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We are a way for the cosmos to know itself.
Carl Sagan

La réponse est [’homme, quelle que soit la
question.
Louis Aragon

There is a theory which states that if ever anyone
discovers exactly what the Universe is for and
why it is here, it will instantly disappear and be
replaced by something even more bizarre and
inexplicable. There is another theory which
states that this has already happened.

Douglas Adams

lustration by L. H. Kauffman, see [Kauffman, L.H.: Knot Logic. In: Kauffman, L. (ed), Knots and
Applications. World Scientific Pub. pp. 1-110 (1994)]



Supervisor’s Foreword

Topology is the area of Mathematics that deals with the study of properties of
topological spaces and subsets of theirs, meant as point sets, which remain invariant
under transformations called homeomorphisms. A homeomorphism is a continuous
bijective mapping with continuous inverse. So, the objects in Topology can be
considered as elastically deformable, stretchable, squeezable, bendable, and twis-
table. For example, a circle is homeomorphic to a triangle, while an open interval or
a circle with a point removed is homeomorphic to a line. The surface of a sphere is
homeomorphic to the surface of a cube but not to the surface of a torus. Further, the
surface of a sphere with a point removed is homeomorphic to a plane. An annulus is
homeomorphic to the surface of a cylinder but not to the Moébius band. The annulus
is also homeomorphic to a circular band which has undergone a full twist and has
been reglued, since a cut followed by a point-by-point regluing is not visible by the
homeomorphism. In this spirit, a circle is homeomorphic to any knot. One of the
aims of Topology is to classify up to homeomorphism classes of point sets with
respect to some given properties. The most typical example is the classification of
compact, connected, orientable surfaces with no boundary, which comprises: the
2-sphere, the torus, the torus with two holes, the torus with three holes, etc.

If, however, a point set is embedded in a larger topological space and one
requires a homeomorphism on it to extend to a homeomorphism of the whole
surrounding space, then this may not be always possible. Such a “nice” homeo-
morphism is called isofopy. Hence, an isotopy can be perceived as a continuous
elastic deformation of the ambient space, during which no cutting and regluing may
take place. As an example, a circle embedded in our 3-space is not isotopic to any
given knot. Hence, the question of classifying all knots up to isotopy now makes
sense and this is one of the classical still unsolved problems of Mathematics. The
classification of knots is a special case of the general placement problem: to
understand the embeddings of a point set in some given topological space. In this
work, topological spaces are restricted to manifolds. These are “nice” topological
spaces, each point of which has a topological neighborhood of fixed dimension, the
dimension of the manifold, and points have a separation property.

vii



viii Supervisor’s Foreword

A basic aspect of Low-dimensional Topology is the use of cobordisms of 1-, 2-,
and 3-manifolds to understand topological and geometric structure. Such cobor-
disms can be factored into elementary cobordisms called surgeries, which are
elementary steps of topology change. Surgery on a manifold M is roughly the
procedure of removing from the interior of M a manifold, which has boundary of
one dimension lower than that of M, and gluing back another manifold with the
same boundary. The “glue” is a homeomorphism along the common boundary. The
new manifold will very likely be non-homeomorphic to the starting one. Hence,
surgery is a topological technique that can be employed for changing the homeo-
morphism or the isotopy types of manifolds. Topological surgery was introduced
independently by A. H. Wallace (1960) and J. W. Milnor (1961). It has been used in
the study and classification of manifolds of dimension greater than three while also
being an important topological tool in lower dimensions. For instance, by surgery
on a knot one can switch a crossing and, very likely, produce a different knot.
Surgery on a sphere can produce a torus and, successively, any other oriented
surface. Further, surgery on the 3-sphere along any framed knot or link will produce
a 3-manifold, in most cases non-homeomorphic to the 3-sphere and all closed,
connected, orientable 3-manifolds arise in this way. Furthermore, R. Kirby (1978)
described an equivalence relation on the set of all framed knots and links, such that
two framed links are equivalent if and only if they give rise, after surgery, to
homeomorphic 3-manifolds. It is also worth adding that in the proof of the Poincaré
Conjecture, G. Y. Perelman used a modification of the standard Ricci flow called
“Ricci flow with surgery”, which involves excising singular regions.

In recent years, topology has been making its way from abstract mathematics to
natural sciences. Its numerous applications range from Physics and Biology to
Chemistry and Material Science. This work makes a very important contribution in
this direction and opens new ways of using the general language of topology in natural
sciences. More precisely, it initiates the exploration of the direct connection of
topological surgery with various natural processes, which are—not surprisingly—
abundantly present in both micro- and macroscales. We can see it, for example, during
DNA recombination, the biological process where DNA strands are exchanged to
produce new nucleotide sequence arrangements, but also during magnetic recon-
nection, the physical process in which the magnetic topology is rearranged and
magnetic energy is converted to kinetic energy, thermal energy, and particle accel-
eration. One dimension up, topological surgery can be observed in bubble splitting
and cell division, in the formation of tornados and hurricanes, as well as in the
formation of the connected vortices in a pool of water (Falaco solitons), while it can be
sought in many other processes of change and evolution of shapes in natural forms.

In order to pin down the connections between the abovementioned phenomena
with topological surgery, the formal definition of surgery is enhanced by intro-
ducing “forces”, by extending continuously the process to the interior of the original
manifold (formulation of the continuity model) and by considering surgery on
embedded manifolds. In this way, the enhanced models of the various types of
surgery parallel the underlying mechanisms of these dynamical phenomena in
nature. Further, the new notions introduced in the definition of surgery allow for
viewing its mechanism across dimensions. Finally, in a rather unexpected direction,
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the last part of the thesis presents a conjectured application of 3-dimensional sur-
gery to black hole formation, a problem on which we currently work with Louis H.
Kauffman and which we believe will be of considerable interest to cosmologists.

The seed of this work dates back several years ago, I believe 1990, when I heard a
talk by Nikola Samardzija presenting their newly discovered, with Larry Greller,
3-dimensional generalization of the classical Lotka—Volterra one predator/one prey
dynamical system. Their system of two predators/one prey demonstrates how, upon
change of parameters, nested spherical solutions change topology to a toroidal nesting
inside a fractal bead via a “hole-drilling” behavior along the slow manifold. This
intriguing discovery, which clearly exhibits topological surgery as I immediately
observed, reached out to The New York Times (1990). The connection of this
dynamical system with topological surgery was pinned down already in the Diploma
dissertation of Stathis in 2006. This means that phenomena exhibiting this type of
surgery can be potentially modeled by the Samardzija—Greller dynamical system.
Stathis was the student who inspired me to discuss this idea with him and I was right.
Later on, he took the subject for his Ph.D. study and with his dedicated and inspired
work as well as his interdisciplinary mind he raised it to a new mathematical direction.
To quote one of the reviewers of our PLOS ONE paper: “...This paper is a
ground-breaking review of instances of topological surgery in natural scientific sit-
uations. The examples given are convincing and of much significance both for
mathematics and for natural science,” while a reviewer of our Springer PROMS
THALES paper wrote: “This is an intriguing paper that investigates how extensions
of the traditional notion of topological surgery can be used to model naturally
occurring phenomena. It would be wonderful to see scientists adopting this point of
view, as it provides a formal manner for describing a wide range of phenomena.” Our
topological model indicates where to look for the forces causing surgery and what
deformations should be observed in the local submanifolds involved. These predic-
tions are significant for the study of such phenomena exhibiting surgery.

Stathis defended his Ph.D. thesis at the National Technical University of Athens
(NTUA), in December 2017 receiving a unanimous “excellent”. Apart from myself,
the 3-member Advisory Committee included Louis H. Kauffman of the University
of Illinois at Chicago and Antonios Charalambopoulos of the NTUA, while the
7-member Examining Committee was complemented with Cameron McA. Gordon
of the University of Texas at Austin, Colin Adams of the Williams College,
Theocharis Apostolatos, physicist at the National and Kapodistrian University of
Athens, and Dimitrios Kodokostas of the NTUA.

In conclusion, this thesis is of much significance for both mathematics and
natural sciences as it provides the formal language of topological surgery for
describing and studying a wide range of phenomena. I believe this work is
important not only because it provides a new bridge between topology and natural
sciences, but also because its ideas open a plethora of new research directions which
I expect to flourish in years to come.

Athens, Greece Sofia Lambropoulou
June 2018



Abstract

Topological surgery is a mathematical technique used for creating new manifolds out
of known ones. We observe that it occurs in natural phenomena, where forces are
applied and the manifold in which they occur changes type. For example,
1-dimensional surgery happens during chromosomal crossover, DNA recombination,
and when cosmic magnetic lines reconnect, while 2-dimensional surgery happens in
the formation of Falaco solitons, in drop coalescence, and in the cell mitosis. Inspired
by such phenomena, we enhance topological surgery with the observed forces and
dynamics. We then generalize these low-dimensional cases to a model, which extends
the formal definition to a continuous process caused by local forces for an arbitrary
dimension m. Next, for modeling phenomena which do not happen on arcs (respec-
tively surfaces) but are 2-dimensional (respectively 3-dimensional), we fill in the
interior space by defining the notion of solid topological surgery. We further present a
dynamical system as a model for both natural phenomena exhibiting a “hole drilling”
behavior and our enhanced notion of solid 2-dimensional 0-surgery. Moreover, we
analyze the ambient space S° in order to introduce the notion of embedded topological
surgery in §>. This notion is then used for modeling phenomena which involve more
intrinsically the ambient space, such as the appearance of knotting in DNA and
phenomena where the causes and effects of the process lie beyond the initial manifold,
such as the formation of tornadoes. Moreover, we present a visualization of the
4-dimensional process of 3-dimensional surgery by using the new notion of de-
compactified 2-dimensional surgery and rotations. Finally, we propose a model for a
phenomenon exhibiting 3-dimensional surgery: the formation of black holes from
cosmic strings. We hope that through this study, the topology and dynamics of many
natural phenomena, as well as topological surgery itself, will be better understood."

12010 Mathematics Subject Classification: 34D45, 34F10, 37B99, 37C70, 37G10, 37Mxx, 37Nxx,
57M25, 57M40, 57M99, 57N12, 57N13, 57R65, 587205, 65Pxx, 92B99.
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Chapter 1 ®)
Introduction Check for

Topological surgery is a mathematical technique used for changing the homeomor-
phism type, or simply the shape, of a manifold. For example, all orientable surfaces
may arise from the 2-dimensional sphere using surgery. The mathematical notions
needed for understanding the definition of surgery can be found in Chap. 2. The exam-
ples of 1, 2- and 3-dimensional surgery are analyzed in Sects.3.1, 3.2, 3.3 and 3.4.

Topological surgery is exhibited in nature in numerous, diverse processes of vari-
ous scales. Surgery in nature is usually performed on basic manifolds with or without
boundary, that undergo merging and recoupling. For example, in dimension 1 topo-
logical surgery can be seen in DNA recombination and during the reconnection of
cosmic magnetic lines, while in dimension 2 it happens when genes are transferred
in bacteria and during the formation of black holes. Such processes are initiated by
attracting forces acting on a sphere of dimension 0 (that is, two points) or 1 (that is,
a circle).

A large part of this work is dedicated to defining new theoretical concepts which
are better adapted to the phenomena, to modeling such phenomena in dimensions
1, 2 and 3 and to presenting a generalized topological model for m-dimensional
n-surgery which captures the observed dynamics. With our enhanced definitions and
our model of topological surgery in hand, we match surgery patterns with natural
phenomena and we study the physical implications of our modeling. Furthermore,
we present a dynamical system that performs a specific type of surgery and we
pin down its relation with topological surgery. Finally, we propose a new type of
surgery, the decompactified 2-dimensional surgery, which allows the visualization
of 3-dimensional surgery in R3. More precisely, the new concepts are:

o Continuity and dynamics: In Chap.4, we start by enhancing the formal defini-
tion of surgery with continuity, whereby an m-dimensional surgery is considered as
the continuous local process of passing from an appropriate boundary component of
an m + 1-dimensional handle to its complement boundary component. We further
notice that surgery in nature is caused by forces. For example, in dimension 1, during

© Springer International Publishing AG, part of Springer Nature 2018 1
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meiosis the pairing is caused by mutual attraction of the parts of the chromosomes
that are similar or homologous, as detailed and illustrated in Sect.5.1. In dimension
2, the creation of tornadoes is caused by attracting forces between the cloud and
the earth (as detailed and illustrated in Sect.9.3.2), while soap bubble splitting is
caused by the surface tension of each bubble which acts as an attracting force (this
is discussed in Sect.5.4). In Sect. 5.5 we incorporate these dynamics to our contin-
uous definition and present a model for m-dimensional n-surgery. These dynamics
explain the intermediate steps of the formal definition of surgery and extend it to
a continuous process caused by local forces. Note that these intermediate steps can
also be explained by Morse theory but this approach does not involve the forces.

o Solid surgery: The interior of the initial manifold is now filled in. We observe that

phenomena like tension on soap films or the merging of oil slicks are undergoing
1-dimensional surgery but they happen on surfaces instead of 1-manifolds. For exam-
ple, an oil slick is seen as a disc, which is a continuum of concentric circles together
with the center. Similarly, moving up one dimension, during the biological pro-
cess of mitosis and during tornado formation, 2-dimensional surgery is taking place
on 3-dimensional manifolds instead of surfaces. For example, during the process of
mitosis, the cell is seen as a 3-ball, that is, a continuum of concentric spheres together
with the central point (this is discussed in Sect. 6.4). Thus, in order to fit natural phe-
nomena where the interior of the initial manifold is filled in, in Chap. 6, we extend
the formal definition by introducing the notion of solid topological surgery in both
dimensions 1 and 2.

e Connection with a dynamical system: We establish a connection between these
new notions applied on 2-dimensional topological surgery and the dynamical system
presented in [1]. In Chap. 7 we analyze how, with a slight perturbation of parameters,
trajectories pass from spherical to toroidal shape through a ‘hole drilling” process. We
show that our new topological notions are verified by both the local behavior of the
steady state points of the system and the numerical simulations of its trajectories. This
result gives us on the one hand a mathematical model for 2-dimensional surgery and
on the other hand a dynamical system that can model natural phenomena exhibiting
this type of surgery.

¢ Embedded surgery: We notice that in some phenomena exhibiting topological
surgery, the ambient space is also involved. For example in dimension 1, during DNA
recombination the initial DNA molecule which is recombined can also be knotted.
In other words, the initial 1-manifold can be a knot (an embedding of the circle)
instead of an abstract circle (see description and illustration in Sect.9.1). Similarly
in dimension 2, the processes of tornado and black hole formation are not confined to
the initial manifold and topological surgery is causing (or is caused by) a change in the
whole space (see Sect.9.3 and illustrations therein). We therefore define the notion
of embedded topological surgery in Chap.9 which allows us to model these kind of
phenomena but also to view all natural phenomena exhibiting topological surgery
as happening in 3-space instead of abstractly. We consider our ambient 3-space to
be S3 and an extensive analysis of its descriptions together with the presentation of
dynamical systems exhibiting its topology is done in Chap. 8.
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e The visualization of 3-dimensional surgery: Finally, in Chap. 10, we present a
way to visualize the 4-dimensional process of 3-dimensional surgery. In order to do
so, we introduce the notion of decompactified 2-dimensional surgery which allows us
to visualize the process of 2-dimensional surgery in R? instead of R3. Using this new
notion and rotation, we present a way to visualize 3-dimensional surgery in R?. This
is done in Sect. 10.2. Further, in Sect. 10.4, we propose a model for a phenomenon
exhibiting 3-dimensional surgery: the formation of black holes from cosmic strings.

This thesis gathers, links and completes the results presented in [2-5] while
extending them one dimension higher. The material is organized as follows: In
Chap.2 we recall the topological notions that will be used and provide specific
examples that will be of great help to readers that are not familiar with the topic.
In Chap. 3, we present the formal definition of topological surgery for an arbitrary
dimension m. In Chap.4, we enhance the formal definition of surgery with conti-
nuity. In Chap.5, we introduce dynamics to 1 and 2-dimensional surgery and we
discuss natural processes exhibiting these types of surgeries. In Sect. 5.5, we present
a generalized model for m-dimensional n-surgery. In Chap. 6 we define solid 1 and
2-dimensional surgery and discuss related natural processes. We then present the
dynamical system connected to these new notions in Chap. 7. As all natural phenom-
ena exhibiting surgery (1 or 2-dimensional, solid or usual) take place in the ambient
3-space, in Chap. 8 we present the 3-sphere S3 and the duality of its descriptions. This
allows us to define in Chap. 9 the notion of embedded surgery. Finally, in Chap. 10,
we use lower dimensional surgeries to visualize 3-dimensional surgery and propose
a topological model for black hole formation from cosmic strings.
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Chapter 2 ®)
Useful Mathematical Notions Geda

In this chapter we introduce the basic notions related to topological surgery. Readers
that are familiar with the formalism of the topic can directly move to the formal
definition in Chap. 3.

In Sect.2.1 we define the notion of topological space which allows us to give a
non-technical definition of a manifold in Sect.2.2. After discussing some properties
of manifolds in Sect.2.3, a plethora of examples, which are to be used in this work,
are presented in Sect.2.4. The rigorous definition of a manifold is then given in
Sect.2.5. In Sects. 2.6 and 2.7, we further present the notions of homeomorphisms
and embeddings of manifolds. Finally, the idea of topological surgery which makes
use of these notions is introduced in Sect.2.8.

2.1 Topological Spaces

A topological space is a set X with a distinguished family 7 of subsets possessing
the following properties:

e the empty set and the whole set X belong to t
e the intersection of a finite number of elements of t belongs to T
e the union of any subfamily of elements of t belongs to T

The family 7 is said to be the topology on X. Any set belonging to t is called open.
A neighborhood of a point x € X is any open set containing x. Any set whose com-
plement is open is called closed. The minimal closed set (with respect to inclusion)
containing a given set A C X is called the closure of A and is denoted by A. The
maximal open set contained in a given set A C X is called the interior of A and is
denoted by Int(A).
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2.2 Non-technical Definition of a Manifold

e Ann-manifold without boundary is a ‘nice’ topological space with the property that
each point in it has a neighborhood that locally resembles the usual n-dimensional
Euclidean space R”.

e Similarly, an n-manifold with boundary is a ‘nice’ topological space with the
property that each point in it has a neighborhood that locally resembles either R”
(if the point lies in the interior) or R’, (if the point lies on the boundary).

2.3 Properties of Manifolds

An n-manifold, M, is said to be:

connected if it consists of only one piece,

simply connected if a loop at any point can be continuously shrunk to a point
compact if it can be enclosed in some k-dimensional ball,

orientable if any oriented frame that moves along any closed path in M returns to
a position that can be transformed to the initial one by a rotation.

