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Preface

Sein Geist drang in die tiefsten Geheimnisse der Zahl, des Raumes und
der Natur; er maß den Lauf der Gestirne, die Gestalt und die Kräfte der
Erde; die Entwicklung der mathematischen Wissenschaft eines kommenden
Jahrhunderts trug er in sich.1

Lines under the portrait of Carl Friedrich Gauss (1777–1855)
in the German Museum in Munich

Force equals curvature.
The basic principle of modern physics

A theory is the more impressive, the simpler are its premises, the more
distinct are the things it connects, and the broader is the range of appli-
cability.

Albert Einstein (1879–1955)

Textbooks should be attractive by showing the beauty of the subject.
Johann Wolfgang von Goethe (1749–1832)

The present book is the third volume of a comprehensive introduction to the math-
ematical and physical aspects of modern quantum field theory which comprises the
following six volumes:

Volume I: Basics in Mathematics and Physics
Volume II: Quantum Electrodynamics
Volume III: Gauge Theory
Volume IV: Quantum Mathematics
Volume V: The Physics of the Standard Model
Volume VI: Quantum Gravitation and String Theory.

It is our goal to build a bridge between mathematicians and physicists based on
challenging questions concerning the fundamental forces in

• the macrocosmos (the universe) and
• the microcosmos (the world of elementary particles).

1 His mind pierced the deepest secrets of numbers, space, and nature; he measured
the orbits of the planets, the form and the forces of the earth; in his mind he
carried the mathematical science of a coming century.
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VIII Preface

The six volumes address a broad audience of readers, including both undergraduate
and graduate students, as well as experienced scientists who want to become familiar
with quantum field theory, which is a fascinating topic in modern mathematics and
physics, full of many crucial open questions.

For students of mathematics, detailed knowledge of the physical background
helps to enliven mathematical subjects and to discover interesting interrelation-
ships between quite different mathematical topics. For students of physics, fairly
advanced mathematical subjects are presented that go beyond the usual curriculum
in physics. The strategies and the structure of the six volumes are thoroughly dis-
cussed in the Prologue to Volume I. In particular, we will try to help the reader to
understand the basic ideas behind the technicalities. In this connection, the famous
ancient story of Ariadne’s thread is discussed in the Preface to Volume I:

In terms of this story, we want to put the beginning of Ariadne’s thread in
quantum field theory into the hands of the reader.

There are four fundamental forces in the universe, namely,

• gravitation,
• electromagnetic interaction (e.g., light),
• strong interaction (e.g., the binding force of the proton),
• weak interaction (e.g., radioactive decay).

In modern physics, these four fundamental forces are described by

• Einstein’s theory of general relativity (gravitation), and
• the Standard Model in elementary particle physics (electromagnetic, strong, and

weak interaction).

The basic mathematical framework is provided by gauge theory:

The main idea is to describe the four fundamental forces by the curvature
of appropriate fiber bundles.

In this way, the universal principle force equals curvature is implemented. There are
many open questions:

• A mathematically rigorous quantum field theory for the quantized version of the
Standard Model in elementary particles has yet to be found.

• We do not know how to combine gravitation with the Standard Model in ele-
mentary particle physics (the challenge of quantum gravitation).

• Astrophysical observations show that 96 percent of the universe consists of both
dark matter and dark energy. However, both the physical structure and the
mathematical description of dark matter and dark energy are unknown.

One of the greatest challenges of the human intellect is the discovery of
a unified theory for the four fundamental forces in nature based on first
principles in physics and rigorous mathematics.

In the present volume, we concentrate on the classical aspects of gauge theory
related to curvature. These have to be supplemented by the crucial, but elusive
quantization procedure. The quantization of the Maxwell–Dirac system leads to
quantum electrodynamics (see Vol. II). The quantization of both the full Standard
Model in elementary particle physics and the quantization of gravitation will be
studied in the volumes to come.

One cannot grasp modern physics without understanding gauge theory,
which tells us that the fundamental interactions in nature are based on
parallel transport, and in which forces are described by curvature, which
measures the path-dependence of the parallel transport.
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Gauge theory is the result of a fascinating long-term development in both math-
ematics and physics. Gauge transformations correspond to a change of potentials,
and physical quantities measured in experiments are invariants under gauge trans-
formations. Let us briefly discuss this.

Gauss discovered that the curvature of a two-dimensional surface is an intrinsic
property of the surface. This means that the Gaussian curvature of the surface can
be determined by using measurements on the surface (e.g., on the earth) without
using the surrounding three-dimensional space. The precise formulation is provided
by Gauss’ theorema egregium (the egregious theorem). Bernhard Riemann (1826–

1866) and Élie Cartan (1859–1951) formulated far-reaching generalizations of the
theorema egregium which lie at the heart of

• modern differential geometry (the curvature of general fiber bundles), and
• modern physics (gauge theories).

Interestingly enough, in this way,

• Einstein’s theory of general relativity (the curvature of the four-dimensional
space-time manifold), and

• the Standard Model in elementary particle physics (the curvature of a specific
fiber bundle with the symmetry group U(1) × SU(2) × SU(3))

can be traced back to Gauss’ theorema egregium.
In classical mechanics, a large class of forces can be described by the differen-

tiation of potentials. This simplifies the solution of Newton’s equation of motion
and leads to the concept of potential energy together with energy conservation (for
the sum of kinetic and potential energy). In the 1860s, Maxwell determined that
the computation of electromagnetic fields can be substantially simplified by intro-
ducing potentials for both the electric and the magnetic field (the electromagnetic
four-potential).

Gauge theory generalizes this by describing forces (interactions) by the
differentiation of generalized potentials (also called connections).

The point is that gauge transformations change the generalized potentials, but not
the essential physical effects.

Physical quantities, which can be measured in experiments, have to be in-
variant under gauge transformations.

Parallel to this physical situation, in mathematics the Riemann curvature tensor can
be described by the differentiation of the Christoffel symbols (also called connection
coefficients or geometric potentials). The notion of the Riemann curvature tensor
was introduced by Riemann in order to generalize Gauss’ theorema egregium to
higher dimensions. In 1915, Einstein discovered that the Riemann curvature tensor
of a four-dimensional space-time manifold can be used to describe gravitation in
the framework of the theory of general relativity.

The basic idea of gauge theory is the transport of physical information
along curves (also called parallel transport).

This generalizes the parallel transport of vectors in the three-dimensional Euclidean
space of our intuition.

In 1917, it was discovered by Levi-Civita that the study of curved manifolds
in differential geometry can be based on the notion of parallel transport of
tangent vectors (velocity vectors).



X Preface

In particular, curvature can be measured intrinsically by transporting a tangent

vector along a closed path. This idea was further developed by Élie Cartan in
the 1920s (the method of moving frames) and by Ehresmann in the 1950s (the
connection of both principal fiber bundles and their associated vector bundles).
The very close relation between

• gauge theory in modern physics (the transport of local SU(2)-phase factors in-
vestigated by Yang and Mills in 1954), and

• the formulation of differential geometry in terms of fiber bundles in modern
mathematics

was only noticed by physicists in 1975 (see T. Wu and C. Yang, Concept of non-
integrable phase factors and global formulation of gauge fields, Phys. Rev. D12
(1975), 3845–3857).

The present Volume III on gauge theory and the following Volume IV on quan-
tum mathematics form a unified whole. The two volumes cover the following topics:

Volume III: Gauge Theory

Part I: The Euclidean Manifold as a Paradigm

Chapter 1: The Euclidean Space E3 (Hilbert Space and Lie Algebra Structure)
Chapter 2: Algebras and Duality (Tensor Algebra, Grassmann Algebra, Clifford

Algebra, Lie Algebra)
Chapter 3: Representations of Symmetries in Mathematics and Physics
Chapter 4: The Euclidean Manifold E

3

Chapter 5: The Lie Group U(1) as a Paradigm in Harmonic Analysis and Geometry
Chapter 6: Infinitesimal Rotations and Constraints in Physics
Chapter 7: Rotations, Quaternions, the Universal Covering Group, and the Elec-

tron Spin
Chapter 8: Changing Observers – A Glance at Invariant Theory Based on the

Principle of the Correct Index Picture
Chapter 9: Applications of Invariant Theory to the Rotation Group
Chapter 10: Temperature Fields on the Euclidean Manifold E

3

Chapter 11: Velocity Vector Fields on the Euclidean Manifold E
3

Chapter 12: Covector Fields on the Euclidean Manifold E
3 and Cartan’s Exterior

Differential – the Beauty of Differential Forms

Part II: Ariadne’s Thread in Gauge Theory

Chapter 13: The Commutative Weyl U(1)-Gauge Theory and the Electromagnetic
Field

Chapter 14: Symmetry Breaking
Chapter 15: The Noncommutative Yang–Mills SU(N)-Gauge Theory
Chapter 16: Cocycles and Observers
Chapter 17: The Axiomatic Geometric Approach to Vector Bundles and Principal

Bundles

Part III: Einstein’s Theory of Special Relativity

Chapter 18: Inertial Systems and Einstein’s Principle of Special Relativity
Chapter 19: The Relativistic Invariance of the Maxwell Equations
Chapter 20: The Relativistic Invariance of the Dirac Equations and the Electron

Spin
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Part IV: Ariadne’s Thread in Cohomology

Chapter 21: Exact Sequences
Chapter 22: Electrical Circuits as a Paradigm in Homology and Cohomology
Chapter 23: The Electromagnetic Field and the de Rham Cohomology.

Volume IV: Quantum Mathematics

Part I: The Hydrogen Atom as a Paradigm

Chapter 1: The Non-Relativistic Hydrogen Atom via Lie Algebra, Gauss’s Hyper-
geometric Functions, von Neuman’s Functional Analytic Approach, the Weyl–
Kodaira Theory, Gelfand’s Generalized Eigenfunctions, and Supersymmetry

Chapter 2: The Dirac Equation and the Relativistic Hydrogen Atom via the Clif-
ford Algebra of the Minkowski Space

Part II: The Four Fundamental Forces in the Universe

Chapter 3: Relativistic Invariance and the Energy–Momentum Tensor in Classical
Field Theories

Chapter 4: The Standard Model for Electroweak and Strong Interaction in Particle
Physics

Chapter 5: Gravitation, Einstein’s Theory of General Relativity, and the Standard
Model in Cosmology

Part III: Lowest-Order Radiative Corrections in Quantum Electrodynamics (QED)

Chapter 6: Dimensional Regularization for the Feynman Propagators in QED
(Quantum Electrodynamics)

Chapter 7: The Electron in an External Electromagnetic Field (Renormalization
of Electron Mass and Electron Charge)

Chapter 8: The Lamb Shift

Part IV: Conformal Symmetry

Chapter 9: Conformal Transformations According to Gauss, Riemann, and Licht-
enstein

Chapter 10: Compact Riemann Surfaces
Chapter 11: Minimal Surfaces
Chapter 12: Strings and the Graviton
Chapter 13: Complex Function Theory and Conformal Quantum Field Theory

Part V: Models in Quantum Field Theory

Part VI: Distributions and the Epstein–Glaser Approach to Perturbative Quantum
Field Theory

Part VII: Nets of Operator Algebras and the Haag–Kastler Approach to Quantum
Field Theory

Part VIII: Symmetry and Quantization – the BRST Approach to Quantum Field
Theory

Part IX: Topology, Quantization, and the Global Structure of Physical Fields

Part X: Quantum Information.
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Readers who want to understand modern differential geometry and modern physics
as quickly as possible should glance at the Prologue of the present volume and at
Chaps. 13 through 17 on Ariadne’s thread in gauge theory.

Cohomology plays a fundamental role in modern mathematics and physics.

It turns out that cohomology and homology have their roots in the rules for
electrical circuits formulated by Kirchhoff in 1847.

This helps to explain why the Maxwell equations in electrodynamics are closely
related to cohomology, namely, de Rham cohomology based on Cartan’s calculus
for differential forms and the corresponding Hodge duality on the Minkowski space.
Since the Standard Model in particle physics is obtained from the Maxwell equations
by replacing the commutative gauge group U(1) with the noncommutative gauge
group U(1) × SU(2) × SU(3), it should come as no great surprise that de Rham
cohomology also plays a key role in the Standard Model in particle physics via
the theory of characteristic classes (e.g., Chern classes which were invented by
Shing-Shen Chern in 1945 in order to generalize the Gauss–Bonnet theorem for
two-dimensional manifolds to higher dimensions).

It is our goal to show that the gauge-theoretical formulation of modern physics
is closely related to important long-term developments in mathematics pioneered by
Gauss, Riemann, Poincaré and Hilbert, as well as Grassmann, Lie, Klein, Cayley,

Élie Cartan and Weyl. The prototype of a gauge theory in physics is Maxwell’s
theory of electromagnetism. The Standard Model in particle physics is based on the
principle of local symmetry. In contrast to Maxwell’s theory of electromagnetism,
the gauge group of the Standard Model in particle physics is a noncommutative
Lie group. This generates additional interaction forces which are mathematically
described by Lie brackets.

We also emphasize the methods of invariant theory. In terms of physics, differ-
ent observers measure different values in their experiments. However, physics does
not depend on the choice of observers. Therefore, one needs both an invariant ap-
proach and the passage to coordinate systems which correspond to the observers, as
emphasized by Einstein in the theory of general relativity and by Dirac in quantum
mechanics. The appropriate mathematical tool is provided by invariant theory.
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Prologue

Geometry is the knowledge of what eternally exists.
Plato of Athen (428–348 B.C.)

He who understands geometry may understand anything in this world.
Galileo Galilei (1564–1642)

The way of people to the laws of nature are not less admirable than the
laws themselves.

Johannes Kepler (1571–1630)

In humbleness, we have to admit that if ‘number’ is a product of our
imagination, ‘space’ has a reality outside of our imagination, to which a
priori we cannot assign its laws.

Gauss (1777–1855) in a letter to Bessel, 1840

This prologue should help the reader to understand the sophisticated historical
development of gauge theory in mathematics and physics. We will not follow a strict
logical route. This will be done later on. At this point, we are going to emphasize the
basic ideas. It is our goal to show the reader how the methods of modern differential
geometry work in the case of Einstein’s theory of general relativity, which describes
the gravitational force in nature. In particular, we want to show how

• the language of physicists created by Einstein and used in most physics textbooks
(based on the use of local space-time coordinates) and

• the language of mathematicians used in modern textbooks on differential geom-
etry (based on the invariant – i.e., coordinate-free – formulation)

are related to each other. This should help physicists to enter modern differential
geometry. One cannot grasp modern physics without understanding gauge field
theory which tells us the following crucial facts:

• interactions in nature are based on the parallel transport of physical information;
• forces are described by curvature which measures the path-dependence of the

parallel transport.

Here, we will discuss the following points:

• an interview with the Nobel prize laureate Chen Ning Yang (born 1922) on the
history of modern gauge theory,

• Einstein’s theory of general relativity on gravitation,
• changing observers in the universe and tensor calculus,
• the Riemann curvature tensor and the beauty of Gauss’ theorema egregium,
• two fundamental variational principles in general relativity,

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 1,
© Springer-Verlag Berlin Heidelberg 2011
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2 Prologue

• symmetry and Felix Klein’s invariance principle in geometry (a glance at the
history of invariant theory in the 19th century),1

• Einstein’s principle of general relativity and invariants – the geometrization of
physics (the paradigm of higher-dimensional cartography),

• gauge transformations:
– Einstein’s gauge transformation in the theory of both special relativity and

general relativity (change of the observer),
– Dirac’s unitary gauge transformations in the Hilbert space approach to quan-

tum mechanics (change of the observer by changing the measurement device),
– Yang’s gauge transformation by changing the local phase factor of the wave

function,
– the U(1)-gauge transformation in classical electrodynamics and quantum elec-

trodynamics,
– the U(1) × SU(2) gauge transformations in electroweak interaction,
– the SU(3) gauge transformations in strong interaction (quantum chromody-

namics),
– the U(1) × SU(2) × SU(3) gauge transformations in the Standard Model in

particle physics,
– the conformal gauge transformations in string theory,

– Élie Cartan’s gauge transformations in his method of moving frames (change
of the frame),

• construction of invariants by the universal index killing principle,
• Lie’s intrinsic tangent vectors,

• Élie Cartan’s algebraization of calculus and infinitesimals,
• Riemann’s invariant sectional curvature and the geometric meaning of Riemann’s

curvature tensor,
• Levi-Civita’s parallel transport and the geometric meaning of the Riemann cur-

vature tensor,
• two fundamental approaches in differential geometry:

– Gauss’ method of symmetric tensors, and
– Cartan’s method of antisymmetric tensors,

• Yang’s matrix trick (the relation between the Einstein equations in general rela-
tivity and the Maxwell–Yang–Mills equations), and Cartan’s calculus for matrices
with differential forms as entries,

• Cartan’s structural equations:
– local structural equations,
– global structural equations,

• partial covariant derivative and the classical Ricci calculus,
• the Lie structure behind curvature,
• the generalized Riemann curvature tensor in modern mathematics and physics,
• parallel transport of physical information and curvature,
• the modern language of fiber bundles in mathematics and physics,
• summary of typical applications,
• perspectives (instantons and gauge theory, conformal symmetry and twistors,

the Seiberg–Witten equations and the quark confinement, the Donaldson theory
for 4-dimensional manifolds, Morse theory and Floer homology, quantum coho-
mology, J-holomorphic curves, Frobenius manifolds, Ricci flow and the Poincaré
conjecture).

1 One has to distinguish between the German mathematician Felix Klein (1849–
1925) and the Swedish physicist Oskar Klein (1894–1977) (one of the authors of
the Klein–Fock–Gordon equation in quantum field theory).
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The classical formulas (0.13) and (0.14) on page 11 for defining the Riemann cur-
vature tensor via Christoffel symbols for the metric tensor are clumsy. The devel-
opment of modern differential geometry was essentially influenced by the desire of
mathematicians to get insight into the true structure of curvature. This led to a
better understanding of curvature and to far-reaching generalizations which proved
to be useful in modern physics. The basic paper in mathematics is due to:

C. Ehresmann, Les connexions infinitésimales dans un espace fibré differ-
entiable (in French) (The infinitesimal connections in a differentiable fiber
bundle), Colloque de Topologie, Bruxelles, 1950, pp. 29–55.

Charles Ehresmann (1905–1979) based his theory on Élie Cartan’s work created in
the 1920s.2 The first textbook on modern differential geometry was written by:

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols.
1, 2, Wiley, New York, 1963.

We also recommend:

Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick, Analysis,
Manifolds, and Physics. Vol. 1: Basics; Vol. 2: 92 Applications, Elsevier,
Amsterdam, 1996.

T. Frankel, The Geometry of Physics, Cambridge University Press, Cam-
bridge, 2004.

S. Novikov and T. Taimanov, Geometric Structures and Fields, Amer.
Math. Soc., Providence, Rhode Island, 2006.

As an introduction to the theory of general relativity based on the use of local
coordinates, we recommend the classical Lecture Notes by

P. Dirac, General Theory of Relativity, Princeton University Press, 1996
(70 pages)

together with

Ø. Grøn and S. Hervik, Einstein’s Theory of General Relativity: with Mod-
ern Applications in Cosmology, Springer, New York, 2007.

Both the invariant formulation and the formulation in terms of local coordinates is
discussed in great detail in the classic textbook by

C. Misner, K. Thorne, and A. Wheeler, Gravitation, Freeman, San Fran-
cisco, California, 1973.

For the sophisticated mathematical problem of solving the initial-value problem for
the Einstein equations on the gravitational field, we recommend:

P. Cruściel and H. Friedrich, The Einstein Equations and the Large Scale
Behavior of Gravitational Fields: 50 Years of the Cauchy Problem in Gen-
eral Relativity, Birkhäuser, Boston, 2004.

Y. Choquet–Bruhat, General Relativity and the Einstein Equations, Ox-
ford University Press, 2008.

As a comprehensive modern textbook, we recommend:

2 One has to distinguish between the great French geometer Élie Cartan (1869–
1951), who strongly influenced the development of modern differential geometry,
and his famous son Henri Cartan (1904–2008), who made important contribu-
tions to algebra, analysis, and topology (e.g., homological algebra, the theory of
analytic functions of several complex variables, and the cohomology of sheaves).
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T. Padmanabhan, Gravitation: Foundations and Frontiers, Cambridge
University Press, 2010.

The nature of dark matter is one of the great open problems in physics. We refer
to:

G. Bertone (Ed.), Particle Dark Matter, Cambridge University Press, 2010.

An Interview with Chen Ning Yang on the History of Modern
Gauge Theory

To begin with, let us quote some parts of an interview given by the physicist Chen
Ning Yang answering the questions of Dianzhou Zhang:3

Zhang: Chen Ning Yang (born 1922 in Hefei, China), one of the twentieth
century’s great theoretical physicists, shared the Nobel prize in physics
with Tsung-Dao Lee in 1957 for their joint contribution to parity non-
conservation in weak interaction. Mathematicians, however, know Yang
best for the Yang–Mills gauge field theory and the Yang–Baxter equation.
After Einstein and Dirac, Yang is perhaps the twentieth-century physicist
who has had the greatest impact on the development of mathematics . . .
While a student in Kunming (China) and Chicago, Yang was impressed
with the fact that gauge invariance determined all electromagnetic inter-
actions. This was known from the works in the years 1918–1929 of Weyl,
Fock, and London, and through later review papers by Pauli. But by the
1940s and the early 1950s, it played only a minor and technical role in
physics. In Chicago, Yang tried to generalize the concept of gauge invari-
ance to non-Abelian groups (the gauge group for electromagnetism being
the Abelian group U(1)). In analogy with Maxwell’s equations he tried

Fαβ = ∂αAβ − ∂βAα,

where Aα are matrices (α, β = 0, 1, 2, 3). As Yang pointed out later on,
“This led to a mess, and I had to give up.”
In 1954, as a visiting physicist at Brookhaven National Laboratory on Long
Island, New York, Yang returned once again to the idea of generalizing
gauge invariance. His officemate was Robert Mills, who was about to finish
his Ph.D. degree at Columbia University, New York City. Yang introduced
the idea of non-Abelian gauge field to Mills, and they decided to add a
quadratic term:4

Fαβ = ∂αAβ − ∂βAα + AαAβ −AβAα. (0.1)

That cleared up the “mess” and led to a beautiful new field theory.5

Zhang: Did you study gauge field theory continuously after 1954?

3 D. Zhang, N. C. Yang and contemporary mathematics, Mathematical Intelli-
gencer 15 (1993), Springer, New York, pp. 13–21. Reprinted with permission.

4 Here, the point x of the space-time manifold has the (local) coordinates
x0, x1, x2, x3 with x0 = ct (t time, c velocity of light in a vacuum). Further-
more, the symbol ∂α denotes the partial derivative ∂

∂xα .
5 C. Yang and R. Mills, Conservation of isotopic spin and isotopic spin invariance,

Phys. Rev. 96 (1954), 191–195.
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Yang: Yes, I did . . . In the late 1960s, I began a new formulation of gauge
field theory through the approach of non-integrable phase factors. It hap-
pened that one semester I was teaching general relativity, and I noticed
that the formula (0.1) in gauge field theory and the formula

Rδ
αβγ = ∂αΓ

δ
βγ − ∂βΓ δ

αγ + Γ δ
αμΓ

μ
βγ − Γ δ

βμΓ
μ
αγ (0.2)

with α, β, γ, δ = 0, 1, 2, 3 for the Riemann curvature tensor in Riemannian
geometry are not just similar – they are, in fact, the same if one makes
the right identification of symbols.6 It is hard to describe the thrill I felt
at understanding the point.

Zhang: Is that the first time that you realized the relation between gauge
theory and differential geometry?
Yang: I had noticed the similarity between Levi-Civita’s parallel displace-
ment and non-integrable phase factors in gauge fields. But the exact rela-
tionship was appreciated by me only when I realized that the formula (0.1)
in gauge field theory and the Riemann formula (0.2) are the same. With
an appreciation of the geometrical meaning of gauge theory, I consulted
Jim Simons, a distinguished geometer, who was then the chairman of the
Mathematics Department at Stony Brooke (Long Island, New York). He
said gauge theory must be related to connections on fiber bundles. I then
tried to understand fiber-bundle theory from such books as Steenrod’s
“The Topology of Fiber Bundles,” Princeton University Press, 1951, but
I learned nothing. The language of modern mathematics is too cold and
abstract for a physicist.
Zhang: I suppose only mathematicians appreciate the mathematical lan-
guage of today.
Yang: I can tell you a relevant story. About ten years ago, I gave a talk
on physics in Seoul, South Korea. I joked “There exist only two kinds
of modern mathematics books: one which you cannot read beyond the
first page and one which you cannot read beyond the first sentence. The
Mathematical Intelligencer later reprinted this joke of mine. But I suspect
many mathematicians themselves agree with me.

Zhang: When did you understand bundle theory?
Yang: In early 1975, I invited Jim Simons to give us a series of luncheon
lectures on differential forms and bundle theory. He kindly accepted the
invitation, and we learned about de Rham’s theorem, differential forms,
patching and so on . . .
Zhang: Simon’s lecture helped Wu and Yang to write a famous paper
in 1975.7 In this paper, they analyzed the intrinsic meaning of electro-
magnetism, emphasizing especially its global topological aspects. They
discussed the mathematical meaning of the Aharonov–Bohm experiment
and of the Dirac magnetic monopole. They exhibited a dictionary on the
translation of terminologies used in mathematics and physics. Half a year
later, Isadore Singer of the Massachusetts Institute of Technology (MIT,
Cambridge, Massachusetts) visited Stony Brooke and discussed these mat-
ters with Yang at length. Singer had been an undergraduate student in
physics and a graduate student in mathematics in the 1940s. He wrote in
1985:“Thirty years later I found myself lecturing on gauge theories, be-
ginning with the Wu and Yang dictionary and ending with instantons,

6 This will be shown on page 35 under the heading “Yang’s matrix trick.”
7 T. Wu and C. Yang, Concept of non-integrable phase factors and global formu-

lation of gauge fields, Phys. Rev. D12 (1975), 3845–3857.



6 Prologue

that is, self-dual connections. I would be inaccurate to say after studying
mathematics for thirty years, I felt prepared to return to physics.”
Yang: In 1975, impressed with the fact that gauge fields are connections
on fiber bundles, I drove to the house of Shing-Shen Chern (1911–2004)
in El Cerrito near Berkeley (California) . . . I said I found it amazing
that gauge theory are exactly connections on fiber bundles, which the
mathematicians developed without reference to the physical world. I added
“This is both thrilling and puzzling, since you mathematicians dreamed
up these concepts out of nowhere.” Chern immediately protested “No, no.
These concepts were not dreamed up. They were natural and real.”

Zhang: The Yang–Baxter equation

A(u)B(u+ v)A(v) = B(v)A(u+ v)B(u)

appearing in statistical mechanics is just a simple equation for matrix func-
tions. Why does it have such great importance?
Yang: In the simplest situation, the Yang–Baxter equation has the form

ABA = BAB.

This is the fundamental equation of Artin (1898–1962) for the braid group.
The braid group is, of course, a record of the history of permutations. It
is not difficult to understand that the history of permutations is relevant
to many problems in mathematics and physics. Looking at the develop-
ments of the last six or seven years, I got the feeling that the Yang–Baxter
equation is the next pervasive algebraic equation after the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

The study of the Jacobi identity has, of course, led to the whole of Lie
algebra and its relationship to Lie groups that govern symmetry in nature.

Zhang: Yang–Mills theory and the Yang–Baxter equation both figure
prominently in today’s score mathematics. One can see this by the Fields
medals awarded in 1986 and 1990. Simon Donaldson was awarded a Fields
medal at the International Congress of Mathematicians held in Berkeley
in 1986. Sir Michael Atiyah spoke on Simon Donaldson’s work: “Together
with the important work of Michael Freedman (another Fields medal win-
ner in 1986), Donaldson’s result implied that there exist ‘exotic’ four-
dimensional spaces which are topologically but not differentially equiva-
lent to the standard Euclidean four-dimensional space R

4 . . . Donaldson’s
results are derived from the Yang–Mills equations of theoretical physics
which are nonlinear generalizations of Maxwell’s equations. In the Eu-
clidean case the solution to the Yang–Mills equations giving the absolute
minimum are of special interest and called instantons.”
There were four Fields medalists in 1990: Vladimir Drinfeld, Vaughan
Jones, Shigefumi Mori, and Edward Witten. The work of three of them
was related to the Yang–Mills equations

−D ∗ F = ∗J , DF = 0

and/or the Yang–Baxter equation (see Sect. 15.4).
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(i) We should mention Drinfeld’s pioneering work with Yuri Manin on
the construction of instantons. These are solutions to the Yang–Mills
equations which can be thought of as having particle-like properties
of localization and size. Drinfeld’s interest in physics continued with
his investigation of the Yang–Baxter equation.

(ii) Jones opened a whole new direction upon realizing that under certain
conditions solutions of the Yang–Baxter equation could be used for
constructing invariants of links . . . The theory of quantum groups
(i.e., deformations of classical Lie groups based on non-commutative
Hopf algebras) was devised by Jimbo and Drinfeld to produce solutions
of Yang–Baxter equations.

(iii) Witten described in these terms the invariants of Donaldson and Floer
(extending the earlier ideas of Atiyah) and generalized the Jones poly-
nomials to the case of an arbitrary ambient three-dimensional mani-
fold.

We note with amusement that there were complaints that the plenary lec-
tures at the International Congress of Mathematicians in Kyoto, 1990, were
heavily slanted toward the topics of mathematical physics: “Everywhere
we heard quantum group, quantum group, quantum group!” . . .

Yang: Many theoretical physicists are, in some ways, antagonistic to math-
ematics, or at least have a tendency to downplay the value of mathematics.
I do not agree with these attitudes. I have written:8 “Perhaps of my father’s
influence, I appreciate mathematics. I appreciate the value judgement of
the mathematician, and I admire the beauty and power of mathematics:
there are ingenuity and intricacy in tactical maneuvers, and breathtaking
sweeps in strategic campaigns. And, of course, miracle of miracles, some
concepts in mathematics turn out to provide the fundamental structures
that govern the physical universe!”

In the present volume, we will show that the Yang–Mills equations generalize the
Maxwell equations in electromagnetism.

Einstein’s Theory of General Relativity on Gravitation

We set
Rαβ = κG(Tαβ − 1

2
gαβT ), α, β = 0, 1, 2, 3.

This completes the general theory of relativity as a logical structure. The
postulate of relativity in its most general form, which makes the space-time
coordinates meaningless parameters, leads necessarily to a certain form of
gravitational theory which explains the motion of the Perihelion of the
planet Mercury.
Anyone who has really grasped the general theory of relativity, will be
captured by its beauty. It is a triumph of the general differential calculus,
which was created by Gauss (1777–1855), Riemann (1826–1866), Christof-
fel (1829–1900), Ricci-Curbastro (1853–1925), Bianchi (1856–1928), and
Levi-Civita (1873–1941).9

Albert Einstein, 1915

8 C. Yang, Selected Papers, Freeman, San Francisco, 1983.
9 A. Einstein, On general relativity. The field equations of gravitation. Reports on

the meetings of the Prussian Academy of Sciences (Berlin) on November 11 and
December 2, 1915 (in German).
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The two fundamental Einstein equations. In 1915, motivated by the study
of classical differential geometry, Einstein based his theory of general relativity on
the Riemann curvature tensor of the four-dimensional space-time manifold M4.
The points P of M4 are called space-time points or events. Einstein’s fundamental
equations read as follows:10

(i) The equation of motion for the gravitational field:

Rαβ = κG(Tαβ − 1
2
gαβT ), α, β = 0, 1, 2, 3. (0.3)

Here, the universal constant κG := 8πG
c4

depends on Newton’s gravitational
constant G and the velocity c of light in a vacuum.

(ii) The equation of motion for the trajectories x = x(σ), σ0 ≤ σ ≤ σ1, of celestial
bodies (e.g., planets, the sun, stars, or galaxies) and light rays:

ẍγ = −ẋαΓ γ
αβ ẋ

β , γ = 0, 1, 2, 3. (0.4)

This equation generalizes Newton’s classical equation of motion.11

Let us discuss (i) and (ii). We choose an arbitrary observer which uses the local
space-time coordinates x0, x1, x2, x3 in order to describe events. The local coordi-
nates are obtained by measurements of space positions and time. By convention,
we write x instead of (x0, x1, x2, x3). Different observers may use completely differ-
ent methods for measuring space positions and time. The locality means that the
real numbers x0, x1, x2, x3 do not represent coordinates for the global universe, but
only for a sufficiently small spatial region and a sufficiently small time interval. The
crucial change of local coordinates will be considered below. We set

• ∂α := ∂
∂xα (partial derivative), and

• ẋα(σ) := d
dσ
xα(σ) (derivative with respect to the real parameter σ).

Arc length and proper time. The curve

C : x = x(σ), σ0 ≤ σ ≤ σ1,

with the real parameter σ, describes a family of events, for example, the motion
of a planet or the motion of a light ray. The length of the curve C is given by the
integral

l(C) :=

Z σ1

σ0

p

gαβ(x(σ)) ẋα(σ) ẋβ(σ) dσ. (0.5)

Here, the functions x �→ gαβ(x) are called the components of the metric tensor with
respect to the local coordinates x0, x1, x2, x3. For the motion of a planet (resp. light
ray), we get l(C) > 0 (resp. l(C) = 0). The length of the curve l(C) does not depend
on the choice of the local coordinate system. If the trajectory x = x(σ), σ0 ≤ σ ≤ σ1,
describes the motion of a spaceship, then l(C)/c is the proper time of the flight,
which is measured by the crew in the spaceship during the flight.

We want to show that Einstein’s equation (0.3) represents an equation for com-
puting the components gαβ of the metric tensor which govern the measurement of
spatial distances and proper times. We postulate that

10 We will use the Einstein summation convention, that is, we sum over equal upper
and lower Greek indices from 0 to 3.

11 Explicitly, this reads as ẍγ(σ) = −ẋα(σ)Γ γ
αβ(x(σ)) ẋβ(σ).
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gαβ = gβα for all α, β = 0, 1, 2, 3.

In order to distinguish between the time-like coordinate x0 and the space-like coor-
dinates x1, x2, x3, we assume that the following definiteness conditions are always
satisfied:

g00 > 0,

˛

˛

˛

˛

˛

g00 g01
g10 g11

˛

˛

˛

˛

˛

< 0,

˛

˛

˛

˛

˛

˛

˛

g00 g01 g02
g10 g11 g12
g20 g21 g22

˛

˛

˛

˛

˛

˛

˛

> 0, g :=

˛

˛

˛

˛

˛

˛

˛

˛

˛

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

˛

˛

˛

˛

˛

˛

˛

˛

˛

< 0. (0.6)

In particular, these conditions are satisfied if gαβ(x) ≡ ηαβ for all indices α, β =
0, 1, 2, 3. Here, we introduce the so-called Minkowski symbol ηαβ given by

(ηαβ) :=

0

B

B

B

@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1

C

C

C

A

. (0.7)

In this special case, the rescaled arc length l(C)/c from (0.5) is the proper time of
a spaceship which moves freely, that is, the gravitational force vanishes.

The structure of the Einstein equations. Because of the symmetry prop-
erties of gαβ , Rαβ , and Tαβ , we obtain the following:

• The Einstein equations (0.3) for the gravitational field represent a nonlinear sys-
tem of 10 second-order partial differential equations for the 10 unknown functions

g00; g10, g11; g20, g21, g22; g30, g31, g32, g33

which depend on the space-time variables x0, x1, x2, x3.
• The Einstein equations (0.4) for the motion of planets and light rays represent a

nonlinear system of 4 ordinary differential equations for the 4 unknown functions

xα = xα(σ), α = 0, 1, 2, 3,

which depend on the real parameter σ living in the interval [σ0, σ1].

Changing the observer and Einstein’s principle of general relativ-
ity. The following considerations are crucial for understanding the philosophy of
Einstein’s theory of general relativity. The Einstein equations (0.3) and (0.4) are
formulated in terms of local coordinates x0, x1, x2, x3. In terms of physics, the local
coordinates describe the measurements of space positions and time positions carried
out by an observer. The theory only makes sense if the following hold:

• the Einstein equations (0.3) and (0.4) are valid for all observers (i.e., for all
choices of local coordinates), and

• we know the transformation laws for all the quantities under changing the local
coordinates of observers:

(x0, x1, x2, x3) �→ (x0′ , x1′ , x2′ , x3′). (0.8)

To simplify notation, we briefly write x �→ x′ or x′ = x′(x).

(P) In terms of physics, Einstein postulated that: Physics does not depend on the
choice of observers. This is Einstein’s principle of general relativity.
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(M) In terms of mathematics, Einstein’s principle of general relativity is realized
by the use of tensor calculus introduced in the second half of the 19th century.

Let us discuss this. The main points are

• the key transformation laws (0.11) and (0.12) in tensor calculus, and
• the mnemonic principle of index killing for constructing invariants.

To begin with, let us consider a typical example.
Invariance of the arc length and the proper time as a paradigm.

Naturally enough, we postulate that

The rescaled arc length (i.e., the proper time) l(C)/c possesses an invariant
meaning.

This means that, under a change of local coordinates (0.8), the arc length l(C)
remains unchanged, that is, it does not depend on the choice of the observer. Ex-
plicitly, we have

l(C) =

Z σ1

σ0

p

gαβ(x(σ)) ẋα(σ)ẋβ(σ) dσ

=

Z σ1

σ0

q

gα′β′(x′(σ)) ẋα′(σ)ẋβ′(σ) dσ. (0.9)

Here, for the indices α = 0, 1, 2, 3, the equation

xα = xα(σ), σ0 ≤ σ ≤ σ1,

of the curve C is transformed into the equation xα
′
= xα

′
(σ), σ0 ≤ σ ≤ σ1. Explic-

itly, we set x′(σ) := x′(x(σ)). We want to show that the transformation law

gα′β′(x′) = gαβ(x) · ∂x
α(x′)

∂xα′
∂xβ(x′)

∂xβ′ (0.10)

implies the invariance relation (0.9). Here, we sum over equal upper and lower
indices from 0 to 3. In order to prove (0.9), observe that the chain rule yields

gαβ
dxα

dσ
· dx

β

dσ
= gαβ

∂xα

∂xα′
dxα

′

dσ
· ∂x

β

∂xβ′
dxβ

′

dσ
= gα′β′

dxα
′

dσ
· dx

β′

dσ

along the curve C. Using the square root and integrating this over the parameter
interval [σ0, σ1], we get the claim (0.9).

Tensorial transformation laws – Ariadne’s thread in tensor calculus.
The argument above is a special case of the tensor calculus which allows us to
construct invariant expressions under a change of local coordinates, in a general
setting. This will be thoroughly studied in Chap. 8. At this point, we would like to
discuss the basic ideas. By the chain rule of calculus, we get the following two key
transformation laws of tensor calculus:

• dxα′

dσ
= ∂xα′

∂xα · dxα

dσ
(derivative with respect to the real parameter σ), and

• ∂Θ

∂xα′ = ∂Θ
∂xα · ∂xα

∂xα′ (partial derivative)

where we sum over α = 0, 1, 2, 3. More precisely, taking the arguments explicitly
into account, this reads as

dxα
′
(σ)

dσ
=
∂xα

′
(x(σ))

∂xα
· dx

α(σ)

dσ
(0.11)
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and

∂Θ(x′)

∂xα′ =
∂Θ(x)

∂xα
· ∂x

α(x′)

∂xα′ . (0.12)

Here, the local coordinate x′ corresponds to x, that is, x′ = x′(x). Moreover, we
assume that the real-valued function P �→ Θ(P ) is an invariant function on the
four-dimensional space-time manifold M4. This means that the value of Θ at the
point P only depends on the event P , but not on the choice of the local coordinates
which describe the event. Explicitly, Θ(x′) = Θ(x) where x′ and x are related to
each other by x′ = x′(x).12 Let us introduce the following terminology:

• the velocity components ẋα form a contravariant tensorial family, and
• the partial derivatives ∂αΘ of the invariant function Θ form a covariant tensorial

family,

In the general case, the family of functions,

x �→ Tα1...αm
β1...βn

(x), α1, . . . , αm, β1, . . . , βn = 0, 1, 2, 3,

is called a tensorial family of type (m,n) iff the functions are transformed like the
product

ẋα1 · · · ẋαm∂β1Θ · · · ∂βnΘ

under a change of local coordinates. Such a tensorial family is also called m-fold
contravariant and n-fold covariant. For example, by (0.10), gαβ transforms like the
product

∂αΘ ∂βΘ.

Therefore, the components gαβ of the metric tensor form a two-fold covariant ten-
sorial family.

The components of the Riemann curvature tensor. As in classical dif-
ferential geometry, let us introduce the following Christoffel symbols:13

Γ γ
αβ := 1

2
(∂αgβσ + ∂βgασ − ∂σgαβ)gσγ , α, β, γ = 0, 1, 2, 3. (0.13)

Following Riemann, we define the components of the Riemann curvature tensor by
setting14

Rδ
αβγ := ∂αΓ

δ
βγ − ∂βΓ δ

αγ + Γ δ
αμΓ

μ
βγ − Γ δ

βμΓ
μ
αγ (0.14)

where α, β, κ, γ, δ = 0, 1, 2, 3. This yields the following quantities:

• Rαβγδ := Rσ
αβγgσδ (components of the metric Riemann curvature tensor),

• Rαδ := Rαβγδg
βγ (components of the Ricci curvature tensor),

• R := Rαδg
αδ (scalar curvature – trace of the Ricci tensor),

• Gαβ := Rαβ − 1
2
Rgαβ (components of the Einstein tensor),

• T := Tαβg
αβ .

12 For example, it turns out that the trace T of the energy-momentum tensor, and
the scalar curvature R are invariant functions on the space-time manifold M4.

13 By definition, the symbol (gαβ) represents the inverse matrix to (gαβ).
14 Mnemonically, the position of the indices κ and λ of Γκ

αλ and Rκ
αβλ is dictated

by the symmetric formulation of the Yang matrix trick which will be discussed
on page 35.
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The functions x �→ Tαβ(x) represent the components of the energy-momentum
tensor. Furthermore, we set T := Tαβg

αβ (trace of the energy momentum tensor).
In terms of physics, the energy-momentum tensor describes the distribution of mass
and energy in the universe.

The gravitational force corresponds to the curvature of the four-
dimensional space-time manifold. Observe the following:

• The first Einstein equation (0.3) on page 8 describes the crucial fact that the
mass and energy distributions in the universe influence the curvature of the four-
dimensional space-time manifold M4. Equation (0.3) is equivalent to

Gαβ = κGTαβ , α, β = 0, 1, 2, 3. (0.15)

• As we will discuss below, the second Einstein equation (0.4) on page 8 tells us
that the motion of a celestial body or a light ray corresponds to a geodesic line
of the curved 4-dimensional space-time manifold M4.

The vanishing of the gravitational force. The local vanishing of the Rie-
mann curvature tensor corresponds to the vanishing of the gravitational force. In
fact, suppose that for all indices α, β, γ, δ = 0, 1, 2, 3 we have

Rδ
αβγ(x) ≡ 0 (0.16)

on some neighborhood of the point P0 of the space-time manifold M4. Using Rie-
mann’s classical argument, one can show that (0.16) implies

gαβ(x) ≡ ηαβ , α, β = 0, 1, 2, 3 (0.17)

on a sufficiently small neighborhood of the point P0. More precisely, relation (0.17)
is valid after a change of local coordinates if necessary. It follows from equation
(0.17) that the Christoffel symbols vanish on a sufficiently small neighborhood of
P0. Then the Einstein equations (0.4) of motion read locally as

ẍγ(σ) ≡ 0, γ = 0, 1, 2, 3.

This equation has straight lines as solutions. For example, this corresponds to a
trivial motion of space ships without any acceleration. In terms of physics, this
means that the observer does not measure any gravitational force. Observe that:

If equation (0.16) is valid with respect to a fixed local coordinate system,
then it is valid in every local coordinate system.

This follows from the crucial (highly nontrivial) fact that the components

Rδ
αβγ

of the Riemann curvature tensor form a tensorial family. That is, they are trans-
formed like the product

ẋδ · ∂αΘ · ∂βΘ · ∂γΘ
under a change of local coordinates. This will be proved later on.

Einstein’s local equivalence principle. Observe the following special fea-
ture. In contrast to the components Rδ

αβγ of the Riemann curvature tensor, the

Christoffel symbols Γ δ
αβ do not form a tensorial family. For a given point P0 of the

space-time manifold M4, it is always possible to choose a specific local coordinate
system such that the Christoffel symbols vanish at the point P0, that is,

Γ δ
αβ(P0) = 0, α, β, δ = 0, 1, 2, 3. (0.18)
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However, as a rule, this condition is not valid in all local coordinate systems. To
illustrate this by a simple example, consider an elevator which goes down with the
acceleration a. If a is equal to the gravitational acceleration (i.e., a = 9.81m/s2),
then an observer inside the elevator does not feel anymore the gravitational field
of earth. Einstein called this the local equivalence principle. This principle tells us
that the gravitational force can be locally compensated by passing to an accelerated
reference system. Mathematically, the local equivalence principle corresponds to
(0.18). Finally, set

Tκ
αβ := Γκ

αβ − Γκ
βα.

In contrast to the Christoffel symbols themselves, the so-called torsion functions
Tκ
αβ form a tensorial family. In fact, the torsion functions vanish identically, that is,

Tκ
αβ ≡ 0.

In other words, the Christoffel symbols are symmetric with respect to the lower
indices in every local coordinate system: Γκ

αβ ≡ Γκ
βα for all indices α, β, κ = 0, 1, 2, 3.

Dark energy. The components Tαβ of the energy-momentum tensor allow the
following decomposition:

Tαβ := T class
αβ + TCDM

αβ + TDE
αβ

where we us the following terminology:

• T class
αβ (classical mass and energy),

• TCDM
αβ (cold dark matter),

• TDE
αβ = −ηDE · gαβ (dark energy),

• ηDE (density of dark energy),
• κG (universal coupling constant for gravitation),
• Λ = κG · ηDE (cosmological constant).

The quantities under consideration possess the following physical dimensions:

• gαβ (dimensionless),
• Rαβ (1/length2),
• Tαβ (energy density = energy/length3),
• κG (length/energy),15

• Λ (1/length2).

This will be studied in Volume IV.

Surprisingly enough, only 4 percent of the total mass and energy of our
universe are of classical type.

Moreover, 70 percent of the total amount of energy of the universe consist of dark
energy. The remaining 26 percent consist of cold dark matter.16

In Volume IV, we will use explicit solutions of the two Einstein equations (0.3)
and (0.4) in order to study the following physical problems:

• the motion of the semi-axis of the planet Mercury (i.e., the slow rotation of the
Perihelion of Mercury),

• the deflection of light in the gravitational field of the sun,
• the red shift in the spectrum of light caused by the gravitational field of the

earth,

15 In the SI system, κG = 2.07 · 10−43m/J. This shows that the gravitational inter-
action is very weak compared to the scale used in daily life.

16 See G. Börner, The Early Universe, Springer, 2003, and S. Weinberg, Cosmology,
Oxford University Press, 2008.
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• the Big Bang, the red shift in the spectrum of distant galaxies (Hubble effect),
and the accelerated expansion of the universe,

• black holes,
• the low-energy background radiation as a relict of the Big Bang.

The symmetry properties of the components of the Riemann curva-
ture tensor. Let α, β, γ, δ = 0, 1, 2, 3. Then:

• gαβ = gβα (symmetry of the metric tensor),

• Γ δ
αβ = Γ δ

βα (symmetry of the Christoffel symbols),
• Rαβ = Rβα (symmetry of the Ricci tensor),
• Tαβ = Tβα (symmetry of the energy-momentum tensor).

Furthermore, the following hold:

(A1) Rδ
αβγ = −Rδ

βαγ (interchanging α with β).

(A2) Rδ
αβγ + Rδ

βγα + Rδ
γαβ = 0 (Ricci identity – cyclic permutation of the indices

α, β, γ). This is equivalent to Rδ
[αβγ] = 0 (antisymmetrization with respect to

α, β, γ).
(A3) ∂μR

δ
αβγ +∂αR

δ
βμγ +∂γR

δ
μβγ = 0 (Bianchi identity – cyclic permutation of the

indices μ, α, β). This is equivalent to ∂[μR
δ
αβ]γ = 0 (antisymmetrization with

respect to μ, α, β).

In order to get further symmetry properties, we consider the components of the
so-called metric Riemann curvature tensor

Rαβγδ := Rσ
αβγgσδ

by lowering the upper index δ of Rδ
αβγ . Then:

(B1) Rαβγδ = −Rβαγδ (interchanging α with β),
(B2) Rαβγδ = −Rαβδγ (interchanging γ with δ),
(B3) Rαβγδ = Rγδαβ (interchanging α, β with γ, δ),
(B4) Rαβγδ + Rβγαδ + Rγαβδ = 0 (metric Ricci identity – cyclic permutation of

α, β, γ). This is equivalent to R[αβγ]δ = 0 (antisymmetrization with respect to
α, β, γ).

(B5) ∂μRαβγδ + ∂αRβμγδ + ∂βRμαγδ = 0 (metric Bianchi identity – cyclic permu-
tation of α, β, γ). This is equivalent to ∂[μRαβ]γδ = 0 (antisymmetrization with
respect to α, β, γ).

The relation (B4) (resp. (B5)) is obtained from (A2) (resp. (A3)) by lowering the
upper index κ.

The metric Riemann curvature tensor has 44 = 256 components Rαβγδ. How-
ever, by (B1) through (B3), this large number of components is reduced to 20 in-
dependent components. Mnemonically, the symmetry properties of Rαβγδ motivate
the definition of the components of the Ricci tensor by setting

Rαδ := Rαβγδg
βγ .

In fact, up to sign, this is the only possibility to get a nontrivial expression. In fact,

Rαβγδg
αβ = 0, Rαβγδg

γδ = 0, Rαβγδg
αδ = Rβαδγg

αδ = Rβγ ,

and Rαβγδg
αγ = −Rβαγδg

αγ = −Rβδ.
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Fig. 0.1. Stereographic projection

The Riemann Curvature Tensor and the Beauty of the Gauss
Theorema Egregium

For the next remarks, let us pass to the special case of a smooth 2-dimensional
surface M2 which is embedded into the 3-dimensional Euclidean manifold (e.g.,
the surface of earth). We will use the same formulas for the components Rα

βγδ of
the Riemann curvature tensor as introduced above, but now the indices α, β, γ, δ
only run from 1 to 2.

The surface theory of Gauss (1777–1855) was strongly influenced by Gauss’ work
as a surveyor. Under great physical pains, Gauss worked from 1821 to 1825 as a land
surveyor in the kingdom of Hannover in the northern part of Germany. It almost
led to his physical exhaustion. In 1822, he submitted his prize memoir “General
solution of the problem of mapping parts of a given surface onto another given
surface in such a way that image and pre-image become similar in their smallest
parts” to the Royal Society of Sciences in Copenhagen (Denmark) for which he
received the official prize. What was the importance of his work?

The mapping of surfaces onto one another, which satisfy certain given proper-
ties, is a basic problem of cartography, in particular the reproduction of parts of
surfaces of the earth in plane geographic charts. Intuitively, it is impossible, for
example, to map parts of the surface of the earth onto the plane and preserve the
length. Therefore, one has to look for other mappings. Of great practical use are
the conformal maps, that is, the angle-preserving maps. Angle preservation of geo-
graphical charts is important in navigation, that is, in determining routes of ships
in charts. It turns out that conformal maps are also similar in the small. Special
cases of conformal maps from the surface of the earth onto the plane are stereo-
graphic projections (see Fig. 0.1), which were already known to the Greeks, and
the projection of Mercator (1512–1594) is still being used in the cartography of
today. Gauss succeeded in finding a procedure to determine all conformal maps in
the small for analytic surfaces.

The study of conformal maps in the large began with the Ph.D. thesis of Bern-
hard Riemann (1826–1866), which was written in 1851. Riemann’s Ph.D. thesis
contains the development of complex function theory including the famous Rie-
mann mapping theorem. When writing his prize memoir, Gauss had apparently
already worked on a more general surface theory, because he added the following
Latin saying to his title page:

Ab his via sterniture ad maiora.17

The development of the general surface theory, however, was difficult, though the
basic ideas were known to Gauss since 1816. On February 19, 1826, he wrote to
Olbers:

17 From here the path to something more important is prepared.
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I hardly know any period in my life, where I earned so little real gain for
truly exhausting work, as during this winter. I found many, many beautiful
things, but my work on other things has been unsuccessful for months.

Finally, on October 8, 1827, Gauss presented the general surface theory. The title
of his paper was “Disquisitiones generales circa superficies curvas” (Investigations
about curved surfaces). The most important result of this masterpiece in the math-
ematical literature is the theorema egregium – the egregious theorem. As a crucial
quantity, Gauss introduced the Gaussian curvature K(P ) of a 2-dimensional surface
M2 at the point P . For a sphere of radius r, Gauss defined

K(P ) :=
1

r2
.

This tells us that the larger the radius is, the smaller is the Gaussian curvature of the
sphere. By an approximation argument, Gauss generalized the curvature definition
for the sphere to general surfaces M2. In particular, the Gaussian curvature of a
hyperboloid is negative (see Sect. 9.6.3). Gauss’ definition used the surrounding 3-
dimensional Euclidean space. This is called an extrinsic definition. Motivated by his
practical work as land surveyor, Gauss posed the following fundamental question:

Is it possible to compute the Gaussian curvature K of a 2-dimensional
surface by only using measurements on the surface?

After a long fight, Gauss found that the answer is “yes”! He discovered the following
sophisticated formula:

K(P ) =
R1221(P )

g(P )
(0.19)

where g := g11g22 − (g12)
2. This is the famous theorema egregium. Let us discuss

this. By (0.13) and (0.14) on page 11, the following hold:

The Gaussian curvature K is an intrinsic property of the 2-dimensional
surface; it depends on the components gαβ of the metric tensor and their
first and second partial derivatives with respect to the local coordinates.

In fact, Gauss did not explicitly use the Riemann curvature tensor, but in terms
of the modern terminology, his key formula can be written as (0.19).18 Concerning
cartography, the theorema egregium tells us in rigorous terms that it is impossible
to introduce geographic charts which are length preserving after rescaling. Indeed,
one can show that length preserving maps preserve the components of the metric
tensor. In turn, such maps preserve the Gaussian curvature. Finally, note that the
Gaussian curvature of the sphere is positive, but the Gaussian curvature of the
Euclidean plane vanishes.

Gauss’ theorema egregium had an enormous impact on the development of
modern differential geometry and modern physics culminating in the prin-
ciple “force equals curvature.” This principle is basic for both Einstein’s
theory of general relativity on gravitation and the Standard Model in ele-
mentary particle physics.

18 C. Gauß, Disquisitiones generales circa superficies curvas, Göttinger Nachr. 6,
99–146 (1827) (in Latin). English translation: General Investigations of Curved
Surfaces, Raven Press, New York.
See also P. Dombrowski, 150 years after Gauss’ ‘Disquisitiones generales circa
superficies curvas’, Astérisque 62 (1979).
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In order to understand the intuitive meaning of both the components Rαβ of the
Ricci tensor and the scalar curvature R on the 2-dimensional surface M2, observe
that the components of the Riemann curvature tensor read as

Rαβγδ = K(gαδgβγ − gαγgβδ), α, β, γ, δ = 1, 2.

Since gαβ = gβα, we get the following symmetry properties

Rαβγδ = −Rβαγδ = −Rαβδγ = Rγδαβ

for all indices α, β, γ, δ = 1, 2. Therefore, the 24 = 16 components of the Riemann
curvature tensor reduce to one essential component, namely,

R1221 = K(g11g22 − g212).

In fact, we have R1221 = −R2121 = −R1212 = −R2112. The remaining 12 com-
ponents vanish identically. For example, it follows from Rαβγδ = −Rβαγδ that
R1112 = 0. In order to simplify notation, let us introduce an orthogonal local co-
ordinate system, that is, we have the special case where g12 = g21 = 0. Hence
g = g11g22, and

g11 = (g11)
−1, g22 = (g22)

−1, g12 = g21 = 0.

This implies that:

• R11 = g11K,R22 = g22K, and R12 = R21 = 0 (Ricci tensor),
• R = 2K (Ricci (or scalar) curvature).

Thus, the scalar curvature R is twice the Gaussian curvature K.
Heat conduction and the Riemann curvature tensor. Let x denote the

tuple (x1, x2, x3) of Cartesian coordinates. In the late 1850s, the Paris Academy
posed the following problem: Find conditions such that the inhomogeneous heat
conduction equation

∂Θ(x)

∂t
=

3
X

j,k=1

gjk(x) ∂j∂kΘ(x) (0.20)

for the temperature Θ can be locally transformed into the standard heat conduction
equation

∂Θ(y)

∂t
=

3
X

j=1

∂2
jΘ(y) (0.21)

by a change x �→ y of local coordinates19 near the given point x∗. In terms of
physics, equation (0.20) describes the heat conduction in an inhomogeneous mate-
rial. If there exists such a coordinate transformation, the solution of the original
complicated equation (0.20) can be reduced to the well-known solutions of the sim-
pler equation (0.21). In 1861, Riemann solved this problem. He proved that:

The transformation is possible iff the Riemann curvature tensor Rl
ijk van-

ishes in a small neighborhood of the point x∗, that is, Rl
ijk(x) ≡ 0 for all

i, j, k, l = 1, 2, 3.

19 More precisely, we make the assumption that all the eigenvalues of the real
symmetric (3×3)-matrix (gjk(x)) are positive for all points x ∈ R

3, and the local
coordinate change x �→ y is a local diffeomorphism on some open neighborhood
of the point x∗.
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In his famous 1854 lecture on the foundations of geometry, Riemann described
the Riemann curvature tensor only in intuitive terms. In his 1861 paper, Riemann
published the precise analytic formula of the Riemann curvature tensor for the first
time.20 In the textbook by M. Spivak, A Comprehensive Introduction to Differential
Geometry, Vol. 2, Publish or Perish, Boston, one finds seven variants of the proof
of Riemann’s solution of the Paris Academy problem.

Riemann died in 1866 at the age of 40. His collected works fill only one volume.
But his ideas, revealing deep connections between analysis, topology, and geometry,
profoundly influenced the mathematics and physics of the 20th century. This is
described in the beautiful book by K. Maurin, The Riemann Legacy: Riemannian
Ideas in Mathematics and Physics of the 20th Century, Kluwer, Dordrecht.

The importance of conformal maps. Conformal mappings are essential for
both classifying Riemann surfaces and proving the existence of minimal surfaces
with prescribed boundary curves (the problem of Plateau (1801–1883) on soap
bubbles spanned by a metallic frame).21

Conformal mappings play also a fundamental role in modern physics,
namely, in string theory and conformal quantum field theory.

The point is that the principle of critical action in string theory is invariant under
conformal mappings (which represent the gauge transformations in string theory).
In 2-dimensional conformal quantum field theory, the conformal symmetry strongly
restricts the structure of possible correlation functions (i.e., Green’s functions). Two
Riemann surfaces M and N are called conformally equivalent iff there exists a
conformal diffeomorphism

χ : M → N .
Let dimR Mg denote the real dimension of the space of all compact Riemann sur-
faces of genus g modulo conformal equivalence. By considering the description of
Mg by real parameters called moduli, Riemann suggested that

dimR Mg = 6g − 6 if g = 2, 3, . . . , dimR M1 = ∞, dimR M0 = 0. (0.22)

This was the beginning of the sophisticated theory of moduli spaces which describe
the set of given geometric (or algebraic) structures up to equivalence via symme-
try groups. The rigorous proof of theorem (0.22) can be given in the setting of
Teichmüller spaces.22

In what follows, we will pass back to the 4-dimensional space-time manifold
M4 used in Einstein’s theory of general relativity.

Two Fundamental Variational Principles

Einstein formulated the final form of the field equations (0.3) for the gravitational
field in a meeting of the Prussian Academy of Sciences (Berlin) on November 25,
1915. Five days before, on November 20, 1915 in Göttingen, Hilbert lectured on
an axiomatic approach based on a variational principle. A changed version of this

20 B. Riemann, Mathematical remarks answering a question asked by the famous
Paris Academy, pp. 391–404. In: B. Riemann, Collected Mathematical Works,
Teubner, Leipzig, and Springer, New York, 1990.

21 For the solution of the Plateau problem, Ahlfors (1907–1996) was awarded the
Fields medal in 1936.

22 See J. Jost, Compact Riemann Surfaces, Springer, 2006.
We also refer to M. Schlichenmaier, An Introduction to Riemann Surfaces, Al-
gebraic Curves, and Moduli Spaces, Springer, New York, 2008.
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lecture was published by Hilbert in March 1916. For example, in the special case of
a universe without any matter, Hilbert’s variational problem reads as

Z

C
R
p

|g| d4x = critical! (0.23)

Using the volume form vM4 :=
p

|g| dx0∧dx1∧dx2∧dx3 of the space-time manifold

M4, the variational problem (0.23) corresponds to

Z

C
R · vM4 = critical! (0.24)

Here, C is a nonempty open subset of M4 with compact closure. The variational
problem concerns all smooth metric tensors which are fixed on the boundary C.

Surprisingly enough, the variational problem (0.24) is the simplest invari-
ant variational problem related to the Riemann curvature tensor.

We will show in Volume IV that every solution of (0.24) satisfies the Euler–Lagrange
equation

Rαβ = 0, α, β = 0, 1, 2, 3. (0.25)

This coincides with the first fundamental Einstein equation

Rαβ = κG(Tαβ − 1
2
gαβT ), α, β = 0, 1, 2, 3 (0.26)

for vanishing energy-momentum tensor, Tαβ ≡ 0. The general case is obtained from
(0.24) by adding the source term κG(Tαβ − 1

2
gαβT ).

The principle of critical arc length and geodesic lines. Consider the
variational principle

Z σ1

σ0

gαβ(x(σ)) ẋα(σ)ẋβ(σ) dσ = critical! (0.27)

Here, we vary over all smooth curves C : x = x(σ) with fixed initial points and
fixed endpoints. The solutions of (0.27) satisfy the Euler-Lagrange equations

ẍγ(σ) = −ẋα(σ)Γ γ
αβ(x(σ)) ẋβ(σ), γ = 0, 1, 2, 3, (0.28)

which represent the equations of motion (0.4) for celestial bodies and light rays in
general relativity. For the motion of particles which travel with a velocity smaller
than that of light (e.g., the motion of planets), we can also use the variational
principle of critical arc length:

l(C) =

Z σ1

σ0

p

gαβ(x(σ)) ẋα(σ)ẋβ(σ) dσ = critical! (0.29)

The solutions satisfy the equations of motion (0.28) if the parameter σ is the proper
time. Einstein wrote in a letter of October 1912:

At the moment I am only concerned with the gravitational problem and
I hope to overcome all the difficulties with the help of a local friend and
mathematician, Marcel Grossmann (1878–1936). But it is true that, never
in my life, I have worked so hard, and I am filled with a great respect for
mathematics. In its subtle parts, I have regarded it, in my simplicity, as
pure luxury.
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The complete story of the competition between Einstein and Hilbert can be found
in the newspaper article by J. Renn, Einstein, Hilbert, and the magic scrap of
paper, Frankfurter Allgemeine Zeitung, November 20, 2005 (in German). Renn
emphasizes the priority of Einstein’s contributions to the creation of the theory of
general relativity.

Symmetry and Klein’s Invariance Principle in Geometry

Felix Klein (1849–1925) emphasized the importance of invariants in geom-
etry.
Sophus Lie (1842–1899) discovered the importance of the linearization
principle due to Newton (1643–1727) and Leibniz (1646–1716) for con-
structing invariants in differential geometry via Lie algebras and Lie
groups.

Élie Cartan (1859–1951) combined the methods of Gauss (1777–1855) and
Riemann (1826–1866) in order to describe curvature based on the ideas
due to Klein and Lie.

Folklore

Klein’s Erlangen program and gauge theory in physics. In the 19th century,
numerous new geometries emerged in mathematics (e.g., non-Euclidean geometry
and projective geometry). Missing was a general principle for classifying geometries.
In 1869, the young German mathematician Felix Klein (1849–1925) and the young
Norwegian mathematician Sophus Lie (1842–1899) met each other in Berlin and
became close friends. Klein and Lie extensively discussed the classification problem
for geometry. They agreed that symmetry groups play a distinguished role. In his
1872 Erlangen program, Felix Klein formulated the following general principle:

Geometry is the invariant theory of transformation groups.

In physics, gauge theory corresponds to a special case of this principle:

Gauge theory studies the invariants of physical fields under both space-time
transformations and gauge transformations.

The main goal of gauge theory is the formulation of

• variational principles (principle of critical action) and
• partial differential equations (Euler–Lagrange equations)

which are invariant under both space-time transformations and gauge transforma-
tions. Such invariant variational principles and differential equations appear in:

(a) electrodynamics (the Maxwell equations),
(b) the Standard Model in elementary particle physics,
(c) the theory of general relativity (e.g., the Standard Model in cosmology).

In this connection, our main goal is

to create a differential calculus which respects both space-time transforma-
tions and gauge transformations.

It was the beautiful idea of Élie Cartan to combine curvature in differential geometry
with local symmetry. Nowadays we know that precisely this idea is basic for modern
physics, too.

A glance at the history of invariant theory. Invariant theory was created
in the 19th century by George Boole (1815–1864), James Sylvester (1814–1897),
and Arthur Cayley (1821–1895). Hermann Weyl wrote:23

23 H. Weyl, Invariants, Duke Math. J. 5 (1939), 489–502.
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The theory of invariants came into existence about the middle of the nine-
teenth century somewhat like Minerva:24 a grown-up virgin, mailed in the
shining armor of algebra, she sprang forth from Cayley’s Jovian head.
Her Athens over which she ruled and which she served as a tutelary and
beneficent goddess was projective geometry.

Cayley was a master in doing long computations and in inventing algorithms. A
brief history of invariant theory can be found in the introduction of Peter Olver’s
book: Classical Invariant Theory, Cambridge University Press, 1999. We also refer
to Felix Klein’s famous book: Development of Mathematics in the 19th Century,
Math. Sci. Press, New York, 1979.

The goal of invariant theory. We are given a mathematical object O and
a symmetry group G which transforms the object O. The final goal is to construct
G-invariants of O. That is, we are looking for quantities which are assigned to O and
which are invariant under the action of the symmetry group G. Moreover, we are
interested in determining a complete system of invariants. By definition, a system
of G invariants of O is called complete iff it uniquely determines the object O up
to symmetry operations contained in the group G.

A typical example. Consider the quadratic equation

ax2 + 2bxy + dy2 = 1, (x, y) ∈ R
2 (0.30)

with the real coefficients a, b, d. The theorem of principal axes tells us that there
exists a rotation (x, y) �→ (ξ, η) such that equation (0.30) is transformed into

αξ2 + βη2 = 1, (ξ, η) ∈ R
2 (0.31)

with the real coefficients α and β. Moreover, we have the invariants

ad− b2 = αβ and a+ d = α+ β.

This immediately implies the following two statements:

(i) Ellipse: If ad − b2 > 0 and a + d > 0, then α > 0 and β > 0. Thus, equation
(0.30) represents an ellipse.

(ii) Hyperbola: If ad − b2 < 0, then α and β have different signs. For example,
α > 0 and β < 0. Thus, equation (0.30) represents a hyperbola.

The point is that the matrix

A :=

 

a b

b d

!

has the eigenvalues α, β. This means that the equation

det(A− λI) = λ− tr(A)λ+ det(A) = 0 (0.32)

has the zeros α and β. This will be studied in Sect. 3.8.1 on page 200 (theorem
of principal axes). Equation (0.32) was used by Lagrange (1736–1813) in order
to compute the long-time (secular) perturbations of the orbit of a planet under
the influence of the other planets. Therefore, this equation is called the secular
equation. Gauss used the two invariants det(A) and tr(A) in order to define the
Gaussian curvature and the mean curvature of a 2-dimensional surface, respectively
(see Sect. 9.6.3 on page 628). James Sylvester (1814–1897) said in 1864:25

24 Minerva was the ancient Roman goddess of wisdom and the art, identified with
the Greek goddess Athena.

25 J. Sylvester, Collected Mathematical Papers, Vol. 2, p. 380, Cambridge Univer-
sity Press, 1864.
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As all roads lead to Rome so I find in my own case at least that all algebraic
inquiries, sooner or later, end at the Capitol of modern algebra over whose
shining portal is inscribed the Theory of Invariants.

Invariant theory is essential for modern physics. In the present volume we will
encounter invariant theory again and again.

Einstein’s Principle of General Relativity and Invariants –
the Geometrization of Physics

Einstein emphasized the importance of invariants in physics.
Folklore

The components Rα
βγδ of the Riemann curvature tensor depend on the choice of

local space-time coordinates x0, x1, x2, x3, that is, they depend on the choice of the
observer. Recall that Einstein’s principle of general relativity tells us that:

Physics is independent of the choice of the observer.

This means that proper physical quantities have to be independent of the choice of
local coordinates. As an example, choose two events P0 and P1 (e.g., the depart P0

and the return P1 of a space ship to earth). Consider the difference

Δt :=
x0(P1)

c
− x0(P0)

c

where xα(P ), α = 0, 1, 2, 3, denotes the local coordinates of the event P . The quan-
tity Δt has the physical dimension of time. But, as a rule, Δt has not an immediate
physical meaning because it depends on the choice of the local coordinates for de-
scribing the measurements. In contrast to this, the proper time l(C)/c (i.e., the
rescaled arc length) introduced by (0.5) on page 8 does not depend on the choice
of local coordinates, and hence it possesses an invariant meaning called the proper
time interval which can be measured by physical experiments. We refer to the twin
paradox considered in Sect. 18.4.3 on page 926.

In the theory of general relativity, transformations of local space-time coordi-
nates are called gauge transformations. Using this term, one can say that

Einstein wanted to construct his theory of general relativity in such a way
that it is gauge invariant.

In other words, starting with his philosophical principle of general relativity, Ein-
stein was looking for a mathematical approach which describes invariants in terms
of local coordinates. The prototype of such an approach is given by cartography.

Cartography as a paradigm. In cartography, parts of the surface of earth are
described by local geographic charts collected in a geographic atlas. The Euclidean
coordinates of each chart are called local coordinates of earth. Obviously, geometric
properties of the surface of earth do not depend on the choice of the geographic
charts, for example, the distance of two points on the surface of earth does not
depend on the choice of local coordinates. Geometric properties are invariants with
respect to the possible choices of local coordinates.

Intuitively spoken, Einstein looked for higher-dimensional cartography.

His friend – the mathematician Marcel Grossmann (1878–1936) – told him that
Riemann generalized Gauss’ theory of cartography to higher dimensions and that
there exists a well-developed calculus for higher-dimensional manifolds, namely,
the Ricci calculus due to Gregorio Ricci-Curbastro (1853–1925). By the help of
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Grossmann, Einstein studied the Ricci calculus and he applied it to his theory of
gravitation.

The geometrization of physics. Geometry is a mathematical model for de-
scribing both invariant geometric properties and their representation by local coor-
dinates. In ancient times, one only considered invariant geometric properties. The
description of geometric properties by coordinates dates back to René Descartes
(1596–1650). In 1667 Descartes published his “Discours de la méthode” which con-
tains, among a detailed philosophical investigation and its application to the sci-
ences, the foundation of analytic geometry (e.g., the use of Cartesian coordinates).26

Einstein geometrized gravitation in his 1915 theory of general relativity. Quan-
tum mechanics was geometrized by Dirac, as a unitary geometry of Hilbert spaces.
In the introduction to his book “The Principles of Quantum Mechanics,” Clarendon
Press, Oxford, 1930, the young Dirac (1902–1984) wrote:

The important things in the world appear as invariants . . . The things we
are immediately aware of are the relations of these invariants to a certain
frame of reference . . . The growth of the use of transformation theory, as
applied first to relativity and later to the quantum theory, is the essence
of the new method in theoretical physics.

Finally, note that the Standard Model in particle physics starts from a classical
field theory which is closely related to the geometry of specific fiber bundles.

Invariant formulation of the fundamental Einstein equations. To begin
with, let us introduce the following notation:

• v = vα∂α (intrinsic tangent vector),
• g := gαβdx

α ⊗ dxβ (metric tensor field),
• 〈u|v〉 := g(u,v) (indefinite Hilbert inner product), 〈u|v〉 = gαβu

αvβ ,

• Ric(g) = Rαβdx
α ⊗ dxβ (Ricci tensor field), Rαβ = Rακλβg

κλ,
• R = Rαβg

αβ (scalar curvature or Ricci curvature – trace of the Ricci tensor),
• T = Tαβdx

α ⊗ dxβ (energy-momentum tensor field),
• tr(T) = Tαβg

αβ (trace of the energy-momentum tensor field), tr(T) ≡ Tα
α ,

• G = Ric(g) − 1
2
Rg (the Einstein tensor field).

Then, in general relativity, the two fundamental Einstein equations (0.3) and (0.4)
on page 8 read as follows in an invariant way:

(i) The equation of motion for the gravitational field:

Ric(g) = κG(T − 1
2

tr(T) · g). (0.33)

This is equivalent to: G = κGT.
(ii) The equation of motion for the trajectories x = x(σ), σ0 ≤ σ ≤ σ1, of celestial

bodies (e.g., planets, the sun, stars, or galaxies) and light rays:

Dẋ(σ)

dσ
= 0, σ0 ≤ σ ≤ σ1. (0.34)

Let us discuss (i).27 To begin with, fix the event P . Choose the local coordinates
x = (x0, x1, x2, x3). Assume that the event P has the local coordinate xP . Let us

26 Descartes’ Latin name was Cartesius.
27 The covariant derivative Dẋ(σ)

dσ
will be discussed on page 43. The invariance of

the two fundamental equations (0.33) and (0.34) follows from the principle of
killing indices to be discussed on page 29.
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start with the trajectory x = x(σ) which passes through the point P , that is,
x(0) = xP . Set vα := ẋα(0) if α = 0, 1, 2, 3. Moreover, we define the differential
operator

v := vα∂α.

We want to show that this is an invariant notion, that is,

v = vα∂α = vα
′
∂α′ (0.35)

with the tensorial transformation laws vα
′
= ∂xα′

(x)
∂xα vα and ∂α′ = ∂xα(x′)

∂xα′ ∂α.

To this end, let us consider different local coordinates x0′ , x1′ , x2′ , x3′ given by
the transformation x′ = x′(x) together with the inverse transformation x = x(x′).
Then the curve x = x(σ) corresponds to x′ = x′(x(σ)). Let Θ = Θ(P ) be a given
invariant real-valued function, that is,

Θ(x(σ)) = Θ(x(x′(σ))).

Differentiating this with respect to the real parameter σ at the value σ = 0, we get

∂Θ

∂xα
dxα(0)

dσ
=
∂Θ

∂xβ
∂xβ

∂xα′
dxα

′
(0)

dσ
=
∂Θ

∂xα′
dxα

′
(0)

dσ
,

by the chain rule. Hence

∂αΘ · vα = ∂αΘ · ẋα(0) = ∂α′Θ · ẋα
′
(0) = ∂α′Θ · vα

′
.

This yields (vα∂α)Θ = (vα
′
∂α′)Θ for all smooth functions Θ. This is the claim

(0.35).
Lie’s intrinsic tangent vectors on the space-time manifold M4. Note

the following:

By definition, tangent vectors of the 4-dimensional space-time manifold
M4 are linear differential operators of first order with constant coefficients.

Moreover, smooth tangent vector fields on M are linear differential operators of first
order with smooth coefficient functions. This definition dates back to the work of Lie
in the second half of the 19th century. For a moment, the definition sounds strange.
Let us discuss this. Following Gauss, we have to distinguish between the extrinsic
and the intrinsic approach to differential geometry. To illustrate this, consider a
2-dimensional sphere M2 embedded in the 3-dimensional Euclidean manifold (e.g.,
the surface of earth).

• Extrinsic tangent vectors: Intuitively, the tangent plane TPM2 of the sphere M2

at the point P is a 2-dimensional plane in the 3-dimensional Euclidean manifold.
This plane is orthogonal to the normal vector of the sphere M2 at the point P .
In this setting, the definition of TPM2 is based on the surrounding Euclidean
manifold E

3. Such a definition is called an extrinsic one. Extrinsic tangent vectors
of the sphere are precisely the position vectors of the Euclidean manifold E

3 at
the point P which are orthogonal to the external normal unit vector of the sphere
at the point P .

• Intrinsic tangent vectors: We will show on page 529 that there exists a natural
linear isomorphism

TPM2  DPM2 (0.36)
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between the linear space TPM2 of extrinsic tangent vectors and the linear space
DPM2 of linear differential operators (of first order with constant coefficients)
on the sphere M2 at the point P . Intuitively, these differential operators act on
temperature fields Θ : M2 → R on the sphere. The notion of a linear differential
operator (of first order) on the sphere does not use the surrounding Euclidean
manifold. Therefore, motivated by (0.36), linear differential operators contained
in DPM2 are called intrinsic tangent vectors.

In the case of a sphere in the 3-dimensional Euclidean manifold, the close relation
between extrinsic tangent vectors, the directional derivative, intrinsic tangent vec-
tors, and derivations is discussed in Sect. 8.15 on page 529. Motivated by velocity
vectors of fluids on earth (e.g., rivers and oceans), tangent vectors are also called
velocity vectors.

In the case of the 4-dimensional space-time manifold M4, we do not want to use
any surrounding space. Therefore, we intrinsically describe tangent vectors by linear
differential operators. The symbol TPM4 denotes the set of all tangent vectors of
the space-time manifold M4 at the point P . This is called the tangent space of
M4 at the point P . Naturally enough, suppose that Θ : M4 → R is a real-valued
function on the space-time manifold M4. Then we define

vP (Θ) := vα(x) ∂αΘ(x)

where x denotes the local coordinate of P . This definition does not depend on the
choice of local coordinates. The linear differential operator

vP := vα(x) ∂α

is called a tangent vector of the space-time manifold M4 at the point P .
Élie Cartan’s algebraization of calculus and infinitesimals. In a heuristic

manner, Newton (1643–1727) and Leibniz (1646–1716) used “infinitesimally small”
quantities possessing the typical properties dx > 0 and “dx2 = 0.” In fact, there
are no real numbers which possess such strange properties.28 Observe that:

In modern differential geometry, differentials like dxα are well-defined
mathematical objects, namely, linear functionals on the tangent space.

That is, dxα ∈ T ∗
P (M4). Let us discuss this. If v = vα∂α is an element of the

tangent space TPM4, then we define29

dxα(v) := vα.

Thus, the linear functional dxα assigns to the (abstract) tangent vector v the real
value vα measured by physical experiment. The linear functionals

ω : TPM4 → R

are precisely given by the linear combinations ω = aαdx
α where the symbols

a0, a1, a2, a3 are fixed, but otherwise arbitrary real numbers. These linear function-
als form the dual space to the tangent space TPM4 which is called the cotangent
space T ∗

PM4 of the space-time manifold M4 at the point P . Tensor products will

28 In non-standard analysis, one rigorously introduces infinitesimally small numbers
ι which are contained in a field extension ∗

R of the classical field R of real
numbers, and which have the property that 0 < ι < ε for all positive real
numbers ε. In addition, ι2 > 0 (see Sect. 4.6 of Vol. II).

29 Note that dxα,v, and vα depend on the choice of the point P .
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be thoroughly studied in Sect. 2.1.2. For example, the symbol dxα ⊗ dxβ denotes a
bilinear map from TPM4 × TPM4 to R given by

(dxα ⊗ dxβ)(u,v) := dxα(u) · dxβ(v) = uαvβ

for all tangent vectors u,v ∈ TP (M4). Élie Cartan introduced the antisymmetric
wedge product of differentials by setting

dxα ∧ dxβ := dxα ⊗ dxβ − dxβ ⊗ dxα.

Hence

(dxα ∧ dxβ)(u,v) = dxα(u) dxβ(v) − dxα(v) dxα(u) = uαvβ − vαuβ .

In particular, we obtain

dxα ∧ dxα = 0, α = 0, 1, 2, 3, (0.37)

which replaces the heuristic relation “(dxα)2 = 0” used by Newton and Leibniz.

Gauge Transformations

Some important gauge groups. For the convenience of the reader, let us start
with summarizing some matrix notation which will be used again and again in this
volume. Let N = 1, 2, . . .

• The group GL(N,C) (resp. GL(N,R)) consists of all complex (resp. real) invert-
ible (N × N)-matrices. Furthermore, we have the following chain of subgroups:
SU(N) ⊆ U(N) ⊆ GL(N,C).

• G ∈ U(N) iff G ∈ GL(N,C) and G−1 = G†.
• G ∈ SU(N) iff G ∈ U(N) and detG = 1.

In particular, the group U(1) consists of all complex numbers z with |z| = 1.
Einstein’s gauge transformations in the theory of general relativity.

Suppose that the event P corresponds to the local coordinates x = (x0, x1, x2, x3)

and x′ = (x0′ , x1′ , x2′ , x3′). As a preparation, let us introduce the following matri-
ces:

v =

0

B

B

B

@

v0

v1

v2

v3

1

C

C

C

A

, v′ =

0

B

B

B

@

v0
′

v1
′

v2
′

v3
′

1

C

C

C

A

, ∂Θ =

0

B

B

B

@

∂0Θ

∂1Θ

∂2Θ

∂3Θ

1

C

C

C

A

, ∂′Θ =

0

B

B

B

@

∂0′Θ

∂1′Θ

∂2′Θ

∂3′Θ

1

C

C

C

A

, (0.38)

G(P ) =

0

B

B

B

@

G0′
0 G0′

1 G0′
2 G0′

3

G1′
0 G1′

1 G1′
2 G1′

3

G2′
0 G2′

1 G2′
2 G2′

3

G3′
0 G3′

1 G3′
2 G3′

3

1

C

C

C

A

, G(P )−1 =

0

B

B

B

@

G0
0′ G

0
1′ G

0
2′ G

0
3′

G1
0′ G

1
1′ G

1
2′ G

1
3′

G2
0′ G

2
1′ G

2
2′ G

2
3′

G3
0′ G

3
1′ G

3
2′ G

3
3′

1

C

C

C

A

. (0.39)

Here, we set Gα′
α := ∂xα′

(x)
∂xα and Gα

α′ := ∂xα(x′)
∂xα′ . By the chain rule,
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Gα′
α G

α
β′ =

∂xα
′

∂xα
∂xα

∂xβ′ =
∂xα

′

∂xβ′ = δα
′

β′ .

Therefore, the matrix (Gα
α′) is the inverse matrix to G(P ) := (Gα′

α ). By (0.35), we

get vα
′
= Gα′

α vα. Hence

v′ = G(P )v. (0.40)

This is called the gauge transformation of the components of the tangent vector

v = vα∂α = vα
′
∂α′ . The matrix G(P ) is contained in the Lie group GL(4,R). The

transformation formula ∂α′Θ = ∂xα

∂xα′ ∂αΘ = Gα
α′∂αΘ reads as

(∂′Θ)d = (∂Θ)d G(P )−1. (0.41)

For example, this implies the invariance relation (0.35). In fact, we get

(∂′Θ)dv′ = (∂Θ)dG(P )−1G(P )v = (∂Θ)dv = v(Θ).

Einstein’s gauge transformations in the special theory of relativity.
In the theory of special relativity, gauge transformations correspond to a change of
inertial systems. Then the matrix G(P ) from (0.40) represents a Lorentz transfor-
mation (see Chap. 18).

Dirac’s gauge transformations in quantum mechanics. We want to dis-
cuss Dirac’s quotation mentioned on page 23. To this end, let X be a complex
n-dimensional Hilbert space. The unit vectors ψ of X are called physical states.
Choose a complete orthonormal system e1, . . . , en of X. Then the Fourier expan-
sion reads as

ψ =

n
X

j=1

〈ej |ψ〉ej .

In this setting, we have to distinguish between

• the (invariant) physical state ψ, and
• the local coordinates 〈ej |ψ〉, j = 1, . . . , n, of ψ (also called the Feynman proba-

bility amplitudes of ψ).

In terms of physics, the choice of the orthonormal basis e1, . . . , en corresponds to a
measurement device. If the given quantum particle is in the state ψ, then the real
number

|〈ψ|ej〉|2

is the probability for measuring the particle in the state ej of the measurement
device.

In Dirac’s setting of quantum mechanics, a gauge transformation corre-
sponds to a change of the measurement device.

That is, in terms of mathematics, we pass from the orthonormal basis e1, . . . , en to
the orthonormal basis e1′ , . . . , en′ . This basis change can be described by a unitary
transformation30

G : X → X

30 Recall that the linear operator G : X → X is called unitary iff it is bijective
and it preserves inner products. The group of all unitary transformations of the
Hilbert space X is denoted by U(X) (unitary group of X).
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defined by Gej := ej′ for j = 1, . . . , n. In this sense, quantum mechanics corre-
sponds to the unitary geometry of the Hilbert space X. By definition, this is the
theory of invariants under the unitary transformation group U(X). For example,
the transition amplitude 〈ψ|ϕ〉 is a unitary invariant. We also define

dxj(ψ) := 〈ej |ψ〉, j = 1, . . . , n.

Here, the linear functional dxj : X → C assigns to the physical state ψ the lo-
cal coordinate 〈ej |ψ〉 (probability amplitude) which depends on the choice of the
measurement device.

This argument can be immediately generalized to complex infinite-dimensio-
nal separable Hilbert spaces. Such spaces possess a countable orthonormal basis
e1, e2, . . . (also called complete orthonormal system).

In the theory of special relativity, gauge transformations correspond to a change
of inertial systems, which corresponds to a change of a pseudo-orthonormal basis
of the Minkowski space which is an indefinite Hilbert space (see Chap. 18).

Yang’s gauge transformations via local phase factors. We are given the
function ψ : R

4 → C. Consider the transformation formula

ψ+(x) = G(x)ψ(x), x ∈ R
4 (0.42)

where G(x) is an element of the Lie group U(1). Explicitly,

G(x) = eiχ(x), x ∈ R
4.

Here, the so-called phase χ(x) is a real number which depends on the choice of the
space-time point x in R

4. Therefore, G(x) is called a local phase factor according
to Yang. In terms of physics, the function ψ is the wave function of an electron,
and the map ψ(x) �→ ψ+(x) given by (0.42) is called a gauge transformation. In
the Standard Model in particle physics, this situation is generalized in the following
way:

• The function ψ : R
4 → C

N describes the basic particles (i.e., quarks and leptons),
• and the local phase factor G(x) is an element of the Lie group GL(N,C).

More precisely, we have G(x) ∈ G for all x ∈ R
4. Here, G is a subgroup of GL(N,C)

which is isomorphic to the Lie group U(1) × SU(2) × SU(3). The latter group is
called the gauge group of the Standard Model in particle physics. Summarizing, we
will encounter the following groups as gauge groups:

• SO(1, 3) – Lorentz group (Einstein’s theory of special relativity),
• U(1) (Maxwell’s theory of electromagnetism),
• SU(2) (the original Yang–Mills theory for the local isospin phase factor),
• U(1) × SU(2) (electroweak interaction),
• SU(3) (strong interaction – quantum chromodynamics),
• U(1) × SU(2) × SU(3) (Standard Model in particle physics – combining elec-

troweak interaction with strong interaction).

Observe that the gauge groups U(1), SU(2), and SU(3), as well as their direct
product U(1) × SU(2) × SU(3) are compact Lie groups, whereas the gauge group
SO(1, 3) is not compact, but only locally compact. The representations of compact
groups are much easier to handle than the representations of non-compact, locally
compact Lie groups.

Furthermore, note the following. Let Diff(M4) denote the group of all diffeo-
morphisms χ : M4 → M4 of the space-time manifold M4 onto itself.
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• According to Einstein’s principle of general relativity, physical quantities have to
be invariant under the group Diff(M4). In contrast to the finite-dimensional
Lie groups U(1), SU(2), SU(3), SO(1, 3), the group Diff(M4) is an infinite-
dimensional generalized Lie group.

• String theory is based on conformal symmetry (like the theory of minimal sur-
faces, the theory of Riemann surfaces, and the conformal quantum field theory).
On an infinitesimal level, this is described by an infinite-dimensional Lie algebra
called the Virasoro algebra.

Therefore, the theory of finite-dimensional and infinite-dimensional groups (resp.
Lie algebras) and their invariants play a fundamental role in modern physics. Im-

portant contributions to this topic were made by Élie Cartan, Weyl (compact Lie
groups), Wigner, Bargmann, Gelfand, and Harrish–Chandra (noncompact groups),
and Victor Kac (infinite-dimensional Lie algebras).

Construction of Invariants by the Principle of Killing Indices

Mnemonically, the principle of killing indices works on its own.
Folklore

Fix n,m = 1, 2, . . . In what follows we will sum over equal upper and lower Greek
indices from 0 to 3. Let

Tα1...αm
β1...βn

, Sβ1...βn
α1...αm

,

and Uγ1...γr ;α1...αm
δ1...δs;β1...βn

be tensorial families on the 4-dimensional space-time manifold

M4. Set
V γ1...γr
δ1...δs

:= Uγ1...γr ;α1...αm
δ1...δs;β1...βn

Sβ1...βn
α1...αm

.

Then, we have the following three very useful principles for constructing invariants:

(K1) Tα1...αm
β1...βn

Sβ1...βn
α1...αm

is an invariant function on M4.

(K2) V γ1...γr
δ1...δs

is a tensorial family (r-fold contravariant and s-fold covariant).

(K3) T β1...βm
α1...αn

dxα1 ⊗ · · · ⊗ dxαn ⊗ ∂β1 ⊗ · · · ⊗ ∂βm is an invariant mathematical
object denoted by T.

Let us explain the meaning of the mathematical object T.

(i) Consider first the special case where

T := Tαβ
γ dxγ ⊗ ∂α ⊗ ∂β .

Fixing the point P of the manifold M4, we get

TP := Tαβ
γ (P ) dxγ ⊗ ∂α ⊗ ∂β .

As usual, the tensor product ∂α⊗∂β of two differential operators acts on smooth
functions (x, y) �→ f(x, y) by setting

(∂α ⊗ ∂β)f(x, y) =
∂

∂xα
∂

∂yβ
f(x, y) =

∂2f(x, y)

∂xα∂yβ
.

Here, x = (x0, x1, x2, x3) and y = (y0, y1, y2, y3). Now choose a tangent vector
u := uσ(P )∂σ of M4 at the point P . Then

TP (u) = Tαβ
γ (P ) dxγ(u) ⊗ ∂α ⊗ ∂β = Tαβ

γ (P )uγ(P ) ∂α ⊗ ∂β .
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Finally, we obtain

TP (u) = Tαβ
γ (P )uγ(P )

∂2

∂xα∂yβ
.

This is a linear differential operator of second order with coefficients which
depend on the point P .

(ii) Consider now the general case of (K3). For all tangent vectors u1, . . . ,un of
the manifold M4 at the fixed point P , we get the following linear differential
operator of mth-order:

TP (u1, . . . ,un) = Tα1...αm
β1...βn

(P ) uβ1
1 (P ) · · ·uβn

n (P )
∂m

∂xα1
1 · · · ∂xαm

m
.

Here, uj = uαj (P )∂α and xk := (x0
k, x

1
k, x

2
k, x

3
k) where j = 1, . . . , n. Moreover,

k = 1, . . . ,m. The map
P �→ TP

is called a tensor field of type (m,n) on the space-time manifold M4. The
elementary proof of statements (K1) through (K3) based on the chain rule will
be given in Chap. 8.

Observe the following. By the Einstein convention, we sum over equal upper and
lower Greek indices from 0 to 3.

The essential feature is that both the expressions from (K1) and (K3) have
no free indices anymore.

The summation kills the indices. Therefore, we summarize (K1) through (K3) under
the slogan “principle of killing indices.”

Examples. Taking for granted that gαβ , g
αβ , Tαβ , and Rδ

αβγ are tensorial fam-
ilies, which will be shown in Chap. 8, it follows from (K2) that the following ex-
pressions are tensorial families:

• Rαβγδ = Rσ
αβγgσδ,

• Rαδ = Rαβγδg
βγ ,

• R = Rαβg
αβ = Rα

α (trace).

In particular, R is an invariant function on the space-time manifold M4, by (K1). In
addition, it follows from (K3) that the following expressions are invariantly defined
tensor fields on the space-time manifold M4:

• g := gαβ dx
α ⊗ dxβ (metric tensor field),

• Ric(g) := Rαβ dx
α ⊗ dxβ (Ricci tensor field),

• R := Rδ
αβγ dx

α ⊗ dxβ ⊗ dxγ ⊗ ∂δ (Riemann curvature tensor field),

• R := Rαβγδ dx
α ⊗ dxβ ⊗ dxγ ⊗ dxδ (metric Riemann curvature tensor field).

In what follows, we want to discuss the geometric meaning of both the Riemann
curvature tensor field and the metric Riemann curvature tensor field.

Levi-Civita’s parallel transport of velocity vectors. In 1917, Levi-Civita
(1873–1941) published a fundamental paper.31

31 T. Levi-Civita, The notion of parallel transport in manifolds and its geometric
consequences for the Riemann curvature, Rend. Palermo 42 (1917), 73–205 (in
Italian).
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Fig. 0.2. Parallel transport of the vector v along the curve C

He proved that the Riemann curvature tensor can be obtained by parallel
transport of velocity vectors along a sufficiently small closed curve.32

This observation was crucial for the development of modern differential geometry
and modern physics. Let us discuss this. Consider a curve C on the space-time
manifold M4. With respect to a given local coordinate system, the curve C is given
by the equation

x = x(σ), σ0 ≤ σ ≤ σ1.

In what follows we will write

v =

0

B

B

B

@

v0

v1

v2

v3

1

C

C

C

A

and v = vα∂α.

That is, the components of the velocity vector v (which lives in the tangent space
TPM4) are the entries of the column matrix v (which represents a vector in R

4).
If the curve C is a geodesic line, then it satisfies the differential equation

ẍγ(σ) = −ẋα(σ)Γ γ
αβ(x(σ)) ẋβ(σ), σ0 ≤ σ ≤ σ1, γ = 0, 1, 2, 3.

Setting vγ := ẋγ(σ), we get the differential equation

v̇γ(σ) = −ẋα(σ)Γ γ
αβ(x(σ)) · vβ(σ), σ0 ≤ σ ≤ σ1, γ = 0, 1, 2, 3. (0.43)

Introducing the real (4× 4)-matrix Aα := (Γ γ
αβ), equation (0.43) can be written as

v̇(σ) = −ẋα(σ)Aα(x(σ)) · v(σ), σ0 ≤ σ ≤ σ1. (0.44)

This is called the equation of parallel transport. Now to the point. We replace the
geodesic line by a general curve C, and we consider general solutions v = v(σ) of
(0.44). In this setting, we say that the velocity vector v(σ) is parallel transported

32 Sophus Lie motivated his approach to differential geometry by the physical pic-
ture of the flow of fluid particles on, say, a sphere (e.g., an ocean on earth). In this
setting, tangent vectors of the sphere represent velocity vectors of fluid particles.
Therefore, in this monograph, tangent vectors of manifolds will be synonymously
called velocity vectors.
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Fig. 0.3. Parallel transport of the vector w along the loop ∂Tρ

along the curve C. Note that this is a generalization of the classical parallel trans-
port of vectors in the Euclidean manifold (Fig. 0.2). Furthermore, our definition of
parallel transport is chosen in such a way that, as a special case, the tangent vectors
of a geodesic line C are parallel along this line. The simple geometric meaning of the
parallel transport of velocity vectors on a sphere (based on orthogonal projection)
will be discussed in Sect. 9.5 on page 593.

Now let us use the notion of parallel transport in order to define the linear
operator ΠC : TPM4 → TPM4 given by

ΠCv(σ0) := v(σ1).

More precisely, we proceed as follows (Fig. 0.2(b)):

• We are given the velocity vector v(σ0) ∈ TPM4. Choosing a fixed local coordi-
nate system, the vector v(σ0) corresponds to the coordinate matrix v(σ0).

• Solving the differential equation (0.44) of parallel transport, we get the function
v = v(σ) along the curve C : x = x(σ).

• Finally, by definition, the velocity vector v(σ1) corresponds to v(σ1).

The following fact is crucial. We will prove in Chap. 8 that the transformation law
for the Christoffel symbols implies that:

The definition of the operator ΠC does not depend on the choice of the
local coordinate system.

In other words, the parallel transport of a velocity vector along a curve C is a
geometric property of the space-time manifold M4. In terms of physics, this corre-
sponds to the transport of physical information.

The geometric meaning of the Riemann curvature tensor via parallel
transport. Fix the point P of the space-time manifold M4. We are given the two
tangent vectors u,v ∈ TPM4 at the point P. It is our goal to construct the operator

FP (u,v) : TPM4 → TPM4

which measures the curvature of M4 at the point P with respect to the plane
spanned by u and v. To this end, choose a fixed, but otherwise arbitrary chart (i.e.,
a local coordinate system), and consider the situation pictured in Fig. 0.3.

• Fix the scaling factor � > 0. Let T� denote the triangle spanned by the vectors
�u and �v, and let ∂T� denote the positively oriented boundary curve of T�.

• Parallel transport of the given vector w at the initial point P along the closed
curve PABP = ∂T� yields the vector wP,final;� = Π∂T�w at the final point P .

The following hold.
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• Let meas(T�) denote the Euclidean measure of the triangle T�. There exists the
limit

lim
�→0

Π∂T�w

meas(T�)
= wP,final.

• The tangent vector wP,final corresponding to the coordinate matrix wP,final does
not depend on the choice of the local coordinates.

We define
FP (u,v)w := wP,final.

The operator w �→ F(u,v)w is called the Riemann curvature operator.
In physics, we want to use real numbers which can be measured in physical

experiments. In order to pass from the Riemann curvature operator to real numbers,
it is quite natural to use the (indefinite) inner product on the tangent space TPM4 of
the space-time manifold at the point P . Explicitly, fix a tangent vector z ∈ TPM4,
and consider the inner product

RP (u,v;w, z) := 〈FP (u,v)w|z〉. (0.45)

This is equal to gP (FP (u,v)w, z). The map

(u,v,w, z) �→ RP (u,v,w, z)

is a 4-linear map of the form

RP : TPM4 × TPM4 × TPM4 × TPM4 → R.

This map is called the metric Riemann curvature tensor.
Let u = uα∂α (together with similar representations of v,w, and z). With

respect to local coordinates, we get the following symmetric formulas:

• F(u,v)w = (Rκ
αβγ u

αvβwγ) ∂κ,

• RP (u,v,w, z) = Rαβγδ u
αvβwγzδ,

• Ric(u, z) := 〈F(u, ∂β)∂γ |z〉 gβγ = Rαβu
αvβ (averaging).

Here, the real coefficients are given by

• Rδ
αβγ := dxδ(F(∂α, ∂β)∂γ),

• Rαβγδ := RP (∂α, ∂β , ∂γ , ∂δ),
• Rαδ := Rαβγδg

βγ .

Symmetries of the Riemann curvature tensor. We have:

• F(u,v)w = −F(v,u)w,
• F(u,v)w + F(v,w)u + F(w,u)v = 0 (cyclic permutation),
• RP (u,v;w, z) = −RP (v,u;w, z),
• RP (u,v;w, z〉 = −RP (u,v; z,w〉,
• RP (u,v;w, z) = RP (w, z;u,v),
• Ric(g)(u,v) = Ric(g)(v,u).

For the coefficients Rαβγδ and Rαβ , this yields the symmetry relations summarized
on page 14.

Riemann’s sectional curvature and the geometric meaning of the Rie-
mann curvature tensor. Let u = uα∂α and v = vβ∂β be linearly independent
tangent vectors of the space-time manifold M4 at the point P . The sectional cur-
vature of M4 at the point P is defined by 33

33 Naturally enough, we assume that υP (u,v) �= 0.
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KP (u,v) :=
RP (u,v,v,u)

υP (u,v)2
(0.46)

where υP (u,v)2 := gP (u,u)gP (v,v)−gP (u,v)2. If u and v are space-like vectors,
then υP (u,v) is the surface area of the parallelogram spanned by the two vectors
u and v at the point P . It turns out that this sectional curvature only depends on
the 2-dimensional plane P spanned by the tangent vectors u and v.

• If two 2-dimensional submanifolds S and S ′ of the space-time manifold M4 have
the same tangent plane at the point P , then they possess the same sectional
curvature at the point P .

• If the plane P is space-like, then the sectional curvature coincides with the Gaus-
sian curvature of S and S ′ at the point P .

This sectional curvature was introduced by Riemann in his seminal lecture “On the
hypotheses which lie at the foundation of geometry” in 1854.34

It was the idea of Riemann to describe the curvature of a higher-dimensional
manifold M at the point P by studying the Gaussian curvature of all pos-
sible two-dimensional submanifolds M2 of M at the point P.

Let K(u,v)P := υP (u,v)2KP (u,v). Then

R(u,v,w, z) = K(u + z,v + w) −K(u + z,v) −K(u + z,w)

−K(u,v + w) −K(z,v + w) + K(u,w) + K(z,v)

−K(v + z,u + w) + K(v + z,u) + K(v + z,w)

−K(v,u + w) + K(z,u + w) −K(v,w) −K(z,u).

This key formula tells us that the sectional curvature determines the Riemann
curvature tensor which describes the whole curvature.

Two Fundamental Approaches to Differential Geometry

There exist the following two different approaches to differential geometry, namely,

(I) Gauss’ approach by means of symmetric tensors, and

(II) Élie Cartan’s approach by means of antisymmetric tensors (also called differ-
ential forms).

The Einstein equation Ric(g) = κG(T − 1
2

tr(T) · g) (for the motion of the gravi-
tational field by means of the symmetric Ricci tensor Ric(g)) is formulated in the
spirit of Gauss (see page 23). In what follows, we will study Cartan’s approach based
on the structural equation and its integrability condition (the Bianchi identity). We
will sketch the following ideas:

• Yang’s matrix trick,
• Cartan’s local structural equation, and
• Cartan’s global structural equation.

Modern differential geometry is based on Cartan’s approach. The decisive advantage
of Cartan’s approach is that it allows the use of symmetry groups (also called gauge
groups) in a very flexible way.

34 B. Riemann, Über die Hypothesen, welche der Geometrie zugrundeliegen,
Göttinger Abhandlungen 13 (1854), 272–287 (in German). An English trans-
lation can be found in M. Spivak, A Comprehensive Introduction to Differential
Geometry, Vol. 2, Publish or Perish, Boston.
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Yang’s Matrix Trick

While preparing a lecture on Einstein’s general relativity theory in the 1960s, Yang
discovered that the fundamental equations for the components of the Riemann
curvature tensor,

Rδ
αβγ := ∂αΓ

δ
βγ − ∂βΓ δ

αγ + Γ δ
αμΓ

μ
βγ − Γ δ

βμΓ
μ
αγ , (0.47)

coincide with the Yang–Mills field equations

Fαβ := ∂αAβ − ∂βAα + [Aα,Aβ ] (0.48)

with the Lie product [Aα,Aβ ] := AαAβ − AβAα. Here, the indices α, β, γ, δ run
from 0 to 3. Observe that formula (0.47) can be regarded as a generalization of
Gauss’ theorema egregium to higher dimensions. In order to obtain Yang’s result,
let us introduce the following matrices:

Aα := (Γ δ
αγ), Fαβ := (Rδ

αβγ)

where the upper index δ numbers the rows, and the lower index γ numbers the
columns. Explicitly, this means the following:

(i) Christoffel matrices (connection matrices):

Aα :=

0

B

B

B

@

Γ 0
α0 Γ

0
α1 Γ

0
α2 Γ

0
α3

Γ 1
α0 Γ

1
α1 Γ

1
α2 Γ

1
α3

Γ 2
α0 Γ

2
α1 Γ

2
α2 Γ

2
α3

Γ 3
α0 Γ

3
α1 Γ

3
α2 Γ

3
α3

1

C

C

C

A

.

(ii) Riemann curvature matrices:

Fαβ :=

0

B

B

B

@

R0
αβ0 R

0
αβ1 R

0
αβ2 R

0
αβ3

R1
αβ0 R

1
αβ1 R

1
αβ2 R

1
αβ3

R2
αβ0 R

2
αβ1 R

2
αβ2 R

2
αβ3

R3
αβ0 R

3
αβ1 R

3
αβ2 R

3
αβ3

1

C

C

C

A

.

Using the multiplication of matrices, it follows immediately that the Yang–Mills
field equation (0.48) corresponds to the Riemann equation (0.47).

Cartan’s Local Structural Equation

In order to get insight in differential geometry, use differential forms and
employ their invariance properties.

Folklore

In order to kill indices, let us define the following differential forms:

• A := Aαdx
α (local connection form on the space-time manifold M4),

• F := 1
2
Fαβ dx

α ∧ dxβ (local curvature form on M4).

Here, Fαβ = −Fβα for all indices α, β = 0, 1, 2, 3. Note that A and F are differential
forms with the (4×4)-matrices Aα and Fαβ as coefficients. This can also be written
as

A = (ωδ
γ), F = (Ωδ

γ)

with the differential forms
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• ωδ
γ := Γ δ

αγ dx
α (Cartan’s local connection forms), and

• Ωδ
γ := 1

2
Rδ

αβγ dx
α ∧ dxβ (Cartan’s local curvature forms).

Calculus for matrices with differential forms as entries. If a, b, c, d and
e, f, g, h are complex numbers, then we have the following classical matrix product:

 

a b

c d

! 

e f

g h

!

=

 

ae+ bg af + bh

ce+ dg cf + dh

!

.

Now suppose that all the entries a, b, . . . are differential forms. Then the wedge
products a∧e, . . . of entries are well defined. This motivates the following definition
of the wedge product of matrices with differential forms as entries:

 

a b

c d

!

∧
 

e f

g h

!

:=

 

a ∧ e+ b ∧ g a ∧ f + b ∧ h
c ∧ e+ d ∧ g c ∧ f + d ∧ h

!

. (0.49)

That is, we merely replace the classical product of entries by the wedge product of
entries.

Cartan’s local structural equation. We claim that the differential forms A
and F satisfy the following two elegant equations:

(C) Cartan’s local structural equation:

F = dA + A ∧A. (0.50)

(B) Bianchi’s local identity (integrability condition to (C)):

dF = F ∧A−A ∧ F . (0.51)

Proof. Ad (C). This is nothing else than a clever reformulation of the classical
curvature relation

Rδ
αβγ := ∂αΓ

δ
βγ − ∂βΓ δ

αγ + Γ δ
αμΓ

μ
βγ − Γ δ

βμΓ
μ
αγ

in terms of Cartan’s calculus of differential forms invented by Cartan in 1899.35 In
fact, it follows from ωδ

γ = Γ δ
βγdx

β and the antisymmetry of the Grassmann product

(also called the wedge product) dxα ∧ dxβ = −dxβ ∧ dxα that

dωδ
γ = dΓ δ

βγ ∧ dxβ = ∂αΓ
δ
βγ dx

α ∧ dxβ

= 1
2
(∂αΓ

δ
βγ − ∂βΓ δ

αγ) dxα ∧ dxβ

and

ωδ
μ ∧ ωμ

γ = Γ δ
αμΓ

μ
βγ dx

α ∧ dxβ

= 1
2
(Γ δ

αμΓ
μ
βγ − Γ δ

βμΓ
μ
αγ) dxα ∧ dxβ .

Using Ωδ
γ = 1

2
Rδ

αβγ dx
α ∧ dxβ , we obtain Cartan’s system of structural equations

Ωδ
γ = dωδ

γ + ωδ
μ ∧ ωμ

γ , γ, δ = 0, 1, 2, 3. (0.52)

35 Grassmann (1809–1877), Élie Cartan (1869–1951).
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In order to kill the indices, we introduce the matrices A = (ωδ
γ) and F = (Ωδ

γ).
Then Cartan’s system (0.52) can be elegantly written as

dF = dA + A ∧A.

Ad (B). We will use the following properties of the calculus for differential forms
(with real coefficients). Let ω, � and τ be differential forms of degree p, r, and s,
respectively. Then, the wedge product has the following properties:

• (ω ∧ �) ∧ τ = ω ∧ (� ∧ τ) (associativity),
• ω ∧ � = (−1)pr� ∧ ω (graded anticommutativity),
• dω = 0 (the Poincaré cohomology rule),
• d(ω ∧ �) = dω ∧ �+ (−1)pω ∧ d� (the graded Leibniz product rule).

These properties induce the corresponding rules for the wedge product of matrices.
In particular, applying the Cartan differential “d ” to (C), we get

dF = d(dA) + dA ∧A−A ∧ dA.

By the Poincaré cohomology rule, d(dA) = 0. Since F = dA + A ∧A, we get

dF = (F −A ∧A) ∧ A−A ∧ (F −A ∧A) = F ∧A−A ∧ F .

�

Gauge transformations. Let us consider the change

xα
′
= xα

′
(x0, x1, x2, x3), α = 0, 1, 2, 3

of local coordinates. We want to determine the transformation laws for the family
of Christoffel symbols Γκ

αλ and the family of Riemann symbols Rκ
λαβ . We will use

the notation introduced on page 26. Let us first describe an elementary brute-force
method based on completely elementary, but lengthy computations based on the
chain rule in classical differential calculus.

• We start with the transformation law36

gα′β′ = Gα
α′Gβ

β′gαβ

for the components gαβ of the metric tensor. Using matrices, this means that

(gα′β′) = Gd(gαβ)G.

• For the inverse matrix, we get

(gα
′β′

) = (gα′β′)−1 = G−1(gαβ)−1(Gd)−1 = G−1(gαβ)(G−1)d.

This implies

gα
′β′

= Gα′
α G

β′

β · gαβ .

Thus, gαβ is a tensorial family of type (2, 0).
• We use Γ δ

αβ := 1
2
(∂αgβσ + ∂βgασ − ∂σgαβ)gσκ in order to get the transformation

formula for the Christoffel symbols:

Γ δ′
α′β′ = Gδ′

δ G
α
α′Gβ

β′ · Γ δ
αβ −Gα

α′Gβ
β′(∂αG

δ′
β ). (0.53)

36 More precisely, gα′β′(x′) = Gα
α′(x)G

β
β′(x)gαβ(x).
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• From (0.47), we obtain the following transformation formula for the Riemann
symbols:

Rδ′
α′β′γ′ = Gδ′

δ G
α
α′Gβ

β′G
γ
γ′ ·Rδ

αβγ . (0.54)

Relation (0.47) tells us that Rδ
αβγ forms a tensorial family of type (1, 3). Moreover,

it follows from (0.53) that the Christoffel family Γ δ
αβ is not a tensorial family.37

In contrast to this brute-force method, a much simpler proof of (0.53) and (0.47)
will be given in Chap. 8 based on the inverse index principle(see page 505). More
elegantly, using the language of matrices, the transformation formulas (0.53) and
(0.47) can be written in the following way:

(i) ẋ′ = Gẋ (transformation law for the velocity components ẋα(σ)),
(ii) A′ = GAG−1 − (dG)G−1 (transformation law for the connection form), and
(iii) F ′ = GFG−1 (transformation law for the curvature form).38

Here, we set A(x) := Aα(x)dxα = (Γ δ
αγ(x)dxα) and

A′(x′) :=
`

Γ δ′
α′γ′(x′) dxα

′´
, x′ = x′(x).

Note that A(x) is a matrix with the differential forms Γ δ
αγ(x)dxα as entries; the

upper index δ numbers the rows, and the lower index γ numbers the columns.
Furthermore,

F := 1
2
Fαβ dx

α ∧ dxβ =
`

1
2
Rδ

αβγ dx
α ∧ dxβ

´

,

and
F ′(x′) :=

`

1
2
Rδ′

α′β′γ′(x′) dxα
′
∧ dxβ

′´
.

Finally, recall that G = (Gδ′
δ ) and G−1 = (Gδ

δ′). The proof of (ii), (iii) above will
be given in Chap. 8.

Cartan’s Global Structural Equation

Extend the space-time manifold M4 to its frame bundle.
Folklore

In order to arrive at a global approach, we pass from the local structural equation
F = dA + A ∧A considered in (0.50) to the global structural equation

F = DA. (0.55)

Moreover, we add the global integrability condition

DF = 0 (0.56)

which is called the global Bianchi identity. Let us discuss this.
Extension of the space-time manifold M4 to the frame bundle F (M4).

The two differential forms

37 The Christoffel family is also called the connection family.
38 More precisely, x′(σ) = G(x(σ))x(σ),

A′(x′) = (GAG−1 − dG ·G−1)(x),

and F ′(x′) = (GFG−1)(x). Note that the prime refers to the transformed coor-

dinates x′ = (x1′ , . . . , xn
′
), but it does not refer to any derivative.
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• A (global connection form), and
• F (global curvature form)

are not defined on the space-time manifold, but on the frame bundle. By definition,
the frame bundle F (M4) of the space-time manifold M4 consists of all the tuples

(P,b0,b1,b2,b3) (0.57)

where P is an arbitrary point of M4, and b0,b1,b2,b3 is an arbitrary basis of the
tangent space TPM4 of M4 at the point P . Choose local coordinates (x0, x1, x2, x3)
which live in the open set U of R

4. Since ∂0, ∂1, ∂2, ∂3 form a basis of the tangent
space TPM4, there exist real numbers Gβ

α(x) depending on x such that

bα = Gβ
α(x)∂β , α = 0, 1, 2, 3.

Introducing the matrix G(x) := (Gβ
α(x)), we get the matrix equation

(b0,b1,b2,b3) = (∂0, ∂1, ∂2, ∂3) G(x)

where G(x) is an invertible real (4 × 4)-matrix, that is, G(x) ∈ GL(4,R). The
tuple (x,G(x)) is called the local coordinate of the point (0.57) of the frame bundle
F (M4). Obviously,

(x,G(x)) ∈ U ×GL(4,R).

Parallel transport on the space-time manifold in terms of the frame
bundle. We are given the curve

C : P = P (σ), σ0 ≤ σ ≤ σ1,

on the space-time manifold M4. With respect to local coordinates, this curve cor-
responds to the map σ �→ x(σ). Consider the differential equation

Ġ(σ) = −ẋα(σ)Aα(x(σ)) ·G(σ), σ0 ≤ σ ≤ σ1, (0.58)

with the initial condition G(σ0) = I. Let G = G(σ) be the unique solution of the
initial-value problem for (0.58). We are given the tangent vector v0 = vα0 ∂α at
the point P (σ0). We set v(σ) := G(σ)v0. Then the differential equation of parallel
transport

v̇(σ) = −ẋα(σ)Aα(x(σ)) · v(σ), σ0 ≤ σ ≤ σ1,

is satisfied. Consequently, setting

v(σ) := vα(σ)∂α,

we obtain the tangent vector v(σ) at the curve point P (σ), and this family repre-
sents a parallel transport of velocity vectors along the curve C. We will show later
on that this parallel transport can be used to define quite naturally the differential
form A, the covariant differential DA and hence the curvature form F on the frame
bundle.

Restriction of the global curvature form F to the local curvature form
F and gauge transformations. We want to discuss briefly the relation between
the global differential forms A and F on the frame bundle F (M4) and the (local)
differential forms A and F on the space time-manifold M4. Setting

s(x) := (x, I),

we get the map s : U → U ×GL(4,R). The corresponding pull-backs of the differ-
ential forms yield
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• s∗A = A, and
• s∗F = F .
Moreover, for given function x �→ G(x), we set

s(x) := (x,G(x)).

This corresponds to the choice of frames depending on the point P related to the
local coordinate x. Then we get:

• s∗A(x) = G(x)A(x)G(x)−1 − dG(x) ·G(x)−1, and
• s∗F(x) = G(x)F(x)G(x)−1.

This yields precisely the gauge transformation formulas for A and F summarized
on page 38, namely,

• A′(x) = G(x)A(x)G(x)−1 − dG(x) ·G(x)−1, and
• F ′(x) = G(x)F(x)G(x)−1.

Élie Cartan’s method of moving frames. The procedure sketched above
is called Cartan’s method of moving frames. In terms of mathematics, Cartan’s
global structural equation (0.55) represents a generalization of the basic formula
(0.47) which relates the Riemann curvature tensor to the Christoffel symbols and
their first partial derivatives.

In terms of physics, the global curvature form F corresponds to the gravita-
tional force. The structural equation (0.55) relates the gravitational force F (i.e.,
the global curvature form) to the so-called potential A (i.e., the global connection
form). In physics, the use of the frame bundle in general relativity is called the
tetrad formalism.

The general form of Cartan’s approach (based on frame bundles) allows us
to transform the local coordinates of the space-time manifold M4 and the local
coordinates of the frames in a separate way. This yields optimal flexibility.

Covariant Partial Derivative and the Classical Ricci Calculus

Replace the classical derivatives ẍα(σ) and ∂αv
β by the covariant deriva-

tives Dẋ(σ)
dσ

and ∇αv
β , respectively.

In contrast to the classical partial derivative ∂α, the covariant partial
derivative ∇α has the very useful property that it sends tensorial fami-
lies again to tensorial families.

Folklore

Classical identities for partial derivatives. Let Θ : U → R and

uκ, vκ, wκ : U → R
4, κ = 0, 1, 2, 3

be smooth functions where U is a nonempty open subset of R
4 (e.g., U = R

4).
Choose the coordinates x0, x1, x2, x3 on R

4, and recall the notation ∂α := ∂
∂xα for

the partial derivative with respect to the variable xα. Set

dv(x)Θ(x) := vα(x)∂αΘ(x).

This is called the directional derivative of the function Θ at the point x with
respect to the direction v(x). Let x = x(σ) be a smooth curve with xα(0) = xα0 and
ẋα(0) = vα for all α = 0, 1, 2, 3. Then, by the chain rule,
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dvΘ(x0) =
dΘ(x(σ))

dσ |σ=0
.

This motivates the designation “directional derivative.” Furthermore, set

v =

0

B

B

B

@

v0

v1

v2

v3

1

C

C

C

A

, w =

0

B

B

B

@

w0

w1

w2

w3

1

C

C

C

A

, dv(x)w(x) :=

0

B

B

B

@

vα(x)∂αw
0(x)

vα(x)∂αw
1(x)

vα(x)∂αw
2(x)

vα(x)∂αw
3(x)

1

C

C

C

A

.

Here, dv(x)w(x) is called the directional derivative of the function w : U → R
4 at

the point x with respect to the direction v(x). Finally, introduce the Lie product

[v, w] := dvw − dwv. (0.59)

In addition, we introduce the symbol [∂α, ∂β ]− in the sense of linear operators.
That is, we set [∂α, ∂β ]−v := ∂α∂βv − ∂β∂αv = 0. Then we have the following
trivial identities, which will be generalized to nontrivial identities later on:

(I) Trivial Lie product: [∂α, ∂β ]− = 0.
(II) Trivial Jacobi identity:

([∂α, [∂β , ∂γ ]−]− + ([∂β , [∂γ , ∂α]−]− + ([∂γ , [∂α, ∂β ]−]−)v = 0. (0.60)

(III) Trivial Bianchi identity:

(∂α[∂β , ∂γ ]− + ∂β [∂γ , ∂α]− + ∂γ [∂α, ∂β ]−)v = 0. (0.61)

(IV) The key Lie relation:39

du(dvw) − dv(duw) = d[u,v]w. (0.62)

(V) The Lie algebra C∞(U,R4) : The real linear space C∞(U,R4) of all smooth
functions

v : U → R
4

forms a real Lie algebra with respect to the Lie product (0.59). Explicitly, this
means that C∞(U,R4) is a real linear space. Furthermore, for all functions
u, v, w ∈ C∞(U,R4) and all real numbers λ, μ, the following hold:

• [u, v] ∈ C∞(U,R4) (consistency),
• [λu+ μv,w] = λ[u,w] + μ[v, w] (distributivity),
• [v, w] = −[w, v] (antisymmetry),
• [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 (Jacobi identity).

(VI) The Lie algebra D(C∞(U,R4)) : By definition, the symbol D(C∞(U,R4))
denotes the set of of all linear differential operators

vα(x)∂α, x ∈ U

with smooth coefficient functions vα : U → R. This coincides with the set of
all differential operators

39 Leibniz (1646–1717), Jacobi (1804–1851), Lie (1842–1899), Bianchi (1856–1928).
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dv : C∞(U,R4) → C∞(U,R4)

where v ∈ C∞(U,R4). The real linear space D(C∞(U,R4)) becomes a real Lie
algebra with respect to the Lie product [du, dv]− in the sense of operators. That
is,

[du, dv]−w = du(dvw) − dv(duw) (0.63)

for all w ∈ C∞(U,R4). Observe the following crucial fact for the Lie theory of
partial differential equations. By (IV),

[du, dv]−w = d[u,v]w.

Consequently, [du, dv]− is not a second-order differential operator, but only a
first-order partial differential operator because of the cancellation of partial
derivatives of second order. Therefore, [du, dv]−w is an element of the linear
space D(C∞(U,R4)). The Jacobi identity

[A, [B,C]− ]−w + [B, [C,A]− ]−w + [C, [A,B]− ]−w = 0

on D(C∞(U,R4)) follows from (0.63). This is a special case of the general fact
that the Jacobi identity is always satisfied for linear operators on linear spaces
(see (0.66)).

(VII) Leibniz rule: For all v ∈ C∞(U,R4) and all smooth functions Θ : U → R, we
have the product rule:

dv(Θw) = (dvΘ)w +Θdvw. (0.64)

(VIII) Differential: Set dw := ∂αw dx
α. Then

dvw = (dw)(v).

In fact, dxα(v) = vα. Hence dw(v) = vα∂αw.

Proof. All the statements follow by using elementary computations based on the
key relation

∂α∂β = ∂β∂α, α, β = 0, 1, 2, 3. (0.65)

This is the mnemonic formulation of the commutativity property

∂

∂xα

„

∂Θ

∂xβ

«

=
∂

∂xβ

„

∂Θ

∂xα

«

for the partial derivatives of smooth real-valued functions Θ.
For example, let us prove the key Lie relation (IV). Observe first that

du(dvw) = uα∂α(vβ∂βw) = uαvβ∂α∂βw + uα∂αv
β∂βw.

Similarly, dv(duw) = vαuβ∂α∂βw+vα∂αu
β∂βw. The crucial point is that the second

partial derivatives cancel each other, by (0.65).40 Finally, we get

du(dvw) − dv(duw) = (uα∂αv
β − vα∂αuβ)∂βw = d[u,v]w.

40 It turns out that this is the main trick of Lie’s approach to analysis and differ-
ential geometry. In addition, the tensorial property of the Riemann curvature
tensor is based on a similar cancellation of second order partial derivatives.



Prologue 43

This is (IV). Furthermore, the Leibniz rule (VII) follows from

dv(Θw) = vα∂α(Θw) = (vα∂αΘ)w +Θ · vα∂αw = (dvΘ)w +Θdvw.

�

In the present case, the Jacobi identity and the Bianchi identity are trivial
consequences of the classical commutativity property (0.65) for partial derivatives.
For more general situations, note the following. If A,B,C : X → X are linear
operators on the linear space X, then cyclic permutation yields

[A, [B,C]− ]− + [B, [C,A]− ]− + [C, [A,B]− ]−

= A(BC − CB) − (BC − CB)A+B(CA−AC) − (CA−AC)B

+C(AB −BA) − (AB −BA)C = 0. (0.66)

This means that the Jacobi identity is always satisfied for linear operators. More-
over, antisymmetrization yields

Alt(ABC) := 1
6
(ABC −ACB +BCA−BAC + CAB − CBA)

= 1
6
(A[B,C]− +B[C,A]− + C[A,B]−).

The trouble with classical partial derivatives in the theory of general
relativity. As a rule, the relations above are not invariant under general nonlinear
coordinate transformations (i.e., by using local diffeomorphisms for local coordi-
nates). In terms of physics, this means that the relations above do not possess any
physical meaning.

As we will show, this lack of invariance can be cured by replacing partial
derivatives by covariant partial derivatives.

Then the trivial Lie product does not vanish anymore, but the corresponding gener-
alization determines the Riemann curvature tensor. The following sketched material
will thoroughly be studied in Chap. 8.

The trouble with acceleration. Let C : P = P (σ), σ0 ≤ σ ≤ σ1, be a smooth
curve on the space-time manifold M4 given by the equation x = x(σ) with respect
to a local coordinate system. As a rule, the equation

ẍγ(σ) = 0, σ0 ≤ σ ≤ σ1, γ = 0, 1, 2, 3 (0.67)

is not invariant under a change of local space-time coordinates. Set

Dẋγ(σ)

dσ
:= ẍγ(σ) + ẋα(σ)Γ γ

αβ(x(σ)) ẋβ(σ).

This is called the covariant derivative of σ �→ ẋ(σ) with respect to the real parameter

σ. It turns out that Dẋγ(σ)
dσ

is a tensorial family, in contrast to ẍγ . The equation

Dẋγ(σ)

dσ
= 0

describes geodesic lines. By the principle of index killing, the following vector func-
tions possess an invariant meaning:

• v(σ) := ẋγ(σ)∂γ (velocity vector of the curve C),

• a(σ) := Dẋγ(σ)
dσ

∂γ (acceleration vector of the curve C).

The partial covariant derivative as a key tool. We set
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• ∇αv
β := ∂αv

β + Γ β
αλv

λ, and

• ∇αvβ = ∂αvβ − Γλ
αβvλ.

More generally, we define

∇αT
α1...αm
β1...βn

:= ∂αT
α1...αm
β1...βn

+

m
X

r=1

Γαr
αλT

α1...λ...αm
β1...βn

−
n
X

s=1

Γμ
αβs
Tα1...αm
β1...μ...βn

.

Here, we replace the index αr (resp. βs) by λ (resp. μ). In addition, for an invariant
function Θ, we define ∇αΘ := ∂αΘ.

The covariant partial derivative ∇α has the crucial property that it preserves
tensorial families:

• If vβ is a tensorial family of type (1, 0), then ∇αv
β is a tensorial family of type

(1, 1).
• If wβ is a tensorial family of type (0, 1), then ∇αvβ is a tensorial family of type

(0, 2).
• If Tα1...αm

β1...βn
is a tensorial family of type (m,n), then ∇αT

α1...αm
β1...βn

is a tensorial

family of type (m,n+ 1).

Let us mention two typical examples. Choose α, β, γ, δ, μ = 0, 1, 2, 3.41 It follows
from the key relation

∇α(∇βv
δ) −∇β(∇αv

δ) = Rδ
αβγv

γ (0.68)

that the Riemann curvature tensor measures the noncommutativity of the covariant
partial derivative. The relation

∇μR
δ
αβγ + ∇αR

δ
βμγ + ∇βR

δ
μαγ = 0 (0.69)

represents the Bianchi identity in covariant formulation. This is based on cyclic
permutation of the indices μ, α, β. The relation (0.69) is equivalent to

∇[μR
δ
αβ]γ = 0 (0.70)

which represents an antisymmetrization with respect to the indices μ, α, β. The
Ricci identity reads as

Rδ
αβγ +Rδ

βγα +Rδ
γαβ = 0.

This is equivalent to

Rδ
[αβγ] = 0 (0.71)

which represents an antisymmetrization with respect to the lower indices α, β, γ.
Moreover, we have

∇αgβγ = 0. (0.72)

This is called the Ricci lemma. Consider the Bianchi identity (0.69). We will show
later on that Ricci’s lemma allows us to lower the index δ. This yields

41 By the Einstein convention, we sum over equal upper and lower indices from 0
to 3.
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∇μRαβγδ + ∇αRβμγδ + ∇βRμαγδ = 0 (0.73)

based on cyclic permutation of the indices μ, α, β. Hence

∇[μRαβ]γδ = 0.

The very useful Ricci calculus principle of replacing partial deriva-
tives by covariant partial derivatives. Consider the partial differential equation

�Θ = gαβ∂α∂βΘ

in a fixed local coordinate system. For example, if gαβ = ηαβ (for all indices), and
if we write ct, x, y, z instead of x0, x1, x2, x3, respectively, then we obtain the wave
equation

�Θ =
1

c2
∂2Θ

∂t2
− ∂2Θ

∂x2
− ∂2Θ

∂y2
− ∂2Θ

∂z2
. (0.74)

It is our goal to rewrite (0.74) in such a way that it is valid in arbitrary local coor-
dinate systems. To this end, we need an invariant expression which coincides with
(0.74) in the special (x0, x1, x2, x3)-coordinate system chosen above with gαβ = ηαβ .
Since the Christoffel symbols vanish identically in this special coordinate system,
we can replace the partial derivatives by the corresponding covariant partial deriva-
tives. This yields the invariant formulation

�Θ = gαβ∇α∇βΘ.

By the index killing principle, this expression is valid in each local coordinate system
provided we use the tensorial family gαβ . This simple trick can be used in order to
write all the equations appearing in theoretical physics in such a way that they are
valid in each coordinate system. For example, in Sect. 19.3.1 we will use this trick
in order to formulate the Maxwell equations in electrodynamics with respect to an
arbitrary space-time coordinate system. Observe that, for the Dirac equation of the
relativistic electron, one has to replace tensorial families by spinorial families (see
Vol. IV).

The Lie Structure behind Curvature

Let the symbol Vect(M4) denote the space of all smooth velocity vector fields v on
the space-time manifold M4. With respect to local coordinates, we write v = vα∂α.
In what follows, let u,v,w ∈ Vect(M4). Sophus Lie frequently used the fact that

uα∂αv
β − vα∂αuβ

forms a tensorial family on M4. By index killing, we get the invariant expression

Luv = (uα∂αv
β − vα∂αuβ) ∂β .

This is called the Lie derivative of the velocity field v with respect to the velocity
field u.

The Lie algebra Vect(M4). Using the Lie product

[u,v] := Luv,

the linear space Vect(M4) of smooth velocity vector fields on M4 becomes a real Lie
algebra. Explicitly, this means that for all u,v,w ∈ Vec(M4) and all real numbers
λ, μ, we have:
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• [λu + μv,w] = λ[u,w] + μ[v,w] (distributivity),
• [v,w] = −[w,v] (antisymmetry),
• [u, [v,w]] + [v, [w,u]] + [w, [u,v]] = 0 (Jacobi identity).

The physical meaning of the Lie derivative in terms of the flow of fluid particles
will be considered in Sect. 11.2.

The covariant differential of a velocity field. For u,v ∈ Vect(M4), we have
the tensorial family ∇αv

β . Using the index killing principle, we get the invariant
expression

Dv := (∇αv
β) dxα ⊗ ∂β .

This tensor field of type (1, 1) on the space-time manifold M4 is called the covariant
differential of the velocity vector field v. Furthermore, we set

Duv := (Dv)(u).

This is called the covariant directional derivative of the velocity vector field v on
M4 with respect to the velocity vector field u. Explicitly,

Duv = (uα∇αv
β) ∂β .

Two key relations for velocity vector fields. For all smooth velocity vector
fields u,v,w ∈ Vect(M4) on the space-time manifold M4, we have

[u,v] = Duv −Dvu, (0.75)

and

F(u,v)w = (DuDv −DvDu −D[u,v])w. (0.76)

In terms of geometry, the Riemann curvature operator F(u,v) was introduced on
page 33 by using parallel transport of a velocity vector along a sufficiently small
closed path. In terms of analysis, relation (0.76) connects the Riemann curvature
operator with the covariant directional derivative. Equivalently, relation (0.75) reads
as

Luv = Duv −Dvu.

This connects the Lie derivative with the covariant directional derivative. In terms
of the covariant directional derivative Duv, we get the following two key formulas
for fixed smooth velocity vector fields u,v on the 4-dimensional space-time manifold
M4 equipped with the metric tensor g:

Duv −Dvu − [u,v] = 0 (0.77)

and

F(u,v) = DuDv −DvDu −D[u,v], (0.78)

where F(u,v) represents the Riemann curvature operator.42 Introducing Weyl’s
torsion operator

T(u,v) := Duv −Dvu − [u,v],

42 Gauss (1777–1855), Riemann (1826–1866), Lie (1842–1899), Ricci-Curbastro

(1853–1925), Élie Cartan (1869–1951), Levi-Civita (1873–1941), Einstein (1879–
1955), Weyl (1885–1955).
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the first key relation (0.77) reads as

T(u,v) = 0.

That is, the torsion vanishes in Riemannian and pseudo-Riemannian geometry. But
note that there are more general geometries where the torsion does not vanish. It
turns out that the two key relations (0.77) and (0.78) govern Riemannian and
pseudo-Riemannian geometry. If the metric tensor g is constant on M4, then we
have the situation of Einstein’s theory of special relativity where the gravitational
force vanishes.43 Then the two key relations (0.77) and (0.78) pass over to the two
classical relations

• duv − dvu − [u,v] = 0, and
• dudv − dvdu − d[u,v] = 0,

respectively. Here, duv denotes the classical directional derivative. Relation (0.76)
allows far-reaching generalizations which represent the fundamental principle

force = curvature

in modern physics. This will be studied in the present volume.

Parallel Transport and the Covariant Directional Derivative

We are given the smooth curve

C : P = P (σ), σ0 < σ < σ0. (0.79)

Let σ0 < 0 < σ1. Set P0 := P (0). We want to characterize both the covariant

directional derivative Duv(P0) and the covariant derivative Dv(0)
dσ

with respect to
the real parameter σ by a limiting process based on parallel transport.

Covariant directional derivative. For a smooth classical real-valued function
f : R → R, the derivative ḟ(0) at the point σ = 0 is given by

ḟ(0) = lim
σ→0

f(σ) − f(0)

σ
.

As we will show later on, the generalization to the covariant directional derivative
reads as follows:

Duv(P0) = lim
σ→0

Π−1
σ v(P (σ)) − v(P0)

σ
. (0.80)

Let us discuss this. We are given the smooth velocity vector field v = v(P ) on
the space-time manifold M4. Fix the point P0 ∈ M4, and fix the tangent vector
u ∈ TP0M4 at the point P0. We choose a smooth curve C as given by (0.79) which
passes through the point P0 at the parameter value σ = 0 and has the tangent
vector u at P0. With respect to a local coordinate system, the curve C is given by
x = x(σ) where x(0) corresponds to the point P0 and u = ẋα(0)∂α. Let us now
consider the parallel transport along the curve C. To this end, we introduce the
operator

Πσ : TP0M
4 → TP (σ)M4.

43 In this special case, the Christoffel symbols vanish, and the covariant partial
derivative coincides with the classical partial derivative, ∇α = ∂α.
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By definition, the tangent vector Πσw (at the point P (σ)) is obtained from the
tangent vector w (at the point P0) by using parallel transport from the point P0 to
the point P (σ) along the curve C. This parallel transport is reversed by the inverse
operator

Π−1
σ : TP (σ)M4 → TP0M

4.

This completes the explanation of the notation used in (0.80).
The geometric intuition behind (0.80) will be explained in Chap. 9.5 by consid-

ering the situation on a sphere. Naively, one would use the limit

lim
σ→0

v(P (σ)) − v(P0)

σ
.

This expression can be computed by using local coordinates. However, it turns out
that, as a rule, the result depends on the choice of the local coordinates, that is, the
expression does not possess any invariant geometric (or physical) meaning. Roughly
speaking, the reason for this is the fact that the tangent vectors v(P0) and v(P (σ))
live in different tangent spaces. In order to be able to compute the vector difference
in the same tangent space TP0M4, we replace the tangent vector v(P (σ)) at the
point P (σ) by the parallel transported tangent vector Π−1

σ v(P (σ)) at the point P0.

From the physical point of view, it is impossible to compare physical quan-
tities (e.g., fields) at different space-time points without using the transport
of physical information.

This observation is crucial for gauge theory in modern physics (the theory of general
relativity and the Standard Model in particle physics).

Covariant derivatives with respect to the real parameter σ. Let the
family v = v(σ) of velocity vectors be given along the curve C from (0.79), that is,
the vector v(σ) lives in the tangent space TP (σ)M4 for all σ ∈]σ0, σ1[. We define

Dv(0)

dσ
:= lim

σ→0

Π−1
σ (v(σ)) − v(P0)

σ
. (0.81)

Similarly, we define the covariant derivative Dv(σ)
dσ

at the parameter σ ∈]σ0, σ1[.
With respect to local coordinates, we have

v(σ) = vγ(σ)∂γ ,
Dv(σ)

dσ
=
Dvγ(σ)

dσ
∂γ , σ ∈]σ0, σ1[

together with

Dvγ(σ)

dσ
:= v̇γ(σ) + ẋα(σ)Γ γ

αβ(x(σ)) · vβ(σ), γ = 0, 1, 2, 3.

Here, the curve C corresponds to xγ = xγ(σ) with σ0 < σ < σ1. By definition, the
family v = v(σ) of velocity vectors is parallel along the curve C iff

Dv(σ)

dσ
= 0 for all σ ∈]σ0, σ1[.

As we will show later on, this ordinary differential equation describes the trans-
port of physical information in gauge theory (theory of general relativity and the
Standard Model in physics).

Parallel transport respects the inner product. Suppose that the two
smooth velocity vector fields v = v(σ) and w = w(σ) are given along the curve
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C : P = P (σ), σ0 < σ < σ1. Then, for all σ ∈]σ0, σ1[, we get the following
generalized Leibniz product rule:

d

dσ
〈v(σ)|w(σ)〉 =

fi

Dv(σ)

dσ

˛

˛w(σ)

fl

+

fi

v(σ)
˛

˛

Dw(σ)

dσ

fl

. (0.82)

This implies that, for all smooth velocity vector fields u,v,w on the space-time
manifold M4, we have

du〈v|w〉 = 〈Duv|w〉 + 〈v|Duw〉.

Mnemonically, we write

d〈v|w〉 = 〈Dv|w〉 + 〈v|Dw〉.

In particular, if v = v(σ) and w = w(σ) are parallel along the curve C, then
Dv(σ)
dσ

= Dw(σ)
dσ

≡ 0. By (0.82),

〈v(σ)|w(σ)〉 = const for all σ ∈]σ0, σ1[.

This means that the parallel transport of tangent vectors (i.e., velocity vectors) on
the 4-dimensional space-time manifold preserves the (indefinite) inner product.

The covariant differential for general tensor fields. Later on, starting
from the covariant differential Dv of the velocity vector field v, we will introduce
the covariant differential DT for general smooth tensor fields T by using

• (Dω)(v) = ω(Dv) (duality between vector fields v and covector fields ω), and
• D(T⊗S) = DT⊗S + T⊗DS (the Leibniz product rule for tensor fields T and

S).

Explicitly, for the given tensor field

T = T β1...βm
α1...αn

dxα1 ⊗ · · · ⊗ dxαn ⊗ ∂β1 ⊗ · · · ⊗ ∂βm ,

we obtain

DT = ∇αT
β1...βm
α1...αn

dxα ⊗ dxα1 ⊗ · · · ⊗ dxαn ⊗ ∂β1 ⊗ · · · ⊗ ∂βm .

The Generalized Riemann Curvature Tensor in Modern
Mathematics and Physics

Let GL(N,C) denote the Lie group of all invertible complex (N×N)-matrices. This
is a real manifold of dimension 2N2. Moreover, let gl(N,C) denote the Lie algebra
to the Lie group GL(N,C). Explicitly, the real Lie algebra gl(N,C) consists of all
complex (N ×N)-matrices. The following generalization of gauge theory is crucial
for the Standard Model in particle physics. Note the following:

The structural equation

Fαβ = ∂αAβ − ∂βAα + AαAβ −AβAα (0.83)

with α, β = 0, 1, 2, 3 makes sense if A0,A1,A2,A3 are complex
(N ×N)-matrices with N = 1, 2, . . .

This means that the matrices A0,A1,A2,A3 are contained in the real Lie algebra
gl(N,C). More generally, let the symbol G denote a closed subgroup of the Lie
group GL(N,C).
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Then G is a Lie subgroup of GL(N,C).

Furthermore, let LG denote the real Lie algebra to the Lie group G. Choose

Aα ∈ LG, α = 0, 1, 2, 3.

Then, the Lie product [Aα, Aβ ] := AαAβ − AβAα is also contained in the Lie
algebra LG, and hence Fαβ is contained in the Lie algebra LG. That is, both

• the connection form A = Aα dx
α and

• the curvature form F = 1
2
Fαβ dx

α ∧ dxβ

are differential forms with values in the Lie algebra LG. Here, G is called the gauge
group, and LG is called the gauge Lie algebra. For example, choose

G = SU(N) and LG = su(N), N = 2, 3, . . .

Here, the Lie group SU(N) consists of all complex (N×N)-matricesA withAA† = I
and the determinant det(A) = 1. This is called the special unitary group (on the
complex Hilbert space C

N ). The real Lie algebra su(N) to the Lie group SU(N)
consists of all complex (N ×N)-matrices with A+A† = 0 and the trace tr(A) = 0.
Passing to components, we get

• Aα = (γKαL), and

• Fαβ = (rKLαβ).

For the indices, we have α, β = 0, 1, 2, 3, and K,L = 1, . . . , N. Here, the functions
γKαL (resp. rKLαβ) are called the generalized Christoffel symbols (resp. the compo-
nents of the generalized Riemann curvature tensor).

Cartan’s global approach. As we will show later on, it turns out that, as a
rule, the connection form A and the curvature form F are not invariant under local
gauge transformations. Therefore, Cartan introduced

• the global connection form A with values in the Lie algebra LG, and
• the global curvature form F with values in the Lie algebra LG
on an appropriate principal fiber bundle P(M4) over the space-time manifold M4.
Then Cartan’s local structural equation (0.83) is generalized to the global structural
equation

F = DA. (0.84)

In terms of physics, this global structural equation represents the most elegant
mathematical formulation of the principle “force equals curvature.” In terms of
mathematics, equation (0.84) represents a far-reaching generalization of Gauss’
theorema egregium. Every differential form F represented by (0.84) satisfies the
integrability condition

DF = 0 (0.85)

which is called the (global) Bianchi identity (see Chap. 17).
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Parallel Transport of Physical Information and the Local Phase
Factor

Let us sketch the basic ideas. We are given the curve x = x(σ), σ0 ≤ σ ≤ σ1, on
the space-time manifold M4. The ordinary differential equation

Ġ(σ) = −ẋα(σ)Aα(x(σ)) ·G(σ) (0.86)

with the initial condition G(σ0) = I (unit matrix) is called the differential equation
of parallel transport (for the phase factor G). Since Aα(P ) is contained in the
Lie algebra LG for all indices α and all points P of the space-time manifold, the
solution σ �→ G(σ) has the property that G(σ) is an element of the Lie group G
for all values of the parameter σ. As we will show later on, the differential equation
(0.86) can be used in order to define the covariant differential DA by means of the
classical differential dA and a suitable projection defined on the tangent spaces of
the appropriate principal fiber bundle (horizontal tangent vectors; see Chap. 17.

The local phase factor of a physical field ψ. Let

ψ(x) =

0

B

B

@

ψ1(x)
...

ψN (x)

1

C

C

A

be a complex column matrix with N rows which depends on the space-time point x.
In terms of physics, the function x �→ ψ(x) describes a physical field (e.g., the wave
function of an electron in the Standard Model in particle physics). Let σ �→ G(σ)
be the unique solution of the differential equation (0.86) of parallel transport. By
definition,

ψ(σ) := G(σ)ψ(x(σ0)), σ1 ≤ σ ≤ σ1. (0.87)

This equation describes the parallel transport of the physical field ψ along the curve
x = x(σ), σ0 ≤ σ ≤ σ1. Here, G(σ) is called the phase factor of the physical field ψ
at the space-time point x(σ). Using this terminology, the equation (0.86) describes
the parallel transport of the local phase function σ �→ G(σ). Differentiating equation
(0.87) with respect to the parameter σ, we get the following differential equation
of parallel transport for the physical field ψ :

ψ̇(σ) = −ẋα(σ)Aα(x(σ)) ψ(σ), σ0 ≤ σ ≤ σ1.

In terms of physics, this differential equation describes the transport of physical
information via phase factor.

The Modern Language of Fiber Bundles in Mathematics and
Physics

Physical fields are sections of fiber bundles. The qualitative (i.e., topolog-
ical) structure of physical fields is determined by the topological structure
of the corresponding fiber bundles. The prototype of a fiber bundle is the
tangent bundle of a manifold.

Folklore
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The tangent bundle and tangent vector fields. Consider a tangent vector
field v = v(P ) on the space-time manifold M4. Such a field assigns to each point P
of the manifold M4 the tangent vector v(P ) at the point P , that is, v(P ) ∈ TPM4.
In order to handle conveniently tangent vector fields as mathematical objects, we
will describe them as maps of the form

s : M4 → TM4, (0.88)

which are called sections s of the tangent bundle T M4. Let us discuss this basic
notion in modern mathematics. By definition, the tangent bundle TM4 of the
manifold M4 consists of all the ordered pairs

(P,v)

where P is an arbitrary point of M4, and v is an arbitrary tangent vector of M4

at the point P . Briefly,

TM4 := {(P,v) : P ∈ M4, v ∈ TPM4}.

The map s : M4 → TM4 is called a section of the tangent bundle TM4 iff the
image s(P ) has the form (P,v(P )) with v(P ) ∈ TPM4 for all points P ∈ M4.

Let us add some more terminology used in modern mathematics. Setting
π(P,v) := P , we get the so-called projection map

π : TM4 → M4.

The pre-image FP := π−1(P ) is called the fiber of the tangent bundle TM4 over
the base point P. Explicitly,

FP := {(P,v) : v ∈ TPM4}.

There exists a one-to-one correspondence TPM4 ↔ FP . Therefore, the tangent
spaces of the manifold M4 can be identified with the fibers of the tangent bundle
TM4. If P �= Q, then FP ∩ FQ = ∅. We have

TM4 =
[

P∈M4

FP .

That is, the tangent bundle TM4 is the union of the pairwise disjoint fibers FP .
Observe that the map s : M4 → TM4 is a section of the tangent bundle iff the
following diagram is commutative:

M4 s

id

TM4

π

M4.

(0.89)

That is, π(s(P )) = P for all P ∈ M4. In other words, the section s respects fibers,
that is, s(P ) lives in the fiber FP for all P ∈ M4. Synonymously, we will use the
notions

• tangent vector and
• velocity vector.
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In particular, tangent vector fields are also called velocity vector fields. In a quite
natural way, we are able to introduce local coordinates on the tangent bundle. To
this end, we choose an arbitrary local coordinate system of the basis manifold M4.
We assign to the point P of M4 the local coordinate x = (x0, x1, x2, x3). Moreover,
we have v = vα∂α. Finally, we assign to the point (P,v) of the tangent bundle
TM4 the local coordinates

(x0, x1, x2, x3, v0, v1, v2, v3).

This way, the tangent bundle TM4 becomes a real 8-dimensional manifold. By
definition, the velocity vector field v = v(P ) is smooth on M4 iff the corresponding
section s : M4 → TM4 is a smooth map between the two manifolds M4 and TM4.
The symbol Vect(M4) denotes the set of all smooth tangent vector fields on M4.

The cotangent bundle and cotangent vector fields. Now let us pass from
tangent vectors to the dual objects called cotangent vectors. Precisely the linear
functionals

ω : TPM4 → R

on the tangent space TPM4 are called cotangent vectors of the manifold M4 at the
point P. By definition, the set of all these linear functionals forms the dual space
T ∗
PM4 to the tangent space TPM4. This dual space T ∗

PM4 is called the cotangent
space of the manifold M4 at the point P. We have ω ∈ T ∗

PM4 iff there exist real
numbers ω0, ω1, ω2, ω3 such that

ω = ωαdx
α.

Recall that dxα(v) := vα for all tangent vectors v = vα∂j at the point P. A
cotangent vector field

ω = ω(P ) on M4

assigns to each point P of M4 the cotangent vector ω(P ). By definition, the cotan-
gent bundle T ∗M4 consists of all ordered pairs

(P, ω)

where P is an arbitrary point of M4, and ω is an arbitrary cotangent vector of M4

at the point P . Briefly,

T ∗M4 := {(P, ω) : P ∈ M4, ω ∈ T ∗
P (M4)}.

The map
s : M4 → T ∗M4

is called a section of the cotangent bundle T ∗M4 iff the image s(P ) has the form
(P, ω(P )) with ω(P ) ∈ T ∗

PM4 for all points P ∈ M4. Setting π(P, ω) := P , we get
the so-called projection map

π : T ∗M4 → M4.

For the pre-image, we obtain π−1(P ) = {P} × T ∗
PM4. This is called the fiber FP

over the base point P . Explicitly,

FP = {(P, ω) : P ∈ M4, ω ∈ T ∗
PM4}.

Therefore, the cotangent spaces of the manifold M4 can be identified with the fibers
of the cotangent bundle T ∗M4. The map

s : M4 → T ∗M4
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is called a section of the cotangent bundle iff the following diagram is commutative:

M4 s

id

T ∗M4

π

M4.

(0.90)

That is, π(s(P )) = P for all P ∈ M4. Sections of the cotangent bundle T ∗M4

correspond to cotangent vector fields ω = ω(P ) on M4. Synonymously, we use the
following notions:

• cotangent vector,
• velocity covector (or briefly covector),
• differential 1-form.

In particular, cotangent vector fields are also called velocity covector fields (or
fields of differential 1-forms). Using ω = ωαdx

α, we assign to the point (P, ω) of the
cotangent bundle T ∗M4 the local coordinates

(x0, x1, x2, x3, ω0, ω1, ω2, ω3).

This way, the cotangent bundle T ∗M4 becomes a real 8-dimensional manifold. By
definition, the cotangent vector field ω = ω(P ) is smooth on M4 iff the correspond-
ing section s : M4 → T ∗M4 is a smooth map. The symbol Covect(M4) denotes
the set of all smooth cotangent vector fields on M4.

Tensor bundles and tensor fields. By definition, a tensor of type (0, 2) of
the manifold M4 at the point P is a bilinear map of the form

g : T ∗
PM4 × T ∗

PM4 → R.

This means that g = gαβ dx
α ⊗ dxβ where gαβ are fixed, but otherwise arbitrary

real numbers for all indices α, β = 0, 1, 2, 3. The tensor bundle T 0
2 (M4) consists of

all the ordered pairs
(P,g)

where P is an arbitrary point of M4, and g is an arbitrary tensor of type (0, 2).
The map s : M4 → T 0

2M4 is called a section of the tensor bundle T 0
2 M4 iff the

following diagram is commutative:

M4 s

id

T 0
2M4

π

M4.

(0.91)

Here, π(P,g) := P. Sections of the tensor bundle T 0
2M4 correspond to tensor fields

g = g(P ) of type (0, 2) on M4. Using g = gαβ dx
α ⊗ dxβ , we assign to the point

(P,g) of the tensor bundle T 0
2M4 the local coordinates

(xγ , gαβ)α,β,γ=0,1,2,3.

This way, the tensor bundle T 0
2 M4 becomes a real 20-dimensional manifold. The

symbol
N0

2(M
4) denotes the set of all smooth sections s : M4 → T 0

2M4 of the

tensor bundle T 0
2M4 (i.e., the set of all smooth tensor fields of type (0, 2) on the

space-time manifold M4).
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Analogously, we will introduce the tensor bundle Tm
n M4, and the set

Nm
n (M4)

of all smooth tensor fields of type (m,n) on M4.
The symbol

Vm(M4) denotes the set of all smooth antisymmetric tensor fields
of type (m, 0) on M4. As we will show later on, such tensor fields coincide with
fields of differential m-forms on M4.

The topological structure of velocity vector fields and characteristic
classes. It turns out that the qualitative behavior of physical fields depends on
the topological properties of the corresponding fiber bundles. In this connection,
characteristic classes of fiber bundles are the most important topological invariants
which govern the topological structure of physical fields. To illustrate this, let us
consider the case of velocity vector fields v = v(P ) on the n-dimensional unit sphere
S
n. We want to study the following three basic questions:

• the existence of stagnation points,
• the maximal number of linearly independent continuous velocity vector fields (in

the global sense), and
• the existence of a global parallel transport.

By definition, the velocity vector field v = v(P ) has the critical (or stagnation)
point P0 iff v(P0) = 0.

Stagnation points. The Euler characteristic of the sphere S
n is given by

χ(Sn) = 1 + (−1)n, n = 1, 2, . . .

Let n be even. There exists a smooth field ω = ω(P ) of differential n-forms on the
sphere S

n such that we have the integral representation

χ(Sn) =

Z

Sn

ω, n = 2, 4, 6, . . .

Physicists call the Euler characteristic χ(Sn) a topological charge. By definition,
the Euler class [ω] of the tangent bundle TS

n is the set

[ω] := {ω + dν}

where ν is an arbitrary smooth differential (n− 1)-form on S
n. In other words,

[ω] ∈ Hn(Sn), n = 1, 2, . . .

That is, the Euler class [ω] is an element of Hn(Sn) (the nth de Rham cohomology
group of the sphere S

n). Note that the generalized Stokes integral theorem tells us
that

Z

Sn

dν =

Z

∂Sn

ν = 0,

since the boundary ∂S
n of the sphere S

n is empty (see page 729). Therefore,

χ(Sn) =

Z

Sn

ω + dν,

that is, the Euler characteristic of the sphere only depends on the Euler class of
the sphere. Let n = 1, 2, 3, . . . A special case of the Poincaré–Hopf theorem tells us
that:

A continuous velocity vector field without stagnation points exists on the
n-dimensional sphere iff χ(Sn) = 0.

Explicitly, this means the following:
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• If n is even, then every continuous velocity vector field on S
n has a stagnation

point.
• If n is odd, then there exists a continuous velocity vector field on S

n which has
no stagnation point.

The theorem of Adams. By definition, anm-field on the sphere S
n is a family

of m continuous velocity vector fields v1, . . . ,vm on S
n with the property that the

tangent vectors v1(P ), . . . ,vm(P ) are linearly independent at each point P in S
n.

The number
Span(TS

n)

is the maximal number m such that an m-field exists on S
n. We have:

• Span(TS
n) = 0 if n is even (i.e., n = 2, 4, 6, . . .),

• Span(TS
1) = 1, Span(TS

3) = 3,Span(TS
5) = 1, Span(TS

7) = 7.

The deep theorem of Adams tells us the precise result:44

Span(TS
n) = 8a+ 2b − 1, n = 1, 2, . . .

Here, the nonnegative integers a and b with b ≤ 3 are uniquely determined by the
prime number factorization n+ 1 = 24a+b · c, where c is a positive odd integer.

For example, if n = 7, then 8 = 23 · 1. Hence a = 0, b = 3, c = 1. This implies
Span(TS

7) = 23 − 1 = 7.
Global parallel transport. The sphere S

n is called parallelizable iff the con-
dition Span(TS

n) = n is satisfied.

The sphere S
n is parallelizable iff n = 1, 3, 7.

Let us discuss this. Suppose that n = 1, 3, 7. We want to show that there exists a
global parallel transport. In fact, there exist continuous velocity fields v1, . . . ,vn

on S
n such that the vectors

v1(P ), . . . ,vn(P )

form a basis of the tangent space TPS
n for all points P ∈ S

n. Fix the point P0 and
choose a fixed tangent vector v0 ∈ TP0 . Then there exist uniquely determined real
numbers v1, . . . , vn such that

v0 =

n
X

j=1

vjvj(P0).

Naturally enough, the global parallel transport of the vector v0 to the arbitrary
point P of S

n is defined by

v(P ) :=
n
X

j=1

vjvj(P ).

Triviality of the tangent bundle. The tangent bundle TS
n is called trivial

iff S
n is parallelizable, that is, n = 1, 3, 7. Then every tangent vector v at the point

P can uniquely be represented by the formula

v =
n
X

j=1

vjvj(P )

44 J. Adams, Vector fields on spheres, Ann. Math. 75 (1962), 603–632.
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where v1, . . . , vn are arbitrary real numbers. This means that we have a global
coordinate system for the tangent bundle TS

n. There exists a bijection between the
points (P,v) of the tangent bundle and the points

(P, v1, . . . , vn)

of the product bundle S
n × R

n. Summarizing:

The topology of fiber bundles allows us to distinguish between trivial and
nontrivial physical fields.

We expect that essential physical effects are related to nontrivial topological struc-
tures.

Typical examples. In the present Volume III, we will study the following
applications of gauge theory:

• gauge theory on the 3-dimensional Euclidean manifold (Sect. 9.4),
• gauge theory on the sphere (e.g., the surface of earth) as a paradigm (Sect. 9.5),
• the relation between Gauss’ surface theory and Levi-Civita’s parallel transport

(Sect. 9.5),
• the relation between Gauss’ surface theory and Cartan’s method of moving

frames (Sect. 9.5),
• the main theorem on velocity vector fields on the Euclidean manifold – the classic

predecessor of gauge theory in physics (Sect. 12.10.3),
• Maxwell’s theory of electromagnetism as a commutative U(1)-gauge theory on

the Minkowski manifold (Chap. 13 and Chaps. 18–23),
• the noncommutative SU(N)-gauge theory due to Yang and Mills (Chap. 15).

The general axiomatic approach to gauge theory will be discussed in Chap. 17. In
Volume IV, we will study

• the Standard Model in particle physics with a representation of the product
group U(1) × SU(2) × SU(3) as gauge group, and

• the general theory of relativity for gravitation (connection on the tangent bundle
of the pseudo-Riemannian space-time manifold),

• minimal surfaces and the conformal gauge symmetry,
• string theory and the conformal gauge symmetry.

Perspectives

The discussion above displays fruitful relations between mathematics and physics.
Let us add some further quotations.

Instantons and gauge theory:

From 1977 onward my interest moved in the direction of gauge theories and
the interactions between geometry and physics. I had for many years a mild
interest in theoretical physics, stimulated on many occasions by lengthy
discussions with George Mackey from Harvard University. However, the
stimulus in 1977 came from two other sources. On the one hand, Singer
told me about the Yang–Mills equations, which through the influence of
Yang were just beginning to percolate into mathematical circles. During
his stay in Oxford in early 1977, Singer, Hitchin, and I took a serious look
at the self-duality equations. We found that a simple application of the
Atiyah–Singer index theorem gave the formula for the number of instanton
parameters . . . The other stimulus came from the presence in Oxford of
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Roger Penrose and his group working on relativistic spinor calculus and
twistor theory.45

Sir Michael Atiyah, 1988

Conformal symmetry and twistors:

A new type of algebra for Minkowski space-time is described, in terms
of which it is possible to express any conformally or Poincaré covariant
operation. The elements of the algebra (twistors) are combined according
to tensor-type rules, but they differ from tensors or spinors in that they
describe locational properties in addition to directional ones.

Twistor algebra will have the same type of universality, in relation to the
conformal group, that the well-known and highly effective two-component
spinor algebra of van der Waerden has, in relation to the Lorentz group.
Twistors are, in fact, the “spinors” which are relevant to the six-dimensional
space whose (pseudo)-rotation group is isomorphic to the conformal group
of ordinary space-time.46

Roger Penrose, 1967

The Seiberg–Witten equations and the quark confinement:

Riemannian, symplectic and complex geometry are often studied by means
of solutions to systems of nonlinear differential equations, such as the equa-
tions of geodesics, minimal surfaces, Einstein’s curved universe, pseudo-
holomorphic curves and Yang–Mills connections. For studying such equa-
tions, a unified technology has been developed, involving analysis on
infinite-dimensional manifolds.
A striking application of the new technology is Donaldson’s theory of “anti-
self-dual” connections on SU(2)-bundles over four-manifolds, which ap-
plies the Yang–Mills equations from mathematical physics to shed light
on the relationship between the classification of topological and smooth
four-manifolds. This reverses the expected direction of application from
topology to differential equations to mathematical physics. Even though
the Yang–Mills equations are only mildly nonlinear, a prodigious amount
of nonlinear analysis is necessary to fully understand the properties of the
space of solutions.
At our present state of knowledge, understanding smooth structures on
topological four-manifolds seems to require nonlinear as opposed to linear
partial differential equations. It is therefore quite surprising that there is a
set of partial differential equations which are even less nonlinear than the
Yang–Mills equation, but can yield many of the most important results
from Donaldson’s theory. These are the Seiberg–Witten equations . . .
During the 1980’s, Simon Donaldson used the Yang–Mills equations, which
had originated in mathematical physics, to study the differential topology

45 See M. Atiyah, Collected Works, vol. V: Gauge Theories, Clarendon Press, Ox-
ford, 1988. Reprinted by permission of Oxford University Press.

46 Reprinted with permission from R. Penrose, Twistor algebra, J. Math. Phys.
8(2) (1967), 345–366. Copyright 1967, American Institute of Physics.
N. Hitchin, G. Segal, and R. Ward, Integrable Systems, Twistors, Loop Groups,
and Riemann Surfaces, Oxford University Press, 1999.
J. Frauendiener and R. Penrose, Twistors and general relativity, pp. 479–505. In:
B. Engquist and W. Schmid (Eds.), Mathematics Unlimited—2001 and Beyond,
Springer, New York, 2001.
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of four-manifolds. Using work of Michael Freedman, he was able to prove
theorems of the following type:

• There exist many compact four-manifolds which have no smooth struc-
ture.

• There exist many pairs of compact four-manifolds which are homeomor-
phic but not diffeomorphic.

The nonlinearity of the Yang-Mills equations presented difficulties, so
many techniques within the theory of nonlinear partial differential equa-
tions had to be developed. Donaldson’s theory was elegant and beautiful,
but the details were difficult for beginning students to master.
In the fall of 1994, the physicist Edward Witten proposed a set of equa-
tions which give the main results of Donaldson’s theory in a far sim-
pler way than had been thought possible. . . The Seiberg–Witten equa-
tions give rise to new invariants of four-dimensional smooth manifolds
called the Seiberg–Witten invariants. The key point is that homeomorphic
smooth four-manifolds may have quite different Seiberg–Witten invariants
. . . Shortly after the Seiberg–Witten invariants were discovered, several
striking applications were found concerning
(i) the proof of the Thom conjecture on the smooth embedding of compact

Riemann surfaces into two-dimensional complex projective spaces P
2
C,

(ii) obstructions to the existence of a Riemannian geometry with positive
curvature on manifolds, and

(iii) the existence of pseudo-holomorphic curves on symplectic mani-
folds.47

John Moore, 1996

This quotation refers to the following two fundamental papers on the quark con-
finement:

N. Seiberg and E. Witten, Electric-magnetic duality, monopole conden-
sation, and confinement in N = 2 supersymmetric Yang–Mills theory,
Nuclear Phys. B426 (1994), 19–52.

N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry break-
ing in N = 2 supersymmetric QCD, Nucl. Physics B431 (1994), 485–550.

These two papers concern the computation of models which describe electrically
and magnetically charged supersymmetric particles at low energies in the setting
of gauge theory. The Seiberg–Witten equations use the spin structure of mani-
folds called spin manifolds, and they generalize the Landau–Ginzburg equation in
superconductivity. This can be found in:

C. Nash, Topology and Physics – a Historical Essay, pp. 359–415. In: I.
James (Ed.), History of Topology, Oxford University Press, 1999.

M. Atiyah, The Dirac equation and geometry, pp. 108–124. In: P. Goddard
(Ed.), Paul Dirac – the Man and his Work, Cambridge University Press,
1998.

E. Witten, Physical law and the quest for mathematical understanding,
Bull. Amer. Math. Soc. 40 (2003), 21–30.

47 J. Moore, Lectures on Seiberg–Witten Invariants, Springer, Berlin, 1996
(reprinted with permission). We recommend these Lecture Notes as an intro-
duction to the study of the Seiberg–Witten equations.
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E. Witten, From superconductors and four-manifolds to weak interaction,
Bull. Math. Soc. 44 (2007), 361–391.

J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin,
2008.

H. Lawson and M. Michelsohn, Spin Geometry, Princeton University Press,
1994.

Furthermore, we refer to:

R. Stern, Instantons and the topology of four-manifolds, Mathem. Intelli-
gencer 5(3) (1983), 39–44.

K. Marathe, Topics in Physical Mathematics, Springer, London, 2010.

D. Freed and K. Uhlenbeck, Instantons and Four-Manifolds, Springer, New
York, 1984.

S. Donaldson and P. Kronheimer, The Geometry of Four-Manifolds, Ox-
ford University Press, 1990.

S. Donaldson, The Seiberg–Witten equations and 4-manifold topology,
Bull. Amer. Math. Soc. 33 (1996), 45–70.

J. Morgan, The Seiberg–Witten Equations and Applications to the Topol-
ogy of Four-Manifolds, Princeton University Press, 1996.

T. Friedrich, Dirac Operators in Riemannian Geometry, Amer. Math. Soc.,
Providence, Rhode Island, 2000.

P. Kronheimer and T. Mirowka, Monopoles and Three-Manifolds, Cam-
bridge University Press, 2007.

Concerning Morse theory, Floer homology, and quantum cohomology, we refer to
the following monographs:

J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin,
2008.

M. Schwarz, Morse Homology, Birkhäuser, Basel, 1993.

D. McDuff and D. Salamon, J-holomorphic Curves and Quantum Coho-
mology, Amer. Math. Soc., Providence, Rhode Island, 1994.

Yu. Manin, Frobenius manifolds, quantum cohomology and moduli spaces,
Amer. Math. Soc., Providence, Rhode Island, 1999.

S. Donaldson, Floer Homology Groups, Cambridge University Press, 2002.

J. Kock and I. Vainsencher, An Invitation to Quantum Cohomology: Kont-
sevich’s Formula for Plane Curves, Birkhäuser, Basel, 2006.

S. Novikov, Topological Library, Vol. 1: Cobordisms and their Applica-
tions, Vol. 2: Characteristic Classes and Smooth Structures, World Scien-
tific, Singapore, 2007/09.

The spectrum of elliptic Dirac operators on manifolds and noncommu-
tative geometry. The original Dirac equation for the relativistic electron is a
first-order system of partial differential equations of hyperbolic type. In geometry,
one uses an elliptic variant of the Dirac operator by passing to imaginary time. For
example, the Seiberg–Witten equations in geometry are nonlinear equations related
to the elliptic Dirac differential operator. In 1985, Alain Connes created noncom-
mutative geometry. The decisive analytic information comes from the spectrum of
an elliptic Dirac operator on a compact manifold. References can be found on page
346.
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The Millennium Prize Problem in quantum field theory. One of the seven
Millennium Prize Problems concerns the Yang–Mills gauge theory. This is described
in:

A. Jaffe and E. Witten, Quantum Yang–Mills theory, pp. 129–152. In: J.
Carlson, A. Jaffe, and A. Wiles (Eds.), The Millennium Prize Problems,
Amer. Math. Soc., Providence, Rhode Island, 2006.

The problem is to show that there exists a gap between the ground state energy and
the first excitation energy of a Yang–Mills quantum field. The award for solving
this problem will be one million dollars. Nowadays it is completely open how to
attack this problem.
The Seiberg–Witten equations and the Weinstein conjecture. Let us men-
tion a recent beautiful and deep application of the Seiberg–Witten equations to
dynamical systems on 3-dimensional contact manifolds. Recall first the classical
Poincaré theorem saying that every continuous velocity vector field on a two-
dimensional sphere has a zero. In terms of physics, this corresponds to a stationary
point of the velocity vector field. Such a point represents a (trivial) closed orbit of
the corresponding flow of fluid particles. In other words, the Poincaré theorem tells
us that:

Every continuous velocity vector field on a 2-dimensional sphere has a
closed orbit.

We want to generalize this to the 3-dimensional sphere. It turns out that this is a
hard problem. First of all note that there exist continuous velocity vector fields on
the 3-dimensional sphere which have no closed orbits. Recently, Taubes proved the
following theorem:

Every smooth Reeb velocity vector field on a real compact oriented
3-dimensional manifold (without boundary) has a closed orbit.

This tells us that the Weinstein conjecture is true in three dimensions. Let us
explain the notation. A Reeb velocity vector field v on the 3-dimensional manifold
M is given by the equations

dω(v) = 0, ω(v) = 1 on M

where ω is a contact form on M, that is, ω is a smooth 1-form on M with the
property (dω ∧ ω)(P ) �= 0 for all points P of M.48

The point of departure is the Taubes theorem on the relation between the
Seiberg–Witten theory and the Gromov theory on pseudo-holomorphic curves. This
theorem relates the Seiberg–Witten invariants of real symplectic 4-dimensional
manifolds to counts of holomorphic curves. In the present case, we have to deal
with 3-dimensional manifolds. To this end, Taubes uses a 3-dimensional variant of
the Seiberg–Witten theory combined with Floer homology. We refer to:

M. Hutchings, Taubes’s proof of the Weinstein conjecture in dimension
three, Bull. Amer. Math. Soc. 47(1) (2010), 73–126.

C. Taubes, Seiberg–Witten and Gromov Invariants for Symplectic
4-Manifolds, International Press, Boston, 2000.

C. Taubes, The Seiberg–Witten equations and the Weinstein conjecture I,
II: Geom. Topol. 11 (2007), 2117–2002, 13 (2009), 1337–1417.

Taubes discovered in the 1990s that

48 An introduction to Lie’s contact geometry can be found in Sect. 5.7 of Vol. II.
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The Seiberg–Witten theory and Gromov’s theory of pseudo-holomorphic
curves are equivalent in some sense.

This relates apparently completely different physical and mathematical topics with
each other.

• In terms of physics, the Seiberg–Witten equation is closely related to the Landau–
Ginzburg equation for describing phase transitions in condensed matter (e.g.,
superconductors).

• The Gromov theory of pseudo-holomorphic curves generalizes the Cauchy–
Riemann differential equations for holomorphic functions.

We refer to:

I. Vekua, Generalized Analytic Functions, Pergamon Press, London, 1962.

M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent.
Math. 82 (1985), 307–347.

H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynam-
ics, Birkhäuser, Basel, 1994.

D. McDuff and D. Salamon, J-holomorphic Curves and Quantum Coho-
mology, Amer. Math. Soc., Providence, Rhode Island, 1994.

D. McDuff and D. Salamon, Introduction to Symplectic Topology, Claren-
don Press, Oxford, 1998.

We will show in Sect. 2.3.2 on page 129 that the Cauchy–Riemann equations are
closely related to the Clifford algebra

W

(E2) of the Euclidean plane E2 (i.e., the
algebra of quaternions). It turns out that

The Dirac equation for the relativistic electron is based on the Clifford
algebra

W

(M4) of the 4-dimensional Minkowski space M4 (flat space-time
manifold). Based on the theory of Clifford algebras, the Dirac equation
represents a generalization of the classical Cauchy–Riemann equations.

In his 1851 Ph.D. thesis, Riemann used the Cauchy–Riemann differential equations
in order to create the geometric theory of holomorphic functions based on the
notion of conformal map and the idea of the Riemann surface for describing analytic
continuation in a global setting. Riemann was strongly motivated by ideas coming
from physics (e.g., electricity). He used physical intuition in order to motivate the
existence of global analytic functions on compact Riemann surfaces. Riemann’s
successors filled the gaps in Riemann’s arguments step by step. The final form of
the theory was published by

H. Weyl, The Concept of a Riemann Surface (in German), Teubner,
Leipzig, 1913. New edition with commentaries supervised by R. Remmert,
Teubner, Leipzig, 1997. English edition: Addison Wesley, Reading, Mas-
sachusetts, 1955.

In terms of mathematics, the following topics lurk behind the equivalence of the
Seiberg–Witten theory and the Gromov theory of pseudo-holomorphic curves:

• symplectic geometry, fixed-point theorems for symplectic maps (i.e., higher-
dimensional versions of Poincaré’s last theorem), geometrical optics, and Hamil-
tonian mechanics (e.g., celestial mechanics) (see Vol. II),

• Lie’s contact geometry and the Legendre transformation for thermodynamical
potentials (see Vol. II),

• Clifford algebras, spin geometry, the Dirac equation for the relativistic electron
in flat and curved space-times, symmetry breaking and the Higgs particle in weak
interaction, and the quark confinement.
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The creation of Floer homology was essentially motivated by the following funda-
mental paper:

E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17 (1982),
661–692.

We refer to the basic paper by

A. Floer, Witten’s complex and infinite-dimensional Morse theory, J. Diff.
Geometry 30 (1989), 207–221.

Morse theory studies the relation between the critical points of energy functionals
E : M → R and the topology of the manifold M. As a nice introduction to modern
Morse theory based on Floer homology, we recommend:

J. Jost, Riemannian Geometry and Geometric Analysis, fifth edition,
Chapter 6, Springer, Berlin, 2008.

We also recommend the monographs on Morse homology and its applications by
Schwarz (1993) and Donaldson (2002) quoted on page 60.
The language of bundles. The following equations of physical theories possess
a similar structure:

• the basic equations of quantum electrodynamics (see Chap. 11 of Vol. II),
• the Landau–Ginzburg equation,
• the Dirac equation for the relativistic electron,
• the Yang–Mills equation,
• the Seiberg–Witten equation,
• the Standard model in particle physics (see Vol. IV).

In order to display the similarities, one has to use variational problems based on
the principle of critical action. Then the Lagrangians possess a similar structure
which depends on the choice of both

• the symmetry group G (the curvature of the principal fiber bundle P with the
structure group G), and

• the spaces of physical fields (sections of vector bundles which are associated to
P via representations of the symmetry group G).

The symmetry group of quantum electrodynamics (resp. of the Yang–Mills equa-
tions) is the group U(1) (resp. SU(2)). The Dirac equation and the Seiberg–Witten
equations are based on so-called spin groups (universal covering groups of the
Lorentz group O(1, 3) and the rotation groups SO(N)) which are closely related to
the spin of the particles.

The interactions correspond to the curvature of the principal fiber bundle.

The basic ideas will be studied in Chap. 15 (Ariadne’s thread in gauge theory).

Gauge Potentials, moduli spaces, correlation functions of quantum fields,
and Feynman path integrals. The basic formula

F= DA

describes the relation between the interaction forces F and the gauge potential A by
means of the first-order differential operator D. Note the following peculiarity. By a
local gauge transformation, we understand a change of the local bundle coordinates
of the corresponding principal bundle with the symmetry group G. By a global gauge
transformation, roughly speaking, we understand a diffeomorphism f : P → P of
the bundle space P of the principal bundle which is generated by the action of the
symmetry group G (also called gauge group) on the principal fiber bundle. There
arises the following question:
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Which is the qualitative (topological) and quantitative structure of the space
of all gauge potentials A up to global gauge transformations?

In other words, one has to investigate the moduli space Mod(A) of all gauge poten-
tials A (called connections in mathematics). More precisely, Mod(A) is the space
of all equivalence classes of connections modulo global gauge transformations. The
space Mod(A) is called the moduli space of gauge potentials (connections). The
investigation of moduli spaces needs sophisticated topological tools. The point is
that, as a rule, moduli spaces are not smooth structures; they are not manifolds,
but they possess singularities. In a natural way, such geometric objects arise in
algebraic geometry (e.g., the curve x2−y2 = 0 has a singularity at the point (0, 0)).
We refer to:

S. Abhyankar, Algebraic Geometry for Scientists and Engineers, Amer.
Math. Soc., Providence, Rhode Island, 1990.

In terms of quantum field theory, the knowledge of the moduli space is fundamental
for computing correlation functions via Feynman path integrals:

Z

[A]∈Mod(A)

eiS([A])/� D([A]). (0.92)

Here, one has to sum (i.e., to integrate) over all the possible physical states [A] (i.e.,

over all the elements of the moduli space). The statistical weight eiS([A])/� depends
on the action S([A]) corresponding to the physical state [A] (equivalence class of
connections modulo global gauge transformations). As an introduction to moduli
spaces in gauge theory, we recommend:

K. Marathe and G. Martucci, The Mathematical Foundations of Gauge
Theories, North-Holland, Amsterdam, 1992.

K. Marathe, Topics in Physical Mathematics, Springer, London, 2010.

G. Naber, Topology, Geometry, and Gauge Fields, Springer, New York,
1997.

Fundamental papers on this subject can be found in:

M. Atiyah, Collected Works, Vol. 5: Gauge Theories, Cambridge University
Press, 2004.

Topological quantum field theory. The basic idea of topological quantum field
theory is to choose special functionals A �→ S([A]) in order to obtain topological
invariants by using Feynman path integrals of the type (0.92). These integrals are
computed by means of the method of stationary phase. This is an approximative
method. However, there exists a rigorous result which shows that, in a special
model, the method of stationary phase in lowest order yields the precise value of
the integral:

J. Duistermaat and G. Heckmann, On the variation in the cohomology in
the symplectic form of the reduced phase space, Invent. Math. 69 (1982),
259–268; 72 (1983), 153.

We refer to:

E. Witten, Topological quantum field theory, Commun. Math. Phys. 117
(1988), 353–386.

E. Witten, Witten’s Lectures on Three-Dimensional Topological Quantum
Field Theory. Edited by Sen Hu, World Scientific, Singapore 1999.
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In Sect. 23.8, we will sketch how the Jones polynomials (i.e., topological invariants
in knot theory) can be obtained by the method of topological quantum field theory
due to Witten. This approach is based on the Chern–Simons gauge theory on the
3-dimensional sphere.
Historical remarks on moduli spaces and modular forms. The moduli space
Modg(R) of compact Riemann surfaces R of genus g consists of all equivalence classes
of compact Riemann surfaces of genus g modulo conformal equivalence. This space
was first studied by Riemann who determined the finite dimension of this space:

• If g ≥ 2, then the real dimension of Mod(R)g is equal to 6g−6. This corresponds
to the conformal classification of algebraic curves parametrized by sophisticated
automorphic functions which were investigated by Poincaré and Klein at the end
of the 19th century.

• If g = 0, then the moduli space Mod(R)0 consists of precisely one point which
corresponds to the Riemann sphere; this sphere is conformally equivalent to the
one-dimensional complex projective space P

1
C.

• If g = 1, then the dimension of Mod(R)1 is equal to two. This corresponds to
the conformal classification of elliptic curves parametrized by elliptic functions.
The theory of elliptic functions was created by Legendre, Gauss, Jacobi, and
Weierstrass at the end of the 18th century and in the 19th century.

In the setting of Teichmüller theory, the moduli space Mod(R)g is studied in:

J. Jost, Compact Riemann Surfaces: An Introduction to Contemporary
Mathematics, Springer, Berlin, 2006.

Furthermore, we refer to:

F. Klein, Development of Mathematics in the 19th Century, Math. Sci.
Press, New York, 1979.

K. Maurin, The Riemann Legacy: Riemannian Ideas in Mathematics and
Physics of the 20th Century, Kluwer, Dordrecht, 1997.

A. Hurewitz and R. Courant, Lectures on Complex Function Theory and
Elliptic Integrals (in German), Springer, Berlin, 1964.

D. Lawden, Elliptic Functions and Applications, Springer, New York, 1989.

L. Ford, Automorphic Functions, Chelsea, New York, 1972.

T. Apostol, Introduction to Analytic Number Theory, Springer, New York,
1986.

T. Apostol, Modular Functions and Dirichlet Series in Number Theory,
Springer, New York, 1990.

M. Waldschmidt, P. Moussa, J. Luck, and C. Itzykson (Eds.), From Num-
ber Theory to Physics, Springer, New York, 1995 (survey articles).

J. Bruinier, G. van der Geer, G. Harder, and D. Zagier, The 1-2-3 of
Modular Forms, Lectures at a Summer School in Nordfjordeid, Norway,
Springer, Berlin, 2008 (survey articles).

The theory of elliptic curves possesses a very rich structure. The spectacular proof
of Fermat’s last theorem by Andrew Wiles in 1995 was based on recent progress for
elliptic curves (see the discussion in the Prologue to Vol. I on page 17):

S. Singh, Fermat’s Last Theorem: The Story of a Riddle that Confounded
the World’s Greatest Minds for 358 Years, Fourth Estate, London, 1997.

F. Diamond and J. Shurman, A First Course in Modular Forms, Springer,
Berlin, 2005 (the modularity theorem).

Fermat’s last theorem is a consequence of the so-called modularity theorem:
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All rational elliptic curves arise from modular forms.

This fundamental result was conjectured by Taniyama, Shimura, and Weil in the
1950s and 1960s. For a special class of elliptic curves, the theorem was proven by
Wiles in order to get the proof of Fermat’s last theorem. The correctness of the
general modularity theorem was proven by Breuil, Conrad, Diamond, and Taylor
in 2001:

A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. Math.
142 (1995), 443–551.

C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of
elliptic curves over the field Q of rational numbers: wild 3-adic exercises,
J. Amer. Math. Soc. 14(4) (2001), 843–939.

An introduction to the field Qp of p-adic numbers and the adelic ring AQ will be
given in Sect. 4.6.7 on page 332. We will also briefly discuss the relation of p-adic
numbers and the adelic ring to mathematical models motivated by physics (chaos
and turbulence or dark matter in cosmology). This is called adelic physics.

The moduli space of compact Riemann surfaces is used in string theory in order
to compute the Feynman path integral for the free bosonic string. This was first
done by:

A. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. 103B
(1981), 207.

A. Polyakov, Quantum geometry of fermionic strings, Phys. Lett. 103B
(1981), 213.

A detailed computation can be found in:

B. Hatfield Quantum Field Theory of Point Particles and Strings, Addison-
Wesley, Redwood City, California.

For a rigorous approach based on the mathematical theory of Riemann surfaces,
we refer to:

J. Jost, The Bosonic String: A Mathematical Treatment, International
Press, Boston, 2001.

The Ricci flow and the Poincaré conjecture:

The system of ordinary differential equations

∂g

∂σ
= −Ric(g) (0.93)

defines the Ricci flow g = g(P, σ), P ∈ M, on the n-dimensional (compact) Rie-
mannian manifold M. This is a family of metric tensors on M which depends on
the real parameter σ ∈ [σ0, σ1]. In terms of local coordinates, equation (0.93) reads
as

∂gij(x, σ)

∂σ
= −Rij(g(x, σ)), x ∈ M, σ ∈ [σ0, σ1]

where i, j = 1 . . . , n. This equation generalizes the heat equation

∂Θ(P, σ)

∂σ
= −ΔΘ(P, σ), P ∈ M, σ ∈ [σ0, σ1]

for the temperature field Θ = Θ(P, σ) on the manifold M. Here, the real parameter
σ denotes time. It was the ingenious idea of Perelman to solve the Poincaré conjec-
ture by deforming appropriate 3-dimensional manifolds to a 3-dimensional sphere
by means of the Ricci flow. We refer to:
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B. Chow and D. Knopf, The Ricci Flow: An Introduction, Amer. Math.
Soc., Providence, Rhode Island, 2004.

B. Chow, P. Lu, and L. Ni, Hamilton’s Ricci Flow, Amer. Math. Soc.,
Providence, Rhode Island, 2006.

H. Cao, S. Yau, and X. Zhu, Structure of Three-dimensional Space: The
Poincaré and Geometrization Conjectures, International Press, Boston,
2006.

J. Morgan and G. Tian, Ricci Flow and the Poincaré Conjecture, Amer.
Math. Soc., Providence, Rhode Island/Clay Mathematics Institute, Cam-
bridge, Massachusetts, 2007.

D. O’Shea, The Poincaré Conjecture: In Search of the Shape of the Uni-
verse, Walker, New York, 2007.

Modern differential geometry in physics. A lot of material on modern differ-
ential geometry and its applications to physics can be found in:

V. Ivancevic and T. Invancevic, Differential Geometry: A Modern Intro-
duction, World Scientific, Singapore, 2007.

A lot of historical material including the history of gauge field theory is contained
in the survey article by:

H. Kastrup, On the advancement of conformal transformations and their
associated symmetries in geometry and theoretical physics, Annalen der
Physik 17 (2008), 631–690.

For the relations between mathematics and physics in the history of quantum field
theory, we recommend:

W. Nahm, Conformal field theory: a bridge over troubled waters, pp. 571–
604. In: A. Mitra (Ed.), Quantum Field Theory: A 20th Century Pro-
file, Indian National Science Academy and Hindustan Book Agency, India,
2000.

For recent progress in quantum field theory based on close relations between math-
ematics and physics, we refer to:

C. Bär and K. Fredenhagen, Quantum Field Theory in Curved Space-
Times, Springer 2009.



1. The Euclidean Space E3 (Hilbert Space and
Lie Algebra Structure)

In the occupation with mathematical problems, a more important role
than generalization is played – I believe – by specialization.

David Hilbert, Paris Lecture, 1900

1.1 A Glance at History

We need an analysis which is of geometric nature and describes physical
situations as directly as algebra describes quantities.

Gottfried Wilhelm Leibniz (1646–1716)

One has to distinguish between

• the Euclidean space E3 (a set of vectors), and
• the Euclidean manifold E

3 (a set of points).

The Euclidean space E3 is a real 3-dimensional Hilbert space equipped with the
inner product

〈x|y〉 := xy

of vectors x,y. Additionally, the Euclidean space E3 is a Lie algebra equipped with
the vector product

[x,y] := x × y.

The Euclidean manifold E
3 is a real 3-dimensional Riemannian manifold whose

tangent spaces (consisting of velocity vectors) are isomorphic to the Hilbert space
E3. The theory of Euclidean temperature fields, velocity fields, and velocity covector
fields (differential forms) refers to the Euclidean manifold E

3.
Nowadays, the notion of ‘vector’ is one of the basic notions in mathematics

and physics. However, the history of the theory of vectors and dual vectors (called
covectors) is very strange and involved. In an implicit manner, the notion of vector
slowly emerged in ancient static equilibrium physics as

• force F,
• torque x × F (vector product) of a force, and
• work FΔx (inner product) of a force.

Newton (1646–1727) and his successors noticed implicitly that in the dynamics of
planets the following vectors play a crucial role:

• ẋ(t) (velocity vector/tangent vector),
• ẍ(t) (acceleration vector),
• mẋ(t) (momentum vector), and
• x(t) ×mẋ(t) (angular momentum vector).

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 2,
© Springer-Verlag Berlin Heidelberg 2011
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Here, t denotes time. In 1845, the notion of ‘vector’ was explicitly introduced by
Hamilton (1805–1865), as a special 3-dimensional case of his 4-dimensional quater-
nions.

In the nineteenth century, mathematicians and physicists discovered that it
is very convenient to leave the three-dimensional Euclidean space E3. In 1844,
Grassmann (1809–1877) introduced the exterior (or alternating) product

x ∧ y

which lives outside the Euclidean space E3. This exterior product generates the ex-
terior algebra (or Grassmann algebra)

V

(E3) which is an extension of E3. Explicitly,
x ∧ y is an antisymmetric bilinear form on E3 given by

(x ∧ y)(a,b) := (xa)(yb) − (xb)(ya) for all a,b ∈ E3.

The exterior product is related to the tensor product x ⊗ y by the relation

x ∧ y = x⊗ y − y ⊗ x.

Here, x⊗ y is a bilinear form on E3 defined by

(x ⊗ y)(a,b) := (xa)(yb) for all a,b ∈ E3.

The dual space Ed
3 to the Euclidean space E3 generates the Grassmann algebra

V

(Ed
3 ), and hence we get the algebra of alternating differential forms Λ(E3) on

the Euclidean manifold E
3. Élie Cartan (1869–1951) based his beautiful calculus

of alternating differential forms on the algebra Λ(E3) by adding the differential
operator1

d : Λ(E3) → Λ(E3).

We will show that:

Élie Cartan’s calculus for alternating differential forms represents the most
effective generalization of the classic calculus due to Newton and Leibniz
to functions of several variables, and hence to physical fields.

Hodge (1903–1975) introduced the star operator ∗ :
V

(X) →
V

(X) where we set
X := E3 or X := Ed

3 . This way, Hodge obtained the dual differential operator

d∗ : Λ(E3) → Λ(E3)

given by d∗ω := (−1)p ∗−1 d(∗ω) for p-differential forms ω. Setting Δ := dd∗ + d∗d,
this yields the Laplacian

Δ : Λ(E3) → Λ(E3),

which plays a crucial role in modern differential geometry together with the Dirac
operator, the Yang–Mills operator, and the Seiberg–Witten operator (generalized
Landau–Ginzburg operator). The Laplacian is basic for differential topology (the
de Rham cohomology theory on Riemannian manifolds).

In 1843, Hamilton (1805–1865) introduced 4-dimensional objects x + a (vector
plus real number) which he called quaternions. These quaternions form a skew-field
which extends the field of complex numbers. Hamilton and Cayley (1821–1895)
showed independently how the Euler formula for the rotations of the 3-dimensional
Euclidean space E3 can be very elegantly formulated in terms of 4-dimensional
quaternions (see Sect. 7.1 on page 425). In a quite natural way, this leads to the
universal covering group SU(2) of the Lie group SO(3) (which is isomorphic to the
rotation group SU(E3) of the Euclidean space E3). The point is that:

1 The symbol Λ(E3) denotes the real linear space of all smooth differential forms
on the Euclidean manifold E

3 (see page 701).
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The groups SU(2) and SO(3) have isomorphic Lie algebras.

That is, the groups are locally isomorphic near the unit element. However, the
groups SU(2) and SO(3) are not globally isomorphic. In fact, the group SU(2) is
simply connected, whereas the group SO(3) does not have this topological property.

The local theory of Lie groups was created by Lie (1842–1899) in his seminal
work. The global theory of Lie groups was strongly influenced by Chevalley (1909–
1984). We will show later on that the quaternions and the more general Clifford
algebra of the Minkowski space are crucial for understanding the spin of electrons
and other elementary particles. This was discovered by Pauli (1900–1958) and Dirac
(1902–1984). The general theory of Clifford algebras, based on a generalization of
the product

x ∨ y := x ∧ y − xy, x,y ∈ E3,

lies at the heart of modern spin geometry.
In 1905, Einstein (1879–1955) published his theory of special relativity. In 1908,

Minkowski (1864–1909) emphasized in a famous lecture that the theory of special
relativity can be understood best by extending the Hilbert space E3 to a four-
dimensional indefinite Hilbert spaceM4 called the Minkowski space. In this setting,
the classic equations in electrodynamics due to Maxwell (1831–1879) become the
equations

d∗F = −μ0J , dF = 0

for the differential 2-form F of the electromagnetic field and the differential 1-form
J for the electric 4-current on the 4-dimensional Minkowski manifold M

4.
Curvature. The Euclidean manifold E

3 allows a global parallel transport of
vectors. This reflects the flatness of E

3. Using a general transport of frames, it
is possible to assign nontrivial curvature and torsion to the Euclidean manifold

E
3. This method of moving frames due to Élie Cartan is the prototype for modern

gauge theory which is basic for both modern differential geometry and the Standard
Model in particle physics. Intuitively, a moving frame on the Euclidean manifold
represents the motion of a rigid body under the influence of an external force.

Duality. In what follows, we will encounter the following important dualities:

• Riesz duality and Lie–Cartan duality between velocity fields and velocity covector
fields (differential forms),

• Levi-Civita duality,
• Weyl duality, and
• Hodge duality.

1.2 Algebraic Basic Ideas

The intuitive model. Consider the three-dimensional space of our intuition. Fix
a point O called the origin. By definition, position vectors x have the origin as
initial point and the point P as final point (Fig 1.1(a)). We also write

• x =
−−→
OP and P = O + x.

By definition, the Euclidean space E3(O) is the space of all position vectors x start-
ing at the point O. This is a real 3-dimensional linear space. To simplify notation,
we write E3 instead of E3(O). By definition, the Euclidean manifold E

3 consists of
all the points P. The motion of a particle can be described either by the equation

P = P (t), t0 ≤ t ≤ t1
or by the equivalent equation x = x(t) (Fig. 1.1(b)). In order to introduce Cartesian
coordinates, choose a system i, j,k which has the following properties:
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Fig. 1.1. Motion of a particle

• i, j,k are unit vectors which are pairwise orthogonal to each other;
• i, j,k are positively oriented (Fig. 1.1(c)).

The position vector x allows the unique representation

x = xi + yj + zk.

Here, the real numbers x, y, z are called the Cartesian coordinates of the point P.
As we will see below, for the inner product, we have

xx′ = xx′ + yy′ + zz′.

Thus, the map x �→ (x, y, z) yields the Hilbert space isomorphism E3  R
3, and

the map P �→ (x, y, z) yields the bijection E
3  R

3.2

Einstein’s summation convention. In this chapter, we sum over equal upper
and lower Latin indices from 1 to 3. For example,

ei × ej = ckijek =
3
X

k=1

ckijek, i, j = 1, 2, 3.

1.2.1 Symmetrization and Antisymmetrization

Symmetrization and antisymmetrization play a crucial role in mathematics
and physics (e.g., for constructing invariants). For example, bosons (e.g.,
photons) are based on symmetrization, whereas fermions (e.g., electrons)
are based on antisymmetrization.

Folklore

The sign of a permutation and its generalization. Let ik, jk = 1, . . . , n if
k = 1, 2, . . . , n. There exists precisely one symbol εi1i2...inj1j2...jn

which has the following
two properties:

• ε12...n12...n = 1 (normalization condition), and

• εi1i2...inj1j2...jn
changes sign if two upper (resp. lower) indices are transposed.

2 Note that in this monograph, Cartesian coordinate systems are always positively
oriented. Otherwise, we will use the term ‘reflected’ Cartesian coordinate system.
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For example, ε1212 = −ε1221 = 1 and ε1211 = ε1222 = 0. We also write

εj1j2...jn := ε1 2 ... n
j1j2...jn

, εi1i2...in := εi1i2...in1 2 ... n .

Let N := {1, 2, . . . , n}. By definition, precisely the bijective maps

π : N → N

are called permutations. The value of επ(1)π(2)...π(n) is called the sign of the per-
mutation π denoted by sgn(π). For example, in the special case where n = 2 with
π(1) := 2 and π(2) := 1, we have sgn(π) = ε21 = −1.

Symmetrization. Let {aij} be a family of complex numbers with the indices
i, j = 1, 2, . . . , n. For n = 2, we define

(Sym a)12 :=
1

2
(a12 + a21).

In the general case, we set

(Sym a)12...n =
1

n!

X

π

aπ(1)π(2)...π(n). (1.1)

Here, we sum over all permutations π of the elements 1, 2, . . . , n.
Antisymmetrization. Taking the sign of permutations into account, we define

the antisymmetrized quantities

(Alt a)12 :=
1

2
(a12 − a21),

and

(Alt a)12...n :=
1

n!

X

π

sgn(π) · aπ(1)π(2)...π(n). (1.2)

Equivalently, (Alt a)12...n = 1
n!

Pn
i1,i2,...,in=1 ε

i1i2...inai1i2...in .

1.2.2 Cramer’s Rule for Systems of Linear Equations

The starting point for linear and multilinear algebra is the problem of
solving linear systems of equations.

Folklore

The prototype of Cramer’s rule. Consider the equation

Ax = b (1.3)

where A and b are given complex numbers. If A �= 0, then the unique solution of
(1.3) is given by

x = A−1b. (1.4)

The goal of Cramer’s rule is to generalize this formula to systems of n equations
with n unknowns. To begin with, consider the special case where n = 2:



74 1. The Euclidean Space E3

a11x1 + a12x2 = b1,

a21x1 + a22x2 = b2. (1.5)

Here, we are given the complex numbers aij and bj with i, j = 1, 2. We are looking
for the complex numbers x1, x2. If a11a22 − a12a21 �= 0, then the unique solution of
(1.5) reads as

x1 =
b1a22 − b2a12
a11a22 − a12a21

, x2 =
a11b2 − a21b1
a11a22 − a12a21

. (1.6)

In fact, multiplying the first (resp. second) equation of (1.5) by a22 (resp. −a12)
and adding up, we get

(a11a22 − a12a21)x1 = b1a22 − b2a12.

This yields (1.6). Defining the determinant

˛

˛

˛

˛

˛

a11 a12
a21 a22

˛

˛

˛

˛

˛

:= a11a22 − a12a21,

Cramer’s rule (1.6) reads as

x1 =

˛

˛

˛

˛

˛

b1 a12
b2 a22

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

a11 a12
a21 a22

˛

˛

˛

˛

˛

, x2 =

˛

˛

˛

˛

˛

a11 b1
a21 b2

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

a11 a12
a21 a22

˛

˛

˛

˛

˛

.

In 1693, Leibniz (1646–1716) considered a system of two linear equations for three
unknowns. He used a symbolic method. This was the forerunner of determinant
theory. Determinants were first systematically used by Maclaurin (1698–1746) and
Cramer (1704–1752) in about 1750 in order to solve linear systems of n linear
equations with n unknowns. The theory of matrices was created by Cayley (1821–
1897) in 1855. He introduced the matrix symbol

A =

 

a11 a12
a21 a22

!

, (1.7)

and he wrote the system (1.5) in the following form:

 

a11 a12
a21 a22

! 

x1

x2

!

=

 

b1
b2

!

, (1.8)

or briefly, Ax = b. Motivated by this special case, Cayley defined the matrix product
of two square matrices by setting

 

a11 a12
a21 a22

! 

b11 b12
b21 b22

!

:=

 

c11 c12
c21 c22

!

(1.9)

with cij :=
P2

s=1 aisbsj . Mnemonically, cij is obtained by multiplying the ith row
of the first factor with the jth column of the second factor:
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cij =
“

ai1 ai2
”

 

b1j
b2j

!

= ai1b1j + ai2b2j .

For the matrix A from (1.7), the symbol det(A) denotes the determinant of A:

det(A) = det

 

a11 a12
a21 a22

!

:=

˛

˛

˛

˛

˛

a11 a12
a21 a22

˛

˛

˛

˛

˛

= a11a22 − a12a21.

Writing equation (1.9) as AB = C, an explicit computation yields

det(AB) = det(A) det(B). (1.10)

This is the crucial product property of determinants (see Sect. 2.11.3 for the general
case). If det(A) �= 0, let us define the matrix

A−1 :=
1

det(A)

 

a22 −a12
−a21 a11

!

. (1.11)

Setting I :=

 

1 0

0 1

!

(unit matrix), we get the matrix product A−1A = I which

justifies the notation A−1. One also checks easily that AA−1 = I.

Theorem 1.1 If det(A) �= 0, then the equation (1.4), that is, Ax = b, has the
unique solution x = A−1b.

Proof. (I) Uniqueness: If Ax = b, then x = Ix = A−1Ax = A−1b. Thus, if the
solution x exists, it has necessarily the form x = A−1b.

(II) Existence: A(A−1b) = Ib = b. �

Theorem 1.1 represents Cramer’s rule (1.6) in the language of matrices. The
point is that the results above can be generalized to systems of n equations with n
unknowns by introducing the general notion of determinant. We will do this next.

1.2.3 Determinants and the Inverse Matrix

The general Laplace expansion formula for determinants from 1772 is
equivalent to the associativity of the Grassmann alternating product from
1844.

Folklore

Let A = (ajk) be a complex (n× n)-matrix with n = 1, 2, . . . We define the deter-
minant det(A) of the matrix A by setting

det(A) :=
X

π

sgn(π) a1π(1)a2π(2) · · · anπ(n). (1.12)

Here, we sum over all permutations π of the indices 1, 2, . . . , n. Equivalently,

det(A) =

n
X

i1,...,in=1

εi1i2...ina1i1a2i2 · · · anin .

Multilinear functionals. The determinant is the prototype of an antisymmet-
ric multilinear functional. Let us discuss this. Choose K = R (field of real numbers)
or K = C (field of complex numbers). Let X be a linear space over K. The function
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f : X ×X → K

is called bilinear iff it is linear with respect to each argument. That is, we have

f(αx+ βy, z) = αf(x, z) + βf(y, z)

and f(z, αx + βy) = αf(z, x) + βf(z, y) for all x, y, z ∈ X and all α, β ∈ K. In
addition, f is called symmetric iff it remains invariant under a transposition of
arguments, that is,

f(x, y) = f(y, x) for all x, y ∈ X.

Moreover, f is called antisymmetric iff it changes sign under a transposition of
arguments, that is,

f(x, y) = −f(y, x) for all x, y ∈ X.

Similarly, the functional f : X × · · · × X → K with n factors X is called n-linear
iff it is linear with respect to each argument. In addition, f is called symmetric
(resp. antisymmetric) iff it remains unchanged under an arbitrary transposition of
two arguments (resp. it changes sign under a transposition of two arguments).

Let n = 1, 2, . . . The symbol gl(n,C) denotes the space of all complex (n× n)-
matrices A. Set

f(A) := det(A).

Using elementary properties of permutations, one shows that the determinant
det(A) has the following properties:

(i) The function f : gl(n,C) → C is n-linear and antisymmetric with respect to the
columns of the matrix A.

(ii) f(I) = 1 (normalization condition).
(iii) det(Ad) = det(A).

Here, Ad denotes the dual matrix to A = (aij) with the elements (Ad)ij = aji for
all indices i, j. In other words, relation (iii) tells us that the determinant does not
change if we interchange rows and columns of the matrix A. For example,

˛

˛

˛

˛

˛

a11 a12
a21 a22

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

a11 a21
a12 a22

˛

˛

˛

˛

˛

,

˛

˛

˛

˛

˛

a11 a12
a21 a22

˛

˛

˛

˛

˛

= −
˛

˛

˛

˛

˛

a12 a11
a22 a21

˛

˛

˛

˛

˛

,

and
˛

˛

˛

˛

˛

λa11 + μb11 a12
λa21 + μb21 a22

˛

˛

˛

˛

˛

= λ

˛

˛

˛

˛

˛

a11 a12
a21 a22

˛

˛

˛

˛

˛

+ μ

˛

˛

˛

˛

˛

b11 a12
b21 a22

˛

˛

˛

˛

˛

.

The special Laplace expansion formula. By an elementary computation,
it follows from the definition of the determinant that

˛

˛

˛

˛

˛

˛

˛

a11 a12 a13
a21 a22 a23
a31 a32 a33

˛

˛

˛

˛

˛

˛

˛

:= a11

˛

˛

˛

˛

˛

a22 a23
a32 a33

˛

˛

˛

˛

˛

− a12

˛

˛

˛

˛

˛

a21 a23
a31 a33

˛

˛

˛

˛

˛

+ a13

˛

˛

˛

˛

˛

a21 a22
a31 a32

˛

˛

˛

˛

˛

.

This is a special case of the Laplace expansion theorem. For n = 2, 3, . . . and fixed
i = 1, . . . , n, the general formula reads as
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det(A) =
n
X

j=1

aijAij . (1.13)

Here, the determinant Aij is obtained from the matrix A after cancelling the ith
row and the jth column and multiplying the corresponding determinant by (−1)i+j .
Here, the subdeterminant Aij of the determinant det(A) is called the adjunct to
the element aij .

The inverse matrix. The Laplace expansion theorem can be used in order to
construct the inverse matrix. To this end, suppose that we are given the complex
(n× n)-matrix A with det(A) �= 0. Define the (n× n)-matrix

A−1 := 1
det(A)

(Aij)
d. (1.14)

Recall that the (n× n)-matrix I = (δij) is called the unit matrix.

Proposition 1.2 A−1A = AA−1 = I.

Proof. For all indices i, k = 1, . . . , n, we have the orthogonality relation

n
X

j=1

akjAij = δik det(A). (1.15)

If i = k, then this is the Laplace expansion of det(A). If i �= k, this is the Laplace
expansion of some matrix B which is obtained from A by replacing the ith row of
A by the kth row of A. Therefore, det(B) = 0. Relation (1.13) implies the claim. �

Cramer’s rule. Consider the system

n
X

j=1

aijxj = bj , i = 1, . . . , n (1.16)

with given complex numbers aij and bj where i, j = 1, . . . , n. In the language of
matrices, this system reads as

Ax = b

with the complex (n×n)-matrix A = (aij). If det(A) �= 0, then the unique solution
of (1.16) is given by x = A−1b. The proof proceeds as the proof of Theorem 1.1.

The general Laplace expansion theorem. As an example, let us consider
the complex (4 × 4)-matrix

A :=

0

B

B

B

@

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

1

C

C

C

A

.

In contrast to the special Laplace expansion formula, it is also possible to represent
the (4× 4)-determinant det(A) with the aid of (2× 2)-subdeterminants. Explicitly,

det(A) = B12C34 − B13C24 + B14C23 + B23C14 − B24C13 + B34C12.

Here, we set

Bij :=

˛

˛

˛

˛

˛

a1i a1j
a2i a2j

˛

˛

˛

˛

˛

, Ckl :=

˛

˛

˛

˛

˛

a3k a3l
a4k a4l

˛

˛

˛

˛

˛

.
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Fig. 1.2. Linear structure

This is the prototype of the general Laplace expansion formula. For a complex
(n× n)-matrix A = (aij) with n = 2, 3, . . ., the general formula reads as follows:

det(A) =
X

C

(−1)σ(R)+σ(C) det(AR
C) det(AR∗

C∗). (1.17)

More precisely, we fix the ordered subset R of the index set N := {1, 2, . . . , n},
and we sum over all ordered subsets C of the index set N . The symbol R∗ (resp.
C∗) denotes the ordered subset of N which is complementary to R (resp. C). The
symbol

AR
C

stands for that submatrix of A which has precisely the elements of R (resp. C) as
row (resp. column) indices. Finally σ(R) (resp σ(C)) is the sum of the elements of
the set R (resp. C). For example, if N := {1, 2, 3, 4} and R := {1, 2}, C := {2, 4},
then R∗ = {3, 4} and C∗ = {1, 3}. Furthermore,

B24C13 = det(AR
C) det(AR∗

C∗).

For the proof, we refer to Problem 3.2 on page 312.

1.2.4 The Hilbert Space Structure

The linear structure of vectors. Let a and b be two position vectors at the
origin O. The vector sum

a + b

is given by the parallelogram construction pictured in Fig 1.2(a). From the physical
point of view, this corresponds to the superposition of the forces a and b.

Furthermore, let c be a position vector at the origin O. The length of c is
denoted by |c|. If λ > 0, then the vector λc has the same direction as the vector c
and the length λ|c|. The vector −c is a position vector at the point O of length |c|
which points in the opposite direction of c (Fig. 1.2(b)). If λ < 0, then the vector
λc has the same direction as −c and the length |λ| · |c| The zero vector 0 has the
length zero.

Using the sum a+b and the product λc, the Euclidean space E3(O) becomes
a real linear space.

The definition of a linear space can be found in Sect. 7.3 of Vol. I. The family
a1, . . .am of position vectors at the origin O is called linearly dependent iff real
numbers α1, . . . , αm exist with α2

1 + . . .+ α2
m �= 0 such that
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Fig. 1.3. Superposition of the forces F and G

α1a1 + . . .+ αmam = 0.

Otherwise, the family a1, . . . am is called linearly independent. To illustrate the
geometric meaning, let a,b, c be vectors at the origin O. Then the following hold:

• The vectors a,b are linearly independent iff they span a parallelogram of nonva-
nishing area (Fig. 1.5 on page 82).

• The vectors a,b, c are linearly independent iff they span a parallelepiped of
nonvanishing volume (Fig. 1.6 on page 83).

In the Euclidean space E3, the maximal number of linearly independent vectors is
equal to three. For example, the three vectors i, j,k pictured in Fig. 1.1(c) on page
72 are linearly independent.

In terms of physics, the addition of vectors corresponds to the superposition of
forces (Fig. 1.3).

The inner product. For two position vectors a and b at the origin O, we
define the inner product by setting

ab := |a| · |b| · cos γ.

The angle γ is to be chosen in such a way that 0 ≤ γ ≤ π (Fig. 1.4). In particular,

|a| =
√

a2. If a and b are nonzero vectors, then they are orthogonal to each other
iff

ab = 0.

The inner product fits best the orthogonality properties in Euclidean geometry. This
is the intuitive root for the Hilbert space geometry in quantum physics. Choose the
vectors i, j,k as pictured in Fig. 1.1 on page 72. Then

ij = jk = ki = 0, i2 = j2 = k2 = 1.

We set 〈a|b〉 := ab. Then ||a|| :=
p

〈a|a〉 =
√

a2 = |a|.

Theorem 1.3 The Euclidean space E3 becomes a 3-dimensional real Hilbert space
with respect to the inner product 〈a|b〉.

The definition of Hilbert spaces can be found in Sect. 7.4 of Vol. I. We have to
prove the following for all a,b, c ∈ E3 and all real numbers α:

Fig. 1.4. Inner product ab
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• The space E3 is a real 3-dimensional linear space.
• 〈a|b〉 ∈ R and 〈a|a〉 ≥ 0.
• 〈a|a〉 = 0 iff a = 0.
• 〈a|b〉 = 〈b|a〉.
• 〈αa|b〉 = α〈a|b〉 and 〈a + b|c〉 = 〈a|c〉 + 〈b|c〉.
For the elementary proof, see Problem 3.5.

The Fourier series. At the beginning of the 20th century, Hilbert (1862–1943)
generalized the space R

n to infinite dimensions in order to create a general theory
of integral equations. In this context, he noticed that the classical Fourier series is
closely related to the notion of orthonormal basis in Hilbert space. In the setting
of the Hilbert space L2(−π, π) of square-integrable functions f : [−π, π] → R, the
precise theorem was proven by E. Fischer and F. Riesz in 1907 (see F. Riesz and B.
Nagy, Functional Analysis, Frederyck Ungar, New York, 1978.) At this point, we
will discuss this for the Euclidean space E3, and we will explain the relation to the
Dirac calculus used in quantum mechanics. Let e1, e2, e3 be an orthonormal basis
of the Euclidean space E3, that is,3

〈ej |ek〉 = δjk, j, k = 1, 2, 3.

In order to be able to use the convenient Einstein summation convention (see page
72), let us set ek := ek. Then 〈ek|el〉 = δkl for k, l = 1, 2, 3. The real numbers

ak := 〈ek|a〉, k = 1, 2, 3

are called the Fourier coefficients of the vector a (with respect to e1, e2, e3). We
also write ak := 〈ek|a〉, that is, ak = ak if k = 1, 2, 3. Finally, for fixed k, we define
the linear functional dxk : E3 → R by setting

dxk(a) := 〈ek|a〉, k = 1, 2, 3. (1.18)

In other words, dxk assigns to every vector a the Fourier coefficient ak. For all
vectors a,b ∈ E3, the following hold:4

Theorem 1.4 (i) a = 〈ek|a〉 ek (Fourier series).

(ii) 〈a|b〉 = 〈a|ek〉〈ek|b〉 (Parseval equation).
Equivalently, a = akek and 〈a|b〉 = akbk = akδklb

l.

Proof. Ad (i). Since e1, e2, e3 is a basis of E3, there exist real numbers a1, a2, a3

such that a = ases. Hence eka = asekes = asδks = ak.
Ad (ii). ab = (akek)(b

lel) = akblδkl = akbk. �

Matrix elements of a linear operator. Let A,B,C : E3 → E3 be linear
operators,

A(αa + βb) = αAa + βAb for all a,b ∈ E3, α, β ∈ R.

The Fourier coefficients a1, a2, a3 of a vector a can be regarded as the coordinates
of a. We want to introduce coordinates Ak

l of the operator A. To this end, we set

Ak
l := 〈ek|Ael〉, k, l = 1, 2, 3.

The real (3 × 3)-matrix (Ak
l ) is called the coordinate matrix of the operator A.

Here, k (resp. l) is the row (resp. column) index.

3 Recall that δjk := 0 if j �= k, and δjj := 1 Moreover, we set δjk = δkj := δjk.
4 Parseval des Chénes (1755–1836), Fourier (1768–1830).
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Proposition 1.5 (i) Ael = Ak
l ek, l = 1, 2, 3.

(ii) The operator equation a = Ab corresponds to the matrix equation ak = Ak
l b

l,
k = 1, 2, 3. Explicitly,

0

B

@

a1

a2

a3

1

C

A

=

0

B

@

A1
1 A

1
2 A

1
3

A2
1 A

2
2 A

2
3

A3
1 A

3
2 A

3
3

1

C

A

0

B

@

b1

b2

b3

1

C

A

.

(iii) 〈a|Ab〉 = akA
k
l b

l for all a,b ∈ E3.
(iv) The operator product equation C = AB corresponds to the matrix product
equation Ck

l = Ak
sB

s
l .

Proof. Ad (i). Since e1, e2, e3 form a basis of E3, there exist real numbers αsl such
that Ael = αsl es. Hence αkl = αsl δ

k
s = αsl e

kes = ek(Ael) = Ak
l .

Ad (ii). Ab = A(blel) = (Ak
l b

l)ek. This is equal to a = akek.
Ad (iii). 〈a|Ab〉 = 〈ases|Ak

l b
lek〉 = asA

k
l b

lδsk = akA
k
l b

l.

Ad (iv). A(Bb) = A(Bs
l b

les) = (Ak
sB

s
l b

l)ek. This is equal to Cb = Ck
l b

lek.
Hence Ck

l = Ak
sB

s
l . �

The adjoint operator. Let A : E3 → E3 be a linear operator. We are looking
for a linear operator A† : E3 → E3 with the characteristic symmetry property

〈A†a|b〉 = 〈a|Ab〉 for all a,b ∈ E3. (1.19)

Proposition 1.6 (i) There exists precisely one linear operator on E3 with the prop-
erty (1.19). This operator A† is called the adjoint operator to A.

(ii) For the matrix elements, we get (A†)kl = Al
k if k, l = 1, 2, 3.

(iii) The linear operator A : E3 → E3 is called self-adjoint iff A† = A. This is
the case iff the matrix (Ak

l ) is symmetric, that is, Ak
l = Al

k for all k, l = 1, 2, 3.

Proof. (I) Uniqueness. Suppose that the operators B and C have the property
(1.19). Then 〈(B−C)a|b〉 = 0 for all a,b ∈ E3. This implies (B−C)a = 0 for all
a ∈ E3. Hence B = C.

(II) Existence. Parallel to Ab = (Ak
l b

l)ek, define Ba := (akA
k
l )e

l. Then we
obtain Br

s = 〈er|Bes〉 = δksA
k
l e

rel = As
l δ

rl = As
r. Moreover, set A† := B. Then

the desired relation (1.19) is satisfied.
�

1.2.5 Orthogonality and the Dirac Calculus

In the setting of Dirac’s approach to quantum mechanics, the vector a (resp. the self-
adjoint operator A) represents a quantum state (resp. an observable). The choice of
an orthonormal basis e1, e2, e3 corresponds to the choice of an observer. The goal
is to compute the real coordinates of a and A which are related to measurement
processes. The key formula is given by the following decomposition of the identity
operator I : E3 → E3 :

I = |ek〉〈ek| . (1.20)

This leads immediately to the following formulas:

• |a〉 = I|a〉 = |ek〉〈ek|a〉 (Fourier series).
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Fig. 1.5. Vector product a × b

• 〈a|b〉 = 〈a| · I|b〉 = 〈a|ek〉〈ek|b〉 (Parseval equation).
• 〈ek|ABel〉 = 〈ek|AIBel〉 = 〈ek|Aes〉〈es|Bel〉 (matrix product formula).

The simple trick is to insert the identity operator I and to use the so-called com-
pleteness relation (1.20). These formulas coincide with the formulas considered in
Sect. 1.2.4. A more general variant of the Dirac calculus based on covectors and
duality, will be considered in Sect. 2.11.7 on page 171. The Dirac calculus was intro-
duced by Dirac in his monograph The Principles of Quantum Mechanics, Clarendon
Press, Oxford, 1930.

1.2.6 The Lie Algebra Structure

Definition of the vector product. Consider two position vectors a and b at the
origin O which are not linearly dependent (Fig. 1.5). Then the vector product a×b
is uniquely determined by the following properties:

• a × b is a position vector at the point O which is perpendicular to the plane
spanned by the vectors a and b.

• The length of a × b is equal to the area A(P) of the parallelogram P spanned
by a and b. Explicitly,

A(P) = |a| · |b| · sin γ.
The counter-clockwise oriented angle γ points from a to b with 0 < γ < π.

• The three vectors a,b,a × b form a right-handed system.

Otherwise, we set a × b := 0. Furthermore, let us introduce the so-called volume
product

(abc) := (a × b)c.

By elementary geometry, the nonnegative number |(abc)| is the volume of the
parallelepiped spanned by the three vectors a,b, c (Fig. 1.6). The sign of (abc) is
positive (resp. negative) iff a,b, c form a right-handed (resp. left-handed) system.
Obviously, the following hold:

• The vectors a,b are linearly dependent iff a × b = 0.
• The vectors a,b, c are linearly dependent iff (abc) = 0.

For example, let i, j,k be a right-handed orthonormal system (see Fig. 1.1(c) on
page 72). Then:

i × j = k, j× i = −k, i × i = 0. (1.21)

Using the cyclic permutation i ⇒ j ⇒ k ⇒ i, we also get:

• j× k = i, k × j = −i, and j × j = 0,
• k× i = j, i × k = −j, and k × k = 0.

Let us introduce the Lie product [a,b] := a × b.
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Fig. 1.6. Volume product

Theorem 1.7 The Euclidean space E3 becomes a real 3-dimensional Lie algebra
with respect to the Lie product [a,b]. This Lie algebra is denoted by (E3)Lie.

The proof will be given below. Explicitly, this theorem means that, for all vectors
a,b, c and all real numbers α, β, the following hold:

• E3 is a real 3-dimensional linear space.
• [a,b] = −[b, a] (anticommutativity),
• [αa + βb, c] = α[a, c] + β[b, c] (distributivity),
• [ [a,b], c] + [ [b, c], a] + [ [c, a], b] = 0 (Jacobi identity).

Note that the associative law is not valid for the Lie product [a,b]. In some sense,
the Jacobi identity can be regarded as a substitute for the missing associative law.
Suppose that we are given the right-handed (resp. left-handed) orthonormal system
e1, e2, e3 (with orientation number ι = 1 (resp. ι = −1)). Then

[ei, ej ] = ckijek, i, j = 1, 2, 3 (1.22)

with the so-called structure constants ckij := ιεijk for i, j, k = 1, 2, 3 of the Lie alge-
bra (E3)Lie. By the way, (E3)Lie is the simplest nontrivial (i.e., noncommutative)
real Lie algebra. We will show in Chap. 7 that:

The Lie algebra (E3)Lie is isomorphic to the Lie algebra su(E3) which
consists of all the infinitesimal rotations of the Euclidean space E3.

In other words, the Lie algebra (E3)Lie is obtained from the group of rotations
SU(E3) of the Euclidean space E3 by linearization.

Properties of the vector product. For all vectors a,b, c,d,x,y, z and all
real numbers α, β, the following hold:

Proposition 1.8 (i) The map (a,b, c) �→ (abc) is antisymmetric and 3-linear.

(ii) (αa + βb) × c = α(a × c) + β(b × c) (distributive law).

(iii) Let i, j,k be a right-handed orthonormal system. Suppose that

a = a1i + a2j + a3k, b = b1i + b2j + b3k,

and c = c1i + c2j + c3k. Then

a × b =

˛

˛

˛

˛

˛

˛

˛

i j k

a1 a2 a3

b1 b2 b3

˛

˛

˛

˛

˛

˛

˛

. (1.23)
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Explicitly, a × b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k. Moreover,

(abc) =

˛

˛

˛

˛

˛

˛

˛

a1 a2 a3

b1 b2 b3

c1 c2 c3

˛

˛

˛

˛

˛

˛

˛

. (1.24)

(iv) Let e1, e2, e3 be a right-handed (resp. left-handed) orthonormal system (with
the orientation number ι = 1 (resp. ι = −1)). Suppose that a = aiei, b = biei, and
c = ciei. Set ek := ek. Then

a × b = ιεijka
ibjek, (abc) = ιεijka

ibjck. (1.25)

Note that these formulas depend on the orientation ι of the basis.
(v) The Bunyakovski–Cauchy–Schwarz equation:

(ab)2 + (a × b)2 = |a|2|b|2. (1.26)

This implies the Bunyakovski–Cauchy–Schwarz inequality

|ab| ≤ |a| · |b|, (1.27)

and |ab| = |a| · |b| iff a × b = 0.
(vi) The Grassmann expansion formula:

a × (b × c) = (ac)b − (ab)c. (1.28)

(vii) The Jacobi identity:

(a × b) × c + (b × c) × a + (c × a) × b = 0. (1.29)

(viii) The Lagrange identity:

(a × b)(c × d) =

˛

˛

˛

˛

˛

ac ad

bc bd

˛

˛

˛

˛

˛

= (ac)(bd) − (ad)(bc). (1.30)

(ix) The volume identity:

(a × b) × (c × d) = (abd)c − (abc)d = (acd)b − (bcd)a.

(x) The Gram determinant:5

(abc)(xyz) =

˛

˛

˛

˛

˛

˛

˛

ax ay az

bx by bz

cx cy cz

˛

˛

˛

˛

˛

˛

˛

. (1.31)

Therefore, the three vectors a,b, c are linearly dependent iff (abc)2 = 0, that is,

˛

˛

˛

˛

˛

˛

˛

a2 ab ac

ba b2 bc

ca cb c2

˛

˛

˛

˛

˛

˛

˛

= 0.

5 Gram (1850–1916)
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Proof. Ad (i). Since (abc) = (a×b)c, this expression is linear with respect to the
third argument c. If two vectors are transposed, then the orientation changes and
hence (abc) changes sign (Fig. 1.6 on page 83). Thus, (abc) is linear with respect
to each argument.

Ad (ii). By (i), {(αa + βb) × c}x is equal to

((αa + βb)cx) = α(acx) + β(bcx).

Moreover, {αa × c + βb × c)}x is equal to

((αa)cx) + ((βb)cx) = α(acx) + β(bcx).

Thus, for all vectors x ∈ E3,

{(αa + βb) × c}x = {αa × c + βb× c}x.

Therefore, (αa + βb) × c = αa × c + βb × c.
Ad (iii). By the distributive law (ii) and i × j = −(j × i) = k, . . . , we get

(a1i + a2j + a3k)(b1i + b2j + b3k) = (a1b2 − a2b1)k . . .

Ad (iv)–(ix). See Problem 3.4 on page 313. �

1.2.7 The Metric Tensor

For all vectors a,b ∈ E3, we define

g(a,b) := ab. (1.32)

The bilinear symmetric functional g : E3 × E3 → R is called the metric tensor of
the Euclidean space E3.

1.2.8 The Volume Form

For all vectors a,b, c ∈ E3, we define

υ(a,b, c) := (abc). (1.33)

Since υ(a,b, c) is equal to the oriented volume spanned by the three vectors a,b, c,
the 3-linear antisymmetric functional υ : E3 × E3 × E3 → R is called the volume
form of the Euclidean space E3 (see Fig. 1.6 on page 83).

Both the metric tensor g and the volume form υ play a crucial role in the theory
of n-dimensional Riemannian manifolds. The generalization to pseudo-Riemannian
manifolds is the key to Einstein’s theory of general relativity.
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1.2.9 Grassmann’s Alternating Product

The alternating (or exterior) product was introduced by Grassmann in his
“Ausdehnungslehre” (Theory of extensions) from 1844. In the Euclidean
space E3, the exterior product is closely related to the vector product.
However, in contrast to the vector product in E3, Grassmann’s alternating
product makes sense in linear spaces of arbitrary finite dimension. Unfortu-
nately, the contemporaries of Grassmann (1809–1877) did not understand
this ingenious approach. The crucial point is that the linear dependence of
vectors in n-dimensional linear spaces can be characterized by the vanish-
ing of appropriate antisymmetric multilinear functionals which are closely
related to determinants.

Folklore

The alternating product for vectors. Let a,b, c ∈ E3. By definition, the alter-
nating product a ∧ b is an antisymmetric bilinear functional a ∧ b : E3 × E3 → R

given by

(a ∧ b)(x,y) :=

˛

˛

˛

˛

˛

ax ay

bx by

˛

˛

˛

˛

˛

= (ax)(by) − (ay)(bx).

Similarly, the alternating product a∧ b∧ c is an antisymmetric 3-linear functional
a ∧ b ∧ c : E3 × E3 × E3 → R given by

(a ∧ b ∧ c)(x,y, z) :=

˛

˛

˛

˛

˛

˛

˛

ax ay az

bx by bz

cx cy cz

˛

˛

˛

˛

˛

˛

˛

.

This product is called alternating, since it has the following typical property:

a ∧ b = −b ∧ a.

The relation to the vector product is very close. In fact, we have

• (a ∧ b)(x,y) = (a × b)(x × y), and
• (a ∧ b ∧ c)(x,y, z) = (abc)(xyz).

Therefore, we get the following result.

Theorem 1.9 (i) The vectors a,b are linearly dependent iff a ∧ b = 0.
(ii) The vectors a,b, c are linearly dependent iff a ∧ b ∧ c = 0.

Moreover, we get the key relation

a ∧ b ∧ c = υ(a,b, c) · (i ∧ j ∧ k). (1.34)

This means that, for all x,y, z ∈ E3,

(a ∧ b ∧ c)(x,y, z) = υ(a,b, c) · (i ∧ j ∧ k)(x,y, z).

In fact, (a ∧ b ∧ c)(x,y, c) = (abc)(xyz) and (ijk) = 1.

Corollary 1.10 Suppose that the pairs a,b and c,d are linearly independent po-
sition vectors at the origin O, that is, a ∧ b �= 0 and c ∧ d �= 0. Then:

(i) a ∧ b = c ∧ d iff a × b = c × d.
(ii) The pairs of vectors a,b and c,d span the same plane iff (abc) = (abd) = 0.

Note that condition (ii) means that the vectors c and d are orthogonal to the
nonzero vector a × b.
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1.2.10 Perspectives

Choose a fixed (x, y, z)-Cartesian coordinate system with the (right-handed) or-
thonormal system i, j,k. Let a := a1i + a2j + a3k. We introduce the special linear
functionals dx, dy, dz : E3 → R by setting

dx(a) := a1, dy(a) := a2, dz(a) := a3.

(i) The alternating product for linear functionals. Let F,G,H : E3 → R be
linear functionals on the Euclidean space E3. For all vectors a,b, c ∈ E3, we set:

• (F ∧G)(a,b) := F (a)G(b) − F (b)G(a).
• (F ∧G ∧H)(a,b, c) is equal to the determinant

˛

˛

˛

˛

˛

˛

˛

F (a) G(a) H(a)

F (b) G(b) H(b)

F (c) G(c) H(c)

˛

˛

˛

˛

˛

˛

˛

.

Obviously, F ∧G = −G∧F. In particular, the symbol dx∧ dy denotes the bilinear
functional dx ∧ dy : E3 × E3 → R given by

(dx ∧ dy)(a,b) = dx(a)dy(b) − dx(b)dy(a) for all a,b ∈ E3.

Furthermore, dx∧ dy = −dy ∧ dx. The product dx∧ dy ∧ dz : E3 ×E3 ×E3 → R is
an antisymmetric 3-linear functional. Explicitly, (dx ∧ dy ∧ dz)(a,b, z) is equal to

˛

˛

˛

˛

˛

˛

˛

dx(a) dy(a) dz(a)

dx(b) dy(b) dz(b)

dx(c) dy(c) dz(c)

˛

˛

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

˛

˛

a1 a2 a3

b1 b2 b3

c1 c2 c3

˛

˛

˛

˛

˛

˛

˛

= (abc). (1.35)

Consequently, dx ∧ dy ∧ dz is equal to the volume form:

υ = dx ∧ dy ∧ dz. (1.36)

This is true for any Cartesian coordinate system.6

In modern mathematics, the Cartan calculus of alternating differential forms
plays a crucial role. This will be studied later on. At this point, let us only mention
that the alternating product dx ∧ dy is the starting point of the Cartan calculus.
Note that:

In the Cartan calculus, the differentials dx, dy, dz are well-defined mathe-
matical objects, namely, linear functionals on the Euclidean space E3.

This avoids the trouble with the heuristic concept of Leibniz’s ‘infinitesimals’ in
the history of mathematics and physics.

(ii) Hodge duality on the Euclidean space E3. In Hodge theory, one defines the
Hodge ∗-operation by setting:

• ∗i := j ∧ k, and ∗(j ∧ k) := i,
• ∗(i ∧ j ∧ k) = 1, and ∗1 = i ∧ j ∧ k.

6 For a reflected Cartesian coordinate system, we get υ = −dx ∧ dy ∧ dz.
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Obviously, ∗ ∗ (.) = (.). Further definitions of the ∗-operation are obtained by using
the cyclic permutation

i ⇒ j ⇒ k ⇒ i.

For example, ∗j = k ∧ i. Finally, the ∗-operation is extended to real linear combi-
nations by using the linearity principle. For example,

∗a = ∗(a1i + a2j + a3k) = a1 ∗ i + a2 ∗ j + a3 ∗ k

= a1j ∧ k + a2k ∧ i + a3i ∧ j.

(iii) Hodge duality for linear functionals. Replacing i, j,k by dx, dy, dz, respec-
tively, we define:

• ∗dx = dy ∧ dz and ∗(dy ∧ dz) = dx,
• ∗(dx ∧ dy ∧ dz) = 1, and ∗1 = dx ∧ dy ∧ dz,
and so on. In particular, for the volume form we get

υ = ∗1. (1.37)

The following remark is crucial. The definition of the Hodge ∗-operation given above
depends on the choice of the Cartesian coordinate system. However, in Sect. 2.7 we
will show the following:

The Hodge ∗-operation can be introduced in a geometric setting which is
independent of the choice of a Cartesian coordinate system.

This is the reason for the importance of Hodge duality in modern mathematics.
(v) The tensor product of linear functionals. Let F,G,H : E3 → R be linear

functionals. For all vectors a,b, c ∈ E3, we set:

• (F ⊗G)(a,b) := F (a)G(b).
• F ⊗G⊗H := F (a)G(b)H(c).

For example, the metric tensor of the Euclidean space E3 allows the representation

g = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz. (1.38)

This is true for any Cartesian coordinate system (resp. reflected Cartesian coordi-
nate system). In fact, (dx⊗ dx)(a, b) = dx(a)dx(b) = a1b1. Similarly,

(dx⊗ dx+ dy ⊗ dy + dz ⊗ dz)(a,b) = a1b1 + a2b2 + a3b3 = ab.

(vi) The tensor product of vectors. Let a,b, c be vectors in E3. for all linear
functionals F,G,H : E3 → R, we set:

• (a ⊗ b)(F,G) := F (a)G(b).
• a ⊗ b ⊗ c := F (a)G(b)H(c).

Note that this definition respects duality. In fact,

• (F ⊗G)(a,b) = (a ⊗ b)(F,G), and
• (F ⊗G⊗H)(a,b, c) = (a ⊗ b ⊗ c)(F,G,H).
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(vii) The Riesz duality generated by the inner product on the Euclidean space
E3. Let Ed

3 denote the dual Euclidean space consisting of all the linear functionals
F : E3 → R. There exists a crucial one-to-one correspondence

F ⇐⇒ a

between the linear functionals F ∈ Ed
3 and the vectors a ∈ E3 given by

F (x) := ax for all x ∈ E3

(see Sect. 1.4). We write F := ℵ(a). This way,

• the bilinear functional a ⊗ b : Ed
3 × Ed

3 → R is transformed into
• the bilinear functional a ⊗ b : E3 ⊗ E3 → R given by7

(a ⊗ b)(x,y) := (ax)(by) − (ay)(bx) for all x,y ∈ E3.

Similarly, the 3-linear functional a⊗b⊗ c : Ed
3 ×Ed

3 ×Ed
3 → R is transformed into

a 3-linear functional of the form

a ⊗ b ⊗ c : E3 × E3 × E3 → R.

Tensor products in elementary particle physics. Note that in elementary
particle physics, the tensor product

a ⊗ b

is used in order to describe mathematically the quantum state of a composite par-
ticle (e.g., a meson) which consists of the quantum states a and b of two single
particles (e.g., a quark-antiquark pair). Similarly,

a ⊗ b ⊗ c

describes a composite particle (e.g., a proton) which consists of three single particles
(e.g., three quarks). More precisely, one has to use linear combinations of tensor
products. Furthermore, tensor products are systematically used in order to attribute
additional properties to given objects (e.g., this way, one attributes the color to
quarks, as additional degrees of freedom).

1.3 The Skew-Field H of Quaternions

Both the two-dimensional field C of complex numbers and the three-
dimensional Euclidean space E3 can be extended to the four-dimensional
skew-field H of quaternions.

Folklore

In this section, we will use the terminology on algebras introduced in Vol. II and
summarized on page 116 of the present volume.

7 To simplify notation, we use the same symbol a⊗b for the two different bilinear
functionals on Ed

3 × Ed
3 and on E3 × E3.
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1.3.1 The Field C of Complex Numbers

It is almost impossible for anyone today who already hears at school about
i =

√
−1 being a solution of the equation x2 + 1 = 0 to understand

what difficulties the complex (that is, imaginary) numbers presented to
mathematicians and physicists in former times . . .
Imaginary quantities make their first appearance during the Renaissance.
In 1539, Giralmo Cardano (1501–1576), a mathematician and renowned
physician in Milan (Italy), learned from Nicolò Tartaglia (1506–1559) a
process for solving cubic equations; in 1545 he broke his promise never to
divulge the secret to anyone. . . It is not clear whether Cardano was led
to complex numbers through cubic or quadratic equations.8

Reinhold Remmert, 1995

Cardano’s solution formula. Consider the cubic equation

x3 = px+ q

where p and q are real numbers. In his Ars magna from 1545, Cardano published
the following solution formula

x = 3

r

q

2
+

√
d+ 3

r

q

2
−

√
d (1.39)

where d := q2

4
− p3

27
is the so-called discriminant.

In his book L’Algebra published in Bologna in 1572, Bombelli (1526–1572) in-
troduced fundamental computational rules for complex numbers including9

√
−1

√
−1 = −1.

For example, he used (2 ±
√
−1)3 = 2 ± 11

√
−1 in order to get

3
q

2 ±
√
−121 = 2 ±

√
−1.

Applying the Cardano solution formula (1.39) to the equation

x3 = 15x+ 4, (1.40)

Bombelli obtained the formal solution

x =
3
q

2 +
√
−121 +

3
q

2 −
√
−121

which yields x = (2 +
√
−1) + (2−

√
−1) = 4. This is a classical solution of (1.40).

As a big surprise for Bombielli and his contemporaries, the formal approach based
on ‘mystical’ complex numbers yields a solution which is a classical (non-mystical)
number.

8 R. Remmert, Complex numbers. In: H. Ebbinghaus et al. (Eds.), Numbers,
Springer, New York, pp. 55–96 (reprinted with permission). We recommend read-
ing this beautiful article.

9 The symbol i for
√
−1 was used by Euler (1707–1783) since 1777.
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Gauss’ proof of the fundamental theorem of algebra. In his disserta-
tion in 1799, Gauss gave a proof of the fundamental theorem of algebra.10 The
fundamental theorem of algebra says that, for each polynomial

p(x) = a0 + a1x+ . . .+ an−1x
n−1 + xn

with real coefficients a0, a1, . . . , an−1, there exist complex numbers x1, . . . , xn such
that we have the factorization

p(x) = (x− x1)(x− x2) · · · (x− xn).

This implies that the equation p(x) = 0 has precisely the solutions x1, . . . , xn. The
big surprise is that we only have to add the solution i of the very special equation
x2 + 1 = 0 in order to get the field C of complex numbers which contains all the
solutions of all possible polynomial equations with real coefficients.11 Gauss’ proof
was of topological nature. In 1920, Alexander Ostrowski (1893–1986) pointed out
in a comment on Gauss’ dissertation12 that Gauss used geometrical properties of
real algebraic curves which are neither proved in the dissertation itself nor had been
proved in the pre-Gaussian literature. Ostrowski showed that Gauss’ proof can be
completed by using nontrivial tools from modern algebraic geometry.

Let us emphasize that the most elegant proof of the fundamental theorem can
be based on Liouville’s theorem saying that a bounded holomorphic function on the
complex plane C is a constant.13 The proof goes like this. We are given a polynomial
p = p(z) with complex coefficients of degree ≥ 1. It is sufficient to show that p has
at least one complex zero. If this is not true, then the quotient 1

p
is a constant

function by Liouville’s theorem; this is a contradiction.14

1.3.2 The Galois Group Gal(C|R) and Galois Theory

Consider the extension R ⊆ C of the field R of real numbers to the field C of
complex numbers. By definition, the map

S : R → C

is called a symmetry map of the field extension iff it is a field automorphism which
has all the points of the basic field R as fixed points. This is a subgroup of the
group of all automorphisms of the field C. This subgroup is called the Galois group
Gal(C|R) of the field extension R ⊆ C.

Proposition 1.11 The field extension R ⊆ C has precisely the two symmetry
transformations x+ yi �→ x+ yi (identical transformation) and x+ yi �→ (x+ yi)†

(conjugation).
The Galois group Gal(C|R) is isomorphic to the group Z2 := {1,−1}.
A complex number x+ yi is real iff it is a fixed point of all the elements of the

Galois group, that is, (x+ yi)† = x+ yi.

10 The sophisticated history of this theorem is thoroughly discussed in R. Remmert,
The fundamental theorem of algebra. In: H. Ebbinghaus et al. (Eds.), Numbers,
Springer, New York, 1995, pp. 77–122.

11 In fact, this remains true for polynomials with complex coefficients.
12 See C. Gauss, Collected Works, Vol. 10.2.
13 This is the special case of the following topological theorem: A holomorphic

function h : R → C on a compact Riemann surface R is a constant.
14 Liouville (1809–1882)



92 1. The Euclidean Space E3

Fig. 1.7. The cyclotomic equation x3 = 1

Proof. Since i2 + 1 = 0, and since S is an automorphism, we get S(i)2 + 1 = 0.
Hence either S(i) = i or S(i) = −i. Consequently, S is either the identical map or
we have S(x+ yi) = x− yi for all x, y ∈ R. �

As we will discuss below, the main theorem of Galois theory is a far-reaching
generalization of Prop. 1.11.

Gauss’ investigation of the cyclotomic equation and cyclotomic fields.
In 1796, the young Gauss proved that it is possible to construct a regular 17-gon
with a ruler and a compass. This was an open problem since ancient times. More
general, Gauss studied the cyclotomic equation

xn = 1 (1.41)

where n = 2, 3, . . . By definition, the corresponding cyclotomic field is the smallest
subfield of the field of complex numbers C which contains the field Q of rational
numbers and the n solutions

e2πki/n, k = 0, 1, . . . , n− 1.

These solutions lie on the unit circle, and they form a regular n-gon (Fig. 1.7).

The cyclotomic field of (1.41) is denoted Q(e2πi/n). Gauss studied the structure
of cyclotomic fields and reduced the solution of (1.41) to the solution of simpler
equations. For example, if p = 17, then the solution of (1.41) can be reduced to the
successive solution of quadratic equations. This was a breakthrough in algebra.

The explicit solution of polynomial equations and Abel’s theorem.
The fundamental theorem of algebra only proves the existence of solutions. But
the main goal of mathematicians was to solve polynomial equations by explicit
formulas. To illustrate this, consider the equation

a0 + a1x+ . . .+ an−1x
n−1 + xn = 0 (1.42)

with arbitrary real coefficients a0, . . . , an−1. This equation is called solvable iff the
solutions can be obtained from the coefficients by performing rational operations
(addition, subtraction, multiplication, division) and by extracting roots. In the 16th
century, it was known that the equation (1.42) is solvable if n = 2, 3, 4. In 1826,
Abel (1802–1829) proved the following crucial result:

Theorem 1.12 The equation (1.42) is not solvable if n ≥ 5.

The sophisticated proof was based on Gauss’ theory of cyclotomic fields. Galois
(1811–1832) studied the papers of Lagrange, Gauss, and Abel. He discovered a
completely new approach to the investigation of polynomial equations called Galois
theory. The tragical life of Galois, who died in a dual at the age of 21 and wrote
down the most important results of his theory on the eve of the dual in a letter to
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a friend, is described in the marvellous book of the student of Einstein, Leopold
Infeld, Whom the Gods Love, Whittlesly, New York, 1984. Let us discuss the basic
ideas of Galois theory.

Field extensions which are Galois. Consider a field extension

F ⊆ E. (1.43)

Then the extended field E is a linear space over F . The dimension of this space is
called the degree of the extension and denoted dimF (E). The extension F ⊆ E is
called finite iff dimF (E) is finite. For example, the extension Q ⊆ R from the field
of rational numbers to the field of real numbers is infinite, but the extension R ⊆ C

from the field R of real numbers to the field C of complex numbers is finite with
dimR C = 2.

The Galois group of the extension (1.43), denoted Gal(E|F ), is by definition
the group of all automorphisms S : F → E which fix the elements of E. The symbol
|Gal(E|F )| denotes the number of elements of Gal(E|F ). A finite field extension
(1.43) is called Galois iff the number of elements of the Galois group is equal to the
degree of the field extension,

|Gal(E|F )| = deg
F
(E).

Such an extension has the crucial property that the basic field F can be described
by symmetry. More precisely, for a finite Galois extension (1.43), the following hold:

x ∈ F iff S(x) = x for all S ∈ Gal(E|F ).

For example, the extension R ⊆ C is Galois of degree 2, by Prop. 1.11.
The main theorem of Galois theory. Let F ⊆ E be a finite field extension

which is Galois. The subfield I of E is called an intermediate field iff F ⊆ I ⊆ E.

Theorem 1.13 There exists a one-to-one correspondence

I �→ G

between the intermediate fields I of the field extension F ⊆ E and the subgroups G
of the Galois group Gal(E|F ). Here, the subgroup G consists of all the elements of
Gal(E|F ) which fix the elements of the field I.

The extension F ⊆ I is Galois iff G is a normal subgroup of Gal(E|F ). In this
case, the Galois group Gal(I|F ) of the extension F ⊆ I is equal to the quotient
group Gal(E|F )/G.

Corollary 1.14 A finite Galois field extension F ⊆ E has no proper intermediate
Galois field extension F ⊆ I iff the Galois group Gal(E|F ) is simple.15

15 Recall that a group is called simple iff it has no nontrivial normal subgroups.
Nowadays all the finite simple groups are known. See D. Gorenstein, Classifying
the finite simple groups, Bull. Amer. Math. Soc. 14 (1986), 1–98. Mathematicians
needed about 150 years in order to get the full classification. The final break-
through was initiated by ideas coming from quantum field theory (see Sect. 17.5
of Vol. I about the monster group, vertex algebras, and physics). Already in the
19th century, Cayley proved that each finite group is isomorphic to the subgroup
of some permutation group.
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For example, Abel’s Theorem 1.12 above is a consequence of the fact that if
n ≥ 5, then the permutation group Sn of n elements has the simple noncommutative
normal subgroup An of even permutations.16

The prototype of a quadratic number field. Consider the equation

x2 = 2. (1.44)

Let Q(
√

2) denote the smallest subfield of C which contains the field Q of rational

numbers and the solutions
√

2,−
√

2 of (1.44). The elements of Q(
√

2) have precisely
the form

r + s
√

2

where r and s are arbitrary rational numbers. This is a field, since we have the
relation (r + s

√
2)(r − s

√
2) = r2 + 2s2. Thus, r + s

√
2 is invertible iff r2 + s2 �= 0.

The Galois group of the field extension Q ⊆ Q(
√

2) consists of the identical map

r+s
√

2 �→ r+s
√

2 and the conjugation map r+s
√

2 �→ r−s
√

2. This Galois group is
isomorphic to the simple group Z2 = {1,−1}. If Q ⊆ I ⊆ Q(

√
2) is an intermediate

field extension, then we have either I = Q or I = Q(
√

2), for dimensional reasons.
The prototype of a transcendental field extension. Note that the number

π is transcendental, that is, π is not the zero of a polynomial equation with integer
coefficients. The set of all the quotients

a0 + a1π + . . .+ amπ
m

b0 + b1π + . . .+ bnπn
, m, n = 0, 1, . . .

forms a field denoted by the symbol Q(π) which is an infinite extension of the field
Q of rational numbers. More precisely, a0, . . . , am, b0, . . . , bn are rational numbers
with b20 + . . .+ b2n �= 0.

Perspectives. Galois theory is a powerful tool of modern mathematics. For
example, Wiles’ seminal proof of Fermat’s Last Theorem used methods from Galois
theory.17 One of the famous open problems in mathematics is the classification
of all possible field extensions. For commutative Galois groups, this is related to
Hilbert’s class field theory. For noncommutative Galois groups, this is related to the
Langlands program. We refer to V. Varadarajan, Euler through Time: A New Look
at Old Themes, Amer. Math. Soc., Providence, Rhode Island, 2006, together with
J. Bernstein and S. Gelbart (Eds.), An Introduction to the Langlands Program,
Birkhäuer, Boston, 2003.

1.3.3 A Glance at the History of Hamilton’s Quaternions

The geometric Gauss model of complex numbers. For more than 250 years,
complex numbers were considered to be useful, but mystic objects. Leibniz (1646–
1716) wrote:

From the irrationals are born the impossible or imaginary quantities whose
nature is very strange but whose usefulness is not to be despised.

16 As an introduction to Galois theory and its applications to classical problems, we
recommend E. Zeidler, Oxford Users’ Guide to Mathematics, Oxford University
Press, 2004. Furthermore, we refer to B. van der Waerden, Algebra, Vol. 1,
Chap. 6, Frederyck Ungar, New York, 1975, and K. Spindler, Abstract Algebra
and Applications, Vol. II, Marcel Dekker, New York, 1994.

17 A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. Math. 142
(1995), 443–551.
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Fig. 1.8. Complex numbers

Euler (1707–1783) wrote:

It is clear therefore that the square roots of negative numbers cannot be
reckoned among the possible numbers; consequently we have to say that
the square roots of negative numbers are impossible. This circumstance
leads us to the concept of numbers, which by their very nature are im-
possible, and which are commonly called imaginary numbers or fancied
numbers because they exist only in our fancy or imagination.

In 1831, Gauss (1777–1855) published his geometric model which visualized com-
plex numbers. This was the breakthrough in understanding complex numbers as
reasonable mathematical objects. Gauss used a Cartesian (x, y)-coordinate system.
In modern terminology, the following hold:

• The complex number x+yi corresponds to a vector in the plane that points from
the origin (0, 0) to the point (x, y) (see Fig. 1.8).

• In polar coordinates, we have

x+ yi = r(cosϕ+ i sinϕ), −π < ϕ ≤ π

where r :=
p

x2 + y2 is the length, and ϕ is the angle of the vector.
• The addition of complex numbers corresponds to the addition of vectors.
• The product (x+yi)(x′ +iy′) of complex numbers is a complex number of length
rr′ and angle ϕ+ ϕ′.

Reinhold Remmert writes:18

“You have made possible the impossible” is a phrase used in a congrat-
ulatory address made to Gauss in 1849 by the Carolinum in Brunswick
(now the Technical University) on the occasion of the 50-year jubilee of
his doctorate.

The algebraic Hamilton model of complex numbers. Hamilton showed
that there exists a purely algebraic model. He considered the set C of all the tuples
(x, y) where x and y are real numbers x, y, and he defined the following operations:

• (u, v) + (x, y) := (u+ x, v + y) (sum),
• (u, v)(x, y) := (ux− vy, uy + vx) (product).

By explicit computation, one checks easily that the multiplication is distributive,
associative, and commutative, and so on. This way, C becomes a field called the
field of complex numbers.19 Let R denote the set of all the pairs (x, 0) in C. It
follows from

18 R. Remmert, Complex Numbers, pp. 55–96. In: H. Ebbinghaus et al. (Eds.),
Numbers, Springer, New York, 1991 (reprinted with permission).

19 The definition of a field can be found on page 179 of Vol. II.
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(x, 0) + (y, 0) = (x+ y, 0), (x, 0)(y, 0) = (xy, 0)

that R is a subfield of C. The map χ : R → C given by

χ(x) := (x, 0)

is an injective field morphism. Consequently, the field R of real numbers is isomor-
phic to the subfield R. Let us write x instead of (x, 0). Furthermore, set i := (0, 1).
Since (0, 1)(0, 1) = (−1, 0), we get the key relation

i2 = −1.

Moreover, it follows from (x, 0) + (y, 0)(0, 1) = (x, y) that every complex number
(x, y) can be written as x+yi. This justifies the usual computation rules for complex
numbers. Hamilton (1805–1865) published this model in 1835.

The question of Hamilton’s boys. Once a day, Hamilton told his two young
sons that he was able to multiply doublets

(x, y),

namely, complex numbers x + yi. His sons asked him whether he could multiply
triplets

(x, y, z).

For a long time, Hamilton tried to invent such a multiplication. But he was not
successful. He considered generalized complex numbers

x+ yi+ zj

with real coefficients x, y, z and i2 = −1. The problem is to define the products
j2, ij, ji in a suitable way. After many trials, Hamilton had the idea to pass to
quadruplets

x+ yi+ zj + wk.

But still he had trouble to find the right products of the basis elements 1, i, j, k.
In a letter to his son a few months before his death in 1865, Hamilton wrote the
following:20

Every morning on my coming down to breakfast, your brother and yourself
used to asked me: “Well, Papa can you multiply triplets?” Whereto I was
always obliged to reply, with a sad shake of my head: “No, I can only add
and subtract them” . . .

But on the 16th of October, 1843, which happened to be a Council day
of the Royal Irish Academy – I was walking in to attend and to preside,
and your mother was talking with me, along the Royal Canal . . . and
although she talked with me now and then, yet an undercurrent of thought
was going on in my mind, which gave at last a result, whereof . . . I felt
at once the importance. An electric circuit seemed to close, and a spark
flashed forth, the herald of many long years to come of definitely directed
thought and work . . . I pulled out on the spot a pocket-book, which
still exists, and made an entry there and then. Nor could I resist the
impulse - unphilosophical as it may have been – to cut with a knife on a
stone of Brougham Bridge, as we passed it, the fundamental formula for
quaternions:

i2 = j2 = k2 = ijk = −1.

20 B. van der Waerden, History of Algebra, Springer, Berlin, 1985 (reprinted with
permission).
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The following proposition shows that it is not possible to multiply triplets by pre-
serving the associative law.

Proposition 1.15 It is impossible to extend the real 2-dimensional associative al-
gebra C to a real 3-dimensional associative algebra A.

Proof. Assume that there exists a real algebra A with the three basis elements
1, i, j where 1 is the unit element, and i2 = −1. Thus, the elements Q of A have
the form

Q = x+ yi+ zj (1.45)

where x, y, z are real numbers which are uniquely determined by Q. In particular,
choose Q := ji. By the associative law, Qi = (ji)i = j(ii) = −j. Hence

−j = (x+ yi+ zj)i = xi− y + zji

= xi− y + z(x+ yi+ zj) = zx− y + (x+ zy)i+ z2j.

From −j = . . .+ z2j we get −1 = z2 where z is a real number. This is impossible.
�

Theorem 1.16 It is possible to extend the real 2-dimensional associative algebra
C to a real 4-dimensional associative algebra H with the unit element 1.

This algebra is uniquely determined by the existence of a basis 1, i, j, k for which
the following Hamilton product formulas are valid: i2 = j2 = k2 = ijk = −1.

Corollary 1.17 The elements of H called quaternions have the form

Q = x+ yi+ zj + wk (1.46)

with real coefficients x, y, z, w, and we have the following product formulas:
i2 = j2 = k2 = −1 and

ij = −ji = k, jk = −kj = i, ki = −ik = j. (1.47)

These rules allow us to compute arbitrary products. For example,

(1 + 3j)(i+ 2k) = i+ 2k + 3ji+ 6jk = i+ 2k − 3k + 6i = 7i− k.

Introducing the conjugate quaternion Q† := x − yi − zj − wk, we get the crucial
formula

QQ† = Q†Q = x2 + y2 + z2 + w2. (1.48)

Mnemonically, it is sufficient to know the product rules i2 = −1 and ij = −ji = k.
The remaining product rules are obtained by the aid of the cyclic permutation
i⇒ j ⇒ k ⇒ i.
Proof. (I) Uniqueness. If there exists such an algebra H, then the elements of H

have the form (1.46). It follows from i2 = j2 = k2 = ijk = −1 together with the
associative law that

−k = (ijk)k = (ij)(kk) = −ij.
Moreover, ijk = −1 implies (ii)jk = −i. Hence jk = i. In turn, ji = (jj)k = −k.
Similarly, we get all the other product formulas mentioned in Corollary 1.17.

(II) Existence. Since the multiplication of quaternions is based on the multi-
plication rules for the basis elements 1, i, j, k, the validity of the distributive law is
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obvious. We have to show that the multiplication is associative. For example, we
have

(ij)k = i(jk).

In fact, (ij)k = k2 = −1 and i(jk) = ii = −1. Similarly, we obtain that the
associative law is satisfied for all the products of basis elements. �

Corollary 1.18 The algebra H is a skew-field.

Proof. For each nonzero quaternion Q, set

P :=
Q†

QQ† =
x− yi− zj − wk
x2 + y2 + z2 + w2

.

Then, QP = PQ = 1. Thus, P is the inverse element to Q. We will write Q−1

instead of P . �

Hamilton (1805–1865) introduced his quaternions as four-dimensional objects
in 1843. Two years later, the special quaternions

yi+ zj + wk

were called ‘vectors’ by Hamilton. This way, the following 3-dimensional vector
operations emerged: ab (inner product), a × b (vector product), gradΘ (gradi-
ent of the temperature field Θ), div v (divergence of the velocity vector field v),
and curl v (curl of the velocity vector field v.) This 3-dimensional vector calcu-
lus was popularized by the physicist Gibbs (1839–1903) who worked at Yale Uni-
versity (New Haven, Connecticut) and who made fundamental contributions to
statistical physics. For example, the Maxwell equations in electrodynamics are es-
sentially based on div E, curlE,div B, curlB for the electromagnetic field E,B.
In the 1850s, Cayley (1821–1895) developed the matrix calculus. In particular, he
showed that quaternions can be realized by complex (2 × 2)-matrices. This ele-
gant approach to quaternions will be considered in Sect. 1.3.5. In 1878, Clifford
(1845–1879) generalized the algebra of quaternions to Clifford algebras.

Quaternions in modern physics. Hamilton was convinced that quaternions
would be important for physics. However, deep relations of quaternions to physics
were only discovered in the twentieth century:

• In 1908, Minkowski (1864–1909) formulated the geometrization of Einstein’s the-
ory of special relativity. Minkowski emphasized that the theory of special rela-
tivity can be understood best in terms of a special 4-dimensional geometry (the
Minkowski geometry of the Minkowski space). We will show in Sect. 1.3.9 that
the indefinite metric of the Minkowski space M4 is intimately related to quater-
nions. Einstein’s theory of special relativity is based on the Lorentz group which
describes the change of space and time coordinates of inertial systems. The in-
finitesimal Lorentz group is the 6-dimensional real Lie algebra sl(2,C) which is
related to the 3-dimensional Lie group su(2) by the direct sum formula

sl(2,C) = su(2) ⊕ su(2).

Here, the Lie algebra su(2) of infinitesimal rotations is isomorphic to the Lie
algebra (E3)Lie, which represents the simplest nontrivial Lie algebra.

• In 1927, Pauli (1900–1958) created the theory of the non-relativistic spinning
electron. For describing the electron spin, he introduced the so-called Pauli ma-
trices which are intimately related to the Lie algebra su(2).We will show in Sect.
1.3.4 that the Pauli spin matrices and the Lie algebra su(2) can be understood
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best by using Cayley’s approach to quaternions via the Cayley quaternionic ma-
trices

q1, q2, q3.

For the electron spin, it is important that the Lie algebra su(2) is not only the
Lie algebra of the rotation group SO(3), but su(2) is also the Lie algebra of the
group U(1,H) which consists of all the quaternions of length one. In other words,
U(1,H) corresponds to the unit sphere in the 4-dimensional real Hilbert space H

of quaternions. We have the group isomorphism

U(1,H)  SU(2).

This simply connected group SU(2) is the universal covering group of the not
simply connected rotation group SO(3). This means that there exists a surjective
group morphism

μ : SU(2) → SO(3) (1.49)

with the kernel {I,−I}. Hence we get the group isomorphism

SO(3)  SU(2)/{I,−I}.

The map μ from (1.49) generalizes the map

ν : R → U(1)

given by ν(ϕ) := eiϕ for all ϕ ∈ R.
• In 1928, Dirac (1902–1984) used the Clifford algebra of the Minkowski space in

order to combine the theory of special relativity with quantum mechanics. This
way, Dirac created the theory of the relativistic electron. This theory shows that
the electron spin is a relativistic effect.

• The Standard Model in particle physics was created in the 1960s and early 1970s.
This model is based on the gauge group

U(1) × SU(2) × SU(3).

Here, U(1) × SU(2) corresponds to the electroweak interaction, and SU(3) cor-
responds to the strong interaction.

• In about 1900, Élie Cartan (1869–1951) showed that the complexification slC(2,C)
of the Lie algebra su(2) is the building block for all complex semi-simple Lie alge-
bras. Graphically this corresponds to Dynkin diagrams and root diagrams which
are widely used in elementary particle physics (see Chap. 3).

• The group SU(2) and the theory of the spinning electron are also closely related
to the Hopf fibration of the 3-dimensional unit sphere S

3 (see Sect. 5.7.2 of
Vol. I). This construction proves the existence of nontrivial continuous mappings
f : S

3 → S
2. In turn, this is related to the Chern class of a special U(1)-principal

fiber bundle. The theory of U(1)-fiber bundles was created by Weyl (1885–1955)
in 1929 in order to reformulate Maxwell’s theory of the electromagnetic field (see
Chap. 13).

1.3.4 Pauli’s Spin Matrices and the Lie Algebras su(2)
and sl(2, C)

We want to study the relation between special Lie matrix algebras and quaternions.
The following matrices
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σ0 :=

 

1 0

0 1

!

, σ1 :=

 

0 1

1 0

!

, σ2 :=

 

0 −i

i 0

!

, σ3 :=

 

1 0

0 −1

!

(1.50)

are called the Pauli matrices. These matrices are self-adjoint, and they possess the
following properties:

• σ1σ2 = −σ2σ1 = iσ3 and σ1σ1 = σ0.
• σ1σ2 − σ2σ1 = 2iσ3 (Lie relation),
• σ1σ2 + σ2σ1 = 0 (Clifford relation).

The matrices
Sk := �

2
σk, k = 1, 2, 3

are called the Pauli spin matrices. They satisfy the following commutation relations:

S1S2 − S2S1 = �iS3.

These are the commutation relations for angular momentum in quantum mechanics.
Further relations are obtained by using the cyclic permutation 1 ⇒ 2 ⇒ 3 ⇒ 1. For
example, σ2σ3 = −σ3σ2 = iσ1 and σ2σ2 = σ0.

The complex matrix algebra MC(2, 2; C). Let M(2, 2; C) denote the set of
all complex (2 × 2)-matrices. With respect to the usual matrix operations

αA+ βB, AB, A†

for all A,B ∈ M(2, 2; C) and all α, β ∈ C, the set M(2, 2; C) becomes a complex 4-
dimensional associative noncommutative ∗-algebra with the unit matrix σ0 as unit
element. This complex algebra is denoted by MC(2, 2; C) (see page 116).

The real matrix algebra MR(2, 2; C). With respect to the matrix operations

αA+ βB, AB, A†

for all A,B ∈ M(2, 2; C) and all α, β ∈ R, the set M(2, 2; C) becomes a real 8-
dimensional associative noncommutative ∗-algebra with the unit matrix σ0 as unit
element (see page 116). This real algebra is denoted by MR(2, 2; C). Let us introduce
the Cayley matrices

q0 := σ0, qk := −iσk, k = 1, 2, 3. (1.51)

Explicitly,

q0 :=

 

1 0

0 1

!

, q1 :=

 

0 −i

−i 0

!

, q2 :=

 

0 −1

1 0

!

, q3 :=

 

−i 0

0 i

!

. (1.52)

The basis theorem. Set A := MR(2, 2; C). An elementary argument shows
the following.

Proposition 1.19 (i) The matrices σ0, σ1, σ2, σ3 form a basis of the real 4-dimen-
sional linear space {A ∈ A : A† = A}.

(ii) The matrices σ1, σ2, σ3 form a basis of the real 3-dimensional linear space
{A ∈ A : A† = A, tr(A) = 0}.

(iii) The matrices iσ0, q1, q2, q3 form a basis of the real 4-dimensional linear

space {A ∈ A : A† = −A}.
(iv) The matrices q1, q2, q3 form a basis of the real 3-dimensional linear space

{A ∈ A : A† = −A, tr(A) = 0}.
(iv) The matrices σ0, σ1, σ2, σ3, iσ0, q1, q2, q3 form a basis of the real 8-dimen-

sional linear space A.
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The Lie algebra su(2). Recall that A := MR(2, 2; C). Define

[A,B]− := AB −BA, A,B ∈ A.

With respect to the product [A,B]−, the linear space A becomes a real 8-dimensio-
nal Lie algebra. Set

su(2) := {A ∈ A : A† = −A, tr(A) = 0}.

The elements of su(2) have the form αq1 +βq2 +γq3 where α, β, γ are real numbers.

Proposition 1.20 su(2) is a real 3-dimensional Lie subalgebra of A with

[q1, q2]− = 2q3, [q2, q3]− = 2q1, [q3, q1]− = 2q2. (1.53)

The Lie algebra sl(2,C). Define sl(2,C) := {A ∈ A : tr(A) = 0}.

Proposition 1.21 sl(2,C) is a real 6-dimensional Lie subalgebra of A with the
basis q1, q2, q3, iq1, iq2, iq3.

Proof. The elements of sl(2,C) have the form

αq1 + βq2 + γq3 + �(iq1) + σ(iq2) + τ(iq3)

with real coefficients α, β, γ, �, σ, τ. It follows from (1.53) that all the products
[A,B]− of the six basis elements q1, q2, q3, iq1, iq2, iq3 lie in sl(2,C). �

1.3.5 Cayley’s Matrix Approach to Quaternions

The following definition is basic for quaternions. Let H denote the set of all the
matrices

A = αq0 + βq1 + γq2 + δq3 (1.54)

with real numbers α, β, γ, δ. Explicitly,

A =

 

α− δi −γ − βi

γ − βi α+ δi

!

(1.55)

with det(A) = α2 +β2 +γ2 +δ2. The matrix q0 is the unit matrix, and the matrices
q1, q2, q3 have the following product properties:

• (q1)
2 = −q0 and q1q2 = −q2q1 = q3,

• (q2)
2 = −q0 and q2q3 = −q3q2 = q1,

• (q3)
2 = −q0 and q3q1 = −q1q3 = q2,

• q†0 = q0, q
†
1 = −q1, q†2 = −q2, q†3 = −q3.

Hence A† = αq0−βq1−γq2−δq3. Finally, for all A,B let us introduce the inner prod-
uct 〈A|B〉 := 1

2
tr(AB†) together with the corresponding norm ||A|| :=

p

〈A|B〉.
Then21

〈qj |qk〉 = δjk, j, k = 0, 1, 2, 3.

This means that q0, q1, q2, q3 represents an orthonormal basis of H. This implies

||A|| =
p

α2 + β2 + γ2 + δ2.

Hence ||A|| =
p

det(A). Moreover, A†A = AA† = ||A||2q0.
21 For example, 〈q1|q1〉 = 1

2
tr(q1q

†
1) = 1

2
tr(−q21) = 1

2
tr(q0) = 1.
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Theorem 1.22 (i) H is a 4-dimensional real associative algebra with the unit ma-
trix q0 as unit element; the algebra H is isomorphic to the algebra H.

(ii) H is a skew-field.
(iii) H is a real Hilbert space.
(iv) ||AB|| = ||A|| · ||B|| for all A,B ∈ H (product rule).
(iv) H is a real C∗-algebra. For all A,B ∈ H and all real numbers α, β, we have

||A†|| = ||A|| and

(αA+ βB)† = αA† + βB†, (AB)† = B†A†, (A†)† = A.

Proof. Ad (i). Note that A is a real associative algebra. Since we have the relations

q1q2 = −q2q1 = q3, q
†
1 = −q1, and so on, H is a subalgebra of A. The map

1 �→ q0, i �→ q1, j �→ q2 k �→ q3

yields the algebra isomorphism H  H.
Ad (ii). If A �= 0, then det(A) �= 0. Hence the inverse matrix A−1 exists.

Ad (iii). det(AB) = det(A) det(B), and ||A|| =
p

det(A).
�

Euler’s “four squares theorem.” Choose the quaternionsQ = α+βi+γj+δk
and P = a + bi + cj + dk. Then ||Q||2 = α2 + β2 + γ2 + δ2. It follows from the
product rule ||Q||2 · ||P ||2 = ||QP ||2 that the product

(α2 + β2 + γ2 + δ2)(a2 + b2 + c2 + d2)

of two four-squares sums is equal to the following sum of four-squares sums

(αa− βb− γc− δd)2 + (αb+ ba+ γd− δc)2

+(αc+ γa+ δb− βd)2 + (αd+ δa+ βc− γb)2.

Using Cayley’s octonions, this formula can be extended to the sum of 8 squares.
But Hurwitz (1859–1919) proved in 1898 that it is impossible to extend this to n
sums of squares with n > 8. Such formulas are used in additive number theory.22

1.3.6 The Unit Sphere U(1, H) and the Electroweak Gauge
Group SU(2)

Let N = 1, 2, . . . By definition, the group U(N) consists of all complex N × N
matrices A with det(A) �= 0 and A−1 = A†. Moreover, let us define the group
SU(N) := {A ∈ U(N) : det(A) = 1.}.

Proposition 1.23 SU(2) = {A ∈ H : ||A|| = 1}.

Proof. For the given complex (2×2)-matrix A =

 

a b

c d

!

, we have det(A) = ad−bc.

Suppose that det(A) �= 0. Then

A† =

 

a† c†

b† d†

!

, A−1 =
1

det(A)

 

d −b
−c a

!

.

22 The proof can be found in H. Ebbinghaus et al. (Eds.), Numbers, Springer, New
York, 1995, Chap. 10.
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If A ∈ SU(2), then A† = A−1 implies a† = d and b† = −c. Hence A ∈ H, by (1.55),

and ||A|| =
p

det(A) = 1.

Conversely, if A ∈ H and ||A|| = 1, then det(A) = 1, and A† = A−1. Hence
A ∈ SU(2). �

Proposition 1.23 tells us that the group SU(2) is isomorphic to the group U(1,H)
of all the quaternions of length one. This is the unit sphere in the 4-dimensional
real Hilbert space H.

1.3.7 The Four-Dimensional Extension of the Euclidean Space E3

We want to study the relation between quaternions and vectors which played a
crucial role in the history of vector calculus. To this end, we consider the direct
sum R ⊕ E3 which consists of all the sums

α+ a

where α is a real number and a is a vector in E3.We define the following operations:

• (α+ a) + (β + b) := (α+ β) + (a + b) (sum),
• (α+ a) ∨ (β + b) := αβ + αb + βa− ab + a × b (product),
• (α+ a)† := α− a (conjugation),
• 〈α+ a| β + b〉 := αβ + ab (inner product),

• ||α+ a|| :=
√
α2 + a2,

• �(α+ a) := α (real part),
• �(α+ a) = a (imaginary part).

Choose a right-handed orthonormal basis i, j,k of the Euclidean space E3. Then:

• i ∨ i = −1, i ∨ j = −j ∨ i = k,
• j ∨ j = −1, j ∨ k = −k ∨ j = i,
• k ∨ k = −1, k ∨ i = −i ∨ k = j.

For example, it follows from ij = 0 and i × j = k, as well as j × i = −i × j that
i ∨ j = k and j ∨ i = −i ∨ j.

Proposition 1.24 The algebra R ⊕ E3 is isomorphic to the algebra H of quater-
nions.

The isomorphism is given by the map 1 �→ 1, i �→ i, j �→ j, k �→ k.
The product a ∨ b = −ab + a × b is called the Clifford product of the vectors

a and b. We have the so-called Clifford relation

a ∨ b + b ∨ a = −2ab for all a,b ∈ E3. (1.56)

In particular, this implies the so-called square-root relation

a ∨ a = −a2 for all a ∈ E3. (1.57)

Moreover,

a ∨ b − b ∨ a = 2a × b for all a,b ∈ E3. (1.58)
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1.3.8 Hamilton’s Nabla Operator

Choose a right-handed Cartesian (x, y, z)-coordinate system with the right-handed
orthonormal basis i, j,k. By definition, the symbol

∇ := i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

is called Hamilton’s nabla operator.23 Let v = ai + bj + ck. Using the quaternionic
product, we get

∇∨ (Θ + v) = gradΘ − div v + curl v

with

• gradΘ := ∇Θ = Θxi +Θyj +Θzk (gradient of the temperature field Θ),
• div v := ∇v = axi + byj + czk (divergence of the velocity vector field v),
• curl v := ∇×v = (cy − bz)i+(az − cx)j+(bx − ay)k (curl of the velocity vector

field v).

In Sect. 9.1.3 on page 560, we will show that gradΘ, div v, and curl v possess an
invariant meaning which does not depend on the choice of the Cartesian coordinate
system.

1.3.9 The Indefinite Hilbert Space H and the Minkowski Space

We equip the 4-dimensional linear space R ⊕ E3 with the indefinite inner product

〈α+ a| β + b〉− := �
`

(α+ a) ∨ (β + b)
´

= αβ − ab.

This way, we get a 4-dimensional real indefinite Hilbert space which is isomorphic
to the Minkowski space M4. This space will be studied in Chap. 18 in connection
with Einstein’s theory of special relativity. By the way, the Hilbert space structure
on R ⊕ E3 is obtained by the inner product

〈α+ a| β + b〉 = �
`

(α+ a) ∨ (β + b)†
´

= αβ + ab.

1.4 Riesz Duality between Vectors and Covectors

The Hilbert space E3 possesses a natural duality which is based on the
Riesz operator ℵ : E3 → Ed

3 . This is the special case of a general theorem
in functional analysis.

Folklore

This section will be based on the following key formula

F (x) := 〈a|x〉 for all x ∈ E3 (1.59)

where 〈a|x〉 denotes the inner product on the Hilbert space E3. Let e1, e2, e3 be
an orthonormal basis of the Euclidean space E3. Recall the definition of the special
linear functionals dxj ∈ Ed

3 given by dxj(a) := aj where j = 1, 2, 3.
The dual linear space Ed

3 . Recall that the symbol Ed
3 denotes the set of all

linear functionals F : E3 → R.

23 Nabla was a Phoenician string instrument (800 B.C.).
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Proposition 1.25 The dual space Ed
3 is a real 3-dimensional linear space with the

basis dx1, dx2, dx3.

Proof. (I) Linear structure. If F,G ∈ Ed
3 and α, β ∈ R, then we define

(αF + βG)(x) := αF (x) + βG(x) for all x ∈ E3.

Then, αF + βG ∈ Ed
3 . This way, the set Ed

3 becomes a real linear space.
(II) Linear combination. Let b1, b2, b3 be given real numbers. Then the linear

combination

F := bkdx
k (1.60)

is a linear functional, that is, F ∈ Ed
3 . We want to show that every element of Ed

3

can be represented this way. In fact, let F ∈ Ed
3 . Introduce the so-called coordinates

b1, b2, b3 of F by setting bk := F (ek), k = 1, 2, 3. Then

F (a) = F (akek) = akF (ek) = bkdx
k(a).

Hence we get (1.60).
(III) Basis. It remains to show that the elements dx1, dx2, dx3 are linearly in-

dependent in Ed
3 . To this end, suppose that

akdx
k = 0.

This implies 0 = akdx
k(ej) = akδ

k
j = aj . Hence a1 = a2 = a3 = 0. �

In mathematics, duality is systematically designated by the prefix ‘co’. For
example, the elements of the dual space Ed

3 are called covectors, and the system of
the three covectors dx1, dx2, dx3 is called the cobasis related to e1, e2, e3. The linear
functional akdx

k is also called a differential 1-form (with constant coefficients).
The Riesz duality operator ℵ. For given vector a ∈ E3, the key formula

(1.59) yields the linear functional F ∈ Ed
3 . We set ℵ(a) := F.

Theorem 1.26 The Riesz operator ℵ : E3 → Ed
3 is a linear isomorphism.

Proof. (I) Injectivity. If ℵ(a) = 0, then 〈a|a〉 = 0. Hence a = 0.
(II) Surjectivity. Explicitly, we have ℵ(a) = akdx

k where ak := ak. By Prop.
1.25, each functional F ∈ Ed

3 can be represented as ℵ(a) for some vector a. �

The dual Hilbert space Ed
3 . The Riesz operator ℵ can be used in order to

equip the dual space Ed
3 with an inner product in a quite natural manner. To this

end, we set

〈F |G〉Ed
3

:= 〈a|b〉 for all F,G ∈ Ed
3

where a := ℵ−1(F ) and b := ℵ−1(G).
The bidual space Edd

3 . By definition, the space Edd
3 is the dual space to Ed

3 .
For given vector a, define

Φ(F ) := F (a) for all F ∈ Ed
3 .

Then, Φ : Ed
3 → R is a linear functional on the dual space Ed

3 . Set χ(a) := Φ.

Proposition 1.27 The map χ : E3 → Edd
3 is a linear isomorphism.
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The proof proceeds similarly as the proof of Theorem 1.26.
The inner product between vectors and covectors. For the vector v and

the covector F ∈ Ed
3 , we define the inner product

v�F := F (v).

This is a real number. Similarly, for the n-linear functional F : E3 × · · · × E3 → R

with n = 2, 3, . . . , we define the inner product v�F by setting

(v�F )(x2, . . . ,xn) := F (v,x2, . . . ,xn) for all x2, . . . ,xn ∈ E3.

Obviously, v�F is an (n− 1)-linear functional on E3. Instead of v�F , we also write
ivF. Mnemonically, the symbol iv stands for ‘insert v’.

The general theorem in Hilbert spaces. Choose K = R or K = C. Let X
be a Hilbert space over K. For given a ∈ X, define

F (x) := 〈a|x〉 for all x ∈ X.

Then, the map F : X → K is a linear continuous functional on the Hilbert space
X with the norm ||F || = ||a||.

Theorem 1.28 Every linear continuous functional on X can be obtained this way.

This famous theorem was independently proven by Fryges Riesz and Maurice
Fréchet in 1907 in the special case of the Hilbert space X = L2(R). Note that one
has to distinguish between the Hungarian mathematician Fryges (Frédéric) Riesz
(1880–1956), who worked in Budapest (Hungary), and his brother Marcel Riesz
(1886–1969), who worked in Lund (Sweden). Fryges Riesz is one of the founders of
functional analysis at the beginning of the twentieth century. Analytic renormaliza-
tion dates back to the papers of Marcel Riesz on Riemann–Liouville integrals and
their applications to fundamental solutions of linear hyperbolic partial differential
equations (written in the 1940s).

An elementary proof (together with many important applications) can be found
in E. Zeidler, Applied Functional Analysis, Vol. 1: Applications to Mathematical
Physics, Springer, New York, 1995. It turns out that Theorem 1.28 is equivalent to
the unique solvability of the variational problem

||x− x0|| = min!, x ∈ L, (1.61)

where the element x0 ∈ X is given, and L is a given closed linear subspace of the
Hilbert space X. In geometric terms, the solution x of (1.61) corresponds to the
foot of the perpendicular from the point x0 to the plane L. In analytic terms, the
minimum problem (1.61) allows the justification of the famous Dirichlet principle
for the Laplacian via generalized derivatives and Sobolev spaces (see Sect. 10.4.9
of Vol. II).

1.5 The Heisenberg Group, the Heisenberg Algebra,
and Quantum Physics

The deformation of mathematical structures is fundamental for modern
physics. This concerns both Heisenberg’s quantum physics and Einstein’s
theory of relativity.
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Quantum physics is closely related to a deformation of the classical additive
group structure of the Euclidean space E3 via the Heisenberg group.24

Folklore

We want to show that the Heisenberg group and the corresponding Heisenberg
algebra can be realized isomorphically in completely different ways. Behind these
isomorphisms (also called faithful representations), there lurks the passage from
classical mechanics to quantum mechanics discovered by Heisenberg (1901–1976)
in 1925. The terms ‘Heisenberg group’ and ‘Heisenberg algebra’ were coined in the
1970s. However, the Heisenberg algebra was already implicitly used by Jacobi in
1843 (Poisson brackets in celestial mechanics).

The Heisenberg group GHeis(k). We want to equip the Euclidean space E3

with a product. To this end, we choose a unit vector k ∈ E3. For every vector
x ∈ E3, we have the orthogonal splitting

x = (xk)k + x⊥.

Here, the vector x⊥ is the orthogonal projection of the vector x onto the linear
subspace L⊥(k) of E3 which is orthogonal to k. We define the product

x · y := x + y + 1
2
(x⊥ × y⊥). (1.62)

For all x,y, z ∈ E3, we have the associative law25

x · (y · z) = (x · y) · z.

This way, the Euclidean space E3 becomes a Lie group with the unit element x = 0,
and the inverse element to x equals −x. This group is called the Heisenberg group
GHeis(k).

The Heisenberg group GHeis(k) is a deformation of the additive group of
the Euclidean space E3 equipped with the group operation x + y.

To see this, fix the real parameter ε, and define the product

x · y := x + y + 1
2
ε(x⊥ × y⊥).

This way, for any ε, the Euclidean space E3 becomes a group. The Heisenberg group
GHeis(k) corresponds to ε = 1, and the classical additive group E3 is obtained by
setting ε = 0.

The Heisenberg algebra AHeis(k). The Euclidean space E3 becomes a Lie
algebra by introducing the Lie product

[x,y] := x⊥ × y⊥. (1.63)

This Lie algebra is called the Heisenberg algebra AHeis(k).26

24 Note that the passage from classical mechanics to Einstein’s theory of special
relativity is based on a deformation of the Galilean group to the Lorentz group.
Moreover, Einstein’s theory of general relativity is a deformation of Newton’s
theory on gravitation.

25 Note that (x⊥ × y⊥)⊥ = 0.
26 Note that the Jacobi identity [[x,y], z] + [[y, z],x] + [[z,x],y] = 0 is trivially

satisfied, since [[x,y], z] = (x⊥ × y⊥)⊥ × z⊥ = 0.
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Proposition 1.29 In the sense of the general theory of Lie groups, the Lie algebra
of the Heisenberg group GHeis(k) is the Heisenberg algebra AHeis(k).

Proof. Fix x,y ∈ E3. Consider the trajectories

G(t) := tx, H(t) := ty, t ∈ R

in the group GHeis(k). The tangent vectors at the unit element x = 0 are Ġ(0) = x

and Ḣ(0) = y. The commutator reads as

C(t, s) := G(t)H(s)G(t)−1H(s)−1, t, s ∈ R.

According to the general theory of Lie groups, the Lie product is given by the
partial derivative

[x,y] := Cst(0, 0).

It follows from

C(t, s) =
“

tx + sy + 1
2
ts(x⊥ × y⊥)

”

·
“

−tx − sy + 1
2
ts(x⊥ × y⊥)

”

that C(t, s) = ts(x⊥ × y⊥) + . . . Hence [x,y] = x⊥ × y⊥. �

The Lie group GHeis(k) has the same topology as the Euclidean space E3. Thus,
GHeis(k) is arcwise connected and simply connected. Consequently, the Heisenberg
group GHeis(k) is the universal covering group of the Lie algebra AHeis(k).

The relation to quantum mechanics. Let i, j,k be a right-handed orthonor-
mal basis of the Euclidean space E3. Then

[i, j] = k, [j,k] = 0, [k, i] = 0.

Let D(R) be the complex linear space of all the smooth complex-valued functions
ψ : R → C which have compact support. Motivated by quantum mechanics, define
the linear operators Q,P,K : D(R) → D(R) by setting

(Qψ)(x) := xψ(x), (Pψ)(x) := −i�
dψ(x)

dx
, Kψ(x) := i�ψ(x), x ∈ R.

Then

[Q,P ]− = K, [P,K]− = 0, [Q,K]− = 0 (1.64)

where [Q,P ]− := QP−PQ, and so on.27 The real linear combinations αQ+βP+γK
with α, β, γ ∈ R form a Lie algebra L. The map

αi + βj + γk �→ αQ+ βP + γK

is a Lie algebra isomorphism from AHeis onto L. In terms of physics, the operator
P (resp. Q) is the momentum (resp. position) operator of a quantum particle on
the real line (see Sect. 7.4.3 of Vol. II). For the history of the Born–Heisenberg–
Jordan commutation relation [Q,P ]− = K = i�I, see Sect. 1.3 of Vol. I. These
commutation relations did not explicitly appear in Heisenberg’s fundamental paper
in 1925.28

27 In fact, PQψ = −i�(xψ(x))′ = −i�(ψ + xψ′) = −Kψ +QPψ.
28 W. Heisenberg Quantum-theoretical re-interpretation of kinematics and mechan-

ical relations (in German), Z. Physik 33, 879–893 (English translation in: B. van
der Waerden (Ed.), Sources of Quantum Mechanics (1917–1926), Dover, New
York, 1968, pp. 261–276).
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The Poisson–Lie algebra and quantization. Let D(R2) denote the real
linear space of real-valued smooth functions f : R

2 → R which have compact
support. Define the Poisson bracket

{f, g}(q, p) :=
∂f(q, p)

∂q

∂g(q, p)

∂p
− ∂f(q, p)

∂p

∂g(q, p)

∂q
.

The linear space D(R2) becomes an infinite-dimensional Lie algebra equipped with
the Lie product {f, g}. In particular, let us consider the following three functions:
f(q, p) := q, g(q, p) := p,1(q, p) := 1. Then

{q, p} = 1, {p,1} = 0, {1, q} = 0. (1.65)

Thus, the linear functions αq + βp + γ1 with real coefficients α, β, γ form a real
3-dimensional Lie algebra which is isomorphic to the Heisenberg algebra AHeis(k).
The isomorphism is given by

αq + βp+ γ1 �→ αQ+ βP + γK.

Historically, the relations (1.65) were used by Jacobi (1804–1851) in his 1843 lec-
tures on celestial mechanics.29 In 1925 Dirac (1902–1984) emphasized that the quan-
tization of classical mechanics can be based on the passage from Poisson brackets
(1.65) to Lie brackets (1.64).30

Components. Let x = xi + yj + zk, and y = ξi + ηj + ζk. Then the product
x · y corresponds to

(x, y, z) · (ξ, η, ζ) := (x+ ξ, y + η, z + ζ + 1
2
(xη − yξ)). (1.66)

The set of all the tuples (x, y, z) ∈ R
3 equipped with the product (1.66) forms

a Lie group GHeis(R
3) which is isomorphic to the Heisenberg group GHeis(k). The

isomorphism is given by the map x �→ (x, y, z).
Similarly, the Lie product [x,y] corresponds to

[(x, y, z), (ξ, η, ζ)] = (0, 0, xη − yξ). (1.67)

The set of all the tuples (x, y, z) ∈ R
3 equipped with the Lie product (1.67) forms a

Lie algebra AHeis(R
3) which is isomorphic to the Heisenberg algebra AHeis(k). The

isomorphism is given by the map x �→ (x, y, z).
Lie matrix groups. Let n = 1, 2, . . . The symbol GL(n,C) (resp. GL(n,R))

denotes the Lie group of all complex (resp. real) invertible (n×n)-matrices equipped
with the matrix product.31

The symbol gl(n,C) (resp. gl(n,R)) denotes the real Lie algebra of all real (resp.
complex) (n× n)-matrices equipped with the Lie product

[A,B]− := AB −BA.

In the sense of the general theory of Lie groups, the Lie algebra to GL(n,C) (resp.
GL(n,R) is gl(n,C) (resp. gl(n,R)).

29 C. Jacobi, Jacobi Lectures on Dynamics, Hindustan Books Agency, India, 2009.
30 P. Dirac, The fundamental equations of quantum mechanics, Proc. Roy. Soc. A

109 (1925), 642–653.
31 If we do not expressively state the opposite, Lie groups are to be understood

as real manifolds (i.e., real Lie groups). Basic properties of Lie algebras and Lie
groups can be found in Chap. 7 of Vol. I.
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By definition, a Lie matrix group is a closed subgroup of GL(n,C). Impor-
tant examples of Lie matrix groups can be found in Sect. 7.5ff of Vol. I. General
properties of Lie matrix groups related to universal covering groups and general
representation theory are summarized on page 1084.

The matrix representation of the Heisenberg group and the Heisen-
berg algebra. It turns out that the Heisenberg group is isomorphic to a well-known
classical Lie group studied by Lie (1842–1899) in the 1870s. The set of all the real
matrices

G =

0

B

@

1 x z

0 1 y

0 0 1

1

C

A

, x, y, z ∈ R

equipped with the matrix product forms the Lie group SUT (3,R) (special upper
triangular matrices). The set of all the real matrices

A =

0

B

@

0 x z

0 0 y

0 0 0

1

C

A

, x, y, z ∈ R

equipped with the Lie product [A,B]− := AB−BA forms a real 3-dimensional Lie
algebra sut(3,R).

Proposition 1.30 (i) The map G �→ (x, y, z − 1
2
xy) is a Lie group isomorphism

from the Lie group SUT (3,R) onto the Heisenberg group GHeis(R
3).

(ii) The map A �→ (x, y, z) is a Lie algebra isomorphism from the Lie algebra
sut(3,R) onto the Heisenberg algebra AHeis(R

3).

Proof. Ad (i). The matrix product

0

B

@

1 x z

0 1 y

0 0 1

1

C

A

0

B

@

1 ξ ζ

0 1 η

0 0 1

1

C

A

=

0

B

@

1 x+ ξ z + ζ + xη

0 1 y + η

0 0 1

1

C

A

corresponds to
(x+ ξ, y + η, z + ζ + xη − 1

2
(x+ ξ)(y + η)).

This is equal to

(x, y, z − 1
2
xy) · (ξ, η, ζ − 1

2
ξη) = (x+ ξ, y + η, z + ζ − 1

2
xy − 1

2
ξη + 1

2
(xη − yξ)).

Ad (ii). The Lie product

0

B

@

0 x z

0 0 y

0 0 0

1

C

A

0

B

@

0 ξ ζ

0 0 η

0 0 0

1

C

A

−

0

B

@

0 ξ ζ

0 0 η

0 0 0

1

C

A

0

B

@

0 x z

0 0 y

0 0 0

1

C

A

=

0

B

@

0 0 xη − yξ
0 0 0

0 0 0

1

C

A

corresponds to (0, 0, xη − yξ) which is equal to [(x, y, z), (ξ, η, ζ)]. �

Solvability of the Heisenberg algebra. One has to distinguish between
solvable and semisimple Lie algebras. This will be studied in Chap. 3. For example,
the quark model in strong interaction is based on the representations of semismple
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Lie algebras (see Sect. 3.14). As we will show in Sect. 3.17.3, the Heisenberg algebra
is a solvable Lie algebra.

The Birkhoff–Heisenberg quotient group. Let U(1) denote the multiplica-
tive group of all complex numbers z with |z| = 1. Consider again the Lie group
SUT (3,R). Let G be the set of all the tuples

(x, y, z), x, y ∈ R, z ∈ U(1)

equipped with the product

(x, y, z)(ξ, η, ζ) := (x+ ξ, y + η, zζ · eixη).

This way, the set G becomes a Lie group with the unit element 1 := (0, 0, 1). The
map � : SUT (3,R) → G given by

0

B

@

1 x ϕ

0 1 y

0 0 1

1

C

A

�→ (x, y, eiϕ)

is a Lie group epimorphism. The kernel ker(�) = �−1(1) consists precisely of all the
matrices

0

B

@

1 0 2πn

0 1 0

0 0 1

1

C

A

, n ∈ Z.

This implies that we have the Lie group isomorphism

G  SUT (3,R)/ ker(�).

The Lie group G is called the Birkhoff–Heisenberg quotient group.32 Since ker(�) is a
discrete subgroup of the Lie group SUT (3,R) which is isomorphic to the Heisenberg
group GHeis(R

3), the Lie group G has the same Lie algebra as GHeis(R
3), namely, the

Heisenberg algebra AHeis(R
3). Whereas GHeis(R

3) is arcwise connected and simply
connected, the Lie group G is not simply connected, since the group manifold of
U(1) (i.e., the unit circle) is not simply connected.

In 1936, Garrett Birkhoff proved that the group G is a Lie group which is not
a Lie matrix group.33 This was the first example which showed that one has to
distinguish between Lie matrix groups and the abstract notion of a Lie group. This
will be discussed in the Appendix on page 1085.34 For the proof, we refer to B.
Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction,
Springer, New York, 2003, p. 314.

The Ado theorem. In contrast to the distinction between Lie matrix groups
and abstract Lie groups, such a distinction drops out for Lie algebras. The Ado
theorem tells us that:35

32 The notion of quotient group is introduced in Sect. 4.1.3 of Vol. II.
33 Garrett Birkhoff (1911–1996) was the son of George Birkhoff (1884–1944).

Both mathematicians were professors at Harvard University, Cambridge, Mas-
sachusetts.

34 G. Birkhoff, Lie groups simply isomorphic to no linear group, Bull. Amer. Math.
Soc. 42 (1936), 883–888.

35 D. Ado, The representation of Lie algebras by matrices, Usphehi Mat. Nauk 2
(1947), 159–173 (in Russian); Am. Math. Soc. Transl. No. 2 (1949).
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Every real (or complex) finite-dimensional Lie algebra is isomorphic to a
Lie algebra of square matrices.

Let gl(n,K) be the Lie algebra of all (n × n)-matrices with entries in K = R,C
equipped with the Lie product [A,B]− := AB−BA. Then every Lie algebra over K

is isomorphic to a Lie subalgebra of gl(n,K) for some n = 1, 2, . . . . The sophisticated
proof of the Ado theorem can be found in N. Jacobson, Lie Algebras, Dover, New
York, 1979 (standard textbook on Lie algebras).

1.6 The Heisenberg Group Bundle and Gauge
Transformations

The Heisenberg group GHeis(k) depends on the choice of the unit vector k. Our
goal is to introduce a global geometric object which describes this dependence.
This motivates the introduction of the mathematical concept of bundles. Note that
bundles are basic for modern geometry and modern physics. The set

S(E3) := {k ∈ E3 : |k| = 1}

is called the unit sphere of the Euclidean space E3. The family

{GHeis(k)}k∈S(E3)

of Heisenberg groups indexed by the unit vector k is called the abstract Heisenberg
group bundle. In order to equip this with a manifold structure, consider the set

B := {(k,x) : k ∈ S(E3), x ∈ GHeis(k)},

and define π(k,x) := k. The surjective smooth map

π : B → S(E3)

is called the Heisenberg group bundle over the unit sphere S(E3) with the bundle
space B. Moreover, the preimage

π−1(k) = {k} × GHeis(k)

is called the fiber over k.
Local coordinates. In order to introduce local coordinates on the bundle space

B, choose an open set U of the sphere S(E3) which is different from S(E3) (e.g.,
U = S(E3) \ {k0} where k0 is a fixed unit vector). For every unit vector k ∈ U ,
choose a right handed orthonormal system

i(k), j(k), k (1.68)

such that the maps k �→ i(k) and k �→ j(k) are smooth. Because of U �= S(E3) such
a family of frames exists. If x ∈ GHeis(k), then

x = xi(k) + yj(k) + zk.

Let (k,x) ∈ B with k ∈ U . The map χ : π−1(U) → U × GHeis(R
3) given by

χ(k,x) := (k, x, y, z)
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assigns to the bundle point (k,x) the bundle coordinate (k, x, y, z) where we have
(x, y, z) ∈ GHeis(R

3).
Gauge transformation. The local coordinates (k, x, y, z) of the bundle point

(k,x) depend on the choice of the frame family (1.68). Let us pass to a different
frame family

i+(k), j+(k), k.

Then we have the matrix equation
0

B

@

i+(k)

j+(k)

k

1

C

A

= G(k)

0

B

@

i(k)

j(k)

k

1

C

A

(1.69)

where the matrix G(k) ∈ SO(3) describes a rotation about the axis k (i.e., the real
(3 × 3)-matrix G(k) satisfies G(k)G(k)d = I and detG(k) = 1). Then the change
of local coordinates of the bundle point (k,x) is given by

0

B

@

x+

y+

z

1

C

A

= G(k)

0

B

@

x

y

z

1

C

A

. (1.70)

This follows from

x = x+i+(k) + y+j+(k) + zk = xi(k) + yj(k) + zk

and (i+(k), j+(k),k)(x+, y+, z)d = (i(k), j(k),k)Gd(x+, y+, z)d. Hence

(x+, y+, z)d = (Gd)−1(x, y, z)d, (Gd)−1 = G.

The transformation (1.70) of local coordinates of bundle points is called a gauge
transformation. In terms of physics, the change of the orthonormal frame fam-
ily (1.68) describes the change of observers. Using local bundle coordinates, the
Heisenberg group bundle space B becomes a real 6-dimensional manifold.

Poincaré’s topological obstruction. In the 1890s, Poincaré (1854–1912) dis-
covered the crucial topological fact that it is impossible to construct a continuous
tangent vector field on a 2-dimensional sphere which is different from zero at all
the points of the sphere. Therefore, it is impossible to introduce globally a family of
orthonormal frames (1.68) for all vectors k ∈ S(E3) which depends smoothly on k.
In other words, it is not possible to introduce global coordinates on the Heisenberg
group bundle space B. Locally, the bundle space B looks like the product set

U × GHeis(R
3)

where U is an open neighborhood of a point on the unit sphere S(E3). However,
globally, the bundle space B is different from the product set S(E3) × GHeis(R

3).
Intuitively, we say that

The Heisenberg group bundle is a nontrivial (also called twisted) bundle
over the unit sphere of the Euclidean space with the Lie group GHeis(R

3)
as typical fiber.

As we will show later on, the theory of bundles is the decisive mathematical tool of
gauge theory. Nontrivial topological properties of bundles are responsible for crucial
properties of physical fields in gauge theory. Mathematically, nontrivial topologi-
cal properties are described by nontrivial characteristic classes (i.e., nonvanishing
elements of cohomology groups).
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Further reading. A detailed study of the Heisenberg group and its representa-
tions along with applications to quantum physics can be found in G. Folland, Har-
monic Analysis in Phase Space, Princeton University Press, 1989. Heisenberg group
bundles are studied in E. Binz and S. Pods, The Geometry of Heisenberg Groups:
With Applications in Signal Theory, Optics, Quantization, and Field Quantization,
Amer. Math. Soc., Providence, Rhode Island, 2008.



2. Algebras and Duality (Tensor Algebra,
Grassmann Algebra, Clifford Algebra, Lie
Algebra)

Both the two-dimensional and the three-dimensional Euclidean space E2

and E3, respectively, possess an extraordinarily rich algebraic structure
whose generalization plays a fundamental role in modern mathematics
and physics.
There is a beautiful interplay between symmetry and antisymmetry,
Hilbert spaces, Lie algebras, Grassmann algebras, and Clifford algebras,
enriched by Riesz duality (vectors and covectors), as well as Hodge duality
(the Hodge ∗-operator).

Folklore

Operator algebras play a fundamental role in algebraic quantum field theory. In
order to understand this, one has first to understand the crucial algebraic structures
of the Euclidean space. The point is that relevant products possess an invariant
meaning, that is, they are independent of the choice of a basis of the Euclidean
space.

2.1 Multilinear Functionals

In terms of mathematics, tensor products x ⊗ y and alternating (Grass-
mann) products x ∧ y generalize the product of polynomials. In terms of
elementary particle physics, such products describe composite particles.

Folklore

2.1.1 The Graded Algebra of Polynomials

Algebras play a fundamental role in quantum physics. Typical properties of algebras
can be understood best by using polynomial algebras as a paradigm. Let K = R

(real numbers) or K = C (complex numbers). Let the symbol K[x] denote the set
of all polynomials

P (x) := α0 + α1x+ α2x
2 + . . .+ αnx

n, n = 0, 1, 2, . . .

with the coefficients α0, α1, . . . ∈ K. If αn �= 0, then the integer n is called the
degree of the polynomial P. Precisely the polynomials of the form αkx

k with fixed
k = 0, 1, 2, . . . are called monomials. For all polynomials P,Q,R ∈ K[x] and all
numbers α, β ∈ K, we have two operations, namely,

• αP + βQ (linear combination), and
• PQ (product).

The product is distributive, that is,

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 3,
© Springer-Verlag Berlin Heidelberg 2011
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• (αP + βQ)R = αPR+ βQR, and
• R(αP + βQ) = αRP + βRQ.

Setting B(P,Q) := PQ, the distributive law is equivalent to the bilinearity of the
map B.

Algebra. Setting A := K[x], the following hold:

(A1) The set A is a linear space over K.
(A2) There exists a bilinear map B : A×A → A.
(A3) The product is associative, that is, (PQ)R = P (QR) for all P,Q,R ∈ A.
(A4) The product is commutative, that is, PQ = QP for all P,Q ∈ A.
(A5) There exists a unit element, denoted 1, such that 1P = P1 = P for all

P ∈ A.1

The following definition is crucial. The set A is called an algebra over K iff conditions
(A1) and (A2) are satisfied. Moreover, the algebra A is called associative (resp.
commutative) iff the condition (A3) (resp. (A4)) is satisfied.2 The algebra is called
unital iff A �= {0} and condition (A5) is satisfied.

Observe that an algebra is not necessarily associative or commutative. For ex-
ample, as a rule, a Lie algebra is neither associative nor commutative. If the algebra
A is unital, then the field K can be regarded as a subset of A, and the unit element
1 can be identified with the unit element 1 of the field K. This will be shown in
Problem 3.7.

Subalgebra. A subset S of the algebra A is called a subalgebra iff S is a
linear subspace of A, and S is invariant under multiplication, that is, P,Q ∈ S and
α, β ∈ K imply αP + βQ ∈ S and PQ ∈ S. For example, the set K is a subalgebra
of K[x].

The subset J of the algebra A is called an ideal (or an invariant subalgebra)
iff it is a subalgebra of A with the additional property that ab, bc ∈ J for all b ∈ J
and all a, c ∈ A.

For given subset S of the algebra A, the symbol A(S) denotes the smallest
subalgebra of A which contains the set S. Explicitly, the subalgebra A consists of
all the finite sums of products

P1P2 · · ·Pn
with P1, . . . , Pn ∈ S and n = 1, 2, . . .

Algebra morphism. Let A and B be algebras over K. The map

μ : A → B

is called an algebra morphism iff it is linear and it respects products, that is
μ(PQ) = μ(P )μ(Q) for all P,Q ∈ A.

Bijective algebra morphisms are called algebra isomorphisms.

In the special case where B = A, the isomorphism (resp. morphism) μ : A → A is
called an algebra automorphism (resp. algebra endomorphism).

Direct sum. Let A be a linear space over K. We write

A =

∞
M

n=0

An (2.1)

iff A0,A1, . . . are linear subspaces of A, and each element P of A can be uniquely
written as a sum of the form

1 This unit element is always uniquely determined. In fact, if there is another unit
element 1′, then 1′ = 1′1 = 1.

2 The algebra is called real (resp. complex) iff K = R (resp. K = C).
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P = P0 + P1 + P2 + . . .

where Pn ∈ A for all indices n, and at most a finite number of summands P0, P1, . . .
is different from zero.

Graded algebra. The algebra A is called graded iff the linear space A allows
the direct sum decomposition (2.1), and the product has the property that

P ∈ Am, Q ∈ An always implies PQ ∈ Am+n.

We say that the elements of Am have the degree m, and the degree is additive
with respect to multiplication. For example, the polynomial algebra K[x] is graded.
Here, An consists of the monomials of degree n.

Polynomials of two variables. By definition, the set K[x, y] consists of all
the polynomials

P (x, y) = α0 + α10x+ a01y + α20x
2 + α11xy + α02y

2 + . . .

where α0, α10, . . . ∈ K, and at most a finite number of coefficients does not vanish.
The polynomials of the form αklx

kyl are called monomials of degree k + l. The
set K[x, y] equipped with the usual multiplication of polynomials represents a com-
mutative and associative algebra. This algebra is also graded with respect to the
degree of monomials.

Similarly, one constructs the polynomial algebra K[x1, x2, . . . , xN ] ofN variables
x1, . . . , xN . This algebra over K is commutative, associative, and graded.

Division algebra. By definition, a division algebra is a nontrivial algebra (i.e.,
A �= {0}) with the additional property that, for given a, b ∈ A with a �= 0, the two
equations

• ax = b, x ∈ A, and
• ya = b, y ∈ A
have unique solutions.

Fields and skew-fields. The definition of fields and skew-fields can be found
on page 179 of Vol. II. Roughly speaking, a skew-field is equipped with the following
operations: addition, associative and distributive multiplication (including a unit
element), and division. If the multiplication is commutative, then the skew-field is
called a field.

• Every associative division algebra with unit element is a skew-field.
• Every commutative associative division algebra with unit element is a field.

The prototype of a field (resp. skew-field) is the set R of real numbers (resp. the
set H of quaternions).

∗-Algebra. An algebra A over K is called a ∗-algebra (star algebra) iff there
exists a map ∗ : A → A such that for all A,B and all α, β the following hold:

• ∗(αA+ βB) = α† ∗A+ β† ∗B,
• ∗(AB) = ∗B ∗A and ∗(∗A) = A.

For example, let n = 2, 3, . . . The set M(n, n; C) of complex (n×n)-matrices forms an
associative noncommutative ∗-algebra over K with unit element. In this connection,
we use the following matrix operations:

αA+ βB, AB, ∗A := A†

for all A,B ∈ M(n, n; C) and all α, β ∈ K. The unit matrix I represents the unit
element of the algebra.
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2.1.2 Products of Multilinear Functionals

In terms of algebra, quantum processes are described by noncommutative mathe-
matical structures. In what follows, we want to construct associative algebras which
are not commutative. These algebras were introduced in the second half of the 19th
century.

Ariadne’s thread in tensor algebra. Let X be a linear space over K, where
K = R or K = C. Let F,G : X → K be linear functionals. Recall that the symbol
Xd denotes the dual space to X; this is the space of all the linear functionals
F : X → K. This is a linear space over K (see Sect. 7.9.1 of Vol. I). The basic idea
of tensor algebra is to introduce the tensor product F ⊗G by setting

(F ⊗G)(x, y) := F (x)G(y) for all x, y ∈ X.

Obviously, F⊗G is a bilinear functional onX. Symmetrization and antisymmetriza-
tion yield the symmetrized tensor product

F �G := F ⊗G+G⊗ F

and the antisymmetrized (or alternating) tensor product

F ∧G := F ⊗G−G⊗ F,

respectively. Explicitly, for all x, y ∈ X, we get:

• (F�G)(x, y) = F (x)G(y) + F (y)G(x), and
• (F ∧G)(x, y) = F (x)G(y) − F (y)G(x).

We want to generalize this to multilinear functionals. For n = 1, 2, . . . , let Mn(X)
denote the set of all n-linear functionals

F : X × · · · ×X → K.

Moreover, we set M0(X) := K. We also introduce the direct sum

M(X) :=

∞
M

n=0

Mn(X).

That is, the elements of M(X) are tuples of the form

(F0, F1, F2, . . .) (2.2)

where Fk ∈ Mk(X) for all indices k = 0, 1, 2, . . ., and at most a finite number of
the entries F0, F1, . . . is different from zero. The set M(X) becomes a linear space
over K in a natural way. To simplify notation, we write F0 + F1 + F2 + . . . instead
of (2.2).

The tensor product ⊗ for multilinear functionals and the alge-
bra M(X). Fix m,n = 1, 2, . . . For multilinear functionals F ∈ Mm(X) and
G ∈Mn(X), we define

(F ⊗G)(x1, . . . , xm+n) := F (x1, . . . , xm)G(xm+1, . . . , xm+n) (2.3)

for all arguments x1, . . . , xm+n ∈ X. Obviously, F ⊗ G ∈ Mm+n(X). If m = 0 or
n = 0, then we define F ⊗G := FG.

Proposition 2.1 The ⊗-product is distributive and associative.
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This is an easy consequence of the definition. In a quite natural way, the ⊗-product
can be extended to the direct sum M(X) by setting

(F0 + F1 + . . .) ⊗ (G0 +G1 + . . .) = F0 ⊗G0 + (F0 ⊗G1 + F1 ⊗G0) + . . .

This way, the linear space M(X) becomes an algebra over K which contains the
dual space Xd of the original linear space X:

Xd ⊆M(X).

The alternating product ∧ for antisymmetric multilinear functionals
and the algebraManti(X). For antisymmetric multilinear functionals F ∈Mm(X)
and G ∈Mn(X), we define (F ∧G)(x1, . . . , xm+n) by

1

m!n!

X

π

sgn(π)F (xπ(1), . . . , xπ(m))G(xπ(m+1), . . . , xπ(m+n)) (2.4)

for all arguments x1, . . . , xm+n ∈ X. Here, we sum over all the permutations π of
the indices 1, . . . ,m+n. Obviously, F ∧G ∈Mm+n(X), and F ∧G is antisymmetric.
If m = 0 or n = 0, then we define F ∧ G := FG. It follows immediately from the
definition that

F ∧G = (−1)mnG ∧ F. (2.5)

We say that the ∧-product is graded anticommutative.

Theorem 2.2 The alternating product (2.4) is distributive and associative.

Proof. Consider first the special case where F,G,H : X → K are linear functionals.
Then (F ∧ (G ∧H))(x, y, z) is equal to

F (x)

˛

˛

˛

˛

˛

G(y) G(z)

H(y) H(z)

˛

˛

˛

˛

˛

− F (y)

˛

˛

˛

˛

˛

G(x) G(z)

H(x) H(z)

˛

˛

˛

˛

˛

+ F (z)

˛

˛

˛

˛

˛

G(x) G(y)

H(x) H(y)

˛

˛

˛

˛

˛

.

Moreover, ((F ∧G) ∧H)(x, y, z) is equal to

˛

˛

˛

˛

˛

F (x) F (y)

G(x) G(y)

˛

˛

˛

˛

˛

H(z) −
˛

˛

˛

˛

˛

F (x) F (z)

G(x) G(z)

˛

˛

˛

˛

˛

H(y) +

˛

˛

˛

˛

˛

F (y) F (z)

G(y) G(z)

˛

˛

˛

˛

˛

H(x).

