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Supervisor’s Foreword

In this thesis, Thomas Keck has automated and optimized a large part of the
reconstruction work of highly skilled elementary particle physicists at the Belle and
Belle II experiments in Japan performed by large international collaborations (450
and >700 researchers from the whole world) by means of a hybrid (expert
knowledge and machine learning) hierarchical artificial intelligence system. Based
on a first version for the Belle experiment developed in 2011, he improved the
performance by another factor of 2 to an overall factor of 4 compared to human
performance in reconstruction efficiency at constant purity. He invented several new
machine learning methods making possible trainings independent of systematic
uncertainties in Monte Carlo simulations. He made it work both for the existing
Belle data and the future Belle II data. In addition, he performed an analysis of an
important rare decay of B mesons with the potential to find new physics beyond the
current standard model. Here, he pointed out previously unknown systematic
uncertainties.

The thesis poses an important step in improving the human expert efficiency in
exploiting expensive fundamental science experiments by means of artificial
intelligence/machine learning (AI/ML). It is a highly enjoyable, readable, suc-
cessful and valuable application of ML methods and shows real value and progress
in elementary particle physics beyond the current hype around AI, a superb
example for the new development of data science for science. It also shows that
deep human understanding and intelligence is the basis for successful application
of artificial intelligence. Notwithstanding my high-level view in this foreword: the
thesis is a scientific paper containing excellent reviews and new developments and
results about both experimental B flavour physics and machine learning.

Karlsruhe, Germany
July 2018

Prof. Feindt Michael
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Chapter 1
Introduction

Physics deals with the development of quantitative models that describe nature.
The most fundamental and precise models at present are: general relativity, which
describes gravity as an interaction between the curvature of space-time and matter;
and the Standard Model of particle physics (SM), which describes matter and the
remaining electromagnetic, weak and strong interaction in the form of relativistic
quantum fields.

The current high-energy physics (HEP) research focuses on the precise determi-
nation of the 19 free parameters of the SM and the search for new physics phenomena
beyond the SM.

The Belle II experiment is part of this effort. It is located at the SuperKEKB
electron-positron collider in Tsukuba, Japan. It is designed to perform a wide range
of high-precision measurements in all fields of heavy flavour physics, including:
B meson decays; B0

s meson decays; charm physics; τ lepton physics; hadron spec-
troscopy; and pure electroweak measurements. These measurements will constrain
the parameter space of the SM as well as some of its extensions.

This work focuses on the development of software, in particular machine learning
algorithms, to advance scientific progress, and to enable and improve a wide range
of physics measurements at Belle II. This thesis summarizes my contributions to the
Belle experiment and its successor the Belle II experiment.

Four major topics are covered. The conversion of the data recorded by the Belle
experiment into the new data-format used by Belle II in Chap.2. The integration of
state-of-the-art machine learning algorithms and novel data analysis techniques into
the Belle II Software Framework (BASF2) in Chap.3. The development of the Full
Event Interpretation exclusive tagging algorithm, which is unique to the
Belle II experiment in Chap.4. And the validation of the entire analysis software
stack using the benchmark measurement of the branching fraction of the rare decay
B → τντ in Chap.5.

© Springer Nature Switzerland AG 2018
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Chapter 2
From Belle to Belle II

During this thesis, the full ϒ(4S) dataset of the Belle experiment and large amounts
of the available Monte Carlo data were converted into the new data-format used by
Belle II. Therefore, it is possible to evaluate the reliability and performance of the
newly developed analysis methods, in particular data-driven techniques, before a
comparable dataset from the Belle II experiment is available.

In the following I give a brief overview of the Belle experiment (Sect. 2.1), its
successor the Belle II experiment (Sect. 2.2) and describe the technical aspects of
converting the Belle dataset into the Belle II data-format (Sect. 2.3).

2.1 The Belle Experiment

From June 1st 1999 until June 30th 2010, the Belle experiment recorded 988 fb−1 of
data at the KEKB asymmetric e+e− collider [1].

This summary of the KEKB accelerator and the Belle detector is based on [1, 2].
Sections 2.1.1 and 2.1.2 are adapted from my master’s thesis [3].

2.1.1 KEKB Accelerator

TheKEKBcolliderwas dedicated toBphysics and operated in the energy range of the
ϒ resonances. Its asymmetric beam energies induced a Lorentz boost βγ = 0.42 of
the center of mass frame relative to the laboratory system, enabling the precise obser-
vation of the time evolution of Bmeson decays. During its runtime between 1998 and
2010 KEKB achieved the highest instantaneous luminosity of 2.1 × 1034 cm−2 s−1

ever achieved by a collider [1, Sect. 1.3]. The machine parameters of KEKB are
summarized in Table 2.2.

© Springer Nature Switzerland AG 2018
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4 2 From Belle to Belle II

2.1.2 Belle Detector

The sole interaction point (IP) was surrounded by the Belle detector to detect and
identify particles produced by the collisions. Like the accelerator, the detector was
specifically designed for the precise observation of B meson decays. This includes
precise measurement of secondary vertices and good particle identification capabil-
ities.

Figure 2.1 shows a schematic side view of the Belle detector.
Going outwards from the interaction point the Belle detector consisted of:

• a double-walled Beryllium beam pipe with a radius of 20mm cooled by He gas;
• radiation-hardBismuthGermanate crystals used as an extreme forward calorimeter
(EFC) as well as a beam and luminosity monitor;

• four layers of double-sided Silicon strip detectors (SVD) for precise vertex detec-
tion;

• a central drift chamber (CDC), which measured momentum and energy loss of
charged particles;

• an Aerogel Cherenkov counter (ACC) system for particle identification (PID);
• a time-of-flight (TOF) detector system with plastic scintillation counters;
• a segmented array of CsI (Tl) crystals with silicon photodiode readout for electro-
magnetic calorimetry (ECL);

• a superconducting solenoid which provided a homogeneous magnetic field of
1.5T;

• and an iron support structure, which served as the return path of the magnetic
flux and was instrumented with glass-electrode resistive plate counters for KL and
muon detection (KLM).

Fig. 2.1 Side view of the Belle detector. Adapted from [2]
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Table 2.1 Summary of the integrated luminosity collected byBelle, broken downby center-of-mass
energy. Adapted from [1]

Resonance On-resonance
luminosity (fb−1)

Off-resonance
luminosity (fb−1)

ϒ(5S) 121.4 1.7

ϒ(4S) − SVD1 140.0 15.6

ϒ(4S) − SVD2 571.0 73.8

ϒ(3S) 2.9 0.2

ϒ(2S) 24.9 1.7

ϒ(1S) 5.7 1.8

Scan > ϒ(4S) n/a 27.6

2.1.3 Recorded Dataset

The Belle dataset is grouped into 31 experiments1; each experiment marks the time
period between two major shutdowns. Experiments 7 to 27 were recorded with the
first Silicon Vertex Detector (SVD1). The remainder was recorded with the second
(SVD2) detector and, in addition, was reprocessed in 2009 with an improved version
of the reconstruction software. Each experiment is further subdivided into a number
of runs.

Most of the data was recorded at the center-of-mass energy of the ϒ(4S) reso-
nance. In addition, data was also recorded at the ϒ(1S), ϒ(2S), ϒ(3S) and ϒ(5S)

resonances. Apart from that, off-resonance data 60MeV below the resonances was
collected to estimate the continuum background from data instead of Monte Carlo
simulation. Table 2.1 shows a summary of the integrated luminosity collected by
Belle, broken down by the center-of-mass energy.

The raw data coming from the detector was calibrated, reconstructed and stored on
tape using PANTHER-based2 data summary tape (DST) files. After each experiment
the calibration constants were recomputed by detector experts or computed directly
from data, and stored in the Belle Condition Database (based on PostgreSQL).
Finally, the data of the completed experimentwas reprocessed and stored in a compact
form called mDST files.3

For each experiment, ten times the real integrated luminosity in bb̄ events and six
times that in continuum events were simulated using EvtGen and GEANT3, and
reconstructed with the same software as was used for the detector data.

1Enumerated from 7 to 73 using only odd numbers and skipping the numbers 29, 57 and 59 for
reasons unknown to the author.
2The PANTHER format consists of tables, which are compressed by the zlib library. The table
formats are defined by ASCII header files.
3A reduced and compressed form of the data summary tape files.
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Table 2.2 Achieved parameters of KEKB and design parameters of SuperKEKB [4]

Machine Parameter KEKB SuperKEKB

e− e+ e− e+

Beam current (A) 1.64 1.19 3.60 2.61

Energy
(GeV) (EHER/ELER)

8.0 3.5 7.0 4.0

β∗
y (mm) 5.9 5.9 0.27 0.41

Crossing angle (mrad) 22 83

Beam lifetime (min) 200 150 10 10

Luminosity
(1034 cm−2 s−1)

2.11 80

2.2 The Belle II Experiment

This summary of the SuperKEKB accelerator and the Belle II detector is based on
the detailed description in the technical design report [4] and is an updated and
condensed version of a summary presented in my master’s thesis [3].

2.2.1 SuperKEKB Accelerator

The accelerator was shut down in June 2010 and upgraded to SuperKEKB to increase
the instantaneous luminosity to 8 × 1035 cm−2 s−1,which is 40 times thepeak instan-
taneous luminosity of KEKB [5, Sect. 2].

The higher instantaneous luminosity is obtained by adopting the Nano-Beam
scheme [5, Sect. 2], which requires a larger crossing angle to fit the final focusing
magnets [4, Sect. 3.1]. Moreover, the beam current in both rings is doubled. The
beam energy asymmetry was reduced to mitigate the shortened beam lifetime due
to the Touschek effect.4 In consequence the Lorentz boost is reduced to βγ = 0.28.
The relevant machine parameters of KEKB and SuperKEKB are summarized in
Table 2.2.

2.2.2 Belle II Detector

The original detector is currently upgraded to match the higher instantaneous lumi-
nosity of SuperKEKB. The most important objectives for the upgraded detector are
higher physics and background rate tolerance, better physics performance despite
smaller Lorentz boost, and improved radiation hardness [5].

4The Touschek effect is a loss mechanism due to large angle coulomb scattering inside a bunch.
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Fig. 2.2 Side view of the upgraded Belle II detector [6]

Figure 2.2 shows the Belle II detector.
Going outwards from the interaction point the Belle II detector consists of:

• a double-walled Beryllium beam pipe with a radius of 12mm cooled by paraffin;
• a pixel detector based on the DEPFET5 technology (PXD) for precise vertex detec-
tion;

• four layers of double-sided silicon strip detectors covering the full 17◦ − 150◦
acceptance of the Belle II detector (SVD) to extrapolate the tracks reconstructed
in the CDC to the PXD and to reconstruct low-momentum tracks;

• a central drift chamber (CDC), which measures momentum and energy loss of
charged particles, and provides a fast trigger signal for the Level-1 (L1) trigger
system;

• a proximity-focusing6 Aerogel Ring-Imaging Cherenkov detector (ARICH) for
particle identification (PID) in the forward end-cap;

• a time-of-propagation counter (TOP) in the barrel region using an array of 16 quartz
bars between the outer CDC cover and the calorimeter’s inner surface providing
PID information and a timing signal with a resolution of a few nanoseconds to the
trigger system;

5DEPleted Field Effect Transistor.
6An increasing refractive index is used to reduce the spread of the ring image due to emission point
uncertainty.
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• a segmented array of CsI(Tl) crystals in the barrel region and pure CsI crystals in
the end-caps with photodiode readout for electromagnetic calorimetry (ECL);

• a superconducting solenoid which provides a homogeneous magnetic field of
approximately 1.5T;

• and an iron support structure, which serves as the return path of the magnetic
flux, and is instrumented with glass-electrode resistive plate counters (RPC) in
the barrel region and scintillator strip in the end-caps for KL and muon detection
(KLM).

2.2.3 Anticipated Dataset

By 2025, Belle II will record 50 ab−1 of data, which corresponds to 50 times the
integrated luminosity of Belle. The current (March 17th 2017) luminosity projection
is shown in Fig. 2.3.

2.2.3.1 Data Acquisition

Belle II uses a two-level trigger system, with an FPGA-based Level-1 (L1) trigger
decision and a high level trigger (HLT) farm.

At the design luminosity the nominal average L1 trigger rate is expected to be up
to 30 kHz. For each trigger signal the data is read out by the data acquisition system

Fig. 2.3 SuperKEKB integrated and instantaneous luminosity projection [7] (March 17th 2017)
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from the detector front-end electronics. The high level trigger farm reconstructs the
event and performs a physics-level event selection using the event data from all sub-
detectors. The final rate of raw events written to the storage is expected to be between
6 and 10 kHz. The HLT consists of multiple Linux-based PC clusters and runs the
Belle II Analysis Software Framework (BASF2) [8].

2.2.3.2 Offline Reconstruction and Monte Carlo Production

The same software framework is used in offline reconstruction, Monte Carlo pro-
duction, and physics analysis. After machine-dependent calibration parameters are
determined, the raw data is reconstructed and stored at the KEK computing center.
Monte Carlo production and reconstruction will be distributed to data centers around
the world. The reconstructed information is stored in ROOT-based mDST files.

2.3 Belle to Belle II Dataset

In the above discussion of the recorded Belle and anticipated Belle II dataset, four
levels of data processing can be distinguished:

1. online reconstruction—the read-out of the detector and the trigger system,
producing the raw-data (DST files);

2. offline reconstruction—cluster reconstruction, track finding and fitting, pro-
ducing the mDST data;

3. mDST analysis—creation of final state particle hypotheses, reconstruction of
intermediate particle candidates and vertex fitting, producing flat n-tuples;

4. and n-tuple analysis—fit to theoretical predictions in order to extract interesting
observables, producing scientific papers.

Converting the raw-data is in principle possible, but the differences between the
Belle andBelle II detector render this a difficult and ill-defined task.While this would
allow for the validation of the Belle II reconstruction software (e.g. the track finding
and fitting algorithms) on Belle data, this would be only of limited use due to the
vastly different expected background and the availability of data from cosmic runs.

The Belle to Belle II dataset conversion converts the Belle mDST data, which
contains mostly detector independent objects like tracks and energy clusters, into
the new mDST format used by BASF2. This enables the validation of the Belle II
analysis software, and (re-)production of Belle measurements using the improved
software. Figure 2.4 displays an overview of BASF2 including the conversion path
presented in this work.

By comparing the original Belle results, the Belle results obtained from converted
data in BASF2, and Belle II sensitivity studies on Belle II Monte Carlo, it is possible
to assign improvements in the sensitivity and occurring inconsistencies to the analysis
and reconstruction algorithms, separately.
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Belle II Detector

Online reconstruction

Monte Carlo Generators

Detector Simulation

Belle II raw-data

Belle mDST

Belle to Belle II Conversion

Offline reconstruction

• IR

• PXD

• SVD

• CDC

• ECL

• TOP

• ARICH

• BKLM

Belle II mDST

mDST Analysis

• Vertex Fitting

• Monte Carlo Matching

• Decay Reconstruction

• Continuum Suppression

• Flavour Tagging

• Full Event Interpretation

Flat n-tuple

n-tuple Analysis

Scientific Paper

Fig. 2.4 Schematic overview of the data-flow in the Belle II environment. Data is provided by the
Belle II detector; theMC generators; or Belle mDST files. BASF2 is responsible forMC generation,
detector simulation, online reconstruction, offline reconstruction, mDST analysis and the Belle to
Belle II conversion, as well as writing and reading the different data-formats. Analysis-specific user-
code is only required during the n-tuple analysis, which extracts the desired physics observables

2.3.1 Overview

The software responsible for reading in the old Belle AnalySis Framework
(BASF) [9] data-format and representing the data in memory was isolated, cleaned
up and compiled into a new library named belle_legacy. A new package was
introduced in BASF2 called b2bii (Belle to Belle II). It contains three BASF2
modules developed with the help of the belle_legacy library. The conversion
process is visualized in Fig. 2.5.

The B2BIIMdstInput module opens thePANTHER-basedBellemDSTfiles and
reads the data event-by-event into the main memory. The data of the current event
is represented in the memory by a series of PANTHER tables.
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Belle
mDST-files

Belle
database
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tables

B2BII
MdstInput

“fixed” Panther
tables

B2BII
FixMdst

B2BII
ConvertMdst

Belle II
mDST-files

Belle II
database

belle legacy library

Fig. 2.5 Schematic view of the conversion process of Belle to Belle II mDST files using the
BASF2 modules provided by the b2bii package and the original Belle software provided by the
belle_legacy library

The B2BIIFixMdst module applies various calibration factors onto the
PANTHER tables, for instance on the beam-energy, the momenta and error matri-
ces of the fitted tracks, the energy deposition in the ECL, and the particle identifi-
cation information of the CDC and TOF. It also performs standard cuts to ensure
that the selection of the detector data and Monte Carlo events is identical. Finally,
π0 candidates are reconstructed from the γ particle objects and the corrected ECL
clusters.

The B2BIIConvertMdst module converts the information stored in the Belle
PANTHER tables and writes it to the Belle II DataStore. The beam-energy and
IP-profile is collected in the BASF2 BeamParameters object and stored in the
conditions database of Belle II.

2.3.2 Implementation Details

The detailed matching between PANTHER tables and corresponding BASF2 data-
objects is shown in Fig. 2.6. In the following I describe the conversion process in
detail for future reference.

2.3.2.1 Event Information

Event information like the beam energy and position of the interaction point are
loaded from the Belle conditions database and stored in BeamParameters objects
that can be uploaded to the Belle II conditions database.



12 2 From Belle to Belle II
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Fig. 2.6 Matching of the Belle PANTHER Tables to the Belle II DataStore-objects and
DataStore-relations

BASF assumed a constant magnetic field of 1.5T even outside the detector region.
The conversion accounts for this as well by adopting the same convention in BASF2,
where otherwise a 3D map of the magnetic field is used.



2.3 Belle to Belle II Dataset 13

2.3.2.2 Monte Carlo

The Monte Carlo information stored in the Gen_hepevt table is converted into an
MCParticleGraph, hence the fine-grained unified Monte Carlo matching algo-
rithm of BASF2 can be used, and problems contained in algorithms used by BASF
are avoided [6, Sect. 4.3].

The Gen_hepevt table includes special entries for a common mother of beam-
background particles (PDG code 911) and for virtual photons (PDG code 0). These
entries are ignored during the conversion, because there are no corresponding con-
cepts in Belle II. For instance, in BASF2 beam-background is indicated by a moth-
erless Monte Carlo particle.

The original Belle software does not provide Monte Carlo information for
KLMClusters, following the approach of [10, Sect. 5.2] reconstructed K0

L are
matched to the closest true Monte Carlo K0

L within ±15 degrees in both θ and φ.
Furthermore, unlike Belle II Monte Carlo, the Belle Monte Carlo does not pro-

vide information on the differentiation between photons generated directly by the
fundamental matrix-element calculated by the Monte Carlo generator evtgen [11]
(hereinafter referred to as gamma) and photons generated afterwards for instance
by PHOTOS [12] or the simulation [13] (hereinafter referred to as final state radia-
tion) (see [14, Appendix C]). Often a reconstructed particle which misses final state
radiation is considered a signal, whereas a missing gamma is considered as a wrong
reconstruction. A simple heuristic is applied to distinguish the two cases: Photons
from a decay M → AB...γ are flagged as final state radiation, and photons from a
decay M → Aγ are flagged as gammas. In particular photons from π0 → γγ and
D∗ → Dγ are considered gammas. Other cases like B → μνγ are regarded by the
heuristic as final state radiation and have to be treated by the analyst themselves.7

The official Belle Monte Carlo campaigns produced ten times the real integrated
luminosity in bb̄ events and six times that in continuum events, however some incon-
sistencies were encountered during the development of the conversion software,
which were fixed if possible: The Monte Carlo campaign deleted the 8 left-most
bits of the 32 bit long PDG codes during the Monte Carlo simulation.8 During the
conversion these corrupted PDG codes are restored by matching their lower 24 bit
to known PDG codes. In the official Belle Monte Carlo campaign from 2010 for
B → u�ν and other rare B decays, the mass of almost all MC particles is set to zero,
which can lead to wrong results if this quantity is used during the analysis. How-
ever, this information is redundant since the correct mass of the MC particles can be
calculated using either the PDG values or the MC four-momenta.

7In this case, photons from initial and final state radiation are physically indistinguishable, since the
corresponding amplitudes interfere. Actually, there is no correct answer to the question of whether
the photon is final state radiation or not. Hence, the behavior of the heuristic is not wrong, but
probably unexpected by the analyst, because the initial state radiation amplitude dominates in this
decay.
8BASF already implemented a function for recovering the lost bits, but it was apparently not applied.
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2.3.2.3 Tracks

The tracking output of BASF is transformed and stored into Track and associated
TrackFitResult objects. The transformation is unique but non-trivial because
the two experiments employ different track parameterizations and conventions for
the reference point of the track.

2.3.2.4 ECL Clusters

The ECL information is stored in the ECLCluster object and two
ParticleLists are filled containing the γ and π0 candidates created by
B2BIIFixMdst earlier. The lists are named gamma:mdst and pi0:mdst,
respectively.

2.3.2.5 KLM Clusters

The KLM information is stored in the KLMCluster object and a ParticleList
is filled containing K0

L candidates. The list is named K_L0:mdst.

2.3.2.6 V0 Objects

The output of theV0 Finder is directly transformed intoParticleList objects
containing candidates for γ, K0

s and �. The lists are named gamma:v0mdst,
K_S0:mdst and Lambda0:mdst, respectively. Additional quality information is
stored in the ExtraInfo field of the Particle objects under the keys goodKs,
ksnbVLike, ksnbNoLam and ksnbStandard.

2.3.2.7 PID Information

The PID information provided by the different Belle sub-detectors is mapped to
similar Belle II sub-detectors, so that the physical meaning of the information is par-
tially preserved. In particular the Belle time-of-flight (TOF) and Aerogel Cherenkov
counter (ACC) detectors are mapped to the Belle II time-of-propagation (TOP) and
Aerogel ring imaging Cherenkov (ARICH) detectors, respectively.

2.3.2.8 Relations

Finally, some of the created data-objects are related to one another (see Fig. 2.6).
Hence, BASF2 relations are created: from the ECLCluster to the MCParticle
and Track which are responsible for the creation of the cluster; similarly from
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the KLMCluster to the ECLCluster and Track; from the Track to the
MCParticle that created it; and from the Track to the corresponding
PIDLikelihoods. Additional relations are created between the Particle
objects in the created ParticleLists and the corresponding MCParticle
and PIDLikelihoods. The links between TrackFitResults to Tracks;
Tracks to Particles; and Clusters to Particles are not represented by
relations in BASF2.

2.3.3 Validation

In order to ensure the correctness of the conversion, a study was performed with
Monte Carlo simulated Belle events. For each of the following six physical processes
100,000 simulated events were investigated, partitioned according to the relative
integrated luminosity of all relevant experiments 7–65:

• generic ϒ(4S) events:

– ϒ(4S) → B+B− (evtgen-charged),
– ϒ(4S) → B0B̄0 (evtgen-mixed);

• continuum events:

– e+e− → cc̄ (evtgen-charm),
– e+e− → qq̄ (uds) (evtgen-uds),
– e+e− → π+π− (qed-tautau);

• and signal events B+ → π+ντ (signal).

Furthermore, for each of the following beam conditions 100,000 events recorded
by the Belle experiment were investigated, partitioned according to the relative inte-
grated luminosity of all relevant experiments 7–65:

• on-resonance events recorded at the center of mass energy of theϒ(4S) resonance;
• and off-resonance events recorded 60MeV below.

The events were processed with the old BASF framework and more than 360
quantities9 were extracted from the PANTHER tables shown in Fig. 2.6. The complete
list of extracted quantities can be found in Sect. A.1. Afterwards the events were
processed a second time with the new BASF2 software using the b2bii conversion,
and the same quantities were extracted.

2.3.3.1 Observed Differences

Most quantities do not differ.

9For instance: Kinematic quantities like four-momenta, Monte Carlo information, PID information
and beam-parameters.
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Fig. 2.7 Comparison of BASF (Belle) and b2bii (Belle II). The leftmost (rightmost) bin rep-
resents the underflow (overflow) bin. The upper plots show the superimposed Belle and Belle II
Monitoring Histograms (the total number of entries is shown as a black line). The lower plots show
the differences between Belle and Belle II, hence a positive (negative) difference means there are
less (more) entries in the Belle II Monitoring Histogram

The observed differences between BASF and b2bii were further investigated
and either corrected or classified as harmless. Minor differences occur due to small
shifts caused by numerical imprecision leading to the migration of events between
adjacent bins, especially for values near zero, and differences in the treatment of
special floating point values such as infinity and NaN (Not a Number) leading to
migration from the overflow/underflow bin to the bin including zero in rare cases
(see Fig. 2.7b).

Further differences are found: in the PDG codes of MCParticles due to the
recovery of the full 32 bit as mentioned above; the number of daughters of the
MCParticles due to the unconverted virtual photons occurring in nuclear inter-
actions between the hadronic final state particles and the detector material (see
Fig. 2.7a); and in all kinematic quantities of V 0 and π0 objects after the mass-
constrained vertex fit caused by different software employed to fit the vertices.

2.3.3.2 Experiment Dependency

The changes in hardware and software between the 31 Belle experiments influence
the quantity and quality of the recorded data. In order to carry out physics analyses
and compare them with studies on Belle II Monte Carlo events, quantities should
be used, which are robust against differences between the Belle experiments. The
beam-induced background in Belle II is expected to be increased by a factor 20–30.
Quantities that are already fluctuating between Belle experiments are likely to be
highly dependent on the assumed background conditions in Belle II. One of the most
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(a) All tracks found by the tracking software. (b) Only good tracks: Impact parameters less
than 2 cm and 4 cm in transverse and
beam axis direction, respectively.

Fig. 2.8 The mean number of reconstructed tracks over the Belle experiments. The error bars show
the uncertainty on the mean value, however they are mostly too small to be visible. The increase
in the number of tracks after experiment 27 is caused by the switch to the improved reconstruction
software and the replacement of the SVD

basic properties of an event is the number of fitted tracks. As can be seen in Fig. 2.8
there are large differences between the Belle experiments for this quantity.

Therefore, the following selections are applied to Belle events in the remainder
of this work: good tracks are selected with impact parameters less than 2 and 4 cm
in transverse and beam axis direction, respectively (see Fig. 2.8); and good clusters
are selected without an associated track and with an energy of 50, 100, 150MeV in
the barrel, forward and backward region, respectively (see Fig. 2.9). These are the
same cuts which were usually applied in Belle analyses.

Some differences between the experiments remain after the cuts. In particular due
to the switch to the improved reconstruction software and the replacement of the
SVD after experiment 27.

2.3.3.3 Monte Carlo Simulation and Detector Data Differences

This thesis uses the last official Belle Monte Carlo campaign (prefixed with
evtgen-). In addition the latest special Monte Carlo campaign for rare B decays is
used (prefixed with special-). And finally some dedicated Monte Carlo samples
for QED background were investigated (prefixed with qed-). Those were usually
not used in Belle B meson analyses, because the hadronBJ skim suppresses them
very efficiently.

Table 2.3 shows the extracted fraction and the corresponding fractions in the 7th
Belle II Monte Carlo campaign for comparison.

The simulation of continuum events, that is events which do not contain a ϒ(4S),
is challenging due to the required knowledge of the correct QCD hadronization
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Fig. 2.9 The mean number of reconstructed clusters over the Belle experiments. The error bars
show the uncertainty on the mean value, however they are mostly too small to be visible. The large
differences between the experiments are due to different beam conditions

Table 2.3 Number of simulated events corresponding to the recorded luminosity of 0.711 ab−1

normalized to the number of the recorded events at the ϒ(4S) resonance. Belle simulated rare
and b → u�ν decays separately, while Belle II includes them in the evtgen-charged and evtgen-
mixed samples. In contrast to the official Belle MC campaign, the relative ratio of B+B−/B0B̄0 =
0.514/0.486 was taken into account

Type Belle Belle II

evtgen-charged 0.1264 0.1310

evtgen-mixed 0.1195 0.1238

evtgen-charm 0.2933 0.3078

evtgen-uds 0.4716 0.5534

qed-tautau 0.1996 0.2052

qed-mumu 0.2395 –

qed-eemm 0.2539 –

special-mixedrare 0.00102 –

special-chargedrare 0.000824 –

special-mixedulnu 0.000859 –

special-chargedulnu 0.000923 –

factors and branching fractions. In addition, the exact composition of the continuum
background is poorly documented and not all components are part of the available
official (or even unofficial) Monte Carlo campaign, e.g. e−e+ → γγ, is not available.

In consequence, the continuum description of Belle is not in agreement with the
observed data. The off-resonance data recorded by the Belle detector can be used
as a cross-check and sometimes replacement for Monte Carlo simulated continuum
events. In a physics analysis the observables are usually extracted using a model for
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Fig. 2.10 The distribution
of the number of good tracks
in each event

the signal and background components, the relative fractions are usually not fixed and
determined directly from data. Nevertheless, the continuum component description
is often a leading systematic uncertainty in Belle analyses [15].

The continuumcompositionwas investigatedusing10,000 simulated and recorded
events for each component, scaled according to the fractions stated in Table 2.3 of
the consideredQEDbackgrounds only e−e+ → τ−τ+ contributes. The other compo-
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nents are suppressed by the so-called hadronBJ cut, which is applied per default for
all B analyses. As can be seen from Fig. 2.10 theMonte Carlo continuum description
is incomplete, it underestimates (overestimates) the events in the low-multiplicity
(high-multiplicity) region. In contrast, the ϒ(4S) Monte Carlo simulation combined
with the off-resonance data fits the data better.

The over-estimation of continuum background, most-likely the cc̄ component,
leads to an increase of D meson candidates and finally to more combinatorial back-
ground for B mesons. An example is shown in Fig. 3.15, where D mesons were
reconstructed onMonte Carlo simulated events, on-resonance data and off-resonance
data.

Throughout this thesis, these expected differences between Monte Carlo and data
are observed in several places. Section 3.3.3 describes techniques to mitigate the
influence of these differences in the context of multivariate classification. Section
4.3.2 investigates the continuum component in the context of exclusive tagging. In
the benchmark analysis in Chap.5, the continuum component is a large background
in the hadronic τ decay-channels. Hence, the continuum description was investigated
in detail and compared to off-resonance data.

2.4 Conclusion

The Belle to Belle II Conversion enables Belle II physicists to analyze the dataset
recorded by Belle using BASF2. The conversion process was validated on a basic
level by ensuring the same output for a large number of quantities. Differences which
emerged were studied and explained.

In order to validateBASF2on aglobal level, physics analyses have to beperformed
and compared to results published by the Belle collaboration. In this thesis the decay
B → τντ is investigated and compared to [15, 16].

Other measurements using the b2bii conversion are in preparation:

• the branching ratio of B+ → �−νγ with hadronic tagging [17],
• the branching ratio of B+ → �−νγ with semileptonic tagging [18],
• the branching ratio of B+ → �−ν with inclusive tagging,
• and the search for B0

s → φπ0 [19].

Furthermore, b2bii can be used to study the performance differences between
the Belle and Bellef II experiment, to optimize the latter as soon as first data
has been collected.

Finally, the conversion ensures the preservation of the legacy of the Belle exper-
iment: The full recorded dataset of nearly 1 ab−1 of data, which led mankind to the
verification of the CKM mechanism and the observation of tetra-quarks.
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Chapter 3
Multivariate Analysis Algorithms

In recent years, the field of multivariate analysis and machine learning evolved
rapidly, and provided powerful techniques, which are currently adopted in all fields
of science. Prominent use-cases include: image and speech recognition, stockmarket
trading, fraud detection, and medical diagnosis.

In high energy physics (HEP) multivariate analysis (MVA) methods are exten-
sively used: to identify interesting collision in the trigger system; reject beam-induced
hits in the drift chamber during track finding; infer the deposited energy in the
calorimeter; provide particle identification information; reject particle candidates
from combinatoric and physics background in an analysis.

The Belle II collaboration decided to provide a multivariate analysis package
named mva as part of BASF2 to encourage physicist to take advantage of exist-
ing methods and to keep up with the recent developments in the field. The pack-
age provides: a common code base for BASF2; support for all major MVA frame-
works; transparent run-dependent loading of the fitted models from the Belle II
Conditions Database; tools for automating fitting, inference and evaluation
of models.

The mva package and many algorithms based on it were implemented during this
thesis. In the following chapter I outline the theoretical foundation of multivariate
analysis and machine learning (Sect. 3.1), describe technical aspects of the mva
package (Sect. 3.2), and present applications based on the package (Sect. 3.3).

3.1 Theory

Multivariate Analysis (MVA) algorithms are used to describe the distribution of
observed data �x and to deduce properties of the underlying process generating the
data; the algorithms are based on multivariate statistics. Common tasks include:
the approximation of a function f (�x) (regression Sect. 3.1.1); the separation of data-
points into signal and background (classification Sect. 3.1.2); and grouping of similar
data-points (clustering).

© Springer Nature Switzerland AG 2018
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Machine learning (ML) provides an effective way to automatically learn the
required statistical model using an appropriate domain-specific dataset, i.e. knowl-
edge is extracted from experience, which can be viewed as a simple form of artifi-
cial intelligence. Usually, machine learning algorithms include a fitting-phase dur-
ing which a statistical model is learned from the provided (training) dataset, and
an inference-phase during which the statistical model is used to infer the desired
(target) information for a new independent (test) dataset.

Depending on the available feedback during the fitting-phase one can distinguish
between three different types of learning: the target information is provided during
the fitting-phase (supervised learning); no additional information is provided during
the fitting-phase (unsupervised learning); rewards and punishments are provided in
a dynamic environment (reinforcement learning).

In HEP the target information is usually known from Monte Carlo simulated
events, or can be inferred on data via data-driven techniques (see Sect. 3.3.3). There-
fore, most tasks can be solved using supervised learning. In supervised learning the
target information y ∼ f (�x) + ε is predicted by a statistical model ̂f using a feature
vector �x . The statistical model has internal degrees of freedom (so-called weights
�w), which can be adapted by an algorithm to minimize the discrepancy of the true
value y from the predicted value ŷ = ̂f (�x, �w), where the discrepancy is defined by
a loss-function L(y, ŷ, �w).

Detailed introductions into the topic can be found in [1, 2]. The relevant concepts
are summarized in the remainder of this section.

3.1.1 Regression

A statistical model ̂f (�x, �w), which estimates the value of a stochastic function y =
f (�x) + ε is called a regressor. It can be interpreted as the function which minimizes
the risk functional

R( �w) =
∫

L(y, ̂f (�x, �w), �w)dP(�x, y), (3.1)

where P(�x, y) is the unknown joint probability distribution [3]. In the framework
of empirical risk minimization (ERM) the risk functional is approximated by the
empirical risk using a training dataset (�xi , yi )

Remp( �w) =
∑

i

L(yi , ̂f (�xi , �w), �w). (3.2)

The weights �w of the statistical model are chosen so that they minimize the
empirical risk. This is known as the principle of empirical risk minimization [3].