2.4 Examples of Manifolds

In this section we start by giving examples of manifolds of dimensions 1, 2 and 3
in Sects.2.4.1, 2.4.2 and 2.4.3 respectively. We then present some basic examples
of manifolds in any dimension n. Namely, the n-balls, R" and its compactification
the n-sphere are discussed in Sects. 2.4.4 and 2.4.5. Finally, the product space of two
manifolds is discussed in Sect.2.4.6.

2.4.1 I-Manifolds

Typical examples of 1-manifolds without boundary are lines while closed intervals
are typical examples of 1-manifolds with boundary. It is easy to see that any open
neighborhood of a point in a line or in the interior of a closed interval is topologically
equivalent to R while any open neighborhood of a boundary point of a closed interval
is topologically equivalent to R . Other examples of 1-manifolds are circles and
open intervals (without boundary) as well as half-lines and half-closed intervals
(with boundary). In fact, any connected 1-manifold is homeomorphic to one of the
following four manifolds: the real line R, the half-line R, the closed interval I =
[0, 1] or the circle S = {(x, y) € R?|x?> + y?> = 1}. The proof of this theorem can
be found in [1, 2].



2.4 Examples of Manifolds 7

§? T; Tg
(1) (2) (3)

Fig. 2.1 (1) A sphere 2 has genus 0 (2) A torus 7' has genus 1 (3) The connected sum of g tori
has genus g

2.4.2 2-Manifolds

Moving up one dimension, the plane R?, the sphere S* = {(x, y, z) € R3|x? + y? +
2> = 1}and the torus 72 = {(x, y,2) € R*|(b — /x> + y2)2 + 7% = a?} (where the
inner and outer radii are » — a and b + a), which can be perceived as the boundary of
a doughnut, are 2-manifolds without boundary, while a disc D> = {(x, y) € R?|x? 4+
y2 < l}oracylinderC = {(x, y,z) € R3|x2 + y2 =1,z € [-1, 1]}, whichishome-
omorphic to an annulus, are examples of 2-manifolds with boundary.

It is also worth mentioning that for every connected, orientable, compact
2-manifolds M without boundary, there is a ¢ € N such that M is homeomorphic to
a surface of genus g. The proof of this classic theorem can be found, for example, in
[3] or in [4]. The genus g represents the number of holes of the surface. For instance
the sphere S? is a surface of genus g = 0, see Fig.2.1(1). Next, the torus T2 is a
surface of genus g = 1, see Fig.2.1(2). Note that the torus can also be obtained by
gluing the two pairs of opposite sides of a square. Moreover, a surface of genus g
can be obtained by joining together g copies of the torus, see Fig.2.1(3). The joining
process for every pair of tori can be seen as cutting a small circle out of each tori and
gluing them together along their common boundary.

2.4.3 3-Manifolds

In dimension 3, the 3-dimensional space R3, the 3-sphere 3 = {(x, y,Z, W) €
R*|x% + y? + z2> + w? = 1} (which, as we explain in Sect.2.4.5, is the compacti-
fication of R?) and the 3-torus 73(which can be obtained by gluing the three pairs
of opposite faces of a cube) are classical examples 3-manifolds without boundary.
The 3-ball D3 = {(x,y,2) € R3|x2 + y2 +72< 1} or the solid torus, which can be
perceived as a whole doughnut, and which, for b > a, is the set V = {(x, y, 2) €
R3|(b — /x2 + y2)2 + 7% < a?}, are examples of 3-manifolds with boundary.

A very important theorem which was proven in [5-7] is the Poincaré conjecture
which states that every simply connected, compact 3-manifold without boundary is
homeomorphic to the 3-sphere. This theorem remained an open problem for nearly
a century.
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(2)

Fig. 2.2 (1) A segment D' is bounded by two points S° (2) A disc D? is bounded by a circle S!
(3) A 3-ball D3 is bounded by a sphere S°

2.4.4 n-Balls and n-Spheres

Some manifolds can be generalized in every dimension n. For instance, the basic
connected, oriented, compact n-manifold without boundary is the n-sphere, S”, while
the basic connected, oriented n-manifold with boundary is the n-ball, D". Forn = 1,
D! is the closed unit interval, while S! is the circle. For n = 2, we have the 2-disc
D? and the 2-sphere S? and, for n = 3, we have the 3-ball D? and the 3-sphere S°.
Finally, for n = 0, we have the 0-manifold D° which is a point and the space S°
which is the disjoint union of two points. As seen in Fig.2.2(1), by convention, we
consider these two one-point spaces to be {+1} and {—1}: SO = {+1} I {—1}. More
generally, we will follow this convention by considering that n-spheres and n-balls
are centered at the origin of our coordinate system.

The above basic manifolds are related as follows: the n-sphere S” is made by
gluing two n-discs D" along their boundaries. Indeed, the circle can be seen as the
result of gluing two bended intervals, see Fig.2.5(1), the 2-sphere can be seen as the
result of gluing two bended 2-discs, see Fig.2.5(2), the 3-sphere can be seen as the
result of gluing two 3-balls, etc. Even for n = 0, S° is made of two points D°. The
rigorous definition of ‘gluing’ can be found in Sect.2.7.

Furthermore, another basic relation between the n-ball and the n-sphere is that
the boundary of a n-dimensional ball is a (n — 1)-dimensional sphere, d D" = §"~!.
In Fig.2.2, this relation is shown for n = 1, 2 and 3.



2.4 Examples of Manifolds 9

00
sl
(1)
H'I
00
. S
(\m___ M‘)
(2) R’
~ v

Fig. 2.3 (1) S! onto R! (2) $2 onto R?

2.4.5 The Compactification of R"

Besides creating the n-sphere S” by gluing two n-discs, another way of creating the
n-sphere is by compactifying the Euclidian space R". Compactification is the process
of making a topological space into a compact space. For each dimension n, the space
R™ with all points at infinity compactified to one single point is homeomorphic to S”.
So, S" is also called the one-point compactification of R”. Conversely, the sphere S”
can be decompactified to the space R" by the so-called stereographic projection. For
example, for n = 1 we have that the circle S' is the one-point compactification of
the real line R', see Fig.2.3(1), while for n = 2 the sphere S? is the one-point com-
pactification of the plane R?, see Fig. 2.3(2). The compactification of R3 is discussed
and illustrated in Sect. 8.1.1.

It is worth pointing out that the two descriptions of S” are very much related.
Indeed, a closed neighborhood of the point at infinity in the compactification method
is just one n-disc D" while the remaining space is the second disc D".

2.4.6 Product Spaces

e If X x Y is the Cartesian product of the topological spaces X and Y (regarded as
sets), then X x Y becomes a topological space (called the product of the spaces
X and Y) if we declare open all the products of open sets in X and in Y and all
possible unions of these products.

e The product space of two manifolds X and Y is the manifold made from their
Cartesian product X x Y. This product space creates a new manifold X x Y out
of known manifolds X and Y, whose dimension is the sum of the dimensions of
Xand?Y.
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Fig. 2.4 Two ways of viewing a cylinder

e If X, Y are manifolds with boundary, the product space X x Y is a manifold with
boundary:
X xY)=0@X xY)U(X xaY)(x)

For example the next common connected, oriented, compact 2-manifold without
boundary after S? is the torus, which can be seen as the product space S' x S'.
Analogously, the solid torus is the product space S' x D? and its boundary is a
torus: 3(S' x D?) = S! x 9D? = S! x S

Other product spaces that we will be using here are: the cylinder S' x D' or
D' x S! (see Fig.2.4), the solid cylinder D?> x D!, which is homeomorphic to the
3-ball, and the spaces of the type S x D", which are the disjoint unions of two
n-balls D" 11 D".

All the above examples are product spaces of the form S” x D? and can be viewed
as ¢-thickenings of the p-sphere. For example, the 1-thickening of S° comprises
two segments, the 2-thickening of S° comprises two discs, while the 3-thickening
of §° comprises two 3-balls. Also, a solid torus is a 2-thickening of § U Tt is also
worth stressing that the product spaces S? x D? and D”*! x S9~! have the same
boundary:

A(SP x D) = d(DPH! x §971) = §7 x 97! (xx).

2.5 Defining Manifolds

In order to give the rigorous definition of a manifold, we first need to define the
notions of Hausdorff space and countable base.

2.5.1 Hausdorff Space

A topological space is said to be a Hausdorff space if any two distinct points of the
space have nonintersecting neighborhoods.
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2.5.2 Bases of Topological Spaces

e If (X, ) is a topological space, a base of the space X is a subfamily t" C t such
that any element of T can be represented as the union of elements of 7’. In other
words, 7’ is a family of open sets such that any open set of X can be represented as
the union of sets from this family. To define the topology 7, it suffices to indicate
a base for 7. In the case when at least one base of X is countable, we say that X
is a space with countable base.

e For example, in the space R" = {(x1, ..., x;,) | x; € R}, the standard topology is
givenby thebase U, = {x € R" | |[x — a|< €}, wherea € R" and e > 0. We can
additionally require that all the coordinates of the point a, as well as the number
€, be rational; in this case we obtain a countable base.

e Another example is the topology of the n-dimensional sphere S" = {x € R"! |
|x]= 1}. As stated in Sect.2.4.5, this space is homeomorphic to the compactifica-
tion of R”. To the set R”, we add the element oo and introduce in R” U {oco} the
topology whose base is the base of R” to which we have added the family of sets
Us.r ={x € R" | |x|> R} U {o0}.

2.5.3 The Rigorous Definition of a Manifold

e A Hausdorff space M" with countable base is said to be an n-dimensional topo-
logical manifold if any point x € M" has a neighborhood homeomorphic to R” or
to R’ , where R, = {(x1,...,x,) | x; € R, x; > 0}.

e The set of all points x € M" that have no neigbourhoods homeomorphic to R” is
called the boundary of the manifold M" and is denoted by 0 M". When oM" = 0,
we say that M" is a manifold without boundary. If the boundary of a manifold M"
is nonempty, then it is an (n — 1)-dimensional manifold.

2.6 Homeomorphisms

In Sect. 2.4 by ‘topologically equivalent’” we mean the following: two n-manifolds
X and Y are homeomorphic or topologically equivalent if there exists a homeomor-
phism between them, namely a map f : X — Y with the properties that:

e f is continuous (i.e. the preimage of any open set is open)
e There exists the inverse function f~! : ¥ — X (equivalently f is 1-1 and onto)
e f~!is also continuous

For example, an elastic deformation of the space X to the space Y is a homeomor-
phism but a circle and a knotted circle are also homeomorphic.
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Fig. 2.5 (1) D' U, D' = §' (2) D2 U;, D? = §?

2.7 Embeddings

e An embedding of an n-manifold N” in an m-manifold M™ is a 1-1, continuous
map f : N < M such that its restriction on the image f(N) is a homeomorphism
between N and f(N). The notion of embedding allows to view spaces inside
specific manifolds instead of abstractly. Embeddings even of simple manifolds can
be very complex. For example, the embeddings of the circle S' in the 3-space R*
are the well-known knots whose topological classification is still an open problem
of low-dimensional topology.

e An embedding of a submanifold N" < M™ is framed if it extends to an embed-
ding N" x D"™" — M.

e A framed n-embedding in M is an embedding of the (m — n)-thickening of the n-
sphere, i : " x D"™" — M, withcore n-embeddinge = k| : §" = §" x {0} —
M . For example, the framed 1-embeddings in R? comprise embedded solid tori in
the 3-space with core 1-embeddings being knots.

e Let X, Y be two n-manifolds with homeomorphic boundaries d X and Y (which
are (n — 1)-manifolds). Let also & denote a homeomorphism / : dX — 9Y. Then,
from X U Y one can create a new n-manifold without boundary by ‘gluing” X and
Y along their boundaries. The gluing is realized by identifying each point x € 9X
tothe pointi(x) € Y. The map h is called gluing homeomorphsim. One important
example is the gluing of two n-discs along their common boundary which gives
rise to the n-sphere, see Fig.2.5 for n = 1, 2. For n = 3, the gluing of two 3-
balls yielding the 3-sphere S* is illustrated and discussed in Sect.8.1.2. Another
interesting example is the gluing of solid tori which also yield the 3-sphere. This
is illustrated and discussed in Sect. 8.1.3.



2.8 The Idea of Topological Surgery 13

S0x st

M2
(1) (2)

Fig. 2.6 (1) Remove S° x D? (2) Glue D! x S! along common boundary S° x S

2.8 The Idea of Topological Surgery

As we will see in the next chapter, the notions of embedding and gluing homeomor-
phism together with property (xx) described in Sect. 2.4.6 are the key ingredients
needed to define topological surgery. In this section we present its key idea together
with a simple example.

Topological surgery is a mathematical technique which creates new manifolds
out of known ones. Given a manifold M, topological surgery describes a process
which removes an embedding of S” x D? (a g-thickening of S7) and glues back
DP*! % §9=1 (a (p + 1)-thickening of §7~') along the common boundary SP~! x
S=1. For instance, one type of 2-dimensional surgery opens two holes and adds
a connecting tube between them. More precisely, the process starts by removing,
from a 2-manifold M2, two discs S® x D? which leave two holes bounded by two
circles S x S', see Fig.2.6(1). Then, it glues back a cylinder D' x S! along the
common boundary S° x S!, see Fig.2.6(2). The effect of surgery has changed the
initial manifold M2 by first removing two unconnected discs S° x D? and then
connecting their boundaries via a tube D' x S!.

As we will see in Chaps. 5 and 10, the formal definition of topological surgery pre-
sented in next chapter provides a powerful mathematical tool for describing natural
process exhibiting surgery.

For further reading on the above notions, introductory references include [1-4]
while more technical references include [8—11].
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Chapter 3 ®)
The Formal Definition of Surgery oo

We recall the following well-known definition of surgery:

Definition 1 An m-dimensional n-surgery is the topological procedure of creat-
ing a new m-manifold M’ out of a given m-manifold M by removing a framed
n-embedding h : §" x D™ < M, and replacing it with D"*! x §"~"~! using
the ‘gluing’ homeomorphism % along the common boundary §” x §”~"*~! Namely,
and denoting surgery by yx :

M' = x(M) =M\ h(S" x D) Uy, Dt gmenely,

smnt
The symbol “ x* of surgery comes from the Greek word ‘ x ecpovpy ik n’ (cheirourgiki)
whose term ‘cheir’ means hand. Note that from the definition, we must have
n+ 1 < m. Also, the horizontal bar in the above formula indicates the topologi-
cal closure of the set underneath.

Further, the dual m-dimensional (m — n — 1)-surgery on M’ removes a dual framed
(m —n — 1)-embedding ¢ : D'lx §m =l s M’ such that  g|gnygnnt =
h="|gnysn-n-1, and replaces it with §” x D", using the ‘gluing’ homeomorphism
g (or k") along the common boundary S" x §™~"~!. That is:

M = Xfl(M/) — M’\g(D"'H X Sm—n—l) Uh’l\gnxsmﬂkl (Sn x Dmfn)'

The resulting manifold x (M) may or may not be homeomorphic to M. From the
above definition, it follows that M = x ~! () (M)). Preliminary definitions behind the
definition of surgery such as topological spaces, homeomorphisms, embeddings and
other related notions are provided in Chap. 2. For further reading, excellent references
on the subject are [1-4]. We shall now apply the above definition to dimensions 1
and 2.
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3.1 1-Dimensional 0-Surgery

We only have one kind of surgery on a 1-manifold M, the /-dimensional 0-surgery
where m = 1 and n = 0:

M' = x(M)=M\h(S5° x D") Uy, , (D' x 5°).

The above definition means that two segments S x D' are removed from M and they
are replaced by two different segments D! x S° by reconnecting the four boundary
points S° x S in a different way. In Figs.3.1(a) and 3.2(a), S° x §° = {1, 2, 3, 4}.
As one possibility, if we start with M = S' and use as & the standard (identity) embed-
ding denoted with &, we obtain two circles S' x S°. Namely, denoting by 1 the
identity homeomorphism, we have & : S x D' = D' 11 D! L 0« D' <5 M,
see Fig.3.1(a). However, we can also obtain one circle SUif h is an embed-
ding h, that reverses the orientation of one of the two arcs of S° x D'. Then
in the substitution, joining endpoints 1-3 and 2-4, the two new arcs undergo a
half-twist, see Fig.3.2(a). More specifically, if we take D! = [—1, 4+1] and define
the homeomorphism w : D! — D!;t — —t, the embedding used in Fig.3.2(a) is
h 8" D' = D' D' 22 §0 x D' < M which rotates one D' by 180°. The
difference between the embeddings i, and &, of S° x D' can be clearly seen by
comparing the four boundary points 1, 2, 3 and 4 in Figs.3.1(a) and 3.2(a).

12, / ‘III [[1 2

\h ("% DY u (D! x5%) =

(a) —i
A () - 20
— ) . "

Fig. 3.1 Formal (a) 1-dimensional O-surgery (b;) 2-dimensional 0-surgery and (b,) 2-dimensional
1-surgery using the standard embedding A
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Fig. 3.2 Formal (a) 1-dimensional 0-surgery (b;) 2-dimensional O-surgery and (b, ) 2-dimensional
1-surgery using a twisting embedding

Note that in dimension one, the dual case is also an 1-dimensional O-surgery.
For example, looking at the reverse process of Fig.3.1(a), we start with two circles
M’ = S' 11 S! and, if each segment of D! x S is embedded in a different circle, the
result of the (dual) 1-dimensional 0-surgery is one circle: x ~'(M') = M = S'.