By the Laplace expansion theorem, the two expressions are equal to the determinant
˛

˛

˛

˛

˛

˛

˛

F (x) F (y) F (z)

G(x) G(y) G(z)

H(x) H(y) H(z)

˛

˛

˛

˛

˛

˛

˛

.

The reader should convince herself/himself that the general statement is equivalent
to the general Laplace expansion theorem (1.17) on page 78. �

In order to get an algebra, introduce the following direct sum

Manti(X) :=

∞
M

n=0

Mn,anti(X),
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where Mn,anti(X) denotes the linear space of all antisymmetric n-linear functionals
on X. In particular, M0,anti(X) := K. In a quite natural way, the ∧-product can be
extended to the direct sum Manti(X) by setting

(F0 + F1 + . . .) ∧ (G0 +G1 + . . .) = F0 ∧G0 + (F0 ∧G1 + F1 ∧G0) + . . .

This way, the linear space Manti(X) becomes an algebra over K which contains the
dual space Xd of the original linear space X:

Xd ⊆Manti(X).

The symmetrized tensor product � for symmetric multilinear func-
tionals and the algebra Msym(X). For given symmetric multilinear functionals
F ∈Mm(X) and G ∈Mn(X), we define (F ∧G)(x1, . . . , xm+n) by

1

m!n!

X

π

F (xπ(1), . . . , xπ(m))G(xπ(m+1), . . . , xπ(m+n)) (2.6)

for all arguments x1, . . . , xm+n ∈ X. Here, we sum over all the permutations π of
the indices 1, . . . ,m+ n. Obviously, F �G ∈Mm+n(X), and F �G is symmetric.
If m = 0 or n = 0, then we define F � G := FG. It follows immediately from the
definition that

F �G = G� F. (2.7)

Proposition 2.3 The symmetrized tensor product (2.6) is distributive, associative,
and commutative.

The proof proceeds analogously to the proof of Theorem 2.2. Introduce the
direct sum

Msym(X) :=

∞
M

n=0

Mn,sym(X),

where Mn,sym(X) denotes the linear space of all symmetric n-linear functionals on
X. In particular, M0,sym(X) := K. In a quite natural way, the �-product can be
extended to the direct sum Msym(X) by setting

(F0 + F1 + . . .) � (G0 +G1 + . . .) = F0 �G0 + (F0 �G1 + F1 �G0) + . . .

This way, the linear space Msym(X) becomes an algebra over K which contains the
dual space Xd of the original linear space X:

Xd ⊆Msym(X).

2.1.3 Tensor Algebra

We want to construct the tensor algebra
N

(X) of the linear space X over K. To
begin with, note that there exists an injective linear map j : X → (Xd)d given by

j(x)(F ) := F (x) for all F ∈ Xd.

Therefore, we can identify the set X with a subset of (Xd)d. In this sense,
X ⊆M(Xd). By definition, the tensor algebra

N

(X) is the smallest subalgebra of
M(Xd) which contains the set X ∪ K. Explicitly, the elements of

N

(X) are finite
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sums where the summands are elements of K, or elements of X, or products of the
form

x1 ⊗ x2 ⊗ · · · ⊗ xn
with x1, . . . , xn ∈ X and n = 2, 3, . . . . Explicitly,

(x1 ⊗ x2 ⊗ · · · ⊗ xn)(F1, F2, . . . , Fn) = F1(x1)F2(x2) · · ·Fn(xn)

for all linear functionals F1, F2, . . . , Fn ∈ Xd. That is, the map

x1 ⊗ x2 ⊗ · · · ⊗ xn : Xd ×Xd × · · · ×Xd → K

is n-linear.

2.1.4 Grassmann Algebra (Alternating Algebra)

By definition, the Grassmann algebra (also called the alternating algebra)
V

(X) of
the linear space X over K is the smallest subalgebra of Manti(X

d) which contains
the set X∪K. Explicitly, the elements of

V

(X) are finite sums where the summands
are elements of K, or elements of X, or products of the form

x1 ∧ x2 ∧ · · · ∧ xn

with x1, . . . , xn ∈ X and n = 2, 3, . . . . Explicitly,

x1 ∧ x2 = x1 ⊗ x2 − x2 ⊗ x1 for all x1, x2 ∈ X.

Moreover, for all x1, . . . , xn ∈ X,

x1 ∧ x2 ∧ · · · ∧ xn =
X

π

sgn(π) · xπ(1) ⊗ xπ(2) ⊗ · · · ⊗ xπ(n).

2.1.5 Symmetric Tensor Algebra

By definition, the symmetric tensor algebra
N

sym(X) of the linear space X over K

is the smallest subalgebra of Msym(Xd) which contains the set X ∪ K. Explicitly,
the elements of

N

sym(X) are finite sums where the summands are elements of K,
or elements of X, or finite products of the form

x1 � x2 � · · · � xn

with x1, . . . , xn ∈ X and n = 2, 3, . . . . Explicitly,

x1 � x2 = x1 ⊗ x2 + x2 ⊗ x1 for all x1, x2 ∈ X.

Moreover, for all x1, . . . , xn ∈ X,

x1 � x2 � · · · � xn =
X

π

xπ(1) ⊗ xπ(2) ⊗ · · · ⊗ xπ(n).
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2.1.6 The Universal Property of the Tensor Product

Products on real (resp. complex) linear spaces can be reduced to linear
operators on tensor products. This way, multilinear algebra can be reduced
to linear algebra.

Folklore

The tensor product X ⊗ Y . Let K = R or K = C, and let X and Y be linear
spaces over K. We want to construct the linear space X ⊗ Y which is called the
tensor product of X and Y . In addition, we want to show that the tensor product
X ⊗ Y is distinguished by a universal property. To begin with, let M2(X

d, Y d)
denote the space of all bilinear functionals

F : X × Y → K.

This is a linear space over K. For given x ∈ X and y ∈ Y , we set

(x⊗ y)(F,G) := F (x)G(y) for all F ∈ Xd, G ∈ Y d.

Then, x⊗ y ∈M2(X
d, Y d). In particular, we have the distributive laws

• (αw + βx) ⊗ y = α(w ⊗ y) + β(x⊗ y), and
• x⊗ (αy + βz) = α(x⊗ y) + β(x⊗ z)
for all w, x ∈ X, y, z ∈ Y , and α, β ∈ K. By definition, the symbol X ⊗ Y denotes
the smallest linear subspace of M2(X

d, Y d) which contains all the special bilinear
functionals x⊗ y. Explicitly, the elements of X ⊗ Y are finite sums of the form

x1 ⊗ y1 + x2 ⊗ y2 + . . .+ xn ⊗ yn, n = 1, 2, . . . (2.8)

with x1, . . . , xn ∈ X and y1, . . . yn ∈ Y. Two sums of this form represent the same
element in X ⊗Y iff they represent the same bilinear functional B : Xd×Y d → K.

Proposition 2.4 Let b1, . . . , bm and c1, . . . , cn be linearly independent elements
of X and Y , respectively. Then the mn products bi ⊗ cj with i = 1, . . . ,m and
j = 1, . . . , n are linearly independent elements of the tensor product X ⊗ Y.

Corollary 2.5 If the linear spaces X and Y have finite dimension, then we have
the product rule dim(X ⊗ Y ) = dim(X) dim(Y ) for the dimensions.

Proof. (I) Proof of the proposition. Suppose that

m
X

i=1

n
X

j=1

aijbi ⊗ cj = 0. (2.9)

The key idea is to choose linear functionals F 1, . . . , Fm ∈ Xd such that3

F k(bi) = δki , i, k = 1, . . . ,m.

Then, F 1, . . . , Fm is a system of linearly independent elements of Xd called the
dual system to b1, . . . , bm. Similarly, let G1, . . . , Gn ∈ Y d be the dual system to
c1, . . . , cn. This implies the key relation

(bi ⊗ cj)(F k, Gl) = F k(bi)G
l(cj) = δki δ

l
j

3 Such a system always exists, by Problem 4.13 of Vol. II.
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for all possible indices. Applying this to (2.9), we get
P

k,l a
klδki δ

l
j = 0. Hence

aij = 0 for all possible indices.
(II) Proof of the corollary. Let b1, . . . , bm and c1, . . . , cn be a basis of X and

Y , respectively. Let F ∈ Xd and G ∈ Y d. Then F 1, . . . , Fm (resp. G1, . . . , Gn)
is a basis of Xd (resp. Y d). Hence F =

Pm
k=1 αkF

k and G =
Pn

l=1 βlG
l. For an

arbitrary bilinear functional B : Xd × Y d → K, we get

B(F,G) =
X

k,l

αkβlB(F k, Gl) =
X

k,l

B(F k, Gl)(bk ⊗ cl)(F,G).

Thus, each element B of M2(X
d, Y d) allows the representation

B =

m
X

k=1

n
X

l=1

B(F k, Gl) bk ⊗ cl. (2.10)

By Prop. 2.4, the mn elements bk ⊗ cj with k = 1, . . . ,m, j = 1, . . . , n are linearly
independent. By (2.10), they form a basis of X ⊗ Y. �

Comparing elements of X ⊗ Y . We want to decide wether two elements of
the form (2.8) represent the same element of X ⊗ Y . For example, consider the
equation

x⊗ y = u⊗ w + v ⊗ z. (2.11)

Choose a basis b1, . . . , bn of the linear space span{x, u, v} (resp. a basis c1, . . . , cm
of span{y, w, z}). Then, x is a linear combination of b1, . . . , bn, and so on. By the
distributive law,

x⊗ y =
X

i

xibi ⊗
X

j

yjcj =
X

i,j

αij bi ⊗ cj .

Similarly, u⊗w+v⊗z =
P

i,j β
ij bi⊗ cj . By Prop. 2.4, we have (2.11) iff αij = βij

for all indices i = 1, . . . ,m and j = 1, . . . , n. The general case proceeds analogously.
The universality property. The following commutative diagram contains the

basic idea:

X × Y B

β

Z

X ⊗ Y
L

(2.12)

Let K = R or K = C, and let X,Y, Z be arbitrary linear spaces over K. Define

β(x, y) := x⊗ y.

The bilinear map β : X × Y → X ⊗ Y is called the canonical bilinear map. If the
operator L : X⊗Y → Z is linear, and the diagram (2.12) is commutative, then the
map B = L ◦ β is bilinear because of the distributive law for x ⊗ y. The following
proposition shows that also the converse is true.

Proposition 2.6 For each bilinear map B : X × Y → Z, there exists a unique
linear map L : X ⊗ Y → Z such that the diagram (2.12) is commutative.
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Before proving this, let us discuss the result. Each bilinear map B : X×Y → Z
represents a product on the spaces X and Y with values in the space Z. We want
to describe all possible products. The result above solves this problem. By the aid
of the factorization

B = L ◦ β,
each product can be represented by the canonical product β and a linear map
L : X ⊗ Y → Z. Therefore, the tensor product X ⊗ Y is called a universal product
of linear spaces. In the next section, we will show that there exists precisely one
such universal product of linear spaces. This underlines the importance of the tensor
product.
Proof. Step 1: Assume that the dimension of the linear spaces X and Y is finite.

(I) Uniqueness. Suppose that there exists a linear operator L with B = L ◦ β.
Then L(bi⊗ cj) = B(bi, cj) for all possible indices. This yields the uniqueness of L.

(II) Existence. Let b1, . . . , bm and c1, . . . , cn be a basis of X and Y , respectively.
Define

L

 

X

i,j

αijbi ⊗ cj

!

:=
X

i,j

αijB(bi, cj).

Then

(L ◦ β)(x, y) = L(x⊗ y) = L

 

X

i,j

xiyjbi ⊗ cj

!

=
X

i,j

xiyjB(bi, cj) = B(x, y).

Step 2: Assume that the linear spaces X and Y have arbitrary dimension.
Replace the finite basis above by a general basis as defined in Problem 3.9. Use the
following fact: If SX (resp. SY ) is a basis of X (resp Y ), then the set

{b⊗ c : b ∈ SX , c ∈ SY }

is a basis of X ⊗ Y , by Prop. 2.4. Replace the argument from Step 1 by defining
L(b⊗ c) := B(b, c) for all b ∈ SX , c ∈ SY . �

2.1.7 Diagram Chasing

As a paradigm, we want to show that the tensor product X ⊗ Y is uniquely de-
termined by the universal property discussed in Prop. 2.6 above. The key is the
following commutative diagram:

X × Y B

γ

Z

U

L
(2.13)

Let K = R or K = C, and let X,Y, Z be arbitrary linear spaces over K. Define

β(x, y) := x⊗ y.

The linear space U over K is called a universal object for the family of bilinear
maps B : X × Y → Z iff there exists a bilinear map γ : X × Y → U such that, for
every bilinear map B : X × Y → Z, there exists a unique linear operator L such
that the diagram (2.13) is commutative.
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Theorem 2.7 There exists a unique universal object for the family of bilinear maps
B : X × Y → Z. This object coincides with the tensor product X ⊗ Y.4

Proof. (I) Existence. By Prop. 2.6 above, the tensor product X ⊗ Y is a universal
object.

(II) Uniqueness. Let U be a universal object. We want to show that U is linearly
isomorphic to X ⊗ Y. In fact, choosing Z := U and B := γ, it follows from (2.12)
that we have the commutative diagram:

X × Y
γ

β

U

X ⊗ Y
L

(2.14)

Similarly, choosing Z = X ⊗ Y and B := β, it follows from (2.13) that we have the
commutative diagram:

X × Y
β

γ

X ⊗ Y

U

L
(2.15)

Hence γ = L◦β and β = L◦γ.We want to show that the linear map L : X⊗Y → U
is a linear isomorphism. To this end, we will study the linear map L ◦ L. It follows
from

(L ◦ L) ◦ β = L ◦ (L ◦ β) = L ◦ γ = β

that we have the commutative diagram:

X × Y
β

β

X ⊗ Y

X ⊗ Y
L◦L

(2.16)

Let us add the trivial commutative diagram:

X × Y
β

β

X ⊗ Y

X ⊗ Y
id

(2.17)

Comparing (2.16) with (2.17), the universal property of X ⊗ Y yields L ◦ L = id.
Analogously, we get L ◦ L = id. Consequently, the map L : X ⊗ Y → U is a

linear isomorphism. �

The point is that mathematical objects can be defined in completely different
ways. For example, in algebraic topology it is frequently a highly nontrivial task
to prove that different objects are indeed isomorphic (e.g., homology groups, co-
homology groups, or homotopy groups). Here, diagram chasing is very useful and
effective.

4 Naturally enough, uniqueness of the universal object means that the linear space
U is uniquely determined up to linear isomorphism.
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2.2 The Clifford Algebra
∨

(E1) of the One-Dimensional
Euclidean Space E1

The idea of Clifford algebra is basic for Dirac’s theory of the relativis-
tic electron, and hence it is crucial for the fundamental fermions in the
Standard Model in particle physics.

Folklore

We want to generalize the notion of complex numbers to real finite-dimensional
linear spaces X equipped with a symmetric bilinear form B. The goal is to extend
the linear space X to a real associative unital algebra, denoted

W

B(X), such that
the product satisfies the relation

a ∨ a = B(a,a) for all a ∈ X. (2.18)

Here, the algebra
W

B(X) (with the Clifford product ∨) is called the Clifford algebra
of the linear space X with respect to the bilinear form B. By Problem 3.7, we may
assume that the field R is a subset of the Clifford algebra, and the real number 1
is the unit element of the Clifford algebra. Moreover,

α ∨ a = a ∨ α = αa for all a ∈ X, α ∈ R.

The Clifford relation (2.18) implies5

a ∨ b + b ∨ a = 2B(a,b) for all a,b ∈ X. (2.19)

Note that in the special case where B ≡ 0, we have a ∨ b = −b ∨ a. In this case,
the Clifford product a∨b is identical with the alternating (or Grassmann) product
a ∧ b, and the Clifford algebra becomes the alternating (or Grassmann) algebra
V

(X) of the linear space X.
Before studying the general case in Sect. 2.12, let us consider the special cases

where X = E1, E2, E3, and B(a,b) := −ab is the negative inner product. We will
show that

_

(E1) = C,
_

(E2) = H,
_

(E3) = H × H,

up to isomorphism. From the physical point of view, the Clifford algebra
W

(M4) of
the Minkowski space M4 is crucial for Dirac’s theory of the relativistic electron.

Convention. In what follows, isomorphic algebras will be identified with each
other. If we claim that an algebra is uniquely determined by certain conditions,
then this is to be understood in the sense of “up to isomorphism.”
Let E1 denote the one-dimensional Euclidean space E1. Using the unit vector i, we
have E1 = {xi : x ∈ R} (Fig. 2.1).

Proposition 2.8 There exists precisely one real associative unital algebra, denoted
W

(E1), which contains the one-dimensional Euclidean space E1, and the algebra
product ∨ satisfies the Clifford relation

a ∨ a = −a2 for all a ∈ E1.

The algebra
W

(E1) is called the Clifford algebra of the one-dimensional Euclidean
space E1. We have

W

(E1) = C. Thus, the dimension of
W

(E1) is equal to two.

5 In fact, (a + b) ∨ (a + b) = B(a + b,a + b) yields

a ∨ a + a ∨ b + b ∨ a + b ∨ b = B(a, a) +B(a,b) +B(b,a) +B(b,b).
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Fig. 2.1. One-dimensional Euclidean space E1

Proof. (I) Uniqueness. Suppose that there exists such an algebra denoted A. Then
the elements of A are finite sums of the form

α+ βi + γi ∨ i + κi ∨ i ∨ i + . . .

with real coefficients α, β, γ, κ. By the Clifford relation, i ∨ i = −1. Moreover,
i ∨ i ∨ i = −i, and so on. Therefore, the elements of A are of the form

α+ βi, α, β ∈ R

with i ∨ i = −1. This determines uniquely the algebra.
(II) Existence. The algebra C of complex numbers has the desired properties,

and the map α+ βi �→ α+ βi is an algebra isomorphism from A onto C. �

2.3 Algebras of the Two-Dimensional Euclidean
Space E2

Consider a Cartesian (x, y, z)-coordinate system of the three-dimensional Euclidean
space E3 with the orthonormal basis i, j,k. Let E2 denote the linear hull spanned
by the vectors i and j. The space E2 is a real 2-dimensional Hilbert space with the
orthonormal basis i, j. The elements of E2 have the form x = xi+ yj where x, y are
real numbers (Fig. 2.2). We define

dx(x) := x, dy(x) := y for all x ∈ E2.

Then, dx : E2 → R and dy : E2 → R are linear functionals on E2. This means that
dx, dy ∈ Ed

2 . All the linear functionals F : E2 → R, that is, all the elements of the
dual space Ed

2 are given by

F = αdx+ βdy, α, β ∈ R.

If we choose another Cartesian (x′, y′, z′)-coordinate system of the 3-dimensional
Euclidean space E3, then we get a different space E′

3. But the two Hilbert spaces
E3 and E′

3 are isomorphic. Therefore, the choice of the Cartesian coordinate system
does not matter.

Fig. 2.2. Two-dimensional Euclidean space
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2.3.1 The Clifford Algebra
∨

(E2) and Quaternions

Proposition 2.9 There exists precisely one real associative unital algebra of maxi-
mal dimension, denoted

W

(E2), which contains the two-dimensional Euclidean space
E2, and the algebra product ∨ satisfies the Clifford relation

a ∨ a = −a2 for all a ∈ E2. (2.20)

The algebra
W

(E2) is called the Clifford algebra of the two-dimensional Euclidean
space E2. We have

W

(E2) = H. Thus, the dimension of
W

(E2) is equal to four.

Proof. (I) Uniqueness. Suppose that there exists such an algebra denoted A. The
elements of A are finite sums of ∨-products with an arbitrary number of factors,
that is,

α+ a + b ∨ c + . . .+ e ∨ f ∨ g + . . .

Here, α ∈ R, and a,b . . . ∈ E2. Representing the vectors in E2 by the basis vectors
i, j, we get

�+ σi + τ j + μi ∨ j + νj ∨ i

where �, . . . , ν are real numbers. Note that products possessing more than two
factors can be reduced to products with two factors or less than two factors, by the
Clifford relations,

i ∨ i = j ∨ j = −1, j ∨ i = −i ∨ j.

For example, i∨ j∨ i = −i∨ i∨ j = j. Finally, replacing j∨ i by −i∨ j, the elements
of A can be represented by

α+ βi + γj + λi ∨ j (2.21)

where α, β, γ, λ are real numbers. Thus, for the dimension of A we get dim(A) ≤ 4.
If dim(A) = 4, then 1, i, j, i ∨ j are linearly independent. Consequently, the

coefficients α, β, γ, λ from (2.21) are uniquely determined. Thus, all the algebras A
with dim(A) = 4 are isomorphic. It remains to show that such an algebra exists.

(II) Existence. Recall that the algebra H of quaternions consists of all the sums
α+ a with α ∈ R and a ∈ E3 (see Sect. 1.3.7). Let a ∈ E2. Then

a ∨ a = −a2 + a × a = −a2.

Therefore, the real 4-dimensional associative unital algebra H satisfies the Clifford
relation. �

If we do not demand that the dimension of the algebra is maximal, then there
exists another real associative unital algebra which satisfies the Clifford relation
(2.20). This algebra consists of all the elements

α+ βi + γj, α, β, γ ∈ R

equipped with the products i ∨ i := j ∨ j = −1 and i ∨ j = j ∨ i := 0. This yields a
real 3-dimensional associative unital commutative Clifford algebra which contains
the space E2.
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2.3.2 The Cauchy–Riemann Differential Equations in Complex
Function Theory

Basic differential equations. The Cauchy–Riemann differential equations

ux = vy, uy = −vx (2.22)

are basic for the study of holomorphic functions. Let U be an open subset of the
complex plane C (e.g., an open disc). The smooth function f : U → C with

f(z) = u(x, y) + v(x, y)i

and z = x+ yi is holomorphic iff it satisfies the Cauchy–Riemann differential equa-
tions (2.22) on U . The smooth function g : U :→ C with g(z) = a(x, y) + ib(x, y) is
called antiholomorphic iff the function z �→ g(z)† is holomorphic. This is equivalent
to the anti-Cauchy–Riemann differential equations

ax = −by, ay = bx. (2.23)

It is well-known that holomorphic and antiholomorphic functions are harmonic. We
want to show that this property is related to the square-root property of Clifford
algebras.

Introducing the Poincaré differential operators

∂

∂z
:=

1

2

„

∂

∂x
+ i

∂

∂y

«

,
∂

∂z
:=

1

2

„

∂

∂x
− i

∂

∂y

«

,

the Cauchy–Riemann differential equations (2.22) are equivalent to

∂f

∂z
= 0,

whereas the anti-Cauchy–Riemann differential equations (2.23) are equivalent to

∂g

∂z
= 0.

Reformulation in terms of the Clifford algebra H of quaternions. Recall
the definition of the Cayley matrices:

q0 :=

 

1 0

0 1

!

, q1 :=

 

0 −i

−i 0

!

, q2 :=

 

0 −1

1 0

!

, q3 :=

 

−i 0

0 i

!

.

The key idea is to introduce the first-order differential operator

Pψ :=

„

q1
∂

∂x
+ q2

∂

∂y

«

ψ, ψ :=

 

f

g

!

.

Explicitly,

Pψ = −2i

 

∂g
∂z
∂f
∂z

!

.

Moreover, recall the definition of the Laplacian Δψ := − ∂2

∂x2 − ∂2

∂y2 .
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Proposition 2.10 P 2ψ = Δψ.

This tells us that the operator P is the square root of the Laplacian Δ.
Proof. We will use the Clifford relations

(q1)
2 = (q2)

2 = −q0, q1q2 = −q2q1. (2.24)

From P 2 =
“

q1
∂
∂x

+ q2
∂
∂y

”2

, we get

P 2 = (q1)
2 ∂

2

∂x2
+ (q1q2 + q2q1)

∂2

∂x∂y
+ (q2)

2 ∂
2

∂x2
= Δ.

�

Summarizing, we obtain the following.

Theorem 2.11 The differential equation

Pψ = 0 on U (2.25)

is equivalent to the Cauchy–Riemann equation ∂f
∂z

= 0 on U and the anti-Cauchy–

Riemann equation ∂g
∂z

= 0 on U . If ψ is a solution of (2.25), then ψ is harmonic,
that is, Δψ = 0 on U . Hence Δf = Δg = 0 on U .

Note that the Clifford relations (2.24) generate a Clifford algebra which consists
of all the matrices

αq0 + βq1 + γq2 + κq3, α, β, γ, κ ∈ R.

This Clifford algebra is isomorphic to the algebra H of quaternions.
Perspectives. The investigation of the Laplacian is crucial for modern math-

ematics and physics. There are two important approaches for reducing the second-
order differential operator Δ to first-order systems:

(i) Square root P of the Laplacian and Clifford algebras: P 2 = Δ. Then the equa-
tion Pψ = 0 implies Δψ = 0 (spin geometry).

(ii) Hodge duality for the alternating (Grassmann) algebra: Δ = dδ + δd. The
system dω = 0, δω = 0 implies Δω = 0.

If the Riemannian metric is replaced by a pseudo-Riemannian metric (e.g., the
Minkowski metric), then the Laplacian Δ is replaced by the wave operator �.

The approach (i) concerns the theory of complex analytic functions, the Dirac
equation of the relativistic electron, fermions in the Standard Model in particle
physics, the Seiberg–Witten equations (generalized Landau–Ginzburg equations),
Kähler geometry, and string theory.

The approach (ii) concerns the main theorem in vector analysis, (computation
of vector fields by given divergence (sources) and curl), the Maxwell equations,
the Yang–Mills equations, and the Standard Model in elementary particle physics
(gauge theory).

It turns out that all of these equations are powerful tools in order to inves-
tigate the structure of manifolds and to describe fundamental processes in
physics.
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In fact, there exist interesting relations between (i) and (ii). For example, in the
Standard Model in particle physics, the fermions (i.e., the basic particles – quarks
and leptons) are described by (i), whereas the bosons (i.e., the interaction particles
– photon, vector bosons, and gluons) are described by (ii). In the 1950s, Kähler
developed a differential calculus which combines (i) with (ii) (the exterior–interior
calculus).

We will study this later on. As a general reference, we recommend J. Jost,
Riemannian Geometry and Geometric Analysis, 5th edn., Springer, New York, 2008,
and E. Kähler, Mathematical Works, de Gruyter, Berlin, 2004.

2.3.3 The Grassmann Algebra
∧

(E2)

Proposition 2.12 The elements of the alternating algebra
V

(E2) of the two-
dimensional Euclidean space E2 have the form

α+ βi + γj + �i ∧ j

with uniquely determined real coefficients α, β, γ, �.

This means that 1, i, j, i ∧ j form a basis of
V

(E2), that is, dim
V

(E2) = 4.
Proof. Let a,b, c ∈ E2. By Sect. 2.1.2, a ∧ b is an antisymmetric bilinear form
given by

(a ∧ b)(F,G) = F (a)G(b) − F (b)G(a) for all F,G ∈ Ed
2 .

Hence a ∧ b = −b ∧ a, and a ∧ a = 0. Moreover, by definition of dx and dy, it
follows from dx(i) = dy(j) = 1 and dx(j) = dy(i) = 0 that

(i ∧ j)(dx, dy) = dx(i)dy(j) − dx(j)dy(i) = 1.

Hence i ∧ j �= 0. Furthermore,
a ∧ b ∧ c = 0.

In fact, using the basis i, j, the product a ∧ b ∧ c can be reduced to the sum of
products of i, j with three factors. Such a product has at least two equal factors,
for example, i∧ j∧ i. Finally, note that alternating products with two equal factors
always vanish.

Every element of
V

(E2) is a finite sum of ∧-products of vectors. Using the basis
i, j and the distributive law, each element of

V

(E2) can be represented by

α+ βi + γj + �i ∧ j, α, β, γ, � ∈ R.

In order to show that the coefficients α, β, γ, � are uniquely determined, we have to
show that 1, i, j, i ∧ j are linearly independent. To prove this, assume that

α+ βi + γj + �i ∧ j = 0.

Since
V

(E2) is a direct sum, we get α = 0, βi + γj = 0, and �i ∧ j = 0. Hence
β = γ = 0, and � = 0. �
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2.3.4 The Grassmann Algebra
∧

(Ed
2)

Let F,G ∈ Ed
2 . By Sect. 2.1.2,

(F ∧G)(a,b) = F (a)G(b) − F (b)G(a) for all a,b ∈ E2.

Proposition 2.13 The elements of the alternating algebra
V

(E2) of the dual space
Ed

2 have the form
α+ βdx+ γdy + �dx ∧ dy

with uniquely determined real coefficients α, β, γ, �.

This means that 1, dx, dy, dx ∧ dy form a basis of
V

(E2), that is, dim
V

(E2) = 4.
The proof proceeds similarly to the proof of Prop. 2.12.

2.3.5 The Symplectic Structure of E2

Let X be a real finite-dimensional linear space of even dimension. The bilinear form
B : X ×X → R is called nondegenerate iff

• it follows from B(x0, x) = 0 for all x ∈ X that x0 = 0, and
• it follows from B(x, x0) = 0 for all x ∈ X that x0 = 0.

The bilinear form B is called symplectic iff it is antisymmetric and nondegenerate.
The volume form dx ∧ dy of E2. If a,b ∈ E2, then

a × b = (a1i + a2j) × (b1i + b2j) = (a1b2 − a2b1)k.

Here, a2b1− b2a1 is the (oriented) area of the parallelogram spanned by the vectors
a and b (Fig. 1.5 on page 82). Furthermore,

(dx ∧ dy)(a,b) = dx(a)dy(b) − dx(b)dy(a) = a1b2 − b1a2.

Therefore, dx ∧ dy is called the volume form of the linear space E2. This is a
symplectic form. The linear space E2 equipped with the symplectic form dx∧ dy is
called a symplectic space.

Symplectic transformations. The linear operator A : E2 → E2 is called
symplectic iff (dx∧ dy)(Aa, Ab) = (dx∧ dy)(a,b) for all vectors a,b ∈ E2, that is,
the volume form is preserved.

Proposition 2.14 The linear operator A : E2 → E2 is symplectic iff det(A) = 1.

Proof. Using Aa = (A1
1a

1 + A1
2a

2)i + (A2
1a

1 + A2
2a

2)j and det(A) :=

˛

˛

˛

˛

˛

A1
1 A

1
2

A2
1 A

2
2

˛

˛

˛

˛

˛

, we

get

(dx ∧ dy)(Aa, Ab) = (A1
1A

2
2 −A1

2A
2
1)(a

1b2 − b1a2) = det(A) · (dx ∧ dy)(a,b).

We will show in Sect. 2.11.3 on page 167 that the determinant det(A) is independent
of the choice of the basis of the space E2. �



2.4 Algebras of the Three-Dimensional Euclidean Space E3 133

2.3.6 The Tensor Algebra
⊗

(E2)

The elements of the tensor algebra
N

(E2) of the two-dimensional Euclidean space
E2 are finite sums of the form

α+ βi + γj + λi ⊗ i + μi ⊗ j + νj⊗ i + �j ⊗ j + σi ⊗ i ⊗ i + . . .

with uniquely determined real coefficients α, β, . . . This means that the linearly
independent elements

1, i, j, i ⊗ i, i ⊗ j, j ⊗ i, j ⊗ j, i ⊗ i ⊗ i, . . .

form a basis of the infinite-dimensional tensor algebra
N

(E2).

2.3.7 The Tensor Algebra
⊗

(Ed
2)

The elements of the tensor algebra
N

(Ed
2 ) of the dual space Ed

2 are finite sums of
the form

α+ βdx+ γdy + λdx⊗ dx+ μdx⊗ dy + νdy ⊗ dx+ �dy ⊗ dy + σdx⊗ dx⊗ dx+ . . .

with uniquely determined real coefficients α, β, . . . Therefore, dim
N

(Ed
2 ) = ∞.

2.4 Algebras of the Three-Dimensional Euclidean
Space E3

2.4.1 Lie Algebra

The space E3 is a real 3-dimensional Lie algebra equipped with the vector product
a × b (see Sect. 1.2.6 on page 82).

2.4.2 Tensor Algebra

The elements of the tensor algebra
N

(E3) of the 3-dimensional Euclidean space E3

are finite sums of the form

α+ βi + γj + �k + λi ⊗ i + μi ⊗ j + . . .+ σi ⊗ i ⊗ i + . . .

with uniquely determined real coefficients α, β, . . . This means that the linearly
independent elements

• 1, i, j,k,
• i ⊗ i, j⊗ j, k ⊗ k, i ⊗ j, j ⊗ i, i ⊗ k, k ⊗ i, j ⊗ k, k ⊗ j,
• i ⊗ i ⊗ i, . . .

form a basis of the infinite-dimensional tensor algebra
N

(E3). Recall that, for given
vectors a,b ∈ E3, we have

(a ⊗ b)(F,G) = F (a)G(b) for all F,G ∈ Ed
3 .

This means that a ⊗ b is a real bilinear functional on the product space Ed
3 × Ed

3 .
If we define

(a ⊗ b)(x,y) := (ax)(by) for all x,y ∈ E3,

then a ⊗ b can be identified with a real bilinear functional on the product space
E3 × E3.
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2.4.3 Grassmann Algebra

Proposition 2.15 The elements of the alternating algebra
V

(E3) of the three-
dimensional Euclidean space E3 have the form

α+ βi + γj + κk + λi ∧ j + μj ∧ k + νk ∧ i + �i ∧ j ∧ k

with uniquely determined real coefficients α, β, . . . , �.

This means that 1, i, j,k, i ∧ j, j ∧ k,k ∧ i, i ∧ j ∧ k form a basis of
V

(E3), that is,
dim

V

(E3) = 8. The computation of the ∧-product is governed by the relation

a ∧ b = −b ∧ a for all a,b ∈ E3

and by the associativity law. In particular, a ∧ a = 0. For example,

(i ∧ k) ∧ j = i ∧ (k ∧ j) = −i ∧ (j ∧ k) = −i ∧ j ∧ k,

and i ∧ j ∧ i = i ∧ (j ∧ i) = −i ∧ (i ∧ j) = −(i ∧ i) ∧ j = 0. The proof of Prop. 2.15
proceeds as the proof of Prop. 2.12 on page 131. In terms of the tensor product, we
have

a ∧ b = a ⊗ b − b ⊗ a.

Explicitly, this means that

(a ∧ b)(F,G) = F (a)G(b) − Fb)G(a) for all F,G ∈ Ed
3 .

Thus, a∧b is a real bilinear antisymmetric functional on the product space Ed
3×Ed

3 .
If we define

(a ∧ b)(x,y) := (ax)(by) − (ay)(bx) for all x,y ∈ E3,

then a ∧ b can be identified with a real bilinear antisymmetric functional on the
product space E3 × E3.

2.4.4 Clifford Algebra

Proposition 2.16 There exists precisely one real associative unital algebra of max-
imal dimension, denoted

W

(E3), which contains the three-dimensional Euclidean
space E3, and the algebra product ∨ satisfies the Clifford relation

a ∨ a = −a2 for all a ∈ E3.

The algebra
W

(E3) is called the Clifford algebra of the three-dimensional Euclidean
space E3. We have

W

(E3) = H×H. Thus, the dimension of
W

(E3) is equal to eight.

Proof. (I) Uniqueness. Suppose that there exists such an algebra denoted A. Then
we have the Clifford relation

a ∨ b + b ∨ a = −2(ab) for all a,b ∈ E3.

It follows as in the proof of Prop. 2.9 that the elements of A are sums of the form

α+ βi + γj + κk + λi ∨ j + μj ∨ k + νk ∨ i + �i ∨ j ∨ k (2.26)

with real coefficients α, β, . . . , �. Thus, for the dimension we get dim(A) ≤ 8. If the
elements 1, i, j,k, i∨j, j∨k,k∨ i, i∨j∨k are linearly independent, then dim(A) = 8,
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and the coefficients α, β, . . . , � are uniquely determined. Now we show that H × H

is such a model.
(II) Existence. We will use the space of quaternions H as introduced in Sect.

1.3.7. The linear space H×H consists of all the ordered pairs (q, p) with the quater-
nions q, p ∈ H. By definition,

α(q, p) + β(r, s) = (αq + βr, αp+ βs) for all q, p, r, s ∈ H, α, β ∈ R.

The real linear space H × H has the basis

(1, 0), (i, 0), (j, 0), (k, 0), (0, 1), (0, i), (0, j), (0,k).

Thus, dim(H × H) = 8. Furthermore, we define the product

(q, p) ∨ (r, s) := (q ∨ r, p ∨ s) for all q, p, r, s ∈ H

based on the ∨-product for quaternions. This way, the direct product H×H becomes
a real 8-dimensional associative algebra with the unit element (1, 1). For a ∈ E3,
we get

(a,−a) ∨ (a,−a) = (a ∨ a, a ∨ a) = (−a2,−a2) = −a2(1, 1).

Thus, identifying a with (a,−a), the algebra H×H contains the space E3, and the
Clifford relation is satisfied. �

2.5 Algebras of the Dual Euclidean Space Ed
3

2.5.1 Tensor Algebra

The elements of the tensor algebra
N

(Ed
3 ) of the dual space Ed

2 are finite sums of
the form

α+ βdx+ γdy + λdx⊗ dx+ μdx⊗ dy + νdy ⊗ dx+ . . .+ σdx⊗ dx⊗ dx+ . . .

with uniquely determined real coefficients α, β, . . . The ⊗-product is governed by
the distributive law and the associative law.

2.5.2 Grassmann Algebra

The elements of the Grassmann (or alternating) algebra
V

(Ed
3 ) of the dual space

Ed
3 have the form

α+ βdx+ γdy + κdz + λdx ∧ dy + μdy ∧ dz + νdz ∧ dx+ �dx ∧ dy ∧ dz

with uniquely determined real coefficients α, β, . . . , �. This means that

1, dx, dy, dz, dx ∧ dy, dy ∧ dz, dz ∧ dx, dx ∧ dy ∧ dz

form a basis of
V

(E3), that is, dim
V

(E3) = 8. The ∧-product is governed by the
distributive law, the associative law, and by the relations

dx ∧ dy = −dy ∧ dx, dy ∧ dz = −dz ∧ dy, dz ∧ dx = −dx ∧ dz

together with dx ∧ dx = dy ∧ dy = dz ∧ dz = 0. The Grassmann algebra
V

(Ed
3 ) is

graded, that is, we have the direct sum decomposition
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^

(E3
d) =

3
M

p=0

^p
(Ed

3 )

where
Vp(Ed

3 ) is the real linear space of p-differential forms. Explicitly, the elements
of
Vp(Ed

3 ), p = 0, 1, 2, 3, have the form

• α,
• βdx+ γdy + κdz,
• λdx ∧ dy + μdy ∧ dz + νdz ∧ dx,
• �dx ∧ dy ∧ dz,
respectively. Here, the coefficients α, β, . . . , � are arbitrary real numbers.

2.6 The Mixed Tensor Algebra

It was discovered in the nineteenth century that one has to distinguish between
contravariant and covariant tensors. Let us discuss this.

The tensor product E3⊗Ed
3 . Let b1,b2,b3 be a basis of the Euclidean space

E3. In what follows, we will sum over equal upper and lower indices from 1 to 3.
The cobasis, that is, the basis dx1, dx2, dx3 of the dual space Ed

3 is defined by

dxi(vjbj) := vi, i = 1, 2, 3.

The elements of the tensor product E3 ⊗ Ed
3 have the form

Ai
jbi ⊗ dxj (2.27)

where the real coefficients A1
1, A

1
2, A

1
3, . . . are uniquely determined. The products

bi ⊗ dxj , i, j = 1, 2, 3, form a basis of the real 9-dimensional linear space E3 ⊗Ed
3 .

Recall that
Ai

jbi ⊗ dxj : Ed
3 × E3 → R

is a bilinear functional. Explicitly, for all linear functionals F ∈ Ed
3 and all vectors

a ∈ E3, we have
(Ai

jbi ⊗ dxj)(F, a) = Ai
j · F (bi)dx

j(a).

In the sense of the general definition given below, the tensor (2.27) is called of type
(1,1) (i.e., 1-fold contravariant and 1-fold covariant).

The space End(E3). The symbol End(E3) denotes the space of linear operators
A : E3 → E3. Since b1,b2,b3 is a basis of E3, there exist uniquely determined real
numbers Ai

j such that

Abj = Ai
jbi, j = 1, 2, 3.

Hence Av = A(vjbj) = (Ai
jv

j)bi for all v ∈ E3. We define

(Ai
jbi ⊗ dxj)(v) := Ai

jdx
j(v)bj = Ai

jv
jbi = Av for all v ∈ E3.

Consequently, the map A �→ Ai
jbi⊗dxj is a linear isomorphism from the real linear

space End(E3) onto the tensor product E3 ⊗ Ed
3 . We briefly write

A = Ai
jbi ⊗ dxj .

In particular, the identical operator I : E3 → E3 is given by
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I = bj ⊗ dxj . (2.28)

This is the key relation of the Dirac calculus (see Sect. 2.11.7 on page 171).
Multilinear functionals of mixed type. Fix K = R or K = C. Choose linear

spaces X and Y over K. For m,n = 1, 2, . . . , let Mm,n(X,Y ) denote the set of all
(m+ n)-linear functionals

F : (X × · · · ×X) × (Y × · · · × Y ) → K

with m factors X and n factors Y . Explicitly, this is a map of the form

(x1, . . . , xm; y1, . . . , yn) �→ F (x1, . . . , xm; y1, . . . , yn).

Moreover, we set M0,0(X) := K together with M1,0 := X and M0,1 := Y. Naturally
enough, Mm,0(X,Y ) := Mm(X) and M0,n(X,Y ) := Mn(Y ). We also introduce the
direct sum

M(X,Y ) :=

∞
M

m,n=0

Mm,n(X,Y ).

That is, the elements of M(X,Y ) are tuples of the form

(F0,0, F1,0, F0,1, F1,1, F2,0, . . .) (2.29)

where Fk,l ∈Mk,l(X,Y ) for all indices k, l = 0, 1, 2, . . ., and at most a finite number
of the entries F0,0, F1,0, . . . is different from zero. The setM(X,Y ) becomes a linear
space over K in a natural way. To simplify notation, we replace (2.29) by

F0,0 + F1,0 + F0,1 + F1,1 + F2,0 + . . .

The product of multilinear functionals of mixed type. In addition, it is
possible to introduce a product in a quite natural way. To this end, suppose that
F ∈Mm,n(X,Y ) and G ∈Mk,l(X,Y ). We introduce the product F ⊗G by defining

(F ⊗G)(x1, . . . , xm, xm+1, . . . , xm+k; y1, . . . , yn, yn+1, . . . , yn+l)

by the product

F (x1, . . . , xm; y1, . . . , yn)G(xm+1, . . . , xm+k; yn+1, . . . , yn+l)

for all x1, . . . , xm+k ∈ X and all y1, . . . , yn+l ∈ Y. Thus, F ⊗G ∈Mm+k,n+l(X,Y ).
Equipped with the product F⊗G, the linear spaceM(X,Y ) becomes an associative
algebra over K. The number 1 is the unit element of the algebra.

Tensors of type (m,n). Let X be a finite-dimensional linear space over K. Set

Om

n
(X) := Mm,n(Xd, X).

Let b1, . . . , br be a basis of the linear space X, and let dx1, . . . dxr be the corre-
sponding cobasis.6 In what follows, we will sum over equal upper and lower indices
from 1 to r. Then the elements of

Nm
n (X) have the form

ti1...imj1...jn
· bi1 ⊗ · · · ⊗ bim ⊗ dxj1 ⊗ · · · ⊗ dxjn . (2.30)

All the uniquely determined numbers

6 Recall that dxi(bj) = δij if i, j = 1, . . . , r.
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ti1...imj1...jn
∈ K

are called the tensor components. Recall that

(bi1 ⊗ · · · ⊗ bim ⊗ dxj1 ⊗ · · · ⊗ dxjn)(F1, . . . , Fm; a1, . . . , an)

is equal to the product

F1(bi1) · · ·Fm(bim) · dxj1(a1) · · · dxjn(an)

for all F1, . . . , Fm ∈ Xd and all a1, . . . , an ∈ X. The tensor (2.30) is called m-fold
contravariant and n-fold covariant.

In terms of physics, the tensor components ti1...imj1...jn
are numbers measured in

physical experiments (e.g., the components of the electromagnetic field). The change
of tensor components corresponds to the change of the observer.

Transformation of the tensor components. Consider the change

bi′ = Ai
i′bi, i′ = 1′, . . . r′

of the basis vectors. The inverse transformation is given by

bi = Ai′
i bi′ , i = 1, . . . , r

with Ai′
i A

j
i′ = δji and Ai

i′A
j′

i = δj
′

i′ . For the cobasis, this implies the transformation
law

dxi
′
= Ai′

i dx
i, i′ = 1′, . . . , r′.

In fact, dxi
′
(bj′) = Ai′

i dx
i(Aj

j′bj) = Ai′
i A

j
j′δ

i
j = Ai′

i A
i
j′ = δi

′
j′ . The tensor (2.30) is

transformed into the expression

t
i′1...i

′
m

j′1...j
′
n
bi′1 ⊗ · · · ⊗ bi′m ⊗ dxj

′
1 ⊗ · · · ⊗ dxj

′
n

with the new tensor components

t
i′1...i

′
m

j′1...j
′
n

= A
i′1
i1
· · ·Ai′m

im
Aj1

j′1
· · ·Ajn

j′n
· ti1...imj1...jn

.

The tensor algebra
N

(X,Xd). We define

O

(X,Xd) :=

∞
M

m,n=0

Om

n
(X).

Explicitly, the elements of the associative unital algebra
N

(X,Xd) are finite sums
of the form (2.30).

2.7 The Hilbert Space Structure of the Grassmann
Algebra (Hodge Duality)

It is crucial that the Grassmann algebra can be equipped with two additional struc-
tures, namely,

• the Hilbert space structure (Hodge theory), and
• the Clifford algebra structure (Kähler theory).



2.7 Hodge Duality 139

Fig. 2.3. Hodge duality

In terms of physics, Hodge theory is closely related to the Laplacian and spectral
geometry, whereas Kähler theory is closely related to the Dirac equation for the
relativistic electron and spin geometry.

Motivation. The simple geometric meaning of Hodge duality is pictured in
Fig. 2.3. We are given the pair (a,b) of vectors a and b in the plane P through the
origin O, and we assign to this pair the line L which is perpendicular to the plane
P and passes through the origin (orthogonal complement of the plane). Finally the
dual vector ∗(a,b) is equal to the vector product a × b. More precisely, we will
define ∗(a ∧ b) := a × b (see (2.34)).

Let us study this in terms of the Grassmann algebras
V

(E3) and
V

(Ed
3 ). In

Sect. 2.7.3, we will discuss the relation to multivectors. The approach concerning
V

(Ed
3 ) is the prototype of the crucial Hodge duality for alternating differential

forms to be studied later on.7 First we will introduce Hodge duality in terms of a
fixed Cartesian (x, y, z)-coordinate system with the right-handed orthonormal basis
i, j,k. Then we will show that the definition does not depend on the choice of the
Cartesian coordinate system. Note the crucial fact that:

Hodge duality critically depends on orientation.

Later on, we will see that Hodge duality only makes sense on oriented manifolds.

2.7.1 The Hilbert Space
∧

(E3)

The elements ω of
V

(E3) have the form

ω = α+ ai + bj + ck +A j ∧ k +B k ∧ i + C i ∧ j + γ i ∧ j ∧ k

with unique real coefficients α, a, b, c, A,B,C, γ. Equipped with the inner product

〈ω|ω′〉 := αα′ + aa′ + bb′ + cc′ +AA′ +BB′ + CC′ + γγ′,

the alternating algebra
V

(E3) becomes a real 8-dimensional Hilbert space. Further-
more, we define the linear Hodge star operator ∗ :

V

(E3) →
V

(E3) by setting

∗ω := α i ∧ j ∧ k + a j ∧ k + b k ∧ i + c i ∧ j +Ai +Bj + Ck + γ.

In particular, ∗1 := i ∧ j ∧ k, ∗i := j ∧ k, and

7 Hodge (1903–1975) introduced Hodge duality in order to get a differential calcu-
lus which allows to generalize Riemann’s theory of algebraic functions to higher
dimensions. See W. Hodge, The Theory and Applications of Harmonic Integrals,
Cambridge University Press, 1941 (second revised edition 1951).
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∗(j ∧ k) := i, ∗(i ∧ j ∧ k) := 1.

Obviously, for all ω,ω′ ∈
V

(E3), we have

〈∗ω| ∗ ω′〉 = 〈ω| ω′〉, (2.31)

and

〈∗ω|ω′〉 = 〈ω| ∗ ω′〉. (2.32)

In other words, the Hodge star operator is unitary and self-adjoint. Furthermore,

∗ ω ∧ ω′ = ω ∧ ∗ω′ = 〈ω|ω′〉 (∗1). (2.33)

Finally, ∗ ∗ ω = ω.

2.7.2 The Hilbert Space
∧

(Ed
3)

The considerations above can be immediately translated to the dual situation of
V

(Ed
3 ). The elements ω of

V

(Ed
3 ) have the form

ω = α+ a dx+ b dy + c dz +A dy ∧ dz +B dz ∧ dx
+C dx ∧ dy + γ dx ∧ dy ∧ dz

with unique real coefficients α, a, b, c, A,B,C, γ. Recall that υ = dx∧ dy ∧ dz is the
volume form of E3. Equipped with the inner product

〈ω|ω′〉 := αα′ + aa′ + bb′ + cc′ +AA′ +BB′ + CC′ + γγ′,

the alternating algebra
V

(Ed
3 ) becomes a real 8-dimensional Hilbert space. Further-

more, we define the linear Hodge star operator ∗ :
V

(Ed
3 ) →

V

(Ed
3 ) by setting

∗ω : = αdx ∧ dy ∧ dz + a dy ∧ dz
+b dz ∧ dx+ c dx ∧ dy +A dx+B dy + C dz + γ.

In particular, ∗1 := υ = dx ∧ dy ∧ dz, ∗dx := dy ∧ dz and

∗(dy ∧ dz) := dx, ∗(dx ∧ dy ∧ dz) := 1.

For all ω, ω′ ∈
V

(Ed
3 ), we have

• 〈∗ω| ∗ ω′〉 = 〈ω| ω′〉,
• 〈∗ω|ω′〉 = 〈ω| ∗ ω′〉,
• ∗ω ∧ ω′ = ω ∧ ∗ω′ = 〈ω|ω′〉 (∗1), and
• ∗ ∗ ω = ω.

In particular, the Hodge star operator ∗ :
V

(Ed
3 ) →

V

(Ed
3 ) is unitary and self-ad-

joint. Setting x1 := x, x2 := y, x3 = z, we get:

• ∗ω := 1
3!
εijkω dx

i ∧ dxj ∧ dxk if ω is a real number (0-form),

• ∗ω = 1
2!
εijkω

idxj ∧ dxk if ω = ωidx
i (1-form),

• ∗ω = 1
2!
εijkω

ijdxk if ω = 1
2!
ωijdx

i ∧ dxj (2-form),

• ∗ω = 1
3!
εijkω

ijk if ω = 1
3!
ωijk dx

i ∧ dxj ∧ dxk (3-form).
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Here, we sum over equal upper and lower indices from 1 to 3, and we assume
that ωij and ωijk are antisymmetric with respect to the indices (e.g., ωij = −ωji).
Moreover, we set ωi := ωi, ω

ij := ωij , and ωijk := ωijk. These formulas are special
cases of general formulas used in classical tensor calculus (see (8.66) on page 470).

The definitions above depend on the choice of the Cartesian coordinate sys-
tem. The point is that the definitions are indeed independent of the choice of the
Cartesian coordinate system. To show this, there exist two different approaches:

(i) Use the index killing principle of the classical tensor calculus, or
(ii) use an invariant definition.

In what follows, we will discuss (ii). We postpone (i) to Sect. 9.1.
The invariant approach for

V

(Ed
3 ). We proceed as follows:

• If F : E3 → R is a linear functional, then there exists a unique vector in E3,
denoted aF , such that8

F (x) = aFx for all x ∈ E3.

The bilinear antisymmetric functional ∗F : E3 × E3 → R is defined by

(∗F )(x,y) := aF (x × y) for all x,y ∈ E3.

For example, if F = dx, then aF = i, and ∗F = dy ∧ dz.
• If the bilinear functional B : E3 × E3 → R is antisymmetric, then there exists a

unique vector in E3, denoted bB , such that

B(x,y) = bB(x × y) for all x,y ∈ E3.

The linear functional ∗B : E3 → E3 is defined by

(∗B)(x) = bBx for all x ∈ E3.

For example, if B := dx ∧ dy, then bB = k, and ∗B = dz.
• If the trilinear functional T : E3 × E3 × E3 → R is antisymmetric, then there

exists a unique real number, denoted γT , such that T = γTυ (multiple of the
volume form υ). We define ∗T := γT .

• If α is a real number, then we define ∗α := αυ.

Thus, the Hodge ∗-operator reflects the fact that linear and multilinear functionals
on the Euclidean space E3 can be represented in a simple way by the aid of vectors,
inner products of vectors, and vector products.

Every element ω of
V

(Ed
3 ) can be uniquely represented as

ω = α+ F +B + T,

where α is a real number, F is a linear functional on E3, B (resp. T ) is a bilinear
(resp. trilinear) antisymmetric functional on E3. We define:

• ∗ω := ∗α+ ∗F + ∗B + ∗T, and
• 〈ω|ω′〉 := αα′ + aFaF ′ + bBbB′ + γT γT ′ .

This coincides with the definitions given above in terms of a Cartesian coordinate
system.

The invariant approach for
V

(E3). Replacing Ed
3 by E3, we obtain the

following:

8 In terms of the Riesz duality operator, aF = ℵ−1(F ).
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• Let a ∈ E3. This vector generates the linear functional a : Ed
3 → R given by

a(F) := aaF for all F ∈ Ed
3 .

The bilinear antisymmetric functional ∗a : Ed
3 × Ed

3 → R is defined by

∗a(F ,G) := a(aF × aG) for all F ,G ∈ Ed
3 .

For example, ∗i = j ∧ k.
• If the bilinear functional B : Ed

3 × Ed
3 → R is antisymmetric, then there exists a

unique vector in E3, denoted bB, such that

B(F ,G) = bB(aF × aG) for all F ,G ∈ Ed
3 .

The linear functional ∗B : Ed
3 → Ed

3 is defined by

(∗B)(F) := bBaF for all F ∈ Ed
3 .

For example, if B := i ∧ j, then ∗B = k.
• We define the special trilinear functional T0 : Ed

3 × Ed
3 × Ed

3 → R by setting

T0(F ,G,H) := (aFaGaH) for all F ,G,H ∈ Ed
3 .

If the trilinear functional T : Ed
3 × Ed

3 × Ed
3 → R is antisymmetric, then there

exists a unique real number, denoted γT , such that T = γT T0.
9 In this case, we

define ∗T := γT .
• If α is a real number, then we define ∗α := αT0.

Every element ω of
V

(E3) can be uniquely represented as

ω = α+ a + B + T ,

where α is a real number, a is an element of E3 regarded as a linear functional on
Ed

3 , B (resp. T ) is a bilinear (resp. trilinear) antisymmetric functional on Ed
3 . We

define:

• ∗ω := ∗α+ ∗a + ∗B + ∗T , and
• 〈ω|ω′〉 := αα′ + aa′ + bBbB′ + γT γT ′ .

This coincides with the definitions given above in terms of a Cartesian coordinate
system.

2.7.3 Multivectors

Multivectors possess an immediate geometric meaning. In 1844, it was the
ingenious idea of Grassmann (1809–1877) to introduce real linear combi-
nations of multivectors. Such real chains of multivectors are nice algebraic
objects which can be regarded as families of weighted multivectors.
In particular, such chains are the fundamental objects in modern alge-
braic topology and differential topology for constructing homology and
cohomology groups.10

Folklore

9 Note that trilinear functionals on a three-dimensional linear space are unique up
to a multiplicative real constant (see Sect. 2.11.2).

10 This will be studied in Vol. IV on quantum mathematics.
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Bivectors. If a,b ∈ E3, then the Grassmann product a∧b is called a bivector. In
other words, bivectors are special real bilinear antisymmetric functionals on E3.

Proposition 2.17 a ∧ b = a′ ∧ b′ iff a × b = a′ × b′.

Proof. For all x,y ∈ E3, we have (a ∧ b)(x,y) = (a × b)(x × y). �

In terms of geometry, we have a ∧ b = a′ ∧ b′ iff the following hold:

• The vectors a,b and a′,b′ span the same plane through the origin O (Fig. 2.3
on page 139).

• The parallelograms spanned by the vectors a,b and a′,b′ have the same area,
denoted ||a ∧ b||, and the same orientation.

The Hodge ∗-operator sends the bivector a ∧ b to the vector

∗ (a ∧ b) := a × b. (2.34)

In terms of geometry, this means that the vector ∗(a ∧ b) is perpendicular to the
plane spanned by the vectors a,b, its length is equal to the area of the parallelogram
spanned by a,b, and the three vectors a,b, ∗(a ∧ b) are positively oriented (in the
nondegenerate case).

Real chains of bivectors. Let α1, . . . , αn ∈ R. The real linear combination

α1(a1 ∧ b1) + · · · + αk(ak ∧ bk)

can be regarded as a family of bivectors where aj ∧ bj is weighted with the real
number αj , j = 1, 2, . . . , k. Two such chains represent the same object iff they
represent the same real antisymmetric bilinear functional on the Euclidean space
E3.

Trivectors. By definition, the products a ∧ b ∧ c with a,b, c ∈ E3 are called
trivectors.

Proposition 2.18 a ∧ b ∧ c = a′ ∧ b′ ∧ c′ iff the vectors a,b, c and a′,b′, c′ span
the same volume, and they have the same orientation (in the nondegenerate case).

Proof. For all x,y, z ∈ E3, we have (a ∧ b ∧ c)(x,y, z) = (abc)(xyz). Thus,
a ∧ b ∧ c = (abc)υ where υ is the volume form of E3. �

The Hodge ∗-operator sends the trivector a ∧ b ∧ c to the real number

∗(a ∧ b ∧ c) = (abc)

which equals the oriented volume spanned by the three vectors a,b, c (Fig. 1.6 on
page 83).

Historical Remarks

In 1844, Grassmann (1809–1877) wrote his book Calculus of Extensions (in Ger-
man). This book was full of new ideas, but Grassmann’s style of writing made hard
reading. Grassmann did not formulate precise definitions, and he gave only a few
genuine proofs. Typically, Grassmann started from the very beginning with higher-
dimensional spaces, and he developed tools for this general situation. For example,
the vector product a× b cannot be generalized to higher dimensions in a straight-
forward manner. But the Grassmann product a ∧ b is well-defined for arbitrary
dimensions. It was Grassmann’s tragedy that his contemporaries did not under-
stand the power of his new ideas. Nowadays Grassmann algebras lie at the heart of
modern mathematics. We refer to J. Dieudonné, The tragedy of Grassmann, Linear
and Multilinear Algebra 8(1) (1979), 1–14.
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2.8 The Clifford Structure of the Grassmann Algebra
(Exterior–Interior Kähler Algebra)

2.8.1 The Kähler Algebra
∧

(E3)∨

Again let us consider the Grassmann algebra
V

(E3) equipped with the ∧-product
(Grassmann product or exterior product). It is our goal to introduce an additional
∨-product (Clifford product or interior product) by setting

a ∨ b := a ∧ b − ab (2.35)

and α ∨ a = a ∨ α := αa for all a,b ∈ E3 and all real numbers α. This implies the
Clifford relation

a ∧ b + b ∧ a = −2(ab) for all a,b ∈ E3.

The key observation is that

a ∨ b = a ∧ b if ab = 0.

In other words, the inner product a∨b coincides with the exterior product a∧b if
the vector a is orthogonal to the vector b. However, in contrast to a∧a = 0, we get
a ∨ a = −a2. This observation can be used in order to extend the interior product
quite naturally to more than two factors.

Proposition 2.19 Using the key relation (2.35), the Grassmann algebra
V

(E3)
can be additionally equipped with the structure of a Clifford algebra. This way, we
get the Kähler algebra

V

(E3)∨.

Proof. Choose an orthonormal basis i, j,k of E3. By (2.35), we get

i ∨ i = j ∨ j = k ∨ k = −1.

Again by (2.35), for two different factors of basis vectors, the ∨-product coincides
with the ∧-product. For example, i ∨ j = i ∧ j and j ∨ i = j ∧ i. By definition, for
three different factors of basis vectors, the ∨-product coincides with the ∧-product.
For example,

i ∨ j ∨ k := i ∧ j ∧ k. (2.36)

This allows us to compute all the ∨-products. For example,

i ∨ j ∨ i ∨ k = −i ∨ i ∨ j ∨ k = j ∨ k = i ∧ k.

This way, the real 8-dimensional associative algebra
V

(E3) with respect to the ex-
terior ∧-product (Grassmann algebra) becomes an associative algebra with respect
to the interior ∨-product (Clifford algebra), too. The real number 1 is the unit
element for both the ∧-product and the ∨-product.

Note that the ∨-product is independent of the choice of the orthonormal ba-
sis. This follows from the fact that the key relation (2.35) possesses an invariant
meaning. Moreover, under a change i, j,k ⇒ i′, j′,k′ of the orthonormal basis, the
∧-product and the ∨-product are transformed the same way, by the distributive
law. Thus, for example, the relation (2.36) implies i′ ∨ j′ ∨ k′ = i′ ∧ j′ ∧ k′. �
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2.8.2 The Kähler Algebra
∧

(Ed
3)∨

The Riesz duality operator ℵ : E3 → Ed
3 represents a linear isomorphism from the

Euclidean space E3 to its dual space Ed
3 . This isomorphism can be used in order to

equip the Grassmann algebra
V

(Ed
3 ) with an additional ∨-product such that we ob-

tain the Kähler algebra
V

(Ed
3 )∨ which is isomorphic to the Kähler algebra

V

(E3)∨
with respect to both the ∧-product and the ∨-product. To this end, we replace the
fixed orthonormal basis i, j,k (and their ∨-products) by the corresponding linear
functionals dx, dy, dz (and their ∨-products). For example,

dx ∨ dx = dy ∨ dy = dz ∨ dz = −1,

and dx ∨ dy = dx ∧ dy, as well as dx ∨ dy ∨ dz = dx ∧ dy ∧ dz. Since the ∨-product
on
V

(E3)∨ is independent of the choice of the orthonormal basis, the ∨-product on
V

(Ed
3 )∨ is also independent of the choice of the basis dx, dy, dz.

The Kähler algebra
V

(Ed
3 )∨ is a real 8-dimensional associative algebra with

respect to both the ∧-product and the ∨-product. The real number 1 is the unit
element with respect to both the products.

2.9 The C∗-Algebra End(E3) of the Euclidean Space

Let End(E3) denote the space of all linear operators A : E3 → E3. Define the
operator norm

||A|| := max
|x|≤1

|Ax|.

Equipped with this norm, the real linear space End(E3) becomes a Banach space
and, more general, a real unital C∗-algebra. By Sect. 7.16.3 of Vol. II, for all real
numbers α, β and all linear operators A,B ∈ End(E3), this means the following:

• (αA+ βB)† = αA† + βB† (linearity),
• (AB)† = B†A†, and (A†)† = A,
• ||AB|| ≤ ||A|| ||B||,
• ||A†A|| = ||A||2 and ||AA†|| = ||A||2,
• ||I|| = 1 (unitality).

This is the special case of the following general result:

If X is a real (resp. complex) Hilbert space, then the space End(X) of all
linear continuous operators A : X → X is both a real (resp. complex)
Banach space and a C∗-algebra.

Naturally enough, in the case of a complex space X, we have the linearity condition
above to replace by the following antilinearity condition:

(αA+ βB)† = α†A† + β†B† for all α, β ∈ C, A,B ∈ End(X).

The proof can be found in Zeidler, Applied Functional Analysis: Applications to
Mathematical Physics, Springer, Berlin, 1995, Sect. 5.18.



146 2. Algebras and Duality

Fig. 2.4. Orthogonal complement

2.10 Linear Operator Equations

The question of which of several proofs is the simplest and most natural
ordinarily cannot be decided in and of itself, but only a consideration of
whether the basic principles are capable of generalization and useful for
further research, will give us a sure reply.

David Hilbert

2.10.1 The Prototype

For the linear operator A : E3 → E3, let us introduce the following notions:

• ker(A) := {x ∈ E3 : Ax = 0} (kernel of A),
• im(A) := {Ax : x ∈ E3} (image or range of A),
• rank(A) := dim(im(A)) (rank of A).

Orthogonal decomposition. Let L be a linear subspace of the Euclidean
space E3 (Fig. 2.4). By definition, the orthogonal complement L⊥ to L consists of
all the vectors in E3 which are orthogonal to the vectors of L, that is,

L⊥ := {u ∈ E3 : uv = 0 for all v ∈ L}.
For every vector x ∈ E3, we have the unique decomposition

x = u + v, u ∈ L,v ∈ L⊥.

That is, E3 = L⊕ L⊥. Obviously, (L⊥)⊥ = L.
The Fredholm alternative by means of the adjoint operator. For given

linear operator A : E3 → E3, we want to solve the linear operator equation

Ax = y, x ∈ E3. (2.37)

We are given the vector y in E3. We are looking for the vector x in E3. The trick
is to add the homogeneous adjoint equation

A†z = 0, z ∈ E3. (2.38)

Recall that the adjoint operator A† to the linear operator A : E3 → E3 is the
uniquely determined linear operator A† : E3 → E3 which satisfies the relation

〈x|A†z〉 = 〈Ax|z〉 for all x, z ∈ E3.

This is equivalent to (2.39).
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Proposition 2.20 Equation (2.37) has a solution iff yz = 0 for all solutions z of
(2.38).

Corollary 2.21 If x0 is a solution of (2.37), then x0 + ker(A) is the solution set
of (2.37) with the dimension

dim(ker(A)) = dim(ker(A†)) = 3 − rank(A).

Corollary 2.22 If Ax = 0 implies x = 0, then equation (2.37) has a unique solu-
tion for every given y ∈ E3.

This Corollary tells us that uniqueness implies existence.
Proof. The idea of proof is to use the orthogonal decomposition

E3 = ker(A) ⊕ ker(A)⊥ = im(A) ⊕ im(A)⊥.

(I) For every y ∈ im(A), the modified equation

Ax = y, x ∈ ker(A)⊥

has a unique solution. In fact, if Ax = y and Ax′ = y, then A(x − x′) = 0. Hence
x − x′ ∈ ker(A). Moreover, x − x′ ∈ ker(A)⊥. Therefore, x − x′ = 0.
(II) By (I), the restricted operator A : ker(A)⊥ → im(A) is bijective. Hence

rank(A) = dim im(A) = dim ker(A)⊥ = 3 − dim ker(A).

(III) We show that im(A)⊥ = ker(A†). To this end, we will use the relation

x(A†z) = (Ax)z for all x, z ∈ E3 (2.39)

which defines the adjoint operator. If z ∈ im(A)⊥, then (Ax)z = 0. This yields
x(A†z) = 0 for all x ∈ E3. Hence A†z = 0. Conversely, if z ∈ ker(A†), then
0 = x(A†z) = (Ax)z for all x ∈ E3. Thus, z ∈ im(A)⊥. �

The corollaries are immediate consequences of the proof. In particular, the proof
shows that if ker(A) = {0}, then the operator A : E3 → im(A) is bijective. Hence
dim im(A) = 3. This implies im(A) = E3.

The Fredholm alternative by means of the dual operator. Let us replace
the homogeneous adjoint equation (2.38) by the homogeneous dual equation

AdF = 0, F ∈ Ed
3 . (2.40)

Proposition 2.23 Equation (2.37) has a solution iff F (y) = 0 for all solutions F
of (2.40).

Recall that the dual operator Ad : Ed
3 → Ed

3 to the linear operator A : E3 → E3

is defined by

(AdF )(x) = F (Ax) for all F ∈ Ed
3 , x ∈ E3.

In particular, the operator Ad is linear.
Proof. Using the bijective Riesz duality operator ℵ : E3 → Ed

3 , the claim is a
consequence of Prop. 2.20. In fact, it follows from

(A†z)x = z(Ax) = ℵ(z)(Ax) = (Adℵ(z))(x) for all x ∈ X
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that ℵ(A†z) = Adℵ(z). Consequently, the diagram

E3

ℵ

A†
E3

ℵ

Ed
3

Ad

Ed
3

is commutative. Therefore, A†z = 0 iff Adℵ(z) = 0. Moreover, ℵ(z)y = zy. �

2.10.2 The Grassmann Theorem

The Grassmann ∧-product allows us to study elegantly both linear inde-
pendence of vectors and the solution of linear equations.

Folklore

Choose K = R or K = C, and let n = 1, 2, . . . Consider the n-dimensional linear
space X over K. Fix k = 1, 2, . . . , n.

Theorem 2.24 The vectors a1, . . . , ak are linearly independent iff a1∧· · ·∧ak �= 0.

Proof. (I) If the vectors a1, . . . , ak ∈ X are linearly independent, then there exist
linear functionals F i, . . . , F k ∈ Xd such that F i(aj) = δij if i, j = 1, . . . , k (see
Problem 3.8). Hence

(a1 ∧ · · · ∧ ak)(F 1, . . . , F k) = F 1(a1)F
2(a2) · · ·F k(ak) = 1.

This implies a1 ∧ · · · ∧ ak �= 0.
(II) If a1, . . . , ak are linearly dependent, then there exists some vector, say a1,

such that
a1 = α2a2 + . . .+ αkak, α2, . . . , αk ∈ K.

Then

a1 ∧ a2 ∧ · · · ∧ ak = α2a2 ∧ a2 ∧ · · · ∧ ak + . . .+ αkak ∧ a2 ∧ · · · ∧ ak = 0,

since always two factors coincide. �

Proposition 2.25 Let α, β ∈ K with α �= 0. If a1, a2, . . . , ak are linearly indepen-
dent, then so is αa1 + βa2, a2, . . . , ak.

Proof. (αa1 + βa2) ∧ a2 ∧ · · · ak = α(a1 ∧ a2 ∧ · · · ∧ ak) �= 0. �

Theorem 2.26 The linearly independent vector families a1, . . . , ak and b1, . . . , bk
span the same linear subspace of X iff there exists a nonzero number γ such that

a1 ∧ · · · ∧ ak = γ(b1 ∧ · · · ∧ bk). (2.41)

Proof. If a1, . . . , ak are linear combinations of the vectors b1, . . . , bk, then the dis-
tributive law yields (2.41). For example,

a1 ∧ a2 = (αb1 + βb2) ∧ (λb1 + μb2) = (αμ− βλ) b1 ∧ b2.

Since a1 ∧ a2 �= 0, we get αμ− βλ �= 0.
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Conversely, assume (2.41). Suppose that the vector b1 is not an element of
span{a1, . . . , ak}. By Theorem 2.24,

a1 ∧ · · · ∧ ak ∧ b1 �= 0.

By (2.41), a1 ∧ · · · ∧ ak ∧ b1 = γ(b1 ∧ · · · ∧ bk) ∧ b1 = 0, since two factors coincide.
This is the desired contradiction. �

The dual space Xd. Fix n = 1, 2, . . . Let X be an n-dimensional linear space
over K = R,C. Recall that, by definition, the dual space Xd consists of all the linear
functionals F : X → K.

Proposition 2.27 There exists a linear isomorphism ℵ : X → Xd.

Proof. (I) Choose a basis b1, . . . , bn of X, and define dxi
“

Pn
j=1 x

jbj
”

:= xi. Then,

we have the following biorthogonality relations:

dxi(bj) = δij , i, j = 1, . . . , n. (2.42)

It follows from F
“

Pn
j=1 x

jbj
”

=
Pn

j=1 x
jF (bj) that

F =

n
X

j=1

F (bj) dx
j .

Conversely, let F :=
Pn

j=1 βjdx
j with real coefficients β1, . . . , βn. Then, F ∈ Xd

and βj = F (bj) for j = 1, . . . , n.

(II) Define ℵ
“

Pn
j=1 x

jbj
”

:=
Pn

j=1 x
jdxj . Obviously, the operator ℵ : X → Xd

is surjective and injective. �

The bidual space Xdd. Let Xdd denote the dual space of the dual space Xd.
Briefly, Xdd := (Xd)d.

Proposition 2.28 There exists a linear isomorphism ν : X → Xdd.

Proof. Let x ∈ X. Define ν(x)(F ) := F (x) for all F ∈ Xd.

(I) The map ν : X → Xd is injective. In fact, if F (x) = F (y) for all F ∈ Xd,
then dxj(x) = dxj(y). Hence xj = yj for all indices j = 1, . . . , n. This implies
x = y.

(II) The elements ν(b1), . . . , ν(bn) are linearly independent. In fact, suppose
that

Pn
j=1 β

jν(bj) = 0. Then

0 =

n
X

j=1

βjν(bj)(dx
i) =

n
X

j=1

βjdxi(bj) = βi, i = 1, . . . , n.

(III) By Prop. 2.27, dim(Xdd) = dimXd = dimX = n. Thus, ν(b1), . . . , ν(bn)
is a basis of Xdd. Consequently, the map ν : X → Xdd is surjective. �

Note that Prop. 2.28 is true for all finite-dimensional linear spaces, but not
for all infinite-dimensional linear spaces. For example, the proposition is valid for
reflexive Banach spaces, but not for general Banach spaces. See “further reading”
on page 157.

The direct sum and the codimension of a linear subspace (Fig. 2.5). Let
X be an n-dimensional linear space over K = R,C with n = 1, 2, . . .. We are given
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Fig. 2.5. Direct sum

the m-dimensional linear subspace L of X. Then there exists a linear subspace M
such that

X = L⊕M.
This means that, for every vector x inX, there exists the unique sum representation

x = a + b, a ∈ L, b ∈M.

Figure 2.5 shows that the complementary linear subspace M is not uniquely deter-
mined by the original linear subspace L. However, we have the linear isomorphism

M  X/L

where X/L is the linear quotient space of X with respect to L (see Sect. 4.1.4 of
Vol. II). Recall that the codimension of L is defined by

codim(L) =: dim(X/L).

In particular, dim(M) = codim(L) = dimX − dimL. Hence

dim(X) = dim(L) + codim(L).

Recall that Xd denotes the space of all the linear functionals F : X → K. This
linear space Xd is called the dual space to X.

Theorem 2.29 The codimension of L is equal to the dimension of the linear sub-
space

{F ∈ Xd : F (x) = 0 on L} (2.43)

of the dual space Xd.

Proof. Let b1, . . . , br be a basis of L. We extend this to a basis b1, . . . , bn of X, and
we construct the linear functionals F r+1, . . . , Fn ∈ Xd by setting

F i

 

n
X

j=1

xjbj

!

= xi, i = r + 1, . . . , n.

Hence F i(x) = 0 on L if i = r+1, . . . , n. The functionals F r+1, . . . , Fn are linearly
independent, and every functional F of the set (2.43) allows the representation
F = αr+1F

r+1 + . . .+ αnF
n with real coefficients αr+1, . . . , αn. �

Linear manifold. The subset L of the linear spaceX is called a linear manifold
iff there exist both an element x0 ∈ X and a linear subspace L of X such that

L = x0 + L.
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Fig. 2.6. Linear manifolds

Explicitly, L = {x0 + x : x ∈ L}. Intuitively, the linear subspace L passes through
the origin O, whereas x0 + L is obtained from L by the translation x0 (Fig. 2.6).
By definition, the dimension of L is equal to the dimension of L. This dimension is
well-defined. In fact, suppose that

L = x0 + L = x1 +M

where x1 ∈ X, and M is a linear subspace of X. Then x1 = x0 + x for some x ∈ L.
This implies M ⊆ L. Similarly, L ⊆ M. hence L = M. Linear manifolds are also
called affine manifolds.

Next we want to show that Theorems 2.26 and 2.29 imply almost immediately
the fundamental results for linear operator equations on finite-dimensional linear
spaces without using matrices and determinants. This is important for generaliza-
tions to Fredholm operator equations in infinite-dimensional Banach spaces which
comprehend large classes of linear integral equations and linear partial differential
equations.11

2.10.3 The Superposition Principle

Nonlinear problems describe interactions in nature. In contrast to non-
linear problems, linear problems enjoy the superposition principle. The
advantage of perturbation theory is, that it reduces nonlinear problems to
linear problems. Therefore, perturbation theory is widely used in physics.

Folklore

We want to study the linear operator equation

Ax = y, x ∈ X. (2.44)

We assume the following:

(H) We are given the linear operator A : X → Y , where X and Y are finite-
dimensional linear spaces over K = R,C.

Concerning our problem (2.44), we are given y ∈ Y , and we are looking for x ∈ X.
There arise the following two questions:

• What is the dimension d of the solution set?
• What is the number s of solvability conditions for the given right-hand side y.

Our goal is to compute d and s. The final answer will be:

11 See “further reading” on page 157.
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(i) d = dimX − rank A,
(ii) s = dimY − rank A.

Here, we use the following terminology:

• kerA := {x ∈ X : Ax = 0} (kernel of the operator A). This is the solution set
of the homogenous equation Ax = 0.

• im A = A(X) := {Ax ∈ Y : x ∈ X} (image or range of the operator A). This is
the set of all elements y in Y for which the equation Ax = y has a solution.

• rank A := dim(im A) (rank of the operator A).
• indA := dim(kerA) − codim(im A) (index of the operator A).

The importance of the index. The classical theory for finite-dimensional
linear operator equations uses the rank A of the operator A which can be explicitly
computed by either the Gauss elimination method or the computation of determi-
nants, as we will show below. However, in the infinite-dimensional case, the rank is
infinite. Therefore, one has to pass to the index indA which is finite for Fredholm
operators. In the finite-dimensional case, we always have

indA = dimX − dimY. (2.45)

Thus, the index is completely stable. If dimX = ∞ and dimY = ∞, then formula
(2.45) becomes meaningless.

However, there are many important cases concerning integral- and differ-
ential equations where the index remains a well-defined finite quantity;
the index has the crucial property that it remains unchanged under fairly
large perturbations (e.g., under compact perturbations).

This allows us to compute the index by deforming the operator A into a simpler
operator. One of the most important mathematical results obtained in the 20th
century is the Atiyah–Singer index theorem which expresses the index of elliptic
differential operators (and certain classes of integral operators) on compact mani-
folds M in terms of topological invariants of M (see Sect. 5.6.9 of Vol. I). In terms
of the index, the formulas above for d and s read as:

(i) d = dim(kerA),
(ii) s = dim(kerAd) = d− indA.

Equivalently,

indA = d− s. (2.46)

That is, concerning the original equation (2.44), the index measures the difference
between the dimension d of the linear solution manifold and the number s of linearly
independent solvability conditions.

Uniqueness implies existence. For example, suppose we know that indA = 0
which happens frequently. Then the index formula (2.46) above tells us that s = d.
If d = 0 (uniqueness), then s = 0 (no solvability condition). Therefore, we get the
following crucial result:

If indA = 0, then uniqueness implies existence.

As we will show below, this is true in the finite-dimensional case iff dimX = dimY
(e.g., Y = X). But it is also true for large classes of differential- and integral
equations (see “further reading” on page 157). Note that, as a rule, it is much
simpler to prove the uniqueness of a solution, than the existence. Therefore, the
principle “uniqueness implies existence” for Fredholm operator equations of index
zero is extremely useful.

The linear solution manifold. Assume (H) above.
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Theorem 2.30 If xspecial is a solution of the linear operator equation (2.44), then
the complete solution set of (2.44) is the linear manifold xspecial + kerA.

The dimension d of the solution manifold is given by d = dimX − rank A.

Proof. Choose a linear subspace M of X such that

X = kerA⊕M.

Then the restriction A : M → im A is a linear isomorphism. In fact, if Ax = Ax′

with x, x′ ∈M , then A(x−x′) = 0. Hence x−x′ ∈M and x, x′ ∈ kerA. This implies
x = x′. Therefore, the map A : M → im A is injective and obviously surjective.
The linear isomorphism M  im A yields

dimM = rank A.

Moreover, dim(kerA) + dimM = dimX. Consequently,

dim(kerA) + rank A = dimX.

�

If b1, . . . , bd is a basis of kerA, then the solution set of (2.44) has the form

x = xspecial +

d
X

j=1

γjbj , γ1, . . . , γd ∈ K. (2.47)

That is, if K = R (resp. K = C), then the solution set of the equation Ax = y
depends on d real (resp. complex) parameters. In particular, if y = 0, then we may
choose xspecial = 0. Mnemonically, we briefly say:

General solution of the inhomogeneous equation Ax = y
= special solution of the inhomogeneous equation
+ general solution of the homogeneous equation Ax = 0.

2.10.4 Duality and the Fredholm Alternative

In the winter semester 1900/01 Holmgren, who had come from Uppsala
(Sweden) to study under Hilbert in Göttingen, held a lecture in Hilbert’s
seminar on Fredholm’s work on linear integral equations which had been
published the previous year.12 This was a decisive day in Hilbert’s life. He
took up Fredholm’s new discovering with great zeal, and combined it with
his variational methods (concerning the Dirichlet principle for the Laplace
equation). In this way, he succeeded in creating a uniform theory which
solved outstanding open problems of this time: boundary-value problems
and boundary-eigenvalue problems for partial differential equations.13

Otto Blumenthal, 1932

The dual operator. Consider the linear operator

A : X → Y

12 Fredholm (1866–1927)
13 O. Blumenthal, Hilbert’s biography (in German). In: D. Hilbert, Collected

Works, Vol. 3, pp. 388–429, Springer, Berlin (12th edn. 1977).
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where X and Y are linear spaces over K = R,C. We want to construct a linear
operator of the form

Ad : Y d → Xd.

The operator Ad sends the given linear functional F ∈ Y d to the linear functional
AdF ∈ Xd. The precise definition reads as

(AdF )(x) := F (Ax) for all x ∈ X.

The Fredholm alternative. We assume that X and Y are finite-dimensional
linear spaces over K where K = R or K = C.

Theorem 2.31 For given y ∈ Y , the equation

Ax = y, x ∈ X (2.48)

has a solution iff F (y) = 0 for all solutions F of the homogeneous dual equation

AdF = 0, F ∈ Y d.

The number s of linearly independent solvability conditions for (2.48) is given by

s = dimY − rank A.

Moreover, we have duality invariance of the rank:

rank A = rank Ad. (2.49)

The intuitive meaning of the fundamental rank relation (2.49) will be discussed
on page 162 under the heading “the philosophy of linear systems.”

Corollary 2.32 For the index, ind Ad = −ind A. Furthermore,

s = dim(kerAd) = dim(kerA) − ind A. (2.50)

In addition, s = codim(im A).

In particular, this corollary implies the following for the linear operator A : X → Y :

• A is injective iff dim(kerA) = 0 (i.e., the equation Ax = y has at most one
solution x ∈ X),

• A is surjective iff dim(kerA) = indA (i.e., the equation Ax = y has at least one
solution x ∈ X for every given y ∈ Y ).14

• A is bijective iff dim(kerA) = indA = 0 (i.e., the equation Ax = y has a unique
solution x ∈ X for every given y ∈ Y ).

• The equation Ax = y is well posed iff dim(kerA) = indA = 0 (i.e., for every
given y ∈ Y , the equation Ax = y has a unique solution x ∈ X, and the solution
depends continuously on y).

• If dimY = dimX and the homogeneous equation Ax = 0, x ∈ X has only the
trivial solution x = 0, then the inhomogeneous equation Ax = y is well posed
(uniqueness implies existence).15

14 This shows that a linear operator A : X → Y with negative index, that is,
dimX < dimY , can never be surjective.

15 Observe that indA = 0 and dim(kerA) = 0 by assumption.
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Proof. Let us prove Theorem 2.31 and Corollary 2.32.
(I) By definition of the dual operator,

kerAd = {F ∈ Y d : F (y) = 0 for all y ∈ im A}. (2.51)

In fact, if F ∈ kerAd, then AdF = 0. Hence F (Ax) = 0 for all x ∈ X. Therefore,
F (y) = 0 for all y ∈ im A. The converse is also true.

(II) By Theorem 2.29, it follows from (2.51) that dim(kerAd) = codim(im A).
Therefore,

dim(kerAd) = dimY − rank A. (2.52)

(III) By Theorem 2.30,

dim(kerA) + rank A = dimX.

Replacing the operator A by the dual operator Ad, we get

dim(kerAd) + rank Ad = dimY d.

Since dimY d = dimY , it follows from (2.52) that rank Ad = rank A.
(IV) By (2.51), the number s of linearly independent solvability conditions is

equal to dim(kerAd). Hence s = dimY − rank A.
Finally, indA = dimX−dimY . Analogously, indAd = dimY d−dimXd. There-

fore, indAd = dimY − dimX = − indA. �

In what follows let us sketch two prototypes of infinite-dimensional problems.
The Fredholm alternative for integral equations. Consider the integral

equation

ψ(x) −
Z 1

0

K(x, y)ψ(y)dy = f(x), 0 ≤ x ≤ 1 (2.53)

together with the homogeneous equation

ψ(x) −
Z 1

0

K(x, y)ψ(y)dy = 0, 0 ≤ x ≤ 1, (2.54)

and the dual homogeneous equation

ϕ(x) −
Z 1

0

K(y, x)ϕ(y)dy = 0, 0 ≤ x ≤ 1 (2.55)

with the transposed kernel function. The kernel function K : [0, 1] × [0, 1] → R is
assumed to be continuous. Let C[0, 1]) denote the space of all continuous functions

ψ : [0, 1] → R.

This is a real Banach space equipped with the norm ||ψ|| := max0≤x≤1 |ψ(x)|. We
are given the function f ∈ C[0, 1].

Proposition 2.33 (i) Equation (2.53) has a solution ψ ∈ C[0, 1] iff

Z 1

0

f(x)ϕ(x)dx = 0
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for all solutions ϕ ∈ C[0, 1] of (2.55).
(ii) The homogeneous equation (2.54) and the homogeneous dual equation (2.55)

have the same finite number d of solutions in the space C[0, 1]). Let ψ1, . . . , ψd and
ϕ1, . . . , ϕd be a basis of the solution spaces of (2.54) and (2.55), respectively.

(iii) If ψspecial is a solution of (2.53), then the general solution of (2.53) reads
as

ψ(x) = ψspecial(x) +

d
X

j=1

γjψj(x), 0 ≤ x ≤ 1

where γ1, . . . , γd are arbitrary real coefficients. If d = 0, then the solution is unique,
that is, ψ = ψspecial.

Obviously, the solvability condition (i) can be replaced by the following condi-
tion: Equation (2.53) has a solution ψ ∈ C[0, 1] iff the d solvability conditions

Z 1

0

f(x)ϕj(x)dx = 0, j = 1, . . . , d

are satisfied. If the kernel is symmetric, that is, K(x, y) = K(y, x) for all x, y ∈ [0, 1],
then the two equations (2.54) and (2.55) coincide. From the abstract point of view,
the integral equation (2.53) corresponds to the operator equation

(I −K)ψ = f, ψ ∈ C[0, 1].

Here, the linear operator K : C[0, 1] → C[0, 1] is defined by

(Kψ)(x) :=

Z 1

0

K(x, y)ψ(y)dy, 0 ≤ x ≤ 1.

The point is that the linear operator K : C[0, 1] → C[0, 1] is compact. Therefore,
the operator I −K : C[0, 1] → C[0, 1] is Fredholm with the index

ind(I −K) = ind I = 0.

Here, we use the general theorem that the identity operator I : C[0, 1] → C[0, 1] on
a Banach space is Fredholm of index zero. Moreover, the compact perturbation of a
Fredholm operator is again a Fredholm operator, and the index remains unchanged.

The Fredholm alternative for boundary-value problems. Consider the
boundary value problem

ψ′′(x) + μψ(x) = f(x), −π ≤ x ≤ π, ψ(−π) = ψ(π) = 0 (2.56)

together with the homogeneous problem

ψ′′(x) + μψ(x) = 0, −π ≤ x ≤ π, ψ(−π) = ψ(π) = 0. (2.57)

Here, μ is a fixed real number. Let C[−π, π] denote the Banach space of all contin-
uous functions

ψ : [−π, π] → R (2.58)

equipped with the norm ||ψ||C := max−π≤x≤π |ψ(x)|. Moreover, let C2[−π, π] de-
note the Banach space of all twice continuously differentiable functions (2.58), that
is, ψ,ψ′, ψ′′ ∈ C[−π, π]. This is a real infinite-dimensional Banach space equipped
with the norm ||ψ|| := ||ψ||C + ||ψ′||C + ||ψ′′||C . Set

ψn(x) := sinnx, μn := n2, n = 1, 2, . . .

We are given the function f ∈ C[−π, π].
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Proposition 2.34 (i) Let μ �= μn for all n = 1, 2, . . . Then the homogenous equa-
tion (2.57) has only the trivial solution ψ ≡ 0. For every f ∈ C[−π, π], the inho-
mogeneous equation (2.56) has a unique solution ψ ∈ C2[−π, π].

(ii) Let μ = μn for fixed n = 1, 2, . . .. Then the homogenous equation (2.57)
has the solution ψ = γψn where γ is an arbitrary real number. The inhomogeneous
problem (2.56) has a solution iff

Z π

−π

f(x)ψn(x)dx = 0.

If ψspecial is a solution of (2.56), then the general solution of (2.57) reads as

ψ(x) = ψspecial(x) + γψn(x), −π ≤ x ≤ π, γ ∈ R.

This is a problem of index zero. In fact, let d (resp. s) denote the dimension of
the solution space (resp. the number of linearly independent solvability conditions).
In case (i), we have d = 0 and s = 0. Hence index =d− s = 0. In case (ii), we have
d = 1 and s = 1. Hence index = d− s = 0.

Further reading. For a detailed study of linear operator equations (including
generalized duality via dual pairs) and their applications to integral equations and
differential equations, we recommend:

E. Zeidler, Applied Functional Analysis, Vol. 1: Applications to Mathe-
matical Physics, Vol 2: Main Principles and Their Applications, Springer,
New York, 1995.

2.10.5 The Language of Matrices

In finite-dimensional linear spaces, the theory of linear operators is equiv-
alent to matrix theory.
However, this equivalence is destroyed in infinite-dimensional spaces. Here,
linear operators have priority, since the passage from linear operators to
infinite matrices may cause a loss of crucial information about the domain
of definition of the operator. This was emphasized by John von Neumann
in about 1930 when creating the mathematical foundations of quantum
mechanics based on the spectral theory of self-adjoint operators in Hilbert
spaces.16

Folklore

Let us fix either K := R (real matrix elements) or K = C (complex matrix elements).
We are given y ∈ Y. Our goal is to transform the linear operator equation

Ax = y, x ∈ X (2.59)

into the matrix equation

Ax = y, x ∈ K
n (2.60)

where y ∈ K
m is given. Explicitly, the matrix equation (2.60) reads as17

16 J. von Neumann, Mathematical Foundations of Quantum Mechanics (in Ger-
man), Springer, Berlin, 1932 (reprint 1996). English edition: Princeton University
Press, 1955. See also the discussion on page 430 of Vol. II.

17 We will use the convention that the upper index of a matrix entry is always the
row index.
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0

B

B

B

B

@

A1
1 A1

2 . . . A
1
n

A2
1 A2

2 . . . A
2
n

...
... . . .

...

Am
1 Am

2 . . . Am
n

1

C

C

C

C

A

0

B

B

B

B

@

x1

x2

...

xn

1

C

C

C

C

A

=

0

B

B

B

B

@

y1

y2

...

ym

1

C

C

C

C

A

. (2.61)

Equivalently,

n
X

j=1

Ai
jx

j = yi, i = 1, . . . ,m. (2.62)

Here, we choose xj , yi, Ai
j ∈ K for i = 1, . . . ,m and j = 1, . . . , n. This corresponds

to
x ∈ K

n, y ∈ K
m, n,m = 1, 2, . . .

Our goal is to obtain the following commutative diagram:

X

τ(X)

A
Y

τ(Y )

K
n A

K
m.

(2.63)

In order to get this, let n := dimX and m := dimY.

• We choose a basis b1(X), . . . ,bn(X) of the space X. Every element x of the
linear space X can be uniquely represented as

x =
n
X

j=1

xjbj(X), x1, . . . , xn ∈ K.

We assign to x the column matrix

x =

0

B

B

@

x1

...

xn

1

C

C

A

.

Set τ(x) := x. Then the map τ : X → K
n is a linear isomorphism. In what

follows, we will write τ(X) instead of τ.
• Analogously, we construct the linear isomorphism τ(Y ) : Y → K

m.

The matrix elements Ai
j of the linear operator A : X → Y are defined by

Abj(X) =

m
X

i=1

Ai
jbi(Y ), j = 1, . . . , n (2.64)

where b1(Y ), . . . ,bm(Y ) is a basis of Y . Therefore, the numbers Ai
j ∈ K are

uniquely determined by the operator A. In particular, we get

Ax = A

 

n
X

j=1

xjbj(X)

!

=

m
X

i=1

n
X

j=1

Ai
jx

jbi(Y ),

and y =
Pm

i=1 y
ibi(Y ). This yields (2.62).
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The matrix product. Let A = (Ai
j) be an (m× n)-matrix with entries in K,

and let B = (Bk
i ) be an (l×m)-matrix with entries in K. By definition, the entries

of the product matrix C := BA are given by

Ck
j :=

m
X

i=1

Bk
i A

i
j , k = 1, . . . , l, j = 1, . . . n. (2.65)

For a simple example of matrix multiplication, see (1.9) on page 74. This definition
is justified by the following proposition.

Proposition 2.35 Let X,Y, Z be linear spaces of dimension n,m, l = 1, 2, . . . We
are given the linear operators A : X → Y and B : Y → Z with the corresponding
matrices A and B, respectively. Then the following diagram is commutative:

X
A

Y
B

Z

K
n A

K
m B

K
l.

(2.66)

Here, the vertical maps are linear isomorphisms.

This proposition tells us that the matrix product BA corresponds to the oper-
ator product BA.
Proof. Let Ax = y and By = z. It follows from

zk =

m
X

i=1

Bk
i y

i, yi =

n
X

j=1

Ai
jx

j

that zk =
Pn

j=1 C
k
j x

j . �

The dual matrix equation. Next let be given the linear functional G ∈ Xd.
Our goal is to transform the dual linear operator equation

AdF = G, F ∈ Y d (2.67)

into the dual matrix equation

AdF = G, F ∈ K
m (2.68)

where G ∈ K
n. Here, by definition, the dual matrix Ad is obtained from the original

matrix A by transposing rows and columns.18 Explicitly, equation (2.68) reads as
0

B

B

B

B

@

A1
1 A

2
1 . . . A

m
1

A1
2 A

2
2 . . . A

m
2

...
... . . .

...

A1
n A

2
n . . . A

m
n

1

C

C

C

C

A

0

B

B

B

B

@

F1

F2

...

Fm

1

C

C

C

C

A

=

0

B

B

B

B

@

G1

G2

...

Gn

1

C

C

C

C

A

. (2.69)

18 Explicitly, if A = (Ai
j), then (Ad)ij := Aj

i . Moreover, we set (Ac)ij := (Ai
j)

†, and

A† = (Ac)d. The matrix Ad, Ac, A† is called the dual (or transposed), conjugate-
complex, adjoint matrix to A, respectively. In particular, the entries of the matrix
Ac are the conjugate-complex entries of the matrix A.
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This means that

m
X

i=1

Ai
jFi = Gj , j = 1, . . . , n. (2.70)

Proposition 2.36 The operator equation (2.67) is equivalent to (2.70), that is,
from (2.63) we get the following commutative diagram:

Xd

τ(Xd)

Y dAd

τ(Y d)

K
n

K
m.

Ad

(2.71)

Here, the maps τ(Xd) and τ(Y d) are linear isomorphisms.

Recall that (AdF )(x) = F (Ax) for all x ∈ X. Thus, the equation (2.67) means
that F (Ax) = G(x) for all x ∈ X.
Proof. We will use the linear functionals dy1, . . . , dym which form a basis of the
dual space Y d, and which are dual to the basis b1(Y ), . . .bm(Y ) of the space Y ,
that is,

dyi(bj(Y )) = δij , i, j = 1, . . . ,m.

Every element F of Y d can be uniquely represented as

F =

m
X

i=1

Fidy
i, F1, . . . , Fm ∈ K.

We assign to F the column matrix

F =

0

B

B

@

F1

...

Fm

1

C

C

A

.

Setting τ(F ) := F , the map τ : Y d → K
m is a linear isomorphism. In diagram

(2.71), we write τ(Y d) instead of τ. Similarly,

G =

n
X

j=1

Gjdx
j , G1, . . . , Gn ∈ K.

It follows from AdF = G that (AdF )(bj(X)) = G(bj(X)) = Gj . Hence

Gj = F (Abj(X)) = F

 

m
X

i=1

Ai
jbi(Y )

!

=

m
X

i=1

Ai
jFi.

This is the desired equation (2.70). �

The product rule. Interchanging indices, from the product formula (2.65) we
get

Cj
k :=

m
X

i=1

Aj
iB

i
k, k = 1, . . . , l, j = 1, . . . n. (2.72)
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This means that

(BA)d = AdBd.

Furthermore, from (2.66) we obtain the following commutative diagram:

Xd Y dAd

ZdBd

K
n

K
mAd

K
l.

Bd

(2.73)

Here, the vertical maps are linear isomorphisms.
The rank of a matrix. Consider the (m× n)-matrix

A =

0

B

B

@

A1
1 A1

2 . . . A
1
n

...
... . . .

...

Am
1 Am

2 . . . Am
n

1

C

C

A

(2.74)

where all the entries Ai
j are elements of K. This represents a linear operator

A : K
n → K

m (2.75)

given by (2.61). By definition, the rank of the matrix A is the rank of the linear op-
erator (2.75). The columns (resp. rows) of the matrix A are denoted by A1, . . . , An

(resp. A1, . . . , Am). Thus,

A = (A1, . . . , An) =

0

B

B

@

A1

...

Am

1

C

C

A

.

Proposition 2.37 The rank of the matrix A, rank(A), is equal to the maximal
number of linearly independent columns of A.

Proof. We have b ∈ im(A) iff b = x1A1+. . .+x
nAn with coefficients x1, . . . , xn ∈ K.

�

Let us introduce the following terminology:

• The column rank of the matrix A is the maximal number of linearly independent
columns of A.

• The row rank of A is the maximal number of linearly independent rows of A.
• The determinant rank of A is the maximal order of nonvanishing subdeterminants

of the matrix A.
For example, the determinant rank of the matrix

A :=

 

0 1 1

0 0 a

!

is equal to 2 (resp. 1) if a �= 0 (resp. a = 0). Note that

˛

˛

˛

˛

˛

1 1

0 a

˛

˛

˛

˛

˛

= a.

The Grassmann criterion. Let b1, . . . ,bn be a basis of the linear space X
over K. We are given ai :=

Pn
j=1A

i
jb

j where i = 1, . . . ,m.
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Proposition 2.38 The vectors a1, . . . , am are linearly independent iff the deter-
minant rank of the matrix A from (2.74) is equal to m.

The vectors a1, . . . ,am are linearly dependent iff the determinant rank of the
matrix A from (2.74) is less than m.

This proposition is an immediate consequence of Theorem 2.24 on page 148. In
order to illustrate this, consider the special case where

A :=

 

A1
1 A

1
2 A

1
3

A2
1 A

2
2 A

2
3

!

.

Then

a1 ∧ a2 = (A1
1b

1 +A1
2b

2 +A1
3b

3) ∧ (A2
1b

1 +A2
2b

2 +A2
3b

3)

=

˛

˛

˛

˛

˛

A1
1 A

1
2

A2
1 A

2
2

˛

˛

˛

˛

˛

b1 ∧ b2 +

˛

˛

˛

˛

˛

A1
1 A

1
3

A2
1 A

2
3

˛

˛

˛

˛

˛

b1 ∧ b3 +

˛

˛

˛

˛

˛

A1
2 A

1
3

A2
2 A

2
3

˛

˛

˛

˛

˛

b2 ∧ b3.

Consequently, a1 ∧ a2 = 0 iff all the determinants are equal to zero. Moreover,
a1 ∧ a2 �= 0 iff at least one determinant is different from zero.

Proposition 2.39 The rank of the matrix A from (2.74) is equal to to the deter-
minant rank of A.

This is an immediate consequence of Props. 2.37 and 2.38. Transposing rows
and columns of the matrix A and noting that subdeterminants remain unchanged,
we get the following result.

Corollary 2.40 rank(A) = rank(Ad).

Summarizing this, we obtain that the following quantities of the matrix A co-
incide: the rank, the column rank, the determinant rank, and the row rank.

The rank theorem for linear systems. Consider the linear system

n
X

j=1

Ai
jx

j = bi, i = 1, . . . ,m. (2.76)

Theorem 2.41 The system (2.76) has a solution iff the rank of the coefficient
(m × n)-matrix A = (Ai

j) equals the rank of the extended (m × (n + 1))-matrix
(A, b).

Proof. The system (2.76) has a solution iff b depends linearly on the columns of
the matrix A. Now use the Grassmann criterion (Prop. 2.38). �

The philosophy of linear systems. By the Fredholm alternative (Theorem
2.31 on page 154), the linear system

αx+ βy + γz = b,

λx+ μy + νz = c, x, y, z ∈ K (2.77)

has a solution iff

(u, v)

 

α β γ

λ μ ν

!

= 0 implies (u, v)

 

b

c

!

= 0.
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This means that the relations between the rows of the coefficient matrix of (2.77)
are the same as the relations between the terms b, c of the right-hand side of (2.77).
This quite natural principle is valid for all finite-dimensional linear systems. The
rank theorem (Theorem 2.41) is nothing else than a reformulation of this principle.

2.10.6 The Gaussian Elimination Method

The Gaussian elimination method is a universal method for solving finite-
dimensional linear matrix equations on computers.

Folklore

In order to explain the basic idea of the Gaussian elimination method, let us consider
the linear system (2.77).
Case 1: Suppose that not all the coefficients α, β, γ, λ, μ, ν vanish. After transposing
rows and using a permutation of the unknowns x, y, z, if necessary, we may assume
that α �= 0.19 Multiplying the first row of (2.77) by −λ and the second row by α
and using subtraction, we get

αx+ βy + γz = b,

μ′y + ν′z = c′. (2.78)

After division, we may assume that α = 1.
Case 1.1: Suppose that one of the coefficients μ′ and ν′ does not vanish. After

a permutation of the unknowns y, z and after division, if necessary, we may assume
that μ′ = 1. Hence

x+ βy + γz = b,

y + ν′z = c′.

This yields y = c′ − ν′z and x = b − βy − γz. In this case, the general solution
depends on the free parameter z. That is, the dimension of the solution space is
equal to 1. The elimination method reduces the coefficient matrix of (2.77) to the
following triangular matrix

 

1 β γ

0 1 ν′

!

.

Case 1.2: Suppose that μ′ = ν′ = 0. There exists a solution of (2.78) iff c′ = 0.
In this case, the general solution of (2.78) depends on the two parameters y and z.
That is, the dimension of the solution space is equal to 2. The coefficient matrix is
reduced to the following degenerate triangular matrix

 

1 β γ

0 0 0

!

.

Case 2: Suppose that all the coefficients α, β, γ, λ, μ, ν vanish. Then the system
(2.77) has a solution iff b = c = 0. In the latter case, all the tuples (x, y, z) ∈ K

3

represent solutions of (2.77). That is, the dimension of the solution space is equal
to 3.

For general linear systems, we proceed analogously. This elimination method is
used in order to solve huge linear systems by the aid of computers. Note that this
Gaussian elimination method does not change the rank of the coefficient matrix
and the rank of the extended coefficient matrix of the original linear system (2.76).

19 In order to minimize the round-off errors in the computer program, we proceed
in such a way that |α| is maximal compared with |β|, |γ|, . . .
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2.11 Changing the Basis and the Cobasis

Both the covariant and the contravariant transformation law play a key
role in classical tensor calculus.

Folklore

Einstein’s summation convention. In this section, we sum over equal upper
and lower indices from 1 to n. For example,

v = vibi = vi
′
bi′ (2.79)

means v =
Pn

i=1 v
ibi =

Pn
i=1 v

i′bi′ . Here, i and i′ are regarded as different indices.
An index is called free iff we do not sum over it. For example, the index i′ from
(2.80) below is free.

The covariant transformation law for the basis vectors. Fix K = R

or K = C. Consider the n-dimensional linear space X over K. Let us pass from
the basis b1, . . . ,bn of X to the new basis b1′ , . . . ,bn′ by means of the so-called
covariant transformation law

bi′ = T i
i′bi, i′ = 1′, . . . , n′ (2.80)

together with the inverse transformation law

bi = T i′
i bi′ , i = 1, . . . , n. (2.81)

Here, all the transformation coefficients T i
i′ and T i′

i are elements of K. Substituting
(2.81) into (2.80) and vice versa, we get

T i
i′T

i′
j = δij , T i′

i T
i
j′ = δi

′
j′ (2.82)

for all free indices.
The contravariant transformation law for the velocity components.

For the components of the velocity vector v from (2.79) we obtain the so-called
contravariant transformation law

vi
′
= T i′

i v
i, i′ = 1′, . . . , n′. (2.83)

In fact, vibi = viT i′
i bi′ = vi

′
bi′ .

Note that the lower (resp. upper) index of bi (resp vi) indicates the co-
variant (resp. contravariant) transformation law.

Let us summarize. Using the language of matrices, the two fundamental transfor-
mation laws can be formulated as

0

B

B

@

v1
′

...

vn
′

1

C

C

A

= T

0

B

B

@

v1

...

vn

1

C

C

A

,

0

B

B

@

b1′

...

bn′

1

C

C

A

= (T d)−1

0

B

B

@

b1

...

bn

1

C

C

A

(2.84)

with the transformation matrices

T :=

0

B

B

B

B

@

T 1′
1 T 1′

2 . . . T 1′
n

T 2′
1 T 2′

2 . . . T 2′
n

...
... . . .

...

Tn′
1 Tn′

2 . . . Tn′
n

1

C

C

C

C

A

, (T d)−1 =

0

B

B

B

B

@

T 1
1′ T

2
1′ . . . T

n
1′

T 1
2′ T

2
2′ . . . T

n
2′

...
... . . .

...

T 1
n′ T 2

n′ . . . Tn
n′

1

C

C

C

C

A

. (2.85)
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Thus, the contravariant transformation law for the velocity components v1, . . . , vn

and the covariant transformation law for the basis vectors b1, . . . ,bn corresponds
to the matrix T and the so-called contragredient matrix (T d)−1 (i.e., the inverse
of the transposed matrix), respectively.

The contravariant transformation law for the cobasis functionals. It
follows from

dxi(v) = dxi(vjbj) = vi

and dxi
′
(v) = dxi

′
(vj

′
bj′) = vi

′
that the cobasis dx1, . . . , dxn transforms like the

velocity components v1, . . . , vn. Hence

dxi
′
= T i′

i dx
i, i′ = 1′, . . . , n′. (2.86)

The covariant transformation law for the covector components. Let
F ∈ Xd. It follows from

F = Fidx
i = Fi′dx

i′

and Fidx
i = FiT

i
i′dx

i′ that

Fi′ = T i
i′Fi, i′ = 1′, . . . , n′. (2.87)

That is, the covector components F1, . . . , Fn transform like the basis vectors
b1, . . . ,bn which is indicated by the choice of the lower index.

2.11.1 Similarity of Matrices

For a linear operator, the change of the basis of the underlying linear space
corresponds to a similarity transformation of the matrices.

Folklore

The space End(X). Let X be an n-dimensional linear space over K = R,C.
Let End(X) denote the space of all the linear operators A : X → X (i.e., en-
domorphisms of X). We want to show that, quite naturally, there exists a linear
isomorphism of the form

End(X)  X ⊗Xd. (2.88)

To this end, choose the basis b1, . . . ,bn and dx1, . . . , dxn of X and Xd, respectively.
Then the n2 tensor products bi ⊗ dxj with i, j = 1, . . . , n form a basis of the linear
space X ⊗Xd over K. Define

(bi ⊗ dxj)(v) := dxj(v)bi for all v ∈ X.

For every A ∈ End(X), this implies

A = Ai
jbi ⊗ dxj , (2.89)

which yields the desired linear isomorphism (2.88). In fact, we have

(Ai
jbi ⊗ dxj)(v) = Ai

jdx
j(v)bi = Ai

jv
jbi = Av.



166 2. Algebras and Duality

The transformation law of matrices. Let us pass from the basis b1, . . . ,bn

to the new basis b1′ , . . . ,bn′ . Then it follows from

A = Ai
jbi ⊗ dxj = Ai′

j′bi′ ⊗ dxj
′

and Ai
jbi ⊗ dxj = (Ai

jT
i′
i T

j
j′)bi′ ⊗ dxj

′
that

Ai′
j′ = T i′

i T
j
j′A

i
j . (2.90)

This means that the matrix elements Ai
j of the linear operator A transform like the

product viFj . For the matrices A = (Ai
j) and A′ = (Ai′

j′), we get

A′ = T AT −1. (2.91)

Alternatively, this follows from the fact that the operator equation w = Av corre-
sponds to the matrix equation

0

B

B

@

w1

...

wn

1

C

C

A

= A

0

B

B

@

v1

...

vn

1

C

C

A

,

and hence
0

B

B

@

w1′

...

wn′

1

C

C

A

= T

0

B

B

@

w1

...

wn

1

C

C

A

= T A

0

B

B

@

v1

...

vn

1

C

C

A

= T AT −1

0

B

B

@

v1
′

...

vn
′

1

C

C

A

.

Similarity invariants of square matrices. By definition, two real (resp.
complex) (n× n)-matrices A and A′ are called similar iff there exists an invertible
real (resp. complex) (n×n)-matrix T such that the relation (2.91) above is satisfied.
This is an equivalence relation for the elements of the linear matrix space M(n, n; K).
Similar matrices describe the same linear operator. Invariants of similar matrices
are invariants of the corresponding linear operator. For example, this concerns the
determinant and the trace of a linear operator, as we will show below.

2.11.2 Volume Functions

The theory of determinants is equivalent to the theory of volume functions.
Folklore

We want to show that the theory of determinants becomes extremely simple if one
uses the notion of volume function. Let X be an n-dimensional linear space over
K = R,C, where n = 1, 2, . . . By definition, a volume function on X is an n-linear
functional V : X × · · · × X → K with the additional property that V vanishes if
two arguments coincide (e.g., V (x1, x1, x3, . . . , xn) = 0). For example, if a,b, c are
vectors in E3, then

V0(a,b, c) := (abc)

is a volume function. This is the volume of the parallelepiped spanned by the vectors
a,b, c (see Fig. 1.6 on page 83). The following proposition shows that, as a special
case, all the possible volume functions on E3 are of the form V = γV0 where γ is a
real number.
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Proposition 2.42 The space of volume functions on X is one-dimensional.

Explicitly, the following hold. Let b1, . . . , bn be a basis of X. There exists precisely
one volume function on X, denoted V0, such that V0(b1, . . . , bn) = 1. All the volume
functions on X have the form V = γV0 where γ = V (b1, . . . , bn).
Proof. (I) Every volume function is antisymmetric. For example, let n = 3. It
follows from V (x, x, z) = 0 that

0 = V (x+ y, x+ y, z) = V (x, y, z) + V (y, x, z),

and hence V (x, y, z) = −V (y, x, z).
Conversely, every n-linear antisymmetric function V : X × · · · × X → K is a

volume function.
(II) Let n = 2. If V is a volume function, then20

V (αibi, β
jbj) = αiβjV (bi, bj) = αiβjεijV (b1, b2).

In particular, V0(α
ibi, β

jbj) = αiβjεijV0(b1, b2) = αiβjεij . This tells us that we
have V = V (b1, b2)V0. The general case proceeds similarly. �

2.11.3 The Determinant of a Linear Operator

Theorem 2.43 Let A : X → X be a linear operator on the n-dimensional linear
space X over K = R,C where n = 1, 2, . . . There exists precisely one number in K,
denoted det(A), such that

V (Ax1, . . . , Axn) = det(A) · V (x1, . . . , xn) for all x1, . . . , xn ∈ X (2.92)

and all volume functions V on X.

The number det(A) is called the determinant of the linear operator A. The
point is that det(A) is independent of the choice of a basis.
Proof. Set W (x1, . . . , xn) := V0(Ax1, . . . , Axn). Since W is a volume function,
there exists a number γ0 such that W = γ0V0. Set det(A) := γ0. Finally, observe
that, for a general volume function, we have V = γV0. �

The determinant possesses the following three properties:

(i) det(I) = 1 if I : X → X is the identity operator.
(ii) det(AB) = det(A) det(B) if A,B : X → X are linear operators.
(iii) det(A) �= 0 iff the linear operator A : X → X is invertible. In addition, we

have det(A−1) = (det(A))−1.

Proof. Ad (i). This follows immediately from (2.92).
Ad (ii). Note that V (ABx1, . . . , ABxn) is equal to

det(A) · V (Bx1, . . . , Bxn) = det(A) det(B) · V (x1, . . . , xn).

Ad (iii). If A is invertible, then AA−1 = I implies det(A) det(A−1) = 1.
Conversely, assume that det(A) �= 0, and A is not invertible. Then there exists

an element b1 �= 0 such that Ab1 = 0. Extend the vector b1 to a basis b1, . . . , bn of
X. Then

V0(Ab1, . . . , Abn) = det(A) · V0(b1, . . . , bn).

Choosing the volume function V0 such that V0(b1, . . . , bn) = 1, the relation
V0(Ab1, . . . , Abn) = V0(0, . . .) = 0 yields a contradiction. �

20 We sum over i, j = 1, 2.
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Let A = (Ai
j) be the matrix of the linear operator A : X → X with respect to

the basis b1, . . . , bn. Then

det(A) = det(A).

To prove this, choose n = 2. Then V (Ab1, Ab2) is equal to

V (Ai
1bi, A

j
2bj) = Ai

1A
j
2V (bi, bj) = Ai

1A
j
2εijV (b1, b2) = det(A)V (b1, b2).

The general case proceeds analogously.
In particular, this implies the Grassmann relation

Ax1 ∧ · · · ∧Axn = det(A) · x1 ∧ · · · ∧ xn for all x1, . . . , xn ∈ X. (2.93)

In fact, choosing a basis and the matrix elements of the linear operator A, the
antisymmetry of the Grassmann product yields (2.93) with det(A) replaced by
det(A).

2.11.4 The Reciprocal Basis in Crystallography

The reciprocal basis is crucial in crystallography. For the lattice of a given
crystal structure, spanned by the vectors b1,b2,b3, the reciprocal basis
b1,b2,b3 corresponds to the reciprocal lattice of a reciprocal crystal struc-
ture.

Folklore

The prototype in the Euclidean space E3. Let b1,b2,b3 be a right-handed
basis of the Euclidean space E3. We are looking for vectors b1,b2,b3 with the
property

bibj = δij , i, j = 1, 2, 3. (2.94)

Proposition 2.44 The system (2.94) has a unique solution which is called the
reciprocal basis b1,b2,b3 to b1,b2,b3.

Proof. Set gij := bibj . By the Gram determinant (1.31) on page 84,

det(gij) = (b1b2b3)
2.

Thus, det(gij) �= 0. Consequently, the symmetric matrix G = (gij) has an inverse
matrix G−1 = (gij) which is also symmetric, that is,

gisgsj = δij , i, j = 1, 2, 3.

(I) Uniqueness. Setting bi := bisbs, we get bisgsj = δij . Hence bis = gis.

(II) Existence. The vectors bi := gisbs, i = 1, 2, 3, satisfy equation (2.94). �

Obviously, the three vectors

b1 =
b2 × b3

(b1b2b3)
, b2 =

b3 × b1

(b1b2b3)
, b3 =

b1 × b2

(b1b2b3)

satisfy condition (2.94). Therefore, they represent the reciprocal basis. In terms of
the Riesz duality operator ℵ : E3 → Ed

3 , we get

dxi = ℵ(bi), i = 1, 2, 3.
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We want to generalize this to higher dimensions.
The metric tensor. Let X be a real n-dimensional Hilbert space with the

inner product 〈.|.〉. The metric tensor g is defined by

g(v,w) := 〈v|w〉 for all v,w ∈ X.

Let b1, . . . ,bn be a basis of X. Setting gij := 〈bi|bj〉, we get

g = gijdx
i ⊗ dxj .

In fact, it follows from v = vibi and w = wjbj that

(gijdx
i ⊗ dxj)(v,w) = gijdx

i(v)dxj(w) = gijv
iwj = 〈v|w〉 = g(v,w).

Changing the basis from b1, . . . ,bn to b1′ , . . . ,bn′ , we obtain

g = gijdx
i ⊗ dxj = gi′j′dx

i′ ⊗ dxj
′
.

It follows from gijdx
i ⊗ dxj = gijT

i
i′T

j
j′dx

i′ ⊗ dxj′ that

gi′j′ = T i
i′T

j
j′gij , i′, j′ = 1′, . . . , n′. (2.95)

Thus, the components gij of the metric tensor transform like the product FiFj of
covector components. Introducing the symmetric matrix G = (gij), the transforma-
tion law (2.95) reads as

G′ = (T −1)dGT −1. (2.96)

Alternatively, this follows from the fact that g(v,w) is equal to

(v1 . . . vn) G

0

B

B

@

w1

...

wn

1

C

C

A

= (v1
′
. . . vn

′
) (T −1)dGT −1

0

B

B

@

w1′

...

wn′

1

C

C

A

= (v1
′
. . . vn

′
) G′

0

B

B

@

w1′

...

wn′

1

C

C

A

.

The dual metric tensor. In the special case where b1′ , . . . ,bn′ is an or-
thonormal basis of the real Hilbert space X, we get gi′j′ = δi′j′ , and detG′ = 1. By

(2.96), detG′ = (det T −1)2 detG. Hence det(G) �= 0. Therefore the inverse matrix
G−1 = (gij) exists. The dual metric tensor gd is defined by

gd = gijbi ⊗ bj .

Moreover, we define the reciprocal basis to b1, . . . ,bn by setting

bi := gij bj , i = 1, . . . , n. (2.97)

Obviously, we have the following biorthogonal relation:
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〈bi|bj〉 = δij , i, j = 1, . . . , n.

The latter equation determines the reciprocal basis in a unique way. This follows
as in the proof of Prop. 2.44 on page 168.

Matrix elements of linear operators. Since Abi = Aj
ibj , the matrix ele-

ment can be obtained by

Ai
j = 〈bi|Abj〉, i, j = 1, . . . , n. (2.98)

Alternatively,

Ai
j = dxi(Abj), i, j = 1, . . . , n. (2.99)

2.11.5 Dual Pairing

The Riesz duality operator. Let X be a linear n-dimensional Hilbert space over
K = R,C, where n = 1, 2, . . . For every v ∈ X, we define

ℵ(v)(w) := 〈v|w〉 for all w ∈ X.

The Riesz duality operator ℵ : X → Xd is an antilinear bijective operator, that is,

ℵ(αu + βv) = α†ℵ(u) + β†ℵ(v) for all α, β ∈ K, u,v ∈ X.

Let b1, . . . ,bn be a basis of X. Recall that dxi(
Pn

j=1 v
jbj) := vi, i = 1, . . . , n.

Hence dxi(bj) = δij if i, j = 1, . . . , n. Setting bi := ℵ−1(dxi), we get

〈bi|bj〉 = δij , i, j = 1, . . . , n.

This way, we obtain the reciprocal basis b1, . . . ,bn to b1, . . . ,bn.
The dual pairing. For the linear functional F ∈ Xd and the vector w ∈ X,

we define the dual pairing
〈F |w〉d := F (w).

Let v ∈ X. If F = ℵ(v), then

〈F |w〉d = 〈v|w〉. (2.100)

To simplify notation, we will write 〈F |w〉 instead of 〈F |w〉d. This coincides with
the convention used in physics, as we will show in Sect. 2.11.7 on the Dirac calculus.

2.11.6 The Trace of a Linear Operator

The trace of linear operators is critically used in statistical physics.
Folklore

The trace of a matrix. Let A,B, C,A1, . . . ,Am be complex (n×n)-matrices. The
trace of the matrix A is defined by

tr(A) := A1
1 +A2

2 + . . .+An
n. (2.101)

This is the sum of the main-diagonal entries. Using the Einstein sum convention,
tr(A) = Ai

i. It follows from the definition (2.65) of the matrix product that

tr(AB) = tr(BA). (2.102)
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Hence tr(A(BC)) = tr((BC)A). More generally,

tr(A1 · · · Am−1Am) = tr(AmA1 · · · Am−1), m = 2, 3, . . . (2.103)

This tells us that the trace of a product of square matrices remains unchanged
under a cyclic permutation of the factors. Moreover, we have

tr(Ad) = tr(A), tr(A†) := (tr(A))†. (2.104)

Recall that (Ad)ij := Aj
i and (A†)ij := (Aj

i )
†.

The intrinsic trace as a similarity invariant. Let A : X → X be a linear
operator. Let A be the matrix assigned to A with respect to a fixed basis b1, . . . ,bn

of X. We define the trace of the linear operator by setting

tr(A) := tr(A).

The point is that this definition does not depend on the choice of the basis. In
fact, if we pass to another basis, we assign to A the similar matrix A′ = T AT −1.
However,

tr(T AT −1) = tr(T −1T A) = tr(A).

Using the dual pairing and the reciprocal basis, we get

tr(A) = dxi(Abi) = 〈dxi|Abi〉 = 〈bi|Abi〉.

2.11.7 The Dirac Calculus

Mnemonically, the Dirac calculus works perfectly.
Folklore

We want to provide a bridge between

• the language of physicists (the Dirac calculus based on bra-vectors, ket-vectors,
and their products), and

• the language of mathematicians (based on covectors, vectors, and dual pairings,
as well as tensor products).

The modified Einstein sum convention. Since the Dirac calculus does not
distinguish between upper and lower indices, we modify the Einstein sum convention
by postulating that we sum over two equal indices from 1 to n. For example, the
crucial Dirac completeness relation for the identity operator,

I = |i〉〈i|, (2.105)

explicitly means I =
Pn

i=1 |i〉〈i|. In terms of mathematics, this corresponds to the

following sum of tensor products: I = bi ⊗ dxi =
Pn

i=1 bi ⊗ dxi.
Terminology. Let X be an n-dimensional linear Hilbert space over K = R,C.

We choose:

• b1, . . . ,bn (basis of the original space X),
• dx1, . . . , dxn (cobasis of the dual space Xd),
• b1, . . . ,bn (reciprocal basis of X),
• e1, . . . , en (orthonormal basis of X).

Note that if bi = ei for all i, then bi = ei for all i. Physicists use the following
symbols:
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• |w〉 (replacing the vector w ∈ X),
• 〈F | (replacing the covector F ∈ Xd),
• 〈F |A (replacing the dual operator Ad applied to F , i.e., AdF ),
• |i〉 (replacing the basis vector bi),
• 〈i| (replacing the cobasis vector dxi),
• 〈v| (replacing the special covector F = ℵ(v) where v ∈ X),
• 〈v|A|w〉 (replacing the inner product 〈v|Aw〉),
• 〈F |A|w〉 (replacing F (Aw)).

Moreover, we use the following products:

• 〈F | · |w〉 := 〈F |w〉 = F (w) (dual pairing),
• 〈v| · |w〉 := 〈v|w〉 (inner product on the Hilbert space X),
• 〈F |A · |w〉 = 〈F | ·A|w〉 := 〈F |A|w〉.
In particular, we have the biorthogonality relation

〈i|j〉 = δij , i, j = 1, . . . , n. (2.106)

Moreover, 〈i| = 〈bi| if i = 1, . . . , n. Relation (2.106) summarizes both dxi(bj) = δij
and 〈bi|bj〉 = δij . Motivated by the word ‘bracket’ for the symbol 〈.|.〉,
• the symbol 〈F | is called bra-vector (or costate), and
• the symbol |w〉 is called ket-vector (or state).

In the special case, where the basis b1, . . . ,bn equals the orthonormal basis
e1, . . . , en, we get

• |i〉 = |ei〉 and 〈i| = 〈ei|.
• The biorthogonality relation (2.106) passes over to the orthogonality relation

〈ei|ej〉 = δij , i, j = 1, . . . , n.

Finally, we postulate that there exists a †-operation (called dagger operation) which
has the following properties:

• α† (conjugate-complex number assigned to α ∈ K),
• α†† = α,
• |v〉† := 〈v| (replacing the Riesz duality v �→ ℵ(v) where v ∈ X),

• 〈v|† = |v〉†† = |v〉,
• A† (linear operator A† : X → X adjoint to the linear operator A : X → X).

For all possible objects a, b (i.e., numbers α, β, vectors |v〉, |w〉, covectors 〈v|, 〈w|,
and linear operators A,B : X → X), we have the following rules:

• (αa+ βb)† = α†a† + β†b† (antilinearity),

• a†† = a (doubling rule),
• (ab)† = b†a† (anti-product rule).

For example, in the language of the Dirac calculus,

〈v|w〉† = (〈v| · |w〉)† = |w〉† · 〈v|† = 〈w| · |v〉 = 〈w|v〉.

This shows that the Dirac calculus fits the basic property 〈v|w〉† = 〈w|v〉 of the
inner product on the Hilbert space X. Furthermore,

〈αv| + 〈βw| = |αv〉† + |βw〉† = (α|v〉)† + (β|w〉)†

= α†|v〉† + β†|w〉† = α†〈v| + β†〈w|.
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This corresponds to the antilinearity of the Riesz duality operator ℵ : X → Xd on
page 170.

Applications of Dirac’s completeness relation. The mnemonic elegance
of the Dirac calculus relies on the completeness relation (2.105) above. The point is
that the Dirac calculus allows us to pass quickly from vectors v, covectors F , and
linear operators A to components vi, co-components Fi, and matrix elements Ai

j ,
respectively.

• For all vectors v ∈ X, we have |v〉 = I|v〉. Hence, by (2.105),

|v〉 = |i〉〈i|v〉.

This corresponds to v = vibi with vi := 〈i|v〉 = 〈bi|v〉. Observe that this
encodes the two relations vi = dxi(v) and vi = 〈bi|v〉.

• For all covectors F ∈ Xd, we have 〈F | = 〈F |I. Hence

〈F | = 〈F |i〉〈i|.

This corresponds to F = Fidx
i with Fi := 〈F |i〉 = F (bi).

• For all vectors v ∈ X, we have 〈v| = 〈v|I. Hence

〈v| = 〈v|i〉〈i|. (2.107)

Explicitly, 〈v| = 〈v|bi〉〈bi|. Applying the †-operation, we get 〈v|† = 〈bi|†〈v|bi〉†.
Hence

|v〉 = |bi〉〈bi|v〉.
This corresponds to v = vib

i with vi = 〈bi|v〉, and v†i = 〈v|bi〉 = 〈v|i〉. In

terms of mathematics, this implies ℵ(v) = v†iℵ(bi) = v†i dx
i which coincides with

(2.107). This tells us that the identity operator I = |bi〉〈bi| can also be dually
represented as

I = |bi〉〈bi|. (2.108)

In terms of mathematics, this reflects the fact that the reciprocal basis to the
reciprocal basis b1, . . . ,bn is the original basis b1, . . . ,bn.

• For all vectors v,w ∈ X, we have 〈v| · |w〉 = 〈v| · I|w〉. Hence

〈v|w〉 = 〈v|i〉〈i|w〉.

This corresponds to the generalized Parseval equation 〈v|w〉 = v†iw
i. The classi-

cal Parseval equation is obtained in the special case where b1, . . . ,bn equals an
orthonormal basis e1, . . . , en. Then 〈v|w〉 = 〈v|ei〉〈ei|w〉.

• For all covectors F ∈ Xd and all vectors w ∈ X, we have 〈F | · |w〉 = 〈F | · I|w〉.
Hence

〈F |w〉 = 〈F |i〉〈i|w〉.
This corresponds to F (w) = Fiw

i.
• Let A : X → X be a linear operator. The linear operator equation Aw = v

implies

〈i|A|j〉〈j|w〉 = 〈i|v〉, j = 1, . . . , n.

This corresponds to the matrix equation Ai
jw

j = vi with Ai
j := 〈i|A|j〉. In other

words, Ai
j = dxi(Abj) = 〈bi|Abj〉.
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• For linear operators A,B : X → X, we get

〈i|AB|j〉 = 〈i|A|s〉〈s|B|j〉, i, j = 1, . . . , n.

This corresponds to the product formula (AB)ij = Ai
sB

s
j for matrix elements.

• For the linear operator A : X → X, the dual operator equation AdF = G reads
as 〈F |A = 〈G|. Hence

〈F |i〉〈i|A|j〉 = 〈G|j〉, j = 1, . . . , n.

This corresponds to the matrix equation Ai
jFi = Gj .

• For a linear operator A : X → X and all vectors v,w ∈ X, it follows from

〈Aw|v〉 = 〈v|Aw〉† = (〈v| ·A|w〉)† = |w〉†A† · 〈v|† = 〈w|A† · |v〉

that 〈Aw|v〉 = 〈w|A†v〉.
• The operator equation A†v = w implies

〈i|A†|j〉〈j|v〉 = 〈i|w〉, i = 1, . . . , n.

This corresponds to the matrix equation

(A†)ijv
j = wi, i = 1, . . . , n

with (A†)ij := 〈i|A†|j〉 = 〈bi|A†bj〉. If b1, . . . ,bn represents an orthonormal
basis e1, . . . , en, then

(A†)ij = 〈ei|A†ej〉 = 〈Aei|ej〉 = 〈ej |Aei〉† = (Aj
i )

†.

2.12 The Strategy of Quotient Algebras and Universal
Properties

Equivalence classes and the corresponding quotient structures (e.g., quo-
tient groups, quotient algebras, quotient fields) appear everywhere in
mathematics.

Folklore

We will use the method of equivalence classes studied in Chap. 4 of Vol. II.
Cauchy’s approach to complex numbers. In 1847, motivated by the Gauss

method of residue classes modulo a prime number (see Sect 4.1.1 of Vol. II), Cauchy
introduced complex numbers in the following way. In modern terminology, Cauchy
starts with the ring R[x] of all the polynomials

a0 + a1x+ . . .+ anx
n

with real coefficients a0, . . . , an. Let J denote the ideal generated by the polynomial
1 + x2. Explicitly, this ideal consists of all the products (x2 + 1)p(x) with p ∈ R[x].
For polynomials p, q ∈ R[x], we write

p(x) ∼ q(x) iff p(x) − q(x) ∈ J .

This is an equivalence relation which respects the addition and multiplication of
polynomials. That is, p ∼ r and q ∼ s imply p + q ∼ r + s and pq ∼ rs. The
equivalence classes [p(x)] form a ring, namely, the quotient ring R[x]/J equipped
with the operations
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• [p(x)] + [q(x)] := [p(x) + q(x)] (sum), and
• [p(x)][q(x)] := [p(x)q(x)] (product).

In particular, x2 + 1 ∼ 0 implies [x2 + 1] = [0]. The class [x] satisfies the equation

[x]2 = −[1].

Moreover, if n = 1, 2, . . ., then we get

• [x]2n = ([x]2)n = (−1)n, and

• [x]2n+1 = [x]2n[x] = (−1)n[x].

Thus,
[p(x)] = [a0 + a1x+ . . . anx

n] = [a0] + [a1][x] + . . .+ [an][x]n.

Consequently, [p(x)] = [a]+[b][x] where a and b are real numbers. This corresponds
to

a+ bi

in the usual notation for complex numbers. Frequently, it is convenient not to use the
equivalence classes, but the original objects together with additional relations. In
the present case, one works with polynomials p(x) and adds the relation x2 +1 = 0.
For example,

x2x2 = (x2 + 1 − 1)(x2 + 1 − 1) = (−1)(−1) = 1.

The construction of general Clifford algebras. Fix K = R or K = C. Let
B : X × X → K be a bilinear symmetric functional on the n-dimensional linear
space X over K, n = 1, 2, . . . Consider the tensor algebra

N

(X), and let J denote
the smallest ideal of

N

(X) which contains all the elements

x⊗ x−B(x, x), x ∈ X. (2.109)

For t, s ∈
N

(X), we write t  s iff t − s ∈ J. This is an equivalence relation. The
corresponding equivalence classes [t] form the quotient algebra

N

(X)/J which is
called the Clifford algebra, denoted

W

(X), of the linear space X with respect to
the bilinear form B. The product on

W

(X) is given by

[t] ∨ [s] := [t⊗ s].

If x ∈ X (resp. α ∈ K), then we identify [x] with x (resp. [α] with α). By (2.109),
[x] ∨ [x] = [x⊗ x] = B(x, x). Hence we get the so-called Clifford relation

x ∨ x = B(x, x) for all x ∈ X.

Replacing x by x+ y, we get

(x+ y) ∨ (x+ y) = B(x+ y, x+ y) = B(x, x) +B(x, y) +B(y, x) +B(y, y).

Hence
x ∨ y + y ∨ x = 2B(x, y) for all x, y ∈ X.

The Clifford algebra
W

(X) has the following properties:

(i)
W

(X) is an associative unital algebra over K which contains both X and K.
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(ii)
W

(X) has the following universal property. If L : X → A is a linear map
into the algebra A over K with the property L(x)2 = B(x, x) for all x ∈ X,
then there exists an algebra morphism μ :

W

(X) → A such that the following
diagram is commutative:

X
L

i

A

W

(X)

μ

(2.110)

Here, i(x) := x for all x ∈ X.
(iii) By Lagrange’s principal axis theorem, there exists a basis b1, . . . , bn of X such

that B(bk, bl) = 0 for all k �= l. Hence

bk ∨ bl + bl ∨ bk = 0, k �= l.

The elements 1, b1, . . . , bn and all the products

bi1 ∨ · · · ∨ bir

with i1 < . . . < ir and r = 2, . . . n form a basis of the Clifford algebra
W

(X).
Thus, dim

W

(X) = 2n. For the proof, see Problem 3.15.

The construction of Grassmann algebras. In the special case where B ≡ 0,
the Clifford algebra

W

(X) coincides with the Grassmann algebra
V

(X). Here, we
have only to replace the ∨-product symbol by ∧.

2.13 A Glance at Division Algebras

Only low-dimensional algebras possess a nice structure.
Folklore

2.13.1 From Real Numbers to Cayley’s Octonions

We want to show that complex numbers, quaternions, and octonions can be con-
structed in a similar way by the inductive process

R ⇒ C ⇒ H ⇒ O.

To this end, we start with some set R, and we equip the product set

C := {(u, v) : u, v ∈ R}

with the following operations:

• (u, v) + (x, y) := (u+ x, v + y) (sum),
• (u, v)(x, y) := (ux− y†v, vx† + yu) (product),
• (u, v)† := (u†,−v) (conjugation),
• 〈(u, v)|(x, y)〉 := 〈u|x〉 + 〈v|y〉 (inner product),

• ||(u, v)|| :=
p

〈u|u〉 + 〈v|v〉 (norm).

Using conjugation, we further define:

• �(u, v) := 1
2

`

(u, v) + (u, v)†)
´

(real part),
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• �(u, v) := 1
2

`

(u, v) − (u, v)†
´

(imaginary part),
• �(C) := {(u, v) ∈ C : �(u, v) = 0},
• �(C) := {(u, v) ∈ C : �(u, v) = 0}.

Proposition 2.45 (i) If R = R, then C is isomorphic to the field C of complex
numbers.

(ii) If R = C, then C is isomorphic to the skew-field H of quaternions.
(iii) If R = H, then C is a real 8-dimensional non-associative algebra called the

algebra O of octonions with the unit element (1, 0).

Proof. Ad (i). This is Hamilton’s construction of C.
Ad (ii). One checks easily that the map χ : H → C given by

χ(α+ βi+ γj + δk) := (α+ βi, γ + δi)

is an algebra isomorphism. For example,

χ(i) = (i, 0), χ(j) = (0, 1), χ(k) = (0, i),

and χ(i)χ(j) = (i, 0)(0, 1) = (0, i) = χ(k).
Ad (iii). By construction, the product is distributive. The following example

shows that the associative law for the multiplication of octonions is violated. In
fact,

(0, 1) · (0, i)(0, j) = −(0, 1)(k, 0) = (0, k).

However, (0, 1)(0, i) · (0, j) = (i, 0)(0, j) = −(0, k). �

Corollary 2.46 For all octonions, the following hold:

(i)
`

(u, v)(x, y)
´†

= (x, y)†(u, v)† and ||(u, v)†|| = ||(u, v)||,
(ii) ||(u, v)(x, y)|| = ||(u, v)|| · ||(x, y)|| (product rule).

This follows from tedious, but elementary computations. Statement (ii) generalizes
Euler’s “four squares theorem” to eight squares. Recall that the statements (i) and
(ii) of Corollary 2.46 are also valid for C and H.

Let C = C,H,O. On the set �(C), we define the following product:

(u, v) × (x, y) := 1
2

`

(u, v)(x, y) − (x, y)(u, v)
´

.

If C = H, then the product corresponds to the vector product on the 3-dimensional
Euclidean space E3, by (1.58). In the case where C = O, we call this product the
octionic vector product.21

2.13.2 Uniqueness Theorems

We want to show that, among all possible algebras, the algebras R,C,H, and O are
distinguished by special properties. We have the following theorems:22

• The algebras R,C, and H are the only real finite-dimensional associative division
algebras (Frobenius 1877).

21 If C = C, then the product is trivial, that is, (u, v)× (x, y) = 0. This corresponds
to αi × βi = 1

2
(αiβi − βiαi) = 0.

22 We will not distinguish between isomorphic algebras. The proofs can be found
in H. Ebbinghaus et al., Numbers, Springer, New York, 1995.
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• The algebras R and C are the only real finite-dimensional commutative division
algebras (Heinz Hopf 1940).

• The algebras R and C are the only real commutative associative normed division
algebras (Mazur 1938, Gelfand 1941).

• The algebra C is the only complex associative normed division algebra (Mazur
1938, Gelfand 1941).23

• The algebra O of octonions is the only real non-associative unital division algebra
which has the following properties:
– There holds x(xy) = x2y and (xy)y = xy2 for all x, y ∈ A (weak associativity).
– Every element x of A satisfies a quadratic equation x2 +αx+ β = 0 with real

coefficients α and β (Zorn 1933).
• Let A be a real finite-dimensional unital algebra. In addition, suppose that A is

a Hilbert space, and we have the product rule

||xy|| = ||x|| · ||y|| for all x, y ∈ A.

Then, A is one of the algebras R,C,H,O (Hurwitz 1898).

Finally, let us study possible generalizations of the classical vector product. Let A
be a real algebra which is a Hilbert space of dimension greater than one. Suppose
that there exists a distributive product x×y for all x, y ∈ A, which has the following
properties for all x, y, z ∈ A :

• x× y = −y × x and 〈x× y|z〉 = 〈x|y × z〉.
• If ||x|| = ||y|| = 1 and 〈x|y〉 = 0, then ||x× y|| = 1.

Then this product is either the classical vector product on the Euclidean space E3 or
the octionic vector product on the 7-dimensional real linear space �(O) (Eckmann
1942).

2.13.3 The Fundamental Dimension Theorem

The algebras R,C,H,O are real division algebras of dimension 1, 2, 4, 8, respectively.

Theorem 2.47 Every real finite-dimensional division algebra has the dimension
1, 2, 4, or 8.

This famous theorem was independently proven by Milnor and Kervaire in 1958.
The proof uses a deep result from topology, namely, the periodicity theorem for the
homotopy groups of Lie groups discovered by Bott in 1958. For a topological proof
of Theorem 2.47 based on Bott’s periodicity theorem and K-theory, we refer to the
beautiful paper by F. Hirzebruch, Division algebras and topology. In: H. Ebbinghaus
et al., Numbers, Springer, New York, 1995, pp. 281–302.

Historical remarks. In ancient times, mathematicians used rational (and
partly irrational) numbers and their operations, namely, addition, subtraction, mul-
tiplication, and division. An important prerequisite for the development of algebraic
thinking was the transition from the calculation with numbers to the use of letters
representing indefinite quantities. This revolution in mathematics was carried out
by François Viète (Vieta) (1540–1603).

In order to solve hard mathematical problems, mathematicians invented new
mathematical objects together with operations which can be regarded as generalized
addition, subtraction, multiplication, or division. The modern structural theory of

23 The real (resp. complex) algebra A is called normed iff it is a real (resp. complex)
normed space, and we have the inequality ||xy|| ≤ ||x|| · ||y|| for all x, y ∈ A.
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algebra has its origin in lectures of Emmy Noether (1882–1935) in Göttingen and
Emil Artin (1898–1962) in Hamburg in the twenties of the twentieth century and
was presented in a monograph for the first time in the book Modern Algebra by
Bartel Leendert van der Waerden (1903–1998) which appeared in 1930 (in German).
It is typical of modern algebra that even the quality of the symbols used can be
left indeterminate, leading to a genuine theory of the operations.

However, the basis for this work was laid in the nineteenth century. Important
impulses were given by Gauss (theory of quadratic forms in number theory, cy-
clotomic fields), Abel (algebraic functions and algebraic equations), Galois (group
theory and algebraic equations), Riemann (genus of Riemann surfaces and divisors
of algebraic functions), Weierstrass (algebraic numbers), Cayley (invariant theory
and matrix calculus), Kummer and Dedekind (ideal theory), Felix Klein (group the-
ory and geometry), Lie (Lie groups and Lie algebras), Picard (algebraic surfaces),
Poincaré (algebraic surfaces, topological manifolds, and automorphic functions),
Kronecker (number fields), Hensel (p-adic numbers and p-adic number fields),
Camille Jordan (general group theory), Frobenius and Schur (representation theory

of groups), Killing and Élie Cartan (structure of Lie algebras), Minkowski (lattices
and the geometry of numbers), and Hilbert (number fields and invariant theory).

Theorem 2.47 tells us that, for algebras (also called hypercomplex number sys-
tems), the existence of the operation of division is extremely restrictive. The reason
for that is of topological nature, as was first discovered by Heinz Hopf in 1940.



3. Representations of Symmetries in
Mathematics and Physics, and Elementary
Particles

Representations of symmetries with the aid of linear operators (e.g., matri-
ces) play a crucial role in modern physics. In particular, this concerns the
linear representations of groups, Lie algebras, and quantum groups (Hopf
algebras).

Folklore

3.1 The Symmetric Group as a Prototype

Fix n = 1, 2, . . . Consider a set S of n elements

e1, e2, . . . , en.

The bijective maps π : S → S are called permutations. For example, if n = 3, then
the symbols

π :=

„

1

3

2

2

3

1

«

, σ :=

„

1

3

2

1

3

2

«

correspond to the maps

π(1) := 3, π(2) := 2, π(3) := 1, σ(1) := 3, σ(2) := 1, σ(3) := 2,

respectively. The composition π ◦ σ corresponds to the product of permutations:
„

1

3

2

2

3

1

«„

1

3

2

1

3

2

«

=

„

3

1

1

3

2

2

«„

1

3

2

1

3

2

«

=

„

1

1

2

3

3

2

«

.

For example, (π ◦ σ)(1) = π(σ(1)) = π(3) = 1. Note that the product of permuta-
tions is carried out from right to left. This convention corresponds to the notation
(BA)x = B(Ax) for linear operators A and B.

The group of all the permutations of the numbers 1, 2, . . . , n is called the sym-
metric group Sym(n). The numbers of elements of Sym(n) is equal to n! We write
|Sym(n)| = n! For example, |Sym(2)| = 2, and

|Sym(3)| = 1 · 2 · 3 = 6, |Sym(4)| = 1 · 2 · 3 · 4 = 24.

The formula due to Stirling (1692–1770) tells us that

n! 
√

2πn
“n

e

”n

, n→ ∞.

In general, the symbol |G| denotes the order of the finite group G (i.e., the number
of group elements).

Cycles. The language of cycles is very useful for describing permutations in an
effective way.

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 4,
© Springer-Verlag Berlin Heidelberg 2011
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Cycles are the atoms of permutations.

Let{i1, i2, . . . , ik} be a subset of {1, 2, . . . , n}. The cycle symbol

(i1i2 . . . ik)

describes a permutation of the elements 1, 2, . . . , n by i1 �→ i2 �→ . . . �→ ik �→ i1.
The other numbers remain fixed. This is called a cycle of length k (or briefly a
k-cycle). For example, if n = 4, then the 3-cycle

(123)

corresponds to the permutation 1 �→ 2 �→ 3 �→ 1 and 4 �→ 4. The symbol (1)
describes the identical permutation. Obviously, disjoint cycles commute with each
other. For example,

(12)(534) = (534)(12).

The main result reads as follows:

Every permutation of the elements 1, 2, . . . , n can be written as a product
of disjoint cycles. This product is unique up to the order of the cycles.

For example,

π =

„

1

2

2

3

3

1

4

4

5

6

6

5

7

8

8

7

9

9

«

= (4)(9)(56)(78)(123). (3.1)

Let π ∈ Sym(n). We assign to the permutation π the symbol

1m(1)2m(2) · · ·nm(n) (3.2)

iff the disjoint cycle product of π contains exactly m(r) r-cycles where the index r
runs from 1 to n. The symbol (3.2) is called the cycle symbol of the permutation π.
The number m(r) is called the multiplicity of r-cycles in the disjoint cycle product
of π. For example, the permutation (3.1) has the cycle symbol 122231. Obviously,
for the cycle symbol (3.2), we have the following partition of the group order n:

n = 1 ·m(1) + 2 ·m(2) + . . .+ n ·m(n).

We will show below that the cycle symbols and the corresponding Young diagrams
and Young tableaux play a crucial role in the representation theory of the symmetric
group Sym(n).

The parity of a permutation. The 2-cycles (ij) are called transpositions;
they interchange i and j whereas the other numbers remain unchanged. For exam-
ple,

(13) =

„

1

3

2

2

3

1

4

4

«

.

Every permutation can be written as a product of transpositions. For example,

(123) = (31)(12) = (12)(23). (3.3)

Obviously, this product representation is not unique, but the number of factors is
either even or odd. Then the permutation is called either even or odd. The function

Y

i<j

(xi − xj)
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of the n real variables x1, . . . , xn remains unchanged (resp. changes sign) under an
even (resp. odd) permutation of the variables. Let π ∈ Sym(n). We define

sgn(π) :=

(

1 if π is even,

−1 if π is odd.

This is called the sign (or the parity) of the permutation π. The map

sgn : Sym(n) → {1,−1}

is a group morphism. This means that

sgn(πσ) = sgn(π) sgn(σ), sgn(π−1) = (sgn(π))−1 = sgn(π).

If π is a k-cycle, then sgn(π) = (−1)k+1.
Conjugacy classes of the symmetric group Sym(n). For two permutations

π, σ ∈ Sym(n), we write
π ∼ σ

iff there exists a permutation τ ∈ Sym(n) such that π = τστ−1. This is an equiv-
alence relation. We say that π is equivalent to σ. The equivalence classes [π] are
called conjugacy classes. If τ ∈ Sym(n), then

τ(i1i2 . . . ik)τ
−1 = (τ(i1)τ(i2) . . . τ(ik)). (3.4)

For example, (12)(321)(12)−1 = (12)(132)(21) = (312).

Two elements π, σ ∈ Sym(n) are conjugate iff they have the same cycle
symbols.

Examples. The symmetric group Sym(2) contains the two elements (1) and
(12) with the cycle symbols 1120 and 1021, respectively. There are the two conjugacy
classes [(1)] and [(12)]. We have the signs sgn(1) = 1 and sgn(12) = −1.

The symmetric group Sym(3) consists of the six permutations

(1), (12), (23), (31), (123), (132)

with the signs sgn(1) = sgn(123) = sgn(132) = 1 (even permutations), and
sgn(12) = sgn(23) = sgn(31) = −1 (odd permutations). Elements are conjugate
iff they possess the same cycle symbol. Thus, there exist the following three conju-
gacy classes

[(1)], [(12), (23), (31)], [(123), (132)].

We will show below that the number of equivalence classes of irreducible represen-
tations of Sym(n) is equal to the number of conjugacy classes of Sym(n). In turn,
this is equal to the number of partitions of the group order n; this coincides with
the number of Young diagrams for n (see (3.36) on page 219.)

The universality of the symmetric groups. The following theorem is due
to Cayley (1821–1895):

Every finite group is a subgroup of Sym(n) for some positive integer n.

The proofs about permutations can be found in K. Spindler, Abstract Algebra and
Applications, Vol. 1, Sects. 22, 23, Marcel Dekker, New York, 1994.
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3.2 Incredible Cancellations

Iterative methods. One of the main tasks in elementary particle physics is to
compute the cross sections of scattering processes observed in particle accelerators.
To this end, physicists use Feynman diagrams and the procedure of renormaliza-
tion. This leads to extremely complicated computations based on computer algebra.
Fortunately enough, there occur incredible cancellations. The prototype is the fol-
lowing well-known formula

(1 − a)(1 + a+ a2 + . . .+ an) = 1 − an+1, n = 1, 2, . . . (3.5)

for all complex numbers a. This implies

1 − an+1

1 − a = 1 + a+ a2 + . . .+ an (3.6)

for all complex numbers a with a �= 1. Formally, we write

(1 − a)(1 + a2 + a3 + . . .) = 1 (3.7)

where a is regarded as a variable. Note the following:

• If a is a complex number with |a| < 1, then the formula (3.7) together with

1

1 − a = 1 + a+ a2 + a3 + . . . (3.8)

makes sense in terms of a convergent power series expansion.
• The equations (3.7) and (3.8) make sense in terms of formal power series expan-

sions with respect to the variable a.

However, observe that the relation (3.5) also makes sense for all the mathematical
quantities which are elements of an associative unital algebra (e.g., a is a square
matrix, or a is a linear operator on a linear space). The relation (3.5) is crucial
because of its connection with the iterative method

xn+1 = axn + y, n = 0, 1, 2, . . . (3.9)

Here, the object y is given, and we choose the starting point x0 := 0. Successively,
we obtain x1 = y, x2 = y + ay, x3 = y + ay + a2y, . . . Formally, the expression

x = (1 + a+ a2 + a3 + . . .)y (3.10)

is a solution of the equation

x = ax+ y, (3.11)

by (3.5). Rigorously, the equation (3.11) has a unique solution if X is a Banach
space (e.g., a Hilbert space), and a is a linear operator a : X → X with the norm
property ||a|| < 1. Then, for given y ∈ X, the series (3.10) converges in the Banach
space X, and it represents the unique solution x ∈ X of the equation (3.11).1 As a
generalization of (3.6) let us mention the identity

(a− b)(an + an−1b+ an−2b2 + . . .+ abn−1 + bn) = an+1 − bn+1, n = 1, 2, . . .
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Table 3.1. Symmetric Schur polynomials in two variables

|λ| = 1 S(1,0)(a, b) = a+ b

|λ| = 2 S(1,1)(a, b) = ab, S(2,0)(a, b) = a2 + ab+ b2

|λ| = 3 S(3,0)(a, b) = a3 + a2b+ ab2 + b3

which is valid for complex numbers a and b (or, more generally, for elements a, b of
an associative commutative unital algebra).

Symmetric Schur polynomials. We want to generalize (3.7). Our goal is the
identity

(1 − ac)(1 − ad)(1 − bc)(1 − bd) · P (a, b, c, d) = 1 (3.12)

due to Cauchy (1789–1857). Here,

P (a, b, c, d) = 1 +

∞
X

k=1

X

|λ|=k

Sλ(a, b) Sλ(c, d)

where we define

Sλ(a, b) :=

˛

˛

˛

˛

˛

a1+λ1 b1+λ1

aλ2 bλ2

˛

˛

˛

˛

˛

a− b . (3.13)

Alternatively, we write

1

(1 − ac)(1 − ad)(1 − bc)(1 − bd) = P (a, b, c, d). (3.14)

Here, we set λ := (λ1, λ2) where λ1 and λ2 are integers with λ1 ≥ λ2 ≥ 0. Further-
more, we set |λ| := λ1 + λ2. The functions Sλ are special cases of the symmetric
Schur polynomials. In fact, if we set a = b, then the determinant defining Sλ(a, b)
vanishes. Thus, it can be divided by a− b. Note that Sλ is a homogeneous polyno-

mial of degree |λ|. For example, S(1,0)(a, b) = a2−b2

a−b
= a + b. Using Table 3.1, we

get the following beautiful cancellation formulas (3.12) and (3.14) with

P (a, b, c, d) = 1 + (a+ b)(c+ d) + (ab)(cd) + (a2 + ab+ b2)(c2 + cd+ d2)

+S(3,0)(a, b)S(3,0)(c, d) +

∞
X

k=4

X

|λ|=k

Sλ(a, b) Sλ(c, d)

where S(3,0)(a, b) = a3 + a2b+ ab2 + b3 is the completely symmetric polynomial of
degree 3 with respect to the variables a and b.

1 This is a special case of the famous fixed-point theorem due to Banach (1892–
1945) which is also valid for nonlinear operator equations. Many applications
of Banach’s fixed-point theorem (also called the contraction principle) to quite
different problems can be found in Zeidler (1986), Vol. I, quoted on page 1089.



186 3. Representations of Symmetries in Mathematics and Physics

Proposition 3.1 The relations (3.12) and (3.14) are valid in terms of formal power
series expansions with respect to the variables a, b, c, d.

For the proof, we refer to Problem 3.21 on page 319.
The Kepler equation, Lagrange’s inversion formula, Hopf algebras,

and quantum field theory. In order to solve the Kepler equation for the time-
dependence of the orbits of planets, Lagrange (1736–1813) invented his famous
inversion formula. This can be formulated in terms of Hopf algebras. We refer to
the discussion of this fascinating piece of mathematics in Sect. 3.4 of Vol. II. These
formulas are the prototype for relations used in renormalization theory. We refer
to:

M. Gracia-Bondia, The Epstein–Glaser Approach to Quantum Field The-
ory, Lecture Notes, AIP Conference Proceedings, 809, pp. 24-43, Mexiko
City, 2005. Internet: http://arxiv.org/hep-th/0408145

3.3 The Symmetry Strategy in Mathematics and
Physics

One of the main tasks of mathematics and physics is to simplify extremely
long computations by getting insight into the symmetry structure of the
expressions.

Folklore

It happens quite often in mathematics and physics that there appears a nice final
result after many cancellations during the process of computation. The experience
shows that the cancellations are the result of hidden symmetry properties. There-
fore, it is wise to look for a simpler approach based on symmetry. Let us explain
this by considering an example. Suppose that we have to compute the quotient

f(a, b, c) :=
b4c2 − c4b2 + c4a2 − a4c2 + a4b2 − b4a2

(a− b)(a− c)(b− c) .

After an elementary, but lengthy computation, we get the very symmetric result

f(a, b, c) = (a+ b)(a+ c)(b+ c).

Therefore, we are looking for a method which exploits symmetry. In fact, the func-
tion f can be written as

f(a, b, c) =
D(a, b, c)

(a− b)(a− c)(b− c) , D :=

˛

˛

˛

˛

˛

˛

˛

a4 b4 c4

a2 b2 c2

1 1 1

˛

˛

˛

˛

˛

˛

˛

.

For the determinant, we get

D =

˛

˛

˛

˛

˛

˛

˛

0 b4 − a2b2 c4 − a2c2
a2 b2 c2

1 1 1

˛

˛

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

˛

˛

0 b2(b2 − a2) c2(c2 − a2)
0 b2 − a2 c2 − a2
1 1 1

˛

˛

˛

˛

˛

˛

˛

,

by adding a multiple of the second (resp. third) row to the first (resp. second) row.
Hence
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D = (b2 − a2)(c2 − a2)
˛

˛

˛

˛

˛

b2 c2

1 1

˛

˛

˛

˛

˛

= (a− b)(a− c)(b− c)(a+ b)(a+ c)(b+ c).

This is the classic trick for computing determinants of the Vandermonde type.
Hence f(a, b, c) = (a+ b)(a+ c)(b+ c). Note that the function f coincides with the
symmetric Schur polynomial S(2,1,0)(a, b, c) (see Table 3.14 on page 273).

3.4 Lie Groups and Lie Algebras

Lie groups describe finite symmetries or symmetries which smoothly de-
pend on a finite number of real parameters. Lie algebras are the lineariza-
tion of Lie groups at the unit element. The passage from Lie groups to Lie
algebras simplifies considerably the approach. Lie algebras are frequently
called infinitesimal symmetries.

Folklore

The Standard Model in elementary particle physics is based on the following Lie
groups:

• the unitary groups U(1), SU(2), SU(3), and
• the Poincaré group P (1, 3) (the symmetry group of Einstein’s theory of special

relativity).

The basic definitions in the theory of Lie groups and Lie algebras can be found in
Chapter 7 of Volume I.

If we do not explicitly state the contrary, Lie groups are real finite-
dimensional manifolds, and their Lie algebras are real Lie algebras.

The Lie group U(1) as a paradigm. The set of all complex numbers z with
|z| = 1 forms a group with respect to multiplication. This group is called the Lie
group U(1). In fact, if w, z ∈ U(1), then wz ∈ U(1). The group U(1) will be studied
in Chap. 5. The set

u(1) := {iϕ : ϕ ∈ R}
of purely imaginary numbers is a real linear space. Equipped with the Lie product
[a, b]− := ab − ba = 0 for all a, b ∈ u(1), the set u(1) becomes a real commutative
Lie algebra. The linearization

eiϕ = 1 + iϕ+O(ϕ2), ϕ→ 0, ϕ ∈ R

relates the elements eiϕ of the Lie group U(1) to the elements iϕ of the Lie algebra
u(1) corresponding to U(1). This is the main idea behind the theory of Lie groups
and Lie algebras (see Fig. 5.1 on page 356).

The unitary group U(n). Fix n = 1, 2, . . . The Lie group U(n) consists of all
the complex invertible (n × n)-matrices G with G−1 = G†.2 The real Lie algebra
u(n) consists of all the complex (n × n)-matrices A with A† = −A (skew-adjoint
matrices). As for all matrix Lie algebras, the Lie product on u(n) is given by

[A,B]− := AB −BA for all A,B ∈ u(n).

The map

2 This is equivalent to GG† = I.
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A �→ eA (3.15)

is a surjective map from u(n) onto U(n). Conversely, the map

G �→ lnG (3.16)

is a diffeomorphism from the open neighborhood {G ∈ U(n) : ||G− I|| < 1} of the
unit element I of the group U(n) onto an open neighborhood of the zero element
in u(n). The real Lie algebra u(n) is called the Lie algebra to the Lie group U(n).

In other words, a sufficiently small neighborhood of the unit element of the
Lie group U(n) can be parametrized by the matrices of a sufficiently small
neighborhood of the origin of the Lie algebra u(n).

This is typical for the relation between Lie groups and their Lie algebras. Much
mathematical material with applications to physics can be found in:

J. Schwinger, On angular momentum, U.S. Atomic Energy Commission,
Report NYO-3071, 1952. Reprinted in L. Biedenharn and H. van Dam,
Quantum Theory of Angular Momentum, Academic Press, New York,
1965.

J. Louck, Unitary Symmetry and Combinatorics, World Scientific, Singa-
pore, 2008.

The special unitary group SU(n). The Lie group SU(n) consists of all the
matrices G ∈ U(n) with detG = 1. The real Lie algebra su(n) consists of all the
matrices A ∈ u(n) with tr(A) = 0 (traceless). The map (3.15) is a surjective map
from su(n) onto SU(n). Conversely, the map (3.16) is a diffeomorphism from the
open neighborhood {G ∈ SU(n) : ||G − I|| < 1} of the unit element I of the Lie
group SU(n) onto an open neighborhood of the zero element in su(n). The real Lie
algebra su(n) is called the Lie algebra to the Lie group SU(n).

The general linear group GL(n,C). All the complex (resp. real) invertible
(n×n)-matrices form the Lie group GL(n,C) (resp. GL(n,R)). The real Lie algebra
gl(n,C) (resp. gl(n,R)) consists of all the complex (resp. real) (n × n)-matrices
equipped with the Lie product [A,B]−. Here, gl(n,C) (resp. gl(n,R)) is called the
Lie algebra to the Lie group GL(n,C) (resp. GL(n,R)). Note that, in contrast to
gl(n,C), the symbol

glC(n,C)

denotes the complex Lie algebra of all the complex (n×n)-matrices equipped with
the Lie product [A,B]−.

The special linear group SL(n,C). Let K = R,C. The Lie group SL(n,K)
consists of all the matrices G ∈ GL(n,K) with detG = 1. The real Lie algebra
sl(n,K) consists of all the matrices A ∈ gl(n,K) with tr(A) = 0. The real Lie
algebra sl(n,K) is the Lie algebra to the Lie group GL(n,K). The complex Lie
algebra slC(n,C) consists of all the matrices A ∈ glC(n,C) with tr(A) = 0. In
particular, the Lie group GL(1,R) consists of all the nonzero real numbers, whereas
we have SL(1,R) = {1,−1}.

Classification of Lie groups. We have to distinguish between

• compact Lie groups, and
• locally compact (but not compact) Lie groups.

A Lie group is called compact iff it is a compact topological space. In particular,
a subset of a finite-dimensional real or complex linear space is compact iff it is
bounded and closed. For example, finite groups and the groups U(n), SU(n) are
compact Lie groups. The Poincaré group P (1, 3) is locally compact, but not com-
pact. For example, if the Lie group G is compact and arcwise connected, then the
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map A �→ eA from the Lie algebra LG to the Lie group G is surjective. This is not
always true for locally compact Lie groups (e.g., this is not true for the Lie group
SL(2,C); see Problem 3.20).

The theory of locally compact Lie groups is much more difficult than the
theory of compact Lie groups.

In particular, one needs sophisticated tools from functional analysis (see Vol. IV
on quantum mathematics). The Lie groups GL(n,C), GL(n,R), SL(n,C), SL(n,R)
are locally compact, but not compact. See the historical remarks in Sect. 3.21 on
279.

Classification of Lie algebras. One has to distinguish between solvable and
semisimple Lie algebras (see Sect. 3.17.1). For example, the Lie algebra su(n) is

semisimple. At the end of the 19th century, Killing and Élie Cartan classified all the
complex simple Lie algebras. This yields a classification of all complex semisimple
Lie algebras (see Sect. 3.17.2). The Heisenberg algebra reflects the commutation
relations in quantum mechanics; it is solvable and not semisimple (see Sect. 3.17.3).

3.5 Basic Notions of Representation Theory

The reader should study this section parallel to Sect. 3.6 on the representations of
the group Sym(2) and its applications in biology, chemistry, and physics.

3.5.1 Linear Representations of Groups

Irreducible representations are the atoms of representations.
Folklore

Let X be a real or complex linear space, and let the symbol GL(X) denote the
group of all bijective linear operators A : X → X. This group is also called the
automorphism group of the linear space X.

We want to realize a given group G as transformation group on the linear
space X.

By definition, a linear representation of the group G on the linear space X is a
group morphism

� : G → GL(X).

Explicitly, we assign to the group element G ∈ G the invertible linear operator
�(G) : X → X such that

�(GH) = �(G)�(H) for all G,H ∈ G.

This way, the group element G acts on the linear space X by the transformation
x �→ y where

y := �(G)x for all x ∈ X.
Mnemonically, one also briefly writes y = Gx. In particular, if 1 is the unit element
of the group G, then �(1) is the identity operator I on X. For the inverse group
element G−1, we have �(G−1) = �(G)−1. The representation � is called finite-
dimensional iff the dimension of the linear space X is finite. The dimension of the
linear space X is called the degree deg(�) of the representation �. The following
definitions are basic:
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• Invariant subspace of the representation: The linear subspace Y of X is called
invariant under the representation � iff all the operators �(G) map Y into Y ,
that is, we have

�(G) : Y → Y for all G ∈ G.
• Faithful representation: � is called faithful iff it is injective.
• Irreducible representation: � is called irreducible iff the invariant subspaces of �

are trivial (i.e., only X and {0} are invariant subspaces of �, and X �= {0}).
• Completely reducible representation: � is called completely reducible iff there

exists a direct sum decomposition

X = X1 ⊕X2 ⊕ . . .⊕Xm

where X1, . . . , Xm are linear subspaces of X which are irreducible with respect
to the representation �.

• Unitary representation: If X is a Hilbert space, then the representation � is called
unitary iff all the operators �(G) are unitary, that is, for every group element G
in G, we have

〈�(G)x|�(G)y〉 = 〈x|y〉 for all x, y ∈ X.

Let U(X) denote the group of all unitary operators A : X → X. Then, a unitary
representation � is a group morphism of the form

� : G → U(X).

Unitary representations of compact Lie groups play a fundamental role in quan-
tum physics. The symbol SU(X) denotes a specific subgroup of U(X); by defi-
nition, SU(X) is the component of the unit element I of U(X). If the complex
Hilbert space X has the finite dimension n = 1, 2, . . . , then the compact Lie
group U(X) is isomorphic to the group U(n) of complex unitary (n×n)-matrices.
Moreover, SU(X) is isomorphic to the matrix group SU(n).

• Continuous representation: The linear representation � : G → GL(X) of the Lie
group G on the Hilbert space X is called continuous iff, for each element x of X,
the map

G �→ �(G)x

is a continuous map from G to X.
• The direct sum �⊕ σ and the tensor product �⊗ σ of representations:

Let � : G → GL(X) and σ : G → GL(Y ) be representations. Then we define3

(�⊕ σ)(G) := �(G) ⊕ σ(G) and (�⊗ σ)(G) := �(G) ⊗ σ(G)

for all G ∈ G. The tensor product �⊗ σ is also called the Kronecker product.
• Character functions due to Frobenius: If � : G → GL(X) is a linear representation

on the finite-dimensional linear space X, then we set

χ�(G) := tr �(G).

The function χ� : G → C is called the character of the representation �. For
characters, we have the following rules:

3 Recall that if A : X → X and B : Y → Y are linear operators, then we define

(A⊕B)(x+ y) := Ax+By and (A⊗B)(x⊗ y) := Ax⊗By

for all x ∈ X, y ∈ Y. This way, we get linear operators A⊕B : X ⊕ Y → X ⊕ Y
and A⊗B : X ⊗ Y → X ⊗ Y , by linear extension.
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• χ�⊕σ = χ� + χσ (sum rule),
• χ�⊗σ = χ�χσ (product rule), and
• χ�(1) = dim(X).

Example (rotations about an axis). Consider the group G of the rotations of the
3-dimensional Euclidean space E3 about a fixed axis through the origin. Choose
a right-handed Cartesian (x, y, z)-coordinate system with the orthonormal basis
i, j,k. Assume that we rotate about the z-axis. Set

• Z := span{k} (z-axis),
• Z⊥ := span{i, j} ((x, y)-plane).

Then we have the decomposition:

E3 = Z ⊕ Z⊥.

The 1-dimensional (resp. 2-dimensional) linear subspace Z (resp. Z⊥) of E3 is an
invariant subspace under the action of the group G on E3. Moreover, Z and Z⊥

have no proper linear subspaces which are invariant under the action of the rotation
group G. In other words, the linear representation � of the rotation group G on the
3-dimensional Euclidean space E3 has the following properties:

• � is irreducible on both the z-axis Z and the orthogonal (x, y)-plane Z⊥;
• � is completely reducible;
• � is unitary, since rotations do not change the inner product on E3.

Irreducible (resp. completely reducible) representations are also called simple (resp.
semisimple).

Equivalent representations. Fix K = R,C. Let X and Y be linear spaces
over K. The linear representations � : G → GL(X) and μ : G → GL(Y ) of the
group G are called equivalent iff there exists a linear isomorphism J : X → Y such
that the diagram

X

J

�(G)
X

J

Y
μ(G)

Y

(3.17)

is commutative for all elements G of the group G. Explicitly, �(G) = J−1μ(G)J. In
terms of matrices, this means that there exists a basis in X and Y such that the
corresponding matrix elements of the linear operators �(G) and μ(G) are the same
for all G ∈ G.

Theorem 3.2 Every continuous linear representation of a compact Lie group G on
a complex finite-dimensional Hilbert space X is completely reducible and equivalent
to a unitary representation.

If, in addition, the group G is commutative, then the linear irreducible represen-
tations of G act on one-dimensional linear spaces.

Typical examples of compact Lie groups are finite groups, the rotation group
SO(3) of the 3-dimensional Euclidean space, and the gauge groups U(1), SU(2),
and SU(3) of the Standard Model in particle physics. For finite groups, every linear
representation is continuous. Theorem 3.2 tells us that it is sufficient to study the
irreducible representations. The proof of Theorem 3.2 can be found in B. Simon,
Representations of Finite and Compact Groups, page 23 and page 156, Amer. Math.
Soc., Providence, Rhode Island, 1996.
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We will classify irreducible representations up to equivalence.

Dual representation. In what follows let n = 1, 2, . . . The so-called dual
representation

G �→ (G−1)d

of the group GL(n,C) assigns to each matrix G ∈ GL(n,C) the so-called contra-
gredient matrix (G−1)d. This is indeed a representation because of

`

(GH)−1´d =
`

H−1G−1´d = (G−1)d(H−1)d for all G,H ∈ GL(n,C).

The passage from the matrix G to (G−1)d plays a crucial role in invariant theory,
as we will show in Chap. 8. In fact, this is the basis of the fundamental principle
of the correct index picture in tensor analysis. In Sect. 3.14.2 on page 236, we will
show that the passage from quarks to antiquarks corresponds to a passage from the
group SU(3) to its dual representation.

This can be generalized. Let � : G → GL(X) be a representation of the group
G on the linear space X. Define

�d(G) :=
`

�(G)−1´d for all G ∈ X.

Then the map G �→ �d(G) is a representation of the group G on the dual linear
space Xd. This representation

�d : G → GL(Xd)

is called the dual representation to �.
Complex-conjugate representation. The so-called complex-conjugate rep-

resentation
G→ Gc

of the group GL(n,C) assigns to each matrix G ∈ GL(n,C) the complex-conjugate
matrix Gc. This is a representation because of

(GH)c = GcHc for all G,H ∈ GL(n,C).

Complex-dual representation. The so-called complex-dual representation

G→ (G−1)†

of the group GL(n,C) assigns to each matrix G ∈ GL(n,C) the matrix (G−1)†.
This is a representation because of

`

(GH)−1´† =
`

H−1G−1´† = (G−1)†(H−1)† for all G,H ∈ GL(n,C).

As a typical application, we will study later on the spinor calculus which is based
on the dual, complex-conjugate, and complex-dual representations of the symplec-
tic group SL(2,C) (the universal covering group of the proper Lorentz group in
Einstein’s theory of special relativity). The complex-conjugate and complex-dual
representations play also a crucial role in complex differential geometry (e.g., Kähler
manifolds in string theory).

Let us generalize this. Suppose that � : G → GL(X) is a representation of the
group G on the finite-dimensional Hilbert space X. Define

σ(G) := (�(G)−1)† for all G ∈ G.
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This yields the complex-dual representation σ : G → GL(X) of the group G on X.
Setting

μ(G) := (�(G)†)d for all G ∈ G,
we get the complex-conjugate representation μ : G → GL(Xd) of the group G on
the dual space Xd.4

3.5.2 Linear Representations of Lie Algebras

Let L be a real (resp. complex) Lie algebra. A linear representation of L on the real
(resp. complex) linear space X is a Lie algebra morphism

� : L → gl(X)

where gl(X) denotes the set of all linear operators A : X → X equipped with the
Lie product

[A,B]− := AB − BA for all A,B ∈ gl(X).

Explicitly, we assign to every element A of L a linear operator

�(A) : X → X

such that the Lie product is respected, that is,

�( [A,B]) = [�(A), �(B)]− for all A,B ∈ L.

The notions ‘invariant linear subspace’, ‘irreducible representation’, ‘completely
irreducible representation’, and ‘equivalent representation’ are defined analogously
as for groups above. LetX be a finite-dimensional Hilbert space. The representation
� of the Lie algebra L is called skew-adjoint iff all the operators �(A) are skew-
adjoint, that is,

〈�(A)x|y〉 = −〈x|�(A)y〉 for all A ∈ L, x, y ∈ X.

Recall that a linear operator C : X → X on the finite-dimensional Hilbert space X
is skew-adjoint iff C† = −C.

Adjoint representation of the Lie L algebra on itself. For fixed A ∈ L,
define

ad(A)B := [A,B] for all B ∈ L.
This yields the linear operator ad(A) : L → L. The map A �→ ad(A) is a represen-
tation

ad : L → gl(L).

This is a consequence of the Jacobi identity (see Problem 3.24). The adjoint repre-
sentation reveals the intrinsic symmetry of the Lie algebra L.

Dual representation of a Lie algebra. The dual representation of the real
Lie algebra gl(n,C) assigns to each matrix A ∈ gl(n,C) the matrix −Ad. This is
indeed a representation because of

−[A,B]d− = (BA−AB)d = AdBd −BdAd = [−Ad,−Bd]−

for all A,B ∈ gl(n,C). This can be generalized. Let � : L → gl(X) be a represen-
tation of the real (resp. complex) Lie algebra L on the real (resp. complex) Hilbert
space X. Set

4 Note that, for a matrix G ∈ GL(n,C), we have Gc = (G†)d.



194 3. Representations of Symmetries in Mathematics and Physics

�d(A) := −�(A)d for all A ∈ L.
The map A �→ −�(A)d yields the so-called dual representation �d : L → gl(Xd) of
the Lie algebra L on the dual space Xd.

The adjoint representation of a Lie group on its Lie algebra. As a
prototype, consider the Lie group GL(n,C). Fix G0 ∈ GL(n,C). Set

�(G0)A := G0AG
−1
0 for all A ∈ gl(n,C).

The map G0 → �(G0) is a linear representation of the group GL(n,C) on the real
linear space gl(n,C). This is indeed a representation because of

(G0H0)A(G0H0)
−1 = G0(H0AH

−1
0 )G−1

0 .

The trouble with infinite-dimensional representations. In this chapter,
we restrict ourselves to representations on finite-dimensional linear spaces. Every
finite-dimensional linear space can be equipped with the structure of a Hilbert space.
Unfortunately, if we pass to infinite-dimensional Hilbert spaces, then there occur
technical difficulties. This is related to the fact that the generators of unitary groups
on infinite-dimensional complex Hilbert spaces are self-adjoint operators which, as
a rule, are not defined on the total Hilbert space, as noted by von Neumann and
Stone in the late 1920s. Observe that the use of infinite-dimensional Hilbert spaces
is unavoidable in quantum field theory, as was first shown by Wigner in 1939 (see
page 286). This is part of the mathematical trouble encountered in quantum field
theory.

3.6 The Reflection Group Z2 as a Prototype

Representations of the symmetry group Z2 := {1,−1} play a crucial role
in physics, chemistry, and biology.

Folklore

3.6.1 Representations of Z2

The simplest nontrivial group is the (multiplicative) group Z2 := {1,−1} which
consists of the real numbers 1 and −1 with (−1)(−1) = 1. The group Z2 is finite,
and hence it is a compact Lie group with the trivial Lie algebra LZ2 = {0}. The
group is isomorphic to the following (multiplicative) groups:

• The reflection group {I,−I} of the Euclidean space E3. This group consists of
the identity map x �→ x and the reflection map x �→ −x.5

• The permutation group Sym(2) = {(1), (12)}. This group consists of the identical
permutation (1) (i.e., 1 �→ 1 and 2 �→ 2) and the cyclic permutation (12) (i.e.,
1 �→ 2 and 2 �→ 1). The group Sym(2) is isomorphic to the group Z2. The
isomorphism is given by (1) �→ 1, (12) �→ −1.

Moreover, the multiplicative group Z2 is also isomorphic to the additive group
Z2 := {0, 1} with 1 + 1 = 0, and 0 + 1 = 1 + 0 = 1, 0 + 0 = 0. The group
isomorphism μ : Z2 → Z2 is given by μ(1) := 0 and μ(−1) := 1.

Isomorphic groups possess the same linear representations. Let us study the
linear representations of the group Sym(2) on the complex Hilbert space X of
finite dimension n = 1, 2, . . .

5 The isomorphism χ : Z2 → {I,−I} is given by χ(1) := I and χ(−1) := −I.
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Theorem 3.3 The representation � of the group Sym(2) on X is unitary iff there
exists an orthonormal basis e1, . . . , en of the Hilbert space X such that

�(π)ej = λjej , j = 1, . . . , n (3.18)

where λj = ±1 for all j.

We say that the basis vector ej has positive (resp. negative) parity iff λj = 1 (resp.
λj = −1).
Proof. Suppose that � is a unitary representation. Since the operator �(π) is uni-
tary, it possesses an orthonormal basis of eigenvectors e1, . . . , en, by a general result
in linear algebra. If �(π)x = λx, x �= 0, then �(π)�(π) = �(π2) = �(id) = I. Hence

x = �(π)2x = �(π)(�(π)x) = λ2x.

This implies λ2 = 1, that is, λ = ±1. Conversely, equation (3.18) yields a represen-
tation of Sym(2). �

Now let X be a real or complex linear space of dimension n = 1, 2, . . .. Then it
follows from Theorem 3.2 that:

Every linear representation � of the group Sym(2) on X is given by (3.18)
where e1, . . . , en is a basis of the linear space X. This space can be equipped
with a Hilbert space structure such that � becomes a unitary representation.

In other words, every representation of the commutative group Sym(2) on X is
completely reducible, and it acts irreducibly on one-dimensional linear subspaces
of X. In addition, � is equivalent to a unitary representation. This result allows a
far-reaching generalization to compact Lie groups. This Peter–Weyl theory will be
studied in Vol. IV on quantum mathematics.

Consider a fixed right-handed (x, y, z)-Cartesian coordinate system on the Eu-
clidean manifold E

3. The transformation

(x, y, z) �→ (−x,−y,−z)

is called a reflection at the origin (0, 0, 0). In terms of matrices, we have

0

B

@

x′

y′

z′

1

C

A

=

0

B

@

−1 0 0

0 −1 0

0 0 −1

1

C

A

0

B

@

x

y

z

1

C

A

.

The real (3×3)-matrices I (unit matrix) and −I form a multiplicative group which
is called the reflection group. The map ±I �→ ±1 is an isomorphism of the reflection
group onto the multiplicative group Z2 = {1,−1}.

3.6.2 Parity of Elementary Particles

The parity of an elementary particle describes the transformation of the particle
state under space reflections. Suppose that we describe the given quantum system
by a complex finite-dimensional or infinite-dimensional Hilbert spaceX. In addition,
we assume that there exists a linear unitary representation

� : {I,−I} → GL(X).

Suppose that x is an eigenvector of �(−I), that is,
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�(−I)x = λx, x ∈ X \ {0}.

Then it follows from (−I)(−I) = I that �(−I)�(−I) = �(I) = I. Hence x = λ2x.
Thus, λ2 = 1. By definition, the state x has positive (resp. negative) parity iff λ = 1
(resp. λ = −1).

This idea can be used in order to construct representations of the group {I,−I}.
Suppose that the infinite-dimensional Hilbert space X is separable. Then there
exists an orthonormal basis e1, e2, . . . of X. We choose numbers λj = 1 or λj := −1.
Define

�(−I)ej := λjej , �(I)ej := ej , j = 1, 2, . . .

This way, we obtain a continuous unitary representation � : {I,−I} → GL(X).

3.6.3 Reflections and Chirality in Nature

There are molecules in nature that exist in right-handed and left-handed versions
like two gloves. Such molecules are said to be chiral; molecules lacking such hand-
edness are called achiral. In biological systems on earth, the essential molecules are
single-handed. Experimentally, the handedness of molecules can be detected by the
fact that linearly polarized light is rotated either clockwise or counterclockwise by
chiral molecules. For example, natural amino acids are left-handed. Right-handed
amino acids only exist outside earth in cosmic clouds. Fix the numbers ω > 0 and
v > 0. Choose χ = 1 or χ = −1. The equation

x = cosωt, y = sinωt, z = χvt, t ∈ R (3.19)

describes a screw line with positive (resp. negative) chirality if χ = 1 (resp. χ = −1).
The reflection x �→ −x, y �→ −y, z �→ −z yields

x = − cosωt = cosω(t+ t0), y = − sinωt = sinω(t+ t0), z = −χvt, t ∈ R

with t0 := π/ω. This changes the chirality of the screw line.

3.6.4 Parity Violation in Weak Interaction

Consider a fixed physical process. Apply a space reflection to this process. If the
reflected process is not realized in nature, then we say that parity is violated in this
process. The classic example of parity violation is the β-decay of cobalt 60

27
Co. This

was experimentally discovered by Mrs. Wu in 1957. See the discussion in Sect. 2.7
of Vol. I.

The Wu experiment showed that parity can be violated in weak interaction.

Theoretically, parity violation in weak interaction was investigated by Lee (born
1926) and Yang (born 1922); they were awarded the Nobel prize in physics in 1957.

3.6.5 Helicity

The earth is the prototype for the motion of a rotating body. Such a body is
characterized by the momentum vector p (direction of the motion) and the rotation
axis n (unit vector). The vector S := sn is called the spin vector where s is the
angular momentum of the body. The number
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ζ :=
Sp

|p|

is called the helicity of the body. In classical mechanics, the helicity may depend on
time. In elementary particle physics, as a rule, one uses particle states with time-
independent helicity. Here, the vector S describes the intrinsic angular momentum
of the elementary particle called spin. We refer to Sect. 2.6 of Vol. I (general discus-
sion) and Chap. 15 of Vol. II (application to quantum electrodynamics). In 1957,
Goldhaber and his collaborators established experimentally that the helicity of the
neutrino is negative. Physicists say that the neutrino is a left-handed particle. For
a detailed history of neutrino physics including parity violation and the weak inter-
action force, we recommend C. Sutton, Spaceship Neutrino, Cambridge University
Press, 1992.

3.7 Permutation of Elementary Particles

3.7.1 The Principle of Indistinguishability of Quantum Particles

In contrast to classical particles (e.g., planets), quantum particles (e.g., molecules
of a gas or elementary particles) cannot be distinguished by labels. In terms of
psychology, quantum particles are not individuals. In terms of mathematics, this
means that

Quantum states of several quantum particles have to be invariant under
permutations of the particles.

This underlines the importance of the symmetric group Sym(n) for quantum
physics. In statistical physics, one has to count the number of different states. Be-
cause of the principle of indistinguishability for quantum particles, classical statis-
tics and quantum statistics produce different results. For low temperatures, one has
to use quantum statistics.

3.7.2 The Pauli Exclusion Principle

Concerning elementary particles, we have to distinguish between

• fermions (half-integer spin, e.g., electrons, neutrinos, quarks), and
• bosons (integer spin, e.g., photons, gluons, the vector bosons W±, Z).

The crucial Pauli exclusion principle says that

Two fermions are never in the same quantum state.

Suppose that the function ψ : R
2 → C is antisymmetric, that is,

ψ(x, y) = −ψ(y, x) for all x, y ∈ R.

This implies ψ(x, x) = 0 for all x ∈ R. The same idea motivates the fact that we
describe fermions (resp. bosons) by quantum states which are antisymmetric (resp.
symmetric) with respect to permutations of the quantum particles (see the states b
and f on page 198). Many physical phenomena in nature can be explained by using
the Pauli exclusion principle. For example, the periodic table of chemical elements
is a consequence of the Pauli exclusion principle combined with quantum mechanics
(see van der Waerden (1932) quoted on page 282). We recommend:
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W. Pauli, Exclusion principle, Lorentz group and reflection of space-time
and charge, pp. 30–51. In: W. Pauli (Ed.), Niels Bohr and the Development
of Physics, Pergamon Press, New York, 1955.

R. Streater and A. Wightman, PCT, Spin, Statistics, and All That, Ben-
jamin, New York, 1968.

I. Duck and E. Sudarshan, Pauli and the Spin-Statistics Theorem, World
Scientific, Singapore, 1997.

3.7.3 Entangled Quantum States

Let x, y be an orthonormal basis of the complex 2-dimensional Hilbert space X.
Then the four tensor products

x⊗ x, x⊗ y, y ⊗ x, y ⊗ y

form an orthonormal basis of the 4-dimensional complex Hilbert space X ⊗X. In
terms of physics, we consider x and y as the states of two elementary particles.
Interchanging x with y, we obtain a linear representation of the group Sym(2) on
the product space X ⊗X. Explicitly, for π = (12) we get

�(π) (αx⊗ x+ βx⊗ y + γy ⊗ x+ δy ⊗ y) = αx⊗ x+ βy ⊗ x+ γx⊗ y + δy ⊗ y

for all complex numbers α, β, γ, δ. The four states

• b := 1√
2

(x⊗ y + y ⊗ x) (bosonic state),

• f := 1√
2

(x⊗ y − y ⊗ x) (fermionic state),

• u := 1√
2
(x⊗ x+ y ⊗ y),

• v := 1√
2

(x⊗ x− y ⊗ y)

are invariant under the operator �(π), up to sign. Consequently, the splitting

X ⊗X = span{b} ⊕ span{f} ⊕ span{u} ⊕ span{v}

of the product space X ⊗X into one-dimensional, pairwise orthogonal, linear sub-
spaces corresponds to the decomposition of the representation � into irreducible
representations.

From the physical point of view, the state b (resp. f) describes a boson (resp.
fermion) which is obtained by composing the particle x with the particle y. The
symmetry of b (resp. antisymmetry of f) with respect to a permutation of the two
particles x and y reflects the indistinguishability of the two particles. The state
x ⊗ y violates the principle of indistinguishability of the two particles. Hence the
state x⊗ y does not possess any physical meaning. This is the prototype of group-
theoretical arguments widely used in elementary particle physics. We will encounter
this quite often in the volumes of this monograph. The states b and f are called
entangled states. Such states are related to the Einstein–Podolski–Rosen (EPR)
paradox.6 Entangled states play a key role in quantum information. We will study
this in Vol. IV. At this point, we refer to M. Nielsen and I. Chuang, Quantum
Computation and Quantum Information, Cambridge University Press, 2001. See
also M. Freedman et al., Topological quantum computation, Bull. Amer. Math.
Soc. 40(1) (2003), 31–39.

6 A. Einstein, B. Podolski, and N. Rosen, Can quantum-mechanical description of
physical reality be considered complete? Phys. Rev. 47 (1935), 777–780.
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3.8 The Diagonalization of Linear Operators

Representation theory is based on the study of invariant linear subspaces. In this
connection, one has to understand first the structure of the invariant linear sub-
spaces of a single linear operator. Let us discuss this. In what follows, we assume
that

X is an n-dimensional complex Hilbert space with n = 1, 2, . . .

By definition, the linear operator D : X → X is called diagonalizable iff there exist
both a basis b1, . . . , bn of X and complex numbers λ1, . . . , λn such that

Dbj = λjbj for all j = 1, . . . , n.

By linearity,

D(x1b1 + x2b2 + . . .+ xnbn) = λ1x
1b1 + λ2x

2b2 + . . .+ λnx
nbn

for all x ∈ X where x = x1b1 +x2b2 + . . .+xnbn. This means that the basis vectors
b1, . . . , bn are eigenvectors of the operator D, and the complex numbers λ1, . . . , λn
are the eigenvalues of D. The main result reads as follows.

Theorem 3.4 The linear operator D : X → X is diagonalizable iff the linear hull
of the eigenvectors of D is equal to X. In particular, self-adjoint, skew-adjoint, and
unitary operators are diagonalizable.

This is a special case of the Jordan normal form to be considered below. Diagonal-
izable operators are also called completely reducible by eigenspaces.

The language of matrices. Let A : X → X be a linear operator. Fix a basis
b1, . . . , bn of the space X. Let

A = (Ai
j)

be the matrix corresponding to the operator A with respect to b1, . . . , bn (see (2.64)
on page 158). Then the operator A is diagonalizable iff there exists a complex
invertible (n× n)-matrix T such that

T AT −1

is a diagonal matrix diag(λ1, . . . , λn).7 Here, the complex numbers λ1, . . . , λn are
the eigenvalues of A. The transformation A �→ T AT −1 is called a similarity trans-
formation of the matrix A. For an arbitrary complex (n×n)-matrix, the eigenvalues
λ1, . . . , λn are defined as the zeros of Lagrange’s secular equation

det(A− λI) = 0, λ ∈ C.

Observe that the eigenvalues of the matrix A are invariants under similarity trans-
formations. This follows from

det(T AT −1 − λI) = det(A− λI)

by noting that det(T −1) = (det T )−1 together with

det(T AT −1 − λI) = det(T (A− λI)T −1) = det(T ) det(A− λI) det(T −1).

7 If n = 2, then T AT −1 =

 

λ1 0

0 λ2

!

.
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Simultaneous diagonalization. Consider a family Aγ : X → X of linear
operators on X where the index γ lives in some index set Γ. By definition, the
operator family {Aγ} is called simultaneously diagonalizable iff there exist a basis
b1, . . . , bn of the space X and complex numbers λ1,γ , . . . , λn,γ such that

Aγbj,γ = λj,γbj,γ for all j = 1, . . . , n, γ ∈ Γ.

In this case, we get

AγA� = A�Aγ for all γ, � ∈ Γ. (3.20)

Theorem 3.5 Every family Aγ : X → X of self-adjoint (resp. unitary) operators
with the commutativity property (3.20) is simultaneously diagonalizable.

The same result is true if we replace the self-adjointness of the operators by skew-
adjointness. The eigenvalues of a self-adjoint (resp. skew-adjoint) operator are real
(resp. purely imaginary). Moreover, the eigenvalues of a unitary operator lie on the
unit circle.

In terms of square matrices, the following hold. Fix n = 2, 3, . . . Let {Aγ}γ∈Γ
be a family of complex self-adjoint (resp. unitary) (n× n)-matrices such that

AγA� = A�Aγ for all γ, � ∈ Γ.

Then there exists a complex invertible (n× n)-matrix T such that

T AγT −1

is a diagonal matrix for all indices γ ∈ Γ. The same is true for skew-adjoint matrices.
Further reading. The proofs of the theorems above and below can be found in

K. Spindler, Abstract Algebra and Applications, Vol. 1, Chap. 10, Marcel Dekker,
New York, 1994. For the Jordan normal form and its generalization to infinite-
dimensional Banach spaces, we also refer to F. Riesz and B. Nagy, Functional
Analysis, Chap. IV, Frederyck Ungar, New York, 1978.

3.8.1 The Theorem of Principal Axes in Geometry and in
Quantum Theory

In 1904, Hilbert (1862–1941) generalized the Cauchy–Hermite theorem
of principal axes for finite-dimensional self-adjoint matrices to a certain
class of infinite-dimensional self-adjoint matrices which correspond to com-
pact operators. In 1929, von Neumann (1903–1957) proved the theorem of
principal axes for linear self-adjoint (bounded or unbounded) operators in
infinite-dimensional Hilbert spaces. The final form of John von Neumann’s
spectral theorem on the unitary equivalence of self-adjoint operators to di-
agonal operators lies at the heart of quantum mechanics.8 There is a fasci-
nating historical development from conic sections in ancient times to John
von Neumann’s spectral theorem in functional analysis and its applications
to harmonic analysis (i.e., the Fourier transform and its generalizations)
and to quantum physics.

Folklore

8 We will study this in Vol. IV on quantum mathematics.
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Conic sections as a prototype of the theorem of principal axes. Consider
the equation

ax2 + 2bxy + dy2 = 1, x, y ∈ R (3.21)

where the real numbers a, b, d are given. Let us introduce the two matrices

A :=

 

a b

b d

!

, u =

 

x

y

!

.

Note that the real matrix A is self-adjoint, that is, A† = A. The eigenvalue problem

Au = λu, u �= 0

has the solutions λ1, λ2 given by Lagrange’s secular equation det(A − λI) = 0.
Explicitly,

˛

˛

˛

˛

˛

a− λ b

b d− λ

˛

˛

˛

˛

˛

= λ2 − (a+ d)λ+ ad− b2 = 0.

We have
tr(A) = a+ d = λ1 + λ2, det(A) = ad− b2 = λ1λ2.

The theorem of principal axes tells us that the eigenvalues λ1, λ2 are real, and that
there exists a real invertible (2 × 2)-matrix T such that

T AT −1 =

 

λ1 0

0 λ2

!

.

In addition, the matrix T is an element of the Lie group SO(2), that is, det T = 1

and T −1 = T d. The original equation (3.21) reads as udAu = 1. Using the rotation
u′ = T u, we get the transformation

udAu = u′dT AT −1u′.

Consequently, equation (3.21) passes over to the rotated equation

λ1x
′2 + λ2y

′2 = 1.

This implies the following:

• If ad − b2 > 0 and a + d > 0, then λ1 > 0 and λ2 > 0. Hence equation (3.21)
describes an ellipse.

• If ad− b2 < 0, then λ1λ2 < 0, and hence equation (3.21) describes a hyperbola.

This is a typical argument of invariant theory. It is not necessary to know explicitly
the eigenvalues λ1 and λ2. It is sufficient to know how the eigenvalues are related
to the coefficients of the matrix A. In ancient times, Appolonius of Perga (ca.
260–190 B.C.) wrote eight books about conic sections based on purely geometric
arguments.

Linear self-adjoint operators on a finite-dimensional Hilbert space.
Let A : X → X be a linear self- adjoint operator on the complex finite-dimensional
Hilbert space X of positive dimension n.
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Theorem 3.6 There exist both an orthonormal basis b1, . . . , bn of the Hilbert space
X and real numbers λ1, . . . , λn such that

Abj = λjbj for all j = 1, . . . , n.

The proof can be found in E. Zeidler, Applied Functional Analysis. Vol. 1:
Applications in Mathematical Physics, Sect. 4.2, Springer, New York, 1997.

The Morse index. Suppose that all the eigenvalues of the operator A are
different from zero. By definition, the Morse index μ(A) of the operator A is equal
to the number of the negative eigenvalues of A. For example, if all the eigenvalues
of A are positive, then μ(A) = 0. In terms of quantum physics, the operator A
describes an observable. If we measure the observable A in the state bj , then we
get the mean value 〈bj |Abj〉 = λj with the mean fluctuation

(ΔA)2 = 〈bj |(A− λjI)2bj〉 = 0.

Therefore, the eigenvalue λj is called a sharp value of the observable A.

3.8.2 The Schur Lemma in Linear Representation Theory

Fix K = R,C, and let X and Y be finite-dimensional linear spaces over K. Let
� : G → GL(X) and μ : G → GL(Y ) be irreducible representations of the group G
on X and Y , respectively.

Lemma 3.7 Suppose that there exists a linear morphism J : X → Y such that the
diagram (3.17) on page 191 is commutative. Then:

(i) � and μ are equivalent (i.e., J is a linear isomorphism) or we have the trivial
situation J = 0.

(ii) If X = Y and K = C, then there exists a complex number λ such that
J = λI.

Proof. Ad (i). It follows from �(G)J = J�(G) that Jx = 0 implies J�(G)x = 0.
Thus, ker(J) is an invariant linear subspace of the irreducible representation �.
Hence ker(J) = X or ker(J) = {0}. Moreover, J(X) is an invariant linear subspace
of the irreducible representation μ. Hence J(X) = Y or J(X) = {0}.

Ad (ii). Choose a complex number λ such that det(J − λI) = 0, and apply (i)
to J − λI. �

3.8.3 The Jordan Normal Form of Linear Operators

The name of Camille Jordan is well known to all mathematicians of my gen-
eration because of his excellent “Cours d’analyse”, a considerably enlarged

elaboration of his lectures given at the École Polytechnique in Paris. . . 9

Jordan’s monumental work of 667 pages “Traité des substitutions et des
équations algébrique” on group theory and Galois theory, published in 1870
by Gauthier-Villars, Paris, is a masterpiece of mathematical architecture.

Bartel Leendert van der Waerden, 1984

9 One has to distinguish between the mathematician Camille Jordan (1838–1922)
and the physicist Pascal Jordan (1902–1980) – one of the founders of quantum
mechanics.
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This quotation is taken from B. van der Waerden, A History of Algebra: From
al-Khwarizmi to Emmy Noether, Springer, New York, 1984 (reprinted with permis-
sion). On the history of the Jordan normal form, see T. Hawkins, Weierstrass and
the theory of matrices, Archive for History of Exact Sciences 17 (1977), 119–163.
The Jordan normal form of matrices was published by Weierstrass (1815–1897) and
Jordan in 1868 and 1870, respectively.

Prototype of the Jordan normal form. Consider the complex (2×2)-matrix

A =

 

a b

c d

!

.

Case 1: Suppose that the matrix A has two different eigenvalues λ1 and λ2. Then
there exists a complex invertible (2 × 2)-matrix T such that

T AT −1 =

 

λ1 0

0 λ2

!

. (3.22)

Case 2: Suppose that A has precisely one eigenvalue λ1, and the eigenvector equa-
tion Au = λ1u, u �= 0, has precisely one linearly independent solution u. Then there
exists a complex invertible (2 × 2)-matrix T such that

T AT −1 =

 

λ1 1

0 λ1

!

. (3.23)

In this case, the matrix A is not diagonalizable.
Case 3: Suppose that A has precisely one eigenvalue λ1, and the eigenvector equa-
tion Au = λ1u, u �= 0, has two linearly independent solutions u. Then

A =

 

λ1 0

0 λ1

!

.

The general theorem. Let A : X → X be a linear operator on the complex
finite-dimensional linear space X of positive dimension. Then the operator A is
completely reducible. That is, there exists a direct sum decomposition

X = X1 ⊕X2 ⊕ . . .⊕Xm

such that every Xj is an invariant irreducible linear subspace of the operator A.
More precisely, for any index j, the reduced operator

A : Xj → Xj

has precisely one eigenvalue λj and precisely one linearly independent eigenvector
bj on Xj . In addition, there exists a basis c1 = bj , c2, . . . , ck of Xj (depending on j
with k ≥ 1) such that

Abj = λjbj , Acr = λjcr + cr−1, r = 2, . . . , k.

Two linear operators A,B : X → X are called similar iff there exists a linear
bijective operator T : X → X with

A = TBT−1.

This is precisely the case iff the operators A and B have the same eigenvalues and
the invariant spaces Xj(A) and Xj(B), j = 1, . . . ,m, have the same dimensions,
after reordering if necessary.
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Summarizing, the eigenvalues and the dimension of the invariant irre-
ducible linear subspaces form a complete invariant system for linear op-
erators on X, up to similarity.

If X is a Hilbert space, and the operator A is self-adjoint, skew-adjoint, or unitary,
then all the spaces Xj are one-dimensional eigenspaces of A. In other words, the
operator A is diagonalizable.

3.8.4 The Standard Maximal Torus of the Lie Group SU(n) and
the Standard Cartan Subalgebra of the Lie Algebra su(n)

Maximal commutative subgroups (resp. maximal commutative Lie subal-
gebras) of SU(n) (resp. su(n)) know much about the structure and the
representations of SU(n) (resp. (su(n)). In terms of physics, this deter-
mines the quantum numbers in the SU(3)-model of quarks, baryons, and
mesons (strong interaction in the Standard Model of particle physics).

Folklore

Fix n = 1, 2, . . . The set of all the (n× n)-diagonal matrices

diag(eiα1 , eiα2 , . . . , eiαn), α1, α2, . . . , αn ∈ R

forms a commutative subgroup of the group SU(n) denoted by C(SU(n)). Since this
subgroup is diffeomorphic to the direct product S

1 × · · · × S
1 of n unit circles, the

subgroup C(SU(n)) is called the standard maximal torus of the Lie group SU(n).
Note that

Every element of SU(n) is similar to one element of the standard maximal
torus of SU(n).

In other words, the conjugacy class of every element of SU(n) contains an element
of the standard maximal torus.

The set of all the (n× n)-diagonal matrices

diag(iα1, iα2, . . . , iαn), α1, α2, . . . , αn ∈ R

forms a commutative Lie subalgebra of su(n). This is called the standard Cartan
subalgebra C(su(n)) of su(n).

3.8.5 Eigenvalues and the Operator Strategy for Lie Algebras
(Adjoint Representation)

In 1888, Killing (1847–1923) wrote a fundamental paper on the classification of
semisimple Lie algebras. From his academic teacher Weierstrass (1815–1897) in
Berlin, Killing learned the relation between eigenvalues and normal forms of ma-
trices. He wanted to apply this technique to the structure theory of semisimple Lie
algebras by studying the eigenvalues and normal forms of the matrices correspond-
ing to the adjoint representation of the Lie algebra on itself. Recall that the adjoint
representation ad : L → gl(L) of the real (resp. complex) Lie algebra L is given by
the operator

ad(A)B := [A,B] for all B ∈ L (3.24)

where A ∈ L. Killing’s operator strategy was also critically used by Élie Cartan
(1868–1951) in his 1894 thesis.
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Fig. 3.1. Orbits and orbit space

3.9 The Action of a Group on a Physical State Space,
Orbits, and Gauge Theory

Physical states are equivalent iff they lie on the same orbit generated by
the action of the gauge group. Therefore, gauge theory has to be based on
orbit spaces (also called moduli spaces in mathematics). This complicates
substantially the mathematical theory. As a rule, moduli spaces are not
manifolds; they possess singularities. Surfaces or more general varieties
with singularities are studied in algebraic geometry.

Folklore

Let S be a set. We regard the elements of this set as physical states. We want to
describe the action of a symmetry group G on the space S. We call the group G a
gauge group. Consider first all the bijective maps

σ : S → S. (3.25)

With respect to the composition of maps, all the maps (3.25) form a group denoted
by Sym(S). This group is called the symmetry group of the set S. Explicitly, if
σ, σ′ ∈ Sym(S), then

(σσ′)(P ) = σ(σ′(P )) for all P ∈ S.

For example, if the set S has n elements, then the group Sym(S) is isomorphic to
the symmetric group Sym(n) of all the permutations of n elements. Next suppose
that we are given a group G. We say that the group G acts on the set S iff there
exists a group morphism

μ : G → Sym(S).

Explicitly, we assign to every element G of the group G a bijective map μG : S → S,
and the group multiplication corresponds to the composition of maps, that is,

μGH(P ) = μG(μH(P )) for all P ∈ S,

and all G,H ∈ G. For fixed group element G, the map μG sends the point P0 in S
to the point P in S. Naturally enough, the set

OP0 := {μG(P0) : G ∈ G}

is called the orbit of the point P0 under the action of the group G. Two points P
and Q are called equivalent,

P ∼ Q,
iff they lie on the same orbit. This is an equivalence relation. The corresponding
equivalence classes [P ] (i.e., the orbits) form a group denoted by S/G.
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Example. Suppose that the set S is the Euclidean plane equipped with a
Cartesian (x, y)-coordinate system. Let G denote the group of all the rotations of
the plane about the origin. Then the orbits are circles about the origin,

x2 + y2 = r2,

parametrized by the nonnegative number r (Fig. 3.1 on page 205). There exists
a one-to-one relation between the orbits and the interval [0,∞[ given by the map
OP0 �→ r. The orbit space S/G = [0,∞[ is not a manifold, but only a manifold with
boundary. The origin (0, 0) corresponds to a degenerate orbit; this is the boundary
point of the orbit space.

Orbit spaces play a fundamental role in the quantization of gauge field theories.
The basic ideas are discussed in Sect. 16.5ff of Vol. I (path integral and the Faddeev–
Popov ghost, BRST-symmetry and quantization, cohomology).

3.10 The Intrinsic Symmetry of a Group

The intrinsic symmetry of a group G is governed by the action of the group
on itself via the adjoint representation. The orbits of this action are the
so-called conjugacy classes of G which are of fundamental importance for
the linear representations of G. The corresponding symmetry group is the
group Autinner(G) of inner automorphisms of the original group G.

Folklore

Conjugacy classes of the group G. Let G be an arbitrary group. For group
elements G and H of G, we write

G ∼ H

iff there exists a group element G0 of G such that G = G0HG
−1
0 . We say that G

is conjugate to H. This is an equivalence relation. The corresponding equivalence
classes [H] are called conjugacy classes of G. If the group G is commutative, then
every conjugacy class of G contains precisely one group element.

We will show below that the number of conjugacy classes of the finite group
G is precisely the number of essential irreducible representations of G.

Therefore, in order to get geometric inside, let us show that the conjugacy classes
of the group G are precisely the orbits of the action of the group G on itself by inner
automorphisms. As we will show, the inner automorphisms of a group describe the
intrinsic symmetries of a group.

Inner automorphisms and the intrinsic symmetry of a group. The map

A : G → G (3.26)

is called a group automorphism iff it is a bijective group morphism. Using the
composition of maps, the set of all the automorphisms (3.26) form a group Aut(G)
which is called the automorphism group (or the symmetry group) of the originally
group G. For understanding the intrinsic geometry of the group G, we have to use
special automorphisms which are called inner automorphisms. For a given group
element G0 ∈ G, we set

AG0(G) := G0GG
−1
0 for all G ∈ G.
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Then the map AG0 : G → G is a special automorphism called an inner automorphism
generated by the group element G0. The set {AG0}G0∈G forms a subgroup of Aut(G)
which is called the group of inner automorphisms of G (or the intrinsic symmetry
group of G). This group is denoted by Autinner(G).

A subgroup H of G is called a normal subgroup iff it is invariant under inner
automorphisms, that is, G0HG

−1
0 ∈ H for all H ∈ H and all G0 ∈ G. Recall that

the set of normal subgroups knows all about the group morphisms from G onto
another group. In fact, the morphism theorem for groups tells us that if the map

μ : G → G+ (3.27)

is a surjective group morphism, then the kernel μ−1(1) is a normal subgroup of G,
and we have the group isomorphism

G+  G/μ−1(1)

(see Sect. 4.1.3 of Vol. II). The conjugacy class [H] of the group element H ∈ G is
equal to

[H] := {AG0(H) : G0 ∈ G}.
Therefore, [H] consists of all the group elements which are obtained from H by
transport via all possible inner automorphisms. In other words, [H] is an orbit of
the action of G on itself, and this orbit contains the element H.

A special invariant subgroup of the group G is the center of G denoted by
center(G). By definition, the group element G0 of G is an element of center(G) iff

G0G = GG0 for all G ∈ G.

Equivalently, G0GG
−1
0 = G for all G ∈ G. Thus, G is an element of the center

of G iff it is a fixed point of all the inner automorphisms of G. The group G is
commutative iff center(G) = G.

The center of a group measures its deviations from a commutative group.

Set �(G0) := AG0 . Then �(G0G1) = �(G0)�(G1).
10 Therefore, the map

� : G → Autinner(G) (3.28)

is a group endomorphism with the kernel �−1(id) = center(G). Hence we have the
group isomorphism

Autinner(G) = G/center(G).

The map � from (3.28) is a representation of the group G on itself. More precisely,
� is called the adjoint representation of G on itself.

3.11 Linear Representations of Finite Groups and the
Hilbert Space of Functions on the Group

Whoever understands the representation theory of finite groups can un-
derstand everything in the representation theory of compact and locally
compact Lie groups and their applications in physics.
The main trick is to study the Hilbert space L2(G) of complex-valued
functions ψ : G → C on the finite group G. This is closely related to special
functions called characters and to the group algebra C[G]).

Folklore

10 In fact, G0(G1GG
−1
1 )G−1

0 = (G0G1)G(G0G1)
−1.
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In what follows we will summarize important results. Some of the proofs are highly
nontrivial (e.g., the proof of the Frobenius character formula for symmetric groups;
see page 276). Important consequences of the Frobenius character formula are the
Frobenius reciprocity theorem for the characters of representations induced by sub-
groups and the branching rule for symmetric groups. For the proofs, we refer to:

B. Simon, Representations of Finite and Compact Groups, Amer. Math.
Soc., Providence, Rhode Island, 1996.

This book is based on lectures given at Princeton University and the California
Institute of Technology in Pasadena. The advantage of this textbook is that it
emphasizes the close relations between finite groups and compact Lie groups, and it
contains many examples which are useful in physics. As an elementary introduction
to representation theory emphasizing the applications to spectroscopy in quantum
mechanics, we recommend the classic monograph by B. van der Waerden, Group
Theory and Quantum Mechanics, Springer, New York, 1974 (German edition, 1932).
Concerning symmetric functions, we refer to:

C. Procesi, Lie Groups: An Approach Through Invariants and Represen-
tations, Springer, New York, 2007.

I. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univer-
sity Press, 1995.

Further references can be found on page 537. Combinatorial methods are funda-
mental for the renormalization of quantum fields. Here, Hopf algebras play a key
role. The algebraic point of view is emphasized in the BFFO-approach to quantum
field theory. We refer to:

C. Brouder, B. Fauser, A. Frabetti, and R. Oeckl, Quantum field theory
and Hopf algebra cohomology. J. Phys. A: Math. Gen. 37 (2004), 5895–
5927. Internet: http://www.arXiv:hep-th/0311253

R. Caroll, Fluctuations, Information, Gravity and the Quantum Potential,
Chap. 8, Kluwer, Dordrecht, 2005 (summary of the BFFO-approach).

Consider a finite group G. The number of group elements of G is called the order
of G; this is denoted by |G|. The Lagrange theorem tells us the following:

If H is a subgroup of G, then |H| is a divisor of |G|.
For example, if H is a subgroup of Sym(3) with |Sym(3)| = 6, then the number of
elements of H is never 4 or 5.

For a given finite group G, the main goal is to get a complete system of
irreducible representations.

By definition, a system �1, �2, . . . , �m of irreducible representations of G is called
complete iff the following hold:

• Every �j : G → GL(Xj) is an irreducible representation of G on a finite-
dimensional complex linear space Xj . We set dj := dimXj , and this dimension
of the representation space Xj is called the degree of the representation �j .

• Every irreducible representation � : G → GL(X) on a finite-dimensional complex
linear space X is equivalent to one of the representations �1, . . . , �m.

• If j �= k, then �j is not equivalent to �k.

Theorem 3.8 Let G be a finite group. Then:

(i) Every linear representation � : G → GL(X) on a finite-dimensional complex
linear space X is completely reducible and unitarily equivalent (theorem of Maschke
(1853–1908)).
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(ii) If m is the number of conjugacy classes of the group G, then there exists a
complete system �1, . . . , �m of irreducible representations.

(iii) The degrees d1, . . . , dm of �1, . . . , �m, respectively, are divisors of the group
order |G|. More precisely, they are divisors of the quotient |G|/|center(G)|.

(iv) d21 + d22 + . . .+ d2m = |G| (theorem of Burnside (1852–1927)).

For the permutation group Sym(2) with |Sym(2)| = 2 it follows from the unique
decomposition 2 = 12 + 12 and (iv) that m = 2 and d1 = d2 = 1. Similarly, for
Sym(3) with |Sym(3)| = 6, it follows from the unique decomposition 6 = 12+12+22

and (iv) that m = 3 with d1 = d2 = 1 and d3 = 2. The explicit form of complete
systems of irreducible representations of Sym(2) and Sym(3) will be studied on
page 214.

The group algebra C[G] of G and the regular representation of G. Let G
be a finite group consisting of the elements G1, . . . , Gk where G1 := 1. By definition,
the set C[G] consists of all the symbols

α1G1 + . . .+ αkGk, α1, . . . , αk ∈ C.

Naturally enough, this is a k-dimensional complex linear space which becomes a
complex unital algebra by introducing the product

(αG+ βH)(μR+ νS) := αμ ·GR+ αν ·GS + βμ ·HR+ βν ·HS.

This algebra is called the group algebra of G. For all G ∈ G and all A ∈ C[G], we
define

�(G)A := GA.

This way, we obtain the so-called regular representation � of the finite group G on
its group algebra C[G]. The regular representation � knows all about the irreducible
representations of G, up to equivalence.

More precisely, every irreducible representation of the group G on a finite-
dimensional complex linear space is equivalent to an irreducible component
of the regular representation �.

The Hilbert space L2(G) of complex-valued functions on the group G.
Let L2(G) denote the space of all complex-valued functions ψ : G → C on the group
G. This set becomes a complex Hilbert space equipped with the inner product

〈ψ|ϕ〉 :=
1

|G|
X

G∈G
ψ(G)†ϕ(G).

The function f ∈ L2(G) is called a class function iff f(G) = f(AGA−1) for all ele-
ments G,A of the group G. For example, characters are class functions. All the class
functions form a linear subspace Lcl

2 (G) of the Hilbert space L2(G). The following
theorem tells us that the characters know all about the irreducible representations
of the group G. This was discovered by Frobenius in about 1900. Let X be a finite-
dimensional complex linear space of positive dimension.

• Two representations � and σ of the finite group G on X are equivalent iff they
have the same character.

• The representation � of G on X is irreducible iff 〈χ|χ〉 = 1.
• If � and �′ are inequivalent irreducible representations of G onX, then 〈χ|χ′〉 = 0.

Here, χ and χ′ denotes the character of � and �′, respectively.
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Fig. 3.2. The symmetry group D3 of an equilateral triangle

Theorem 3.9 Let �1, . . . , �k be a system of representations of the finite group G
on finite-dimensional complex linear spaces. Then this is a complete system of ir-
reducible representations of G iff the characters are an orthonormal basis of the
Hilbert space Lcl

2 (G) of class functions.

The crucial orthogonality relations for the matrix elements of irre-
ducible representations. Let � : G → GL(X) be an irreducible unitary repre-
sentation on the complex Hilbert space X of finite dimension m = 1, 2, . . . Let
e1, . . . , em be an orthonormal basis of X. Define the matrix elements

�ij(G) := 〈ei|�(G)ej〉, i, j = 1, . . . ,m

of the linear operator �(G) : X → X with respect to the basis e1, . . . , em. Then

1

|G|
X

G∈G
�ij(G)†�kl(G) =

1

m
δikδjl, i, j, k, l = 1, . . . ,m. (3.29)

The symmetry group D3 of an equilateral triangle. We want to show
that:

The group D3 is a finite subgroup of the orthogonal group O(2), and D3

is a faithful and irreducible linear representation of the permutation group
Sym(3) on the Euclidean plane.

Consider Fig. 3.2. The transformation

 

x′

y′

!

= A

 

x

y

!

, A =

 

a11 a12
a21 a22

!

is called an orthogonal transformation of the Euclidean plane E
2 iff the real matrix

A is orthogonal, that is, AAd = I. By definition, the orthogonal group O(2) consists
of all the real (2 × 2)-matrices A which are orthogonal. Choose the angle α := 2π

3
.

Set

Rα :=

 

cosα − sinα

sinα cosα

!

, R2α :=

 

cos 2α − sin 2α

sin 2α cos 2α

!

, I± :=

 

1 0

0 ±1

!

,

and

RαI− =

 

cosα sinα

sinα − cosα

!

, R2αI− =

 

cos 2α sin 2α

sin 2α − cos 2α

!

.
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Geometrically, the matrix Rα (resp. R2α) describes a counter-clockwise rotation of
the Euclidean plane with the angle α (resp. 2α) about the origin (Fig. 3.2), whereas
the matrix I− corresponds to the reflection (x, y) �→ (x,−y) with respect to the
x-axis. The six matrices

I, Rα, R2α, I−, RαI−, R2αI− (3.30)

form a finite subgroup of the orthogonal group O(2) denoted by D3. This group
is also called the symmetry group of the equilateral triangle pictured in Fig. 3.2.
Alternatively, the group D3 can be described by the permutation group Sym(3) of
the vertices 1, 2, 3 of the triangle. More precisely, we have the group isomorphism

� : Sym(3) → D3

given by the following maps:

• (1) �→ I, (12) �→ R2αI−, (23) �→ RαI−, (31) �→ I−,
• (123) �→ Rα, (132) �→ R2α.

This way, we obtain a representation of the group Sym(3) on the Euclidean plane.
This faithful representation is irreducible. In fact, there is no straight line through
the origin which is left invariant by the transformation group D3 of the Euclidean
plane.

The group D3 as a subgroup of the matrix group GL(2,C). The six
real (2 × 2)-matrices I, Rα, R2α, I−, RαI−, R2αI− form a subgroup of the
group GL(2,C) of complex (2 × 2)-matrices. This subgroup coincides with D3.
Since Sym(3) is isomorphic to D3, we get the injective group morphism

�3 : Sym(3) → GL(2,C) (3.31)

with the group isomorphism �3(Sym(3))  D3. Finally, let us consider the character
χ of the faithful representation �3. Obviously, for the trace of the matrices of the
group D3 we get

tr(I) = 2, tr(Rα) = tr(R2α) = 1, tr(I−) = tr(RαI−) = tr(R2αI−) = 0.

Note that cosα = cos 2α = 1
2

if α = 2π/3. This implies

χ(1) = 2, χ(123) = χ(132) = 1, χ(31) = χ(23) = χ(12) = 0. (3.32)

The character χ : Sym(3) → C is an element of the Hilbert space L2(Sym(3)).
Explicitly,

〈χ|χ〉 = 1
6

X

G∈Sym(3)

χ†
GχG = 1

6
(22 + 12 + 12) = 1.

Thus, the representation (3.31) of the symmetric group Sym(3) on the complex
linear space C

2 is irreducible.

3.12 The Tensor Product of Representations and
Characters

The decomposition of tensor products of representations into irreducible compo-
nents plays a crucial role in physics. This concerns the symmetry classification of
composed particles (e.g., baryons and mesons as composed particles consisting of
quarks and antiquarks, the spectra of molecules, the periodic table of chemical
elements, the physical properties of crystals or atomic nuclei).
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The main tool is the Fourier analysis of the characters in terms of the
complete orthonormal system of irreducible characters.

The classic textbooks on applications of group theory to physics contain large ta-
bles used by physicists. The sketch words are Clebsch–Gordan coefficients, Racah-
coefficients, and the Littlewood–Richardson rules. Nowadays the computations are
done via computer algebra. Let us explain the basic ideas.

Fourier coefficients and multiplicities of irreducible representations.
Let �1, . . . , �m be a complete system of irreducible linear representations of the
finite group G. Let

� : G → GL(X)

be an arbitrary linear representation of the finite group G on the complex finite-
dimensional Hilbert space X of positive dimension with the character function
χ� : G → C. The representation � is completely reducible. This means that there
exists a direct sum decomposition

X = X(1) ⊕X(2) ⊕ . . .⊕X(r)

such that the restriction of the operators �(G) : X → X, G ∈ G, to the linear

subspace X(k) yields an irreducible representation

� : G → GL(X(k)), k = 1, . . . , r

of the group G on the space X(k), and this irreducible representation is equivalent
to some �j .We want to know which irreducible representations appear. To this end,
we compute the Fourier expansion

χ� =
m
X

j=1

cjχj

with cj = 〈χj |χ�〉 = 1
|G|
P

G∈G χj(G)†χ�(G). Then we have

� = c1�1 ⊕ c2�2 ⊕ . . .⊕ cm�m. (3.33)

This mnemonic formula means that the decomposition of X contains the irreducible
representation �j iff cj �= 0, and the value cj tells us how many times the irreducible
representation �j appears. For example, � = 2�1 ⊕ �2 means that � = �1 ⊕ �1 ⊕ �2.
This implies

dimX =

m
X

j=1

cj deg(�j).

Recall that deg(�j) = dimX(k) if �j acts on X(k).
The tensor product of representations. Let

σ : G → GL(X), μ : G → GL(Y )

be representations of the finite group G on the complex finite-dimensional Hilbert
spaces X and Y , respectively. This generates the tensor product of representations
σ ⊗ μ given by

σ ⊗ μ : G → GL(X ⊗ Y ).

Explicitly, if x1, . . . , xk and y1, . . . , yl is a basis of X and Y , respectively, then

(σ ⊗ μ)(G) · (xr ⊗ ys) := σ(G)xr ⊗ μ(G)ys, r = 1, . . . , k, s = 1, . . . , l.
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Observe that the representation does not depend on the choice of the basis vectors
on X and Y . The trick is to use the following product formula for the character
χσ⊗μ of the representation σ ⊗ μ:

χσ⊗μ = χσχμ.

Then the decomposition of σ ⊗ μ follows from the Fourier method (3.33) above.
Example. Choose a right-handed (x, y)-Cartesian coordinate system in the

Euclidean plane with the right-handed orthonormal basis i, j. Set X := span(i, j).
Consider the reflection group Z2 = {1,−1}. Define

σ(±1)(xi + yj) := ± (xi + yj), x, y ∈ R.

This yields the representation σ : Z2 → GL(X). Explicitly,

σ(±1) ·
 

i

j

!

=

 

±1 0

0 ±1

! 

i

j

!

.

Thus, the linear operator σ(±1) corresponds to the (2 × 2)-matrix ±I with the
trace tr(±I) = ±2. This yields the character function

χσ(±1) = ±2.

Applied to the tensor product X ⊗X, we get the representation

σ ⊗ σ : Z2 → GL(X ⊗X).

Explicitly, σ(±1) · (i ⊗ j) = (±i) ⊗ (±j) = i ⊗ j, and so on. Hence

(σ(±1) ⊗ σ(±1)) ·

0

B

B

B

@

i ⊗ i

i ⊗ j

j ⊗ i

j ⊗ j

1

C

C

C

A

=

0

B

B

B

@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

C

C

C

A

0

B

B

B

@

i ⊗ i

i ⊗ j

j ⊗ i

j ⊗ j

1

C

C

C

A

.

Thus, the linear operator σ(±1) ⊗ σ(±1) corresponds to the (4 × 4)-unit matrix I
with the trace tr(I) = 4. This yields the character function

χσ⊗σ(±1) = χσ(±1)χσ(±1) = 4.

The group Z2 is isomorphic to the permutation group Sym(2). By Table 3.3 on
page 215, the irreducible character functions χ1 and χ2 of Z2 read as χ1(±1) = 1
and χ2(±1) = ±1. This implies

cj = 〈χσ⊗σ|χj〉 = 1
2
(χσ(1)2χj(1) + χσ(−1)2χj(−1)), j = 1, 2.

Hence c1 = 4 and c2 =0. Thus,

σ ⊗ σ = 4�1 = �1 ⊕ �1 ⊕ �1 ⊕ �1.

This corresponds to the decomposition

X ⊗X = X1 ⊕X2 ⊕X3 ⊕X4

with X1 := span(i⊗ i), X2 := span(i⊗ j), X3 := span(j⊗ i), and X4 := span(j⊗ j).
The one-dimensional linear spaces X1, X2, X3, X4 are invariant under the action of
the reflection group Z2 on X ⊗X.
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Table 3.2. Irreducible representations of the group Sym(2)

irreducible representation character

�1 : Sym(2) → {1} χ1

�2 : Sym(2) → {1,−1}
`

�2(G) := sgn(G)
´

χ2

3.13 Applications to the Symmetric Group Sym(n)

Physically, partitions play a crucial role in the theory of multi-particle
systems. The basic idea is to describe the physics of the total system by
the physics of all possible subsystems.
Mathematically, partitions govern the representation theory of permuta-
tion groups. The number of essential irreducible linear representations of
a permutation group is equal to the number of orbits of the permutation
group with respect to the inner automorphisms; this is equal to the number
of conjugacy classes. In turn, this is equal to the number of partitions of
the group order. Graphically, this equals the number of Young diagrams.

Folklore

3.13.1 The Characters of the Symmetric Group Sym(2)

Recall that the group Sym(2) consists of the identical permutation 1 and the trans-
position π := (12) with π(1) = 2 and π(2) := 1. Here, π2 = 1. There are two obvious
group morphisms, namely,

• σ : Sym(2) → {1} (trivial morphism), and
• sgn : Sym(2) → {1,−1} (sign of the permutations; sgn(1) = 1 and sgn(π) = −1).

We want to show how this fits the general theory of linear representations of finite
groups. The group Sym(2) is commutative. Therefore, it has the two conjugacy
classes [1] and [π]. By the general theory, a complete system of irreducible linear
representations of Sym(2) consists of two elements. These two irreducible represen-
tations are given on the real line R by setting:

• �(1)x := x and �(π)x := x for all x ∈ R (this trivial representation corresponds
to σ : Sym(2) → {1}), and

• �(1)x := x and �(π)x := −x for all x ∈ R (this reflection corresponds to the
signature map sgn : Sym(2) → {1,−1}).

Next we want to discuss the relation to the group algebra C[Sym(2)] which consists
of all the symbols

α · 1 + β · π, α, β ∈ C.

The regular representation � : Sym(2) → C[Sym(2)] is given by the identity map
�(1) = id on C[Sym(2)] and by the map

�(π)(α1 + βπ) := π(α1 + βπ) = απ + β1 for all α, β ∈ C.
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Table 3.3. Irreducible characters of the group Sym(2)

value of the character χj

group element G

(1) (12)

χ1(G) 1 1

χ2(G) 1 −1

In order to decompose the representation � into irreducible components, let us
introduce the new basis

π+ := 1 + π, π− := 1 − π
of C[Sym(2)]. Because of π2 = 1 we get ππ+ = π+ and ππ− = −π−. Therefore,

�(π)(α+π+ + α−π−) = α+π+ − α−π− for all α± ∈ C. (3.34)

Set X := C[Sym(2)]. Let us introduce the two projection operators P± : X → X
defined by

P+(α+π+ + α−π−) := απ+, P−(α+π+ + α−π−) := α−π−, α± ∈ C.

This yields the direct sum decomposition

X = P+(X) ⊕ P−(X).

By (3.34), the one-dimensional linear subspaces P+(X) and P−(X) are invariant
under the regular representation �. Thus, we get the decomposition

� = �+ ⊕ �−
where �+ and �− are irreducible representations of Sym(2) on P+(X) and P−(X),
respectively. Hence

(dimP+(X))2 + (dimP+(X))2 = 12 + 12 = |Sym(2)|
where |Sym(2)| = 2 is the number of group elements. This is a special case of the
Burnside theorem on page 209. Finally, let us discuss the characters of �+ and �−.
The Hilbert space L2(Sym(2)) consists of all the functions ψ,ϕ : Sym(2) → C with
the inner product

〈ψ|ϕ〉 := 1
2

`

ψ(1)†ϕ(1) + ψ(π)†ϕ(π)
´

.

Since the conjugacy classes of the group Sym(2) contain precisely one element, the
Hilbert space Lcl

2 (Sym(2)) of class functions coincides with L2(Sym(2)). We have

• χ+(1) = χ+(π) = 1 (character χ+ of �+), and
• χ−(1) = 1, χ−(π) = −1 (character of �−).

This follows from �−(1)π− = π− and �−(π)π− = −π−. Thus, the operators �−(1)
and �−(π) defined on the one-dimensional linear space span(π−) correspond to the
multiplication with the real numbers 1 and −1, respectively. Therefore,

〈χ+|χ+〉 = 1, 〈χ−|χ−〉 = 1, 〈χ+|χ−〉 = 0.

Thus, the characters χ+ and χ− form an orthonormal basis of the Hilbert space
Lcl

2 (Sym(2)) as predicted by the general theory. The relation to the method of
Young tableaux will be explained on page 222.
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Table 3.4. Irreducible representations of the group Sym(3)

irreducible representation character

�1 : Sym(3) → {1} χ1

�2 : Sym(3) → {1,−1}
`

�2(G) := sgn(G)
´

χ2

�3 : Sym(3) → GL(2,C)
`

�3
`

Sym(3)
´

 D3

´

χ3

3.13.2 The Characters of the Symmetric Group Sym(3)

Recall that the symmetric group Sym(3) consists of the following three conjugacy
classes:

[(1)], [(12), (23), (31)], [(123), (132)].

By the general theory, a complete system of irreducible representations of Sym(3)
on complex Hilbert spaces contains three elements. Note that we already know
three inequivalent irreducible representations of Sym(3), namely,

• �1 : Sym(3) → {1} (trivial symmetric representation on the Gaussian plane C:
�1(G)z := z for all z ∈ C and all G ∈ Sym(3)),

• �2 : Sym(3) → {1,−1} (nontrivial antisymmetric representation on the Gaussian
plane: �2(G)z = sgn(G)z for all z ∈ C and all G ∈ Sym(3)),

• �3 : Sym(3) → GL(2,C) (see (3.31) on page 211).

For the dimensions of the complex representation spaces C,C,C2, we get

(dim C)2 + (dim C)2 + (dim C
2)2 = 12 + 12 + 22 = 6 = |Sym(3)|.

This is a special case of the Burnside theorem on page 209. Note that the characters
χk(G) := tr(�k(G)) read as follows:

• χ1(G) = 1 for all G ∈ Sym(3),
• χ2(G) = sgn(G) for all G ∈ Sym(3),
• χ3(1) = 2, χ3(G) = 0 if G = (12), (23), (31), and χ3(G) = 1 if G = (123), (132),

by (3.32).

Table 3.5. Irreducible characters of the group Sym(3)

value of the character χj

group element G

(1) (12), (23), (31) (123), (132)

χ1(G) 1 1 1

χ2(G) 1 −1 1

χ3(G) 2 0 1
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The complex Hilbert space L2(Sym(3)) consists of all the complex-valued functions
ψ,ϕ : Sym(3) → C equipped with the inner product

〈ψ|ϕ〉 := 1
6

X

G∈Sym(3)

ψ(G)†ϕ(G).

The function ψ ∈ L2(Sym(3)) is a class function iff it is constant on the conjugacy
classes, that is,

ψ(G) = const if G = (12), (23), (31) and ψ(G) = const if G = (123), (132).

The class functions form a linear subspace Lcl
2 (Sym(3)) of the Hilbert space

L2(Sym(3)). By the general theory, the characters χ1, χ2, χ3 represent an orthonor-
mal basis of Lcl

2 (Sym(3)). In fact,

〈χk|χk〉 = 1, 〈χk|χl〉 = 0, k = 1, 2, 3, l �= k.

In addition, note that the order of the subgroups of Sym(3) is a divisor of the group
order 6, by the Lagrange theorem on page 208. Thus, the order of a subgroup is
equal to 1, 2, 3, 6. Explicitly, the proper subgroups of Sym(3) are given by

{(1)}, {(1), (12)}, {(1), (23)}, {(1), (31)}, A3 := {(1), (123), (132)}.

The center of Sym(3) is trivial (i.e., it is equal to (1)). Thus, we have the group
isomorphism

Autinner(Sym(3))  Sym(3).

All the automorphisms of the group Sym(3) are inner automorphisms. The only
normal subgroups of Sym(3) are the trivial subgroups {(1)}, Sym(3) and the non-
trivial subgroup A3 (i.e., the subgroup of even permutations). If

μ : Sym(3) → G

is a surjective group morphism, then μ is either trivial (i.e., μ is an isomorphism
or G contains only the unit element) or μ(G) = sgn(G) for all G ∈ Sym(3) and
G = {1,−1}, up to isomorphisms of G.

Theorem 3.10 If � : Sym(3) → GL(X) is a representation of the permutation
group Sym(3) on the finite-dimensional complex linear space X of positive dimen-
sion, then there exists a direct sum decomposition

X = X1 ⊕X2 ⊕ . . .⊕Xm

into one-dimensional or two-dimensional linear subspaces X1, . . . , Xm of X such
that, for any index j, the restriction �(G) : Xj → Xj of �(G) to the linear subspace
Xj yields an irreducible representation of Sym(3) on Xj which is equivalent to
�1, �2 or �3.

3.13.3 Partitions and Young Frames

Step 1: Partitions. Let n = 1, 2, . . . By definition, a partition of the number n is a
tuple (n1, n2, . . . , nk) of positive integers with

n = n1 + n2 + . . .+ nk, n1 ≥ n2 ≥ . . . ≥ nk ≥ 1.
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Table 3.6. Young frames of the group Sym(2)

partition Young frame disjoint cycle product

2 = 2 (12) 21

2 = 1 + 1 (1)(2) 12

Graphically, this is represented by the Young frame which consists of k rows
where the first row has n1 boxes, the second row has n2 boxes, and so on. We
assign to every Young frame the symbol

1m(1)2m(2) · · ·nm(n−1)nm(n).

This tells us that the Young frame has m(1) rows with 1 box, m(2) rows with
2 boxes, and so on. Note that the length of the rows is increasing from bottom
to top. For example, we assign to the partition

12 = 4 + 4 + 2 + 1 + 1

the following Young frame

12213042

η5 = 1

η4 = 1

η3 = 2

η2 = 4

η1 = 4

(3.35)

The symbol 12213042 tells us that there are
• 2 rows with 1 box,
• 1 row with 2 boxes,
• no row with 3 boxes, and
• 2 rows with 4 boxes.
Instead of 12213042 we briefly write 122142.
• The two partitions 2 = 1 + 1 and 2 = 2 correspond to the Young frames

depicted in Table 3.6.
• The three partitions 3 = 1 + 1 + 1, 3 = 2 + 1, 3 = 3 of the number n = 3 are

represented by the following three Young frames:



3.13 Applications to the Symmetric Group Sym(n) 219

Table 3.7. Young tableaux of the group Sym(2)

Young tableau H V Young symmetrizer

1 2
Sym(2) (1) S+ =

1

2

“

(1) + (12)
”

1

2
(1) Sym(2) S− =

1

2

“

(1) − (12)
”

(i) 3 = 1 + 1 + 1

13

(ii) 3 = 2 + 1

1121

(iii) 3 = 3

31

(3.36)

Step 2: Dual Young frame. By definition, the dual Young frame Yd is obtained
from the original Young frame Y by interchanging the rows with the columns.
For example, the frame (iii) from (3.36) is dual to the frame (i), and vice versa.
The frame (ii) is self-dual. Note the following. As we will discuss below, for
every positive integer n, the corresponding Young frames Y are in one-to-one
correspondence to the irreducible representations of the group Sym(n), up to
equivalence. Therefore, the characters χY of the irreducible representations of
Sym(n) can be labelled by the Young frames. For the dual Young frame, we
get the duality formula

χ
Yd (π) = sgn(π) χY (π) for all π ∈ Sym(n).

This symmetry property of characters saves time when computing the charac-
ters.

Step 3: Young standard tableaux. From Young frames we pass over to Young stan-
dard tableaux by inserting the numbers 1, 2, . . . , n in the following way:
• Every number 1, 2, . . . , n appears precisely once.
• The numbers of the rows are increasing from left to right.
• The numbers of the columns are increasing from top to bottom.
For example, if n = 3, then the standard tableaux read as follows:

(i) w = 1

3

2

1

T1

(ii) w = 2

3

1 2

T2

2

1 3

T3

(iii) w = 1

31 2

T4

(3.37)
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By definition, the weight w of a Young frame is the number of standard tableaux
corresponding to the Young frame.

Step 4: The crucial Young symmetrizers. We assign to every standard tableau T
of weight w the element S of the group algebra C[Sym(n)] given by

S :=
w

n!

 

X

π∈V
sgn(π) · π

! 

X

π∈H
π

!

. (3.38)

Explicitly, the following hold:
• H is the maximal subgroup of Sym(n) which leaves invariant the rows of

the standard tableau (horizontal invariance).
• V is the maximal subgroup of Sym(n) which leaves invariant the columns of

the standard tableau (vertical invariance).

The Young symmetrizer has the crucial property that

S2 = S.

This means that S is an idempotent element of the group algebra. The Young
symmetrizers for the groups Sym(2) and Sym(3) can be found in Table 3.7 and 3.9
on pages 219 and 222, respectively.

The main result. For the symmetric group Sym(n) with n = 1, 2, . . . , we
have the following main theorem.

Theorem 3.11 Using Young symmetrizers, it is possible to construct explicitly a
complete system

�j : Sym(n) → GL(nj ,C), j = 1, . . . ,m

of irreducible representations of the symmetric group Sym(n). These irreducible
representations �1, . . . , �m are in one-to-one correspondence to the Young frames
for the partitions of the group order n.

The dimension nj is equal to the weight wj of the Young frame Yj corresponding
to �j . We have

Pm
j=1 w

2
j = n! by the Burnside theorem.

For example, consider (3.37) on page 219: the group Sym(3) has 3 Young frames
with weights w = 1, 2, 1. This tells us that there is a complete system �1, �2, �3 of ir-
reducible representations of Sym(3) which act on complex linear spaces X1, X2, X3

of dimension 1, 2, 1, respectively. Here,

12 + 22 + 12 = 3!

The main result above shows that it is important to know the number of Young
frames and their weights. In this connection, the following formulas are useful:

• The partition formula (number of Young frames): The number p(n) of partitions
of the positive integer n is given by the generating function

∞
X

k=0

p(d)zk =
∞
Y

m=1

1

1 − zm

= (1 + z + z2 + . . .)(1 + z2 + z4 + . . .)(1 + z3 + . . .). (3.39)
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Table 3.8. Young frames of the group Sym(3)

partition Young frame disjoint cycle product

3 = 3 (123), (132) 31

3 = 2 + 1 (12)(3), (23)(1), (31)(2) 2111

3 = 1 + 1 + 1 (1)(2)(3) 111111

This formula is valid for all complex numbers z with |z| < 1. Euler (1707–1783)
discovered the following recursion formula:

p(n) =
n
X

k=1

(−1)k+1`p(n− ω(k)) + p(n− ω(−k)
´

, n = 0, 2, . . .

where ω(k) = 1
2
(3k2 − k). Furthermore, p(0) = p(1) := 1, and p(n) := 0 if n < 0.

For example,

p(2) = p(1) + p(0) = 2, p(3) = p(2) + p(0) = 3, p(4) = p(3) + p(2),

and p(200) = 3 972 999 029 388. In 1918, Hardy (1877–1947) and Ramanujan
(1887–1920) discovered the following asymptotic formula:

ln p(n)  π
r

2n

3
, n→ ∞.

• The weight formula. Set lj := nj + r − j, j = 1, . . . , r. If the Young frame has
rows of length n1 ≥ n2 ≥ . . . ≥ nr ≥ 1, then it has the weight

w := n!

Q

i<k(li − lk)
l1!l2! · · · lr

.

Lexicographic order of partitions (Young frames). For two partitions of
the positive integer n, we write

(n1, n2, . . . , nk) > (m1,m2, . . . ,ml)

iff the first nonzero difference is positive. For example, if n = 3, then

(3) > (2, 1) > (1, 1, 1).

Concerning (3.36), this corresponds to the ordering (iii) > (ii) > (i) of the Young
frames.

Lexicographic order of Young tableaux. For a fixed tableau, we read the
numbers of the first row from left to right, then there follow the numbers of the



222 3. Representations of Symmetries in Mathematics and Physics

Table 3.9. Young tableaux of the group Sym(3)

Young weight H V Young symmetrizer
tableau w

1 2 3 1 Sym(3) (1) S1 =
1

6

X

π∈Sym(3)

π

1 2

3
2 (1), (12) (1), (13) S2 =

1

3

“

(1) − (13)
”“

(1) + (12)
”

=
1

3

“

(1) + (12) − (13) − (123)
”

1 3

2
2 (1), (13) (1), (12) S3 =

1

3

“

(1) − (12)
”“

(1) + (13)
”

=
1

3

“

(1) + (13) − (12) − (132)
”

1

2

3
1 (1) Sym(3) S4 =

1

6

X

π∈V
sgn(π) · π

S =
w

3!

 

X

π∈V
sgn(π) · π

! 

X

π∈H
π

!

second row from left to right, and so on. If Ti and Tj are tableaux corresponding
to the same Young frame, then we write

Ti < Tj

iff the first non-zero difference of the tableau-numbers is positive. For example, we
have T2 < T3 in (3.37).

3.13.4 Young Tableaux and the Construction of a Complete
System of Irreducible Representations

.
Application to the symmetric group Sym(2). The elements of the group

algebra C[Sym(2)] are α(1) +β(12) where α, β are complex numbers. By Table 3.7
on page 219, we have the two Young symmetrizers S± given by

S+ = 1
2
( (1) + (12)), S− = 1

2
( (1) − (12))

with the properties

S+ + S− = I, S2
± = S±, S+S− = 0
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where I denotes the identity operator. In fact,

( (1) + (12))( (1) − (12)) = (1) − (12)(12) = (1) − (1) = 0. (3.40)

Hence S+S−π = 0 for all π ∈ Sym(2). The Young symmetrizers S± coincide with
the projection operators P± studied on page 214.

Application to the symmetric group Sym(3). We will use the Sj-tableaux
of Table 3.9. Let us discuss the role of the Young symmetrizers

Sj , j = 1, 2, 3, 4

defined by (3.38).
Ad (i). The Young symmetrizer S1. The group Sym(3) leaves invariant the row

of the S1-tableau. Hence H = Sym(3). Moreover, only the trivial permutation (1)
leaves invariant the columns. Hence V = {(1)}. This implies

S1 =
1

3!

X

π∈Sym(3)

π.

Ad (ii). The Young symmetrizer S2. The group H = {(1), (12)} leaves invariant
the rows of the S2-tableau, and the group V = {(1), (13)} leaves invariant the
column. Since w = 2, we get

S2 =
2

3!

`

(1) − (13)
´`

(1) + (12)
´

= 1
2
((1) + (12) − (13) − (123)).

Ad (iii). The Young symmetrizer S3. By using duality, H = {(1), (13)} and
V = {(1), (12)}. Hence

S3 =
2

3!

`

(1) − (12)
´`

(1) + (13)
´

= 1
3
((1) + (13) − (12) − (132)).

Ad (iv). The Young symmetrizer S4. Since V = Sym(3) and H = {(1)}, we
obtain

S4 =
1

3!

X

π∈Sym(3)

sgn(π) · π.

The main trick is to set Xj := C[(Sym(3)]Sj and to use the direct sum decompo-
sition

C[Sym(3)] = X1 ⊕X2 ⊕X3 ⊕X4 (3.41)

of the group algebra C[Sym(3)]. For the dimensions, we get dimX1 = dimX4 = 1
and dimX2 = dimX3 = 2. Explicitly, the space Xj consists of all the products σSj

where σ ∈ Sym(n). The linear subspace Xj has the simple, but crucial property
that, for every element π of Sym(3), we get

πτ ∈ Xj for all τ ∈ Xj .

In terms of algebra, Xj is a left ideal of the group algebra C[(Sym(n)]. In terms of
representation theory, the linear subspace Xj , j = 1, 2, 3, 4, is invariant under the
regular representation �. In fact, if π ∈ Sym(n), then

�(π)τ = πτ ∈ Xj for all τ ∈ Xj .

Let
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�(j)(π) : Xj → Xj , π ∈ Sym(3)

denote the restriction of �(π) to Xj (i.e., �(j)(π)σ = πσ for all σ ∈ Xj). Then the
map

�(j) : Sym(3) → GL(Xj)

represents an irreducible representation of the group Sym(3) on Xj . Moreover

�(1), �(2), �(3), �(4) is equivalent to the irreducible representation �1, �3, �3, �2 of the
group Sym(3), respectively (see Table 3.4 on page 216).

This is Theorem 3.11 on page 220 for the special case where n = 3. Let us
sketch the proof. Set

σ± := 1
3!

`

(1) ± (12) ± (13) ± (23) + (123) + (132)
´

,

that is, σ+ = S1 and σ− = S4.
Step 1: The Young symmetrizers. We first show that

4
X

k=1

Sk = I, S2
j = Sj , SiSj = 0, i, j = 1, 2, 3, 4, i �= j (3.42)

where I denotes the unit element (1) of the group algebra. Note that

(12)σ± = (12) ± (1) ± (132) ± (123) + (23) + (13) = ±σ±.

Similarly, we get

πσ± = sgn(π) · σ± for all π ∈ Sym(3). (3.43)

It is not necessary to explicitly compute this. Observe that the map π �→ πσ is a
permutation of the group elements of Sym(3). Moreover, note the signature rule
sgn(πσ) = sgn(π) sgn(σ). This implies that

πS1 = aσ+ for all π ∈ Sym(3)

where the complex number a depends on π. Thus, X1 = {bσ+ : b ∈ C}. Similarly,
we get

X4 = {bσ− : b ∈ C}.
Consequently, dimXj = 1 if j = 1, 4.

By (3.43), σ2
± = σ±. Hence S2

j = Sj if j = 1, 4. Moreover, it follows from
((1) + (12))((1) − (12)) = 0 that

S2S3 = 1
9
( (1) − (13)) · ( (1) + (12))(1 − (12)) · ( 1 + (13)) = 0.

The other claims are obtained similarly.
Step 2: The direct sum decomposition (3.41). Let π ∈ Sym(3). Then we get the

sum representation

π = π · (1) = πS1 + πS2 + πS3 + πS4

where Sj ∈ Xj for all j. This representation is unique. In fact, let

π = α1 + α2 + α3 + α4, αj ∈ Xj , j = 1, 2, 3, 4.

Then α1 = βS1 for some β ∈ Sym(3). By (3.42), SjS1 = 0 if j �= 1. Hence

πS1 = α1S1 = βS2
1 = βS1 = α1.

Similarly, αj = πSj if j = 1, 2, 3, 4.We recommend the reader to complete the proof
by checking all the claims via explicit computation.

Application to the symmetric group Sym(n). Fix n = 2, 3, . . .
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• Setting Xj := [C(Sym(n)]Sj , we get the direct sum decomposition

C[Sym(n)] = X1 ⊕X2 ⊕ . . .⊕Xm

of the group algebra C[Sym(n)] where m equals the number of Young frames to
Sym(n) (i.e., m equals the number of partitions of n).

• Every linear subspace Xj of the group algebra is invariant under the regular
representation � : Sym(n) → C(Sym(n)).

• The restriction �(j)(π) : Xj → Xj of � to Xj yields an irreducible representation
of the symmetric group Sym(n) on Xj .

• Every irreducible representation of Sym(n) on a finite-dimensional complex

Hilbert space is equivalent to one of the representations �(j).

If we choose precisely one standard tableaux to every Young frame, then the con-
struction described above yields a complete system of irreducible representations of
the symmetric group Sym(n). Therefore, the irreducible representations of Sym(n)
are in one-to-one correspondence to the Young frames of Sym(n). This yields The-
orem 3.11.

In the late 1920s, John von Neumann simplified the original proof of Frobenius
given in 1903. This polished proof of Theorem 3.11 can be found in B. van der
Waerden, Modern Algebra, Vol. 2, Sect. 110, Frederyck Ungar, New York, 1975.
We also refer to H. Weyl, The Theory of Groups and Quantum Mechanics, Sect.
V.C, Dover, New York 1931.

3.14 Application to the Standard Model in Elementary
Particle Physics

3.14.1 Quarks and Baryons

Composed n-quark states correspond to irreducible representations of the
quark symmetry group SU(3) on tensor products of the quark Hilbert
space. In terms of physics, the basis vectors of the SU(3)-invariant linear
subspaces of the tensor product describe multiplets of elementary particles.
The invariant subspaces are obtained by using the Young symmetrizers
corresponding to the Young tableau of the symmetric group Sym(n). The
crucial basis vectors which describe particle states are obtained by regular
fillings of the Young frames. This is a special case of the tensor method in
representation theory due to Weyl.11

Folklore

There are precisely six quarks in the Standard Model in particle physics, namely,
u (up), d (down), c (charm), s (strange), t (top), b (bottom) (for more details, see
Sect. 2.4 of Vol. I). These quarks are ordered by three so-called generations, namely,

 

u

d

!

,

 

c

s

!

,

 

t

b

!

.

11 The tensor method corresponds to the construction of tensors with certain sym-
metry properties by symmetrization and antisymmetrization of T i1...ir

j1...js
with re-

spect to selected indices. The prototype of this procedure is the passage from Tij
to 1

2
(Tij − Tji).
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One has to distinguish between the flavors of quarks and the inner degrees of
freedom of a single quark called the color of the quark (red, green, or blue). The
flavors concern the names u, d, c, s, t, b of the quarks. In what follows, we will only
consider the three quarks u, d, s. These three quarks were considered in the early
history of the quark model. That is, we restrict ourselves to the flavor u, d, s. The
colors will be discussed later on. For the quark states, we write

e1 = |u〉, e2 = |d〉, e3 = |s〉.

We want to construct composed states of the quarks. Our goal is to motivate the
proton state

|p〉 =
1√
2

`

|u〉|u〉|d〉 − |d〉|d〉|u〉
´

with 〈p|p〉 = 1. The proton consists of u-quarks and d-quarks. In the language of
mathematics, we write

|p〉 =
1√
2

(e1 ⊗ e1 ⊗ e2 − e2 ⊗ e2 ⊗ e1). (3.44)

Note that this is an entangled state of u-quarks and d-quarks. We want to show
that this entanglement is based on irreducible representations of the quark flavor
symmetry group SU(3) on linear subspaces of the tensor product X⊗X⊗X where
X = span(e1, e2, e3).

The Hilbert space X of the quarks. Let X be a 3-dimensional complex
Hilbert space with the orthonormal basis e1, e2, e3. The elements of X are given by

ψ = ψ1e1 + ψ2e2 + ψ3e3, ψ1, ψ2, ψ3 ∈ C

with the inner product 〈ψ|ϕ〉 :=
P3

k=1 ψ
†
kϕk.

The compact Lie group SU(3) as the flavor symmetry group of the
quarks u, d, s. Let SU(X) be the group of all the linear unitary operators

U : X → X

with detU = 1. This means that the corresponding matrix (〈ei|Uej〉)i,j=1,2,3 is an
element of the group SU(3). There exists a natural isomorphism between the groups
SU(X) and SU(3). We postulate:

The physics of the quarks u, d, s is invariant under the symmetry group
SU(3).

The Hilbert space X ⊗X ⊗X of composed quarks. Set Z := X ⊗X ⊗X.
For the elements

Ψ =

3
X

i,j,k=1

Ψijkei ⊗ ej ⊗ ek, Ψijk ∈ C

of the 27-dimensional complex Hilbert space Z, we introduce the inner product

〈Ψ |Φ〉 :=

3
X

i,j,k=1

Ψ†
ijkΦijk.
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We will frequently use the following fact. If U : X → X is a linear operator on
the Hilbert space X, then the operator can be uniquely extended to an operator
S : Z → Z by setting12

U

0

@

3
X

i,j,k=1

Ψijkei ⊗ ej ⊗ ek

1

A : =

3
X

i,j,k=1

ΨijkU(ei ⊗ ej ⊗ ek) (3.45)

where

U(ei ⊗ ej ⊗ ek) := Uei ⊗ ej ⊗ ek + ei ⊗ Uej ⊗ ek + ei ⊗ ej ⊗ Uek.

In particular, if U ∈ SU(X), then the corresponding operator U : Z → Z acts on
the tensor product Z = X ⊗X ⊗X. This way, we get a representation

� : SU(X) → GL(Z)

of the group SU(X) on the Hilbert space Z. Since the group SU(3) is isomorphic
to the group SU(X), the group SU(3) acts on Z, too.

For the Standard Model in particle physics, it is important that the compact
Lie groups SU(3) and Sym(3) act on the Hilbert space Z of three composed
quarks.

This will allow us to apply Weyl’s tensor method in the representation theory of
the classical compact Lie groups. Let us now discuss the action of Sym(3) on Z.

Permutations of the quarks and the action of the symmetric group
Sym(3) on Z. Let π ∈ Sym(3). We define

π

0

@

3
X

i,j,k=1

Ψijkei ⊗ ej ⊗ ek

1

A

by the aid of the corresponding permutation of the quarks ei, ej , ek. For example,

(12)(ei ⊗ ej ⊗ ek) = ej ⊗ ei ⊗ ek, (123)(ei ⊗ ej ⊗ ek) = ej ⊗ ek ⊗ ei.

The main trick is to use the direct sum decomposition

Z = S1(Z) ⊕ S2(Z) ⊕ S3(Z) ⊕ S4(Z)

where Sj , j = 1, 2, 3, 4, are the Young symmetrizers of the symmetric group Sym(3)
to be found in Table 3.9 on page 222. The point is that the general theory due to
Weyl tells us the following.

Theorem 3.12 The linear subspaces Sj(Z) of Z, j = 1, 2, 3, 4, are invariant irre-
ducible linear subspaces of the Hilbert space Z under the action of the group SU(X).

We will show below that the dimensions are

dimZ = dim 27 = 10 + 8 + 8 + 1,

that is, dim Sj(Z) = 10, 8, 8, 1 if j = 1, 2, 3, 4, respectively. Physicists briefly write

3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1. (3.46)

12 To simplify notation, we write U instead of U ⊗ U ⊗ U.
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Fig. 3.3. The baryon octet of the proton p and the neutron n: R(1, 1)

In terms of physics, the space S2(Z) contains 8 basis vectors which correspond to
an 8-multiplet (octet) of 8 elementary particles which possess similar masses and
similar physical properties (see Fig. 3.3). These particles are the following baryons:

p (proton), n (neutron), Σ+, Σ−, Σ0, Ξ+, Ξ−, Λ.

Note that the linear subspace Sj(Z) of Z is invariant under the action of the Young
symmetrizer Sj if j = 1, 2, 3, 4. This follows from the fact that S2

j = Sj , that is,
Young symmetrizers are projection operators.

Irreducible representations of the group SU(X) on the complex
Hilbert space Z of three-quark states. Let us discuss how to get a basis of the
linear space Sj(Z). We will use the explicit form of Young symmetrizers Sj from
Table 3.9 on page 222.

(i) The linear space S1(Z) (see Fig. 3.4). Set eijk := ei ⊗ ej ⊗ ek. We have

S1(eijk) =
1

3!

X

π∈Sym(3)

π(eijk) = uijk.

This is the symmetrization of eijk. Explicitly,

uijk := 1
6
(eijk + eikj + ejki + ejik + ekij + ekji).

A basis of the space S1(Z) is given by

u111, u112, u113, u122, u123, u133, u222, u223, u233, u333.

Thus, the dimension of S1(Z) is equal to 10. Graphically, the indices of
u111, u112, . . . are given by

1 2 2 1 2 3 1 3 3

1 1 1 1 1 2 1 1 3

2 2 2 2 2 3 2 3 3 3 3 3

(3.47)

Note that the diagrams (3.47), (3.49), and (3.50) are the Young frames of the
Young symmetrizers Sj filled in with the numbers 1, 2, 3. Here, the rows are
not decreasing from left to right, and the columns are increasing from top
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Fig. 3.4. Baryon decuplet: R(3, 0)

to bottom. Such fillings are called regular fillings of Young frames. From the
physical point of view, the 10 basis vectors u111, u112, u113 . . . correspond to a
10-multiplet (decuplet) of 10 baryons depicted in Fig. 3.4. For example, the
state

u112 = 1
3
(e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1)

consists of two u-quarks e1 and one d-quark e2. The additive quantum numbers
T 3 and Y will be computed below (see Table 3.10 on page 232).

(ii) The linear space S2(Z) (see Fig. 3.3). We have

S2eijk = 1
3

`

(1) + (12) − (13) − (123)
´

eijk = vijk (3.48)

where
vijk := 1

3
(eijk + ejik − ekji − ejki).

These vectors can be used in order to construct a basis of the linear subspace
S2(Z). In fact, the following eight vectors

v112, v122, v132, v113, v123, v133, v223, v233

form a basis of S2(Z). Thus, the dimension of S2(Z) is 8. Graphically, the
indices are obtained by the regular filling of the corresponding Young frame:

1 1

2

1 2

2

1 3

2

1 1

3

1 2

3

1 3

3

2 2

3

2 3

3

(3.49)

(iii) The linear space S3(Z). We have

S3eijk = 1
3

`

(1) − (12) + (13) − (132)
´

eijk = wijk

where wijk := 1
3
(eijk − ejik + ekji − ekij). The eight vectors

w112, w122, w132, w113, w123, w133, w223, w233

form a basis of S3(Z). Thus, the dimension of S3(Z) is equal to 8. Since the
Young symmetrizers S2 and S3 belong to the same Young frame, the indices of
the basis vectors w112, . . . are the same as for the basis vectors v112, . . . in (ii).
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(iv) The linear space S4(Z). We have

S4(eijk) =
1

3!

X

π∈Sym(3)

sgn(π) · π(eijk) = zijk.

This is the antisymmetrization of eijk. Explicitly,

zijk := 1
6
(eijk − eikj + ejki − ejik + ekij − ekji).

The one-dimensional linear space S4(Z) has the basis vector z123. Graphically,
this corresponds to the diagram

3

2

1

(3.50)

The Clebsch–Gordan coefficients. Consider the baryon octet (Fig. 3.3 on
page 228). Then

v112 =
3
X

i,j,k=1

Cijk
112 ei ⊗ ej ⊗ ek,

by (3.48). The real numbers Cijk
112 are called the Clebsch–Gordan coefficients of v112.

For example, C112
112 = 2

3
. Similarly, the Clebsch–Gordan coefficients are defined for

uijk, vijk, wijk. In terms of physics, the Clebsch–Gordan coefficients tell us how to
obtain the particle states of a multiplet from the product states ei ⊗ ej ⊗ ek. As a
rule, one uses normalized particle states. The advantage is that the Clebsch–Gordan
coefficients only depend on the symmetry group, but not on the concrete physical
situation.

The Clebsch–Gordan coefficients provide physicists with very useful sym-
metry information which can be computed via group theory in a universal
way, without using details of the specific physical situation.

The Lie algebra su(3). For the physical interpretation of the preceding ap-
proach, the Lie algebra su(3) of the Lie group SU(3) plays a fundamental role
in order to construct observables (i.e., self-adjoint operators on the quark Hilbert
space X whose eigenvalues are quantum numbers). Set

e1 :=

0

B

@

1

0

0

1

C

A

, e2 :=

0

B

@

0

1

0

1

C

A

, e3 :=

0

B

@

0

0

1

1

C

A

.

Then the Hilbert space X (i.e., the quark space) is equal to C
3. The group SU(3)

acts on X by matrix multiplication. The elements G of SU(3) have the form

G := eA, A ∈ su(3).

Here, A = lnG for all G ∈ SU(3) with ||I − G|| < 1. Recall that the complex
(3 × 3)-matrix A is an element of su(3) iff A† = −A and tr(A) = 0. The map
G �→ lnG is a diffeomorphism from an open neighborhood of the unit element I of
SU(3) onto an open neighborhood of the zero element of the Lie algebra su(3) (see
Sect. 7.7 of Vol. I). Let us introduce the following eight Gell-Mann matrices:
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λ1 =

0

B

@

0 1 0

1 0 0

0 0 0

1

C

A

, λ2 =

0

B

@

0 −i 0

i 0 0

0 0 0

1

C

A

, λ3 =

0

B

@

1 0 0

0 −1 0

0 0 0

1

C

A

, λ4 :=

0

B

@

0 0 1

0 0 0

1 0 0

1

C

A

(3.51)

and

λ5 :=

0

B

@

0 0 −i

0 0 0

i 0 0

1

C

A

, λ6 :=

0

B

@

0 0 0

0 0 1

0 1 0

1

C

A

, λ7 :=

0

B

@

0 0 0

0 0 −i

0 i 0

1

C

A

, λ8 :=
1√
3

0

B

@

1 0 0

0 1 0

0 0 −2

1

C

A

.

These matrices are self-adjoint and traceless. Set Ak := −iλk. Then the eight matri-
ces Ak, k = 1, . . . , 8 form a basis of the real Lie algebra su(3) with the commutation
rules

[Aj , Ak]− =

3
X

l=1

cjkl Al, j, k = 1, . . . , 8.

The numbers cjkl are called the structure constants of the Lie algebra su(3). Ex-
plicitly, cjkl is antisymmetric with respect to the indices j, k, l. Moreover,

c123 = 2, c147 = c246 = c257 = c345 = −c156 = −c367 = 1, c458 = c678 =
√

3.

Remark. Generally, physicists do not use the commutation rules for the real Lie
algebra su(3). They like to use self-adjoint matrices which correspond to physical
observables in quantum mechanics. Therefore, physicists use the commutation rules

[λj , λk]− = 2i

3
X

l=1

fjklλl, j, k = 1, . . . , 8

for the self-adjoint Gell-Mann matrices λk which are not elements of the real Lie
algebra su(3). However, the matrices −iλk are skew-adjoint and traceless, and hence
they are elements of su(3). The distinction between the different versions vanishes
if we pass to the complexfication of the real Lie algebra su(3). This is the complex
Lie algebra slC(3,C) of all complex traceless (3×3)-matrices. This will be discussed
below.

Isospin component T 3, hypercharge Y, and weight diagrams. We in-
troduce the self-adjoint operators T3,Y : X → X defined by

T3 :=
λ3

2
, Y :=

λ8√
3
.

Hence

T3 =

0

B

@

1
2

0 0

0 − 1
2

0

0 0 0

1

C

A

, Y =

0

B

@

1
3

0 0

0 1
3

0

0 0 − 2
3

1

C

A

. (3.52)

Then, the three quark states e1, e2, e3 are common eigenvectors of the operators T3

and Y with

T3ej = T 3(ej) ej , Yej = Y(ej) ej , j = 1, 2, 3.

The eigenvalue T 3(ej) (resp. Y(ej)) is called the third component of the isospin
(resp. the hypercharge) of the quark ej . The values can be found in Table 3.10.
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Table 3.10. The quantum numbers of quarks, antiquarks, and of composed
quark states

quantum numbers T 3 Y Q
`

weight tuple (T 3, Y)
´

u-quark e1
1
2

1
3

2
3
e

d-quark e2 − 1
2

1
3

− 1
3
e

s-quark e3 0 − 2
3

− 1
3
e

ū-antiquark ē1 − 1
2

− 1
3

− 2
3
e

d̄-antiquark ē2 1
2

− 1
3

1
3
e

s̄-antiquark ē3 0 2
3

1
3
e

proton p 1
2

1 e uud

neutron n − 1
2

1 0 udd

meson π+ 1 0 e ud̄

The tuple (T 3(ej),Y(ej)) is called the weight tuple of ej . The values are depicted
in Fig. 3.5. For example, the u-quark e1 has the weight tuple

(T 3(u),Y(u)) = ( 1
2
, 1

3
).

For two weight tuples, we write

(T 3,Y) < (T 3
+ ,Y+) (3.53)

iff either T 3 < T 3
+ or T 3 = T 3

+ ,Y < Y+. For example, the u-quark e1 has the
highest weight tuple in Fig. 3.5. In a natural way, the operators T3 and Y can be
extended to the Hilbert space Z of three composed quarks. Explicitly, by (3.45),
we get

T3(ei ⊗ ej ⊗ ek) = (T 3(ei) + T 3(ej) + T 3(ek))(ei ⊗ ej ⊗ ek).

Thus, T 3 is an additive quantum number. The same is true for the hypercharge Y.
In particular, by (3.44), for the proton we get

T3|p〉 = 1
2
|p〉, Y|p〉 = |p〉.

Hence the proton has the weight tuple (T 3,Y) = ( 1
2
, 1). This coincides with the

value indicated in Fig. 3.3.
The Cartan subalgebra of the Lie algebra su(3). The diagonal matrices

iT3 = iλ3/2 and iY = iλ8/
√

3 are elements of the Lie algebra su(3). The linear
hull span(T3,Y) forms a subalgebra of the real Lie algebra su(3) which is called the
Cartan subalgebra C(su(3)) of su(3).

The Hilbert space structure of the real Lie algebra su(3). For the Gell-
Mann matrices, we have the following trace formulas:
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Fig. 3.5. The quark triplet R(1, 0) and the antiquark triplet R(0, 1)

tr(λiλj) = 2δij , i, j = 1, . . . , 8.

We set
〈A|B〉 := −6 tr(AB) for all A,B ∈ su(3).

We introduce the normalization factor 6 in order to get 〈A|B〉 = −K(A,B) for all
A,B ∈ su(3) where K is the Killing form of su(3) to be introduced below. The real
linear space su(3) becomes a Hilbert with respect to the inner product 〈A|B〉. For
Bj := − i√

12
λj , we get

〈Bi|Bj〉 = δij , i, j = 1, . . . , 8.

Thus, the matrices B1, B2, . . . , B8 form an orthonormal basis of su(3).
The irreducible representations of the Lie group SU(3). The complete

system of irreducible representations of the group SU(3) can be labelled by R(q, p)
where q, p = 0, 1, 2, . . . Here, the irreducible representation R(q, p) of SU(3) acts on
a complex Hilbert space of dimension degR(q, p) where

degR(q, p) = 1
2
(q + 1)(p+ 1)(q + p+ 2). (3.54)

This is equal to the number of particles of the corresponding multiplet.13 For ex-
ample,

• degR(0, 0) = 1, degR(1, 0) = deg(R(0, 1) = 3, degR(1, 1) = 8,
degR(2, 0) = degR(2, 0) = 6, degR(3, 0) = degR(0, 3) = 10.

Physicists use the following notation:

• R(0, 0)) = 1, R(1, 0) = 3, R(0, 1) = 3̄, R(1, 1) = 8,
R(2, 0) = 6, R(0, 2) = 6̄, R(3, 0) = 10, R(0, 3) = 10.

The corresponding multiplets with the weight tuples (T 3,Y) can be found in Figs.
3.4 through 3.6. Table 3.11 on page 240 contains the weight tuples of R(1, 0) through
R(3, 0). In particular, R(0, 0) denotes the trivial representation � : Y → Y on the
one-dimensional complex linear space Y where �(G) is the identity operator for all
G ∈ SU(3).

Note that the diagram of R(q, p) is obtained from the diagram of R(p, q)
(dual diagram) by a reflection at the origin.

13 In terms of mathematics, the relation (3.54) is a special case of Weyl’s dimension
formula for the degrees of irreducible representations of compact Lie groups (see
Vol. IV).
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Fig. 3.6. Duality of weight diagrams

This means that the weight tuples (T 3,Y) are replaced by (−T 3,−Y) (see Fig.
3.6). The highest weight of R(q, p) is equal to

(T 3,Y) = ( 1
2
(q + p), 1

3
(q − p)).

Élie Cartan’s adjoint representation of the real Lie algebra su(3) on
itself, and the Killing form. Fix A ∈ su(3). Define

ad(A)B := [A,B]− for all B ∈ su(3).

This yields the linear operator ad(A) : su(3) → su(3). The map A �→ ad(A) yields
a representation of the Lie algebra su(3) on the real linear space su(3). Define

K(A,B) := tr(ad(A) ad(B)) for all A,B ∈ su(3).

Explicitly,
K(A,B) = 6 tr(AB) for all A,B ∈ su(3).

Élie Cartan’s adjoint representation of the group SU(3) on its Lie
algebra su(3). Fix G ∈ SU(3). Define

Ad(G)B := GBG−1 for all B ∈ su(3).

The map G �→ Ad(G) is a representation of the group SU(3) on the real linear space
su(3). This follows from (GH)B(GH)−1 = G(HBH−1)G−1. This representation is
called the adjoint representation

Ad : SU(3) → GL(su(3))

of SU(3) on su(3). Fix A ∈ su(3). Set G(t) := etA for all t ∈ R. Then G(t) ∈ SU(3)
for all t ∈ R. Differentiating Ad(G(t))B with respect to t at the point t = 0, we get

d

dt
Ad(G(t))B|t=0 = AB −BA = [A,B]− = ad(A)B.

This way, we obtain the adjoint representation ad of su(3) on itself. One can show
that the adjoint representation of SU(3) on su(3) is irreducible, and it corresponds
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to R(1, 1). Graphically, it is described by Fig. 3.8, which corresponds to the baryon
octet of the proton. According to the general theory of semisimple Lie algebras,
the quantum numbers (T 3,Y) of the adjoint representation of SU(3) on su(3) are
called the root tuples of the Lie algebra su(3); they play a fundamental role in the
structure theory of semisimple Lie algebras (see Sect. 3.15.2).

Isospin and the Gell-Mann–Okubo mass formula. Finally, let us intro-
duce the isospin operator

|T|2 :=

3
X

j=1

(Tj)2

on the quark space X. Explicitly, we obtain the diagonal operator

|T|2 = 3
4

0

B

@

1 0 0

0 1 0

0 0 0

1

C

A

.

Thus, for j = 1, 2,, we get

|T|2ej = T (T + 1)ej , T = 1
2

and |T|2e3 = T (T + 1)e3, T = 0.

Therefore, physicists assign to the u-quark e1 and d-quark e2 (resp. to the s-quark
e3) the isospin T = 1

2
(resp. T = 0). The isospin is not an additive quantum

number. For the proton and the neutron, we get

|T|2 |p〉 = T (T + 1) |p〉, |T|2 |n〉 = T (T + 1) |n〉, T = 1
2
.

Thus, the proton and the neutron have the same isospin T = 1
2
, but the different

isospin components T 3 = 1
2

and T 3 = − 1
2
, respectively. In 1962 Okubo proposed

the following mass formula

m = a+ bY + c
`

T (T + 1) − 1
4
Y2´. (3.55)

This is the mass m of a particle of isospin T and hypercharge Y if the particle is
contained in a baryon multiplet.14 The free coefficients a, b, c have to be chosen in
such a way that they fit best the experimental values of the baryon multiplet under
consideration. For the baryon octet of the neutron n (Fig. 3.3), we get

mn +mΞ0 = 3
2
mΛ + 1

2
mΣ0

which fits fairly well the experimental values of 2255 MeV/c2 (left-hand side) and
2270 MeV/c2 (right-hand side). Gell-Mann used the Okubo mass formula in or-
der to predict the mass m = 1672MeV/c2 of the unknown Ω− particle (see Fig.
3.4). This particle was discovered in 1964. Note that the mass formula (3.55) does
not take the electromagnetic interaction into account. Physicists assume that the
electromagnetic interaction causes additional mass differences.

Generalization to the group SU(n). Fix n = 2, 3, . . . The tensor method also
works if we replace the group SU(3) by the group SU(n). Then we start with the n-
dimensional complex Hilbert spaceX with the orthonormal basis e1, . . . , en, and the
Sym(n)-Young symmetrizers yield the decomposition of the tensor products into
linear subspaces which have the following two crucial properties: they are invariant
under the action of the group SU(n), and the corresponding representation of SU(n)
is irreducible.

14 S. Okubo, Note on unitary symmetry in strong interaction, Progr. Theor. Phys.
27 (1962), 949–966.
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Fig. 3.7. Meson octet of π+: R(1, 1)

3.14.2 Antiquarks and Mesons

Particles and antiparticles in nature are mathematically described by du-
ality. The dual weight diagram to the weight diagram of the quarks u, d, s
corresponds to the antiquarks ū, d̄, s̄.

Folklore

The Einstein summation convention. In this section, we will sum over equal
upper and lower indices from 1 to 3. For example

tmm = t11 + t22 + t33.

This expression is called a trace. As we will show below, the distinction between
upper and lower indices is crucial for quickly detecting invariant expressions via the
principle of the correct index picture (see Chap. 8). In particular, traces will play
the decisive role. Our goal is to motivate Fig. 3.5 on page 233. To begin with, we
set

ē1 :=

0

B

@

1

0

0

1

C

A

, ē2 :=

0

B

@

0

1

0

1

C

A

, ē3 :=

0

B

@

0

0

1

1

C

A

.

The dual Hilbert space Xd of antiquarks. Let Xd denote the dual space
to the 3-dimensional complex Hilbert space X of quarks. The two complex lin-
ear spaces X and Xd are isomorphic to C

3. Let us describe the space Xd as a
3-dimensional complex Hilbert space with the orthonormal basis ē1, ē2, ē3 which
corresponds to the antiquarks ū, d̄, s̄, respectively. In addition, we will describe the
flavor symmetry of the antiquarks ū, d̄, s̄ by means of the dual representation

G �→ (G−1)d

of the quark flavor group SU(3). Explicitly, the representation � : SU(3) → GL(Xd)
is given by

�(G) (cj ē
j) := (G−1)d(cj ē

j), c1, c2, c3 ∈ C. (3.56)

Since we have G = eA with A ∈ su(3), we get (G−1)d = e−Ad

. This induces the
dual representation

A �→ −Ad
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Fig. 3.8. Root tuples of the Lie algebra su(3)

of the Lie algebra su(3) on the antiquark space Xd. Explicitly, we get the map
σ : su(3) → gl(Xd) with

σ(A) (cj ē
j) := −Ad(cj ē

j), c1, c2, c3 ∈ C.

Since both the isospin operator T3 and the hypercharge operator Y from (3.52) are
multiples of elements in the Lie algebra su(3), we define

σ(T3) := −(T3)d = −T3, σ(Y) := −(Y3)d = −Y3.

To simplify notation, following the convention used by physicists, we replace σ(T3)
and σ(Y) by T3 and Y, respectively. This way, we get

T3ē1 := −T 3(e1) ē
1, Yē1 = −Y(e1) ē

1.

The same is true if we replace e1 by e2 or e3 (resp. ē1 by ē2 or ē1). This yields the
quantum numbers (T 3,Y) indicated in Fig. 3.5(b) on page 233. Observe that the
antiquark diagram (b) is obtained from the quark diagram (a) by reflection at the
origin. The irreducible representation of the group SU(3) on the antiquark space
Xd is denoted by R(0, 1) or 3̄ (dual representation to the quark representation
R(1, 0)).

The reduction of the tensor product X ⊗Xd. We want to show that

R(1, 0) ⊗R(0, 1) = R(1, 1) ⊕R(0, 0). (3.57)

Physicists briefly write

3 ⊗ 3̄ = 8 ⊕ 1. (3.58)

The representation of the group SU(3) on the tensor product X ⊗Xd is given by

�(G) (ej ⊗ ēk) := Gej ⊗ ēk + ej ⊗ (G−1)d ēk, j, k = 1, 2, 3

for all G ∈ SU(3). Furthermore, for all A ∈ su(3), the map

σ(A)(ej ⊗ ēk) := Aej ⊗ ēk + ej ⊗ (−Adēk), j, k = 1, 2, 3

describes the representation of the real Lie algebra su(3) on X ⊗Xd. Set

zkj := ej ⊗ ēk.
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Every element of X ⊗Xd can be written as

tjkz
k
j =

“

tjk − 1
3
tmmδ

j
k

”

zkj + 1
3
tmmδ

j
kz

k
j

where the coefficients tjk are complex numbers. This corresponds to the decompo-
sition

X ⊗Xd = W ⊕ Y
with W := {sjkz

k
j : sjj = 0} and Y := {azjj : a ∈ C}. Thus, dimY = 1. Since

dim(X ⊗Xd) = 9, we get dimW = 8.

Proposition 3.13 The linear subspace Y is invariant under the action of the group
SU(3).

Proof. We will use a simple argument which is crucial for the invariant theory. Let
G ∈ SU(3). The basic transformation formulas

0

B

@

e1′

e2′

e3′

1

C

A

= G

0

B

@

e1
e2
e3

1

C

A

,

0

B

@

ē1
′

ē2
′

ē3
′

1

C

A

= (G−1)d

0

B

@

ē1

ē2

ē3

1

C

A

can be written as

ej′ = Gj
j′ej , ēj

′
= Gj′

j ē
j , Gj

j′G
k′
j = δk

′
j′ ,

since GG−1 = I. The same is true if we interchange the index j with j′. It follows

from tjk(ej ⊗ ē
k) = tjkG

j′

j G
k
k′(ej′ ⊗ ēk

′
) = tj

′

k′(ej′ ⊗ ēk
′
) that

tj
′

k′ = Gj′

j G
k
k′ tjk.

Hence tj
′

j′ = δkj t
j
k. This implies the key relation

tj
′

j′ = tjj

called the trace invariance. The same argument yields ej′ ⊗ ēj
′

= ej ⊗ ēj , that is,

zj
′

j′ = zjj . �

Similarly, one shows that the linear subspace W is invariant under the action of
SU(3). Furthermore, one can show that W and Y are irreducible linear subspaces
of the linear space X ⊗ Xd under the action of the group SU(3). The following
eight vectors

• z21 , z12 , z31 , z13 , z32 , z23 ,
• z1 := 2−1/2(z11 − z22), z2 := 6−1/2(z11 + z22 − 2z33)

form an orthonormal basis of W. By Fig. 3.5 on page 233,

T3z21 =
`

T 3(e1) + T 3(ē2)
´

z21 = ( 1
2

+ 1
2
) z21 = z21 , Yz21 =

`

Y(e1) + Y(ē2)
´

z21 = 0.

Similarly, we get all the quantum numbers depicted in Fig. 3.7 on page 236. It can
be shown that the action of SU(3) on W (resp. Y ) corresponds to R(1, 1) (resp.
R(0, 0)).
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3.14.3 The Method of Highest Weight for Composed Particles

The method of highest weight is used by physicists in elementary particle
physics because of its simplicity and elegance.

Folklore

In elementary particle physics, one wants to construct all the possible multiplets of
hadrons (baryons and mesons). To this end, one considers all the tensor products
X1 ⊗ X2 ⊗ · · · ⊗ Xn of quark spaces (Xj = X) and antiquark spaces (Xk = X̄),
and one decomposes them into a direct sum

X1 ⊗X2 ⊗ · · · ⊗Xn = Y1 ⊕ Y2 ⊕ · · · ⊕ Ym

of linear subspaces in such a way that there exist irreducible representations of the
group SU(3) on Y1, . . . , Ym (complete reducibility). This can be explicitly done by
using Young symmetrizers, as we explained above. However, if one only wants to
know the size of the multiplets (i.e., the dimensions of the linear invariant subspaces
Y1, . . . , Ym,) then one can quickly obtain this by using the method of highest weight.
Using Table 3.11, this method proceeds as follows:

Step 1: Compute the quantum numbers T 3 and Y of the tensor products of quarks
and antiquarks. Note that T 3 and Y are additive quantum numbers.

Step 2: Choose the quantum tuple (T 3
0 ,Y0) of highest weight (see (3.53) on page

232). Concerning this highest weight, there exists precisely one irreducible rep-
resentation R(q0, p0) of SU(3). Explicitly,

q0 = T 3
0 + 3

2
Y0, p0 = T 3

0 − 3
2
Y0. (3.59)

Cancel the weight tuples corresponding to R(q0, p0) (see Table 3.11).
Step 3: Determine the highest weight (T 3

1 ,Y1) of the remaining pairs of quantum
numbers. This yields the irreducible representation R(q1, p1), and so on.

Example 1. We want to show that

R(1, 0) ⊗R(0, 1) = R(1, 1) ⊕R(0, 0). (3.60)

Physicists briefly write

3 ⊗ 3̄ = 8 ⊕ 1.

This corresponds to (3.58) above (meson octet). In terms of mathematics, this
means that

X ⊗ X̄ = Y8 ⊕ Y1

where X = span(e1, e2, e3) (quark space) and X̄ = span(ē1, ē2, ē3) (antiquark
space). The group SU(3) acts on the complex Hilbert spaces X and X̄, and hence
it acts on the 9-dimensional complex Hilbert space X ⊗ X̄. Moreover, the group
SU(3) acts on the 8-dimensional linear subspace Y8 via the irreducible represen-
tation R(1, 1), and SU(3) acts on the one-dimensional linear subspace Y1 via the
trivial representation R(0, 0). In fact, we have

T3(ej ⊗ ēk) = (T 3(ej) + T 3(ēk))(ej ⊗ ēk),
Y(ej ⊗ ēk) = (Y(ej) + Y(ēk))(ej ⊗ ēk).

Choose j = 1 and k = 2. By Fig. 3.5 on page 233, we get
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Table 3.11. The group SU(3)

irreducible

representation ordered weight tuples (quantum number (T 3, Y))

of the group

SU(3)

R(0, 0) = 1 (0, 0)

R(1, 0) = 3
`

1
2
, 1

3

´

,
`

0,− 2
3

´

,
`

− 1
2
, 1

3

´

, (quarks; Fig. 3.5)

R(0, 1) = 3̄
`

1
2
,− 1

3

´

,
`

0, 2
3

´

,
`

− 1
2
,− 1

3

´

, (antiquarks; Fig. 3.5)

R(2, 0) = 6
`

1, 2
3

´

,
`

1
2
,− 1

3

´

,
`

0, 2
3

´

,
`

0,− 4
3

´

,
`

− 1
2
,− 1

3

´

,
`

−1, 2
3

´

R(0, 2) = 6̄
`

1,− 2
3

´

,
`

1
2
, 1

3

´

,
`

0, 4
3

´

,
`

0,− 2
3

´

,
`

− 1
2
, 1

3

´

,
`

−1,− 2
3

´

R(1, 1) = 8 (1, 0),
`

1
2
, 1
´

,
`

1
2
,−1

´

, (0, 0), (0, 0),
`

− 1
2
, 1
´

,
`

− 1
2
,−1

´

, (−1, 0)

(8-multiplet of the proton; Fig. 3.3)

R(3, 0) = 10
`

3
2
, 1
´

, (1, 0),
`

1
2
, 1
´

,
`

1
2
,−1

´

, (0, 0), (0,−2),
`

− 1
2
, 1
´

,
`

− 1
2
,−1

´

, (−1, 0),
`

− 3
2
, 1
´

(10-multiplet of the Ω−particle; Fig. 3.4)

T 3(e1 ⊗ ē2) = T 3(e1) + T 3(ē2) = 1
2

+ 1
2

= 1, Y(e1 ⊗ ē2) = 1
3
− 1

3
= 0.

For the nine vectors ej ⊗ ēk, j, k = 1, 2, 3, we get the following 9 tuples (T 3,Y)
ordered by weight:

(1, 0), ( 1
2
, 1), ( 1

2
,−1), (0, 0), (0, 0), (− 1

2
, 1), (− 1

2
,−1), (−1, 0), (0, 0).

The tuple (1, 0) has the highest weight, in the sense of (3.53). This yields the irre-
ducible representation R(1, 1) because of (3.59). By Table 3.11, R(1, 1) corresponds
to the 8 tuples

(1, 0), ( 1
2
, 1), ( 1

2
,−1), (0, 0), (0, 0), (− 1

2
, 1), (− 1

2
,−1), (−1, 0).

It remains the tuple (0, 0) which corresponds to R(0, 0). This way, we get (3.60).
Example 2. We want to show that

R(1, 0) ⊗R(1, 0) ⊗R(1, 0) = R(3, 0) ⊕R(1, 1) ⊕R(1, 1) ⊕R(0, 0). (3.61)

Physicists briefly write

3 ⊗ 3 ⊗ 3 = 10 ⊕ 8 ⊕ 8 ⊕ 1.

This is (3.46). To get (3.61) by means of the method of highest weight, note that

T3(ei ⊗ ej ⊗ ek) = (T 3(ei) + T 3(ej) + T 3(ek)) (ei ⊗ ej ⊗ ek),
Y3(ei ⊗ ej ⊗ ek) = (Y(ei) + Y(ej) + Y(ek)) (ei ⊗ ej ⊗ ek).
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For the 27 states ei ⊗ ej ⊗ ek, i, j, k = 1, 2, 3, we get 27 tuples of quantum numbers
(T 3,Y). The vector e1⊗e1⊗e1 yields the tuple ( 3

2
, 1) which has the highest weight.

This corresponds to R(3, 0) because of (3.59). Taking away the 10 tuples (T 3,Y)
belonging to R(3, 0) by Table 3.11, the tuple (1, 0) has the highest weight of all the
remaining tuples. This corresponds to R(1, 1). Taking away the tuples belonging to
R(1, 1), the tuple (1, 0) has the highest weight of the remaining tuples. Again taking
away the tuples belonging to R(1, 1), the tuple (0, 0) remains; this corresponds to
R(0, 0). This way, we get (3.61) (see Problem 3.25 on page 320).

From the physical point of view, many examples in elementary particle physics
can be found in W. Greiner and B. Müller, Quantum Mechanics: Symmetries,
Springer, New York, 1996. From the mathematical point of view, many examples
about specific Lie algebras and their representations are studied in B. Simon (1996)
quoted on page 208, B. Hall, Lie Groups, Lie Algebras, and Representations: An
Elementary Introduction, Springer, New York, 2003, W. Fulton and J. Harris, Rep-
resentation Theory: A First Course, Springer, Berlin, 1991. We also recommend
S. Sternberg, Group Theory and Physics, Cambridge University Press, 1995; this
textbook combines mathematics with applications to physics.

3.14.4 The Pauli Exclusion Principle and the Color of Quarks

In the Standard model of particle physics, there are six quarks: u (up), d (down),
c (charme), s (strange), b (bottom), t (top). Quarks possess the spin 1

2
�, that

is, they are fermions. By the Pauli exclusion principle, two quarks of a particle
system cannot be in the same state. This can be described by states which are
antisymmetric under the permutation of quarks and antiquarks.

Hidden internal degrees of freedom of quarks and antiquarks. Histori-
cally, violation of the Pauli exclusion principle was caused by the naive description
of the Δ++ baryon (see Fig. 3.4 on page 229). To solve this problem, the particle
was described by the state |Δ++, Sz = 3

2
〉 given by

1√
6

3
X

i,j,k=1

εijk
`

|u〉 ⊗ |i〉 ⊗ | 1
2
〉
´

⊗
`

|u〉 ⊗ |j〉 ⊗ | 1
2
〉
´

⊗
`

|u〉 ⊗ |k〉 ⊗ | 1
2
〉
´

. (3.62)

Here, the symbol | 1
2
〉 (resp. | − 1

2
〉) describes a spin state of spin 1

2
� (resp. − 1

2
�)

with respect to the z-axis of a fixed Cartesian coordinate system. The crucial point
is that

The three symbols |1〉, |2〉, |3〉 describe three additional internal degrees
of freedom of quarks.

These degrees of freedom have fancy names. They are called the colors of the
quarks, namely, |1〉 (red), |2〉 (green), |3〉 (blue). In mathematics, additional degrees
of freedom are described by tensor products. Using the Dirac calculus, physicists
briefly write

|Δ++, Sz = 3
2
〉 =

1√
6

3
X

i,j,k=1

εijk|u↑i , u
↑
j , u

↑
k〉.

Note that the state is antisymmetric with respect to the color indices i, j, k because
of the antisymmetric coefficient εijk. In this setting, the 3-dimensional complex
Hilbert space X with the basis vectors e1, e2, e3 (quark space) has to be replaced
by the 18-dimensional complex linear space X with the basis vectors

ei ⊗ |j〉 ⊗ |Sz〉, i, j = 1, 2, 3, Sz = ± 1
2
.
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Recall that e1 = |u〉, e2 = |d〉, and e3 = |s〉. For example, the tensor product
e1 ⊗ |2〉 ⊗ | 1

2
〉 describes the state of a green u-quark which has the spin 1

2
� in

direction of the z-axis. We postulate that

The group SU(3) is the symmetry group of the quark colors.

Whereas electromagnetic interaction is based on photons which see the electric
charge of the particles, strong interaction is based on eight gluons which see the
colors of quarks. Based on the SU(3) color symmetry, we introduce the color charge
operator Yc defined by

Yc|j〉 = ηj |j〉, η1 = η2 := 1
3
, η3 := − 2

3
.

From the mathematical point of view, the operator Yc has the same properties
as the hypercharge operator Y. Physically, this operator concerns the completely
different phenomenon of quark colors. For example,

Yc( |1〉 ⊗ |2〉 ⊗ |3〉 ) =
`

1
3

+ 1
3
− 2

3

´

( |1〉 ⊗ |2〉 ⊗ |3〉 ) = 0.

A state is called colorless (or white) iff it is an eigenstate of the color charge operator
Yc with eigenvalue zero. For example,

Yc|Δ++, Sz = 3
2
〉 = 0.

Therefore, the particle Δ++ is white. In quantum chromodynamics, one postulates
that

Baryons and mesons are white.

This crucial property restricts seriously the possible states of elementary particles
including color. Physicists say that baryons and mesons are color singlets. Observe
that the state (3.62) above does not violate the Pauli exclusion principle, since it
is antisymmetric with respect to a permutation of the colors. Baryons and mesons
are called hadrons.15

Physical evidence for colors. In 1971, the color of quarks was introduced
by Fritzsch (born 1943) and Gell-Mann (born 1929). Experimentally, the color
hypothesis is established by the following facts:

• the lifetime of the neutral pion π0, and
• the rate of hadron production in electron-positron annihilation.

Let us briefly discuss the lifetime problem. In the early 1960s, Gell-Mann created a
new approach to quantum field theory called current algebras. To sketch the basic
idea, consider first the classical equation

�t + div J = 0

which describes the conservation of charge. Here, � is the electric charge density, and
J is the electric current density vector. In the heuristic current algebra approach,
the operator-valued quantum field function

ψ = ψ(x, t)

is used in order to construct operators � and J which satisfy appropriate commu-
tation relations governed by the presupposed symmetries. In terms of physics, the

15 The Greek word hadrós means ‘strong’. Hadrons are elementary particles which
are governed by strong interaction.
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operators � and J describe the currents of elementary particles in particle acceler-
ators. The point is that this method allows us to compute the lifetime of particles.
For example, the measured lifetime of the neutral pion π0 is 0.83 · 10−16 seconds.
Applying the technique of current algebras to the early quark model, the computed
lifetime was 7.5 ·10−16 second; this value is wrong by the factor 9. However, includ-
ing the additional three color degrees of freedom of quarks, one obtains the correct
value of the lifetime. Roughly speaking, the three colors of the quarks decrease the
lifetime of the π0 by the factor 9. More details can be found in H. Fritzsch, Quarks:
The Stuff of Matter, Allen Lane, Penguin Books, London, 1983. For current alge-
bras, we refer to S. Treiman, R. Jackiw, and D. Gross (Eds.), Lectures on Current
Algebras and its Applications, Princeton University Press, 1972.

Quark dynamics and gauge theory. So far, we have only considered quan-
tum states which do not depend on space and time variables. In 1971/72, quantum
chromodynamics was created by Fritzsch (born 1943), Gell-Mann (born 1929), and
Leutwyler (born 1938), as a quantum field theory for describing strong interaction
in nature. This quantum field depends on space and time. Nowadays, quantum
chromodynamics is part of the Standard Model in elementary particle physics. The
basic papers on quantum chromodynamics are:

H. Fritzsch and M. Gell-Mann, Quarks and what else? Proceedings of
the XVIth International Conference on High Energy Physics, Chicago 2
(1972), 135–165 (based on current algebras).

H. Fritzsch, M. Gell-Mann, and H. Leutwyler, Advantages of the color
octet gluon picture, Phys. Lett. 47B (1973), 365–368 (Lagrangian of a
gauge field theory).

One has to distinguish between

• quantum chromodynamics (QCD) as a classical field theory, and
• the quantization of the classical field theory.

The classical approach is an SU(3)-gauge theory which is well established from the
mathematical point of view. This will be studied in Chap. 15. For the quantized
version, a rigorous approach is missing. Physicists use the universal method of path
integrals combined with the method of perturbation theory. We recommend:

O. Nachtmann, Elementary Particle Physics: Concepts and Phenomena,
Springer, Berlin, 1990.

M. Böhm, A. Denner, and H. Joos, Gauge Theories of the Strong and
Electroweak Interaction, Teubner, Stuttgart, 2001.

S. Narison, Quantum Chromodynamics as a Theory of Hadrons: From
Partons to Confinement, Cambridge University Press, 2004.

P. Langacker, The Standard Model and Beyond, CRC Press, Boca Raton,
Florida, 2010.

I. Ioffe, V. Fadin, and L. Lipatov, Quantum Chromodynamics: Perturba-
tive and Non-Perturbative Aspects, Cambridge University Press, 2010.

Quark confinement. Quarks possess two important properties: the quark con-
finement and the asymptotic freedom of quarks. In Vol. II, we started quantum
electrodynamics by considering free electrons, positrons, and photons. Then we
computed physical processes by switching on the weak electromagnetic interaction.
The situation changes completely in strong interaction.

There are no free quarks.

This is called the quark confinement. A complete theoretical understanding of this
phenomenon is still missing. The following two fundamental papers are devoted to
the confinement problem:
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N. Seiberg and E. Witten, Electric-magnetic duality, monopole conden-
sation, and confinement in N = 2 supersymmetric Yang–Mills theory,
Nuclear Phys. B426 (1994), 19–52.

N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry break-
ing in N = 2 supersymmetric QCD, Nucl. Physics B431, 485–550.

From the mathematical point of view, these two papers opened a new door to the
Donaldson theory on four-dimensional manifolds by using the Seiberg–Witten equa-
tion. Donaldson used the Yang–Mills equations in order to prove that the classic
space R

4 can be equipped with exotic manifold structures which are not diffeo-
morphic to the classical manifold structure of R

4. It turns out that the Donaldson
theory can be based on the Seiberg–Witten equation which has nice compactness
properties, in contrast to the Yang–Mills equation. We refer to:

J. Moore, Lectures on Seiberg–Witten Invariants, Springer, Berlin, 1996
(nice introduction).

J. Morgan, The Seiberg–Witten Equations and Applications to the Topol-
ogy of Four-Manifolds, Princeton University Press, 1996.

Asymptotic freedom. This phenomenon means that we have the following
strange physical situation:

If the energy goes to infinity, quarks behave like free particles.

This means that the method of perturbation theory in strong interaction works best
if the energy is extremely high. For low energies, perturbation theory does not work
very well for strong interaction, in contrast to electroweak interaction. Therefore,
physicists are interested in inventing non-perturbative methods. The asymptotic
freedom in strong interaction was discovered by Gross (born 1941), Politzer (born
1949), and Wilczek (born 1951) in 1973. For this discovery, the three physicists
were awarded the 2004 Nobel prize in physics. The basic papers are:

D. Gross and F. Wilczek, Asymptotically free gauge theories, Phys. Rev.
D9 (4) (1973), 980–993.

D. Politzer, Reliable perturbative results for strong interactions? Phys.
Rev. 30 (2) (1973), 1346–1349.

3.15 The Complexification of Lie Algebras

In mathematics and physics, the theory is frequently simplified by passing
from real Lie algebras to complex Lie algebras. The complexification LC of
a real Lie algebra L has the same dimension as the original Lie algebra L,
dimLC = dimL. In contrast to this, for the realification LR of the complex
Lie algebra LC, we get dimLR = 2dimLC.

Folklore

Complexification and realification. As a prototype, consider the set C of com-
plex numbers with respect to the usual multiplication ab. This is a 1-dimensional
complex algebra with the basis element 1. However, C is also a 2-dimensional real
algebra with the basis elements 1 and i. In order to emphasize the difference, we
denote the two algebras by C and CR. Observe that the dimensions are different.
We have

• dimR CR = 2 (real dimension),
• dimC C = 1 (complex dimension).
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For the real linear spaces CR and R
2, we have the linear isomorphism

CR  R
2.

The complex 1-dimensional linear space C is called the complexification of the real
1-dimensional linear space R. Moreover, the real 2-dimensional linear space R

2 is
called the realification of the complex 1-dimensional space C. Similarly, the real
linear space R

2 consists of all the tuples

(a, b), a, b ∈ R.

The complexification of R
2 is the space C

2 which consists of all the tuples

(a, b), a, b ∈ C.

Let a = α+ iβ and b = γ + iδ where α, β, γ, δ ∈ R. If we regard the complex linear
space C

2 as a real linear space, then we obtain the realification of C
2 which consists

of all the linear combinations

α(1, 0) + β(i, 0) + γ(0, 1) + δ(0, i), α, β, γ, δ ∈ R.

Note that (1, 0) and (i, 0) are linearly dependent on C
2 because of (i, 0) = i(1, 0). But

(1, 0) and (i, 0) are linearly independent if we only allow real linear combinations.
In fact, if

α(1, 0) + β(i, 0) = 0, α, β ∈ R,

then (α + βi, 0) = 0, and hence α = β = 0. Therefore, the realification of the
complex 2-dimensional linear space C

2 is a real 4-dimensional linear space which is
isomorphic to R

4. Similarly, let n = 1, 2, . . .

• The complexification of the real n-dimensional linear space R
n is the complex

n-dimensional linear space C
n.

• The realification of the complex n-dimensional space C
n is a real 2n-dimensional

space which is isomorphic to R
2n.

Complexification LC of a real Lie algebra L. Let L be a real Lie algebra.
Then the tensor product C ⊗ L is a complex linear space by setting

α(w ⊗A) + β(z ⊗B) := (αw) ⊗A+ (βz) ⊗B, α, β ∈ C.

In addition, C⊗L becomes a complex Lie algebra LC by introducing the Lie product

[w ⊗A, z ⊗B] := (wz) ⊗ [A,B], w, z ∈ C, A,B ∈ L.

One can show that these definitions do not depend on the choice of the represen-
tatives.

Example. The real Lie algebra sl(2,C) of complex traceless (2 × 2)-matrices
has the basis

B+ :=

 

0 1

0 0

!

, B− :=

 

0 0

1 0

!

, C :=

 

1 0

0 −1

!

with the commutation relations

[C,B+]− = 2B+, [C,B−]− = −2B−, [B+, B−]− = C. (3.63)

The complexification of sl(2,C) has the basis
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1 ⊗B+, 1 ⊗B−, 1 ⊗ C.

Set χ(z+ ⊗B+ + z− ⊗B− + z ⊗ C) := z+B+ + z−B− + zC. It follows from

z+B+ + z−B− + zC = 0, z+, z−, z ∈ C

that z+ = z− = z = 0. Thus, the complex Lie algebra LC is isomorphic to the
complex Lie algebra spanned by the matrices B+, B−, C. This coincides with the
complex Lie algebra slC(2,C) of all complex traceless (2 × 2)-matrices.

Realification LR of a complex Lie algebra L. Let L be a complex Lie
algebra. Restricting to real linear combinations, we obtain a real Lie algebra denoted
by LR. If B1, . . . , Bm is a basis of L, then B1, . . . , Bm, iB1, . . . , iBm is a basis of LR.

Examples. Observe that we have to distinguish between the following notions:

• The 3-dimensional real Lie algebra sl(2,R) consists of all the real traceless (2×2)-
matrices. The matrices B+, B−, C form a basis of sl(2,R).

• The 6-dimensional real Lie algebra sl(2,C) consists of all the complex traceless
(2 × 2)-matrices. The six matrices B+, B−, C, iB+, iB−, iC form a basis of
sl(2,C).

• The 3-dimensional complex Lie algebra slC(2,C) consists of all the complex trace-
less (2 × 2)-matrices. The three matrices B+, B−, C form a basis of slC(2,C).

• The 3-dimensional real Lie algebra su(2) consists of all the complex skew-adjoint
traceless (2 × 2)-matrices. The three matrices

iσ1 = i(B+ +B−), iσ2 = B+ −B−, iσ3 = iC

form a basis of su(2). Here, the three self-adjoint matrices

σ1 :=

 

0 1

1 0

!

, σ2 :=

 

0 −i

i 0

!

, σ3 :=

 

1 0

0 −1

!

(3.64)

are called the Pauli matrices.
• The Pauli matrices σ1, σ2, σ3 form a basis of the 3-dimensional real linear space

of complex self-adjoint traceless (2 × 2)-matrices.
• The six matrices σ1, σ2, σ3, iσ1, iσ2, iσ3 form a basis of the real Lie algebra
sl(2,C).

• The complexification su(2)C of the 3-dimensional real Lie algebra su(2) is the
3-dimensional complex Lie algebra slC(2,C).

• The complexification sl(2,C)C of the 3-dimensional real Lie algebra sl(2,C) is
the 3-dimensional complex Lie algebra slC(2,C).

• The realification (slC(2,C))R of the 3-dimensional complex Lie algebra slC(2,C)
is the 6-dimensional real Lie algebra sl(2,C).

3.15.1 Basic Ideas

Élie Cartan’s theory of semisimple Lie algebras and their representations is based
on the notions ‘root’ and ‘weight’. We want to explain the origin of these notions.
To this end, we will consider diagonal matrices.

The group G. Consider all the diagonal matrices

G :=

0

B

@

eλ1 0 0

0 eλ2 0

0 0 eλ3

1

C

A
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where λ1, λ2, λ3 are complex numbers with λ1 + λ2 + λ3 = 0. Thus, detG = 1, and
hence G is a commutative subgroup of SL(3,C).

The Lie algebra LG. Let LG denote the set of all the matrices

A :=

0

B

@

λ1 0 0

0 λ2 0

0 0 λ3

1

C

A

where λ1, λ2, λ3 are given as above. Because of λ1 + λ2 + λ3 = 0, every matrix A
is traceless. Thus, the commutative complex Lie algebra LG is a Lie subalgebra of
slC(3,C). Using linearization, every matrix G ∈ G can be written as

G = I +A+ r,

where the remainder r goes to zero if |λ1| + |λ2| + |λ3| → 0. Consequently, the
complex Lie algebra LG is the complexification of the Lie algebra to the Lie group
G. Choose the matrix Eij defined in (3.65) below. Then

[A,Eij ]− = (λi − λj)Eij , i, j = 1, 2, 3

for all A ∈ LG. Define

αij(A) := λi − λj , A ∈ LG.

This way, we get a linear functional

αij : LG → C, i, j = 1, 2, 3, i �= j

which is called a root functional (or briefly a root).
The representation of the group G. Fix N = 1, 2, . . . Let G denote the

group of all the complex (N ×N)-matrices

�(G) :=

0

B

B

B

B

@

eΛ1 0 0 . . . 0

0 eΛ2 0 . . . 0
...

. . .
...

0 0 0 . . . eΛN

1

C

C

C

C

A

where
Λi := mi1λ1 +mi2λ2 +mi3λ3, i = 1, 2, 3,

and all the coefficients mij are integers. The map

� : G → G

is a group morphism. Thus, � is a representation of the group G on C
N .16 The

numbers Λ1, . . . , ΛN are called the weights of the matrix �(G).
The Lie algebra LG and weights. The linearization of �(G) yields I + A

with

16 Here, we assume that the matrix �(G) acts on column matrices c = (c1, . . . , cN )d

by means of the matrix multiplication �(G)c.



248 3. Representations of Symmetries in Mathematics and Physics

A :=

0

B

B

B

B

@

Λ1 0 0 . . . 0

0 Λ2 0 . . . 0
...

. . .
...

0 0 0 . . . ΛN

1

C

C

C

C

A

.

The eigenvalues of this matrix are precisely the weights of �(G). The matrix A is
an element of the complexification of the Lie algebra to the group G.

This approach is trivial. However, Cartan related successfully the investiga-
tion of the group SL(3,C) and the Lie algebra slC(3,C) to a subgroup and a Lie
subalgebra of diagonal matrices, respectively. Let us sketch this.

3.15.2 The Complex Lie Algebra slC(3, C) and Root Functionals

Root functionals allow a complete classification of semisimple complex Lie
algebras. The basic idea is to investigate the common eigenvalues of the
operator family {ad(C)} where C runs through the Cartan subalgebra CL
of the given Lie algebra L. In terms of physics, the evaluation of root
functionals with respect to a basis of the Cartan subalgebra yields tuples
of quantum numbers which classify particles.

Folklore

The complex Lie algebra slC(3,C). Set

L := slC(3,C).

The complex Lie algebra L consists of all the complex traceless (3×3)-matrices. We
want to discuss the main ideas of Cartan’s general theory for complex semisimple
Lie algebras by considering the special case L. In particular, we want to help the
reader to understand the relation between the quark model and the approach to
semisimple Lie algebras used in mathematics. The general theory will be considered
in Volume IV on quantum mathematics.17 For the Gell-Mann matrices λ1, . . . , λ8,
it follows from

a1λ1 + a2λ2 + . . .+ a8λ8 = 0, a1, a2, . . . , a8 ∈ C

that aj = 0 for all j = 1, . . . , 8. Thus, the matrices λ1, . . . , λ8 form a basis of the
complex Lie algebra L. Since the matrices iλ1, . . . , iλ8 form a basis of the real Lie
algebra su(3), the complex Lie algebra L is the complexification of the real Lie
algebra su(3). The Killing form of the Lie algebra L reads as18

K(A,B) := 6 tr(AB) for all A,B ∈ L.

For the Gell-Mann matrices, we get

K(λi, λj) = 12δij , i, j = 1, . . . , 8.

In order to get a simpler basis of the Lie algebra L, set

17 We recommend B. Simon (1996) quoted on page 208 and A. Kirillov, jr., An
Introduction to Lie Groups and Lie Algebras, Cambridge University Press, 2008.

18 The Killing form of slC(n,C), n = 2, 3, . . . , is equal to K(A,B) = 2n tr(AB) for
all A,B ∈ slC(n,C).
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E11 :=

0

B

@

1 0 0

0 0 0

0 0 0

1

C

A

, E12 :=

0

B

@

0 1 0

0 0 0

0 0 0

1

C

A

, . . . , E33 :=

0

B

@

0 0 0

0 0 0

0 0 1

1

C

A

. (3.65)

That is, the entries of the (3×3)-matrix Eij are equal to zero, except for the number
1 at the (ij)-place. The eight matrices

E12, E13, E21, E23, E31, E32, E11 − E22, E22 −E33

form a basis of the complex Lie algebra L = slC(3,C).
The standard Cartan subalgebra. By definition, the standard Cartan sub-

algebra CL of the Lie algebra L = slC(3,C) consists of all the diagonal matrices

C =

0

B

@

d1 0 0

0 d2 0

0 0 d3

1

C

A

, d1, d2, d3 ∈ C

with tr(C) = d1 + d2 + d3 = 0. Define

δj(C) := dj , j = 1, 2, 3. (3.66)

Below we will use the linear functional δj : CL → C as a potential for the root
functional. The two matrices

T3,Y ∈ CL
form a basis of the standard Cartan subalgebra CL. The matrix T3 (resp. Y) is
called the operator of the third component of the isospin (resp. of hypercharge).19

Alternatively, the two matrices E11 − E22, E22 − E33 form a basis of the standard
Cartan subalgebra CL, too.

The main goal. It is our main goal to simplify the commutation relations of
the complex Lie algebra L = slC(3,C) by using

[Cj , Bj ]− = 2Bj , [Cj , B−j ]− = −2B−j , [Bj , B−j ]− = Cj (3.67)

if j = ±1,±2,±3. In addition, we want to get the direct sum decomposition

L = CL ⊕ (CL)⊥

where

• the six linearly independent elements B1, B2, B3, B−1, B−2, B−3 of the Lie alge-
bra L span the linear subspace (CL)⊥ of L, and

• the six elements C1, C2, C3, C−1, C−2, C−3 of L span the 2-dimensional standard
Cartan subalgebra CL.

