. In addition, we wanted to test the performances of
these methods in situations where the theoretical results are not conclusive.

4 Perspectives for future studies

Even if the numerical simulations for (2)-(5) are quite nice, the results are not com-
pletely satisfactory from the point of view of functional analysis. Good theoretical re-
sults can be surely obtained if the regularization in (5) is done with the Clark-α model
instead of its horizontal counterpart, while less trivial is the limit k := 1

RePr → 0+ for
this model.

Moving to ADM we can easily show that the following system is well-posed

∂tw+∇ · (I−α2Δ)−1(w⊗w)− 1
Re

Δw+∇q = − 1
Fr2 ρ

′e3.

∂tρ ′ +∇ · (ρ ′ w)− 1
RePr

Δρ ′ = 0.

(6)

This is the Boussinesq version of the Layton & Lewandowski model (or simplified
Bardina) and good properties follow because with

(
(I−α2Δ)w,ρ ′) as test function,

one gets directly ∇u ∈ L∞(0,T ;L2), cf. [8, 20]. Observe that no regularization is
needed in the equation for ρ ′. The computational problems with this model concern
the boundary conditions, since the inversion of the Laplace operator requires ad hoc
boundary conditions on ∂D (Essentially it works only in the periodic setting.) This
observation is one of the main reasons that led to the introduction of the horizon-
tal version of this model in [2]. For the Boussinesq system, this will be naturally
generalized by considering the equation

∂tw+∇ · (I−α2Δh)−1(w⊗w)− 1
Re

Δw+∇q = − 1
Fr2 ρ

′e3,



406 Luigi C. Berselli, Traian Iliescu, and Tamay Özgökmen

coupled with (6)2. From the mathematical point of view the resulting system does
not give the sufficient control on ∇w to prove uniqueness. Guided by the results
on mathematical analysis (we can prove global-in-time existence and uniqueness of
strong solutions [2]), we conjecture that a suitable ADM model for the Boussinesq
system will be the following one

∂tw+∇ · (I−α2Δh)−1(w⊗w)− 1
Re

Δw+∇q = − 1
Fr2 ρ

′e3,

∂tρ ′ +∇ · (I−α2Δh)−1(ρ ′ w)− 1
RePr

Δρ ′ = 0.

All theoretical results on the Boussinesq equations will be collected in the forthcom-
ing paper [6], while numerical testing of all different methods will be the object of
future research.

5 Numerical Results

In this section, we investigate how the horizontal RLES model and the horizontal
Clark-α models perform in the numerical simulation of 3D turbulent stratified flows.
To this end, we compare the performance of four LES models: 1) the RLES model,
2) the Clark-α model, 3) the horizontal RLES model, and 4) the horizontal Clark-α
model - against DNS results. The comparison criterion is simple: the closer the LES
results are to the benchmark DNS results, the better the LES model. To ensure a fair
assessment of the performance of the LES models, we also included under-resolved
numerical simulations without any LES modeling, which we denoted by DNS∗.
Thus, it is expected that the LES models produce better results than the DNS∗, at
the very least.

Although most of the theoretical developments in this paper have been centered
around the NSE (see also [2]), the numerical illustrations in this section are for the
Boussinesq equations, since -as explained in the introduction- it is one of the com-
monly used mathematical models in the numerical investigation of oceanic and atmo-
spheric flows. The model setup is similar to that in [25], which contains a detailed
discussion of the boundary conditions, initial conditions and parameters used. We
now briefly list them; for more details, the reader is referred to [25].

We consider the lock-exchange problem, a popular benchmark problem for the
numerical investigation of mixing in stratified flows [24, 25, 26]. The computational
domain is −L

2 ≤ x ≤ L
2 , 0 ≤ y ≤W , and 0 ≤ z ≤ H, where L/H = 2 and W/H = 1.

At the top, bottom, left and right boundaries, no-flow and free-slip boundary con-
ditions are used for the velocity components (u,v,w), while no-flux (insulation)

conditions are used for the density perturbation ρ ′, i.e.,
∂w
∂n

= 0; (u,v,w) · n = 0;

∂ρ ′

∂n
= 0, where n is the normal to the boundary. In the horizontal directions, peri-

odic boundary conditions are used both for velocity and density perturbation fields:
u(x,0,z) = u(x,W,z); v(x,0,z) = v(x,W,z); ρ ′(x,0,z) = ρ ′(x,W,z). Since α → 0+
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near the boundary, the filtered variables approach the unfiltered variables. Thus, for
the LES models, we used the same boundary conditions as those used for the DNS.
The non-dimensional parameters have the same values as those in [25]: The Froude
number is Fr = 2−

1
2 , the Prandtl number is Pr = 7, and the Reynolds number is

Re = 104. The numerical study is conducted using Nek5000, which is a spectral el-
ement code developed by Paul Fischer and his group [14, 22, 27]. All experiments
were run on Virginia Tech’s SystemX, based on 2200 Apple G5 processors with
2.3 GHz and InfiniBand interconnect. The accuracy of the LES models is evaluated
through a posteriori testing. The main measure used is the background/reference po-
tential energy (RPE), which exactly quantifies mixing in an enclosed system [25].
RPE is the minimum potential energy that can be obtained through an adiabatic re-
distribution of the water masses. Finally, for the RLES model, we chose γ = 3 and
γT = 15, cf. [24, 25] for the notation.

There are also a couple of significant differences from the previous studies [24,
25]. First, in this study we are integrating much longer in time. As explained next,
this has an effect on the conclusions regarding the performance of the LES mod-
els. Second, we implemented the horizontal version of the RLES and Clark-α mod-
els. Although the gradient tensor has been implemented in its horizontal form, the
Helmholtz operator is still in its original isotropic form. We are currently implement-
ing its anisotropic (horizontal) version.

The results of our numerical simulations are presented in figures 1, 2, and 3. In
Figure 1, we present snapshots of DNS for the density perturbation ρ ′ at different
times. This time evolution of the density perturbation will represent the benchmark
for our LES runs.

In figure 2, we present snapshots of the density perturbation ρ ′ at t = 3.0. No-
tice that all four models (horizontal RLES, horizontal Clark-α , DNS, and DNS∗)
produce practically indistinguishable results.