3.2 2-Dimensional 0-Surgery

Starting with a 2-manifold M, there are two types of surgery. One type is the 2-
dimensional 0-surgery, whereby two discs S° x D? are removed from M and are
replaced in the closure of the remaining manifold by a cylinder D' x S!, which gets
attached via a homeomorphism along the common boundary S° x S' comprising two
copies of S'. The gluing homeomorphism of the common boundary may twist one or
both copies of S'. For M = S? the above operation changes its homeomorphism type
from the 2-sphere to that of the torus. View Fig.3.1(b;) for the standard embedding
h and Fig.3.2(b;) for a twisting embedding #,. For example, the homeomorphism
w: D> — D% (t;, ) — (—t;, —1,) induces the 2-dimensional analogue %, of the
embedding defined in the previous example, namely: 4, : S° x D> = D> 11 D? 1o
S9 x D? <> M which rotates one D> by 180°. When, now, the cylinder D' x Stis
glued along the common boundary S° x S', the twisting of this boundary induces
the twisting of the cylinder, see Fig.3.2(by).
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3.3 2-Dimensional 1-Surgery

The other possibility of 2-dimensional surgery on M is the 2-dimensional 1-surgery:
here a cylinder (or annulus) §' x D' is removed from M and is replaced in the
closure of the remaining manifold by two discs D? x S attached along the common
boundary §' x S°. For M = S the result is two copies of S, see Fig. 3.1(b,) for the
standard embedding /. Unlike Fig. 3.1(b;) where the cylinder is illustrated vertically,
inFig.3.1(by), the cylinder is illustrated horizontally. This choice was made so that the
instances of 1-dimensional surgery can be obtained by crossections of the instances of
both types of 2-dimensional surgeries, see further Remark 1. Figure 3.2(b,) illustrates
a twisting embedding /,, where a twisted cylinder is being removed. In that case,
taking D' = {h : h € [—1, 1]} and homeomorphism ¢:

C:SlxDl — st x pl;

1 -hr . (1 =hr (1 =h)r a-mm
¢ : (1,12, h) — (11 cos 5 —1t sin 3 , 11 sin > + 1y cos 3 ,h)

the embedding #, is defined as: &, : §' x D' = §' x D' <> M. This operation
corresponds to fixing the circle S' bounding the right side of the cylinder S' x D!,
rotating the circle S! bounding the left side of the cylinder by 180° and letting the
rotation propagate from left to right. This twisting of the cylinder can be seen by com-
paring the second instance of Fig.3.1(b,) with the second instance of Fig.3.2(b,),
but also by comparing the third instance of Fig.3.1(b;) with the third instance of
Fig.3.2(by).

It follows from Definition 1 that a dual 2-dimensional 0-surgery is a 2-dimensional
1-surgery and vice versa. Hence, Fig.3.1(b;) shows that a 2-dimensional 0-surgery
on a sphere is the reverse process of a 2-dimensional 1-surgery on a torus. Similarly,
as illustrated in Fig.3.1(b;), a 2-dimensional 1-surgery on a sphere is the reverse
process of a 2-dimensional 0-surgery on two spheres. In the figure the symbol <—
depicts surgeries from left to right and their corresponding dual surgeries from right to
left.

Remark 1 The stages of the process of 2-dimensional O-surgery on S can be
obtained by rotating the stages of 1-dimensional 0-surgeries on S! by 180° around a
vertical axis, see Fig. 3.1(b;). Similarly, the stages of 2-dimensional 1-surgery on S?
can be obtained by rotating the stages of 1-dimensional O-surgeries on S' by 180°
around a horizontal axis, see Fig. 3.1(b,). It follows from the above that 1-dimensional
0-surgery can be obtained as a cross-section of either type of 2-dimensional surgery.
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3.4 3-Dimensional 0- and 1-Surgery

Starting with a 3-manifold M, there are three types of 3-dimensional surgeries.
For m = 3 and n = 0, we have the 3-dimensional 0-surgery whereby two 3-balls
S% x D3 are removed from M and are replaced in the closure of the remaining
manifold by D' x §:

x(M) =M\ h(S9 x D3) U, (D' x §?)

Next, for m = 3 and n = 2, we have the 3-dimensional 2-surgery but we will not
analyze this type of surgery as it is the reverse process of 3-dimensional O-surgery.
Finally, for m = 3 and n = 1, we have the 3-dimensional 1-surgery whereby a solid
torus §' x D? is removed from M and is replaced by another solid torus D? x S':

x (M) =M\ h(S' x D2) U, (D* x SY)

Both processes will be analyzed and visualized in Chap. 10.
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Chapter 4 ®
Continuity cne

As we will see in the following chapter, topological surgery happens in nature as a
continuous process caused by local forces. However, the formal definition of surgery
presented in Definition 1 gives only a static description of the initial and the final
stage. In this section we define the continuous process of m-dimensional n-surgery
as an extension of Definition 1. This new definition, enhanced with the observed
dynamics, will become a topological model for natural phenomena exhibiting 1- and
2-dimensional surgery in Chap. 5 and for 3-dimensional surgery in Chap. 10.

4.1 The Continuous Definition of Surgery

Let us first notice that if we glue together the two m-manifolds involved in the process
of m-dimensional n-surgery along their common boundary we obtain the m-sphere.
Namely, from Definition 1 and using property (x) discussed in Sect. 2.4.6, we can see
that (Sn x Dmfn) Up (Dn+1 X Smfnfl) — (8Dn+1 X Dmfn) U, (Dn+1 X 8Dm7n) —
(D" x D"y = 9(D™+!) = §™. This means that an m-dimensional n-surgery on
an m-manifold M can be viewed as the process of cutting out a boundary component
of D"+ x D™ from M and gluing back the complement boundary component of
D"t x D" " to the resulting manifold. Hence, a continuous analogue of Definition 1
is the following:

Definition 2 Given an m-manifold M and an embedding /2 : §" x D"™" — M,
we consider the handle D"*! x D™~" which is bounded by 8(D"*' x D"™") =
(8" x D™ Uy, (D™ x §"~"~1Y. An m-dimensional n-surgery on a m-manifold M
is the local process of continuously passing, within D"*! x D™~" from boundary
component (S” x D"") C 3(D"T! x D) to its complement (D" x §"—"~1) ¢
d(D"t! x D™™"), by going through the unique intersection point D"+ N D™~ We
will refer to this point as the singular point. Note that each ‘slice’ of the process is an
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Singular point

S? = (kD) U (D'xS) = bound(D'xD?)

Fig. 4.1 Continuous 2-dimensional O-surgery

m-dimensional manifold but the whole time evolution of the process requires m + 1
dimensions in order to be visualized, as the whole process occurs inside the handle
D"t! x pmmn = pmtl

Given that the first boundary component S” x D"~" of D"+ x D™~" is a thicken-
ing of the core S” and the second boundary component D"*! x §”~"~1is a thickening
of the core §~"~!, both components can be seen as thickenings (or framings) of
the cores (or spheres) to dimension m. Hence, the surgery process can be viewed
locally as starting with the boundary §” = dD"*! and considering it as the core
of thickening S§” x D™~". We then collapse the core S” to the singular point from
which the thickened S”~"~! emerges, which is also the boundary $”~"~! = 9 D",
Note that these intermediate steps can also be explained through Morse theory. See
Remark 2 for details.

4.2 Continuous 2-Dimensional 0-Surgery

For example, for m = 2 and n = 0 we have the case of 2-dimensional O-surgery,
where the boundary component D' x S! is a cylinder with its two ends closed by the
other boundary component S x D?. The result is homeomorphic to the 2-sphere:
(8% x DY) U, (D' x SY) = 82, see the left illustration of Fig.4.1. The way of
continuously passing from (5% x D?) to (D' x S') is shown in the right illustration
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of Fig. 4.1, where we see how the core S of §° x D? (in red) collapses to the unique
intersection point (in red/green) from which the core S' of D' x S' emerges (in
green). The whole process happens inside the handle D! x D?, see also Fig.4.1.
This process together with continuous 1-dimensional surgery will be elaborated in
much more details in the next chapter where dynamics are also introduced.



Chapter 5 )
Dynamics i

In this chapter we present natural processes exhibiting topological surgery in dimen-
sions 1 and 2 and we incorporate the observed dynamics to Definition 2, thus creating
a model which extends surgery to a continuous process caused by local forces. Fur-
ther, for each dimension, we go back to the phenomena and pin down the forces
introduced by our models.

5.1 Dynamic 1-Dimensional Topological Surgery

We find that 1-dimensional O-surgery is present in phenomena where 1-dimensional
splicing and reconnection occurs. It can be seen for example during meiosis when new
combinations of genes are produced, see Fig.5.1(3), during magnetic reconnection,
the phenomena whereby cosmic magnetic field lines from different magnetic domains
are spliced to one another, changing their pattern of conductivity with respect to
the sources, see Fig.5.1(2) from [1] and in site-specific DNA recombination (see
Fig. 9.1) whereby nature alters the genetic code of an organism, either by moving
a block of DNA to another position on the molecule or by integrating a block of
alien DNA into a host genome (see [2]). It is worth mentioning that 1-dimensional
0-surgery is also present during the reconnection of vortex tubes in a viscous fluid
and quantized vortex tubes in superfluid helium. As mentioned in [3], these cases
have some common qualitative features with the magnetic reconnection shown in
Fig.5.1(2).

Since all the above phenomena follow a dynamic process, in Fig.5.1(1), we intro-
duce dynamics to Definition 2 which shows how the intermediate steps of surgery
are caused by local forces. The process starts with the two points (in red) specified
on any 1l-dimensional manifold, on which attracting forces are applied (in blue).
We assume that these forces are caused by an attracting center (also in blue). Then,
the two segments S x D!, which are neighborhoods of the two points, get close
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Fig.5.1 (1) Dynamic 1-dimensional surgery locally (2) The reconnection of cosmic magnetic lines
(3) Crossing over of chromosomes during meiosis

to one another. When the specified points (or centers) of the two segments reach
the attracting center they touch and recoupling takes place, giving rise to the two
final segments D' x S°, which split apart. In Fig. 5.1(1), case (s) corresponds to the
identity embedding A described in Sect.3.1, while (t) corresponds to the twisting
embedding /4, described in Sect.3.1.

As also mentioned in Sect. 3.1, the dual case is also a 1-dimensional 0-surgery, as
it removes segments D' x SO and replaces them by segments S° x D'. This is the
reverse process which starts from the end and is illustrated in Fig.5.1(1) as a result
of the orange forces and attracting center which are applied on the ‘complementary’
points.

Note that these local dynamics produce different manifolds depending on where
the initial neighborhoods are embedded. Taking the known case of the standard
embedding 4, and M = S', we obtain S! x S°, see Fig.5.2(a). Furthermore, as
shown in Fig.5.2(b), we also obtain S' x S even if the attracting center is outside
S'. Note that these outcomes are not different than the ones shown in formal surgery
(recall Fig. 3.1(a)) but we can now see the intermediate instances as a result of forces.

Remark 2 1t is worth mentioning that the intermediate steps of surgery presented
in Fig.5.1(1) can also be viewed in the context of Morse theory [4]. By using the
local form of a Morse function, we can visualize the process of surgery by varying
parameter ¢ of equation x> — y?> = t. For t = —1 it is the hyperbola shown in the
second stage of Fig.5.1(1) where the two segments get close to one another. For
t = 0 it is the two straight lines where the reconnection takes place as shown in the
third stage of Fig.5.1(1) while for # = 1 it represents the hyperbola of the two final
segments shown in case (s) of the fourth stage of Fig.5.1(1). This sequence can be
generalized for higher dimensional surgeries as well. For example, for 2-dimensional
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Fig. 5.2 1-dimensional surgery on one and two circles

surgery, we can visualize the process by varying parameter t of equation x> 4 y? —
z? = t. We mention this approach because it gives us an algebraic formulation of
surgery’s time evolution. However, in this analysis we will not use it as we are
focusing on the introduction of forces and the attracting center.

5.2 Modeling Phenomena Exhibiting 1-Dimensional
Surgery

The aforementioned phenomena are all 1-dimensional in the sense that they involve
happening 1-dimensional manifold. We will take a closer look at them and show that
the described dynamics and attracting forces introduced by our model are present
in all cases. Namely, magnetic reconnection (Fig.5.1(2)) corresponds to a dual
1-dimensional O-surgery (see case (t) of Fig.5.1(1)) where g : D! x §° < M’ isa
dual embedding of the twisting homeomorphism /4, defined in Sect.3.1. The tubes
are viewed as segments and correspond to an initial manifold M = S° x D' (or
M = S' if they are connected) on which the local dynamics act on two smaller
segments S° x D'. Namely, the two magnetic flux tubes have a nonzero parallel
net current through them, which leads to attraction of the tubes (cf. [5]). Between
them, a localized diffusion region develops where magnetic field lines may decouple.
Reconnection is accompanied with a sudden release of energy and the magnetic field
lines break and rejoin in a lower energy state.

In the case of chromosomal crossover during meiosis (Fig.5.1(3)), we have
the same dual 1-dimensional O-surgery as magnetic reconnection (see case (t) of
Fig.5.1(1)). During this process, the homologous (maternal and paternal) chromo-
somes come together and pair, or synapse, during prophase. The pairing is remarkably
precise and is caused by mutual attraction of the parts of the chromosomes that are
similar or homologous. Further, each paired chromosomes divide into two chro-
matids. The point where two homologous non-sister chromatids touch and exchange
genetic material is called chiasma. At each chiasma, two of the chromatids have



28 5 Dynamics

become broken and then rejoined (cf. [6]). In this process, we consider the initial
manifold to be one chromatid from each chromosome, hence the initial manifold is
M = S° x D' on which the local dynamics act on two smaller segments S° x D'.

For site-specific DNA recombination (see Fig. 9.1), we have a 1-dimensional
0-surgery (see case (t) of Fig.5.1(1)). Here the initial manifold is a knot which is an
embedding of M = S! in 3-space but this will be detailed in Sect.9.1. As mentioned
in [7], enzymes break and rejoin the DNA strands, hence in this case the seeming
attraction of the two specified points is realized by the enzyme. Note that, while both
are genetic recombinations, there is a difference between chromosomal crossover
and site-specific DNA recombination. Namely, chromosomal crossover involves the
homologous recombination between two similar or identical molecules of DNA and
we view the process at the chromosome level regardless of the knotting of DNA
molecules.

Finally, vortices reconnect following the steps of 1-dimensional O-surgery with
a standard embedding shown in (see case (s) of Fig.5.1(1)). The initial manifold is
again M = §° x D'. As mentioned in [8], the interaction of the anti-parallel vortices
goes from attraction before reconnection, to repulsion after reconnection.

5.3 Dynamic 2-Dimensional Topological Surgery

Both types of 2-dimensional surgeries are present in nature, in various scales, in
phenomena where 2-dimensional merging and recoupling occurs. For example,
2-dimensional 0-surgery can be seen during the formation of tornadoes, see Fig. 5.3(2)
(this phenomenon will be detailed in Sect. 9.3.2). Further, it can be seen in the forma-
tion of Falaco solitons, see Fig. 5.3(3) (note that each Falaco soliton consists of a pair
of locally unstable but globally stabilized contra-rotating identations in the water-air
discontinuity surface of a swimming pool, see [9] for details). It can also be seen
in gene transfer in bacteria where the donor cell produces a connecting tube called
a ‘pilus’ which attaches to the recipient cell, see Fig.5.3(4); in drop coalescence,
the phenomenon where two dispersed drops merge into one, and in the formation of
black holes (this phenomena will be discussed in Sect.9.3.1), see Fig. 9.2(2) (Source:
www.black-holes.org).

On the other hand, 2-dimensional 1-surgery can be seen during soap bubble split-
ting, where a soap bubble splits into two smaller bubbles, see Fig.5.3(5) (Source:
soapbubble.dk); when the tension applied on metal specimens by tensile forces results
in the phenomena of necking and then fracture, see Fig.5.3(6) and in the biological
process of mitosis, where a cell splits into two new cells, see Fig.5.3(7).

Phenomena exhibiting 2-dimensional 0-surgery are the results of two colinear
attracting forces which ‘create’ a cylinder. These phenomena have similar dynamics
and are characterized by their continuity and the attracting forces causing them. In
order to model them topologically and understand 2-dimensional surgery through
continuity and dynamics we introduce the model of Fig.5.3(1) which shows the
instances of dynamic 2-dimensional 0-surgery from left to right.
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Fig. 5.3 (1) Dynamic 2-dimensional surgery locally (2) Tornadoes (3) Falaco solitons (4) Gene
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In Fig.5.3(1), below the instances of the standard embedding, we also show
the instances of these processes when a non-trivial embedding are used (recall
Sect.3.2). Note that these embeddings are more appropriate for natural processes
involving twisting, such as tornadoes and Falaco solitons. In this example of twisted
2-dimensional O-surgery, the two discs S° x D? are embedded via a twisted home-
morphism £, while, in the dual case, the cylinder D' x S'is embedded via a twisted
homemorphism g;. Here A, rotates the two initial discs in opposite directions by an
angle of 377 /4 and we can see how this rotation induces the twisting of angle 377 /2 of
the final cylinder (which corresponds to homemorphism g, rotating the top and bot-
tom of the cylinder by 37 /4 and —37 /4 respectively). More specifically, if we define
the homeomorphism w;, w, : D> — D? to be rotations by 377 /4 and —37 /4 respec—

tively, then /, is defined as the composition &, : $° x D> 5% §0 « p2 s M.
The homeomorphism g, : D' x S' — M is defined analogously.

The process of dynamic 2-dimensional 0-surgery starts with two points, or poles,
specified on the manifold (in red) on which attracting forces caused by an attracting
center are applied (in blue). Then, the two discs S° x D?, neighbourhoods of the two
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Fig. 5.4 (a) 2-dimensional O-surgery on M = S? and 2-dimensional 1-surgery on M’ = S° x §2
(b) 2-dimensional 1-surgery on M = S? and 2-dimensional O-surgery on M’ = S0 x §2
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poles, approach each other. When the centers of the two discs touch, recoupling takes
place and the discs get transformed into the final cylinder D' x S, see Fig.5.3(1).
The cylinder created during 2-dimensional 0-surgery can take various forms. For
example, it is a tubular vortex of air in the case of tornadoes, a transverse torsional
wave in the case of Falaco solitons and a pilus joining the genes in gene transfer in
bacteria.

On the other hand, phenomena exhibiting 2-dimensional 1-surgery are the result of
an infinitum of coplanar attracting forces which ‘collapse’ a cylinder, see Fig.5.3(1)
from the end. As mentioned in Sect. 3.3, the dual case of 2-dimensional O-surgery is
the 2-dimensional 1-surgery and vice versa. This is illustrated in Fig.5.3(1) where
the reverse process is the 2-dimensional 1-surgery which starts with the cylinder and
a specified circular region (in red) on which attracting forces caused by an attracting
center are applied (in orange). A ‘necking’ occurs in the middle which degenerates
into a point and finally tears apart creating two discs S x D?. This cylinder can be
embedded, for example, in the region of the bubble’s surface where splitting occurs,
on the region of metal specimens where necking and fracture occurs or on the equator
of the cell which is about to undergo a mitotic process.

In Fig.5.4(a) and (b), we apply the local dynamics of Fig.5.3(1) to the initial
manifold M = S? and produce the same manifolds seen in formal 2-dimensional
surgery (recall Fig. 3.1(b;), (by) through a continuous process resulting of forces.
Note that, as also seen in 1-dimensional surgery (Fig.5.2(b)), if the blue attracting
center in Fig.5.4(a) was outside the sphere and the cylinder was attached on S?
externally, the result would still be a torus.