• Consequently, the eight elements T3,Y, B1, B2, B3.B−1, B−2, B−3 form a basis of
the complex Lie algebra L.

Explicitly, we choose

• B1 := E12, B−1 = E21, B2 := E23, B−2 := E32, B3 := E13, B−3 := E31,

19 The explicit form can be found in (3.52) on page 231. Note that the self-adjoint
matrices T3 and Y are not elements of the Lie algebra su(3). However, the
passage to the complexification slC(3,C) allows us to include the crucial physical
quantities T3 and Y into the Lie algebra setting.
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• C1 := E11 − E22, C2 := E22 − E33, C3 := E11 − E33,
• C−1 = −C1, C−2 = −C2, C−3 := −C3.

In fact, this yields (3.67).
Fix the index j = 1, 2, 3. It follows from the commutation relations (3.67) that,

for fixed index j = 1, 2, 3,−1,−2,−3, the map

(B+, B−, C) �→ (Bj , B−j , Cj)

yields a Lie algebra isomorphism from slC(2,C) onto the subalgebra of L spanned
by the matrices Bj , B−j , Cj . In this sense, the complex Lie algebra slC(2,C) is
the building block of the Lie algebra L = sl(3,C)C. In order to obtain the nice

commutation relations (3.67) in a general setting, Élie Cartan used root functionals.
Let us discuss this.

Root functionals. First let us translate the nice commutation relations (3.67)
into the language of eigenvalues. To this end, fix A ∈ L, and set

ad(A)(B) := [A,B]− for all B ∈ L.

This yields the linear operator ad(A) : L → L. The complex number λ is an
eigenvalue of the linear operator ad(A) iff there exists a non-zero element B of L
such that ad(B) = λB. Equivalently,

[A,B]− = λB.

By definition, a root functional α of the complex Lie algebra L is a linear non-zero
functional

α : CL → C

on the standard Cartan subalgebra CL of L such that there exists a non-zero element
B ∈ L with

ad(C)(B) = α(C)B for all C ∈ CL.
In other words, the values α(C) of the root functional α are the eigenvalues of
all the operators ad(C), C ∈ CL, with respect to a common eigenvector B. Root
functionals are briefly called roots of the Lie algebra L.

Proposition 3.14 The complex Lie algebra slC(3,C) has precisely six roots αij
with i, j = 1, 2, 3 and i �= j. Explicitly,

αij(C) = di − dj for all C ∈ CL

where d1, d2, d3 are the diagonal elements of the matrix C.

Proof. Fix i, j = 1, 2, 3 with i �= j. Then

[C,Eij ]− = (di − dj)Eij for all C ∈ CL,

and [C,C′]− = 0 for all C,C′ ∈ CL. This yields the claim. �

Let us change the notation by setting

α1 := α12, α2 := α23, α3 := α13, α−1 := −α1, α−2 := −α2, α3 := −α3.

The root potential and cohomology. Using the functional δi from (3.66),
we get

αij := δi − δj , i, j = 1, 2, 3, i �= j. (3.68)
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Fig. 3.9. Roots of the Lie algebra slC(3,C)

The linear functionals δi : CL → C are called root potentials. In Sect. 16.8.4 of Vol.
I, we have discussed the Heisenberg relation

�ωnm = En − Em, n,m = 0, 1, . . . , n > m

between the energy levels En of the electron in a molecule and the angular fre-
quencies ωnm of the emitted light. This represents a simple form of cohomology.
Similarly, there lurks cohomology behind (3.68). In Vol. IV on quantum mathemat-
ics, we will show that cohomology plays a crucial role not only in topology, but also
in the theory of Lie algebras. We refer to V. Varadarajan, Lie Groups, Lie Algebras,
and Their Representations, Springer, New York, 1984.

The passage from root functionals to physics (quantum numbers).
Since the diagonal matrices T3 and Y from (3.52) on page 231 form a basis of the
standard Cartan subalgebra CL, we have

αj(aT
3 + bY) = aT 3 + bY for all a, b ∈ C

with the so-called root tuples

(αj(T
3), αj(Y)) = (T 3,Y), j = ±1,±2,±3. (3.69)

Obviously, there is a one-to-one correspondence between the root functionals αj
and the root tuples. Therefore, the root tuples are also called roots. Using (3.52),
we get

α1(T
3) = α12(T

3) = δ1(T
3) − δ2(T3) = 1

2
+ 1

2
= 1,

and α1(Y) = α12(Y) = δ1(Y) − δ2(Y) = 1
3
− 1

3
= 0. The same way, we obtain the

root tuples of the complex Lie algebra slC(3,C) :

(1, 0), (− 1
2
, 1), ( 1

2
, 1), (−1, 0), ( 1

2
,−1), (− 1

2
,−1)

corresponding to the roots α1, α2, α3,−α1,−α2,−α3, respectively.
This is depicted in Fig. 3.9. Observe that this diagram coincides with the baryon

octet of the proton (Fig. 3.3 on page 228). The roots α1, α2 form a basis of the six
roots, with respect to integer coefficients. In fact,

α3 = α1 + α2, α−1 = −α1, α−2 = −α2, α−3 = −α3.

Moreover, the roots α1, α2, α3 (resp. −α1,−α2,−α3) are called positive (resp. neg-
ative). Finally, the roots α1 and α2 are called simple; they are positive, but they
cannot be represented as the sum of two positive roots, in contrast to α3.

The Cartan matrix and the Dynkin diagram. Using the root basis α1, α2,
the matrix
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Cartan(slC(3,C)) := (αi(Cj))i,j=1,2 =

 

2 −1

−1 2

!

is called the Cartan matrix of the Lie algebra slC(3,C). Note that α1(C2) = α2(C1).
By convention, this is depicted by the Dynkin diagram from Fig. 3.10.

Geometric root system and its Weyl symmetry group. Fix n = 2, 3, . . .
Let R be a finite subset of R

n which has the following properties:
(R1) The linear hull of R is equal to R

n, and the origin 0 is not an element of
the set R.

(R2) Symmetry: For each α ∈ R, there is a linear bijective map

sα : R
n → R

n

which leaves the set R invariant. Moreover, sα sends α to -α, and the fixed points
of the map sα form an (n− 1)-dimensional linear subspace of R

n.
(R3) sα(β) − β is an integer multiple of α for all α, β ∈ R.
Then the set R is called a root system of R

n. The group of all invertible real
(n × n)-matrices generated by all of the symmetry maps sα, α ∈ R, is called the
Weyl group W (R) of the root system R.

Example. The six roots depicted in Fig. 3.9 form a root system. The map
sα1 is the reflection at the Y-axis. Analogously, every map sαj is a reflection at a
straight line passing through the origin and being orthogonal to the root αj where
j = ±1,±2,±3. Thus, the Weyl group has six elements, and it is isomorphic to the
symmetry group of an equilateral triangle (Fig. 3.2 on page 210). In turn, this is
isomorphic to the symmetric group Sym(3).

The general theory of the classification of complex semisimple Lie algebras
can be based on analyzing the geometry of root systems. This is equivalent to
the classification of Cartan matrices. In geometric terms, this corresponds to the
classification of Dynkin diagrams. We will discuss this in Vol. IV. We refer to J.
Serre, Complex Semisimple Lie Algebras, Springer, Berlin, 2001.

3.15.3 Representations of the Complex Lie Algebra slC(3, C) and
Weight Functionals

Representation theory is governed by the highest weight.
Folklore

Again set L := slC(3,C). Let � : L → gl(X) be a representation of the complex Lie
algebra slC(3,C) on the finite-dimensional complex linear space X. By definition,
a weight functional w of L is a linear functional

w : CL → C

on the standard Cartan subalgebra CL of L such that there exists a non-zero vector
x ∈ X with

�(C)x = w(C)x for all C ∈ CL.
In other words, the values w(C) of the weight functional w are the eigenvalues of
all the operators �(C) with respect to a common eigenvector x. Weight functionals
are briefly called weights of the Lie algebra L.

The importance of the highest weight. The weight w of a representation
of the complex Lie algebra L is called a highest weight iff w+α is not a weight for
all positive roots α = α1, α2. The main result reads as follows.
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Fig. 3.10. Dynkin diagram of the complex Lie algebra slC(3,C)

Theorem 3.15 There is a one-to-one correspondence between the irreducible rep-
resentations of the complex Lie algebra slC(3,C) on finite-dimensional complex lin-
ear spaces and the tuples

(q, p),

where q and p are non-negative integers.

More precisely, for a given tuple (q, p), there exists an irreducible representation
� of L with the highest weight w such that

w(T3) = 1
2
(q + p), w(Y) = 1

3
(q − p).

This way, we get all the possible irreducible representations of L, up to equiv-
alence. The tuple (q, p) determines uniquely the irreducible representation up to
equivalence. In terms of geometry, the irreducible representations are labelled by
the subset

{(q, p) : q, p ∈ Z, q, p ≥ 0}
of the lattice Z × Z. In terms of physics, the irreducible representation of slC(3,C)
corresponds to the (T 3,Y)-diagram of the irreducible representation R(q, p) of the
group SU(3) with the highest weight (T 3,Y) = ( 1

2
(q + p), 1

3
(q − p)). For R(1, 0)

(quarks), R(0, 1) (antiquarks), R(1, 1) (baryon octet of the proton), see Figs. 3.3
and 3.5 on page 228. The sophisticated proof of the theorem can be found in B.
Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction,
Sect. 5.3, Springer, New York, 2003. There exists a perfect theory of weights for
the representation of complex semisimple Lie algebras.

Weyl’s unitarian trick. Observe that the diagrams for the weight tuples
(T 3,Y) of the irreducible representations R(q, p) of the Lie group SU(3) coincide
with the diagrams for the weight tuples of the irreducible representations of the Lie
algebra slC(3,C). The reason for this is the fact that the Lie algebra su(3) of SU(3)
has the complexification slC(3,C). This way, the study of the Lie algebra slC(3,C)
can be reduced to the study of the compact Lie group SU(3) whose irreducible rep-
resentations are equivalent to unitary representations. This simplifies substantially
the approach. Weyl used this argument quite often; he coined this the ’unitarian
trick.’

In particular, it follows from the unitarian trick that the representations
of the complex Lie algebra slC(3,C) on finite-dimensional complex linear
spaces are completely reducible.

3.16 Classification of Groups

3.16.1 Simplicity

The morphisms of a simple group are trivial. Simple groups can be regarded
as the atoms in group theory.

Folklore
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A group G is called trivial iff it consists only of the unit element (i.e., G = {1}).
Consider the group morphism

μ : G → H. (3.70)

This is a map which respects the group structure (i.e., μ(GH) = μ(G)μ(H) for all
G,H ∈ G). The image μ(G) of a group morphism is a subgroup of H. The morphism
μ is called trivial iff the image μ(G) is trivial or it is isomorphic to the group G.

A group is called simple iff it is not trivial and there are only trivial mor-
phisms defined on the group.

A normal subgroup N of the group G is called trivial iff N = {1} or N = G.
A nontrivial group is simple iff it has only trivial normal subgroups.

More precisely, the kernel μ−1(1) of the group morphism (3.70) is a normal subgroup
of G and we have the group isomorphism

G/μ−1(1)  μ(G).

For the proofs, see Sect. 4.1.3 of Vol. II.20

Example. Choose the integer m ≥ 2. Let

Zm := {e2πki/m : k = 0, 1, . . . ,m− 1}.

This is a cyclic group of order m. Note that Gm = 1 if G := e2πi/m. The group Zm

is simple iff m is a prime number. Similarly, we define

Zm = {0, 1, . . . ,m− 1}.

This is an additive group with respect to the usual addition of integers by adding
the relationm = 0. For example, ifm = 5, then 3+4 = 2, since 3+4 = 7 = 5+2 = 2.
The group Zm is also denoted by Z/m or Z/mod m.

A finite group is simple if its order is a prime number. A commutative group
is simple iff it is cyclic of prime order (i.e., it is isomorphic to Zm where m is a
prime number). The group Sym(2) is simple. The groups Sym(n) are not simple
if n = 3, 4, . . . The subgroup An of all the even permutations of n elements is a
normal subgroup of Sym(n). If n ≥ 5, then An is simple.

The additive group Z of integers is not simple. For example, the even integers
form a proper normal subgroup.

The classification of finite simple groups was only completed in about 1980.
The largest finite simple group is the Monster group which is closely related to
conformal quantum field theory (see Sect. 17.5 of Vol. I). Mathematicians needed
more than 100 years in order to get the final classification of finite simple groups.
Note that the axioms for a group are extremely simple.

20 Recall that a normal subgroup N of G is a subgroup with GNG−1 ∈ N for all
N ∈ N and G ∈ G. Moreover, recall the following classification of group mor-
phisms: surjective (resp. injective) group morphisms are called epimorphisms
(resp. monomorphisms). Bijective group morphisms are called isomorphisms.
Consider now the special case where the image group H coincides with the orig-
inal group G. In this special case, group morphisms (resp. group isomorphisms)
are called endomorphisms (resp. automorphisms). The same classification will be
used for linear spaces, Hilbert spaces, algebras, Lie algebras, rings, and modules.
The general setting in terms of category theory will be studied in Vol. IV on
quantum mathematics.
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It turns out that the innocently looking group axioms describe a huge variety
of mathematical models.

This phenomenon is typical for mathematics. A complete mathematical classifica-
tion of all groups (i.e., the classification of all possible symmetries) is hopeless at
present.

3.16.2 Direct Product and Semisimplicity

If G and H are groups, then the product set G × H := {(G,H) : G ∈ G, H ∈ H}
becomes a group by introducing the product

(G,H)(G′, H ′) := (GG′, HH ′), G,G′ ∈ G, H,H ′ ∈ H.

This is called the direct product group G×H. Analogously, the direct product group
of a finite number of groups is defined.

A group is called semisimple (or completely reducible) iff it is isomorphic
to the direct product of a finite number of simple groups.

For example, the symmetric Sym(3) is not simple, but semisimple, since we have
the group isomorphism

Sym(3)  Z2 ×Z3.

The direct product G1 × G2 is called trivial iff one of the factors is trivial. A group
G is called indecomposable iff it admits no non-trivial decomposition G = G1 × G2.

• A finite commutative group is indecomposable iff it is cyclic of prime power order
(i.e., the group is isomorphic to Zm where m = pk, p is a prime number, and k
is a positive integer).

• Every non-trivial finite commutative group G is a direct product of indecompos-
able finite commutative groups G = G1 × · · · × Gm.

The proof can be found in C. Curtis and I. Reiner, Representation Theory of Finite
Groups and Associative Algebras, p. 12, Interscience, New York, 1962.

3.16.3 Solvablity

Solvable groups are closely related to commutative groups.
Folklore

By definition, the commutant G′ of a group G is the smallest subgroup of G which
contains all the so-called commutators

GHG−1H−1, G,H ∈ G.

The symbol G′′ denotes the commutant of G′, and so on. By definition, a group
is called solvable iff some iterated commutant is trivial. This means that there is
some positive integer n such that

G(n) = {1}.

If the group G is commutative, then G′ = {1}. Thus, solvability generalizes the
commutativity of groups. A group G is solvable iff there exists a finite sequence

G0 = {1} ⊆ G1 ⊆ G2 ⊆ . . . ⊆ Gm = G

of subgroups Gk of G such that Gk is a normal subgroup of Gk+1 and the quotient
group Gk+1/Gk is commutative if k = 0, 1, . . . ,m− 1.

Examples. Every finite group of prime power order is solvable.
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• The symmetric group Sym(n) is solvable if n = 2, 3, 4;
• Sym(n) is not solvable if n = 5, 6, . . .; this is a consequence of the simplicity of

the group An if n ≥ 5.

This fact is important for classic Galois theory. Galois (1811–1832) showed that
the non-solvability of the symmetric group Sym(n) for n ≥ 5 is responsible for the
non-solvability of algebraic equations of order n ≥ 5 by radicals.

A deep result in group theory is the 1963 Feit–Thompson theorem which says
that

Every finite group of odd order is solvable.

This theorem was conjectured by Burnside in 1911.21

3.16.4 Semidirect Product

In mathematics and physics, one encounters much more semidirect prod-
ucts of groups than direct products.

Folklore

The group E+(3) of proper Euclidean motions as a paradigm. Consider the
transformation

y = a+Gx for all x ∈ R
3 (3.71)

with fixed matrices G ∈ SO(3) and a ∈ R
3. Here, SO(3) denotes the Lie group of all

the special orthogonal matrices G ∈ SO(3), that is, G is a real (3× 3)-matrix with
GGd = I and detG = 1. In terms of geometry, let us use a right-handed Cartesian
(x1, x2, x3)-coordinate system of the Euclidean manifold E

3 and set

x :=

0

B

@

x1

x2

x3

1

C

A

, y :=

0

B

@

y1

y2

y3

1

C

A

, a :=

0

B

@

a1

a2

a3

1

C

A

.

Then the transformation (3.71) describes the combination of a rotation x �→ Gx
with a translation x �→ a + x. All the transformations (3.71) form a group called
the group of proper Euclidean motions. In fact, if y = a+Gx and x = b+Hu, then

y = (a+Gb) +GHu.

If we use the symbol (a,G) for the transformation (3.71), then the composition of
transformations corresponds to the product rule

(a,G)(b,H) = (a+Gb,GH).

This group is denoted by the symbol

E+(3) = R
3

� SO(3),

and it is called the semidirect product of the translation group R
3 with the rotation

group SO(3).

21 Walter Feit (born 1930). For his contributions to group theory, John Thompson
(born 1932) was awarded the Fields medal in 1970, the Wolf prize in 1992, and
the Abel prize in 2008.
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• The unit element of R
3

�SO(3) is given by (0, I). In fact, (a,G)(0, I) is equal to
(a+G0, GI) = (a,G).

• For the inverse element, we get (a,G)−1 = (−G−1a,G−1). In fact,

(a,G)(−G−1a,G−1) = (a−GG−1a,GG−1) = (0, I).

As a preparation for the generalization considered below, set

N := {(a, I) : a ∈ R
3}, G := {(0, G) : G ∈ SO(3)}.

Then, N is a normal subgroup of R
3

� SO(3) which is isomorphic to the first
factor R

3, and G acts on R
3. Mnemonically, the asymmetry of the product symbol

R
3

� SO(3) distinguishes between the different properties of the two factors.

Roughly speaking, the second factor acts on the first factor which is iso-
morphic to a normal subgroup.

In order to translate the semidirect product R
3
�SO(3) into a matrix group, consider

all the real (4 × 4)-matrices

{a,G} :=

 

G a

0 1

!

, a ∈ R
3, G ∈ SO(3). (3.72)

For the matrix product, we get

 

G a

0 1

! 

H b

0 1

!

=

 

GH a+Gb

0 1

!

.

Thus, {a,G}{b,H} = {a + Gb,GH}. Consequently, all the matrices (3.72) form a
subgroup of the group GL(4,R) of real invertible (4× 4)-matrices which is isomor-
phic to R

3
� SO(3). The isomorphism is given by the map {a,G} �→ (a,G). If we

set G = I (resp. a = 0), then the matrices (3.72) are restricted to a group which
is isomorphic to the translation group R

3 (resp. the rotation group SO(3)). Note
that the direct product R

3 × SO(3) consists of all the symbols (a,G) with a ∈ R
3

and G ∈ SO(3). The multiplication law reads as

(a,G)(b,H) = (a+ b,GH).

Thus, the direct product R
3×SO(3) differs from the semidirect product R

3
�SO(3).

The general definition. Let N and G be (multiplicative) groups. Recall that
the direct product N × G consists of all the symbols (a,G) with a ∈ N and G ∈ G
equipped with the multiplication

(a,G)(b,H) = (ab,GH).

Now let us consider a slight modification. By definition, the semidirect product
N �� G consists of all the symbols (a,G) with a ∈ N and a ∈ T together with the
multiplication rule

(a,G)(b,H) = (a�(G)b,GH). (3.73)

In order to explain the meaning of �, let

A : N → N
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be a bijective group morphism (i.e., A is a group automorphism). With respect to
the composition of maps, all the automorphisms of N form a group Aut(N ) called
the automorphisms group Aut(N ) of N . Now to the point. We choose a group
morphism

� : G → Aut(N ).

This means that the group G acts on the group N . Note that if a, b ∈ N and G ∈ G,
then �(G)b ∈ N , and hence

a�(G)b ∈ N .
By a straightforward argument, one can show that the group axioms are satisfied
for the multiplication law (3.73) (see Sect. 7.5 of Vol. I). In particular, we have

• (1,1) (unit element), and
• (a,G)−1 = (�(G)−1a−1, G−1) (inverse element).

This way, we get the group N �� G as claimed above.
Obviously, the direct product N ×G is a special case of the semidirect product

N �� G if we choose the trivial representation �(G) = I for all G ∈ G.
Products of subgroups. Many applications concern the direct or semidirect

product of subgroups of a given group. Let us discuss this. Suppose that N and G
are subgroups of the group G with trivial intersection (i.e., N ∩G = {1}). Consider
the set

N · G := {aG : a ∈ N , G ∈ G}.

Proposition 3.16 (i) Direct product: If N · G = G · N , then N · G is a subgroup
of G which is isomorphic to the direct product of N with G, that is,

N · G  N × G. (3.74)

For all P ∈ N · G, the decomposition

P = aG, a ∈ N , G ∈ G (3.75)

is unique, and the isomorphism (3.74) is given by the map P �→ (a,G). Moreover, N
and G are normal subgroups of N ·G. For the quotient groups, we have the following
group isomorphisms:

(N · G)/N  G, (N · G)/G  N .

These isomorphisms are given by aG �→ (1, G) and aG �→ (a,1), respectively.22

(ii) Semidirect product: If N is a normal subgroup of G, then N ·G is a subgroup
of G which is isomorphic to the semidirect product of N with G, that is,

N · G  N �� G. (3.76)

For all P ∈ N ·G, the decomposition (3.75) is unique, and the isomorphism (3.76) is
given by the map P �→ (a,G). In addition, the map � is defined by �(G)b := GbG−1

for all b ∈ N , G ∈ G. We have the group isomorphism

(N · G)/N  G.

This isomorphism is given by the map aG �→ G.

22 The notion of quotient group, quotient ring, quotient algebra can be found in
Sect. 4.1.3 of Vol. II.
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Proof. Ad (i). If aG = bH with a, b ∈ N , and G,H ∈ G, then b−1a = HG−1.
Since b−1a ∈ N and HG−1 ∈ G, we get b−1a = 1 and HG−1 = 1. Hence a = b
and G = H. Thus, the decomposition (3.75) is unique. Set χ(aG) := (a,G). Since
bG = Gb, we get

χ(aG · bH) = χ(ab ·GH) = (ab,GH).

Therefore, the map χ : N · G → N × G is an isomorphism.
Ad (ii). The trick is to use the decomposition

aG · bH = a(GbG−1) ·GH = a�(G)b ·GH.

Hence χ(aG · bH) = (a�(G)b,GH) = (a,G)(b,H). Thus, χ : N · G → N �� G is an
isomorphism. �

Examples. (i) O(3) = O(1)× SO(3). In fact, every real (3× 3)-matrix G with
GGd = I (i.e., G ∈ O(3)) can be written as G = (±I)H with detH = 1. Hence
H ∈ SO(3). Moreover, O(1) = {1,−1}. The claim follows from Prop. 3.16(i).

(ii) Sym(n) = An � Sym(2), n = 3, 4, . . . The subgroup An of Sym(n) consists
of all the even permutations. This is a normal subgroup. Every permutation π in
the symmetric group Sym(n) can be written as πevenπ0 where π0 := (12) if π is
odd, and π0 := (1) if π is even. The claim follows from Prop. 3.16(ii).

(iii) The Euclidean group of motions E(3) = R
3

� O(3) (or the Euclidean
isometry group) consist of all the transformations

y = a+Gx, x ∈ R
3, (3.77)

where a ∈ R
3 and G ∈ O(3). By (i), the group O(3) is generated by rotations and

the reflection x �→ −x at the origin.
(iv) The Poincaré group P (1, 3) = R

4
�O(1, 3) consists of all the transformations

y = a+Gx, x ∈ R
4, where a ∈ R

4 and G ∈ O(1, 3) (Lorentz group). The Poincaré
group is the symmetry group of both Einstein’s theory of special relativity and
quantum field theory (see Sect. 18.3.2).

(v) The affine group A(3) = R
3

� GL(3,R). This group consists of all the
transformations y = a+Gx, x ∈ R

3, where a ∈ R
3 and G ∈ GL(3,R).

The language of exact sequences. Semidirect products can be defined for
many structures in mathematics. To this end, one uses exact sequences which split.
The very effective language of exact sequences will be studied in Vol. IV on quan-
tum mathematics. Coming from algebraic topology and algebraic geometry, this
language is fundamental for modern mathematics.

3.17 Classification of Lie Algebras

3.17.1 The Classification of Complex Simple Lie Algebras

The Lie algebra morphism
μ : L → M

is called trivial iff the image μ(L) is equal to zero or isomorphic to L.

A real or complex Lie algebra L is called simple iff it is not commutative
and there are only trivial morphisms defined on the Lie algebra.
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Equivalently, L is simple iff it is not commutative and it has only the trivial ideals
{0} and L. In his famous 1894 thesis, by completing earlier seminal work of Killing

(1847–1923), Élie Cartan (1869–1951) used the simple Lie algebra slC(2,C) as a
building block in order to prove that there are precisely the following simple finite-
dimensional complex Lie algebras:23

• slC(n,C), n ≥ 2;
• spC(2n,C), n ≥ 2;
• soC(n,C), n ≥ 7;
• E6, E7, E8, F4, G2 (exceptional Lie algebras).

These Lie algebras are pairwise different, that is, they are pairwise not isomorphic.
In the list above, the following Lie algebras are missing: the ‘symplectic’ Lie algebra
spC(2,C), and the ‘orthogonal’ Lie algebras soC(n,C), n = 2, 3, 4, 5, 6. In this con-
nection, note that the Lie algebra soC(2,C) is commutative, and hence not simple.
Furthermore, we have the Lie algebra isomorphism

soC(4,C)  slC(2,C) × slC(2,C).

Therefore, the Lie algebra soC(4,C) is not simple, but semisimple. In addition, we
have the following Lie algebra isomorphisms:

• soC(3,C)  slC(2,C)  spC(2,C),
• soC(5,C)  spC(4,C),
• soC(6,C)  slC(4,C).

Explicitly, we use the following notation:

• glC(n,C) consists of all complex (n×n)-matrices equipped with the Lie product
[A,B]− := AB −BA. The following Lie algebras refer to this Lie product.

• slC(n,C) consists of all traceless matrices in glC(n,C).

• A ∈ soC(n,C) iff A ∈ slC(n,C) and A = −Ad.

• A ∈ spC(2n,C) iff A ∈ slC(2n,C) and AJ = −JAd where J :=

 

0 In
−In 0

!

.24

The complex Lie algebras mentioned above have the following complex dimensions
for n = 1, 2, . . . :

• dim glC(n,C) = n2, dim slC(n,C) = n2 − 1,

• dim spC(2n,C) = n(2n+ 1), dim soC(n,C) = 1
2
n(n− 1),

• dimG2 = 14, dimF4 = 52, dimE6 = 78, dimE7 = 133, dimE8 = 248.

In the late 1880s, Killing summarized important properties of the exceptional Lie

algebras, but he did not prove their existence. This was done by Élie Cartan in
his 1894 thesis. To this end, Cartan had to check numerous Jacobi identities. But
he left this to the reader. A complete a priori proof was given by Harrish-Chandra
(1923–1983) and Chevalley (1909–1984) around 1948.

The exceptional Lie algebras in physics. Some physicists believe that the
exceptional Lie algebras play a crucial role in describing nature. For example, the
exceptional Lie algebra E8 appears in string theory. Moreover, the exceptional Lie
group G2 is fundamental in a variant of the Standard Model in particle physics

23 É. Cartan, Sur la structure des groupes de transformation fini et continus, Thèse,

Paris, 1894. Cartan studied at the École Normale Supérieur in Paris. In 1912 he
became professor at the Sorbonne in Paris.

24 Here, In denotes the (n× n)-unit matrix.
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based on Cayley’s octonions. Finally, it is possible to introduce the algebra E10 as
a generalized exceptional Lie algebra, and E10 is related to some models in quantum
gravity. We refer to:

A. Kleinschmidt and H. Nicolai, E10 Cosmology, J. High Energy Physics
137 (2006), 0601.

Tables for the exceptional Lie algebras can be found in J. Tits, Tables for Simple
Lie Groups and Their Representations, Springer, Berlin, 1967 (in German). See
also page 547. For the sophisticated proof of the classification theorem for complex
simple Lie algebras, we refer to N. Jacobson, Lie Algebras, Dover, New York, 1979,
and to Bourbaki (2001) quoted on page 281.

3.17.2 Semisimple Lie Algebras

Historical remarks. A major problem in representation theory is to prove the
complete reducibility of all the finite-dimensional representations. In his 1894 thesis,
Cartan proved the complete reducibility of the representations of the Lie algebra
sl(2,C) . . . In 1913, Cartan constructed the irreducible representations of all the
complex simple Lie algebras. Weyl noticed that there was a gap in Cartan’s argu-
ment who implicitly used the unproved complete reducibility of the representations.
In 1924, Weyl combined the approach due to Cartan and to Hurewitz (1859–1919)
and Schur (1875–1941) in order to prove the complete reducibility of all the finite-
dimensional representations of complex semisimple Lie algebras. . . 25

Ideals and quotient Lie algebras. Set K = R (real numbers) or K = C

(complex numbers). Let L be a finite-dimensional Lie algebra over K. By definition,
an ideal J of L is a Lie subalgebra which has the property that

[A,B] ∈ J for all A ∈ J , B ∈ L.

Ideals of a Lie algebra play the same crucial role as normal subgroups of a group
(see Sect. 4.1.3 of Vol. II). For example, let C,D ∈ L. Define

C ∼ D iff C −D ∈ J .

This is an equivalence relation The equivalence classes [C] form a Lie algebra over
K denoted by L/J . Explicitly, we set

α[C] + β[D] := [αC + βD], [ [C], [D] ] := [ [C,D] ]

for all C,D ∈ L, and all α, β ∈ K. The point is that these definitions do not depend
on the choice of the representatives. Equivalently, the quotient Lie algebra L/J
can be obtained by using the original Lie algebra L, and by setting A = 0 for all
A ∈ J . For example, if A ∈ J , and B,C ∈ L, α ∈ K, then

A+B = B, [A+B,C] = [B,C], αA = 0.

The direct product of Lie algebras. Let us consider the simplest method
for constructing new Lie algebras. Fix K = R or K = C. Let A and B be Lie algebras
over K. Naturally enough, the product set

A× B := {(A,B) : A ∈ A, B ∈ B}

becomes a Lie algebra over K by setting

25 Weyl used invariant measures of Lie groups due to Hurewitz; these measures
were forerunners of the Haar measure introduced by Haar (1885–1933) in 1933.
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• α(A,B) + γ(C,D) := (αA+ γC, αB + γD) (linear combination),

• [ (A,B), (C,D) ] := ( [A,C], [B,D] ) (Lie product)

for all A,C ∈ A and B,D ∈ B, as well as for all α, γ ∈ K. This Lie algebra is called
the direct product A×B of the Lie algebras A and B. Similarly, we define the direct
product A1 × · · · × Am of a finite number of Lie algebras A1, . . . ,Am over K.

Semisimplicity. Let L be a real (resp. complex) finite-dimensional Lie algebra
different from {0}.

L is called semisimple iff it is isomorphic to the direct product of a finite
number of simple real (resp. complex) Lie algebras.

The trivial Lie group {0} is not simple. By usual convention, {0} is called semisim-
ple. Observe that the complex Lie algebras glC(N,C), N = 1, 2, . . . , are neither
simple nor semisimple. In fact, we have the direct sum26

glC(N,C) = slC(N,C) ⊕ {zI : z ∈ C}, N = 2, 3, . . .

of two ideals. Hence we have the Lie algebra isomorphism

glC(N,C)  slC(N,C) × C

(see statement (ii) on page 264). The first factor is simple, but the second factor –
the complex one-dimensional Lie algebra C – is commutative, and hence not simple.

Weyl’s fundamental theorem. In 1925, Weyl proved the following key result
for the representation theory of semisimple Lie algebras.27

Theorem 3.17 The finite-dimensional representations of a complex finite-dimen-
sional semisimple Lie algebra are completely reducible.

Since semisimple Lie algebras are direct products of simple Lie algebras,
Weyl’s theorem tells us that all the finite-dimensional representations of a com-
plex semisimple Lie algebra are known. This is a consequence of Cartan’s complete
classification of all the simple complex Lie algebras and their irreducible represen-
tations.

Algebraic characterization of semisimplicity in terms of ideals. Let
L be a real (resp. complex) Lie algebra different form {0}. The Lie algebra L is
semisimple iff one of the following equivalent properties holds:

• L is the direct product of simple real (resp. complex) Lie algebras.
• L is the direct sum of simple ideals of L.
• L has no commutative ideal different from {0}.
• Every representation of L over a finite-dimensional real (resp complex) linear

space is completely reducible.
• The radical of L is trivial (i.e., equal to {0}).
The notion of radical will be introduced in the next section.

26 This corresponds to the decomposition A = (A−N−1 tr(A)I) +N−1 tr(A)I for
all A ∈ glC(N,C).

27 H. Weyl, Representation theory for continuous semisimple groups by linear trans-
formations I, II, III, Math. Zeitschrift 23 (1925), 271–309; 24, 328–376, 377–
395, 789–791 (in German). See H. Weyl, Collected Works, Vol. II, pp. 543–647,
Springer, Berlin, 1968.
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3.17.3 Solvability and the Heisenberg Algebra in Quantum
Mechanics

Solvable Lie algebras ar close to both upper triangular matrices and com-
mutative Lie algebras. In contrast to this, semisimple Lie algebras are as
far as possible from being commutative. By Levi’s decomposition theo-
rem, any Lie algebra is built out of a solvable and a semisimple one. The
nontrivial prototype of a solvable Lie algebra is the Heisenberg algebra.

Folklore

Let L be a real or complex Lie algebra. By definition, the commutant L′ of L is
the smallest Lie subalgebra of L which contains all the Lie products

[A,B], A,B ∈ L.

Moreover, L′′ = (L′)′, and so on. The Lie algebra L is said to be solvable iff some
iterated commutant is trivial, that is, there exists a positive integer n such that

L(n) = {0}.

Every commutative Lie algebra is solvable.
Example. The real Lie algebra sut(2,R) consisting of all the matrices

 

0 x

0 0

!

, x ∈ R

is solvable. In fact, it follows from

 

0 x

0 0

! 

0 ξ

0 0

!

−
 

0 ξ

0 0

! 

0 x

0 0

!

=

 

0 0

0 0

!

that sut(2,R)′ = 0. Similarly, we get sut(3,R)′′ = 0. Thus, the Lie algebra sut(3,R)
is solvable.

Since the Heisenberg algebras AHeis(k) and AHeis(R
3) are isomorphic to

sut(3,R), they are solvable.28

In contrast to this, the real Lie algebra sl(2,R) consisting of all the matrices

 

z x

y −z

!

, x, y, z ∈ R

is not solvable, since sl(2,R)′ = sl(2,R) because of the commutation relations
(3.63). The Lie algebra sl(2,R) is semisimple.

A finite-dimensional real or complex Lie algebra L is solvable iff there exists a
finite sequence

L0 = {0} ⊆ L1 ⊆ L2 ⊆ . . . ⊆ Lm = L
of Lie subalgebras Lk of L such that Lk is an ideal of Lk+1 and the quotient Lie
algebra Lk+1/Lk is commutative if k = 0, 1, . . .m− 1.

Lie’s theorem. The following hold:29

28 See Sect. 1.5 on page 106.
29 For the proof, see A. Kirillov, jr., An Introduction to Lie Groups and Lie Alge-

bras, Cambridge University Press, 2008, p. 94.
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• Let � : L → gl(X) be a representation of the finite-dimensional complex solvable
Lie algebra L on the finite-dimensional complex linear spaceX different from {0}.
Then there exists a basis of X such that all the linear operators �(A) correspond
to upper triangular matrices.

• If � is irreducible, then the dimension of X is equal to one.

Thus, in contrast to semisimple Lie algebras, the irreducible representations of a
solvable Lie algebra are trivial.

Élie Cartan’s theorem. Fix n = 1, 2, . . . Let L be a real (resp. complex) Lie
algebra consisting of (n× n)-matrices. Then, the following hold:

• L is solvable iff tr(A[B,C]−) = 0 for all A,B,C ∈ L.
• L is semisimple iff the Killing form

K(A,B) := tr(ad(A) adB), A,B ∈ L

is non-degenerate, that is, it follows from K(A,B) = 0 for all B ∈ L that A = 0.

The radical. If L is a real or complex Lie algebra, then there is a unique
solvable ideal of L which contains any other solvable ideal of L. This solvable ideal
is called the radical rad(L) of L.

L is semisimple iff the radical of L is trivial, rad(L) = {0}.
The quotient Lie algebra L/rad(L) is always semisimple. In other words, the radical
measures the deviation of a Lie algebra from being semisimple.

3.17.4 Semidirect Product and the Levi Decomposition

The fundamental Levi decomposition of a Lie algebra is the prototype of
a semidirect product of Lie algebras.

Folklore

We are given the real or complex Lie algebra L. Suppose that J and S are Lie
subalgebras of L. We write

L = J ⊕ S (3.78)

iff this is true in the sense of linear spaces, that is, every element A of L can be
uniquely written as

A = B + C, B ∈ J , C ∈ S.
Let B,B′ ∈ J and C,C′ ∈ S. For the Lie product, we get

[B + C,B′ + C′] = [B,B′] + [B,C′] + [C,B′] + [C,C′].

(i) Semidirect product. If J is an ideal of L, then (3.78) is called a semidirect
product, and we write L = J � S. Then [B,C′], [C,B′] ∈ J . Hence

[B +B′, C + C′] = ([B,B′] + [B,C′] + [C,B′]) ⊕ [C,C′].

Thus, the quotient Lie algebra L/J is isomorphic to the Lie algebra S.
(ii) Direct product. If J and S are ideals of L, then

[B,C] = 0 for all B ∈ J , C ∈ S.

In fact, [B,C] ∈ J and [B,C] ∈ S. Hence [B,C] = 0. Thus

[B + C,B′ + C′] = [B,B′] + [C,C′].
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Therefore, we have the Lie algebra isomorphism L  J × S. This isomorphism is
given by the map B + C �→ (B,C).

Levi’s decomposition theorem. Let L be a real or complex Lie algebra.
Then there exists a semisimple Lie subalgebra S of L such that we have the direct
sum

L = rad(L) ⊕ S.

The semisimple quotient Lie algebra L/rad(L) is isomorphic to S. Consequently,
for any real or complex Lie algebra L, we have the semidirect product

L = rad(L) � S

where rad(L) is a solvable Lie algebra, and S is a semisimple Lie algebra. In addition
rad(L) is an ideal of L.

A variant of the fundamental Levi theorem was conjectured by Wilhelm Killing
in the late 1880s, and it was proved by Eugenio Levi (1883–1917) in 1905. Levi
also formulated the famous Levi problem on the characterization of the domains
of holomorphy in the theory of analytic functions of several complex variables. In
1911, Levi introduced the parametrix as an approximate fundamental solution of
partial differential equations (i.e., an approximate Green’s function); parametrices
play a key role in the modern theory of pseudo-differential operators.30 Eugenio
Levi was the younger brother of Beppo Levi (1875–1961) who worked in algebraic
geometry, analysis, number theory, and set theory. In First World War (1914–1918),
Eugenio was killed as a soldier.

Infinitesimal Lie groups. We are given the Lie group G. Let the symbol LG
denote the Lie algebra to G. For historical reasons, we call LG the infinitesimal Lie
group to G.

The Lie group G is said to be infinitesimally solvable (resp. infinitesimally
semisimple) iff its Lie algebra is solvable (resp. semisimple).

For example, the infinitesimal Lie group corresponding to the Lie group SU(3) is
nothing else than the real Lie algebra su(3) which is semisimple. Therefore, the Lie
group SU(3) is said to be infinitesimally semisimple.

Let us make some historical remarks. Sophus Lie (1842–1899) used the term
continuous transformation group for local Lie groups in the neighborhood of the unit
element. He only studied the local behavior of Lie groups by means of infinitesimal
transformation groups called Lie algebras in modern terminology. The term Lie

group was introduced by Élie Cartan around 1930, whereas the term Lie algebra
was introduced by Hermann Weyl in his celebrated lectures given at the Institute
for Advanced Study (IAS) in Princeton during the academic year 1933/34. The
classical theory can be found in

S. Lie and F. Engel, Theory of Transformation Groups (in German), Vols.
1–3, Teubner, Leipzig, 1888. Reprint: Chelsea Publ. Company, 1970.

The main collaborator of Lie, Friedrich Engel (1861–1941), discovered that the
exponential map

exp : L → G, A �→ eA

with L := sl(2,C) is surjective for the quotient group G := SL(2,C)/{1,−1}, but
it is not surjective for the group G := SL(2,C). Note that both the groups have
the same Lie algebra sl(2,C). This example shows that the Lie algebra does not
determine the global behavior of the corresponding Lie group.

30 See Yu. Egorov, A. Komech, and M. Shubin, Elements of the Modern Theory of
Partial Differential Equations, Springer, New York, 1999.
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3.17.5 The Casimir Operators

The flow of ideas from physics to mathematics and vice versa is crucial.
Folklore

In 1931, the young Dutch physicist Casimir introduced the so-called Casimir oper-
ator for the rotation group SO(3) in order to study the orbital angular momentum
and the spin in quantum mechanics. In 1935, Casimir (1909–2000) and van der
Waerden (1903–1998) used the idea of Casimir operators in order to give the first
purely algebraic proof of the complete reducibility of finite-dimensional representa-
tions of complex semisimple Lie algebras.31 For the Lie group SU(2), the Casimir
operator possesses an immediate physical interpretation in terms of the electron
spin (see Sect. 7.3 on page 427). At this point, let us sketch the introduction of
the two Casimir operators of the group SU(3) used frequently by physicists. In this
connection, the Schur lemma will play a crucial role. Following the notation used
in physics, we start with the commutation relations

[λj , λk]− =

8
X

l=1

fjklλl, j, k = 1, . . . , 8

and the anticommutation relations

[λj , λk]+ = 4
3
δjkI + 2

8
X

l=1

djklλl, j, k = 1, . . . , 8

for the Gell-Mann matrices λ1, . . . , λ8. Set Bj := − i
2
λj . Then, the matrices

B1, . . . , B8 form a basis of the real Lie algebra su(3) with the commutation re-
lations

[Bj , Bk]− =

8
X

l=1

fjklBl.

Suppose now that we have an irreducible unitary representation

� : SU(3) → GL(X)

of the group SU(3) on the finite-dimensional complex Hilbert spaceX. In particular,
for fixed Bj , the one-parameter subgroup

U(t) := etBj , t ∈ R

of SU(3) is transformed into the one-parameter subgroup {�(U(t)) : t ∈ R}.
Differentiation with respect to time t at the point t = 0 yields the operator

B̂j =
d�(U(t))

dt |t=0
.

31 H. Casimir and B. van der Waerden, Algebraic proof of the complete reducibility
of the representations of semisimple Lie groups, Math. Annalen 111 (1935), 1–11
(in German). The following volume is dedicated to the memory of Casimir on the
occasion of his 100th birthday and the 150th birthday of the Riemann hypothesis:
G. van Dijk and and M. Wakayama (Eds.), Casimir Force, Casimir Operator, and
the Riemann Hypothesis, de Gruyter, Berlin, 2010. For the relation between the
Casimir force (i.e., the Casimir effect) in quantum field theory and the Riemann–
Epstein zeta function, see Sect. 6.6 of Vol. I.
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Hence �(U(t)) = etB̂j for all t ∈ R. The map Bj → B̂j , j = 1, . . . 8, generates the
representation

σ : su(3) → gl(X)

of the Lie algebra su(3). Therefore, all the operators B̂j satisfy the same commu-
tation relations as the matrices Bj . Thus,

[B̂j , B̂k]− =

8
X

l=1

fjklB̂l. (3.79)

Finally, setting Fj := iB̂j , we define the two Casimir operators

C1 :=

8
X

j=1

F 2
j , C2 :=

8
X

j,k,l=1

djklFjFkFl.

Now to the point. First it can be shown that

[C1, Fj ]− = 0, [C2, Fj ]− = 0, j = 1, . . . , 8. (3.80)

This is a consequence of (3.79). Since the representation � is irreducible, the Schur
lemma on page 202 tells us that there exist numbers c1 and c2 such that

Cr = crI, r = 1, 2.

Since the representation � is unitary, all the operators B̂j are skew-adjoint. Hence
all the operators Fj are self-adjoint. Thus, C1 is self-adjoint. Since the coefficients
djkl are symmetric with respect to the indices j, k, l, it follows from

(FjFkFl)
† = F †

l F
†
kF

†
j = FlFkFj

that the Casimir operator C2 is also self-adjoint. Consequently, c1 and c2 are real
numbers.

The crucial nontrivial property of the Casimir operators is that the so-
called quantum numbers c1 and c2 characterize the irreducible representa-
tion �.

That is, two irreducible representations of SU(3) are equivalent iff they possess the
same quantum numbers c1 and c2. For example, an explicit computation shows that
the adjoint representation R(1, 1) of SU(3) has the quantum numbers c1 = 3 and
c2 = 0 (see Problem 3.26).

3.18 Symmetric and Antisymmetric Functions

Symmetric and antisymmetric functions play a fundamental role in math-
ematics and physics, for example, in representation theory and topology
(e.g. the construction of topological invariants like characteristic classes).

Folklore

For the material of this section, we refer to I. Macdonald, Symmetric Functions and
Hall Polynomials, Oxford University Press, 1995, and to C. Procesi, Lie Groups.
An Approach Through Invariants and Representations, Springer, New York, 2007.

The prototype. The theory of symmetric polynomials has a long tradition in
mathematics dating back to the problem of solving polynomial equations in the
16th century. There are the following two key formulas:
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• (x− x1)(x− x2) = x2 − ax+ b with a := x1 + x2 and b := x1x2, and
• the determinants due to Vandermonde (1735–1796):

˛

˛

˛

˛

˛

x1 x2

1 1

˛

˛

˛

˛

˛

= x1 − x2,

˛

˛

˛

˛

˛

˛

˛

x2
1 x2

2 x2
3

x1 x2 x3

1 1 1

˛

˛

˛

˛

˛

˛

˛

= (x1 − x2)(x1 − x3)(x2 − x3).

The polynomial P (x1, x2) = a0 + a1x1 + a2x2 + . . . with complex coefficients
a0, a1, . . . is called symmetric (resp. antisymmetric) iff

P (x1, x2) = P (x2, x1)

(resp. P (x1, x2) = −P (x2, x1)). The following hold:

• Every polynomial P (x1, x2) can be uniquely written as the sum of a symmetric
polynomial and an antisymmetric polynomial:

P (x1, x2) = 1
2

`

P (x1, x2) + P (x2, x1)
´

+ 1
2

`

P (x1, x2) − P (x2, x1)
´

. (3.81)

• Every symmetric polynomial P (x1, x2) can be written as a polynomial of the
elementary symmetric functions a(x1, x2) := x1 + x2 and b(x1, x2) := x1x2.

• Every antisymmetric polynomial Pasym(x1, x2) can be written as a product of
the form (x1 − x2)P0(x1, x2) where P0(x1, x2) is a symmetric polynomial.

For example, choose D(x1, x2) := (x1 − x2)
2. Then

D(x1 − x2) = (x1 + x2)
2 − 4x1x2 = a2 − 4b.

This implies that the equation

x2 − ax+ b = 0, a, b ∈ C

has two different zeros iff a2 − 4b �= 0.
Our goal is to generalize this to polynomials of n variables. In this connection,

partitions will play a crucial role.

3.18.1 Symmetrization and Antisymmetrization

Fix n = 1, 2, . . . Let C[x1, x2, . . . , xn] denote the space of all polynomials

a0 + a1x1 + . . .+ anxn + a12x1x2 + . . .

with respect to the variables x1, . . . , xn and complex coefficients a0, a1, . . .Moreover,
let

C[x1, x2, . . .] = C ⊕ C[x1] ⊕ C[x1, x2] ⊕ . . .
This is the space of all the polynomials of arbitrary order with complex coefficients.
This is an infinite-dimensional complex linear space and a commutative complex
algebra with respect to the usual addition and multiplication of polynomials. If
P ∈ C[x1, . . . , n], then we define

`

Sym(P )
´

(x1, . . . , xn) :=
1

n!

X

π∈Sym(n)

P (xπ(1), . . . , xπ(n)),

`

Asym(P )
´

(x1, . . . , xn) :=
1

n!

X

π∈Sym(n)

sgnπ(n) · P (xπ(1), . . . , xπ(n)).
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The polynomial P (x1, . . . , n) is called symmetric (resp. antisymmetric) iff it does
not change (resp. it changes sign) under a transposition of two arguments. This is
equivalent to Sym(P ) = P (resp. Asym(P ) = P ). The prototype of an antisymmetric
polynomial is the Vandermonde polynomial

V(x1, . . . , xn) :=
Y

1≤i<j≤n

(xi − xj).

If P (x1, . . . , xn) is a symmetric polynomial, then the product

Pasym(x1, . . . , xn) = V(x1, x2, . . . , xn)P (x1, x2, . . . , xn) (3.82)

is an antisymmetric polynomial. The point is that every antisymmetric polynomial
can be obtained this way.

The importance of Young symmetrizers. If P ∈ C[x1, x2], then we have
the unique decomposition

P = Sym(P ) + Asym(P )

which corresponds to (3.81). The point is that the polynomial space C[x1, x2, . . . , xn]
is not spanned by the symmetric and antisymmetric polynomials if n ≥ 3. In this
case, we need further ‘elementary’ symmetries which are provided by the Young
symmetrizers. To explain this, let us consider the case where n = 3. We choose the
Young symmetrizers Sj , j = 1, 2, 3, 4, from Table 3.9 on page 222. Then, for every
polynomial P (x1, x2, x3), we get

• S1P = Sym(P ) and S4P = Asym(P ),
• (S2P )(x1, x2, x3) = 1

3
(P (x1, x2, x3)+P (x2, x1, x3)−P (x3, x2, x1)−P (x2, x3, x1)),

• S3P (x1, x2, x3) = 1
3
(P (x1, x2, x3) +P (x3, x2, x1)−P (x2, x1, x3)−P (x3, x1, x2)).

For example, this follows from S2 = 1
3
((1) + (12) − (13) − (123)) by applying the

permutations to the arguments of P. One checks explicitly that

P = S1P + S2P + S3P + S4P,

and S2
j = Sj for all j. This way, we get the direct sum decomposition

C[x1, x2, x3] =

4
M

j=1

Sj(C[x1, x2, x3]).

By definition, the polynomial P is called Sj-symmetric iff SjP = P. Note that the
polynomial SjP is always Sj-symmetric. In fact, Sj(SjP ) = SjP. Similarly, we get
the decomposition

C[x1, . . . , xn] =
M

j

(SjC)[x1, . . . xn], n = 2, 3, . . .

where the Young symmetrizers Sj are obtained as for Sym(3) by using the Young
tableaux. Note that the Young symmetrizers are constructed by the superposi-
tion of symmetrization and antisymmetrization procedures with respect to certain
variables. This is governed by the symmetry groups H and V of the corresponding
Young tableau (see Table 3.9 on page 222). Finally, we add a multiplicative constant
which guarantees that S2

j = Sj .
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Table 3.12. Elementary symmetric polynomials

x = (a, b)

E0(x) = 1, E1(x) = a+ b, E2(x) = ab

n = 3, x = (a, b, c)

E0(x) = 1, E1(x) = a+ b+ c,

E2(x) = ab+ ac+ bc, E3(x) = abc

3.18.2 Elementary Symmetric Polynomials

The elementary symmetric polynomials are homogeneous polynomials
which can be regarded as the atoms of symmetric polynomials.

Folklore

Fix n = 2, 3, . . . Set x := (x1, . . . , xn). The elementary symmetric functions
Ek(x1, . . . , xn), k = 0, 1, . . . , n, are defined by the formula

n
Y

i=1

(z − xi) = E0(x)z
n − E1(x)z

n−1 + E2(x)z
n−2 − . . .+ (−1)nEn(x).

For example, E0(x) := 1, E1(x) = x1 + x2 + . . .+ xn,

E2(x) =
X

1≤i<j≤n

xixj , E3(x) =
X

1≤i<j<k≤n

xixjxk, . . . , En(x) = x1x2 · · ·xn.

Special cases of these functions were used by Viète (Vieta)(1540–1603). The gen-
eral case was studied by Newton (1643–1727). The main theorem on symmetric
polynomials tells us the following:

The elementary symmetric functions Ek(x1, . . . , xn), k = 0, 1, . . . , n, are
homogeneous polynomials of degree k which generate the complex algebra
Csym[x1, . . . , xn] of symmetric polynomials with n variables.

This means that every symmetric polynomial P (x1, . . . , xn) with complex coeffi-
cients can be uniquely represented as a polynomial of elementary symmetric poly-
nomials with complex coefficients.

Example. Consider the equation

z3 − az2 + bz − c = 0

with complex coefficients a, b, c. This equation has 3 different zeros x1, x2, x3 iff the
so-called discriminant

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2 (3.83)

does not vanish. To prove this, set D :=
`

(x1 − x2)(x1 − x3)(x1 − x3)
´2
. This is a

symmetric polynomial with respect to x1, x2, x3. Therefore, D can be written as a
polynomial with respect to 1, a, b, c. Explicitly, we get (3.83).
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3.18.3 Power Sums

The prototype of a power sum is the polynomial P2(a, b) = a2 + b2. In the general
case, we set

Pk(x1, . . . , xn) = xk1 + xk2 + . . .+ xkn

where k = 1, 2, . . . For k = 0, we set P0(x) := 1. The following hold:

The power sums Ek(x1, . . . , xn), k = 0, 1, . . . , n, are homogeneous polyno-
mials of degree k which generate the complex algebra Csym[x1, . . . , xn] of
symmetric polynomials with n variables.

Newton discovered general recursion formulas for representing power sums as
polynomials of elementary symmetric polynomials, and vice versa. For example,
P0(x) = E0(x), and

P1 = E1, P2 = E2
1 − 2E2, P3 = E3

1 − 3E1E2 + 3E3.

Conversely,

E1 = P1, E2 = 1
2
P2

1 − 1
2
P2, E3 = 1

6
P3

1 − 1
2
P1P2 + 1

3
P3.

3.18.4 Completely Symmetric Polynomials

Elementary symmetric polynomials can be replaced by completely sym-
metric polynomials as generating polynomials for symmetric polynomials.

Folklore

The prototype of a completely symmetric polynomial of degree 2 is the polyno-
mial C2(a, b) = a2 + ab + b2. This is a homogenous polynomial of degree 2 which
contains all the possible terms of degree 2 equipped with the coefficient 1. Let
x = (x1, . . . , xn). It is convenient to introduce the monomial symbol

xα := xα1
1 x

α2
2 · · ·xαn

n

where α = (α1, . . . , αn) is a tuple of non-negative integers. We set |α| = α1+. . .+αn.
A polynomial P (x1, . . . , xn) of degree k can be elegantly written as

P (x) =
X

|α|≤k

aαx
α

where all the coefficients aα are complex numbers. By definition, the polynomial

Ck(x) =
X

|α|=k

aαx
α

is called a completely symmetric polynomial of degree k. In particular, we get
C0(x) = 1 and C1(x) = x1 + . . .+ xn. Further examples can be found in Table 3.13.

The completely symmetric polynomials Ck(x1, . . . , xn), k = 0, 1, . . . , n, are
homogeneous polynomials of degree k which generate the complex algebra
Csym[x1, . . . . . . , xn] of symmetric polynomials with n variables.
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Table 3.13. Completely symmetric polynomials

x = (a, b)

C0(x) = 1, C1(x) = a+ b, C2(x) = a2 + b2 + ab

x = (a, b, c)

C0(x) = 1, C1(x) = a+ b+ c

C2(x) = a2 + b2 + c2 + ab+ ac+ bc

C3(x) = a3 + b3 + c3 + a2b+ a2c+ b2c+ ab2 + ac2 + bc2 + abc

3.18.5 Symmetric Schur Polynomials

The symmetric Schur polynomials are homogeneous polynomials which
have the fundamental property that they form a basis of the complex
linear space of symmetric polynomials. Elementary symmetric polynomials
generate the Schur polynomials by computing products and complex linear
combinations. The same is true for completely symmetric polynomials. The
explicit formulas were found by Jacobi and his student Trudi in 1841.

Folklore

The antisymmetric basis polynomials. Let μ = (μ1, . . . , μn) be a tuple of
integers such that μ1 > μ2 > . . . > μn ≥ 0. We define

Vμ(x) :=

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

xμ1
1 xμ1

2 . . . xμ1
n

xμ2
1 xμ2

2 . . . xμ2
n

...
... . . .

...

xμn
1 xμn

2 . . . xμn
n

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

(3.84)

where x = (x1, . . . , xn), and n = 1, 2, . . .. Here, Vμ(x) is called an antisymmetric
Vandermonde polynomial. The following hold:

All the possible antisymmetric Vandermonde polynomials form a basis of
the complex linear space Casym[x1, x2, . . .] of antisymmetric polynomials
with complex coefficients.

The symmetric basis polynomials. Fix n = 1, 2, . . . Let λ = (λ1, . . . , λn)
be a tuple of non-negative integers with λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. Furthermore, set
ν = (n− 1, n− 2, . . . , 1, 0). Define

Sλ(x) :=
Vν+λ

Q

1≤i<j≤n(xi − xj)
(3.85)

where

Vν+λ :=

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

xn−1+λ1
1 xn−1+λ1

2 . . . xn−1+λ1
n

xn−2+λ2
1 xn−2+λ2

2 . . . xn−2+λ2
n

...
... . . .

...

xλn
1 xλn

2 . . . xλn
n

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛

(3.86)
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Table 3.14. Symmetric Schur polynomials

n = 2, x = (a, b) partition

S(1,1)(x) = E2(x) = ab 2 = 1 + 1

S(2,0)(x) = C2(x) = a2 + b2 + ab 2 = 2

n = 3, x = (a, b, c)

S(1,1,1)(x) = E3(x) = abc 3 = 1 + 1 + 1

S(2,1,0)(x) = (a+ b)(a+ c)(b+ c) 3 = 2 + 1

S(3,0,0)(x) = C3(x) (see Table 3.13) 3 = 3

Hence Vν+λ = VνSλ.

All the possible symmetric Schur polynomials form a basis of the complex
linear space Csym[x1, x2, . . .] of symmetric polynomials with complex coeffi-
cients.

The label λ of a Schur polynomial is a uniquely defined partition of the number |λ|.
For example, λ = (4, 3, 2, 2, 0, 0) corresponds to the partition 11 = 4 + 3 + 2 + 2.
Therefore, the symmetric Schur polynomials are labelled by partitions; they play
the key role in the famous Frobenius character formula for the symmetric groups.

Fundamental properties of symmetric Schur polynomials. The following
hold:

(i) The 1841 Jacobi–Trudi determinant formula:

Sλ(x) = det(Cλi−i+j(x))1≤i,j≤n. (3.87)

In addition, we have the dual formula

Sλ(x) = det(Eλ′
i−i+j)1≤i,j≤m (3.88)

where the Young frame to the n-tuple λ′ = (λ′1, . . . , λ
′
m) is dual to the Young

frame to λ = (λ1, . . . , λn). For example, let x = (a, b). Then

S(1,1)(a, b) =

˛

˛

˛

˛

˛

C1(x) C2(x)

C0(x) C1(x)

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

a+ b a2 + b2 + ab

1 a+ b

˛

˛

˛

˛

˛

= ab.

(ii) The 1934 Littlewood–Richardson product formulas: One can show that

S(3)(x)S(2)(x) = S(3,2)(x) + S(4,1)(x) + S(5)(x).

This is a special case of the general formula

Sλ(x)Sμ(x) =
X

ν

cνλμSν(x). (3.89)

Since the symmetric Schur polynomials form a basis of the polynomial alge-
bra, the product SλSμ is a linear combination of the form (3.89). The main
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problem is to compute explicitly the coefficients cνλμ which are nonnegative
integers. In 1934, D. Littlewood and Richardson invented an elegant combi-
natorial rule for computing cνλμ by using generalized Young tableaux. This
Littlewood–Richardson rule is a highlight in combinatorial mathematics. Com-
plete proofs of this rule only appeared in the 1970s.32 For details, we refer to
MacDonald (1995) and Procesi (2007) quoted on page 208. See also B. Sagan,
The Symmetric Group: Representations, Combinatorial Algorithms, and Sym-
metric Functions, Springer, Berlin, 2001, and J. Louck, Unitary Symmetry and
Combinatorics, World Scientific, Singapore, 2008.

(iii) The Cauchy generating function: see (3.93) on page 276.

3.18.6 Raising Operators and the Creation and Annihilation of
Particles

The raising operators in combinatorial mathematics can be regarded as
simplified models for particle creation and particle annihilation in quantum
field theory.

Folklore

We want to show that Schur functions can be generated by a special combinatorics
which is an appropriate superposition of simulated particle creation and particle
annihilation processes.

Prototype. Let λ = (λ1, λ2) where λ1 and λ2 are integers. We define the raising
operator R12 by setting

R12λ := (λ1 + 1, λ2 − 1).

Consider a partition (λ1, λ2) with λ2 ≥ λ1 ≥ 0 and integers λ1, λ2. As a special
case of Theorem 3.18 below, the Schur function Sλ(x) is given by the formula

Sλ(x) = (1 −R12)Cλ(x), x ∈ R
2.

This is to be understood as

Sλ(x) = Cλ(x) − CR12λ(x).

Here, we set
CR12λ(x) := Cλ1+1(x)Cλ2−1(x),

and we use the convention that Cλ2−1 = 0 if λ2 − 1 < 0.
Examples. (i) Let λ = (1, 0). Then R12λ = (2,−1). Hence

S(1,0)(x) = C(1,0)(x) − C(2,−1)(x) = C(1,0)(x) = x1 + x2.

(ii) Let λ = (1, 1). Then R12λ = (2, 0). Hence

S(1,1)(x) = C(1,1)(x) − C(2,0)(x)

= (x1 + x2)(x1 + x2) − (x2
1 + x1x2 + x2

2) = x1x2.

32 One has to distinguish between John Littlewood (1885–1977) and Dudley Lit-
tlewood (1903–1979). Famous books are: G. Hardy, J. Littlewood, and G. Pòlya,
Inequalities, Cambridge University Press, 1988 (first edition 1934).
D. Littlewood, The Theory of Group Characters and Matrix Representations of
Groups, Amer. Math. Society, Providence, Rhode Island, 2006 (originally pub-
lished by Clarendon Press, Oxford, 1940).
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The general case. Fix n = 2, 3, . . . Let λ = (λ1, . . . , λn) be an n-tuple of
integers. For i < j, we define the raising operator Rij by setting

Rijλ := (λ1, . . . , λi + 1, . . . , λj − 1, . . . , λn).

In terms of physics, the operator Rij creates one particle in the ith state, and it
annihilates one particle in the jth state. We will also consider products of raising
operators. For example,

R23R12(λ1, λ2, λ3) = R23(λ1 + 1, λ2 − 1, λ3) = (λ1 + 1, λ2, λ3 − 1).

In order to organize the products of raising operators in a convenient way, let us
also use the symbol

Y

1≤i<j≤n

(1 −Rij) = 1 + R

where the remainder R is the sum of the corresponding products of raising operators.
For example,

Y

1≤i<j≤3

(1 −Rij) = (1 −R12)(1 −R13)(1 −R23) = 1 + R,

where

R := −R12 −R13 −R23 +R12R13 +R12R23 +R13R23 −R12R13R23.

Let λ = (λ1, . . . , λn) be a partition, that is, λn ≥ . . . ≥ λ1 ≥ 0.

Theorem 3.18 The Schur function Sλ is given by the mnemonic formula

Sλ(x) =
Y

1≤i<j≤n

(1 −Rij)Cλ(x), x ∈ R
n.

This is to be understood as Sλ(x) = Cλ(x) − CRλ(x).

Here, we set CRλ := 0 if the tuple Rλ contains at least one negative integer. The
proof can be found in MacDonald (1995), page 43, quoted on page 208.

3.19 Formal Power Series Expansions and Generating
Functions

Generating functions are used in physics in order to encode the properties
of multi-particle systems in statistical physics and quantum field theory.
The Feynman path integral encodes the correlations (i.e., the Green func-
tions) of a quantum field. The main task is to decode the information.

Folklore

Let us summarize the key formulas which are to be understood in the sense of a
formal power series expansion.
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(i) Elementary symmetric functions:

E(t) =

∞
X

k=0

Ektk =

∞
Y

i=1

(1 + xit). (3.90)

For example, this yields E0 = 1, E1 = x1 +x2 + . . . , and E2 = x1x2 +x1x3 + . . .
To get E2(x1, x2), we have to set x3 = x4 = . . . = 0. Then, E2(x1, x2) = x1x2,
and so on.

(ii) Completely symmetric functions:

C(t) =

∞
X

k=0

Cktk =

∞
Y

i=1

1

1 − xit
. (3.91)

(iii) Symmetric power functions:

P (t) =

∞
X

r=1

Prt
r−1 =

d

dt
lnC(t). (3.92)

(iv) Symmetric Schur polynomials (Cauchy’s formula):

n
Y

i,j=1

1

1 − xixj
= 1 +

∞
X

k=1

X

|λ|=k

Sλ(x) Sλ(y). (3.93)

Concerning (3.93), we fix n = 1, 2, . . . , and we set x := (x1, . . . , xn), as well
as y := (y1, . . . , yn). Furthermore, we choose the n-tuple λ = (λ1, . . . , λn) of
integers with λ1 ≥ λ2 ≥ . . . ≥ λ1 ≥ 0, and |λ| := λ1 + . . .+ λn.

(v) The Bell polynomials Bn,k: The function exp
“

z
P∞

m=1 xm
tm

m!

”

is equal to the
sum

1 +

∞
X

n=1

n
X

k=1

zkBn,k(x1, x2, . . . , xn+1−k). (3.94)

This is discussed in Sect. 3.4.3 of Vol. IV together with applications. We also
refer to L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.

3.19.1 The Fundamental Frobenius Character Formula

Using symmetric Schur polynomials as a basis, products of power sums
are the generating functions for the characters of the symmetric group
Sym(n).

Folklore

The Frobenius character formula tells us that the product

n
Y

r=1

(xr1 + xr2 + . . .+ xrn)m(r)

of symmetric power polynomials is equal to the sum

X

Y
χλY

(1m(1)2m(2) · · ·nm(n)) · SλY (x1, . . . , xn) (3.95)
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Fig. 3.11. The frame tuples λF of the symmetric group Sym(2)

of symmetric Schur polynomials where the uniquely determined coefficients χλY
(. . .)

are the characters of a complete system of irreducible representations of the sym-
metric group Sym(n). Let us discuss this.

(i) Partitions: Fix n = 2, 3, . . . Choose a partition n = n1 + . . .+ nk with

n1 ≥ n2 ≥ . . . ≥ nk ≥ 1.

Construct the corresponding Young frame Y and the corresponding frame n-tuple

λY := (n1, n2, . . . , nk, 0, . . . , 0).

Here, in order to get an n-tuple, we fill in zeros if needed (see Figs. 3.11 and
3.12). In (3.95), we sum over all partitions (i.e., Young frames) Y of n. Recall that
the partitions Y of n are in one-to-one correspondence to a complete system of
irreducible representations of the symmetric group Sym(n). Let χλY

denote the

character of the irreducible representation corresponding to the Young frame Y.
(ii) Group elements and cycles: We want to compute the value χλY

(π) where

π ∈ Sym(n). To this end, we determine the cycle symbol 1m(1)2m(2) · · ·nm(n) of π
(see (3.2) on page 182).

(iii) Characters: Compute χλY
(1m(1)2m(2) · · ·nm(n)) by the Frobenius formula

(3.95). Then

χλY
(π) = χλY

(1m(1)2m(2) · · ·nm(n)).

In particular, χλY
(π) only depends on the cycle symbol of π. This reflects the fact

that the character is a class function, that is, χλY
(π) = χλY

(σ) if π and σ are

elements of the same conjugacy class of Sym(n).
Example (Sym(2)). The group Sym(2) has the elements (1) and (12) with the

disjoint cycle products

Fig. 3.12. The frame tuples λF of the symmetric group Sym(3)
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(1) = (1)(2), (12) = (12).

This yields the cycle symbols (1) = 1220 and (12) = 1021. By Fig. 3.11, there are
two Young frames which we label by the tuples (1, 1) and (2, 0). By the Frobenius
formula (3.95), we get

• (x1 + x2)
2 = χ(1,1)(1

220) S(1,1) + χ(2,0)(1
220)S(2,0),

• x2
1 + x2

2 = χ(1,1)(1
021) S(1,1) + χ(2,0)(1

021)S(2,0).

Explicitly, we have S(1,1) = x1x2 and S(2,0) = x2
1 + x1x2 + x2

2, by Table 3.1 on page
185. Hence

χ(1,1)(1
220) = χ(2,0)(1

220) = 1, χ(1,1)(1
021) = −1, χ(2,0)(1

021) = 1.

This implies

χ(2,0)( (1) ) = χ(2,0)( (12) ) = 1, χ(1,1)( (1) ) = 1, χ(1,1)( (12) ) = −1,

which coincides with Table 3.3 on page 215.

3.19.2 The Pfaffian

For all complex numbers a, we have det

 

0 a

−a 0

!

= a2. The point is that the

determinant is a square. This result can be generalized. Let n = 2, 4, 6, . . . If A is a
complex skew-symmetric (n× n)-matrix, that is, Ad = −A, then

detA = (Pf(A))2

where Pf(A) is a polynomial in the entries of the matrix A.33 If B is an arbitrary
complex (n× n)-matrix, then

Pf(BABd) = (detB) · Pf(A).

The proof can be found in K. Spindler, Abstract Algebra and Applications, Vol. 1,
p. 342, Marcel Dekker, New York, 1994.34 The Pfaffian plays a crucial role in the
formulation of the famous Gauss–Bonnet–Chern theorem (see Vol. IV).

3.20 Frobenius Algebras and Frobenius Manifolds

Frobenius algebra. The theory of Frobenius algebras was started by Brauer
(1901–1977) in the early 1930s. A finite-dimensional complex associative unital
algebra A is called a Frobenius algebra iff there exists a non-degenerate bilinear
map B : A×A → C with

B(ab, c) = B(a, bc) for all a, b, c ∈ A.

Examples. (i) The set of complex numbers C is a Frobenius algebra by setting

B(a, b) := ab, a, b ∈ C.

33 If n is odd, then detA = 0.
34 Pfaff (1765–1825) discovered the genius of the young Gauss (1777–1855).
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In fact, we have the associative law (ab)c = a(bc).
(ii) The group algebra C[G] of a finite group G is a Frobenius algebra. To this

end, we define

B

 

m
X

j=1

αjGj

!

:= α1 for all α1, . . . , αm ∈ C

where G1 is the unit element of G.
Duality. In terms of representation theory, Frobenius algebras are distinguished

by the following duality property. Let A be a finite-dimensional complex associative
unital algebra. Then A is a Frobenius algebra iff the following two representations
of A are equivalent:

(i) The regular representation on A: �(a)b := ab for all b ∈ A (and all a ∈ A).
(ii) The dual regular representation: (�∗(a)f)(b) := f(ba) for all f ∈ Ad (and

all a, b ∈ A). 35

The proof can be found in Curtis and Reiner, Representation Theory of Finite
Groups and Associative Algebras, Wiley, 1962, Chapter IX.

Frobenius manifold. By definition, a Frobenius manifold is an n-dimensional
complex manifold M such that, for all points P ∈ M, the tangent space TP is
equipped with both the structure of a complex Hilbert space and the structure of a
Frobenius algebra such that the inner product on TPM has the additional product
property

〈u · v|w〉P = 〈u|v · w〉P
for all tangent vectors u,v,w ∈ TPM. Here, u · v denotes the product of the
Frobenius algebra TPM. In order to get strong mathematical results, one postulates
additional properties of the covariant derivative with respect to the Levi-Civita
connection (e.g., if 1P denotes the unit element of the Frobenius algebra TPM,
then the covariant derivative of the tangent vector field P �→ 1P vanishes on M,
∇1 = 0.)

Further reading. We recommend the basic paper by

B. Dubrovin, Geometry of Two-Dimensional Field Theories, pp. 120–
348. In: Donagi et al. (Eds.), Integrable Systems and Quantum Groups,
Springer, Berlin, 1993

together with the following monographs:

Yu. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli
Spaces, Amer. Math. Soc., Providence, Rhode Island, 1999.

C. Hertling, Frobenius Manifolds and Moduli Spaces for Singularities,
Cambridge University Press, 2002.

J. Kock, Frobenius Algebras and Two-Dimensional Topological Quantum
Field Theories, Cambridge University Press, 2003.

3.21 Historical Remarks

Symmetry and hence the theory of Lie groups and Lie algebras lie at the heart of
modern mathematics and physics.

35 Recall that the dual algebra Ad consists of all the linear functions f : A → C

which are also multiplicative, that is, f(ab) = f(a)f(b) for all a, b ∈ A.
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Celestial mechanics and quantum mechanics. Symmetry played a funda-
mental role in the history of celestial mechanics. The rotational symmetry of the
gravitational field of the sun (i.e., the SO(3)-symmetry) implies conservation of
angular momentum, and hence the planets move in a plane. This was known to
Newton (1643–1727). Lagrange (1736–1813) used symmetry properties in order to
find special solutions of the 3-body problem.36 For the motion of planets in terms
of classical mechanics, there exists an additional conservation law which says that
the so-called Laplace vector is fixed. This is responsible for the crucial fact that, in
classical mechanics, the great semi-axis of a planet does not rotate.

This corresponds to a hidden SO(4)-symmetry in the classical motion of
planets.

In contrast to the classical approach, the 1916 Schwarzschild solution in Einstein’s
theory of general relativity predicts mathematically that the great semi-axis of the
planet Mercury rotates with the angle of 43 seconds per 100 years; this is indeed
observed by astronomers (see Vol. IV).

In 1924, Lenz (1888–1957) used the Laplace vector in order to study the spec-
trum of the hydrogen atom in the setting of the semiclassical Bohr–Sommerfeld
quantization from 1913/1916.37 In 1925, Pauli (1900–1958) was assistant of Lenz
(1988–1957) in Hamburg. Pauli used the SO(4)-symmetry in order to compute, in
a purely algebraic way, the discrete spectrum of the hydrogen atom based on the
1925 matrix quantum mechanics due to Heisenberg, Born, and Jordan. As an es-
sential ingredient, Pauli replaced the Poisson brackets of classical mechanics by the
Lie brackets of the Lie algebra so(4) of the Lie group SO(4). Shortly after Pauli,
Schrödinger (1887–1961) published his partial differential equation (Schrödinger
equation) in 1926; following Weyl’s advice, Schrödinger used the theory of singu-
lar differential operators in order to compute both the discrete and the continuous
spectrum of the hydrogen atom in quantum mechanics. We will study the approach
to the spectrum of the hydrogen atom due to Pauli, Schrödinger, and Weyl in Vol.
IV on quantum mathematics. There we will also discuss the relation to the work
of von Neumann (spectral theory of self-adjoint operators in Hilbert spaces), Ko-
daira (the Weyl–Kodaira theory), and Gelfand (generalized eigenfunctions and the
Gelfand triplet).

Crystals and Lie algebras. In 1830, the mineralogist Hessel (1796–1872)
classified the crystals. He found that there are 32 crystallographic classes. All of
them are realized by crystals in nature. In 1890, based on a correspondence by letter,
Fedorov (1853–1919) and Schoenflies (1853–1928) proved that there are 230 crystal
groups, up to equivalence. Quasicrystals were mathematically predicted by Penrose
(born 1931) in 1974; they were experimentally established in 1984. Quasicrystals
contain an ordered structure, but the patterns are subtle.38

36 See R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley,
Reading, Massachusetts, 1978.
W. Neutsch and K. Scherer, Celestial Mechanics: An Introduction to Classical
and Contemporary Methods, Wissenschaftsverlag, Mannheim, 1992.
D. Boccaletti and G. Pucacco, Theory of Orbits, Vols. 1, 2, Springer, Berlin,
1996.

37 In 1922, Runge (1856–1927) used the Laplace vector in the numerical computa-
tion of planetary orbits. Therefore, the Laplace vector is also called the Laplace–
Runge–Lenz vector. Note that one has to distinguish between the physicists
Heinrich Lenz (1804–1865) (the Lenz rule in electromagnetism) and Wilhelm
Lenz (1888–1957).

38 See S. Novikov and T. Taimanov, Geometric Structures and Fields, Chap. 6,
Amer. Math. Soc., Providence, Rhode Island, 2006.
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The theory of Lie groups and Lie algebras was created by Sophus Lie (1842–
1899). He studied symmetries which depend smoothly on a finite number of real or
complex parameters. Lie discovered the fundamental fact that

The local behavior of a Lie group is completely determined by the lineariza-
tion of the group at the unit element (the Lie algebra).

The semisimple Lie algebras were classified by Killing (1847–1923) in 1888 and by

Élie Cartan (1869–1951) in his famous 1894 thesis in Paris. Interestingly enough,
the theory of semisimple Lie algebras is closely related to the theory of crystallic
groups. The sketch words are: abstract root system, Weyl group, Coxeter group,
Dynkin diagram. In 1941, Witt proved that there is a one-to-one correspondence
between appropriate geometric root systems and semisimple Lie algebras. In 1944,
Dynkin introduced Dynkin diagrams for classifying geometric root systems.39 This
will be studied in Vol. IV on quantum mathematics. The point is that

There exists a perfect correspondence between completely different mathe-
matical structures, namely, semisimple Lie algebras and a discrete geomet-
ric structure (root system, Coexter group, Dynkin diagram).

Such surprising correspondences also appear in

• the ‘equivalent’ description of 4-manifolds by the Yang–Mills equations (Donald-
son theory) and the Seiberg–Witten equations (Seiberg–Witten theory), and

• in modern string theory (mirror symmetry, duality between strong and weak
interaction).

It is a sophisticated task for the future of mathematics to better understand the
mathematical core behind such correspondences.

Seminal contributions to the theory of Lie groups and Lie algebras were made
by Weyl (1885–1955) in the 1920s and 1930s. This culminated in his monograph

H. Weyl, The Classical Groups: Their Invariants and Representations,
Princeton University Press, 1938 (8th edition, 1973).

Weyl created modern harmonic analysis as a generalization of the classic Fourier
analysis (based on the translation group) to more general symmetries. The global
theory of Lie groups based on topology and the theory of algebraic groups – Lie
groups and Lie algebras over general fields and skew-fields (e.g., finite fields or
quaternions) – was created in the 20th century. One of the heroes was Chevalley
(1909–1984) who wrote the first monograph on the global theory of Lie groups:

C. Chevalley, Theory of Lie Groups, Princeton University Press, 1946 (15th
edition, 1999).

The modern theory of Lie groups and Lie algebras can be found in the monumental
treatise:

N. Bourbaki, Lie Groups and Lie Algebras, Vols. 1, 2, Springer, New York
1989/2002.

The electron spin. In 1927, Pauli used implicitly the Lie algebra su(2) in
order to describe mathematically the electron spin (see Sect. 7.3):

W. Pauli, On the spinning electron in a magnetic field, Z. Phys. 43 (1927),
603–623 (in German).

39 Coexter (1907–2003), Witt (1911–1991), Dynkin (born 1924).
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The crucial point is that the rotation group SO(3) and its universal covering group
SU(2) have isomorphic Lie algebras; but only the SU(2)-symmetry is responsible
for the electron spin (see Sect. 7.3). Dirac (1902–1984) discovered in 1928 that
the existence of the electron spin is a consequence of Einstein’s theory of special
relativity combined with quantum mechanics (see Sect. 20.3):

P. Dirac, The quantum theory of the electron, Proc. Royal Soc. London
A117 (1928), 610–624; A118, 351–361.

The spectra of atoms and molecules. In the late 1920s, group theory was
used in order to understand the structure of the spectra of atoms and molecules in
terms of quantum mechanics. Here, a crucial role was played by the electron spin
and Pauli’s exclusion principle.40 As an introduction, we recommend:

B. van der Waerden, Group Theory and Quantum Mechanics, Springer,
New York 1974 (German edition, 1932).

Furthermore, we refer to:

H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New
York, 1931 (German edition, 1929).

E. Wigner, Group Theory and its Applications to the Quantum Mechanics
of Atomic Spectra, Academic Press, New York, 1959 (German edition,
1931).

G. Drake (Ed.), Springer Handbook of Atomic, Molecular, and Optical
Physics, Springer, Berlin, 2005.

Heisenberg’s isospin. In 1932, motivated by Pauli’s 1927 spin theory, Heisen-
berg (1901–1976) considered the proton and the neutron as two so-called isospin
states of one particle called nucleon, and he assigned the isospin 1

2
(resp. − 1

2
) to

the proton (resp. neutron). The proton p and the neutron n have similar masses.
Explicitly,

mp = 938 MeV/c2, mn = 940 MeV/c2.

Heisenberg assumed that this mass difference is caused by electromagnetic interac-
tion; the neutron has no electric charge, whereas the proton has the positive electric
charge e. In terms of mathematics, the isospin is based on the Lie group SU(2) and
its Lie algebra su(2).

The quark model. In the 1950s, physicists noticed that the idea of the isospin
can be refined. Based on scattering experiments, physicists assigned further quan-
tum numbers to elementary particles like strangeness or hypercharge (see Sect. 2.4
of Vol. I). This way, elementary particles can be grouped into multiplets. Fig 3.3
on page 228 shows the octet of the proton. Based on the inspection of particle mul-
tiplets, in 1961 Gell–Mann (born 1929) and Ne’eman (1925–2006) independently
emphasized the importance of the symmetry group SU(3) in strong interaction.41

As hypothetical particles, quarks were introduced independently by Gell-Mann and
Zweig in 1964. Gell-Mann and Zweig (born 1937) postulated that

Baryons consist of quarks, whereas mesons are quark-antiquark pairs.

40 In 1945, Pauli (1900–1958) was awarded the Nobel prize in physics for the ‘ex-
clusion principle’, also called the Pauli principle.

41 M. Gell-Mann and Y. Neéman, The Eightfold Way, Benjamin, New York, 1964.
The name ‘Eightfold Way’ was suggested by analogy with the Eightfold Path of
Buddhism because of the frequent occurrence of 8-multiplets (e.g., the octet of
the proton).
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They used the fact that the additive quantum numbers T 3 and Y from Fig. 3.5 on
page 233 explain the quantum numbers T 3 and Y from Fig. 3.3 on page 228 if one
assumes that the particles consist of three quarks. For example, if we assume that
the proton consists of two u-quarks and one d quark, then we get Y = 2

3
+ 1

3
= 1

for the proton. The electric charge Q of the particles is given by the key formula

Q = e

„

T 3 +
Y
2

«

, e > 0.

For example, the three quarks u, d, s have the electric charges 2
3
e,− 1

3
e,− 1

3
e, re-

spectively. Further details can be found in Sect. 2.6.2 of Vol. I.
The term ‘quark’ was coined by Gell-Mann. He used the name of ghostly beings

from the novel Finnegan’s Wake by James Joyce.42 The great success of the ‘Eight-
fold Way’ was the prediction of the particle Ω− (by complementing the symmetry
of the baryon octet from Fig. 3.4 on page 229) and the experimental discovery of the
particle Ω− at the Brookhaven National Laboratory, New York, in 1964. In the late
1960s, scattering experiments between electrons and protons were carried out at the
linear accelerator SLAC of the Stanford University in California. These experiments
revealed an internal structure of the proton. To explain this, Feynman (1918–1988)
created his parton model of the proton. In fact, Feynman’s partons coincide with
Gell–Mann’s ghostly quarks. This way the existence of quarks was experimentally
established. In 1969 Murray Gell-Mann (born 1929) was awarded the Nobel prize in
physics for his contributions and discoveries concerning the classification of elemen-
tary particles and their interactions. The Russian chemist Mendeleev (1834–1907)
discovered periodicity properties of the chemical elements presented in his famous
periodic table (see Table 2.5 of Vol. I). In the late 1920s, the periodic table was jus-
tified by quantum mechanics (Pauli’s exclusion principle and the SU(2)-symmetry
of the electron spin).

Gell-Mann is called the Mendeleev of the 20th century.

Many years ago, Murray Gell-Mann told the author in a personal conversation
that he invented his quark approach without knowing the representation theory of
Lie algebras. He discovered the necessary mathematics by himself, motivated by
physical intuition. Later on in Paris, Murray Gell-Mann told Jean-Piere Serre his
approach, and he learned from Serre that there exists a beautiful mathematical

theory strongly influenced by the work of Élie Cartan and Hermann Weyl.43 Yu-
val Ne’eman, a graduate student of Abdus Salam (1926–1996) in the late 1950s,
writes:44

The mathematical formulation of the SU(3)-model drew on a (then) little-
known branch of the theory of groups, a mathematical theory whose pre-
vious applications in physics had dealt with the symmetries of crystals.
This special branch had been developed in the nineteenth century by the
Norwegian mathematician Sophus Lie (1842–1899). The ‘Lie groups’ which

42 The Irish novelist James Joyce (1882–1941) is noted for his experimental use of
language and exploration of new literally methods in such large works of fiction
as Ulysses (1922) and Finnegans Wake (1939). See Encyclopedia Britannica. In
German the word ‘Quark’ means liquid cheese. In German colloquial language,
the word ‘Quark’ is also used for ‘nonsense’.

43 Jean-Pierre Serre (born 1923) was awarded the Fields medal in 1954 and the
Abel prize in 2003 for his seminal contributions to algebra and topology.

44 Y. Ne’eman and Y. Kirsh, The Particle Hunters, Cambridge University Press,
1996 (reprinted with permission).
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for about 100 years had found relatively few practical applications, became
the cornerstone of the new physical theory.

A key role in the classification of complex semisimple Lie algebras is played by
Dynkin diagrams (see Sect. 3.15.2). Eugene Dynkin (born 1924; Cornell University,
Ithaca, New York) writes:45

I was eleven when my family was exiled from Leningrad (Saint Peters-
burg) to Kasakhstan and I was thirteen when my father, one of millions
of Stalin’s victims, disappeared in the Gulag. It was almost a miracle that
I was admitted (at the age of sixteen) to Moscow University. Every step
in my professional career was difficult because of the fate of my father,
in combination with my Jewish origin, made me permanently undesirable
for the party authorities at the university. Only special efforts by A. N.
Kolmogorov,46 who put, more than once, his influence at stake, made it
possible for me to progress through the graduate school to a teaching po-
sition at Moscow University . . .
I worked at Gelfand’s seminar on Lie groups and at Kolmogorov’s seminar
on Markov chains. Both were important for me as a research mathemati-
cian. Gelfand requested that I review the Weyl–van der Waerden papers
on semisimple Lie groups. I found them very difficult to read, and I tried to
find my own ways. It came to my mind that there is a natural way to select
a set of generators for a semisimple Lie algebra by using simple roots (i.e.,
roots which cannot be represented as a sum of positive roots). Since the an-
gle between any two simple roots can be equal only to 90o, 120o, 135o, 150o,
a system of simple roots can be represented by a simple diagram. An ar-
ticle was submitted to Matematicheskii Sbornik in October 1944. Only a
few years later, when recent literature from the West reached Moscow, I
discovered that similar diagrams have been used by Coxeter for describing
crystallographic groups. . . 47 I was flattered when Yuval Ne’eman (1925–
2006) told me that his work on elementary particle physics was based on
my dissertation, which he had read in one of the London libraries.48

Many results in the theory of Lie groups and Lie algebras can be traced back to the
forgotten ingenious work by Killing (1847–1923) in the late 1880s. This is described
in the following article: A. Coleman, The greatest mathematical paper of all time,
Math. Intelligencer 11(3) (1989), 29–38. For the history of quarks and quantum
chromodynamics, we refer to:

H. Fritzsch, Quarks, Penguin, London, 1983.

Y. Ne’eman and Y. Kirsh, The Particle Hunters, Cambridge University
Press, 1996.

M. Veltman, Facts and Mysteries in Elementary Particle Physics, World
Scientific, Singapore, 2003.

Tian Yu Cao, From Current Algebra to Quantum Chromodynamics, Cam-
bridge University Press, 2010.

45 1993 Steele Prizes, Career Award, Notices of the Amer. Math. Soc. 40 (1993),
975–977 (reprinted with permission).

46 Kolmogorov (1903–1987), Wolf prize in mathematics 1980, Gelfand (1913–2009),
Wolf prize in mathematics 1978, Coexter (1907–2003).

47 See H. Coxeter, Generators and Relations for Discrete Groups, Springer, Berlin,
1965, and J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge
University Press, 1990.

48 E. Dynkin, The structure of semisimple Lie algebras, Uspehi Mat. Nauk 2 (1947),
pp. 59–127. Am. Math. Transl. 17 (1950).
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Finite groups. The representation theory for finite groups was independently
created by Fjodor Molin (1861–1941), Georg Frobenius (1849–1917), and William
Burnside (1852–1927) in about 1900. Important contributions were made by Alfred
Young (1873–1940) and Issai Schur (1875–1941). The representation theory of finite
groups and algebras was completed by a fundamental paper of Emmy Noether based
on her lectures given in Göttingen in 1927/28:

E. Noether, Hypercomplex quantities and representation theory, Math.
Ann. 30 (1929), 641–692 (in German).

This paper had a profound influence on the development of modern algebra. Bar-
tel Leendert van der Waerden (1903–1998) attended the lectures given by Emmy
Noether (1882–1935) and Emil Artin (1998–1962) in Göttingen in the 1920s, and he
used this material for writing his seminal book Modern Algebra, Vols 1, 2, Springer,
Berlin, 1930 (in German). (English edition: Frederyck Ungar, New York, 1975).

Finite groups are special cases of compact Lie groups. For example, the rotation
group SO(3) of the 3-dimensional Euclidean space or the gauge groups

U(1), SU(2), SU(3)

of the Standard Model in elementary particle physics are compact Lie groups. In

his famous 1894 thesis on Lie groups and Lie algebras, Élie Cartan (1869–1951)
completed the classification of semi-simple Lie algebras initiated by Killing (1847–
1923) in the late 1880s. The representation theory for compact Lie groups and
its relation to functional analysis was created by Weyl (1885–1955) in the 1920s.
A highlight is the Peter–Weyl theorem which will be investigated in Vol. IV on
quantum mathematics:

F. Peter and H. Weyl, On the completeness of the irreducible representa-
tions of compact continuous groups, Math. Ann. 97 (1927), 737–755 (in
German).

In the 1930s, Weyl worked together with the algebraist Brauer (1901–1977) who
took over a professorship at Harvard University (Cambridge, Massachusetts) in
1951. After the establishment of the Nazi regime in Germany in 1933, Weyl – the
successor of Hilbert in Göttingen – left Germany, and he became a member of
the Institute for Advanced Study in Princeton (New Jersey), where also Einstein
(1979–1955), Gödel (1906–1978), and von Neumann (1903–1957) worked. Motivated

by Dirac’s theory of the relativistic electron and Élie Cartan’s geometric spinors,
Brauer and Weyl wrote the fundamental paper:

R. Brauer and H. Weyl, Spinors in n dimensions, Amer. J. Math. 57 (1935),
425–449.

Here, they used Clifford algebras in order to construct the universal covering group
Spin(n) of the n-dimensional rotation group SO(n), n = 3, 4, . . . This paper repre-
sents the algebraic core of modern spin geometry. We refer to:

H. Lawson and M. Michelsohn, Spin Geometry, Princeton University Press,
1994.

The spinor calculus on the Minkowski space (based on the representations of the
symplectic group SL(2,C)) was invented by

B. van der Waerden, Spinor analysis, Ges. Wiss. Göttingen 1929, pp. 100–
109 (in German).

In 1928 Dirac proved the relativistic invariance of the Dirac equation by using the
commutation relations for his γ-matrices (Clifford algebra). Motivated by Dirac’s
1928 paper, van der Waerden (1903–1998) invented his spinor calculus in order to
prove the relativistic invariance of the Dirac equation in the spirit of classic tensor
analysis. In the paper
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B. van der Waerden and L. Infeld, The wave equation of the electron in
general relativity, Akad. Wiss. Berlin, Math.-Phys. Klasse 9 (1933), pp.
308–401 (in German),

the covariant differentiation was invented in spinor calculus (via appropriate
Christoffel symbols). In modern terminology, a SL(2,C)-connection (also called
spin connection) was introduced on curved space-time manifolds.

Wigner’s unitary representations of the Poincaré group and locally
compact Lie groups. The prototype of a locally compact, but not compact Lie
group, is the Poincaré group P (1, 3) which is the symmetry group of Einstein’s
theory of special relativity. In contrast to compact Lie groups, the Poincaré group
P (1, 3) has no finite-dimensional unitary representations.

This mathematical fact indicates that infinitely many degrees of freedom
are crucial for quantum fields.

The mathematical trouble in quantum field theory is mainly caused by the infinite
number of degrees of freedom. In 1939, the physicist Wigner classified the infinite-
dimensional unitary representations of the Poincaré group which play the key role
in the classification of elementary particles:

E. Wigner, On unitary representations of the inhomogeneous Lorentz
group, Ann. Math. 40 (1939), 149–204.

This marked the beginning of the representation theory for locally compact Lie
groups created in the 1940s and 1950s by Gelfand (1913–2009), Naimark (1909–
1978), Mackey (1916–2006), and Harish-Chandra (1923–1983). We refer to:

I. Gelfand, R. Minlos, and Ya. Shapiro, Representations of the Rotation
and Lorentz Groups and Their Applications, Pergamon Press, New York,
1963.

M. Naimark, Linear Representations of the Lorentz Group, Macmillan,
New York, 1964.

M. Naimark, Normed Rings, Noordhoff, Groningen, 1964.

K. Maurin, Generalized Eigenfunction Expansions and Unitary Represen-
tations of Topological Groups, Polish Scientific Publishers, Warsaw, 1968.

A. Knapp, Representation Theory of Semisimple Groups: An Overview
Based on Examples, Princeton University Press, 1986.

V. Varadarajan, Geometry of Quantum Theory, Springer, New York, 2007.

We also refer to:

E. Wigner, Philosophical Reflections and Syntheses. Annotated by G.
Emch, Springer, New York, 1995.

In 1963, Eugene Wigner (1902–1995) was awarded the Nobel prize in physics for his
contributions to the theory of atomic nucleus and the elementary particle, partic-
ularly through the discovery and application of fundamental symmetry principles.
For the history of group theory and representation theory, we recommend:

B. van der Waerden, A History of Algebra, Springer, Berlin, 1985.

A. Borel, Essays in the History of Lie Groups and Algebraic Groups, Amer.
Math. Soc., Providence, Rhode Island, 2001.

H. Wußing, The Genesis of the Abstract Group Concept, Dover, New York,
2007.

For a survey on modern developments in representation theory (e.g., the Langlands
program in number theory), we refer to:

V. Varadarajan, Euler through Time: A New Look at Old Themes, Amer.
Math. Soc., Providence, Rhode Island, 2006.
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3.22 Supersymmetry

In mathematics one frequently distinguishes between even and odd ob-
jects (e.g. even and odd integers). This is the prototype of a Z2-grading.
In modern physics, Z2-graded mathematical structures are called super
structures.

Folklore

3.22.1 Graduation in Nature

In elementary particle physics, we distinguish between

• fermions (particles with half-integer spin quantum number), and
• bosons (particles with integer spin quantum number).

In the Standard Model in particle physics, the basic particles (quarks, the electron,
neutrinos) are fermions, whereas the messenger particles (the photon, the vector
bosons W+,W−, Z, and the eight gluons) are bosons.49 The hypothetical Higgs
particle (s = 0) and the hypothetical graviton (s = 2) are bosons.

In terms of physics, supersymmetry postulates a perfect symmetry between
fermions and bosons in the very early universe. In terms of mathematics,
supersymmetry is based on graded Lie algebras called Lie super algebras.

In the present universe, supersymmetry is not observed. But it is possible, that
there exist relicts of supersymmetry. At the LHC (Large Hadron Collider/CERN,
Geneva, Switzerland), physicists plan to perform experiments which establish the
existence of supersymmetric particles.

3.22.2 General Strategy in Mathematics

The important point about super objects is that whenever an operation
(e.g., a product) changes the order of two odd elements, a minus sign is
introduced.50

Jürgen Jost, 2009

Linear super space. Let X be a real or complex linear space. We call this a linear
super space iff there exist linear subspaces X0 and X1 such that

X = X0 ⊕X1.

The elements of X0 are called even, and the non-zero elements of X1 are called
odd. In physics, X0 (resp. X1) is called the bosonic (resp. fermionic) part of X.
Precisely, the elements of X0 and X1 are called graded. For graded elements x, the
so-called additive parity is defined by setting

49 Note that if s is the spin quantum number, then the following hold: For any
given oriented axis, there exists a quantum state of the particle which possesses
the spin s� in direction of the axis.

50 J. Jost, Geometry and Physics, Springer, 2009 (reprinted with permission). We
recommend this book as an introduction to supersymmetry. Furthermore, we
recommend D. Freed, Five Lectures on Supersymmetry, Amer. Math. Soc., Prov-
idence, Rhode Island, 1999. Further references can be found on page 543.
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|x| :=

(

0 if x is even,

1 if x is odd.

The number (−1)|x| is called the (multiplicative) parity of x. If X and Y are real
(resp. complex) linear super spaces, then a morphism

μ : X → Y

is a linear map which preserves the parity of graded elements.
Supercommutative super algebra. By definition, a real (resp. complex) su-

percommutative super algebra A is a real (resp. complex) algebra with the following
additional properties: A is a linear super space, and the multiplication of graded
elements respects parity. Explicitly, this means the following for all graded elements
a and b:

• If a and b have the same parity, then the products ab and ba are even.
• If a and b have different parities, then the products ab and ba are odd.
• The unit element is even.
• ab = (−1)|a|·|b|ba (supercommutativity).

Explicitly, this means that:

• ab = ba if either a and b are even or a and b have different parity.
• ab = −ba if a and b are odd.

Standard example (Grassmann algebra). The Grassmann algebra Λ(Ed
3 ).

Let α, β, γ be real numbers. Define:

• α and αdx ∧ dy + βdx ∧ dz + γdy ∧ dz are even.
• The non-zero elements αdx+ βdy + γdz and αdx ∧ dy ∧ dz are odd.

Then the Grassmann algebra Λ(Ed
3 ) of differential forms on the Euclidean space

E3 is a super algebra which is supercommutative.
Super Lie algebra. Let A be a real or complex linear super space. We are

given a bilinear map (a, b) �→ [a, b] from A × A → A which has the following
properties for all graded elements a, b, and c:

• [a, b] = −(−1)|a|·|b|[b, a] (superantisymmetry),
• α[a, [b, c]] + β[b, [c, a]] + γ[c, [a, b]] = 0 (super Jacobi identity).

Here, α := (−1)|a|·|c|, β := (−1)|b|·|a|, and γ := (−1)|c|·|b|.

3.22.3 The Super Lie Algebra of the Euclidean Space

It is our goal to extend the real Lie algebra (E3)Lie introduced on page 83 to a real
super Lie algebra Sup(E3) consisting of all the sums

a +Q,

where a ∈ E3. The elements Q are called supercharges. They live in a finite-
dimensional real linear space Q called supercharge space. By definition, an element
a + Q of Sup(E3) is called graded iff either Q = 0 or a = 0. For graded elements,
we introduce a sign defined by

sgn a := 0 and sgn Q := 1.

By defining supercharges in an appropriate way, we want to introduce a so-called
super vector product
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(a +Q) × (b + P ) := a × P +Q× b + a × b +Q× P,

which has the following properties for all super vectors u, v, w ∈ Sup(E3), all vectors
a,b, c ∈ E3, and all real numbers α, β :

(i) Distributive laws: (αu+ βv) × w = α(u× v) + β(v × w). Similarly,

w × (αu+ βv) = α(w × u) + β(w × v).

(ii) Graduation: a× b and Q× P live in E3, whereas a×Q and Q× a live in the
supercharge space Q.

(iii) Superantisymmetry:

a × b = −b × a, a ×Q = −Q× a, Q× P = P ×Q.

(iv) Super Jacobi identities:

a × (b × c) + b × (c × a) + c × (a × b) = 0,

−a × (b ×Q) + b × (Q× a) −Q× (a × b) = 0,

−a × (Q× P ) −Q× (P × a) − P × (a ×Q) = 0.

This means that, for graded elements in Sup(E3), the following hold true.51

(a) Graduation : sgn(uv) ≡ sgnu+ sgn v mod 2.
(b) Superantisymmetry: u× w = (−1)αw × u.
(c) Super Jacobi identity:

(−1)αu× (v × w) + (−1)βv × (w × u) + (−1)γw × (u× v) = 0.

Here, α := sgn u sgn w, and β := sgn v sgn u, as well as γ := sgn w sgn v. By
setting, [u,w]− := u× w for all u,w ∈ Sup(E3), we get a real super Lie algebra.

To construct such an algebra in a nontrivial way, let dimQ = 2. Choose an
orthonormal basis e1, e2, e3 in E3 and a basis Q1, Q2 in Q. Define the products of
the basis elements by

 

Q1 ×Q1 Q1 ×Q2

Q2 ×Q1 Q2 ×Q2

!

:=
3
X

j=1

σjσ2ej

and
 

ej ×Q1

ej ×Q2

!

:= −1

2
σj
 

Q1

Q2

!

, j = 1, 2, 3.

Here, we use the Pauli matrices

σ1 :=

 

0 1

1 0

!

, σ2 :=

 

0 −i

i 0

!

, σ3 :=

 

1 0

0 −1

!

. (3.96)

Hence
 

Q1 ×Q1 Q1 ×Q2

Q2 ×Q1 Q2 ×Q2

!

=

 

e2 + ie1 −ie3

−ie3 e2 − ie1

!

.

An explicit computation shows that our product definition fulfills (i) through (iv)
above.

51 Recall that a ≡ b mod 2 iff the difference a− b is even.
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Fig. 3.13. Braid relation

3.23 Artin’s Braid Group

In terms of physics, Artin’s braid groups describe interactions in nature
based on a special type of twisting.

Folklore

3.23.1 The Braid Relation

Consider the symmetric group Sym(3) of the permutations of the numbers 1, 2, 3.
Choosing the cyclic permutations a := (12) and b := (23), we have the so-called
braid relation

aba = bab. (3.97)

This terminology is motivated by Fig. 3.13.
The free group FG(2) generated by two letters. We are given two letters

a, b.We add the symbols a−1, b−1,1. Let FG(2) denote the set of all words with the
five letters a, b, a−1, b−1,1. The product of words corresponds to the composition of
words. Finally, we add the relations aa−1 = a−1a = 1 and c1 = 1c = 1 if c = a, b,1.
This way, the set FG(2) becomes a group of infinite order. For example,

aba−1 · ab1 = aba−1ab1 = ab1b1 = abb.

The braid group Braid(3) with three strands. If we add the braid relation

aba = bab

and the corresponding relation a−1b−1a−1 = b−1a−1b−1, then the group FG(2)
passes over to the so-called braid group Braid(3). For example,

abab−1 = babb−1 = ba1 = ba.

This group was introduced by Artin in 1925.52 The maps a �→ (12) and b �→ (23)
induce a surjective group morphism μ : Braid(3) → Sym(3), which is not an
isomorphism.

52 E. Artin, Theory of braids, Hamburger Abh. 4 (1925), 47–72 (in German).
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3.23.2 The Yang–Baxter Equation

The Yang–Baxter equation first came up in a paper by Yang53 as a factor-
ization condition for the scattering S-matrix in the many-body problem
in one dimension and in a work of Baxter on exactly solvable models in
statistical mechanics. The Yang–Baxter equation also played an important
rôle in the quantum inverse scattering method created around 1978–79 by
Faddeev, Sklyanin, and Takhtadjian for the construction of quantum inte-
grable systems. Attempts to find R-matrices (i.e., solutions of the Yang–
Baxter equation) in a systematic way have led to the theory of quantum
groups created by Drinfeld, Jimbo, and Woronowicz in the late 1980s . . .
The derivation of knot invariants from quantum groups and, more gen-
erally, from ribbon categories first appeared in papers by Reshitikin and
Turaev in the early 1990s.54

Christian Kassel, Marc Rosso, and Vladimir Turaev, 1997

The Yang–Baxter equation ABA = BAB models a controlled deviation
from the commutativity relation AB = BA.

Folklore

Let X be a linear space over K = R,C. The Yang–Baxter equation reads as

ABA = BAB, A,B ∈ GL(X). (3.98)

We are looking for two bijective linear operators A,B : X → X which satisfy the
relation (3.98).

The flip operator F . Fix N = 1, 2, . . . Let b1, . . . , bN be a basis of the complex
linear space Y . Define

F (bi ⊗ bj) := bj ⊗ bi, i, j = 1, . . . , N.

This can be uniquely extended to the linear operator F : Y ⊗ Y → Y ⊗ Y. Finally,
set

A := F ⊗ idY and B := idY ⊗ F.
This yields the bijective linear operators A,B : X → X where X := Y ⊗ Y ⊗ Y.

Proposition 3.19 The operators A and B are solutions of the Yang–Baxter equa-
tion (3.98).

Proof. This is a consequence of the braid relation (3.97). Indeed,

ABA(bi ⊗ bj ⊗ bk) = AB(bj ⊗ bi ⊗ bk) = A(bj ⊗ bk ⊗ bi) = bk ⊗ bj ⊗ bi.

This coincides with BAB(bi ⊗ bj ⊗ bk). �

53 C. Yang, Some exact results for the many-body problem in one dimension with
repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312–1315.
R. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, New
York, 1982.

54 C. Kassel, M. Rosso, and V. Turaev, Quantum Groups and Knot Invariants,
Société Mathématique de France, 1997 (reprinted with permission).
V. Turaev, Quantum Invariants of Knots and 3-Manifolds, de Gruyter, Berlin,
1994.
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The deformed flip operator Fq. Let q ∈ C \ {0}. We want to construct a
one-parameter family of solutions of the Yang–Baxter equation by deforming the
flip operator. To this end, we define

Fq(bi ⊗ bj) :=

8

>

<

>

:

qbi ⊗ bi if i = j

bj ⊗ bi if i < j

bj ⊗ bi + (q − q−1)bi ⊗ bj if i > j.

In the special case where q = 1, we obtain the flip operator F above.
Constructing the operators Aq, Bq : X → X as above by replacing the flip

operator F by the deformed flip operator Fq, we obtain solutions Aq, Bq of the
Yang–Baxter equation (3.98) if the deformation parameter q is a nonzero complex
number.

Linear representations of the braid group. The Yang–Baxter equation can
be used in order to construct linear representations of the braid group Braid(3).
In fact, let A,B be solutions of the Yang–Baxter equation (3.98). In a natural way,
the maps a �→ A and b �→ B induce a linear representation

� : Braid(3) → GL(X)

of the braid group Braid(3) on the linear space X. For example,

�(aba−1b) := ABA−1B.

3.23.3 The Geometric Meaning of the Braid Group

Isotopic embeddings. The mathematical theory of knots, links, and braids is
based on the notion of isotopic embedding. By definition, an embedding of the
topological space X into the topological space Y is an injective continuous map

χ : X → Y

with the additional property that the map χ is a homeomorphism from X onto the
image χ(X).55 By definition, the two embeddings χ : X → Y and μ : X → Y are
called isotopic iff there exists a continuous map

H : X × [0, 1] → Y

such that H(x, 0) = χ(x) and H(x, 1) = μ(x) for all points x ∈ X, and the map

H(., t) : X → Y

is an embedding for all times t ∈ [0, 1]. Intuitively, the embedding χ is regularly
deformed into the embedding μ during the time interval [0, 1].

The braid group Braid(n) with n strands. Fix n = 3, 4, . . . Similarly, as
for the group FG(2) on page 290, we define the group FG(n − 1) which is freely
generated by n− 1 letters a1, . . . , an−1. We obtain the braid group Braid(n) from
FG(n− 1) by adding the following relations:

• aiaj = ajai for all i, j = 1, . . . n− 1 with |i− j| ≥ 2.
• aiai+1ai = ai+1aiai+1 if i = 1, . . . , n− 2.
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Fig. 3.14. Braids

In addition, let Braid(2) denote the free group generated by one letter a, that is,
Braid(2) := {1, a, a2, a3, . . .}. Finally, let us set Braid(1) = Braid(0) := {1}.

Geometric interpretation of the braid group. We want to discuss Fig.
3.14. Recall that a continuous (resp. smooth) embedding

χ : [0, 1] → E
3

is called a Jordan curve (resp. smooth Jordan curve).56 Moreover, the continuous
(resp. smooth) embedding

χ : S
1 → E

3

is called a closed Jordan curve (resp. smooth closed Jordan curve). Two Jordan
curves (resp. smooth Jordan curves) are called isotopic (resp. smoothly isotopic)
iff the corresponding embeddings are isotopic. The same terminology is used for
closed Jordan curves.

Fix the points P1, . . . , Pn where n = 3, 4, . . . A braid is a collection of n smooth
disjoint Jordan curves with starting points P1, . . . , Pn and end points Q1, . . . , Qn,
but possibly in a different order (Fig. 3.14(a)). Multiplication of braids corresponds
to composition of braids as depicted in Fig. 3.14(b). We allow deformations. More
precisely, we consider the braids up to isotopy. In addition, we pass to closed Jordan
curves through the given points P1, . . . , Pn, by identifying the starting points and
the end points of the Jordan curves.

The group of isotopy classes of smooth closed Jordan curves is isomorphic
to the braid group Braid(n).

The n−1 generators are those braids where only two threads are interchanged (Fig.
3.14(c)). These n − 1 isotopy classes of braids are denoted by (P1P2), (P2P3), . . . ,
and (Pn−1Pn).

55 If we replace the terms ‘topological space’, ‘continuous map’, and ‘homeomor-
phism’ by ‘manifold’, ‘smooth map’, and ‘diffeomorphism’, respectively, then we
obtain the notion of a ‘smooth embedding’. In the same sense, isotopic smooth
embeddings are to be understood.

56 One has to distinguish between the mathematician Camille Jordan (1838–1922)
(who made important contributions to group theory and analysis, and who stud-
ied ‘Jordan curves’) and the physicist Pascal Jordan (1902–1980) (who made
important contributions to quantum mechanics and studied ‘Jordan algebras’.)
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3.23.4 The Topology of the State Space of n Indistinguishable
Particles in the Plane

Recall that particles in quantum physics loose their individuality; they are indis-
tinguishable. This fact is crucial for quantum statistics (Pauli principle). We want
to study the topology of the corresponding state space. To this end, we define the
set

C
n
∗ := {(z1, . . . , zn) : zi �= zj if i �= j}, n = 3, 4, . . .

This is called the state space of n distinguishable particles. The symmetric group
Sym(n) acts on the topological space C

n
∗ . We write

(z1, . . . , zn) ∼ (zi1 , . . . zin)

iff i1, . . . in is a permutation of 1, . . . , n. The set C
n
∗/Sym(n) of all the correspond-

ing equivalence classes becomes a topological space equipped with the quotient
topology. Recall that Poincaré’s fundamental group π1(X) of a topological space X
measures the connectivity of X (see Sect. 4.4.5 of Vol. II). For example, the arcwise
connected topological space X is simply connected iff the fundamental group is
trivial, that is, π1(X) = {0}. In 1925 Artin proved the following.57

Theorem 3.20 The fundamental group of the state space C
n
∗/Sym(n) is isomor-

phic to the braid group with n strands: π1(C
n
∗/Sym(n))  Braid(n).

Physical interpretation. We consider n particles in the Gaussian plane C

described by the coordinates z1, . . . , zn ∈ C.We assume that there are no collisions,
and the particles are indistinguishable. Then the equivalence class [(z1, . . . , zn)]
describes a state of the n particles. Artin’s theorem shows that the state space has
a complicated topological structure.

Generalization. In 1994, Fulton and McPherson proved a far-reaching gener-
alization of Artin’s theorem concerning the homotopy of the state space C

n
∗ of n

distinguishable particles and the generalization to algebraic varieties.

W. Fulton and R. MacPherson, A compactification of configuration spaces,
Ann. of Math. 139 (1994), 183–225.

The introduction of this paper begins as follows:58

The aim of this article is to describe and study a natural compactification
of the configuration space of n distinct labeled points in a nonsingular
algebraic variety X. We give an explicit description of the degenerate con-
figurations added in the compactification, and we give presentations of the
cohomology ring of the compactifications and all strata at infinity. As an
application, when X is compact, we determine the rational homotopy type
of the configuration spaces in terms of invariants of X, a problem with a
long history in topology.

This new result from algebraic geometry was used by Hollands in order to master
the singularities of operator product expansions in curved space-time:

S. Hollands, The operator product expansion for perturbative quantum
field theory in curved space-time, Commun. Math. Phys. 273 (2007), pp.
1–36.

57 See the footnote on page 290.
58 Reprinted with permission.
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3.24 The HOMFLY Polynomials in Knot Theory

Given a projection of a knot, it is possible to decide in finitely many steps
if it is equivalent to an unknot. This question was answered affirmatively
by Wolfgang Haken in 1961.59 He proposed an algorithm . . . However,
because of its complexity it has not implemented on a computer even after
40 years. We would like to add that in 1974 Haken and Appel solved the
famous Four-Color problem for planar maps (posed by Francis Guthrie
in 1852) by making essential use of a computer program to study the
thousands of cases that needed to be checked.60

Kishore Marathe, 2001

We want to discuss the HOMFLY polynomials which contain the classical Alexander
polynomials from 1928 and the Jones polynomials from 1985 as special cases. The
name HOMFLY refers to the names of the authors of the 1985 basic paper about
these polynomials.61

Intuitively, a knot is a closed curve in the 3-dimensional Euclidean manifold
without self-intersections; two knots are called equivalent iff they can be deformed
into each other in the 3-dimensional Euclidean manifold E

3, by avoiding self-
intersections during the deformation process. More precisely, by definition, a knot
is a smooth embedding

f : S
1 → E

3 (3.99)

of the unit circle S
1 into E

3, that is, the image f(S1) of the smooth map f is a
submanifold of E

3, and the induced map

f : S
1 → f(S1)

is a diffeomorphism. Two knots f, g : S
1 → E

3 are called equivalent (or ambient
isotopic) iff there exists an orientation-preserving diffeomorphism

F : E
3 → E

3

which maps the set f(S1) onto the set g(S1). The knot is called an unknot iff it is
equivalent to the unit circle.

A link is a finite collection of pairwise disjoint knots. Note that knots are special
links. Graphically, links are represented by projections onto a fixed plane with
crossings marked as over and under (Fig. 3.15).

Compactification of the three-dimensional Euclidean manifold. To sim-
plify the mathematical situation, we will compactify the Euclidean manifold E

3. In
complex function theory, one compactifies the Gaussian plane C by the Riemann
sphere S

2 based on stereographic projection (Fig. 0.1 on page 15). Similarly, we
replace the 3-dimensional Euclidean manifold E

3 by the compact 3-dimensional

59 W. Haken, Theory of normal surfaces, Acta math. 105 (1961), 245–375.
K. Appel and W. Haken, The solution of the four-color-map problem, Scientific
American, September 1977, 108–121.

60 K. Marathe, A chapter in physical mathematics: theory of knots in the sciences,
pp. 873–888. In: B. Enquist and W. Schmid (Eds.), Mathematics Unlimited –
2001 and Beyond, Springer, Berlin 2001 (reprinted with permission).

61 HOMFLY: D. Hoste, A. Ocneanu, W. Millett, P. Freyd, W. Lickorish, D. Yetter,
A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. 12 (1985),
239–246.
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Fig. 3.15. Knots and links

unit sphere S
3. This implies that we replace the knot map (3.99) by the smooth

embedding

f : S
1 → S

3.

We will write K := f(S1). Using some motion, if necessary, we can assume that the
compact knot set f(S1) lies outside some open neighborhood of the North Pole N
(also denoted by ∞). This means that, after stereographic projection, the knot set
lies in some ball of E

3.
Knot invariants. The main problem of knot theory is to decide whether a

knot is nontrivial, that is, it is not equivalent to the unknot. To solve this problem,
knot invariants are introduced. By definition, a knot invariant does not change if
we pass to an equivalent knot. There exist the following knot invariants:

(i) the crossing number: this is defined to be the minimal number of crossings in
any projection of the knot onto a plane;

(ii) the fundamental group π1(S
3 \K) of the knot complement S

3 \K;
(iii) the HOMFLY polynomials which yield the Alexander polynomials and the

Jones polynomials.

In particular, if the HOMFLY polynomial of a knot is different from 1, then the
knot is not trivial.

The recursive construction of the HOMFLY polynomials. These poly-
nomials depend on the two variables x and y. They are defined recursively by the
so-called skein relations:

y−1H+(x, y) − yH−(x, y) = xH0(x, y). (3.100)

For the unknot, we define H := 1. The skein relation refers to three diagrams which
differ only at one crossing point as depicted in Fig. 3.16(a), (b), (c). For a given
link, the idea of computing the HOMFLY polynomial is to successively change the
link diagram at crossing points according to Fig. 3.16 in order to finally obtain
the unknot. The corresponding skein relations then yield recursive formulas for the
desired HOMFLY polynomial. For an oriented link L, we get

• the Alexander polynomial AL(t, t−1) := H(x, 1) with x := t1/2 − t−1/2, and

• the Jones polynomial JL(y) := HL(x, y) with x := y1/2 − y−1/2.

In particular, for the links L+, L−, L0 depicted in Fig. 3.15, the skein relation with
H+ = H− = 1 yields

y−1 − y = xH0(x, y).

Thus, for the link L0, we get the following polynomials:

H0(x, y) =
y−1 − y
x

, A0 = 0, J0(y) = −y1/2 − y−1/2.

Considering Fig. 3.15, the link L+ (resp. L−) is not equivalent to the link L0, since
the corresponding Jones polynomial J+ = 1 (resp. J− = 1) is different from J0.
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Fig. 3.16. Crossing points

Chirality of knots. A knot is called chiral iff it is not equivalent to its mirror
image. If Kmirror is the mirror image of the knot, then the Jones polynomial of the
knot has the property

JKmirror(y) = JK(y−1).

Observe that the Jones polynomial is not always symmetric in y and y−1. Therefore,
in contrast to the Alexander polynomials, the Jones polynomials frequently allow
us to discover the chirality of knots. For example, the link L0 from Fig. 3.15 is
chiral. If we change the orientation of the two curves, then the Jones polynomial
changes sign.

The details can be found in the modern textbook by V. Manturov, Knot Theory,
Chapman & Hall, CRC, Boca Raton, Florida, 2004.

3.25 Quantum Groups

Algebraic deformation represents a method for the quantization of Lie
groups and Lie algebras. Quantum groups are not groups, but Hopf alge-
bras. They are obtained by deforming the coordinate Hopf algebra of a
group.

Folklore

3.25.1 Quantum Mechanics as a Deformation

The crucial commutation relation. The mechanics of a quantum particle on
the real line is governed by the Heisenberg–Born–Jordan commutation relation62

QP − PQ = i�I. (3.101)

In the classical case, Q and P are real numbers which describe the position and
the momentum of the particle, respectively. The passage from classical mechanics
to quantum mechanics corresponds to the passage from QP − PQ = 0 to the
relation (3.101) which shows that Q and P do not commute. This is an algebraic
deformation which depends on the parameter � := h/2π where h is the Planck
quantum of action.

Quantum physics is governed by noncommutative mathematical structures.

The deformation parameter q. In terms of physics, we set

q := eh/S0

62 For the interesting history of this relation, see page 64 of Vol. I.
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where S0 := 1Js (Joule second) and h = 6.626 · 10−34Js. The quantity S0 describes
the typical value of the action (energy times time) for processes running in daily
life, whereas the Planck quantum of action h refers to the typical action of quantum
processes. We have the tiny dimensionless quantity h/S0 = 6.626 · 10−34. The limit

q → 1

corresponds to the passage from quantum mechanics to classical mechanics. In
order to model quantization in algebraic terms, let us study the passage from the
commutative relation xy = yx to the noncommutative relation xy = qyx with
q �= 1.

3.25.2 Manin’s Quantum Planes R
2
q and C

2
q

In algebraic geometry, geometric objects are described by algebraic objects. In this
connection, the coordinate algebra of a geometric object plays a crucial role.

• In classical algebraic geometry, the coordinate algebras are quotient algebras of
commutative polynomial algebras.

• In noncommutative algebraic geometry, the coordinate algebras are quotient alge-
bras of noncommutative polynomial algebras (also called generalized polynomial
algebras).

We want to deform the classical Euclidean plane E
2 by deforming

• the coordinate algebra K[x, y]/xy − yx of E
2

• to the coordinate algebra K[x, y]/xy − qyx which is also called the quantum
plane to the Euclidean plane E

2 over the field K. Naturally enough, this quantum
plane is denoted by K

2
q.

Let us discuss this. To begin with, we choose a fixed field K. For example, let
K = R,C,Q or K = Z/mod2 (the field of real numbers, complex numbers, rational
numbers, or the finite field {0, 1} with 1 + 1 = 0, respectively). Let K[x, y] denote
the algebra over K of all the generalized polynomials

a+ bx+ cy + dxx+ exy + fyx+ gyy + hxxx+ kxxy + lxyx+ . . .

with coefficients a, b, . . . in the field K. Note that the order of the factors x and y
is crucial (i.e., we have to distinguish between xy and yx). Therefore, we speak of
generalized polynomials.63 If J is a two-sided ideal in K[x, y], then we write

p(x, y) ∼ q(x, y)

iff p(x, y)− q(x, y) ∈ J. The equivalence classes [p] form an algebra over K denoted
by K[x, y]/J (see Sect. 4.1.3 of Vol. II). The use of coordinate algebras in algebraic
geometry is based on Hilbert’s fundamental results in commutative algebra – the
basis theorem, the ‘Nullstellensatz’ (zero theorem), and the theory of constraints
(syzygies) – published in about 1890.64

Example 1 (Euclidean plane E
2). By definition, the coordinate algebra C(E2,K)

of E
2 over the field K consists of all the generalized polynomials in K[x, y] together

with the relation

63 Polynomials are obtained from this by adding the relation xy = yx.
64 See K. Spindler, Abstract Algebra with Applications, Vol. II, Marcel Dekker,

1994, and D. Eisenbud, Commutative Algebra with a View to Algebraic Geom-
etry, Springer, New York, 1994. See also the references quoted on page 418.
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xy − xy = 0. (3.102)

For example, exy + fyx = (e + f)xy. In other words, C(E2,K) is the polynomial
algebra over the field K with the generators x and y.

Example 2 (unit circle S
1). The classical equation of S

1 reads as

x2 + y2 − 1 = 0. (3.103)

By definition, the coordinate algebra C(S1,K) of S
1 over the field K consists of

all the generalized polynomials in K[x, y] together with the relations (3.102) and
(3.103). For example,

x+ y + x2 + xy + yx+ y2 = x+ y + 2xy + 1.

Example 3 (Manin’s quantum plane Cq(E2,K)). Fix the nonzero element q of K.
By definition, the deformed algebra Cq(E2,K) over K consists of all the generalized
polynomials in K[x, y] together with the relation65

xy − qyx = 0.

For example, exy + fyx = (eq + f)yx. If q �= 1, then the ‘coordinates’ x and y are
noncommutative quantities. This yields a noncommutative geometry by using the
following general strategy:

Reformulate geometric properties in terms of the coordinate algebra

C(E2,K) = K[x, y]/xy − yx

and replace this by the deformed algebra Cq(E2,K) = K[x, y]/xy − qyx.
We briefly write K

2
q instead of Cq(E2,K). Mnemonically, let us use the following

terminology:

• The real algebra R
2
q is called the real quantum plane.

• The complex algebra C
2
q is called the complex quantum plane.

This algebraic approach to noncommutative geometry was proposed by Manin in
1988.66 This approach also allows us to incorporate supersymmetry in a natural
manner.

Example 3 (quantum super plane Sup(K2
q)). This is an algebra over the field K

which consists of all the generalized polynomials in K[x, y, ξ, η] together with the
following relations:

• xy = qyx (bosonic relation),
• ξη = −qηξ, ξ2 = 0, η2 = 0 (fermionic relations), and
• xξ = −ξx, xη = −ηx, yξ = −ξy, yη = −ηy (mixed products).67

65 This coincides with the quotient algebra K[x, y]/J where J is the smallest two-
sided ideal of K[x, y] which contains the element xy − qyx. This ideal is well-
defined as the intersection of the ideal K[x, y] with all the ideals which contain
the polynomial xy − qyx.

66 See Yu. Manin, Quantum Groups and Non-Commutative Geometry, Centre des
Recherches Mathématiques, Université de Montréal, 1988, and
Yu. Manin, Topics in Noncommutative Geometry, Princeton University Press,
1991.

67 This means that Supq(E
2,K) is the quotient algebra K[x, y, ξ, η]/J where J is

the smallest two-sided ideal of K[x, y, ξ, η] which contains xy − qyx, ξη + qηξ,
ξ2, η2, as well as xξ + ξx, xη + ηx, yξ + ξy, yη + ηy.
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The special case where q = 1 is called super plane. For example,

(ξ + η)2 = (ξ + η)(ξ + η) = ξ2 + ξη + ηξ + η2 = (1 − q)ηξ.

In what follows, we will use the definition of Hopf algebras and the typical properties
of such algebras (see the detailed discussion in Chap. 3 of Vol. II).

3.25.3 The Coordinate Algebra of the Lie Group SL(2, C)

The Lie group SL(2,C). By definition, SL(2,C) consists of all complex matrices

A =

 

A1
1 A

1
2

A2
1 A

2
2

!

with detA = 1. As we will show later on, this is the universal covering group
of the orthochronous Lorentz group which plays a fundamental role in relativistic
quantum physics. The inverse matrix reads as

A−1 =

 

A2
2 −A1

2

−A2
1 A1

1

!

.

The coordinate algebra C(SL(2,C)) of the Lie group SL(2,C). We want
to describe the group SL(2,C) in a dual way by some Hopf algebra. This will allow
us to perform algebraic deformations. To this end, we fix the indices i, j = 1, 2, and
we define

cij(A) := Ai
j for all A ∈ SL(2,C).

This is called the ij-coordinate map cij : SL(2,C) → C on the Lie group SL(2,C).

This map assigns to the operator A ∈ SL(2,C) the complex number Ai
j .

In terms of physics, the coordinate map cij assigns to the observable A the

complex number Ai
j which can be measured in a physical experiment.68

Fix cij . For all A,B ∈ SL(2,C), we define:

• (Δcij)(A,B) := cij(AB) (coproduct Δ);

• (Scij)(A) := cij(A
−1) (coinverse S);

• ε(cij) = cij(I) (counit).

The coinverse is also called the antipode. Noting that the matrix product is given
by

(AB)ij = Ai
1B

1
j +Ai

2B
2
j ,

and noting that we have (cik⊗ckj )(A,B) = cik(A)ckj (B) = Ai
kB

k
j , we get the coprod-

uct
Δcij = ci1 ⊗ c1j + ci2 ⊗ c2j , i, j = 1, 2,

the coinverse
 

Sc11 Sc
1
2

Sc21 Sc
2
2

!

=

 

c22 −c12
−c21 c11

!

,

68 In the sense of Plato’s famous cave parable from the seventh book of his “Po-
litea”, coordinate maps project abstract quantities from the ‘world of ideas’ into
the ’real world’.
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and the counit
 

ε(c11) ε(c12)

ε(c21) ε(c22)

!

=

 

1 0

0 1

!

.

In a natural way, we extend the functions Δ, S, and ε to complex linear combina-
tions and to products of coordinate maps. Explicitly, we define

• Δ(αcij + βckl ) := αΔcij + βΔckl , and

• Δ(cijc
k
l ) := (Δcij)(Δc

k
l )

for all complex numbers α, β and all coordinate maps. Further definitions are ob-
tained by replacing Δ by either S or ε. By Sect. 3.5.3 of Vol. II, we get the following.

Proposition 3.21 The polynomial algebra C[c11, c
1
2, c

2
1, c

2
2] becomes a complex Hopf

algebra with respect to Δ,S, ε introduced above.

To simplify notation in the following, we set
 

a b

c d

!

:=

 

c11 c
1
2

c21 c
2
2

!

,

that is, a := c11, and so on. This yields (3.104) and (3.105) below with q = 1.

3.25.4 The Quantum Group SLq(2, C)

Fix the nonzero complex number q which is called the deformation parameter. Our
goal is to construct a Hopf algebra Cq(SL(2,C)) which is isomorphic to C(SL(2,C))
if q = 1. Traditionally, Cq(SL(2,C)) is called the q-quantum group to the Lie group
SL(2,C). Let us start with the generalized polynomial algebra C[a, b, c, d]. The
elements of this algebra are finite sums of words of the form

αa1a2 . . . am, m = 1, 2, . . .

where α is a complex number, and every aj is equal to a, b, c, or d.69 For the letters
a, b, c, d, we add the following relations:

• ab = qba, ac = qca, ad− dc = (q − q−1)bc,
• bd = qdb, bc = cb, cd = qdc.

Note that this reduces to commutativity relations if q = 1. This way, we pass from
the polynomial algebra C[a, b, c, d] to a complex algebra denoted by Cq[a, b, c, d]. In
addition, we introduce the maps Δ,S, ε by setting:

 

Δ(a) Δ(b)

Δ(c) Δ(d)

!

:=

 

a⊗ a+ b⊗ c a⊗ b+ b⊗ d
c⊗ a+ d⊗ c c⊗ b+ d⊗ d

!

, (3.104)

 

S(a) S(b)

S(c) S(d)

!

:=

 

d −q−1b

−qc a

!

,

 

ε(a) ε(b)

ε(c) ε(d)

!

:=

 

1 0

0 1

!

(3.105)

and detq

 

a b

c d

!

:= ad− qbc (quantum determinant). Mnemonically,

69 By convention, in the special case where m = 0, this word reads as α.
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Δ(a) Δ(b)

Δ(c) Δ(d)

!

=

 

a b

c d

!

⊗
 

a b

c d

!

=

 

a⊗ a+ b⊗ c a⊗ b+ b⊗ d
c⊗ a+ d⊗ c c⊗ b+ d⊗ d

!

.

Theorem 3.22 For any nonzero complex number q, the algebra Cq(SL(2,C)) be-
comes a complex Hopf algebra which is isomorphic to the Hopf algebra C(SL(2,C))
if q = 1.

To prove this, one has to check that all the axioms for a Hopf algebra are
satisfied, by elementary, but lengthy computations (see Sect. 3.3.2 of Vol. II). For
example, we define

Δ(ab) := Δ(a)Δ(b),

and, naturally enough, the product Δ(a)Δ(b) is computed by using the relation
(a⊗ b)(c⊗ d) := ac⊗ bd, and so on. We refer to Problem 3.17.

3.25.5 The Quantum Algebra slq(2, C)

The complex algebra UqslC(2,C). Fix the deformation parameter q as a complex
number with q �= 0,±1. By definition, the complex algebra UqslC(2,C) is obtained
from the generalized polynomial algebra C[A+, A−, C, C

−1] by adding the following
relations:

CC−1 = C−1C = 1, A+A− −A−A+ =
C − C−1

q − q−1
, (3.106)

CA+C
−1 = q2A+, CA−C

−1 = q−2A−.

The Hopf algebra structure of UqslC(2,C). Interestingly enough, the alge-
bra UqslC(2,C) can be equipped with the additional structure of a Hopf algebra. It
is sufficient to define the maps Δ,S, ε for the generators. We define the coproduct

• Δ(C) := C ⊗ C, Δ(A+) := A+ ⊗ C + 1 ⊗A+,
• Δ(A−) := A− ⊗ 1 + C−1 ⊗A−,

the coinverse

• S(C) := C−1, S(A+) := −A+C
−1, S(A−) = −CA−,

and the counit

• ε(C) := 1, ε(A+) = ε(A−) := 0.

Theorem 3.23 This way, the algebra UqslC(2,C) becomes a Hopf algebra.

This complex Hopf algebra is denoted by slq(2,C). Recall that this is well-
defined for complex numbers q with q �= 0,±1. The proof of the theorem is based
on elementary, but clumsy computations (see Problem 3.18).

Next we want to study how the quantum algebra slq(2,C) is related to the
original algebra UslC(2,C) (universal enveloping algebra of the complex Lie algebra
slC(2,C)). We want to show that

lim
q→1

UqslC(2,C) = UslC(2,C), (3.107)

in the sense of an appropriate notion of convergence. To this end, let us rigorously
introduce operations in the algebra A∞[h]. Setting q = eh, we will study the limit
h→ 0.
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The algebra A∞[h]. Let A be an algebra over the field K (e.g., a real or
complex algebra). The infinite tuple

(a0, a1, a2, . . .)

with aj ∈ A for all indices j is called a formal power series with coefficients in the
algebra A. We define linear combinations, products, differentiation, and limits in
the following way:

• α(a0, a1, . . .) + β(b0, b1, . . .) := (αa0 + βb0, αa1 + βb1, . . .) (α, β ∈ K);

• (a0, a1, . . .)(b0, b1, . . .) := (a0b0, a0b1 + a1b0, . . .);

• (a0, a1, a2, . . .)
′ := (a1, 2a2, . . .);

• limh→0(a0, a1, . . .) = a0.

This way, the set A∞[h] of all formal power series with coefficients in A becomes
an algebra over K.70

The limit h→ 0. We want to show that the relations on the algebra slq(2,C)
pass over to the relations on UslC(2,C), in the sense of the calculus for formal
power series. Since the calculus respects the algebra operations, it is sufficient to
investigate the limits for the relations (3.106) of the generators of slq(2,C). We
have to show that, as h→ 0, (3.106) passes over to

BA± −A±B = ±2A±, A+A− −A−A+ = B. (3.108)

Let us start with CA+C
−1 = e2hA+. We replace C by ehD, and we assume that

the relation
ehDA+e−hD = e2hA+

holds in the sense of the algebra A∞[h] where A := UslC(2,C), and A+, A−, D ∈ A.
Note that ehD stands for 1+Dh+ 1

2!
D2h2 + . . . Differentiation of the formal power

series (with respect to h) yields

ehD(DA+ −A+D)e−hD = 2e2hA+.

Letting h→ 0 and setting D = B, we obtain BA+ − A+B = 2A+. Similarly, from
(3.106) we get the remaining relations of (3.108).

3.25.6 The Coaction of the Quantum Group SLq(2, C) on the
Quantum Plane C

2
q

The classical action of the Lie group SL(2,C) on the complex plane C
2 is given by

the matrix formula
 

a b

c d

! 

x

y

!

=

 

ax+ by

cx+ dy

!

.

We want to generalize this to

• a coaction of the quantum group SLq(2,C) on
• the quantum plane C

2
q.

70 Mnemonically, we write f(h) = a0 + a1h+ a2h
2 + . . . Then the definitions above

correspond to the usual operations for power series expansions. For example,
f ′(h) = a1 + 2a2h+ . . . motivates the definition of (a0, a1, . . .)

′ := (a1, 2a2, . . .).
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Recall that SLq(2,C) and C
2
q are complex Hopf algebras with the generators a, b, c, d

and x, y, respectively. The key definition reads as

 

a b

c d

!

⊗
 

x

y

!

:=

 

a⊗ x+ b⊗ y
c⊗ x+ d⊗ y

!

.

This motivates to introduce the map ϕ given by

ϕ(x) := a⊗ x+ b⊗ y, ϕ(y) := c⊗ x+ d⊗ y.

The following statement can be obtained by an explicit computation.

Proposition 3.24 ϕ(x)ϕ(y) := qϕ(y)ϕ(x).

This means that the map ϕ respects the relation xy = qyx on the quantum
plane. This motivates the extension

ϕ(αx+ βy) := αϕ(x) + βϕ(y), ϕ(xy) := ϕ(x)ϕ(y).

3.25.7 Noncommutative Euclidean Geometry and Quantum
Symmetry

Quantum physics enforces the study of noncommutative mathematical
structures.

Folklore

The passage from classical mechanics to quantum mechanics corresponds to a pas-
sage from commutative function algebras to noncommutative operator algebras for
the observables (e.g., energy, momentum, angular momentum). The basic idea of
noncommutative geometry is

• to replace classical geometric objects by appropriate commutative algebras and
• to deform these into noncommutative algebras which are called objects of non-

commutative geometry.

Our considerations above concern the noncommutative geometry of the Euclidean
plane. Let us summarize the main points:

(i) Real quantum plane R
2
q

• The Euclidean space E2 is a 2-dimensional real Hilbert space which is isomorphic
to the 2-dimensional real Hilbert space R

2.
• The Euclidean plane E

2 is a 2-dimensional real manifold which is in one-to-one
correspondence to R

2.
• The real quantum plane R

2
q with q ∈ R \ {0} is an infinite-dimensional real Hopf

algebra.
• The algebra R

2
1 is isomorphic to the infinite-dimensional coordinate algebra of

the Euclidean plane E
2 over the field R of real numbers.

(ii) Complex quantum plane C
2
q

• C
2 is a 2-dimensional complex Hilbert space.

• The complex quantum plane C
2
q with q ∈ C \ {0} is an infinite-dimensional

complex Hopf algebra.
• The algebra C

2
1 is isomorphic to the infinite-dimensional complex coordinate

algebra of the Euclidean plane E
2 over the field C of complex numbers.
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(iii) Quantum group SLq(2,C)

• SL(2,C) is a 3-dimensional complex Lie group and a 6-dimensional real Lie
group.

• The quantum group SLq(2,C) with q ∈ C\{0} is an infinite-dimensional complex
Hopf algebra which coacts on the quantum plane C

2
q.

• The algebra SL1(2,C) is isomorphic to the infinite-dimensional complex coordi-
nate Hopf algebra of SL(2,C).

(iv) Quantum algebra slq(2,C)

• slC(2,C) is a 3-dimensional complex Lie algebra whose realification sl(2,C) is a
6-dimensional real Lie algebra.

• The quantum algebra slq(2,C) with q ∈ C \ {0, 1,−1} is an infinite-dimensional
complex Hopf algebra.

• By definition, sl1(2,C) is the universal enveloping algebra UslC(2,C) of the
complex Lie algebra slC(2,C); this universal enveloping algebra is an infinite-
dimensional complex Hopf algebra.

• limq→1 slq(2,C) = sl1(2,C), in the sense of formal power series expansions.

(v) Quantum symmetry

• The classical SL(2,C)-symmetry of the complex plane C
2 is described by the

action of the Lie group SL(2,C) on C
2 via the map u �→ Au from C

2 → C
2. This

is the symplectic geometry on C
2. In fact, introducing the matrix

J :=

 

0 1

−1 0

!

,

we get the following: The complex (2× 2)-matrix A is an element of SL(2,C) iff
it is symplectic, that is, the symplectic form

udJu, u ∈ C
2

is invariant under the transformation u �→ Au. To prove this, note that the
invariance condition

(Au)dJ(Au) = udJu for all u ∈ C
2

is equivalent to ud(AdJA)u = udJu for all u ∈ C
2. In turn, this is equivalent to

AdJA = J. This means that
 

a c

b d

! 

0 1

−1 0

! 

a b

c d

!

=

 

0 ad− bc
bc− ad 0

!

=

 

0 1

−1 0

!

.

Hence detA = ad− bc = 1. Therefore, the Lie group SL(2,C) is also denoted by
Sp(2,C) (complex symplectic group).71

This symmetry is behind the spinor calculus in relativistic quantum physics.
• The Lie algebra sl(2,C) is obtained from the Lie group SL(2,C) by linearization

at the unit element (see Sect. 7.7 of Vol. I). Intuitively, the Lie algebra sl(2,C)
describes the symplectic geometry of the space C

2 on an infinitesimal level.
• The quantum group SLq(2,C) coacts on the complex quantum plane C

2
q. This

can be viewed as a generalized symplectic geometry.

71 By definition, the real symplectic group Sp(2,R) consists of all the real

(2 × 2)-matrices A with AdJA = J. The same argument as above shows that
Sp(2,R) = SL(2,R).
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• Finally, the quantum algebra slq(2,C) can be considered as an infinitesimal vari-
ant of the symplectic geometry of the quantum plane C

2
q.

Further reading on Lie groups, Lie algebras, and quantum groups.
See page 534.

3.26 Additive Groups, Betti Numbers, Torsion
Coefficients, and Homological Products

Additive groups play a crucial role in algebraic topology. For example,
homology and cohomology groups are used in order to introduce Betti
numbers and torsion coefficients as fundamental topological invariants.

Folklore

We are going to study additive groups and more general modules which allow
many applications in mathematics and physics. The definition of an additive group
is extremely simple. Nevertheless, additive groups possess a rich algebraic structure
which is the subject of homological algebra. This structure was discovered in the
1940s by studying homology and cohomology groups with arbitrary coefficents (see
Vol. IV).

The nontriviality of additive groups is closely related to torsion which cor-
responds to the existence of periodic elements. In topology, the torsion of
homology and cohomology groups describes geometric twists.

At this point, we only summarize some elementary results which allow far-reaching
generalizations in homological algebra.

Cyclic groups. The prototype of an additive group is the additive group Z of
integers with respect to addition m+n for all m,n ∈ Z. In general, a commutative
group is called an additive group iff the group operation is denoted by the symbol
+, and the unit element is denoted by 0. An additive group G is called cyclic iff
it is generated by precisely one element g1, that is, every element g of G can be
represented as

g = ng1, n ∈ Z.

For example, the group element g1 = 1 generates the additive group of integers Z.

A cyclic group is isomorphic either to the infinite cyclic group Z or to the
finite cyclic group Zm of order m = 1, 2, . . .

By definition, the group Zm consists of the m elements 0, 1, 2, . . . ,m− 1 where we
add the relation m = 0. For example, 1 + (m− 1) = m = 0. Note that Z1 = {0}. In
what follows we will briefly write Z1 = 0.

Direct sums. The direct sum G ⊕H of the additive groups G and H is defined
as for linear spaces. Explicitly, G ⊕H consists of all the pairs

(g, h), g ∈ G, h ∈ H

with (g, h) + (g′, h′) = (g + g′, h+ h′).
Generators and free additive groups. The system {gj}j∈J of elements gj

of the additive group G is called a generating system of G iff every element g of G
can be represented as

g =
X

j∈J
αjgj
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where all the coefficients αj are integers, and at most a finite number of coefficients
αj is different from zero. In particular, G is called finitely generated iff it possesses a
finite generating system. The additive group G is called free iff every group element
g determines uniquely all the coefficients αj . Then the generating system {gj}j∈J
is called a basis of G. For example, the additive group Z is free, whereas all the
groups Zm are not free. For example, in order to see that the group Z2 is not free,
note that 2g = 4g = 0 for all g ∈ Z2.

Betti numbers and torsion coefficients. Consider the finite direct sum

G = Z ⊕ Z ⊕ . . .⊕ Z ⊕ Zn1 ⊕ Zn2 ⊕ . . .⊕ Znr (3.109)

where n1, . . . , nr are integers with 1 < n1 ≤ n2 ≤ . . . ≤ nr, and nk is a divisor
of nk+1 for all k = 1, . . . , r − 1. The direct sum G is a finitely generated additive
group.

• The number of summands Z is called the Betti number β (or the rank) of the
additive group G.

• The numbers n1, . . . , nr are called the torsion coefficients of the group G.

For example, the additive group

Z ⊕ Z2 ⊕ Z4

has the Betti number (or the rank) β = 1 and the torsion coefficients 2, 4. The
additive group Z⊕Z has the Betti number β = 2, and the torsion coefficients drop
out. To simplify notation, we write72

G = Z
β ⊕ Zn1 ⊕ Zn2 ⊕ . . .⊕ Znr . (3.110)

The main theorem on finitely generated additive groups. The following
theorem tells us that the direct sum (3.109) describes the normal form of finitely
generated additive groups.

Theorem 3.25 Every finitely generated additive group is isomorphic to a finite
direct sum of cyclic groups.

Two finitely generated additive groups are isomorphic iff they have the same
Betti numbers and the same torsion coefficients.

The proof can be found in K. Spindler, Abstract Algebra and Applications,
Sect. 25, Vol. 1, Marcel Dekker, New York, 1994.

Periodic elements and torsion. The element g = 1 of Z2 has the property
that

2g = 0.

We say that the element g has the period 2. In general, the element g of the additive
group G is called periodic iff g �= 0 and there exists a positive integer m such that

mg = 0.

The element g = 1 in Zm with m = 2, 3, . . . has the minimal period m. An additive
group G is called torsion free iff it has no periodic elements. For example, Z is
torsion free. Using the decomposition (3.110), we set

• F (G) := Z
β (free part of G), and

72 By definition, Z
0 := 0,Z1 := Z,Z2 = Z ⊕ Z, . . .
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• T (G) := Zn1 ⊕ . . .⊕ Znr (torsion part of G).

Then we get the group decomposition

G = F (G) ⊕ T (G). (3.111)

A finitely generated additive group G is torsion free iff it is free. In turn, G is free
iff G = F (G) (i.e., T (G) = 0), and the torsion coefficients drop out.

The dual additive group. Let G be an additive group. The set of all the
additive group morphisms

f : G → Z

forms an additive group Gd which is called the dual group to G. We also write
Hom(G,Z) instead of Gd. For example,

Hom(G,Z) = Z and Hom(Zm,Z) = 0, m = 1, 2, . . .

Proof. For example, let m = 2. If f : Z2 → Z is a morphism, then we obtain
2f(1) = f(1) + f(1) = f(1 + 1) = f(0) = 0. Hence f = 0. �

The homomorphism product Hom. Let G and H be additive groups. Let
Hom(G,H) denote the set of all the additive group morphisms73

f : G → H,

then Hom(G,H) is an additive group which is called the homomorphism product
of G and H. This product respects direct sums, that is, we have the following
distributive laws:

Hom(G ⊕ G′,H) = Hom(G,H) ⊕ Hom(G′,H), (3.112)

and Hom(G,H⊕H′) = Hom(G,H) ⊕ Hom(G,H′).
Examples. (i) Hom(Z,H)  H for all additive groups H.

(ii) Hom(Z ⊕ Z,H) = Hom(Z,H) ⊕ Hom(Z,H) = H⊕H.
(iii) Hom (Z,Zm) = Zm for all m = 1, 2, . . .
(iv) Hom (Zm,Z) = 0 for all m = 1, 2, . . .
(v) Hom (Zm,Zn) = Z(m,n) for all m,n = 1, 2, . . . (where (m,n) is the greatest

common divisor of m and n).74

(vi) Hom (Z,F) = F and Hom (Zm,F) = 0, m = 1, 2, . . . , if F is a field or skew-
field (e.g., F = Z2,Zp (p prime number), Q (rational numbers), R (real numbers),
H (quaternions)).

(vii) If G is finitely generated, then Hom (G,Z) = F (G) (free part of the additive
group G).
Proof. Ad (i). Let f : Z → H be a group morphism. Set χ(f) := f(1). The map

χ : Hom(Z,H) → H
73 In modern mathematics, the term ’morphism’ is used for all mathematical struc-

tures in the setting of category theory (see Vol. IV). In the classical textbook by
B. van der Waerden, Modern Algebra (in German), Springer, Berlin, 1930 (En-
glish edition: Frederyk Ungar, New York, 1975), the term ’homomorphism’ is
used for morphisms of groups, rings, modules, and fields. Therefore, ’morphisms’
and ’homomorphisms’ are synonymous terms nowadays. For historical reasons,
in homological algebra one always uses ’Hom’ instead of ’Mor’ in the theory of
categories.

74 For example, Hom (Zm,Zm) = Zm, Hom (Z4,Z6) = Z2, and Hom (Z3,Z5) = 0.
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is a group morphism. If f(1) = 0, then f(1+1) = 0, and so on. Hence f = 0. Thus,
ker(χ) = 0. Consequently, the map χ is an isomorphism (see Sect. 4.1.3 of Vol. II).
The other claims are proved similarly. �

The computation of homology and cohomology groups with general
coefficients. In homological algebra, one introduces two other products Tor (G,H)
and Ext (G,H) for computing the homology groups Hk(X,H) and cohomology
groups Hk(X,H) of topological spaces X with coefficients in the additive group H
(e.g., H= Z, Zm, Q (rational numbers), R (real numbers), H (quaternions)). It is
sufficient to know the homology groups Hk(X,Z) with integer coefficients in order
to get all the other homology and cohomology groups. In this connection, one uses
the universal coefficient formulas in homology and cohomology (see Vol. IV). At
this point, we only summarize Tor and Ext for cyclic groups. The groups Tor (G,H)
and Ext (G,H) measure how the torsion of the group G fits the torsion of the group
H.

The torsion product Tor of cyclic groups. Let m,n = 1, 2, . . .

• Tor (Zm,Zn) = Z(m,n) (e.g., Tor(Zm,Zm) = Zm).
• Tor(Z,Z) = Tor(Z,Zm) = Tor(Zm,Z) = 0.
• Tor (Z,F) = Tor (Zm,F) = 0,m = 1, 2, . . . , if F is a field or skew-field (e.g.,

F = Z2,Zp (p prime number), Q (rational numbers), R (real numbers), H (quater-
nions)).

• If G is a finitely generated additive group of the form (3.109), then

Tor(G,Zm) = Z(n1,m) ⊕ . . .⊕ Z(nr,m)

where (nj ,m) is the greatest common divisor of nj and m. The product Tor is
commutative.

The extension product Ext of cyclic groups. Let m,n = 1, 2, . . .

• Ext(Zm,Zn) = Z(m,n) (e.g., Ext(Zm,Zm) = Zm).
• Ext(Zm,Z) = Zm.
• Ext(Z,Z) = Ext(Z,Zm) = 0.
• Ext(Z,F) = Ext(Zm,F) = 0, m = 1, 2, . . . , if F is a field or skew-field (e.g.,

F = Z2,Zp (p prime number), Q (rational numbers), R (real numbers), H (quater-
nions)).

• If G is a finitely generated additive group, then Ext(G,Z) = T (G) (torsion part
of G). Hence

G = Hom(G,Z) ⊕ Ext(G,Z).

Moreover, Ext(G,F) = 0 if F is a field or skew-field.

3.27 Lattices and Modules

Linear spaces, additive groups, rings, fields, and algebras have the common
feature that they are modules over some ring. Modules of chains (e.g., elec-
tric circuits) play a crucial role in algebraic topology. Moreover, modules
are critically used in the representation theory for groups and algebras (e.g.
Lie algebras). The prototype of a left module over the ring Z of integers is
a lattice.

Folklore
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Fig. 3.17. Lattice

Lattice. Consider the complex numbers ω1, ω2 as depicted in Fig. 3.17. The set of
all the complex numbers

α1ω1 + α2ω2,

where α1 and α2 are arbitrary integers, is called a lattice generated by the complex
numbers ω1 and ω2. Such a lattice is the prototype of a left module with integers
as coefficients, in the sense of the definition given below.

A chain as the prototype of a module. Fix n = 1, 2, . . . Choose the symbols
s1, . . . , sn. By a chain with integer coefficients, we understand the set of all the
expressions

α1s1 + α2s2 + . . .+ αnsn (3.113)

with integers α1, α2, . . . , αn. The addition of chains and the multiplication of chains
with integers are defined in a natural way:

• (α1s1 + . . .+ αnsn) + (β1s1 + . . .+ βnsn) := (α1 + β1)s1 + . . .+ (αn + βn)sn,
• γ(α1s1 + . . .+ αnsn) := (γα1)s1 + . . .+ (γαn)sn

for all integers γ, α1, . . . , αn, β1, . . . , βn. In the sense of the definition given below,
the chains form a left module with integer coefficients (i.e., a left Z-module). In
topology, one frequently adds relations to chains, for example,

s1 + s1 = 0.

In other words, 2s1 = 0. This way, it is possible to describe non-orientable manifolds
(e.g., the Möbius strip or the projective space P

2).
In algebraic topology, it is very useful to introduce chains (3.113) where the co-

efficients α1, . . . , αn are not integers, but elements of a ring R (e.g., Z2, Q (rational
numbers), R (real numbers), C (complex numbers), H (quaternions)). This flexibil-
ity is used in order to obtain new topological invariants (topological charges). This
motivates the following general definition.

Definition of left R-modules. Let R be a ring. The set G is called a left
R-module iff it is an additive group equipped with a product αg such that, for all
α, β ∈ R and all g, h ∈ G, the following hold:

(C) αg is a uniquely determined element of G (consistency);
(D) α(g + h) = αg + αh and (α+ β)g = αg + βg (distributivity);
(A) α(βg) = (αβ)g (associativity).

If the ring R has a unit element 1, then we postulate that 1g = g for all elements
g of G.75

Examples. Let K = R,C. Every linear space G over K is a left K-module.
Mnemonically, a left R-module can be regarded as a generalized linear space over
the ring R.

75 Similarly, if we replace the product αg by the product gα, then we obtain the
definition of a right R-module. As a rule, we will use left modules.
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Every ring R is automatically a left R-module. Here, the product αg with
α, g ∈ R is nothing other than the ring product.

The simplest left Z-module is the additive cyclic group Z2 = {0, 1} with the
operations

1 + 1 = 0, 0 + 1 = 1 + 0 = 1, 0 + 0 = 0.

Moreover, let g ∈ Z2, and let m be an integer. Then we define the product mg := 0
if m is even (resp. mg := g if m is odd). Analogously, Zm is a left Z-module.

Additive groups as left Z-modules. If G is an additive group, then G is a
left Z-module by introducing the product mg with g ∈ G,m ∈ Z in a natural way:
we set

2g := g + g, (−1)g := −g, (−2)g := −g − g, and so on. (3.114)

Conversely, every left R-module is an additive group. This tells us that left Z-
modules can be identified with additive groups.

Morphisms. Suppose that G and H are left R-modules. By definition, a left
R-module morphism is a map χ : G → H which respects the sum and the product.
Explicitly,

χ(αg + βh) = αχ(g) + βχ(h) for all g, h ∈ G, α, β ∈ R.

The symbol HomR(G,H) denotes the set of all left R-module morphisms

χ : G → H.

Naturally enough, the set HomR(G,H) is a left R-module equipped with the linear
combination αχ+ βμ. Here, we set

(αχ+ βμ)(g) := αχ(g) + βμ(g) for all g ∈ G,

and all χ, μ ∈ HomR(G,H), α, β ∈ R.
Precisely the bijective left R-module morphisms are called left R-module iso-

morphisms. We have the following isomorphisms of left R-modules:

• HomZ(Z,Z)  Z and HomZ(Z2,Z)  0,
• HomZ(Zm,Zn)  Z(m,n) for all m,n = 1, 2, . . . where (m,n) denotes the greatest

common divisor of m and n.

These isomorphisms are given by the map χ �→ χ(1). For example, if the map
χ : Z2 → Z is a Z-morphism, then 1+1 = 0 implies χ(1+1) = 0. Thus, χ(1)+χ(1) =
2χ(1) = 0, and hence χ = 0.

Submodules. The subset S of a left R-module G is called a submodule of G iff
it is a left R-module with respect to the operations in G. This is the case iff S is a
subgroup of G and αg ∈ S for all g ∈ G, α ∈ R.

Free modules. The system {gj}j∈J of elements gj of the left R-module G is
called a generating system of G iff every element g of G can be represented as

g =
X

j∈J
αjgj

where αj ∈ R for all j ∈ J , and at most a finite number of coefficients αj is different
from zero. If, in addition, the coefficients αj are always uniquely determined, then
the system {gj}j∈J is called a basis of G. The left R-module G is called free iff it
has a basis.

Direct sum of modules. If G and H are left R-modules, then the direct sum
G ⊕H is defined in the same ways as for linear spaces. Explicitly, we set
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(g, h) + (k, l) := (g + k, h+ l), α(g, h) := (αg, αh)

for all g, k ∈ G, h, l ∈ H, and all α ∈ R. This way, the set of all ordered pairs

(g, h) with g ∈ G, h ∈ H

becomes a left R-module denoted by G ⊕H.
The operator module Op(X) of a linear space X. Let X be a real or

complex linear space. Then the set End(X) of all linear operators A : X → X is a
ring denoted by R. The operator A sends the element x of X to the element Ax of
X. Using the product

Ax with x ∈ X,A ∈ R,
the linear space X becomes a left R-module which is denoted by Op(X).

The representation module X�. Let � be a representation of the ring R on
the linear space X. That is, the map

� : R→ End(X)

is a ring morphism. This means that the ring R is realized by linear operators on
the linear space X. Then �(α) : X → X is a linear operator for every element α of
the ring R. This yields the product

αx := �(α)x, x ∈ X, α ∈ R.

This way, the linear space X becomes a left R-module denoted by X�; this is called
the representation module of �. Obviously, X� is a submodule of Op(X).

Problems

3.1 The determinant of the dual matrix. Let A be a real or complex (n×n)-matrix.
Show that det(Ad) = det(A). Solution: Use the definition

det(A) =
X

π

sgn(π) a1π(1) · · · anπ(n). (3.115)

In order to pass from aij to aji, replace the permutation π by the inverse
permutation π−1 and observe that sgn(π−1) = sgn(π).

3.2 The general Laplace expansion theorem. Prove (1.17) on page 78. Hint: Write
the sum (3.115) as

X

i1<i2<...<ip

X

π(i1,...ip)

X

π(ip+1,...,in)

sgn(i1 . . . in) · a1i1 . . . anin .

Here, ip+1 < . . . < in. The symbol π(i1, . . . , ip) means that we sum over all
permutations of the numbers i1, . . . , ip. Moreover, sgn(i1, . . . , in) is the signum
of the permutation (1, . . . , n) �→ (i1 . . . in).

3.3 Associativity of the alternating product. Prove Theorem 2.2 on page 119.
Hint: Use the general Laplace expansion theorem.
Remark. If one introduces the Grassmann algebra in an abstract manner by
using a quotient algebra, then the validity of the associative law of the ∧-pro-
duct is obvious, and this implies immediately the general Laplace expansion
formula. For the approach via quotient algebras, see Sect. 2.12 on page 174.
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3.4 The vector product. Prove Prop. 1.8 (iv)–(x) on page 83.
Hints: Ad (iv). Use e1 × e2 = ιe3.
Ad (v). Use (ab)2 = |a|2|b|2 cos2 ϕ and

(a × b)2 = |a|2 · |b|2 · sin2 ϕ

together with cos2 ϕ+ sin2 ϕ = 1.
Ad (vi). Without any loss of generality, choose b := k, and use (iii).
Ad (vii). Use (vi).
Ad (viii), (ix). Use an explicit computation based on (iii).
Ad (x). This is an immediate consequence of the product formula for determi-
nants.

3.5 Proof of Theorem 1.3 on page 79. Hint: In order to prove the distributive law,
use the elementary geometric fact that the orthogonal projection P (a + b) of
a vector sum a + b is equal to the sum Pa +Pb of the orthogonal projections
of the summands.

3.6 Symmetric and antisymmetric products. Let A be an associative algebra. Let
n = 2, 3, . . . and a1, . . . , an ∈ A. Show the following:
(i) Symmetry. If ab = ba for all a, b ∈ A, then the product of an arbitrary
number of factors is symmetric under a permutation of the factors.
(ii) Antisymmetry. Suppose that a1a2 · · · an = 0 if two factors coincide. Then
the product of an arbitrary number of factors is antisymmetric with respect to
a permutation of the factors.
Hint: Ad (a). abc = (ab)c = (ba)c = bac = bca.
Ad (b). (a+ b)(a+ b) = 0 implies a2 + ab+ ba+ b2 = 0. Since a2 = b2 = 0, we
get ab = −ba.

3.7 Unital algebras. Let A be a unital algebra over K = R or K = C with A �= {0}.
Let 1 (resp. 0) denote the unit element (resp. zero element) of A. Let a ∨ b
denote the product on A. Show that the following hold:
(i) There exists an injective field morphism χ : K → A given by χ(λ) := λ1.
Therefore, the field K can be regarded as a subset of A by identifying λ with
the element λ1.
(ii) For all λ, μ ∈ K and all a ∈ A, we have

λ ∨ a = a ∨ λ = λa, λ ∨ μ = λμ.

In particular, the unit element 1 can be identified with the unit element 1 of
the field K.
Solution: Ad (i). Let χ(λ) = 0. Assume that λ �= 0. Then 1 = 0. Choose a
nonzero element a of A. Then

a = 1 ∨ a = (λ1) ∨ a = λ(1 ∨ a) = λa

for all λ ∈ K. Hence a = 0, a contradiction.
Ad (ii). Note that (λ1) ∨ a = λ(1 ∨ a) = λa, and a ∨ (λ1) = λ(a ∨ 1) = λa.
Moreover, λ1 ∨ μ1 = λμ(1 ∨ 1) = λμ1.

3.8 Basis extension and biorthogonal system. Let X be a finite-dimensional linear
space over K = R,C of dimension n = 1, 2, . . . We are given linearly indepen-
dent vectors a1, . . . , ak. Show that:
(i) The system a1, . . . , ak can be extended to a basis a1, . . . , an of X.
(ii) There exist linear functionals F 1, . . . , Fn ∈ Xd such that F i(aj) = δij for
all i, j = 1, . . . , n.
Solution: Ad (i). If a1, . . . , ak is not a basis, then there exists a vector b which
is not linearly dependent on a1, . . . , ak. Set ak+1 := b. After a finite number of
steps, we get the desired basis.
Ad (ii). Use (i) and set F i(

Pn
j=1 x

jaj) := xi.
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3.9 Hamel basis. Choose K = R,C,Q (field of real, complex, rational numbers).
Let X be a linear space over K. A nonempty subset S of X is called a basis of
X iff every element x of X can be uniquely represented as

x =
X

s∈S
αss

where we have αs ∈ K for all s ∈ S, and at most a finite number of the coeffi-
cients αs is different of zero. This implies that every finite subset of elements
of S is linearly independent. Show the following:
(i) For given nonempty set S, there exists a linear space over K which has the
set S as a basis. This set is denoted by span(S).76

(ii) Every linear space X over K has a basis.
Solution: Ad (i). By definition, the set span(S) consists of all the maps

x : S → K

which are different from zero at most on a finite subset of S. Naturally enough,
this set of maps becomes a linear space over K. For fixed s0 ∈ S, we define

bs0(t) :=

(

1 if t = s0
0 otherwise.

The family {bs}s∈S is a basis of span(S). This basis is in one-to-one correspon-
dence to S.
Ad (ii). Hint: Apply Zorn’s lemma (see page 248 of Vol. II). Use the ordered
family F := {Y } of all the linear subspaces Y of X which have a basis.
Show that the maximal element of F coincides with X. See S. Lang, Alge-
bra, Springer, New York, 2002, page 139.
Historical remark. The set R of real numbers is a linear space over R. The unit
element 1 represents a basis of the real linear space R. Thus, dim(R) = 1. The
situation changes dramatically if we consider R as a linear space over the field
Q of rational numbers. This infinite-dimensional linear space is denoted by RQ.
Hamel (1877–1954) proved that RQ has a basis. However, an explicit basis is
still unknown. Each basis of RQ is called a Hamel basis.

3.10 The tensor product as a linear quotient space. For pedagogical reasons, in
Chap. 2 we have used concrete mathematical objects (namely, bilinear func-
tionals) in order to introduce the tensor product X ⊗ Y (see page 122). There
exists an equivalent abstract approach to the tensor product based on equiva-
lence classes (more precisely, on linear quotient spaces).77 In what follows, let
us discuss this abstract approach and its equivalence to the concrete approach
used in Sect. 2.1.6, including the universality of the tensor product.
Choose K = R or K = C. LetX, Y, and Z be linear spaces over K. By definition,
the elements of the set span(X × Y ) have the form

a =
n
X

i=1

αi(xi, yi)

where α1, . . . , αn ∈ K, and n = 1, 2, . . . In a natural way, the set span(X × Y )
can be equipped with the structure of a linear space over K. Let J denote the
smallest linear subspace of the linear space span(X×Y ) over K which contains
all the elements

76 For the empty set S, we define span(∅) := {0}.
77 The importance of equivalence classes in mathematics including linear quotient

spaces is thoroughly discussed in Chap. 4 of Vol. II.
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• (αu+ βx, y) − α(u, y) − β(x, y), and
• (x, αy + βz) − α(x, y) − β(x, z),
where u, x ∈ X, y, z ∈ Y, and α, β ∈ K. For a, b ∈ span(X×Y ), let us introduce
the equivalence relation

a ∼ b iff a− b ∈ J .

The equivalence classes [a] form the quotient space

span(X × Y )/J .

This linear space over K will be denoted by the symbol X ⊗K Y.
78 We define

x⊗ y := [(x, y)].

Let a ∈ span(X × Y ), that is, a =
Pn

i=1 αi(xi, yi). Then

[a] =

n
X

i=1

αi[(xi, yi)] =

n
X

i=1

αixi ⊗ yi.

We also define the bilinear functional j(a) : Xd × Y d → K by setting

j(a)(F,G) :=

n
X

i=1

αiF (xi)G(yi), F ∈ Xd, G ∈ Y d.

Finally, let B : X × Y → Z be a bilinear map. Define

L(a) :=
n
X

i=1

αiB(xi, yi).

Prove the following:
(i) (αu + βx) ⊗ y = αu ⊗ y + βx ⊗ y, and x ⊗ (αy + βz) = αx ⊗ y + βx ⊗ z
(distributive laws).
(ii) If a ∼ b, then j(a) = j(b) and L(a) = L(b).
(iii) The linear operators j : X ⊗ Y → M2(X

d, Y d) and L : X ⊗ Y → Z are
well defined.
(iv) There exists a unique universal object for bilinear maps B : X × Y → Z,
and this object coincides with the tensor product X ⊗ Y introduced above.
(v) If b1, . . . , bm (resp. c1, . . . cn) are linearly independent elements of X (resp.
Y ), then the mn tensor products bj ⊗ ck with j = 1, . . . ,m and k = 1, . . . , n
are linearly independent elements of X ⊗ Y.
(vi) If SX (resp. SY ) is a basis of X (resp. Y ), then the product set SX ⊗ SY
defined by {b⊗ c : b ∈ SX , c ∈ SY } is a basis of X ⊗ Y.
(vii) The map j : X ⊗Y →M2(X

d, Y d) is injective, and this map represents a
linear isomorphism between the tensor product X ⊗ Y defined above and the
tensor product defined in Sect. 2.1.6 on page 122.

Solution: Ad (i). Use the fact that a ∈ J implies [a] = 0.
Ad (ii). If a ∈ J , then j(a) = L(a) = 0.
Ad (iii). Set j([a]) := j(a) and L([a]) := L(a). This is well defined by (ii).

78 To simplify notation, we briefly write X ⊗ Y instead of X ⊗K Y , if a misinter-
pretation is excluded.
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Ad (iv). Set β(x, y) := x ⊗ y. Then B = L ◦ β. This shows that X ⊗ Y is a
universal object. The uniqueness of the universal object follows as in the proof
of Theorem 2.7 on page 125 by diagram chasing.
Ad (v), (vi). Use the same argument as in the proof of Prop. 2.4 on page 122.
Ad (vii). Let the symbol (X ⊗ Y )bil denote the tensor product defined in
Sect 2.1.6 via bilinear functionals. Then the map j : X ⊗ Y → (X ⊗ Y )bil is
surjective. In order to prove the injectivity, let j([a]) = 0. Using a basis and
the distributive law, we get

X

(b,c)∈SX×SY

a(b, c)j(b⊗ c) = 0.

Hence
X

(b,c)∈SX×SY

a(b, c)j(b⊗ c)(F,G) = 0 for all F ∈ Xd, G ∈ Y d.

Note that, by the definition of a basis, at most a finite number of real coefficients
a(b, c) is different from zero. Therefore, we can use the same argument as in
the proof of Prop. 2.4 in order to show that all the coefficients a(b, c) vanish.
Hence [a] = 0.

3.11 The product L⊗M of linear operators. Let K = R or K = C. We are given the
linear operators L : X → X and M : Y → Y where X and Y are linear spaces
over K. Show that there exists precisely one linear operator N : X⊗Y → X⊗Y
with

N(x⊗ y) = Lx⊗My for all x ∈ X, y ∈ Y.
This operator is denoted by L⊗M. Hence (L⊗M)(x⊗ y) = Lx⊗My.
Solution: (I) Uniqueness. Suppose that such an operator exists. Then, by lin-
earity,

N

 

m
X

j=1

xj ⊗ yj

!

=

m
X

j=1

Lxj ⊗Myj .

(II) Existence: We define

N

 

m
X

j=1

αj(xj , yj)

!

:=

m
X

j=1

αj(Lxj ,Myj).

One checks easily that the linearity of N implies that Na ∈ J if a ∈ J .
Consequently, if a ∼ b, then Na ∼ Nb. That is, the definition of N respects the
equivalence relation. Therefore, passing to equivalence classes, the definition
N [a] := [Na] makes sense. This is the desired operator.

Alternatively, one can argue as follows. We define

N

 

m
X

j=1

xj ⊗ yj

!

:=
m
X

j=1

Lxj ⊗Myj .

We have to guarantee that different finite sums, which represent the same
element, yield the same operator value. To this end, note that by linearity we
get

L(u+ x) ⊗My = (Lu+ Lx) ⊗My = Lu⊗My + Lx⊗My,

and L(αx) ⊗ y = (αLx) ⊗ y = α(Lx⊗ y). Hence
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N
`

(u+ x) ⊗ y − u⊗ y − x⊗ y
´

= 0.

This tells us that our definition of the operator N respects the defining relation

(u+ x) ⊗ y − u⊗ y − x⊗ y = 0.

Analogously, we get that the defining relation

x⊗ (αv + βy) − α(x⊗ v) − β(x⊗ y) = 0

is respected. Thus, we are done.
3.12 The derived operator Lder. Let L : X → X be a linear operator on the linear

space over K = R,C. Show that there exists precisely one linear operator
Lder : X ⊗X → X ⊗X such that we have the Leibniz rule

Lder(x⊗ y) = (Lderx) ⊗ y + x⊗ (Ldery) for all x, y ∈ X.

Hint: Argue as in Problem 3.11.
3.13 The contraction operator. Let X be a linear space over K = R,C. Show that

there exists precisely one linear operator C : Xd ⊗X → K which satisfies the
relation

C(F ⊗ x) = F (x) for all F ∈ Xd, x ∈ X.
Hint: Argue as in Problem 3.11.

3.14 Tensor products and the complexification of a real linear space. Let X be a
real n-dimensional linear space with the basis b1, . . . , bn. The elements x of X
are given by

x = α1b1 + . . .+ αnbn

where the real coefficients α1, . . . , αn are uniquely determined by x. By defini-
tion, the complexification XC of X consists of all the expressions

β1b1 + . . .+ βnbn

where β1, . . . , βn are complex numbers. Then XC is a complex linear space
which contains the space X as a subset. One shows easily that this construction
does not depend on the choice of the basis b1, . . . , bn. In a basis-independent
approach, the complexification can be obtained in the following way. We define
the tensor product

XC := C ⊗R X. (3.116)

Here, the space C of complex numbers is regarded as a real two-dimensional
linear space.79 The elements of C ⊗R X are finite sums of the form

a := β1 ⊗ x1 + . . .+ βn ⊗ xn, xk ∈ X, βk ∈ C, k = 1, 2, . . .

For α ∈ C, we define α(β ⊗ x) := αβ ⊗ x. More general,

αa := αβ1 ⊗ x1 + . . .+ αβn ⊗ xn.

Show that the following hold:

79 The method of extending algebraic structures to new domains of coefficients
based on tensor products like in (3.116) is frequently used in modern mathematics
(e.g., the construction of homology groups and cohomology groups for different
coefficient rings in algebraic topology).
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(i) The definition of the product αa does not depend on the representation of
the element a.
(ii) The space XC is a complex linear space.
(iii) The map j : X → XC given by j(x) := 1⊗x is an injective linear morphism
if we regard XC as a real linear space. Therefore, the set X can be identified
with a subset of XC.
(iv) If b1, . . . , bn are linearly independent elements of the real linear space X,
then 1 ⊗ b1, . . . , 1 ⊗ bn are linearly independent elements of XC. In particular,
if dimRX = n with n = 0, 1, 2, . . . , then dimCXC = n.
(v) The complex linear space XC is linearly isomorphic to the complex linear
space XC constructed above.
(vi) If X = R, then XC = C.
Hint: Ad (i). For example, let β⊗x = β1 ⊗x1 +β2 ⊗x2. We have to show that

αβ ⊗ x = αβ1 ⊗ x1 + αβ2 ⊗ x2.

To this end, we choose a basis of the subset span{x, x1, x2} of X, and we
choose the basis 1, i of C. Reducing the tensor products to the products of basis
elements, the equality is obvious by the distributive law for tensor products.

3.15 The general Clifford algebra. Prove the properties of
W

(X) summarized on
page 175. Hint: See B. van der Waerden, Algebra, Vol. 2, Frederyck Ungar,
New York, 1975, and T. Friedrich, Dirac Operators in Riemannian Geometry,
Chap. 1, Amer. Math. Soc., Providence, Rhode Island, 2000.

3.16 The Hilbert space End(X). Let X be an n-dimensional Hilbert space over
K = R,C. Let End(X) denote the space of all linear operators A : X → X.
Define both the inner product

〈A|B〉 := tr(AB†) for all A,B ∈ End(X)

and the corresponding norm ||A|| :=
p

〈A|A〉. Show that End(X) is both a
Hilbert space over K and a C∗-algebra. For the definition of C∗-algebras, see
Sect. 7.16.3 of Vol. II. In particular, we have ||AB|| ≤ ||A|| ||B||, as well as
||A†|| = ||A|| and ||AA†|| = ||A†A|| = ||A||2 for all A,B ∈ End(X).
Hint: Show that ||A||2 =

Pn
i,j=1 |A

i
j |2 for the matrix elements Ai

j of A. This

implies ||AB||2 ≤ ||A||2||B||2 by using the Schwarz inequality. In order to
understand the simple idea of the proof, consider first (2 × 2)-matrices.

3.17 The Hopf algebra SLq(2,C). Prove Theorem 3.22 on page 302.
Hint: See A. Klimyk and K. Schmüdgen, Quantum Groups and Their Repre-
sentations, Sect. 4.1, Springer Berlin, 1997.

3.18 The Hopf algebra slq(2,C). Prove Theorem 3.23 on page 302.
Hint: See A. Klimyk and K. Schmüdgen, Quantum Groups, Sect. 3.1, Springer,
Berlin, 1997. This monograph contains a lot of material on both the general the-
ory and concrete examples. In particular, one finds the Drinfeld–Jimbo quan-
tum algebra Uq(L) for arbitrary finite-dimensional complex semi-simple Lie
algebras L.

3.19 Simple Lie algebras. Prove that the complex Lie algebra slC(2,C) and the real
Lie algebra sl(2,R) are simple.

3.20 The exponential map is not always surjective. Prove that the map

exp : sl(2,C) → SL(2,C)

given by A �→ eA is not surjective.

Hint: Show that there is no matrix A ∈ sl(2,C) with eA =

 

−1 1

0 −1

!

.
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See Hein (1990), p. 116 (quoted in Problem 3.19).
3.21 Symmetric Schur polynomials. Prove Prop. 3.1 on page 186.

Hint: Noting that 1
1−ac

=
P∞

k=0(ac)
k, we get

D :=

˛

˛

˛

˛

˛

P∞
n=0(ac)

n P∞
n=0(ad)

n

P∞
n=0(bc)

n P∞
n=0(bd)

n

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

1
1−ac

1
1−ad

1
1−bc

1
1−bd

˛

˛

˛

˛

˛

.

This yields

D =
(a− b)(c− d)

(1 − ac)(1 − ad)(1 − bc)(1 − bd) .

Alternatively, since the determinant D is additive in the rows, we obtain that
D is an infinite sum of determinants of the form

˛

˛

˛

˛

˛

(ac)k (ad)k

(bc)l (bd)l

˛

˛

˛

˛

˛

= akbl

˛

˛

˛

˛

˛

ck dk

cl dl

˛

˛

˛

˛

˛

.

Summing up this, we get an infinite sum of products of determinants which
appear in the definition (3.13) of Schur polynomials. Finally, dividing this by
(a − b)(c − d), we get the claim. See C. Procesi, Lie Groups: An Approach
Through Invariants and Representations, Springer, New York, 2007, p. 33.

3.22 The irreducible representations of the group Sym(3) via Young tableaux. Com-
plete the proof sketched on page 224.

3.23 The Gell-Mann matrices. Show that the multiples iλ1, . . . , iλ8 of the Gell-
Mann matrices λ1, . . . λ8 from (3.51) on page 231 form a basis of the real Lie
algebra su(3).
Hint: One has to show that every complex (3 × 3)-matrix A with A = −A†

and tr(A) = 0 can be uniquely represented as A =
P8

j=1 aj · iλj with aj ∈ R

for all j. This yields a system of 8 equations. An explicit computation shows
that the coefficient determinant of this system is different from zero. See W.
Greiner and B. Müller, Quantum Mechanics: Symmetries, Sect. 7.1, Springer,
New York, 1996.
The vanishing of the determinant also shows that the Gell-Mann matrices
λ1, . . . , λ8 are linearly independent over the field C of complex numbers. Ex-
plicitly, it follows from

P8
k=1 ak = 0 with ak ∈ C for all k that ak = 0 for all

indices k = 1, . . . , 8.
3.24 The adjoint representation of a Lie algebra. Let L be a real Lie algebra. Fix

A ∈ L. Define
ad(A)(B) := [A,B] for all B ∈ L.

This way, we get the linear operator ad(A) : L → L. Use the Jacobi identity in
order to show that the map A �→ ad(A) is a representation of the Lie algebra
L on the linear space L. In other words, the map

ad : L → gl(L)

is a Lie algebra morphism.
Solution: The Jacobi identity reads as

[ A, [B,C] ] + [ B, [C,A] ] + [ C, [A,B] ] = 0, A,B,C ∈ L.

We have to show that

[ad(A), ad(B)]C = ad([A,B])C, A,B,C ∈ L.
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This follows from

ad(A)
`

ad(B)C
´

− ad(B)
`

ad(A)C
´

= ad(A)[B,C] − ad(B)[A,C]

= [ A, [B,C] ] − [ B, [A,C] ] = [ [A,B], C] = ad([A,B])C.

3.25 Method of highest weight. Show that 3 ⊗ 3 = 6 + 3̄. Moreover, check (3.60).
3.26 The Casimir operators of the group SU(3). Prove the commutation relations

(3.80) for the Casimir operators C1 and C2. Moreover, show that the adjoint
representation R(1, 1) of the group SU(3) has the quantum numbers c1 = 3
and c2 = 0.
Hint: The explicit computations can be found in W. Greiner and W. Müller,
Quantum Mechanics: Symmetries, 7.7/7.8, Springer, New York, 1995, together
with many interesting examples in elementary particle physics (e.g., the com-
putation of decay rates for particles based on the SU(3) symmetry).

3.27 Tensor representation. Let �1, �2, �3 be a complete system of irreducible rep-
resentations of the permutation group Sym(3) (see Table 3.5 on page 216).
Show that

�3 ⊗ �3 = �1 ⊕ �2 ⊕ �3.
Hint: Use the Fourier method (3.33) on page 212.



4. The Euclidean Manifold E
3

4.1 Velocity Vectors and the Tangent Space

Tangent spaces are spaces of velocity vectors.
Folklore

Let us use the notation introduced at the beginning of Sect. 1.2 on page 71. Consider
the motion

P = P (t), t ∈ R

of a particle (Fig. 4.1). Equivalently, we write

x = x(t), t ∈ R. (4.1)

Here, x(t) denotes the position vector starting at the origin O at time t with the
terminal point P (t) = O + x(t). Let E3(P ) denote the space of all the position
vectors starting at the point P. This is a real 3-dimensional Hilbert space equipped
with the inner product 〈u|w〉P := uw and the norm |u|P :=

p

〈u|u〉P for all
u,w ∈ E3(P ).

Velocity vector. By definition, the velocity vector v = ẋ(t) of the motion
(4.1) at the point P (t) is given by

ẋ(t) := lim
Δt→0

x(t+Δt) − x(t)

Δt
. (4.2)

This limit is to be understood in the sense of the Hilbert space E3(P (t)), that is,

lim
Δt→0

˛

˛

˛

˛

ẋ(t) − x(t+Δt) − x(t)

Δt

˛

˛

˛

˛

P (t)

= 0.

Fig. 4.1. Velocity vector

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 5,
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 4.2. The tangent space TPE
3

Here, after parallel transport, the vector Δx := x(t +Δt) − x(t) is regarded as a
position vector starting at the point P (t) (Fig. 4.1). Therefore, ẋ(t) ∈ E3(P (t)).
Explicitly, if i, j,k is the right-handed orthonormal basis of a Cartesian coordinate
system (Fig. 1.1(c) on page 72), then the position vector x(t) starting at the origin
O can be written as

x(t) = x(t) i + y(t) j + z(t) k.

To avoid technicalities, we assume that the functions t �→ x(t), y(t), z(t) are smooth
for all times t ∈ R. Note that this assumption does not depend on the choice of the
Cartesian coordinate system. Then

ẋ(t) = ẋ(t) iP (t) + ẏ(t) jP (t) + ż(t) kP (t), (4.3)

where iP (t), jP (t),kP (t) are position vectors starting at the point P (t), which are
obtained from the position vectors i, j,k starting at the origin O, respectively, by
parallel transport (Fig. 4.3).

Tangent vector. Recall that, by definition, the 3-dimensional Euclidean man-
ifold E

3 consists of all the points P which can be represented as P = O + x with
x ∈ E3(O). Intuitively, E

3 consists of all the points of the 3-dimensional space in
the naive sense. Moreover, by definition, the tangent space TPE

3 of the Euclidean
manifold E

3 is the space of all possible velocity vectors v at the point P . This means
that we consider all the possible smooth motions of particles which pass through
the point P , and we take all the possible velocity vectors of these trajectories at
the point P.

Velocity vectors are also called tangent vectors.

In particular, choosing the motion along straight lines, we get

TPE
3 = E3(P ).

That is, the tangent space TPE
3 coincides with the Hilbert space E3(P ).

The reader should note the following. In order to understand the theory of
general manifolds later on, it is wise to distinguish between the tangent space TPE

3

at the point P and the tangent space TQE
3 at the point Q if P �= Q. Of course, in

the special case of the Euclidean manifold E
3, the velocity vectors

v ∈ TPE
3

can be identified with the velocity vectors w ∈ TQE
3 by a global parallel trans-

port. However, such a global parallel transport is not possible anymore on general
manifolds (e.g., in Einstein’s theory of general relativity). Therefore, we will use a
language which remains valid when passing to the general case. For example, we
will use the operator ΠΔt of parallel transport in (4.5) below.
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Fig. 4.3. Right-handed orthonormal basis of the tangent space TPE
3

4.2 Duality and Cotangent Spaces

Cotangent spaces are the dual spaces to tangent spaces.
Folklore

The dual space T ∗
PE

3 to the tangent space TPE
3 is called the cotangent space of

the Euclidean manifold E
3 at the point P . The elements ω of the cotangent space

TPE3 are linear functionals
ω : TPE

3 → R.

Here, ω is also called a covector. In a Cartesian coordinate system, we have

v = u iP + v jP + w kP

for all tangent vectors (velocity vectors) v ∈ TPE
3 at the point P. Here, u, v, w ∈ R.

Define
dx(v) := u, dy(v) := v, dz(v) := w.

Then, dx, dy, dz is a basis of the cotangent space T ∗
PE

3. That is, for every ω ∈ T ∗
PE

3

we get
ω = αdx+ βdy + γdz

where the coefficients α, β, γ are uniquely determined real numbers. Explicitly, we
have ω(v) = αu + βv + γw. The numbers α, β, γ are called the coordinates of the
covector ω.

4.3 Parallel Transport and Acceleration

The acceleration vector ẍ(t) of the motion (4.1) at time t is defined by

ẍ(t) := lim
Δt→0

ẋ(t+Δt) − ẋ(t)

Δt
. (4.4)

This limit is to be understood in the sense of the Hilbert space (tangent space)
TP (t)E

3. This means the following:

• The velocity vector ẋ(t) lies in the Hilbert space TP (t)E
3, whereas

• the velocity vector ẋ(t+Δt) lies in the Hilbert space TP (t+Δt)E
3.

In order to get the limit (4.4) in the Hilbert space TP (t)E
3, we move

• the position vector ẋ(t+Δt) starting at the point P (t+Δt) to
• the corresponding position vector Π−Δtẋ(t+Δt) starting at the point P (t), by

using parallel transport in the classical sense.
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Then we get

ẍ(t) = lim
Δt→0

Π−Δtẋ(t+Δt) − ẋ(t)

Δt
. (4.5)

Hence ẍ(t) ∈ TP (t)E
3. Explicitly, similarly as in (4.3), we obtain

ẍ(t) = ẍ(t) iP (t) + ÿ(t) jP (t) + z̈(t) kP (t).

4.4 Newton’s Law of Motion

Suppose that we are given a force field

F = F(P ), P ∈ E
3

on the Euclidean manifold E
3. Here, the force F(P ) acting at the point P is a

position vector starting at the point P. That is, the force F(P ) is an element of the
tangent space TPE

3. For the trajectory P = P (t), t ∈ R, of a particle of positive
mass m, Newton’s law of motion in classical mechanics reads as

mẍ(t) = F(P (t)), t ∈ R. (4.6)

Using a Cartesian coordinate system, we obtain that

m(ẍ(t) iP (t) + ÿ(t) jP (t) + z̈(t) kP (t))

is equal to
F (P (t)) iP (t) +G(P (t)) jP (t) +H(P (t)) kP (t).

This is equivalent to the system

mẍ(t) = F (x(t), y(t), z(t)), mÿ(t) = G(x(t), y(t), z(t)),

mz̈(t) = H(x(t), y(t), z(t)), t ∈ R. (4.7)

4.5 Bundles Over the Euclidean Manifold

In modern differential geometry, velocity vector fields, covector fields, and
tensor fields on manifolds are described by sections of the tangent bundle,
the cotangent bundle, and the tensor bundle, respectively. Later on, this
will allow us to study the global (i.e., topological) properties of physical
fields.

Folklore
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4.5.1 The Tangent Bundle and Velocity Vector Fields

By definition, the tangent bundle TE
3 of the Euclidean manifold E

3 consists of all
the pairs

(P,v)

where P ∈ E
3 and v ∈ TPE

3. The map

s : E
3 → TE

3 (4.8)

is called a section of the tangent bundle iff s(P ) = (P,v(P )) and v(P ) ∈ TPE
3 for

all P ∈ E
3. In other words, this is a velocity vector field (also called tangent vector

field) which assigns to each point P of the Euclidean manifold E
3 the velocity vector

v(P ) at the point P.

The tangent bundle TE
3 is a real 6-dimensional manifold.

To see this, consider a right-handed Cartesian coordinate system. Then the point
P corresponds to the position vector

x = xi + yj + zk

starting at the origin O, and the velocity vector v at the point P is given by

v = u iP + v jP + w kP .

Naturally enough, we assign to the point (P,v) of the tangent bundle TE
3 the

coordinates (x, y, z;u, v, w). The section (4.8) is called smooth iff it is a smooth map
from the Euclidean manifold E

3 into the manifold TE
3. Intuitively, this means that

the velocity vector field P �→ v(P ) depends smoothly on the point P . Equivalently,
the map

(x, y, z) �→ (u(x, y, z), v(x, y, z), w(x, y, z))

is smooth on R
3. Note that this smoothness property does not depend on the choice

of the Cartesian coordinate system.

4.5.2 The Cotangent Bundle and Covector Fields

By definition, the cotangent bundle T ∗
E

3 of the Euclidean manifold E
3 consists of

all the pairs
(P, ω)

where P ∈ E
3 and ω ∈ T ∗

PE
3. The map

s : E
3 → T ∗

E
3 (4.9)

is called a section of the cotangent bundle iff s(P ) = (P, ω(P )) and ω(P ) ∈ T ∗
PE

3

for all P ∈ E
3. In other words, this is a covector field (also called cotangent vector

field) which assigns to each point P of the Euclidean manifold E
3 the covector

ω(P ) ∈ T ∗
E

3 at the point P.

The cotangent bundle T ∗
E

3 is a real 6-dimensional manifold.

To see this, consider a Cartesian coordinate system. Then the point P corresponds
to the position vector

x = xi + yj + zk

starting at the origin O, and the covector ω at the point P is given by
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ω = α dx+ β dy + γ dz.

Naturally enough, we assign to the point (P, ω) of the cotangent bundle T ∗
E

3 the
coordinates (x, y, z;α, β, γ). The section (4.9) is called smooth iff it is a smooth map
from the Euclidean manifold E

3 into the manifold T ∗
E

3. Intuitively, this means that
the covector field P �→ ω(P ) depends smoothly on the point P . Equivalently, the
map

(x, y, z) �→ (α(x, y, z), β(x, y, z), γ(x, y, z))

is smooth on R
3. Note that this smoothness property does not depend on the choice

of the Cartesian coordinate system.

4.5.3 Tensor Bundles and Tensor Fields

By definition, the tensor bundle Tm
n (E3) of type (m,n) of the Euclidean manifold

E
3 consists of all the pairs

(P, T )

where P ∈ E
3 and T ∈

Nm
n (TPE

3). Here, the symbol
Nm

n (TPE
3) denotes the linear

space of the tensors of type (m,n) on the tangent space TPE
3. The map

s : E
3 → Tm

n (E3) (4.10)

is called a section of the tensor bundle of type (m,n) iff

s(P ) = (P, T (P ))

and T (P ) ∈
Nm

n (TPE
3) for all P ∈ E

3. In other words, this is a tensor field which

assigns to each point P of the Euclidean manifold E
3 the tensor T (P ) ∈

Nm
n (TPE

3)
at the point P.

The tensor bundle Tm
n (E3) is a real manifold of dimension 3 + 3(m+ n).

To see this, consider a Cartesian coordinate system. Then the point P corresponds
to the position vector x = xi + yj + zk starting at the origin O, and the tensor T
at the point P is given by

T =

3
X

i1,...,im,j1,...,jn=1

T i1...im
j1...jn

· bi1(P ) ⊗ · · · ⊗ bim(P ) ⊗ dxj1 ⊗ · · · ⊗ dxjn .

Here, b1 := iP ,b2 := jP ,b3 := kP , and dx1 = dx, dx2 := dy, dx3 := dz. Naturally
enough, we assign to the point (P, T ) of the tensor bundle Tm

n (E3) the 3+3(m+n)
coordinates

(x, y, z; T i1...im
j1...jn

), i1, . . . , im, j1, . . . , jn = 1, 2, 3.

The section (4.10) is called smooth iff it is a smooth map from the Euclidean
manifold E

3 into the manifold Tm
n (E3). Intuitively, this means that the tensor field

P �→ T (P ) depends smoothly on the point P . Equivalently, all the maps

(x, y, z) �→ T i1...im
j1...jn

(x, y, z), i1, . . . , im, j1, . . . , jn = 1, 2, 3

are smooth on R
3. Note that this smoothness property does not depend on the

choice of the Cartesian coordinate system.
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4.5.4 The Frame Bundle

By definition, the frame bundle FE
3 of the Euclidean manifold E

3 consists of all
the quadruples

(P,b1,b2,b3)

where P ∈ E
3, and the vectors b1,b2,b3 form a basis of the tangent space TPE

3

at the point P. The map

s : E
3 → FE

3 (4.11)

is called a section of the frame bundle iff

s(P ) = (P,b1(P ),b2(P ),b3(P ))

and the vectors b1(P ),b2(P ),b3(P )) form a basis of TPE
3 for all P ∈ E

3. In
other words, the section (4.11) is a map which fixes a basis at each point P of the
Euclidean manifold.

The frame bundle FE
3 is a real 12-dimensional manifold.

To see this, consider a Cartesian coordinate system with the right-handed orthonor-
mal basis i, j,k at the origin O. Then the point P corresponds to the position vector

x = xi + yj + zk.

Moreover, the basis b1,b2,b3 at the point P is given by the matrix equation

0

B

@

b1

b2

b3

1

C

A

=

0

B

@

G1
1 G

1
2 G

1
3

G2
1 G

2
2 G

2
3

G3
1 G

3
2 G

3
3

1

C

A

0

B

@

iP
jP
kP

1

C

A

.

Here, the real (3 × 3)-matrix G = (Gi
j) is invertible. Naturally enough, we as-

sign to the point (P,b1,b2,b3) of the frame bundle FE
3 the 12 coordinates

(x, y, z;G1
1, G

1
2, . . . , G

3
3). The section (4.11) is called smooth iff it is a smooth map

from the Euclidean manifold E
3 into the manifold F (E3). Equivalently, the map

(x, y, z) �→ (G1
1(x, y, z), G

1
2(x, y, z), . . . , G

3
3(x, y, z))

is smooth on R
3. Note that this smoothness property does not depend on the choice

of the Cartesian coordinate system.

4.6 Historical Remarks

4.6.1 Newton and Leibniz

Newton (1643–1727) motivated his differential calculus by the kinematics of bodies.
He used the terms

• ‘fluent’ x (a magnitude that flows in time) for ‘variable depending on time’, and
• ‘fluxion’ ẋ for ‘time derivative’.
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He also introduced the symbol ẍ for the second time derivative. Moreover, he used
the symbols o, xo, ẋo which correspond to the differentials dt, dx, dẋ in modern
terminology, respectively. Newton’s differential calculus can be found in I. Newton,
Methodus fluxiorum et serierum infinitorum. The Latin manuscript was ready in
1671, but the book only appeared ten years after Newton’s death as an English
translation under the title, The Method of Fluxions and Infinite Series with its
Application to the Geometry of Curve-Lines, London, 1736. Newton’s calculus was
first published in his treatise

Philosophiae Naturalis Principia Mathematica, 1687 (in Latin).1

This was one of the most important single works in the history of modern science.
In 1672, Leibniz (1646–1716) visited Paris. Huygens (1629–1695) introduced the

young Leibniz into his theory of curves. In the next years, Leibniz was fascinated
by mathematics. In 1684, he published an article in the newly founded Leipzig Acta
Eruditorum entitled A new method for maxima and minima as well for tangents
(in Latin). In this article, Leibniz introduced the symbol dx satisfying the sum rule
d(x+ y) = dx+ dy and the product rule

d(xy) = (dx)y + x(dy) (4.12)

called the Leibniz rule today. In 1686, Leibniz published his article On a deeply
hidden geometry where he used the symbol

R

for integration. This symbol was
designed by resembling the letter ‘S’ for ‘summation’.

Élie Cartan’s calculus of alternating differential forms. This beautiful
and extremely elegant calculus was invented by Cartan (1869–1951) in 1899; Cartan
used the wedge product a ∧ b introduced by Grassmann (1809–1877) in 1844. We
will extensively study this in Chap. 12. The key relations are the graded Leibniz
rule

d(ω ∧ μ) = dω ∧ μ+ (−1)pω ∧ dμ (4.13)

and the Poincaré cohomology rule

d(dω) = 0. (4.14)

Here, ω and μ are differential forms of degree p and q, respectively.
The main theorem of calculus. The fundamental relation

Z 1

0

f ′(x)dx = f(1) − f(0)

and its far-reaching generalization to the Stokes integral theorem

Z

M
dω =

Z

∂M
ω

for differential forms ω on a manifold M will be discussed in Sect. 12.1.1.
The Fréchet derivative and the calculus on infinite-dimensional func-

tion spaces. This theory was initiated by Fréchet (1878–1973) at the beginning of
the 20th century. We refer to Zeidler (1986), Vol. I, quoted on page 1089.

Further reading. Concerning the history of calculus, we recommend:

1 The Principles of Natural Philosophy.
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S. Chandrasekhar, Newton’s Principia for the Common Reader, Oxford
University Press, 1997.

N. Rescher, Leibniz: An Introduction to his Philosophy, Rowman and Lit-
tlefield, Totowa, New Jersey, 1979.

M. Kline, Mathematical Thought from Ancient to Modern Times, Vols.
1–3, Oxford University Press, 1990.

N. Bourbaki, Elements of the History of Mathematics, Springer, New York,
1994.

J. Dieudonné, Abrégé d’histoire des mathématiques 1700–1900, I, II, Her-
mann, Paris, 1978. Extended German edition in one volume: Vieweg, Wies-
baden, 1985.

J. Dieudonné, History of Algebraic Geometry, 400 B.C.–1985 A.D., Chap-
man, New York, 1985.

J. Dieudonnè, A History of Algebraic and Differential Topology, 1900–1960,
Birkhäuser, Boston, 1989.

J. Dieudonné, History of Functional Analysis, 1900–1975, North-Holland,
Amsterdam, 1981.

F. Klein, Development of Mathematics in the 19th Century, Math. Sci.
Press, New York, 1979.

V. Varadarajan, Euler Through Time: A New Look at Old Themes, Amer.
Math. Soc., Providence, Rhode Island, 2006.

I. James (Ed.), History of Topology, Elsevier, Amsterdam, 1999.

A. Pietsch, History of Banach Spaces and Linear Operators, Birkhäuser,
Boston, 2007.

H. Wußing, 6000 Years of Mathematics: a Cultural Journey through Time,
Springer, Heidelberg, 2009 (in German).

E. Zeidler, Some Reflections on the Future of Mathematics. In: H. Wußing
(2009), Vol. II, Chap. 12 (in German).

4.6.2 The Lebesgue Integral

The Lebesgue integral was the key to modern analysis based on functional
analysis in the twentieth century.

Folklore

In his 1851 Ph.D. thesis, Riemann (1826–1866) founded complex analysis based
on the so-called Cauchy–Riemann differential equations. In his 1854 habilitation
thesis, Riemann investigated the convergence of Fourier series. In order to define
the Fourier coefficients by integrals, he introduced the so-called Riemann integral

Z 1

0

f(x)dx = lim
n→∞

n
X

j=1

f(jΔx)Δx

where Δx = 1
n
. In his seminal 1902 thesis, Lebesgue (1875–1941) founded modern

measure and integration theory.2 In contrast to the Riemann integral, the Lebesgue
integral has the crucial property that the limit relation

2 H. Lebesgue, Integral, length, area, Annali Mat. Pura Appl. 7 (1902), 231–359
(in French).
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lim
n→∞

Z 1

0

fn(x)dx =

Z 1

0

lim
n→∞

fn(x)dx

holds under quite natural assumptions. In particular, this implies that the function
space L2(0, 1) becomes not only a complex pre-Hilbert space with respect to the
inner product

〈f |g〉 :=

Z 1

0

f(x)†g(x)dx,

but a Hilbert space. The Lebesgue integral is basic for the modern functional-
analytic approach to linear and nonlinear partial differential equations and inte-
gral equations. In particular, von Neumann’s rigorous approach to the Schrödinger
equation in quantum mechanics via Hilbert space theory is based on the use of the
Lebesgue integral (see Chapter 7 of Volume II). For further reading, we recommend:

V. Zorich, Analysis I, II, Springer, New York, 2003.

E. Stein and R. Shakarchi, Princeton Lectures in Analysis. I: Fourier
Analysis, II: Complex Analysis, III: Measure Theory, Princeton Univer-
sity Press, 2003.

H. Triebel, Higher Analysis, Barth, Leipzig, 1989.

G. Gustafson and I. Sigal, Mathematical Concepts of Quantum Mechanics,
Springer, New York, 2003.

4.6.3 The Dirac Delta Function and Laurent Schwartz’s
Distributions

Generalizing Dirac’s idea of the ‘Dirac delta function’, Laurent Schwartz (1915–
2002) created the theory of distributions (generalized functions) in 1945. In this
setting, the Dirac delta distribution is given by the functional

δ(ϕ) := ϕ(0) for all ϕ ∈ D(R).

Mnemonically, this is written as δ(ϕ) =
R

R
δ(x)f(x)dx. The distributions T ∈ D′(R)

have the extremely nice property that they possess derivatives of any order, in con-
trast to classical functions. For a detailed study of distributions and their relation
to the Dirac delta function, we refer to Chapters 11 and 12 of Volume I.

4.6.4 The Algebraization of the Calculus

In the history of mathematics, there emerged the following three possibilities for
the algebraization of the classical differential calculus:

• derivations: Leibniz (1646–1716), Élie Cartan (1861–1951), Kähler, (1906–2000),
Weil (1906–1996),

• formal power series expansions: Lagrange (1736–1813), Weierstrass (1815–1897),
Hensel (1861–1941) (p-adic numbers), and

• nonstandard analysis: Robinson (1918–1974), Nelson (born 1932) (see Section
4.6 of Volume II).

In what follows we want to discuss some basic ideas.
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4.6.5 Formal Power Series Expansions and the Ritt Theorem

By definition, a formal power series expansion over the field C of complex numbers
is a symbol of the form

a0 + a1x+ a2x
2 + . . . , aj ∈ C, j = 0, 1, 2, . . .

Quite naturally, we define the sum and the product by setting

• (a0 + a1x+ . . .) + (b0 + b1x+ . . .) := a0 + b0 + (a1 + b1)x+ . . . ,
• (a0 + a1x+ . . .)(b0 + b1x+ . . .) := a0b0 + (a0b1 + a1b0)x+ . . .

This way, we obtain the ring PC[x] of formal power series expansions.3 In addition,
we define the derivative

(a0 + a1x+ a2x
2 + a3x

3 + . . .)′ = a1 + 2a2x+ 3a3x
2 + . . .

in a purely algebraic way. Such formal power series expansions were used by La-
grange and Weierstrass.

In quantum field theory, perturbation theory (including renormalization)
is based on formal power series expansions with respect to small physical
constants.

A crucial theorem proved by Ritt in 1916 tells us that a formal power series expan-
sion is always the asymptotic expansion of some analytic function defined in some
conic domain (see Section 15.5.2 of Volume I).

From the analytic point of view, the machinery of formal power series expansions
with applications to the solution of nonlinear systems of equations (bifurcation
theory) can be found in:

M. Vainberg and V. Trenogin, Theory of Branching of Solutions of Nonlin-
ear Equations, Noordhoof, Leyden, The Netherlands, 1974 (the Weierstrass
preparation theorem, resultants, Kronecker’s elimination method).

The point is that a perfect theory for nonlinear equations only works if one gives
up the search for convergent solutions. A summary of important results (solution
of branching equations) can be found in Zeidler (1996), Vol. I, pp. 430–437 (quoted
on page 1089). From the algorithmic point of view, we refer to:

D. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry, Springer,
New York, 1998.

4.6.6 Differential Rings and Derivations

Erich Kähler (1906–2000) emphasized in 1958 that it is promising to establish the
differential calculus on a purely algebraic basis.4 Let R be a commutative ring with
unit element. The ring R′ is called a differential ring to R iff R ⊆ R′, and there
exists a map d : R → R′ such for all a, b ∈ R the following hold:

3 If we replace the complex coefficients a0, a1, . . . by elements of a commutative
ring R with unit element (e.g., the ring Z of integers), then we obtain the ring
PR[x].

4 E. Kähler, Algebra and Differential Calculus, Akademie-Verlag, Berlin, 1958 (in
German). See also E. Kähler, Collected Works, pp. 282–387, de Gruyter, Berlin,
2003, and E. Kähler, Geometria Aritmetica, Annali di Matematica Pura et Ap-
plicata, Serie IV, Tomo XLV (1958) (in Italian).
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• d(a+ b) = da+ db (sum rule),
• d(ab) = (da)b+ a(db) (Leibniz rule), and
• (da)(db) = 0 (algebraic infinitesimals).

Define σ(a) := a+ da for all a ∈ R. Then, for all a, b ∈ R, we have

• σ(a+ b) = σ(a) + σ(b), and
• σ(ab) = σ(a)σ(b).

That is, σ is a ring morphism from R to R′, which was coined an ‘infinitesimal
motion’ of the ring R by Kähler. In fact, it follows from (da)(db) = 0 that

σ(a)σ(b) = (a+ da)(b+ db) = ab+ (da)b+ a(db) = ab+ d(ab) = σ(ab).

The prototype of a differential ring. By definition, the ring PC[x]′ consists
of all the symbols

p+ qdx, p, q ∈ PC[x]

together with the relation (dx)2 = 0. Moreover, we define

d(p+ q dx) := p′(x) dx.

In particular, this implies d(dx) = 0. The ring PC[x]′ is a differential ring to the
ring PC[x] of formal power series expansions.

Derivations. Let M be a left module over the commutative ring R with unit
element (see page 309). The map d : R → M is called a derivation iff the following
hold for all a, b ∈ R:

• d(a+ b) = da+ db (sum rule), and
• d(ab) = (da)b+ a(db) (Leibniz rule).

There exists a universal derivation on R which generates all the possible derivations
from R to M. The proof based on tensor products can be found in S. Lang, Algebra,
Sect. XIX.3, Springer, New York, 2002.

4.6.7 The p-adic Numbers

God made the integers, all the rest is the work of Man.
Leopold Kronecker (1823–1891)

The p-adic numbers were invented at the beginning of the twentieth cen-
tury by Kurt Hensel (1861–1941). The aim was to make the methods
of power series expansions, which play a dominant role in the theory of
complex-valued functions, available to the theory of numbers as well.5

Jürgen Neukirsch, 1991

Many stuctural properties of classical numbers allow far-reaching generalizations.
Let us discuss a few points.

The extension of the semi-ring N of natural numbers to the ring Z of
integers and K-theory. The set N of natural numbers 0, 1, 2, 3, . . . forms a semi-
ring with respect to addition and multiplication. This semiring can be extended to
the ring Z of integers. Interestingly enough, the corresponding construction can be
generalized to more general objects (e.g., linear spaces, vector bundles) by means of

5 J. Neukirsch, The p-adic numbers, pp. 155–178. In: H. Ebbinghaus et al. (Eds.),
Numbers, Springer, New York, 1991 (reprinted with permission).



4.6 Historical Remarks 333

K-theory which was invented by Grothendieck (born 1928) in the 1950s; algebraic
and topological K-theory represent a powerful tool of modern mathematics (see
Section 4.4.9 of Volume II).

The extension of the ring Z of integers to the field Q of rational numbers is
the prototype of the extension of a commutative ring without zero divisors to a
quotient field (see Sect. 4.1.3 of Volume II).

Cantor’s extension of the field Q of rational numbers to the field R

of real numbers. In 1872, Cantor (1845– 1918) invented a method for completing
the field of rational numbers Q to the field R of real numbers. Cantor considered
sequences (an) of rational numbers, and he introduced the following equivalence
relation:

(an) ∼ (bn)

iff for every ε > 0 there exists a natural number n0(ε) such that |an − bn| < ε for
all n ≥ n0(ε). In other words, the sequence (an − bn) is a Cauchy sequence. The
corresponding equivalence classes [(an)] form the field R of real numbers, and the
set Q is a dense subfield of R. Cantor’s method is used in functional analysis in
order to extend a metric space X to a complete metric space X. Here, the original
space X is a dense subset of the extended space X, which is uniquely determined
up to isometries.6

The extension of the field of rational numbers Q to the field Qp of
p-adic numbers. The symbol P denotes the set of prime numbers p = 2, 3, . . ..
Fix p ∈ P. We want to apply Cantor’s method to a different metric |.|p for the field
of rational numbers. To begin with, let us consider an example. Using the unique
prime number decomposition of natural numbers, we get

18

40
=

2 · 32

23 · 5 = 2−2 · 32

5
.

We describe this decomposition by writing
˛

˛

˛

˛

18

40

˛

˛

˛

˛

2

:= 22.

Similarly, if r is a nonzero rational number, then we get

r = pm · a
b

where the exponent m is an integer, and the integers a and b are not divisible by
the prime number p. Then we set

|r|p := p−m.

Moreover, let |r|p := 0 if r = 0. Obviously, |n|p ≤ 1 if n is an integer. This is a
rather strange result compared with the classical absolute value.

Applying Cantor’s method to the metric |.|p on the field Q, we get the field
Qp of p-adic numbers. This is a complete metric space which contains the set Q of
rational numbers as a dense subfield. In 1918, Ostrowski (1893–1986) proved the
following theorem.7

6 The definition of a complete metric space can be found in Section 5.10 of Volume
II. The proof of the completion theorem for metric spaces is given in the textbook
by V. Zorich, Analysis II, Sect. 9.5.2, Springer, Berlin, 2003.

7 A. Ostrowski, On some solutions of the functional equation ϕ(xy) = ϕ(x)ϕ(y),
Acta math. 41 (1918), 271–284. We refer to N. Koblitz, p-adic Numbers, p-adic
Analysis, and Zeta Functions, p. 3, Springer, New York, 1984.
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Theorem 4.1 The absolute value |.| and all the p-adic metrics |.|p with p ∈ P are
the only valuations of the field of rational numbers Q (up to equivalent valuations).

Let us discuss this. By definition, the function ϕ : Q → [0,∞[ is called a valuation
of the field Q of rational numbers iff the following hold for all r, s ∈ Q:

• ϕ(r) ≥ 0 and ϕ(r) = 0 iff r = 0 (definiteness),
• ϕ(r + s) ≤ ϕ(r) + ϕ(s) (triangle inequality),
• ϕ(rs) = ϕ(r)ϕ(s) (product rule).

Two valuations ϕ and ψ of Q are called equivalent iff there exists a positive real
number σ such that ϕ(r) = ψ(r)σ for all r ∈ Q.

From the philosophical point of view, Ostrowski’s theorem tells us that the
field R of real numbers and the fields Qp of p-adic numbers are the only
reasonable field extensions of the field Q of rational numbers.

The p-adic valuation |.|p possesses the crucial additional property that

|r + s|p ≤ max{|r|p, |s|p} for all r, s ∈ Q.

This property is typical for a so-called non-Archimedean valuation. This implies
that if a, b ∈ Qp with |a|p ≤ 1 and |b|p ≤ 1, then |a+ b|p ≤ 1 and |ab|p ≤ 1. This is
basic for the definition of the adelic ring on page 337.

There arises the question whether the p-adic numbers play a role in nature.

We will come back to this in Sect. 4.6.9.
Infinite series in p-adic analysis. The following proposition is not true for

real numbers.

Proposition 4.2 The infinite series
P∞

k=0 bk with bk ∈ Qp, k = 0, 1, 2, . . . , is con-
vergent in Qp iff limk→∞ bk = 0 in Qp.

Proof. Set sn :=
Pn

k=0 bk. If limn→∞ sn = s, then

lim
n→∞

bn = lim
n→∞

(sn − sn−1) = 0.

Conversely, if limk→∞ bk = 0, then

|sn+m − sn|p =

˛

˛

˛

˛

˛

n+m
X

k=n+1

bk

˛

˛

˛

˛

˛

p

≤ maxn+1≤k≤n+m{|bk|p} < ε

if n ≥ n0(ε). Thus, (sn) is a Cauchy sequence. Since the metric space Qp is complete,
(sn) is convergent. �

As a crucial example, consider the special infinite series

x =
a−n

pn
+
a−n+1

pn−1
+ . . .+

a−1

p
+ a0 + a1p+ a2p

2 + . . . (4.15)

where n = 1, 2, . . ., and aj = 0, 1, . . . , p−1 for all indices j. By Prop. 4.2, this series
is convergent, and it represents a p-adic number a.8

Conversely, every p-adic number x can be uniquely represented by (4.15).

The proof can be found in N. Koblitz (1984), Chap. 1, quoted on page 333. For
example, choose p = 2:

8 Note that |akpk|p = |ak|p|pk|p = |ak|pp−k ≤ p−k.
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• 21 = 1 + 4 + 16 = 1 + p2 + p4,
• 5

8
= 1

8
+ 4

8
= 1

p3 + 1
p
.

Classification of p-adic numbers. Fix the prime number p. Let x ∈ Qp be a
p-adic number.

• x is called an integer p-adic number iff we have the representation (4.15) with
a−n = . . . = a−1 = 0. This is equivalent to |x|p ≤ 1.

• The set Zp of integer p-adic numbers forms a ring without zero divisors; the
corresponding quotient field is isomorphic to the field Qp of p-adic numbers.
Every x ∈ Qp can be uniquely represented as the quotient

x =
y

pn
, y ∈ Zp, n = 0, 1, 2, . . .

• The p-adic number x is a rational number iff the sequence (ak) of digits in (4.15)
is periodic from some point onwards.

The ring Zp of integer p-adic numbers as the projective limit of the
Gaussian residue class rings Zpk as k → ∞. Let us start with an example.9

Fix the prime number p = 2. The decomposition

39 = 1 + 2 + 4 + 32 = 1 + p+ p2 + p5

can be written as a sequence of congruences:

39 ≡ 1 mod p, 39 ≡ 1 + p mod p2, 39 ≡ 1 + p+ p2 mod p3, . . .

Thus, he sequence ([1]p, [1+p]p2 , [1+p+p2]p3 , . . .) can be uniquely assigned to the
integer 39. Obviously, we have the chain

Zp ⊇ Zp2 ⊇ Zp3 ⊇ . . .

for all prime numbers p, with the embedding maps ιk+1 : Zpk+1 → Zpk for all
k = 1, 2, . . .. By definition, the projective limit

Zp := lim
k→∞

proj Zpk

consists of all the sequences

([x1]p, [x2]p2 , [x3]p3 , . . .)

with ιk+1

`

[xk+1]pk+1

´

= [xk]pk for all k = 1, 2, . . .10 Using componentwise addition
and multiplication, the limit set Zp becomes a ring. The map

∞
X

k=0

akp
k �→ ([a0]p, [a0 + a1p]p2 , . . .)

yields the ring isomorphism Zp  Zp.

9 We will use the classical terminology for Gaussian congruences introduced in
Sect. 4.1.1 of Volume II. Let a, b ∈ Z be integers. Recall that we write

a ≡ b mod pk, k = 1, 2, . . .

iff the difference a − b is divisible by pk. This is an equivalence relation. The
corresponding equivalence classes, denoted by [a]pk , form the ring Zpk .
For example, the Gaussian ring Z2 consists of the two elements 0, 1 with 1+1 = 0.
Observe that the Gaussian ring Zm is also denoted by Z/mZ or Z/mod m in the
literature.

10 The general definition of inductive (direct) and projective (inverse) limits of
mathematical structures can be found in Sect. 4.5.5 of Vol. II.
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4.6.8 The Local–Global Principle in Mathematics

Many mathematical results describe either the local behavior (e.g., the derivative
of a function) or the global behavior (e.g., topological properties) of mathematical
objects. In the history of mathematics, there emerged the following two crucial situ-
ations where the local behavior completely determines the global behavior, namely:

(i) holomorphic and analytic functions, and
(ii) the Minkowski–Hasse theorem on quadratic Diophantine equations.

Here, item (i) concerns the analytic continuation. For example, in quantum field
theory, the S-matrix describes scattering processes for elementary particles. Global
properties of the S-matrix are determined by the local behavior via analytic con-
tinuation. We refer to:

A. Barut, The Theory of the Scattering Matrix, MacMillan, New York,
1967.

Analytic continuation is closely related to the theory of Riemann surfaces based on
the theory of vector bundles and sheafs:

M. Schlichenmaier, An Introduction to Riemann Surfaces, Algebraic
Curves, and Moduli Spaces, Springer, Berlin, 2008.

O. Forster, Lectures on Riemann Surfaces, Springer, Berlin, 1981.

J. Jost, Compact Riemann Surfaces: An Introduction to Contemporary
Mathematics, Springer, Berlin, 1997.

The Minkowski–Hasse theorem concerns the following quadratic Diophantine equa-
tion:11

a1x
2
1 + a2x

2
2 + . . .+ anx

2
n = 0. (4.16)

Here a1, a2, . . . , an are rational numbers, all non-vanishing. We are looking for ra-
tional solutions x1, . . . , xn ∈ Q.

Theorem 4.3 The equation (4.16) has a non-trivial solution in Q iff it has non-
trivial solutions in R and in Qp for all prime numbers p.

The solutions in Q (resp. in R and Qp for all prime numbers p) are called global
(resp. local) solutions of the original problem (4.16). Therefore, the Minkowski–
Hasse theorem tells us that the existence of local solutions implies the existence of
a global solution. This is a variant of the local-global principle in number theory.
The proof of Theorem 4.3 can be found in Z. Borevič and I. Šafarevič, Number
Theory, Sect. 7, Academic Press, New York, 1967.

The classical version of Theorem 4.3 in terms of congruences was proven by
Minkowski. It reads as follows: The quadratic Diophantine equation (4.16) has
a nontrivial rational solution x1, . . . , xn ∈ Q if it has a nontrivial real solution
x1, . . . , xn ∈ R, and all the congruences

a1x
2
1 + a2x

2
2 + . . .+ anx

n ≡ 0 mod pm

with arbitrary prime numbers p and arbitrary exponents m = 1, 2, . . . have nontrivial
integer solutions x1, . . . , xn ∈ Z.
Mnemonically, the prime numbers are the atoms of the integers, and the integer
p-adic numbers are the atoms of the rational numbers.

11 Diophantus of Alexandria (ca. 250 A.D.), Minkowski (1864–1909), Hasse (1898–
1979).
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4.6.9 The Global Adelic Ring

On the fundamental level our world is neither real, nor p-adic, it is adelic.
For some reasons, reflecting the physical nature of our kind of living matter
(e.g., the fact that we are built of massive particles), we tend to project the
adelic picture onto its real side (by using real numbers). We can equally
well spiritually project it upon the non-Archimedean side and calculate
most important things arithmetically (by using p-adic numbers).
The relation between “real” and “arithmetical” pictures of the world is
that of complementarity, like the relation between conjugate variables (in
Hamiltonian physics).
Of course, one is not obliged to take this metaphysics seriously. A skeptical
reader can still use it as a guiding principle in a mathematical study of
string theory.12

Yuri Manin, 1987

Motivated by the Minkowski–Hasse local-global principle above, we define the prod-
uct

A := R ×
Y

p∈P

Qp.

Recall that the symbol P denotes the set of prime numbers. Furthermore, by defi-
nition, the set AQ consists of all the sequences (x, x2, x3, x5, . . .) in A with

|xp|p ≤ 1 for almost all p ∈ P. (4.17)

Here ‘almost all’ means that the inequality (4.17) is violated for at most a finite
number of prime numbers. The set AQ of sequences becomes a ring (called the adelic
ring or the ring of adeles) if we define the sum and the product componentwise.
Adeles were introduced by Chevalley (1909–1984) in the 1930s. The multiplicative
invertible elements in AQ are called ideles. For all nonzero rational numbers r, we
have the universal product formula

|r|
Y

p∈P

|r|p = 1

which shows that the absolute value |r| can be computed by means of the p-adic
valuations |r|p. The famous product formula

π2

6

Y

p∈P

„

1 − 1

p2

«

= 1

relates the transcendental number π to p-adic numbers. This Euler formula can also
be written as

12 Yu. Manin, Reflections on arithmetical physics. In: Conformal Invariance
and String Theory, Poiana Brasov, 1987, Academic Press, 1989, pp. 293–303
(reprinted with permission). See also Yu. Manin, Selected Papers, pp. 518–528,
World Scientific, Singapore, 1996.
Adelic methods were used by Yu. Manin, The partition function of the Polyakov
string can be expressed in terms of theta functions, Phys. Lett. B172 (1986),
184–186. We also recommend: Yu. Manin, Strings, Math. Intelligencer 11(2)
(1989), 59–65.
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π2

6
= ζ(2) =

∞
X

n=1

1

n2
=
Y

p∈P

„

1 − 1

p2

«−1

.

Further reading. As an introduction written for physicists, we recommend:

M. Schlichenmaier, An Introduction to Riemann Surfaces, Algebraic
Curves, and Moduli Spaces, Springer, Berlin, 2008.

The appendix contains an introduction to p-adic numbers. Additionally, we recom-
mend:

N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta Functions, Springer,
New York, 1984.

Z. Borevič and I. Šafarevič, Number Theory, Academic Press, New York,
1967.

W. Stein, A Brief Introduction to Classical and Adelic Algebraic Number
Theory, Lecture Notes, Harvard University, Cambridge, Massachusetts,
2004. Internet: http://sage.math.washington.edu/Spring2004/129/ant.pdf

Furthermore, we refer to:

J. Serre, A Course in Arithmetic, Springer, New York, 1973.

J. Serre, Local Fields, Springer, New York, 1979.

A. Weil, Basic Number Theory, Springer, Berlin, 1974.

S. Lang, Algebraic Number Theory, Springer, New York, 1986.

S. Lang, Introduction to Algebraic and Abelian Functions, Springer, New
York, 1995.

S. Lang, Introduction to Diophantine Approximation, Springer, Berlin,
1995.

V. Vladimirov, V. Volovich, and E. Zelenov, p-Adic Analysis and Mathe-
matical Physics, World Scientific, Singapore, 1994.

A. Khrennikov, p-Adic Valued Distributions in Mathematical Physics,
Kluwer, Dordrecht, 1994.

A. Kedlaya, p-Adic Differential Equations, Cambridge University Press,
Cambridge, 2010.

The study of physical models based on adelic methods can be found in:

B. Dragovich, P. Frampton, and C. Urosevic, Classical p-adic space time,
Mod. Phys. Lett, AA5 (1990), 1521–1528.

B. Dragovich, Adelic harmonic oscillator, Int. J. Mod. Phys. A10 (1995),
2349–2365.

G. Djordevic and B. Dragovich, p-adic and adelic path integrals, Proceed-
ings of the XIth Yugoslavian Conference on Nuclear Physics in Studenica,
Yugoslavia, 1998, pp. 312–315.

G. Djordevic, B. Dragovich, and L. Nesic, p-adic and adelic free relativistic
particle, Mod. Physics Lett. 7 (1999), 150–154.

B. Dragovich, Non-archimedean geometry and physics on adelic spaces,
2003. Internet: http://www.arxiv:math-phys/0306023

R. Schmidt, Arithmetic gravity and Yang-Mills theory: An approach to
adelic physics via algebraic spaces. Ph.D. thesis, University of Münster
(Germany), 2008. Internet: http://www.arxiv:hep-th/0809.3579

The following paper concerns dark matter:
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B. Dragovich, p-adic and adelic cosmology, p-adic origin of dark energy
and dark matter, 2006. Internet: http://www.arxiv:hep-th/0602044

4.6.10 Solenoids, Foliations, and Chaotic Dynamical Systems

The topology of the p-adic field Qp is weird.13

William Stein, 2004

The way to chaos via period doubling is universal in nature.
Mitchell Feigenbaum, 1978

Totally disconnected sets. A manifold looks locally like a Euclidean space. Sul-
livan introduced a generalization of this notion called solenoid. A solenoid looks
locally like the product

U × C
where U is an open set in R

n, and C is a totally disconnected set.14 A topological
space is called totally disconnected iff it has only trivial connected subsets, that is,
the nonempty components are points. The prototype of such a pathological set was
introduced by Cantor in 1883. The Cantor set C consists precisely of all the real
numbers which allow the representation

a1
3

+
a2
32

+
a3
33

+
a4
34

+ . . .

where either ak = 0 or ak = 2 for every k = 1, 2, . . . Intuitively, the Cantor set C
is obtained from the unit interval [0, 1] by taking away the open subinterval ] 1

3
, 2

3
[

of length 1
3
. From the remaining intervals [0, 1

3
] and [ 2

3
, 1], we are taking away the

open subintervals
–

1

32
,

2

32

»

and

–

2

3
+

1

32
,

2

3
+

2

32

»

of length 1
32 , respectively, and so on. The connected subsets of the real line are

intervals. Obviously, the Cantor set C does not contain any subinterval of finite
length. Therefore, the compact Cantor set C is totally disconnected.

The field Qp of p-adic numbers is a totally disconnected metric space.

The proof can be found in Stein (2004) quoted on page 338.
Renormalization and chaotic dynamical systems. Historically, it was dis-

covered in the 1970s that very simple discrete dynamical systems may possess a
highly chaotic structure. Let us mention the following three fundamental papers:

M. Feigenbaum, Quantitative universality for a class of nonlinear transfor-
mations, J. Stat. Physics 19 (1978), 25–52.

O. Lanford, A computer-assisted proof of the Feigenbaum conjectures,
Bull. Amer. Math. Soc. 6 (1982), 427–434.

J. Milnor and W. Thurston, On iterated maps of the interval, Lecture
Notes in Mathematics 1342 (1988), 465–563, Springer, Berlin.

We also recommend the following monographs:

13 See W. Stein (2004) quoted on page 338.
14 The author would like to thank Christopher Deninger (Münster) for drawing his

attention to the notion of ‘solenoid’.
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J. Jost, Dynamical Systems: Examples of Complex Behavior, Springer,
Berlin, 2005.

W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer,
Berlin, 1993.

J. Milnor, Dynamics in One Complex Variable: Introductory Lectures,
Vieweg, Wiesbaden, 2000.

P. Schuster, Deterministic Chaos: An Introduction, Weinheim (Germany),
Physik-Verlag, 1994.

J. Cardy, Scaling and Renormalization in Statistical Physics, Cambridge
University Press, 1997.

W. McComb, Renormalization Methods: A Guide for Beginners, Oxford
University Press, 2007.

Finally, we recommend the following two survey articles:

P. Cvitanović, Circle maps: irrationally winding, pp. 631–658. In: M. Wald-
schmidt et al. (Eds.), From Number Theory to Physics, Springer, New
York, 1995.

J. Yoccoz, An introduction to small divisor problems, pp. 659–679. In: M.
Waldschmidt et al. (Eds) (see above).

Small divisors are related to the appearance of resonances (e.g., in celestial me-
chanics) which cause trouble in perturbation theory. For solenoids, we refer to:

D. Sullivan, Linking the universalities of Milnor–Thurston, Feigenbaum,
and Ahlfors–Bers, pp. 543–564. In: R. Goldberg and A. Phillips (Eds.),
Topological Methods in Modern Analysis, Publish or Perish, Houston,
Texas, 1993.

D. Sullivan, Bounds, quadratic differentials, and renormalization conjec-
tures, pp. 417–466. In: F. Browder (Ed.), Mathematics into the Twenty-
First Century, Amer. Math. Soc. Providence, Rhode Island, 1992.

D. Sullivan, On the foundation of geometry, analysis, and the differentiable
structure for manifolds, pp. 89–92. In: A. Banyaga et al. (Eds.), Topics in
Low-Dimensional Topology, World Scientific, Singapore, 1999.

Foliations, Hopf algebras, and renormalization in quantum field the-
ory. Solenoids are also related to foliations. A deep result is the generalization of
the Atiyah–Singer index theorem to foliations:

A. Connes and H. Moscovici, Hopf algebras, cyclic cohomology and the
transverse index theorem, Commun. Math. Phys. 198 (1998), 199–246.

This is also closely related to renormalization in quantum field theory (see Sect.
19.3 of Vol. II).

The main theorem on discrete dynamical systems. Let us consider the
following iterative method

xn+1 = f(xn), n = 0, 1, 2, . . . (4.18)

where the real number x0 is given. Suppose that f : R → R is a given real-valued
function. We assume that there exists a real number x∗ such that

x∗ = f(x∗). (4.19)
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Fig. 4.4. Asymptotically stable fixed point x∗

In addition, we assume that the function f is smooth on some open interval contain-
ing the point x∗. In order to get a physical interpretation, regard xn as the position
of a particle on the real line at time nΔt for fixed Δt > 0. Then the sequence (xn)
describes the dynamics of the particle. We call (xn) a discrete dynamical system.
The point x∗ is called a fixed point of the function f . In terms of physics, x∗ rep-
resents an equilibrium state of the particle. In fact, if x0 = x∗, then xn = x∗ for all
n = 0, 1, 2, . . . The fixed point x∗ is called asymptotically stable iff

lim
n→∞

xn = x∗

for all initial points x0 in a sufficiently small open neighborhood of the point x∗.
In terms of numerical mathematics, this means that the iterative method (xn) is
convergent if the initial point x0 is sufficiently near the solution x∗ of the equa-
tion (4.19). In terms of physics, the asymptotically stable equilibrium state x∗ is
an attractor. In Fig. 4.4, the fixed point x∗ corresponds to the intersection point
between the curves y = x (diagonal) and y = f(x). The iterative method for get-
ting x0, x1, x2, . . . represents graphically a simple geometric procedure. Motivated
by Fig. 4.4, we expect the following result.

Theorem 4.4 If |f ′(x∗)| < 1, then the fixed point x∗ is asymptotically stable.

This is a special case of the Banach fixed-point theorem formulated by Banach
(1892–1945) in 1922. The proof can be found in Zeidler (1986) (Sect. 1.4 of Vol. I)
quoted on page 1089.

Prototype. Fix the real parameter, and consider the discrete dynamical system

xn+1 = axn, n = 0, 1, 2, . . . , x0 ∈ R

with the equilibrium point x∗ = 0. Let x0 �= 0. Explicitly,

xn+1 = an+1x0, n = 0, 1, 2, . . .

Then the following hold (Fig. 4.5):

• If |a| < 1, then limn→∞ xn = 0 (x∗ = 0 is asymptotically stable/attractor).
• If |a| > 1, then limn→∞ |xn| = ∞ (x∗ = 0 is unstable/repeller).
• If |a| = 1, then the equilibrium point x∗ = 0 has a so-called critical behavior.

Arbitrarily small perturbations of the parameter a may change dramatically the
behavior of the system (attractor or repeller).

Feigenbaum’s numerical turbulence model. In the late 1970s, Feigenbaum
studied the iterative method

xn+1 = 4λxn(1 − xn), n = 0, 1, 2, . . . , x0 ∈ [0, 1] (4.20)

with the parameter λ ∈]0, 1] by using a pocket calculator.
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Fig. 4.5. Discrete dynamical system: xn+1 = axn, n = 0, 1, . . .; x∗ = 0

Computer experiments show that the behavior of the dynamical system be-
comes more and more complex if the parameter λ increases, that is, the
system approaches turbulence (chaos).

There exist critical parameters λ called bifurcation parameters where the system
changes its qualitative behavior. These critical parameters model the Reynolds
numbers in real turbulence experiments. Specifically, the Feigenbaum model ap-
proaches chaos by producing a cascade of new periodic solutions via permanent
period doubling.

Fixed points of iterated maps and stable periodic motions. Let us
discuss the Feigenbaum approach in greater detail. To this end, for fixed parameter
λ ∈]0, 1], we introduce the operator

Aλ(x) := 4λx(1 − x), 0 ≤ x ≤ 1,

and we will study the iterated operators Ak
λ with the exponents k = 2, 3, . . . Note

that the discrete dynamical system (xn) is given by the equation

xn := An
λ(x0), n = 0, 1, 2, . . . , x0 ∈ [0, 1].

For any fixed parameter λ ∈ [0, 1], the operator

Aλ : [0, 1] → [0, 1]

maps the unit interval [0, 1] into itself; we have Aλ(0) = 0 together with the maximal
value Aλ( 1

2
) = λ. In what follows, we will always assume that x0, x∗ ∈ [0, 1].

(i) Stable equilibrium states. Suppose that x∗ is a fixed point of the operator Aλ,
that is,

Aλ(x∗) = x∗.

This means that if we choose the initial position x0 := x∗, then xn = x∗ for all
n = 0, 1, , 2 . . . In terms of physics, x∗ is an equilibrium state of the dynamical
system. The fixed point x∗ of Aλ is called asymptotically stable iff

lim
n→∞

An
λ(x0) = x∗

for all initial positions x0 in a sufficiently small neighborhood of x∗.
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(ii) Stable periodic solutions. Suppose that x∗ is a fixed point of the iterated op-
erator A2

λ, that is,
A2

λ(x∗) = x∗.

If we choose the initial position x∗, then

x2m = x∗, m = 0, 1, 2, . . . ,

that is, the motion of the dynamical system has the period 2. Such a solution
is called a 2-cycle. This periodic motion is called asymptotically stable iff x∗ is
a stable fixed point of the iterated operator A2

λ. Similarly, the fixed points of
Ak

λ with k = 3, 4, . . . are called k-cycles.

The Feigenbaum scenario. We want to consider the iterative method (4.20)
for increasing parameters λ.

• Step 1: For 0 < λ < 1
4
, the operator Aλ has exactly the fixed point x = 0. This

point is asymptotically stable and becomes critical for λ = 1
4
.

• Step 2: For 1
4
< λ < 1

2
, the fixed point x = 0 is unstable. There appears a new

asymptotically stable fixed point xλ := 1 − 1
4λ
.

• Step 3: If λ crosses the value 1
2
, then the equilibrium state xλ becomes unstable,

and two asymptotically stable 2-cycles arise from xλ. It is possible to find a
parameter value λ1 > 0 such that x = 1

2
becomes a fixed point of A2

λ1 . This

corresponds to a 2-cycle departing at x = 1
2
.

• Step 4: Continuing the growth of the parameter λ, we permanently get new cycles
at critical λ-parameter values with period doubling.

• Step 5: It is of special significance that there is a sequence 0 < λ1 < λ2 < . . . ≤ 1
such that x = 1

2
is a fixed point of Am

λ with λ = λk and m = 2k, k = 1, 2, . . . For
fixed parameter λk, let us consider the corresponding dynamical system

xn+1 = 4λkxn(xn − 1), n = 0, 1, 2, . . . , x0 := 1
2
.

This system has the period 2k, that is, x2k = x0, and we set

dk := x0 − x2k−1 = 1
2
−A2k−1

λk
( 1
2
), k = 1, 2, . . .

Note that 2k−1 is half of the period 2k.

Feigenbaum computed the limits

lim
k→∞

λk+1 − λk
λk+2 − λk+1

= δ, (4.21)

and

lim
k→∞

dk
dk+1

= −α. (4.22)

He obtained the values δ = 4.6692016 and α = 2.5029079 called the Feigenbaum
numbers.

Lanford’s computer-assisted proof of Feigenbaum’s universality con-
jecture. Feigenbaum conjectured that the numbers δ and α possess a universal
meaning in physics. This means that there exists a broad class of dynamical sys-
tems with period doubling at critical parameter values such that the limits (4.21)
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and (4.22) hold. Experiments establish this conjecture.15 For a class of iterative
methods, Feigenbaum’s conjecture was proven by Lanford in the paper quoted on
page 339 above. The universality hypothesis of physicists claims the following:

Critical phenomena in nature are governed by a few universal laws.

This is a surprising fact. Universality laws in thermodynamics were first formulated
by Landau in 1937.16 For example, letM denote the magnetization of ferromagnetic
material. There exists a critical temperature Tcrit called the Curie temperature
where the spontaneous magnetization of the material is lost if the temperature is
greater than Tcrit. If the temperature T is near the critical temperature Tcrit, then
the following hold:

• If T < Tcrit, then M = M0 ·
“

1 − T
Tcrit

”α

(spontaneous magnetization).

• If T > Tcrit, then χmagn = χ0 ·
“

T
Tcrit

− 1
”β

(Curie–Weiss law).

The exponents α := 1
2

and β := −1 are called critical exponents. For the magnetic
field strength vector B, we have

B = μ0H + μ0M = μ0(1 + χmagn) H.

Here, we use the following notation: μ0 magnetic constant of the vacuum, χmagn

magnetic susceptibility (dimensionless quantity), H derived magnetic field vector,
M magnetization (magnetic moment vector per volume), M = |M|. In particular,
M = χmagn H. The Curie–Weiss law was discovered by Pierre Curie (1859–1906)
at the beginning of the 20th century. For iron, we have Tcrit = 1017 Kelvin. One
of the main tasks of statistical physics is to compute critical exponents. As an
introduction to the theory of critical phenomena in physics, we recommend:

C. Domb, The Critical Point: A Historical Introduction to the Modern
Theory of Critical Phenomena, Taylor & Francis, London, 1996.

This topic is closely related to the theory of the renormalization group. In 1982,
Kenneth Wilson (born 1935) was awarded the Nobel prize in physics for his theory
of critical phenomena in connection with phase transitions (see also page 981).

Feigenbaum’s renormalization trick. Feigenbaum used the following heuris-
tic rescaling method called the renormalization trick. Set

gr(y) := lim
k→∞

(−1)kαkA2k

λk+r

„

y

(−1)kαk

«

, r = 1, 2, . . .

15 In 1981, Libchaber and Maurer carried out the following experiment. A small box,
containing liquid 4He helium, is heated from the bottom with the temperature
T = λ, where the temperature is constant at the top. If we measure the temper-
ature at a fixed internal point of the box, then we get periodic curves T = T (t)
(t time) with period doubling for the critical temperatures λ1 < λ2 < λ3. The
experimenters measured λ1, λ2, λ3, and they found δ = 3.5 ± 1.5. Universality
theory predicts δ = 4.7. Note that it is difficult to measure arbitrarily high criti-
cal temperatures λk because there is a lot of noise in the temperature curve, since
the system is already near chaos. See A. Libchaber and J. Maurer, Experimental
study of hydrodynamic instabilities in the Rayleigh–Bénard experiment: helium
in a small box. In: T. Riste (Ed.), NATO Advanced Study Institute on Nonlinear
Phenomena at Phase Transitions and Instabilities, Plenum, New York, 1981.

16 In 1962, Lev Landau (1908–1968) was awarded the Nobel prize in physics for his
pioneering theories for condensed matter, especially liquid helium.
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where y := x− 1
2
. This yields the recursion formula

gr−1(y) = −αgr
“

gr
“ y

α

””

, r = 1, 2, . . .

For r → +∞, we formally get the key functional equation

g(y) = −αg
“

g
“ y

α

””

.

Feigenbaum determined numerically the unique solution g and α of this functional
equation. Since this equation does not depend on the details of the original iterative
method (4.21), Feigenbaum conjectured that there must exist a universal law.

More about the relation of the Feigenbaum approach to the fixed-point theory
for iterated maps can be found in Zeidler (1986) (Chap. 17 of Vol. I) quoted on
page 1089.

4.6.11 Period Three Implies Chaos

The Li–York paper is one of the immortal gems in the literature of math-
ematics.17

Freeman Dyson, 2010

Let us consider the iterative method

xn+1 = F (xn), n = 0, 1, . . . , x0 ∈ R (4.23)

where the function F : R → R is continuous. We regard the sequence (xn) as a
dynamical system on the real line R with discrete time. Choosing the time scale
Δt > 0, the ‘system’ is at the point xn on the real line R at time tn := nΔt. We
are given the initial position x0 of the ‘system’ at the initial time t0 = 0. We will
write

x1 = F 1(x0), x2 = F 2(x0), x3 = F 3(x0), . . .

Let m = 1, 2, 3, . . . Recall that the point p ∈ R is called periodic of period m iff

p = Fm(p)

and k = 1, . . . ,m − 1 implies p �= F k(p). Moreover, the point a ∈ R is called
asymptotically periodic iff there is a periodic point p such that

lim
n→∞

(Fn(a) − Fn(p)) = 0. (4.24)

Theorem 4.5 Suppose that there exists a point of period three. Then for each inte-
ger m = 1, 2, . . . , there is a point of period m. Furthermore, there is an uncountable
subset of points x in R which are not even asymptotically periodic.

The proof of this famous theorem in chaos theory can be found in T. Li and
J. Yorke, Period three implies chaos, American Mathematical Monthly 82 (1975),
985–992.

17 F. Dyson, Birds and frogs in mathematics and physics, Einstein lecture 2008,
Notices Amer. Math. Soc. 56 (2) (2009), 212–223. We recommend reading this
article about two different philosophical approaches to mathematics and physics.



346 4. The Euclidean Manifold E
3

4.6.12 Noncommutative Geometry and the Standard Model in
Particle Physics

It was discovered by Connes and Lott in 1990 that differential calculi in noncommu-
tative geometry can be used in order to get the Standard Model in particle physics.
This is studied in:

A. Connes and J. Lott, Particle models and noncommutative geometry,
Nucl. Phys. B (Proc. Suppl.) 18 (1990), 29–47.

As an introduction to noncommutative geometry, we recommend:

J. Várilly, Lectures on Noncommutative Geometry, European Mathemat-
ical Society, Zurich, 2006.

J. Mignaco, C. Sigaud, A. da Silva, and F. Vanhecke, The Connes–Lott
program on the sphere, Rev. Math. Phys. 9 (1997), 689–718.

M. Gracia-Bondia, M., J. Várilly, and H. Figueroa, Elements of Noncom-
mutative Geometry, Birkhäuser, Boston, 2001.

F. Scheck, W. Wend, and H. Upmeier (Eds.), Noncommutative Geometry
and the Standard Model of Elementary Particle Physics, Springer, Berlin,
2003 (collection of survey articles).

Furthermore, we refer to the following monographs:

A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields,
and Motives, Amer. Math. Soc., Providence, Rhode Island, 2008,

M. Marcolli, Feynman Motives: Renormalization, Algebraic Varieties, and
Galois Symmetries, World Scientific, Singapore, 2009,

and to the following papers:

A. Chamseddine and A. Connes, Universal formula for noncommutative
geometry actions: Unification of gravity and the Standard Model, Phys.
Rev. Lett. 77 48680484871 (1996).

A. Chamseddine and A. Connes, Why the Standard Model, J. Geom. Phys.
58:38 (2008). Internet: http://www.arXiv:0706.3690 [hep-th]

A. Chamseddine and A. Connes, Conceptual explanation for the algebra
in the noncommutative approach to the Standard Model, Phys. Rev. Lett.
99:191601 (2007). Internet: http://www.arXiv:0706.3690 [hep-th]

A. Chamseddine and A. Connes (1997), The spectral action principle,
Commun. Math. Phys. 186 (1997), 731–750.

A. Chamseddine, A. Connes, and M. Marcolli, Gravity and the Standard
Model with neutrino mixing, Adv. Theor. Math. Phys. 11:991 (2007).
Internet: http://www.hep-th/0610241

A. Chamseddine and A. Connes, Scale invariance in the spectral action, J.
Math. Phys. 47:063504. Internet: http://www.hep-th/0512169

F. Hanisch, F. Pfäffle, and C. Stephan, The spectral action for Dirac oper-
ators with skew-symmetric torsion (applied to the Standard Model), 2010.
Internet: arXiv:0911.5074 [hep-th]

The physics of the Standard Model is investigated in:

P. Langacker, The Standard Model and Beyond, CRC Press, Boca Raton,
Florida, 2010.
Supplementary material: http://www.sns.ias.edu/ pgl/SMB/
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In order to describe physical models in noncommutative space-times, deformations
of the classical calculus can be used. We refer to:

S. Woronowicz, Twisted SU(2) group, an example of noncommutative dif-
ferential calculus, Publ. RIMS, Kyoto Univ. 23 (1987), 117–181.

S. Woronowicz, Differential calculus on compact matrix pseudogroups
(quantum groups), Commun. Math. Phys. 122 (1989), 125–170.

J. Wess and B. Zumino, Covariant differential calculus on the quantum
hyperplane, Nucl. Phys. B (Proc. Suppl.) 18 (1991), 302–312.

J. Wess, Gauge theories on noncommutative space-time treated by the
Seiberg–Witten method, pp. 179–192. In: U. Carow-Watamura et al.
(Eds.), Quantum Field Theory and Noncommutative Geometry, Springer,
Berlin, 2005.

O. Kovras (Ed.), Current Topics in Quantum Field Research, Nova Science
Publisher, New York, 2005.

H. Wachter, Towards a q-deformed quantum field theory, pp. 261–281.
In: B. Fauser, J. Tolksdorf, and E. Zeidler (Eds.) (2008), Quantum Field
Theory – Competitive Methods, Birkhäuser, Basel.

A. Schmidt, Towards a q-deformed supersymmetric field theory, pp. 283–
300. In: B. Fauser, J. Tolksdorf, and E. Zeidler (Eds.) (2008).

4.6.13 BRST-Symmetry, Cohomology, and the Quantization of
Gauge Theories

The quantization of gauge theories is a nontrivial procedure which is complicated by
constraints for the potentials. The prototype is given by quantum electrodynamics
where one uses the Gupta–Bleuler method invented in 1950 in order to eliminate
unphysical states which correspond to longitudinal (also called virtual) photons
(see Sect. 12.4.4 of Volume II). It was discovered by Becchi, Rouet, Stora and
independently by Tyutin that the quantization process of gauge theories is governed
by a hidden symmetry called the BRST-symmetry:

C. Becchi, A. Rouet, and R. Stora, Renormalization of the Abelian Higgs–
Kible model, Commun. Math. Phys. 52 (1975), 127–162.

C. Becchi, A. Rouet, and R. Stora, Renormalization of gauge theories,
Annals of Physics 98 (1976), 287–321.

The BRST-symmetry generates an operator Q with the crucial cohomology prop-
erty

Q2 = 0.

The operator Q can be used in order to distinguish between physical and unphysical
quantum states. The basic idea is discussed in Sect. 16.7 of Volume I. We will come
back to this in Volume IV. At this point, we only refer to the following references:

A. Das, Lectures on Quantum Field Theory, World Scientific, Singapore,
2008.

O. Piguet and S. Sorella, Algebraic Renormalization, Springer, Berlin,
1995.

M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Prince-
ton University Press, 1993.
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4.6.14 Itô’s Stochastic Calculus

The pure/applied division of probability theory (as of mathematics in gen-
eral) is nonsense.

David Williams, 197818

In 1987 Kiyosi Itô (1915–2008) received the Wolf prize in mathematics. The
laudatio states that “he has given us a full understanding of the infinites-
imal development of Markov sample paths. This may be viewed as New-
ton’s law in the stochastic realm, providing a direct translation between
the governing partial differential equation (the diffusion equation) and the
underlying probabilistic mechanism (for the motion of particles). Its main
ingredient is the differential and integral calculus of functions of Brown-
ian motion. The resulting theory is a cornerstone of modern probability,
both pure and applied.” The reference to Newton (1643–1727) stresses the
fundamental character of Itô’s contribution to Markov processes.19 Let us
also mention Leibniz (1646–1716) in order to emphasize the fundamental
importance of Itô’s work from another point of view. In fact Itô’s approach
can be seen as a natural extension of Leibniz’s algorithmic formulation of
the differential calculus. In a manuscript written in 1675 Leibniz argues
that the whole differential calculus can be developed out of the basic prod-
uct rule20

d(XY ) = XdY + Y dX.

. . . It was Itô who discovered how these rules can be modified in such a
way that they generate a highly efficient calculus for the non-differentiable
trajectories of the particles of a diffusion process . . .
Already in the 1960s engineers discovered that Itô’s calculus provides the
right concepts and tools for analyzing the stability of dynamical systems
perturbed by noise and to deal with problems of filtering and control.
When I was an instructor at MIT (Massachusetts Institute of Technology)
in 1969/70, stochastic analysis did not appear in any course offered in
the Department of Mathematics. But I counted four courses in electrical
engineering and two in aeronautics and astronautics in which stochastic
differential equations played a role (e.g., the motion of satellites and space-
ships under random perturbations) . . .
In the seventies the relevance of Itô’s work was also recognized in physics
and in particular in quantum field theory. When I came to ETH (Fed-
eral Institute of Technology) Zurich in 1977, Barry Simon (Princeton
University) gave a series of lectures for Swiss physicists on path integral
techniques which included the construction of Itô’s integral for Brown-

18 From the Preface of the first edition of the textbook by L. Rogers and D.
Williams, Diffusions, Markov Processes, and Martingales, Vol. 1: Foundations,
Vol 2: Itô Calculus, Cambridge University Press, 2000.

19 Gauss (1777–1855) (normal Gaussian distribution), Markov (1856–1922)
(Markov processes), Einstein (1879–1955) (Brownian motion), Wiener (1894–
1964) (Brownian motion and the Wiener path integral), Kolmogorov (1903–1987)
(foundation of the modern theory of probability including the theory of stochas-
tic processes), Feynman (1918–1988) (path integral in quantum physics). See
Sect. 7.5 of Vol. II. Itô’s first paper appeared in 1942 (in Japanese).

20 We will show in Chap. 8 that the Leibniz rule is also basic for gauge theory.
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ian motion, an introduction to stochastic calculus, and applications to
Schrödinger operators with magnetic fields.21

Hans Föllmer, 2006

The classic Leibniz differential. Let x = x(t), t ≥ 0, be a smooth function
x : [0,∞[→ R. In terms of physics, this function describes the classic motion of a
particle on the real line. Here, x(t) is the position of the particle at time t. By the
chain rule,

d

dt

`

1
2
x(t)2

´

= x(t)
dx(t)

dt
.

Then
Z t

0

d

dt

`

1
2
x(t)2

´

dt = 1
2
x(t)2 − 1

2
x(0)2.

According to Leibniz, we write

d
`

1
2
x(t)2

´

= x(t) dx(t), t ≥ 0

and
Z t

0

d( 1
2
x(t)2) =

Z t

0

x(t) dx(t) = 1
2
x(t)2 − 1

2
x(0)2, t ≥ 0.

Brownian motion. In contrast to the classical particle motion, let us now
consider the random motion X = X(t), t ≥ 0, of a particle on the real line, that is,
X(t) is a real-valued random variable parametrized by the parameter t ∈ [0,∞[. In
terms of physics, X(t) describes the random position of the particle on the real line
at time t. Let 0 ≤ τ ≤ t. Fix the real number σ > 0 called the diffusion coefficient,
and fix the position x∗. We assume the following:

(i) X(0) = x∗ (i.e., the particle is located at the point x∗ at time t = 0).
(ii) The random variable X(t) − X(τ) possesses a normal Gaussian distribution

with the mean value X(t) −X(τ) = 0, and the dispersion

(X(t) −X(τ))2 = σ2 · (t− τ).

This means the following. Suppose that the particle is located at the point x0

at time τ ≥ 0. Then the real number

p(X(t) ∈ J) :=
1

σ
p

2π(t− τ)

Z

J

e−(x−x0)2/2σ2(t−τ)dx

is the probability for finding the particle in the interval J at time t. In physics,
this is called the transition probability of the particle for passing from the
position x0 at time τ to the interval J at time t. In mathematics, this is called
a conditional probability.

(iii) If 0 ≤ t0 < t1 < t2, . . . , tn with n = 1, 2, . . ., then the random variables

X(t1) −X(t0), X(t2) −X(t1), . . . , X(tn) −X(tn−1)

are independent.

21 H. Föllmer, On Kiyosi Itô’s work and its impact, pp. 109–123, Proceedings of the
International Congress of Mathematicians, Madrid 2006, European Mathemati-
cal Society, Zurich, 2007 (reprinted with permission). In 2006, Itô was awarded
the newly founded Gauss prize for applications of mathematics.
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This stochastic process is called Brownian motion (or Wiener process).
Stochastic causality and the Markov property of the Brownian mo-

tion. Let us consider a system of many particles on the real line (e.g., a fluid).
Let �(x, t) denote the particle density at the point x at time t. Fix the initial time
t0 ≥ 0.We assume that the given density function x0 �→ �(x0, t0) (at the initial time
t0) is smooth, and it has compact support. Then the density function x �→ �(x, t)
at time t is given by

�(x, t) =

Z ∞

−∞
P(x, t;x0, t0)�(x0, t0) dx0, x ∈ R, t > t0

with the Feynman propagator kernel

P(x, t;x0, t0) :=
e−(x−x0)2/2σ2(t−t0)

σ
p

2π(t− t0)
, t > t0.

In mathematics, the Feynman propagator kernel P is called the diffusion kernel (or
the heat kernel). The density function � is a solution of the diffusion equation

∂�(x, t)

∂t
=
σ2

2

∂2�(x, t)

∂x2
, x ∈ R, t > t0.

The Feynman propagator kernel (x, t) �→ P(x, t;x0, t0) is a solution of the Einstein–
Fokker–Planck equation

∂P(x, t;x0, t0)

∂t
=
σ2

2

∂2P(x, t;x0, t0)

∂x2
, x, x0 ∈ R, t > t0 (4.25)

which is also called the Kolmogorov forward equation. The Kolmogorov backward
equation reads as

∂P(x, t;x0, t0)

∂t0
= −σ

2

2

∂2P(x, t;x0, t0)

∂x2
0

, x, x0 ∈ R, t > t0.

For the propagator kernel, we also have the Chapman–Kolmogorov equation

P(x, t;x0, t0) =

Z ∞

−∞
P(x, t; y, s) P(y, s;x0, t0) dy, t ≥ s ≥ t0.

In physics, this is called the Feynman propagator kernel equation. Let us introduce
the operator P (t, t0) by setting

�(t) := P (t, t0)�(t0), t ≥ t0. (4.26)

Here, the symbol �(t) denotes the density function x �→ �(x, t) at time t. Then we
get the so-called propagator operator equation

P (t, t0) = P (t, s)P (s, t0), t ≥ s ≥ t0. (4.27)

This equation reflects causality. In fact, set �(t) := P (t, t0)�(t0) together with
�(s) := P (s, t0)�(t0). By (4.27),

�(t) = P (t, s)�(s) = P (t, t0)�(t0).
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This tells us that we have the causal chain �(t0) ⇒ �(s) ⇒ �(t). In the theory
of probability, the equation (4.27) reflects the so-called Markov property of the
Brownian motion. Intuitively, the stochastic dynamics of a physical system has the
Markov property if the state ψ(t0) of the system at time t0 determines the possible
states ψ(t) at a later time t > t0 by transition probabilities p(t, t0) which only
depend on the initial time t0 and the final time t, but they do not depend on the
history of the physical system before time t0. Such stochastic processes are called
Markov processes. In other words, Markov processes forget their history.

The Brownian motion is homogeneous in space and time. Explicitly, setting
P0(x, t) := P(x, t; 0, 0) we get

P(x, t;x0, t0) = P0(x− x0, t− t0).

Similarly, setting P0(t) := P (t, 0), we obtain

• P (t+ s) = P (t)P (s) if t, s ≥ 0, and
• P (0) = I (identity operator).

In terms of functional analysis, the family {P (t)}t≥0 of operators forms a semi-
group.22

The stochastic Itô differential. Consider the Brownian motion t �→ X(t)
with the diffusion coefficient σ := 1. As a prototype of the Itô calculus, let us
discuss the Itô formula

1
2
X(t)2 − 1

2
X(0)2 =

Z t

0

X(τ) dX(τ) +

Z t

0

dτ. (4.28)

Mnemonically, we write

d
`

1
2
X(t)2

´

= X(t) dX(t) + dt. (4.29)

This corresponds to the classic Leibniz formula up to the additional term dt which

is caused by the non-vanishing dispersion, (X(t) −X(0))2 = t. Observe that the
integral

I(t) :=

Z t

0

X(τ) dX(τ)

is not a classic integral, since X(τ) is a random variable. In order to define the
integral I(t), Itô used a decomposition t0 := 0 < t1 < . . . < tn := t with tk := kt/n,
and he introduced the finite sum

In :=

n−1
X

k=0

X(tk) · (X(tk+1) −X(tk))

of random variables. Then the Itô integral I(t) is defined by the following stochastic
limit

lim
n→∞

(I(t) − In)2 = 0.

In particular, the Itô integral I(t) is a random variable at time t.

22 As an introduction to semigroup theory in functional analysis and its applications
to partial differential equations, we recommend Zeidler (1986), Vol. IIA, Chap.
19, quoted on page 1089. A detailed study of Markov processes based on the
functional analytic Hille–Yosida semigroup theory can be found in K. Itô (2004),
(2006) quoted on page 353.



352 4. The Euclidean Manifold E
3

Let us generalize this. Suppose that we are given the classic smooth function
(x, t) �→ F (x, t) from R

2 to R. Let Fx(x, t) denote the classic partial derivative
∂F (x,t)

∂x
. Set

Y (t) := F (X(t), t), t ≥ 0.

Then the random variable Y (t) at time t is given by the following Itô integral

Y (t) = Y (0) +

Z t

0

Fx(X(τ), τ) dX(τ) +

Z t

0

`

Ft(X(τ), τ) + 1
2
Fxx(X(τ), τ)

´

dτ.

Mnemonically, we write

dY (t) = Fx(X(t), t)) dX(t) + Ft(X(t), t)) dt+ 1
2
Fxx(X(t), t) dt.

This is the Itô formula which differs from the classic Leibniz formula by the addi-
tional term 1

2
Fxx(X(t), t) dt.

The Wiener measure, the Wiener path integral, and Brownian mo-
tion. Modern theory of probability was founded by Kolmogorov in 1933.23 Kol-
mogorov used measure theory as the basic tool. In this setting, Brownian motion is
described by the Wiener measure μ on the space C0[0, T ] of all continuous functions

x : [0, T ] → R

with x(0) = 0. Here, we fix the time interval [0, T ] and the initial position x(0) = 0
of the particle. The elements t �→ x(t) of C0[0, T ] are the possible trajectories of
the Brownian motion of a particle. If S is a subset of C0[0, T ], then the measure

μ(S)

is the probability for finding the trajectory t �→ x(t) in the set S. Fix time t ∈ [0, T ].
The random variable X(t) is defined by

X(t)(x) := x(t) for all x ∈ C0[0, T ].

The mean value is given by the Wiener path integral

X(t) :=

Z

x∈C0[0,T ]

X(t)(x) dμ(x) = 0.

Here, we integrate over all trajectories t �→ x(t) which are elements of the space
C0[0, T ]. The classic construction of the Wiener measure μ invented by Wiener in
1923 can be found in Sect. 7.11.4 of Vol. II. The integral

Z

x∈C0[0,T ]

F (x) dμ(x)

for real valued-functions F : C0[0, T ] → R on the space C0[0, T ] of trajectories with
respect to the Wiener measure μ is called the Wiener path integral.

23 A. Kolmogorov, Foundations of the Theory of Probability, Springer, Berlin 1933
(in German). English edition: Chelsea, New York, 1950. An introduction to the
modern theory of probability based on Kolmogorov’s axioms can be found in E.
Zeidler, Oxford Users’ Guide to Mathematics, Chap. 6, Oxford University Press,
2004.
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Concerning the Itô calculus, let us mention that almost all trajectories of the
Brownian motion are not differentiable (i.e., the probability for finding a differen-
tiable trajectory is equal to zero, in the sense of the Wiener measure μ). Therefore,
Itô could not use the classic methods for introducing stochastic differentiation and
integration.

In the 1940s, Feynman (1918–1988) emphasized that propagators are of
fundamental importance for quantum physics (quantum mechanics, quan-
tum statistics, and quantum field theory).

Feynman’s basic idea was to describe the motion of quantum particles by a statistics
over classical trajectories. To this end, he used the Feynman path integral (see Chap.
7 of Vol. II). The Schrödinger equation is a diffusion equation in imaginary time.
Therefore, the Feynman approach to quantum physics has to be based on diffusion
processes in imaginary time. In particular, the Feynman path integral is a ‘Wiener
path integral in imaginary time’. This causes serious mathematical difficulties. In
fact, this is the reason why the Feynman path integral approach frequently lacks
mathematical rigor. However, there are situations which can be handled rigorously.
We refer to:

S. Albeverio and S. Mazucchi, A survey on mathematical Feynman path
integrals: construction, asymptotics, applications. In: B. Fauser, J. Tolks-
dorf, and E. Zeidler (Eds.), Quantum Field Theory: Competitive Models,
Birkhäuser, Basel, 2009, pp. 49–66.

S. Albeverio, Yu. Kondratiev, Yu. Kositzsky, and M. Röckner, The Statis-
tical Mechanics of Quantum Lattice Systems: a Path Integral Approach,
European Mathematical Society, Zurich, 2009.

Further reading. Classic material can be found in:

K. Itô, On stochastic differential equations, Mem. Amer. Math. Soc. 4
(1951), 1–51.

K. Itô, Stochastic Processes, Lectures given at Aarhus University, Den-
mark, Springer, Berlin, 2004.

K. Itô, Essentials of Stochastic Processes, Amer. Math. Soc. Providence,
Rhode Island, 2006.

K. Itô, Selected Papers. Edited by D. Stroock and S. Varadhan, Springer,
New York, 1986.

As an introduction, we recommend:

Yu. Rozanov, Introductory Probability Theory, Prentice-Hall, Englewood
Cliffs, 1969,

D. Williams, Probability with Martingales, Cambridge University Press,
1991,

L. Rogers and D. Williams, Diffusions, Markov Processes, and Martingales,
Vol. 1: Foundations, Vol. 2: Itô Calculus, Cambridge University Press, 1978

together with

B. Simon, Functional Integration and Quantum Physics, Academic Press,
New York, 1979.

D. Stroock, Markov Processes from K. Itô’s Perspective, Princeton Uni-
versity Press, 2003.

L. Evans, An Introduction to Stochastic Differential Equations, Lectures
held at the University of California at Berkeley, 2005.
Internet: http://math.berkeley.edu/∼evans/SDE.course.pdf

B. Øksendal, Stochastic Differential Equations, Springer, New York, 1998.
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Furthermore, we refer to:

A. Dynkin, Markov Processes, Vols. 1, 2, Springer, Berlin, 1965.

H. McKean, Stochastic Integrals, Academic Press, New York, 1979.

M. Freidlin, Functional Integration and Partial Differential Equations,
Princeton University Press, 1985.

I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus,
Springer, New York, 1988.

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion
Processes, North-Holland, Amsterdam 1989.

H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cam-
bridge University Press, 1990.

O. Kallenberg, Foundations of Modern Probability, Springer, New York,
1997.

Summary of measure theory:

E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. IIB,
Appendix, Springer, New York, 1997.



5. The Lie Group U(1) as a Paradigm in
Harmonic Analysis and Geometry

For understanding the gauge groups of the Standard Model in elementary
particle physics, one has to understand the low-dimensional Lie groups.
Maxwell’s theory of the electromagnetic field and quantum states are in-
timately related to the commutative Lie group U(1). The passage to elec-
troweak (resp. strong) interaction in the Standard Model of particle physics
is obtained by replacing the commutative gauge group U(1) by the non-
commutative gauge groups SU(2) (resp. U(3)).1

Folklore

The theory of Lie groups and Lie algebras is nothing else than a far-reaching gen-
eralization of Euler’s exponential function. The simplest case is the Lie group U(1)
defined by

U(1) := {z ∈ C : |z| = 1}
equipped with the usual multiplication of complex numbers. Equivalently,

U(1) = {eiϕ : ϕ ∈ R}.

The set U(1) is a real one-dimensional manifold, namely, the unit circle. This man-
ifold is called the group manifold of the Lie group U(1).2 In particular, a Lie group
G is called compact iff G is a compact manifold. For example, the Lie group U(1)
is compact. In fact, the unit circle is a compact manifold.

A Lie group G is called locally compact iff it is a locally compact manifold, that
is, every point has a compact neighborhood. The prototype for a locally compact
Lie group is the additive Lie group R of real numbers (real line).

5.1 Linearization and the Lie Algebra u(1)

The linearization of U(1) at the unit element 1 reads as

eiϕ = 1 + iϕ+ o(ϕ), ϕ→ 0.

This yields the Lie algebra

u(1) := {iϕ : ϕ ∈ R}

of the Lie group U(1). Here, u(1) is a real one-dimensional linear space equipped
with the (trivial) Lie product [V,W ] := 0 for all V,W ∈ u(1). In terms of geometry,

1 See Chap. 15 on page 843.
2 The definition of a Lie group (resp. Lie algebra) can be found in Sect. 7.8 (resp.

Sect. 7.6) of Vol. I.

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 6,
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 5.1. The Lie group U(1)

the Lie algebra u(1) can be identified with the tangent space of the Lie group
U(1) at the unit element 1 (see Fig. 5.1). The Lie algebra u(1) becomes a real
one-dimensional Hilbert space with respect to the inner product

〈V |W 〉 := −VW for all V,W ∈ u(1).

Note that V = iϕ andW = iψ are purely imaginary numbers (i.e., ϕ,ψ ∈ R). Hence
〈V |W 〉 = ϕψ.

5.2 The Universal Covering Group of U(1)

Define χ(ϕ) := eiϕ for all real numbers ϕ. Euler’s addition theorem for the expo-

nential function, ei(ϕ+ψ) = eiϕeiψ, tells us that

χ(ϕ+ ψ) = χ(ϕ)χ(ψ) for all ϕ,ψ ∈ R.

Consequently, the map

χ : R → U(1) (5.1)

is a surjective group morphism from the (additive) group R onto the group U(1).
The group R (real line) is called the universal covering group of the Lie group U(1).
Let

f : U(1) → C

be a function on the Lie group U(1). Setting F (ϕ) := f(χ(ϕ)), we obtain the
2π-periodic function

F : R → C.

This way, the functions on the Lie group U(1) can be described by 2π-periodic
functions on the real line and vice versa. This simple trick is frequently used in
mathematics and physics.

5.3 Left-Invariant Velocity Vector Fields on U(1)

Left translations of the Lie group U(1). Fix the group element G ∈ U(1). We
define

LGH := GH for all H ∈ U(1).
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Fig. 5.2. Left-invariant velocity vector field

The transformation LG : U(1) → U(1) is called a left translation of the Lie group
U(1).3

The internal symmetry properties of the Lie group U(1) are described by
left translations.

Velocity vector fields. Sophus Lie used velocity vector fields in order to
study the structure of Lie groups. In terms of physics, the tangent vectors of the
unit circle U(1) are called velocity vectors. Consider a fixed velocity vector V at
the unit element 1, that is, V ∈ u(1). Define

V (G) := GV for all G ∈ U(1).

This velocity vector field is left invariant, that is,

V (GH) = G · V (H) for all G,H ∈ U(1).

Obviously, this construction yields a one-to-one relation between the elements V of
the Lie algebra u(1) and the left-invariant velocity vector fields on the Lie group
U(1) (Fig. 5.2).

5.3.1 The Maurer–Cartan Form of U(1)

Fix the point G of the Lie group U(1). Consider the smooth function

z(t) := eiϕ(t), t0 ≤ t ≤ t1, z(0) = G (5.2)

with the angle ϕ(t) ∈ R for all times t. In terms of physics, the function t �→ z(t)
describes the motion of a particle on the unit circle which passes through the point
G at time t = 0.4 Differentiation with respect to time t yields the velocity vector
W = ż(0) at the point G. Explicitly,

ż(0) = z(0)iϕ̇(0).

Hence ż(0) = GV with V := iϕ̇(0). Consequently, the vectors of the tangent space
TGU(1) of the Lie group U(1) at the point G have the form

W = GV, V ∈ u(1).

3 Similarly, the transformation RG : U(1) → U(1) given by RGH := HG for
all H ∈ U(1) is called a right translation of the Lie group U(1). Because of
the commutativity of the group U(1), left translations and right translations
coincide. The situation changes in the case of noncommutative groups.

4 We assume that t0 < 0 < t1.
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We define
MG(W ) := V for all W ∈ TGU(1).

The map MG : TGU(1) → u(1) is called the Maurer–Cartan form of the Lie group
U(1) at the point G.5 Setting dG(W ) := W for all W ∈ TGU(1), we get

MG = G−1dG.

We say that M is a differential 1-form on the Lie group U(1) with values in the Lie
algebra u(1). We will show later on that

Gauge field theory is based on differential forms with values in some Lie
algebra.

5.3.2 The Maurer–Cartan Structural Equation

Applying the Cartan differential, it follows from dMG = dG−1∧dG = −G−2dG∧dG
and dG ∧ dG = 0 that

dM = 0 on U(1).

This is a (trivial) special case of the famous Maurer–Cartan structural equation
in the theory of Lie groups which governs the (local) structure of Lie groups. In
particular, the general Maurer–Cartan structural equation is used in order to prove
that a real n-dimensional Lie group G is locally trivial (i.e, it is locally isomorph to
R
n) iff the Lie algebra LG of G is commutative (i.e., [V,W ] = 0 for all V,W ∈ LG).6

In particular, the Lie group U(1) has the same local topological structure as the
real line R, but the global topological structure of U(1) and R is different. In fact,
the real line R is simply connected, whereas the unit circle U(1) is not simply
connected.

5.4 The Riemannian Manifold U(1) and the Haar
Measure

We assign to the trajectory (5.2) the arc length

s(t) :=

Z t

t0

1

2π

dϕ(τ)

dτ
dτ

between the points z(t0) and z(t). This is the (normalized) arc length on the unit

circle. Hence ds
dt

= 1
2π

dϕ
dt
. Mnemonically, in terms of classical analysis, we write

ds =
1

2π
dϕ.

5 Joseph Fourier (1768–1830), Sophus Lie (1842–1899), Élie Cartan (1859–1951),
Ludwig Maurer (1859–1927), Alfred Haar (1885–1933), Hermann Weyl (1885–
1955).

6 For the proof, see the textbook by Y. Choquet-Bruhat, C. DeWitt-Morette, and
M. Dillard-Bleick, Analysis, Manifolds, and Physics. Vol. 1, Elsevier, Amsterdam,
1996, page 209. The proof uses the Poincaré cohomology rule for differential
forms.
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In terms of modern mathematics, the differential form

υ :=
1

2π
dϕ

is called the volume form of the Lie group U(1). In particular,
R

U(1)
υ = 1.

Consider now the normalized measure μ on the unit circle induced by arc length,
that is,

Z

U(1)

dμ =
1

2π

Z π

−π

dϕ = 1.

This measure is called the Haar measure of the Lie group U(1); it has the charac-
teristic property that it is invariant under left translations. This means that

Z

LGΩ

dμ =

Z

Ω

dμ

for all measurable subsets Ω (with respect to the Haar measure) of the Lie group
U(1) and all group elements G ∈ U(1).

5.5 The Discrete Fourier Transform

5.5.1 The Hilbert Space L2(U(1))

Using the Haar measure, let us introduce the inner product

〈f |g〉 :=

Z

U(1)

f†g dμ.

That is, 〈f |g〉 = 1
2π

R π

−π
f(ϕ)†g(ϕ)dϕ. This yields the complex Hilbert space

L2(U(1)). The elements of L2(U(1)) are measurable functions f, g : U(1) → C

(with respect to the Haar measure, e.g., continuous functions) with 〈f |f〉 < ∞.7
Two functions f and g represent the same element of L2(U(1)) iff they differ at
most on a subset of U(1) which has the Haar measure zero (e.g., the exceptional
set is a finite or countable subset of U(1)). Setting

ek(ϕ) := eikϕ, −π ≤ ϕ ≤ π, k = 0,±1,±2, . . . ,

we get
〈ek|el〉 = δkl, k, l = 0,±1,±2, . . .

The functions e0, e1, e−1, . . . form a complete orthonormal system on the Hilbert
space L2(U(1)). For every function f ∈ L2(U(1)), we define the Fourier transform

f̂ : Z → C by setting

f̂(k) := 〈ek|f〉 =

Z

U(1)

e−kf dμ, k = 0,±1,±2, . . .

7 Note that a function f : U(1) → C is measurable with respect to the Haar
measure iff the 2π-periodic function f : R → C (ϕ �→ f(ϕ)) is measurable with
respect to the Lebesgue measure on the real line R.
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Proposition 5.1 (i) The function f : U(1) → C is smooth iff, for every positive
integer n, there exists a constant C(n) such that we have the growth condition

|f̂(k)| ≤ C(n)

1 + |k|n for all k = 0,±1,±2, . . . (5.3)

(ii) The measurable function f : U(1) → C (with respect to the Haar measure

on U(1)) is an element of the Hilbert space L2(U(1)) iff
P

k∈Z
|f̂(k)|2 <∞.

For the proof, we refer to Problem 5.1. If the growth condition (5.3) is satisfied,

then the inverse Fourier transform f̂ �→ f is given by the absolutely convergent
series

f(ϕ) =
X

k∈Z

f̂(k)ek(ϕ) for all ϕ ∈ [−π, π]

with the Fourier coefficients f̂(k). In addition, for n = 1, 2, . . . , we get the absolutely
convergent series:8

dnf(ϕ)

dϕn
=
X

k∈Z

(ik)nf̂(k) · ek(ϕ) for all ϕ ∈ [−π, π]. (5.4)

5.5.2 Pseudo–Differential Operators

Motivated by (5.4), we define

(Af)(ϕ) :=
X

k∈Z

σ(k)f̂(k) · ek(ϕ), ϕ ∈ [−π, π]. (5.5)

We assume that the function σ : Z → C satisfies the following growth condition

|σ(k)| = O(|k|n), |k| → ∞

where n is a fixed positive integer.

Proposition 5.2 By (5.5), we get the linear operator A : C∞(U(1)) → C∞(U(1)).

This follows from 5.3. The operator A is called a pseudo-differential operator
with the symbol σ. Note that the operator A corresponds to the multiplication
operator

k �→ σ(k)f̂(k)

in the Fourier space (i.e., in the space of Fourier coefficients).
Example. Fix m = ±1,±2, . . .. Choose the symbol

σ(k) := (ik)m, k = ±1,±2, . . . , σ(0) := 0.

If m = 1, 2 . . ., then

Af =

„

d

dϕ

«m

f for all f ∈ C∞(U(1)),

8 Recall that Z := {0,±1,±2, . . .} denotes the set of integers.
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in the classical sense.9 If m = −1,−2, . . . , then the operator A is denoted by
“

d
dϕ

”−1

,
“

d
dϕ

”−2

, . . . , respectively. We get

„

d

dϕ

«−n„
d

dϕ

«n

f = f − f̂(0) for all f ∈ C∞(U(1)), n = 1, 2, . . .

The general theory of pseudo-differential operators was created by J. Kohn and L.
Nirenberg, An algebra of pseudo-differential operators, Commun. Pure Appl. Math.
18 (1965), 269–305. The basic idea is to replace the discrete Fourier transform by
the Fourier integral transform. We recommend:

Yu. Egorov, A. Komech, and M. Shubin, Elements of the Modern Theory
of Partial Differential Equations, Springer, New York, 1999 (survey).

S. Alinhac and P. Gérard, Pseudo-Differential Operators and the Nash–
Moser Theorem, Amer. Math. Soc. Providence, Rhode Island, 2007.

G. Hsiao and W. Wendland, Boundary Integral Equations, Springer, New
York, 2008.

M. Shubin, Pseudo-Differential Operators and Spectral Theory, Springer,
Berlin, 2001.

5.5.3 The Sobolev Space W m
2 (U(1))

Let m be a real number. By definition, the space Wm
2 (U(1)) consists of all the

measurable functions f : U(1) → C (with respect to the Haar measure) such that

X

k∈Z,k �=0

|kmf̂(k)|2 <∞.

5.6 The Group of Motions on the Gaussian Plane

Proper motions. Fix the complex numbers g ∈ U(1) and a ∈ C. Define the
transformation

T (g, a)z := gz + a for all z ∈ C. (5.6)

This is a so-called proper Euclidean motion on the Gaussian plane C of complex
numbers. Explicitly, this is the superposition of a translation z �→ z + a and a
rotation z �→ gz. In particular, if g = eiϕ and a = 0, then we get the rotation

z′ = x′ + y′i = eiϕz = (cosϕ+ i sinϕ)(x+ yi)

= (x cosϕ− y sinϕ) + i(x sinϕ+ y cosϕ).

Hence
 

x′

y′

!

=

 

cosϕ − sinϕ

sinϕ cosϕ

! 

x

y

!

. (5.7)

9 The space C∞(U(1)) coincides with the space of smooth 2π-periodic functions
f : R → C.
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Fig. 5.3. Rotation of the Gaussian plane

The transformation matrix reads as

A =

 

cosϕ − sinϕ

sinϕ cosϕ

!

. (5.8)

Formula (5.7) describes a rotation of the Gaussian plane by the angle ϕ (see Fig.
5.3). If ϕ > 0, then we get a counter-clockwise rotation.

Improper motions. In contrast to (5.6), the transformation

S(g, a)z := gz† + a for all z ∈ C (5.9)

is called an improper Euclidean motion on the Gaussian plane C if g ∈ U(1) and
a ∈ C are fixed complex numbers. In particular, the transformation z �→ z† is a
reflection at the x-axis, (x, y) �→ (x,−y).Whereas proper motions (5.6) preserve the
orientation, improper motions (5.9) change the orientation. Proper and improper
motions form a Lie group called the group of Euclidean motions on the Gaussian
plane C.

Let us translate this into the language of operators on the Euclidean Hilbert
space E2.

5.7 Rotations of the Euclidean Plane

In terms of operator theory, rotations in planar Euclidean geometry
correspond to orientation-preserving unitary operators of the real two-
dimensional Hilbert space E2.

Folklore

The unitary group U(E2) of the Hilbert space E2. Let E2 be a fixed two-
dimensional linear subspace of the Hilbert space E3. We call E2 the Euclidean
plane. The operator

U : E2 → E2

is called unitary iff it is linear and it preserves the inner product on E2, that is,

〈Ux|Uy〉 = 〈x|y〉 for all x,y ∈ E2.

Here, 〈x|y〉 := xy. If U, V ∈ U(E2), then UV ∈ U(E2). In fact,

〈UV x|UV y〉 = 〈V x|V y〉 = 〈x|y〉.

Consequently, U(E2) is a group called the unitary group of E2.
The special unitary group SU(E2). By definition, the set SU(E2) consists

of all operators U ∈ U(E2) which preserve the orientation. This is a subgroup of
U(E2). Choose a right-handed orthonormal system i, j,k of E3 such that the vectors
i, j span E2. We want to show that the group SU(E2) coincides with the group of
rotations on E2, and the operators B of U(E2) have precisely the form
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B = RA

where A ∈ SU(E2), and R is either the identity operator or a reflection operator
with respect to a straight line passing through the origin.

Proposition 5.3 We have U ∈ U(E2) iff there exists a real number ϕ such that
the linear operator U : E2 → E2 is given by

U i = cosϕ i + sinϕ j,

Uj = γ(− sinϕ i + cosϕ j) (5.10)

where either γ = 1 or γ = −1. In addition, U ∈ SU(E2) iff γ = 1.

Proof. Let U ∈ U(E2). Since the operator U preserves the inner product, the
vectors U i, Uj form an orthonormal system. Thus, U i is a unit vector. This yields the
first line of (5.10). Since the unit vector Uj is orthogonal to U i, we get the second line
of (5.10). Conversely, one checks easily that every linear operator with the property
(5.10) is unitary. Finally note that the pair U i, Uj has the same orientation as i, j
iff γ = 1. �

Rotations. The linear operator U : E2 → E2 given by

Ux := cosϕ · x + sinϕ · (k × x), x ∈ E2 (5.11)

coincides with (5.10) iff γ = 1. This is a rotation by the angle ϕ (see Fig. 6.1(a) on
page 373). Setting x′ = Ux, we get

x′i + y′j = U(xi + yj) = x · U i + y · Uj

= (x cosϕ− y sinϕ)i + (x sinϕ+ y cosϕ)j.

This coincides with (5.7).
Infinitesimal rotations and the Lie algebra su(E2). Linearization of the

operator U from (5.11) with respect to the small rotation angle ϕ yields

Ux = x + ϕ(k × x), ϕ→ 0.

The operator Tϕk defined by

Tϕkx := ϕ(k × x), x ∈ E2

is called an infinitesimal rotation of the Euclidean plane E2 with the rotation angle
ϕ. The set of all those infinitesimal rotations is denoted by su(E2). Equipped with
the Lie product

[Tϕk, Tψk]− := TϕkTψk − TψkTϕk,

the real one-dimensional linear space su(2) becomes a commutative (i. e. trivial)
Lie algebra. In fact, it follows from k × k = 0 that

TϕkTψkx = ϕk × (ψk × x) = 0 for all x ∈ E2, ϕ, ψ ∈ R.

Hence [Tϕk, Tψk]− = 0 for all elements of su(2). Set �(iϕ) := Tϕk. The map

� : u(1) → su(E2)

is a Lie algebra isomorphism (i.e., a linear bijective map which respects the Lie
product).10 We write

10 See Sect. 7.6 of Vol. I.
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Fig. 5.4. Killing velocity vector field

u(1)  su(E2).

The map ϕ �→ cosϕ · x + sinϕ (k × x) sends the elements of the Lie group U(1)
to the corresponding rotations of the Euclidean plane E2. This yields the group
isomorphism U(1)  SU(E2).

In order to get an interpretation in terms of physics, replace the angle ϕ by
time t. Let L(E2, E2) denote the space of all the linear operators A : E2 → E2.
This is a real Banach space.11

The exponential map. Motivated by (5.11), we define

U(t)x := cos t · x + sin t · (k× x) for all x ∈ E2,

and all times t ∈ R. Setting A := U̇(0), we get

Ax = k × x.

Proposition 5.4 U(t) = etA for all t ∈ R.

Proof. It follows from U̇(t)x = − sin t · x + cos t · (k × x) and the vector formula
k × (k × x) = k(kx) − x(kk) = −x for all x ∈ E2 that

U̇(t) = AU(t), t ∈ R, U(0) = I. (5.12)

This is a differential equation in the Banach space L(E2, E2) which has the unique
solution U(t) = etA for all t ∈ R (see Sect. 7.7 of Vol. I). �

Physical interpretation. For fixed position vector x0 ∈ E2, we set

x(t) := etAx0 for all t ∈ R,

and v(x0) := ẋ(0). Hence
v(x0) = Ax0.

Explicitly, v(x0) := k × x0. That is, the vector v(x0) is perpendicular to x0, and
it has the same length as the vector x0 (Fig. 5.4).

In terms of physics, the trajectory t �→ x(t) describes the counter-clockwise
rotation of a fluid particle with the angular velocity ω = 1. By (5.12), we have the
equation of motion

ẋ(t) = v(x(t)), t ∈ R, x(0) = x0. (5.13)

The velocity vector field x �→ v(x) of the fluid is called the Killing velocity vector
field of the rotation group SU(E2) on the Euclidean plane E2.

12 Observe that

11 The norm on L(E2, E2) is the operator norm given by ||B|| := max||x||≤1||Bx||
(see Sect. 7.13 of Vol. I)

12 Killing (1847–1923)
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v(x) = Ax and A ∈ su(E2). Therefore, the Lie algebra su(2) of the rotation group
SU(E2) describes the Killing velocity vector field.

Flow. Define Ft := etA. Then, F0 := I, and

Ft+s = FtFs for all t, s ∈ R, (5.14)

by the addition theorem e(t+s)A = etAesA of the exponential function. The family
{Ft} is called a one-parameter group (or a flow). In particular,

(Ft)
−1 = F−t for all t ∈ R.

The language of matrices. If U : E2 → E2 is a linear operator, then there
exists a uniquely determined real (2× 2)-matrix U such that we have the following
matrix product

(U i, Uj) = (i, j) U .

Here, U is called the matrix of the operator U with respect to the orthonormal basis
i, j of E2. Explicitly,

U =

 

〈i|U i〉 〈i|Uj〉
〈j|U i〉 〈j|Uj〉

!

=

 

U1
1 U1

2

U2
1 U2

2

!

.

Setting y = Ux, as well as x = x1i + x2j, and y = y1i + y2j, we obtain the
transformation formula

 

y1

y2

!

= U
 

x1

x2

!

.

In particular, the matrix U to the operator U from (5.10) reads as

U =

 

cosϕ −γ sinϕ

sinϕ γ cosϕ

!

.

We have UdU = I, that is, the matrix U is orthogonal.13 Moreover, detU = γ = ±1.

Proposition 5.5 The linear operator U : E2 → E2 is unitary iff the corresponding
matrix U is orthogonal.

Proof. The operator U is unitary iff

U†U = I. (5.15)

This follows from 〈x|y〉 = 〈Ux|Uy〉 = 〈U†Ux|y〉 for all x,y ∈ E2, which is equiva-
lent to U†Ux = x for all x ∈ E2. It follows from (5.15) that

13 Recall that the (n× n)-matrix A is called unitary iff A†A = I. This implies

1 = det I = detA† · detA = (detA)† · detA.

Thus, for unitary matrices, we have | detA| = 1.
If the entries of the matrix A are real numbers, unitary matrices are called
orthogonal. Then A† = Ad, and hence detA = ±1.
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1 = det I = detU† detU = (detU)† detU = (detU)2.

Hence detU = ±1. In the language of matrices, equation (5.15) is equivalent to

U†U = I.

Since the matrix U is real, we have U† = Ud. �

The orthogonal group O(2). The symbol O(2) denotes the set of all the real
(2 × 2)-matrices which are orthogonal. This is a multiplicative group. In fact, if
U ,V ∈ O(2), then (UV)d(UV) = Vd(UdU)V = VdV = I. By Prop. 5.5, we have
U ∈ O(2) iff there exist a real number ϕ and a number γ = ±1 such that

U =

 

cosϕ −γ sinϕ

sinϕ γ cosϕ

!

. (5.16)

The map U �→ U yields a group isomorphism from U(E2) onto O(2). We write

U(E2)  O(2).

The special orthogonal group SO(2). By definition, U ∈ SO(2) iff U ∈ O(2)
and detU = 1. It follows from U ,V ∈ SO(2) that UV ∈ SO(2).14 Therefore, SO(2)
is a subgroup of O(2). We have U ∈ SO(2) iff there exists a real number ϕ such
that U = U(ϕ) with

U(ϕ) :=

 

cosϕ − sinϕ

sinϕ cosϕ

!

. (5.17)

The map eiϕ �→ U(ϕ) yields the group isomorphism

U(1)  SO(2).

In addition, it follows from detU = detU that the map U �→ U yields the group
isomorphism

SU(E2)  SO(2).

The Lie algebra so(2). Linearization of the matrix U(ϕ) from (5.17) for a
small rotation angle ϕ yields

U(ϕ) = I + ϕU ′(0) + o(ϕ), ϕ→ 0

with

U ′(0) =

 

0 −1

1 0

!

.

Let so(2) denote the set of all real (2 × 2)-matrices which are antisymmetric and
trace-free. That is, Ad = −A and tr(A) = 0. We have A ∈ so(2) iff there exists a
real number ϕ such that A = ϕU ′(0). Setting

[A,B]− := AB − BA for all A,B ∈ so(2),

14 Note that det(UV) = detU detV = 1 and detU−1 = (detU)−1 = 1.
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the real one-dimensional linear space so(2) is a commutative Lie algebra. In fact,
[A,B]− = 0 for all A,B ∈ so(2). The map Tϕk �→ ϕU ′(0) yields the Lie algebra
isomorphism

su(E2)  so(2).

The exponential map. Let U(ϕ) ∈ SO(2). Differentiation with respect to the
rotation angle ϕ yields

dU(ϕ)

dϕ
=

 

− sinϕ − cosϕ

cosϕ − sinϕ

!

.

Setting ϕ = 0, we get A :=

 

0 −1

1 0

!

. Thus, we obtain the key differential equation

dU(ϕ)

dϕ
= AU(ϕ), ϕ ∈ R, U(0) = I (5.18)

which has the unique solution

U(ϕ) = eϕA for all ϕ ∈ R. (5.19)

The addition theorem for the matrix exponential function yields

U(ϕ+ ψ) = U(ϕ)U(ψ) for all ϕ,ψ ∈ R.

Explicitly,

 

cos(ϕ+ ψ) − sin(ϕ+ ψ)

sin(ϕ+ ψ) cos(ϕ+ ψ)

!

=

 

cosϕ − sinϕ

sinϕ cosϕ

! 

cosψ − sinψ

sinψ cosψ

!

.

This is equivalent to the addition theorem for trigonometric functions. For example,

sin(ϕ+ ψ) = sinϕ cosψ + cosϕ sinψ for all ϕ,ψ ∈ R.

This shows that the well-known classical addition theorems for the trigonometric
functions are rooted in the rotation group of the Euclidean plane. From (5.19) we
get the following result.

Proposition 5.6 We have U ∈ SO(2) iff there exists a matrix A ∈ so(2) such that
U = eA.

The reflection group. The set Z2 := {1,−1} is a multiplicative group called
the multiplicative cyclic group of order two. Let

I :=

 

1 0

0 1

!

.

Since det(±I) = 1, the set {I,−I} is a subgroup of SO(2). The map ±I �→ ±1
yields the group isomorphism

{I,−I}  Z2.



368 5. The Lie Group U(1), Harmonic Analysis, and Physics

Define R− :=

 

1 0

0 −1

!

. The set Rrefl := {I,R−} is a subgroup of O(2) called the

special reflection group. The map R− �→ −1, I �→ 1 yields the group isomorphism

Rrefl  Z2.

Set χ(U) := detU . The map χ : O(2) → Z2 is a surjective group morphism with
the kernel

ker(χ) = {U ∈ O(2) : detU = 1} = SO(2).

By the morphism theorem for groups,15 the kernel SO(2) is a normal subgroup of
O(2), and we have the group isomorphism

O(2)/SO(2)  Z2.

Local and global behavior. We want to show that the Lie groups O(2)
and SO(2) have the same local structure near the unit element, but they possess
different global topological structures. It follows from (5.16) that there exists a
neighborhood N (I) of the unit matrix I such that

O(2) = SO(2) on N (I).

Consequently, the linearization of the orthogonal group O(2) at the unit element I
is the same as the corresponding linearization of SO(2) at I. This implies that

o(2) = so(2)

where o(2) (resp, so(2)) is the Lie algebra of O(2) (resp. SO(2)).

Proposition 5.7 The Lie group SO(2) is arcwise connected, but the Lie group
O(2) is not arcwise connected. The group O(2) has two components.

Proof. The map ϕ �→ U(ϕ) is continuous on R (i.e., the matrix elements depend
continuously on ϕ). Consequently, two elements of SO(2) can always be connected
by a continuous curve.

The elements I and R− cannot be connected by a continuous curve in O(2).
Otherwise, the determinant of the matrices is continuous along the curve. Since this
determinant only attains the values ±1, the determinant is constant along the curve.
Hence det I = detR−. However, detR− = −1. This is the desired contradiction.

The two sets SO(2) = {U(ϕ) : ϕ ∈ R} and

O−(2) := {U(ϕ)R− : ϕ ∈ R}

are arcwise connected. This way, we get the two components of O(2) which contain
the elements I and R−, respectively. Therefore the two components are character-
ized by the sign of the determinant of the matrices. This sign is equal to 1 (resp.
−1) on SO(2) (resp. O−(2)). �

15 See Sect. 4.1.3 of Vol. II.
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5.8 Pontryagin Duality for U(1) and Quantum Groups

Duality plays a crucial role in the theory of topological groups; characters
generalize the exponential function.

Folklore

Characters. Let G be an arbitrary group. A character of G is a group morphism

χ : G → U(1),

that is, χ(gh) = χ(g)χ(h) for all g, h ∈ G. This generalizes the functional equation
of the exponential function. In a natural way, the set G′ of all the characters of
the group G can be equipped with a group structure by using the usual product
of functions. The unit element 1 of G′ is the constant character: 1(g) := 1 for all
g ∈ G. The commutative group G′ is called the dual group to G.
Examples. We have the following group isomorphisms:

• R
′  R;

• Z
′  U(1) and U(1)′  Z.

Here, R and Z denotes the additive group of real numbers and integers, respectively.
Note the biduality relations

U(1)′′  U(1), Z
′′  Z

which are the prototypes of far-reaching duality theorems in harmonic analysis. Let
us discuss this.16

Ad R
′. Fix r ∈ R. Define

χr(x) := eirx for all x ∈ R.

Then, χr(x+y) = χr(x)χr(y) for all x, y ∈ R. Hence χr is a character of R. In fact,
there are no other characters, that is,

R
′ = {χr : r ∈ R},

and the map r �→ χr yields the group isomorphism R  R
′.

Ad Z
′. Fix z ∈ U(1). Define

χz(n) := zn for all n ∈ Z.

Since χz(m+ n) = χz(m)χn(z) for all m,n ∈ Z, the function χz is a character on
Z. More precisely,

Z
′ = {χz : z ∈ U(1)},

and the map z �→ χz yields the group isomorphism U(1)  Z
′.

Ad U(1)′. Fix n ∈ Z. Define

χn(z) := zn for all z ∈ U(1).

Then U(1)′ = {χn : n ∈ Z}, and the map n �→ χn yields the group isomorphism
Z  U(1)′.

Pontryagin duality. In 1934, Pontryagin proved the following general theo-
rems:17

16 The proofs of the following statements can be found in L. Pontryagin, Topological
Groups, Gordon and Breach, 1966.

17 L. Pontryagin, The theory of topological commutative groups, Ann. of Math. 35
(1934), 361–388.
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(i) If G is a locally compact, commutative topological group, then so is the dual
group G′.

(ii) If G is a compact (resp. discrete) commutative topological group, then the dual
group G′ is discrete (resp. compact), and G′′  G (group isomorphism).

Recall that a topological space X is called compact iff every open covering of X
contains a finite subcover (i.e., finitely many of these open sets already cover the
set X). Moreover, X is called locally compact iff every point of X has a compact
neighborhood. For example, R,C,Z,Rn,Cn, n = 1, 2, . . . , are locally compact, and
U(1) is compact. Moreover, Z is locally compact and discrete, but not compact. A
group is called a topological group iff

• it is a topological space (see Sect. 5.5 of Vol. I),
• the product map (g, h) �→ gh is a continuous map from X ×X → X, and
• the map g �→ g−1 is continuous from X to X.

Every Lie group is a topological group.
Tannaka–Krein duality. The Krein–Tannaka theory generalizes the Pontrya-

gin theorem to noncommutative compact Lie groups. The point is that one has to
replace the dual group by a real Hopf algebra. For details, see Sect. 3.5.4 of Vol. II.

Quantum groups. It is possible to generalize sophistically the Tannaka–
Krein duality to quantum groups. See Woronowicz (1987) and Timmermann (2007)
quoted on page 546.

Problems

5.1 Proof of Proposition 5.1. Solution: Ad (i). Let k ∈ Z, k �= 0. Integration by
parts, yields

2πf̂(k) =

Z π

−π

eimkϕf(ϕ) dϕ =
i

ik
=

Z π

−π

eimkϕf(ϕ) dϕ.

Hence |f̂(k)| ≤ const · k−1.
Ad (ii). Study the proof in E. Zeidler, Applied Functional Analysis: Application
to Mathematical Physics, Sect. 3.2, Springer, New York, 1995.



6. Infinitesimal Rotations and Constraints in
Physics

Constraints play a crucial role in the history of physics. This concerns the
lever principle due to Archimedes of Syracus (287–212 B.C.), the principle
of virtual work due to d’Alembert (1717–1783), the multiplier rule due
to Lagrange (1736–1813), the principle of least squares and the principle
of least constraint due to Gauss (1777–1855), the motion of rigid bodies
and the spinning top, the spinning electron due to Pauli (1900–1958), and
the BRST-quantization of gauge fields in quantum field theory.1 The main
idea is to simplify the constraints by passing to infinitesimal constraints
which are closely related to the linearization of Lie groups via Lie algebras.

Folklore

6.1 The Group U(E3) of Unitary Transformations

Operators. The operator A : E3 → E3 is called unitary iff it is linear and it
respects the inner product, that is,

〈Ax|Ay〉 = 〈x|y〉 for all x,y ∈ E3. (6.1)

The symbol U(E3) denotes the set of all unitary operators A : E3 → E3. We have

A ∈ U(E3) iff A†A = I. (6.2)

In fact, it follows from (6.1) that

〈x|A†Ay〉 = 〈Ax|Ay〉 = 〈x|y〉 for all x,y ∈ E3.

Hence A†A = I. Conversely, A†A = I implies (6.1).

If A ∈ U(E3), then det(A) = ±1.

In fact, I = A†A implies 1 = det I = detA† detA = (detA)† detA = | detA|2.
Consequently, if A ∈ U(E3), then A is invertible. This tells us that

A ∈ U(E3) iff A−1 = A†. (6.3)

Hence A ∈ U(E3) iff AA† = I.

1 The letters ‘BRST’ stand for Becchi, Rouet, Stora, and Tyutin. See C. Becchi,
A. Rouet, and R. Stora, Renormalization of the Abelian Higgs–Kible model,
Commun. Math. Phys. 52 (1975), 127–162; Renormalization of gauge theories,
Annals of Physics 98 (1976), 287–321.

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 7,
© Springer-Verlag Berlin Heidelberg 2011
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Theorem 6.1 The set U(E3) forms a group.

Proof. If A,B ∈ U(E3), then we get (AB)†AB = B†(A†A)B = B†IB = I. Hence
AB ∈ U(E3). Moreover, (A−1)†A−1 = AA† = I. Thus, A−1 ∈ U(E3). �

By definition, the set SU(E3) contains all the elements A of U(E3) with
det(A) = 1. If detA = detB = 1, then det(AB) = detAdetB = 1. Therefore,
SU(3) is a subgroup of U(E3).

Matrices. Let e1, e2, e3 be a right-handed orthonormal basis of the Euclidean
Hilbert space E3. We are given the unitary operator A ∈ U(E3). Set

Ai
j := 〈ei|Aej〉, i, j = 1, 2, 3.

For the real matrix A = (Ai
j) it follows from A†A = I that

A†A = I.

Consequently, the linear operator A : E3 → E3 is unitary iff the matrix A is
orthogonal, that is, A ∈ O(3). Moreover, we have A ∈ SU(E3) iff A ∈ SO(3), that
is, A ∈ O(3) and detA = 1. The map

A �→ A

yields the group isomorphisms U(E3)  O(3) and SU(E3)  SO(3). Since the
matrix groups O(3) and SO(3) are Lie groups, the isomorphic groups U(E3) and
SU(E3) are also Lie groups.

Theorem 6.2 Precisely the rotations are the elements of the Lie group SU(E3).

Proof. Let A ∈ SU(3). The eigenvalue equation

Ax = λx, x ∈ E3, x �= 0 (6.4)

is equivalent to the matrix equation

Ax = λx

with respect to the orthonormal basis e1, e2, e3. This implies

det(A− λI) = 0.

This equation has the form

λ3 + aλ2 + bλ+ c = 0 (6.5)

with real coefficients a, b, c. If λ1, λ2, λ3 are the solutions of (6.5), then

c = λ1λ2λ3 and c = detA = detA = 1.

Since the operator A is unitary, |λj | = 1 for all j.2 Moreover, since the coefficients

a, b, c are real, the numbers λ†j are also eigenvalues. Thus, there exists at least one

real eigenvalue, say λ1, and λ1 = 1. By (6.4), there exists a unit vector k such that
Ak = λ1k = k. Supplementing the vector k to a right-handed orthonormal system
i, j,k, the operator A is unitary on the linear subspace E2 spanned by the vectors
i and j. Consequently, the corresponding matrix has the form

2 Note that 〈x|x〉 = 〈Ax|Ax〉 = 〈λx|λx〉 = λ†λ〈x|x〉.
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Fig. 6.1. Rotation

A =

 

B 0

0 λ1

!

where B ∈ SO(2). Explicitly, there exists a real parameter ϕ such that

A =

0

B

@

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

1

C

A

.

Consequently, the operator A describes a rotation about the axis vector k with the
rotation angle ϕ.

Conversely, a similar argument shows that all the rotations are unitary operators
with A ∈ SU(E3). �

The linearization of the matrix A with respect to the small rotation angle ϕ
reads as

A =

0

B

@

1 0 0

0 1 0

0 0 1

1

C

A

+

0

B

@

0 −ϕ 0

ϕ 0 0

0 0 0

1

C

A

+O(ϕ2), ϕ→ 0.

We refer to (7.10).

6.2 Euler’s Rotation Formula

Let n be a unit vector. The Euler formula

x′ = cosϕ · x + sinϕ · (n × x) + (1 − cosϕ)(xn)n (6.6)

describes the counter-clockwise rotation of the vector x about the axis n with
rotation angle ϕ (Fig.6.1(c)). To check the Euler rotation formula (6.6), consider
a right-handed orthonormal basis i, j,k with k = n. Then k′ = k, and the Euler
formula passes over to the well-known rotation formula in the Euclidean plane
depicted in Fig. 6.1(a):

i′ = cosϕ i + sinϕ j, j′ = − sinϕ i + cosϕ j. (6.7)

The decomposition of the vector x with respect to the Cartesian basis i, j,k and
the rotated Cartesian basis i′, j′,k′ reads as
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x = xi + yj + zk = x′i′ + y′j′ + z′k′

with k = k′. Hence x′ = xi′ and y′ = xj′, implying the transformation formula for
the corresponding Cartesian coordinate systems,

x′ = cosϕ · x+ sinϕ · y, y′ = − sinϕ · x+ cosϕ · y, z′ = z. (6.8)

If x+, y+, z+ are the components of the rotated vector x′ with respect to the original
orthonormal basis i, j,k, that is, x′ = x+i + y+j + z+k, then

x+ = cosϕ · x− sinϕ · y, y+ = sinϕ · x+ cosϕ · y, z+ = z. (6.9)

The transformation formula (6.9) (resp. (6.8)) is called an active (resp. passive)
rotation by physicists. The passage from (6.9) to (6.8) corresponds to ϕ⇒ −ϕ.

6.3 The Lie Algebra of Infinitesimal Rotations

In the 1870’s, Sophus Lie discovered that the investigation of symmetries in geom-
etry can be essentially simplified by studying the linearization of transformation
groups which are called infinitesimal transformations. This is the basic idea behind
studying Lie groups with the help of Lie algebras. Let us apply the idea of lin-
earization to Euler’s rotation formula. Taylor expansion yields sinϕ = ϕ + O(ϕ2)
and cosϕ = 1 +O(ϕ2) as ϕ→ 0. Thus, for small rotation angles ϕ and all vectors
x, the Euler rotation formula (6.7) reads approximately as

x′ = x + ϕTnx +O(ϕ2), ϕ→ 0. (6.10)

Here, we set Tnx := n × x for all x ∈ E3. All the transformations Tn with n ∈ E3

are called infinitesimal rotations. If n2 = 1, then the transformation Tϕn = ϕTn is
called an infinitesimal rotation with the rotation axis n and the rotation angle ϕ.
The Jacobi identity tells us that

m × (n × x) − n × (m × x) = (m × n) × x.

This implies the key relation for infinitesimal rotations,

Tm×n = TmTn − TnTm, (6.11)

which is valid for all vectors m,n ∈ E3. Therefore, all the infinitesimal rotations
Tn form a real Lie algebra denoted by su(E3). The map

n �→ Tn

is an isomorphism from the Lie algebra (E3)Lie of vectors equipped with the vector
product onto the Lie algebra su(E3).

Recall that the Lie group U(E3) (resp. SU(E3)) is isomorphic to the Lie group
O(3) (resp. SO(3)). The Lie groups U(E3) and SU(E3) coincide on a sufficiently
small neighborhood of the unit element I. Therefore, U(E3) and SU(E3) have the
same Lie algebra, namely, su(E3). Moreover, the real 3-dimensional Lie algebra
su(E3) is isomorphic to the Lie algebra so(3) of the Lie group SO(3). Recall that
so(3) consists of all the real skew-symmetric (3 × 3)-matrices.
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Fig. 6.2. Lever principle

6.4 Constraints in Classical Physics

Our goal is to explain the relation between infinitesimal rotations and constrained
problems.

6.4.1 Archimedes’ Lever Principle

Consider a balance as depicted in Fig. 6.2(a). Suppose that the points P1 and P2

have the masses m1 and m2, respectively. Finally, suppose that lj is the length of

the balance beam
−−→
OP j . In ancient times, Archimedes discovered that equilibrium

states of a balance are characterized by the following condition:

m1g · l1 = m2g · l2. (6.12)

This is called the lever principle. Let us discuss this in terms of classical mechanics
created by Newton (1643–1727) and his successors. Condition (6.12) is also called
the torque condition, as we will explain below.3

Constraints, virtual trajectories, virtual velocities, and virtual accel-
erations. The two mass points P1 and P2 do not move freely, but their motion is
governed by the constraints

x2
1 = l21, x2 = − l2

l1
x1. (6.13)

Let t �→ (x1(t),x2(t)) be a trajectory which satisfies the constraints (6.13), that is,

x1(t)
2 = l21, x2(t) = − l2

l1
x1(t), t ∈ R. (6.14)

Define
vj := ẋj(t) and aj := ẍj(t), j = 1, 2.

The trajectories satisfying the constraints are called virtual trajectories. Moreover,
vj is called a virtual velocity vector, and aj is called a virtual acceleration vector.

Virtual trajectories concern the possible motions which respect the con-
straints, but not necessarily the physical forces.

3 Torque has the physical dimension ‘force times length’.
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Differentiating equation (6.14) with respect to time t, we get

• x1(t)ẋ1(t) = 0, l1ẋ2(t) = −l2ẋ1(t),
• ẋ1(t)

2 + x1(t)ẍ1(t) = 0, l1ẍ2(t) = −l2ẍ1(t)

for all times t ∈ R. This implies the relations

x1(t)v1 = 0, l1v2 = −l2v1 (6.15)

for the virtual velocity vectors v1 and v2 at the position x1(t) and x2(t), respec-
tively. Explicitly, the virtual trajectories read as

x1 = l1(cosϕ(t) i + sinϕ(t) k), x2 = −l2(cosϕ(t) i + sinϕ(t) k). (6.16)

Here, xj is the position vector
−−→
OPj at the origin O, and i,k is a right-handed

orthonormal basis of the (x, z)-plane (Fig. 6.2(b)). Moreover, we get the following
equations

ẋ1(t)
2 + x1(t)a1 = 0, l1a2 = −l2a1, t ∈ R (6.17)

for the virtual accelerations a1,a2 at the positions x1(t),x2(t), respectively. Note
that we do not study the specific molecular forces of the balance beam, but we
summarize these forces by taking the constraints into account. Let us first study
equilibrium states of the balance.

The relation to torque. The gravitational force of earth exerting on a point
of mass m near the surface of earth sis approximately equal to

F = −mgk

where g = 9.8 m/s2 (gravitational acceleration on the surface of earth in the SI
system). Using the so-called torque

Tj := xj × Fj , j = 1, 2

of the force Fj with respect to the point Pj , the lever condition (6.12) for equilibrium
states of the balance is equivalent to the vanishing of the total torque:

T1 + T2 = 0.