A suitable loss function can be chosen using the ERM framework [4] or based on
the maximum likelihood principle. Typical examples are: the squared loss (ŷ − y)2;
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and the absolute loss |̂y − y|. Often additional terms are added to the loss function
which depends on the weights �w of the model, to impose certain smoothness and
regularization assumptions on ̂f .

A well-known example for the application of the principle of ERM is the linear
regressionmodel yi = �xi · �wwith a squared loss, which leads to thewell known least-
square solution for the weights of the linear regression model �w = (XT X)−1XT �y,
where X = (�x2, �x2, . . . , �xn) and �y = (y1, y2, . . . , yn).

Various methods for regressions have been developed. One can distinguish
between:

• Parametric methods with a fixed parametrized model structure and a finite num-
ber of unknown parameters that are estimated from the training dataset. Typical
examples include: Generalized Linear Models [5] and Artificial Neural Networks
[1, Chap. 5], [2, Chap. 11].

• Nonparametric methods estimate an appropriate model structure from the train-
ing dataset. Typical examples include: Kernel Density Estimator [6], [2, Chap. 6]
and Decision Trees [2, Chap. 9].

As stated above, the estimated function f is stochastic. Therefore, its value y
is a stochastic variable, which is distributed according to a conditional probability
density function P(y|�x). In consequence, regression can be generalized to predict
location, scale and shape parameters using a distribution assumption [7]; or the
conditional density function itself without assuming a particular distribution using
quantile regression [8] or mixture density networks [1, Sect. 5.6].

3.1.2 Classification

A statistical model ̂f , which distinguishes signal (y = 1) from background (y = 0) is
called a classifier. Classification can be viewed as a particular form of regression. The
classifier is a regressor for the signal probability P(y = 1|�x). At a certain threshold
(working point) C , data-points with ̂f > C are classified as signal, and background
otherwise. The choice of the working point depends on the expected cost of signal
classified as background (type I error) and background classified as signal (type II
error), or equivalently on the desired signal efficiency and purity (which are usually
more closely related to the figure of merit used in physics analyses).

There is a close connection to the theory of hypothesis testing, the statisticalmodel
can be interpreted as a test-statistic T = ̂f (�x, �w). The most efficient test statistic at
a given significance level to distinguish between two simple hypotheses is given by
the Neyman-Pearson Lemma

TNP(�x) = PDFS(�x)
PDFB(�x) , (3.3)
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N = 1 N = 2 N = 3

Fig. 3.1 Visualization of the curse of dimensionality. The phase-space of an N dimensional function
grows exponentially, thus the number of events necessary to sample a high-dimensional probability
density function grows exponentially as well and is unviable

where PDF denotes the probability density functions (PDF) of signal and background
data-points. A sound introduction to hypothesis testing and the Neyman-Pearson
Lemma can be found in the original paper [9].

The PDFs are usually unknown and cannot be sampled in a high dimensional
feature space �x , due to the curse of dimensionality (see Fig. 3.1), in consequence TNP
is unknown and has to be approximated with analytical (using distribution assump-
tions) or numerical (using machine learning) methods. Two approaches can be dis-
tinguished:

• Generative Methods like Fisher’s discriminant [10], Kernel Density Estimators
[6], [2, Chap. 6] or Gaussian mixture models [1, Chap. 9]; which approximate
the probability density functions for signal ̂fS ≈ PDFS(�x) and background ̂fB ≈
PDFB(�x) separately, and can therefore be used to generate new data-points.

• Discriminative Methods like Boosted Decision Trees (BDT) [11], [2, Chap. 10],
Support Vector Machines (SVM) [1, Chap. 7], [2, Chap. 12] or Artificial Neu-
ral Networks (ANN) [1, Chap. 5], [2, Chap. 11]; which directly approximate
̂f (�x) ≈ TNP, usually under the assumption that the dimension d of the hyper-
plane separating (discriminating) signal and background in the feature space is
much smaller than the dimension D of the feature-space itself d � D.

The methods differ in: the convergence rate against the optimal solution with
increasing statistics, their robustness against outliers and measurement errors; the
bias and variance of the obtained model (see Sect. 3.1.3).

Typical loss functions used for classification are: the logistic loss [4]; the hinge
loss [4]; and the cross entropy [1, Sect. 4.3.2]. The loss-functions differ in their
robustness against outliers and their convergence rate (see [4]).

3.1.3 Model Complexity

The complexity or number of degrees of freedom (NDF) of the statistical model
strongly influences the prediction error of the model on an independent test dataset.
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3.1.3.1 Bias-Variance Dilemma

There are three possible sources of errors in any statistical model ̂f (�x) describing a
multivariate distribution y ∼ f (�x) + ε.

1. (Bias) The model is not complex enough to describe all relevant aspects of
the data—the model is under-fitted. This leads to a biased model Bias( ̂f ) = E
( ̂f − f ).

2. (Variance) The model is too complex and is dominated by the statistical fluctu-
ations of the training data—the model is over-fitted. This leads to a model with a
large variance Var( ̂f ) = E( ̂f 2) − E( ̂f )2.

3. (Irreducible) The intrinsic noise ε of the underlying distribution introduces an
irreducible error Var(y) = Var(ε).

Mathematical we can expand the expected quadratic deviation of the statistical
model ̂f from the true value y into these three components

E
[

(y − ̂f (�x))2] = Bias
[

̂f (�x)]2 + Var
[

̂f (�x)] + Var [y] .

Figure3.2 visualizes the trade-off between bias and variance as a function of the
model complexity. In the literature this fact is known as the Bias-Variance Dilemma
[1, Sect. 3.2], [2, Sect. 2.9]. Since the over-fitting effect cannot be seen on the training
data, it is crucial to always test the model on an independent validation dataset.
Choosing the optimal model complexity is the key to the successful employment of
MVA methods.

3.1.3.2 Controlling the Model Complexity

The size of the training dataset at hand defines an upper bound for the feasible
model complexity. The model cannot resolve the underlying distribution f below
the threshold given by statistical fluctuations, i.e. the bigger the training dataset, the
more degrees of freedom of a model can be constrained.

MVA algorithms usually provide several hyper-parameters � (in contrast to the
parameters/weights of the statistical model itself) to control the complexity of the

Fig. 3.2 Visualization of the
trade-off between bias and
variance of a MVA method
depending on the model
complexity
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underlying model. The theoretical foundation is provided by the principle of struc-
tural risk minimization (SRM) [3]. Following [3], one can distinguish three different
concepts of SRM:

• Structure given by the architecture—Hyper-parameters which define the archi-
tecture of themodel directly control the globalNDFof themodel. Typical examples
are: the number of hidden layers and neurons in an artificial neural network; the
number of trees and their depth in a boosted decision tree.

• Structure given by the learning procedure—Hyper-parameters which control
the effective NDF in different regions of the feature-space during the fitting-phase.
Typical examples are: weight-decay in an artificial neural network; pruning algo-
rithms for a decision tree; and boosting algorithm in ensemble methods.

• Structure given by preprocessing—Hyper-parameters which control the degree
of degeneracy in the input data by applying a transformation to the input features
prior to the fitting-phase. Typical examples are: binning and smoothing of the input
features; dimensionality reduction using principal component analysis.

SRM provides another interpretation of the Bias-Variance Dilemma introduced
above, where the bias is given by the empirical risk and the variance is introduced
by the generalization error due to the finite sample size. Using the hyper-parameters
�, a series of models ̂f1, ̂f2, . . . , ̂fn with increasing complexity (defined by their
Vapnik–Chervonenkis (VC) dimension h [2, Sect. 7.9]) is defined. The empirical
risk is minimized for each model (meaning the model is fitted). Using the framework
of SRM, an upper bound C(h, l) for the generalization error introduced by the finite
training sample size can be calculated, i.e, an upper bound for the difference |R −
Remp|between the actual risk R and the empirical risk Remp. Theprincipal of structural
risk minimization defines the optimal model as the one with the minimal guaranteed
risk Remp + C .

However, the upper bound C can only be calculated for certain models, and is
usually only a weak bound. In practice, the optimal model is selected by optimizing
the associated hyper-parameters, e.g. using grid or random-search [12]; gradient
descent algorithms [13]; or Bayesian optimization algorithms [14].

3.1.4 Data Analysis in High Energy Physics

Data analysis plays a crucial role in HEP experiments like Belle II. There are unique
characteristics and associated challenges.

• The inherent stochastic nature of quantum field theory rules out a ground truth for
individual data-points. Therefore, supervised machine learning and data analysis
have to rely on Monte Carlo simulation or on advanced data-driven techniques to
establish a ground truth.

• The investigated phenomena are usually very subtle and cause only small effects.
Therefore, large amounts of events (often in the order of billions) have to be
analyzed in a high-dimensional feature-space.



3.1 Theory 29

• The statistical and systematic uncertainties have to be treated very carefully to
produce sound scientific results.

Consequently, the HEP community developed data analysis strategies suited for
these requirements. Following the history of data analysis in HEP, I describe the
advantages and disadvantages of the traditional cut-based (Sect. 3.1.4.1), the current
multivariate (Sect. 3.1.4.2) and the prospective deep learning (Sect. 3.1.4.3) approach.
An in-depth introduction can be found in [15].

3.1.4.1 Traditional Cut-Based Analyses

In the traditional cut-based approach, the physicist determines a series of one-
dimensional cuts on the dataset, to incrementally increase the signal-to-noise ratio
in the signal-region.

For instance, one could cut on the K+ PID information, the invariant mass of the
π0, and the χ2 probability of the vertex fit to increase the signal-to-noise ratio in the
reconstruction of the decay D0 → K−π+π0.

The cuts are determined on Monte Carlo simulated events or in control regions.1

The final signal region is only unblinded once the whole analysis strategy is fixed.
Physics knowledge can be easily incorporated into this process: phase-space with

large systematic uncertainties (for instance due to unreliable Monte Carlo simulation
or threshold effects in reconstruction algorithms) can be excluded; the dataset is pre-
processed and reduced to a suitable subset for this analysis (for instance intermediate
particles are reconstructed and irrelevant features are dropped); new physically moti-
vated features can be constructed (for instance angles in particular reference frames);
and erroneous assumptions or software can be spotted by experienced analysts.

It is relatively easy to estimate the systematic uncertainty introduced by the cuts,
by varying the cut in a certain range. Although, this common procedure has been
criticized (see [15, Sect. 8.4.3]). Moreover, the agreement between Monte Carlo
simulation and data can be verified after each cut.

The fixed analysis procedure is usually simple enough to be included in recast-
ing frameworks, which recast existing analysis to provide bounds for new physics
scenarios, by automatically analyzing custom signal Monte Carlo simulated events
[16].

On the other hand, multivariate correlations are not (or only to a small degree)
taken into account, which leads to reduced signal efficiency. Possible correlation
between the cuts are often neglected. There is no obvious choice for the range in
which the cuts are varied to estimate the systematic uncertainties. Finally, the process
of manual cut determination and feature engineering is time-consuming and error-
prone in itself.

1A dataset without signal, but comparable background properties.
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3.1.4.2 Multivariate Analysis

In a multivariate analysis approach, the physicist uses MVA methods like machine
learning to create a statistical model of the dataset. Either this can be used to infer the
signal probability of each event, thereby increasing the signal-to-noise ratio in the
signal-region, or to directly model and extract the signal component in the dataset.
The statistical model is determined on Monte Carlo simulated events, in control
regions or using other data-driven methods. Sometimes it is possible to calibrate the
model on data (see Sect. 3.3.1.2).

The multivariate correlations between the input features are taken into account,
frequently this leads to an improved signal efficiency by a factor two or more (e.g.
[17]). The available dataset is therefore exploited more efficiently and the statistical
uncertainty of the final physics result is reduced.

The preprocessing of the dataset and the creation of useful physically motivated
high-level features is still handled by the physicist. The subsequent model building is
automatized and can be applied to similar classes of analyses without further human
intervention (see Sect. 3.3.1.1).

On the other hand, the validity of the statistical model has to be carefully verified
using control regions and channels, to avoid possible over-fitting and mis-modeling
effects. Physics knowledge must still be incorporated into this process to exclude
problematic phase-spaces. Due to the increased complexity compared to the cut-
based approach, the method itself is seen as a black box by some analysts, leading
to distrust and increased systematic uncertainty of the final physics results.

Today, MVA is an established tool in HEP with clear advantages in analyses with
dominating statistical uncertainty.

3.1.4.3 Deep Learning

The deep-learning approach is a multivariate analysis method which includes parts
of the preprocessing and the feature engineering into the statistical model. It shares
the same traits as the general multivariate analysis approach. Deep learning uses deep
artificial neural networks and takes advantage of the large available training datasets
and the massively parallel computing power provided by modern hardware.

It is long known that neural networks with one hidden layer and an arbitrary,
bounded, non-constant activation function can approximate arbitrary functions in L p2

[18]. However, as was shown recently in [19], deep neural networks with more than
one hidden layer can approximate functions of practical interest (e.g. f (x, y) = x · y)
with exponentially fewer parameters than shallow networks.

Low-level features like the measured four-momenta and calorimeter entries are
directly fed to a deep artificial neural network. The deep neural network is intended
to learn suitable high-level features automatically. Recent research [20] indicates
that deep neural networks can extract more information from low-level features in

2The Lebesgue space of p-integrable functions.
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comparison to high-level features created by experienced human analysts. Conse-
quently, deep-learning approaches outperform established algorithms in many fields,
as was reviewed in [21].

Physical knowledge can be incorporated into the architecture of the deep neural
network. In particular, the explicit consideration of invariance properties (e.g., the
invariance against rotations around the beam-line) is important.

The application of convolutional and recurrent neural networks in HEP is inves-
tigated. Adversarial networks [22] allow to selectively exclude features from the
generated statistical model, to enforce a uniform signal selection efficiency in this
feature [23]. This is discussed in greater detail in Sect. 3.3.2.

In the theory of representation learning [24], the improved performance is
explained by the transformation of the low-level input feature space into a repre-
sentation, which allows to easily solve the tasks at hand.

An illustrative example is introduced in [25]. In this work a deep neural network
is presented, which can create textual descriptions of an image. The pixels of the
image are transformed to an intermediate representation of the objects contained in
the image by a convolutional neural network. Subsequently, the intermediate repre-
sentation is transformed into a textual description of the image by a recurrent neural
network.

The key concepts of representation learning are (as described in [24]):

• distributed representations—the number of input regions which can be distin-
guished grows exponentially O(2N ) in the numbers of parameters N ;

• depth—the ways to re-use learned features grow exponentially with the depth of
the network;

• abstraction—the learned features in the deeper layers are increasingly invariant
to most local changes of the input;

• and disentangling factors of variation—the learned features represent indepen-
dent properties of the input data.

On the other hand, due to the direct usage of many low-level features it is unclear
how to define suitable control regions and channels. At the same time, the sensitivity
to mis-modeling in Monte Carlo simulation is further increased in comparison with
ordinary MVA methods, due to the reliance on a multitude of low-level features.
Therefore, it is more difficult to estimate systematic uncertainties of deep neural
networks in absence of calibration techniques on data. This problem can bemitigated
with data-driven techniques like event-based re-weighting (see Sect. 3.3.3).

Instead of feature engineering the time is spent in architecture engineering. Finally,
the field evolves quickly and there are no established and commonly accepted fields
of application in HEP yet.

The usage of deep learning revolutionized many fields in recent years. Applica-
tions with a learnable distributed representation, are in particular suitable for deep-
learning.
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Belle II database Backends

• FastBDT

• Tensorflow

• TMVA

• SKLearn

• XGBoost

• FANN

• Neurobayes

mva package

Fitting Inference Evaluation

uses

loads and stores weightfiles

provides

Fig. 3.3 Schematic overview of the mva package. It provides: an automatable fitting, inference
and evaluation interface to the user; transparently loads and stores the WeightFiles (serialized
form of the underlying statistical models) in the Belle II database; and can use the most popular
MVA frameworks as backend

3.2 Implementation

The mva package provides a common code base for MVA related algorithms in
BASF2. Figure3.3 shows a schematic overview of the package. It is used in: the
online reconstruction by the FastReco path of the trigger package; the offline
reconstruction by the tracking, ecl and klm packages; and the mDST anal-
ysis by all MVA-based algorithms like Continuum Suppression, Flavour
Tagging, and the Full Event Interpretation.

The mva package can use most of the popular MVA frameworks as backend, but
it is not a wrapper3 around existing MVA frameworks. Rather, it provides glue-code,
which integrates the frameworks into BASF2, so that the user can focus on dealing
with the framework of his choice instead of the merits of BASF2 and ROOT.

For the fitting-phase, the mva package: converts the training data from the ROOT-
format used by Belle II into the appropriate backend-specific format; streams the
data to the backend (conserving the potential out-of-core capability of the back-
end); bundles the generated backend-specific WeightFiles (serialized form of
the underlying statistical models) and all information necessary to reproduce the
fitting into a Belle II WeightFile; and uploads the Belle II WeightFile into
the Belle II Conditions Database with an optional interval of validity
(a range of experiments and runs for which the WeightFile should be used).
In addition, basic examples for all backends are provided, which the user can
use as a starting-point; and advanced examples explaining state-of-the art machine

3A wrapper would provide a backend-agnostic interface and in consequence the lowest common
denominator of all backends.
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learning techniques like Bayesian hyper-parameter optimization [14]; adversarial
neural networks [23]; feature importance calculation and sPlot [26, 27].

For the inference-phase, the mva package: (re-)loads the appropriate Belle II
WeightFile from the Belle II Conditions Database for the current
experiment and run; loads the backend-specific model; extracts the required features
from the DataStore4; calculates the response using the model and stores the
response in the DataStore.

For the evaluation, the mva package provides: plotting primitives for features
(distribution, correlations); plotting primitives for the method response (distribution,
ROC curves, over-fitting checks); and calculation of feature importances. The eval-
uation tools are backend-agnostic and can be used to compare different backends.

Finally, the package was designed with a large degree of automation in mind. The
provided tools can be invoked from C++,Python and bashwith similar interfaces.
Fitting, inference and evaluation do not require human interaction.

3.2.1 Methods

In the following sections I briefly describe key ideas and concepts of the supported
backends. However, the machine learning field evolves quickly and most of the
projects will have published updated versions since the publication of this thesis.
Besides the frameworks mentioned below, the mva package can be easily extended
to new backends upon user request.

3.2.1.1 FastBDT

Belle II required a default multivariate classification algorithm which is: fast during
fitting and application; robust enough to be trained in an automated environment;
can be reliably used by non-experts; preferably generates an interpretable model and
exhibits a good out-of-the box performance.

FastBDT [28] fulfills these requirements and is the current default classification
method of the mva package. It implements a speed-optimized and cache-friendly
implementation of the widely employed Stochastic Gradient-Boosted Decision Tree
(BDT) algorithm [11], which exhibits a good out-of-the-box performance and gen-
erates an interpretable model. Furthermore, FastBDT supports: preprocessing with
equal-frequency binning and purity-transformation; correct handling ofmissing data;
and boosting to uniformity (see Sect. 3.3.2.3).

FastBDT was originally developed during this thesis to speed up the fitting
and inference-phase of the Full Event Interpretation (see Chap. 4). The
source-code is licensed under GPLv3 and available on github [29]. FastBDT is
shipped with BASF2 and is available on all computing sites [28].

4A memory-representation of the current event.
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3.2.1.2 TMVA

The TMVA library is provided by the ROOT framework. TMVA [30] is traditionally
used in HEP and implements a wide range of methods: analytical methods like
the Fisher discriminant; decision tree based like gradient-boosted decision trees;
different forms of neural networks; probability density estimators; and rule-based
approaches. It supports classification, multi-class classification and regression. Fur-
thermore, preprocessing steps like normalization, decorrelation and Gaussianization
can be performed on all or a subset of features.

TMVA is actively developed by the HEP community, and started to adopt recent
developments like deep learning. Since it is shipped with the ROOT framework, it is
available on all computing sites.

3.2.1.3 FANN

The Fast Artificial Neural Network (FANN) library [31] is an open-
source neural network library, which implements a multi-layer neural network. Input
features and the output of the network can be automatically scaled to sensible ranges.
Furthermore, it supports fitting and inference on multiple CPU cores. It is shipped
with BASF2 and is available on all computing sites.

3.2.1.4 NeuroBayes

NeuroBayes [32] is a closed-source, commercial implementation of a neural
network. It provides an advanced feature preprocessing (equal-frequency binning,
purity-transformation, b-spline fits); Bayesian regularization methods like ARD
(automatic relevance determination); and evaluation capabilities including feature
importance estimations. It was extensively used by the Belle experiment.

As of the time of writing it is not further developed, but legacy support is available.
Due to license restrictions it is only available on some computing sites (including the
KEKcomputing center, DESYandKIT IETP). Belle II decided to useNeuroBayes
only inside belle_legacy (for example in the b2bii package) code.

3.2.1.5 Python-Based

The mva package can support all Python-based MVA frameworks. For this the
package contains an API (application programming interface) defining a set of
Python hook-functions, which can be used to build, fit, save, load and apply arbi-
trary Python-based MVA methods. By implementing the hook-functions, the user
can employ all MVA frameworks which provide a Python interface.



3.2 Implementation 35

For themost popular Python-basedMVA frameworks, the mva package already
predefines all the necessary hook-functions, however the user can still override them
in a user-defined Python file.

Officially supported (i.e. examples and test-code is provided by BASF2) are:

• SKLearn [33], is part of SciPy,5 it supports classification, regression, clustering,
dimensionality reduction, model selection and preprocessing;

• XGBoost [34], is an open-source, scalable, portable and distributed Gradient
Boosting library;

• hep_ml, an open-source machine learning library dedicated to algorithms used
in HEP;

• Tensorflow [35], is an open-source library for (deep) neural networks using
CPU and GPUs, with wide adoption by technology companies around the world;

• Keras [36], is an open-source, high-level interface to neural network frameworks
like Tensorflow, it was developed for easy and fast prototyping of deep learning
algorithms.

Other Python-based frameworks like pylearn2 [37] and theano [38] are
supported unofficially. The individual Python-based methods are not available on
the computing sites, but can be installed by the user.

3.2.2 Benchmark: D0 → K−π+π0

Separating correctly reconstructed particles from background is a frequent classi-
fication task during mDST and n-tuple analysis. The reconstruction of the decay
D0 → K−π+π0[→ γγ] is used as a benchmark classification in the sections below.
This decay contains the most abundant final-state particles in the detector K, π and
γ, and has a rich phase-space structure with various intermediate resonances like ρ
and K∗. Furthermore, with a branching fraction of (14.3 ± 0.8)% [39], it is also the
most common decay of the D0.

The decay is reconstructed from a K− candidates with a kaon probability above
0.5, a π+ candidate with a pion probability above 0.5, and a π0 → γγ candidate with
χ2 probability of a mass-constrained vertex fit above 0.1. Further selection criteria
are applied on the γ candidates. The invariant mass of the final D0 meson has to be
between 1.7 and 1.9GeV. A vertex fit is performed, and the χ2 probability of the fit
has to be above 0.1. The following input features are used if not stated otherwise: the
invariant mass of the D0 meson; the pairwise invariant masses of the decay products
MK−π+ , MK−π0 , andMπ+π0 ; particle identification information of K− and π+; D0, K−,
π+ and π0 momenta; D0, K− and π+ vertex information; and the χ2 fit probability
of D0 (vertex-fit), K+ (track-fit), π+ (track-fit) and π0 (mass-vertex-fit).

5A Python-based ecosystem, of open-source software for mathematics, science, and engineering.
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In total 745,000 chargedB+B− MonteCarlo simulated eventswere processed, and
split into a training (355,000 events) and an independent validation sample (390,000
events). The signal fraction in both samples is 6.6%.

3.2.2.1 Comparison

The benchmark introduced in Sect. 3.2.2 was used to compare the performance (in
terms of fitting runtime, inference runtime, classification quality and WeightFile
size) of different backends.

Two sets of classifiers were compared among each other on an Intel(R) Core(TM)
i7-4770 CPU (@ 3.40GHz) with a main memory of 32GB. To ensure a sound
comparison, all methods were restricted to one core and typical hyper-parameters
were chosen.

• Stochastic gradient-boosted decision tree implementations (FastBDT, TMVA-
BDT, SKLearn-BDT, XGBoost) with the same hyper-parameters (one hundred
trees with a depth of three).

• Artificial neural network implementations (FANN, TMVA-NN, SKLearn-NN,
Tensorflow,NeuroBayes)with the samehyper-parameters (one hidden layer
with 29 neurons and maximally one hundred iterations through the dataset during
the fitting). The input features were normalized (shifted to a mean of zero, and
scaled to a standard deviation of one).

The presented results depend on the chosen preprocessing steps, hyper-parameters
and the specific task. In consequence, this comparison is only a rough guideline of the
strengths and weaknesses of the backends. The results are summarized in Table3.1.

The BDTmethods are faster than the Neural Networks during the fitting-phase, at
the same time they outperform the Neural Networks in the quality of the separation
(measured by the area under the receiver operating characteristic AUC ROC [40]).
FastBDT is the fastest method and obtains the best AUC ROC score on the bench-
mark. The convergence of FANN for this benchmark was unstable i.e. the obtained
ROC values fluctuated strongly.

The runtime required to load the validation data fromdisk dominates the inference-
phase (as can be seen from the Trivial method, which only loads the validation
data and does not perform computations). To ensure a significant result the valida-
tion dataset statistics was increased by factor 10. Contrary to the naive expectation
that the Neural Networks are faster during the inference because they rely only on
linear algebra operations, which can be performed very efficiently on modern hard-
ware; FastBDT is the fastest method. SKLearn-BDT is nearly as fast as FANN
and SKLearn-NN, faster than TMVA-NN and Tensorflow. NeuroBayes is the
slowest contestant.

Several effects have to be considered to explain the unexpected result: prepro-
cessing steps can be very expensive (e.g. NeuroBayes does several non-linear
transformations as preprocessing); careful optimizations for caching and pipelining
have a large impact onmodern hardware (as can be seen by the results of FastBDT).
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Table 3.1 Comparison of the different backends using the benchmark D0 → K−π+π0. The first
column shows the fitting time on 28 features and 355,000 events measured in seconds. The second
column shows the inference time on 28 features and 3,900,000 events measured in seconds. The
third column shows the area under the receiver operating characteristics as a measure of the classi-
fication quality (more is better). Different quantities can be used to construct the receiver operating
characteristic, here the signal efficiency and purity are used. The last column shows the size of the
WeightFile in kilobytes. All measurements were performed 10 times, theminimal achieved time
in fitting and inference, and the average AUC ROC is stated in the table. The Trivial method
does nothing during the fitting-phase (time equals overhead of the mva package), and returns the
signal-fraction during the inference-phase (time equals overhead due to data loading)

Method Fitting time in s Inference time
in s

AUC ROC WeightFile
size in KB

Trivial 0.2 4.9 0.066 2

Stochastic gradient boosted decision tree

FastBDT 3.7 6.9 0.435 58

SKLearn-BDT 32.1 7.8 0.429 69

XGBoost 18.0 11.4 0.415 34

TMVA-BDT 19.8 16.5 0.297 101

Artificial neural network

SKLearn-NN 27.6 7.2 0.401 32

Tensorflow 201.9 9.4 0.399 30

NeuroBayes 112.3 75.4 0.377 182

FANN 50.6 7.1 0.316 ± 0.061 21

TMVA-NN 510.6 16.8 0.156 53

In consequence, even the same algorithm can have very different runtimes depending
on the implementation (as can be seen by the different BDT implementations, which
all implement stochastic gradient-boosting).

3.2.3 Conditions Database Integration

The Belle II Conditions Database contains experiment and run-
dependent information required for the processing of Monte Carlo simulated events
and detector-data. Traditionally machine parameters like: beam energies; lumi-
nosity; detector alignment and status; and calibration constants are stored in the
conditions database. Due to the expected extensive usage of MVA methods in
Belle II, and their dependence on the run-dependent background conditions, the
WeightFiles of MVA methods used in the online and offline reconstruction
(likely also mDST analysis) can be fitted per experiment (or run) and stored in
the Belle II Conditions Database.
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Furthermore, the database provides a revision system for WeightFiles, an
infrastructure to automatically distribute the required WeightFiles to the com-
puting sites, and ensures reproducibility.

The mva package transparently loads and stores WeightFiles in the Belle
II Conditions Database. Optionally, the WeightFiles can be loaded
from and stored on disk in the ROOT and XML format. Depending on the backend,
used method and its hyper-parameters, the WeightFiles usually require between
10KB and 1MB disk-space. Table3.1 states the size of the WeightFiles for the
different backends in the ROOT format.

3.2.4 Automatic Evaluation

Evaluating the fittedmodels is important: to spot possible issues in the input features;
to check for convergence of the algorithm; to avoid biases due to over-fitting and
under-fitting; and compare different models to one another. The automatic evaluation
of the mva package creates a summary in form of a PDF document, which can later
be examined by the user. It is also possible to observe the quality of an MVAmethod
in an automated fitting environment and to sent emails to quality control if the quality
drops below a predefined threshold.

The PDF summary of the mva package contains: the configuration of the used
methods; the correlation-matrix of all features for signal and background; the impor-
tance of each feature; the distribution of each feature and spectator; the receiver oper-
ating characteristics on the training and an independent test datasets for all methods;
the distributions on the training and an independent test dataset of the response for
all methods; and the diagonal plots, which show the purity of the binned response for
all methods. Additional plots (like tSNE plots, and control regions plots for different
response-cuts) are provided on demand.

3.3 Applications

This section summarizes the usages of machine learning and the mva package in the
Belle II collaboration. Section3.3.1 describes applications during mDST analysis;
these were developed during this thesis and many are used in the analysis B →
τντ . Furthermore, the mva package is used extensively during online and offline
reconstruction: in the identification of K0

L particles from clusters in the KLM; the
energy and shape determination of clusters in the ECL; and the track finding and
fitting algorithms in the CDC and VXD.

This thesis focused in particular on the development of basic building blocks
for complex algorithms. Often, some features have to be reserved for subsequent
steps in the analysis like the extraction of the signal yield using a fit. Therefor,
discriminatorswith an enforced uniform signal selection efficiency are investigated in
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Sect. 3.3.2. Section3.3.3 introduces data-driven techniques, which are a key to reduce
the dependency on Monte Carlo simulation. Finally, Sect. 3.3.4 outlines algorithms
used to optimize the hyper-parameters of an MVA method.

3.3.1 Analysis Algorithms

All multivariate algorithms used in the analysis package of BASF2 are based on
the mva package. In this section I briefly describe the three most important algo-
rithms, which were implemented during this thesis (Sect. 3.3.1.1) or during super-
vised master’s theses (Sects. 3.3.1.2 and 3.3.1.3).

3.3.1.1 Full Event Interpretation

The Full Event Interpretation (FEI) is used for hadronic and semileptonic tagging.
It automatically reconstructs hadronic and semileptonic B meson decay-chains and
infers a signal probability for each reconstructed candidate. This algorithm is used
in the measurement of branching fraction of rare decays with missing kinematic
information like B → τντ , B → �γν and B → νν.

The signal probability is calculated using a hierarchical network of multivariate
classifiers, which is visualized in Fig. 4.3. A boosted decision tree (BDT) based on
FastBDT (see Sect. 3.2.1.1) is trained for each final state particle and each decay-
channel of the intermediate particles. For each particle candidate a signal probability
is calculated using the corresponding BDT. The signal probabilities of the daughter
particles are used as features in the training of the BDT of a composite intermediate
particle. In this manner the complete information about the entire decay-chain is
encoded in the signal probability of the final B candidates.

The training, application and evaluation of the more than 100 BDTs employed by
the FEI is fully automatized with the tools provided by the mva package.

The FEI is described in greater detail in Chap. 4.

3.3.1.2 Flavour Tagging

BASF2 includes two flavour tagging algorithms, which distinguish the decay prod-
ucts of a B0 meson from a B̄0 meson. Flavour-tagging is used in time dependent CP
violation analyses like the measurement of ACP(B0 → J/ψK0

s ).
The category-based flavour tagger trains either boosted decision trees

(see Sect. 3.2.1.1) or neural networks (see Sect. 3.2.1.3) to identify certain flavour-
specific signatures (so-called categories) like primary lepton decays or b → c → s
decay-chains [41]. Each classifier receives hand-crafted features, which are known to
be correlated to the flavour-specific signature. The output of the category classifiers
are combined by another BDT or NN to the final flavour tagging information (1 for
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B0 and −1 for B̄0) and the estimated uncertainty on the tag (0 for a random choice
and 1 for absolute certainty).

The deep learning-based (see Sect. 3.1.4.3) flavour tagger receives only low-level
features as its input [42]. The four momenta, POCA (point of closes approach of
the track to the beam pipe) and PID (particle identification) information of all tracks
associated to the decay products. The quantities are fed into a deep neural network
ordered by the total momentum of the associated track and separated by charge. It is
assumed, that the deep neural network learns the relevant flavour-specific signatures
and correlated high-level features automatically.

The training and application of both taggers is automatizedwith the tools provided
by the mva package.

The performance of the flavour tagger based on deep learning is out-of-the-box
equal to the traditionally used category-based flavour tagger. Both taggers can be
evaluated and calibrated on data using the b2bii package.

3.3.1.3 Continuum Suppression

Most analyses at the Belle II experiment investigate the decay of B mesons from
an e−e+ → ϒ(4S) → BB̄ decay. An important background to these analyses are
continuum events e−e+ → qq̄, τ−τ+,μ−μ+, e−e+.

Historically, the difference in the event topology was used to suppress continuum
events.Due to the lowmomentumof theBmesons in the center ofmass (CMS) frame,
the topology of a BB̄ event is spherical in the CMS frame. The continuum events
show a twofold cone-shaped back-to-back structure in the CMS frame. Hand-crafted
high-level features were designed to systematically describe the event topology like
the CLEO cones [43] and the KSFW (Kakuno Super Fox Wolfram) moments (see
[44] and [45, Chap. 9]). Figure3.4 shows example event topologies of a continuum
event in Fig. 3.4a, a possible signal-decay B− → τ−ν̄τ event in Fig. 3.4b and a B+B−
event in Fig. 3.4c. As can be seen from the examples, the signal event topology is
more similar to the continuum than the BB̄ event, due to the one-prong decay on
the signal-side. Hence, it is important to consider the specific signal-side in the
continuum suppression algorithm.

BASF2 includes two continuum suppression algorithms.
The traditional continuum suppression algorithm uses a boosted decision tree6

(see Sect. 3.2.1.1), which was fitted to suppress the continuum background, using
hand-crafted high-level features (see Sect. 3.1.4.2).