Finally, it is worth pointing out that these local dynamics produce different mani-
folds depending on the initial manifold where they act. Taking examples from natural
phenomena, 2-dimensional O-surgery transforms an M = S° x S? to an S? by adding
a cylinder during gene transfer in bacteria (see Fig. 5.3(4)) but can also transform an
M = S to atorus by ‘drilling out” a cylinder during the formation of Falaco solitons
(see Fig. 5.3(3)) in which case S? is the pool of water and the cylinder is the boundary
of the tubular neighborhood around the thread joining the two poles.

Remark 3 Note that Remark 1 is also true here. One can obtain Fig. 5.3(1) by rotating
Fig.5.1(1) and this extends also to the dynamics and forces. For instance, by rotating
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the two points, or S°, on which the pair of forces of 1-dimensional 0-surgery acts
(shown in red in the last instance of Fig.5.1(1)) by 180° around a vertical axis we get
the circle, or S', on which the infinitum of coplanar attracting forces of 2-dimensional
1-surgery acts (shown in red in the last instance of Fig.5.3(1)).

5.4 Modeling Phenomena Exhibiting 2-Dimensional
Surgery

Looking back at the natural phenomema happening on surfaces, an example is soap
bubble splitting during which a soap bubble splits into two smaller bubbles. This
process is the 2-dimensional 1-surgery on M = S? shown in Fig. 5.4(b). The orange
attracting force in this case is the surface tension of each bubble that pulls molecules
into the tightest possible groupings.

If one looks closer at the other phenomena exhibiting 2-dimensional surgery
shown in Fig.5.3, one can see that these phenomena do not happen on surfaces
but on 3-dimensional manifolds, therefore we can’t model them as 2-dimensional
surgeries. As we will see in Chap. 6, these processes are described by the notion of
solid surgery. Therefore they will be analyzed after the introduction of this notion.
For instance, gene transfer in bacteria, drop coalescence and the formation of Falaco
solitons are discussed in Sect.6.3 while mitosis and fracture will be discussed in
Sect.6.4.

Moreover, as we will see in Chap.9, the ambient space is also involved in the
process of tornado formation, see Fig. 5.3(2). Therefore it will analyzed in Sect. 9.3.2,
after the introduction of the notion of embedded surgery.

5.5 A Model for Dynamic m-Dimensional n-Surgery

As mentioned in Sect.4.1, surgery can be viewed as collapsing the thickened core
S" to a singular point and then uncollapsing the thickened core S”"~!. As seen
in Fig.5.3(1), in the case of 2-dimensional O-surgery, forces (in blue) are applied
to core S°, whose thickening comprises the two discs, while in the case of the 2-
dimensional 1-surgery, forces (in orange) are applied on the core S', whose thicken-
ing is the cylinder. In other words, the forces that model 2-dimensional n-surgery are
always applied to the core n-embedding e = i : §" = §" x {0} — M of the framed
n-embedding & : S* x D> < M.

This observation can be generalized as follows: The process followed by natural
phenomena exhibiting topological surgery is modeled by Definition 2 enhanced with
attracting forces acting on the cores $" and §”~"~! of embeddings S" x D"" and
D1 x §m—=1 Moreover, we view this continuous passage as a result of forces
towards the attracting center, which is identified with the singular point.
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Fig. 5.5 (1) Model for dynamic 1-dimensional 0-surgery (2) Model for dynamic 2-dimensional
O-surgery

The above are shown in Fig.5.5(1) and (2) for dimensions 1 and 2 respectively.
This figure completes Fig.4.1 with the observed dynamics.
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Chapter 6 ®)
Solid Surgery ez

Looking closer at the phenomena exhibiting 2-dimensional surgery shown in Fig. 5.3,
one can see that, with the exception of soap bubble splitting that involves sur-
faces, all others involve 3-dimensional manifolds. For instance, what really hap-
pens during a mitotic process is that a solid cylindrical region located in the center
of the cell collapses and a D? is transformed into an S° x D?. Similarly, during
tornado formation, the created cylinder is not just a cylindrical surface D' x S! but a
solid cylinder D? x S! containing many layers of air (this phenomena will be detailed
in Sect.9.3.2). Of course we can say that, for phenomena involving 3-dimensional
manifolds, the outer layer of the initial manifold is undergoing 2-dimensional
surgery. In this chapter we will define topologically what happens to the whole
manifold.

The need of such a definition is also present in dimension 1 for modeling phe-
nomena such as the merging of oil slicks and tension on membranes (or soap films).
These phenomena undergo the process of 1-dimensional 0-surgery but happen on
surfaces instead of 1-manifolds.

We will now introduce the notion of solid surgery (in both dimensions 1 and
2) where the interior of the initial manifold is filled in. There is one key difference
compared to the dynamic surgeries discussed in the previous chapter. While the local
dynamics described in Figs. 5.1 and 5.3 can be embedded in any manifold, here we
also have to fix the initial manifold in order to define solid surgery. For example, as we
will see next, we define separately the processes of solid I1-dimensional O-surgery on
D? and solid 1-dimensional 0-surgery on D* x S°. However, the underlying features
are common in both.
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6.1 Solid 1-Dimensional Topological Surgery

Solid 1-dimensional O-surgery on the 2-disc D? is the topological procedure whereby
aribbon D! x D' is being removed, such that the closure of the remaining manifold
comprises two discs D? x S°. The reader is referred to Fig. 3.1(a) where the interior is
now supposed to be filled in. This process is equivalent to performing 1-dimensional
0-surgeries on the whole continuum of concentric circles included in D?, see Fig.6.1.
More precisely, and introducing at the same time dynamics, we define:

Definition 3  Solid 1-dimensional 0-surgery on D? is the following process. We
start with the 2-disc of radius 1 with polar layering:

D2 = U0<r§1S;} U {P},

where r the radius of a circle and P the limit point of the circles, which is the center
of the disc and also the circle of radius zero. We specify colinear pairs of antipodal
points, all on the same diameter, with neighbourhoods of analogous lengths, on
which the same colinear attracting forces act. See Fig. 6.1(1) where these forces and
the attracting center are shown in blue. Then, in (2), the antipodal segments get
closer to one another or, equivalently, closer to the attracting center. Note that here,
the attracting center coincides with the limit point of all concentric circles, which is
shown in green from instance (2) and on. Then, as shown from (3) to (9), we perform
1-dimensional 0-surgery on the whole continuum of concentric circles. The natural
order of surgeries is as follows: first, the center of the segments that are closer to the
center of attraction touch, see (4). After all other points have also reached the center,
see (5), decoupling starts from the central or limit point. We define 1-dimensional
0-surgery on the limit point P to be the two limit points of the resulting surgeries.
That is, the effect of solid 1-dimensional 0-surgery on a point is the creation of two
new points, see (6). Next, the other segments reconnect, from the inner, see (7), to the
outer ones, see (8), until we have two copies of D?, see (9) and (10). The proposed
order of reconnection, from inner to outer, is the same as the one followed by skin
healing, namely, the regeneration of the epidermis starts with the deepest part and
then migrates upwards.

The above process is the same as first removing the center P from D?, doing the
1-dimensional O-surgeries and then taking the closure of the resulting space. The
resulting manifold is

X(D?) :=Uoer<1x(SH U x(P),

which comprises two copies of D?.

We also have the reverse process of the above, namely, solid I-dimensional
0-surgery on two discs D* x S° is the topological procedure whereby a ribbon
D' x D! joining the discs is added, such that the closure of the remaining manifold
comprise one disc D?. This process is the result of the orange forces and attracting
center which are applied on the ‘complementary’ points, see Fig. 6.1 in reverse order.
This operation is equivalent to performing 1-dimensional O-surgery on the whole
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Fig. 6.1 Solid 1-dimensional surgery

continuum of pairs of concentric circles in D?> 11 D?. We only need to define solid
1-dimensional 0-surgery on two limit points to be the limit point P of the resulting
surgeries. That is, the effect of solid I-dimensional 0-surgery on two points is their
merging into one point. The above process is the same as first removing the centers
from the D? x §°, doing the 1-dimensional O-surgeries and then taking the closure
of the resulting space. The resulting manifold is

XD x %) 1= Uo7 (8! x SO U X TP x 89,

which comprises one copy of D?.

6.2 Solid 2-Dimensional Topological Surgery

Moving up one dimension, there are two types of solid 2-dimensional surgery on the
3-ball, D3, analogous to the two types of 2-dimensional surgery. Both are shown in
Fig.6.2(b;) and (b;) in relation with solid 1-dimensional surgery, see Fig. 6.2(a). The
first one is the solid 2-dimensional 0-surgery which is the topological procedure of
removing a solid cylinder homeomorphic to the product set D' x D?, h(D' x D?)
(such that the part S° x D? of its boundary lies in the boundary of D?) and taking the
closure of the remaining manifold D? \ A(D' x D?), which is a regular (or twisted)
solid torus. See Fig. 3.1(b;) where the interior is supposed to be filled in. The second
type is the solid 2-dimensional 1-surgery which is the topological procedure of
removing a solid cylinder homeomorphic to the product set D?> x D', h(D? x D'),
(such that the part S' x D' of its boundary lies in the boundary of D?) and taking
the closure of the remaining manifold D3 \ h(D? x D'), which is two copies of
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(a)

Fig. 6.2 (a) Solid 1-dimensional 0-surgery on D? (by) Solid 2-dimensional 0-surgery on D3 (by)
Solid 2-dimensional 1-surgery on D3

D3. See Fig 3.1(b,) where the interior is supposed to be filled in. Those processes
are equivalent to performing 2-dimensional surgeries on the whole continuum of
concentric spheres included in D3. More precisely we have:

Definition 4 We start with the 3-ball of radius 1 with polar layering:
D3 = U0<r§lSr2 U {P},

where 7 the radius of the 2-sphere S? and P the limit point of the spheres, that is,
their common center and the center of the ball. Solid 2-dimensional O-surgery on D*
is the topological procedure whereby 2-dimensional O-surgery takes place on each
spherical layer that D? is made of. More precisely, as illustrated in Fig. 6.2(b;), on all
spheres S? colinear pairs of antipodal points are specified, all on the same diameter,
on which the same colinear attracting forces act. The poles have disc neighborhoods
of analogous areas. Then, 2-dimensional O-surgeries are performed on the whole
continuum of the concentric spheres using the same embedding 4 (recall Sect. 3.2).
Moreover, 2-dimensional 0-surgery on the limit point P is defined to be the limit
circle of the nested tori resulting from the continuum of 2-dimensional O-surgeries.
That is, the effect of 2-dimensional 0-surgery on a point is defined to be the creation
of a circle.

The process is characterized on one hand by the 1-dimensional core L of the
solid cylinder which joins the two selected antipodal points of the outer shell and
intersects each spherical layer at its two corresponding antipodal points, and on the
other hand by the embedding /. The process results in a continuum of layered tori and
can be viewed as drilling out a tunnel along L according to &. Note that in Fig. 6.2,
the identity embedding has been used. However, a twisting embedding, which is the
case shown in Fig.5.3(1), agrees with our intuition that, for opening a hole, drilling
with twisting seems to be the easiest way. Examples of these two embeddings can be
found in Sect.3.2.
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Furthermore, solid 2-dimensional 1-surgery on D3 is the topological procedure
where on all spheres S? nested cylindrical peels of the solid cylinder of analogous
areas are specified and the same coplanar attracting forces act on all spheres, see
Fig.6.2(b,). Then, 2-dimensional 1-surgeries are performed on the whole continuum
of the concentric spheres using the same embedding /. Moreover, 2-dimensional 1-
surgery on the limit point P is defined to be the two limit points of the nested pairs
of 2-spheres resulting from the continuum of 2-dimensional surgeries. That is, the
effect of 2-dimensional 1-surgery on a point is the creation of two new points. The
process is characterized by the 2-dimensional central disc of the solid cylinder and the
embedding 4, and it can be viewed as squeezing the central disc C or, equivalently,
as pulling apart the left and right hemispheres with possible twists, if £ is a twisting
embedding. This agrees with our intuition that for cutting a solid object apart, pulling
with twisting seems to be the easiest way. Examples of the identity and the twisting
embedding can be found in Sect. 3.3.

For both types of solid 2-dimensional surgery, the above process is the same as:
first removing the center P from D3, performing the 2-dimensional surgeries and
then taking the closure of the resulting space. Namely we obtain:

x(D?) := Uy <1 x (SH U x(P),

which is a solid torus in the case of solid 2-dimensional O-surgery and two copies of
D? in the case of solid 2-dimensional 1-surgery.

As seen in Fig.6.2, we also have the two dual solid 2-dimensional surgeries,
which represent the reverse processes. As already mentioned in Sect. 3.3, the dual
case of 2-dimensional O-surgery is the 2-dimensional 1-surgery and vice versa. More
precisely:

Definition 5 The dual case of solid 2-dimensional 0-surgery on D3 is the solid 2-
dimensional 1-surgery on a solid torus D? x S' whereby a solid cylinder D' x D?
filling the hole is added, such that the closure of the resulting manifold comprises
one 3-ball D3. This is the reverse process shown in Fig.6.2(b;) which results from
the orange forces and attracting center. Given that the solid torus can be written as a
union of nested tori together with the core circle: D? x §!' = (Uy-,<;S! U{0}) x S*,
solid 2-dimensional 1-surgeries are performed on each toroidal layer starting from
specified annular peels of analogous sizes where the same coplanar forces act on
the central rings of the annuli. These forces are caused by the same attracting center
lying outside the torus. It only remain to define the solid 2-dimensional 1-surgery on
the limit circle to be the limit point P of the resulting surgeries. That is, the effect of
solid 2-dimensional 1-surgery on the core circle is that it collapses into one point,
the attracting center. The above process is the same as first removing the core circle
from D2 x S!, doing the 2-dimensional 1-surgeries on the layered tori, with the same
coplanar acting forces, and then taking the closure of the resulting space. Hence, the
resulting manifold is
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xH(D? x 81 i=Uperzix ' (S) x SHU X T'({0) x S,

which comprises one copy of D3.

Further, the dual case of solid 2-dimensional 1-surgery on D3 is the solid 2-
dimensional O-surgery on two 3-balls D? whereby a solid cylinder D? x D! joining
the balls is added, such that the closure of the resulting manifold comprise of one
3-ball D3. This is the reverse process shown in Fig.6.2(b,) which results from the
blue forces and attracting center. We only need to define the solid 2-dimensional 0-
surgery on two limit points to be the limit point P of the resulting surgeries. That is,
as in solid 1-dimensional surgery (see Fig. 6.2(a)), the effect of solid 2-dimensional
0-surgery on two points is their merging into one point. The above process is the same
as first removing the centers from the D? x S°, doing the 2-dimensional 0-surgeries
on the nested spheres with the same colinear forces and then taking the closure of
the resulting space. The resulting manifold is

X (D7 x 8% = Ugorcix TN(SF x SHU TP x 89,
which comprises one copy of D3.

Note that Remarks 1 and 3 are also true here. One can obtain the instances of solid
2-dimensional surgeries (Fig.6.2(b;) and (b;)) by rotating the instances of solid 1-
dimensional surgery (Fig. 6.2(a)) respectively by 180° around a vertical axis and by
180° around a horizontal axis.

Remark 4 The notions of 2-dimensional (resp. solid 2-dimensional) surgery, can
be generalized from S? (resp. D) to a surface (resp. a handlebody) of genus g
creating a surface (resp. a handlebody) of genus g & 1 or a disconnected surface
(resp. handlebody).

6.3 Modeling Phenomena Exhibiting Solid 2-Dimensional
0-Surgery

We will now describe the phenomena mentioned in Sect.5.4 which undergo the
process of solid 2-dimensional O-surgery.

For gene transfer in bacteria, see Fig. 5.3(4) (also, for description and instructive
illustrations see [1]), the donor cell produces a connecting tube called a ‘pilus’ which
attaches to the recipient cell, brings the two cells together and transfers the donor’s
DNA. This process is similar to the one shown earlier in Fig. 6.2(b,) as two copies
of D3 merge into one, but here the attracting center is located on the recipient cell.
This process is a solid 2-dimensional 0-surgery on two 3-balls M = D3 x S°.

Similarly, the process of drop coalescence is also a solid 2-dimensional 0-surgery
on two 3-balls M = D3 x S°, see Fig. 6.2(b,). The process of drop coalescence also
exhibits the forces of our model. Namely, the surfaces of two drops must be in
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contact for coalescence to occur. This surface contact is dependent on both the van
der Waals attraction and the surface repulsion forces between two drops. When the
van der Waals forces cause rupture of the film, the two surface films are able to fuse
together, an event more likely to occur in areas where the surface film is weak. The
liquid inside each drop is now in direct contact, and the two drops are able to merge
into one.

Moreover, as already mentioned in Sect. 5.3, the formation of Falaco solitons is
a natural phenomenon exhibiting solid 2-dimensional 0-surgery, see Fig. 5.3(3) (for
photos of pairs of Falaco solitons in a swimming pool, see [2]). Note that the term
‘Falaco Soliton’ appears in 2001 in [3]. These pairs of singular surfaces (poles)
are connected by means of a stabilizing thread. The two poles get connected and
their rotation propagates below the water surface along the joining thread and the
tubular neighborhood around it. This process is a solid 2-dimensional O-surgery
with a twisted homeomorphism (see Fig. 5.3(1)) where the initial manifold is the
water contained in the volume of the pool where the process happens, which is
homeomorphic to a 3-ball, that is M = D3. It is also worth mentioning that the
creation of Falaco solitons is immediate and does not allow us to see whether the
transitions of solid 2-dimensional 0-surgery shown in Fig.6.2(b;) are followed or
not. However, these dynamics are certainly visible during the annihilation of Falaco
solitons. Namely, when the topological thread joining the poles is cut, the tube tears
apart and slowly degenerates to the poles until they both stops spinning and vanish.
Therefore, the continuity of our dynamic model is clearly present during the reverse
process which corresponds to a solid 2-dimensional 1-surgery on a pair of Falaco
solitons, that is, a solid torus D? x S' degenerating into a still swimming pool D3,
see the reverse process of Fig. 6.2(b;).

Note thatitis conjectured in [2] that the coherent topological features of the Falaco
solitons and, by extension, the process of solid 2-dimensional 0-surgery appear in
both macroscopic level (for example in the Wheeler’s wormholes) and microscopic
level (for example in the spin pairing mechanism in the microscopic Fermi surface).
For more details see [2].

6.4 Modeling Phenomena Exhibiting Solid 2-Dimensional
1-Surgery

We will now describe the phenomena mentioned in Sect.5.4 which undergo the
process of solid 2-dimensional 1-surgery.