In fact, explicitly T1 + T2 = (m2gl2 −m1gl1) cosϕ · i × k.
The relation to potential energy. Setting U := mgz, we get

F = −gradU.

The function U is called the potential energy of a mass point of mass m and height
z in the gravitational field of earth near the surface of earth. The total potential
energy of the mass points P1 and P2 is given by

U(ϕ) = (m1gl1 −m2gl2) sinϕ.

Then:

• U ′(ϕ) = (m1gl1 −m2gl2) cosϕ, and
• U ′′(ϕ) = (m2gl2 −m1gl1) sinϕ.

This implies the following:

Fix the angle ϕ ∈]− π
2
, π

2
[. Then the lever condition (6.12) is equivalent to

the critical potential energy condition: U ′(ϕ) = 0.
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The problem of stability. In physics, stability of an equilibrium state S
means, roughly speaking, that the system returns to the state S after small pertur-
bations.

Stability is fundamental for nature and technology.

For example, only stable bridges are useful. Unstable situations in nature are re-
sponsible for ecological catastrophes. In classical mechanics, strict local minima of
the potential energy correspond to locally stable equilibrium states. In the present
case of the balance, we have to distinguish the following three cases:

(i) Unstable equilibrium state: Fix the angle ϕ0 ∈ ] − π
2
, π

2
[. If the lever condition

m1gl1 = m2gl2 is satisfied, then the corresponding equilibrium state of the
balance satisfies the condition U ′(ϕ0) = 0 together with U ′′(ϕ0) = 0 and
U(ϕ) ≡ 0 for all ϕ ∈ ] − π

2
, π

2
[. This reflects the instability of the equilibrium

state of the balance, as expected by daily experience.
(ii) Stable equilibrium state: Fix the angle ϕ0 = −π

2
, and let m1l1 > m2l2. Then

the corresponding state of the balance has the property U ′(ϕ0) = 0 and

U ′′(ϕ0) > 0.

This is a stable equilibrium state of the balance, as expected by daily life.
(iii) Fix the angle ϕ0 = π

2
, and let m1l1 > m2l2. Then the corresponding state of

the balance has the property U ′(ϕ0) = 0 and U ′′(ϕ0) < 0. This is an unstable
equilibrium state of the balance, as expected by daily life.

6.4.2 d’Alembert’s Principle of Virtual Power

Let us compute the total work

W (t) =

Z t

t0

2
X

j=1

Fjdxj =

Z t

t0

2
X

j=1

Fj ẋj(τ) dτ

along the trajectories t �→ xj(t) given by (6.16) with the initial condition ϕ(0) = ϕ0.
Explicitly,

Ẇ (t) = (m1gl1 −m2gl2) cosϕ(t) · ϕ̇(t).

Choosing the time t = 0 and noting that ϕ(0) = 0, we get the following.

Proposition 6.3 Fix the angle ϕ0 ∈]− π
2
, π

2
[. Then the lever equilibrium condition

(6.12) is equivalent to dW (0)
dt

= 0.

Proof. Observe that we can choose the function ϕ(t) := ωt + ϕ0 with arbitrary
real number ω. Then ϕ̇(0) = ω. �

Proposition 6.3 is called d’Alembert’s principle of virtual power. This designa-
tion is motivated by the fact thatW (t) has the physical dimension of work (energy),

and the time derivative dW (t)
dt

has the physical dimension of energy per time which
is also called power. Note that we compute the virtual work W (t) by using virtual
trajectories. Such trajectories obey the constraints, however, they do not necessar-
ily describe physical motions of the mass points governed by the acting force. In
other words, virtual trajectories are geometric objects, but not necessarily physical
objects.

The principle of virtual power is a general principle in classical mechanics for
describing constrained mechanical systems.



378 6. Infinitesimal Rotations and Constraints in Physics

The statical principle of virtual power. The equilibrium condition

dW (0)

dt
= 0

can equivalently be written as

F1(P1)v1(P1) + F2(P2)v2(P2) = 0. (6.18)

More precisely, the pair (P1, P2) of points represents an equilibrium state of the
balance iff the condition (6.18) is satisfied for all the virtual velocity vectors vj

at the point Pj , j = 1, 2, Note that Fjvj has the physical dimension ‘force times
velocity’ which is also called ‘power’ (energy per time).

The dynamical principle of virtual power. As a consequence of the gen-
eral Gaussian principle of least constraint, we will show below that the modified
condition

(F1 −m1ẍ1(t)) v1 + (F2 −m2ẍ2(t)) v2 = 0, (6.19)

which has to be valid for all virtual velocity vectors v1 and v2 at the points P1(t) and
P (2(t), respectively, describes the dynamics of the balance. d’Alembert postulated
that the principle (6.18) remains true if we add the inertial force −mj ẍj to the
force Fj . This way, d’Alembert (1717–1783) reduced dynamics to statics.

6.4.3 d’Alembert’s Principle of Virtual Work

In 1743, at the age of 26, d’Alembert published his important Traité de
dynamic (Treatise on dynamics) which contains the famous ‘Alembert prin-
ciple’.

Folklore

Let us pass from the physical dimension ‘power’ to ‘work’ (energy). To this end, we
set

δxj := vj ·Δt, j = 1, 2,

where Δt is an arbitrary real number equipped with the physical dimension of time.
Multiplying equation (6.19) by time Δt, we get

(F1 −m1ẍ1) δx1 + (F2 −m2ẍ2) δx2 = 0. (6.20)

This is called d’Alembert’s principle of virtual work. Physicists frequently write δt
instead of Δt.

6.4.4 The Gaussian Principle of Least Constraint and
Constraining Forces

The Gaussian principle of least constraint is the most general principle
of classical mechanics. This principle is a variant of the famous method
of least squares, which was published by Gauss (1777–1855) in his 1809
treatise On the Motion of Celestial Bodies (in Latin). For a long time, this
treatise was the Bible of astronomers. Gauss showed how one can compute
the orbit of a celestial body if one has only a few observed positions at
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hand. This was motivated by the rediscovery of the planetoid Ceres in
1802.
On January 1, 1801, in Palermo (Italy), the astronomer Piazzi observed
an unknown celestial body for some weeks, but then the celestial body was
lost. Gauss solved the hard problem to compute the orbit of this celestial
body on the basis of only minimal information about its positions. Using
the method of least squares for an elliptic orbit, Gauss had to solve alge-
braic equations of eights order. On January 1, 1802, in Gotha (Germany),
the astronomer von Zach rediscovered the planetoid Ceres on the basis of
Gauss’ prediction.

Folklore

We want to study the motion of a balance under the action of the gravitational
force of earth. To this end, we will use the Gaussian principle of least constraint.
In what follows, we will distinguish between

• holonomic constraints, and
• nonholonomic constraints.

Holonomic constraints depend on the possible trajectories, but not on the possi-
ble velocity vectors. In contrast to this, nonholonomic constraints depend on both
the possible trajectories and the possible velocity vectors, and they cannot be re-
duced to holonomic constraints by integration. In terms of geometry, holonomic
(resp. nonholonomic) constraints can be handled by passing to a submanifold of
the position manifold (resp. tangent bundle of the position manifold).

Holonomic Constraints

Holonomic constraints generate the manifold M of constrained positions.
The virtual velocities are precisely the tangent vectors of M.

Folklore

Generalizing a balance, let us consider the motion

xj = xj(t), t ∈ R, j = 1, 2

of two mass points P1 and P2 of mass m1 and m2, respectively. We are given the
following constraints

fk(x1,x2) = 0, (x1,x2) ∈ U , k = 1, . . . ,K (6.21)

where the given functions f1, . . . , fK : U → R are assumed to be smooth, and U is
assumed to be a nonempty, open, arcwise connected subset of E3 ×E3. Finally, let
1 ≤ K < 6. Note that the constraints (6.21) do not depend on the velocities of the
particles. Such constraints are called holonomic. In the special case of a balance,
we have K = 5. Explicitly,

• fj(x1,x2) := l2x
j
1 + l1x

j
2, j = 1, 2, 3,

• f4(x1,x2) := x2
1 − l21,

• f5(x1,x2) := x3
1.

Here, x1
m, x

2
m, x

3
m are the Cartesian components of the vector xm, m = 1, 2. These

five constraints determine a 1-dimensional submanifold M of the 6-dimensional
linear space E3 × E3. This submanifold M is diffeomorphic to the unit circle, by
(6.16).

The linear manifold of virtual accelerations. Differentiating twice the
equation
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fk(x1(t),x2(t)) = 0, k = 1, . . . ,K

with respect to time t, and setting vj := ẋj(t) and aj := ẍj(t), j = 1, 2, we get

v1 · gradx1
fk(x1,x2) + v2 · gradx2

fk(x1,x2) = 0, k = 1, . . . ,K, (6.22)

and

a1 · gradx1
fk(x1,x2) + a2 · gradx2

fk(x1,x2) = Ak(x1,x2,v1,v2), (6.23)

where k = 1, . . . ,K, and (x1,x2) ∈ U .4 Here, the system (6.22) (resp. (6.23)) is
a linear system for the virtual velocities v1,v2 (resp. virtual accelerations a1, a2).
The following regularity assumption is crucial:

We assume that the linearized constraints (6.22) cannot be reduced to a
smaller number of linear constraints.

More precisely, this means that, for any given point (x1,x2,v1,v2) in U ×E3 ×E3,
the rank r of the linear system (6.22) is maximal (i.e., r = K). This means that the
virtual velocities form a linear (6−K)-dimensional submanifold of the 6-dimensional
linear space E3×E3. Thus, by the nonlinear rank theorem on page 1080, this implies
that the constraints (6.21) describe a (6−K)-dimensional submanifold of E3 ×E3.
In addition, by (6.23), the virtual accelerations form a linear (6 −K)-dimensional
manifold.

The Gaussian minimum problem. Gauss studied the following minimum
problem:

1

2m1
(F1(x1,x2) −m1ẍ1)

2 +
1

2m2
(F2(x1,x2) −m2ẍ2)

2 = min! (6.24)

together with the linearized constraints

ẍ1 · gradx1
fk(x1,x2) + ẍ2 · gradx2

fk(x1,x2) = Ak(x1,x2, ẋ1, ẋ2), (6.25)

where k = 1, . . . ,K. For given (x1,x2, ẋ1, ẋ2) ∈ U × E3 × E3, we are looking for a
solution ẍ1, ẍ2 of the minimum problem (6.24) with the linear constraints (6.25).

The Gaussian principle of least constraint selects the physical accelerations
among the virtual accelerations determined by the constraints.

It was the philosophy of Gauss that the physical accelerations are determined in
such a way that the so-called constraint

1

2m1
(F1(x1,x2) −m1ẍ1)

2 +
1

2m2
(F2(x1,x2) −m2ẍ2)

2

is minimal. That is, the inertial forces m1ẍ1 and m2ẍ2 fit best the external forces
F1 and F2 acting on the point P1 and P2, respectively. By (6.26) below, this means
that the constraining forces C1 and C2 are minimal.

Constraining force. For problems in technology (e.g., the construction of ro-
tating machines), it is important to know the strength of the so-called constraining
forces which are generated by the constraints. If the constraining forces are too
strong, then they will destroy the machine. The Gaussian principle of least con-
straint allows us to compute the equations of motion including the constraining
forces.

4 The expressions Ak, k = 1, . . . ,K, are explicitly known, but the proof of Theorem
6.4 on the constraining forces does not need this explicit information.
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Theorem 6.4 Suppose that we know a solution of the Gaussian constrained mini-
mum problem (6.24), (6.25). Then there exist uniquely determined real-valued func-
tions λj : U → R, j = 1, 2, such that

mj ẍj = Fj(x1,x2) + Cj(x1,x2), j = 1, 2 (6.26)

with the constraining forces

Cj(x1,x2) =
K
X

k=1

λk(x1,x2) · gradxj
fk(x1,x2), j = 1, 2. (6.27)

Regarding (6.26) as a system of differential equations for xj = xj(t), t ∈ R, we get
the corresponding equation of motion.

Proof. We will use a standard argument from linear algebra. Fix x1 and x2. Sup-
pose that ẍ1, ẍ2 is a solution of the minimum problem (6.24), (6.25). Replacing
ẍ1, ẍ2 by

ẍ1 + τa1, ẍ2 + τa2, τ ∈ R,

we obtain that the function

1

2m1
(F1(x1,x2) −m1(ẍ1 + τa1))

2 +
1

2m2
(F2(x1,x2) −m2(ẍ2 + τa2))

2

of the real variable τ has a minimum at the point τ = 0 with respect to the
constraints

(ẍ1 + τa1)gradx1
fk(x1,x2) + (ẍ2 + τa2)gradx2

fk(x1,x2) = Ak(x1,x2, ẋ1, ẋ2),

where k = 1, . . . ,K. Differentiation with respect to the variable τ at the point τ = 0
yields

(F1(x1,x1) −m1ẍ1) a1 + (F2(x1,x2) −m2ẍ2) a2 = 0 (6.28)

for all vectors a1,a2 satisfying the linear system

a1 · gradx1
fk(x1,x2) + a2 · gradx2

fk(x1,x2) = 0, k = 1, . . . ,K.

Now the claim follows from the same Lagrange multiplier argument as used in
Problem 6.1 on page 420. �

The Gaussian principle of virtual acceleration. The preceding proof shows
that the physical acceleration vectors ẍ1, ẍ2 at time t satisfy the equation (6.28)
for all virtual acceleration vectors a1, a2. This is called the Gaussian principle of
virtual acceleration.

Note that the Gaussian principle of virtual acceleration implies the equations
(6.26) of motion. Moreover, in the case of holonomic constraints, the Gaussian
principle of virtual acceleration is equivalent to the d’Alembert principle of virtual
power, as we will show next.

d’Alembert’s principle of virtual power. The physical acceleration vectors
ẍ1, ẍ2 at any fixed time satisfy the equation

(F1(x1,x2) −m1ẍ1) v1 + (F2(x1,x2) −m2ẍ2) v2 = 0 (6.29)

for all virtual velocity vectors v1,v2, that is,

v1 · gradx1
fk(x1,x2) + v2 · gradx2

fk(x1,x2) = 0, k = 1, . . . ,K. (6.30)



382 6. Infinitesimal Rotations and Constraints in Physics

Fig. 6.3. Nonholonomic constraint (ice skating)

To prove this, multiply the equation of motion (6.26) by the virtual velocity vj and
sum up. Then the terms containing the constraining are cancelled by (6.27) and
(6.30).

In terms of mathematics, the equations (6.21) for the constraints characterize
a manifold M, and the virtual velocity vectors v1,v2 are precisely the tangent
vectors of the manifold M of constraints.

This shows that d’Alembert’s principle of virtual power is closely related to
the tangent spaces of the manifold M generated by the constraints.

If the set of constrained position is not a manifold, then there appears a patholog-
ical situation which complicates the approach. In the 19th and 20th century, the
development of the theory of manifolds was strongly influenced by the study of
complicated problems in celestial and technological mechanics (e.g., the motion of
n planets or the motion of spinning tops).

Remark on holonomic constraints. Holonomic constraints are also called
integrable constraints. To explain this, consider the constraint

a(x, y)dx+ b(x, y)dy = 0, (x, y) ∈ R
2. (6.31)

This is called an integrable (or holonomic) constraint iff there exists a smooth
function U : R

2 → R such that a(x, y) = Ux(x, y) and b(x, y) = Uy(x, y) on
R

2. Then the constraint U(x, y) = const implies (6.31). This point of view was
emphasized by Heinrich Hertz, Principles of Mechanics, 1891 (in German).

Nonholonomic Constraints

The Gaussian approach based on the principle of least constraint with respect
to virtual accelerations has the advantage that it also applies to nonholonomic
constraints, say,

fk(x1,x2, ẋ1, ẋ2) = 0, k = 1, . . . ,K (6.32)

which depend on the velocity of the mass points. We assume that 1 ≤ K < 6. For
example, ice-skating can be modelled by Fig. 6.3 with the constraints

(x1 − x2) × ẋ1 = 0, (x1 − x2)
2 = l21.

Here, xj :=
−−→
OPj , j = 1, 2. The ice skate corresponds to the directed segment

−−−→
P1P2.

Set X := (x1,x2). Then the Gaussian problem of least constraint reads as

1

2m1

“

F1(X, Ẋ) −m1ẍ1

”2

+
1

2m2

“

F2(X, Ẋ) −m2ẍ2

”2

= min! (6.33)
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together with the linearized constraints

2
X

j=1

ẍj · gradẋj
fk(X, Ẋ) + ẋj · gradxj

fk(X, Ẋ) = 0, k = 1, . . . ,K. (6.34)

We fix X, Ẋ, and we are looking for ẍ1, ẍ2. We assume that the system (6.34) of
linear equations with respect to the variables ẍ1, ẍ2 has the maximal rank r = K.5

As in the holonomic case above, we obtain the equation of motion

mj ẍj = Fj(X, Ẋ) + Cj(X, Ẋ), j = 1, 2 (6.35)

with the constraining forces

Cj(X, Ẋ) =

K
X

k=1

λk(X, Ẋ) · gradẋj
fk(X, Ẋ), j = 1, 2.

Furthermore, the Gaussian principle of virtual acceleration tells us that we have

(F1(X, Ẋ) −m1ẍ1) a1 + (F2(X, Ẋ) −m2ẍ2) a2 = 0

for all virtual accelerations a1, a2 which satisfy the following linear system

2
X

j=1

aj · gradẋj
fk(X, Ẋ) = 0, k = 1, . . . ,K.

In the most general setting, the Gaussian principle of least constraint is studied
in E. Zeidler (1995), Vol. IV, page 45, quoted on page 396 below. This concerns
mixed holonomic/nonholonomic time-dependent constraints.

6.4.5 Manifolds and Lagrange’s Variational Principle

The Lagrangian trick is to use a variational principle with respect to local
coordinates for the manifold of constrained positions generated by the
constraints. This way, the constraints drop out.

Folklore

One degree of freedom. Let us again consider the balance depicted in Fig. 6.2
on page 375. The motion ϕ = ϕ(t), t ∈ R, of the balance is uniquely determined by
the rotation angle ϕ. From the trajectories

x1(t) = l1(cosϕ(t) i + sinϕ(t) j), x2(t) = −l2(cosϕ(t) i + sinϕ(t) j),

we get the velocity vector

ẋ1(t) = l1(− sinϕ(t) i + cosϕ(t) j) · ϕ̇(t).

Hence ẋ1(t)
2 = l21(sin

2 ϕ(t) + cos2 ϕ(t)) · ϕ̇(t)2. This way, we get the total kinetic
energy

Ekin := 1
2
m1ẋ

2
1 + 1

2
m2ẋ

2
2 = 1

2
(m1l

2
1 +m2l

2
2) ϕ̇

2

5 In other words, the solutions ẍ1, ẍ2 of (6.34) form a (6 −K)-dimensional linear
submanifold of E3 ×E3.
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and the total potential energy

Epot := m1gz1 +m2gz2 = (m1gl1 −m2gl2) sinϕ

of the balance. Let us assume that m1gl1 > m2gl2.
The principle of critical action. Introducing the Lagrangian

L(ϕ, ϕ̇) := Ekin − Epot = 1
2
(m1l

2
1 +m2l

2
2) ϕ̇

2 − (m1gl1 −m2gl2) sinϕ,

the principle of critical action leads to the variational problem

Z t1

t0

L(ϕ(t), ϕ̇(t)) dϕ = critical! (6.36)

together with the boundary conditions: ϕ(t0) and ϕ(t1) are fixed. Note that this
variational problem does not contain any constraints. A solution of (6.36) satisfies
the Euler–Lagrange equation d

dt
Lϕ̇ − Lϕ = 0. Explicitly,

ϕ̈(t) + ω2 cosϕ(t) = 0, t ∈ R, ω :=

„

m1gl1 −m2gl2
m1l21 +m2l22

«1/2

. (6.37)

This is the equation of motion for the balance. Let us add the following initial
condition: ϕ(0) = ϕ0, ϕ̇(0) = ϕ1.

6.4.6 The Method of Perturbation Theory

Celestial mechanics, quantum mechanics, and quantum field theory are
governed by perturbation theory.

Folklore

We want to study the initial-value problem

ϕ̈(t) + ω2 cosϕ(t) = 0, t ∈ R, ϕ(0) = −π
2
, ϕ̇(0) = ε, (6.38)

where ε is a small real number. More precisely, we assume that the dimensionless
quantity ε/ω(l1 + l2) is small compared with 1. Fix the finite time interval [−t1, t1].
The general theory of ordinary differential equations tells us that the solution of
the initial-value problem (6.38) depends analytically on the parameter ε. Explicitly,
the solution of (6.38) reads as

ϕ(t) = −π
2

+ εϕ1(t) + ε2ϕ2(t) + ε3ϕ3(t) + . . . , t ∈ [−t1, t1].

Proposition 6.5 The unique solution of the initial-value problem (6.38) for the
balance is given by

ϕ(t) = −π
2

+
ε

ω
sinωt+O(ε3), ε→ 0, t ∈ [−t1, t1].

Proof. Using the Taylor expansion

cos
“

−π
2

+ ψ
”

= sinψ = ψ − ψ3

3!
+
ψ5

5!
+ . . . ,

comparison of the coefficients yields the following initial-value problems:
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• ϕ̈1(t) + ω2ϕ1(t) = 0, ϕ1(0) = 0, ϕ̇1(0) = 1,
• ϕ̈2(t) + ω2ϕ2(t) = 0, ϕ2(0) = ϕ̇2(0) = 0,
• ϕ̈3(t) + ω2ϕ3(t) = 1

3!
ϕ1(t)

3, ϕ3(0) = ϕ̇3(0) = 0,

and so on. This yields ϕ1(t) = 1
ω

sinωt and ϕ2(t) ≡ 0. �

Note that the initial-value problem (6.37) coincides with the equation for the
motion of a circular pendulum. The solution can explicitly be written down in terms
of elliptic functions. This can be found in Sect. 6.7.2 of Vol. II.

6.4.7 Further Reading on Perturbation Theory and its
Applications

Many problems in physics are handled by means of perturbation theory, includ-
ing quantum field theory. The literature on perturbation theory is vast. Let us
summarize some of the most important references.

Classic works:

Ptolemeaus, Almagest, 150 A.D. See M. Adler (Ed.), Ptolemy of Alexan-
dria, Almagest: Great Books of the Western World (60 Volumes), Chicago:
Encyclopedia Britannica, 1994.

N. Copernicus, De revolutionibus orbium coelestium libri vi (in Latin)
(Six books concerning the revolutions of the heavenly orbs), 1543. See M.
Adler (Ed.), Great Books of the Western World (60 Volumes), Chicago:
Encyclopedia Britannica, 1994.

J. Kepler, Harmonices Mundi (in Latin) (The Harmonies of the World).
See M. Adler (Ed.), Great Books of the Western World (60 Volumes),
Chicago: Encyclopedia Britannica, 1994.

J. Kepler, Astronomia nova (in Latin), 1609. English translation: New
Astronomy, edited by W. Donahue, 1991.

J. Kepler, Epitome Astronomiae Copernicanae (in Latin) (Epitome of
Copernican Astronomy), 1618/21. See M. Adler (Ed.), Great Books of the
Western World (60 Volumes), Chicago: Encyclopedia Britannica, 1994.

J. Kepler, Tabulae Rudolphinae (in Latin) (the Rudolphine Tables), 1627.
English edition: London, 1675 (standard tool of astronomers for a long
time).

G. Galilei, Discorsi e dimonstrazioni matematiche intorno à due nuove
scienze (in Italian) (Dialogues and mathematical proofs concerning two
new sciences), 1638. English translation: S. Drake, Two New Sciences,
1989.

I. Newton, Philosophiae naturalis principia mathematica, London, 1687.
See S. Chandrasekhar, Newton’s Principia for the Common Reader, Oxford
University Press, 1997.

L. Euler, Mechanica sive motus scientia analytice exposita (in Latin) (Me-
chanics or the science of the motion exposed in analytic terms), Vols. 1, 2,
1736 (first textbook).
Internet: http://www.math.dartmouth.edu (Euler Archive)

L. Euler, Theoria motuum planetarum and cometarum (in Latin) (Theory
of the motion of planets and comets), 1744.

J. de Lagrange, Méchanique analitique, Paris, 1788.
New edition: Mécanique analytique, Paris, 1811/1815 (after the ortho-
graphic reform of the Paris Academy in about 1800).
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English edition: Analytical Mechanics, Kluwer, Dordrecht, 1997.

P. Laplace, Mécanique celeste (Celestial Mechanics), Vols. 1–5, Paris,
1799/1825.

C. Gauss, Theoria motus corporum coelestium in sectionibus conibus solem
ambientum (in Latin) (Theory of the motion of celestial bodies on conic
sections about the sun), Hamburg, 1809. German edition: Hannover, 1865.

J. Rayleigh, The Theory of Sound, Macmillan, London, 1896. Reprint:
Dover, New York 1945.

H. Poincaré (1892), Les méthodes nouvelles de la mécanique céleste
(New methods in celestial mechanics), Vols. 1-3, Gauthier-Villars, Paris,
1892/1899. Reprint: Dover 1957.

Modern works:

E. Schrödinger, Quantization as an eigenvalue problem, Part III: Pertur-
bation theory with applications to the Starck effect of the Balmer spec-
tral lines, Ann. Physik 80 (1926), 437–490 (in German) (Schrödinger used
Rayleigh’s method).

F. Rellich, Perturbation theory for the spectral decomposition, Math. An-
nalen I–V, 113 (1937), 600–619, 677–685; 116 (1939), 555–570; 117 (1940);
356–382; 118 (1942), 462–484 (in German).

F. Rellich, Perturbation Theory of Eigenvalue Problems, Gordon and
Breach, New York. 1969.

V. Arnold, Small divisors and problems of stability of motion in classi-
cal and celestial mechanics, Uspekhi Mat. Nauk 18, 91-196 (in Russian).
English translation: Russian Math. Surveys 18 (1963).

V. Arnold, Proof of A.N. Kolmogorov’s theorem on the preservation of
quasi-periodic motions under small perturbations of the Hamiltonian, Rus-
sian Math. Surveys 18 (5)(1963), 9–36.

J. Moser, A rapidly convergent iteration method and nonlinear partial
differential equations I, II, Ann. Scuola Norm. Sup. Pisa 20 (1966), 226–
315, 449–535.

J. Moser, Convergent series expansions for quasi-periodic motions, Math.
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6.5 Application to the Motion of a Rigid Body

The electron spin to be studied later on is obtained by quantizing the classical
angular momentum (see Chap. 7). We want to show that the classical angular
momentum governs the motion of rigid bodies (e.g., the spinning earth or spinning
tops).

Fix n = 3, 4, . . ., and fix the origin P0. In what follows, let us consider a model
of a rigid body consisting of n moving mass points P1, . . . , Pn of the Euclidean
manifold E

3. Here, mj is the mass of the point Pj . We assume the following:

• The distances between all the points are constant for all times t ∈ R.
• The points are in general position, that is, three different points always span a

plane.

Let us describe the motion of the point Pj by the trajectory

xj = xj(t), t ∈ R, j = 1, . . . , n
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Fig. 6.4. Center C of gravity

where the position vector xj(t) =
−−−−−→
P0Pj(t) is located at the origin P0. By our

assumption made above, we have the constraints

(xi(t) − xj(t))
2 = r2ij , t ∈ R, i, j = 1, . . . , n, i �= j.

Here, all the positive distances rij do not depend on time t.

6.5.1 The Center of Gravity

The center of gravity moves like a mass point equipped with the total mass
under the action of the total force.

Folklore

Let m :=
Pn

j=1mj denote the total mass of the rigid body. We define the position

vector y =
−−→
P0C by setting

y :=
m1x1 + . . .+mnxn

m
.

The point C is called the center of gravity of the rigid body. Our goal is to separate
the motion of the points of the rigid body from the center C of gravity. To this end,
we introduce the position vectors zj by means of the superposition relation

xj = y + zj , j = 1, . . . , n.

The trajectory zj = zj(t) describes the motion of the point Pj with respect to the
center C of gravity (Fig. 6.4).

6.5.2 Moving Orthonormal Frames and Infinitesimal Rotations

The rigid body is governed by the Lie group SO(3) (rotations) and its Lie
algebra so(3) (infinitesimal rotations).

Folklore

In order to describe the motion of the rigid body, it is convenient to choose a right-
handed orthonormal system e1, e2, e3 located at the center C of gravity such that
the points P1(t), . . . , Pn(t) of the rigid body are fixed with respect to the basis
vectors e1(t), e2(t), e3(t). This means that

zj(t) =

3
X

k=1

zkj ej(t), t ∈ R, j = 1, . . . , n (6.39)

where all the components z1j , z
2
j , z

3
j do not depend on time t. We want to show that
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Fig. 6.5. Moving rigid body

ėj(t) = ω(t) × ej(t), t ∈ R, j = 1, 2, 3. (6.40)

This is an infinitesimal rotation with the angular velocity vector ω(t) at time t
(Fig. 6.5).
Proof. We will use the Lie group SO(3) and its Lie algebra so(3). Since the three
vectors e1(t), e2(t), e3(t) form a right-handed orthonormal system, they are ob-
tained from e1(0), e2(0), e3(0) by a rotation (see Prop. 9.1 on page 559). Thus,
there exists a matrix G(t) ∈ SO(3) such that

0

B

@

e1(t)

e2(t)

e3(t)

1

C

A

= G(t)

0

B

@

e1(0)

e2(0)

e3(0)

1

C

A

, t ∈ R.

Differentiating this with respect to time t, we get

0

B

@

ė1(t)

ė2(t)

ė3(t)

1

C

A

= Ġ(t)

0

B

@

e1(0)

e2(0)

e3(0)

1

C

A

= Ġ(t)G(t)−1

0

B

@

e1(t)

e2(t)

e3(t)

1

C

A

.

Set A(t) := Ġ(t)G(t)−1. Since the smooth map t �→ G(t) represents a curve in

the Lie group SO(3), the derivative Ġ(t) is a tangent vector at the point G(t).

Thus, Ġ(t)G(t)−1 is a tangent vector of the manifold SO(3) at the unit element.
In other words, A(t) is an element of the Lie algebra so(3) of real skew-symmetric
(3 × 3)-matrices. Consequently,

A(t) =

0

B

@

0 ω3(t) −ω2(t)

−ω3(t) 0 ω1(t)

ω2(t) −ω1(t) 0

1

C

A

where ω1(t), ω2(t), ω3(t) are fixed real numbers for fixed time t. This yields the
claim (6.40). �

It follows from (6.40) that

żj(t) = ω(t) × zj(t), t ∈ R, j = 1, . . . , n. (6.41)
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Fig. 6.6. Inertia tensor

6.5.3 Kinetic Energy and the Inertia Tensor

In order to understand the motion of rigid bodies, Euler (1707–1783) stud-
ied the principal axes of the symmetric inertia tensor; this tensor general-
izes the moment of inertia of a single rotating mass point to a system of
rotating mass points.
In the history of physics and mathematics, the inertia tensor (resp. the
Gaussian theory of quadratic forms in number theory6) motivated the for-
mulation of the theorem of principal axes for finite-dimensional symmetric
operators by Cauchy (1789–1857) in 1826 (resp. by Hermite (1822–1901) in
1855). Quantum mechanics is essentially based on an infinite-dimensional
version of the theorem of principal axes due to Hilbert (1862–1943) in 1904
(bounded self-adjoint operators) and due to von Neumann (1903–1957) in
1928 (unbounded self-adjoint operators).

Folklore

The kinetic energy and the moment of inertia of a single point rotating
about an axis. Consider the situation depicted in Fig. 6.6(a). Let z = CP, and
let e be a position unit vector located at the center C of gravity. Choose a real
number ω, and set ω := ωe. Then the equation

ż(t) = ω × z(t), t ∈ R (6.42)

describes a rotation of the point P about an axis through the point C; the direction
of the axis is given by the unit vector e. The constant angular velocity of this
rotation is equal to ω. Explicitly, choose a right-handed orthonormal system i, j, e.
Then

z(t) = (ze)e + r(cosωt i + sinωt j), t ∈ R

satisfies the differential equation (6.42). For the velocity, we get

|ż(t)| = rω.

This yields the kinetic energy

Ekin = 1
2
mż(t)2 = 1

2
θω2.

The quantity

θ := mr2

6 C. Gauss, Disquisitiones arithmeticae, 1801.
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is called the moment of inertia of the rotating point P . Here, m is the mass of the
point P , and r is the distance of the point P from the rotation axis. Alternatively,7

Ekin = 1
2
m(ω × z(t))2 = 1

2
m(ω2z2 − (ωz)2) = 1

2
θω2

with θ = m(z2 − (ze)2).
The inertia tensor Θ. Consider now the same situation for the rigid body

which rotates with the constant angular velocity ω about an axis through the center
of gravity (Fig. 6.6(b)); the direction of the axis is given by the unit vector e. Then
we have żj(t) = ω × zj(t) for all indices. This yields the time-independent kinetic
energy of the rigid body:

Ekin =

n
X

j=1

1
2
mj ż

2
j =

n
X

j=1

1
2
mj(z

2
jω

2 − (zjω)2) =

n
X

j=1

1
2
mjr

2
jω

2.

Define

Θω =
n
X

j=1

1
2
mj(z

2
j · ω − (ωzj)zj) for all ω ∈ E3.

The linear operator Θ : E3 → E3 is called the inertia tensor of the rigid body. For
the kinetic energy of the rigid body rotating with constant angular velocity, we get

Ekin = 1
2
ω(Θω).

Proposition 6.6 The inertia tensor Θ is self-adjoint.

Proof. If ω ∈ E3, then σ(Θω) =
Pn

j=1
1
2
mj(z

2
j · σω − σzj · ωzj). This expression

is symmetric with respect to σ and ω. �

The principal moments and the principal axes of inertia. If ω �= 0, then

ω(Θω) =

n
X

j=1

mjr
2
jω

2 > 0,

since the points P1, . . . , Pn of the rigid body are assumed to be in general position.
Consequently, the quadratic form ω �→ ω(Θω) is positive definite, and the equation

ω(Θω) = 1, ω ∈ E3 (6.43)

describes an ellipsoid called the ellipsoid of inertia of the rigid body. Let us refor-
mulate the theorem of principal axes for finite-dimensional self-adjoint operators
due to Cauchy and Hermite in terms of the rigid body (see Theorem 3.6 on page
202).

Proposition 6.7 The inertia tensor Θ of the rigid body possesses an orthonormal
system of eigenvectors e1, e2, e3 in the Euclidean Hilbert space E3 with positive
eigenvalues λ1, λ2, λ3, respectively. Thus,

Θek = λkek, k = 1, 2, 3.

7 Note Lagrange’s identity (a × b)(c × d) = ac − bd.
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The positive eigenvalues λ1, λ2, λ3 are called the principal moments of inertia,
and the eigenvectors of the inertia tensor are called principal axes of inertia (e.g.,
e1, e2, e3). Setting ω = ω1e1 +ω2e2 +ω3e3, the ellipsoid of inertia (6.43) looks like8

λ1ω
2
1 + λ2ω

2
2 + λ3ω

2
3 = 1, (ω1, ω2, ω3) ∈ R

3.

This yields the kinetic energy

Ekin = 1
2
ω(Θω) = 1

2
(λ1ω

2
1 + λ2ω

2
2 + λ3ω

2
3).

In order to compute the principal moments of inertia, we choose an orthonormal
basis b1,b2,b3 of the Euclidean Hilbert space E3. Define

θkl := bk(Θbl), k, l = 1, 2, 3,

and consider the real (3× 3)-matrix T = (θkl). Then the principal values λ1, λ2, λ3

of inertia are the solutions of Lagrange’s secular equation

det(T − λI) = 0, λ ∈ R.

Moreover, setting ξ := (ξ1, ξ2, ξ3), the solutions ξ of the linear equation

ξ(T − λkI) = ξ, k = 1, 2, 3, ξ �= 0

yield the principal axes vectors
P3

k=1 ξ
kbk with respect to λk.

The total angular momentum with respect to the center of gravity.
Define the vector of total angular momentum

A =

n
X

j=1

zj ×mj żj .

We claim that A = Θω.
Proof. This follows from żj = ω × zj together with Grassmann’s identity

zj × (ω × zj) = ω · z2
j − (ωzj)zj .

�

6.5.4 The Equations of Motion – the Existence and Uniqueness
Theorem

We assume that the smooth force Fj and the torque Tj := xj×Fj act on the point
Pj . This yields

• the total force F(x1, . . . ,xn) :=
Pn

j=1 Fj(x1, . . . ,xn), and

• the total torque T :=
Pn

j=1 xj × Fj(x1, . . . ,xn),

where xj := P0Pj is the position vector of the point Pj (Fig. 6.4 on page 389). The

equations of motion for the rigid body read as follows:

(M1) Center of gravity: ÿ = F.

(M2) Time rate of change of the total angular momentum: Ȧ = T.
(M3) Angular velocity/angular momentum relation: A = Θω.

8 If λ1 = λ2 = λ3, then the ellipsoid of inertia is a ball, and we have Θω = λ1ω
for all ω ∈ E3, that is, all the nonzero vectors of E3 are principal axes of inertia.
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(M4) Infinitesimal rotations: żj = ω × zj , j = 1, . . . , n.

Recall that xj = y + zj , j = 1, . . . , n.

Initial values. We are given:

• x1(0), . . . ,xn(0) (positions of the points P1, . . . , Pn of the rigid body at time
t = 0),

• ẏ(0) (velocity vector of the center of gravity at time t = 0),
• e (rotation axis at time t = 0; |e| = 1),
• ω(0) (angular velocity at time t = 0).

This yields

• y(0) := 1
m

(x1(0) + . . .+ xn(0)) (position of the center of gravity at time t = 0),
• zj(0) = xj(0) − y(0), j = 1, . . . , n,
• ω(0) = ω(0)e (angular velocity vector at time t = 0),
• A(0) = (Θω)(0) =

Pn
j=1mj(zj(0)2 · ω(0) − ω(0)zj(0) · zj(0)) (total angular

momentum vector of the rigid body at time t = 0).

We are looking for the map

t �→ (y(t),A(t),ω(t), z1(t), . . . , zn(t)). (6.44)

Theorem 6.8 For a sufficiently small time interval, the initial-value problem for
the motion of the rigid body has a unique smooth solution.

Proof. In terms of components, the system (M1)–(M3) consists of 9 + 3n
equations for 9 + 3n unknown functions given by (6.44). Moreover, note that
ω(t) = Θ−1A(t). Thus, the system (M1)–(M3) represents a first-order system of
ordinary differential equations for the unknown functions

y = y(t), A = A(t), zj = zj(t), j = 1, . . . , n.

The claim follows now from the standard existence and uniqueness theorem for
systems of ordinary differential equations (see the Picard–Lindelöf theorem in Sect.
1.5 of E. Zeidler, Nonlinear Functional Analysis, Vol. I, Springer, New York, 1998).

�

Motivation of the equations of motion. Step 1: d’Alembert’s principle of
virtual power. Differentiating the constraints (xi(t) − xj)

2(t)2 = r2ij with respect
to time t and setting vi := ẋi(t), we get the equations

(xi − xj)(vi − vj) = 0, i, j = 1, . . . , n, i �= j (6.45)

for the virtual velocity vectors v1, . . . ,vn. Let a,ω ∈ E3. Choose

vj := a + ω × xj , j = 1, . . . , n.

Then the vectors v1, . . . ,vn satisfy the equation (6.45) because of c(ω × c) = 0 for
all vectors c,ω ∈ E3. d’Alembert’s principle of virtual power tells us that

n
X

j=1

(Fj −mjẍj)vj = 0.

Using b(ω × xj) = ω(xj × b), we get
 

n
X

j=1

Fj −mj ẍj

!

a +

 

n
X

j=1

xj × (Fj −mj ẍj)

!

ω = 0
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for all a,ω ∈ E3. Hence we get the force balance equation

n
X

j=1

(Fj −mjẍj) = 0, (6.46)

and the torque balance equation

n
X

j=1

xj × (Fj −mj ẍj) = 0. (6.47)

Note that these fundamental equations for the motion of the rigid body include the
so-called inertia forces depending on the acceleration vectors ẍj .

Step 2: Separation from the motion of the center of gravity. We will use the
superposition xj = y + zj together with the following relations:

• d
dt

(y × ẏ) = ẏ × ẏ + y × ÿ = y × ÿ;

• d
dt

(zj × żj) = zj × z̈j ;
• from

Pn
j=1mjzj =

Pn
j=1mjy −mjxj = 0 we get

Pn
j=1mj ż = 0.

It follows from mÿ = F that

d

dt
(y ×mẏ) = y × F.

Similarly, equation (6.47) implies

d

dt

X

j

xj ×mjẋj =
X

j

xj ×mj ẍj =
X

j

xj × Fj = y × F + T. (6.48)

Recall that T =
P

j zj ×Fj (total torque). Equation (6.48) describes the time rate
of change of the total angular momentum with respect to the origin P0.

We want to reformulate this in terms of the center of gravity. To this end, note
that

P

jmjzj =
P

jmj żj = 0. Hence

X

j

xj ×mj ẋj =
X

j

(y + zj) ×mj(ẏ + żj) = y ×mẏ +
X

j

zj ×mj żj .

By (6.48), this implies Ȧ = d
dt

P

j zj ×mj żj = T. �

6.5.5 Euler’s Equation of the Spinning Top

The approach to problems in physics can be simplified by passing to an
appropriate system of reference which fits best the physical situation.

Folklore

Euler (1707–1783) used the most natural system of reference Σ∗ for the motion of a
rigid body. This is a right-handed Cartesian (x∗, y∗, z∗)-coordinate system with the
center of gravity as origin. Moreover, the right-handed orthonormal system i∗, j∗,k∗
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represents three principal axes of inertia of the rigid body.9 The equation of motion
of the rigid body with respect to the coordinate system Σ∗ reads as follows:

λ1ω̇
1 + (λ3 − λ2)ω

2ω3 = T 1,

λ2ω̇
2 + (λ1 − λ3)ω

3ω1 = T 2,

λ1ω̇
3 + (λ2 − λ1)ω

1ω2 = T 3. (6.49)

We are given the components T 1, T 2, T 3 of the total torque vector T observed in
the system Σ∗. We are looking for the functions

t �→ (ω1(t), ω2(t), ω3(t))

where ω1(t), ω2(t), ω3(t) are the components of the angular velocity vector ω(t) ob-
served in the system Σ∗ at time t. The positive numbers λ1, λ2, λ3 are the principal
moments of inertia of the rigid body.

Equation (6.49) is the famous Euler equation for the spinning top. Prototypes
of spinning tops are the rotating earth and the gyrocompass. In Einstein’s theory
of special relativity, inertial system play a key role (see page 905). The moving
system

P

∗ of reference is the prototype of a non-inertial system. On the rotating
earth, the rotation causes two additional forces to the gravitational force, namely,
the centrifugal force and the Coriolis force. This is thoroughly studied in E. Zeidler
(1995), page 30, quoted below.
Proof. Choose the right-handed orthonormal system of vectors e1, e2, e3 such that
they represent principal axes of inertia of the rigid body. Decompose

• ω(t) = ω1(t)e1(t) + ω2(t)e2(t) + ω3(t)e3(t), and
• T(t) = T 1(t)e1(t) + T 2(t)e2(t) + T 3(t)e3(t).

Note that

A(t) = Θω(t) =

3
X

j=1

λjω
j(t)ej(t).

Hence

Ȧ(t) =
3
X

j=1

λj
`

ω̇j(t)ej(t) + ωj(t)ėj(t)
´

.

Using the equation ėj(t) = ω(t) × ej(t), of moving frames, the claim follows from

Ȧ(t) = T. �

The Euler equation for a continuous rigid body will be considered in Problem 6.3.

Further Reading

E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. IV:
Applications to Mathematical Physics, Springer, New York, 1995 (the first
two chapters).

L. Landau and E. Lifshitz, Course of Theoretical Physics, Vol 1: Mechanics,
Butterworth-Heinemann, Oxford, 1983.

9 In particular, if we choose the rotating earth, then the origin is the center of
earth, the x∗-axis connects the center of earth with a fixed equatorial point, and
the z∗-axis connects the center of earth with the North Pole. The unit vector k∗
points in the direction of the z∗-axis, and so on.
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V. Arnold, Mathematical Theory of Classical Mechanics, Springer, Berlin,
1978.

M. Audin, Spinning Tops, Cambridge University Press, 1996.

F. Klein and A. Sommerfeld, The Theory of the Top (classic monograph).
English edition: Vol. 1: Birkhäuser, Basel, 2008, Vol. 2: Springer, Berlin,
2010. German edition: Springer, Berlin, 1897.

6.5.6 Equilibrium States and Torque

Assume that the forces (x1, . . . ,xn) �→ Fj(x1, . . . ,xn) are smooth, j = 1, . . . , n.

Proposition 6.9 For the positions x10, . . . ,xn0, the rigid body is in an equilibrium
state iff the following three conditions are satisfied:
(i) The total force is zero:

Pn
j=1 Fj(x10, . . . ,xn0) = 0.

(ii) The total torque is zero:
Pn

j=1 xj0 × Fj(x10, . . . ,xn0) = 0.

(iii) The body is at rest at time t = 0: ẋj0(0) = 0, j = 1, . . . , n.

Proof. (I) Suppose that the rigid body is in an equilibrium state, that is, the
constant trajectories

xj(t) :≡ xj0, j = 1, . . . , n (6.50)

are solutions of the equations of motion

ÿ =
X

j

Fj , Ȧ = T.

It follows from ẏ = 0 that (i) is satisfied. Moreover, we have żj = ẏ − ẋj = 0 if

j = 1, . . . , n. Hence A =
P

j zj ×mj żj = 0. This implies T = Ȧ = 0 which yields

the condition (ii).
(II) Conversely, assume that the properties (i), (ii), and (iii) are satisfied. Then

the trajectories (6.50) are a solution of the equations of motion. By Theorem 6.8
on page 394, this solution is unique. �

6.5.7 The Principal Bundle R
3 × SO(3) – the Position Space of a

Rigid Body

The position space of a rigid body. Let us fix the right-handed Cartesian
(x, y, z)-coordinate system at the point P0 with the right-handed orthonormal basis
i, j,k at the point P0. Parallel transport of i, j,k from the point P0 to the point
C yields the vectors iC , jC ,kC . The state of a rigid body can be described by the
tuple

(C; e1, e2, e3) (6.51)

where C is the center of gravity of the rigid body, and the unit vectors e1, e2, e3

represent a distinguished right-handed orthonormal system of the rigid body at the
point C (e.g., three fixed principal inertial axes of the rigid body). Then there exists
a matrix G ∈ SO(3) such that
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0

B

@

e1

e2

e3

1

C

A

= G

0

B

@

iC
jC
kC

1

C

A

. (6.52)

Thus, the state (6.51) can be described by the coordinates

(C, G) ∈ R
3 × SO(3)

where C = (xC , yC , zC) are the coordinates of the center C of gravity in the (x, y, z)-
coordinate system, and G describes the rotation (6.52). The product set

R
3 × SO(3)

is called a (trivial) principal bundle with the linear space R
3 as base manifold, and

the Lie group SO(3) as typical fiber.
The motion of the rigid body. A trajectory

t �→ (C(t), G(t))

on the principal bundle R
3 × SO(3) describes the motion of a rigid body.

Gauge transformations. If we replace the right-handed orthonormal frame
e1, e2, e3 at the point C by the right-handed orthonormal frame e+

1 , e
+
2 , e

+
3 at the

point C, then there exists a matrix G+(C) ∈ SO(3) such that
0

B

@

e+
1

e+
2

e+
3

1

C

A

= G+(C)

0

B

@

e1

e2

e3

1

C

A

.

Hence
0

B

@

e+
1

e+
2

e+
3

1

C

A

= G+(C)G

0

B

@

iC
jC
kC

1

C

A

.

Thus the coordinate (C, G) of the point (6.51) is replaced by the coordinate
(C, G+(C)G). The transformation

G �→ G+(C)G

is called a gauge transformation.

6.6 A Glance at Constraints in Quantum Field Theory

In classical and modern physics, gauge theories possess special features. In this
section, we only want to sketch some basic ideas. A detailed study will be carried out
in Vols. IV and V. The point is that, typically, the local symmetry of the Lagrangian
generates constraints for the Euler–Lagrange equations, and the invertibility of the
Legendre transformation breaks down.10

10 As an introduction, we refer to H. Rothe and K. Rothe, Classical and Quantum
Dynamics of Constrained Hamiltonian Systems, World Scientific Lecture Notes
in Physics, World Scientific, Singapore, 2010.
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6.6.1 Gauge Transformations and Virtual Degrees of Freedom in
Gauge Theory

Potentials in classical mechanics and gauge fixing. As a prototype, consider
the gravitational force at the surface of earth,

F = −gmk.

This force acts on a stone of mass m. As usual, we use a right-handed Cartesian
(x, y, z)-coordinate system with the right-handed orthonormal basis i, j,k. Intro-
ducing the function

U(x, y, z) := mgz + U0, (x, y, z) ∈ R
3, (6.53)

we get

F = −gradU.

The function U is called the potential of the force F. Moving the stone of mass
m along the curve C from the point (x, y, z) to the point (x0, y0, z0), we gain the
energy

−
Z

C

Fdx =

Z

C

dU = U(x, y, z) − U(x0, y0, z0) = mg(z − z0).

Therefore, the function U is also called the potential energy of the stone at hight
z. If a stone falls down from the height z > 0 to the height z0 = 0 of the surface
of earth, then the potential energy of the stone is transformed into the heat energy
mgz. The following points are crucial:

• The potential U from (6.53) is not uniquely determined; it is only determined
up to the constant U0.

• The choice of the constant U0 is called a gauge fixing.
• The change of the constant U0, that is, the transformation

mgz + U0 �→ mgz + U1

is called a gauge transformation.
• The potential energy U does not possess any physical meaning. However, the

difference U(x, y, z) − U(x0, y0, z0) possesses a physical meaning, namely, the
gain of energy.

The main principle of gauge theory reads as follows:

Only gauge-invariant quantities possess a physical meaning.

For example, the force F is gauge-invariant. In other words, the force F does not
depend on the choice of the constant U0. The constant U0 is called a virtual degree
of freedom.

Potentials in Maxwell’s electrodynamics and gauge fixing. In Maxwell’s
theory of electromagnetism, one uses the scalar potential U and the vector potential
A in order to present the electromagnetic field in an inertial system by the relation

E = −gradU − ∂A

∂t
, B = curlA.

We will discuss this later on. The transformation

U �→ U − ∂χ

∂t
, A �→ A + gradχ,

is called a gauge transformation. Because of curl gradχ = 0, the gauge transfor-
mation does not change the electromagnetic field E,B. Physicists use the following
two gauge conditions for gauge fixing:
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• div A + 1
c2

∂U
∂t

= 0 (Lorentz gauge), and
• div A = 0 (Coulomb gauge).

In the Coulomb gauge, the Maxwell equation ε0 div E = � in a vacuum yields

−ε0 div gradU = �.

Equivalently, ε0ΔU = �. This is the same Poisson equation as in electrostatics.

6.6.2 Elimination of Unphysical States (Ghosts)

The introduction of additional unphysical states called ghosts helps to
obtain a clear presentation of quantized gauge theories. The key point
is that, roughly speaking, the physics observed in experiments does not
depend on the ghosts.

Folklore

In classical mechanics, one uses virtual trajectories related to the constraints in
order to characterize physical trajectories by means of d’Alemberts principle of
critical virtual power. In terms of mathematics, the virtual velocities are elements
of the tangent spaces of the constrained position space described by the constraints.
Generalizing this classical approach, the quantization of classical gauge field theo-
ries leads to virtual states called ghosts. The final goal is to add specific constraints
which eliminate the influence of ghosts on physical phenomena observed in experi-
ments.

Gupta–Bleuler ghosts in quantum electrodynamics. In Volume II, we
have studied quantum electrodynamics; there we have used the Fourier expansion of
classical free fields in order to construct the creation and annihilation operators for
photons, electrons, and positrons (method of Fourier quantization). More precisely,
we have obtained photons with transversal and longitudinal polarization. The point
is that

The Lorenz gauge condition forbids unphysical longitudinal photons.

Roughly speaking, it turns out that photons of transversal and longitudinal polar-
ization form an indefinite Hilbert space X. To overcome this difficulty in Vol. II,
we have used the method of Gupta–Bleuler. The basic idea is to construct a linear
operator Q : X → X such that the state |s〉 in X is a physical state iff

Q|s〉 = 0. (6.54)

BRST ghosts. Quantum electrodynamics is a gauge theory with the commu-
tative Lie group U(1) as gauge group. It was discovered by Becchi, Rouet, Stora,
and Tyutin in the early 1970s that the method (6.54) can be generalized to gauge
theories with noncommutative gauge groups (e.g., the groups SU(2) and SU(3)
which are basic for the Standard Model in particle physics). It turns out that there
exists a linear operator Q : X → X with the key property

Q2 = 0 (6.55)

such that the equation (6.54) characterizes the physical states. The property (6.55)
is typical for cohomology (see Sect. 16.8 of Vol. I on the power of cohomology). In
terms of mathematics, equation (6.54) tells us that the physical states are precisely
the cocycles with respect to the cohomology operator Q. The construction of the
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operator Q is based on a new type of symmetry called the BRST symmetry (see
Sect. 16.7 of Vol. I).

Faddeev–Popov ghosts. The basic idea of this approach is to use the Feyn-
man path integral. Here, one has to integrate over all the physical states. The point
is that gauge transformations leave invariant physical states. Therefore, physical
states are equivalence classes modulo the gauge group. In other words, physical
states are orbits under the action of the gauge group. In 1967, Faddeev and Popov
invented a method for computing path integrals on orbit spaces by separating a
specific determinant. In addition, they introduced additional fields (so-called ghost
fields) in order to enforce the crucial unitarity of the S-matrix (see Sect. 16.6 of
Vol. I).

The field-antifield approach due to Batalin–Vilkovisky. This approach
emerged in the early 1980s. The basic idea is to extend the given action S to
an action Sext which depends on fields and additional anti-fields. The symmetry
properties of Sext are governed by a so-called master equation. These symmetry
properties of Sext lead to Noether identities. It turns out that the right choice
of Sext embodies all the information about the gauge symmetries of the original
functional S. This nice procedure can be used for the quantization of gauge theories.
As an introduction, we recommend Chap. 12 of H. Rothe and K. Rothe (2010),
quoted on page 419. The anti-fields can be regarded as ghosts. Observe the following
peculiarity:

It happens frequently, that both the Batalin–Vilkovisky ghosts and the
Faddeev–Popov ghosts are fermions described by non-classical Grassmann
variables.

This way, the quantization of gauge theories is closely related to Grassmann’s 1844
idea of introducing quantities in mathematics which have the key product property

a ∨ b = −b ∨ a.

This is a beautiful idea in modern mathematics strongly influenced by the work
of physicists. For example, there exists a supersymmetric proof of the Atiyah–
Singer index theorem.11 In superstring theory, supersymmetric models are based
on Grassmann’s idea.12 Nowadays it is an open question whether such models are
realized in nature. Physicists hope that the LHC (Large Hadron Collider) at CERN
(Geneva, Switzerland) will give an answer in the near future.

6.6.3 Degenerate Minimum Problems

Free minimum problem. Fix α ≥ 0. Consider the minimum problem

1
2
x2 + 1

2
α2y2 = min!, (x, y) ∈ R

2. (6.56)

11 See the supersymmetric proof of the Gauss–Bonnet–Chern theorem in Chap. 12
of B. Cycon, R. Froese, W. Kirsch and B. Simon (Eds.), Schrödinger Operators,
Springer, New York, 1986.
We also refer to E. Getzler, A short proof of the local Atiyah–Singer index
theorem, Topology 25 (1986), 111–117.

12 K. Becker, M. Becker, and J. Schwarz, String Theory and M -Theory, Cambridge
University Press, 2006.
J. Schwarz (Ed.), Superstrings: The First 15 Years of Superstring Theory, Vols.
1, 2, World Scientific, Singapore, 1985.
K. Efetov, Supersymmetry in Disorder and Chaos, Cambridge University Press,
1997.
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• Regular case: α > 0. Problem (6.56) has the unique solution (x, y) = (0, 0).
• Singular case: α = 0. Problem (6.56) has not a unique solution. Precisely all the

points (0, y) located on the y-axis are solutions of (6.56).

Constrained minimum problem and the Lagrangian multiplier. Con-
sider now the minimum problem

1
2
x2 + 1

2
α2y2 = min!, (x, y) ∈ R

2, x2 + y2 − 1 = 0. (6.57)

This means that we add the constraint x2 + y2 − 1 = 0 to (6.56). Let us define
f(x) := 1

2
x2 + 1

2
α2y2. Geometrically, we are looking for a minimal value of the

function f on the unit circle.

If 0 ≤ α < 1, then the minimum problem (6.57) has the solutions
(x0, y0) = (0,±1) with the minimal value f(x0, y0) = 1

2
α2.

Proof. We will use two different methods which are typical for handling constrained
minimum problems.

(I) The method of parametrizing the constraint (reduction to a free minimum
problem). Using x = cosϕ, y = sinϕ, and setting

g(ϕ) := 1
2

cos2 ϕ+ 1
2
α2 sin2 ϕ,

we get the free minimum problem

g(ϕ) = min!, ϕ ∈ R.

If ϕ0 is a solution, then

0 = g′(ϕ0) = (α2 − 1) sinϕ0 cosϕ0 = 1
2
(α2 − 1) sin 2ϕ0.

Hence ϕ0 = kπ, k π
2

where k = 0,±1,±2, . . . Thus, (x0, y0) = (±1, 0), (0,±1).

Finally, note that f(±1, 0) = 1
2

and f(0,±1) = 1
2
α2.

(II) The method of the Lagrangian multiplier. Suppose that (x0, y0) is a solution
of (6.57). Choose a curve x = x(t), y = y(t),−t1 < t < t1, with x(0) = x0, y(0) = y0
such that the curve satisfies the constraint

x(t)2 + y(t)2 − 1 = 0.

Differentiating this with respect to time t at the point t = 0, we get the linearized
constraint 2x0ẋ(0) + 2y0ẏ(0) = 0. Moreover, set χ(t) := f(x(t), y(t)). Then the
function χ has a minimum at the point t = 0. Hence

0 = χ′(0) = fx(x0, y0)ẋ(0) + fy(x0, y0)ẏ(0).

Setting v = ẋ(0) and w := ẏ(0), we get the linear system

x0v + y0w = 0,

x0v + α2y0w = 0. (6.58)

Note that x2
0 + y20 = 1. Thus, the rank of the coefficient matrix

A :=

 

x0 y0
x0 α2y0

!

is at least equal to one. However, we know that every solution of the first equation
of (6.58) is also a solution of the second equation. Thus, the rank of the coefficient
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matrix A is equal to one (see Problem 6.1). Consequently, there exists a real number
such that

(x0, y0) = λ(x0, α
2y0).

Hence we get the following three equations

x0 = λx0, α
2y0 = λy0, x

2
0 + y20 = 1

for computing the three quantities x0, y0, λ. If x0 �= 0, then λ = 1. Hence y0 = 0,
which implies x0 = ±1, and so on. Therefore, the solutions are

• x0 = 0, y0 = ±1, λ = α2, and
• x0 = ±1, y0 = 0, λ = 1

2
.

Thus, we get the two candidates (x0, y0) = (±1, 0), (0,±1). Finally, note that
f(±1, 0) = 1

2
and f(0,±1) = 1

2
α2. �

In addition, the same argument shows that if α = 1, then all the points on the
unit circle are solutions of (6.57). If α > 1, then the minimum problem (6.57) has
the solutions (x0, y0) = (±1, 0) with the minimal value f(x0, y0) = 1

2
.

Variations of real-valued function. As a preparation for the study of local
symmetries in the calculus of variations and its relation to degenerate minimum
problems, let us consider the smooth function

S : R
2 → R.

For fixed real numbers h and k, set

χ(ε) := S(x+ εh, y + εk), ε ∈ R.

By Taylor expansion,

χ(ε) = χ(0) + εχ′(0) + 1
2
ε2χ′′(0) + . . . (6.59)

This motivates the definitions δx := εh, δy := εk, and

δS(x, y; δx, δy) := εχ′(0), δnS(x, y; δx, δy) := εnχ(n)(0), n = 2, 3, . . .

Here, δnS(x, y; δ, δy) is called the nth variation of the function S at the point (x, y)
in direction (δx, δy). Explicitly, set

S′(x, y) := (Sx(x, y), Sy(x, y)), S′′(x, y) :=

 

Sxx(x, y) Sxy(x, y)

Sxy(x, y) Syy(x, y)

!

.

Then, we obtain the first variation

δS(x, y; δx, δy) = S′(x, y)

 

δx

δy

!

= Sx(x, y) δx+ Sy(x, y) δy.

For the second variation of the function S, we get

δ2S(x, y; δx, δy) = Sxx(x, y) (δx)2 + 2Sxy δxδy + Syy(x, y) (δy)2.

In terms of the Hessian matrix, this means that

δ2S(x, y; δx, δy) = (δx, δy) S′′(x0, y0)

 

δx

δy

!

.
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Regular minimum problem. Let S′(x0, y0) = 0. Suppose that the Hessian
matrix S′′(x0, y0) has only positive eigenvalues. Then the function S has a strict
local minimum at the point (x0, y0). In particular, if S is a quadratic function, then
S has a global minimum at the point (x0, y0).

This result (together with far-reaching generalizations to functionals on infinite-
dimensional Banach spaces) can be found in E. Zeidler, Nonlinear Functional Anal-
ysis and its Applications, Vol. III: Variational Methods and Optimization, Springer,
New York, 1986. The Hessian matrix was studied by Hesse (1811–1874).

Singular minimum problem. Let S′(x0, y0) = 0. Suppose that the Hessian
matrix S′′(x0, y0) has the eigenvalues λ1 > 0 and λ2 = 0, and suppose that (h, k)
is an eigenvector of S′′(x0, y0) corresponding to the degenerate eigenvalue λ2 = 0.
Then

S(x0 + εh, y0 + εk) = S(x0, y0) +O(ε3), ε→ 0.

In particular, if S is a quadratic function, then

S(x0 + εh, y0 + εk = S(x0, y0) for all ε ∈ R.

Thus, all the points located on the line {(x0 + εh, y0 + εk) : ε ∈ R} are minimal
points of the function S.

Proof. By the Taylor expansion (6.59),

χ(ε) = χ(0) + εχ′(0) + 1
2
ε2χ′′(0) +O(ε3), ε→ 0.

Note that χ′(0) = χ′′(0) = 0. If the function χ is quadratic, then the term O(ε3)
drops out. �

In terms of mechanics, regular (resp. singular) minimal points are models for
stable (resp. unstable) equilibrium points.

6.6.4 Variation of the Action Functional

In modern mathematics, the variations δx, δy and δS are not mystical
infinitesimals, but well-defined finite mathematical quantities.

Folklore

The use of the nonzero function δx together with (δx)2 = 0 is confusing in the
classical calculus papers and in many physics textbooks. We want to discuss how
to overcome this confusion in a simple way.

The principle of minimal action. Fix the finite time interval [t0, t1]. Let us
consider the principle of minimal action

S(x, y) = min!, x, y ∈ C∞[t0, t1] (6.60)

with the boundary condition: x(t0), x(t1), y(t0), y(t1) are fixed. We will study the
special case where we have the action functional

S(x, y) =

Z t1

t0

L(x(t), y(t), ẋ(t), ẏ(t)) dt, x, y ∈ C∞[t0, t1]

with the Lagrangian

L(x, y, ẋ, ẏ) := 1
2
ẋ2 + 1

2
α2ẏ2 + ẋy − 1

2
(x− y)2. (6.61)
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Here, we fix the parameter α ≥ 0. We will distinguish between the regular case
(α > 0) and the singular case (α = 0). Recall that the space C∞[t0, t1] consists of
all the smooth functions x : [t0, t1] → R.

The Taylor expansion and the language of mathematicians. Choose the
functions h, k ∈ C∞[t0, t1]. Set

χ(ε) := S(x+ εh, y + εk), ε ∈ R.

Taylor expansion yields

χ(ε) = χ(0) + εχ′(0) + 1
2
ε2χ′′(0) +O(ε3), ε→ 0.

In order to pass to Lagrange’s symbol δ, we define

• δx := εh, δy := εk,
• δS := εχ′(0), and

• δnS = εnχ(n)(0), n = 2, 3, . . .

Note that δnS depends on x, y and δx, δy. To simplify notation, we frequently write
δnS instead of δnS(x, y; δx, δy). This yields

S(x+ δx, y + δy) = S(x, y) + δS(x, y; δx, δy) +O(ε2), ε→ 0 (6.62)

and

S(x+ δx, y + δy) = S(x, y) + δS(x, y; δx, δy) + 1
2
δ2S(x, y; δx, δy) +O(ε3), ε→ 0.

Here, δS(x, y; δx, δy) (resp. δ2S(x, y; δx, δy)) is called the first (resp. second) vari-
ation of the functional S at the point (x, y) in direction (δx, δy).

Example. Choose the Lagrangian L from (6.61). Fix α ≥ 0. Let ε be a real
number. Replacing x (resp. y) by x+ εh (resp. y + εk), we get the function

Lε := 1
2
(ẋ+ εḣ)2 + 1

2
α2(ẏ + εk̇)2 + (ẋ+ εḣ)(y + εk) − 1

2
(x+ εh− y − εk)2

of the real variable ε. Differentiation with respect to ε at the point ε = 0 yields

dLε

dε |ε=0
= ẋḣ+ α2ẏk̇ + ḣy + ẋk − (x− y)(h− k).

Using the Leibniz rule d
dt

(ẋh) = ẍh+ ẋḣ, we get

dLε

dε |ε=0
=
d

dt
(ẋh+ α2ẏk + hy) − h(ẍ+ ẏ + x− y) − k(α2ÿ − ẋ+ y − x).

Noting that χ′(0) =
R t1
t0

dLε
dε |ε=0

dt, we obtain the key formula

χ′(0) = −
Z t1

t0

ˆ

(ẍ+ ẏ + x− y)h− (α2ÿ − ẋ+ y − x)k
˜

(t) dt

+(ẋh+ α2ẏk + hy)(t1) − (ẋh+ α2ẏk + hy)(t0).

Proposition 6.10 If x, y is a solution of the variational problem (6.60) of minimal
action, then we have the Euler–Lagrange equations

ẍ+ ẏ + x− y = 0, α2ÿ − ẋ+ y − x = 0 on [t0, t1]. (6.63)
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Proof. By the general theory, the Euler–Lagrange equations read as

d

dt
Lẋ = Lx,

d

dt
Lẏ = Ly.

This yields (6.63). �

For the convenience of the reader, let us repeat the standard argument with
respect to the present special case. Let x, y be a solution of (6.60). Choose the
functions h, k ∈ C∞[t0, t1] with the boundary conditions

h(t0) = h(t1) = 0, k(t0) = k(t1) = 0. (6.64)

Then the functions x + εh and x (resp. y + εk and k) have the same boundary
values. Therefore, the real-valued function ε → χ(ε) has the critical point ε = 0.
This implies χ′(0) = 0. Explicitly,

−
Z t1

t0

ˆ

(ẍ+ ẏ + x− y)h+ (α2ÿ − ẋ+ y − x)k
˜

(t) dt = 0

for all functions h, k ∈ C∞[t0.t1] with the boundary conditions (6.64). Finally,
applying the variational lemma (see Sect. 7.20.2 of Vol. I), we get the claim (6.63).
This finishes the proof.

Let us reformulate this in terms of the symbol δ. Since δS = εχ′(0), we get the
key formula

δS = −
Z t1

t0

ˆ

(ẍ+ ẏ + x− y) δx+ (α2ÿ − ẋ+ y − x) δy
˜

(t) dt

+(ẋ δx+ α2ẏ δy + y δx)(t1) − (ẋ δx+ α2ẏ δy + y δx)(t0). (6.65)

Finally, we want to pass to the elegant formula

δS =
δS(x, y)

δx
δx+

δS(x, y)

δy
δy. (6.66)

To this end, we define

δS(x, y)

δx
h := −

Z t1

t0

[(ẍ+ ẏ + x− y)h] (t) dt

+(ẋh+ yh)(t1) − (ẋh+ yh)(t0),

and

δS(x, y)

δy
k := −

Z t1

t0

ˆ

(α2ÿ − ẋ+ y − x)k
˜

(t) dt

+α2(ẏk)(t1) − α2(ẏk)(t0)

for all functions h, k ∈ C∞[t0, t1]. The symbol δS(x,y)
δx

stands for the linear map

h �→ δS(x,y)
δx

h. This yields the linear functional

δS(x, y)

δx
: C∞[t0, t1] → R
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which is called the partial functional derivative (with respect to the variable x) of

the functional S at the point (x, y). Similarly, δS(x,y)
δy

is a linear functional on the

real linear space C∞[t0, t1].
The language of physicists. In order to pass to the language used by physi-

cists, one has to replace
f = O(ε2), ε→ 0

by writing f = 0. In other words, all the terms of order O(ε2) drop out. For example,
instead of (δx)2 = ε2h2 = O(ε2), ε→ 0, we briefly write

(δx)2 = 0. (6.67)

From (6.62) we get the two variation formulas

S(x+ δx, y + δy) = S(x, y) + δS(x, y; δx, δy)

and

S(x+ δx, y + δy) = S(x, y) + δS(x, y; δx, δy) + 1
2
δ2S(x, y; δx, δy)

used by physicists. Then, Proposition 6.10 can be elegantly formulated in the fol-
lowing way:

If the pair of functions x, y is a solution of the variational problem (6.60)
of minimal action, then

δS = 0

for all variations δx, δy which vanish at the boundary points t0 and t1.

Local functional derivatives (densities). Our goal is to write

δS(x, y)

δx
δx =

Z t1

t0

δS(x, y)

δx(t)
δx(t) dt,

δS(x, y)

δy
δy =

Z t1

t0

δS(x, y)

δy(t)
δy(t) dt.

This yields

δS =

Z t1

t0

„

δS(x, y)

δx(t)
δx(t) +

δS(x, y)

δy(t)
δy(t)

«

dt. (6.68)

(a) Regular density case: If the functions δx and δy vanish at the boundary
points t0 and t1, then it follows from the key formula (6.65) that

δS(x, y)

δx(t)
= −(ẍ+ ẏ + x− y)(t), δS(x, y)

δy(t)
= (α2ÿ − ẋ+ y − x)(t), t ∈ [t0, t1].

(b) Singular density case: If the boundary values of the functions δx and δy are
arbitrary, then we use Dirac’s mnemonic density formula

Z t1

t0

δ(t− t∗)f(t) dt = f(t∗) for all f ∈ C∞[t0, t1], t∗ ∈ [t0, t1].

In this sense, for all times t ∈ [t0, t1], we get

δS(x, y)

δx(t)
= −(ẍ+ ẏ + x− y)(t) + (ẋ+ y)(t1) · δ(t− t1) − (ẋ+ y)(t0) · δ(t− t0),

δS(x, y)

δy(t)
= −(α2ÿ − ẋ+ y − x)(t) + α2ẏ(t1) · δ(t− t1) − α2ẏ(t0) · δ(t− t0).
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6.6.5 Degenerate Lagrangian and Constraints

Consider the singular case where α = 0. From (6.63) we get the Euler–Lagrange
equations

ẍ+ ẏ + x− y = 0, ẋ+ x− y = 0 on [t0, t1]. (6.69)

The point is that these two equations are not independent equations. There exists
the additional relation

ẏ = ẋ. (6.70)

Proof. Differentiating the Euler–Lagrange equation ẋ = y−x with respect to time,
we get

ẍ = ẏ − ẋ.
Using the Euler–Lagrange equation ẍ = y − x− ẏ, we obtain

ẏ − ẋ = y − x− ẏ.

This implies 2ẏ = 2(y − x). Thus, ẏ = y − x = ẋ. �

Proposition 6.11 The solutions of the Euler–Lagrange equations (6.69) are pre-
cisely given by the family of linear functions

x = x0 + vt, y = y0 + vt, t ∈ R (6.71)

with the real parameters x0, y0 and v where y0 − x0 = v.

Proof. If x, y is a solution of (6.69), then the relation (6.70) is valid. Hence

ẍ = y − x− ẋ = 0.

Thus, x = x0 + vt and y = y0 + vt. Moreover, ẋ = y − x = y0 − x0 = v.
Conversely, the family (6.71) is a solution of (6.69). �

6.6.6 Degenerate Legendre Transformation

Consider again the Lagrangian

L(x, y, ẋ, ẏ) := 1
2
ẋ2 + 1

2
α2ẏ2 + ẋy − 1

2
(x− y)2 (6.72)

together with the Euler–Lagrange equations

ẍ+ ẏ + x− y = 0, α2ÿ − ẋ+ y − x = 0 on R. (6.73)

In Chap. 6 of Vol. II, we have studied the Hamiltonian approach to mechanics. Let
us apply this to the special Lagrangian L from (6.72). Define the function

H(x, y, ẋ, ẏ) := ẋLẋ(x, y, ẋ, ẏ) + ẏLẏ(x, y, ẋ, ẏ) − L(x, y, ẋ, ẏ).

Proposition 6.12 If t �→ (x(t), y(t)) is a solution of the Euler–Lagrange equations
(6.69), then H is a conserved quantity.
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Proof. We have to show that

H(x(t), y(t), ẋ(t), ẏ(t)) = const for all t ∈ R.

In fact, by the chain rule,

d

dt
H = ẍLẋ + ẋ

d

dt
Lẋ + ÿLẏ + ẏ

d

dt
Lẏ − Lxẋ− Lẋẍ− Ly ẏ − Lẏ ÿ

= ẋ

„

d

dt
Lẋ − Lx

«

+ ẏ

„

d

dt
Lẏ − Ly

«

≡ 0

because of the Euler–Lagrange equations. �

Next we want to emphasize the distinction between the regular case and the
singular case. The latter is a paradigm for gauge theories.

The regular case. Let α > 0. We introduce the generalized momenta p and r
given by

p := Lẋ(x, y, ẋ, ẏ), r := Lẏ(x, y, ẋ, ẏ).

Explicitly,

p = ẋ+ y, r = α2ẏ. (6.74)

The bijective map (x, y, ẋ, ẏ) �→ (x, y, p, r) from R
4 onto R

4 is called the Legendre
transformation. The inverse Legendre transformation reads as

ẋ = p− y, ẏ =
r

α2
.

In terms of geometry, we use the following terminology:

• The tuples (x, y) form the position space M = R
2.

• The tuples (x, y, ẋ, ẏ) form the state space which coincides with the tangent
bundle TM of the position space M .

• The tuples (x, y, p, r) form the phase space R
4.

• The triplets (x, y, pdx + rdy) form the cotangent bundle T ∗M of the position
space M .

We have the linear isomorphisms TM  R
4 and T ∗M  R

4 (phase space). The
Legendre transformation maps diffeomorphically the state space TM onto the phase
space T ∗M . The function H passes over to the Hamiltonian

H(x, y, p, r) =
(p− y)2

2
+
r2

2α2
+

(x− y)2
2

.

The Euler–Lagrange equations (6.73) are transformed into the so-called canonical
equations

ṗ = −Hx, ṙ = −Hy, ẋ = Hp, ẏ = Hr.

Explicitly,

ṗ = y − x, ṙ = p+ x− 2y, ẋ = p− y, ẏ =
r

α2
.

The singular case. Let α = 0. In this case, we have the degenerate Lagrangian

L(x, y, ẋ, ẏ) := 1
2
ẋ2 + ẋy − 1

2
(x− y)2

with the degenerate quadratic form 1
2
ẋ2. The Euler–Lagrange equations read as
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ẍ+ ẏ + x− y = 0, ẋ− y + x = 0 on [t0, t1]. (6.75)

The function H looks like

H(x, y, ẋ) = ẋLẋ − L = ẋ(ẋ+ y) − 1
2
ẋ2 − ẋy + 1

2
(x− y)2 = 1

2
ẋ2 + 1

2
(x− y)2.

For the generalized momenta, we get

p := Lẋ(x, y, ẋ), r = Lẏ(x, y, ẋ).

Explicitly,

p = ẋ+ y, r = 0. (6.76)

In this case, the Legendre transformation (6.74) breaks down. In fact, the Legen-
dre transformation (6.74) cannot be inverted, since the generalized momentum r
vanishes. The equation r = 0 is called a constraint. The vanishing of generalized
momenta is typical for gauge theories.

In order to overcome this difficulty, we first construct the Hamiltonian

H(x, y, p) =
(p− y)2

2
+

(x− y)2
2

.

Motivated by the constraint r = 0, we pass to the extended Hamiltonian

H+(x, y, p) =
(p− y)2

2
+

(x− y)2
2

+ λr

where the Lagrangian multiplier λ is a real number. Using the function H+, we get
the following canonical equations:

ṗ = −H+
x , ṙ = −H+

y , ẋ = H+
p , ẏ = H+

r .

Explicitly, setting λ = v we obtain

ṗ = y − x, ṙ = p+ x− 2y, ẋ = p− y, ẏ = v

with the constraint r = 0. From this constraint together with the equation of motion
ṙ = p+ x− 2y, we get the additional constraint

p+ x− 2y = 0.

Summarizing, we obtain the following modified canonical equations:

ẋ = p− y, ẏ = v, ṗ = y − x, p+ x− 2y = 0. (6.77)

Here, v is an arbitrary real parameter. From the physical point of view, the La-
grangian multiplier λ = v is the constant velocity of the trajectory y = y0+vt, t ∈ R.

Proposition 6.13 The modified canonical equations (6.77) are equivalent to the
Euler–Lagrange equations (6.75).
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Proof. (I) Let x, y, p be a solution of (6.77). If ẋ = p− y, then

ẍ = ṗ− ẏ = y − x− ẏ.

This is the first Euler–Lagrange equation from (6.75). Moreover, it follows from
ẋ = p− y that ẋ = 2y−x− y = x− y. This is the second Euler–Lagrange equation.

(II) Conversely, if x, y is a solution of the Euler–Lagrange equations (6.75), then

x = x0 + vt, y0 + vt, t ∈ R, x0 − y0 = v,

by Prop. 6.11 on page 408. Setting p(t) := 2y(t)− x(t), we get a solution of (6.77),
by explicit computation. �

Dirac’s classification of Hamiltonian constraints. The constraint

r = 0 (6.78)

is called a static (or primary) constraint, whereas the constraint

p+ x− 2y = 0 (6.79)

is called a dynamic (or secondary) constraint. Observe that the static constraint
(6.78) is independent of the equations of motion. In contrast to this, the dynamic
constraint (6.79) depends on the equations of motion and the static constraint
(6.78).

6.6.7 Global and Local Symmetries

Symmetries of the action functional lead to symmetries of the Euler–
Lagrange equations. In particular, invariance of the action functional under
time translations is responsible for the conservation of energy.
Degeneracy of the second variation generates local symmetries also called
gauge symmetries. The use of symmetries is basic for modern physics.

Folklore

One has to distinguish between global and local symmetries. A global symmetry
corresponds to a Lie group with a finite number of parameters. Local symmetries
depend on functions of space and time variables. Let us discuss typical features by
considering the Lagrangian

L(x, y, ẋ, ẏ) = 1
2
ẋ2 + ẋy + 1

2
(x− y)2. (6.80)

This Lagrangian is a degenerate quadratic function with respect to (ẋ, ẏ). The
Euler–Lagrange equations d

dt
Lẋ = Lx,

d
dt
Lẏ = Ly read as

ẍ = x− y − ẏ, ẋ = x− y on R.

Equivalently,

ẋ = x− y, ẍ = ẋ− ẏ on R. (6.81)

(i) Global symmetry (conservation of energy): The Euler–Lagrange equations
(6.81) are invariant under the transformation

x+ = x, y+ = y, t+ = t+ δt (6.82)
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where δt is a fixed real number. This time translation sends every solution

t �→ (x(t), y(t))

of (6.81) to the solution t �→ (x(t+ δt), y(t+ δt)) of (6.81). This is a consequence of
the fact that the Lagrangian L from (6.80) does not explicitly depend on time t. In
addition, this symmetry property of the Lagrangian implies the conservation law

d

dt
H(x(t), y(t), ẋ(t)) = 0 for all t ∈ R (6.83)

where H := ẋLẋ − L. This follows as in the proof of Prop. 6.12 on page 408.
Explicitly,

H(x, y, ẋ) = 1
2
ẋ2 + 1

2
(x− y)2.

In physics, this is called the energy to the Lagrangian L.
(ii) Local symmetry (gauge symmetry): Note that the two Euler–Lagrange equa-

tions (6.81) are not independent equations. The second equation is obtained from
the first equation by differentiation. Consider the transformation

x+ = x+ δx(t), y+ = y + δy(t), t+ = t (6.84)

where δx : R → R is a fixed smooth function, and the function δy is given by the
constraint

δy(t) = δx(t) − d

dt
(δx(t)), t ∈ R.

One checks easily that if t �→ (x(t), y(t)) is a solution of (6.81), then so is

t �→ (x(t+ δt), y(t+ δt)).

In other words, the Euler–Lagrange equations are invariant under the symmetry
transformation (6.84). This is called a local symmetry transformation, since δx and
δy are not constants, but they depend on time t.

Next let us investigate the action functional S =
R t1
t0
Ldt. Explicitly,

S(x, y) :=

Z t1

t0

ˆ

1
2
ẋ2 + ẋy + 1

2
(x− y)2

˜

(t) dt for all x, y ∈ C∞[t0, t1].

We want to show that the transformations (6.82) and (6.84) describe symmetries
of the action functional S.

Global symmetry of the action functional. We will use the following result.

Lemma 6.14 If the continuous function f : R → R satisfies the condition

Z t1

t0

f(t)dt = 0

for all finite intervals [t0, t1], then f(t) = 0 for all t ∈ R.

Proof. f(t0) = limt1→t0
1

t1−t0

R t1
t0
f(t)dt = 0. �

Fix x, y ∈ C∞[t0, t1]. For all real numbers ε, define

χ(ε) :=

Z t1−ε

t0−ε

L(x(t+ ε), y(t+ ε), ẋ(t+ ε), ẏ(t+ ε)) dt.
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Since the Lagrangian L does not depend explicitly on time t, the substitution rule
tells us that the function χ is a constant. Hence

χ′(0) = 0.

The calculus rule

d

dε

Z f(ε)

g(ε)

F (t, ε) dt =

Z f(ε)

g(ε)

Fε(t, ε) dt+ F (f(ε), ε) · f ′(ε) − F (g(ε), ε) · g′(ε)

yields

0 = χ′(0) =

Z t1

t0

ˆ

Lxẋ+ Ly ẏ + Lẋẍ+ Lẏ ÿ
˜

(P (t)) dt− L(P (t1)) + L(P (t0)).

Here, we set P (t) := (x(t), y(t), ẋ(t), ẏ(t)). Using both the Leibniz rule

d

dt
(ẋLẋ) = ẍLẋ + ẋ

d

dt
Lẋ

and the fundamental theorem of calculus,

Z t1

t0

d

dt
L(P (t)) dt = L(P (t1)) − L(P (t0)),

we obtain the integral identity

Z t1

t0

»

d

dt
(ẋLẋ + ẏLẏ − L) + ẋ

„

Lx − d

dt
Lẋ

«

+ ẏ

„

Ly −
d

dt
Lẏ

«–

(P (t)) dt = 0.

If x, y is a solution of the Euler–Lagrange equations, d
dt
Lẋ = Lx,

d
dt
Lẏ = Ly, then

Z t1

t0

»

d

dt
(ẋLẋ + ẏLẏ − L)

–

(P (t)) dt = 0.

By Lemma 6.14, this implies the desired conservation law

d

dt
(ẋLẋ + ẏLẏ − L) = 0 for all t ∈ R

which coincides with (6.83). This is a special case of the general Noether theorem on
conservation laws (see Sect. 6. 6.2 of Vol. II). This theorem was obtained by Emmy
Noether (1882–1935) in 1918. In Vol. IV we will show that the relativistic invariance
of the action functional (i.e., the invariance under the Poincaré group) leads to
conservation laws for the energy momentum tensor and the angular momentum
tensor.

Local symmetry of the action functional. Fix x, y, h, k ∈ C∞[t0, t1]. Set
δx := εh, δy := εk.

Proposition 6.15 If δk = δh− d
dt

(δh) and h(t1) = h(t0) = 0, then

S(x+ δx, y + δy) = S(x, y).

In particular, if (x, y) is a minimal point of the action functional S, then so is
(x+ δx, y + δy).
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Proof. We want to study the function

χ(ε) := S(x+ εh, y + εk), ε ∈ R.

This means that χ(ε) =
R t1
t0
Lεdt with the perturbed Lagrangian

Lε := 1
2
(ẋ+ εḣ)2 + (ẋ+ εḣ)(y + εk) + 1

2
(x+ εh− y − εk)2.

(I) First variation δS = εχ′(0). Differentiation with respect to ε at the point
ε = 0 yields

dLε

dε |ε=0
= ẋḣ+ ẋk + yḣ+ (x− y)(h− k)

= (ẋ+ y − x)(ḣ− h+ k) +
d

dt
(xh) =

d

dt
(xh).

Hence

χ′(0) =

Z t1

t0

dLε

dε |ε=0
dt = x(t1)h(t1) − x(t0)h(t0) = 0.

(II) Second variation δ2S = ε2χ′′(0). From the second derivative

d2Lε

dε2 |ε=0
= ḣ2 + 2ḣk + (k − h)2 = ḣ2 + 2ḣ(h− ḣ) + ḣ2 =

d

dt
(h2)

we get

χ′′(0) =

Z t1

t0

d2Lε

dε2 |ε=0
dt = h(t1)

2 − h(t0)2 = 0.

(III) Taylor expansion. The claim follows now from

χ(ε) = χ(0) + εχ′(0) + 1
2
ε2χ′′(0) = χ(0).

�

The argument of the proof is a special case of Jacobi’s method of the accessory
quadratic variational problem (see Sect. 6.5.3 of Vol. II). More general results can
be found in H. Rothe and K. Rothe (2010), quoted on page 419.

6.6.8 Quantum Symmetries and Anomalies

Symmetry of the action functional and conservation laws. Classical field
theories are based on the principle of critical action,

S[ψ] = critical!

In 1918, Emmy Noether established the general mathematical principle that

Symmetries of the action functional ψ �→ S[ψ] are responsible for conser-
vation laws.

For example, the invariance of S under time-translations leads to the conservation
of energy (see Sect. 6.6 of Vol. II). In Einstein’s theory of general relativity, the
invariance under time-translations can be violated. Therefore, the notion of energy
is a nontrivial concept in general relativity. The point is that, roughly speaking,
the following hold:
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• The energy of the gravitational field interacting with a system of masses and
matter fields can be introduced if the space-time manifold is asymptotically flat,
that is, it approaches the flat 4-dimensional Minkowski space-time manifold M

4

at spatial infinity.
• The energy of the gravitational field is not localized, that is, a uniquely defined

energy density does not exist.
• But it is possible to show that the total energy of the gravitational field is non-

negative, and it vanishes only in the absence of matter and gravitational waves.
In this special case, the metric of the space-time manifold coincides with the flat
metric of the Minkowski space-time manifold M

4. This is the main content of the
famous positive energy theorem in general relativity due to Schoen and Yau.

We will study this in Vol. IV.13 In Einstein’s theory of special relativity, the action
functional S is invariant under the Poincaré group. This leads to the existence
of the energy–momentum tensor and the angular momentum tensor. The general
theory will be considered in Vol. IV on quantum mathematics.14 The prototype
is the electromagnetic field. The energy-momentum tensor of the electromagnetic
field describes the conservation of energy and momentum including the production
of heat (the Joule law) and the light pressure (see Sect. 19.6.3 on page 972).

The generalized Ward identities for the correlation functions of a
quantum field. If one wants to quantize a classic field theory, then physicists
frequently use the formal, but extremely elegant Feynman functional integral

Z(J) = N
Z

eiS[ψ]/�eiJ[ψ]/� Dψ (6.85)

where ψ �→ S[ψ] is the action functional, and ψ �→ J [ψ] is the so-called source
functional. The explicit form of the normalization factor N follows from the nor-
malization condition Z(0) = 1. We refer to Sect. 13.6 of Vol. I. In particular, we
have discussed in Vol. I that the functional Z generalizes the partition function
in statistical physics. The key point is that functional differentiation with respect
to the source functional J allows us to compute the correlation functions of the
quantum field ψ. The correlation functions are also called the Green functions of
the quantum field ψ.

The functional integral (6.85) contains all the information about the quan-
tum field, at least on a formal level.

One has to distinguish between the following two cases:

(i) Regular case: The functional integral (6.85) is invariant under all the symmetries
of the corresponding classical field theory.

(ii) Singular case (anomaly): The functional integral (6.85) is not invariant under
all of the symmetries of the classical field theory.

13 At this point, we refer to L. Faddeev, The energy problem in Einstein’s theory
of gravitation, Uspekhi Fiz. Nauk 136 (1982), 435–457. This survey article con-
tains Witten’s elegant proof of the positive energy theorem by using the Dirac
operator.
R. Schoen and S. Yau, On the proof of the positive mass conjecture in general
relativity, Commun. Math. Phys. 65 (1979), 45–76; 79 (1981), 231–260.
E. Witten, A new proof of the positive energy theorem, Commun. Math. Phys.
80, 381–396.

14 We recommend M. Forger and H. Römer, Currents and the energy-momentum
tensor in classical field theory: a fresh look at an old problem, Annals of Physics
309 (2004), 306-389.
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In case (i), the symmetries of the functional integral (6.85) induce relations for
the correlation functions which play a fundamental role for the renormalization
of the quantum field theory. In 1950, Ward discovered such identities in quantum
electrodynamics. In general gauge field theory, the relations between the correla-
tion functions are called the Ward–Takahashi identities (commutative gauge group)
and Slavnov–Taylor identities (non-commutative gauge group). There is also a close
relation to the BRTS-symmetry. We will study this in Vol. IV on quantum mathe-
matics. At this point, we refer to:

J. Jost, Geometry and Physics, Springer, Berlin, 2009,

and

L. Ryder, Quantum Field Theory, Cambridge University Press, 1999.

A. Das, Lectures on Quantum Field Theory, World Scientific, Singapore,
2008.

L. Faddeev and A. Slavnov, Gauge Fields, Benjamin, Reading, Mas-
sachusetts, 1982.

M. Böhm, A. Denner, and H. Joos, Gauge Theories of the Strong and
Electroweak Interaction, Teubner, Stuttgart, 2001.

T. Kugo, Gauge Field Theory, Springer, Berlin, 1997 (translated from
Japanese into German).

O. Piquet and S. Sorella, Algebraic Renormalization, Springer, Berlin,
1995.

Anomalies. Consider the decay

π0 → γ + γ (6.86)

of a pion into two photons. Physicists noticed that there is a substantial discrep-
ancy between the usual computations based on Feynman diagrams and the values
measured in experiments.

In the late 1960s, it was discovered that the passage from the classical
field theory to the corresponding quantum field theory may destroy classical
symmetries.

This shocking phenomenon is described by the sketch word ‘anomaly’.15 In terms
of physics, this means that quantum fluctuations of the quantum field destroy some
classical symmetries such that classical conservation laws are violated on the quan-
tum level. In particular, the so-called chiral anomaly essentially contributes to the
process (6.86). We will study this in Vol. V on the physics of the Standard Model.
As an introduction, we recommend:

A. Zee, Quantum Field Theory in a Nutshell, Princeton University Press,
2003 (Chap. IV.7 on the chiral anomaly).

S. Weinberg, Quantum Field Theory, Vol. 2, Chap. 22, Cambridge Univer-
sity Press, 1996.

P. Langacker, The Standard Model and Beyond, CRC Press, Boca Raton,
Florida, 2010.

Much additional material can be found in:

15 S. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969),
2426–2438.
S. Adler and W. Bardeen, Absence of higher order corrections in the anomalous
axial vector divergence equation, Phys. Rev. 182 (1969), 1517–1536.
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K. Fujikawa and H. Suzuki, Path Integrals and Quantum Anomalies, Ox-
ford University Press, 2004.

S. Adler, Adventures in Theoretical Physics, Selected Papers with Com-
mentaries, World Scientific, Singapore, 2006.

6.7 Perspectives

6.7.1 Topological Constraints in Maxwell’s Theory of
Electromagnetism

We will show in Chap. 23 that Maxwell’s theory of the electromagnetic field is
dominated by constraints. The point is that the structure of the electromagnetic
field E,B on an open subset O of the Euclidean manifold E

3 essentially depends on
the topological structure of O. In particular, the Betti numbers of O play a crucial
role. It turns out that two cornerstones of modern topology, namely,

• the de Rham cohomology,
• and the Hodge theory about harmonic differential forms on Riemannian and

pseudo-Riemannian manifolds,

represent far-reaching generalizations of properties of the electromagnetic field.
Since gauge theories generalize the Maxwell theory of electromagnetism, the topol-
ogy of gauge theories has its roots in the topological properties of the electromag-
netic field.

6.7.2 Constraints in Einstein’s Theory of General Relativity

We will show in Vol. IV that the initial-value problem for the Einstein equations in
general relativity is only solvable if the initial values at time t = 0 satisfy appropriate
constraints. We refer to:

A. Rendall, Partial Differential Equations in General Relativity, Oxford
University Press, 2008.

Y. Choquet–Bruhat, General Relativity and the Einstein Equations, Ox-
ford University Press, Oxford, 2008.

B. Schmidt (Ed.), Einstein’s Field Equations and their Physical Implica-
tions, Springer, Berlin, 2000.

M. Kriele, Space-Time: Foundations of General Relativity and Differential
Geometry, Springer, Berlin, 2000.

J. Baez and J. Muniain, Gauge Fields, Knots and Gravity, World Scientific,
Singapore, 1994 (Ashtekar’s new variables).

T. Thiemann, Modern Canonical Quantum General Relativity, Cambridge
University Press, 2007 (the Ashtekar program).

6.7.3 Hilbert’s Algebraic Theory of Relations (Syzygies)

In order to study the algebraic structure of invariants, Hilbert wrote fundamental
papers on commutative algebra in about 1890. In a general setting, Hilbert proved
that a large class of polynomial rings of invariants (with respect to matrix transfor-
mation groups) can be generated by a finite number of basic invariants. This was a
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revolutionary result which strongly influenced the development of algebraic geom-
etry. In this connection, Hilbert studied relations between invariants. His idea was
to pass from relations to ‘relations of relations‘, and so on.16 Hilbert showed that
in important cases this procedure leads to trivial relations after a finite number of
steps (finite resolution of the relations). Generalizations of such ideas are also used
in gauge theory. We recommend:

M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Prince-
ton University Press, 1993.

Hilbert did not use constructive methods, but he gave abstract existence proofs.
Paul Gordan (1837–1912) said: “This is not mathematics, but theology.” Construc-
tive methods can be found in:

D. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry, Springer,
New York, 1998 (theory and computer algorithms).

B. Sturmfels, Algorithms in Invariant Theory, Springer, New York, 1993.

In order to compute scattering processes in particle accelerators, one uses auto-
mated loop-computations based on the theory of renormalization. Here, the La-
porta algorithm is close to the Buchberger algorithm in algebraic geometry (see the
hints for further reading on page 978 of Vol. II). Furthermore, we refer to:

D. Hilbert, Theory of Algebraic Invariants, Cambridge University Press,
1993.

D. Hilbert, Hilbert’s Invariant Theory Papers, Lie Groups: History, Fron-
tiers and Applications, VIII, Math. Sci. Press, Brooklyn, Massachusetts,
1978.

H. Weyl, The Classical Groups; Their Invariants and Representations,
Princeton University Press, 1946.

S. Abhyankar, Algebraic Geometry for Scientists and Engineers, Amer.
Math. Soc., Providence, Rhode Island, 1990.

D. Eisenbud, Commutative Algebra with a View to Algebraic Geometry,
Springer, New York, 1994.

D. Eisenbud, The Geometry of Syzygies: A Second Course in Commutative
Algebra and Algebraic Geometry, Springer, New York, 2005.

S. Lang, Algebra, Chap. 21 (finite free resolutions), Springer, New York,
2002.

6.8 Further Reading

Classic references:

H. Grassmann, The Calculus of Extension, 1844 (in German). Reprint:
Chelsea Publ. Company, 1969.

S. Lie and F. Engel, Theory of Transformation Groups (in German), Vols.
1–3, Teubner, Leipzig, 1888. Reprint: Chelsea Publ. Company, 1970.

16 Relations are also called syzygies. The Greek word συζυγια means yoke. In
ancient astronomy, syzygies described special relations between heavenly bodies,
namely, conjunction and opposition. In mathematics, syzygies were introduced
by Sylvester (1814–1897) in 1853.
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É. Cartan, On certain differential expressions and Pfaff’s problem (in

French), Annales École Normale Supérieure 16 (1899), 239–332.

E. Noether, Invariant variational problems (in German), Göttinger Nach-
richten, Math.-phys. Klasse 1918, 235–257.

F. Fasso and N. Sansonetto, Elemental overview of the non-holonomic
Noether theorem, Int. J. of Geometric Methods in Modern Physics, 68
(2009), 1343–1355.

C. Taylor (Ed.), Gauge Theories in the Twentieth Century, World Scien-
tific, Singapore, 2001 (collection of fundamental papers).

Constraints and the quantization of classic theories:

P. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Sci-
ence, Yeshiva University, New York. 1964 (quantization of classical field
theories with constraints).

L. Faddeev and A. Slavnov, Gauge Fields, Benjamin, Reading, Mas-
sachusetts, 1980 (the Feynman path integral approach, the factorization
of gauge orbits, and the Faddeev–Popov ghosts).

M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Prince-
ton University Press, 1993 (comprehensive monograph: the classical Dirac
theory, the BRST-approach and cohomology, the field-anti-field approach,
path integrals).

H. Rothe and K. Rothe, Classical and Quantum Dynamics of Constrained
Hamiltonian Systems, World Scientific Lecture Notes in Physics, World
Scientific, Singapore, 2010 (Dirac’s classification of constraints, algorithms
for computing local symmetries of Lagrangians, construction of constrained
Hamiltonians, BRST-approach, the field-antifield formalism due to Batalin
and Vilkovisky).

M. Böhm, A. Denner, and H. Joos, Gauge Theories of the Strong and
Electroweak Interaction, Teubner, Stuttgart, 2001 (comprehensive presen-
tation including the Standard Model in particle physics).

O. Piguet and S. Sorella, Algebraic Renormalization, Springer, Berlin, 1995
(BRST-approach and renormalization).

T. Kugo, Eichfeldtheorie (Gauge Field Theory), Springer, Berlin, 1997
(translated from Japanese into German) (comprehensive presentation of
gauge theory).

L. Ryder, Quantum Field Theory, Cambridge University Press, 1999 (in-
troduction to the BRST-approach).

A. Das, Lectures on Quantum Field Theory, World Scientific, Singapore,
2008 (introduction to the BRST-approach).

C. Becchi, Lectures on the Renormalization of Gauge Theories. In: Rela-
tivity, Groups, and Topology II, pp. 787–821, Les Houches, 1983. Edited
by B. DeWitt and R. Stora, Elsevier, Amsterdam, 1984 (BRST-approach).

M. Henneaux, Lectures on the antifield-BRST formalism for gauge theo-
ries, Nucl. Phys. B (Proc. Suppl.) 18A, 47–105.

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th edi-
tion, Clarendon Press, Oxford, 2003 (extensive presentation of about 1000
pages based on the path-integral technique including many specific mod-
els).
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A. Connes, K. Gawȩdzki, and J. Zinn-Justin (Eds.), Quantum Symmetries,
Les Houches 1995, North-Holland, Amsterdam, 1998 (noncommutative ge-
ometry, strings and duality, integrable models, supersymmetry and super
algebras, quantum groups, loop spaces, conformal field theory, Poisson al-
gebras).

Problems

6.1 Lagrange’s multiplier rule. Consider the matrix

A =

0

B

@

a1 a2 a3
b1 b2 b3
c1 c2 c3

1

C

A

with real numbers a1, a2, . . . as entries. Suppose that every real solution x, y, z
of the system

a1x+ a2y + a3z = 0,

b1x+ b2y + b3z = 0 (6.87)

is also a solution of the equation

c1x+ c2y + c3z = 0. (6.88)

Moreover, suppose that the rank of the coefficient matrix of (6.87) is maximal.
Show that then the third row of the matrix A is linearly dependent of the first
and second row of A. In other words, there are real numbers λ and μ such that

cj = λaj + μbj , j = 1, 2, 3.

Solution: The rank of the coefficient matrix of (6.87) is equal to 2. Thus, for
the rank r of the matrix A, we have r = 2 or r = 3.
Case 1: r = 2. Then the third row of A is linearly dependent of the first and
second row of A, and we are done.
Case 2: r = 3. We show that this is impossible. Indeed, if r = 3, then the system
(6.87), (6.88) has only the trivial solution x = y = z = 0. By our assumption,
the system (6.87) has a 1-dimensional solution space, and hence the equation
(6.88) has at least a 1-dimensional solution space, a contradiction.

6.2 Infinitesimal motions and virtual velocities of the rigid body. Fix n = 3, 4, . . .
Let x1, . . . ,xn be nonzero vectors in the Euclidean space E3 which have nonzero
distances and which span the space E3. Show that the vectors v1, . . . ,vn ∈ E3

satisfy the equations

(xi − xj)(vi − vj) = 0, i, j = 1, . . . , n, i �= j (6.89)

iff there exist two vectors a,ω ∈ E3 such that

vj = a + ω × xj , j = 1, . . . , n. (6.90)

This is the superposition of a translation with an infinitesimal rotation.
Hint: It follows from (6.90) that
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(xi − xj)(vi − vj) = (xi − xj)
`

ω × (xi − xj)
´

= 0.

Conversely, every solution of (6.89) looks like (6.90). To show this, argue by
induction with respect to the number of points n = 3, 4, . . . See Zeidler (1995),
page 90, quoted on page 396.

6.3 Continuous rigid body. Formulate the Euler equations

mÿ = F, Ȧ = T, A = Θω (6.91)

for the motion of a continuous rigid body with continuous mass density μ. Use
the Euler equations for a finite number of mass points studied on page 393.
Solution: We have to pass from a finite number of mass points to a continuous
mass distribution. To this end, we have to reformulate the following definitions:
• m (total mass),

• y =
−−→
P0C (position vector of the center C of gravity; P0 := (0, 0, 0)),

• Θ (tensor of inertia), and
• A (total angular momentum vector).
Consider a right-handed Cartesian (x, y, z)-coordinate system with the right-
handed orthonormal basis vectors i, j,k. Set e1 := i, e2 := j, e3 := k. Divide
the continuous body into small pieces of volume ΔxΔyΔz. Apply the method
from Sect. 6.5 on 388 to the discretized rigid body. Finally, carry out the limit
ΔxΔyΔz → 0. Then we get the following:

• m =
R

B μ(x, y, z) dxdydz (total mass),

• y = 1
m

R

B �(x, y, z)(xi + yj + zk) dxdydz (position vector
−−→
P0C of the center

C of gravity),
• θ33 =

R

B �(x, y, z) (x2 + y2) dxdydz (moment of inertia with respect to the
z-axis),

• θ12 = −
R

B �(x, y, z) · xy dxdydz.
• Similarly, we define θ22, θ33 (resp. θij if i �= j) by using the cyclic permu-

tations 1 �→ 2 �→ 3 �→ 1 and x �→ y �→ z �→ x. This yields the symmetric
matrix of the moments of inertia

(θij) :=

0

B

@

θ11 θ12 θ13
θ21 θ22 θ23
θ31 θ32 θ33

1

C

A

where θij = θji for all indices. The eigenvalues λ1, λ2, λ3 of this matrix are
called the principal moments of inertia of the rigid body with respect to the
(x, y, z)-coordinate system. In particular, if (θij) is a diagonal matrix,

(θij) =

0

B

@

θ11 0 0

0 θ22 0

0 0 θ33

1

C

A

,

then we get the principal moments λj = θjj , j = 1, 2, 3. Moreover, the three
coordinate axes (i.e., the x-axis, the y-axis, and the z-axis) are principal axes
of inertia. We get:

• Θ =
P3

i,j=1 θijei ⊗ ej (tensor of inertia);

• A = Θω (total angular momentum vector),

• Θ
`

P3
k=1 ωkek

´

:=
P3

i=1

“

P3
j=1 θijωj

”

ei.

For computing Θ, we use (ei ⊗ ej)ek := ei(ejek) = eiδjk.
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6.4 The moments of inertia for the ball and the circular cylinder. Choose a right-
handed Cartesian (x, y, z)-system. Consider the following compact subsets of
the space R

3 :
• B := {(x, y, z) ∈ R

3 : x2 + y2 + z2 ≤ R2} (ball of radius R), and
• B := {(x, y, z) ∈ R

3 : x2 + y2 ≤ R2, −H
2

≤ z ≤ H
2
} (circular cylinder of

radius R and height H).
For constant mass density μ, compute the following quantities: total mass m,
center of gravity, principal axes of inertia, and the principal moments of inertia.
Solution: (I) Ball: Using spherical coordinates, we get the total mass

m =

Z R

r=0

Z π
2

ϑ=− π
2

Z π

ϕ=−π

μr2 cosϑ dϑ dϕ dr = μ · 4πR3

3
.

Furthermore, we obtain the following:
• (0, 0, 0) (center of gravity),
• θ11 = θ22 = θ33 = 2

5
mR2 (principal moment of inertia);

• θij = 0 if i �= j;
• every axis through the origin is an axis of inertia, by symmetry.
Note the following trick: the sum 3θ11 = θ11 + θ22 + θ33 is equal to

2μ

Z

B
(x2 + y2 + z2) dxdydz = 2μ

Z

B
r4 cosϑ dϑ dϕ dr = μ · 8πR5

5
.

(II) Circular cylinder: Using cylindrical coordinates, we get the total mass

m =

Z π

ϕ=−π

Z R

�=0

Z H/2

z=−H/2

μ� dϕ d� dz = μ · πR2H,

and the moment of inertia with respect to the z-axis:

θ33 =

Z π

ϕ=−π

Z R

�=0

Z H/2

z=−H/2

μ�2 · � dϕ d� dz = 1
2
mR2.

Furthermore, we obtain the following:
• (0, 0, 0) (center of gravity),
• θ11 = θ22 = 1

4
mR2 + 1

12
mH2, θ33 = 1

2
mR2 (principal moments of inertia);

• θij = 0 if i �= j;
• the x-axis, the y-axis, and the z-axis are principal axes of inertia. In addition,

by symmetry, every axis lying in the (x, y)-plane and passing through the
origin is a principal axis of inertia of the circular cylinder.

6.5 The three Euler angles. Euler found a unique parametrization of the group
SO(3) by three angles α, β, γ. To explain this, set

R3(γ) :=

0

B

@

cos γ − sin γ 0

sin γ cos γ 0

0 0 1

1

C

A

, R1(β) =

0

B

@

1 0 0

0 cosβ − sinβ

0 sinβ cosβ

1

C

A

.

Show that every matrix B ∈ SO(3) can be uniquely represented by the matrix
product

B = R3(α)R1(β)R3(γ), −π < α, γ ≤ π, −π
2
≤ β ≤ π

2
.
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Conversely, every such product yields a matrix B in SO(3). In other words,
the map

(α, β, γ) �→ R3(α)R1(β)R3(γ)

is a bijective map ] − π, π] × [−π
2
, π

2
] × ] − π, π] → SO(3). This claim tells

us that every rotation of the Euclidean manifold E
3 about the origin can be

uniquely obtained as
• a rotation about the z-axis with the angle γ ∈] − π, π],
• a rotation about the x-axis with the angle β ∈ [−π

2
, π

2
], and

• a rotation about the z-axis with the angle α ∈] − π, π].
Hint: See W. Hein, Introduction to the Structure Theory and the Representa-
tion Theory of the Classical Groups, p. 57, Springer, Berlin, 1990 (in German).



7. Rotations, Quaternions, the Universal
Covering Group, and the Electron Spin

The human eyes are able to observe the rotational symmetry in nature.
Mathematics – the cosmic eye of human beings – is able to see the universal
covering group SU(2) of the rotational group SO(3) via the quaternions
introduced by Hamilton (1805–1865). Nature also sees this universal cov-
ering group via the electron spin.
Lie’s notion of infinitesimal rotations connects completely different phe-
nomena in physics like the lever principle due to Archimedes of Syracus
(287–212 B.C.) together with the spinning top due to Euler (1701)–1783)
(the classical angular momentum) and the 1927 approach to the electron
spin due to Pauli (1900–1958) (the quantized angular momentum). From
the mathematical point of view, one has to study the irreducible repre-
sentations of the Lie algebra su(2). On the infinitesimal level, we have
so(3)  su(2), that is, the Lie algebra so(3) of the rotation group SO(3) is
isomorphic to the Lie algebra su(2) of the universal covering group SU(2).
Dirac (1902–1984) discovered in 1928 that the electron spin is a mathe-
matical consequence of combining Einstein’s theory of special relativity
with quantum mechanics.

Folklore

7.1 Quaternions and the Cayley–Hamilton Rotation
Formula

Euler’s rotation formula (6.6) can be elegantly written by using Hamilton’s quater-
nions. This was discovered independently by Hamilton and Cayley in 1844, one year
after Hamilton’s discovery of quaternions. In the language of quaternions, Euler’s
rotation formula (6.6) reads elegantly as

x′ = q · x · q†, x ∈ E3. (7.1)

Here, the given quaternion

q := cos ϕ
2

+ sin ϕ
2

n

contains the information about the rotation angle ϕ and the rotation axis vector n
of length one. In particular, for the norm of the quaternion q we get

|q| =
q

cos2 ϕ
2

+ n2 sin2 ϕ
2

= 1.

Hence q ∈ U(1,H).

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 8,
© Springer-Verlag Berlin Heidelberg 2011

425

http://dx.doi.org/10.1007/978-3-642-22421-8_8
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Proof. Recall the quaternionic product

(x + t) · (y + s) := x× y − xy + ts+ ty + sx

for all vectors x,y ∈ E3 and all real numbers t, s. Using the trigonometrical addition
theorems

cosϕ = cos2 ϕ
2
− sin2 ϕ

2
, sinϕ = 2 sin ϕ

2
cos ϕ

2
, cos2 ϕ

2
+ sin2 ϕ

2
= 1,

and the Grassmann expansion formula (n × x) × n = n2x − (xn)n along with
n2 = 1, we get

• x · n = x× n − xn,
• (n × x) · n = (n × x) × n − (n × x)n = (n × x) × n = x − (xn)n.

Hence q ·x = (cos ϕ
2

+n sin ϕ
2
) ·x = x cos ϕ

2
+(n×x) sin ϕ

2
−(nx) sin ϕ

2
. This implies

q · x · q† =
`

x cos ϕ
2

+ (n × x) sin ϕ
2
− (nx) sin ϕ

2

´

·
`

cos ϕ
2
− n sin ϕ

2

´

= x(cos2 ϕ
2
− sin2 ϕ

2
) + 2(n × x) sin ϕ

2
cos ϕ

2
+ 2n(xn) sin2 ϕ

2

= x cosϕ+ (n × x) sinϕ+ n(xn)(1 − cosϕ).

This is the Euler rotation formula. �

7.2 The Universal Covering Group SU(2)

The Lie group U(1,H). The Cayley–Hamilton formula (7.1) allows us to parame-
trize the Lie group SU(E3) by the quaternions q ∈ U(1,H). The point is that this
is not a one-to-one parametrization. Obviously, the quaternions q and −q generate
the same rotation of the Hilbert space E3. More precisely, set χ(q)x := q · x · q† for
all x ∈ E3.

Proposition 7.1 The map χ : U(1,H) → SU(E3) is a surjective group morphism
with the kernel χ−1(I) = {−1, 1}.

Proof. Let q, r ∈ U(1,H). Then

χ(q · r)x = (q · r) · x · (q · r)† = q · (r · x · r†) · q† = χ(q)(χ(r)x).

Hence χ(q · r) = χ(q)χ(r). Moreover, if χ(q) = I, then

χ(q)x = x cosϕ+ (n × x) sinϕ+ (1 − cosϕ)(nx)n = x

for all x ∈ E3. The identical rotation corresponds to the rotation angle ϕ = k · 2π,
k = 0,±1,±2, . . . This implies q = cos ϕ

2
+ n sin ϕ

2
= ±1. �

It follows from Prop. 7.1 that we obtain the group isomorphism

SU(E3)  U(1,H)/{−1, 1}. (7.2)

The Lie group U(1,H) is called the universal covering group of the Lie group E3. Lo-
cally, the groups SU(E3) and U(1,H) coincide on a sufficiently small neighborhood
of the unit element. But globally, SU(E3) and U(1,H) are different Lie groups.

The Lie group U(1,H) is diffeomorphic to a 3-dimensional sphere. There-
fore, U(1,H) is arcwise connected and simply connected.
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In contrast to this, it can be shown that the Lie group SU(E3) is arcwise connected,
but not simply connected. In other words, the universal covering group U(1,H)
possesses a simpler topological structure than the original Lie group SU(E3) (group
of rotations). On an infinitesimal level, the Lie group SU(E3) coincides with the
Lie group U(1,H). This means that the two Lie groups SU(E3) and U(1,H) have
isomorphic Lie algebras, that is,

su(E3)  u(1,H).

The Lie group SU(2). By page 103, we have the following Lie group isomor-
phism

U(1,H)  SU(2). (7.3)

In addition, we have the Lie group isomorphism

SU(E3)  SO(3).

By Prop. 7.1, we get the surjective Lie group morphism

χ : SU(2) → SO(3)

with the kernel χ−1(I) = {−1, 1}. This implies the group isomorphism

SU(2)  SO(3)/{−I, I}.

The Lie group SU(2) is called the universal covering group of the Lie group SO(3).
The Lie groups SO(3) and SU(2) have the Lie algebras so(3) and su(2), respec-
tively; these Lie algebras are isomorphic,

so(3)  su(2). (7.4)

Explicitly, the real Lie algebra so(3) consists of all the real skew-adjoint (3 × 3)-
matrices. The three matrices I1, I2, I3 from (7.10) on page 430 form a basis of
so(3). Moreover, the real Lie algebra su(2) consists of all the complex skew-adjoint
traceless (2×2)-matrices. The three matrices − i

2
σ1,− i

2
σ2,− i

2
σ3 from (7.5) on page

428 form a basis of su(2). The Lie algebra isomorphism (7.4) is given by the map

Ik �→ − i
2
σk, k = 1, 2, 3.

In fact, setting either Ak := Ik or Ak := i
2
σk, k = 1, 2, 3, we get the commutation

relations.1

[A1, A2]− = A3, [A2, A3]− = A1, [A3, A1]− = A2.

7.3 Irreducible Unitary Representations of the Group
SU(2) and the Spin

In nature, we observe quantum states with integer and half-integer spin.
Mathematically, this is related to irreducible unitary representations of the
universal covering group SU(2) of the rotation group SO(3).

Folklore

1 Recall that [A1, A2]− := A1A2 −A2A1.
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7.3.1 The Spin Quantum Numbers

The Lie group SU(2), the Lie algebra su(2), and the spin operators. Recall
that SU(2) denotes the Lie group of all complex unitary (2 × 2)-matrices G with
detG = 1. Let C

2 be the 2-dimensional complex Hilbert space of all the matrices

ψ =

 

ψ1

ψ2

!

, ψ1, ψ2 ∈ C (7.5)

equipped with the inner product 〈ϕ|ψ〉 := ϕ†ψ = (ϕ1)†ψ1 + (ϕ2)†ψ2. The matrices

ψ1/2 :=

 

1

0

!

and ψ−1/2 :=

 

0

1

!

form an orthonormal basis of C
2. Using the Pauli

matrices

σ0 :=

 

1 0

0 1

!

, σ1 :=

 

0 1

1 0

!

, σ2 :=

 

0 −i

i 0

!

, σ3 :=

 

1 0

0 −1

!

,

we set Sk := �

2
σk, k = 1, 2, 3. Then we get the commutation rules

[S1,S2]− = i�S3, [S2,S3]− = i�S1, [S3,S1]− = i�S2, (7.6)

which are fundamental for describing the spin of quantum states in physics. Recall
that [S1,S2]− := S1S2 − S2S1, and so on. We have

S3ψm = �m · ψm,
`

(S1)2 + (S2)2 + (S3)2
´

ψm =
3�

2

4
ψm, m = 1

2
,− 1

2
.

In terms of physics, ψ1/2 and ψ−1/2 describe spin states with the spin �/2 and

−�/2, respectively. The three self-adjoint operators S1,S2,S3 were introduced by
Pauli in 1927. In terms of mathematics, these three operators do not form a Lie
algebra. In order to pass to a Lie algebra, we set Sk = i�Ik, k = 1, 2, 3. Hence

Ik := − i

2
σk, k = 1, 2, 3.

We obtain the following commutation relations

[I1, I2]− = I3, [I2, I3]− = I1, [I3, I1]− = I2.

The matrices I1, I2, I3 are skew-adjoint (i.e., (Ik)† = −Ik) and traceless. Precisely,
all the matrices

A = α1I1 + α2I2 + α3I3, α1, α2, α3 ∈ R

form the Lie algebra su(2). In what follows, it will be convenient to change the
coefficients by setting

A = ϕ(n1I1 + n2I2 + n3I3),

where ϕ, n1, n2, n3 are real numbers with (n1)2 + (n2)2 + (n3)2 = 1. Furthermore,
precisely all the matrices

B = eA, A ∈ su(2)

form the Lie group SU(2). Explicitly,
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eA = e−
ϕ
2 i·nσ = σ0 cos

ϕ

2
− i · nσ sin

ϕ

2
, ϕ ∈ R. (7.7)

Here, nσ :=
P3

k=1 n
kσk with

P3
k=1(n

k)2 = 1. Moreover,

e−
ϕ
2 ·nσ = σ0 cosh

ϕ

2
− nσ sinh

ϕ

2
, ϕ ∈ R. (7.8)

This will be proved in Problem 8.1.

Our goal is to describe more general spin states by generalizing the com-
mutation relations (7.6) to higher-dimensional complex Hilbert spaces.

To this end, we will use the representation theory of the group SU(2), and the
representation theory of the corresponding Lie algebra su(2).

Representations. Let � : SU(2) → U(X) be an irreducible unitary continuous
representation of the Lie group SU(2) on the complex Hilbert space X. Then the
following hold.

(i) Dimension of the Hilbert space: The dimension of X is finite. There exists a
number s = 0, 1

2
, 1, 3

2
, . . . such that dimX = 2s+ 1.

(ii) Spin operators: There exist self-adjoint operators Sk : X → X, k = 1, 2, 3, such
that

[S1, S2]− = i�S3, [S2, S3]− = i�S1, [S3, S1]− = i�S2, (7.9)

and there exists an orthonormal basis ψs, ψs−1, . . . , ψ−s of the Hilbert space
X such that

S3ψm = �m · ψm,
`

(S1)2 + (S2)2 + (S3)2
´

ψm = �
2s(s+ 1) · ψm

for all m = s, s− 1, . . . ,−s. In terms of physics, ψm describes a spin state with
the spin �m and the spin quantum number s. The numbers m = s, s−1, . . .−s
are called magnetic quantum numbers.2 The operator (S1)2 + (S2)2 + (S3)2 is
called the Casimir operator of the representation �.

(iii) Lie algebra: Set Sk := i�Ik. Then the operators Ik : X → X, k = 1, 2, 3, are
skew-adjoint (i.e., (Ik)† = −Ik), and

[I1, I2]− = I3, [I2, I3]− = I1, [I3, I1]− = I2.

Define

μ

 

3
X

k=1

αkIk

!

:=

3
X

k=1

αkIk, α1, α2, α3 ∈ R.

The map μ is a representation of the Lie algebra su(2), and the representation
� : SU(2) → U(X) is given by

�
“

e
P3

k=1 αkIk
”

= e
P3

k=1 αkIk

, α1, α2, α3 ∈ R.

(iv) Completeness of the spin quantum numbers: For every s = 0, 1
2
, 1, 3

2
, . . ., there

exists a representation of SU(2) as described above.

2 As we will show in Vol. IV, the number m is responsible for the splitting of the
spectrum of the hydrogen atom in a magnetic field (Zeeman effect). In mathe-
matics, the number m is called the weight of the irreducible representation �.
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The proof can be found in van der Waerden, Group Theory and Quantum Me-
chanics, Springer, New York 1974. See also I. Gelfand et al., Representations of the
Rotation and Lorentz Groups and Their Applications, Pergamon Press, New York,
1963, and M. Naimark, Linear Representations of the Lorentz Group, Macmillan,
New York, 1964. We will study this in greater detail in Vol. IV on quantum math-
ematics. Let us discuss the special case s = 1.

Quantum states with spin number s = 1 and the rotation group SO(3).
The key formulas are

I1 :=

0

B

@

0 0 0

0 0 −1

0 1 0

1

C

A

, I2 :=

0

B

@

0 0 1

0 0 0

−1 0 0

1

C

A

, I3 :=

0

B

@

0 −1 0

1 0 0

0 0 0

1

C

A

, (7.10)

and

eϕI
1

=

0

B

@

1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ

1

C

A

, eϕI
2

:=

0

B

@

cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ

1

C

A

, eϕI
3

=

0

B

@

cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

1

C

A

for all real numbers ϕ. For the proof, we refer to Problem 8.2. The real matrices
I1, I2, I3 are skew-symmetric (and hence skew-adjoint). Moreover, the real matrices

eϕI
k

, k = 1, 2, 3, are orthogonal (and hence unitary). Introduce the self-adjoint spin
matrices

Sk := i�Ik, k = 1, 2, 3.

Then we have the commutation relations

[I1, I2]− = I3, [I2, I3]− = I1, [I3, I1]− = I2,

and

[S1, S2]− = i�S3, [S2, S3]− = i�S1, [S3, S1]− = i�S2.

All the matrices A =
P3

k=1 α
kIk with real coefficients α1, α2, α3 form the real

Lie algebra so(3). Furthermore, the matrices eθI
k

, k = 1, 2, 3, represent rotations
which generate the Lie group SO(3). The matrices I1, I2, I3 represent infinitesimal
rotations. The eigenvalues of the matrix I3 are i,−i, 0, and hence the eigenvalues
of S3 are �,−�, 0.

Let us choose the 3-dimensional complex Hilbert space X = C
3 which consists

of all the matrices

ψ =

0

B

@

ψ1

ψ2

ψ3

1

C

A

, ψ1, ψ2, ψ3 ∈ C

equipped with the inner product 〈χ|ψ〉 := χ†ψ =
P3

k=1(χ
k)†ψk. The matrices

ψ1 =
1√
2

0

B

@

1

i

0

1

C

A

, ψ−1 =
1√
2

0

B

@

1

−i

0

1

C

A

, ψ0 =

0

B

@

0

0

1

1

C

A

,
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Fig. 7.1. Rotation

form an orthonormal basis of X. The operators Sk : X → X are self-adjoint,
k = 1, 2, 3, and we have

S3ψm = m� · ψm,
`

(S1)2 + (S2)2 + (S3)2
´

ψm = 2�
2ψm

with the weights m = 1, 0,−1. Next let us discuss the geometric meaning of the
irreducible unitary representation � : SU(2) → U(X) with X = C

3.
Active rotation. In physics, one distinguishes between active and passive ro-

tations of position vectors (points). Let us discuss this (see Fig. 7.1). Let Σ be a
right-handed Cartesian (x, y, z)-coordinate system with the right-handed orthonor-
mal basis i, j,k. Suppose that the operator Un(ϕ) describes the counter-clockwise
rotation of the position vector x = xi + yj + zk at the origin about the unit axis-
vector n with the rotation angle ϕ (see Fig. 7.1(a) with n = k). Setting

Un(ϕ)x := x+i + y+j + z+k,

we obtain
0

B

@

x+

y+

z+

1

C

A

= eϕ
P3

k=1 nkIk

0

B

@

x

y

z

1

C

A

(7.11)

where n = n1i + n2j + n3k with n2 = 1, and ϕ is a real number. This is called an
active rotation of the position vector x. Noting that

eϕ
P3

k=1 nkIk

= σ0 cos
ϕ

2
− i

3
X

k=1

nkσk sin
ϕ

2
,

the map � : SU(2) → SO(3) given by

�
“

eϕ
P3

k=1 nkIk
”

:= eϕ
P3

k=1 nkIk

is a surjective Lie group morphism which corresponds to an irreducible unitary
representation of SU(2).

Changing the observer and passive rotation. Let us change the system
of reference Σ to the system Σ′ of reference. We assume that Σ′ is a right-handed
Cartesian (x′, y′, z′)-system with the right-handed orthonormal basis i′, j′,k′. More
precisely, we assume that

Un(ϕ)i = i′, Un(ϕ)j = j′, Un(ϕ)k = k′.
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Then
x = xi + yj + zk = x′i′ + y′j′ + z′k′.

This means that an observer in Σ (resp. Σ′) measures the components x, y, z (resp.
x′, y′, z′) of the position vector x corresponding to the point P (see Fig. 7.1(b)).
Explicitly, we get

0

B

@

x′

y′

z′

1

C

A

= e−ϕ
P3

k=1 nkIk

0

B

@

x

y

z

1

C

A

. (7.12)

This is called a passive rotation of the position vector x. Note that the formula
(7.11) passes over to (7.12) by changing the sign of the rotation angle ϕ.

The operator of angular momentum in quantum mechanics. Let us
show that the operators of angular momentum and momentum in quantum me-
chanics are obtained by the action of rotations and translations on physical fields
(on an infinitesimal level).3

We are given the smooth complex-valued function ψ : E3 → C on the Euclidean
space E3. In terms of physics, this is a physical field. Set

(Un(ϕ)ψ)(x) := ψ(Un(ϕ)−1x), x ∈ E3. (7.13)

Note that we use the inverse operator Un(ϕ)−1 in order to guarantee that the map
Un(ϕ) �→ Un(ϕ) is a representation, that is, it respects products. In fact,

`

U(Vψ)
´

(x) = (Vψ)(U−1x) = ψ(V −1U−1x).

It follows from (UV )−1 = V −1U−1 that

`

(UV)ψ
´

(x) = ψ(V −1U−1x).

Hence U(Vψ) = (UV)ψ.
Consider the special case where n = k, that is, Un(ϕ) represents a counter-

clockwise rotation about the z-axis with the angle ϕ. Define the operator S3 by
setting

(S3ψ)(x) := i�
d

dϕ
Uk(ϕ)ψ(x)|ϕ=0. (7.14)

This corresponds to an infinitesimal rotation about the z-axis. Using the system Σ
of reference, we write ψ(x, y, z) instead of ψ(x) where x = xi + yj + zk. We claim
that

(S3ψ)(x, y, z) = i�

„

y
∂ψ(x, y, z)

∂x
− x∂ψ(x, y, z)

∂y

«

. (7.15)

Proof. By (7.12),
(Uk(ϕ)ψ)(x, y, z) = ψ(x′, y′, z′).

This is equal to ψ(x cosϕ + y sinϕ, y cosϕ − x sinϕ, z). Differentiating this with
respect to ϕ at the point ϕ = 0, we get (7.15). �

3 This is the prototype for more general situations in quantum field theory.
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Replacing Uk(ϕ) by Ui(ϕ) (resp. Uj(ϕ)), we get the operator S1 (resp. S2).
Explicitly,

(S1ψ)(x, y, z) = i�

„

z
∂ψ(x, y, z)

∂y
− y ∂ψ(x, y, z)

∂z

«

and

(S2ψ)(x, y, z) = i�

„

y
∂ψ(x, y, z)

∂z
− z ∂ψ(x, y, z)

∂x

«

.

The operator S = S1i + S2j + S3k is called the operator of angular momentum in
quantum mechanics. Explicitly,

S =

˛

˛

˛

˛

˛

˛

˛

i j k

x y z

−i� ∂
∂x

−i� ∂
∂y

−i� ∂
∂z

˛

˛

˛

˛

˛

˛

˛

= x × P (7.16)

with the momentum operator

P = P1i + P2j + P3k = −i�

„

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

«

.

Note that

(P1ψ)(x) = i�
d

da
ψ(x − ai)|a=0 = −i�

∂ψ(x)

∂x
.

Comparing this with (7.14), we obtain that the momentum operator P1 is generated
by the translation x �→ x + ai (on an infinitesimal level).

Summary of the surjective Lie group morphism � : SU(2) → SO(3).
Consider a right-handed Cartesian (x, y, z)-coordinate system. The formula

x′ = x cosϕ+ y sinϕ, y′ = −x sinϕ+ y cosϕ, z′ = z (7.17)

describes a clockwise rotation of the (x, y, z)-coordinate system about the z-axis
with the rotation angle ϕ (Fig. 7.1(b)). Using the language of matrices, this rotation
can be written as

0

B

@

x′

y′

z′

1

C

A

= e−ϕI3

0

B

@

x

y

z

1

C

A

(7.18)

where e−ϕI3 = cosϕ I − sinϕ I3. The corresponding Pauli spinor transformation
reads as

 

ψ1′

ψ2′

!

= e−ϕI3

 

ψ1

ψ2

!

(7.19)

where the components ψ1, ψ2 are complex numbers. Here,

e−ϕI3
= cos

ϕ

2
σ0 − i sin

ϕ

2
σ3.
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The surjective Lie group morphism � : SU(2) → SO(3) specializes to

�(e−ϕI3
) = e−ϕI3 . (7.20)

Note the following peculiarity. For given rotation (7.18), there exist precisely two

matrices A ∈ SU(2) such that �(A) = e−ϕI3 , namely,

A = ±e−ϕI3
.

The remaining formulas for rotations about the x-axis and the y-axis are obtained
by the cyclic permutations

x �→ y �→ z �→ x and 1 �→ 2 �→ 3 �→ 1.

Using the Euler angles α, β, γ, every rotation R of the (x, y, z)-coordinate system
can be uniquely represented by the product

R = e−αI3e−βI1e−γI3

where −π ≤ α, γ < π and −π
2
≤ γ ≤ π

2
(see page 422). Then

�(±e−αI3
e−βI1

e−γI3
) = R. (7.21)

Applications to the Pauli equation on the non-relativistic spinning electron can be
found in Sect. 19.1.7 on page 948.

7.3.2 The Addition Theorem for the Spin

Let Xs and Yr be complex Hilbert spaces of dimension s and r, respectively, where
s, r = 0, 1

2
, 1, 3

2
, . . . Suppose that there acts an irreducible unitary representation of

the group SU(2) on Xs and Yr with the spin quantum number s and r, respectively.
In terms of physics, the Hilbert space Xs (resp. Yr) describes quantum states of
spin s (resp. r). Consider now the tensor product Xs ⊗ Yr. Then the group SU(2)
acts on Xs ⊗ Yr as an unitary representation. Since SU(2) is a compact Lie group,
the representation on Xs ⊗ Yr is completely reducible.

Theorem 7.2 There exist linear subspaces Zj of Xs ⊗ Yr such that we have the
direct sum decomposition

Xs ⊗ Yr = Z|s−r| ⊕ Z|s−r|+1 ⊕ Z|s−r|+2 ⊕ · · · ⊕ Zs+r.

All the complex Hilbert spaces Zj are irreducible under the action of the group SU(2)
with the spin quantum number j.

The proof can be found in van der Waerden (1974) quoted on page 430. In
terms of physics, this means that if two elementary particles are described by the
spin quantum numbers s and r, then the composed particle has one of the spin
quantum numbers

j = s+ r, s+ r − 1, s+ r − 2, . . . , |s− r|.

This is called the addition theorem for the spin.
Example. Consider two elementary particles with the spin quantum numbers

s = r = 1
2
. Then the composed particle has either the spin quantum number

s+ r = 1 or |s− r| = 0.
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7.3.3 The Model of Homogeneous Polynomials

In representation theory, one uses frequently spaces of polynomials in order to
construct irreducible representations of Lie matrix groups. It turns out that the
use of special polynomial models yields formulas in representation theory which
are valid in a universal way. As a typical example, let us discuss this for the group
SU(2).4

The Hilbert space Cn[x, y]. Let n = 0, 1, 2, . . . The symbol Cn[x, y] denotes
the complex linear space of all the complex homogeneous polynomials of degree n
with respect to the variables x and y. Explicitly, the elements of Cn[x, y] are given
by

p(x, y) :=

n
X

k=0

ckp
n
k (x, y)

where the coefficients c0, c1, . . . , cn are complex numbers, and

pnk (x, y) :=
xkyn−k

p

k!(n− k)!
, k = 0, 1, . . . , n. (7.22)

Introducing the inner product

〈p|p′〉 :=
n
X

k=0

c†kc
′
k, p, p′ ∈ Cn[x, y],

the space Cn[x, y] becomes a complex (n+1)-dimensional Hilbert space. For fixed n,
the polynomials pnk , k = 0, 1, . . . , n form an orthonormal basis of Cn[x, y]. The nor-
malization factors are introduced in order to get unitary representations of SU(2)
in what follows.

Irreducible representation of the Lie group SU(2) on the Hilbert space
Cn[x, y]). Consider the transformation

 

x′

y′

!

= A

 

x

y

!

, A ∈ SU(2).

Naturally enough, setting

(�(A)p)(x, y) := p(x′, y′),

we get the linear transformation �(A) : Cn[x, y] → Cn[x, y].

Theorem 7.3 The map A �→ �(A) is an irreducible unitary representation of the
group SU(2) on the (n+ 1)-dimensional complex Hilbert space Cn[x, y], which has
the spin number s = n

2
.

In order to get contact to physics, define

ψs
m(x, y) := pnk (x, y) =

xs+mys−m

p

(s+m)!(s−m)!
, s =

n

2
, m = k − s.

Then, for fixed spin quantum number s = 0, 1
2
, 1, 3

2
, . . ., the polynomials ψs

m with
m = −s,−s + 1, . . . , s form an orthonormal basis of the Hilbert space C2s[x, y].

4 The proofs of the following statements including the Clebsch–Gordan coefficients
can be found in van der Waerden (1974) quoted on page 430.
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Moreover, the irreducible unitary representation � of SU(2) on C2s[x, y] corresponds
to the situation (7.9) described on page 429.5

Irreducible representations of the Lie group SO(3). For the spin number
s = 1, the irreducible unitary representation � of the group SU(2) on the complex
3-dimensional Hilbert space C2[x, y] yields a group of linear unitary operators on
C2[x, y] which is isomorphic to the group SO(3).

For integer spin numbers s = 0, 1, 2, . . ., the irreducible unitary representation
� of the group SU(2) on the (2s + 1)-dimensional complex Hilbert space C2s[x, y]
is also an irreducible unitary representation of the group SO(3) on C2s[x, y].

7.3.4 The Clebsch–Gordan Coefficients

We want to investigate the addition theorem for spin in terms of the polynomial
model.

Special case. The Hilbert space C1[x, y] ⊗ C1[u, v] has the four polynomials

p1/2m (x, y)p
1/2

m′ (u, v), m,m′ = 1
2
,− 1

2

as basis elements. The group SU(2) acts on C1[x, y] ⊗ C1[u, v] in a natural way.
Our goal is to decompose the representation of SU(2) on C1[x, y] ⊗ C1[u, v] into
irreducible components. Moreover, we want to construct explicitly the basis poly-
nomials for the irreducible components. As a special case of the general procedure
to be described below, we choose q00(x, y, u, v) := xv − yu, and

q11(x, y, u, v) :=
√

2 · xu, q10(x, y, u, v) := xv + yu, q1−1(x, y, u, v) :=
√

2 · yv.

Set X0 := span{q00} and X1 := span{q11 , q10 , q1−1}. Then

C1[x, y] ⊗ C1[u, v] = X0 ⊕X1.

The linear subspaces X0 and X1 are invariant under the action of the group SU(2)
on C1[x, y] ⊗ C1[u, v]. The corresponding representations of SU(2) are irreducible
and unitary, and they possess the spin number s = 0 and s = 1 on X0 and X1,
respectively.

General case. Fix s, s′ = 0, 1
2
, 1, 3

2
, . . . The Hilbert space C2s[x, y] ⊗ C2s′ [u, v]

has the basis polynomials

psm(x, y)ps
′

m′(u, v), m = −s,−s+ 1, . . . , s, m′ = −s′,−s′ + 1, . . . , s′.

Let S = s+ s′ − λ. Fix λ := 0, 1, . . . s+ s′ − |s− s′|. Consider the polynomial

p(ξ, η) := (xv − yu)λ(xξ + yη)2s−λ(uξ + vη)2s
′−λ.

Let qSM be the coefficient of p(ξ, η) with respect to the term

pSM (ξ, η) =
ξS+MηS−M

p

(S +M)!(S −M)!
, S = s+ s′ − λ,M = −S,−S + 1, . . . , S.

Define XS := span{qSM}M=−S,−S+1,...,S . Then we have the decomposition

C2s[x, y] ⊗ C2s′ [u, v] = Xs+s′ ⊕Xs+s′−1 ⊕ · · · ⊕X|s−s′|.

5 The state ψm in (7.9) coincides with ψs
m.
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The linear subspaces Xs+s′ , . . . are invariant under the action of the group SU(2)
on C2s[x, y]⊗C2s′ [u, v]. The corresponding representations of SU(2) are irreducible
and unitary, and they possess the spin number s + s′ − λ on Xs+s′−λ. Explicitly,
we get

qSM (x, y, u, v) = λ!(2s− λ)!(2s′ − λ)!
X

m+m′=M

cSmm′psm(x, y)ps
′

m′(u, v).

The complex numbers cSmm′ are explicitly known; they are called the Clebsch–
Gordan coefficients.

7.4 Heisenberg’s Isospin

Consider the situation (7.6) on page 428. The equations

S3ψm = m�ψm,
`

(S1)2 + (S2)2 + (S3)2
´

ψm =
3�

2

4
ψm

with m = 1
2
,− 1

2
describe the quantum states ψ1/2 and ψ−1/2 of an electron with

the spin components �/2 and −�/2, respectively, and the spin number s = 1
2
. In

1932, Heisenberg used this formalism in order to introduce a new quantum number
called isospin. In this setting, we replace the spin operators Sk = �

2
σk, k = 1, 2, 3,

by the so-called isospin operators T k := 1
2
σk, k = 1, 2, 3. Then we get

T 3ψm = mψm,
`

(T 1)2 + (T 2)2 + (T 3)2
´

ψm =
3

4
ψm

with m = 1
2
,− 1

2
.6 Then the quantum state ψ1/2 (resp. ψ−1/2) describes a proton

(resp. neutron).

According to Heisenberg, the proton and the neutron are two different quan-
tum states of a so-called nucleon.

In the Standard Model of particle physics, the proton and the neutron are members
of the baryon octet (see Fig 3.3 on page 228).

Problems

7.1 Proof of (7.7). Solution: Fix k = 1, 2, 3. Set f(ϕ) := eϕiσk

. Then

f ′(ϕ) = i σkf(ϕ), ϕ ∈ R, f(0) = σk. (7.23)

Since (σk)2 = σ0, the function g(ϕ) = cosϕ + iσk sinϕ is a solution of (7.23).
Since the solution of this differential equation is unique, we get f = g. The
proof of the general case (7.7) proceeds similarly.

7.2 Proof of the explicit formulas (7.10) for eϕI
k

. Hint: Proceed as in Problem 7.1.

Note that d
dϕ

eϕI
k

= IkeϕI
k

.

6 Concerning the general representations of SU(2) considered on page 428, we
obtain the isospin operators T 1, T 2, T 3 by setting T k := �

−1Sk.



8. Changing Observers – A Glance at Invariant
Theory Based on the Principle of the Correct
Index Picture

It is worth noting that the notation facilitates discovery. This, in a most
wonderful way, reduces the mind’s labor.

Gottfried Wilhelm Leibniz (1646–1716)

Use only equations which possess the correct index picture!
Golden rule

8.1 A Glance at the History of Invariant Theory

Geometry is the theory of invariants of a transformation group.
Felix Klein (1849–1925)
Erlangen program, 1872

All roads lead to Rome, so I find in my own case at least that all algebraic
inquiries, sooner or later, end at the Capitol of Modern Algebra over whose
shining portal is inscribed the Theory of Invariants.

James Sylvester, 1884

Invariant theory plays a crucial role in all branches of mathematics and in modern
physics. Invariant theory has its roots in celestial mechanics (Lagrange’s contribu-
tions to the three-body problem),1 the motion of rigid bodies (Euler’s spinning top),
Cauchy’s theory of elasticity, number theory, projective geometry, and differential
geometry. In his fundamental work Disquisitiones arithmeticae on number theory
from 1801, Gauss (1777–1855) studied invariants of quadratic forms under unimod-
ular linear substitutions with integral coefficients. Later on, more general results on
quadratic forms were obtained by Jacobi (1804–1851), Sylvester (1814–1897), and
Hermite (1822–1901).

In his 1827 Disquisitiones generales circa superficies curvas (general theory of
surfaces), Gauss founded the differential geometry of 2-dimensional surfaces by us-
ing the invariants of two quadratic forms (the metric and the curvature form). This
was the beginning of a fascinating development in differential geometry strongly

influenced by Riemann (1826–1866), Ricci-Curbastro (1853–1925), Élie Cartan
(1869–1951), Levi-Civita (1873–1941), Hermann Weyl (1885–1955), and Ehresmann
(1905–1979). In terms of physics, this development culminated in both Einstein’s
theory of general relativity (Standard Model in cosmology) and the Standard Model
in particle physics.

Projective geometry played a crucial role in the 19th century. In the 1850s, Cay-
ley (1821–1895) gave a complete classification for cubic and biquadratic invariants

1 Euler (1707–1783), Lagrange (1736–1813), Cauchy (1789–1857).
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in projective geometry. His work was continued by Sylvester (1814–1897), Salmon
(1819–1904), Clebsch (1833–1872), and Gordan (1837–1912).

Invariant theory was revolutionized by Hilbert (1862–1943) in the 1890s. Hilbert
solved the main problem of invariant theory by showing that there exists only a
finite number of basic invariants for a large class of problems. The predecessors of
Hilbert tried to compute explicitly the basic invariants. In contrast of this, Hilbert
gave an abstract existence proof of great generality (Hilbert’s basis theorem and
syzygies). Nowadays computer algebra is used in order to compute invariants. The
algorithms are of high complexity. In 1904, Hilbert created functional analysis by
studying infinite-dimensional quadratic forms. In 1928, von Neumann (1903–1957)
generalized Hilbert’s approach to the spectral theory for unbounded self-adjoint op-
erators in Hilbert space. This is the basic mathematical tool in quantum mechanics.

The theory of differential invariants was founded by Lie (1849–1899). Using

results due to Killing (1847–1923), Élie Cartan completely classified the represen-
tations of the semisimple complex Lie algebras in his 1894 thesis. The representation
theory of groups was independently founded by Burnside (1852–1927) and Frobe-
nius (1849–1917) in about 1900. This approach was simplified by Schur (1856–1932).
In the 1920s, Weyl (1885–1955) created a general analytic approach to the repre-
sentation theory of the classic Lie groups. This work was presented in the following
fundamental monograph:

H. Weyl, The Classical Groups: Their Invariants and Representations,
Princeton University Press, 1938 (15th edition, 1997).

This book represents a high-light in mathematics.
Integral invariants were used by Poincaré (celestial mechanics), Hilbert (in-

variant integral in the calculus of variations), and Élie Cartan. In topology, the
most important task is the construction of powerful topological invariants. Alge-
braic topology was founded by Poincaré (1854–1912) in 1895. The development of
mathematics in the 20th was strongly influenced by solving problems arising in al-
gebraic topology and by their relations to algebraic geometry and global differential
geometry.

8.2 The Basic Philosophy

All of the results investigated in this chapter can be obtained by means of completely
elementary computations. One has only to use

• the chain rule in classical calculus, and
• algebraic relations based on permutations.

For historical reasons, there exist apparently different approaches in the mathe-
matical and physical literature. However, it turns out that all the approaches are
equivalent to each other. In this chapter, for the convenience of the reader, we would
like to give a survey in the spirit of most textbooks in physics; this dates back to
Einstein’s classic 1915/16 papers on the theory of general theory of relativity. We
emphasize the analytical and computational aspects.

The advantage is that the calculus presented in this chapter works by its
own.

Therefore, it is a perfect calculus in the sense of Leibniz (1646–1716). The disad-
vantage is that the geometric and physical intuition behind the analytical approach
is not visible; the intuitive meaning will be discussed in later chapters.

Our main task is the construction of invariants.
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We will discuss this for the following objects:

• real physical fields (tensor analysis and differential forms),
• symmetries of physical fields and gauge transformations,
• complex physical fields and complex (resp. almost complex) geometry (e.g.,

spinor analysis).

In an axiomatic way, the notion of the connection on a vector bundle (i.e., the
notion of a covariant directional derivative) is behind modern differential geometry.
For pedagogical reasons, we will first study concrete examples before passing to the
axioms later on.

Analytic approach. In analysis and physics, differential operators play a key
role. In this chapter, we will investigate linear differential operators of order r given
by

D := T i1i2...ir (x)
∂r

∂xi1∂xi2 · · · ∂xir . (8.1)

Here, we sum over i1, . . . , ir = 1, . . . , n, and we set x := (x1, . . . , xn). The smooth
coefficient functions T i1i2...ir are called a tensorial family. These coefficient func-
tions depend on the choice of the local coordinate system; in terms of physics, they
depend on the choice of the observer. In contrast to this, the differential operator
D itself is an invariant object which does not depend on the choice of the local
coordinates. Introducing the symbol ∂i := ∂

∂xi , we get

D := T i1i2...ir (x) ∂i1∂i2 · · · ∂ir . (8.2)

Equivalently, we will also write

D = T i1i2...ir (x) ∂i1 ⊗ ∂i2 ⊗ · · · ⊗ ∂ir .

Geometric approach and velocity vector fields. In geometry, one considers
tangent vectors v := vibi at the point P of the manifold M under consideration.
Here, b1, . . . ,bn are basic vectors of the tangent space of M at the point P , and
we sum over i = 1, . . . , n. In physics, v is a velocity vector at the point P . In the
present case, the relation between analysis, geometry, and physics is given by the
fact that one can use the identification

vi
∂

∂xi
⇔ vibi.

That is, velocity vectors can be identified with linear first-order partial differential
operators. From the mnemonic point of view, one prefers the notation (8.1) in
modern mathematics, since the well-known classic formulas

∂

∂xi′
=
∂xi

∂xi′
· ∂
∂xi

and dxi
′
=
∂xi

′

∂xi
· dxi

yield automatically the correct transformation laws. In addition, dxi(∂j) = δij if
i, j = 1, 2, . . . , n. This coincides with

bi′ =
∂xi

∂xi′
· bi, and vi

′
=
∂xi

′

∂xi
· vi,
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as well as dxi(bj) = δij if i, j,= 1, 2, . . . , n. Then the differential operator D corre-
sponds to the tensor

T i1i2...ir bi1 ⊗ bi2 ⊗ · · · ⊗ bir .

In the dual setting, we have the r-linear functional

Ti1i1...ir dx
i1 ⊗ · · · ⊗ dxir

where we sum over i1, . . . , ir = 1, . . . , n.
The mathematical description of physical processes is based on some funda-

mental differential equations (e.g., the Maxwell equations in electromagnetism, the
Einstein equations in the theory of general relativity, the Dirac equation for the
relativistic electron, the Weyl equation for the relativistic massless neutrino, the
Standard Model in particle physics generalizing the Dirac equation and the Weyl
equation). The change of observers corresponds to a transformation of the funda-
mental differential equations. The main goal of invariant theory is to find differential
expressions which possess nice transformation laws.

Thus, it is possible to formulate the differential equations in physics in
such a way that they are valid for arbitrary observers (Einstein’s principle
of general relativity).

Our goal is to present an approach which realizes this program in a mnemonically
very elegant way. From the practical point of view, this culminates in the index
principle of mathematical physics (see Sect. 9.3 on page 574).

Changing observers. In what follows x1, . . . , xn are real coordinates measured
by an observer O in the system Σ of reference. In terms of physics, x1, . . . , xn are
space coordinates or space-time coordinates. We set

x :=

0

B

B

@

x1

...

xn

1

C

C

A

.

Another observer O′ will measure x1′ , . . . , xn
′

in the system of reference Σ′. The
equation

x′ = x′(x), x ∈ Ω (8.3)

describes the change of the coordinates from the observer O to the observer O′.
Explicitly,

xi
′
= xi

′
(x1, . . . , xn), i = 1, . . . , n.

We assume that the map x �→ x′(x) is a diffeomorphism from Ω onto Ω′, where Ω
and Ω′ are nonempty, open, arcwise connected subsets of R

n. We set

G(x) :=
dx′(x)

dx
=

0

B

B

B

@

∂x1′ (x)

∂x1 . . . ∂x1′ (x)
∂xn

... . . .
...

∂xn′
(x)

∂x1 . . . ∂xn′
(x)

∂xn

1

C

C

C

A

.

Since the map x �→ G(x) is continuous, the integer-valued map x �→ sgn(detG(x))
on the arcwise connected open set Ω is constant. This integer is called the sign of

the map x �→ x′(x) denoted by sgn det(G) (or sgn det
“

dx′

dx

”

). The map x �→ x′(x)

is called orientation-preserving iff sgn det(G) = 1.
Different types of indices. Let n,N = 1, 2, . . . In order to describe real-valued

and complex-valued physical fields, we will use the following types of indices:
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• Lower case Latin indices run from 1 to n. For example, k = 1, . . . , n.
• Upper case Latin indices run from 1 to N . For example, A = 1, . . . N.
• Dotted and overlined lower case Latin indices run from 1 to n. For example,
k̇ = 1̇, . . . ṅ, and k̄ = 1̄, . . . , n̄.

• Dotted and overlined upper case Latin indices run from 1 to N . For example,
Ȧ = 1̇, . . . Ṅ , and Ā = 1̄, . . . , N̄ .

Einstein’s summation convention. We sum over equal lower (resp. upper)
case Latin indices from 1 to n (resp. from 1 to N). For example,

T k
kl =

n
X

k=1

T k
kl, ψA

AB =

N
X

A=1

ψA
AB .

The same convention remains true for dotted and overlined indices. For example,

• T k̇
k̇l

=
Pn

k=1 T
k̇
k̇l
, ψȦ

ȦB
=
PN

A=1 ψ
Ȧ
ȦB
, and

• T k̄
k̄l =

Pn
k=1 T

k̄
k̄l, ψĀ

ĀB =
PN

A=1 ψ
Ā
ĀB .

Note that we only sum over indices of the same type: lower case Latin indices,
upper case Latin indices, dotted lower case Latin indices, dotted upper case Latin
indices, overlined lower case Latin indices, overlined upper case Latin indices. An
index is called free iff we do not sum over the index. For example, the expressions

T k
kj and ψĀḂj

ĀḂ
possess the free index j.

Dotted indices play a crucial role in spinor calculus. Overlined indices are crit-
ically used in complex geometry (e.g., Kähler manifolds), conformal quantum field
theory, and string theory. This will be thoroughly studied in Vol. IV on quan-
tum mathematics. In this volume, we will concentrate on Riemannian and pseudo-
Riemannian geometry (tangent bundle of a real manifold) and gauge theory on real
manifolds (vector and principal bundles over real manifolds).

Different types of partial derivatives. We set

∂i :=
∂

∂xi
, ∂i′ :=

∂

∂xi′
.

Later on, we will also use the complex coordinates

zk := xk + iyk, z̄k = xk − iyk, k = 1, . . . , n

where x1, y1, . . . , xn, yn are real coordinates. Following Poincaré, we also set

∂

∂zk
:=

∂

∂xk
− i

∂

∂yk
,

∂

∂z̄k
:=

∂

∂xk
+ i

∂

∂yk
.

Furthermore, we set ∂zk := ∂
∂zk and ∂z̄k := ∂

∂z̄k .

8.3 The Mnemonic Principle of the Correct Index
Picture

If we do scientific work, we must often step down from our high horse of
grand principles, and dig in the dirt with our noses. When we achieve our
purpose, we cover the tracks of our efforts in order to appear as gods of
clear thought.

Albert Einstein (1879–1955)
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As we will show below, the classical tensor calculus works by its own if one only
uses tensorial families, and all the additive terms of the equations possess the same
free lower and upper indices. For example, the equation

T k
kj + SȦTȦj +RĀḂl

ĀḂlj = 0

is correctly formulated. The three additive terms possess the same free lower index
j and no other free indices. We also say that the remaining indices k, Ȧ, Ā, Ḃ, l are
killed (by summation). In contrast to this, the expression

T k
kj + Skj

k = 0

does not have the correct index picture, since the free index j appears as lower
and upper index. As we will show below, if the index picture is right, then all the
additive terms transform the same way under a change of the system of reference
from Σ to Σ′. In what follows, the reader should always check that the equations
have the correct index picture (see Problem 8.1).

The Einstein summation convention together with the principle of the cor-
rect index picture are beautiful mnemonic tools in classical tensor algebra
and tensor analysis.

In what follows, the principle of the correct index picture will be briefly called the
index principle. The final version of the index principle (including the inverse index
principle) will be formulated in Sect. 8.8.2 on page 493. Experienced mathemati-
cians and physicists use the index principle in order to detect errors of formulas in
tensor calculus (see Problem 8.1).

According to Felix Klein’s Erlangen program from 1872, differential geometry is
the invariant theory of transformation groups (symmetry group of the geometry).
We want to show how to construct explicitly such invariants in a systematic way.

8.4 Real-Valued Physical Fields

For the convenience of the reader, we restrict ourselves to the simplest situation in
order to explain many interrelationships between apparently different approaches
used in mathematics and physics. Our starting point is the study of tensor calculus
based on velocity vector fields v. In terms of modern mathematics, velocity vector
fields are sections of the tangent bundle of manifolds. A reader who understands
the special approach based on velocity vector fields (and, equivalently, based on
linear first-order differential operators) will easily understand the general approach

v ⇒ ψ

where velocity vector fields v are replaced by general real-valued and complex-
valued physical fields ψ. In terms of modern mathematics, the physical fields ψ are
sections of vector bundles over manifolds which generalize the tangent bundle of
a manifold. Einstein’s theory of general relativity for gravitation is related to the
v-approach, whereas Maxwell’s theory of electromagnetism and the more general
Standard Model in particle physics are related to the ψ-approach.
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8.4.1 The Chain Rule and the Key Duality Relation

Invariant theory is essentially based on the Leibniz chain rule in differential
calculus.

Folklore

Let us consider the diffeomorphism x′ = x(x) from Ω to Ω′, and the inverse map
x = x(x′) from Ω′ onto Ω. Then we have the so-called duality relation

∂xi(x′)

∂xi′
· ∂x

i′(x)

∂xj
= δij , i, j = 1, . . . , n, x′ = x′(x). (8.4)

This follows from ∂xi

∂xj = δij together with the chain rule. Interchanging x and x′,
we also get

∂xi
′
(x)

∂xi
· ∂x

i(x′)

∂xj′
= δi

′
j′ , i′, j′ = 1′, . . . , n′, x′ = x′(x). (8.5)

Let us reformulate the duality relation (8.4) into the language of matrices. To this
end, we set

Gi′
i (x) :=

∂xi
′
(x)

∂xi
, Gi

i′(x) :=
∂xi(x′)

∂xi′ |x′=x′(x)
.

Then

G(x) :=

0

B

B

@

G1′
1 (x) . . . g1

′
n (x)

... . . .
...

G n′
1 (x) . . . G n′

n (x)

1

C

C

A

. (8.6)

Furthermore, it follows from (8.5) that

(G(x)−1)d =

0

B

B

@

G1
1′(x) . . . G

n
1′ (x)

... . . .
...

G1
n′(x) . . . G n

n′(x)

1

C

C

A

, G(x)−1 =

0

B

B

@

G1
1′(x) . . . G

1
n′(x)

... . . .
...

G n
1′ (x) . . . G

n
n′(x)

1

C

C

A

.

Recall that the Jacobian of the transformation x′ = x′(x) is defined by

∂(xi
′
, . . . , xn

′
)

∂(x1, . . . , xn)
(x) := detG(x), x ∈ Ω.

The sign of a coordinate transformation. Since the map x �→ G(x) is
continuous on the arcwise connected set Ω, the integer-valued continuous map
x �→ detG(x) is constant on Ω. We define

sgn

„

dx′

dx

«

:= sgn(detG(x)). (8.7)

This is called the sign of the diffeomorphism x′(.) : Ω → Ω′. This sign will play a
crucial role below if orientation will enter the scene.

The key relations of the classical tensor calculus. Mnemonically, the two
key relations read as
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dxi
′
=
∂xi

′
(x)

∂xi
dxi,

∂

∂xi′
=
∂xi(x′)

∂xi′
∂

∂xi
, i′ = 1′, . . . , n′. (8.8)

Equivalently,

dxi
′
= Gi′

i (x) dxi, ∂i′ = Gi
i′(x) ∂i, i′ = 1′, . . . , n′.

Introducing the column matrices

dx :=

0

B

B

@

dx1

...

dxn

1

C

C

A

, ∂ :=

0

B

B

@

∂1
...

∂n

1

C

C

A

,

the key relations (8.8) read as

dx′ =
dx′

dx
dx = G(x) dx, ∂′ = (G(x)−1)d ∂, x ∈ Ω. (8.9)

Let us discuss this.

8.4.2 Linear Differential Operators

Sophus Lie (1842–1899) based his approach to group theory and to differential
geometry on linear differential operators. We will use linear differential operators
as a point of departure for classical tensor calculus. To this end, consider the smooth
maps

ΘO : ΩO → R, ΘO′ : ΩO′ → R.

In terms of physics,

• ΘO(x) is the temperature measured by the observer O at the point x;
• ΘO′(x′) is the temperature measured by the observer O′ at the point x′.

We postulate that

ΘO′(x′) = ΘO(x) for all x ∈ Ω, x′ = x′(x).

This means that the two observers O and O′ measure the same temperature at
the same point described by the local coordinate x and x′, respectively. The family
{ΘO} is called a temperature field with respect to the system {O} of observers.2

• The observer O computes the linear differential operator

(LOΘO)(x) := vi(x) ∂iΘO(x), x ∈ Ω

where the functions vi : Ω → R, i = 1, . . . , n, are smooth.
• The observer O′ computes

(LO′ΘO′)(x′) := vi
′
(x′) ∂i′ΘO′(x′), x′ ∈ Ω′

where the functions vi
′
: Ω′ → R, i′ = 1′, . . . , n′, are smooth.

2 In the sense of tensorial families to be introduced on page 452, we briefly say
that Θ is a scalar tensorial family.
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We postulate that

(LO′ΘO′)(x′) = (LOΘO)(x) for all x ∈ Ω, x′ = x′(x). (8.10)

Our goal is to compute the transformation from the coefficients v1(x), . . . , vn(x)

measured by O to the coefficients v1
′
(x′), . . . , vn

′
(x′) measured by O′. The chain

rule tells us that

∂i′ΘO′(x′) =
∂xi(x′)

∂xi′
∂iΘO(x). (8.11)

Interchanging the observers, we get

∂iΘO(x) =
∂xi

′
(x)

∂xi
∂i′ΘO′(x′). (8.12)

This implies

vi
′
(x′) =

∂xi
′
(x)

∂xi
vi(x), i′ = 1′, . . . , n′, x′ = x′(x). (8.13)

Proof. By (8.12), vi∂iΘO = vi ∂x
i′

∂xi ∂i′ΘO′ . It follows from (8.10) that

vi
′
· ∂i′ΘO′ = vi∂iΘO =

 

∂xi
′

∂xi
vi
!

· ∂i′ΘO′ .

This is valid for all smooth functions ΘO′ . Therefore, we get (8.13). �

8.4.3 Duality and Differentials

Basic definition. We define dx1, . . . , dxn by setting

dxi(vj(x) ∂j) := vi(x), i = 1, . . . , n. (8.14)

This implies the transformation law

dxi
′
=
∂xi

′
(x)

∂xi
dxi. (8.15)

Proof. Note that

dxi
′
(vj

′
∂j′) = vi

′
, dxi(vj∂j) = vi.

Since vj
′
∂j′ = vj∂j , the linear functional dxi transforms like vi. Thus, the claim

follows from (8.13). �

Note that the transformation laws (8.11) and (8.15) yield the mnemonic key
relations (8.8) on page 446.

Velocity vector fields. Consider the partial differential equation

vi(x) ∂iΘ(x) = 0 (8.16)

for the scalar tensorial family Θ together with the following system of ordinary
differential equations:
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dxi(t)

dt
= vi(x(t)), −t0 < t < t0, i = 1, . . . , n. (8.17)

In mathematics, the system (8.17) is called the characteristic system to (8.16).
In terms of physics, the solutions x = x(t) of (8.17) describe the motion of fluid

particles with the velocity components dxi(t)
dt

, i = 1, . . . , n, at time t. The smooth
function x �→ v(x) represents the velocity vector field of a fluid with the velocity
components v1(x), . . . , vn(x) at the point x in the system of reference Σ.

If the temperature function Θ is a smooth solution of (8.16), then the tem-
perature is constant along the trajectories of the fluid particles.

This follows from

dΘ(x(t))

dt
=
dxi(t)

dt
(∂iΘ)(x(t)) = vi(x(t))(∂iΘ)(x(t)) ≡ 0.

Wedge product. We define dxi ∧ dxj by setting

(dxi ∧ dxj)(v, w) := dxi(v)dxj(w) − dxi(w)dxj(v) = vi(x)wj(x) − wi(x)vj(x)

for all linear first-order differential operators v = vi∂i and w = wi∂i with smooth
coefficients. More general, let p = 1, . . . , n. By definition,

(dxi1 ∧ · · · ∧ dxip)(v1, . . . , vp) := εi1...ip dx
i1(v1) · · · dxip(vp)

for all linear first-order differential operators v1, . . . , vp with smooth coefficients.
Terminology. Let Ω be an open nonempty subset of R

n. Then:

• C∞(Ω,R) denotes the real linear space of all the smooth functions f : Ω → R.
Alternatively, we write Λ0(Ω) instead of C∞(Ω,R).

• C∞
0 (Ω,R) denotes the real linear space of all the smooth functions f : Ω → R

which have a compact support, that is, they vanish outside a compact subset of
Ω (e.g., a closed ball).

• Diff1(Ω) denotes the real linear space of all the linear first-order differential
operators

v : C∞(Ω) → R

with smooth coefficient functions, that is, v = vi∂i and vi ∈ C∞(Ω) for all
i = 1, . . . , n.3

• Diffm(Ω) denotes the real linear space of all the linear mth-order differential
operators

V : C∞(Ω) → R

with smooth coefficient functions, that is, V = vi1i2...im∂i1∂i2 · · · ∂im with
vi1i2...im ∈ C∞(Ω) for all i1, . . . , im = 1, . . . , n. Here, m = 1, 2, . . .

• The differential dxi introduced above is a linear functional

dxi : Diff1(Ω) → R, i = 1, . . . , n.

• Λ1(Ω) denotes the real linear space of all the linear functionals

vidx
i : Diff1(Ω) → R

with smooth coefficient functions, that is, vi ∈ C∞(Ω) if i = 1, . . . , n.

3 We will show in Sect. 8.8.1 on page 487 that Diff1(Ω) is a real Lie algebra.
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• Λp(Ω) with p = 1, 2, 3, . . . , n denotes the real linear space of all the smooth
p-forms

ω := 1
p!
ωi1...ip dx

i1 ∧ · · · ∧ dxip

where ωi1...ip ∈ C∞(Ω) for all i1, . . . , ip = 1, . . . , n, and ωi1...ip is antisymmetric

with respect to all the indices. The elements ω of Λ2(Ω) are bilinear antisym-
metric functionals of the form

ω : Diff1(Ω) × Diff1(Ω) → R.

For p = 1, 2, . . ., the elements ω of Λp(Ω) are p-linear antisymmetric functionals
of the type ω : Diff1(Ω) × · · · × Diff1(Ω) → R.

8.4.4 Admissible Systems of Observers

We want to describe the transformations between several observers. The reader who
wants to parallel the general setting with a concrete example in Euclidean geometry
should compare the following material with Sect. 9.1 on classical vector analysis.
Fix n = 1, 2, . . . The point of departure is the transformation law

x′ = x′(x), x ∈ Ω, Ω ⊆ R
n. (8.18)

The compatibility condition for observers. An admissible system O of
observers is characterized by the following situation: There exists a nonempty set
of symbols O,O′, O′′, . . . called observers.

• For any observer O, there exists a uniquely determined open, arcwise connected,
nonempty subset ΩO of R

n called the coordinate system of O.
• For any ordered pair (O,O′) of observers, there exists a uniquely determined

diffeomorphism
fO′,O : ΩO → ΩO′

called a coordinate transformation (e.g., a transformation x �→ x′ of space coor-
dinates or space-time coordinates in Einstein’s theory of general relativity). In
addition, suppose that

fO,O′ = f−1
O′,O

for all observers O,O′. In particular, fO,O = id.
• For any ordered triplet (O,O′, O′′) of observers, the following diagram is com-

mutative:

ΩO

fO′′,O

fO′,O
ΩO′

fO′′,O′

ΩO′′ .

This means that we get the composition rule4

fO′′,O′ ◦ fO′,O = fO′′,O (8.19)

for the change O ⇒ O′ ⇒ O′′ of observers. In terms of physics, the observer O mea-
sures the coordinate x, and the observer O′ measures the coordinate x′ = fO′,O(x).

4 Mnemonically, one has to read this equation from right to left.
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To simplify notation, we frequently write x′(x) instead of fO′,O(x). The relation
(8.19) tells us that the measurements carried out by three observers O,O′, O′′ are
compatible with each other. In fact, the following hold:

• If the observer O measures the coordinate x, then the observer O′ measures the
coordinate x′ = fO′,O(x), and the observer O′′ measures

x′′ = fO′′,O(x). (8.20)

• The passage from the observer O′ to the observer O′′ yields

x′′ = fO′′,O′(x′). (8.21)

Naturally enough, the relation (8.19) tells us that the two values (8.20) and (8.21)
coincide.

Linearization of the diffeomorphism fO′,O at the point x yields

dx′(x)

dx
= f ′O′,O(x) :=

 

∂xi
′
(x)

∂xi

!

.

To simplify notation, we will frequently write GO′,O(x) or briefly G(x) instead of
f ′O′,O(x) (see (8.6) above). By the chain rule, linearization of the compatibility
relation (8.19) yields

f ′O′′,O′(x′) ◦ f ′O′,O(x) = f ′O′′,O(x) (8.22)

where x′ = fO′,O(x) and x′′ = fO′′,O(x). Equivalently, we have the matrix product

GO′′,O′(x′)GO′,O(x) = GO′′,O(x) (8.23)

for the change O ⇒ O′ ⇒ O′′ of observers.
Duality. Using the matrix rules (AB)−1 = B−1A−1 and (AB)d = BdAd, it

follows from (8.23) that

HO′′,O′(x′)HO′,O(x) = HO′′,O(x) (8.24)

where HO′,O(x) := (GO′,O(x)−1)d denotes the contragredient matrix to GO′,O(x).
Relation (8.24) is called the dual linearized compatibility condition. As we will
show below, the use of both (8.23) and (8.24) is crucial for classical tensor calculus.
Recall that GL(n,R) denotes the group of all real invertible (n×n)-matrices. Note
the following. If we set χ(G) := (G−1)d for all G ∈ GL(n,R), then the map

χ : GL(n,R) → GL(n,R)

is a group isomorphism which is called the dual (or contragredient) representation
of the group GL(n,R). As we will show in Sect. 8.4.5, the dual representation is
crucial for the construction of invariants (principle of killing indices).

Symmetry. Let G be a subgroup of the group GL(n,R). The admissible system
of observers is called a G-system iff

GO′,O(x) ∈ G for all x ∈ ΩO

and for all pairs (O,O′) of observers.
Examples. (i) Consider the linear transformation law
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x′ = Gx, x ∈ R
n (8.25)

for all matrices G in the given subgroup G of the group GL(n,R) (for example,
choose G = GL(n,R) or G = SO(n)).5 Intuitively, the group G describes symmetry
properties of the transformations between the observers. For example, in Einstein’s
theory of special relativity, we have n = 4 (four space-time coordinates), and G
equals the orthochronous Lorentz group SO↑(1, 3). In this case, the equation (8.25)
describes the change of inertial systems where the orientation of time is preserved
(see Chap. 18).

The corresponding admissible system of observers can be easily obtained in the
following way. We choose all the symbols OG with G ∈ G as observers, that is, the
observers are labelled by the group elements. We assign to every pair (OI , OG) of
observers the linear isomorphism

G : R
n
I → R

n
G.

More generally, we assign to any pair (OG, OH) of observers the linear isomorphism

HG−1 : R
n
G → R

n
H .

Then the following diagram is commutative:

R
n
I

G

H

R
n
G

HG−1

R
n
H .

This corresponds to the three observers OI , OG, OH where

• the composed passage OI → OG → OH corresponds to
• the passage OI → OH .

In fact, we have the composition rule HG−1 ·G = H. Moreover, the commutativity
of the following diagram

R
n
J

GJ−1

HJ−1

R
n
G

HG−1

R
n
H

describes the compatibility of the three observers OJ , OG, OH . This means that the
composed passage OJ → OG → OH corresponds to the passage OJ → OH . In fact,

(HG−1)(GJ−1) = HJ−1.

(ii) Consider the nonlinear transformation law

x′ = x′(x), x ∈ R
n. (8.26)

Here, the map

5 Note that, in the present special case, the matrix G does not depend on the
variable x.
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f : R
n → R

n

is an arbitrary diffeomorphism, and we set x′(x) := f(x). Then

dx′ = f ′(x)dx.

Replacing G in (i) by the linearization f ′, we get an admissible system of observers
Of ′ labelled by f ′.

Orientation. Consider an admissible system of observers. We assign to each
observer O a number ιO = 1 or ιO = −1 such that

ιO′ = sgn

„

dx′

dx

«

· ιO (8.27)

for all the changes from the observer O to the observer O′. Here, sgn( dx
′

dx
) is the sign

of the change x �→ x′(x) of local coordinates (see (8.7) on page 445). The integer ιO
is called the orientation number (or parity number) of the observer O. The function

O �→ ιO

is called an orientation function of the given admissible system of observers. Such a
function always exists. To show this, fix an observer O0. Define ιO0 := 1. Moreover,
define

ιO := sgn

„

dx

dx0

«

for all observers O. By the chain rule, dx′

dx0
= dx′

dx
· dx
dx0
. Hence

ιO′ := sgn

„

dx′

dx
· dx
dx0

«

.

Because of the product rules det(AB) = detA · detB and sgn(ab) = sgn a · sgn b,
we get

ιO′ := sgn

„

dx′

dx

«

· sgn

„

dx

dx0

«

= sgn

„

dx′

dx

«

· ιO.

This yields (8.27) which finishes the proof.
The family {ιO} equipped with the transformation law (8.27) is called a pseudo-

invariant. An admissible system of observers is called oriented iff all the diffeomor-
phisms x �→ x′(x) (which describe the change of local coordinates of the observers)
have a positive sign.

8.4.5 Tensorial Families and the Construction of Invariants via
the Basic Trick of Index Killing

Tensorial families. Let O be an admissible system of observers. By definition, a
tensorial family

T i1i2...ir
j1j2...js

(8.28)

transforms like the product

dxi1dxi2 · · · dxir∂j1∂j2 · · · ∂js . (8.29)
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More precisely, let r, s = 1, 2, . . . The indices i1, . . . , ir, j1, . . . , js run from 1 to n.
We assign to each set Ω ∈ O a family of smooth functions

T i1...ir
j1...js

: Ω → R,

and the passage from Ω to Ω′ corresponds to transformation formulas which are
the same as the formulas for (8.29). For example, by the key relations (8.8), we
have the transformation formula

dxi
′
∂j′ = Gi′

i (x)gjj′(x) · dx
i∂j

from Ω to Ω′. Consequently, the tensorial family T i
j transforms like

T i′
j′ (x

′) = Gi′
i (x)Gj

j′(x) · T
i
j (x), x′ = x′(x).

The tensorial family (8.28) is called r-fold contravariant and s-fold covariant. We
also say that the tensorial family (8.28) is of type (r, s).

Examples of tensorial families. Define δij = δij = δij := 1 (resp. = 0) if
i = j (resp. i �= j), and

εi1i2...in = εi1i2...in := sgn

„

1

i1

2 . . .

i2 . . .

n

in

«

where i, j, i1, . . . , in = 1, . . . , n. For example,

• ε12...n = ε12...n = 1,
• ε2134...n = −ε1234...n = −1, and ε1134...n = 0.

Note that εi1...in changes sign (resp. remains unchanged) under an odd (resp. even)
permutation of the indices. Then the following hold:

(i) δij is a tensorial family for every admissible system O of observers.
(ii) Let O be an admissible system of observers as given by (8.25) with respect

to the special orthogonal group G = SO(n). Then

δij , δij , εi1...in , ε
i1...in

are tensorial families. Note that these tensorial families have the same position-
independent values in every system of reference. Such important tensorial families
are called form-invariant.

(iii) Let O be an admissible system of observers as given by (8.25) with respect
to the orthogonal group G = O(n). Then δij and δij are tensorial families. However,
εi1...in and εi1...in are not tensorial families, but they are pseudo-tensorial families
in the sense of the definition given below.

(iv) Let O be an arbitrary admissible system of observers. Then, in contrast to
δij , the family δij is not always a tensorial family.

These examples show that tensorial families depend critically on the choice of
the admissible system of observers and on the index picture. Changing the index
picture may destroy tensorial families (e.g., the change from δij to δij).
Proof. Ad (i). It follows from the key duality relation (8.5) that

δi
′
j′ = Gi′

i G
j
j′δ

i
j .

Ad (ii), (iii). If G ∈ O(n), then GGd = I. This implies

δi
′j′ = Gi′

i G
j′

j δ
ij .



454 8. A Glance at Invariant Theory

Moreover, it follows from (G−1)dG−1 = I that

δi′j′ = Gi
i′G

j
j′δij .

Furthermore, we will use the determinant formulas

detG · εi
′
1i

′
2...i

′
n = G

i′1
i1
G

i′2
i2
· · ·Gi′n

in
εi1i2...in , (8.30)

and

detG−1 · εi′1i′2...i′n = Gi1
i′1
gi2
i′2
· · ·Gin

i′n
εi1i2...in (8.31)

which are valid for all complex (n× n)-matrices G. Thus, if detG = ±1, then

εi
′
1i

′
2...i

′
n = sgn(detG) ·Gi′1

i1
G

i′2
i2
· · ·Gi′n

in
· εi1i2...in , (8.32)

and

εi′1i′2...i′n = sgn(detG) ·Gi1
i′1
Gi2

i′2
· · ·Gin

i′n
· εi1i2...in . (8.33)

If G ∈ SO(n), then detG = 1. Hence sgn(detG) = 1. Thus, the claim (ii) follows
from (8.32) and (8.33).

If G ∈ O(n), then sgn(detG) = ±1, and the transformation laws (8.32) and
(8.33) depend on the sign of the determinant of the transformation matrix G. By
the definition given below, εi1i2...in and εi1i2...in are pseudo-tensorial families.

Ad (iv). Let G = 2I. Then δi′j′ = 4Gi
i′G

j
j′δij . This is not a tensorial transfor-

mation law. �

A real or complex (n×n)-matrix is called unimodular iff detG = 1. In particular,
the matrices G ∈ SL(n,C) are unimodular.

Tensorial families with two indices. Using the language of matrices, the
transformation laws for the tensorial families T i

j , Tij , T
ij read as follows:

(i) (T i′
j′ (x

′)) = G(x)(T i
j (x))G(x)−1,

(ii) (Ti′j′(x
′)) = (G(x)d)−1(Tij(x))G(x)−1,

(iii) (T i′j′(x′)) = G(x)(T ij(x))G(x)d.

Here, i′, i are row indices, and j, j′ are column indices. Moreover, x′ = x′(x).
Proof. Ad (i). By (8.8), we get

0

B

B

@

dx1′

...

dxn
′

1

C

C

A

(∂1′ , . . . ∂n′) = G(x)

0

B

B

@

dx1

...

dxn

1

C

C

A

(∂1, . . . , ∂n)G(x)−1.

Hence
(dxi

′
∂j′) = G(x)(dxi∂j)G(x)−1.

Finally, note that T i
j transforms like dxi∂j .

Ad (ii), (iii). Argue similarly. �

Using the trace of matrices, it follows from tr(ABC) = tr(BCA) and (i) that

T i′
i′ (x′) = tr(T i′

j′ (x
′)) = tr(T i

j (x)) = T i
i (x).

Furthermore, for the determinants it follows from det(AB) = detA · detB that
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(a) det(T i′
j′ (x

′)) = det(T i
j (x)),

(b) det(Ti′j′(x
′)) = (detG(x))−2 det(Tij(x)),

(c) det(T i′j′(x′)) = (detG(x))2 det(T ij(x)).

If G(x) = 1 for all x ∈ Ω (i.e., the coordinate transformation is unimodular), then
the determinants det(Tij(x)) and det(T ij(x)) remain unchanged under the passage
from the system Σ of reference to Σ′.

Let Tij be a tensorial family with det(Tij(x)) �= 0 for all x ∈ Ω. Let T ij denote
the entries of the inverse matrix, that is,

(T ij(x)) := (Tij(x))
−1, x ∈ R (8.34)

where i (resp. j) denotes the row (resp. column) index. Then T ij is a tensorial
family.
Proof. Passing to the inverse matrices, relation (i) on page 454 implies that

(Ti′j′(x))
−1 = G(x)(Tij(x))

−1G(x)d.

Now the claim follows from (iii) on page 454. �

The contraction principle and the construction of invariants. The fol-
lowing procedure represents the heart of tensor algebra. Replacing the tensorial
family

T ij
k

by T i
ik is called a contraction. This way, the free indices i, j, k are reduced to the

free index k.6 In the general case, let

T i1...ir
j1...js

be a tensorial family with respect to the admissible system O of observers. By
definition, a contraction of this tensorial family is obtained by summing over a
fixed pair of an upper and a lower index. The position of the indices does not play
any role. For example, the contraction of the pair i1, j2 yields

T i1 i2 i3...ir
j1 i1 j3...js

.

This operation can be repeated. For example, T ij
ijm is a contraction of T ij

klm. A
contraction is called complete iff there are no free indices after contraction. For
example, T i

i and T ij
ij are complete contractions.

Theorem 8.1 The contraction of a tensorial family yields again a tensorial family
with respect to the same admissible system of observers. A complete contraction
yields an invariant.

This is called the ‘index principle’ in classical tensor calculus. Supplemented by
the so-called ‘inverse index principle’, the final formulation of the index principle
can be found on page 493.
Proof. (I) As a typical example, consider the tensorial family T i

j which transforms
like

vi∂j .

Consequently, T i
i transforms like vi∂i. By Sect. 8.4.2,

vi
′
(x′)∂i′ = vi(x)∂i, x′ = x′(x).

6 Recall that T i
ik :=

Pn
i=1 T

i
ik, by Einstein’s summation convention.
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Thus, T i′
i′ (x′) = T i

i (x). This means that T i
i is an invariant.

Alternatively, this invariance property follows from the transformation law

T i′
j′ (x

′) = Gi′
i (x)Gj

j′(x)T
i
j (x)

which implies

T i′
i′ = Gi′

i (x)Gj
i′(x)T

i
j (x) = δjiT

i
j = T i

i ,

by the duality relation (8.4).
(II) As another example, consider the tensorial family T i

jk which transforms like

vi∂j∂k. Thus, T i
ik transforms like vi∂i∂k. By (I), T i

ik transforms like ∂k.
(III) The general case proceeds analogously. �

Algebraic properties of tensorial families. Let O be an admissible system
of observers.

• Sum rule: The sum of two tensorial fields of the same type (with respect to O)
yields a tensorial family (with respect to O).

• Linear combinations: The real linear combination of two tensorial fields of the
same type (with respect to O) yields a tensorial family (with respect to O).

• Product rule: The product of two tensorial fields of arbitrary type (with respect
to O) yields a tensorial family (with respect to O).

• Multiplying a tensorial field (with respect to O) by a real number yields a ten-
sorial family (with respect to O).

Forming sums and real linear combinations of tensorial families does not change
the type of the tensorial families. Moreover, the type of the product of two tensorial
families is indicated by the index picture. For example, if T i

jk, S
i
jk, R

p
q are tensorial

families on O and if α, β are real numbers, then

αT i
jk + βSi

jk, T i
jkR

p
q

are also tensorial fields on O. The proof follows immediately from the definition
of tensorial families. For example, T i

jk and Rp
q transform like dxi∂j∂k and dxp∂q,

respectively. Therefore, T i
jkR

p
q transforms like dxi∂j∂k · dxp∂q.

Lifting and lowering of indices. Since the position of the indices of a ten-
sorial family is crucial, one has to distinguish between lower and upper indices.
However, in many situations, one has a tensorial family gij at hand with the prop-
erty that the matrix (gij(x)) is invertible for all points x ∈ Ω.7 As shown above,
the entries gij(x) of the inverse matrix,

(gij(x)) := (gij(x))
−1,

generate the tensorial family gij with

gis(x)gsj(x) = δij for all x ∈ Ω. (8.35)

This can be used in order to construct new tensorial families by the lifting or
lowering of indices. For example, consider the tensorial field T ijk. Set

T jk
i := gisT

sjk. (8.36)

7 For example, this concerns the Euclidean geometry, the symplectic geometry,
the Minkowski geometry in Einstein’s theory of special relativity, and Einstein’s
theory of general relativity.
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Then T jk
i is a tensorial family, by the product rule. Moreover, it follows from the

contraction principle that T ik
i is also a tensorial family. Furthermore, setting

Sijk := gisT jk
s ,

we get the tensorial family Sijk. In addition, it follows from (8.35) and (8.36) that

Sijk = T ijk.8 Similarly, it is possible to lift or to lower several indices. For example,

Si
j = gisgjrT

r
s .

This transforms the tensorial family T j
i into the tensorial family Si

j , by lifting the
index i, and by lowering the index j.

Symmetry properties of tensorial families. Permutations of upper (resp.
lower) indices send tensorial families again to tensorial families. For example, if Tij
is a tensorial family, then so is Tji. Consequently, setting

Sij := 1
2
(Tij + Tji),

we get a new tensorial family Sij which is symmetric, that is, Sij = Sji for all
i, j = 1, . . . , n. We write

T(i,j) := 1
2
(Tij + Tji),

and we call T(i,j) the symmetrization of Tij . Similarly, setting

Aij := 1
2
(Tij − Tji),

we get a new tensorial family Aij which is antisymmetric (also called skew-
symmetric), that is, Aij = −Aji for all i, j = 1, . . . , n.

If Ti1...ir is a tensorial family, then we set

T(i1...ir) :=
1

r!

X

π

Tπ(i1)...π(ir)

where we sum over all permutations π of the indices i1, . . . , ir. The tensorial family
Ti1...ir is called symmetric iff

Ti1...ir = T(i1...ir)

for all indices. Equivalently, this means that Ti1...ir remains unchanged under a per-
mutation of all the indices. The tensorial field T(i1...ir) is called the symmetrization
of Ti1...ir . In particular,

T(π(i1)...π(ir)) = T(i1...ir).

In order to describe antisymmetry, we set

T[i1...ir ] :=
1

r!

X

π

sgn(π) · Tπ(i1)...π(ir).

For example, T[ij] = 1
2
(Tij−Tji). The tensorial family Ti1...ir is called antisymmetric

iff
Ti1...ir = T[i1...ir ]

8 In fact, T ijk = gisgsrS
rjk = δirS

rjk = Sijk.
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for all indices. Equivalently, this means that Ti1...ir changes sign under an odd per-
mutation of the indices, and Ti1...ir remains unchanged under an even permutation
of the indices. The tensorial field T[i1...ir ] is called the antisymmetrization of Ti1...ir .
We have

T[π(i1)...π(ir)] = sgn(π) · T[i1...ir ]. (8.37)

For example, if Ti1...ir remains unchanged under a transposition of two indices,
then T[i1...ir ] vanishes. In particular,

T[iji3...in] = 0 if Tiji3...in = Tjii3...in . (8.38)

Sometimes, we will also use a similar procedure in order to symmetrize (or to
antisymmetrize) a tensorial family with respect to a subset of indices. For example,
we set

Ti(jk) := 1
2
(Tijk + Tikj), Ti[jk] := 1

2
(Tijk − Tikj).

The existence theorem for tensorial families. Suppose that we are given
an admissible system O of observers. We want to show that tensorial families of
arbitrary type exist with respect to O. Let r, s = 1, 2, . . . Choose a fixed observer
O0 of O, and choose an arbitrary smooth family of functions

T i01...i0r
j01...j0s

: ΩO0 → R (8.39)

where the indices run from 1 to n.

Theorem 8.2 The family (8.39) of functions can be uniquely extended to a tenso-
rial family with respect to the admissible system O of observers.

Proof. The basic trick of the proof is the use of the compatibility condition (8.41).
(I) We consider first the special case T i. Let us proceed in the following three

steps:

• From the observer O0 to the observer O: Define

T i
O(x) := Gi

i0(x0)T
i0(x0), x0 ∈ ΩO0 , x = x(x0).

Let TO(x) denote the column matrix to (T 1
O(x), . . . , Tn

O(x)). Then

TO(x) = GO,O0(x0)TO0(x0).

Thus, our definition implies the right transformation law for the change from the
observer O0 to the observer O.

• From the observer O0 to the observer O′: For the change from O0 to O′, we get

TO′(x′) = GO′,O0(x0)TO0(x0).

• From the observer O to the observer O′: It remains to show that for two arbitrary
observers O and O′, we have the transformation law

TO′(x′) = GO′,O(x)TO(x). (8.40)
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However, this is a consequence of the compatibility condition (8.23). In fact, it
follows from

GO′,O(x)GO,O0(x0) = GO′,O0(x0) (8.41)

that

GO′,O(x)TO(x) = GO′,O(x)GO,O0(x0)TO0(x0) = GO′,O0(x0)TO0(x0) = TO′(x′).

(II) We consider next the special case Ti. For the observer O, define

(Ti)O(x) := Gi0
i (x0)Ti0(x0), x ∈ ΩO0 .

Let TO(x) denote the column matrix to ((T1)O(x), . . . , (Tn)O(x)). Then

TO(x) = HO,O0(x0)TO0(x0)

where HO,O0(x0) := (GO,O0(x0)
−1)d. Argue now as in (I) above, by using the dual

compatibility relation (8.24).
(III) Finally, we consider the general case. For an arbitrary observer O, we set

T i1...ir
j1...js

(x) := gi1i01(x0) · · ·Gir
i0r

(x0) ·Gj01
j1

(x0) · · ·Gj0s
js

(x0) · T i01...i0r
j01...j0s

(x0)

where the transformation functions Gi
i0(x0) correspond to the transformation ma-

trix GO,O0(x0) describing the passage from the observer O0 to the observer O (see
(8.6) on page 445). It follows as in (I) and (II) above that this induces the right
transformation law from the observer O to the observer O′. �

Linear independence. Recall that ∂i := ∂
∂xi and dxi(∂j) = δij .

Proposition 8.3 ∂1, . . . , ∂n are linearly independent.

More precisely, this means the following. If vi is a tensorial family, then it
follows from vi∂i = 0 on ΩO for a fixed observer O that vi ≡ 0 for all i = 1, . . . , n.
Proof. Let

vi(x) ∂iΘ(x) = 0 for all x ∈ ΩO

and for all smooth functions Θ : ΩO → R. Fix the point x0 ∈ ΩO, and fix the
index k = 1, . . . , n. Choose the function Θ(x) := xk. Then ∂iΘ(x) = δik. Hence
vi(x)δik = 0. This implies vk(x) = 0. �

Analogously one proves that the family of products ∂i∂j , i, j = 1, . . . , n, is lin-
early independent. In the general case, fix r = 1, 2, . . . Then the family of products

∂i1∂i2 · · · ∂ir , i1, . . . , ir = 1, . . . , n

is linearly independent. More precisely, if vi1...ir is a tensorial family, then it follows
from

vi1i2...ir (x) ∂i1∂i2 . . . ∂ir = 0 for all x ∈ ΩO

with respect to a fixed observer O that all the coefficient functions vi1i2...ir vanish
identically.

Proposition 8.4 dx1, . . . , dxn are linearly independent.
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More precisely, this means the following. If vi is a tensorial family, then it follows
from vidx

i = 0 on ΩO for a fixed observer O that vi ≡ 0 for all i = 1, . . . , n.

Proof. If vidx
i = 0, then (vi(x) dx

i)(∂j) = 0. Hence

vi(x) dx
i(∂j) = vi(x)δ

i
j = vj(x) = 0.

�

Similarly, noting that (dxi ⊗ dxj)(∂k, ∂l) = dxi(∂k)dx
j(∂l) = δikδ

j
l , we obtain

that the family of tensor product dxi ⊗ dxj , i, j = 1, . . . , n, is linearly independent.
In the general case, fix r = 1, 2, . . . , n. Then the family of tensor products

dxi1 ⊗ dxi2 ⊗ · · · ⊗ dxir i1, . . . , ir = 1, . . . , n

is linearly independent. More precisely, if vi1...ir is a tensorial family, then it follows
from

vi1i2...ir (x) dxi1 ⊗ dxi2 ⊗ · · · ⊗ dxir = 0 for all x ∈ ΩO

with respect of a fixed observer O that all the coefficient functions vi1i2...ir vanish
identically.

8.4.6 Orientation, Pseudo-Tensorial Families, and the Levi-Civita
Duality

Orientation plays a fundamental role in physics. In particular, there are
physical processes which depend critically on the choice of orientation.
Mathematically, this is closely related to the Levi-Civita pseudo-tensorial
family.

Folklore

The Levi-Civita tensorial families. Let O be an admissible system of observers.
Recall the matrix notation introduced on page 454. In particular, we will critically
use the Jacobian

∂(x1′ , . . . , xn
′
)

∂(x1, . . . , xn)
(x) = det

„

dx′(x)

dx

«

= detG(x), x ∈ Ω

and its sign in order to describe the change of orientation. Suppose that gij is a
symmetric tensorial family with respect to O. Set

g(x) := det(gij(x)), x ∈ Ω.

Assume that g(x) �= 0 for all x ∈ Ω. For i1, . . . , in = 1, . . . , n, define

Ei1...in(x) :=
p

|g(x)| · εi1...in , (8.42)

and

Ei1...in(x) :=
sgn g
p

|g(x)|
· εi1...in , x ∈ Ω. (8.43)

We add the sign sgn g to the definition in order to get convenient lifting and low-
ering properties of the indices (see (8.52) below). In particular, E12...n =

p

|g|, and

E12...n = sgn g√
|g|
. In Einstein’s theory of special relativity, we will have sgn g = −1

(see Sect. 18.4.1).
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Proposition 8.5 If all the transformations x′ = x′(x) of local coordinates have
positive sign, then Ei1...in and Ei1...in are tensorial families with respect to O.

Proof. (I) Our point of departure is the transformation law

gi′j′(x
′) = Gi

i′(x)G
j
j′(x) · gij(x) for all x ∈ Ω

from the observer O to the observer O′. By page 454, for the determinants we get9

g′(x′) = (detG(x))−2g(x). (8.44)

This implies

sgn g′(x′) = sgn g(x), x ∈ Ω. (8.45)

Since g(x) �= 0 for all x ∈ Ω, the sign sgn(g(x)) is an invariant which has the value
1 or −1. Furthermore, we get

p

|g′(x′)| = | detG(x)|−1 ·
p

|g(x)|, x ∈ Ω, x′ = x′(x). (8.46)

By (8.31),

(detG(x))−1 · εi′1...i′n = Gi1
i′1

(x) . . . Gin
i′n

(x) · εi1...in .

Note that detG(x) = sgn(det(G(x))) · | detG(x)|. By (8.46),

p

|g′(x′)| · εi′1...i′n = sgn(detG(x)) Gi1
i′1

(x) · · ·Gin
i′n

(x) ·
p

|g(x)| εi1...in .

Equivalently, if x′ = x′(x) and x ∈ Ω, then

Ei′1...i′n(x′) = sgn(detG(x)) ·Gi1
i′1

(x) · · ·Gin
i′n

(x) · Ei1...in(x). (8.47)

Since we only consider observer transformations with sgn det(G(x)) = 1, the sign
drops out, and we have a tensorial transformation law (8.47) at hand.

(II) Similarly, we get

εi
′
1...i

′
n

p

|g′(x′)|
= sgn(detG(x)) ·Gi′1

i1
(x) . . . G

i′n
in

(x) · ε
i1...in

p

|g(x)|
.

Equivalently, if x′ = x′(x), then

Ei′1...i
′
n(x′) = sgn(detG(x)) ·Gi′1

i1
(x) · · ·Gi′n

in
(x) · Ei1...in(x). (8.48)

�

Mass density. Suppose that we have a family of smooth functions �O : OΩ → R

together with the transformation law

�O′(x′) =

˛

˛

˛

˛

∂(x1, . . . , xn)

∂(x1′ , . . . , ∂xn′)
(x′)

˛

˛

˛

˛

· �O(x), x′ = x′(x).

This is the transformation law of a mass density �O. In fact, if U is a compact
subset of ΩO (e.g., a ball), then

9 Note that the prime of g′ refers to the observer O′; the symbol g′ does not stand
for a derivative.
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Z

U′
�O′(x′) dx1′dx2′ · · · dxn

′
=

Z

O

�O(x) dx1dx2 · · · dxn. (8.49)

This follows from the substitution rule for integrals. In terms of physics, the function
�O is the mass density of a fluid measured by the observer O. Moreover, the integral

Z

U

�O(x) dx1dx2 · · · dxn

equals the mass contained in the set U . The equation (8.49) tells us that the ob-
servers O and O′ measure the same mass in the sets U and U ′, respectively. Here,
U ′ = x′(U) (i.e., the map x �→ x′ sends the set U to U ′).

Pseudo-tensorial families. Motivated by (8.47), we modify the notion of a
tensorial family in the following way. To begin with, introduce the notation

σ := sgn

„

dx′

dx

«

,

and hence σ = sgn (detG(x)) = sgn

„

∂(x1′ ,...,xn′
)

∂(x1,...,xn)
(x)

«

. Recall that σ = ±1 is the

sign of the change x �→ x′(x) of local coordinates introduced on page 445. If

T i1...ir
j1...js

(x′) (8.50)

is a tensorial family, then T
i′1...i

′
r

j′1...j
′
s
(x′) is equal to

α ·Gi′1
i1

(x) · · ·Gi′r
ir

(x)Gj1
j′1

(x) · · ·Gjs
j′s

(x) · T i1...ir
j1...js

(x) (8.51)

where α = 1. Now suppose that all the transformation laws (8.51) hold by setting

α := σ.

Then, T i1...ir
j1...js

is called a pseudo-tensorial family.

Tensorial density families and pseudo-tensorial density families. Let
us consider the following modifications:

(a) α :=
˛

˛

˛

∂(x1,...,xn)

∂(x1′ ,...,∂xn′
)
(x′)

˛

˛

˛

w

(equivalently, α = | detG(x)|−w),

(b) α := σ ·
˛

˛

˛

∂(x1,...,xn)

∂(x1′ ,...,∂xn′
)
(x′)

˛

˛

˛

w

(equivalently, α = σ · |detG(x)|−w).

If the transformation law (8.51) holds by using (a) (resp. (b)), then T i1...ir
j1...js

is

called a tensorial density family of weight w (resp. a pseudo-tensorial density family
of weight w). For example, it follows from (8.44) that

• the mass density � above is a tensorial density of weight 1,
• g = det(gij) is a tensorial density of weight w = 2,

•
p

|g| is a tensorial density of weight 1 by (8.46),

• 1√
|g|

is a tensorial density of weight -1 by (8.46), and

• sgn g is a tensorial invariant by (8.45).

The Levi-Civita pseudo-tensorial families. The relations (8.47) and (8.48)
tell us the following.
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Proposition 8.6 Ei1...in and Ei1...in are pseudo-tensorial families with respect to
the admissible system O of references.

In addition, lowering and lifting of indices yields

Ei1...in = gi1j1 · · · ginjnEj1...jn , Ei1...in = gi1j1 · · · ginjnEj1...jn . (8.52)

This follows from

gi1j1 · · · ginjnEj1...jn =
det(gij) · sgn g

p

|g|
εi1...in =

p

|g| · εi1...in . (8.53)

Proposition 8.7 If O �→ ιO is an orientation function of the admissible system O
of observers, then ιO · Ei1...in and ιO · Ei1...in are tensorial families with respect to
the admissible system of observers O.

This follows from the transformation law (8.27) which tells us that ιO is a
pseudo-tensorial invariant. The tensorial family ιO · Ei1...in is called the tensorial
volume family of the admissible system O of observers with respect to the choice
of the orientation function

O �→ ιO.

Note that if the admissible system of observers O is oriented, then we can choose
ιO = 1 for all observers O. In this case, Ei1...in is a tensorial family.

Levi-Civita duality. Our goal is to use the Levi-Civita pseudo-tensorial fam-
ilies in order to construct a duality between tensorial families and pseudo-tensorial
families which contains Hodge duality as a special case. Let p = 0, 1, . . . , n. Define

(∗T )ip+1...in(x) :=
1

(n− p)! Ei1...ipip+1...in(x) T i1...ip(x), x ∈ ΩO, (8.54)

and

(∗S)ip+1...in(x) :=
1

(n− p)! E
i1...ipip+1...in(x) Si1...ip(x). (8.55)

We add the normalization factors in order to fit Hodge duality below. Then the
following hold:

• If T i1...ip is a tensorial family, then (∗T )ip+1...in is a pseudo-tensorial family, and

ιO · (∗T )ip+1...in

is a tensorial family for every orientation function ι.
• If Si1...ip is a tensorial family, then (∗T )ip+1...in is a pseudo-tensorial family, and

ιO · (∗T )ip+1...in

is a tensorial family for every orientation function ι.

Examples. If p = n, then

• (∗T )(x) := Ei1...in(x) T i1...in(x) and
• (∗S)(x) := Ei1...in(x) Si1...in(x), x ∈ ΩO

are pseudo-invariant functions. Moreover, ιO ·∗T and ιO ·∗S are invariant functions.
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8.5 Differential Forms (Exterior Product)

8.5.1 Cartan Families and the Cartan Differential

Modern global analysis is based on the Cartan calculus of differential forms.
The Cartan calculus is a special case of the tensor calculus; it is equivalent
to the calculus of antisymmetric covariant tensorial families.

Folklore

Cartan families. The elegance of the Cartan calculus of differential forms relies on
the nice properties of antisymmetric covariant tensorial families which correspond
to the classical theory of determinants. Let O be an admissible system of observers.
Fix n = 1, 2, . . . By definition, a Cartan family

ωi1...ip

with respect to O is an antisymmetric tensorial family with respect to O. The
number p = 0, 1, . . . , n is called the degree of the Cartan family.10 All the Cartan
families with respect to the admissible system O of observers form a graded real
algebra with differential. This means the following:

(i) Sum: If ωi1...ip and μi1...ip are Cartan families of the same degree and α, β are
real numbers, then

αωi1...ip + βμi1...ip

is also a Cartan family. This remains true if α and β are Cartan families of
degree zero.

(ii) Product: If ωi1...ip and μj1...jq are Cartan families, then the antisymmetrization

ω[i1...ipμj1...jq ]

of the product ωi1...ipμj1...jq is again a Cartan family. We define

ωi1...ip ∧ μj1...jq := ω[i1...ipμj1...jq ].

This is called the wedge product. For Cartan families and real numbers α, β,
we have
• the distributive law

(αωi1...ip + βμi1...ip) ∧ νk1...kr = αωi1...ip ∧ νk1...kr + βμi1...ip ∧ νk1...kr ,

• the associative law

(ωi1...ip ∧ μj1...jq ) ∧ νk1...kr = ωi1...ip ∧ (μj1...jq ∧ νk1...kr ), (8.56)

• and the supercommutativity law

ωi1...ip ∧ μj1...jq = (−1)pqμj1...jq ∧ ωi1...ip . (8.57)

This can be proved by using the permutation property (8.37).
(iii) Cartan derivative: If ωi1...ip is a Cartan family, then

dkωi1...ip := ∂[kωi1...ip] (8.58)

is also a Cartan family.

10 If p = 0, then the Cartan family is a family of invariant functions UO : ΩO → R

with UO′(x′) = UO(x) for all x ∈ ΩO, and x′ = x′(x).
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The proof of (iii) will be given in Sect. 8.11.2 on page 523. At this point, let us only
consider a special case. We want to show that if ωi is a tensorial family, then

∂[kωi] = 1
2
(∂kωi − ∂iωk) (8.59)

is again a tensorial family. The trick is that some nasty terms of the transformation
law cancel each other because of the antisymmetrization. Explicitly, it follows from
the transformation law

ωi′ =
∂xi

∂xi′
ωi

together with the product rule and the chain rule that

∂k′ωi′ =
∂

∂xk′

„

∂xi

∂xi′
ωi

«

=
∂2xi

∂xk′∂xi′
ωi +

∂xi

∂xi′
∂xk

∂xk′
∂ωi
∂xk

.

Analogously,

∂i′ωk′ =
∂2xi

∂xi′∂xk′ ωi +
∂xi

∂xk′
∂xk

∂xi′
∂ωi
∂xk

.

Since ∂2xi

∂xk′
∂xi′ = ∂2xi

∂xi′∂xk′ , we get

∂k′ωi′ − ∂i′ωk′ =
∂xk

∂xk′
∂xi

∂xi′
· (∂kωi − ∂iωk).

Thus, ∂kωi − ∂iωk is a tensorial family. Obviously, this family is antisymmetric.
Thus, it is a Cartan family. �

For Cartan families, we have

• the graded Leibniz rule

di(ωi1...ip ∧ μj1...jq ) = diωi1...ip ∧ μj1...jq + (−1)pωi1...ip ∧ diμj1...jq (8.60)

• and the Poincaré cohomology rule

di(djωi1...ip) = 0. (8.61)

Let us prove (8.61). For example, consider the special case where ωk is a Cartan
family of degree 1. Then

djωk = ∂[jωk] = 1
2
(∂jωk − ∂kωj).

This implies ∂i(djωk) = 1
2
(∂i∂jωk − ∂i∂kωj). Hence

di(djωk) = 1
2
(∂[i∂jωk] − ∂[i∂kωj]).

Thus, di(djωk) = ∂[i∂jωk]. Since we have ∂i∂j = ∂j∂i, it follows from (8.38) that
di(djωk) = ∂[i∂jωk] = 0. This is the claim. The general case proceeds analogously.

�

Let us mention three further operations for Cartan families:

(a) Contraction with a velocity field: We set

vi1� ωi1i2...ip := vi1ωi1i2...ip .

If vi is a tensorial family and ωi1...ip is a Cartan family, then vi1ωi1i2...ip is
again a Cartan family, by the index principle.
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(b) Hodge duality: If ωi1...ip is a Cartan family, then

ιO · Ei1...ipip+1...in ω
i1...ip

is again a Cartan family which is called the dual Cartan family to ωi1...ip . In
contrast to (i)–(iii) on page 464, Hodge duality depends on the choice of a
metric tensorial family (gij), and on the choice of an orientation function ι. In
particular, we use gij in order to lift the indices of ωi1...ip .11

Differential forms. We are given the admissible system O of observers. We
want to reformulate the calculus for Cartan families in terms of differential forms.
Our goal is to assign to the Cartan family ωi1...ip the multilinear (i.e., p-linear) real
functional

ω =
1

p!
ωi1i2...ip dx

i1 ∧ dxi2 ∧ · · · ∧ dxip . (8.62)

Our strategy is to use invariant expressions which do not depend on the
choice of the observer, by means of the principle of the correct index pic-
ture.

Let us discuss this. In what follows, we will use the notation introduced on page
448. In particular, we will use the real linear spaces Λp(ΩO) where p = 0, 1, 2, . . . n.
If f ∈ Λ0(ΩO), then we define

df := ∂jf · dxi

motivated by the classical differential for smooth functions f : ΩO → R. Note the
following:

In modern analysis, differentials df are linear functionals.

In our notation, df ∈ Λ1(ΩO). This way, we obtain the linear operator

d : Λ0(ΩO) → Λ1(ΩO).

Now let us give the basic definition. Fix p = 1, 2, . . . For every antisymmetric
tensorial family ωi1...in , we define

ωx,O :=
1

p!
ωi1i2...ip(x) dxi1 ∧ dxi2 ∧ · · · ∧ dxip , x ∈ ΩO.

Proposition 8.8 The definition of the p-linear real functional ωO does not depend
on the choice of the observer O.

Proof. (I) First consider the special case where p = 2. Then ωO := 1
2
ωij dx

i ∧ dxj .
For the observer O′, we define

ωx′,O′ := 1
2
ωi′j′(x

′) dxi
′
∧ dxj

′
, x′ = x′(x).

The differential operator vi(x)∂i passes over to vi
′
(x′)∂i′ . By (8.15),

dxi
′
=
∂xi

′

∂xi
dxi.

11 Explicitly, ωi1...ip = gi1j1gi2j2 · · · gipjp · ωj1j2...jp .
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By the distributive law for the wedge product,

dxi
′
∧ dxj

′
=
∂xi

′

∂xi
∂xj

′

∂xj
· dxi ∧ dxj .

This tells us that dxi ∧ dxj transforms like a tensorial family T ij . Consequently, by
the index principle, we get

ωx′,O′ = 1
2
ωi′j′(x

′) dxi
′
∧ dxj

′
= 1

2
ωij(x) dx

i ∧ dxj .

(II) In the general case, we proceed analogously. �

Motivated by Prop. 8.8 we briefly write ω instead of ωO. We call this a differ-
ential form of degree p with respect to the admissible system O of observers (or,
briefly, a p-form). Choose an element fO of Λ0(ΩO). We also set

fO′(x′) := fO(x) for all x ∈ ΩO, x′ = x′(x).

Then fO′ ∈ Λ0(ΩO′). Naturally enough, the elements of Λ0(ΩO) are called differen-
tial forms of degree p = 0.We briefly write f instead of fO. Let us add the following
definitions:

(i) Sum: If α and β are real numbers, then

αωij dx
i ∧ dxj + βμij dx

i ∧ dxj := (αωij + βμij) dx
i ∧ dxj .

More general, αωi1...ipdx
i1 ∧ · · · ∧ dxip + βμi1...ipdx

i1 ∧ · · · ∧ dxip is equal to

(αωi1...ip + βμi1...ip) dxi1 ∧ · · · ∧ dxip .

This coincides with the linear combination of multilinear functionals.
(ii) Product: Using the wedge product for Cartan families, we define

ωidx
i ∧
`

μjk dx
j ∧ dxk

´

:= ω[iμjk] dx
i ∧ dxj ∧ dxk.

More generally, the wedge product

ωi1...ip dx
i1 ∧ · · · ∧ dxip ∧

`

μj1...jq dx
j1 ∧ · · · ∧ dxjq

´

of differential forms is defined to be

ω[i1...ipμj1...jq ] · dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq .

This definition coincides with the wedge product for multilinear functionals
(see Sect. 2.1.2). For example, since dxi ∧ dxj = −dxj ∧ dxi, we get

ωi dx
i ∧ μj dxj = 1

2
(ωiμj − ωjμi) dxi ∧ dxj = ω[iμj] dx

i ∧ dxj .

(iii) Cartan differential: We define

d(ωj dx
j) := diωj · dxi ∧ dxj

where diωj := ∂[iωj]. Since diωj is a tensorial family, it follows from the index
principle that this definition does not depend on the choice of the observer.
Since dxi ∧ dxj = −dxj ∧ dxi, we get
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d(ωj dx
j) = 1

2
(∂iωj − ∂jωi) · dxi ∧ dxj = ∂iωj · dxi ∧ dxj .

Setting dωj := ∂iωj · dxj , we obtain

d(ωj dx
j) = dωj ∧ dxj .

More general, let ω = 1
p!
ωi1...ip dx

i1 ∧ · · · ∧ dxip . Then we define

dω :=
1

p!
diωi1...ip · dxi ∧ dxi1 ∧ · · · ∧ dxip

where diωi1...ip = ∂[iωi1...ip] is a tensorial family. Again, by the index principle,
the definition of dω does not depend on the choice of the observer. Using
antisymmetrization, we get

dω =
1

p!
∂iωi1...ip dx

i ∧ dxi1 ∧ · · · ∧ dxip .

Equivalently,

dω =
1

p!
dωi1...ip ∧ dxi1 ∧ · · · ∧ dxip

where dωi1...ip := ∂iωi1...ip dx
i.

Let ω = 1
2
ωij dx

i ∧ dxj be a 2-form. For all linear first-order differential operators

v = vi∂i and w = wi∂i, we get

ω(v,w) = 1
2
ωij(dx

i(v)dxj(w) − dxi(w)dxj(v)) = 1
2
ωij(v

iwj − vjwi) = ωijv
iwj .

For a p-form ω = 1
p!
ωi1...ip dx

i1 ∧ · · · ∧ dxip with p = 1, 2, . . ., we obtain

ω(v1, . . . , vp) = ωi1...ipv
i1
1 v

i2
2 · · · vipp (8.63)

for all linear first-order differential operators vk = vik∂i with k = 1, . . . , p.
The contraction product. If vi is a tensorial family, then we define

v�ω :=
1

(p− 1)!
viωii2...ip dx

i2 ∧ · · · ∧ dxip . (8.64)

We also write ivω instead of v�ω. Parallel to (8.63), we get

(ivω)(v2, . . . , vp) = ω(v, v2, . . . , vp) (8.65)

for all p-forms with p = 1, 2, . . . , n and all linear first-order partial differential
operators v = vi∂i, and vK = viK∂i with K = 2, . . . , p. If p = 0, then ivω := ω.

Summary. Let ω, μ, ν be differential forms of degree p, q, r = 0, 1 . . . , n, respec-
tively, and let α, β be real numbers. Then:

• (ω ∧ μ) ∧ ν = ω ∧ (μ ∧ ν) (associative law);

• ω ∧ μ = (−1)pqμ ∧ ω (supercommutative law);12

• If q = r, then ω ∧ (αμ+ βν) = αω ∧ μ+ βω ∧ ν (distributive law);

12 If p = 0, then ω ∧ μ = μ ∧ ω := ωμ. Note that ω is a function, in this special
case.
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• d(ω ∧ μ) = dω ∧ μ+ (−1)pω ∧ dμ (graded Leibniz rule);13

• d(dω) = 0 (Poincaré’s cohomology rule).

In particular, dxi ∧ dxj = −dxj ∧ dxi. This rule is sufficient for computing all
the possible products by using both the associative law and the distributive law.
For example, dxi ∧ dxi = 0, and dxi ∧ dxj ∧ dxi = −dxi ∧ dxi ∧ dxj = 0.

8.5.2 Hodge Duality, the Hodge Codifferential, and the Laplacian
(Hodge’s Star Operator)

In classical mathematical physics, the Laplace equation ΔU = 0 plays a
fundamental role. In the 1930s, Hodge (1903–1975) discovered how the
classic theory can be generalized to differential forms. Hodge theory gen-
eralizes the work of Riemann (1826–1866) about Abelian integrals on Rie-
mann surfaces to harmonic integrals on Riemannian manifolds.14

Folklore

Metric tensorial family. By definition, a metric tensorial family is a symmetric
tensorial family gij with det(gij(x)) �= 0 for all x ∈ ΩO. Recall

g(x) := det(gij(x)) for all x ∈ ΩO.

By definition, the Morse index μ of the symmetric matrix (gij(x)) is equal to the
number of negative eigenvalues of (gij(x)). Since the set ΩO is assumed to be arcwise
connected and the functions x �→ gij(x) are smooth, the Morse index μ does not
depend on the point x ∈ ΩO. If we pass from the observer O to the observer O′, then
the Morse index μ remains unchanged. The tensorial family is called of Riemannian
(resp. pseudo-Riemannian) type iff μ = 0 (resp. 0 < μ < n). The inverse matrix
(gij(x)) := (gij(x))

−1 yields a symmetric tensorial family gij . The tuple (n− μ, μ)
is called the signature of gij . For example, a Riemannian metric tensorial family
has the signature (n, 0).

The volume form. Define

υ :=
1

n!
Ei1,...,in dx

i1 ∧ · · · ∧ dxin .

Since ιOEi1...ip is a tensorial family, the differential form ιO · υ does not depend on
the choice of the observer. This implies that

The volume form υ changes sign if we change the orientation of the ob-
server.

Explicitly, υ =
p

|g| dx1 ∧ · · · ∧ dxn.
Hodge duality. The basic idea of Hodge duality is to use the Levi-Civita

duality and the volume form υ. Fix p = 1, 2, . . . Let ω = 1
p!
ωi1...ip dx

i1 ∧ · · · ∧ dxip
be a p-form. We define

13 In modern mathematics and physics, this is also called the supersymmetric Leib-
niz rule.

14 W. Hodge, The Theory and and Applications of Harmonic Integrals, Cambridge
University Press, 1941 (second revised edition 1951). The fundamental Hodge
existence theorem based on the modern functional analytic approach to elliptic
partial differential equations can be found in J. Jost, Riemannian Geometry and
Geometric Analysis, Chap. 2, Springer, Berlin, 2008.
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∗ω =
1

p!(n− p)! Ei1...ip...inω
i1...ip dxip+1 ∧ · · · ∧ dxin . (8.66)

This is called the Hodge star operator. If p = 0, then the 0-form ω is a function,
and we define

∗ω := ω · υ.
For p = 0, 1, . . ., the definition of the (n − p)-form ιO · ∗ω does not depend on the
choice of the observer O, by the index principle. In particular, we have

∗1 = υ, ∗υ = sgn(g) · 1

where 1 denotes the constant function f(x) ≡ 1. More general,

∗ ∗ω = (−1)p(n−p) sgn(g) · ω. (8.67)

The linear operator

∗ : Λp(ΩO) → Λ(n−p)(ΩO), p = 0, 1, . . . , n

is invertible with the inverse operator

∗−1 : Λn−p(ΩO) → Λp(ΩO), p = 0, 1, . . . , n.

Here, for the (n− p)-form �, we get ∗−1� = (−1)p(n−p) sgn(g) ∗ �.
The Hodge codifferential d∗. Using the Hodge star operator, let us introduce

the Hodge codifferential d∗ (also called the dual Cartan differential) by setting

d∗ω := (−1)p ∗−1 (d ∗ ω)

for all p-forms ω with p = 0, 1, . . . , n. Equivalently,

d∗ω = (−1)n(p+1)+1 sgn(g) · ∗(d ∗ ω).

This corresponds to the commutative diagram

Λp(Ω)
d∗

∗

Λp−1(Ω)

Λn−p(Ω)
(−1)pd

Λn−p+1(Ω)

∗−1

with p = 0, 1, . . . , n. Here, we set Λ−1(Ω) = Λn+1(Ω) := {0}. This way, we get the
following two chains of maps

0
d−→ Λ0(Ω)

d−→ Λ1(Ω)
d−→ . . .

d−→ Λn(Ω)
d−→ 0,

and

0
d∗←− Λ0(Ω)

d∗←− Λ1(Ω)
d∗←− . . . d∗←− Λn(Ω)

d∗←− 0.

For the composition of these operators, for all p-forms with p = 0, 1, . . . , n, we have:

• d(dω) = 0 (Poincaré’s cohomology rule),
• d∗(d∗ω) = 0 (Hodge’s homology rule).
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Mnemonically, we write dd = 0 and d∗d∗ = 0.
The Hodge Laplacian Δ. Let ω be a p-form with p = 0, 1, . . . , n. We define

Δω := (d∗d+ dd∗)ω.

This yields the maps

Δ : Λp(Ω) → Λp(Ω), p = 1, 2, . . . , n.

Consider first the special case where p = 0. Here, we have ω = U where U is a
real-valued function. Then ΔU = d∗dω. This implies

ΔU = − 1
p

|g|
∂i(
p

|g| gij∂jU). (8.68)

In particular, if gij = δij for a fixed observer, then

ΔU = −δij∂i∂jU. (8.69)

Up to the sign, this is the classical Laplacian. Thus, the Hodge Laplacian Δω repre-
sents an elegantly formulated generalization of the classical Laplacian to differential
forms. Hodge theory plays a crucial role in modern differential geometry.15

In this monograph, we will always use the modern sign convention (8.69).

In terms of functional analysis, our sign convention ensures the quite natural prop-
erty that the linear operator

Δ : D(R3) → D(R3)

is symmetric and positive definite on the dense subset D(R3) of the Hilbert space
L2(R

3).
Proof of (8.68). Note that ΔU = d∗dU = − sgn(g) ∗d∗dU . Compute successively,

• dU = ∂jU · dxj ,
• ∗dU = 1

(n−1)!
Eii2...in∂iU dxi2 ∧ · · · ∧ dxin ,

• d(∗dU) = 1
(n−1)!

∂k
`

p

|g| εii2...in∂iU
´

dxk ∧ dxi2 ∧ · · · ∧ dxin ,

• d(∗dU) = ∂k
`

p

|g| ∂kU
´

dx1 ∧ · · · ∧ dxn = 1√
|g|
∂k
`

p

|g| ∂kU
´

· υ,

• ∗(d ∗ dU) = sgn(g)√
|g|
∂k
`

p

|g| ∂kU
´

,

• ΔU = − sgn(g) ∗ (d ∗ dU) = − 1√
|g|
∂i
`

p

|g| ∂iU
´

= − 1√
|g|
∂i
`

p

|g| gij∂jU
´

.

�

Consider the p-form ω = 1
p!
ωi1...ip dx

i1∧· · ·∧dxip with p = 1, 2, . . . , n. Suppose

that the metric tensorial family gij is equal to δij with respect to the fixed observer
O. Then

15 See P. Gilkey, Heat Kernel and the Atiyah–Singer theorem, CRC Press, Boca
Raton, Florida, J. Jost, Riemannian Geometry and Geometric Analysis, Sprin-
ger, Berlin, 2008, P. Griffith and J. Harris, Principles of Algebraic Geometry,
Wiley, New York, 1979, and C. Voisin, Hodge Theory and Complex Algebraic
Theory I, II, Cambridge University Press, 2002.



472 8. A Glance at Invariant Theory

• d∗ω = − 1
(p−1)!

δij ∂jωi1...ip dx
i1 ∧ · · · ∧ dxip ,

• Δω = − 1
p!
δij∂i∂jωi1...ip dx

i1 ∧ · · · ∧ dxip .

The proof will be given in Problem 8.8. The explicit expressions for general metric
tensorial families gij in terms of covariant partial derivatives can be found in Sect.
9.3 on page 574, as an application of the index principle in mathematical physics.

Harmonic forms. In classical analysis, the smooth function U is called har-
monic on the open set Ω iff ΔU = 0 on Ω. Similarly, the p-form ω is called harmonic
iff Δω = 0. In terms of de Rham cohomology, a basic result on harmonic forms tells
us that every de Rham cohomology class of a compact Riemannian manifold con-
tains many differential forms as representatives, but precisely one harmonic form.
This implies a one-to-one correspondence between de Rham cohomology groups
and groups of harmonic forms on compact Riemannian manifolds.

The Maxwell–Hodge–Yang–Mills equation. If ω is a solution of the so-
called homogeneous Maxwell–Hodge–Yang–Mills equations

dω = 0, d∗ω = 0, (8.70)

then Δω = 0. In the setting of differential forms on compact Riemannian manifolds,
we have the stronger result that the Maxwell–Hodge–Yang–Mills equation (8.70)
is equivalent to Δω = 0. As we will show later on, the system (8.70) generalizes
the Maxwell equations in electrodynamics and the Yang–Mills equations. These
equations correspond to the pseudo-Riemannian Minkowski metric tensorial family.

The inner product for differential forms. If ω = 1
p!
ωi1...ip dx

i1 ∧ · · · ∧dxip
and μ = 1

p!
μi1...ip dx

i1 ∧ · · · ∧ dxip are p-forms, then we define

(ω|μ) :=
1

p!
ωi1...ipμ

i1...ip .

For example, if p = n, then ω = ω12...ndx
1 ∧ · · · ∧ dxn, μ = μ12...n dx

1 ∧ · · · ∧ dxn,
and

(ω|μ) = ω12...nμ
12...n.

The relation to the volume form υ is given by

ω ∧ ∗μ = (ω|μ) · υ. (8.71)

If the coefficient functions of ω and μ have compact support on the open set ΩO,
then we define16

〈ω|μ〉O :=

Z

ΩO

(ω|μ) υ.

Observe that ιO ·〈ω|μ〉O does not depend on the choice of the observer O. Therefore,
the inner product 〈om|μ〉 O changes sign if the observer changes the orientation.
In addition,

(∗ω| ∗ μ) = (ω|μ). (8.72)

The relation

〈dω|μ〉 = 〈ω|d∗μ〉 (8.73)

shows that the codifferential operator d∗ is dual to the differential operator d. For
p-forms ω, we have the following commutation relations:

16 The integral will be introduced in Sect. 8.7.
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• ∗Δω = Δ(∗ω),
• d(Δω) = Δ(dω) and d∗(Δω) = Δ(d∗ω).

The contraction product v�ω. Let ω = 1
p!
ωi1...ip dx

i1 ∧ · · · ∧ dxip be a

p-form, and let v = vi∂i be a a linear first-order differential operator. We define

v�ω := viωii2...ip dx
i2 ∧ · · · dxp.

This definition does not depend on the choice of the observer, by the index principle.
Synonymously, we write ivω instead of v�ω. We have

ivω(v2, . . . , vp) = ω(v, v2 . . . vp)

for all linear first-order differential operators v, v1, . . . , vp.
Proof. For example, let ω = 1

2
ωij dx

i ∧ dxj . Then

(v�ω)(w) = viωij dx
j(w) = viωijw

j ,

and ω(v,w) = 1
2
ωij(dx

i ∧ dxj)(v, w) = 1
2
ωij(v

iwj − vjwi) = ωijv
iwj . �

8.6 The Kähler–Clifford Calculus and the Dirac
Operator (Interior Product)

Both the Cartan exterior differential calculus and Hodge duality have their
physical roots in the 1864 Maxwell theory of electromagnetism (see Chap.
18). In about 1960, when studying the 1928 Dirac equation for the rel-
ativistic electron, Erich Kähler (1906–2000) discovered the crucial fact
that Cartan’s exterior differential calculus can be complemented by a dual
interior differential calculus.17 Cartan’s exterior differential calculus has
its mathematical roots in the work of Grassmann (1809–1877), whereas
Kähler’s interior differential calculus has its mathematical roots in the
work of Hamilton (1805–1865) and Clifford (1845-1879) on quaternions
and Clifford algebras, respectively. Indeed, Cartan’s exterior differential
calculus is based on the Grassmann relation

dxk ∧ dxl + dxl ∧ dxk = 0,

and Kähler’s interior differential calculus is based on the Clifford relation

dxk ∨ dxl + dxl ∨ dxk = 2gkl

17 E. Kähler, The Dirac equation, Abhandlungen der Deutschen Akademie der Wis-
senschaften, Berlin, Klasse für Mathematik, Physik und Technik, 1961, No. 1 (in
German).
E. Kähler, The interior differential calculus, Rend. Mat. Appl. 21 (5), 425–523
(in German) (see also E. Kähler, Mathematical Works, de Gruyter, Berlin, pp.
499–595). This paper contains a complete representation of the theory together
with a long list of all the formulas of the calculus. In this section, we summarize
the Kähler calculus. All of the missing proofs can be found in Kähler’s paper.
The Kähler calculus is closely related to modern spin geometry (Clifford modules
and the connection of spin bundles). See H. Lawson and M. Michelsohn, Spin
Geometry, Princeton University Press, 1994, and J. Jost, Riemannian Geometry
and Geometric Analysis, Springer, Berlin, 2008.
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where we use the definition dxk ∨ dxl := dxk ∧ dxl + gkl. The Cartan
exterior differential dω corresponds to the Kähler interior differential d∨ω.
The Kähler differential calculus comprehends the Cartan calculus, and the
Kähler duality is a modification of Hodge duality. The basic ingredient
of the Kähler calculus are the exterior ∧-product, the interior ∨-product,
the Cartan differential dω, the Kähler differential d∨ω, the Kähler star
operator

$ω := ω ∨ υ,
and the Kähler codifferential d�ω := sgn(g) $−1d$ω. Here, υ is the volume
form. Dirac based his approach to the relativistic electron on the square
root of the Laplacian for the Minkowski metric (see Chap. 20). The Kähler
relation

d∨(d∨ω) = −Δω (8.74)

is the key to Kähler’s theory for the Dirac equation d∨ω = a ∨ ω of the
relativistic electron in the electromagnetic field. Equation (8.74) shows
that the Dirac–Kähler differential operator d∨ is more fundamental than
the Hodge Laplacian Δ. For example, the desire to find an index theorem
for the elliptic Dirac operator was the starting point for the famous Atiyah–
Singer theorem for general elliptic operators.18 Mnemonically, we have the
following rules: dd = 0 (Poincaré’s cohomology rule), and

d�d� = 0, d∨ = d+ d�, d∨d∨ = −Δ.

Moreover, $$ = (−1)n(n−1)/2 sgn(g) and $ d∨ = sgn(g) · d∨ $ where n
is the dimension of the coordinate space. In gauge theory, this will be
complemented by D = d + A (covariant differential), DD = F (Cartan’s
curvature rule), and DDD = 0 (Bianchi identity).

Folklore

Let Ω be a fixed nonempty open subset of R
n where n = 1, 2, . . . Our goal is to

construct both

• the exterior differential algebra
V

(Ω), and
• the interior differential algebra

W

(Ω).

Suppose that Ω′ is another open subset of R
m with m = 1, 2, . . ., and suppose that

we are given a smooth map
s : Ω′ → Ω,

then we get two algebra morphisms

s∗ :
^

(Ω) →
^

(Ω′) and s∗ :
_

(Ω) →
_

(Ω′)

called pull-back (see page 475). In particular, if there is an admissible system O
of observers, and if s is a diffeomorphism from Ω′ := ΩO′ onto Ω := ΩO (with
m = n), then it will turn out that the transformation laws correspond to tensorial
families.

18 M. Atiyah and I. Singer, The index of elliptic operators on compact manifolds,
Bull. Amer.Math. Soc. 69 (1963), 422-433. See also J. Roe, Elliptic Operators,
Topology, and Asymptotic Methods, Longman, Harlow, United Kingdom, 1988,
and P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer
Index Theorem, CRC Press, Boca Raton, Florida, 1995.
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8.6.1 The Exterior Differential Algebra

Let p = 1, . . . , n. We consider all the possible p-forms

ωp :=
1

p!
ωi1...ip dx

i1 ∧ · · · ∧ dxip

where ωi1...ip : Ω → R are smooth functions which are antisymmetric with respect
to the indices i1, . . . , ip = 1, . . . , n. In addition, if p = 0, then ω0 : Ω → R is a
smooth function. Let

V

(Ω) denote the set of all the finite sums

ω := ω0 + ω1 + ω2 + . . .

In addition, we set

• θω := ω0 − ω1 + ω2 − ω3 + ω4 − . . .,
• ζω := (ω0 + ω1) − (ω2 + ω3) + (ω4 + ω5) − . . .
For all ω, μ ∈

V

(Ω), we have

θ(ω ∧ μ) = θω ∧ θμ, ζ(ω ∧ μ) = ζμ ∧ ζω.

The real algebra
V

(Ω). With respect to the exterior product ”∧”, the set
V

(Ω) becomes a real algebra. The map θ (resp. ζ) is an algebra automorphism (resp.
algebra anti-automorphism) on

V

(Ω). In addition we have the linear operator

d :
^

(Ω) →
^

(Ω)

given by dω := dω0 + dω1 + . . . where dω0 := ∂iω0 · dxi, and

dωp :=
1

p!
∂[iωi1...ip] dx

i ∧ dxi1 ∧ · · · ∧ dxip , p = 1, . . . , n.

In addition, we have d(dω) = 0, and there holds the graded Leibniz rule

d(ω ∧ μ) = dω ∧ μ+ θω ∧ dμ.

Because of the existence of the operator ω �→ dω, the algebra
V

(Ω) is called a
‘differential algebra’.

Algebra morphism (pull–back s∗ω). We want to consider the change of
coordinates which is crucial for invariant theory. To this end, fix m,n = 1, 2, . . . Let

s : Ω′ → Ω

be a smooth map defined on the nonempty open subset Ω′ of R
m :

xi = si(u1, . . . , um), i = 1, . . . , n.

To simplify notation, we briefly write xi = xi(u1, . . . , um). Motivated by classical
analysis, we define19

s∗(ωi dx
i) := ωi ·

∂xi

∂uj
duj .

In a natural way, this can be extended to an algebra morphism

19 More precisely, this means that s∗(ωi dx
i)(u) = ωi(x(u)) · ∂xi(u)

∂uj duj .
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s∗ :
^

(Ω) →
^

(Ω′).

Explicitly, if p = 1, . . . n, then we set

s∗ωp :=
1

p!
ωi1...ip · ∂x

i1

∂uj1
∂xi2

∂uj2
· · · ∂x

ip

∂ujp
duj1 ∧ duj2 ∧ · · · ∧ dujp .

Here, we sum over i1, . . . ip = 1, . . . , n, and j1, . . . , jp = 1, . . . ,m.20 If p = 0, then
we define (s∗ω0)(u) := ω0(x(u)).

Mnemonically, one changes the variables according to the classical trans-
formation law for differentials.

For example, if the map s is given by x = x(u, v), y = y(u, v), then

s∗(adx ∧ bdy) = a(xudu+ xvdv) ∧ b(yudu+ yvdv) = ab(xuyv − xvyu) du ∧ dv.

It is crucial that the pull-back transformation respects the Cartan differential, that
is,

s∗(dω) = d(s∗ω).

In particular, if χ : Ω → Ω′ is a diffeomorphism, then choosing s := χ−1, we get

s∗ω =
1

p!
ωi1′ ...ip′ dx

i1′ ∧ · · · ∧ dxip′

where

ωi1′ ...ip′ =
∂xi1

∂xi1′
∂xi1

∂xi1′
· · · ∂x

ip

∂xip′
· ωi1...ip .

This is the transformation law of a tensorial family.
Differentiation with respect to the basis differential dxk. Let us start

with the antisymmetric normal form

ωp :=
1

p!
ωi1...ip dx

i1 ∧ · · · ∧ dxip , p = 1, . . . , n.

Then we define

δkωp :=
1

(p− 1)!
ωki2...ip dx

i2 ∧ · · · ∧ dxip , k = 1, . . . , n. (8.75)

Intuitively, we call δkωp the differentiation of the p-form ωp with respect to the
basis differential dxk. If p = 0, then we set δkω0 := 0. Note that the choice of the
antisymmetric normal form is important in order to define uniquely the derivative
δkωp. Moreover, we set

δk(ω0 + ω1 + . . .+ ωn) := δkω1 + . . .+ δkωn, k = 1, . . . , n.

Examples. Let a, b, c : Ω → R
n be smooth functions. Then:

• δka = 0 if k = 1, . . . , n.
• δ1(adx1 + bdx2 + cdx3) = a.
• δ1(adx1 ∧ dx2) = adx2 and δ1(bdx

3 ∧ dx1) = δ1(−bdx1 ∧ dx3) = −bdx3.
• δ2(adx1 ∧ dx2 ∧ dx3) = δ2(−adx2 ∧ dx1 ∧ dx3) = −adx1 ∧ dx3, and
• δ3(dx1 ∧ dx2 ∧ dx4) = 0.

20 Obviously, s∗ωp = 0 if p > m.
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Mnemonically, in order to compute δk put dxk at the first position by interchanging
the factors (using dx∧dy = −dy∧dx), and then cancel dxk. To prove this, we need
the antisymmetric normal form. In particular, let n = 3. Then

ω := adx1 ∧ dx2 + bdx3 ∧ dx1 = 1
2
ωij dx

i ∧ dxj

where ω12 = −ω21 := a, ω31 = −ω13 := b, and ω23 = −ω32 := 0.Moreover, ωkk := 0
if k = 1, 2, 3. By (8.75), δ1ω = ω12dx

2 + ω13dx
3 = adx2 − bdx3. �

There are the following rules at hand:

• δk(dxk) = 1, and δk(dx
l) = 0 if k �= l.

• δk(μ) = 0 if μ does not contain dxk.
• δk(ω ∧ μ) = (δkω) ∧ μ+ θω ∧ δkμ (graded Leibniz rule) if ω, μ ∈

V

(Ω).
• In particular, δk(ω0μ) = ω0δkμ if ω0 is a 0-form.
• δk(dxk ∧ μ) = μ if μ does not contain dxk.

8.6.2 The Interior Differential Algebra

We are given a metric tensorial family gkl of arbitrary signature on the nonempty,
open, arcwise connected subset Ω of R

n.21 Recall that (gkl) := (gkl)
−1, and g :=

det(gkl). Then det(gkl) = g−1. We will use gkl in order to lift and lower indices in
the usual way. In particular, we define

δkω := gksδsω.

For example, choose n = 2, and set x := x1, y := x2. Then:

• δl(dx ∧ dy) = gl1dy − gl2dx,
• δkδl(dx ∧ dy) = gk2gl1 − gk1gl2,
• δ1(dx ∧ dy) = dy, δ2(dx ∧ dy) = −dx,
• δ1δ2(dx ∧ dy) = −1, δ2δ1(dx ∧ dy) = 1, δkδk(dx ∧ dy) = 0 if k = 1, 2.

In fact, δl(dx ∧ dy) = glsδs(dx ∧ dy). This is equal to

gl1δ1(dx ∧ dy) + gl2δ2(dx ∧ dy) = gl1dy − gl2 dx.

Hence δkδl(dx ∧ dy) is equal to gksδs(g
l1dy − gl2dx) = −gk1gl2 + gk2gl1.

The interior ∨-product and the real algebra
W

(Ω). If ω0 is a 0-form, then
we define

ω0 ∨ dxl = dxl ∨ ω0 := ω0dx
l.

Now fix p = 1, . . . , n. Let ω, μ ∈
V

(Ω). The basic idea is to define an interior
product “∨” by setting

dxk ∨ dxl := dxk ∧ dxl + gkl (8.76)

and
ω ∨ dxl := ω ∧ dxl + θδlω.

In particular, for a p-form ωp = 1
p
dxi1 ∧ · · · ∧ dxip with antisymmetric coefficients

ωi1...ip , we get

21 This means that gkl transforms like a tensorial family with respect to all the
diffeomorphisms χ : ΩO → ΩO′ , where ΩO ≡ Ω.
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ωp ∨ dxl =
1

p!
ωk1...kp dx

k1 ∧ · · · ∧ dxkp ∧ dxl

+
(−1)p−1

(p− 1)!
glk ωkk2...kp dx

k2 ∧ · · · ∧ dxkp .

These are special cases of Kähler’s general definition of the ∨-product which reads
as follows:

ω ∨ μ =

n
X

s=0

(−1)s(s−1)/2 θ
s

s!
(δi1δi2 · · · δisω) ∧ (δi1δi2 · · · δisμ). (8.77)

Theorem 8.9 The set
V

(Ω) becomes a real algebra with respect to the ∨-product.
This algebra is generated by the 0-forms and the differentials dx1, . . . , dxn.

This real algebra denoted by
W

(Ω) is called the interior differential algebra over
Ω. The designation Clifford product for the ∨-product is justified by the Clifford
relation

dxk ∨ dxl + dxl ∨ dxk = 2gkl. (8.78)

Examples. Let n = 2. Set x := x1, y := x2. Fix the orientation by choosing
the volume form υ :=

p

|g| dx ∧ dy on the nonempty open subset Ω of R
2. Then:

(i) (dx ∨ dy) ∨ (dx ∨ dy) = 2g12dx ∨ dy − g11g22,
(ii) (dx ∧ dy) ∨ (dx ∧ dy) = g12g12 − g11g22 = −g−1,
(iii) υ ∨ υ = − sgn(g).

Proof. We will not use the general definition of the ∨-product. In order to get
inside, we will use the relations (8.76) and (8.78) together with the distributive and
associative law. The following convenient method can be used in the general case.
Ad (i). It follows from the Clifford relation (8.78) that

• dy ∨ dx = −dx ∨ dy + 2g21,
• dx ∨ dx = g11 and dy ∨ dy = g22.

Hence

dx ∨ (dy ∨ dx) ∨ dy = −dx ∨ dx ∨ dy ∨ dy + 2g12 dx ∨ dy
= −g11g22 + 2g12 dx ∨ dy.

Ad (ii). By (8.76), dx ∧ dy = dx ∨ dy − g12. It follows from (i) that

(dx ∧ dy) ∨ (dx ∧ dy) = (dx ∨ dy − g12) ∨ (dx ∨ dy − g12)
= dx ∨ dy ∨ dx ∨ dy − 2g12dx ∨ dy + g12g12 = g12g12 − g11g22 = −g−1.

Ad (iii). By (ii), (
p

|g| dx ∧ dy) ∨ (
p

|g| dx ∧ dy) = −|g|g−1 = − sgn(g). �

The Kähler differential d∨ω. For a 0-form ω, we define

d∨ω0 := dω0 = ∂kω0 · dxk.

Now fix p = 1, . . . , n. Let ωp = 1
p!
ωi1...ip dx

i1 ∧· · ·∧dxip be a p-form with antisym-

metric coefficients ωi1...ip . In what follows, we will use the covariant partial deriva-
tive ∇i for the Levi-Civita connection with respect to gkl to be introduced below.
Explicitly, ∇iωi1...ip is given by (8.114) on page 497 together with the Christoffel
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symbols (8.146) on page 512. The point is that the Cartan differential of the p-form
ωp can be written as22

dωp := dxi ∧
„

1

p!
∇i ωi1...ip dx

i1 ∧ · · · ∧ dxip
«

.

Replacing the ∧-product by the ∨-product, we define the Kähler differential

d∨ωp := dxi ∨
„

1

p!
∇i ωi1...ip dx

i1 ∧ · · · ∧ dxip
«

. (8.79)

The definition is invariant under diffeomorphisms. This follows from the index prin-
ciple by noting that ∇iωi1...ip is a tensorial family. In other words, if s : Ω′ → Ω is
a diffeomorphism and if ω is an element of

V

(Ω), then

s∗(d∨ω) = d∨(s∗ω).

Here, if ω = ω0 + ω1 + . . .+ ωn, then we set

d∨ω := dω0 + d∨ω1 + . . .+ d∨ωn.

The Kähler codifferential. If ω0 is a 0-form, set d�ω0 := 0. For p = 1, . . . n,
define

d�ωp := δi(∇iωi1...ipdx
i1 ∧ · · · dxip),

and d�ω := d�ω1 + . . .+ d�ωn.

Theorem 8.10 d∨ω = dω + d�ω if ω ∈
V

(Ω).

In addition, we get

• ddω = 0 and d�d�ω = 0,
• d∨d∨ω = (dd� + d�d)ω = −Δω.

8.6.3 Kähler Duality

Fix the volume form
υ :=

p

|g| dx1 ∧ · · · ∧ dxn

on the nonempty, open, arcwise connected subset Ω of R
n. If s : Ω′ → Ω is a

diffeomorphism, then we have

s∗υ = sgn(s) ·
p

|g′| dx1′ ∧ · · · ∧ dxn
′
,

by Sect. 8.5.2. Here, sgn(s) is the sign of the Jacobian of the diffeomorphism s. We
call s∗υ the volume form of

W

(Ω′). We have

υ ∨ υ = (−1)n(n−1)/2 sgn(g).

For ω ∈
V

(Ω), we define the Kähler star operator ω �→ $ω by setting

$ω := ω ∨ υ.

It follows from ω ∨ υ ∨ υ = sgn(g) · (−1)n(n−1)/2ω that

22 See Sect. 8.11.2 on page 523.
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$ $ ω = sgn(g) · (−1)n(n−1)/2 ω. (8.80)

This way, we obtain a linear bijective operator

$ :
_

(Ω) →
_

(Ω)

with the inverse operator $−1 = sgn(g) · (−1)n(n−1)/2 $ .23 In particular,

$1 = υ, $υ = sgn(g) · (−1)n(n−1).

If ωp = 1
p!
ωi1...ip dx

i1 ∧ dxip is a p-form with antisymmetric coefficients ωi1...ip ,

then $ωp = 1
p!
ωi1...ipδ

i1δi2 · · · δipυ.

Theorem 8.11 d�ω = sgn(g) $−1 d $ ω if ω ∈
W

(Ω).

8.6.4 Applications to Fundamental Differential Equations in
Physics

The generalized Laplacian. If ω ∈
V

(Ω), then

d∨(d∨ω) = −Δω. (8.81)

In particular, if
d∨ω = 0,

then Δω = 0 by (8.81), that is, ω is a harmonic differential form.
The generalized Maxwell–Yang–Mills system. The system

dω = 0, d∨ω = 0 (8.82)

is equivalent to

dω = 0, d�ω = 0.

In turn, this is equivalent to

dω = 0, d($ω) = 0.

This follows from d∨ω = dω + d�ω, and d�ω = sgn(g) $−1 d $ ω. The Maxwell
equations will be studied in Sect. 19.8.3 on page 982.

The generalized Dirac equation. We are given the 1-form a. The equation

d∨ω = a ∨ ω

is a generalization of the Dirac equation for the relativistic electron in an electro-
magnetic field. Here, the 1-form a corresponds to the 4-potential of the electromag-
netic field. If the electromagnetic field vanishes, then the equation

d∨ω = 0

generalizes the Dirac equation for the free relativistic electron.
Summarizing, Cartan’s exterior calculus combined with Kähler’s interior calcu-

lus allows us to formulate fundamental equations in physics in an extremely elegant
way. This concerns

23 Relation (8.80) shows that the Kähler star operator differs from the Hodge star
operator; see (8.67) on page 470.
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• the Maxwell equations in electromagnetism,
• the Dirac equation of the relativistic electron in an electromagnetic field, and
• the Yang–Mills equations which emerged implicitly first in classical fluid dynam-

ics (see Sect. 12.2.6 on page 698), and which lead us to the Standard Model in
elementary particle physics.

In the special case of rotational symmetry, it is possible to construct special so-
lutions of the equations above which generalize the classic spherical harmonics of
Laplace. Explicit formulas can be found in Kähler (1962/2004) quoted in the foot-
note on page 473.

8.6.5 The Potential Equation and the Importance of the de Rham
Cohomology

We want to show how the solution of the generalized Maxwell–Yang–Mills equations
can be simplified by solving the so-called potential equation

dA = ω on Ω. (8.83)

We are given the differential form ω, and we are looking for the differential form
A. In terms of physics, we want to find a potential A to the force ω. This is a
crucial problem in gauge theory dating back to the work of Lagrange (1736–1813)
and Gauss (1777–1855).

The solvability of the potential equation (8.83) critically depends on the
topology of the set Ω.

In the history of mathematics, the equation (8.83) was studied by Poincaré (1854–
1912), Volterra (1860–1950), de Rham (1903–1990), and Hodge (1903–1975). This
culminates in the de Rham cohomology (see Chaps. 22ff). At this point, let us only
discuss the key ideas.

If A is a solution of (8.83), then it follows from the Poincaré cohomology rule
d(dA) = 0 that

dω = 0 on Ω.

This is a necessary condition for the solvability of the potential equation (8.83).
There arises the following question:

Is the condition dω = 0 also a sufficient condition for the solvability of the
potential equation (8.83)?

De Rham cohomology tells us that the condition dω = 0 is a sufficient solvability
condition for (8.83) if the set Ω is continuously contractible to a point (e.g., the open
subset Ω of R

n is a ball or, more generally, a convex set). Otherwise, one has to add
additional integral conditions of the type

R

C
ω = 0 which, roughly speaking, depend

on the number of holes of the set Ω. In the terminology used in cohomology theory,
the equation dA = ω tells us that A is a coboundary of ω, whereas the equation
dω = 0 tells us that ω is a cocycle. De Rham theory studies the equivalence classes
cocycles modulo coboundaries. If the set Ω is contractible to a point, then the de
Rham cohomology of Ω is trivial, that is, every cocycle is a coboundary.

Let us consider a typical application. We want to solve the generalized Maxwell–
Yang–Mills equations

dω = 0, d�ω = 0 on Ω. (8.84)

Suppose that the set Ω is continuously contractible to a point. Then every solution
ω of (8.84) can be represented as ω = dA.
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(i) Gauge condition: If the differential form A satisfies the two conditions
• ΔA = 0 (harmonic form), and
• d�A = 0 (gauge condition),
then the differential form ω = dA is a solution of (8.84). In order to prove this,
note that dω = ddA = 0, and

d�ω = d�dA = d�dA+ dd�A = −ΔA = 0.

(ii) Self-dual solution: If ω = dA and ω = $ω, then ω is a solution of (8.84). To
prove this, note that dω = ddA = 0 and

d�ω = sgn(g) $−1 d $ ω = sgn(g) $−1 dω = 0.

8.6.6 Tensorial Differential Forms

Einstein discovered that the gravitational force is intimately related to the Riemann

curvature tensorial family Rk
ijl of the 4-dimensional space-time manifold. Élie Car-

tan combined the Riemann curvature theory with his exterior calculus of differential
forms by introducing the connection forms ωk

l := Γ k
ildx

i and the curvature forms

Ωk
l := Rk

ijl dx
i ∧ dxj , k, l = 1, . . . , n.

At this point, let us only sketch the relation to Kähler’s interior differential calculus.
To this end, let us introduce expressions of the form

Tk1...kr
l1...ls

:= T k1...kr
l1...ls;i1...ip

dxi1 ∧ · · · ∧ dxip

which are called tensorial differential forms. The indices k1, l1, i1, . . . run from 1 to
n. The calculus is designed in such a way that the expression

Tk1...kr
l1...ls

dxl1 ⊗ · · · ⊗ dxls ⊗ ∂k1 ⊗ · · · ⊗ ∂kr

possesses an invariant meaning under diffeomorphisms s : Ω′ → Ω.24 To this end,
we assume that the smooth coefficient functions

T k1...kr
l1...ls;i1...ip

represent a tensorial family which is antisymmetric with respect to the indices
i1, . . . , ip. As in Sect. 8.6.2 on page 479, we will use the covariant partial derivative
∇i with respect to the Christoffel symbols related to the metric tensorial family gkl
(Levi-Civita connection). We define

DiT
k1...kr
l1...ls

:= ∇iT
k1...kr
l1...ls;i1...ip

dxi1 ∧ · · · ∧ dxip .

This yields the definition of both the exterior differential

dTk1...kr
l1...ls

:= dxi ∧ DiT
k1...kr
l1...ls

and the interior differential

d∨Tk1...kr
l1...ls

:= dxi ∨ DiT
k1...kr
l1...ls

.

Setting d�Tk1...kr
l1...ls

:= δiDiT
k1...kr
l1...ls

, we get the decomposition

d∨Tk1...kr
l1...ls

= (d+ d�)Tk1...kr
l1...ls

.

24 Recall that dxi ∧ dxj = dxi ⊗ dxj − dxj ⊗ dxi.
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8.7 Integrals over Differential Forms

Mnemonically, Cartan’s differential calculus yields the correct substitution
rule for integrals via the Jacobian. The sign of the integral depends on the
orientation of the observer.

Folklore

To simplify notation, in what follows we will write Ω,Ω′, ι and ι′ instead of
ΩO, ΩO′ , ιO and ιO′ , respectively. Let Ω′, Ω′ be nonempty, open, arcwise connected
subsets of R

n, n = 1, 2, . . .
Special case. We define

J =

Z

Ω

f(x) dx1 ∧ dx2 ∧ · · · ∧ dxn :=

Z

Ω

f(x) dx1 dx2 · · · dxn.

This way, the integral over an n-form is reduced to a classical integral, by defini-
tion.25

Proposition 8.12 The product ι ·J does not depend on the choice of the observer.

Proof. (I) The classical substitution rule for n-dimensional integrals tells us that

Z

Ω

f(x) dx1dx2 · · · dxn =

Z

Ω′
f(x(x′))

˛

˛

˛

˛

∂(x1 . . . xn)

∂(x1′ . . . xn′)
(x′)

˛

˛

˛

˛

dx1′dx2′ · · · dxn
′
.

This is equal to

σ

Z

Ω′
f(x(x′))

∂(x1 . . . xn)

∂(x1′ . . . xn′)
(x′) dx1′dx2′ · · · dxn

′

where σ is the sign of the Jacobian.
(II) The observer Ω computes the integral

J =

Z

Ω

f(x) dx1dx2 · · · dxn.

(III) Jacobian: The observer O′ uses the transformed differential form

dx1 ∧ · · · ∧ dxn =
∂x1

∂xi
′
1
· · · ∂x

n

∂xi
′
n
dxi

′
1 ∧ · · · ∧ dxi

′
n .

Hence

dx1 ∧ · · · ∧ dxn =
∂(x1 . . . xn)

∂(x1′ . . . xn′)
(x′) dx1′ ∧ · · · ∧ dxn

′
.

Moreover, the observer O′ computes the integral

J ′ =

Z

Ω′
f(x(x′)) dx1 ∧ · · · ∧ dxn

25 In order to ensure the existence of the integrals to be considered in this section,
we assume that the smooth functions f, ωi1...in have compact support on Ω. If
this is true for one specific observer O, then it is true for all the other observers,
since compact sets remain invariant under diffeomorphisms.
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by using the transformed differential form. Hence

J ′ =

Z

Ω′
f(x′(x)) · ∂(x

1 . . . xn)

∂(x1′ . . . xn′)
(x′) dx1′ · · · dxn

′
= σJ.

Since ι′ = σ · ι, we obtain ι′ · J ′ = ι · J. �

General case. We are given the n-form ω = 1
n!
ωi1...in dx

i1 ∧ · · · ∧ dxin . Since

we have ω = ω1...n dx
1 ∧ · · · ∧ dxn, we define

J =

Z

Ω

ω :=

Z

Ω

ω1...n dx
1 dx2 · · · dxn.

Proposition 8.13 The product ι ·J does not depend on the choice of the observer.

Proof. By (8.46),
p

|g′(x′)| = ∂(x1,...,xn)

∂(x1′ ,...,xn′
)
(x′)

p

|g(x)| where x′ = x′(x). Thus, the

classical substitution rule for integrals yields
Z

Ω

f(x)
p

|g(x)| dx1 · · · dxn = σ

Z

Ω′
f(x(x′))

p

|g′(x′)| dx1′ · · · dxn
′

(8.85)

for all smooth functions f : Ω → R having compact support. Note that

ω =
1

n!
ωi1...in(x) Ei1...in(x) ·

p

|g(x)| dx1 ∧ · · · ∧ dxn.

The observers O and O′ compute the integrals

• ι · J =
R

Ω
1
n!
ωi1...in · ιEi1...in ·

p

|g| dx1 dx2 · · · dxn, and

• ι′ · J ′ =
R

Ω′
1
n!
ωi′1...i′n · ι′Ei′1...i

′
n ·
p

|g′| dx1′ dx2′ · · · dxn′
,

respectively. Set f := ωi1...in · ιEi1...in . Since ιEi1...in is a tensorial family, the
function f is invariant, by the index principle. Thus, it follows from (8.85) that
ι · J = ι′ · J ′. �

The pull-back formula. Let s : Ω′ → Ω be an orientation-preserving dif-
feomorphism. The classical substitution rule for integrals can elegantly be written
as

Z

Ω

ω =

Z

s∗Ω
s∗ω (8.86)

where ω is an n-form with smooth coefficient functions which have compact support.
In addition, for streamlining the formula, we set s∗Ω := Ω′. The definition of the
pull-back s∗ω of the n-form ω can be found on page 476.

8.8 Derivatives of Tensorial Families

In the 18th and 19th century, physicists and mathematicians investigated
physical problems by using curvilinear coordinates (e.g., spherical coordi-
nates in celestial mechanics). Frequently, the computations were clumsy.
To simplify the approach, one was looking for modified partial deriva-
tives which possess nice transformation laws. The main tool is the covari-
ant derivative which sends tensorial families again to tensorial families. In
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the 20th century, mathematicians noticed that it is possible to formulate
differentiation processes in a basis-free (i.e., index-free) way. This allows
the natural generalization from finite-dimensional linear spaces to infinite-
dimensional Hilbert and Banach spaces.

Folklore

We are given the tensorial family

T i1...ir
j1...js

(x), x ∈ Ω (8.87)

of type (r, s). Our main goal is to find derivatives which send this tensorial family
again to a tensorial family. To begin with, let us consider the simplest situation.

Linear transformation law. Consider the linear transformation law

xi
′
= Gi′

i x
i, i′ = 1′, . . . , n′

where the (n× n)-matrix G = (Gi′
i ) does not depend on the position x.

Proposition 8.14 If all the admissible coordinate transformations are linear, then

∂kT
i1...ir
j1...js

(x), x ∈ Ω

is again a tensorial family.

Proof. For example, consider the tensorial family T k with the transformation law

T k′
(x′) =

∂xk
′

∂xk
· T k(x).

The point is that ∂xk′

∂xk = Ck′
k does not depend on the variables x1, . . . , xn. Differ-

entiation with respect to the variable xj
′

yields

∂T k′
(x′)

∂xj′
=
∂xk

′

∂xk
· ∂x

j

∂xj′
∂T k(x)

∂xj
,

by the chain rule. Hence

∂j′T
k′

(x′) = Gj
j′G

k′
k · ∂jT k(x).

This is a tensorial transformation law. In the general case, the same argument can
be applied. �

The trouble with the remainder. The argument above fails if the transfor-
mation law reads as

T k′
(x′) =

∂xk
′
(x)

∂xk
· T k(x)

where ∂xk′
(x)

∂xk depends on the position x. As a rule, this is the case if one uses

curvilinear coordinates (e.g., spherical coordinates). In this situation, by the chain

rule, differentiation with respect to the variable xj
′

yields

∂T k′
(x′)

∂xj′
=
∂xk

′

∂xk
∂xj

∂xj′
· ∂T

k(x)

∂xj
+ rk

′
j′ (x)

with the remainder
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rk
′

j′ (x) :=
∂2xk

′
(x)

∂xj∂xk
· ∂x

j

∂xj′
· T k(x).

In the 19th century, mathematicians introduced modifications of partial derivatives
which compensate the remainder terms. The main trick for the compensation of
remainders is to use the symmetry property

∂2f

∂x∂y
=
∂2f

∂y∂x

of the second partial derivatives for smooth real-valued functions f . The proto-
type of such an argument can be found in Problem 8.2. Typically, there are two
possibilities:

• the modification of the definition of ∂iT
k by adding so-called connection terms

in order to get the so-called covariant partial derivative

∇iT
k(x) := ∂iT

k(x) + Γ k
ij(x)T

j(x), (8.88)

• or the use of linear combinations like ∂kTi − ∂kTi (see the Lie derivative, the
Cartan derivative, and the Weyl derivative below).

From the physical point of view, we will use additional physical quantities in order
to modify partial derivatives. We will discuss the following possibilities:

• Lie derivative (additional velocity vector field),
• covariant partial derivative (Weyl connection) (additional gauge potential, e.g.,

the 4-potential in electromagnetism),
• covariant partial derivative (Levi-Civita connection) (additional metric tensorial

family; e.g., the space-time metric in Einstein’s theory of general relativity),
• covariant partial derivative in complex geometry (Kähler connection) (additional

Kähler potential for getting the metric tensorial family; e.g., in string theory).

In contrast to this, both the Cartan derivative and the Weyl derivative possess a
universal meaning; they do not depend on the choice of additional physical objects.

Historical remarks. Concerning (8.88), let us mention that symbols of the
type Γ k

ij appeared first in Gauss’ Disquisitiones generales circa superficies curvas
from 1827 (foundation of surface theory). In 1854, Riemann (1826–1866) generalized
the Gaussian differential geometry to higher dimensions. Motivated by Riemann’s
work published in 1866, Christoffel (1829–1900) generalized Riemann’s theory to
more general Riemannian metric tensors. In particular, in 1869 Christoffel intro-
duced the so-called Christoffel symbols Γ k

ij .
Motivated by physics, in 1918 Weyl (1885–1955) generalized the Christoffel

symbols by introducing the notion of an affine connection.26 In the 1920s, Élie Car-
tan (1869–1951) established a general theory of connections which was the basis
for modern differential geometry in terms of fiber bundles created by Ehresmann
(1905–1979) in 1950.27 In 1928 Dirac formulated the Dirac equation for the rela-
tivistic electron.

26 H. Weyl, Pure infinitesimal geometry, Math. Z. 2 (1918), 384–411. In 1918, Weyl
published his famous textbook Space, Time, Matter on Einstein’s 1915 theory
of general relativity, Springer, Berlin. Weyl’s theory of affine connections was
included in the third edition of his textbook which appeared in 1923.

27 C. Ehresmann, Infinitesimal connections in differentiable fiber spaces, Colloque
de Topologie, Bruxelles, 1950, pp. 29–55 (in French).
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In this setting, a typical problem is to prove the relativistic invariance of
the Dirac equation.

This is a nontrivial task in invariant theory because of the existence of a univer-
sal covering group to the Lorentz group. In 1929, van der Waerden (1903–1998)
invented his relativistic spinor calculus in order to be able to formulate relativisti-
cally invariant partial differential equations in a systematic way.

For describing the Dirac electron in Einstein’s general theory of relativ-
ity, one needs a covariant differentiation on curved pseudo-Riemannian
space-time manifolds which respects the symplectic group SL(2,C) (i.e.,
the universal covering group of the proper orthochronous Lorentz group
SO↑(1, 3)).28

In an Euclidean setting, Élie Cartan (1869–1951) studied the Lie algebra so(n),
n = 3, 4, . . . , in the 1920s. In 1935, Brauer (1901–1977) and Weyl (1885–1955)
constructed the universal covering group Spin(n) of SO(n) by using Clifford alge-
bras.29 Both the groups Spin(n) and SO(n) have the same Lie algebra, namely,
so(n). Brauer and Weyl showed that Cartan’s strange double-valued representa-
tions of the group SO(n) can be understood best as representations of the group
Spin(n).

8.8.1 The Lie Algebra of Linear Differential Operators and the
Lie Derivative

It was the goal of Lie (1842–1899) to introduce linear combinations of
partial derivatives which are independent of the choice of the observer.
The Lie derivative for arbitrary tensorial families depends on the choice
of a tensorial family vi. In terms of physics, the Lie derivative is closely
related to the flow of fluid particles governed by a given velocity vector
field v.
Furthermore, in the 19th century, mathematicians discovered that it is
crucial to study second partial derivatives and their antisymmetrization.
This leads to the Riemann curvature tensor and the concept of Lie algebra.
The antisymmetrization generates nice transformation laws. In the 20th
century, physicists discovered that the Riemann curvature tensor and its
generalizations can be used in order to describe the fundamental forces
in nature (Einstein’s theory of general relativity and the Standard Model
in elementary particle physics). On an infinitesimal level, the fundamental
symmetries in nature are described by Lie algebras.

Folklore

The Lie algebra Diff1(ΩO). Consider an admissible system O of observers. Let Θ
be a scalar tensorial family (e.g., a temperature function measured by different ob-
servers). Recall that ∂i := ∂

∂xi . Changing the observer, we have the transformation
law

28 B. van der Waerden, Spinor analysis, Nachr. Königl. Ges. Wiss. Göttingen 1929,
pp. 100–109 (in German).
B. van der Waerden and L. Infeld, The wave equation of the electron in gen-
eral relativity, Sitzungsber. Preußische Akad. Wiss. Berlin, Math.-Phys. Klasse
9 (1933), pp. 308–401 (in German).

29 R. Brauer and H. Weyl, Spinors in n dimensions, Amer. J. Math. 57 (1935),
425–449.
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ΘO′(x′) = ΘO(x), x′ = x′(x).

Let vi and wi be two tensorial families (with respect to O) together with the linear
first-order differential operators

v := vi∂i and w := wi∂i.

Observe that

(v · w)(Θ) = v(w(Θ)) = vi∂i(w
j∂jΘ)

= viwj · ∂i∂jΘ + (vi∂iw
j) ∂jΘ.

Therefore, as a rule, the composition v · w of the two linear first-order differential
operators v and w is not a first order differential operator, that is, the real linear
space Diff1(ΩO) is not an algebra with respect to the usual operator product. How-
ever, since ∂i∂j = ∂j∂i, the remainder viwj · ∂i∂jΘ can be cancelled if we pass to
the Lie bracket

[v, w](Θ) := (v · w − w · v)(Θ). (8.89)

Explicitly,
[v, w](Θ) = (vi∂iw

j − wi∂iv
j) ∂jΘ.

This tells us, that the Lie bracket [v, w] is again a first-order linear operator.

The real linear space Diff1(ΩO) of linear first-order differential operators
on the real linear space C∞(ΩO) becomes a real Lie algebra equipped with
the Lie product [v, w] := v · w − w · v.

This simple observation is the key to Lie’s approach to differential geometry.

Proposition 8.15 If vi and wi are tensorial families, then so is vs∂sw
i−ws∂sv

i.

Proof. We have to show that

vi
′
∂i′w

j′ − wi′∂i′v
j′ =

∂xj
′

∂xj
· (vi∂iwj − wi∂iv

j). (8.90)

This transformation law can be established by an explicit computation (see Problem
8.2). However, the claim can be proved without using any computation. To this end,
note that the definition (8.89) does no depend on the choice of the observer. Hence

(vi
′
∂i′w

j′ − wi′∂i′v
j′) · ∂j′ΘO′(x′) = (vi∂iw

j − wi∂iv
j) · ∂jΘO(x),

where x′ = x′(x). Using the transformation law ∂jΘO = ∂xj′

∂xj ∂j′ΘO′ , we get

(vi
′
∂i′w

j′ − wi′∂i′v
j′) · ∂j′ΘO′(x′) =

“

vi∂iw
j − wi∂iv

j
” ∂xj

′

∂xj
· ∂j′ΘO′(x′).

By Prop. 8.3 on page 459, the operators ∂1′ , . . . , ∂n′ are linearly independent. This
implies (8.90). �

This elegant argument is the special case of the ’inverse index principle’ to be
considered in Sect. 8.8.2. In what follows, we suppose that we are given a fixed
tensorial family vi.

The Lie derivative of a temperature field Θ. We define
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(LvΘ)(x) := vi(x) ∂iΘ(x), x ∈ ΩO.

This is called the Lie derivative of the scalar tensorial family Θ at the point x with
respect to the velocity vector v(x) = vi(x)∂i at the point x. Briefly, LvΘ := vi∂iΘ.
In mathematics, LvΘ(x) is also called the directional derivative of the function Θ
at the point x with respect to the velocity vector field v at the point x.30 By (8.89),

LvLwΘ − LwLvΘ = L[v,w]Θ.

Consider the tensorial family
T i1...ir
j1...js

.

Our goal is to define a new tensorial family denoted by

LvT
i1...ir
j1...js

which is called the Lie derivative and which generalizes LvΘ. We will proceed step
by step.

The Lie derivative of a velocity vector field w. Let wi be a tensorial
family. Motivated by Prop. 8.15, we define

Lvw
j := vi∂iw

j − wi∂iv
j , j = 1, 2, . . . , n.

This is again a tensorial family.
The Lie derivative of a covector field. Let ωi be a tensorial family. We

want to introduce Lvωi in such a way that we get the product rule

Lv(wiωi) = (Lvw
i)ωi + wiLvωi. (8.91)

To this end, we define

Lvωi := vs∂sωi + ωs∂iv
s. (8.92)

Proposition 8.16 If ωi is a tensorial family, then so is Lvωi.

Proof. This can be checked by an explicit computation, as in Problem 8.2. However,
we want to use an argument which is the special case of a general principle called
the ’inverse index principle’. Since Θ = wiωi is an invariant, by the index principle,
we get

Lv(wiωi) = vs∂s(w
iωi).

It follows from the definition (8.92) that

• (Lvw
i)ωi = ωiv

s∂sw
i − ωiws∂sw

i,
• wiLvωi = wivs∂sωi + wiωs∂iv

s.

30 In what follows, the linear first-order differential operator v = vi∂i will be de-
noted by the vector symbol v in order to get contact to physical intuition. In
Chap. 11 we will study velocity vector fields on the Euclidean manifold. In par-
ticular, there exists a one-to-one relation between velocity vectors v = vibi of
our physical intuition and linear first-order differential operators v = vi∂i.
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This implies (8.91). Now to the point. By (8.91), we have

wiLvωi = Lv(wiωi) − ωiLvw
i.

The right-hand side is a tensorial family. Consequently, wiLvωi is a tensorial family
for all tensorial families wi. Hence

wi′Lvωi′ = wiLvωi.

Using the transformation law wi = ∂xi

∂xi′ w
i′ , we get

wi′ · Lvωi′ = wi′ · ∂x
i

∂xi′
Lvωi on ΩO′ .

Fix a point x′ ∈ ΩO′ , and fix the index k′ = 1, . . . , n′. By Theorem 8.2 on page

458, there exists a tensorial family wi′ with wi′(x′) = δi
′
k′ . Hence

Lvωk′ =
∂xi

∂xk′ Lvωi.

This is the desired tensorial transformation law for Lvωi. �

The Lie derivative of a general tensorial family via the Leibniz rule
strategy. Consider first a special example. Let Si, Tj , T

ij be tensorial families. We
define

LvT
i
j := vs∂sT

i
j + T i

s∂jv
s − T s

j ∂sv
i. (8.93)

Note that this formula has the correct index picture. In order to motivate this
definition, we first define Lv(SiTj) by using the Leibniz rule

Lv(SiTj) := (LvS
i)Tj + SiLvTj .

Explicitly, this yields

Lv(SiTj) = (vs∂sS
i)Tj − (Ss∂sv

i)Tj + Sivs∂sTj + SiTs∂jv
s

= vs∂s(S
iTj) + SiTs∂jv

s − SsTj∂sv
i.

Replacing SiTj by T i
j , we get (8.93). Finally, we postulate that definition (8.93)

remains true for all the tensorial families T i
j which do not have any special product

structure. In particular, it follows from (8.93) that

Lvδ
i
j = δis∂jv

s − δsj∂svi = ∂jv
i − ∂jvi = 0. (8.94)

Similarly, we get

• LvTij = vs∂sTij + Tsj∂iv
s + Tis∂jv

s;

• LvT
ij = vs∂sT

ij − T sj∂sv
i − T is∂sv

j (see Problem 8.3).

The general definition reads as follows:

LvT
i1...ik
j1...jl

:= vs∂sT
i1...ik
j1...jl

+
l
X

σ=1

T i1...ik
j1...s...jl

∂jσv
s −

k
X

σ=1

T i1...s...ik
j1...jl

∂sv
iσ .

Here, we replace the index jσ (resp. iσ) of T
i1...ik
j1...jl

by the index s, and we sum over

the values s = 1, . . . , n. Mnemonically, for every index of T
i1...ik
j1...jl

, the directional
derivative

vs∂sT
i1...ik
j1...jl

is supplemented by an additional summand which respects the principle of the
correct index picture.
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Proposition 8.17 The Lie derivative LvT
i1...ik
j1...jl

of a tensorial family T
i1...ik
j1...jl

is
again a tensorial family.

By Prop. 8.16, this is true for LvT
i and LvTj . In the general case, note that the

product construction used above respects the tensorial transformation laws.
The Leibniz rule and the contraction rule. The Lie derivative

Lv

“

T i1...ir
j1...js

· Sk1...ka
l1...lb

”

of the product T i1...ir
j1...js

· Sk1...ka
l1...lb

is equal to

Lv

“

T i1...ir
j1...js

”

Sk1...ka
l1...lb

+ T i1...ir
j1...js

Lv

“

Sk1...ka
l1...lb

”

. (8.95)

This Leibniz rule for the Lie derivative follows immediately from our product strat-
egy used above. Note that this Leibniz rule remains valid if one pair or several pairs
of indices are contracted. For example,

Lv(T i · Sk
i ) = LvT

i · Sk
i + T iLvS

k
i .

The Lie derivative of a differential form. Suppose that we are given the
p-form ω = 1

p!
ωi1...ip dx

i1∧· · ·∧dxip where ωi1...ip is a Cartan family. By definition,

the Lie derivative Lvω of ω is given by be quite natural formula

Lvω = Lvωi1...ip · dxi1 ∧ · · · ∧ dxip .

By the index principle, this definition does not depend on the choice of the observer.
For example,

Lvdx
j = ∂sv

j · dxs. (8.96)

Proof. Use Lv(ωidx
i) = Lvωi · dxi = (vs∂sωi + ωs∂iv

s) dxi with ωi := δij . �

From the Leibniz rule for the Lie derivative of tensorial families (8.95), we obtain
the Leibniz rule for the Lie derivative of differential forms:

Lv(ω ∧ μ) = (Lvω) ∧ μ+ ω ∧ Lvμ. (8.97)

Using (8.96), this Leibniz rule allows us to compute the Lie derivative Lvω in the
following nice way:

Lv(ωi dx
i) = Lvωi · dxi + ωiLvdx

i = vs∂sωi · dxi + ωi∂sv
i · dxs.

Changing the names of the indices, we get

Lvω = (vs∂sωi + ωs∂iv
s) · dxi.

This coincides with Lvω = Lvωi · dxi.
The Lie–Cartan formula. Let ω = ωjdx

j be a 1-form. Then

dω(v,w) = Lv(ω(w)) − Lw(ω(v)) − ω([v,w]) (8.98)

for all first-order differential operators v = vj∂j and w = wj∂j . Moreover, we use
the Lie bracket [v,w] := (vi∂iw

j − wi∂iv
j)∂j .
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The Lie–Cartan formula (8.98) tells us that the Cartan differential dω can
be expressed by the Lie derivative and the Lie bracket.

In turn, the Lie bracket is a special Lie derivative. In fact,

[v,w] = Lvw.

This is a special case of the definition (8.100) given below. Summarizing, the Cartan
differential dω can be expressed by the Lie derivative of velocity vector fields.31

Proof. We get the following expressions:

• dω = ∂iωj dx
i ∧ dxj ;

• dω(v,w) = ∂iωj · (dxi(v)dxj(w) − dxi(w)dxj(v)) = ∂iωj · (viwj − vjwi);

• ω(w) = ωjdx
j(w) = ωjw

j ;
• Lv(ω(w)) = vi∂i(ωjw

j) = (vi∂iωj)w
j + (vi∂iw

j)ωj ;

• Lw(ω(v)) = wi∂i(ωjv
j) = (wi∂iωj)v

j + (wi∂iv
j)ωj ;

• ω([v,w]) = ωj(v
i∂iw

j − wi∂iv
j).

This yields the claim. �

For p = 2, 3, . . . , n, the general Lie–Cartan formula reads as

dω(v0,v1, . . . ,vp) =

p
X

i=0

(−1)iLviω(v0, . . . , v̂i, . . . ,vp)

+
X

i<j

(−1)i+jω([vi,vj ],v0, . . . , v̂i, . . . , v̂j , . . .vp).

By convention, the terms v̂i and v̂j have to be cancelled.

Cartan’s magic formula. For differential forms of degree p = 1, 2, . . ., we get

Lvω = iv(dω) + d(ivω). (8.99)

Proof. Consider first the special case where ω = ωidx
i. Then:

• Lvω = (vs∂sωj + ωs∂jv
s) dxj ;

• dω = ∂[iωj] dx
i ∧ dxj = 1

2
(∂iωj − ∂jωi) dxi ∧ dxj ;

• iv(dω) = vi(∂iωj − ∂jωi) dxj ;
• d(ivω) = d(viωi) = (∂jv

i)ωi dx
j + vi∂jωi dx

j .

The general case proceeds similarly (see Problem 8.5). An elegant index-free proof
can be found in Problem 8.6. �

The Lie derivative of a tensor field. For a tensor field

T = T i1i2...ir
j1...js

dxj1 ⊗ dxj2 ⊗ · · · ⊗ dxjs ⊗ ∂i1 ⊗ ∂i2 ⊗ · · · ⊗ ∂ir ,

we define the Lie derivative by setting

LvT := LvT
i1i2...ir
j1...js

· dxj1 ⊗ dxj2 ⊗ · · · ⊗ dxjs ⊗ ∂i1 ⊗ ∂i2 ⊗ · · · ⊗ ∂ir . (8.100)

For example,

31 This allows us to define the Cartan differential dω on infinite-dimensional Ba-
nach spaces and Banach manifolds. See R. Abraham, J. Marsden, and T. Ratiu,
Manifolds, Tensor Analysis, and Applications, Springer, New York, 1988.
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Lv(dxi) = ∂sv
i · dxs, Lv(∂i) = −∂ivs · ∂s. (8.101)

Proof. Use (Lvw
j)∂j = (vs∂sw

j − ws∂sv
j) ∂j with ωj := δij . �

As for differential forms above, we get the following Leibniz rule for tensors:

Lv(T ⊗ S) = LvT ⊗ S + T ⊗ LvS.

This rule combined with (8.101) allows us to compute the Lie derivative of arbitrary
tensors. For example,32

Lv(T ij∂i ⊗ ∂j) = Lv(T ij) · ∂i ⊗ ∂j + T ij Lv(∂i) ⊗ ∂j + T ij ∂i ⊗ Lv(∂j).

Hence

Lv(T ij∂i ⊗ ∂j) = vs∂sT
ij · ∂i ⊗ ∂j − T ij∂iv

s · ∂s ⊗ ∂j − T ij∂jv
s · ∂i ⊗ ∂s.

Changing the names of the indices and writing ∂i∂j instead of ∂i ⊗ ∂j , we get

Lv(T ij∂i∂j) = (vs∂sT
ij − T sj∂sv

i − T is∂sv
j) ∂i∂j .

This coincides with LvT
ij · ∂i∂j .

Physical interpretation. The approach used above is very nice from the
mnemonic point of view, but it does not give any insight. In fact, the Lie derivative
can be understood best by using the transport of physical quantities by means of
the flow of fluid particles. This will be studied in Chap. 11.

8.8.2 The Inverse Index Principle

The inverse index principle saves a lot of time by avoiding clumsy com-
putations with a lot of cancellations at the end of the day. A spectacular
application concerns the Riemann curvature tensor to be considered in
Sect. 8.9.

Folklore

Consider a fixed admissible system O of observers. Then the following hold:

The family of smooth functions ωi is a tensorial family iff ωiw
i is a ten-

sorial family for all tensorial families wi.

Proof. (I) Index principle: If ωi and wi is a tensorial family, then so is wiωi, by
Theorem 8.1 on page 455.

(II) Inverse index principle: Conversely, if ωi is a family of smooth functions
and wiωi is a tensorial family for all tensorial families, then ωi is a tensorial family,
by the proof of Prop. 8.16 on page 489. The same argument shows that this result
remains true in the general case.

Proposition 8.18 The family T i1...ir
j1...js

of smooth functions is a tensorial family iff
the product

T i1...ir
j1...js

· Sk1...kq

l1...lp

(or a fixed contraction of this product) is a tensorial family for all tensorial families

S
k1...kq

l1...lp
.

32 The symbol Lv(T ij) stands for LvΘ with Θ := T ij .



494 8. A Glance at Invariant Theory

This result is called the (full) index principle. For example, the family T k
ij of

smooth functions is a tensorial family iff T k
ijS

i
k is a tensorial family for all tensorial

families Si
k. Let us consider a further application.

The natural basis. Let T i1...ir
j1...js

be a family of smooth functions. Then

T := T i1i2...ir
j1j2...js

dxj1 ⊗ dxj2 ⊗ · · · ⊗ dxjs ⊗ ∂i1 ⊗ ∂i2 · · · ⊗ ∂ir

does not depend on the choice of the observer iff T i1i2...ir
j1j2...js

is a tensorial family.
Proof. For example, consider

T := T jk
i dx

i ⊗ ∂j ⊗ ∂k.

If v = vk∂k, then

T (v) = T jk
i dxi(v)∂j∂k = T jk

i v
i · ∂j∂k.

This is a linear second-order differential operator. Thus, the map v �→ T (v) is a
linear operator of the form

T : Diff1(ΩO) → Diff2(ΩO).

The differential operator ∂j∂k transforms like a tensorial family. If T jk
i is a tensorial

family, then T (v) = T jk
i v

i∂j∂k does not depend on the observer, by the index
principle.

Conversely, let T jk
i be a family of smooth functions such that T does not depend

on the observer. Then
T jk
i v

i · ∂j∂k
transforms like a scalar tensorial family. Using the transformation law for ∂j and ∂k
and the fact that all the differential operators ∂j∂k with j, k = 1, . . . , n are linearly
independent, it follows as in the proof of Prop. 8.16 on page 489 that

T jk
i v

i

is a tensorial family for all tensorial families vi. Thus, T jk
i is a tensorial family, by

Prop. 8.18. �

8.8.3 The Covariant Derivative (Weyl’s Affine Connection)

The Christoffel symbols Γ k
ij do not form a tensorial family; they form a

connection family. In terms of physics, this corresponds to the components
of a gauge potential.

Folklore

Choose an admissible system O of observers. For a scalar tensorial family Θ, we
define

∇iΘ := ∂iΘ.

This is a tensorial family, by Prop. 8.14 on page 485. In terms of physics, this
describes the gradient of the temperature field Θ.

Covariant partial derivative of a velocity vector field. We are given the
tensorial family vk. In contrast to ∂iΘ, the partial derivative
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∂iv
k

is not a tensorial family, as a rule. This is a serious defect of the classical partial
derivative in mathematics and physics. Our goal is to cure this defect by modifying
the partial derivative. To this end, fix the observer O, and define the covariant
partial derivative ∇iv

k by setting

∇iv
k(x) := ∂iv

k(x) + Γ k
is(x)v

s(x), x ∈ ΩO (8.102)

where i, j = 1, . . . , n. That is, we add the term Γ k
is(x)v

s(x) to the partial derivative
∂iv

k(x). We assume that the family of smooth functions Γ k
ij : ΩO → R does not

depend on the choice of the tensorial family vk. The functions Γ k
ij are called the

Christoffel symbols (or the connection symbols). For the observer O′, we define

∇i′v
k′

(x′) := ∂i′v
k′

(x′) + Γ k′
i′s′(x

′)vs
′
(x′), x′ ∈ ΩO′ (8.103)

where x′ = x′(x). The following is basic for gauge theory.

Our goal is to choose the Christoffel symbols Γ k
ij and Γ k′

i′j′ in such a way

that ∇iv
k is a tensorial family.

Explicitly, this means that we want to obtain the transformation law

∇i′v
k′

(x′) = Gi
i′(x)G

k′
k (x) · ∇iv

k(x), x ∈ ΩO, x′ = x′(x). (8.104)

The key formula reads as

Γ k′
i′j′(x

′) = (Gi
i′G

j
j′G

k′
k · Γ k

ij −Gi
i′G

j
j′∂iG

k′
j

´

(x), x ∈ ΩO, x′ = x′(x). (8.105)

The definition of the transformation coefficients Gi′
i (x) and Gi

i′(x) can be found on

page 445. Note that (8.105) is a tensorial transformation law if ∂iG
k′
j ≡ 0, that is,

the transformation coefficients do not depend on the position x. Otherwise, (8.105)
is not a tensorial transformation law, as a rule.

Proposition 8.19 Suppose that vk is a tensorial family. If the Christoffel symbols
transform like (8.105), then ∇iv

k is a tensorial family.

Proof. We have to show that

∂i′v
k′

+ Γ k′
i′j′v

j′ = Gi
i′G

k′
k (∂iv

k + Γ k
ijv

j). (8.106)

In fact, by the chain rule, it follows from vk
′
(x′) = Gk′

k (x)vk(x) that

∂vk
′
(x′)

∂xi′
=
∂Gk′

k (x)

∂xi
∂xi(x′)

∂xi′
· vk(x) +Gk′

k (x)
∂vk(x)

∂xi
∂xi(x′)

∂xi′
.

Hence
∂i′v

k′
= (∂iG

k′
k · vk +Gk′

k ∂iv
k)Gi

i′ .

Moreover, relation (8.105) implies

Γ k′
i′j′v

j′ = Gi
i′G

k′
k v

j · Γ k
ij −Gi

i′v
j∂iG

k′
j .

Adding up, we obtain the claim (8.106). �



496 8. A Glance at Invariant Theory

The language of matrices. The key transformation formula (8.105) looks
clumsy. In order to write down this formula more elegantly, let us introduce the
real (n× n)-matrices

Ai := (Γ k
ij), i = 1, . . . , n

where k is the row index, and j is the column index, that is,

Ai :=

0

B

B

@

Γ 1
i1 Γ

1
i2 . . . Γ

1
in

...
... . . .

...

Γn
i1 Γ

n
i2 . . . Γ

n
in

1

C

C

A

.

Using the matrix product, the key transformation formula (8.105) is equivalent to
the following matrix formula:

Ai′(x
′) = Gi

i′(x) · (GAiG
−1 − ∂iG ·G−1)(x), x′ = x′(x) (8.107)

which is crucial for gauge theory. Introducing the so-called gauge transformation
formula

A+
i (x) := (GAiG

−1 − ∂iG ·G−1)(x), x ∈ ΩO, x′ = x′(x), (8.108)

the complete transformation formula (8.107) can be written as

Ai′(x
′) = Gi

i′(x) · A+
i (x), x ∈ ΩO, x′ = x′(x). (8.109)

This tells us that the complete transformation Ai(x) �→ Ai′(x
′) from the original

observer O to the observer O′ is the superposition of

• the gauge transformation Ai(x) �→ A+
i (x) performed by the observer O, and

• the tensorial law A+
i (x) �→ Ai′(x

′) which corresponds to the passage from the
observer O to the observer O′.

It follows from G−1G = I that ∂iG
−1 · G + G−1∂iG = 0. Consequently, the

gauge transformation (8.108) is equivalent to

A+
i (x) := (GAiG

−1 +G∂iG
−1)(x), x ∈ ΩO, x′ = x′(x), (8.110)

If we introduce the differential forms

• A(x) := Ai(x)dx
i,

• A+(x) := A+
i (x)dxi,

• A′(x′) := Ai′dx
i′ ,

then

A′(x′) = A+(x), x ∈ OΩ , x
′ = x′(x). (8.111)

Weyl’s affine connection. Suppose that, for every observer O of the admis-
sible system O of observers, we have a family

Γ k
ij : ΩO → R, i, j, k = 1, . . . n

of smooth functions together with the transformation law (8.105) which is equiva-
lent to the tensorial transformation law (8.109) for the local coordinates together
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with the gauge transformation (8.108). Then Γ k
ij is called an affine connection fam-

ily.33

We now proceed as for the Lie derivative in Sect. 8.8.1 on page 489. The proofs
of the following results are the same as in Sect. 8.8.1.

Covariant partial derivative of a covector field. In order to enforce the
Leibniz rule

∇i(w
sωs) = (∇iw

s)ωj + ws∇iωs, (8.112)

we define

∇iωj := ∂iωj − Γ s
ijωs.

Proposition 8.20 If ωj is a tensorial family, then so is ∇iωj .

Duality between velocity vector fields and covector fields. Set

v :=

0

B

B

@

v1

...

vn

1

C

C

A

and ω :=

0

B

B

@

ω1

...

ωn

1

C

C

A

.

Using the matrices A1, . . . ,An, the covariant partial derivatives look like

∇iv = ∂iv + Aiv, i = 1, . . . , n

and

∇iω = ∂iω −Ad
iω, i = 1, . . . , n.

This displays the duality between ∇iv
k and ∇iωk.

The covariant derivative of a velocity vector field and the covariant deriva-
tive of a covector field are dual concepts.

Covariant partial derivative of a general tensorial family via the Leib-
niz rule strategy. For a tensorial family T k

j , we define

∇iT
k
j := ∂iT

k
j + Γ k

isT
s
j − Γ s

ijT
k
s . (8.113)

This is motivated in the following way. If Sk and Tj are tensorial families, then we
define

∇i(S
kTj) := (∇iS

k)Tj + Sk(∇iTj), (8.114)

motivated by the Leibniz rule. Hence

∇i(S
kTj) = (∂iS

k)Tj + Sk(∂iTj) + Γ k
isS

sTj − Γ s
ijS

kTs.

By the Leibniz rule for classical partial derivatives, we get

∇i(S
kTj) = ∂i(S

kTj) + Γ k
is(S

sTj) − Γ s
ij(S

kTs).

33 This notion was introduced by Weyl (1885–1955) in 1918 (see the footnote on
page 486).
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Setting T k
j := SkTj , we get (8.113). Finally, we postulate that (8.113) remains valid

for arbitrary tensorial families T k
j which do not have any special product structure.

Similarly, we get

∇iT
jk = ∂iT

jk + Γ j
isT

sk + Γ k
isT

js.

For the general tensorial family T
i1...ik
j1...jl

, the definition reads as

∇iT
i1...ik
j1...jl

:= ∂iT
i1...ik
j1...jl

+
k
X

σ=1

Γ iσ
is T

i1...s...ik
j1...jl

−
l
X

σ=1

Γ s
ijσ
T i1...ik
j1...s...jl

.

Here, we replace the index iσ (resp. jσ) of T i1...s...ik
j1...jl

by the index s, and we sum
over s = 1, . . . , n. Mnemonically, note that the index picture is correct.

The Leibniz rule. The covariant partial derivative

∇i

“

T i1...ir
j1...js

· Sk1...ka
l1...lb

”

of the product T i1...ir
j1...js

· Sk1...ka
l1...lb

of tensorial families is equal to

∇i

“

T i1...ir
j1...js

”

· Sk1...ka
l1...lb

+ T i1...ir
j1...js

·
“

∇iS
k1...ka
l1...lb

”

. (8.115)

This Leibniz rule follows immediately from our product strategy used above.
The contraction principle. The Leibniz rule (8.8.3) remains valid if one pair

or several pairs of indices are contracted. For example,

∇i(T
sSk

s ) = ∇iT
s · Sk

s + T s · ∇iS
k
s .

Let us discuss this. To this end, we will prove the following general principle:

The operation of contraction can be interchanged with the operation of
covariant differentiation.

As a typical simple example, let T k
l be a tensorial family. Then

Sk
il := ∇i(T

k
l ) = ∂iT

k
l + Γ s

ilT
k
s − Γ k

isT
s
l .

Contracting the index k with the index l yields

Sk
ik = ∂i(T

k
k ) + Γ s

ikT
k
s − Γ k

isT
s
k = ∂i(T

k
k ).

Here, the Christoffel symbols cancel each other.
Otherwise, for the function Θ := T k

k , we get

∇i(T
k
k ) = ∇iΘ = ∂iΘ = ∂i(T

k
k ) = Sk

ik.

This shows that the two different ways of computing ∇iT
k
k yield the same result.

The same argument applies to the contraction of several indices of the tensorial
family

∇iT
j1...jr
i1...is

.

The torsion tensorial family. By (8.105), as a rule, the Christoffel symbols
Γ k
ij do not form any tensorial family. However,
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T k
ij := Γ k

ij − Γ k
ji (8.116)

is a tensorial family called the torsion family. In fact, T k′
i′j′ = Gk′

k G
i
i′G

j
j′Γ

k
ij .

Antisymmetrization and torsion. Let ωj be a tensorial family. Then

∇[iωj] = ∂[iωj] − 1
2
T k
ijSk.

This motivates the designation ’torsion’.
Proof. We have ∇iSj = ∂iSj − Γ k

ijSk and

∇jSi = ∂jSi − Γ k
jiSk.

Moreover, recall that ∇[iSj] = 1
2
(∇iSj −∇jSi). �

Proposition 8.21 Let ωi1...ip be an antisymmetric tensorial family. Then

∇[iωi1...ip] = ∂[iωi1...ip] − 1
2
Altii1...ip

 

p
X

σ=1

T s
iiσωi1...iσ−1siσ+1...ip

!

.

In the special case where the torsion vanishes, that is, T k
ij ≡ 0 for all indices, we

have

∇[iωi1...ip] = ∂[iωi1...ip]. (8.117)

This tells us that in the torsion-free case, the alternating covariant partial derivative
of an antisymmetric covariant tensorial family coincides with the Cartan derivative.

Here, the symbol Alt[ii1...ip] means that we antisymmetrize with respect to the
p+ 1 indices i, i1 . . . , ip. For example,

Altij(Sijk) := 1
2
(Sijk − Sjik).

Similarly, Symij(Sijk) := 1
2
(Sijk + Sjik). The proof of Prop. 8.21 will be given in

Problem 8.9 on page 554.
Further definitions based on the covariant partial derivative. In what

follows, let T i1...ir
j1...js

and vi be tensorial families. Note that all of the following def-
initions do not depend on the choice of the observer, by the index principle. Set
v = vi∂i.

(i) The covariant directional derivative: The tensorial family

DvT
i1...ir
j1...js

:= vi∇iT
i1...ir
j1...js

is called the covariant directional derivative family of T i1...ir
j1...js

. For example,

DvT
k
j = vi∇iT

k
j .

(ii) The covariant time derivative: Let xi = xi(t), i = 1, . . . , n, be a smooth curve
where t ∈] − t0, t0[. We define

D

dt
T i1...ir
j1...js

(x(t)) = ẋi(t)∇iT
i1...ir
j1...js

(x(t)).
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(iii) The covariant directional derivative of a tensor field: Let

T = T i1...ir
j1...js

dxj1 ⊗ · · · ⊗ dxjs ⊗ ∂i1 ⊗ · · · ⊗ ∂ir

be a tensor field of type (r, s). Naturally enough, we set

DvT := vj∇jT
i1...ir
j1...js

· dxj1 ⊗ · · · ⊗ dxjs ⊗ ∂i1 ⊗ · · · ⊗ ∂ir . (8.118)

(iv) The covariant differential of a tensor field: The mapping v �→ DvT is linear.
We set

(DT )(v) := DvT for all v = vi∂i.

Explicitly,

DT = ∇jT
i1...ir
j1...js

· dxj ⊗ dxj1 ⊗ · · · ⊗ dxjs ⊗ ∂i1 ⊗ · · · ⊗ ∂ir .

(v) Covariant time derivative of a tensor field along a curve:

DT (x(t))

dt
:= DT (ẋ(t)) = ẋj(t)∇jT

i1...ir
j1...js

· dxj1 ⊗ · · · ⊗ dxjs ⊗ ∂i1 ⊗ · · · ⊗ ∂ir .

Summary. Let S, T, U, V be tensorial fields, where U and V have the same
type (r, s). Moreover, let Θ a scalar tensorial family. Then, we have the following
key rules:

• D(U + V ) = DU +DV (sum rule),
• D(S ⊗ T ) = DS ⊗ T + S ⊗DT (Leibniz rule);
• D(ΘT ) = DΘ · T +Θ ·DT , and DΘ = dΘ (special Leibniz rule).

This tells us that it is possible to introduce a covariant differential for tensor fields
which possesses quite natural properties. This is a far-reaching generalization of the
classical Leibniz calculus. In particular, we get34

• Dv(∂j) = Γ k
ijv

i · ∂k, and

• D(∂j) = Γ k
ij dx

i ⊗ ∂k.
This explains the meaning of the Christoffel symbols. Dually, we get

• Dv(dxk) = −Γ k
ijv

i · dxj , and

• D(dxk) = −Γ k
ij dx

i ⊗ dxj .
By (8.118), we get the following:

If T is a tensor field of type (r, s), then DvT is a tensor field of type (r, s),
and DT is a tensor field of type (r, s+ 1).

Examples. (i) We are given T = T k∂k. This is a tensor field of type (1, 0). We
want to compute the covariant directional derivative DvT by using general rules.
To begin with, note that the Leibniz rule yields

Dv(T k∂k) = Dv(T k) · ∂k + T k ·Dv(∂k).

Mnemonically, we use the symbol Dv(T k). However, observe that Dv(Tk) does
not denote the covariant partial derivative DvT

k of the tensorial family T k, but

34 Note that ∂j = T k∂k where T k := δkj for fixed j. Hence Dv(∂j) = vi∇iT
k∂k.

Explicitly, vi∇iT
k = vi(∂iT

k + Γ k
isT

s) = viΓ k
isδ

s
j = viΓ k

ij .
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the classical directional derivative, dvT
k, of the function x �→ T k(x). Explicitly,

dvT
k = vi∂iT

k. To avoid misunderstandings, we write

Dv(T k∂k) = dvT
k · ∂k + T k ·Dv(∂k).

Hence

Dv(T k∂k) = (vi∂iT
k)∂k + T k(Γ s

ikv
i∂s).

This implies the final result

DvT = (vi∂iT
k + viΓ k

ijT
j) ∂k. (8.119)

Using the covariant partial derivative ∇i, we get the tensor field of type (1, 0),

DvT = vi∇iT
k · ∂k,

which coincides with (8.118). From (8.119), we obtain the tensor field of type (1, 1),

DT = ∇iT
k dxi ⊗ ∂k.

Alternatively, we get DT = dT k · ∂k + T kD(∂k). Hence

DT = ∂iT
k dxi ⊗ ∂k + Γ k

isT
s dxi ⊗ ∂k = ∇iT

k dxi ⊗ dxk. (8.120)

(ii) Let T := Tkdx
k. This is a tensor field of type (0, 1). We want to show that

DvT = (vi∇iTk) dx
k. (8.121)

This is a tensor field of type (0, 1). In fact, by the Leibniz rule,

Dv(Tkdx
k) = dvTk · dxk + Tk ·Dv(dxk).

Hence

Dv(Tkdx
k) = (vi∂iTk) · dxk − Tk · (Γ k

ijv
i dxj).

This implies the final result

DvT = (vi∂iTk − viΓ s
ikTs) · dxk = vi∇iTk · dxk

which coincides with (8.118). In addition , we get

DT = ∇iTk dx
i ⊗ dxk.

This is a tensor field of type (0,2).
(iii) Consider the tensor field T := Tkldx

k ⊗ dxl of type (0, 2). By the Leibniz
rule,

D(dxk ⊗ dxl) = D(dxk) ⊗ dxl + dxk ⊗D(dxl).

Hence

DvT = dvTkl · dxk ⊗ dxl + Tkl ·Dv(dxk) ⊗ dxl + Tkl · dxk ⊗Dv(dxl).
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Noting that dv(Tkl) = vi∂iTkl. Hence

DvT = vi∂iTkl · dxk ⊗ dxl − TklviΓ k
isdx

s ⊗ dxl − TklviΓ l
isdx

k ⊗ dxs.

This implies

Dv(Tkl) = (vi∂iTkl − viΓ s
ikTsl − viΓ s

ilTks) · dxk ⊗ dxl.

Hence Dv(Tkl) = vi∇iTkldx
k ⊗ dxl. In addition, we obtain the tensor field of type

(1, 2),

DT = ∇iTkl dx
i ⊗ dxk ⊗ dxl.

The existence theorem for affine connections. From the mathematical
point of view, the following theorem tells us that there exist infinitely many pos-
sibilities to introduce an affine connection family, and hence to get a covariant
derivative for tensorial families. In physics, the problem is to find specific covariant
derivatives which describe the forces acting in the universe (e.g., the gravitational
force in Einstein’s theory of general relativity). We are given an admissible sys-
tem O of observers. Suppose that a fixed observer O chooses a family of smooth
functions Γ k

ij : ΩO → R, i, j, k = 1, . . . , n.

Theorem 8.22 The given family Γ k
ij can be uniquely extended to a connection

family of O.

Proof. Motivated by (8.104), for the observers O′ and O′′ we define

• Γ k′
i′j′(x

′) :=
`

Gi
i′G

j
j′G

k′
k · Γ k

ij −Gi
i′G

j
j′∂iG

k′
j

´

(x), and

• Γ k′′
i′′j′′(x

′′) :=
`

Gi
i′′G

j
j′′G

k′′
k · Γ k

ij −Gi
i′′G

j
j′′∂iG

k′′
j

´

(x),

respectively. Here, x′ = x′(x) and x′′ = x′′(x). We have to show that the passage
from the observer O′ to the observer O′′ is given by the following transformation
law:

Γ k′′
i′′j′′(x

′′) =
`

Gi′
i′′G

j′

j′′G
k′′
k′ · Γ k′

i′j′ −Gi′
i′′G

j′

j′′∂i′G
k′′
j′
´

(x′) (8.122)

where x′′ = x′′(x′). This can be obtained by an explicit computation based on the
chain rule for second-order partial derivatives.

In order to get insight, let us use the language of matrices. Set Ai := (Γ k
ij). By

(8.107), for the observers O′ and O′′ we define

• Ai′(x
′) := Gi

i′(x
′)(GAiG

−1 − ∂iG ·G−1)(x), and
• Ai′′(x

′′) = J ii′′(x)(JAiJ
−1 − ∂iJ · J−1)(x),

respectively. The change of observers

O
G

=⇒ O′ H
=⇒ O′′

corresponds to the product J = HG of the linearized maps. We have to show that
the passage from the observer O′ to the observer O′′ corresponds to the transfor-
mation law

Ai′′(x
′′) = Gi′

i′′(x
′)(HAi′H

−1 − ∂i′H ·H−1)(x′).

In fact, this follows from

(HG)−1 = G−1H−1, ∂i(HG) = ∂iH ·G+H · ∂iG

together with Gi
i′G

i′
i′′ = Gi

i′′ , and ∂i′ = ∂

∂xi′ = ∂xi

∂xi′ ∂i. �
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8.9 The Riemann–Weyl Curvature Tensor

It was Riemann, who probably more than anyone else, enriched mathe-
matics with new ideas. These ideas display an unusual degree of vitality
and impulse to the whole of mathematics as well as to many branches of
physics.35

Krzysztof Maurin, 1997

From the analytic point of view, the Riemann–Weyl curvature tensorial
family Rl

ijk relies on the relation

∇i∇jv
l −∇j∇iv

l = Rl
ijkv

k (8.123)

in the torsion-free case. Here, the crucial point is that the left-hand side
∇i∇jv

l −∇j∇iv
l contains first-order and second-order partial derivatives

of the velocity vector field vl, whereas the right-hand side Rl
ijkv

k is linear

in vk. There appear magic cancellations. In general, in mathematics or
physics, nontrivial cancellations always indicate that there is a nice struc-
ture behind the clumsy formulas. In the renormalization of quantum fields,
for example, physicists observe incredible cancellations which result from
hidden or visible quantum symmetries (e.g., Ward identities).

Folklore

Summary. Using the invariant language of operator theory, the two key relations
of modern differential geometry read elegantly as follows:

(i) Lie bracket and Riemann curvature:

DuDvw −DvDuw = D[u,v]w + R(u,v,w). (8.124)

(ii) Lie bracket and torsion:

Duv −Dvu = [u,v] + T(u,v). (8.125)

The main idea is to study the velocity vector fields u,v,w on an infinitesimal level
(up to second order) by using directional derivatives. More precisely, the crucial
symbol

Dvw(P )

denotes the covariant directional derivative of the velocity vector field w = wi∂i
at the point P in direction of the velocity vector v = vi∂i at the point P. In the
special case of the Euclidean manifold E

3 with the metric tensorial family gij := δij ,
i, j = 1, 2, 3, we have

Dvw =

3
X

i=1

vi∂iw,

as well as R ≡ 0 and T ≡ 0 (i.e., curvature R and torsion T vanish identically).
Consequently, according to (8.124) and (8.125), curvature and torsion measure the
deviation from the situation on the Euclidean manifold E

3. Note that (8.124) gen-
eralizes the formula (8.123) which can be found in the classic 1915/1916 Einstein
papers on general relativity based on the Ricci calculus created by Ricci-Curbastro

35 K. Maurin, The Riemann Legacy, Kluwer, Dordrecht, 1997.
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(1853–1925) in the 1880s. In Einstein’s theory of special relativity, one uses the
metric tensorial family

gαβ ≡ ηαβ , α, β = 0, 1, 2, 3

on the 4-dimensional Minkowski manifold M
4.36 In the theory of special relativity,

curvature and torsion vanish identically. In contrast to this, in Einsteins theory
of general relativity, the Riemann curvature tensorial family Rl

ijk describes the
gravitational field which, as a rule, does not vanish (but torsion vanishes identically).
In order to describe mathematically the Standard Model in elementary particle
physics, one has to modify the curvature formula (8.124) in the following way:

DuDvψ −DvDuψ = D[u,v]ψ + F(u,v)ψ. (8.126)

That is, we replace the velocity vector field w by a general physical field ψ (e.g.,
the field of a relativistic electron in quantum electrodynamics). The symbol

Dvψ(P )

denotes the covariant directional derivative of the physical field ψ at the point P
in direction of the velocity vector v = vi∂i at the point P . For fixed velocity vector
fields u and v, the operator

ψ �→ F (u,v)ψ

is called the Riemann curvature operator F(u,v). From the physical point of view,
as we will show later on, the map ψ �→ F (u,v)ψ describes the parallel transport of
the physical field ψ along a small triangle spanned by the vectors u and v (see Prop.
13.9 on 827). This is a possibility for measuring forces in nature. The geometric idea
of parallel transport lurks behind the following fundamental principle in modern
physics:

force = curvature.

Internal symmetries of physical fields can be described by gauge transformations.
As we will show later on, the symmetry of the physical field ψ is included into
the definition of the covariant derivative Dvψ. In modern differential geometry, the
directional derivative Dvψ of ψ is the basic notion.

8.9.1 Second-Order Covariant Partial Derivatives

The two key formulas for temperature fields and velocity vector fields.
These formulas read as

∇i(∇jΘ) −∇j(∇iΘ) = −T s
ij∇sΘ, (8.127)

and

∇i(∇jv
l) −∇j(∇iv

l) = Rl
ijkv

k − T s
ij∇sv

l. (8.128)

Here, we use:

(i) The tensorial family of the torsion:

T k
ij := Γ k

ij − Γ k
ji. (8.129)

36 η00 := 1, η11 = η22 = η33 := −1, ηαβ := 0 if α �= β.
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(ii) The tensorial family of the Riemann curvature:

Rl
ijk := ∂iΓ

l
jk − ∂jΓ l

ik + Γ l
isΓ

s
jk − Γ l

jsΓ
s
ik. (8.130)

Proof. Ad (8.127). Note that ∇iΘ = ∂iΘ. Hence

∇i(∇jΘ) = ∂i(∂jΘ) − Γ s
ij∂sΘ.

Since ∂i∂jΘ = ∂j∂iΘ, we get

∇i(∇jΘ) −∇j(∇iΘ) = −(Γ s
ij − Γ s

ji)∂sΘ.

This is (8.127). In addition, we have shown on page 499 that T k
ij is a tensorial

family.
Ad (8.128). Recall that ∇jv

l = ∂jv
l+Γ l

jkv
k. Setting T l

j := ∇jv
l, it follows from

∇iT
l
j = ∂iT

l
j + Γ l

isT
s
j − Γ s

ijT
l
s

that

∇i(∇jv
l) = ∂i∂jv

l + ∂iΓ
l
jk · vk + Γ l

jk · ∂ivk

+Γ l
is(∂jv

s + Γ s
jkv

k) − Γ s
ij(∂sv

l + Γ l
skv

k).

Interchanging the indices i and j, we get

∇j(∇iv
l) = ∂j∂iv

l + ∂jΓ
l
ik · vk + Γ l

ik · ∂jvk

+Γ l
js(∂iv

s + Γ s
ikv

k) − Γ s
ji(∂sv

l + Γ l
skv

k).

Computing ∇i(∇jv
l)−∇j(∇iv

l) and noting cancellations, we get the claim (8.128).
It remains to show that Rl

ijk is a tensorial family. In fact, it follows from (8.128)
that

Rl
ijkv

k = ∇i(∇jv
l) −∇j(∇iv

l) + T s
ij∇sv

l.

Since the right-hand side is the sum of tensorial families, Rl
ijkv

k is a tensorial family

for all tensorial families vl. By the inverse index principle, Rl
ijk is also a tensorial

family. �

In the special case where n = 4, the Riemann curvature tensorial family Rk
ijl

has 44 = 256 components. Because of the antisymmetry relation (8.131) below, this
reduces to 6 · 42 = 96 components. Using a Riemannian (or pseudo-Riemannian)
metric, there appear additional symmetry properties such that we have 20 essen-
tial components in Einstein’s theory of general relativity (see Sect. 8.10.1). In the
special case where n = 2, there exists only one essential component of the Rie-
mann curvature tensor which is closely related to the Gaussian curvature K of a
2-dimensional submanifold of the Euclidean manifold E

3 (see Sect. 8.10.1).
The crucial antisymmetry relations. For all the indices i, j, k, l = 1, . . . , n,

the following hold:

(i) The Riemann-Weyl antisymmetry relation:

Rl
ijk = −Rl

jik. (8.131)

(ii) The Ricci–Weyl antisymmetry relations: Setting U l
ijk := −T s

ikT
l
sj , we get

Rl
[ijk] = ∇[iT

l
jk] + U l

[ijk]. (8.132)
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(iii) The Bianchi–Weyl antisymmetry relations: Setting V l
hijk := −T s

hiR
l
sjk, we get

∇[hR
l
ij]k = V l

[hij]k. (8.133)

In the special case where the affine connection is torsion-free, we have T k
ij ≡ 0,

by definition. Hence U l
ijk ≡ 0 and V l

hijk ≡ 0.37 The proofs of (i)–(iii) can be given

by explicit computation based on the definitions of Rl
ijk and T k

ij . We refer to P.
Dirac, General Theory of Relativity, Princeton University Press, 1996, p. 23.