The deep-learning-based (see Sect. 3.1.4.3) continuum suppression algorithm
receives in addition low-level features as its input [46]. The four-momenta and POCA
of the charged particles are transformed into the CMS frame and rotated with respect
to the thrust axis. They are fed to a deep neural network in spherical coordinates
ordered by the magnitude of the momentum of the particles and separated by the
charge and their assumed affiliation to the signal or tag side.

6FastBDT: One hundred trees with a depth of three.
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(a) e−e+ → cc (b) B− → τ−ντ (c) e−e+ → Υ(4S) → B+B−

Fig. 3.4 Event displays showing the event topologies of different event types. The difference of
the spherical topology of ϒ(4S) and the twofold cone-shaped back-to-back structure of continuum
events is exploited by hand-crafted continuum suppression features to separate them from one
another

Fig. 3.5 Comparison between different feature sets: traditional hand-crafted features E (30), low-
level kinematic features DL (440) and low-level vertex features (60). The addition of low-level
features increases the quality of the separation. Taken from [46]

Both continuum suppression algorithms are trained using a dataset containing
signal events (instead of generic BB̄ events) and continuum events. The addition of
low-level features leads to a significant improvement in the separation (see Fig. 3.5).
No significant difference between a BDT and a simple deep neural network were
observed. However, more advanced network architectures lead to further improve-
ments [46].
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Fig. 3.6 Dalitz plane of the benchmark decay D0 → K−π+π0. (Left) correctly reconstructed D0;
showing the rich substructure due to the intermediate resonances in the decay. (Right) wrongly
reconstructed D0

3.3.2 Uniformity-Constraint

Physics analyses often employ MVA classifiers to improve the signal-to-noise ratio
using multiple features, which can separate between signal and background. On the
other hand, many analyses extract physical observables by fitting a signal and back-
ground model to one or more fit-variables. A typical example is a two-dimensional
fit to the Dalitz plane of the benchmark decay D0 → K−π+π0 to extract the frac-
tion, mass and width of intermediate resonances in the decay. In this example, the
fit-variables are the invariant masses of the K−π+ system MK−π+ and the K−π0 sys-
tem MK−π0 ; whereas the remaining quantities described in Sect. 3.2.2 are used as
features in the classifier. Figure3.6 shows the signal and background distribution of
the benchmark decay in the fit-variables.

It is advantageous to require a uniform selection efficiency of the classifier for
signal and background in the fit-variables, separately.

• Anon-uniform selection efficiency of background events creates an artificial peak-
ing background if a cut on the classifier output is performed. The shape of the
background model depends on the cut on the classifier output. This can lead to
large systematic uncertainties if the background model cannot be checked inde-
pendently in a control region.

• A non-uniform selection efficiency of signal events changes the shape of the signal
model depending on the cut on the classifier output. This increases the reliance
on Monte Carlo simulation, because usually the signal model cannot be checked
independently in a control region.
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Fig. 3.7 Baseline BDT: Deviation from the average selection efficiency for the cut on the BDT
response, whichmaximizes the signal-to-noise ratio. The left (right) plot shows signal (background)
D0 candidates

• Contrastingly, a non-uniform selection efficiency of signal and background com-
bined is desired, because otherwise the signal-to-noise ratio would not increase by
cutting on the classifier output.

In the following I describe three algorithms, which construct classifiers with a
uniform selection efficiency in the fit-variables. They are compared to two base-
line models with non-uniform selection efficiency (Sect. 3.3.2.1) on the benchmark
(Sect. 3.2.2).

The performance is compared in terms of the classification quality, measured as
usual by the area under the receiver operating characteristic curve7 (AUC ROC), and
the uniformity of the selection efficiency. As described in [47], the uniformity of
the selection efficiency can be measured by different approaches using: the standard
deviation of the efficiency in bins (SDE); the Theil index (Theil); and the Cramér-
von-Mises similarity (CvM). For allmeasures, a lower value indicates amore uniform
selection efficiency.

All investigated algorithms were included in the mva package during this thesis.

3.3.2.1 Baseline

Two baseline models trained on the benchmark are used: a boosted decision tree
implemented inhep_ml (BDT) andaneural network implemented intensorflow
(NN). The uniformity of the selection efficiency of the BDT and the NN is visualized
in Figs. 3.7 and 3.8, respectively. As can be seen from the figures, both algorithms
have a non-uniform selection efficiency for both signal and background.

7Different quantities can be used to construct the receiver operating characteristic, here the signal
efficiency and background rejection are used.
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Fig. 3.8 Baseline NN: Deviation from the average selection efficiency for the cut on the neural
network response, which maximizes the signal-to-noise ratio. The left (right) plot shows signal
(background) D0 candidates

3.3.2.2 Feature Drop

The simplest method to enforce a uniform selection efficiency is to remove all fea-
tures which are dependent on the fit-variables. The dependency can be quantified
by: linear correlation coefficients (linear and ignores multivariate correlations);
statistical hypothesis tests for two features being independent [48] (non-linear and
ignores multivariate correlations); or the feature importance of the features in amul-
tivariate regression to predict the fit-variable (non-linear and considers multivariate
correlations).

Using handcrafted features designed to be uncorrelated to the fit-variables, e.g.,
the beam-constrained mass and �E as a parametrization of the four-momentum of
a B meson, can further improve this approach.

A major drawback of this method is that the features with high separation power
are often also dependent on the fit-variables. Therefore, one potentially looses a lot in
terms of classification quality as is evident from Figs. 3.13 and 3.14. Furthermore, as
can be seen from Figs. 3.9 and 3.10 even aggressively removing dependent features
does not guarantee a uniform selection efficiency. Empirically, there is always some
dependency between the features and the fit-variables, so enforcing an exact uniform
selection efficiency would require removing all features from the training.

To sum up, more powerful techniques are required to enforce a uniform selection
efficiency.

3.3.2.3 Boosting to Uniformity

As described in [47], boosting (re-weighting of events depending on the output of
a classifier) can be used to enforce a uniform selection efficiency. This technique
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Fig. 3.9 BDT with FeatureDrop: Deviation from the average selection efficiency for the cut on
the BDT response, which maximizes the signal-to-noise ratio. The left (right) plot shows signal
(background) D0 candidates. The BDT was trained on a subset of features without kinematic
information of the daughter particles

Fig. 3.10 NNwith FeatureDrop: Deviation from the average selection efficiency for the cut on the
NN response, which maximizes the signal-to-noise ratio. The left (right) plot shows signal (back-
ground) D0 candidates. The NN was trained on a subset of features without kinematic information
of the daughter particles

can be naturally incorporated in a boosting algorithm, like it is used for stochastic
gradient-boosted decision trees. The loss-function is extended by an additional term
Lflat, which penalizes a non-uniform selection efficiency

Lflat = α CvMS + β CvMB, (3.4)

where CvM is the Cramér-von-Mises similarity introduced in Sect. 3.3.2, and α and
β are new hyper-parameters controlling the strictness of the uniformity constraint.
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Fig. 3.11 BDT with uniformity boosting: Deviation from the average selection efficiency for the
cut on the BDT response, which maximizes the signal-to-noise ratio. The left (right) plot shows
signal (background) D0 candidates

The boosting algorithm will increase (decrease) the weight of events in bins8 with
lower (higher) selection efficiency compared to the inclusive distribution.

As can be seen from Fig. 3.11 this algorithm yields a nearly uniform selection
efficiency on the benchmark while maintaining a high classification quality (see
Fig. 3.13).

This algorithm was implemented into FastBDT (see Sect. 3.2.1.1) during this
thesis, and is also (independently) available in the hep_ml package.

3.3.2.4 Adversarial Neural Networks

Adversarial neural networks are commonly used in generative neural networks [22].
Louppe et al. [23] applied the technique to create a neural network classifier f (�x, �w),
whose output s is independent of the values �z of some nuisance parameters Z

p( f (�x, �w) = s|�z) = p( f (�x, �w) = s|�z�) (3.5)

for all �z, �z� ∈ Z and all possible outputs s of the classifier. Louppe et al. [23] proofs
that the obtained classifier is both optimal9 and fulfillsEq.3.5, if such a solution exists.
Equation3.5 implies that f (X), Z are independent random variables, therefore a cut
on the output of f has a uniform selection efficiency in Z by construction.

The technique was adapted during this thesis to create a uniform discriminator by
identifying the nuisance parameterswith the fit-variables. As explained in Sect. 3.3.2,
a uniform selection efficiency is desired for signal and background separately. This
can be achieved by additionally conditioning on the event class c

8A joint region in the fit-variables.
9In the sense defined in [23].
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p( f (�x, �w) = s|�z, c) = p( f (�x, �w) = s|�z�, c) (3.6)

for all �z, �z� ∈ Z , c ∈ {S, B} and all possible outputs s of the classifier. In particular the
randomvariables f (X), Z are nowconditionally independent insteadof independent.

For each pair (zi , ci ) of fit-variable zi and class ci , an adversarial neural network
is trained in parallel to the neural network f responsible for the classification. Each
adversarial neural network learns to predict the probability density function p(zi |s, c)
of its fit-variable and class; using the output s of f as the sole input. This can be
accomplished by minimizing the loss-function Li = − log(p(zi |s, ci )). The sum
of all adversarial loss-functions Li is subtracted from the loss-function L f of the
classification neural network

L = L f − α
∑

i

Li , (3.7)

where α is a new hyper-parameter controlling the strictness of the uniformity con-
straint. Hence, the adversarial neural networks learn to extract any information on
the fit-variables contained in the output of f . At the same time the classification
neural network is penalized if the adversarial neural networks succeed in doing so.
All networks are trained simultaneously until convergence.

As can be seen from Fig. 3.12 this algorithm yields a nearly uniform selection
efficiency on the benchmark while maintaining a high classification quality (see
Fig. 3.14).

The usage of adversarial neural networks as presented in this section is key to a
successful deployment of deep learning algorithms in HEP, because it can prevent
the network from learning specific fit-variables. Examples include: The decay length
difference �z in CP measurements, and the beam-constrained mass Mbc in hadronic
tagging algorithms.

Fig. 3.12 NNwith adversary: Deviation from the average selection efficiency for the cut on theNN
response, whichmaximizes the signal-to-noise ratio. The left (right) plot shows signal (background)
D0 candidates
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Fig. 3.13 Receiver operating characteristic (ROC) of: an ordinary BDT (baseline), a BDT using
uniform boosting (UGBoost), an ordinary BDT trained on a subset of features without kinematic
information of the daughter particles (FeatDrop). The number in parenthesis states the area under
the corresponding ROC curve

3.3.2.5 Conclusion

It is possible to ensure a uniform selection efficiency for signal and background
separately: For BDTs the boosting to uniformity technique, and for NNs the adver-
sary technique can be successfully employed. Both yield similar results in terms
of classification quality and uniformity. The traditional Feature Drop approach is
inferior.

The classification quality of the different algorithms, is compared in Fig. 3.13
for the BDT and in Fig. 3.14 for the NN. The uniformity constraint diminishes the
classification quality, because information dependent on the fit-variables cannot be
fully exploited by the classifiers.

Further algorithms exist to ensure a uniform selection efficiency. Dolen et al.
[49] used hand-crafted features to design decorrelated taggers for jet classification,
and investigated the possibility to automatize the process with principal component
analysis. However, the algorithm (as presented in [49]) still requires human input and
is only shown to work with four features and one fit-variable. Stevens and Williams
[50] introduced the first boosting to uniformity technique for boosted decision trees
(distinct from the one presented in this thesis), and previously [27] presented already
an approach based on event re-weighting by building a tree of neural networks. Both
approaches suffer from a significant runtime performance drawback, because many
classifiers have to be trained.

Finally, uniformity-constrained classifiers can be used to implicitly prevent using
information available only onMC. Here, the fit-variable is a binary variable contain-
ing 0 for MC and 1 for detector data. For instance, the adversarial neural network
is trained to distinguish MC and detector data, and the neural network responsible
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Fig. 3.14 Receiver operating characteristic (ROC) of: an ordinary NN (baseline), a NNwith adver-
sary (Adversary), an ordinary NN trained on a subset of features without kinematic information of
the daughter particles (FeatDrop). The number in parenthesis states the area under the corresponding
ROC curve

for the classification is punished if this is possible. The additional conditioning on
the event class c is usually not desired (and usually not possible on data), because
signal MC is easily distinguishable from detector data, if the signal is rare. The next
section describes further data-driven techniques.

3.3.3 Data-Driven

Many analyses in HEP employ Monte Carlo (MC) simulation to optimize cuts;
determine the shape of signal and background components; and train multivariate
methods. The simulated MC events are usually carefully calibrated and correction
factors for the particle identification performance and branching fractions are used
to ensure a sound modeling of the detector data. In addition, control regions and
channels can be used to cross-check the simulation.

As can be seen from Fig. 3.15, already the well-known benchmark decay
(Sect. 3.2.2) exhibits large differences between detector data and the Monte Carlo
expectation. The benchmark decay was reconstructed on Monte Carlo and detector
data using the b2bii package. The main differences arise from the poor descrip-
tion of the continuum component, that is non-resonant processes like e+e− → cc̄
(see Sect. 2.3.3.3).

Data-driven techniques can be used to reduce the reliance of analyses on Monte
Carlo simulation. Hereby, the desired information is determined directly from data
by exploiting physics knowledge.
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Fig. 3.15 The invariant mass of candidates reconstructed from the benchmark decay D0 →
K−π+π0. The filled histograms show the expected distribution from Monte Carlo simulation for
signal (dark gray) and background (light gray). The black points show the distribution obtained
from detector data. The overall normalization differs from theMC expectation. There are two main
background sources: ϒ(4S) events, which are usually well understood; and continuum events,
which have large uncertainties in the description of the hadronization and the branching fractions of
the subsequent decay-chains. The gray line shows Monte Carlo expectation, where the continuum
component was replaced by off-resonance detector data. This distribution is in agreement with the
detector data, indicating that the main difference is due to the continuum description

In the remainder of this section I introduce several data-driven techniques which
aim to reduce the dependency onMonte Carlo simulation during the fitting-phase of
multivariate methods. The first three techniques are originally described in [27]. All
of them were investigated and implemented in the mva package during this thesis
and a supervised bachelor’s thesis [51].

3.3.3.1 Baseline

As a baseline for the following studies, a boosted decision tree (BDT) was trained to
distinguish signal and background candidates on the benchmark decay. Figure3.16
shows the distribution of the invariant mass of the benchmark decay after a cut on
the response of the BDT. The cut was chosen to optimize the signal-to-noise ratio on
Monte Carlo. The observed signal-to-noise ratio on data is 31.78. It was extracted
by fitting a background-only model to the observed distribution on detector data
excluding the signal peak between 1.8 and 1.9GeV.

The training of the same boosted decision tree is repeated in the following sections
using different data-driven techniques. Throughout the text the applied cuts on the
response of the BDTs are always chosen to maximize the signal-to-noise ratio on
MC events and the cited signal-to-noise ratio is always extracted on detector data as
described above.
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Fig. 3.16 The invariant mass distribution of the benchmark decay D0 → K−π+π0, after a cut on
the response of a boosted decision tree was applied. The BDT was trained onMC events. The filled
histograms show the expected distribution fromMonte Carlo simulation for signal (dark gray) and
background (light gray). The black points show the distribution obtained from detector data. The
black line shows the background model fitted to the detector data

To ensure a sound comparison, only features independent of the invariant mass
were included in the training, otherwise a possible peaking background contribution
could distort the evaluation on detector data. This corresponds to the traditional
Feature Drop ansatz explained in the last section.

3.3.3.2 Event Re-weighting

The main idea of event re-weighting is to encode the difference of MC events
and detector data in the response of a multivariate classifier. A classifier is trained
to distinguish MC events and detector data. Its response is the probability p =

detector
detector+MC of selecting a detector event from the whole sample. AnMC event with a
high (low) probability is likely (unlikely) to appear in detector data, hence we want
to increase (decrease) the importance of this event. The importance of eachMC event
is defined by a weight w = detector

MC = p
1−p (see [27]).

The larger the differences between MC events and detector data, the better the
classification quality of the classifier. In the absence of mis-modeling, the classifier
would not be able to distinguishMC events and detector data.

In contrast to simple scaling factors derived from a binned distribution, this
method takes multivariate dependencies, between all features used in the classifier,
into account.

Subsequently, the user can train anothermultivariate classifier to distinguish signal
frombackgroundon the re-weightedMCdataset. In particular deep learningmethods,
which typically employ numerous low-level features can profit from this technique
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Fig. 3.17 The invariant mass distribution of the benchmark decay D0 → K−π+π0, after a cut on
the response of a boosted decision treewas applied. TheBDTwas trained on re-weightedMCevents.
The filled histograms show the expected distribution fromMonte Carlo simulation for signal (dark
gray) and background (light gray). The black points show the distribution obtained from detector
data. The black line shows the background model fitted to the detector data

(see Sect. 3.1.4.3). Furthermore, the derived weights w can be used for all tasks
performed on MC like determining cuts and creating plots.

This methods cannot compensate differences in phase-space regions where no
MC events exist. Also, the method is not aware of signal and background, and could
re-weight signal (background) events fromMC to match background (signal) events
in data.

Alternatively, one can use a uniformity-constraint classifier tomitigate differences
between MC events and detector data as described in Sect. 3.3.2.5. This approach
changes the underlying classifier itself, hence it cannot be automatized for arbitrary
classifiers.

The event re-weighting technique was implemented in the mva package, and
is automatically applied as soon as the user provides the necessary detector data.
Figure3.17 shows the invariant mass distribution of the benchmark decay, after a cut
on a BDT trained on re-weightedMC events. The achieved signal-to-noise ratio does
not differ significantly from the baseline (see Fig. 3.16). The re-weighted expectation
from MC is in agreement with the measured spectrum on detector data.

3.3.3.3 Sideband-Subtraction

Training amultivariate classifier directly on data is challenging, because usually there
are no pure signal and background samples available. However, in some situations
signal-enriched and signal-free phase-space regions can be identified. These regions
can be used to train a multivariate classifier on data, by statistically subtracting the
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background in the signal-enriched region using events from a signal-free region with
a negative weight.

Sideband-Subtraction requires the definition of three phase-space regions: a
signal-enriched region, which contains signal and background events; a
background-region, which contains only background events; and a negative signal-
region; which contains only background events indistinguishable10 from the back-
ground events in the signal-enriched region. In addition, the method requires the
knowledge of the expected number of signal events in the signal-enriched region e.g.
fromMonte Carlo.

Since the ground truth is not known for individual detector events, all events
(including the background events) in the signal-enriched region are used as signal
in the training. To counteract the background events contained in the signal region,
the background events from the negative-signal region are used as signal as well, but
with a negative weight. Finally, the events from the background region are used as
background.

Figure3.18 shows the invariant mass distribution of the benchmark decay, after
a cut on a BDT trained on detector data using Sideband-Subtraction. The exact
choice of the regions, as long as they fulfill the assumptions and contain enough
statistics, is not important. The different regions were chosen as follows: the signal-
enriched region 1.82 GeV < M < 1.9 GeV, the background region 1.77 GeV <

M < 1.78 GeV and 1.94 GeV < M < 1.95 GeV, and the negative signal-region
M < 1.8 GeV and 1.92 GeV < M . The achieved signal-to-noise ratio is worse than
the baseline (see Fig. 3.16).

The method can be used to increase the signal-to-noise ratio in situations were
Monte Carlo events cannot be used. The expected number of signal events in the
signal-enriched region has to be known. If the classifier is able to distinguish back-
ground events in the signal and negative signal regions using its features, the classifi-
cation quality deteriorates, because the negative signal events are partly rejected and
cannot subtract all background events in the signal-enriched region. In consequence,
only a subset of features can be used during the Sideband-Subtraction training.

3.3.3.4 sPlot

sPlot is a statistical technique, to reconstruct the distribution of different sources
in so-called control variables, using the known distributions of these sources in a
discriminating variable [26]. In the context of machine learning it can be used to
perform a multivariate training on data.

The sources are chosen to be signal and background decays, the control variables
are the features we want to use in the training of the multivariate classifier, and the
discriminating variable is a variable for which the signal and background distribution
is known e.g. the invariant mass of a particle.

10Meaning that the events cannot be distinguished by the features used in the training of the classifier.
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Fig. 3.18 The invariantmass distribution of the benchmark decayD0 → K−π+π0, after a cut on the
response of a boosted decision tree was applied. The BDT was trained using sideband subtraction.
In particular, noMC events were used during this training. The filled histograms show the expected
distribution from Monte Carlo simulation for signal (dark gray) and background (light gray). The
black points show the distribution obtained from detector data. The black line shows the background
model fitted to the detector data

The underlying idea is similar to Sideband-Subtraction. The known distributions
in the discriminating variable define implicitly signal-enriched and background-
enriched regions. In contrast to Sideband-Subtraction, sPlot does not require a signal-
free region.

In the sPlot based multivariate training every event is used twice, once as signal
and once as background, but with different weights. The weights for signal ws and
background wb are derived from the probability density distributions of the discrim-
inating variable for signal fs and background fb. These are fitted to the detector
data in order to extract the number of signal Ns and background events Nb:

(

ws

wb

)

= V

Ns · fs + Nb · fb
·
(

fs
fb

)

,

where V is the covariance matrix of the extracted yields. The approach can be gen-
eralized to more than one background source.

sPlot requires the probability density distribution of the discriminating variable
for signal and all background sources. In addition, the events of each source must
be conditional independent of the discriminating variable, meaning the classifier
should not be able to estimate the value of the discriminating variable using its
features. In consequence, only a subset of features can be used during the sPlot
training. A violation of the above assumptions leads to a deterioration of the achieved
classification quality. This is the same effect already encountered in Sect. 3.3.3.3.
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Fig. 3.19 The invariant mass distribution of the benchmark decay D0 → K−π+π0, after a cut on
the response of a boosted decision tree was applied. The BDT was trained using sPlot. In particular,
no MC events were used during this training. The filled histograms show the expected distribution
fromMonte Carlo simulation for signal (dark gray) and background (light gray). The black points
show the distribution obtained from detector data. The black line shows the background model
fitted to the detector data

Figure3.19 shows the invariant mass distribution of the benchmark decay, after a
cut on a BDT trained on detector data using sPlot. The probability density functions
for the invariant mass for signal and background is extracted fromMonte Carlo sim-
ulation. The achieved signal-to-noise ratio is worse than the baseline (see Fig. 3.16).
The more detailed description of the method can be found in [27, 51].

3.3.3.5 Decorrelated sPlot

As stated in the last section, the classification quality of an sPlot training deteriorates
if the classifier can predict the discriminating variable for background-events using
its features. Using the uniformity-constraint is not straight-forward in this case (see
Sect. 3.3.3.6).

During this thesis an extension of sPlot was developed to mitigate this problem,
by automatically reducing the conditional dependency between the features and the
discriminating variable for background-events.

The basic idea is to perform an event re-weighting (similar to Sect. 3.3.3.2) to
eliminate the undesired conditional dependency. Therefor, a classifier is trained to
distinguish events with a low L and high H value of the discriminating variable.
The main challenge is to leave the dependency between the features and the target
(signal or background) untouched.

One possible approach would be to assign all events left of the signal peak to L
and all events right of the signal peak to H . In case of a symmetrical signal peak
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distribution in the discriminating variable, there would be the same amount of signal
in L and H , in consequence the classifier would learn to distinguish L and H but
not signal and background, hence leaving the dependency between the features and
the target untouched.

A more advanced approach uses all events twice (similar to sPlot), once as L
and once as H , weighted using the cumulative distribution function for signal and
normalized to the probability distribution function of background:

wL =
∫ x
−∞ fs(x ′)dx ′

fb(x)

wH =
∫ ∞
x fs(x ′)dx ′

fb(x)
,

where x is the discriminating variable and fs( fb) is the probability density function
for signal (background). This approach is independent of assumptions on the signal
distribution shape, but still distributes the amount of signal per background evenly
between L and H .

In the next step the output p of the previously trained L versus H classifier, is
used to assign a decorrelation weight to the event

wD = 1

2

(∫ x
−∞ fs(x ′)dx ′

p
+

∫ ∞
x fs(x ′)dx ′

1 − p

)

,

in order to remove the conditional dependency between features and the discriminat-
ing variable for background-events. The cumulative distribution function for signal
is again used to leave the signal-events on average untouched. If the classifier could
not decide between L and H , that is the probability is close to p = 0.5, the final
weight is close to wD = 1. In contrast, a stark prediction like a value close to p = 1,
will lead to a small (large) weight if the prediction is correct (incorrect).

Finally, an sPlot training as described in Sect. 3.3.3.4 is performed using the
decorrelation weights wD multiplied with the sPlot weights.

Figure3.20 shows the invariant mass distribution of the benchmark decay, after
a cut on a BDT trained on detector data using decorrelated sPlot. As expected
the obtained signal-to-noise ration is better than the one obtained by pure sPlot.
Furthermore, the achieved signal-to-noise ratio is not significantly different from the
baseline (see Fig. 3.16).

3.3.3.6 Conclusion

All presented methods yield reasonable results on detector data. They differ in the
amount of information they require fromMonteCarlo simulation: event re-weighting
requires simulated MC events to which corrections can be applied; Sideband-
Subtraction requires an estimate of the number of signal events in the signal-enriched
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Fig. 3.20 The invariant mass distribution of the benchmark decay D0 → K−π+π0, after a cut
on the response of a boosted decision tree was applied. The BDT was trained using decorrelated
sPlot. In particular, no MC events were used during this training. The filled histograms show the
expected distribution from Monte Carlo simulation for signal (dark gray) and background (light
gray). The black points show the distribution obtained from detector data. The black line shows the
background model fitted to the detector data

region; (decorrelated) sPlot requires the distribution of the signal and background
component. In addition, Sideband-Subtraction and sPlot require that the background
composition does not change in the considered phase-space region, and that the fea-
tures used during the training are independent of the discriminating variable. The last
requirement can be mitigated by the decorrelated sPlot algorithm developed during
this thesis.

In consequence, the preferred method depends on the quality of theMonte Carlo
simulation and the correctness of the necessary assumptions for the investigated
tasks.

In the benchmark example presented in this section, the classifier based on pure
MonteCarlo, still performs slightly better or equallywell compared to the data-driven
methods. This is expected since the benchmark decay is a well-known and well-
simulated decay-channel, except for the continuum component, where the overall
normalization is off. The event re-weighting method is particularly useful, because
it yields the same results as the pureMonte Carlo training, ifMC events and detector
data are indistinguishable. It is key to a successful employment of deep learning
methods, where low-level features are used, which are usually less well simulated
compared to high-level features.

It is not clear yet, if the data-driven techniques presented in this section can
be combined with the uniformity-constraint introduced in the last section. While
most data-driven technique require a discriminating-variable to define signal and
background events, the uniformity-constraint is enforced using this definition on the
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fit-variable, which could be the same as the discriminating-variable (like it is the
case for sPlot). This was not further investigated during this thesis.

3.3.4 Hyper-parameter Optimization

As described in Sect. 3.1.3, the complexity of the statistical model generated by an
MVA algorithm can be controlled by so-called hyper-parameters. While the MVA
algorithm optimizes the parameters of the statistical model to minimize the error on a
given training dataset, the hyper-parameter optimization tunes the hyper-parameters
of the MVA algorithm to minimize the error on an independent validation dataset.

In total, three independent datasets are required in this situation: the training
dataset used by the MVA algorithm; the validation dataset used by the hyper-
parameter optimization; and the test dataset used to evaluate the performance of the
selected model. Techniques like cross-validation [1, Sect. 1.3] and Bayesian model
comparison [1, Sect. 3.4] can be used to avoid introducing a dedicated validation
dataset if the amount of available labeled data is limited.

Optimizing hyper-parameters by hand is cumbersome, error-prone and not suit-
able for automation. During this thesis different algorithms, used to automatize the
search for the optimal hyper-parameter values, were investigated. The mva pack-
age includes examples for all of them. Figure3.21 shows the application of the
hyper-parameter optimization algorithms, described in the following, to the hyper-
parameters of FastBDT on the benchmark.

(a) Grid-search evaluated on 50 grid points. (b) Bayesian optimization after
      26 evaluations.

Fig. 3.21 Hyper-parameter optimization of FastBDT on the benchmark (see Sect. 3.2.2). Two
hyper-parameters were optimized: the number of trees and the depth of the trees.
The contourmap indicates the ROCAUC score predicted by themeasured hyper-parameter settings.
The cross indicates the best hyper-parameter configuration with a ROC AUC score of 0.45 (both
algorithms found distinct but equivalent maximums)
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3.3.4.1 Grid and Random Search

The most common approach is a grid search. The loss on the validation dataset is
evaluated on an n-dimensional grid in the hyper-parameter space. The computational
effort of this approach scales exponentially in the number of hyper-parameters. The
accuracy of the method depends on the density of the grid. Quantitative11 and qual-
itative12 hyper-parameters can be optimized by this approach.

Figure3.21a shows an application of the grid search algorithm on the benchmark.
In total, 50 distinct configurations of FastBDT were tested, the best achieved ROC
AUC score was 0.450, which is significantly better than the default configuration
achieving 0.435 (see Table3.1).

Recent studies suggest that random-search is superior to grid-search at least in
high-dimensional scenarios [12]. This is due to the fact that often only a few out of
many hyper-parameters really matter. In such a scenario, the computational effort of
random-search is independent of the number of nuisance13 hyper-parameters.

3.3.4.2 Bayesian Optimization

A probabilistic f (�h) model of the error on the validation dataset given the hyper-
parameters �h is constructed. Using the Bayesian Optimization framework [14] this
model can be used to determine the next hyper-parameter space-point to evaluate
using all available information from previous evaluations. This approach can take
into account prior knowledge about the hyper-parameters and the cost (runtime) of
the evaluation for different hyper-parameters. Quantitative and qualitative hyper-
parameters can be optimized by this approach.

Figure3.21 shows an application of the Bayesian optimization algorithm on the
benchmark. After 26 evaluations, themodel found a configuration with an ROCAUC
score of 0.450, which is significantly better than the default configuration achieving
0.435 (see Table3.1). In comparison to grid-search, Bayesian optimization found an
equivalent best hyper-parameter configuration in fewer evaluations.

3.4 Conclusion

In the early years of HEP cut-based analysis (see Sect. 3.1.4.1) dominated the field,
in the final years of the last millennium HEP started to adopt multivariate analysis

11Quantitative parameters have an intrinsic ordering, examples are the number of trees in an
BDT, or the weight-decay constant in the loss function of a NN.
12Qualitative parameters do not have an intrinsic ordering, examples are the separation gainmeasure
in a BDT and the optimization algorithm of a NN.
13A hyper-parameter with minor or no influence on the score.
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methods and machine learning (see Sect. 3.1.4.2), today the field moves on to deep
learning (see Sect. 3.1.4.3).

The mva package enables Belle II physicists to keep up with the rapid devel-
opments in the field and to easily employ modern machine learning algorithms in
their work. Most of the multivariate methods used in the reconstruction and analysis
algorithms in BASF2 are built on the mva package and use the default classification
method FastBDT, both developed during this thesis.

In particular, tagging algorithms, which exploit the unique environment
provided by B factories, such as the Flavour Tagger and Full Event
Interpretation, rely heavily on the mva package.

The provided algorithms were tested, where appropriate, on data recorded by the
Belle experiment by taking advantage of the b2bii package.
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Chapter 4
Full Event Interpretation

The Full Event Interpretation (FEI) is a tagging algorithm based on
machine learning. It exploits the unique experimental setup of B factory experiments
such as the Belle and Belle II experiment. Both experiments operate on the ϒ(4S)

resonance, which decays at least 96% of the time into exactly twoBmesons. Concep-
tually, the event is divided into two sides: The signal-side containing the tracks and
clusters compatible with the assumed signal Bsig decay the physicist is interested in,
e.g., B+ → τ+ντ ; and the tag-side containing the remaining tracks and clusters com-
patible with an arbitrary Btag meson decay. Figure4.1 depicts this situation. Ideally,
a full reconstruction of the entire event has to take all detected tracks and clusters
into account to attain a correct interpretation of the measured data.

The FEI automatically reconstructs Btag candidates1 and calculates a signal prob-
ability to separate correctly reconstructed Btag candidates from background. Using
constraints derived from the unique experimental setup, the reconstructed Btag meson
can be used to recover information about the remaining Bsig meson in the event.

This enables the measurement of a wide range of decays with a minimum amount
of detectable information, like B+ → τ+ντ , B+ → �+νγ and B → Kνν̄, or no
detectable information at all, like in the case of B0 → νν̄, in the final state.

In the following I describe tagging at B factories in general (Sect. 4.1); the FEI
algorithm itself (Sect. 4.2); the validation of the performance of the FEI (Sect. 4.3)
using converted Belle detector-data and simulated Belle II Monte Carlo; and finally
possible future extensions and use-cases (Sect. 4.4).

1A candidate consists of an assumed decay-chain, which happened in the detector and was detected
by a fixed set of tracks and clusters.
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Υ(4S)
B−

tag B+
sig

ντ

τ+

signal-sidetag-side

Fig. 4.1 (Left) a common tag-side decay B− → D0[→ K0
S[→ π−τ+]π−τ+]π− and (right) the

signal-side decay B+ → τ+ντ investigated in Chap. 5

4.1 Tag-Side Reconstruction

The initial four-momentum of the produced ϒ(4S) resonance is precisely known.
Therefore, the reconstruction of the tag-side B meson allows to recover
information about the signal-side, whichwould be otherwise inaccessible. The recov-
ered information includes:

the consistency of quantities like the charge or the flavour;
the four-momentum of the Btag and consequently the Bsig meson;
the decay-vertex and the decay time difference �t between both mesons;
the event-type like ϒ(4S) → B0B̄0 or ϒ(4S) → B+B−;
and the assignment of tracks and clusters to either the Btag or the Bsig meson.

Historically, there were two distinct approaches to tagging at B factories: inclusive
and exclusive.

They differ in their tagging efficiency (that is the fraction of ϒ(4S) events which
can be tagged), their tag-side efficiency (that is the fraction of ϒ(4S) events with
a correct tag) and in the quality of the recovered information, which determines the
purity (that is the fraction of the tagged ϒ(4S) events with a correct tag-side) of the
tagged events. These three properties are the key performance indicators used in this
thesis. They are closely related to important properties of a specific analysis: The
tagging efficiency is important to judge the disk-space required for skimming, that
is the number of events which have to be considered for the analysis; the tag-side
efficiency influences the effective statistics of the analysis, and the purity is related
to the signal-to-noise ratio of the analysis.

Exclusive tagging provides the assignment of tracks and clusters to either the
tag-side and or the signal-side, whereas the inclusive tag requires this assignment as
input. The advantages and disadvantages of the different approaches are visualized
in Fig. 4.2.
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Fig. 4.2 Overview of the
three tagging algorithms,
which were used in the past
to infer information about the
Bsig meson using the other
Btag meson in the event
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4.1.1 Inclusive Tagging

Inclusive refers to the reconstruction of a particle (here the Btag) without assuming an
explicit decay-channel. Consequently, inclusive tagging combines the four-momenta
of all tracks and clusters, which were not used during the reconstruction of the
Bsig—the so-called rest of event. The decay-chain of the Btag is not explicitly recon-
structed, hence the assignment is not provided by the algorithm and cannot be used
to discard wrong candidates. Only the overall consistency between the Bsig and Btag

meson can be checked. This approach has a high tagging efficiency of O(100%),
since it can always provide a valid Btag, but suffers from a high background, and
consequently the tagged sample is very impure.