Finally, in figure 3 we investigate the ability of the LES models to reproduce
the DNS RPE curve. We also compare the isotropic and horizontal versions of the
LES models. The behavior of the LES models depends on the time-interval consid-
ered. At the beginning of the numerical simulation, both LES models (horizontal
RLES and horizontal Clark-α) produce better results than the under-resolved sim-
ulation (DNS∗) and the horizontal RLES model is more accurate than the Clark-α
model. Towards the end of the simulation, however, the quality of the results pro-
duced by the LES models degrades. Indeed, the LES models yield RPE curves that
are farther away from the benchmark RPE curve than the RPE curve produced by
the under-resolved DNS∗ runs. We emphasize that this behavior was not displayed
in our previous studies [24, 25], since there we did not integrate as long in time as
in our present study. The DNS results in figure 3 have not been filtered. From our
previous experience with the lock-exchange problem, filtering the DNS data does
not change the overall qualitative results. We believe that this is mainly due to the
fact that the filtering radius α is not too large. In realistic ocean flows, where com-
putational resources become utterly scarce, however, one needs to consider a very
large filtering radius. In this case, one needs to replace the DNS data in figure 3 with
its filtered counterpart, where the horizontal filtering is carried out by convolution
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with the kernel gα(·) introduced in Section 2. We plan to investigate the effect of
replacing DNS data with filtered DNS data in a forthcoming study.

These new results open a new research avenue that we are currently pursuing.
On the other hand, the preliminary tests of this report show that the new methods
we propose are promising and may be used to improve performances of previous
simulations. Further analysis and tests are running, and we hope to give some new
insight in the numerical simulation of mixing phenomena involved in ocean flows.

Fig. 1. Density perturbation snapshots. DNS at: (a) t=0.8; (b) t=1.2; (c) t=3.0; (d) t=5.0; and
(e) t=45.0.
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Fig. 2. Density perturbation snapshots. (a) DNS; (b) DNS∗; (c) Clark-α horizontal; and (d)
RLES horizontal.

Fig. 3. RPE curves for DNS, DNS∗, Clark-α horizontal, RLES horizontal, Clark-α , and
RLES.
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4. Berselli LC, Galdi GP, Iliescu T, Layton WJ (2002) Math. Models Methods Appl. Sci.
12:1131–1152

5. Berselli LC, Iliescu T, Layton WJ (2006) Mathematics of Large Eddy Simulation of tur-
bulent flows. Springer-Verlag, Berlin

6. Berselli LC, Spirito S (2009) Remarks on the Boussinesq equations. In preparation
7. Cantero MI, Lee JR, Balachandar S, Garcia M (2007) J. Fluid Mech. 586:1–39
8. Cao C, Holm DD, Titi ES (2005) J. Turbul. 6, Paper 20.
9. Chemin JY, Desjardins B, Gallagher I, Grenier E (2000) M2AN Math. Model. Numer.

Anal. 34:315–335
10. Clark R, Ferziger J, Reynolds W (1979) J. Fluid Mech. 91:1–16
11. Constantin P, Foias C (1988) Navier-Stokes equations. Univ. of Chicago Press, Chicago
12. Deville M, Fischer P, Mund E (2002) High-order methods for incompressible fluid flow.

Cambridge Univ. Press, Cambridge
13. Fan J, Ozawa T (2009) Nonlinearity 22:553–568
14. Fischer P (1997) J. Comp. Phys. 133:84–101
15. Fischer P, Mullen J (2001) C. R. Acad. Sci. Paris Sér. I Math. 332:265–270
16. Galdi GP, Layton WJ (2000) Math. Models Methods Appl. Sci. 10:343–350
17. Geurts BJ, Holm DD (2003) Phys. Fluids 15:L13–L16
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The effect of subfilter-scale physics on regularization
models
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Summary. The subfilter-scale (SFS) physics of regularization models are investigated to un-
derstand the regularizations’ performance as SFS models. The strong suppression of spec-
trally local SFS interactions and the conservation of small-scale circulation in the Lagrangian-
averaged Navier-Stokes α−model (LANS−α) is found to lead to the formation of rigid bod-
ies. These contaminate the superfilter-scale energy spectrum with a scaling that approaches
k+1 as the SFS spectra is resolved. The Clark−α and Leray−α models, truncations of
LANS−α , do not conserve small-scale circulation and do not develop rigid bodies. LANS−α ,
however, is closest to Navier-Stokes in intermittency properties. For magnetohydrodynamics
(MHD), the presence of the Lorentz force as a source (or sink) for circulation and as a facil-
itator of both spectrally nonlocal large to small scale interactions as well as local SFS inter-
actions prevents the formation of rigid bodies in Lagrangian-averaged MHD (LAMHD−α).
We find LAMHD−α performs well as a predictor of superfilter-scale energy spectra and of
intermittent current sheets at high Reynolds numbers. We expect it may prove to be a generally
applicable MHD-LES.

Key words: LES, Subgrid-scale processes, alpha models, MHD, intermittency

1 Introduction

Regularization modeling for Navier-Stokes and magnetohydrodynamics (MHD)
promises several advantages. Unlike the situation for Navier-Stokes [16], for a regu-
larization, we are guaranteed the computability of solutions: we can achieve a direct
numerical solution (DNS) of the model equations. It is worth noting that we can then
achieve a grid-independent model. As only the spectral distribution of energy, not the
dissipative processes as in many LES, is modified, a well-defined Reynolds number
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(Re) is retained (instead of the usual approach of modeling the behavior of the flow
in the limit of very large Re). Thus, the models may be more applicable to intermit-
tent phenomenon where the length of the inertial range can be important [13]. Since
the models do not introduce the effect of the small scales ad hoc but rather preserve
the mathematical properties of the underlying equations, their application can fur-
ther our understanding of turbulence and turbulence modeling. The methods are also
more easily generalized to other problems (e.g., MHD).

In this paper we address two separate questions. One is the question of the prac-
tical applicability of regularization models as subfilter-scale (SFS) models. When
addressing this question, the filter width, α , will be placed in the inertial range and
the grid spacing, Δ , will be just small enough to achieve a DNS of the regulariza-
tion. Our aim is then to determine how well the model’s DNS reproduces a “DNS”
of Navier-Stokes compared at scales larger than α . Our second question is “How
do the models work?” Here, we aim to understand how the new SFS physics allow
reproduction of the superfilter-scale properties. To address this question, we must
necessarily spend the majority of our numerical resolution to resolve the subfilter-
scale inertial range. The filter width, α , will be a large fraction of the computational
domain and no superfilter-scale comparisons can be made with Navier-Stokes. In-
stead, comparisons for scales smaller than α will elucidate the differences in physics
between the model and Navier-Stokes (or MHD). It is these very differences that
allow the model to reduce computational cost when employed as a SFS.