Historically, the modern development of differential geometry can be un-
derstood best by the desire of mathematicians to simplify the formalism in
order to get insight.

This will be discussed in Sect. 8.14 on page 529.

8.9.2 Local Flatness

Trivial affine connection – global flatness. The affine connection is called
trivial iff there exists an observer O such that all the corresponding Christoffel
symbols vanish identically, that is,

Γ k
ij ≡ 0 on ΩO

for all indices i, j, k. The prototype of a trivial affine connection is the classical
connection on the Euclidean manifold E

3 (Euclidean connection). Using a Cartesian
coordinate system, the Christoffel symbols vanish identically. However, with respect
to curvilinear coordinates (e.g., cylindrical or spherical coordinates), the Christoffel
symbols do not vanish identically, as a rule (see Sect. 9.2).

Proposition 8.23 If the affine connection is trivial, then both the Riemann–Weyl
curvature tensorial family and the torsion family vanish identically for all the ob-
servers.

Proof. Let Γ k
il ≡ 0 with respect to the fixed observer O. Hence Rl

ijk ≡ 0 with

respect to O. Similarly, T k
ij = Γ k

ij − Γ k
ji ≡ 0. Since Rl

ijk is a tensorial family, the
observer O′ gets

Rl′
i′j′k′ = Gi

i′G
j
j′G

k
k′Gl′

l R
l
ijk ≡ 0.

Analogously, T k′
i′j′ = Gk′

k G
i
i′G

j
j′T

k
ij ≡ 0. This finishes the proof. The same argument

shows the following:

If a tensorial family vanishes identically with respect to a fixed observer,
then it vanishes identically for all observers.

This simple fact is responsible for the importance of tensorial families in mathe-
matics and physics. For example, in Einstein’s theory of general relativity, a trivial
affine connection on the 4-dimensional space-time manifold corresponds to a flat
universe without any gravitational forces.

Local flatness. Let us now reverse Prop. 8.23. This is possible in local terms.

37 As we will show later on, Einstein’s theory of general relativity is based on a
torsion-free affine connection, namely, the canonical Levi-Civita metric connec-
tion of a pseudo-Riemannian manifold.
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Theorem 8.24 Consider an affine connection. We are given the point P . Suppose
that

Rl
ijk ≡ 0 and T k

ij ≡ 0

on a sufficient small neighborhood of the point P , for all indices. Then there exists
a local diffeomorphism at the point P such that

Γ k′
i′j′ ≡ 0

for all indices. That is, the transformed Christoffel symbols vanish identically on a
sufficiently small neighborhood of the point P . We say that the affine connection is
trivial (or flat) near the point P .

In other words, the Riemann–Weyl curvature tensorial family and the torsion
family measure the deviation from the locally trivial situation. For the proof, we
refer to E. Zeidler, Nonlinear Functional Analysis and Its Applications, Vol. IV,
page 653 and page 684, Springer, New York, 1995. The study of local flatness dates
back to Riemann. Several approaches to the fundamental flatness problem can be
found in M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol.
II, Publish or Perish, Boston, 1979.

8.9.3 The Method of Differential Forms (Cartan’s Structural
Equations)

An important contribution to the development of modern differential geometry was

made by Élie Cartan (1869–1951) in the 1920s. Let us discuss this next.
In mathematics and physics, antisymmetric expressions are frequently used in

order to construct invariants. The antisymmetry helps us to cancel nasty terms
which are generated by the transformation law. Important examples are:

• Leibniz’s determinants and the volume in Euclidean geometry,
• the Euler characteristic in topology,
• the Riemann curvature tensor,
• Poincaré’s cohomology rule (de Rham cohomology), and Hodge’s homology rule

(Hodge homology) in Cartan’s exterior differential calculus,
• characteristic classes in the topology of fiber bundles.

In physics,

• the electromagnetic field tensor is antisymmetric,
• the ‘gauge field tensor’ for the 12 interacting particles (gluons in strong interac-

tion, the photon, and W+,W−, Z in weak interaction) in the Standard model of
elementary particle physics is antisymmetric, and

• the antisymmetry properties of the Riemann curvature tensor describe antisym-
metry properties of the gravitational field in Einstein’s theory of general relativ-
ity.

In this connection, Grassmann’s wedge product ∧ plays a crucial rule. For example,

Élie Cartan’s exterior differential calculus is based on Grassmann’s wedge product.

It was the ingenious geometer Élie Cartan who showed that the monstrous index
formulas in classical Riemannian geometry can be elegantly formulated in terms of
differential forms by employing the antisymmetry properties of both the Riemann
curvature tensorial family and the torsion tensorial family. Let k, l = 1, . . . , n.
Cartan introduced the following differential forms:

• ωl
k := Γ l

ik dx
i (connection forms),
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• Ωl
k := 1

2
Rl

ijk dx
i ∧ dxj (curvature forms),

• τ l := 1
2
T l
ij dx

i ∧ dxj (torsion forms).

This is motivated by Rl
ijk = −Rl

jik and T l
ij = −T l

ji. The key relations (8.129) and

(8.130) are equivalent to the so-called Cartan structural equations:38

τ l = ωl
k ∧ dxk,

Ωl
k = dωl

k + ωl
s ∧ ωs

k, k, l = 1, . . . , n. (8.134)

Applying the Cartan differential and using the Poincaré cohomology rule ddω = 0
together with the graded Leibniz rule, we get the integrability conditions:

dτ l = Ωl
s ∧ dxs − ωl

s ∧ τs,
dΩl

k = Ωl
s ∧ ωs

k − ωl
s ∧Ωs

k. (8.135)

Proof of (8.135). (I) Noting that d(dxk) = 0, the first equation from (8.134)
implies

dτ l = dωl
k ∧ dxk + ωl

k ∧ d(dxk) = dωl
k ∧ dxk.

By the second equation from (8.134),

dωl
k = Ωl

k − ωl
s ∧ ωs

k. (8.136)

Using τ l = ωl
k ∧ dxk, we get the first equation from (8.135).

(II) Similarly, the second equation from (8.134) yields

dΩl
k = dωl

s ∧ ωs
k − ωl

s ∧ dωs
k.

Using (8.136), we get the claim (8.135).
�

The reader should note that the preceding proof is based on cancellations via
antisymmetry.

Cartan’s calculus of differential forms allows us to perform the cancella-
tions in an extremely elegant manner.

An explicit computation shows that the first (resp. second) equation of (8.135)
implies the Ricci–Weyl antisymmetry relations (8.132) (resp. the Bianchi–Weyl an-
tisymmetry relations (8.133)).

The elegant language of matrices. Introducing the matrices

• Ai := (Γ l
ik) (connection matrices), and

• Fij := (Rl
ijk) (curvature matrices),

the key relation (8.130), Rl
ijk = ∂iΓ

l
jk − ∂jΓ l

ik + Γ l
isΓ

s
jk − Γ l

jsΓ
s
ik, can be elegantly

written as

Fij = ∂iAj − ∂jAi + AiAj −AjAi, i, j = 1, . . . , n.

Using the Lie bracket [Ai,Aj ]− := AiAj −AjAi, this is equivalent to

Fij = ∂iAj − ∂jAi + [Ai,Aj ]−, i, j = 1, . . . , n. (8.137)

38 For example, ωl
k∧dxk = Γ l

ik dx
i∧dxk = 1

2
(Γ l

ik−Γ l
ki) dx

i∧dxk = 1
2
T l
ik dx

i∧dxk.
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This way, we discover the Lie structure behind the Riemann curvature tensorial
family.39 Explicitly,

Ai :=

0

B

B

@

Γ 1
i1 Γ

1
i2 . . . Γ

1
in

...
... . . .

...

Γn
i1 Γ

n
i2 . . . Γ

n
in

1

C

C

A

, Fij :=

0

B

B

@

R1
ij1 R

1
ij2 . . . R

1
ijn

...
... . . .

...

Rn
ij1 R

n
ij2 . . . R

n
ijn

1

C

C

A

.

Matrices with differential forms as entries. Set

• A := Ai dx
i (local connection form),

• F := 1
2
Fij dx

i ∧ dxj (curvature form),
• τ (local torsion form).

This is motivated by Fij = −Fji. We get F = (Ωl
k) and A = (ωl

k). Explicitly,

A :=

0

B

B

@

ω1
1 . . . ω

1
n

...
... . . .

...

ωn
1 . . . ω

n
n

1

C

C

A

, F :=

0

B

B

@

Ω1
1 . . . Ω

1
n

... . . .
...

Ωn
1 . . . Ω

n
n

1

C

C

A

τ :=

0

B

B

@

τ1

...

τn

1

C

C

A

, dx :=

0

B

B

@

dx1

...

dxn

1

C

C

A

.

Using the wedge product of matrices with differential forms as entries, the systems
(8.134), (8.135) can be elegantly written in the following way:

(i) Cartan’s local structural equations:

τ = A ∧ dx,
F = dA + A ∧A. (8.138)

(ii) The Bianchi integrability conditions:

dτ = F ∧ dx−A ∧ τ,
dF = F ∧A−A ∧ F . (8.139)

Lack of invariance. Note the following. The approach considered in this sec-
tion depends on the choice of the natural basis ∂i and dxi, since Γ k

ij and Rl
ijk

depend on the choice of this natural basis. However, due to Cartan it is possible
to extend this to an invariant formulation. This global setting will be discussed in
Chap. 17. Alternatively, there exists a different invariant approach in the spirit of
functional analysis (i.e., operator theory):

This approach will be based on the covariant derivative Dvw of a velocity
vector field w with respect to another velocity vector field v. We will study
the properties of the operator Dv in terms of the Lie bracket and the Jacobi
identity.

In the next section, we will show that this operator-theoretic setting does not de-
pend on the choice of the observer.

39 Mnemonically, one should use formula (8.137) in order to recall the definition
(8.130) of the Riemann–Weyl curvature tensor.
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8.9.4 The Operator Method

The most important derivative of a physical field is the covariant direc-
tional derivative which measures the small change of a physical field in
direction of a velocity vector. The covariant directional derivative only
depends on the physical interaction, but not on the choice of the observer.

Curvature is closely related to the Lie structure of the covariant directional
differential operators.

Folklore

In this section, as a prototype, we consider the special case where the physical fields
are velocity vector fields. The prototype of velocity vector fields are the velocity
vector fields of fluids (see Chap. 10). The main topic of this volume is to modify
the following approach in such a way that it applies to general physical fields.

The covariant directional derivative. We are given an admissible system
O of observers. Let u = ui∂i, v = vi∂i and w = wi∂i where ui, vi, and wi be
tensorial families. For the observer O, we define

Dvw(P ) := vi(x)∇iw
k(x) · ∂k, x ∈ ΩO

where x is the local coordinate of the point P . This yields the linear operator

Dv : Diff1(ΩO) → Diff1(ΩO).

It is crucial that

The definition of Dvw does not depend on the choice of the observer.

In fact, the observer O′ measures the linear operator

Dv : Diff1(ΩO′) → Diff1(ΩO′)

with (Dvw)(P ) := vi
′
(x′)∇i′v

k′
(x′) · ∂k′ . Moreover, by the index principle we have

vi(x)∇iv
k(x) · ∂k = vi

′
(x′)∇i′v

k′
(x′) · ∂k′ , x′ = x′(x).

Thus, the observer O and the observer O′ compute the same value (Dvw)(P ) which
is called the directional derivative of the velocity vector field w at the point P in
direction of the velocity vector v(P ).

The key formulas. The following three elegant formulas lie at the heart of
modern differential geometry.

(i) Curvature (force):

F(u,v)w = DuDvw −DvDuw −D[u,v]w. (8.140)

Therefore, the Lie bracket of the covariant directional derivatives satisfies the
relation

[Du, Dv]− = F (u,v) +D[u,v]. (8.141)

(ii) Jacobi identity:

[Du, [Dv, Dw]−]− + [Dv, [Dw, Du]−]− + [Dw, [Du, Dv]−]− = 0. (8.142)

(iii) Torsion: T(u,v) = Duv −Dvu −D[u,v].
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Here, we use the following expressions:

• F(u,v)w = R(u,v,w) := Rl
ijku

ivjwk · ∂l,
• T(u,v) := T l

iju
ivj · ∂l.

Proof. Ad (i). Setting W l := ∂iw
l + Γ l

isw
s, we get

• Dvw = vi(∂iw
l + Γ l

isw
s) ∂l =W l∂l,

• Du(Dvw) = ui(∂iW
l + Γ l

isW
s) ∂l,

• D[u,v]w = (ur∂rv
i − vr∂rui)(∂iwl + Γ l

isw
s) ∂l.

An explicit computation based on the classical Leibniz rule together with (8.130)
on page 505 yields (i).

Ad (ii). The Jacobi identity is valid for arbitrary linear operators.
Ad (iii). Argue as in the proof to (i), and use T l

ij = Γ l
ij − Γ l

ji. �

For fixed velocity vectors u and v, the linear operator

F(u,v) : Diff1(ΩO) → Diff1(ΩO)

is called the Riemann curvature operator with respect to u and v.40 Moreover, we
have

T(u,v) ∈ Diff1(ΩO).

Here, the velocity vector field T(u,v) is called the torsion velocity vector field with
respect to u and v.

The Bianchi identity. We want to show that the Jacobi identity implies the
Bianchi identity. For fixed velocity vectors u,v,w, we define the linear operator

DuF(v,w) : Diff1(ΩO) → Diff1(ΩO)

by setting
`

DuF(v,w)
´

z := Du(F(v,w)z) − F(v,w)(Duz). In other words,

DuF(v,w) = [Du,F(v,w)]−.

Proposition 8.25 There holds the Bianchi identity

DuF(v,w) + DvF(w,u) + DwF(u,v) = G(u,v,w) (8.143)

where G(u,v,w) := −[Du, D[v,w]]− − [Dv, D[w,u]]− − [Dw, D[u,v]]−.

In particular, we have G(u,v,w) = 0, if the Lie brackets vanish identically,
that is, [u,v] = [v,w] = [w,u] = 0 (e.g., u = ∂i,v = ∂j ,w = ∂k).
Proof. Use the Lie bracket (8.141) together with the Jacobi identity (8.142). �

8.10 The Riemann–Christoffel Curvature Tensor

If a metric tensorial family gij is available, then it is possible to construct
uniquely a connection which generalizes the classic Gauss surface theory.
The symmetry properties of gij imply additional symmetry properties of
the Riemann curvature tensorial family.

Folklore

In this section we assume that there is given an admissible system O of references.

40 The definition of the space Diff1(ΩO) of linear differential operators can be found
on page 448.
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8.10.1 The Levi-Civita Metric Connection

Inner product and inner pseudo-product for velocity vectors. Suppose that
we are given a metric tensorial family gij of Riemannian or pseudo-Riemannian
type. The tensor field

g := gij dx
i ⊗ dxj

is called the metric tensor field. For all velocity vectors u = ui∂i and v = vi∂i, we
set

〈u|v〉 := g(u,v).

Explicitly,
〈u|v〉 = uigijv

j .

If gij is of Riemannian type, then the following hold for all points x ∈ ΩO:

• 〈u(x)|u(x)〉 ≥ 0 for all u (positivity), and
• 〈u(x)|u(x)〉 = 0 iff u(x) = 0 (definiteness).

In other words, 〈u(x)|v(x)〉 is an inner product.
If gij is of pseudo-Riemannian type, then 〈u|v〉 is called a pseudo-inner product.

This means that the following hold for all points x ∈ ΩO :

• The real map (u(x),v(x)) �→ 〈u(x)|v(x)〉 is bilinear and symmetric,
• there exist vectors u(x) and v(x) with 〈u(x)|u(x)〉 > 0 and 〈v(x)|v(x)〉 < 0

(indefiniteness), and
• if 〈u(x)|v(x)〉 = 0 for all v(x), then u(x) = 0 (nondegeneracy).

The affine connection family Γ k
ij is called compatible with the metric tensorial

family gij iff

Dg ≡ 0. (8.144)

It follows from Dg = ∇igjkdx
i⊗dxj⊗dxk that the compatibility condition (8.144)

is equivalent to

∇igjk ≡ 0, i, j = 1, . . . , n. (8.145)

The existence-and uniqueness theorem. The following connection is fre-
quently used (e.g., in Einstein’s theory of general relativity).

Theorem 8.26 There exists precisely one torsion-free connection family Γ k
ij which

is compatible with the given metric tensorial family gij. Explicitly,

Γ k
ij = 1

2
(∂igjs + ∂jgis − ∂sgij)gsk. (8.146)

This connection is called the Levi-Civita connection.41

41 T. Levi-Civita and G. Ricci, The absolute differential calculus and its applica-
tions, Math. Ann. 54 (1901), 125–201 (in French).
T. Levi-Civita, The notion of parallel transport in manifolds and its geometric
consequences for the Riemann curvature, Rend. Palermo 42 (1917), 73–205 (in
Italian).
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Proof. (I) Necessary condition: Suppose that Γ k
ij is torsion-free and compatible

with gij . This means that

Γ k
ij = Γ k

ji, and ∇igjk = ∂igjk − Γ s
ijgsk − Γ s

ikgjs = 0. (8.147)

Lowering the index, we get Γijk := Γ r
ijgrk. Hence

∂igjk = Γijk + Γkij .

Note that Γijk = Γjik. Using cyclic permutation, we obtain

∂igjk + ∂jgki − ∂kgij = 2Γijk.

Lifting the index k, we get (8.146).
(II) Sufficient condition: Conversely, an explicit computation shows that the

tensorial transformation law

gi′j′ =
∂xi

∂xi′
∂xj

∂xj′
· gij

implies that Γ k
ij transforms like a connection family (see (8.105) on page 495). �

The Ricci lemma. The covariant partial derivative ∇i with respect to the
Levi-Civita connection generated by gjk satisfies the two conditions

∇igjk ≡ 0 and ∇ig
jk ≡ 0 on ΩO, i, j, k = 1, . . . , n (8.148)

for all observers O.
Proof. Use (8.145), and note that the relation gklg

lr = δrk together with the Leibniz
rule implies

0 = ∇iδ
r
k = (∇igkl) g

lr + gkl(∇ig
lr) = gkl∇ig

lr.

Hence ∇ig
sr = δsl∇ig

lr = gskgkl∇ig
lr = 0. �

Lifting and lowering of indices. For given Levi-Civita connection, the co-
variant partial derivative ∇i can be interchanged with the lifting or lowering of
indices. For example, we have

∇i(g
jsTs) = gjs∇iTs. (8.149)

This is a consequence of the Ricci lemma. In fact, the Leibniz rule combined with
(8.148) yields

∇i(g
jsTs) = (∇ig

js)Ts + gjs(∇iTs) = gjs∇iTs.

Similarly, we get

∇i(gjsT
s) = gjs∇iT

s. (8.150)

8.10.2 Levi-Civita’s Parallel Transport

The Levi-Civita parallel transport of velocity vectors along the same curve
respects the inner product (or the pseudo-inner product).

Folklore
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Let Γ k
ij be an affine connection family. By definition, the tensor field

T = T i1...ir
j1...js

dxj1 ⊗ · · · ⊗ dxjs ⊗ ∂i1 ⊗ · · · ⊗ ∂ir

is parallel with respect to the given affine connection Γ k
ij iff

DT ≡ 0. (8.151)

This is equivalent to

∇iT
i1...ir
j1...js

≡ 0 on ΩO, i = 1, . . . n (8.152)

for all indices i1, . . . , ir, j1, . . . , js = 1, . . . , n. This definition does not depend on
the choice of the observer O. In the Euclidean setting, all the functions Γ k

ij vanish
identically; in this special case, condition (8.152) means that

∂iT
i1...ir
j1...js

≡ 0 on ΩO, i = 1, . . . n.

Since the set ΩO is assumed to be arcwise connected, all of the functions T i1...ir
j1...js

are constant on the domain ΩO.
Let C : xi = xi(t), t ∈] − t0, t0[, i = 1, . . . , n, be a smooth curve. The tensor

field T is parallel along the curve C iff

ẋi(t)∇iT
i1...ir
j1...js

= 0, t ∈] − t0, t0[
for all indices i1, . . . , ir, j1, . . . , js = 1, . . . , n. We briefly write

DT (x(t))

dt
= 0, t ∈] − t0, t0[.

In the Euclidean setting, this means that all of the functions T i1...ir
j1...js

are constant
along the curve C.

Proposition 8.27 Concerning the Levi-Civita connection, the parallel transport of
two velocity vector fields along the same curve preserves the inner product (or the
pseudo-inner product).

Proof. Let ui and vi be tensorial families. The equations

ẋs(t)∇su
i
|x(t) = 0 and ẋs(t)∇sv

i
|x(t) = 0, t ∈] − t0, t0[ (8.153)

tell us that the tensorial families ui and vi are parallel along the curve C. Hence

d

dt
〈u(x(t))|v(x(t))〉 = 0, t ∈] − t0, t0[.

In fact, we have
d

dt

`

uigijv
j´

|x(t)
= ẋs(t)∇s

`

uigijv
j´

|x(t)
.

This is equal to zero by the covariant Leibniz rule,

∇s(u
igijv

j) = ∇su
i · gijvj + ui∇sgij · vj + uigij∇sv

j ,

and by noting (8.153) together with the Ricci lemma, ∇sgij = 0. �

The intuitive meaning of the parallel transport will be discussed in Sect. 13.4
(parallel transport of the local phase of a physical field) and in Sect. 9.5 (parallel
transport of velocity vectors on the surface of earth).

In physics, parallel transport corresponds to the transport of physical in-
formation.
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8.10.3 Symmetry Properties of the Riemann–Christoffel
Curvature Tensor

The Riemann curvature operator w �→ F(u,v)w sends velocity vectors to velocity
vectors. Using the inner (or pseudo-inner) product 〈.|.〉, it is quite natural to define

R(u,v,w, z) := 〈F (u,v)w|z〉.

Here, R(u,v,w, z) is a real number. The 4-linear map (u,v,w, z) �→ R(u,v,w, z)
is called the Riemann–Christoffel tensor field corresponding to the metric tensor
field g. Explicitly,

R(u,v,w, z) := Rijklu
ivjwkzl.

It follows from

R(u,v,w, z) := 〈F (u,v)w|z〉 = Rs
ijkgslu

ivjwkzl

that

Rijkl = Rs
ijkgsl.

Here, Rijkl is called the Riemann–Christoffel curvature tensorial family correspond-
ing to the metric tensorial family gij . For all velocity vector fields u,v,w, and z,
we have the following relations:

• F(u,v)w + F(v,u)w + F(w,v)u = 0,
• F(u,v)w = −F(v,u)w, and hence R(u,v,w, z) = −R(v,u,w, z),
• R(u,v,w, z) = −R(u,v, z,w),
• R(u,v,w, z) = R(w, z,u,v).

In terms of components, for all the indices i, j, k, l, s = 1, . . . , n, this implies the
following:

(i) R[ijk]l = 0 (Ricci identity),
(ii) Rijkl = −Rjikl (first antisymmetry relation),
(iii) Rijkl = −Rijlk (second antisymmetry relation),
(iv) Rijkl = Rklij (symmetry relation),
(v) ∇[hRij]kl =0 (Bianchi identity).

The Bianchi identity (v) is equivalent to

∂[hRij]kl = 0. (8.154)

In addition, we have

Rijkl = 1
2
(∂i∂kgjl + ∂j∂lgik − ∂i∂lgjk − ∂j∂kgil). (8.155)

This formula is frequently used for computing the Riemann curvature tensorial
family Rijkl in terms of second-order partial derivatives of the metric tensorial
family gij .

The proofs can be carried out by straightforward, but somewhat lengthy compu-
tations based on the corresponding definitions. More elegant proofs can be obtained
by introducing special local coordinates called normal coordinates at the point P0.
These coordinates have the crucial property that

∂hgij(P0) = 0, h, i, j = 1, . . . n,
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and hence Γ k
ij(P0) = 0 for all i, j, k = 1, . . . , n. This simplifies substantially the

computations. See J. Jost, Riemannian Geometry and Geometric Analysis, Sect.
3.3, Springer, Berlin, 2008. If vl and vk are tensorial families, then we have the
formulas

∇i∇jv
l −∇j∇iv

l = Rl
ijkv

k,

and
∇i∇jvk −∇j∇ivk = −Rs

ijkvs.

8.10.4 The Ricci Curvature Tensor and the Einstein Tensor

Our goal is to use the Riemann–Christoffel tensorial family Rijkl in order to con-
struct invariants which simplify the investigation of Rijkl. The key formula reads
as

R = Ri
iklg

kl.

By the index principle, this is an invariant which is called the scalar curvature. Let
us discuss the relation of the scalar curvature to the Ricci curvature. To this end,
we set

• Ric(u, z) := gjkR(u, ∂j , ∂k, z) (Ricci curvature tensor Ric),
• Ril := Ric(∂i, ∂l) (Ricci curvature tensorial family),
• R = gilRic(∂i, ∂l) (Ricci scalar curvature).

Therefore, the Ricci curvature tensor is obtained by averaging the Riemann–
Christoffel curvature tensor. In turn, the scalar curvature R is obtained by averaging
the Ricci curvature tensor. It follows from R(u,v,w, z) := Rijklu

ivjwkzl that

Ric(u, z) = Rilu
izl

with Ril = Rijklg
jk and

R = gilRil.

We have the symmetry property

Ric(u, z) = Ric(z,u)

for all velocity vector fields u and z. The tensor field

G := Ric − 1
2
Rg

is called the Einstein tensor field which plays a fundamental role in Einstein’s theory
of general relativity. Explicitly,

Gij := Rij − 1
2
R gij .

For Riemannian metric tensorial families gij , Riemann defined

KP (u,v) :=
R(u,v,v,u)

〈u|u〉〈v|v〉 − 〈u|v〉2 .

This is called the sectional curvature at the point P with respect to the plane
spanned by the vectors u and v.

The special two-dimensional case due to Gauss. If n = 2, then the
sectional curvature KP (u,v) does not depend on the choice of the vectors u and
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v. Then KP coincides with the Gaussian curvature at the point P . Gauss’ famous
theorema egregium tells us that

KP =
RP

2
=

R1221(P )

det(gij(P ))
.

This means that the Gaussian curvature KP can be expressed by the metric ten-
sorial family gij together with its first-order and second-order partial derivatives.
In particular, this means that we can compute the Gaussian curvature of the earth
at every point by measuring the distances on earth; it is not necessary to use mea-
surements about the surrounding 3-dimensional space. The point is that because
of the symmetry properties of the Riemann–Christoffel tensor Rijkl, there is only
one essential component, namely, R1221 if n = 2. Explicitly,

• R1221 = −R2121 = −R1212 = R2112,
• Rij11 = Rij22 = R11ij = R22ij = 0, i, j = 1, 2.

Historically, in 1827 Gauss studied the 2-dimensional case (i.e., classical surface
theory). In 1854 Riemann generalized this to higher dimensions (Riemannian man-
ifolds).

8.10.5 The Conformal Weyl Curvature Tensor

In the two-dimensional and three-dimensional case, the Ricci curvature tensorial
family Rij completely determines the Riemann–Christoffel curvature family Rijkl.
Explicitly,

• Rij = Rgij = 2Kgij , R1221 = 1
2
R(g11g22 − (g12)

2) if n = 2,

• Rijkl = Rilgjk +Rjkgil −Rikgjl −Rjlgik + 1
2
R(gikgjl − gilgjk) if n = 3.

Let n = 4, 5, . . . Then the situation changes, as we will show below. To begin
with, note that the Riemann–Christoffel curvature tensorial family Rijkl allows the
following splitting

Rijkl = R∗
ijkl +Wijkl, i, j, k, l = 1, . . . , n

where R∗
ijkl is defined by

1

n− 2

`

Rilgjk +Rjkgil −Rikgjl −Rjlgik
´

+
R

(n− 1)(n− 2)
(gikgjl − gilgjk).

Here, R∗
ijkl is called the Riemann–Ricci curvature tensorial family, and Wijkl is

called the Weyl conformal curvature tensorial family. We have

W k
ijk. ≡ 0

where W k
ijk. := gklWijkl. We say that Wijkl is the trace-free contribution to Rijkl.

Geometric meaning of the curvature tensor. Next let us briefly discuss
the geometric meaning of both the Riemann–Christoffel curvature tensor and the
Weyl conformal curvature tensor. Roughly speaking, these tensorial families are
obstructions for introducing special local coordinates which correspond to simple
local geometries.

To begin with, let us mention that Gauss proved the following two fundamental
theorems for 2-dimensional smooth surfaces: LetM be a 2-dimensional submanifold
of the Euclidean manifold E

3 (e.g., the surface of earth). Then the following hold:
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• It is always possible to locally introduce new coordinates ξ, η such that

ds2 = ea(ξ,η)(dξ2 + dη2).

Here, the positive scaling factor ea depends on the smooth function a. We say
that the submanifold M is conformally flat.

• If the Gaussian curvature vanishes identically, K ≡ 0, then it is possible to locally
introduce new coordinates ξ, η such that

ds2 = dξ2 + dη2.

We say that the submanifold M is locally flat. In this special case, the geometry
of the surface is locally Euclidean (e.g., the surface of a cone).

Riemann and Weyl generalized this to higher dimensions. To explain this, let us
introduce the following definitions.

• The Riemannian metric tensorial family gij is called locally flat at the point P iff
there exists a diffeomorphism on a sufficiently small neighborhood of the point
P such that the transformed tensorial family satisfies the condition

gi′j′(x
′) = δi′j′

on a sufficiently small neighborhood of the point P , for all indices. Intuitively, we
can construct an observer O′ who sees a trivial Euclidean metric near the point
P .

• The Riemannian metric tensorial family gij is called locally conformally flat
at the point P iff there exists both a diffeomorphism on a sufficiently small
neighborhood of the point P and a smooth function a near P such that

gi′j′(x
′) = ea(x′)δi′j′

on a sufficiently small neighborhood of the point P , for all indices. Intuitively,
we can construct an observer O′ who sees a trivial metric near the point P , up
to a positive scaling factor ea which depends on the position.

Theorem 8.28 Let gij be a Riemannian metric tensorial family on a nonempty
open arcwise connected subset Ω of R

n. Then the following hold:
(i) Let n ≥ 2. The metric family gij is locally flat at all the points of Ω iff

Rijkl ≡ 0 for all indices.
(ii) If n = 2, then gij is always locally conformally flat at all the points of Ω

(the Gauss theorem).
(iii) Let n ≥ 4. The metric family gij is locally conformally flat at all the points

of Ω iff Wijkl ≡ 0 for all indices.
(iv). Let n = 3. In this exceptional case, we have Wijkl ≡ 0 for all indices. The

metric family gij is locally conformally flat at all the points of Ω iff Sijk ≡ 0 for
all indices.

Here, we define

• Sjk := Rjk − 1
4
Rgjk (Schouten tensorial family),

• Sijk := ∇iSjk −∇jSik (Weyl–Schouten tensorial family).
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For given metric tensorial family gij , the tensorial families Rijkl, Rij , R,Wijkl are
distinguished by the theory of differential invariants. A detailed discussion can be
found in R. Weitzenböck, Invariantentheorie, Sect. 13ff, Noordhoff, Groningen (in
German) (classic approach), and in R. Goodman and N. Wallach, Symmetry, Rep-
resentations, and Invariants, Sect. 10.3.1, Springer, New York (modern approach).

The metric tensorial family gij is called Ricci flat iff Rij ≡ 0 for all indices.
Theorem 8.28 tells us the following:

If the dimension is greater or equal to four, then the Riemann–Christoffel
curvature tensorial family Rl

ijk cannot always be recovered from the Ricci
tensorial family Rij.

8.10.6 The Hodge Codifferential and the Covariant Partial
Derivative

Let p = 1, . . . n. Consider the p-form ω = 1
p!
ωi1...ipdx

i1 ∧ · · · ∧ dxip where ωi1...ip is

an antisymmetric tensorial family. Using the covariant partial derivative, we get

dω =
1

p!
∇iωi1...ip dx

i ∧ dxi1 ∧ · · · ∧ dxip

=
1

p!
∂[iωi1...ip] dx

i ∧ dxi1 ∧ · · · ∧ dxip (8.156)

and

d∗ω = − 1

(p− 1)!
∇iωii2...ip dx

i2 ∧ · · · ∧ dxip . (8.157)

Here, the covariant partial derivative ∇i refers to the Christoffel symbols (8.146)
of the Levi-Civita connection on page 512, and

∇i := gis∇s.

If p = 0, then dω0 = ∂iω0 · dxi and d∗ω0 = 0.
Relation (8.156) will be proven in Sect. 8.11.2 on page 523. For the proof of

(8.157), we refer to Problem 8.11 on page 554. Recall that the Hodge Laplacian is
given by

Δω = (d∗d+ dd∗)ω.

Since d(dω) = 0 and d∗(d∗ω) = 0, we get

Δω = (d+ d∗)(d+ d∗)ω.

The operator d+ d∗ is called the Hodge square root of the Hodge Laplacian Δ.

8.10.7 The Weitzenböck Formula for the Hodge Laplacian

Our goal is to write the Hodge Laplacian Δω for differential forms ω in a very
elegant way by using a biorthogonal frame. We assume that the metric tensorial
family gij is of Riemannian type. Let e1, . . . , en be smooth velocity vector fields on
ΩO such that

〈ek|el〉 = δkl, k, l = 1, . . . , n.
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That is, ek ∈ Diff1(ΩO) if k = 1, . . . , n. Moreover, let μk : Diff1(ΩO) → R be linear
functionals such that

μk(el) = δkl , k, l = 1, . . . , n.

We call e1, . . . , en, μ
1, . . . , μn a biorthogonal frame on ΩO.

Theorem 8.29 For p = 1, 2, . . . , n, let ω = 1
p!
ωi1...ip dx

i1 ∧ · · · ∧ dxip be a p-form.

Then

Δω = −Dek (Dekω) −DDek
ekω − μk ∧ iF(ek,el)el

ω.

Here, we sum over k, l = 1, . . . , n.

This theorem tells us that there appear specific curvature terms depending
on F. The proof can be found in J. Jost, Riemannian Geometry and Geometric
Analysis, Sect. 3.6, Springer, Berlin, 2008. The theorem dates back to Weitzenböck
(1885–1955).

8.10.8 The One-Dimensional σ-Model and Affine Geodesics

We want to generalize the concept of straight-line in Euclidean geometry. Let Γ k
ij

be an affine connection family. The smooth curve

C : xi = xi(t), t0 ≤ t ≤ t1, i = 1, . . . , n (8.158)

on the set ΩO is called an affine geodesic iff

ẍk(t) + ẋi(t) Γ k
ij(x(t)) ẋ

j(t) = 0, t0 ≤ t ≤ t1, k = 1, . . . , n. (8.159)

It follows from the transformation law (8.105) for the Christoffel symbols on page
495 that this definition does not depend on the choice of the observer.

The spray of an affine connection family. Let v = vi∂i be a smooth
velocity vector field. We set

V k(x,v) := −vi(x) Γ k
ij(x) v

j(x).

The velocity vector field V = V k∂k is called the spray of the velocity vector field v
generated by the connection family Γ k

ij . Then the equation of motion (8.159) can
be written as

ẍk(t) = V k(x(t), ẋ(t)), k = 1, . . . , n. (8.160)

This generalizes the Newtonian equation of motion.
The variational problem. We are given the metric tensorial family gij of

arbitrary signature. Consider the variational problem

Z t1

t0

ẋi(t) gij(x(t)) ẋ
j(t) dt = critical! (8.161)

with the boundary condition: x(t0) and x(t1) are fixed.
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Theorem 8.30 If the curve x = x(t) is a smooth solution of the variational prob-
lem (8.161), then it is an affine geodesic (8.159) with respect to the Levi-Civita
connection (8.146) on page 512.

Proof. Introduce the Lagrangian L(x, ẋ) := ẋigij(x) ẋ
j . If x = x(t) is a solution of

(8.161), then it satisfies the Euler–Lagrange equation

d

dt
Lẋi = Lxi , i = 1, . . . , n.

Explicitly,
d

dt

`

gikẋ
k + gjiẋ

j´ = ∂igjk · ẋj ẋk.

Here, gik stands for gik(x(t)), and ẋk stands for ẋk(t). Hence

gikẍ
k + gjiẍ

j + ∂lgik · ẋlẋk + ∂lgji · ẋlẋj = ∂igjk · ẋj ẋk.

Using gij = gji and changing the notation of some indices, we obtain

2gsrẍ
r + (∂igjs + ∂jgis − ∂sgij) ẋiẋj = 0.

Multiplying this by gks, it follows from (8.146) that

ẍk + Γ k
ij ẋ

iẋj = 0.

This is the claim. �

The variational problem (8.161) is frequently used in order to compute the
Christoffel symbols Γ k

ij of the Levi-Civita connection with respect to the metric
tensorial family gij .

The σ-model. The variational problem (8.161) can be generalized to higher
dimensions. In modern physics, this is called the σ-model. We will study this in
Vol. IV. In terms of mathematics (resp. physics), this is closely related to minimal
surfaces, harmonic maps, and Kähler manifolds (resp. string theory). We refer to:

U. Dierkes, S. Hildebrandt, and F. Sauvigny, Minimal Surfaces, Vol. 1,
Springer, Berlin.

U. Dierkes, S. Hildebrandt, and A. Tromba, Minimal Surfaces, Vol 2: Reg-
ularity of Minimal Surfaces, Vol. 3: Global Analysis of Minimal Surfaces,
Springer, Berlin, 2010.

J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin,
2008.

J. Jost, Harmonic Mappings between Riemannian Manifolds, ANU Press,
Canberra, Australia, 1984.

J. Jost, Geometry and Physics, Springer, Berlin, 2009.

S. Ketov, Quantum Non-Linear Sigma Models: From Quantum Field The-
ory to Supersymmetry, Conformal Field Theory, Black Holes and Strings,
Springer, Berlin, 2000.
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8.11 The Beauty of Connection-Free Derivatives

The Lie derivative LvT of a tensor field T (e.g., the electric field E or the
magnetic field B) generalizes the directional derivative with respect to a
velocity vector field v.
The Cartan derivative and the Weyl derivative generalize the curl and the
divergence,

curl v and div v,

of a velocity vector field v, respectively. These derivatives only depend on
partial derivatives, but neither on the choice of a metric tensorial family
nor on the choice of a connection. In particular, this explains why the
Cartan calculus of differential forms can be applied to arbitrary manifolds
which are not equipped with any additional structure.

Folklore

The basic strategy of cancelling terms containing Christoffel symbols.
Our point of departure is the observation that there holds the identity

vs∇sw
i − ws∇sv

i = vs∂sw
i − ws∂sv

i (8.162)

which will be proved in Sect. 8.11.1. This concerns tensorial families vi and wi.
Moreover, ∇i refers to the Levi-Civita connection. Note the following. Observe
that it is not obvious that

vs∂sw
i − ws∂sv

i

is a tensorial family. But it is obvious that

vs∇sw
i − ws∇sv

i

is a tensorial family, by the index principle. Consequently, relation (8.162) tells us
immediately that vs∂sw

i −ws∂sv
i is a tensorial family; this coincides with the Lie

derivative Lvw
i. Similarly, if ωj is a tensorial family, then the relation

∇iωj −∇jωi = ∂iωj − ∂jωi
tells us that ∂iωj − ∂jωi is a tensorial family.

This simple trick is the key to Cartan’s powerful calculus of differential
forms.

Our general strategy will be the following:

• Choose a fixed metric tensorial family gij . Note that such a tensorial family
always exists. For example, fix an observer O and choose gij := δij . Moreover,
extend this to a tensorial family by Theorem 8.2 on page 458.

• Construct the Levi-Civita connection to gij .
• Using the corresponding covariant partial derivative ∇i, assign to a given tenso-

rial family a new tensorial family.
• Show that the new tensorial family does not depend on the choice of gij , since

the terms containing Christoffel symbols cancel each other.

Here, we will use the symmetry relation Γ k
ij = Γ k

ji (i.e., the Levi-Civita connection
is torsion-free). This way, the combination of covariant partial derivatives under
consideration only depends on the classical partial derivative ∂i.

We will use this strategy in order to get the fundamental connection-free
derivatives due to Lie, Cartan, and Weyl.

Note that, in contrast to the derivatives due to Lie, Cartan, and Weyl, the Hodge
codifferential and the Hodge Laplacian are not connection-free notions; indeed they
depend on the specific choice of the Levi-Civita connection.
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8.11.1 The Lie Derivative

We are given the tensorial families vi and wi. Define

T k := vs∇sw
k − ws∇sv

k.

By the index principle, T k is a tensorial family. Explicitly, we get

T k = vs∂sw
k + vsΓ k

srw
r − ws∂sv

k − wsΓ k
srv

r.

Since the Levi-Civita connection is torsion-free, Γ k
ij = Γ k

ji. Thus, the terms contain-
ing Christoffel symbols cancel each other, and we get

T k = vs∂sw
k − ws∂sv

k.

This coincides with the Lie derivative Lvw
k = T k. In contrast to the proof of Prop.

8.15 on 488 based on an explicit checking of the transformation law, the present
method yields immediately the fact that Lvw

k is a tensorial family. Similarly, we
set

Tk := vs∇sωk + ωs∇kv
s.

By the index principle, Tk is a tensorial family. Explicitly,

Tk = vs∂sωk − vsΓ r
skωr + ωs∂kv

s + ωsΓ
s
krv

r = vs∂sωk + ωs∂kv
s.

Thus, Tk coincides with the Lie derivative Lvωk = Tk. The same method applies
to the Lie derivative for general tensorial families. For example,

LvT
i
j := vs∂sT

i
j + T i

s∂jv
s − T s

j ∂sv
i = vs∇sT

i
j + T i

s∇jv
s − T s

j ∇sv
i.

8.11.2 The Cartan Derivative

Let p = 1, . . . , n. Recall that a Cartan family ωi1...ip is an antisymmetric tensorial
family. The Cartan derivative is defined by

diωi1...ip := ∂[iωi1...ip]. (8.163)

Theorem 8.31 The Cartan derivative diωi1...ip of a Cartan family ωi1...ip is again
a Cartan family.

In particular, this theorem tells us that if ωi1...ip is an antisymmetric tensorial
family, then so is diωi1...ip .
Proof. Choose a metric tensorial family gij . Define Tii1...ip := ∇[iωi1...ip]. This is
a tensorial family, by the index principle. It remains to show that

∇[iωi1...ip] = ∂[iωi1...ip].

This is an immediate consequence of (8.117) on page 499. �

In order to get insight into the structure of the cancellations of the Christoffel
symbols, let us explicitly consider two special cases.
(I) Let p = 1. Then ∇iωj = ∂iωj − Γ s

ijωs. Since Γ s
ij = Γ s

ji, we get

∇iωj −∇jωi = ∂iωj − ∂jωi.

(II) Let p = 2. Then
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• ∇iωjk = ∂iωjk − Γ s
ijωsk − Γ s

ikωjs,
• −∇jωik = −∂jωik + Γ s

jiωsk + Γ s
jkωis,

• ∇kωij = ∂kωij − Γ s
kiωsj − Γ s

kjωis.

Since Γ c
ab = Γ c

ba and ωab = −ωba, we get

∇iωjk −∇jωik + ∇kωij = ∂iωjk − ∂jωik + ∂kωij .

Again using ωab = −ωba, we obtain ∇[iωjk] = ∂[iωjk].

8.11.3 The Weyl Derivative

Weyl family. Let p = 1, 2, . . . , n. By definition, a Weyl family

Wi1...ip (8.164)

is an antisymmetric tensorial density family of weight 1 (see page 462). The proto-
type of a Weyl family

Wi = �vi, i = 1, . . . , n

is the product of the mass density � (scalar tensorial density family of weight 1)
and the tensorial family vi (e.g., the components of a velocity vector field). The
Weyl derivative of the Weyl family (8.164) is defined by setting

(δW)i2...ip := ∂iWii2...ip . (8.165)

In particular, if p = 1, then δW := ∂iWi.

Theorem 8.32 The Weyl derivative ∂iWii2...ip of a Weyl family Wi1i2...ip is again
a Weyl family.

The proof will be given below after finishing some necessary preparations.
The divergence formula. Let gij be a metric tensorial family of arbitrary

signature. Let us use the Levi-Civita connection. If vi is a tensorial family, then

∇iv
i =

1
p

|g|
∂i(
p

|g| · vi). (8.166)

Proof. (I) Identity for the determinant g(x) = det(gij(x)). Recall that the matrix
(gij(x)) is the inverse matrix to (gij(x)). This implies the key formula

∂kg(x) = g(x)gij(x) · ∂kgij(x). (8.167)

The proof (based on the Laplace expansion theorem for determinants) will be given
in Problem 8.10 on page 554.

(II) The contraction formula for the Christoffel symbols of the Levi-Civita con-
nection. Suppose that g > 0. Then it follows from

Γ k
ij = 1

2
gks(∂igjs + ∂jgis − ∂sgij)

that Γ k
ik = 1

2
gks∂igks, by renaming the indices of the second and third term on the

right-hand side. Using (8.167), we get

Γ k
ik =

∂ig

2g
= ∂i(ln

√
g).
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(III) The definition of the covariant partial derivative yields

∇iv
i = ∂iv

i + Γ i
isv

s = ∂iv
i + vs∂s(ln

√
g) = ∂iv

i +
1√
g
vi∂i

√
g.

Using the Leibniz rule, we get the desired formula

∇iv
i =

1√
g
∂i
`

vi
√
g
´

.

If g < 0, then use |g| = −g. �

Let p = 2, . . . , n. If T i1...ip is an antisymmetric tensorial family, then

∇iT
ii2...ip =

1
p

|g|
∂i
`

p

|g| T ii2...ip
´

. (8.168)

Proof. (I) Let p = 2. By definition of the covariant partial derivative,

∇iT
ik = ∂iT

ik + Γ i
isT

sk + Γ k
isT

is.

The last term vanishes by the symmetry of Γ i
is and the antisymmetry of T is with

respect to the indices i and s. Hence

∇iT
ik = ∂iT

ik + Γ i
isT

sk.

Now use the same argument as in the proof of (8.166) above.
(II) If p = 3, . . . , n, then the proof proceeds analogously to (I). �

Proof of Theorem 8.32. Note that
p

|g| is a tensorial density of weight one.

Thus, if Wi1...ip is a Weyl family (i.e., an antisymmetric tensorial density of weight
one), then

T i1i2...ip :=
1
p

|g|
· Wi1i2...ip

is an antisymmetric tensorial family. Thus, ∇iT
ii2...ip is a tensorial family. By

(8.168),

∂iWii2...ip =
p

|g| · ∇iT
ii2...ip .

Hence ∂iWii2...ip is an antisymmetric tensorial density of weight one. �

Weyl duality. The preceding proof shows the following. If T i1...ip is an anti-
symmetric tensorial family, then

Wi1...ip :=
p

|g| · T i1...ip

is a Weyl family. This duality between antisymmetric tensorial families and Weyl
families is called Weyl duality.

Weyl duality plays a crucial role in describing the electromagnetic field in
continuous media.

We will show this in Sect. 19.8.
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8.12 Global Analysis

Global analysis is invariant theory in action.
Folklore

The term global analysis is used for the analysis and differential topology on man-
ifolds (see the Appendix on page 1069). Observe that all of the preceding investi-
gations apply immediately to manifolds in the following way:

• Manifolds (e.g., the surface of earth) are described by local coordinates (e.g.,
geographic charts of earth).

• The change of local coordinates corresponds to the change of observers by means
of diffeomorphisms.

• Properties of the manifold are described by invariants. Using local coordinates,
note that a local-coordinate expression represents an invariant of the manifold if
it has the correct index picture in the sense of the calculus developed above.

For example, a p-form of a manifold is described by

ω=
1

p!
ωi1...ip dx

i1 ∧ · · · ∧ dxip

where the coefficient functions ωi1...ip transform like an antisymmetric tensorial
family under a change of local coordinates.

Riemannian manifold. A manifold M can be equipped with an additional
structure. For example, the real n-dimensional manifold M is called a Riemannian
manifold iff there exists a system of functions gij which form a metric tensorial
family of Riemann type under a change of local coordinates.42 This allows us to
define invariantly the notion of the length of a curve on the manifold. To this end,
we fix a local (x1, . . . , xn)-coordinate system, and we assume that the curve is given
by the equation xi = xi(t), t0 ≤ t ≤ t1, i = 1, . . . , n. Then the length of the curve
is defined by the integral

Z t1

t0

p

ẋi(t)gij(x(t))ẋj(t) · dt.

By the index principle, this integral does not depend on the choice of the local
coordinate system.

Orientation. The manifold M is called oriented iff the change of local coor-
dinate systems is described by diffeomorphisms of positive sign (i.e., the Jacobian
has positive sign). In this case, we can also use pseudo-tensorial families because
they become tensorial families with respect to the distinguished change of local
coordinates. For example, using the pseudo-tensorial family Ei1...in we can define

υ :=
1

n!
Ei1...in dx

i1 ∧ · · · ∧ dxin . (8.169)

If the manifold M is oriented then Ei1...in transforms like a tensorial family under
diffeomorphisms of positive sign. Therefore, the differential form υ possesses an
invariant meaning on the manifold, by the index principle. This n-form is called
the volume form of the Riemannian manifold M. We get

υ =
p

|g| dx1 ∧ · · · ∧ dxn.
42 If gij is a metric family of pseudo-Riemannian type, then we obtain a pseudo-

Riemannian manifold.
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In contrast to (8.169), this formula is very convenient for doing computations, but
it does not display the invariant character of this expression. We refer the reader
to Sect. 8.14 where we will discuss the two different philosophies in global analysis,
namely, the index-based and the index-free method.

Integration. Let ω be an n-form on the oriented real n-dimensional manifold
M. The integral

R

M ω is obtained by setting

Z

M
ω :=

K
X

k=1

Z

M
fkω.

Here, the smooth, compactly supported functions f1, . . . , fK : M → R with
PK

k=1 fk = 1 form a partition of unity on M (see the Appendix on page 1077).
We choose the supports of the smooth functions f1, . . . , fK sufficiently small (i.e.,
the functions f1, . . . , fK vanish outside sufficiently small compact subsets of M).
Then the integrals

R

M fkω can be computed by using local coordinates. The point
is that the local integrals do not depend on the choice of the local coordinates, and
the global integral

R

M ω does not depend on the choice of the partition of unity.

8.13 Summary of Notation

What’s in a name? That which we call a rose
by any other word would smell as sweet.

William Shakespeare (1564–1616)
Romeo and Juliet 2,2

Our goal is to help the reader to memorize the basic formulas in the Riemann
curvature theory. Note that different definitions are used for the Riemann curvature
tensorial family

Rijkl

which reduce to different sign conventions, after permuting indices of Rijkl if neces-
sary.43 Every choice of convention has their own advantages and disadvantages. The
convention used in this monograph is based on the following mnemonic philosophy.
The point of departure is the relation

F(u,v)w = R(u,v,w)

for the Riemann curvature operator F(u,v), which is the geometric and physical
basic object. Using the inner product 〈.|.〉, we set

R(u,v,w, z) := 〈R(u,v,w)|z〉.

This motivates

• R(u,v,w, z) = Rijklu
ivjwkzl, and hence Rijkl := R(∂i, ∂j , ∂k, ∂l),

• R(u,v,w) = Rl
ijku

ivjwk · ∂l, and hence Rl
ijk = dxl(R(∂i, ∂j , ∂k)),

• Duv = uiΓ k
ijv

j · ∂k, and hence Γ k
ij = dxk(D∂i∂j).

43 A table of sign conventions used by about forty selected authors can be found
on the front page of the standard textbook by C. Misner, K. Thorne, and A.
Wheeler, Gravitation, Freeman, San Francisco, 1973.
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Since Rijkl = Rs
ijkgsl, we also write Rl

ijk. instead of Rl
ijk if necessary.

In order to pass to the language of differential forms, we introduce the following
matrices

Ai := (Γ l
ik) and Fij = (Rl

ijk).

Here, the upper index l is the row index, and the lower index k is the column index
of the matrices. Based on this convention, we get the key curvature relation

Fij = ∂iAj − ∂jAi + AiAj −AjAi

which is equivalent to

Rl
ijk = ∂iΓ

l
jk − ∂jΓ l

ik + Γ l
isΓ

s
jk − Γ l

jsΓ
s
ik.

Introducing

• F := 1
2
Fij dx

i ∧ dxj (curvature form), and

• A := Ai dx
i (connection form),

the letter F stands for ‘force’. Moreover, the symbol Ai resembles the component
Ai of the 4-potential in Maxwell’s theory of electromagnetism.

Furthermore, the Riemann curvature tensorial family Rl
ijk allows the construc-

tion of the following crucial invariant

R := Ri
ijkg

jk

by lifting and contracting of indices. Here, R is the scalar curvature. In terms of
Rijkl, we obtain

R = gilRijklg
jk.

Introducing Ril := Rijklg
jk, we get

R = gilRil.

Here, Ril is called the Ricci curvature tensorial family. Moreover, setting

Ric(u,v) := Riju
ivj ,

we get Ric(u, z) = gklR(u, ∂k, ∂l, z).
Observe that the transformation

Rl
ijk ⇒ Rl

kij , Rijkl ⇒ −Rijkl, Rαβ ⇒ Rαβ

changes our notation to the notation used in the following textbooks:

C. Misner, K. Thorne, and A. Wheeler, Gravitation, Freeman, San Fran-
cisco, 1973.

L. Landau and E. Lifshitz, Course of Theoretical Physics, Vol. 2: The
Classical Theory of Fields, Butterworth–Heinemann, Oxford, 1982.

J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin,
2008.

For example, our symbol R1221 passes over to −R1221 which is equal to R1212.
Moreover, the transformation

Rl
ijk ⇒ Rl

kij , Rijkl ⇒ Rijkl, Rαβ ⇒ Rαβ

changes our notation to the notation used in the textbook by

Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick, Analysis,
Manifolds, and Physics, Vols. 1, 2, Elsevier, Amsterdam, 1996.
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8.14 Two Strategies in Invariant Theory

Invariants play a fundamental role in mathematics and physics. There are two
methods of constructing invariants, namely,

• the index method based on the principle of killing indices as described above,
• and the index-free method.

Physicists prefer the index method, whereas mathematicians like the index-free
method. In order to be flexible, the reader should master not only one approach,
but the two approaches. Note the following:

• If one wants to simplify the computation of physical effects by using special
coordinates, then the index method is the right tool. Most textbooks in physics
use the index method.

• The index-free method gives insight. Most textbooks in modern mathematics use
the index-free method.

In the next chapters, we will study physical fields on the Euclidean manifold (tem-
perature fields, velocity fields, and differential forms). This should help the reader
to understand the physical and geometric background of modern physics and mod-
ern differential geometry. Later on, we will investigate the relation between gauge
theory in physics and the modern theory of fiber bundles.

Note the following. In this chapter, the definitions are formulated by the in-
dexed components, and the index-free expressions follow by the aid of the index
principle. In the next chapters, the definitions will be given in an invariant (i.e.,
index-free) way. Passing to the natural basis ∂1, . . . , ∂n and dx1, . . . , dxn, one ob-
tains the expressions considered in the present chapter. The invariant approach has
the advantage that, in contrast to the natural basis, one can use an arbitrary basis,
and the approach can be generalized to infinite dimensions (e.g., global analysis on
infinite-dimensional Hilbert spaces, Banach spaces and Banach manifolds). See R.
Abraham, J. Marsden, and T. Ratiu, Manifolds, Tensor Analysis, and Applications,
Springer, New York, 1988, and Zeidler (1986), Vol. IV, quoted on page 1089.

In the next section, as a typical example, we want to study the invariant for-
mulation of the notion of a tangent vector of a manifold by derivations. The point
is that the notion of a linear differential operator applied to a temperature field
on a manifold can be defined in a purely algebraic way. This approach was used
by Claude Chevalley (1909–1984) in his fundamental monograph Theory of Lie
Groups, Princeton University Press, 1946 (15th edition, 1999).

To motivate the following discussion, note that the earth is part of the sur-
rounding universe. Therefore, we can use notions which depend on the universe
(e.g., the notion of a tangent plane at a point of the surface of earth). However,
in cosmology we want to use intrinsic notions which do not depend on a hypo-
thetical higher-dimensional super universe. Such super universes are discussed in
L. Randall, Warped Passages: Unravelling the Mysteries of the Universe’s Hidden
Dimensions, Ecco, New York, 2005. See also S. Yau and S. Nadis, The Shape of In-
ner Space: String Theory and the Geometry of the Universe’s Hidden Dimensions,
Basic Books, New York, 2010.

8.15 Intrinsic Tangent Vectors and Derivations

Tangent vectors correspond to velocity vectors. On finite-dimensional
manifolds, velocity vectors are equivalent to linear differential operators
(derivations of temperature fields).

Folklore
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Fig. 8.1. Trajectory of a ship

Extrinsic velocity vector on the surface of earth (Fig. 8.1). Intuitively, the
velocity vector of a moving ship on the ocean points into the universe. This is called
an extrinsic velocity vector. Let us first discuss this notion. Consider the sphere

S
2
R := {P ∈ E

3 : d(O,P ) = R}

of positive radius R centered at the origin O. Here, d(O,P ) denotes the Euclidean

distance between the origin O and the point P . Using the position vector x =
−−→
OP

pointing from O to P , we can write

S
2
R = {P ∈ E

3 : x2 = R2}.

Intuitively, we regard the sphere S
2
R as the surface of earth. Let

C : P = P (t), t ∈ R,

be a smooth curve on S
2
R (e.g., the trajectory of a ship). Here, R is an open interval

of R which contains the point t0. Set P0 := P (t0).
44 Alternatively, we write

C : x = x(t), t ∈ R.

The time derivative

ẋ(t0) = lim
Δt→0

x(t0 +Δt) − x(t0)

Δt

is called the velocity vector v(P0) (of the ship) at time t0. Let us describe the motion
of the ship on a geographic chart with the real Cartesian coordinates (u1, u2). The
point (u1, u2) of the geographic chart corresponds to the point

P = P (u1, u2)

on the surface of earth. We assume that P0 = (u1
0, u

2
0). In terms of position vectors,

the point P (u1, u2) corresponds to the vector x(u1, u2). The two vectors

bj(u
1, u2) :=

∂x(u1, u2)

∂uj
, j = 1, 2

span the tangent space TPS
2
R of the sphere S

2
R at the point P (u1, u2) (Fig 8.2).

This yields the decomposition

v(P0) = v1(P0) b1(P0) + v2(P0) b2(P0).

44 To simply notation, we choose t0 := 0 and u1
0 = u2

0 := 0.
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Fig. 8.2. Local parametrization of the sphere S
2
R

The real numbers v1(P0), v
2(P0) are called the coordinates of the velocity vector

v(P0) (with respect to the local (u1, u2)-coordinates). If we pass from the local

(u1, u2)-coordinates to the local (u1′ , u2′)-coordinates by the local diffeomorphism

u1′ = u1′(u1, u2), u2′ = u2′(u1, u2),

then it follows from the chain rule that45

bi′(P0) =
∂x(P0)

∂ui
∂ui(P0)

∂ui′
=
∂ui(P0)

∂ui′
bi(P0).

Hence we obtain the transformation law

vi
′
(P0) =

∂ui
′
(P0)

∂ui
vi(P0), i′ = 1′, 2′ (8.170)

for the velocity components. The velocity vector v(P0) is called an extrinsic velocity
vector, since the definition of v(P0) uses the surrounding Euclidean manifold E

3.

Our goal is to define the notion of a tangent vector in an intrinsic way by
not using the surrounding Euclidean manifold E

3.

Intrinsic velocity vectors on the surface of earth. We will discuss the
two equivalent approaches for the sphere S

2
R :

(G) The geometric approach based on equivalence classes of trajectories.
(A) The algebraic-analytic approach based on linear partial differential operators

(derivations).

Ad (G). Let C : P = P (t) and C∗ : P = P∗(t) with t ∈ R be two trajectories on
the sphere S

2
R which pass through the point P0 at time t0 := 0. We write

C ∼ C∗ at the point P0

if and only if, in a fixed geographic chart, the two trajectories have the same velocity
vector at time t = 0, that is,

(v1(0), v2(0)) = (v1∗(0), v2∗(0)).

The point is that this equivalence relation does not depend on the choice of the
geographic chart because of the transformation law (8.170). The equivalence classes

45 We sum over i = 1, 2.
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[C]P0 are called intrinsic tangent vectors at the point P0 of the sphere. There exists
the one-to-one correspondence

v(P0) ⇔ [C]P0 .

Ad (A). Let C∞
P0 be the space of all smooth temperature functions

Θ : O(P0) → R

on some open neighborhood O(P0) of the point P0 on the sphere S
2
R (the set O(P0)

depends on the function Θ). We identify two functions of C∞
P0 iff they coincide on

some open neighborhood of P0. The real linear space C∞
P0 is called the space of

smooth germs at the point P0. A linear map

der : C∞
P0 → R

is called a derivation at the point P0 iff we have the Leibniz rule

der(ΘΦ) = der(Θ) · Φ(P0) +Θ(P0) · der(Φ) (8.171)

for all Θ,Φ ∈ C∞
P0 . Obviously, this is an invariant definition. We want to determine

all the possible derivations at the point P0. To this end, we choose a local (u1, u2)-
coordinate system in a neighborhood of the point P0. Recall that ∂i := ∂

∂ui . If v
1, v2

are real numbers, then

der(Θ) := v1∂1Θ(P0) + v2∂2Θ(P0) (8.172)

is a derivation at the point P0; this is an immediate consequence of the classic
Leibniz rule ∂i(ΘΦ) = ∂iΘ · Φ+Θ · ∂iΦ. We briefly write

der = vi(P0)∂i

where we sum over i = 1, 2. This is a linear differential operator which acts on
temperature fields on the surface of earth, S

2
R.

Proposition 8.33 Every derivation at the point P0 has the form (8.172).

Proof. Suppose that we are given a derivation, der. We will use the Taylor expan-
sion with the integral form of the remainder. Using the constant temperature field
Θ ≡ 1 in a neighborhood of P0, the Leibniz rule yields

der(1) = 2 · der(1),

and hence der(1) = 0. Moreover, let Θ ≡ α where α ∈ R. Then the linearity of the
derivation implies that der(Θ) = α · der(1) = 0. If Θ ∈ C∞

P0 , then

Θ(u) −Θ(0) =

Z 1

0

d

dτ
Θ(τu) dτ = ui

Z 1

0

∂iΘ(τu) dτ.

This implies the decomposition

Θ(u) = Θ(0) + uiRi(u)

with the remainder Ri ∈ C∞
P0 where Ri(0) = ∂iΘi(0), i = 1, 2. Hence, by the

Leibniz rule,
der(Θ) = der(uiRi(u)) = der(ui) ·Ri(0).

Setting vi := der(ui), and noting that Ri(0) = ∂iΘ(0), we get the claim (8.172). �

Intrinsic velocity vectors on a finite-dimensional manifold. Let M be
a real n-dimensional manifold. The preceding discussion allows an immediate gen-
eralization from the sphere S

2
R to M. In what follows we sum over i = 1, . . . , n.
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(G) The geometric approach: Fix the point P ∈ M. Consider local (u1, . . . , un)-
coordinate systems for a neighborhood of the point P . By the definition of a
manifold (see Sect. 5.4 of Vol. I), the change of local coordinates is described
by a local diffeomorphism,

ui
′
= ui

′
(u1, . . . , un), i′ = 1′, . . . , n′.

We consider tuples (P, v1, . . . , vn) ∈ M× R
n, and we write

(P, v1, . . . , vn) ∼ (P, v1
′
, . . . , vn

′
)

if and only if

vi
′
=
∂ui

′
(P )

∂ui
vi, i′ = 1′, . . . , n′.

By definition, the equivalence classes [(P ; v1, . . . , vn)] are called tangent vectors
of the manifold M at the point P (or velocity vectors). In particular, if

C : ui = ui(t), i = 1, . . . , n, t ∈ R

is a curve on the manifold M which passes through the point P at time t = 0,
then setting vi := u̇i(0), i = 1, . . . , n, we get the tangent vector (velocity
vector)

[(P, v1, . . . vn)] at the point P.

(A) The algebraic-analytic approach: Let C∞
P be the space of all smooth (temper-

ature) functions
Θ : O(P ) → R

on some open neighborhood O(P ) of the point P of M (the set O(P ) depends
on the function Θ). We identify two functions of C∞

P iff they coincide on some
open neighborhood of the point P . The real linear space C∞

P is called the space
of smooth germs of the manifold M at the point P . By definition, a linear map

der : C∞
P → R

is called a derivation at the point P iff we have the Leibniz rule

der(ΘΦ) = der(Θ) · Φ(P ) +Θ(P ) · der(Φ)

for all Θ,Φ ∈ C∞
P . Choose a fixed local (u1, . . . , un)-coordinate system in a

neighborhood of the point P . As above for the sphere, one shows that a deriva-
tion at the point P has precisely the form

der = vi(P )∂i (8.173)

where v1(P ), . . . , vn(P ) are real numbers, and we sum over i = 1, . . . , n. Obvi-
ously, there exists a one-to-one relation

vi(P )∂i ⇔ [(P ; v1(P ), . . . , vn(P ))].

That is, tangent vectors at the point P of the manifold M can be identified
with derivations at P .

Remark. On infinite-dimensional Banach manifolds, the two definitions (G)
and (A) are not equivalent. In this case, one uses the geometric approach (G) as
basic definition for tangent vectors (see Zeidler (1986), Vol. IV, quoted on page
1089).
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8.16 Further Reading on Symmetry and Invariants

Symmetry, Sciences, and Human Culture

H. Weyl, Symmetry, Princeton University Press, 1952.

C. Yang, Symmetry and physics, pp. 11–33. In: G. Ekspong (Ed.), The
Oskar Klein (1894–1977) Memorial Lectures, Vol. 1, World Scientific, Sin-
gapore, 1991.

E. Wigner, Philosophical Reflections and Syntheses, annotated by G.
Emch, Springer, New York, 1995.

R. Feynman, The Character of Physical Law, MIT Press, Cambridge, Mas-
sachusetts, 1966.

M. Gell-Mann, The Quark and the Jaguar, Freeman, New York, 1994.

P. Cartier, A mad day’s work: From Grothendieck to Connes and Kont-
sevich – The evolution of concepts of space and symmetry, Bull. Amer.
Math. Soc. 38(4) (2001), 389–408.

A. Zee, Fearful Symmetry: The Search for Beauty in Modern Physics,
Princeton University Press, 1999.

L. Lederman and C. Hill, Symmetry and the Beautiful Universe, Prome-
theus Books, New York, 2008.

T. Fujita, Symmetry and Its Breaking in Quantum Field Theory, Nova
Science Publisher, New York, 2007.

M. Golubitsky and I. Stewart, The Symmetry Perspective from Equilib-
rium to Chaos in Phase Space and Physical Space, Birkhäuser, Basel, 2002.

S. Hildebrandt and T. Tromba, The Parsimonious Universe: Shape and
Form in the Natural World, Copernicus, New York, 1996.

J. Conway and H. Burgiel, The Symmetry of Things, CRC Press, Boca
Raton, Florida, 2008.

B. Greene, The Elegant Universe: Supersymmetric Strings, Hidden Dimen-
sions, and the Quest for the Ultimate Theory, Norton, New York, 1999.

P. Binétruy, Supersymmetry: Theory, Experiment, and Cosmology, Oxford
University Press, 2006.

G. Wagnière, On Chirality and the Universal Asymmetry: Reflections on
Image and Mirror Image, Wiley-VHC, Zürich, 2007 (including applications
to biology).

D. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, Basic
Books, New York, 1979.

H. Peitgen and P. Richter, The Beauty of Fractals, Springer, Berlin, 1986.

C. Bovill, Fractal Geometry in Architecture and Design, Birkhäuser, Basel,
1995.

G. Mazolla, The Topos of Music, Birkhäuser, Basel, 2002.

D. Washburn and D. Crowe (Eds.), Symmetry Comes of Age: The Role of
Pattern in Culture, University of Washington Press, 2004.

J. Rosen, How Science and Nature are, Springer, Berlin, 2008.

I. Stewart, Why Beauty is Truth: A History of Symmetry, Basic Books,
New York, 2008.



8.16 Further Reading on Symmetry and Invariants 535

Harmonic Analysis

Harmonic analysis is a huge mathematical subject which plays a crucial role in
mathematical physics. As surveys, we recommend:

G. Mackey , Harmonic analysis as the exploitation of symmetry – a his-
torical survey, Bull. Amer. Math. Soc. 3 (1980), 543–698.

G. Mackey, The Scope and History of Commutative and Noncommutative
Harmonic Analysis, Amer. Math. Soc., Providence, Rhode Island, 1992.

As textbooks, we recommend:

E. Stein and R. Shakarchi, Princeton Lectures in Analysis I: Fourier Anal-
ysis, Princeton University Press, 2003.

G. Folland, Harmonic Analysis in Phase Space, Princeton University, 1989
(Heisenberg group, quantization and pseudo-differential operators, Weyl
operational calculus, the Stone-von Neumann theorem in quantum me-
chanics, metaplectic representations).

G. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca
Raton, Florida, 1995.

W. Rudin, Fourier Analysis on Groups, Interscience Publishers, New York,
1962.

K. Maurin, Generalized Eigenfunction Expansions and Unitary Represen-
tations of Topological Groups, Polish Scientific Publishers, Warsaw, 1968.

Furthermore, we recommend:

E. Stein, Harmonic Analysis, Princeton University Press, 1993.

G. Folland, Introduction to Partial Differential Equations, Princeton Uni-
versity Press, 1995.

G. Folland, Fourier Analysis and Its Applications, Amer. Math. Soc.,
Rhode Island, 2009.

G. Folland, Quantum Field Theory: A Tourist Guide for Mathematicians,
Amer. Math. Soc., Providence, Rhode Island, 2008.

V. Varadarajan, Geometry of Quantum Theory, Springer, New York, 2007.

N. Wallach, Symplectic Geometry and Fourier Analysis, Math. Sci. Press,
Brookline, Massachusetts, 1977.

M. Naimark, Normed Rings, Noordhoff, Groningen, 1964.

M. Gracia-Bondia, J. Várilly, and H. Figueroa, Elements of Noncommuta-
tive Geometry, Birkhäuser, Boston, 2001.

J. Várilly, Lectures on Noncommutative Geometry, European Mathemat-
ical Society, 2006.

A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields,
and Motives, Amer. Math. Soc., Providence, Rhode Island, 2008 (affine
group schemes, the Tannakian category in algebraic geometry, and the
cosmic renormalization group in quantum field theory, the Riemann zeta-
Function).

M. Marcolli, Feynman Motives: Renormalization, Algebraic Varieties, and
Galois Symmetries, World Scientific, Singapore, 2009.

P. Deligne, Catégories tannakiennes. In: Grothendieck Festschrift, Vol. 2,
pp. 111–195, Birkhäuser, Basel, 1990 (in French).
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Valery Volchkov and Vitaly Volchkov, Harmonic Analysis of Mean Peri-
odic Functions of Symmetric Spaces and the Heisenberg Group, Springer,
Berlin, 2009.

The Spirit of Modern Mathematics

As a bridge between classic and modern differential geometry, we recommend:

M. Spivak, A Comprehensive Introduction to Differential Geometry, Vols.
1–5, Publish or Perish, Boston, 1979.

Beautiful relations between algebra, analysis, geometry, number theory, and string
theory can be seen by studying elliptic curves. We recommend:

D. Husemoller, Elliptic Curves, Springer, New York, 2002 (elliptic func-
tions, elliptic integrals, theta functions, modular functions, hypergeometric
functions, lattices, harmonic analysis on finite fields, Diophantine equa-
tions, Galois cohomology, Tate’s reduction theory, Fermat’s last theorem,
Dirichlet’s L-series, the Birch and Swinnerton–Dyer conjecture (one of the
seven Millenium problems formulated by the Clay Institute in Boston in
2000), complex line bundles and Chern classes, elliptic curves and cryp-
tography).

This book contains many beautiful concrete examples. On the other hand, the study
of elliptic curves initiated far-reaching generalizations in the history of mathemat-
ics. Therefore, this book serves as an introduction to modern mathematics. In an
appendix written by Stefan Theissen, the relations between Calabi–Yau manifolds
(higher-dimensional analogues of elliptic curves) and string theory are discussed.
As other sources for understanding modern mathematics, we recommend:

K. Maurin, The Riemann Legacy: Riemannian Ideas in Mathematics and
Physics of the 20th Century, Kluwer, Dordrecht, 1997.

K. Maurin, Plato’s cave parable and the development of modern physics,
Rend. Sem. Mat. Univ. Politec. Torino 40 (1982), 1–31.

V. Varadarajan, Euler Through Time: A New Look at Old Themes, Amer.
Math. Soc., Providence, Rhode Island, 2006 (e.g., the Langlands program).

À. Lozano-Robledo, Elliptic Curves, Modular forms, and Their L-Func-
tions, Amer. Math. Soc., Providence, Rhode Island, 2011.

S. Chern and F. Hirzebruch (Eds.), Wolf Prize in Mathematics, Vols. 1, 2,
World Scientific, Singapore, 2001.

M. Atiyah and D. Iagolnitzer (Eds.), Fields Medallists’ Lectures, World
Scientific, Singapore, 2003.

M. Monastirsky, Riemann, Topology, and Physics, Birkhäuser, Basel, 1987.

M. Monastirsky, Topology of Gauge Fields and Condensed Matter, Plenum
Press, New York, 1993.

M. Monastirsky, Modern Mathematics in the Light of the Fields Medals,
Peters, Wellersley, Massachusetts, 1997.

K. Marathe, Topics in Physical Mathematics, Springer, London, 2010.
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Introduction to Lie Groups and Lie Algebras

Elementary introduction:

J. Stillwell, Naive Lie Theory, Springer, New York, 2008.

J. Humphreys, Introduction to Lie Algebras and Representation Theory,
Springer, Berlin, 1978.

A. Balachandran, S. Jo, and G. Marmo, Group Theory and Hopf Algebras:
Lectures for Physicists, World Scientific, Singapore, 2010.

D. Leites (Ed.), Representation Theory, Vol.1: Finite and Compact Groups,
Simple Lie Algebras, and an Application, Vol. II: Lie Super Algebras, Ab-
dus Salam School of Mathematical Sciences, Lahore, Pakistan, 2009.

Introduction to the application of Lie group theory in physics:

B. van der Waerden, Group Theory and Quantum Mechanics, Springer,
New York, 1974.

S. Sternberg, Group Theory and Physics, Cambridge University Press,
1995.

H. Jones, Groups, Representations, and Physics, Institute of Physics, Bris-
tol, 1998.

Introduction to Lie matrix groups:

B. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary
Introduction, Springer, New York, 2003 (emphasizing the Lie groups SU(2)
and SU(3) which are basic for the Standard Model in particle physics).

B. Simon, Representations of Finite and Compact Groups, Amer. Math.
Soc., Providence, Rhode Island, 1996 (a lot of information on the classical
groups).

W. Hein, An Introduction to Structure and Representation of the Classical
Groups, Springer, Berlin, 1990 (in German).

Introduction to the general theory of Lie algebras and Lie groups:

A. Kirillov, Jr., An Introduction to Lie Groups and Lie Algebras, Cam-
bridge University Press, 2008.

Introduction to infinite-dimensional groups:

B. Khesin and R. Wendt, The Geometry of Infinite-Dimensional Groups,
Springer, Berlin, 2009.

Representations of the rotation group, the Lorentz group, and the Poincaré group:

I. Gelfand, R. Minlos, and Ya. Shapiro, Representations of the Rotation
and Lorentz Groups and Their Applications, Pergamon Press, New York,
1963.

M. Naimark, Linear Representations of the Lorentz Group, Macmillan,
New York, 1964.

S. Sternberg, Group Theory and Physics, Cambridge University Press,
1995.

A. Barut and R. Ra̧czka, Theory of Group Representations and Applica-
tions, World Scientific, Singapore, 1996.

A. Barut (Ed.), Quantum Theory, Groups, Fields, and Particles, Springer,
Berlin, 2002.
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A. Wightman, Invariance in relativistic quantum mechanics (in French),
pp. 159–206. In: Les Houches, Vol. X, Relations de dispersion et particules
élémentaires, Wiley, 1960 (survey article).

Y. Ohnuki, Unitary Representations of the Poincaré Group and Relativis-
tic Wave Equations, World Scientific Singapore, 1988.

Y. Kim and M. Noz, Theory and Applications of the Poincaré Group,
Reidel, Dordrecht, 1986.

V. Varadarajan, Geometry of Quantum Theory, Springer, New York, 2007.

Comprehensive monograph:

R. Goodman and N. Wallach, Symmetry, Representations, and Invariants,
Springer, New York, 2009.

Further References to Lie Groups and Lie Algebras

We recommend:

M. Curtis, Matrix Groups, Springer, New York, 1987.

A. Baker, Matrix Groups: An Introduction to Lie Group Theory, Springer,
New York, 2002.

W. Fulton and J. Harris, Representation Theory: A First Course, Springer,
Berlin, 1991.

C. Curtis and I. Reiner, Representation Theory of Finite Groups and As-
sociative Algebras, Interscience, New York, 1962.

V. Varadarajan, Lie Groups, Lie Algebras, and Their Representations,
Springer, New York, 1984.

J. Serre, Complex Semisimple Lie Algebras, Springer, 1972.

A. Knapp, Representation Theory of Semisimple Groups: An Overview
Based on Examples, Princeton University Press, 1986.

A. Knapp, Lie Groups Beyond an Introduction, Birkhäuser, Boston, 2002.

A. Onishnik and E. Vinberg, Lie Groups and Algebraic Groups, Springer,
Berlin, 1990.

J. Duistermaat and J. Kolk, Lie Groups, Springer, Berlin, 2000.

R. Carter, Lie Algebras of Finite and Affine Type, Cambridge University
Press, 2005.

K. Erdmann and M. Wildon, Introduction to Lie Algebras, Springer,
Berlin, 2006.

M. Sepanski, Compact Lie Groups, Springer, Berlin, 2007.

M. Stroppel, Locally Compact Groups, European Mathematical Society,
2006.

S. Lang, SL(2,R), Addison–Wesley, Reading, Massachusetts, 1975.

Bilinear Forms and Lattices

J. Milnor and D. Husemoller, Symmetric Bilinear Forms, Springer, Berlin,
1973.



8.16 Further Reading on Symmetry and Invariants 539

Theory of Invariants

Classical invariant theory:

R. Weitzenböck, Invariantentheorie, Noordhoff, Groningen, 1923 (in Ger-
man).

H. Weyl, The Classical Groups: Their Invariants and Representations,
Princeton University Press, 1938 (2nd edition with supplement, 1946; 15th
printing, 1997).

H. Weyl, Invariants, Duke Math. J. 5 (1939), 489–502 (survey article).

J. Littlewood, The Theory of Group Characters and Matrix Represen-
tations of Groups, Amer. Math. Society, Providence, Rhode Island, 2006
(originally published by Clarendon Press, Oxford, 1940).

P. Olver, Applications of Lie Groups to Differential Equations. Springer,
New York, 1993.

P. Olver, Classical Invariant Theory, Cambridge University Press, 1999.

H. Kraft and C. Procesi, Classical Invariant Theory: A Primer.
Internet http://www.math.unibas.ch

Modern invariant theory: As comprehensive introductions together with many ap-
plications, we recommend:

C. Procesi, Lie Groups: An Approach Through Invariants and Represen-
tations, Springer, New York, 2007.

R. Goodman and N. Wallach, Symmetry, Representations, and Invariants,
Springer, New York, 2009.

Furthermore, we refer to:

I. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univer-
sity Press, 1995.

B. Sagan, The Symmetric Group: Representations, Combinatorial Algo-
rithms, and Symmetric Functions, Springer, Berlin, 2001.

P. Olver, Equivalence, Invariants, and Symmetry, Cambridge University
Press, 1995.

H. Kraft, Geometrical Methods in Invariant Theory, Vieweg, Braun-
schweig, 1984 (in German).

H. Kraft, P. Slodowy, and T. Springer, Algebraic Transformation Groups
and Invariant Theory, Birkhäuser, Basel, 1989.

T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli, Representation The-
ory of the Symmetric Groups, Cambridge University Press, 2010.

Applications to quantum field theory (BFFO approach):

B. Fauser, On the Hopf algebraic origin of Wick normal-ordering, J. Phys.
A: Math. General 34 (2001), 105–116.

C. Brouder, B. Fauser, A. Frabetti, and R. Oeckl (BFFO), Quantum field
theory and Hopf algebra cohomology, J. Phys. A: Math. General 37 (2004),
5895–5927.

B. Fauser, P. Jarvis, R. King, and B. Wybourne, New branchings induced
by plethysms, J. Phys. A: Math. General 39 (2006), 2611–2655.

R. Caroll, Fluctuations, Information, Gravity and the Quantum Potential,
Kluwer, Dordrecht, 2005.
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Special Functions

Many special functions can be understood best by using their symmetry properties:

A. Wawrzyńczyk, Group Representations and Special Functions, Reidel,
Dordrecht, 1984.

N. Vilenkin and A. Klimyk, Special Functions and Representations of Lie
Groups, Vols. 1–4, Kluwer, Dordrecht, 1991.

Applications to Differential Equations

The solution of differential equations can be simplified by using symmetry proper-
ties:

N. Ibragimov, CRC Handbook of Lie Group Analysis of Differential Equa-
tions, CRC Press, Boca Raton, Florida, 1993.

L. Ovsiannikov, Group Analysis of Differential Equations, Academic Press,
New York, 1982.

H. Stephani, Differential Equations: Their Solution Using Symmetries,
Cambridge University Press, 1989.

H. Stephani, Exact Solutions of Einstein’s Field Equations, Cambridge
University Press, 2003.

P. Olver, Applications of Lie Groups to Differential Equations, Springer,
New York, 1993.

V. Fushtshikh and A. Nikitin, Symmetries of the Equations in Quantum
Mechanics, Allerton Press, New York, 1994.

F. Finster, N. Kamran, J. Smoller, and S. Yau, Linear waves in the Kerr
geometry: a mathematical voyage to black hole physics, Bull. Amer. Math.
Soc. 46(4) (2009), 635–658.

Applications to Geometry

S. Kobayashi, Transformation Groups in Differential Geometry, Springer,
Berlin, 1972.

S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces,
Academic Press, New York, 1978.

J. Wolf, Spaces of Constant Curvature, Publish or Perish, Boston, 1974.

Applications to Physics

As an introduction, we recommend:

S. Sternberg, Group Theory and Physics, Cambridge University Press,
1994.

Furthermore, we recommend the classic monographs:

H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New
York 1931.

B. van der Waerden, Group Theory and Quantum Mechanics, Springer,
New York 1974. (German edition: Springer, Berlin, 1932).

G. Ljubarski, The Application of Group Theory in Physics, Pergamon
Press, Oxford, 1960.
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In addition, we refer to:

L. Fonda and G. Chirardi (1970), Symmetry Principles in Quantum
Physics, Marcel Dekker, New York.

M. Hammermesh, Group Theory and its Applications to Physical Prob-
lems, Dover, New York, 1989.

J. Fuchs and C. Schweigert, Symmetries, Lie Algebras, and Represen-
tations: A Graduate Course for Physicists, Cambridge University Press,
1997.

J. Fuchs, Affine Lie Algebras and Quantum Groups: An Introduction
with Applications in Conformal Field Theory, Cambridge University Press,
1992.

H. Jones, Groups, Representations, and Physics, Institute of Physics, Bris-
tol, 1998.

M. Fecko, Differential Geometry and Lie Groups for Physicists, Cambridge
University Press, 2006.

W. Neutsch, Coordinates: Theory and Applications, Spektrum, Heidel-
berg, 1350 pages (in German).

R. Herrman, Lie Groups for Physicists, Benjamin, New York, 1966.

G. Mackey, Induced Representations of Groups and Quantum Mechanics,
Benjamin New York, 1968.

G. Mackey, Unitary Group Representations in Physics, Probability, and
Number Theory, Benjamin, Reading, Massachusetts. 1978.

M. Mizushima, Quantum Mechanics of Atomic Spectra and Atomic Struc-
ture, Benjamin, New York, 1970.

W. Miller, Symmetry Groups and Their Applications, Academic Press,
New York, 1972.

R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications,
Wiley, New York, 1974.

B. Wybourne, The Classical Groups for Physicists, Wiley, New York, 1974.

A. Barut and R. Ra̧czka, Theory of Group Representations and Applica-
tions, World Scientific, Singapore, 1986.

W. Greiner and B. Müller, Quantum Mechanics: Symmetries, Springer,
New York, 1995.

W. Falter and C. Ludwig, Symmetries in Physics: Group Theory Applied
to Physical Problems, Springer, Berlin, 1996.

M. Wagner, Group-Theoretical Methods in Physics, Vieweg, Wiesbaden,
1998 (in German).

U. Mosel, Fields, Symmetries, and Quarks, Springer, Berlin, 1999.

F. Scheck, Quantum Physics, Part II: From Symmetry in Quantum Physics
to Electroweak Interactions, Springer, Berlin, 2007.

V. Varadarajan, Geometry of Quantum Theory, Springer, New York, 2007.

B. Khesin and R. Wendt, The Geometry of Infinite-Dimensional Groups,
Springer, Berlin, 2009.

Applications to classical mechanics can be found in:

R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley,
Reading, Massachusetts, 1978.
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J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry,
Springer, New York, 1999.

E. Binz and S. Pods, The Geometry of Heisenberg Groups: With Appli-
cations in Signal Theory, Optics, Quantization, and Field Quantization,
Amer. Math. Soc., Providence, Rhode Island, 2009.

W. Neutsch, Coordinates (in German), Spektrum, Heidelberg, 1995 (1350
pages).

Concerning the Noether theorem and the energy-momentum tensor, we refer to:

E. Noether, Invariant variational problems, Göttinger Nachrichten, Math.-
phys. Klasse 1918, 235–257 (in German).

M. Forger and H. Römer, Currents and the energy-momentum tensor in
classical field theory: a fresh look at an old problem, Annals of Physics
309 (2004), 306–389.

Classification of the crystallographic groups:

S. Novikov and A. Fomenko, Basic Elements of Differential Geometry and
Topology, Kluwer, Dordrecht, 1987.

Clifford Algebras and Spin Geometry

S. Lang, Algebra, Springer, New York, 2002.

J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin,
2008.

J. Moore, Lectures on Seiberg–Witten Invariants, Springer, Berlin, 1996.

T. Friedrich, Dirac Operators in Riemannian Geometry, Amer. Math. Soc.,
Providence, Rhode Island, 2000.

M. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964),
3–38.

H. Lawson and M. Michelsohn, Spin Geometry, Princeton University Press,
1994.

P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer
Index Theorem, CRC Press, Boca Raton, Florida, 1995.

P. Gilkey, The spectral geometry of Dirac and Laplace type, pp. 289–326.
In: Handbook of Global Analysis. Edited by D. Krupka and D. Saunders,
Elsevier, Amsterdam, 2008.

N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators,
Springer, New York, 1991.

Applications to quantum field theory:

B. Fauser, A treatise on quantum Clifford algebras, postdoctoral thesis,
University of Konstanz (Germany), 2002.
Internet: http://arxiv.org/math.QA/0202059

B. Fauser, On an easy transition from operator dynamics to generating
functionals by Clifford algebras, J. Math. Phys. 39 (1998), 4928–4947.
Internet: http://arxiv.org/hep-th/9710186

B. Fauser, On the relation of Manin’s quantum plane and quantum Clifford
algebras, Czechosl. J. Physics 50(1) (2000), 1221–1228.
Internet: http://arxiv.org/math.QA/0007137



8.16 Further Reading on Symmetry and Invariants 543

B. Fauser, Clifford geometric quantization of inequivalent vacua, Math.
Meth. Appl. Sci. 24 (2001), 885–912.
Internet: http://arxiv.org/hep-th/9719947

B. Fauser and R. Ablamowicz, Clifford and Grassmann Hopf algebras via
the BIGEBRA package for Maple, Computer Physics Communications
170(2) (2005), 115–130. Internet: http://arxiv.org/math-ph/0212032

Riemann Surfaces

The theory of Riemann surfaces combines analysis, algebra, geometry, algebraic
geometry, and number theory with each other in a beautiful way. We recommend:

M. Waldschmidt, P. Moussa, J. Luck, and C. Itzykson (Eds.), From Num-
ber Theory to Physics, Springer, New York, 1995 (collection of survey
articles).

L. Ahlfors, Complex Analysis, McGraw Hill, 1966 (classic textbook).

J. Jost, Compact Riemann Surfaces: An Introduction to Contemporary
Mathematics, Springer, Berlin, 1997.

O. Forster, Lectures on Riemann Surfaces, Springer, Berlin, 1981.

R. Narasimhan, Compact Riemann Surfaces. Lectures given at the ETH
Zurich, Birkhäuser, Basel, 1997.

M. Farkas and I. Kra, Riemann Surfaces, Springer, New York, 1992.

M. Farkas and I. Kra, Theta Constants, Riemann Surfaces and the Modular
Group: An Introduction with Applications to Uniformization Theorems,
Partition Identities and Combinatorial Number Theory, Amer. Math. Soc.,
Providence, Rhode Island, 2001.

Conformal Field Theory and Infinite-Dimensional Lie Algebras

H. Kastrup, On the advancement of conformal transformations and their
associated symmetries in geometry and theoretical physics, Ann. Phys.
(Berlin) 17 (2008), 631–690.

V. Kac, Infinite-Dimensional Lie Algebras, Cambridge University Press,
1990.

J. Fuchs, Affine Lie Algebras and Quantum Groups: An Introduction
with Applications in Conformal Field Theory, Cambridge University Press,
1992.

P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory,
Springer, New York, 1997.

Supersymmetry

As an introduction to supersymmetry including supersymmetric Riemann surfaces,
we recommend:

J. Jost, Geometry and Physics (functorial approach to supersymmetry),
Springer, Berlin, 2009.

The supersymmetric version of the Standard Model in particle physics can be found
in:
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S. Weinberg, Quantum Field Theory, Vol. III, Cambridge University Press,
2000.

W. Hollik, E. Kraus, M. Roth, C. Rupp, K. Sibold, and D. Stöckinger,
Renormalization of the minimal supersymmetric standard model, Nuclear
Physics B 639 (2002), 3–65.

D. Bailin and A. Love, Supersymmetric Gauge Field Theory and String
Theory, Institute of Physics, Bristol, 1996.

Furthermore, we recommend:

J. Lopuszanski, An Introduction to Symmetry and Supersymmetry in
Quantum Field Theory, World Scientific, Singapore, 1991.

M. Chaichian and R. Hagedorn, Symmetries in Quantum Mechanics: From
Angular Momentum to Supersymmetry, Institute of Physics, Bristol, 1998.

I. Buchbinder and S. Kuzenko, Ideas and Methods of Supersymmetry and
Supergravity or A Walk Through Superspace, Institute of Physics, Bristol,
1995.

A. Khrennikov, Superanalysis, Kluwer, Dordrecht, 1999.

J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Uni-
versity Press, 1991.

V. Varadarajan, Supersymmetry for Mathematicians, Courant Lecture
Notes, Amer. Math. Soc., Providence, Rhode Island, 2004.

D. Freed, Five Lectures on Supersymmetry, Amer. Math. Soc., Providence,
Rhode Island, 1999.

D. Freed, D. Morrison, and I. Singer (Eds.), Quantum Field Theory, Su-
persymmetry, and Enumerative Geometry, Amer. Math. Soc., Providence,
Rhode Island, 2006.

P. Deligne, E. Witten et al. (Eds.), Lectures on Quantum Field Theory: A
Course for Mathematicians Given at the Institute for Advanced Study in
Princeton, Vols. 1, 2, Amer. Math. Soc., Providence, Rhode Island, 1999.

V. Guillemin and S. Sternberg, Supersymmetry and Equivariant de Rham
Theory, Springer, Berlin, 1999.

S. Bellucci, S. Ferrara, and A. Marrani, Supersymmetric Mechanics, Vol.
1: Supersymmetry, Noncommutativity, and Matrix Models, Vol. 2: The
Attractor Mechanism and Space Time Singularities, Springer, Berlin, 2006.

P. Binétruy, Supersymmetry: Theory, Experiment, and Cosmology, Oxford
University Press, 2006.
P. Srivasta, Supersymmetry, Superfields and Supergravity: An Introduc-
tion, Adam Hilger, Bristol, 1985.

V. Cortés (Ed.), Handbook of Pseudo-Riemannian Geometry and Super-
symmetry, European Mathematical Society, Zurich, 2010.

Classic Monographs

S. Lie and F. Engel, Theory of Transformation Groups, Vols. 1–3, Teubner,
Leipzig, 1888. Reprint: Chelsea Publ. Company, 1970 (foundation of the
local theory of Lie groups and Lie algebras) (in German).

C. Chevalley, Theory of Lie Groups, Princeton University Press, 1946 (15th
printing, 1999) (foundation of the global theory).
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H. Weyl, The Theory of Groups and Quantum Mechanics, Dover, New
York, 1931 (German edition: Springer, Berlin, 1929).

H. Weyl, The Classical Groups: Their Invariants and Representations,
Princeton University Press, 1938 (2nd edition with supplement, 1946; 15th
printing, 1997).

H. Weyl, Symmetry, Princeton University Press, 1952.

E. Wigner, Group Theory and its Applications to the Quantum Mechanics
of Atomic Spectra, Academic Press, New York, 1959. (German edition:
Springer, Berlin, 1931).

E. Wigner, Symmetries and Reflections, Indiana University Press, Bloom-
ington, 1970.
L. Pontryagin, Topological Groups, Gordon and Breach, 1966 (Russian
edition: 1938).

D. Montgomery and L. Zippin, Topological Transformation Groups, Inter-
science Publishers, New York, 1955.

N. Jacobson, Lie Algebras, Dover, New York, 1962.

V. Bargmann, Representations in Mathematics and Physics, Springer,
Berlin, 1970.

F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott-
Foresman, Glenview, Illinois, 1971.

J. Serre, Linear Representations of Finite Groups, Springer, New York,
1977.

J. Serre, Lie Algebras and Lie Groups, Springer, Berlin, 1992.

G. Hochschild, Basic Theory of Algebraic Groups and Lie Algebras,
Springer, New York, 1981.

M. Hammermesh, Group Theory and its Applications to Physical Prob-
lems, Dover, New York, 1989.

S. Lang, SL(2,R), Addison–Wesley, Reading, Massachusetts, 1975.

V. Varadarajan, Lie Groups, Lie Algebras, and Their Representations,
Springer, New York, 1984.

T. Bröcker and T. tom Dieck, Representation Theory of Compact Lie
Groups, Springer, Berlin, 1985.

Locally Compact Groups

E. Wigner, On unitary representations of the inhomogeneous Lorentz
group, Ann. of Math. 40 (1939), 149–204.

V. Bargmann, Irreducible representations of the Lorentz group, Ann. of
Math. 48 (1947), 568–640.

V. Bargmann, On unitary ray representations of continuous groups, Ann.
of Math. 59 (1954), 1–46.

I. Gelfand, R. Minlos, and Ya. Shapiro, Representations of the Rotation
and Lorentz Groups and Their Applications, Pergamon Press, New York,
1963.

Y. Ohnuki, Unitary Representations of the Poincaré Group and Relativis-
tic Wave Equations, World Scientific, Singapore, 1987.
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A. Knapp, Representation Theory of Semi-Simple Groups, Princeton Uni-
versity Press, 1986.

A. Knapp, Lie Groups, Lie Algebras, and Cohomology, Princeton Univer-
sity Press, 1988.

A. Knapp, Lie Groups Beyond an Introduction, Birkhäuser, Boston, 1996.

M. Stroppel, Locally Compact Groups, European Mathematical Society,
Zurich, 2006.

A lot of material can be found in:

N. Bourbaki, Lie Groups and Lie Algebras, Chaps. 1–3, Springer, New
York, 1989.

N. Bourbaki, Lie Groups and Lie Algebras, Chaps. 4–6, Springer, New
York, 2002.

A. Onishchik et al. (Eds.), Lie Groups and Lie Algebras I–III, Encyclopedia
of Mathematical Sciences, Springer, New York, 1993.

Quantum Groups

As an introduction, we recommend:

C. Kassel, M. Rosso, and V. Turaev, Quantum Groups and Knot Invari-
ants, Société Mathématique de France, Paris, 1997.

Furthermore, we recommend:

A. Klimyk and K. Schmüdgen, Quantum Groups and Their Representa-
tions, Springer, Berlin, 1997 (many concrete examples).

S. Shnider and S. Sternberg, Quantum Groups. From Coalgebras to Drin-
feld Algebras. A Guided Tour, International Press, Boston, 1997.

M. Majid, Foundations of Quantum Group Theory, Cambridge University
Press, 1995.

T. Timmermann, An Invitation to Quantum Groups and Duality: From
Hopf Algebras to Multiplicative Unitaries and Beyond, European Math-
ematical Society, 2008 (compact and locally compact quantum groups;
approach via operator algebras, generalization of Pontryagin duality).

In addition, we recommend:

Yu. Manin, Topics in Noncommutative Geometry, Princeton University
Press, 1991.

S. Woronowicz, Tannaka–Krein duality for compact matrix pseudogroups.
Twisted SU(N) groups, Invent. math. 93 (1987), 35–76.

S. Woronowicz, Compact quantum groups. Lectures given at ‘Les Houches
1995’, pp. 845–884. See the next quotation.

A. Connes, K. Gawȩdzki, and J. Zinn-Justin (Eds.), Quantum Symmetries,
Les Houches, 1995, North-Holland, Amsterdam, 1998.

A. Pressley, Quantum Groups and Lie Theory, Cambridge University
Press, 2001.

R. Street, Quantum Groups: A Path to Current Algebra, Cambridge Uni-
versity Press, 2007 (theory of categories).

The theory of quantum groups allows many applications in mathematics and
physics:



8.16 Further Reading on Symmetry and Invariants 547

C. Yang, Some exact results for the many-body problem in one dimension
with repulsive delta-function interaction, Phys. Rev. Lett. 19 (1967), 1312–
1315.

R. Baxter, Exactly Solved Models in Statistical Mechanics, Academic
Press, New York, 1982.

L. Faddeev, Integrable models in 1 + 1-dimensional quantum field theory.
Lectures given at ‘Les Houches 1982’, pp. 561–608. Edited by R. Stora and
B. Zuber, North-Holland, Amsterdam, 1984.

L. Faddeev, How the algebraic Bethe ansatz works for integrable models.
Lectures given at ‘Les Houches 1995’, pp. 149–220. Edited by A. Connes
et al., North-Holland, Amsterdam, 1998.

V. Turaev, Quantum Invariants of Knots and 3-Manifolds, de Gruyter,
Berlin, 1994.

H. de Vega, Integrable Quantum Field Theories and Statistical Models:
Yang–Baxter and Kac–Moody Algebras, World Scientific, Singapore, 2000.

Tables

For working with Lie groups and semisimple Lie algebras along with their repre-
sentations, it is useful to use material summarized in tables. This can be found
in:

P. Atkins, M. Child, and C. Philips, Tables for Group Theory, Oxford
University Press, 1978.

B. Slansky, Group theory for unified model building, Physics Reports 79(1)
(1981), 1–128.

N. Bourbaki, Lie Groups and Lie Algebras, Chaps. 4–6, Springer, New
York, 2002.

R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications,
Wiley, New York, 1974.

B. Simon, Representations of Finite and Compact Groups, Amer. Math.
Soc., Providence, Rhode Island, 1996.

G. Ljubarskij, The Application of Group Theory in Physics, Pergamon
Press, Oxford.

L. Frappat, A. Sciarinno, and P. Sorba, Dictionary of Lie Algebras and
Super Lie Algebras, Academic Press, New York, 2000.

A. Onishchik, Lectures on Real Semisimple Lie Algebras and Their Rep-
resentations, European Mathematical Society, 2004.

G. Koster, J. Dimmock, R. Wheeler, and H. Statz, Properties of the Thirty-
Two Point Groups, MIT Press, Cambridge, Massachusetts, 1969.

W. Neutsch, Coordinates: Theory and Applications, Spektrum, Heidel-
berg, 1350 pages (in German).

For realizations of the exceptional Lie algebras and their Lie groups, we refer to
Jacobson (1962) quoted on page 545 and to:

N. Jacobson, The Exceptional Lie Algebras, Mimeographed Lecture Notes,
Yale University, New Haven, Connecticut, 1957.

J. Adams, Lectures on Exceptional Lie Groups, University Chicago Press,
1996.
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Differential Geometry and Gauge Theory

Standard textbooks in modern differential geometry:

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols.
1, 2, Wiley, New York, 1963.

M. Spivak, A Comprehensive Introduction to Differential Geometry, Vols.
1–5, Publish or Perish, Boston, 1979.

J. Jost, Riemannian Geometry and Geometric Analysis, 5th edition, Sprin-
ger, Berlin, 2008.

Furthermore, we recommend:

S. Novikov and T. Taimanov, Geometric Structures and Fields, Amer.
Math. Soc., Providence, Rhode Island, 2006.

B. Dubrovin, A. Fomenko, and S. Novikov, Modern Geometry: Methods
and Applications, Vols. 1–3, Springer, New York, 1992 (including topolog-
ical methods).

Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick, Analysis,
Manifolds, and Physics. Vol. 1: Basics; Vol. 2: 92 Applications, Elsevier,
Amsterdam, 1996.

T. Frankel, The Geometry of Physics, Cambridge University Press, 2004.

B. Felsager, Geometry, Particles, and Fields, Springer, New York, 1997.

V. Ivancevic and T. Invancevic, Applied Differential Geometry: A Modern
Introduction, World Scientific, Singapore, 2007.

E. Bick and F. Steffen (Eds.), Topology and Geometry in Physics, Springer,
Berlin, 2005.

Fiber bundles and characteristic classes:

J. Milnor and J. Stasheff, Characteristic Classes, Princeton University
Press, 1974.

D. Husemoller, Fibre Bundles, Springer, New York, 1994.

Mathematical approach to gauge theory:

K. Marathe, Topics in Physical Mathematics, Springer, London, 2010.

M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Prince-
ton University Press, 1993.

G. Naber, Topology, Geometry, and Gauge Fields, Springer, New York,
1997.

Gauge theory, solitons, and the topology of manifolds:

R. Rajaraman, Solitons and Instantons: An Introduction to Solitons and
Instantons in Quantum Field Theory, Elsevier, Amsterdam, 1987.

A. Kasmann, Glimpses of Soliton Theory: The Algebra and Geometry of
Nonlinear Partial Differential Equations, Amer. Math. Soc., Providence,
Rhode Island, 2011.

D. Freed and K. Uhlenbeck, Instantons and Four-Manifolds, Springer, New
York, 1984.

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer, New
York, 2001.

J. Moore, Lectures on Seiberg–Witten Invariants, Springer, Berlin, 1996.
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J. Morgan, The Seiberg–Witten Equations and Applications to the Topol-
ogy of Four-Manifolds, Princeton University Press, 1996.

S. Donaldson and P. Kronheimer, The Geometry of Four-Manifolds, Ox-
ford University Press, 1990.

P. Kronheimer and T. Mirowka, Monopoles and Three-Manifolds, Cam-
bridge University Press, 2007.

S. Donaldson, Floer Homology Groups, Cambridge University Press, 2002.

M. Atiyah, Collected Works, Vol. V: Gauge Theories, Cambridge Univer-
sity Press, 2004.

C. Yang, Hermann Weyl’s contributions to physics, pp. 7–21. In: Hermann
Weyl (1885–1955), Springer, Berlin, 1985.

Gauge theory in physics:

C. Taylor (Ed.), Gauge Theories in the Twentieth Century, World Scien-
tific, Singapore, 2001.

M. Monastirsky, Topology of Gauge Fields and Condensed Matter, Plenum
Press, New York, 1993.

L. Faddeev and A. Slavnov, Gauge Fields, Benjamin, Reading, Mas-
sachusetts, 1980.

A. Das, Lectures on Quantum Field Theory, World Scientific, Singapore,
2008.

M. Böhm, A. Denner, and H. Joos, Gauge Theories of the Strong and
Electroweak Interaction, Teubner, Stuttgart, 2001.

T. Kugo, Gauge Field Theory, Springer, Berlin, 1997 (translated from
Japanese into German).

Yu. Makeenko, Methods of Contemporary Gauge Theory, Cambridge Uni-
versity Press, 2002.

I. Atchinson and A. Hey, Gauge Theories in Particle Physics, Institute of
Physics, Bristol, 1993.

D. Bailin and A. Love, Introduction to Gauge Field Theory, Institute of
Physics, Bristol, 1996.

D. Bailin and A. Love, Supersymmetric Gauge Field Theory and String
Theory, Institute of Physics, Bristol, 1996.

B. Zwiebach, A First Course in String Theory, Cambridge University Press,
2004.

K. Becker, M. Becker, and J. Schwarz, String Theory andM -Theory, Cam-
bridge University Press, 2006.

S. Hollands, Renormalized Yang–Mills fields in curved spacetime, Rev.
Math. Phys. 20(9) (2008), 1033–1172.
Internet: http://arxiv.org/0705.3340

P. Langacker, The Standard Model and Beyond, CRC Press, Boca Raton,
Florida, 2010.
Supplementary material: http://www.sns.ias.edu/ pgl/SMB/

C. Yang, Selected Papers, 1945–1980, Freeman, New York, 1983.

Concerning the Standard Model in elementary particle physics, see also the refer-
ences given on page 346.
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tion: Development of Mathematics in the 19th Century, with a large ap-
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A. Borel, Essays in the History of Lie Groups and Algebraic Groups, His-
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For a long time, Lie lived in Germany. He was a professor of mathematics at
Leipzig University from 1886 until 1898. But all the time he was missing the
beauty of his homeland Norway. As a critically ill man, he returned to Norway
in 1898 where he died in 1899.



Problems 551
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James (Ed.), History of Topology, Elsevier, Amsterdam, 1999.

E. Scholz (Ed.), Hermann Weyl’s ‘Space-Time-Matter’ and a General In-
troduction to his Scientific Work, Birkhäuser, Basel, 2001.
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et horizons, Hermann, Paris, 2005.

Problems

8.1 The correct index picture. Consider the following equations:

• T ij + Sij = U ij , T iAij = T k
irB

ri
kj , T

ij
ik + Sij

ki = Urj
kr , T

i + Si = Ui,

• εijkviwjek, εijkv
iwjek, T

ij
ij + Skr

kr = UabVba, A
i
i +BkilC

kli = BjCj ,

• BrArs = BkC
ks, gijv

ivj , gijv
ivj .

Which of these equations do not have the correct index picture (i.e., every
additive term has the same free indices)?
Solution: There are precisely five equations which do not have the correct index
picture (namely, number four, six, nine, and eleven).

8.2 Special transformation law (Lie derivative). Let vi and wi be tensorial families.
Use an explicit computation in order to show that vi∂iw

j − wi∂iv
j is again a

tensorial family.
Solution: We have to show that

vi
′
∂i′w

j′ − wi′∂i′v
j′ =

∂xj
′

∂xj
· (vi∂iwj − wi∂iv

j). (8.174)

In fact, it follows from vi
′

= ∂xi′

∂xi · vi and wj′ = ∂xj′

∂xj · wj together with the
chain rule that

vi
′ ∂wj′

∂xi′
= vi

∂xi
′

∂xi
· ∂w

j′

∂xi′
= vi

∂wj′

∂xi
=

∂2xj
′

∂xi∂xj
viwj +

∂xj
′

∂xj
vi
∂wj

∂xi
.

Since ∂2xj′

∂xi∂xj v
iwj = ∂2xj′

∂xj∂xi , we get (8.174).

8.3 The Lie derivative. Compute LvT
ij , LvTjk, and LvT

l
jk.

Solution: From Lv(SiT j) = (LvS
i)T j + SiLvT

j we get

Lv(SiT j) = (vs∂sS
i)T j − (Ss∂sv

j)T j + Si(vs∂sT
j) − SiT s∂sv

j)

= vs∂s(S
iT j) − SsT j∂sv

i − SiT s∂sv
j .

Hence LvT
ij = vs∂sT

ij − T sj∂sv
i − T is∂sv

j .
Similarly, we get the following expressions:
• LvTjk = vs∂sTjk − Tsj∂svs − T js∂kv

s,
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• LvT
l
jk = vs∂sT

ljk − T l
sk∂jv

s − T l
js∂kv

s + T s
jk∂sv

l.

8.4 The covariant partial derivative. Compute ∇iT
jk, ∇iTjk, and ∇iT

l
jk.

Solution: A similar argument as in Problem 8.3 yields

∇i(S
jT k) = (∇iS

j)T k + Sj(∇iT
k) = (∂iS

j + Γ j
irS

r)T k + Sj(∂iT
k + Γ k

irT
r)

= ∂i(S
jT k) + Γ j

irS
rT k + Γ k

irS
jT r.

Hence ∇iT
jk = ∂iT

jk + Γ j
irT

rk + Γ k
irT

jr.
Analogously, we get the following:
• ∇iTjk = ∂iTjk − Γ s

ijTsk − Γ s
ikTjs,

• ∇iT
l
jk = ∂iT

l
jk − Γ s

ijT
l
sk − Γ s

ikT
l
js + Γ l

isT
s
jk.

8.5 Cartan’s magic formula – the brute force approach. Use an explicit computation
in order to prove

Lvω = iv(dω) + d(ivω) (8.175)

for the special case where ω = ωij dx
i ∧ dxj with ωij = −ωji.

Solution: Note that
• Lvωij = vs∂sωij + ∂iv

s · ωsj + ∂jv
s · ωis,

• Lvωij = vs∂sωij + ∂iv
s · ωsj − ∂jvs · ωsi,

• Lvω = Lvωij · dxi ∧ dxj = (vs∂sωij + 2∂iv
s · ωsj) dxi ∧ dxj ,

• ivω = 2vsωsjdx
j (by (8.64)),

• d(ivω) = (2∂iv
s · ωsj + 2vs∂iωsj) dx

i ∧ dxj

= (2∂iv
s · ωsj − vs∂iωjs + vs∂jωis) dx

i ∧ dxj ,

• dω = ∂[sωij] dx
s ∧ dxi ∧ dxj ,

• iv(dω) = 3vs∂[sωij]dx
i ∧ dxj = 3vs∂[iωjs]dx

i ∧ dxj .
Recall that ∂[sωij] denotes the antisymmetrization of ∂sωij . Using antisymme-
try, we get the claim (8.175).

8.6 Cartan’s magic formula – the elegant index-free inductive approach. Use the
Leibniz rule (8.97) for the Lie derivative of differential forms on page 491 in
order to prove (8.175).
Solution: Let ω be a p-form. Because of (8.97), the proof can be reduced to the
special cases where p = 0 and p = 1, by induction.
• p = 0 : Use ivω = 0.
• p = 1 : The formula is true for ω := dxk. In fact, using dd = 0 and the

commutation relation d(Lvμ) = Lv(dμ), we get

(ivd+ div)(dΘ) = d(ivdΘ) = d(LvΘ) = Lv(dΘ).

Finally, set Θ := xk.
8.7 The special case of the Euclidean manifold E

3. Set n = 3 and gij := δij , as well
as x1 := x, x2 := y, x3 := z. Let U, u, v, w be smooth real-valued functions.47

Show that:

• ∗1 = dx ∧ dy ∧ dz and ∗(dx ∧ dy ∧ dz) = 1;

• ∗dx = dy ∧ dz and ∗(dy ∧ dz) = dx.

47 On the Euclidean manifold E
3, one has not to distinguish between lower and

upper indices. For example, Tk = gklT
l = δklT

l = T k, and so on.
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The remaining relations follow by using the cyclic permutation x⇒ y ⇒ z ⇒ x.
In particular, ∗ ∗ ω = ω for all p-forms ω, p = 0, 1, 2, 3. Furthermore, recalling
d∗ω = (−1)p ∗ d ∗ ω, show that:

• dU = Uxdx+ Uydy + Uzdz and d∗U = 0;

• d(udx+vdy+wdz) = (vx−uy)dx∧dy+(wy−vz) dy∧dz+(uz−wx) dz∧dx;
• d(u dy ∧ dz + v dz ∧ dx+ w dx ∧ dy) = (ux + vy + wz) dx ∧ dy ∧ dz;
• d(U dx ∧ dy ∧ dz) = 0;

• d∗(udx+ vdy + wdz) = −ux − vy − wz;

• d∗(u dy∧dz+v dz∧dx+w dx∧dy) = (wy−vz) dx+(uz−wx)dy+(vx−uy) dz;
• d∗(U dx ∧ dy ∧ dz) = −Ux dy ∧ dz − Uy dz ∧ dx− Uz dx ∧ dy.
These operations are closely related to:

• v = ui + vj + wk and div v = ux + vy + wz;

• curl v = (wy−vz) i+(uz−wx) j+(vx−uy) k, and gradU = Uxi+Uyj+Uzk.

Finally, recalling Δ := d∗d+ dd∗, show that:

• ΔU = d∗dU = −div gradU = −Uxx − Uyy − Uzz;

• Δ(udx+ vdy + wdz) = Δu · dx+Δv · dy +Δw · dz;
• Δ(u dy∧dz+v dz∧dx+w dx∧dy) = Δu ·dy∧dz+Δv ·dz∧dx+Δw ·dx∧dy;
• Δ(U dx ∧ dy ∧ dz) = ΔU · dx ∧ dy ∧ dz.

Solution: If ω = 1
3!
ωijk dx

i ∧ dxj ∧ dxk = ω123 dx ∧ dy ∧ dz, then

∗ω = 1
3!
ωijkε

ijk = ω123.

Moreover, if ω = 1
2
ωij dx

i ∧ dxj with ωij = −ωji, then

ω = ω12 dx ∧ dy + ω31 dz ∧ dy + ω23 dy ∧ dz.

Hence
∗ω = 1

2
εijkω

ij · dxk = ω23 dx+ ω31 dy + ω12 dz.

Moreover, if ω = udx+ vdy + wdz, then

dω = du ∧ dx+ dv ∧ dy + dw ∧ dz.

Since du = uxdx + uydy + uzdz, we get du ∧ dx = uydy ∧ dx + uzdz ∧ dx. In
addition, dy ∧ dx = −dx ∧ dy.
Concerning ΔU , see the next problem in a more general setting.

8.8 The Hodge codifferential and the Hodge Laplacian in n-dimensional Cartesian
coordinates. Choose a tensorial family gij with gij := δij , i, j = 1, . . . , n for
a fixed observer O. Let ω = 1

p!
ωi1...ip dx

i1 ∧ · · · ∧ dxip where ωi1...ip is an

antisymmetric tensorial family. Show that, for the observer O, we get

(i) d∗ω = − 1
(p−1)!

δij∂jωii2...ip dx
i2 ∧ · · · ∧ dxip , and

(ii) Δω = − 1
p!
δij∂i∂jωi1...ip dx

i1 ∧ · · · ∧ dxip .
Solution: Ad (i). Consider the special case ω = ωidx

i where p = 1. Then:
• ∗ω = 1

(n−1)!
εii2...inω

i · dxi2 ∧ · · · ∧ dxin ;

• d(∗ω) = 1
(n−1)!

εii2...in ∂kω
i ·dxk∧dxi2∧· · ·∧dxin = ∂iω

i dx1∧dx2∧· · ·∧dxn;

• d∗ω = − ∗ d(∗ω) = −∂iωi.
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Argue similarly if p = 2, . . . , n.

Ad (ii). Again let ω = ωidx
i. Then:

• d∗ω = −∂iωi;
• dd∗ω = −∂k∂iωi dxk;
• dω = ∂kωi dx

k ∧ dxi = ∂[kωi] dx
k ∧ dxi;

• d∗dω = −2∂k∂[kωi] dx
i = (−∂k∂kωi + ∂k∂iωk) dx

i;

• (dd∗ + d∗d)ω = −∂k∂kωi · dxi.
Argue similarly if p = 2, . . . , n.

8.9 Covariant partial derivative and Cartan derivative. Prove Prop. 8.21 on page
499. Solution: By definition of the covariant partial derivative,

∇iωi1...ip = ∂iωi1...ip −
p
X

σ=1

Γ s
iiσωi1...iσ−1siσ+1...ip .

Antisymmetrization yields

∇[iωi1...ip] = ∂[iωi1...ip] − Altii1...ip

p
X

σ=1

Γ s
iiσωi1...iσ−1siσ+1...ip .

Interchanging the indices i and iσ, the sign changes. Hence

∇[iωi1...ip] = ∂[iωi1...ip] + Altii1...ip

p
X

σ=1

Γ s
iσiωi1...iσ−1siσ+1...ip .

Summing up, we get

2∇[iωi1...ip] = 2∂[iωi1...ip] − Altii1...ip

p
X

σ=1

T s
iiσωi1...iσ−1siσ+1...ip ,

by using Γ s
iiσ − Γ s

iσi = T s
iiσ .

8.10 Proof of the determinant identity (8.167) on page 524. Solution: Consider the
special case where n = 2. By the Leibniz rule, we have the partial derivative

∂

∂xk

˛

˛

˛

˛

˛

g11 g12
g21 g22

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

∂kg11 ∂kg12
g21 g22

˛

˛

˛

˛

˛

+

˛

˛

˛

˛

˛

g11 g12
∂kg21 ∂kg22

˛

˛

˛

˛

˛

.

By the Laplace expansion formula, this is equal to

∂kg11 · A11 + ∂kg12 · A12 + ∂kg21 · A21 + ∂22 · A22

where Aij denotes the adjunct of the determinant g to the element gij . By
(1.14) on page 77, Aij = ggji. Since gij = gji, we also have gij = gji. Summa-
rizing,

∂kg = ggij∂kgij .

This is the claim if n = 2. In the general case where n = 3, 4, . . . , the proof
proceeds analogously.

8.11 The Hodge codifferential in terms of the covariant partial derivative. Prove
(8.157) on page 519. Hint: See Choquet–Bruhat et al., Analysis, Manifolds,
and Physics, page 317, Vol. 1, Elsevier, Amsterdam, 1996.

8.12 Summary of important identities for differential forms. Let ω, μ, ν be differen-
tial forms of degree p, q, r = 0, 1, . . . , respectively, and let α, β be real numbers.
Prove some of the following formulas:
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• (ω ∧ μ) ∧ ν = ω ∧ (μ ∧ ν) (associative law);

• ω ∧ μ = (−1)pqμ ∧ ω (supercommutative law);48

• If q = r, then ω ∧ (αμ+ βν) = αω ∧ μ+ βω ∧ ν (distributive law);

• d(ω ∧ μ) = dω ∧ μ+ (−1)pω ∧ dμ (graded Leibniz rule);

• d(dω) = 0 (Poincaré’s cohomology rule);

• d∗(d∗ω) = 0 (Hodge’s homology rule);

• Lv(dω) = d(Lvω);
• Lvω = iv(dω) + d(ivω) (Cartan’s magic formula);

• dω(v,w) = Lv(ω(w))−Lw(ω(v))−ω([v,w]) (special Cartan–Lie formula);

• For p = 2, 3, . . . , n, the general Lie–Cartan formula reads as follows:

dω(v0,v1, . . . ,vp) =

p
X

i=0

(−1)iLviω(v0, . . . , v̂i, . . . ,vp)

+
X

i<j

(−1)i+jω([vi,vj ],v0, . . . , v̂i, . . . , v̂j , . . .vp).

By convention, the terms v̂i and v̂j have to be cancelled. Here, we define
[v,w] := Lvw (Lie bracket). Explicitly, v = vi∂i,w = wj∂j , and

[v,w] = vi∂iw
j − wi∂iv

j .

• ∗ ∗ ω = (−1)p(n−p) sgn(g) · ω (Hodge star operator);

• ω ∧ ∗μ = (ω|μ) · υ (where p = q, and υ is the volume form);

• (∗ω| ∗ μ) = (ω|μ) and 〈∗ω| ∗ μ〉 = 〈ω|μ〉 (where p = q);

• d∗ω = (−1)p ∗−1 d ∗ ω = (−1)n(p+1)+1 sgn(g) ∗ d ∗ ω (Hodge codifferential);

• 〈dω|μ〉 = 〈ω|d∗μ〉 and 〈Δω|μ〉 = 〈ω|Δμ〉 (p = q);

• d(f∗ω) = f∗(dω) (pull-back; f is a smooth map – see page 476);

•
R

f∗Ω f
∗ω =

R

Ω
ω (pull-back; f is a diffeomorphism);

• f∗(Lvω) = Lf∗v(f∗ω) (f is a diffeomorphism);

• f∗(ivω) = if∗v(f∗ω) (f is a diffeomorphism);

• iv(ivω) = 0 and iv(ω∧μ) = (ivω)∧μ+(−1)pω∧ ivμ (contraction product);

• Lf·vω = f · Lvω + df ∧ ivω (f is a smooth map);

• Lv(ω ∧ μ) = (Lvω) ∧ μ+ ω ∧ Lvμ (Leibniz rule);

• Lv(dω) = d(Lvω) and Lv(ivω) = iv(Lvω);

• L[v,w]ω = Lv(Lwω) − Lw(Lv)ω;

• f∗([v,w]) = [f∗v, f∗w] (f is a diffeomorphism);49

• (f ◦ g)∗v = f∗(g∗v) (f is a diffeomorphism);

• i[v,w]ω = Lv(iwω) − iw(Lvω);

• ∗(Δω) = Δ(∗ω);

• d(Δω) = Δ(dω) and d∗(Δω) = Δ(d∗ω).

48 If p = 0, then ω∧μ = μ∧ω := ωμ. Note that in this special case, ω is a function.
49 The definition of f∗v (push-forward) and f∗v (pull-back) of a velocity vector

field v can be found on pages 661 and 662, respectively.



556 8. A Glance at Invariant Theory

Hint: Consider first the simple cases where we have p-differential forms with
the special values p = 1, 2. Use explicit, completely elementary computations.
This will motivate the proofs in the general case. A lot of material can be found
in H. Flanders, Differential Forms with Applications to Physical Sciences, Aca-
demic Press, New York, 1989, Y. Choquet-Bruhat et al., Analysis, Manifolds,
and Physics, Vols. 1, 2, Elsevier, Amsterdam, 1996, and in T. Frankel, The
Geometry of Physics, Cambridge University Press, 2004.

8.13 The universal Kähler interior differential calculus. Study the very detailed
paper by E. Kähler, The interior differential calculus, Rend. Mat. Appl. 21
(5), 425–523 (in German). See also E. Kähler, Mathematical Works, pp. 483–
595, de Gruyter, Berlin, 2004.



9. Applications of Invariant Theory to the
Rotation Group

Geometry has to be independent of the choice of the observer.
Folklore

9.1 The Method of Orthonormal Frames on the
Euclidean Manifold

We want to use the method of orthonormal frames in order to define

• the gradient gradΘ of a smooth temperature field Θ, and
• both the divergence, div v, and the curl, curl v, of a smooth velocity vector field

v on the Euclidean manifold E
3.

The physical meaning of gradΘ, div v, and curl v will be discussed in Sect. 9.1.4.
Einstein’s summation convention. In this chapter, we sum over equal upper

and lower indices from 1 to 3. For example, xiei =
P3

i=1 x
iei.

9.1.1 Hamilton’s Quaternionic Analysis

Consider a fixed right-handed Cartesian (x, y, z)-coordinate system of the Euclidean
manifold E

3 with the right-handed orthonormal basis i, j,k at the origin P0. Let
iP , jP ,kP be a right-handed orthonormal basis of the tangent space TPE

3 at the
point P , which is obtained from the basis vectors at the origin i, j,k by translation
(Fig. 9.1). In about 1850, Hamilton (1805–1865) introduced the differential operator

D :=
∂

∂t
+
∂

∂x
iP +

∂

∂y
jP +

∂

∂z
kP

and applied it to the quaternionic function

Q(t, x, y, z) := Θ(t, x, y, z) + u(t, x, y, z)iP + v(t, x, y, z)jP + w(t, x, y, z)kP .

The point P has the Cartesian coordinates (x, y, z). To simplify notation, we replace
iP , jP ,kP by i, j,k, respectively. Furthermore, we set

• ∇ := ∂
∂x

i + ∂
∂y

j + ∂
∂x

k (Hamilton’s nabla operator), and

• v(P ) := u(P )i + v(P )j + w(P )k.

Finally, since the symbol ∇i denotes the covariant partial derivative in modern
tensor analysis, we replace the vector symbol ∇ by

∂ :=
∂

∂x
i +

∂

∂y
j +

∂

∂z
k.

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 10,
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 9.1. Orthonormal basis of the tangent space TPE
3

Setting ∂t := ∂
∂t

, we get

D = ∂t + ∂ and Q(t, P ) = Θ(t, P ) + v(t, P ).

Hamilton investigated the quaternionic product

D ·Q = (∂t + ∂) · (Θ + v) = ∂tΘ + ∂tv + ∂Θ − ∂v + ∂ × v.

This way, we get

• ∂Θ = gradΘ := ∂Θ
∂x

i + ∂Θ
∂y

j + ∂Θ
∂z

k (gradient of the temperature field Θ),

• ∂v = div v := ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

(divergence of the velocity vector field v),

• ∂ × v = curl v (curl of the velocity vector field v). Explicitly,

curl v :=

˛

˛

˛

˛

˛

˛

˛

i j k
∂
∂x

∂
∂y

∂
∂z

u v w

˛

˛

˛

˛

˛

˛

˛

. (9.1)

Hence

curl v =

„

∂w

∂y
− ∂v

∂z

«

i +

„

∂u

∂z
− ∂w

∂x

«

j +

„

∂v

∂x
− ∂u

∂y

«

k.

• (v∂)Θ = (v grad)Θ :=
“

u ∂
∂x

+ v ∂
∂y

+ w ∂
∂z

”

Θ. Here, (v(P )grad)Θ(P ) is called

the directional derivative of the temperature field Θ at the point P in direction
of the velocity vector v(P ) at the point P .

• (v∂)E := (v grad)E =
“

u ∂
∂x

+ v ∂
∂y

+ w ∂
∂z

”

E. Here, (v(P )grad)E(P ) is called

the directional derivative of the electric field E at the point P in direction of the
velocity vector v(P ) at the point P .

• ΔΘ = −∂2Θ := −
“

∂2

∂2x
+ ∂2

∂2y
+ ∂2

∂2z

”

Θ (Laplacian Δ applied to the tempera-

ture field Θ).1

• ΔE = −∂2 · E := −
“

∂2

∂2x
+ ∂2

∂2y
+ ∂2

∂2z

”

E.

The definitions of

gradΘ, div v, curl v, (v grad)Θ, (v grad)E, ΔΘ, ΔE

given above depend on the choice of the right-handed Cartesian (x, y, z)-coordinate
system.

1 Concerning our sign convention for the Laplacian, see page 471.
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However, we will show below that the definitions are indeed independent of
the choice of the right-handed Cartesian coordinate system.

To this end, we will use the method of orthonormal frames which is the prototype
for the use of invariant theory in geometry and analysis. The idea of this method
is to define quantities for a fixed right-handed Cartesian coordinate system. Then
we show next that the quantity under consideration is independent of the choice of
the right-handed Cartesian coordinate system. To this end, we set

x1 := x, x2 := y, x3 := z, ∂i :=
∂

∂xi
and e1 := i, e2 := j, e3 := k.

9.1.2 Transformation of Orthonormal Frames

To begin with, let us study the change of orthonormal systems. Let e1, e2, e3 be a
right-handed orthonormal system in the Euclidean Hilbert space E3. Furthermore
choose three arbitrary vectors e1′ , e2′ , e3′ in E3 such that

0

B

@

e1′

e2′

e3′

1

C

A

= G

0

B

@

e1

e2

e3

1

C

A

(9.2)

where G is an invertible real (3 × 3)-matrix.

Proposition 9.1 The transformed vectors e1′ , e2′ , e3′ form a right-handed or-
thonormal basis in the Euclidean space E3 iff the transformation matrix G is an
element of the Lie group SO(3), that is, GGd = I and detG = 1.

Proof. (I) Let e1′ , e2′ , e3′ be a right-handed orthonormal system. Then, we have
the orthonormality condition,

ei′ej′ = δi′j′ , i, j = 1, 2, 3,

and the volume product satisfies the relation (e1′e2′e3′) = 1 because of the right-
handed orientation. Hence

0

B

@

e1′

e2′

e3′

1

C

A

“

e1′ , e2′ , e3′

”

=

0

B

@

e1′e1′ e1′e2′ e1′e3′

e2′e1′ e2′e2′ e2′e3′

e3′e1′ e3′e2′ e3′e3′ .

1

C

A

=

0

B

@

1 0 0

0 1 0

0 0 1

1

C

A

= I.

This is equal to

G

0

B

@

e1

e2

e3

1

C

A

“

e1, e2, e3

”

Gd = GIGd = GGd.

Hence GGd = I. Finally, by (9.2), we get

1 = (e1′e2′e3′) = detG · (e1e2e3) = detG.

(II) Conversely, if GGd = I and detG = 1, then the same argument shows that
e1′ , e2′ , e3′ is a right-handed orthonormal system. �
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Corollary 9.2 The vectors e1′ , e2′ , e3′ form a left-handed orthonormal basis in the
Euclidean space E3 iff the transformation matrix G is an element of the Lie group
O(3) (that is, GGd = I) with detG = −1.

Proof. Note that (e1′e2′e3′) = −1 if e1′ , e2′ , e3′ is a left-handed orthonormal basis.
�

Set x = xi
′
ei′ . Here, x1′ , x2′ , x3′ are the coordinates of the position vector

x with respect to the basis e1′ , e2′ , e3′ . By (2.84) on page 164, it follows from

xi
′
ei′ = xiei that

0

B

@

x1′

x2′

x3′

1

C

A

= (G−1)d

0

B

@

x1

x2

x3

1

C

A

. (9.3)

If e1′ , e2′ , e3′ is an orthonormal basis, then (G−1)d = G. This implies the following
specific property of orthonormal frames (without taking orientation into account).

Proposition 9.3 Under a change of orthonormal frames, the three basis vectors
e1, e2, e3 and the corresponding Cartesian coordinates x1, x2, x3 transform them-
selves in the same way.

9.1.3 The Coordinate-Dependent Approach (SO(3)-Tensor
Calculus)

We are now able to prove the main result of Hamilton’s vector analysis.

Theorem 9.4 The definitions of gradΘ, div v, curl v, (v grad)Θ, (v grad)E,
ΔΘ, and ΔE do not depend on the choice of the right-handed Cartesian coordinate
system.

Proof. The passage from a right-handed Cartesian coordinate system to another
right-handed Cartesian coordinate system corresponds to an SO(3)-transformation.
Therefore, we will use the SO(3)-tensor calculus introduced on page 453. In par-
ticular, we have the form-invariant tensorial families

δij , δ
ij , δij , ε

ijk, εijk. (9.4)

The basis vectors ei transform like a tensorial family. Lifting and lowering of indices
can be performed by means of δij and δij . For example, ei := δijej . Furthermore,
since the transformation formula for the coordinates xi is given by a matrix which
does not depend on the position of the point on the Euclidean manifold E

3, the
differential operator ∂i sends tensorial families again to tensorial families. Note that

• v := viei, E = Eiei,

• gradΘ = ∂iΘ · ei, div v = ∂iv
i, curl v = εijk∂ivj · ek,

• (v grad)Θ = vi∂iΘ, (v grad)E = (vi∂i)E
jej ,

• ΔΘ = −δij∂i∂jΘ = −∂j∂jΘ, , ΔE = −(δij∂i∂j)E
kek.
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Fig. 9.2. Measuring velocity vector fields

All the expressions do not have any free indices. Thus, the claim follows immediately
from the principle of index killing. �

If we allow the use of both right-handed and left-handed Cartesian coordinate
systems, then we have to pass to the O(3)-tensor calculus. Let us assign to right-
handed (resp. left-handed) coordinate systems the orientation number ι = 1 (resp.
ι = −1). Then we have to use the O(3)-tensorial families

δij , δ
ij , δij , ι · εijk, ι · εijk, ei, x

i.

In particular, we write
curl v = ι · εijk∂ivj ek.

All the other expressions considered above remain unchanged. In addition, for the
vector product we get

v × w = ι · εijkviwjek.

Examples. Let a be a real number, and let a,ω be fixed vectors. Furthermore, let

x := xi + yj + zk, as well as r := |x| =
p

x2 + y2 + z2. Then:

• grad(ax) = a,

• gradU(r) = U ′(r)x
r
,

• div
`

a
3
x
´

= a,

• div(U(r)x) = 3U(r) + rU ′(r),

• curl( 1
2
ω × x) = ω.

9.1.4 The Coordinate-Free Approach

The physical interpretation of the temperature gradient gradΘ. This will
be discussed in Sect. 10.1 on page 645. Roughly speaking, the vector gradΘ(P )
points to the direction of the maximal growth of the temperature Θ at the point
P , and the length of the vector gradΘ(P ) measures the maximal growth rate of
the temperature Θ at the point P .

The physical interpretation of div v and curl v. Let v be a smooth velocity
vector field defined in an open neighborhood of the point P0 in the Euclidean
manifold E

3. So far, we have defined div v and curl v by using a right-handed
Cartesian coordinate system. It follows from tensor analysis that this definition
does not depend on the choice of the right-handed Cartesian coordinate system. It
is also possible to determine div v and curl v in an invariant way by the following
limits (Fig. 9.2).
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Fig. 9.3. Special velocity vector fields

Theorem 9.5 Consider a ball of radius R about the point P0. Contracting the ball
to the point P0, we get

div v(P0) = lim
R→0

3

4πR3

Z

S2
R

(P0)

vn dS.

Here, n denotes the outer unit normal vector on the boundary of the ball. Similarly,
consider a disk of radius R about the point P0 which is perpendicular to the unit
vector n. Contracting the disk to the point P0, we get

ncurl v(P0) = lim
R→0

1

πR2

Z

S1
R

(P0)

vdx.

Proof. By the mean theorem for integrals,

Z

|x−x0|≤R

div v dxdydz =
4πR3

3
div v(P1)

where P1 is a suitable point of the ball of radius R about the point P0. The Gauss–
Ostrogradsky integral theorem on page 680 tells us that

3

4πR3

Z

|x−x0|≤R

div v dxdydz =
3

4πR3

Z

S2
R

(P0)

nv dS.

Letting R → 0, we get div v(P0). Similarly, we obtain ncurl v(P0) by using the
Stokes integral theorem on page 680:

Z

B2
R

(P0)

ncurl v dS =

Z

S1
R

(P0)

vdx.

�

Examples. Choose the origin, P0 := O. Consider the smooth map P �→ vP . In
terms of physics, this is a smooth velocity vector field on the Euclidean manifold
E

3. By definition, the streamline t �→ x(t) passing through the point P0 at time t0
is given by the solution of the differential equation

ẋ(t) = v(x(t)), t ∈ J, x(t0) = x0, (9.5)

where J is an open interval on the real line which contains the point t0.
Let us consider the prototypes of velocity vector fields.
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Fig. 9.4. Rotational velocity vector field

• Source at the origin (Fig. 9.3(a)): Choose the velocity vector field v(x) := a
3
x

with a > 0 . Then

3

4πR3

Z

S2
R

(O)

vn dS =
3

4πR3
· aR

3

Z

S2
R

(O)

dS = a.

Letting R→ 0, we get div v(O) = a, by Theorem 9.5. The origin is a source for
the streamlines of the velocity vector field, and div v(O) measures the strength
of this source.

• Sink at the origin (Fig. 9.3(b)): Let a < 0. Again we get div v(O) = a. In this
case, the origin is a sink for the streamlines of the velocity vector field.

• Circulation around the z-axis (Fig. 9.4): Let us choose a right-handed Cartesian
(x, y, z)-coordinate system with the right-handed orthonormal basis i, j,k at the
origin O. Let ω := ωk with ω > 0. Consider the velocity vector field

v(x) := 1
2
(ω × x).

This corresponds to the counter-clockwise rotation of fluid particles about the
z-axis with the angular velocity ω. The streamlines are circles parallel to the
(x, y)-plane centered at points of the z-axis.

Since the velocity vectors are tangent vectors to the streamlines, we get

1

πR2

Z

S1
R

(O)

vdx =
1

πR2
· ωR

2

2

Z

S1
R

(O)

ds = ω.

Letting R → 0, we get k curl v(O) = ω, by Theorem 9.5. Thus, the z-component
of the vector curl v(O) measures the angular velocity of the fluid particles near the
origin.

9.1.5 Hamilton’s Nabla Calculus

To begin with, let us summarize the key relations in classical vector calculus. Let
Θ, Υ : R

3 → R and v,w : R
3 → E3 be smooth temperature functions and smooth

velocity vector fields, respectively.

Proposition 9.6 The following hold:

(i) curl gradΘ = 0,

(ii) div curl v = 0,

(iii) grad(Θ + Υ ) = gradΘ + gradΥ ,

(iv) grad(ΘΥ ) = (gradΘ)Υ +Θ gradΥ,
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(v) grad(vw) = (v grad)w + (wgrad)v + v × curlw + w × curl v,

(vi) div(v + w) = div v + div w,

(vii) div(Θv) = v(gradΘ) +Θ div v,

(viii) div(v × w) = wcurl v − v curlw,

(ix) curl(v + w) = curl v + curlw,

(x) curl(Θv) = (gradΘ) × v +Θ curl v,

(xi) curl(v × w) = (wgrad)v − (v grad)w + v div w − w div v,

(xii) ΔΘ = −div gradΘ,

(xiii) Δv = curl curl v − graddiv v,

(xiv) 2(v grad)w is equal to

grad(vw) + v div w − w div v − curl(v × w) − v × curlw − w × curl v.

(xv) v(x + h) = v(x) + (hgrad)v(x) + o(|h|), h → 0 (Taylor expansion).

The relations (xii)–(xiv) show that ΔΘ, Δv and (v grad)w can be reduced
to ‘grad’, ’div’, and ‘curl’. All the relations (i)–(xiv) above can be verified by
straightforward computations using a right-handed Cartesian coordinate system.
However, the nabla calculus works more effectively. In this connection, we take into
account that the nabla operator ∂ = i ∂

∂x
+ j ∂

∂y
+k ∂

∂z
is both a differential operator

and a vector. Therefore, mnemonically, we will proceed as follows:

• Step 1: Apply the Leibniz product rule by decorating the terms with dots.
• Step 2: Use algebraic vector operations in order to move all the dotted (resp.

undotted) terms to the right (resp. left) of the nabla operator ∂.

Proof. Ad (i), (ii). It follows from a ×Θa = 0 and a(a × b) = 0 that

∂ × ∂Θ = 0 and ∂(∂ × v) = 0.

Hence curl gradΘ = 0 and div curl v = 0.
Ad (iv). By the Leibniz product rule,

∂(ΘΥ ) = ∂(Θ̇Υ ) + ∂(ΘΥ̇ ).

Moving the undotted quantities to the left of the nabla operator, we get

∂(ΘΥ ) = Υ (∂Θ̇) +Θ(∂Υ̇ ).

Hence grad(ΘΥ ) = Υ gradΘ +Θ gradΥ.
Ad (xi). By the Leibniz rule,

∂ × (v × w) = ∂ × (v̇ × w) + ∂ × (v × ẇ).

Using the Grassmann expansion formula a × (b × c) = b(ac) − c(ab), we get

∂ × (v × w) = v̇(∂w) − w(∂v̇) + v(∂ẇ) − ẇ(∂v).

Finally, moving the undotted terms to the left of the nabla operator ∂ by respecting
the rules of vector algebra, we get

∂ × (v × w) = (w∂)v̇ − w(∂v̇) + v(∂ẇ) − (v∂)ẇ.

This is the claim (xi).
Ad (v). Use the Grassmann expansion formula b(ac) = a(bc) + a × (b × c).

The remaining proofs are recommended to the reader as an exercise. �
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9.1.6 Rotations and Cauchy’s Invariant Functions

Consider a right-handed Cartesian (x, y, z)-coordinate system with the right-handed
orthonormal basis e1, e2, e3. Let x,y, z ∈ E3, and let x = xiei, y = yiei, and
z = ziei. Then the inner product

xy = δijx
iyj

and the volume product
(xyz) = εijkx

iyjzk

are invariants under the change of right-handed Cartesian coordinate systems. If we
consider the more general case of arbitrary Cartesian (x, y, z)-coordinate systems
with an arbitrary orthonormal basis e1, e2, e3, then the inner product xy remains
an invariant. However, this is not true anymore for the volume product (xyz) which
changes sign under a change of orientation. One of the main results of classic invari-
ant theory tells us that these invariants are the only ones in Euclidean geometry.
Let us formulate this in precise terms.

The Cauchy theorem on isotropic functions. The real-valued function
f : E3 × · · · × E3 → R is called isotropic iff

f(Gx1, . . . , Gxn) = f(x1, . . . ,xn) (9.6)

for all vectors x1, . . . ,xn ∈ E3 and all unitary operators G ∈ U(E3). Moreover, the
function f is called proper isotropic iff we have the relation (9.6) for all rotations
G ∈ SU(E3). Note that a function is isotropic iff it is invariant under all rotations
and reflections x �→ −x.

Theorem 9.7 (i) If the function f is isotropic, then it only depends on all the
possible inner products

xixj , i, j = 1, . . . , n. (9.7)

(ii) If the function f is proper isotropic, then it only depends on all the possible
inner products (9.7), and all the possible volume products (xixjxk), i, j, k = 1, . . . , n.

The polynomial ring of invariants. The function f : E3 × · · · × E3 → R

considered above is called a polynomial function iff it is a real polynomial with
respect to the Cartesian coordinates of the vectors x1, . . . ,xn. Since the change of
Cartesian coordinates is described by linear transformations, this definition does
not depend on the choice of the Cartesian coordinate system.

Corollary 9.8 If the polynomial function f is proper isotropic, then it is a real
polynomial of all the possible inner products xixj, i, j = 1, . . . , n, and all the possible
volume products (xixjxk), i, j, k = 1, . . . , n.

For the classic proofs of Theorem 9.7 and Corollary 9.8, we refer to the references
given in Problem 9.5.

Examples. (a) Every proper isotropic, polynomial function f : E3 → R has
the form

f(x) = p(x2) for all x ∈ E3

where p is a polynomial of one variable with real coefficients. Such a function is
also isotropic.

(b) Every proper isotropic, polynomial function f : E3 × E3 → R has the form
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f(x,y) = p(x2,y2,xy), for all x,y ∈ E3

where p is a real polynomial of three variables.2 Such a function is also isotropic.
(c) Every proper isotropic, polynomial function f : E3 × E3 × E3 → R has the

form
f(x,y, z) = p(x2,y2, z2,xy,xz,yz, (xyz))

for all vectors x,y, z ∈ E3. Here, p is a real polynomial of seven variables.
(d) Set f(x,y, z) := (xyz)2. This polynomial function is isotropic. By Theorem

9.7, we know that f only depends on all the possible inner products of the vectors
x,y, z. Explicitly,

f(x,y, z) =

˛

˛

˛

˛

˛

˛

˛

x2 xy xz

yx y2 yz

zx zy z2

˛

˛

˛

˛

˛

˛

˛

.

This is the Gram determinant.
Let P(SU(E3)) denote the set of all the real polynomials with respect to the

variables
xixj , (xixjxk), i, j, k = 1, . . . , n, n = 1, 2, . . .

This set is closed under addition and multiplication, hence it is a commutative ring.
The commutative ring P(SU(E3)) is called the polynomial ring of invariants of the
Lie group SU(E3).

The Rivlin–Ericksen theorem on isotropic, symmetric tensor func-
tions in elasticity theory. Let Lsym(E3) denote the set of all linear self-adjoint
operators

A : E3 → E3

on the real Hilbert space E3. The linear operator T : Lsym(E3) → Lsym(E3) is
called an isotropic tensor function iff we have

R−1T (A)R = T (R−1AR)

for all linear operators A ∈ Lsym(E3) and all rotations R ∈ SU(E3).

Theorem 9.9 Let T be an isotropic tensor function. Then there exist real functions
a, b, c : R

3 → R such that

T (A) = aI + bA+ cA2 for all A ∈ Lsym(E3)

where a = a(tr(A), tr(A2), detA) together with analogous expressions for b and c.

Note the following: If λ1, λ2, λ3 are the eigenvalues of the operator A, then

tr(A) = λ1 + λ2 + λ3, tr(A2) = λ2
1 + λ2

2 + λ2
3, det(A) = λ1λ2λ3.

The proof of Theorem 9.9 together with applications to the formulation of general
constitutive laws for elastic material (generalizing the classic Hooke’s law) can be
found in Zeidler (1986), p. 204, quoted on page 1089.3

2 Note that (xxy) = (yyx) = 0. Therefore, the volume products disappear.
3 R. Rivlin and J. Ericksen, Stress-deformation relations for isotropic materials, J.

Rat. Mech. Anal. 4 (1955), 681–702.
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9.2 Curvilinear Coordinates

Mathematicians and physicists use curvilinear coordinates in order to sim-
plify computations based on symmetry.

Folklore

9.2.1 Local Observers

Let us consider the Euclidean manifold E
3. Fix a right-handed Cartesian (x, y, z)-

coordinate system equipped with the right-handed orthonormal basis iP , jP , kP at
the point P of E

3. The orthonormal basis at the origin P0 is denoted by i, j,k. As
depicted in Fig. 9.1 on page 558, the vectors iP , jP ,kP are obtained from i, j,k by
parallel transport. The change of coordinates is described by the equation

xi = xi(x, y, z), i = 1, 2, 3, (x, y, z) ∈ O+.

Suppose that

• the set O+ (resp. O) is a nonempty, open, arcwise connected subset of R
3, and

• the map (x, y, z) �→ (x1, x2, x3) is a diffeomorphism from O+ onto the subset O
of R

3.

In terms of physics, the observer O+ (resp. O) measures the coordinates (x, y, z)
(resp. (x1, x2, x3)) of the point P ∈ E

3. We set x1
+ := x, x2

+ := y, and x3
+ := z.

Typical transformation laws. The following transformation laws are crucial.

(i) Temperature field Θ: The observer O+ (resp. O) measures the temperature
Θ(x, y, z) (resp. Θ(x1, x2, x3)). By the chain rule,

∂Θ(P )

∂xi
=
∂xi+(P )

∂xi
· ∂Θ(P )

∂xi+
.

This is the transformation law for the temperature derivatives. The transfor-
mation law from the observer O to the observer O′ reads as

∂Θ(P )

∂xi′
=
∂xi(P )

∂xi′
· ∂Θ(P )

∂xi
.

This shows that ∂iΘ is a tensorial family.
(ii) Velocity components ẋi(t): Let the parameter t denote time. The observer O+

(resp. O) measures the curve

x = x(t), y = y(t), z = z(t), i = 1, 2, 3, t ∈ ] − t0, t0[

(resp. xi = xi(x(t), y(t), z(t)), i = 1, 2, 3). Set ẋi(t) := dxi(t)
dt

. Using the chain
rule, differentiation with respect to time t yields

ẋi(t) =
∂xi(P (t))

∂xi+
· ẋi+(t), i = 1, 2, 3.

This is the transformation law for the velocity components. The transformation
law from the observer O to the observer O′ reads as

ẋi
′
(t) =

∂xi
′
(P (t))

∂xi
· ẋi(t), i′ = 1′, 2′, 3′.

This shows that ẋi(t) is a tensorial family.
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Fig. 9.5. Curvilinear coordinates

The natural frame. Set b+
1 (P ) := iP , b

+
2 (P ) := jP , b

+
3 (P ) := kP . We define

bi(P ) :=
∂xi(P )

∂xi+
b+
i (P ), i = 1, 2, 3.

The vectors b1(P ),b2(P ),b3(P ) form a basis at the point P . This basis of the
tangent space TPE

3 of the Euclidean manifold E
3 at the point P is called the

natural basis of the observer O at the point P . In terms of geometry, the basis
vector b1(P ) is the tangent vector of the curve

t �→
`

x(t, x2, x3), y(t, x2, x3), z(t, x2, x3)
´

at the point P . This curve is called the x1-coordinate line passing through the point
P (Fig. 9.5(b)). Similarly, we get the basis vectors b2(P ) (resp. b3(P )) as tangent
vectors of the x2-coordinate (resp. x3-coordinate) line. Passing to another observer
O′, the chain rule yields the following transformation law from the observer O to
the observer O′:

bi′(P ) =
∂xi

′
(P )

∂xi
bi(P ), i′ = 1′, 2′, 3′.

This shows that bi is a tensorial family. A vector field on the Euclidean manifold
is given by

v(P ) = vi(P ) bi(P ).

Since v(P ) is an invariant quantity, it follows from the inverse index principle that
vi is a tensorial family.

The natural coframe. Fix the point P , and define

dxi(v(P )) = vi(P ), i = 1, 2, 3.

Then, the map dxi : TPE
3 → R is a linear functional, and dx1, dx2, dx3 is a basis of

the cotangent space T ∗
PE

3. The functionals dxi are transformed like vi. Thus, dxi

is a tensorial family.

9.2.2 The Metric Tensor

For the observer O, we define

gij(P ) := bi(P )bj(P ), i, j = 1, 2, 3. (9.8)
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For the vectors v(P ) = vi(P )bi(P ) and w(P ) = wi(P )bi(P ), the inner product
reads as

v(P )w(P ) = vi(P )gijw
j(P ).

Recall that g(P ) := det(gij(P )). The metric tensor field is given by

gP = gij(P ) dxi ⊗ dxj .

For the observer O+, we get

g+ij(P ) = b+
i (P )b+

j (P ) = δij , i, j = 1, 2, 3.

Hence

gP = δijdx
i
+ ⊗ dxj+ = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz,

and g = det(δij) = 1. By the index principle, gP does not depend on the choice of
the observer.

9.2.3 The Volume Form

Using the metric tensorial family gij , we are able to introduce the volume form υ
of the Euclidean manifold E

3 by setting

υ(P ) := ι · Eijk(P ) dxi ∧ dxj ∧ dxk.

Recall that Eijk =
√
g εijk, and ι denotes the orientation number of the local

(x1, x2, x3)-coordinate system. Explicitly,4

ι := sgn

„

∂(x1, x2, x3)

∂(x, y, z)
(P )

«

, P ∈ O+.

Since the set O+ is arcwise connected, the number ι does not depend on the choice
of the point P in O+. Recall that ι · Eijk is a tensorial family (see page 463). Thus,
the differential form υ is an invariant, by the index principle. That is, the differential
form υ does not depend on the choice of the observer (local coordinates). For the
observer O+, we get

υ = dx ∧ dy ∧ dz.

9.2.4 Special Coordinates

Let us consider typical examples for curvilinear coordinates, namely, cylindrical
coordinates, polar coordinates, and spherical coordinates. We distinguish between

• singular coordinates (i.e., the metric matrix (gij(P )) is not invertible at all the
points P , and hence the transformation law is not generated by a diffeomor-
phism), and

• regular coordinates (i.e., the transformation law is generated by a diffeomor-
phism).

From the general point of view, one has to use only regular coordinates. However,
from the practical point of view, one frequently uses singular coordinates. In a
rigorous setting, one has to use regular coordinates combined with a limit process
at the singular points of the coordinates (e.g., the North Pole and the South Pole
of earth are singular points with respect to spherical coordinates; see (9.12)).

4 Note that ∂(x1,x2,x3)
∂(x,y,z)

=
“

∂(x,y,z)

∂(x1,x2,x3)

”−1

. This follows from the fact that the

transformation (x, y, z) �→ (x1, x2, x3) is a diffeomorphism.
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Cylindrical Coordinates

Cylindrical coordinates are used for studying physical systems which are symmetric
under rotations about the z-axis.

Singular cylindrical coordinates. The basic transformation law reads as

x = � cosϕ, y = � sinϕ, z = z (9.9)

where −π ≤ ϕ ≤ π, � ≥ 0, and −∞ < z < ∞ (see Fig. 9.5(a) on page 568). Here,
we set x1 := �, x2 := ϕ, and x3 := z.

Regular cylindrical coordinates. Note that the map

(x, y, z) �→ (�, ϕ, z) (9.10)

is not a diffeomorphism defined on the set R
3. In fact, this map is not bijective,

since the point x = −1, y = z = 0 has the two angular coordinates ϕ = π and
ϕ = −π. To cure this defect, we choose a subset O of R

3. Explicitly,

O := R
3 \ {(x, y, z) : x ≤ 0, y = 0,−∞ < z <∞}.

This means that we remove a closed half-plane spanned by the negative x-axis and
the z-axis. Then the map (9.10) is a diffeomorphism from O+ onto the set

O := {(�, ϕ, z) ∈ R
3 : � > 0,−π < ϕ < π,−∞ < z <∞}.

For the Jacobian, we get

∂(x, y, z)

∂(�, ϕ, z)
=

˛

˛

˛

˛

˛

˛

˛

x� xϕ xz
y� yϕ yz
z� zϕ zz

˛

˛

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

˛

˛

cosϕ −� sinϕ 0

sinϕ � cosϕ 0

0 0 1

˛

˛

˛

˛

˛

˛

˛

= �.

The sign of the Jacobian equals the orientation number ι. Since � > 0, we get

ι = 1

for the orientation number of cylindrical coordinates.
The natural frame. Using x = xiP + yjP + zkP , we get

• b1(P ) = x� = cosϕ iP + sinϕ jP ,
• b2(P ) = xϕ = �(− sinϕ iP + cosϕ jP ),
• b3(P ) = xz = kP .

The vectors b1(P ),b2(P ),b3(P ) form the natural basis of cylindrical coordinates at
the point P (see Fig. 9.5(a) on page 568). The vector b3(P ) points to the direction
of the z-axis. Note the following peculiarity: The basis vectors b1(P ),b2(P ),b3(P )
form an orthogonal system, but they do not form an orthonormal system. For
example, the vector b2(P ) is not a unit vector if � �= 1.

It is not wise, to normalize the natural basis vectors of curvilinear coordi-
nate systems.

In fact, normalization destroys the beauty of the index principle in mathematical
physics to be discussed in Sect. 9.3.2 on page 575.

The metric tensor. Setting gij := bibj , we obtain
0

B

@

g11 g12 g13
g21 g22 g23
g31 g32 g33

1

C

A

=

0

B

@

1 0 0

0 �2 0

0 0 1

1

C

A

.
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Thus, g = det(gij) = �2. This yields the metric tensor field g = gijdx
i⊗dxj . Hence

g = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz = d�⊗ d�+ �2dϕ⊗ dϕ+ dz ⊗ dz.

Mnemonically,

ds2 = dx2 + dy2 + dz2 = d�2 + �2dϕ2 + dz2.

This tells us that the length l of a curve � = �(t), ϕ = ϕ(t), z = z(t), t0 ≤ t ≤ t1,
is given by the integral

l =

Z t1

t0

ds(t)

dt
dt =

Z t1

t0

p

�̇(t)2 + �(t)2ϕ̇(t)2 + ż(t)2 dt.

The inverse matrix of (gij) reads as

0

B

@

g11 g12 g13

g21 g22 g23

g31 g32 g33

1

C

A

=

0

B

@

1 0 0

0 �−2 0

0 0 1

1

C

A

.

For the volume form, we get

υ = dx ∧ dy ∧ dz = �d� ∧ dϕ ∧ dz.

The cylindric set U := {(x, y, z) ∈ R
3 : x2 + y2 ≤ R2, 0 ≤ z ≤ h} of radius R and

height h has the volume
meas(U) = πR2h.

Using regular cylindrical coordinates, this is obtained by the limit process

lim
ε→+0

Z

Uε

υ = lim
ε→+0

Z R

�=0

Z ϕ=π−ε

ϕ=−π+ε

Z h

z=0

� d�dϕdz = πR2h.

Here, we use the truncated set

Uε := {(�, ϕ, z) ∈ R
3 : � > 0, −π + ε < ϕ < π − ε, 0 ≤ z ≤ h}

with respect to cylindrical coordinates. Mnemonically,

dxdydz = d� · �dϕ · dz.

Polar Coordinates

Setting z = 0, cylindrical coordinates pass over to polar coordinates of the Cartesian
(x, y)-plane (see Fig. 9.5(a) on page 568). For example, the metric tensor of the
Cartesian (x, y)-plane is given by

g = dx⊗ dx+ dy ⊗ dy = d�⊗ d�+ �2dϕ⊗ dϕ,

and the volume form reads as

υ = dx ∧ dy = � d� ∧ dϕ.

Mnemonically, ds2 = dx2 + dy2 = d�2 + � dϕ2, and dxdy = d� · �dϕ.
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Fig. 9.6. Spherical coordinates

Spherical Coordinates

Spherical coordinates are used for studying physical systems which are symmetric
with respect to rotations about the origin.

Singular spherical coordinates. The basic transformation law reads as

x = r cosϑ cosϕ, y = r cosϑ sinϕ, z = r sinϑ

where r ≥ 0 and

• −π ≤ ϕ ≤ π (geographic length),
• −π

2
≤ ϑ ≤ π

2
(geographic latitude).

Our choice of the parameter values is dictated by geography. For fixed radius r > 0,
we get a sphere (e.g., the surface of earth). Then:

• ϑ = 0 (equator), ϑ = π
2

(North Pole), ϑ = −π
2

(South Pole).

Moreover, we set x1 := ϕ, , x2 := ϑ, x3 := r In this singular setting, the North Pole
of the earth has the coordinates r = R, ϑ = π

2
and −π ≤ ϕ ≤ π. Thus, the map

(x, y, z) �→ (ϕ, ϑ, r) (9.11)

is not a diffeomorphism defined on the total space R
3.

Regular spherical coordinates. Setting

O+ = R
3 \ {(x, y, z) : x ≤ 0, y = 0, −∞ < z <∞},

the map (9.11) is a diffeomorphism from the truncated space O+ onto the set

O := {(ϕ, ϑ, r) ∈ R
3 : −π < ϕ < π, −π

2
< ϑ <

π

2
, r > 0}.

For the Jacobian, we get

∂(x, y, z)

∂(ϕ, ϑ, r)
=

˛

˛

˛

˛

˛

˛

˛

xϕ xϑ xr
yϕ yϑ yr
zϕ zϑ zr

˛

˛

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

˛

˛

−r cosϑ sinϕ −r sinϑ cosϕ cosϑ cosϕ

r cosϑ cosϕ −r sinϑ sinϕ cosϑ sinϕ

0 r cosϑ sinϑ

˛

˛

˛

˛

˛

˛

˛

= r2 cosϑ.

The sign of the Jacobian equals the orientation number ι. Since r > 0, we get

ι = 1

for the orientation number of spherical coordinates.
Natural frame. Using

x = xiP + yjP + zkP = r cosϑ cosϕ iP + r cosϑ sinϕ jP + r sinϑ kP ,

we get
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• b1 = xϕ = −r cosϑ sinϕ iP + r cosϑ cosϕ jP ,
• b2 = xϑ = −r sinϑ cosϕ iP − r sinϑ sinϕjP + r cosϑ kP .
• b3 = xr = cosϑ cosϕ iP + cosϑ sinϕ jP + sinϑ kP .

The natural basis vector b1(P ) at the point is a tangent vector of the latitude circle
through the point P (Fig. 9.6(b)). The natural basis vector b2(P ) at the point P
is a tangent vector of the meridian through the point P . Finally, the natural basis
vector b3(P ) at the point P points to the outer radial direction.

Metric tensor. Setting gij := bibj , we get
0

B

@

g11 g12 g13
g21 g22 g23
g31 g32 g33

1

C

A

=

0

B

@

r2 cos2 ϑ 0 0

0 r2 0

0 0 1

1

C

A

.

This shows that the natural basis vectors b1,bj ,bj form an orthogonal system.
The metric tensor field g = gijdx

i ⊗ dxj reads as

g = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz = r2 cos2 ϑ dϕ⊗ dϕ+ r2dϑ⊗ dϑ+ dr ⊗ dr.
Moreover, g = det(gij) = r4 cos2 ϑ. Mnemonically,

ds2 = r2 cos2 ϑ dϕ2 + r2 dϑ2 + dr2.

This tells us that the length of a curve ϕ = ϕ(t), ϑ = ϑ(t), r = r(t), t0 ≤ t ≤ t1, is
given by the integral

Z t1

t0

ds(t)

dt
dt =

Z t1

t0

q

r(t)2 cos2 ϑ(t) · ϕ̇(t)2 + r(t)2ϑ̇(t)2 + ṙ(t)2 dt.

The inverse matrix of (gij) reads as
0

B

@

g11 g12 g13

g21 g22 g23

g31 g32 g33

1

C

A

=

0

B

@

(r cosϑ)−2 0 0

0 r−2 0

0 0 1

1

C

A

.

The volume form. For the volume form, we get υ = Eijk dxi ∧ dxj ∧ dxk with
Eijk =

√
g εijk = r2 cosϑ εijk. Hence

υ = dx ∧ dy ∧ dz = r2 cosϑ dϕ ∧ dϑ ∧ dr.
For example, the ball B

3
R(0) of radius R > 0 centered at the origin has the volume

meas(B3
R(0)) =

4πR3

3
.

Using regular spherical coordinates, this is obtained from the following limit process:

lim
ε→+0

Z

B3
R,ε

(0)

υ = lim
ε→+0

Z π−ε

ϕ=−π+ε

Z π/2

ϑ=−π/2

Z R

r=0

r2 cos2 ϑ dϕdϑdr =
4πR3

3
. (9.12)

Mnemonically,

dxdydz = r2 cosϑ dϕdϑdr.

Further reading. A lot of material about special coordinates and their various
applications in geometry and physics can be found in the monumental monograph
by

W. Neutsch, Coordinates: Theory and Applications, Spektrum, Heidel-
berg, 1350 pages (in German).
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9.3 The Index Principle of Mathematical Physics

Replace partial derivatives by covariant partial derivatives, and use only
equations which possess the correct index picture.

Golden rule

9.3.1 The Basic Trick

Let us start with the Poisson equation

−ε0(Uxx + Uyy + Uzz) = � on O+ (9.13)

with the positive dielectricity constant ε0. Here, we fix a right-handed Cartesian
(x, y, z)-coordinate system on the Euclidean manifold E

3. The functions � and U
depend on the variables x, y, z. We are given the function � : O+ → R. We are
looking for the function U : O+ → R. In Maxwell’s theory of electrostatics, the
electric field E is given by the equation

E = −gradU

where U is called the potential of the electric field E. This way, the equation (9.13)
passes over to the first Maxwell equation

−ε0 div E = �

which tells us the crucial physical fact that the electric charge density � is the source
for the electric field E.

Our goal is to transform the given equation (9.13) into arbitrary local coordi-
nates. To this end, we proceed as follows.

Step 1: Use a right-handed (resp. left-handed) Cartesian (x, y, z)-system with
the right-handed (resp. left-handed) orthonormal basis b1,b2,b3. Write the given
equation as an O(3)-tensor equation by using the O(3)-tensorial families

δij , δ
ij , δij , ι · εijk, ι · εijk, ∂i, bi, bi, dxi

and the orientation number ι of the Cartesian coordinate system. In particular, for
equation (9.13) we get

− ε0δij∂i∂jU = �. (9.14)

Note that this equation has the correct index picture. Therefore, the equation is
valid in every right-handed or left-handed Cartesian coordinate system.

Step 2: Choose a local (curvilinear) (x1, x2, x3)-coordinate system. Write the
O(3)-tensor equation as a general tensor equation by using the following replace-
ments:

• δij ⇒ gij , δ
ij ⇒ gij , δij ⇒ δij ,

• ι · εijk ⇒ ι · Eijk, ι · εijk ⇒ ι · Eijk,
• bi ⇒ bi (natural basis), dxi ⇒ dxi (natural cobasis),
• bi ⇒ bi (lifting of indices).5

5 This means δisbs ⇒ gisbs.
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The crucial point is that we replace partial derivatives by covariant partial deriva-
tives, that is,

∂i ⇒ ∇i, ∂i ⇒ ∇i

where we set ∂i := δis∂s and ∇i := gis∇s (lifting of indices). This way, the initial
O(3)-tensor equation passes over to a general tensor equation which is valid in every
local (curvilinear) coordinate system. For example, the equation (9.13) passes over
to

−ε0 gij∇i∇jU = �. (9.15)

This equation is valid in every local coordinate system. In a right-handed or left-
handed Cartesian coordinate system, equation (9.15) coincides with (9.14).

As another example, consider the vector product v×w. In a right-handed (resp.
left-handed) Cartesian coordinate system, we have

v × w = ι · εijkviwjbk

where v = vibi and w = wibi. The replacement described above yields

v × w = ι · Eijkviwjbk.

This equation is valid in every local coordinate system. Recall that Eijk =
√
g εijk,

and bk = gksbs.

9.3.2 Applications to Vector Analysis

Let us consider the temperature field Θ, the velocity vector field v = vibi, and the
electric field E = Eibi. By page 560, we have the following O(3)-tensor equations
in Cartesian coordinate systems:

• gradΘ = ∂iΘ bi,
• div v = ∂iv

i,
• curl v = ι · εijk∂ivj bk,
• DvΘ = (v grad)Θ = vi∂iΘ,
• DvE = (vi∂iE

j)bj ,
• DE = ∂iE

j dxi ⊗ bj ,
• ΔE = −(δij∂i∂jE

k)bk.

Using the replacements described above, we get the following relations which are
valid in arbitrary local coordinate systems:

• gradΘ = ∂iΘ bi,6

• div v = ∇iv
i,

• curl v = ι · Eijk∇ivj bk,
• DvΘ = (v grad)Θ = vi∂iΘ,
• DvE = (v grad)E = vi(∇iE

j)bj ,
• DE = ∇iE

j dxi ⊗ bj ,
• ΔE = −gij∇i(∇jE

k)bk,

6 Note that ∇iΘ = ∂iΘ if Θ is a scalar field.
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Alternatively, recalling that g = (gij), we obtain

div v = ∇iv
i =

1√
g
∂i(

√
g vi). (9.16)

This follows from (8.168) on page 525. Hence

ΔU = − 1√
g
∂i(

√
g ∂iU).

In fact, both sides of this equation are tensorial invariants, by (8.168), and they
coincide with respect to any Cartesian coordinate system. Thus, they coincide with
respect to any local coordinate system. Consequently, the original Poisson equation
(9.13 ) can be written as

− ε0√
g
∂i(

√
g ∂iU) = �. (9.17)

The point is that this equation is valid in arbitrary local coordinate systems. On
the other hand, this invariant equation only contains classical partial derivatives.
This underlines the importance of the Weyl derivative in mathematical physics.

In Problem 9.1, we will show how equation (9.17) can be elegantly obtained by
using the Dirichlet variational problem about the minimal electrostatic energy. The
history of the famous Dirichlet problem is discussed in Vol. I, Sect. 10.4.

9.4 The Euclidean Connection and Gauge Theory

The goal of geometers is to describe the geometry of the Euclidean man-
ifold (and of more general manifolds) by formulas which are valid in ar-
bitrary local (curvilinear) coordinate systems. Note that simple geometric
properties can be hidden by using local coordinates which generate clumsy
Christoffel symbols.

Folklore

The geometry of the Euclidean manifold E
3 is trivial, since

• there exists a global parallel transport on E
3, and

• the curvature of E
3 vanishes identically.

Nevertheless, let us formulate this trivial geometry in terms of Cartan’s language
which can be generalized to the geometry of curved manifolds with respect to a
symmetry group in modern differential geometry (realization of Klein’s 1872 Erlan-
gen program in differential geometry). This section serves as an intuitive motivation
for the general theory which will be considered in Chaps. 13 through 17 (Ariadne’s
thread in gauge theory).
By definition, the Euclidean connection is the Levi-Civita connection with respect
to the metric tensor of the Euclidean manifold E

3. Explicitly, the Christoffel symbols
for the observer O with respect to the local coordinates (x1, x2, x3) read as follows:

Γ k
ij = 1

2
gks
„

∂gjs
∂xi

+
∂gis
∂xj

− ∂gij
∂xs

«

, i, j, k = 1, 2, 3. (9.18)

With respect to the observer O+ (Cartesian (x, y, z)-coordinates), we have gij = δij ,
and hence the Christoffel symbols vanish identically.
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9.4.1 Covariant Partial Derivative

According to Sect. 8.8.3 on page 494, the Christoffel symbols induce the covariant
partial derivative. In particular, let v(P ) = vj(P )bj(P ) and w(P ) = wi(P )bi(P )
be velocity vector fields on the Euclidean manifold E

3. Then we have the tensorial
families vi and wi at hand. This yields the tensorial family

∇iv
j = ∂iv

j + Γ j
isv

s, i, j = 1, 2, 3.

Recall that ∂i = ∂
∂xi . In addition, we get the directional derivative7

Dvw := vi∇iw
jbj .

By the index principle, this definition does not depend on the choice of the observer.
For a special observer O+ using right-handed Cartesian (x, y, z)-coordinates, we get

• ∇iw
j = ∂iw

j , i, j = 1, 2, 3, and
• Dvw = (v grad)w = vi∂iw

jb+
j ;8

• ∂ib+
j ≡ 0 for all indices.

9.4.2 Curves of Least Kinectic Energy (Affine Geodesics)

In Euclidean geometry, straight lines can be characterized by both the
principle of least kinetic energy and the principle of minimal length. This
is the paradigm for the fundamental principle of least action in physics. In
terms of mathematics, this includes the theory of geodesics on Riemannian
and pseudo-Riemannian manifolds.

Folklore

The principle of least kinetic energy. Let −∞ < t0 < t1 < ∞. Consider the
motion x = x(t), t ∈ [t0, t1] of a point of mass m > 0 on the Euclidean manifold
E

3. Here, x denotes a position vector located at the origin. Let us consider the
variational principle

Z t1

t0

1
2
m ẋ(t)2 dt = min! (9.19)

together with the boundary conditions: x(t0) = x0 and x(t1) = x1. That is, the
initial position x(t0) of the mass point at time t0 and the terminal position x(t1)
of the mass point at time t1 are fixed. In terms of physics, we are looking for the
trajectories of the motion with minimal kinetic energy. The solutions of (9.19) are
called energetic geodesics, affine geodesics, or trajectories of minimal kinetic energy.
Intuitively, we expect that the energetic geodesics are straight lines, since no forces
are acting. Let us prove this rigorously.

Theorem 9.10 On the Euclidean manifold E
3, precisely the segments of straight

lines are affine geodesics.

7 More precisely, we have to write Dv(P )w(P ) := vi(P )∇iw
j(P ) · bj(P ).

8 In order to emphasize that Dvw concerns the Euclidean connection, we fre-
quently replace the symbol Dvw by dvw. This convention coincides with the
notation used in finite-dimensional and infinite-dimensional Banach spaces.
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Proof. (I) Necessary condition. Set L(ẋ) := 1
2
mẋ2. If the trajectory t �→ x(t) is a

solution of (9.19), then we have the Euler–Lagrange equation

d

dt
Lẋ(ẋ(t)) = 0, t0 ≤ t ≤ t1.

Hence ẍ(t) = 0, t0 ≤ t ≤ t. This implies that t �→ x(t) is the segment of a straight
line.

(I) Sufficient condition. Since the original minimum problem (9.19) is of quadra-
tic type, Jacobi’s accessory minimum problems based on the second variation is also
quadratic. Explicitly, we get

Z t1

t0

1
2
mḣ(t)2 dt = min! (9.20)

together with the boundary conditions: h(t0) = 0 and h(t1) = 0. The same argu-
ment as in (I) shows that the problem (9.24) has only the trivial solution h ≡ 0.
Consequently, every solution of the Euler–Lagrange equation to (9.19) is a solution
of (9.19) (see Sect. 6.5.3 of Vol. II). �

Curvilinear coordinates. Using the local coordinates (x1, x2, x3), we get
L(ẋ1, ẋ2, ẋ3) = gij(x

1, x2, x3)ẋiẋj . The original minimum problem (9.24) reads as

Z t1

t0

L(ẋ1(t), ẋ2(t), ẋ3(t)) dt = min! (9.21)

together with the boundary conditions: xi(t0) = xi0 and xi(t1) = xi1, i = 1, 2, 3. By
(8.159) on page 520, the solution of (9.19) satisfies the Euler–Lagrange equations

ẍ(t) + ẋi(t)Ai(x(t)) ẋ(t) = 0, t0 ≤ t ≤ t1

with the so-called connection matrices

Ai :=

0

B

@

Γ 1
i1 Γ

1
i2 Γ

1
i3

Γ 2
i1 Γ

2
i2 Γ

2
i3

Γ 3
i1 Γ

3
i2 Γ

3
i3

1

C

A

, i = 1, 2, 3.

Explicitly,

ẍk(t) = −ẋi(t)Γ k
ij(x

1(t), x2(t), x3(t)) · ẋj(t), k = 1, 2, 3 (9.22)

which are the equations of motion of the mass point with respect to the local
(x1, x2, x3)-coordinates. In terms of physics, the Christoffel symbols describe fictive
friction forces generated by the choice of the observer. In terms of geometry, the
differential equations (9.22) describe affine geodesics which are segments of straight
lines with respect to Cartesian coordinates.

Cylindrical coordinates. The variational problem (9.21) can be used in order
to compute effectively the Christoffel symbols. Let us explain this in the special case
of cylindrical coordinates. Set x1 := �, x2. = ϕ, x3. = z. Then

L(�, ϕ, z) = 1
2
m(�̇2 + �2ϕ̇2 + ż2).

The Euler–Lagrange equations read as d
dt
L�̇ = L�,

d
dt
Lϕ̇ = Lϕ, and d

dt
Lż = Lz.

Explicitly, we get the differential equations
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�̈ = � · ϕ̇2, ϕ̈ = −2

�
· �̇ϕ̇, z̈ = 0

for the affine geodesics t �→ (�(t), ϕ(t), z(t)). This yields

Γ 1
22 = −�, Γ 2

12 = Γ 2
21 =

1

�
.

All the other Christoffel symbols vanish identically. Setting

Ai =

0

B

@

Γ 1
i1 Γ

1
i2 Γ

1
i3

Γ 2
i1 Γ

2
i2 Γ

2
i3

Γ 3
i1 Γ

3
i2 Γ

3
i3

1

C

A

, i = 1, 2, 3,

we obtain the so-called connection matrices

A1 =

0

B

@

0 0 0

0 1
�

0

0 0 0

1

C

A

, A2 =

0

B

@

0 −� 0
1
�

0 0

0 0 0

1

C

A

, A3 = 0.

For the local connection form A, we get

A = Aidx
i =

0

B

@

0 −�dϕ 0
dϕ
�

d�
�

0

0 0 0

1

C

A

. (9.23)

Hence
Fij = ∂iAi − ∂jAj + AiAj −AjAi = 0, i, j = 1, 2.

This yields the trivial curvature form F = 1
2
Fijdx

i ∧ dxj = 0, as expected. For
spherical coordinates, we refer to Problem 9.2.

9.4.3 Curves of Minimal Length

Parallel to the principle of least kinetic energy (9.19), let us study the variational
problem

Z t1

t0

|ẋ(t)| dt = min! (9.24)

together with the boundary conditions: x(t0) = x0 and x(t1) = x1. That is, the
initial position x(t0) and the terminal position x(t1) of the curve x = x(t) with the
parameter t ∈ [t0, t1] are fixed. The solutions of (9.24) are called curves of minimal
length.

Theorem 9.11 On the Euclidean manifold E
3, precisely the segments of straight

lines are curves of minimal length.

Proof. Choose a Cartesian (x, y, z)-coordinate system. Note that

|ẋ(t)| =
p

ẋ(t)2 + ẏ(t)2 + ż(t)2.
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Suppose that the map t �→ (x(t), y(t), z(t)) is a solution of (9.24). Then the Euler–
Lagrange equation reads as

d

dt

„

1

|x(t)|
dx(t)

dt

«

= 0.

Introducing the arc length s as the curve parameter, it follows from ds(t)
dt

= |ẋ(t)|
that

d2x(s)

ds2
= 0.

Consequently, if there exists a solution of (9.24), then it is the segment of a straight
line, and the minimal value of the integral from (9.24) is the distance between the
endpoints of the given position vectors x0 and x1 at the origin. Since the segment
under consideration realizes this distance, it is indeed a solution of (9.24). �

Further reading. We recommend:

J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin,
2008.

W. Klingenberg, Lectures on Closed Geodesics, Springer, Berlin, 1978.

W. Klingenberg, Riemannian Geometry, de Gruyter, Berlin, 1982.

9.4.4 The Gauss Equations of Moving Frames

The integrability conditions for the Gauss equations of moving frames on
the Euclidean manifold E

3 yield the vanishing of the Riemann–Christoffel
curvature tensor (flatness of the Euclidean connection).

Folklore

Consider a fixed local (x1, x2, x3)-coordinate system. Let (x1, x2, x3) denote the
coordinates of the point P .

Theorem 9.12 The natural basis vectors b1,b2,b3 satisfy the Gauss equations of
moving frames:

∂ibj(P ) = Γ l
ij(P ) bl(P ), i, j,= 1, 2, 3. (9.25)

This tells us that the Christoffel symbols describe the infinitesimal change of
the natural basis vectors.
Proof. Recall that bj = ∂x

∂xj . Since ∂2x
∂xi∂xj = ∂2x

∂xj∂xi , we get

gjr = bjbr = brbj = grj .

This proves the symmetry of the metric tensorial family gij . Since the three vectors
b1(P ),b2(P ), and b3(P ) form a basis at the point P , there exist real numbers
Bk

ij(P ) such that

∂ibj(P ) = Bk
ij(P ) bk(P ), i, j = 1, 2, 3.

From bkbr = gkr, we get ∂ibj · br = Bk
ijgkr. Multiplication with gkr yields

Bk
ij = δkmB

m
ij = gkrgrmB

m
ij = gkr∂ibj · br.

Differentiation of brbj = grj gives
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∂ibr · bj + br∂ibj = ∂igrj .

Interchanging the indices and summing the terms yields

∂ibj · br = 1
2
(∂igrj + ∂jgir − ∂rgij).

This implies Bk
ij = Γ k

ij . �

The language of classic tensor analysis. Using the matrices Ai := (Γ l
ik)

and Fij := (Rl
ijk) (the upper index l is the row index, and the lower index k is the

column index), we get

Fij = ∂iAj − ∂jAi + AiAj −AjAi, i, j = 1, 2, 3. (9.26)

Explicitly, we get both the components of the Riemann–Christoffel tensorial family,

Rl
ijk = ∂iΓ

l
jk − ∂jΓ l

ik + Γ l
isΓ

s
jk − Γ l

jsΓ
s
ik (9.27)

and the components of the torsion tensor tensorial family, T k
ij := Γ k

ij − Γ k
ji.

Proposition 9.13 For all indices, we have
(i) Rl

ijk ≡ 0 (vanishing curvature of E
3), and

(ii) T k
ij ≡ 0 (vanishing torsion of E

3).

Proof. If we use Cartesian coordinates on E
3, then the Christoffel symbols Γ k

ij

vanish identically. Hence T k
ij ≡ 0 and Rk

ijl ≡ 0. In an arbitrary local coordinate

system on E
3, the Christoffel symbols do not vanish identically, as a rule. But,

Rk
ijl and T k

ij are tensorial families (see Sect. 8.9.1 on page 504). Finally, recall the
following: If a tensorial family vanishes identically in a special local coordinate
system, then it vanishes identically in all local coordinate systems. �

From the analytic point of view we want to show that:

The integrability conditions for the Gauss equations (9.25) of moving
frames yield Rk

ijl ≡ 0.

In mathematics, integrability conditions are always obtained form the commuta-
tivity relation ∂i∂j = ∂j∂i for partial derivatives. In particular, it follows from the
Gauss equation ∂jbk = Γ l

jkbl of moving frames that

∂i∂jbk = ∂iΓ
l
jkbl + Γ l

jk∂ibl = (∂iΓ
l
jk + Γ l

irΓ
r
jk)bl.

Using ∂i∂jbk ≡ ∂j∂ibk, we obtain Rl
ijkbl ≡ 0. Hence Rl

ijk ≡ 0.

9.4.5 Parallel Transport of a Velocity Vector and Cartan’s
Propagator Equation

We are given the smooth curve

C : P = P (t), t ∈ R.

We assign to every point P of the curve C a velocity vector v(P ). We say that
the family {v(P )}P∈C is parallel along the curve C iff it is parallel in the usual
sense. We set v(t) := v(P (t)), and we assume that t �→ v(t) is a smooth map from
the open interval R to E3. Consider a local (x1, x2, x3)-coordinate system which
describes the curve in the form
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C : xk = xk(t), k = 1, 2, 3, t ∈ R.

With respect to the natural basis b1,b2,b3 of the local coordinate system, we get

v(t) = vj(t) bj(x
1(t), x2(t), x3(t)), t ∈ R. (9.28)

In order to simplify the notation, set v :=

0

B

@

v1

v2

v3

1

C

A

.

Proposition 9.14 The family {v(P (t))}t∈R of velocity vectors is parallel along
the curve C if and only if

v̇(t) + ẋ(t)iAi(P (t)) · v(t) = 0, t ∈ R. (9.29)

Introducing the so-called local connection form A := Aidx
i, the equation (9.29)

reads as
v̇(t) + Ax(t)(ẋ(t)) · v(t) = 0, t ∈ R.

Explicitly, the differential equation (9.29) of parallel transport for velocity vectors
reads as

v̇k(t) + ẋi(t)Γ k
ij(P (t)) · vj(t) = 0, k = 1, 2, 3, t ∈ R. (9.30)

Proof. The family {v(t)} of velocity vectors is parallel along C iff

v̇(t) = 0, t ∈ R.

By (9.28), this is equivalent to

v̇j(t)bj(P (t)) + vj(t) · ∂ibj(P (t)) ẋi(t) = 0, j = 1, 2, 3, t ∈ R.

By the Gauss frame equation (9.25),

{v̇k(t) + ẋi(t)Γ k
ij(P (t)) · vj(t)} bk(P (t)) = 0, t ∈ R.

�

This result shows us that the following hold:

A simple geometric fact can lead to a complicated formula if one does not
use the appropriate system of local coordinates.

For example, if a geometric or physical problem has a certain symmetry, then one
should use local coordinates which reflect this symmetry. This is, roughly speaking,
the philosophy behind the use of Lie groups in geometry and physics by mathe-
maticians and physicists.

Cartan’s propagator equation. Recall that GL(3,R) denotes the 9-dimen-
sional Lie group of real invertible (3× 3)-matrices. Suppose that the map t �→ G(t)
is a smooth map from the open time interval R to the Lie group GL(3,R) which
satisfies the so-called Cartan propagator equation:

Ġ(t) + ẋi(t)Ai(x(t)) ·G(t) = 0, t ∈ R, G(0) = I (9.31)

which is is a matrix differential equation. Then, for every initial value v0 ∈ R
3, the

function

v(t) = G(t)v0, t ∈ R

is a solution of the differential equation (9.29) of parallel transport.
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The function t �→ G(t) from the open interval R to the Lie matrix group
GL(3,R) is called the Cartan propagator of the parallel transport of the
velocity vector v0.

Propagators are frequently used in physics. They describe the propagation of phys-
ical information (e.g., the Feynman propagator in quantum field theory). In Yang–
Mills gauge theory, G(t) corresponds to a so-called local phase factor (see page 821
and page 847 concerning Ariadne’s thread in gauge theory).

Proof. Using v̇(t) = Ġ(t)v0, equation (9.31) implies (9.29). �

We will show below that it is convenient to write the Cartan propagator equation
(9.31) in the equivalent form

G(t)−1Ġ(t) + ẋi(t)G(t)−1Ai(x(t)) G(t) = 0. (9.32)

This simple trick is crucial for Cartan’s approach to differential geometry via prin-
cipal bundles. The point is that we only use notions which possess an intrinsic
meaning on Lie groups and Lie algebras:

• We will discuss below that G−1dG is the Maurer–Cartan form of the Lie matrix
group GL(3,R),

• and we have
ad(G−1)Ai = G−1AiG

where G �→ ad(G) is the adjoint representation of the Lie group Gl(3,R) on its
Lie algebra gl(3,R).

Using the local connection form A = Aidx
i, the Cartan propagator equation (9.32)

can be written as

G(t)−1Ġ(t) +G(t)−1Ax(t)(ẋ(t)) G(t) = 0, t ∈ R. (9.33)

In Sect. 9.4.8, we will introduce the global connection form A. This is a differential
1-form (with values in the Lie algebra gl(3,R)) on the frame bundle FE

3 over the
Euclidean manifold E

3. Equivalently, Cartan’s propagator equation (9.33) can be
written as

AQ(t)(Q̇(t)) = 0, t ∈ R

where t �→ Q(t) is a curve on the frame bundle FE
3.

This is the most elegant formulation of Cartan’s method of moving frames.

We will show in Sect. 9.4.10 that we can replace the Lie group GL(3,R) by its
subgroup SO(3) (by passing to right-handed orthonormal frames). This reflects the
fact that Euclidean geometry is invariant under rotations.

Summarizing, there exist two variants of parallel transport which are closely
related to each other:

(i) the parallel transport of velocity vectors, and
(ii) the parallel transport of local phase factors.

In the general theory to be considered in Chap. 17, (i) and (ii) correspond to

• the parallel transport on the tangent bundle,
• and the parallel transport on the associated principal bundle,

respectively. In terms of the Standard Model in particle physics, (i) and (ii) corre-
spond to

• the fields of the 12 fundamental particles (electron, 6 quarks, 3 neutrinos, muon,
tau),

• and the fields of the 12 interaction particles (photon, 3 vector bosons, 8 gluons),

respectively.
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9.4.6 The Dual Cartan Equations of Moving Frames

Élie Cartan’s approach to differential geometry can be viewed as a dual
version of the classic approach due to Gauss and Riemann. Gauss used
two symmetric tensor fields (quadratic forms) in order to describe met-
ric properties and curvature properties of two-dimensional surfaces. The
Riemann–Christoffel curvature tensor in higher dimensions possesses a cru-
cial antisymmetry property. The Cartan calculus of differential forms is
based on antisymmetry. Therefore, Cartan was able to relate the Riemann–
Christoffel curvature tensor to differential forms. The advantage is that
crucial integrability conditions can be elegantly formulated in terms of
Poincaré’s cohomology rule: ddω = 0.

Folklore

In what follows, we will use the wedge product for matrices with differential forms
as entries (see page 509). Let us specialize the general results from page 509 to the
Euclidean manifold E

3.
The Gauss frame equations (9.25) for the natural basis vectors can be written

in the form of the following matrix equations:

∂i(b1,b2,b3) = (b1,b2,b3)Ai, i = 1, 2, 3. (9.34)

Here, we use the local connection matrices

Ai :=

0

B

@

Γ 1
i1 Γ

1
i2 Γ

1
i3

Γ 2
i1 Γ

2
i2 Γ

2
i3

Γ 3
i1 Γ

3
i2 Γ

3
i3

1

C

A

, i = 1, 2, 3,

whose entries are the Christoffel symbols Γ l
ik.

The trick of killing indices. Cartan’s approach can be motivated by the
method of killing indices. The final goal is to obtain a completely invariant formu-
lation. In the present special case of the Euclidean manifold, the approach is very
simple.

(i) Christoffel symbols (local connection form): In order to kill the indices of the
Christoffel symbols Γ l

ik, we introduce the differential forms

ωl
k := Γ l

ikdx
i.

This yields the matrix

A :=

0

B

@

ω1
1 ω

1
2 ω

1
3

ω2
1 ω

2
2 ω

2
3

ω3
1 ω

3
2 ω

3
3

1

C

A

(9.35)

which coincides with the local connection form A := Aidx
i introduced on page

582. Note that this form depends on the choice of local coordinates.
(ii) Riemann–Christoffel curvature tensorial family (local curvature form): the com-

ponents Rl
ijk from (9.27) on page 581 are antisymmetric with respect to the

indices i and j. Therefore, we introduce the differential forms

Ωl
k := 1

2
Rl

ijk dx
i ∧ dxk,

and the matrix
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F :=

0

B

@

Ω1
1 Ω

1
2 Ω

1
3

Ω2
1 Ω

2
2 Ω

2
3

Ω3
1 Ω

3
2 Ω

3
3

1

C

A

. (9.36)

Equivalently, F = 1
2
Fij dx

i ∧ dxj with

Fij = ∂iAj − ∂jAi + AiAj −AjAi.

The key formula reads as

F = dA + A ∧A. (9.37)

(iii) Torsion tensorial family: The torsion tensorial family T k
ij := Γ k

ij − Γ k
ji is an-

tisymmetric with respect to the indices i and j. Therefore, we introduce the
differential forms τk := T k

ij dx
i ∧ dxj and the matrices

τ :=

0

B

@

τ1

τ2

τ3

1

C

A

and dx :=

0

B

@

dx1

dx2

dx3

1

C

A

.

This yields

τ = A ∧ dx.

Cartan’s local frame equations. As a dual variant to the Gauss frame equa-
tions, the following hold.

Theorem 9.15 We have the local Cartan frame equations

dA + A ∧A = 0, (9.38)

A ∧ dx = 0. (9.39)

Proof. By Prop. 9.13, Rl
ijk ≡ 0 and T k

ij ≡ 0. These two equations are equivalent
to (9.38) and (9.39), respectively, since F ≡ 0 and τ ≡ 0. �

Note that the integrability conditions (Bianchi relations)

dF = F ∧A−A ∧ F

and dτ = F ∧ dx−A∧ τ from (8.138) are satisfied automatically because of F ≡ 0
and τ ≡ 0.

9.4.7 Global Parallel Transport on Lie Groups and the
Maurer–Cartan Form

In contrast to the Euclidean manifold E
3, there is no global parallel trans-

port on general manifolds, as a rule. However, Cartan used the crucial
fact that there is a global parallel transport on every Lie group called left
translation (which generalizes the translations on the Euclidean manifold).
The left translations on a Lie group are generated by the tangent vectors
of the Lie group at the unit element (i.e., the elements of the Lie algebra).
Analytically, on an infinitesimal level, the left translation is governed by
the Maurer–Cartan differential form M (mnemonically, MG = G−1dG).

Folklore
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On manifolds (e.g., the Euclidean manifold, spheres, and Lie groups), we will use
the following notions synonymously:

• tangent vector, velocity vector, and
• tangent vector field, velocity vector field, vector field.

Let G be the Lie group GL(3,R) or SO(3).9 Recall that:

• GL(3,R) consists of all the invertible real (3 × 3)-matrices, and
• SO(3) consists of all the matrices R ∈ GL(3,R) with (R−1)d = R and det(R) = 1.

The Lie algebra LG of the Lie group G consists of the tangent space T1G of the
manifold G at the unit element 1 equipped with the Lie bracket [A,B] := AB−BA.
In particular,

• LGL(3,R) = gl(3,R) (all the real (3 × 3)-matrices), and
• LSO(3) = so(3) (all the matrices A ∈ gl(3,R) with Ad = −A and tr(A) = 0).

An introduction to Lie groups and Lie algebras can be found in Chap. 7 of Vol. I.
Left translation on the Lie group G. Fix the point G0 on the Lie group G.

Define the map LG0 : G → G by setting

LG0G := G0G for all G ∈ G.

The map LG0 : G → G is a diffeomorphism. For all G0, G1 ∈ G, we have

LG1G0 = LG1LG0 , (9.40)

and L1 is the identical map id on the group G. The transformation G �→ G0G
is called a left translation of the Lie group G (generated by the group element
G0 ∈ G).10

The Maurer–Cartan form. Following Sophus Lie (1842–1899), we want to
study the left translation on the Lie group G on an infinitesimal level (i.e., in terms
of velocity vectors on G). Fix the point G0 ∈ G. Let

C : G = G(t), −t0 < t < t0, G(0) = G0

be a smooth curve on the Lie group G which passes through the point G0 at time
t = 0. Set Ġ0 := d

dt
G(t)|t=0. This is the velocity vector of the curve C at the point

G0. The left translation G �→ G−1
0 G (which sends the point G0 to the unit element)

yields the translated curve

G−1
0 C : H(t) = G−1

0 G(t), −t0 < t < t0, G(0) = G0.

At time t = 0, this curve passes through the point 1, and it has the velocity vector

Ḣ0 := Ḣ(0) = G−1
0 Ġ0.

We define the Maurer–Cartan form MG0 at the point G0 by

MG0(Ġ0) := Ḣ0.

9 The following results are valid for arbitrary Lie groups. This will be studied later
on. See page 804.

10 Similarly, setting RG0G := GG0, we get the right translation RG0 : G → G. Here,
RG0G1 = RG1RG0 , in contrast to (9.40).
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We will also write G−1
0 dG instead of MG0 . This is motivated by the mnemonic

formula dG(Ġ0) = Ġ0, and hence

G−1
0 dG(Ġ0) = G−1

0 Ġ0.

Proposition 9.16 The map MG0 : TG0G → T1G is a linear isomorphism from the
tangent space of the Lie group G at the point G0 onto the tangent space of G at the
unit element 1.

Proof. Choose the element A of the Lie algebra LG. Define

G(t) := G0e
tA, t ∈ R.

This is a curve on the group G which passes through the point G0 at time t = 0,
and which has the velocity vector

Ġ(0) = G0A

at time t = 0. Obviously, MG0(G0A) = A. Thus, the map G0A �→ A is a bijective
map from TG0G onto T1G. In other words, the map MG0 : TG0G → T1G is bijective
and linear. �

Since the Lie algebra LG coincides with the tangent space T1G of G at the unit
element 1 of G, we get the linear isomorphism

MG0 : TG0G → LG.

We call this a linear operator on the tangent space TG0G with values in the Lie
algebra LG. The map

G0 �→ MG0

is called a differential 1-form M on the Lie group G with values in the Lie algebra
LG. The differential form M is called the Maurer–Cartan form of the Lie group G.

Left-invariant velocity vector fields on the Lie group G. Let A ∈ LG.
We define

VA(G) := GA for all G ∈ G.
This is a smooth velocity vector field VA on the Lie group G (generated by the
element A of the Lie algebra LG). Note that

VA(LG0G) = LG0VA(G) for all G ∈ G.

A velocity vector field on G with this property is called a left-invariant velocity
vector field. All possible left-invariant velocity vector fields on G are obtained by
VA with A ∈ LG.

9.4.8 Cartan’s Global Connection Form on the Frame Bundle of
the Euclidean Manifold

One has to distinguish between local and global connection forms in gauge
theory. In order to get the global connection form of the Euclidean manifold
E

3, one has to pass to the frame bundle FE
3 of E

3 which is isomorphic
to the 12-dimensional manifold E

3 ×GL(3,R). This frame bundle can be
reduced to the orthonormal frame bundle which is diffeomorphic to the
6-dimensional manifold E

3 × SO(3).
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It happens quite often in mathematics, that a deeper understanding of the
mathematical structures is only possible by passing to abstract objects in
higher dimensions and by using projections onto lower dimensional objects.
In terms of philosophy, this is related to the famous cave parable from
Plato’s Politea (The Republic).11 In this parable, the prisoner is only able
to see shadows on the cave’s walls which are generated by objects that
exist in the ‘realm of ideas’.

Folklore

Fibration of the frame bundle. Recall that the frame bundle FE
3 of the Eu-

clidean manifold E
3 consists of all the possible tuples

(P ;b1,b2,b3)

where P is a point of E
3, and b1,b2,b3 is an arbitrary frame at the point P (i.e.,

b1,b2,b3 are linearly independent position vectors located at the point P ). Fix the
point P . Then the set

FP := {(P ;b1,b2,b3) ∈ FE
3}

is called the fiber at the point P . This coincides with the set of all the possible frames
at the point P . Setting π(P ;b1,b2,b3) := P , we get the so-called projection map

π : FE
3 → E

3

of the frame bundle FE
3. The map

s : E
3 → FE

3

is called a section iff s(P ) ∈ FP for all points P ∈ E
3. This section assigns to every

point of the Euclidean manifold a frame.
Intrinsic characterization of the fibers. The Lie group GL(3,R) acts on

the frame bundle FE
3, and the fibers are the orbits of this action. Explicitly, let

G ∈ GL(3,R). Fix the point P ∈ E
3, and define the operator RG by means of the

following matrix equation:

RG(b1,b2,b3) := (b1,b2,b3)G.

The orbit of this action is the set of all the possible frames at the point P . This set
coincides with the fiber FP at the point P . For all elements G,H of the Lie group
GL(3,R), we have

RGH = RHRG.

Therefore, we say that the group GL(3,R) acts on the frame bundle manifold FE
3

from the right. In Section 17.2, we will introduce axiomatically the notion of a
principal (fiber) bundle. The frame bundle FE

3 of the Euclidean manifold E
3 is the

prototype of a principal bundle with the Lie group GL(3,R) as typical fiber.
The Cartesian gauge and the parametrization of the frame bundle

FE
3. We fix both a point O (called the origin) of the Euclidean manifold E

3 and
a right-handed orthonormal system i, j,k at the point O. For any point P of the

11 Plato (427–347 B.C.) The correct Greek name is ‘Platon’. Plato’s Academy in
Athens had unparalleled importance for Greek thought. The greatest philoso-
phers, mathematicians, and astronomers worked there. For example, Aristotle
(384-322 B.C) studied there as a young man. In 529 A.D., the Academy was
closed by the Roman emperor Justitian.
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Euclidean manifold E
3, we select a frame iP , jP ,kP at P which is parallel to i, j,k

(Fig. 9.1 on page 558). This is called a Cartesian gauge. For every frame b1,b2,b3

at the point P , there exists a matrix G ∈ GL(3,R) such that we have the following
matrix equation:

(b1,b2,b3) = (iP , jP ,kP )G.

We call (P,G) the bundle coordinate of the point (P ;b1,b2,b3) of the frame bundle
FE

3.12 If we use the Cartesian coordinates (x, y, z) with respect to i, j,k, then we
can describe the bundle coordinate (P,G) by (x, y, z;G).

If we choose another Cartesian gauge based on the right-handed orthonormal
system i+, j+,k+, then we get the matrix equation

(i, j,k) = (i+, j+,k+)G0.

Hence
(b1,b2,b3) = (i+P , j

+
P ,k

+
P )G0G.

This means that the bundle coordinate (P,G) passes over to (P,G+) with

G+ = G0G.

This is called a gauge transformation. Moreover, the bundle coordinate (x, y, z;G)
passes over to (x+, y+, z+, G+) where

(x+, y+, z+) = (x, y, z)G.

Since the change of the bundle coordinates (x, y, z;G) is described by a diffeomor-
phism, we get the following.

Proposition 9.17 The bundle space FE
3 is a 12-dimensional real manifold which

is diffeomorphic to E
3 ×GL(3,R).

The global connection form A on the frame bundle FE
3. We define

AQ := G−1dG for all Q ∈ FE
3.

This is to be understood as follows. We choose a fixed Cartesian gauge. Then the
point Q has the bundle coordinate (P,G), and we use the Maurer–Cartan form
G−1dG on GL(3,R). If

C : Q = Q(t), t ∈ R,
is a curve on FE

3, then

AQ(t)(Q̇(t)) = G(t)−1Ġ(t), t ∈ R. (9.41)

We have to show that:

The global connection form A is an invariant geometric object on the man-
ifold FE

3.

12 The symbol (iP , jP ,kP )G is to be understood as matrix product. For example,
the point (P ; iP , jP ,kP ) has the bundle coordinate (P, I) where I is the (3× 3)-
unit matrix.
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This means that AQ does not depend on the choice of the Cartesian gauge. In fact,
changing the Cartesian gauge means passing from G(t) to G0G(t) where G0 does
not depend on time t. This implies

(G0G(t))−1 d

dt
(G0G(t)) = G(t)−1G−1

0 G0Ġ(t) = G(t)−1 d

dt
G(t).

Parallel transport. Let C : Q = Q(t), t ∈ R, be a smooth curve on the frame
bundle FE

3. Explicitly, this is a map

t �→ (P (t);b1(t),b2(t),b3(t))

from the open time interval R to FE
3. Intuitively, this is a smooth curve t �→ P (t)

on the Euclidean manifold E
3, and we assign to every curve point P (t) a frame (in

a smooth way). By definition, the curve C represents a parallel transport iff all the
frames are parallel to each other (in the usual sense). Obviously, this is equivalent
to

Ġ(t) = 0 for all t ∈ R
with respect to the bundle coordinates of any Cartesian gauge. Equivalently, by
(9.41), the curve C represents a parallel transport if and only if

AQ(t)(Q̇(t)) = 0 for all t ∈ R. (9.42)

The advantage of this invariant formulation is that, by passing to coordinates, we
obtain immediately the differential equation of parallel transport for both arbitrary
local coordinates on the Euclidean manifold E

3 and arbitrary gauge fixing of the
frames. This will be studied in the next section.

The Cartan structural equation. The global curvature form F of the frame
bundle FE

3 is defined by

F := dA + A ∧ A.

Theorem 9.18 The global curvature form of the frame bundle FE
3 of the Eu-

clidean manifold E
3 vanishes identically, F ≡ 0.

The proof follows from the Cartan structural equation

dM + M ∧ M = 0

for the Maurer–Cartan form M of a Lie group. This will be proved on page 806.

9.4.9 The Relation to Gauge Theory

It was the goal of Élie Cartan to obtain an invariant formulation of differ-
ential geometry which takes the symmetries into account and which yields
quickly the formulas with respect to local coordinates. The point is that
the local coordinates of the base manifold and the local coordinates of
the frames can be chosen independently. This yields maximal flexibility in
differential geometry. Cartan’s elegant theory can be viewed as a gauge
theory in geometry.

Folklore
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General gauge fixing. Let O be a nonempty open subset of the Euclidean man-
ifold E

3. We are given the smooth section

s : O → FE
3

where O is an open subset of the base manifold E
3. Set

s(P ) = (P ;b+
1 (P ),b+

2 (P ),b+
3 (P )), P ∈ O.

Thus, the section s fixes a frame at each point P of E
3.

It is our goal to use these distinguished frames in order to introduce local
bundle coordinates (P,G).

In fact, for every point
Q = (P ;b1,b2,b3)

of the frame bundle FE
3, there exists a uniquely determined matrix G ∈ GL(3,R)

such that

(b1,b2,b3) = (b+
1 (P ),b+

2 (P ),b+
3 (P )) G. (9.43)

This way, we assign to the bundle point Q the bundle coordinate

(P,G) ∈ E
3 ×GL(3,R)

with respect to the s-gauge. Moreover, let us introduce a local coordinate system
on the open subset O of the Euclidean manifold E

3. Then we assign to the base
point P the coordinate x = (x1, x2, x3), and we assign to the bundle point Q the
bundle coordinate

(x,G) ∈ R
3 ×GL(3,R).

For computing the global connection form A with respect to the local bundle coor-
dinates (x,G), we need the Gauss frame equations

∂ib
+
j (P ) = γlij(P ) bl(P ), i, j = 1, 2, 3 (9.44)

with respect to the s-gauge. The real numbers γlik(P ) are called the connection
coefficients of the s-gauge.13 Introducing the matrix Ai := (γlik), the Gauss frame
equations pass over to the following matrix equation:

∂i(b
+
1 (P ),b+

2 (P ),b+
3 (P )) = (b+

1 (P ),b+
2 (P ),b+

3 (P )) Ai, i = 1, 2, 3.

Roughly speaking, the connection coefficients γlik describe the connection between
the gauge frames on an infinitesimal level.

Theorem 9.19 (i) In terms of local bundle coordinates, Cartan’s connection form
A on the frame bundle FE

3 looks like

AQ = G−1dG+G−1A(x)G

13 In the special case where the vectors b+
1 (P ),b+

2 (P ),b+
3 (P ) are the natural basis

vectors corresponding to a local coordinate system on the Euclidean manifold E
3,

we get γlij = Γ l
ij for all indices. That is, the connection coefficients γlij generalize

the classic Christoffel symbols Γ l
ij depending on the metric tensor (see (9.18) on

page 576).
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where A(x) := Ai(x)dx
i, and Ai = (γlik).

(ii) The curve C : Q = Q(t), t ∈ R, on the frame bundle FE
3 represents a

parallel transport iff AQ(t)(Q̇(t)) = 0, t ∈ R, that is,

G(t)−1Ġ(t) +G(t)−1ẋi(t)Ai(x(t)) G(t) = 0, t ∈ R.
Proof. Ad (i). The idea of the proof is to pass from the s-gauge (9.43) to a Cartesian
gauge, since then the differential form A can be computed in a very simple manner,
by its definition. To begin with, observe that, with respect to a Cartesian gauge,
we get the matrix equation

(b+
1 (P ),b+

2 (P ),b+
3 (P )) = (iP , jP ,kP ) ·G0(P )

where G0(P ) ∈ GL(3,R). It follows from (9.43) that

(b1,b2,b3) = (iP , jP ,kP ) ·G0(P )G(P ).

Thus, the bundle point
(P ;b1,b2,b3)

has the bundle coordinate (P,G0(P )G(P )) with respect to the Cartesian gauge.
Moreover,

∂i(b
+
1 (P ),b+

2 (P ),b+
3 (P )) = (iP , jP ,kP ) · ∂iG0(P )

= (b+
1 (P ),b+

2 (P ),b+
3 (P )) ·G0(P )−1∂iG0(P ).

Comparing this with (9.44), we get G−1
0 ∂iG0 = Ai. By definition of the global

connection form A, we have

AQ = (G0G)−1d(G0G).

Since d(G0G) = dG0 ·G+G0dG and (G0G)−1 = G−1G−1
0 , we obtain

AQ = G−1(G−1
0 dG0)G+G−1dG = G−1Aidx

iG+G−1dG.

Ad (ii). This follows from (i). �

The pull-back operation. Consider the curve

x = x(t), t ∈ R

on the Euclidean manifold E
3. Use the open set O of the Euclidean manifold (e.g.,

O = E
3). Use the smooth section s : O → FE

3 for fixing the gauge, and introduce
the local bundle coordinates (x,G) ∈ O × GL(3,R). The section s generates the
curve

Q = s(x(t)) = (x(t),1), t ∈ R
on the frame bundle FE

3. Note that s(P ) is a gauge frame which has the bundle

coordinate (P,1). Then Q̇(t) = (ẋ(t), 0). With respect to local bundle coordinates
generated by the s-gauge, the local pull-back s∗A of the global Cartan form A looks
like

(s∗A)x(t)(ẋ(t)) = Ax(t)(Q̇(t)), t ∈ R.
Explicitly,

(s∗A)x(t) = ẋi(t)Ai(x(t)), t ∈ R.
Hence

(s∗A)P = A(P ) = Ai(P )dxi, P ∈ O.

This is called the local connection form of the Euclidean manifold E
3 (with respect

to the open subset O of E
3).
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9.4.10 The Reduction of the Frame Bundle to the Orthonormal
Frame Bundle

The orthonormal frame bundle of the Euclidean manifold takes the rota-
tional symmetry of the Euclidean manifold into account.

Folklore

By definition, the orthonormal frame bundle FE
3(SO(3)) of the Euclidean manifold

E
3 consists of all the tuples

(P ;b1,b2,b3)

where P is a point of the Euclidean manifold E
3, and all the frames b1,b2,b3 at

the point P are right-handed orthonormal systems.

In terms of physics, this means that the observers (at all points P of the
Euclidean manifold) only use right-handed orthonormal frames for describ-
ing their observations.

As above, the Cartesian gauge yields the matrix equation

(b1,b2,b3) = (iP , jP ,kP )G

where G ∈ SO(3). Thus, we assign to the bundle point (P ;b1,b2,b3) (of the
orthonormal frame bundle) the bundle coordinate

(P,G) ∈ E
3 × SO(3).

A gauge transformation has the form (P,G) �→ (P,G+) with

G+ = G0G

where G0 is a fixed element of the Lie group SO(3). In fact, the results obtained
above remain valid by using the replacement

GL(3,R) ⇒ SO(3),

that is, we replace the Lie group GL(3,R) by its subgroup SO(3). For example, the
global connection form A of the orthonormal frame bundle FE

3(SO(3)) is given by
the Maurer–Cartan form G−1dG of the Lie group SO(3).

The orthonormal frame bundle FE
3(SO(3)) is a principal bundle with the ro-

tation group SO(3) as typical fiber (see the discussion on page 588).

9.5 The Sphere as a Paradigm in Riemannian Geometry
and Gauge Theory

We need an analysis which is of geometric nature and describes physical
situations as directly as algebra expresses quantities.

Gottfried Wilhelm Leibniz (1646–1716)

We live on the surface of earth – a submanifold of the Euclidean manifold
E

3. Approximately, the surface of earth is a sphere. Over the centuries,
mathematicians and physicists tried to understand the geometry of the
earth.
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Fig. 9.7. Spherical coordinates

The differential geometry of the 2-dimensional sphere can be obtained from
the surrounding 3-dimensional Euclidean manifold E

3 by using orthogonal
projection onto the tangent spaces of the sphere. In terms of physics, this
leads to the notion of covariant acceleration measured by an observer on
the sphere. In terms of mathematics, this leads to the notion of covariant
directional derivative (also called a connection).
In geometry, one has to distinguish between linear and nonlinear objects.
The curvature measures the deviation of a nonlinear object from linear-
ity. In terms of physics, Newton measured forces by the deviation of the
trajectories from straight lines. In terms of mathematics, the sphere is the
simplest nonlinear geometric object.
Gauss discovered that the curvature of a 2-dimensional surface in E

3 can
be measured intrinsically on the surface without using the surrounding
space (theorema egregium).
There exist far-reaching generalizations in modern mathematics. Here,
• spheres are replaced by general manifolds of finite or infinite dimensions,
• and velocity vector fields on spheres are replaced by more general phys-

ical fields (sections of vector bundles over manifolds).
In topology, one generalizes this by replacing manifolds (i.e., smooth struc-
tures) with topological spaces (i.e., continuous structures) (see Vol. IV).

Folklore

We want to show that the geometry of a sphere S
2
r of radius r can be understood

best by using two bundles, namely,

• the tangent bundle TS
2
r (vector bundle) and

• the frame bundle FS
2
r (principal bundle).

Both the bundles are dual to each other. The tangent bundle allows us to study
the parallel transport of velocity vectors, whereas the frame bundle allows us to
describe the symmetry properties of the sphere. One has to distinguish between

• the extrinsic approach and
• the intrinsic approach.

In the extrinsic approach, we use the surrounding space (universe) in order to
describe the geometry of the earth. Typically, we use tangent vectors and normal
vectors. In the intrinsic approach, we do not use the surrounding space.

In what follows, we will only use invariant formulas, that is, we will not use
local coordinates. However, all the proofs can be obtained by using a special local
coordinate system (e.g., spherical coordinates). We recommend the reader to give all
the missing proofs explicitly by using spherical coordinates (see page 572 and Fig.
9.7). Indeed, the proofs will be given in the next section for general 2-dimensional
surfaces. It is also possible to give the missing proofs in an invariant way by applying
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Fig. 9.8. Orthogonal projection

vector analysis to the key formula (9.73) on page 611 for the covariant directional
derivative Dv.

9.5.1 The Newtonian Equation of Motion and Levi-Civita’s
Parallel Transport

The dynamics on the sphere can be understood best by using the notion
of covariant acceleration. The Levi-Civita parallel transport of a velocity
vector along a curve means that the covariant acceleration vanishes.14

Folklore

We will use an approach to the geometry of spheres which is based on physics. Let
R be an open (time) interval on the real line. Consider the motion

x = x(t), t ∈ R

of a point of mass m > 0 on the sphere

S
2
r := {P ∈ E

3 : x2 = r2}.

Here, x =
−−→
OP is the position vector pointing from the origin O to the point P of the

Euclidean manifold E
3. The Newton equation of the mass point in the Euclidean

manifold reads as

mẍ(t) = F(x(t)), t ∈ R. (9.45)

The basic equation for the motion of the mass point on the sphere S
2
r reads as

mẍ(t)⊥ = F(x(t))⊥, t ∈ R. (9.46)

The symbol ⊥ means that we project orthogonally the classic acceleration vector
ẍ(t) (in the Euclidean manifold E

3) onto the tangent plane TP (t)S
2
r of the sphere at

the point P (t) (which corresponds to the final point of the position vector x(t); see
Fig. 9.8). In contrast to the equation of motion (9.45) in the Euclidean manifold, the
equation of motion (9.46) on the sphere takes the constraining forces into account.
This additional force guarantees that the mass point does not leave the sphere
(earth). Introducing the covariant acceleration vector

14 T. Levi-Civita, Parallel transport and Riemannian curvature, Rend. Palermo 42,
(1917), 73-205.
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Fig. 9.9. Covariant acceleration vector

Dẋ(t)

dt
:= ẋ(t)⊥,

the equation (9.46) of motion on the sphere can be written as

m
Dẋ(t)

dt
= F(x(t))⊥, t ∈ R, (9.47)

where F⊥ is the tangential component of the force F (Fig. 9.9). If the force vanishes,
F ≡ 0, then we get

Dẋ(t)

dt
≡ 0, t ∈ R. (9.48)

On the Euclidean manifold E
3, a trajectory is a straight line iff the acceleration

vector vanishes identically. Similarly, a smooth curve

C : P = P (t), t ∈ R

on the sphere S
2
r is called a generalized straight line iff the covariant acceleration

vector vanishes identically, that is, the equation (9.48) is satisfied. Generalized
straight lines are also called affine geodesics (or briefly geodesics).

For example, the motion of a point along the equator with constant angular
velocity ω is given by the equation

x(t) := r(cosωt i + sinωt j), t ∈ R.

This situation is depicted in Fig. 9.10. We expect that the velocity vectors represent
a parallel transport along the equator. In fact, differentiation with respect to times
yields

ẋ(t) = ωr(− sinωt i + cosωt j), ẍ(t) = −ω2rx(t), t ∈ R.

Thus, the tangent component of the acceleration vector vanishes, that is, the tra-
jectory represents a geodesic.

Explicitly, the covariant acceleration vector reads as

Dẋ(t)

dt
= ẍ(t) − (nP (t)ẍ(t)) · nP (t) (9.49)

where ẋ(t) = dx(t)
dt

(classical velocity vector in E
3), and ẍ(t) = d2x(t)

dt2
(classical

acceleration vector in E
3). In addition, nP is the outer unit normal vector of the

sphere at the point P .
Levi-Civita parallel transport of a velocity vector along a curve on

the sphere. We are given the smooth curve C : x = x(t), t ∈ R. Let v be a
smooth velocity vector field along the curve C. We set
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Fig. 9.10. Parallel transport of velocity vectors along the equator

v(t) := v(P (t)), t ∈ R.

By definition, the velocity vector field t �→ v(t) is parallel along the curve C if and
only if

Dv(t)

dt
:= 0, t ∈ R. (9.50)

This is the crucial Levi-Civita parallel transport on the sphere S
2
r. Explicitly, by

(9.49), this means that

Dv(t)

dt
=
dv(t)

dt
−
„

nP (t)
dv(t)

dt

«

nP (t).

Covariant acceleration and the geodesic curvature of a curve on the
sphere. Consider the trajectory C : x = x(t), t ∈ R, on the sphere S

2
r where the

time t equals the arc length s. We define

κg(s) :=
Dẋ(s)

ds

`

nP (s) × ẋ(s)
´

.

The real number κg(s) is called the geodesic curvature of the trajectory at the
curve point P (s).15 Using both the inner product on the tangent space TP (s)S

2
r

at the curve point P (s) and the rotation operator J in the tangent space TP (s)S
2
r

(counter-clockwise rotation about the angle π
2
), then

κg(s) =

fi

Dẋ(s)

ds

˛

˛

˛

Jẋ(s)

fl

. (9.51)

This shows that the geodesic curvature κg is defined intrinsically. Since

|κg(s)| =

˛

˛

˛

˛

Dẋ(s)

ds

˛

˛

˛

˛

,

the geodesic curvature κg measures the strength of the covariant acceleration.

15 This is a quite natural generalization of the curvature κ of a curve in the Eu-
clidean plane with the unit normal vector n. Then, κ(s) = ẍ(s)(n× ẋ(s)). Equiv-
alently, κ(s) = n(ẋ(s)× ẍ(s)). Since ẋ(s) is a unit vector which is orthogonal to
the vector n, we get |κ(s)| = |ẍ(s)|.
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Fig. 9.11. Geodesic curvature of a latitude circle

Geometrically, the geodesic curvature measures the deviation from a
geodesic.

In fact, the curve C is a geodesic iff the covariant acceleration vanishes identically,
κg ≡ 0. Finally, let us mention that

κg(s) = (ẋ(s) × ẍ(s)) nP (s). (9.52)

This follows from

κg(s) = ẍ(s)⊥(nP (s) × ẋ(s)) = ẍ(s)(nP (s) × ẋ(s)).

Example (latitude circle). Consider the latitude circle of geographic latitude ϑ
depicted in Fig. 9.11:

x(s) = R
`

cos s
R

i + cos s
R

j
´

+ r cosϑ k

with s = Rϕ and R = r cosϑ. We claim that

κg(s) =
sinϑ

R
=

tanϑ

r
.

Here, 1
R

is the curvature of the latitude circle regarded as a plane curve. Thus,
the equator is the only latitude circle about the north pole with vanishing geodesic
curvature.
Proof. It follows from

• ẋ(s) = (− sin s
R

i + cos s
R

) j, and

• ẍ(s) = 1
R

(− cos s
R

i − sin s
R

j)

that ẋ(s) × ẍ(s) = 1
R
kP . This implies κg(s) = 1

R
kPnP = sinϑ

R
. �

Fig. 9.12. Great circles on the sphere
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Fig. 9.13. Focal points on the sphere

9.5.2 Geodesic Triangles and the Gaussian Curvature

Euclidean geometry in the plane is based on the following notions: straight line,
triangle, circle. In spherical geometry this is replaced by geodesic line, geodesic
triangle, geodesic circle, respectively. Spherical geometry was founded by the as-
tronomer Menelaos of Alexandria in about 100 A.D.

Geodesic lines. Consider two points P and Q on the equator (Fig. 9.12(a)).
Intuitively, the equator segment PQ is the curve of minimal length which connects
the points P and Q. If we are given two arbitrary points on the sphere S

2
r, then we

reduce the situation to the preceding one. To this end, we choose a new equator
E∗ in such a way that the two points lie on E∗. This new equator can be obtained
by choosing a plane through the three points P,Q,O (origin) (Fig. 9.12(b)). The
intersection between the plane and the sphere S

2
r yields E∗. All the circles obtained

this way are called great circles. On the earth, for example, all the meridians and
the equator are great circles. The latitude circles different from the equator are not
great circles. An aircraft always flies along a great circle arc in order to connect P
with Q. If the aircraft flies from the North Pole to the South Pole, then it can use
any meridian. In this case, the arc of minimal length is not uniquely determined.
This is the phenomenon of focal points known in geometric optics (Fig. 9.13).

Geodesic triangles. In the Euclidean plane, consider the triangle depicted in
Fig. 9.14(a). For the sum of inner angles α, β, γ, we get

α+ β + γ = π.

In contrast to this situation in Euclidean geometry, we obtain

α+ β + γ = π +K · meas(U) (9.53)

Fig. 9.14. Geodesic triangles
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Fig. 9.15. Geodesic circle

for the geodesic triangle on the sphere S
2 depicted in Fig. 9.14(b). Here, we assume

that the three sides of the triangle are generalized line segments (i.e., great circle
arcs). Moreover,

K =
1

r2

is the Gaussian curvature of the sphere S
2
r, and meas(U) is the measure of the

solid triangle U on the sphere. The relation (9.53) is a special case of the famous
Gauss–Bonnet theorem (see page 635).

9.5.3 Geodesic Circles and the Gaussian Curvature

Geodesic circles on a sphere correspond to circles in the Euclidean plane. If the
center of the geodesic circle is called the north pole, then a geodesic circle of radius
� centered at the north pole N corresponds to a latitude circle of geographic latitude
ϑ (Fig. 9.15). Here,

� = r(π
2
− ϑ).

This latitude circle has the following properties:

• l(�) = 2πr sin �
r

(circumference of the circle),

• a(�) = 2πr2(1 − cos �
r
) (surface area of the corresponding disc).

By Taylor expansion, we get

• l(�) = 2π�− π
3
K�3 +O(�4), �→ 0,

• a(�) = π�2 − π
12
K�4 +O(�5), �→ 0.

This shows how the deviations from Euclidean geometry depend on the Gaussian
curvature K for small geodesic circles. This implies

K =
3

π
lim
�→0

2π�− l(�)
�3

=
12

π
lim
�→0

π�2 − a(�)
�4

. (9.54)

Formula (9.54) remains valid on arbitrary real 2-dimensional Riemannian manifolds.

9.5.4 The Spherical Pendulum

The dynamics of the spherical pendulum under the influence of the grav-
itational force on the surface of earth is described by means of elliptic
integrals. If the gravitational force is switched off, then the trajectories of
the pendulum point are affine geodesics (generalized straight lines).

Folklore
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Extrinsic Approach – Lagrange Multiplier and Constraining Force

Consider the motion of a particle of mass m on the sphere S
2
r under the influence

of the vertical gravitational force F = −mak on the surface of the earth. Here, we
use a = 9.81m/s2. The particle has the kinetic energy

Ekin := 1
2
mẋ(t)2

and the potential energy U = maz defined by F = −gradU. The principle of
critical action reads as

Z t1

t0

“

1
2
mẋ(t)2 −maz(t)

”

dt = critical! (9.55)

with the constraint

x(t)2 − r2 = 0, t0 ≤ t ≤ t1, (9.56)

and the following boundary condition: x(t0) and x(t1) are fixed on the sphere S
2
r.

Introduce the following two functions:

• L := Ekin − U = 1
2
mẋ2 −maz (Lagrangian),

• L := L+ 1
2
λ(x2 − r2) (constrained Lagrangian).

Let t �→ x(t) be a solution of (9.55), (9.56). By the Lagrange multiplier rule, there
exists a function t �→ λ(t) such that

d

dt
Lẋ = Lx

along the trajectory t �→ x(t). Since Lẋ = mẋ, and

Lx = gradL = −mak + λx,

this yields the equation of motion

mẍ(t) = −mak + λ(t)x(t). (9.57)

In terms of physics, we get the additional force λ(t)x(t). This so-called constraining
force keeps the particle on the sphere S

2
r. The Lagrange multiplier λ has to be chosen

in such a way that the normal component of the total force vanishes. It follows from
(−mak + λx)x = 0 that

λ(t) =
ma

r2
kx(t).

Hence ẍ(t)⊥ = −mak⊥ = −maktang(P (t)). Finally, this yields the equation of
motion

Dẋ(t)

dt
= −maktang(P (t)).

With respect to spherical coordinates, we get

−ma(k)tang(P (t)) = −ma cosϑ(t)

r
b2(P (t)).

Note that kb1 = 0 (see page 572).
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Intrinsic Approach

The extrinsic approach gives insight into the physical structure of the total force. For
computing explicitly the motion of the spherical pendulum, it is more convenient
to use the following intrinsic approach. To this end, let us use regular spherical
coordinates. Then the Lagrangian

L = Ekin − U = 1
2
mẋ2 −maz

passes over to

L(ϕ, ϑ, ϑ̇) = 1
2
mr2 cos2 ϑ ϕ̇2 + 1

2
mr2ϑ̇2 − amr sinϑ.

Now the principle of critical action reads as

Z t1

t0

L(ϕ(t), ϑ(t), ϑ̇(t)) dt = critical! (9.58)

together with the following boundary conditions: ϕ(t0), ϕ(t1) and ϑ(t0), ϑ(t1) are
fixed. In contrast to the extrinsic approach, there do not appear any constraints.

It was discovered by Lagrange (1736–1813) that the use of suitable intrinsic
coordinates avoids constraints.

This was the beginning of the use of n-dimensional manifolds in physics. Here,
the dimension n is the number of degrees of freedom. For a gas considered as a
mechanical system of molecules, the number n is extremely large (n ∼ 1023).

The Euler–Lagrange equations. Assume that ϕ = ϕ(t), ϑ = ϑ(t) for all
times t ∈ [t0, t1] is a solution of the variational problem (9.58). Then the solution
satisfies the Euler–Lagrange equations

d

dt
Lϕ̇ = Lϕ,

d

dt
Lϑ̇ = Lϑ.

Explicitly, we get

d

dt
(ϕ̇(t) cos2 ϑ(t)) = 0, (9.59)

and

ϑ̈(t) = −ϕ̇(t)2 sinϑ(t) cosϑ(t) − am

r
cosϑ(t). (9.60)

Conserved quantities. In order to solve (9.59), (9.60), one uses the conserva-
tion of both the energy E and the z-component Az of angular momentum. Let us
discuss this by using spherical coordinates (see page 572). The energy is given by

E := Ekin + U = 1
2
mr2ϕ̇(t)2 cos2 ϑ(t) + 1

2
mr2ϑ̇(t)2 + amr sinϑ(t),

and the z-component of angular momentum is given by

Az := m
`

x(t) × ẋ(t)
´

k = m
`

x(t)ẏ(t) − ẋ(t)y(t)
´

= 2mr2ϕ̇(t) cos2 ϑ(t).

Observe the following symmetry properties of the spherical pendulum:

• The Lagrangian L is invariant under rotations about the z-axis, that is, L does
not depend on the angle ϕ. This yields (9.59) which implies that Az is a conserved
quantity.
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• The Lagrangian L is invariant under time translations, that is, it does not depend
on time t. By the Noether theorem (see Sect. 6.6.2 of Vol. II), this implies that

ϕ̇
∂L

∂ϕ̇
+ ϑ̇

∂L

∂ϑ̇
− L

is a conserved quantity. An explicit computation shows that this coincides with
energy conservation.

We will show in Problem 9.7 that the conservation of E and Az is sufficient for
computing the motion of the spherical pendulum. At this point, let us summarize
the final result.

The dynamics of the spherical pendulum. To simplify notation, let us
choose a system of units where r = m = 1. We are given ϕ(0), ϕ̇(0), ϑ(0), and ϑ̇(0)
at the initial time t = 0. This yields the energy E and the z-component Az of the
angular momentum. Let z0 := sinϑ(0). Introduce the third-order polynomial

P (z) := 2(E − az)(1 − z2) − A2
z

4
.

Proposition 9.20 The motion t = t(z), ϕ = ϕ(z) of the spherical pendulum is
given by the elliptic integrals

t(z) =

Z z

z0

dζ
p

P (ζ)
, ϕ(z) = ϕ(0) +

Z z

z0

Az dζ

2(1 − z2)
p

P (ζ)
.

This shows that the motion of a spherical pendulum can be rather complex.
Next we want to study the motion of a spherical pendulum if the gravitational force
vanishes. This leads us to geodesics which play a fundamental role in differential
geometry and in the theory of general relativity. Many interesting applications in
classical mechanics and celestial mechanics can be found in:

W. Neutsch and K. Scherer, Celestial Mechanics: An Introduction to Clas-
sical and Contemporary Methods, Wissenschaftsverlag, Mannheim, 1992.

R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley,
Reading, Massachusetts, 1978.

F. Klein and A. Sommerfeld, The Theory of the Top. English edition: Vol.
1: Birkhäuser, Basel, 2008; Vol. 2: Springer, Berlin, 2010. German edition:
Teubner, Leipzig, Parts 1–4, 1897.

9.5.5 Geodesics and Gauge Transformations

In order to save fuel, aircrafts fly along geodesics of minimal arc length.
Folklore

The Principle of Critical Action

Consider the principle of critical action

Z t1

t0

1
2
mẋ(t)2dt = critical! (9.61)

with the constraint x(t)2−r2 = 0, t0 ≤ t ≤ t1, and the following boundary condition:
x(t0) and x(t1) are fixed. In terms of physics, this corresponds to the motion of a
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spherical pendulum of mass m > 0 and vanishing gravitational force, that is, a = 0.
By (9.57), every solution of (9.61) satisfies the equation

Dẋ(t)

dt
= 0, t0 ≤ t ≤ t1. (9.62)

Precisely the solutions of this equation are called geodesics. In terms of physics,
geodesics are characterized by vanishing covariant acceleration. Therefore, geodesics
are also called generalized straight lines.

Proposition 9.21 For the solutions of equation (9.62), the parameter t is propor-
tional to arc length s.

Proof. By the covariant Leibniz rule (9.75) on page 612, we get

d

dt

D

ẋ(t)
˛

˛

˛

ẋ(t)
E

= 2

fi

Dẋ

dt

˛

˛

˛

ẋ(t)

fl

= 0.

Hence ds(t)
dt

= |ẋ(t)| = const for all times t ∈ [t0, t1]. �

Spherical coordinates. With respect to regular spherical coordinates, equa-
tion (9.62) reads as

ϕ̈− ϕ̇ ϑ̇ tanϑ = 0, ϑ̈+ ϕ̇2 sinϑ cosϑ = 0. (9.63)

Geodesics as subarcs of great circles. A geodesic is uniquely determined
by the initial condition x(0) = x0 and ẋ(0) = ẋ0. After rotation, if necessary, we

may assume that ϕ(0) = 0, ϕ̇(0) = ϕ̇0, and ϑ(0) = ϑ̇(0) = 0. Then the unique
solution of (9.63) reads as

ϕ(t) = ϕ̇0t, ϑ(t) = 0, t0 ≤ t ≤ t1. (9.64)

This describes the motion of a particle along the equator with constant angular
speed ϕ̇0.

For given points P0 and P1 on the sphere, the great circle passing through P0

and P1 is defined to be the intersection between the sphere S
2
r (centered at the

origin O) and the plane through the three points P0, P1 and O (see Fig. 9.12 on
page 598). For example, the equator and the meridians are great circles. It follows
from (9.64) that geodesics are parts of great circles (or parts of multiples of great
circles). For example, the curve winding twice around the equator is a geodesic. In
the next section, we will study geodesics of minimal arc length.

The Christoffel symbols. Set ξ1 := ϕ, ξ2 := ϑ. Comparing the Euler–
Lagrange equation (9.63) with ξ̈k + Γ k

ij ξ̇
iξ̇j = 0, k = 1, 2, we get

Γ 1
12 = Γ 1

21 = − tanϑ, Γ 2
11 = sinϑ cosϑ. (9.65)

The remaining Γ k
ij vanish identically. This is a very effective method for computing

the Christoffel symbols.

Curves of Minimal Arc Length and Gauge Transformations

We want to study geodesics which are curves of minimal arc length. Using the
compact time interval [t0, t1], let us introduce the following two functionals:



9.5 The Sphere as a Paradigm in Riemannian Geometry and Gauge Theory 605

• S(C) :=
R t1
t0

1
2
mẋ(t)2 dt (action functional),16

• L(C) :=
R t1
t0

|ẋ(t)| dt (length functional).

We want to study the minimum problem

L(C) = min!, C ∈ C. (9.66)

Here, the symbol C denotes the space of all smooth curves C : x = x(t), t ∈ [t0, t1],
on the sphere S

2
r with fixed end points x(t0) and x(t1). In addition, the curves C in

the space C are assumed to have a tangent at each curve point, that is, ẋ(t) �= 0 for
all t ∈ [t0, t1]. Naturally enough, the solutions of (9.66) are called curves of minimal
arc length.

Theorem 9.22 The problem (9.66) of minimal arc length is equivalent to the prob-
lem

S(C) = min!, C ∈ C (9.67)

of minimal action. In particular, every curve of minimal arc length on the sphere
S

2
r is a geodesic.

Proof. (I) (9.66) ⇒ (9.67). Let C0 be a solution of (9.66). The Schwarz inequality
tells us that

„

Z t1

t0

|ẋ(t)| dt
«2

≤
Z t1

t0

|ẋ(t)|2 dt
Z t1

t0

dt

with equality iff |ẋ(t)| ≡ const. Hence

L(C)2 ≤ 2(t1 − t0)S(C) for all C ∈ C. (9.68)

The integral L(C) is invariant under changing the parameter t by a diffeomorphism.
Since the curves C in C have the property that ẋ(t) �= 0 for all t ∈ [t1, t2], the curve
C can be parametrized by the arc length. Hence |ẋ(t)| ≡ 1 if the parameter t equals
the arc length. This implies

L(C)2 = 2(t1 − t0)S(C) for all C ∈ C. (9.69)

In particular,

L(C0)
2 = 2(t1 − t0)S(C0). (9.70)

This implies 2(t1 − t0)S(C0) = L(C0)
2 ≤ L(C)2 ≤ 2(t1 − t0)S(C) for all C ∈ C.

Thus, the curve C0 is a solution of the minimum problem (9.67).
(II) (9.67) ⇒ (9.66). Let C0 be a solution of (9.67). By Prop. 9.21, we have

|ẋ0(t)| ≡ const for all t ∈ [t0, t1]. This implies (9.70). It follows from (9.69) that C0

is a solution of (9.66). �

Gauge transformations. Motivated by physics, the transformation of the
curve parameter t is called a gauge transformation. Specializing the parameter t to
arc length is called a gauge fixing. We say that the length functional C �→ L(C)
is invariant under gauge transformations. This is not true for the action functional
C �→ S(C). However, the solutions of the problem (9.67) of minimal action have
the nice property that the Euler–Lagrange equation fixes the gauge, by Prop. 9.21.

16 To simplify notation, we set m = 1
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Fig. 9.16. Intersection angle α

This fact (called the gauge fixing trick) is essentially used in the proof of Theorem
9.22 above.

In Volume IV we will show that the gauge fixing trick with respect to conformal
transformations is essential for solving the problem for surfaces with minimal area
(i.e., minimal surfaces).17

The theory of both geodesics and minimal surfaces are important examples
for simplifying mathematical existence proofs by gauge fixing.

Gauge invariance (i.e., conformal invariance) plays a crucial role in string theory,
too. Again we refer to Volume IV.

9.5.6 The Local Hilbert Space Structure

Metric tensor. Fix the point P ∈ S
2
r. We define

gP (u,v) := uv for all u,v ∈ TPS
2
r.

Every tangent space of the sphere becomes a real 2-dimensional Hilbert space with
respect to the inner product gP . We also write 〈u|v〉P instead of gP (u,v). This al-
lows us to define the angle α between two intersecting curves (Fig. 9.16). Explicitly,
suppose that the two curves

C : x = x(t), C∗ : x∗ = x∗(t), −t0 < t < t0

intersect each other at the point P at time t = 0. Set u := ẋ(0) and v := ẋ∗(0).
Then

cosα =
〈u|v〉
|u| · |v| .

Arc length. If C : x = x(t), t0 ≤ t ≤ t1, is a curve on the sphere, then the
integral

s =

Z t1

t0

|ẋ(t)| dt

is defined to be the arc length of the curve.
The volume form (symplectic form). For all tangent vectors u,v ∈ TPS

2
r,

we define the volume form by setting

υP (u,v) := (u × v)n

17 In about 1930, this trick was used by Jesse Douglas (1897–1965) in order to
solve the classical minimal surface problem. For this seminal contribution to
mathematics, Douglas was awarded the first Fields medal in 1936.
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Fig. 9.17. Volume form

where n is the outer unit normal vector of the sphere (Fig. 9.17). Note that υ is
antisymmetric. Let U be an open or closed subset of the sphere S

2
r. The integral

meas(U) =

Z

U
υ

is defined to be the surface area of the set U . For example, in regular spherical
coordinates, we get

gP = r2 cos2 ϑ dϕ⊗ dϕ+ r2dϑ⊗ dϑ, υ = r2 cosϑ dϕ ∧ dϑ.

9.5.7 The Almost Complex Structure

Consider the operator
J : TPS

2
r → TPS

2
r

which describes a counter-clockwise rotation of the tangent plane at the point P
with the rotation angle π

2
.18 If e is a unit tangent vector at the point P , then the

two vectors
e, Je

form a right-handed orthonormal basis of the tangent space TPS
2
r. Every tangent

vector v can be uniquely written as

v = ae + b · Je, a, b ∈ R.

Moreover, J2 = −id. This resembles the relation i2 = −1 for the complex number
i. In fact, the map

ae + b · Je �→ a+ bi

is a linear bijective operator from the 2-dimensional real tangent space TPS
2
r onto

the complex plane C (regarded as a 2-dimensional linear space). In addition,

J(ae + b · Je) = a · Je − be

corresponds to i(a + bi) = ai − b. Therefore, we say that the tangent plane TPS
2
r

is equipped with an almost complex structure by the operator J. For all tangent
vectors u,v ∈ Vect(S2

r), we have

υP (u,v) = −〈u|Jv〉P . (9.71)

This is the fundamental relation between

18 Explicitly, Jv = nP × v for all v ∈ TPS
2
r.
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• the Hilbert space structure (inner product),
• the symplectic structure (volume form), and
• the almost complex structure (operator J)

of the tangent spaces of the sphere. The relation (9.71) follows from

υP (u,v) = (u × v)n = (uvn) = (vnu) = (v × n)u = −〈u|Jv〉.

9.5.8 The Levi-Civita Connection on the Tangent Bundle and the
Riemann Curvature Tensor

Newton (1643–1727) and Leibniz (1646–1716) introduced the classical
derivative of functions. This yields the directional derivative dvw of veloc-
ity vector fields w on the Euclidean manifold E

3. In order to describe the
curvature of a manifold M, one has to replace the Euclidean directional
derivative dvw by the covariant directional derivative

Dvw

where v and w are smooth velocity vector fields on the base manifold
M. Thus, the infinitesimal change of velocity vector fields determines the
curvature of the underlying manifold M. Both the points of M (e.g., a
sphere) and the velocity vectors on M are described by a global manifold

TM

which is called the tangential bundle of the base manifold M. The gen-
eralization of the tangent bundle leads to vector bundles which allow us
to replace velocity vector fields v by general physical fields ψ on M. This
generalization is the key to the Standard Model in particle physics.

Folklore

The tangent bundle TS
2
r of the sphere S

2
r. By definition, the tangent bundle

TS
2
r consists of all the tuples

(P,v)

where P is a point of the sphere S
2
r, and v is a velocity vector (synonymously,

tangent vector) of the sphere S
2
r at the point P. The Levi-Civita parallel transport

describes a special curve
t �→ (P (t),v(t))

on the tangent bundle TS
2
r. Fix the point P ∈ S

2
r. The set

FP := {(P,v)}

is called the fiber of the tangent bundle TS
2
r. Obviously, FP = TPS

2
r. In other words,

the fibers are the tangent spaces of the sphere. Set π(P,v) := P. The operator

π : TS
2
r → S

2
r

is called the projection of the bundle space TS
2
r → S

2
r onto the base manifold S

2
r.

The map

s : S
2
r → TS

2
r
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is called a section of the tangent bundle TS
2
r iff s(P ) ∈ FP for all P ∈ S

2
r. In other

words, a section is a tangent vector field on the sphere S
2
r. In order to parametrize

the tangent bundle TS
2
r, we choose a local (u1, u2)-coordinate system. Then, the

point P of the sphere can locally be described by the coordinates (u1, u2).Moreover,
if x = x(u1, u2), then the natural basis vectors

bj(P ) :=
∂x(u1, u2)

∂uj
, j = 1, 2

at the point P (u1, u2) span the tangent space TPS
2
r. Every tangent vector v ∈ TPS

2
r

can be uniquely represented as

v = v1b1(P ) + v2b2(P ). (9.72)

This way, we assign to the point (P,v) ∈ TS
2
r the local bundle coordinate

(u1, u2, v1, v2) ∈ R
4.

Using local bundle coordinates, the tangent bundle TS
2
r becomes a 4-dimensional

real manifold which is locally isomorphic to O × R
2 where O is an open subset of

the sphere S
2
r. The symbol

Sect(TS
2
r)

describes the set of all the smooth sections s : S
2
r → TS

2
r. Synonymously, we also

use the symbol
Vect(S2

r).

In terms of geography, we describe the tangent bundle TS
2
r by

• an atlas of 2-dimensional geographic charts for the earth S
2
r, and

• an atlas of 4-dimensional geographic charts for the tangent bundle TS
2
r which

describes the points of earth and the possible velocity vectors at the points.

The cotangent bundle T ∗
S

2
r. This bundle consists of all the pairs

(P, ω) with P ∈ S
2
r, ω ∈ T ∗

PS
2
r

where ω : TPS
2
r → R is a linear functional on the tangent space TPS

2
r at the point

P . In other words, ω is an element of the cotangent space T ∗
PS

2
r of the sphere at

the point P. The elements of T ∗
PS

2
r are called covectors (or differential 1-forms).

Using a local (u1, u2)-coordinate system and the decomposition (9.72), we define

dui(v(P )) = vi(P ), i = 1, 2, P ∈ S
2
r.

In particular, dui(bj)(P ) = δji , i, j = 1, 2. Then every element ω of the cotangent
space T ∗

PS
2
r of the sphere S

2
r at the point P can be written as

ω = ω1du
1 + ω2du

2

where the real coordinates ω1, ω2 are uniquely determined by ω. Thus, a point (P, ω)
of the cotangent bundle T ∗

PS
2
r can be locally parametrized by the real coordinates

(u1, u2;ω1, ω2).

This way, the bundle space T ∗
S

2
r becomes a 4-dimensional manifold which is locally

diffeomorphic to the product manifold O× R
2 where O is an open subset of R

2. A
smooth covector field (or a smooth differential 1-form) on the sphere S

2
r is a smooth

section
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s : S
2
r → T ∗

S
2
r

of the cotangent bundle T ∗
S

2
r. That is, we assign to every point P of the sphere

S
2
r a differential 1-form ωP at the point P , and the local coordinates of ωP depend

smoothly on the point P of the sphere S
2
r.

The strategy of translating linear algebra to vector bundles (para-
metrized linear algebra). The tangent space TPS

2
r is a real linear space. All

the objects A on TPS
2
r from linear algebra (e.g., vectors, linear functionals, linear

operators, multilinear functionals) become a parametrized family

B := {A}P∈S2r
.

This is also called an abstract bundle. The family of tuples

(P,A)

with the points P ∈ S
2
r and the admissible objects A form the bundle space B. Set

π(P,A) := P . The map

π : B → S
2
r

is called the projection map. The set

FP := π−1(P )

is called the fiber of the bundle space B over the base point P . Fibers with distinct
base points are disjoint sets. This way, we get the fibration

B = ∪P∈S2r
FP

of the bundle space B. The map

s : S
2
r → B

is called a section iff s(P ) ∈ FP for all points P ∈ S
2
r. Physical fields on the sphere S

2
r

can be described by sections of appropriate bundles (velocity vector fields, electric
and magnetic fields, or tensor fields). In order to be able to describe the smoothness
of sections (physical fields), it is necessary to introduce local coordinates on the
bundle space B.

The same way, all the structures appearing in mathematics can be replaced
by bundles (families of parametrized structures).

This idea was very fruitful for the mathematics and physics of the 20th century.
The vector bundle End(TS

2
r). As an example, consider the space End(TPS

2
r)

of all the linear operators
A : TPS

2
r → TPS

2
r.

The bundle space End(TS
2
r) consists of all the tuples

(P,A) with P ∈ S
2
r A ∈ End(TPS

2
r).

Using local coordinates and describing the linear operators by matrices, the bundle
space End(TS

2
r) becomes the structure of a 8-dimensional real manifold.19

The tensor bundle Tm
n (S2

r). The bundle space B consists of all the tuples

19 Note that the dimension of the linear space End(TPS
2
r) is equal to four.
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(P,M) with P ∈ S
2
r, M ∈

Om

n
(TPS

2
r).

Here, M is a tensor of type (m,n) on the tangent space TP (S2
r). For example, if

m = 2, n = 1, then the map

M : X ×Xd ×Xd → R

is trilinear where X := TPS
2
r. With respect to local coordinates on S

2
r, we get

M = T jk
i du

i ⊗ bj ⊗ bk.

Thus, M(v, ω, μ) = T jk
i v

iωjμk.
20 This way, the bundle space B can locally be

described by the local bundle coordinates

(u1, u2;T jk
i )i,j,k=1,2.

In particular, T 1
0 (S2

r) (resp. T 0
1 (S2

r)) coincides with the tangent bundle TS
2
r (resp.

cotangent bundle T ∗
S

2
r).The smooth sections

s : S
2
r → Tm

n (S2
r)

are smooth tensor fields of type (m,n) on the sphere S
2
r. The set of all these smooth

tensor fields is denoted by
Nm

n (S2
r).

Covariant Directional Derivative and Tensor Analysis

The constant Gaussian curvature of a sphere S
2
r of radius r is given by

K =
1

r2
.

This definition depends on the surrounding Euclidean manifold E
3. We want to

construct an intrinsic curvature theory based on a covariant directional derivative
Dvw (connection on the tangent bundle TS

2
r). Mnemonically, the key formula reads

as follows:

Dvw := dvw
⊥ for all v,w ∈ Vect(S2

r).

The symbol ⊥ stands for orthogonal projection onto the tangent plane. Explicitly,

Dvw = dvw − (ndvw) n. (9.73)

This mnemonic formula means that

(Dvw)P = (dvw)P − (nP (dvw)P ) nP (9.74)

where nP is the outer unit normal vector of the sphere S
2
r at the point P ∈ S

2
r.

It follows from (9.73) that the following hold for all smooth velocity vector fields
v,w, z ∈ Vect(S2

r) and all smooth real-valued functions f, g on S
2
r:

20 Note that dui(v) = vi and bj(ω) = ωj .
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• Dfv+gwz = fDvz + gDwz (linearity),

• Dv(w + z) = Dvw +Dvz (linearity),

• Dv(fw) = dvf · w + fDvw (special Leibniz rule).

The Leibniz rule and parallel transport. We have

du(〈v|w〉P ) = 〈DuvP |wP 〉 + 〈vP |DuwP 〉 (9.75)

for all velocity vector fields u,v,w ∈ Vect(S2
r) and all points P ∈ S

2
r. This follows

from the classic Leibniz rule together with orthogonal projection:

du(〈v|w〉P ) = 〈duvP |wP 〉 + 〈vP |duwP 〉 = 〈duv⊥
P |wP 〉 + 〈vP |duw⊥

P 〉.

In Riemannian geometry, this is also called the Ricci lemma for the metric tensor.

Theorem 9.23 The Levi-Civita parallel transport of two velocity vectors along the
same curve preserves the inner product on the tangent spaces.

This implies that the length of the velocity vectors and the angle between the
two velocity vectors remains unchanged (with respect to the inner product on the
tangent spaces). In other words:

The Levi-Civita parallel transport respects the local Hilbert space structure
of the sphere.

Extension of the covariant directional derivative. Let us show that it is
possible to extend the covariant directional derivative Dv to other physical fields
on the sphere S

2. Let v,w, z ∈ Vect(S2
r). In what follows, we will sum over equal

upper and lower indices from 1 to 2.
(i) Covector field (differential 1-forms) ω on S

2
r: We want to ensure the validity

of the following Leibniz rule:

dv
`

ω(w)
´

= (Dvω)(w) + ω(Dvw).

To this end, we define (Dvω)(w) := dv
`

ω(w)
´

− ω(Dvw).

(ii) Field of smooth 2-differential forms ω on S
2
r: To get the Leibniz rule

dv
`

ω(w, z)
´

= (Dvω)(w, z) + ω(Dvw, z) + ω(w, Dvz),

we define

(Dvω)(w, z) := dv
`

ω(w, z)
´

− ω(Dvw, z) − ω(w, Dvz).

(iii) Smooth operator field End(TS
2
r) on S

2
r: To get the Leibniz rule

Dv(Aw) = (DvA)w +A(Dvw),

we define (DvA)w := Dv(Aw) −A(Dvw).
(iv) Smooth tensor field of type (m,n) on S

2
r: For example, let m = 2, n = 1.

Similarly, as above, we define DvM in such a way that there holds the following
Leibniz rule:

dv(M(w, ω, μ)) = (DvM)(w, ω, μ) +M(Dvw, ω, μ)

+M(w, Dvω, μ) +M(w, ω,Dvμ)

for all smooth differential 1-forms ω and μ, and all smooth velocity vector fields w
on the sphere S

2
r.
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Tensor products. The definition (iv) above implies the following Leibniz rule

Dv(M ⊗N) = (DvM) ⊗N +M ⊗DvN

for all smooth tensor fields M and N . If M and N are of the same type (m,n),
then we have the following sum rule:

Dv(M +N) = DvM +DvN.

The covariant differential. We are given the smooth velocity vector field
w ∈ Vect(S2

r). Then the covariant differential Dw is defined by

(Dw)(v) := Dvw

for all smooth velocity vector fields v ∈ Vect(S2
r).

Local coordinates. Choose local (u1, u2)-coordinates. Let us define the Chris-
toffel symbols by setting

Γ k
ij(P ) := duk(Dbibj), i, j = 1, 2.

Then

Dbibj := Γ k
ijbk, i, j = 1, 2.

Setting gij = bibj , it follows as in the proof of Theorem 9.12 on page 580 that

Γ k
ij = 1

2
gks(∂igjs + ∂jgis − ∂sgij).

Recall the covariant partial derivative ∇i from (8.102) on page 495:

∇iw
k = ∂iw

k + Γ k
ijw

j .

If v = vibi and w = wibi, then it follows from the Leibniz rule that

Dvw = (vs∇sw
k) bk.

In fact, we get

Dvw = (dvw
j) bj + wjDvbj = (vs∂sw

k + viΓ k
ijw

j) bk = (vs∇sw
k) bk.

It turns out that

The covariant differential calculus described above coincides with the co-
variant differential calculus based on ∇i in Chap. 8.

For example,

Dv(T k
ij bk ⊗ dxi ⊗ dxj) = (vs∇sT

k
ij) bk ⊗ dxi ⊗ dxj .

Regular spherical coordinates. Set u1 := ϕ, u2 := ϑ. In the special case of
spherical coordinates, the sphere S

2
r is locally represented by the equation

x = r(cosϑ cosϕ i + cosϑ sinϕ j + sinϑ k)

where −π < ϕ < π and −π
2
< ϑ < π

2
(see the discussion about regular and singular

spherical coordinates on page 572). This yields the natural basis vectors
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• b1(ϕ, ϑ) = xϕ = r(− cosϑ sinϕ i + cosϑ cosϕ j),
• b2(ϕ, ϑ) = xϑ = r(− sinϑ cosϕ i − sinϑ sinϕ j + cosϑ k) (see Fig. 9.6).

Let us add the outer unit normal vector n = (b1 × b2)/|b1 × b2|. Explicitly,

n = cosϕ cosϑ i + sinϕ cosϑ j + sinϑ k.

For the metric tensorial family, we get
 

g11 g12
g21 g22

!

=

 

r2 cos2 ϑ 0

0 r2

!

.

Define

Ai :=

 

Γ 1
i1 Γ

1
i2

Γ 2
i1 Γ

2
i2

!

, A = Aidu
i =

 

ω1
1 ω

1
2

ω2
1 ω

2
2

!

, i = 1, 2.

Then

A1 =

 

0 − tanϑ

− 1
2

sin 2ϑ 0

!

, A2 =

 

− tanϑ 0

0 0

!

,

and

A =

 

− tanϑ dϑ − tanϑ dϕ

− 1
2

sin 2ϑ dϕ 0

!

.

The Lie Algebra Vect(S2
r) of Velocity Vector Fields

The space Vect(S2) of smooth velocity vector fields on the sphere S
2
r becomes a real

Lie algebra equipped with the following Lie product.

[v,w] := Dvw −Dwv.

In Sect. 11.2, we will show that [v,w] = Lvw where the Lie derivative Lvw is
defined by means of the flow of fluid particles on the sphere S

2
r which is generated

by the velocity vector field v.
Local coordinates and cancellations. Consider a local (u1, u2)-coordinate

system on the sphere S
2
r together with the natural basis b1,b2. Then, the symmetry

property Γ k
ij = Γ k

ji of the Christoffel symbols yields

[v,w] = (vi∂iw
k − wi∂iv

k)bk. (9.76)

In fact, let v = vibi and w = wibi. It follows from

Dvw = (vi∂iw
k + viΓ k

ijw
j) bk

that
[v,w] = (vi∂iw

k − wi∂iv
k)bk + (Γ k

ijv
iwj − Γ k

ijw
ivj)bk.

�

In particular, we obtain the special Lie product

[bi,bj ] = 0, i, j = 1, 2. (9.77)
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The Riemann Curvature Operator F(u, v)

The Riemann curvature operator on the sphere is the prototype for describ-
ing forces in gauge theory (i.e., Einstein’s theory of general relativity on
gravitative interaction, Maxwell’s theory on electromagnetic interaction,
and the Standard Model in particle physics on strong and electroweak
interaction).

Folklore

In what follows, let u,v,w, z ∈ Vect(S2
r) be smooth velocity vector fields on the

sphere S
2
r. In order to get insight, we first only consider invariant formulas by using

the langauge of vector analysis. Then we will give the proofs by passing to local
coordinates. The starting point in our approach is the crucial analytic definition of
the Riemann curvature operator:

F(u,v)w := DuDvw −DvDuw −D[u,v]w. (9.78)

More precisely, for fixed velocity vector fields u,v ∈ Vect(S2
r), the operator

FP (u,v) : TPS
2
r → TPS

2
r

is called the Riemann curvature operator on the tangent space of the sphere at the
point P . For fixed velocity vectors u,v ∈ Vect(S2

r), the linear operator

FP (u,v) : TPS
2
r → TPS

2
r

is called the Riemann curvature operator at the point P (with respect to the tangent
vectors u and v). Mnemonically, we write

F(u,v) := DuDv −DvDu −D[u,v].

Big surprise – incredible cancellations. The analytic definition (9.78) con-
tains derivatives of the velocity vector fields of first and second order. The following
theorem shows that all of the derivatives of the velocity vector fields are cancelled.

Theorem 9.24 For all points P ∈ S
2
r,

FP (u,v)w = K · (〈v|w〉P u − 〈u|w〉P v). (9.79)

Therefore, the Riemann curvature operator is a purely algebraic object; it re-
lates the local Hilbert space structure of the sphere to the curvature of the sphere.
This is a fundamental property of general Riemannian manifolds. Based on local
coordinates, the proof of Theorem 9.24 will be given on page 617. The proof shows
that, in local coordinates, FP (u,v)w only depends on the velocity vectors u,v,w
and the first and second partial derivatives of the metric tensorial family gij . Con-
sequently, FP (u,v)w is an intrinsic quantity. Thus, Theorem 9.24 tells us that:

The Gaussian curvature K of the sphere S
2
r is an intrinsic geometric quan-

tity.

This is a special case of the famous theorema egregium of Gauss (see Sect. 9.6.6 on
page 632.

Gauge fixing. In order to understand best the geometric meaning of the Rie-
mann curvature operator, we choose a special basis e1, e2 of the tangent space.
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Fig. 9.18. Rotation of an orthonormal frame

More precisely, let e1, e2 be a right-handed orthonormal frame at the point P of
the sphere S

2
r (Fig. 9.18). Explicitly,

〈ei|ej〉P = δij , i, j = 1, 2,

and (e1 × e2)n > 0. By Theorem 9.24, we get

FP (e1, e2) e1 = −Ke2, FP (e1, e2) e2 = Ke1,

and FP (e1, e2) = −FP (e2, e1). Thus, the Riemann curvature operator FP (e1, e2)
sends the basis vector e1 (resp. e2) to the vector −Ke2 (resp. Ke1). This is a clock-
wise rotation in the tangent space with the angle π/2 combined with a stretching by
the factor K (Fig. 9.18). By using the linearity with respect to the vectors u,v,w,
we get

FP (u,v)w = −KυP (u,v) · Jw. (9.80)

Recall that υP (u,v) is the volume spanned by the two vectors u and v, K is the
Gaussian curvature, and the vector Jw is obtained from the vector w by a counter-
clockwise rotation with the angle π/2. Formula (9.80) implies the antisymmetry
relation

FP (u,v) = −FP (v,u).

This antisymmetry property is responsible for the fact that Riemannian differen-
tial geometry can be based on the language of differential forms (the dual Cartan
approach to Riemann’s approach). Summarizing:

Metric properties are described by symmetry (metric tensor), and curvature
is described by antisymmetry (Riemann’s curvature operator).

The combination of the two kinds of symmetry yields the Riemann curvature tensor.

The Riemann Curvature Tensor R

In physics, one measures real numbers. Therefore, we use the Hilbert space structure
(i.e., the inner product) of the tangent space TPS

2
r in order to define

RP (u,v,w, z) := 〈FP (u,v)w|z〉P .

The 4-linear map

RP : TPS
2
r × TPS

2
r × TPS

2
r × TPS

2
r �→ R

is called the Riemann curvature tensor RP at the point P. It follows from Theorem
9.24 that
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RP (u,v;w, z) = K · (〈v|w〉P 〈u|z〉P − 〈u|w〉P 〈v|z〉P ). (9.81)

This implies the following symmetries:

• RP (u,v;w, z) = −RP (v,u;w, z) (u ⇔v),
• RP (u,v;w, z) = −RP (u,v; z,w) (w ⇔z),
• RP (u,v;w, z) = RP (w, z; ,u,v) ((u,v) ⇔ (w, z)).

From (9.71) and (9.80) we get

RP (u,v;w, z) = −K〈u|Jv〉P 〈w|Jz〉P = −KυP (u,v) υP (w, z). (9.82)

The beautiful formulas (9.81) and (9.82) show how curvature (the Riemann curva-
ture tensor R and the Gaussian scalar curvature K), Hilbert space structure (inner
product), almost complex structure (operator J), and symplectic structure (volume
form υ) are related to each other. In particular, we get

K = R(e1, e2; e2, e1). (9.83)

This is Gauss’ theorema egregium for the sphere S
2
r.

9.5.9 The Components of the Riemann Curvature Tensor and
Gauge Fixing

The use of matrices and differential forms simplifies the formulas for the
Riemann curvature tensor with respect to local coordinates. The history
of differential geometry was strongly influenced by the desire of mathe-
maticians to simplify time-consuming ugly computations by more elegant
arguments based on getting more insight into the mathematical structure
behind the formulas. Most progress in mathematics is stimulated by the
desire of getting insight.

Folklore

Local coordinates. Choose local (u1, u2)-coordinates and the corresponding nat-
ural basis b1,b2.

Proposition 9.25 (i) F(u,v)w = (Rs
ijku

ivjwk)bs where

Rs
ijk = ∂iΓ

s
jk − ∂jΓ s

ik + Γ s
irΓ

r
jk − Γ s

jrΓ
r
ik. (9.84)

(ii) R(u,v,w, z) = Rijklu
ivjwkzl where Rijkl = Rs

ijkgsl.

Proof. Ad (i). (I) Brute force argument: Recall that

F(u,v)w := DuDvw −DvDuw −D[u,v]w,

and
Dvw = vi(∂iw

k + Γ k
ijw

j) bk.

We recommend the reader to prove the claim (i) by a straightforward computation.
There occur incredible cancellations.

(II) Refined argument: Note that [bi,bj ] = 0. Hence D[bi,bj ] = 0. Furthermore,

set rsijk := F(bi,bj)bk. By linearity,

F(u,v)w = rsijku
ivjwkbs.
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Note that Dbj bk = vsbs with vs := Γ s
jk. It follows from

Dbi(Dbjbk) = (∂iv
s + Γ s

irv
r)bs = (∂iΓ

s
jk + Γ s

irΓ
r
jk)bs

and

Dbj (Dbibk) = (∂jΓ
s
ik + Γ s

jrΓ
r
ik)bs

that rsijk = Rs
ijk.

Ad (ii). By definition, R(u,v,w, z) is equal to

〈F(u,v)w|z〉 = Rs
ijku

ivjwkgslz
l.

�

The language of matrices, and the language of differential forms. In
order to simplify the clumsy formula (9.84), we set

Fij = (Rl
ijk), F := 1

2
Fij du

i ∧ duj , Ωl
k := Rl

ijk du
i ∧ duj .

Then

Fij =

 

R1
ij1 R

1
ij2

R2
ij1 R

2
ij2

!

, F =

 

Ω1
1 Ω

1
2

Ω2
1 Ω

2
2

!

.

Recalling the definitions Ai := (Γ l
ik) and A := Aidu

i, the clumsy equation (9.84)

passes over to Élie Cartan’s elegant structural equation

F = dA + A ∧A. ′

Since F is a 2-form on a 2-dimensional manifold, the integrability condition (Bianchi
identity)

dF = 0

is automatically satisfied.
Regular spherical coordinates. In this case, we get

F12 =

 

0 1

− cos2 ϑ 0

!

, F21 = −F12, F11 = F22 = 0. (9.85)

Hence

F =

 

Ω1
1 Ω

1
2

Ω2
1 Ω

2
2

!

=

 

0 dϕ ∧ dϑ
− cos2 ϑ dϕ ∧ dϑ 0

!

.

Observe that R1221 = Rs
122gs1 = R1

112g11. Similarly,

R2112 = −R1212 = −R2121 = R1221 = r2 cos2 ϑ. (9.86)

The remaining components Rijkl vanish identically. Noting that g = g11g22 − g212,
and hence g = r4 cos2 ϑ, we get

K =
R1221

g
=

1

r2
. (9.87)

This relation for the sphere is a special case of the theorema egregium of Gauss.
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Fig. 9.19. Parallel transport along a geodesic triangle

9.5.10 Computing the Riemann Curvature Operator via Parallel
Transport Along Loops

It is of fundamental importance for applications of gauge theory to modern
physics that the curvature can be measured by the parallel transport of
tangent vectors (i.e., velocity vectors) along a loop.

Folklore

We want to show that the Gaussian curvature, the Riemann curvature operator,
and the Riemann curvature tensor can be computed by measuring the parallel
transport of a velocity vector along a geodesic triangle. This follows from the fact
that the parallel transport of velocity vectors preserves both the length of the
velocity vectors (measured in tangent spaces) and the angle between two velocity
vectors. Since the tangent vectors of a geodesic curve are parallel along the curves,
the following holds:

(P) The parallel transport of a velocity vector along a geodesic curve pre-
serves the length of the velocity vector and the angle between the velocity
vector and the geodesic curve.

Moreover, we will critically use the Gauss-Bonnet theorem (Gauss’ theorema ele-
gantissimum).
The prototype. Let e1, e2 be a right-handed orthonormal basis of the tangent
space TNS

2
r of the sphere S

2
r at the north pole N . Consider Fig. 9.19(a). We want

to investigate the parallel transport

w = e1 ⇒ wA ⇒ wB ⇒ wN

of the tangent vector e1 along the geodesic triangle NABN.We define the operator
Π of parallel transport by setting Πw := wN . We claim that

Πe1 = e2.

Proof. In what follows, we will use property (P) above.

• The starting vector w = e1 is a tangent vector of the geodesic line NA at the
point N . Therefore, wA is also a tangent vector of NA at the point A.

• The angle between the vector wA and the equator arc AB is equal to π
2
. Thus,

wB is a tangent vector of the geodesic line BN at the point B.
• Finally, wN is a tangent vector of BN at the point N . Hence wN = e2. �
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Knowing Πe1, we claim that we can determine the Gaussian curvature by using

K =
∠(e1,Πe1)

meas(U)
. (9.88)

Here, the symbol ∠(e1,Πe1) is the angle θ ∈] − π, π] which sends the vector e1

to the vector Πe1 by counter-clockwise rotation. Moreover, meas(U) is the surface
measure of the triangle domain. In the present situation, we have

• ∠(e1,Πe1)) = π
2
,

• meas(U) = 1
8

meas(S2
r) = π

2
r2, and K = 1

r2
.

If we know the Gaussian curvature K, then we get

• FN (u,v)w = −KυN (u,v) Jw (Riemann curvature operator), and

• RN (u,v;w, z) = 〈FN (u,v)w|z〉N (Riemann curvature tensor)

for all tangent vectors u,v,w, z ∈ TNS
2
r at the north pole. In particular,

FN (e1, e2) e1 = −Ke2, FN (e1, e2) e2 = Ke1, RN (e1, e2; e2, e1) = K.

Recall that υ is the volume form of the sphere S
2
r, and Jw is obtained from w by

counter-clockwise rotation with the angle π
2
.

Parallel transport along a general triangle. Consider the triangles de-
picted in Fig 9.19(b), (c). We claim that the formula (9.88) and the formulas above
for the Riemann curvature operator and the Riemann curvature tensor remain valid.
Proof. By Fig. 9.19(b), (c), we have the following angle relations:

• ∠(wA, AB) = ∠(wB , AB) = π − α,
• ∠(BN,wB) = ∠(BN,wN ) = α+ β,
• ∠(wN , e1) = π − α− β − γ, ∠(e1,wN ) = α+ β + γ − π.
By the Gauss–Bonnet theorem, α+ β + γ − π =

R

U Kυ = K meas(U). Therefore,

∠(e1,Πe1)

meas(U)
=
α+ β + γ − π

meas(U)
= K.

�

9.5.11 The Connection on the Frame Bundle and Parallel
Transport

Moving frames. Consider a smooth curve

C : P = P (t), t ∈ R,

on the sphere S
2
r where R is an open time interval which contains the time point

t0. By definition, a frame at the point P is an ordered pair (e1, e2) of linearly
independent tangent vectors at the point P . Consider a smooth map

t �→ (e1(t), e2(t))

which assigns to each time t ∈ R a frame (e1(t), e2(t)) at the curve point P (t).
In other words, the frames move along the curve C. We assume that the following
system of differential equations is satisfied:
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Dei(t)

dt
= 0, t ∈ R, i = 1, 2. (9.89)

We are given e1(t0) and e2(t0). Geometrically, this means that the tangent vector
ei(t) at the point P (t) is obtained from the tangent vector ei(t0) at the initial point
P (t0) by parallel transport along the curve C.

Theorem 9.26 If the initial frame (e1(t0), e2(t0)) is a right-handed orthonormal
system on the tangent space TP (t0)S

2
r, then every frame (e1(t), e2(t)) at time t ∈ R

is a right-handed orthonormal system on every tangent space TP (t)S
2
r.

Proof. This follows from the fact that parallel transport preserves the length of
vectors and the angle between two vectors. Moreover, by continuity, the orientation
of a frame is preserved. �

Consequently, if (e1(t0), e2(t0)) is a right-handed orthonormal frame, then we
have the following matrix equation

(e1(t), e2(t)) = (e1(t0), e2(t0)) G(t), t ∈ R

where G(t) ∈ SO(2) for all t ∈ R, and the map t �→ G(t) from the time interval R
to the Lie group SO(2) is smooth. Theorem 9.26 tells us that:

The global parallel transport on the Euclidean manifold E
3 (Euclidean ge-

ometry) is replaced by the Levi-Civita parallel transport on the sphere S
2
r

(locally Euclidean geometry).

Let v1, v2 be real numbers. Consider the velocity vectors

v(t) = viei(t), t ∈ R.

Then, v is parallel along the curve C. In fact,

Dv(t)

dt
= vi

Dei(t)

dt
= 0.

Thus, the frame (e1(t), e2(t)), which moves along the curve C, replaces a global
Cartesian coordinate system on the Euclidean manifold. Let us translate the pre-
ceding results into the language of fiber bundles.

The frame bundle FS
2
r. By definition, the frame bundle FS

2
r of the sphere

S
2
r consists of all the tuples

(P, e1, e2)

where P is a point of the sphere S
2
r, and (e1, e2) is a frame at the point P. The

parallel transport considered above describes a special curve

t �→ (P (t), e1(t), e2(t))

on the tangent bundle TS
2
r. Fix the point P ∈ S

2
r. The set

FP := {(P, e1, e2)}

is called the fiber of the frame bundle FS
2
r over the base point P ∈ S

2
r. Set

π(P, e1, e2) := P. The operator

π : FS
2
r → S

2
r

is called the projection of the bundle space FS
2
r onto the base manifold S

2
r. The

map
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s : S
2
r → FS

2
r

is called a section of the frame bundle FS
2
r iff s(P ) ∈ FP for all P ∈ S

2
r. In order to

parametrize the frame bundle FS
2
r, we choose a local (u1, u2)-coordinate system.

Then, the point P of the sphere can locally be described by the coordinates (u1, u2).
Moreover, if x = x(u1, u2), then the natural basis vectors

bj(P ) :=
∂x(u1, u2)

∂uj
, j = 1, 2

at the point P (u1, u2) are a basis for the tangent space TPS
2
r. Every frame (e1, e2)

at the point P can be written in the form of the matrix equation

(e1, e2) = (b1,b2)G

where G ∈ GL(2,R). The tuple
(P,G)

is called the bundle coordinate of the bundle point (P, e1, e2). Using bundle coor-
dinates, the frame bundle FS

2
r becomes a real manifold.

The orthonormal frame bundle. By definition, the orthonormal frame bun-
dle F⊥

S
2
r of the sphere S

2
r consists of all the tuples

(P, e1, e2)

where P is a point of the sphere S
2
r, and (e1, e2) is a right-handed orthonormal

frame of tangent vectors at the point P . In order to parametrize F⊥(S2
r), we restrict

ourselves to choosing orthonormal local coordinates. This means that the natural
basis vectors b1(u

1, u2),b2(u
1, u2) form a right-handed orthonormal system. Then

the bundle coordinates are of the form (P,G) where G ∈ SO(2).

Using bundle coordinates, the orthonormal frame bundle F⊥
S

2
r becomes a

three-dimensional real manifold which is locally diffeomorphic to a product
bundle.

The gauge construction. Let

s : O → FS
2
r

be a smooth section where O is a nonempty open subset of the sphere S
2
r. Then the

map s assigns to any point P ∈ O a frame e+
1 , e

+
2 . Every point (P, e1, e2) can be

uniquely represented by the matrix equation

(e1, e2) = (e+
1 , e

+
2 )G

where G ∈ GL(2,R). This way, we assign to the bundle point (P, e1, e2) the bundle
coordinate (P,G). The map s is called a gauge fixing of the frame bundle FS

2
r.

Proposition 9.27 There does not exist a continuous section

s : S
2 → FS

2.

This crucial fact means that it is not possible to choose a global gauge fixing.
Physicists noticed this phenomenon in physical gauge theories (Gribov ambiguity).
Proposition 9.27 follows from Poincaré’s no-go theorem to be considered next.
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9.5.12 Poincaré’s Topological No-Go Theorem for Velocity Vector
Fields on a Sphere

Theorem 9.28 Every continuous velocity vector field on the sphere S
2
r has a sta-

tionary point where the velocity vector vanishes.

Alternatively, every smooth section s : S
2
r → TS

2
r of the tangent bundle of the

sphere has a zero. This means that there exists a point (P0,v(P0)) of the tangent
bundle of the sphere with v(P0) = 0.

The classic proof based on the mapping degree can be found in E. Zeidler,
Nonlinear Functional Analysis and its Applications. Vol 1: Fixed Point Theory, p.
558, Springer, New York, 1995. The Poincaré no-go theorem allows far reaching
generalizations in modern topology in terms of the theory of characteristic classes
for vector bundles. We will study this in Vol. IV on quantum mathematics. At this
point, we recommend J. Milnor and J. Stasheff, Characteristic Classes, Princeton
University Press, 1972.21

9.6 Gauss’ Theorema Egregium

I am ill mannered, for I take a lively interest in a mathematical object
only where I see a prospect of a clever connection of ideas or of results
recommended by elegance or generality.

Carl Friedrich Gauss (1777–1855)

The greatest mathematicians, such as Archimedes (ca.285–212 B.C.), New-
ton (1643–1727), and Gauss (1777–1855), always united theory and appli-
cations in equal manner.

Felix Klein (1849–1925)

The differential geometry of the sphere considered in the preceding section can be
generalized in a straightforward manner to 2-dimensional surfaces. In this section,
we will present two different approaches in order to prove the Gauss theorema
egregium. The first approach works in the spirit of Gauss and Riemann, the second

approach is due to Élie Cartan. The basic tool are differential equations for frames
and the corresponding integrability conditions which imply the theorema egregium.
Cartan’s approach has the advantage that the integrability conditions are an im-
mediate consequence of Poincaré’s cohomology rule ddω = 0 for differential forms.

Summation convention. In this section, we sum over equal upper and lower
indices from 1 to 2. In addition, we will use gij (resp. gij) introduced below in order
to lower (resp. to lift) indices. For example, hij = gishsj and hij = gish

s
j .

9.6.1 The Natural Basis and Cobasis

Let us consider the smooth surface

S : x = x(u1, u2), (u1, u2) ∈ U (9.90)

21 For his seminal contributions to topology, John Milnor (born 1931) was awarded
the Fields medal in 1962, the Wolf prize in 1989, and the Abel prize in 2011. We
refer to J. Milnor, Collected Works, Vols. 1–5, Amer. Math. Soc., Providence,
Rhode Island, 2011.
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Fig. 9.20. Surface parametrization

where U is a nonempty, open, arcwise connected subset of R
2. Intuitively, the coor-

dinates (u1, u2) describe the surface in a geographic chart (Fig. 9.20). The change
of local coordinates

ui
′
= ui

′
(u1, u2), i′ = 1′, 2′, (9.91)

is given by a diffeomorphism (u1, u2) �→ (u1′ , u2′) from the open subset U of R
2

onto the open subset U ′ of R
2. We will use the classic tensor calculus from Chap. 8

in order to guarantee that the approach does not depend on the choice of the local
coordinates.

The index principle tells us that expressions without free indices are in-
variants.

Moreover, we will use the language of vector analysis on the Euclidean manifold E
3

in order to guarantee that the results do not depend on the choice of the coordinates
in E

3.
Natural basis. We introduce the natural basis vectors

bi(u
1, u2) :=

∂x(u1, u2)

∂ui
, i = 1, 2,

and the normal unit vector

n(u1, u2) :=
b1(P ) × b2(P )

|b1(P ) × b2(P )| .

Here, the point P on the surface S corresponds to the local coordinates (u1, u2).
Naturally enough, we assume that b1(P ) × b2(P ) �= 0 for all (u1, u2) ∈ U .22

Orientation. Our choice of the extrinsic frame b1,b2,n as a right-handed sys-
tem fixes a positive orientation, by definition. The positive orientation is preserved
iff the Jacobian of the local coordinate transformation is positive, that is,

∂(u1′u2′)

∂(u1, u2)
> 0 for all (u1, u2) ∈ U .

Natural cobasis. We introduce the natural covector basis du1, du2 by setting

dui(v) := vi, i = 1, 2

22 This condition means that the natural basis vectors b1 and b2 span a two-dimen-
sional tangent plane. In modern terminology, this condition guaranties that the
surface S is a 2-dimensional submanifold of the Euclidean manifold E

3.
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if v := vjbj . In terms of physics, this is the i-th velocity component measured by
an observer who uses the natural basis. Furthermore, we define

gij := bibj , hij := −binj i, j = 1, 2.

Here, we set nj := ∂n
∂uj .

Proposition 9.29 The families bi, du
i, gij are tensorial families with respect to a

change of local coordinates (u1, u2).
The families ni and hij are pseudo-tensorial families. Moreover, the families

gij and hij are symmetric. In addition, hij = n∂ibj for all indices.

Proof. Note that by the chain rule,

∂x

∂ui′
=
∂ui

∂ui′
∂x

∂ui
.

Thus, bi is a tensorial family. Similarly, ni is a tensorial family if the orientation is
preserved under the change of local coordinates. If the orientation is changed, then
n passes over to −n. Thus, ni and hij are pseudo-tensorial families.

Obviously, gij is symmetric. By the Leibniz rule, it follows from nbj = 0 that

0 =
∂

∂ui
(nbj) = nibj + n

∂2x

∂ui∂uj
.

Thus, hij = n ∂2x
∂ui∂uj . Hence hij = hji. �

Gauss used the following notation:

 

E F

F G

!

=

 

g11 g12
g21 g22

!

,

 

L M

M N

!

=

 

h11 h12

h21 h22

!

. (9.92)

Corollary 9.30 The quantities g := det(gij) and h := det(hij) are tensorial den-
sity families of weight 2. Therefore, the quotient h

g
is an invariant under the change

of local coordinates of the surface S.

We will show on page 629 that the quotient h
g

is the Gaussian curvature.

Proof. It follows from the tensorial transformation law gij = ∂ui′

∂ui
∂uj′

∂uj gi′j′ that

 

g11 g12
g21 g22

!

= Gd

 

g1′1′ g1′2′

g2′1′ g2′2′

!

G where G :=

 

∂u1′

∂u1
∂u1′

∂u2

∂u2′

∂u1
∂u2′

∂u2

!

.

Hence g = det(Gd)g′ det(G) = (det(G))2g′.

Analogously, we get h = (det(G))2h′. This implies h
g

= h′

g′ . �

According to Gauss, we introduce the following two symmetric tensors:

• g := gij(u
1, u2) dui ⊗ duj , and

• h := hij(u
1, u2) dui ⊗ duj .
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Fig. 9.21. Curve on the surface

Suppose that v and w are smooth velocity vector fields on the surface S with
v = vibi and w = wjbj , then

g(v,w) = gijv
iwj , h(v,w) = hijv

iwj .

As we will show below,

• the so-called first fundamental tensor (or the metric tensor) g determines the
metric properties of the surface S, and

• the so-called second fundamental tensor h determines the curvature properties
of the surface S.

Curve on the surface. We are given the smooth curve

C : ui = ui(t), t0 ≤ t ≤ t1 (9.93)

which depends on the time parameter t. This corresponds to the motion

x = x(t), t0 ≤ t ≤ t1
on the surface S where x(t) := x(u1(t), u2(t)) (Fig. 9.21). The motion of the unit
normal vector along the curve C is given by

n = n(t), t0 ≤ t ≤ t.
Using the differentials

• dx = ∂x
∂ui du

i = bidu
i, and

• dn = ∂n
∂ui du

i = nidu
i,

and using the chain rule, we get the following two formulas for the time derivatives:

• ẋ(t) = bi(u
1(t), u2(t)) u̇i(t), and

• ṅ(t) = ni(u
1(t), u2(t)) u̇i(t).

Hence

•
“

dx(t)
dt

”2

= gij(u
1(t), u2(t)) u̇i(t)u̇j(t), and

• dx(t)
dt

dn(t)
dt

= −hij(u1(t), u2(t)) u̇i(t)u̇j(t).

Mnemonically, we write

• ds2 = (dx)2 = gij du
iduj , and

• −dx dn = hij du
iduj .

The modern language of tensor products yields:

• g = dx ⊗ dx = gijdu
i ⊗ duj (first fundamental form of Gauss), and

• h = −dx ⊗ dn = hij du
i ⊗ duj (second fundamental form of Gauss).
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9.6.2 Intrinsic Metric Properties

The length of a curve on the surface. Consider the curve (9.93) on the surface
S. By definition, the length l of this curve is given by

l :=

Z t1

t0

|x(t)| dt.

With respect to local (u1, u2)-coordinates, we get

l =

Z t1

t0

p

gij(u1(t), u2(t)) u̇i(t)u̇j(t) dt.

The intersection angle between two curves on the surface. Consider
the two curves x = x(t) and x∗ = x∗(t) parametrized by

ui = ui(t) and ui∗ = ui∗(t), −t1 < t < t1,

respectively. Suppose that the two curves intersect each other at the point P at
time t = 0. Then the intersection angle α is defined by

cosα :=
ẋ(0)ẋ∗(0)

|ẋ(0)| · |ẋ∗(0)| .

Here, we use the two tangent vectors ẋ(0) and ẋ∗(0) at the intersection point P at
time t = 0 (see Fig. 9.16 on page 606). With respect to local coordinates, we get

cosα =
gij(P ) u̇i(0)u̇j∗(0)

p

gij(P ) u̇i(0)u̇j(0)
q

gij(P ) u̇i∗(0)u̇j∗(0)

where the intersection point P corresponds to the local coordinates (u1(0), u2(0)).
Surface measure. On the geographic chart U (Fig. 9.20 on page 624), consider

the rectangle spanned by the points

(u1
0, u

2
0), (u1

0 +Δu1, u2
0), (u1

0, u
2
0 +Δu2).

This rectangle has the surface area Δu1Δu2. If the positive numbers Δu1 and Δu2

are sufficiently small, and if the basis vector b1(u
1
0, u

2
0) is orthogonal to the basis

vector b2(u
1
0, u

2
0), then the corresponding curved rectangle on the surface S has the

approximate surface area

ΔS = |b1(P )| Δu1 · |b2(P )| Δu2

where P = (u1
0, u

2
0). In the general case, we get

ΔS = |b1(P ) × b2(P )| Δu1Δu2.

Since |a × b| =
p

a2b2 − (ab)2, we obtain

ΔS =
p

det(g) Δu1Δu2.

After this intuitive motivation, let O be a bounded open subset of the geographic
chart U which corresponds to the set SO on the surface S. By definition, the surface
area of SO is equal to
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Fig. 9.22. Canonical local Cartesian coordinate system of a surface

meas(SO) :=

Z

O

p

g(u1, u2) du1du2.

Since
√
g is a tensorial density of weight one, the integral does not depend on the

choice of positively oriented local coordinates, by the classical substitution rule. If
we change the orientation of the local coordinates, then the integral changes sign.

The volume form. The 2-form

υ := ι
√
g du1 ∧ du2

is called the volume form of the surface S. Here, ι = ±1 is the orientation number
of the surface S. Note that υ does not depend on the choice of local coordinates.
We have

meas(SO) =

Z

SO

υ.

9.6.3 The Extrinsic Definition of the Gaussian Curvature

In order to understand the geometric meaning of the Gaussian curvature K, we will
start with a geometric definition based on using a distinguished coordinate system
together with the Taylor expansion up to second order. Then we will use the tensor
calculus in order to get an invariant expression for K. As a prototype, note that a
sphere of radius R has the Gaussian curvature K = 1

R2 , as we will show below.

The canonical local coordinates. Fix the surface point P0. Choose a right-
handed Cartesian (ξ, η, ζ)-coordinate system with the point P0 as origin (Fig. 9.22).
That is, the (ξ, η)-plane coincides with the tangent plane of the surface at the point
P0. By convention, the normal unit vector n at the point P0 points in direction of
the ζ-axis. In a sufficiently small neighborhood of the point P0, the equation of the
surface is given by

ζ = ζ(ξ, η)

with ζ(0, 0) = 0. Since the equation ζ = 0 describes the tangent plane at the point
P0, the Taylor expansion tells us that

ζ = 1
2
ζξξ(0, 0) ξ2 + ζξη(0, 0) ξη + 1

2
ζηη(0, 0) η2 + o(ξ2 + η2), ξ2 + η2 → 0.

By the principal axis theorem, there exists a rotation of the (ξ, η)-system such that
we get

ζ = 1
2
(λ1ξ

2 + λ2η
2) + o(ξ2 + η2), ξ2 + η2 → 0. (9.94)

The numbers λ1, λ2 are the eigenvalues of the symmetric matrix
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Fig. 9.23. Positive and negative Gaussian curvature

 

ζξξ(0, 0) ζξη(0, 0)

ζξη(0, 0) ζηη(0, 0)

!

.

Explicitly, the real numbers λ1, λ2 are the zeros of the equation
˛

˛

˛

˛

˛

ζξξ(0, 0) − λ ζξη(0, 0)

ζξη(0, 0) ζηη(0, 0) − λ

˛

˛

˛

˛

˛

= 0.

We define the Gaussian curvature K(P0) of the surface S at the point P0 by setting

K(P0) = λ1λ2.

The numberH = 1
2
(λ1+λ2) is called the mean curvature of the surface. If we change

the orientation of the surface, then ζ has to be replaced by −ζ. This corresponds
to replacing λ1, λ2 by −λ1,−λ2, respectively. Consequently,

• the Gaussian curvature is invariant under changing the orientation, whereas
• the mean curvature changes sign under a change of orientation.

Example. For a sphere x2+y2+z2 = R2 of radius R, we get the constant Gaussian
curvature K = 1

R2 , and the mean curvature H = 1
R

.

Proof. Without any loss of generality, consider the south pole x = y = 0, z = −R.
Near the south pole, we obtain the power series expansion

z = −

s

R2

„

1 − x2

R2
− y2

R2

«

= −R
„

1 − x2

2R2
− y2

2R2

«

+o(x2 +y2), x2 +y2 → 0.

Setting ζ := z +R, ξ := x, η := y, we get (9.94) with λ1 = λ2 = 1
R
. �

Similarly, an ellipsoid (resp. hyperboloid) is locally described by (9.94) with
λ1 > 0, λ2 > 0 (resp. λ1 > 0, λ2 < 0). Thus, the Gaussian curvature of an ellipsoid
(resp. hyperboloid) is positive (resp. negative). For example, an Etruscan vase has
points of both positive and negative Gaussian curvature (Fig. 9.23).

A torus (resp. the surface of a cylinder) looks locally like (9.94) with λ1 > 0
and λ2 = 0. Hence the Gaussian curvature vanishes identically, K ≡ 0.

The invariant definition of the Gaussian curvature. The Gaussian cur-
vature at the point P of the surface S is given by

K(P ) =
h(P )

g(P )
. (9.95)

Using Gauss’ notation, this means that
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K =
h11h22 − h2

12

g11g22 − g212
=
LN −M2

EG− F 2
.

Proof. By Corollary 9.30, the quotient h
g

does not depend on the choice of the

local coordinates. Therefore, we can choose a special local coordinate system. We
will use the canonical local coordinate system depicted in Fig. 9.22. After changing
the notation, ξ ⇒ x, η ⇒ y, ζ ⇒ z, the equation of the surface looks locally like

x = xi + yj + z(x, y)k

in a neighborhood of the origin x = y = z = 0. Then:

• xx = i + zxk, xy = j + zyk,
• xxx = zxxk, xxy = zxyk, xyy = zyyk.

Hence

n =
xx × xy

|xx × xy|
= μ(k − zxi − zyj)

with μ := 1/
p

1 + z2x + z2y . This implies

• E = x2
x = 1 + z2x, F = zxzy, G = 1 + z2y,

• L = nxxx = μzxx, M = μzxy, N = μzyy.

Hence

LN −M2

EG− F 2
=
zxxzyy − z2xy
(1 + z2x + z2y)2

. (9.96)

It follows from

z = 1
2
(λ1x

2 + λ2y
2) + o(x2 + y2), x2 + y2 → 0

that zx(0, 0) = zy(0, 0) = zxy(0, 0) = 0, and zxx(0, 0) = λ1, zyy(0, 0) = λ2. Hence
the quotient (9.96) is equal to λ1λ2 at the origin. This coincides with K. �

Analogously, for the mean curvature H, we get

H(P ) = 1
2
gijhij .

Here, gij are the entries of the inverse matrix to the symmetric matrix (gij). By
(8.34) on page 455, gij is a tensorial family.

The Gaussian curvature K(P ) is a scalar under a change of local coordi-
nates, but the mean curvature H(P ) is only a pseudo-scalar.

9.6.4 The Gauss–Weingarten Equations for Moving Frames

We want to show that the partial derivatives of the frame b1,b2,n with respect to
the local (u1, u2)-coordinates satisfy the following partial differential equations:

∂ibj = Γ s
ijbs + hijn (Gauss, 1827), (9.97)

∂in = −hsibs (Weingarten, 1861). (9.98)

Here, we use the Christoffel symbols

Γ k
ij := 1

2
gks(∂igjs + ∂jgis − ∂sgij).
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Proof. Ad (9.97). We determine the coefficients α and β in the decomposition

∂ibj = αkijbk + βijn. (9.99)

Multiplication with n yields βij = n∂ibj = hij .
Furthermore, gjs = bjbs implies that

∂igjs = bj∂ibs + bs∂ibj .

Note that ∂ibj = ∂i∂jx = ∂jbi. Interchanging the indices and summation gives

bs∂ibj = 1
2
(∂igjs + ∂jgis − ∂sgij).

Multiplication of (9.99) with bs yields

bs∂ibj = αrijgsr.

Using gksgsr = δkr , we get αkij = gksbs∂ibj . This is the claim.

Ad (9.98). Differentiation of n2 = 1 with respect to ui yields 2n∂in = 0. Thus,
the vector ∂in is orthogonal to the normal vector n. Hence

∂in = cjibj

where the numbers cji remain to be determined. It follows from hsi = −bs∂in that

−hsi = cjibsbj = cjigsj .

Using gmsgsj = δmj , we get cmi = −gmshsi = −hmi .
�

9.6.5 The Integrability Conditions and the Riemann Curvature
Tensor

Suppose that we are given a smooth surface S : x = x(u1, u2), (u1, u2) ∈ R
2.

Then the Gauss–Weingarten frame equations (9.97) and (9.98) are satisfied. Then
the integrability conditions ∂r∂ibj = ∂i∂rbj and ∂r∂in = ∂i∂rn must be satisfied.
This yields

Rk
rij = hkrhij − hki hrj , (9.100)

and

∇rhij = ∇ihrj (9.101)

where all the indices run from 1 to 2. Explicitly,

• Rk
rij := ∂rΓ

k
ij − ∂iΓ k

rj + Γ k
rsΓ

s
ij − Γ k

isΓ
s
rj ,

• ∇ihjk := ∂ihjk − Γ s
ijhsk − Γ s

ikhjs.

The equations (9.100) are called the theorema egregium of Gauss, and the equations
(9.101) are called the Codazzi–Mainardi equations.

Proof. (I) We will use

∂r∂ibj = ∂i∂rbj . (9.102)
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By the Leibniz rule, it follows from (9.97) that

∂r∂ibj = ∂rhijn + hij∂rn + ∂rΓ
k
ijbk + Γ k

ij∂rbk.

Again by (9.97),

Γ k
ij∂rbk = Γ k

ijhrkn + Γ k
ijΓ

s
rkbs.

Thus, it follows from (9.102) together with the symmetry properties Γ k
ij = Γ k

ji and
hij = hji that

`

Rk
rij − hkrhij + hki hrj

´

bk + (∇rhij −∇ihrj)n = 0.

This yields (9.100) and (9.101).
(II) We will use ∂r∂in = ∂i∂rn. As in (I), this yields

∇ih
k
r = ∇rh

k
i . (9.103)

By the Ricci lemma, the covariant derivative interchanges with lifting and lower-
ing of indices (see page 513). Therefore, the equation (9.103) is equivalent to the
equation (9.101). �

Cartan’s simplification of the classical approach by using orthonormal
frames. The computation above is straightforward, but clumsy. We have carried
out this computation in order to show how the Riemann curvature tensor emerges in
a quite natural way. Cartan noticed that the classical approach can be substantially
simplified if one replaces the natural basis b1,b2,n by an arbitrary orthonormal
basis e1, e2,n. This will be studied in Sect. 9.6.10 on page 636.

9.6.6 The Intrinsic Characterization of the Gaussian
Curvature (Theorema Egregium)

Define Rrijk = Rs
rijgks. By (9.100), we get

Rrijk = hkrhij − hkihrj .

The Riemann curvature tensorRrijk has 16 components. Since we have the following
symmetry relations

Rabcd = Rcdab = −Rbacd = −Rabcd,

there is only one essential component, namely, R1221 = h11h22 − h2
12 = h. This

implies the following fundamental relation.

Theorem 9.31 K = R1221
g

(theorema egregium).

This theorem tells us that the Gaussian curvature K only depends on the metric
tensorial family gij and its first-order and second-order partial derivatives. In other
words:

The Gaussian curvature of a surface is an intrinsic property of the surface.
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Set u = u1 and u2, and let us use the Gauss notation. Explicitly, the Gaussian
curvature

K =
LN −M2

EG− F 2

can be written as

K = − 1

4g2

˛

˛

˛

˛

˛

˛

˛

E F G

Eu Fu Gu

Ev Fv Gv

˛

˛

˛

˛

˛

˛

˛

− 1

2
√
g

»„

Ev − Fu√
g

«

v

+

„

Gu − Fv√
g

«

u

–

. (9.104)

Thus, K only depends on the functions E,F,G of the first fundamental form which
describes the metric properties of the surface. In particular, if we choose local
coordinates such that F (P0) = M(P0) = 0 at the point P0, then the theorema
egregium and the Codazzi–Mainardi equations at the point P0 read as follows:

K =
LN

EG
= − 1

2
A ((AEv)v + (AGu)u)

Lv =
Ev

2

„

L

E
+
N

G

«

, Nu =
Gu

2

„

L

E
+
N

G

«

(9.105)

with A := 1/
√
EG.

9.6.7 Differential Invariants and the Existence and Uniqueness
Theorem of Classic Surface Theory

We want to answer the following important question:

Which invariants determine a 2-dimensional surface up to translations and
rotations?

Roughly speaking, the answer reads as follows: We need the first and second fun-
damental form of Gauss together with the integrability conditions (9.100) and
(9.101). Because of symmetries, there are only three essential integrability con-
ditions, namely, the theorema egregium of Gauss and two Codazzi–Mainardi equa-
tions (see (9.105)). The precise formulation reads as follows:

Suppose that we are given six smooth functions

gij , hij : U → R, i, j = 1, 2,

with g12 = g21 and h12 = h21 which satisfy the integrability conditions (9.100) and
(9.101) on the nonempty, arcwise connected, simply connected, open subset U of
R

2. Furthermore, assume that the eigenvalues of the symmetric matrix det(gij) are
positive on U . Then the following existence result holds true.

Theorem 9.32 There exists a smooth 2-dimensional surface

S : x = x(u1, u2), (u1, u2) ∈ U

which has the first fundamental form gijdu
i ⊗ duj and the second fundamental

form hijdu
i ⊗ duj . This surface is unique, up to translations and rotations in the

Euclidean manifold E
3.
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Fig. 9.24. Spherical triangles

This fundamental existence-and uniqueness theorem of classic surface theory
was proved by Bonnet in 1867.23 The idea of the proof is to use the famous Frobenius
theorem which says that

• the necessary solvability conditions (i. e., the integrability conditions) for partial
differential equations of the type of the Gauss–Weingarten equations (9.97) and
(9.98)

• are also sufficient conditions for the existence of local solutions (see Sect. 12.11
on page 767).

Since the Gauss-Weingarten frame equations (9.97), (9.98) represent a linear sys-
tem of partial differential equations with respect to b1,b2,n, a standard argument
allows us to continue the local solution to a global one. Note that we assume that
the set U is simply connected. For the proof, we refer to E. Zeidler, Nonlinear
Functional Analysis, Vol. IV, p. 640, Springer, New York, 1995 (reprinted: Beijing
2009), and J. Eschenburg and J. Jost, Differential Geometry and Minimal Surfaces
(in German), p. 194, Springer, Berlin.

Finally, let us count the number of unknowns and the number of conditions:

• We have to determine the six functions E,F,G,L,M,N (in the Gauss notation
(9.92)), and

• we have to solve the nine Gauss–Weingarten frame equations together with three
highly nonlinear constraints given by the integrability conditions (i.e., the Gauss
theorema egregium and the two Codazzi–Mainardi equations; see (9.105).

Summarizing, we obtain six conditions for six unknown functions, as naively ex-
pected.

9.6.8 Gauss’ Theorema Elegantissimum and the Gauss–Bonnet
Theorem

A triangle on a 2-dimensional smooth surface is called a geodesic triangle iff the sides
of the triangle are geodesic lines (see Fig. 9.24(a) in the special case of a sphere).
In 1827, Gauss proved for geodesic triangles on smooth 2-dimensional surfaces that
the sum of the angles α, β, γ satisfies the relation

α+ β + γ = π +

Z

U
KdS. (9.106)

23 Gauss (1777–1855), Mainardi (1800-1879), Bonnet (1819–1892), Codazzi (1824–
1873), Riemann (1826–1869), Frobenius (1849–1917).
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Gauss called this the theorema elegantissimum (i.e., the most elegant theorem).
For general (geodesic or non-geodesic) triangles on smooth 2-dimensional surfaces,
Bonnet proved the following relation in 1848:

α+ β + γ = π +

Z

U
KdS +

Z

∂U
κgds. (9.107)

Here, the triangle ∂U = ABC is counter-clockwise oriented. In the special case of
Fig. 9.24(b), the latitude segment AB is not a geodesic. The boundary integral
R

∂U κg(s) ds takes this into account. The definition of the geodesic curvature κg
on a general 2-dimensional smooth surface is given as for the sphere (see (9.52) on
page 598). Recall that the geodesic curvature generalizes the curvature of a plane
curve to curves on surfaces. In particular, we have κg ≡ 0 along a geodesic line.
The geodesic curvature is an intrinsic quantity of the surface which measures the
deviation of a curve on the surface from a geodesic line.

Relation (9.107) represents the famous Gauss–Bonnet theorem. The proof of the
Gauss–Bonnet theorem can be found in J. Stoker, Differential Geometry, Wiley,
1969/1989, p. 195. The Gauss–Bonnet theorem is closely related to the integral
theorem of Stokes for differential forms and the homotopy theory for the winding
number of plane curves due to Whitney and Hopf in about 1940. This is studied in J.
Eschenburg and J. Jost, Differential Geometry and Minimal Surfaces (in German),
Springer, Berlin, 2007.

9.6.9 Gauss’ Total Curvature and Topological Charges

Let M be a 2-dimensional, compact, arcwise connected, oriented submanifold (with-
out boundary) of the Euclidean manifold E

3 (e.g., a sphere or a torus). Then the
Euler characteristic χ(M) of M can be represented by the integral formula

χ(M) =
1

2π

Z

M
Kυ (9.108)

where K (resp. υ) is the Gaussian curvature (resp. the volume form) of M. Equiv-
alently, this can be written as

χ(M) =

Z

M
�(P ) dS

with the so-called topological charge χ(M) and the topological charge density
�(P ) := K(P )/2π.

For example, if M is a sphere of radius R, then

χ(M) =
1

2π
· 1

R2

Z

M
υ =

4πR2

2πR2
= 2.

For the torus, we have K ≡ 0. Hence χ(M) = 0.
The global Gauss–Bonnet theorem (9.108) is the prototype of a topological

charge theorem. This theorem allows far-reaching generalization in modern topology
which will be investigated in Vol. IV on quantum mathematics.
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Fig. 9.25. Moving orthonormal frames

9.6.10 Cartan’s Method of Moving Orthonormal Frames

Cartan’s method of using orthonormal frames fits best the local Euclidean
structure of the surface. This substantially simplifies the theory of sur-
faces.24

Folklore

Moving orthonormal frames. Until now, we have been used the local represen-
tation

x = x(u1, u2), (u1, u2) ∈ U
of the surface along with the natural frame

b1 = ∂1x, b2 = ∂2x, n :=
b1 × b2

|b1 × b2|
.

It was the idea of Élie Cartan to simplify many considerations in surface theory by
replacing the natural frame by a right-handed orthonormal frame

e1(P ), e2(P ), e3(P )

depending smoothly on the point P on suitable open subsets of the surface. Here,
the vectors e1, e2 span the tangent plane at the point P (Fig. 9.25). Cartan called
this a moving frame (repère mobile in French).25 In terms of the moving frame, we
get the Cartan frame equations

dx = σ1e1 + σ2e2, dei = ωi1e1 + ωi2e2 + ωi3e3, i = 1, 2, 3. (9.109)

Equivalently,

σi = eidx and ωij = ejdei, i, j = 1, 2.

It follows from the orthogonality relation eiej = δij that

dei · ej + eidej = 0,

24 See É. Cartan, Riemannian Geometry in an Orthogonal Frame: From lectures

delivered by Élie Cartan at Sorbonne (Paris) in 1926–1927. World Scientific,
Singapore, 2001.

25 Physicists call this the method of tetrads, since one has four basis vectors on
a 4-dimensional space-time manifold. This tetrad formalism was introduced by
Weyl in 1929.
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and hence ωij = −ωji for all i, j = 1, 2, 3. The Cartan frame equations replace the
Gauss–Weingarten frame equations. To solve the Cartan frame equations (9.109)
means that we are looking for a surface together with an orthonormal frame that
fits the surface.

Our goal is to compute the integrability conditions for the Cartan frame equa-
tions. By the Poincaré cohomology rule, we have d(dx) = 0 and d(dei) = 0. Hence

0 = ddx = dσ1 · e1 + σ1 ∧ de1 + dσ2 · e2 + σ2 ∧ de2

= (dσ1 + σ2 ∧ ω21) e1 + (dσ2 + σ1 ∧ ω12) e2 + (σ1 ∧ ω13 + σ2 ∧ ω23) e3,

and

0 = ddei =

3
X

j=1

dωij · ej + ωij ∧ dej =

3
X

k=1

(dωik +

3
X

j=1

ωij ∧ ωkj) ek.

This implies the integrability conditions

dσ1 = ω12 ∧ σ2, dσ2 = σ1 ∧ ω12, σ1 ∧ ω13 + σ2 ∧ ω23 = 0,

dωij =

3
X

k=1

ωik ∧ ωkj , i, j = 1, 2, 3.
(9.110)

The integrability conditions are also called the Cartan structural equations. They
replace the Gauss theorema egregium and the Codazzi–Mainardi equations.

The structural equations can be used in order to prove an alternative formu-
lation of Theorem 9.32 on the construction of surfaces. We are given the right-
handed orthonormal frame e1, e2, e3 at a fixed point P0 and five differential 1-forms
σ1, σ2, ω12, ω13, ω23 along with ωij = −ωji for all i, j which satisfy the integrabil-
ity conditions (9.110) on a nonempty, open, arcwise connected, simply connected
subset U of R

2. Moreover, suppose that σ1 ∧ σ2 �= 0 on U .

Then there exists a unique surface

x = x(u1, u2), (u1, u2) ∈ U

which has the following properties: the Cartan frame equations (9.109) are
satisfied, the surface passes through the given point P0, and the given or-
thonormal frame e1(P0), e2(P0), e3(P0) is a frame of the surface at the
point P0.

The proof can be found in I. Agricola and T. Friedrich, Global Analysis: Differential
Forms in Analysis, Geometry and Physics, Sect. 5.2, Amer. Math. Soc., Providence,
Rhode Island, 2002. The basis idea of the proof is to use the Frobenius theorem
which tells us that necessary solvability conditions are also sufficient solvability
conditions.

The intrinsic differential form ω12 = e2de1. The differential form ω12 is
completely determined by the differential forms σ1 and σ2. In fact, since σ1∧σ2 �= 0,
the 2-forms dσ1 and dσ2 are proportional to σ1 ∧ σ2. Hence

dσ1 = aσ1 ∧ σ2 and dσ2 = bσ1 ∧ σ2.

By the integrability conditions dσ1 = ω12 ∧ σ2 and dσ2 = σ1 ∧ ω12, we get

ω12 ∧ σ1 = aσ1 ∧ σ2, σ1 ∧ ω12 = bσ1 ∧ σ2.

Hence
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ω12 = aσ1 + bσ2.

Consequently, the differential form ω12 is an intrinsic quantity. The same is true for
dω12. Since this is a 2-form, we get dω12 = kσ1∧σ2. We expect that the real-valued
function P �→ k(P ) possesses a geometric meaning. It turns out that k equals −K
where K is the Gaussian curvature.

The theorema egregium. Gauss’ theorema egregium reads as follows:

dω12 = −Kσ1 ∧ σ2. (9.111)

Here, υ = σ1 ∧ σ2 is the volume form of the surface, and K(P ) is the Gaussian
curvature of the surface at the point P . Equivalently,

d(e1de2) = K · e1dx ∧ e2dx.

Note that the Gaussian curvature K is uniquely determined by this equation. The
proof can be found in J. Stoker, Differential Geometry, Wiley, p. 347, New York,
1969/89.

9.7 Parallel Transport in Physics

Perspectives. In Einstein’s theory of special relativity, one has to replace the three-
dimensional Euclidean manifold E

3 by the four-dimensional Minkowski manifold M
4

(space-time manifold).

• In Chap. 13, we will study the Weyl U(1)-gauge theory. Here the curvature of
the principal bundle M

4 × U(1) describes the electromagnetic field (Maxwell’s
classic theory of electromagnetism), and mesons in an electromagnetic field.

• In Chap. 14, we will apply the U(1)-gauge theory to superconductivity.
• In Chap. 15, we will replace the commutative gauge group U(1) by the noncom-

mutative gauge group SU(N), N = 2, 3, . . .. In the special case where N = 2, we
get the Yang–Mills theory introduced in 1954 (the local phase factor G(x, y, z, t)
is an element of the group SU(2)).

• In the special case of the gauge group SU(3), we will obtain the prototype of
quantum chromodynamics (colored quarks in strong interaction).

• The axiomatic approach to the curvature theory of vector bundles and principal
bundles will be investigated in Chap. 17.

All the generalizations to be considered in Chaps. 13 through 17 (Ariadne’s thread
in gauge theory) are generalizations of the method of moving frames for the Eu-
clidean manifold. The point is that non-vanishing curvature has far-reaching con-
sequences in geometry and physics.

9.8 Finsler Geometry

In Riemannian geometry, measurements are made with both yardsticks
and protractors. These tools are represented by a family of inner products.
In Riemann–Finsler geometry (or Finsler geometry for short), one is in
principle equipped with only a family of Minkowski norms. So yardsticks
are assigned, but protractors are not. With such a limited tool kit, it is
natural to wonder, just how much geometry one can uncover and describe?
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It now appears that there is a reasonable answer. Finsler geometry en-
compasses a solid repertoire of rigidity and comparison theorems, most of
them founded upon a fruitful analogue of the sectional curvature. There is
also a bewildering array of explicit examples, illustrating many phenomena
which admit only Finslerian interpretation.26

David Bao, Shing-Shen Chern, and Zhongmin Shen, 2000

Fix n = 1, 2, . . . Let x = (x1, . . . , xn). Consider the curve

C : xi = xi(t), t0 ≤ t ≤ t1, i = 1, . . . , n.

The Euclidean length of this curve on R
n is given by the formula

s =

Z t1

t0

 

n
X

i=1

|ẋi(t)|2
!1/2

dt. (9.112)

The length of the curve C in the Finsler geometry with respect to the Lagrangian
L reads as

s :=

Z t1

t0

L(x1(t), . . . , xn(t), ẋ1(t), . . . , ẋn(t)) dt.

Mnemonically, we write

ds = L(x1, . . . , xn, ẋ1, . . . , ẋn) dt.