Inclusive tagging is used in time-dependent CP violation analyses, to determine
the decay vertex of the Btag meson. It can also be used to improve the momentum
resolution on the signal-side in analyses like B+ → μ+ν, where the signal-side alone
is suffice to provide a pure sample. Flavour tagging (see Sect. 3.3.1.2) and continuum
suppression (see Sect. 3.3.1.3) can be seen as a special form of inclusive tagging.
On the other hand, inclusive tagging cannot be used in conjunction with an inclusive
signal-side.

The FEI is not an inclusive tagging algorithm. However, it does try to always
provide a valid Btag like it is accomplished by the inclusive tagging. Therefore, it
could be used instead of inclusive tagging as described in Sect. 4.4.1.

4.1.2 Exclusive Tagging

Exclusive refers to the reconstruction of a particle (here the Btag) assuming an explicit
decay-channel. Consequently, exclusive tagging reconstructs the Btag independently
of theBsig using either hadronic or semileptonicBmeson decay-channels. The decay-
chain of the Btag is explicitly reconstructed and therefore the assignment of tracks
and clusters to the tag-side and signal-side is known.
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If the signal-side is exclusively reconstructed as well, the entire decay-chain of
the ϒ(4S) is known. Consequently, all tracks and clusters measured by the detector
should be accounted for. In particular, the requirement of no additional tracks, besides
the ones used for the reconstruction of the ϒ(4S), is an extremely powerful and
efficient way to remove nearly all reducible2 background. This requirement is called
the completeness-constraint throughout the text.

The tagged sample is pure, but it suffers from a low tag-side efficiency O(1)%,
since only a tiny fraction of the B decays can be explicitly reconstructed, due to
the large amount of possible decay-channels and their high multiplicity, as well
as the imperfect reconstruction efficiency of tracks and clusters. For instance, the
probability p to find all tracks of a hypothetical decay chain with a multiplicity of
10, assuming a reconstruction efficiency of 0.95 per track and a geometrical detector
acceptance of 91.1% is only p ≈ 24%.

The quality of the recovered information and systematic uncertainties depend on
the decay-channel of the Btag, therefore one distinguishes further between hadronic
and semileptonic exclusive tagging.

Additionally, exclusive tagging can also be used to perform an inclusive recon-
struction of the signal-side, without assuming an exclusive signal decay-channel.

The FEI is an exclusive tagging algorithm, which supports hadronic and semilep-
tonic tagging (Fig. 4.3).
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Fig. 4.3 Schematic overview of the FEI. The B mesons are reconstructed hierarchically; using the
detector output, final state particle candidates are formed, and combined to intermediate particles
until the final B candidates are formed. The probability of each candidate to be correct is estimated
by an MVA algorithm. The probabilities are fed into the subsequent MVA methods

2Reducible background has distinct final state products from the signal.
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4.1.2.1 Hadronic Tagging

Hadronic tagging solely uses hadronic B decay-channels for the reconstruction.
Hence, the four-momentum of the reconstructed Btag is well-known and the tagged
sample is very pure.However, hadronic tagging suffers froma low tag-side efficiency.
It is only possible for a tiny fraction of the recorded events, because the branching
fraction of explicit fully hadronic decay-chains is very small. A typical hadronic B
decay has a branching fraction of O(10−3).

Figures4.5 and 4.10 show the beam-constrained mass distribution of hadroni-
cally reconstructed Btag mesons for Belle and Belle II, respectively. The correctly
reconstructed mesons peak at a beam-constrained mass of Mbc = 5.279GeV. The
beam-constrained mass can be calculated from the initial beam-conditions [1, Chap.
7.1]:

Mbc =
√
E2
beam − p2B, (4.1)

where all quantities are measured in the center-of-mass system and Ebeam is the beam
energy. Mbc is per definition independent of the mass hypotheses of the final state
particles used during the reconstruction of the B meson candidate.

Another useful quantity is the deviation from the beam-energy [1, Chap. 7.1]

�E = EB − Ebeam, (4.2)

which is sensitive to mis-identification of the final state particles during the recon-
struction of the B meson candidate.

The above beam-dependent quantities are less correlated with each other in com-
parison to the invariantmassM and energy E of the reconstructedBmeson candidate.

The hadronic tag of the FEI can be accessed by the user using BASF2 via the pro-
vided B0:generic and B+:generic ParticleLists. The different decay-
channels can be distinguished by the associated decayModeID.

4.1.2.2 Semileptonic Tagging

Semileptonic tagging uses semileptonic B decay-channels. Due to the clean signature
of semileptonic B decays with high branching fraction, this approach usually has a
higher tag-side efficiency compared to hadronic tagging. A typical semileptonic B
decay has a branching fraction of O(10−2). On the other hand, the semileptonic
reconstruction suffers from missing kinematic information due to the neutrino in the
final state of the decay. Hence, the sample is not as pure as in the hadronic case.

Figures4.6 and 4.11 show the angle cos�BD� between the true B meson and the
measured D� system of semileptonically reconstructed Btag mesons for Belle and
Belle II, respectively. The correctly reconstructed mesons are missing exactly one
massless neutrino, and therefore peak between −1 and 1. The angle cos�BD� can be
calculated from the initial beam-conditions [1, Chap. 7.2]:
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cos�BD� = 2EbeamED� − m2
B − m2

D�

2pB pD�

, (4.3)

where all quantities are measured in the center-of-mass system and Ebeam is the beam
energy, mB is the nominal mass of the B meson and pB is the total momentum of a
B meson from a ϒ(4S) decay.

The semileptonic tag of the FEI can be accessed by the user using BASF2 via the
provided B0:semileptonic and B+:semileptonicParticleLists. The
different decay-channels can be distinguished by the associated decayModeID.

4.2 Implementation

A proof of concepts (PoC) of the Full Event Interpretation was devel-
oped in [2] based on the original Full Reconstruction (FR) algorithm used
by Belle [3]. During this thesis, the FEIwas further developed from a PoC to a stan-
dard tool used in production. It was significantly extended by: further increasing the
tagging and tag-side efficiency by getting more inclusive; reducing the runtime and
memory consumption; adapting the algorithm for the usage on converted Belle data
using b2bii; and migrating the algorithm to the mva package.

In the following I describe: the complete FEI algorithm in an abstract manner
(Sect. 4.2.1), the training of the employedmultivariate classifiers (Sect. 4.2.2), and the
performance optimizations (Sect. 4.2.4) which are key to a successful employment
of the FEI in the future.

4.2.1 Algorithm

The FEI follows a hierarchical approach with six stages, visualized in Fig. 4.3. All
steps in the algorithm are configurable, therefore: the used decay-channels, employed
cuts, and the input features and hyper-parameters of the multivariate classifiers
depend on the configuration. A detailed description of the current default config-
uration of the FEI including a list of all decay-channels can be found in Sect. B.1.

4.2.1.1 Combination of Candidates

Charged final state particle candidates are created from Tracks assuming differ-
ent particle hypotheses, whereas neutral final state particle candidates are created
from ECL clusters, KLM clusters, or V0 objects. Each candidate can
be correct (signal) or wrong (background). For instance, a Track used to create a
τ+ candidate can originate from a pion traversing the detector (signal), from a kaon
traversing the detector (background) or even consists of a random combination of
hits from beam-background (also background).

All candidates available at the current stage are combined to intermediate particle
candidates in the subsequent stages, until candidates for the desired B mesons are
created. Each intermediate particle has multiple possible decay-channels, which can
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be used to create valid candidates. For instance, a B− candidate can be reconstructed
by combining aD0 and aπ− candidate, or by combining aD0, aπ− and aπ0 candidate.
The used D0 candidate could be reconstructed from a K− and a τ+, or from a K0

S and
a π0.

The FEI reconstructs more thanO(100) explicit decay-channels, leading to more
than O(10000) distinct decay-chains. All considered decay-channels are listed in
Sect. B.1.

4.2.1.2 Multivariate Classification

The FEI employs multivariate classifiers (see Chap. 3) to estimate the probability of
each candidate to be correct. Hence, each candidate created by the FEI (regardless
at which stage) has an associated SignalProbability σ, which can be used to
discriminate correctly reconstructed candidates from background.

In order to use all available information, a network of multivariate classifiers
is built, following the hierarchical structure of the reconstruction. For each final
state particle and for each decay-channel of an intermediate particle, a multivariate
classifier is trained which estimates the probability that the candidate is correct.

For instance, the classifier built for the decay of B− → D0π− would use the
SignalProbabilitys of the used D0 and π− candidates, to estimate the
SignalProbability of the B− candidate created by combining the aforemen-
tioned D0 and π− candidates.

The input features of the classifier are among others the kinematics and vertex
fitting information of the candidate and its daughters, as well as the
SignalProbability of the daughters. The full list of input features and the
chosen hyper-parameters for the multivariate classifiers can be found in Sect. B.1.

As can be seen in Fig. 4.3 the available informationflows from the data provided by
the detector, through the intermediate candidates into the final B meson candidates,
yielding a single number, which can be used to distinguish correctly reconstructed
from incorrectly reconstructed Btag mesons.

4.2.1.3 Combinatorics

It is not possible to consider all possible B meson candidates created by all possible
combinations. The amount of possible combinations scales with the factorial in the
number of tracks and clusters. This problem is known as combinatorics in HEP.
Furthermore, it is not worthwhile to consider all possible B meson candidates,
because all of them (except for two in the best-case scenario) are wrong.

The FEI uses two sets of so-called cuts. A cut is a criterion a candidate has to
fulfill to be further considered. For instance one could demand that the invariant mass
of the B meson candidate is near the nominal mass 5.28GeV of a B meson particle,
or that a μ+ candidate has a large μ likelihood calculated from the measurements in
the PID sub-detectors.

Directly after the creation of the candidate (either from a detector object, or by
combining other candidates), but before the application of the multivariate method,
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the FEI uses loose and fast pre-cuts to remove wrongly reconstructed candidates
(background), without loosing signal. The main purpose of these cuts is to save
computing time and to reduce the memory consumption. These pre-cuts are applied
separately for each decay-channel.

At first, a very loose fixed cut is applied on a quantity, which is fast to calculate,
e.g. the energy for photons, the invariant mass for D mesons, the released energy in
the decay for D∗ mesons, or the beam-constrained mass for hadronic B mesons.

Secondly, the remaining candidates are ranked according to a quantity, which is
fast to calculate (usually the same quantity as above is used here). Only the n best-
candidates in each decay-channel are further considered, the others are discarded.
This best-candidate selection ensures that eachdecay-channel and each event receives
roughly the same amount of computing time.

Next, the computationally expensive parts of the reconstruction are performed on
each candidate (see also Sect. 4.2.4): the Monte Carlo matching (in case of MC), the
vertex fitting, and the multivariate classification.

After the multivariate classifiers have estimated the SignalProbability of
each candidate, the candidates of different decay-channels can be compared to one
another. Here the FEI uses tighter post-cuts to aggressively remove wrongly recon-
structed candidates using all available information. The main purpose of these cuts
is to restrict the number of candidates per particle to a manageable number.

At first, there is a loose fixed cut on the SignalProbability, to remove
unreasonable candidates.

Secondly, the remaining candidates are ranked according to their
SignalProbability. Only them best-candidates of the particle (that is over all
decay-channels) are further considered, the others are discarded. This best-candidate
selection ensures that the amount of candidates produced in the next stage is tractable
by the computing system (see Sect. 4.2.4.1).

The exact definitions of the pre-cuts and post-cuts like the used values for n and
m can be found in Sect. B.1.

4.2.2 Training

The multivariate classifiers used by the FEI are trained on Monte Carlo (MC)
simulated events as explained in Chap. 3. Each multivariate classifier requires at
least O(103) signal and background candidates to be successfully trained, that is
to prevent under-fitting and over-fitting. The branching fractions of the employed
decay-channels for B and D mesons are O(10−3) and the reconstruction efficiency
of some B decay-channels is as low asO(10−2). So, it is expected to requireO(108)
MC events containing B meson decays for a successful training of the FEI. This
number was empirically confirmed.

During the training of the FEI, the provided MC is reconstructed following the
hierarchical approach. At each stage the necessary training data for all classifiers
used by the current stage is written out, and the reconstruction is suspended before
the post-cuts would have been applied. The classifiers are fitted using the training
data. Afterwards, the reconstruction is resumed, the post-cuts are now applied using
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the immediately previously fitted classifiers. The technical aspects of the training are
discussed in Sect. 4.2.4.4.

There are three distinct types of MC events, which could be used for the
training of the FEI: double-generic events: e+e− → ϒ(4S) → BB̄, where both
B mesons decay generically3; continuum events, that is non-resonant interac-
tions e+e− → qq̄, ��̄, γγ; and signal events: e+e− → ϒ(4S) → BB̄, where one
B decays generically, and the other decays in an analysis-specific signal-channel like
B+ → τ+ντ .

Depending on the training procedure and mixture of MC types in the training, the
multivariate classifiers of the FEI are optimized for different objectives. The main
objectives of the FEI are: a high tag-side efficiency on signal events, that is to
output correctly reconstructed Btag mesons for signal events and assign them a high
SignalProbability; and a high purity by rejecting background candidates,
or assigning them a low SignalProbability. Moreover, if the signal-side can
already provide a good Bsig candidate, it is also desired to obtain a high tagging
efficiency by always providing at least one reasonable candidate. This can improve
the final signal selection efficiency, because the event is not discarded if for instance
mis-identified or missing tracks prevent an entirely correct reconstruction of the
tag-side.

Continuum events are not used during the training of the FEI. Firstly, continuum
events do not contain usable signal candidates. Bmesons are not present in continuum
events, and other particles like D mesons have different properties (e.g. a higher
momentum) than typically found in ϒ(4S) events. Secondly, they can be suppressed
efficiently by the dedicated ContinuumSuppression (Sect. 3.3.1.3) algorithm
of BASF2.

In the following I describe the main training procedures and discuss their respec-
tive advantages and disadvantages.

4.2.2.1 Generic FEI

The generic FEI is trained on double-generic MC events. The training is done inde-
pendently of any specific signal-side and is performed centrally, once per Monte
Carlo campaign.

The classifiers are trained to identify correctly reconstructed Btag mesons on
double-generic events. The training of the classifiers could be sub-optimal for sig-
nal events, due to the different multiplicity distribution of double-generic and signal
events. One can mitigate this problem by training the FEI on double-generic MC
events with a maximum number of 12 + N tracks, where 12 is the maximum number
of tracks the FEI can combine to a valid4 Btag and N is the number of tracks required
for the reconstruction of the Bsig (see Sect. 4.3.3.1).

After the user performed his analysis-specific signal-side selection and applied
the completeness-constraint, most of the wrongly reconstructed Btag candidates can

3The meson decays into all possible final states with the correct branching fractions.
4Empirically, 7 is the maximum number of tracks the FEI can combine to a correct candidate.
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be rejected. The generic FEI cannot take advantage of this fact during the training
of the classifiers.

4.2.2.2 Specific FEI

The specific FEI is trained evenly on double-generic and signal MC events. First the
analysis-specific signal-side selection is performed, afterwards the FEI is trained on
the rest-of-event of the Bsig candidates.

The classifiers are specifically trained to identify correctly reconstructed Btag

mesons for signal events, which is the main objective of the FEI. Furthermore, B
classifiers are only trained on those background candidates from the rest-of-event
of double-generic events, which fulfill the completeness-constraint. In consequence,
the classifiers can focus on reducing the non-trivial background. Candidates from
incorrectly reconstructed Bsig from signal events are not used at all, because the
candidates produced by these events would be vastly over-represented in the training
data, since the signal events are usually very rare on data.

Since only B candidates which fulfill the completeness-constraint are used, the
procedure suffers from notoriously low statistics in signal and background. In con-
sequence, large amounts of double-generic and signal MC are required to properly
train the FEI using this procedure.

The training depends on the analysis-specific signal-side selection and has to be
performed by the user for their analysis.

4.2.2.3 Mono FEI

The mono FEI is trained on signal MC events for the decay B0 → νν̄. There is
exactly one detectable B in each event. In effect, the FEI is trained on the rest-of-
event of an arbitrary correctly reconstructed Bsig.

The classifiers are specifically trained to identify the most likely tag-side decay-
chain, under the assumption of an correctly reconstructed signal-side. Such a training
could be used instead of the traditional inclusive tagging algorithm. It can provide
improved tag-side vertexing by exploiting the explicitly known tag-side decay-chain,
e.g. using the decay-tree fitter (see [4]). This type of training was not further inves-
tigated during this thesis.

The training can be done independently of any signal-side and can be performed
centrally, once per Monte Carlo campaign.

4.2.3 Application

The FEI can either be applied to the entire event, or only to a subset like the
rest-of-event of a Bsig candidate.

After the application the FEI provides tag-side B candidates for B+ and B0

in hadronic and semileptonic decay-channels. Each candidate has an associated
SignalProbability that can be used to reject wrongly reconstructed candi-
dates.
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An analysiswith an inclusive signal-side such asB+ → Xu�
−ν applies the generic

FEI to the entire event without using the completeness-constraint. The rest-of-event
of the Btag candidate can be used to reconstruct the signal-side inclusively by assign-
ing all remaining tracks and clusters to the signal-side.

An analysis with an exclusive signal-side, e.g. B+ → τ+ντ , can either apply the
generic FEI to the entire event or the specific FEI to the rest-of-event of the Bsig.
In the end, the completeness-constraint is always applied. The choice of the generic
or specific FEI depends on the feasibility of a dedicated training of the specific
FEI using large amounts of signal and double-generic MC events. Furthermore, the
systematic uncertainties are different (see Sect. 4.3.4).

Finally, it is also possible to apply the generic FEI to the rest-of-event, although
it was trained on the entire event. This allows a rough estimation of improvements
which can be expected of the specific FEI.

4.2.4 Performance

Fitting the FEI on O(100) million events and applying it to O(1) billion events,
is a CPU-intensive task. An optimized runtime and a small memory-footprint is
key for the practicalness in production and saves computing resources i.e. money.
As can be seen from Table4.1 most of the time in the FEI application is spent
in: vertex fitting, particle combination and classifier inference. All three tasks have
been carefully optimized during this thesis. These optimizations are discussed in the
following sections.

Furthermore, the time-consuming training procedure has been implemented using
a distributable map-reduce approach (Sect. 4.2.4.4).

All runtime measurements in this section were performed on the KEKCC cluster.
The measured values depend on the hardware (e.g., CPU, RAM, and caches), the
load of the system (e.g., the amount of rivaling processes and the current IO traffic),
the software (the exact BASF2 version) and the data (e.g., the Belle experiment and

Table 4.1 Relative time in percent spent by the FEI applied to ϒ(4S) Belle II MC for various
tasks. The fitting of the FEI is dominated by reading (writing) the cached DataStore from (to)
disk space in between the stages, which is limited by the IO throughput of the system and cannot
be optimized in the FEI. The application is still dominated by the vertex fitting, which originally
required about 78% of the CPU time

Task Training Application

Read/Write DataStore 30 0

Vertex fitting 26 38

Particle combination 19 27

Classifier inference 11 15

Training data & monitoring 65 0

Best candidate selection 3 6

Other 5 14
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event type). Therefore, only the relative differences between the stated numbers are
meaningful.

4.2.4.1 Combination of Candidates

As explained in Sect. 4.2.1.3, the number of candidates which have to be processed is
growing like the factorial of the multiplicity of the channel. In previous approaches
the runtime and the maximum memory consumption was dominated by a few high
multiplicity events and tight cuts had to be applied to high multiplicity channels.

In contrast, the FEI limits the combinatorics problem by performing best-
candidate selections during the reconstruction of the decay-chain instead of fixed
cuts.

In consequence, each event and each decay-channel is allowed to process the same
number of candidates in vertex fitting and classifier inference i.e. consuming similar
amounts of CPU time. Moreover, the maximummemory consumption is limited due
to the fixed number of best-candidates per event, which is a key requirement by the
computing infrastructure.

4.2.4.2 Vertex Fitting

The default vertex fitting implementation of Belle II was ported from the legacy
Belle code and is named KFitter (Kinematic Fitter). It is based on a Kalman
Filter and supports unconstrained, IP profile constrained, and mass-constrained fits.
In addition, the RAVE (Reconstruction in an Abstract, Versatile Environment) toolkit
[5] was integrated in BASF2. It has its roots in the CMS (Compact Muon Solenoid)
vertex reconstruction software and supports a broad collection of vertex finding and
fitting algorithms based on a Kalman Filter approach generalized to include adaptive
track assignment and multiple vertices.

On the other hand, the FEI uses only a simple unconstrained vertex fit during the
reconstruction, and feeds the calculated information into its multivariate classifiers.
The user can refit the whole decay-chain of the final B candidates again, including
mass and/or ip profile constraints if desired. Therefore, the FEI restricts itself to a
fast unconstrained vertex fitting. Still, the major part of the CPU time of the FEI is
spent during vertex fitting.

During this thesis a dedicated fitter (called FastFit) based on a Kalman Filter
[6] was implemented for the FEI, which outperforms the default KFitter imple-
mentation by one order of magnitude as can be seen in Fig. 4.4. A speed-up of the
vertex-fitting part of sFastFit ≈ 5 of the FEI was measured on generic B+B− Belle II
events. With KFitter the application phase of the FEI spent p ≈ 78% of the CPU
time during the vertex fitting. According to Amdahl’s law [7], a theoretical speed-up
of the entire FEI of approximately

SFEI = 1

(1 − p) + p
sFastFit

= 2.66,
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Fig. 4.4 Runtime of an unconstrained vertex fit for different Dmeson decay-channels in theBASF2
framework.FastFit is one order ofmagnitude faster than KFitter and two orders of magnitude
faster than RAVE

is expected. Empirically, an overall speed-up of the FEI of 2.74 was observed.
The quality (deviation to the true vertex position) of the vertex fit of all three

tested implementations is very similar, which is expected since all implementations
calculate the same well-defined least-square solution. Deviations occur due to differ-
ent stopping criterion of the algorithms. Consistently, the overall maximum tag-side
efficiency of the FEI does not depend on the employed vertex fitter during fitting or
application.

The FastFit code is licensed under GPLv3 and available on github [8].

4.2.4.3 Multivariate Classification

As described in Sect. 3.2.1.1, FastBDT is the default multivariate classification
algorithm of BASF2. It was originally designed for the FEI to speed up the fitting
and inference-phase. Compared to other popular BDT implementations such as those
provided byTMVA,SKLearn andXGBoost it originally gainedmore than one order
of magnitude in execution time, both in fitting and inference. Using FastBDT, most
of the time is spent during the extraction of the necessary features used for the
inference, therefore no further significant speedups can be achieved by employing a
different method.
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4.2.4.4 Distributed Training

The training of the FEI is fully automatized and distributed. The distributed training
was already introduced in [2]. It follows a map-reduce approach.

The supplied Monte Carlo files are partitioned and processed by independent
computing nodes. At first the total amount of supplied Monte Carlo events and
their particle content (e.g. the total number of B+ and B0 mesons) is calculated.
Subsequently, the six stages of the FEI hierarchy are reconstructed.

At each stage the necessary training data for all classifiers used by the current
stage is written out. The reconstruction is suspended and the current content of the
DataStore of all events on all nodes is cached on disk.

The training data is merged centrally and the associated classifiers are fitted. The
generated WeightFiles are uploaded into the local Belle II Conditions
Database.

Afterwards, reconstruction is resumed by reading in the cached DataStore files
from disk. The classifiers are loaded from the corresponding WeightFiles, which
are downloaded from the Belle II Conditions Database.

4.2.4.5 Comparison with Full Reconstruction

The FEI was compared to the hadronic Full Reconstruction (FR) algorithm
used by Belle.

Out-of-the-box the FR requires on average 36ms (39ms) to reconstruct a sim-
ulated B0B̄0 (B+B−) Belle event. The FR was implemented using dedicated C++
code. In contrast, the FEI requires with the identical configuration5 on average 24ms
(26ms) to reconstruct the same Belle events using the b2bii interface. The FEI
is implemented in Python and only uses general purpose modules implemented in
C++.

The default configuration of the FEI requires 98ms (100ms) to reconstruct a sim-
ulated B0B̄0 (B+B−) Belle event. This time includes the reconstruction of hadronic
and semileptonic Btag candidates using many additional channels (see Sect. B.1) and
yielding a higher tag-side efficiency.

The average runtime 119ms (128ms) to reconstruct a simulated B0B̄0 (B+B−)
Belle II event is significantly larger because of increased event size in terms of number
of reconstructed tracks and number of reconstructed clusters (Table 4.2)

4.2.5 Automatic Reporting

The FEI includes an automatic reporting system called Full Event
Interpretation Report (FEIR). The FEIR contains efficiencies and puri-

5Only decay-channels were reconstructed, which were used by the FR as well.
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Table 4.2 Application time of the FEI in ms for various types of MC7 on the KEKCC cluster.
The uncertainty of the absolute values is about ±3ms

MC Type Time per event in ms

ϒ(4S) → B+B− 128

ϒ(4S) → B0B̄0 119

e+e− → cc̄ 76

e+e− → ss̄ 48

e+e− → dd̄ 45

e+e− → uū 43

e+e− → τ−τ+ 14

e+e− → μ−μ+ 12

B+ → τ+ντ 43

ties for all particles and decay-channels at different points during the reconstruction.
It is generated from so-calledmonitoring histograms, which can optionally bewritten
out during the training and the application. In addition, reports for each multivariate
classifier can be created by the mva package (see Sect. 3.2.4).

This built-in monitoring capability upgrades the FEI from a black-box to a white-
box algorithm, which the user can understand and inspect on all levels.

An excerpt of the FEIR can be found in Sect. B.2.

4.3 Validation

The FEIwas extensively validated on converted BelleMC from the last BelleMonte
Carlo campaign, converted Belle data recorded by the Belle detector, and Belle II
MC from the 7th Belle II Monte Carlo campaign. Unless stated otherwise all studies
were conducted using ϒ(4S) and continuum events (including cc̄, ss̄ , dd̄, uū and
τ−τ+) scaled to their expected fractions on recorded data.

The validation includes a detailed discussion on the signal-definition used for
the Btag candidates (Sect. 4.3.1); the performance of the FEI on converted Belle
events (Sect. 4.3.2) and Belle II events (Sect. 4.3.3); the calibration of the FEI on
converted Belle data using control channels (Sect. 4.3.4); and a comparison to the
Full Reconstruction (FR) algorithm used by Belle (Sect. 4.2.4.5).

4.3.1 Signal Definitions

This thesis uses the Monte Carlo matching algorithm of BASF2. The algorithm
searches for the common mother of all tracks and clusters used during the recon-
struction. It can distinguish a large number of possible reconstruction errors, which
allows for a fine-grained signal-definition:



78 4 Full Event Interpretation

• particles which were missed during the reconstruction: final state radiation (fsr),
photons (excluding fsr), intermediate resonances; neutrinos, K0

L or other massive
particles;

• charged final state particles, which were misidentified or decayed in flight;
• particles which were wrongly added during the reconstruction.

The default signal-definition of Belle II allows for missing final state radiation,
missing intermediate resonances and missing neutrinos. If not stated otherwise, this
thesis uses this definition, to be comparable to previous exclusive tagging algorithms.

However, since the B mesons reconstructed by the FEI are used for exclusive
tagging, an extended signal-definition can be useful. Here, the mis-identification of
a charged final state particle and the addition of beam-induced background particles
is allowed as well. The completeness-constraint is uncompromised by this extended
signal-definition. Also important quantities like the beam-constrainedmass and devi-
ation from the nominal beam-energy are often unchanged.

As can be seen from Figs. 4.5 (Belle) and 4.10 (Belle II), the hadronically tagged
extended-signal candidates peak at the same position in the beam-constrained mass
as the default-signal candidates. The same holds true in cos�BD� for the semilep-
tonically tagged B mesons (see Figs. 4.6 (Belle) and 4.11 (Belle II)).

The multivariate classifiers of the FEI use the default signal-definition, with
an additional constraint for final state particles, which have to come from the pri-
mary interaction to be considered signal (for instance electrons from converted gam-
mas are not considered signal in the electron classifier). Therefore the candidates
fulfilling only the extended signal-definition are suppressed if a tight cut on the
SignalProbability is chosen (see Figs. 4.7a and4.12a).

Even the extended signal-definition does not include all peaking background con-
tributions from mis-reconstructed B mesons, as can be seen from Fig. 4.8, where
a Gaussian distribution for the peaking B candidates and an ARGUS function for
combinatorial background [1, Chap. 7.1]was fitted to convertedBelle data. This addi-
tional peaking background is caused by nearly correctly reconstructed B mesons.
There is no peaking background component visible on recorded off-resonance data,
which does not contain B mesons (see Fig. 4.8). Consequently, the peaking back-
ground is caused by physics and not by a non-uniform selection efficiency of the
classifiers used by the FEI (see Sect. 3.3.2). It is debatable if those peaking B can-
didates can be (for some analyses) considered signal as well.

An analysis, for instance the benchmark analysis B+ → τ+ντ (see Chap. 5),
usually accepts all events which contain the searched signal-decay as signal. Hence,
the signal-definition of the tag-side is not used. Still, many analyses could profit from
the relaxed extended signal-definition if the classifiers used by the FEI are explicitly
trained with this definition.
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(a) A loose cut on the SignalProbability was performed.

(b) A tight cut on the SignalProbability was performed.

Fig. 4.5 Belle: The beam-constrained mass of the best hadronically tagged B+ meson candidate
per event. The spectrum of the different signal-definitions is shown

4.3.2 Performance on Belle

The performance of the FEI was studied on converted Belle MC from the last Belle
Monte Carlo campaign and converted Belle data recorded by the Belle detector. The
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(a) A loose cut on the SignalProbability was performed.

(b) A tight cut on the SignalProbability was performed.

Fig. 4.6 Belle: cos�BD� of the best semileptonically tagged B+ meson candidate per event. The
spectrum of the different signal-definitions is shown

sample used for the training of the FEI contained 200 million simulated ϒ(4S)

events divided evenly between the processes ϒ(4S) → B+B− and ϒ(4S) → B0B̄0.
The sample used to estimate the performance of the FEI during the application
phase contained 6 million simulated events divided evenly between the ϒ(4S) pro-
cesses ϒ(4S) → B+B−, ϒ(4S) → B0B̄0, and 6 million simulated events divided
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(a) Hadronic Tag: B+ (b) Semileptonic Tag: B+

(c) Hadronic Tag: B0 (d) Semileptonic Tag: B0

Fig. 4.7 Belle: Receiver operating characteristic (ROC) curve of tagged B mesons for the
signal and extended signal-definition. The loose (SignalProbability > 0.01) and tight
(SignalProbability > 0.1) cut are shown in orange and red, respectively

evenly between the continuum processes e+e− → cc̄, ss̄, dd̄ and uū. In addition 10
million events recorded at theϒ(4S) resonance, and 10 million off-resonance events
recorded 60MeV below the ϒ(4S) resonance were used. Throughout the text, the
simulated events are scaled to the integrated luminosity of the recorded data they are
compared to.

The generic FEI trained on all Belle events with less or equal to 14 tracks per
event was applied. Table4.3 shows the obtained tag-side efficiency and Table4.4
shows the obtained tagging efficiency.

At this point an analysis with an exclusive signal-side would employ the
completeness-constraint. Instead, only the candidate with the highest
SignalProbability in each event is considered in the following. This best-
candidate selection is independent of a specific signal-side, but not optimal (meaning
the stated results can be understood as lower bounds for the tag-side efficiency and
purity of the FEI).
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(a) On-resonance: The signal peak on data is smaller. Hence the tag-side
efficiency is lower on data compared to the Monte Carlo expectations.
On the other hand, the fitted signal fraction is over-estimated due to
the peaking background. Both effects cancel each other.

(b) Off-resonance: As expected the fitted signal fraction is nearly zero.
Hence nearly no peaking background is observed on continuum data.
The off-resonance data was scaled to account for the shift in the
kinematic end-point of the beam-constrained mass distribution.

Fig. 4.8 Belle: The beam-constrained mass of the best hadronically tagged B+ meson candidate
per event. The Monte Carlo expectation is shown as filled histograms. The data is shown as black
points with a Poisson uncertainty. The result of the EUML on 10 million recorded Belle events is
shown as dashed lines
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Table 4.3 Belle: Maximum
tag-side efficiency of the FEI
on converted Monte Carlo
simulated Belle events

Charged B± Neutral B0

Hadronic (%) 0.76 0.46

Semileptonic (%) 1.80 2.04

Table 4.4 Belle: Tagging
efficiency of the FEI on
converted data recorded by
the Belle detector

All Signal region

Charged
B±

Neutral
B0

Charged
B±

Neutral
B0

Hadronic (%) 48.0 37.9 5.6 4.6

Semileptonic (%) 90.0 87.2 25.2 22.2

Figure4.5 shows the beam-constrained mass of the best hadronically tagged B+
meson candidate per event. The correctly reconstructed B mesons peak clearly at
the nominal B meson mass, as expected. Figure4.6 shows cos�BD� of the best
semileptonically taggedB+ meson candidate per event. The correctly reconstructedB
mesons peak clearly in the physically allowed region between−1 and 1, as expected.
The dashed lines indicates the signal region which is used to calculate the tag-side
efficiency and purity receiver operating characteristic curves in Fig. 4.7. The hadronic
tag can reach a higher purity than the semileptonic tag, whereas the semileptonic tag
provides a larger tag-side efficiency, as expected.

For the hadronic tag, the results were verified on data.
The observed differences in the background distribution between theMonte Carlo

expectation and the recorded data can be explained by the poor simulation of
the continuum component (see Sect. 2.3.3.3). The over-estimation of hadronic B
candidates from continuum in the Monte Carlo simulation was cross-checked using
off-resonance data (see the loswer plot in Fig. 4.8). The shape difference of semilep-
tonic B candidates is also caused by the continuum description as can be seen from
Fig. 4.9.

Fig. 4.9 Belle: cos�BD� of
the best semileptonically
tagged B+ meson candidate
per event. The Monte Carlo
expectation of the continuum
component is shown as a
filled histogram. The
off-resonance data is shown
as black points with a
Poisson uncertainty. The
off-resonance data-points
were calculated using the
on-resonance beam-energy
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4.3.2.1 Hadronic Tag-Side Efficiency Estimation on Data

The measurement of absolute branching fractions (in contrast to, e.g, branching
fraction ratios) requires the knowledge of the selection efficiency on data. Therefore
it is crucial to calibrate the tag-side efficiency of the FEI on data using control-
channels (see Sect. 4.3.4). This section introduces an alternative method to estimate
the tag-side efficiency, which does not require the reconstruction of a signal-side.