2 Navier-Stokes

2.1 LANS−α and rigid body formation

The first model we consider is the Lagrangian-averaged Navier-Stokes (LANS)
α−model [3, 18]. It is derived by Lagrangian averaging fluid motions followed by
application of Taylor’s frozen-in turbulence approximation as the model’s one and
only closure: fluctuations about the Lagrangian mean smaller than α are swept along
by the large-scale flow and are not allowed to interact with one another. The model is
attractive as it retains the Hamiltonian structure of Navier-Stokes, preserves Kelvin’s
theorem (conserves small-scale circulation in the absence of dissipation), and con-
serves both total energy and helicity. These properties are conserved in the H1

α norm
instead of the usual L2 norm. This is essential when interpreting results of the model
as, for example, quantities involving the square velocity, |v|2, must now be replaced
with the dot product v · v̄ where v̄ is the smoothed velocity. Physically, the model re-
tains nonlocal interactions between the superfilter and subfilter scales while the flux
of energy in subfilter scales is reduced by the limit on local small-scale to small-scale
interactions.

The LANS−α model is given by, with ν the viscosity:

∂t vi +∂ j(v̄ jvi)+∂iπ + v j∂iv̄ j = ν∂ j jvi

∂ jv j = ∂ j v̄ j = 0 . (1)
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It differs from Navier-Stokes both in advection by the smoothed velocity and the
addition of a second nonlinear term associated with the conservation of circulation.
Traditionally, LANS−α is used with an inverse Helmholtz operator as the filter:
v̄i = (1−α2∂ j j)−1vi. In this case, LANS−α can be written as a LES with

τ̄α
i j = (1−α2∂ j j)−1α2(∂mv̄i∂mv̄ j +∂mv̄i∂ j v̄m −∂iv̄m∂ j v̄m) (2)

as the Reynolds subfilter-scale stress tensor. The model allows for a reduction in
resolution without changing the dissipative terms by altering the SFS scaling proper-
ties. Near k = 2π/α , the H1

α energy spectrum is predicted to transition from kβ with
β = −5/3 at larger scales to β = −1 at smaller scales [5]. Consequently, dissipation
goes as k1 instead of k1/3 and the same amount of power is dissipated in fewer scales.
The change in spectral scaling also predicts a resolution requirement in degrees of
freedom, do f , for LANS [5],

do fα ∼ α−1Re3/2 , (3)

which has been confirmed in numerical experiments [12]. Resolving do fα allows the
identification of LANS−α as a grid-independent SFS model. When compared with
the result for Navier-Stokes,

do fNS ∼ Re9/4 , (4)

we see that LANS−α should improve as a SFS model for larger Re. This is an
encouraging prediction as it compared well with dynamic eddy viscosity [27] and
dynamic mixed (similarity) eddy viscosity [8] at moderate Re.

We have, however, found that LANS−α develops a problem at large Re: it de-
velops a positive-exponent power-law bump in its small-scale energy spectrum and
a contamination of superfilter-scale spectral properties [12]. To investigate the SFS
physics responsible for this, we employ a filter 1/3 the size of our 2563 computa-
tional cube in a pseudo-spectral calculation [10, 11] with a Taylor-Green (TG) forc-
ing [30] and Re ≈ 8000. As shown in Fig. 1, the observed scaling law is k+1. This
was shown to be associated with the formation in the flow of passively swept regions,
called rigid bodies [12]. These form as a consequence of disallowing sub-α-scale
fluctuations to interact with each other in the closure approximation. A rigid body
cannot support longitudinal velocity increments: δ v̄‖(l) ≡ [v̄(x)− v̄(x+ l)] · l/l = 0.
This predicts a scaling relation, δ v̄ ∼ l0, and, with v ∼ α2k2v̄ for l  α , an energy
spectrum of

Eα(k) ∼ v̄vk−1 ∼ k1 (5)

which is compatible with the observed SFS energy spectrum. Inside rigid bodies
there can be no turbulent cascade of energy to smaller scales (no internal degrees
of freedom). From the Kármán-Howarth theorem, we should then expect to be able
to detect rigid bodies by visualizing the cubed velocity increments (which are pro-
portional to the energy flux). The regions which correspond to negligible flux are
shown as black in the inset of Fig. 1. Filtering these regions out, allows us to obtain
a (convolved) energy spectra for the remaining white portion of the flow. This spec-
trum is shown as a dashed line in Fig. 1 and has a negative spectral slope close to the
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Fig. 1. Energy spectrum for LANS−α (solid line) with filter scale α = 2π/3 (vertical dashed
line). The SFS inertial range is seen to match a k+1 power law. Insert shows thresholded
cubed velocity increment |δ v̄‖(2π/10)|3 < 10−2 in black. These regions do not contribute
to the turbulent cascade of energy to smaller scales and are identified with rigid bodies. A
spectrum of only the white regions (dashed line) is consistent with the predicted k−1 scaling
outside rigid bodies.

predicted k−1 energy spectrum. The resulting picture of the model’s behavior is to
produce two spatially separate scalings. The white portions of the flow possess the
predicted LANS−α scaling and are responsible for the observation of the predicted
do fα . The black portions are rigid bodies whose k1 energy spectrum dominates over
k−1 for large k and are responsible for the observed spectral contamination. Note
that suitable spectra can be obtained with very small α [12] or with modified viscous
length scale (LANS−αβ [20]).

2.2 Clark−α , Leray−α , and influence of circulation on rigid bodies

The formation of rigid bodies in LANS−α limits the reduction of numerical do f
saved compared to Navier-Stokes to a factor of 1/12 regardless of Re [12]. It is
desirable, then, to alter the model in such a way to prevent the formation of rigid
bodies. Truncation of the Reynolds SFS stress tensor, Eq. (2), to the first term re-
sults in the Clark−α model [2] and to the first two terms results in the Leray−α
model [7, 8]. Both these models are regularizations and conserve the total energy
of the flow. They do not, however, conserve the helicity nor the small-scale circula-
tion. Considering the rotational properties of a rigid body (in the absence of viscous
friction), these models’ circulation properties may be incompatible with rigid body
formation. This is, indeed, borne out in the model’s SFS energy spectrum (Fig. 2a).
While LANS−α exhibits a positive-exponent power law in this case (α = 2π/3,
Re ≈ 3300, TG forcing), both Clark−α and Leray−α are free from this signature of
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rigid body formation. However, LANS−α’s intermittency properties are more simi-
lar to Navier-Stokes than the other two models (Fig. 2b).