As already mentioned, the collapsing of the central disc of the sphere caused by
the orange attracting forces in Fig.6.2(b,) can also be caused by pulling apart left
and right hemispheres of the 3-ball D3, that is, the causal forces can also be repelling.
For example, during the fracture of metal specimens under tensile forces, solid 2-
dimensional 1-surgery is caused by forces that pull apart each end of the specimen.
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On the other hand, in the biological process of mitosis, both attracting and repelling
forces are present. We will now describe these two processes in details.

When the tension applied on metal specimens by tensile forces results in neck-
ing and then fracture, the process exhibits solid 2-dimensional 1-surgery. More
precisely, in experiments in mechanics, tensile forces (or loading) are applied on a
cylindrical specimen made of dactyle material (steel, aluminium, etc.). Up to some
critical value of the force the deformation is homogeneous (the cross-sections have
the same area). At the critical value the deformation is localized within a very small
area where the cross-section is reduced drastically, while the sections of the remaining
portions increase slightly. This is the ‘necking phenomenon’. Shortly after, the speci-
men is fractured (view [4] for details). In Fig. 5.3(6) are the basic steps of the process:
void formation, void coalescence (also known as crack formation), crack propagation,
and failure or fracture. Here, the process is not as smooth as our theoretical model
and the tensile forces applied on the specimen are equivalent to repelling forces. The
specimen of Fig.5.3(6) is homeomorphic to the sphere shown in Fig. 6.2(b,) hence
the initial manifold is M = D?>.

Solid 2-dimensional 1-surgery on M = D? also happens in the biological process
of mitosis, where a cell splits into two new cells. See Fig.5.3(7) (for description
and instructive illustrations see for example [5]). We will see that both aforemen-
tioned forces are present here. During mitosis, the chromosomes, which have already
duplicated, condense and attach to fibers that pull one copy of each chromosome to
opposite sides of the cell (this pulling is equivalent to repelling forces). The cell
pinches in the middle and then divides by cytokinesis. The structure that accom-
plishes cytokinesis is the contractile ring, a dynamic assembly of filaments and pro-
teins which assembles just beneath the plasma membrane and contracts to constrict
the cell into two (this contraction is equivalent to attracting forces). In the end, two
genetically-identical daughter cells are produced.
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Chapter 7
A Dynamical System Modeling Solid ez
2-Dimensional 0-Surgery

So far, inspired by natural processes undergoing surgery, we have extended the for-
mal definition of topological surgery by introducing new notions such as continuity
and solid surgery and presented a model showing where the observed forces act.
However, in our model, time and dynamics were not introduced by differential equa-
tions. In this chapter we connect topological surgery, enhanced with these notions,
with a dynamical system. We will see that, with a small change in parameters, the
trajectories of its solutions are performing solid 2-dimensional O-surgery. Therefore,
this dynamical system constitutes a specific set of equations modeling natural phe-
nomena undergoing solid 2-dimensional O-surgery. More specifically, we will see
that the change of parameters of the system affects the eigenvectors and induces a
flow along a segment joining two steady state points. The induced flow represents
the attracting forces shown in Fig. 6.2(b;). Finally, we will see how our topological
definition of solid 2-dimensional O-surgery presented in Sect. 6.2 is verified by our
numerical simulations and, in particular, that surgery on a steady point creates a limit
cycle.

7.1 The Dynamical System and Its Steady State Points

In [1], N. Samardzija and L. Greller study the behavior of the following dynamical
system (X) that generalizes the classical Lotka—Volterra problem [2, 3] into three
dimensions:

X — X — XY +CX?*— AZX?
Y _ _y 4 xy A,B,C>0 ()

42 = _BZ + AZX?
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In subsequent work [4], the authors present a slightly different model, provide addi-
tional numerical simulations and deepen the qualitative analysis done in [1]. Since
both models coincide in the parametric region we are interested in, we will use the
original model and notation and will briefly present some key features of the analyses
done in [1, 4].

The system (X)) is a two-predator and one-prey model, where the predators Y, Z
do not interact directly with one another but compete for prey X. As X, Y, Z are
populations, only the positive solutions are considered in this analysis. It is worth
mentioning that, apart from a population model, () may also serve as a biological
model and a chemical model, for more details see [1].

The parameters A, B, C are analyzed in order to determine the bifurcation prop-
erties of the system, that is, to study the changes in the qualitative or topological
structure of the family of differential equations (X). As parameters A, B, C affect
the dynamics of constituents X, Y, Z, the authors were able to determine conditions
for which the ecosystem of the three species results in steady, periodic or chaotic
behavior. More precisely, the authors derive five steady state solutions for the system
but only the three positive ones are taken into consideration. These points are:

0 1 vB/A
Si=10], Ss=|1+C]|, 3= 0

0 0 1+C\/B/A

T JAB

It is worth reminding here that a steady state (or singular) point of a dynamical
system is a solution that does not change with time.

7.2 Local Behavior and Numerical Simulations

Let, now, J(S;) be the Jacobian of (X) evaluated at S; fori = 1, 2, 3 and let the sets
'{J(S;)} and W{J(S;)} to be, respectively, the eigenvalues and the corresponding
associated eigenvectors of J(S;). These are as follows:

1 0 0
CSDy =1{l, =1, =B} W{J(SD}=1]0,| 1,0
0 0 1

T{J(S)} ={A—-B,(C+(C—-2)?—-18)/2,(C—(C—-2)*-18)/2}

1 1 1
W{J($)} = ‘ { (C+1)/(A-B) } , { C—«/(C;Z)Zfs ] , { C+«/<C2—z>2—s ] }

B+C—A+(C+1)/(B—A
+ +(A+ )/(B=A) 0 0
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U (S2)] — {\/E_ — +/1-8B( +C«/B/A)’ -1-y1-8B( +C«/B/A)}

2 2
Fl 1 1
2V AB(1+C+/BJA)
wusH =3 ' ma |- 0 . 0
2(1+C+/B/A) —1—4/1-8B(1+C/B/A) —14++/1-8B(1+C/B/A)
JBJA-1 2B 2B

Using the sets of eigenvalues and eigenvectors presented above, the authors char-
acterize in [1, 4] the local behavior of the dynamical system around these three
points using the Hartman-Grobman (or linearization) Theorem. Since 1 > 0 and
—1, —B < 0, §; is a saddle point for all values of parameters A, B, C. However, the
behavior around S, and S3 changes as parameters A, B, C are varied. The authors
show that the various stability conditions can be determined by only two parameters:
C and B/A. It is also shown in [1] that stable solutions are generated left of and
including the line B/A = 1 while chaotic/periodic regions appear on the right of
the line B/A = 1. We are interested in the behavior of (X) as it passes from stable
to chaotic/periodic regions. Therefore we will focus and analyze the local behavior
around S, and S3 and present numerical simulations for: stable region (a) where
B/A = 1and (1/8B —1)/A/B < C < 2(1 + +/2) and chaotic/periodic region (b)
where B/A > 1 and (1/8B — 1)/A/B < C <2(1 ++/2).

e Region (a)

Setting B/A = 1 and equating the right side of (X) to zero, one finds as solution the
one-dimensional singular manifold:

L={X,Y,2); X=1,Z=(14+C—Y)/A}

that passes through the points S, and S3. Since all points on L are steady state points,
there is no motion along it. For (1/8B—1)/A/B < C < 2(14-+/2), S, is an unstable
center while S3 is a stable center (for a complete analysis of all parametric regions
see [1]). This means that if A;, A;, A3 denote the eigenvalues of either S, or S3 with
A1 € Rand \,, A3 € C,then A\; = 0 and Re(\;) = Re(A\3) > Ofor S, while \; =0
and Re(\;) = Re(\3) < 0 for S3. Moreover, the point (X, Y, Z) = (1,1,C/A) is
the center of L. The line segment X = 1,0 <Y <land 1+ C)/A < Z < C/A
supports attracting type singularities (and includes $3) while the line segment defined
byX=1,1<Y <14+ Cand0 < Z < C/A supports unstable singularities (and
includes ), for details see [4]. More precisely, each attracting point corresponds to
an antipodal repelling point, the only exception being the center of L which can be
viewed as the spheroid of 0-diameter. The local behavior of (X) around S, and S; in
this region together with line L are shown in Fig.7.1(a). A trajectory (or solution)
initiated near L in the repelling segment expands until it gets trapped by the attracting
segment, forming the upper and lower hemisphere of a distinct sphere. Hence, a nest
of spherical shells surrounding line L is formed, see Fig.7.2(a). Moreover, the nest
fills the entire positive space with stable solutions.
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Fig. 7.1 Local behavior. Flow induced along L by changing parameter space from (a) B/A = 1
to (b) B/A > 1. Indices 1,2 and 3 indicate the first, second and third component in W (J(S,)) and
W(J(S3))
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Fig. 7.2 Solid 2-dimensional O-surgery by changing parameter space from (a) B/A = 1 to (b)
B/A>1

o Region (b)

For B/A > 1 and (1/8B — 1)\/JA/B < C < 2(1 ++/2), S, is an inward unstable
vortex and S3 is an outward stable vortex. This means that in both cases they must
satisfy the conditions A\; € R and A, A3 € C with A\; = A}, the conjugate of \,. The
eigenvalues of S; must further satisfy A\; < 0 and Re(\;) = Re(A3) > 0, while the
eigenvalues of S3 must further satisfy A\; > 0 and Re(\;) = Re(\3) < 0. The local
behaviors around S, and S3 for this parametric region are shown in Fig.7.1(b). It is
worth mentioning that Fig.7.1(b) reproduces Fig. 1 of [1] with a change of the axes
so that the local behaviors of S, and S3 visually correspond to the local behaviors of
the trajectories in Fig.7.2(b) around the north and the south pole.

Note now that the point S, as well as the eigenvectors corresponding to its two
complex eigenvalues, all lie in the x y-plane. On the other hand, the point S3 and also
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the eigenvectors corresponding to its two complex eigenvalues all lie in the x z-plane.
The flow along line L produced by the actions of these eigenvectors forces trajectories
initiated near S, to wrap around L and move toward S3 in a motion reminiscent of
hole drilling. The connecting manifold L is also called the ‘slow manifold’ in [1] due
to the fact that trajectories move slower when passing near it. As trajectories reach
S3, the eigenvector corresponding to the real eigenvalue of S5 breaks out of the xz-
plane and redirects the flow toward S,. As shown in Fig.7.2(a) and (b), as B/A =1
moves to B/A > 1, this process transforms each spherical shell to a toroidal shell.
The solutions scroll down the toroidal surfaces until a limit cycle (shown in green
in Fig.7.2(b)) is reached. It is worth pointing out that this limit cycle is a torus of
0-diameter and corresponds to the sphere of 0-diameter, namely, the central steady
point of L also shown in green in Fig.7.2(a).

However, as the authors elaborate in [4], while for B/A = 1 the entire positive
space is filled with nested spheres, when B/A > 1, only spheres up to a certain
volume become tori. More specifically, quoting the authors: “to preserve uniqueness
of solutions, the connections through the slow manifold L are made in a way that
higher volume shells require slower, or higher resolution, trajectories within the
bundle”. As they further explain, to connect all shells through L, (¥) would need
to possess an infinite resolution. As this is never the case, the solutions evolving on
shells of higher volume are ‘choked’ by the slow manifold. This generates solution
indetermination, which forces higher volume shells to rapidly collapse or dissipate.
The behavior stabilizes when trajectories enter the region where the choking becomes
weak and weak chaos appears. As shown in both [1, 4], the outermost shell of the
toroidal nesting is a fractal torus. Note that in Fig. 7.2(b) we do not show the fractal
torus because we are interested in the interior of the fractal torus which supports
a topology stratified with toroidal surfaces. Hence, all trajectories are deliberately
initiated in its interior where no chaos is present.

It is worth pointing out that Fig. 7.2 reproduces the numerical simulations done in
[4]. More precisely, Fig.7.2(a) represents solutions of (¥) for A = B = C = 3
and trajectories initiated at points [1, 1.59,0.81], [1, 1.3,0.89], [1, 1.18;0.95],
[1,1.08,0.98] and [1, 1, 1]. Figure7.2(b) represents solutions of (¥) for A =
2.9851,

B = C = 3 and trajectories initiated at points [1.1075, 1, 1], [1, 1, 0.95], [1, 1, 0.9]
and [1, 1, 1].

In Fig.7.3(a), we also present the outermost fractal torus as a trajectory initiated
at point [1.45, 1, 1.45] for the same parameters used in Fig. 7.2, namely A = 2.9851
and B = C = 3. On the inside of the fractal torus, one can still see the periodic
toroidal nesting. By zooming on the slow manifold of the outermost fractal torus
shell, in Fig.7.3(b) we can view the ‘hole drilling’” behavior of the trajectories.

As already mentioned, as B/A = 1 changes to B/A > 1, S, changes from an
unstable center to an inward unstable vortex and S3 changes from a stable center to
an outward stable vortex. It is worth reminding that this change in local behavior is
true not only for the specific parametrical region simulated in Figs.7.2 and 7.3, but
applies to all cases satisfying (1/8B — 1)/A/B < C < 2(1 + +/2). For details we
refer the reader to Tables2 and 3 in [1] that recapitulate the extensive diagrammatic
analysis done therein.
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Fig. 7.3 (a) The fractal torus for B/A > 1 (b) Zooming on the slow manifold of the fractal torus

Finally, it is worth observing the changing of the local behavior around $, and S3
in our numerical simulations. In Fig.7.2(a), for B/A = 1 we have:

I'{J(S2)} = {0.0000, 1.500 — 1.3229i, 1.500 + 1.3229i},
r'{J(Ss)} = {0.0000, —1.000 4 4.8780i, —1.000 — 4.878i}

while in Fig.7.2(b), for B/A > 1, both centers change to vortices (inward unstable
and outward stable) through the birth of the first eigenvalue shown in bold (negative
and positive respectively):

T{J(Sy)} = {—0.0149, 1.500 — 1.3229i, 1.500 + 1.3229i},
T{J(S3)} = {0.0025, —1.000 + 4.8780i, —1.000 — 4.878i}

Remark 5 The use of different numerical methods may affect the shape of the attrac-
tor. For example, as mentioned in [4], higher resolution produces a larger fractal torus
and a finer connecting manifold. However, the ‘hole drilling’ process and the creation
of a toroidal nesting is always a common feature.

7.3 Connecting the Dynamical System with Solid
2-Dimensional 0-Surgery

In this section, we will focus on the process of solid 2-dimensional 0-surgery on a
3-ball D? viewed as a continuum of concentric spheres together with their common
center: D3 = Uo<r<1 Sr2 U {P}. Recall from Sect. 6.2 that the process is defined as the
union of 2-dimensional O-surgeries on the whole continuum of concentric spheres S?
and on the limit point P. For each spherical layer, the process starts with attracting
forces acting between SO x D2, i.e. two points, or poles, centers of two discs.



7.3 Connecting the Dynamical System with Solid 2-Dimensional 0-Surgery 47

Having presented the dynamical system (X) in Sect.7.1 and its local behavior
in Sect.7.2, its connection with solid 2-dimensional 0-surgery on a 3-ball is now
straightforward. To be precise, surgery is performed on the manifold formed by the
trajectories of (X). Indeed, as seen in Fig. 7.2(a) and (b), with a slight perturbation of
parameters, trajectories pass from spherical to toroidal shape through a ‘hole drilling’
process along a slow manifold L which pierces all concentric spheres. The spherical
and toroidal nestings in Figs. 6.2(b;) and 7.2 are analogous. The attracting forces
acting between the two poles shown in blue in the first instance of Fig. 6.2(b;) are
realized by the flow along L (also shown in blue in Fig. 7.1(b)). When B/A > 1, the
action of the eigenvectors is an attracting force between S, and S3 acting along L,
which drills each spherical shell and transforms it to a toroidal shell.

Furthermore, in order to introduce solid 2-dimensional O-surgery on D3 as a
new topological notion, we had to define that 2-dimensional O-surgery on a point is
the creation of a circle. This new topological definition also has a meaning in the
language of dynamical systems. Namely, the limit point P in the spherical nesting
of trajectories shown in green in Fig. 7.2(a) is a steady state point and the core of the
toroidal nesting of trajectories shown in green in Fig. 7.2(b) is a limit cycle. In other
words, surgery on the limit point P creates the limit cycle. As mentioned in [4], this
type of bifurcation is a ‘Hopf bifurcation’, so surgery on the trajectories can be also
seen as a Hopf bifurcation.

Hence, instead of viewing surgery as an abstract topological process, we may
now view it as a property of a dynamical system. Moreover, natural phenomena
exhibiting 2-dimensional topological surgery through a ‘hole-drilling’ process, such
as the creation of Falaco solitons, the formation of tornadoes, of whirls, of wormholes,
etc., may be modeled mathematically by the dynamical system (X). This system
enhances the topological model presented in Fig. 6.2(b;) with analytical formulation
of the underlying dynamics. Indeed, if we link the three time-dependent quantities
X, Y, Z to physical parameters of related phenomena undergoing 2-dimensional O-
surgery, system (X) can provide time forecasts for these phenomena.

Remark 6 In [5] R.M. Kiehn studies how the Navier-Stokes equations admit bifur-
cations to Falaco solitons. In other words, the author looks at another dynamical
system modeling this natural phenomenon which, as mentioned in Sect. 5.3, exhibits
solid 2-dimensional O-surgery. To quote the author: “It is a system that is globally
stabilized by the presence of the connecting 1-dimensional string” and “The result is
extraordinary for it demonstrates a global stabilization is possible for a system with
one contracting direction and two expanding directions coupled with rotation”. It is
also worth quoting Langford [6] which states that computer simulations indicate that
“the trajectories can be confined internally to a sphere-like surface, and that Falaco
Soliton minimal surfaces are visually formed at the North and South pole”. One
possible future research direction would be to investigate the similarities between
this system and (X) in relation to surgery.
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Chapter 8 ®)
The Ambient Space S° oo

All natural phenomena exhibiting surgery (1- or 2-dimensional, solid or usual) take
place in the ambient 3-space. Moreover, as mentioned in Sect. 5.4, the ambient space
can play an important role in the process of surgery. This will be detailed in next
chapter where the notion of embedded surgery in 3-space is introduced. By 3-space
we mean here the compactification of R* which is the 3-sphere S3. This choice, as
opposed to R?, takes advantage of the duality of the descriptions of S3. In this section
we present the three most common descriptions of S* (see Sect.8.1) in which this
duality is apparent and which will set the ground for defining the notion of embedded
surgery in S3 (see Chap.9). Beyond that, in Sect. 8.2, we also demonstrate how these
descriptions are interrelated. Finally, in Sect. 8.3, we pin down how the trajectories
of the dynamical system (X) presented in Chap.7 are related to the descriptions of
$3 and further introduce a Hamiltonian system exhibiting the topology of S°.