The hadronic tag-side efficiency can be estimated on recorded data by fitting the
beam-constrained mass spectrum of the B meson candidates. The distribution of
the signal candidates are modeled with a Gaussian distribution and the background
candidates are modeled with an ARGUS function [1, Chap. 7.1]. The location and
scale of the distributions were fixed to the Monte Carlo expectation. Hence, only
the normalization and the shape parameter c of the ARGUS function are adjustable
by the fit. The two components are fitted using an extended unbinned maximum
likelihood (EUML) fit. Afterwards the tag-side efficiency and purity in a window of
5.24GeV < Mbc < 5.29GeV can be calculated using the fitted yields of the signal
and background component.

This method overestimates the tag-side efficiency if the beam-constrained mass
spectrum contains a background component that peaks at the same position as the
signal component as can be seen in Fig. 4.8. Although the signal peak is clearly
smaller on recorded data than on simulated events, the extracted signal fraction is
the same, because the peaking background was assigned to the signal peak by the fit
(see also the discussion of the signal-definition in Sect. 4.3.1).

The resulting efficiencies and purities for different cuts on the
SignalProbability of the candidates is shown in Fig. 4.7. It is compatible with
the expectation from Monte Carlo expectation, but suffers from the over-estimation
problem discussed above.

A complementary and superior method using control-channels is discussed in
Sect. 4.3.4. This method is robust against peaking background, because it does not
rely on any signal-definition of the tag-side candidates.

The semileptonic tag-side efficiency can be estimated on recorded data by fitting
the cos�BD� spectrum of the B meson candidates. This was not further investigated
during this thesis, but is described in more detail in [9].

4.3.2.2 Continuum Background

The performance of the FEI was studied on continuum data recorded by the Belle
detector 60MeV below the ϒ(4S) resonance.

At this energy, the production of B mesons is kinematically forbidden and only
non-resonant processes occur, hence the name “continuum data”. Some kinematic
properties like the beam-constrained mass are very sensitive to the reduced energy,
therefore these properties are scaled to the correct energy scale. For instance, the
beam-constrained mass is scaled by

Senergy = 10.58GeV

10.58GeV − 0.06GeV
.
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to account for the shift of the kinematic end-point. In the case of cos�BD�, the
on-resonance beam-energy is used for the calculation (see Eq.4.3).

As can be seen from Fig. 4.8 the continuum data does not contain any signal
or peaking background, but the combinatorial background can be described well
with an ARGUS function. The Monte Carlo simulation overestimates the amount of
combinatorial background from continuum. The same holds true for the semileptonic
Bmesons (seeFig. 4.9), in addition the distribution is shifted. This is a knownproblem
(already encountered in Sect. 3.3.3 and described in Sect. 2.3.3.3). The continuum
background on data is about 20% lower than expected from Monte Carlo.

In total, the FEI performance does not seem to be influenced by the lower beam-
energy of off-resonance data, which is a desired property because this allows the use
of off-resonance data as a signal-free control region for continuum background.

4.3.3 Performance on Belle II

The performance of the FEI was studied on Belle II MC from 7th Belle II Monte
Carlo campaign. The sample used for the training of the FEI contained 180 million
simulated ϒ(4S) events divided evenly between the processes ϒ(4S) → B+B− and
ϒ(4S) → B0B̄0. The sample used to estimate the performance of the FEI during the
application phase contained 7 million simulated events divided evenly between the
processes ϒ(4S) → B+B−, ϒ(4S) → B0B̄0, and e+e− → cc̄, ss̄, dd̄, uū and τ+τ−,
and were scaled to an integrated luminosity of 1 ab−1.

The generic FEI was trained on all Belle II events with less than or equal to 14
tracks per event. Table4.5 shows the obtained tag-side efficiency. Table4.6 shows
the obtained tagging efficiency.

At this point an analysis with an exclusive signal-side would employ the
completeness-constraint. Instead, only the candidate with the highest
SignalProbability in each event is considered in the following. This cut is
independent of a specific signal-side, but not optimal (meaning the stated results can
be understood as lower bounds for the tag-side efficiency and purity of the FEI).

Table 4.5 Belle II:
Maximum tag-side efficiency
of the FEI on independent
Monte Carlo simulated
Belle II events

Charged B± Neutral B0

Hadronic (%) 0.66 0.38

Semileptonic (%) 1.45 1.94

Table 4.6 Belle II: Tagging efficiency of the FEI on independent Monte Carlo simulated Belle II
events

All Signal region

Charged B± Neutral B0 Charged B± Neutral B0

Hadronic (%) 35.5 28.0 4.7 3.7

Semileptonic (%) 71.2 69.6 18.8 12.4
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(a) A loose cut on the SignalProbability was performed.

(b) A tight cut on the SignalProbability was performed.

Fig. 4.10 Belle II: The beam-constrainedmass of the best hadronically taggedB+ meson candidate
per event The spectrum of the different signal-definitions is shown

Figure4.10 shows the beam-constrained mass of the best hadronically tagged B+
meson candidate per event. The correctly reconstructed B mesons peak clearly at the
nominal Bmesonmass, as expected. Figure4.11 shows cos�BD� of the best semilep-
tonically taggedB+ meson candidate per event. The correctly reconstructedBmesons
peak clearly in the physically allowed region between −1 and 1, as expected. The
dashed lines indicates the signal region which is used to calculate the tag-side effi-
ciency and purity receiver operating characteristic curves in Fig. 4.12. The hadronic
tag can reach a higher purity than the semileptonic tag, whereas the semileptonic tag
provides a larger tag-side efficiency, as expected.
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(a) A loose cut on the SignalProbability was performed.

(b) A tight cut on the SignalProbability was performed.

Fig. 4.11 Belle II: cos�BD� of the best semileptonically tagged B+ meson candidate per event.
The spectrum of the different signal-definitions is shown

4.3.3.1 Influence of the Event Multiplicity

The number of reconstructed tracks (the multiplicity) is a fundamental property of
an event. The larger the number of reconstructed tracks, the larger the combinatorial
background and the more difficult it is to reconstruct the correct decay-chain. The
influence of the event and candidate multiplicity on the performance of the FEI was
investigated during this thesis.
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(a) Hadronic Tag: B+ (b) Semileptonic Tag: B+

(c) Hadronic Tag: B0 (d) Semileptonic Tag: B0

Fig. 4.12 Belle II: Receiver operating characteristic (ROC) curve of tagged B mesons for the
signal and extended signal-definition. The loose (SignalProbability > 0.01) and tight
(SignalProbability > 0.1) cut are shown in orange and red, respectively

Figure4.13 shows the multiplicity of Btag candidates. The majority of correctly
reconstructed tag-side candidates consist of less than 8 tracks. Theoretically, the
maximum number of tracks which can be combined to a valid charged (neutral) Btag

candidate by the FEI is 11 (12). However, in practice 9 (10) tracks per candidate is
not exceeded.

As can be seen from Fig. 4.14 this effectively restricts the multiplicity of correctly
tagged signal events. In this thesis the rare decay B+ → τ+ντ is used as signal (see
Chap. 5).Often the investigated rareBsig decay-channel has a very lowmultiplicity N .
Therefore it is reasonably to only consider events with less than 11 + N (12 + N )
reconstructed tracks in the training and/or in the application, because only those
events will pass the completeness-constraint. Furthermore, it is expected that the
FEI performs better on low-multiplicity events due to the reduced combinatorics,
and that the required computing resources scales with the event multiplicity.

The influence of the maximum number of reconstructed tracks allowed in the
training and in the application was studied. The study was conducted with version 3
of the FEI, whereas the rest of this thesis uses version 4. The results are shown in
Fig. 4.15 and should be independent of the used version. Only the best Btag candidate
per event was considered, and an additional cut on the beam-constrained mass was
applied.
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(a) The track multiplicity of correctly
reconstructed B candidates.

(b) The track multiplicity of incorrectly
reconstructed B candidates.

Fig. 4.13 Number of tracks (multiplicity) of the candidates. The dashed line indicates the default
cut on the maximum numbers of tracks used during the application of the FEI in the benchmark
analysis B → τν in this thesis. The number in parenthesis in the legend states the mean number of
tracks for the corresponding component

(a) The track multiplicity of the events with
correctly reconstructed B candidates.

(b) The track multiplicity of the events with

incorrectly reconstructed B candidates.
An event is counted multiple times if
it contains more than one background
candidate.

Fig. 4.14 Number of tracks (multiplicity) of the events. The dashed line indicates the default cut on
the maximum numbers of tracks used during the training of the FEI in this thesis. The rare decay
B+ → τ+ντ is used as signal. The number in parenthesis in the legend states the mean number of
tracks for the corresponding component

Surprisingly, themaximum number of reconstructed tracks allowed in the training
barely influences the performance of the FEI if applied to all events (see Fig. 4.15a).
Hence, it is not important if the training is done on all events, or on low-multiplicity
events. Only at a multiplicity as low as 6 a significant effect is visible. This can be
explained by the hierarchical approach of the FEI. It allows the training of high-
multiplicity B decay-channels using only low-multiplicity D channels. But during
the application the high-multiplicity B decay-channels can also be combined with
high-multiplicity D channels. In fact, a FEI trained on events with less than or equal
to six tracks is still able to reconstruct tag-side candidates with a multiplicity of seven
during the application quite well.
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(a) Receiver operating characteristic (ROC) curves of the FEI applied to
all events without a cut on the event multiplicity.

(b) The area under the ROC curve (AUC ROC) depending on the multi-
plicity of the event.

Fig. 4.15 Evaluation of the best hadronically tagged B+ candidate per event, reconstructed by
different configurations of the FEI. Each curve corresponds to a generic FEI with a cut on the
maximum number of N tracks in the event during the training

Moreover, the performance of the FEI on events with different multiplicities is
barely influenced by the maximum number of reconstructed tracks allowed during
the training as well (see Fig. 4.15b). For instance, a FEI trained specifically on events
with≤6 tracks, does not perform better on events with 6 tracks than a FEI trained on
all events. However, overall theFEI performs significantly better on low-multiplicity
events, since it is much easier to reconstruct the correct Btag meson. In particular,
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the tag-side efficiency for signal-sides with a low-multiplicity is usually significantly
better (see Chap. 5).

The same behavior was found for hadronically tagged B+, hadronically tagged
B0, semileptonically tagged B+ and semileptonically tagged B0.

The default training of the generic FEI considers only events with a maximum
multiplicity of 14 during the training, and considers all events during the application.
The number was chosen to save computing resources without any risk of decreasing
the overall performance of the FEI on signal events (see Fig. 4.13). The benchmark
analysis in Chap. 5 uses the default training, but applies an additional cut on the
multiplicity during the application to save computing time without discarding signal
events.

4.3.3.2 Influence of Beam-Background

The exact beam-background conditions at Belle II are currently (at the time of writ-
ing) unknown. The current estimations range between a 20 to 30 fold increase com-
pared to Belle. The exact numbers depend on the detector region. Therefore the
influence of the beam-background on the performance of the FEI was studied.

The generic FEI was trained, with (T1) and without (T0) beam-background.
Both were applied to independent genericϒ(4S) events, with (A1) andwithout (A0)
beam-background. The results are shown in Fig. 4.16. Only the best Btag candidate
per event was considered, and an additional cut on the beam-constrained mass was
applied.

As expected, T0 performs better than T1 on A0, and T1 performs better than T0
on A1.

Fig. 4.16 Evaluation of the best hadronically tagged B+ candidate per event, reconstructed by
different configurations of the FEI. The solid (dashed) curves correspond to a generic FEI trained
on simulated Belle II events with (without) beam-background. The blue and purple (red and orange)
curves correspond to a generic FEI applied to simulated Belle II events with (without) beam-
background
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Fig. 4.17 The distribution of the event multiplicity for ϒ(4S) events with and without beam-
background (BB). On average, there is a fake track due to beam-background in every second event.
The number in parenthesis in the legend states the mean number of tracks for the corresponding
component

The training of the FEI is robust against beam-background. The loss in tag-side
efficiency due to occurring beam-background in the training (that is the difference
between T1 and T0) is of the order of 10%.

In contrast, the application of the FEI is sensitive to the beam-background. The
loss in tag-side efficiency due to occurring beam-background in the application (that
is the difference between A1 and A0) is of the order of 30%.

In particular the increased fake-rate (the fraction of reconstructed tracks which do
not originate from a charged particle) caused by the increased beam-background is
problematic (see Fig. 4.17), because it leads to increased combinatorics and decreases
the probability of identifying the correct Btag candidate.

The same behavior was found for hadronically tagged B+, hadronically tagged
B0, semileptonically tagged B+ and semileptonically tagged B0.

Finally, the completeness-constraint is very sensitive to an increased fake-rate.
Also quantities like the extra energy in the electromagnetic calorimeter are sensitive
to the amount of beam-background. However, it is expected that the fake-rate will
be significantly reduced in the upcoming years, because the reconstruction software
of Belle II is not yet optimized to reduce the fake-rate. This is further discussed in
the benchmark analysis in Chap. 5.

4.3.3.3 Influence of Reduced Boost

The asymmetry between the electron and positron beam of SuperKEKBwas reduced
with respect to KEKB, as stated in Table 2.2. The associated change of the Lorentz
boost reduces the resolution of the decay time difference in time-dependent CP
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Fig. 4.18 Geometrical
detector acceptance in a
boosted frame of reference
depending on the energy EL
of the positron beam

violation measurements, on the other hand it increases the detector acceptance. In
spherical coordinates the Belle (and Belle II) detector covers � ∈ [17◦, 150◦] and
φ ∈ [0◦, 360◦]. The geometric detector acceptance in percent is

� = 1

4π

∫ 150◦

17◦

∫ 360◦

0◦
d� = 91.1%.

Assuming a uniform spherical distribution of the tracks and neglecting the mass of
the final state particles compared to their momenta, the angle�� in the boosted frame
of reference is

tan
(
��

) = 1

γ

(
sin�

β + cos�

)

where γ = EH−EL
ECMS

and β = EH−EL
EH+EL

. In consequence the geometrical detector accep-
tance in the boosted frame of reference depends on the Lorentz boost of the collider.
As can be seen from Fig. 4.18 this effect is of the order of sub-percent. The FEI
requires the reconstruction of roughly five to seven tracks in the event, consequently
the reduced boost does have a significant influence on the sensitivity [10].

4.3.4 Tag-Side Efficiency Correction

The uncertainty on the tag-side efficiency of the FEI is (one of) the most impor-
tant systematic uncertainties in the measurement of branching fractions of rare
decays, e.g.BR(B+ → τ+ντ ) = (1.25 ± 0.28 ± 0.27) × 10−4 [11], with a system-
atic uncertainty due to the tag-side efficiency of 0.16 × 10−4.
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Therefore it is indispensable to calibrate and correct the tag-side efficiency on
data using multiple control channels.

The FEI was calibrated on converted Belle data within the scope of a supervised
master’s thesis [12]. I briefly summarize the results here.

The FEI was applied to the full ϒ(4S) dataset recorded by Belle. The well-
known branching fractions of ten control channels were measured using the FEI.
The difference between the Monte Carlo expectation and the data yields tag-side
channel dependent calibration factors for the tag-side efficiency, as well as their
uncertainties.

Figure4.19 summarizes the results for the ten control channels. The overall cali-
bration factors for the latest FEI version 4 averaged over all control channels are

εcharged = 0.74+0.014
−0.013 ± 0.050

εmixed = 0.86+0.045
−0.050 ± 0.054.

The measured values are compatible with the observed lower tag-side efficiency
on recorded data in comparison with the Monte Carlo expectation in Fig. 4.8.

A similar study was conducted in the past for the FR by [13], yielding a similar
overall factor of ε = 0.75 ± 0.03. The rather large discrepancy between simulated

Fig. 4.19 The overall efficiency correction calculated by measuring the known branching fractions
of 10 control channels on converted Belle data [12]. The calibration was performed on the latest
FEI version 4
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events and recorded data is caused by the uncertainty on the branching fractions and
decay models of the simulated B decay-channels used for the tag-side and the large
number of multivariate classifiers involved in the process.

The tag-side-efficiency can be corrected using the measured calibration factors. A
measurement which uses these factors to correct the tag-side-efficiency is performed
relative to the considered calibration decay channels. The systematic uncertainty of
the correction is given by the uncertainty of the factors.

The uncertainty of the tag-side efficiency has only a minor effect on searches of
rare decays, which are statistically limited, e.g., in the search for B → Kνν̄ (see
[14]) or B → �νγ (see [15]). In addition, the uncertainty on the tag-side efficiency
can be removed by performing a relative measurement as the efficiency will cancel
out due to the normalization, e.g., R = BR(B→Dτντ )

BR(B→D�ν)
(see [16]).

4.3.5 Comparison with Full Reconstruction

The performance of the FEI was compared to the FR on converted Belle MC from
the last Belle Monte Carlo campaign. All numbers shown here refer to the Monte
Carlo expectation. As was shown in Sect. 4.3.4, the performance on data for the FEI
is about 20% lower.

The tag-side efficiencies of the FR are stated in Table4.7. The tag-side efficiencies
of the FEI using an identical configuration, meaning the same decay-channels, are
stated in Table4.8.

Using the identical configuration, the FEI outperforms the FR, and increases
the hadronic tag-side efficiency by 89% (83%) for charged (neutral) B mesons.
This increase in tag-side efficiency is due to the best-candidate selection and
improved classifiers. Using the default configuration, the hadronic tag-side efficiency
is increased by 171% (156%) for charged (neutral) B mesons. This further increase
in tag-side efficiency is due to the additional new decay-channels. The stated results
for the hadronic tag were verified on data (see Sects. 4.3.2.1 and 4.3.4).

The official FR did not provide a semileptonic tag. However, variants of the FR
were used for semileptonic tagging (see [9, 11]). The FEI significantly improves
the semileptonic tag-side efficiency, however the stated results are based on Monte
Carlo simulation and are not yet validated on data.

Table 4.7 Tag-side
efficiency of the FR [9]

Charged B± Neutral B0

Hadronic (%) 0.28 0.18

Semileptonic (%) 0.31 0.34

Table 4.8 Tag-side efficiency
of the FEI using the identical
configuration as the FR

Charged B± Neutral B0

Hadronic (%) 0.53 0.33
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The performance of the FEI on Belle II MC events is worse than on Belle events,
but still significantly better than the FR on Belle events. The hadronic tag-side effi-
ciency is increased by 135% (111%) for charged (neutral) B mesons. As shown in
Sect. 4.3.3.2 the FEI performance is sensitive to the fake-rate due to the increased
beam-background. It is expected that the fake-rate will be drastically reduced as soon
as the Belle II reconstruction software is finished and optimized.

In consequence, the stated increases in tag-side efficiency for Belle II are a lower
bound of the expected improvements.

Altogether, the improvements of the FEI with respect to the FR are very consis-
tent and explainable for all combinations of tag (hadronic or semileptonic), charge
(charged or neutral), experiment (Belle or Belle II) and data type (MC events or
recorded data).

4.4 Outlook

The design of the FEI foresees the possibilities to extend the algorithms in the future.
In this section, I summarize ideas and techniques that were not further investigated
during this thesis. However, they have a large potential to further increase the key
performance indicators (tagging efficiency, tag-side efficiency and purity) of theFEI.

4.4.1 Inclusive Tagging Using the FEI

The FEI can be used for of inclusive tagging. Preliminary studies on the signal
channel B+ → μ+νμ have shown that this is possible in principle. The FEI was
applied to the rest-of-event of a reconstructed Bsig, and the intermediate pre- and
post-cuts were relaxed as far as possible. A valid candidate was then created in
O(10%) of the cases.

The resulting four-momentum and vertex position is as good as that provided by
the traditional inclusive tag. Now the suspected explicit decay-chain can be used to
further improve the four-momentum and vertex position with the help of a decay tree
fitter [4].

BASF2 does not include a usable decay tree fitter at the time of writing. Hence,
further studies have been postponed.

4.4.2 D → X�ν

Semileptonic tagging provides a higher efficiency compared to its hadronic counter-
part, but due to the missing kinematic information the tagged sample is not as pure.
Until now, only semileptonic B decays were used for this.
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However, semileptonic D decays can be used as well and behave similarly. 13%
of the D0 and 33% of the D+ mesons decay semileptonically. The B meson is recon-
structed in a hadronic decay-channel B → D(. . . ), and the Dmeson is reconstructed
in a semileptonic decay-channel D → (. . . )�ν. Using the known invariant mass of
the D and the possibly occurring D∗ meson, the missing kinematic information due
to the neutrino can be partially recovered.

The current default FEI configuration (see Sect. B.1) already includes in addition
semileptonic D decays.

Although, this new class of decay-channels yields impure tagged samples, it pro-
vides the next step towards even more inclusiveness, and can be beneficial in situa-
tions where the FEI would otherwise not output a valid candidate at all.

4.4.3 X → YK0
L

AgenericBdecay contains in 29%of the cases aK0
L.AK0

L canbedetectedby theBelle
and the Belle II detector, but both provide only a rough energy and flight direction
estimation. The situation can be compared to semileptonic decay-channels, where
kinematic information is missing as well. Until now, decay-channels containing K0

L
particles were not used.

Some Belle analyses employed a K0
L veto. In consequence, tagged events with

a detected K0
L were rejected. This situation can be improved, especially in view of

Belle II, which will provide a better K0
L identification.

The current default FEI configuration (see Sect. B.1) already includes in addition
decay-channels with a K0

L.
Although, this new class of decay-channels yields impure tagged samples, it pro-

vides the next step towards even more inclusiveness, and can be beneficial in situa-
tions where the FEI would otherwise not output a valid candidate at all.

4.4.4 π0 → γ(γ)

Many B and D decay-channels include π0 particles, which decay immediately into
two photons. A generic B decay contains in 89% of the cases a π0.

Assuming a spherical distribution and a geometric detector acceptance of 91.1%
(by taking the boost into consideration as shown in Sect. 4.3.3.3) 14% of the π0 will
have one undetectable photon due to the acceptance. This number was confirmed
using MC simulation.

The FEI could use π0 candidates reconstructed from just one photon, and check
if an assumed second photon could be outside of the detector acceptance. Using
the known invariant mass of the π0 and the detector acceptance, the momentum of
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the missing photon could be estimated, leading eventually to the recovery of the
incomplete π0 particles.

As in the case of semileptonic decay-channels and decay-channels with K0
L, the

FEI could profit even from incompleteπ0 particles in situationswhere theFEIwould
otherwise not output a valid candidate at all. Furthermore, many measurements of
rare decays, which use exclusive tagging, extract the signal-yield from the extra
energy in the electromagnetic calorimeter EECL (see Chap. 5). If the FEI assigns all
tracks correctly to a tag-side Btag meson, but misses an incomplete π0, one additional
photon from the tag-side will end up in EECL. Therefore, reconstructing incomplete
π0 has the potential to improve the resolution of the signal peak in EECL.

4.4.5 FEI on ϒ(5S)

The FEI can directly be applied to the ϒ(5S) resonance. This resonance decays
into a pair of BB(5.5%), BB∗(13.7%), B∗B∗(38.1%), B∗

sB
∗
s (20.1%) mesons. The

user has to add the B∗ and B∗
s particles and their associated decay-channels to the

FEI configuration. The powerful completeness-constraint can still be applied in this
situation.

4.4.6 Deep FEI

Newly developed algorithms based on deep-learning can outperform established
algorithms, as was shown in the case of flavour tagging (Sect. 3.3.1.2) and contin-
uum suppression (Sect. 3.3.1.3). Both algorithms can be seen as a form of inclusive
tagging, hence, it is obvious to study the applicability of deep-learning to exclusive
tagging as well [19].

As described in Sect. 3.1.4.3, applications with a learnable distributed represen-
tation, are in particular suitable for deep-learning. The most successful applications
of deep-learning use domain-specific knowledge to restrict the learnable represen-
tation, e.g. by using convolutional neural networks in image recognition (see [17,
Chap. 9]), recurrent neural network in speech recognition (see [17, Chap. 10]), and
relational neural networks for relational reasoning (see [18]).

In the case of exclusive tagging a reasonable representation of the input data
(tracks and clusters) is already known from physics: it is the decay-chain of the
ϒ(4S). This representation has all desired properties defined in Sect. 3.1.4.3. The
FEI is designed to reconstruct this decay-chain in an hierarchical approach: starting
from the low-level information (tracks and cluster), creating intermediate particle
candidates and finally providing the most likely B meson candidates.

In that sense the FEI is a deep-learning based algorithm, which enforces the
decay-chain representation. It comes as no surprise that the hierarchical approach
can be visualized by a network (see Fig. 4.3), where the nodes are given by the particle
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and the weights are multivariate classifiers. In contrast to an ordinary deep neural
network, the FEI can take advantage of complex existing algorithms in each step,
e.g. vertex-fitting. Furthermore, the explicit decay-chain is automatically known,
whereas it is not straight-forward to design a deep neural network that outputs the
explicit decay-chain it reconstructed.

4.5 Conclusion

The Full Event Interpretation enables Belle II physicists to measure
a wide range of interesting decays with a minimum of detectable information. It
exploits the unique experimental setup of B factories.

During this thesis the FEI was further developed from a “Proof of Concept” to
a standard tool used in production. The algorithm was extensively studied on Belle
and Belle II MC, and the obtained results were verified on data recorded by the Belle
detector using the b2bii package.

The FEI more than doubles the tag-side efficiency for all combinations of tag
(hadronic/semileptonic), charge (charged/neutral) and experiment (Belle/Belle II),
compared to its (already very successful) predecessor. The tag-side efficiency for
hadronically tagged B mesons was calibrated on Belle data, and is ready for the
productive usage in analyses on converted Belle data.

Besides, many software tools originally developed for theFEI likeFastBDT and
FastFit proofed useful in many other contexts. The FEI was the first algorithm
to take full advantage of the b2bii (see Chap. 2) and mva (see Chap. 3) package.

Finally, there are many possible extensions and unexplored applications of the
FEI, which provide an exciting and fruitful area for further research.
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Chapter 5
B → τν

The leptonic decays of charged B mesons belong to the golden decay-channels at B
factories. The expected branching fractions in the StandardModel of particle physics
(SM) are small, hence leptonic decays are so-called rare-decays. The theoretical
uncertainties on the predicted branching fraction are small and the possible influence
of physics beyond the Standard Model (BSM) can be large.

The experimental signature is (mostly) a single track produced by a lepton or its
decay product. The accompanying neutrinos are not detected. The leptonic decays
are currently only accessible via the unique experimental setup at B factories.

The tauonic decay B → τν, is of particular interest. Its branching fraction is the
largest among the leptonic decays, due to the high mass of the τ meson elevating
the helicity suppression. On the other hand the τ is unstable in the detector, hence it
can only be measured indirectly using its decay products. Multiple neutrinos in the
final state render this decay particularly experimentally challenging. It is the most
prominent use-case for exclusive tagging.

During this thesis the decay B → τν was investigated as a benchmark analysis
for the developed software tools and algorithms presented in the preceding chapters.
The previous Belle analyses [1, 2] were repeated on the full ϒ(4S) dataset recorded
by Belle using the b2bii package. Furthermore, a sensitivity study for Belle II was
conducted.

The main goal was to validate the developed tools and establish a prototype
analysis, which can be used as a starting point for other analyses based on b2bii
and/or the FEI.

In this chapter, I describe the theoretical background (Sect. 5.1), the experimental
measurement (Sect. 5.2), the validation of the analysis strategy using off-resonance
data and sidebands (Sect. 5.3), and the obtained results (Sect. 5.4).
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5.1 Theory

The Standard Model of particle physics (SM) describes the elementary particles and
their fundamental interactions, except for gravity.

The SM is a relativistic quantum field theory, that is the particles are described by
quantum fields, whose equations of motion are invariant under the Poincaré space-
time symmetry. The fundamental interactions (the electromagnetic, strong and weak
interaction) are described by local gauge symmetries. The field equations of the SM
are encoded in a Lagrangian densityL, fromwhich the field equations can be derived
using the Lagrange formalism.

The SM (with massless left-handed neutrinos) has 19 free parameters. All of them
can and have been experimentally determined. A thorough introduction to the SM
can be found in [3].

5.1.1 Leptonic B± Meson Decays in the Standard Model

The branching fraction of the leptonic decay of charged B± mesons can be calcu-
lated in the SM using perturbation theory. The leading order Feynman Diagram is
shown in Fig. 5.1. It results in the following expression for the branching fraction [4,
Sect. 7.10.2]

B (
B+ → �+ν

)
SM = G2

FMBM2
�

8π

(
1 − M2

�

M2
B

)2

fB
2|Vub|2τB, (5.1)

where all occurring constants can be theoretically calculated and/or independently
experimentally measured. The numerical values and their relative uncertainties are
summarized in Table5.1. The measurement of the branching fraction of the leptonic
decay of charged B mesons can reduce the existing uncertainty, and provides an
independent verification for the consistency of the SM with the experimental obser-
vations.

The leading dependency of the branching fraction on the squared lepton mass M2
�

is caused by the so-called helicity suppression [5, p. 1109]. In consequence, the τ

Fig. 5.1 Feynman Diagram
of the leading standard
model process mediated by a
charged W boson for the
purely leptonic decay of a
charged B meson
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Table 5.1 Numerical values
and relative uncertainties of
all quantities required to
calculate the branching
fraction of B+ → �+ν in the
standard model. All values
are taken from the PDG
review 2016 [5]

PDG value Relative uncertainty

GF 11.7TeV−2 5 · 10−7

mB 5.28GeV 3 · 10−5

mτ 1.78GeV 7 · 10−5

τB 1.64 ps 2 · 10−3

fB 187.1MeV 2 · 10−2

|Vub|inc 4.49 · 10−3 5 · 10−2

|Vub|exc 3.72 · 10−3 5 · 10−2

|Vub|avg 4.09 · 10−3 1 · 10−1

Table 5.2 Standard model
prediction for B+ → �+ν
calculated by Eq.5.1 using
the numerical values given in
Table5.1 and the averaged
|Vub| value

SM prediction PDG 2016

B (
B+ → e+νe

)
(1.09 ± 0.21) · 10−11 <9.8 · 10−7

CL = 90%

B (
B+ → μ+νμ

)
(4.65 ± 0.91) · 10−7 <1.0 · 10−6

CL = 90%

B (
B+ → τ+ντ

)
(1.03 ± 0.2) · 10−4 (1.06 ± 0.20) ·

10−4

lepton is expected to have the largest branching fraction among the leptonic B decay
channels, as can be seen in Table5.2.

5.1.1.1 The Vub Puzzle

The CKM matrix element |Vub| corresponds to one of the 19 free parameters of the
SM. It induces the dominant theoretical uncertainty in the prediction of the branching
fraction of B+ → �+ν. |Vub| can be determined by several distinct measurements,
which differ in their associated theoretical and experimental uncertainties.

• The full decay width of the inclusive decay B → Xu�ν can be calculated with
high precision, that is<5% theoretical uncertainty, sinceQCD form-factors are not
required. The inclusive decay has a high branching fraction, but the experimental
measurement is difficult due to the high background contamination from theCKM-
favored B → Xc�ν decay.

• Therefore it is easier to measure the partial decay width of the inclusive decay
B → Xu�ν, by demanding a high momentum for the lepton. However, the theo-
retical prediction of a partial decay width in this phase-space region is much more
difficult and requires the knowledge of a non-perturbative distribution function,
the so called “shape-functions” [5, p. 1317].

• The exclusive measurement of the branching fraction of B → π�ν is experi-
mentally clean, but has a lower branching fraction and requires in addition form-
factors on the theoretical side. The measurement can be performed with and with-
out exclusive tagging. Both approaches yield compatible results [5, p. 1319].
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There is a slight tension between the determination of |Vub| from inclusive and
exclusive measurements, as can be seen in Table5.1. Patrignani et al. [5] states that
the average value of |Vub| should be treated with caution “given the poor consistency
between the two determinations”. Nevertheless, this thesis uses the average value (see
Table5.1), but notes the differences between the |Vub| from exclusive and inclusive
measurements where appropriate.

Finally, the measurement presented in this thesis can provide an independent
determinationof |Vub|. The theoretical predictionof thebranching fractionofB → �ν
is theoretically easy, since there are no strongly interacting particles in the final state.
Experimentally it is challenging since there is usually only one measurable track.

5.1.1.2 The fB Decay Constant

The contribution of the strong interaction in the decay B → �ν is represented by
the decay constant fB. It is related to the overlap of the bottom and up quark wave-
functions in the meson.

The decay constant induces the second largest theoretical uncertainty besides
the CKM matrix element |Vub|. It can be calculated using lattice QCD simula-
tions and QCD sum rules. Both approaches yield compatible results. This thesis
uses the average value (see Table5.1) from lattice QCD simulations determined by
[5, p. 1117].

5.1.2 Type II Two Higgs Doublet Model

Newphysics contributions could influence themeasurement of the branching fraction
of B → �ν. The most famous model considered in the literature in connection with
B → �ν is the Type II Two Higgs Doublet Model [6]. In this model, the Standard
Model Higgs Doublet is replaced with two Higgs Doublets, where one couples to
down quarks and charged leptons, while the other couples to up quarks. The model
introduces additional parameters: tan β, that is the ratio of the twovacuumexpectation
values of the two Higgs Doublets, and the masses MH± , MH0 and MA0 of the four
additional Higgs particles.

Themodel provides another leading order FeynmanDiagram shown in Fig. 5.2, in
which the W± boson is replaced by a hypothetical charged Higgs. The two diagrams

Fig. 5.2 Feynman Diagrams of the leading standard model process and a hypothetical new physics
process mediated by a charged Higgs boson for the purely leptonic decay of a charged B meson
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(amplitudes) interfere destructively, hence the branching fraction expected in the SM
is further suppressed by a multiplicative factor [4, Sect. 7.10.2]:

B (
B+ → �+ν

)
2HDM = B (

B+ → �+ν
)
SM ·

(
1 − M2

B tan
2 β

M2
H+

)2

. (5.2)

The mass of the charged Higgs MH+ is already tightly constrained by weak radia-
tive B meson decays MH+ > 580GeV [7]. Nevertheless, a valid value of tan β ≥ 35
can still yield a modification of the branching fraction, as large as the current theo-
retical and experimental uncertainties.

Therefore, the measurement of B → �ν can provide independent constraints on
beyond the SM models like the Type II Two Higgs Doublet Model.

5.1.3 The B → ττ Puzzle

The decay B → ττ is extremely suppressed in the Standard Model [8]

B(B0 → τ−τ+)SM = (2.22 ± 0.19) · 10−8. (5.3)

Surprisingly, Belle measured the decay B → ττ and found a significant 5 sigma
excess over the SM expectation [8]

B(B0 → τ−τ+)Belle = (4.39+0.80
−0.83 ± 0.45) · 10−3. (5.4)

The measurement used the FR for exclusive hadronic tagging and reconstructed
the τ particles in one-prong decays. It was not accepted by the collaboration and not
published in a peer-reviewed paper.