Fig. 2. (a) Compensated energy spectra (2π/α vertical dashed line) for Navier-Stokes (solid
black), LANS−α (blue dash-dotted), Clark−α (green dashed), and Leray−α (red dotted). (b)
Normalized structure function scaling exponent ξp/ξ3 versus order p. Clark−α is the best
approximation for the superfilter-scale spectrum, whereas high-order intermittency properties
are best reproduced by LANS−α [14].

3 MHD: circulation and outlook for LES

In MHD, the situation is quite different since small-scale circulation is broken by the
Lorentz force j×b, with j = ∇∇∇×b the current, b being the induction. This force acts
as source (sink) of circulation, Γ , as opposed to the insufficient modeling of Γ in the
Leray−α and Clark−α models. This can be seen in Kelvin’s theorem,

d
dt

Γ =
d
dt

∮
C

v ·dr =
∮

C
j×b ·dr . (6)

This may prevent the formation of rigid bodies even while conserving all the correct
physical properties of the flow.

The LES equations for MHD are given by

∂t v̄+ ω̄ωω× v̄ = j̄× b̄−∇∇∇Π̄ +ν∇2v̄−∇ · τ̄
∂t b̄ = ∇∇∇×

(
v̄× b̄

)
+η∇2b̄−∇ · τ̄b , (7)

where where η is the magnetic diffusivity, Π = P + |b|2/2 the modified pressure, τ̄
is the Reynolds SFS stress tensor,

τ̄i j = viv j − v̄iv̄ j − (bib j − b̄ib̄ j) , (8)

and τ̄b is the electromotive-force SFS stress tensor,

τ̄b
i j = biv j − b̄iv̄ j − (vib j − v̄ib̄ j) . (9)
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Note that the extension of eddy viscosity to eddy resistivity employs the usual form
for τ̄ involving only the filtered velocity while the expression for τ̄b similarly only
involves the filtered magnetic field [31]. Meanwhile, Eqs. (8) and (9) make it explic-
itly clear that interactions between the two fields at subfilter scales must be taken into
account.

Another problem with extending eddy-viscosity concepts to MHD is that they
can be related to a known power law of the energy spectrum [4]. This is inappropriate
for MHD as neither kinetic nor magnetic energy is a conserved quantity and the gen-
eral expression of the energy spectrum is not known at this time [19, 22, 9, 24, 23].
Additionally, MHD has been shown to have a greater amount of nonlocal interactions
between large and small (superfilter and subfilter) scales (e.g., the large-scale mag-
netic field provides the restoring force for small-scale Alfvén waves) than Navier-
Stokes [1]. This complex interaction is a challenge in general for MHD-LES, but may
be an advantage for the Lagrangian-averaged approach as energy exchange with sub-
α scales may disrupt rigid body formation. Some limited case MHD LES include the
cross-helicity model [28] assuming alignment between the fields and the low mag-
netic Re LES [21, 29]. However, there are many regimes of MHD dependent on the
ratios between the various conserved quantities and ν/η . As a result, there is not yet
any generally applicable LES for MHD.

3.1 LAMHD−α and absence of rigid bodies

The Lagrangian-averaged MHD α−model (LAMHD−α) [17] is given by, where the
velocity if filtered as before and b̄ = (1−α2∇2)−1b:

∂tv+ωωω× v̄ = j× b̄−∇∇∇π +ν∇2v

∂t b̄ = ∇∇∇× (v̄× b̄)+η∇2b

∇∇∇ ·v = ∇∇∇ · v̄ = ∇∇∇ ·b = ∇∇∇ · b̄ = 0 . (10)

The model preserves all the ideal invariants of MHD (in the H1
α norm) as well as

Alfvén’s theorem for frozen-in field lines. Physically, it supports Alfvén waves at
all scales while slowing and hyper-diffusively damping waves with wavelengths, λ ,
smaller than α [15]. In examinations of its SFS physical properties LAMHD−α
(dashed lines) displays neither positive-exponent power-law scaling nor superfilter-
scale spectral contamination (see Fig. 3). Under similar conditions LANS−α (not
shown) displays these signs of rigid body formation. Further examinations with
larger filters and higher Re were unable to unravel any sign that rigid bodies form
for LAMHD−α [15].

3.2 LAMHD−α as a SFS model

Given that LAMHD−α does not display the same limitations as LANS−α , we test
it as a SFS model for large kinetic and magnetic Reynolds numbers, ≈ 3300. A
DNS of MHD is computed at a resolution of 10243. The initial conditions for v and
b are a super-position of ABC modes [6] with random phases and wavenumbers
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Fig. 3. Kinetic (a) and magnetic (b) energy spectra (2π/α vertical dashed line). The largest
scales are affected by differences from the MHD DNS (solid lines) in initial conditions.
LAMHD−α (dashed lines) exhibits neither the positive power-law nor the superfilter-scale
spectral contamination associated with high Re LANS−α .

k ∈ [1,4]. No external forcing is applied and the total energy is allowed to freely de-
cay. LAMHD−α is computed for identical conditions at a resolution of N3 = 1683

with a filter size α = 6Δ = 2π/28. As a base-level comparison we also compute an
under-resolved (or no-model) solution of the MHD equations at N3 = 1683. Time
evolution of the total energies and enstrophy are shown in Fig. 4. In comparison
with under-resolving MHD, LAMHD−α shows errors of approximately the same
magnitude in these global quantities. Comparisons of energy spectra (Fig. 5), how-
ever, show an improvement in predictive quality for LAMHD−α , especially for the
magnetic energy spectrum. As turbulence develops, energy begins to pile up at small-
scales and deplete at intermediate scales for 1683 MHD. LAMHD−α improves the
prediction of superfilter-scale spectra compared to no SFS model.

Fig. 4. Time evolution of total (solid), magnetic (dashed), and kinetic (dotted) energies (a) and
total enstrophy (b) for 10243 DNS (black/solid), 1683 LAMHD−α (blue/dash-dotted), and
1683 no-model (red/dotted). LAMHD−α provides no improvement in prediction of global
quantities.
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Fig. 5. Compensated kinetic (a) and magnetic (b) energy spectra for t ∈ [8,8.8]. Labels are as
in Fig. 4. Energy piles up at small scales in the no-model approach (under-resolved DNS) and
LAMHD−α is seen to provide improved predictions of the superfilter-scale spectra, especially
for the magnetic field.