8.1 Descriptions of §°

In dimension 3, the simplest closed, connected, orientable 3-manifolds are: the 3-
sphere S3 and the lens spaces L(p, ¢). In this analysis however, we will focus on S>.
We start by recalling its three most common descriptions:

8.1.1 ViaR3

S3 can be viewed as R? with all points at infinity compactified to one single point:
§3 = R3 U {00}, see Fig.8.1(a) and (a') where the point at infinity is symbolized
with a red star. Given that R? can be viewed as an unbounded continuum of nested
2-spheres centered at the origin together with the point at the origin, see Fig. 8.1(a’),
© Springer International Publishing AG, part of Springer Nature 2018 49
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S3 minus the point at the origin and the point at infinity can be viewed as a continuous
nesting of 2-spheres.

8.1.2 Via Two 3-Balls

S3 can be viewed as the union of two 3-balls: 3 = B3 U D3, see Fig.8.1(b).
This second description of S3 is clearly related to the first one, since a (closed)
neighborhood of the point at infinity can stand for one of the two 3-balls. Note that,
when removing the point at infinity, see the passage from Fig. 8.1(b) to 8.1(b"), we can
see the concentric spheres of the 3-ball B* (in red) wrapping around the concentric
spheres of the 3-ball D*. Note that, in both cases B represents the hole space outside
D3 which means that the spherical nesting of B3 in Fig.8.1(b’) extends to infinity,
even though only a subset of B? is shown. This is another way of viewing R as the de-
compactification of S*. This picture is the analogue of the stereographic projection of
S? on the plane R? (recall Fig. 2.3), whereby the projections of the concentric circles
of the south hemisphere together with the projections of the concentric circles of the
north hemisphere form the well-known polar description of R? with the unbounded
continuum of concentric circles.

3 e
S ® . i :I

Vi

(c)

@)

Fig.8.1 (a) S 3 as the compactification of R3 (b) $3 as the union of two 3-balls (c) S? as the union
of two solid tori (a'), (b), (¢/) corresponding decompacitified views in R?
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8.1.3 Via Two Solid Tori

The third well-known representation of S° is as the union of two solid tori along
their common boundary: S3 = V|, Uy Vs, via the torus homeomorphism ¥ along
the common boundary, see Fig.8.1(c). ¥ maps a meridian of V; to a longitude of
Vi which has linking number zero with the core curve ¢ of V;. The illustration in
Fig.8.1(c) gives an idea of this splitting of S3. In the figure, the core curve c of V| is
in dashed black. So, the complement of a solid torus V| in S3 is another solid torus
V, whose core curve I (shown in dashed red) may be assumed to pass by the point
at infinity. Note that, S3 minus the core curves ¢ and [ of V; and V; can be viewed as
a continuum of nested tori, see Fig. 8.1(c’).

When removing the point at infinity in the representation of S* as a union of two
solid tori, the core of the solid torus V, becomes an infinite line / and the nested tori
of V, can now be seen wrapping around the nested tori of Vi, see the passage from
Fig.8.1(c) to 8.1(c’). Therefore, R? can be viewed as an unbounded continuum of
nested tori, together with the core curve ¢ of V| and the infinite line /. This line /
joins pairs of antipodal points of all concentric spheres of the first description. Note
that in the nested spheres description (Fig. 8.1(b")) the line / pierces all spheres while
in the nested tori description the line / is the ‘untouched’ limit circle of all tori.

Remark 7 It is also worth mentioning that another way to visualize S* as two solid
tori is the Hopf fibration, which is a map of 3 into S2. The parallels of S? correspond
to the nested tori of S3, the north pole of S? correspond to the core curve [ of V, while
the south pole of S? corresponds to the core curve ¢ of V;. An insightful animation
of the Hopf fibration can be found in [1].

8.2 Connecting the Descriptions of >

8.2.1 Via Corking

The connection between the first two descriptions of S* was already discussed in
previous section. The third description is a bit harder to connect with the first two.
We shall do this here. A way to see this connection is the following. Consider the
description of S* as the union of two 3-balls, B3 and D? (Fig.8.1(b’)). Combining
with the third description of S° (Fig.8.1(c’)) we notice that both 3-balls are pierced
by the core curve [ of the solid torus V,. Therefore, D3 can be viewed as the solid
torus V; to which a solid cylinder D' x D? is attached via the homeomorphism ©:

D’ =V, Uy (D' x D).

This solid cylinder is part of the solid torus V5, a ‘cork’ filling the hole of V. Its
core curve is an arc L, part of the core curve [ of V,. View Fig.8.2(a). The second
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Vi
(a) (b)

Fig. 8.2 Passing from (a) $3 as two solid tori to (b) S> as two balls

ball B? (Fig.8.2(b)) can be viewed as the remaining of V, after removing the ‘cork’
D' x D*:
B>=V,\s (D' x D?).

In other words the solid torus V; is cut into two solid cylinders, one comprising the
‘cork’ of V| and the other comprising the 3-ball B>.

Remark 8 If we remove a whole neighborhood B> of the point at infinity and focus
on the remaining 3-ball D?, the line [ of the previous picture is truncated to the arc
L and the solid cylinder V5 is truncated to the ‘cork’ of D>.

Remark 9 This arc L corresponds to the segment L joining the steady state points
of the dynamical system of Chap. 7.

8.2.2 Via Surgery

We can also pass from the two-ball description to the two-tori description of $3
via solid 2-dimensional O-surgery (with the standard embedding homeomorphism)
along the arc L of D3, see Figs. 9.2 and 9.3. As this process requires the notion of
embedded surgery, it will be analyzed in Sect. 9.3.1. It is worth mentioning that this
connection between the descriptions of S* and solid 2-dimensional O-surgery is a
dynamic way to visualize the connection established in Sect.8.2.1.
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8.3 Dynamical Systems Exhibiting the Topology of S3

In this section, we go back to the 3-dimensional Lotka—Volterra system (X) and see
how its trajectories relate to the descriptions of S* and further present a 4-dimensional
Hamiltonian system exhibiting the topology of S°.

8.3.1 The 3-Dimensional Lotka—Volterra System

We will now pin down how the trajectories of (X) presented in Chap. 7 relate to the
topology of S3. We start with the spherical nesting of Fig. 7.2(a) which can be viewed
as the 3-ball D3 shown in Fig.8.1(b) and (b/). Surgery on its central point creates
the limit cycle which is the core curve ¢ of V| shown in Fig.8.1(c) and (¢). If we
extend the spherical shells of Fig.7.2 to all of R? and assume that the entire nest
resolves to a toroidal nest, then the slow manifold L becomes the infinite line /. In
the two-ball description of S°, [ pierces all spheres, recall Fig.8.1(b’), while in the
two-tori description, it is the core curve of V, or the ‘untouched’ limit circle of all
tori, recall Fig.8.1(c) and (¢’).

8.3.2 The Pair of Linear Harmonic Oscillators

A toroidal nesting similar to the one exhibited in (¥) and shown in Fig.7.2 can
be found in the trajectories of the Hamiltonian system of a pair of linear harmonic
oscillators, see Fig.8.3. Given that H is the sum of the energy functions of two
harmonic oscillators with frequencies m and n and assuming that H is at least C!,
m > 0 and n > 0, the time evolution of this system is given by the following system
of four ODE of Hamilton:

G0 =50 | 21 8.1)
) i, ori =1, .
Yi(s) = —%
4 1 2 2 1 2 2
H:R"— R; H(x1, x2, y1, y2) = Em(xl +y) + En(xz +33); (3.2)

As analyzed in [2], except from H, L is also a conserved quantity or first integral:
L(xi,x2, y1, y2) = sm(x +y]) — in(x3 + y3).



54 8 The Ambient Space $°

psi=3.1416 theta=3.1416 fi=5.2832

Fig. 8.3 The decompactified view of the orbits of a pair of linear harmonic oscillators

As the authors further elaborate: ‘A constant energy surface H~!(h) of the har-
monic oscillators is diffeomorphic to the three-sphere 3. Such a constant energy sur-
face is the union of two critical circles S}ll+ = {(x1,0, y1,0) € R* | %m()c]2 + ylz) =
h}, and S}- = {(0, 2,0, y,) € R* | n(x3 + y3) = h}, and a one-parameter family
of tori ‘in between’ parametrized by the values of the first integral L. This folia-
tion of S? is indeed intricate; the two critical circles are linked, and concentric tori
enveloping the critical circles fill the rest of $%’.

In Fig.8.3, the orbits of the Hamiltonian system of a pair of linear harmonic
oscillators with frequencies m = 1 and n = 1 were computed using mat-
lab software. The system was solved for 1000 trajectories initiated on the unit
3-sphere S3. To make sure all of S* is covered, the hyperspherical coordinates
(Y, 0, ¢) were used forr = 1, ¥, 0 € [o, 7] and ¢ € [0, 2m]: (x1, X2, X3, X4) =
(rcos(r), rsin(¥)cos(0), rsin(Yr)sin(0)cos(p), rsin(y)sin(0)sin(¢p))

These solutions were projected from S* to R? using the stereographic projection
which can be though of as removing the point at infinity and ‘unwrapping’ S* into
R3. More specifically, vectors X = (x1, x2, X3, X4) € S3 were projected to vectors
u= (uy, ur, uz) = IJ—XA(xl,xz, x3) € R3, which corresponds to a projection from
the pole (0, 0, 0, 1).

We will now identify the topology of S3 in Fig. 8.3. The two critical circle S h1+ and
S,i, mentioned above are the core curve ¢ of V| and the infinite line / respectively,
see Fig.8.1(c) and (c’). While / can be seen in both Figs. 8.1 and 8.3, the core curve
c can only be seen if we visualize the trajectories of Fig. 8.3 step by step. Indeed,
in Fig. 8.4(a) we see the core curve ¢ which is quickly covered by the other trajec-
tories. The first three toroidal layers are shown in Fig. 8.4(b), (c) and (d). Note that,
comparing the trajectories of Fig. 8.4 with those of (¥) shown in Fig.7.2(b), a key
difference is that here, as opposed to system (%), the nesting of tori does extend to
infinity.
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Fig. 8.4 Nesting of orbits of a pair of linear harmonic oscillators

To close the topological analogy, one can visualize S* = V; Uy V5 by considering
that V| is any finite number of toroidal nestings. For example V| could be any of
the tori shown in Fig. 8.4(b), (c) or (d) while, in each of these case, V; is naturally
defined as the complement space.
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Chapter 9 ®)
Embedded Surgery oo

In this chapter we will examine how the ambient space can be involved in the pro-
cess of surgery and introduce the notion of embedded surgery in order to model
such phenomena. As we will see, depending on the dimension of the manifold, the
ambient space either leaves ‘room’ for the initial manifold to assume a more compli-
cated configuration or it participates more actively in the process. Independently of
dimensions, embedding surgery has the advantage that it allows us to view surgery
as a process happening inside a space instead of abstractly. We define it as follows:

Definition 6 An embedded m-dimensional n-surgery is a m-dimensional n-surgery
following the process described in Definition 2 where the initial manifold is an m-
embedding e : M — S d > m of some m-manifold M, and the result is also
viewed as embedded in S¢. Namely:

M' = x(e(M)) = e(M)\h(S" x D"=") Uy, D" x gl s g4,

wsm—n—1
Since in this analysis we focus on phenomena exhibiting embedded 1- and 2-
dimensional surgery in 3-space, from now on we fix d = 3 and, for our purposes,
we consider S* or R? as our standard 3-space.

9.1 Embedded 1-Dimensional Surgery

In dimension 1, the notion of embedded surgery allows the topological modeling
of phenomena with more complicated initial 1-manifolds. Let us demonstrate this
with the example of site-specific DNA recombination. In this process, the initial
manifold is a (circular or linear) DNA molecule. With the help of certain enzymes,
site-specific recombination performs a 1-dimensional O-surgery on the molecule,
causing possible knotting or linking of the molecule.

© Springer International Publishing AG, part of Springer Nature 2018 57
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Fig. 9.1 DNA Recombination as an example of embedded 1-dimensional O-surgery

)

The first electron microscope picture of knotted DNA was presented in [1]. In this
experimental study, we see how genetically engineered circular DNA molecules can
form DNA knots and links through the action of a certain recombination enzyme. A
similar picture is presented in Fig. 9.1, where site-specific recombination of a DNA
molecule produces the Hopf link. It is worth mentioning that there are infinitely
many knot types and that 1-dimensional 0-surgery on a knot may change the knot
type or even result in a two-component link (as shown in Fig.9.1). Since a knot is by
definition an embedding of M = S!in S° or R?, in this case embedded 1-dimensional
surgery is the so-called knot surgery. A good introductory book on knot theory is [2]
among many others.

We can summarize the above by stating that for M = S', embedding in S3 allows
the initial manifold to become any type of knot. More generally, in dimension 1
the ambient space which is of codimension 2 gives enough ‘room’ for the initial
I-manifold to assume a more complicated homeomorphic configuration.

Remark 10 Of course we also have, in theory, the notion of embedded solid
1-dimensional O-surgery whereby the initial manifold is an embedding of a disc
in 3-space.

9.2 Embedded 2-Dimensional Surgery

Passing now to 2-dimensional surgeries, let us first note that an embedding of a
sphere M = S? in S3 presents no knotting because knotting requires embeddings
of codimension 2. However, in this case the ambient space plays a different role.
Namely, embedding 2-dimensional surgeries allows the complementary space of
the initial manifold to participate actively in the process. Indeed, while some natural
phenomena undergoing surgery can be viewed as ‘local’, in the sense that they can be
considered independently from the surrounding space, some others are intrinsically
related to the surrounding space. This relation can be both causal, in the sense that
the ambient space is involved in the triggering of the forces causing surgery, and
consequential, in the sense that the forces causing surgery can have an impact on the
ambient space in which they take place.

As mentioned in the introduction of Chap.6, in most natural phenomena that
exhibit 2-dimensional surgery, the initial manifold is a solid 3-dimensional object.



9.2 Embedded 2-Dimensional Surgery 59

Hence, in the next sections, we describe natural phenomena undergoing solid 2-
dimensional surgeries which exhibit the causal or consequential relation to the ambi-
ent space mentioned above and are therefore better described by considering them
as embedded in 3 or in R3. In parallel, we describe how these processes are altering
the whole space S* or R?,

9.3 Modeling Phenomena Exhibiting Embedded Solid
2-Dimensional Surgery

In each of the following sections a natural phenomena undergoing embedding solid
2-dimensional surgery is analyzed. As we will see, the topological considerations of
these processes also have physical implications.

9.3.1 A Topological Model for the Density Distribution
in Black Hole Formation

Let us start by considering the density distribution in black hole formation. Most
black holes are formed from the remnants of a large star that dies in a supernova
explosion. Their gravitational field is so strong that not even light can escape. In
the simulation of a black hole formation in [3], the density distribution at the core
of a collapsing massive star is shown. Figure9.2(2) shows three instants of this
simulation, which indicate that matter performs solid 2-dimensional 0-surgery as it
collapses into a black hole. In fact, matter collapses at the center of attraction of
the initial manifold M = D3 creating the singularity, that is, the center of the black
hole (shown as a black dot in instance (c) of Fig.9.2(2)), which is surrounded by
the toroidal accretion disc (shown in white in instance (c) of Fig.9.2(2)). Let us be
reminded here that an accretion disc is a rotating disc of matter formed by accretion.

Note now that the strong gravitational forces have altered the space surrounding
the initial star and that the singularity is created outside the final solid torus. This
means that the process of surgery in this phenomenon has moreover altered matter
outside the manifold in which it occurs. In other words, the effect of the forces causing
surgery propagates to the complement space, thus causing a more global change in
3-space. This fact makes black hole formation a phenomenon that topologically
undergoes embedded solid 2-dimensional O-surgery.

In Fig.9.2(1), we present a model of embedded solid 2-dimensional 0-surgery on
M = D?.From the descriptions of §3 in Sect. 9.2, it becomes apparent that embedded
solid 2-dimensional 0-surgery on one 3-ball describes the passage from the two-ball
description to the two-solid tori description of S3. This can be seen in R? in instances
(a)—(c) of Fig.9.2(1) but is more obvious by looking at instances (a)—(c) of Fig.9.3
which show the corresponding view in S°.
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Fig. 9.3 Embedded solid 2-dimensional O-surgery on M = D3 (in §3)

We will now detail the instances of the process of embedded solid 2-dimensional
0-surgery on M = D3 by referring to both the view in S* and the corresponding
decompacified view in R3. Let M = D3 be the solid ball having arc L as a diameter
and the complement space be the other solid ball B containing the point at infinity;
see instances (a) of Fig.9.3 and (a) of Fig. 9.2. Note that, in both cases B? represents
the hole space outside D3 which means that the spherical nesting of B in instance
Fig.9.2(a) extends to infinity, even though only a subset of B is shown. This joining
arc L is seen as part of a simple closed curve / passing by the point at infinity. In
instances (b) of Fig. 9.3 and (b) of Fig. 9.2, we see the ‘drilling’ along L as a result of
the attracting forces. This is exactly the same process as in Fig. 6.2(b,) if we restrict
it to D3. But since we have embedded the process in S* or R?, the complement space
B? participates in the process and, in fact, it is also undergoing solid 2-dimensional
0-surgery. Indeed, the ‘matter’ that is being drilled out from the interior of D? can
be viewed as ‘matter’ of the outer sphere B3 invading D3. In instances (c) of Fig.9.3
and (c) of Fig.9.2, we can see that, as surgery transforms the solid ball D? into the
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solid torus V;, B? is transformed into V. That is, the nesting of concentric spheres
of D? (respectively of B?) is transformed into the nesting of concentric tori in the
interior of V; (respectively of V,). The point at the origin (in green), which is also
the attracting center, turns into the core curve ¢ of V) (in green) which, by Definition
4 is 2-dimensional O-surgery on a point. As seen in instance (c) of Fig.9.3 and (c) of
Fig.9.2(1), the result of surgery is the two solid tori V; and V, forming S°.