The BaBar experiment searched for the same decay and set an upper limit com-
patible with the Belle measurement (see [9])

B(B0 → τ−τ+)BaBar < 4.1 · 10−3 @90%C.L.. (5.5)

The measurement used exclusive hadronic tagging and reconstructed the τ par-
ticles in one-prong decays. The exclusive hadronic tagging of BaBar relies on a
different algorithm than used by Belle.

Finally, the LHCb experiment searched for the same decay and set an upper limit
incompatible with the Belle measurement (see [10])

B(B0 → τ−τ+)LHCb < 2.1 · 10−3 @95%C.L.. (5.6)

Since LHCb is not located at a B factory, the measurement did not use exclusive
hadronic tagging. Instead a high statistics sample was used and the τ was recon-
structed in three-prong decays.
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The second-most1 likely2 explanation for these results is an unaccounted SM
background process, which generates a peaking background contribution in one-
prong, but not in three-prong decays.

The analyses strategies used byBelle andBaBar (exclusive tagging and one-prong
decays) are very similar to the analyses presented in Sect. 5.1.5. In fact, the Belle
measurement would indicate that B0 → τ−τ+ is a sizeable peaking background
component in the measurement of B+ → τ+ντ .

The measurement of B+ → τ+ντ using the new (independently developed)
BASF2 software applied to the ϒ(4S) dataset recorded by Belle, can provide addi-
tional insight into this situation. In particular, the encountered large systematic uncer-
tainty due to the continuumdescription could be a possible explanation (seeSect. 5.3).

5.1.4 τ Decay Models

This thesis investigates B → τντ , that is the leptonic decay of the charged B meson
involving the heaviest charged lepton. This decay is particularly challenging because
the τ is not stable in the detector, consequently the measurement has to deal with
one or more neutrinos and the kinematics of the τ decay.

The kinematics of the decay τ → �νν̄ is well-known.3 The same holds true for
τ → πν, where only a single hadron has to be considered.4 The decay into mul-
tiple hadrons (in particular τ → πππν) is more complicated due to the occurring
intermediate resonances and their interference. Belle explicitly simulated the decays
τ → ρ[→ ππν]ν and τ → a1[→ πππ]ν without taking further decay channels into
the same final state into account.5 In contrast, Belle II simulates the hadronic decay
of τ → ππν and τ → πππν inclusively based on [11] and takes interferences into
account.6

The implications of this different treatment in Belle and Belle II for this analysis
are mostly technical details related to the Monte Carlo matching algorithm, and are
not further discussed.

5.1.5 Previous Measurements

The decay B → τντ was already observed in previous measurements at B factories.
Both, the Belle [1, 2] and the BaBar [12, 13] experiment conducted measurements

1The most likely explanation is a technical error in the Belle measurement.
2In a Bayesian sense.
3The EvtTaulnunu model of evtgen is used.
4The EvtTauScalarnu model of evtgen is used.
5The EvtTauVectornu model of evtgen is used.
6The EvtTauHadnu model of evtgen is used.
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Fig. 5.3 Current
experimental status of the
measurement, including the
standard model predictions
(gray bands) using Vub from
exclusive and inclusive
measurements

using hadronic and semileptonic tagging. The previous measurements and the Stan-
dard Model predictions using Vub from exclusive (SMExc) and inclusive (SMInc)
measurements are shown in Fig. 5.3. The Belle measurements are more precise due
to the larger recorded dataset. The hadronic and semileptonic tags have similar sta-
tistical power. The current world average of the measured branching fraction stated
by [5], is compatible with both predictions SMExc and SMInc.

5.2 Measurement

The measurement of the branching fraction of the decay B → τντ involves five
reconstruction steps, which are explained in detail in this chapter.

1. The events are preselected (see Sect. 5.2.1).
2. The signal side is reconstructed in five distinct decay channels of the τ lepton

(see Sect. 5.2.2).
3. The tag side is reconstructed by the FEI, which provides a hadronic and a

semileptonic tag (see Sect. 5.2.3).
4. Both sides are combined to aϒ(4S) candidates and the completeness-constraint

is applied (see Sect. 5.2.4).
5. The branching fraction is extracted with an extended unbinned maximum like-

lihood fit on the extra energy in the electromagnetic calorimeter of the selected
candidates (see Sect. 5.2.5).

The measurement is performed on converted data recorded by the Belle detector.
The hadronically and semileptonically tagged samples are treated as independent
measurements in this thesis. The hadronic tag already includes the tag-side effi-
ciency correction factors obtained by [14].At the time ofwriting therewas no tag-side
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efficiency correction available for the semileptonic tag. In consequence, the semilep-
tonic results have to be taken with a grain of salt.

If not stated otherwise, all figures and tables were produced using one stream
(≡711 fb−1) of Monte Carlo simulated Belle events to model the background pro-
cesses and a high-statistics sample of 100 million Monte Carlo simulated signal-
events.

5.2.1 Skimming

The measurements consider only events with ten or less good tracks, that is tracks
with impact parameters of less than 2 cm and 4 cm in transverse and beam axis
direction, respectively.

This reduces the computational effort drastically without loosing any signal
events. As was shown in Fig. 4.13, the fraction of Btag candidates with more than
seven tracks, which are correctly tagged by the FEI, is negligible. The Bsig requires
at most three tracks (for most channels only one). Therefore, the FEI cannot assign
a correct tag to signal events with more than ten good tracks, and the events can be
discarded without loosing correctly tagged signal events. Even incorrectly tagged
signal events are only affected in the three-prong τ decay channel, as can be seen
from Fig. 4.13b.

Figure5.4 shows the distribution of the number of tracks and the corresponding
selection efficiencies. The observed difference between Monte Carlo simulation and
data was already investigated and discussed in Sect. 2.3.3.3.

5.2.2 Signal Side Reconstruction

The B meson travels less than 1mm inside the detector due to its short life-time
of 1.64 · 10−12 s. The τ lepton, produced by the investigated decay B → τντ , has
an even shorter life-time of 2.9 · 10−13 s. Therefore the τ lepton does not leave the
beam-pipe and cannot be detected directly.

In this thesis the signal-side is reconstructed in five different τ decay-channels
covering a total branching fraction of BR(τ ) = 80.8% (see Fig. 5.5).

Each decay-channel has distinct properties and consequently individual selection
criteria, which are described below. As can be seen from Table5.3, the signal-side
selection criteria suppress the background by two orders of magnitude, while main-
taining most of the signal. The measured selection efficiencies on converted data are
compatible with the Monte Carlo simulation of background.

Although the tag-side is reconstructed by the FEI, it proved useful to already
discard candidates whose rest-of-event is not compatible with a single B meson. A
fast, efficient and easy to calculate selection variable is the deviation �E of the total
energy in the center-of-mass system of the rest-of-event from the nominal beam-
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Fig. 5.4 Skim selection on the number of good tracks. Evaluated on 10,000 events for each com-
ponent, scaled according to their expected relative fractions

Table 5.3 The overall efficiencies of the signal-side selection: εSignalEvents, is the fraction of events
containing the stated signal decay channel, in which a correct candidate was reconstructed. This
includes the detector acceptance, trigger and reconstruction efficiencies and the skimming. The
signal-side selection alone is characterized by: the fraction of correct candidates which survive the
signal-side selection εSignal; the fraction of background candidates which survive the signal-side
selection εBackground; and the fraction of candidates on converted data which survive the signal-side
selection εData. Evaluated on 10,000 events for each component

Channel εSignalEvents εSignal εBackground εData

μ 0.40 0.48 0.006 0.006

e 0.68 0.71 0.008 0.010

π 0.89 0.88 0.087 0.096

ρ 0.41 0.65 0.014 0.015

a1 0.44 0.67 0.060 0.058
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Fig. 5.5 Visualization of the τ branching fractions: used in this thesis (red arc); into exclusive
decay-channels (outer circle); and into inclusive hadronic and leptonic decay-channels (inner circle)

energy in the center-of-mass system. Figure5.6 shows the efficiency of this selection
for the τ → μνν̄ decay channel, the distributions in the other channels look nearly
identical. This selection saves computation time. Once the tag-side is reconstructed
by the FEI a superior7 selection on the same quantity can be performed.

5.2.2.1 τ → μνν̄

The τ decay into a muon and two neutrinos has a branching fraction of 17.4%. It
can be efficiently selected using the muon identification provided by the PID sub-

7The knowledge of the explicit decay-chain of the Btag increases the resolution of �E .
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Fig. 5.6 �E distribution of the rest-of-event in GeV for the τ → μνν̄ decay channel with a cut on
�E < 1.5GeV. Evaluated on 10,000 events for each component, scaled according to their expected
relative fractions

detectors. We expect to find one track compatible with a muon hypothesis in the
event besides the Btag meson. The selection criteria and corresponding efficiencies
are stated in Table5.4.

5.2.2.2 τ → eνν̄

The τ decay into an electron and two neutrinos has a branching fraction of 17.8%. It
can be efficiently selected using the electron identification provided by the PID sub-
detectors. We expect to find one track compatible with an electron hypothesis in the
event besides the Btag meson. The selection criteria and corresponding efficiencies
are stated in Table5.5.
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Table 5.4 The selection criteria for the τ → μνν̄ decay-channel with the corresponding selection
efficiencies for signal candidates εSignal, background candidates εBackground and for candidates on
data εData. Evaluated on 10,000 events for each component

Selection criterion εSignal εBackground εData

# Tracks ≤ 10 0.99 0.82 0.84

p∗
τ > 0.1GeV 1.00 0.97 0.97

�E ≤ 1.5GeV 0.99 0.31 0.34

dr < 2 0.98 0.75 0.74

−4 < dz < 4 0.96 0.68 0.66

PID¯ > 0.9 0.49 0.01 0.01

Table 5.5 The selection criteria for the τ → eνν̄ decay-channel with the corresponding selection
efficiencies for signal candidates εSignal, background candidates εBackground and for candidates on
data εData. Evaluated on 10,000 events for each component

Selection criterion εSignal εBackground εData

# Tracks ≤ 10 0.99 0.82 0.84

p∗
τ > 0.1GeV 0.99 0.97 0.97

�E ≤ 1.5GeV 0.99 0.31 0.34

dr < 2 0.96 0.75 0.74

−4 < dz < 4 0.94 0.68 0.66

PID¯ < 0.9 1.00 0.99 0.99

PIDe > 0.9 0.74 0.04 0.04

5.2.2.3 τ → πντ

The τ decay into a pion and one neutrino has a branching fraction of 10.8%. It is a
two-body decay, hence the momentum of the pion in the rest-frame of the τ is known

p∗
π = 1

2

(
mτ − m2

π

mτ

)
= 0.88GeV. (5.7)

Together with the momentum of the τ lepton in the rest-frame of the B meson
and the momentum of the B meson in the center-of-mass system

p∗
τ = 2.34GeV (5.8)

p∗
B = 0.33GeV (5.9)

we can calculate the momentum of the pion in the center-of-mass system using the
rapidities of the τ lepton and B+ meson

η∗
τ = arsinh

p∗
τ

mτ
= 1.089 (5.10)
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Fig. 5.7 p∗
sig distribution in GeV for the τ → πντ decay channel with a cut on p∗

sig < 0.5GeV.
Evaluated on 10,000 events for each component, scaled according to their expected relative fractions

η∗
B = arsinh

p∗
B

mB
= 0.062 (5.11)

and finally the minimal and maximal pion momentum in the center-of-mass system

η = ±η∗
τ ± η∗

B (5.12)

pπ = p∗
πcoshη −

√
m2

π + (p∗
π)

2sinhη (5.13)

= 0.26GeV minimum (5.14)

= 2.80GeV maximum. (5.15)

The exact pπ distribution is skewed towards higher momenta due to the fixed
helicity of the neutrino (see Fig. 5.7). We expect to find one track with a compatible
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Table 5.6 The selection
criteria for the τ → πντ

decay-channel with the
corresponding selection
efficiencies for signal
candidates εSignal,
background candidates
εBackground and for candidates
on data εData. Evaluated on
10,000 events for each
component

Selection criterion εSignal εBackground εData

# Tracks ≤ 10 0.99 0.76 0.82

p∗
τ > 0.5GeV 0.95 0.42 0.43

�E ≤ 1.5GeV 0.99 0.31 0.34

dr < 2 0.96 0.75 0.74

−4 < dz < 4 0.93 0.68 0.66

PID¯ < 0.9 0.99 0.99 0.99

PIDe < 0.9 1.00 0.96 0.96

PIDK < 0.9 0.97 0.88 0.87

momentum in the event besides the Btag meson. In addition, we expect a large cross-
feed in this decay-channel from other signal decay-channels. For instance, a lepton
which does not pass the PID criteria will automatically be picked up by the pion
decay-channel. The selection criteria and corresponding efficiencies are stated in
Table 5.6.

5.2.2.4 τ → ρντ

The τ decay into a ρ meson and one neutrino has a branching fraction of 25.5%. It
is the dominant decay channel of the τ with the largest branching fraction. The ρ
resonance decays instantaneous into a charged and a neutral pion ρ+ → π+π0[→
γγ]. The intermediate resonances ρ and π0 provide efficient selection criteria based
on their invariant masses

mρ = 0.775GeV (5.16)

mπ0 = 0.135GeV. (5.17)

We expect to find one track and two ECL clusters compatible with a π0 (see
Fig. 5.8) and a ρ (see Fig. 5.9) in the event besides the Btag meson. The selection
criteria and corresponding efficiencies are stated in Table5.7.

5.2.2.5 τ → a1ντ

The τ decay into three pions τ → 3π is dominated by the decay-chain τ+ → a+
1 [→

ρ0π+]ντ [15]. In this thesis, the τ decay into three charged pions (via ρ0 → π+π−)
was investigated for the first time, it has a branching fraction of 9.5%. The other
possible decay into a charged pion and two neutral pions (via ρ0 → π0π0) was not
studied.
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Fig. 5.8 Mπ0 distribution in GeV for the τ → ρντ decay channel with a cut on 0.1GeV < Mπ0 <

0.18GeV. Evaluated on 10,000 events for each component, scaled according to their expected
relative fractions

The resonance a1 provides an efficient selection criteria based on its invariant
mass (see Fig. 5.10)

ma1 = 1.230GeV. (5.18)

We expect to find three tracks from a common vertex compatiblewith the expected
intermediate resonances in the event besides the Btag meson. This is the only signal
decay-channel with a different multiplicity, that is number of tracks in the final state.
Therefore it has distinct physics background contributions compared to all other
studied decay-channels. Unfortunately, it also suffers from a large combinatorial
background, which is the reason why it was not used in previous analyses. The
selection criteria and corresponding efficiencies are stated in Table5.8.
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Fig. 5.9 Mρ distribution in GeV for the τ → ρντ decay channel with a cut on 0.5GeV < Mρ <

1.2GeV. Evaluated on 10,000 events for each component, scaled according to their expected relative
fractions

5.2.3 Tag Side Reconstruction

The default generic FEI (see Chap. 4) applied to the entire event was used to recon-
struct the tag-side of the event. The FEI provides B meson tag-side candidates in
hadronic and semileptonic decay channels. Both were used in this analysis. Due
to the different systematic uncertainties (in particular the missing calibration factors
for the semileptonic tag), the tags are treated as independent measurements in this
thesis, that is in principle the same event could appear in both tagged samples.

The default FEI does not use information from the Mbc and cos�BD� of the
hadronically and semileptonically tagged B meson, respectively. In addition the
FEI aims to always output a valid candidate, even if the associated Signal
Probability σ is very low. However, this analysis requires a high-purity tag,
because the signal-side selection alone does not provide enough separation power.
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Table 5.7 The selection criteria for the τ → ρντ decay-channel with the corresponding selection
efficiencies for signal candidates εSignal, background candidates εBackground and for candidates on
data εData. Evaluated on 10,000 events for each component

Selection criterion εSignal εBackground εData

# Tracks ≤ 10 0.99 0.81 0.82

p∗
τ > 0.6GeV 0.96 0.45 0.46

�E ≤ 1.5GeV 1.00 0.35 0.37

dr < 2 0.93 0.74 0.72

−4 < dz < 4 0.88 0.65 0.64

PID¯ < 0.9 1.00 0.99 0.99

PIDe < 0.9 0.99 0.96 0.95

PIDK < 0.9 0.98 0.88 0.87

0.5GeV < Mρ <

1.2GeV
0.88 0.56 0.56

0.1GeV < Mπ0 <

0.18GeV
0.84 0.27 0.28

Therefore the tag-side candidates have to fulfill the selection criteria stated in
Table5.9 to be considered in the analysis.

5.2.4 Event Reconstruction

The selected signal-side and tag-side candidates are combined to anϒ(4S) candidate.

5.2.4.1 Completeness-Constraint(s)

The completeness-constraint is applied and all candidateswith additional good tracks
in the event (besides the ones, which were used for the reconstruction of the ϒ(4S))
are discarded. The completeness-constraint is the most-effective selection criterion
in this analysis. It has a very high signal efficiency, while it reduces the background
by one order of magnitude in all signal-side (the five τ decay-channels) and tag-side
(hadronic and semileptonic) combinations. The efficiencies are stated in Table5.10.
An example distribution for the τ → πντ is shown in Fig. 5.11.

The completeness-constraint is part of an entire class of constraints on additional
physics objects in the event besides the reconstructed ϒ(4S). Conveniently, the FEI
provides candidates with an associated SignalProbability for many particle



118 5 B → τν

Fig. 5.10 Ma1 distribution in GeV for the τ → a1ντ decay channel with a cut on 0.8GeV < Ma1 <

1.6GeV. Evaluated on 10,000 events for each component, scaled according to their expected relative
fractions

Table 5.8 The selection criteria for the τ → a1ντ decay-channel with the corresponding selection
efficiencies for signal candidates εSignal, background candidates εBackground and for candidates on
data εData. The impact parameter selection criteria are the same for each of the three tracks. Evaluated
on 10,000 events for each component

Selection criterion εSignal εBackground εData

# Tracks ≤ 10 0.94 0.64 0.66

p∗
τ > 0.9GeV 0.96 0.51 0.52

�E ≤ 1.5GeV 1.00 0.53 0.55

dr < 2 0.99 0.96 0.95

−4 < dz < 4 0.97 0.90 0.88

χ2
Vertex > 0.01 0.79 0.53 0.50

0.8GeV < Ma1 <

1.6GeV
0.94 0.53 0.53
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Table 5.9 The selection criteria for the tagged B mesons with the corresponding selection effi-
ciencies for correctly reconstructed candidates εSignal, background candidates εBackground and for
candidates on data εData. Evaluated on 10 million events for each component

Selection criterion εSignal εBackground εData

Hadronic tag

Mbc ≥ 5.27 0.98 0.121 0.117

−0.15 < �E < 0.1 0.97 0.593 0.572

σ > 0.005 0.94 0.155 0.147

Total 0.91 0.025 0.024

Semileptonic tag

−1 < cos�BD� < 1 0.88 0.293 0.280

σ > 0.005 0.90 0.130 0.126

Total 0.80 0.053 0.050

Table 5.10 Completeness-constraint on the number of additional good tracks. Stated are the selec-
tion efficiencies for: correctly reconstructed candidates εSignal, background candidates εBackground,
and for candidates on data εData. Evaluated on 10 million events for each component

Decay-channel εSignal εBackground εData

Hadronic tag

e− 0.96 0.11 0.11

μ− 0.96 0.12 0.13

π 0.96 0.11 0.11

ρ 0.95 0.12 0.14

a1 0.96 0.17 0.17

Semileptonic tag

e− 0.97 0.05 0.05

μ− 0.97 0.05 0.06

π 0.97 0.03 0.03

ρ 0.95 0.03 0.03

a1 0.95 0.05 0.05

types. In particular, completeness-constraint like selections on the number of good8

additional photons, K0
S and π0 can be performed. The cut on additional photons is

strongly correlated to the final fit variable EECL, hence only the cuts on the additional
K0

S andπ0 are applied. The efficiencies are stated inTable5.11 forπ0 and inTable5.12
for K0

S. An example distribution for the τ → πντ is shown in Fig. 5.12 for π0 and in
Fig. 5.13 for K0

S.

8Candidates with a SignalProbability larger than 0.1 are considered good.
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Fig. 5.11 Distribution of the number of additional good tracks in the event not used for the ϒ(4S)

reconstruction for the τ → πντ decay channel. Evaluated on 10 million events for each component,
scaled according to their expected relative fractions

Table 5.11 Completeness-constraint on the number of additional π0. Stated are the selection effi-
ciencies for: correctly reconstructed candidates εSignal, background candidates εBackground, and for
candidates on data εData. Evaluated on 10 million events for each component

Decay-channel εSignal εBackground εData

Hadronic tag

e− 0.83 0.42 0.38

μ− 0.85 0.39 0.42

π 0.82 0.36 0.34

ρ 0.86 0.33 0.32

a1 0.79 0.33 0.34

Semileptonic tag

e− 0.84 0.27 0.27

μ− 0.87 0.28 0.27

π 0.84 0.21 0.21

ρ 0.88 0.19 0.18

a1 0.79 0.18 0.18
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Table 5.12 Completeness-constraint on the number of additional K0
S. Stated are the selection

efficiencies for: correctly reconstructed candidates εSignal, background candidates εBackground, and
for candidates on data εData. Evaluated on 10 million events for each component

Decay-channel εSignal εBackground εData

Hadronic tag

e− 1.00 0.93 0.91

μ− 1.00 0.93 0.91

π 1.00 0.92 0.92

ρ 1.00 0.93 0.93

a1 1.00 0.94 0.33

Semileptonic tag

e− 1.00 0.90 0.90

μ− 1.00 0.90 0.92

π 1.00 0.89 0.90

ρ 1.00 0.90 0.90

a1 1.00 0.92 0.92

Fig. 5.12 Distribution of the number of additional good π0 in the event not used for the ϒ(4S)

reconstruction for the τ → πντ decay channel. Evaluated on 10 million events for each component,
scaled according to their expected relative fractions
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Fig. 5.13 Distribution of the number of additional good K0
S in the event not used for the ϒ(4S)

reconstruction for the τ → πντ decay channel. Evaluated on 10 million events for each component,
scaled according to their expected relative fractions

5.2.4.2 Best-Candidate Selection

The chosen signal-side selection criteria and the completeness-constraint ensure that
all signal-side candidates are (nearly9) mutual exclusive. Therefore a best-candidate
selection solely based on the SignalProbability of the tag-side is performed.
Hence, the same event can only contribute to one of the five investigated decay-
modes. The efficiencies of the best-candidate selection are stated in Table5.13.

5.2.4.3 Continuum Suppression

In previous and similar Belle analyses a continuum suppression algorithm based on
a multivariate method using event shape features was used to reduce the background
from continuum processes (see Sect. 3.3.1.3).

In this benchmark analysis, I take a more conservative approach to prevent any
systematic effects caused by an additional multivariate method besides the FEI.

The continuum events are suppressed by a cut on a singlewell-understood variable

T = | cos(�(Ttag, Tsig))|, (5.19)

9In rare cases a valid π and ρ candidate can be reconstructed in the same event, where the π0 from
the ρ is not considered a good π0 from the FEI. In these cases the ρ candidate is discarded in favor
of the π candidate.
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Table 5.13 Best-candidate selection efficiencies for correctly reconstructed candidates εSignal,
background candidates εBackground and for candidates on data εData. The efficiencies are calcu-
lated after all completeness-constraints were applied. The statistical power of the background and
data sample was very limited, hence the stated efficiencies have large uncertainties±0.1. Evaluated
on 10 million events for each component

Decay-channel εSignal εBackground εData

Hadronic tag

e− 0.86 1.0 1.0

μ− 0.86 1.0 0.9

π 0.86 0.9 0.9

ρ 0.81 0.8 0.7

a1 0.87 1.0 1.0

Semileptonic tag

e− 0.97 1.0 1.0

μ− 0.97 1.0 1.0

π 0.96 0.9 0.9

ρ 0.91 0.8 0.8

a1 0.97 1.0 1.0

where Ttag and Tsig denote the thrust axis [4, Sect. 9.3] of the tag-side and signal-
side, respectively. Correctly reconstructed ϒ(4S) events have a flat distribution in
this variable, because the two B meson decay spherically and independent of one
another. Hence, the signal selection efficiency is uniform, and no additional system-
atic uncertainty is introduced. On the other hand, continuum events peak at large
values of T , because of their jet-like decay topology. This theoretical assumption is
verified (also for incorrectly reconstructed ϒ(4S) decays) using Monte Carlo simu-
lation by Fig. 5.14.

5.2.4.4 Final Selection

Afinal selectionoptimized for each tag-side and signal-side combination separately is
performed using: the SignalProbability σ of the tag-side, and the continuum
suppression variable T .

In contrast to the previous selections, this final selection is performed during the
n-tuple analysis. A multi-dimensional minimization algorithm optimizing the cuts
by minimizing the expected negative S

S+B was investigated. However, this approach
was not used in the final analysis, because the optimum is located in a problematic
phase-space region, with peaking background contributions from continuum pro-
cesses not present in the simulated data (see Sect. 5.3). Instead, the cuts were chosen
in order to avoid those problematic phase-space regions.

A loose cut on the SignalProbability σ > 0.01 was chosen for the
hadronically tagged channels, whereas a tighter cut σ > 0.05 was chosen for the
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Fig. 5.14 Distribution of the angle between the thrust axes of the signal-side and tag-side for the
hadronically tagged τ → πντ decay channel. The deviations between Monte Carlo simulation and
data is discarded by a cut at 0.7

semileptonically tagged channels. This reflects the difference in the purity of the
samples provided by the respective tags. The hadronic τ decay modes suffer from
large continuum backgrounds, a tight cut T < 0.7 was chosen, to suppress those
continuum events. In particular this selection discards the phase space region with
the largest data/Monte Carlo disagreement. In contrast, the leptonic τ decay modes
are expected to have only a small continuum contribution, nevertheless a loose cut
T < 0.85was applied to ensure that peaking contributions from unknown continuum
processes are discarded (see Sect. 5.3.2.1).

The final selection efficiencies and the expected number of events, as well as the
expected significance of a counting experiment of all events with an EECL below
100 MeV are stated in Table Table5.14 and Table 5.15

Previous analyses discarded in addition all eventswith additional non-good tracks.
Although this selection is very effective and suppresses additional background it was
not applied in this analyses for the following reasons. The non-good tracks are not
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Table 5.14 Final cuts on T and σ. Stated are the selection efficiencies for; correctly reconstructed
candidates εSignal, background candidates εBackground, and for candidates on data εData. S√

B
refers

to the expected significance of a counting experiment of all events (number of signal events S and
number of background events B) below 100MeV

Decay-channel S√
B

εSignal εBackground εData

Hadronic tag

e− 2.40 0.73 0.39 0.39

μ− 1.77 0.73 0.40 0.40

π 2.39 0.59 0.13 0.13

ρ 1.16 0.56 0.11 0.11

a1 0.37 0.57 0.11 0.11

Semileptonic tag

e− 2.12 0.35 0.10 0.09

μ− 1.49 0.36 0.10 0.10

π 2.23 0.28 0.04 0.04

ρ 1.43 0.24 0.03 0.03

a1 0.40 0.24 0.04 0.04

Table 5.15 Expected number of events from the Monte Carlo simulation and the obtained number
on on-resonance and off-resonance data. The uncertainty of the stated numbers is below 2%

Hadronic Semileptonic

e μ π ρ a1 e μ π ρ a1

Signal 80 52 124 79 21 79 48 115 89 23

Background 4428 4056 6154 12,244 6915 3961 3382 4223 8032 5135

Total 4508 4109 6278 12,323 6937 4041 3430 4339 8122 5158

On-resonance 4079 3545 6019 11,572 5542 4131 3421 5070 9109 5050

Continuum 264 180 2625 5481 2685 61 43 1089 1604 720

Off-
resonance

222 175 2306 5105 1702 135 103 1574 2059 707

well understood, they depend strongly on the beam-conditions and the reconstruction
software (see Sect. 2.3.3.2). Furthermore the remaining off-resonance data sample
after this selection does not allow a sound estimation of possible peaking background
components. Previous analyses did not consider this potentially large systematic
uncertainty (see [1]).

5.2.4.5 Self-Cross-Feed

All signal Monte Carlo events, which survive the final selection are considered as
signal, regardless if they are reconstructed correctly or not. For instance, a signal event
with a decay chain B → τ [→ eνν̄]ν might be reconstructed as B → τ [→ πντ ]ν̄τ ,
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Table 5.16 The self-cross-feed of the reconstructed signal events. The rows contain the decay-
channels in which the events where reconstructed. The upper five rows contain the hadronically
tagged, and the lower five rows the semileptonically tagged reconstructed decay-channels. The
columns indicate the Monte Carlo truth. Each cell contains the fraction of the events in the recon-
structed decay-channel (row), which originate from the Monte Carlo decay-channel (column). The
label other refers to the remaining τ decay-channels, which are not considered in this analysis. The
uncertainty due to limited statistics is approximately ±0.01

Hadronic Semileptonic
e μ π ρ a1 other e μ π ρ a1 other

e 0.91 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00
μ 0.00 0.93 0.01 0.02 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
π 0.04 0.19 0.20 0.27 0.04 0.25 0.00 0.00 0.00 0.00 0.00 0.00
ρ 0.01 0.02 0.03 0.68 0.18 0.08 0.00 0.00 0.00 0.00 0.00 0.00
a1 0.00 0.00 0.00 0.01 0.82 0.17 0.00 0.00 0.00 0.00 0.00 0.00
e 0.05 0.00 0.00 0.00 0.00 0.01 0.86 0.01 0.00 0.00 0.00 0.08
μ 0.00 0.06 0.00 0.00 0.00 0.00 0.01 0.87 0.01 0.02 0.00 0.03
π 0.00 0.01 0.01 0.01 0.00 0.01 0.04 0.17 0.20 0.24 0.04 0.24
ρ 0.00 0.01 0.00 0.04 0.01 0.01 0.01 0.02 0.03 0.64 0.16 0.07
a1 0.01 0.01 0.00 0.00 0.05 0.01 0.00 0.00 0.00 0.01 0.76 0.15

where the electron was mis-identified as a pion. Hence, the shape of the signal
component contains two contributions: correctly reconstructed signal events (that
is the signal event is reconstructed in the correct decay channel) and incorrectly
reconstructed signal events (that is the signal event is reconstructed in a different
decay channel). The last contribution is referred to as self-cross-feed.

Table 5.16 states the fraction of the events reconstructed in a decay-channel, which
originates from a Monte Carlo decay-channel. There is nearly no self-cross-feed
between the hadronic and semileptonic tag. This means, signal events, whose tag-
side decayed semileptonically are not reconstructed by the hadronic tag. On the other
hand, signal events, whose tag-side decayed hadronically are rarely reconstructed by
the semileptonic tag.

The largest self-cross-feed can be found in the τ → πντ decay-channel. Leptons
which fail to pass the PID criteria are collected by this channel, as well as τ → ρντ

decays, where the π0 is missed. Furthermore, around 25% of the events reconstructed
in the pion channel originate from τ decay channels which are not explicitly con-
sidered in this analysis. In consequence, the systematic uncertainty of the π channel
is potentially large, and is influenced by the τ branching fractions, PID selection
efficiencies, and the π0 reconstruction efficiency.

5.2.4.6 Extra Energy in the Electromagnetic Calorimeter

The sumof all depositions in the electromagnetic calorimeter,which (according to the
reconstruction software) do not originate from the reconstructed ϒ(4S) candidate,
is called the raw extra energy in the electromagnetic calorimeter E raw

ECL.
In order to reduce the dependency on the varying beam-background conditions

between the experiments and runs (see Sect. 2.3.3.2), analyses using the extra energy



5.2 Measurement 127

Fig. 5.15 Normed
distribution of EECL for the
τ → eνν̄ decay channel with
hadronic tag

usually consider only ECL clusters for the calculation of EECL, which fulfill addi-
tional requirements.

In this thesis, only clusters are considered without an associated track and with
an energy greater than 50, 100 or 150MeV if they are located in the barrel, forward
end-cap or backward end-cap, respectively. The resulting quantity is the cleaned
extra energy in the electromagnetic calorimeter Eclean

ECL .
The quantity is shown in Fig. 5.15 for the τ → eνν̄ decay channel with hadronic

tag. The signal component peaks at zero, while the background is slowly rising
towards higher values. In consequence, Eclean

ECL can be used as a fit variable, to deter-
mine the branching fraction of B → τντ .

Previous analysis considered more advanced cluster cleanings, e.g. [16] vetoed
clusters, which were located close to a reconstructed track if certain criteria based
on the ECL cluster shape were fulfilled. The EECL variable was extensively studied
in [17]. It is used in many analyses and its distribution for the signal component was
validated on data using double-tagged events [18]. The distribution for background
components can be validated on off-resonance data and sidebands (see Sect. 5.3).

For the sakeof clarity, I drop the index clean in the following, hence EECL ≡ Eclean
ECL .

5.2.5 Branching Fraction Extraction

The absolute branching fraction of B → τντ is determined by extracting the num-
ber of events containing this decay Nsig,d in each decay-channel d with an extended
unbinnedmaximumlikelihoodfit on the extra energy in the electromagnetic calorime-
ter EECL (see Sect. 5.2.4.6)
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BR(B → τντ ) = Nsig,d

NBB̄ · εd
(5.20)

where NBB̄ = (7.72 ± 0.1) · 108 is the number of produced BB̄ events10 determined
by the Belle experiment, and εd is the overall reconstruction efficiency in the decay-
channel (see Table5.18).

Figures5.16 and 5.17 show the distribution of EECL for all components used in
the fit. The continuum component was estimated with a linear regression using the
off-resonance sample.

The overall PDF is defined as

P(EECL) =
∑

d=e,μ,π,ρ,a1

(
εd NBB̄BR(B → τντ )Psig,d(EECL) + Nbkg,d Pbkg,d(EECL)

)
,

(5.21)

where d denotes the reconstructed decay-channel, and Psig,d and Pbkg,d the PDFs
obtained from Monte Carlo simulation and off-resonance data for signal and back-
ground, respectively. There are six free parameters in the fit: the branching fraction
BR(B → τντ ) and the five background normalizations Nbkg,d . The relative fractions
of the different background componentswasfixed.Thefit is performed independently
for the hadronic and semileptonic tag.

5.2.5.1 Component Description

The extraction of the branching fraction from EECL relies on the precise knowledge
of the shapes of all background processes. The following background processes were
considered during the fit. Each component is described by a histogram PDF using
24 equidistant bins in the region between 0 and 1.2GeV.

ϒ(4S) → B+B− is background from charged B± decays. Also called generic
charged ϒ(4S) background. It is the main background component in all decay-
channels. In total six (out of ten) streams of Monte Carlo were used to determine
the shape of this component.