Here, we assume that the Lagrangian

L : R
n × R

n → R

is continuous, and L is convex and homogenous of degree one with respect to the
velocity vector ẋ. Moreover, we assume that L is symmetric with respect to the
velocity components ẋ1, . . . , ẋn. For example, we may choose

L(ẋ) := |ẋ1| + . . .+ |ẋn|. (9.113)

Then the corresponding Finsler geometry is not a Riemannian geometry. In partic-
ular, the concept of orthogonality in tangent spaces is not available. In contrast to
(9.113), the Lagrangian

L(ẋ) =
`

|ẋ1|2 + . . .+ |ẋn|2
´1/2

from (9.112) generates a Riemannian geometry.
Example. Consider the space R

2. The equation

x2 + y2 = 1, (x, y) ∈ R
2

describes the usual unit circle. However, the equation

|x| + |y| = 1, (x, y) ∈ R
2

describes the unit circle in the prototype of a Finsler geometry on R
2; this geometry

is generated by the norm |(x, y)| := |x|+ |y| on R
2. With respect to this norm, the

26 D. Bao, S. Chern, and Z. Shen, An Introduction to Riemann–Finsler Geometry,
Springer, New York, 2000 (reprinted with permission).
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linear space R
2 becomes a Banach space, which is not a Hilbert space. The distance

between the two points P = (x, y) and P ′ = (x′, y′) is given by

dist(P, P ′) := |x− x′| + |y − y′|.

In this Finsler geometry, the ‘unit circle’ is the boundary of a square with the
vertices (1, 0), (0, 1), (−1, 0), and (0,−1).

Mnemonically, as a rule, the circles in Finsler geometry are not round.

Finsler geometry was introduced by Paul Finsler in his 1918 dissertation supervised
by Carthéodory. In fact, Carathéodory was strongly motivated by his geometric
approach to the calculus of variations (see Sect. 5.4 of Vol. II on Carathéodory’s
Royal Road to the calculus of variations). Note that the idea of the Riemann–Finsler
geometry had its genesis in Riemann’s 1854 habilitation address:

“Über die Hypothesen, welche der Geometrie zu Grunde liegen” (On the
hypotheses which lie at the foundations of geometry).

An English translation of Riemann’s seminal lecture together with a commentary
by Michael Spivak can be found in M. Spivak (1979), Vol. II, quoted below.

9.9 Further Reading

A general overview on the mathematics of the 20th century can be found in:

K Maurin, The Riemann Legacy: Riemannian Ideas in Mathematics and
Physics of the 20th Century, Kluwer, Dordrecht, 1997.

As a handbook on modern differential geometry and its applications to physics, we
recommend:

V. Ivancevic and T. Ivancevic, Differential Geometry: A Modern Introduc-
tion, World Scientific, Singapore, 2009.

The relation between the classical and the modern approach to differential geometry
is studied in:

M. Spivak, Comprehensive Introduction to Differential Geometry, Vols.
1–5, Publish or Perish, Boston, 1979.

Furthermore, we recommend:

J. Jost, Riemannian Geometry and Geometric Analysis, 5th edition, Sprin-
ger, Berlin, 2008.

Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick, Analysis,
Manifolds, and Physics. Vol. 1: Basics; Vol. 2: 92 Applications, Elsevier,
Amsterdam, 1996.

S. Novikov, and T. Taimanov, Geometric Structures and (Physical) Fields,
Amer. Math. Soc., Providence, Rhode Island, 2006.

T. Frankel, The Geometry of Physics, Cambridge University Press, 2004.

B. Dubrovin, A. Fomenko, and S. Novikov, Modern Geometry: Methods
and Applications, Vols. 1–3, Springer, New York, 1992.

C. Misner, K. Thorne, and A. Wheeler, Gravitation, Freeman, San Fran-
cisco, 1973.

Ø. Grøn and S. Hervik, Einstein’s Theory of General Relativity: with Mod-
ern Applications in Cosmology, Springer, New York, 2007.
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T. Padmanabhan, Gravitation: Foundations and Frontiers, Cambridge
University Press, 2010.

V. Varadarajan, Geometry of Quantum Theory, Springer, New York, 2007.

For classical differential geometry, we refer to:

J. Stoker, Differential Geometry, Wiley, New York, 1969. Reprinted in
1989.

J. Eschenburg and J. Jost, Differential Geometry and Minimal Surfaces
(in German), Springer, Berlin, 2007.

The Cartan approach to differential geometry is studied in:

É. Cartan, Riemannian Geometry in an Orthogonal Frame: From lectures

delivered by Élie Cartan at the Sorbonne in Paris, 1926–1927, World Sci-
entific, Singapore, 2001.

I Agricola and T. Friedrich, Global Analysis: Differential Forms in Analy-
sis, Geometry and Physics, Amer. Math. Soc., Providence, Rhode Island,
2002.

T. Ivey and J. Landsberg, Cartan for Beginners: Differential Geometry via
Moving Frames and Exterior Differential Systems, American Mathematical
Society, Providence, Rhode Island, 2003.

R. Sharpe, Differential Geometry: Cartan’s Generalization of Klein’s Er-
langen Program, Springer, New York, 1997.

For Finsler geometry, we refer to:

D. Bao, S. Chern, and Z. Shen, An Introduction to Riemann–Finsler Ge-
ometry, Springer, New York, 2000.

Problems

9.1 The Dirichlet variational problem on minimal electrostatic energy and the
transformation of the Poisson equation. We want to describe a nice general
method for transforming partial differential equations into new coordinates.
The basic idea reads as follows: In order to save time, one does not transform
the partial differential equation itself, but one transforms the corresponding
variational problem. This method applies to Euler–Lagrange equations. Let us
explain this with a special example. Let O be a nonempty bounded open subset
of R

3 (e.g., a ball). Consider the variational problem

Z

O

“ε0
2

(U2
x + U2

y + U2
z ) − �U

”

dxdydz = min! (9.114)

with the boundary condition U = 0 on ∂O. Observe that the following hold:
if U is a solution of (9.114), then the function U satisfies the Euler–Lagrange
equation

∂

∂x

∂L
∂Ux

+
∂

∂y

∂L
∂Uy

+
∂

∂z

∂L
∂Uz

=
∂L
∂U

with the Lagrangian L := 1
2
ε0(U

2
x + U2

y + U2
z ) − �U. This yields

−ε0(Uxx + Uyy + Uzz) = �.
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Use arbitrary curvilinear coordinates x1, x2, x3. Transform the integral, and
compute the new Lagrangian together with the new Euler–Lagrange equation.
This yields the transformed Euler–Lagrange equation. The advantage of this
variational approach is that it is easier to transform the Lagrangian than the
Euler–Lagrange equation.

Solution: Using the transformation xi → xi
′

with O → O′, and changing

the notation from xi
′

(resp. O′) to xi (resp. O), the transformed variational
problem reads as

Z

O

“

1
2
ε0g

ij∂iU∂jU − �U
”

p

|g| dx1dx2dx3 = critical!, U = 0 on ∂O.

This yields the Euler–Lagrange equation

−ε0∂i
`

gij
p

|g|∂jU
´

=
p

|g| � on O.

9.2 Affine geodesics. Compute the Christoffel symbols of the Euclidean manifold
E

3 with respect to spherical coordinates.
Hint: Use the Lagrangian

L(ϕ, ϑ, r) = 1
2
m(r2 cos2 ϑ · ϕ̇2 + r2ϑ̇2 + ṙ2),

and argue as for cylindrical coordinates on page 579.
9.3 Physical fields. Compute the examples summarized on page 561.
9.4 Hamilton’s nabla calculus. Prove Proposition 9.6 on page 563.
9.5 The Cauchy theorem on isotropic functions. Study the proofs of the theorems

on isotropic functions formulated in Sect. 9.1.6. We refer to:
H. Weyl, The Classical Groups and Their Invariants, pages 31 and 52,
Princeton University Press, 1946,

C. Truesdell and W. Noll, The nonlinear field theories in mechanics.
In: S. Flügge (Ed.), Handbook of Physics, p. 29, Vol. III/3, Springer,
Berlin, 1956.

G. Eisenreich, Lectures on Vector and Tensor Calculus, p. 96, Teubner,
Leipzig, 1971 (in German).

9.6 The Rivlin–Ericksen theorem on isotropic tensor functions. Study the proof
of Theorem 9.9 on page 566 together with applications to Hooke’s law and
to more general constitutive laws for elastic material. We refer to E. Zeidler,
Nonlinear Functional Analysis and its Applications, Vol. IV: Applications to
Mathematical Physics, p. 204, Springer, New York, 1995.

9.7 Proof of Proposition 9.20 on page 603. Hint: Use the Hamiltonian equations.
Solution: Using

pϕ :=
∂L

∂ϕ̇
=
Az

2
, pϑ :=

∂L

∂ϑ̇
,

we introduce the Hamiltonian

H = ϕ̇pϕ + ϑ̇pϑ − L =
p2ϕ

2 cos2 ϑ
+
p2ϑ
2

+ a sinϑ.

Then the Euler–Lagrange equations pass over to the Hamiltonian equations

ṗϕ = −∂H
∂ϕ
, ṗϑ = −∂H

∂ϑ
, ϕ̇ =

∂H

∂pϕ
, ϑ̇ =

∂H

∂pϑ
.
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Since the Hamiltonian H does not depend on time t, it is a conserved quantity.
Moreover, since H does not depend on the angle ϕ, we get pϕ = const. Set
z := sinϑ. Then

dz

dt
= cosϑ

dϑ

dt
=
p

1 − z2 dϑ
dt
.

Hence

H =
p2ϕ

2(1 − z2) +
1

2(1 − z2)

„

dz

dt

«2

+ az = E.

This implies

„

dz

dt

«2

= 2(E − az)(1 − z2) − p2ϕ =: P (z).

Hence dt
dz

= 1√
P (z)

. Finally,

dϕ

dz
=
dϕ

dt
· dt
dz

=
pϕ

cos2 ϑ
· dt
dz

=
pϕ

(1 − z2)
p

P (z)
.



10. Temperature Fields on the Euclidean
Manifold E

3

In physics, temperature fields are prototypes of scalar fields, whereas ve-
locity vector fields are prototypes of vector fields.

Folklore

10.1 The Directional Derivative

In mathematics and physics, differentiation describes the linearization of analytic
objects like physical fields. In this chapter, let us study the directional derivative
of a temperature field Θ on the Euclidean manifold E

3. To this end, let

Θ : E
3 → R

be a smooth function. In terms of physics, we regard Θ(P ) as the temperature at
the point P on E

3. We are given the smooth curve

C : P = P (t), t ∈ R

on E
3 with P0 := P (0). In terms of position vectors at the origin, we describe the

curve C by the smooth vector function x = x(t), t ∈ R. The derivative

dhΘ(P0) :=
dΘ(x(t))

dt |t=0

is called the directional derivative of the temperature field Θ along the trajectory
C at the point P0. We will show that this time derivative only depends on the
velocity vector h = ẋ(0) of the trajectory C at time t = 0. To this end, consider an
arbitrary right-handed Cartesian (x, y, z)-coordinate system with the right-handed
orthonormal basis i, j,k. Then, we have

Θ = Θ(x, y, z), (x, y, z) ∈ R,

and x(t) = x(t)i + y(t)j + z(t)k together with

h = ẋ(0) = ẋ(0)i + ẏ(0)j + ẋ(0)k.

By the chain rule,

dhΘ(P0) = Θx(x0, y0, z0) ẋ(0) +Θy(x0, y0, z0) ẏ(0) +Θz(x0, y0, z0) ż(0),

where Θx denotes the partial derivative with respect to x. Synonymously, we write

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 11,
© Springer-Verlag Berlin Heidelberg 2011
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http://dx.doi.org/10.1007/978-3-642-22421-8_11
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Fig. 10.1. Isothermal surface

dhΘ(P0) = Θ′(P0)h. (10.1)

Using the gradient of the temperature field,

gradΘ(P0) := Θx(x0, y0, z0) i +Θy(x0, y0, z0) j +Θz(x0, y0, z0) k, (10.2)

we get the following inner product

dhΘ(P0) = gradΘ(P0) · h.

The map h �→ dhΘ(P0) is a linear functional on the tangent space of E
3 at the

point P0. This linear functional is denoted by

dΘ(P0) : TP0E
3 → R,

and dΘ(P0) is called the differential of the temperature field Θ at the point P0.
1

In other words, we have dΘ(P0) ∈ T ∗
P0E

3, that is, dΘ(P0) is an element of the

cotangent space of E
3 at the point P0. We write

dΘP0(h) = (dhΘ)(P0).

For historical reasons, different notations are used in the literature. Summarizing,
we get

dhΘ(P0) = dΘP0(h) = Θ′(P0)h = gradΘ(P0) · h.
This motivates the notation

Θ′(P0) = gradΘ(P0).

Below we will show that we also have

dhΘ(P0) = LhΘ(P0) = δΘ(P0;h) =
δΘ(P0)

δx
· h

for the Lie derivative LhΘ, the first variation δΘ, and the functional derivative δΘ
δx
.

Isothermal surface. In order to understand the intuitive meaning of the gra-
dient of the temperature field, consider the surface of constant temperature through
the point P0 given by the equation

Θ(P ) = const, P ∈ E
3 (10.3)

where the constant is equal to Θ(P0). By classical differential geometry, the vector
gradΘ(P0) is a normal vector of this isothermal surface at the point P0, and it
points to the direction of the strongest increase of the temperature at the point P0.
This follows from (10.1) (Fig. 10.1).

1 One also writes dΘP0 instead of dΘ(P0).
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Fig. 10.2. Flow of fluid particles

10.2 The Lie Derivative of a Temperature Field along
the Flow of Fluid Particles

Sophus Lie (1842–1899) based his approach to differential geometry on the
physical picture of the flow of fluid particles.

Folklore

The Lie derivative plays a fundamental role in the calculus on manifolds. At this
point, let us discuss the physical meaning of the Lie derivative of a smooth tem-
perature field on the Euclidean manifold E

3. In terms of physics, we will study the
temperature Θ along the trajectories of fluid particles. We will show that

LvΘ(P ) = dv(P )Θ(P ).

This tells us that the Lie derivative of the temperature field Θ at the point P
coincides with the directional derivative with respect to the velocity vector v(P ) at
the point P .

10.2.1 The Flow

In terms of physics, the prototype of a flow is the parallel flow of fluid
particles along straight lines with constant velocity (or the rotation of
fluid particles about a fixed axis with constant angular velocity).
In terms of mathematics, a flow on the Euclidean manifold E

3 is a one-
dimensional additive Lie group of diffeomorphisms from E

3 onto E
3.

Folklore

We are given the smooth velocity vector field

v = v(P ), P ∈ E
3

on the Euclidean manifold E
3, that is, v(P ) ∈ TPE

3 for all points P ∈ E
3. In terms

of physics, we consider the flow of a fluid on the Euclidean manifold E
3 generated

by the velocity vector field P �→ v(P ) (Fig. 10.2). The trajectory

C : P = P (t), t ∈ R

of a fluid particle satisfies the ordinary differential equation

Ṗ (t) = v(P (t)), t ∈ R, P (0) = P0. (10.4)

Intuitively, this equation tells us that the velocity vector Ṗ (t) of the fluid particle
at time t equals the velocity vector v(P (t)) of the velocity vector field v at the
point P (t). The trajectories are also called the streamlines (or field lines) of the
velocity vector field (Fig. 10.3). We define
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Fig. 10.3. Special flows of fluid particles

Ft(P0) := P (t), t ∈ R. (10.5)

That is, for any fixed time t, the flow operator

Ft : E
3 → E

3

sends the position P0 of the fluid particle at time t = 0 to the position P (t) of the
particle at time t. Obviously, F0 = id (identity operator) and

Fs+t = FsFt for all s, t ∈ R. (10.6)

This means that Fs+tP0 = Fs(Ft(P0)) = Fs(P (t)) for all points P0 ∈ E
3.

Global and local flow. There arises the following difficulty. We have to dis-
tinguish between

• local flow, and
• global flow.

A global flow corresponds to the situation where the solution P = P (t) of (10.4)
exists for all times t ∈ R. Otherwise, the flow is called local. In order to avoid
technicalities, we assume that we have a global flow at hand.2 That is, the operator
Ft is well-defined for all t ∈ R, and the global group property (10.6) is valid. In
addition, the theory of ordinary differential equations tells us that, for any time
t ∈ R, the flow operator Ft : E

3 → E
3 is a diffeomorphism with the inverse map

F−t : E
3 → E

3.
To simplify the approach in the Euclidean setting, we replace the point P by

the position vector x =
−−→
OP which points from the origin O to the point P . Then

the equation of motion (10.4) for the fluid particles reads as

ẋ(t) = v(x(t)), t ∈ R, x(0) = x0, (10.7)

and the flow operator Ft is given by

Ftx0 := x(t), t ∈ R.

Concerning the differential equation (10.7), note that the vector v(x(t)) located at
the origin is obtained from the velocity vector v(P (t)) at the point P (t) by global
Euclidean parallel transport from P (t) to O.

2 Observe that for introducing the Lie derivative below, we only need a local flow.
To simplify terminology, ‘global flows’ are briefly called ‘flows’.
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Complete velocity vector fields. The smooth velocity vector field v on E
3

is called complete iff the trajectories exist for all times, that is, the flow operator
Ft is defined for all times t ∈ R.

Note that the flow may blow up in finite time if the velocity |v(P )| increases
strongly when the point P approaches infinity. On the real line, the simplest example
for blowing-up is given by the differential equation

ẋ(t) = 1 + x(t)2, t ∈ R, x(0) = 0

with the solution x(t) = tan t. Here, limt→π/2−0 x(t) = +∞. The solution only
exists on the finite open time interval ] − π/2, π/2[.

Cartesian coordinate system. Choosing a right-handed Cartesian (x, y, z)-
coordinate system with the right-handed orthonormal basis i, j,k at the origin. By
global parallel transport, we get the right-handed orthonormal basis iP , jP ,kP of
the tangent space TPE

3 at the point P (see Fig. 4.3 on page 323). Then:

• x = xi + yj + zk,
• v(P ) = u(x, y, z)iP + v(x, y, z)jP + w(x, y, z)kP ,
• v(x) = u(x, y, z)i + v(x, y, z)j + w(x, y, z)k.

The key differential equation (10.4) reads as

ẋ(t) = u(x(t), y(t), z(t)), ẏ(t) = u(x(t), y(t), z(t)), ż(t) = w(x(t), y(t), z(t))

for all times t ∈ R with the initial condition x(0) = x0, y(0) = y0, z(0) = z0.
Parallel flow. Suppose that the components u, v, w of the velocity vector v(P )

do not depend on the point P , that is, the functions u, v, w are constant. Then the
trajectories are straight lines:

x(t) = x0 + tu, y(t) = y0 + tv, z(t) = z0 + tw, t ∈ R.

We call this a parallel flow (Fig. 10.3(a)). The trajectories can also be written as

x(t) = x0 + v0t, t ∈ R.

Then ẋ(t) = const = v0.
Rotating fluid particles. Fix ω > 0, and choose ω := ωk. The velocity vector

field
v(x) := ω × x

describes fluid particles which counter-clockwise rotate about the z-axis with the
angular velocity ω > 0. The trajectories are given by

x(t) = x0 cosωt− y0 sinωt, y(t) = x0 sinωt+ y0 cosωt, z = z0, t ∈ R.

Fig. 10.3(b) shows the rotation of the fluid particles in the (x, y)-plane.
Linear flow and the exponential function. Let A : E3 → E3 be a linear

operator. Consider the vector field

v(x) := Ax.

Then the linear differential equation (10.7) yields the following trajectories of the
fluid particles:

x(t) = etAx0, t ∈ R.



650 10. Temperature Fields on the Euclidean Manifold E
3

Fig. 10.4. Lie’s parallel transport along a flow

10.2.2 The Linearized Flow

The basic idea. Fix time t. We want to linearize the flow operator

Ft : E
3 → E

3

at the point P0 of the Euclidean manifold E
3. This yields the linear operator

F ′
t (P0) : TP0E

3 → TFt(P0)(E
3).

The basic idea reads as follows: The flow operator Ft transports points and hence
curves; this implies the transport of the tangent vectors of the curves. Here, the
transport of tangent vectors is described by the linearized flow operator F ′

t (P0)
(Fig. 10.4). The key formula reads as

F ′
t (P0)Q̇(0) = Q̇(0). (10.8)

More precisely, we start with the smooth curve

• C : Q = Q(τ), τ ∈ R, Q(0) = P0.

Setting Q(τ) := FtQ(τ), the flow sends the curve C to the smooth curve

• FtC : Q = Q(τ), τ ∈ R, Q(0) = Ft(P0).

This implies the transport of the tangent vector Q̇(0) which yields (10.8). Let us
write the moved trajectory FtC at time t by the equation

FtC : x = x(t, τ), τ ∈ R.

The linear differential equation of the linearized flow. In terms of posi-
tion vectors, we set w0 := ∂

∂τ
x0(0, τ)|τ=0, and we consider the initial-value problem

ẏ(t) = v′(Ftx0)y(t), t ∈ R, y(0) = w0. (10.9)

This is a linear system of ordinary differential equations with smooth coefficient
functions. By the theory of linear differential equations, there exists a unique solu-
tion y = y(t) for all times t ∈ R.

Proposition 10.1 F ′
t (P0)w0 = y(t), t ∈ R, and

d

dt
F ′
t (P0)|t=0 = v′(P0), (10.10)

as well as d
dt
F ′
t (P0)

−1
|t=0 = −v′(P0).



10.2 The Lie Derivative 651

Proof. Set x(t, τ) := Ftx(0, τ). Then

xt(t, τ) = v(x(t, τ)), x(0, τ) = x0(0, τ). (10.11)

Since the initial values x0(0, τ) depend smoothly on the parameter τ , it is admissible
to differentiate the equation (10.11) with respect to τ. This yields

∂

∂t
xτ (t, τ) = v′(x(t, τ)) xτ (t, τ).

Choosing τ = 0 and setting y(t) := xτ (t, 0), we obtain (10.9). Hence

d

dt
F ′
t (x0)w0|t=0 = ẏ(0) = v′(x0)w0.

This implies (10.10). Finally, noting that F ′
0(P0) = I and differentiating

F ′
t (P0)F

′
t (P0)

−1 = I, t ∈ R

with respect to time t at the point t = 0, we get

d

dt
F ′
t (P0)|t=0 +

d

dt
F ′
t (P0)

−1
|t=0 = 0.

�

Relation (10.10) will be used in Sect. 11.2.1 in order to compute the Lie deriva-
tive of vector fields.

10.2.3 The Lie Derivative

The Lie derivative studies the behavior of the smooth temperature field Θ
along the trajectories of the fluid particles on an infinitesimal time level.

Folklore

We are given the smooth velocity vector field v on the Euclidean manifold E
3. Let

{Ft}t∈R be the flow generated by v. Fix the time t ∈ R. Set

(F ∗
t Θ)(P ) := Θ(FtP ) for all P ∈ E

3.

The temperature field F ∗
t Θ is called the pull-back of the original temperature field

Θ with respect to the flow operator Ft. We define the Lie derivative LvΘ by setting

(LvΘ)(P0) :=
d

dt
F ∗
t Θ(P0)|t=0. (10.12)

This is a smooth function LvΘ : E
3 → R. The value (LvΘ)(P0) is called the Lie

derivative of the temperature field Θ at the point P0 with respect to the velocity
vector field v. By Sect. 10.1,

LvΘ(P0) := dv(P0)Θ(P0). (10.13)

This tells us that, in the special case of a temperature field Θ, the Lie derivative
LvΘ(P0) coincides with the directional derivative dv(P0)Θ(P0) with respect to the
direction v(P0) of the velocity vector field of the fluid at the point P0. Choosing
a right-handed Cartesian (x, y, z)-system with the right-handed orthonormal basis
i, j,k at the origin, then vP = a(P )iP + b(P )jP + c(P )kP (see Fig. 4.3 on page
323), and we get

(LvΘ)(P ) = a(P )
∂Θ(P )

∂x
+ b(P )

∂Θ(P )

∂y
+ c(P )

∂Θ(P )

∂z
. (10.14)
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10.2.4 Conservation Laws

The condition
LvΘ(P ) = 0 for all P ∈ E

3

is equivalent to the fact that the temperature field Θ is constant along all the
trajectories of the fluid particles.

10.3 Higher Variations of a Temperature Field and the
Taylor Expansion

Higher variations of the smooth temperature field Θ : E
3 → R allow us to study

approximations of Θ which are more precise than the procedure of linearization.
To begin with, consider the smooth function

χ : R → R.

For n = 1, 2, . . ., we have the Taylor expansion3

χ(t) = χ(0) +

n
X

k=1

tk

k!
χ(k)(0) +

Z 1

0

(1 − τ)n
n!

χ(n+1)(τt) dτ (10.15)

for all t ∈ R. This motivates the following definition.
The Taylor expansion of the temperature field. For fixed tangent vector

h ∈ TP0E
3 at the point P0, we set

χ(t) := Θ(P0 + th), t ∈ R.

We use the n-th derivative χ(n) in order to define

δnΘ(P0 + th;h) := χ(n)(t), n = 1, 2, . . .

Here, δnΘ(P0;h) is called the n-th variation of the temperature field Θ at the point
P0 with respect of the direction h. From (10.15) we get

Θ(P0 + th) = Θ(P0) +

n
X

k=1

tk

k!
δkΘ(P0;h) +

Z 1

0

(1 − τ)n
n!

δn+1Θ(P0 + τth;h) dτ

for all t ∈ R.
The first variation. By Sect. 10.1,

δΘ(P0;h) = dhΘ(P0). (10.16)

This means that the first variation coincides with the directional derivative. The
linear map h �→ δΘ(P0;h) is denoted by Θ′(P0). Thus, for all h ∈ TP0E

3, we get

δΘ(P0;h) = Θ′(P0)h.

The second variation. Choosing a Cartesian (x, y, z)-coordinate system with
the orthonormal basis i, j,k, we set

3 Newton (1643–1727), Taylor (1685–1731).
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h = Δx i +Δy j +Δz k.

By the chain rule, δ2Θ(P0;h) is equal to

Θxx(P0)(Δx)
2 +Θyy(P0)(Δy)

2 +Θzz(P0)(Δz)
2

+2Θxy(P0)ΔxΔy + 2Θxz(P0)ΔxΔz + 2Θyz(P0)ΔyΔz.

The corresponding symmetric bilinear form is denoted by Θ′′(P0). Hence

δ2Θ(P0;h) = Θ′′(P0)(h,h). (10.17)

For this, we also briefly write Θ′′(P0)h
2.

10.4 The Fréchet Derivative

By definition, the temperature field Θ : E
3 → R has a Fréchet derivative at the

point P0 iff there exists a linear operator L : TP0E
3 → R such that

Θ(P0 + h) = Lh + r(h) for all h ∈ TP0E
3

where the remainder r(h) is of order o(|h|) · |h| as h → 0, that is,

lim
h→0

|r(h)|
|h| = 0.

The operator L is uniquely determined; it is called the Fréchet derivative of the
temperature field Θ at the point P0.

4 Motivated by classical calculus, we write
Θ′(P0) instead of L. Moreover, the linear map h �→ Θ′(P0)h is also called the
Fréchet differential of Θ at the point P0. We write

dΘP0h = Θ′(P0)h,

that is, dΘP0 = Θ′(P0) = L. If the temperature field Θ is smooth, then we have

δΘ(P0;h) = dΘP0(h).

Frequently, physicists prefer the use of the functional derivative

δΘ(P0)

δx
:= Θ′(P0) = dΘP0 .

This implies

δΘ(P0;h) =
δΘ(P0)

δx
· h.

The fact that quite different symbols denote the same mathematical object is the
result of a long fight in the history of mathematics for establishing a general calculus
in finite and infinite dimensions. The differential calculus in finite-dimensional and
infinite-dimensional Banach spaces (resp. Banach manifolds), based on the Fréchet
derivative, is thoroughly studied in E. Zeidler, Nonlinear Functional Analysis and
its Applications, Vol. I (local analysis), Vol. IV (global analysis), Springer, New
York, 1993/1997.

4 Fréchet (1878–1973)
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10.5 Global Linearization of Smooth Maps and the
Tangent Bundle

The mathematical investigations are simplified when replacing the position
space by the state space which is the tangent bundle of the position space.
In terms of physics, the state space enriches the position space by adding
the possible velocities of particles.

Folklore

Basic idea. We are given the smooth function

f : R → R.

Setting

(Tf)(x, v) := (f(x), f ′(x)v), (10.18)

we introduce the map
Tf : R

2 → R
2

which is called the global linearization of f . This notion has the advantage that
Leibniz’s classical chain rule for the differentiation of composed maps gets a simpler
form. This allows the formulation of a global chain rule for general finite-dimensional
and infinite-dimensional manifolds. In order to explain the simple basic idea, con-
sider the composed map

g ◦ f : R
f−→ R

g−→ R.

Then the global linearization T (g◦f) is obtained by the elegant composition formula

T (g ◦ f) : R
Tf−→ R

Tg−→ R.

Explicitly, T (g ◦ f) = Tg ◦ Tf. This tells us that:

The global linearization respects the composition of maps.

Let us prove this by using the classical chain rule

d(g ◦ f)(x)
dx

=
dg(f(x))

dx
=
dg(y)

dy

dy

dx |y=f(x)
= g′(f(x))f ′(x).

By definition (10.18) of the operator T , we get

Th(x, v) = (h(x), h′(x)v).

Choosing h(x) := (g ◦ f)(x) = g(f(x)), we obtain

T (g ◦ f)(x, v) = (g(f(x)), g′(f(x))f ′(x)v).

Moreover,
(Tg)(f(x), f ′(x)v) = (g(f(x)), g′(f(x))f ′(x)v).

Hence T (g ◦ f) = Tg ◦ Tf.
The tangent bundle of the real line and the global tangent map. In

order to get contact with the general theory of manifolds, consider the real line R

as a manifold. Then the tangent bundle of R reads as

TR := {(x, v) : x ∈ R, v ∈ R}.
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In terms of physics, the variable x describes a point on the real line, and the
variable v describes the possible particle velocity at the point x of some particle
that moves on the real line. Obviously, TR = R

2. Using this terminology, the global
linearization Tf of the map f : R → R reads as

Tf : TR → TR.

The map Tf is also called the global tangent map of f .

Mnemonically, the passage from the original map f : R → R to the tangent
map Tf : TR → TR is obtained by replacing the basic manifold R by its
tangent bundle TR.

This underlines the observation that the notion of the tangent bundle is a quite
natural concept. The global chain rule

T (g ◦ f) = Tg ◦ Tf

corresponds elegantly to the passage from the diagram

g ◦ f : R
f−→ R

g−→ R

to the diagram

T (g ◦ f) : TR
Tf−→ TR

Tg−→ TR.

That is, we only add the symbol T which stands for ‘tangent’.
The global tangent map on the Euclidean manifold. We are given the

smooth map
f : E

3 → E
3.

Recall that the tangent bundle of E
3 is given by

TE
3 := {(P,v) : P ∈ E

3, v ∈ TPE
3}.

In terms of physics, P is the position of a particle, and v is the velocity vector of
a particle at the point P . In other words, E

3 is the position space, and TE
3 is the

state space for the motion of particles on the Euclidean manifold E
3. Our goal is

to construct the global linearization

Tf : TE
3 → TE

3 (10.19)

which is also called the global tangent map of f . We start with a fixed velocity
vector v at the point P0. First let us construct the local linearization

TP0f : TP0E
3 → Tf(P0)E

3

which sends the tangent vector v at the point P0 to the tangent vector Tf(P0)v at
the image point f(P0). To this end, we consider a fixed trajectory

C : P = P (t), t ∈ R, P (0) = P0

of a particle which passes through the point P0 at time t = 0 with the velocity
vector v. In terms of position vectors located at the origin, the given trajectory
reads as

C : x = x(t), t ∈ R, x(0) = x0.

The map f sends the trajectory C to the trajectory
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Fig. 10.5. The tangent map TP0f

f(C) : P = f(P (t)), t ∈ R.

Naturally enough, we consider the velocity vector w of the transformed trajectory
f(C) at the point f(P0) (Fig. 10.5), and we define

(TP0f)v := w.

Thus, TP0f is the map for velocity vectors which is induced by the original map f
in a natural manner.5

It is crucial that the velocity vector w only depends on the given velocity
vector v, but not on the choice of the trajectory C.

To show this, consider a right-handed Cartesian (x, y, z)-coordinate system with
the orthonormal basis i, j,k. With respect to this coordinate system, the map

f : E
3 → E

3

has the form

f(x, y, z) = (X(x, y, z), Y (x, y, z), Z(x, y, z)), (x, y, z) ∈ R
3,

that is, the image point f(P ) has the Cartesian coordinates X,Y, Z depending on
the Cartesian coordinates x, y, z of the original point P. Moreover, we need the
velocity vector v = u i + v j + w k. Then we get

(TP0f)v = U i + V j +Wk

with
0

B

@

U

V

W

1

C

A

=

0

B

@

Xx(x0, y0, z0) Xy(x0, y0, z0) Xz(x0, y0, z0)

Yx(x0, y0, z0) Yy(x0, y0, z0) Yz(x0, y0, z0)

Wx(x0, y0, z0) Wy(x0, y0, z0) Wz(x0, y0, z0)

1

C

A

0

B

@

u

v

w

1

C

A

. (10.20)

For the proof, we refer to Problem 10.1. Finally, we define

T (P0,v) := (f(P0), (TP0f)v).

This yields the global tangent map (10.19).

5 The map TP0 is also called the tangent map of f at the point P0 (or the lin-
earization of the map f at the point P0).
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10.6 The Global Chain Rule

We are given the smooth maps f : E
3 → E

3 and g : E
3 → E

3.

Theorem 10.2 The global linearization of the composed map

g ◦ f : E
3 f−→ E

3 g−→ E
3

reads as T (g ◦ f) : TE
3 Tf−→ TE

3 Tg−→ TE
3.

In other words, T (g ◦ f) = Tg ◦ Tf. For the proof, see Problem 10.2 on page 658.

10.7 The Transformation of Temperature Fields

We are given the smooth map

τ : E
3 → E

3 (10.21)

(e.g., a rotation). We want to use this transformation in order to transplant the given
smooth temperature field Θ : E

3 → R. There are the following two possibilities:

• (τ∗Θ)(Q) := Θ(τ(Q)) for all points Q ∈ E
3 (pull-back),

• (τ∗Θ)(P ) := Θ(τ−1(P )) for all points P ∈ E
3 (push-forward).

Letting P = τ(Q), we get (τ∗Θ)(Q) = Θ(P ) and (τ∗Θ)(P ) = Θ(Q).
In order to define the push-forward τ∗Θ, we have to assume additionally that

the transformation (10.21) is a diffeomorphism. Choose a fixed (x, y, z)-Cartesian
coordinate system, and assume that P = τ(Q) corresponds to

x = x(ξ, η, ζ), y = y(ξ, η, ζ), z = z(ξ, η, ζ), (ξ, η, ζ) ∈ R
3.

That is, the point P (resp. Q) has the Cartesian coordinates (x, y, z) (resp. (ξ, η, ζ)).
Then, for all (ξ, η, ζ) ∈ R

3, we have:

• (τ∗Θ)(ξ, η, ζ) = Θ(x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ)),

• (τ∗Θ)(x(ξ, η, ζ), y(ξ, η, ζ), z(ξ, η, ζ)) = Θ(ξ, η, ζ).

In terms of commutative diagrams, the following hold.
Pull-back τ∗Θ of the temperature field Θ. The transformed temperature

field τ∗Θ is defined by the commutativity of the following diagram:

E
3

τ

τ∗Θ
R.

E
3

Θ

(10.22)

In other words, τ∗Θ = Θ ◦ τ.
Push-forward τ∗Θ of the temperature field Θ. Suppose that τ : E

3 → E
3

is a diffeomorphism. Then the transformed temperature field τ∗Θ is defined by the
commutativity of the following diagram:
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E
3

τ−1

τ∗Θ
R.

E
3

Θ

(10.23)

In other words, τ∗Θ = Θ ◦ τ−1. Note that:

The push-forward τ∗Θ with respect to the map τ is equal to the pull-back
(τ−1)∗Θ with respect to the inverse map τ−1.

Problems

10.1 The local linearization TP0f . Prove (10.20).
Solution: In terms of position vectors at the origin, the original trajectory

C : x(t) = x(t) i + y(t) j + z(t) k, t ∈ R

is transformed into the trajectory f(C),

X(t) = X(x(t), y(t), z(t)) i + Y (x(t), y(t), z(t)) j + Z(x(t), y(t), z(t)) k.

Then (TP0f)v = Ẋ(0). This implies (10.20), by using the chain rule.
10.2 Proof of the global chain rule. Prove Theorem 10.2. Hint: See E. Zeidler (1986),

Vol. IV, p. 603, quoted on page 1089.
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Sophus Lie (1842–1899) emphasized the importance of velocity vector fields
for the study of manifolds and their symmetries in terms of the lineariza-
tion procedure. This leads to two fundamental concepts: the Lie derivative
and the Lie algebra of velocity vector fields, and the Lie algebra of a Lie
group. These concepts are basic for modern mathematics and physics; they
connect differential geometry with the theory of dynamical systems.

Folklore

We want to study vector fields

w = w(P ), P ∈ E
3

on the 3-dimensional Euclidean manifold E
3. For example, this concerns velocity

vector fields or force fields like

• Newton’s gravitational field w = Fgrav,
• Maxwell’s electric field w = E, or
• Maxwell’s magnetic field w = B.

We will frequently use the intuitive picture of the velocity vector field of a fluid.
For such vector fields w on E

3, one has to distinguish between

• the covariant directional derivative Dvw, and
• the Lie derivative Lvw = Dvw −Dwv. Here, v is the velocity field of the flow

of fluid particles on E
3.

For example, the Lie derivative describes continuous symmetries on an infinitesimal
level. In Chapter 12, dualizing the concept of velocity vector fields, we will introduce
covector fields which lie at the heart of Cartan’s calculus of differential forms. Note
that

• the Lie derivative of velocity vector fields and
• Cartan’s calculus of differential forms

can be introduced on arbitrary manifolds. In particular, the Lie derivative Lvw of a
velocity vector field w with respect to the velocity vector field v allows us to equip
the space of velocity vector fields on an arbitrary manifold with the structure of a
Lie algebra, by introducing the Lie product

[v,w] := Lvw

in an invariant way. This underlines the importance of Lie algebras for the theory
of manifolds.

On special classes of manifolds (e.g., Riemannian and pseudo-Riemannian man-
ifolds), it is possible to introduce the following additional notions:

• the Hodge codifferential d∗ω which is dual to the Cartan differential dω of a
differential form ω (see Chap. 12),

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 12,
© Springer-Verlag Berlin Heidelberg 2011
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• the covariant directional derivative Dvw via parallel transport,
• and the covariant Cartan differential Dω of differential forms ω on principal fiber

bundles or vector bundles (see Chaps. 15 and 17).

Élie Cartan’s calculus of differential forms reflects crucial topological (i.e., global)
properties of manifolds on the basis of the de Rham cohomology. In terms of physics,
de Rham cohomology generalizes important properties of the electromagnetic field
(see Chap. 23).

Using Hodge duality, the de Rham cohomology passes over to Hodge homology.
In turn, this corresponds to the original Poincaré homology based on Poincaré’s
triangulation of manifolds and the computing of both the Euler characteristic and
the Betti numbers, which represent fundamental topological invariants. The gener-
alization of this approach leads to the modern theory of characteristic classes (e.g.,
Chern classes).1

Covariant directional derivatives Dvw of velocity vector fields w (and more
general tensor fields) and covariant differentials Dω of differential forms ω play a
fundamental role in gauge theory (see Chap. 15). Observe that one has to distinguish
between

• local parallel transport, and
• global parallel transport

of velocity vectors on manifolds. On general manifolds, one can introduce a local
parallel transport of velocity vector fields (in the language of modern mathematics,
this is a connection on the tangent bundle of the manifold). However, only special
manifolds possess a global parallel transport. In particular, the classical parallel
transport of velocity vectors on the Euclidean manifold E

3 is global. This yields the
Euclidean covariant directional derivative

Dvw = (v∂)w on E
3,

where ∂ is Hamilton’s nabla operator.
Perspectives (curvature and torsion). Observe the following special fea-

ture.
(i) The curvature operator. Let u,v,w, z be smooth velocity vector fields. In-

troduce the so-called curvature operator w �→ F(u,v)w by setting

F(u,v)w := DuDvw −DvDuw −D[u,v]w.

In addition, let us introduce the Riemann curvature tensor R by setting

R(u,v,w, z) := 〈F(u,v)w| z〉. (11.1)

Here, we assume that the tangent spaces of the manifold under consideration are
equipped with the inner product 〈.|.〉. In the special case of the Euclidean manifold
E

3, we have
F(u,v) ≡ 0 on E

3,

and R ≡ 0 on E
3. This reflects the flatness of the Euclidean manifold E

3. In the
general case, the Riemann curvature operator and the Riemann curvature tensor
do not vanish, and they measure the curvature of the manifold under consideration.
The prototype of a manifold with nonvanishing curvature is the sphere (see Sect.
9.5).

1 Lie (1842–1899), Poincaré (1854–1912), Élie Cartan (1869–1951), de Rham
(1903–1990), Hodge (1903–1975), Chern (1911–2004).
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Fig. 11.1. Push-forward τ∗v of the velocity vector field v

(ii) The torsion operator. Define the so-called torsion operator T by setting

T(v,w) := Dvw −Dwv − Lvw. (11.2)

In the special case of the Euclidean manifold E
3, we get

T(v,w) ≡ 0 on E
3. (11.3)

In the general case, there exist covariant directional derivatives on certain classes
of manifolds where the torsion operator T does not vanish.

The importance of velocity vector fields. In the history of physics, velocity
vector fields emerged in the 18th century in order to describe the motion of fluid
particles. The modern development of mathematics and physics has been shown
that the highly intuitive idea of a velocity vector field is of fundamental importance
for all branches of modern physics. In fact, crucial time-dependent processes in
nature are described by dynamical systems, and velocity vector fields are nothing
other than dynamical systems on an infinitesimal level.

11.1 The Transformation of Velocity Vector Fields

Let us consider the smooth map

τ : E
3 → E

3 (11.4)

(e.g., a rotation). Assume that the map τ sends the point Q to the point P = τ(Q).
Push-forward τ∗v of the velocity vector field v. We are given the smooth

vector field v on the Euclidean manifold E
3. We want to transplant the velocity

vector from the pointQ to the point P (Fig. 11.1). To this end. observe the following.
The linearization TQτ of the map τ sends

• the velocity vector vQ at the point Q
• to the velocity vector wP at the point P where wP := (TQτ)(vQ).

Naturally enough, we define

(τ∗v)P := (TQτ)(vQ) for all Q ∈ E
3. (11.5)

Choose a fixed right-handed (x, y, z)-Cartesian coordinate system with the right-
handed orthonormal basis i, j,k at the origin O. Parallel transport of i, j,k to the
point P yields the orthonormal basis iP , jP ,kP of the tangent space TPE

3 of the
Euclidean plane E

3 at the point P (see Fig. 9.1 on page 558). Assume that the
equation P = τ(Q) corresponds to
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Fig. 11.2. Pull-back τ∗v of the velocity vector field v

x = x(ξ, η, ζ), y = y(ξ, η, ζ), z = z(ξ, η, ζ), (ξ, η, ζ) ∈ R
3.

That is, the point P (resp. Q) has the Cartesian coordinates (x, y, z) (resp. (ξ, η, ζ)).
Let vQ = a(Q)iQ + b(Q)jQ + c(Q)kQ. Then, it follows from (10.20) on page 656
that

(τ∗v)P = A(P )iP +B(P )jP + C(P )kP

with
0

B

@

A(P )

B(P )

C(P )

1

C

A

:=

0

B

@

xξ(Q) xη(Q) xζ(Q)

yξ(Q) yη(Q) yζ(Q)

zξ(Q) zη(Q) zζ(Q)

1

C

A

0

B

@

a(Q)

b(Q)

c(Q)

1

C

A

. (11.6)

The following diagram is commutative:

E
3

τ

τ∗v
TE

3

Tτ

E
3 v

TE
3.

(11.7)

Here, we regard the velocity vector field v as a section of the tangent bundle TE
3

(see Sect. 4.5.1 on page 325).
Pull-back τ∗v of the velocity vector field v. Let the map τ from (11.4) be

a diffeomorphism. The transformed vector field τ∗v is defined by

τ∗v := (τ−1)∗v. (11.8)

Locally, (τ∗v)Q := (TP τ
−1)(vP ) for all points Q ∈ E

3 (Fig. 11.2). This means that
the following diagram is commutative:

E
3

τ−1

τ∗v
TE

3

Tτ−1

E
3 v

TE
3.

(11.9)

In terms of physics, the streamlines of the transformed velocity vector field τ∗v
(resp. τ∗v) are obtained from the streamlines of the original velocity vector field v
by applying the map τ (resp. τ−1). The transformed vector fields τ∗v and τ∗v will
be frequently used (e.g., this concerns the definition of the Lie derivative of vector
fields, the transformation of differential forms, or the definition of the Lie derivative
of differential forms).
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11.2 The Lie Derivative of an Electric Field along the
Flow of Fluid Particles

The Lie derivative of a vector field (e.g., an electric field) describes the
transport of the velocity vector field along the flow of fluid particles on an
infinitesimal level.

Folklore

11.2.1 The Lie Derivative

We are given the smooth velocity vector field v on the Euclidean manifold E
3. This

vector field generates the flow operator Ft : E
3 → E

3 which is a diffeomorphism
for any time t (see Sect. 10.2.1 on page 647). Let E be a smooth vector field on E

3

(e.g., an electric field). The Lie derivative LvE of the electric field E with respect
to the velocity vector field v ∈ Vect(E3) is defined by the time derivative

LvE :=
d

dt
F ∗
t E|t=0. (11.10)

Proposition 11.1 For all points P ∈ E
3,

(LvE)P = E′(P )v(P ) − v′(P )E(P ).

Proof. By Sect. 11.1, the pull-back reads as

(F ∗
t E)P = F ′

t (P )−1E(Ft(P )), t ∈ R.

Using the Leibniz product rule and the chain rule together with (10.10) on page
650, we get

(LvE)P =
d

dt
F ′
t (P )−1

t=0E(P ) +
d

dt
E(Ft(P ))t=0 = −v′(P )E(P ) + E′(P )v(P ).

�

Cartesian coordinates. Consider a right-handed Cartesian (x, y, z)-coordinate
system with the orthonormal basis e1 := iP , e2 := jP , e3 := kP which is obtained
from the right-handed orthonormal basis i, j,k at the origin by parallel transport
(Fig. 9.1 on page 558). Set v = viei and E = Eiei. Then2

(LvE)P =
`

vi∂iE
j − Ei∂iv

j´

P
ej . (11.11)

11.2.2 Conservation Laws

Let v be a smooth complete velocity vector field on the Euclidean manifold E
3.

Theorem 11.2 If LvE = 0 on E
3, then3

EFtP = F ′
t (P )EP

for all times t and all points P ∈ E
3.

2 As usual, we set x1 := x, x2 := y, x3 := z, and ∂i := ∂/∂xi. Moreover, we sum
over equal upper and lower indices from 1 to 3.

3 If the velocity vector field v is not complete, then only a local form of the
statement is valid, that is, the claim is only valid for an appropriate open time
interval J with 0 ∈ J . Here, J depends on the point P .
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Equivalently, we say that the electric field E is Lie parallel along the trajectories
of the fluid particles of the flow.
Proof. Since Fs+t = FsFt, we get F ∗

s+t = F ∗
t F

∗
s . Hence

d

ds
F ∗
s+tE|s=0 = F ∗

t LvE = 0 for all t ∈ R.

Consequently, F ∗
t E does not depend on time t. Hence F ′

t (P )−1EFtP = EP for all
t ∈ R. �

11.2.3 The Lie Algebra of Velocity Vector Fields

Lie’s approach to manifolds and Lie groups is based on the key fact that
the set Vect(M) of smooth velocity vector fields on the manifold M is a
Lie algebra. The corresponding Lie product [v,w] is obtained by the Lie
derivative Lvw.

Folklore

Let Vect(E3) denote the space of all smooth velocity vector fields on the Euclidean
manifold E

3. Set [v,w] := Lvw for all v,w ∈ Vect(E3).

Proposition 11.3 The real linear space Vect(E3) becomes a Lie algebra equipped
with the Lie product [v,w].

Proof. We have to show that for all u,v,w ∈ Vect(E3) and all real numbers α, β,
the following hold:

• [αu + βv,w] = α[u,w] + β[v,w] and [u,v] = −[v,u],
• [u, [v,w]] + [v, [w,u]] + [w, [u,v]] (Jacobi identity).

This follows by an explicit computation. To this end, use a Cartesian (x1, x2, x3)-
coordinate system, as in (11.11). Then, v = viei, w = wiei, and

[v,w] = (vi∂iw
j − wi∂i)ej .

�



12. Covector Fields and Cartan’s Exterior
Differential – the Beauty of Differential Forms

Covector fields are dual objects to vector fields. The Cartan calculus of
differential forms is based on the fact that there exists the Grassmann
product ω ∧ μ for covector fields ω and μ. Dualizing the Lie derivative for
vector fields, we will get the Cartan differential dω for differential forms

ω. Élie Cartan’s calculus for differential forms (also called the exterior
differential calculus) is one of the most beautiful tools in mathematics.

Folklore

The calculus of differential forms was introduced by Élie Cartan (1869–1951) in
1899. It was Cartan’s goal to study Pfaff systems

n
X

k=1

ajk(x
1, . . . , xn)dxk = 0, j = 1, . . . ,m

by using a symbolic method.1 It turns out that:

Cartan’s calculus is the proper language of generalizing the classical cal-
culus due to Newton (1643–1727) and Leibniz (1646–1716) to real and
complex functions with n variables.

The key idea is to combine the notion of the Leibniz differential df with the alternat-
ing product a∧ b due to Grassmann (1809–1877). Cartan’s calculus has its roots in
physics. It emerged in the study of point mechanics, elasticity, fluid mechanics, heat
conduction, and electromagnetism. It turns out that Cartan’s differential calculus
is the most important analytic tool in modern differential geometry and differential
topology, and hence Cartan’s calculus plays a crucial role in modern physics (gauge
theory, theory of general relativity, the Standard Model in particle physics). In par-
ticular, as we will show in Chap. 19, the language of differential forms shows that
Maxwell’s theory of electromagnetism fits Einstein’s theory of special relativity,
whereas the language of classical vector calculus conceals the relativistic invariance
of the Maxwell equations.

Convention. If the contrary is not stated explicitly, all the functions are as-
sumed to be smooth in this chapter. The notion of smooth function on an open or
closed set is discussed in the Appendix (see page 1070).

Coordinate transformations. We want to use the coordinate transformation

x = τ(u), u ∈ U (12.1)

1 É. Cartan, Sur certaines expressions différentielles et sur le problème de Pfaff,

Annales École Normale 16 (1899), 239–332.

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 13,
© Springer-Verlag Berlin Heidelberg 2011
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where u = (u1, . . . , un) and x = (x1, . . . , xn) are elements of R
n. Let U and M be

open subsets of R
n (or let U and M be the closure of open subsets of R

n). The
map

τ : U → M (12.2)

is called a diffeomorphism iff the following hold: τ is bijective and smooth, and
the inverse map τ−1 : M → U is also smooth. The diffeomorphism τ is called
orientation-preserving iff

det τ ′(P ) > 0 for all P ∈ int U .

Recall that the Jacobian is given by

det τ ′(P ) =
∂(τ1, . . . , τn)

∂(u1, . . . , un)
(u) :=

˛

˛

˛

˛

˛

˛

˛

˛

∂τ1(u)

∂u1 . . . ∂τ1(u)
∂un

...
...

...
∂τn(u)

∂u1 . . . ∂τn(u)
∂un

˛

˛

˛

˛

˛

˛

˛

˛

.

For example, let n = 1. If U and M are compact intervals, then the map (12)
is an orientation-preserving diffeomorphism iff τ is smooth, and τ ′(u) > 0 for all
u ∈ int U .

12.1 Ariadne’s Thread

It is worth noting that notation facilitates discovery. This, in a most won-
derful way, reduces the mind’s labors.
We need an analysis which is of geometric nature and describes physical
situations as directly as algebra expresses quantities.

Gottfried Wilhelm Leibniz (1646–1716)

For the convenience of the reader, let us start by describing some basic ideas.
We want to show how classical integral formulas can be uniformly written in the
language of differential forms. The point is that the use of differential forms allows
straightforward generalizations to higher dimensions.

12.1.1 One Dimension

Classical formulas. Consider the compact intervals M := [a, b] and U := [α, β].

(i) The main theorem of calculus: If f : M → R is smooth, then

Z

M
f ′(x)dx = f(b) − f(a). (12.3)

(ii) Integration by parts: If F,G : M → R are smooth functions, then

Z

M
F ′(x)G(x) dx = −

Z

M
F (x)G′(x)dx+ F (b)G(b) − F (a)G(a). (12.4)

This follows from (i) by choosing f := FG.
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(iii) The substitution rule: If τ : U → M is an orientation-preserving diffeomor-
phism, then

Z

M
f(x)dx =

Z

U
f(τ(u)) · τ ′(u)du. (12.5)

The formal language of differential forms. To begin with, we will use the
Leibniz differential in a formal way. We set

• ω := f(x) (0-form),
• γ := g(x)dx (1-form),

where f, g : R → R are smooth functions.2 We define the differential by setting

• dω := f ′(x)dx,
• dγ := dg(x) ∧ dx.
Then dγ = g′(x)dx ∧ dx = 0. Hence

d(dω) = 0. (12.6)

As we will show later on, this so-called Poincaré cohomology rule is the key to the
de Rham theory in differential topology. The main theorem of calculus (12.1.1) can
be written as

Z

M
dω =

Z

∂M
ω. (12.7)

This is the prototype of the generalized Stokes theorem to be considered in Sect.
12.7 below. Finally, let us investigate the transformation of differential forms under
the coordinate transformation

x = τ(u), u ∈ U .
Motivated by dx = τ ′(u)du, we set

• (τ∗ω)(u) := f(τ(u)),
• (τ∗γ)(u) := g(τ(u)) · τ ′(u)du.
The differential form τ∗ω (resp. τ∗γ) is called the pull-back of ω (resp. γ). Replacing
f by g, the substitution rule (12.1.1) can be written as

Z

M
γ =

Z

τ∗M
τ∗γ. (12.8)

Naturally enough, the set τ∗M := τ−1(M) is called the pull-back of the set M.
The differential has the following crucial invariance property

d(τ∗ω) = τ∗(dω), (12.9)

which is responsible for the great flexibility of the Cartan calculus for differential
forms. Similarly, d(τ∗γ) = τ∗(dγ).3

The rigorous meaning of differential forms. We want to define differential
forms on the one-dimensional Euclidean manifold E

1 in an invariant way. We will
use a language which can be generalized to arbitrary manifolds later on.

2 In order to indicate the dependence on the point x, we should write ωx := f(x)
and γx := g(x)dx. To simplify notation, we will omit the index x.

3 Note that τ∗(dω) = f ′(τ(u)) · τ ′(u)du and dγ = 0.
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Fig. 12.1. The tangent space TPE
1

(i) Tangent space TPE
1: To begin with, let TPE

1 denote the tangent space of the
real line E

1 at the point P (with the coordinate x) (Fig. 12.1). This tangent
space consists of all velocity vectors vP at the point P . Choosing the unit
vector iP as basis vector at the point P , we have

vP := VP iP

where VP is a real number. In terms of coordinates, we write V (x) := VP .
(ii) Cotangent space T ∗

PE
1: Define

dxP (vP ) := VP for all vP ∈ TPE
1.

This means that
dxP : TPE

1 → R

is a linear functional on the tangent space TPE
1. In terms of physics, dxP

assigns to the velocity vector vP its velocity component VP with respect to the
basis vector iP . All the linear functionals

γP : TPE
1 → R

are called covectors of the real line E
1 at the point P . In particular, dxP is a

covector at P . All the covectors at P form the cotangent space T ∗
PE

1 of E
1 at

the point P . We have T ∗
PE

1 = {αdxP : α ∈ R}.
(iii) Differential forms: Let us use the following terminology.

• Vect(E1) denotes the space of smooth vector fields

P �→ vP

on the real line E
1. That is, the function P �→ VP is smooth on E

1.
• Λ0(E1) denotes the space of all smooth functions f : E

1 → R on the real
line.

• Λ1(E1) denotes the space of all smooth covector fields

P �→ γP

on E
1. That is, γP = g(x)dxP , and the function g : R → R is smooth.

Covector fields are also called differential 1-forms or briefly 1-forms.
• Λ2(E1) denotes the set of all maps

P �→ νP

where νP : TPE
1 × TPE

1 → R is a bilinear antisymmetric functional (for all
P ∈ E

1). Because of νP = 0 the space Λ2(E1) is trivial.
Note that Vect(E1) and Λp(E1), p = 0, 1, are infinite-dimensional real linear
spaces.
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Fig. 12.2. Transformation of the real line

(iv) The Cartan differential operator: We want to introduce the linear operator

d : Λp(E1) → Λp+1(E1), p = 0, 1.

In particular, we will get the following:
• If f ∈ Λ0(E1), then df ∈ Λ1(E1), and
• if γ ∈ Λ1(E1), then dγ = 0.
Explicitly, we define

(df)(v) := Lvf for all v ∈ Vect(E1)

where Lvf denotes the Lie derivative of the function f with respect to the
velocity vector field v. This means that

(df)P (vP ) := (LvP f)(P )

for all points P ∈ E
1 and all smooth velocity vector fields v ∈ Vect(E1). In

terms of coordinates, we get

(df)P = f ′(x)dxP for all P ∈ E
1 (12.10)

where we assume that the real number x is the coordinate of the point P.
Proof. Note that f ′(x)dxP (vP ) = f ′(x)VP and (LvP )(P ) = VP f

′(x). �

(v) Transformation of global coordinates (transplantation of velocity vector fields
and covector fields): Let us consider the diffeomorphism

τ : E
1 → E

1

of the real line onto itself. We regard this as a coordinate transformation

x = τ(u), u ∈ R.

Set P = τ(Q) (Fig. 12.2). Assume that the point Q (resp. P ) has the coordinate
u (resp. x = τ(u)). Naturally enough, the transformation τ induces two linear
transformations of velocity vector fields and dual covector fields.
• Push-forward of velocity vector fields: τ∗ : Vect(E1) → Vect(E1). The lin-

earization TQτ : TQE
1 → TPE

1 of the map τ at the point Q sends the
tangent vector vQ at the point Q to the tangent vector (TQτ)(vQ) at the
point P. We define the transformed velocity vector field τ∗v by setting

(τ∗v)P := (TQτ)(vQ) for all Q ∈ E
1.

Mnemonically, we write τ∗v = (Tτ)v. In terms of coordinates,

vQ = V (u)iQ,

and (τ∗v)P = W (x)iP with the relation W (x) = W (τ(u)) = τ ′(u)V (u). In
other words,

(τ∗v)(τ(u)) = τ ′(u)V (u)iP for all u ∈ R.
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Fig. 12.3. Transformation of the Euclidean plane E
2

• Pull-back of covector fields: τ∗ : Λ1(E1) → Λ1(E1). Consider the smooth
covector field γ ∈ Λ1(E1). Naturally enough, the transformation of veloc-
ity vector fields induces a transformation of linear functionals (covectors).
Explicitly, we define the transformed covector field τ∗γ by setting4

(τ∗γ)Q(v) := γP ((TQτ)v) for all v ∈ TQE
1. (12.11)

Mnemonically, we write (τ∗γ)(v) = γτ (τ∗v). In terms of coordinates, sup-
pose that

γ = g(x)dxP .

Then

(τ∗γ)(u) = g(τ(u)) · τ ′(u)duQ. (12.12)

Proof. Note that
• vQ = V (u)iQ and vP = V (τ(u))iP ,
• (τ∗v)P = τ ′(u)V (u)iP ,
• γP (vP ) = g(x)dxP (vP ) = g(x)V (x).
Now the claim (12.12) follows from γP ((τ∗v)P ) = g(x)τ ′(u)V (u) and

g(τ(u))τ ′(u)duQ(vQ) = g(x)τ ′(u)V (u).

�

(vi) Transformation of local coordinates: The same argument applies to local co-
ordinates, that is, the map τ : U → M is a diffeomorphism where U and M
are open (or closed) intervals.

Our goal is to generalize this to higher dimensions such that the four key relations
(12.6) through (12.9) above remain valid. The crucial trick reads as follows:

Integrals over manifolds (curves, surfaces, regions with boundary like discs
or balls) are integrals over differential forms.

12.1.2 Two Dimensions

Consider a right-handed (x, y)-Cartesian coordinate system of the Euclidean plane
E

2 with the right-handed orthonormal basis i, j. Consider the subsets M and U of
E

2 which are compact, arcwise connected, oriented, 2-dimensional submanifolds of
E

2 with coherently oriented boundary ∂M (Fig. 12.4).

4 To simplify notation, we write v instead of vQ.



12.1 Ariadne’s Thread 671

Fig. 12.4. Coherently oriented boundary

(i) The main theorem of calculus: If the functions U, V : M → R are smooth, then

Z

M
(Ux − Vy) dxdy =

Z

∂M
Udx+ V dy. (12.13)

Here, Ux denotes the partial derivative of U with respect to x. Equivalently,
we also get

Z

M
(Ux + Vy) dxdy =

Z

∂M

`

U(P )n1(P ) + V (P )n2(P )
´

ds. (12.14)

Here, n = n1(P ) i + n2(P )j is the outer normal unit vector at the boundary
point P, and the real parameter s denotes the arc length.

(ii) Integration by parts:

Z

M
UxV dxdy = −

Z

M
UVxdxdy +

Z

∂M
U(P )V (P )n1(P )ds (12.15)

and
Z

M
UyV dxdy = −

Z

M
UVydxdy +

Z

∂M
U(P )V (P )n2(P )ds. (12.16)

This follows from (12.14) by replacing U (resp. V ) by the product UV .
(iii) The substitution rule: If τ : U → M is an orientation-preserving diffeomor-

phism, then
Z

M
V (x, y) dxdy =

Z

U
V (τ(u, v)) · det τ ′(u, v) dudv. (12.17)

Equivalently,
Z

M
V (x, y) dxdy =

Z

U
V (x(u, v), y(u, v)) · ∂(x, y)

∂(u, v)
(u, v) dudv. (12.18)

For the proof of (i), we refer to Problem 12.1 on page 801. Formula (12.13) is
called the Cauchy–Green formula. It was implicitly (resp. explicitly) formulated by
Green in 1828 (resp. Cauchy in 1846). Cauchy used this formula for studying the
path-independence of the integral

R

C
f ′(z)dz in the case where f is a holomorphic

function on the Gaussian plane (see page 687).
The formal language of differential forms. We set

• f (0-form),
• ω := Udx+ V dy (1-form),
• γ := W dx ∧ dy (2-form),
• dx ∧ dy = −dy ∧ dx, dx ∧ dx = 0, dy ∧ dy = 0 (Grassmann relations).

Here, f, U, V,W : R
2 → R are smooth functions.
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(i) Cartan’s exterior differential: We define the Cartan exterior differential by set-
ting
• df = fxdx+ fydy,
• d ∧ ω := dU ∧ dx+ dV ∧ dy,
• d ∧ γ := dW ∧ dx ∧ dy.
To simplify notation, we replace d ∧ ω (resp. d ∧ γ) by dω (resp. dγ). Then
dω = (Uxdx+ Uydy) ∧ dx+ (Vxdx+ Vydy) ∧ dy. By the Grassmann relations,

dω = (Vx − Uy) dx ∧ dy.

Moreover, by the Grassmann relations, the wedge product of three basis dif-
ferentials is always equal to zero on the Euclidean plane E

2. For example,
dx ∧ dy ∧ dx = −dx ∧ dx ∧ dy = 0. This implies

dγ = (Wxdx+Wydy) ∧ dx ∧ dy = 0.

(ii) Poincaré’s cohomology rule: This rule reads as

d(df) = 0, d(dω) = 0, d(dγ) = 0. (12.19)

Mnemonically, d ∧ d ∧ ω = 0 (or briefly d ∧ d = 0). To prove (12.19), note that
fxy = fyx. This implies

d(df) = dfx ∧ dx+ dfy ∧ dy = (fxxdx+ fxydy) ∧ dx
+(fyxdx+ fyydy) ∧ dy = (fyx − fxy)dx ∧ dy = 0.

(iii) Integrals: We define the integral over differential forms in the following way:
•
R

C ω =
R

C Udx+ V dy (classical line integral),

•
R

M γ =
R

MW dx∧dy :=
R

MW (x, y)dxdy (classical 2-dimensional integral).
Mnemonically, we replace the wedge product dx ∧ dy by dxdy.

(iv) The main theorem of calculus (12.13) (Cauchy–Green theorem): This can ele-
gantly be written as

Z

M
dω =

Z

∂M
ω. (12.20)

(v) Coordinate transformations (pull-back): Consider the coordinate transforma-
tion

x = x(u, v), y = y(u, v), (u, v) ∈ U .
We assume that the map τ : U → M is smooth. Motivated by the Leibniz
differential,

dx = xu(u, v)du+ xv(u, v)dv, dy = yu(u, v)du+ yv(u, v)dv,

we define
• (τ∗f)(u, v) := f(x, y) where x = x(u, v) and y = y(u, v),
• (τ∗ω)(u, v) is equal to

U(x, y)(xu(u, v)du+ xv(u, v)dv) + V (x, y)(yu(u, v)du+ yv(u, v)dv).

Hence

(τ∗ω)(u, v) :=
`

U(x, y)xu(u, v) + V (x, y)yu(u, v)
´

du

+
`

U(x, y)xv(u, v) + V (x, y)yv(u, v)
´

dv

where x = x(u, v) and y = y(u, v).
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• (τ∗γ)(u, v) is equal to

W (x, y)(xu(u, v)du+ xv(u, v)dv) ∧ (yu(u, v)du+ yv(u, v)dv).

This yields

(τ∗γ)(u, v) : = W (x, y)(xu(u, v)yv(u, v) − xv(u, v)yu(u, v)) du ∧ dv

= W (x, y)
∂(x, y)

∂(u, v)
(u, v) du ∧ dv

where x = x(u, v) and y = y(u, v).
The differential form τ∗ω (resp. τ∗γ) is called the pull-back of ω (resp. γ).

(vi) Substitution rule for integrals: Suppose that the map τ : U → M is an
orientation-preserving diffeomorphism. Then the classical substitution rule for
integrals (12.18) can be elegantly written as

Z

M
γ =

Z

τ∗M
τ∗γ. (12.21)

Naturally enough, the set τ∗M := τ−1(M) is called the pull-back of the orig-
inal set M. As another example, consider the smooth map τ : [a, b] → R

2 on
the compact interval [a, b]. The equation (x, y) = τ(t), that is,

x = x(t), y = y(t), a ≤ t ≤ b

describes a smooth curve C. Motivated by the Leibniz differential

dx = ẋ(t) dt, dy = ẏ(t) dt,

we define the pull-back
• (τ∗ω)(t) :=

`

U(x(t), y(t)) ẋ(t) + U(x(t), y(t)) ẏ(t)
´

dt.
The classical parameter formula for line integrals can be written as

Z

C
ω =

Z

τ∗C
τ∗ω.

The reader should note that:
Mnemonically, the Cartan exterior calculus tells us the right substitu-
tion rule for the integral.

(vii) Invariance of the exterior differential under pull-back: The differential has the
following crucial invariance property

d(τ∗ω) = τ∗(dω), (12.22)

which is responsible for the great flexibility of the Cartan calculus for differen-
tial forms. Similarly,

d(τ∗f) = τ∗(df) and d(τ∗γ) = τ∗(dγ). (12.23)

Proof. Let us prove d(τ∗f) = τ∗(df). By the chain rule, it follows from

(τ∗f)(u, v) = f(x(u, v), y(u, v))

that d(τ∗f) = (fxxu +fyyu)du+(fxxv +fyyv)dv. Moreover, df = fxdx+fydy.
Hence
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τ∗(df) = fx(xudu+ xvdv) + fy(yudu+ yvdv) = d(τ∗f).

This finishes the proof. �

Since dγ = 0, the claim d(τ∗γ) = τ∗(dγ) = 0 is trivial. The proof of (12.22)
will be given in Problem 12.2 on page 801. The proofs show that the invariance
properties (12.22) and (12.23) are consequences of the chain rule.

(viii) The Hodge star operation: We define
• ∗1 := dx ∧ dy and ∗(dx ∧ dy) := 1,
• ∗dx := dy and ∗dy := −dx.
The integral

R

M ∗1 =
R

M dxdy equals the area measure of the set M. Therefore,

∗1 is called the volume form of the Euclidean plane E
2. By linear extension,

we get the following definitions:
• (∗f)(x, y) = f(x, y)dx ∧ dy and ∗(W (x, y) dx ∧ dy) := W (x, y),
• ∗(U(x, y)dx+ V (x, y)dy) := U(x, y)dy − V (x, y)dx.

(ix) The Hodge codifferential: We define

d∗� := − ∗ d ∗ �

where � is a p-form with p = 0, 1, 2. Explicitly,
• d∗f := 0,
• d∗(Udx+ V dy) = −Ux − Vy,
• d∗(Wdx ∧ dy) = Wydx−Wxdy.
In fact, ∗(Udx+ V dy) = Udy − V dx. Hence

− ∗ d(Udy − V dx) = − ∗
`

(Ux + Vy) dx ∧ dy
´

= −Ux − Vy.

Analogously, we get the other statements.
(x) The Hodge Laplacian Δ: Following Hodge, we set

Δ� := (dd∗ + d∗d)�

where � is an arbitrary (smooth) p-form with p = 0, 1, 2. Explicitly,
• Δf = −fxx − fyy,
• Δ(Udx+ V dy) = ΔU · dx+ΔV · dy,
• Δ

`

W dx ∧ dy
”

= ΔW · dx ∧ dy.
We call Δ the Hodge Laplacian (or briefly the Laplacian) of the Euclidean
plane E

2. In fact, dd∗f = 0, and d∗df = d∗(fxdx + fydy) = −fxx − fyy. This
implies Δf = −fxx − fyy. The proofs of the other statements can be found
in Problem 12.5 on page 802. Note that, for a smooth function f , the Hodge
Laplacian differs from the classical Laplacian by sign. In this monograph, we
will always use the Hodge Laplacian. This fits the terminology used in modern
differential geometry.

The rigorous language of differential forms. It is not difficult to give the
approach above a sound basis. There exist two different, but equivalent possibilities:

(A) Kähler’s algebraic approach, and the
(G) geometric approach based on covectors and the wedge product of antisymmet-

ric multilinear forms.

The algebraic approach. Let us sketch this.
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(a) The Grassmann algebra Λ(E2) and the exterior differential calculus: Let Λ(E2)
denote the set of all symbols of the form

f + Udx+ V dy +W dx ∧ dy
where the coefficients f, U, V,W are smooth real-valued functions on the Eu-
clidean plane E

2. The set Λ(E2) becomes a real associative algebra by introduc-
ing the ∧-product as above. That is, we define the following algebraic relations
for the four basis elements 1, dx, dy, dx ∧ dy:
• 1 ∧ � = � ∧ 1 = � if � = 1, dx, dy, dx ∧ dy,
• dy ∧ dx = −dx ∧ dy,
• dx ∧ dx = dy ∧ dy = 0,
• dx ∧ μ = dy ∧ μ = 0 if μ = dx ∧ dy, dy ∧ dx.
Naturally enough, we extend these definitions by linearity. For example,

(Udx+ V dy) ∧ (f + gdx+Wdx ∧ dy) = Ufdx+ V fdy − V g dx ∧ dy.
(b) Linear operators: We introduce the Cartan differential d, the Hodge star oper-

ator, and the Hodge codifferential d∗ by setting
• d∧ (f +Udx+V dy+W dx∧ dy) := df + dU ∧ dx+ dV ∧ dy+ dW ∧ dx∧ dy,
• ∗(f + Udx+ V dy +W dx ∧ dy) := f dx ∧ dy + Udy − V dx+W,
• d∗� := − ∗ d ∗ � for all � ∈ Λ(E2).
This yields the linear operators d∗, ∗, d : Λ(E2) → Λ(E2).

(c) Invariance under pull-back: We consider the smooth map

τ : U → M
where U and M are open subsets of E

2 (or the closure of open subsets of
E

2). For all � ∈ Λ(E2), we define the pull-back τ∗� as above. In particular,
τ∗� ∈ Λ(E2). For all �, μ ∈ Λ(E2), we get:5

• τ∗(� ∧ μ) = τ∗� ∧ τ∗μ,
• ∗(τ∗�) = τ∗(∗�),
• d(τ∗�) = τ∗(d�) and d∗(τ∗�) = τ∗(d∗�).
These crucial relations show that all the operations introduced above are in-
variant under the pull-back operation. In particular, they do not depend on
the choice of right-handed Cartesian coordinates on the Euclidean plane E

2.
(d) Kähler’s interior differential calculus: The Grassmann algebra Λ(E2) can be

equipped with an additional ∨-product. This way, it becomes a real associative
Clifford algebra. To begin with, we define the ∨-product for the four basis
elements 1, dx, dy, dx ∧ dy :
• 1 ∨ � = � ∨ 1 = � if � = 1, dx, dy, dx ∧ dy,
• dx ∨ dy := dx ∧ dy and dy ∨ dx = −dx ∨ dy,
• dx ∨ dx = dy ∨ dy = 1.6

The other definitions of n-fold ∨-products with basis elements 1, dx, dy, dx∧dy
as factors can be obtained by using the associative law as a mnemonic tool.7

For example,
• dx ∨ dx ∨ dy := dy and dx ∨ dy ∨ dx := −dy,8

5 Concerning the Hodge star operator and the Hodge codifferential d∗, we assume
that τ is a rotation.

6 Setting x1 := x and x2 := y, we get dxi ∨ dxj + dxj ∨ dxi = 2δij , i, j = 1, 2. This
is the so-called Clifford relation.

7 Of course, at the end of the procedure, one has to show that the general ∨-product
defined above obeys indeed the associative law. But this is an easy consequence
of our construction.

8 Mnemonically, (dx∨dx)∨dy = 1∨dy = dy and dx∨ (dy∨dx) = −dx∨ (dx∨dy).
This is equal to −(dx ∨ dx) ∨ dy = −dy.
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Fig. 12.5. Orthonormal basis of the tangent space TPE
2

• dx ∨ dy ∨ dx ∨ dy := −1.
Replacing the ∧-product by the ∨-product, we define the interior Kähler dif-
ferential by setting

d ∨ (f + Udx+ V dy +W dx ∧ dy) : = df + dU ∨ dx+ dV ∨ dy
+dW ∨ (dx ∧ dy).

With respect to the pull-back for rotations τ , we have the following invariance
properties for all �, μ ∈ Λ(E2):
• τ∗(� ∨ μ) = τ∗� ∨ τ∗μ,
• d ∨ τ∗� = τ∗(d ∨ �).
For example,

d ∨ (Udx) = dU ∨ dx = (Uxdx+ Uydy) ∨ dx
= Uxdx ∨ dx+ Uydy ∨ dx = Ux − Uydx ∧ dy.

The notations d∧ � and d∨ � display the similarities between the exterior and
interior differential calculus. To simplify notation, we will replace d ∧ � by d�,
that is, we briefly write

d(f + Udx+ V dy +W dx ∧ dy) := df + dU ∧ dx+ dV ∧ dy. (12.24)

The geometric approach. In Sect. 12.3, we will thoroughly study this. At
this point, let us only describe the main ideas. Using the Lie derivative Lv with
respect to a smooth velocity vector field v on the Euclidean plane E

2, the key
formula reads as

(dω)(v,w) := Lvω(w) − Lwω(v) − ω([v,w]) (12.25)

for all smooth velocity vectors fields v,w on E
2. Let us discuss this. Recall that the

tangent space TPE
2 of the Euclidean plane E

2 consists of all velocity vectors v at
the point P. All the linear functionals

ω : TPE
2 → R

are called covectors at the point P . They form the cotangent space T ∗
PE

2 of E
2 at

the point P . If ω, μ ∈ T ∗
PE

2, when the wedge product ω ∧ μ is defined by

(ω ∧ μ)(v,w) := ω(v)μ(w) − ω(w)μ(v) for all v,w ∈ TPE
2.

This is a real bilinear antisymmetric functional on TPE
2 × TPE

2.
In order to formulate this in terms of Cartesian coordinates, choose a fixed

right-handed Cartesian (x, y)-coordinate system with the right-handed orthonormal
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Fig. 12.6. Coherent orientation

basis i, j at the origin O (Fig. 12.5). Each velocity vector v ∈ TPE
2 can be uniquely

represented as
v = aiP + bjP

with real numbers a and b. We define dxP , dyP ∈ TPE
2 by setting:

dxP (v) := a and dyP (v) := b for all v ∈ TPE
2.

A smooth velocity vector field v on the Euclidean plane E
2 can be represented as

vP = a(x, y)iP + b(x, y)jP .

Here, the point P has the Cartesian coordinates (x, y), and the coefficient functions
a, b : R

2 → R are smooth. Similarly, a smooth covector field on E
2 can be written

as
ωP = U(x, y)dxP + V (x, y)dyP

where the functions U, V : R
2 → R are smooth. It follows from (12.25) that

dωP = (Vx(x, y) − Uy(x, y)) dxP ∧ dyP . (12.26)

This is the same expression as obtained above by the algebraic method. The proof
can be found in Problem 12.6 on page 802. For the pull-back τ∗ω, we refer to Sect.
12.3.4 on page 705.

12.1.3 Three Dimensions

Consider a right-handed (x, y, y)-Cartesian coordinate system of the Euclidean
manifold E

3 with the right-handed orthonormal basis i, j,k at the origin O (Fig.
4.3 on page 323). In what follows, all the functions are assumed to be smooth. The
domains of integration are depicted in Figs. 12.6 and 12.7.

Let M and U be 3-dimensional subsets of E
3. More precisely, suppose that M

(resp. U) is a compact, arcwise connected, oriented, 3-dimensional submanifold of
E

3 with coherently oriented boundary ∂M (resp. ∂U) (e.g., balls; see Fig. 12.6(c)).

(i) The main theorem of calculus: If the functions U, V,W : M → R are smooth,
then

Z

M
(Ux + Vy +Wz) dxdydz =

Z

∂M
(Un1 + V n2 +Wn3) dS. (12.27)

Here, n = n1(P )i + n2(P )j + n3(P )k is the outer normal unit vector at the
boundary point P, and dS denotes the surface differential to be considered
below. Recall that Ux denotes the partial derivative of U with respect to x,
and so on.
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Fig. 12.7. Surface parametrization

(ii) Integration by parts: We have
Z

M
UxV dxdydz = −

Z

M
UVx dxdydz +

Z

∂M
U(P )V (P )n1(P ) dS. (12.28)

Similarly,

•
R

M UyV dxdydz = −
R

M UVy dxdydz +
R

∂M UV n2 dS,

•
R

M UzV dxdydz = −
R

M UVz dxdydz +
R

∂M UV n3 dS.

This follows from (12.27) by replacing U (resp. V,W ) by the product UV .
(iii) The substitution rule: If τ : U → M is an orientation-preserving diffeomor-

phism, then
Z

M
V (x, y, z) dxdydz =

Z

U
V (τ(u, v, w)) · det τ ′(u, v, w) dudvdw. (12.29)

Equivalently,
R

M V (x, y, z) dxdydz is equal to

Z

U
V (x(u, v, w), y(u, v, w), z(u, v, w)) · ∂(x, y, z)

∂(u, v, w)
(u, v, w) dudvdw.

(iv) Velocity vector fields: We are given the smooth velocity vector field

vP = U(x, y, z)iP + V (x, y, z)jP +W (x, y, z)kP

on the Euclidean manifold E
3. We want to use the following expressions:

• div v = Ux + Vy +Wz (divergence),
• curl v = (Wy − Vz)iP + (Uz −Wx)jP + (Vx − Uy)kP (curl),
• gradU = UxiP + UyjP + UzkP (gradient),
• ΔU = −div gradU = −Uxx − Uyy − Uzz (Laplacian),
• dnU = ngradU = n1Ux + n2Uy + n3Uz (directional derivative).

(v) Surface integrals: Consider the surface M described by the equation

x = x(u, v), (u, v) ∈ U .

See Fig. 12.7. The point P0 has the coordinate (u0, v0). The equation

x = x(u, v0), u ∈ R

describes a curve passing through the point P with the tangent vector xu(u0, v0)
at the point P0. This curve is called the u-coordinate line through the point
P0 on the surface M Similarly, the equation
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x = x(u0, v), v ∈ R

describes a curve passing through the point P0 with the tangent vector
xv(u0, v0) at the point P0. We call this curve the v-coordinate line through
the point P0. We set

b1 := xu(u0, v0), b2 := xv(u0, v0).

Here, xu denotes the partial derivative with respect to the real parameter u.
We assume that xu(u, v) and xv(u, v) are linearly independent. In other words,

xu(u, v) × xv(u, v) �= 0 for all (u, v) ∈ U .

Then, the two vectors b1,b1 form a basis of the tangent plane at the point P0,
and the vector

N := b1 × b2

is the normal vector at the point P0. Then

N =

˛

˛

˛

˛

˛

˛

˛

iP0 jP0 kP0

xu(u0, v0) yu(u0, v0) zu(u0, v0)

xv(u0, v0) yv(u0, v0) zv(u0, v0)

˛

˛

˛

˛

˛

˛

˛

,

and we have the following quantities:
• Length of the normal vector N at the point P0:

|N| :=

s

„

∂(x, y)

∂(u, v)

«2

+

„

∂(y, z)

∂(u, v)

«2

+

„

∂(z, x)

∂(u, v)

«2

.

Alternatively, by the Lagrange identity (1.30) on page 84,

|N|2 = (b1 × b2)(b1 × b2) = b2
1b

2
2 − (b1b2)

2.

• Surface element: ΔS = |b1Δu× b2Δv| = ΔuΔv|N|.
• Surface differential:

dS = |N| dudv =

s

„

∂(x, y)

∂(u, v)

«2

+

„

∂(y, z)

∂(u, v)

«2

+

„

∂(z, x)

∂(u, v)

«2

dudv.

• Unit normal vector at the point P0: n := N
|N| .

• nΔS = NΔuΔv.

It follows from
R

M vn dS = limΔS→0

P

vn ΔS that
Z

M
vn dS =

Z

U
v(x(u, v))N(x(u, v)) dudv.

Hence
Z

M
vn dS =

Z

U

„

U
∂(y, z)

∂(u, v)
+ V

∂(z, x)

∂(u, v)
+W

∂(x, y)

∂(u, v)

«

dudv. (12.30)

We will show below that this integral can be elegantly written as
Z

M
ω =

Z

τ∗M
τ∗ω (12.31)

with
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• ω = U dy ∧ dz + V dz ∧ dx+W dx ∧ dy,
• x = x(u, v), y = y(u, v), z = z(u, v).

(vi) The divergence theorem: Formula (12.27) can be written as

Z

M
div v dxdydz =

Z

∂M
v(P )n(P ) dS. (12.32)

This is called the divergence theorem (or the Gauss–Ostrogradsky integral
theorem). The famous formula (12.27) was implicitly (resp. explicitly) used by
Lagrange in 1760 and Gauss in 1813 (resp. Ostrogradsky in 1826).

(vii) The circulation theorem: Let M be a surface of the Euclidean manifold E
3

with coherently oriented boundary (Fig. 12.6(d) on page 677). More precisely,
let M be a compact, arcwise connected, oriented, 2-dimensional submanifold
of E

3 with coherently oriented boundary ∂M. Then

Z

M
ncurl v dS =

Z

∂M
vdx. (12.33)

This is incorrectly called the Stokes integral theorem. In fact, this theorem
was discovered by Thomson (the later Lord Kelvin) in 1850 (see the historical
discussion on page 782).

(viii) The Green’s formula: We are given the 3-dimensional set M as in (i) on page
677. Then

Z

M
(UΔV − V ΔU) dxdydz =

Z

∂M
(V dnU − UdnV ) dS. (12.34)

Proof. Repeated integration by parts yields
Z

M
UVxx dxdydz = −

Z

M
UxVx dxdydz +

Z

∂M
UVxn

1 dS

=

Z

M
UxxV dxdydz +

Z

∂M
(UVxn

1 − V Uxn
1) dS.

�

The formal differential calculus.9 Let us introduce, the following symbols:

• f (0-form),
• μ = Udx+ V dy +Wdz (1-form),
• ω = U dy ∧ dz + V dz ∧ dx+W dx ∧ dy (2-form),
• � = f dx ∧ dy ∧ dz (3-form).

(i) Differential: To begin with, we define

df := fxdx+ fydy + fzdz.

Furthermore, we define
• dμ := dU ∧ dx+ dV ∧ dy + dW ∧ dz,
• dω := dU ∧ dy ∧ dz + dV ∧ dz ∧ dx+ dW ∧ dx ∧ dy,
• d� := df ∧ dx ∧ dy ∧ dz = 0.
This yields
• dμ = (Wy − Vz) dy ∧ dz + (Uz −Wx) dz ∧ dx+ (Vx − Uy) dx ∧ dy,
• dω = (Ux + Vy +Wz) dx ∧ dy ∧ dz.

9 The rigorous 3-dimensional differential calculus will be studied in Sect. 12.3ff.
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(ii) Relation to classical vector calculus: Set v = U i + V j +Wk. Then:
• df = dxgrad f ,
• dμ corresponds to curl v,
• dω corresponds to div v.

(iii) The Poincaré cohomology rule:
• d(df) = 0 corresponds to curl grad f = 0,
• d(dμ) = 0 corresponds to div curl v = 0,
• d(d�) = 0.

(iv) Coordinate transformation (pull-back): Set u1 := u, u2 := v, u3 := w. Fix
r = 1, 2, 3. Consider the smooth map τ : U → E

3 given by

x = x(u1, . . . , ur), y = y(u1, . . . , ur), z = z(u1, . . . , ur)

where U is an open subset of R
r. Set P = τ(Q). This yields

dx = xu1du1 + . . .+ xurdur

and similar formulas for dy and dz together with the following pull-back trans-
formation formulas:

• (τ∗f)(Q) := f(P ) (r = 3),

• (τ∗μ)Q := (U(P )xu(Q) + V (P )yu(Q) +W (P )zu(Q)) du (r = 1),

• (τ∗ω)Q :=
“

U(P ) ∂(y,z)
∂(u,v)

(Q) + V (P ) ∂(z,x)
∂(u,v)

+W (P ) ∂(x,y)
∂(u,v)

”

du ∧ dv (r = 2),

• (τ∗�)Q := �(P ) ∂(x,y,z)
∂(u,v,w)

(Q) du ∧ dv ∧ dw (r = 3).

For example, let r = 2. Then

dy ∧ dz = (yudu+ yvdv) ∧ (zudu+ zvdv)

= (yuzv − yvzu) du ∧ dv =
∂(y, z)

∂(u, v)
du ∧ dv.

12.1.4 Integration over Manifolds

3-dimensional submanifolds. Let M be the closure of a bounded open subset of
the Euclidean manifold E

3 (e.g., a ball), and let f : E
3 → R be a smooth function.

We define

Z

M
f(x, y, z) dx ∧ dy ∧ dz :=

Z

M
f(x, y, z) dxdydz. (12.35)

In other words, the integral over the 3-form � = f dx∧ dy ∧ dz is defined to be the
corresponding classical integral over the function f (i.e., mnemonically, we replace
the wedge product dx ∧ dy ∧ dz by the classical volume differential dxdydz).

Substitution rule. Let U be the closure of a bounded open subset of R
3. Let

τ : U → M be an orientation-preserving diffeomorphism given by10

x = x(u, v, w), y = y(u, v, w), z = z(u, v, w), (u, v, w) ∈ U .

Then

10 This means that the Jacobian is positive: ∂(x,y,z)
∂(u,v,w)

> 0 on U .
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Z

M
� =

Z

τ∗M
τ∗� (12.36)

where τ∗M := τ−1(M) = U . This coincides with the classical substitution rule
(12.29). Mnemonically, we get

f dx ∧ dy ∧ dz = f
∂(x, y, z)

∂(u, v, w)
du ∧ dv ∧ dw.

Hence
Z

M
f dx ∧ dy ∧ dz =

Z

U
f
∂(x, y, z)

∂(u, v, w)
du ∧ dv ∧ dw.

In classical terms, this means that

Z

M
f dxdydz =

Z

U
f
∂(x, y, z)

∂(u, v, w)
dudvdw.

Thus, the calculus of differential forms fits best the classical substitution rule if we
restrict ourselves to parameter transformations with positive Jacobian.

Integrals over parametrized curves and surfaces. Fix r = 1, 2. Let us
set u1 := u, u2 := v. We want to integrate smooth r-forms ω over r-dimensional
submanifolds M of the Euclidean manifold E

3. If r = 1 (resp. r = 2), then this
concerns integrals over 1-forms on a curve (resp. 2-forms on a surface). Motivated
by (12.36), the key formula reads as

Z

M
ω :=

Z

U
τ∗ω. (12.37)

Here, we assume that there exists an orientation-preserving diffeomorphism

τ : U → M (12.38)

where the following hold:

• The domain of integration M is an r-dimensional submanifold (with boundary)
of the Euclidean manifold E

3. In addition, M is compact, arcwise connected, and
oriented.

• The parameter space U is the closure of an open bounded subset of R
r (e.g., a

compact interval if r = 1, or a closed rectangle if r = 2).

Explicitly, the definition (12.37) of the integrals reads as follows:

• r = 1:
R

M Udx+ V dy +Wdz :=
R

U
`

U dx
du

+ V dy
du

+W dz
du

´

du.

• r = 2:
R

M U dy ∧ dz + V dz ∧ dx+W dx ∧ dy is equal to

Z

U

„

U
∂(y, z)

∂(u, v)
+ V

∂(z, x)

∂(u, v)
+W

∂(x, y)

∂(u, v)

«

dudv.

The crucial invariance property of the integrals over differential
forms. Note that the integral from (12.37) does not depend on the choice of the
parametrization (12.38). If we use another parametrization, then the integral re-
mains unchanged because of the substitution rule for r-dimensional integrals of the
classical type

R

U g(u) du or
R

U g(u, v) dudv. Explicitly, we have the classical product
rule for the Jacobian:
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∂(x, y)

∂(u′, v′)
=
∂(x, y)

∂(u, v)
· ∂(u, v)
∂(u′, v′)

.

By the substitution rule,

Z

U
W (P )

∂(x, y)

∂(u, v)
dudv =

Z

U′
W (P ′)

∂(x, y)

∂(u, v)
· ∂(u, v)
∂(u′, v′)

du′dv′ (12.39)

=

Z

U′
W (P ′)

∂(x, y)

∂(u′, v′)
du′dv′. (12.40)

Observe that the substitution rule is only valid if the Jacobian is positive, that is,

∂(u′, v′)

∂(u, v)
> 0 on U .

The point is that integrals depend on the orientation of the domain of integration.

Therefore, we have to restrict ourselves to parameter transformations
which preserve the orientation.

In order to underline the elegance of the Cartan calculus, note that mnemonically
we get

W (P ) dx ∧ dy =W (P )
∂(x, y)

∂(u, v)
du ∧ dv = W (P ′)

∂(x, y)

∂(u′, v′)
du′ ∧ dv′,

and hence
Z

M
W (P ) dx ∧ dy =

Z

U
W (P )

∂(x, y)

∂(u, v)
du ∧ dv =

Z

U′
W (P ′)

∂(x, y)

∂(u′, v′)
du′ ∧ dv′

which corresponds to the classical relation

Z

U
W (P )

∂(x, y)

∂(u, v)
dudv =

Z

U′
W (P ′)

∂(x, y)

∂(u′, v′)
du′dv′

called the substitution rule.

The Cartan calculus yields elegantly the correct parameter change for
integrals over submanifolds.

The integral over the surface of earth. Let M be the surface of earth, and
let ω be a smooth 2-form on M. We want to compute the integral

R

M ω. To do this,
we will take into account that the surface of earth can be locally represented by
geographic charts, and integrals over chart coordinates (u, v) are classical integrals
of the form

R

U g dudv. More precisely, let us choose the decomposition

M =

m
[

j=1

Mj (12.41)

of the surface of earth where every subset Mj of M has the following properties:11

• Mj is the closure of an open subset Oj of M.

11 As an example, consider the case m = 2 where M1 (resp, M2) is the northern
(resp. southern) hemisphere. The intersection M1∪M2 is the equator which has
the 2-dimensional surface measure zero.
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• The set Mj on the surface of earth can be represented by a geographic chart,
that is, there exists a chart map

τj : Uj → Mj

which is an orientation-preserving diffeomorphism; the set Uj is the closure of a
bounded open subset of R

2.
• The sets O1, . . . ,Om are pairewise disjoint.

Naturally enough, we define

Z

M
ω :=

m
X

j=1

Z

Mj

ω =

m
X

j=1

Z

Uj

τ∗j ω. (12.42)

One has to show that this definition does not depend on the choice of the decom-
position (12.41) of the surface of earth.

This simple construction can be used in order to define the integral
R

M ω on
general finite-dimensional manifolds M with boundary.

12.1.5 Integration over Singular Chains

The following generalization of the definition of the integral
R

M ω plays a key role
in modern differential topology (the de Rham cohomology theory for manifolds).
Fix r = 1, 2, 3. Let

τ : U → E
3

be a smooth map where U is the closure of a bounded open subset in R
r. In topology,

the map τ is called a singular r-chain of the Euclidean manifold E
3. Let ω be a

smooth r-form on E
3. We define the integral

Z

τ

ω :=

Z

U
τ∗ω.

If σ, τ : U → E
3 are smooth maps and α, β are real numbers, then

Z

ασ+βτ

ω = α

Z

σ

ω + β

Z

τ

ω.

The point is that the integral
R

τ
ω depends on the singular chain τ . But, as a rule,

it is not an integral over a subset M of E
3. Only if τ is a regular chain, then we

have
Z

τ

ω =

Z

M
ω.

with M := τ(U). More precisely, we have to assume the following: the image τ(U)
is an r-dimensional, compact, oriented submanifold (with boundary) of E

3, and the
map τ is an orientation-preserving diffeomorphism onto τ(U).
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12.2 Applications to Physics

12.2.1 Single-Valued Potentials and Gauge Transformations

Potentials play a key role in gauge theory. Let us discuss some basic ideas. To this
end, choose a right-handed Cartesian (x, y)-coordinate system on the Euclidean
plane E

2 with the orthonormal basis vectors i, j at the origin (Fig. 12.5 on page
676). We are given the smooth force field

FP = A(x, y)iP +B(x, y)jP on E
2.

Here, the point P has the coordinates (x, y), and the functions A,B : R
2 → R

are smooth. Consider a smooth curve C : x = x(t), y = y(t), t0 ≤ t ≤ t1, which
connects the initial point P0 with the terminal point P1. The line integral

W =

Z

C

Fdx (12.43)

equals the work done by the force field F if it moves a point from the initial position
P0 to the final position P1 along the curve C. After finishing this motion, we gain
the amount W of energy. Explicitly,

W =

Z

C

Adx+Bdy =

Z t1

t0

`

A(x(t), y(t)) · ẋ(t) +B(x(t), y(t)) · ẏ(t)
´

dt.

The integral (12.43) is said to be independent of the path of integration iff it only
depends on the initial point P0 and the terminal point P1, but not on the choice of
the smooth curve C itself.

Proposition 12.1 The integral
R

C
Fdx is independent of the path of integration

iff the so-called integrability condition

Ay = Bx on E
2 (12.44)

is satisfied. This is equivalent to the existence of a smooth function U : R
2 → R

such that

F = −gradU on E
2. (12.45)

The function U is called the potential of the force field F. The potential U is uniquely
determined by the force field F up to an additive constant. The fixing of the additive
constant of U is called the gauge fixing of the potential.

Proof. (I) We will show that the existence of the potential U implies the path-
independence of the integral W =

R

C
Fdx. In fact, it follows from (12.45) that

W = −
Z

C

gradU dx = −
Z t1

t0

gradU(x(t)) · ẋ(t) dt

= −
Z t1

t0

d

dt
U(x(t)) dt = U(P0) − U(P1).

(II) If F = −gradU and F = −gradV , then (U −V )x = (U −V )y = 0 on R
2.

Hence U − V = const.
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Fig. 12.8. Closed path

(III) Suppose that the integral (12.43) is path-independent. We want to show
that this implies the integrability condition (12.44). To this end, we construct the
function

U(x, y) := −
Z (x,y)

(0,0)

Adx+Bdy. (12.46)

Since the integral is path-independent, we may integrate along an arbitrary smooth
curve C which connects the origin (0, 0) with the point (x, y) (e.g., a straight line).
Hence

U(x+Δx, y) = U(x, y) −
Z (x+Δx,y)

(x,y)

Adx+Bdy.

Integrating along a straight line, we get

Ux(x, y) = − lim
Δx→0

1

Δx

Z x+Δx

x

A(ξ, y)dξ = −A(x, y).

Similarly, Uy(x, y) = −B(x, y). From Uxy = Uyx we get Ay = Bx.
(IV) Assume that the integrability condition (12.44) holds. We want to show

that the integral (12.43) is path-independent. To this end, we will use the function

U(x, y) := −
Z 1

0

`

A(tx, ty)x+B(tx, ty)y
´

dt

which corresponds to the integral (12.46) along a straight line connecting the origin
(0, 0) with the point (x, y)). Since Ay = Bx, we get

Ux(x, y) = −
Z 1

0

`

Ax(tx, ty)tx+A(tx, ty) +Bx(tx, ty)ty
´

dt

= −
Z 1

0

d

dt

`

A(tx, ty)t
´

dt = −A(x, y).

Similarly, Uy(x, y) = −B(x, y). This implies (12.45). By (I), the integral
R

C
Fdx is

path-independent. �

Heuristic motivation based on the Stokes integral theorem. To get
insight, let us motivate Prop. 12.1 by using a heuristic argument. Consider the
situation depicted in Fig. 12.8. The Stokes integral theorem tells us that

Z

C

Adx+By −
Z

C′
Adx+Bdy =

Z

∂M
Adx+Bdy =

Z

M
(Bx −Ay) dxdy.
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Fig. 12.9. Surrounding a singularity at the origin

If Ay = Bx, then
R

C
Adx + By =

R

C′ Adx + Bdy, that is, the integral is path-
independent. Conversely, if the integral is path-independent, then

1

meas(M)

Z

M
(Bx −Ay) dxdy = 0.

Contracting this to the point P , we get Bx(P )−Ay(P ) = 0. This is the integrability
condition.

The importance of the Cauchy–Riemann differential equations. Let
f : C → C be a holomorphic function. Then the integral

Z

C

f(z)dz

is path-independent.
Proof. The function f(z) = u(x, y) + iv(x, y) with smooth functions u, v : R

2 → R

satisfies the Cauchy–Riemann differential equations ux = vy, uy = −vx on R
2. We

have
Z

C

f(z)dz =

Z

C

(u+ iv)(dx+ idy) =

Z

C

udx− vdy + i

Z

C

vdx+ udy.

Because of the Cauchy–Riemann differential equations, the integrability conditions
for the two line integrals are satisfied. �

12.2.2 Multi-Valued Potentials and Riemann Surfaces

As a rule, singularities of a force field destroy the path-independence of
the work integral. This leads to multi-valued potentials.

Folklore

Cauchy’s residue theorem. Let a be a nonzero complex number. As a prototype,
let us consider the line integral

W :=

Z

C

adz

z
.

We want to show that this integral is path-dependent because of the singularity
of the integrand at the point z = 0. Motivated by Fig. 12.8(b), we have to find
a closed curve ∂M with

R

∂M
adz
z

�= 0. To this end, choose a circle C of radius R
about the origin. By Cauchy’s residue theorem (see Sect. 4.4 of Vol. I), we get

W = 2πia.
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The curves C depicted in Fig. 12.9 (a), (b), (c) yield W = 2πia, 4πia, 0, respectively.
If the curve C winds m times about the origin, then

W = m · 2πia.

Here, counter-clockwise (resp. clockwise) surrounding of the origin is counted pos-
itively (resp. negatively).

The Riemann surface R of the arg-function. Let z = x+ iy be a point of
the Gaussian plane C. We assign to z = reiϕ the polar coordinates

r := |z| and ϕ := arg(z) with − π < ϕ ≤ π.

Here, arg(z) is called the principal value of the argument of the complex number
z. Note that the function z �→ arg(z) is not continuous. In order to get rid of this
defect, let us introduce the Riemann surface

R :=
[

m∈Z

Sm.

Here, for any integer m, the so-called mth sheet Sm consists of all the points

P := (z,m) with z ∈ C \ {0}.

We define
r(P ) := |z|, arg(P ) := arg(z) + 2mπ.

Following Riemann, we equip the set R with a topology such that the function

arg : R → R (12.47)

is continuous. Intuitively, this topology can be obtained by

• cutting all the sheets Sm along the negative real axis and
• gluing the upper strand of the sheet Sm with the lower strand of the sheet Sm+1

for all m = 0,±1,±2, . . . (Fig. 12.10).

Analytically, for example, choose the point (x0, 0,m) of the mth sheet with x0 < 0.
By definition, for sufficiently small ε > 0, the ε-neighborhood Uε(x0, 0,m) of the
point (x0, 0,m) consists of all the points

• (x, y,m) on the mth sheet Sm with |x− x0| < ε, 0 ≤ y < ε, and all points
• (x, y,m+ 1) on the (m+ 1)th sheet Sm+1 with |x− x0| < ε, −ε < y < 0.

Similarly, the topological space R becomes a one-dimensional, arcwise connected,
complex manifold. For example, we assign to the points (x, y,m) and (x, y,m+ 1)
of Uε(x0, 0,m) the complex coordinate z = x+ iy.

The Riemann surface R of the logarithmic function. We define the
function ln : R → C by setting

lnP := ln r(P ) + i arg(P ). (12.48)

That is, ln(z,m) := ln |z| + i arg(z) + 2mπi. It can be shown that the function
ln : R → C is holomorphic. Let C be a smooth curve on R with the initial point
P0 and the terminal point P . Then

Z

C

dz

z
= ln(P ) − ln(P0) (12.49)
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Fig. 12.10. Riemann surface of the map P �→ lnP

if the integral is taken with respect to local complex coordinates on R. For example,
consider the curve C = P0P1P on R depicted in Fig. 12.10. Then, ln(P ) is equal
to ln(P0) + 2πi. Hence

Z

C

dz

z
= ln(P ) − ln(P0) = 2πi.

Example of a force field possessing a multi-valued potential. The force
field

FP = − y

x2 + y2
iP +

x

x2 + y2
jP , P ∈ E

2

on the Euclidean plane E
2 has circles about the origin as field lines (Fig. 12.11).

Then |FP | = 1/
p

x2 + y2. Let C be a smooth curve on the Riemann surface R
with the initial point P0 and the terminal point P . Then

Z

C

Fdx = arg(P ) − arg(P0). (12.50)

We say that the function arg : R → R is a multi-valued potential of the force field
F. The surjective map

π : R → E
2 \ {O}

given by π(x + iy,m) := (x, y) is called a fiber bundle (or a covering space) over
the punctured Euclidean plane E

2 \ {O}.
Proof. It follows from �

`

dz
z

´

= �
“

(x−iy)(dx+idy)

x2+y2

”

that

Z

C

Fdx =

Z

C

xdy − ydx
x2 + y2

= �
„

Z

C

dz

z

«

.

This yields the claim (12.50). �

Fig. 12.11. Force field with circular field lines
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Fig. 12.12. Coulomb law

12.2.3 The Electrostatic Coulomb Force and the Dirac Delta
Distribution

Coulomb (1736–1806) noticed that the electrostatic force between two
charges is similar to Newton’s gravitational force, up to the sign.

Folklore

Let P0 and P be points of the Euclidean manifold E
3. Consider the two position

vectors x =
−−→
OP and x0 =

−−→
OP0. Suppose that a particle of electric charge Q0 is

located at the point P0. This charge induces the electric field vector

EP =
Q0(x − x0)

4πε0|x − x0|3
(12.51)

at the point P (Fig. 12.12). Here, ε0 denotes the electric field constant of a vacuum.
Let another particle of charge Q be located at the point P . Then the electric field
E exerts the force

FP = QEP (12.52)

on the particle of charge Q at the point P . If the charges Q0 and Q have the same
(resp. the opposite) sign, then the force F is repulsive (resp. attractive). This law
is due to Coulomb. To simplify notation, we briefly write

E(x) =
Q0(x − x0)

4πε0|x − x0|3

and F(x) = QE(x). Introducing the so-called electric potential

U(x) :=
Q0

4πε0|x − x0|
, (12.53)

we obtain
E = −gradU.

In fact, ∂
∂x

(x2+y2+z2)−1/2 = −x(x2+y2+z2)−3/2, by using Cartesian coordinates.
If the particle of charge Q moves from the point A to the point B, then we gain
the energy

Z B

A

F dx = −
Z B

A

QgradU dx = Q(U(A) − U(B)).

The potential difference

V = U(B) − U(A) = −
Z B

A

E dx
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is called the voltage between the points B and A.
The Dirac distribution. Using Cartesian coordinates, we get the classical

equation
ΔU = 0 on E

3 \ {P0}.
Using the language of distributions due to Laurent Schwartz (1915–2002), we obtain

ε0ΔU = Q0δP0 on E
3 (12.54)

where δP0 denotes the Dirac delta distribution at the point P0. This equation de-
scribes the singularity of the electrostatic potential U at the point P0 in precise
terms. Explicitly, this means

ε0

Z

R3
UΔϕ d3x = Q0δP0(ϕ) = Q0ϕ(P0)

for all smooth test functions ϕ : R
3 → R with compact support, that is, ϕ ∈ D(R3).

This is thoroughly discussed in Sect. 10.4.8 of Vol. I. In particular, the proof of
(12.54) is based on the Green’s formula (12.34) on page 680. From (12.54) we get
the Maxwell equation

ε0 div E = Q0δP0 on E
3. (12.55)

Physicists write
ε0 div E(x) = Q0δ(x − x0).

In terms of physics, the Dirac function x �→ δ(x− x0) describes the charge density
of a point charge Q0 located at the point P0. Formally, physicists use the following
Dirac formulas:

• δ(x− x0) = 0 if x �= x0, and
•
R

R3 δ(x − x0)ϕ(x) d3x = ϕ(x0) for all continuous functions ϕ : R
3 → R.

Dirac knew very well that there is no classical function which has these proper-
ties. But he emphasized that, from the mnemonic point of view, the formulas are
extremely useful for passing from continuous structures to discrete ones in physics.

12.2.4 The Magic Green’s Function and the Dirac Delta
Distribution

The Green’s function is a crucial tool in both classical physics and modern
physics (quantum field theory and solid state physics). In terms of physics,
the Green’s function encodes the propagation of physical information.12

The Green’s function allows us to describe general physical fields as the
superposition of special physical fields generated by sources sharply located
in space and time. In electrostatics, for example, the Green’s function of
a ball describes the electrostatic potential of a normalized point charge
inside a metallic sphere (working as metallic conductor). In quantum field
theory, the Green’s function coincides with the Feynman propagator.

Folklore

12 Newton’s grave in Westminster Abbey (London) is framed by five smaller grave-
stones with the names of Faraday (1791–1867), Green (1793–1841), Thomson
(Lord Kelvin) (1824–1907), Maxwell (1831–1879), and Dirac (1902–1984).
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In what follows, let us consider the Euclidean manifold E
3. We will frequently

identify the points P and P0 of E
3 with the position vectors x =

−−→
OP and x0 =

−−→
OP0,

respectively. For example, we will write U(x) instead of U(P ).
The boundary-value problem for the Poisson equation. Let B

3 denote
the closed unit ball about the origin O with the boundary ∂B

3 = S
2. We are given

the smooth functions U0 : S
2 → R and � : B

3 → R. We are looking for a smooth
function U : B

3 → R such that

ε0ΔU = � on B
3, U = U0 on S

2. (12.56)

In terms of physics, we are looking for the electrostatic potential U generated by
the electric charge density � and the values of the potential on the sphere S

2. For
example, if the sphere S

2 is a metallic conductor, then U0 ≡ 0. We want to show
how this problem can be solved by using the idea of the Green’s function. Let us
start with a heuristic argument in the spirit of Green and Dirac.

Heuristic argument based on the Green integral formula and the
Dirac delta function. Fix the interior point P0 ∈ int(B3). Suppose that the
function U is a solution of the original boundary-value problem (12.56). Consider
the Green formula

ε0

Z

B3
(UΔG−GΔU) d3x = ε0

Z

∂S2

„

G
∂U

∂r
− U ∂G

∂r

«

dS. (12.57)

Assume that we know a function x �→ G(x,x0) with the following two properties:

• ε0ΔxG(x,x0) = δ(x − x0) on B
3, and

• G(x,x0) = 0 on S
2.

In terms of physics, the Green’s function G describes the electrostatic potential of
a point charge (Q0 = 1) located at the point P0 inside the metallic unit sphere.
Using U(x0) =

R

B3 δ(x − x0)U(x) d3x, it follows from (12.57) that

U(x0) =

Z

B3
G(x,x0)�(x) d3x− ε0

Z

S2
U0(x)

∂G(x,x0)

∂|x| dSx. (12.58)

The conformal Kelvin transformation and the Green’s function of the
unit ball. In 1845, Thomson (later Lord Kelvin) used the transformation P �→ P ∗

given by

x∗ :=
1

|x| ·
x

|x| (12.59)

for all points P ∈ E
3 \{O} in order to solve problems in potential theory for special

bodies. With respect to a Cartesian coordinate system, we get

x∗ =
x

x2 + y2 + z2
, y∗ =

y

x2 + y2 + z2
, z∗ =

z

x2 + y2 + z2
.

This transformation is called inversion with respect to the unit sphere (or Kelvin
transformation). The Kelvin transformation sends solutions of the Laplace equation
ΔV = 0 to solutions of the same equation, and it is conformal (i.e., it preserves
the intersection angle of curves by changing the orientation).13 Again let us fix the
point P0 ∈ int(B3). Then the Green’s function of the unit ball B

3 is given by

13 The conformal property of this transformation was known in ancient times.
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G(x,x0) :=
Q0

4πε0|x − x0|
+

Q∗
0

4πε0|x − x∗
0|

(12.60)

for all points P ∈ B
3 \{P0}. Here, Q0 := 1 and Q∗

0 := −Q0|x∗
0|/|x0|. An elementary

geometric argument shows that G(x,x0) = 0 for all points P ∈ S
2 (see Sect. 10.4.8

of Vol. I). Moreover, G is the superposition of two electric charges (Q0 = 1 and Q∗
0)

located inside the ball and outside the ball, respectively. Therefore, we have

ΔxG(x,x0) = 0 for all P ∈ B
3 \ {P0}.

Using the language of distributions, it follows from (12.54) that

ε0ΔG = δP0 on B
3. (12.61)

Explicitly, this means that

ε0

Z

R3
GΔϕ d3x = Q0δP0(ϕ) = Q0ϕ(P0)

for all smooth test functions ϕ : R
3 → R whose support is contained in the ball B

3.
The rigorous existence-and uniqueness theorem. The following hold.

Proposition 12.2 The boundary-value problem (12.56) has a unique solution
which is given by the integral formula (12.58) together with the Green’s function
(12.60).

This is a special case of the modern functional analytic theory of elliptic partial
differential equations. We refer to the detailed discussion in Sect. 10. 4 of Vol. I.

The Faraday cage. For example, if the unit sphere S
2 is a metallic conductor

and there is no electric charge in the ball B
3, then U0 ≡ 0 and � ≡ 0. By Prop. 12.2,

the unique solution U of (12.56) vanishes on the ball B
3. Hence the electrostatic

field E = −gradU vanishes on B
3, too. The ball inside the metallic unit sphere S

2

is called the Faraday cage.
The principle of minimal electrostatic energy (Dirichlet principle).

The electrostatic energy of a smooth electric field E on the ball B
3 is given by the

integral

ε0
2

Z

B3
E2d3x =

ε0
2

Z

B3
|gradU |2d3x =

ε0
2

Z

B3
(U2

x + U2
y + U2

z ) d3x.

Let C∞(B3) denote the linear space of all smooth functions U : B
3 → R.

Theorem 12.3 We are given the functions � ∈ C∞(B3) and U0 ∈ C∞(S2). Then
the variational problem
Z

B3

“ε0
2
|gradU |2 − �U

”

d3x = min!, U ∈ C∞(B3), U = U0 on S
2 (12.62)

of minimal electrostatic energy has a unique solution U which coincides with the
unique solution of the boundary-value problem (12.56).

Historical remarks. Problems (12.56), (12.62) and their generalizations played
a crucial role in the history of mathematics. In his lectures, Dirichlet told his
students that a solution of the variational problem (12.62) is a solution of the
boundary-value problem (12.56), which is frequently called the Dirichlet problem.
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But Dirichlet did not prove the existence of a solution of the variational problem.
In the 1840s, it seems that Gauss, Thompson (Lord Kelvin) and Dirichlet took the
existence of a solution of (12.62) for granted motivated by the physical interpreta-
tion of the minimum problem. Riemann attended Dirichlet’s lectures in Berlin in
the late 1840s. In his seminal 1857 paper on Abelian integrals, Riemann motivated
the existence of analytic functions on Riemann surfaces by using a physical argu-
ment which he called the ‘Dirichlet principle’. In Riemann’s model, the sheets of the
Riemann surface are thin metallic foils, and the branching points of the Riemann
surface correspond to galvanic elements. In fact, Riemann generalized the varia-
tional problem (12.62) and its physical interpretation in electrostatics to Riemann
surfaces. This way, Riemann created his beautiful theory of algebraic functions and
their Abelian integrals on compact Riemann surfaces.

In 1870, Weierstrass published a counter example which showed that there
are variational problems which do not possess any solution. This way, the rigorous
justification of the Dirichlet principle became a famous open problem. This problem
was solved by Hilbert in 1899. He proved Theorem 12.3 above. In 1940, Weyl showed
that the Dirichlet problem and related variational problems can be solved by using

• the method of orthogonal projection in infinite-dimensional Hilbert spaces (the
generalized Pythagorean theorem)

• together with a regularization argument based on the so-called Weyl lemma (see
Sect. 11.3.2 of Vol. I).

A detailed discussion can be found in Sect. 10.4 of Vol. I. Let us only mention
that the modern functional analytic proof of Theorem 12.3 above consists of the
following two steps:

• Step 1: Generalized solution of a quadratic variational problem on a Sobolev
space: We replace the classical variational problem (12.62) by the generalized
problem

Z

B3

“ε0
2
|gradU |2 − �U

”

d3x = min!, U ∈W 1
2 (B3) (12.63)

with the boundary condition BU = U0 on S
2. More precisely, we equip the linear

space C∞(B3) with the inner product

〈U |V 〉 :=

Z

B3
(UV + UxVx + UyVy + UzVz) d

3x.

The Sobolev space W 1
2 (B3) is the smallest real Hilbert space which contains the

pre-Hilbert space C∞(B3). In addition, the classical boundary operator

B : C∞(B3) → C∞(S2),

which assigns to the smooth function U ∈ C∞(B3) the corresponding boundary
function U0 on S

2, can be uniquely extended to the linear continuous operator

B : W 1
2 (B3) → L2(B

3).

Using the main theorem on quadratic variational problems in Hilbert space
(method of orthogonal projection), we obtain the unique solution U of (12.63).

• Step 2: Regularization: We show that the solution U of the generalized problem
(12.63) is indeed a smooth function, and hence it is a solution of the classical
problem (12.62).

An introduction to the modern functional analytic theory of the Dirichlet principle
can be found in:
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E. Zeidler, Applied Functional Analysis, Vol 1: Applications to Mathemat-
ical Physics, Springer, New York, 1997.

For the general functional analytic theory of linear partial differential equations,
we recommend:

E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. IIA:
Linear Monotone Operators, Springer, New York, 1997.

L. Evans, Partial Differential Equations, Amer. Math. Soc., Providence,
Rhode Island, 1998.

J. Jost, Partial Differential Equations, Springer, New York, 2002.

The history of the Dirichlet principle is described in:

S. Hildebrandt, Remarks on the Dirichlet principle (in German). In: H.
Weyl, The Concept of a Riemann Surface (in German), Teubner, Leipzig,
1913. New edition with commentaries supervised by R. Remmert, Teubner,
Leipzig, 1997, pp. 197–217.

A. Monna, Dirichlet’s Principle, a Mathematical Comedy of Errors and its
Influence on the Development of Analysis, Oosthoek, Utrecht, 1975.

The classical Dirichlet problem demonstrates that it is possible to justify phys-
ical intuition by rigorous mathematics. However, it needs time to find the right
mathematical tools.

We hope that the same will happen with quantum field theory.

12.2.5 Conservation of Heat Energy – the Paradigm of
Conservation Laws in Physics

The flow of heat energy investigated by Fourier (1768–1830) is the paradigm
for conservation laws in physics (e.g., conservation of heat energy, mass,
electric charge, or electromagnetic energy).

Folklore

The basic equation reads as follows:

Ė + div J = P. (12.64)

This so-called continuity equation tells us that the gain of heat energy of the domain
M is compensated by both

• the flow of heat energy into the domain M described by the current density
vector J, and

• the heat energy production in the domain M described by the production func-
tion P.

Here, we use the following notation:

• E (heat energy density);
• E(t) :=

R

M E(P, t) d3x (heat energy located in the domain M at time t);14

• n (exterior normal unit vector of the boundary surface ∂M),
• −n (interior normal unit vector of ∂M),
• J (current density vector of heat energy flow),

14 We assume that M is a 3-dimensional compact submanifold M of the Euclidean
manifold E

3 with boundary ∂M (see Fig. 12.6(c) on page 677).
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• −
R t1
t0
dt
R

∂M J(P, t)n(P ) dS (flow of heat energy into the domain M during the

time interval [t0, t1]),

•
R t1
t0
dt
R

M P(P, t) dx3 (production of heat energy in the domain M during the

time interval [t0, t1]).

The quantities have the following physical dimensions:

• E : energy/volume,
• |J| : energy/(area· time) = (energy/volume)·velocity,
• P: energy/(volume · time).

By the Gauss–Ostrogradsky integral theorem (12.32), it follows from (12.64) that

d

dt

Z

M
E(P, t) d3x =

Z

M
P(P, t) d3x−

Z

∂M
J(P, t)n(P ) dS.

This implies

Ė(t) =

Z

M
P(P, t) d3x−

Z

∂M
J(P, t)n(P ) dS. (12.65)

Integration over the time interval [t0, t1] yields

E(t1) − E(t0) =

Z t1

t0

dt

Z

M
P(P, t) d3x−

Z t1

t0

dt

Z

∂M
J(P, t)n(P ) dS.

In particular, if the vector J is constant on the Euclidean manifold E
3, then the

flow of heat energy through a piece of a plane during the time interval [t0, t1] is
equal to

(t1 − t0) · |J| · ΔS.
Here, we assume that the plane is perpendicular to the vector J whose direction
coincides with the flow direction, and ΔS is the surface area of the piece of the
plane. This motivates the name ‘current density’ vector for J.

The heat conduction equation. Let T denote the absolute temperature.
Following Fourier, we assume that the material under consideration possesses the
following properties:

• ΔE = γ(T )μΔV ·ΔT (the change ΔV of volume and the change ΔT of temper-
ature cause the change ΔE of heat energy),

• J = −κ(T )gradT (Fourier’s law of heat conduction),
• μ (mass density), γ (specific heat), κ (heat conductivity).

By (12.64),

γ(T )μṪ − div(κ(T )gradT ) = P.
Assume that, for a fixed temperature interval [T0, T1], the specific heat γ and the
heat conductivity κ are constant (i.e., they are independent of the temperature T ).
Then, we get

Tt + κaΔT = aP (12.66)

with the positive material constant a := 1/γμ. This is the classical heat conduction
equation.

Flow of electrically charged particles. Let v be the velocity vector field of
electrically charged particles, and let � be the electric charge density. Set

J := �v.
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Then the continuity equation

�̇+ div J = P (12.67)

describes the conservation of electric charge. The term P corresponds to the change
of electric charges (e.g., chemical reactions produce new particles). Now we have
equation (12.65) where E(t) denotes the electric charge located in the domain M
at time t. In a vacuum, we have P ≡ 0.

Flow of fluid particles with mass conservation. The equation (12.67) with
J := �v and P ≡ 0 describes the flow of fluid particles with mass density � governed
by the velocity vector field v. Equation (12.67) implies (12.65) where E(t) denotes
the mass located in the domain M at time t. Since P ≡ 0, the only change of
mass in the domain M is caused by flow of mass through the boundary ∂M. The
dynamics of the transport of heat energy, charge, and mass will be studied in Sect.
12.8.4 on page 735 in the setting of the transport theorem.

Conservation of the particle number in diffusion processes. Let � denote
the particle density of a diffusion process. Then

J = −D grad �

whereD is called the diffusion constant. This empirical diffusion law was formulated
by Fick in the second half of the 19th century. The continuity equation �̇+div J = 0
yields the classical diffusion equation

�̇t +DΔ� = 0.

The conservation of particle number is described by equation (12.65) with P ≡ 0
where E(t) denotes the number of particles in the domain M at time t.

Conservation of probability in quantum mechanics. The Schrödinger
equation

i�ψ̇ =

„

P2

2m
+ U

«

ψ (12.68)

with the momentum operator P := −i�∂ and the real potential U describes the
motion of a quantum particle of mass m on the Euclidean manifold E

3 under the
influence of the force field F = −gradU. Let ψ = ψ(P, t) be a smooth solution of
(12.68) which satisfies the normalization condition

R

E3 �(P, 0) dx3 = 1. Here, we set

� := ψψ†, J := �
“

ψ†Vψ
”

, P := mV.

Proposition 12.4 �̇(P, t) + div J(P, t) = 0 on E
3 for all times t ∈ R.

The proof will be given in Problem 12.9 on page 802. This allows the following
physical interpretation. The integral

E(t) :=

Z

M
�(P, t) d3x

represents the probability for finding the quantum particle in the compact subman-
ifold M of E

3. Equation (12.65) with P ≡ 0 tells us that probability is preserved.
Conservation of energy, momentum, and angular momentum (spin)

of the classical electromagnetic field. This will be studied in Sect. 19.6.3.
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12.2.6 The Classical Predecessors of the Yang–Mills Equations in
Gauge Theory (Fluid Dynamics and Electrodynamics)

The Yang–Mills equations read as

d∗ω = −f, dω = Γ (12.69)

where we are looking for the differential form ω. We will show later on that the
Standard Model in particle physics is closely related to this equation. At this point,
let us only mention that the classical problem

div v = f, curl v = g (12.70)

is a special case of (12.69) with

• v := ai + bj + ck and ω := adx+ bdy + cdz,
• g := Ai +Bj + Ck, and Γ := Ady ∧ dz +Bdz ∧ dx+ Cdx ∧ dy (see page 774).

Here, we are given the functions f and g (i.e., sources and vorticities), and we are
looking for the velocity vector field v (see the main theorem of vector analysis on
page 766).

Furthermore, the Maxwell equations in electrodynamics are a special case of
(12.69); they read as

d∗F = −μ0J , dF = 0,

where the differential 2-form F on the 4-dimensional space-time manifold describes
the electromagnetic field, and the differential 1-form J corresponds to the electric
charges and electric currents (see page 962).

12.2.7 Thermodynamics and the Pfaff Problem

Following Gibbs (1839–1903), the basic equation of a gas in thermodynamical equi-
librium reads as follows:

TdS = dE + PdV. (12.71)

Here, we use the following notation:

• V volume, P pressure, E inner energy,
• T absolute temperature, S entropy.

Equation (12.71) is the prototype of a so-called Pfaff problem first investigated by
Pfaff in 1815.15

(i) One-dimensional solution manifold: By definition, the smooth functions
• V = V (t), P = P (t), E = E(t), T = T (t), S = S(t) with t ∈ [t0, t1]
are a solution of (12.71) iff

T (t)Ṡ(t)dt = Ė(t)dt+ P (t)V̇ (t)dt, t0 ≤ t ≤ t1,

that is,
T (t)Ṡ(t) = Ė(t) + P (t)V̇ (t), t0 ≤ t ≤ t1.

15 Pfaff (1765–1824) was the academic teacher and promoter of Gauss (1777–1855).
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In terms of physics, this is a quasi-stationary process for the gas. The process
proceeds very slowly such that the gas is in thermodynamical equilibrium at
each point of time t. The integral

Z t1

t0

(Ė(t) + P (t)V̇ (t)) dt

is the amount of heat energy produced during the time interval [t0, t1].
16

(ii) Two-dimensional solution manifold: Let U be an open subset of R
2. The func-

tions
• V = V (u, v), P = P (u, v), E = E(u, v), T = T (u, v), S = S(u, v) with the

parameters (u, v) ∈ U
are a solution of (12.71) iff

TSudu+ TSvdv = Eudu+ Evdv + PVudu+ PVvdv on U ,

that is,
TSu = Eu + PVu, TSv = Ev + PVv on U .

Examples. For an ideal one-atomic gas consisting of N atoms of mass m, we have:

• P = NkT
V

(state equation),

• E = 3
2
NkT (equipartition of energy),

• S = kN
ˆ

5
2

+ ln V
N

`

2πmkT
h2

´3/2˜
(entropy),

• F = E − TS (free energy).

For the photon gas in the universe, we get:

• E =
R∞
0

8πhcV dλ

ehc/kT λ−1
= aT 4V (total energy) with a := 8π5k4/15c3h3,17

• P = E/3V (light pressure),
• F = −E/3 (free energy),
• S = (E − F )/T (entropy).

These expressions satisfy the Gibbs equation (12.71); they follow from statistical
physics. The photon gas was very hot shortly after the Big Bang. Nowadays it is very
cold (T = 3K) by the expansion of the universe.18 The NASA experiment WMAP
(Wilkinson Microwave Anisotropy Probe) measured the anisotropic structure of
this background radiation. The knowledge of this huge amount of data allows us
to compute the qualitative structure of the universe 370 000 years after the Big
Bang. Moreover, the WMAP experiment, too, tells us that the Big Bang happened
13.7·109 years ago. In 2009, the European Space Agency (ESA) launched the Planck
satellite which will provide us with further information on the structure of the early
cosmos.

Second law of thermodynamics. We will show in Sect. 12.11.4 that, under
reasonable assumptions, the differential form dE + P (E, V )dV can be written as

dE + P (E, V )dV = T (E, V )dS.

16 Basic material on equilibrium thermodynamics can be found in Sect. 5.7.4 of
Vol. II (first and second law of thermodynamics, thermodynamic potentials and
the Legendre transformation, Legendre manifolds).

17 We use the following notation: c velocity of light in a vacuum, k Boltzmann
constant, h Planck quantum of action, λ wavelength of the photon.

18 Based on statistical physics, this is thoroughly studied in E. Zeidler, Nonlinear
Functional Analysis, Vol. IV, Springer, New York, 1997.
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This is a special case of the Pfaff normal form problem. The temperature func-
tion T = T (E, V ) is called an Euler multiplicator. In terms of physics, this result
guarantees the existence of entropy S = S(E, V ).

12.2.8 Classical Mechanics and Symplectic Geometry

The Hamiltonian approach to classical mechanics is based on symplectic geometry.
In this context, Cartan’s calculus of differential forms is the natural language. This
is studied in Sect. 6.8 of Vol. II.

12.2.9 The Universality of Differential Forms

As a prototype, consider the first-order partial differential equation

F (x, y, u, ux, uy) = 0. (12.72)

Setting q := ux, p := uy, equation (12.72) is equivalent to the system

F (x, y, u, q, p) = 0, du = qdx+ pdy

of differential forms of degree k = 0 and k = 1. Similarly, by introducing new
variables, every system of partial differential equations can be written as a system
of differential forms.

12.2.10 Cartan’s Covariant Differential and the Four Fundamental
Interactions in Nature

The main trick of gauge theory is to replace the Cartan exterior differential
dω by the covariant differential Dω.

Folklore

As we will discuss later on in great detail, gauge theories are based on the funda-
mental Cartan structural equation

F = DA (12.73)

together with the corresponding integrability condition

DF = 0. (12.74)

In terms of mathematics, the equation (12.73) describes the curvature F. In par-
ticular, (12.73) generalizes Gauss’s theorema egregium and the differential relation
between the Riemann curvature tensor and the Christoffel symbols in Riemannian
and pseudo-Riemannian geometry. Moreover, (12.73) generalizes Cartan’s struc-
tural equation for the Maurer–Cartan 1-form of Lie groups, and it governs Cartan’s
method of moving frames, which is basic for modern differential geometry.

The covariant differential DA generalizes the Cartan exterior differential dA.
Furthermore, the integrability condition (12.74) generalizes the Poincaré cohomol-
ogy rule d(dA) = 0. In Riemannian and pseudo-Riemannian geometry, (12.74) gen-
eralizes the Bianchi identities for the Riemann curvature tensor.

Roughly speaking, the covariant differential DA is a ‘deformation’ of the
Cartan exterior differential dA.
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By deformation, we understand perturbation of dA which is not necessarily small.
In terms of physics, the equation (12.73) describes the four fundamental forces F

in nature (electromagnetic, strong, weak, and gravitative interaction). For example,
in electromagnetism, F corresponds to the electromagnetic field, and A corresponds
to the 4-potential of the electromagnetic field (see Chap. 13).

Observe that the Cartan exterior differential dω is defined on every finite-
dimensional manifold. In contrast to this, the covariant differential Dω describes
an additional structure which can be introduced on principal bundles and vector
bundles.

This additional structure is called a connection.

In terms of geometry, a connection represents the local parallel transport of geo-
metric objects (e.g., tangent vectors or tensors); this implies the existence of the
covariant directional derivative of fields of geometric objects (e.g., tangent vector
fields or tensor fields). In terms of physics, a connection describes the local parallel
transport of physical information. This will be studied in Chaps. 15ff.

12.3 Cartan’s Algebra of Alternating Differential Forms

The Cartan calculus is governed by the wedge product for antisymmetric multi-
linear functionals. The Cartan differential dω respects the wedge product via the
supersymmetric Leibniz rule.19

12.3.1 The Geometric Approach

Differentials are linear functionals on the tangent space.
Folklore

In what follows, we will use geometric objects like tangent vectors, cotangent vec-
tors, and k-linear antisymmetric functionals (also called k-forms). In order to de-
scribe these quantities in terms of Cartesian coordinates, choose a fixed right-
handed Cartesian (x, y, z)-coordinate system with the right-handed orthonormal
basis i, j,k at the origin O (Fig. 9.1 on page 558). Since we use geometric ob-
jects, the coordinate formulas below do not depend on the choice of the Cartesian
coordinate system.

(i) Local objects at the point P of the Euclidean manifold E
3:

• TPE
3 denotes the tangent space of E

3 at the point P (with the Cartesian
coordinates (x, y, z)). This space consists of all velocity vectors vP at the
point P . The 3-dimensional real linear Hilbert space TPE

3 has the right-
handed orthonormal basis ip, jP ,kP which is obtained from i, j,k by parallel
transport (Fig. 9.1 on page 558). We have

vP = aiP + bjP + ckP .

The real numbers a, b, c are called the components of the velocity vector vP

at the point P . Thus, dimTPE
3 = 3.

19 In classical algebra, the supersymmetric Leibniz rule is called the graded Leibniz
rule.
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• T ∗
PE

3 denotes the cotangent space of E
3 at the point P . The elements of the

real linear space T ∗
PE

3 are linear functionals of the form

ωP : TPE
3 → R

which are also called covectors (or 1-forms) at the point P . Defining

dxP (vP ) := a, dyP (vP ) := b, dzP (vP) := c

for all velocity vectors vP ∈ TPE
3 at the point P , we get a basis dxP , dyP , dzP

of T ∗
PE

3. That is, every element ωP of T ∗
PE

3 can be written as

ωP = U dxP + V dyP +W dzP .

The uniquely determined real numbers U, V,W are called the components of
the covector ωP at the point P . Thus, dimT ∗

PE
3 = 3.

The wedge product ωP ∧ μP of two covectors ωP and μP at the point P is
defined by

(ωP ∧ μP )(v,w) := ωP (v)μP (w) − ωP (w)μP (v)

for all vectors v,w ∈ TPE
3.20 We have

ωP ∧ μP = −μP ∧ ωP

for all μP , ωP ∈ T ∗
PE

3. In particular, dxP ∧ dyP = −dyP ∧ dxP , and

dyP ∧ dzP = −dzP ∧ dyP , dzP ∧ dxP = −dxP ∧ dzP .

• To streamline the terminology, we write
V1(T ∗

PE
3) instead of T ∗

PE
3, and we

set
V0(T ∗

PE
3) := R.

•
V2(T ∗

PE
3) denotes the real linear space of all bilinear antisymmetric func-

tionals
γP : TPE

3 × TPE
3 → R

which are also called 2-forms at the point P . Every element γP of
V2(T ∗

PE
3)

can be written as

γP = A dyP ∧ dzP +B dzP ∧ dxP + C dxP ∧ dyP .

The uniquely determined real numbers A,B,C are called the components of
the 2-form γP at the point P . Therefore, dim

V2(T ∗
PE

3) = 3.
If ωP , μP ∈ T ∗

PE
3, then the wedge product ωP ∧μP is contained in the linear

space
V2(T ∗

PE
3).

•
V3(T ∗

PE
3) denotes the real linear space of all 3-linear antisymmetric func-

tionals
�P : TPE

3 × TPE
3 × TPE

3 → R

which are also called 3-forms at the point P . Every element �P of
V3(T ∗

PE
3)

can be written as
�P = DdxP ∧ dyP ∧ dzP .

The uniquely determined real number D is called the component of the
3-form �P at the point P . Thus, dim

V3(T ∗
PE

3) = 1.

20 To simplify notation, we write v instead of vP .
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•
Vk(T ∗

PE
3) := {0} if k = 4, 5, . . . This definition is motivated by the fact that

the k-linear antisymmetric functionals μ : TPE
3×· · ·×TPE

3 → R are trivial
if k > 3.

(ii) The wedge product and the local Grassmann algebra
V

(T ∗
PE

3): Parallel to Sect.
2.5.2, we define the direct sum

^

(T ∗
PE

3) :=

∞
M

k=0

^k
(T ∗

PE
3).

The elements of
V

(T ∗
PE

3) are given by the sums

αP + ωP + γP + �P

where αP is a real number. We have dim
V

(T ∗
PE

3) = 1 + 3 + 3 + 1 = 8.
With respect to the wedge product μ∧ν, the real linear space

V

(T ∗
PE

3) becomes

a real algebra. If μ ∈
Vk(T ∗

PE
3) and ν ∈

Vm(T ∗
PE

3) with k,m = 0, 1, 2, 3, then

μP ∧ νP = (−1)kmνP ∧ μP . (12.75)

This is called the graded product rule or the supersymmetric product rule (or
supercommutativity).

(iii) Global smooth objects on the manifold E
3:

• Vect(E3) denotes the set of all smooth velocity vector fields P �→ vP on E
3.

That is, we have

vP = a(x, y, y)iP + b(x, y, z)jP + c(x, y, z)kP ,

and the components a, b, c : R
3 → R are smooth functions.

• Λ0(E3) denotes the set of all smooth functions f : E
3 → R.

• Λ1(E3) denotes the set of all smooth covector fields P �→ ωP on E
3. That is,

ωP = U(x, y, z) dxP + V (x, y, z) dyP +W (x, y, z) dzP ,

and the coefficient functions U, V,W : R
3 → R are smooth.

• Λ2(E3) denotes the set of all smooth differential 2-forms P �→ γP on E
3.

That is,

γP = A(x, y, z) dyP ∧ dzP +B(x, y, z) dzP ∧ dxP + C(x, y, z) dxP ∧ dyP ,

and the coefficient functions A,B,C : R
3 → R are smooth.

• Λ3(E3) denotes the set of all smooth differential 3-forms P �→ �P on E
3.

That is,

�P = D(x, y, z) dxP ∧ dyP ∧ dzP ,

and the coefficient function D : R
3 → R is smooth.

• Λk(E3) denotes the set of all smooth k-forms on the Euclidean manifold E
3.

If k = 4, 5, . . . , then the elements of Λk(E3) are the trivial functions P �→ 0.
Note that Vect(E3) and Λk(E3), k = 0, 1, 2, 3 are infinite-dimensional real
linear spaces. Let μ ∈ Λk(E3) and ν ∈ Λm(E3). Naturally enough, the wedge
product μ ∧ ν is defined by

(μ ∧ ν)P := μP ∧ νP for all P ∈ E
3.

Then, we have the supersymmetry product rule

μ ∧ ν = (−1)kmν ∧ μ. (12.76)
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(iv) The Cartan exterior algebra Λ(E3) of differential forms on the Euclidean man-
ifold E

3: The elements of the direct sum

Λ(E3) =

∞
M

k=0

Λk(E3)

are given by the sums
f + ω + γ + �

where f, ω, γ, � are elements of Λk(E3) with k = 0, 1, 2, 3, respectively. The real
linear space Λ(E3) becomes a real infinite-dimensional algebra with respect
to the wedge product. This algebra is called the Cartan exterior algebra of
the Euclidean manifold E

3. The Cartan algebra possesses the supersymmetric
grading (12.76).

12.3.2 The Grassmann Bundle

Modern differential geometry is based on the notion of ‘bundle’. In this
setting, differential forms on a manifold are sections of the Grassmann
bundle of the manifold. Similarly, tensor fields are sections of the tensor
bundle of the manifold.

Folklore

The Grassmann bundle G(E3) of the Euclidean manifold E
3 is defined to be the set

G(E3) := {(P, ω) : P ∈ E
3, ω ∈

^

(T ∗
PE

3)}.

That is, ω is a finite sum of real numbers α and terms of the form

ω1 ∧ · · · ∧ ωm, m = 1, 2, 3

where ωj ∈ T ∗
PE

3 for all indices j. This is a generalization of the cotangent bundle

T ∗
E

3 = {(P, ω) : P ∈ E
3, ω ∈ T ∗

PE
3}

of the Euclidean manifold E
3. Setting π(P, ω) := P , we get the projection map

π : G(E3) → E
3 (12.77)

of the Grassmann bundle. The set G(E3) is called the bundle space.21 In terms of
the coproduct of sets, we have

G(E3) =
a

P∈E3

^

(T ∗
PE

3).

In other words, the Grassmann bundle space G(E3) is the disjoint union of the
Grassmann algebras

V

(T ∗
PE

3) taken over the points P of E
3. If we assign to (P, ω)

the three Cartesian coordinates (x, y, z) of the point P and the eight real compo-
nents of ω, then the Grassmann bundle space G(E3) becomes a real manifold of
dimension dim G(E3) = 3 + 8 = 11.

21 In order to simplify the terminology, sometimes we do not distinguish between
the Grassmann bundle space G(E3) and the Grassmann bundle π : G(E3) → E

3,
which is a surjective map by definition.
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By definition, a smooth section s : E
3 → G(E3) of the Grassmann bundle is a

smooth map of the form
P �→ (P, ωP ).

This implies the smooth differential form P �→ ωP . Thus, smooth differential forms
ω ∈ Λ(E3) on the Euclidean manifold E

3 coincide with smooth sections of the
Grassmann bundle.

12.3.3 The Tensor Bundle

A typical tensor field on the Euclidean manifold E
3 is the metric tensor field P �→ gP

defined by
gP (u,v) := uv for all u,v ∈ TPE

3, P ∈ E
3.

In a Cartesian (x, y, z)-coordinate system on E
3, we get

gP = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz.

The set
T0

2(E
3) := {(P,T) : P ∈ E

3, T ∈ T ∗
PE

3 ⊗ T ∗
PE

3}
is called the tensor bundle of type (0, 2) of E

3. The metric tensor field P �→ gP

corresponds to the section
s : E

3 → T0
2(E

3)

with s(P ) := (P,gP ) for all points P ∈ E
3. In the general case, the tensor bundle

T(E3) of the Euclidean manifold E
3 consists of all the pairs

(P,T)

where P ∈ E
3, and T is a finite sum of real numbers and elements of the form

v1 ⊗ · · · ⊗ vm ⊗ ω1 ⊗ · · · ⊗ ωn (elements of type (m,n))

where vi ∈ TPE
3 and ωj ∈ T ∗

PE
3 for i = 1, . . . ,m and j = 1, . . . , n. Moreover,

m,n = 0, 1, 2, . . .

12.3.4 The Transformation of Covector Fields

There exists a perfect duality between velocity vector fields v and covector
fields ω. Folklore

Let us consider the smooth map

τ : E
3 → E

3 (12.78)

(e.g., a rotation). Assume that the map τ sends the point Q to the point P = τ(Q).
Pull-back τ∗ω of the covector field ω. We are given the smooth covector

field ω on the Euclidean manifold E
3. We want to transplant the covector from the

point P to the point Q. To this end, we will use the concept of duality for linear
functionals (Fig. 12.13). We are given the point Q ∈ E

3. Define

(τ∗ω)Q(v) := ωP ((TQτ)v) for all v ∈ TQE
3.

Mnemonically, we write
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Fig. 12.13. Pull-back τ∗ω of the covector field ω

(τ∗ω)(v) = ωτ (τ∗v). (12.79)

In terms of Cartesian coordinates, the following hold. Choose a fixed right-handed
(x, y, z)-Cartesian coordinate system with the right-handed orthonormal basis i, j,k
at the origin O. Parallel transport of i, j,k to the point P yields the orthonormal
basis iP , jP ,kP of the tangent space TPE

3 of the Euclidean plane E
3 at the point

P (Fig. 9.1 on page 558). Assume that the equation P = τ(Q) corresponds to

x = x(ξ, η, ζ), y = y(ξ, η, ζ), z = z(ξ, η, ζ), (ξ, η, ζ) ∈ R
3.

That is, the point P (resp. Q) has the Cartesian coordinates (x, y, z) (resp. (ξ, η, ζ)).
Let ωP = U(P )dxP + V (P )dyP +W (P )dzP . Then

(τ∗ω)Q = U(P )(xξdξ + xηdη + xζdζ)

+ V (P )(yξdξ + yηdη + yζdζ)

+ W (P )(zξdξ + zηdη + zζdζ). (12.80)

For the proof, we refer to Problem 12.3. Mnemonically, the transformation law
(12.80) corresponds to the Leibniz differential rule dx = xξdξ + xηdη + xζdζ, and
so on.

Proposition 12.5 If ω and � are differential forms, then τ∗(ω ∧ �) = τ∗ω ∧ τ∗�.

This tells us that the pull-back operation respects the wedge product. In alge-
braic terms, the map τ∗ : Λ(E3) → Λ(E3) is an endomorphism of the Grassmann
algebra Λ(E3). For the proof, we refer to Problem 12.4.

Push-forward τ∗ω of the covector field ω. Let the map τ : E
3 → E

3 be a
diffeomorphism. The transformed covector field τ∗ω is defined by

τ∗ω := (τ−1)∗ω.

The situation is depicted in Fig. 12.14.

12.4 Cartan’s Exterior Differential

The Cartan exterior differential dω for covector fields and more general
differential forms ω is dual to the Lie derivative Lvw = [v,w] of velocity
vector fields v,w.

Folklore
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Fig. 12.14. Push-forward τ∗ω of the covector field ω

12.4.1 Invariant Definition via the Lie Algebra of Velocity Vector
Fields

Let f : E
3 → R be a smooth function on the Euclidean manifold E

3, that is,
f ∈ Λ0(E3). For all smooth velocity vector fields v ∈ Vect(E3), we define

(df)(v) := Lvf (12.81)

where Lvf denotes the Lie derivative (i.e., the directional derivative) of the function
f . Explicitly, this means that

dfP (v) := (Lvf)(P )

for all points P ∈ E
3. This is a special case of the following more general definition.

Let ω ∈ Λp(E3) be a smooth p-form on the Euclidean manifold E
3 with p = 0, 1, 2, 3.

We define the linear operator d : Λp(E3) → Λp+1(E3) by setting:

(dω)(v1, . . . ,vp+1) =

p+1
X

i=1

(−1)i+1Lvi

`

ω(v1, . . . , v̂i, . . . ,vp+1)
´

(12.82)

+
X

i<j

(−1)i+jω([vi,vj ],v1, . . . , v̂i, . . . , v̂j , . . . ,vp+1).

This is the key definition of Cartan’s calculus of alternating differential forms.
Here, by convention, the terms equipped with a hat (e.g., v̂i) have to be cancelled.
Explicitly, the definition (12.82) means the following for all smooth velocity vector
fields u,v,w ∈ Vect(E3) :

• p = 1: (dω)(u,v) = Lu

`

ω(v)
´

− Lv

`

ω(u)
´

− ω([u,v]).

• p = 2: (dω)(u,v,w) = Lu

`

ω(v,w)
´

− Lv

`

ω(u,w)
´

+ Lw

`

ω(u,v)
´

− ω([u,v],w) + ω([u,w],v) − ω([v,w],u). (12.83)

• p = 3: dω ≡ 0.

Cartesian coordinates. In a right-handed Cartesian (x, y, z)-coordinate sys-
tem, where the point P has the coordinates (x, y, z) and the velocity vector field is
given by vP = a(P )iP + b(P )jP + c(P )kP , we get

dfP (v) = a(x, y, z)fx(x, y, z) + b(x, y, z)fy(x, y, z) + c(x, y, z)fz(x, y, z).

Hence

dfP = fx(P )dxP + fy(P )dyP + fz(P )dzP . (12.84)

To simplify notation, we will briefly write



708 12. Covector Fields and the Beauty of Differential Forms

dfP = fx(P )dx+ fy(P )dy + fz(P )dz.

Set x1 := x, x2 := y, x3 := z, and ∂j := ∂/∂xj . Then a p-form reads as

ω = ωi1...ip dx
i1 ∧ · · · ∧ dxip , p = 1, 2, 3. (12.85)

Here, we sum over equal indices from 1 to 3, and the smooth coefficient functions
ωi1...ip are antisymmetric with respect to the indices i1, . . . , ip.

22 Then

dω = ∂iωi1...ip dx
i ∧ dxi1 ∧ · · · ∧ dxip . (12.86)

Equivalently,
dω = dωi1...ip ∧ dxi1 ∧ · · · ∧ dxip .

This coincides with the expression used in Sect. 12.1.3 on page 680. Mnemonically,
one also writes d ∧ ω instead of dω.
Proof. Let us consider the case where p = 1. Set e1 := iP , e2 := jP , e3 := kP . Let
ω = ωk dx

k. We have to show that dω = dωk ∧ dxk. Summing over equal indices
from 1 to 3, we get the following:

• u = uiei, v = vjej ,
• ω(v) = ωk dx

k(v) = ωkv
k,

• Lu

`

ω(v)
´

= ui∂i(ωkv
k),

• [u,v] = Luv = (ui∂iv
k − vi∂iuk) ek,

• ω([u,v]) = ωk(u
i∂iv

k − vi∂iuk).
Hence

dω(u,v) = Lu

`

ω(v)
´

− Lv

`

ω(u)
´

− ω([u,v])

= ui∂i(ωkv
k) − vi∂i(ωkuk) − ωk(ui∂ivk − vi∂iuk).

By the product rule, dω(u,v) = ∂iωk · (uivk − viuk). On the other hand,

(∂iωk dx
i ∧ dxk)(u,v) = ∂iωk

`

dxi(u) dxk(v) − dxi(v) dxk(u)
´

= ∂iωk · (uivk − viuk) = dω(u,v).

Hence dω = dωk ∧ dxk. �

The fundamental pull-back invariance of the Cartan differential. Let
τ : E

3 → E
3 be a smooth map. Then for all p-forms ω ∈ Λp(E3), p = 0, 1, 2, 3, the

following holds.

Proposition 12.6 d(τ∗ω) = τ∗(dω) on E
3.

22 For example, if p = 2, then it follows from dxi∧dxj = −dxj∧dxi and ωij = −ωji
that

ω = ωijdx
i ∧ dyj = 2(ω12dx

1 ∧ dx2 + ω23dx
2 ∧ dx3 + ω31dx

3 ∧ dx1).
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Proof. This can be proven by using (12.86) together with an explicit computation
as performed in Sect. 12.1.2 on page 673. More elegantly, one can use the invariance
properties of the Lie derivative. �

In other words, the smooth map τ : E
3 → E

3 generates the following commu-
tative diagram:

Λ(E3)

d

τ∗
Λ(E3)

d

Λ(E3)
τ∗

Λ(E3).

(12.87)

That is, the morphism τ∗ : Λ(E3) → Λ(E3) of the Grassmann algebra Λ(E3) com-
mutes with the Cartan differential operator d. Therefore, τ∗ is called a differential
morphism of the Grassmann algebra Λ(E3) over the Euclidean manifold E

3.

12.4.2 The Supersymmetric Leibniz Rule

Proposition 12.7 If ω ∈ Λp(E3) and � ∈ Λq(E3) with p, q = 0, 1, 2, 3, then

d(ω ∧ �) = dω ∧ �+ (−1)pω ∧ d� on E
3. (12.88)

This is called the supersymmetric (or graded) Leibniz rule.23

Proof This follows from both the classical Leibniz rule d(fg) = (df)g + fdg for
smooth functions f, g and the graded anticommutativity of the Grassmann product.
For example, let ω := fdx and � := gdy. Since dg ∧ dx = −dx ∧ dg, we get

d(fg dx ∧ dy) = d(fg) ∧ dx ∧ dy = g(df) ∧ dx ∧ dy + f(dg) ∧ dx ∧ dy
= df ∧ dx ∧ g dy − f dx ∧ dg ∧ dy.

Hence d(f dx ∧ g dy) = d(f dx) ∧ g dy − f dx ∧ d(g dy). �

Example. Let us choose a right-handed Cartesian (x, y, z)-coordinate system on
the Euclidean manifold E

3.
(I) If p = 0, then ω = f is a smooth real-valued function on E

3, and

d(f�) = df ∧ �+ fd�.

In the special case where q = 0 (i.e., � = g is a real-valued smooth function), we
get d(f�) = df · �+ fd�. In terms of vector analysis, this reads as

grad(fg) = g grad f + f grad g.

(II) Consider the smooth differential 1-forms

ω := adx+ bdy + cdz, � := Adx+Bdy + Cdz,

and the corresponding vector fields

v = ai + bj + ck, w = Ai +Bj + Ck.

We want to show that the supersymmetric Leibniz rule d(ω ∧ �) = dω ∧ �− ω ∧ d�
corresponds to the following formula in vector analysis:

23 Note that ω ∧ � = ω� if p = 0 or q = 0.
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div(v × w) = wcurl v − v curlw. (12.89)

In fact, we have the following relations:24

• ω ∧ � = (bC − cB) dy ∧ dz + (cA− aC) dz ∧ dx+ (aB − bA) dx ∧ dy,
• d(ω ∧ �) =

ˆ

(bC − cB)x + (cA− aC)y + (aB − bA)z
˜

dx ∧ dy ∧ dz,
• dω = (cy − bz) dy ∧ dz + (az − cx) dz ∧ dx+ (bx − ay) dx ∧ dy,
• dω ∧ � =

ˆ

(cy − bz)A+ (az − cx)B + (bx − ay)C
˜

dx ∧ dy ∧ dz.
Noting that

v × w =

˛

˛

˛

˛

˛

˛

˛

i j k

a b c

A B C

˛

˛

˛

˛

˛

˛

˛

= (bC − cB)i + (cA− aC)j + (aB − bA)k,

we get the following equivalent expressions:

• ω  v, �  w, ω ∧ �  v × w,
• d(ω ∧ �)  div(v × w), dω ∧ �  wcurl v, ω ∧ d�  v curlw.

This yields the claim (12.89).

12.4.3 The Poincaré Cohomology Rule

Lemma 12.8 If ω ∈ Λp(E3), p = 0, 1, 2, 3, then

d(dω) = 0 on E
3.

This is called the Poincaré cohomology rule (or the Poincaré cohomology lemma).

Proof. It follows from (12.86) on page 708 that

d(dω) = ∂j∂iωi1...ip dx
j ∧ dxi ∧ dxi1 ∧ · · · ∧ dxip .

This is equal to zero, since ∂j∂i = ∂i∂j and dxj ∧ dxi = −dxj ∧ dxi. �

Example. Using the smooth function ω := U or the 1-form ω = adx + bdy + cdz
together with the velocity vector field v = ai + bj + ck, we get

curl gradU = 0, div curl v = 0.

12.4.4 The Axiomatic Approach

The theory of p-forms on the Euclidean manifold E
3 can be generalized straight-

forward to real n-dimensional manifolds M with n = 1, 2, . . . Let Λp(M) denote
the real linear space of all the smooth p-forms on M with p = 0, 1, 2, . . . Note that
Λp(M) = {0} if p > n. Let

Λ(M) :=

∞
M

p=0

Λp(M).

24 Observe that all the formulas are highly symmetric via cyclic permutations.
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Theorem 12.9 There exists precisely one linear operator

d : Λ(M) → Λ(M)

which, for all differential forms ω ∈ Λp(M) and � ∈ Λq(M) with p, q = 0, 1, 2, . . .,
has the following properties:

(i) dω ∈ Λp+1(M) (grading).
(ii) d(dω) = 0 (Poincaré’s cohomology rule).
(iii) d(ω ∧ �) = dω ∧ �+ (−1)pω ∧ d� (supersymmetric Leibniz rule).
(iv) Leibniz differential: If f ∈ Λ0(M), then

(df)P (v) = (Lvf)(P )

for all points P ∈ M and all smooth velocity vector fields v ∈ Vect(M) on the
manifold M.

(v) Locality: The operator d is local, that is, if two p-forms ω and μ coincide on
an open subset U of the manifold M, then dω = dμ on U .

Proof. Step 1: Special case. Let M = E
3.

(I) Uniqueness. By (ii), d(dxi) = 0. It follows from the product rule (iii) that

d(dxi ∧ dxj) = d(dxi) ∧ dxj − dxi ∧ d(dxj) = 0.

Similarly, d(dxi1 ∧· · ·∧dxip) = 0. Choose ω = ωi1...ipdx
i1 ∧· · · dxip as on page 708.

By (iii),

dω = dωi1...ip ∧ dxi1 ∧ · · · ∧ dxip .

Therefore, by (iv),

dω = ∂iωi1...ip dx
i ∧ dxi1 ∧ · · · ∧ dxip . (12.90)

Consequently, the operator d is uniquely determined.
(II) Existence. Our investigations in Sect. 12.4.1ff above show that there exists

an invariantly defined operator d which has the properties (i) through (v) above.
Step 2: General case. Let M be a real n-dimensional manifold. By (v), we can

restrict ourselves to local coordinates on M.
(I) Uniqueness. Argue as in Step 1. This way, we get (12.90).
(II) Existence. Define dω by (12.90). We have to show that this definition does

not depend on the choice of local coordinates. This can be shown by an explicit com-
putation. However, there exists a more elegant approach which we have considered
in Sect. 8.11.2 on page 523. �

Proposition 12.10 Let τ : M → N be a smooth map from the real n-dimensional
manifold to the real m-dimensional manifold N with n,m = 1, 2, . . . Then, for all
differential forms ω on N , we have

τ∗(dω) = d(τ∗ω).

This tells us that the Cartan differential respects smooth mappings (e.g., smooth
changes of local coordinates).

Summary. Because of the graded product rule (iii) (supersymmetric Leibniz
rule), the Grassmann algebra Λ(M) over the manifold M is called a graded differ-
ential algebra. The smooth map

τ : M → N
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induces the algebra morphism τ∗ : Λ(N ) → Λ(M), and the following diagram is
commutative:

Λ(M)

d

Λ(N )
τ∗

d

Λ(M) Λ(N ).
τ∗

(12.91)

Therefore, τ∗ is called a differential algebra morphism from the Grassmann algebra
Λ(N ) to the Grassmann algebra Λ(M).

12.5 The Lie Derivative of Differential Forms

It was the basic strategy of Sophus Lie (1842–1899) to study operations on
manifolds (e.g., transport processes or symmetry transformations) on an
infinitesimal level. This leads to the fundamental notion of Lie derivative
and Lie algebra.
Lie discovered that symmetry properties are responsible for the crucial fact
that the infinitesimal level knows all about the local level.
Lie’s successors like Élie Cartan (1869–1951), Georges de Rham (1903–
1990), and Claude Chevalley (1909–1984) investigated the global level.
They found out that one needs additional topological information on the
global level.

Folklore

Suppose that we are given the smooth velocity vector field v on the Euclidean
manifold E

3. In terms of physics, this velocity vector v field describes the transport
of fluid particles along the trajectories P = P (t) given by the differential equation

ẋ(t) = v(P (t)), P (0) = P0

with respect to time t. We set FtP0 := P (t). For fixed time t, the flow operator

Ft : U(P0) → E
3

is a smooth operator defined on a sufficiently small neighborhood U(P0) of the point
P0 ∈ E

3.

The Lie derivative Lvω describes the flow transport of the p-form ω on an
infinitesimal level.

12.5.1 Invariant Definition via the Flow of Fluid Particles

Let ω ∈ Λp(E3) be a differential p-form with p = 0, 1, 2, 3. The Lie derivative Lvω
of ω with respect to the smooth velocity vector field v ∈ Vect(E3) is defined by the
time derivative

Lvω :=
d

dt
F ∗
t ω|t=0. (12.92)

If p = 0, then ω = f is a smooth real-valued function on E
3, and Lvf coincides

with the Lie derivative for temperature fields introduced in Chap. 10 above. Let
p ≥ 1. Then
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Lvω(u1, . . . ,up) =
d

dt
F ∗
t ω(u1, . . . ,up)|t=0

for all u1, . . . ,up ∈ Vect(E3). In terms of the short time limit t→ 0, we obtain

LvωP (u1, . . . ,up) = lim
t→0

F ∗
t ωP (u1, . . . ,up) − ωP (u1, . . . ,up)

t
(12.93)

for all points P ∈ E
3, and all tangent vectors u1, . . . ,up ∈ TPE

3.
The product rule. Let ω ∈ Λp(E3) and � ∈ Λq(E3) with p, q = 0, 1, 2, 3.

Proposition 12.11 Lv(ω ∧ �) = Lvω ∧ �+ ω ∧ Lv�.

Proof. Differentiate F ∗
t (ω ∧ �) = F ∗

t ω ∧ F ∗
t � with respect to time t at t = 0. �

Cartesian coordinates. Choose a right-handed Cartesian (x, y, z)-coordinate
system together with the notation introduced on page 708. In what follows, we will
sum over equal indices from 1 to 3. Let v = viei. Recall that if f ∈ Λ0(E3), then

Lvf = vs∂sf.

Proposition 12.12 Lv(dxi) = ∂sv
i · dxs = grad vi · dx if i = 1, 2, 3.

Proof. Note that (F ∗
t dx

i)P (u) = dxiFtP (F ′
t (P )u) = dxi(F ′

t (P )u). Using the lin-
earized flow studied on page 650, we get

d

dt

`

F ′
t (P )u

´

|t=0
= v′(P )u = ∂sv

kusek.

Therefore, differentiation at time t = 0 yields

d

dt
(F ∗

t dx
i)P (u) = dxi(v′(P )u) = us∂sv

i = ∂sv
i · dxs(u).

�

Let ω ∈ Λp(E3) with p = 1, 2, 3. Then

ω = ωi1...ip dx
i1 ∧ · · · ∧ dxip .

We assume that ωi1...ip is antisymmetric with respect to the indices i1, . . . , ip.

Proposition 12.13 Lvω = (vs∂sωi1...ip + p · ∂i1vsωsi2...ip) dxi1 ∧ · · · ∧ dxip .

Proof. For example, let p = 2. By the product rule,

Lv(ωij dx
i ∧ dxj) = (Lvωij) dx

i ∧ dxj + ωij(Lvdx
i) ∧ dxj + ωij dx

i ∧ (Lvdx
j).

By Prop. 12.12, this is equal to

vs∂sωij dx
i ∧ dxj + ωij∂sv

idxs ∧ dxj + ωij∂sv
jdxi ∧ dxs.

Noting that ωij = −ωji and dxi ∧ dxj = −dxj ∧ dxi, and changing the summation
indices, we get the claim. �

For example, if f ∈ Λ0(E3), then

Lv(f dx ∧ dy ∧ dz) = (vs∂sf + ∂sv
s) dx ∧ dy ∧ dz. (12.94)

Let ω ∈ Λp(E3) with p = 0, 1, 2, 3, and let v ∈ Vect(E3).

Proposition 12.14 d(Lvω) = Lv(dω).

This follows from Prop. 12.13 by a straightforward computation.
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12.5.2 The Contraction Product between Velocity Vector Fields
and Differential Forms

Let v ∈ Vect(E3). We define the linear operator25

iv : Λp(E3) → Λp−1(E3), p = 0, 1, 2, 3

by setting

(ivω)(u1, . . .up−1) := ω(v,u1, . . .up−1) for all u1, . . . ,up−1.

In particular, ivω := 0 if p = 0, and ivω := ω(v) if p = 1.We also write v�ω instead
of ivω, and we call this the contraction product of v with ω.26

Cartesian coordinates. In a right-handed Cartesian (x, y, z)-coordinate sys-
tem, we get:

• iv(ωidx
i) = viωi,

• iv( 1
2
ωij dx

i ∧ dxj) = viωij dx
j ,

• iv( 1
3!
ωijk dx

i ∧ dxj ∧ dxk) = 1
2
viωijk dx

j ∧ dxk.
Here, we assume that ωij and ωijk are antisymmetric with respect to the indices
i, j, k. The expressions above justify the term ‘contraction product’.
Proof. For example, let ω = 1

2
ωij dx

i ∧ dxj . Then

iv(u) = 1
2
ωijdx

i(v)dxj(u) − 1
2
ωijdx

j(u)dxi(v) = ωijv
iuj = ωijv

idxj(u).

�

Let ω ∈ Λp(E3) with p = 0, 1, 2, 3, and let v,w ∈ Vect(E3). Using Cartesian
coordinates, a straightforward computation yields the following.

Proposition 12.15 Lv(iwω) − iw(Lvω) = i[v,w]ω.

In particular, Lv(ivω) = iv(Lvω).

12.5.3 Cartan’s Magic Formula

Theorem 12.16 Let v ∈ Vect(E3) and ω ∈ Λp(E3) with p = 0, 1, 2, 3. Then

Lvω = iv(dω) + d(ivω). (12.95)

This is a special case of (8.99) on page 492. Applications of this magic formula
to conservation laws for the flow of fluid particles will be given in Sect. 12.8 on page
731.

25 By the usual convention, Λr(E3) := {0} if r = −1,−2, . . ., and r = 4, 5, . . .
26 This is also called the interior product. However, we will reserve the term ‘ex-

terior’ and ‘interior’ product for ω ∧ � and ω ∨ �, respectively (Kähler’s interior
differential calculus).
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12.5.4 The Lie Derivative of the Volume Form

The volume form υ of the Euclidean manifold E
3 is defined by

υP (u,v,w) := uP (vP × wP )

for all points P ∈ E
3 and all smooth velocity vector fields u,v,w ∈ Vect(E3). This

is the volume of the parallelepiped spanned by the position vectors u,v,w at the
point P. Obviously, υ ∈ Λ3(E3). In a right-handed Cartesian (x, y, z)-coordinate
system, we have

υ = dx ∧ dy ∧ dz.

Let � : E
3 → R be a smooth function. By (12.94), we get the following:

Proposition 12.17 Lv(�υ) = div(�v) · υ.

In particular, Lvυ = div v · υ. This relates the Lie derivative of the volume form to
the divergence div v.

12.5.5 The Lie Derivative of the Metric Tensor Field

Let P ∈ E
3. Define

gP (a,b) := ab for all a,b ∈ TPE
3.

This is the inner product on the tangent space TPE
3 which is a real 3-dimensional

Hilbert space. The map P �→ gP is called the metric tensor field on the Euclidean
manifold E

3. Let v be a smooth complete velocity vector field on E
3 which generates

the flow {Ft}t∈R. The pull-back F ∗
t g of g is defined by

(F ∗
t g)P (a,b) = gFt(P )(F

′
t (P )a, F ′

t (P )b). (12.96)

This yields the definition of the Lie derivative:

(Lvg)P (a,b) :=
d

dt
(F ∗

t g)P (a,b)|t=0 for all a,b ∈ TPE
3.

Mnemonically, we briefly write Lvg := d
dt
F ∗
t g|t=0. Let us introduce the linear self-

adjoint operator DP : TPE
3 → TPE

3 by setting

DP := 1
2
(v′(P ) + v′(P )d). (12.97)

In hydrodynamics, the crucial operator DP is called the rate-of-deformation oper-
ator (or the rate-of-strain tensor) at the point P .

Proposition 12.18 (Lvg)P = 2DP for all points P ∈ E
3.

Explicitly, this means that

(Lvg)P (a,b) = 2a(DPb) for all a,b ∈ TPE
3. (12.98)

Proof. Formula (12.98) follows from
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d

dt
(F ∗

t g)|t=0 =
d

dt
(F ′

t (P )a · F ′
t (P )b)|t=0 = v′(P )a · b + a · v′(P )b,

by using the Leibniz product rule together with (10.10) on page 650. �

Cartesian coordinate system. Let us choose a right-handed Cartesian
(x, y, z)-coordinate system (see page 708). Then

g = δijdx
i ⊗ dxj , v = viei, vi = vi, ∂i = ∂i =

∂

∂xi
,

and
Lvg = (∂ivj + ∂jvi) dx

i ⊗ dxj .
Moreover, the operator DP = Di

j(P ) ei ⊗ dxj has the matrix elements

Di
j(P ) = 1

2
(∂ivj(P ) + ∂jv

i(P )), i, j = 1, 2, 3.

Hence
tr(DP ) = div v(P ).

Applications of the Lie derivative Lvg to the strain tensor in elasticity, the rate-of-
strain tensor in hydrodynamics, and to infinitesimal isometries will be considered
below.

12.5.6 The Lie Derivative of Linear Operator Fields

Invariant definition. Let A be a smooth linear operator field on the Euclidean
manifold E

3. This means that the operator

AP : TPE
3 → TPE

3

is linear for all points P ∈ E
3, and all the matrix elements Ai

j(P ) of AP (with respect
to an arbitrary Cartesian coordinate system) depend smoothly on the point P . Let
v ∈ Vect(E3). We want to define the Lie derivative LvA in such a way that we get
the product rule:

Lv(Aw) = (LvA)w +A(Lvw).

To this end, we define

(LvA)w := Lv(Aw) −A(Lvw) for all w ∈ Vect(E3). (12.99)

That is, we reduce the definition of LvA to the known Lie derivative for vector
fields. In what follows, we will show that the Lie derivative LvA is a smooth linear
operator field on E

3 which is uniquely defined by (12.99).
Cartesian coordinates. Choose a right-handed Cartesian (x, y, z)-coordinate

system. Then AP = Ai
j(P ) ei ⊗ dxj (see page 708).

Proposition 12.19 There holds

LvA = (LvA
i
j) ei ⊗ dxj +Ai

j Lvei ⊗ dxj +Ai
j ei ⊗ Lv(dxj)

with Lvei = −∂ivses, and Lv(dxj) = (∂sv
j) dxs.
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Explicitly, we get

LvA = (vs∂sA
i
j − ∂svi ·As

j + ∂jv
s ·Ai

s) ei ⊗ dxj .

Proof. Set u := Aw. Then ui = Ai
jw

j . By definition of the Lie derivative of vector
fields, we get

Lv(Aw) = (vs∂su
i − us∂svi) ei

= (vs∂sA
i
j · wj + vsAi

j∂sw
j −As

j∂sv
i · wj) ei,

and A(Lvw) = Ai
j(v

s∂sw
j − ws∂sv

j) ei. Hence

(LvA)w = Lv(Aw) −A(Lvw) = (vs∂sA
i
j − ∂svi ·As

j + ∂jv
s ·Ai

s)w
j ei.

�

12.6 Diffeomorphisms and the Mechanics of Continua –
the Prototype of an Effective Theory in Physics

The theory of elasticity and fluid dynamics are prototypes of effective the-
ories in physics. This means the following. We do not know the precise
molecular interaction forces in elastic bodies and fluids. Therefore, we de-
scribe these forces by the stress tensor and constitutive laws which average
the interaction. The use of effective theories is very successful in physics
and quantum chemistry.
Many physicists believe that quantum field theory is nothing else than an
effective theory at a low energy scale compared to the hot universe after
the Big Bang.
The Standard Model in cosmology is an effective theory where the mass
and energy distribution of the universe is described by an ideal fluid.27

Nowadays the universe is expanding in an accelerated manner. This is
caused by a negative pressure described by the cosmological constant in
the Einstein equations in general relativity. It is a famous open problem
to understand the physics behind the cosmological constant.

Folklore

We want to understand the relation between, pressure, negative pressure, the defor-
mation tensor, the Lie derivative of the metric tensor field, and the mathematical

27 Elasticity, hydrodynamics, thermodynamics, statistical physics, and their appli-
cations to Einstein’s theory of general relativity and cosmology are thoroughly
studied in E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol.
IV: Applications to Mathematical Physics, Springer, New York, 1997. Recent de-
velopments in cosmology will be discussed in Vol. IV of the present monograph.
See also the comprehensive monograph by S. Weinberg, Cosmology, Oxford Uni-
versity Press, 2008.
For effective theories in quantum chemistry (e.g., the density functional theory
for large molecules), we recommend the extensive monograph by L. Piela, Ideas
of Quantum Chemistry, Elsevier, Amsterdam, 1086 pages, Elsevier, Amsterdam,
2007. Furthermore, we recommend the handbook edited by G. Drake, Handbook
of Atomic, Molecular, and Optical Physics, Springer, Berlin, 2005.
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structure theory for diffeomorphisms. To this end, let us investigate the local and
global behavior of smooth maps28

F : E
3 → E

3. (12.100)

The main idea is to use the Taylor expansion and to study the linear approximation

F (P ) = F (P0) + F ′(P )(x − x0) + o(|x − x0|), x → x0. (12.101)

Here, we fix the origin O, and we use the position vectors x =
−−→
OP and x0 =

−−→
OP0.

The linearization of the map F at the point P0 is defined by the map

Flin(P ) = F (P0) + F ′(P0)(x − x0) for all P ∈ E
3. (12.102)

Recall that the map (12.100) is called a diffeomorphism iff it is smooth, bijective,
and the inverse map is also smooth. Moreover, the map (12.102) is called a linear
diffeomorphism iff the linear operator F ′(P0) : TP0E

3 → TP0E
3 is bijective, that is,

det(F ′(P0)) �= 0. Our first goal is to study the linearization Flin. After that we will
pass from the local behavior to the global behavior by using topological methods.

12.6.1 Linear Diffeomorphisms and Deformation Operators

Affine transformations and similarity transformations. The tangent spaces
of the Euclidean manifold E

3 are Hilbert spaces which are isomorphic to the Hilbert
space E3. Let us first study affine transformations T : E3 → E3, that is, we have

T (x) := Ax + a for all x ∈ E3, (12.103)

where A : E3 → E3 is a linear bijective operator, and a is a fixed vector in E3. Let
us introduce the following terminology:

• A is called orientation-preserving iff det(A) > 0.
• A is called volume-preserving iff det(A) = 1.
• A is called a similarity operator iff it is self-adjoint, and all the eigenvalues
λ1, λ2, λ3 of A are positive.

• D is called a deformation operator on E3 iff I + D is a similarity operator.
• The deformation operator D is called volume-preserving on an infinitesimal level

iff tr(D) = 0.

Let us discuss this. To begin with, let b, c,d ∈ E3 be three linearly independent
vectors. They span the oriented volume υ(a,b, c) = a(b × c). Then

υ(Aa, Ab, Ac) = det(A) · υ(a,b, c).

If A is a similarity operator, then the principal axis theorem tells us that there
exists a right-handed orthonormal vector basis i, j,k such that

A(xi + yj + zk) = λ1xi + λ2yj + λ3zk, x, y, z ∈ R.

This is a so-called similarity transformation. For example, the x-axis is stretched
by the factor λ1 > 0. The similarity operator A is called an expansion (resp. com-
pression) operator iff λj > 1 (resp. λj < 1) for j = 1, 2, 3.

28 In order to explain the main ideas in an intuitive setting, we restrict ourselves to
the Euclidean manifold. Far-reaching generalizations to finite-dimensional and
infinite-dimensional manifolds can be found in E. Zeidler (1997), Vol. IV.
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The relative volume change. Naturally enough, the relative volume change
η(A) of the linear similarity operator A is defined by

η(A) :=
υ(Aa, Ab, Ac) − υ(a,b, c)

υ(a,b, c)
= det(A) − 1 = λ1λ2λ3 − 1.

If D is a deformation operator, then

η(I + D) = det(I + D) − 1 = tr(D) + o(||D||), ||D|| → 0.

Explicitly, let A = I + D. Then the deformation operator D has the eigenvalues
λ1 − 1, λ2 − 1, λ3 − 1 > −1. Hence

tr(D) = (λ1 − 1) + (λ2 − 1) + (λ3 − 1) = λ1 + λ2 + λ3 − 3,

and ||D||2 = tr(D2) = (λ1 − 1)2 + (λ2 − 1)2 + (λ3 − 1)2.
The normal form theorem. The key formula reads as

A = sgndet(A) ·R(I + D). (12.104)

Theorem 12.20 If the operator A : E3 → E3 is linear, then there exist both a ro-
tation operator R ∈ U(E3) and a deformation operator D such that the factorization

formula (12.104) holds. Explicitly, I + D =
√
AAd.

The proof can be found in Zeidler (1997), p. 169, quoted on page 717. In terms
of geometry, this theorem tells us that an orientation-preserving affine transfor-
mation (12.103) is the superposition of a translation, a rotation, and a similarity
transformation. If the affine transformation is not orientation-preserving, then one
has to add a reflection x �→ −x.

12.6.2 Local Diffeomorphisms

The map F : E
3 → E

3 is called a local diffeomorphism at the point P0 iff there exist
open neighborhoods U(P0) and V (F (P0)) of the points P0 and F (P0), respectively,
such that the map F : U(P0) → V (F (P0)) is a diffeomorphism.

Proposition 12.21 The smooth map F : E
3 → E

3 is a local diffeomorphism at the
point P0 iff detF ′(P0) �= 0.

This generalizes the following elementary theorem: The smooth map

F : R → R (12.105)

is a local diffeomorphism at the point x0 iff F ′(x0) �= 0. Next we want to generalize
the following two classical theorems:

(i) The smooth map (12.105) is a diffeomorphism iff it is a local diffeomorphism at
each point x ∈ R and lim|x|→∞ |F (x)| = ∞ (Fig. 12.15).

(ii) If the smooth map (12.105) is strictly monotone and lim|x|→∞ |F (x)| = ∞,
then we have F ′(x) > 0 for all x ∈ R, and hence F is a local diffeomorphism
at each point x ∈ R. By (i), F is a diffeomorphism.
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Fig. 12.15. Diffeomorphism

12.6.3 Proper Maps and Hadamard’s Theorem on
Diffeomorphisms

The map F : X → Y from the topological space X to the topological space Y
is called proper iff it is continuous and the preimages of compact sets are again
compact. For example, homeomorphisms are proper. Moreover, the smooth map
F : E

3 → E
3 is proper iff limd(P,O)→∞ |F (P )| = ∞.29 The following theorem is

called the global inverse function theorem.

Theorem 12.22 The smooth map F : E
3 → E

3 is a diffeomorphism iff F is proper
and detF ′(P ) �= 0 for all P ∈ E

3.

The proof of the more general Banach–Mazur theorem for finite-dimensional
and infinite-dimensional Banach spaces can be found in M. Berger, Nonlinearity
and Functional Analysis, Academic Press, 1977 (Sect. 5.1A). The topological proof
uses covering spaces.30

12.6.4 Monotone Operators and Diffeomorphisms

The operator A : E3 → E3 is called strictly monotone iff

〈A(x) −A(y)|x − y〉 > 0 for all x,y ∈ E3, x �= y.

Moreover, the operator A is called coercive iff lim|x|→∞
|F (x)|
|x| = ∞.

Theorem 12.23 The smooth operator A : E3 → E3 is a diffeomorphism if it is
strictly monotone and coercive.

Let F : E
3 → E

3 be a smooth map. In a quite natural way, we assign to F the
operator A : E3 → E3 by identifying the points P and F (P ) with the corresponding

position vectors
−−→
OP and

−−−−→
OF (P ) at the origin, respectively, and by identifying the

tangent space TOE
3 at the origin with the Hilbert space E3. By Theorem 12.23, we

get the following:

The smooth map F : E
3 → E

3 is a diffeomorphism if the corresponding
operator A : E3 → E3 is strictly monotone and coercive.

29 Here, d(P,O) denotes the distance between the origin O and the point P .
30 S. Banach and S. Mazur, On multi-valued continuous mappings, Studia Math. 5

(1934), 174–178 (in German).
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The general theory of monotone operators in finite-dimensional and infinite-
dimensional Banach spaces was developed in the 1960s and 1970s under the strong
influence of Felix Browder. Monotone operators play a fundamental role in solv-
ing classes of nonlinear partial differential equations arising in elasticity, plasticity,
and hydrodynamics. We refer to E. Zeidler, Nonlinear Functional Analysis and its
Applications, Vols. I–IV, Springer, New York, 1986ff. In particular, the proof of
Theorem 12.23 on page 557 of Vol. IIB uses the Brouwer fixed-point theorem which
is a typical topological result.

12.6.5 Sard’s Theorem on the Genericity of Regular Solution Sets

We are given the smooth map F : E
3 → E

3. Let us consider the equation

F (P ) = Q, P ∈ E
3. (12.106)

If F is a diffeomorphism, then for every given point Q ∈ E
3, the equation (12.106)

has a unique solution, and this solution depends smoothly on Q. In the general
case, equation (12.106) may possess an infinite number of solutions. In 1942, Sard
discovered that the situation is much better. He showed that, generically, equation
(12.106) has at most a finite number of solutions. The precise formulation will
be given in Theorem 12.24 below.31 To begin with, let us introduce the following
terminology:

• Regular image point: The point Q ∈ E
3 is called a regular image point (or a

regular value) of the map F iff the map F is a local diffeomorphism at every
solution point P of equation (12.106). In other words, we have detF ′(P ) �= 0 for
all solutions P of (12.106).

• Singular image point: The point Q ∈ E
3 is called a singular image point (or a

singular value) of the map F iff it is not a regular image point of F .

Then the following hold:

(i) The set S of singular image points of the smooth map F : E
3 → E

3 has the
Lebesgue measure zero on E

3 (Sard’s theorem).
(ii) If, in addition, the map F is proper, then for every point Q ∈ E

3\S, the solution
set of (12.106) is compact and consists of isolated points, by (i). Therefore, the
equation (12.106) has at most a finite number of solutions.

This implies the following result.

Theorem 12.24 Let F : E
3 → E

3 be a smooth and proper map. For every given
point Q0 ∈ E

3 and every given number ε > 0, there exists a point Q ∈ E
3 with

distance d(Q,Q0) < ε such that the equation (12.106) has at most a finite number
of solutions.

For a smooth map F : R → R, the intuitive meaning of the theorem is depicted
in Fig. 12.16. The value y0 is regular iff the horizontal straight line y = y0 inter-
sects transversally the graph of the function F . It follows geometrically from Fig.
12.16(b) that an arbitrarily small perturbation of the value y0 changes the singular
intersection picture into a regular one.

31 A.Sard, The measure of critical values of differentiable maps, Bull. Amer. Math.
Soc. 48 (1942), 883–890. The proof of Sard’s theorem together with many ap-
plications in differential topology can be found in V. Guillemin and A. Pollack,
Differential Topology, Prentice Hall, Englewood Cliffs, New Jersey, 1974.
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Fig. 12.16. Regular and singular values y0

12.6.6 The Strain Tensor and the Stress Tensor in Cauchy’s
Theory of Elasticity

Ut tensio sic vis.
Robert Hooke, 167832

In elasticity, the strain tensor locally separates the deformations from the
rotations. The strain tensor D = 1

2
Lug is proportional to the Lie derivative

of the metric tensor field g with respect to the displacement vector field u.
In order to understand the light pressure and the Maxwell stress tensor of
the electromagnetic field, one has to understand Cauchy’s pressure tensor
in elasticity.33

Folklore

Let us start with elastostatics where the deformation field P �→ uP does not depend
on time t. Elastodynamics and hydrodynamics will be considered below.

The displacement vector field. Consider the smooth map Φ : E
3 → E

3. Set

Q := Φ(P ). Introducing the position vectors x :=
−−→
OP and y =

−−→
OQ at the origin

O, and the position vector u(P ) :=
−−→
PQ at the point P (Fig. 12.17(a)), the given

transformation P �→ Φ(P ) can be written as

y = x + u(P ).

The map P �→ u(P ) is called the displacement vector field of the map Φ. Next
we want to study the local behavior of the map Φ near the point P0. By Taylor
expansion, we get

y = x0 + (I + u′(P0))(x − x0) + o(|x − x0|), x → x0.

Following Cauchy, we use the operator decomposition

u′(P ) = 1
2
(u′(P ) + u′(P )d) + 1

2
(u′(P ) − u′(P )d)

into a symmetric and an antisymmetric part.
The strain tensor field. Introducing the notation

• DP := 1
2
(u′(P ) + u′(P )d) and

32 The force of a spring is proportional to its relative extension (Hooke’s law).
33 The basic papers in hydrodynamics (resp. elasticity) were written by Euler

(1755), Navier (1822), and Stokes (1845) (resp. Cauchy (1827)). See the detailed
references quoted on page 792.
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Fig. 12.17. Deformation

• RP := 1
2
(u′(P ) − u′(P )d),

we obtain

y = x0 + (I + DP0 + RP0)(x − x0) + o(|x − x0|), x → x0.

In a right-handed Cartesian (x, y, z)-coordinate system, we get

DP0 = Di
j(P0) ei ⊗ dxj , RP0 = Ri

j(P0) ei ⊗ dxj

with the matrix elements

Di
j(P0) = 1

2

`

∂ju
i(P0) + ∂iuj(P0)

´

, Ri
j(P0) = 1

2

`

∂ju
i(P0) − ∂iuj(P0)

´

where i, j = 1, 2, 3. Hence, as x → x0, we obtain the key formula

y = x0 + (I + DP0)(x − x0) + 1
2
curl u(P0) × (x − x0) + o(|x − x0|). (12.107)

This is the superposition of a translation, a similarity transformation, and an in-
finitesimal rotation near the point P0, up to terms of higher order. Moreover,

tr(DP0) = div u(P0).

We assume that the linear self-adjoint operator

DP0 : TP0E
3 → TP0E

3

is a deformation operator for all points P0 ∈ E
3. This is the case if the eigenvalues

of DP are sufficiently small, that is, ||DP0 || < 1 for all P0 ∈ E
3. The map P �→ DP is

called the linear strain tensor field of the original map Φ. By (12.98) on page 715,
we get the relation between the linear strain tensor and the Lie derivative Lug of
the metric tensor field g with respect to the displacement vector field u:

DP = 1
2
(Lug)P for all P ∈ E

3.

Homogeneous and isotropic linear elastic material. The deformation
induces an internal stress force. Our goal is to compute this force. To this end, we
define

S := μ tr(D) · I + 2κD (12.108)

with positive material constants μ and κ. If M is a compact 3-dimensional sub-
manifold of E

3, then the following elastic force acts on the deformed domain Φ(M):
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Fel(Φ(M)) =

Z

∂M
Sn dS (12.109)

where n denotes the outer unit normal vector. This elastic force is a so-called surface
force. The operator SP : TPE

3 → TPE
3 is called the stress tensor at the point P ,

and the constitutive law (12.108) is called Hooke’s law. By the Gauss–Ostrogradsky
theorem, we get34

Fel(Φ(M)) =

Z

M
div S d3x.

This elastic force is based on molecular interactions. We suppose that there acts
additionally the external force

Fext(Φ(M)) =

Z

M
f ext d

3x

on the deformed domain Φ(M). Here, the map P �→ f ext(P ) is assumed to be a
smooth vector field on E

3. Naturally enough, we postulate that

Fel(Φ(M)) + Fext(Φ(M)) = 0 (equilibrium of forces).

Contracting the domain M to the point P , we get

div S + f ext = 0 on E
3.

This is the basic equation of linear elastostatics. In terms of the displacement field
u, this equation reads as

κΔu − (κ+ μ)graddiv u = f ext on E
3.

Consider an elastic body which is a deformation of the 3-dimensional compact
submanifold M0 of E

3. Then the basic boundary-value problem reads as

κΔu − (κ+ μ)grad div u = f ext on M0, u = u0 on ∂M0. (12.110)

We are given the displacement vector field u0 on the boundary, and we are looking
for the displacement vector field u of the body.

The displacement velocity vector field. Suppose that the displacement
vector u(P, t) at the point P ∈ E

3 depends on time t ∈ R. The time derivative of
the displacement vector field

v(P, t) := u̇(P, t), P ∈ E
3, t ∈ R

is called the displacement velocity vector field of the deformation process. The time
derivative of the strain tensor field

D(P, t) := Ḋ(P, t), P ∈ E
3, t ∈ R

is called the rate-of-strain tensor field of the deformation process. Explicitly,

D(P, t) = 1
2
(v′(P, t) + v′(P, t)d), P ∈ E

3, t ∈ R.

34 In a right-handed Cartesian coordinate system, we have SP = Si
j(P ) ei ⊗ dxj ,

and div S = div Si · ei = ∂jSi
j ei.
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In a right-handed Cartesian (x, y, z)-coordinate system, we get v = vjej by intro-
ducing the time derivative vj := u̇j . Moreover,

D = 1
2
(∂jv

i + ∂ivj) ei ⊗ dxj .

The basic equations in linear elastodynamics. These equations read as

�0ü + κΔu− (κ+ μ)graddiv u = f ext on M0 × [0,∞[.

One has to add the following side conditions:

• u(P, t) = u0(P, t) on ∂M0, t ≥ 0 (boundary condition),
• u(P, 0) = u1(P ) and u̇(P, 0) = v1(P ) on M0 (initial condition).

We are given u0,u1 and v1, and we are looking for the displacement vector field u
of the elastic body for all times t ≥ 0. The positive real number �0 is the constant
mass density of the undeformed elastic body.

Linear and nonlinear theory of elasticity. A critical discussion shows that
the approach considered above is only a first-order approximation which is rea-
sonable if the norms |uP | and ||u′

P || of the displacement vector field u and its
derivative are small compared with the length scale of the compact elastic body
under consideration. The complete nonlinear theory has to refer to the geometry of
the deformed elastic body. In particular, one has to use the stress tensor S∗ given
by

Fel(Φ(M)) =

Z

∂Φ(M)

S∗n dS.

Moreover, one has to use nonlinear constitutive laws. A detailed investigation to-
gether with important applications can be found in Zeidler (1997), Vol. IV, quoted
on page 717, and in J. Marsden and T. Hughes, Mathematical Foundations of Elas-
ticity, Prentice-Hall, Englewood Cliffs, New Jersey, 1983. For a detailed study of
the stress tensor in a general setting, we refer to F. Schuricht, A new mathematical
foundation for contact interactions in continuum physics, Archive Rat. Mech. Anal.
184 (2007), 495–551.

12.6.7 The Rate-of-Strain Tensor and the Stress Tensor in the
Hydrodynamics of Viscous Fluids

Let us consider a fluid on the Euclidean manifold E
3. The vector v(P, t) describes

the velocity vector of a fluid particle which is located at the point P at time t. We
assume that the velocity vector field (P, t) �→ v(P, t) is a smooth map on E

3 × R.

The point P corresponds to the position vector x =
−−→
OP at the origin O. By Taylor

expansion near the point P0, we get

v(P ) = v(P0) + 1
2
(v′(P0) + v′(P0)

d)(x − x0)

+ 1
2
(v(P0) − v′(P0)

d)(x − x0) + o(|x − x0|), x → x0.

Similarly as in (12.107), this implies

v(P ) = v(P0) + DP0(x − x0) + 1
2
curl v(P0) × (x − x0) + o(|x − x0|), x → x0

with the rate-of-strain tensor DP0 := 1
2
(v′(P0) + v′(P0)

d) at the point P0. This
yields the linearization

v(P ) = vlin(P ) + o(|x − x0|), x → x0
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with the linearized velocity vector field

vlin(P ) := −gradU(P ) + ω0 × (x − x0). (12.111)

Here, we introduce the rotation vector ω0 := 1
2
curl v(P0), and the velocity poten-

tial
U(P ) := −v0(x− x0) − 1

2
(x − x0)

`

DP0(x − x0)
´

.

The linearized velocity vector field (12.111) is the superposition of a potential flow
(e.g., a parallel flow with the velocity vector v(P0) if DP0 = 0) and a rotational
flow about the axis ω0 with the angular velocity ω0 = |ω0|. We have

div vlin(P ) = ΔU(P ), curl vlin(P ) = 2ω0, P ∈ E
3.

Thus, if U is a harmonic function, that is, ΔU = 0 on E
3, then div vlin = 0 on E

3.
The stress tensor field. Let M be a 3-dimensional compact submanifold of

the Euclidean manifold E
3. Then the internal force acting on the domain M is

given by

Fint(M) = −
Z

∂M
p · n dS +

Z

∂M
Sfrictn dS.

Here, the smooth function p : E
3 → [0,∞[ is the pressure, and n is the outer unit

normal vector. This internal force is based on molecular interactions. For the stress
tensor at the point P , we get

SP = −p(P ) · I + Sfrict(P )

where Sfrict(P ) is called the stress tensor of inner friction at the point P . The
standard constitutive law for viscous fluids due to Navier and Stokes reads as

Sfrict = 2η(D − tr(D) · I) + γ tr(D) · I

where η and γ are nonnegative material constants which measure the strength of
the viscosity of the fluid.35 In particular, we have

tr(S) = γ tr(D).

By the Gauss–Ostrogradsky theorem, we get

Fint(M) =

Z

M
(−grad p+ div Sfrict) d

3x

=

Z

M
(−grad p− ηΔv + (γ − η)grad div v) d3x.

We suppose that there acts additionally the external force

Fext(M) =

Z

M
f ext d

3x

on the domain M. The map P �→ f ext(P ) is assumed to be a smooth vector field
on E

3. Here, f ext is the external force density. There acts the total force

35 A detailed motivation of this constitutive law and the study of the Navier–Stokes
equations in terms of nonlinear functional analysis can be found in Zeidler (1997),
Vol. IV quoted on page 717.
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Fint(M) + Fext(M)

on the domain M. The fluid is called ideal iff the inner friction vanishes identically,
that is, Sfrict = 0 on E

3. In other words, there is no viscosity (η = γ = 0).
The Navier–Stokes equations. Let M0 be a 3-dimensional compact sub-

manifold of the Euclidean manifold E
3. The basic equations for a viscous fluid on

the domain M0 read as follows:

(i) Equation of motion:

�v̇ + �grad
v2

2
− �v × curl v = f ext − grad p− ηΔv + (γ − η)grad div v.

(ii) Mass conservation: �̇+ div(�v) = 0 (continuity equation).
(iii) Density-pressure relation: � = �(p).

We have to add boundary conditions and initial conditions. Here, � denotes the
mass density, and the material constants η and γ measure the viscosity of the fluid.

If the mass density � is constant, that is, � does not depend on the pressure p,
then the fluid is called incompressible. By the continuity equation (ii), this implies

div v = 0 on M0.

The flow is called stationary iff the velocity vector field v, the mass density �, and
the pressure p do not depend on time.

Euler’s equation of motion for an ideal fluid. We use (i)–(iii) above, but
we set η = γ = 0 (no viscosity). Furthermore, we assume that the external force
density f ext has a potential U , that is, it can be written as

f ext = −�gradU.

Then the basic equations for an ideal fluid read as follows:

(i) Equation of motion: v̇ + grad
“

v2

2
+ U +

R p

p0

dp
�(p)

”

= v × curl v.

(ii) Mass conservation: �̇+ div(�v) = 0 (continuity equation).
(iii) Density-pressure relation: � = �(p).

We have to add boundary conditions and initial conditions.

Proposition 12.25 For the stationary irrotational flow of an ideal fluid in an
arcwise connected and simply connected open subset of E

3 (e.g., a ball), we have
the conservation law of energy, that is, the expression

1
2
v2 + U +

Z p

p0

dp

�(p)
(12.112)

does not depend on position and time.

This is called the Bernoulli law. If the fluid is incompressible, then

1
2
�v2 + �U + p = const.

Proof. Let L denote the expression (12.112). Since the flow is irrotational, we have
curl v = 0. It follows from the equation of motion (i) above that gradL = 0. Hence
L = const. �

Turbulence and the Millenium Prize Problems. In 2000, the Clay Insti-
tute in Boston, Massachusetts (U.S.A), formulated seven famous open problems.
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The solution of such a problem will be awarded by 1 million dollars. One of the
problems concerns the mathematical theory of turbulence. In physical experiments,
turbulence is observed for sufficiently large Reynolds numbers. The millennium
problem is to analyze the existence and regularity of the solutions of the Navier–
Stokes equations for large Reynolds numbers. We refer to:

C. Fefferman, Existence and smoothness of the Navier–Stokes equations.
In: J. Carlson, A. Jaffe, and A. Wiles (Eds.), The Millennium Prize Prob-
lems, Clay Mathematics Institute, Cambridge Massachusetts, 2006, pp.
57–70.

Note that one of the Millennium Prize Problems concerns gauge theory. This can
be found in:

A. Jaffe and E. Witten, Quantum Yang–Mills theory. In: J. Carlson, A.
Jaffe, and A. Wiles (Eds.), pp. 129–152.

12.6.8 Vorticity Lines of a Fluid

Set ω := 1
2
curl v. The vector field ω measures the vorticity of the velocity vector

field v of the fluid. The differential equation

ẋ(t) = ω(x(t)), t ∈ R, x(0) = x0

describes the so-called vorticity lines. In other words, the vorticity lines are the
streamlines of the vector field ω.

12.6.9 The Lie Derivative of the Covector Field

We are given the smooth velocity vector field v on the Euclidean manifold E
3. The

1-form
χ := vdx

is called the covelocity (or covector) field to the velocity vector field v. Explicitly,

χP (w) = (vw)P for all w ∈ Vect(E3), P ∈ E
3.

By (12.86) on page 708,

dχ(u,w) = (u × w) curl v for all u,w ∈ Vect(E3).

This implies
iudχ = (−u × curl v)dx.

In fact, (iudχ)(w) = dχ(u,w) = −(u × curl v)w.
Set ω := 1

2
curl v. The streamlines of the vector field ω are the vorticity lines

of the fluid corresponding to the given velocity vector field v.

Proposition 12.26 (i) d(Lωχ) = 0 on E
3.

(ii) d(Lvχ) = 0 on E
3 if the velocity vector field v corresponds to the stationary

flow of an ideal fluid.
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We will show in Sect. 12.8.3 on page 735 that (i) and (ii) imply the classical
vorticity theorems due to Helmholtz and Thomson, respectively.
Proof. Ad (i). Noting that d(dχ) = 0, it follows from Cartan’s magic formula on
page 714 that

d(Lωχ) = Lω (dχ) = iωd(dχ) + d
`

iωdχ
´

= d
`

iωdχ
´

.

Therefore, it is sufficient to prove that d
`

iωdχ
´

= 0. This follows from

iωdχ = −(ω × curl v) dx = −2(ω × ω) dx = 0.

Ad (ii). Again it is sufficient to show that d
`

ivdχ
´

= 0. By the equation of
motion (i) above, we get

ivdχ = −(v × curl v) dx = −gradL dx = −dL.
Hence d

`

ivdχ
´

= −d(dL) = 0. �

12.7 The Generalized Stokes Theorem (Main Theorem
of Calculus)

We want to generalize the main formula of calculus (12.1.1) on page 666. The key
formula reads as

Z

M
dω =

Z

∂M
ω. (12.113)

This extremely elegant formula displays a complete symmetry between the bound-
ary operator ∂ and the Cartan differential operator d. As we will show later on,
this is the root of the duality between homology and cohomology in differential
topology.

The generalized Stokes integral theorem reflects a deep relation between
mathematics and physics.

Let us first consider the prototype of the general theorem.

Proposition 12.27 Let p = 1, 2, 3. Equation (12.113) holds true if ω is a smooth
(p − 1)-form on the Euclidean manifold E

3, and M is a p-dimensional compact
oriented submanifold of E

3 with coherently oriented boundary.

In the special case where p = 3 and p = 2, we get

• the Gauss–Ostrogradsky theorem (see (12.32) on page 680) and
• the Stokes theorem (see (12.33) on page 680), respectively.

If p = 1, then (12.113) represents the classical main theorem of calculus due to
Leibniz and Newton (see (12.1.1) on page 666).

Concerning an intuitive interpretation of the term ‘coherent orientation’, we
refer to Fig. 12.6 on page 677. The general definition of coherently oriented sub-
manifolds can be found in the Appendix on page 1075.

Generalization to higher dimensions. In order to obtain conservation laws
in the theory of special relativity, one needs the validity of formula (12.113) on un-
bounded submanifolds M of the 4-dimensional Minkowski manifold M

4. In order to
guarantee the existence of the integrals, one uses differential forms ω with compact
support, that is, ω vanishes outside a compact subset of M. In the special case
where the submanifold M is compact, every differential form on M has compact
support. The general form of the Stokes integral theorem reads as follows.
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Fig. 12.18. Smoothing of singular boundary parts

Theorem 12.28 Let n = 1, 2, . . . Equation (12.113) holds true if ω is a smooth
differential (n − 1)-form with compact support on the real n-dimensional oriented
manifold M with coherently oriented boundary.

The fairly short standard proof can be found in any modern textbook on cal-
culus. We refer to V. Zorich, Analysis II, Springer, New York, 2003, Sect. 15.3.5.

Admissible and pathological boundary points. Proposition 12.27 cannot
be applied to the closed rectangle M depicted in Fig. 12.18(a). Because of violation
of smoothness at the vertices, M is not a submanifold with boundary of the Eu-
clidean manifold E

3. In this quite natural situation, one can use a smoothing limit.
To this end, we first consider the smoothed rectangle Msmooth from Fig. 12.18(b).
Applying Prop. 12.27, we get

Z

Msmooth

dω =

Z

∂Msmooth

ω. (12.114)

Then we use the limit Msmooth → M; this implies the desired formula:
Z

M
dω =

Z

∂M
ω. (12.115)

This limit exists, since the corresponding integrals only differ on sets of small mea-
sure. This approach can be generalized to submanifolds of E

3 with ‘piecewise smooth

Fig. 12.19. Regular and singular boundary points
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Fig. 12.20. Smooth and non-smooth functions

boundary’. Intuitively, this means that the boundary is smooth up to a finite num-
ber of vertices and edges without any zero angles (Fig. 12.19(b), (d)). For example,
this concerns triangles, rectangles, polygons, cubes, polyhedra, cones, and finite
cylinders. The term ‘zero angle‘ is explained by Fig. 12.19(b) (angle α > 0; no zero
angle at the vertex P ) and Fig. 12.19(c) (zero angle at P ). In terms of functions,
consider Fig. 12.20. The function f depicted in (b) is not smooth, but it is Lip-
schitz continuous on the compact interval [a, b].36 This means that there exists a
nonnegative real number L such that

|f(x) − f(y)| ≤ L|x− y| for all x, y ∈ [a, b].

The smallest possible number L is called the Lipschitz constant of f . In Fig.
12.19(c), we depict the function f(x) := x2/3 which has a zero angle at the point
(0, 0). In fact,

lim
x→±0

f ′(x) =
2

3
lim

x→±0

1

x1/3
= ±∞.

Thus, as x→ +0 and x→ −0, the one-sided limits of the tangent lines at the point
(0, 0) are vertical and parallel.

A general variant of Prop. 12.27 and its generalization to higher dimensions can
be found in R. Abraham, J. Marsden, and T. Ratiu, Manifolds, Tensor Analysis, and
Applications, Springer, New York, 1988, and in H. Amann and J. Escher, Analysis
III, Birkhäuser, Basel, 2001.

12.8 Conservation Laws

In the 19th century, Thomson (later Lord Kelvin), Helmholtz, Liouville,
and Poincaré discovered important conservation laws in fluid dynamics
and celestial mechanics based on integral invariants.
Maxwell applied this to the conservation of electromagnetic energy in the
1870s. The Gibbs approach to statistical mechanics in the 1890s is based
on the conservation of the phase-space volume (which is intimately related
to the symplectic structure of the Hamiltonian flow on the phase space). In
quantum mechanics, the dynamics of the Schrödinger wave function leads
to a flow of probability density where probability is preserved like mass is
preserved in a fluid.

The modern approach founded by Élie Cartan in 1922 uses the Lie deriva-
tive of differential forms combined with Cartan’s magic formula and the
generalized Stokes integral theorem.

Folklore

36 Lipschitz (1832–1903)
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Let v be a smooth complete velocity vector field on the Euclidean manifold E
3,

let u be a smooth vector field (e.g., a displacement vector field) on E
3, and let

ω ∈ Λp(E3) with p = 0, 1, 2, 3.

12.8.1 Infinitesimal Isometries (Metric Killing Vector Fields)

Infintesimal isometries of the Euclidean manifold E
3 describe the isometries

(i.e., translations and rotations) of E
3 on an infinitesimal level near the

identity transformation.
Folklore

The smooth velocity vector field v on E
3 is called an infinitesimal isometry iff

Lvg = 0 on E
3

where g is the metric tensor field on E
3. Infinitesimal isometries are also called

metric Killing vector fields. Fix the point P ∈ E
3, and fix the tangent vectors

a,b ∈ TPE
3. The flow {Ft}t∈R of a metric Killing vector field has the property that

gP (a,b) = gFt(P )(F
′
t (P )a, F ′

t (P )b) for all t ∈ R.

Explicitly,
ab = (F ′

ta)(F ′
tb) for all t ∈ R.

This means that the flow preserves the Hilbert space structure of the tangent spaces
along the streamlines.

Proposition 12.29 The infinitesimal isometries of the Euclidean manifold E
3

form a real Lie subalgebra of Vect(E3) denoted by Lisom(E3).

Proof. Let v and w be infinitesimal isometries. If Lvg = 0 and Lwg = 0, then

L[v,w]g = Lv(Lwg) − Lw(Lvg) = 0.

Thus, the Lie product [v,w] is also an infinitesimal isometry. �

Physical interpretation. Fix the origin O of E
3. Choose the position vectors

x0 =
−−→
OP0 and ω0 at the origin. Parallel transport of the position vector v0 +ω0×x

to the point P yields the smooth velocity vector field

vP = v0 + ω0 × x. (12.116)

Using a Cartesian coordinate system, one shows easily that the following hold:

• Lvg = 0 on E
3 (Killing vector field),

• div v = 0 on E
3 (incompressible fluid), and

• curl v = 2ω0 on E
3 (constant vorticity).

The streamlines of the corresponding flow correspond to the superposition of a
parallel flow with the velocity vector v0 and a clockwise rotational flow about the
axis ω0 with angular velocity ω0 := |ω0|. One can show that all the infinitesimal
isometries of the Euclidean manifold E

3 are given by (12.116). Since the vectors v0

and ω0 have six components,

dimLisom(E3) = 6.

In addition, we have the Lie algebra isomorphism
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Lisom(E3)  o(3) � L(R3.

Here, o(3) � L(R3 denotes the Lie algebra of the isometry group O(3) � R
3 of E

3.
Generalization. Isometries are diffeomorphisms which preserve the length.

Let n = 1, 2, . . . The proof of the following fundamental theorem can be found in
S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Wiley,
New York, 1963.

Theorem 12.30 The isometries of an n-dimensional, arcwise connected, Rieman-
nian manifold M form a Lie group denoted by Isom(M).

The metric Killing vector fields on M form a real Lie algebra which is iso-
morphic to the Lie algebra L(Isom(M)) of the isometry group Isom(M). For the
dimension of the isometry group, we have the following inequality:

dim Isom(M) ≤ 1
2
n(n+ 1).

If the dimension of Isom(M) is equal to m := 1
2
n(n+ 1), then we say that the

manifold M has an isometry group of maximal dimension. For n = 1, 2, 3, 4, we
get the maximal dimensions m = 1, 3, 6, 10, respectively. The following Riemannian
manifolds possess an isometry group of maximal dimension:

• n = 1: the real line E
1, the unit circle S

1, and the projective line P
1 = S

1/{±I};
• n = 2: the Euclidean plane E

2, the 2-dimensional unit sphere S
2, the projective

plane P
2 = S

2/{±I}, and the hyperbolic upper half-plane of constant negative
curvature,R = −1 (see the Poincaré model of non-Euclidean hyperbolic geometry
in Sect. 5.10 of Vol. II);

• n = 3: the 3-dimensional Euclidean manifold E
3, the 3-dimensional unit sphere

S
3, the 3-dimensional projective space P

3 = S
3/{±I}, and the 3-dimensional

hyperbolic space of constant negative curvature, R = −1;
• n = 4, 5, . . .: the n-dimensional Euclidean manifold E

n, the n-dimensional unit
sphere S

n, the n-dimensional real projective space P
n = S

n/{±I}, and the n-
dimensional hyperbolic space of constant negative curvature, R = −1. The latter
is given by the n-dimensional open unit ball int(Bn) equipped with the following
metric introduced by Beltrami in 1868:37

ds2 =
dx2

1 + . . .+ dx2
n + dt2

t2

where t := 1 −
p

x2
1 + . . .+ x2

n.

Integral invariants. We want to show that the conditions

• Lvω = 0 and
• d(Lvω) = 0

for the Lie derivative Lvω of a differential form ω lead to

• absolute integral invariants
R

M ω and

• so-called relative integral invariants
R

∂M ω

with respect to the flow {Ft}t∈R generated by the velocity vector field v, respec-
tively. In the 19th century, Thomson (later Lord Kelvin), Helmholtz, Liouville, and
Poincaré discovered such invariants in fluid dynamics and celestial mechanics.38

Prototypes of an integral invariant are

37 A detailed historical discussion can be found in E. Scholz, History of Manifolds
from Riemann to Poincaré, Birkhäuser, Basel, 1980 (in German).

38 We recommend R. Abraham and J. Marsden, Foundations of Mechanics,
Addison-Wesley, Reading, Massachusetts, 1978.



734 12. Covector Fields and the Beauty of Differential Forms

• the volume of an incompressible fluid (Liouville’s absolute integral invariant along
streamlines) and

• the circulation of an ideal fluid (Thomson’s relative integral invariant along
streamlines),

and their generalizations to Hamiltonian flow in Hamiltonian mechanics. A gen-

eral approach to integral invariants was created by Élie Cartan in 1922 (see Car-
tan (1922) quoted on page 795). In 1918, Emmy Noether proved the fundamen-
tal Noether theorem. In terms of physics, this theorem tells us the following. If
the action integral is an integral invariant under some flow, then the solutions of
the Euler–Lagrange field equations satisfy a specific conservation law (see Sect.
12.8.5). All the crucial continuous conservation laws in physics are obtained this
way (e.g., conservation of energy, momentum, and angular momentum). In 1937,
Carathéodory discovered his ‘royal road’ to the calculus of variations based on
Huygens’ principle in geometrical optics and Hilbert’s invariant integral (see Sect.
12.9.9).

12.8.2 Absolute Integral Invariants and Incompressible Fluids

Let ω be a smooth differential r-form on the Euclidean manifold E
3, and let M be

a compact r-dimensional submanifold of E
3 where r = 1, 2, 3. Let v be a smooth

complete velocity vector field on E
3 which generates the flow {Ft}t∈R.

Theorem 12.31 Suppose that Lvω = 0 on E
3. Then, the pull-back (F ∗

t ω)P does
not depend on time t for all points P ∈ E

3. Furthermore, ω is an absolute integral
invariant, that is, we have39

Z

M
ω =

Z

Ft(M)

ω for all t ∈ R. (12.117)

Proof. Since Fs+t = FsFt, we get F ∗
s+t = F ∗

t F
∗
s . Hence

d

ds
F ∗
s+tω|s=0 = F ∗

t Lvω = 0.

Therefore, d
dt
F ∗
t ω = 0 for all t ∈ R. Noting that F ∗

t ω = ω if t = 0, we get

Z

M
ω =

Z

M
F ∗
t ω =

Z

Ft(M)

ω.

�

Example. If div v = 0 on E
3, then the flow {Ft}t∈R preserves the volume of

compact 3-dimensional submanifolds M of E
3. Explicitly, if υ denotes the volume

form of E
3, then

Z

M
υ =

Z

Ft(M)

υ for all t ∈ R.

Proof. By Prop. 12.17 on page 715, Lvυ = div v · υ = 0. �

39 If the velocity vector field is not complete, the claims are only valid for appro-
priate open time intervals J with 0 ∈ J. Here, J depends on the point P and the
set M.
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12.8.3 Relative Integral Invariants and the Vorticity Theorems
for Fluids due to Thomson and Helmholtz

Let ω be a smooth differential r-form on the Euclidean manifold E
3, and let M be a

compact, (r+ 1)-dimensional, oriented submanifold of E
3 with coherently oriented

boundary ∂M where r = 1, 2. Let v be a smooth complete velocity vector field on
E

3 which generates the flow {Ft}t∈R.

Theorem 12.32 Suppose that d(Lvω) = 0 on E
3. Then, dω is an absolute integral

invariant, and we have

Z

∂M
ω =

Z

∂(FtM)

ω for all t ∈ R. (12.118)

Proof. Note that Lv(dω) = d(Lvω) = 0. By Theorem 12.31 above, dω is an abso-
lute integral invariant, that is, for all t ∈ R,

Z

M
dω =

Z

Ft(M)

dω.

The general Stokes theorem yields the claim (12.118). �

The Thomson vorticity theorem. Let v be a smooth complete velocity
vector field on the Euclidean manifold E

3, and let M be a compact, 2-dimensional,
oriented submanifold of E

3 with coherently oriented boundary ∂M. Suppose that
the flow {Ft}t∈R, generated by the velocity vector field v, is the stationary flow
of an ideal fluid. Then the circulation along the oriented boundary curve ∂M is
preserved, that is,

Z

∂M
vdx =

Z

∂(FtM)

vdx for all t ∈ R.

Proof. Use Theorem 12.32 above and note that d(Lv(vdx)) = 0, by Prop. 12.26
on page 728. �

The Helmholtz vorticity theorem. Let v be a smooth velocity vector field
on E

3. Set ω := 1
2
curl v. Suppose that ω is a complete vector field on E

3, and let
{Ft}t∈R be the flow generated by ω. The streamlines of {Ft}t∈R are the vorticity
lines of the velocity vector field v. Let M be a compact 2-dimensional oriented
submanifold of E

3 with coherently oriented boundary ∂M. Then the circulation of
the velocity vector field v along the oriented curve ∂M satisfies the relation

Z

∂M
vdx =

Z

∂(FtM)

vdx for all t ∈ R.

Proof. Use Theorem 12.32 above and note that d(Lω (vdx)) = 0, by Prop. 12.26
on page 728. �

12.8.4 The Transport Theorem

We want to study the time derivative of the following integral

M(t) :=

Z

Ft(C)

�(P, t) υ, t ∈ R (12.119)
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where C is a compact subset of the Euclidean manifold E
3, and υ is the volume

form on E
3.40 We are given the smooth density function � : E

3 × R → R and the
smooth complete velocity vector field v on E

3 which generates the flow {Ft}t∈R. In
terms of physics, we regard �(P, t) as mass density (or electric charge density) at
the point P at time t. The integral M(0) =

R

C �(P, 0) υ is the mass of the domain
C at time t = 0. The flow transports the domain C at time t = 0 to the domain
Ft(C) at time t, and M(t) is the mass of the domain Ft(C) at time t.

Theorem 12.33 For all times t ∈ R, we have the time derivative

Ṁ(t) =

Z

Ft(C)

(�̇+ div �v)(P, t) υ. (12.120)

Proof. Note that M(t) =
R

C F
∗
t (�(P, t) υ). Fix time t = 0. The product rule yields

d

dt

`

F ∗
t �(P, t) υ

´

|t=0
=
d

dt

`

F ∗
t �(P, 0) υ

´

|t=0
+ �̇(P, 0) υ.

By Prop. 12.17 on page 715, this is equal to

(Lv�υ)(P, 0) + �̇(P, 0)υ = (div �v + �̇)(P, 0) υ.

Now consider an arbitrary time t. The same argument as in the proof of Theorem
12.31 on page 734 yields

d

dt

`

F ∗
t �(P, t) υ) = F ∗

t (div �v + �̇)(P, t) υ.

Integrating this over Ft(C), we obtain Ṁ(t). �

Mass conservation and the continuity equation. Theorem 12.33 is called
the transport theorem. This implies the following crucial result: Suppose that there
exists a smooth function Pext : E

3 × R → R such that

Ṁ(t) =

Z

Ft(C)

Pext(P, t) υ

for all times t ∈ R and all compact subsets C of E
3. Then we have the continuity

equation

�̇(P, t) + (div �v)(P, t) = Pext(P, t) for all P ∈ E
3, t ∈ R. (12.121)

In particular, if Ṁ(t) = 0 for all times and all compact subsets C of E
3, then

there holds the continuity equation (12.121) with Pext ≡ 0. In terms of physics,
the function Pext describes the external mass production (e.g., the change of the
number of specific particles caused by chemical reactions).
Proof. For fixed time t and balls C, use Theorem 12.33, and contract the sets Ft(C)
to the point P . �

40 In a Cartesian (x, y, z)-coordinate system, M(t) =
R

Ft(C)
�(P, t) dx ∧ dy ∧ dz.
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12.8.5 The Noether Theorem – Symmetry Implies Conservation
Laws in the Calculus of Variations

Roughly speaking, the fundamental Noether principle tells us that:

If the variational integral of a variational problem is invariant under a
one-parameter family of transformations of the independent and dependent
variables, then the solutions of the variational problem satisfy a conserva-
tion law.41

This principle is fundamental for relativistic quantum field theories. The relativistic
invariance of the action integral implies the invariance under time translations,
space translations, space rotations, and special Lorentz transformations. This yields
conservation of energy, momentum, and angular momentum, which will be studied
later on. At this point, we want to illustrate the basic idea in terms of the flow of
fluid particles.

We will show that the Noether theorem is a straightforward consequence of
the transport theorem.

In terms of mathematics, Noether’s conservation law represents a constraint for the
Euler–Lagrange equations of motion.

The variational problem. We want to investigate the following variational
problem:

Z

M
L
`

x,q(x),q′(x)
´

υ = critical!, q = q0 on ∂M. (12.122)

We are given the vector field q0 on the boundary ∂M of the 3-dimensional sub-
manifold M of the Euclidean manifold E

3. Here, υ denotes the volume form on E
3.

Moreover, we frequently replace the point P by the position vector x =
−−→
OP where

O denotes the origin. In what follows, all the functions are supposed to be smooth.
In particular, we assume that the Lagrangian L is a smooth real-valued function
of all its arguments. If the smooth vector field q = q(x) on M is a solution of
(12.122), then it satisfies the Euler–Lagrange equation

divLq′(Q) = Lq(Q) on int(M) (12.123)

with Q := (x,q(x),q′(x)). Conversely, if the smooth solution of (12.123) satisfies
the boundary condition q = q0 on ∂M, then it is a solution of the variational
problem (12.122).

Cartesian coordinate system. In a Cartesian (x, y, z)-coordinate system on
the Euclidean manifold E

3, we set

P := (x, y, z), x := xi + yj + zk, q(P ) := u(P )iP + v(P )jP + w(P )kP ,

and ∂u(P ) := (ux(P ), uy(P ), uz(P )) (see (Fig. 4.3 on page 323). Then the varia-
tional problem (12.122) reads as

Z

M
L(P, u(P ), v(P ), w(P ), ∂u(P ), ∂v(P ), ∂w(P )) dx ∧ dy ∧ dz = critical!

41 E. Noether, Invariant variational problems, Göttinger Nachrichten, Math.-phys.
Klasse 1918, 235–257 (in German).
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together with the boundary condition u = u0, v = v0, w = w0 on ∂M. The Euler–
Lagrange equation (12.123) corresponds to the system

∂

∂x
Lux(Q) +

∂

∂y
Luy (Q) +

∂

∂z
Luz (Q) = Lu(Q),

∂

∂x
Lvx(Q) +

∂

∂y
Lvy (Q) +

∂

∂z
Lvz (Q) = Lv(Q),

∂

∂x
Lwx(Q) +

∂

∂y
Lwy (Q) +

∂

∂z
Lwz (Q) = Lw(Q) (12.124)

with Q := (P, u(P ), v(P ), w(P ), ∂u(P ), ∂v(P ), ∂w(P )).
To write this concisely, we set x1 := x, x2 := y, x3 := z, ∂j := ∂/∂xj , and

q1 := u, q2 := v, q3 := w, e1 := iP , e2 := jP , e3 := kP , as well as q(P ) = qi(P )ei.
Then the Euler–Lagrange equation (12.124) can be written as42

∂sL∂sqi(Q) = Lqi(Q), i = 1, 2, 3.

We have divLq′(Q) = ∂sL∂sqi(Q) ei and Lq = Lqiei. These expressions do not
depend on the choice of the Cartesian coordinate system.

The prototype of the Noether theorem. Suppose that the Lagrangian L
does not depend on the variable q. Then Lq ≡ 0. It follows from the Euler–Lagrange
equation (12.123) that

divLq′
`

x,q(x),q′(x)
´

= 0 on int(M). (12.125)

It follows from (12.124) with Lu ≡ 0, Lv ≡ 0, and Lw ≡ 0 that equation (12.125)
represents the three conservation laws

divL∂u(Q) = 0, divL∂v(Q) = 0, divL∂w(Q) = 0 on int(M).

Equivalently, ∂sL∂sqi(Q) = 0 on int(M) if i = 1, 2, 3. As we will show below,
these three conservation laws follow from the invariance of the variational integral
R

M L(x,q′(x)) υ under the translations q �→ q+a with three translation parameters
given by the three components of the translation vector a.

The elegant correspondence principle in calculus. The symbol Lq de-
notes the Fréchet derivative with respect to the variable q on the Euclidean Hilbert
space E3. There exists a general calculus on Banach spaces which is designed in
such a way that the following mnemonic correspondence principle holds. To ex-
plain this, consider the Euler–Lagrange equation (12.123). If we regard x and q as
real variables, then (12.123) coincides with the Euler–Lagrange equation derived
in Sect. 6.5.2 of Vol. II. The extremely useful correspondence principle tells us the
following:

The formulas in classical calculus remain valid when passing to the calculus
in finite-dimensional or infinite-dimensional Banach spaces.

The calculus in Banach spaces is thoroughly studied in Zeidler (1986), Vol. I, quoted
on page 1089. The reader, who does not know this calculus, should use both the
correspondence principle as a useful mnemonic tool and Cartesian coordinates for
rigorous justification.

Transformation of the variational integral under the flow of fluid par-
ticles. We are given the smooth complete velocity vector field v on the Euclidean
manifold E

3. This velocity vector field generates a flow {Ft}t∈R of fluid particles.
In terms of mathematics, we have the family of diffeomorphisms

42 We sum over equal indices from 1 to 3.
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Ft : E
3 → E

3, t ∈ R,

with the group property F0 = I (identity map) and Ft+s = FtFs for all t, s ∈ R.
This is called a one-parameter group of diffeomorphisms. The velocity vector field
v is called the infinitesimal flow. The trajectory t �→ x(t) of a fluid particle is given
by x(t) := Ft(x) for all t ∈ R.

• Transformation: Let us pass from the original variables x,q on E3 to the new
variables X,Q on E3 given by the smooth transformation

X = X(x; t), Q = Q(x,q; t), t ∈ R. (12.126)

These transformation formulas depend on the real parameter t regarded as time.
We assume that the transformation is the identity map at the initial time t = 0,
that is, X(x; 0) = x and Q(x,q; 0) = q.

• Naturally enough, we choose the transformation X(x, t) := Ft(x). This yields
the time derivative Xt(x, 0) = v(x). By Taylor expansion,

X(x, t) = x + Xt(x, 0)t+ o(t), Q(x,q, t) = q + Qt(x,q, 0)t+ o(t), t→ 0.

• Linearized transformation: Motivated by the Taylor expansion, the transforma-
tion

X = x + v(x)t, Q = q + Qt(x,q, 0)t (12.127)

is called the linearization of the original transformation (12.126) at time t = 0
(or the infinitesimal transformation to (12.126)).

• The language of physicists: Setting δx := v(x)t and δq := Qt(x,q, 0)t, the
infinitesimal transformation reads as

X = x + δx, Q = q + δq.

• Perturbed curve: For fixed time t, the curve x �→ q(x) is transformed into the
curve X �→ q(X, t). Explicitly,

q(X, t) := Q(x,q(x), t), X = Ft(x).

In particular, q(x, 0) = q(x). This means that, naturally enough, we get the
unperturbed curve at time t = 0.

• The linearization of the perturbed curve is defined by

δq(x) := Qt(x,q(x), 0) · t. (12.128)

This is the crucial quantity which will appear in Noether’s conservation law
(12.134) on page 741. By Taylor expansion,

q(Ftx, t) = Q(x,q(x), t) = q(x) + δq(x) + o(t), t→ 0.

• The language of physicists: Mnemonically, physicists write

δx = v(x) δt, δq(x) = Qt(x,q, 0) δt.

Here, the symbol t is replaced by δt. For historical reasons, following Leibniz
and his successors, the symbol δt is frequently called an ‘infinitesimally small’
quantity.
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The reader should note that δt is not a mystical infinitesimally small quan-
tity, but a well-defined mathematical quantity, namely, a real number.

Similarly, δx and δq(x) are well-defined mathematical quantities, namely, vec-
tors.43

• Transformation of the variational integral: By definition, the given variational
integral

R

U L(x,q(x),q′(x)) dx ∧ dy ∧ dz is transformed into44

Z

Ft(U)

L
`

X,q(X, t),qX(X, t)
´

dX ∧ dY ∧ dZ. (12.129)

Now to the point. We assume that, for all open subsets U of E
3, the variational

integral is invariant, that is, the transformed integral (12.129) does not depend
on time t. Let x �→ q(x) be a smooth vector field on E

3. Introducing the density
function

�(X, t) := L(X,q(X, t),qX(X, t)),

the invariance of the variational integral means that
Z

Ft(U)

�(X, t) dX ∧ dY ∧ dZ = const for all t ∈ R.

This is equivalent to the condition
Z

U
X∗ (�(X, t) dX ∧ dY ∧ dZ) = const for all t ∈ R.

Contracting the open set U to some point, this is equivalent to the local condition

�(X(x, t), t)
∂(X,Y, Z)

∂(x, y, z)
(x, t) = �(x, 0) for all t ∈ R, (x, y, z) ∈ R

3.

The Noether constraint via the transport theorem. By the transport
theorem on page 735, we get the continuity equation

�t(X, t) + div (�(X, t)v(X)) = 0. (12.130)

We only need this equation at time t = 0.

Proposition 12.34 It follows from (12.130) at time t = 0 that

Lq(Q)u(x) + Lq′(Q) · u′(x) + div
`

L(Q)v(x)
´

= 0 on E
3 (12.131)

where we set Q :=
`

x,q(x),q′(x)
´

, and δq(x) := Qt(x,q(x), 0), as well as

u(x) := δq(x) − q′(x)v(x).

In a Cartesian coordinate system, equation (12.131) reads as

Lqi(Q)ui(x) + L∂sqi(Q)∂su
i + ∂s(L(Q)vs(x)) = 0 (12.132)

with ui := δqi − (∂sq
i)vs.

43 In Sect. 4.6 of Vol. II, we investigate the rigorous justification of infinitesimally
small quantities in terms of non-standard analysis.

44 The symbol qX denotes the partial derivative with respect to the variable X.
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Proof. Noting that X = x at time t = 0, it follows from (12.130) that

�t(x, 0) + div
`

�(x, 0)v(x)
´

= 0.

It remains to compute �t(x, 0).
(I) It follows from �(X, t) = L(X,q(X, t),qX(X, t)) that

�t(X, t) = Lq(.)qt(X, t) + Lq′(.) · qXt(X, t).

By the chain rule, the definition q(X, t) := Q(x,q(x), t) yields

qt(X, t) =
∂

∂x
Q(x,q(x), t)

∂x(X, t)

∂t
+ Qt(.)

=
`

Qx(.) + Qq(.)q′(x)
´∂x(X, t)

∂t
+ Qt(.).

Since X = Ft(x), we obtain x = F−t(X). Hence ∂x(X,0)
∂t

= −v(X) = −v(x). Since
we have the identity map Q(x,q, 0) = q at time t = 0, we obtain

Qq(x,q, 0) = I, Qx(x,q, 0) = 0.

Recall the definition δq(x) := Qt(x,q(x), 0)t. Fix t = 1. Thus, at the point t = 0,
we get

qt(x, 0) = δq(x) − q′(x)v(x).

(II) Note that ∂2q
∂t∂X

= ∂2q
∂X∂t

. Thus, at the point t = 0, it follows from (I) that

qXt(x, 0) =
d

dx

`

δq(x) − q′(x)v(x)
´

.

�

The conservation law (Noether theorem). Finally, we will combine the
Noether constraint (12.131) with the Euler–Lagrange equation. Let us use the no-
tation introduced on page 739. We are given the smooth complete vector field
x �→ v(x) on the Euclidean manifold E

3 and the transformation (12.126). This
transformation is related to the flow {Ft}t∈R generated by the vector field v.

Theorem 12.35 Suppose that the variational integral
R

U L(Q) υ is invariant under

the transformation (12.126) for all open subsets U of the Euclidean manifold E
3.

Then every smooth solution x �→ q(x) of the Euler–Lagrange equation

divLq′(Q) = Lq(Q) on int(M) (12.133)

satisfies the conservation law div J(x) = 0 on int(M) with the current density vector

J(x) := L(Q)v(x) + Lq′(Q)u(x) (12.134)

where u(x) := δq(x) − q′(x)v(x), and δq(x) := Qt(x,q, 0).

In a Cartesian coordinate system, the conservation law reads as

∂s
`

L(Q)vs(x) + L∂sqi(Q)ui(x)
´

= 0 on int(M) (12.135)

with ui := δqi − (∂sq
i)vs, i = 1, 2, 3.

Proof. By the Euler–Lagrange equation, Lqi = ∂sL∂sqi . The Noether constraint
(12.132) yields
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ui∂sL∂sqi + L∂sqi∂su
i + ∂s(Lv

s) = 0.

Using the product rule, we get the claim (12.135). �

In the following examples, let q = q(x) denote an arbitrary solution of the
Euler–Lagrange equation (12.133) above.

Example 1 (translation of q). If the Lagrangian L = L(x,q′) does not depend on
the variable q, then we get the conservation law

divLq′(Q) a = 0 on M

with Q := (x,q′(x)) for all vectors a ∈ E3. Choosing a = i, j,k, we get the following
three conservation laws:

divLq′(Q) i = 0, divLq′(Q) j = 0, divLq′(Q) k = 0 on int (M).

This coincides with (12.125) on page 738.
Proof. Choose the trivial vector field v(x) ≡ 0 which generates the trivial flow
Ft(x) = x for all t ∈ R. Fix the vector a. Define the transformation

X(x, t) := x, Q(x,q, t) := q + ta, t ∈ R.

The transformed function reads as q(x, t) := q(x) + ta with the perturbation pa-
rameter t. It follows from
Z

U
L(x,qx(x, t)) dx ∧ dy ∧ dz =

Z

U
L(x,q′(x)) dx ∧ dy ∧ dz for all t ∈ R

that the variational integral is invariant under the transformation (x,q) �→ (X,Q).
From δq(x) := Qt(x,q, 0) = a and the Noether theorem (12.134), we get the claim.

�

Example 2 (translation of x). If the Lagrangian L = L(q,q′) does not depend on
the position vector x, then we get the conservation law

div
`

L(Q)v0 − Lq′(Q)q′(x)v0

´

= 0 on int(M) (12.136)

for all vectors v0 ∈ E3. Here, Q := (q
`

x),q′(x)
´

. Choosing v0 = i, j,k, we obtain
the following three conservation laws:

div
`

L(Q)i − Lq′(Q)q′(x)i
´

= 0, div
`

L(Q)j − Lq′(Q)q′(x)j
´

= 0,

div
`

L(Q)k − Lq′(Q)q′(x)k
´

= 0 on int(M).

Proof. Choose the constant vector field v(x) := v0. This generates the flow
Ft(x) := x + tv0. Define the transformation

X(x, t) := x + tv0, Q(x,q, t) := q, t ∈ R.

This yields the transformed curve q(X, t) := Q(x,q(x), t) = q(x). The translation
invariance of the integral tells us that
Z

Ft(U)

L
`

q(X, t), qX(X, t)
´

dX ∧ dY ∧ dZ =

Z

U
L
`

q(x),q′(x)
´

dx ∧ dy ∧ dz.

This is the invariance of the variational integral with respect to the transformation
(x,q) �→ (X,Q). Since δq(x) := Qt(x,q, 0) = 0, the Noether theorem (12.134)
yields the claim. �
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Example 3 (induced flow of vector fields). We are given the smooth complete
vector field x �→ v(x) on the Euclidean manifold E

3 which generates the flow
{Ft}t∈R. Consider the transformation

X(x, t) := Ft(x), Q(x,q, t) := F ′
t (x)q, t ∈ R. (12.137)

By (10.10) on page 650, this corresponds to the linearized transformation

X(x, t) = x + v(x) · t, Q(x,q, t) = q + v′(x)q · t, t ∈ R.

If the variational integral (12.122) on page 737 is invariant under the transformation
(12.137), then we get the conservation law45

div
`

L(Q)v(x) + Lq′(Q) [q,v](x)
´

= 0 on int(M). (12.138)

Proof. Use δq(x) = v′(x)q(x) and the Noether theorem (12.134). �

Example 4 (rotational invariance). As a special case of Example 3, let us consider
a rotation about the origin. Fix the nonzero vector ω. We are given the velocity
vector field

v(x) := ω × x

which generates the flow Ft(x0) := x(t) with ẋ(t) = ω×x(t), t ∈ R, and x(0) = x0.
Let us use the transformation (12.137) which represents a clockwise rotation of
points and vector fields about the axis ω through the origin with the angular
velocity ω = |ω|. Since

v′(x)h =
d

dσ
v(x + σh)|σ=0 = ω × h,

the linearized transformation reads as

X(x, t) := x + (ω × x) t, Q(x,q, t) = q + (ω × q) t.

Thus, δx := (ω × x) δt and δq := (ω × q) δt. Then the conservation law (12.138)
passes over to

div
“

L(Q)(ω × x) + Lq′(Q)
`

ω × q(x) − q′(x)(ω × x)
´

”

= 0 on int(M)

for all vectors ω ∈ E3. Choosing ω = i, j,k, we get three conservation laws. For
example, the variational integral

Z

M

`

(div q)2 − q2´ dx ∧ dy ∧ dz

is invariant under rotations.
The linearized version of the Noether theorem. Sometimes it is useful to

apply the following corollary of the Noether theorem. For the proof of the corollary,
note that we only need a local variant of the arguments used above. In particular, it
is sufficient to have a local flow near time t = 0 at hand. Set Q :=

`

x,q(x),q′(x)
´

,

and u(x) := δq(x) − q′(x)v(x).

45 Recall the Lie bracket [q,v](x) = v′(x)q(x) − q′(x)v(x).
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Corollary 12.36 Suppose that we are given two smooth vector fields x �→ v(x)
and x �→ δq(x) on the open set O of the Euclidean manifold E

3 which satisfy the
Noether constraint

Lq(Q)u(x) + Lq′(Q) · u′(x) + div
`

L(Q)v(x)
´

= 0 on O (12.139)

for all smooth maps x �→ q(x) on O. Then we get the conservation law

div
`

L(Q)v(x) + Lq′(Q)u(x)) = 0 on O (12.140)

for all solutions x �→ q(x) of the Euler–Lagrange equation (12.133) on O.

In a Cartesian coordinate system on E
3, the formulation of (12.139) (resp.

(12.140)) can be found in (12.132) (resp. (12.135)).

Example. If the Lagrangian L = L(x,q′) does not depend on the variable q, then
we get the conservation law

divLq′(x,q′(x)) a = 0 on O

for all vectors a ∈ E3 and all solutions q = q(x) of the Euler–Lagrange equation
(12.133) on O. Choosing the special vectors a = i, j,k, this yields three conservation
laws as in Example 1 on page 742.
Proof. Fix the vector a. Set v(x) :≡ 0 and δq(x) := a. Then u(x) = a. Hence
u′(x) ≡ 0. Obviously, the Noether constraint (12.139) is satisfied, and the claim
follows from (12.140). �

Lie’s strategy of linearization and the fundamental role of infinitesi-
mal transformations in physics. Lie discovered that the local theory of symme-
try is completely governed by studying the corresponding linearizations. Corollary
12.36 establishes this for the Noether symmetry principle. This is the reason why
the restriction to infinitesimal transformations is successful in the physics literature.

12.9 The Hamiltonian Flow on the Euclidean Manifold
– a Paradigm of Hamiltonian Mechanics

The most elegant formulation of classical mechanics is based on Cartan’s
calculus of exterior differential forms starting with the Poincaré–Cartan
1-form pdq −Hdt.

Folklore

The classical problem. We want to study the motion

q = q(t), t ∈ R (12.141)

of a point of mass m > 0 on the real line. Here, q and t denote position and time,
respectively. We want to study this problem in the setting of Hamiltonian mechanics
based on the key Hamiltonian function

H = H(q, p, τ).

In terms of physics, H represents the energy function depending on position q,
momentum p, and time τ. As starting point, we choose the Hamiltonian equation
of motion
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Fig. 12.21. Legendre transformation

q̇(t) = Hp(P (t)), ṗ(t) = −Hq(P (t)), τ̇(t) = 1, t ∈ R (12.142)

with the initial condition q(t0) = q0, p(t0) = p0, τ(t0) = t0. Here, we introduce the
point P := (q, p, τ) with the real coordinates

• q (position), p (momentum), v (velocity), t, τ (time).

In addition, we set

• (q, v) (point of the state space E
2),

• Q := (q, v, τ) (point of the extended state space E
3),

• (q, p) (point of the phase space E
2),

• (q, p, τ) (point of the extended phase space E
3).

The Hamiltonian function P �→ H(P ) is assumed to be a smooth function

H : E
3 → R

on the extended phase space. Here, as depicted in Fig. 12.21(b), we fix a right-
handed Cartesian (q, p, τ)-coordinate system on E

3 with the right-handed orthonor-
mal basis i, j,k at the origin O. By parallel transport, this yields the basis iP , jP ,kP

of the tangent space TPE
3 at the point P (see Fig 4.3 on page 323). In this setting,

the Hamiltonian equation of motion (12.142) describes a curve in the extended
phase space E

3. The gauge condition τ̇(t) = 1 together with τ(t0) = t0 implies
τ(t) = t for all t ∈ R.

For example, the Hamiltonian function

H(q, p) :=
p2

2m
+
ω2q2

2
, q, p ∈ R

describes the so-called harmonic oscillator on the real line. The Hamiltonian equa-
tion of motion (12.142) reads as

q̇(t) =
p(t)

m
, ṗ(t) = −ω2q(t), τ̇(t) = 1, t ∈ R

with q(0) = q0, p(0) = p0, τ(0) = 0. The unique solution (12.142) is given by

q(t) = q0 sinωt, p(t) = mq̇(t), τ(t) = t for all t ∈ R.

This is an oscillation on the real line with angular frequency ω > 0. For given initial
momentum p0, we get the initial velocity q̇(0) = p0/m.

The language of geometry in higher dimensions. It was discovered in the
history of classical mechanics that it is necessary to pass to higher dimensions in
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order to get insight. To discuss this, let us start with the trajectory (12.141) on the
real line. Introducing the velocity v(t) := q̇(t), we get the curve

C : q = q(t), v = v(t), τ = t, t ∈ R (12.143)

in the 3-dimensional extended state space (Fig. 12.21(a)). Introducing the momen-
tum p(t) := mq̇(t), the motion (12.143) passes over to the curve

C : q = q(t), p = p(t), τ = τ(t), t ∈ R

in the 3-dimensional extended phase space (Fig. 12.21(b)). Our goal is to simplify
the integration of the Hamiltonian equation of motion (12.142) by using

• a variational problem for the curve C (principle of critical action), and
• a geometric transformation called canonical transformation (Lie’s contact geom-

etry with respect to the Poincaré–Cartan contact 2-form).

The Legendre transformation. There exist two approaches to classical me-
chanics, namely,

• the Hamiltonian approach on the extended phase space, and
• the Lagrangian approach on the extended state space.

Historically, the Hamiltonian approach due to Hamilton (1805–1865) was derived
from the Lagrangian approach due to Lagrange (1736–1813). In what follows, for
pedagogical reasons, we will reverse the order. We will first concentrate on the
Hamiltonian approach based on the extended phase space. In Sect. 12.9.8, we will
use the Legendre transformation in order to pass from the Hamiltonian approach to
the Lagrangian approach and vice versa. In fact, the two approaches are equivalent.
In Vol. II, concerning quantum mechanics we studied in detail

• the Hamiltonian approach due to Heisenberg, Schrödinger, Dirac, and von Neu-
mann (operator theory and the Schrödinger equation), and

• the Lagrangian approach due to Dirac and Feynman (the Feynman path integral).

12.9.1 Hamilton’s Principle of Critical Action

We will work in the extended phase space E
3 introduced above. We are given the

points P0 = (q0, p0, t0) and P1 = (q1, p1, t1) of E
3. Here, −∞ < t0 < t1 < ∞. The

curve
C : P = P (t), t ∈ R

is called admissible iff it is smooth and P (t0) = P0, P (t1) = P1. Explicitly, the
curve C is given by

C : q = q(t), p = p(t), τ(t) = t, t ∈ R. (12.144)

The symbol A denotes the set of all admissible curves. The variational problem

Z

C
pdq −Hdτ = critical!, C ∈ A (12.145)

is called Hamilton’s principle of critical action. Note that pdq−Hdτ has the physical
dimension of energy × time = action.

The extremals. We are looking for admissible curves C such that the line
integral

R

C pdq −Hdτ becomes critical.
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Theorem 12.37 The admissible curve C is a solution of (12.145) iff it corresponds
to a solution of the Hamiltonian equation of motion (12.142).

Proof. Using the parametrization (12.144), the variational problem (12.145) reads
as

Z t1

t0

(p(t)q̇(t) −H(q(t), p(t), t)) dt = critical! (12.146)

with the boundary conditions q(tj) = qj and p(tj) = pj if j = 0, 1. By the basic
result of the calculus of variations, the solutions of (12.146) are characterized by
the Euler–Lagrange equations

d

dt
Lq̇ = Lq,

d

dt
Lṗ = Lp

with L(q, q̇, p, t) := pq̇ − H(q, p, t). Hence d
dt
p = −Hq and 0 = q̇ − Hp. This is

(12.142). �

The key formulas for the extremals (Hamiltonian flow). In the next
sections, we will investigate the extremals of the principle of critical action, that is,
the solutions of the Hamiltonian equation of motion (12.142). At this point, let us
summarize the key formulas which will be used below. In order to get an intuitive
physical picture, let us write (12.142) in the succinct form

ẋ(t) = v(P (t)), t ∈ R.

This describes the motion of fluid particles on the extended phase space. The ve-
locity vector field v is called the Hamiltonian vector field, and the corresponding
flow is called the Hamiltonian flow. Introducing the Poincaré–Cartan 1-form

χ := pdq −Hdτ,

which is the integrand of the action integral in (12.145), we get the equation

iv(dχ) = 0,

as we will show below. In order to solve the equation of motion (12.142), we will
use canonical transformations F based on the formula

F ∗χ = χ+ dS.

This is equivalent to F ∗(dχ) = dχ (contact transformation with respect to the
Poincaré–Cartan 2-form dχ). The solution procedure for the Hamiltonian equation
of motion (12.142) will be based on the solution of the Hamilton–Jacobi partial
differential equation

St(q, t) +H(q, Sq(q, t), t) = 0 (12.147)

by a family S = S(q, t;Q) of solutions which depends on the real parameter Q. The
basic idea is to use the function S in order to generate a canonical transformation
which transforms the Hamiltonian equation of motion into a system which can be
easily solved.

This is the prototype of a close relationship between first-order partial differen-
tial equations (e.g., (12.147)) and systems of ordinary differential equations (e.g.,
(12.142)). In terms of geometric optics, this corresponds to the relation between
light rays and wave fronts of light (see Chap. 5 of Vol. II).
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12.9.2 Basic Formulas

Let us introduce the following quantities:

• x := qi + pj + τk (position vector x =
−−→
OP at the origin O with P = (q, p, τ)),

• vP = Hp(P )iP − Hq(P )jP + kP (Hamiltonian velocity vector field v on E
3 at

the point P ),
• VP := Hp(P ) ∂

∂q
−Hq(P ) ∂

∂p
+ ∂

∂τ
(Hamiltonian derivation at the point P – linear

partial differential operator of first order on C∞(E3,R)),46

• {Θ,H} := ΘqHp −ΘpHq (Poisson bracket),
• σ := dq ∧ dp (symplectic 2-form on E

3),
• χ := pdq −Hdτ (Poincaré–Cartan 1-form).

The Hamiltonian flow. The differential equation

ẋ(t) = v(P (t)), t ∈ R, x(0) = x0 (12.148)

is equivalent to the Hamiltonian equation of motion (12.142). We assume that the
Hamiltonian velocity vector field v is complete. The corresponding flow is defined
by

Ftx0 := x(t), t ∈ R

where x = x(t) is the unique solution of (12.148). In order to study conservation
laws with respect to the Hamiltonian flow {Ft}t∈R, one has to investigate the Lie
derivative Lvω of differential forms. This will be done next.

The Lie derivative. Let Θ : E
3 → R be a smooth temperature field on E

3.
There hold the following formulas on E

3:

(i) LvΘ = V (Θ) = {Θ,H} +Θτ ,
(ii) LvH = Hτ ,
(iii) iv(dq) = Hp, iv(dp) = −Hq, iv(dτ) = 1,
(iv) Lv(dq) = dHp and Lv(dp) = −dHq,
(v) iv(dH) = Hτ ,
(vi) dσ = 0,
(vii) ivσ = dH −Hτdτ ,
(viii) Lvσ = −dHτ ∧ dτ,
(ix) dχ = −σ − dH ∧ dτ ,
(x) iv(dχ) = 0,
(xi) d(Lvχ) = Lv(dχ) = 0.

46 In modern differential geometry, one identifies the Hamiltonian velocity vector
field v on E

3 with the Hamiltonian derivation V on the space C∞(E3,R) of
smooth functions Θ : E

3 → R. Mnemonically, this is very convenient (see Sect.
8.15 on page 529).
Moreover, observe the following. In modern mathematical physics, Hamiltonian
mechanics is formulated in terms of the cotangent bundle of the position space.
In the present situation, the position space is the real line E

1, and the cotangent
bundle

T ∗
E

1 = E
1 × (E1)d

is called the phase space. In order to get an intuitive interpretation, we identify
T ∗

E
1 with the Euclidean (q, p)-plane E

2, and the extended phase space T ∗
E

1×R

is identified with the Euclidean (q, p, τ)-manifold E
3. All the identifications are

based on linear isomorphisms between the relevant linear spaces.
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Proof. We will use the following formulas: Let α (resp. β) be an r-form (resp.
s-form) on E

3 with r, s = 0, 1, 2, 3. Then:

• d(α ∧ β) = dα ∧ β + (−1)rα ∧ dβ (antiderivation),
• iv(α ∧ β) = ivα ∧ β + (−1)rα ∧ ivβ (antiderivation),47

• Lv(α ∧ β) = Lvα ∧ β + α ∧ Lvβ (derivation),
• d(dα) = 0 (Poincaré’s cohomology rule),
• Lvα = iv(dα) + d(ivα) (Cartan’s magic formula),
• Lv(dβ) = d(ivdβ), since d(dβ) = 0.

Ad (i), (ii). See (10.14) on page 651.
Ad (iii). iv(dq) = dq(v) = Hp.
Ad (iv). Lv(dq) = d(ivdq) = dHp.
Ad (v). iv(dH) = iv(Hqdq) + iv(Hpdp) + iv(Hτdτ). This is equal to

Hqiv(dq) +Hpiv(dp) +Hτ iv(dτ) = HqHp −HpHq +Hτ iv(dτ).

Ad (vi). d(dq ∧ dp) = d(dq) ∧ dp− dq ∧ d(dp) = 0.
Ad (vii). ivσ = iv(dq) ∧ dp− dq ∧ iv(dp) = Hpdp+Hqdq = dH −Hτdτ.
Ad (viii). Lvσ = iv(dσ) + d(ivσ) = d(ivσ) = d(dH −Hτdτ) = −dHτ ∧ dτ.
Ad (ix). dχ = d(pdq −Hdτ) = dp ∧ dq − dH ∧ dτ.
Ad (x). iv(dχ) = −iv(σ) − iv(dH) ∧ dτ + dH ∧ iv(dτ). This is equal to
−dH +Hτdτ −Hτdτ + dH = 0.
Ad (xi). Lv(dχ) = d(iv(dχ)) = 0.

�

12.9.3 The Poincaré–Cartan Integral Invariant

Let v be a smooth complete Hamiltonian velocity vector field on the Euclidean
manifold E

3 which generates the Hamiltonian flow {Ft}t∈R. Let M be a compact
2-dimensional oriented submanifold of E

3 with coherently oriented boundary ∂M.

Theorem 12.38 For all times t ∈ R,
Z

∂M
pdq −Hdτ =

Z

∂(FtM)

pdq −Hdτ.

This is called the Poincaré–Cartan integral invariant.

Proof. Use Theorem 12.32 on page 735 together with dLv(pdq−Hdτ) = 0, by (xi)
on page 748. �

12.9.4 Energy Conservation and the Liouville Integral Invariant

Let us consider the special case where the Hamiltonian function H = H(q, p) does
not depend on time. That is, we want to study the Hamiltonian equation of motion

q̇(t) = Hp(q(t), p(t)), ṗ(t) = −Hq(q(t), p(t)), t ∈ R (12.149)

with the initial condition q(t0) = q0, p(t0) = p0. Set Q := (q, p). The velocity vector
field

wQ := Hp(Q)iQ −Hq(Q)jQ

is called the Hamiltonian vector field on the Euclidean (q, p)-plane E
2 corresponding

to H. We assume that w is complete. Then it generates the flow {Ft}t∈R which is
called the Hamiltonian flow on E

2. Set σ := dq ∧ dp. Then:

47 Recall that, by definition, ivα = 0 if r = 0.
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(a) dσ = 0 on E
2;

(b) Lwσ = 0 on E
2;

(c) LwH = {H,H} = 0.

For the proof, use the same argument as on page 748.
Energy conservation. It follows from (c) that the Hamiltonian function is a

conserved quantity under the Hamiltonian flow, that is, for the solutions of (12.149),
we have

H(q(t), p(t)) = H(q0, p0) for all t ∈ R.

In physics, H represents the energy.
Conservation of the phase volume. Suppose that C is a compact subset of

the (q, p)-plane E
2. It follows from (b) together with Theorem 12.31 on page 734

that
Z

Ft(C)

dq ∧ dp =

Z

C
dq ∧ dp for all t ∈ R.

In classical terms,
R

Ft(C)
dqdp =

R

C dqdp, that is, the phase volume is preserved.

This is Liouville’s theorem.

12.9.5 Jacobi’s Canonical Transformations, Lie’s Contact
Geometry, and Symplectic Geometry

Canonical transformations preserve the structure of the Hamiltonian equa-
tions of motion. This can be used in order to get simpler Hamiltonian equa-
tions which can be solved explicitly. In the 19th century, mathematicians
and physicists constructed more and more canonical transformations in
order to attack the two basic problems in celestial mechanics: the explicit
solution of the n-body problem (n ≥ 3), and the stability of our planetary
system.48

Time-independent Hamiltonian functions (i.e., energy functions) H are
related to symplectic geometry on even-dimensional symplectic phase
spaces M (e.g., M = E

2). In contrast to this situation, time-dependent
Hamiltonian functions are related to the contact geometry on the odd-
dimensional product manifold M × R where the space R describes time
(e.g., E

2 × R = E
3).

Sophus Lie (1842–1899) is the father of symplectic and contact geometry.
Folklore

Jacobi’s crucial trick. Consider again the Hamiltonian equation of motion

q̇(t) = Hp(q(t), p(t), τ(t)), ṗ(t) = −Hq(q(t), p(t), τ(t)), τ̇(t) = 1 (12.150)

for all t ∈ R. It was Jacobi’s idea to use a transformation

Q = Q(q, p, τ), P = P(q, p, τ), T = τ (12.151)

in order to obtain the transformed equation of motion

Q̇(t) = Hp(Q(t),P(t), T (t)), Ṗ(t) = −HQ(Q(t),P(t), T (t)), Ṫ (t) = 1 (12.152)

48 See R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley,
Reading, Massachusetts, 1978, and D. Boccaletti and G. Pucacco, Theory of
Orbits: Vol 1: Integrable Systems and Non-Perturbative Methods, Vol. 2: Per-
turbative and Geometrical Methods, Springer, Berlin, 1996.
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for all t ∈ R with the transformed Hamiltonian function

H(Q,P, t) := H(q, p, t).

Such transformations were called canonical transformations by Jacobi.49 In partic-
ular, suppose that we find such a transformation with H ≡ 0. Then, Q = const and
P = const by (12.152). Reversing the transformation (12.151), we get a solution of
(12.150). Jacobi found out that such a transformation exists if we know a solution
S = S(q, t;Q) of the Hamilton–Jacobi partial differential equation

St(q, t;Q) +H(q, Sq(q, t;Q), t) = 0

which depends on the parameter Q. Let us discuss this.
The rank of a 2-form. Fix m = 2, 3, . . . Let ω be a 2-form on the m-

dimensional manifold M. Consider the skew-symmetric (m×m)-matrix

(ωP (bi,bj)), i, j = 1, . . . ,m (12.153)

where b1, . . . ,bm is a basis of the tangent space TPM. By definition, the 2-form
ω has the rank r iff the matrix (12.153) has the rank r for all points P ∈ M.
This definition does not depend on the choice of the basis vectors b1, . . . ,bm. If
m is odd, then the determinant of the matrix (12.153) vanishes. Thus, we have
r ≤ m− 1. If m is even, then r ≤ m. We have maximal rank, that is, r = m iff ωP
is non-degenerate for all P ∈ M.50

The symplectic 2-form σ on the Euclidean phase space E
2. The Eu-

clidean (q, p)-plane E
2 of the Euclidean (q, p, τ)-manifold E

3 is called the phase
space for the motion on the real line (Fig. 12.21(b) on page 745). The trajectory
q = q(t), t ∈ R, of a particle of mass m > 0 moving on the real line corresponds to
the curve q = q(t), p = p(t) = mq̇(t) on E

2. Set σ := dq ∧ dp.
The 2-form σ is symplectic on E

2, that is, dσ = 0, and the rank of σ is
maximal on E

2 (r = 2).

Proof. Set e1 := iP , e2 := jP . Then

σP (ei, ej) = dq(ei)dp(ej) − dq(ej)dp(ei), i, j = 1, 2.

Hence
 

σP (e1, e1) σP (e1, e2)

σP (e2, e1) σP (e2, e2)

!

=

 

0 1

−1 0

!

.

�

The Euclidean (q, p)-plane becomes a symplectic manifold equipped with the sym-
plectic form σ.

The map F : E
2 → E

2 is called a symplectic isomorphism iff it is a diffeomor-
phism and F ∗σ = σ. Explicitly, the map f is given by Q = Q(q, p), P = P (q, p)
with dQ ∧ dP = dq ∧ dp.

Proposition 12.39 The diffeomorphism F : E
2 → E

2 is a symplectic isomorphism
iff there exists a smooth function S : E

2 → E
2 with F ∗(pdq) = pdq − dS on E

2.

49 See C. Jacobi, Lectures on Analytical Mechanics (including Celestial Mechanics).
Edited by the German Mathematical Society (DMV), Vieweg, Braunschweig
1996 (in German).

50 This means that ωP (v,w) = 0 for fixed v ∈ TPM and all w ∈ TPM implies
v = 0.
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The function S = S(q, p) is called the generating function of the symplectic isomor-
phism F .
Proof. If F ∗(pdq) = pdq − dS, then

F ∗σ = F ∗(dq ∧ dp) = −F ∗d(pdq) = −dF ∗(pdq) = −d(pdq) = σ.

Thus, F is a symplectic isomorphism.
Conversely, if F ∗σ = σ, then d(F ∗(pdq) − pdq) = 0 on E

2. It follows from the
Poincaré–Volterra theorem (Theorem 12.46 on page 762) that there exists a smooth
function S : E

2 → E
2 such that F ∗(pdq) − pdq = −dS. �

The Poincaré–Cartan contact 2-form dχ on the extended phase space
E

3. Our goal is to study the Hamiltonian equations of motion (12.150) for time-
dependent Hamiltonian functions H = H(q, p, t). To this end, we need the extended
phase space E

2×R. This Euclidean (q, p, τ)-space E
3 is depicted in Fig. 12.21(b) on

page 745. Differentiating the Poincaré–Cartan 1-form χ := pdq −Hdτ , we get the
differential dχ = dp∧dq−dH ∧dτ = −σ−dH ∧dτ. The dimension of a symplectic
manifold is always even. Therefore, the 3-dimensional extended phase space E

3

cannot be equipped with a symplectic structure. However, it can be equipped with
a contact structure.

The 2-form dχ is a contact form on E
3, that is, d(dχ) = 0, and the rank

of dχ is maximal (r = 2).

Proof. Note that
0

B

@

dχP (e1, e1) dχP (e1, e2) dχP (e1, e3)

dχP (e2, e1) dχP (e2, e2) dχP (e2, e3)

dχP (e3, e1) dχP (e3, e2) dχP (e3, e3)

1

C

A

=

0

B

@

0 −1 −Hq(P )

1 0 −Hp(P )

Hq(P ) Hp(P ) 0

1

C

A

.

The determinant of this skew-symmetric matrix vanishes. Thus, the rank of this ma-
trix is equal to 2. The extended (q, p, τ)-phase space E

3 becomes a contact manifold
equipped with the Poincaré–Cartan contact 2-form dχ.

Canonical transformation. The map F : E
3 → E

3 is called a canonical
transformation iff it is a contact isomorphism, that is, F is a diffeomorphism and

F ∗(dχ) = dχ.

Explicitly, the map F has the form

Q = Q(q, p, τ), P = P(q, p, τ), T = T (q, p, τ) (12.154)

with
−dQ∧ dP − dH(Q,P, T ) ∧ dT = −dq ∧ dp− dH(q, p, τ) ∧ dτ

where H(Q,P, T ) = H(q, p, τ).

Proposition 12.40 The diffeomorphism F : E
3 → E

3 is a contact isomorphism
iff there exists a smooth function S : E

3 → E
3 with F ∗χ = χ− dS.

The function S = S(q, p, τ) is called the generating function of the canonical trans-
formation. The proof follows by using the same argument as in the proof of Prop.
12.39 above.
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12.9.6 Hilbert’s Invariant Integral

Fix the points P0 and P1 in the extended phase space, and recall the definition of
the set A of admissible curves C (see page 746).

Proposition 12.41 If F : E
3 → E

3 is a canonical transformation, then there exists
a real constant such that

Z

C
F ∗χ =

Z

C
χ+ const for all C ∈ A.

The integral
R

C χ =
R

C pdq −H(q, p, τ)dτ is called Hilbert’s invariant integral.

The claim follows from F ∗χ = χ− dS, and hence
Z

C
F ∗χ =

Z

C
χ− S(P1) + S(P0).

Theorem 12.42 Canonical transformations send solutions of the Hamiltonian
equation of motion to solutions of the transformed Hamiltonian equation of mo-
tion.

Proof. The variational problem of critical action
R

C χ = critical!, C ∈ A and the
transformed problem

Z

C
F ∗χ = critical!, C ∈ A

possesses the same solutions, since the integrals only differ by a constant according
to Prop. 12.41. Then the claim follows from Theorem 12.37 on page 747. �

12.9.7 Jacobi’s Integration Method

Suppose that the smooth function S : R
3 → R is a solution of the Hamilton–Jacobi

partial differential equation

St(q, t;Q) +H(q, Sq(q, t;Q), t) = 0, (q, t,Q) ∈ R
3

where Q plays the role of an additional real parameter. Suppose that the equation

p = Sq(q, t;Q), P = −SQ(q, t;P) (12.155)

can be solved globally such that map (q, p, t) �→ (Q,P, t) is a diffeomorphism F
from R

3 onto R
3.

Theorem 12.43 If we fix the real parameters Q and P, then (12.155) yields the
solution

q = q(t;Q,P), p = p(t;Q,P), t ∈ R

of the Hamiltonian equation of motion (12.142) on page 745.

Proof. The idea of the proof is to show that F is a canonical transformation with
trivial transformed Hamiltonian H ≡ 0. It follows from

pdq −Hdt− dS = (p− Sq)dq − (H + St)dt− SQdQ = PdQ

that F ∗(pdq − Hdt) = F ∗(PdQ) + F ∗dS = PdQ + d(F ∗dS). Consequently, the
solution of the transformed variational problem
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Z

C
F ∗(pdq −Hdt) = critical!, C ∈ A (12.156)

is equivalent to
R

C PdQ = critical!, C ∈ A. The solutions satisfy the Hamiltonian
equations of motion

Q̇(t) = 0, Ṗ(t) = 0, t ∈ R

with vanishing Hamiltonian. The solution reads as Q(t) = const, P(t) = const.
Using the inverse transformation F−1, we get the claim. �

If the equation (12.155) can be solved only locally, then we obtain a local solu-
tion of the Hamiltonian equations of motion.

12.9.8 Legendre Transformation

The Lagrangian equation of motion. Our goal is to construct a diffeomorphism
F : E

3 → E
3 from the extended state space to the extended phase space (Fig.12.21

on page 745). Explicitly, (q, p, τ) = F (q, v, τ). To this end, suppose that the equation

v = Hp(q, p, τ) (12.157)

describes a diffeomorphism (q, p, τ) �→ (q, v, τ) from the extended phase space to
the extended state space. The inverse map (q, v, τ) �→ (q, p, τ) is then the desired
diffeomorphism F . Setting

L := vp−H,

we obtain the Lagrangian L : E
3 → R on the extended state space. Explicitly,

L(q, v, τ) := vp(q, v, τ) −H(q, p(q, v, τ), τ).

Suppose that
C : q = q(t), p = p(t), τ = t, t0 ≤ t ≤ t1

is a smooth curve on the extended phase space. The inverse Legendre transformation
sends this to the curve

C : q = q(t), v = v(t), τ = t, t0 ≤ t ≤ t1

on the extended state space.

Proposition 12.44 If the curve C satisfies the Hamiltonian equation of motion
(12.142) on page 745, then the transformed curve C satisfies both the condition
v(t) = q̇(t) and the Lagrangian equation of motion

d

dt
Lv(q(t), q̇(t), t) = Lq(q(t), q̇(t), t), t0 ≤ t ≤ t1. (12.158)

Moreover,
R

C
Ldt =

R

C pdq −Hdt, that is, the action integrals coincide.

Proof. From L = vp−H we get

dL = (dv)p+ vdp−Hqdq −Hpdp−Hτdτ = pdv −Hqdq −Hτdτ.

Hence Lv = p, Lq = −Hq, Lτ = −Hτ . Explicitly,

Lv(q, v, τ) = p, Lq(q, v, τ) = −Hq(q, p, τ), Lτ (q, v, τ) = −Hτ (q, p, τ).
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It follows from the Hamiltonian equations of motion q̇ = Hp, ṗ = −Hq and v = Hp

that v = q̇ and d
dt
Lv = −Hq = Lq. This is the Lagrangian equation of motion. In

addition, we get

Z

C

Ldτ =

Z t1

t0

L(q(t), q̇(t), t) dt =

Z t1

t0

(p(t)q̇(t)−H(q(t), p(t), t)) dt =

Z

C
pdq−Hdt.

�

The Lagrangian principle of critical action. Fix the real numbers t0, t1, q0,
and q1. The Lagrangian principle of critical action reads as

Z t1

t0

L(q(t), q̇(t), t) dt = critical!, q ∈ AL. (12.159)

Here, the admissible set AL consists of all the smooth functions q : [t0, t1] → R

which satisfy the boundary condition q(t0) = q0, q(t1) = q1. A standard result of
the calculus of variations, tells us the following:

The Lagrangian principle of critical action (12.159) is equivalent to the
Lagrangian equation of motion (12.158).

Since the Hamiltonian (resp. Lagrangian) equation of motion is equivalent to the
Hamiltonian (resp. Lagrangian) principle of critical action, it follows from Prop.
12.44 that:

The Lagrangian principle of critical action (12.159) is equivalent to the
Hamiltonian principle of critical action (12.145) on page 746.

Local approach. If equation (12.157) only generates a local diffeomorphism
(i.e., a local Legendre transformation), then the results obtained above remain valid
in a local setting.

12.9.9 Carathéodory’s Royal Road to the Calculus of Variations

In the Hamiltonian setting, Carathéodory’s ‘royal road’ to the calculus of
variations does not start from a variational problem, but from a coveloc-
ity (or momentum) function w = w(t, q) which satisfies Carathéodory’s
fundamental equation

w∗(dχ) = 0

where χ := pdq − H(t, q, p)dt is the Poincaré–Cartan 1-form. The La-
grangian setting of this approach is then obtained by Legendre transfor-
mation.
This approach was strongly influenced by the analogy between light rays
and geodesics in Riemannian geometry, the duality between light rays and
wave fronts via the Huygens principle, Lie’s contact transformations, and
Hilbert’s invariant integral.51

Folklore

51 This integral was known to Beltrami in 1864. Hilbert rediscovered it in about
1900.
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Carathéodory realized that his fundamental equation can be used as a key
to the calculus of variations. Therefore Boerner has called Carathéodory’s
approach a royal road to the calculus of variations.52

In Carathéodory’s treatise53 this road is somewhat hidden because Cara-
théodory had discovered it while reading the galley proofs of his book, and
only in the last minute he managed to include it into the book.
Undoubtedly Carathéodory’s royal road is nowadays the quickest and most
elegant approach to sufficient conditions for minimum problems in the
calculus of variations (see Sect. 5.4 of Vol. II). In addition, it can easily
be carried over to multiple integrals. Thus it may be surprising to learn
that Carathéodory was led to his approach by Johann Bernoulli’s paper
from 1718 (where Bernoulli showed that the minimum for the problem of
quickest descent is indeed attained by the cycloid).54

Mariano Giaquinta and Stefan Hildebrandt, 1996

Terminology. We will use the following notation:

• q (position), t (time), p (momentum or generalized momentum),
• H = H(t, q, p) (Hamiltonian function),
• χ := pdq −H(t, q, p) dt (Poincaré–Cartan 1-form),
• dχ (Poincaré–Cartan contact 2-form),
• w = w(t, q) (covelocity field function),
• S = S(t, q) (action function),
• v(t, q) := Hp(t, q, w(t, q)) (velocity field function).

The quantities have the following physical dimension: q (length), t (time), H (en-
ergy), w, p (covelocity =momentum=energy/velocity), S (energy × time = action),
v (velocity).

Carathéodory’s fundamental equation and its consequences. We are
given the smooth Hamiltonian function H : R

3 → R. Suppose that the smooth
covelocity function w : R

2 → R is a solution of Carathéodory’s equation dχ = 0 on
R

3, that is,

w∗(dχ) = 0 on R
2. (12.160)

Theorem 12.45 (i) The Hamilton–Jacobi partial differential equation: There ex-
ists a smooth function S : R

2 → R such that

dS = w∗χ on R
2. (12.161)

If the pair (w, S) of smooth functions forms a complete configuration, that is, it
satisfies (12.161), then the action function S is a solution of the following Hamilton–
Jacobi differential equation:

St(t, q) +H(t, q, Sq(t, q)) = 0, (t, q) ∈ R
2.

(ii) The Hamiltonian equation of motion: Let q = q(t), t0 ≤ t ≤ t1 be a smooth
solution of the ordinary differential equation

52 H. Boerner, Carathéodory’s approach to the calculus of variations, Jahresber.
Deutsche Mathem.-Verein. 56 (1953), 31–58 (in German).

53 C. Carathéodory, Calculus of Variations and Partial Differential Equations of
First Order. German edition: Teubner, Leipzig, 1937. English edition: Chelsea,
New York, 1982.

54 M. Giaquinta and S. Hildebrandt, Calculus of Variations I, Springer, Berlin, 1996
(reprinted with permission).
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q̇(t) = Hp(t, q(t), w(t, q(t)), t0 ≤ t ≤ t1.

Set p(t) := w(t, q(t)). Then the function t �→ (q(t), p(t)) satisfies the Hamiltonian
equation of motion:

q̇(t) = Hp(t, q(t), p(t)), ṗ(t) = −Hq(t, q(t), p(t)), t0 ≤ t ≤ t1.

In addition, if the pair (w, S) satisfies (12.161), then the value of the action integral
is given by

Z t1

t0

`

p(t)q̇(t) −H(t, q(t), p(t)
´

dt = S(t1, q(t1)) − S(t0, q(t0)). (12.162)

This explains the intuitive meaning of the action function S.

Proof. Ad (i). Since d(w∗χ) = w∗(dχ), it follows from (12.160) that

d(w∗χ) = 0 on R
2.

By the Poincaré–Volterra theorem on page 762, there exists a smooth function
S : R

2 → R
2 such that dS = w∗χ. Hence

St(t, q)dt+ Sq(t, q)dq = w(t, q)dq −H(t, q, w(t, q)dt.

This is equivalent to

St(q, t) = −H(t, q, w(t, q)), Sq(t, q) = w(t, q), (12.163)

which immediately yields the Hamilton–Jacobi equation. The integrability condi-
tion Sqt = Stq implies the key equation

wt(q, t) = −Hq(t, q, w(t, q)) −Hp(t, q, w(t, q)) wq(t, q). (12.164)

Ad (ii). It follows from p(t) = w(t, q(t)) that

ṗ(t) = wt(t, q(t)) + wq(t, q(t)) q̇(t).

Setting P (t) := (t, q(t), p(t)), equation (12.164) tells us that

ṗ(t) = wq(t, q(t))Hp(P (t)) −Hq(P (t)) −Hp(P (t)) wq(t, q(t)) = −Hp(P (t)).

This is the claim. Finally, setting S(t) := S(t, q(t)), we get

Ṡ(t) = Sq(t, q(t)) q̇(t) + St(t, q(t)) = p(t)q̇(t) −H(t, q(t), p(t)).

This yields the integral relation (12.162). �

It follows from dS = w∗χ that the line integral
Z

C
w∗χ =

Z

C
w(t, q)dq −H(t, q, w(q, t))

does not depend on the path C, but only on the initial point and the terminal point
of the curve C. This integral is called Hilbert’s invariant integral.

Local approach. If the covelocity field function w is only a local solution
of Carathéodory’s fundamental equation (12.160), then all the results formulated
above remain valid in a local setting.
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Fig. 12.22. Family of harmonic oscillators

The Legendre transformation. Set v := Hp(t, q, p), and consider the inverse
Legendre transformation (t, q, p) �→ (t, q, v) as described on page 754. Then the
solutions t �→ (q(t), p(t)) of the Hamiltonian equation of motion pass over to the
solutions t �→ q(t) of the Lagrangian equation of motion with the Lagrangian

L = vp−H.

In particular, the covelocity field function w = w(t, q) passes over to the velocity
field function

v(t, q) = Hp(t, q, w(t, q)).

From q̇(t) = Hp(t, q(t), w(t, q(t)), we get the differential equation

q̇(t) = v(t, q(t)), t ∈ R.

This tells us that the value v(t, q) describes the velocity of the particle at the point
q at time t.

The harmonic oscillator. In order to explain the intuitive meaning of
Carathéodory’s approach, let us consider the harmonic oscillator with the La-
grangian

L =
mv2

2
− ω2q2

2
.

Consider the family of solutions

q(t) = q0 sinωt, 0 < t <
π

ω

of the Lagrangian equation of motion d
dt
Lv = Lq (Fig. 12.22). Fix the point (q1, t1)

with 0 < t1 <
π
ω
. The unique trajectory passing through the point q1 at time t1 is

given by

q(t) =
q1

sinωt1
· sinωt, 0 < t <

π

ω
.

We set

• v(t1, q1) := q̇(t1) (velocity function), and
• w(t1, q1) := p(t1) = mq̇(t1) (covelocity or momentum function).

Explicitly, we get

v(q, t) = ωq · cotωt, w(t, q) = mωq · cotωt, 0 < t <
π

ω
, q ∈ R.

Focal points. Note that the functions v and w have singularities at t = 0 and
t = π

ω
. These singularities correspond to the focal points (0, 0) and ( π

ω
, 0) depicted

in Fig. 12.22.
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12.9.10 Geometrical Optics

Hamilton (1805–1865) created Hamiltonian mechanics by using geometrical optics
as a paradigm. We will reverse the historical order, that is, we will show that
geometrical optics is a special case of Hamiltonian mechanics by changing dramat-
ically the physical interpretation of the mathematical quantities. For example, the
time variable τ becomes a space variable x, and the action function S becomes the
eikonal function which has the physical dimension of time. We will use the following
terminology:

• τ = x, q = y (space variables of a Cartesian (x, y)-coordinate system),
• y = y(x) (equation of a light ray curve),
• S = S(x, y) (eikonal function),
• w = w(x, y) (coslope function), p (coslope),
• v = v(x, y) (slope function),
• n(x, y) (refraction index; n ≡ 1 in a vacuum), c/n(x, y) (velocity of light in the

optical substance at the point (x, y)),

• L(x, y, y′) = n(x,y)
c

p

1 + y′2 (Lagrangian of Fermat’s principle of critical time).

The quantities have the following physical dimensions: x, y (length), S (time), v
(dimensionless), L, H, w, p (time/length).

We start with Fermat’s principle of critical time for light rays:

Z x1

x0

n(x, y)

c

p

1 + y′(x)2 dx = critical!, y(x0) = y0, y(x1) = y1. (12.165)

We are given the points (x0, y0) and x1.y1) in the Euclidean plane equipped with
an Cartesian (x, y)-coordinate system, and the smooth refraction function

n : R
2 →]0,∞[

with inf(x,y)∈R2 n(x, y) > 0. We are looking for a smooth light ray

y = y(x), x0 ≤ x ≤ x1,

which passes from the point (x0, y0) to the point (x1, y1). The integral on the left
side of (12.165) is the time needed by the light ray. Let us introduce the Lagrangian

L(x, y, v) :=
n(x, y)

c

p

1 + v2.

The Legendre transformation (x, y, v) �→ (x, y, p) is generated by p = Lv(x, y, v).We
also introduce the Hamiltonian function H(x, y, p) := pv(x, y, p)−L(x, y, v(x, y, p)).
This yields

p =
n(x, y)v

c
√

1 + v2
, H(x, y, p) = −

r

n(x, y)2

c2
− p2.

Carathéodory’s fundamental equation. In this special case, equation
(12.163) reads as

Sx(x, y) =
n(x, y)

c
p

1 + v(x, y)2
, Sy(x, y) = v(x, y)Sx(x, y). (12.166)

Here, w(x, y) = n(x,y)v(x,y)

c
√

1+v(x,y)2
. Theorem 12.45 on page 756 tells us the following:
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Fig. 12.23. Light rays and wavefronts

Let v, S be a solution of (12.166) with S(x0, y0) = 0, and let y = y(x) be a
solution of the differential equation

y′(x) = v(x, y(x)), x0 ≤ x ≤ x1 y(x0) = y0. (12.167)

Set y1 := y(x1). Then y = y(x) is a solution of the variational problem
(12.165). The value S(x1, y1) is the time needed by the light ray to pass
from the point (x0, y0) to the point (x1, y1). The wave fronts starting from
the point (x0, y0) are given by

S(x, y) = const.

Let us consider two simple examples. Suppose that n(x, y) = const (i.e., the velocity
of the light rays is equal to c/n).

Linear wave front. We are given v(x, y) ≡ 0. Equation (12.166) has the
solution S(x, y) = n

c
(x − x0). Then equation (12.167) yields the light rays y(x) =

const and the wave fronts x = const (Fig. 12.23(a)).
Circular wave front. The functions v(x, y) := y

x
and

S(x, y) :=
n

c

p

x2 + y2

solve the equation (12.166). The differential equation (12.167) yields the light rays

y(x) = const · x and the wave fronts n2

c2

`

x2 + y2
´

= const (Fig. 12.23(b)). Many
applications can be found in:

C. Carathéodory, Geometrical Optics, Springer, Berlin, 1937 (in German).

M. Born and E. Wolf, Principles of Optics, 7th edition, Cambridge Uni-
versity Press, 1999.

12.10 The Main Theorems in Classical Gauge Theory
(Existence of Potentials)

We want to study the equation

dω = μ on M (12.168)

which generalizes the classical potential equation F = −gradU on the Euclidean
manifold E

3. We are given the smooth r-form μ on the real n-dimensional manifold
M with r ≥ 1. We are looking for the smooth (r − 1)-form on M. If the equation
(12.168) has a solution ω, then
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Fig. 12.24. Connectivity

(i) dμ = 0 (local solvability condition), and
(ii)

R

C
μ = 0 for all r-dimensional compact submanifolds C (without boundary) of

the manifold M (global solvability condition).

In fact, it follows from the Poincaré cohomology rule d(dω) = 0 that dμ = 0.
Moreover, the generalized Stokes theorem tells us that

Z

C

μ =

Z

C

dω =

Z

∂C

ω = 0,

since the boundary ∂C is empty. We are looking for sufficient solvability conditions
of (12.168). Roughly speaking, the necessary solvability conditions (i), (ii) are also
sufficient solvability conditions. The point is that special properties of μ and M
simplify the approach. Let us mention some typical simplifications:

• Suppose that C is the boundary of a submanifold N of M, that is, C = ∂N .
Then the local solvability condition dμ = 0 implies

Z

C

μ =

Z

∂N
μ =

Z

N
dμ = 0.

In this special case, the global solvability condition
R

C
μ = 0 is always satisfied.

• If μ is an n-form, then the local solvability condition dμ = 0 is always satisfied.
• If the manifold M is continuously contractible to a point, then the global solv-

ability condition drops out.

Furthermore, both the number of essential solutions and the number of global solv-
ability conditions of (12.168) depend on the so-called Betti numbers which are
topological invariants of the manifold M. In particular, we have to distinguish be-
tween contractible and non-contractible manifolds M. For example, the disc (resp.
the annulus) is contractible (resp. not contractible) to a point (Fig. 12.24). To begin
with, let us study two prototypes.

First prototype. Consider the open interval M :=]a, b[ on the real line. Fix
x0 ∈ M. We are given the smooth 1-form μ = f(x)dx. Then the general solution
of the equation dω = μ on M (i.e., ω′(x) = f(x)) is given by

ω(x) =

Z x

x0

f(ξ)dξ + c for all x ∈ M

where c is an arbitrary real number. This is the main theorem of calculus. Note
that there are no solvability conditions for μ. The situation changes if we pass to
the unit circle.

Second prototype. Consider the unit circle M := S
1. If ω : S

1 → R is a
smooth function, then there exists the Fourier expansion
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ω(ϕ) = a0 +
∞
X

k=1

ak cos kϕ+ bk sin kϕ

where a0, ak, bk are real numbers. Hence

dω(ϕ) =

 ∞
X

k=1

−kak sin kϕ+ kbk cos kϕ

!

υ

where υ is the volume form on S
1. Explicitly,
Z

S
υ = β − α

if S := {eiϕ : −π ≤ α ≤ ϕ ≤ β ≤ π}. Mnemonically, we write dϕ instead of υ.
Suppose that we are given the smooth 1-form

μ =

 

A0 +

∞
X

k=1

Ak cos kϕ+Bk sin kϕ

!

dϕ

on S
1 with real coefficients A0, Ak, Bk. Then the equation

dω = μ on S
1

has a solution ω iff

Z

S1
μ = 0, (12.169)

that is, A0 = 0. The general solution reads as

ω = a0 +

∞
X

k=1

Ak

k
sin kϕ− Bk

k
cos kϕ

where a0 is an arbitrary real number.
The global solvability condition (12.169) is crucial. It is caused by the nontrivial

topology of the unit circle, in contrast to the trivial topology of the open interval
]a, b[. We will show next that:

Global solvability conditions always depend on the nontrivial topology of
the manifold M.

For example, as we will discuss below, the appearance of precisely one global solv-
ability condition (12.169) for the unit circle S

1 depends on the fact that the first
Betti number of S

1 is equal to one, β1 = 1.

12.10.1 Contractible Manifolds (the Poincaré–Volterra Theorem)

Fix n = 1, 2, . . . Let r = 1, . . . , n. We are given the real n-dimensional manifold M.

Theorem 12.46 Suppose that M is continuously contractible to a point. Then, for
given smooth r-form μ on M, the equation dω = μ on M has a solution iff dμ = 0
on M.
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The proof can be found in Frankel (2004), Sect. 5.4, quoted on page 775. See also
Amann and Escher (1998), Vol. 3, Sect. XI.3, quoted on page 776.

Examples. (i) Let M be an open disc. Let U : M → R be a smooth function,
and let μ = Adx+Bdy be a smooth 1-form on M. Then the equation

dU = μ on M

has a solution iff dμ = 0. Since dμ = (Bx −Ay) dx∧ dy, we obtain that the system

Ux(x, y) = A(x, y), Uy(x, y) = B(x, y) on M

has a solution iff Bx − Ay = 0, that is, the integrability condition Ay = Bx is
satisfied on M.

(ii) Potential U of a force field F: Assume that we are given the smooth vector
field F ∈ Vect(E3). Then the equation

F = −gradU on E
3

has a smooth solution U : E
3 → R iff curlF = 0 on E

3.
To prove this, choose ω := −U and

• μ = Adx+Bdy + Cdz, F = Ai +Bj + Ck.

Furthermore, note that

• dω = −(Uxdx+ Uydy + Uzdz), gradU = Uxi + Uyj + Uzk,
• dμ = (Cy −Bz) dy ∧ dz + (Az − Cx) dz ∧ dx+ (Bx −Ay) dx ∧ dy,
• curlF = (Cy −Bz)i + (Az − Cx)j + (Bx −Ay)k.

(iii) Vector potential A of a magnetic field B: We are given the smooth vector
field B ∈ Vect(E3). Then the equation

B = curlA on E
3

has a smooth solution A ∈ Vect(E3) iff div B = 0 on E
3.

To prove this, choose

• μ = A dy ∧ dz +B dz ∧ dx+ C dx ∧ dy, B = Ai +Bj + Ck,
• ω = adx+ bdy + cdz, A = ai + bj + ck,
• dμ = (Ax +By + Cz) dx ∧ dy ∧ dz, div B = Ax +By + Cz,
• dω = (cy − bz) dy ∧ dz + (az − cx) dz ∧ dx+ (bx − ay) dx ∧ dy,
• curlA = (cy − bz)i + (az − cx)j + (bx − ay)k.

(iv) Electrostatic field: We are given the smooth electric charge density function
� : E

3 → R. Let ε0 > 0 be the electric constant of a vacuum. Then there exists a
smooth electrostatic vector field E ∈ Vect(E3) such that

ε0 div E = � on E
3.

To prove this, choose μ = � dx∧dy∧dz and ω = ε0(A dy∧dz+B dz∧dx+C dx∧dy).
The following result is called the local Poincaré theorem.

Corollary 12.47 Let P be a point on the real n-dimensional manifold M. For
given smooth r-form μ on M, there exists an open neighborhood U of P such that
the equation dω = μ on U has a solution iff dμ = 0 on U .

Note that it is always possible to choose an open neighborhood U of P which
is continuously contractible to the point P . Thus, the corollary is an immediate
consequence of Theorem 12.46.
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12.10.2 Non-Contractible Manifolds and Betti Numbers
(De Rham’s Theorem on Periods)

Before discussing the meaning of Betti numbers, let us formulate the main result
which is a special case of the de Rham theory in differential topology. Fix the
dimension n = 1, 2, . . ., and let r = 1, . . . , n. Let M be a real n-dimensional arcwise
connected manifold with or without boundary. Assume that the Betti numbers
β1, . . . , βn of M are finite (examples will be considered below). We are given the
smooth r-form μ on M. We are looking for a smooth (r − 1)-form ω on M such
that

dω = μ on M. (12.170)

If βr > 0, then suppose that we know

• smooth r-forms μ1, . . . , μβr on the manifold M with dμ1 = . . . = dμβr = 0, and
• r-dimensional submanifolds (without boundary) C1, . . . , Cβr of M such that
R

Cj
μk = δjk if j, k = 1, . . . , βr.

It is a nontrivial result in differential topology that such quantities always exist.

Theorem 12.48 If βr = 0, then the equation (12.170) has a solution ω iff dμ = 0
on the manifold M.

If βr > 0, then the equation (12.170) has a solution ω iff dμ = 0 on M and the
periods of μ vanish, that is,

R

Cj
μ = 0 if j = 1, . . . , βr.

The general solution of (12.170) is the sum of a special solution of (12.170) and
the general solution ω of the homogenous equation

dω = 0 on M. (12.171)

Thus it remains to solve (12.171). We want to show that the number of nontrivial
solutions of (12.171) is equal to the Betti number βr−1 if r ≥ 2. Let us start with
the following definition. If r ≥ 2 (resp. r = 1), then the solution ω of (12.171) is
called trivial iff ω = dν where ν is a smooth (r− 2)-form on M (resp. ω = const).

Corollary 12.49 If either r = 1 or r ≥ 2 and βr−1 = 0, then the equation (12.171)
has only trivial solutions ω.

If r ≥ 2 and βr−1 > 0, then the general solution of (12.171) reads as

ω = α1ω1 + . . .+ αβr−1ωβr−1 + dν

where ω1, . . . , ωβr−1 are smooth (r − 1) forms on M with dω1 = . . . = dωβr−1 = 0,
α1, . . . , αβr−1 are real numbers, and ν is a smooth (r− 2)-form on M. In addition,
the solution ω is trivial iff α1 = . . . = αβr−1 = 0.

The Betti numbers of the manifold M. The Betti numbers of a topological
space will be studied later on. At this point let us only mention the following
properties:

(i) The Betti numbers of a point are β0 = 1, βk = 0 if k = 1, 2, . . .
(ii) The Betti numbers of an n-dimensional sphere are β0 = βn = 1 and βk = 0 if

k �= 0, n.
(iii) If the real finite-dimensional manifold M with or without boundary can be

continuously deformed into a point (resp. an n-dimensional sphere), then it has
the same Betti numbers as a point (resp. an n-dimensional sphere).
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Fig. 12.25. Deformation (homotopy)

Let us consider some examples:

• The Euclidean plane E
2, a disc, the Euclidean manifold E

3, and a ball can be
continuously deformed into a point. Therefore, they have the Betti numbers of a
point, that is, β0 = 1 and βk = 0 if k = 1, 2, . . .

• An annulus and the punctured Euclidean plane E
2 \ {0} can be continuously

deformed into a circle (Fig. 12.25). Therefore, they have the same Betti numbers
as a circle (i.e., a 1-dimensional sphere), that is, β0 = β1 = 1 and βk = 0 if
k = 2, 3, . . .

• The punctured Euclidean manifold E
3 \ {0} can be continuously deformed into

a 2-dimensional sphere. Therefore, it has the Betti numbers β0 = β2 = 1 and
βk = 0 if k �= 0, 2.

• Consider the set M := E
3 \ Z where Z denotes the z-axis. This set can be

continuously deformed into the punctured Euclidean plane E
2\{0}, and hence M

can be continuously deformed into a circle. Therefore, M has the Betti numbers
β0 = β1 = 1 and βk = 0 if k = 2, 3, . . .

Potential on the annulus. Let M be an annulus, and let C be a circle
inside the annulus (see Fig. 12.24 on page 761). We are given the smooth functions
A,B : M → R. Set μ := Adx+Bdy. Then the equation

dU = μ on M (12.172)

has a smooth solution U : M → R iff dμ = 0 on M and
R

C
μ = 0 (i.e., the period

of μ vanishes). Equivalently, the system

Ux = A, Uy = B on M

has a smooth solution U iff Ay = Bx on M and
R

C
Adx+Bdy = 0.

Proof. If the equation (12.172) has a solution U , then we obtain dμ = d(dU) = 0
and

R

C
μ =

R

C
dU =

R

∂C
U = 0, since the boundary ∂C is empty.

Conversely, note that the annulus has the first Betti number β1 = 1. There-
fore, we get precisely one global solvability condition. To see that C is the right
submanifold, observe that there exists a 1-form μ1 such that

Z

C

μ1 = 1.

In fact, using appropriate polar coordinates ϕ, r, we have
R

C
1
2π
dϕ = 1. Now the

claim follows from Theorem 12.48. �

Potentials on the punctured Euclidean manifold. Fix r = 1, 2, 3. We
want to solve the equation

dω = μ on E
3 \ {0}. (12.173)

We are given the smooth r-form μ on E
3 \ {0}, and we are looking for a smooth

(r−1)-form ω on E
3\{0}. The Betti numbers of E

3\{0} are β1 = β3 = 0 and β2 = 1.
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Therefore, a global solvability condition only appears if r = 2. More precisely, the
following hold:

• If r = 1 or r = 3, then the equation (12.173) has a solution ω iff dμ = 0. This
local solvability condition is always satisfied if r = 3.

• If r = 2, then the equation (12.173) has a solution ω iff dμ = 0 and
R

S2
μ = 0.

In the language of vector analysis, this reads as follows. Suppose that we are given
the smooth function � : E

3 \ {0} → R and the smooth vector fields F and B on
E

3 \ {0}. Then the following hold:

• r = 1: The equation F = −gradU on E
3 \ {0} has a smooth solution U iff

curlF = 0 on E
3 \ {0}.

• r = 2: The equation B = curlA on E
3\{0} has a smooth solution A iff div B = 0

on E
3 \ {0} and

Z

S2
Bn · dS = 0

where n denotes the outer unit normal vector of the unit sphere S
2.

• r = 3: The equation ε0 div E = � on E
3 \ {0} has always a smooth solution E on

E
3 \ {0}.
The homogeneous potential equation on the Euclidean manifold. The

Betti numbers of the Euclidean manifold E
3 are βj = 0 if j ≥ 1 Thus, if the k-form

ω (k ≥ 0) is a solution of the equation

dω = 0 on E
3,

then it is trivial. Explicitly, this means the following:

• The general smooth solution of gradU = 0 on E
3 is U = const.

• The general smooth solution of curl v = 0 on E
3 is v = gradV where V : E

3 → R

is an arbitrary smooth function. Here, V is called the potential of the velocity
vector field v.

• The general smooth solution of div v = 0 on E
3 is v = curlw where w is an

arbitrary smooth vector field on E
3. Here, w is called the vector potential of the

velocity vector field v.

The same results remain true if we replace the Euclidean manifold E
3 by an open

subset of E
3 which is continuously contractible to a point (e.g., a ball).

12.10.3 The Main Theorem for Velocity Vector Fields

We want to show that a velocity vector field v is given by its sources and circulations
together with boundary conditions. To this end, choose a 3-dimensional, compact,
arcwise connected submanifold M of the Euclidean manifold E

3 with the boundary
∂M. Intuitively, this is the closure of a bounded, open, arcwise connected subset
of R

3 with regular behavior at the boundary (e.g., a ball). We assume that the
submanifold M and the boundary ∂M are coherently oriented (see Fig. 12.6(c) on
page 677). Consider the system

div v = f, curl v = g on M (12.174)

together with the boundary condition

nv = b on ∂M. (12.175)

We are given the smooth functions f : M → R and g : M → E3, and the smooth
boundary function b : ∂M → R with

R

M f d3x =
R

∂M b dS. We are looking for the
smooth velocity vector field v : M → E3.
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Theorem 12.50 The boundary-value problem (12.174), (12.175) has a unique
smooth solution v.

The proof of this classical result based on potential theory can be found in
the monograph by A. Tikhonov and A. Samarski, The Equations of Mathematical
Physics, Macmillan, New York, 1963.

12.11 Systems of Differential Forms

12.11.1 Integrability Condition

Prototype. Fix a point P0 of the Euclidean manifold E
3. Choose a right-handed

Cartesian (x, y, z)-coordinate system on E
3. Let us consider the system

zx(x, y) = A(x, y, z(x, y)), zy(x, y) = B(x, y, z(x, y)) (12.176)

locally at the point P0 = (x0, y0, z0) with z(x0, y0) = z0. This means that we are
given the smooth real-valued functions A,B on some open neighborhood of the
point P0. We are looking for a smooth real-valued function (x, y) �→ z(x, y) on
some open neighborhood of the point (x0, y0). In terms of geometry, we are looking
for a smooth surface z = z(x, y) which passes through the point P0 and which has
prescribed tangent planes given by the functions A and B.55 This is the prototype
of the following fundamental problem in differential geometry:

Construct a submanifold which has prescribed tangent spaces.

The point is that, naturally enough, this problem is not always solvable. One needs
additional solvability conditions which are called integrability conditions. Let us
discuss this. Set Q := (x, y), and Q0 := (x0, y0).

If z = z(Q) is a solution of (12.176), then it follows from the key condition

zxy(Q) = zyx(Q)

that

Ay(Q, z(Q)) +Az(Q, z(Q))zy(Q) = Bx(Q, z(Q)) +Bz(Q, z(Q))zx(Q).

This implies

Ay(Q, z(Q)) +Az(Q, z(Q))B(Q) = Bx(Q, z(Q)) +Bz(Q, z(Q))A(Q)

locally at Q0. This is a necessary solvability condition. Roughly speaking, this is
also a sufficient solvability condition.

Proposition 12.51 Suppose that the so-called integrability condition

Ay(x, y, z) +Az(x, y, z)B(x, y) = Bx(x, y, z) +Bz(x, y, z)A(x, y) (12.177)

is satisfied on some open neighborhood of the point P0 in the Euclidean manifold
E

3. Then the problem (12.176) has a local solution which is locally unique at the
point P0.

55 Note that the tangent plane of the surface z = z(x, y) at the point (x0, y0, z0) is
given by the equation

z = z0 +A(x0, y0, z0)(x− x0) +B(x0, y0, z0)(y − y0).
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The proof can be found in Zeidler (1986), Sect. 4.12 of Vol. I, quoted on page 1089.
The classical idea of the proof is to construct the surface z = z(x, y) by using curves
which are called characteristics. It is a general strategy in the theory of manifolds
to construct submanifolds by putting lower dimensional manifolds (characteristic
manifolds) together. This strategy dates back to Cauchy (1789–1857).

The language of differential forms. Integrability conditions can be elegantly
formulated in terms of differential forms. To explain the basic idea, let us set

ω := dz −A(x, y, z)dx−B(x, y, z)dy.

The original problem (12.176) can be written as

z∗ω = 0 (12.178)

and the integrability condition (12.177) is equivalent to

dω ∧ ω = 0.

In fact, since

z∗ω = zx(x, y)dx+ zy(x, y)dy −A(x, y, z(x, y))dx−B(x, y, z(x, y))dy

= (zx(x, y) −A(x, y, z(x, y)) dx+ (zy(x, y) −B(x, y, z(x, y)) dy,

the equation z∗ω = 0 is equivalent to zx = A, zy = B which is (12.176). Moreover,

dω = −(Axdx+Aydy +Azdz) ∧ dx− (Bxdx+Bydy +Bzdz) ∧ dy
= (Ay −Bx) dx ∧ dy −Azdz ∧ dx+Bz dy ∧ dz.

Hence
dω ∧ ω = (Ay +AzB −Bx −BzA) dx ∧ dy ∧ dz = 0

is equivalent to Ay +AzB = Bx +BzA which is (12.177).
The global Frobenius theorem in the linear case, and the Maurer–

Cartan equation. Fix n = 1, 2, . . . , and N = 1, 2, . . . Let us consider the linear
system of partial differential equations

∂jψ(x) = ψ(x)Mj(x), j = 1, . . . , n x ∈ U , ψ(x0) = ψ0. (12.179)

Here, U is an open, arcwise connected, simply connected subset of R
n (e.g., U = R

n,
or U is an open ball). Furthermore, x = (x1, . . . , xn) with x ∈ R

n, and ∂j := ∂
∂xj .

We are given the smooth matrix functions

Mj : U → gl(N,R), j = 1, 2, . . .

We are looking for the smooth matrix function

x �→ (ψ1(x), . . . , ψN (x))

from U to R
N where ψ(x0) ∈ R

N is given. If ψ is a smooth solution of (12.179),
then it follows from the integrability condition ∂i∂jψ = ∂j∂iψ that56

∂iMj − ∂jMi +MiMj −MjMi = 0 on U , i, j = 1, . . . , N. (12.180)

56 Note that ∂i∂jψ = ∂iψ ·Mj + ψ ∂iMj = ψ(MiMj + ∂iMj).
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This is called the Maurer–Cartan equation. Setting M := Mjdx
j , we obtain the

Cartan differential dM = ∂iMj dx
i ∧ dxj = 1

2
(∂iMj − ∂jMi) dx

i ∧ dxj . Thus, the
Maurer–Cartan equation (12.180) is equivalent to

dM +M ∧M = 0.

This equation appears again and again in gauge theory.

Theorem 12.52 The original problem (12.179) has a smooth solution iff the
Maurer–Cartan equation (12.180) is satisfied. The solution is unique.

For example, this crucial theorem implies the existence theorem for 2-dimen-
sional surfaces on page 633. For the proof of Theorem 12.52, we refer to Problem
12.23 on page 809.

12.11.2 The Frobenius Theorem for Pfaff Systems

Fix n = 2, 3, . . . and r = 2, . . . , n−1. Let M be a real n-dimensional manifold (e.g.,
E

3). Consider the Pfaff system

ω1 = 0, . . . , ωr = 0 (12.181)

where ω1, . . . , ωr are smooth 1-forms on M which are linearly independent, that is,

(ω1 ∧ ω2 ∧ · · · ∧ ωr)(P ) �= 0 for all P ∈ M.

Let U be an open subset of R
m. The smooth function f : U → M is a solution of

(12.181) iff the pull-backs satisfy the equations

f∗ω1 = 0, . . . , f∗ωr = 0 on U .

This generalizes (12.176), (12.178). Similarly, the submanifold N of M is a solution
of (12.181) iff

χ∗ω1 = 0, . . . , χ∗ωr = 0 on N
where the injective map χ : N → M is given by χ(P ) = P for all P ∈ N . The Pfaff
system (12.181) is called completely integrable on the manifold M iff, for every
point P0 ∈ M, there exists an (n − r)-dimensional submanifold N of M which is
a solution of (12.181) with P0 ∈ N , and this solution is locally unique at the point
P0.

Theorem 12.53 The Pfaff system (12.181) is locally, completely integrable on the
manifold M iff

dωj ∧ ω1 ∧ · · · ∧ ωr = 0 on M, j = 1, . . . , r.

The proofs of Theorems 12.53 and 12.54 can be found in Choquet-Bruhat et al.
(1996), Sect. IV.C.6 of Vol. 1, quoted on page 775.

Local coordinates on the manifold M. If the Pfaff system (12.181) is locally,
completely integrable, then for every point P0 ∈ M, there exists a local coordinate
system u1, . . . , un on the manifold M at P0 such that ωj = duj for j = 1, . . . , r.
Then, the Pfaff system (12.181) locally passes over to the trivial system

du1 = 0, . . . , dur = 0,

and the local solution submanifold N of (12.181) at the point P0 is given by the
equation u1 = . . . = ur = 0. Here, ur+1, . . . , un are arbitrary, sufficiently small real
numbers.
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12.11.3 The Dual Frobenius Theorem

Completely integrable distributions of linear spaces on a manifold. Again
let M be a real n-dimensional manifold with n = 2, 3, . . . Fix r = 1, . . . , n − 1.
Suppose that, for every point P0 ∈ M, we are given an (n− r)-dimensional linear
subspace LP0 of the tangent space TP0M. This is called a distribution of linear
spaces on M. This distribution is called completely integrable iff, for every point
P0 on M, there exists an (n−r)-dimensional submanifold N of M such that P0 ∈ N
and

TPN = LP for all P ∈ N ,
and N is locally unique. This means that the submanifold N passes through the
point P0, and the tangent spaces of N coincide with the linear spaces of the distri-
bution.

Lie brackets of velocity vector fields and involutive distributions. By
definition, the distribution is in involution iff, for every point P0 ∈ M, there exists
an open neighborhood U of the point P0 on the manifold M such that the velocity
vector fields on M possess the following local property: If v and w are smooth
velocity vector fields on U with

vP ,wP ∈ LP for all P ∈ U ,

then the Lie bracket satisfies [v,w]P ∈ LP for all P ∈ U .

Theorem 12.54 The distribution {LP }P∈M of linear spaces on the manifold M
is completely integrable iff it is in involution.

12.11.4 The Pfaff Normal Form and the Second Law of
Thermodynamics

Special case. We are given the smooth differential 1-form

dE + P (E, V )dV

on the open set O = {(E, V ) ∈ R
2 : E > 0, V > 0}. We are looking for smooth

functions T = T (E, V ) and S = S(E, V ) such that

dE + PdV = TdS. (12.182)

In terms of mathematics, this means that we want to reduce dE+PdV to a simpler
expression. In terms of physics, we want to prove the existence of temperature T
and entropy S. Choose a point (E0, V0) ∈ O, and suppose that

PE(E0, V0) > 0.

In terms of physics, this means that the pressure P increases if the inner energy E
of a gas increases.

Proposition 12.55 There exist an open neighborhood U of (E0, V0) and smooth
functions S, T : U → R such that the equation (12.182) is satisfied on U .
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Since the rank of the following matrix

 

1 0 −PE(E0, V0)

P (E0, V0) PE(E0, V0) 0

!

is equal to 2, the proposition is a special case of the following general result.
General case. Fix n = 2, 3, . . . Set u = (u1, . . . , un) where u ∈ R

n. We are
given the 1-form

a1(u)du
1 + . . .+ an(u)dun

where ai : O → R, i = 1, . . . , n, are smooth functions on the open subset O of R
n.

We are looking for smooth functions Fj = Fj(u) and Gk = Gk(u) such that we
have either

a1du
1 + . . .+ andu

n = F1dG1 + . . .+ FmdGm (12.183)

or

a1du
1 + . . .+ andu

n = F1dG1 + . . .+ FmGm + dGm+1. (12.184)

Fix a point u0 ∈ O. Set aij := ∂ai
∂uj − ∂aj

∂ui . Suppose that the matrix

0

B

B

@

a1(u0) a11(u0) . . . a1n(u0)
...

...
...

an(u0) an1(u0) . . . ann(u0)

1

C

C

A

has the rank r. Then there exist an open neighborhood U of the point u0 in O and
smooth functions Fi, Gk : U → R such that the following hold.

Theorem 12.56 If r = 2m is even (resp. r = 2m + 1 is odd), then equation
(12.183) resp. (12.184) is satisfied on U .

The proof can be found in C. Carathéodory, Calculus of Variations and Partial
Differential Equations of First Order, Chelsea, New York, 1982, Sect. 141.

12.12 Hodge Duality

Hodge duality is based on the Hodge star operator ω �→ ∗ω for differential
forms on oriented manifolds. This will allow us to generalize the classical
Laplacian to differential forms.
Hodge duality implies the Poincaré duality for the homology and cohomol-
ogy groups of manifolds.

Folklore

General Hodge duality is based on oriented Riemannian (or pseudo-Riemannian)
manifolds. In this section, we equip the Euclidean manifold E

3 with a right-handed
orientation.
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12.12.1 The Hodge Codifferential

Let ω ∈ Λp(E3) with p = 0, 1, 2, 3. We define

d∗ω := (−1)p ∗ d(∗ω).

This is called the Hodge codifferential d∗ω of the differential p-form ω (or the dual
Cartan differential).

The Hodge ∗-operator. The invariant definition of the Hodge ∗-operator
(star operator) on the oriented real 3-dimensional Hilbert space E3 can be found
in Sect. 2.7 on page 138. Since the tangent space TPE

3 of the Euclidean manifold
E

3 at the point P is an oriented real Hilbert space which is isomorphic to E3, the
definitions from E3 can be immediately translated to the tangent space TPE

3 and
its dual space, and hence to differential forms on E

3. The Hodge ∗-operator on the
Euclidean manifold E

3 has the following properties:57

• ∗ ∗ ω = ω for all ω ∈ Λp(E3) with p = 0, 1, 2, 3 (duality).
• The linear operator

∗ : Λp(E3) → Λ3−p(E3), p = 0, 1, 2, 3 (12.185)

is bijective. The inverse operator

∗−1 : Λ3−p(E3) → Λp(E3), p = 0, 1, 2, 3

coincides with the ∗-operator, that is, ∗−1ω = ∗ω for all ω ∈ Λ3−p(E3) with
p = 0, 1, 2, 3.

Cartesian coordinates. Choose a right-handed Cartesian (x, y, z)-coordinate
system on E

3. Let us use the following notation:

• ω := adx+ bdy + cdz,
• � := A dy ∧ dz +B dz ∧ dx+ C dx ∧ dy,
• υ := dx ∧ dy ∧ dz (volume form),
• Θ : E

3 → R (smooth function; e.g., a temperature field).

For the Hodge ∗-operator, we get:

• ∗υ = 1 and ∗1 = υ,
• ∗Θ = Θυ and ∗(Θυ) = Θ,
• ∗(adx+ bdy + cdz) = a dy ∧ dz + b dz ∧ dx+ c dx ∧ dy,
• ∗(a dy ∧ dz + b dz ∧ dx+ c dx ∧ dy) = adx+ bdy + cdz.

Proposition 12.57 (i) dΘ = Θxdx+Θydy +Θzdz, and d∗Θ = 0,
(ii) dω = (cy − bz) dy ∧ dz + (az − cx) dz ∧ dx+ (bx − ay) dx ∧ dy,
(iii) d∗ω = −ax − by − cz,
(iv) d� = (Ax +By + Cz) dx ∧ dy ∧ dz,
(v) d∗� = (Cy −Bz) dx+ (Az − Cx) dy + (Bx −Ay) dz,
(vi) d(Θυ) = 0, and d∗(Θυ) = − ∗ dΘ.

Proof. For example, choose ω = adx+ bdy + cdz. It follows from

∗ω = a dy ∧ dz + b dz ∧ dx+ c dx ∧ dy

that d(∗ω) = (ax + by + cz) dx∧dy∧dz. Hence d∗ω = −∗d(∗ω) = −ax− by − cz. �
57 Later on, we will generalize this operator to oriented n-dimensional Riemannian

and pseudo-Riemannian manifolds. Note that the properties of the ∗-operator
depend on the dimension n.
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12.12.2 The Hodge Homology Rule

The linear operators58

d : Λp(E3) → Λp+1(E3), p = 0,±1,±2, . . .

satisfy the Poincaré cohomology rule d(dω) = 0 for all p-forms ω with integer p.
We briefly write d2 = 0. Similarly, the linear operators

d∗ : Λp(E3) → Λp−1(E3), p = 0,±1,±2, . . .

satisfy the so-called Hodge homology rule d∗(d∗ω) = 0 for all p-forms ω with integer

p. We briefly write d∗2 = 0. In addition, for every p = 0, 1, 2, 3, we have the following
commutative diagram:

Λp(E3)

∗

d∗
Λp−1(E3)

∗

Λ3−p(E3)
(−1)pd

Λ3−p+1(E3).

(12.186)

12.12.3 The Relation between the Cartan–Hodge Calculus and
Classical Vector Analysis via Riesz Duality

On the Euclidean manifold E
3, Hamilton’s nabla calculus and the Cartan–

Hodge calculus are equivalent. However, in contrast to the Hamilton nabla
calculus, the Cartan–Hodge calculus can be immediately generalized to
n-dimensional manifolds.

Folklore

Let us introduce the two linear isomorphisms

• ℵ : Vect(E3) → Λ1(E3), and
• ∗ℵ : Vect(E3) → Λ2(E3)

by setting for all smooth velocity vector fields u,v,w ∈ Vect(E3):

• (ℵv)(u) := vu.
• (∗ℵ)v := ∗(ℵv).

Explicitly,

• ∗(ℵv)(u,w) = v(u × w).

More precisely, ℵv is a 1-form on E
3 with (ℵv)P = vPuP for all P ∈ E

3. Further-
more, (∗ℵ)v is a 2-form. The operator ℵ is called the Riesz duality operator on
Vect(E3).

The Riesz duality operator ℵ (resp. the operator ∗ℵ) sends velocity vector
fields to 1-forms (resp. 2-forms).

Using these linear bijective operators, velocity vector fields on the Euclidean man-
ifold E

3 can be identified with differential 1-forms (resp. 2-forms).

58 As usual, we define Λp(E3) := {0} if either p = 4, 5, . . . or p = −1,−2, . . .
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Proposition 12.58 Let Θ be a smooth temperature field on the Euclidean manifold
E

3, and let v be a smooth velocity vector field on E
3. Then:

(i) gradΘ = ℵ−1dΘ,
(ii) curl v = (∗ℵ)−1d(ℵv),
(iii) div v = −d∗(ℵv).