Cross-sections of |j|2, shown in Fig. 6 at t = 8.4 indicate that LAMHD-α finds
sharper and better defined, more intermittent current sheets than the under-resolved
run compared to the DNS.

Fig. 6. Cross sections of square current, j2, at t = 8.4 for no-model 1683 (left), 1683

LAMHD−α (center), and 10243 DNS (right). LAMHD−α provides a much better captur-
ing of the intermittent current sheets than the under-resolved solution.

4 Summary

Incompressible LANS−α , while it performed well at moderate Reynolds number is
limited as a high Re SFS model. Due to its strong suppression of spectrally local
interactions at subfilter-scales, and consistent with its conservation of small-scale
circulation, LANS−α develops rigid bodies which contaminate the superfilter-scale
energy spectrum. In contrast, Clark−α and Leray−α , neither of which conserve
small-scale circulation do not develop energy-spectrum contamination from rigid
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bodies. LANS−α , however, best matches the intermittency properties of Navier-
Stokes fluid turbulence.

In MHD, a mechanism for local small-scale transfer is the interaction of small-
scale Alfvén waves. As LAMHD−α supports Alfvén waves at all scales while slow-
ing and hyperdiffusively damping those with wavelength λ < α , it more gently sup-
presses SFS local interactions than LANS−α . This together with the greater nonlo-
cality in MHD and the Lorentz-force source of small-scale circulation, inhibits the
formation of rigid bodies in LAMHD−α . For this reason, we find LAMHD−α to be
a viable model at high Re in 3D. As LAMHD−α has been previously found to re-
produce the difficult to model properties of MHD at high Re in 2D [26] and moderate
Re in 3D [25], we believe it will prove to be a generally applicable MHD LES.
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Summary. The very essence of large-eddy simulation is that the computed flow field con-
tains only eddies of size ≥ Δ . This restriction determines the eddy viscosity νe. Although the
principle is quit apparent, it is not yet fully understood how to derive νe from that. Therefore
we address two related questions, namely how much eddy viscosity is needed to damp any
disturbances having a scale smaller than Δ and when does eddy viscosity stop the production
(by means of vortex stretching) of scales < Δ . From this we deduce that the νe has to depend
on the invariants q and r of the filtered strain tensor. The simplest model is then given by
νe = c2 Δ2r+/q.

Key words: eddy viscosity, confinement of dynamics, invariants of strain tensor

1 Problem setting

The Navier-Stokes equations provide an appropriate model for turbulent flow. In the
absence of compressibility (∇ ·u = 0), the equations are

∂tu+(u ·∇)u+∇p = 2ν∇ ·S(u), (1)

where u is the fluid velocity field, p stands for the pressure, ν denotes the viscosity,
and the symmetric part of the velocity gradient (the rate of strain tensor) is defined
by

S(u) = 1
2

(
∇u+∇uT ) .

Turbulent flow is often visualized as a cascade of kinetic energy from large to
small scales of motion (eddies). The energy introduced at the large-scale compo-
nents of the flow is transferred to smaller and smaller eddies - nearly without viscous
dissipation - until eddies become sufficiently small to dissipate energy efficiently.
The entire spectrum ranging from the wavenumbers where energy is injected to
the dissipation range is to be resolved when turbulence is computed directly from
the Navier-Stokes equations. This requirement limits direct numerical simulations

M.V. Salvetti et al. (eds.), Quality and Reliability of Large-Eddy Simulations II,
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(DNS) to relatively low Reynolds numbers, since otherwise the dissipative scales are
too small to be resolved numerically [1].

Large-eddy simulation (LES) aims at overcoming this problem by computing the
evolution of the large scales only (see e.g. [2] and the references therein). To that
end a spatial operator u �→ u is introduced that maps the full velocity field u to the
velocity u of the large scales. Applying this filtering operator to the Navier-Stokes
equations yields

∂tu+(u ·∇)u+∇p−2ν∇ ·S (u) = (u ·∇)u− (u ·∇)u (2)

provided u �→ u commutes with differentiation. The right-hand side of Eq. (2) de-
pends on both u and u because the Navier-Stokes equations are nonlinear. To close
the system (in terms of u) the right-hand side of (2) is replaced by a approximate
model. Usually these models are based on phenomenological arguments that cannot
be derived formally from the Navier-Stokes equations. The most used model in LES
is the eddy-viscosity model:

∂t v+(v ·∇)v+∇q = 2∇ · (νtS(v)) , (3)

where the total viscosity is given by νt = ν +νe. Here the variable name is changed
from u to v to stress that the solution of Eq. (3) differs from that of Eq. (2), because
the closure model is not exact.

The classical Smagorinsky model reads

νe = C2
SΔ 2|S(v)| (4)

where CS is the Smagorinsky constant, Δ is the characteristic length scale set by
the operator u �→ u (i.e., the width of the filter) and |S(v)| =

√
2tr(S(v)2). It may

be noticed that the precise definition of u is not of much significance in case the
Smagorinsky model is used, since Eq. (4) depends only on the characteristic length
scale Δ set by the map u �→ u, and not on the details of the mapping.

Various value for the Smagorinsky constant have been proposed, mainly ranging
from CS = 0.1 to CS = 0.2, see [1]-[2], e.g. Instead of adhering to a constant value, CS

is also treated as a model coefficient which is determined during the simulation, that
is νe = νe(v). In the well-known dynamical procedure the coefficient CS is computed
with the help of the Jacobi identity (in least-square sense) [3].

The very essence of LES is that the range of dynamically significant scales in the
solution v of Eq. (3) is much smaller than the full range of scales in the Navier-Stokes
solution u. This property enables us to solve (3) numerically when it is not feasible to
compute the full solution of the Navier-Stokes equations (1). A simulation based on
Eq. (3) differs from a DNS only in the use of a modified viscosity; hence, the desired
effect thereof is a confinement of the dynamics, that is the smallest characteristic
length-scale in v is bound to be Δ . Therefore, we view the eddy viscosity as a function
v that is to be determined such that the smallest characteristic length-scale is (at
least) equal to Δ . To get an idea about the required amount of eddy viscosity two
questions are posed for discussion: how much eddy viscosity is needed to damp any
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disturbances having a length scale smaller than Δ (Section 2) and when does eddy
viscosity stop the production of smaller scales (by means of vortex stretching) at
scale Δ (Section 3). This leads us to the conclusion that νe has to depend on the
invariants q and r of S(v) (Section 4).