The described process can be viewed as a double surgery resulting from a single
attracting center which is inside the first 3-ball D* and outside the second 3-ball B>.
This attracting center is illustrated (in blue) in instance (a) of Fig.9.2 but also in (a)
of Fig.9.3, where it is shown that the colinear attracting forces causing the double
surgery can be viewed as acting on D? (the two blue arrows) and also as acting on
the complement space B? (the two dotted blue arrows), since they are applied on the
common boundary of the two 3-balls. Note that in both cases, the attracting center
coincides with the limit point of the spherical layers that D? is made of, that is, their
common center and the center of D3 (shown in green in (a) of Fig.9.2 and (a) of
Fig.9.3).

The reverse process of embedded solid 2-dimensional 0-surgery on D? is an
embedded solid 2-dimensional 1-surgery on the solid torus V,, see instances of
Fig.9.3 in reverse order. This process is the embedded analog of the solid
2-dimensional 1-surgery on a solid torus D? x S' defined in Definition 5 and shown
in Fig.6.2(b;) in reverse order. Here too, the process can be viewed as a double
surgery resulting from one attracting center which is outside the first solid torus V;
and inside the second solid torus V5. This attracting center is illustrated (in orange)
in instance (c) of Fig.9.3 where it is shown that the coplanar forces causing surgery
are applied on the common boundary of V| and V, and can be viewed as attracting
forces along a longitude when acting on V| and as attracting forces along a meridian
when acting on the complement space V5.

One can now directly appreciate the correspondence of the physical phenom-
ena (instances (a), (b), (c) of Fig.9.2(2)) with our model (instances (a), (b), (c) of
Fig.9.2(1)). Indeed, if one looks at the density distribution during the formation of
a black hole and examines it as an isolated event in space, this process shows a
decompactified view of the passage from a two 3-ball description of S3, that is, the
core of the star and the surrounding space, to a two solid tori description, namely the
toroidal accretion disc surrounding the black hole (shown in white in instance (c) of
Fig.9.2(2)) and the surrounding space.

Finally, it is worth pinning down the following spatial duality of embedded solid
2-dimensional O-surgery for M = D?: the attraction of two points lying on the bound-
ary of segment L by the center of D3 can be equivalently viewed in the complement
space as the repulsion of these points by the center of B (that is, the point at infinity)
on the boundary of the segment / — L (or the segments, if viewed in R?). Hence, the
aforementioned duality tells us that the attracting forces from the attracting center
that are collapsing the core of the star can be equivalently viewed as repelling forces
from the point at infinity lying in the surrounding space.
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9.3.2 A Topological Model for the Formation of Tornadoes

Another example of global phenomenon is the formation of tornadoes, recall
Fig.5.3(2). As mentioned in Chap.6 this phenomenon can be modelled by solid
2-dimensional 0-surgery. However, here, the initial manifold is different than D3.
Indeed, if we consider a 3-ball around a point of the cloud and another 3-ball around
a point on the ground, then the initial manifold is M = D3 x S° and the process
followed is the one shown in Fig. 6.2(b,) (from right to left). More precisely, if cer-
tain meteorological conditions are met, an attracting force between the cloud and
the earth beneath is created. This force is shown in blue in see Fig.9.4(1). Then,
funnel-shaped clouds start descending toward the ground, see Fig.9.4(2). Once they
reach it, they become tornadoes, see Fig.9.4(3). The only difference compared to
our model is that here the attracting center is on the ground, see Fig. 9.4(1), and only
one of the two 3-balls (the 3-ball of cloud) is deformed by the attraction. This lack
of symmetry in the process can be obviously explained by the big difference in the
density of the materials.

During this process, a solid cylinder D> x S! containing many layers of air is
created. Each layer of air revolves in a helicoidal motion which is modeled using a
twisting embedding as shown in Fig. 5.3(1) (for an example of a twisting embedding,
the reader is referred Sect.3.2). Although all these layers undergo local dynamic
2-dimensional O-surgeries which are triggered by local forces (shown in blue in
Fig.9.4(1)), these local forces are not enough to explain the dynamics of the phe-
nomenon. Indeed, the process is triggered by the difference in the conditions of the
lower and upper atmosphere which create an air cycle. This air cycle lies in the
complement space of the initial manifold M = D> x S° and of the solid cylinder
D? x S', but is also involved in the creation of the funnel-shaped clouds that will
Jjoin the two initial 3-balls. Therefore in this phenomenon, surgery is the outcome
of global changes and this fact makes tornado formation an example of embedded
solid 2-dimensional O-surgery on M = D3 x S°.

It is worth mentioning that the complement space containing the aforementioned
air cycle is also undergoing solid 2-dimensional O-surgery. The process can be seen
in R? in instances (a)—(d) of Fig. 9.5 while the corresponding view in S3 is shown in
instances (a’) to (d') of Fig.9.5.

Fig. 9.4 (1) Attracting force between the cloud and the earth (2) Funnel-shaped clouds (3) Tornado
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Fig. 9.5 Embedded solid 2-dimensional O-surgery on Df’ a Dg’ (from left to right) and embedded
solid 2-dimensional 1-surgery on D'? (from right to left)

More precisely, let us name the two initial 3-balls D13 and Dg, hence M = D? x
S° = D3 11 D;3. Further, let B* be the complement of D in S°. This setup is shown
in (') of Fig.9.5 where S° is viewed as the union of the two 3-balls D} U B?, and
here too, B3 represents everything outside Df. The complement space of the initial
manifold, S*\M = B?\ D3, is the 3-ball B> where Dg has been removed from
its interior and its boundary consists in two spheres S? x S°, one bounding B* or,
equivalently, D7 (the outside sphere) and one bounding Dj (the inside sphere). Next,
D3 and D3 approach each other, see Fig.9.5(b). In (¢’) of Fig. 9.5, D} and D3 merge
and become the new 3-ball D", see Fig.9.5(c’) or Fig.9.5(d’) for a homeomorphic
representation.

At the moment of merging, the spherical boundary of D3 punctures the boundary
of B3; see the passage from (b') to (¢’) of Fig.9.5. As a result, the complement
space is transformed from B*\ D3 to the new deformed 3-ball B”, see Fig.9.5(c’) or
Fig.9.5(d’) for a homeomorphic representation. Note that, although the complement
space undergoes a type of surgery that is different from the ones defined in Chap. 6 and
shown in Fig. 6.2, it can still be defined analogously. In short, we have a double solid
2-dimensional O-surgery which turns M = D; LI D3 into D" and the complement
space S°\ (D3 LI D3) into B”. This process is initiated by the attracting center shown
(in blue) in Fig.9.5(a"). The created colinear forces can be viewed as acting on
D} U D3 or, equivalently, as acting on the complement space S* \ (D; LI D3) (see
the two blue arrows for both cases).

Going back to the formation of tornadoes, the above process describes what hap-
pens to the complement space and provides a topological description of the behavior
of the air cycle during the formation of tornadoes. The complement space B> \ D3
in R? is shown in red in Fig.9.5(a) and its behavior during the process can be seen
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in instances (b)—(d) of Fig.9.5. Note that in Fig.9.5(a), B3\D§ represents the hole
space outside D?, which means that the red layers of Fig.9.5(a) extend to infinity
and only a subset is shown.

9.3.3 Embedded Solid 2-Dimensional 1-Surgery on M = D?

We will now discuss the process of embedded solid 2-dimensional 1-surgery in S°.
Taking M = D" as the initial manifold, embedded solid 2-dimensional 1-surgery is
the reverse process of embedded solid 2-dimensional O-surgery on D? x S° and is
illustrated in Fig. 9.5 from right to left. The process is initiated by the attracting center
shown (in orange) in (d") of Fig. 9.5. The created coplanar attracting forces are applied
on the circle which is the common boundary of the meridian of D’? and the meridian
of B” and they can be viewed as acting on the meridional disc D of the 3-ball D"
(see orange arrows) or, equivalently, in the complement space, on the meridional disc
d of B” (see dotted orange arrows). As a result of these forces, in Fig. 9.5(c’), we see
that while disc D of D" is getting squeezed, disc d of B”* is enlarged. In Fig.9.5(b"),
the central disc d of B” engulfs disc D and becomes d U D, which is a separating
plane in R3, see Fig.9.5(b). At this point the initial 3-ball D3 is split in two new
3-balls Dj and Dj3; see Fig.9.5(b') or Fig. 9.5(2") for a homeomorphic representation.
The center point of D”® (which coincides with the orange attracting center) evolves
into the two centers of D} and D3 (in green) which by Definition 4, is 2-dimensional
1-surgery on a point. This is exactly the same process as in Fig. 6.2(b,) if we restrict
it to D3, but since we are in S3, the complement space B’ is also undergoing, by
symmetry, solid 2-dimensional 1-surgery.

All natural phenomena undergoing embedded solid 2-dimensional 1-surgery take
place in the ambient 3-space. The converse, however, is not true. For example, the phe-
nomena exhibiting 2-dimensional 1-surgery discussed in Sect. 5.3 are all embedded
in 3-space, but they do not exhibit the intrinsic properties of embedded 2-dimensional
surgery, since they do not demonstrate the causal or consequential effects discussed
in Sect. 9.2 involving the ambient space. Yet one could, for example, imagine taking
a solid material specimen, stress it until necking occurs and then immerse it in some
liquid until its pressure causes fracture to the specimen. In this case the complement
space is the liquid and it triggers the process of surgery. Therefore, this is an example
of embedded solid 2-dimensional 1-surgery where surgery is the outcome of global
changes.

Remark 11 Note that the spatial duality described in embedded solid 2-dimensional
0-surgery, in Sect.9.3.2, is also present in embedded solid 2-dimensional 1-surgery.
Namely, the attracting forces from the circular boundary of the central disc D to the
center of D"* shown in (d') of Fig. 9.5, can be equivalently viewed in the complement
space as repelling forces from the center of B’ (that is, the point at infinity) to the
boundary of the central disc d, which coincides with the boundary of D.
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Remark 12 One can sum up the processes described in this section as follows. The
process of embedded solid 2-dimensional O-surgery on D? consists in taking a solid
cylinder such that the part S° x D? of its boundary lies in the boundary of D3,
removing it from D3 and adding it to B3. Similarly, the reverse process of embedded
solid 2-dimensional 1-surgery on V, consists of taking a solid cylinder such that
the part S' x D! of its boundary lies in the boundary of V,, removing it from V,
and adding it to V;. Following the same pattern, embedded solid 2-dimensional 1-
surgery on M = D3 consists of taking a solid cylinder in D”® such that the part
S' x D! of its boundary lies in the boundary of D"}, removing it from D"* and
adding it to B”}. Similarly, the reverse process of embedded solid 2-dimensional
0-surgery on S3\(Df I D%) consists of taking a solid cylinder such that the two
parts S x D> = D% I D% of its boundary lie in the corresponding two parts of
the boundary of §3 \ (Df I D%), removing it from S° \ (Df I DS) and adding it
to D; LI D3. Note that, for clarity, in the above descriptions the attracting centers
causing surgery are always inside the initial manifold. Of course a similar description
starting with the complement space as an initial manifold and the attracting center
outside of it would also have been correct.

References

1. Wasserman, S.A., Dungan, J.M., Cozzarelli, N.R.: Discovery of a predicted DNA knot sub-
stantiates a model for site-specific recombination. Science 229, 171-174 (1985)

2. Adams, C.: The knot book: an elementary introduction to the mathematical theory of knots.
American Mathematical Society (2004)

3. Ott,C.D,, et al.: Dynamics and gravitational wave signature of collapsar formation. Phys. Rev.
Lett. 106, 161103 (2011). https://doi.org/10.1103/PhysRevLett.106.161103


https://doi.org/10.1103/PhysRevLett.106.161103

Chapter 10 ®)
3-Dimensional Surgery oo

In this chapter we present a novel way of visualizing 3-dimensional surgery as well as
a phenomenon exhibiting it. In Sect. 10.1, we introduce the notion of decompactified
2-dimensional surgery which allows us to visualize the process of 2-dimensional
surgery in R? instead of R?. Using this new notion and rotation, in Sect. 10.2, we
present a way to visualize the 4-dimensional process of 3-dimensional surgery in R3.
In Sect. 10.3, we analyze the concept of continuity introduced in Chap. 4 in the case
of 3-dimensional surgery by looking at the local process inside the 4-dimensional
handle. Finally, in Sect.10.4, we model a phenomenon exhibiting 3-dimensional
surgery: the formation of black holes from cosmic strings.

10.1 Decompactified 2-Dimensional Surgery

We present here the notion of decompactified 2-dimensional surgery which allows
us to visualize 2-dimensional surgery in R? instead of R>.

Let us first recall from Chap.4 that an m-dimensional n-surgery happens inside
the handle D"*! x D™ In Fig. 10.1, the cases of dimensions 1 and 2 are shown
in the first two rows where m-dimensional n-surgeries are symbolized with [m—
n]. For example, in 2-dimensional 0-surgery, see Fig. 10.1 [2-0], a homeomorphic
representation of S? is formed by gluing the two discs S° x D? to the cylinder
D' x S'. The whole time evolution of 2-dimensional 0-surgery is a way of passing
from S° x D?to D' x S' and the frames of this evolution are included in D' x D?.

Let us now point out that one can obtain all instances of 2-dimensional O-surgery
by rotating Fig. 10.1 [1-0] by 180° around a horizontal axis, see Fig.10.1 [2-0].
Note that this observation is just the generalization of Remark 1, including now the
intermediate instances of surgery. From this observation it follows that 1-dimensional
0-surgery is a crossection of 2-dimensional O-surgery and that 2-dimensional O-
surgery can be obtained as a union of 1-dimensional O-surgeries. While not shown
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Fig.10.1 From top to bottom row: 1-dimensional O-surgery, 2-dimensional 0-surgery, decompact-
ified 2-dimensional 0-surgery

here, it is also worth pointing out that, by symmetry, the instances of 2-dimensional
1-surgery can also be obtained by rotating the instances of 1-dimensional 0-surgery
by 180° around a vertical axis, perpendicular to the one shown in Fig. 10.1 [2-0].

In analogy, for m = 3, 3-dimensional surgery can be viewed as a way of passing
from one boundary component of D"*! x D3=" = D* to its complement, recall
Chap.4 for m = 3. Hence, the initial and final instances of the process form 3 =
9 D*, which is a 180° rotation of the S2 that is made of the initial and final instances
of 2-dimensional surgery. To grasp this last observation, recall that S! is obtained
by a 180° rotation of S° and S? is obtained by a 180° rotation of S'. Moving up one
dimension, since S? is embedded in R3, the S* created by rotation requires a fourth
dimension in order to be visualized.

In order to overcome this difficulty we project stereographically S? in R?, as
shown in Fig. 10.2. Note that the two great circles / U {oo} and I’ U {o0} in §? are
projected to the two perpendicular infinite lines / and [’ in R?. With the stereographic
projection of S? at hand, it is now easy to see that S° is obtained as 180° rotation
of §2. Indeed, rotating R? = S? \ {oco} in Fig. 10.2 around axis / by 180° we obtain
R3 = $3\ {oo}. We can now introduce the notion of decompactified 2-dimensional
0-surgery which is depicted in Fig. 10.1 decompactified [2—-0]:

Definition 7 The process of decompactified 2-dimensional 0-surgery is completely
analogous to 2-dimensional O-surgery except that it is projected in R?. It starts with
two flattened discs which approach each other. The centers of the two discs touch
and the discs merge into one. The resulting disc is a thickened segment D' x D!
which grows to infinity filling the complement space R? \ (S° x D?). The final
thickened line D' x [ corresponds to the decompactification of the thickened circle
D' x S' = D! x (I U {o0}). The cores of both the thickened line and the circle are
shown in green in Fig. 10.1 [2-0] and Fig. 10.1 decompactified [2-0].
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L

Fig. 10.2 Stereographic projection of $? in R?

Note that, in analogy to 2-dimensional 0-surgery, decompactified 2-dimensional
0-surgery can also be seen as a process caused by attracting forces and an attracting
center. The forces are not shown here in order to keep the figures lighter.

In Sect.10.2 we will rotate the instances of decompactified 2-dimensional O-
surgery in order to obtain our first visualization of 3-dimensional surgery in R3.

Remark 13 The decompactified 2-dimensional 1-surgery can also be defined in anal-
ogy to the decompactified 2-dimensional O-surgery but it is simpler to view it as its
Treverse process.

10.2 Visualizing 3-Dimensional Surgery in R3

As mentioned in Sect. 10.1, rotating the 52 made of the initial and final instances of
2-dimensional surgery gives us the S* = 9 D* made of the initial and final instances
of 3-dimensional surgery. We will now rotate the stereographic projection of S>
in R?, see Fig.10.2, to obtain the stereographic projection of the initial and final
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instances of 3-dimensional surgery in R3. We will discuss the two processes of 3-
dimensional surgery, namely 3-dimensional 1-surgery and 3-dimensional O-surgery,
which were introduced in Sect.3.4. Each of these processes corresponds to a dif-
ferent rotation, which results in a different visualization of the initial and the final
stage of 3-dimensional surgery in R® and which, in turn, corresponds to a differ-
ent decomposition of S3. These two decompositions are presented in Sect.10.2.1.
Then, using these visualizations of the initial and final instances, we will visualize
the intermediate steps of both processes in Sect. 10.2.2.

10.2.1 Initial and Final Steps

Let us recall the initial and final instances of our two processes of 3-dimensional
surgery. For 3-dimensional 1-surgery, the initial and final instances are solid tori
S! x D? and D? x S while for 3-dimensional O-surgery, we have two 3-balls S° x D3
and a thickened sphere D! x §2.

Rotating our decompactified view in R? by 180° vertically gives us the initial
and final instances of 3-dimensional 1-surgery in R3. In this case the axis of rotation
is line [ which is at equal distance from the two flattened discs and is shown in
green in Fig. 10.3(a). We can directly see that this rotation transforms the two discs
SO x D? (the first instance of decompactified 2-dimensional 0-surgery) to the solid
torus S x D? (the first instance of 3-dimensional 1-surgery), see Fig. 10.3(b). Each
of the arcs connecting the two discs S° x D? generates through the rotation a 2-
dimensional disc, the set of all such discs being parametrized by the points of the
line / in R?. Therefore the complement of the solid torus S| x D? is another solid
torus D? x S, see Fig. 10.3(b), where line / in R? is circle S} =/ U {oo} in S°.

Note that the visualization of Fig. 10.3(b) is the same as the one presented in
Fig.8.1(c), (¢') of Chap. 8 where §3 = V,UV,.Here V; = Sl1 x D?and V, = D?x S21,
the core curve ¢ of V; is S} and th e core curve [ U {oo} of V; is S;.