Cartesian coordinates. All of the invariant formulas above can be easily ver-
ified by using Cartesian coordinates. To this end, choose a right-handed Cartesian
(x, y, z)-coordinate system. Then:

• x = xi + yj + zk, and dx := dx i + dy j + dz k,
• v = ai + bj + ck, and ℵv = vdx = a dx+ b dy + c dz,
• ℵi = dx, ℵj = dy, ℵk = dz (Riesz duality operator),
• (∗ℵ)v = ∗(ℵv) = a dy ∧ dz + b dz ∧ dx+ c dx ∧ dy (Hodge ∗-operator),
• ∂ = i ∂

∂x
+ j ∂

∂y
+ k ∂

∂z
(Hamilton’s nabla operator),

• υ = dx ∧ dy ∧ dz (volume form),
• (ivυ)(u,w) = υ(v,u,w) = v(u × w).

This implies:

• gradΘ = ℵ−1dΘ = ℵ−1(Θxdx+Θydy +Θzdz) = Θxi +Θyj +Θzk = ∂Θ,
• curl v = (∗ℵ)−1d(vdx) = ∂ × v,
• div v = −d∗(vdx) = ∂v.

Conversely, using the volume form υ, we get:

• dΘ = ℵ(gradΘ), d∗Θ = 0,
• dΘ(v) = LvΘ = v gradΘ,
• d(ℵv) = d(vdx) = icurl vυ,
• d∗(ℵv) = −div v,
• d(ivυ) = Lvυ = div v · υ,
• d∗(ivυ) = ∗icurl vυ,
• d(ℵv)(u,w) = (u × w) curl v.

12.12.4 The Classical Prototype of the Yang–Mills Equation in
Gauge Theory

Let us introduce the following notation:

• v := ai + bj + ck and ω := ℵv = adx+ bdy + cdz,
• g = Ai +Bj + Ck and Γ := ∗ℵg = A dy ∧ dz +B dz ∧ dx+ C dx ∧ dy.
The equation

div v = f, curl v = g (12.187)

plays an important role in classical mathematical physics. It describes the determi-
nation of a velocity field v by its sources and circulations given by the functions f
g, respectively. Using the language of differential forms, equation (12.187) can be
written as

d∗ω = −f, dω = Γ. (12.188)

This is the classical prototype of the Yang–Mills equation (see Theorem 12.50 on
page 767). Equivalently, this equation reads as

d∗(ℵv) = −f, d(ℵv) = igυ

where υ denotes the volume form on the Euclidean manifold E
3.
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12.12.5 The Hodge–Laplace Operator and Harmonic Forms

We want to generalize the classical Laplacian to differential forms ω by setting

Δω := (d∗d+ dd∗)ω.

Assume that ω ∈ Λp(E3) with p = 1, 2, 3, and let Θ : E
3 → R be a smooth function.

Cartesian coordinates. In what follows, we will sum over equal upper and
lower indices from 1 to 3. Note that ∂s = ∂s := ∂/∂xs, and x1 := x, x2 := y, x3 := z.
Choose a right-handed Cartesian (x, y, z)-coordinate system. For differential forms

ω =
1

p!
wi1...ip dx

i1 ∧ · · · ∧ dxip , p = 1, 2, 3

with antisymmetric smooth coefficient functions ωi1...ip , the following hold:

Proposition 12.59 (i) ΔΘ = −Θxx −Θyy −Θzz,

(ii) dω = 1
p!
∂iωi1...ip dx

i ∧ dxi1 ∧ · · · ∧ dxip ,

(iii) d∗ω = − 1
(p−1)!

∂sωsi2...ip dx
i2 ∧ . . . ∧ dxip ,

(iv) Δω = Δωi1...ip · dxi1 ∧ · · · ∧ dxip .

The differential form ω is called harmonic iff Δω ≡ 0. This means that all the
coefficient functions ωi1...ip are harmonic. In order to discuss the relation to the
classical vector calculus, let us consider the smooth velocity vector field

• v = ai + bj + ck

together with the corresponding differential forms

• ω = ℵv = adx+ bdy + cdz, and
• ∗ℵv = a · dy ∧ dz + b · dz ∧ dx+ c · dx ∧ dy.
Then:

• Δω = Δa · dx+Δb · dy +Δc · dz. This is equivalent to

Δv = curl curl v − graddiv v. (12.189)

• Δ(∗ℵv) = Δa · dy ∧ dz +Δb · dz ∧ dx +Δc · dx ∧ dy. This is also equivalent to
the classical relation (12.189).

• Δ(Θυ) = ΔΘ · υ.
• d(dω) = 0 and d∗(d∗ ∗ ℵv) = 0 are equivalent to div curl v = 0.
• d(dΘ) = 0 is equivalent to curl gradΘ = 0.

12.13 Further Reading

As an introduction, we recommend the following modern textbooks:

V. Zorich, Analysis I, II, Springer, New York, 2003.

P. Bamberg and S. Sternberg, A Course in Mathematics for Students of
Physics, Cambridge University Press, 1999.

H. Flanders, Differential Forms with Applications to Physical Sciences,
Academic Press, New York, 1989.

Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick, Analysis,
Manifolds, and Physics. Vols. 1, 2, Elsevier, Amsterdam, 1996.
T. Frankel, The Geometry of Physics, Cambridge University Press, 2004.
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Furthermore, we recommend:

H. Amann and J. Escher, Analysis, Vols. 1–3, Birkhäuser, Basel, 1998.

K. Maurin, Analysis II: Integration, Distributions, Holomorphic Functions,
Tensor and Harmonic Analysis, PWN Polish Scientific Publishers, War-
saw/Reidel, Dordrecht, 1980.

I. Agricola and T. Friedrich, Global Analysis: Differential Forms in Analy-
sis, Geometry and Physics, Amer. Math. Soc., Providence, Rhode Island,
2002.

B. Dubrovin, A. Fomenko, and S. Novikov, Modern Geometry: Methods
and Applications, Vols. 1-3, Springer, New York, 1992.

S. Novikov and T. Taimanov, Geometric Structures and Fields, Amer.
Math. Soc., Providence, Rhode Island, 2006.

Applications to physics:

R. Abraham and J. Marsden, Foundations of Mechanics, Addison-Wesley,
Reading, Massachusetts, 1978.

R. Abraham, J. Marsden, and T. Ratiu, Manifolds, Tensor Analysis, and
Applications, Springer, New York, 1988.

J. Marsden, Applications of Global Analysis in Mathematical Physics,
Publish or Perish, Boston, 1974.

J. Marsden, Lectures on Geometric Methods in Mathematical Physics,
SIAM, Philadelphia, 1981.

J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry,
Springer, New York, 1999.

A. Fomenko, Integrability and Non-Integrability in Geometry and Mechan-
ics, Kluwer, Dordrecht, 1988.

G. Schwarz, Hodge Decomposition–a Method of Solving Boundary Value
Problems, Springer, Berlin, 1995.

Applications to differential topology:

V. Guillemin and A. Pollack, Differential Topology, Prentice Hall, Engle-
wood Cliffs, New Jersey, 1974.

R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer,
New York, 1982.

I. Madsen and J. Tornehave, From Calculus to Cohomology: de Rham Co-
homology and Characteristic Classes, Cambridge University Press, 1997.

J. Moore, Lectures on Seiberg–Witten Invariants, Springer, Berlin, 1996.

S. Lefschetz, Applications of Algebraic Topology: Graphs and Networks,
the Picard–Lefschetz Theory, and Feynman Algorithms, Springer, New
York, 1975.

Applications to supersymmetry:

V. Guillemin and S. Sternberg, Supersymmetry and Equivariant De Rham
Theory, Springer, Berlin, 1999.



12.14 Historical Remarks 777

12.14 Historical Remarks

Over the centuries, mathematics makes progress by solving hard problems.
The calculus of differential forms has its roots in physics (classical mechan-
ics, fluid dynamics, electromagnetism, and thermodynamics). In modern
mathematics, the Cartan calculus combines algebra, analysis, geometry,
and topology with each other. In modern physics, the Cartan calculus is
used in order to describe the fundamental forces in nature in terms of gauge
theory (Einstein’s theory of general relativity and the Standard Model in
particle physics).

Folklore

Biographical data. For the convenience of the reader, let us first summarize the
biographical data of mathematicians and physicists whose work will be mentioned
below.

Hooke (1635–1703), Newton (1643–1727), Leibniz (1646–1716), Euler
(1707–1783), Clairaut (1713–1765), Lagrange (1736–1813), Monge (1746–
1818), Laplace (1749–1827).

Legendre (1752–1833), Pfaff (1765–1825), Ampére (1775–1836), Gauss
(1777–1855), Poisson (1781–1840), Cauchy (1789–1857), Green (1793–
1843).

Ostrogradsky (1801–1862), Jacobi (1804–1851), Grassmann (1809–1877),
Stokes (1819–1903), Helmholtz (1821–1894), Betti (1823–1892), Thomson
(Lord Kelvin since 1893) (1824–1907), Riemann (1826–1866), Maxwell
(1831–1879), Lie (1842–1899), Clifford (1845-1879), Klein (1849–1925),
Frobenius (1849–1917).

Kovalevskaya (1850–1891), Poincaré (1854–1912), Goursat (1858–1936),

Volterra (1860–1940), Hilbert (1862–1943), Élie Cartan (1869–1951), Cara-
théodory (1873–1950), Emmy Noether (1882–1935), Weyl (1885–1955),
Künneth (1892–1975).

Dirac (1902–1984), de Rham (1903–1990), Hodge (1903–1975), Ehresmann
(1905–1979), Kähler (1906–2000), Sard (1909–1980), Chern (1911–2004),
Yang (born 1922), Singer (born 1924), Hirzebruch (born 1927), Atiyah
(born 1929), Gromov (born 1943), Yau (born 1949), Witten (born 1951),
Donaldson (born 1957).

In what follows, the quotations (e.g., Gauss (1813)) refer to the references to be
found on page 791 below. To avoid lengthy formulas, we will use the language of
vector calculus. However, note that this language was only introduced in the second
half of the 19th century. Newton used a geometric language, and Lagrange worked
with Cartesian coordinates.

The Gravitational Force of a Body

Consider two positive masses m0 and m (e.g., sun and earth) located at the points
P0 and P , respectively. Let us introduce the origin O and the position vectors

x0 :=
−−→
OP0 and x :=

−−→
OP (Fig. 12.26). Newton’s gravitational law tells us that the

attracting force between two masses m0 and m acting at the point P is given by

FP =
Gmm0

|x0 − x|2 · x0 − x

|x0 − x| (12.190)
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Fig. 12.26. The gravitational law

with the gravitational constant G.59 To simplify notation, we also briefly write

F(x) =
Gmm0(x0 − x)

|x0 − x|3 .

In particular, Newton obtained the result that the gravitational force inside a spher-
ical shell vanishes. It was the goal of Lagrange to replace the geometric arguments
due to Newton and his successors by analytic methods. Lagrange realized this pro-
gram in his famous Méchanique analitique first published in Paris in 1788.60 This
is one of the most influential works in mathematical physics.

Consider a body of mass density �0 which occupies the set M. We assume that
M is the closure of a 3-dimensional bounded open set M(e.g., a ball or an ellipsoid).
In 1775, Lagrange derived the formula

Fbody(P ) =

Z

M

Gm�(P0)

|x0 − x|2 · x0 − x

|x0 − x| d
3x0. (12.191)

This is the gravitational force which the body (e.g., the earth) exerts on a mass m
located at the point P (e.g., a stone). In 1777, Lagrange noticed that the components
of the gravitational force (12.190) can be represented by the partial derivatives of
a single function U . Explicitly, we have

F(P ) =
Gmm0(x0 − x)

|x − x0|3
= −gradU(P ) (12.192)

with

U(P ) := − Gmm0

|x − x0|
.

The function U was called potential by Gauss in 1813. This is one of the most
important notions in physics. We will show in Chap. 15 that

59 Recall that the symbol |x0 − x| denotes the length of the vector x0 − x.
The gravitational force acting at the point P0 is equal to

FP0 =
Gmm0(x − x0)

|x − x0|3
,

which is parallel to −FP . This is Newton’s principle ’actio = reactio’.
60 After an orthographic reform in France organized by the Paris Academy, the

title of the second edition changed into Mécanique analytique in 1811.
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Gauge theory represents a generalization of classical potential theory to
modern physics.

In terms of physics, U(P ) is the potential energy of the mass m at the point P
with respect to the gravitational field generated by the mass m0 at the point P0.
By convention, this potential energy of the gravitational field is negative, and it
vanishes at infinity. Note that we gain the energy

E = U(P1) − U(P2) =

Z P2

P1

F dx

if the point of mass m moves from the position P1 to the position P2 in the grav-
itational field generated by the mass m0. This energy does not depend on the
trajectory of the moving body. For example, if a stone of mass m is falling from
the point P1 to the point P2 on earth, then, approximately, we gain the energy
E = gmh, where h is the initial height of the stone, and g is the gravitational
acceleration on earth. The potential corresponding to the force (12.191) reads as

Ubody(P ) = −
Z

M

Gm�0(P0)d
3x0

|x − x0|
. (12.193)

In 1785, Laplace showed that the potential satisfies the Laplace equation

ΔUbody(P ) = 0 for all P /∈ cl(M) (12.194)

where he used spherical coordinates. In 1787, Laplace published the equation

∂2Ubody(P )

∂x2
+
∂2Ubody(P )

∂y2
+
∂2Ubody(P )

∂z2
= 0, P /∈ M (12.195)

with respect to Cartesian coordinates. The symbol Δ was introduced by Murphy
in 1833. In this monograph, we use the notation

ΔU := −Uxx − Uyy − Uzz.

This sign convention corresponds to the definition ΔU := (dd∗ + d∗d)U in modern
differential geometry (the Hodge-Laplace operator). In 1813, Poisson obtained that

ΔUbody(P ) = −4πGm�0(P ) for all P ∈ int(M). (12.196)

This is called the Poisson equation. In the history of mathematical physics, trouble
was caused by the fact that, for a continuous density function �0 : cl(M) → R,
the Poisson equation (12.196) is not always valid in the classical sense, but only in
the sense of generalized functions. However, if the mass density �0 is continuously
differentiable on cl(M), then the Poisson equation (12.196) holds in the classical
sense.

In the second edition of his Mécanique analytique from 1811, Lagrange intro-
duced general surface integrals, and he used this in order to perform integration by
parts for special volume integrals.

The Shape of the Earth

The precise computation of the gravitational force generated by a homo-
geneous ellipsoid is one of the most difficult problems in astronomy.61

Carl Friedrich Gauss, 1813

61 C. Gauss (1813), On a new method for studying the gravitational force of ho-
mogeneous elliptical spheroids, Göttingen (24 pages in Latin).
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In his famous Mathematical Principles of Natural Philosophy, published in 1687,
Newton predicted theoretically the flattening of earth. He found that the equatorial
semi-axis would be 1

230
longer than the polar semi-axis (true value about 1

300
). In

the 18th century, the Paris Academy sent expeditions to Lapland and Peru in
order to determine experimentally the flattening of earth. In order to compute the
gravitational force of earth, mathematicians and physicists tried to compute the
integral (12.191) in the case where the body M is an ellipsoid. Let us assume that
the mass density �0 of the body is constant.

Legendre polynomials and moments of the mass distribution of the

body. Let x =
−−→
OP with r := |x|, r0 := |x0|, and 〈x|x0〉 = rr0 cosϑ0. Then

|x − x0| =
q

r2 − 2rr0 cosϑ0 + r20.

In 1782, Legendre introduced the following formula

1

|x − x0|
=

1

r

∞
X

k=0

“r0
r

”k

Pk(cosϑ0). (12.197)

This series is convergent if r0
r
< 1. The polynomials

Pk(z) :=
1

2kk!

dk(z2 − 1)k

dzk
, z ∈ C, k = 0, 1, 2, . . .

are called the Legendre polynomials. Explicitly, P0(z) := 1, P1(z) := z, and

P2(z) := 1
2
(3z2 − 1), P3(z) := 1

2
(5z3 − 3z), P4(z) := 1

8
(35z4 − 30z2 + 3).

Hence

Ubody(P ) = −mG
„

M0

r
+
M1

r2
+
M2

r3
+ . . .

«

(12.198)

with the total mass M0 :=
R

M �0 d
3x0 and the moments

Mk :=

Z

M
�0r

k
0Pk(cosϑ0) dx0dy0dz0, k = 1, 2, . . .

of the body.62 In particular, M2 (resp. M4) is called the dipole (resp. quadrupole)
moment of the body (e.g., earth). If the body is contained in a ball of radius R
about the origin, then the formula (12.198) is valid for all points P whose distance
from the body is large enough (i.e., r > R). In the special case where the body is
symmetric under the reflection x �→ −x, then M1 = M3 = M5 = . . . = 0.

In the 1780s, Laplace used this method in order to compute the gravitational
potential of general ellipsoids. He devoted a chapter to this subject in his famous
Celestial Mechanics, vol. II, published in 1799.

Gauss’ reduction of the gravitational force to a surface integral. In
1813, Gauss showed that

German translation in: A. Wangerin (Ed.), On the Attraction of Homogeneous
Ellipsoids: basic papers by Laplace (1782), Ivory (1809), Gauss (1813), Chasles
(1838), and Dirichlet (1839), Ostwalds Klassiker, Vol. 19, Engelmann, Leipzig,
1890.

62 We set cosϑ0 = z0
r0
.
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Fbody(P ) =

Z

∂M
U(P, P0)nP0dSP0 (12.199)

with U(P, P0) := − Gm�0
|x−x0| . Here, nP0 is the outer normal unit vector at the bound-

ary point P0 of the surface ∂M of the ellipsoid. Gauss used a geometric argument.
With the aid of Ostrogradsky’s divergence theorem (12.200) below, the proof of
(12.199) reads as follows:

Fbody(P ) = −
Z

M
gradP U(P, P0) d

3x0

=

Z

M
gradP0

U(P, P0) d
3x0 =

Z

∂M
U(P, P0)nP0 dSP0 .

Integral Theorems

The three integral theorems of Gauss–Ostrogradsky, Green, and Stokes emerged
slowly in the 19th century with increasing generality. For a detailed study of the
complicated history of these integral theorems, we refer to V. Katz, The history of
Stokes’ theorem, Mathematics Magazine 52 (1979), 146–156.

Ostrogradsky’s divergence formula. The divergence formula in three di-
mensions,

Z

M

„

∂U

∂x
+
∂V

∂y
+
∂W

∂z

«

dxdydz =

Z

∂M
(Un1 + V n2 +Wn3) dS, (12.200)

was first published by Ostrogradsky (1826) (see the references quoted on page 792).
Here, n1, n2, n3 are the Cartesian components of the outer normal unit vector n.
This formula was generalized to n dimensions by Ostrogradsky (1836).

The Green integral formula. George Green was autodidact in mathematics.
In 1828, he published a famous essay on electricity and magnetism where he used
the following formula for the Laplacian in three dimensions:

Z

M
(UΔV − V ΔU)dxdydz =

Z

∂M

„

V
∂U

∂n
− U ∂V

∂n

«

dS.

Here, ∂U
∂n

= ngradU. This formula is called the Green formula for the Laplacian.
Using integration by parts, it is possible to obtain such formulas for general linear
differential operators. Green used this formula in order to develop his method of
the Green’s functions which plays a fundamental role in both the classical theory of
partial differential equations and modern physics (quantum field theory and solid
state physics). See Dyson (1993) on page 791.

The Cauchy integral formula. In order to study line integrals, Cauchy (1845)
used the formula

Z

∂M
Udx+ V dy =

Z

M

„

∂V

∂x
− ∂U

∂y

«

dxdy. (12.201)

Here, M is a compact 2-dimensional submanifold of the Euclidean plane with co-
herently oriented boundary ∂M. In particular, Cauchy used the fact that

Z

∂M
Udx+ V dy = 0
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if the integrability condition Uy = Vx is satisfied on M.
The Thomson integral formula. In a letter from July 4th, 1850, Thomson

(later Lord Kelvin) communicated two theorems to Stokes who answered: “The
theorems which you communicated are very elegant and new to me.” In modern
terminology, one of the theorems reads as follows:

Z

M
curlH dS =

Z

∂M
Hdx. (12.202)

Here, M is a compact 2-dimensional submanifold of the 3-dimensional Euclidean
manifold with coherently oriented boundary ∂M. Thomson obtained this theorem
by studying the properties of magnetic fields.

The theorem (12.202) first appeared in print in 1854. George Stokes had for
several years been setting the Smith’s Prize Examination at Cambridge Univer-
sity (England). In February 1854, Stokes formulated (12.202) as an examination
question. Therefore, formula (12.202) was called the Stokes theorem.

The Generalized Stokes Theorem

In a fundamental paper, Volterra (1889) proved the following two basic results:

(i) The generalization of the Stokes integral theorem to n dimensions, and
(ii) necessary and sufficient conditions for solving the following system of differen-

tial equations on R
n with n = 2, 3, . . . :

∂[j1Vj2...jn] = Fj1...jn , j1, . . . , jn = 1, . . . , n. (12.203)

This system represents a generalization of the potential equation gradV = F.
We are given the smooth functions Fj1...jn on R

n which are antisymmetric with
respect to all the indices. We are looking for smooth solutions Vj2...jn which satisfy
equation (12.203), and which are antisymmetric with respect to all the indices. We
set ∂j := ∂

∂xj . Moreover, the symbol ∂[j1Vj2...jn] indicates the antisymmetrization

with respect to the indices j1, . . . , jn.
63

Volterra proved that the system (12.203) has a solution on R
n iff the following

integrability conditions are satisfied:

∂[j0Fj1...jn] = 0 on R
n, j0, . . . , jn = 1, . . . , n. (12.204)

Volterra did not use the language of differential forms which was introduced by Élie
Cartan ten years later in 1899. In modern terminology, Volterra proved that

Z

M
dω =

Z

∂M
ω (12.205)

is valid on a compact submanifold M of R
n with coherently oriented boundary

∂M. The system (12.203) corresponds to

dω = μ on M (12.206)

where M := R
n. Here, we set μ := Fj1...jndx

j1 ∧ · · · ∧ dxjn , and64

63 For example, ∂[jVk] = 1
2!

(∂jVk − ∂kVj).
64 We sum over equal upper and lower indices from 1 to n.
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ω := Vj2...jndx
j2 ∧ · · · ∧ dxjn .

If there exists a solution ω of (12.206), then it follows from

d(dω) = 0 (12.207)

that dμ = 0. This is the integrability condition (12.204) above. Equation (12.207)
is frequently called the Poincaré lemma; it was published by Poincaré (1887) two
years before Volterra’s paper, but in a different context. Poincaré studied integral
invariants (see page 784 below). It follows from the generalized Stokes theorem
(12.205) that

Z

C
dω = 0 (12.208)

if the boundary ∂C of C is empty. This relation motivated Poincaré to study cy-
cles. By definition, a smooth cycle C is a manifold or a submanifold which has no
boundary (e.g., a sphere or a circle). The following observation is crucial. If ω is a
solution of the equation (12.206) and C is a cycle in the manifold M, then

Z

C
μ = 0. (12.209)

In contrast to the local integrability condition dμ = 0, this is a global integrability
condition. At this point, topology enters the story. Poincaré was amazed by the
relation between analysis and topology. The final approach was formulated by de
Rham in the 1930s.

The Euler Multiplicator, the Pfaff Problem, and Cartan’s Exterior
Calculus of Differential Forms

Clairaut’s total differential. In 1739, Clairaut studied the ordinary differential
equation

dy

dx
= −U(x, y)

V (x, y)
. (12.210)

Using the formal Leibniz notation, he wrote this as

U(x, y)dx+ V (x, y)dy = 0. (12.211)

Motivated by this reformulation, Clairaut proved that the equation

dW = Udx+ V dy

has a solution W iff the integrability condition Uy = Vx is satisfied. In this case,
the equation W (x, y) = 0 yields a solution y = y(x) of (12.210).

The Euler multiplicator. Euler considered the case where the integrability
condition Uy = Vx is violated. He showed that it is always possible to find functions
W and M of the variables x, y such that

M · dW = Udx+ V dy.

Then it follows from
W (x, y(x)) = 0



784 12. Covector Fields and the Beauty of Differential Forms

that M(x, y(x)) dW (x, y(x)) = 0. Hence U(x, y(x))dx + V (x, y(x))dy = 0. This
implies that the function y = y(x) is a solution of the original differential equation
(12.210). The function M is called the Euler multiplicator.

The Pfaff problem. In 1815, Paff posed the following problem: Solve the
system

fj1(x) dx
1 + . . .+ fjn(x) dxn = 0, j = 1, . . . , N (12.212)

where x = (x1, . . . , xn). In addition, he posed the following reduction problem:
Represent the differential form ω = f1dg1 + . . .+ fkdgk as

ω = F1dG1 + . . .+ FmdGm,

where the number m of functions F1, G1 . . . , Fm, Gm is minimal. In 1877, Frobe-
nius wrote a basic paper on the Pfaff problem. He proved necessary and sufficient
conditions for solving (12.212), and he solved the reduction problem. This can be
found in Sect. 12.11 on page 767.

Élie Cartan’s differential forms. In order to reformulate the Frobenius re-
sults on the Pfaff problem by means of a symbolic method, Cartan (1899) in-
troduced the so-called exterior differential calculus. To this end, he combined the
Leibniz differential with Grassmann’s antisymmetric (exterior) product. In 1909,
Carathéodory used the Pfaff problem in order to give phenomenological thermody-
namics a sound mathematical basis.65 In 1917, Goursat studied a generalization of
the Pfaff problem in terms of differential forms of higher degree. In this paper, he
formulated the generalized Stokes theorem (12.205) in terms of differential forms
for the first time.

It seems that the generalized Stokes theorem appeared in a textbook for the first
time in 1959.66 The theory of differential forms shows that progress in mathematics
may proceed on a large time scale.

Poincaré’s Generalization of Cauchy’s Residue Theorem and
Riemann’s Periods (Topological Charges)

Cauchy’s residue theorem. In what follows, we will use Cauchy’s residue the-
orem (see Theorem 4.2 of Vol. I). The curves C,C1, C2 depicted in Fig. 12.27 are
assumed to be smooth closed curves which are homeomorphic to the unit circle.

(i) Gaussian plane (Fig. 12.27(a)): If the function f : C → C is holomorphic, then

Z

C

f(z)dz = 0.

(ii) Punctured Gaussian plane C \ {z1} (Fig. 12.27(b)): Setting f(z) := 1
z−z1

for

all z ∈ C \ {z1}, we get
Z

C1

f(z)dz = 2πi.

65 This is thoroughly investigated in Frankel (2004), Sect. 6.3, quoted on page 775.
66 H. Nickerson, D. Spencer, and N. Steenrod, Advanced Calculus, van Nostrand,

Princeton, 1959.
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Fig. 12.27. The first Betti number β1

(iii) Double-punctured Gaussian plane C \ {z1, z2} (Fig. 12.27(c), (d)): Fix the
complex numbers a1, a2. Setting

f(z) :=
a1

z − z1
+

a2
z − z2

for all z ∈ C \ {z1, z2},

we get
R

Cj
f(z)dz = 2πiaj with j = 1, 2, and

Z

C

f(z)dz =

Z

C1

f(z)dz +

Z

C2

f(z)dz = 2πi(a1 + a2). (12.213)

The integrals
R

C
f(z)dz,

R

Cj
f(z)dz, j = 1, 2, are called periods (synonymously,

integral invariants or topological charges). Observe that the integrals remain un-
changed under appropriate deformations of the curves C,Cj .

Riemann’s periods. Riemann generalized this by considering line integrals
on Riemann surfaces. This way, in his famous paper from 1857, Riemann created a
general theory for Abelian integrals

Z

C

ω (12.214)

where ω is an Abelian differential which looks like ω = f(z)dz in local coordinates.
More precisely, we have f(z) = R(z, w(z)) where R is a rational function of the
complex variables z and w. In addition, w(z) is given by the algebraic equation

P (z, w(z)) = 0 (12.215)

where P is a polynomial of the complex variables z and w (e.g., P (z, w) = w2−z3).
In terms of geometry, equation (12.215) describes an algebraic curve. For example,
elliptic integrals are special Abelian integrals related to so-called elliptic curves.
Elliptic curves can be globally parametrized by elliptic functions. This generalizes
the global parametrization of a circle by trigonometric functions.

Riemann’s periods are obtained by integrals of the form (12.214) in the case
where the closed curve C cannot be continuously contracted to a point. In the
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Fig. 12.28. Torus

special case of elliptic integrals, the Riemann surface is a torus, and the two periods
of an elliptic integral,

R

C
ω, are obtained by integrating along the equator E and

some meridian M of the torus (see Fig. 12.28). The periods of the integral
R

C
ω

are precisely the periods of the elliptic function which globally parametrizes the
integral.

Riemann passed over to Riemann surfaces in order to handle the difficulty that,
for fixed z, equation (12.215) has several solutions (i.e., the function z �→ w(z) is
multi-valued).

The Jacobian variety of a Riemann surface. We want to study the values
of line integrals on the compact Riemann surface R in terms of the periods. If R has
the genus g (e.g., g = 1 for the torus), then there exist precisely 2g basic 1-cycles
C1, . . . C2g. In addition, there exist g differential forms ω1, . . . , ωg on R such that

Z

Cj

ωk = δjk, j, k = 1, . . . , g.

Moreover, the matrix (πjk) with the entries

πjk :=

Z

Cg+j

ωk, j, k = 1, . . . , g

is symmetric, and �(πjk) > 0 for all j, k = 1, . . . , g. Fix the point P0 on the Riemann
surface R. For all points P in R, define

ϕ(P ) :=

„

Z P

P0

ω1, . . . ,

Z P

P0

ωg

«

.

The line integrals from the point P0 to the point P are independent of the path
of integration. However, because of the periods, there exists a lattice Λ in C

g such
that ϕ(P ) is uniquely defined modulo the lattice (i.e., modulo integer-valued linear
combinations of the periods). More precisely, there exists a holomorphic map

ϕ : R → Jac(R)

where the quotient space Jac(R) := C
g/Λ is called the Jacobian variety of the Rie-

mann surface R. The Jacobian variety is a compact, commutative, g-dimensional,
complex Lie group.

The following remarks are crucial for understanding the creation of
algebraic topology by Poincaré in the 1890s.

Poincaré’s homology and Betti numbers. According to Poincaré, we want
to consider the integrals above from a point of view which can be generalized to
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higher dimensions. To this end, consider the manifold N (e.g., the Gaussian plane
C, the punctured Gaussian planes C\{z1} and C\{z1, z2}, the Euclidean manifold
E

3 or an n-dimensional sphere). An m-dimensional submanifold C of N (without
boundary) is called a regular m-cycle. We write

C ∼ 0

iff C is the boundary of an (m+1)-dimensional submanifold M of N (i.e., C = ∂M).
In this special case, we say that C is homologous to zero (or a trivial cycle) in the
manifold N . For example, the circle (resp. the m-dimensional sphere) is a regular
1-cycle (resp. m-cycle). The following proposition motivates the terminology.

Proposition 12.60 Let f : O → C be a holomorphic function on the open subset
O of the Gaussian plane C. Set ω := f(z)dz. Suppose that C is a regular 1-cycle
which lies in the set O, and C ∼ 0. Then

Z

C

ω = 0.

Proof. By the Cauchy–Riemann differential equation, dω = 0 on O. By Fig.
12.27(a) on page 785, the Stokes theorem tells us that

Z

C

ω =

Z

∂M
ω =

Z

M
dω = 0.

�

For example, let us apply this to Fig 12.27 (d) on page 785. It follows from the
boundary decomposition ∂M = C − C1 − C2 that

0 =

Z

M
dω =

Z

∂M
ω =

Z

C

ω −
Z

C1

ω −
Z

C2

ω.

This yields (12.213) above.
By definition, the first Betti number β1 counts the number of essential 1-cycles.

Intuitively, this means that the integral over an arbitrary 1-cycle C can be written as
a linear combination (with integer coefficients) over the integrals along the essential
1-cycles C1, . . . , Cβ1 , that is,

Z

C

ω = m1

Z

C1

ω + . . .+ mβ1

Z

Cβ1

ω

where m1, . . . ,mβ1 are integers. For the manifolds C,C \ {z1}, and C \ {z1, z2}, we
get the first Betti number β1 = 0, 1, and β1 = 2, respectively (see Fig. 12.27 on
page 785).

Poincaré’s periods. In 1887, Poincaré started to extend Riemann’s theory of
periods to functions of n complex variables. This way, in the late 1880s and in the
1890s, Poincaré discovered implicitly all the relations (12.205) through (12.209) on
page 782 without using explicitly the language of differential forms of degree p > 1;
this language was introduced later by Cartan in 1899. In addition, the problem
of periods of n-dimensional integrals was one of the sources for creating algebraic
topology by Poincaré in 1895. In this setting, regular n-cycles are n-dimensional
submanifolds which are homeomorphic to n-dimensional spheres.67

67 Poincaré studied at the École Polytechnique in Paris. From 1881 until 1912, he
worked as professor of mathematics at the Sorbonne in Paris.
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The De Rham Theory

In his thesis from 1931, de Rham gave Poincaré’s ideas the final form in the setting
of differential topology.

Further Developments

Let us briefly sketch some further important developments.
Cartan’s method of moving frames. In his Erlangen program from 1872,

Felix Klein pointed out that68

Geometry is the invariant theory of transformation groups.

It was the goal of the great geometer Élie Cartan to generalize Klein’s Erlangen
program to differential geometry by combining differential calculus with the theory
of Lie groups. To this end, Cartan invented his method of moving frames which
we will study in this volume.69 In this setting, differential forms play the crucial
role. The final theory was created by Ehresmann (1950) using the language of fiber
bundles. The first monograph about this new approach to differential geometry
was written by Kobayashi and Nomizu (1963). This is the basis of gauge theory in
modern physics.

Kähler manifolds. In 1933, using the language of differential forms, Kähler
discovered that there exists a class of n-dimensional complex manifolds which has
similar nice properties as Riemann surfaces. The basic idea can be found in Sect.
5.10.1 of Vol. II (the relation between geometric optics, Poincaré’s hyperbolic non-
Euclidean geometry on the upper half-plane, and Kähler geometry). The point
is that the geometry and the topology of a Kähler manifold are governed by a
differential form ω with

dω = 0.

This is called the Kähler form. In a very natural way, Kähler geometry combines
the complex Hilbert space geometry of the tangent spaces, parallel transport of
tangent vectors, real Riemannian geometry, and symplectic geometry. These ge-
ometries are fundamental for physics. Moreover, from the practical point of view,
the computation of the Riemann curvature tensor can be dramatically simplified
by differentiating one special scalar function U called the Kähler potential:

ω = i∂∂U.

Calabi–Yau manifolds, which are special Kähler manifolds, play a crucial role in
string theory. We refer to Jost (2008) (introduction), Voisin (2002), Ballmann
(2006), Moroianu (2007), and Becker (2006) (string theory) quoted on page 799.
Furthermore, we refer to the survey article:

P. Bourguignon, The unabated vitality of Kählerian geometry.
In: E. Kähler, Mathematical Works, pp. 737–766, de Gruyter, Berlin, 2004.

68 Klein studied at the Universities of Bonn and Göttingen. He worked as professor
of mathematics at the following Universities in Germany: Erlangen (1872–1875),
Technical University Munich (1875–1880), Leipzig (1880–1886), and Göttingen
(1886–1925).

69 Cartan studied at the École Normale Superieure in Paris. He worked as professor
of mathematics at the following Universities in France: Montpellier (1894–1896),
Lyon (1896–1903), Nancy (1903–1909), and Sorbonne in Paris (1909–1940).
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For example, Calabi conjectured in 1955 the following: A Kähler manifold M is an
Einstein manifold, that is, the Ricci curvature of M vanishes,

Ric(g) = 0 on M,

iff the first Chern class of the manifold M vanishes (i.e., c1 = 0). It was proven by
Yau in 1977 that this conjecture is true. To this end, Yau thoroughly studied the
complex Monge–Ampère differential equation.70

Systems of differential forms and Kähler’s differential ideals. In 1934,
Kähler wrote a seminal monograph where he studied general systems of differential
forms,

ωj = 0 on M, j = 1, . . . ,m (12.216)

in a holomorphic setting. That is, M is an n-dimensional complex manifold (with
biholomorphic transformations of local coordinates), and the coefficient functions
of the differential forms ω1, . . . , ωm of finite degree are holomorphic (i.e., the co-
efficients are power series expansions with respect to local coordinates). Combin-
ing elegantly algebra with analysis, Kähler proved a general existence theorem for
(12.216) which generalizes the classical Frobenius theorem.

The basic idea reads as follows. First we have to add the integrability conditions
dωj = 0, that is, we replace (12.216) by the extended system

ωj = 0, dωj = 0, j = 1, . . . ,m. (12.217)

Next the solution manifold is constructed inductively with respect to increasing
dimension. More precisely, in each step, by a biholomorphic coordinate transfor-
mation, one has to solve a well-posed initial-value problem with the aid of the
Cauchy–Kovalevskaya theorem. If the initial problem is ill-posed, then this cor-
responds to the generalization of a well-known singular situation in the classical
theory of partial differential equations (Cauchy’s characteristics).

In algebraic geometry, systems of polynomial equations are described by ide-
als in polynomial rings. Kähler generalized this strategy by introducing so-called
differential ideals. By definition, a set of differential forms is called a differential
ideal iff it is invariant under the following operations: linear combinations, wedge
products, and passing from ω to dω. In this setting, problem (12.217) corresponds
to the annihilation of a differential ideal generated by ω1, . . . , ωm.

In 1945, Élie Cartan wrote a monograph on systems of differential forms and
their applications to differential geometry. Cartan used the notion of differential
ideals in order to supplement the original system (12.216) by the system

θ1 = 0, . . . , θr = 0 on M (12.218)

for differential forms θj of first degree. Cartan showed how to use the adjoint system
(12.218) (which is always integrable) in order to solve the original system (12.216).
This approach generalizes Cauchy’s method for solving first-order partial differential
equations with the aid of characteristic curves.

The theory described above is called the Cartan–Kähler theory for systems
of differential forms. The basic ideas can be found in E. Zeidler, Oxford Users’

70 For his crucial contributions to geometric analysis (combining nonlinear partial
differential equations with geometry), Shing-Tung Yau (born 1949) was awarded
the Fields medal in 1983.



790 12. Covector Fields and the Beauty of Differential Forms

Guide to Mathematics, Oxford University Press, 2004, Sect. 1.13 (the Cartan–
Kähler theorem). For a detailed study, we refer to Bryant et al. (1991), Sharpe
(1997), Ivey and Landsberg (2004) quoted on page 799.

The Dirac equation and Kähler’s interior differential calculus. Moti-
vated by the Dirac equation, Kähler (1962) invented his interior differential calculus
in order to formulate the Dirac equation in terms of an invariant differential calcu-
lus. The idea is the following. First generate the exterior differential algebra by the
relation

dxi ∧ dxj = −dxj ∧ dxi,
where x1, . . . , xn are local coordinates of the manifold M under consideration.
Suppose now that there exists a Riemannian (or pseudo-Riemannian) tensor (gij)
on M. Then we introduce the interior product ∨ by setting

dxi ∨ dxj := dxi ∧ dxj + gij , i, j = 1, . . . , n.

As usual, (gij) denotes the inverse matrix to the matrix (gij). This implies the
Clifford relation

dxi ∨ dxj + dxj ∨ dxi = 2gij , i, j = 1, . . . , n.

The point is that this approach possesses an invariant meaning, that is, it does not
depend on the choice of the local coordinates.

Nowadays the Dirac equation and its generalizations (like the fundamental
Seiberg–Witten equation) are formulated in terms of the universal modern ap-
proach to differential geometry. The idea is to construct a covariant differentiation
which respects a given symmetry group by using the connection of a principal fiber
bundle and to transplant this to the associated vector bundle. In particular, the
Dirac equation is described by spin bundles and the corresponding spin geometry.
We refer to Kobayashi and Nomizu (1963) on page 797, Jost (2008) (the Seiberg–
Witten equation and its relation to the Ginzburg–Landau equation) and Moore
(1996) on page 800.

Index theory. Important progress in topology is related to the construction
of new classes of topological invariants as the index of differential operators on
manifolds (e.g., the Riemann–Roch–Hirzebruch theorem, the Atiyah–Singer index
theorem, the Yang–Mills equation and the Donaldson theory of 4-manifolds, the
Seiberg–Witten equation and 4-manifolds). We refer to Hirzebruch (1956) on page
797, Shanahan (1978) and Gilkey (1998) on page 800, and Donaldson (1990), (1996),
(2002) on page 798.

Differential forms on the manifold M as a section of the Grassmann
bundle on M. In 1899, Cartan introduced differential forms in a symbolic sense.
In his 1934 monograph, Kähler gave a rigorous algebraic definition. He introduced
the algebra of the following expression:

ω = a0(x) + ai(x)dx
i + aij(x)[dx

i, dxj ] + . . .

where the coefficients a0, ai, aij , . . . are smooth functions, and we have the relations
[dxi, dxj ] = −[dxj , dxi], and so on. Here, we sum over equal upper and lower indices
from 1 to n. Moreover, x = (x1, . . . , xn). Nowadays we write

ω = a0(x) + ai(x)dx
i + aij(x)dx

i ∧ dxj + . . . (12.219)

Furthermore, Kähler introduced the transformation rules for differential forms (i.e.,
the pull-back). Moreover, he defined the differential dω, and he proved that this
operation is invariant under coordinate transformations.
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In the 1930s and 1940s, the theory of fiber bundles emerged slowly. From the
modern point of view, a differential form is a section

σ : M → G(M)

of the Grassmann bundle G(M) over the manifold M. As we will show later on,
this is a localized variant of the section σ : E

3 → G(E3) discussed on page 704.

Differential forms represent the analytic standard tool of modern geometry,
differential topology, and physics.

A panorama of references can be found on page 798ff.
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toria Mathematica 8 (1981), 161–188.

V. Katz, Differential forms – Cartan to de Rham, Archive for History of
Exact Sciences 33 (1985), 321–336.

V. Katz, Differential forms, Chap. 5. In: I. James, (Ed.), History of Topol-
ogy, Elsevier, Amsterdam, 1999.

J. Crowe, A History of Vector Analysis, University of Notre Dame Press,
Notre Dame, Indiana, 1967.

71 I would like to thank Ivor Grattan–Guinness (London) and Erhard Scholz (Wup-
pertal) for drawing my attention to the papers by Bacharach, Cross, and Katz.



792 12. Covector Fields and the Beauty of Differential Forms

The following papers describe a beautiful long-term development in mathematics
together with many interactions between mathematics and physics:

R. Hooke (1678), De potentia restitutiva (On the elastic force) (in Latin),
London.

I. Newton (1687), Philosophiae naturalis principia mathematica (in Latin),
London. See S. Chandrasekhar, Newton’s Principia for the Common
Reader, Oxford University Press, 1997.

A. Clairaut (1739), General investigations on integral calculus (in French),
Histoire de l’Académie Royale des Science avec les Mémoires de Mathé-
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É. Delassus (1896), Extension of Cauchy’s theorem to systems of partial

differential equations (in French), Ann. Sci. École Norm. Sup. 13 (3), 421–
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(in French), Ann. Sci. École Normale Sup. 18 (3), 241–311.

A. Forsythe (1901), A Theory of Differential Equations, Vols. 1–6, Cam-
bridge.

A. Einstein (1905), On the electrodynamics of moving bodies (in German),
Annalen der Physik 17, 891–921. English translation in S. Hawking (Ed.),
The Essential Einstein, pp. 4–31, Penguin Books, London, 2008.

D. Hilbert (1906), On the calculus of variations (in German), Math. Ann.
62, 151–186.
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Fig. 12.29. Special regions

Problems

12.1 The main theorem of calculus in two dimensions.
(a) Prove (12.13) on page 671 for the square Q := {(x, y) ∈ R

2 : a ≤ x, y ≤ b}.
(b) Prove (12.13) for the region M depicted in Fig. 12.29.
(c) Study the full proof for (12.13) in V. Zorich, Analysis, Vol. II, Sect. 13.3.1,

Springer, New York, 2003.
Solution. Ad (a). Integration by parts for one-dimensional integrals yields

Z

Q
Uxdxdy =

Z b

a

„

Z b

a

Ux(x, y)dx

«

dy

=

Z b

a

(U(b, y) − U(a, y)) dy =

Z

∂Q
Udy.

Ad (b). The region M is the sum of squares Q1,Q2, . . . By (a), we get

Z

M
Uxdxdy =

X

j

Z

Qj

Uxdxdy =
X

j

Z

∂Qj

Udy.

This is equal to
R

∂M Udy, since the other contributions cancel each other by
opposite orientation of the boundaries of adjoining squares.

12.2 Pull-back. Prove (12.22) on page 673.
Solution: We have
• ω = Udx+ V dy and dω = (Vx − Uy) dx ∧ dy,
• τ∗ω = (Uxu + V yu)du+ (Uxv + V yv)dv,
• d(τ∗ω) =

`

(Uxv + V yv)u − (Uxu + V yu)v
´

du ∧ dv.
By the product rule, (Uxv)u = Uuxv+Uxvu, and so on. Noting that xuv = xvu,
we get

d(τ∗ω) = (Uuxv + Vuyv − Uvxu − Vvyu) du ∧ dv.

By the chain rule, Uu = Uxxu + Uyyu. This yields

d(τ∗ω) = (Vx − Uy)(xuyv − xvyu) du ∧ dv = τ∗(dω).

12.3 Pull-back of covector fields. Prove (12.80) on page 706.
Solution: Use (11.6) on page 662, and argue as in Problem 12.2.
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12.4 Pull-back of differential forms. Prove Prop. 12.5 on page 706.
Hint: Use the definition of the wedge product and of the pull-back.

12.5 The Hodge Laplacian. Compute Δ(Udx+ V dy) and Δ(W dx ∧ dy).
Solution: (I) Set ω := Udx+ V dy. Then:
• dω = (Vx − Uy) dx ∧ dy,
• d∗ω = −Ux − Vy,
• dd∗ω = −(Uxx + Vyx)dx− (Uxy + Vyy)dy,
• d∗dω = (Vx − Uy)ydx − (Vx − Uy)xdy = (Vxy − Uyy)dx + (Uyx − Vxx)dy.

Hence Δω = (dd∗ + d∗d)ω = −(Uxx + Uyy)dx− (Vxx + Vyy)dy.
(II) Set γ := W dx∧dy. Then dγ = 0. Moreover, we have d∗γ = Wydx−Wxdy,
and

Δγ = dd∗γ = −(Wyy +Wxx) dx ∧ dy.
12.6 Invariant definition of the exterior Cartan differential via the Lie derivative

and the Lie algebra of velocity vector fields. Let ωP = U(x, y)dxP +V (x, y)dyP .
Use the invariant definition (12.25) in order to show that

dωP = (Vx(x, y) − Uy(x, y)) dxP ∧ dyP . (12.220)

Solution: Set v = aiP + bjP , and w = AiP +BjP . Then:
• ω(v) = Ua+ V b,

• Lwω(v) =
“

A ∂
∂x

+B ∂
∂y

”

(Ua+ V b) = AUxa+AUax +BVyb+BV by,

• Lvω(w) = aUxA+ aUAx + bVyB + bV By,

• [v,w] = Lvw − Lwv =
“

a ∂
∂x

+ b ∂
∂y

”

w −
“

A ∂
∂x

+B ∂
∂y

”

v. Hence

[v,w] = (aAx + bAy −Aax −Bay)iP + (aBx + bBy −Abx −Bby)jP ,

• ω([v,w]) = U(aAx + bAy −Aax −Bay) + V (aBx + bBy −Abx −Bby).
By (12.25), dω(v,w) = Lvω(w) − Lwω(v) − ω([v,w]). After cancelling many
terms, we get

dω(v,w) = (Vx − Uy)(aB −Ab) = (Vx − Uy) (dxP ∧ dyP )(v,w).

This is the claim (12.220).
12.7 Differential forms and the classical vector calculus. Prove all the formulas

summarized in Sect. 12.12.3 on page 773.
12.8 Harmonic forms. Prove all the formulas summarized in Sect. 12.12.5 on page

775.
12.9 Conservation of probability in quantum mechanics. Prove Proposition 12.4 on

page 697.
Solution: To simplify the computation, set � := 1 and 2m := 1. By the
Schrödinger equation,

i�̇ = iψ̇ψ† + iψψ̇† = ψ†(−∂2 + U)ψ − ψ(−∂2 + U)ψ†.

Moreover, i div J = i∂J = ∂(ψ†∂ψ − ψ∂ψ†). Hence

i div J = ∂ψ† · ∂ψ + ψ†∂2ψ − ∂ψ · ∂ψ† − ψ∂2ψ† = −i�̇.

12.10 Matrix-valued differential forms. Let

A = (aij), B = (bij)
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be (n × n)-matrices whose entries aij (resp. bij) are differential p-forms (resp.

q-forms).73 Quite naturally, we define both the Cartan differential dA = (daij)
and the wedge product

A ∧B = (cij), where cij := ais ∧ bsj .

This corresponds to the formula for the usual matrix product by replacing aisb
s
j

with the corresponding wedge product ais ∧ bsj . Show that

A ∧B = (−1)pqB ∧A,
d(A ∧B) = dA ∧B + (−1)pA ∧ dB. (12.221)

Hint: Use the corresponding relations for the entries.
12.11 Lie algebra-valued differential forms. Let L be a real n-dimensional algebra

with the basis elements B1, ..., Bn. By a differential p-form with values in L,
we understand

A = aiBi

where aij are usual differential p-forms. Here, we sum over i = 1, ..., n. If, in
addition, B is a differential q-form with values in L, then we define the Lie
product

[A,B] := (ai ∧ bj)[Bi, Bj ],

and the Cartan differential dA = daiBi. Show that this definition is indepen-
dent of the choice of the basis B1, ..., Bn and that the following hold true.
(i) d[A,B] = [dA,B] + (−1)p[A, dB].
(ii) [A,B] = −(−1)pq[B,A].
(iii) For the Lie algebra L = gl(n,R) of real (n× n)-matrices,

[A,B] = A ∧B − (−1)pqB ∧A.

In particular, if A is a 1-form, then [A,A] = 2A ∧A.
Motivated by (iii), for a differential 1-form A on a real finite-dimensional man-
ifold M with values in a real finite-dimensional Lie algebra L, we define

A ∧A := 1
2
[A,A].

Explicitly, (A ∧ A)P (v,w) = [AP (v), AP (w)] for all velocity vectors v,w at
the tangent space TPM.
Solution: Ad (i), (ii). Apply the relations for usual differential forms.
Ad (iii). Choose the basis matrices Bi

j = (βkl ) where βij := 1 and βkl = 0
otherwise. Then

A ∧B = (ais ∧ brj )Bs
iB

j
r .

On the other hand, [A,B] = (ais ∧ brj )(Bs
iB

j
r −Bj

rB
s
i ). This is equal to

(ais ∧ brj )Bs
iB

j
r − (−1)pq(brj ∧ ais)Bj

rB
s
i .

12.12 Group commutator and Lie product. In the following problems, let G be a
regular Lie matrix group. Consider two smooth curves G = G(t) and H = H(t)
on G with G(0) = H(0) = I. Show that

G(t)H(t)G(t)−1H(t)−1 = I + t2[Ġ(0), Ḣ(0)] + o(t2), t→ 0.

73 In what follows, we will use the Einstein convention, that is, we sum over equal
upper and lower Latin indices from 1 to n.
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Solution: The Neumann series tells us that if ||C|| < 1 then

(I + C)−1 = I − C + C2 + ...

Hence

G(t) = I + tA+ t2B + ..., G(t)−1 = I − tA+ t2(A2 −B) + ...

Use a similar expression for H(t) and multiply the expressions with each other.
12.13 Global parallel transport on a Lie group. The theory of Lie groups is governed

by the fact that there exist two global parallel transports called left translation
and right translation. For each group element G ∈ G, define

LGG := GG for all G ∈ G.

This way, we get the left translation LG : G → G along with the linearization

L′
G(H) : THG → TGHG

at the point H ∈ G. Show the following.
(i) L′

G(H)V = GV for all tangent vectors V ∈ THG.
(ii) The operator L′

G(H) is a linear isomorphism.
(iii) Each tangent vector W at the point G ∈ G can be uniquely represented

as
W = GV where V ∈ LG.

Solution: Ad (i). Consider a curve G = G(t) on the group G with

G(0) = H and Ġ(0) = V.

Differentiating LGG(t) = GG(t) at time t = 0, L′
G(H)V = GV.

Ad (ii), (iii). The inverse operator to the operator V �→ GV is the operator
W �→ G−1W. �

The inverse operator L′
G(I)−1 : TGG → LG is called the Maurer–Cartan oper-

ator MG at the point G. Explicitly,

MG(W ) = G−1W for all W ∈ TGG.

Alternatively, MG(GV ) = V for all V ∈ LG.
Similarly, we define the right translation RG : G → G by setting

RGG := GG for all G ∈ G

and fixed G ∈ G. All the results above remain then valid iff we replace left
multiplication by right multiplication. In particular, each tangent vector W at
the point G ∈ G can be uniquely represented as

W = V G where V ∈ LG.

12.14 The directional derivative of a left-invariant temperature field on a Lie group.
Let T : G → R be a smooth function on the Lie group G which is left invariant,
that is, the function T is invariant under left translations,

T (GG) = T (G) for all G,G ∈ G.

Show that, for all points H ∈ G and all tangent vectors V ∈ THG,
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LV T (H) = 0.

This result remains true if we replace left translations by right translations.
The claim generalizes the fact that, for a smooth function f : R → R, it follows
from f(x+ a) = f(a) for all x, a ∈ R that f ′(x) ≡ 0.
Solution: By definition of the directional derivative,

LV T (G) = ẇ(0)

where w(t) := T (G(t)). Here, the smooth curve G = G(t) on the Lie group G
has the property

G(0) = H, Ġ(0) = V.

The point is that the directional derivative is independent of the choice of this
curve. Therefore, we can use the special curve G(t) := G(t)V where G(0) = I.
Then w(t) = const, and hence ẇ(0) = 0.

12.15 The Lie algebra of left-invariant velocity vector fields on a Lie group. The
velocity vector field V = V(G) on the Lie group G is called left invariant iff

V(GG) = GV(G) for all G,G ∈ G.

Each left-invariant velocity vector field has the form

V(G) = GV for all G ∈ G

where V is a fixed element of the Lie algebra LG. Thus, there exists a one-to-
one map between the elements V of the Lie algebra LG and the left-invariant
vector fields V(G) = GV on the Lie group G. For fixed V ∈ LG and fixed
G0 ∈ G, consider the differential equation

Ġ(t) = G(t)V, t ∈ R, G(0) = G0

generated by the left-invariant velocity field GV. This differential equation has
the unique solution

G(t) = G0e
tV for all t ∈ R.

In terms of physics, the curve G = G(t) is the trajectory of a fluid particle
which has the velocity vector GV at the point G. Define

FtG0 := G(t), t ∈ R,

and show the following:
(i) The linearization F ′

t (G0) : TG0 → TFtG0 is given by F ′
t (G0)W = W etV .

(ii) Let V(G) := GV and W(G) := GW be left-invariant velocity vector fields
for all G ∈ G and fixed V,W ∈ LG. The Lie derivative reads then as

LVW(G) = G(VW −WV ) for all G ∈ G.

Therefore, the left-invariant velocity vector fields on G form a Lie algebra which
is isomorphic to LG. The isomorphism is given by the map V �→ GV.
Solution: Ad (i). Consider a curve G = G(τ) with G(0) = G0 and Ġ(0) = W.
Differentiating the equation
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FtG(τ) = G(τ)etV

at time τ = 0, we get the claim.
Ad (ii). By definition, the Lie derivative reads as

LVW(G) :=
dF ∗

t (G)

dt |t=0

where
F ∗
t W(G) := F ′

−tW(FtG)

is called the pull-back of the velocity vector field W with respect to the flow Ft
generated by the velocity vector field V. Observe that the operator F ′

−t trans-
ports the velocity vector W at the point FtG back to the point G. Explicitly,

F ∗
t W(G) = (FtG)W e−tV = GetVW e−tV .

Differentiating this at time t = 0, we get G(VW −WV ).
12.16 The Maurer–Cartan form M. Set MG := L′

G. Explicitly,

MG(W ) = G−1W for all W ∈ THG, GG.

Show that
(i) L∗

GM = M, and
(ii) R∗

G = G−1MG.
Solution: Ad (i). We have to show that

MGH(GH) = MH(W ) for all W ∈ THG, H,G ∈ G.

In fact, MGH(GH) = (GH)−1(GW ) = H−1W.
Ad (ii). We have to show that

MHG(HG) = G−1MH(W )G for all W ∈ THG, H,G ∈ G.

In fact, MHG(HG) = (HG)−1(WG) = G−1H−1WG.
12.17 The trivial curvature of a Lie group. Show that

dM + M ∧ M = 0.

In terms of gauge theory, we set

F := dM + M ∧ M.

Obviously, F = 0. The Maurer–Cartan form M also called the gauge potential
(or the connection form) to the trivial curvature form F of the Lie group G.
Solution: Let us choose two left-invariant velocity vector fields V(G) := GV
and W(G) := GW on G for fixed V,W ∈ LG. By Cartan’s magic formula

dMG(V,W) = LVMG(W) − LWMG(V) − MG([V,W]).

Here, LVMG(W) denotes the directional derivative of the function

G �→ MG(W)

at the point G in direction of the vector V(G). Observe that this function is
left invariant,74 and hence the corresponding directional derivative vanishes,
by Problem 12.14. Therefore,

74 In fact, MGG(W(GG)) =W for all G, G ∈ G.
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dMG(V,W) = −MG([V,W]).

This implies dMG(V,W) = −[V,W ]. By Problem 12.11,

(M ∧ M)G(V,W) = [MG(V),MG(W)] = [V,W ].

Hence dM = −M ∧ M.
The same result can be obtained by applying a mnemonic approach to the
Maurer–Cartan form which is frequently used by physicists. To this end, we
write

MG := G−1dG, (12.222)

and we add the rule dG(Ġ(t)) := Ġ(t) along with d(dG) = 0, and

d(G−1) = −G−1dG ·G−1.

The latter identity can be obtained formally from GG−1 = I, and hence

dG ·G−1 +Gd(G−1) = 0.

The relation dM = −M ∧ M follows then from

dM = d(G−1G) = d(G−1) ∧ dG.

This is equal to −G−1dG ·G−1 ∧ dG = −G−1dG ∧G−1dG = −M ∧ M.
12.18 Duality on Lie groups and the Maurer–Cartan structural equations. For given

differential 1-form ω on the Lie group G, define

μH(W ) := ωGH(GW )

for all tangent vectors W ∈ THG and all H,G ∈ G. The differential 1-form

L∗
Gω := μ

is called the pull-back of ω with respect to the left translation LG. Naturally
enough, the differential form ω is called left invariant iff

L∗
Gω = ω for all G ∈ G.

Explicitly, ωH(W ) = ωGH(GW ) for all W ∈ THG and all H,G ∈ G. Let
V1, ..., Vn be a basis of the Lie algebra LG. For fixed index i = 1, ..., n and
arbitrary real numbers aj , set

V i(ajVj) := ai.

The linear functionals V 1, .., V n : LG → R form a basis of the dual space to
LG which is called the cobasis to V1, ..., Vn. Letting

θiG(GV ) := V i(V ) for all V ∈ LG, G ∈ G,

we get left-invariant differential forms θ1, ..., θn on the Lie group G which form
a basis for all left-invariant tangent vector fields on G. Show that there hold
the following Cartan structural equations

dθk + 1
2
ckijθ

i ∧ θj = 0, k = 1, .., n
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where the real numbers ckij defined by

[Vi, Vj ] = ckijVk, i, j = 1, ..., n

are called the structure constants of the Lie algebra LG with respect to the
basis V1, ..., Vn.
Solution: Using Cartan’s magic formula, it follows as in Problem 12.17 that

dθk(V,W) = −θk([V,W]).

Hence dθk(Vr,Vs) = −V k([Vr, Vs]) = −ckrs. On the other hand, noting that
ckij = −ckji, the 2-form

1
2
ckij(θ

i ∧ θj)(Vr,Vs)

is equal to ckijθ
i(Vr)θ

j(Vs) = ckijV
i(Vr)V

j(Vs) = ckrs.
12.19 The action of a Lie group on itself and the internal symmetry of a Lie group.

For fixed group element G of G, define Ad(G) := LG(RG)−1. Explicitly,

Ad(G) := GGG−1 for all G ∈ G.

Since (GH)G(GH)−1 = G(HGH−1)G−1, we get

Ad(GH) = Ad(G)Ad(H) for all G,H ∈ G.

Show the following.
(i) The map Ad(G) : G → G is a group automorphism.
(ii) The set of all automorphisms χ : G → G forms a group called the auto-

morphism group Aut(G) of G.
(iii) The set of all maps Ad(G) with G ∈ G forms a subgroup of Aut(G) called

the symmetry group Sym(G) of G.
(iv) The map Ad : G → Sym(G) given by

G �→ Ad(G)

is a group epimorphism called the adjoint representation of the group on
itself.

(v) For group elements G,H of G, we write

G ∼ H iff G = GH for some G ∈ G.

This is an equivalence relation. The equivalence class [G] coincides with the
orbit of G under the adjoint representation; [G] is also called the conjugacy
class of G.

12.20 The action of a Lie group on its Lie algebra and the external symmetry of a
Lie algebra. For fixed G ∈ G, define Ad(G) := L′

G(R′
G)−1. Explicitly,

Ad(G) = GVG−1 for all V ∈ LG.

Show the following.
(i) The map Ad(G) : LG → LG is a linear operator with

Ad(GH) = Ad(G)Ad(H) for all H,G ∈ LG.

(ii) The map Ad(G) respects the Lie product. Explicitly,

Ad(G)([V,W ]) = [Ad(G)V,Ad(G)W ] for all V,W ∈ LG.

Recall that [V,W ] := VW −WV.
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The map G �→ Ad(G) is called the adjoint representation of the Lie group G
on its Lie algebra LG.

12.21 The action of a Lie algebra on itself and the internal symmetry of a Lie
algebra. For fixed V ∈ LG, define

ad(V )W := [V,W ] for all W ∈ LG.
Show that ad(V ) : LG → LG is a linear operator with

ad([V,W ]) = [ad(V ), ad(W )] for all V,W ∈ LG.
Here, [ad(V ), ad(W )] := ad(V )ad(W ) − ad(W )ad(V ). The map V �→ ad(V ) is
called the adjoint representation of the Lie algebra LG on itself.
Solution: By the Jacobi identity,

[[V,W ], Z] + [W,Z], V ] + [[Z, V ],W ] = 0

for all V,W,Z ∈ LG, the expression

ad(V )ad(W )Z − ad(W )ad](V )Z = [V, [W,Z]] − [W, [V,Z]]

is equal to ad([V,W ])Z = [[V,W ], Z].
12.22 The Killing form. Let L be a finite-dimensional (real or complex) Lie algebra.

Using the linear operators ad(V ), ad(W ) : L → L, the Killing form is defined
by

K(V,W ) := tr(ad(V )ad(W )) for all V,W ∈ L.
Let V1, ..., Vn be a basis of L along with the structural constants ckij given by

[Vi, Vj ] = ckijVk, i, j = 1, ..., n.

Show that
(i) If V = viVi and W = wjVj , then

K(V,W ) = kijv
iwj

where kij := csirc
r
js.

(ii) For the group SU(2), choose the basis vectors Vj = iσj where σj , j = 1, 2, 3,
are the Pauli matrices. Show that kij = −2δij for i, j = 1, 2, 3.

Solution: Ad (i). Let V = viVi and Z = zjVj . It follows from

ad(V )Z = [V,Z] = (vizjckij)Vk

that ad(V )Z = (ad(V )kj z
j)Vk where ad(V )kj := vickij . Thus, for the trace,

tr(ad(V )ad(W )) = ad(V )sr · ad(W )rs = vicsirw
jcrjs.

Ad (ii). We have the commutation rules

[B1, B2] = −B3, [B2, B3] = −B1, [B3, B1] = −B2.

Hence c312 = −1, etc. �

The Killing form K : L → K of a Lie algebra over K = R,C is bilinear and
symmetric; it encodes important structural properties of the Lie algebra.

12.23 Proof of the linear Frobenius theorem. Prove Theorem 12.52 on page 769.
Hint: Use the Frobenius theorem on page 768 in order to prove a local existence
result. Continue this local solution to a global solution by using the fact that the
set U is simply connected. Therefore, the continuation is path-independent. The
local existence result can also be obtained by an induction argument (reduction
to ordinary differential equations). See J. Stoker, Differential Geometry, Wiley
1969/89, Appendix B, p. 392. See also J. Eschenburg and J. Jost, Differential
Geometry and Minimal Surfaces (in German), Appendix, p. 233.



13. The Commutative Weyl U(1)-Gauge
Theory and the Electromagnetic Field

In modern physics, interactions are a consequence of the principle of local
symmetry invariance. This leads to the Standard Model in particle physics.

Folklore

13.1 Basic Ideas

When we do scientific work, we must often step down from our high horse
of grand principles, and dig in the dirt with our noses. When we achieve
our purpose, we cover the tracks of our efforts in order to appear as gods
of clear thought.

Albert Einstein (1879–1955)

In what follows, we will consider the following two transformations:

(i) transformation of the space and time coordinates, and
(ii) gauge transformations of the physical field (local symmetry transformations).

Our final goal is to establish a mathematical formalism which is invariant under
both transformations.

This invariant mathematical formalism will be based on the language of
fiber bundles and Cartan’s language of differential forms.

One has to distinguish between

• commutative gauge groups (e.g, the commutative group U(1)), and
• noncommutative gauge groups (e.g., the groups SU(2), SU(3)).1

The Standard Model in particle physics is based on the gauge group G given by the
direct product

G := U(1) × SU(2) × SU(3).

The use of noncommutative gauge groups is crucial for the Standard Model. From
the analytical point of view, we will use two differential forms, namely,

• the connection 1-form and
• the curvature 2-form.

From the geometrical point of view, the basic notion is the notion of parallel trans-
port. In terms of physics, parallel transport corresponds to the transport of physical
information.

The crucial point is that, in the nontrivial case, the parallel transport
depends on the path of transport.

1 Commutative and noncommutative groups are also called Abelian and non-
Abelian groups, respectively.

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 14,
© Springer-Verlag Berlin Heidelberg 2011

811

http://dx.doi.org/10.1007/978-3-642-22421-8_14
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This means that the parallel transport along a loop is not trivial, that is, the
final state differs from the initial state. This fact can be used in order to mea-
sure curvature. In terms of physics, we measure the strength of interaction. In this
chapter, we will use the commutative gauge group U(1), and we will show that
the corresponding gauge theory is intimately related to the electromagnetic field.
The corresponding noncommutative SU(N)-gauge theory and gauge theories with
general gauge groups will be studied in Chap. 15. The formulas of the commuta-
tive U(1)-gauge theory are simpler than the formulas for noncommutative gauge
theories, since the Lie brackets vanish identically in the U(1)-case.

Let us sketch the basic ideas. To this end, let ψ be a physical field defined on
the space-time manifold M

4 (Minkowski manifold). The key transformation is given
by

ψ+(P ) = G(P )ψ(P ), P ∈ M
4.

This is called a gauge transformation. We have G(P ) ∈ G, that is, the local phase
factor G(P ) is an element of the so-called gauge group G which is assumed to be a
Lie group, e.g., G = U(1), U(N), SU(N), GL(N,C) or G = U(1) × SU(2) × SU(3).
In terms of physics, our goal is the following:

(V) We want to develop a differential calculus which allows us to formulate gauge-
invariant partial differential equations on M

4 (or on more general curved space-
time manifolds). This will be based on the notion of covariant directional deriva-
tive

Dvψ

which has the following two crucial properties:
• Relativistic invariance:Dvψ is invariant under a change of the inertial system

in Einstein’s theory of special relativity. In terms of physics, this means that
if ψ is a physical field, then Dvψ describes a new physical field which does
not depend on the choice of the observer in an inertial system. In terms of
mathematics, if ψ is a section of a vector bundle over the base manifold M

4,
then so is Dvψ.

• Compatibility with gauge transformation: Dvψ transforms like the physical
field ψ under the gauge transformation, that is, if ψ+(P ) = G(P )ψ(P ), then

D+
v ψ

+(P ) = G(P )Dvψ(P ), P ∈ M
4. (13.1)

Equivalently, we have the compatibility condition

D+
v ψ

+(x) = (Dvψ(x))+.

(P) We want to construct a gauge-invariant equation of motion for the phase factor
along curves on the space-time manifold. In terms of mathematics, this is called
a parallel transport. We postulate that
• the parallel transport does not depend on the choice of the observer (rela-

tivistic invariance), and
• the parallel transport is compatible with gauge transformations.

Force and curvature. In terms of modern physics, forces are measured by
parallel transport of physical fields along a small loop on the space-time mani-
fold. In terms of geometry, this measures the curvature. Gauge theory realizes the
fundamental principle:

force = curvature. (13.2)



13.1 Basic Ideas 813

The language of bundles. It turns out that the language of bundles is the
proper tool in gauge theory. For example, the principle (13.2) refers to the curvature
of principal bundles and vector bundles. We will proceed in the following two steps:

Step 1: We use product bundles. Concerning (V), the prototype is given by the
product vector bundle

M
4 × C

N

where the Lie group G consists of invertible complex (N ×N)-matrices. Concerning
(P), the prototype is given by the product principal bundle

M
4 × G.

Step 2: General bundles are obtained by gluing together product bundles. To
this end, we will use a cocycle with values in the Lie group G (or with values in a
Lie group H obtained by a surjective group morphism r : G → H).

The bundles from Step 1 are sufficient for formulating the Standard Model in
particle physics (see Vol. IV). If one wants to describe gauge theories on curved
space-times (e.g., theory of general relativity, string theory, quantum gravity), then
one has to use Step 2.

In terms of physics, different observers use different product bundles for de-
scribing their measurements.

Cocycles describe the change of observers.

To explain this, let A,B,C be three observers. The typical cocycle condition (see
(16.1) on page 871) guarantees that the transformations

A⇒ B and B ⇒ C

from A to B and from B to C are compatible with the transformation

A⇒ C.

The properties of cocycles depend on both the topology of the space-time manifold
and the structure of the gauge group G. The deviation of vector bundles from prod-
uct bundles (i.e., the twist of the bundles) is measured by so-called characteristic
classes (Chern classes, Euler classes, Pontryagin classes, Stiefel–Whitney classes,
Thom classes).

Characteristic classes of vector bundles play a fundamental role in modern
topology and geometry.

For example, the Chern classes of the tangent bundle of a Riemannian manifold
allow us to generalize the Gauss–Bonnet theorem to higher dimensions.

Relation to classical geometry. All the notions discussed above have their
origin in classical geometry. We refer to 9.5 on page 593, where we discuss how the
theory sketched above is rooted in the geometry of the 2-dimensional sphere (e.g.,
the surface of earth). In this special case, we use

• the parallel transport of velocity vectors on the tangent bundle (the Levi-Civita
connection on the tangent bundle), and

• the parallel transport of frames (the Levi-Civita connection on the frame bundle).

The frame bundle of the sphere is a principal bundle with the gauge group SO(2),
and the tangent bundle of the sphere is called the associated vector bundle to the
frame bundle.

Summarizing, in the following four chapters we want to show how gauge
theory is intimately related to both physical intuition and geometrical intu-
ition.
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Historical remarks can be found on page 891. Both the crucial homotopy classifi-
cation of vector bundles (universal bundles) and the characteristic classes will be
thoroughly studied in Vol. IV on quantum mathematics.2

In the following chapter, we need elementary properties of the electromagnetic
field (e.g., the four-potential of the electromagnetic field and the Minkowski man-
ifold M

4). The reader who is not familiar with this should first glance at Chap.
18 (Einstein’s theory of special relativity) and Chap. 19 (the Maxwell equations in
electromagnetism).

13.2 The Fundamental Principle of Local Symmetry
Invariance in Modern Physics

We want to motivate the local phase factor of a physical field. In quantum mechan-
ics, the local phase factor was introduced by Vladimir Fock (1898–1974) in 1926
in connection with a crucial invariance property of the Klein–Fock–Gorden equa-
tion. Nowadays this invariance property is called gauge invariance. In 1935, Yukawa
used the Klein–Fock–Gordon equation in order to predict the existence of mesons.
In 1949, Hideki Yukawa (1907–1981) was awarded the Noble prize in physics for
the prediction of the meson.3 The modern theory of strong interaction corresponds
to quantum chromodynamics in the Standard Model of particle physics.

• In Sect. 13.2.1, we will study the free meson together with the Yukawa potential.
• In Sect. 13.2.2, we will pass to a principle of critical action which is invariant

under local symmetry transformations. This leads to adding the potential of an
interaction force. It turns out that this potential is the four-potential of the
electromagnetic field.

The principle of the invariance of the action integral under local symmetries
leads to the interaction forces.

This is an universal principle in modern physics which also leads to the Standard
Model in elementary particle physics (see Vol. IV).

13.2.1 The Free Meson

A note in proofreading: When this note was already in press, an elegant
work by Oskar Klein Quantum theory and five-dimensional theory of rela-
tivity, Z. Phys. 37 (1926), 895–906 (in German) reached Leningrad (nowa-
days St. Petersburg). Its author had obtained results that are in principle
identical to those of the current work.4

Vladimir Fock, 1926

2 At this point, we recommend D. Husemoller, Fibre Bundles, Springer, New York,
1994.

3 H. Yukawa, On the interaction of elementary particles, Proc. Phys.-Math. Soc.
Japan 17 (1935), 48–57.

4 V. Fock, On the invariant form of the wave and motion equations for a charged
point mass, Z. Phys. 39 (1926), 839–841 (in German). English translation in:
Physics Uspekhi 53(8) (2010), 839–841. Fock (1898–1974) used a 5-dimensional
metric, as Oskar Klein did.

The same equation was obtained by Walter Gordon (1893–1939) in 1926. See
W. Gordon, The Compton effect according to Schrödinger’s theory (in German),
Z. Phys. 40 (1926), 117–133. I would like to thank Harald Fritzsch (Munich) for
drawing my attention to Fock’s paper.
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The Klein–Fock–Gordon equation. In Einstein’s theory of special relativity,
we have the key equation

E2 = m2
0c

4 + c2p2

for the energy E of a particle in an inertial system. Here, m0 and p denote the rest
mass and the momentum vector of the particle, respectively, and c is the velocity
of light in a vacuum. Using Schrödinger’s substitution trick

E �→ i�
∂

∂t
, p �→ −i�∂,

we get the Klein–Fock–Gordon equation

�ψ +
m2

0c
2

�2
ψ = 0 (13.3)

where �ψ = 1
c2
ψtt +Δψ. In 1935, Yukawa used the Klein–Fock–Gordon equation

in order to formulate a phenomenological theory for strong interaction. Introducing
the Compton wave length

λ :=
h

m0c
,

and λ := λ/2π, the Klein–Fock–Gordon equation has the stationary solution

ψY (x) =
g

4πr
e−r/λ

where r := |x|, and g is a positive constant called the coupling constant of strong
interaction. The function ψY is called the Yukawa potential. Letting m0 → 0, we
get the Coulomb potential

ψC(x) =
g

4πr
, g =

Q

ε0

of a particle having the electric charge Q. Let x =
−−→
OP be the position vector

pointing from the origin O to the point P . The repulsive Coulomb force between
two particles of electric charge Q located at the origin and at the point P is equal
to

F(x) = −QgradψC(x) =
Q2

4πε0r2
· x

|x| .

From the Yukawa potential, we get the attractive Yukawa force

FY (x) = g gradψY = − g
2

4π

„

e−r/λ

r2
+

e−r/λ

λ r

«

x

r

between two nucleons located at the origin and at the point P . The characteristic
length scale λ is called the range of the Yukawa force. Yukawa formulated the
following hypotheses:

One has to distinguish between the German mathematician Felix Klein (1849–
1925) (the friend of Sophus Lie (1842–1899) and promoter of David Hilbert
(1862–1943)) and the Swedish physicist Oskar Klein (1894–1977). See G. Ek-
spong (1991) quoted on page 896.
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(M1) The range of the strong force between two nucleons equals the radius of the
nucleus, R = 10−15m. Hence

λ =
�

m0c
= R.

(M2) Like the electromagnetic interaction is based on the exchange of a massless
particle called photon, the strong force is based on the exchange of a massive
particle of mass m0. Yukawa called this hypothetical particle meson. From
(M1) we get the meson mass

m0 =
�

cR
.

Explicitly, m0 = 100 MeV/c2 = 1/10 proton mass.
(M3) The meson is an unstable particle. Its mean life time Δt follows from the

energy-time uncertainty relation

ΔEΔt =
�

2
,

where ΔE = m0c
2. Hence Δt = R/2c. Explicitly, Δt = 10−23s.

In 1947, the so-called π-meson of mass 140MeV/c2 was found. Indeed, there are now
known to exist three such spinless particles, the π+, π−, and π0 of approximately
the same mass, and of electric charge e,−e, 0, respectively. Scattering experiments
allow us to determine the Yukawa coupling constant,

g2

4π�c
= 15.

For the electromagnetic interaction of two electrons,

e2

4πε0�c
=

1

137
.

A comparison of these two characteristic dimensionless numbers shows that the
strong interaction is much stronger than the electromagnetic interaction.

Consider the variational principle

S :=

Z

Ω

L(ψ, ∂ψ) d4x = critical ! (13.4)

in an inertial system where Ω is a nonempty bounded open subset of R
4, and

d4x := dx0dx1dx2dx3, x0 := ct.

Moreover, the smooth field ψ : cl(Ω) → C is fixed on the boundary. Explicitly,

L = 1
2

`

∂μψ∂
μψ† − V (|ψ|2) = 1

2

`

1
c2
|ψt|2 − |∂ψ|2 − V (|ψ|2

´

.

Here, ∂μ := ∂
∂xμ , and ∂0 := ∂0, ∂

j := −∂j , j = 1, 2, 3. We sum over μ = 0, 1, 2, 3.

Proposition 13.1 Each solution of the variational problem (13.4) satisfies the
nonlinear Klein–Fock–Gordon equation

�ψ + V ′(|ψ|2)ψ = 0.
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In particular, if we choose the so-called mass term

V (|ψ|2) =
m2

0c
2

�2
|ψ|2,

then we obtain the Klein–Fock–Gordon equation with V ′(|ψ|2)ψ =
m2

0c
2

�2 ψ.
Proof. To simplify notation, let c = � = 1. Set

ψ = ϕ+ χi

where ϕ, χ are real-valued functions. Then

L =
1

2

`

∂μϕ∂
μϕ+ ∂μχ∂

μχ− V (ϕ2 + χ2)
´

.

Replacing ϕ by ϕ+ σh with h ∈ C∞
0 (Ω) and differentiating S(σ) at σ = 0, we get

0 = S′(0) =

Z

Ω

`

∂μϕ∂
μh− V ′(ϕ2 + χ2)ϕh

´

d4x.

Integrating by parts,

0 =

Z

Ω

`

∂μ∂μϕ+ V ′(ϕ2 + χ2)ϕ
´

hd4x

for all h ∈ C∞
0 (Ω). By the Variational Lemma,

∂μ∂μϕ+ V ′(ϕ2 + χ2)ϕ = 0.

The same equation is obtained for χ. �

Energy. Define the energy of the nonlinear Klein–Fock–Gordon equation by

E(t) :=

Z

R3

1

2

„

|ψt|2
c2

+ |∂ψ|2 + V (|ψ|2)
«

d3x (13.5)

where we assume that the field ψ = ψ(x, t) vanishes outside a sufficiently large ball
for each time t.

Proposition 13.2 If ψ is a solution of the nonlinear Klein–Fock–Gordon equation,
then the energy is conserved.

Proof. Let c = � = 1. Noting that |ψ|2 = ψ†ψ and using integration by parts,

Ė(t) =

Z

R3

`

ψtt +Δψ + V ′(|ψ|2)ψ
´

ψ†
td

3x+ c.c.

where c.c. stands for the complex conjugate value of the integral. By the Klein–
Fock–Gordon equation, Ė(t) ≡ 0. �
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13.2.2 Local Symmetry and the Charged Meson in an
Electromagnetic Field

The replacement trick for the Schrödinger equation. The non-relativistic
Schrödinger equation for a free quantum particle with (rest) mass m0 reads as

i�
∂ψ

∂t
=

p2

2m0
ψ

with the differential operator p = −i�∂. In order to pass to the Schrödinger equa-
tion for a quantum particle of electric charge Q in the electric field E,B, physicists
use the replacement

i�
∂

∂t
⇒ i�

∂

∂t
−QU, p ⇒ p −QA (13.6)

together with
E = −gradU − At, B = curlA

where U,A is the 4-potential of the electromagnetic field. The replacement trick
(13.6) is motivated by the Hamiltonian approach in classical electrodynamics (see
page 979). In the classical case, one replaces the momentum vector p by the vec-
tor P − QA where P is the canonical momentum vector. In quantum mechanics,
canonical quantization means that P is replaced by the differential operator −i�∂.
This yields the Schrödinger equation

„

i�
∂

∂t
−QU

«

ψ =
(p −QA)2

2m0
ψ (13.7)

for a charged quantum particle in an electromagnetic field. In 1926, Schrödinger
used this equation in order to compute the discrete and continuous spectrum of the
hydrogen atom (see Vol. IV).

The replacement trick for the Klein–Fock–Gordon equation. Similarly,
we apply the replacement trick (13.6) to the free Klein–Fock–Gordon equation
(13.3). This yields the Klein–Fock– Gordon equation for a spinless relativistic quan-
tum particle of rest mass m0 and electric charge Q in an electromagnetic field:

„

1

c2

“

i�
∂

∂t
−QU

”2

− (p −QA)2 −m2
0c

2

«

ψ = 0. (13.8)

This equation is valid in every inertial system.
Fock’s discovery of gauge invariance in quantum mechanics. In 1926,

Fock discovered that the equation (13.8) is invariant under the following gauge
transformations:

ψ+(x, t) = eia(x,t)ψ(x, t) (13.9)

and

U+(x, t) = U(x, t) − �

Q
at(x, t), A+(x, t) = A(x, t) +

�

Q
∂a(x, t). (13.10)

Here, the so-called local phase function a is real-valued. Note that this gauge trans-
formation does not change the electromagnetic field, that is, E+ = E and B+ = B.
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This gauge invariance can be proved by an explicit computation. However, in
order to get insight, we will show how Fock’s gauge invariance is related to the
setting of a U(1)-gauge theory.

The covariant partial derivative. In terms of mathematics, the replacement
trick (13.6) of physicists is nothing other than the passage from the partial derivative
∂α to the covariant partial derivative

Dα := ∂α + Aα, α = 0, 1, 2, 3 (13.11)

with respect to some connection on the vector bundle M
4 × U(1) (the product

between the Minkowski space-time manifold M
4 and the gauge group U(1)). We

set

Aα :=
iQ

�
Aα, α = 0, 1, 2, 3 (13.12)

where A0 = U/c and A = A1i + A2j + A3k together with Aj = −Aj , j = 1, 2, 3.
Moreover, let D0 := D0, and Dj := −Dj , j = 1, 2, 3. Then the Klein–Fock–Gordon
equation (13.8) reads as

DαD
αψ +

m2
0c

2

�2
ψ = 0. (13.13)

Here, we sum over α = 0, 1, 2, 3. This shows that the Klein–Fock–Gordon equation
is valid in every inertial system, by the general index principle applied to the theory
of special relativity (see page 443). Now to the point. The gauge transformation
(13.10) can be written as

A+
α = Aα − i∂αa, α = 0, 1, 2, 3.

Introducing the transformed covariant partial derivative

D+
α := ∂α + A+

α , α = 0, 1, 2, 3,

we get the following.5

Proposition 13.3 If the complex-valued function ψ is a solution of the Klein–
Fock–Gordon equation (13.13), then ψ+ is a solution of the transformed equation

D+
αD

+αψ+ +
m2

0c
2

�2
ψ+ = 0.

Proof. By (13.4) on page 822 below, we have the key relation of the covariant
partial derivative in gauge theory:

D+
αψ

+ = eiaDαψ.

Then D+
α (D+αψ+) = D+

α eiaDαψ = eiaDαD
αψ. �

The fundamental principle of local symmetry in modern physics. This
principle has the crucial property that

It generates physical fields which are responsible for the interaction.

5 We set D+0 := D+
0 and D+j := −D+

j , j = 1, 2, 3.
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The idea is to start with the principle of critical action for the free particle. Then
we demand that the action integral is invariant under local symmetry. This can
be realized by replacing the classical partial derivative ∂α by the covariant par-
tial derivative Dα = ∂α + Aα. Then, Aα is an additional physical field which is
responsible for the interaction of the free particles (e.g., the electromagnetic inter-
action in the present case). To illustrate this with a concrete example, consider the
variational principle

Z

Ω

L d4x = critical! (13.14)

with the boundary condition: ψ = fixed on ∂Ω. The Lagrangian

L := 1
2

„

∂αψ∂
αψ† − m2

0c
2

�2
ψψ†

«

yields the Euler–Lagrange equation

∂α∂
αψ +

m2
0c

2

�2
ψ = 0.

This Klein–Fock–Gordon equation describes a free meson. The Lagrangian L is not
always invariant under the local symmetry transformation

ψ+(x, t) := eia(x,t) ψ(x, t) (13.15)

where ψ is a complex-valued smooth function, and a is a real-valued smooth func-
tion. Thus, the local phase factor eia(x,t) is an element of the gauge group U(1).
However, setting Dα := ∂ + Aα, the modified Lagrangian

L := 1
2

„

Dαψ(Dαψ)† +
m2

0c
2

�2
ψψ†

«

(13.16)

is invariant under the local symmetry transformation (13.15). In fact, it follows
from

D+
αψ

+(D+αψ)† = eiaDαψ(eiaDαψ)† = Dαψ(Dαψ)†

that L+ = L. Suppose that all the values of Aα lie in the Lie algebra u(1), that is,
A†

α = −Aα. Then the Euler–Lagrange equation corresponding to the Lagrangian
from (13.16) reads as

DαD
αψ +

m2
0c

2

�2
ψ = 0.

Setting Aα := iQ
�
Aα, α = 0, 1, 2, 3, we obtain the Klein–Fock–Gordon equation for

a charged meson in an electromagnetic field.

13.3 The Vector Bundle M
4 × C, Covariant Directional

Derivative, and Curvature

The Minkowski manifold M
4. In this chapter, smooth maps

ψ : M
4 → C
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are called physical fields. We will use inertial systems described by the coordinates

x = (x0, x1, x2, x3)

where x1, x2, x3 are Cartesian coordinates, and x0 := ct. Here, t denotes the time,
and c denotes the velocity of light in a vacuum. The transformation between two
inertial systems is given by

x′ = Λx+ a

where Λ ∈ O(1, 3) (Lorentz transformation), and a ∈ R
4. Invariants under these

space-time transformations are invariants of the Minkowski manifold M
4. Finally,

we set

∂α :=
∂

∂xα
, α = 0, 1, 2, 3.

We will sum over equal upper and lower Greek indices from 0 to 3.
The vector bundle M

4 × C. By definition, the product set

M
4 × C := {(P,ψ) : P ∈ M

4, ψ ∈ C}

is called a vector product bundle over the base manifold M
4 with the fiber

FP := {(P, ψ) : ψ ∈ C}

over the point P ∈ M
4. There exists a one-to-one correspondence between the fiber

FP and the complex linear space C. More precisely, the surjective map

π : M
4 × C → M

4

given by π(P, ψ) := P is called a vector bundle with the fiber FP = π−1(P ), the
bundle space M

4 × C, and the base space M
4. For the sake of brevity, we speak of

the vector bundle M
4 × C. The map

s : M
4 → M

4 × C

is called a section iff s(P ) ∈ FP for all P ∈ M
4. Hence

s(P ) = (P, ψ(P ))

where ψ is a map from M
4 to C. Thus, physical fields ψ and smooth sections s of

the vector bundle M
4 × C can be identified with each other.

The local phase factor and gauge transformations. The transformation

ψ+(P ) := G0(P )ψ(P ), P ∈ M
4 (13.17)

is called a gauge transformation iff G0(P ) ∈ U(1) for all P ∈ M
4, and the map

G0 : M
4 → U(1)

is smooth. Setting
T (P,ψ) := (P,G0(P )ψ),

we get the map
T : M

4 × C → M
4 × C.

In mathematics, this is called a transition map from the product bundle M
4×C onto

itself. One also says that the map T describes a change of the bundle coordinates,
that is, the bundle coordinate (P, ψ) is replaced by the new bundle coordinate
(P,G0(P )ψ).
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The covariant directional derivative. Let v be a smooth vector field on M
4.

Our goal is to introduce the directional derivative

Dvψ

of the physical field ψ which possesses an invariant meaning on the space-time
manifold M

4, and which transforms like the physical field ψ under gauge transfor-
mations.

To begin with, fix an inertial system. Let us introduce the covariant partial
derivatives

Dαψ(x) := (∂α + Aα(x))ψ(x), x ∈ R
4, α = 0, 1, 2, 3.

Here, we assume that the functions Aα : R
4 → u(1), α = 0, 1, 2, 3, are smooth (i.e.,

Aα(x) is a purely imaginary number). We add the following transformation laws:

• Under a change of inertial systems, Aα(x) transforms like ∂α.
• Under the gauge transformation (13.17), we have

D+
αψ

+(x) := (∂α + A+
α (x))ψ+(x), x ∈ R

4, α = 0, 1, 2, 3

where

A+
α (x) := G0(x)Aα(x)G0(x)

−1 − ∂αG0(x) ·G0(x)
−1. (13.18)

In the present commutative case, G0(x)Aα(x)G0(x)
−1 = Aα(x). However, for-

mula (13.18) remains valid in the noncommutative case to be considered in Chap-
ter 15.

Proposition 13.4 The covariant partial derivative Dαψ transforms like the phys-
ical field ψ itself.

Proof. By the Leibniz rule,

D+
αψ

+ = D+
α (G0ψ) = ∂α(G0ψ) + (G0AαG

−1
0 − ∂αG0 ·G−1

0 ) ·G0ψ

= G0(∂αψ + Aαψ) = G0Dαψ.

�

Now we introduce the covariant directional derivative of a physical field ψ by
setting

Dvψ := vαDαψ on M
4.

By the index principle, this definition does not depend on the choice of the inertial
system. Moreover, it follows from Proposition 13.4 that the gauge transformation
ψ+(x) = G0(x)ψ(x) implies

(D+
v ψ

+)(x) = G0(x)Dvψ(x), x ∈ R
4.

The curvature form. For a physical field ψ, the Leibniz rule yields

DαDβψ = (∂α + Aα)(∂βψ + Aβψ) = ∂α∂βψ + Aα∂βψ

+∂αAβ · ψ + Aβ · ∂αψ + AαAβψ. (13.19)

Since AαAβ = AβAα, we get
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(DαDβ −DβDα)ψ = Fαβψ

where

Fαβ := ∂αAβ − ∂βAα. (13.20)

The differential 2-form

F := 1
2
Fαβ dx

α ∧ dxβ

possesses an invariant meaning on M
4. It is called the curvature form on M

4. The
differential form

A = Aβdx
β

is called the connection 1-form on M
4.

Theorem 13.5 There hold both the Cartan structural equation

F = dA on M
4 (13.21)

and the Bianchi equation

dF = 0 on M
4. (13.22)

Choose an inertial system. As the following proof shows, Cartan’s structural
equation corresponds to (13.20), and the Bianchi equation is equivalent to

∂[γFαβ] = 0, α, β, γ = 0, 1, 2, 3.

Proof. The structural equation follows from

dA = dAβ ∧ dxβ = ∂αAβ dx
α ∧ dxβ = 1

2
(∂αAβ − ∂βAα) dxα ∧ dxβ .

Furthermore, by the Poincaré cohomology rule, dF = 0. This yields the Bianchi
equation. Explicitly,

dF = 1
2
dFαβ dx

α ∧ dxβ = 1
2
∂[γFαβ] dx

γ ∧ dxα ∧ dxβ = 0.

�

Proposition 13.6 F+ = F .

Proof. It follows from

D+
α (D+

β ψ
+) = D+

α

`

G0(Dβψ)
´

= G0DαDβψ

that
F+
αβψ

+ = D+
α (D+

β ψ
+) −D+

β (D+
αψ

+) = G0Fαβψ.

Hence F+
αβψ

+ = G0FαβG
−1
0 ψ+ for all physical fields ψ. This implies

F+ = G0FG−1
0 .

Commutativity yields F+ = F . �

The electromagnetic field. Define

Aα := − i�

Q
Aα, Fαβ := − i�

Q
Fαβ .
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Motivated by the Klein–Fock–Gordon equation (see (13.12), we have chosen the
notation in such a way that the replacement ∂α ⇒ ∂α+Aα implies the replacement

i�∂α ⇒ i�∂α −QAα.

Then

Fαβ = ∂αAβ − ∂βAα, (13.23)

∂[γFαβ] = 0 (13.24)

for all indices α, β, γ = 0, 1, 2, 3. Since Aα(x) ∈ u(1), that is, Aα(x) is a purely
imaginary number, we get

Aα(x) ∈ R and Fαβ(x) ∈ R

for all x ∈ R
4 and all indices. As we will show in Sect. 19.3 on page 960, the

equation (13.23) describes the relation between the electromagnetic field Fαβ and
its 4-potential Aα. Setting

F = 1
2
Fαβ dx

α ∧ dxβ , A = Aβ dx
β ,

the Cartan structural equation and the Bianchi equation pass over to

F = dA, dF = 0 on M
4.

The electromagnetic field corresponding to F is a solution of the Maxwell equations
in a vacuum if there holds the additional equation

d ∗ F = 0 on M
4.

Here, we use the Hodge ∗-operator on M
4 (see page 962).

Parallelism of a physical field along a curve. Let

C : P = P (σ), σ ∈ R

be a curve on the Minkowski manifold M
4. With respect to an inertial system, the

curve reads as x = x(σ), σ ∈ R. Here, R is an open interval on the real line (e.g.,
R = R). By definition, the physical field ψ is parallel along the curve C iff

DṖ (σ)ψ(P (σ)) = 0, σ ∈ R. (13.25)

This definition does not depend on the choice of the inertial system. In an inertial
system, we get

Dẋ(σ)ψ(x(σ)) = 0, σ ∈ R.
Explicitly,

ẋα(σ)∂αψ(x(σ)) + ẋα(σ)Aα(x(σ)) · ψ(x(σ)) = 0, σ ∈ R.

By the chain rule, this is equivalent to the differential equation

dψ(σ)

dσ
+ ẋα(σ)Aα(x(σ)) · ψ(σ) = 0, σ ∈ R. (13.26)

Here we set ψ(σ) := ψ(x(σ)).
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Proposition 13.7 The notion of parallelism of a physical field along a curve is
gauge invariant.

Proof. It follows from

D+
ẋ(σ)ψ

+(x(σ)) = G0(x(σ))Dẋ(σ)ψ(x(σ))

that Dẋ(σ)ψ(x(σ)) = 0 implies D+
ẋ(σ)ψ

+(x(σ)) = 0. �

The covariant differential of a physical field. For a physical field ψ, we
define

(Dψ)P (v) := Dv(P )ψ(P )

for all vector fields v on the Minkowski manifold M
4. Explicitly, choosing an inertial

system, we get
Dψ(x) = Dαψ(x) dxα, x ∈ R

4.

13.4 The Principal Bundle M
4 × U(1) and the Parallel

Transport of the Local Phase Factor

The principal bundle M
4 ×U(1) describes the transport of the local phase

factor.
Folklore

The transport equation for the local phase factor. This fundamental equa-
tion reads as

Ġ(σ) = −Aα

`

x(σ)
´

ẋα(σ) ·G(σ), σ ∈ R. (13.27)

We are given the smooth curve C : P = P (σ), σ ∈ R on M
4. We are looking for a

smooth function
G : R → U(1).

From the physical point of view, the differential equation (13.27) describes the
transport σ �→ G(σ) of a local phase factor along the curve C.

The principal bundle M
4 × U(1). Naturally enough, we regard the solution

σ �→ (x(σ), G(σ))

of the transport equation (13.27) as the trajectory of a dynamical system on the
principal product bundle

M
4 × U(1) := {(P,G) : P ∈ M

4, G ∈ U(1)}.

Here, the fiber FP = {(P,G) : G ∈ U(1)} is in one-to-one correspondence to the
Lie group U(1). This property of the fiber is typical for a principal bundle. Let
G0 ∈ U(1). The map

(P,G) �→ (P,G+(P ))

with G+(P ) = G0(P )G is called a gauge transformation of M
4 ×U(1). This can be

regarded as a change of the bundle coordinates from (P,G) to (P,G+(P )).

Proposition 13.8 The parallel transport of the local phase factor is gauge invari-
ant.
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Fig. 13.1. Parallel transport along a loop

Proof. Set G+(σ) := G0(x(σ))G(σ). We have to show that

Ġ+(σ) = −A+
α

`

x(σ)
´

ẋα(σ) ·G+(σ). (13.28)

In fact, by the Leibniz rule, we get

Ġ+(σ) = ∂αG0

`

x(σ)
´

ẋα(σ) ·G(σ) +G0

`

x(σ)
´

Ġ(σ).

By (13.27),

Ġ+(σ) = ∂αG0 · ẋαG−1
0 G+ −G0Aαẋ

αG−1
0 G+.

Using the transformation law (13.18) from Aα to A+
α , we get the claim (13.28). �

The connection form on the principal bundle M
4 × U(1). We define

A(x,G) := Aα(x)dxα +G−1dG.

This differential 1-form on the principal product bundle M
4 × U(1) is called the

connection form of M
4 × U(1). Let

C : x = x(σ), G = G(σ), σ ∈ R (13.29)

be a smooth curve on M
4 × U(1). Then

A(x(σ),G(σ))(ẋ(σ), Ġ(σ)) = Aα(x(σ))ẋα(σ) +G(σ)−1Ġ(σ).

Thus, the curve C is a solution of the equation (13.27) of parallel transport iff

A = 0 along C.

Explicitly, A(x(σ),G(σ))(ẋ(σ), Ġ(σ)) = 0 for all σ ∈ R. The 1-form A is called the

connection 1-form on the principal bundle M
4 × U(1), since A governs the parallel

transport on M
4 × U(1) which connects the fibers with each other.

The curvature form on M
4 × U(1). We set

F := dA.

The differential 2-form F on M
4×U(1) is called the curvature 2-form on the principal

bundle M
4 × U(1).
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13.5 Parallel Transport of Physical Fields – the
Propagator Approach

The parallel transport of the local phase factor on the principal bundle
M

4 × U(1) induces the parallel transport on the associated vector bundle
M

4 × C. The curvature can be measured by the parallel transport of a
physical field along a small loop. The covariant directional derivative of a
physical field can be regarded as an infinitesimal parallel transport.

Folklore

Parallel transport for physical fields and the propagator. Choose the
curve C : P = P (σ), σ ∈ R on the base manifold M

4. Consider a solution
σ �→ (x(σ), G(σ)) of the transport equation (13.27) with G(σ0) := 1 and fixed
parameter σ0 ∈ R. For given ψ0 ∈ C, we define

ψ(σ) := G(σ)ψ0, σ ∈ R.

Then ψ(σ0) = ψ0. Using the transport equation (13.27), we get the differential
equation

ψ̇(σ) + Aα(x(σ))ẋα(σ) · ψ(σ) = 0, σ ∈ R (13.30)

which is identical with (13.26). We say that the curve

σ �→ (x(σ), ψ(σ))

on M
4×C describes a parallel transport on the vector bundle M

4×C which connects
the point (x(σ0), ψ(σ0)) with the point (x(σ), ψ(σ)). We define the propagator

Π(σ, σ0)(x(σ0), ψ(σ0)) := (x(σ), ψ(σ)), σ ∈ R.

To simplify notation, we also briefly write Π(σ, σ0)ψ(σ0) := ψ(σ).
Parallel transport along loops and curvature. We want to show that the

curvature form F can be computed by using the parallel transport along sufficiently
small loops. Fix the point x0 ∈ R

4. Consider the triangle T� depicted in Fig. 13.1.
This triangle is contained in a 2-dimensional plane. This plane is located in R

4;
it passes through the point x0, and it is spanned by the unit vectors e1 and e2.
Explicitly,

T� := {x0 + ξe1 + ηe2 : 0 ≤ ξ, η ≤ �, ξ + η ≤ �}, � > 0.

We assume that the boundary ∂T� of the triangle is positively oriented. Moreover,
let meas(T�) = 1

2
�2 denote the surface area of the triangle T�.

For given value ψ0 ∈ C of the physical field at the point x0, let us transport
ψ0 along the positively oriented loop ∂T�. After surrounding counter-clockwise the
triangle once, we get the value Π∂T�ψ0 at the final point x0.

Proposition 13.9 The curvature component F12(x0) is given by the limit

F12(x0)ψ0 = lim
�→0

ψ0 −Π∂T�ψ0

meas(T�)
.

Analogous expressions are obtained for Fαβ with α < β.
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Proof. Set A := Aβdx
β . Since dA = F , it follows from the Stokes integral theorem

that
Z

∂T�

A =

Z

T�

dA =

Z

T�

F =

Z

T�

F12 dx
1 ∧ dx2.

By the mean value theorem for integrals,

Z

∂T�

A = 1
2
�2 · F12(x0) + o(�2), �→ 0.

Integrating the differential equation (13.30), we get

Π∂T�ψ0 = ψ0 − 1
2
�2F12(x0)ψ0 + o(�2), �→ 0.

This implies the claim. �

Infinitesimal parallel transport and the covariant directional deriva-
tive of a physical field. Let ψ be a physical field on M

4. In other words, ψ is a
smooth section of the vector bundle M

4 ×C. Let C : P = P (σ), σ ∈ P, be a smooth
curve on M

4. Set ψ(σ) := ψ(P (σ)).

Proposition 13.10 There holds

DṖ (0)ψ(0) = lim
σ→0

Π(0, σ)ψ(σ) − ψ(0)

σ
.

Intuitively, this means that we transport the value ψ(σ) of the physical field ψ
at the point P (σ) along the curve C to the point P (0). This yields Π(0, σ)ψ(σ).
Then we compare this value with the value ψ(0) of the physical field ψ at the point
P (0) by computing the difference quotient

Π(0, σ)ψ(σ) − ψ(0)

σ
.

Finally, let the curve parameter σ go to zero.
Proof. Since the parallel transport does not depend on the choice of the inertial
system, we can use a fixed inertial system. We have to show that

Dẋ(0)ψ(0) = lim
σ→0

Π(0, σ)ψ(σ) − ψ(0)

σ
.

By the construction of the propagator, it follows from the transport equation (13.30)
that

Π(0, σ)ψ(σ) = ψ(σ) + σ · ẋα(σ)Aα(x(σ))ψ(σ) + o(σ), σ → 0.

Using the Taylor expansion, ψ(σ) = ψ(0) + σψ̇(0) + o(1), σ → 0, we get

lim
σ→0

Π(0, σ)ψ(σ) − ψ(0)

σ
= ψ̇(0) + ẋα(0)Aα(x(0))ψ(0).

This is the claim. �
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13.6 The Wilson Loop and Holonomy

Let C : P = P (σ), σ ∈ [σ0, σ1], be a loop on the base manifold M
4 with

P (σ0) = P (σ1).

For given point (P, ψ0) on the vector bundle M
4 × C, we define

WC(P (σ0), ψ0) := (P (σ0),Π(σ1, σ0)ψ0).

The operator
WC : FP (σ0) → FP (σ0)

on the fiber FP (σ0) is called the Wilson loop corresponding to the loop C. The map

C →WC

is called the holonomy map (with respect to the fiber FP (σ0)). Intuitively, the Wil-
son loop WC measures the parallel transport along the loop C. Using Lagrange’s
variation-of-parameter formula (see Sect. 7.17.1 of Vol. I), we get

Π(σ1, σ0)ψ0 := e
−
R σ1

σ0
ẋα(σ)Aα(x(σ)) dσ

ψ0.

Hence
WC(P (σ0), ψ0) = (P (σ0), e

−
R

C A ψ0).

Problems

13.1 The gauge invariance of the Schrödinger equation. Show that the Schrödinger
equation (13.7) is invariant under the gauge transformations (13.9), (13.10) on
page 818.

13.2 Differential for the inverse matrix. Fix N = 1, 2, . . . Suppose that the matrix
functions G,H : R

4 → GL(N,C) are smooth. Show that

∂αG(x)−1 = −G(x)−1∂αG(x) ·G(x)−1, x ∈ R
4.

Hence

dG(x)−1 = −G(x)−1dG(x) ·G(x)−1, x ∈ R
4.

Solution: By the Leibniz rule,

∂α(GH) = (∂αG)H +G∂αH.

Thus, it follows from ∂α(G−1G) = ∂αI = 0 that

∂αG
−1 ·G+G−1∂αG = 0.

Finally, note that dH = ∂αH dxα.
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13.3 Construction of a connection. We are given the smooth functions

G0, G1 : R
4 → U(1).

Set G2(x) := G1(x)G0(x)
−1. Then it follows from

ψ+(x) = G0(x)ψ(x) and ψ++(x) = G1(x)ψ(P ) (13.31)

that

ψ++(x) = G2(x)ψ
+(x). (13.32)

Let α = 0, 1, 2, 3. Suppose that

A+
α (x) := Aα(x) − ∂αG0(x) ·G0(x)

−1,

and
A++

α (x) := Aα(x) − ∂αG1(x) ·G1(x)
−1.

Show that

A++
α (x) := A+

α (x) − ∂αG2(x) ·G2(x)
−1. (13.33)

Hint: Use Problem 13.2.
Remark. The transformation property (13.33) allows us to construct the fam-
ily of connection matrices together with compatible transformation laws. We
proceed as follows. Fix an inertial system. We are given the smooth functions

Aα : R
4 → u(1), α = 0, 1, 2, 3.

Consider the gauge transformation (13.31), and construct both A+ and A++,
as above. Then, the relation (13.33) fits the gauge transformation (13.32).
Under a change of the inertial system, the matrices Aα are transformed as ∂α,
α = 0, 1, 2, 3.
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We want to study the typical behavior of physical fields near a ground state (also
called vacuum). It happens frequently that the ground state of a many-particle
system is not unique. In this case, the system can oscillate near different ground
states which, as a rule, corresponds to different physical behavior. Therefore, the
choice of the ground state plays a crucial role. Historically, Pauli criticized the
formulation of gauge field theories by Yang and Mills in 1954; Pauli emphasized that
the corresponding interacting gauge particles are massless, in contrast to physical
experiments. This defect of gauge theories could be cured in the 1960s by using
the so-called Higgs mechanism which equips the gauge bosons with mass. This
way, the W±-bosons and the Z0-boson obtain their mass in the Standard Model of
particle physics. Physicists speak of symmetry breaking (or loss of symmetry) for
the following reason.

• The original theory possesses a family of ground states which can be transformed
into each other by using the symmetry group G of the theory.

• In nature, physical systems oscillate frequently near a distinguished ground state.
These realistic states are not anymore symmetric under the original symmetry
group G. In this sense, the symmetry group G is broken.

14.1 The Prototype in Mechanics

Consider the equation of motion

mq̈ = K(q) (14.1)

for the trajectory q = q(t) of a particle on the real line. Here, the force has the form
K(q) = −U ′(q) with the Ginzburg–Landau potential

U(q) := (q2 − a2)2

for fixed a > 0. The energy is given by

E =
m

2
q̇2 + U(q).

Each solution q = q(t) of equation (14.1) has constant energy. In fact,

Ė(t) =
`

mq̈(t) + U ′(q(t))
´

q̇(t) = 0

for all times t. Taylor expansion at the point q0 yields

K = −U ′(q0) − U ′′(q0)(q − q0) + o(q − q0), q → q0.

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 15,
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 14.1. The Ginzburg–Landau potential

Note that U ′(q) = 4(q2 − a2)q and U ′′(q) = 12q2 − 4a2. The critical equation

U ′(q0) = 0

has the solutions q0 = ±a, 0. The force vanishes precisely at these equilibrium
points. Since U ′′(±a) > 0 and U ′′(0) < 0,

• the force K = −U ′′(a)(q−a)+ . . . is attracting near the equilibrium point q = a,
• the force K = −U ′′(−a)(q + a) + . . . is attracting near the equilibrium point
q = −a, and

• the force K = −U ′′(0)q is repelling near the equilibrium point q = 0 (Fig. 14.1).

Consequently, the Ginzburg–Landau potential describes the motion of a particle
that has the two stable equilibrium points q = ±a and one unstable equilibrium
point q = 0. A passage from q = a to q = −a models a phase transition. To
explain this, consider a particle which oscillates near the equilibrium point q = a.
If the oscillations become so large that the particle passes the point q = 0, then the
particle is attracted by the equilibrium point q = −a, and it starts oscillating near
q = −a. Generally, essential changes of the qualitative behavior of physical systems
are called phase transitions by physicists. The variational problem corresponding
to the differential equation (14.1) reads as

Z t1

t0

“m

2
q̇2 − U(q)

”

dt = critical !

with fixed values q(t0) and q(t1).

14.2 The Goldstone-Particle Mechanism

The original variational problem. Let us study a special nonlinear Klein–Fock–
Gordon equation based on the Lagrangian

L :=
1

2

`

∂μψ∂
μψ† − V (|ψ|2)

´

with the Ginzburg–Landau potential

V (|ψ|2) := b
`

|ψ|2 − a2
´2

where a and b are positive constants. Consider the corresponding variational prob-
lem
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Z

Ω

L(ψ, ∂ψ) d4x = critical ! (14.2)

in an inertial system where Ω is a nonempty bounded open subset of R
4. Moreover,

the smooth field ψ : cl(Ω) → C is fixed on the boundary. By Prop. 13.1 on page
816, each solution of the variational problem (14.2) satisfies the nonlinear Klein–
Fock–Gordon equation

�ψ + 2b
`

|ψ|2 − a2
´

ψ = 0. (14.3)

The ground states. The states ψ0(x, t) = const with |ψ0| = a play a special
role. Since |ψ0|2 − a2 = 0, the states ψ0 are solutions of the Klein–Fock–Gordon
equation (14.3). Moreover, since V (|ψ0|2) = 0, it follows from (13.5) on page 817
that the total energy of the states ψ0 is equal to zero, and hence it is minimal.
Thus, the states ψ0 are ground states.

The global symmetry of the Lagrangian. The Lagrangian L is invariant
under the global gauge transformation

ψ+(x, t) = eiαψ(x, t)

where α is a fixed real number. The point is that, by a global gauge transformation,
we can transform each ground state ψ0 into the special ground state ψspec := a.

The modified Lagrangian. Let us study a small perturbation of the special
ground state ψspec = a. To this end, we make the ansatz

ψ = a+ ϕ+ iχ.

Here, we assume that the small fields ϕ and χ are real. Substituting this into the
Lagrangian, we get1

L = 1
2
∂μϕ∂

μϕ+ 1
2
∂μχ∂

μχ− 1
2
b(2aϕ+ ϕ2 + χ2)2.

Introducing the mass parameter m0,

m2
0c

2

�2
:= 4a2b,

we write
L = Lfree + Lint.

Here, the free Lagrangian,

Lfree = 1
2

„

∂μϕ∂
μϕ− m2

0c
2

�2
ϕ2

«

+ 1
2
∂μχ∂

μχ,

contains all the quadratic terms of the Lagrangian L. The remaining higher-order
terms form the Lagrangian Lint of interaction. For the free Lagrangian Lfree, the
Euler–Lagrange equations read as

�ϕ+
m2

0c
2

�2
ϕ = 0, �χ = 0.

This allows us to give the following physical interpretation. We have obtained two
interacting real fields ϕ and χ, whereas ϕ corresponds to a particle of rest mass
m0, and χ corresponds to a massless particle. Since χ is a scalar field, the particle
is spinless. Therefore, physicists summarize this procedure by saying that

1 Note that |ψ|2 = (a+ ϕ)2 + χ2 = a2 + 2aϕ+ ϕ2 + χ2.
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Global symmetry breaking produces a massless Goldstone boson χ.

We will now show that local symmetry breaking generates both a massive Higgs
boson and a massive gauge boson.

14.3 The Higgs-Particle Mechanism

Consider the modified Lagrangian

L =
1

2

„

Dμψ(Dμψ)† − V (|ψ|2) − 1

4
FμνF

μν

«

with the covariant partial derivative

Dμ := ∂μ +
iQ

�
Aμ

where Aμ is the four-potential of the electromagnetic field,

Fμν = ∂μAν − ∂νAμ.

Again we assume that

V (|ψ|2) := b
`

|ψ|2 − a2
´2

where a and b are positive real numbers. The Lagrangian is invariant under the
gauge transformation

ψ+(x, t) = ψ(x, t)eia(x,t), A+
μ = Aμ − �

Q
∂μa.

The point is that:

We can assume that the field ψ is real-valued, after a gauge transformation.

Let us make the ansatz
ψ(x, t) = a+ ϕ(x, t)

where the field ϕ is real-valued. For the Lagrangian, we get

L =
1

2

„

∂μ +
iQ

�
Aμ

«

(a+ ϕ)

„

∂μ − iQ

�
Aμ

«

(a+ ϕ)

− 1

2
b
`

2aϕ+ ϕ2´2 − 1

8
FμνF

μν .

This yields
L = Lfree + Lint

where the free Lagrangian contains the quadratic terms,

Lfree =
1

2

„

∂μϕ∂
μϕ− m2

0c
2

�2
ϕ2 − 1

4
FμνF

μν +
1

2

M2
0 c

2

�2
AμA

μ

«

.

Here, we introduce the masses m0 and M0,

m2
0c

2

�2
:= 4ba2,

M2
0 c

2

�2
:=
Q2

�2
.
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Recall that Fμν = ∂μAν − ∂νAμ. The Lagrangian of interaction contains terms of
higher order. The Euler–Lagrange equations for the free Lagrangian read as

�ϕ+
m2

0c
2

�2
ϕ = 0

and

�Aμ +
M2

0 c
2

�2
Aμ = ∂μ(∂νAν), μ = 0, 1, 2, 3.

The latter equation is called the Proca equation. Explicitly,

∂ν∂
νAμ +

M2
0 c

2

�2
Aμ = ∂μ(∂νAν).

If Aμ is a solution of this equation, then applying ∂μ, we get

∂ν∂
ν(∂μAμ) +

M0c
2

�2
∂μAμ = ∂μ∂μ(∂νAν).

Since M0 �= 0, ∂μAμ = 0. Hence

�Aμ +
M2

0 c
2

�2
Aμ = 0.

Summarizing, we have obtained

• a real field ϕ which corresponds to a so-called Higgs boson with mass m0, and
• the gauge field Aμ corresponds to a particle with mass M0 called massive gauge

boson.

14.4 Dimensional Reduction and the Kaluza–Klein
Approach

We want to show how variational problems in five dimensions generate physical
fields in four-dimensional space-time manifolds. This idea was first used by Kaluza
and Klein in the early 1920s. Consider a flat 4-dimensional space-time manifold
with Cartesian coordinates x1, x2, x3, and the time coordinate x0 = ct. Let us
add an additional coordinate x4. As a simple example, let us discuss the following
variational problem2

Z

Ω×]0,1[

„

−1

4
GijG

ij + V (B, ∂B)

«

d5x = critical !

where
Gij := ∂iBj − ∂jBi, i, j = 0, 1, 2, 3, 4,

and the fields Bi are fixed on the boundary of the product set Ω×]0, 1[. Here, Ω
is a nonempty bounded open subset of R

4. Furthermore, d5x := dx0dx1dx2dx3dx4.
Now to the point.

2 We sum over equal upper and lower Latin (resp. Greek indices) from 0 to 4 (resp.
0 to 3).
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Assume that the gauge potential B does not depend on the additional vari-
able x4.

Let us define the so-called Higgs field

ϕ(x) := B4(x)

where x = (x0, x1, x2, x3). Then

G44 = 0, Gμ4 = −G4μ = ∂μϕ.

Moreover, letting Aμ := Bμ and Fμν := Gμν for μ, ν = 0, 1, 2, 3, we get

GijG
ij = FμνF

μν + 2∂μϕ∂
μϕ.

This way, we obtain the reduced variational problem

Z

Ω

„

−1

4
FμνF

μν − 1

2
∂μϕ∂

μϕ+ V (ϕ, ∂ϕ,A, ∂A)

«

d4x = critical !

This problem corresponds to the variational problem for a gauge field A0, . . . , A3

and a Higgs field ϕ. The term V is responsible for interactions between the Higgs
field and the gauge field.

14.5 Superconductivity and the Ginzburg–Landau
Equation

As you know, very many metals become superconducting below a certain
temperature first discovered by Onnes in 1911.3 The critical temperature is
different for different metals. When you reduce the temperature sufficiently,
the metals conduct electricity without any resistance. . . It took a very long
time to understand what was going on inside a superconductor. It turns
out that due to the interactions in the lattice, there is a small net attraction
between electrons. The result is that the electrons form together, if I may
speak very qualitatively and crudely, bound pairs (called Cooper pairs).
Now you know that a single electron is a Fermi particle (fermion). But a
bound pair acts as a Bose particle (boson). . . This fundamental point in
the theory of superconductivity was first explained by Bardeen, Cooper,
and Schrieffer in 1957.4

Richard Feynman, 1963

3 The following physicists were awarded the Nobel prize in physics for their contri-
butions to superconductivity: Heike Kammerlingh Onnes 1913, Lev Landau 1962,
John Bardeen, Leon Cooper, and Robert Schrieffer 1972 (quantum field theory of
Cooper pairs), Georg Bednorz and Alexander Müller 1987 (experimental discov-
ery of high-temperature superconductivity in ceramic materials), Ginzburg 2003.
The phenomenological Ginzburg–Landau theory for superconductivity is a typi-
cal nonlinear gauge field theory. Typical features of the Ginzburg–Landau model
are also used in the Standard Model in particle physics (the Higgs mechanism).

4 R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures in Physics,
Addison-Wesley, Reading, Massachusetts (reprinted with permission).
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The existing phenomenological theory of superconductivity due to Fritz
and Heinz London from the year 1935 is unsatisfactory since it does not
allow us to determine the surface tension at the boundary between the nor-
mal and the superconducting phases and does not allow for the possibility
to describe correctly the destruction of superconductivity by a magnetic
field or current. In the present paper a theory is constructed which is free
of these faults. We find equations for the effective wave function ψ of the
‘superconducting electrons’ which we introduced and for the vector poten-
tial A. We have solved these equations for the one-dimensional case. The
essence of the matter lies in the fact that the function ψ is in no way a
true wave function of the electrons in the metal, but is a certain average
quantity.5

Vitaly Ginzburg and Lev Landau, 1950

A superconductor is simply a material in which electromagnetic gauge in-
variance is spontaneously broken. Detailed dynamical theories are needed
to explain why and at what temperature this symmetry breaking occurs,
but they are not needed to derive the most striking aspects of supercon-
ductivity: exclusion of magnetic fields, flux quantization, zero resistivity,
and alternating electric currents at a gap between superconductors held at
different voltages. As we will see here, these consequences of broken gauge
invariance can be worked out in a manner somewhat like our treatment
of soft pions, solely on the basis of general properties of the Goldstone
mode.6

Steven Weinberg, 1996

Experimentally, superconductivity was discovered by Kamerlingh Onnes in 1908.
This phenomenon consists in the vanishing of electric resistance at low tempera-
tures. We want to show that superconductivity can be understood qualitatively in
terms of gauge theory. The first phenomenological theory of superconductivity was
formulated by Fritz and Heinz London in 1935. They supposed that, in a supercon-
ductor, the electric current density vector J is related to the electric field E by the
constitutive equation law

∂J

∂t
= γE

where the positive constant γ only depends on temperature. Recall that, in a normal
metallic conductor, Ohm’s law tells us that

J = σE

where the positive constant σ is called electrical conductivity. In a normal conduc-
tor, a constant electric field E generates a constant electric current. In contrast
to this classical behavior, a constant electric field generates an increasing elec-
tric current in a superconductor. The London model was substantially improved
by Ginzburg and Landau in 1950. They included thermodynamical effects on a
phenomenological level. The final microscopic theory was formulated by Bardeen,
Cooper, and Schrieffer in 1957 (Nobel prize in physics in 1972). They assumed that

5 V. Ginzburg and L. Landau, On the theory of superconductivity, J. Experimental
and Theoretical Physics 20, 1064–1082 (in Russian). English translation in L.
Landau, Collected Papers, pp. 546–568, Pergamon Press, Oxford (reprinted with
permission).

6 S. Weinberg, The Quantum Theory of Fields, Vol.II, Cambridge University Press,
1996 (reprinted with permission).
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pairs of electrons called Cooper pairs are responsible for superconductivity. First
of all, in contrast to electrons, Cooper pairs are bosons (with zero spin). Therefore,
the number of Cooper pairs in a physical state is not restricted by Pauli’s exclusion
principle, telling us that two fermions (e.g., electrons) can never be in the same
physical state. The size of a Cooper pair is a few hundred nanometers, far larger
than the size of an atom. The Cooper pairs move with the same drift speed. From
the physical point of view, the formation of Cooper pairs causes a gap in the energy
distribution of the free electrons. This energy gap prevents Cooper pairs from mov-
ing to higher energy levels. Consequently, Cooper pairs cannot transform electric
energy into heat energy by scattering processes, as in normal conductors.

In a phenomenological theory, the Cooper pairs are described by a complex-
valued function

ψ(x, t) =
p

�(x, t) eiα(x,t)

with the real phase function α; the real function � = ψ†ψ describes the density
of Cooper pairs. We will motivate below that it is reasonable to assume that the
electric current density vector J is given by

J =
�

m

„

gradα− Q

�
A

«

� (14.4)

where A is the vector potential of the magnetic field,

B = curlA.

The effective charge Q is the charge of the Cooper pairs, Q = −2e, and m is the
effective mass of the Cooper pairs to be determined by experiment.

The Ginzburg–Landau equation. We assume that the function ψ satisfies
the Schrödinger–Maxwell equation7

i�ψt =
(P −QA)2

2m
ψ +QUψ + V (|ψ|2) (14.5)

where P := −i�∂. Moreover, (U,A) is the four-potential of the electromagnetic
field,

B = curlA, E = −gradU − At,

and V is the Ginzburg–Landau potential (i.e., the free energy of the Cooper pairs).
Explicitly, we make the ansatz

V (|ψ|2) = const − a|ψ|2 + b|ψ|4,

and we assume that for temperatures T below the critical temperature Tcrit,

a(T ) > 0, b(T ) > 0.

For T > Tcrit, suppose that

a(T ) = 0, b(T ) > 0.

This has the following important consequence.

(i) If T > Tcrit, then the free energy V has a minimum at |ψ| = 0. Thus, there are
no Cooper pairs in thermodynamical equilibrium.

7 This equation is also called the Ginzburg–Landau equation.
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(ii) If T < Tcrit, then the free energy V has a minimum at

|ψ|2 =
a(T )

b(T )

which corresponds to the density of Cooper pairs in thermodynamical equilib-
rium at temperature T .

By an order parameter, physicists understand a quantity η which vanishes in the
disordered phase and is positive in the ordered phase. In this terminology, the
density |ψ|2 of Cooper pairs is an order parameter for the phase transition to
superconductivity.8

The continuity equation. We want to show the following.

If ψ is a solution of the Schrödinger–Maxwell equation (14.5), then we have
the continuity equation

�t + div J = 0

where

J :=
ψ†

2m
(P −QA)ψ +

ψ

2m

`

(P −QA)ψ
´†
. (14.6)

The proof follows from
�t = ψtψ

† + ψψ†
t

by using (14.5) for computing ψt and ψ†
t . By definition, J is the electric current

density vector of Cooper pairs. Inserting ψ(x, t) =
p

�(x, t) eiα(x,t) into (14.6), we
obtain the key equation (14.4). We now want to use the expression (14.4) in order
to understand typical properties of superconductors.

The London equation. Consider a simply connected region of a supercon-
ductor (e.g., a ball). We assume that all of the Cooper pairs are in the same state.
This means that the phase function α of Cooper pairs is constant. By (14.4),

J = −Q
m

A�.

Suppose that there is no electric potential, U ≡ 0, and the density � of Cooper
pairs is constant. Then E = −At. Hence

Jt = −Q
m

At� =
Q�

m
E.

This is London’s material law for superconductors mentioned above.
The Meissner effect. It was discovered experimentally by Meissner and

Ochsenfeld in 1933 that, in a superconductor, nonvanishing magnetic fields only
exist in a thin boundary layer. To understand this phenomenon, consider a station-
ary magnetic field B = curlA which satisfies the gauge condition div A = 0. It
follows from the wave equation

�A = μ0J

along with the London equation J = −Q
m

A� that

ΔA = −A

δ
on Ω

8 Ginzburg and Landau introduced |ψ|2 by physical intuition, without knowing
the physical interpretation as density of Cooper pairs.
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Fig. 14.2. Flux quantization

where δ := m/μ0Q�. Consider a box Ω := {(x, y, z) : 0 ≤ x, y, z ≤ 1} and assume
that the density � of Cooper pairs is constant. We then get the special solution

A(x) = a
`

e−x/δ + e−(1−x)/δ´i + b
`

e−y/δ + e−(1−y)/δ´j + c
`

e−z/δ + e−(1−z)/δ´k

where a, b, c are real constants. Now to the point. It turns out that δ is a small
quantity. Thus, the field A vanishes approximately outside a δ-neighborhood of the
boundary. This is the Meissner effect.

Flux quantization and Cooper pairs. Consider the situation pictured in
Fig. 14.2. Assume that there is no electric current in the closed ring ∂C of a super-
conductor, J ≡ 0. For the magnetic flux, we then get

Z

C

Bn dS =
2πn�

Q
, n = 0,±1,±2, . . . (14.7)

In fact, it follows from (14.4) and J ≡ 0 that

A =
�

Q
gradα.

By the Stokes integral theorem,
Z

C

Bn dS =

Z

∂C

A dx =
�Δα

Q
.

If we move the phase function α along the closed curve ∂C, then the function ψ
does not change. Hence

Δα = 2πn, n = 0,±1,±2, . . .

The experiments show that Q = −2e where −e is the electric charge of an electron.
This establishes experimentally the existence of Cooper pairs consisting of two
electrons.

14.6 The Idea of Effective Theories in Physics

Typically, physical theories describe phenomena by concentrating on essential fea-
tures. To this end, physicists introduce effective quantities which summarize subtle
interactions in nature. The Ginzburg–Landau theory serves as a typical example
for an effective theory. In this setting, we do not consider the microscopic processes
which are responsible for superconduction, but we introduce the function ψ which
carries a sufficient amount of physical information.
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The strategy of effective theories has been very successful in physics in order
to govern more and more complicated processes in nature. The task of physicists
is to single out the right effective quantities by physical intuition, and to refine the
effective theories on the basis of improved experiments.

There exists the dream of a final theory in physics which allows the deduction
of all physical results from the fundamental interactions. The present experience of
physicists indicates that it seems to be hopeless to realize such an ambitious pro-
gram. For example, there is no hope to understand the properties of large molecules
on the basis of a final theory for the fundamental interactions in nature. In quan-
tum chemistry, physicists and chemists use the so-called density functional method
for large molecules. This is an effective theory for describing the solutions of the
Schrödinger equation for large molecules. As an introduction, we recommend the
monograph by H. Eschrig, The Fundamentals of Density Functional Theory, Teub-
ner, Leipzig, 2003. In 1998, Walter Kohn was awarded the Nobel prize in chemistry
for the development of the density functional method.



15. The Noncommutative Yang–Mills
SU(N)-Gauge Theory

Fix N = 1, 2, . . . Let G be a closed subgroup of the Lie matrix group GL(N,C) of
invertible complex (N ×N)-matrices. Then, G is a Lie group. As a prototype, the
reader should have the special case in mind where N = 2 and

G = SU(2).

This gauge group was used by Yang and Mills in 1954. Recall that the Lie group
SU(2) consists of all the unitary (2 × 2)-matrices U with det(U) = 1. The cor-
responding Lie algebra su(2) consists of all the complex (2 × 2)-matrices A with
A† = −A and tr(A) = 0. Further examples for the Lie group G are the Lie groups
U(N), SU(N), GL(N,C), SL(N,C), and SO(3) with N = 3. We will show how the
U(1)-gauge theory from Chap. 13 has to be modified in the case of a noncommu-
tative gauge group G (e.g., G = SU(N) with N = 2, 3, . . .).

In order to help the reader to understand the simple intuitive ideas behind the
theory of vector bundles and principal bundles, in this chapter and the following
two chapters, we will discuss the interrelationship between different approaches to
the curvature theory of bundles.

15.1 The Vector Bundle M
4 × C

N, Covariant Directional
Derivative, and Curvature

We choose the Minkowski manifold M
4 as in Sect. 13.3, and we set

ψ =

0

B

B

@

ψ1

...

ψN

1

C

C

A

where ψ1, . . . , ψN are complex numbers. We write ψ ∈ C
N . In what follows, pre-

cisely the smooth maps ψ : M
4 → C

N are called physical fields.
The vector bundle M

4 × C
N . By definition, the product set

M
4 × C

N := {(P,ψ) : P ∈ M
4, ψ ∈ C

N}

is called a vector product bundle over the base manifold M
4 with the fiber

FP := {(P, ψ) : ψ ∈ C
N}

over the point P ∈ M
4. There exists a one-to-one correspondence between the fiber

FP and the complex linear space C
N . More precisely, the surjective map
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π : M
4 × C

N → M
4

given by π(P, ψ) := P is called a vector bundle with the fiber FP = π−1(P ), the
bundle space M

4 × C
N , and the base space M

4. For the sake of brevity, we speak
of the vector bundle M

4 × C
N . The map

s : M
4 → M

4 × C
N

is called a section iff s(P ) ∈ FP for all P ∈ M
4. Hence

s(P ) = (P, ψ(P ))

where ψ is a map from M
4 to C

N . Thus, physical fields ψ and smooth sections s of
the vector bundle M

4 × C
N can be identified with each other.

The local phase factor and gauge transformations. The transformation

ψ+(P ) := G0(P )ψ(P ), P ∈ M
4 (15.1)

is called a gauge transformation iff G0(P ) ∈ G and the map G0 : M
4 → G is smooth.

Setting
T (P,ψ) := (P,G0(P )ψ),

we get the map
T : M

4 × C
N → M

4 × C
N .

This is called a transition map from the product bundle M
4 × C

N onto itself. One
also says that the map T describes a change of the bundle coordinates, that is, the
bundle coordinate (P, ψ) is replaced by the new bundle coordinate (P,G0ψ).

The covariant directional derivative. Let v be a vector field on M
4. Our

goal is to introduce the directional derivative

Dvψ

of the physical field ψ which possesses an invariant meaning on the space-time
manifold M

4, and which transforms like the physical field ψ under gauge transfor-
mations.

To begin with, fix an inertial system. Let us introduce the covariant partial
derivatives

Dαψ(x) := (∂α + Aα(x))ψ(x), x ∈ R
4, α = 0, 1, 2, 3.

Here, we assume that the matrix functions Aα : R
4 → LG, α = 0, 1, 2, 3, are

smooth (i.e., Aα(x) is an element of the Lie algebra LG). We add the following
transformation laws:

• Under a change of inertial systems, Aα transforms like ∂α.
• Under the gauge transformation (15.1), we have

D+
αψ

+(x) := (∂α + A+
α (x))ψ+(x), x ∈ R

4, α = 0, 1, 2, 3

where

A+
α (x) := G0(x)Aα(x)G0(x)

−1 − ∂αG0(x) ·G0(x)
−1. (15.2)

Note that A+
α (x) is an element of the Lie algebra LG. Set

A = Aα dx
α.

This differential form is called the connection 1-form on the base manifold M
4.

From (15.2) we get the transformation law

A+(x) = G0(x)A(x)G0(x)
−1 − dG0 ·G0(x)

−1.
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Proposition 15.1 The covariant partial derivative Dαψ transforms like the phys-
ical field ψ itself.

The proof proceeds as on page 822. Now we introduce the covariant directional
derivative of a physical field ψ by setting

Dvψ := vαDαψ on M
4.

By the index principle, this definition does not depend on the choice of the inertial
system. Moreover, it follows from Proposition 15.1 that the gauge transformation
ψ+(x) = G0(x)ψ(x) implies

(D+
v ψ

+)(x) = G0(x)Dvψ(x), x ∈ R
4.

The curvature form. For a physical field ψ, the Leibniz rule yields

DαDβψ = (∂α + Aα)(∂βψ + Aβψ) = ∂α∂βψ + Aα∂βψ

+∂αAβ · ψ + Aβ · ∂αψ + AαAβψ. (15.3)

This implies

(DαDβ −DβDα)ψ = Fαβψ

where

Fαβ := ∂αAβ − ∂βAα + [Aα,Aβ ]− (15.4)

with the Lie bracket [Aα,Aβ ]− = AαAβ −AβAα. The point is that Fαβ does not
depend on the second partial derivatives of Aα, α = 0, 1, 2, 3. Moreover, Fαβ is not
a differential operator acting on ψ, but it is a matrix multiplication operator. The
differential 2-form

F := 1
2
Fαβ dx

α ∧ dxβ

possesses an invariant meaning on M
4. It is called the curvature 2-form on the base

manifold M
4.

Theorem 15.2 There hold the Cartan structural equation

F = dA + A ∧A on M
4 (15.5)

and the Bianchi equation (integrability condition)

dF = F ∧A−A ∧ F on M
4. (15.6)

Here, A and F are matrices with differential forms as entries. The wedge product
of such matrices is the usual matrix product where the classic product of the entries
is replaced by the wedge product of the entries. For example,
 

ω11 ω12

ω21 ω22

!

∧
 

μ11 μ12

μ21 μ22

!

=

 

ω11 ∧ μ11 + ω12 ∧ μ21 ω11 ∧ μ12 + ω12 ∧ μ22

ω21 ∧ μ11 + ω22 ∧ μ21 ω21 ∧ μ12 + ω22 ∧ μ22

!

.

Proof. Ad (15.5). We get

dA = dAβ ∧ dxβ = ∂αAβ dx
α ∧ dxβ = 1

2
(∂αAβ − ∂βAα) dxα ∧ dxβ ,

and Aα ∧ Aβ = AαAβ dx
α ∧ dxβ = 1

2
(AαAβ −AβAα) dxα ∧ dxβ .

Ad (15.6). From Cartan’s structural equation (15.5) we get

dF = dA ∧A−A ∧ dA.
Since dA = F −A ∧A, we obtain the claim (15.6). �
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Proposition 15.3 For all vector fields v and w on M
4 and all physical fields ψ on

M
4, we have

F(v, w) = dA(v, w) + [A(v),A(w)]− (15.7)

and

F(v, w)ψ := (DvDw −DwDv −D[v,w])ψ. (15.8)

Proof. Ad (15.7). Use the structural equation (15.5) and

(A ∧A)(v, w) = A(v)A(w) −A(w)A(v).

Ad (15.8). Use Dv(Dwψ) = (vα∂α + vαAα)(wβ∂βψ + wβAβψ) and

D[v,w]ψ = (vμ∂μw
γ − wμ∂μv

γ)(∂γψ + Aγψ).

�

Gauge transformation. In contrast to the U(1)-case, the curvature form F
is not always invariant under gauge transformations. But there exists a simple
transformation law.

Proposition 15.4 F+(P ) = G0(P )F(P )G0(P )−1.

This follows as in the proof of Prop. 13.6 on page 823. In particular, we have

tr(F+(P )) = tr(F(P )).

This invariance property is crucial for Chern classes.
Parallelism of a physical field along a curve. Let

C : P = P (σ), σ ∈ R

be a curve on the Minkowski manifold M
4. With respect to an inertial system, the

curve reads as x = x(σ), σ ∈ R. Here, R is an open interval on the real line (e.g.,
R = R). By definition, the physical field ψ is parallel along the curve C iff

DṖ (σ)ψ(P (σ)) = 0, σ ∈ R. (15.9)

This definition does not depend on the choice of the inertial system. In an inertial
system, we get

Dẋ(σ)ψ(x(σ)) = 0, σ ∈ R.
Explicitly,

ẋα(σ)∂αψ(x(σ)) + ẋα(σ)Aα(x(σ)) ψ(x(σ)) = 0, σ ∈ R.

By the chain rule, this is equivalent to the differential equation

dψ(σ)

dσ
+ ẋα(σ)Aα(x(σ)) ψ(σ) = 0, σ ∈ R. (15.10)

Here we set ψ(σ) := ψ(x(σ)).

Proposition 15.5 The notion of parallelism of a physical field along a curve is
gauge invariant.
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Proof. It follows from

D+
ẋ(σ)ψ

+(x(σ)) = G0(x(σ))Dẋ(σ)ψ(x(σ))

that Dẋ(σ)ψ(x(σ)) = 0 implies D+
ẋ(σ)ψ

+(x(σ)) = 0. �

The covariant differential of a physical field. For a physical field ψ, we
define

(Dψ)P (v) := Dv(P )ψ(P )

for all vector fields v on the Minkowski manifold M
4. Explicitly, choosing an inertial

system, we get
Dψ(x) = Dαψ(x) dxα, x ∈ R

4.

Components. Note that Aα(x) and Fαβ(x) are (N × N)-matrices. For the
entries, we write

Aα(x) = (ΓK
αL(x)) and Fαβ(x) = (RK

αβL(x))

whereK,L = 1, 2, . . . , N . Here,K (resp. L) is the index of the rows (resp. columns).

15.2 The Principal Bundle M
4 × G and the Parallel

Transport of the Local Phase Factor

The transport equation for the local phase factor. This fundamental equa-
tion reads as

Ġ(σ) = −Aα

`

x(σ)
´

ẋα(σ) ·G(σ), σ ∈ R. (15.11)

We are given the curve C : P = P (σ), σ ∈ R on the manifold M
4. We are looking

for a smooth function
G : R → G.

From the physical point of view, the equation (15.11) describes the transport

σ �→ G(σ)

of a local phase factor along the curve C. Note the following. Since Aα(x) is an
element of the Lie algebra LG, the matrix Aα(x(σ))G(σ) is a tangent vector of the
Lie group G at the point G(σ). Consequently, the solution σ �→ G(σ) of the matrix
differential equation (15.11) is a curve in the Lie group G. Furthermore,

G(σ)−1Aα(x(σ))G(σ) ∈ LG and G(σ)−1Ġ(σ) ∈ LG.

Equivalently, the transport equation (15.11) can be written as

G(σ)−1Ġ(σ) +G(σ)−1Aα

`

x(σ)
´

ẋα(σ) G(σ) = 0, σ ∈ R. (15.12)

The equations (15.11) and (15.12) do not depend on the choice of the inertial
system.

Gauge transformation. Let G0 : M
4 → G be a smooth map. We choose an

inertial system, and we set1

1 To simplify notation, we will synonymously use the symbols G+ and G+.
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G+(x) := G0(x)G(x), x ∈ R
4. (15.13)

With respect to the curve C : x = x(σ), σ ∈ R, we define

G+(σ) := G0(x(σ))G(σ), σ ∈ R.

The following simple identity is the key to Cartan’s approach to curvature.

Theorem 15.6 For all parameters σ ∈ R, we get the crucial formula

G+(σ)−1Ġ+(σ) +G+(σ)−1ẋα(σ)A+
α (x(σ)) G+(σ)

= G(σ)−1Ġ(σ) +G(σ)−1ẋα(σ)Aα(x(σ)) G(σ). (15.14)

Proof. By the chain rule, Ġ0(σ) = ẋα(σ)∂αG0(x(σ)). It follows from (15.2) that

ẋα(σ)A+
α (x(σ)) = G0(σ)Aα(x(σ)) G0(σ)

−1 − Ġ0(σ)G0(σ)
−1.

Note that G−1
+ = (G0G)−1 = G−1G−1

0 and Ġ+ = Ġ0G + G0Ġ. For all parameters
σ ∈ R, this implies

G−1
+ Ġ+ +G−1

+ ẋαA+
α G+ = G−1

+ (Ġ0G+G0Ġ− Ġ0G) +G−1ẋαAαG

= G−1Ġ+G−1ẋαAα G.

�

This theorem implies that if σ �→ (x(σ), G(σ)) is a solution of the transport
equation (15.12), then the transformed curve σ �→ (x(σ), G+(σ)) is a solution of
the transformed equation

G+(σ)−1Ġ+(σ) +G+(σ)−1ẋα(σ)A+
α (x(σ)) G+(σ) = 0.

The language of differential forms. Differential forms are invariant objects
on manifolds.

Therefore, it is our next goal to describe the transport of the local phase
factor in terms of differential forms on the manifold M

4 × G.
To this end, we will use the concept of the connection form A on a principal bundle.

The principal bundle P. In what follows, we set

P = M
4 × G := {(P,G) : P ∈ M

4, G ∈ G}.

The solution σ �→ (x(σ), G(σ)) of the transport equation (15.12) is a trajectory on
the principal product bundle P. Here, all the fibers FP = {(P,G) : G ∈ G} are in
one-to-one correspondence to the Lie group G. This property of the fiber is typical
for a principal bundle. Setting π(P,G) := P , we get the surjective map

π : P → M
4

with π−1(P ) = FP for all P ∈ M
4. Choose the smooth map G0 : M

4 → G. Then
the map

(P,G) �→ (P,G+(P ))

with G+(P ) = G0(P )G is called a gauge transformation of P. This can also be
regarded as a change of the bundle coordinates from (P,G) to (P,G+(P )).

The action of the gauge group G on the manifold P. For every element
G1 of the gauge group G, we set
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RG1(P,G) := (P,GG1).

The map RG1 : P → P is an action of the Lie group G on the principal bundle P
from the right, that is, we have

RG2G1 = RG1RG2 for all G1, G2 ∈ G.

In addition, this action of G on P preserves the fibers. Finally, the action is com-
patible with gauge transformations. In fact, we have

RG1(G0(P )G) = G0(P )GG1 = G0(P )RG1(G).

The connection form on P. For (P,G) ∈ P, we define

A(P,G) := G−1A(P )G+G−1dG. (15.15)

The differential 1-form A on the manifold P with values in the Lie algebra LG is
called the connection 1-form on the principal bundle P. With respect to an inertial
system, we get

A(x,G) := G−1Aα(x)G dxα +G−1dG.

Here, G−1dG is the Maurer–Cartan form on the Lie group G. Explicitly, let

σ �→ (x(σ), G(σ))

be a curve on M
4 × G with the curve parameter σ ∈ R. Then

(G(σ)−1dG)(Ġ(σ)) = G(σ)−1Ġ(σ),

and hence A(x(σ),G(σ))(ẋ(σ), Ġ(σ)) is equal to

G(σ)−1ẋα(σ)Aα(x(σ))G(σ) +G(σ)−1Ġ(σ), σ ∈ R.

Parallel transport. By definition, the curve σ �→ (x(σ), G(σ)) represents a
parallel transport on the principal bundle P iff

A(x(σ),G(σ))(ẋ(σ), Ġ(σ)) = 0, σ ∈ R. (15.16)

This is identical with the transport equation (15.12). Concerning a gauge transfor-
mation, we get

A+
(x(σ),G+(σ))

(ẋ(σ), Ġ+(σ)) = A(x(σ),G(σ))(ẋ(σ), Ġ(σ)) (15.17)

for all σ ∈ R. This is precisely the key formula (15.14). This tells us that

Parallel transport is gauge invariant.

Furthermore, it follows from (15.17) that

A+
(x,G+)

(ẋ, Ġ+) = A(x,G)(ẋ, Ġ) (15.18)

for all points (x,G) and all tangent vectors (ẋ, Ġ) of P at the point (x,G). Here

(x,G+) = (x,G0(x)G), (15.19)
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and the tangent vector (ẋ, Ġ+) is obtained from the tangent vector (ẋ, Ġ) by lin-
earization, that is,

(ẋ, Ġ+) = (ẋ, G′
0(x)Ġ).

Alternatively, one can choose a curve σ �→ (x(σ), G(σ)) with x(0) = x, G(0) = G,

as well as ẋ(0) = ẋ, Ġ(0) = Ġ. Then

Ġ+ =
d

dσ
G0(x(σ))G(σ)|σ=0.

The curvature form. Motivated by (15.7), we define

F := dA + A ∧ A. (15.20)

By convention, this expression means that

FQ(V,W ) := dAQ(V,W ) + [AQ(V ),AQ(W )]−

for all points Q ∈ P and all tangent vectors V,W of the manifold P at the point
Q. Here, [., .]− denotes the Lie bracket on LG. Obviously,

FQ(V,W ) = −FQ(W,V )

for all tangent vectors V,W at the point Q. Thus, F is a differential 2-form on the
manifold P with values in the Lie algebra LG. This is called the curvature form on
the manifold P. The proof of the following proposition will be given in Problem
15.3.

Proposition 15.7 For all points (x,G) of the bundle manifold P, we get

F(x,G) = G−1FxG.

Vertical and horizontal tangent vectors on P. The following notions play
a crucial role in the general theory of principal bundles to be considered in Sect.
17.2. Consider the tangent vector (ẋ, Ġ) of the manifold P at the point (x,G) Then:

• (ẋ, Ġ) is called vertical iff ẋ = 0;

• (ẋ, Ġ) is called horizontal iff A(x,G)(ẋ, Ġ) = 0.

Let A(x,G)(ẋ, Ġ) = A. Then, A is an element of the Lie algebra LG, and we get the
unique decomposition

(ẋ, Ġ) = (0, GA) + (ẋ, Ġ−GA)

where (0, GA) is a vertical tangent vector and (ẋ, Ġ−GA) is a horizontal tangent
vector. In fact,

A(x,G)(0, GA) = G−1dG(GA) = G−1GA = A.

Hence A(x,G)(ẋ, Ġ−GA) = A−A = 0. Define

hor(ẋ, Ġ) := (ẋ, Ġ−GA).

Then, we get the linear operator

hor : T(x,G)P → T(x,G)Phor
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which assigns to each tangent vector of the manifold P at the point (x,G) a uniquely
determined horizontal tangent vector.

Fundamental velocity vector field on P. Let A ∈ LG. Set

VA(x,G) := (0, GA), (x,G) ∈ P.

Then, VA is a vertical tangent vector field on P which is called the fundamental
vector field on P generated by the element A of the Lie algebra LG. Obviously,

A(x,G)(VA) = A.

Symmetries of the connection form A on P. For all points (P,G) of P,
all elements H of the Lie group G, and all elements A of the Lie algebra LG, the
following hold:

(C1) A(x,G)(VA) = A (fundamental vector field VA);

(C2) R∗
HA = H−1AH.

Proof. It remains to prove (C2). In fact, the pull-back (R∗
HA)(x,G)(ẋ, Ġ) is equal

to

A(x,GH)(ẋ, ĠH) = (GH)−1(ĠH) + (GH)−1A(x)(GH)

= H−1(G−1Ġ+G−1A(x)G)H = H−1A(x,G)(ẋ, Ġ)H.

�

The covariant Cartan differential Dω. Let ω be a differential p-form on the
manifold P with values in the Lie algebra LG. For all tangent vectors V1, . . . , Vp of
the manifold P at the point (x,G), we define

Dω(x,G)(V1, . . . , Vp) := dω(x,G)(hor(V1), . . . , hor(Vp)).

Theorem 15.8 For the curvature form F, we have the elegant Cartan structural
equation

F = DA on P (15.21)

together with the integrability condition (Bianchi relation)

DF = 0 on P. (15.22)

Proof. Ad (15.21). Let V,W,Z be tangent vectors of P at the point (x,G). Then

(A ∧ A)(V,W ) = A(V )A(W ) − A(W )A(V ).

Since A(hor(V )) = 0, we get (A ∧ A)(horV, hor(W )) = 0. By Prop. 15.7,

F(x,G)(hor(V ),hor(W )) = F(x,G)(V,W ).

Finally, it follows from dA = F − A ∧ A that

(DA)(V,W ) = dA(hor(V ), hor(W )) = F(V,W ).

Ad (15.22). It follows from F = dA + A ∧ A that

dF = dA ∧ A − A ∧ dA.
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Hence dF = (F − A ∧ A) ∧ A − A ∧ (F − A ∧ A). Thus,

dF = F ∧ A − A ∧ F.

This implies

(DF)(V,W,Z) = dF(hor(V ), hor(W ), hor(Z)) = 0.

�

The local pull-back construction in gauge theory. Consider an open
subset O of the base manifold M

4. Let us consider a smooth section

s : O → M
4 × G

given by s(P ) := (P,1) where 1 is the unit element of the Lie group G. Then

A = s∗A and F = s∗F on O.

This allows us to reconstruct the connection form A and the curvature form F on
O. In the present case, it is possible to choose O = M

4. However, in the general
bundle case, the bundle looks locally like a product bundle, but globally it is not
a product bundle. Therefore, the reconstruction described above is only a local
procedure in the general case.
Proof. The pull-back (s∗A)x(ẋ) is equal to A(x,1)(ẋ, 0) = A(x). Moreover,

s∗F = d(s∗A) + s∗A ∧ s∗A = dA + A ∧A = F .

�

For a general smooth section s : O → M
4 × G, it follows from Prop. 15.7 that

(s∗F)P = G(P )−1FPG(P )

where s(P ) = (P,G(P )). The section s is called a local gauge fixing. Furthermore,

(s∗A)x(ẋ) = G(x)−1ẋαAα(x)G(x) +G(x)−1G′(x)ẋ

where s(x) = (x,G(x)).

15.3 Parallel Transport of Physical Fields – the
Propagator Approach

Parallel transport for physical fields and the propagator. Choose the
curve C : P = P (σ), σ ∈ R on the base manifold M

4. Consider a solution
σ �→ (x(σ), G(σ)) of the transport equation (15.11) with G(σ0) := 1 and fixed
parameter σ0 ∈ R. For given ψ0 ∈ C

N , we define

ψ(σ) := G(σ)ψ0, σ ∈ R.

Then ψ(σ0) = ψ0. Using the transport equation (15.11), we get the differential
equation

ψ̇(σ) + Aα(x(σ))ẋα(σ) ψ(σ) = 0, σ ∈ R (15.23)

which is identical with (15.10). We say that the curve
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σ �→ (x(σ), ψ(σ))

on M
4 × C

N describes a parallel transport on the vector bundle M
4 × C

N which
connects the point (x(σ0), ψ(σ0)) with the point (x(σ), ψ(σ)). We define the prop-
agator

Π(σ, σ0)(x(σ0), ψ(σ0)) := (x(σ), ψ(σ)), σ ∈ R.
To simplify notation, we also briefly write Π(σ, σ0)ψ(σ0) := ψ(σ).

Parallel transport along loops and curvature. We want to show that the
curvature form F can be computed by using the parallel transport along sufficiently
small loops. Fix the point x0 ∈ R

4. Consider the triangle T� depicted in Fig. 13.1 on
page 826. This triangle is contained in a 2-dimensional plane in R

4 passing through
the point x0 and spanned by the unit vectors e1 and e2. Explicitly,

T� := {x0 + ξe1 + ηe2 : 0 ≤ ξ, η ≤ �, ξ + η ≤ �}, � > 0.

We assume that the boundary ∂T� of the triangle is positively oriented. Moreover,
let meas(T�) = 1

2
�2 denote the surface area of the triangle T�.

For given value ψ0 ∈ C
N of the physical field at the point x0, let us transport

ψ0 along the positively oriented loop ∂T�. After surrounding counter-clockwise the
triangle once, we get the value Π∂T�ψ0 at the final point x0.

Proposition 15.9 The curvature component F12(x0) is given by the limit

F12(x0)ψ0 = lim
�→0

ψ0 −Π∂T�ψ0

meas(T�)
.

Analogous expressions are obtained for Fαβ with α < β.

Proof. We will modify the proof given on page 827. Set x0 := 0. The differential
equation for the counter-clockwise parallel transport along the boundary ∂T� of the
triangle T� reads as

ψ̇(σ) = −ẋα(σ)Aα(P (σ))ψ(σ), 0 ≤ σ ≤ σ1, ψ(0) = ψ0. (15.24)

Hence

Π∂T�ψ0 − ψ0 =

Z σ1

0

ψ̇(σ)dσ = −
Z

∂T�

dxαAα(P )ψ(P ).

The basic trick of the proof is to extend the values of ψ on the boundary ∂T� to
the triangle T� in a smooth way. Set

A := dxαAαψ.

By the Stokes integral theorem, we have

Z

∂T�

A =

Z

T�

dA.

Hence
Z

∂T�

A =

Z

T�

∂α(Aβψ) dxα ∧ dxβ =

Z

T�

(∂1(A2ψ) − ∂2(A1ψ)) dx1dx2.

Set



854 15. The Noncommutative Yang–Mills SU(N)-Gauge Theory

B := lim
�→0

R

T�
(∂1(A2ψ) − ∂2(A1ψ)) dx1dx2

meas(T�)
.

Noting that ∂α(Aβψ) = ∂αAβ · ψ + Aβ∂αψ, we get

B = ∂1A2(0)ψ0 − ∂2A1(0)ψ0 + A2(0)∂1ψ(0) −A1(0)∂2ψ(0).

By (15.24), ∂1ψ(0) = −A1(0)ψ0 and ∂2ψ(0) = −A2(0)ψ0. Hence

B = {∂1A2(0) − ∂2A1(0) + A1(0)A2(0) −A2(0)A1(0)}ψ0 = F12(0)ψ0.

�

Infinitesimal parallel transport and the covariant directional deriva-
tive of a physical field. Let ψ be a physical field on M

4. In other words, ψ is
a smooth section of the vector bundle M

4 × C
N . Let C : P = P (σ), σ ∈ P, be a

smooth curve on M
4. Set ψ(σ) := ψ(P (σ)). An analogous argument as in the proof

of Prop. 13.10 on page 828 yields the following.

Proposition 15.10 There holds

DṖ (0)ψ(0) = lim
σ→0

Π(0, σ)ψ(σ) − ψ(0)

σ
.

15.4 The Principle of Critical Action and the
Yang–Mills Equations

The following variational problem (15.25) with N = 1 (concerning the gauge group
U(1) with the Lie algebra u(1)) describes classical electrodynamics, as we will show
in Sect. 19.7.1.

In the Standard Model in particle physics, the following variational principle
with N = 3 (concerning the gauge group SU(3) with the Lie algebra su(3)) de-
scribes the gluons in quantum chromodynamics. In Volume IV, we will study the
complete Standard Model in particle physics. Roughly speaking, the basic varia-
tional problem (principle of least action) is of the type (15.25) for the 12 interaction
particles (8 gluons, photon, 3 vector bosons). In order to describe the 12 fundamen-
tal particles (6 quarks, electron, myon, tau, 3 neutrinos), one has to add 12 fields
ψ to the Lagrangian. Finally, one has to add a field ϕ to the Lagrangian which
describes the Higgs particle. The Higgs field ϕ generates the terms for the masses
of the 3 vector bosons in electroweak interaction. In what follows, we will sum over
equal lower and upper Greek indices from 0 to 3.

We consider the variational problem

Z

O
( 〈Fμν |Fμν〉 + 4〈Aν |J ν〉 ) dx4 = critical! (15.25)

together with

Fμν = ∂μAν − ∂νAμ + [Aμ,Aν ]−, μ, ν = 0, 1, 2, 3, (15.26)

and the boundary condition

Aμ = fixed on ∂O, μ = 0, 1, 2, 3. (15.27)
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Recall that [A,B]− := AB −BA. Here, O is a nonempty, bounded, open subset of
the Minkowski manifold M

4. Fix N = 1, 2, . . . We are given the smooth functions

Jμ : cl(O) → u(N).

We are looking for a smooth solution

Aμ : cl(O) → u(N), μ = 0, 1, 2, 3.

Concerning the notation, we use the symbol

〈A|B〉 := − tr(AB), A,B ∈ u(N).

This is an inner product on the Lie algebra u(N).2 This way, u(N) becomes a real
Hilbert space (see Problem 15.4). Moreover, we equip the Minkowski manifold M

4

with the metric tensor
g = ηαβ dx

α ⊗ dxβ

where we use an arbitrary inertial system (see (18.30) on page 924). Explicitly,

1 = η00 = −η11 = −η22 = −η33, and ηαβ = 0 if α �= β. Furthermore, ηαβ = ηαβ .
We use the metric tensorial families ηαβ and ηαβ in order to lower and to lift indices.
For example,

Fμν = ημαηνβFαβ .

Hence

1
2
〈Fμν |Fμν〉 =

3
X

j=1

〈F0j |F0j〉 −
X

1≤i<j≤3

〈Fij |Fij〉.

Theorem 15.11 Every smooth solution A0,A1,A2,A3 of the variational problem
(15.25) through (15.27) satisfies both the Yang–Mills equations

DμFμν = J ν , ν = 0, 1, 2, 3, (15.28)

and the Bianchi equations

D[λFμν] = 0, λ, μ, ν = 0, 1, 2, 3. (15.29)

The theorem remains true if we replace the real Lie algebra u(N) by its Lie
subalgebra su(N), N = 2, 3, . . . The Bianchi equations are equivalent to

DλFμν +DμFνλ +DνFλμ = 0, λ, μ, ν = 0, 1, 2, 3,

since Fμν = −Fνμ for all indices. Here, we set

DλFμν := ∂λFμν + [Aλ,Fμν ]−.

Proof. (I) Symmetry of the trace. For all A,B,C ∈ u(N), we have

〈 A| [B,C]−〉 = 〈 [C,A]−|B〉. (15.30)

In fact, the trace tr(ABC) is invariant under a cyclic permutation of the factors.
Hence

tr(ABC) = tr(CAB).

2 At the same time, the inner product 〈.|.〉 is proportional to the negative Killing
form of the real Lie algebra u(N).
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This implies (15.30).
(II) Generalized variational lemma. Let C : O → u(N) be a smooth map.

Suppose that
Z

O
〈C|B〉 dx4 = 0

for all smooth functions B : O → u(N) which vanish outside a compact subset of
O. Then C ≡ 0.

To prove this, let B1, . . . , Br be a basis of the real Lie algebra u(N). Choose
B := χBj where the smooth function χ : O → R vanishes outside a compact subset
of O. Then

Z

O
〈C|Bj〉 χdx4 = 0

for all χ ∈ C∞
0 (O). By the classic variational lemma, this implies 〈C|Bj〉 ≡ 0 for

all indices j = 1, . . . , r. Since 〈.|.〉 is an inner product, we get C ≡ 0.
(III) First variation. Choose smooth functions δAμ : O → u(N) which vanish

outside a compact subset of O. Replace Aμ by Aμ + τδAu, τ ∈ R. Set

σ(τ) :=

Z

O

`

〈F+
μν |Fμν

+ 〉 + 4〈Aν |J ν〉
´

dx4, τ ∈ R

where

F+
μν := ∂μ(Aν + τδAν) − ∂ν(Aμ + τδAμ) + [Aμ + τδAμ,Aν + τδAν ]−.

Differentiating this with respect to the real parameter τ at the point τ = 0, we get

δFμν := ∂μδAν − ∂νδAμ + [δAμ,Aν ]− − [δAν ,Aμ].

Suppose that A0,A1,A2,A3 is a solution of the variational problem (15.25), then
σ̇(0) = 0. This implies

Z

O
(〈δFμν |Fμν〉 + 〈Fμν | δFμν〉 + 4〈δAν |J ν〉) dx4 = 0.

Hence
Z

O
(2〈δFμν |Fμν〉 + 4〈δAν |J ν〉) dx4 = 0.

Using integration by parts combined with the trace formula (15.30), we get
Z

O
(−〈 δAν |∂μFμν〉 − 〈 δAν | [Aμ,Fμν ] 〉 + 〈 δAν |J ν〉) dx4 = 0.

By the generalized variation lemma (II), we get

−∂μFμν − [Aμ,Fμν ] + J ν = 0.

This yields the Yang–Mills equations (15.28).
(IV) The Bianchi equations (15.29) follow from (15.26) by an explicit compu-

tation. See Problem 15.2.
�

Equivalent formulation. We set

A := Aαdx
α, F := 1

2
Fμν dx

μ ∧ dxν .

Moreover,



15.4 The Principle of Critical Action and the Yang–Mills Equations 857

• ∗F = 1
2
(∗F)μν dx

μ ∧ dxν where (∗F)μν = 1
2
εαβμνFαβ (Hodge star operator),

• DF = 1
6
D[λFμν] dx

λ ∧ dxμ ∧ dxν ,
• D(∗F) = 1

6
D[λ(∗F)μν] dx

λ ∧ dxμ ∧ dxν ,
• D∗F = ∗−1D(∗F),

• |F|2 := 〈Fμν |Fμν〉,
• J := Jνdx

ν ,
• 〈A|J 〉 := 〈AμJ μ〉.
The following theorem is equivalent to Theorem 15.11. We consider the variational
problem

Z

O

`

|F|2 + 4〈A|J 〉
´

dx4 = critical! (15.31)

together with

F = dA + A ∧A, (15.32)

and the boundary condition

A = fixed on ∂O. (15.33)

Fix N = 1, 2, . . . We are given the smooth differential 1-form J on the closure of
the subset of O with values in the Lie algebra u(N). We are looking for a smooth
differential 1-form A on the closure of O with values in the Lie algebra u(N).

Theorem 15.12 Every smooth solution A of the variational problem (15.31)
through (15.33) satisfies both the Yang–Mills equation

−D∗F = J , (15.34)

and the Bianchi equation

DF = 0. (15.35)

This is the most elegant formulation of the Yang–Mills equation. This formu-
lation shows clearly that the Yang–Mills equation is based on Hodge duality. The
Yang–Mills equation (15.34) is also equivalent to3

−D(∗F) = ∗J .

The theorem remains true if we replace the real Lie algebra u(N) by its Lie subal-
gebra su(N), N = 2, 3, . . .

The variational problem (15.11) above leads quite naturally to the definition of
DλFμν . Setting F := 1

2
Fμν dx

μ ∧ dxν , we define

DF := DλFμνdx
λ ∧ dxμ ∧ dxν (15.36)

with DFμν := DλFμν dx
λ. In the next two sections, we will systematically study

covariant differentials. In particular, the definition (15.36) will appear as a special
case in the general setting. We will present two equivalent strategies:

• the universal extension strategy via the Leibniz rule (invariant approach),
• the index principle in bundle theory – tensorial families of differential forms

(observer-oriented approach).

3 Note that − ∗D∗F = − ∗ ∗−1D(∗F) = −D(∗F) = ∗J .
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15.5 The Universal Extension Strategy via the Leibniz
Rule

Using the Leibniz rule as a universal guiding principle, it is possible
to extend the covariant directional derivative Dvψ for physical fields
ψ : M

4 → C
N to the covariant directional derivative DvΨ for more general

physical fields Ψ (e.g., Ψ : M
4 → gl(N,C)). In addition, setting

(DΨ)(v) := DvΨ

for all smooth velocity vector fields v on the base manifold M
4, we get the

covariant differential DΨ.
Folklore

Let v be a smooth velocity vector field on the Minkowski manifold M
4. Let

C∞(M4,CN ) be the space of all smooth maps4

ψ : M
4 → C

N .

Moreover, the symbol C∞(M4, gl(N,C)) denotes the space of all smooth maps

Ψ : M
4 → gl(N,C)

with values in the Lie algebra gl(N,C). Finally, recall that Vect(M4) denotes the
space of all the smooth vector fields on the Minkowski manifold M

4.
Dual field to ψ ∈ C∞(M4,CN ). Let

ω : M
4 → (CN )d

be a smooth map where (CN )d is the dual space to C
N . For any smooth map

ψ ∈ C∞(M4,CN ), we get the smooth map

P �→ ωP (ψ(P ))

from M
4 to C. We want to define the covariant directional derivative Dvω. In order

to ensure the Leibniz rule

dv(ω(ψ)) = (Dvω)(ψ) + ω(Dvψ) for all ψ ∈ C∞(M4,CN ),

we define Dvω by setting

(Dvω)(ψ) := dv(ω(ψ)) − ω(Dvψ).

Differential p-form ω on M
4 with values in C∞(M4,CN ).

(i) Let p = 1. Then, ω(w) ∈ C∞(M4,CN ) for all w ∈ Vect(M4). In order to
ensure the Leibniz rule

Dv(ω(w)) = (Dvω)(w) + ω(Dvw) for all w ∈ Vect(M4),

we define Dvω by setting

(Dvω)(w) := Dv(ω(w)) − ω(Dvw).

4 The space C∞(M4,CN ) coincides with the space Sect(M4×C
N ) of all the smooth

sections of the vector bundle M
4 × C

N .
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(ii) Let p = 2. Then ω(w, z) ∈ C∞(M4,CN ) for all w, z ∈ Vect(M4). In order to
ensure the Leibniz rule

Dv(ω(w, z)) = (Dvω)(w, z)+ω(Dvw, z)+ω(w,Dvz) for all w, z ∈ Vect(M4),

we define Dvω by setting

(Dvω)(w, z) := Dv(ω(w, z)) − ω(Dvw, z) − ω(w,Dvz).

In the case where p > 2, we proceed similarly.
Smooth maps on M

4 with values in the Lie algebra gl(N,C). Suppose
that Ψ : M

4 → gl(N,C) is a smooth map which sends the point x ∈ M
4 to the

complex (N ×N)-matrix Ψ(x). Naturally enough, define Ψψ by setting

(Ψψ)(x) := Ψ(x)ψ(x), x ∈ M
4

for all physical fields ψ ∈ C∞(M4,CN ). Then

Ψψ ∈ C∞(M4,CN ) for all ψ ∈ C∞(M4,CN ).

Therefore, Dv(Ψψ) is well-defined. In order to ensure the Leibniz rule

Dv(Ψψ) = (DvΨ)(ψ) + Ψ(Dvψ) for all ψ ∈ C∞(M4),

we define DvΨ by setting

(DvΨ)(ψ) := Dv(Ψψ) − Ψ(Dvψ). (15.37)

Differential p-form on M
4 with values in C∞(M4, gl(N,C)). For example,

let p = 2. Then,

ω(w, z) ∈ C∞(M4, gl(N,C)) for all w, z ∈ Vect(M4).

Therefore, Dv(ω(w, z)) is well-defined by (15.37). In order to ensure the Leibniz
rule

Dv(ω(w, z)) = (Dvω)(w, z) + ω(Dvw, z) + ω(w,Dvz), w, z ∈ Vect(M4),

we define Dvω by setting

(Dvω)(w, z) := Dv(ω(w, z)) − ω(Dvw, z) − ω(w,Dvz). (15.38)

The local expressions with respect to bundle coordinates will be considered in the
next section.

15.6 Tensor Calculus on Vector Bundles

In Sect. 8.14, we have discussed the distinction between

• the index-free (i.e., invariant) approach and
• the index approach
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in differential geometry. In fact, it is useful for the reader to master the two ap-
proaches and to understand the close interrelations between them. In this section,
we will generalize the index approach from Chap. 8 to bundles. For didactic reasons,
as a prototype, we will consider the product bundle

M
4 × C

N . (15.39)

Note that the following calculus can be translated straightforward to general vector
bundles.

In the bundle case (15.39), we will use two types of indices. Greek indices
run from 0 to 3, and Latin indices run from 1 to N .

We will sum over equal upper and lower Greek (resp. Latin) indices from 0 to 3
(resp. 1 to N). Let O be an open subset of the Minkowski manifold M

4. We assign
to the subset

O × C
N

of the vector bundle M
4 × C

N the bundle chart

U × C
N with U ⊆ R

4.

More precisely, we assign to the point P ∈ O × C
N the point

(x, ψ) ∈ R
4 × C

N

as bundle coordinate. Here, x is a local coordinate of the point P on the Minkowski
manifold M

4.

15.6.1 Tensor Algebra

Fix N = 1, 2, . . .. We set

ψ :=

0

B

B

@

ψ1

...

ψN

1

C

C

A

and ϕ := (ϕ1, . . . ϕN ).

The two fundamental gauge transformation laws (contravariant and
covariant). Let G be a closed subgroup of the matrix group GL(N,C) (e.g., we
choose G = U(N)). We are given the smooth map

G : U → G.

We will use the smooth maps

ψ : U → C
N and ϕ : U → (CN )d.

Here, the symbol (CN )d refers to the fact that ϕ is a row matrix (in contrast to the
column matrix ψ). We define the so-called contravariant gauge transformation law

ψ+(x) = G(x)ψ(x), x ∈ U , (15.40)

and the dual covariant transformation law

ϕ+(x) = ϕ(x)G−1(x), x ∈ U .
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Here, we use matrix products. In terms of components, this is equivalent to

ψi+(x) = Gi+

i (x)ψi(x), i+ = 1+, . . . , N+,

and

ϕi+(x) = Gi
i+(x)ϕi(x), i+ = 1+, . . . , N+.

Theorem 15.13 For all x ∈ U , we have the two key matrix relations5

ϕ+(x)ψ+(x) = ϕ(x)ψ(x)

and ψ+(x)ϕ+(x) = G(x) ·
`

ψ(x)ϕ(x)
´

·G−1(x).

In terms of matrix components, this means that

• ψi+(x)ϕi+(x) = ψi(x)ϕi(x), and

• (ψi+(x)ϕj+(x)) = G(x) ·
`

ψi(x)ϕj(x)
´

·G(x)−1.

Equivalently,

ψi+(x)ϕj+(x) = Gi+

i (x)Gj

j+
(x) · ψi(x)ϕj(x), i+, j+ = 1+, . . . , N+.

Tensorial families. The family of complex-valued functions

T
α1...αmi1...ik
β1...βnj1...jl

(15.41)

is called a tensorial family iff it transforms like the product

ẋα1 · · · ẋαm · ∂β1 · · · ∂βn · ψi1 · · ·ψik · ϕj1 · · ·ϕjl

where

• ẋα := dxα

dt
(time derivative), and

• ∂β := ∂
∂xβ (partial derivative).

Similarly, as in Sect. 8.3, we have the index principle concerning Greek (resp. Latin)

indices. For example, if T i
αj , S

j
i , and vα are tensorial families, then the tensorial

family
χ(x) := T i

αj(x)S
j
i (x)v

α(x), x ∈ U
has no free indices, and hence it is a function from U to C which is invariant under
both gauge transformations and transformations of the local space-time coordinates
on the base manifold M

4.
Invariant approach. As in classical vector algebra, we write

ψ = ψiei, ϕ = ϕje
j

with the row matrices

e1 := (1, 0, 0, . . . , 0), e2 := (0, 1, 0, . . . , 0), . . . , eN := (0, 0, . . . , 0, 1)

and the column matrices

5 Note that ϕ+ψ+ = ϕG−1Gψ = ϕψ.
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e1 :=

0

B

B

B

B

@

1

0
...

0

1

C

C

C

C

A

= (1, 0, . . . , 0)d,

and

e2 := (0, 1, 0, . . . , 0)d, . . . , eN := (0, 0, . . . , 0, 1)d.

Here, e1, . . . , eN is a basis of the complex linear space C
N , and e1, . . . , eN is a basis

of the dual space (CN )d. Under gauge transformations, we transform ei and ei as
tensorial families. Explicitly,

ei+ = Gi
i+(x)ei, ei

+
= Gi+

i (x)ei,

if x ∈ U and i+ = 1+, . . . N+. We replace ψ and ϕ by

ψ = ψiei and ϕ = ϕie
i,

respectively. By the index principle,

ψ(x) = ψi(x)ei = ψi+(x)ei+ , x ∈ U .

Thus, ψ possesses an invariant meaning on O × C
N . Similarly,

ϕ(x) = ϕi(x)e
i = ϕi+(x)ei

+
, x ∈ U .

In the general case, for the tensorial family (15.41), we define the tensor

T : = T
α1...αmi1...ik
β1...βnj1...jl

dxβ1 ⊗ · · · ⊗ dxβn ⊗ ∂α1 ⊗ · · · ⊗ ∂αm

⊗ej1 ⊗ · · · ⊗ ejl ⊗ ei1 ⊗ · · · ⊗ eik

in an invariant way. This means that T does not depend on the choice of the bundle
coordinates, by the index principle.

In particular, a tensorial family of differential forms looks like

ω
i1...ik
j1...jl

:= 1
n!
T
i1...ik
β1...βnj1...jl

dxβ1 ∧ · · · ∧ dxβn .

Here, we assume that the tensorial family T
i1...ik
β1...βnj1...jl

is antisymmetric with re-
spect to the Greek space-time indices β1, . . . , βn. The corresponding invariant tensor
is given by

T := ω
i1...ik
j1...jl

⊗ ei1 ⊗ · · · ⊗ eik ⊗ ej1 ⊗ · · · ⊗ ejl . (15.42)

This is also called a differential form of tensor type. Recall that

dxα ∧ dxβ = dxα ⊗ dxβ − dxβ ⊗ dxα,

and so on.
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15.6.2 Connection and Christoffel Symbols

Suppose that we are given the complex (N ×N)-matrices

Aα(x) ∈ LG, α = 0, 1, 2, 3, x ∈ U .

For example, if G = GL(N,C), then LG = gl(N,C). Suppose that

x �→ Aα(x), α = 0, 1, 2, 3

is a smooth map from U to LG. We set Aα(x) = (Γ i
αj(x)), and

A(x) := Aα(x) dxα, x ∈ U .

The point is that we assign to the gauge transformation

ψ+(x) = G(x)ψ(x), x ∈ U

of the physical field ψ the gauge transformation

A+(x) = G(x)A(x)G(x)−1 − dG(x) ·G(x)−1 (15.43)

of the connection form A where dG(x) = ∂αG(x) dxα. Furthermore, we assume
that:

The matrix Aα transforms like the partial derivative ∂α under a change of
the local space-time coordinates on the base manifold M

4.

Thus, the differential 1-form A is an invariant under a change of local space-time
coordinates, by the index principle.

The covariant differential Dψ. We are given ψ = ψiei where ψi is a tensorial
family. We first consider the column matrix ψ = (ψ1, . . . , ψn)d, and we define Dψ
by setting

(Dαψ)(x) := (∂αψ)(x) + Aα(x)ψ(x), x ∈ U ,
and

(Dψ)(x) := (Dαψ)(x) dxα.

In terms of components, we get

Dαψ
i := ∂αψ

i + Γ i
αsψ

s,

and Dψi := Dαψ
i dxα. By Prop. 15.1 on page 845, we get

D+
αψ

+(x) = G(x)Dαψ(x), x ∈ U , α = 0, 1, 2, 3. (15.44)

This shows that Dαψ
i is a tensorial family. Finally, we define the covariant differ-

ential Dψ by setting

(Dψ)(P ) := (Dψi)(x) ⊗ ei, P ∈ O. (15.45)

This definition does not depend on the choice of the bundle coordinates.
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15.6.3 Covariant Differential for Differential Forms of Tensor
Type

If we use tensorial families of differential forms on the base manifold,
then the differentiation processes with respect to space-time time variables
(Greek indices) and gauge variables (Latin indices) fit together.

Folklore

Consider the following differential form of tensor type

T = 1
n!
T i1...ik
β1...βnj1...jl

dxβ1 ∧ · · · ∧ dxβn ⊗ ei1 ⊗ · · · ⊗ eik ⊗ ej1 ⊗ · · · ⊗ ejl .

Here, T i1...ik
β1...βnj1...jl

is a tensorial family which is antisymmetric with respect to the
Greek space-time indices β1, . . . , βn. We define the covariant differential DT by
setting

DT : = 1
n!

“

DαT
i1...ik
β1...βnj1...jl

dxα
”

∧ dxβ1 ∧ · · · ∧ dxβn

⊗ei1 ⊗ · · · ⊗ eik ⊗ ej1 ⊗ · · · ⊗ ejl

where we introduce6

DαT
i1...ik
β1...βnj1...jl

: = ∂αT
i1...ik
β1...βnj1...jl

+

k
X

σ=1

Γ iσ
αs · T i1...s...ik

β1...βnj1...jl

−
l
X

σ=1

Γ s
αjσ

· T i1...ik
β1...βnj1...s...jl

.

Here, we replace the Latin index iσ (resp. jσ) of T i1...ik
...j1...jl

by the index s, and we
sum over s = 1, . . . , N. Mnemonically, note that the index picture is correct. The
formulas remain valid if the Greek space-time indices drop out. In addition, we
define

DT
i1...ik
β1...βnj1...jl

:= DαT
i1...ik
β1...βnj1...jl

dxα.

Theorem 15.14 The definition of DT does not depend on the choice of the bundle
coordinates.

The simple proof (based on the Leibniz rule) will be given below.
The Leibniz rule. Let us consider the following special cases of the general

definition above:

(D1) Dαψ
i := ∂αψ

i + Γ i
αsψ

s,

(D2) Dαϕj := ∂αϕj − Γ s
αjϕs,

(D3) Dα(ψiϕj) := ∂α(ψiϕj) + Γ i
αsψ

sϕj − Γ s
αjψ

iϕs,

(D4) DαΨ
i
j := ∂αΨ

i
j + Γ i

αsΨ
s
j − Γ s

αjΨ
i
s.

Proposition 15.15 If ψi, ϕj, and Ψ i
j are tensorial families, then the families (D1)

through (D4) are also tensorial families.

6 This definition is an obvious modification of the definition given on page 498 for
the covariant partial derivative ∇α.
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Proof. Ad (D1). See (15.44) above.
Ad (D2). It follows from the definition of Dαϕj that

∂α(ψiϕi) = (Dαψ
i)ϕi + ψi(Dαϕi)

for all tensorial families ψi. Since ψiϕi is a scalar function, the family ∂α(ψiϕi) is
a tensorial family. Moreover, we know by (D1) that (Dαψ

i)ϕi is a tensorial family.
Thus, ψi(Dαϕi) is a tensorial family for all tensorial families ψi. By the inverse
index principle from Sect. 8.8.2 on page 493, we obtain that Dαϕi is a tensorial
family.

Ad (D3). The definition of Dα(ψiϕj) yields the Leibniz rule

Dα(ψiϕj) = (Dαψ
i)ϕj + ψi(Dαϕj).

Since the right-hand side is a tensorial family by the statement concerning (D1)
and (D2), the left-hand side Dα(ψiϕj) is also a tensorial family.

Ad (D4). Note that Ψ i
j transforms like ψiϕj . �

The covariant differential Dϕ. Using the language of matrices, the defini-
tions (D1) and (D2) above can be written as

• Dαψ = ∂αψ + Aαψ, and
• Dαϕ = ∂ϕ − ϕAα,

respectively. For the covariant differential, this implies

• Dψ = Dαψ dx
α = dψ + Aψ, and

• Dϕ = Dαϕ dx
α = dϕ− ϕA,

respectively. Setting ϕ := ϕje
j , we get

Dϕ := Dαϕj dx
α ⊗ ej . (15.46)

By the index principle, this definition does not depend on the choice of the bundle
coordinates.

The covariant differential DΨ . Set Ψ := Ψ i
j ei ⊗ ej . Then

DΨ := DαΨ
i
j dx

α ⊗ ei ⊗ ej . (15.47)

By the index principle, this definition does not depend on the choice of the bundle
coordinates.

Differential forms of tensor type. Suppose that

ψi
β1...βn

, ϕβ1,...,βnj and Ψ i
β1...βnj

are tensorial families which are antisymmetric with respect to the Greek space-time
indices β1, . . . , βn. Similarly, as in (D1) through (D4) above, we define

• Dαψ
i
β1...βn

:= ∂αψ
i
β1...βn

+ Γ i
αsψ

s
β1...βn

,

• Dαϕβ1...βnj := ∂αϕβ1...βnj − Γ s
αjϕβ1...βns,

• DαΨ
i
β1...βnj := ∂αΨ

i
β1...βnj + Γ i

αsΨ
s
β1...βnj − Γ s

αjΨ
i
β1...βns.

Proposition 15.16 Antisymmetrization with respect to the Greek indices yields
the tensorial families

D[αψ
i
β1...βn], D[αϕβ1...βn]j , D[αΨ

i
β1...βn]j .
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Proof. The basic idea of the proof is to use the Cartan derivative for antisymmetric
covariant tensor families (see page 523) with respect to the Greek indices. For
example, consider

Dαψ
i
β1...βn

= ∂αψ
i
β1...βn

+ Γ i
αsψ

s
β1...βn

.

By Prop. 15.15, we know that Dαψ
i
β1...βn

is a tensorial family with respect to the
Latin index. Moreover, the Cartan derivative

∂[αψ
i
β1...βn]

is a tensorial family with respect to the Greek indices. Finally, since Aα transforms
like ∂α, as postulated on page 863, the family

Γ i
αsψ

s
β1...βn

is a tensorial family with respect to the Greek indices, and the same property has
the antisymmetrization with respect to Greek indices. This yields the claim for
D[αψ

i
β1...βn]. The other claims are proved analogously. �

Example. Let Ψ i
μνj be a tensorial family which is antisymmetric with respect

to the Greek indices μ and ν. Define

Ψ := 1
2
Ψ i
μνj dx

μ ∧ dxν ⊗ ei ⊗ ej .

Then

DΨ := 1
2

“

D[λΨ
i
μν]jdx

λ ∧ dxμ ∧ dxν
”

⊗ ei ⊗ ej .

By Prop. 15.16, this definition does not depend on the choice of bundle coordinates.
By antisymmetry,

DΨ := 1
2

“

DλΨ
i
μνj dx

λ ∧ dxμ ∧ dxν
”

⊗ ei ⊗ ej .

Explicitly, introducing the matrix Tμν := (Ψ i
μνj), we have

DλΨ
i
μνj = ∂λΨ

i
μν + Γ i

λsΨ
s
μνj − Γ s

λjΨ
i
μνs,

and hence

DλTμν = ∂λTμν + AλTμν − TμνAλ. (15.48)

Setting T := 1
2
Tμν dxμ ∧ dxν and A := Aλdx

λ, we get

DT := 1
2
DλTμν dxλ ∧ dxμ ∧ dxν .

This implies

DT = dT + A ∧ T − T ∧ A.

Remark. Similar arguments show that Theorem 15.14 above is always true.
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15.6.4 Application to the Riemann Curvature Operator

Invariant approach. Our goal is to use the tensor calculus introduced above in
order to get the Riemann curvature operator in an extremely elegant, invariant way.
Let

ψ : M
4 → M

4 × C
N

be a section of the vector bundle π : M
4 ×C

N → M
4. With respect to local bundle

coordinates, we have
ψ = ψiei

where ψi is a tensorial family. Note that ψ does not depend on the choice of local
bundle coordinates, by the index principle. Moreover, let

v, w ∈ Vect(M4)

be smooth velocity vector fields on the base manifold M
4. Here, v = vα∂α and

w = wα∂α, with respect to local coordinates on M
4.

Theorem 15.17 We have the invariant curvature relation

D(Dψ) = Fψ, (15.49)

and the Bianchi relation

DF = 0. (15.50)

Mnemonically, we write

DD = F, DDD = 0.

Comparing this with the Poincaré cohomology rule, dd = 0, we see that the Rie-
mann curvature operator F measures the deviation of the covariant differential from
the trivial relation DD = 0 which corresponds to flatness.

Local bundle coordinates. The proof of Theorem 15.17 will be given in
Problem 15.6. This proof shows that the theorem is equivalent to the approach
studied above in Sect. 15.1. Explicitly, using local bundle coordinates, we get

• Fψ = 1
2
Ri

μνjψ
j dxμ ∧ dxν ⊗ ei,

• F = 1
2
Ri

μνj dx
μ ∧ dxν ⊗ ei ⊗ ej , and

• F(v, w)ψ = (Ri
μνjv

μwνψj) ei.

The point is that Fψ does not contain any partial derivatives of ψi; they cancel
each other. The coefficient functions Ri

μνj follow from the matrix equation

Fμν = ∂μAν − ∂νAμ + AμAν −AνAμ, μ, ν = 0, 1, 2, 3

together with the (N×N)-matrices Aμ = (Γ i
μj) and Fμν = (Ri

μνj). Here, the index
i (resp. j) counts the rows (resp. columns). The Bianchi identity (15.50) reads as

D[λFμν] = 0, λ, μ, ν = 0, 1, 2, 3

where DλFμν = ∂λFμν + AλFμν −FμνAλ.
The language of local tensorial differential forms. Set
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ωi
j := Γ i

μj dx
μ, Ωi

j := 1
2
Ri

μνj dx
μ ∧ dxν , i, j = 1, . . . , N.

Then
A := Aμ dx

μ = (ωi
j), F := 1

2
Fμν dx

μ ∧ dxν = (Ωi
j).

The curvature relation (15.49) reads as

F = dA + A ∧A,

and the Bianchi relation (15.50) reads as

dF + A ∧ F − F ∧A = 0.

Further reading. The Kähler–Clifford calculus (introduced in Sect. 8.6 based
on the exterior Cartan product and the interior Clifford product) can be easily
extended to vector bundles (tensorial differential forms). This can be found in E.
Kähler, The interior differential calculus (in German), Collected Works, de Gruyter,
Berlin, 2003, pp. 497–595.

Problems

15.1 Construction of a connection. Fix N = 1, 2, . . ., and fix an inertial system on
M

4. We are given the smooth matrix functions

G0, G1 : R
4 → G

where G is a closed subgroup of GL(N,C) (e.g., G = U(N)). Moreover, set
G2(x) := G1(x)G0(x)

−1. Then it follows from

ψ+(x) = G0(x)ψ(x) and ψ++(x) = G1(x)ψ(x) (15.51)

that

ψ++(x) = G2(x)ψ
+(x). (15.52)

Moreover, let Aα(x) be a complex (N ×N)-matrix which is an element of the
Lie algebra LG of the Lie group (e.g., if G = U(n), then LG = u(n)). Suppose
that

A+
α (x) := G0(x)Aα(x)G0(x)

−1 − ∂αG0(x) ·G0(x)
−1,

and
A++

α (x) := G1(x)Aα(x)G1(x)
−1 − ∂αG1(x) ·G1(x)

−1.

Show that

A++
α (x) := G2(x)A+

α (x)G2(x)
−1 − ∂αG2(x) ·G2(x)

−1. (15.53)

Hint: Use Problem 13.3 together with (GH)−1 = H−1G−1.
Remark. The transformation property (15.53) allows us to construct the con-
nection matrices with the correct transformation law under both gauge trans-
formations and transformations of inertial systems. We proceed as follows. We
choose a fixed inertial system. We are given the smooth matrix functions

Aα : R
4 → LG, α = 0, 1, 2, 3.

Consider the gauge transformations (15.51), and construct both A+ and A++,
as above. Then, the relation (15.53) fits the gauge transformation (15.52). Un-
der a change of the inertial system, the matrices Aα are transformed like ∂α,
α = 0, 1, 2, 3.
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15.2 Proof of the Bianchi identity. Let L be a Lie subalgebra of the real Lie algebra
gl(N,C), N = 1, 2, . . . Set

Fμν := ∂μAν − ∂νAμ + [Aμ,Aν ]−, μ, ν = 0.1, 2, 3.

Define
D�Fμν := ∂�Fμν + [A�,Fμν ]−, �, μ, ν = 0, 1, 2, 3.

Show that there holds the Bianchi identity:

D�Fμν +DμFν� +DνF�μ = 0, �, μ, ν = 0, 1, 2, 3. (15.54)

Equivalently, D[�Fμν] = 0 (antisymmetrization).
Solution: We will write [A,B] instead of [A,B]−. The main trick is to use the
Jacobi identity:

[A�, [Aμ,Aν ]] + [Aμ, [Aν ,A�]] + [Aν , [A�,Aμ]] = 0.

By the Leibniz rule,

D�Fμν = ∂�∂μAν − ∂�∂νAμ + [∂�Aμ,Aν ] + [Aμ, ∂�Aν ] + [A�, [Aμ,Aν ]].

This implies the claim (15.54), by using the Jacobi identity.
15.3 Proof of Proposition 15.7 on page 850. Use a similar argument as in the proof

of Problem 12.17 about the Maurer–Cartan form M := G−1dG (see page 806).
Solution: Using the Leibniz rule, it follows from A = G−1AG+ M that

dA = dG−1 ∧ A ·G+G−1dA ·G−G−1A ∧ dG+ dM.

By Problem 12.17, dG−1 = −G−1dG ·G−1 and dM = −M ∧ M. Hence

dG−1 ∧ A ·G+G−1A ∧ dG = −M ∧G−1A G−G−1A ·G ∧ M = 0.

This implies dA = G−1dA ·G− M ∧ M. Furthermore,

A ∧ A = (G−1AG+ M) ∧ (G−1AG+ M) = G−1(A ∧A)G+ M ∧ M.

Finally, F = dA + A ∧ A = G−1(dA + A ∧A)G = G−1FG.
15.4 The Hilbert space structure of the real Lie algebra u(N), N = 1, 2, . . . Set

〈A|B〉 := −tr(AB) for all A,B ∈ u(N).

Show that this is an inner product on u(N). This way, the real Lie algebra
u(N) becomes a real Hilbert space.
Solution: The complex (N ×N)-matrix A is an element of u(N) iff A† = −A.
Equivalently, A = iA′ where A′ is self-adjoint. By the principal axis theorem,
there exists a unitary matrix G such that A′ = G−1ΛG where Λ is a diagonal
matrix with real entries. Noting that tr(ABC) = tr(CAB) and G−1G = I, we
get

〈A|A〉 = −〈iGΛG−1|iGΛG−1〉 = tr(Λ2) ≥ 0.

15.5 The Hodge star operator. Let F = 1
2
Fμν dx

μ ∧ dxν where Fμν ∈ u(N) for
μ, ν = 0, 1, 2, 3. Compute ∗F where the Hodge *-operator refers to the metric
tensor g = ηαβ dx

α ⊗ dxβ on the Minkowski manifold M
4 (see Sect. 18.4.1).

Solution: Since det(ηαβ) = −1, it follows from the definition (8.66) on page 470
that

∗F = 1
4
εμναβFμν dxα ∧ dxβ .
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15.6 The Riemann curvature operator. Prove Theorem 15.17 on page 867.
Solution: Ad (15.49). It follows from ψ = ψiei and

Dψ = Dνψ
i dxν ⊗ ei

with Dνψ
i = ∂νψ

i + Γ i
νsψ

s that

D(Dψ) = DμDνψ
i dxμ ∧ dxν ⊗ ei

= 1
2
(DμDν −DνDμ)ψi dxμ ∧ dxν ⊗ ei.

As in (15.3) on page 845, we get

(DμDν −DνDμ)ψ = (∂μAν − ∂νAμ + AμAν −AνAμ)ψ.

Explicitly,

(DμDν −DνDμ)ψi = (∂μΓ
i
νs − ∂νΓ i

μs + Γ i
μrΓ

r
νs − Γ i

νrΓ
r
μs)ψ

s.

Ad (15.50). We have

DF = 1
2
DλR

i
μνj dx

λ ∧ dxμ ∧ dxν ⊗ ei ⊗ ej

= 1
2
D[λR

i
μν]j dx

λ ∧ dxμ ∧ dxν ⊗ ei ⊗ ej .

It remains to show that
D[λR

i
μν]j = 0.

In fact, set Fμν := (Ri
μνj). By (15.48) on page 866,

DλFμν = ∂λFμν + AλFμν −FμνAλ.

Finally, it follows from Problem 15.2 that D[λFμν] = 0.



16. Cocycles and Observers

There exist two approaches to the theory of bundles, namely,

(i) the observer approach based on cocycles, and
(ii) the axiomatic geometric approach.

In (i), roughly speaking, we will use a cocycle in order to glue together product
bundles. This will be considered in the present chapter. The geometric approach
will be considered in the next chapter; this is the most elegant approach based on
a few geometric axioms. For didactic reasons, we start with (i). The idea is to use
bundle charts (product bundles) and to describe the change of bundle coordinates
by a cocycle. In fact, the two approaches (i) and (ii) are equivalent to each other.
In (ii), the cocycle corresponds to the transition maps between the bundle charts.

16.1 Cocycles

Cocycles describe the exchange of physical information between three ob-
servers. This exchange has to satisfy quite natural compatibility conditions
which characterize cocycles. The notion of cocycle is of fundamental im-
portance for modern geometry and topology.

Folklore

Let M be a finite-dimensional real manifold (e.g., M = M
4). Furthermore, we

assume that
M = ∪J

j=1Oj

where O1,O1, . . . ,OJ are open subsets of M. Let G be a closed subgroup of the
Lie group GL(N,C). By definition, the family of maps1

Gkj : Ok ∩ Oj → G, j, k = 1, . . . ,J

is called a cocycle (with values in the Lie group G) iff the following conditions are
satisfied for all indices j, k, l = 1, . . . ,J :

• Gjj(P ) = 1 for all P ∈ Oj ,
• Gjk(P ) = Gkj(P )−1 for all P ∈ Ok ∩ Oj , and

Glk(P )Gkj(P ) = Glj(P ) for all P ∈ Ol ∩ Ok ∩ Oj . (16.1)

1 We only consider such index pairs j, k where the intersection Ok ∩ Oj is not
empty.
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16.2 Physical Fields via the Cocycle Strategy

Observers and physical fields. Fix N = 1, 2, . . . By definition, a physical field

ψ = {ψj}

on the manifold M (e.g., M = M
4) with values in C

N (and with respect to the
local observers O1, . . . , OJ ) is a family of smooth maps

ψj : Oj → C
N , j = 1, . . . , J

together with the transformation laws

ψk(P ) = Gkj(P )ψj(P ), P ∈ Ok ∩ Oj . (16.2)

Here, {Gkj} is a cocycle with values in the Lie group G of complex (N × N)-ma-
trices. In terms of physics, the observer Oj (resp. Ok) uses the physical field ψj
(resp. ψk). If the point P is an element of both the sets Oj and Ok, then we need a
transformation law which is given by (16.2). This transformation law corresponds
to the gauge transformation ψ+(P ) = G0(P )ψ(P ) from (15.1) on page 844.

The cocycle strategy. This strategy reads as follows:

• We use product bundles as in Sects. 15.1 through 15.3.
• We study gauge transformations for product bundles as in Sects. 15.1 through

15.3.
• We replace the gauge transformations by the corresponding transformations

(16.2) with respect to the cocycle {Gkj}.
This way, it is possible to generalize straightforward the operations introduced in
Sects. 15.1 through 15.3.

Example (covariant directional derivative of physical fields). Let v be
a smooth velocity vector field on M. The covariant directional derivative Dvψ of
ψ = {ψj} is given by the family {Dvψj} of maps

Dvψj : Oj → C
N , j = 1, . . . , J

with the transformation laws

Dvψk(P ) = Gkj(P )Dvψj(P ), P ∈ Ok ∩ Oj .

The map Dvψj is constructed as in Sect. 15.1. Our definition is motivated by the
gauge transformation D+

v ψ
+(P ) = G0(P )Dvψ(P ).

The bundle manifold V. We write

(P, ψk) ∼ (P,ψj)

iff P ∈ Ok ∩Oj and ψk = Gkj(P )ψj . This is an equivalence relation. By definition,
all the equivalence classes [(P, ψj)] form the bundle space

V := {[(P, ψj)]}.

By definition, if P ∈ Oj , then the point [(P, ψj)] of V has the bundle coordinate

(P, ψj) ∈ Oj × C
N .

Setting π([(P, ψj)]) := P , we get the surjective map
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π : V → M. (16.3)

Since Oj × C
N is a real manifold, the bundle space V becomes the structure of a

real manifold, and the map π is smooth. The map (16.3) relates the approach above
to the notion of vector bundle to be considered in the next chapter.

The approach works analogously if we have a family {Oj}j∈J with general index
set J . The relation between different observers, cocycles, and bundles is discussed
in great detail in Sect. 4.4.2 of Vol. II.

16.3 Local Phase Factors via the Cocycle Strategy

Let us now replace the typical fiber C
N by the Lie group G. In particular, the

transformation law (16.2) is replaced by the transformation law

Gk(P ) = Gkj(P )Gj(P ), P ∈ Ok ∩ Oj . (16.4)

This is motivated by the gauge transformation G+(P ) = G0(P )G(P ) from (15.13)
on page 848.

By definition, a phase factor field G = {Gj} on the manifold M (e.g., M = M
4)

with values in the Lie group G (and with respect to the local observers O1, . . . , OJ )
is a family of smooth maps

Gj : Oj → C
N , j = 1, . . . , J

together with the transformation laws (16.4).
The bundle manifold P. We write

(P,Gk) ∼ (P,Gj)

iff P ∈ Oj ∩Ok and Gk = Gkj(P )Gj . This is an equivalence relation. By definition,
all the equivalence classes [P,Gj ] form the bundle space

P := {[(P,Gj)]}.

By definition, if P ∈ Oj , then the point [(P,Gj)] has the bundle coordinate

(P,Gj) ∈ Oj × G.

Setting π([(P, ψj)]) := P , we get the surjective map

π : P → M. (16.5)

Since Oj ×G is a real manifold, the bundle space P becomes the structure of a real
manifold, and the map π is smooth. The map (16.5) relates the approach above
to the notion of principal bundle to be considered in the next chapter. Since the
transformation laws (16.2) and (16.4) are based on the same cocycle {Gkj}, we say
that

The vector bundle π : V → M is associated to the principal bundle
π : P → M and vice versa.



17. The Axiomatic Geometric Approach to
Bundles

Before you axiomatize, there must be mathematical substance.
Hermann Weyl (1885–1955)

Our strategy is to define the notion of vector bundles and principal bundles in an
invariant way by only using geometric properties of manifolds. In order to prove fur-
ther geometric properties of these manifolds (e.g., curvature or parallel transport),
we use the fact that, by definition, these properties do not depend on the choice of
local bundle coordinates. Therefore, we can pass to special bundle coordinates. This
is the situation of product bundles considered in Sects. 15.1 through 15.3. This way,
the general results are immediate consequences of our special results about product
bundles.

In this chapter, we tacitly assume that all the objects are smooth, that is, they
are described by smooth functions with respect to local coordinates.

17.1 Connection on a Vector Bundle

From the geometric point of view, a smooth vector bundle is a real manifold
V which possesses a fibration. The fibers are linearly isomorphic to a real
linear space X (e.g., X = R

n) called the typical fiber.1 The fibers are
parametrized by the base manifold M. The map

π : V → M

assigns to the points of a fiber the corresponding parameter of the fiber.
Locally, the fibration of V is trivial. That is, the bundle manifold V looks
locally like the product O × X where O is an open subset of the base
manifold M. Roughly speaking, a vector bundle is a regularly parametrized
family of linear spaces. The theory of vector bundles is nothing other than
parametrized linear algebra.
A connection of V connects the fibers with each other by parallel transport.
On the infinitesimal level, such a parallel transport is given by a directional
derivative Dvψ for sections ψ : M → V.

Folklore

Intuitively, a very simple situation is depicted in Fig. 17.1. Here, we have the bundle
manifold V = R

2. The fibers Fx are the straight lines parallel to the y-axis. The base
manifold is the x-axis. The map π : V → M is given by the projection π(x, y) := x.
A section s : M → V is given by the map s(x) = (x, ψ(x)). A parallel transport

1 In the case where X = C
N , the set C

N is considered as a real linear space (of
dimension 2N).
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Fig. 17.1. Section ψ of a vector bundle

sends a point (x1, y1) of the fiber Fx1 to the point (x2, y2) of the fiber Fx2 along
the curve

x �→ (x, y(x)), x ∈ [x1, x2]

with y(x1) = y1 and y(x2) = y2.
Definition of a smooth vector bundle. The smooth surjective map

π : V → M (17.1)

is called a real smooth vector bundle of rank n iff the following conditions are
satisfied:

(V1) Bundle manifold: The so-called bundle manifold V and the so-called base
manifold M are real finite-dimensional manifolds.

(V2) Linear fibration: For every point P of the base manifold M, the so-called
fiber

FP := π−1(P )

over the base point P is a real n-dimensional linear space.
(V3) Local triviality (bundle coordinates): The bundle manifold V is locally para-

metrized by so-called bundle coordinates (P, ψj) which lie in Oj×R
n. Explicitly,

there exists a family of nonempty open subsets Oj , j ∈ J , of the base manifold
M which cover M. Moreover, there exist diffeomorphisms2

βj : π−1(Oj) → Oj × R
n, j ∈ J ,

which respect the linear fiber structure. That is, writing

βj(Q) = (P,ψj), Q ∈ FP , P ∈ Oj , ψj ∈ R
n,

the operator Q �→ ψj is a linear isomorphism from the fiber FP onto R
n for all

the base points P ∈ Oj .

The map βj is called a bundle chart map, and βj(Q) = (P, ψj) is called the local
bundle coordinate of the point Q ∈ V. Note that this local bundle coordinate of the
point Q depends on the choice of the open subset Oj of the base manifold M.

Sections (physical fields). The map

ψ : M → V (17.2)

is called a cross-section (or, briefly, a section) iff ψ(P ) ∈ FP for all P ∈ M. In
terms of physics, sections are physical fields. The prototype of a section is depicted
in Fig. 17.1. The symbol Sect(V) denotes the space of all the smooth sections of
the form (17.2).

2 Note that π−1(Oj) = ∪P∈Oj FP .
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The cocycle of transition maps. As a rule, the bundle coordinates of a point
Q are not uniquely determined. The change of the bundle coordinates is described
by so-called transition maps

ψk = Gkj(P )ψj (17.3)

where ψj , ψk ∈ R
n and Gkj(P ) ∈ GL(n,R). More precisely, the transition map Tkj

is defined by the commutativity of the following diagram:

π−1(Oj ∩ Ok)
βj

βk

(Oj ∩ Ok) × R
n

Tkj

(Oj ∩ Ok) × R
n.

Explicitly, Tkj := βk ◦ β−1
j , and Tkj(P, ψj) = (P, ψk) with (17.3). The maps

Gkj : Ok ∩ Oj → GL(n,R)

form a cocycle. If there exists a closed subgroup G of GL(n,R) such that always
Gkj(P ) ∈ G, then we say that G is the symmetry group of the vector bundle
π : V → M.

Definition of a connection. For a general vector bundle of rank n, all the
fibers are linearly isomorphic to R

n. But one has not a canonical linear isomorphism
between different fibers at hand. In order to get such a canonical linear isomorphism
between the fibers, we need an additional structure called a connection. More pre-
cisely, let v be a smooth velocity vector field on the base manifold M. By definition,
a directional derivative is a linear map

Dv : Sect(V) → Sect(V)

on the real linear space Sect(V) of smooth sections (physical fields) of the vector
bundle π : V → M which satisfies the linearity condition

• Dfv+gwψ = fDvψ + gDwψ

and the Leibniz rule

• Dv(fψ) = dvf · ψ + fDvψ.

We assume that this is satisfied for both all the smooth sections ψ ∈ Sect(V) and all
the smooth maps f, g : M → R with compact support. By (17.4) below, (Dvψ)(P )
only depends on the tangent vector v(P ). Recall that the classical directional deriva-
tive dvf coincides with the Lie derivative Lv(P )ψ(P )).

Curvature. The following result is crucial for the theory of vector bundles in
modern mathematics.

Theorem 17.1 There exists a differential 2-form F on the base manifold M such
that

(DvDw −DwDv −D[v,w])ψ = F(v, w)ψ

for all smooth velocity vector fields v, w on the base manifold M and for all smooth
sections ψ ∈ Sect(V). In addition, the map ψ �→ F(v,w)ψ is a linear operator on
the real linear space Sect(V) of smooth sections of the vector bundle π : V �→ M.
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The proof can be reduced to the case of a product bundle considered in (15.8)
on page 846. To this end, one uses local bundle coordinates, and one shows that

Dvψ = vα∂αψ + vαAαψ. (17.4)

This will be proved in Problem 17.1.
Parallel transport. Let

C : P = P (σ), σ ∈ R,

be a smooth curve on the base manifold M where R is an open interval of R.
Moreover, let

ψ : M → V
be a smooth section of the vector bundle V. We set ψ(σ) := ψ(P (σ)). By definition,
the section ψ is parallel along the curve C iff

(DṖ (σ)ψ)(P (σ)) = 0 for all σ ∈ R. (17.5)

Using bundle coordinates (x, ψj), this means that

ẋα(σ)(∂αψj)(x(σ)) + ẋα(σ)Aα(x(σ)) · ψj(x) = 0, σ ∈ R.

By the chain rule, this is equivalent to

Dψj(σ)

dσ
= 0, σ ∈ R, (17.6)

where we define

Dψj(σ)

dσ
:=
dψj(σ)

dσ
+ ẋα(σ)Aα(x(σ)) · ψj(σ). (17.7)

If we regard σ as time parameter, then

Dψ(σ)

dσ
:= (DṖ (σ)ψ)(P (σ))

is called the covariant time derivative of the map σ �→ ψ(P (σ)).
Now let us consider a slightly more general situation. Let

ψ : R → V (17.8)

be a smooth curve such that π(ψ(σ)) = P (σ) for all σ ∈ R. In order to define the
covariant time derivative

Dψ(σ)

dσ
, σ ∈ R,

we use local bundle coordinates, and we define

Dψj(σ)

dσ
:=
dψj(σ)

dσ
+ ẋα(σ)Aα(x(σ)) · ψj(σ).

Proposition 17.2 This definition does not depend on the choice of the bundle
coordinates.
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For the proof, we refer to Problem 17.3. Mnemonically, we write

Dψ(σ)

dσ
= DṖ (σ)ψ(σ).

Let σ1, σ2 ∈ R. We say that the curve (17.8) represents a parallel transport

• from the point ψ(σ1) of the fiber FP (σ1)

• to the point ψ(σ2) of the fiber FP (σ2)

along the curve C iff the covariant ‘time’ derivative vanishes identically, that is,

Dψ(σ)

dσ
= 0, σ1 ≤ σ ≤ σ2.

17.2 Connection on a Principal Bundle

From the geometric point of view, a principal bundle is a manifold P
which possesses a Lie group G as symmetry group. This group acts freely
on P from the right. This induces orbits on P. Every orbit is in one-to-one
correspondence to the group G. The orbits are the fibers of a fibration of
the bundle manifold P. The fibers are parametrized by the base manifold
M. The map

π : P → M
assigns to the points of a fiber FP the corresponding parameter P ∈ M of
the fiber. We postulate that, locally, the fibration of P is trivial. That is,
the bundle manifold P looks locally like the product O×G where O is an
open subset of the base manifold M. Roughly speaking, a principal fiber
bundle is a regularly parametrized orbit space generated by the symmetry
group G.
A connection on G connects the fibers with each other by parallel transport.
Such a parallel transport from the point Q1 ∈ FP1 to the point Q2 ∈ FP2

is given by a curve on the bundle manifold P,

C : Q = Q(σ), σ1 ≤ σ ≤ σ2,

with Q(σ1) = Q1 and Q(σ2) = Q2. This curve C is characterized by
the fact that its tangent vectors are so-called horizontal tangent vectors
on the bundle manifold P. The crucial connection differential 1-form A
on P allows us to define horizontal tangent vectors. In fact, A assigns to
every tangent vector of P a uniquely determined horizontal tangent vector
by projection. This projection from tangent vectors to horizontal tangent
vectors can be used to assign to every Cartan differential

dω

of a differential form ω on the bundle manifold P a covariant Cartan
differential

Dω.

This yields elegantly the curvature differential 2-form F = DA on P (Car-
tan’s structural equation) together with the integrability condition DF = 0
on P (Bianchi identity).
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Fig. 17.2. Action of the rotation group U(1) on the Gaussian plane

In terms of mathematics, Cartan’s structural equation generalizes Gauss’
theorema egregium. In terms of physics, the curvature 2-form F generalizes
the electromagnetic field, and the connection 1-form A generalizes the four-
potential of the electromagnetic field.

Folklore

Intuitively, a very simple situation is depicted in Fig. 17.2. Here, we use the bundle
manifold P := C \ {0} (pointed Gaussian plane). The action of the group U(1)
corresponds to rotations about the origin z = 0. The orbits Fr (fibers) are circles
about the origin parametrized by the radius r ∈ M where M =]0,∞[ (positive
x-axis). The map

π : P → M
assigns to every point of the fiber Fr the radius r of the circle. A parallel transport
sends a point Q1 of the fiber Fr1 to a point Q2 of the fiber Fr2 along the curve

r �→ z(r), r ∈ [r1, r2]

with z(r) ∈ Fr for all r, and z(r1) = Q1, z(r2) = Q2.
Definition of a principal bundle. Let G be a closed subgroup of the Lie

group GL(n,R). The smooth surjective map

π : P → M (17.9)

is called a principal bundle with the symmetry group G iff the following conditions
are satisfied:

(P1) Symmetry of the bundle manifold: The so-called bundle manifold P and the
so-called base manifold M are real finite-dimensional manifolds. There exists
a closed subgroup G of GL(n,R) which acts freely on the bundle manifold P
from the right. Explicitly, this means that for every group element G ∈ G, there
exists a diffeomorphism RG : P → P such that

RGH(Q) = RH(RG(Q)) for all Q ∈ P, G,H ∈ G.

Moreover, R1(Q) = Q for all Q ∈ P, and if RG has a fixed point, then G = 1.
(P2) Regular fibration by orbits: The set {RGQ : G ∈ G} is called the orbit through

the point Q ∈ P. For every point P ∈ M, the preimage FP := π−1(P ) is
an orbit. In other words, the orbits (fibers) of the bundle manifold P are
parametrized by the points P of the manifold M.

(P3) Local triviality (bundle coordinates): The bundle manifold P is locally para-
metrized by so-called bundle coordinates (P,G) which lie in Oj × G. More
precisely, there exists a family of nonempty open subsets Oj , j ∈ J , of the
base manifold M which cover M. In addition, there exist diffeomorphisms

βj : π−1(Oj) → Oj × G, j ∈ J
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of the form βj(Q) = (π(Q), G) which respect the group action, that is,
βj(RH(Q)) = (π(Q), GH) for all H ∈ G.
Remark. In physics, we frequently encounter vector bundles with the typical

fiber C
N , and the symmetry group G is a closed subgroup of GL(N,C). In this

case, we identify C
N with R

2N , and we use the fact that every closed subgroup of
GL(N,C) is isomorphic to a closed subgroup of GL(2N,R). For example, C will be
identified with R

2, and U(1) is isomorphic to the rotation group SO(2).
Sections (phase factor fields). The map s : M → P is called a cross-section

(or, briefly, a section) iff s(P ) ∈ FP for all P ∈ M.
The cocycle of transition maps. The change of the bundle coordinates from

(P,Gj) to (P,Gk) is described by so-called transition maps

Gk = Gkj(P )Gj (17.10)

where Gj , Gk ∈ G and Gkj(P ) ∈ G. More precisely, the transition map Tkj is defined
by the commutativity of the following diagram:

π−1(Oj ∩ Ok)
βj

βk

(Oj ∩ Ok) × G

Tkj

(Oj ∩ Ok) × G.

Explicitly, Tkj := βk ◦ β−1
j , and Tkj(P,Gj) = (P,Gk) with (17.10). The maps

Gkj : Ok ∩ Oj → G

form a cocycle.

A vector bundle and a principal bundle are called associated to each other
iff they have the same cocycle of transition maps.

Fundamental velocity vector fields on P. On the infinitesimal level, the
action of the symmetry group of G on the bundle manifold P generates special
velocity vector fields VA on P which are called fundamental velocity vector fields;
they are labelled by the elements A of the Lie algebra LG. Explicitly, let A ∈ LG.
The smooth curve σ �→ eσA on the Lie group G generates the smooth curve

σ �→ ReσA(Q)

on the bundle manifold P; this curve passes through the point Q if σ = 0. This
yields the fundamental velocity vector field

VA(Q) :=
d

dσ
ReσA(Q)|σ=0.

The connection 1-form A on the bundle manifold P. The differential
1-form A on P with values in the Lie algebra LG is called a connection form iff the
following hold for all G ∈ G and all A ∈ LG:

(C1) A(VA) = A (fundamental velocity vector field VA),
(C2) R∗

GA = G−1AG (symmetry).
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Explicitly, this means the following. We have AQ(V ) ∈ LG for all points Q ∈ P and
for all tangent vectors V ∈ TQP. In addition, we have the linear map V �→ AQ(V )
from the tangent space TQP to the Lie algebra LG, and we have the smooth map

Q �→ AQ(V )

from P to LG for all smooth velocity vector fields V on P. Condition (C1) means
that AQ(VA(Q)) = A for all Q ∈ P and all A ∈ LG. Condition (C2) tells us that

ARG(Q)(R
′
G(V )) = G−1AQ(V )G

for all points Q ∈ P and all tangent vectors V ∈ TQP.
Parallel transport on the bundle manifold P. By definition, the curve

C : Q = Q(σ), σ ∈ R, on the bundle manifold P represents a parallel transport iff

AQ(σ)(Q̇(σ)) = 0 for all σ ∈ R.

Horizontal tangent vectors on P. Motivated by the definition of parallel
transport, the tangent vector Q̇ ∈ TQP of the bundle manifold P at the point Q is
called horizontal iff

AQ(Q̇) = 0.

The horizontal tangent vectors of P at the point Q form a linear subspace TQPhor

of the tangent space TQP. In particular, the curve C represents a parallel transport
on P iff all the tangent vectors of the curve are horizontal.

The following construction is basic for the geometry of principal bundles. Let
V ∈ TQP be a tangent vector of the bundle manifold P at the point Q. Compute
A := AQ(V ). Using the fundamental velocity vector field VA, define

ver(V ) := VA(Q), hor(V ) := V − VA(Q).

Here, ver(V ) (resp. hor(V )) is called the trivial vertical (resp. nontrivial horizontal)
part of the tangent vector V at the point Q. To motivate this terminology, observe
that it follows from AQ(V − VA(Q)) = A − A = 0 that V − VA(Q) is a horizontal
tangent vector. Thus, we have the key decomposition

V = hor(V ) + ver(V ) for all V ∈ TQP. (17.11)

The tangent vector V is horizontal iff ver(V ) = 0. The tangent vector V is called
vertical iff hor(V ) = 0. By (17.11), we get the direct sum

TQP = TQPhor ⊕ TQPver

where the linear space TQPhor (resp. TQPver) consists of all the horizontal (resp.
vertical) tangent vectors of P at the point Q.

The covariant Cartan differential Dω on P. Let ω be a differential p-form
on the bundle manifold P. Then the classical Cartan differential dω on the manifold
P is well defined. We use dω in order to define

DQω(V1, . . . , Vp) := dωQ(hor(V1), . . . , hor(Vp))

for all velocity vectors V1, . . . , Vp ∈ TQP. The same definition applies to differential
forms ω with values in the Lie algebra LG (e.g., ω = A).

The curvature 2-form F on the bundle manifold P. We will use the
covariant Cartan differential in order to define

F := DA on P. (17.12)
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Theorem 17.3 For all smooth velocity vector fields V,W on the bundle manifold
P, we have the Cartan structural equation

FQ(V,W ) = dAQ(V,W ) + [AQ(V ),AQ(W )]−, Q ∈ P

together with the integrability condition (Bianchi identity)

DF = 0 on P.

Gauge fixing and localization of the curvature form. Choose both an
open subset Oj of the base manifold M and a section

s : Oj → P.

Define
F := s∗F and A := s∗A

by using the pull-back operation for differential forms. Then we get the local Cartan
structural equation

FP (v, w) = dAP (v, w) + [AP (v),AP (w)]−, P ∈ Oj

for all smooth velocity vector fields v, w on Oj . Equivalently,

F = dA + A ∧A.

The integrability condition (Bianchi identity) reads as

dF = F ∧A−A ∧ F .

This is the local variant (on the base manifold M) of Cartan’s elegant global theory
(on the bundle manifold P). Note that F and A depend on the choice of both the
open subset Oj of the base manifold M and the section s with s(P ) = (P,G(P )).
In terms of physics, this corresponds to the choice of both a local observer Oj on
the space-time manifold M and a gauge fixing by means of s.

Using bundle charts, this local theory corresponds to the product bundle theory
considered in Sects. 15.1 through 15.3.

Global gauge transformation on a principal bundle. Recall that a typical
property of a principal bundle π : P → M is the fact that the Lie group G acts on
the bundle space P from the right. By definition, the diffeomorphism

f : P → P

is called a global gauge transformation iff it respects the action of the group G on
the bundle space P (from the right). Explicitly, this means that

• π ◦ f = π (preservation of the fibers of P), and
• f(RG(P )) = RG(f(P )) for all P ∈ P and all G ∈ G (the map f commutes with

the action of G on P).

17.3 The Philosophy of Parallel Transport

Parallel transport plays a crucial role in gauge theory in order to describe the
transport of physical information in modern physics. In what follows, we will discuss
the following concepts:
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• associated vector bundle to a principal bundle,
• horizontal tangent vectors on a principal bundle, and
• lifting of curves.

In Sect. 17.2, the axioms for a connection on a principal bundle were based on the
differential 1-form A with values in the Lie algebra LG of the gauge group G. This
is an analytic approach. In terms of physics, the connection differential 1-form A
generalizes the four-potential in electromagnetism.

In this section, we want to discuss a geometric approach. The basic idea is to
formulate axioms which describe the parallel transport on an infinitesimal level:

We regard the parallel transport as a dynamical system on the principal
bundle P. In general, dynamical systems on a manifold are described by
differential equations based on velocity vector fields. In the case of parallel
transport on P, we use so-called lifted horizontal vector fields.

The goal is to characterize axiomatically the horizontal tangent vectors of P. The
passage from the geometric axioms below to the analytic approach considered in
Sect. 17.2 is quite simple. One only has to show how to construct the connection
form A. The concept of an associated vector bundle allows us quite naturally to
transplant

• the trajectory of parallel transport on the principal bundle to
• the trajectory of parallel transport on the associated vector bundle.

17.3.1 Vector Bundles Associated to a Principal Bundle

If the symmetry group G of a principal bundle π : P → M acts on a linear
space F , then it is possible to construct a vector bundle

π : V → M (17.13)

with typical fiber F such that G (or a representation of G) is the symmetry
group of V. In terms of physics, it is possible to construct a gauge theory
with gauge group G for the sections

s : M → V

of the vector bundle V. These sections are physical fields on the base
manifold M with values in the linear space F (for a local observer). The
vector bundle (17.13) is called the vector bundle (with typical fiber F )
associated to the principal bundle P.

Folklore

The cocycle strategy (observer strategy). Vector bundles and principal bun-
dles can be described by a cocycle on the base manifold M with values in the
symmetry Lie group G. The cocycle represents the transition maps between the
bundle coordinates (see Chap. 16). If the Lie group G is a closed subgroup of the
matrix group GL(N,C), then it is possible to assign to the local transition map

(P,G) �→ (P,G0(P )G) (17.14)

of the principal bundle π : P → M the so-called associated local transition map

(P, ψ) �→ (P,G0(P )ψ)

where ψ ∈ C
N . More generally, if we have a surjective group morphism
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r : G → H

where H is a closed subgroup of GL(K,C), then it is possible to assign to the
transition map (17.14) the associated transition map

(P, Ψ) �→ (P, r(G0(P )) Ψ)

where Ψ ∈ C
K . This way, it is possible to assign to the given principal bundle

π : P → M (17.15)

with the symmetry group G the so-called associated vector bundle

π : V → M (17.16)

with the typical fiber F = C
K and the symmetry group r(G) = H. From the

physical point of view, the principal bundle (17.15) with the symmetry group G
allows us to construct physical fields Ψ with values in the fiber F = C

K (and with
the symmetry group r(G)). The physical fields look locally like

Ψ : O → C
K

where O is an open neighborhood of the point P0 on the base manifold M. Globally,
the physical fields are sections

Ψ : M → V
of the associated vector bundle (17.16).

The vector bundle V associated to the principal bundle P depends on a
representation r of the symmetry group G on the linear space C

K .

For example, the electron in an electromagnetic field is described by a physical field

Ψ : M
4 → C

4

which satisfies the Dirac equation. Equivalently, this is a section

Ψ : M
4 → M

4 × C
4

of the vector bundle M
4 × C

4. This situation corresponds to

• the principal bundle π : M
4 × U(1) → M

4 with the symmetry group U(1) (pho-
ton), and

• the associated vector bundle π : M
4 × C

4 → M
4 (electron).

The transition maps (gauge transformations) for the associated vector bundle de-
scribe the change

Ψ(ct, x, y, z) �→ eia(ct,x,y,z,t)Ψ(ct, x, y, z)

by multiplying the field Ψ with a local phase factor.
Transformation of curves. The notion of associated vector bundle is impor-

tant in order to transform curves on the principal bundle P into curves on the
vector bundle V. Mnemonically, we will use the key relation

(P (t), G(t)) ⇒ (P (t), G(t)ψ0).
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(i) Principal bundle π : P → M : Suppose that we are given the curve

t �→ Q(t)

on the principal bundle P. Using a bundle chart, we get the curve

t �→ (P (t), G(t)). (17.17)

Set G0(t) := G0(P (t)). Changing the bundle chart, we get

t �→ (P (t), G0(t)G(t)). (17.18)

(ii) Associated vector bundle: π : V → M: Choose the point (P (0), G(0)ψ0) on the
bundle space V. The curve (17.17) passes over to the curve

t �→ (P (t), G(t)ψ0)

on the corresponding bundle chart of the vector bundle V. This passage from
the principal bundle P to the vector bundle V respects the change of bundle
charts. In fact, the curve (17.18) corresponds to

t �→ (P (t), G0(t)G(t)ψ0).

This way, we obtain a curve
t �→ V (t)

on the associated vector bundle V. This general procedure for curves can be
used in order to transform the trajectories of parallel transport on P into the
trajectories of parallel transport on V.

The invariant strategy for constructing the associated vector bun-
dle. The construction does not use any cocycles, but it is based on the following
commutative diagram:

P × F

proj1

V = P ×G F
proj

π

P π M.

(17.19)

We are given the principal bundle π : P → M with the symmetry group G which
is a Lie group. Furthermore, we are given the finite-dimensional linear space F .
Suppose that the group G acts on the linear space F from the left. In other words,
there exists a smooth representation r of G on F .3 Now consider the product set

P × F.

The elements of P × F are denoted by (Q, f) where Q ∈ P and f ∈ F. The group
G acts on the product set P × F from the right by setting

3 Explicitly, there exists a smooth group morphism r : G → GL(F ). That is, for
every group element G ∈ G, there exists a linear operator

r(G) : F → F

such that r(GG′) = r(G)r(G′) for allG,G′ ∈ G. In addition, the map G �→ GL(F )
is smooth. If f ∈ F , then it is very suggestive to write Gf instead of r(G)f .
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Fig. 17.3. Vertical space VQ and horizontal space HQ

(Q, f)G := (Q,G−1f), G ∈ G.

The corresponding orbit space P ×G F is obtained in the following way. We write

(Q, f1) ∼ (Q, f2)

iff there exists a group element G ∈ G such that (Q, f2) = (Q, f1)G. This is an
equivalence relation. The equivalence classes [(Q, f)] are called orbits, and the space
of all the orbits is denoted by P×GF.Observe that there are two natural projections,
namely,

• proj1(Q, f) := Q, and
• proj([(Q, f)]) := (Q, f) (canonical projection).

Set V := P×GF . Constructing the operator π by the commutative diagram (17.19),
we obtain the vector bundle

π : V → M (17.20)

with typical fiber F . The vector bundle (17.20) is called the associated vector bundle
to the principal bundle π : P → M.

17.3.2 Horizontal Vector Fields on a Principal Bundle

Let π : P → M be a principal bundle. The idea is to study the decomposition of
the tangent space TQP of the bundle manifold P at the point Q ∈ P (Fig. 17.3):

TQP = VQ ⊕HQ. (17.21)

For any tangent vector V ∈ TQP, we have the decomposition

V = ver(V ) + hor(V ), ver(V ) ∈ VQ, hor(V ) ∈ HQ.

By definition, the linear subspace VQ of TQP is the tangent space of the fiber FP at
the point Q (space of vertical tangent vectors at the point Q). Thus, the linear space
VQ is given canonically by the fiber structure of P. According to linear algebra, there
exists always a direct sum decomposition of the form (17.21). However, the point is
that the complementary linear subspace HQ is not uniquely determined. We need
an additional structure (called connection) on the principal bundle P in order to
construct uniquely the space HQ of horizontal tangent vectors.

Axioms for horizontal vector fields. We postulate that, for every point
Q ∈ P, there exists a linear subspace HQ of the tangent space TQP of the bundle
manifold P at the point Q such that the following hold:

(H1) Direct sum: We have the direct sum decomposition (17.21).
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(H2) The (restricted) linearized projection map

π′ : HQ → TPM

is a linear isomorphism if P = π(Q).
(H3) Symmetry: The action of the symmetry group G on the bundle manifold P

from the right is respected. That is, for all group elements G0 ∈ G, we have

HGG0 = R′
G0HG

where R′
G0 is the linearization of the map RG0 : P → P.4

(H4) Smoothness: If V is a smooth velocity vector field on P, then ver(V ) and
hor(V ) are also smooth velocity vector fields on P.
Remark. The axiom (H1) is a consequence of the axiom (H2), by using the

fiber structure of P. In fact, let V ∈ TQP. By (H2), there exists precisely one
tangent vector W ∈ HQ such that π′(W ) = π′(V ). Hence π′(V −W ) = 0, that is,
V −W ∈ VQ. Finally, V = (V −W ) +W.

17.3.3 The Lifting of Curves in Fiber Bundles

In the history of topology, the lifting of curves in fiber bundles played an
important role.5

Folklore

To explain the intuitive idea, consider the tangent bundle TS
2
r of a sphere S

2
r. The

parallel transport of a velocity vector v along a curve

C : P = P (t), t ∈ R

on the sphere S
2
r is a curve

t �→ (P (t),v(t)) (17.22)

on the bundle manifold TS
2
r. We say that the curve (17.22) is obtained from the

curve C on the base manifold S
2
r by lifting. Similarly, replacing the tangent bundle

TS
2
r by the frame bundle FS

2
r, the parallel transport

t �→ (P (t), e1(t), e2(t))

of a frame along the curve C is called a lift of the curve C to the bundle space FS
2
r.

Definition. Consider a principal bundle π : P → M. The curve

Q = Q(t), t ∈ R

on the bundle manifold P is called a lift of the curve

C : P = P (t), t ∈ R

on the base manifold iff P (t) = π(Q(t)) for all times t ∈ R.
Lifting. We are given the principal bundle

π : P → M
4 Recall that RG0Q := QG0 for all Q ∈ P.
5 See M. Zisman, Fibre Bundles, Fibre Maps, pp. 605–629. In: I. James (Ed.),

History of Topology, Elsevier, Amsterdam, 1999.
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Fig. 17.4. Lifting of the curve C

which satisfies the axioms (H1) through (H4) above. Then the map

π′ : HP → TPM

with P = π(Q) is a linear isomorphism. The inverse map

λ : TPM → HQ

is called a lifting.
Parallel transport. We are given the curve

C : P = P (t), t ∈ R.

We lift the tangent vector Ṗ (t) of the curve C at the point P (t) ∈ M to the tangent
vector

λP (t)(Ṗ (t))

of P at the point Q(t) (Fig. 17.4). The solution λ(C) : Q = Q(t), t ∈ P, of the
differential equation

Q̇(t) = λP (t)(Ṗ (t)), t ∈ R, Q(0) = Q0

is called a parallel transport passing through the bundle point Q0 along the curve
C on the base manifold C (Fig. 17.4).

Connection 1-form A. For any tangent vector V ∈ TQP of the bundle mani-
fold P at the point Q, we define

AQ(V ) := ver(V ).

Local bundle coordinates. Let us choose local bundle coordinates for the
principal bundle P, and let us sketch the approach in this local setting. Then the
bundle manifold P looks locally like the product set

O × G

where O is an open subset of R
n. The point Q ∈ P is described by the bundle

coordinate
(x,G) where x ∈ O and G ∈ G

with the projection π(x,G) = x. A curve t �→ Q(t) on the bundle manifold P, which
passes through the point Q0 at time t = 0, is locally described by the map

t �→ (x(t), G(t))

where Q(0) = Q0, and x(0) = x0, G(0) = G0. Thus, a tangent vector of the bundle
manifold P at the point Q0 looks locally like
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(ẋ, Ġ) where ẋ ∈ R
n and Ġ ∈ LG.

The space HQ of horizontal tangent vectors of the bundle manifold P at the point

Q consists of all the points (ẋ, Ġ) ∈ R
n × LG with

ẋiG−1Ai(x)G+G−1Ġ = 0.

Here, we sum over i = 1, . . . , n, and the functions x �→ Ai(x), i = 1, . . . , n are
smooth functions from O to the Lie algebra LG. Finally, in local bundle coordinates,
the connection differential 1-form A(x,G) looks like

dxiG−1Ai(x)G+ MG.

Here, MG(Ġ) = G−1dG(Ġ) = G−1Ġ is the Maurer–Cartan form of the Lie group
G. Let G0 ∈ G. Then the pull-back of the Maurer–Cartan form looks like

(R∗
G0M)G(Ġ) = MGG0(ĠG0) = (GG0)

−1ĠG0 = G−1
0 G−1ĠG0 = G−1

0 MG(Ġ)G0.

Hence
A(x,GG0)(ẋ, ĠG0) = G−1

0 A(x,GG0)(ẋ, Ġ)G0.

This implies the symmetry property of the connection form A:

R∗
G0A = G−1

0 AG0.

Further Reading

The standard textbook on the axiomatic approach to modern differential geometry
is the monograph by

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols.
1, 2, Wiley, New York, 1963.

In addition, we recommend

Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick, Analysis,
Manifolds, and Physics. Vol. 1: Basics; Vol. 2: 92 Applications, Elsevier,
Amsterdam, 1996,

J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin,
2008,

and

M. Crampin and F. Pirani, Applicable Differential Geometry, Cambridge
University Press, 1987,

S. Novikov and T. Taimanov, Geometric Structures and Fields, Amer.
Math. Soc., Providence, Rhode Island, 2006,

V. Ivancevic and T. Invancevic, Differential Geometry: A Modern Intro-
duction, World Scientific, Singapore, 2007.

The standard textbook on fiber bundles is the monograph by

D. Husemoller, Fiber Bundles, Springer, New York, 1994.
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17.4 A Glance at the History of Gauge Theory

Wider expanses and greater depths are now exposed to the searching eye
of knowledge, regions of which we had not even a presentiment. It has
brought us much nearer to grasping the plan that underlies all physical
happening.6

Hermann Weyl, 1918

17.4.1 From Weyl’s Gauge Theory in Gravity to the Standard
Model in Particle Physics

Let us first summarize some important papers:

H. Weyl (1918), Raum, Zeit, Materie, Springer, Berlin, 1918; 8th Ger-
man edition, 1993 (English edition: Space-Time-Matter, Dover, New York,
1990).

H. Weyl (1918), Gravitation and electricity (in German), Sitzungsbericht
der Königlich-Preussischen Akademie zu Berlin, pp. 465–480 (the idea of
a real-valued gauge theory by changing the length scale).

H. Weyl (1919), A new extension of the theory of general relativity (in
German), Z. Phys. 59, 101–133.

T. Kaluza (1921), On the problem of the unification of physics (in Ger-
man), Berliner Berichte, 1921, pp. 966–972.

O. Klein (1926), Quantum theory and five-dimensional theory of relativity,
Z. Physik 37, 895–906 (in German). English translation in: G. Ekspong
(1991), The Oskar Klein (1894–1977) Memorial Lectures, pp. 67–80, World
Scientific, Singapore.

O. Klein (1926), The atomicity of electricity as a quantum theory law,
Nature, 516–518. Reprinted in: G. Ekspong (1991), pp. 81–83.

V. Fock (1926), On the invariant form of the wave and motion equations
for a charged point mass, Z. Phys. 39, 839–841.

W. Gordon (1926), The Compton effect according to Schrödinger’s theory
(in German), Z. Phys. 40, 117–133.

F. London (1927), Quantum-mechanical interpretation of Weyl’s theory
(in German), Z. Phys. 42, 375–389.

H. Weyl (1929), Electron and gravitation (in German), Z. Phys. 56 (1929),
330–352. See also: Gravitation and the electron, Proc. Nat. Acad. Sci. USA
15 (1929), 323–334.

O. Klein (1938), On the theory of charged fields, pp. 895–906 (in French).
In: New Theories in Physics, Conference organized in Warsaw, 1938. En-
glish translation in: G. Ekspong (1991), pp. 85–102 (see O. Klein (1926)
above).

C. Ehresmann (1950), Infinitesimal connections in differentiable fiber
spaces, Colloque de Topologie, Bruxelles, pp. 29–55 (in French).

W. Pauli (1953), Meson–nucleon interaction and differential geometry.
In: W. Pauli (1999), Wissenschaftlicher Briefwechsel (Scientific correspon-
dence), Vol. IV, Part II, letters 1614 and 1682, Springer, Berlin.

6 From the Preface to the first edition of H. Weyl, Space, Time, Matter (in Ger-
man), Springer, Berlin, 1918.
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C. Yang and R. Mills (1954), Conservation of isotopic spin and isotopic
spin invariance, Phys. Rev. 96, 191–195.

J. Goldstone (1960), Field theories with “superconductor” solutions, Nuovo
Cimento 19, 154–164.

S. Kobayashi and K. Nomizu (1963), Foundations of Differential Geometry,
Vols. 1, 2, Wiley, New York.

G. Guralnik, C. Hagen, and T. Kibble (1964), Global conservation laws
and massless particles, Phys. Rev. Letters, 13, 585–587.

P. Higgs (1964), Broken symmetry and the masses of gauge bosons, Phys.
Rev. Lett. 13, 508–509.

L. Faddeev and V. Popov (1967), Feynman diagrams for the Yang–Mills
field, Phys. Lett. 25B, 29–30.

G. ’t Hooft, Renormalization of massless Yang-Mills fields, Nuclear Phys.
B 33, 173–199.

G. t’Hooft, Renormalizable Lagrangians for massive Yang–Mills fields,
Nucl. Phys. B35(1), 167–188.

G. ’t Hooft and M. Veltman (1972), Regularization and renormalization
of gauge fields, Nucl. Phys. B44, 189–213.

T. Wu and C. Yang (1975), Concept of non-integrable phase factors and
global formulation of gauge fields, Phys. Rev. D12, 3845–3857.

C. Yang (1986), Selected Papers, 1945–1980 with Commentary, Freeman,
San Francisco.

Nobel Lectures in 1979:

S. Glashow, Towards a unified theory – threads in a tapestry, Rev. Mod.
Phys. 52(3) (1980), 539–543.

S. Salam, Gauge unification of fundamental forces, Rev. Mod. Physics
52(3) (1980), 525–538.

S. Weinberg, Conceptual foundations of the unified theory of weak and
electromagnetic interaction, Rev. Mod. Phys. 52 (1980), 515–523.

Collection of important papers:

G. ’t Hooft, Under the Spell of the Gauge Principle, World Scientific,
Singapore, 1994.

O’Raifeartaigh, The Dawning of Gauge Theory, Princeton University
Press, 1997.

C. Taylor (Ed.), Gauge Theories in the Twentieth Century, World Scien-
tific, Singapore, 2001.

Remarks. Let us briefly comment this list of references above. In 1918, Weyl
used scaling transformations in order to generalize Einstein’s theory of general rel-
ativity to a theory of both gravitation and electromagnetism. In terms of physics,
this original approach was not successful. In 1926, Erwin Schrödinger published
his famous non-relativistic wave equation. In the same year, Oskar Klein, Vladimir
Fock, and Walter Gordon published independently the same relativistic wave equa-
tion (13.8) called the Klein–Fock–Gordon equation (or the Klein–Gordon equation).
In fact, Schrödinger was the first physicist who tried to use this equation in order
to understand the spectrum of the hydrogen atom. But he obtained the wrong
spectrum compared with the experimental values. Therefore, he passed over to the
non-relativistic Schrödinger equation. Nowadays we know that the electron of the
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relativistic hydrogen has the spin 1
2
�; therefore, we have to use the Dirac equation

introduced by Dirac in 1928. The Klein–Gordon–Fock equation describes spin-less
particles like the mesons π+, π−, π−. In 1926, Fock discovered for the first time
that the Klein–Fock–Gordon equation is invariant under the complex-valued gauge
transformation

ψ+(x, t) = eia(x,t)ψ(x, t)

and the gauge transformation

U+(x, t) = U(x, t) − �

Q
at(x, t), A+(x, t) = A(x, t) +

�

Q
∂a(x, t).

In 1927, London showed that Weyl’s real gauge theory from 1918 can be refor-
mulated as a complex-valued gauge theory which is useful for the new quantum
mechanics. In 1929, Weyl wrote a seminal paper entitled Electron and gravitation
(in German). In this paper, the U(1)-gauge theory is founded, and Weyl emphasized
the importance of the gauge principle for the relativistic electron in an electromag-
netic field. He writes:

From the arbitrariness of the gauge factor of the wave function ψ appears
the necessity of introducing the electromagnetic 4-potential.

This underlines the key point of gauge theories:

The principle of local gauge symmetry in physics determines the interac-
tion.

In 1938, Oskar Klein formulated a gauge theory in order to describe mesons in
the setting of a 5-dimensional Kaluza–Klein theory. This paper contains the broken
symmetry of a SU(2)-gauge group. In 1953, Pauli wrote a letter to Pais in Princeton.
In this letter, Pauli uses a 6-dimensional approach in order to model the meson-
nucleon interaction. By symmetry breaking, Pauli arrives at a SU(2)-gauge theory.
The first general SU(2)-gauge theory was published by Yang and Mills in 1954.
They generalized Weyl’s gauge theory from the commutative gauge group U(1) to
the noncommutative gauge group SU(2). From the physical point of view, Pauli
criticized the Yang–Mills approach. The point is that the messenger particles of
a SU(2)-gauge theory are massless like the photon in electrodynamics. But in the
1950s, except for the photon, all known messenger particles were massive. This mass
problem was theoretically solved in the 1960s by inventing the Higgs mechanism in
gauge theory based on the idea of spontaneous symmetry breaking.

Electroweak interaction. In the 1960s, Glashow, Salam, and Weinberg uni-
fied the electromagnetic interaction with the weak interaction in the framework of
the theory of the electroweak interaction. This is a gauge theory with the gauge
group

SU(2) × U(1).

This theory predicts the existence of four messenger particles, namely, the massless
photon and the three massive weak bosons W+ (positive electric charge), W−

(negative electric charge), Z0 (no electric charge).7 In contrast to the classic Fermi
theory for the weak interaction from the 1930s, the electroweak theory allows the
scattering process

e− + νμ → e− + νμ (17.23)

between electrons and muon neutrinos. The Feynman diagram of this scattering pro-
cess contains the neutral weak boson Z0. Physicists call this a weak current process.

7 Weak bosons are also called vector bosons
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In the 1970s, the weak current process (17.23) was experimentally established with
more and more higher precision. Glashow, Salam, and Weinberg were awarded the
Nobel prize in physics in 1979. The three massive weak bosons W+,W− and Z0

were experimentally established at the CERN collider in 1983. The rest masses of
the proton p, and the weak bosons W±, Z0 are equal to

1GeV/c2, 80GeV/c2, 90GeV/c2,

respectively. In the mathematical setting of the electroweak theory, one adds to
the Lagrangian an additional scalar field of a spin-less massive particle (called the
Higgs boson) which generates the mass terms for the three weak bosons W±, Z0. In
near future, physicists hope to establish experimentally the existence of the missing
Higgs boson at the LHC (Large Hadron Collider)/Geneva, Switzerland.

Strong interaction and quantum chromodynamics. The decisive impact
for the creation of quantum chromodynamics came from Gell-Mann and Fritzsch
in the early 1970s. Quantum chromodynamics is a gauge theory with the gauge
symmetry group

SU(3)

which refers to the color of quarks (i.e., the electric charge is replaced by the so-
called color charge). This theory predicts the existence of 8 massless messenger
particles called gluons which are responsible for the strong interaction with respect
to the quark colors.

Physicists postulate that it is impossible to observe colored quarks and col-
ored gluons as isolated objects (quark confinement).

We are only able to observe bound states of colored quarks (baryons and mesons).
These bound states are colorless (also called white). A proton consists of three
quarks. Mesons consist of quark-antiquark pairs (see Sect. 3.14). In 1973/74 Gross
and Wilczek, as well as Politzer applied the method of the renormalization group to
quantum chromodynamics in order to show that the coupling constant of quantum
chromodynamics goes to zero if the energy goes to infinity. This means that quarks
behave as free particles at very high energies. This is called the asymptotic freedom
of quantum chromodynamics. Gross, Politzer, and Wilczek were awarded the Nobel
prize in physics in 2004.

The Standard Model in particle physics. The combination of the elec-
troweak theory with quantum chromodynamics yields the Standard Model in par-
ticle physics with the gauge group

SU(3) × SU(2) × U(1).

This is a noncommutative Lie group, in contrast to the commutative Lie group
U(1) in electrodynamics. The Standard Model contains

• 12 fundamental particles (6 quarks with three colors and 6 leptons), and
• 12 messenger particles (the massless photon, the three massive weak bosons,
W+,W−, Z0, and the eight massless gluons which possess three colors).

The messenger particles are responsible for the interaction. Therefore, they are
also called the interaction particles. The leptons are the electron e−, the muon,
μ, the tau lepton τ , and the three corresponding neutrinos (the electron neutrino
νe, the muon neutrino νμ, and the tau neutrino ντ ). In 1930, the existence of the
electron neutrino was postulated by Pauli in order to explain the observed energy
loss in beta decay (a form of radioactivity). The electron neutrino was discovered
experimentally by Cowan and Reines in 1956. The neutrinos possess a small mass.
We have to add the antiparticles.
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• The 12 fundamental particles are fermions (with spin 1
2
�), whereas

• the 12 messenger particles are bosons (with spin �).

Thus, the Pauli exclusion principle is valid for the fundamental particles, but not
for the messenger particles. For the formulation of the Standard Model in particle
physics, the following principles play a crucial role:

• relativistic invariance with respect to space and time (Einstein’s principle of
special relativity and the Poincaré group),

• local symmetry (gauge symmetry),
• violation of spatial reflection symmetry (parity violation) and time reflection

symmetry in weak interaction,
• generation of particle masses by spontaneous symmetry breaking,
• universal CPT-symmetry (combined charge conjugation, space reflection, and

time reflection),
• renormalizability.

The quantization of gauge theories was formulated by Faddeev and Popov in 1967
by using a factorization of Feynman functional integrals (with respect to the orbits
of the gauge symmetry group). In 1971, t’Hooft proved that the electroweak gauge
theory is renormalizable, in contrast to the classical Fermi theory from the 1930s. In
1999, t’Hooft and Veltman were awarded the Nobel prize in physics for elucidating
the quantum structure of electroweak interactions by means of renormalization. For
the final formulation of the Standard Model in particle physics, many fundamental
experimental results played a crucial role. Let us mention the following Nobel prizes
in physics which mainly refer to experimental discoveries:

• Hess, 1936 (discovery of cosmic radiation in 1912), Anderson, 1936 (discovery of
the positron in cosmic rays in 1932),

• Fermi, 1938 (beta decay in weak interaction),
• Stern, 1943 (discovery of the magnetic moment of the proton in 1932),
• Pauli, 1945 (exclusion principle),
• Yukawa, 1949 (theory of nuclear forces and prediction of mesons in 1935),
• Powell, 1950 (discovery of the π-meson in 1947),
• Kusch, 1955 (precision determination of the anomalous magnetic moment of the

electron),
• Yang and Lee, 1957 (prediction of the violation of the parity symmetry in weak

interaction),8

• Segrè and Chamberlain, 1959 (discovery of the antiproton in 1955),
• Wigner, 1963 (fundamental symmetry principles),
• Feynman, Schwinger, Tomonga, 1965 (quantum electrodynamics),
• Gell–Mann 1969 (classification of elementary particles and their interactions by

using unitary symmetry/the eightfold way),
• Richter and Ting, 1976 (discovery of the heavy J/ψ particle in 1974),
• Penzias and Wilson, 1978 (discovery of the cosmic microwave background radi-

ation in 1964),
• Cronin and Fitch, 1980 (discovery of CP-violation9 in the decay of neutral K-

mesons in 1964),
• Rubbia and van der Meer, 1984 (discovery of the weak bosons W+,W−, Z0 in

1983),

8 Parity violation was experimentally established by Mrs. Wu in 1957.
9 The symbol ‘CP’ stands for charge conjugation/parity. Since the CPT-symmetry

is assumed to be a universal symmetry, the CP-violation implies the violation of
time reflection symmetry T.
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• Lederman, Schwartz, and Steinberger, 1988 (discovery of the muon neutrino in
1961),

• Friedman, Kendall, and Taylor, 1990 (detection of quarks by deep inelastic scat-
tering of electrons on protons in 1968),

• Reines, 1995 (discovery of the electron neutrino in 1956), Perl, 1995 (discovery
of the tau lepton in 1975),

• Mather and Smoot, 2006 (anisotropy of the cosmic microwave background radi-
ation),

• Nambu, Kobayashi, and Maskawa, 2008 (broken symmetry).

The Standard Model will be studied in Vol. IV on quantum mathematics.

Further Reading

We recommend:

H. Fritzsch, Quarks: The Stuff of Matter, Penguin, London, 1992. Revised
German edition: Piper, Munich, 2008 (a beautiful popular history of mod-
ern elementary particle physics).

M. Veltman, Facts and Mysteries in Elementary Particle Physics, World
Scientific, Singapore, 2003.

C. Sutton, Spaceship Neutrino, Cambridge University Press, 1992.

L. Brown, M. Dresden, L. Hoddeson, and M. Riordan (Eds.), The Rise of
the Standard Model, Cambridge University Press, 1995.

L. O’Raifeartaigh and N. Straumann, Gauge theory: Historical origins and
some modern developments, Rev. Mod. Phys. 72 (2000), 1–23.

J. Jackson and L. Okun, Historical roots of gauge invariance, Rev. Mod.
Phys. 73(2001), 663–680.

L. Okun, V. A. Fock and gauge symmetry, Physics Uspekhi 53(8) (2010),
835–837.

G. Guralnik, The history of the Guralnik, Hagen, and Kibble development
of the theory of spontaneous symmetry breaking and gauge particles, In-
tern. J. Modern Phys. A24 (2009), 2601–2627.

G. Ekspong (Ed.), The Oskar Klein (1894–1977) Memorial Lectures, World
Scientific, Singapore, 1991.

O. Klein, From my life of physics. In: G. Ekspong (Ed.) (1991), pp. 103–
117.

C. Yang, Symmetry and Physics. In: G. Ekspong (Ed.) (1991), pp. 11–33.

17.4.2 From Gauss’ Theorema Egregium to Modern Differential
Geometry

In 1827, Gauss founded the differential geometry of two-dimensional curved surfaces
by publishing his General Investigations of Curved Surfaces (in Latin). The main
result was the theorema egregium which says that the Gaussian curvature is an
intrinsic property of the surface. We refer to:

P. Dombrowski, 150 years after Gauss’ ‘Disquisitiones generales circa su-
perficies curvas’, Astérisque 62, 1979.
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The theorema egregium paved the way to fascinating developments in physics in
the 20th century. In 1854, Riemann generalized Gauss’ theory to higher dimensions.
Roughly speaking, the Riemann curvature tensor at the point P of a Riemannian
manifold M collects the information on the Gaussian curvature K(P ) of all the
two-dimensional submanifolds of M which pass through the point P . In 1915,
Einstein used the Riemann curvature tensor in order to formulate his theory of
general relativity. The point is that the curvature of the four-dimensional space-
time manifold describes gravitation. Two years later, the Levi-Civita connection
was introduced by

T. Levi-Civita, The notion of parallel transport in Riemannian geometry,
Rend. Palermo 42 (1917), 73–205 (in Italian).

Weyl wanted to generalize Einstein’s theory of general relativity by including elec-
tromagnetism. To this end, he generalized the Levi-Civita parallel transport by a
more general parallel transport based on generalized Christoffel symbols which do
not depend on a metric tensor:

H. Weyl, Gravitation and Electricity, Sitzungsberichte Preuss. Akademie
der Wiss. 65 (1918), pp. 465–480 (in German).10

In modern terminology, this is an affine connection. In the 1920s, Élie Cartan devel-
oped the theory of connections for a class of symmetry groups based on his method
of moving frames. Cartan’s classical method can be found in:

É. Cartan, Riemannian Geometry in an Orthogonal Frame: From Lectures

Delivered by Élie Cartan at Sorbonne (Paris) in 1926–1927. World Scien-
tific, Singapore, 2001.

In 1927, under the influence of Cartan, Friedrichs used a special connection in order
to study the passage from Einstein’s theory of general relativity to the Newtonian
gravitational theory based on the limit c → ∞ (i.e., the speed of light goes to
infinity):

K. Friedrichs, An invariant formulation of Newton’s gravitational law and
the passage from Einstein’s theory of general relativity to Newton’s clas-
sical theory, Math. Ann. 98 (1927), 566–575 (in German).11

The further development was strongly influenced by Dirac’s fundamental paper on
the relativistic electron:

P. Dirac, The quantum theory of the electron, Proc. Royal Soc. London
A117 (1928), 610–624; A118 (1928), 351–361.

The formulation of Maxwell’s theory of electromagnetism as a U(1)-gauge theory
(based on a U(1)-connection) and the relation to the Dirac equation for the rela-
tivistic electron was emphasized by Weyl in 1929:

H. Weyl, Electron and gravitation, Z. Phys. 56 (1929), 330–352 (in Ger-
man). See also H. Weyl, Electron and gravitation, Proc. National Acad.
U.S.A. 15 (1929), 323–334.

10 See also the fifth German edition of H. Weyl, Raum, Zeit, Materie, Springer,
Berlin, 1918, which appeared in 1922. (English edition: Space, Time, Matter,
Dover, New York, 1953.)

11 We also refer to A. Rendall, The Newtonian limit for asymptotically flat solutions
of the Vlasov–Einstein system (in plasma physics), Commun. Math. Phys. 163
(1974), 89–112.
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Motivated by Dirac’s paper, van der Waerden invented a generalization of the clas-
sical tensor calculus called spinor analysis which shows automatically that both the
Dirac equations and the Dirac–Einstein equations are relativistically invariant:

B. van der Waerden, Spinor analysis, Nachr. der königlichen Gesellschaft
Göttingen 1929, pp. 100–109 (in German).

B. van der Waerden and L. Infeld, The wave equation of the electron in
general relativity, Sitzungsber. Preußische Akad. Wiss. Berlin, Math.-Phys.
Klasse 9 (1933), pp. 308–401 (in German).

In classical terms, one has to find Christoffel symbols which generate a covariant
directional derivative that respects the relativistic symmetry group, that is, the co-
variant directional derivative respects the Lorentz group (more precisely, it respects
the universal covering group SL(2,C) of the proper Lorentz group). In modern ter-
minology, this is a connection with SL(2,C)-symmetry. We will study this in Vol. IV
on quantum mathematics.12 The work of Cartan and van der Waerden on spinors
motivated Bauer and Weyl to generalize spinors to higher dimensions:

H. Weyl and H. Bauer, Spinors in n dimensions, Amer. J. Math. 57 (1935),
425–449.

Based on Clifford algebras, Bauer and Weyl constructed the universal covering
group Spin(n) to the rotation group SO(n) in n dimensions. If n ≥ 4, the Lie
group Spin(n) is not a matrix group. Therefore, in order to develop a connection
with Spin(n)-symmetry, one needs a generalization of Cartan’s method of moving
frames. In order to be able to apply Cartan’s method of moving frames, one needs a
reduction of the SO(n)-frame bundle to the structure group Spin(n). This is only
possible if both the first and second Stiefel–Whitney class of the base manifold
vanishes. This shows why characteristic classes from topology play a crucial role in
modern differential geometry. The theory of characteristic classes (Chern classes)
was developed by Chern in order to generalize the Gauss–Bonnet theorem for two-
dimensional surfaces (Gauss’ theorema elegantissimum) to higher-dimensional Rie-
mannian manifolds in an intrinsic way:

S. Chern, A simple intrinsic proof of the Gauss–Bonnet formula for closed
Riemannian manifolds, Ann. of Math. 45 (1945), 747–752.

S. Chern, Characteristic classes of Hermitean manifolds, Ann. of Math. 47
(1946), 85–121.

The final general mathematical theory of connections with arbitrary symmetry
groups was developed by

C. Ehresmann, Infinitesimal connections in differentiable fiber spaces, Col-
loque de Topologie, Bruxelles (Belgium), 1950, pp. 29–55 (in French).

This theory can be found in the standard textbooks by:

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols.
1, 2, Wiley, New York, 1963.

Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick, Analysis,
Manifolds, and Physics. Vol. 1: Basics; Vol 2: 92 Applications, Elsevier,
Amsterdam, 1996.

T. Frankel, The Geometry of Physics, Cambridge University Press, 2004.

12 As a young man, van der Waerden assisted Weitzenböck in preparing his classic
textbook Invariant Theory, Groningen, the Netherlands, 1923. Therefore, he was
well prepared for applying methods from invariant theory to spinor analysis.
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J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin,
2008 (including Clifford algebras, the groups Spin(n) and Pin(n), spin
geometry, the Yang–Mills equations, and the Seiberg–Witten equations as
generalized Ginzburg–Landau equations).

D. Husemoller, Fibre Bundles, Springer, New York, 1994.

Riemann studied the structure of the set of all compact Riemann surfaces (i.e., the
moduli space of compact Riemann surfaces). This moduli space is investigated by
means of Teichmüller spaces in:

J. Jost, Compact Riemann Surfaces: An Introduction to Contemporary
Mathematics, Springer, Berlin, 1997.

Similarly, one can study the topological structure of the moduli space of all connec-
tions on a base manifold (e.g., the sphere). This deep relationship between topology
and gauge theory is summarized in:

K. Marathe and G. Martucci, The Mathematical Foundations of Gauge
Theories, North-Holland, Amsterdam, 1992.

K. Marathe, Topics in Physical Mathematics, Springer, London, 2010.

G. Naber, Topology, Geometry, and Gauge Fields, Springer, New York,
1997.

Fundamental papers can be found in:

M. Atiyah, Collected Works, Vol. 5: Gauge Theories, Cambridge University
Press, 2004.

The relations between the Atiyah–Singer index theorem and the Dirac equation are
discussed in:

M. Atiyah, The Dirac equation and geometry, pp. 108–124. In: P. Goddard
(Ed.), Paul Dirac – the Man and his Work, Cambridge University Press,
1999.

In 1954, Yang and Mills generalized Weyl’s U(1)-gauge theory for the electromag-
netic field to the gauge group SU(2):

C. Yang and R. Mills, Conservation of isotopic spin and isotopic spin in-
variance, Phys. Rev. 96 (1954), 191–195.

This opened the door for a fascinating development in theoretical physics culmi-
nating in the creation of the Standard Model in particle physics in the 1960s and
1970s. From the mathematical point of view, the Standard Model in particle physics
is based on a ‘connection’ with the symmetry group U(1) × SU(2) × SU(3). This
internal symmetry of elementary particles was discovered on the basis of a huge
amount of experimental data obtained in particle accelerators.

The discovery of the U(1) × SU(2) × SU(3) symmetry in nature is one of
the greatest achievements of the physics of the twentieth century.

When creating Yang–Mills theory, the authors did not know the equivalent math-
ematical theory of connections founded by Ehresmann. This relationship was only
discovered twenty years later:

T. Wu and C. Yang, Concept of non-integrable phase factors and global
formulation of gauge fields, Phys. Rev. D12 (1975), 3845–3857.

More details can be found in the Prologue on page 5.
Felix Klein’s Erlangen program. In 1871, Felix Klein formulated his Erlan-

gen program:

Geometry is the invariant theory of transformation groups.

Modern differential geometry can be regarded as a far-reaching completion of this
program for general classes of symmetry groups.
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17.4.3 The Work of Hermann Weyl

In his work, Hermann Weyl (1885–1955) emphasized the relations between mathe-
matics, physics, philosophy, and aesthetics. During an interview in 2010, Sir Michael
Atiyah was asked the following question:13 Which mathematician do you most ad-
mire/respect, and why? Sir Michael answered:

Among past mathematicians Hermann Weyl is the mathematician I admire
most. The breadth of his interests and and the elegance of his style have
been my model.

A detailed study of Weyl’s work can be found in:

E. Scholz (Ed.), Hermann Weyl’s “Space-Time-Matter” and a General
Introduction to his Scientific Work, Birkhäuser, Basel, 2001.

In particular, we recommend the article by:

R. Coleman and H. Korté, Hermann Weyl: Mathematician, physicist,
philosopher, pp. 159–398. In: E. Scholz (Ed.) (2001).

We also recommend:

C. Chevalley and A. Weil (1957), Hermann Weyl (1885–1955), L’Enseigne-
ment mathémathique, tome III, fasc. 3 (1957) (in French) (obituary).

Hermann Weyl (1885–1955), Springer, Berlin, 1985.

C. Yang, Hermann Weyl’s contributions to physics, pp. 7–21. In: Hermann
Weyl (1885–1955), Springer, Berlin, 1985.

J. Ehlers, Hermann Weyl’s contributions to the general theory of relativ-
ity, pp. 83–105. In: W. Deppert and K. Hübner, (Eds.), Exact Sciences
and Their Philosophical Foundations (International Hermann–Weyl Sym-
posium), Peter Lang, Frankfurt/Main, 1988.

F. Dyson, Birds and frogs in mathematics and physics, Einstein lecture
2008, Notices Amer. Math. Soc. 56 (2) (2009), 212–223.

Weyl’s collected works comprehend four volumes:

H. Weyl, Gesammelte Werke (Collected Works), Vols. 1–4. Edited by K.
Chandrasekharan, Springer, New York, 1968.

The following list of selected publications by Hermann Weyl emphasizes papers
which are closely related to physics:

H. Weyl (1908), Singular integral equations, Mathem. Annalen 66 (Ph.D.
dissertation supervised by Hilbert in Göttingen).

H. Weyl (1910), On ordinary differential equations with singularities (in
German), Math. Ann. 68, 220–269.14

H. Weyl (1911), On the asymptotic distribution of eigenvalues, Göttinger
Nachrichten, pp. 110–117.

13 International Center of Mathematics (CIM), Portugal, Bulletin 29, January
2011, pp. 23–27.

14 Weyl based the theory of singular differential equations on his theory of singular
integral equations. We will show in Vol. IV that the discrete and continuous
energy spectrum of the non-relativistic and relativistic hydrogen atom is a special
case of Weyl’s theory which was the predecessor of John von Neumann’s spectral
theory for unbounded self-adjoint operators in Hilbert space. See J. Dieudonné,
History of Functional Analysis, North-Holland, Amsterdam, 1981.
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H. Weyl (1912), On the spectrum of the black body radiation, J. Reine
und Angew. Mathematik 41, 163–181.15

H. Weyl (1912), Henri Poincaré (1854–1912), Mathematisch-naturwissen-
schaftliche Blätter 1912, pp. 161–163 (obituary).

H. Weyl (1913), Die Idee der Riemannschen Fläche (in German), Teubner-
Verlag, Leipzig. New edition with commentaries supervised by R. Rem-
mert, Teubner, Leipzig, 1997. English edition: The Concept of a Riemann
Surface, Addison Wesley, Reading, Massachusetts, 1955.

H. Weyl (1915), On the asymptotic law for the frequencies of the eigen-
solutions of an arbitrary elastic body (in German), Rend. Circolo Mat.
Palermo 39, 1–50.

H. Weyl (1916), On the equipartition of numbers mod 1 (in German),
Mathem. Annalen 77, 313–352.

H. Weyl (1918), Das Kontinuum, Veit, Leipzig. Englisch translation: The
Continuum, Dover, New York, 1994.

H. Weyl (1918), Gravitation and electricity (in German), Sitzungsbericht
der Königlich-Preussischen Akademie zu Berlin, pp. 465–480 (the idea of
a real-valued gauge theory by changing the length scale).

H. Weyl (1918), Raum, Zeit, Materie (in German), Springer, Berlin.

H. Weyl (1919), A new extension of the theory of general relativity (in
German), Z. Phys. 59, 101–133.

H. Weyl (1921), Raum, Zeit, Materie, 4th essentially revised edition,
Springer, Berlin. (English translation: Space, Time Matter, Methuen, Lon-
don, 1922). 7th German edition with notes by J. Ehlers, Springer, Berlin,
1988.

H. Weyl (1922), Das Raumproblem (The space problem) (in German),
Jahresbericht DMV (Deutsche Mathematiker-Vereinigung) 31, pp. 328–
344.

H. Weyl (1923), Repartición de corriente en una red conductora (Distri-
bution of an electric current in a network), Revista Matematica Hispano-
Americana 5, pp. 153–164 (in Spanish). In: H. Weyl, Collected Works,
(1968), Vol. II, pp. 368–389, Springer, 1968. English translation: George
Washington University Logistics Research Project (1951).

H. Weyl (1925), Representation theory for continuous semisimple groups
by linear transformations I, II, III, Math. Zeitschrift 23, pp. 271–309; 24,
pp. 328–376, 377–395, 789–791 (in German).

H. Weyl and F. Peter (1927), On the completeness of the irreducible rep-
resentations of compact continuous groups, Math.Ann. 97, 737–755 (in
German).

H. Weyl (1929), Die gruppentheoretische Methode in der Quantenme-
chanik, Springer, Berlin. (English translation: The Theory of Groups and
Quantum Mechanics, Dover, New York 1931.)

H. Weyl (1929), Elektron und Gravitation (in German), Z. Phys. 56 (1929),
330–352. See also H. Weyl, Gravitation and the electron, Proc. Nat. Acad.
Sci. USA 15 (1929), 323–334.

15 This paper showed that Planck’s method of computing the eigensolutions of the
Laplacian in a cubic box does not depend on the shape of the box if the volume
goes to infinity.
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H. Weyl (1935), Emmy Noether (1882–1935), Scripta mathematica, pp.
201–220 (obituary).

H. Weyl and R. Brauer (1935), Spinors in n dimensions, Amer. J. Math.
57, pp. 425–449.

H. Weyl (1938), The Classical Groups: Their Invariants and Representa-
tions, 2nd edition with supplement, 1946, 15th printing, 1997, Princeton
University Press.

H. Weyl (1940), The method of orthogonal projection in potential theory,
Duke Math. J. 7, pp. 414–444.

H. Weyl (1943), On Hodge’s theory of harmonic integrals, Ann. of Math.
44, pp. 1–6.

H. Weyl (1944), David Hilbert and his mathematical work, Bull. Amer.
Math. Soc. 50, pp. 612–654 (obituary).

H.Weyl (1949), Philosophy of Mathematics and Natural Sciences, Prince-
ton University Press, (3rd edition, 2009).

H. Weyl (1952), Symmetry, Princeton University Press, 1952/1983.

Problems

17.1 The covariant directional derivative Dvψ with respect to local bundle coordi-
nates. Prove that the connection axioms imply the local formula (17.4) for the
covariant directional derivative Dvψ.
Solution: In what follows, we will sum over α = 1, . . . ,m and j, k, l = 1, . . . , n.
Let us describe the bundle chart O×R

n by local coordinates living in R
m×R

n.
Let x = (x1, . . . , xm). Choose the standard basis e1, . . . , en of R

n,

e1 :=

0

B

B

B

B

@

1

0
...

0

1

C

C

C

C

A

, . . . , en :=

0

B

B

B

B

@

0

0
...

1

1

C

C

C

C

A

.

This generates the constant maps sj : O → R
n with sj(P ) := ej for all P ∈ O.

To simplify notation, we will write ej instead of sj . Use the basis representation
v = vα∂α and ψ(x) = ψj(x)ej . Then, by both linearity and the Leibniz rule
for Dvψ, we get

Dvψ = vαD∂α(ψlel) = vα(∂αψ
l)el + vα(D∂αel).

Since e1, . . . , en is a basis of R
n, there exist real numbers Γ k

αl(x) such that

D∂αel = Γ k
αl(x)ek, α = 1, . . . ,m.

Hence
Dvψ = (vα∂αψ

l)el + Γ k
αl(x)ψ

l · ek = vα(∂α + Aα)ψ.

17.2 Transformation law for the connection matrices. Let ψ+(x) = G(x)ψ(x) be a
change of bundle coordinates. Determine the transformation law for the ma-
trices Aα.
Solution: Since Dvψ transforms like ψ, we get
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D+
v ψ

+ = GDvψ.

Hence
vα(∂α + A+

α )(Gψ) = Gvα(∂α + Aα)ψ.

This is true for all velocity vector fields v. Thus,

(∂α + A+
α )(Gψ) = G(∂α + Aα)ψ.

Hence ∂αG · ψ + A+
αGψ = GAαψ for all ψ. This yields

A+
α = GAαG

−1 − ∂αG ·G−1.

17.3 Covariant time derivative. Prove Prop. 17.2 on page 878.
Hint: Use Problem 17.2 together with the chain rule.

17.4 Proof of Theorem 17.12. Hint: There are two possibilities to prove this theo-
rem.
(i) The local approach. Use local bundle charts and reduce the proof to product
bundles.
(ii) The global approach. Use the formula (12.82) (definition of dω in terms of
the Lie derivative). See Y. Choquet et al., Analysis, Manifolds, and Physics.
Vol. 1, p. 373, Elsevier, Amsterdam, 1996.



18. Inertial Systems and Einstein’s Principle of
Special Relativity

It is known that Maxwell’s electrodynamics, when applied to moving bod-
ies, leads to asymmetries which do not appear to be inherent in the phe-
nomena. Take, for example, the electrodynamic interaction between a mag-
net and a conductor. The observable phenomenon here depends only on
the relative motion of the conductor and the magnet, whereas the custom-
ary view draws a sharp distinction between the two cases in which either
the one or the other of these bodies is in motion . . .
The unsuccessful attempts to discover any motion of the earth relatively
to the “light medium” (ether), suggest that the phenomena of electrody-
namics as well as of mechanics possess no properties corresponding to the
idea of absolute rest.1

Albert Einstein, 1905

Henceforth space by itself and time by itself are doomed to fade away
into mere shadows and only a kind of union of the two will preserve an
independent reality.2

Hermann Minkowski, 1908

The Einstein convention. In what follows, we will sum over equal upper and
lower Greek (resp. Latin) indices from 0 to 3 (resp. 1 to 3). For example,

aμbμ = a0b0 + a1b1 + a2b2 + a3b3 = a0b0 + ajbj .

Classical mechanics and the Galilean transformation. Consider the situ-
ation depicted in Fig. 18.1. Let Σ and Σ′ be two right-handed Cartesian coordinate
systems which coincide at time t = 0. Here, (x, y, z) and (x′, y′, z′) denote the co-
ordinates of Σ and Σ′, respectively. Newton assumed that there exists an absolute
system of reference. Suppose that this absolute system corresponds to Σ. Further-
more, we assume that the system Σ′ moves with the velocity V parallel to the
system Σ in direction of the x-axis of Σ. In classical mechanics, a system of refer-
ence is called an inertial system iff a force-free mass point rests or it moves with

1 This is the beginning of one of the most influential papers in physics: A. Einstein,
On the electrodynamics of moving bodies (in German), Ann. Phys. 17 (1905),
891–921. In this paper, the young Einstein (1879–1955) founded the theory of
special relativity. See also S. Hawking (Ed.), The Essential Einstein: his Greatest
Works, pp. 4–31, Penguin Books, London, 2009.

2 H. Minkowski, Space and time (in German), Lecture to the 80th Assembly of
Natural Scientists and Physicians, Cologne 1908, Phys. Z. 10 (1909), 104–111.
English translation: The principle of relativity, Aberdeen Univ. Press, Aberdeen,
1923. Minkowski (1864–1909) gave this lecture one year before his early death.

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 19,
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 18.1. Lorentz boost

constant speed along a straight line. Newton assumed that the absolute system of
reference is an inertial system. In classical mechanics, the transformation law from
the system Σ to Σ′ is given by the Galilean transformation

x′ = x− V t, y′ = y, z′ = z, t′ = t. (18.1)

Moreover, it is assumed that m = m′, that is, mass is a conserved quantity. The
motion

x = x(t), y = y(t), z = z(t), t ∈ R

of a point of mass m in the original system of reference Σ is transformed into the
motion

x′ = x′(t′), y′ = y′(t′), z′ = z′(t′), t′ = t

in the new system of reference Σ′. For the transformed velocities, we get

dx′(t)

dt
=
dx(t)

dt
− V, dy′(t)

dt
=
dy(t)

dt
,

dz′(t)

dt
=
dz(t)

dt
, t ∈ R.

This is called the Galilean addition theorem for velocities. For the acceleration, we
get

d2x′(t)

dt2
=
d2x(t)

dt2
,

d2y′(t)

dt2
=
d2y(t)

dt2
,

d2z′(t)

dt2
=
d2z(t)

dt2
, t ∈ R.

Because of the invariance of mass, m′ = m, we obtain

m
d2x′(t)

dt2
= m

d2x(t)

dt2
, m

d2y′(t)

dt2
= m

d2y(t)

dt2
, m

d2z′(t)

dt2
= m

d2z(t)

dt2
, t ∈ R.

This tells us that the forces remain invariant, and Σ′ is an inertial system.
Einstein’s goal in 1905. Einstein wanted to obtain the transformation law for

the electric field vector E and the magnetic field vector B when passing from the
system of reference Σ to the moving system Σ′. His main results read as follows:

(i) There is no absolute system of reference.
(ii) Lorentz transformation: If Σ and Σ′ are inertial systems, then the Galilean

transformation law (18.1) has to be replaced by the Lorentz transformation

x′ =
x− V t

p

1 − V 2/c2
, y′ = y, z′ = z, t′ =

t− xV/c2
p

1 − V 2/c2
. (18.2)

Here, c is the velocity of light in a vacuum. Let us set
• x0 := ct, x1 := x, x2 := y, x3 := z, and
• x0 := x0, x1 := −x1, x2 := −x2, x3 := −x3.
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Then

x0′ =
x0 − x1V/c
p

1 − V 2/c2
, x1′ =

x1 − x0V/c
p

1 − V 2/c2
, x2′ = x2, x3′ = x3.

(iii) Electromagnetic field tensor: Einstein discovered that one has to replace the
pair of field vectors E = E1i + E2j + E3k and B = B1i + B2j + B3k by the
antisymmetric matrix

0

B

B

B

@

F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33

1

C

C

C

A

:=

0

B

B

B

@

0 E1/c E2/c E3/c

−E1/c 0 −B3 B2

−E2/c B3 0 −B1

−E3/c −B2 B1 0

1

C

C

C

A

.

According to Einstein, this is an antisymmetric tensor. This means that Fαβ
transforms like the product xαxβ under Lorentz transformations. The corre-
sponding transformation laws for E,B can be found in Sect. 19.4 on page 967.
Equivalently, the differential form

F = 1
2
Fαβ dx

α ∧ dxβ

possesses an invariant meaning for all inertial systems.

In addition, it is convenient to introduce the symmetric matrix

0

B

B

B

@

η00 η01 η02 η03
η10 η11 η12 η13
η20 η21 η22 η23
η30 η31 η32 η33

1

C

C

C

A

=

0

B

B

B

@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1

C

C

C

A

. (18.3)

As we will show later on, ηαβ is a symmetric, numerically invariant tensorial family
with respect to Lorentz transformations. That is, if we transform ηαβ like xαxβ ,
then the values of ηαβ remain unchanged. The tensor

g = ηαβ dx
α ⊗ dxβ

is the metric tensor of the Minkowski manifold M
4 to be introduced below. We also

set
ηαβ := ηαβ , α, β = 0, 1, 2, 3.

Then, ηαβ is also a tensorial family with respect to Lorentz transformations. The
tensorial families ηαβ and ηαβ can be used for the lowering or the lifting of indices
with respect to Lorentz transformations, that is, we set

xα = ηαβx
β and xα = ηαβxβ .

The deformation of classical mechanics. Note the following crucial fact.

• If the velocity V is small compared with the velocity of light c, that is,

V/c& 1,
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then the Lorentz transformation (18.2) is approximated by the Galilean trans-
formation (18.1). More precisely, if V/c → 0, then the Lorentz transformation
converges to the Galilean transformation. In this sense, the theory of special
relativity is a deformation of classical mechanics. For example, if a car moves
with the speed V of 100 km/hour, then V/c = 10−8. For an aircraft with the
speed of V = 1000 km/hour, we get V/c = 10−7. Therefore, the theory of special
relativity does not play any role in daily life.3

• Similarly, quantum mechanics is a deformation of classical mechanics with respect
to the small parameter

h/S & 1

where h is Planck’s quantum of action, and S is the typical action of processes
in daily life. In the SI system, we obtain approximately S = 1·Js= 1· kg m2/s,
and we have precisely h = 6.625 · 10−34 Js. Hence h/S = 6.625 · 10−34.

18.1 The Principle of Special Relativity

Inertial systems. In physics, the notion of an inertial system plays a crucial role:

An (x, y, z)-Cartesian coordinate system with time t is called an inertial
system iff every mass particle rests or moves along a straight line with
constant velocity provided no force is acting.

The prototype of an inertial system is a spaceship which moves at a far distance from
both our solar system and other stars and which flies without rocket propulsion.

The invariance principle in classical mechanics. Newton (1643–1717) pos-
tulated the existence of a distinguished inertial system which he called the absolute
system of reference. In particular, the time t measured in the absolute system of ref-
erence plays the role of an absolute world time. Newton’s equations of motion refer
to the (hypothetical) absolute inertial system. In classical mechanics, a system of
reference is an inertial system iff it moves relatively to the absolute inertial system
with a constant velocity vector. The classical Galilean principle of relativity reads
as follows: All inertial systems are physically equivalent with respect to processes
in classical mechanics, that is, physical processes concerning classical mechanics are
the same in all inertial systems when the initial and boundary conditions are the
same.

Maxwell (1831–1875) assumed that his equations for the electromagnetic field
(first formulated in 1864) are valid in a distinguished inertial system which he
called the ether system.4 In 1881 Michelson performed an experiment in order to
measure the relative motion of earth to the ether system. To this end, he measured
the speed of light at different time points of the year. By the classical Galilean
additional theorem for velocities, Michelson expected different values V −c and V +c
of the speed of light after six months (Fig. 18.2). But he observed the constancy
of the speed of light during the year. In 1887 Michelson and Morley made refined
measurements, but the result was the same. Therefore, Einstein postulated in 1905:

In every inertial system light travels with the same constant velocity c
in every direction in a vacuum, that is, the speed of light is a universal
constant in nature.

3 This is not completely true. To be precise, the GPS (Global Positioning System)
uses both Einstein’s theory of special relativity and Einstein’s theory of general
relativity concerning the gravitational field of the earth.

4 J. Maxwell, A Treatise on Electricity and Magnetism, London, 1873. Reprinted
by Dover, New York, 1954.
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Fig. 18.2. The Michelson experiment

Einstein’s general invariance principle. More general, in 1905 Einstein
formulated the following fundamental principle in physics:

All inertial systems are physically equivalent, that is, all the physical pro-
cesses are the same in all inertial systems when initial and boundary con-
ditions are the same.

As we will show below, this principle changed completely our philosophy about
space and time. In particular, time depends on the choice of the inertial system.

18.1.1 The Lorentz Boost

Consider two parallel right-handed inertial systems Σ and Σ′ as depicted in Fig.
18.1 on page 906. We assume that

• the system Σ′ with the coordinates x′, y′, z′, t′ moves with the relative velocity
V > 0 with respect to

• the system Σ with the coordinates x, y, z, t.

We postulate that the following quite natural conditions are satisfied:

(H1) The transformation from Σ to Σ′ is a linear invertible transformation of the
form x′ = αx+ βt, t′ = γx+ δt, y′ = y, z′ = z.

(H2) The equation x = ct of a light ray in the system Σ corresponds to the equation
x′ = ct′ in Σ′ (constancy of the speed of light).

(H3) The origin x′ = 0, t′ ∈ R in Σ′ corresponds to x = V t, t ∈ R in Σ.
(H4) x > 0 and t = 0 implies x′ > 0.
(H5) The transformation Σ′ ⇒ Σ is obtained from Σ ⇒ Σ′ by replacing V by −V .

We will show in Problem 18.1 on page 933 that these conditions uniquely determine
the so-called Lorentz boost (in direction of the x-axis):

x′ =
x− V t

p

1 − V 2/c2
, y′ = y, z′ = z, t′ =

t− V x/c2
p

1 − V 2/c2
. (18.4)

Here, c is the velocity of light in a vacuum, and we assume that V < c. Introducing
the new notation x0 := ct, x1 := x, x2 := y, x3 := z, we get the following matrix
transformation

0

B

B

B

@

x0′

x1′

x2′

x3′

1

C

C

C

A

=

0

B

B

B

@

coshχ − sinhχ 0 0

− sinhχ coshχ 0 0

0 0 1 0

0 0 0 1

1

C

C

C

A

0

B

B

B

@

x0

x1

x2

x3

1

C

C

C

A

(18.5)



910 18. Inertial Systems and Einstein’s Principle of Special Relativity

where coshχ := 1√
1−γ2

, sinhχ := γ√
1−γ2

with γ := V
c
. We set

L1(χ) :=

0

B

B

B

@

coshχ − sinhχ 0 0

− sinhχ coshχ 0 0

0 0 1 0

0 0 0 1

1

C

C

C

A

(18.6)

and call this the Lorentz boost matrix in direction of the x-axis.
If the relative velocity V is small compared with the velocity of light c in a

vacuum, that is, γ = V/c& 1, then the Lorentz boost (18.4) reads as

x1′ = x1 − V t+O(γ2), t′ = t+O(γ2), γ → 0.

Neglecting terms of order O(γ2), we get

x′ = x− V t, t′ = t.

This is the Galilean transformation in classical mechanics.

18.1.2 The Transformation of Velocities

Suppose that the motion of a massive point particle is given by the equation

x = x(t) in the inertial system Σ,

and by the equation

x′ = x′(t′) in the inertial system Σ′.

Thus one observes the velocity vectors

v =
dx(t)

dt
and v′ =

dx′(t′)

dt′

in Σ and Σ′, respectively (see Fig. 18.1 on page 906). Set

v = v1i + v2j + v3k,

and v′ = v′1i
′ + v′2j

′ + v′3k
′. We assume that |v| < c. Then, the Lorentz boost (18.4)

implies the following transformation law for the velocity components:

v′1 =
v1 − V

1 − v1V/c2
, v′2 =

p

1 − V 2/c2 v2

1 − v1V/c2
, v′3 =

p

1 − V 2/c2 v3

1 − v1V/c2
. (18.7)

If the velocities are small compared with the velocity of light (i.e., |v1V/c2| & 1
and V/c& 1), then the first approximation yields

v′1 = v1 − V, v′2 = v2, v′3 = v3.

This is the classical Galilean addition theorem of velocities used in daily life.
Proof. From y′(t′) = y(t), z′(t′) = z(t), and

x′ =
x− V t

p

1 − V 2/c2
, t′ =

t− V x/c2
p

1 − V 2/c2
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it follows by differentiation that

dx′

dt′
=
dx′

dt
:
dt′

dt
=

ẋ(t) − V
1 − V ẋ(t)/c2 .

Similarly, we compute dy′

dt′ and dz′

dt′ . �

Equation (18.7) implies

c2 − |v′|2 =
(c2 − |v|2)(1 − V 2/c2)

(1 − v1V/c2)2
.

Hence, because of 0 ≤ V < c we have the following results:

(i) From |v| < c there follows |v′| < c, that is, subvelocity of light remains subve-
locity of light.

(ii) From |v| = c there follows |v′| = c, that is, velocity of light remains velocity of
light.

(iii) For super-velocities of light with |v1| > c in an inertial system Σ, there always
exists an inertial system Σ′ as depicted in Fig. 18.1 with the relative velocity
0 < V < c for which the transformation law (18.7) becomes singular, that is,
|v′| becomes infinitely large. Therefore, we exclude super-velocities of light.

18.1.3 Time Dilatation

Suppose that, in the inertial system Σ, two events take place at the same position
(x, y, z) and at different times t0 and t1 = t0 +Δt. An observer P ′ in the inertial
system Σ′ measures the time difference

Δt′ =
Δt

p

1 − V 2/c2
.

In fact, P ′ observes the two events

x′0 =
x− V t0

p

1 − V 2/c2
, y′0 = y, z′0 = z, t′0 =

t0 − V x/c2
p

1 − V 2/c2

and

x′1 =
x− V t1

p

1 − V 2/c2
, y′1 = y, z′1 = z, t′1 =

t1 − V x/c2
p

1 − V 2/c2
.

Finally, note that Δt′ = t′1 − t′0.

18.1.4 Length Contraction

Consider a rod of length l which is at rest on the x-axis of the inertial system Σ.
An observer P ′ in the inertial system Σ′ measures the length

l′ = l
p

1 − V 2/c2.

To show this, note that the endpoints (x0, y0 = 0, z0 = 0) and (x1 = x0 + l, y0, z0)
of the rod in Σ move in Σ′ according to the equations

x′0 =
x0 − V t

p

1 − V 2/c2
, y0 = z0 = 0, t′0 =

t− V x0/c
2

p

1 − V 2/c2
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and

x′1 =
x1 − V t

p

1 − V 2/c2
, y1 = z1 = 0, t′1 =

t− V x1/c
2

p

1 − V 2/c2
.

Hence

x0 =
x′0 + V t′0
p

1 − V 2/c2
, x1 =

x′1 + V t′1
p

1 − V 2/c2
. (18.8)

It is important to note that the observer P ′ measures the length l′ = x′1 −x′0 of the
rod not at the same t-time, but at the same t′-time. Letting t′1 = t′0 in (18.8), we

obtain l = x1 − x0 = l′/
p

1 − V 2/c2. This is the claim.

18.1.5 The Synchronization of Clocks

Consider two clocks C and D in the inertial system Σ at the points, say, (x0, 0, 0)
and (x1, 0, 0), respectively. In order to synchronize the clocks, we send a light signal
from C to D which returns immediately back to C. Suppose that the light signal
departs the point (x0, 0, 0) at time t0, and it returns to the point (x0, 0, 0) at time
t1. The clock D is synchronized with the clock C iff the time t of arrival of the light
signal at the point (x1, 0, 0) is equal to

t = t0 +
t1 − t0

2
= t0 +

c

2(x1 − x0)
.

Such a synchronization is always possible in the inertial system Σ.
Now let us pass to the inertial system Σ′ (see Fig. 18.1 on page 906). The point

is that two events

(x0, y0 = 0, z0 = 0, t) and (x1, 0, 0, t) (18.9)

which happen at different points in Σ at the same time t0 = t1 = t are transformed
into

x′0 =
x0 − V t

p

1 − V 2/c2
, y′0 = z′0 = 0, t′0 =

t− V x0/c
2

p

1 − V 2/c2

and

x′1 =
x1 − V t

p

1 − V 2/c2
, y′1 = z′1 = 0, t′1 =

t− V x1/c
2

p

1 − V 2/c2
.

Obviously,
t′0 �= t′1,

that is, the two simultaneous events (18.9) in Σ happen in the inertial system Σ′ at
different times. Therefore, the notion of simultaneousness depends on the observer.

18.1.6 General Change of Inertial Systems in Terms of Physics

Let Σ and Σ′ be two inertial systems with right-handed Cartesian coordinates
x, y, z and x′, y′, z′, respectively. Moreover, we will use the time t and t′ in Σ and
Σ′, respectively. Heuristically, we expect that a physicist in Σ observes that the
origin of Σ′ moves with constant velocity V along a straight line, that is, this motion
is described by the equation

x = u(t− t0) + x0, y = v(t− t0) + y0, z = w(t− t0) + z0,
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Fig. 18.3. Inertial systems Σ and Σ′

with V =
√
u2 + v2 + w2 (Fig. 18.3). After a suitable rotation of Σ and Σ′ and

after a translation of the space and time coordinates, we get the situation of the
Lorentz boost depicted in Fig. 18.1 on page 906. This yields

0

B

B

B

@

ct′

x′

y′

z′

1

C

C

C

A

= RL1(χ)S

0

B

B

B

@

c(t− t0)
x− x0

y − y0
z − z0

1

C

C

C

A

(18.10)

where R and S are rotations of spatial coordinates, and L1(χ) is the Lorentz boost
matrix (18.6). As we will show below, the homogeneous transformations of the form
(18.10) with t0 = x0 = y0 = z0 = 0 are precisely the transformations of the proper
orthochronous Lorentz group SO↑(1, 3) (see Prop. 18.2). If we pass to left-handed
Cartesian coordinates or if we reverse the time direction, then we have to add space
reflections and time reflections, respectively. In this general case, the inhomogeneous
(resp. homogeneous) transformations (18.5) will form the Poincaré group P (1, 3)
(resp. the Lorentz group O(1, 3)). In the next sections, it is our goal to replace
these heuristic arguments by the rigorous approach due to Minkowski. Before doing
this, let us reformulate the Lorentz transformation in terms of a coordinate-free
approach.

Invariant formulation of the transformation of position and time. Sup-
pose that an observer in the inertial system Σ (resp. Σ′) measures the position
vector x at the origin O and the time t (resp. the position vector x′ at the origin
O′ and the time t′). Then the transformation law reads as

x′ = x − Vt+

 

1
p

1 − V2/c2
− 1

!

((nx)n − Vt) + x′
0,

t′ =
t− Vx/c2
p

1 − V2/c2
+ t′0 (18.11)

where n := V/|V|. In particular, x = 0, t = 0 corresponds to x′
0, t

′
0. In the special

case where V = V i, this coincides with the Lorentz boost (18.4). If the velocity |V|
is small compared with the velocity of light c, then we get the classical Galilean
transformation

x′ = x − Vt, t′ = t,

as a first approximation.
The addition theorem for velocities. If an observer in the inertial system

Σ (resp. Σ′) measures the velocity vector v (resp. v′) of a massive particle or of a
light ray (i.e., |v| ≤ c), then
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v′ =
v − V

1 − Vv/c2
−

“

1 −
p

1 − V2/c2
”

`

v − (vn)n
´

1 − Vv/c2
.

This corresponds to (18.7). If the velocities |v| and |V| are small compared with
the velocity of light c, then we get the classical addition theorem v′ = v − V for
velocity vectors, as a first approximation.

18.2 Matrix Groups

18.2.1 The Group O(1, 1)

The following simple matrix relations are the key to Minkowski’s approach. Let
α, β, γ, δ be real numbers. Let χ ∈ R. We set

G :=

 

α β

γ δ

!

, η :=

 

1 0

0 −1

!

, L(χ) :=

 

coshχ − sinhχ

− sinhχ coshχ

!

, I :=

 

1 0

0 1

!

.

Proposition 18.1 The transformation

 

ct′

x′

!

= G
 

ct

x

!

satisfies the Minkowski

condition

c2t′
2 − x′2 = c2t2 − x2 for all x, t ∈ R (18.12)

iff G = RL(χ) where L(χ) is a Lorentz boost for some real parameter χ, and R
equals one of the following matrices: R = I (unit matrix), R = η (space reflection),
R = −η (time reflection), R = −I (space-time reflection).

All these real (2 × 2)-matrices G form a group denoted by O(1, 1).

Proof. (I) Equivalent formulation. The Minkowski condition (18.12) is equivalent
to

(ct′, x′) η

 

ct′

x′

!

= (ct, x) GdηG
 

ct

x

!

= (ct, x) η

 

ct

x

!

for all t, x ∈ R. In turn, this is equivalent to the matrix equation

Gdη G = η. (18.13)

(II) Necessary condition. Suppose that condition (18.13) is satisfied. Then
detGd det η detG = det η. Hence (detG)2 = 1. Thus, detG = ±1. Moreover,

 

α2 − γ2 αβ − γδ
αβ − γδ β2 − δ2

!

=

 

1 0

0 −1

!

.

Hence α �= 0 and δ �= 0. First suppose that α > 0.It follows from α2 − γ2 = 1 that
there exists a real number χ such that

α = coshχ, γ = − sinhχ.
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Moreover, γ
α

= β
δ

implies

β = λγ, δ = λα, λ ∈ R.

Since 1 = δ2 − β2 = λ2(α2 − γ2), we get λ2 = 1. Hence λ = ±1.
If we assume that α < 0, the same argument yields α = − coshχ, γ = sinhχ.
(III) Sufficient condition. Conversely, G = RL yields (18.13).
(IV) Group property. If the matrices G and G′ satisfy the Minkowski condition

(18.13), then the product GG′ also satisfies the condition (18.13). In fact,

(GG′)dη(GG′) = G′d(GdηG)G′ = G′dηG′ = η.

�

Let us add the following definitions of the subgroups SO(1, 1) and SO↑(1, 1) of the
group O(1, 1):

• G ∈ SO(1, 1) iff G ∈ O(1, 1) and detG = 1.Obviously, G ∈ SO(1, 1) iff G = ±L(χ)
for some real parameter χ.

• G ∈ SO↑(1, 1) iff G ∈ SO(1, 1) and α > 0 (i.e., the transformation matrix G does
not change the direction of time). Obviously, G ∈ SO↑(1, 1) iff G = L(χ) for some
χ ∈ R.

The Lie groups O(1, 1) and SO(1, 1) are not connected, since these groups con-
tain reflections. However, the Lie group SO↑(1, 1) is connected, since the matrices
L(χ) depend continuously on the parameter χ. More precisely, SO↑(1, 1) is the
component of the unit element I of the Lie group O(1, 1).

The Lie algebra so(1, 1). For small parameters χ, we get

L(χ) = I + χA+ o(χ), χ→ 0, where A :=

 

0 1

1 0

!

.

The matrices χA with the real parameter χ form the real 1-dimensional Lie algebra
so(1, 1). The matrix A is a basis of so(1, 1), and we have the trivial Lie product
[A,A] := 0. Conversely,

L(χ) = eχA for all χ ∈ R.

The group P (1, 1). Let G ∈ O(1, 1), and let a ∈ R
2, that is, a :=

 

a0

a1

!

. All

the transformations (ct, x) �→ (ct′, x′) of the type

 

ct′

x′

!

= G
 

ct

x

!

+ a, x, t ∈ R (18.14)

form a group of linear transformations from R
2 to R

2 (with respect to the compo-
sition of maps). This group is denoted by P (1, 1). We have P (1, 1) = O(1, 1) � R

2

(semidirect product). If we write the transformation (18.14) as

x′ = Gx + a,

then the composition with the map y′ = G′x′ + a′ yields

y′ = G′(Gx + a) + a′ = G′Gx + (G′a+ a′).
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Alternatively, the Poincaré transformation (18.14) can be written as

0

B

@

ct′

x

1

1

C

A

=

 

G a
0 1

!

0

B

@

ct

x

1

1

C

A

.

The product formula

 

G′ a′

0 1

! 

G a
0 1

!

=

 

G′G G′a+ a′

0 1

!

corresponds to the composition of maps of the type (18.14). Therefore, the group
P (1, 1) is isomorphic to the group of all the matrices

 

G a
0 1

!

where G ∈ O(1, 1), a ∈ R
2.

Setting G = L(χ), linearization yields the matrices

 

L(χ) a

0 1

!

= I +A(χ, a) + o(χ), χ→ 0, where A(χ, a) :=

 

A(χ) a

0 0

!

.

All the matrices A(χ, a) form the real 3-dimensional Lie algebra p(1, 1) of the Lie
group P (1, 1). This Lie algebra has the basis

A :=

0

B

@

0 1 0

1 0 0

0 0 0

1

C

A

, B :=

0

B

@

0 0 1

0 0 0

0 0 0

1

C

A

, C :=

0

B

@

0 0 0

0 0 1

0 0 0

1

C

A

with the Lie products

[A,B] = C, [B,C] = 0, [C,A] = 0

where [A,B] := AB −BA, and so on.

18.2.2 The Lorentz Group O(1, 3)

Fix c > 0. Let G be a real (4 × 4)-matrix. We write G ∈ O(1, 3) iff the linear
transformation

0

B

B

B

@

ct′

x′

y′

z′

1

C

C

C

A

= G

0

B

B

B

@

ct

x

y

z

1

C

C

C

A

(18.15)

satisfies the Minkowski condition

c2t′
2 − x′2 − y′2 − z′2 = c2t2 − x2 − y2 − z2

for all x, y, z, t ∈ R. Setting
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η := (ηαβ) =

0

B

B

B

@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1

C

C

C

A

, (18.16)

we have G ∈ O(1, 3) iff

GdηG = η. (18.17)

As in Sect. 18.17, it follows from (18.16) that detG = ±1. Hence the elements of
O(1, 3) are invertible matrices. Therefore,

• O(1, 3) is a group called the Lorentz matrix group;
• the elements G of O(1, 3) with detG = 1 form a subgroup of O(1, 3) called the

proper matrix Lorentz group, SO(1, 3).

The Lorentz boost matrix L1(χ) from (18.6) is an element of SO(1, 3) for every
real parameter χ. Furthermore, the matrices

R− :=

0

B

B

B

@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1

C

C

C

A

, T− :=

0

B

B

B

@

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

C

C

C

A

(18.18)

are elements of O(1, 3). By (18.15), the matrices R− and T− correspond to the
transformations

• t′ = t, x′ = −x, y′ = −y, z′ = −z (spatial reflection), and
• t′ = −t, x′ = x, y′ = y, z′ = z (time reflection), respectively.

Proposition 18.2 The real (4 × 4)-matrix G is an element of the Lorentz matrix
group O(1, 3) iff it can be represented as the following matrix product

G =MRL1(χ)S (18.19)

for some real parameter χ. Here, the (4 × 4)-matrices R and S correspond to ro-
tations of the spatial variables, and M = I (identity matrix), M = R− (spatial
reflection), or M = T− (time reflection).

All the matrices (18.19) withM = I form a subgroup SO↑(1, 3) of the Lie group
O(1, 3) which is called the proper orthochronous Lorentz matrix group. This is the
component of the unit element in O(1, 3) and SO(1, 3). We have G ∈ SO↑(1, 3) iff
the transformation (18.15) does not change the direction of time. As we will show,
this is equivalent to

∂t′(t, x, y, z)

∂t
≥ 1.

The matrix G from (18.19) is an element of the proper Lorentz matrix group
SO(1, 3) iff either M = I or M = −I.

The proofs of all the statements will be given in Problem 18.4 on page 934.
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Fig. 18.4. Rotation and Lorentz boost

18.3 Infinitesimal Transformations

18.3.1 The Lie Algebra o(1, 3) of the Lorentz Group O(1, 3)

The Lie group SO↑(1, 3) of proper orthochronous Lorentz transforma-
tions. The group SO↑(1, 3) contains the following three rotations:

• x′ = x cosϕ + y sinϕ, y′ = −x sinϕ + y cosϕ, z′ = z, t′ = t (counter-clockwise
rotation of Σ about the z-axis with the rotation angle ϕ; see Fig. 18.4(a));

• y′ = y cosϕ+ z sinϕ, z′ = −y sinϕ+ z cosϕ, x′ = x, t′ = t
(counter-clockwise rotation of Σ about the x-axis with the rotation angle ϕ);

• z′ = z cosϕ+ x sinϕ, x′ = −z sinϕ+ x cosϕ, y′ = y, t′ = t
(counter-clockwise rotation of Σ about the y-axis with the rotation angle ϕ).

Furthermore, the group SO↑(1, 3) contains the following three Lorentz boosts:

• ct′ = ct coshχ− x sinhχ, x′ = −ct sinhχ+ x coshχ, y′ = y, z′ = z
(translation of Σ′ in direction of the x-axis with the velocity V ; see Fig. 18.4(b));

• ct′ = ct coshχ− y sinhχ, y′ = −ct sinhχ+ y coshχ, z′ = z, x′ = x
(translation of Σ′ in direction of the y-axis with the velocity V );

• ct′ = ct coshχ− z sinhχ, z′ = −ct sinhχ+ z cosh, x′ = x, y′ = y
(translation of Σ′ in direction of the z-axis with velocity V ).

Here, we set tanhχ = V/c. Then, coshχ = 1√
1−V 2/c2

and sinhχ = V/c√
1−V 2/c2

. This

corresponds to the transformation
0

B

B

B

@

ct′

x′

y′

z′

1

C

C

C

A

= G

0

B

B

B

@

ct

x

y

z

1

C

C

C

A

from the inertial system Σ to the inertial system Σ′ with the following transforma-
tion matrices:

R1(ϕ) :=

0

B

B

B

@

1 0 0 0

0 1 0 0

0 0 cosϕ sinϕ

0 0 − sinϕ cosϕ

1

C

C

C

A

, R2(ϕ) :=

0

B

B

B

@

1 0 0 0

0 cosϕ 0 − sinϕ

0 0 1 0

0 sinϕ 0 cosϕ

1

C

C

C

A

,

R3(ϕ) :=

0

B

B

B

@

1 0 0 0

0 cosϕ sinϕ 0

0 − sinϕ cosϕ 0

0 0 0 1

1

C

C

C

A

,
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and

L1(χ) :=

0

B

B

B

@

coshχ − sinhχ 0 0

− sinhχ coshχ 0 0

0 0 1 0

0 0 0 1

1

C

C

C

A

, L2(χ) :=

0

B

B

B

@

coshχ 0 − sinhχ 0

0 1 0 0

− sinhχ 0 coshχ 0

0 0 0 1

1

C

C

C

A

,

L3(χ) :=

0

B

B

B

@

coshχ 0 0 − sinhχ

0 1 0 0

0 0 1 0

− sinhχ 0 0 coshχ

1

C

C

C

A

,

For example, Fig. 18.4(a) and (b) corresponds to G = R3(ϕ) and G = L1(χ),
respectively. The elements of the Lie group SO↑(1, 3) are finite products of the
matrices Rj(ϕ), Lk(ϕ) with j, k = 1, 2, 3.

Infinitesimal Lorentz transformations and the Lie algebra o(1, 3). We
set Aj := −R′

j(0) and Bj := −L′
j(0), j = 1, 2, 3. Hence

A1 :=

0

B

B

B

@

0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

1

C

C

C

A

, A2 :=

0

B

B

B

@

0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0

1

C

C

C

A

,

A3 :=

0

B

B

B

@

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

1

C

C

C

A

,

and

B1 :=

0

B

B

B

@

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 0

1

C

C

C

A

, B2 :=

0

B

B

B

@

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

1

C

C

C

A

,

B3 :=

0

B

B

B

@

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

1

C

C

C

A

.

We have the following commutation relations

[A1, A2]− = A3, [B1, B2]− = −A3, (18.20)

and

[A1, B1]− = 0, [A1, B2]− = B3, [A1, B3]− = −B2 (18.21)

together with all the commutation relations which are obtained from this by using
the cyclic permutations 1 → 2 → 3 → 1.

The six matrices A1, A2, A3, B1, B2, B3 are the basis of a real 6-dimensional
Lie algebra which is the Lie algebra to the Lie group SO↑(1, 3).
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Since the construction of the Lie algebra of a Lie group only uses the component of
the unit element, the Lie algebra so↑(1, 3) of SO↑(1, 3) coincides with the Lie algebra
o(1, 3) of the Lorentz group O(1, 3). This Lie algebra is called the real Lorentz Lie
algebra. An elementary computation shows that we have the differential equations

R′
j(ϕ) = −AjRj(ϕ), Rj(0) = I, L′

j(χ) = −BjLj(χ), Lj(0) = I, j = 1, 2, 3.

These equations have the unique solution

Rj(ϕ) = e−ϕAj , ϕ ∈ R Lj(χ) = e−χBj , χ ∈ R.

The real Lie algebra sl(2,C). The real Lie algebra sl(2,C) consists of all the
complex traceless (2 × 2)-matrices equipped with the Lie product

[C,D]− := CD −DC.

If A ∈ sl(2,C), then we set

a := 1
2
(A−A†), b := 1

2
(A+A†).

That is, the traceless matrix a (resp. b) is skew-adjoint (resp. self-adjoint). The
Pauli matrices

σ1 =

 

0 1

1 0

!

, σ2 =

 

0 −i

i 0

!

σ3 =

 

1 0

0 −1

!

(18.22)

form a basis of the real linear space of complex traceless self-adjoint (2×2)-matrices.
Furthermore, the matrices iσ1, iσ2, iσ3 form a basis of the real linear space of com-
plex skew-adjoint (2 × 2)-matrices. Thus, the six matrices

aj := − 1
2
iσj , bj := 1

2
σj , j = 1, 2, 3

form a basis of the real 6-dimensional linear space sl(2,C). In addition, the ma-
trices a1, a2, a3, b1, b2, b3 satisfy the same commutation relations as the matrices
A1, A2, A3, B1, B2, B3. For example,

[a1, a2]− = a3, [b1, b2]− = −b3,

and [a1, b1]− = 0, [a1, b2]− = b3, [a1, b3]− = −b2. This tells us that the map
aj �→ Aj , bj �→ Bj , j = 1, 2, 3, yields the real Lie algebra isomorphism

so↑(1, 3)  sl(2,C). (18.23)

The complex Lie algebra slC(2,C). The complex Lie algebra slC(2,C) con-
sists of all the complex traceless (2 × 2)-matrices. Every matrix a ∈ sl(2, C) is a
real linear combination of the matrices iσj , σj , j = 1, 2, 3. Consequently, the matrix
can be represented as a complex linear combination of the matrices iσj , j = 1, 2, 3.
Hence the matrices a1, a2, a3 form a basis of slC(2,C) with the Lie products,

[a1, a2]− = a3, [a2, a3]− = a1, [a3, a1]− = a1. (18.24)
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18.3.2 The Lie Algebra p(1, 3) of the Poincaré Group P (1, 3)

The Poincaré group P (1, 3) is the basic symmetry group of relativistic
quantum field theory.

Folklore

The semidirect product P (1, 3) = O(1, 3) � R
4. We want to study the Poincaré

transformation x �→ x′ from R
4 to R

4 given by

x′ = Gx+ a, x ∈ R
4. (18.25)

This means that we first perform a Lorentz transformation x �→ Gx and then a
space-time translation y �→ y + a. Here,

x =

0

B

B

B

@

x0

x1

x2

x3

1

C

C

C

A

, x′ =

0

B

B

B

@

x0′

x1′

x2′

x3′

1

C

C

C

A

, a =

0

B

B

B

@

a0

a1

a2

a3

1

C

C

C

A

,

and the real (4 × 4)-matrix G is an element of the Lorentz matrix group O(1, 3).
The composition of two Poincaré transformations yields

x′′ = G′x′ + a′ = G′(Gx+ a) + a′ = G′Gx+ (G′a+ a′).

If we denote the Poincaré transformation (18.25) by the symbol (G, a), then we get
the product

(G′, a′)(G, a) = (G′G,G′a+ a′). (18.26)

For example, (I, 0)(G, a) = (I, 0). Thus, (I, 0) is the unit element, and

(G−1,−a)(G, a) = (I, 0)

tells us that (G, a)−1 = (G−1,−a). This corresponds to the so-called semidirect
product O(1, 3) � R

4.

Proposition 18.3 The Poincaré group P (1, 3) is isomorphic to a subgroup of the
matrix group GL(5,R) which consists of all the matrices

 

G a
0 1

!

, G ∈ O(1, 3), a ∈ R
4. (18.27)

Proof. We write the Poincaré transformation (18.25) as

 

x′

1

!

=

 

G a
0 1

! 

x

1

!

. (18.28)

The matrix product yields
 

G′ a′

0 1

! 

G a
0 1

!

=

 

G′G G′a+ a′

0 1

!

which corresponds to (18.26). �
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The Poincaré group is the symmetry group of relativistic quantum field
theory.

Important subgroups of the Poincaré group. Let us consider special cases
of the matrices (18.27).

(i) Lorentz group: The group O(1, 3) consists of all the real (5×5)-matrices (18.27)
with G ∈ O(1, 3) and a = 0. We have the group isomorphism O(1, 3)  O(1, 3).

(ii) The proper Lorentz group: The group SO(1, 3) consists of all the matrices
(18.27) with G ∈ SO(1, 3) and a = 0, that is, G ∈ O(1, 3) and detG = 1. We
have the group isomorphism SO(1, 3)  SO(1, 3).

(iii) The proper orthochronous Lorentz group: The group SO↑(1, 3) consists of all
the matrices (18.27) with G ∈ SO↑(1, 3) and a = 0, that is, SO↑(1, 3) is the
component of the unit element in SO(1, 3). We have the group isomorphism

SO↑(1, 3)  SO↑(1, 3).
(iv) The group of space-time translations: The group T (R4) consists of all the

matrices (18.27) with G = I and

a = a0e0 + a1e1 + a2e2 + a3e3, a0, a1, a2, a3 ∈ R.

Here, we set

e0 :=

0

B

B

B

@

1

0

0

0

1

C

C

C

A

, e1 :=

0

B

B

B

@

0

1

0

0

1

C

C

C

A

, e2 :=

0

B

B

B

@

0

0

1

0

1

C

C

C

A

, e3 :=

0

B

B

B

@

0

0

0

1

1

C

C

C

A

.

We have the additive group isomorphism T (R4)  R
4.

(v) The group of space translations: The group T (R3) consists of all the elements
of T (R4) with a0 = 0. We have the additive group isomorphism T (R3)  R

3.
(vi) The group of time translations: The group T (R) consists of all the elements

of T (R4) with a1 = a2 = a3 = 0. We have the additive group isomorphism
T (R)  R.

(vii) The space reflection group (or the parity group): The group R(R3) consists of
all the matrices (18.27) with G = I,R− and a = 0.5 We have the multiplicative
group isomorphism R(R3)  {1,−1}.