2 When does eddy viscosity damp any subfilter-scale
disturbances?

The eddy viscosity must keep subfilter-scale disturbances from growing - stated oth-
erwise, the dynamics governed by Eq. (3) should be stable with respect to these
disturbances. To analyze the stability, we consider an arbitrary part D with volume
O(Δ 3) of the flow domain and superimpose an instantaneous, solenoidal, small-scale
perturbation δv to v on D. Initially, say at time t = t0, δv equals zero outside D and

∫
D
δv(x, t) · v(x, t)dx = 0 (5)

At t = t0 one may conceive v as being constant on D, whereas δv is any (non-
constant) periodic function on D. In other words, δv and v are orthogonal at t = t0,
that is, (δv,v) = 0, where the innerproduct is defined in the usual way: (a,b) =∫

D a(x, t) · b(x, t)dx. The disturbance δv can be caused externally, or by a numeri-
cal error, or perhaps the non-linear dynamics governed by Eq. (3) is not correctly
closed and a unwanted small scale δv is produced at t = t0. Anyway, the evolution
of the perturbed velocity v + δv is governed by Eq. (3), with v replaced by v + δv.
Here we take the eddy viscosity independent of δv: νt = νt(v). The dynamics of the
disturbance is then given by

∂tδv+(v ·∇)δv+(δv ·∇)v+(δv ·∇)δv+∇δ p = 2∇ · (νtS(δv)) , (6)

where δv stands for a arbitrary vector field having divergence equal to zero. Eddies
of size smaller than Δ ought not become significant; hence, their energy should not
increase for all admissible disturbances δv at t = t0,

d
dt

∫
D

1
2δv ·δvdx

(6)
= −(δv,S(v)δv)− (S(δv),2νtS(δv)) ≤ 0 (7)

Notice that a number of terms vanish here, because the convective operator is skew-
symmetric: ((a ·∇)b,c) = −(b,(a ·∇)c). Intuitively, inequality (7) can always be
satisfied by taking the eddy viscosity sufficiently large. To obtain a lower-bound, we
take the eddy viscosity constant on D. Then,

−(S(δv),2νtS(δv)) = −νt (∇δv,∇δv) ≤−νt αΔ (δv,δv)

where the positive constant αΔ denotes the smallest (non-zero) eigenvalue of the
dissipative operator −∇2 on D. The inverse of αΔ is known as the Poincaré constant
for the domain D. The Poincaré constant of any convex domain with diameter Δ is
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given by (Δ/π)2. So, in conclusion, Eq. (7) leads to the following restriction on the
eddy viscosity

νt αΔ ≥− (δv,S(v)δv)
(δv,δv)

(8)

Rayleigh’s principle states that

max
δv �=0

− (δv,S(v)δv)
(δv,δv)

= −λ1(v) (9)

where −λ1(v) is the largest eigenvalue of the symmetric matrix −S(v) on D, i.e., λ1

is the smallest eigenvalue of S on D. We order the eigenvalues of S by λ1 ≤ λ2 ≤ λ3.
The sum of the eigenvalues is zero, because tr(S) = 0. Hence, λ1 ≤ 0 and λ3 ≥ 0.
The characteristic equation reads

λ 3 −qλ + r = 0, (10)

where the invariants of the tensor S(v) are given by

q = 1
2 tr(S2(v)) and r = − 1

3 tr(S3(v)) (11)

The three roots of the cubic equation (10) can be computed analytically:

λ1 = −
√

1
3 |S(v)|cos

( θ
3

)
(12)

λ2 = −
√

1
3 |S(v)|cos

( θ
3 − 2π

3

)
(13)

λ3 = −
√

1
3 |S(v)|cos

( θ
3 + 2π

3

)
(14)

where
θ = arccos

(
1
2 r/ 1

3

√
q3
)

(15)

It may be noted that the three roots of Eq. (10) must be real-valued because S is
symmetric. Eq. (10) has three real roots if and only if 27r2 − 4q3 ≤ 0. Hence, θ ∈
[0,π].

Substituting (9)+(12) into (8) shows that any subfilter perturbations are damped
if

νt ≥
cos
( θ

3

)
√

3αΔ
|S(v)| (16)

The above estimate resembles the Smagorinsky model if we take (a) αΔ = (π/Δ)2;
and (b) the smallest value of νt that satisfies (16). In this way we get

C2
S =

cos
( θ

3

)
π2

√
3

. (17)

The resulting Smagorinsky ‘constant’ CS ranges from 1
2π31/4 ≈ 0.12 to 1

π31/4 ≈ 0.24,

because cos
( θ

3

)
∈ [ 1

2 ,1]. Most of the constant values of CS that have been proposed
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fall in the same range. This holds for values resulting from an empirical fit to DNS
results as well as for Kolmogorov-based values. A well-known example of the latter
is Lilly’s result, CS = 0.17 [4].

In (9) we maximized the Rayleigh quotient without restricting δv to subfilter
scales, i.e., without imposing the constraint (5). Without this constraint the maximum
value is attained if δv is aligned with the eigenvector e1 belonging to λ1. Yet, if δv is
constrained to a non-constant function in D it cannot be fully aligned with e1, because
e1 depends on v and v is supposed to be constant in D (at t = t0). Consequently,
the lower-bound (16) on the eddy viscosity decreases if we impose the appropriate
constraint. Then, −λ1(v) is to be replaced by the function

μ(v) = max
(v,δv)=0

− (δv,S(v)δv)
(δv,δv)

(18)

where we can take (δv,δv) = 1 without loss of generality. Thus we get

νt ≥ μ(v)
αΔ

=
Δ 2

π2 μ(v) (19)

The function μ(v) exists because it is the maximum of a continuous function on
a compact set. According to Courant’s minimax theorem, −λ2 is the least of all
possible values of μ(v) and μ(v) is minimized when v is aligned with e2. There-
fore, −λ2(v) ≤ μ(v) ≤ −λ1(v). This interval can also be interpreted as a pos-
sible range for the Smagorinsky constant CS, that is instead of Eq. (17) we get
− 1

2 ≤ cos
( θ

3 − 2π
3

)
≤ π2

√
3C2

S ≤ cos
( θ

3

)
≤ 1. Furthermore, near a no-slip wall

y = 0, Eq. (18) gives μ(v) → 0 if y → 0.
The function μ depends on the invariants q and r of the tensor S(v). Therefore

μ is invariant under rotation of the coordinate axes. Unfortunately, we cannot obtain
a useful, analytic expression for the solution μ of the minimization problem (18).
However, μ can be determined from DNS-data. To that end the DNS solution u is to
be mapped to u. This gives an approximation of v and also S(v). From that μ can be
computed numerically.