ϒ(4S) → B0B̄0 is background from neutral B0 decays. Also called generic neutral
(or mixed) ϒ(4S) background. This type of background is suppressed by the tag-
side requirements. In total six (out of ten) streams of Monte Carlo were used to
determine the shape of this component.

e+e− → cc̄ is background from charmed quarks. Also called charm continuum
background. Is is the main continuum background in semileptonically tagged
decay-channels. This component is estimated from off-resonance data in the final

10The Belle analyses assumed equal branching fractions for charged and neutral B mesons. Hence
the approximation NBB̄ ≈ 2NB+B− is used here. The correction is small compared to the uncertain-
ties of the measurements and therefore neglected.
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Fig. 5.16 Distribution of EECL for the hadronically tagged candidates. The stacked histograms
show the expectation from Monte Carlo simulation and off-resonance data. The continuum com-
ponent was estimated with a linear regression using the off-resonance sample
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Fig. 5.17 Distribution of EECL for the semileptonically tagged candidates. The stacked histograms
show the expectation from Monte Carlo simulation and off-resonance data. The continuum com-
ponent was estimated with a linear regression using the off-resonance sample
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fit. For the alternative shape description based on the Monte Carlo simulation
in total six (out of six) streams of Monte Carlo were used.

e+e− → qq̄(uds) is background from light quarks. Also called uds continuum
background. It is the main continuum background in hadronically tagged
decay-channels. This component is estimated from off-resonance data in the final
fit. For the alternative shape description based on the Monte Carlo simulation
in total six (out of six) streams of Monte Carlo were used.

B+ → rare is background from rare B± decays such as B+ → �+νγ. Although
rare decays have an extremely low branching fraction, their final state can be
nearly indistinguishable from B+ → τ+ντ . In fact, B+ → τ+ντ is contained in
this component as well, but was vetoed using Monte Carlo information. In total
fifty (out of fifty) streams of Monte Carlo were used to determine the shape of
this component.

B0 → rare is background from rare B0 decays such as B0 → Kνν. This type of
background is suppressed by the tag-side requirements compared to the charged
rare decays. In total fifty (out of fifty) streams of Monte Carlo were used to
determine the shape of this component.

B+ → ū�+ν is background from CKM-suppressed charged b → u transitions. If
the decay products from the u are lost during the reconstruction, this component
can fake a signal component. In total twenty (out of twenty) streams of Monte
Carlo were used to determine the shape of this component.

B0 → ū�+ν is background fromCKM-suppressed neutral b → u transitions. This
type of background is suppressed by the tag-side requirements compared to the
charged b → u transitions. In total twenty (out of twenty) streams ofMonte Carlo
were used to determine the shape of this component.

B+ → τ+ντ In total ≈ 1200 streams of Monte Carlo were used to determine the
shape of this component.

off-resonance data is continuum background recorded 60MeV below the ϒ(4S)

resonance. It can be used to estimate the complete continuum background without
using Monte Carlo simulation. This includes the above mentioned continuum
background from quarks, QED processes and other (even unknown) continuum
processes. In total ≈ 0.08 stream of off-resonance data were available and used
to determine the shape of the continuum component.

The usually used Belle Monte Carlo campaign did not include QED processes.
However, there are Monte Carlo simulated QED events available for Belle, those
could not be used during this thesis, due to technical issues. Previous Belle analysis
did not use this type of Monte Carlo. Nevertheless, this thesis studied the QED pro-
cesses using the correspondingBelle IIMonteCarlo simulated event for e−e+ → γγ,
e−e+ → e−e+, e−e+ → μ−μ+, and e−e+ → τ−τ+. The τ−τ+ component yields a
small number of additional continuumevents,which are suppressed by the continuum
suppression selection (see Fig. 5.14). No candidates from other QED processes were
found to pass the selection criteria of this analysis. However, differences between the
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Monte Carlo simulation of the continuum component and the off-resonance data are
observed (see Sect. 5.3). In consequence, the off-resonance data was used to estimate
the continuum background shape.

5.2.5.2 Statistical Uncertainty

The statistical uncertainty of the fit is estimated from the likelihood profile with
respect to the branching fraction BR(B → τντ ). The significance of the fit is deter-
mined by Wilk’s theorem (see [16, Sect. 7.7]) using the likelihood ratio of the
maximum likelihood obtained from the fit Lmax and the likelihood under the null-
hypothesis L0 assuming a branching fraction of zero

σ =
√

2 ln
Lmax

L0
. (5.22)

5.3 Validation

Before the final fit on on-resonance data was performed, the distribution of the extra
energy in the calorimeter in the different tag-side and signal-side combinations was
validated. The background processes were studied using Monte Carlos simulation
(Sect. 5.3.1) and data-drivenmethods (Sects. 5.3.2–5.3.4). The fit procedurewas vali-
dated (Sect. 5.3.5). And finally possible systematic uncertainties of the analyses were
investigated (Sect. 5.3.6).

The following sections summarize the findings of this validation. Tag-side and
signal-side combinations which are not explicitly mentioned are in agreement with
the expectation.

5.3.1 Monte Carlo Based Study

Monte Carlo simulated events were used to investigate the known background pro-
cesses. In total six streams were investigated.

5.3.1.1 Leptonic τ Decay Channels

The leptonic τ decay channelswere investigated usingMonteCarlo simulated events.
The main background originates from semileptonic B± decays accompanied by a

correctly reconstructed Btag decay:ϒ(4S) → BtagB−[→ D0�−ν̄]. The additional D0

meson decays into neutral final state particles like D0 → K0
LK

0
L(K

0
L) or D

0 → K0
Lπ

0.
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The contributing decay channels from neutral B0B̄0 pairs are very similar ϒ(4S)

→ BtagB0[→ D−�+ν]. The D− meson decays further into neutral final state particles
and an additional charged track, which is assigned to the tag-side.

The B+ → u�+ν component is dominated by the decay B+ → π0�+ν, where the
π0 is missed during the reconstruction.

The contribution from rare decays like B+ → �+νγ is negligible small assum-
ing either the branching fractions predicted by the Standard Model or the current
experimental limits.

The background from continuum processes described by the Monte Carlo simu-
lation is very small as well. Here the lepton is usually produced via a semileptonic
D decay, whereas the tag-side is reconstructed from the remaining charged tracks.

5.3.1.2 Hadronic τ Decay Channels

The hadronic τ decay channels were investigated using Monte Carlo simulated
events.

The background from charged B+B− pairs is diverse. The main contribution
originates from decay-channels with a high branching fraction and accompanied by
a correctly reconstructed tag-side. For instance,ϒ(4S) → BtagB−[→ D0π−], where
the D meson decays further into neutral final state particles like D0 → K0

LK
0
L(K

0
L)

or D0 → K0
Lπ

0. Another common example is a semileptonic decay-chain ϒ(4S) →
BtagB−[→ D0[→ K−�+ν]�−ν̄], where the K meson is mis-identified as a pion.

The contributions from neutral B0B̄0 pairs are even more diverse, since both B
mesons are wrongly reconstructed. There is no noticeable pattern, except for the
obvious influence of the branching fractions.

The B+ → u�+ν component is dominated by the decay B+ → π0�+ν, where the
π0 is missed during the reconstruction and the lepton is mis-identified as a pion.
However, due to the additional mis-identification this component is negligible, in
contrast to the leptonic decay-channels.

On the other hand, the contribution from rare decays like B → K0
Lπ is small.

The background from continuum processes described by the Monte Carlo simu-
lation is as large as the background fromϒ(4S) decays. The semileptonically tagged
continuum background events are dominated by e−e+ → cc̄, because the tag-side
requires a lepton, which is rarely produced by light quark pairs: uū, dd̄ and ss̄. Hence,
light quark pairs are suppressed by the mis-identification rate of leptons.

On the other hand, the hadronically tagged continuum background events have
a large contribution from light quarks pairs, because no reconstructed lepton is
required. This contribution is as large as the one from e−e+ → cc̄. This can be
explained by the fact, that the D meson on the tag-side is usually mis-reconstructed,
i.e. not matched to a D meson Monte Carlo particle. Probably, true D mesons are
suppressed due to their different kinematics compared to the D mesons typically
found in ϒ(4S) decays. In consequence cc̄ pairs and light quark pairs contribute in
equal parts to the continuum background in hadronically tagged hadronic τ decay
channels.
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5.3.2 Off-Resonance Based Study

Off-resonance data was used to validate the shape of the continuum component and
to identify unknown continuum background processes. The off-resonancewas scaled
to account for the difference in luminosity recorded on-resonance and off-resonance,
and the shifted center-of-mass energy.

5.3.2.1 Peaking Continuum Background in Semileptonically
Tagged τ → eνν̄

A large peaking background component in the semileptonically tagged τ → eνν̄
decay channel was observed on off-resonance data by [16]. This peaking background
is not described by the Monte Carlo simulation. It was suspected to be caused by
e−e+ → γ[→ DD̄]γ[→ e−e+], which is not part of the standard Belle Monte Carlo.
A selection on theminimal invariant massMsig > 0.2GeV of the signal-side electron
with all other tracks in the event, and on the minimal invariant mass Mtag > 0.2GeV

(a) τ e−νeντ (b) τ μ−νμντ

(c) τ π+ντ (d) τ ρντ
(e) τ a1ντ

Fig. 5.18 Distribution of EECL for the semileptonically tagged candidates on on-resonance data.
The final selection discards large amounts of the background including its peaking contribution
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(a) τ e−νeντ (b) τ μ−νμντ

(c) τ π+ντ (d) τ ρντ (e) τ a1ντ

Fig. 5.19 Distribution of EECL for the semileptonically tagged candidates on off-resonance data.
The final selection discards large amounts of the background including its peaking contribution.
The shape of the continuum component in the fit is estimated by a linear regression, which is shown
as a dashed line

of the tag-side lepton with all other tracks in the event was introduced by [16] to
suppress this background. This selection is called invariant-mass-selection in the
following.

This analysis observed the same peaking background on on-resonance (see
Fig. 5.18) and off-resonance data (see Fig. 5.19). However, the chosen cuts on the
SignalProbability σ > 0.05 of the Btag and on the continuum suppression
variable T < 0.85 (see Sect. 5.2.4.3), discard already all events, which would be dis-
carded by the invariant-mass-selection. This selection is called final-semileptonic-
electron-channel-selection in the following.

Figure5.20 shows the effect of the two selection sets and their relative
complement, that is the eventswhich survive thefinal-semileptonic-electron-channel-
selection, but not the invariant-mass-selection. Since the relative complement is
negligible small, an additional invariant-mass-selection besides the final-
semileptonic-electron-channel-selection does not have any effect. Hence, the
invariant-mass-selection was not applied in this thesis.
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(b) off-resonance

Fig. 5.20 Distribution of EECL for the τ → eνν̄ decay channel. A cut on Msig > 0.2GeV and
Mtag > 0.2GeV is shown in black and discards parts of the suspected peaking background. The
selection onσ > 0.05 and T < 0.85, used for the semileptonically tagged τ → eνν̄ decay channel is
shown in yellow and is discards large amounts of the background including its peaking contribution.
Finally the relative complement of the invariant mass selection with respect to the σ and T selection
is shown in red

5.3.2.2 Peaking Continuum Background in Hadronic τ Decay
Channels

A large peaking background component in the hadronic τ decay channels is
observed on on-resonance and off-resonance data before the final selection on the
SignalProbability σ and T are applied. This peaking background is not
described by the Monte Carlo simulation.

Off-resonance data was used to verify that the final selection σ > 0.01(0.05) for
hadronic (semileptonic) Btag and T < 0.7 discards this peaking background compo-
nent. From this one can conclude, that the observed peak is caused by an unknown
continuum component, and that the component is heavily suppressed by the final
selection. The on-resonance and off-resonance distributions of EECL are shown in
Fig. 5.21 and Fig. 5.22, respectively.

Note that this peaking background is different from the one observed in the
semileptonically tagged τ → eνν̄ decay channel. The invariant-mass-selection intro-
duced in Sect. 5.3.2.1 (where the leptons are replaced by the corresponding hadrons)
does not suppress this peaking component.

The previous Belle analysis which used the hadronic tag did not report any obser-
vation of this peaking background [1], whereas the previous Belle analysis which
used the semileptonic tag did observe severe differences between Monte Carlo
simulation and data as well, and obtained the shape for the continuum component
solely from off-resonance data. This led to larger systematic uncertainties in the
semileptonically tagged measurement compared to the hadronically tagged mea-
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(a) τ e−νeντ (b) τ μ−νμντ

(c) τ π+ντ (d) τ ρντ (e) τ a1ντ

Fig. 5.21 Distribution of EECL for the hadronically tagged candidates on on-resonance data. The
final selection discards large amounts of the background including its peaking contribution

surement, as can be seen in Table5.17. This thesis estimates the continuum shape
from off-resonance as well.

5.3.3 K0
S Sideband Study

The K0
S sideband was used to validate the shape of the overall background and

to identify unknown ϒ(4S) background processes. The sideband is defined by the
presence of two additional tracks forming a good K0

S candidate reconstructed by the
FEI, which is not used for the reconstruction of the ϒ(4S) candidate. Subtracting
the processes identified using the off-resonance data, this sideband can be used to
investigate the shape ofϒ(4S) components, in particular the contributions due to K0

L
mesons.

By the approximate symmetry under the exchange of K0
S → K0

L, it is expected
to detect peaking background due to processes containing K0

L in the signal region,
where additional K0

S candidates are vetoed.
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(a) τ → e−νeντ (b) τ → μ−νμντ

(c) τ → π+ντ (d) τ → ρντ (e) τ → a1ντ

Fig. 5.22 Distribution of EECL for the hadronically tagged candidates on off-resonance data. The
final selection discards large amounts of the background including its peaking contribution. The
shape of the continuum component in the fit is estimated by a linear regression, which is shown as
a dashed line

Background processeswith aK0
L can bemitigated by the introduction of aK0

L veto,
as investigated by [19]. However, K0

L are the least understood physics objects at the
Belle experiment, hence this leads to a large systematic uncertainty (see Sect. 5.3.6).

There was no significant deviation from the Monte Carlo expectation observed in
the hadronically tagged channels.

A possible peaking background component in the semileptonically tagged lep-
tonic τ decay channels was observed after the final selection.

In contrast to the hadronic-tag, the semileptonic-tag used in this thesis was not
calibrated. This can cause an incorrect relative fraction between correctly and incor-
rectly tagged B mesons, and in consequence could explain the observed deviation.
The calibration factors for the semileptonic tag-side efficiency are not available, yet.
Therefore, this observation was not further investigated during this thesis.
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Table 5.17 Relative systematic uncertainties in percent. The previous measurements by Belle
based on the hadronic tag [1] and the semileptonic tag [2] are shown in the first and second column
respectively. The estimated leading systematic uncertainties of this analysis are shown in the third
and fourth column. The tag-side efficiency correction for the semileptonic tag is not yet available,
therefore the corresponding uncertainty was estimated with the uncertainty of the hadronic tag-side
efficiency correction. The symbol - indicates that the corresponding uncertaintywas not investigated

Source Relative uncertainty in %

Ref. [1] Ref. [2] Hadronic Sem.-lep

Tag-side efficiency 7.1 12.6 7.0 ≈7

PDF shapes Signal 4.2
Background 8.9 8.5 9.0 6.6

Continuum description – 14.1 36.3 21.7

τ branching fraction 0.6 0.2 0.4 0.4

Background branching fraction 3.8 3.1 – –

Tracking efficiency 0.3 0.4 0.4 0.4

π0 efficiency 0.5 1.1 0.9 1.0

PID efficiency 1.0 0.5 – –

Signal reconstruction efficiency 0.4 0.6 0.4 0.3

Best candidate selection efficiency – 0.4 – –

K0
L veto efficiency 7.3 – – –

Completeness-constraint efficiency – 1.9 – –

Number of BB̄ pairs 1.3 1.4 1.3 1.3

Total 14.7 21.2 38.1 23.8

5.3.4 Momentum Shape Study

In addition, the shape of the momentum of the τ in the center-of-mass frame for all
candidates in the signal region EECL < 100MeV was investigated. These distribu-
tions are sensitive to unknown peaking contributions from rare decays and b → u�ν
processes.Nounexpected deviationswere observedwithin the statistical fluctuations.

5.3.5 Fitting Procedure

The fitting procedure was validated using six streams of Monte Carlo simulated
events. Different options for the smoothing of the PDFs and the constraints used
in the fit were investigated. For the final fit it was decided to use the same fitting
procedure as in the previous Belle analysis [16]. This ensures a valid comparison.

However, the result of the fit depends heavily on the fit procedure. For instance,
using the mis-modeled continuum Monte Carlo simulation, using b-spline based
smoothing or adding additional free parameters for the normalization of the contin-
uum component does change the final result and potentially increases the statistical
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(a) hadronic tag
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(b) semileptonic tag

Fig. 5.23 Results of the final fit performed on the six streams of Monte Carlo simulated events.
The gray bands show the predicted branching fractions by the SM, and the dotted black line the
current world average, which was used in the Monte Carlo simulation

uncertainty. To the best knowledge of the author, previous analyses did not take
these differences, caused by the fitting procedure, into account. They used either
Monte Carlo or off-resonance data, and fixed all relative branching fractions of the
background components.

5.3.5.1 Monte Carlo Measurements

The final fit was performed independently on six streams of Monte Carlo simulated
events. The tag-side calibrationwas not used, because it is only applicable to recorded
data. In addition, the continuum shape was taken from Monte Carlo for these tests.

As can be seen from Fig. 5.23 the results on Monte Carlo simulation reproduce
the simulated branching fraction of B → τντ of 1.06 · 10−4 within the statistical
uncertainties.

5.3.5.2 Continuum Shape Description

Several alternative procedures were investigated to estimate the continuum shape
from off-resonance data and Monte Carlo simulation. For the final fit the shape is
extracted using a linear regression (i.e. a first-order polynomial was fitted) of the off-
resonance data. To estimate the systematic uncertainty, the fit was repeated 100 times
by re-sampling the off-resonance data using the bootstrap method (see [20, Sect.
4.3.5]). These fits were performed using first-order, second-order and third-order
polynomials. The standard deviation of the fit-results is quoted as the systematic
uncertainty due to the continuum description.
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The procedure yields a relative uncertainty of 36.3% and 21.7% for the hadroni-
cally and semileptonically taggedmeasurements, respectively. Compared to previous
results, this increases the systematic uncertainty of the overall measurements. Previ-
ous results did either use theMonte Carlo description [1], or compared the first-order
polynomial only with a single second-order polynomial, fitted on the original off-
resonance data [2].

5.3.5.3 Closure Tests

The linearity of the fit (see [20, Sect. 10.5]) was tested for 21 different simulated
branching fractions between 0 and 5 · 10−4. For each simulated branching fraction
100fitswere performedusing toyMonteCarlo samples. The toyMonteCarlo samples
were created by randomly drawing events from the expected signal and background
PDFs. On average the fitted branching fraction reproduces the simulated branching
fraction, i.e. no bias is observed, as can be seen from Fig. 5.24.

In addition, the pull distribution (see [20, Sect. 10.5]) of the fit was investigated by
repeating the final fit using 100 toy Monte Carlo samples. The toy Monte Carlo sam-
ples were created by randomly drawing events from the fitted signal and background
PDFs.

The obtained pull distributions for the hadronically and semileptonically tagged
samples is compatible with a standard normal distribution, as can be seen from
Fig. 5.25. In other words: the distribution of the fit is approximately Gaussian, no
bias is observed and the calculated statistical uncertainty covers the correct interval.

(a) hadronic tag (b) semileptonic tag

Fig. 5.24 Linearity test of the combinedfit for the hadronically and semileptonically tagged sample.
The fitted branching fraction BR is in agreement with the simulated branching fraction over a wide
range of possible branching fractions between 0 and 5 · 10−4
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(a) hadronic tag (b) semileptonic tag

Fig. 5.25 Pull distributions of the combined fit for the hadronically and semileptonically tagged
sample. The distribution is in agreement with a standard normal distribution. μ and σ denote the
mean and standard deviation of the pull distribution, respectively

5.3.5.4 K0
S Sideband

The fit was performed on the K0
S sideband using the signal shape of the signal region.

As expected, there was no signal observed using the hadronically tagged sample.
A significant excess was observed on the semileptonically tagged sample with

a local statistical significance of 2.76 σ. This excess was already discussed in
Sect. 5.3.3. Further research is required as soon as the semileptonic tag-side cali-
bration factors for the FEI are available.

5.3.6 Systematic Uncertainties

Correctly quantifying the uncertainty of ameasured value is one of themost important
parts of a scientific measurement. The statistical uncertainty, caused by the finite
amount of available data, is theoretically well understood and is either calculated
analytically using the likelihood profile of the fit, or is extracted from a Monte Carlo
generated distribution.

The systematic uncertainties, caused by deviations from assumptions made by
the analyst, are notoriously ill-defined. Usually, in order to estimate the systematic
uncertainties, those assumptions are relaxed or alternatives are investigated. Typical
sources for systematic uncertainties are the selection efficiencies obtained on Monte
Carlo, assumed branching fractions and PDF shapes used in the fit.

The dominating systematic uncertainties in the measurement of B → τντ are the
uncertainty on the tag-side efficiency correction and the PDF shapes used in the
fit, in particular the continuum description. Table5.17 summarizes all systematic
uncertainties investigated by previous Belle measurements and the estimation for
this analysis.
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This thesis focuses on the dominating systematic uncertainties mentioned above.
In a complete analysis it is best practice to quantify all known systematic uncertain-
ties. The known systematic uncertainties and their scaling behavior with increasing
luminosity are briefly summarized below.

The tag-side efficiency correction directly enters the calculation of the branch-
ing fraction in the denominator of Eq.5.20. The determination of the hadronic
tag-side efficiency and its uncertainty was already discussed in Sect. 4.3.4. The
semileptonic tag-side efficiency is not known yet, but is expected to be similar to
the hadronic tag-side efficiency, because large parts of the tag-side reconstruction
are identical. The associated systematic uncertainty is estimated by combining
the statistical and systematic uncertainty of the tag-side efficiency correction fac-
tors. This uncertainty decreases with increasing luminosity, because the control
channels used in the calibration can be measured with higher precision.

The PDF shapes used in the fit are usually determined fromMonte Carlo simula-
tion. The shapes can be sensitive to the statistical fluctuations (discussed here) and
mis-modeling of the underlying Monte Carlo sample (see discussion on branch-
ing fraction and efficiencies below). The associated systematic uncertainty is
estimated by the standard deviation of 100 fits performed using slightly varied
PDF shapes, generated by re-sampling theMonte Carlo simulated events using the
bootstrap method (see [20, Sect. 4.3.5]). This uncertainty decreases with increas-
ing luminosity, because usually a larger luminosity is accompanied by a larger
Monte Carlo sample. Alternatively, PDF shapes can be modeled by (theoretically
motivated) analytical functions. Here the difference obtained by choosing differ-
ent functions can be used to estimate the uncertainty associated with the specific
choice used in the fit.

The continuum description determines the shape of the continuum component
in the fit. The shape can be either determined by the Monte Carlo simulation
(as described above) or taken from the off-resonance data. While the former is
poorlymodeled (as discussed in Sect. 2.3.3.3), the later suffers from low statistics.
In particular the hadronic τ decays are affected by continuum background. In
the case of off-resonance data, the systematic uncertainty is estimated by fitting
different analytical functions (usually first and second order polynomials) to the
off-resonance data. The detailed procedure used in this thesis is described in
Sect. 5.3.5.2. The uncertainty decreases with increasing luminosity, because more
off-resonance data is available. Furthermore, physical parameters determining the
continuum spectra, like branching fractions and fragmentation constants, can be
measured more precisely.

The branching fractions of the τ are only known with a finite precision. They
enter the calculation of the branching fraction in the denominator of Eq.5.20. The
associated systematic uncertainty is estimated by varying the branching fractions
by their known uncertainty. The uncertainty decreases with increasing luminosity,
because a B factory like Belle II is as well a τ factory, hence the branching
fractions can be measured more precisely. However, the precision is eventually
systematically limited.
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The background branching fractions which are assumed during the simulation
of the Monte Carlo sample, used to determine the PDF shapes, are only known
with a finite precision. In particular the branching fractions of peaking background
are important, because the induced uncertainty on the normalization of a peaking
component cannot be determined by the fit. The associated systematic uncertainty
is estimated by varying the weight of the corresponding events and repeating the
fit procedure. The uncertainty decreases with increasing luminosity, because the
contributing background processes can bemeasuredmore precisely. However, the
precision of background branching fractions is eventually systematically limited,
hence it is expected that at some points the scaling of this uncertainty decouples
from the luminosity.

The track reconstruction efficiency has been studied by [21]. It has been found
that a systematic uncertainty of 0.35% has to be assigned for each charged track
on the signal-side. The uncertainty of the reconstruction efficiency for the tag-side
is already accounted for in the tag-side efficiency correction.

The π0 reconstruction efficiency has been studied by [22]. The deviation
between Monte Carlo events and data has been found to be 4%. This uncer-
tainty influences only the τ → ρντ decay-channel, hence the associated system-
atic uncertainty is reduced by the fraction of signal events reconstructed in this
channel (see [16]).

The particle identification selection efficiency has been studied by [23, 24]. The
deviation between Monte Carlo events and data influences the leptonic τ decays
on the signal-side. The uncertainty of the PID selection efficiency for the tag-side
is already accounted for in the tag-side efficiency correction.

The signal reconstruction efficiency directly enters the calculationof thebranch-
ing fraction in the denominator of Eq.5.20. The statistical uncertainty is usually
small, because large amounts of signal Monte Carlo events are used to determine
this efficiency. The systematic uncertainty depends on the validity of the τ decay
models used in the Monte Carlo generator (see Sect. 5.1.4).

The best-candidate selection can potentially have a different efficiency andmod-
ify the shape observed on data. The associated systematic uncertainty can be esti-
mated by choosing a different best-candidate selection criterion, for instance a
random best-candidate selection, or by not applying a best-candidate selection at
all (as done by [16]).

The K0
L veto efficiency has been studied by [19]. It can influences the shape and

potentially the selection efficiency for signal and background. Previous Belle
analyses (e.g. [1]) used this veto to suppress background processes including
K0

L particles. The associated systematic uncertainty is estimated by varying the
weight of the corresponding events and repeating the fit procedure. Since the
KLM clusters used to reconstruct K0

L are the least understood physics object of
the Belle experiment, the K0

L veto was not used during this thesis. In addition the
K0

L could also influence the EECL distribution, however this was not studied by
previous analyses.

The completeness-constraint efficiency canbe studiedusingdouble-tagged sam-
ples. The fraction of events with additional charged tracks can be compared
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between Monte Carlo and data. Kronenbitter [16] studied this uncertainty using
a double-tagged sample B+ → D0π+ and obtained compatible results on Monte
Carlo and data with a deviation of 1.9%, which can be used as an estimate for the
systematic uncertainty.

The number of BB̄ pairs directly enters the calculation of the branching fraction
in the denominator of Eq.5.20. The Belle collaboration determined Nϒ(4S) =
(7.72 ± 0.1) · 108. Therefore the associated systematic uncertainty is 1.3%.
Strictly speaking, this uncertainty is already contained in the tag-side efficiency
uncertainty, because the final absolute branching fraction ismeasuredwith respect
to the investigated control channels, hence the uncertainty already enters in the
measurement of the control channels. Nevertheless, the previous Belle measure-
ments added this uncertainty on the number of BB̄ pairs to their list of systematic
uncertainties.

5.4 Results

The results obtained from the Belle data and a sensitivity estimation for Belle II are
summarized in this section.

5.4.1 Belle I

The rare decay channel B → τντ was chosen as benchmark, because it was regarded
as well-understood and established, however a previously neglected or under-
estimated systematic uncertainty of the continuumbackground descriptionwas found
to be sizeable.

In consequence, the overall uncertainty of the measurement could not profit from
the increased statistics, due to the necessary relaxation of the selection criteria and
the large systematic uncertainties associated with the peaking backgrounds in the
hadronic τ decay modes. These backgrounds are unlikely to be produced by b2bii
or the FEI, since they were neither encountered on the validation of tag-side only
(see Sect. 4.3.2) nor in the control channels used for the tag-side calibration (see
Sect. 4.3.4). Further research and studies of the encountered background processes
are required.

The detailed results of the final fit, including the result of fitting the decay channels
independently, are stated in Table5.18 together with the results of the previous Belle
analysis for comparison. The fitted distributions can be found in Figs. 5.26 and 5.27.
The combined fits are compatible with the SM and the previous Belle results.

There are two conspicuous individual fits. Firstly, no significant signal was
observed in the hadronically tagged τ → πντ channel, which is compatible with the
previous individual fit. A more in-depth investigation hints that the linear regression
of continuum off-resonance data, is not sufficient to describe the data in the signal
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Table 5.18 Results obtained by previous Belle analyses compared to this analysis. The columns
show the number of fitted B → τντ events Nsig, the selection efficiency including the τ branching
fractions ε, and the fitted branching fraction BR. The stated selection efficiencies for the hadronic
tag include the hadronic tag-side efficiency correction estimated from data. The tag-side efficiency
correction for the semileptonic tag was not available at the time of writing, and is therefore not
included. The combined hadronic tag has a statistical significance of 3.82 σ. The combined semilep-
tonic tag has a statistical significance of 5.20 σ

Decay-
channel

Previous This analysis

Nsig ε(10−4) BR(10−4) Nsig ε(10−4) BR(10−4)

Hadronic tag [1]

e− 16+11
−9 3.0 0.68+0.49

−0.41 116+34
−33 6.3 2.38+0.71

−0.68

μ− 26+15
−14 3.1 1.06+0.63

−0.58 71+32
−31 4.1 2.21+0.99

−0.96

π 8+10
−8 1.8 0.57+0.70

−0.59 −43+64 9.8 −0.58+0.84

ρ 14+19
−8 3.4 0.52+0.72

−0.62 225+64
−63 6.2 4.67+1.33

−1.31

a1 – – – −5+45 1.6 −0.39+3.54

Combined 62+23
−22 11.2 0.72+0.27

−0.25 327+89
−88 28.1 1.51+0.41

−0.40

Semileptonic tag [16]

e− 47 ± 25 7.4 0.90 ± 0.47 152+40
−40 8.4 2.34+0.62

−0.61

μ− 13 ± 21 5.5 0.34 ± 0.55 73+36
−35 5.2 1.81+0.90

−0.87

π 57 ± 21 4.7 1.82 ± 0.68 57+60
−57 12.3 0.60+0.63

−0.60

ρ 119 ± 33 7.3 2.16 ± 0.60 202+68
−67 9.6 2.73+0.92

−0.90

a1 – – – 96+63
−62 2.5 4.97+3.24

−3.19

Combined 222 ± 50 25.0 1.25 ± 0.28 528+106
−103 38.0 1.80+0.36

−0.35

region, and hence the signal contribution is suppressed although there is clearly a
signal peak visible (see Fig. 5.26). The large systematic uncertainty due to the con-
tinuum description of the hadronically tagged measurements reflects this issue in the
final result.

Secondly, the semileptonic τ → a1ντ channel yields a large branching fraction
with large uncertainties. This excess has a local statistical significance of 1.56 σ.
This could be caused either by a statistical fluctuation or by the missing tag-side
calibration factors for the semileptonic tag.

The achieved relative statistical uncertainty is very similar to the previous anal-
yses. However, in comparison with previous analyses, the analysis presented in this
thesis is very conservative.

The final selection was not optimized for maximal statistical significance, instead
a phase-space region was chosen which allows an accurate estimation and validation
of the background shapes on off-resonance data and sidebands. In particular, the
completeness-constraint was not fully exploited, in contrast to previous analyses.

The shape of the continuum component was estimated from off-resonance data
anddoes not rely onMonteCarlo simulation. The previousBelle analysis based on the
semileptonic tag took the same approach. Whereas the previous Belle analysis based
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Fig. 5.26 Fitted distribution of EECL for the hadronically tagged candidates

on the hadronic tag relied on Monte Carlo simulation and consequently reported a
smaller systematic uncertainty (see Table5.17).

This work advocates the use of machine learning. However, to ensure a sound
validation of b2bii and the FEI, only simple cuts on well-understood quanti-
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Fig. 5.27 Fitted distribution of EECL for the semileptonically tagged candidates

ties were used for the signal-side reconstruction and final selection. In particular,
this work did not employ a multivariate continuum suppression, which could have
introduced additional systematic uncertainties due to the encountered mis-modeling
of the continuum processes.
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The K0
L veto described in [19] was not used, because KLM clusters used to recon-

struct K0
L are the least understood physics object of the Belle experiment. However,

a possible effect on the extra-energy in the electromagnetic calorimeter was studied
using the K0

S sideband.
The increase in the reconstruction efficiency for the hadronic tag is compatible

with the expected improvements due to the increased tag-side efficiency. In particular
the leptonic τ decay-modes agree well with the expectation. The quoted numbers
include the tag-side efficiency correction obtained from control channels on data.

The result for the combined fit using the hadronic tag including statistical and
systematic uncertainties is

BR(B → τντ ) = (
1.51+0.41

−0.40 ± 0.57
) · 10−4. (5.23)

The shift of the central values with respect to the previous Belle analysis can be
explained with the additional uncorrelated systematic uncertainty discovered during
this thesis. The previous Belle analysis was too optimistic in the estimation of the
systematic uncertainty due to the continuum background. Furthermore, although
the same dataset was used, the overlap between the investigated signal events is
maximally 40%, due to the relaxed selection criteria and the improved overall signal
selection efficiency.

The increase in the expected reconstruction efficiency for the semileptonic tag is
not as large as expected.One reason is the tight cut on theSignalProbabilityof
>0.05, which was necessary due to the encountered peaking backgrounds. Moreover
this efficiency does not yet include the tag-side efficiency correction.

The result for the combined fit using the semileptonic tag including statistical and
systematic uncertainties is

BR(B → τντ ) = (
1.80+0.36

−0.35 ± 0.43
) · 10−4. (5.24)

The shift in the central value with respect to the previous Belle analysis can be
explained by the additional systematic uncertainty due to the continuum background.
Although the previous analysis used off-resonance data as well to estimate the con-
tinuum shape, this thesis relaxed the selection criteria and has a larger overall signal
selection efficiency. In consequence, the continuum background description is dif-
ferent. Furthermore, the presented result does not contain the semileptonic tag-side
calibration, which was not available at the time of writing. The tag-side calibra-
tion influences both: the signal selection efficiency, and the shape of the dominating
charged BB̄ background. Finally, although the same dataset was used, the overlap
between the investigated events is maximally 65%, due to the relaxed selection cri-
teria and the improved overall signal selection efficiency.