Similarly, rotating our decompactified view in R? by 180° horizontally gives us
the initial and final instances of 3-dimensional O-surgery in R>. The axis of rotation
is line I which pierces the two flattened discs and is shown in grey in Fig. 10.3(a). We
can directly see that this rotation transforms the two discs S° x D? (the first instance
of decompactified 2-dimensional O-surgery) to two 3-balls SY x D? (the first instance
of 3-dimensional O-surgery), see Fig. 10.3(c). The rotation of line / along I’ creates
a plane that cuts through R* and separates the two resulting 3-balls S) x D?. This
plane is thickened by the arcs connecting the two discs S x D? which have also
rotated, see Fig. 10.3(c). This plane is the decompactified view of sphere S7 in S°
which can be viewed as a rotation of circle / U {oco} = Szl. Therefore the complement
of the two 3-balls S x D? is a thickened sphere D! x S7 where the plane resulting
from the rotation of line / in R? is sphere S5 in S°.

In both cases, in Fig. 10.3(a), S3 s represented as the result of rotating the 2
sphere §? = R? U {0o}. For 3-dimensional 1-surgery, S is rotated about the circle
I U {oo} where [ is a straight horizontal line in R?, see also Fig. 10.2. The resulting
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(a) _ (b)
s? = (SxD) U (D'xS,)

3= ais £

s* = (SxD) U (D'xS)

Fig. 10.3 (a) Representations of S3 in R3, (b) Initial and final instance of 3-dimensional 1-surgery,
(c) Initial and final instance of 3-dimensional O-surgery

decomposition is $3 = (Sl1 x D) U (D? x S21). For 3-dimensional 0-surgery, 52 is
rotated about the circle I’ U {oo} where [’ is a straight vertical line in R?, see also
Fig. 10.2. The resulting decomposition is $* = (S) x D) U (D! x S3).

10.2.2 Intermediate Steps

We are now ready to visualize the intermediate steps of both types of 3-dimensional
surgery. By rotating the instances of decompactified 2-dimensional O-surgery (shown
in Fig. 10.1 decompactified [2-0]) around the axes [ and !’ (shown in Fig. 10.3(a))
we obtain the instances of 3-dimensional 1-surgery and 3-dimensional O-surgery
respectively, see Fig. 10.4.

v=5xD' hytm, )=, (hy=id)

(a) [3-1]inR? _— Wi
- EDH -2 - e - = -
o decomp. 20] S A\ ' .

(b) [3-0)inR?

na & - DC -

{_ decomp. [2-0]

Fig. 10.4 (a) 3-dimensional 1-surgery in R3 (b) 3-dimensional O-surgery in R?
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In these two processes, as in lower dimensional surgeries, the time-evolution of
surgery passes through a singular point. Namely, for 3-dimensional 1-surgery we see
asolid torus S| x D? collapsing to a singularity from which emerges the complement
solid torus D? x S}. This, if visualized in R?, fills the rest of the space, see Fig. 10.4(a).
In this case we have used the standard (identity) embedding of S| x D? denoted by
hy, which induces a ‘gluing’ homeomorphism along the common boundary S' x S',
such that the meridians of solid torus V; = § 11 x D? are mapped to the longitudes of
solid torus V, = D? x Szl. In other words, hs(m;) = .

For 3-dimensional O-surgery, we see the two 3-balls SY x D? collapsing to a sin-
gularity from which emerges the thickened sphere D! x S5 which, if decompactified
in R3, is a thickened plane filling the rest of the space, see Fig. 10.4(b).

10.3 The Continuity of 3-Dimensional Surgery

In this section we analyze the concept of continuity for 3-dimensional surgery.

Let us first recall from Chap. 4 that all types of 3-dimensional surgery take place
inside the 4-dimensional handle D"*' x D3~ n < 3 and that the processes of both 3-
dimensional 0- and 1-surgery can be viewed as taking the boundary of the first factor
D"*!, thickening it, passing through the unique intersection point D"*!' N D3~" and
then letting the thickened boundary of the second factor D3~ emerge. We will first
present the core view which shows how we pass from the boundary of D"*! to the
boundary of D3~". We will then apply the different kinds of thickenings (or framings)
to the cores in order to illustrate both processes in R*.

More precisely, 3-dimensional 1-surgery takes place inside D7 x D3. In this
case, we go from the core S} = dD? to the core S} = dD3 by passing through
the unique intersection D% N D%. As mentioned in Sect.2.4.4, we consider that n-
balls are centered at the origin. Hence if Df = {(x,y,0,0) : x>+ y> < 1} and
D% ={(0,0,z, w) : 7> + w? < 1} then D12 N D% = (0,0, 0, 0). This process can
be represented by looking at the (x, y) axes until core S| = 3 D7 collapses to the
singular point (0, 0, 0, 0) and then switching to the (z, w) axes as core S} = 8D§
uncollapses. This is shown in Fig. 10.5(a;). We will refer to this process as the core
view of 3-dimensional I-surgery which will be denoted by ‘core [3-1]’.

On the other hand, 3-dimensional O-surgery takes place inside D! x Dj3. In that
case, we go from the core S) = 3dD] to the core S = 3 D3 by passing trough
the unique intersection D} N D3. Hence, if D! = {(0,y,0,0) : y € [—1, 1]} and
D3 ={(x,0,z, w) : x>+z°+w? < 1},then D} N D3 = (0, 0, 0, 0). This process can
be seen by looking at the y axis until core S = 3 D] collapses to the singular point
(0,0,0,0) and then, switching to the x, z, w axes, as core S% = 8Dg uncollapses.
This is shown in Fig. 10.5(b;). We will refer to this process as the core view of
3-dimensional 0-surgery which will be denoted by ‘core [3-0]".

We will now thicken the aforementioned cores in order to present our illustrations
in R*. Let us recall that, so far, in Sects. 10.2.1 and 10.2.2, the final instances of both
3-dimensional 0-surgery and 1-surgery were distorted due to decompactification.
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Fig. 10.5 (a;) Core view of [3—1] surgery (ap) [3—1] surgery in R* (b;) Core view of [3-0]-surgery
(by) [3-0] surgery in R*

More precisely, in Figs. 10.3 and 10.4, both the solid torus D? x S21 and the thickened
sphere D! x S were filling the rest of the space in R®. Our goal here is to obtain the
corresponding undistorted illustrations in R*.

For 3-dimensional 1-surgery, we start by thickening our core view S| shown
in Fig.10.5(a;) with a D?. We collapse S} x D? to a singularity and then need
to uncollapse it in a way that produces the complement solid torus D? x 521 as a
thickening of its core Szl. The whole process is shown in Fig. 10.5(ay).

For 3-dimensional O-surgery, we start by thickening our core view S? shown in
Fig. 10.5(b;) with a D3. We collapse SY x D? to a singularity and then we need to
uncollapse it in a way that produces the D' x S% as a thickening of its core sphere
Szz. The whole process is shown in Fig. 10.5(b,).

In both cases, we have combined the core with the R* view and added the cor-
responding decomposition of S? in the end. We have used color coding in order to
clarify how the notions presented in Sects. 10.1, 10.2 and 10.3 interplay. To com-
plete the picture, it is worth adding that the visualizations of Fig. 10.4(a) and (b) are
the decompactified versions of Fig. 10.5(a;) and (b,) respectively. In both cases the
instances up to the singularity are identical while the uncollapsing is done in R* and
R* respectively.

Remark 14 Tt is worth adding that the two last instances D*> x S and D' x S of
3-dimensional 0- and 1-surgery in R* shown in Fig. 10.5(a,) and (b,) can be also
obtained as different rotations of the final instance D' x S! of 2-dimensional 0-
surgery surgery shown in Fig. 10.1 [2-0]. Indeed, starting with cylinder D' x S', we
first decompactify S! to R! to obtain D' x R, see Fig. 10.6(a). Then, using the same
rotational axis as the one described in Sect. 10.2.1 and shown in green in Fig. 10.6(a),
we obtain the decompactified D? x R!, where each segment D! has been rotated to
a disc D?. We finally recompactify R! to S! to obtain D> x S'. Note that the axis
starts as a circle, becomes straight during decompactification and becomes a circle
again when we recompactify.
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Fig. 10.6 (a) D? x S! as arotation of D! x §! (b) D! x §? as a rotation of D! x S!

Similarly, starting again with the D! x S! of 2-dimensional 0O-surgery, we first
decompactify S! to R! to obtain D! x R!, see Fig.10.6(b). Then, using the same
rotational axis as the one described in Sect. 10.2.1 and shown in grey Fig. 10.6(b), we
obtain the decompactified D' x R? where each line R! has been rotated to a plane
R2. In Fig. 10.6(b), we have used an oblique view of both D! x R! and D! x R? so
the effect of the rotation can be visible. We finally compactify R? to S? to obtain the
thickened sphere (or hollow 3-ball) D! x $2.

This process of decompactifying, rotating and compactifying again allowed us to
visualize the final instances of 3-dimensional 1- and O-surgery in relation with our
initial visualization of D' x S! of 2-dimensional 0-surgery by following a reasoning
similar to the one used in Sect.10.2 for the visualizations in R®. The difference
being that in the visualizations of Sect. 10.2, D' x S!' was obtained as part of the
decompactification of S2, hence it was inevitably deformed so that its union with S% x
D? would form R2. As this constrain does not exist here, when S! is decompactified
to R, its framing D' follows without undergoing such deformation, see the passage
from the first to the second instance in Fig. 10.6(a) and (b).

10.4 Modeling Black Hole Formation from Cosmic Strings
In this section we will see how the formation of black holes from cosmic strings can
be modeled by 3-dimensional 1-surgery.

10.4.1 Terminology

We will first explain the terms of Schwarzschild radius, event horizon and gravita-
tional singularity which will be used in the following sections.

The Schwarzschild radius is the radius of a 2-sphere such that, if all the mass of an
object were to be compressed within that sphere, the escape velocity from the surface
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of the sphere would equal the speed of light. If anything collapses to or below this
radius, a black hole is formed. The event horizon is a boundary in spacetime beyond
which events cannot affect an outside observer and is most commonly associated
with black holes. For a nonrotating black hole, the Schwarzschild radius delimits a
spherical event horizon.

In the center of a black hole, general relativity predicts the existence of a gravita-
tional singularity (or space-time singularity), i.e. a region in space in which matter
takes infinite density and O volume (basically infinitely dense and infinitely small).
The singularity cannot be seen as it is covered by the event horizon.

10.4.2 Black Holes from Cosmic Strings

Cosmic strings are hypothetical 1-dimensional topological defects which may have
formed in the early universe and are predicted by both quantum field theory and string
theory models. Their existence was first contemplated by Tom Kibble in the 1970s.
In [1], S.W. Hawking estimates that a fraction of cosmic string loops can collapse
to a small size inside their Schwarzschild radius thus forming a black hole. As he
mentions, under certain conditions, ‘one would expect an event horizon to form, and
the loop to disappear into a black hole’.

Note that other estimations of the fraction of cosmic string loops which collapse
to form black holes have been made in subsequent work, see [2, 3]. While the details
of the different estimations have no direct implications on this analysis, it is worth
mentioning the following two statements. In [2], R.R. Caldwell and P. Casper point
out that the loop ‘collapses in all three directions’ and in [3], J.H. MacGibbon,
R.H. Brandenberger and U.F. Wichosk give the following example for a collapsing
symmetric string loop: ‘For example, a planar circular string loop after a quarter
period will collapse to a point and hence form a black hole.’

Topologically, the aforementioned loop can be considered to be a solid torus
S! x D* embedded in an initial manifold M. The thickening D? can be considered to
be very small, as the diameter of a cosmic strings is of the same order of magnitude
as that of a proton, i.e. ~1 fm or smaller. Further, we consider M as being the 3-space
S3 or R? or a 3-manifold corresponding to the 3-dimensional spatial section of the
4-dimensional space-time of the universe. The loop S' x D? collapses to a small
size inside its Schwarzschild radius thus creating a black hole the center of which
contains the singularity. In this scenario, the inital 3-space M becomes a singular
manifold at that point.

Physicists are undecided whether the prediction of this singularity means that it
actually exists or that current knowledge is insufficient to describe what happens at
such extreme density. As we will see in the next section, we can avoid this singularity
by considering that the collapsing of a cosmic string loop is followed by the uncol-
lapsing of another cosmic string loop. In other words, we propose that the creation
of a black hole is a 3-dimensional 1-surgery which changes the initial 3-dimensional
space M to another 3-dimensional space x (M) by passing through a singular point.
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As detailed in Sect. 10.3, the time evolution of this process happens locally inside
the handle D? x D? and requires four spatial dimensions in order to be visualized
but each ‘slice’ of the process is a 3-dimensional manifold.

Note that this process is different from the global process of embedded surgery
used to model the density distribution of black hole formation in Sect.9.3 as it
describes the local process of a cosmic string collapsing to a black hole inside the
event horizon.

10.4.3 Black Holes from 3-Dimensional 1-Surgery

We will now describe the process of 3-dimensional 1-surgery on M step by step.
We start with an embedding of the loop S! x D?, which may also be knotted. Using
an analogue which is two dimensions lower, M is shown as a line while the core
S! of the embedding S' x D? is shown as the core S° of embedding S° x D'. In
Fig. 10.7 (initial), core S° is shown in red and its thickening in grey. Since the process
of surgery is a local process, black hole formation can be seen independently of M.
Therefore we zoom in to see this local procedure in instances (a)-(b) of Fig. 10.7
which happens inside D? x D?.

As mentioned in Chap. 5 and throughout this analysis, the local process of surgery
is considered as aresult of attracting forces. In the 3-dimensional case, we deliberately
didn’t show these forces in Fig. 10.5 in order to keep the illustrations lighter but as
explained in Sect.5.5, we know that the forces of our model are applied to the
core l-embedding e = k| : S' = S! x {0} = M of the framed n-embedding
h:S'x D> M.

These forces are added in blue in Fig. 10.7(a), where we see the same process
as Fig. 10.5(a,) but with a knotted embedding of the core S'. Note that these local
forces of our model correspond to the string tension, which collapses the cosmic
string (see [1] for details). In instance (2) of Fig. 10.7 the cosmic string shrinks to
a radius smaller than its Schwarzschild radius, thus the event horizon is formed.
We are not showing the black hole inside the event horizon as we want to focus on
the topological change. Further, instance Fig. 10.7(c) shows the loop shrinking to a
point in the 3-dimensional space where this point is the singular point mentioned in
Sect. 10.3.

According to our model, after the collapsing the process doesn’t stop, but another
manifold D? x S!, which corresponds to another cosmic string loop, grows from the
singular point of instance Fig. 10.7(c), and this is the added value of our model. In
Fig. 10.7(d) we show the uncollapsing of cosmic string D? x S' which transforms the
initial manifold M to x (M) = M \ h(S' x D?) U, (D* x §"), see Fig. 10.7 (final).
Note that instances Fig. 10.7(a), (b), (c) and (d) are analogous to the instances of
Fig.10.5(ay).

It is worth mentioning that Fig. 10.7 (final) is also shown two dimensions lower.
Namely, as in Fig. 10.7 (initial), the core S' of the cosmic string loop D? x S! is
represented by the core S° of D! x S°. In Fig. 10.7 (final), core S is shown in green
and its thickening in grey. The whole process occurs inside the handle D' x D!
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Fig. 10.7 3-dimensional 1-surgery inside the event horizon

illustrated in the upper part of Fig.10.7 which, following this analogy, stands for
D? x D?. The global 4-dimensional visualization of 3-dimensional 1-surgery on an
initial 3-manifold such as S> following the line of thought of Sects. 10.2.2 and 10.3 is
an intriguing subject and will be the subject of future work. However, for the purpose
of this analysis we do not need to visualize the initial and final manifold but rather
the idea behind the local process illustrated in instances Fig. 10.7 (a), (b), (c) and (d).

Summarizing the above, modeling the collapsing of a cosmic string loop with a
3-dimensional 1-surgery allows us to go through the singular point of the black hole
without having a singular manifold in the end. Instead, we end up in the same universe
with a local topology change from the 3-dimensional space M to the 3-dimensional
space x (M) and, as seen in Fig. 10.7(b), (c) and (d), this topology change happens
within the event horizon.
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Conclusions Creck for

In this thesis we explained many natural processes via topological surgery. Examples
comprise chromosomal crossover, magnetic reconnection, mitosis, gene transfer, the
creation of Falaco solitons, the formation of tornadoes and the formation of black
holes. To do this we first enhanced the usual static description of topological surgery
by introducing dynamics, by means of continuity and attracting forces. In order
to model more phenomena, we then filled in the interior space by introducing the
notion of solid surgery. Further, we introduced the notion of embedded surgery, which
leaves room for the initial manifold to assume a more complicated configuration and
describes how the complementary space of the initial manifold participates in the
process. Thus, instead of considering surgery as a formal and static process, our new
model and definitions can be used to analyze the topological changes occurring in
natural phenomena.

Apart from the examples studied in this thesis, there are several other phenom-
ena exhibiting surgery. Our topological model indicates where to look for the forces
causing surgery and what deformations should be observed in the local submanifolds
involved and these predictions may prove significant for the study of these phenom-
ena. Also, it would be worth applying our modeling of the changes occurring in the
complement space during embedded surgery in more natural processes as it provides
a ‘global’ explanation of the phenomenon, which can also be of great physical value.

Equally important, all these new notions resulted in pinning down the connection
of solid 2-dimensional O-surgery with a dynamical system. This connection gives us
on the one hand a mathematical model for 2-dimensional surgery and, on the other
hand, a dynamical system modeling natural phenomena exhibiting 2-dimensional
topological surgery through a ‘hole-drilling’ process. The provided dynamical system
presents significant common features with solid 2-dimensional O-surgery, in the sense
that eigenvectors act as the attracting forces, trajectories lie on the boundaries of the
manifolds undergoing surgery and surgery on the steady state point creates a limit
cycle thus coinciding with our definition of solid surgery. A possible future research
direction would be to search for other dynamical systems realizing surgery and
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use these dynamical systems as a base for establishing a more general theoretical
connection between topological surgery and bifurcation theory.

Moreover, we presented a visualization of the 4-dimensional process of 3-
dimensional surgery in R? by introducing the notion of decompactified 2-dimensional
surgery. This notion could be used to visualize 3-dimensional lens spaces occurring
from 3-dimensional surgery on the 3-sphere and other 4-dimensional processes.

Finally, we also modeled the formation of black holes from cosmic strings using
3-dimensional 1-surgery. As our model suggests that a black hole does not necessarily
resultin a spatial singularity, it would be very interesting to collaborate with physicists
in order to investigate the physical implications of the proposed topological change.
We are currently working in this direction.

We hope that through this study, topology and dynamics of natural phenomena,
as well as topological surgery itself, will be better understood and that our connec-
tions will serve as ground for many more insightful observations and new physical
implications.
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