It may be noted that Smagorinsky’s model is formulated in terms of νe, whereas
(7) yields a condition on νt = ν +νe. This difference disappears, i.e., we get condi-
tions on νe rather than on νt , if (7) is replaced by the slightly stronger condition

d
dt

∫
D

1
2 ||δv||2 dx ≤−ν

∫
D
||∇δv||2 dx

A noticeable difference between (19) and the Smagorinsky model (4) is that μ
depends on both r and q, whereas the Smagorinsky model, νe = C2

SΔ 2√4q, depends
only on the invariant q if CS is taken constant. This raises the fundamental question:
is the invariant r important, or not?

A dimensional analysis shows that

νe = Δ 2√q ∑
β

Cβ

(
r/
√

q3
)β

(20)
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where Cβ denotes a dimensionless constant. The standard Smagorinsky model corre-
sponds to β = 0. Expressions based on the eigenvalues of S introduce a dependency
on r/

√
q3. See, for example, (15)-(17), or the function μ ≥ −λ2. This lower-bound

satisfies |r/q| ≤ |λ2| ≤ 3
2 |r/q| which indicates that in case of (19) we have to con-

sider β = 1.

3 When does eddy viscosity stop vortex stretching from
continuing at subfilter scales?

Again, we view the eddy viscosity as a function of the velocity v that is to be deter-
mined from the requirement that the dynamics stays confined to eddies of size ≥ Δ ;
in particularly, the smallest scales of motion that dissipate the energy are to be size
Δ , or larger. To derive a condition on the eddy viscosity, we consider an arbitrary part
Ω of size O(�3) of the flow domain, with � ≥ Δ . We consider both the incompress-
ible Navier-Stokes equations (1) and the LES-model given by Eq. (3) on the 3D box
Ω , with periodic boundary conditions. At time t = t0 the Navier-Stokes solution u is
given by u(x, t0) = u0(x), for all x ∈Ω . The initial condition for the LES-model reads
v(x, t0) = u0(x). The initial conditions supply energy to the flow. This energy cannot
escape from the box Ω , since we have applied periodic conditions. Hence, the energy
is to be dissipated within Ω . In case of the Navier-Stokes equations the evolution of
the energy E(t) =

∫
Ω

1
2 ||u||2dx is given by dE/dt = −ε with ε = ν

∫
Ω ||∇u||2dx. In

the LES-model, the dissipation rate becomes
∫
Ω (ν + νe)||∇v||2dx. In the absence

of eddy-viscosity, i.e., νe = 0, this integral is much smaller than ε if v ≈ u. Indeed,
the mapping u �→ u reduces the velocity gradient. Now suppose that the amount of
eddy-viscosity is taken too little. Then, ||∇v||2 will have (a tendency) to increase,
because the energy that is supplied to the flow has to be dissipated anyway. Since
the norm of the velocity gradient ||∇v|| provides a consistent characterization of the
reciprocal of the time scale, an increase of ||∇v|| implies that smaller time-scales are
produced. Then, the eddies of scale � in the velocity field v are unstable and break
up, transferring their energy to smaller eddies. These smaller eddies undergo a sim-
ilar break-up process, and transfer their energy to smaller eddies, and so on till the
energy can be dissipated effectively. So, in conclusion, an increase of

∫
Ω ||∇v||2dx

indicates that scales with a length smaller than � are produced. In a LES this causes
no problem if � > Δ . But, in order to confine the dynamics to scales ≥ Δ this process
has to stop at the scale set by the filter. Therefore, we determine the eddy viscosity
from the requirement that

d
dt

∫
D=O(Δ3)

||∇v||2dx ≤ 0 (21)

This condition can also be interpreted in terms of the amplification of the vorticity
vector ω = ∇× v, since we have the equality

∫
Ω
||∇v||2dx =

∫
Ω
||ω ||2dx (22)
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Thus we see that Eq. (21) states that the vortex-stretching mechanism stops from
continuing if the volume Ω becomes O(Δ 3).

To provide a more formal derivation of (21), we make use of Poincaré’s inequal-
ity. This inequality states that there exists a constant C, depending only on Ω , such
that for every function v in the Sobolev space W 1,2(Ω),

∫
Ω
||v− vΩ ||2 dx ≤ C

∫
Ω
||∇v||2 dx (23)

where

vΩ =
1
|Ω |

∫
Ω

vdx

is the average value of v over Ω . In the present context, ||v− vΩ ||2 measures the
subfilter component of v for a box filter with box size |Ω |. Poincaré’s inequality (23)
demonstrates that the subfilter component of v is bounded by a constant (independent
of v) times the L2(Ω) norm of ∇v. By requiring that this upper-bound does not
increase in time if Ω = O(Δ 3), that is by imposing condition (21), we keep the
subfilter component of v under control. In this way, it can be shown that Eq. (3) is
stable with respect to sub(box)filter disturbances; see Section 4.

To turn (21) into a lower-bound for the eddy viscosity, we take the L2 innerprod-
uct (3) with Δv, and integrate by parts to derive

d
dt

∫
D

1
2 ||∇v||2dx =

∫
D

(
(v ·∇)v ·Δv−νt ||Δv||2

)
dx (24)

Note that the boundary terms that result from the integration by parts vanish because
D is a periodic box. In [5] Dongho Chae shows that, for a 3D periodic box, the first
term in the right-hand side of Eq. (24) can be written as:

∫
D
(v ·∇)v ·Δvdx =

∫
D

(
1
4 ω ·Sω− tr(S3)

)
dx (25)

By taking the curl of Eq. (3) we obtain the vorticity equation, and from that we get

d
dt

∫
D

1
2 ||ω ||2dx =

∫
D

(
ω ·Sω−νt ||∇ω ||2

)
dx (26)

Now, since
∫

D ||Δv||2dx =
∫

D ||∇ω ||2dx, we deduce from Eqs. (22)-(26) that the vor-
tex stretching term can be expressed in terms of the invariant r of S:

∫
D
ω ·Sω dx = − 4

3

∫
D

tr(S3)dx = 4
∫

D
r dx (27)

Thus condition (21) becomes

d
dt

∫
D

1
2 ||∇v||2 dx =

∫
D

(
4r−νt ||∇ω ||2

)
dx ≤ 0 (28)

The equality
∫

D ||∇ω ||2 dx =
∫

D ||∇ · S||2 dx shows once again (see Eq. (7)) that νt

depends solely on S, that is on its invariants q and r (since νt has to be objective). To
arrive at an explicit relation between νt and the invariants (q,r) we note that
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∫

D
||∇ω ||2 dx = (cΔ)−2

∫
D
||ω ||2 dx ≥ αΔ

∫
D
||ω ||2 dx = αΔ

∫
D

4qdx (29)

The combination (28)+(29) establishes that the eddy viscosity stops the production
of smaller scales by means of vortex stretching from continuing at subfilter scales if

νt

∫
D

qdx ≥ αΔ

∫
D

r dx (30)

Finally it may be remarked that we may also sharpen condition (21) slightly:

d
dt

∫
D

1
2 ||∇v||2dx ≤−ν

∫
D
||∇ ·∇v||2dx (31)

This has very little influence on our analysis: we just need to replace νt by νe in
Eq. (24)-(30).