Taking into account the partly uncorrelated statistical uncertainty and the uncor-
related dominating component of the systematic uncertainties, the obtained central
values for the branching fraction of B → τντ are compatible with the previous Belle
analyses, the previous BaBar analyses, and the SM, as can be seen from Fig. 5.28.
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Fig. 5.28 Results obtained
by the previous Belle
analysis and this thesis. The
gray bands show predicted
branching fractions by the
SM, and the dotted black line
the current world average,
which was used in the Monte
Carlo simulation
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(1.7 ± +0.8 ± 0.2) · 10−4

This Work (hadronic tag)
(1.51+0.41

−0.40 ± 0.57) · 10−4

This Work (semileptonic tag)
(1.80+0.36

−0.35 ± 0.43) · 10−4

PDG 2016
(1.06 ± 0.2) · 10−4

|Vub|exc |Vub|inc

5.4.2 Belle II

The rare decay B → τντ was used to validate the entire software stack developed
during this thesis. The initial goal of validating the software was accomplished. The
b2bii package, the mva package and the FEI are ready to be used for physics
analyses.

The current version of the reconstruction software of Belle II is not fully opti-
mized yet. During this benchmark analysis an extremely high fake-rate (up to 7
additional tracks in correctly reconstructed events), and a poor ECL resolution with
large backgrounds caused by beam-background was observed. A cluster cleaning
based on the ECL cluster shapes and cluster timing will be important to mitigate the
increased beam-background. However, at the time of writing the necessary recon-
struction algorithms are not available in the official Belle II Monte Carlo campaign.
It is expected that these reconstruction issues will be solved in the future (see also
Sect. 4.3.3.2). The current reconstruction issues prevent a meaningful result using
the Belle II Monte Carlo simulation.

Assuming that the current reconstruction issues in BASF2 will be fixed, one can
estimate the statistical uncertainty on the branching fraction B → τντ achievable
bys Belle II, based on the statistical uncertainty obtained using b2bii.

Table5.19 states the expected relative statistical uncertainty with increasing inte-
grated luminosity. As described in the previous section, the leading systematic uncer-
tainties are expected to scale with the luminosity as well.

Based on the findings described in this thesis, several recommendations for the
Belle II experiment can be deduced.

1. The Belle II reconstruction software has to be (and is currently) improved. The
fake-rate of tracks has to be decreased significantly.
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Table 5.19 Statistical uncertainty: scaled with 1√
L for Belle II

Scenario Luminosity Relative uncertainty in % State

L in ab−1 Hadronic Semileptonic

Belle 0.711 37.5 22.4 Measured

b2bii 0.711 27.1 20.0 Measured

Belle II 1 22.9 16.9 Scaled

Belle II 5 10.2 7.5 Scaled

Belle II 50 3.2 2.4 Scaled

2. The Monte Carlo simulation does not describe the continuum background satis-
factorily. A larger off-resonance data sample is paramount to describe the con-
tinuum background.

3. The data-driven techniques presented in Sect. 3.3.3 should be used to ensure to
suppress background from continuum processes.

4. The extra energy in the electromagnetic calorimeter has to be better understood.
Previous analysis primarily tested the shape of the signal component using double-
tagged samples [18]. However, the shape of the background distributions (in
particular from continuum processes) were not validated to the same degree of
accuracy.

5. The tag-side calibration is key to the successful employment of the FEI, it should
be provided by the collaboration for both: the hadronic and the semileptonic tag.

5.5 Conclusion

The benchmark analysis B → τντ successfully used the entire stack of software
developed during this thesis. The b2bii package was used to convert the Monte
Carlo simulated Belle events and the data recorded by the Belle experiment. The
hadronic and semileptonic tag was provided by the FEI, which in turn uses the mva
package.

The expected improvements due to the larger tag-side efficiency were observed in
all tag-side and signal-side combinations onMonteCarlo simulatedBelle events. The
obtained results on recorded data are consistent: with the Monte Carlo expectation,
among each other, with the previous Belle analyses and with the Standard Model
prediction. The Belle II reconstruction software is not yet mature enough to allow a
detailed sensitivity study.

The limitations of the Belle Monte Carlo simulation and current Belle II recon-
struction became apparent. The availability of recorded data, provided by the b2bii
package, proved indispensable. In particular the continuum processes require further
research, in order to reduce the systematic uncertainties in measurements which rely
on the extra energy in the electromagnetic calorimeter. An increased off-resonance
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sample size would allow to constrain the shape of the continuum component more
precisely.

The analysis presented in this chapter successfully reproduced the previous results
reported by Belle and BaBar. It can be used as a template for future analyses which
use b2bii or the FEI.
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Chapter 6
Conclusion

This Ph.D. thesis covered four major topics.

The Belle to Belle II Conversion package (b2bii) enables Belle II physicists to
analyze the dataset recorded by Belle using BASF2. Thus, the entire Belle II
analysis software stack was validated on recorded data, years before recorded
data from the Belle II experiment was available.

The multivariate analysis package (mva) enables Belle II physicists to keep up
with the rapid developments in the field and to easily employ modern machine
learning algorithms in their work. Most of the multivariate methods used in the
reconstruction and analysis algorithms in BASF2 are built on the mva package
and use the default classification method FastBDT, both developed during this
thesis.

The Full Event Interpretation algorithm (FEI) enablesBelle II physicists tomea-
sure a wide range of interesting decays with a minimum amount of detectable
information. The FEI more than doubles the tag-side efficiency compared to its
(already very successful) predecessor.

The B → τν benchmark analysis validated the entire Belle II analysis software
stack. Unresolved reconstruction issues in the Belle II framework and previously
unknownbackground contributionswere discoveredbeforeBelle II started record-
ing data. It successfully reproduced the previous results reported by Belle. The
analysis serves as a prototype for other current (using b2bii) and upcoming
exclusively tagged analyses.

All software packages developed during this thesis were validated on data and are
used in production by Belle II physicists all over the world.
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Appendix A
B2BII

A.1 Monitoring Histograms

The full list of extracted quantities used for validating theBelle toBelle IIConversion.
The number in parenthesis states the number of quantities.

Beam Parameters (16):

• the experiment, run and event number (3);
• the energy in the HER (High Energy Ring), LER (Low Energy Ring) and CMS
(Center Of Mass System) (3);

• the crossing angle between the HER and LER (1);
• and the position and uncertainty of the interaction point (9).

K0
S, �, and converted γ (201):

• invariant mass, four-momentum and vertex position (8);
• four-momentum and POCAs (point of closest approach) of the daughters (14);
• PID information calculated by the K0

S finder (4);
• invariant mass, four-momentum and vertex position after a mass-constraint vertex
fit (8);

• uncertainties of the four-momenta and vertex position calculated by the mass-
constrained vertex-fit (28);

• p-value of the mass-constrained vertex fit (1);
• andMonte Carlo truth of the total momentum and PDG value of the daughters (4);

K0
L (9):

• KLM cluster position (3);
• number of KLM layers with hits (1);
• innermost KLM layer with hits (1);
• and Monte Carlo truth of the four-momentum and PDG value (4);

© Springer Nature Switzerland AG 2018
T. Keck, Machine Learning at the Belle II Experiment, Springer Theses,
https://doi.org/10.1007/978-3-319-98249-6
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Tracks (41):

• PID information including quality indicators (6);
• four-momentum and POCA (7);
• uncertainties of the four-momentum and POCA (28);

γ (48):

• four-momentum and ECL cluster position (7);
• uncertainties of the four-momentum and cluster position (28);
• spherical coordinates of the ECL cluster position (3);
• ECL cluster shape quantities (6);
• and Monte Carlo truth of the four-momentum (4);

π0 (41):

• four-momentum and vertex-position (7);
• invariant mass calculated using four-momentum and the daughter four-momenta
(2)

• uncertainties of the four-momentum and vertex position (28);
• and Monte Carlo truth of the four-momentum (4);

MC Information (12):

• four-momentum of the MC particle (4);
• PDG code of the MC particle (1);
• vertex position or POCA of the MC particle (3);
• PDG code of the mother of charged and neutral pions (3);
• and number of daughters (1)
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B.1 Default Configuration

A detailed description of the current default configuration of the Full Event
Interpretation is given in this section. In the default configuration all employed
multivariate classifiers have the same configuration: a boosted decision tree
(FastBDT) with 400 trees, a depth of 3 per tree, a shrinkage of 0.1 and a sub-
sampling rate (or bagging rate) of 0.5. The output of the boosted decision tree is
named σ below. There is no cut applied on the output of the vertex fitting, however
the information of the vertex fitting is used in the multivariate classifier.

All candidates reconstructed from one specific decay-channel are ranked accord-
ing to a variable and only the n best candidates are kept for each decay-channel—this
is known as pre-cut. Amultivariate classifier is applied to all candidates. Afterwards,
all candidates reconstructed from a specific particle are ranked according to the out-
put of the associated multivariate classifier and only the m best candidates are kept
for each particle—this is known as post-cut. The pre-cut and post-cut of all particles
is summarized in Table B.1.

In the remainder of this chapter, the particles explicitly reconstructed by the FEI
are discussed in detail. The FEI does not explicitly reconstruct intermediate res-
onances like ρ, ω or K∗, however these resonances are implicitly exploited by the
multivariate classifiers applied to all candidates. The explicitly reconstructed decay-
channels are listed below. The highlighted decay-channels were already used by
the Full Reconstruction (FR) algorithm employed by Belle. The charge-
conjugated particle and decay-channels are always implied throughout the text.

B.1.1 Final State Particles

Particles which can directly be reconstructed from Tracks,ECL clusters,KLM
clusters, or V0 objects are considered final state particles by the FEI.
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Table B.1 Pre-cut: ranking criteria and number of best candidates which is kept for each decay-
channel before the vertex fitting and the multivariate classifier application. Post-cut: ranking criteria
and number of best candidates which is kept in total after the multivariate classifier was applied.
P-ID is the particle identification information of particle P from the PID sub-detectors, E is the
energy of the particle, σ is the signal probability of the particle outputted by the corresponding
multivariate classifier, M is the invariant mass, MP is the nominal mass of particle P, Q is the
released energy in the decay, QP is the nominal released energy in the decay of the particle P, and∏

i σi is the product over the signal probabilities of all daughter particles

Particle Pre-cut Post-cut

e+ 10 highest e-ID 5 highest σ and 0.01 < σ

μ− 10 highest μ-ID 5 highest σ and 0.01 < σ

π+ 20 highest π-ID 10 highest σ and 0.01 < σ

K+ 20 highest K-ID 10 highest σ and 0.01 < σ

γ 40 highest E 20 highest σ and 0.01 < σ

π0 20 lowest |M − Mπ0 | 10 highest σ and 0.01 < σ

K0
S 20 lowest |M − MK0

S
| 10 highest σ and 0.01 < σ

K0
L 20 lowest |M − MK0

L
| 10 highest σ and 0.01 < σ

D0 (had) 20 lowest |M − MD0 | 10 highest σ and 0.001 < σ

D0 (sem) 20 highest
∏

i σi 10 highest σ and 0.001 < σ

D0 (klong) 20 highest
∏

i σi 10 highest σ and 0.001 < σ

D+ (had) 20 lowest |M − MD+ | 10 highest σ and 0.001 < σ

D+ (sem) 20 highest
∏

i σi 10 highest σ and 0.001 < σ

D+ (klong) 20 highest
∏

i σi 10 highest σ and 0.001 < σ

D+∗ (had) 20 lowest |Q − QD+∗ | 10 highest σ and 0.001 < σ

D+∗ (sem) 20 lowest |Q − QD+∗ | 10 highest σ and 0.001 < σ

D+∗ (klong) 20 lowest |Q − QD+∗ | 10 highest σ and 0.001 < σ

D+
S (had) 20 lowest |M − MD+

S
| 10 highest σ and 0.001 < σ

D+
S (klong) 20 highest

∏
i σi 10 highest σ and 0.001 < σ

D+∗
S (had) 20 lowest |Q − QD+∗

S
| 10 highest σ and 0.001 < σ

D+∗
S (klong) 20 lowest |Q − QD+∗

S
| 10 highest σ and 0.001 < σ

B+ (had) 20 highest
∏

i σi 20 highest σ

B+ (sem) 20 highest
∏

i σi 20 highest σ

B+ (klong) 20 highest
∏

i σi 20 highest σ

B0 (had) 20 highest
∏

i σi 20 highest σ

B0 (sem) 20 highest
∏

i σi 20 highest σ

B0 (klong) 20 highest
∏

i σi 20 highest σ
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B.1.1.1 Charged

The charged final state particles e+, μ+, π+ and K+ are reconstructed from Tracks
which are close to the IP, that is a maximum radial distance of 2 cm and maximum
distance along the beam-pipe of 4 cm).

Only particles from the primary interaction are regarded as signal. The input
features for the multivariate classifiers include: the likelihoods of the PID detectors;
kinematics and tracking variables; the position in the best-candidate ranking of the
pre-cut.

Protons are not used in the default configuration of the FEI.

B.1.1.2 Neutral

Photons γ are reconstructed from ECL clusters and V0 objects. Only pho-
tons with an energy of at least 140, MeV (100MeV) in the forward, 130MeV
(50MeV) in the barrel, and 200MeV (150MeV) in the backward region, are con-
sidered. The numbers in parenthesis are for converted Belle data.

Only particles from the primary interaction are regarded as signal. The input
features for the multivariate classifiers include: kinematic variables and the position
in the best-candidate ranking of the pre-cut. Additionally, cluster information like
the numbers of hits and the timing is used for photons reconstructed from ECL
clusters.

� mesons (reconstructed from V0 objects) and neutrons are not used in the
default configuration of the FEI. K0

S and K0
L mesons are discussed below.

Neutrinos ν are not explicitly reconstructed by the FEI, because they exit the
Belle and Belle II detector undetected. Therefore, the FEI treats decay-channels
containing a neutrino separately from other decay-channels, due vastly different
uncertainties on the kinematics.

B.1.2 Light Neutral Mesons

B.1.2.1 π0 Neutral Pion

Neutral pions π0 are reconstructed from two photons.

1. π0 → γγ

For Belle II the FEI does this reconstruction itself, on converted Belle data the
default π0 reconstruction of the B2BII package is used. Only π0 candidates with
an invariant mass between 80 and 180MeV are considered.

The input features for the multivariate classifiers include: kinematic variables
and the position in the best-candidate ranking of the pre-cut. In addition the signal
probability σ of the two daughter photons is used for Belle II.
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B.1.2.2 K0
S Neutral Short-Lived Kaon

Neutral kaons K0
S are reconstructed from two charged pions, two neutral pions or a

V0 object.
1. K0

S → π+π− 2. K0
S → π0π0

For converted Belle data only the V0 objects are used. Only K0
S candidates with

an invariant mass between 400 and 600MeV are considered.
The input features for the multivariate classifiers include: kinematic and vertex

position variables, and the position in the best-candidate ranking of the pre-cut. In
addition the information provided from theBelleK0

S finder is used for convertedBelle
data. For Belle II the signal probability σ, tracking variables and the total momentum
in the rest frame of the K0

S, of each daughter is used.

B.1.2.3 K0
L Neutral Long-Lived Kaon

Neutral kaons K0
L are reconstructed from KLM clusters. All candidates are con-

sidered. The usual signature of hits in the KLM without an associated track does
only provide a very rough estimate of the direction and energy of the assumed K0

L.
Therefore, the FEI treats decay-channels containing K0

L particles separately from
other decay-channels, due to the vastly different uncertainties on the kinematics.

The input features for the multivariate classifiers include: the energy and the KLM
cluster timing information.

B.1.3 Charmed Mesons

All charmed mesons have the same input features for the multivariate classifiers:
lorentz invariant kinematic and vertex variables of the charmed meson; kinematic,
tracking and vertex variables of all daughters evaluated in the rest frame of the
charmed meson; the decay mode identifier and signal probability σ of all daughters;
the invariant mass of all possible combinations of daughter particles; and the position
of the candidate in the best candidate ranking of the pre-cut.

Since all kinematic and vertex informations are either Lorentz-invariant like the
invariant mass or evaluated in the rest frame of the charmed meson, the performance
of the multivariate classifier is independent of the B meson decay from which the
charmed meson originated.

B.1.3.1 D0 Neutral D Meson from Hadronic Decay-Channels

The following hadronic channels are used to reconstruct D0 mesons:
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1. D0 → K−π+ 6. D0 → π−π+ 11. D0 → K0
Sπ

+π−
2. D0 → K−π+π0 7. D0 → π−π+π0 12. D0 → K0

Sπ
+π−π0

3. D0 → K−π+π0π0 8. D0 → π−π+π0π0 13. D0 → K−K+

4. D0 → K−π+π+π− 9. D0 → π−π+π+π− 14. D0 → K−K+π0

5. D0 → K−π+π+π−π0 10. D0 → K0
Sπ

0 15. D0 → K−K+K0
S

Only hadronic D0 candidates with an invariant mass between 1.7 and 1.95GeV
are considered. If not stated otherwise D0 always refers to a D0, which decayed in
one of the hadronic decay modes listed above, throughout the text.

B.1.3.2 D0 Neutral D Meson from Semileptonic Decay-Channels

Due to the different kinematic properties, D0 mesons from semileptonic decay-
channels are processed separately by the FEI. The following semileptonic channels
are used to reconstruct D0 mesons:

1. D0 → K−e+ν 3. D0 → K−π0e+ν 5. D0 → K0
Sπ

−e+ν
2. D0 → K−μ+ν 4. D0 → K−π0μ+ν 6. D0 → K0

Sπ
−μ+ν

There are no further cuts applied to semileptonic D0 candidates.

B.1.3.3 D0 Neutral D Meson from Decay-Channels with K0
L Neutral

Long-Lived kaons

Due to the different kinematic properties, D0 mesons from decay-channels which
include a K0

L are processed separately by the FEI. The following channels are used
to reconstruct D0 mesons:

1. D0 → K0
Lπ

0 3. D0 → K0
Lπ

+π−π0

2. D0 → K0
Lπ

+π− 4. D0 → K−K+K0
L

There are no further cuts applied to D0 candidates with K0
L.

B.1.3.4 D+ Charged D Meson from Hadronic Decay-Channels

The following hadronic channels are used to reconstruct D+ mesons:

1. D+ → K−π+π+ 5. D+ → π+π0 9. D+ → K0
Sπ

+π0

2. D+ → K−π+π+π0 6. D+ → π+π+π− 10. D+ → K0
Sπ

+π+π−
3. D+ → K−K+π+ 7. D+ → π+π+π−π0 11. D+ → K+K0

SK
0
S

4. D0 → K−K+π+π0 8. D+ → K0
Sπ

+
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Only hadronic D+ candidates with an invariant mass between 1.7 and 1.95GeV
are considered. If not stated otherwise D+ always refers to a D+, which decayed in
one of the hadronic decay modes listed above, throughout the text.

B.1.3.5 D+ Charged D Meson from Semileptonic Decay-Channels

Due to the different kinematic properties, D+ mesons from semileptonic decay-
channels are processed separately by the FEI. The following semileptonic channels
are used to reconstruct D+ mesons:

1. D+ → K0
Se

+ν 3. D+ → K−π+e+ν
2. D+ → K0

Sμ
+ν 4. D+ → K−π+μ+ν

There are no further cuts applied to semileptonic D+ candidates.

B.1.3.6 D+ Charged D Meson from Decay-Channels with K0
L Neutral

Long-Lived kaons

Due to the different kinematic properties, D+ mesons from decay-channels which
include a K0

L are processed separately by the FEI. The following channels are used
to reconstruct D+ mesons:

1. D+ → K0
Lπ

+ 3. D+ → K0
Lπ

+π+π− 5. D+ → K+K0
LK

0
L

2. D+ → K0
Lπ

+π0 4. D+ → K+K0
LK

0
S

There are no further cuts applied to D+ candidates with K0
L.

B.1.3.7 J/ψ Meson J/psi Resonance

The following hadronic channels are used to reconstruct J/ψ mesons:

1. J/ψ → e+e− 2. J/ψ → μ+μ−

Only hadronic J/ψ candidates with an invariant mass between 2.8 and 3.5GeV
are considered.

B.1.3.8 D+∗ Charged Spin-Excited D Meson from Decay-Channels

The following channels are used to reconstruct D+∗ mesons:

1. D+∗ → D0π+ 2. D+∗ → D+π0 3. D+∗ → D+γ
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Only D+∗ candidates with a released energy in the decay between 0 and 0.3GeV
are considered. Separate particle lists are created for D+∗ meson reconstructed from
hadronic, semileptonic and klong D mesons. If not stated otherwise D+∗ always
refers to a D+∗, which decayed in one of the hadronic decay modes listed above,
throughout the text.

B.1.3.9 D∗(2010)0 Neutral spin-excited D Meson from Decay-Channels

The following channels are used to reconstruct D∗(2010)0 mesons:

1. D∗(2010)0 → D0π0 2. D∗(2010)0 → D0γ

Only D∗(2010)0 candidates with a released energy in the decay between 0 and
0.3GeV are considered. Separate particle lists are created for D∗(2010)0 meson
reconstructed from hadronic, semileptonic and klong D mesons. If not stated other-
wise D∗(2010)0 always refers to a D∗(2010)0, which decayed in one of the hadronic
decay modes listed above, throughout the text.

B.1.3.10 D+
S Strange D Meson from Hadronic Decay-Channels

The following hadronic channels are used to reconstruct D+
S mesons:

1. D+
S → K+K0

S 5. D+
S → K+K0

Sπ
+π− 9. D+

S → K0
Sπ

+
2. D+

S → K+π+π− 6. D+
S → K−K0

Sπ
+π+ 10. D+

S → K0
Sπ

+π0

3. D+
S → K+K−π+ 7. D+

S → K+K−π+π+π−
4. D+

S → K+K−π+π0 8. D+
S → π+π+π−

Only hadronic D+
S candidates with an invariant mass between 1.68 and 2.1GeV

are considered. If not stated otherwise D+
S always refers to a D+

S , which decayed in
one of the hadronic decay modes listed above, throughout the text.

B.1.3.11 D+
S Strange D Meson from Decay-Channels with K0

L Neutral
Long-Lived kaons

Due to the different kinematic properties, D+
S mesons from decay-channels which

include a K0
L are processed separately by the FEI. The following channels are used

to reconstruct D+
S mesons:

1. D+
S → K+K0

L 3. D+
S → K−K0

Lπ
+π+ 5. D+

S → K0
Lπ

+π0

2. D+
S → K+K0

Lπ
+π− 4. D+

S → K0
Lπ

+

There are no further cuts applied to D+
S candidates with K0

L.
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B.1.3.12 D+∗
S Strange Spin-Excited D Meson from Decay-Channels

The following channels are used to reconstruct D+∗
S mesons:

1. D+∗
S → D+

S γ 2. D+∗
S → D+

S π0

Only D+∗
S candidates with a released energy in the decay between 0 and 0.3GeV

are considered. Separate particle lists are created for D+∗
S meson reconstructed from

hadronic D+
S and klong D+

S mesons. If not stated otherwise D+∗
S always refers to a

D+∗
S , which decayed in one of the hadronic decay modes listed above, throughout

the text.

B.1.4 B Mesons

All B mesons have the same input features for the multivariate classifiers: kinematic
and vertex variables excluding quantities correlated to the beam-constrained mass;
kinematic, tracking and vertex variables of all daughters evaluated in the rest frame
of the B meson; the decay mode identifier and signal probability σ of all daughters;
and the position of the candidate in the best candidate ranking of the pre-cut.

B.1.4.1 B+ Charged B Meson from Hadronic Decay-Channels

The following hadronic channels are used to reconstruct B+ mesons:

1. B+ → D
0
π+ 11. B+ → D

0
D0K+ 21. B+ → D+∗

S D
0

2. B+ → D
0
π+π0 12. B+ → D

0∗
D0K+ 22. B+ → D+

S D
0∗

3. B+ → D
0
π+π0π0 13. B+ → D

0
D∗(2010)0K+ 23. B+ → D

0
K+

4. B+ → D
0
π+π+π− 14. B+ → D

0∗
D∗(2010)0K+ 24. PBp → D−π+π+

5. B+ → D
0
π+π+π−π0 15. B+ → D+

S D
0

25vB+ → D−π+π+π0

6. B+ → D
0
D+ 16. B+ → D

0∗
π+ 26. B+ → J/ψK+

7. B+ → D
0
D+K0

S 17. B+ → D
0∗

π+π0 27. B+ → J/ψK+π+π−

8. B+ → D
0∗
D+K0

S 18. B+ → D
0∗

π+π0π0 28. B+ → J/ψK+π0

9. B+ → D
0
D+∗K0

S 19. B+ → D
0∗

π+π+π− 29. B+ → J/ψK0
Sπ

+

10. B+ → D
0∗
D+∗K0

S 20. B+ → D
0∗

π+π+π−π0

Only hadronic B+ candidates with an beam-constrained mass above 5.2GeV
and an absolute deviation of the energy from the beam energy below 0.5GeV are
considered.
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B.1.4.2 B+ Charged B Meson from Semileptonic Decay-Channels

Due to the different kinematic properties, B+ mesons from semileptonic decay-
channels are processed separately by the FEI. The following semileptonic channels
are used to reconstruct B+ mesons:

1. B+ → D
0
e+ν 4. B+ → D

0∗
μ+ν 7. B+ → D+∗π+μ+ν

2. B+ → D
0
μ+ν 5. B+ → D−π+e+ν 8. B+ → D+∗π+e+ν

3. B+ → D
0∗
e+ν 6. B+ → D−π+μ+ν

In addition all hadronic channels listed in Sect. B.1.4.1 are used, where one of
the hadronic D mesons is replaced by a semileptonic D meson. There are no further
cuts applied to semileptonic B+ candidates.

B.1.4.3 B+ Charged B Meson from Decay-Channels with K0
L Neutral

Long-Lived kaons

Due to the different kinematic properties, B+ mesons from decay-channels which
include a K0

L are processed separately by the FEI. All hadronic channels listed in
Sect. B.1.4.1 are used, where either one of the hadronic D mesons is replaced by
a klong D meson, or one of the K0

S is replaced by a K0
L. There are no further cuts

applied to B+ candidates with K0
L.

B.1.4.4 B0 Neutral B Meson from Hadronic Decay-Channels

The following hadronic channels are used to reconstruct B0 mesons:

1. B0 → D−π+ 10. B0 → D+∗D∗(2010)0K+ 19. B0 → D+∗π+π+π−
2. B0 → D−π+π0 11. B0 → D−D+K0

S 20. B0 → D+∗π+π+π−π0

3. B0 → D−π+π0π0 12. B0 → D+∗D+K0
S 21. B0 → D+∗

S D−
4. B0 → D−π+π+π− 13. B0 → D−D+∗K0

S 22. B0 → D+
S D

+∗
5. B0 → D−π+π+π−π0 14. B0 → D+∗D+∗K0

S 23. B0 → D+∗
S D+∗

6. B0 → D
0
π+π− 15. B0 → D+

S D
− 24. B0 → J/ψK0

S
7. B0 → D−D0K+ 16. B0 → D+∗π+ 25. B0 → J/ψK+π−
8. B0 → D−D∗(2010)0K+ 17. B0 → D+∗π+π0 26. B0 → J/ψK0

Sπ
+π−

9. B0 → D+∗D0K+ 18. B0 → D+∗π+π0π0

Only hadronic B0 candidates with an beam-constrained mass above 5.2GeV and
an absolute deviation of the energy from the beam energy below 0.5GeV are con-
sidered.

The channel B0 → D
0
π0 was used by the FR, but is not yet used in the FEI due

to unexpected technical restrictions in the KFitter algorithm.



168 Appendix B: FEI

B.1.4.5 B0 Neutral B Meson from Semileptonic Decay-Channels

Due to the different kinematic properties, B0 mesons from semileptonic decay-
channels are processed separately by the FEI. The following semileptonic channels
are used to reconstruct B0 mesons:

1. B0 → D−e+ν 4. B0 → D+∗e+ν 7. B0 → D
0∗

π−e+ν

2. B0 → D−μ+ν 5. B0 → D
0
π−e+ν 8. B0 → D

0∗
π−μ+ν

3. B0 → D+∗μ+ν 6. B0 → D
0
π−μ+ν

In addition all hadronic channels listed in Sect. B.1.4.4 are used, where one of
the hadronic D mesons is replaced by a semileptonic D meson. There are no further
cuts applied to semileptonic B0 candidates.

B.1.4.6 B0 Neutral B Meson from Decay-Channels with K0
L Neutral

Long-Lived kaons

Due to the different kinematic properties, B0 mesons from decay-channels which
include a K0

L are processed separately by the FEI. All hadronic channels listed in
Sect. B.1.4.4 are used, where either one of the hadronic D mesons is replaced by
a klong D meson, or one of the K0

S is replaced by a K0
L. There are no further cuts

applied to B0 candidates with K0
L.

B.2 Automatic Reporting

B.2.1 Belle

Excerpt of the Full Event Interpretation Report (FEIR) for a generic training using
200 million Monte Carlo simulated ϒ(4S) events (Tables B.2 and B.3).

B.2.2 Belle II

Excerpt of the FEIR for training using 180 million Monte Carlo simulated ϒ(4S)

events (Tables B.4 and B.5).
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Table B.2 Per-particle efficiency before and after the applied pre- and post-cut

Particle Pre-cut Post-cut

User Ranking Absolute Ranking Unique

π+ 0.788 0.788 0.788 0.779 0.773

K+ 0.755 0.755 0.750 0.750 0.746

μ+ 0.892 0.881 0.865 0.853 0.852

e+ 0.775 0.769 0.757 0.757 0.754

γ 0.640 0.640 0.640 0.640 0.632

π0 0.571 0.433 0.427 0.398 0.397

K 0
S 0.459 0.457 0.444 0.443 0.415

J/ψ 0.086 0.086 0.086 0.086 0.086

D0 0.140 0.134 0.128 0.125 0.123

D+ 0.104 0.100 0.093 0.092 0.091

D+
s 0.071 0.069 0.052 0.052 0.051

D0∗ 0.053 0.051 0.048 0.047 0.047

D+∗ 0.050 0.049 0.049 0.049 0.047

D+∗
s 0.035 0.034 0.031 0.031 0.030

B0 0.005 0.005 0.005 0.005 0.004

B+ 0.008 0.008 0.008 0.007 0.007

D0
SL 0.056 0.055 0.052 0.051 0.051

D+
SL 0.059 0.058 0.052 0.051 0.050

D0∗
SL 0.023 0.020 0.015 0.015 0.015

D+∗
SL 0.022 0.022 0.020 0.020 0.020

B0
SL 0.022 0.021 0.021 0.021 0.020

B+
SL 0.020 0.019 0.018 0.018 0.018

Table B.3 Per-particle purity before and after the applied pre- and post-cut

Particle Pre-cut Post-cut

User Ranking Absolute Ranking Unique

π+ 0.639 0.639 0.696 0.713 0.707

K+ 0.137 0.137 0.394 0.394 0.392

μ+ 0.046 0.047 .086 0.094 0.094

e+ 0.050 0.052 0.193 0.195 0.194

γ 0.587 0.587 0.652 0.652 0.645

π0 0.044 0.102 0.133 0.187 0.186

K 0
S 0.067 0.068 0.210 0.210 0.197

J/ψ 0.109 0.109 0.207 0.207 0.207

D0 0.001 0.002 0.018 0.027 0.026

D+ 0.000 0.001 0.015 0.016 0.015

D+
s 0.000 0.000 0.014 0.014 0.014

D0∗ 0.000 0.001 0.011 0.012 0.011

(continued)
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Table B.3 (continued)

Particle Pre-cut Post-cut

User Ranking Absolute Ranking Unique

D+∗ 0.001 0.001 0.051 0.051 0.050

D+∗
s 0.000 0.000 0.010 0.010 0.009

B0 0.000 0.000 0.000 0.001 0.001

B+ 0.000 0.000 0.000 0.001 0.001

D0
SL 0.001 0.001 0.012 0.014 0.014

D+
SL 0.001 0.001 0.007 0.007 0.007

D0∗
SL 0.000 0.000 0.005 0.005 0.005

D+∗
SL 0.000 0.000 0.012 0.012 0.012

B0
SL 0.000 0.000 0.000 0.001 0.001

B+
SL 0.000 0.000 0.000 0.001 0.001

Table B.4 Per-particle efficiency before and after the applied pre- and post-cut

Particle Pre-cut Post-cut

User Ranking Absolute Ranking Unique

π+ 0.757 0.757 0.756 0.747 0.737

K+ 0.793 0.793 0.790 0.790 0.782

μ+ 0.854 0.844 0.818 0.813 0.809

e+ 0.728 0.726 0.716 0.715 0.708

γ 0.579 0.579 0.579 0.579 0.577

π0 0.349 0.342 0.341 0.326 0.325

K 0
S 0.425 0.425 0.269 0.269 0.263

J/ψ 0.091 0.091 0.091 0.091 0.090

D0 0.145 0.139 0.134 0.129 0.127

D+ 0.092 0.088 0.082 0.082 0.080

D+
s 0.063 0.060 0.054 0.053 0.052

D0∗ 0.042 0.038 0.034 0.034 0.033

D+∗ 0.047 0.047 0.046 0.046 0.045

D+∗
s 0.038 0.036 0.031 0.031 0.031

B0 0.004 0.004 0.004 0.004 0.004

B+ 0.007 0.007 0.007 0.007 0.007

D0
SL 0.064 0.063 0.060 0.059 0.058

D+
SL 0.103 0.102 0.096 0.093 0.090

D0∗
SL 0.019 0.015 0.011 0.011 0.011

D+∗
SL 0.023 0.023 0.021 0.021 0.021

B0
SL 0.023 0.022 0.022 0.021 0.020

B+
SL 0.017 0.016 0.016 0.015 0.015
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Table B.5 Per-particle purity before and after the applied pre- and post-cut

Particle Pre-cut Post-cut

User Ranking Absolute Ranking Unique

π+ 0.606 0.606 0.705 0.734 0.723

K+ 0.127 0.127 0.500 0.500 0.495

μ+ 0.042 0.046 0.106 0.112 0.111

e+ 0.050 0.055 0.213 0.216 0.214

γ 0.570 0.570 0.644 0.644 0.642

π0 0.144 0.164 0.181 0.228 0.228

K 0
S 0.025 0.025 0.146 0.146 0.143

J/ψ 0.182 0.182 0.233 0.233 0.232

D0 0.001 0.003 0.018 0.028 0.027

D+ 0.000 0.001 0.014 0.016 0.015

D+
s 0.000 0.000 0.011 0.011 0.011

D0∗ 0.000 0.001 0.007 0.008 0.007

D+∗ 0.001 0.001 0.053 0.053 0.051

D+∗
s 0.000 0.001 0.007 0.007 0.007

B0 0.000 0.001 0.001 0.001 0.001

B+ 0.000 0.000 0.000 0.001 0.001

D0
SL 0.001 0.002 0.014 0.016 0.016

D+
SL 0.002 0.002 0.009 0.012 0.012

D0∗
SL 0.000 0.000 0.005 0.005 0.005

D+∗
SL 0.000 0.000 0.015 0.015 0.015

B0
SL 0.000 0.000 0.000 0.001 0.001

B+
SL 0.000 0.000 0.000 0.001 0.001
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