4 Eddy viscosity revisited

The very essence of LES is that the solution v of Eq. (3) contains only eddies of size
≥ Δ . This restriction determines the eddy viscosity. Although the principle is quit
apparent, it is not yet fully understood how to determine the eddy viscosity from that.
Therefore we have addressed two basic questions, namely how much eddy viscosity
is needed to damp any disturbances having a length scale smaller than Δ (Section 2)
and when does eddy viscosity stop the production of smaller scales (by means of
vortex stretching) at scale Δ (Section 3).

Poincaré’s inequality (23) relates these questions to each other. Indeed, for any
sub(box)filter disturbance δv we have

∫
D

1
2 ||δv||2(x, t)dx =

∫
D

1
2 ||v− vD||2(x, t)dx

(23)
≤ C

∫
D

1
2 ||∇v||2(x, t)dx

(31)
≤ Ce−ν(cΔ)−2(t−t0)

∫
D
||∇v||2(x, t0)dx (32)

which shows that the energy of any sub(box)filter disturbance decreases eventually
in time if (31) holds. In other words, Eq. (3) is stable (here meaning that any dis-
turbances decreases eventually exponentially) with respect to subfilter-scale distur-
bances if (31) holds. Notice that the time-scale of the decay is given by (cΔ)2/ν with
c according to (29).

The main conclusion of our analysis is that the eddy viscosity depends on the
two invariants q and r of the strain tensor S. The most general form is then given by
Eq. (20). The standard Smagorinsky model does not dependent on the invariant r of
S. This is because the coefficient CS is approximated using

< S
3
>≈< S

2
>3/2

see e.g. Lilly [4]. Note that we use the notation of Ref. [1] here. This approximation
effectively eliminates r, and yields CS ≈ 0.17.
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Eq. (27) shows that r is a measure for vortex stretching. The eddy viscosity has to
prevent the intensification of vorticity at the scale Δ set by the map u �→ u, otherwise
smaller and smaller vortical structures are produced. From this point of view, it seems
reasonable to assume that the eddy viscosity depends on r, and not just on q. The
simplest form depending on both r and q is given by

νt = max {c2Δ 2 r
q
, ν } (33)

where c2 is a positive constant. This model follows directly from Eq. (30) if we take
the smallest value of νt that satisfies (30). Again it may be remarked that taking (31)
instead of (21) implies

νe = c2Δ 2 r+

q
(34)

where r+ = max{r,0}. Notice that the invariant q is by definition negative, whereas
r can be both positive or negative. From r =−λ1λ2λ3 it can be deduced that the sign
of r and the sign of the middle eigenvalue λ2 are the same. The molecular viscosity
ν is certainly large enough to stop the vortex stretching at scale Δ in case r ≤ 0,
i.e., Eq. (30) is trivially satisfied by taking νe = 0 if r ≤ 0. Thus the eddy-viscosity
model is to be turned off in the parts of the fluid domain where r ≤ 0. If this happens,
we get a solution v depending on the molecular viscosity ν , i.e., on the Reynolds
number Re.

According to Eq. (29) the value of c becomes 1/π , provided the smallest (non-
zero) eigenvalue of the dissipative operator −∇2 on D is given by αΔ = (π/Δ)2. In a
numerical simulation one can also base c on the smallest (non-zero) eigenvalue of the
discrete dissipative operator. Alternatively, c2 can be viewed as a model parameter
that is still to be determined, by a dynamical procedure, for instance.

Eq. (34) can also be displayed in the standard form (4) by taking the Smagorinsky
constant CS non-constant, that is by taking

C2
S =

c2 r+

2
√

q3
(35)

In terms of the Reynolds number Re the quotient of r and q scales like r/q ∝
Re3/2/Re = Re1/2. Therefore we obtain that νt → ν if ν ∝ Re−1 ∝Δ 2r/q ∝Δ 2Re1/2,
that is if Δ ∝ Re−3/4. This shows that the eddy viscosity given by Eq. (33)-(34)
vanishes as Δ approaches the smallest scale in a turbulent flow.

The Smagorinsky model (4) predicts a nonvanishing eddy viscosity in regions
where the flow is laminar. This shortcoming of the Smagorinsky model can be
overcome by using a dynamic procedure for determining the model coefficient [3].
Vreman [6] developed a different approach. The principle constituent of his eddy-
viscosity model is that the subfilter-scale dissipation vanishes for canonical laminar
shear flows. Laminar flows can be characterized by r = 0 (no vortex stretching);
hence (34) yields νe = 0 in laminar flow. In fact this observation can be extended
to any two-dimensional flow. Indeed in 2D flow, we have λ2 = 0, which implies that
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r = 0. Therefore Eq. (34) yields νe = 0 for any two-dimensional flow. In this manner,
Eq. (34) recognizes the salient differences of 2D and 3D turbulence.

Another shortcoming of the Smagorinsky model (4) is that the eddy viscosity
does not vanish at no-slip walls. The near-wall behavior of the invariants r and
q is given by r ∝ y3 and q ∝ y0, respectively, where y denotes the distance to the
wall. Consequently, Eq. (34) results into an eddy viscosity that vanishes at the wall:
νe ∝ y3.

It goes without saying that the performance of (34) has to be investigated for
many cases. As a first step it was tested (with c = 1/π) for turbulent channel flow
(Reτ = 180 and Reτ = 395) using 32×32×16 and 64×64×32 grid points, respec-
tively. Unlike the standard Smagorinsky model (with CS = 0.1), the present model
showed an appropriate behavior. In conclusion, it was observed to be as accurate as
the dynamic Smagorinsky model, but also slightly less accurate than the regulariza-
tion model C4 in [7].
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