(viii) The time reflection group: The group R(R) consists of all the matrices (18.27)
with G = I, T− and a = 0. We have the multiplicative group isomorphism
R(R)  {1,−1}.
The Poincaré algebra p(1, 3). Each transformation of the Poincaré group

P (1, 3) can be represented as a product of finitely many matrices of the form

 

eϕjAj 0

0 1

!

,

 

eχjBj 0

0 1

!

,

 

I aμeμ
0 1

!

,

 

R− 0

0 1

!

,

 

T− 0

0 1

!

with real parameters ϕj , χj , a
μ, and the indices j = 1, 2, 3, μ = 0, 1, 2, 3. Lineariza-

tion at the unit element yields the following matrices:

Aj :=

 

Aj 0

0 0

!

, Bj :=

 

Bj 0

0 0

!

, Cμ :=

 

0 eμ
0 0

!

, j = 1, 2, 3, μ = 0, 1, 2, 3.

5 The definition of the reflection matrices R− and T− can be found in (18.18) on
page 917.
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Explicitly, the elements A of the Poincaré group P (1, 3) in a sufficiently small

neighborhood of the unit element I =

 

I 0

0 1

!

can be represented as

A = I + ϕjAj + χjBj + aμCμ + . . .

Here, the dots stand for terms of higher order with respect to the real parame-
ters ϕj , χ,aμ. Let us study the commutation relations (Lie products). First of all
we obtain the same commutation relations as for the real Lorentz algebra o(1, 3),
namely,

[A1,A2]− = A3, [B1,B2]− = −A3,

[A1,B1]− = 0, [A1,B2]− = B3, [A1,B3]− = −B2.

Furthermore, [Cμ, Cν ]− = 0 for all μ, ν = 1, 2, 3, 4, and

[A1, C1]− = [A1, C0]− = 0, [A1, C2]− = C3, [A1, C3]− = −C2,

[B1, C2]− = [B1, C3]− = 0, [B1, C1]− = C0, [B1, C0]− = C1.

The remaining commutation rules are obtained by using the cyclic permutations
1 �→ 2 �→ 3 �→ 1. For example,

[B1, C1]− =

 

B1 0

0 0

! 

0 e1
0 0

!

−
 

0 e1
0 0

! 

B1 0

0 0

!

=

 

0 B1e1
0 0

!

=

 

0 e0
0 0

!

= C0.

Summarizing, we get the following:

The real linear hull of the real (5 × 5)-matrices

A1,A2,A3; B1,B2,B3; C0, C1, C2, C3 (18.29)

forms a real 10-dimensional Lie algebra called the Poincaré algebra p(1, 3).

The matrices (18.29) correspond to infinitesimal rotations, infinitesimal Lorentz
boosts, and infinitesimal space-time translations. In terms of semidirect products,
p(1, 3) = o(1, 3) � R

4.
The complexified Poincaré algebra C ⊗ p(1, 3). This 10-dimensional com-

plex Lie algebra consists of all the complex linear combinations of the symbols

1 ⊗Aj , 1 ⊗ Bj , 1 ⊗ Cμ, j = 1, 2, 3, μ = 0, 1, 2, 3.

18.4 The Minkowski Space M4

18.4.1 Pseudo-Orthonormal Systems and Inertial Systems

One passes from the Euclidean space E3 to the Minkowski space M4 by
replacing orthonormal basis systems by pseudo-orthonormal basis systems.

Folklore
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Indefinite Hilbert space and its signature. By definition, the crucial Minkowski
space M4 is a real 4-dimensional linear space equipped with the structure of an in-
definite Hilbert space of signature (1, 3). Explicitly, this means that there exists a
bilinear map

g : M4 ×M4 → R

with the property that the space M4 has a basis e0, e1, e2, e3 such that

g(eα, eβ) = ηαβ , α, β = 0, 1, 2, 3. (18.30)

Equivalently,
g = ηαβ dx

α ⊗ dxβ .
Here, we use the Minkowski matrix

η = (ηαβ) =

0

B

B

B

@

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

1

C

C

C

A

, α, β = 0, 1, 2, 3. (18.31)

By definition, a basis e0, e1, e2, e3 of M4 is called a pseudo-orthonormal basis iff
the condition (18.30) is satisfied. The symbol ημν is called the Minkowski symbol.6

We also introduce the inverse matrix

η−1 = (ηαβ),

that is, ηαβ = ηαβ for all α, β = 0, 1, 2, 3. The distinction between upper and lower
indices is crucial for constructing relativistic invariants.

In order to equip the Minkowski space with an orientation, we fix a specific
pseudo-orthonormal basis as a positive basis. The physical meaning will be discussed
below. The map g is called the metric tensor of the Minkowski space.

The Lorentz group L(M4). By definition, the set L(M4) consists of all the
linear operators G : M4 →M4 with

g(Gx,Gy) = g(x, y) for all x, y ∈M4.

This is a group called the Lorentz group. We have the Lie group isomorphism

L(M4)  O(1, 3) (18.32)

between the Lorentz group L(M4) (acting on the Minkowski space M4) and the
Lorentz matrix group O(1, 3). The Lie group isomorphism (18.32), G �→ G, assigns
to any Lorentz transformation G : M4 → M4 the matrix G with respect to a fixed
pseudo-orthonormal basis; that is,

Geα = Gβ
αeβ , α = 0, 1, 2, 3.

The Poincaré group P (M4) consists of all the transformations x �→ y given by

y = Gx+ x0, for all x ∈M4

6 Our sign convention of η corresponds to the convention used by Einstein. This
convention is motivated by the fact that the proper time of a massive particle
is positive. Most physicists use this convention in elementary particle physics.
From the mathematical point of view, one would prefer the replacement η ⇒ −η.
Then, g is an extension of the Euclidean metric tensor.



18.4 The Minkowski Space M4 925

where G ∈ L(M4) and x0 ∈M4. This means that

P (M4) := L(M4) � T (M4).

Thus, the Poincaré group is the semidirect product of the Lorentz group L(M4)
with the translation group T (M4) given by the translations x �→ x + x0 of the
Minkowski space M4.

The Poincaré group P (M4) generalizes the Euclidean group of motions on
the Euclidean space E3 to the Minkowski space M4.

The Poincaré group P (M4) is isomorphic to the group O(1, 3) � R
4 given by the

matrix transformations x �→ y from R
4 to R

4 where

y = Gx+ x0

and G ∈ O(1, 3), x0 ∈ R
4. The Poincaré group is a 10-dimensional Lie group.

In particular, the transformation matrix G from (18.5) corresponding to the
special Lorentz transformation is an element of the group SO↑(1, 3). The matrix
G is an element of the group O(1, 3) iff it is the finite product of the following
matrices:

• special Lorentz transformation (18.5),
• rotation of the spatial coordinates x, y, z,
• space reflection x′ = −x, y′ = −y, z′ = −z,
• time reflection t′ = −t.
Moreover, the matrix G is an element of the group SO↑(1, 3) iff the space reflections
and the time reflections drop out.

Inertial system and pseudo-orthonormal basis. In terms of mathematics,
precisely every pseudo-orthonormal basis e0, e1, e2, e3 of the Minkowski space M4

represents an inertial system. In this case, every point x ∈ M4 can be uniquely
represented as

x = xαeα = x0e0 + x1e1 + x2e2 + x3e3.

Here, x1 = x, x2 = y, x3 = z are (right-handed or left-handed) Cartesian coordi-
nates of an inertial system Σ. Moreover, we have

x0 = ct

where t is the time observed in Σ, and c is the velocity of light in a vacuum measured
in Σ.

Transformation of inertial systems in Einstein’s theory of special rel-
ativity. Let e0, e1, e2, e3 and e0′ , e1′ , e2′ , e3′ be two pseudo-orthonormal basis sys-
tems of the Minkowski space M4. The points x of M4 are called events. They are
characterized by space and time coordinates. The transformation of the coordinates
is given by

x = xαeα = xα
′
eα′ .

Using transformation matrices, we get

0

B

B

B

@

x0′

x1′

x2′

x3′

1

C

C

C

A

= G

0

B

B

B

@

x0

x1

x2

x3

1

C

C

C

A

,

0

B

B

B

@

e0′

e1′

e2′

e3′

1

C

C

C

A

= H

0

B

B

B

@

e0

e1

e2

e3

1

C

C

C

A

, H = (Gd)−1. (18.33)

Proposition 18.4 If the system e0, e1, e2, e3 is a pseudo-orthonormal basis ofM4,
then e0′ , e1′ , e2′ , e3′ is a pseudo-orthonormal basis of M4 iff G ∈ O(1, 3).



926 18. Inertial Systems and Einstein’s Principle of Special Relativity

Proof. For a general basis, we have eα′ = Hα
α′eα. Hence

xα
′
= Gα′

α x
α

together with Hα
α′Gα′

β = δαβ . This implies

g(eα′ , eβ′) = Hα
α′Hβ

β′ g(eα, eβ).

The basis e0′ , e1′ , e2′ , e3′ is a pseudo-orthonormal system iff ηα′β′ = Hα
α′Hβ

β′ηαβ .

This is equivalent to the matrix equation

η = HηHd.

In turn, this is equivalent to GdηG = η, that is, G ∈ O(1, 3). This is equivalent to
H ∈ O(1, 3). �

18.4.2 Orientation

Let us fix the pseudo-orthonormal basis e0, e1, e2, e3 of M4. By definition, the
pseudo-orthonormal basis e0′ , e1′ , e2′ , e3′ is called positively oriented iff G ∈ O(1, 3)
and detG = 1, that is,

G ∈ SO(1, 3).

This is equivalent to H ∈ SO(1, 3). In terms of physics, the reference frame
e0, e1, e2, e3 corresponds to a right-handed Cartesian (x, y, z)-system, and the time
is positively oriented in the usual sense, that is, time t flows from past to future.
The transformation

x �→ −x, y �→ −y, z �→ −z, t �→ −t

combines the space reflection with a time reflection. This transformation does not
change the orientation of the coordinate system on M

4, since the determinant of
the transformation matrix diag (−1,−1,−1,−1) is equal to one.

We say that the inertial system is strictly positively oriented iff the Cartesian
(x, y, z)-coordinate system is positively oriented (i.e., it is right handed) and the
time is positively oriented. The pseudo-orthonormal basis e0′ , e1′ , e2′ , e3′ is strictly
positively oriented iff G ∈ SO↑(1, 3).

18.4.3 Proper Time and the Twin Paradox

Proper time. Following Minkowski, Einstein’s principle of special relativity reads
as follows in terms of mathematics:

In the theory of special relativity, physical quantities are geometric invari-
ants of the Minkowski space M4.

Since the symmetry group of the Minkowski space is the Poincaré group, physical
quantities are invariants of the Poincaré group. As an example, let us consider the
proper time. Let

x = x(σ), σ0 ≤ σ ≤ σ1 (18.34)

be a smooth curve on the Minkowski space M4 such that g(ẋ(σ), ẋ(σ)) > 0 for all
σ ∈ [σ0, σ1]. The arc length of the curve is defined by
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s :=

Z σ1

σ0

p

g(ẋ(σ), ẋ(σ)) dσ. (18.35)

In addition, the so-called proper time τ is defined by

τ :=
s

c
.

To discuss the physical meaning of τ , choose a fixed inertial system described by
the pseudo-orthonormal basis e0, e1, e2, e3. Then x(σ) = xα(σ)eα. Hence

g(ẋ(σ), ẋ(σ)) = ẋα(σ)ẋβ(σ) · g(eα, eβ) = ẋα(σ)ẋβ(σ) · ηαβ .

This yields

τ =
1

c

Z σ1

σ0

p

ẋα(σ)ẋβ(σ) ηαβ dσ.

If we choose the parameter σ = t, then

τ =

Z t1

t0

r

1 − ẋ2(t) + ẏ(t)2 + ż(t)2

c2
dt. (18.36)

Physicists postulate that the proper time τ is the time shown by an atomic clock
which moves along the trajectory x = x(t), y = y(t), z = z(t), t0 ≤ t ≤ t1, in an
inertial system.

The twin paradox. Suppose that at time t = t0 and at the origin O of an
inertial system the twins T1 and T2 are born. Shortly thereafter, T2 is brought
to a spaceship and begins a journey through the universe while T1 remains at O.
After several years, T2 returns to T1 at time t = t1. Both are surprised that T2 is
much younger than T1. This fact can be easily explained if one assumes that the
biological clock of the twins shows the proper time. For T2, it follows from (18.36)
that τ2 < t1 − t0, whereas for T1 we get τ1 = t1 − t0, since ẋ(t) = ẏ(t) = ż(t) ≡ 0.

18.4.4 The Free Relativistic Particle and the Energy-Mass
Equivalence

We want to motivate the fundamental Einstein relation

E2 = m2
0c

4 + c2p2 (18.37)

for the energy E of a free particle with positive rest mass m0 moving in an inertial
system with momentum vector p. If the particle rests, then p = 0. Hence

E = m0c
2. (18.38)

This is Einstein’s famous formula from 1905, stating the equivalence between mass
and energy. The energy production of all stars is based upon (18.38). For example,
during the synthesis of helium from hydrogen in the sun, mass is transformed into
energy. Formula (18.38) is a triumph for the mental ability of man; in a frightening
way it also allows the self-destruction of mankind by atomic bombs.

In order to obtain (18.37), we use the variational principle of critical arc length

−m0c

Z σ1

σ0

p

g(ẋ(σ), ẋ(σ)) dσ = critical!, x(σ0) = a, x(σ1) = b. (18.39)
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We are looking for a smooth curve x = x(σ), σ0 ≤ σ ≤ σ1, with fixed end points a
and b. In addition, we demand that g(ẋ(σ), ẋ(σ)) > 0 along the curve. This means
that the speed of the particle is less than the speed of light. We add the factor
−m0c in order to get below the right approximation of the classical principle of
critical action. In a fixed inertial system, the variational principle reads as

Z t1

t0

L(ẋ(t)) dt = critical!, x(t0) = a, x(t1) = b (18.40)

with the Lagrangian

L(ẋ) := −m0c
2

r

1 − ẋ2

c2
.

This follows as in (18.36) by setting x(t) = x(t)e1 + y(t)e2 + z(t)e3.
The Lagrangian approach. Every solution of (18.40) satisfies the Euler–

Lagrange equation of motion
d

dt
Lẋ = Lx.

Noting that Lx = 0, we get

d

dt

`

m(t)ẋ(t)
´

= 0, t0 ≤ t ≤ t1

with the mass function

m(t) =
m0

p

1 − ẋ(t)2/c2
. (18.41)

This tells us that the mass m(t) of the free particle depends on its velocity, in
contrast to classical mechanics.

The Hamiltonian approach. Introducing the momentum vector

p := Lẋ = mẋ

and the Hamiltonian

H = ẋp − L = mc2 =
q

m2
0c

4 + c2p2,

we get the Hamiltonian equations of motion

ṗ(t) = −Hẋ(p(t)) ≡ 0, ẋ(t) = Hp(p(t)),

and the conservation law

H(p(t)) = const, t0 ≤ t ≤ t1.

Note that, in the setting of the Hamiltonian approach to mechanics, the Hamilto-
nian function H always represents the energy of the particle. This way, we get the
claim (18.37).

The classical approximation. If the velocity of the particle is small compared
with the velocity of light, that is, |ẋ(t)/c| & 1, then7

L = −m0c
2

„

1 − ẋ(t)2

2c2
+ . . .

«

= −m0c
2 + 1

2
m0ẋ(t)2 + . . .

This is approximately the classical Lagrangian of a free particle, up to an additive
constant, −m0c

2 (negative rest energy), which does not influence the solutions of
the variational problem (18.40).

7 Note that
√

1 − α = 1 − 1
2
α+O(α2), α→ 0.
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18.4.5 The Photon

If the rest mass m0 of the particle is equal to zero, then the energy equation (18.37)
passes over to the limit E2 = c2p2. Hence

E = c|p|.
In 1905, Einstein postulated that light in a vacuum consists of particles with the
energy

E = hν

where ν is the frequency of the light, and h is the Planck quantum of action. Noting
that c = λν, we get

|p| =
h

λ
for the momentum of the light particle where λ is the wave length of the light.
Einstein used this light particle hypothesis in order to derive the Planck radiation
law via statistical physics and to explain the photoelectric effect (see Sect. 1.1 of
Vol. I). In 1921 Einstein was awarded the Nobel prize in physics for his services to
Theoretical Physics, and especially for his discovery of the law of the photoelectric
effect. The name photon was coined by the chemical physicist Lewis in 1926.

18.5 The Minkowski Manifold M
4

In Euclidean geometry, one uses both the Euclidean space E3 (real 3-dimensional
Hilbert space) and the Euclidean manifold E3 (real 3-dimensional manifold). The
two notions are closely related to each other. Similarly, in Einstein’s theory of
special relativity we use the Minkowski space M4 (real 4-dimensional indefinite
Hilbert space) and the Minkowski manifold M4 (real 4-dimensional manifold).

Let us discuss how to introduce the Minkowski manifold M4. We are given the
Minkowski space M4. Choose a fixed pseudo-orthonormal basis e+

0 , e
+
1 , e

+
2 , e

+
3 . For

all elements x of M4, we have the unique decomposition

x = xαe+
α .

By definition, the points P of M4 are precisely the tuples

(x0, x1, x2, x3)

of the real numbers x0, x1, x2, x3.

• A curve on the Minkowski manifold M4 passing through the point P0 is given by
the smooth map

σ �→ (x0(σ), x1(σ), x2(σ), x3(σ))

defined on the open interval ]−σ1, σ1[ with σ1 > 0, and xα(0) = xα0 , α = 0, 1, 2, 3.
• The tangent space TP0M4 of the Minkowski manifold M4 at the point P0 consists

of all the possible velocity vectors

v = (ẋ0(0), ẋ1(0), ẋ2(0), ẋ3(0)).

The tangent space TP0M4 is a real 4-dimensional space which can be equipped
with the structure of an indefinite Hilbert space of signature (1, 3). Explicitly,
we define gP0(v, w) := vαwβ ηαβ for all v, w ∈ TP0M4.

Physical interpretation. Every point P of the Minkowski manifold represents
an event characterized by the local coordinates (x0, x1, x2, x3) measured in the fixed
inertial system e+

0 , e
+
1 , e

+
2 , e

+
3 . Now fix the point P0. Choose a pseudo-orthonormal

basis e0, e1, e2, e3 of the tangent space TP0M4. This represents an inertial system
which assigns to the event P0 the local coordinate (0, 0, 0, 0).
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Fig. 18.5. Causality

18.5.1 Causality and the Maximal Signal Velocity

Choose a strictly positively oriented inertial system with the coordinates x, y, z, t.
Fix the real number V such that −c < V < c. The equation

x = V t, y = z = 0

describes the motion of a particle with velocity V (Fig. 18.5). Moreover, the equation

x = ct

or x = −ct describes the motion of a photon with the speed of light c in a vacuum.
In 1905, Einstein postulated the following for inertial systems:

The speed of massive particles is always less than the speed of light.
Physical signals can travel at most with the velocity of light c.

In science fiction, there appear frequently so-called tachyons. Such particles travel
faster than light. So far there is no experimental evidence for the existence of such
particles.8

Classification of pairs of events. For two points x and y of the Minkowski
space M4, we define the following:

• The pair x, y of events is time-like iff g(x− y, x− y) > 0.
• The pair x, y of events is space-like iff g(x− y, x− y) < 0.
• The pair x, y of events is light-like iff g(x− y, x− y) = 0.

In terms of a fixed inertial system, we get

g(x− y, x− y) = (x0 − y0)2 − (x1 − y1)2 − (x2 − y2)2 − (x3 − y3)2

where x0, x1, x2, x3 and y0, y1, y2, y3 are the coordinates of x and y, respectively.
Examples. (i) Time-like events: If

x0 = ct1, y
0 = ct2; x1 = y1, x2 = y2, x3 = y3, t1 �= t2,

then the events x and y take place at the same position, but at different moments.
Thus,

g(x− y, x− y) = c2(t1 − t2)2 > 0,

that is, the pair x, y of events is time-like.
(ii) Space-like events: If

8 For example, see R. Hughes and G. Stephenson, Against tachyonic neutrinos,
Phys. Lett. B244 (1990), 95–100.
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Fig. 18.6. Light cone

x0 = y0 = ct, x1 �= y1,

then the events x and y take place at the same time, but at different positions.
Thus,

g(x− y, x− y) = −(x1 − y1)2 − (x2 − y2)2 − (x3 − y3)2 < 0,

that is, the pair x, y of events is space-like.
(iii) Light-like events: Fix the velocity V. If

x0 = x1 = x2 = x3 = 0, y0 = ct, y1 = V t, y2 = y3 = 0, t > 0,

then the events x and y correspond to the beginning and the end of the motion of
a particle with the velocity V . Then

g(x− y, x− y) = (c2 − V 2)t2.

Thus, the following hold:

• The pair x, y of events is light-like iff |V | = c (light ray).
• The pair x, y is time-like iff |V | < c (massive particle).
• The pair x, y of events is space-like iff |V | > c (tachyon).

Let us introduce the following sets (Fig. 18.6):

• C := {(ct, x1, x2, x3) ∈ R
4 : c2t2 − (x1)2 − (x2)2 − (x3)2 − (x3)2 = 0} (light cone);

• C↑ := {(ct, x1, x2, x3) ∈ C : t ≥ 0} (forward light cone);
• C↑ := {(ct, x1, x2, x3) ∈ R

4 : c2t2 − (x1)2 − (x2)2 − (x3)2 ≥ 0, t ≥ 0} (causality
cone).

Obviously, the forward light cone C↑ is the boundary of the causality cone C↑.
Einstein’s principle of causality. We postulate the following:

If the pair x, y of events is space-like, then there exists no causal connection
between x and y.

Intuitively, this is motivated by the fact that the maximal velocity of physical signals
is the velocity c of light.

18.5.2 Hodge Duality

Let us choose a strictly positively oriented inertial system with the right-handed
Cartesian (x, y, z)-coordinate system. Let x0 := ct. With respect to the metric
tensorial family ηαβ , the Hodge star operator (see page 470) reads as follows:

(i) volume form: υ := dx0 ∧ dx ∧ dy ∧ dz, and ∗1 = υ, ∗υ = −1.
(ii) 1-forms: ∗dx0 = dx ∧ dy ∧ dz, and
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∗dx = dx0 ∧ dy ∧ dz, ∗dy = dx0 ∧ dz ∧ dx, ∗dz = dx0 ∧ dx ∧ dy.

(iii) 2-forms: ∗(dx ∧ dy) = dx0 ∧ dz, and

∗(dy ∧ dz) = dx0 ∧ dx, ∗(dz ∧ dx) = dx0 ∧ dy,

as well as ∗(dx0 ∧ dz) = −dx ∧ dy, and

∗ (dx0 ∧ dx) = −dy ∧ dz, ∗(dx0 ∧ dy) = −dz ∧ dx. (18.42)

(iv) 3-forms: ∗(dx ∧ dy ∧ dz) = dx0, ∗(dx0 ∧ dy ∧ dz) = dx, and

∗(dx0 ∧ dz ∧ dx) = dy, ∗(dx0 ∧ dx ∧ dy) = dz.

These formulas are invariant under the cyclic permutation dx �→ dy �→ dz �→ dx
together with dx0 �→ dx0.

For all the differential k-forms ω, k = 0, 1, 2, 3, on the Minkowski manifold M4,
we define the Hodge codifferential

d∗ω := (−1)k ∗−1 d ∗ ω.

Then, we have the following relations:

• ∗ ∗ ω = −(−1)kω (duality relation), and hence
• ∗−1ω = −(−1)k ∗ ω,
• d∗ω = (−1)k ∗ d ∗ ω,
• ddω = 0 (Poincaré’s cohomology rule),
• d∗d∗ω = 0 Hodge’s homology rule).

Note that d∗d∗ω = (−1)k−1(−1)k∗−1d(∗∗−1)d∗ω = −∗−1dd(∗ω) = 0. Applications
to the Maxwell equations will be considered in Sect. 19.3 on page 960.

18.5.3 Arbitrary Local Coordinates

Let O and O′ be nonempty open subsets of R
4, and let

f : O → O′

be a diffeomorphism (i.e., f is bijective and both f and f−1 are smooth). Let
x0 := ct, x1 := x, x2 := y, x3 := z be the coordinates of a strictly positively oriented
inertial system. The transformation

xα
′
= fα

′
(x0, x1, x2, x3), α′ = 0′, 1′, 2′, 3′

introduces new local coordinates on the Minkowski manifold M
4. This transforma-

tion is orientation-preserving iff the functional determinant det(f ′) is positive on
O, that is,

∂(x0′, x1′ , x2′ , x3′)

∂(x0, x1, x2, x3)
(x) > 0 for all x ∈ O.

We say that the transformation preserves the time orientation iff

∂x0′

∂x0
(x) > 0 for all x ∈ O.
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According to Theorem 8.2 on page 458, we construct the metric tensorial family
gαβ by setting

gα′β′ :=
∂xα

∂xα′
∂xβ

∂xβ′ ηαβ , α′, β′ = 0′, 1′, 2′, 3′.

On inertial systems, we have gαβ = ηαβ for all indices. Using the metric tensorial
family gαβ , we can apply the index principle from Sect. 8.3 on page 443 in order to
formulate relativistically invariant equations.

Problems

18.1 The Lorentz boost. Prove the boost relation (18.4) on page 909.
Solution: Using

x′ = αx+ βt, t′ = γx+ δt

and noting that x = ct implies x′ = ct′, we get the key relation

cα+ β = c2γ + cδ.

By (H3), x = V t implies x′ = 0 for all t′. Hence

αV + β = 0.

The inverse transformation reads as

x =
δx′ − βt′
αδ − βγ , t =

αt′ − γx′
αδ − βγ .

By (H5), x = 0, t ∈ R yields x′ = −V t′, t′ ∈ R. Hence δV +β = 0. This implies

β = −αV, δ = α, γ = −αV/c2, αδ − βγ = α2(1 − V 2/c2).

By (H4), if x > 0, t = 0, then x′ > 0. Thus, α > 0. Summarizing,

x′ = α(x− V t), x =
α(x′ + V t′)

αδ − βγ .

Finally, in order to determine the free parameter α, we use (H5), saying that

αδ − βγ = 1. Hence α = 1/
p

1 − V 2/c2.
18.2 The structure of the Lorentz matrices. Note that every real (4×4)-matrix can

be written as

G =

 

α ad

b G

!

where α ∈ R, a, b ∈ R
3, and G is a real (3 × 3)-matrix. Show that G ∈ O(1, 3)

iff

α2 = 1 + bdb, GGd = I + aad, Gdb = αa. (18.43)

Solution: Recall that G ∈ O(1, 3) iff GdηG = η. This is equivalent to
 

α bd

a Gd

! 

1 0

0 −I

! 

α ad

b G

!

=

 

α2 − bdb αad − bdG
αa−Gdb aad −GGd

!

=

 

1 0

0 −I

!

.
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18.3 Characterization of Euclidean rotations. Fix e0 := (1, 0, 0, 0, 0)d. Suppose that
G ∈ O(1, 3). Show that

G =

 

1 0

0 G

!

, G ∈ SO(3) iff Ge0 = e0.

Solution: If Ge0 = e0, then b = 0. By (18.43), a = 0 and GdG = I.
18.4 Proof of Proposition 18.2. Solution: Let G ∈ O(1, 3). We already know that

GdηG = η implies detG = ±1. By (18.43), α2 ≥ 1.
(I) We consider first the special case where α ≥ 1, and detG = 1. By (18.43),

α2 − |b|2 = 1.

Thus, there exists a real parameter χ such that α = coshχ and |b| = sinhχ.
Consequently, there exists a rotation R0 such that

R−1
0 b =

0

B

@

− sinhχ

0

0

1

C

A

.

Define

S := L1(−χ)

 

1 0

0 R−1
0

!

G =

0

B

B

B

@

coshχ sinhχ 0 0

sinhχ coshχ 0 0

0 0 1 0

0 0 0 1

1

C

C

C

A

 

coshχ ad

R−1
0 b R−1

0 G

!

.

Hence Se0 = e0. By Problem 18.3, there exists a matrix S0 ∈ SO(3) such that

S =

 

1 0

0 S0

!

.

Noting that L1(−χ)−1 = L1(χ), we get

G =

 

1 0

0 R0

!

L1(χ)

 

1 0

0 S0

!

.

(II) The remaining cases (where α ≥ 1, detG = −1, or α ≤ −1, detG = ±1)
can be reduced to (I) by passing from the matrix G to the matrix M−1G. Here,
M is a reflection.



19. The Relativistic Invariance of the Maxwell
Equations

Maxwell’s work is the most profound and the most fruitful work that
physics has experienced since the time of Newton in the 17th century.

Albert Einstein, 1931
(On the occasion of the 100th anniversary of Maxwell’s birth)

Consider a fixed inertial system. We have to distinguish between

• the Maxwell equations in a vacuum, and
• the Maxwell equations in materials.

The basic quantities are

• the electric vector field E,
• the magnetic vector field B,
• the electric charge density � and
• the electric current density vector J.

Resting electric charges produce electric fields, whereas moving electric charges
(electric currents) produce magnetic fields. The Maxwell equations in a vacuum
describe the interaction between electric charges, electric currents and both electric
and magnetic fields. It is important that there exist electric and magnetic waves in
the absence of electric charges and electric currents. In particular, visible light and
radio waves are electromagnetic waves based on the interaction between electric and
magnetic fields in a vacuum. The quantization of such electromagnetic waves leads
to the concept of the photon predicted by Einstein in 1905. Einstein was awarded
the 1921 Nobel prize in physics for his services to Theoretical Physics, and especially
for his discovery of the law of the photoelectric effect based on the light quantum
(photon) hypothesis. The interaction between electrons, positrons, and photons is
studied in quantum electrodynamics (see Vol. II). Quantum electrodynamics was
independently created by Feynman, Schwinger, and Tomonaga in about 1946 (Nobel
prize in physics in 1965). If a particle with electric charge Q and the rest mass m0

moves with the velocity vector v, then the electromagnetic field E,B exerts the
Lorentz force

F(P ) = QE(P ) +Qv(P ) × B(P ) (19.1)

on the particle at the point P . The relativistic equation of motion of the particle
(e.g., in a particle accelerator) reads as

d

dt

 

m0ẋ(t)
p

1 − ẋ2(t)/c2

!

= QE(x(t), t) +Qẋ(t) × B(x(t), t), t ∈ R (19.2)

where c is the velocity of light in a vacuum. We will use SI physical units (Système
International) (see the Appendix of Vol. I). In this system, the basic physical quan-
tities have the following physical dimensions:

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 20,
© Springer-Verlag Berlin Heidelberg 2011
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• electric current strength: [J]= A (ampere),
• electric charge: [Q] = C= As (coulomb),
• electric current density: [J] = A/m2· s,
• electric field strength: [E]:= N/C (force per electric charge),
• magnetic field strength: [B] = [F]/[Q][v]= N/Am (force per magnetic charge).1

In a thin metallic wire with the small radius r0 of the cross section, we have the
electric current strength

J = |J| · πr20 (electric charge per time). (19.3)

Dividing the force F by volume, we get the force density

f = �E + J × B (19.4)

with J := �v. This chapter is organized as follows:

• In Sect. 19.2, we will start with the Maxwell equations in a vacuum. In terms of
modern mathematics, the Maxwell equations in a vacuum are based on the Hodge
theory for differential forms. This formulation is independent of the system of
reference.

• In technology, materials consist of molecules which generate additional electric
and magnetic fields. In Sect 19.8, the Maxwell equations for materials will be
based on Weyl duality. Here, the electric polarization Pel and the magnetic
polarization (magnetization) M of the materials are described by Weyl fields
(antisymmetric contravariant tensor densities of weight one).

In this connection, we will use the following physical quantities:

• electric dipole moment (electric charge times length): Cm=Asm;
• magnetic dipole moment (magnetic charge times length): Am· m = Am2;
• polarization (electric dipole moment per volume): C/m2=As/m2;
• magnetization (magnetic dipole moment per volume): A/m.

For the polarization Pel and magnetization M of materials in external electric and
magnetic fields, E and B, we have the following constitutive laws:

Pel = Pel(E,B), M = M(E,B).

Details will be studied in Sect. 19.8.

In quantum electrodynamics, the polarization of the vacuum plays a fun-
damental role.

This will be thoroughly studied in Vol. IV (renormalization of the electric charge
of the electron and the anomalous magnetic moment of the electron).

19.1 Historical Background

Oerstedt’s and Faraday’s brilliant discoveries have opened up a new world
of scientific research, whose enchanted gardens will fill us with admiration;
these rich fields can only be conquered under the art of measurement.

Carl Friedrich Gauss, 18362

The legendary father of the sciences, the great Greek philosopher Thales of Mile-
tus (600 B.C.) knew that there are black stones3 which attract iron. Such stones

1 Further material can be found in Sect. 19.9 on page 983.
2 Gauss remarked this during a popular lecture given in 1836. The author took

this quotation from the beautiful book Electrodynamics from Ampère to Einstein
by Olivier Darrigol, Oxford University Press, New York, 2000.

3 Magnetite is a very common iron oxide mineral, Fe3O4.
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Fig. 19.1. The magnetic field of earth

were called magnets. The Greek word μαγ́νητηζ (magnetez) for ‘magnet’ is re-
lated to the Greek word μαγεια (mageia) for ‘magic’. In ancient Greece it was also
known that amber possesses electrostatic properties. The Greek word for amber is
ήλεκτρ (electro). After 1200 A.D. magnetic compasses were used for navigation.
Four hundred years later, in 1600 William Gilbert (1544–1603) wrote the book On
the Magnet, Magnetic Bodies, and the Great Magnet of the Earth (see Fig. 19.1).
Nowadays it is assumed that birds use the magnetic field of the earth for orienting
themselves during bird migration.

19.1.1 The Coulomb Force and the Gauss Law

In a hydrogen atom, the electrostatic attracting Coulomb force between the
proton and the electron is 1039 larger than the corresponding gravitational
force.

Folklore

In 1790, Coulomb formulated the Coulomb law. Consider two particles with electric
charges Q0 and Q located at the points P0 and P , respectively. Then the particle
at the point P0 exerts the electrostatic force F on the particle at the point P (Fig.
19.2). Explicitly,

F(x) =
QQ0

4πε0|x − x0|2
· x − x0

|x − x0|
, x �= x0. (19.5)

This force is repelling (resp. attracting) if QQ0 > 0 (same sign) (resp. QQ0 < 0
(different sign)). The Coulomb force resembles Newton’s gravitational force, but the

Fig. 19.2. The Coulomb force
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Fig. 19.3. Electrostatic Coulomb field

two forces possess different sign. The Newton force between two positive masses is
attracting, whereas the Coulomb force between two positive charges is repelling.

The electric field E of the Coulomb monopole. Define

E(x) :=
F(x)

Q
for all x �= x0. (19.6)

This is called the electric field at the point P (Fig. 19.3). Explicitly,

E(x) :=
Q0

4πε0|x − x0|2
· x − x0

|x − x0|
. (19.7)

In other words, the charged particle at the point P0 generates the electric field E(P )
at the point P .4 The electric field E(x) can be determined by measuring the force

F(x) = QE(x)

which is exerted on a particle located at the point P with electric charge Q. By
Newton’s law ‘actio = reactio’ (in Latin), the charged particle located at the point
P exerts the force

Freactio(x0) =
QQ0

4πε0|x0 − x|2 · x0 − x

|x − x0|
, x �= x0

on the particle at the point P0. The two forces F(x) and Freactio(x0) have the same
strength, but opposite directions. By definition, if the force between the two positive
charges Q and Q0 = Q is equal to 1 N (newton), then the charge Q is equal to 1 C
(coulomb) in the SI system. Explicitly,

ε0 = 8.854 C2/Nm2.

Faraday’s electric field lines. By definition, an electric field line is a curve
such that the electrical field vector is tangential to the curve at all the curve points
(see Fig. 19.3 and Fig. 19.8 on page 946).

The electric Gauss law. Let B
3
R(P0) be a ball of radius R centered at the

point P0 with the boundary S
2
R(P0). Then

ε0

Z

S2
R

(P0)

E(x)n dS = Q0 (19.8)

4 It is convenient to write E(x) instead of E(P ) by using the position vector x
pointing from the origin O to the point P .
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where n denotes the outer normal unit vector of the sphere S
2
R(P0). The integral

relation (19.8) for the electric Coulomb field E from (19.7) is called the Gauss law.
Proof. Noting that n = (x − x0)/|x − x0|, we get

ε0

Z

S2
R

(P0)

En dS =
Q0

4πR2

Z

S2
R

(P0)

dS = Q0.

�

An elementary computation shows that the Coulomb field E from (19.7) satisfies
the two Maxwell equations

div E = 0 and curlE = 0 on E
3 \ {P0}. (19.9)

The proof will be given in Problem 19.1
In 1839, Gauss wrote his paper General theorems on attracting and repelling

forces which are proportional to the inverse of the square of the distance (in Ger-
man). In this paper, Gauss introduced the term potential.5 This paper founded
potential theory as a special field in mathematics.

The Dirac delta distribution. The Gauss law (19.8) describes the singu-
larity of the electric Coulomb field at the point P0 in global terms. In order to
get the corresponding local formulation, we have to use the theory of generalized
functions introduced by Laurent Schwartz in about 1945. Using the Dirac delta
distribution δP0 with support at the point P0, the Coulomb field E satisfies the
following equations in the sense of generalized functions:

ε0 div E = Q0 · δP0 and curlE = 0 on E
3.

Mnemonically, physicists write

ε0 div E(x) = Q0 · δ(x − x0) and curlE(x) = 0 on E
3.

The proof will be given in Problem 19.2.
The topological invariance of the Gauss integral. Let M be a com-

pact, 3-dimensional, positively oriented submanifold of E
3 with coherently oriented

boundary ∂M; let P0 be an interior point of M. Then

ε0

Z

∂M
En dS = Q0. (19.10)

This means that the domain of integration of the Gauss integral (19.10) can be
deformed without changing the value of the integral.
Proof. Set N := M \ B

3
R(P0). It follows from div E = 0 on E

3 \ {0} and the
Gauss–Ostrogradski integral theorem that

0 =

Z

N
div E d3x =

Z

∂N
En dS =

Z

∂M
En dS −

Z

S2
R

(P0)

En dS.

Now use (19.8). Here, we assume that the radius R is sufficiently small. �

The electrostatic potential and the voltage. We want to translate the idea
of potential energy in Newton’s mechanics to electrostatics. Define

U(x) :=
Q0

|x − x0|
, x �= x0.

5 See C. F. Gauß, Collected Works with commentaries, Vol. 5, pp. 195–242,
Göttingen 1863/1933.
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Then the Coulomb field can be written as

E = −gradU.

For the Coulomb force, we get F = −grad(QU). Thus, the Coulomb force has
the potential energy QU . The function U is called the electrostatic potential of the
electric Coulomb field. The path-independent integral

W =

Z P

P0

F(x)dx

equals the work done by the electric Coulomb field E by moving a particle of electric
charge Q from the point P0 to the point P . We get

W = −
Z P

P0

grad(QU) dx = Q · (U(P0) − U(P )).

The quantity

V := U(P ) − U(P0) (19.11)

is called the voltage of the oriented segment (P0P ). An electron with the charge
−e has the potential energy W = eV. In the SI system, if the voltage V is equal to
one volt, then the electron has the potential energy

W = eV = 1.602 · 10−19J (19.12)

where J=Nm (joule). The physical unit eV is called electron volt. This unit is used
in accelerator physics. The rest mass of an electron is approximately equal to

0.5 MeV = 500 000 eV.

The rest mass of a proton is approximately equal to 1 GeV = 109 eV. The vector
bosons W+,W−, Z have a rest energy of approximately 100 GeV. The LHC (Large
Hadron Collider) at CERN (Geneva, Switzerland) will reach particle energies of

14 TeV = 14 000 GeV.

The symbols MeV (resp. GeV, TeV) stand for mega (resp. giga, tera) electron volt.6

Gauge transformation. Let U0 be a real number. The transformation

U+(P ) = U(P ) + U0

from U to U+ is called a gauge transformation of the electrostatic potential U . By
(19.11),

V = U(P ) − U(P0) = U+(P ) − U+(P0).

This means that the voltage is gauge invariant, whereas the electrostatic potential is
not gauge invariant. Physical quantities have to be gauge invariant. Consequently,
the voltage has a physical meaning, whereas the electrostatic potential has no imme-
diate physical meaning. In the SI system, voltage is measured in volt (see (19.22)).
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Fig. 19.4. The Ampère force F

19.1.2 The Ampère Force and the Ampère Law

In 1819, the Danish physicist Oerstedt noticed that an electric current is able to
move a magnetic needle. In 1820, Ampère, Biot, and Savart began research on this
phenomenon in Paris. The strongest results were obtained by Ampère. In 1826,
Ampére published his treatise entitled Memoir on the Mathematical Theory of Elec-
trodynamic Phenomena, Uniquely Deduced from Experience (in French). Interest-
ingly enough, Ampère did not get any school education. At the age of 13, Ampère
began to read the volumes of the French Encyclopedia edited by the philosopher
Diderot (1713–1784) and the mathematician d’Alembert (1717–1783).7 The con-
temporaries called Ampère a universal genius.

The Ampère force law. Consider the situation depicted in Fig. 19.4. In 1820,
Ampère discovered that two electric currents of strength J0 and J attract each other
if there are charges of the same sign which flow the same direction. More precisely,
a segment of the wire C0 of length l attracts a segment of the wire C of length l by
the force strength

|F| =
μ0l

2πd
· J0J. (19.13)

Here, the symbol d denotes the distance between the two wires. The force vector F
is orthogonal to the wire C, and it lies in the plane spanned by the two wires. This
law can be used in order to fix the physical unit of current strength, the ampere,
in the SI system. By definition,

μ0 := 4π · 10−7N/A2.

This means the following. If the electric current of one ampere flows through the
two wires in the same direction, then each of the two wires attracts the other one
by the force 1 N (newton).

The Ampère law for the magnetic field. Consider a fixed right-handed
Cartesian (x, y, z)-coordinate system with the right-handed orthonormal basis vec-
tors i, j,k at the origin, and consider the parallel frame iP , jP ,kP at the point P
(Fig. 4.3 on page 323). Let us study the situation depicted in Fig. 19.5. An electric
current of the strength J flows along the z-axis. The current generates the magnetic
field

B(P ) = B(r) eϕ(P ) (19.14)

6 The Greek words μεγάλoç (megalos) and γιγανταç (gigantas) mean ‘large’ and
‘giant’, respectively. The Greek word τ έ�αç (teras) means ‘monster’.

7 Encyclopedia, or a Descriptive Dictionary of the Sciences, Arts, and Trades,
Paris, 1751–1772 (in French).
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Fig. 19.5. Ampère’s law for magnetic fields

where the point P has the cylindrical coordinates r, ϕ, z with r :=
p

x2 + y2 and

er := cosϕ iP + sinϕ jP , eϕ(P ) := − sinϕ iP + cosϕ jP .

By cylindrical symmetry, the magnetic field lines are concentric circles about the
z-axis. The strength of the magnetic field is given by the Ampère law

Z

S1r

Bdx = μ0J. (19.15)

This yields
R π

−π
B(r)r dϕ = μ0J. Hence

B(r) =
μ0J

2πr
, r > 0. (19.16)

The Dirac distribution on the (x, y)-plane. The magnetic field B from
(19.14) satisfies the two Maxwell equations

curlB = 0 and div B = 0 on E
3 \ L (19.17)

where L denotes the z-axis. The singularity corresponding to the electric current
can be described by using the language of generalized functions. Then

curlB = μ0J · δ(0,0) k and div B = 0 on E
2.

Here, δ(0,0) denotes the Dirac delta distribution on the (x, y)-plane with support at
the origin (0, 0). The proof will be given in Problem 19.5. Mnemonically, physicists
write

curlB(x) = μ0J · δ(x)δ(y) and div B(x) = 0 on E
2.

Fig. 19.6. Topological invariance of the Ampère integral
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Fig. 19.7. The Biot-Savart law for electric currents in thin wires

Observe that the magnetic field B only depends on the real variables x and y.
The topological invariance of the Ampère integral. Let M be a compact,

2-dimensional, positively oriented submanifold of the Euclidean (x, y)-plane E
2 with

the coherently oriented boundary ∂M; let the origin (0, 0) be an interior point of
M (Fig. 19.6). Then

Z

∂M
Bdx = μ0J. (19.18)

This means that the domain of integration of the Ampère integral (19.15) can be
deformed without changing the value of the integral.
Proof. Set N := M\ B

2
R (Fig. 19.6). It follows from curlB = 0 on E

2 \ {0} and
from the Stokes integral theorem that

0 =

Z

N
curlB dxdy =

Z

∂N
Bdx =

Z

∂M
Bdx −

Z

S1
R

Bdx.

Here, we assume that the radius R is sufficiently small. �

Note the following crucial fact:

From the topological point of view, the electric Coulomb field E (resp. the
magnetic Ampère field B) is closely related to the topology (i.e., the Betti
numbers) of the pointed Euclidean manifold E

3 \ {P0} (resp. the manifold
E

3 \ L).

This will be discussed in Sect. 23.4 in terms of the de Rham cohomology. As we
will show in Sect. 19.2.1, this is the topological key to the Maxwell equations.

The Biot–Savart law for thin metallic wires. In order to understand
Oerstedt’s experiment, in 1820 Biot and Savart formulated a magnetic analogue
of the Coulomb law (Fig. 19.7). They replaced the electric charge Q0 of Coulomb’s
law by the directed electric current element

J0Δz kP0 (19.19)

at the point P0 with the electric current strength J0 > 0, the lengthΔz, and the unit
vector kP0 which indicates the direction of the flow of positive electric charges. The
Biot-Savart law tells us that the directed electric current element (19.19) generates
the magnetic field

ΔB(P ) :=
μ0J0Δz kP0 × (x − x0)

4π|x − x0|3
(19.20)
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at the point P . Moreover, the directed current element (19.19) at the point P0

exerts the force

ΔF(P ) = JΔz kP ×ΔB(P ) (19.21)

on the directed electric current element JΔz kP at the point P. As a typical ap-
plication, let us show that the Biot–Savart law (19.20) yields the magnetic field

(19.14) together with (19.16). In fact, since |x − x0| = (r2 + z2)1/2, we get

ΔB(x) =
μ0J0Δz · sinϑ
4π|x − x0|2

jP =
μ0J0rΔz

4π(r2 + z2)3/2
jP .

By superposition,

B(x) =

Z ∞

−∞
ΔB(x) dz =

μ0J0r

4π

Z ∞

−∞

dz

(r2 + z2)3/2
jP =

μ0J0

2πr
jP .

This coincides with the magnetic field (19.16).

19.1.3 Joule’s Heat Energy Law

Heat energy produced in electric circuits. In 1840, Joule discovered that an
electric current, which flows through a thin metallic wire, produces the heat energy

Eheat = JV (t1 − t0)

in the oriented segment (P0P ) of the wire during the time interval [t0, t1]. This is
called the Joule law. Here, J denotes the electric current strength (charge per time),
and V denotes the positive voltage between the points P and P0 of the wire. For
the physical dimension in the SI system, we get

[Eheat] = AVs = Ws = J = Nm (19.22)

where the symbols J, V, A, W, and N stand for joule (energy), volt (voltage), ampere
(current strength), watt (power=enery per time), and newton (force), respectively.

Ohm’s law. In 1827, Ohm (1789–1854) experimentally discovered the law

V = RJ (19.23)

in thin metallic wires. Here, R is the so-called resistance of the wire measured in
ohm, O = V/A, in the SI system. Hence

Eheat = RJ2(t1 − t0).

From the physical point of view, electrons flow through the wire. There is friction
which transforms the mechanical energy of the electrons into heat energy.

19.1.4 Faraday’s Induction Law

The physicist and chemist Michael Faraday (1791–1867) was one of the greatest
scientists in the nineteenth century. He discovered fundamental laws in electricity
and electrochemistry; he also invented the first electric motor and dynamo. Fara-
day paved the way for Maxwell’s theory of electromagnetism. The following four
treatises are cornerstones in the history of electromagnetism:
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A. Ampère, Memoir on the Mathematical Theory of Electrodynamic Phe-
nomena, Uniquely Deduced from Experience, Paris, 1826 (in French).8

M. Faraday, Experimental Researches in Electricity, Vols. 1–3, London,
1839–1855 (reissued in 1965).

M. Faraday, Experimental Researches in Chemistry and Physics, London,
1859 (reissued 1991).

J. Maxwell, A Treatise on Electricity and Magnetism, London, 1973.
Reprinted by Dover, Vols. 1, 2, New York, 1954.

Note that both Ampère and Faraday were self-taught persons. Faraday started work
as a bookbinder-apprentice when he was 13 years old. At the age of twenty, Faraday
attended a lecture given by Sir Humphrey Davy on electricity. This changed his life.
Later on Faraday became an assistant of Davy at the Royal Institution.9

Maxwell formulated Faraday’s electromagnetic induction law in the following
local form:

curlE = −∂B
∂t
. (19.24)

Intuitively, a time-varying magnetic field generates closed electric field lines. Max-
well postulated that also the converse is true. He formulated the law

curlB =
1

c2
∂E

∂t
(19.25)

in a vacuum; this law holds true if there are no electric currents. As we will show
in Sect. 19.5 on page 969, the two laws (19.24) and (19.25) govern the propagation
of light. Intuitively, light consists of time-varying electric and magnetic fields which
interact with each other. The strength of interaction depends on the rate of changing
electric and magnetic fields. Here, c = 1/

√
ε0μ0 is the velocity of light in a vacuum.

By adding the Ampère law, the complete Maxwell equation reads as

curlB = μ0J +
1

c2
∂E

∂t
.

19.1.5 Electric Dipoles

For describing the polarization of substances, electric dipoles are crucial. By defi-
nition, the electric field

E(x) :=
3(pelx)x − x2 · pel

4πε0|x|5
(19.26)

is called the electric field of a dipole located at the origin with the electric dipole
moment vector pel. An explicit computation shows that

E = −gradU, U(x) =
pelx

4πε0|x|3
, x �= 0. (19.27)

The function U is called the electrostatic potential of the dipole. Moreover, we get

8 The term ‘electrodynamics’ was coined by Ampère.
9 The whole story can be found in the book by D. Bodanis, E = mc2: A Biography

of the World’s Most Famous Equation, Berkeley Publishing Group, New York,
2000.
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Fig. 19.8. Electric field of an electric dipole

div E = 0 and curlE = 0 on E
3 \ {0}

together with the vanishing Gauss integral
Z

∂M
En dS = 0.

Here, we assume that M is a compact, 3-dimensional, positively oriented subman-
ifold of the Euclidean manifold E

3 with coherently oriented boundary ∂M; let the
origin be an interior point of M (e.g., M is a ball centered at the origin). Using
the language of generalized functions, the singularity of the dipole at the origin can
be described by the equation

ε0 div E = −(pel grad) δO, curlE = 0 on E
3.

Mnemonically, physicists write

ε0 div E(x) = −(pel grad) δ(x), curlE = 0 on E
3.

Let us motivate this. Consider the situation depicted in Fig. 19.8. The positive
charge Q is located at the point P , and the negative charge −Q is located at the
origin O. The vector pel = Qa is called the dipole moment vector. By superposition,
the electrostatic potential is given by

U(x) := U(x) − U(x − pel/Q) = Q

„

1

4πε0|x|
− 1

4πε0|x − pel/Q|

«

.

Fix the vector pel. For large charges Q, we get

U(x) = −(pel grad)

„

1

4πε0|x|

«

=
pelx

4πε0|x|3
,

up to terms of order o
“

1
Q

”

as Q→ ∞. Letting Q→ ∞, we obtain the electrostatic

dipole potential from (19.27).

Summarizing, the dipole potential U from (19.27) is the negative directional
derivative of the Coulomb potential with electric charge Q0 = 1.

A more general motivation goes like this. Let � be a smooth electric charge
density which vanishes outside a sufficiently large ball of radius R centered at the
origin. Then the corresponding electrostatic potential reads as

U(x) =

Z

B3
R

�(x0)

4πε0|x − x0|
d3x0.
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Then, for large distances, that is, |x|/R' 1, the Taylor expansion yields

U(x) =
Q0

4πε0|x| +
pelx

4πε0|x|3
+ o

„

1

|x|2

«

, |x| → ∞

where

Q0 =

Z

B3
R

�(x0) d
3x0 and pel =

Z

B3
R

�(x0)x0 d
3x0.

This tells us that far away from the ball B
3
R, the electrostatic potential (generated

by the charge density �) looks like the superposition of the Coulomb potential with
the electric charge Q0 at the origin and the dipole potential of a dipole at the
origin with dipole moment vector pel. Sometimes it is necessary to consider higher
approximations. This leads to quadrupole moments, and so on.

19.1.6 Magnetic Dipoles

Consider a circular electric current of current strength J0 as depicted in Fig. 19.9.
By the Biot–Savart law, the current generates the magnetic field

B(x) =
μ0J0

4π

Z

S1
R

dx0 × (x − x0)

|x − x0|3
. (19.28)

Far away from the electric current, that is, for |x|/R' 1, the magnetic field looks
like

B(x) = μ0
3(mx)x − x2 · m

4π|x|5 . (19.29)

This is a so-called magnetic dipole field with the magnetic moment vector m. Ex-
plicitly,

m = πR2J0 k.

Let us summarize properties of the magnetic dipole field (19.29):

• The Maxwell equations: We have

div B = 0 and curlB = 0 on E
3 \ {0}.

In the language of generalized functions, we get

div B = −μ0(mgrad) δO and curlB = 0 on E
3.

Mnemonically, physicists write

div B(x) = −μ0(mgrad) δ(x) and curlB(x) = 0 on E
3.

• The magnetic Gauss law: Let M be a compact, 3-dimensional, positively oriented
submanifold of the Euclidean manifold E

3 with coherently oriented boundary
∂M. If the origin is an interior point of M, then

Z

∂M
B dS = 0.

• The vector potential A: Setting A := μ0(m×x)

4π|x|3 , we get B = curlA.
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Fig. 19.9. Magnetic dipole generated by an electric circular current

19.1.7 The Electron Spin

The spin of elementary particles plays a fundamental role in modern tech-
nology and medicine (e.g., MRI/magnetic resonance imaging).

Folklore

As a particle, the electron was identified by Joseph John Thomson (1856–1940) in
1897 by performing cathode ray experiments. In 1906, Thomson was awarded the
Nobel prize in physics in recognition of his great merits of his theoretical and exper-
imental investigations on the conduction of electricity. In 1909, the electric charge
of a single electron was first measured by Robert Millikan (1868–1953) by means
of his famous oil-drop experiment. In 1923, Millikan was awarded the Nobel prize
in physics for his study of the elementary electronic charge and the photoelectric
effect.

In 1921, Stern (1888–1969) and Gerlach (1986–1979) experimentally investi-
gated the splitting of a beam of silver atoms caused by an inhomogeneous magnetic
field.10 In 1925, Goudsmit (1902–1978) and Uhlenbeck (1900–1988) explained the
Stern–Gerlach experiment by suggesting that the electron possesses an intrinsic
angular momentum called spin.

Pauli’s non-relativistic equation of the spinning electron. In 1927, Pauli
formulated a modification of the non-relativistic 1926 Schrödinger equation which
includes the electron spin. Set

ψ(x, y, z, t) :=

 

ψ1(x, y, z, t)

ψ2(x, y, z, t)

!

, ψ+ :=

 

ψ1

0

!

, ψ− :=

 

0

ψ2

!

.

We choose a right-handed Cartesian (x, y, z)-coordinate system with the right-
handed orthonormal basis vectors i, j,k. We assume that this system of reference
is an inertial system. Pauli’s equation for the spinning electron reads as follows:

i�
∂ψ

∂t
= Hψ (19.30)

with the energy operator (Hamiltonian)

H :=
P2

2me
− eU − mB

and the following operators:

10 In 1943, Otto Stern was awarded the Nobel prize in physics for his contribution
to the molecular ray method and his 1933 discovery of the magnetic moment of
the proton.
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• P := −i�∂ (momentum),
• L := x× P (orbital angular momentum),
• S := S1i + S2j + S3k (spin) with Sk := �

2
σk, k = 1, 2, 3 (spin components),

• L + S (total angular momentum),
• m = mL + mS (total magnetic moment of the electron),
• mL := − e

2me
L (magnetic moment of the electron generated by the orbital angu-

lar momentum L),
• mS := − e

me
S (magnetic moment of the electron corresponding to the intrinsic

spin of the electron).

We assume that the electric field E = −gradU and the magnetic field B act on
the electron of mass me and electric charge −e. Recall the Pauli matrices

σ0 :=

 

1 0

0 1

!

, σ1 :=

 

0 1

1 0

!

, σ2 :=

 

0 −i

i 0

!

, σ3 :=

 

1 0

0 −1

!

. (19.31)

Finally, we introduce the inner product

〈ψ|ψ∗〉 :=

Z

R3
ψ(x, y, z, t)†ψ∗(x, y, z, t) dxdydz.

Expectation values. Let ψ be a solution of the Pauli equation (19.30) with the
normalization condition 〈ψ|ψ〉 = 1. The mean energy Ē, the mean orbital angular
momentum vector L̄, and the mean spin vector S̄ of the state ψ are given by

Ē := 〈ψ|Hψ〉, L̄ := 〈ψ|Lψ〉, S̄ := 〈ψ|Sψ〉.

It follows from

S3ψ+ =
�

2
ψ+, S3ψ− = −�

2
ψ−

that the state ψ+ (resp. (ψ−) has the sharp spin component �

2
(resp. − �

2
) in direction

of the z-axis.
The commutation relations. The components

L1 = i�

„

z
∂

∂y
− y ∂

∂z

«

, L2 = i�

„

x
∂

∂z
− z ∂

∂x

«

, L3 = i�

„

y
∂

∂x
− x ∂

∂y

«

of the orbital angular momentum operator L = L1i+L2j+L3k satisfy the following
commutation relations:11

[L1, L2]− = i�L3, [L2, L3]− = i�L2, [L3, L1]− = i�L3.

In 1927, Pauli postulated that the components of the spin operator satisfy the same
commutation relations as L1, L2, L3, that is,

[S1,S2]− = i�S3, [S2,S3]− = i�S2, [S3,S1]− = i�S3. (19.32)

To get this, Pauli made the ansatz Sk := �

2
σk, and he introduced the matrices

(19.31). In fact, this yields (19.32).

11 Recall that [A,B]− := AB −BA.
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Transformation of the Pauli equation under rotations of the Cartesian
coordinate system. For physical reasons, it is quite natural to postulate that
the Pauli equation (19.30) is invariant under rotations of the Cartesian coordinate
system. We want to show that it is possible to fulfill this condition by using the
universal covering group SU(2) of the rotation group SO(3). More precisely, we
will use the surjective group morphism

� : SU(2) → SO(3)

considered in (7.21) on page 434 with the kernel ker(�) = {I,−I}. Set

X :=

0

B

@

x

y

z

1

C

A

.

Let A ∈ SU(2). This implies the rotation

X ′ = �(A)X

of the Cartesian coordinate system. Finally, we define the key transformation law

ψ′(X ′) = Aψ(X). (19.33)

Proposition 19.1 The Pauli transformation law (19.33) leaves the Pauli equation
(19.30) invariant. In addition, the expectation value S̄ transforms like a vector.

The proof will be given in Problem 19.8. The proof is based on the following key
fact:

The adjoint representation of the Lie group SU(2) on the Lie algebra su(2)
is equivalent to the representation of the Lie group SO(3) on R

3 given by
X ′ = �(A)X.

Dirac’s relativistic equation for the electron. In 1928, Dirac formulated
the relativistic equation for the electron, and he showed that the electron spin is a
relativistic effect (see Sect. 20.3 on page 999). The Pauli spin equation (19.30) can
be obtained as a non-relativistic approximation of the Dirac equation.

Pauli’s exclusion principle. In 1924, Pauli formulated the fundamental prin-
ciple that two electrons of an atom can never be in the same quantum state. This
allows us to justify the periodic table of elements in chemistry. The point is that
only a certain number of electrons can occupy the same energy level.

Pauli’s spin-statistics principle. This principle is closely related to the ex-
clusion principle. Recall that an elementary particle is either

• a fermion (half-integer spin k� where 2k is a positive integer) or
• a boson (integer spin n� where n is a nonnegative integer).

For example, protons, neutrons, electrons, and quarks are fermions, whereas pho-
tons and gluons are bosons. In 1940, Pauli formulated the spin-statistics principle.
This principle says that two fermions of the same type can never be in the same
quantum state, and hence

• fermions of the same type (e.g., the electrons in a neutron star) are governed by
the Fermi–Dirac statistics, whereas

• bosons of the same type (e.g., the photons in the universe) are governed by the
Bose–Einstein statistics.

In 1945, Wolfgang Pauli (1900–1958) was awarded the Nobel prize in physics for
the discovery of the exclusion principle also called the Pauli principle.
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We will come back to this topic in later volumes.

19.1.8 The Dirac Magnetic Monopole

In classical electromagnetism, there are no magnetic charges (monopoles), but
only magnetic dipoles. Physicists expect that there exist high-energy magnetic
monopoles in the universe which were produced at the time of the Big-Bang
(13.7 · 109 years ago). The existence of magnetic monopoles was predicted by Dirac
in 1931. The magnetic field of a magnetic monopole is given by

B(x) :=
μ0q

4π|x − x0|2
· x − x0

|x − x0|
. (19.34)

In the SI system, the magnetic charge q has the physical dimension Am (ampere
meter).
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19.1.9 Vacuum Polarization in Quantum Electrodynamics

Based on Feynman diagrams, the method of perturbation theory combined with
the method of renormalization yields the following modification of the Coulomb
field E = −gradU with the modified electrostatic potential

U(x) =
Q0s(x)

4πε0|x − x0|
.

Here, we use the function

s(x) := 1 +
2α

3π

Z ∞

1

e−2m0c |x−x0|ζ/�

„

1 +
1

2ζ2

«

p

ζ2 − 1

ζ2
dζ.

This law was first obtained by Uehling and Serber in 1935. Here, m0 and Q0 are
the rest mass and the electric charge of the particle, respectively; they generate the
Coulomb field E(x) at the point P (Fig. 19.3). Intuitively, the particle is surrounded
by a cloud of virtual electron-positron pairs. This additional electric dipole density
is called vacuum polarization. Effectively, this vacuum polarization is described by
the function x �→ s(x). If the distance |x− x0| is large compared with the reduced
Compton length λC := �/m0c of the particle, then we approximately get

s(x) = 1 +
α

4
√
π

e−2|x−x0|/λC

(|x − x0|/λC)3/2
, |x − x0| ' λC .

Here, we use the fundamental fine structure constant

α =
e2

4πε0�c
=

1

137.04
.

Recent high-precision laser experiments seem to indicate that the fine structure
constant varies slowly in time.

Vacuum polarization is also responsible for the anomalous magnetic moment of
the electron

|m| =
e�

2me

„

1 +
α

2π
− 0.328

α2

π2

«

(19.35)

where me is the rest mass of the electron. The value e�

2me

`

1 + α
2π

´

was first ob-

tained by Schwinger in 1949. We will study this in greater detail in Vol. IV (see
also L. Landau and E. Lifshitz, Course of Theoretical Physics, Vol 4: Quantum
Electrodynamics, Butterworth–Heinemann, Oxford, 1982).

Historical remarks. Let us sketch the fascinating history of electromagnetism
by the following summary:

• Gilbert (1544–1603) (magnetic field of the earth), Newton (1643–1727),
• Coulomb (1736–1806), (Coulomb’s law in 1790), Galvani (1737–1798), Volta

(1745–1845),
• Oerstedt (1777–1851) (he observed in 1819 the interaction of an electric current

with a magnetic needle), Biot (1774–1862) and Savart (1791–1841), (Biot–Savart
law in 1820), Ampère (1775–1836) (the Ampère force in 1820, the Ampère flux
law in 1823),

• Laplace (1749–1827) (Laplace equation), Gauss (1777–1855) (potential theory),
Weber (1795–1878) (magnetic Gauss–Weber experiments), Poisson (1781–1840)
(Poisson equation), Hamilton (1788–1856) (quaternions and nabla calculus),
Thomson (1824–1907) (later Lord Kelvin), Stokes (1819-1903), Carl Neumann
(1832–1925) (potential theory),
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• Ohm (1789–1854) (electric resistance of metallic wires; Ohm’s law in 1827), Joule
(1818–1889) (heat production in electric wires; Joule’s law in 1840),

• Faraday (1791–1867) (formulated the idea of the field lines of the electromagnetic
field in 1810, discovery of electromagnetic induction in 1831),

• Maxwell (1831–1879) (formulation of the Maxwell equations for the electromag-
netic field in 1864), Heinrich Hertz (1857–1894) (experimental existence proof
for electromagnetic waves in 1888),

• Heaviside (1850–1925) (telegraphy and electric transmission, prediction of the
ionosphere of the earth), Tesla (1856–1943) (construction of alternating-current
dynamos, transformers, and motors),

• Ludvig Lorenz (1829–1891) (Lorenz gauge condition), Hendrik Lorentz (1853–
1928) (Lorentz transformation), Poincaré (1854–1912) (Poincaré group),

• Einstein (1879–1955) (theory of special relativity in 1905), Dirac (1902–1984)
(Dirac equation of the relativistic electron in 1928),

• Élie Cartan (1869–1951), de Rham (1903–1990), Hodge (1903–1975) (differential
forms and differential topology),

• Laurent Schwartz (1915–2002) (creation of the theory of generalized functions in
the late 1940s) (For this achievement, Schwartz was awarded the Fields medal
in 1950),

• Pauli (1900–1958) (exclusion principle for electrons in 1924, shell structure of
atoms and molecules, the spin–statistics principle for bosons and fermions in
1940) (Nobel prize in physics for the exclusion principle in 1945),

• Weyl (1885–1955) (introduction of the idea of gauge theory in 1918, as a gener-
alization of Einstein’s theory of general relativity),

• Fock (1898–1974) (discovery of the local phase factor for the Klein–Fock–Gordon
equation in 1926), London (1954–1954) (local phase factor in 1927), and Weyl
(commutative U(1)-gauge theory in quantum mechanics in 1929),

• Oskar Klein (1894–1977) (noncommutative pre-gauge theory in 1938),
• Pauli (noncommutative gauge theory formulated in a letter to Pais in 1953),
• Yang (born 1922) and Mills (1927–1999) (noncommutative SU(2)-gauge theory

in 1954; Yang–Mills theory),
• Lamb (1913–2008) (experimental discovery of the Lamb shift together with

Retherford in 1947 – hyperfine structure of the spectrum of the hydrogen atom);
Kusch (1911–1993) (precision measurement of the anomalous magnetic moment
of the electron) (Lamb and Kusch were awarded the Nobel prize in physics in
1955);

• Bethe (1906–2005) (theory of the Lamb shift via renormalization in 1947) (In
1967, Bethe was awarded the Nobel prize in physics for his contributions to
the theory of nuclear reactions, especially his discoveries concerning the energy
production in the sun and in stars),

• Schwinger computed the anomalous magnetic moment of the electron in 1949 on
the basis of his approach to quantum field theory,

• Feynman (1918–1988), Schwinger (1918–1994), and Tomonaga (1906–1979)
(quantum electrodynamics; Nobel prize in physics in 1965),

• Glashow (born 1932), Salam (1926–1996), and Weinberg (born 1933) (elec-
troweak interaction; Nobel prize in physics in 1979),

• ’t Hooft (born 1946) and Veltman (born 1931) (renormalization of the elec-
troweak interaction in 1971; Nobel prize in physics in 1999).

In 1864, Maxwell unified the electric interaction with the magnetic interaction.
Approximately hundred years later, Glashow, Salam, and Weinberg unified the
electromagnetic interaction with the weak interaction (e.g., radioactive decay) in
particle physics.
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Modern high technology is strongly influenced by the discovery of new properties
of the electromagnetic field. This is reflected by the following (incomplete) list of
Nobel prizes in physics:

• 1956: Shockley, Bardeen, and Houser (discovery of the transistor effect and semi-
conductors – the basic tool for constructing computers),

• 1958: Cherenkov, Frank, and Tamm (discovery and theoretical interpretation of
the Cherenkov effect),

• 1964: Basov, Prokhorov, and Townes (quantum electronics, maser–laser princi-
ple),

• 1972: Bardeen, Cooper, and Schrieffer (BCS-theory of superconductivity),
• 1978: Penzias and Wilson (discovery of cosmic microwave background radiation),
• 1981: Bloembergen and Schawlow (contributions to laser spectroscopy), Siegbahn

(high-resolution electron spectroscopy),
• 1985: von Klitzing (discovery of the quantized Hall effect, quantization of electric

resistance),
• 1986: Ruska (design of the first electron microscope in 1933); Binnig and Rohrer

(design of the scanning tunneling microscope),
• 1987: Bednorz and A. Müller (discovery of superconductivity in ceramic metals

– high-temperature superconductivity); Chu, Cohen-Tannoudji, Phillips, (devel-
opment of methods to cool and trap atoms with laser light),

• 1989: Ramsey (atomic clocks); Dehmelt and Paul (development of the ion trap
technique),

• 1998: Laughlin, Störmer, and Tsui (discovery of a new form of quantum fluid
with fractionally charged excitations),

• 2000: Alferov and Kroemer (semiconductor heterostructures used in high-speed
electronics and opto-electronics); Kilby (invention of the integrated circuit),

• 2001: Cornell, Ketterle, and Wieman (Bose–Einstein condensation in dilute
gases),

• 2004: Glauber (quantum theory of optical coherence–laser beams); Hall and
Hänsch (development of laser-based precision spectroscopy),

• 2006: Mather and Smoot (discovery of the anisotropy of the cosmic microwave
background radiation),

• 2007: Fert and Grünberg (discovery of giant magnetic resistance; the electron
spin is used to store and transport information),

• 2009: Kao (transmission of light in fibers); Boyle and Smith (invention of an
imaging semiconductor circuit).

Let us also mention the following two Nobel prizes in medicine:

• 1962: Crick, Watson, and Wilkins (discoveries concerning the molecular structure
of nuclear acids and its significance for information transfer in living material),

• 1979: Cormack and Hounsfield (development of computer assisted tomography).

In mathematics, the physical ideas coming from electrostatic phenomena strongly
influenced the modern theory of Riemann surfaces, the calculus of variations, and
the theory of elliptic partial differential equations (see the historical remarks on the
Dirichlet principle in Sect. 10.4 of Vol. I).

19.2 The Maxwell Equations in a Vacuum

Maxwell based his theory of electromagnetism on a precise mathematical formula-
tion of Faraday’s idea of electric and magnetic field lines.
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Fig. 19.10. The Maxwell equations in a vacuum

19.2.1 The Global Maxwell Equations Based on Electric and
Magnetic Flux

In an arbitrary inertial system, the four global Maxwell equations read as follows:12

(i) The electric Gauss law (Fig. 19.10(a)):

ε0

Z

∂M
En · dS = Q. (19.36)

This means that electric charges located in the compact, positively oriented,
3-dimensional manifold M (e.g., a ball) generate an electric field. The flow
of the electric field E through the coherently oriented boundary ∂M (e.g., a
sphere) measures the electric charges located in the manifold M.

(ii) The magnetic Gauss law:
Z

∂M
Bn · dS = 0. (19.37)

This tells us that there are no magnetic monopole charges in classical electro-
dynamics. However, physicists conjecture that there exist high-energy magnetic
monopoles in the universe as a relict of the Big-Bang.

(iii) The Ampère–Maxwell law (Fig. 19.10(b)):
Z

∂M
Bdx = μ0

Z

M
(J + Jpolar)n · dS· (19.38)

This means that the flow of electric charges through the compact, oriented,
two-dimensional manifold M with coherently oriented boundary ∂M gener-
ates a magnetic field B. Maxwell introduced the so-called electric polarization
current13

Jpolar := ε0Ė

in order to obtain electromagnetic waves as solutions of the Maxwell equa-
tions. Maxwell conjectured that these waves describe the propagation of light.
In 1888, Heinrich Hertz experimentally established the existence of electromag-
netic waves in nature. In this case, the Maxwell law reads as

12 Positive orientation refers to a fixed right-handed Cartesian (x, y, z)-coordinate
system. Coherent orientation of the boundary ∂M is depicted in Figure 12.6 on
page 677.

13 This is also called the electric displacement current.
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Fig. 19.11. Flow of electric charge

Z

∂M
Bdx =

1

c2
d

dt

Z

M
En · dS.

(iv) The Faraday induction law (Fig. 19.10(c)):
Z

∂M
Edx = − d

dt

Z

M
Bn · dS. (19.39)

This means that the time-varying magnetic flux trough the compact, oriented,
2-dimensional manifold M induces an electric field on the coherently oriented
boundary ∂M.

Conservation laws. Electric charge, energy, momentum, and angular momen-
tum of the Maxwell (E,B, �,J)-system in a vacuum are conserved quantities. Ex-
plicitly, the following hold:

(a) Conservation of electric charge (Fig. 19.11):

d

dt

Z

M
� d3x = −

Z

∂M
Jn dS. (19.40)

(b) Conservation of energy:

d

dt

Z

M
η d3x = −

Z

∂M
Sn dS −

Z

M
EJ d3x. (19.41)

(c) Conservation of momentum (balance of forces):

d

dt

Z

∂M

1
c2

S d3x = −
Z

M
f d3x+

Z

∂M
Tn dS. (19.42)

(d) Conservation of angular momentum (balance of torque):

d

dt

Z

M

`

x × 1
c2

S
´

d3x = −
Z

M
(x × f) d3x+

Z

∂M
(x × Tn) dS. (19.43)

Here, we use the following expressions:

• D := ε0E, H := 1
μ0

B,

• η := 1
2
(ED + BH) (energy density);

• S := E × H (energy current density vector);
• 1

c2
S := D × B (momentum density vector);

• JE (rate of Joule’s energy density);
• f := �E + J × B (Lorentz force density vector);
• T := D ⊗ E + B ⊗ H − ηI (Maxwell’s stress tensor);
• Tn := (En)D + (Hn)B.
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19.2.2 The Local Maxwell Equations Formulated in Maxwell’s
Language of Vector Calculus

Fix an inertial system. The Maxwell equations for the electric vector field E and
the magnetic vector field B in a vacuum read as follows:

(i) The electric Gauss law (Fig. 19.10(a)):

ε0 div E = �. (19.44)

(ii) The magnetic Gauss law:

div B = 0. (19.45)

(iii) The Ampère–Maxwell law (Fig. 19.10(b)):

curlB = μ0(J + Jpolar). (19.46)

Here, Jpolar := ε0Ė.
(iv) The Faraday induction law (Fig. 19.10(c)):

curlE = −Ḃ (19.47)

Here, � is the electric charge density function, and J is the electric current density
vector field. All the functions depend on space and time. Moreover, ε0 (resp. μ0) is
the electric (resp. magnetic) field constant of a vacuum.

These local Maxwell equations follow from the global Maxwell equations by
using the integral theorems of Gauss–Ostrogradski and Stokes. For example, set
Q =

R

M � d3x. Then

ε0

Z

∂M
En dS = ε0

Z

M
div E d3x =

Z

M
� d3x.

Choose the set M as a ball of radius r centered at the point P . Contracting the
ball to the point P by letting r → 0, we get ε0 div E(P ) = �(P ).

Moreover, choose a right-handed Cartesian (x, y, z)-system with the right-
handed orthonormal vector basis i, j,k. In the (x, y)-plane, let M be a disc of
radius r centered at the point P . The Ampère–Maxwell law tells us that

Z

M
kcurlB dxdy =

Z

∂M
Bdx =

Z

M
μ0k(J + Jpolar) dxdy.

Contracting the disc to the point P , we get

kcurlB(P ) = μ0k(J + Jpolar)(P ).

Since the (x, y, z)-system can be chosen arbitrarily, the vector k is an arbitrary unit
vector. Hence curlB(P ) = μ0(J + Jpolar)(P ).

Conversely, integrating the local Maxwell equations, we get the global Maxwell
equations (19.36). Thus, for smooth functions, the local and global variants of the
Maxwell equations are equivalent to each other. For non-smooth functions, one
has to use the global Maxwell equations (or the formulation of the local Maxwell
equations in terms of generalized functions; see Sect. 23.5.1).

Conservation laws. Similarly, the global conservation laws on page 956 are
equivalent to the following local conservation laws:
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(a) Conservation of electric charge:

∂�

∂t
+ div J = 0. (19.48)

(b) Conservation of energy:

∂η

∂t
+ div S = −JE. (19.49)

(c) Conservation of momentum:

1

c2
∂S

∂t
+ f = div T. (19.50)

(d) Conservation of angular momentum:

1

c2
∂

∂t
(x × S) + x × f = x × div T. (19.51)

The conservation laws are immediate consequences of the Maxwell equation (i)–(iv).
For example, the Gauss law combined with the Ampère–Maxwell law implies

�̇ = ε0 div Ė = div

„

1

μ0
curlB − J

«

= − div J.

The other conservation laws can be most elegantly obtained by using tensor analysis
(see Sect. 19.6.3).

19.2.3 Discrete Symmetries and CPT

Let us introduce the following three operators C,P, T .

(i) Charge conjugation Q �→ −Q:

(C�)(x, t) := −�(x, t), (CJ)(x, t) := −J(x, t),

(CE)(x, t) := −E(x, t), (CB)(x, t) := −B(x, t).

(ii) Parity transformation x �→ −x:

(P�)(x, t) := �(−x, t), (PJ)(x, t) := −J(−x, t),

(PE)(x, t) := −E(−x, t), (PB)(x, t) := B(−x, t).

(iii) Time reversal t �→ −t:

(T�)(x, t) := �(x,−t), (TJ)(x,−t) := −J(x,−t),
(TE)(x, t) := E(x,−t), (TB)(x, t) := −B(x,−t).

A simple computation shows that

The Maxwell equations (19.44)–(19.47) are invariant under the transfor-
mations C,P, and T .
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For the transformation T , this means the following: If E,B, �,J are solutions of the
Maxwell equations (19.44)–(19.47), then so are

TE, TB, T�, TJ.

The same is true, if we replace T by either C or P . The transformation P is
motivated by the electric Coulomb field:

E(x) =
Q0x

4πε0|x|3
.

The transformation law T is motivated by the Coulomb field and by the fact that
the time reversal t �→ −t changes the sign of the velocity vector, v �→ −v, and
hence �v �→ −�v, which implies J �→ −J. For the combined transformation CPT ,
we get:

(CPT�)(x, t) := −�(−x,−t), (CPTJ)(−x,−t) := −J(−x,−t),

and
(CPTE)(x, t) := E(−x,−t), (CPTB)(x, t) := B(−x,−t).

Obviously, the Maxwell equations are invariant under the transformation CPT .
We will show in Sect. 19.3.3 that the electromagnetic field can be represented

in the form

E = −gradU − Ȧ, B = curlA.

Here, U and A are called the scalar and the vector potential of the electromagnetic
field, respectively. Let us define the operators C,P, T in the following way:

(i) Charge conjugation Q �→ −Q:

(CU)(x, t) := −U(x, t), (CA)(x, t) := −A(x, t).

(ii) Parity transformation x �→ −x:

(PU)(x, t) := U(−x, t), (PA)(x, t) := −A(−x, t).

(iii) Time reversal t �→ −t:

(TU)(x, t) := U(x,−t), (TA)(x, t) := −A(x,−t).

This yields the CPT transformation

(CPTU)(x, t) := −U(−x,−t), (CPTA)(x, t) := −A(−x,−t).

These operations imply the corresponding operations for the electromagnetic field
E,B introduced above. The CPT transformation describes a fundamental symme-
try of relativistic quantum field theories, as we will show in Vol. IV.

In 1905, Einstein published the following fundamental paper:

A. Einstein, Zur Elektrodynamik bewegter Körper (On the electrodynam-
ics of moving bodies), Ann. Phys. 17, 891–921.

The English translation can be found in S. Hawking, The Essential Einstein: His
Greatest Works. Edited, with commentary, by Stephen Hawking, Penguin Books,
London, 2008. It was Einstein’s goal to find a relativistically invariant formulation
of the Maxwell equations which obeys the principle of special relativity. That is,
the Maxwell equations have the same form in all inertial systems, and the transfor-
mation laws between different inertial systems are known for the electric field, the
electric charge densities, and the electric current densities. In the next section, we
will study this.
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19.3 Invariant Formulation of the Maxwell Equations in
a Vacuum

In what follows, we will use the Einstein convention introduced on page 905.

19.3.1 Einstein’s Language of Tensor Calculus

We will use the tensor calculus introduced in Chap. 8. The Maxwell equations on
the Minkowski manifold M

4 read as follows:

∇αF
αβ = μ0J β , ∇[γFλμ] = 0, β, γ, λ, μ = 0, 1, 2, 3. (19.52)

This is a tensor equation on M
4 with respect to the metric tensorial family gαβ

(which coincides with ηαβ on inertial systems). We assume that Fαβ and J β are
tensorial families on M

4. Lowering indices, we get

Fαβ = gαλgβμF
λμ, α, β = 0, 1, 2, 3,

and Jα = gαβJ β , α = 0, 1, 2, 3. Since the equations from (19.52) possess the correct
index picture, they are valid for all local coordinate systems on M

4.
In order to get Maxwell’s classical notation, we define

Ek := σF k0, Bk := σE0kλμFλμ, Jk := σJ k, �c := σJ 0 (19.53)

where k = 1, 2, 3. Here, σ = ±1 denotes the time orientation of the local coordinate
system on M

4. Note that EαβμλFλμ is a pseudo-tensorial family (see page 460).
This is responsible for the crucial fact that the electric field and the magnetic
field are differently transformed by changing the orientation (i.e., either the spatial
orientation or the time orientation).

Inertial systems. Let us choose a strictly positively oriented inertial system
with the right-handed Cartesian (x, y, z)-system and positive time orientation in the
usual sense (i.e., σ = 1). Let i, j,k be the corresponding right-handed orthonormal
basis Set e1 := i, e2 := j, e3 := k. In this case, we have gαβ = ηαβ , and

Eαβλμ = − sgn

„

0

α

1

β

2

λ

3

μ

«

for all indices. Then, we get the electromagnetic field

E = E1i + E2j + E3k = Ekek, B = Bkek,

the electric charge density �, and the electric current density vector J = Jkek. In
addition, we set J0 := �c. Then

0

B

B

B

@

F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33

1

C

C

C

A

:=

0

B

B

B

@

0 E1/c E2/c E3/c

−E1/c 0 −B3 B2

−E2/c B3 0 −B1

−E3/c −B2 B1 0

1

C

C

C

A

, (19.54)

as well as Jβ = J β , β = 0, 1, 2, 3, �c = J0 = J 0, Jk = −Jk, k = 1, 2, 3, and
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0

B

B

B

@

F 00 F 01 F 02 F 03

F 10 F 11 F 12 F 13

F 20 F 21 F 22 F 23

F 30 F 31 F 32 F 33

1

C

C

C

A

:=

0

B

B

B

@

0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0

1

C

C

C

A

. (19.55)

Theorem 19.2 The Maxwell equations (19.52) are equivalent to Maxwell’s formu-
lation in terms of vector calculus.

Proof. In the inertial system, we have 1 = η00 = −η11 = −η22 = −η33, and
ηαβ = 0 otherwise. Consequently, ∇α = ∂α for all α. Note that Fαβ = −Fβα. Thus,
the equations (19.52) pass over to

• ∂αFαβ = μ0J
β , β = 0, 1, 2, 3 (the Maxwell source equations), and

• ∂γFλμ +∂λFμγ +∂μFγλ = 0, γ, λ, μ = 0, 1, 2, 3 (the Maxwell–Bianchi equations).

Here, ∂0 := ∂/∂x0, and ∂k := ∂/∂xk, k = 1, 2, 3. This yields

• ∂0F 01 + ∂2F
21 + ∂3F

31 = μ0J
1,

• ∂0F12 + ∂1F20 + ∂2F01 = 0,
• ∂1F23 + ∂2F31 + ∂3F12 = 0.

The other equations are obtained by the cyclic permutations 1 �→ 2 �→ 3 �→ 1, and
by 0 �→ 0. Using ε0μ0c

2 = 1, we get the desired classical Maxwell equations:

• ε0 div E = � and curlB = μ0(J + ε0Ė) (the Maxwell source equations),

• div B = 0 and curlE = −Ḃ (the Maxwell–Bianchi equations).

�

Changing orientation. Let Σ denote the inertial system considered above.
(i) Space reflection: We want to pass from Σ to a left-handed coordinate system

Σ′ by using the following coordinate transformation:

x′ = −x, y′ = −y, z′ = −z, t′ = t.

The new basis vectors read as ek′ := −ek, k = 1, 2, 3. The vectors e1′ , e2′ , e3′ form
a left-handed orthonormal basis. Setting P := (x, y, z, t) and P ′ := (x′, y′, z′, t′),
from (19.53) we get the following transformation formulas:

Ek′
(P ′) = −Ek(P ), Bk′

(P ′) = Bk(P ), Jk
′
(P ′) = −Jk(P ), �′(P ′) = �(P )

where k = 1, 2, 3. An observer in Σ′ measures the following vectors:

• Ek′
(P ′)ek′ = −Ek(P )ek′ (electric field vector),

• Bk′
(P ′)ek′ = Bk(P )ek′ (magnetic field vector),

• Jk′
(P ′)ek′ = −Jk(P )ek′ (electric current density vector).

(ii) Time reflection: We pass from Σ to the inertial system Σ′ by using the
following coordinate transformation:

x′ = x, y′ = y, z′ = z, t′ = −t.

Moreover, ek′ = ek, k = 1, 2, 3. Setting P := (x, y, z, t) and P ′ := (x′, y′, z′, t′), we
get the following transformation formulas:

Ek′
(P ′) = Ek(P ), Bk′

(P ′) = −Bk(P ), Jk
′
(P ′) = −Jk(P ), �′(P ′) = �(P )

where k = 1, 2, 3. An observer in Σ′ measures the following vectors:
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• Ek′
(P ′)ek′ = Ek(P )ek (electric field vector),

• Bk′
(P ′)ek′ = −Bk(P )ek (magnetic field vector),

• Jk′
(P ′)ek′ = −Jk(P )ek (electric current density vector).

Charge conjugation. This transformation does not change the coordinates of
the inertial system Σ, but the sign of the electric charges is changed. We define

CFαβ := −Fαβ , CJ β = −J β , λ, β = 0, 1, 2, 3.

Obviously, the Maxwell equations (19.52) are invariant under this transformation.
By (19.53), we get

CEk = −Ek, CBk := −Bk, CJk := −Jk, C� := −�

where k = 1, 2, 3.

19.3.2 The Language of Differential Forms and Hodge Duality

The Maxwell equations on the Minkowski manifold read as follows:

−d∗F = μ0J , dF = 0 on M
4. (19.56)

We are given the 1-form J on M
4, and we are looking for the 2-form F . Since

differential forms and their Hodge duals possess an invariant meaning on positively
oriented pseudo-Riemannian manifolds, this formulation of the Maxwell equations
is valid for all local coordinate systems on the Minkowski manifold M

4.
Equivalent formulation. The Maxwell equations (19.56) are equivalent to

the system

−d ∗ F = μ0 ∗ J , dF = 0 on M
4. (19.57)

In fact, by Sect. 18.5.2 on page 931,

μ0 ∗ J = − ∗ ∗−1d ∗ F = −(d ∗ F ).

Inertial system. Choose the strictly positively oriented inertial system as in
Sect. 19.3.1 on page 960. Set

F := 1
2
Fαβdx

α ∧ dxβ , J = Jαdx
α.

Explicitly, we get

F = − 1
c
(E1dx+ E2dy + E3dz) ∧ dx0

−B1dy ∧ dz −B2dz ∧ dx−B3dx ∧ dy, (19.58)

and

J = �cdx0 − J1dx− J2dy − J3dz. (19.59)

By Hodge duality (see Sect. 18.5.2 on page 931), we get

∗ F = − 1
c
(E1dy ∧ dz + E2dz ∧ dx+ E3dx ∧ dy)

+(B1dx+B2dy +B3dz) ∧ dx0. (19.60)
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Thus, the transformation F ⇒ ∗F corresponds to the transformations

E ⇒ −cB, and cB ⇒ E. (19.61)

Moreover,

∗J = �cdx ∧ dy ∧ dz − J1dx0 ∧ dy ∧ dz − J2dx0 ∧ dz ∧ dx− J3dx0 ∧ dx ∧ dy.

Theorem 19.3 The Maxwell equations (19.57) are equivalent to Maxwell’s formu-
lation in terms of vector calculus.

Proof. We get

−dF = 1
c
(dE1 ∧ dx+ dE2 ∧ dy + dE3 ∧ dz) ∧ dx0

+dB1 ∧ dy ∧ dz + dB2 ∧ dz ∧ dx+ dB3 ∧ dx ∧ dy.

Hence

−dF = 1
c

`

(E2
x − E1

y +B3
t ) dx ∧ dy + (E3

y − E2
z +B1

t ) dy ∧ dz
´

∧ dx0

+ 1
c
(E1

z − E3
x +B2

t ) dz ∧ dx ∧ dx0 + (B1
x +B2

y +B3
z) dx ∧ dy ∧ dz.

Using the Hodge duality transformation (19.61), we obtain

−d ∗ F = −
`

(B2
x −B1

y − 1
c2
E3
t ) dx ∧ dy + (B3

y −B2
z − 1

c2
E1
t ) dy ∧ dz

´

∧ dx0

−(B1
z −B3

x − 1
c2
E2
t ) dz ∧ dx ∧ dx0 +

1

c
(E1

x + E2
y + E3

z ) dx ∧ dy ∧ dz.

Therefore, the equation dF = 0 yields

curlE + Bt = 0, div B = 0.

Furthermore, −d ∗ F = μ0 ∗ J yields

div E = μ0c
2�, curlB − 1

c2
Et = μ0J.

Finally, note that ε0μ0c
2 = 1. �

Hodge duality. If F is a solution of the homogeneous Maxwell equations

d ∗ F = 0, dF = 0 on M
4,

then so is ∗F .
In fact, this follows from ∗(∗F ) = −F. In order to formulate this in terms of

physics, note that the Hodge transformation F ⇒ ∗F corresponds to the transfor-
mation (19.61). Obviously, the homogeneous Maxwell equations

div E = 0, div B = 0, curlE = −Ḃ, curlB = 1
c2

Ė

are left invariant under the Hodge transformation (19.61).
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19.3.3 De Rham Cohomology and the Four-Potential of the
Electromagnetic Field

The Minkowski manifold M
4 is continuously contractible to a point. Thus,

from the topological point of view, the Minkowski manifold is trivial. From
the analytical point view, this has the nice consequence that a smooth elec-
tromagnetic field F has always a 4-potential A with F = dA. As already
Maxwell noticed in his 1873 treatise on electricity and magnetism, the ex-
istence of a 4-potential considerably simplifies the construction of solutions
of the Maxwell equations.

Folklore

The topological triviality of the Minkowski manifold M
4. Consider the key

equation

dA = F on M
4. (19.62)

We are given the smooth differential 2-form F . We are looking for the smooth
differential 1-form A. If the equation (19.62) has a solution, then it follows from
Poincaré’s cohomology rule that dF = d(dA) = 0.

Proposition 19.4 The equation (19.62) has a solution A iff dF = 0 on M
4. If

Aspecial is a special solution of (19.62), then the general solution of (19.62) reads as

A = Aspecial + dχ (19.63)

where χ : M
4 → R is an arbitrary smooth function.

This is a special case of the fact that H2(M4) = {0}, that is, the second de
Rham cohomology group of M

4 is trivial (see Sect. 23.4). More precisely, we have

H0(M4) = R, Hk(M4) = {0}, k = 1, 2, . . .

Observe the following. Since ddχ = 0, we get F = dA = dAspecial. The transforma-
tion

Aspecial �→ Aspecial + dχ (19.64)

is called a gauge transformation. This gauge transformation changes the 4-potential,
but the electromagnetic field F remains unchanged.

Solution of the Maxwell equations via 4-potential. We are given the
smooth differential 1-form J on M

4. Suppose that the smooth differential 2-form
F is a solution of the Maxwell equations

dF = 0, −d∗F = μ0J on M
4. (19.65)

It follows from dF = 0 that there exists a differential 1-form A such that F = dA.
Since −d∗F = μ0J , we get

−d∗dA = μ0J .
Suppose that the 4-potential A of the electromagnetic field F satisfies the so-called
Lorenz gauge condition

d∗A = 0 on M
4. (19.66)

Then the 4-potential A satisfies the equation
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−(d∗d+ dd∗)A = μ0J . (19.67)

In terms of Hodge theory, the operator d∗d+dd∗ is the Laplacian of the Minkowski
manifold M

4. In an inertial system, the key equation (19.67) represents an inho-
mogeneous wave equation (see (19.71) below). The argument above can be easily
reversed.

Theorem 19.5 If the smooth differential 1-form A satisfies the wave equation
(19.67) together with the Lorenz gauge condition (19.66), then F = dA is a so-
lution of the Maxwell equations (19.65).

The differential forms F and A are invariant, that is, they do not depend on the
choice of the local coordinate system on the Minkowski manifold M

4. This means
that Fαβ and Aα are tensorial families on M

4. Lifting the indices, we get

Aα := gαβAβ , α = 0, 1, 2, 3.

In order to obtain Maxwell’s classical notation below, we define

Aα := σAα, α = 0, 1, 2, 3

where σ = ±1 is the time orientation of the local coordinate system.
Charge conservation. Again we are given the smooth differential 1-form J .

If there exists a solution of the Maxwell equations (19.65), then

d∗J = 0 on M
4. (19.68)

In fact, μ0d
∗J = −d∗d∗F = 0 (see Sect. 18.5.2 on page 931). We will show below

that the equation (19.68) describes the conservation of electric charge.
Inertial systems. Choose a strictly positively oriented inertial system Σ as in

Sect. 19.3.1 on page 960. Set

A = A1i + A2j + A3k, A0 := 1
c
U,

and Aα := ηαβA
β , α = 0, 1, 2, 3. Explicitly, A0 = A0 = 1

c
U, and Ak = −Ak = −Ak

where k = 1, 2, 3. Define
A = Aβdx

β .

Then, dA = ∂αAβdx
α ∧ dxβ = 1

2
(∂αAβ − ∂βAα) dxα ∧ dxβ . It follows from

F = 1
2
Fαβ dx

α ∧ dxβ

that

Fαβ = ∂αAβ − ∂βAα, α, β = 0, 1, 2, 3. (19.69)

By (19.54) on page 960, this means that

E = −gradU − Ȧ, B = curlA.

Proposition 19.6 The Lorenz gauge condition d∗A = 0 is equivalent to the equa-
tion ∂αA

α = 0.
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Proof. It follows from

∗A = A0 dx ∧ dy ∧ dz +A1 dx
0 ∧ dy ∧ dz +A2 dx

0 ∧ dz ∧ dx+A3 dx
0 ∧ dx ∧ dy

that d(∗A) = ∂αA
α dx0 ∧ dx ∧ dy ∧ dz. Note that d∗A = ∗−1d ∗ A. Thus, d∗A = 0

is equivalent to d ∗A = 0. �

Proposition 19.7 The equation −(d∗d + dd∗)A = μ0J together with d∗A = 0
reads as

∂α∂
αAβ = μ0J β , β = 0, 1, 2, 3 (19.70)

together with ∂αA
α = 0.

Proof. We have to show that −d∗dA = μ0J . This corresponds to the Maxwell
equation

∂αF
αβ = μ0J β , β = 0, 1, 2, 3.

By (19.69), we have

∂α(∂αAβ − ∂βAα) = μ0J β and ∂αA
α = 0, β = 0, 1, 2, 3.

This yields (19.70). �

In the language of vector calculus, the Lorenz gauge condition ∂αA
α = 0 reads

as
1

c2
∂U

∂t
+ div A = 0.

Furthermore, the equation (19.70) reads as

ε0�U = �, �A = μ0J (19.71)

with the wave operator � := 1
c2

∂2

∂t2
− ∂2

∂x2 − ∂2

∂y2 − ∂2

∂z2 . The gauge transformation

(19.64) reads as

U �→ U +
∂χ

∂t
, A �→ A − gradχ.

Proposition 19.8 The equation d∗J = 0 means that ∂αJ α = 0.

In the language of vector calculus, this reads as

�̇+ div J = 0.

This equation describes the conservation of the electric charge.
Changing orientation. Let Σ denote the positively oriented inertial system

considered above. Recall that this corresponds to a right-handed Cartesian (x, y, z)-
coordinate system, and the time t is positively oriented.

(i) Space reflection: We want to pass from Σ to a left-handed coordinate system
Σ′ by using the following coordinate transformation:

x′ = −x, y′ = −y, z′ = −z, t′ = t.

The new basis vectors read as ek′ := −ek, k = 1, 2, 3. Setting P := (x, y, z, t) and
P ′ := (x′, y′, z′, t′), we get the following transformation formulas:
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A0′(P ′) = A0(P ), Ak′
(P ′) = −Ak(P ), k = 1, 2, 3.

An observer in Σ′ measures the scalar potential U ′(P ′) = U(P ) and the vector

potential Ak′
(P ′)ek′ = −Ak(P )ek′ .

(ii) Time reflection: We pass from Σ to the inertial system Σ′ by using the
following coordinate transformation:

x′ = x, y′ = y, z′ = z, t′ = −t.

Moreover, ek′ = ek, k = 1, 2, 3. Setting P := (x, y, z, t) and P ′ : s = (x′, y′, z′, t′),
we get the following transformation formulas:

A0′(P ′) = A0(P ), Ak′
(P ′) = −Ak(P ), k = 1, 2, 3.

An observer in Σ′ measures the scalar potential U ′(P ′) = U(P ) and the vector

potential Ak′
(P ′)ek′ = −Ak(P )ek′ .

Charge conjugation. This transformation does not change the coordinates of
Σ, but the sign of the electric charges is changed. We define

CAα := −Aα, α = 0, 1, 2, 3.

This implies CU = −U and CAk = −Ak, k = 1, 2, 3. Obviously, the Maxwell
equations (19.52) are invariant under this transformation.

Arbitrary local coordinates on the Minkowski manifold M
4. Then we

have to replace the partial derivative ∂α by the covariant partial derivative ∇α with
respect to the metric tensorial family gαβ . Summarizing, we get the following:

• Fαβ = ∇αAβ −∇βAα (relation between the electromagnetic field and the four-
potential),

• ∇αA
α = 0 (Lorenz gauge condition),

• ∇α∇αAβ = μ0J β (inhomogeneous wave equation for the four-potential),
• ∇βJ β = 0 (conservation of electric charge).

19.3.4 The Language of Fiber Bundles

We have shown in Sects. 13.3 and 13.4 that the key relation (19.69) between the
electromagnetic field Fαβ and the 4-potential Aα is a consequence of Cartan’s struc-
tural equation

F = dA

which describes the relation between the curvature 2-form F and the connection
1-form A of the principal bundle M

4 × U(1).

19.4 The Transformation Law for the Electromagnetic
Field

Choose a strictly positively oriented inertial system Σ (resp. Σ′) with the right-
handed Cartesian coordinates x, y, z (resp. x′y′, z′), and the positively oriented
time t (resp. t′). As usually, we set x1 := x, x2 := y, x3 := z, x0 := ct where c
is the velocity of light in a vacuum. Furthermore, let i, j,k (resp. i′, j′,k′) be the
corresponding orthonormal basis of Σ (resp. Σ′). Suppose that the inertial system
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Fig. 19.12. Moving electric charge

Σ and Σ′ coincide at time t = t′ = 0, and the origin of Σ′ moves with the velocity V
along the positive x-axis of Σ (Fig. 19.12). Then we have the Lorentz transformation

x0′ =
x0 − V x1/c
p

1 − V 2/c2
, x1′ =

x1 − V x0/c
p

1 − V 2/c2
, x2′ = x2, x3′ = x3.

An observer in Σ measures the electromagnetic field

E = E1i + E2j + E3k, B = B1i +B2j +B3k,

the charge density �, and the current density vector J = J1i+J2j+J3k. Similarly,
an observer in Σ′ measures

E′ = E1′ i′ + E2′ j′ + E3′k′, B′ = B1′ i′ +B2′ j′ +B3′k′,

as well as �′, and J′ = J1′ i′ + J2′ j′ + J3′k′. The tensorial families Jα and Fαβ

transform like xα and xαxβ , respectively. Explicitly, using (19.55) on page 961, we
get

�′ =
�− J1V/c2
p

1 − V 2/c2
, J1′ =

J1 − �V
p

1 − V 2/c2
, J2′ = J2, J3′ = J3, (19.72)

as well as

E1′ = E1, E2′ =
E2 −B3V
p

1 − V 2/c2
, E3′ =

E3 +B2V
p

1 − V 2/c2
(19.73)

and

B1′ = B1, B2′ =
B2 + E3V/c2
p

1 − V 2/c2
, B3′ =

B3 − E2V/c2
p

1 − V 2/c2
. (19.74)

The inverse formulas are obtained by replacing V by −V .
Example. Consider a particle of electric charge Q which rests at the origin of

the inertial system Σ′ for all times.

• The observer in Σ′ measures the electric Coulomb field E′(x′, y′, z′) and no mag-
netic field, B′ ≡ 0.

• The observer in Σ observes a charge moving with the constant velocity V along
the x-axis. He measures the electromagnetic field E(x, y, z, t),B(x, y, z, t) with
the following components:

E1 = E1′ , E2 =
E2′

p

1 − V 2/c2
, E3 =

E3′

p

1 − V 2/c2
,

B1 = 0, B2 = − E3′V/c2
p

1 − V 2/c2
, B3 =

E2′V/c2
p

1 − V 2/c2
.
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19.5 Electromagnetic Waves

Light rays are the streamlines of the electromagnetic energy flow.
Folklore

Consider a strictly positively oriented inertial system as on page 960. Let n and e
be a pair of orthogonal unit vectors (i.e., ne = 0). Let f : M

4 → R be a smooth
function.

Theorem 19.9 The electromagnetic field

E(x, t) := f(nx − ct)e, B(x, t) := 1
c
(n × E(x, t)) (19.75)

is a solution of the Maxwell equations with � ≡ 0 and J ≡ 0 (no electric charges
and no electric currents).

Using Hamilton’s nabla calculus, the proof will be given in Problem 19.9.
Wave fronts. Let a be a fixed real number. The equation

nx − ct = a

describes a plane with the normal vector n which propagates in direction of n with
the velocity c. These planes are called wave fronts of the electromagnetic wave
(19.75). Both the electric field and the magnetic field of (19.75) are orthogonal to
the direction n of propagation, and they are constant on the wave fronts.

Light rays. The flow of energy is described by the energy current density vector
S = 1

μ0
(E × B). Explicitly,

S(x, t) =
f(nx − ct)2

μ0c
n.

This means that the energy flows in direction of the vector n. The trajectories of
the energy flow are straight lines which are orthogonal to the moving wave fronts.
These trajectories are called light rays.

19.6 Invariants of the Electromagnetic Field

We want to show that simple arguments from invariant theory yield crucial prop-
erties of the electromagnetic field.

Invariants under rotations. By Cauchy’s theorem on isotropic functions (see
Theorem 9.7 page 565), a real valued function f : E3 × E3 → with

f(E,B) = f(RE, RB)

for all rotations R depends only on the inner products

E2, B2, EB.

In addition, the space reflection x �→ −x induces the transformations

E �→ −E, B �→ B, J �→ −J, A �→ −A,

and the time reflection t �→ −t yields

E �→ E, B �→ −B, J �→ −J, A �→ −A.

Consequently, the two functions



970 19. The Relativistic Invariance of the Maxwell Equations

• η := 1
2μ0

`

1
c2

E2 + B2
´

and

• L := 1
2

`

B2 − 1
c2

E2
´

+ μ0U�− μ0AJ

are invariant under rotations, space reflections, and time reflections. We will moti-
vate below that η (resp. L) represents the energy density (resp. the Lagrangian) of
the electromagnetic field. The function

g(E,B) := EB

is invariant under rotations, but g is not invariant under space (resp. time) reflec-
tions.

Relativistic invariants. On the Minkowski manifold M
4, the tensorial family

Fαβ allows us to construct the invariant

FαβF
αβ ,

by the index principle. In an inertial system, this invariant is equal to 2(B2− 1
c2

E2)
(see (19.54)). Thus, the function L above can be written as

L = 1
4
FαβF

αβ + μ0AβJ β .

We will show on page 976 that the corresponding principle of critical action yields
the Maxwell equations.

19.6.1 The Motion of a Charged Particle and the Lorentz Force

Consider a particle with rest massm0 and electric charge Q. The equation of motion
for the particle reads as

dpα(τ)

dτ
= QFαβ`x(τ)

´

Jβ

`

x(τ)
´

, α = 0, 1, 2, 3, τ ∈ R (19.76)

where pα := m0
dxα(τ)

dτ
, α = 0, 1, 2, 3 (4-momentum). The trajectory of the particle

is given by the curve

xα = xα(τ), α = 0, 1, 2, 3, τ ∈ R

on the Minkowski manifold M
4. In addition, we assume that

• the particle moves with subvelocity of light, that is,

gαβ
`

x(τ)
´

pα(τ)pβ(τ) > 0, τ ∈ R,

• and the parameter τ is the proper time of the particle, that is, s = τ/c represents
the arc length of the curve on M

4.

Motivation. The equation of motion (19.76) possesses an invariant meaning
on the Minkowski manifold M

4, that is, it is valid for arbitrary local coordinates.
In order to motivate this equation, it remains to check a simple special case. To
this end, let Σ be a strictly positively oriented inertial system as used on page 960.
Suppose that the magnetic field vanishes, B ≡ 0. Then, the proper τ is given by

τ(t1) =

Z t1

0

q

1 − ẋ2(t)/c2 dt,

and the equation (19.76) of motion reads as
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d

dt

`

m(t)ẋ(t)
´

= QE(x(t)), t ∈ R (19.77)

with Einstein’s relativistic mass

m(t) :=
m0

p

1 − ẋ2(t)/c2
.

This is a quite natural result which motivates (19.76).
For a general electromagnetic field E,B, the equation (19.76) of motion reads

as

d

dt

`

m(t)ẋ(t)
´

= QE
`

x(t)
´

+Qẋ(t) × B
`

x(t)
´

, t ∈ R (19.78)

and

d

dt
Emech(t) = Qẋ(t)E(x(t)), t ∈ R. (19.79)

Here, we use Einstein’s mechanical energy

Emech := m(t)c2.

Equation (19.79) describes the change of mechanical energy.

Summarizing, the equation of motion (19.76) is the simplest relativistically
invariant equation which generalizes the quite natural equation (19.77).

This way, we obtain the Lorentz force

F = QE +Qẋ× B.

19.6.2 The Energy Density and the Energy-Momentum Tensor

We want to show that the notion of energy density η of an electromagnetic field is
not a relativistic invariant. But the energy-momentum tensor T = Tαβ ∂α ⊗ ∂β is
a relativistic invariant, and we have η = T 00.

Energy density. Consider a strictly positively oriented inertial system as used
on page 960. For the energy density η of the electromagnetic field E,B, we make
the ansatz

η = a
2

`

1
c2

E2 + B2´

where a is an unknown positive universal constant. This ansatz is the simplest
expression which has the following properties:

• η is never negative,
• η is invariant under rotations, space reflections, and time reflections,
• η is invariant under the Hodge duality transformation: E ⇒ −cB and B ⇒ 1

c
E.

It follows from the Maxwell equations

curlE = −Ḃ, curlB = μ0J + 1
c2

Ė

that
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η̇ + div(aμ0S) + aμ0JE = 0 (19.80)

where S := 1
μ0

(E × B). In fact,

η̇ = a
c2

EĖ + aBḂ = aE(curlB − μ0J) − aBcurlE

= −aμ0JE − adiv(E × B).

Motivated by (19.79) and (19.80), we choose a := 1/μ0. This way, we get the energy
density

η = 1
2μ0

`

1
c2

E2 + B2´

of the electromagnetic field E,B.
The energy–momentum tensor. Let us now pass over to relativistic invari-

ance. To this end, we write

η = 1
2μ0

`

B2 − 1
c2

E2 + 2
c2

E2´ = 1
4μ0

(FλμFλμ + 4F 0kF0k). (19.81)

Motivated by (19.81), we define the tensorial family

Tαβ := 1
4μ0

(gαβFλμFλμ + 4FαλFλμg
μβ). (19.82)

Then

η = T 00. (19.83)

The tensor
T := Tαβ ∂α ⊗ ∂β

is called the energy-momentum tensor of the electromagnetic field

F = 1
2
Fαβ dx

α ∧ dxβ .

Proposition 19.10 The energy-momentum tensor T is symmetric and trace free.

This means that Tαβ = T βα, and hence Tαβ = Tβα for all indices. Moreover,
the trace Tα

α vanishes.
Proof. (I) We show that Tαβ = T βα. Note that FαλFλμg

μβ = gα�gβμgλσF�σFλμ.
This remains unchanged under the index transformation α⇔ β, �⇔ μ, and σ ⇔ λ.
Moreover, gαβ = gβα.

(II) We show that Tα
α = 0. This follows from δαα = 4, and

4μ0T
α
β = δαβ F

λμFλμ + 4FαλFλβ = δαβ F
λμFλμ − 4FαλFβλ.

�

19.6.3 Conservation Laws

Perpetual motion machines have fascinated many people over hundreds of
years. The first perpetual motion device was suggested in the 13th century
by the French architect Villard de Honnecourt.
In 1842, Robert Mayer (1814–1878) formulated the universal law of energy
conservation in nature, and he determined experimentally the relation be-
tween mechanical energy and heat energy. The first law of thermodynamics
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(energy conservation) and the second law of thermodynamics tell us that
it is impossible to construct perpetual motion machines.
In 1918, Emmy Noether (1882–1935) proved in terms of mathematics that
conservation laws are based on symmetries. Conservation laws and sym-
metries are fundamental concepts of the modern philosophy of sciences.

Folklore

Consider an arbitrary inertial system. Define

• Tαβ := 1
4μ0

(gαβFλμFλμ + 4FαλFλμg
μβ),

• Sαβγ := xαT βγ − xβTαγ ,
• fα := FαβJβ ,
• sαβ := xαfβ − xβfα.
According to Theorem 8.2 on page 458, these expressions can be extended to ten-
sorial families on the Minkowski manifold M

4 with respect to arbitrary local coor-
dinate systems. Using these tensorial families, we introduce the following tensors
on M

4:

• T = Tαβ ∂α ⊗ ∂β (energy–momentum tensor),
• S = Sαβγ ∂α ⊗ ∂β ⊗ ∂γ (angular momentum tensor),
• fα∂α (Lorentz force 4-vector),
• sαβ ∂α ⊗ ∂β (Lorentz torque tensor),
• J = J β∂β (electric current density 4-vector).

Then we have the following conservation laws:

(i) Conservation of electric charge: div J = 0, that is,

∇βJ β = 0, β = 0, 1, 2, 3. (19.84)

(ii) Conservation of energy and momentum: div T + f = 0, that is,

∇βT
αβ + fα = 0, α = 0, 1, 2, 3. (19.85)

(iii) Conservation of angular momentum: div(x ∧ T ) + x ∧ f = 0, that is,

∇γS
αβγ + sαβ = 0, α, β = 0, 1, 2, 3. (19.86)

These equations are valid for arbitrary local coordinates on the Minkowski manifold
M

4. In an inertial system, we get ∇α = ∂α, α = 0, 1, 2, 3.

Theorem 19.11 If the tensorial families Fαβ and J β satisfy the Maxwell equa-
tions

∇αF
αβ = μ0J β , ∇[γFλμ] = 0, β, γ, λ, μ = 0, 1, 2, 3,

then the conservation laws (i)–(iii) are valid.

Proof. Since the equations (i)–(iii) are valid in arbitrary local coordinate systems,
let us verify them by choosing an inertial system. Then gαβ = ηαβ , and ∇α = ∂α.

Ad (i). Since Fαβ = −F βα and ∂α∂β = ∂β∂α, we get μ0∂βJ β = ∂β∂αF
αβ = 0.

Ad (ii). We will use the same argument as in classical mechanics. To recall the
classical idea, consider the equation of motion

m
d

dt
ẋ = F (19.87)
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on the real line. Hence ẋm d
dt
ẋ = ẋF. The elegant trick is to use the Leibniz rule in

order to get the identity

d

dt
( 1
2
ẋ2) = 1

2
ẍẋ+ 1

2
ẋẍ = ẋẍ. (19.88)

This yields
d

dt
( 1
2
mẋ2) = ẋF

which describes the conservation of energy.14

The idea of our proof is to replace the equation of motion (19.87) by the Maxwell
equations

∂αF
αβ = μ0J β . (19.89)

The generalization of the key identity (19.88) will be based on the Maxwell–Bianchi
equations

∂κFλμ + ∂λFμκ + ∂μFκλ = 0, Fλμ = −Fμλ. (19.90)

(I) Equation of motion. From (19.89), we get

η�βFσ�∂αF
ασ = μ0J σFσ�η

�β .

Since J σFσ�η
�β = JσF

σβ = −μ0f
β , we obtain

η�βFσ�∂αF
ασ = −μ0f

β .

(II) The key identity. We replace the identity (19.88) by

μ0∂αT
αβ = η�βFσ�∂αF

ασ (19.91)

where μ0T
αβ := 1

4
ηαβF �σF�σ + FασFσ�η

�β . This implies the claim μ0∂αT
αβ =

−fβ .
(III) Proof of (19.91). By the Leibniz rule, we get

μ0∂αT
αβ = 1

4
ηαβ∂α(F �σF�σ) + (∂αF

ασ)Fσ�η
�β + Fασ∂α(Fσ�η

�β).

Setting R := 1
4
ηαβ∂α(F �σF�σ) + Fασ∂α(Fσ�η

�β), we get

μ0∂αT
αβ = R + (∂αF

ασ)Fσ�η
�β .

It remains to show that R = 0. To this end, note that

R = 1
2
ηαβ(∂αF

�σ)F�σ + Fασ∂
αFσ�η�β = 1

2
(∂βF �σ)F�σ + Fσα∂

αF βσ,

after using the Leibniz rule and lifting indices. Again lifting indices, the Maxwell–
Bianchi equations (19.90) read as

∂κFλμ+ ∂λFμκ + ∂μFκλ = 0, Fλμ = −Fμλ.

Hence
R = − 1

2
(∂�Fσβ + ∂σF β�)F�σ + Fσα∂

αF βσ.

14 In the special case where F (x) = −U ′(x), we get d
dt

( 1
2
mẋ2(t) + U(x(t))) = 0.
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Finally, changing the summation indices and using Fαβ = −F βα, we obtain

R = − 1
2
F�σ∂

�Fσβ − 1
2
F�σ∂

�Fσβ + F�σ∂
�Fσβ = 0.

Ad (iii). Recall that Tαβ = T βα. By the Leibniz rule,

∂γS
αβγ = ∂γ(xαT βγ − xβTαγ) = δαγ T

βγ + xα∂γT
βγ − δβγTαγ − xβ∂γTαγ

= T βα − μ0x
αfβ − Tαβ + μ0x

βfα = −μ0(x
αfβ − xβfα) = −μ0s

αβ .

�

Inertial systems. Consider a strictly positively oriented inertial system as
used on page 960. Maxwell tried to understand the electromagnetic field by using a
model from elasticity theory. In this context, he introduced the so-called Maxwell
stress tensor

T = D ⊗ E + B ⊗ H − ηI.
Set

• E = Ekek, D = Dkek, D = ε0E,
• B = Bkek, H = Hkek, B = μ0H,
• η = 1

2
(DE + BH) (energy density of the electromagnetic field),

• S = E × H (energy current density vector),
• π := D × E (momentum density vector), π = 1

c2
S,

• f = �E + J × B (Lorentz force density vector),
• cf0 = JE (rate of the Joule energy density),
• S = Skek,π = πkek,
• τ ij := DiEj +BiHj .

Then T =
`

τ ij − ηδij
´

ei ⊗ ej , and

0

B

B

B

@

T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

1

C

C

C

A

=

0

B

B

B

@

η S1/c S2/c S3/c

cπ1 η − τ11 −τ12 −τ13

cπ2 −τ12 η − τ22 −τ23

cπ3 −τ13 −τ23 η − τ33

1

C

C

C

A

.

Note that Tαβ = T βα, α, β = 0, 1, 2, 3 (symmetry of the energy-momentum tensor).
Then we get the following conservation laws:

(i) Charge conservation: �̇+ div J = 0.
(ii) Energy conservation: η̇ + div S + JE = 0.

Momentum conservation: π̇ + f = div T.
(iii) Angular momentum conservation: x × π̇ + x × f = x × div T.

If electrons flow through a metallic wire, then heat is produced by the collisions of
the electrons with the molecules of the metal. This heat production is described by
the term JE. More precisely, the integral

Z t1

t0

„

Z

U
J(x, t)E(x, t) dxdydz

«

dt

is equal to the heat energy produced in the region U during the time interval [t0, t1].
The Noether theorem and the energy-momentum tensor. It turns out

that the conservation laws for energy, momentum, and angular momentum are
consequences of the invariance of the Maxwell equations under the Poincaré group.
This follows from the Noether theorem and the fact that the variational integral
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(19.92) of the principle of critical action is invariant under the Poincaré group. The
Poincaré group has 10 parameters. Consequently, we get 10 conservation laws.15

This is the special case of a general result in mathematical physics which can be
applied to all relativistically invariant field theories. We will study this in Vol. IV
on quantum mathematics.

Linear material. In Sect. 19.8, we will investigate linear materials. In an
inertial system, all the formulas given above for a vacuum remain valid for linear
material provided we use the following replacements:

ε0 ⇒ ε, μ0 ⇒ μ c⇒ c∗

where c∗ is the velocity of light in the material. In particular, we get D = εE and
B = μH.

19.7 The Principle of Critical Action

The principle of critical action does not depend on the electromagnetic
field itself, but on the four-potential. However, the variational problem is
invariant under gauge transformations. This is a typical feature of gauge
theories.

Folklore

19.7.1 The Electromagnetic Field

Consider an inertial system. The principle of critical action for the electromagnetic
field reads as

Z

O

“

1
4
FαβF

αβ + μ0AβJ β
”

d4x = critical! (19.92)

with the boundary condition: Aα = fixed on ∂O, α = 0, 1, 2, 3. Here, we assume
that O is a nonempty bounded open subset of R

4 with a smooth boundary ∂O and
the closure cl(O) = O ∪ ∂O (e.g., O is a 4-dimensional ball). In addition, we set

Fαβ := ∂αAβ − ∂βAα, α, β = 0, 1, 2, 3.

The Euler–Lagrange equations. Naturally enough, we are given the smooth
functions J α : cl(O) → R, α = 0, 1, 2, 3, 4.

Theorem 19.12 If the functions A0, A1, A2, A3 are a smooth solution of the vari-
ational problem (19.92), then these functions satisfy the Maxwell equations

∂αF
αβ = μ0J β , ∂[γFλμ] = 0, β, γ, λ, μ = 0, 1, 2, 3.

15 In fact, the equations (19.85) and (19.86) represent 10 equations. However, it
follows from (19.85) with α = 0, β = 1, 2, 3 that

t(π̇ + f − div T) − x(η̇ + div S + JE) = 0,

and this conservation law is a consequence of the other conservation laws.
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The proof will be given in Problem 19.10. Using the language of vector calculus,
the principle (19.92) of critical action reads as

Z

O

`

1
2
(B2 − 1

c2
E2) − μ0AJ + μ0U�

´

dtdxdydz = critical! (19.93)

with the boundary condition: A, U = fixed on ∂O. In addition, we set

E = −gradU − Ȧ, B = curlA.

We are given the electric charge density � and the electric current density vector
J. We are looking for both the scalar potential U and the vector potential A.

Gauge invariance. The variational integral (19.92) is independent of the
choice of the inertial system, by the index principle. In addition, the variational
integral (19.92) is also invariant under the gauge transformation

Aα ⇒ Aα + ∂αχ, α = 0, 1, 2, 3.

In fact, since ∂βJ β = 0, integration by parts yields

Z

O
(Aβ + ∂βχ)J β d4x =

Z

O
(AβJ β − ∂βJ β · χ) d4x =

Z

O
AβJ β d4x.

19.7.2 Motion of Charged Particles and Gauge Transformations

Consider a particle of rest mass m0 and electric charge Q. The motion of the
particle under the influence of an electromagnetic field is described by the following
variational problem

Z σ1

σ0

„

−m0c
ds(σ)

dσ
−QAα(x(σ))

dxα(σ)

dσ

«

dσ = critical! (19.94)

on the Minkowski manifold M
4. We have to add the following boundary condition:

xα(σ0) and xα(σ1) are fixed if α = 0, 1, 2, 3. We are looking for the trajectory

xα = xα(σ), α = 0, 1, 2, 3

on M
4. In addition, we assume that the particle moves with subvelocity of light,

that is,

gαβ
`

x(τ)
´ dxα(σ)

dσ

dxβ(σ)

dσ
> 0, σ ∈ [σ0, σ1].

The parameter s is the arc length of the curve on M
4, and the parameter interval

[σ0, σ1] is compact.
The variational problem (19.94) does not depend on the choice of the local

coordinate system on the Minkowski manifold M
4.

Proposition 19.13 The principle of critical action (19.94) is invariant under the
gauge transformation

Aα ⇒ Aα + ∂αχ, α = 0, 1, 2, 3.
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Proof. Observe that
Z σ1

σ0

(Aα(x(σ)) + ∂αχ(x(σ))
dxα(σ)

dσ
dσ =

Z σ1

σ0

Aα(x(σ))
dxα(σ)

dσ
dσ + const,

since ∂αχ(x(σ)) dxα(σ)
dσ

= dχ(x(σ))
dσ

. Thus the action integral changes by a constant.
However, this does not change the possible solutions of the problem. �

The Lagrangian approach in an inertial system. Let us consider a strictly
positively oriented inertial system Σ as used on page 960. Let us choose the pa-
rameter σ = t. Then the principle of critical action (19.94) reads as

Z t1

t0

L(x(t), ẋ(t), t) dt = critical! (19.95)

with the Lagrangian

L(x, ẋ, t) := −m0c
2
q

1 − ẋ2

c2
+QẋA(x, t) −QU(x, t).

We have to add the following boundary conditions: x(t0) and x(t1) are fixed. We
are given the 4-potential U,A of the electromagnetic field E,B, that is,

E = −gradU − Ȧ, B = curlA.

We are looking for the curve x = x(t), t ∈ [t0, t1].

Theorem 19.14 Every solution of the variational problem (19.95) satisfies the
differential equation

d

dt

`

m(t)ẋ(t)
´

= QE
`

x(t)
´

+Qẋ(t) × B
`

x(t)
´

(19.96)

with the relativistic mass m(t) := m0√
1−ẋ2(t)/c2

. This differential equation coincides

with the equation of motion (19.78).

Proof. An explicit computation shows that the Euler–Lagrange equation

d

dt
Lẋ = Lx

coincides with (19.96) (see Problem 19.11). �

The Hamiltonian approach in an inertial system. Let us use the Hamil-
tonian approach introduced in Sect. 6.8 of Vol. II. The idea is to pass from the
variables x, ẋ to the new variables x,P by setting

P = Lẋ(x, ẋ, t).

Furthermore, we introduce the Hamiltonian

H = ẋLẋ − L.

Using the momentum vector p = mẋ with the relativistic mass m = m0√
1−ẋ2/c2

, we

get the canonical (or generalized) momentum vector

P = p +QA,
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and the Hamiltonian

H(x,P, t) =
q

m2
0c

4 + c2(P −QA(x, t))2 +QU(x, t).

The solutions of the Euler–Lagrange equation (19.96) pass over to the solutions of
the canonical equations

Ṗ = −Hx, ẋ = HP. (19.97)

We are looking for the trajectory x = x(t),P = P(t), t ∈ [t0, t1].
Gauge transformation. Let us use the transformation

U+(x, t) = U(x, t) + χt(x, t), A+(x, t) = A(x, t) − gradχ(x, t)

together with the transformed Hamiltonian

H+(x,P+, t) =
q

m2
0c

4 + c2(P+ −QA+(x, t))2 +QU+(x, t).

Suppose that all the functions are smooth.

Proposition 19.15 If the trajectory x = x(t),P = P(t), t ∈ [t0, t1] is a solution
of the canonical equation (19.97), then the transformed trajectory

x = x(t), P+ = P+(t), t ∈ [t0, t1]

is a solution of the new canonical equation

Ṗ
+

= −H+
x , ẋ = H+

P+ . (19.98)

Proof. This can be proven by a direct calculation. To get insight, we define the
so-called generating function

S(x,P+, t) := xP+ +Qχ(x, t),

and we set
P = Sx, x+ = SP+ , H+ = H + St.

Then, P = P++Qgradχ, x+ = x, and H+ = H+Qχt. The general theory tells us
that this is a canonical transformation which leads to the new canonical equation
(19.98). �

Summarizing, the gauge transformation considered above is nothing other than
a special canonical transformation in the sense of classical mechanics.

19.8 Weyl Duality and the Maxwell Equations in
Materials

Let us consider electric and magnetic properties of moving material. Typically, such
a moving body consists of molecules, and the electric and magnetic properties of the
molecules have to be taken into account by formulating the so-called constitutive
laws. We will proceed in the following two steps:

Step 1: We consider the body in its rest system Σrest. We assume that this is
an inertial system, and we formulate the Maxwell equations in Σrest including the
constitutive law.

Step 2: Using Weyl densities, we formulate the Maxwell equations in such a way
that they are valid in each inertial system.
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19.8.1 The Maxwell Equations in the Rest System

The Maxwell equations in the rest inertial system Σrest read as follows:

(i) The Maxwell source equations:

div D = �, curlH = J + Ḋ. (19.99)

(ii) The Maxwell–Bianchi equations:

div B = 0, curlE = −Ḃ. (19.100)

(iii) The constitutive law: (D,H,J) = Λ(E,B, T ). Here, T denotes the temperature.

In addition, we introduce the polarization vector Pel and the magnetization
vector M by setting

• Pel := D − ε0E, and
• M := μ−1

0 B − H.

Here, Pel (resp. M) describes the electric (resp. magnetic) dipole moment density
which is generated by the action of the electric field E (resp. the magnetic field B)
on the molecules of the material. Equivalently, equations (i), (ii) can be written as

ε0 div E = �+ �el,micro, curlH = J + Jmicro + ε0Ė,

div H = �magn,micro, curlE = −μ0Ḣ − μ0Ṁ. (19.101)

Here, we set:

• �el,micro := − div Pel (microscopic effective electric charge density),
• �magn,micro := −div M (microscopic effective magnetic charge density), and

• Jmicro := Ṗel (microscopic electric current density vector).

In a vacuum, we have Pel ≡ 0 and M ≡ 0. Hence �el,micro ≡ 0, �magn,micro ≡ 0, and
Jmicro ≡ 0. In materials, we get additional microscopic charges which correspond
to electric and magnetic properties of the molecules generated by both the electric
field E and the magnetic field B.

Note that the electric field E and the magnetic field B are the fundamental
fields. The derived electric field D and the derived magnetic field H are generated
by additional electric and magnetic dipole moments of the molecules of the material.

19.8.2 Typical Examples of Constitutive Laws

The following constitutive laws are frequently encountered:

(a) Linear electric material: D = εE.
(b) Linear magnetic material: H = λB, λ = 1/μ.
(c) Ohm’s law: J = νE.
(d) Ferromagnetic material: B = μ0H+μ0M(H, T ) (multi-valued constitutive law;

hysteresis).

Let us discuss this.
Ad (a). We set ε = ε0(1 + χel). The constant χel is called the electric suscepti-

bility. In a vacuum, we have χel = 0. Otherwise χel > 0. Moreover, ε is called the
dielectric constant. It follows from

D = ε0E + Pel = ε0E + ε0χelE

that the polarization is given by Pel = ε0χelE.
Ad (b). We set μ = μ0(1+χmagn). We have to distinguish between the following

cases:
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Fig. 19.13. Hysteresis

• μ = μ0 (in a vacuum),
• 0 < μ < μ0 (diamagnetic material),
• μ > μ0 (paramagnetic material).

Here, μ (resp. χmagn) is called the magnetic permeability (resp. magnetic suscepti-
bility). It follows from B = μ0(H+M) that M = χmagnH. For linear material, the
Maxwell equations read as:

ε div E = �, curlB = μJ + 1
c2∗

Ė,

div B = 0, curlE = −Ḃ. (19.102)

Here, we set c2∗ := 1/εμ, and c∗ is the velocity of light in the material.

The equations (19.102) are obtained from the Maxwell equations in a vac-
uum by replacing the ‘bare’ constants ε0, μ0 by the ‘effective constants’ ε, μ,
respectively. This is the prototype of renormalization in classical physics.

Ad (c). The Ohm law governs the motion of electrons in metallic conductors.
Ad (d). The phenomenon of ferromagnetism was discovered in ancient times.

For example, iron possesses the ferromagnetic property.16 Above the so-called Curie
temperature of 1017 K, iron looses the ferromagnetic property. Ferromagnetism
depends on the spin of the electrons. We recommend:

A. Aharoni, Introduction to the Theory of Ferromagnetism, Oxford Uni-
versity Press, 2000.

B. McCoy and Tai-Tsu Wu, The Two-Dimensional Ising Model, Harvard
University Press, Cambridge, Massachusetts, 1997.

Hysteresis and multi-valued constitutive laws. Figure 19.13 displays a
so-called multi-valued constitutive law between the derived magnetic field strength
H and the magnetization M of ferromagnetic material. If H is increased from zero
to some positive value, then M increases from zero to some positive value along
the curve from O to A. If H is diminished, then M decreases along a different
curve ABC. If H is increased again, then M increases along the different curve
CDA. This phenomenon is called hysteresis. Multi-valued constitutive laws can be
described by the modern theory of variational inequalities. This can be found in
E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. IV, Springer,
New York, 1995 (e.g., applications to plasticity). We also recommend:

E. Brokate and J. Sprekels, Hysteresis and Phase Transitions, Springer,
Berlin, 1996.

16 The Latin word ‘ferrum’ means iron.
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19.8.3 The Maxwell Equations in an Arbitrary Inertial System

In what follows, we will use the terminology introduced in Sect. 8.11 on page 522
concerning Cartan families and Weyl families together with their Cartan and Weyl
derivatives, respectively. Choose a strictly positively oriented inertial system. Let
us introduce the tensorial family of the electromagnetic field:

(Fαβ) :=

0

B

B

B

@

0 E1/c E2/c E3/c

−E1/c 0 −B3 B2

−E2/c B3 0 −B1

−E3/c −B2 B1 0

1

C

C

C

A

, (19.103)

together with the lifted tensorial family Fαβ with respect to ηαβ :

(Fαβ) :=

0

B

B

B

@

0 −E1/c −E2/c −E3/c

E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0

1

C

C

C

A

. (19.104)

Furthermore, we introduce the Weyl family:

(Wαβ) :=

0

B

B

B

@

0 −D1c −D2c −D3c

D1c 0 −H3 H2

D2c H3 0 −H1

D3c −H2 H1 0

1

C

C

C

A

. (19.105)

More precisely, we assume that:

• Fαβ is a smooth Cartan family (i.e., an antisymmetric tensorial family), and J α

is a smooth tensorial family on the Minkowski manifold M
4. Set

F := 1
2
Fβγ dx

β ∧ dxγ .

• Wαβ is a smooth Weyl family (i.e., an antisymmetric tensorial density family of
weight one) on M

4.

Using Weyl duality, we set wβ :=
p

|g|J β for all β = 0, 1, 2, 3. Then the Maxwell
equations read as follows:

(i) The Maxwell source equation: −δW = w.
(ii) The Maxwell–Bianchi equation: dF = 0.
(iii) Constitutive law: W = Λ(F, T ) in the rest inertial system Σrest.

17

Here, dμFβγ = ∂[μFβγ] is the Cartan derivative, and (δW )β = ∂αW
αβ is the Weyl

derivative. These derivatives are defined in an invariant way, that is, the choice of
the local coordinates on M

4 does not matter. Explicitly, the Maxwell equations (i)
and (ii) read as:

−∂αWαβ =
p

|g| Jβ , ∂[μFβγ] = 0, β, γ, μ = 0, 1, 2, 3.

This is equivalent to

−∂αWαβ =
p

|g| Jβ , ∂μFβγ + ∂βFγμ + ∂γFμβ = 0 (19.106)

17 Explicitly, Wαβ = Λαβ(F 01, F 0,2, . . . , F 33) for all α, β = 0, 1, 2, 3.



19.9 Physical Units 983

for all indices β, γ, μ = 0, 1, 2, 3. These Maxwell equations do not depend on the
choice of the local coordinate system on M

4. More precisely, we compute Wαβ in
the distinguished rest inertial system Σrest by the aid of Fαβ . In an arbitrary local

coordinate system Σ′, we then obtainWα′β′
fromWαβ by using the transformation

law of a Weyl family. Recall that gαβ is the metric tensorial family on M
4. For an

inertial system, we have gαβ = ηαβ for all indices.
Examples. The Maxwell equations in a vacuum are given by (19.106) with

Wαβ = Fαβ/μ0 and c2 = 1/ε0μ0. Using the replacement

ε0 ⇒ ε, μ0 ⇒ μ,

we get the Maxwell equations for linear material. Because of the constitutive law
for linear material, we have μWαβ = Fαβ in the special inertial system Σrest with
p

|g| = 1. In an arbitrary local coordinate system on M
4, we get

μWαβ =
p

|g| Fαβ ,

since
p

|g| Fαβ transforms like an antisymmetric tensorial density family of weight
one. Thus, the Maxwell equations can be elegantly written as

−∂α(
p

|g| Fαβ) = μ
p

|g| J β , ∂μFβγ + ∂βFγμ + ∂γFμβ = 0 (19.107)

for all indices β, γ, μ = 0, 1, 2, 3. These equations are valid for all local coordinate
systems of M

4. In a vacuum, we have to replace μ by μ0.

19.9 Physical Units

19.9.1 The SI System

The basic units can be found in Table 19.1. For the derived units in electromag-
netism, we refer to Table 19.2 on page 984.

Table 19.1. Basic units

length m meter

time s second

mass kg kilogram

temperature K Kelvin

electric current strength A ampere

amount of substance mol 1 mol = 6.026 · 1023 pieces

luminous intensity cd candela
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Table 19.2. Derived units

velocity – – m/s

– –
“

c = 1√
ε0μ0

= 2.99 · 108m/s
”

acceleration – – m/s2

(velocity per time)

force N newton N = kg · m/s2 = J/m

energy (work) J joule
J = Nm = Ws = VAs

= CV = kg · m2/s2

eV electron volt 1 eV = 1.6 · 10−19J

action – – Js

(energy times time) (h = 6.625 · 10−34Js)

power W watt W = J/s = Nm/s = VA

(energy per time)

torque of a force – – Nm = J

(force times length) (energy)

momentum of a particle – – Ns = kg · m/s
(mass times velocity)

angular momentum Ns · m = Js

of a particle (spin) (action)

(momentum times length)

voltage V volt V = W/A = J/As = J/C

electric charge C coulomb C = As

e electric charge e = 1.602 · 10−19C

of the proton

magnetic charge D dirac D = Am

electric field strength – – [E] = N/C = V/m

(force per electric charge) = T · m/s
magnetic field strength T tesla [B] = N/D = N/Am

(force per magnetic charge) = Vs/m2 = T

electric dipole moment – – [pel] = Cm = J/[E] = Jm/V

(electric charge

times length)

magnetic dipole moment – – [m] = Dm = J/[B] = J/T

(magnetic charge

times length)

continued on next page
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Table 19.2. Derived units (continued)

electric polarization – – [Pel] = [pel]/m
3

(electric dipole moment = C/m2 = As/m2

per volume)

magnetic polarization – – [M] = [m]/m3

(magnetic dipole moment = D/m2 = A/m

per volume–magnetization)

derived electric field – – [D] = [Pel]

derived magnetic field – – [H] = [M]

electric charge density – – C/m3 = As/m3

electric current density – – [J] = C/m2s = A/m2

(electric charge per

area and time)

electric current strength – – [J] = A/Cs

(electric charge per time)

magnetic flow Wb weber Wb = Tm2 = Vs

(magnetic field strength

times area)

electric resistance Ω ohm Ω = V/A

inductance H henry H = Wb/A

capacity F farad F = C/V

(electric charge per voltage)

light pressure Pa pascal Pa = N/m2

(force per area)

electromagnetic energy – – [E][D] = [B][H] = J/m3

density (energy per volume)

electromagnetic energy – – [E][H] = J/m2s

current density

(energy per area and time)

electric field constant – – ε0 = 8.854 · 10−12A2s2/Nm2

in a vacuum

magnetic field constant – – μ0 = 4π · 10−7N/A2

in a vacuum ε0μ0 = 1
c2

19.9.2 The Universal Approach

If one wants to formulate the Maxwell equations in a universal way, then one has
to use the three constants μ0, ε0, and κ with
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ε0μ0κ
2 =

1

c2

where c is the velocity of light in a vacuum. Then the Maxwell equations in a
vacuum read as follows:

ε0 div E = �, curlB = κμ0(J + ε0Ė),

curlE = −κḂ, div B = 0.

By specializing the constants ε0, μ0, κ, we get the following systems of units:

(i) SI system: κ := 1; μ0 := 4π · 10−7 N/A2, ε0 := 1
μ0c2

,

(ii) Gauss system: κ := 1
c
; ε0 := 1

4π
, μ0 := 4π,

(iii) Heaviside system: κ := 1
c
; ε0 = μ0 := 1.

The Coulomb law (19.5) on page 937 reads as

F(x) =
QQ0

4πε0|x − x0|2
· x − x0

|x − x0|
,

and the Ampère law (19.13) on page 941 reads as

|F| =
κ2μ0l

2πd
· J0J.

19.10 Further Reading

A lot of classic material can be found in:

J. Maxwell, A Treatise on Electricity and Magnetism, London, 1873.
Reprinted by Dover, Vols. 1, 2, New York, 1954.

J. Jackson, Classical Electrodynamics, Wiley, New York, 1995.

Furthermore, we recommend:

R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures in
Physics, Vol. II, Parts 1, 2: Electromagnetism and Matter, Addison-Wesley,
Reading, Massachusetts, 1963.

P. Tipler, Physics for Scientists and Engineers, Freeman, New York, 1999
(general physics; 1360 pages).

J. Marsden and A. Tromba, Vector Calculus, Freeman, New York, 1996.

G. Scharf, From Electrostatics to Optics, Springer, Berlin, 1994.

G. Scharf, Finite Quantum Electrodynamics: the Causal Approach, Sprin-
ger, Berlin, 1995.

A. Sommerfeld, Lectures on Theoretical Physics, Vol. 3: Electrodynamics,
Academic Press, New York, 1949.

L. Landau and E. Lifshitz, Course of Theoretical Physics, Vol 2: The Clas-
sical Theory of Fields, Vol. 4: Quantum Electrodynamics, Vol. 8: Electro-
dynamics of Continuous Media, Butterworth–Heinemann, Oxford, 1982.

F. Dyson, Feynman’s proof of the Maxwell equations, Amer. J. Phys. 58(3)
(1990), 209–211.
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H. Römer and M. Forger, Elementary Field Theory (in German), Wiley-
VCH, Weinheim, 1993.

H. Goenner, The Special Theory of Relativity and the Classical Theory of
Fields (in German), Spektrum, Heidelberg, 2004.

Special Applications:

J. Schwinger, Classical Electrodynamics, Perseus Books, Reading, Mas-
sachusetts, 1998 (many important applications; e.g., waveguides, syn-
chrotron radiation, scattering, diffraction, and reflection of electromagnetic
waves, antennas).

M. Born and E. Wolf, Principles of Optics, 7th edition, Cambridge Uni-
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Problems

19.1 Explicit computation. In Sect. 19.1, we mention a number of formulas which
can be obtained by explicit computation by means of classical derivatives. Carry
out these computations by using Hamilton’s nabla calculus. In particular, prove
the validity of the Maxwell equations (19.9) and (19.17) of the Coulomb field
E and the Ampère field B, respectively.
Solution: Let f(x) := 1

|x|3 . For all x �= 0, we get

• grad f = grad (x2 + y2 + z2)−3/2 = − 3x
|x|5 ;
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• div(fx) = f div x + x · grad f = 0;
• curl(fx = f curl x − x × grad f = 0.
Note that div x = 3, curl x = 0, and x × x = 0.

Additional material can be found in E. Zeidler (Ed.), Oxford Users’ Guide
to Mathematics, Oxford University Press, 2004. The relations for generalized
functions will be considered in the following problems. The main trick is to use
integration by parts (see Sect. 10.4.2 of Vol. I).

19.2 The Maxwell equations in the language of generalized functions. In what fol-
lows, we will use the space D′(R3) of generalized functions introduced in Sect.
11.3.2 of Vol. I. Suppose that the electric charge density � and the components
of the vector fields E,B, and J are integrable over each ball of the Euclidean
manifold E

3. Show that the equations

ε0 div E = � and curlB = μ0J (19.108)

on the space D′(R3) of generalized functions mean that

−ε0
Z

E3
E · gradϕ d3x =

Z

E3
�ϕ d3x

and
Z

E3
B × gradϕ d3x = μ0

Z

E3
Jϕ d3x

for all test functions ϕ ∈ D(R3) (i.e., ϕ is smooth and vanishes outside a
sufficiently large ball).
Hint: Multiply equation (19.108) by the function ϕ, and use integration by
parts.

19.3 The Maxwell equations for the Coulomb field in the language of generalized
functions. Show that the Coulomb field

E(x) =
Q0

4πε0|x|2
· x

|x| (19.109)

corresponds to a generalized function, that is, the components of E are elements
of D′(E3). Recall that such a generalized function has partial derivatives of all
orders. Explicitly, show that there hold the equations

ε0 div E = Q0δPO and curlE = 0

on the space D′(R3) of generalized functions.
Solution: The integral

E(ϕ) :=

Z

E3
E(x)ϕ(x) d3x

exists for all test functions ϕ ∈ D(R3). To show this use spherical coordi-
nates and observe that the singularity 1

r2
of E at the origin is compensated by

r2 cosϑdϕ dϑ dr. Let P0 be the origin. We have to show that

− ε0
Z

E3
E · gradϕ d3x = Q0ϕ(0) (19.110)

and
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Z

E3
(E × gradϕ) d3x = 0 (19.111)

for all test functions ϕ ∈ D(R3).
Ad (19.110). (I) Key relation. Using spherical coordinates and the mean-value
theorem for integrals, we get

ε0

Z

|x|=r

ϕ · (En) dS =
Q0

4π

Z

|x|=r

ϕ · dS
r2

= Q0ϕ(x0)

for some x0 with |x0| = r. Consequently,

lim
r→0

ε0

Z

|x|=r

ϕ · (En) dS = Q0ϕ(0).

(II) Integration by parts. Let M := {(x, y, z) ∈ R
3 : r2 < x2 + y2 + z2 < R2}

with respect to a right-handed Cartesian (x, y, z)-coordinate system. By the
nabla calculus, we get

div(ϕE) = ϕdiv E + Egradϕ = Egradϕ on M,

since div E = 0 on M. The Gauss–Ostrogradski theorem yields

−ε0
Z

M
Egradϕ d3x = −ε0

Z

|x|=R

ϕ · (En) dS + ε0

Z

|x|=r

ϕ · (En) dS.

Note that the test function ϕ vanishes outside a sufficiently large ball. Thus,
letting R→ ∞ and r → 0, we get the claim (19.110).
Ad (19.111). Using cartesian components, integration by parts yields

Z

M
(E × gradϕ) d3x =

Z

M
(curlE · ϕ) d3x

+

Z

|x|=r

(E × n) dS −
Z

|x|=R

(E × n) dS.

Note that E× n = 0 and curlE = 0 on M. Letting R→ 0 and r → 0, we get
the claim (19.111).

19.4 The Maxwell equations for the electric dipole in the language of generalized
functions. Fix the vector pel. Consider the Coulomb field E from (19.109).
Define the directional derivative

Edipole := −(pel grad)E,

in the sense of generalized functions on E
3. Show that Edipole coincides with

the classical expression given in (19.26) on page 945.
Hint: Observe that the Coulomb field E is smooth on E

3\{0}. Thus, the classical
partial derivatives on E

3 \ {0} coincide with the corresponding derivatives in
the sense of distributions.

19.5 The Ampère magnetic field in the language of generalized functions. Show that
the Ampère field

B(ϕ, r) = B(r) eϕ, B(r) =
μ0J

2πr

from (19.14) is a generalized function on the (x, y)-plane. Moreover, we have
the Maxwell equations
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curlB = μ0Jδ(0,0)k and div B = 0 on E
2.

Solution: We have to show that
Z

E2
B × gradχ dxdy = μ0Jχ(0, 0), (19.112)

and
Z

E2
Bgradχ dxdy = 0 (19.113)

for all test functions χ ∈ D(R2).
Ad (19.112). (I) Key relation. On the (x, y)-plane, we get

Z

|x|=r

χBdx =

Z π

−π

χB(r) · rdϕ =
μ0J

2π

Z π

−π

χ dϕ = μ0Jχ(x0)

for some x0 with |x0| = r. Hence limr→0

R

|x|=r
χBdx = μ0Jχ(0, 0).

(II) Integration by parts. Choose M := {(x, y) ∈ R
2, r2 < x2 + y2 < R2}. By

the nabla calculus,

curl(χB) = χ curlB − B × gradχ = −B × gradχ onM,

since curlB = 0 on M. The Stokes integral theorem yields
Z

M
B × gradχ dxdy =

Z

|x|=r

Bdx −
Z

|x|=R

Bdx.

Letting R→ 0 and r → 0, we obtain the claim (19.112).
Ad (19.113). By the nabla calculus,

div(χB) = Bgradχ+ χdiv B = Bgradχ on M,

since div B = 0 on M. The Gauss–Ostrogradski integral theorem yields
Z

M
Bgradχ dxdy =

Z

|x|=R

χ Bn ds−
Z

|x|=r

χ Bn ds.

Since the magnetic field B is orthogonal to the outer normal unit vector n of
the circle of radius r about the origin, we have Bn = 0. Letting R → ∞ and
r → ∞, we get the claim (19.113).

19.6 Special transformation law. Consider the transformation

x′ = cosϕ · x+ sinϕ · y, y′ = − sinϕ · x+ cosϕ · y, z′ = z (19.114)

which describes a clockwise rotation of the right-handed Cartesian (x, y, z)-
coordinate system about the z-axis with the rotation angle ϕ. Consider the

matrix e−ϕI3
= cos ϕ

2
σ0 − i sin ϕ

2
σ3. Define

σk
′
:= A−1σkA, k = 1, 2, 3.

Show that

σ1′ = cosϕ · σ1 + sinϕ · σ2, σ2′ = − sinϕ · σ1 + cosϕ · σ2, σ3′ = σ3.
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Note that this is the same transformation law as (19.114). Show that the cyclic
permutations x �→ y �→ z �→ x and 1 �→ 2 �→ 3 �→ 1 yield formulas which are
also valid.
Hint: Use σ1σ2 = −σ2σ1 = iσ3 together with the formulas obtained by cyclic
permutation of the indices. Moreover, observe that sinϕ = 2 sin ϕ

2
cos ϕ

2
, and

cosϕ = cos2 ϕ
2
− sin2 ϕ

2
.

19.7 The adjoint representation of the Lie group SU(2) on the Lie algebra su(2).
Recall that iσ1, iσ2, iσ3 is a basis of su(2). For all matrices A ∈ SU(2), define

χA

 

3
X

k=1

αk · iσk
!

:= A−1

 

3
X

k=1

αk · iσk
!

A, α1, α2, α3 ∈ R.

Show that χA : su(2) → su(2) is a linear operator, and show that the map
A �→ χA is a representation of SU(2) on su(2). In addition, show that this
representation is equivalent to the natural representation of SO(3) on R

3.

Hint: Set iσk
′
:= A−1(iσk)A, k = 1, 2, 3. By Problem 19.6, the transformation

formulas from iσ1, iσ2, iσ3 to iσ1′ , iσ2′ , iσ3′ are the same as the transformation
formulas from x, y, z to x′y′, z′ under the rotation �(A) which corresponds to
the group epimorphism � : SU(2) → SO(3) (see (7.21) on page 434).

19.8 Transformation law for the Pauli equation. Prove Prop. 19.33 on page 950.
Hint: For example, let us consider the transformation ψ′ = Aψ with the matrix

A := e−ϕI3
. This corresponds to the rotation (19.114) about the z-axis. Set

x1 := x, x2 := y, x3 := z. For the components of vectors, the inner product is
an invariant under rotations. Hence

3
X

k=1

xkBk =

3
X

k=1

xk
′
Bk′

.

By Problem 19.6,

mB =

3
X

k=1

Bkσk =

3
X

k=1

Bk′
σk

′
.

Set (mB)′ := B1′σ1 +B2′σ2 +B3′σ3. Then mB = A−1(mB)′A.
(I) Transformation of the Pauli equation (19.30). Let

i�ψt =

„

P2

2me
− eU − mB

«

ψ. (19.115)

We have to show that

i�ψ′
t =

„

P2

2me
− eU − (mB)′

«

ψ′. (19.116)

In fact, it follows from (19.115) that

i�ψt = A−1

„

P2

2me
− eU − (mB′

«

Aψ.

This implies (19.116).
(II) Expectation values. Let X = (x, y, z). Choose k = 1, 2, 3. Let us consider
the expectation value
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S̄k =
�

2

Z

R3
ψ†(X, t) σk ψ(X, t) d3x

of the spin component operator Sk with respect to the state ψ with 〈ψ|ψ〉 = 1.
The transformed state ψ′ = Aψ yields the transformed expectation value

S̄k′
=

�

2

Z

R3
(Aψ)†(X ′, t) σk · (Aψ)(X ′, t) d3x′.

Since the matrix A is unitary, we get 〈ψ′|ψ′〉 = 1, and A† = A−1. Hence

S̄k′
=

�

2

Z

R3
ψ†(X ′, t) (A−1σkA) ψ(X ′, t) d3x′.

Noting that A−1σkA = σk
′

and using the invariance of the integral under
rotations, we get

S̄k′
=

�

2

Z

R3
ψ†(X, t) σk

′
ψ(X, t) d3x.

By Problem 19.8, the transformation law from S1,S2,S3 to S1′ ,S2′ ,S3′ is the
same as the transformation law from x, y, z to x′, y′, z′.

19.9 Electromagnetic waves and the nabla calculus. Prove Theorem 19.9 on page
969.
Solution: Let E(x, t) := f(nx − ct)e and B(x, t) := 1

c
(n × E(x, t)). Then:

• div E = ∂(fe) = ∂f · e = f ′en = 0.
• curlE = ∂ × fe = ∂f × e = f ′n × e.
• cdiv B = ∂(n × E) = −n(∂ × E) = −f ′n(n × e) = 0.
• c curlB = ∂ × (n × E) = n(∂E) − (n∂)E = −(n∂)E = −(n∂)fe

= −f ′n2 · e = −f ′e.
• Ė = −cf ′e.
• Ḃ = 1

c
(n × Ė) = −f ′(n × e).

Hence curlE = −Ḃ and c2 curlB = Ė.
19.10 The Euler–Lagrange equations of the electromagnetic field. Prove Theorem

19.12 on page 976.
Solution: Choose the test functions hα ∈ C∞

0 (O,R), α = 0, 1, 2, 3 (i.e., hα :
O → R is smooth and has compact support (see Vol. I)). Define

χ(σ) :=

Z

O
( 1
4
FαβFαβ + μ0AαJ α) d4x, σ ∈ R

where Fαβ := ∂α(Aβ + σhβ) − ∂β(Aα + σhα). If A0, A1, A2, A3 is a smooth
solution of (19.92), then χ′(0) = 0. Hence

χ′(0) =

Z

O

`

1
2
(∂αhβ − ∂βhα)Fαβ + μ0hβJ β´ d4x = 0.

Since Fαβ = −F βα, we get
R

O(∂αhβ · Fαβ + μ0hβJ β) d4x = 0. Integration by
parts yields

Z

O
(−∂αFαβ + μ0J β)hβ d

4x = 0

for all hβ ∈ C∞
0 (O,R)). Hence

−∂αFαβ + μ0J β = 0, β = 0, 1, 2, 3.
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In addition, it follows from Fβγ = ∂βAγ − ∂γAβ that

∂αFβγ + ∂βFγα + ∂γFαβ = 0, α, β, γ = 0, 1, 2, 3.

19.11 The principle of critical action for a charged particle. Prove Theorem 19.14
on page 978.
Solution: Use the Euler–Lagrange equation d

dt
Lẋ = Lx, and observe that

• Lẋ = m0ẋ√
1−ẋ2/c2

+QA = p +QA;

• Lx = Qgradx(ẋA)−QgradU = Qẋ×curlA+Q(ẋ gradx)A−QgradU ;

• d
dt

A(x(t), t)) = (ẋ(t)gradx)A(x(t), t) + At(x(t), t).



20. The Relativistic Invariance of the Dirac
Equation and the Electron Spin

Dirac discovered in 1928 that the electron spin is a relativistic effect.
Combining Einstein’s theory of special relativity with quantum mechanics,
Dirac replaced Schrödinger’s non-relativistic equation for the electron by
the relativistic equation for the electron. The transformation of the Dirac
wave function under rotations yields the operator for the electron spin. All
the fundamental particles of the Standard Model in particle physics are
described by the Dirac equation with additional interaction terms related
to the messenger particles.

Folklore

In this chapter, we restrict ourselves on discussing the basic ideas. A detailed in-
vestigation of the Dirac equation together with the Seiberg–Witten equation and
the relations to spinor calculus, Clifford algebras, and spin geometry can be found
in Vol. IV on quantum mathematics.

Convention. We will use positively oriented inertial systems with the right-
handed Cartesian coordinates x, y, z and the time t. We set x1 := x, x2 := y and
x3 := z, x0 := ct. Moreover, ∂μ := ∂

∂xμ . We sum over equal upper and lower Greek
indices from 0 to 3.

20.1 The Dirac Equation

The Dirac equation for the free relativistic electron with positive rest mass m0 in
a positively oriented inertial system reads as follows:

(i�γμ∂μ −m0c) ψ = 0. (20.1)

We are looking for the Dirac wave function (x, y, z, ct) �→ ψ(x, y, z, ct) from R
4 to

C
4. Here,

ψ =

0

B

B

B

@

ψ1

ψ2

ψ3

ψ4

1

C

C

C

A

.

In addition, we introduce the complex-valued (4 × 4)-Dirac–Pauli matrices

γ0 :=

 

σ0 0

0 −σ0

!

, γj :=

 

0 σj

−σj 0

!

, j = 1, 2, 3, (20.2)

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 21,
© Springer-Verlag Berlin Heidelberg 2011
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where σ0, σ1, σ2, σ3 are the Pauli matrices. Explicitly,

σ0 =

 

1 0

0 1

!

, σ1 =

 

0 1

1 0

!

, σ2 =

 

0 −i

i 0

!

, σ3 =

 

1 0

0 −1

!

.

In addition, we set ψ := ψ†γ0 (Dirac’s adjoint wave function).
The Dirac–Pauli matrices satisfy the following Clifford relations:

γμγν + γνγμ = 2gμν1, μ, ν = 0, 1, 2, 3. (20.3)

Recall that g00 = 1, gjj := −1, j = 1, 2, 3, and gμν = 0 if μ �= ν. The symbol 1
denotes the (4 × 4)-unit matrix. Explicitly,

(γ0)2 = 1, (γ1)2 = (γ2)2 = (γ3)2 = −1, γμγν = −γνγμ, μ �= ν.

The Clifford relations play the key role in the theory of the Dirac equation (see Vol.
IV).

Motivation of the Dirac equation (Dirac’s square root trick). To begin
with, consider the relativistic energy relation

E2 = m2
0c

4 + c2p2 (20.4)

for a relativistic free particle with the rest mass m0 and the momentum vector p.
As for the Schrödinger equation, we use the following quantization rule:

E ⇒ i�c∂0, pj ⇒ −i�∂j , j = 1, 2, 3. (20.5)

Note that the contravariant energy-momentum 4-vector pμ is given by p0 = E/c
and the momentum vector p = p1i + p2j + p3k. Lowering the index, we get the
covariant energy-momentum 4-vector pα := gαβp

β . Explicitly,

p0 = p0 =
E

c
, pj = −pj , j = 1, 2, 3.

Using this, the quantization rule (20.5) reads as

pα ⇒ i�∂α, α = 0, 1, 2, 3. (20.6)

If we apply this quantization rule to (20.4), then we obtain the Klein–Gordon–Fock
equation (see Sect. 13.2.1). This is a second-order partial differential equation. This
differential equation does not yield the spectrum of the hydrogen atom observed in
experiment. Therefore, Dirac tried to find a first-order partial differential equation.
To this end, we first write the energy relation (20.4) in the form

E2

c2
− p21 − p22 − p23 = m2

0c
2.

This is equivalent to
pμg

μνpν = m0c
2.

Now to the point. We want to determine the quantities γ0, γ1, γ2, γ3 in such a way
that there holds the square root relation:

(γμpμ)(γνpν) = pμg
μνpν1.
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Since pμγ
μγνpν = 1

2
pμ(γμγν + γνγμ)pν , we have to realize the Clifford relations

(γμγν + γνγμ) = 2gμν1, μ, ν = 0, 1, 2, 3.

Using the Pauli spin matrices introduced by Pauli in 1927, Dirac constructed the
matrices (20.2) which satisfy the Clifford relations.

Proposition 20.1 Choose the Dirac–Pauli matrices (20.2). If p0, p1, p2, p3 are real
numbers with γμpμ = m0c1, then (γμpμ)2 = pμg

μνpν1 = m2
0c

21.

Using the quantization rule pμ ⇒ i�∂μ, Dirac arrived at his famous first-order
partial diffenertial equation i�γμ∂μψ = m0cψ.

Roughly speaking, Dirac obtained his electron equation by computing the
square root of the Klein–Fock–Gordon operator.

Nowadays there exists a well-developed calculus of pseudo-differential operators
which allows us to construct broad classes of functions of differential operators.
We refer to G. Hsiao and W. Wendland, Boundary Integral Equations, Chap. 6,
Springer, New York, 2008, and L. Hörmander, The Analysis of Linear Partial Dif-
ferential Operators, Vol. 3: Pseudodifferential Operators, Springer, New York, 1983.

Historical remark. The Dirac equation is the result of a long fascinating de-
velopment in mathematics and physics. Hamilton discovered quaternions in 1843.
Thirty five years later, Clifford generalized the algebra of quaternions to Clifford al-
gebras. Finally, in 1928, Dirac used the idea of Clifford algebra in order to formulate
his equation for the relativistic electron. In the 20th century, the Dirac equation
together with the idea of local symmetry (gauge theory) was the decisive tool for
the formulation of the Standard Model in particle physics. In terms of mathematics,
the Dirac equation played a crucial role in the discovery of the Atiyah–Singer index
theorem in the early 1960s and for the formulation of spin geometry. In terms of
physics, the Seiberg–Witten equation was formulated in the context of the quark
confinement. In terms of mathematics, the Seiberg–Witten equation plays a key
role in the theory of 4-dimensional manifolds (see Vol. IV).

20.2 Changing the Inertial System

Dirac proved in 1928 that the Dirac equation is valid in all inertial systems.
Folklore

The key problem is to find the right transformation law for the Dirac wave function
under a change of the inertial system. This is a nontrivial task because of topological
peculiarities. The crucial fact is that there exists a surjective group morphism

� : SL(2,C) → SO↑(1, 3)

from the symplectic group SL(2,C) onto the component SO↑(1, 3) of the unit el-
ement of the Lorentz group O(1, 3).1 Recall that SL(2,C) consists of all complex
(2 × 2)-matrices A with det(A) = 1. The relativistic invariance of the Dirac equa-
tion follows then by using the representation theory of the group SL(2,C) (spinor
calculus). The group SO↑(1, 3) is not simply connected, but the group SL(2,C) is

1 The Lie group SO↑(1, 3) is also called the orthochronous special Lorentz group.
The symplectic group SL(2,C) is also denoted by Sp(2,C).
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simply connected; the Lie group SL(2,C) is the universal covering group of the Lie
group SO↑(1, 3), and we have the Lie group isomorphism

SL(2,C)/{1,−1}  SO↑(1, 3). (20.7)

This will be investigated in Vol. IV. There we will also study space reflections P,
time reflections T, and charge conjugation C. At this point, we will summarize some
important transformation laws concerning Lorentz boosts and rotations.

Special Lorentz transformations. Consider two positively oriented inertial
systems Σ and Σ′ which coincide at time t = 0. Suppose that Σ′ moves along the
x-axis of Σ with the positive velocity V (see Fig.18.1 on page 906). The passage
from Σ to Σ′ is described by the formula

x′ = x coshχ− ct sinhχ, y′ = y, z′ = z, ct′ = ct coshχ− x sinhχ

with coshχ := 1√
1−V 2/c2

and sinhχ := V

c
√

1−V 2/c2
. The corresponding transfor-

mation formula for the Dirac wave function reads as

ψ′(x′, y′, z′, ct′) = e−
χ
2 γ0γ1

ψ(x, y, z, ct). (20.8)

Here, we have

e−
χ
2 γ0γ1

= cosh
χ

2
· 1 − sinh

χ

2
· γ0γ1. (20.9)

The proof of this formula can be found in Problem 20.1. If we replace the x-axis by
the y-axis (resp. z-axis), then we have to use the cyclic permutations:

x⇒ y ⇒ z ⇒ x and γ1 ⇒ γ2 ⇒ γ3 ⇒ γ1. (20.10)

Rotations. Suppose that the inertial system Σ′ is obtained from the inertial
system Σ by a counter-clockwise rotation of Σ about the z-axis with rotation angle
ϕ. Then the transformation formulas read as follows:

x′ = x cosϕ+ y sinϕ, y′ = −x sinϕ+ y cosϕ, z′ = z, t′ = t, (20.11)

and

ψ′(x′, y′, z′, ct′) = e−
ϕ
2 γ1γ2

ψ(x, y, z, ct). (20.12)

Here,

e−
ϕ
2 γ1γ2

= cos
ϕ

2
· 1 − sin

ϕ

2
· γ1γ2. (20.13)

If we replace the z-axis by the x-axis (resp. y-axis), then we have to use the cyclic
permutations (20.10). The proof of the following proposition will be given in Prob-
lem 20.3.

Proposition 20.2 If the wave function ψ satisfies the Dirac equation (20.1) in Σ,
then the transformed wave functions ψ′ from (20.8) and (20.12) satisfy the Dirac
equation in Σ′.

Topological peculiarity. Consider the transformation formula (20.12).
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• For the rotation angle ϕ = 2π, we get x′ = x, y′ = y, z = z′, t′ = t, but

ψ′(x′, y′, z′, ct′) = −ψ(x, y, z, ct).

• For the rotation angle ϕ = 4π, we get x′ = x, y′ = y, z = z′, t′ = t, and

ψ′(x′, y′, z′, ct′) = ψ(x, y, z, ct).

Thus, the transformed wave function ψ′ is only given up to sign. In Vol. IV, we
will show that this is a consequence of the universal-covering-group isomorphism
(20.7).

Mnemonically, the Dirac wave function ψ sees the universal covering group
SL(2,C) of the proper orthochronous Lorentz group SO↑(1, 3).

20.3 The Electron Spin

Infinitesimal rotation. Angular momentum and spin in physics are always related
to infinitesimal rotations of the physical quantities.

Proposition 20.3 For small rotation angle ϕ, we get

ψ′(x, y, z, ct) = ψ(x, y, z, ct) + iϕ
�

(Lz + Sz)ψ(x, y, z, ct) + o(ϕ), ϕ→ 0

with the differential operator

Lz := −i�

„

x
∂

∂y
− y ∂

∂x

«

and the matrix operator

Sz :=
�

2

 

σ3 0

0 σ3

!

=
�

2

0

B

B

B

@

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

1

C

C

C

A

.

Proof. Replacing the rotation angle ϕ by −ϕ, we get

x = x′ − ϕy′ + o(ϕ), y = y′ + ϕx′ + o(ϕ), ϕ→ 0, z′ = z, t′ = t,

and
ψ′(x′, y′, z′, ct′) =

`

1 − ϕ
2
γ1γ2´ ψ(x, y, z, ct) + o(ϕ), ϕ→ 0.

Note that γ1γ2 = −i

 

σ3 0

0 σ3

!

. By the Taylor expansion,

ψ(x, y, z, ct) = ψ(x′ − ϕy′ + o(ϕ), y′ + ϕx′ + o(ϕ), z′, ct′)

= ϕ

„

−y′ ∂ψ
∂x

+ x′
∂ψ

∂y

«

(x′, y′z′, ct′) + o(ϕ), ϕ→ 0.

Replacing x′ ⇒ x, y′ ⇒ y, and z′ ⇒ z, we get the claim. �

The spin operator. Note that the operator of angular momentum in Schrö-
dinger’s quantum mechanics is given by
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L = x × p = Lxi + Lyj + Lzk

with the momentum operator p = −i�∂. Proposition 20.3 shows that, in Dirac’s
relativistic quantum mechanics, we have to replace the operator Lz by the operator
sum Lz +Sz (total angular momentum). By cyclic permutation, we define the spin
operator

S = Sxi + Syj + Szk

with

Sx :=
�

2

 

σ1 0

0 σ1

!

, Sy :=
�

2

 

σ2 0

0 σ2

!

, Sz :=
�

2

 

σ3 0

0 σ3

!

.

Spin states. Let us introduce the following states of the relativistic electron:

ψ
(1)
+ :=

0

B

B

B

@

1

0

0

0

1

C

C

C

A

, ψ
(1)
− :=

0

B

B

B

@

0

1

0

0

1

C

C

C

A

, ψ
(2)
+ :=

0

B

B

B

@

0

0

1

0

1

C

C

C

A

, ψ
(2)
− :=

0

B

B

B

@

0

0

0

1

1

C

C

C

A

.

Then

Szψ
(j)
+ =

�

2
ψ

(j)
+ , Szψ

(j)
− = −�

2
ψ

(j)
− , j = 1, 2.

Thus, ψ
(1)
+ , ψ

(2)
+ are eigenstates of the electron with the spin vector

S = �

2
k,

and ψ
(1)
− , ψ

(2)
− are eigenstates of the electron with the spin vector S = − �

2
k.

Problems

20.1 The exponential function. Prove (20.9) and (20.13).
Solution: It follows from γ0γ1γ0γ1 = −γ0γ0γ1γ1 = 1 that

e−
χ
2
γ0γ1

= 1 − χ
2
γ0γ1 + 1

2

`

χ
2

´2 − . . . = cosh χ
2
· 1 − sinh χ

2
· γ0γ1.

20.2 Transformation law for the Dirac equation. Consider the linear coordinate
transformation

x′ν = Λν
μx

μ, ν = 0, 1, 2, 3 (20.14)

from the inertial system Σ to the inertial system Σ′. Set ∂′μ := ∂
∂x′μ , and set

X := (x, y, z, ct). Consider the transformation

ψ′(X ′) = Tψ(X)

where T is an invertible complex (4 × 4)-matrix which has the following prop-
erty:
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T−1γνT = Λν
μγ

μ, ν = 0, 1, 2, 3. (20.15)

Show that if ψ is a solution of the Dirac equation

i�γμ∂μψ(X) = m0c ψ(X) (20.16)

in the inertial system Σ, then ψ′ is a solution of the Dirac equation in Σ′, that
is,

i�γμ∂′μψ
′(X ′) = m0c ψ

′(X ′). (20.17)

Note that the key transformation law (20.15) parallels the transformation law
(20.14) for the coordinates.

Solution: By the chain rule ∂μ = ∂x′ν

∂xμ ∂
′
ν = Λν

μ∂
′
ν . It follows from (20.16) that

i�γμΛν
μ∂

′
νT

−1ψ′(X ′) = m0c · T−1ψ′(X ′).

Hence
i�(TγμΛμ

νT
−1) ∂′νψ

′(X ′) = m0c ψ
′(X ′).

Since TγμΛν
μT

−1 = γν , we get (20.17).
20.3 Proof of Proposition 20.2. Use Problem 20.2 in order to prove Prop. 20.2.

Solution: Let us prove the claim for the transformation (20.8). Note that

ct′ = ct coshχ− x sinhχ, x′ = x coshχ− ct sinhχ, y′ = y, z′ = z.

Choose T := e−
χ
2 γ0γ1

= cosh χ
2
· 1 − sinh χ

2
· γ0γ1. We have to show that:

• T−1γ0T = γ0 coshχ− γ1 sinhχ,

• T−1γ1T = γ1 coshχ− γ0 sinhχ,

• T−1γ2T = γ2 and T−1γ3T = γ3.
In fact, these equations follow from the Clifford relations. For example, since
γ0γ0γ1 = γ1, we get

γ0T = γ0 cosh χ
2
− γ1 sinh χ

2
,

and

T−1γ0T = (1 cosh χ
2

+ γ0γ1 sinh χ
2
)(γ0 cosh χ

2
− γ1 sinh χ

2
)

= γ0(cosh2 χ
2

+ sinh2 χ
2
) − 2γ1 sinh χ

2
cosh χ

2
= γ0 coshχ− γ1 sinhχ.

Similarly, proceed for the claim concerning the transformation (20.12).
20.4 The real matrix algebra Mat(2,C)R. Let σ0, σ1, σ2, σ3 be the four Pauli matri-

ces. Let Mat(2,C)R denote the real algebra of all the complex (2×2)-matrices.
Show that the eight matrices

σ0, σ1, σ2, σ3, iσ0, iσ1, iσ2, iσ3

form a basis of Mat(2,C)R. Furthermore, show that the four Pauli matrices

σ0, σ1, σ2, σ3

form a basis of the real linear space X which consists of all the complex self-
adjoint (2 × 2)-matrices.
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20.5 The real Clifford algebra MatR(4,C). Let γ0, γ1, γ2, γ3 be the Dirac–Pauli ma-
trices. Prove that the sixteen matrices

γ0, γ1, γ2, γ3, γ0γ0, γ0γ1, γ0γ2, γ0γ3, γ1γ2, γ1γ3, γ2γ3,

γ0γ1γ2, γ0γ1γ3, γ0γ2γ3, γ1γ2γ3, γ0γ1γ2γ3

are linearly independent (with respect to real linear combinations). Conse-
quently, the real matrix algebra Mat(4,C)R of all the complex (4× 4)-matrices
coincides with the real Clifford algebra generated by the four Dirac–Pauli ma-
trices.

20.6 Reduction of products. Use the Clifford relations in order to reduce the follow-
ing products

γ3γ0γ3γ0γ1, γ3γ2γ1γ0

to the basis products from Problem 20.5, up to sign.
Solution: We get γ3γ0γ3γ0γ1 = −γ0γ3γ3γ1 = γ0γ1. Similarly,

γ3γ2γ1γ0 = −γ2γ3γ1γ0 = −γ1γ2γ3γ0 = γ0γ1γ2γ3.



21. The Language of Exact Sequences

Exact sequences play a crucial role in modern algebra, geometry, number
theory, and topology (homological algebra).

Folklore

We will show that exact sequences are a basic tool for the following topics:

• systems of linear equations (linear operator equations),
• homology and cohomology in topology,
• the general potential equation in gauge theory; here, Betti numbers are count-

ing the linearly independent constraints for the existence of physical fields on
manifolds: Betti numbers are also counting the gauge degrees of freedom of the
potentials (modulo cohomology).

21.1 Applications to Linear Algebra

As a prototype, let us reformulate the theory of linear operators in the language of
exact sequences. We choose K = R (field of real numbers) or K = C (field of complex
numbers). Let X,Y, Z be linear spaces over K, and let A,B,C linear operators. We
write

X  Y (21.1)

iff there exists a linear isomorphism A : X → Y. We also say that the linear space
X is linearly equivalent to the linear space Y . If the dimensions of X and Y are
finite, then we have X  Y iff dim(X) = dim(Y ).

For a linear operator A : X → Y , we set

ker(A) := {x ∈ X : Ax = 0} and im(A) := {Ax : x ∈ X}.

This is called the kernel ker(A) and the image im(A) of the linear operator A,
respectively. The sequence of linear operators

X
A−→ Y

B−→ Z (21.2)

is called exact iff

im(A) = ker(B).

In other words, the linear equation

Ax = y, x ∈ X

has a solution x iff By = 0. To simplify notation,

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 22,
© Springer-Verlag Berlin Heidelberg 2011
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• the symbol X → 0 denotes the trivial operator A : X → {0} with Ax := 0 for
all x ∈ X;

• the symbol 0 → X denotes the trivial operator B : {0} → X with B(0) = 0.

Moreover, we frequently write kerA (resp. im A) instead of ker(A) (resp. im(A)).

Proposition 21.1 Let A : X → Y be a linear operator. Then:

(i) The sequence X
A−→ Y → 0 is exact iff A is surjective.

(ii) The sequence 0 → X
A−→ Y is exact iff A is injective.

(iii) The sequence 0 → X
A−→ Y → 0 is exact iff A is bijective.

Proof. Ad (i). The sequence X
A−→ Y → 0 is exact iff im A = Y.

Ad (ii). The sequence 0 → X
A−→ Y is exact iff ker A = {0}.

Ad (iii). The linear operator A : X → Y is bijective iff it is both surjective and
injective. �

Linear quotient spaces and short exact sequences. Consider the surjec-
tive linear operator

B : Y → Z.

Let y, y′ ∈ Y. We write y ∼ y′ iff B(y−y′) = 0. This is an equivalence relation. The
equivalence classes [y] form the linear quotient space Y/ ker(B) (see Sect. 4.1.4 of
Vol. II). The map [y] �→ By yields the linear isomorphism

Y/ kerB  Z.

Introducing the trivial injective map i : kerB → Y by setting i(x) := x for all
x ∈ kerB, we get the exact sequence

0 → kerB
i−→ Y

B−→ Z → 0.

Conversely, if the sequence

0 → X
A−→ Y

B−→ Z → 0 (21.3)

is exact, then the map B : Y → Z is surjective, and the map A : X → Y is
injective with im(A) = kerB. Thus, the map A : X → kerB is a linear isomor-
phism. Identifying linear isomorphic linear spaces with each other, we get the linear
isomorphism

Y/X  Z.

By definition, a short exact sequence is an exact sequence of the form (21.3).
Direct sums and split exact sequences. Consider the direct sum

Z = X ⊕ Y

where X and Y are linear subspaces of the linear space Z over K. Recall that, for
all z ∈ Z, we have the unique decomposition

z = x+ y, x ∈ X, y ∈ Y.

Define

• i(x) := x for all x ∈ X (canonical injection operator on X),
• j(y) := y for all y ∈ Y (canonical injection operator on Y ),
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• π(z) := y for all z ∈ Z (projection operator onto Y ).

Then the sequence

0 −→ X
i−→ X ⊕ Y π−→ Y −→ 0 (21.4)

is exact. Furthermore, we have

0 −→ X
i−→ X ⊕ Y

π

�
j
Y −→ 0 (21.5)

where j : Y → X ⊕ Y is the trivial injective map j(y) := 0 + y = y. Motivated by
this situation, we say that the sequence

0 −→ X
i−→ Z

π−→ Y −→ 0 (21.6)

is a split exact sequence iff it is an exact sequence, and the map π has a right
inverse, that is, there exists an injective map j : Y → Z such that π ◦ j = idY . We
also write

0 −→ X
i−→ Z

π

�
j
Y −→ 0. (21.7)

Proposition 21.2 The sequence (21.6) is a split exact sequence iff Z  X ⊕ Y.

Proof. Suppose that (21.6) is a split exact sequence. There exists a linear subspace
ker(π)⊥ of Z such that

Z = ker(π) ⊕ ker(π)⊥. (21.8)

The map π is surjective. Hence im(π) = Y , and Y  Z/ ker(π). Since the map i is
injective, we get im(i)  X. By exactness, im(i)  ker(π). Finally, (21.8) yields the
claim. �

21.2 The Fredholm Alternative

Linear operator equations. Let A : X → Y be a linear operator. Then the
following hold:

• Choose a linear subspace (kerA)⊥ of X and a linear subspace (im A)⊥ of Y such
that

X = kerA⊕ (kerA)⊥, Y = im A⊕ (im A)⊥.

Set A∗x := Ax for all x ∈ (kerA)⊥. Then the linear operator

A∗ : (kerA)⊥ → im A

is bijective. This means that all the solutions of the linear equation

Ax = y, x ∈ X

are given by
x = A−1

∗ y + x0

where x0 is an arbitrary solution of the homogeneous equation Ax0 = 0. This
tells us that the general solution of a linear operator equation (e.g., a system of
linear equations) is obtained as the sum of a special solution plus the general
solution of the homogeneous equation.
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• We have the linear equivalences

X/ kerA  (kerA)⊥, Y/ im A  (im A)⊥.

We define

• coker A := Y/ im A (cokernel of A), and
• coim A := X/ ker A (coimage of A).

Then, A is injective (resp. surjective) iff ker A = {0} (resp. coker A = {0}).
In the language of exact sequences, this means that we have the following two

exact sequences

0 −→ kerA
j−→ X

A−→ im A −→ 0 (21.9)

and

0 −→ kerA
j−→ X

A−→ Y
π−→ coker A −→ 0. (21.10)

Here, we set j(x) := x for all x ∈ kerA and π(y) := [y] for all y ∈ Y . Moreover,
[y] ∈ Y/ im A.

Duality and the Fredholm alternative. We are given the linear operator
A : X → Y. Let

Ad : Y d → Xd

be the corresponding dual linear operator given by (Adf)(x) = f(Ax) for all x ∈ X
and all f ∈ Y d. Recall that Y d denotes the dual space to Y . Suppose that the
dimension of X and Y is finite. The Fredholm alternative tells us that the linear
operator equation

Ax = y, x ∈ X
has a solution iff f(y) = 0 for all linear functionals f : Y → K with Adf = 0. We
have the linear equivalences

coker(A)  ker(Ad), coim(A)  im(Ad).

This justifies the designation ’cokernel’ and ’coimage’. The dimension of im(A) is
called the rank of the operator A, that is, dim(im(A)) = rank(A). The rank theorem
tells us that

rank(A) = rank(Ad).

Dual exact sequence. If the sequence

X
A−→ Y

B−→ Z

is exact, then the dual sequence

Zd Bd

−→ Y d Ad

−→ Xd (21.11)

is also exact. For the proof, we refer to Problem 21.2.
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21.3 The Deviation from Exact Sequences and
Cohomology

Consider the sequence

X
A−→ Y

B−→ Z (21.12)

with the additional property BA = 0. This condition tells us that Ax = 0 implies
BAx = 0. This yields

im A ⊆ kerB.

Therefore, it makes sense to define the linear quotient space

H := kerB/ im A.

This is called the cohomology group of the sequence (21.12). To simplify notation,
we write H = 0 iff H = {0}.

Proposition 21.3 The sequence (21.12) is exact iff its cohomology group is trivial,
that is, H = 0.

Consequently, the cohomology group H measures the deviation of the sequence
(21.12) from an exact sequence.

Cohomology is one of the most important notions in modern mathematics
and physics.

Long exact sequences. Let Xk be a linear space over K. The sequence of
linear operators

. . .
dk−1−→ Xk

dk−→ Xk+1

dk+1−→ Xk+2

dk+2−→ . . . (21.13)

is called exact iff
ker dk = im dk−1

for all indices k. If dkdk−1 = 0 for all indices k, then the linear quotient space

Hk := ker dk/ im dk−1

is called the kth cohomology group of the sequence (21.13). Applications will be
considered in Chap. 22 on electric circuits and in Chap. 23 on the relations between
de Rham cohomology for differential forms and the electromagnetic field.

21.4 Perspectives

The definition of exact sequences can be immediately translated to additive groups,
modules over a ring, rings, Lie algebras, and vector bundles (i.e., families {Xγ}γ∈Γ
of linear spaces Xγ). A slight modification allows us also to define exact sequences
for groups. To explain this, let

X
A−→ Y

B−→ Z (21.14)
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be a sequence of groups X,Y, Z and group morphisms A,B,C. Naturally enough,
the kernel of the group morphism A : X → Y is defined by

ker(A) := {G ∈ X : A(G) = 1}

where 1 is the unit element of the group Y . Then the sequence (21.14) is called
exact iff im(A) = ker(B).

Proposition 21.4 Let X and Y be groups, and let A : X → Y be a group mor-
phism. Then: .

(i) The sequence X
A−→ Y → 1 is exact iff A is surjective.

(ii) The sequence 1 → X
A−→ Y is exact iff A is injective.

(iii) The sequence 1 → X
A−→ Y → 1 is exact iff A is bijective.

We will show in Vol. IV that semidirect products of groups (or Lie algebras) can be
introduced by using split exact sequences of the form (21.7) on page 1005. Note that,
in the case of groups, we have to replace the zero element ‘0′ by the unit element ‘1′.
Moreover, we will show in Vol. IV that exact sequences can be used for computing
topological invariants via homology groups, cohomology groups, homotopy groups,
and K-theory. A special case will be considered in Sect. 23.6.1 on page 1053 (the
Mayer–Vietoris sequence in de Rham cohomology).

Problems

21.1 Special exact sequence. Let X,Y, Z be real, finite-dimensional, linear spaces
with dim(Y ) > dim(X) > 0. Show that if the sequence

0
α−→ X

β−→ Y
γ−→ X

δ−→ Z → 0

is exact, then dim(Z) < dim(X).
Solution: Since the linear operator δ : X → Z is surjective, dim(X) ≥ dim(Z).
Suppose that dim(Z) = dim(X). Then the operator δ is bijective. Hence
ker(δ) = {0}. This implies

im(γ) = ker(δ) = {0}.

Thus, γ = 0. Hence im(β) = ker(γ) = Y. But, dim im(β) ≤ dim(X) < dim(Y ).
This is a contradiction.

21.2 Exactness of the duality functor. Prove the exactness of the sequence (21.11).
Hint: See E. Zeidler, Applied Functional Analysis, Vol. 2: Main Principles and
Their Applications, Sect. 3.11, AMS 109, Springer, New York, 1995 (reprinted
in China, 2009).



22. Electrical Circuits as a Paradigm in
Homology and Cohomology

The study of electrical networks rests upon preliminary theory of graphs.
In the literature this theory has always been dealt with special ad hoc
methods. My purpose here is to show that actually this theory is nothing
else than the first chapter of classical algebraic topology and may be very
advantageously treated as such by the well known methods of that science.1

Solomon Lefschetz (1884–1972)

We want to show that:

(i) Electric currents J are 1-cycles: ∂J = 0.
(ii) Voltages V are 1-coboundaries: V = −dU (U is the electrostatic potential).
(iii) There exists a duality relation between electric currents and voltages:

〈V |J〉 = 0 (orthogonality).
(iv) If the electrical circuit is connected, then we get β0 = 1 for the zeroth Betti

number. In the general case, β0 is equal to the number of connectivity compo-
nents of the electrical circuit.

(v) If the electrical circuit has s0 nodes and s1 connections, then the Euler char-
acteristic is given by χ = s0 − s1.

(vi) This yields the first Betti number β1 = β0 − χ.
(vii) The space of electric currents is a linear space of dimension β1.

Modern computers are based on huge electrical circuits. In this section, we would
like to study the theory of electrical circuits as a paradigm for important general-
izations in modern physics and mathematics.

22.1 Basic Equations

The electrical circuit depicted in Fig. 22.1(a) is governed by the following two
ordinary differential equations:

RJ(t) − Q(t)

C
+ LJ̇(t) = F (t), Q̇(t) = −J(t), t > 0 (22.1)

along with the initial condition

J(+0) = J0, Q(+0) = Q0.

1 S. Lefschetz, Applications of Algebraic Topology: Graphs and Networks, the
Picard–Lefschetz Theory, and Feynman Algorithms, Springer, New York, 1975.
Lefschetz (born in Moscow) was professor of mathematics at Princeton University
from 1925 until 1953.

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 23,
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 22.1. Electrical circuits

This means that J(t) → J0 and Q(t) → Q0 as t→ +0. This electric circuit consists
of a resistor P1P2, a capacitor P2P3, a coil P3P4, and an electric current source
P4P1 (e.g., an electrical socket or a battery). The symbols possess the following
meaning:

• t (time),
• J (absolute value of the electric current at the resistor of physical dimension A

(ampere)),
• Q (positive electric charge of physical dimension C (coulomb) at the positive

capacitor plate),
• V (voltage at the capacitor of physical dimension V (volt)), Q = CV ,
• F (electromotive force of the electric current source of physical dimension V

(volt)),
• the positive constants R,C, and L are the resistance of the resistor (e.g., a

light bulb), the capacitance of the capacitor, and the inductance of the coil,
respectively. The physical dimensions are V/A, C/V, Vs/A, respectively.

Multiplying the basic equation (22.1) by J, we get

F (t)J(t) = RJ(t)2 +
d

dt

„

Q(t)2

2C
+
LJ(t)2

2

«

(22.2)

for all times t. This equation describes the conservation of energy. To show this, let
us introduce the following energy functions:

• EF (t0, t) :=
R t

t0
FJ dt (electric energy transferred from the electric current source

to the circuit during the time interval [t0, t]);

• ER(t0, t) :=
R t

t0
RJ2dt (heat energy produced at the resistor during the time

interval [t0, t]);
2

• EC(t0, t) := (Q(t)2 −Q(t0)
2)/2C (electric energy transferred to the electric field

of the capacitor during the time interval [t0, t]);
• EL(t0, t) := 1

2
(LJ(t)2−LJ(t0)

2) (electric energy transferred to the electric field –
induced by the electric current flowing through the coil – during the time interval
[t0, t]).

It follows from equation (22.2) that

∂

∂t
EF (t0, t) =

∂

∂t

`

ER(t0, t) + EC(t0, t) + EL(t0, t)
´

, t ≥ t0.

This implies the conservation of energy:

2 Observe that it does not make any sense of speaking about heat energy at a
fixed time. Therefore, we have to use a heat energy function depending on time
intervals.
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EF (t0, t) = ER(t0, t) + EC(t0, t) + EL(t0, t), t ≥ t0.

Summarizing, the electric current source transfers electric energy to the electric
circuit. On the other hand, the electric circuit looses electric energy by spending
energy to the environment, namely,

• heat energy at the resistor,
• electric field energy at the capacitor, and
• electric field energy at the coil.

If the electric current source is a battery, as in a car, then chemical energy is
transformed into electric energy. The universal validity of energy conservation was
postulated and experimentally established by Robert Mayer (1814–1878) in 1842.

Energy conservation is the most fundamental law in nature.

For many-particle systems, the direction of time-depending processes is governed
by entropy. Explicitly, the entropy of a closed system never decreases in time.

Physical motivation. Let us motivate the basic differential equations (22.1).
Electromagnetic phenomena are described by an electric field E and a magnetic
field B depending on position and time. The energy of the electromagnetic field in
a region Ω at time t reads as

Z

Ω

„

εE(x, t)2

2
+

B(x, t)2

2μ

«

d3x

where ε and μ are the constants of the electric and magnetic field in the homoge-
neous material under consideration, respectively. This energy expression summa-
rizes the atomic structure of the material. The electromagnetic field is governed by
the Maxwell equations. In the present case, we do not need the full power of the
Maxwell equations.

It is typical for metals that there exist freely moving electrons because of the
specific total potential of the metal molecules. The flow of an electric current in a
metallic wire corresponds to the flow of free electrons of negative electric charge.3

The behavior of an electric circuit can be compared with the flow of petroleum in
a pipeline.

Pressure and pressure differences in pipelines correspond to the electric
potential U and the voltages V in electric circuits, respectively.

The petroleum flow and the electron flow are driven by the pressure difference and
the voltage, respectively. The electron flow can be described by the electric current
density vector

J = �v

where v and � denote the velocity vector and the electric charge density of the free
electrons, respectively. Let S be a fixed cross section of the wire with unit normal
vector n in direction of the electron flow. Then the so-called electric current is
defined to be

J :=

Z

S
Jn dS.

3 In 1897, the electron was experimentally discovered by Sir Joseph John Thomson
(1856–1940); he performed cathode ray experiments at the Cavendish Labora-
tory (Cambridge, England). In 1906, Thomson was awarded the Nobel prize in
physics. The history of this discovery can be found in S. Weinberg, The Discovery
of Subatomic Particles, Scientific American Library, New York, 1983.
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If Q(t0, t) denotes the electric charge flowing through the cross section S during
the time interval [t0, t], then

Q(t0, t) =

Z t

t0

J(t)dt. (22.3)

Physical experiments show that the strength of the electron current in a metallic
wire depends on the strength of the electric field vector E. Ohm’s law tells us that

J = σE.

The positive material constant σ is called the electric conductivity of the wire. As
a special case of Maxwell’s theory for electromagnetism, the electric field of an
electric circuit possesses a potential U given by

E = −gradU.

The line integral

V (AB) :=

Z B

A

Edx

along the electric circuit is called the voltage between the points A and B. Since
E = −gradU ,

V (AB) = U(A) − U(B).

In order to understand the physical meaning of the voltage V (AB), consider the
motion of a particle of electric charge Q. If the particle moves from the point A to
the point B, then the line integral

QV (AB) :=

Z B

A

QEdx

is equal to the work done by the electric field E. Therefore, the voltage V has the
physical dimension of “energy divided by electric charge.” By (22.3), the electric
current strength has the physical dimension of “electric charge divided by time.”
In the SI system, one uses the units of joule J, coulomb C, ampere A, volt V, and
watt W for energy, electric charge, electric current, voltage, and power, respectively.
There hold the following relations:

J = kg · m2/s
2

= Ws = VAs, C = As, W = AV.

Let us now consider the specific situation depicted in Fig. 22.1(a).

(i) Electric current: The strength of the electron current flowing from the point P1

to the point P2 is denoted by J(P1P2). Since electrons carry a negative charge,
J(P1P2) < 0. The integral

Q(t, t0) :=

Z t

t0

J(P1P2)(t)dt (22.4)

is equal to the amount of electric charge which flows from the point P1 to the
point P2 during the time-interval [t0, t]. Conservation of electric charge tells us
Kirchhoff’s electric current rule:

J(P1P2) = J(P3P4). (22.5)

This means that the same electric current flows through both the resistor and
the coil.
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(ii) Voltage: Mathematically, the electric potential U is determined by the electric
field only up to an arbitrary constant which can be fixed by a gauge condition.
In a physical experiment, we cannot measure the electric potential U = U(P )
at a single point, but only the potential difference

V (P1P2) := U(P1) − U(P2)

which is called the voltage between the points P1 and P2. From the trivial
identity

U(P1) − U(P2) + U(P2) − U(P3) + U(P3) − U(P4) + U(P4) − U(P1) = 0

we get the following Kirchhoff voltage rule:

V (P1P2) + V (P2P3) + V (P3P4) + V (P4P1) = 0. (22.6)

The voltage F := V (P4P1) is called the electromotive force of the electric
current source.

(iii) Resistor: Ohm’s law tells us that

V (P1P2) = R(P1P2)J(P1, P2). (22.7)

The material constant R(P1P2) > 0 is called the resistance between the nodes
P1 and P2. Resistance has the physical dimension V/A. To simplify notation,
set R := R(P1P2). The magnitude of the resistance R depends on the friction
of the freely moving electrons in the metal. The friction transforms the kinetic
energy of the free electrons into heat energy. The integral

ER(t0, t) =

Z t

t0

RJ(P1P2)(t)
2dt

is equal to the amount of heat energy produced during the time interval [t0, t].
For the rate of heat energy production, we get

∂

∂t
ER(t0, t) = RJ(P1P2)(t)

2.

(iv) Capacitor: A plate capacitor P2P3 consists of two parallel plates. Suppose
that the plates located at the points P2 and P3 carry the positive and negative
electric charge Q(t) and −Q(t) at time t, respectively. The capacitor law tells
us that

Q = CV (P2P3).

The positive constant C is called capacitance. The positive and negative charges
of the capacitor generate an electric field between the two plates given by

E =
Q

εS
=
V (P2P3)

d
.

Here, S is the surface area of a single plate, d is the distance between the two
plates, and ε is the electric field constant of the substance located between the
two plates. The electric field is directed from the positively charged plate to
the negatively charged plate; it has the electric energy EC(t) := Q(t)2/2C at
time t. Negatively charged electrons arrive at the capacitor plate P2. Therefore,
the positive electric charge Q(t) on the plate P2 is decreasing, and hence the
negative electric charge −Q(t) on the plate P3 is increasing; this means that
electrons flow from the point P3 through the coil to the point P4.
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(vi) Coil: Faraday’s law of self-induction tells us that

V (P3P4)(t) = LJ̇(P3P4)(t). (22.8)

The electric current J(P3P4) flowing through the coil generates a magnetic
field B. If the electric current changes in time, then so does the magnetic field.
This induces an electric field in the coil; V (P3P4) is the voltage of the induced
electric field. This way the coil produces an electric field which has the energy

EL(t) := 1
2
LJ̇(t)2.

(vi) Sign convention: Recall that the electron current J(P1P2) is negative. Physi-
cists and engineers prefer working with positive currents. Therefore, we intro-
duce the positive current

J := −J(P1P2).

From Kirchhoff’s voltage relation (22.6) along with Ohm’s law and Faraday’s
self-induction law we get

−RJ + V (P2P3) − L
dJ

dt
+ F = 0.

Finally, the capacitor law yields CV (P2P3) = Q. This implies the desired basic
equation (22.1).

Initial-value problem. Consider first the special situation depicted in Fig.
22.1(b). Setting Q = 0, we get the differential equation

RJ(t) + LJ̇(t) = F (t), t > 0 (22.9)

along with the initial-condition J(+0) = J0. We are given the continuous electro-
motive force F : [0,∞[→ R of the electric current source and the electric current
J0 at the initial time t = 0. The given positive constants R and L represent the
resistance of the resistor and the inductance of the coil, respectively. We are looking
for an electric current J : [0,∞[→ R such that the differential equation (22.9) is
satisfied along with the initial condition J(t) → J0 as t → +0.4 Let us introduce
the retarded propagator (also called the Green function)

P+(t, τ) :=
1

L
θ(t− τ)e−R(t−τ)/L, t, τ ∈ R.

Recall that the Heaviside function is defined to be θ(t) := 1 if t ≥ 0, and θ(t) = 0
if t < 0.

Proposition 22.1 The initial-value problem (22.9) has the unique solution

J(t) =

Z t

0

P+(t, τ)F (τ)dτ + J(+0)P+(t,+0), t ≥ 0.

4 More precisely, we assume that the function J is continuous on the closed interval
[0,∞[ and differentiable on the open interval ]0,∞[.
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Fig. 22.2. Euler’s bridge problem

Consider now the situation depicted in Fig. 22.1(a) along with the differential
equation

RJ(t) − Q(t)

C
+ LJ̇(t) = F (t), Q̇(t) = −J(t), t > 0.

We are given the electromotive force F , the electric current J(+0), and the electric
charge Q(+0) of the capacitor at time t = 0. We restrict ourselves to the important
special case where F (t) = const and J(+0) = Q(+0) = 0. Moreover, set

α :=
R

2L
, μ :=

1

LC
− R2

4L2

and assume that μ > 0. The solution reads then as

J(t) =
F

Lω
· e−αt sinωt, t ≥ 0.

This is a damped oscillation of the electric current called Thomson oscillation with
angular frequency ω :=

√
μ. For the electric charge of the capacitor,

Q(t) = −
Z t

0

J(τ)dτ, t ≥ 0.

The resistor is responsible for the damping of the oscillations. If the resistor drops
out, R = 0, then we get the harmonic oscillations

J(t) =
F

Lω
· sinωt, Q(t) =

F

Lω2
· (cosωt− 1), t ≥ 0.

22.2 Euler’s Bridge Problem and the Kirchhoff Rules

The bridge problem. Figure 22.2(a) shows a situation located in Königsberg in
the eighteenth century (nowadays Kaliningrad). There is a river together with two
islands A and B and seven bridges. The problem is to continuously walk over all
the bridges without recrossing one. In order to solve the problem, Euler depicted
the situation schematically as indicated in Fig. 22.2(b). By definition, the index
of a node is equal to the number of connections that hit the node. Euler proved
that the desired walk over the bridges is possible iff there exist not more than two
nodes of odd index. In Fig. 22.2(b), there are four nodes of odd index. Thus, the
Königsberg bridge problem is not solvable.

The Kirchhoff rules. Generalizing Kirchhoff’s electric current rule (22.5) and
Kirchoff’s voltage rule (22.6) in an obvious way, we obtain the following two Kirch-
hoff rules:
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Fig. 22.3. The Wheatstone bridge

(i) Kirchhoff’s electric current rule: For each node, the sum of the electric currents,
which flow directly to the node, is equal to zero.

(ii) Kirchhoff’s voltage rule: For each loop, the sum of voltages is equal to zero.

These rules were formulated by Kirchhoff in 1847.
The Wheatstone bridge problem and constraints. As an example, con-

sider the circuit depicted in Fig. 22.3. To simplify notation, for the electric current,
the voltage, and the resistance, we set

Jij := J(PiPj), Vij := U(Pi) − U(Pj), Rij := R(PiPj).

By Ohm’s law, Jij = RijVij . Furthermore, the voltage V50 of the battery is called
the electromotive force F . Note that Jji = −Jij and Vji = −Vij .

Theorem 22.2 We are given the electromotive force F (battery voltage) between
the nodes P0 and P5 and the resistances Rij > 0 along the remaining direct con-
nections. Then:

(i) There exist a unique electric current (Jij) and a unique voltage (Vij) such
that V50 = F.

(ii) For given value U0 of the electrostatic potential at the node P0, there exists
a unique electrostatic potential (Ui) such that Vij = Ui − Uj for all i, j with i �= j.

As a corollary, for F �= 0, we obtain that

J24 = 0 iff R14 = R34R12/R23. (22.10)

This relation is used by physicists in order to measure the unknown resistance R14.
To this end, the experimentalist changes the two resistances R12 and R23 as long
as J24 = 0, that is, no electric current flows over the ‘bridge’ P2P4.

Proof. Ad (i). Using the Kirchhoff rules, we will get a linear system for Jij
and Vij . By Ohm’s law, Vij can be eliminated. The point is that there exist linear
relations between the equations which reflect elementary geometric properties of
the graph in Fig. 22.3. In fact, we will make critically use of the two relations

c4 = c1 + c2, c5 = c3 − c4

for the cycles (loops)

c1 := P1P2P4P1 c2 := P2P3P4P2, c3 := P0P1P2P3P5P0

as well as c4 := P1P2P3P4P1 and c5 := P0P1P4P3P5P0. Thus, the cycles c1, c2, c3
form a basis for all the cycles. By the Kirchhoff current rule,
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J01 + J21 + J41 = 0 at P1,

J12 + J32 + J42 = 0 at P2,

J23 + J43 + J53 = 0 at P3, (22.11)

as well as

J14 + J24 + J34 = 0 at P4,

J05 + J35 = 0 at P5,

J10 + J50 = 0 at P0. (22.12)

In addition, Jij = −Jji. By the Kirchhoff voltage rule,

V12 + V24 + V41 = 0 along c1,

V23 + V34 + V42 = 0 along c2,

V01 + V12 + V23 + V35 + V50 = 0 along c3, (22.13)

as well as

V12 + V23 + V34 + V41 = 0 along c4,

V01 + V14 + V43 + V35 + V50 = 0 along c5. (22.14)

In addition, Vij = −Vji. By Ohm’s law, Vij = RijJij .We have to show that for given
electromotive force (battery voltage) F = V50, this system has a unique solution Jij .
This is an overdetermined system of 11 equations for 7 unknown electric currents
J01, J12, ... Let us reduce this to a system of 6 equations for 6 unknowns. In fact, the
summation of the three equations from (22.11) yields the first equation of (22.12).
Moreover, summing (22.13) according to c4 = c1 + c2 and c5 = c3 − c4, it follows
that (22.14) is a simple consequence of (22.13). This way, we get the final linear
system of the form

(J01, J21, J41, J32, J42, J43)A = (0, 0, 0, 0, 0, F )

where A is a real (6 × 6)-matrix. An explicit computation shows that the determi-
nant of the matrix A does not vanish. Thus, the system has a unique solution. In
particular, we get that J24 is proportional to F (R14R23 −R34R12).

Ad (ii). Starting at the node P0, we construct

U(P1) := U0 + V10.

For a fixed node, say P2, we choose a path, say P0P1P2, which connects P2 with P1

(Fig. 22.3). Then, we define

U(P2) := U0 + V10 + V21.

If we choose another path, say P0P1P4P2, then we define

U(P2) := U0 + V10 + V41 + V24.

However, because of Kirchhoff’s voltage rule, V12 + V24 + V41 = 0. Noting that
V12 = −V21, this yields

V10 + V21 = V10 + V41 + V24.

Thus, the two definitions of U(P2) coincide. This argument can be used in order
to show that U(Pj) can be uniquely constructed in a path-independent way for all
nodes Pj . �

This is a brute-force proof which cannot be extended to more complicated elec-
trical circuits. It is our goal to give an elegant proof for general electrical circuits
based on algebraic topology.
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22.3 Weyl’s Theorem on Electrical Circuits

Consider a connected electrical circuit which has one battery and all the other
connections are equipped with resistors. In 1923, Weyl proved the following result.5

Theorem 22.3 The Wheatstone Theorem 22.2 remains valid for all connected
electrical circuits which possess at least one loop.

Basic ideas of the proof. The proof of the theorem will be given in the next
section. The basic ideas are the following:

(a) The Kirchhoff rules yield an overdetermined linear system of equations.
(b) This system can be reduced to an inhomogeneous linear system of β1 equations

for β1 unknowns. Explicitly,

β1 = 1 − s0 + s1

where s0 and s1 denotes the number of nodes and connections, respectively.
The number χ := s0−s1 is called the Euler characteristic of the electric circuit.

(c) The homogeneous linear system with vanishing battery voltage, F = 0, has
only the trivial solution.

(d) Suppose that the condition (c) holds true for a finite system of linear equations
where the number of equations and the number of unknowns coincide (as in
(b)). Then the inhomogeneous system has always a unique solution. This is a
standard result of linear algebra.

Let us use this example in order to illustrate the different methods of thinking used
by physicists and mathematicians.

• The thinking of physicists: From the physical point of view, claim (c) is obvious.
Indeed, if the battery voltage vanishes, then nothing happens. This is a beautiful
heuristic argument motivated by observing nature. But, this is not a rigorous
mathematical argument.

• The thinking of mathematicians: A rigorous mathematical argument can be based
on the duality relation

X

JijVij = 0 (22.15)

where we sum over all connections. Suppose that the battery voltage vanishes.
Then it follows from Ohm’s law Vij = RijJij that

X′
RijV

2
ij = 0,

where we sum over all connections except for the battery. Hence Vij = 0 for all
voltages. This implies Jij = 0 for all electric currents. Therefore, the homogeneous
linear system has only the trivial solution.

5 H. Weyl, Repartición de corriente en una red conductora (Distribution of an
electric current in a network), Revista Matematica Hispano-Americana 1923,
153–164 (in Spanish). In: H. Weyl, Collected Works, Vol. II, pp. 368–389. English
translation: George Washington University Logistics Research Project, 1951.
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It remains to prove the claim (b) and the duality relation (22.15). This will be done
in the next section by using the elegant method of homology and cohomology from
algebraic topology.

The fundamental role played by the basic 1-cycles of an electrical
circuit. Loops are also called 1-cycles. For the Wheatstone bridge in Fig. 22.3, we
get the Euler characteristic

χ = 6 − 8,

and hence we get the first Betti number, β1 = 3. This is equal to the number of
basic 1-cycles. Explicitly, we can choose c1, c2, c3 as basic 1-cycles. In the preceding
‘brute force’ proof for the Wheatstone bridge, we used 6 equations for 6 unknowns.
Our general proof will show that, in fact, we only need 3 linear equations for 3
unknowns. Explicitly,

• the three equations correspond to the Kirchhoff voltage rules for the 1-cycles
(loops) c1, c2, c3, and

• the three unknowns are the electric current strengths in the loops c1, c2, c3.

Generally, an electrical circuit is governed by its basic 1-cycles. It was Poincaré’s
ingenious idea to base algebraic topology (homology) in arbitrary dimensions on
the notion of cycles.

Fredholm operators of index zero. Statement (d) above allows a far-
reaching generalization to infinite-dimensional problems in functional analysis. Con-
sider a linear Fredholm operator A : X → X of index zero on the Banach space X.
For given y ∈ X, the equation

Ax = y, x ∈ X

has a unique solution if Ax = 0 implies x = 0. In other words, uniqueness im-
plies existence. This is one of the main theorems of linear functional analysis. The
proof can be found in Zeidler (1995b), Chap. 5 (quoted on page 1089) along with
applications to the Navier–Stokes equations for inviscid fluids.

22.4 Homology and Cohomology in Electrical Circuits

Mathematics is the art of avoiding computations.
Folklore

We want to show that

• the electric current J is a 1-cycle,
• the electrostatic potential U is a 0-cocycle, and
• the voltage V is a 1-cocycle.

Moreover, the basic equations of an electric circuit read as

∂J = 0, V = −dU (22.16)

along with Ohm’s law V = RJ. These two equations imply the Kirchhoff rules
for electric current and voltage. The equation V = −dU represents the simplest
case of Cartan’s potential equation. We will also show that there holds the discrete
Poincaré cohomology rule

∂(∂J) = 0, d(dU) = 0.

Therefore, it follows from (22.16) that
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∂J = 0, d(RJ) = 0.

This is called the discrete Yang–Mills equation. Summarizing, we get the following:

• Homology describes the geometry of the electric circuit; in particular, the first
Betti number β1 is equal to the number of essential loops (also called 1-cycles).

• Cohomology describes the physics of the circuit (i.e., cohomology describes the
voltage and hence the electric currents, by Ohm’s law).

• There exists a crucial duality relation between homology and cohomology which
reflects the influence of the geometry of an electrical circuit on its physics (based
on the duality relation (22.17) below).

Let us discuss this. Generalizing the Wheatstone bridge (Fig. 22.3), by definition,
an electric circuit C consists of a set of nodes P0, ..., PN and a set of connections PiPj
for some i, j = 0, ..., N with i �= j. Each node Pi is connected at least to one other
node. The nodes and the connections are also called 0-simplices and 1-simplices,
respectively. In addition, we use the convention PiPj = −PjPi.

The boundary operator. By a 0-chain, we understand a linear combination

c = α0P0 + ...+ αNPN , α0, ..., αN ∈ R.

For the boundary, ∂c := 0. By a 1-chain, we understand a finite linear combination

J = J01 · (P0P1) + J12 · (P1P2) + ..., J01, J12, ... ∈ R

where we sum over all connections. We use the convention Jij = −Jji. For the
boundary, we have ∂(PiPj) := Pj − Pi, and

∂J := J01(P1 − P0) + J12(P2 − P1) + ...

The 1-chain J is called a 1-cycle iff ∂J = 0. Moreover, the 0-chain c is called a
0-boundary iff c = ∂J for some 1-chain J.

The electrical current is a 1-cycle.

In fact, rearranging ∂J as a linear combination of nodes

∂J = (J10 + J20 + ...+ JN0)P0 + ...,

we see that ∂J = 0 is equivalent to the Kirchhoff rule for electrical currents.
The coboundary operator. By a 0-cocycle, we understand a real function

U which assigns to each node Pi a real number U(Pi). This way, we get a linear
functional on the linear space of all 0-chains. Explicitly,

U(α0P0 + α1P1 + ...) := α0U(P0) + α1U(P1) + ...

This yields the following:

The electrostatic potential is a 0-cochain.

By a 1-cochain, we understand a function V , which assigns to each connection PiPj
a real number Vij . This way, we get a linear functional on the space of all 1-chains.

The voltage is a 1-cochain.

The coboundary dU of a 0-cochain U is a 1-cochain defined by

dU(J) = U(∂J) for all 1-chains J. (22.17)

Explicitly, dU(PiPj) = U(Pj − Pi) = U(Pj) − U(Pi) which equals −Vij . This tells
us that:
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Fig. 22.4. Homology of a circle

For the voltage and the electrostatic potential, we have V = −dU.
For each electric current J and each voltage V ,

V (J) =
X

ij

JijVij = 0 (22.18)

where we sum over all connections. This follows from ∂J = 0 and

V (J) = −dU(J) = −U(∂J) = 0.

Equation (22.18) implies the desired relation (22.15) above.
To get contact with the general homology and cohomology theory, note that

∂c = 0 for al 0-chains c. Therefore, all the 0-chains are 0-cycles. In addition, by
definition, all the 2-chains C vanish with ∂C := 0. Therefore, all the 1-boundaries
vanish. Similarly, if W is a 1-cochain, then dW (C) =W (∂C) = 0 for all 2-chains C.
Thus, all the 1-cochains are 1-cocycles. Finally, by definition, all the 0-coboundaries
vanish.

Homology groups. By definition, the real linear space of 1-cycles forms the
first homology group H1(C) of the electrical circuit. The dimension of this space is
called the first Betti number β1 of the electrical circuit.

The zeroth homology group H0(C) is obtained from the real linear space of all
0-chains by putting 0-boundaries equal to zero. In other words,

H0(C) := 0-chains modulo 0-boundaries.

The dimension of the real linear space H0(C) is called the zeroth Betti number β0

of the circuit. Summarizing, up to linear isomorphisms, we have

Hk(C) = R
βk , k = 0, 1.

Application to circular circuits. Consider the circuit pictured in Fig. 22.4.
For the homology groups, up to homomorphism,

H0 = H1 = R.

Thus, for the Betti numbers, β0 = β1 = 1. These homology groups do not depend
on the choice of the triangulation.

Proof. In fact, the 1-chain J = J1PQ+ J2QP satisfies the condition ∂J = 0 iff

J1(Q− P ) + J2(P −Q) = (J1 − J2)(P −Q) = 0.

Hence J = J1(PQ + QP ) with J1 ∈ R. Consequently, the space of 1-cycles is a
one-dimensional real linear space. Hence β1 = 1. Each 0-chain can be represented
as
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c = αP + βQ = (α+ β)P + β(Q− P ) = (α+ β)P + β∂(PQ).

Thus c = γP modulo 0-boundaries where γ is an arbitrary real number. Hence
β0 = 1.

To show that the homology groups do not depend on the chosen triangulation,
look at the triangulation depicted in Fig. 22.4(b). This yields the 1-cycles

J1(PQ+QR+RP ), J1 ∈ R.

Thus, again β1 = 1. �

Theorem 22.4 The zeroth Betti number β0 of an electrical circuit is equal to the
number of components of the circuit.

Proof. If we distinguish one node Qj in each component of the m components of
the electric circuit, then an arbitrary 0-chain is equal to

α1Q1 + ...+ αmQm

modulo 0-boundaries. This follows as for circular electrical circuits. �

Cohomology groups. By definition, the real linear space of 0-cocycles forms
the zeroth cohomology group H0(C) of the electrical circuit C. The dimension of
this space is called the zeroth (dual) Betti number β0 of the electrical circuit.

The first cohomology group H1(C) of C is obtained from the real linear space
of all 1-cochains by putting 1-coboundaries equal to zero. In other words,

H1(C) := 1-cochains modulo 1-coboundaries.

The dimension of the real linear space H1(C) is called the first (dual) Betti number
β1 of the circuit. Summarizing, up to linear isomorphisms,

Hk(C) = R
βk

, k = 0, 1.

We will show in Sect. 22.5 that βk = βk for k = 0, 1 (de Rham duality).
Application to circular circuits. Consider again Fig. 22.4. We want to show

that, for the cohomology groups,

H0 = H1 = R
1.

Thus, for the dual Betti numbers, β0 = β1 = 1. These cohomology groups do not
depend on the choice of the triangulation.

Proof. Ad H0: Let α and β be real numbers. Explicitly, the cochains read as
follows:

• 0-cochains: U(αP + βQ) = αU(P ) + βU(Q),
• 1-cochains: V (αPQ+ βQP ) = αV (PQ) + βV (QP ).

The values U(P ), U(Q) are fixed, but otherwise arbitrary real numbers. Therefore, a
0-cochain can be characterized by the tuple (U(P ), U(Q)) of real numbers. Similarly,
a 1-cochain can be characterized by the tuple (V (PQ), V (QP )) of real numbers.
Furthermore, the 0-cocycles read as follows:

U(αP + βQ) = (α+ β)U(P ).

In fact, it follows from

(dU)(αPQ+ βQP ) = U(∂(αPQ+ βQP ))

= U((α− β)(Q− P )) = (α− β)(U(Q) − U(P )) = 0
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for all α, β ∈ R that U(P ) = U(Q). Thus, the space of 0-cocycles is one-dimensional.
Hence β0 = 1.

Ad H1: The 1-coboundaries look like

V (αPQ+ βQP ) = αV (PQ) + βV (QP ), V (PQ) = −V (QP ).

In fact, it follows from V = dU that

V (αPQ+ βQP ) = (α− β)(U(P ) − U(Q)).

Hence V (PQ) = U(P ) − U(Q) = −V (QP ). Thus, the 1-coboundaries correspond
to tuples (V (PQ),−V (PQ)). For each 1-cochain, we have the decomposition

(V (PQ), V (QP )) = (V (PQ),−V (PQ)) + (0, V (QP ) + V (PQ)).

Putting the 1-coboundaries to zero means that we set (V (PQ),−V (PQ)) = 0.
Hence the 1-cocycles modulo 1-coboundaries are given by (0, V (QP ) + V (PQ)) for
arbitrary real numbers V (PQ) and V (QP ). This is a one-dimensional real linear
space. Hence β1 = 1. �

The structure of electrical currents. Let the 1-cycles c1, . . . , cβ1 be a basis
of H1(C). Then each electric current of the electrical circuit C has the form

J = J1c1 + ...+ Jβ1cβ1 , J1, ..., Jβ1 ∈ R. (22.19)

The structure of voltage. For given 1-cochain V of the electrical circuit C,
the equation

V = −dU (22.20)

has a 0-cochain U of C as solution iff

V (cj) = 0, j = 1, ..., cβ1 . (22.21)

The solution U is uniquely determined by prescribing the value of U at a fixed
node.

Equation (22.20) is called Cartan’s discrete potential equation. In terms of
physics, this means that each voltage can be characterized by the fact that the
Kirchhoff voltage rule holds true along the basic 1-cycles c1, ..., cβ1 .

Proof. If U is a solution of V = −dU , then V (J) = −dU(J) = −U(∂J) = 0 for
each 1-cycle J, since ∂J = 0. Conversely, if V (cj) = 0 for all j, then V (J) = 0 for
all 1-cycles J. The electrostatic potential can now be constructed as in the proof of
Prop. 22.2 for the Wheatstone bridge, by using a discrete line integral. This line
integral is path-independent, since V vanishes along each loop. �

Proof of the Main Theorem 22.3. By (22.19), the electric current strengths
Jij depend linearly on β1 real parameters J1, ..., Jβ1 . According to (22.21), we get
β1 equations for the voltage components Vij .

First set the battery voltage equal to zero. Using Ohm’s law, Vij = RijJij for
the remaining voltages, we get β1 linear homogeneous equations for the unknowns
J1, ..., Jβ1 . Prescribing the battery voltage, we get an inhomogeneous linear system
S. Finally, use the argument from (22.15) above to show that the homogeneous
system S has only the trivial solution. Since the number of equations β1 coincides
with the number of unknowns, the inhomogeneous equation has a unique solution.
This unique solution corresponds to both the unique voltage V and the unique
electric current J. Using (22.20), we get the unique solution of the equation

∂J = 0, V = −dU, U(P0) = U0.

�
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Fig. 22.5. Refinement of triangulation

22.5 Euler Characteristic and Betti Numbers

The Euler characteristic of an electrical circuit is defined to be

χ := s0 − s1

where s0 and s1 is the number of nodes and connections of the circuit, respectively.
The crucial property of the Euler characteristic is the fact that it does not depend
on the triangulation. This follows from Fig. 22.5. In fact, if we add one node, than
the number of connections increases by one. Hence the difference s0 − s1 remains
unchanged.

Theorem 22.5 For the Euler characteristic, χ = β0 − β1.

Proof. Let Ck, Zk, and Bk denote the space of k-chains, k-cycles, and k-boundaries,
respectively. 6 Consider the sequence

0
∂2−→ C1

∂1−→ C0
∂0−→ 0. (22.22)

Here, in order to avoid misunderstandings, we equip the boundary operator ∂ with
an index k which indicates that the boundary operator ∂ : Ck → Ck−1 acts on the
space Ck. Then, Zk (resp. Bk−1 ) is the kernel or null space (resp. the image) of
the boundary operator ∂k, that is,

Zk = ker(∂k), Bk = im(∂k+1).

Moreover, in terms of factor spaces,

Hk = Zk/Bk, k = 0, 1.

By a standard result of linear algebra on the dimension of factor spaces, we get the
first key relation,

βk = dimHk = dimZk − dimBk.

Moreover, the fundamental epimorphism theorem for linear operators applied to ∂k
tells us that

Ck/ ker(∂k) = im(∂k),

in the sense of a linear isomorphism. Hence Ck/Zk = Bk−1. This implies the second
key relation

dimCk − dimZk = dimBk−1, k = 0, 1.

Noting that B1 = 0 and B−1 = 0, and noting that

• dimC0 = s0 (number of nodes), and
• dimC1 = s1 (number of connections),

6 We set C2 := C−1 := 0. Traditionally, the symbol Zk is motivated by the German
word ‘Zyklus’ for cycle.
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we get

β0 − β1 = (dimZ0 − dimB0) − (dimZ1 − dimB1)

= (dimC0 − dimB0) − (dimC1 − dimB0) = s0 − s1.

This completes the proof. �

We will show later on that the Betti numbers are topological invariants. This
tells us that:

Homeomorphic electric circuits possess the same Betti numbers, and hence
the same Euler characteristic.

Theorem 22.6 The homology groups of an electric circuit C are linearly isomor-
phic to the corresponding cohomology groups, that is,

Hk(C) = Hk(C) = R
βk , k = 0, 1.

In terms of Betti numbers, βk = βk for k = 0, 1 (de Rham duality).

Proof. Replace the linear space Ck by its dual space Cd
k , and the linear operator

∂k : Ck → Ck−1 by its dual operator ∂dk : Cd
k−1 → Cd

k . Setting dk := ∂dk , the
sequence (22.22) passes over to the dual sequence

0
d2←− Cd

1
d1←− Cd

0
d0←− 0. (22.23)

The operator dk : Cd
k−1 → Cd

k corresponds to the coboundary operator d introduced

above. Then, Zk−1 (resp. Bk ) is the kernel or null space (resp. the image) of the
coboundary operator dk, that is,

Zk = ker(dk+1), Bk = im(dk).

For the kth cohomology group, we get

Hk = Zk/Bk, k = 0, 1.

We are now going to use the Fredholm alternative for linear operators. Explicitly,
let A : X → Y be a linear operator where X and Y are real, finite-dimensional,
linear spaces. Then

dim imA = dimY − dim kerAd.

Similarly, for the dual operator Ad : Y d → Xd,

dim imAd = dimXd − dim kerA.

Applying this to the boundary operator ∂k+1 : Ck+1 → Ck and its dual operator
dk+1 : Cd

k → Cd
k+1, we get

dimBk = dimCk − dimZk, dimBk = dimCd
k − dimZk.

A finite-dimensional linear space has always the same dimension as its dual space.
Hence dimCk = dimCd

k . This implies

dimZk − dimBk = dimZk − dimBk,

telling us that dimHk = dimHk. Finally, note that two real, finite-dimensional,
linear spaces are linearly isomorphic iff they possess the same dimension. �
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22.6 The Discrete de Rham Theory

The discrete Poincaré rule. Since ∂Pi = 0, we get ∂c = 0 for each 0-chain c.
For a 1-chain J, the boundary ∂J is a 0-chain. Hence

∂(∂J) = 0 for all 1-chains J.

Dually, (ddV )(J) = dV (∂J) = V (∂∂J) = 0 for all 1-chains J. Hence

d(dV ) = 0 for all 1-cochains V.

The discrete Stokes integral theorem. Introduce the discrete integral
Z

J

V := V (J).

Explicitly, V (J) :=
P

JijVij where we sum over all connections PiPj and PjPi.
Recall that Vij = −Vji and Jij = −Jji for all connections. The defining equation
for the coboundary operator, dU(J) := U(∂J), can be written as

Z

J

dU =

Z

∂J

U

for all 1-chains J and all 0-cochains U . This identity is called the discrete Stokes
integral theorem.

The discrete de Rham theorem. The following theorem is the reformulation
of results proved in the preceding sections.

Theorem 22.7 Let V be a 1-cochain. Then the potential equation

V = −dU

has a solution U iff
R

J
V = 0 for all 1-cycles J. This is equivalent to the condition

Z

cj

V = 0 j = 1, . . . , β1

for all the basic 1-cycles c1, . . . , cβ1 .

It was shown in the 20th century that the discrete theory considered in the
present chapter allows far-reaching generalizations to topological spaces (general
homology and cohomology theory) and to manifolds (de Rham cohomology).

Further reading. We recommend:

P. Bamberg and S. Sternberg, A Course in Mathematics for Students of
Physics, Vol. 2, Cambridge University Press, 1999.



23. The Electromagnetic Field and the
de Rham Cohomology

De Rham cohomology reformulates and generalizes the fundamental the-
orem of calculus due to Newton and Leibniz to differential forms on man-
ifolds. In terms of physics, this describes the existence of potentials. The
key role is played by Poincaré’s cohomology rule and the generalized Stokes
integral theorem.

Folklore

23.1 The De Rham Cohomology Groups

23.1.1 Elementary Examples

Gauge theory is based on potentials. The de Rham cohomology of a manifold M
relates the existence of potentials to the topology of the manifoldM . To begin with,
let us explain this for the real line and the unit circle S

1.
Potential on the real line. Consider the differential equation

F = U ′ on R. (23.1)

In terms of physics, we are given the force F , and we are looking for the potential
U . Let Λ0(R) denote the set of all smooth functions F : R → R. The fundamental
theorem of calculus tells us the following.

Proposition 23.1 For given function F ∈ Λ0(R), the general solution of the dif-
ferential equation (23.1) is given by

U(x) = U0 +

Z x

0

F (ξ)dξ for all x ∈ R

where U0 is an arbitrary real number which describes the gauge freedom of the
potential U .

The integral
R x

0
F (ξ)dξ is the work done by the force field F if it moves a particle

from the point x0 = 0 to the point x on the real line R. We want to translate this
into the language of de Rham cohomology groups. Let Λk(R), k = 1, 2, . . . , denote
the real linear space of all differential k-forms on the real line R.We have ω ∈ Λ1(R)
iff

ω = f(x)dx, f ∈ Λ0(R).

For k = 2, 3, . . ., nontrivial differential k-forms do not exist. Therefore, we set
Λk(R) := {0} if k = 2, 3, . . . A crucial role is played by the differential operator d.

E. Zeidler, Quantum Field Theory III: Gauge Theory,
DOI 10.1007/978-3-642-22421-8 24,
© Springer-Verlag Berlin Heidelberg 2011
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• If U ∈ Λ0(R), then dU = U ′(x)dx.
• If ω ∈ Λ1(R), then dω = 0. In fact, d(fdx) = f ′dx ∧ dx = 0, since dx ∧ dx = 0.

Equivalently, the equation (23.1) can be written as

Fdx = dU on R.

The following linear sequence is basic:

0
d−1−→ Λ0(R)

d0−→ Λ1(R)
d1−→ 0

d2−→ 0
d3−→ . . . (23.2)

Here, we set dkω := dω if ω ∈ Λk(R).1 Obviously, dkdk−1μ = 0 for all k = 0, 1, 2, . . .
and all μ ∈ Λk−1(R). By definition, the linear quotient space

Hk(R) := ker(dk)/im(dk−1)

is called the kth de Rham cohomology group of the real line.2

Proposition 23.2 H0(R) = R and Hk(R) = 0 if k = 1, 2 . . .

Proof. By Prop. 23.1, the equation dU = 0 on R has the solution U ≡ U0. Hence

ker (d0) = R.

Trivially, im(d−1) = 0. This implies H0(R) = ker(d0)/im(d−1) = R. Again, by
Prop. 23.1, the equation Fdx = dU has always a solution. Hence

im(d0) = Λ1(R).

Trivially, ker(d1) = Λ1(R). This implies H1(R) = ker(d1)/im(d0) = 0. �

Potential on an open interval. Replacing the real line R by the open interval
]a, b[, the same argument as used above yields

H0( ]a, b[ ) = R and Hk( ]a, b[ ) = 0, k = 1, 2, . . .

Potential on two disjoint open intervals. Consider M :=]0, 1[ ∪ ]2, 3[.
Then the equation

F = U ′ on M

has the two solutions

• U(x) = U0 +
R x

1/2
F (x)dx, x ∈]0, 1[, and

• U(x) = U1 +
R x

3/2
F (x)dx, x ∈]2, 3[

with the real numbers U0 and U1. The same argument as for the real line yields

H0(M) = R
2 and Hk(M) = 0, k = 1, 2, . . .

Periodic potentials. Let C∞
2π(R) denote the set of all 2π-periodic smooth

functions F : R → R.

1 Pedantically, we use the different symbols d1 and d2 in order to indicate that the
operator d acts on different spaces.

2 To simplify notation, we will write Hk(R) = 0 instead of Hk(R) = {0}.



23.1 The De Rham Cohomology Groups 1029

Proposition 23.3 For given periodic force F ∈ C∞
2π(R), the equation

F (ϕ) = U ′(ϕ) on R (23.3)

has a solution U ∈ C∞
2π(R) iff the constraint

R π

−π
F (ϕ)dϕ = 0 is satisfied. In this

case, the general solution of (23.3) reads as

U(ϕ) = U0 +

Z ϕ

−π

F (ψ)dψ, ϕ ∈ R (23.4)

where U0 is an arbitrary real number which describes the gauge freedom of the
potential U .

Proof. If the function U is a solution of (23.3), then
Z π

−π

F (ϕ)dϕ = U(π) − U(−π) = 0,

because of the periodicity of the potential U . Conversely, it follows from (23.4) that
U(π) = U(−π). Thus, the function U has the period 2π. �

In order to get insight, let us use the Fourier series

F (ϕ) = a0 +
∞
X

k=1

ak cos kϕ+ bk sin kϕ, ϕ ∈ R. (23.5)

Proposition 23.4 The equation (23.3) has a solution iff a0 = 0. The general so-
lution reads as

U(ϕ) = U0 +
∞
X

k=1

ak
k

sin kϕ− bk
k

cos kϕ, ϕ ∈ R

where U0 is an arbitrary real number which describes the gauge freedom of the
potential U .

Potentials on the unit circle. Intuitively, the real line and the unit circle S
1

possess a different qualitative geometric structure. We want to show that the de
Rham cohomology is able to see the difference. Let Λk(S1) denote the real linear
space of all the differential k-forms on the unit circle S

1:

• U ∈ Λ0(S1) iff U ∈ C∞
2π(R).

• ω ∈ Λ1(S1) iff ω = F (ϕ)dϕ with F ∈ C∞
2π(R).

Proposition 23.5 For given ω = F (ϕ)dϕ, the equation

ω = dU on S
1

has a solution iff
R

S1
ω = 0. The general solution reads as

U = U0 +

Z ϕ

−π

F (ψ)dψ.

This is a reformulation of Prop. 23.3. In order to compute the de Rham co-
homology groups of the unit circle S

1, let us start with the following sequence of
linear operators

0
d−1−→ Λ0(S1)

d0−→ Λ1(S1)
d1−→ 0

d2−→ 0
d3−→ . . . (23.6)

Here, we set dkω := dω.
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• If U ∈ Λ0(S1), then dU = U ′(ϕ)dϕ, and
• if ω ∈ Λ1(S1), then dω = 0.

Obviously, dkdk−1μ = 0 for all k = 0, 1, . . . , and all μ ∈ Λk−1(S1).

Proposition 23.6 H0(S1) = H1(S1) = R and Hk(S1) = 0 if k = 2, 3, . . .

Proof. Let U ∈ Λ0(S1). If dU = 0 on S
1, then U ≡ U0. As for the real line R, we

get H0(S1) = R.
Let ω ∈ Λ1(S1). Then ω = F (ϕ)dϕ with F ∈ C∞

2π(R). By Prop. 23.3, the
equation F − a0 = U ′ has a solution U ∈ Λ0(S1). Hence

ω = dU + a0dϕ.

Since dU ∈ im(d0), we get the decomposition

Λ1(S1) = im(d0) ⊕ span(a0dϕ)  im(d0) ⊕ R.

Finally, since ker(d1) = Λ1(S1), we obtain

H1(S1) = ker(d1)/im(d0) = Λ1(S1)/im(d0) = R.

�

It is our goal to generalize the preceding simple examples to the general case.
To this end, we need the language of differential forms which is the most elegant
tool for generalizing the calculus for functions of one real variable to functions of
several real variables.

23.1.2 Advanced Examples

Fix n = 1, 2, . . . Let M be an n-dimensional real manifold. Then we have the
sequence of linear operators

0
d−1−→ Λ0(M)

d0−→ . . .
dk−1−→ Λk(M)

dk−→ Λk+1(M)
dk+1−→ . . . (23.7)

Here, Λk(M) denotes the real linear space of all the smooth differential k-forms ω
on the manifold M , and we set dkω := dω (Cartan differential). By the Poincaré
cohomology rule, we have

dk+1(dkω) = d(dω) = 0 for all ω ∈ Λk(M).

The kth de Rham cohomology group of the manifold M is defined by

Hk(M) := ker(dk)/ im (dk−1). (23.8)

This is a real linear space. Furthermore, we set

βk(M) := dimHk(M). (23.9)

This is called the kth Betti number of the manifold M . The number

χ(M) := β0 − β1 + β2 − . . .

is called the Euler characteristic of the manifold M . If dimM = n, then βk(M) = 0
if k > n. By definition, the Poincaré polynomial is given by

pM (x) := β0 + β1x+ β2x
2 + . . .

In particular, χ(M) = pM (−1). Let us consider the following examples.
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(a) The real line R: H0(R) = R, and Hk(S1) = 0 if k = 2, 3, . . ., β0 = 1, βk = 0 if
k = 1, 2, . . .,

pR = 1, χR = 1.

(b) The unionM ofm pairwise disjoint open intervals on the real line,m = 1, 2, . . .:
H0(M) = R

m and H1(M) = 0 if k = 1, 2, . . ., β0 = m and βk = 0 otherwise,

pM = m, χM = m.

(c) The unit circle S
1: H0(S1) = H1(S1) = R, and Hk(S1) = 0 if k = 2, 3, . . .,

β0 = β1 = 1 and βk = 0 if k = 2, 3, . . .,

pS1 = 1 + x, χS1 = 0.

(d) The unit sphere S
2 : H0(S2) = H2(S2) = R, H1(S1) = 0, and Hk(S2) = 0 if

k = 3, 4, . . ., β0 = β2 = 1, β1 = 0, and βk = 0 if k = 3, 4, . . .,

p S2 = 1 + x2, χ S2 = 2.

(e) Cylinder C = S
1×]0, 1[: Hk(C) = Hk(S1) if k = 0, 1, 2, . . .,

pC = 1 + x, χC = 0.

(f) If M is a real 2-dimensional compact manifold of genus g = 0, 1, 2, . . ., then
H0(M) = H2(M) = R, H1(M) = R

g, and Hk(M) = 0 if k = 3, 4, . . .
Moreover,

β0 = β2 = 1, β1 = 2g, pM = 1 + 2gx+ x2, χM = 2 − 2g.

The definition of the genus can be found in Sect. 5.12 of Vol. II. In particular,
the sphere (resp. the torus) has the genus g = 0 (resp. g = 1).

(g) If M is a nonempty open convex set of R
n, n = 1, 2, . . . , then Hk(M) = Hk(R)

for all k = 0, 1, 2, . . .,

pM = 1, χM = 1.

(h) If M is the union of m pairwise disjoint, nonempty, convex sets of R
n with

n = 1, 2, . . ., then H0(M) = m and Hk(M) = 0 if k = 1, 2, . . .. Hence

pM = m, χM = m.

Let us sketch the proofs.
Ad (a), (b), (g), (h). This is a special case of the Poincaré theorem (i) below.
Ad (c). See Prop. 23.6 on page 1030.
Ad (d). Use a similar argument as for the unit circle in the proof of Prop. 23.6.

Replace the Fourier series by a series with respect to spherical harmonics. The full
proof will be given in Vol. IV.

Ad (e). The projection map (x, y, z) �→ (x, y) sends the points

{(x, y, z) ∈ R
3 : x2 + y2 = 1, 0 < z < 1}

of the cylinder C to the points of the unit circle S
1. Thus, the manifolds C and S

1 are
homotopically equivalent. By the deformation invariance of the de Rham topology
formulated below, the cylinder C has the same de Rham cohomology groups as the
unit circle.

Ad (f). See Vol. IV. �
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Geometric motivation. In order to get insight, let us summarize the following
crucial results in topology. Recall that a topological space (e.g., a manifold) is
contractible iff there exist both a point p ∈ X and a continuous map

H : X × [0, 1] → X

such that X(x, 0) = x for all x ∈ X, and H(x, 1) = p for all x ∈ X. For example, a
ball is contractible, whereas a circle or a sphere are not contractible.

Theorem 23.7 Let M be a real finite-dimensional (nonempty) manifold. Then:
(i) If the manifold M is contractible, then H0(M) = R and Hk(M) = 0 if

k = 1, 2, . . . (Poincaré’s theorem).
(ii) IfM is the union ofm pairwise disjoint, real, finite-dimensional, contractible

manifolds, then H0(M) = R
m and Hk(M) = 0 if k = 1, 2, . . .

(iii) If M is arcwise connected, then we obtain H0(M) = R and β0 = 1.
(iv) The Betti number β0 is equal to the number of connected components of the

manifold M .
(v) If M is simply connected, then H1(M) = 0.
(vi) If M is a real finite-dimensional compact manifold, then the Betti numbers

of M are nonnegative integers, and the Euler characteristic of M is an integer.
(vii) If M and N are real finite-dimensional compact manifolds, then we have

the following elegant Künneth product formula for the Poincaré polynomials:3

pM×N = pM · pN .

(viii) If M is a real, n-dimensional, compact, arcwise connected, oriented man-
ifold M, then

βk(M) = βn−k(M), k = 0, 1, . . . n.

This is called the Poincaré duality.

As an example, consider the cylinder C = S
1×]0, 1[. Since the unit interval ]0, 1[

is continuously contractible to a point, we get p ]0,1[ = 1. By the Künneth product
formula,

pC = p S1 · p ]0,1[ = p S1 = 1 + x.

Moreover, the 2-dimensional torus T
2 is the Cartesian product of two unit circles

(see Fig. 5.27 of Vol. II). It follows from T
2 = S

1 × S
1 that

p T2 = p S1 · p S1 = (1 + x)2 = 1 + 2x+ x2.

Hence β0(T2) = β2(T2) = 1, and β1(T
2) = 2. This coincides with (f) above by

choosing the genus g = 1.

23.1.3 Topological Invariance of the de Rham Cohomology
Groups

The topological invariance of the de Rham cohomology groups. Recall
that two topological spaces X and Y are called topologically equivalent iff there
exists a homeomorphism f : X → Y (i.e., the continuous map f is bijective, and
the inverse map is also continuous).

3 H. Künneth, On the Betti numbers of product manifolds, Math. Ann. 90 (1923),
65–85 (in German); Künneth (1892–1975).
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Theorem 23.8 Two topologically equivalent finite-dimensional real manifolds have
the same de Rham cohomology groups.

This is a deep result in topology. The proof can be found in Bott and Tu (1982)
and Lück (2006), quoted on page 1061. In particular, this tells us that the Betti
numbers and the Euler characteristic introduced above are topological invariants.
For example, an ellipse E is homeomorphic to the unit circle S

1. Therefore,

Hk(E) = Hk(S1), k = 1, 2, . . .

Hence β0(E) = β1(E) = 1 and βk(E) = 0 if k = 2, 3, . . .

23.1.4 Homotopical Invariance of the de Rham Cohomology
Groups

Homotopies describe deformations. Let X and Y be topological spaces. Recall that
two continuous maps

f, g : X → Y

are called homotopic iff there exists a continuous map H : X× [0, 1] → Y such that

H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X.

That is, for every fixed time t ∈ [0, 1] we get a map x �→ H(x, t) from X to Y
which coincides with the map f at time t = 0 and the map g at time t = 1. The
continuity of the map H ensures that the map f is continuously deformed into the
map g during the time interval [0, 1]. If f and g are homotopic, then we write

f  g.

The topological spaces X and Y are called homotopically equivalent iff there exist
continuous maps

f : X → Y and h : Y → X

such that h ◦ f  idX and f ◦ h  idY . Roughly speaking, this means that the
composed map h ◦ f (resp. f ◦ h) can be continuously deformed into the identity
map on X (resp. Y). As a typical example, let us consider contractible spaces. Let
p be a point in the topological space X. The space X is contractible to the point
p iff it is homotopically equivalent to the trivial topological space {p} consisting
precisely of the point p. More material on homotopy can be found in Sect. 4.4.4 of
Vol. II.

Theorem 23.9 Two homotopically equivalent real finite-dimensional manifolds
have the same de Rham cohomology groups.

Cycles and Poincaré’s idea of homology. Homology theory is based on the
boundary operator ∂. Let X be a topological space (e.g., R

n or a sphere), and let
U, V,W be closed subsets of X.

• The set U is called a cycle iff it has no boundary.
• The set U is called a boundary iff there exists a closed set V such that U = ∂V.
• A cycle U is called homologically trivial iff it is a boundary.

The goal of homology theory is to describe the qualitative properties of topological
spaces by considering homologically nontrivial cycles. In fact, there arise technical
problems. Therefore, Poincaré passed to a special class of topological spaces which
allow triangulations. He used triangulations in order to introduce the Betti numbers.
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Roughly speaking, for an oriented topological space, the kth Betti number
(in the sense of Poincaré) equals the number of homologically nontrivial
k-dimensional cycles.

In the case of non-oriented spaces, there arise also so-called torsion numbers. Let
us discuss the intuitive background by considering some examples.4

• The equator of the 2-dimensional unit sphere S
2 has no boundary. Thus, it is a

cycle. But it is a homologically trivial 1-cycle, since the equator is the boundary
of the northern hemisphere. Every reasonable closed curve on the sphere S

2 is
also a boundary. Therefore, we assign intuitively the Betti number β1 = 0 to S

2.
• The sphere S

2 itself has no boundary, and it is not a boundary. Thus, it is a
homologically nontrivial cycle. We assign intuitively the Betti number β2 = 1 to
the sphere S

2.
• The outer (or the inner) equator of a 2-dimensional torus T

2 has no boundary,
and it is not the boundary of a closed subset of the torus. Thus, in contrast to the
sphere S

2, the outer (or inner) equator of a torus is a homologically nontrivial
1-cycle. A more precise formulation of homology theory (to be considered in
Vol. IV) yields the fact that the torus T

2 has two 1-cycles up to homological
equivalence, namely, the outer equator and a fixed meridian. This implies the
Betti number β1 = 2.

For the following considerations, we restrict ourselves to so-called regular k-cycles.
Let M be a real finite-dimensional compact oriented manifold. By definition, a
regular k-cycle is a finite sum

C = α1S1 + α2S2 + . . .

where S1, S2, . . . are oriented submanifolds of the manifold M , and α1, α2, . . . are
real numbers. The manifold M and the submanifold S1, S2, . . . have no boundary.
Therefore, we define

∂C = α1∂S1 + α2∂S2 + . . . := 0.

If ω is a differential k-form, then we define the integral

Z

C

ω := α1

Z

S1

ω + α2

Z

S2

ω + . . . (23.10)

If ω is a differential k-form on M , and S is a k-dimensional submanifold with
boundary on M , then the Stokes integral theorem tells us that

Z

S

dω =

Z

∂S

ω. (23.11)

In particular, it follows from (23.11) that the following hold:

• If ∂S = ∅, then
R

S
dω = 0.

• If dω = 0, then
R

∂S
ω = 0.

This implies the following result which will be critically used below.

Proposition 23.10 If C is a regular k-cycle, and μ is a differential k-form with
μ = dω, then

R

C
μ = 0.

4 The rigorous approach will be considered in Vol. IV.
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Proof. Use
R

Sj
μ =

R

Sj
dω = 0, and apply this to (23.10). �

The Stokes integral theorem (23.11) reflects a fundamental duality between the
boundary operator, ∂, and Cartan’s differential operator, d. This culminates in the
solution theory for the potential equation dω = μ on M to be considered below.
Before studying this, we need some preparations.

Cocycles and the de Rham cohomology. LetM be a real finite-dimensional
manifold. To begin with, let us introduce the dual concepts to cycles and boundaries.

• The differential k-form ω is called a k-cocycle iff dω = 0.
• The differential k-form ω is called a coboundary iff there holds ω = dν for some

differential (k − 1)-form ν.

We are interested in cocycles which are not coboundaries. To this end, for two
k-cycles ω and σ on M , we write

ω ∼ σ
iff the difference ω − σ is a k-coboundary, that is,

ω − σ = dν

for some differential (k − 1)-form ν. This is an equivalence relation. For the equiv-
alence classes [ω] and [τ ], we define

α[ω] + β[τ ] = [αω + βτ ], α, β ∈ R.

This way, the equivalence classes [ω] become a linear space which coincides with
the kth de Rham cohomology group Hk(M) introduced in (23.8) on page 1030. The
equivalence classes [ω] are called cohohomology classes.

Fundamental system of regular k-cycles. LetM be a real finite-dimensional
compact oriented manifold (e.g., a sphere or a torus). Let βk be the kth Betti num-
ber of M , in the sense of (23.9). By definition, the system

C1, . . . , Cβk

of regular k-cycles is a fundamental system iff there exist differential k-forms
ω1, ω2, . . . ωβk such that we have the following orthogonal relations

Z

Cr

ωs = δrs, r, s = 1, . . . , βk.

A deep result in differential topology proved by René Thom (1923–2002) in 1953
tells us that such a fundamental system always exists. If ω is a differential k-form,
then the real numbers

pr :=

Z

Cr

ω, r = 1, 2, . . . , βk

are called periods of ω. Riemann studied such periods for differential forms on
Riemann surfaces. This plays a crucial role for understanding the theory of elliptic
and Abelian integrals. We say that the differential form ω has no periods iff pr = 0
for all r = 1, 2, . . . , βk.
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23.2 The Fundamental Potential Equation in Gauge
Theory and the Analytic Meaning of the Betti Numbers

The topology of a manifold restricts the possible structure of physical fields
and their potentials on the manifold. The constraints for the physical fields
and the gauge degrees of freedom of the potentials are measured by the
Betti numbers of the manifold. One has to distinguish between local and
global integrability conditions (constraints) for the physical field.

Folklore

As a generalization of the classic potential equation

F = −gradU

in mechanics, let us investigate the generalized potential equation

μ = dω on M. (23.12)

We want to show that the de Rham cohomology is nothing else than the optimal
tool for solving this equation. Let M be a real n-dimensional manifold, n = 1, 2, . . .
Fix k = 0, 1, 2, . . . n.We are given the differential (k+1)-form μ, and we are looking
for a differential k-form ω.

(i) Homogeneous equation: Let μ = 0. The solutions ω of the homogeneous
equation dω = 0 on M are precisely the k-cocycles on the manifold M . The general
solution of this equation looks like

ω = α1ω1 + αω2 + . . .+ αβkωβk + dν, α1, . . . , αβk ∈ R

where ν is an arbitrary differential (k−1)-form.5 Moreover, the cohomology classes
[ω1], . . . , [ωβk ] form a basis of the kth de Rham cohomology group Hk(M).

In other words, the Betti number βk tells us the dimension (modulo cohomology)
of the solution space of the homogeneous equation dω = 0 on M .

(ii) The superposition principle for the inhomogeneous equation: If the equation
(23.12) has a solution ωspecial, then the general solution reads as

ω = ωspecial + ωhom

where ωhom is an arbitrary solution of the corresponding homogeneous problem.
(iii) Necessary solvability condition: If the equation (23.12) has a solution ω,

then dμ = 0. 6

(iv) Poincaré’s sufficient solvability condition: If the manifold can be continu-
ously contracted to a point, and if dμ = 0, then the equation (23.12) has a solution.

In order to get a necessary and sufficient solvability condition for (23.12), we
assume:

(H) The real manifold M is finite-dimensional, compact, and oriented (e.g., a
sphere or a torus).

We choose a fundamental system C1, C2, . . . , Cβk+1 of (k + 1)-cycles of the
manifold M , and we consider the de Rham constraints

Z

Cr

μ = 0, r = 1, 2, . . . , βk+1. (23.13)

5 If k = 0, then ν = 0.
6 This means that μ is both a (k+1)-coboundary and a (k+1)-cocycle. The claim

follows immediately from dμ = d(dω) = 0 (Poincaré’s cohomology rule).
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By convention, these constraints drop out if the manifold M can be continuously
contracted to a point. Condition (23.13) tells us that the periods of the differential
form μ vanish. If the equation dω = μ has a solution ω, then the condition (23.13) is
satisfied by the Stokes integral theorem (see Prop. 23.10). The crucial point is that
the condition (23.13) together with dμ = 0 is also a sufficient solvability condition.

Theorem 23.11 (de Rham) The equation (23.12) has a solution iff both the local
integrability condition dμ = 0 on M and the global integrability condition (23.13)
are satisfied.

This fundamental theorem due to de Rham tells us the following in terms of
physics: If the equation μ = dω on M has a solution, then the physical field μ has
the potential ω. Let β0, β1, . . . be the Betti numbers of the manifold M . Suppose
that μ is a differential (k + 1)-form.

There are βk+1 +1 constraints (or integrability conditions) for the physical
field μ to possess a potential. In addition, the potential ω has βk degrees
of gauge freedom modulo cohomology.

For the proof, we refer to F. Warner, Foundations of Differentiable Manifolds and
Lie Groups, Scott-Foresman, Glenview, Illinois, 1971, and R. Thom, Some global
properties of differentiable manifolds (in French), Comm. Math. Helv. 28, 17–86.
English translation in: S. Novikov and I. Taimanov (Eds.), Topological Library,
Vol. 1: Cobordisms and their Applications, pp. 131–209. See also the following two
classic monographs:

W. Hodge, The Theory and Applications of Harmonic Integrals, Cam-
bridge University Press, 1941 (second revised edition 1951).

G. de Rham, Variétés différentiables: Formes, courants, formes harmo-
niques, Hermann, Paris, 1955 (in French).

De Rham and Hodge related algebraic topology to analysis, differential topology,
and physics. Elements of this approach can be traced back to the work of Poincaré.

Examples. Consider again the equation

dω = μ, ω ∈ Λk(M), k = 0, 1, . . . , n, n = dim(M). (23.14)

We are given μ ∈ Λk+1(M). If k = n, then the equation reduces to the homogeneous
equation dω = 0 on M because of Λn+1(M) = {0}.
(i) Unit circle: Let M = S

1. Note that β0 = β1 = 1 (Betti numbers).
• k = 0 : The equation (23.14) has a solution iff dμ = 0 and

R

S1
μ = 0. The

general solution reads as

ω = ωspecial + α, α ∈ R.

• k = 1, μ = 0: The solution space of the equation (23.14) has the dimension
β1 = 1 modulo cohomology. The general solution of (23.14) is given by

ω = αυ + dU, α ∈ R

where υ is the normalized volume form on S
1 (i.e.,

R

S1
υ = 1), and U : S

1 → R

is an arbitrary smooth function. The proof of this result can be found on page
1029.

(ii) Unit sphere: Let M = S
2. Note that β0 = β2 = 1, β1 = 0.
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• k = 0 : The equation (23.14) has a solution iff dμ = 0. If ωspecial is a special
solution of (23.14), then the general solution of (23.14) reads as

ω = ωspecial + α, α ∈ R.

Thus the solution space of (23.14) has the dimension β0 = 1.
• k = 1: The equation (23.14) has a solution iff dμ = 0 and

R

S2
μ = 0. If ωspecial

is a special solution of (23.14), then the general solution of (23.14) is given
by

ω = ωspecial + dU

where U : S
2 → R is an arbitrary smooth function. The solution space has

the dimension β1 = 0 modulo cohomology.
• k = 2, μ = 0: The general solution of (23.14) is given by

ω = αυ + dν, α ∈ R

where υ is the normalized volume form (i.e.,
R

S2
υ = 1), and ν is an arbitrary

differential 1-form on S
2.

(iii) Torus: Let M = T
2. Note that β0 = β2 = 1, β1 = 2. Choose the outer equator

C1 and a meridian C2 of the torus.
• k = 0 : The equation (23.14) has a solution iff dμ = 0 and

R

Cj
μ = 0, j = 1, 2.

If ωspecial is a special solution of (23.14), then the general solution of (23.14)
reads as

ω = ωspecial + α, α ∈ R.

Thus the solution space of (23.14) has the dimension β0 = 1.
• k = 1: The equation (23.14) has a solution iff dμ = 0 and

R

T2 μ = 0. If
ωspecial is a special solution of (23.14), then the general solution of (23.14)
is given by

ω = ωspecial + α1ω1 + α2ω2 + dU, α1, α2 ∈ R

where U : T
2 → R is an arbitrary smooth function. Moreover, ω1 and ω2 are

differential 1-forms on T
2 with

R

Cr
ωs = δrs if r, s = 1, 2. The solution space

of (23.14) has the dimension β1 = 2 modulo cohomology.
• k = 2, μ = 0: The general solution of (23.14) is given by

ω = αυ + dσ, α ∈ R

where υ is the normalized volume form (i.e.,
R

T2 υ = 1). Moreover, σ is an

arbitrary differential 1-form on T
2.

23.3 Hodge Theory (Representing Cohomology Classes
by Harmonic Forms)

Hodge theory was created by Hodge (1903–1975) in the 1930s. It was the goal
of Hodge to investigate algebraic manifolds by generalizing Riemann’s theory for
Abelian integrals on Riemann surfaces.

Let M be a real n-dimensional compact Riemannian manifold, n = 1, 2, . . .
(e.g., an n-dimensional sphere). Such a manifold is always oriented.
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Theorem 23.12 If the equation dω = μ on M has a solution ω, then it has pre-
cisely one solution with the property Δω = 0, (i.e., ω is a harmonic form).

Equivalently, the following hold.7

Every de Rham cohomology class of the real n-dimensional compact Rie-
mannian manifold M contains precisely one harmonic form.

Consequently, there exists a linear isomorphism

Hk(M)  Hk(M), k = 0, 1, 2, . . .

between the real linear space Hk(M) of harmonic k-forms on the manifold M and
the de Rham cohomology group Hk(M). This allows us to reduce the de Rham
cohomology to solving the Laplace equation

Δω = 0 onM, ω ∈ Λk(M).

23.4 The Topology of the Electromagnetic Field and
Potentials

The de Rham cohomology is a far-reaching generalization of Maxwell’s
theory for the electromagnetic field. If the open set O is contractible to a
point, then the existence of an electric (resp. magnetic) potential is based
on the local constraint curlE = 0 (resp. div B = 0) for the electric field
E (resp. the magnetic field B). The number of global constraints for the
existence of electric (resp. magnetic) potentials depends on the first Betti
number β1 (resp. the second Betti number β2) of the open set O. The
Betti number β1 (resp. β2) measures the number of essential 1-cycles (resp.
2-cycles) which are not boundaries. The Betti numbers are homotopical
invariants, and hence the number of linearly independent constraints is
also a homotopical invariant.

Folklore

Fix a strictly positively oriented inertial system. The Maxwell equations for the
electric vector field E and the magnetic vector field B in a vacuum read as

ε0 div E = �, curlB = μ0J +
1

c2
∂E

∂t
,

curlE = −∂B
∂t
, div B = 0. (23.15)

Here, � is the electric charge density, and J is the electric current density vector.
All the functions depend on space and time.8 Moreover, ε0 (resp. μ0) is the electric
(resp. magnetic) field constant of a vacuum. This is related to the velocity of light

7 For the proof, we refer to Jost (2008), Chap. 2, quoted on page 1061. The exis-
tence proof is reduced to a variational principle of minimal energy. One uses the
same functional-analytic Hilbert space method as applied to the classic Dirich-
let problem in Sect. 10.4 of Vol. II (quadratic variational problem on a Sobolev
space).

8 We use the SI system of physical units (see the Appendix of Vol. I).
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c in a vacuum by μ0ε0 = 1/c2. In the special stationary case, all the functions do
not depend on time t. This yields the stationary Maxwell equations:

ε0 div E = �, curlB = μ0J,

curlE = 0, div B = 0 on O (23.16)

where O is an open subset of the Euclidean manifold E
3. As we will see below, the

equations curlE = 0 and div B = 0 are constraints for the electrodynamic field
which allow us to introduce potentials.

Let us fix a right-handed Cartesian (x, y, z)-coordinate system with the origin
O and the right-handed orthonormal basis i, j,k (Fig. 23.1 on page 1043). We will

use the position vector x =
−−→
OP pointing from the origin O to the point P . It will

be convenient to write E(x) instead of E(P ).
Stationary electric and magnetic potential. The stationary Maxwell equa-

tions (23.16) motivate the study of the following four equations:

curlE = 0 on O, (23.17)

div B = 0 on O, (23.18)

E = −gradU on O, (23.19)

B = curlA on O. (23.20)

We want to show that the solutions of these equations depend critically on the
topology (i.e., the Betti numbers) of the open subset O of the Euclidean manifold
E

3. In what follows, all the functions are assumed to be smooth on O. Because of
the identities curl gradU = 0 and div curl v = 0 on O, there exist trivial solutions
and trivial constraints. Explicitly,

• the field gradU (resp. curlA) is a trivial solution of the homogeneous equation
(23.17) (resp. (23.18)).

• If the inhomogeneous equation (23.19) (resp. (23.20)) has a solution, then we
have curlE = 0 (resp. div B = 0) on O.

Nontrivial topology generates additional nontrivial solutions of the homogeneous
equation and additional global constraints which are an immediate consequence of
the classical integral theorems due to Gauss and Stokes. Note that

The electric (resp. magnetic) field sees the Betti number β1 (resp. β2).

In other words, the electric (resp. magnetic) field sees the nontrivial 1-cycles (resp.
2-cycles) of the set O. The reason for that is the crucial fact that the electric field
corresponds to a differential 1-form, whereas the magnetic field corresponds to a
differential 2-form. Summarizing, we obtain the following:

(i) O = E
3 (β0 = 1, β1 = β2 = 0): The general solution of the homogeneous

equation (23.17) is given by
E = −gradU

where U : E
3 → R is an arbitrary smooth function. The general solution of the

homogeneous equation (23.18) reads as

B = curlA

where A : E
3 → E3 is an arbitrary smooth vector field.

For given smooth vector field E, the inhomogeneous equation (23.19) has a
solution iff curlE = 0 on E

3. The general solution reads as
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U(x) = U0 −
Z x

0

E dx (23.21)

where U0 is an arbitrary real number which describes the gauge freedom. Obviously,
U(0) = U0. Note that the integral is independent of the path of integration. The
function U is called an electrostatic potential. In physics, the potential difference

V = U(x) − U(x0)

is called the voltage between the points P and P0 with respect to the orientation−−→
P0P from the point P0 to the point P. In contrast to the electrostatic potential, the
voltage is gauge invariant, and it possesses a physical meaning (see Sect. 23.5.2).

For given smooth vector field B, the inhomogeneous equation (23.20) has a
solution iff div B = 0 on E

3. The general solution reads as

A(x) =

Z 1

0

(B(tx) × x) dt+ gradχ(x)

where χ is an arbitrary smooth function χ : E
3 → R which describes the gauge

freedom.

(ii) O = E
3\{0} (β0 = β2 = 1, β1 = 0): The general solution of the homogeneous

equation (23.17) is given by
E = −gradV

where V : E
3 \ {0} → R is an arbitrary smooth function. The general solution of

the homogeneous equation (23.18) reads as

B = αBmonopole + curlA, α ∈ R

where A : O → E3 is an arbitrary smooth vector field. Furthermore, Bmonopole is
the magnetic field of a magnetic monopole of magnetic charge equal to one (see
(19.34) on page 951).

For given smooth vector field E, the inhomogeneous equation (23.19) has a
solution iff curlE = 0 on O. The general solution reads as9

V (x) = Vspecial(x) + V0

where V0 is an arbitrary real number which describes the gauge freedom. For given
smooth vector field B, the inhomogeneous equation (23.20) has a solution iff we
have div B = 0 on O. The general solution reads as

A = Aspecial + gradχ

where χ : E
3 \ {0} → R is an arbitrary smooth function which describes the gauge

freedom.

(iii) O = E
3 \ L (L is a straight-line, for example, a wire; β0 = β1 = 1, β2 = 0).

The general solution of the homogeneous equation (23.17) is given by

E = αE1 − gradV, α ∈ R (23.22)

where V : E
3 \ L→ R is an arbitrary smooth function. Moreover,

E1(x, y, z) :=
xj − yi
x2 + y2

, (x, y, z) ∈ R
3.

9 Explicitly, Vspecial(x) = −
R x

x0
Edx where we choose x0 �= 0. Note that the inte-

gral is independent of the path of integration.
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Here, curlE1 = 0 on O, and
R

S1
E1(x)dx = 2π. The general solution of the homo-

geneous equation (23.18) reads as

B = curlA

where A : O → E3 is an arbitrary smooth vector field.
The inhomogeneous equation (23.19) has a solution iff

curlE = 0 on O and

Z

S1
Edx = 0

where S
1 is a unit circle which surrounds the wire L. The general solution reads as

U(x) = Uspecial(x) + U0

where U0 is an arbitrary real number which describes the gauge freedom. For given
smooth vector field B, the inhomogeneous equation (23.20) has a solution iff we
have div B = 0 on O. The general solution reads as

A = Aspecial + αE1 − gradV, α ∈ R

where we use (23.22).

The crucial Betti numbers follow from using a deformation argument. In fact,
the set O from (i) is contractible to a point. The set O from (ii) is contractible to
the sphere S

2, and hence the Betti numbers of O are the same as for the sphere
S

2. Finally, the set O from (iii) can be orthogonally projected onto a pointed plane
E

2 \ {0} which is perpendicular to the straight-line L. Moreover, the pointed plane
can be continuously contracted to the unit circle. Hence the Betti numbers of the
set O coincide with the Betti numbers of the unit circle S

1.
Sketch of the proof. Let us choose a right-handed Cartesian (x, y, z)-

coordinate system with the right-handed orthonormal system i, j,k. Set

E = E1i + E2j + E3k, B = B1i +B2j +B3k, A = A1i +A2j +A3k.

The corresponding differential forms read as

ωE := E1dx+ E2dy + E3dz, ωB = B1dy ∧ dz +B2dz ∧ dx+B3dx ∧ dy,

and ωA := A1dx+A2dy+A3dz. The corresponding Cartan differential is given by:

• dV = Vxdx+ Vydy + Vzdz = (gradV )1dx+ (gradV )2dy + (gradV )3dz,

• dωE = dE1 ∧ dx+ dE2 ∧ dy + dE3 ∧ dz
= (E3

y − E2
z ) dy ∧ dz + (E1

z − E3
x) dz ∧ dx+ (E2

x − E1
y) dx ∧ dy

= (curlE)1 dy ∧ dz + (curlE)2 dz ∧ dx+ (curlE)3 dx ∧ dy,
• dωB = dB1 ∧ dy ∧ dz + dB2 ∧ dz ∧ dx+ dB3 ∧ dx ∧ dy

= (B1
x +B2

y +B3
z) dx ∧ dy ∧ dz = div B · dx ∧ dy ∧ dz.

Therefore, the Poincaré cohomology rule d(dω) = 0 comprehends the following
special cases:

• d(dV ) = 0 is equivalent to curl gradV = 0, and
• d(dωE) = 0 is equivalent to div curlE = 0.
• d(dωB) = 0 is always satisfied.

The general Stokes integral theorem
R

M
dω =

R

∂M
ω for differential forms compre-

hends the following two classical integral theorems due to Gauss–Ostrogradski and
Stokes:
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Fig. 23.1. Essential and trivial cycles in electromagnetism

•
R

∂M
Bn · dS =

R

M
div B dxdydz (Fig. 23.1(b)), and

•
R

∂M
Edx =

R

M
(curlE)n · dS (Fig. 23.1(c)).

Here, n is the (outer) unit normal vector. The point is that the following hold:

• Fig. 23.1(b): If div E = 0 on E
3 \ {0}, then

Z

∂M

En =

Z

M

div E dxdydz = 0.

In terms of Poincaré’s homology, let us say that the 2-cycle ∂M depicted in
Fig 23.1(b) is trivial (i.e., the 2-cycle ∂M is the boundary of a 3-dimensional
submanifold M of the manifold E

3 \ {0}. Note that ∂M does not surround the
origin). But if

Especial(x) :=
Qx

4πε0|x|3
(Coulomb′s law),

then

ε0

Z

C

Especialn · dS = Q. (23.23)

In terms of Poincaré’s homology, let us say that the closed surface C = S
2

depicted in Fig. 23.1(b) is an essential 2-cycle (i.e., C is not the boundary of a
2-dimensional submanifold of the manifold E

3 \ {0}). In terms of physics, the
vector field Especial is the electric field generated by an electric charge Q at the
origin (the famous Coulomb law). We have

curlEspecial = 0 and div Especial = 0 on E
3 \ {0}.

• Fig. 23.1(c): If curlB = 0 on E
3 \ L, then

Z

∂M

Bdx =

Z

M

(curlB)n · dS = 0.

We say that the 1-cycle ∂M depicted in Fig 23.1(c) is trivial (i.e., it is the
boundary of a 2-dimensional submanifold M of the manifold E

3 \ L). Note that
∂M lies outside the wire L. But if
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Bspecial(x) =
μ0J

2π|x| ·
k × x

|k × x| (Ampère′s law), (23.24)

then
Z

C

Bspecial(x) dx = μ0J. (23.25)

In terms of physics, the vector field Bspecial is the magnetic field generated by
an electric current which flows in the wire L with the current strength J along
the z-axis (the famous Ampère law). We say that C = S

1 is an essential 1-cycle
(i.e., C is not the boundary of a 2-dimensional submanifold of E

3 \ L). We have

div Bspecial = 0 and curlBspecial = μ0J k on E
3 \ L.

Note that

Essential cycles describe the sources of the electric and magnetic field.

In fact, the essential 2-cycle C from Fig. 23.1(b) describes the electric point charge
Q via the Coulomb law (23.23) for the electrostatic field Especial. Moreover, the
essential 1-cycle C from Fig. 23.1(c) describes the strength J of the electric current
via the Ampère law (23.25) for the magnetostatic field Bspecial.

Ad (i). Let O = E
3. The claims are consequences of the Poincaré theorem (i) on

page 1032. But we want to use a completely elementary approach based on explicit
formulas.

(I) If E = −gradV , then curlE = 0. Conversely, suppose that curlE = 0 on
O. Alternatively to (23.21), define the function

V (x) := −
Z 1

0

E(tx)x · dt.

Then, an elementary computation shows that10

gradV (x) = −
Z 1

0

grad(E(tx)x) dt = −
Z 1

0

d

dt
(tE(tx)) dt = −E(x).

In addition, if E = −gradV and E = −gradW , then grad(V −W ) = 0, and
hence V −W = const.

(II) If B = curlA on O, then div B = div curlA = 0. Conversely, suppose
that div B = 0 on O. Define

A(x) :=

Z 1

0

(B(tx) × x) dt.

Then an elementary computation shows that11

curlA(x) =

Z 1

0

curl(B(tx) × x)dt =

Z 1

0

d

dt
(t2B(tx)) dt = B(x).

In what follows we will use the following basic principle:

10 To get insight, use the identity

grad(vw) = (v grad)w + (wgrad)v + v × curlw + w × curl v

from Hamilton’s nabla calculus (see Sect. 9.1.5 on page 563), and note that both
curlE = 0 and curl x = 0.

11 Use curl(v × w) = (wgrad)v − (v grad)w + v div w − w div v.
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The necessary conditions for the existence of the potentials of stationary
electric and magnetic fields are also sufficient conditions, by de Rham co-
homology.

Ad (ii). Let O = E
3 \ {0} (Fig. 23.1(b)): The equation curlE = 0 on O has the

trivial solution E = −gradV. Since E corresponds to a 1-form and β1(O) = 0, the
space of solutions has the dimension zero modulo cohomology.

Ad (iii). Let O = E
3 \ L (Fig. 23.1(c)). Since β1 = 1, the dimension of the

solution space of equation (23.17) is equal to one modulo cohomology. Moreover,
since β2 = 0, the dimension of the solution space of (23.18) is equal to zero modulo
cohomology.

23.5 The Analysis of the Electromagnetic Field

23.5.1 The Main Theorem of Electrostatics, the Dirichlet
Principle, and Generalized Functions

Electrostatics is the physical background for the modern mathematical
approach to solving the Laplace equation and the Poisson equation, and
for the theory of compact Riemann surfaces. This strongly influenced the
development of the modern theory of elliptic partial differential equations
which describe stationary processes in nature.
The theory of generalized functions, initiated by Dirac in about 1930 and
founded as a mathematical theory by Laurent Schwartz in about 1945,
allows us to describe the electric fields generated by smooth and highly
non-smooth electric charge densities � in an elegant uniform way.

Folklore

The Maxwell equations of electrostatics read as

ε0 div E = � and curlE = 0 on E
3. (23.26)

The Coulomb law and the volume potential. To begin with, consider the
classic key formula

Uspecial(x) :=

Z

E3

�(x0)

4πε0|x − x0|
d3x0

together with the Poisson equation

ε0ΔU = � on E
3, (23.27)

and the formula
E = −gradU

for the electric field E. Consider the position vector xj =
−−→
OPj . Intuitively, the

volume potential Uspecial is the volume limit ΔxΔyΔz → 0 of the finite sum

X

j

Qj

4πε0|x − xj |

with the electric charge Qj := �(xj)ΔxΔyΔz. This is the superposition of elec-
trostatic Coulomb potentials with the electric charge Qj at the point Pj . The
mathematical problem is to give all the expressions used by physicists a rigorous
mathematical foundation.
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Theorem 23.13 Suppose that the electric charge density � : E
3 → R is a smooth

function, and it vanishes outside a sufficiently large ball. Then the volume poten-
tial Uspecial is the unique smooth solution of the Poisson equation (23.27) with the
following asymptotic behavior at infinity:

U(x) = O

„

1

|x|

«

, |x| → ∞.

The proof of this classic result can be found in the standard textbook by R.
Courant and D. Hilbert, Methods of Mathematical Physics, Wiley, 1989. In addi-
tion, using the Taylor expansion, we get the asymptotic formula

Uspecial(x) =
Q0

4πε0|x|
+

px

4πε0|x|3
+ o

„

1

|x|2

«

, |x| → ∞

with the effective charge Q0 and the effective dipole moment vector p. Explicitly,

Q0 :=

Z

E3
�(x0) d3x0 and p :=

Z

E3
�(x0)x0 d

3x0.

This tells us that if the charge density � vanishes outside a ball of radius R centered
at the origin, and if we are far away from the ball (i.e., |x|/R' 1), then the electric
potential looks like the superposition of the electric fields of a monopole and a
dipole. Multiplying both sides of the Poisson equation (23.27) with the function ϕ
and using integration by parts, we get the integral relation

ε0

Z

E3
U(x0)Δϕ(x0) dx

3
0 =

Z

E3
�(x0)ϕ(x0) dx

3
0 (23.28)

for all test functions ϕ ∈ S(R3).12 The equation is called the generalized (or aver-
aged) form of the Poisson equation (23.27). As we will discuss below, it is necessary
to pass to a more general variant of the Poisson equation. Let the electric charge � be
a tempered distribution, that is, � ∈ S ′(R3). The tempered distribution U ∈ S ′(R3)
is a solution of the Poisson equation (23.27) iff this equation holds on the space
S ′(R3). In particular, the derivatives are to be understood in the sense of tempered
distributions. Explicitly, this means that

ε0U(Δϕ) = �(ϕ) for all ϕ ∈ S(R3).

The classic trouble with continuous and discontinuous charge den-
sities �. Suppose that the electric charge density � is continuous and it vanishes
outside a sufficiently large ball. Surprisingly enough, the electrostatic potential
Uspecial has first-order partial derivatives, but second-order partial derivatives do
not always exist. This means that the Maxwell equations (23.26) are not always
satisfied, in the classical sense. However, using tempered distributions, we get an
elegant general theory.

12 The definition of both the space S(R3) (rapidly decreasing smooth functions)
and the dual space S ′(R3) (tempered distributions) can be found in Sect. 1.3.3 of
Vol. I. Physicists and mathematicians use frequently the space S ′(R3) instead of
D′(R3), since there exists a perfect theory of the Fourier transform for tempered
distributions.
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Theorem 23.14 Suppose that the electric charge density � : E
3 → R is integrable

over each ball of E
3. Then the general solution U of the Poisson equation (23.27)

on the space S ′(E3) of tempered distributions reads as

U = Uspecial + P

where P is a polynomial with ΔP = 0.

The proof can be found in H. Triebel, Higher Analysis, Sect. III.14, Barth,
Leipzig, 1989.

The formal Dirac delta function. Consider a point-like particle located at
the point P1 which has the electric charge Q1. In the classic sense, this particle has
no classical charge density. In about 1930, Dirac introduced the generalized charge
density

�(x) := Q1δ(x − x1).

Mnemonically, δ(x − x1) = 0 if x �= x1. Moreover, motivated by the physical
meaning of the charge density, physicists use the following integral formula

Z

E3

Q1δ(x0 − x1)

4πε0|x − x0|
d3x0 =

Q1

4πε0|x − x1|

in order to get the Coulomb potential. Motivated by this procedure, physicists write

ε0Δ

„

Q1

4πε0|x − x1|

«

= Q1δ(x − x1)

for all the position vectors x whose initial point is located at the origin O.
The rigorous Dirac delta distribution. Rigorously, for all test functions

ϕ ∈ S(R3), we set

δP1(ϕ) := ϕ(x1) for all ϕ ∈ S(R3),

and

U(ϕ) :=

Z

E3

Q1ϕ(x)

4πε0|x − x1|
d3x.

Then, U and δP1 are tempered distributions (i.e., they are elements of S ′(R3))
which satisfy the Poisson equation

ε0ΔU = Q1δP1 .

Explicitly, this means that

ε0U(Δϕ) = Q1ϕ(x1) for all ϕ ∈ S(R3).

For the proof, we refer to Prop. 10.22 of Vol. 1.
In what follows, we restrict ourselves to the smooth situation. The proofs of the

following two theorems are highly nontrivial. In a first step, one proves the existence
of generalized functions in Sobolev spaces. Then one shows that the generalized
solutions are smooth if the data are smooth. We refer to Zeidler (1986), Vol. IIA
(quoted on page 1089) and to J. Jost, Partial Differential Equations, Springer, New
York, 2002. The Dirichlet problem has a long and famous history which is discussed
in Sect. 10.4 of Vol. I.

The Dirichlet principle of minimal electrostatic energy (the first
boundary-value problem). Let M be a compact submanifold of the Euclidean
(x, y)-plane with boundary ∂M (Fig. 23.2(a)). Consider the variational problem
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Fig. 23.2. Plane boundary-value problems

Z

M

`

1
2
ε0(gradU)2 − �U

´

dxdy = min!, U = U0 on ∂M. (23.29)

The corresponding Euler–Lagrange equation reads as

ΔU = � on M, U = U0 on ∂M. (23.30)

We are given the smooth charge density � : M → R and the smooth boundary-
value function U0 : ∂M → R of the electrostatic potential U . We are looking for a
smooth electrostatic potential U : M → R. In terms of physics, we are looking for
an electrostatic field E = −gradU of minimal energy.

Theorem 23.15 The Dirichlet problem (23.29) has a unique solution. This is also
the unique solution of (23.30).

The second boundary-value problem. Replace (23.30) by the following
boundary-value problem:

ε0 div E = � on M, En = E0 on ∂M. (23.31)

We are given the smooth charge density � : M → R and the smooth boundary
function E0 : ∂M → R (Fig. 23.2(b)).

Theorem 23.16 The boundary-value problem (23.31) for the electrostatic field has
a unique smooth solution E : M → E3.

This theorem tells us that the electrostatic field E is uniquely determined by
its normal component En at the boundary and by the charge density. In terms of
the electrostatic potential, the problem (23.31) is equivalent to

ε0ΔU = � on M,
∂U

∂n
= −E0 on ∂M.

23.5.2 The Coulomb Gauge and the Main Theorem of
Magnetostatics

The vector potential. The Maxwell equations in magnetostatics read as

div B = 0 and curl B = μ0J0 on E
3. (23.32)

We are given the smooth current density vector field J0, and we are looking for the
smooth magnetic field B. In addition, we postulate that
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div J0 = 0 on E
3.

In fact, if the system (23.32) has a solution B, then it follows from div curlB = 0
that div J0 = 0. The general solution of (23.32) has the form

B = curlA

where the vector potential A is an arbitrary smooth vector field on E
3 (see Sect.

23.4). We add the so-called Coulomb gauge condition

div A = 0 on E
3. (23.33)

If the function χ : E
3 → R is smooth, then the transformation

A+ := A + gradχ

is called a gauge transformation. If we add the condition div gradχ = 0 on E
3,

then we have div A+ = 0, that is, the gauge transformation respects the Coulomb
gauge condition (23.33).

Theorem 23.17 We are given the smooth current density vector field J0 which
satisfies the condition div J0 = 0 on E

3 (conservation of electric charge). In addi-
tion, we assume that J0 vanishes outside a sufficiently large ball. Then the smooth
function

A(x) :=
μ0

4π

Z

E3

J0(x0)

|x − x0|
d3x0 (23.34)

satisfies the gauge condition (23.33). Moreover, the magnetic field B = curlA is a
solution of the Maxwell equations (23.32) of magnetostatics. Explicitly,

B(x) =
μ0

4π

Z

E3

J0(x0) × (x − x0)

|x − x0|3
d3x0. (23.35)

The proof will be given in Problem 23.1 on page 1066. The vector potential A
from (23.34) has the asymptotic form

A(x) =
μ0(m × x)

4π|x|3 + o

„

1

|x|2

«

, |x| → ∞ (23.36)

with the magnetic dipole moment

m = 1
2

Z

E3
(x0 × J0(x0)) d

3x0. (23.37)

The corresponding magnetic field reads as

B(x) = μ0
3(mx)x − x2 · x

|x|5 , (23.38)

up to terms of order o
“

1
|x|3

”

as |x| → ∞. Recall that the formula (23.38) represents

the magnetic field of a magnetic dipole with the magnetic moment m.
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Fig. 23.3. Electric current element

Magnetic force. Suppose that we are given an electric current with the current
density vector J. Then the given magnetic field B exerts the total force F on the
current. Explicitly,

F =

Z

E3
(J(x) × B(x)) d3x. (23.39)

Small electric current elements and the Biot–Savart law. Consider the
piece of a thin metallic wire as depicted in Fig. 23.3. Then the current density
vector J is related to the current strength J by the formula

Jπr20Δl e = JΔl e.

Here, e is a unit vector. The key formulas (23.38) and (23.39) can be regarded as the
superposition of the physical effects caused by small current elements. Explicitly,
we get the following local Biot–Savart law:

• The current element μ0J0Δl0 eP0 generates the magnetic field

ΔB(x) =
μ0J0Δl0 eP0 × (x − x0)

4π|x − x0|3
.

• The magnetic field B exerts the force

ΔF(x) = JΔl eP ×ΔB(x)

on the current element JΔl eP . Here, eP0 and eP are unit vectors.

Thin metallic wires. Let us use the Biot–Savart law together with the super-
position principle. Then we get the following. In Fig. 23.4, the thin metallic wire
C0 with the constant electric current strength J0 generates the magnetic field

B(x) =

Z

C0

μ0J0dx0 × (x − x0)

4π|x − x0|3
+ o

„

1

|x|3

«

, |x| → ∞.

Let C be a second thin metallic wire with the constant electric current strength J.
Then the wire C0 exerts the force

F =

Z

C

Jdx × B(x)

on the wire C.
The magnetic field generated by a circular electric current. Consider

a circle of radius R about the origin in the Cartesian (x, y)-plane. Suppose that an
electric current of current strength J0 flows counter-clockwise along the circle (see
Fig. 19.9 on page 948). This current generates the magnetic field
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Fig. 23.4. Attracting Ampère force F

B(x) =
μ0J0

4π

Z

S1
R

dx0 × (x − x0)

|x|3 . (23.40)

Far away from the electric current (i.e., |x|/R' 1), the magnetic field B looks like
the magnetic field of a magnetic dipole (23.39) with the magnetic moment

m = J0 · πR2. (23.41)

Rotating Charge

Consider a point-like particle of the electric charge Q. Suppose that the particle
moves with constant angular velocity on a circle of radius R about the origin O.
This rotating charge generates a magnetic field B. Explicitly,

B(x) = μ0
3(mx)x − x2 · x

4π|x|5 + o

„

1

|x|3

«

, |x| → ∞ (23.42)

with the magnetic moment

m =
Q

2mparticle
L. (23.43)

Here, L is the angular momentum vector of the rotating particle, and mparticle is
the relativistic mass of the rotating particle. This means that, far away from the
particle trajectory (i.e., |x|/R ' 1), the magnetic field of the rotating particle is
the field of a magnetic dipole with magnetic moment (23.43).

Let us motivate this. Choose a right-handed Cartesian (x, y, z)-coordinate sys-
tem with the right-handed orthonormal basis i, j,k. The particle moves counter-
clockwise in the (x, y)-plane. The trajectory of the rotating particle reads as

x(t) = R(cosωt i + sinωt j).

This yields the angular momentum vector

L = x(t) ×mparticle ẋ(t) = mparticle ωR
2 k.

The particle needs the time T = 2π/ω for surrounding the circle once. The basic
idea, used by physicists, is to approximate the rotating particle (with electric charge
Q) by an electric current of the strength

J =
Q

T
=
Qω

2π
.

By (23.41), we get

m = JπR2 k =
QωR2

2
k =

Q

2mparticle
L.
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Fig. 23.5. Rotating electric charge

23.5.3 The Main Theorem of Electrodynamics

Choose a strictly positively oriented inertial system. We are given the following
quantities:

(H1) the smooth charge density function � : E
3 × R → R, and

(H2) the smooth electric current density vector field J : E
3 × R → E3 such that

�t(x, t) + div J(x, t) = 0 on E
3 × R; (23.44)

(H3) there exists a ball B0 such that � and J vanish outside the ball B0 for all
times t ∈ R.

Condition (23.44) describes the conservation of the electric charge on the Euclidean
manifold E

3 for all times t ∈ R.
Special electromagnetic field. The Maxwell equations in a vacuum

∂B

∂t
= − curlE,

∂E

∂t
= c2 curlB − μ0c

2J, (23.45)

ε0 div E = �, div B = 0 (23.46)

possess the special smooth solution

E1 := −gradU − ∂A

∂t
, B1 := curlA on E

3 × R

with the 4-potential

U(x, t) : =
1

4πε0

Z

E3

�(y, t− |y − x|/c)
|y − x| d3y,

A(x, t) : =
μ0

4π

Z

E3

J(y, t− |y − x|/c)
|y − x| d3y.

This 4-potential satisfies the Lorenz gauge condition Ut + c2 div A = 0 on E
3 × R.

The initial-value problem for the electromagnetic field. We are looking
for a smooth solution E,B : E

3×]0,∞[→ E3 of the Maxwell equations (23.45),
(23.46) which satisfies the initial condition

lim
t→+0

E(x, t) = E0(x), lim
t→+0

B(x, t) = B0(x) (23.47)

on the Euclidean manifold E
3 at the initial time t = 0. We assume (H1)–(H3). In

addition, we are given the smooth electromagnetic field E0,B0 : E
3 → E3 with the

constraints
ε0 div E0(x) = �(x), div B0(x) = 0 on E

3.

We assume that E0 and B0 vanish outside the sufficiently large ball B0.
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Theorem 23.18 The initial-value problem for the Maxwell equations in a vacuum
possesses a unique smooth solution on E

3×]0,∞[ such that the limits (23.47) exist.
For all times t > 0 and for all points in E

3, the solution is given by the following
integral formulas:

E(x, t) = E1(x, t) +
1

4πt

Z

|y−x|=ct

curl(B0(y) − B1(y, 0)) dS

+
∂

∂t

 

1

4πc2t

Z

|y−x|=ct

`

E0(y) − E1(y, 0)
´

dS

!

and

B(x, t) = B1(x, t) −
1

4πc2t

Z

|y−x|=ct

curl
`

E0(y) − E1(y, 0)
´

dS

+
∂

∂t

 

1

4πc2t

Z

|y−x|=ct

(B0(y) − B1(y, 0)) dS

!

.

Observe that the integrals only depend on the values of E0,E1,B0,B1 on the
sphere of radius ct about the center P (which corresponds to x). This reflects the
fact that the electromagnetic interaction propagates with the speed c of light in a
vacuum.

Furthermore, note the following peculiarity. The Maxwell equations consist of
the dynamical equations (23.45) and the constraints (23.46). We assume that the
constraints are satisfied at the initial time t = 0. Then the constraints are valid
for all times t ≥ 0. The proof can be found in H. Triebel, Higher Analysis, Barth,
Leipzig, 1989 (translated from German into English).

23.6 Important Tools

23.6.1 The Exact Mayer–Vietoris Sequence and the Computation
of the de Rham Cohomology Groups

There exist relations between the de Rham cohomology groups of the open
subsets

U, V, U ∪ V, U ∩ V
of a manifold. These relations can be described in terms of an exact se-
quence. This allows us to compute the cohomology groups of a manifold
by using a covering by open contractible sets.

Folklore

Let M be a real finite-dimensional manifold. Suppose that we have the decompo-
sition

M = U ∪ V
where U and V are nonempty open subsets of M, and the intersection U ∩V is not
empty. Then, for all k = 1, 2, . . ., the following sequence is exact:

0 → H0(M) → H0(U) ⊕H0(V ) → H0(U ∩ V ) → . . .

→ Hk(M) → Hk(U) ⊕Hk(V ) → Hk(U ∩ V ) → Hk+1(M) → . . .
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If the intersection U ∩ V is empty, then

Hp(M) = Hp(U) ⊕Hp(V ), p = 0, 1, 2, . . .

Note that Hk(U) = Hk(V ) = 0, k = 1, 2, . . . if U and V are contractible.
The proof can be found in I. Madsen and J. Tornehave, From Calculus to Coho-

mology: de Rham Cohomology and Characteristic Classes, Cambridge University
Press, 1997, p. 35.

Example. For the unit sphere S
2, we want to show that

H0(S2) = H2(S2) = R, H1(S2) = 0.

Proof. Since S
2 is arcwise connected, we get H0(S2) = R. We will use

H0(S1) = H1(S1) = R.

Choose the sets
U := S

2 \ {N} and V := S
2 \ {S}

where N (resp. S) is the north (resp. south) pole. Thus, S
2 = U ∪ V. We get the

exact sequence

0 → H0(S2) → H0(U) ⊕H0(V ) → H0(U ∩ V ) → H1(S2)

→ H1(U) ⊕H1(V ) → H1(U ∩ V ) → H2(S2) → H2(U) ⊕H2(V ) → . . .

Since the intersection U ∩ V is homotopically equivalent to the equator, we get

Hp(U ∩ V ) = Hp(S1), p = 0, 1, 2, . . .

Moreover, the sets U and V are contractible. Thus,

H0(U) = H0(V ) = R, Hp(U) = Hp(V ) = 0, p = 1, 2, . . .

This implies the exact sequences

0 → H0(S2) → R
2 → H0(S1) → H1(S2) → 0, (23.48)

and

0 → H1(S2) → H2(S2) → 0. (23.49)

From (23.49) we get the isomorphism H2(S2) = H1(S1). Hence H2(S2) = R. From
(23.48) we obtain the exact sequence

0
α−→ R

β−→ R
2 γ−→ R

δ−→ H1(S2) → 0.

This implies H1(S2) = 0 (see the proof given in Problem 23.1 on page 1008).
�
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23.6.2 The de Rham Cohomology Algebra

Let M be a real n-dimensional manifold. Set

H(M) := H0(M) ⊕H1(M) ⊕ . . .⊕Hn(M).

Then, H(M) becomes the structure of a real finite-dimensional algebra. This is
called the de Rham cohomology algebra of the manifold M. The product is gener-
ated by the wedge product ω ∧μ of differential forms. More precisely, the following
hold: For two differential forms ω and ω′, we write

ω ∼ ω′ iff ω − ω′ = dμ

for some differential form μ. We say that ω is cohomologous to ω′. This is an
equivalence relation. The equivalence classes [ω] are called the de Rham cohomology
classes. If ω is a p-form, then [ω] is an element of Hp(M). The equivalence relation
respects both the linear combinations of differential forms of the same degree and
the wedge product. Therefore, the definitions

• [αω + βν] := α[ω] + β[ν], α, β ∈ R, and
• [ω][�] := [ω ∧ �]
do not depend on the choice of the representatives. This way, we get the linear
combinations and the products of the cohomology algebra H(M). If ω ∼ ω′, then
R

M ω − ω′ =
R

M dμ =
R

∂M μ = 0, by the generalized Stokes theorem. Note that
the boundary ∂M of the manifold M is empty. Hence

Z

M
ω =

Z

M
ω′.

This tells us that the integral
R

M ω only depends on the cohomology class [ω].

23.7 The Beauty of Partial Differential Equations in
Physics, Analysis, and Topology

Many important modern developments in topology are based on partial differential
equations which play a crucial role in physics. This concerns:

• the potential equation dω = μ: de Rham cohomology,
• the Laplace equation Δω = 0: Hodge theory,
• Hamilton’s canonical equations in mechanics: symplectic geometry,
• the Cauchy–Riemann differential equation (Riemann surfaces and Kähler mani-

folds, symplectic geometry, string theory, conformal quantum field theory),
• the generalized Cauchy-Riemann equations for generalized analytic functions

(Gromov’s pseudoholomorphic curves in complex geometry),
• the Maxwell equation: Hodge theory,
• the Yang–Mills equation: Donaldson’s theory for 4-manifolds,
• the Seiberg–Witten equation (nonlinear elliptic Dirac equation): alternative ap-

proach to Donaldson’s theory for 4-manifolds,
• the Dirac equation: Atiyah–Singer index theorem, spin geometry,
• the heat equation: Atiyah–Singer index theorem, Ricci flow, solution of the

Poincaré conjecture for the 3-dimensional sphere S
3,

• the equation for geodesics: Morse theory, Floer homology,
• the minimal surface equation: Morse theory, string theory,
• the Einstein equations in general relativity: Calabi–Yau manifolds in string the-

ory.
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23.8 A Glance at Topological Quantum Field Theory
(Statistics for Mathematical Structures)

Witten’s approach to the Jones polynomials of knots is one of the beautiful
examples for the flow of ideas from physics to mathematics. This approach
is based on a model in gauge theory.

Folklore

The goal of topological quantum field theory (TQFT) is to use models from quan-
tum field theory in order to construct and to compute explicitly topological invari-
ants. The basic idea is to use the partition function13

Z(W ) :=

Z

Ω

eiS(ω)W (ω) Dω (23.50)

and to compute the expectation value

W :=
Z(W )

Z(1)
(23.51)

which is the desired topological invariant. We use the following terminology:

• The set Ω is called the state space; the elements ω of Ω are called physical
states.14

• The function S : Ω → R is called the action functional; S(ω) is called the action
of the physical state ω.

• The function W : Ω → R is called a physical observable (i.e., the real number
W (ω) can be measured in a physical experiment).

• The integral Z is called the partition function (or the Feynman functional inte-
gral) of the model.

• This integral has to be computed by using the method of the stationary phase. In
order to get the first approximation, one determines the critical points ω1, ω2, . . .
of the action functional S, that is, the solutions of the equation

S′(ω) = 0, ω ∈ Ω,

and one defines

Z0(W ) :=
X

j

Z

Ω

eiS0j(ω)W (ω) Dω (23.52)

where S0j represents a ‘quadratic’ approximation of S near the critical state ωj .
15

13 We use physical units where � = 1.
14 As a rule, the state space consists of equivalence classes, that is, Ω is a so-called

moduli space of mathematical structures. Typical examples are (i) Riemann’s
moduli space of compact Riemann surfaces modulo conformal equivalence, and
(ii) the moduli space of connections on a principal fiber bundle modulo global
gauge transformations.

15 For a classical function ω �→ S(ω) on the real line, we have S(ω) = S0j(ω)+o(ω2)
as ω → 0 with S0j(ω) := S(ωj) + 1

2
S′′(ωj)(ω − ωj)2. This is a paradigm for the

infinite-dimensional situation.
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Formula (23.52) means that one replaces the full Feynman functional integral by
functional integrals of ‘Gaussian type’. Methods for computing infinite-dimensional
Gaussian integrals can be found in Sect. 7.9 of Vol. II (zeta function regularization
and the Wick trick). The experience of physicists shows that, as a rule, one can
replace Z by Z0 in the expectation-value formula (23.51). This means that the
essential topological information is already contained in the approximation

W 0 =
Z0(W )

Z0(1)
. (23.53)

It is shown in the paper by

J. Duistermaat and G. Heckmann, On the variation in the cohomology in
the symplectic form of the reduced phase space, Invent. Math. 69 (1982),
259–268; 72 (1983), 153

that there exist models in classical dynamics where Z = Z0, that is, the full integral
coincides with the first approximation (in the sense of the stationary-phase method).

The Jones polynomial of a knot K and gauge theory. Witten discovered
that the Jones polynomial V = V (x) of a knotK can be obtained by the expectation
value

V (e2πi/κ+2) = W 0, κ = 1, 2, . . . (23.54)

Roughly speaking, the parameter κ is the coupling constant of the Chern–Simons
action, and the physical observable W is the Wilson loop functional generated by
the knot K.

Let us sketch the physical intuition behind this discovery. We will choose the
product bundle

E
3 × SU(2)

with the Euclidean manifold E
3  R

3 as base manifold and the Lie group SU(2)
as fiber. Later on, we will compactify the base manifold (i.e., we will replace E

3 by
the 3-dimensional Riemann unit sphere S

3).
(i) The knot K: By definition, a knot is a continuous embedding

χ : S
1 → E

3 (23.55)

of the unit circle S
1 into the 3-dimensional Euclidean manifold E

3. This means that
the map χ : S

1 → χ(S1) is a homeomorphism. We have to distinguish between the
map χ and the image set K := χ(S1). The latter is called the geometric knot K.
Parameterizing the unit circle by the angle variable ϕ ∈ [−π, π], we get the function
χ = χ(ϕ) with χ(−π) = χ(π). Setting P (t) := χ(t− π), the equation

K : P = P (t), 0 ≤ t ≤ 2π, P (0) = P0 (23.56)

describes the motion along the geometric knot K (Fig. 23.6).
(ii) Physical field on the Euclidean manifold and gauge transformation: Let us

consider a physical field
ψ : E

3 → C
2

on the Euclidean manifold E
3. By definition, a gauge transformation of the physical

field ψ reads as

ψ+(P ) := G(P )ψ(P ) for all P ∈ E
3 (23.57)



1058 23. The Electromagnetic Field and the de Rham Cohomology

Fig. 23.6. Motion along a knot

where G(P ) ∈ SU(2) for all P ∈ SU(2).
(iii) Parallel transport of the physical field: Set ψ(P (0)) = ψ0. The equation

ψ(P (t)) = G(t)ψ0, 0 ≤ t ≤ t0

describes the parallel transport t �→ ψ(P (t)) of the physical field along the curve
(23.56) in the Euclidean manifold E

3. Here, the function t �→ G(t) is given by the
solution of the differential equation

Ġ(t) = −AP (t)(Ṗ (t)) ·G(t), 0 ≤ t ≤ t0, G(0) = G0. (23.58)

This is called the phase equation.16

(iv) The Wilson loop functional: We consider the motion (23.56) along the
geometric knot (loop) from the initial point P (0) = P0 to the final point

P (2π) = P (0)

during the time interval [0, 2π] (Fig. 23.6). Parallel transport of the point (P0, G0)
along the loop (23.56) yields the bundle point

(P0, GKG0) for all G0 ∈ SU(2).

Finally, choose a representation � : SU(2) → L(X,X) of the group SU(2) on the
finite-dimensional real linear space X. Then we define

W := tr �(GK).

(v) Compactification: To simplify the mathematical situation, we will compact-
ify the Euclidean manifold E

3. In complex function theory, one compactifies the
Gaussian plane C by the Riemann sphere S

2 based on stereographic projection
(Fig. 0.1 on page 15). Similarly, we replace the non-compact 3-dimensional Eu-
clidean manifold E

3 by the compact 3-dimensional unit sphere S
3. This implies

that we replace the knot map (23.55) by the continuous embedding

χ : S
1 → S

3.

(vi) The Chern–Simons action: As an essential ingredient of the model, we
choose the Chern–Simons action

S := − κ

4π

Z

S3
tr(A ∧ dA + 2

3
(A ∧A ∧A))

16 Explicitly Ġ(t) = −ẋj(t)Aj(x(t)) ·G(t) where Aj(x) lies in the Lie algebra su(2)
for all x ∈ R

3 and all j = 1, 2, 3. This implies that G(t) lies in the Lie group
SU(2) for all t ∈ [0, t0]. Here, we sum over j = 1, 2, 3.
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on the sphere S
3. Here, the gauge potential A is a differential 1-form on the sphere

S
3 with values in the Lie algebra su(2).

(vii) Gauge invariance: Every smooth map G : S
3 → SU(2) induces both the

gauge transformation (23.57) of the physical field and the following gauge transfor-
mation of the gauge potential:

A+ := G−1AG − dG · G−1.

This yields the equivalence relation A+ ∼ A. By definition, the corresponding
equivalence classes [A] form the elements of the state space Ω appearing in the key
partition-function formula (23.50). This makes sense since the Wilson loop func-
tionalW is gauge invariant. The action S is not gauge invariant, but the exponential
expression eiS(A) is gauge invariant, since the exponential function has the period
2πi, and we choose the coupling constant κ as a positive integer.

In the language of mathematics, the following hold:

• The state space Ω is the moduli space of the connections on the trivial
principal fiber bundle S

3×SU(2) over the 3-sphere S
3 and the Lie group

SU(2) as typical fiber.
• Using the trace of matrices, the Wilson loop functional is generated by

a linear representation of the holonomy group acting on the typical fiber
SU(2).

We refer to the following paper:

E. Witten, Quantum field theory and the Jones polynomials, Commun.
Math. Phys. 212 (1989), 359–399.

Furthermore, we recommend:

E. Witten, Topological quantum field theory, Commun. Math. Phys. 117
(1988), 353–386.

E. Witten, Topological sigma models, Commun. Math. Phys. 118 (1988),
411–449.

E. Witten, Global gravitational anomalies, Commun. Math. Phys. 121
(1989), 297–309.

The axiomatic approach in mathematics. Such an approach is outlined in

M. Atiyah, The Geometry and Physics of Knots, Cambridge University
Press, 1990.

The axioms are formulated in terms of a functor Z which assigns

(i) a finite-dimensional complex Hilbert space Z(M) (space of quantum states) to
each compact oriented d-dimensional manifold M , and

(ii) an element Z(N) of Z(M) for each compact oriented (d+1)-dimensional man-
ifold N with boundary ∂N = M. Here, Z(N) corresponds to the partition
function (Feynman functional integral).

The axioms concern multiplicativity, associativity, involution, and non-triviality
(i.e., Z(∅) := C). For the situation of the Jones polynomials, one chooses

N := S
3.

Then the boundary M := ∂S
3 is empty. Hence we get the one-dimensional complex

Hilbert space Z(M) = C, and Z(N) is a complex number. The values of the Jones
polynomials for special arguments correspond to Z(N) depending on the choice
of the coupling constant. In this setting, the theory is formulated in the spirit of
cobordism theory. See also
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M. Atiyah, The impact of Thom’s cobordism theory, Bull. Amer. Math.
Soc. 41(3) (2004), 337–340.

The discussion shows that the axiomatic approach can be viewed as a quantum
theory without any dynamics, that is, the Hamiltonian is trivial, H = 0.

The partition function (23.50) represents some statistics over mathematical
structures. In the history of mathematics, one observes the following steps:

Step: 1 Quantitative measurements: In ancient times, mathematics used concrete
numbers in order to describe quantities that can be measured (e.g., the area of
a piece of land).

Step 2: From numbers to letters as symbols for numbers: In the late sixteenth cen-
tury under the influence of Viète (Vieta) (1550–1603), mathematicians began
to use letters as symbols for numbers. That is, the quantity which each symbol
represented was left indefinite, while the quality of the object it represented in
computations was fixed.

Step 3: Mathematical structures: In the 20th century, there emerged the theory of
mathematical structures (e.g., groups, topological spaces, manifolds) and the
combination of mathematical structures with each other (e.g., Lie groups are
obtained by combining the notion of group with the notion of manifold). In
this case, even the quality of the symbols used is left indeterminate, leading to
a genuine theory of the operations. For example, the first textbook on modern
algebra was written by van der Waerden (1903–1998) in 1930:

B. van der Waerden, Moderne Algebra (in German), Vols. 1, 2,
Springer, Berlin, 1930; 8th edition in 1993. English edition: Frederyck
Ungar, New York 1975.

This book was based on lectures given by Emmy Noether (1882–1935) and
Emil Artin (1898–1962) in Göttingen in the 1920s.

Step 4: Categories and functors: The theory of categories created in the 1940s by
Eilenberg (1913–1998) and MacLane (1909–2005) represents a super theory for
mathematical structures; functors allow the passage from one mathematical
structure to another one. The modern standard textbook on algebra written
by Lang (1903–1998) uses extensively the language of categories and functors:

S. Lang, Algebra, Addison-Wesley, Reading, Massachusetts, 1993; 3rd
edition, Springer, New York, 2002.

Step 5: Statistics of mathematical structures: Under the influence of modern phy-
sics, one studies the statistics over all the objects of a given mathematical
structure. For example, there exists the possibility that shortly after the Big
Bang the structure of the space-time was random. One possibility to handle this
situation is to use a partition function, that is, a Feynman functional integral
over all possible pseudo-Riemannian manifolds modulo a specific equivalence
relation.

The example of Jones polynomials considered above shows that the strategy of car-
rying out a statistics over mathematical structures can be very useful for answering
purely mathematical questions.

As an introduction to the flow of ideas from modern physics to modern math-
ematics, we recommend:

K. Marathe, A chapter in physical mathematics: theory of knots in the
sciences, pp. 873–888. In: B. Enquist and W. Schmid (Eds.), Mathematics
Unlimited—2001 and Beyond, Springer, New York, 2001.

K. Marathe, Topics in Physical Mathematics, Springer, London, 2010.
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23.9 Further Reading

Classic calculus and differential forms:

V. Zorich, Mathematical Analysis, Vol. II, Springer, Berlin, 2003.

I. Agricola and T. Friedrich, Global Analysis: Differential Forms in Analy-
sis, Geometry and Physics, Amer. Math. Soc., Providence, Rhode Island,
2002.

Introduction:

C. Guillemin and V. Pollack, Differential Topology, Prentice Hall, Engle-
wood Cliffs, New Jersey, 1974 (the best elementary introduction to differen-
tial topology) (lectures given at the Massachusetts Institute of Technology,
Cambridge, Massachusetts).

J. Milnor, Topology from the Differential Point of View, University Press
of Virginia, Charlottesville, Virginia, 1965.

J. Milnor, Morse Theory, Princeton University Press, 1963.

J. Milnor and J. Stasheff, Characteristic Classes, Princeton University
Press, 1974.

Furthermore, we recommend:

S. Matveev, Lectures on Algebraic Topology, European Mathematical So-
ciety, Zurich, 2006 (the best elementary introduction to homology and
homotopy based on exact sequences and emphasizing geometric intuition).

I. Madsen and J. Tornehave, From Calculus to Cohomology: de Rham Co-
homology and Characteristic Classes, Cambridge University Press, 1997.

J. Jost, Riemannian Geometry and Geometric Analysis, Springer, Berlin,
1995 (de Rham cohomology, Hodge theory, Morse theory, and characteris-
tic classes).

J. Jost, Riemannian Geometry and Geometric Analysis, 5th edition,
Springer, Berlin, 2008 (including an elementary introduction to Floer ho-
mology and Witten’s Morse theory, spin geometry and the Seiberg–Witten
equation).

J. Jost, Compact Riemann Surfaces: An Introduction to Contemporary
Mathematics, 3rd edition, Springer, Berlin, 2006 (including the topology
of Riemann surfaces).

C. Kinsey, Topology of Surfaces, Springer, New York, 1993 (emphasizing
geometric intuition).

G. Naber, Topological Methods in Euclidean Spaces, Cambridge University
Press, 1980 (emphasizing geometric intuition).

R. Bott and L. Tu, Differential Forms in Algebraic Topology, Springer,
New York, 1982.

W. Lück, Algebraic Topology (in German), Vieweg, Wiesbaden (exact se-
quences, singular homology and singular cohomology of general topological
spaces, homological algebra, de Rham cohomology of manifolds).

M. Atiyah, Algebraic topology and elliptic operators, Commun. Pure Appl.
Math. 20 (1967), 237–249.

F. Hirzebruch, New Topological Methods in Algebraic Geometry, third
enlarged edition, Springer, New York, 1966 (English edition) (first German
edition, 1956).
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V. Turaev, Quantum Invariants of Knots and 3-Manifolds, de Gruyter,
Berlin, 1994.

The heat equation and topology:

P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer
Index Theorem, CRC Press, Boca Raton, Florida, 1995.

Topology in physics:

T. Frankel, The Geometry of Physics, Cambridge University Press, 2004
(including de Rham cohomology, periods of integrals over cycles, and char-
acteristic classes).

K. Marathe, Topics in Physical Mathematics, Springer, London, 2010 (vec-
tor bundles, K-theory, topology of gauge fields, knots, 3-manifolds and
4-manifolds).

M. Monastirsky, Topology of Gauge Fields and Condensed Matter, Plenum
Press, New York, 1993.

R. Hwa and V. Teplitz, Homology and Feynman Diagrams, Benjamin,
Reading, Massachusetts, 1966.

J. Naber, Space-Time and Singularities, Cambridge University Press, 1988.

G. Naber, Topology, Geometry, and Gauge Fields, Springer, New York,
1997.

B. Felsager, Geometry, Particles, and Fields, Springer, New York, 1997.

A. Schwarz, Quantum Field Theory and Topology, Springer, Berlin, 1993.

A. Schwarz, Topology for Physicists, Springer, Berlin, 1993.

C. Nash and S. Sen, Topology and Geometry for Physicists, Academic
Press, London, 1983.

C. Nash, Differential Topology and Quantum Field Theory, Academic
Press, New York, 1991.

J. Baez and J. Muniain, Gauge Fields, Knots, and Gravity, World Scien-
tific, Singapore, 1994.

P. Bandyopadhyay, Geometry, Topology, and Quantization, Kluwer, Dor-
drecht, 1996.

E. Bick and F. Steffen (Eds.), Topology and Geometry in Physics, Springer,
Berlin, 2005.

M. Atiyah, Geometry of Yang–Mills Fields, Lezioni Fermiani, Academia
Nazionale dei Lincei, Scuola Normale Superiore, Pisa, Italia, 1979.

M. Atiyah and N. Hitchin, The Geometry and Dynamics of Magnetic Mo-
nopoles, Princeton University Press, 1988.

A. Jaffe and C. Taubes, Vortices and Monopoles: Structure of Static Gauge
Theories, Birkhäuser, Boston, 1980.

R. Rajaraman, Solitons and Instantons: An Introduction to Solitons and
Instantons in Quantum Field Theory, Elsevier, Amsterdam, 1987.

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer, New
York, 2001.

M. Manton and P. Sutcliffe, Topological Solitons, Cambridge University
Press, 2004.

N. Hitchin, G. Segal, and R. Ward, Integrable Systems, Twistors, Loop
Groups, and Riemann Surfaces, Oxford University Press, 1999.
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J. Kock and J. Vainsencher, An Invitation to Quantum Cohomology: Kont-
sevich’s Formula for Plane Curves, Birkhäuser, Basel, 2006.

D. Freed and K. Uhlenbeck, Instantons and Four-Manifolds, Springer, New
York, 1984.

S. Donaldson and P. Kronheimer, The Geometry of Four-Manifolds, Ox-
ford University Press, 1990.

J. Moore, Lectures on Seiberg–Witten Invariants, Springer, Berlin, 1996
(elementary introduction).

J. Morgan, The Seiberg–Witten Equations and Applications to the Topol-
ogy of Four-Manifolds, Princeton University Press, 1996.

S. Donaldson, The Seiberg–Witten equations and 4-manifold topology,
Bull. Amer. Math. Soc. 33 (1996), 45–70.

M. Schwarz, Morse Homology, Birkhäuser, Basel, 1993.

S. Donaldson, Floer Homology Groups, Cambridge University Press, 2002.

M. Atiyah, The Geometry and Physics of Knots, Cambridge University
Press, 1990 (bordism theory and topological quantum field theory).

E. Witten, Witten’s Lectures on Three-Dimensional Topological Quantum
Field Theory. Edited by Sen Hu, World Scientific, Singapore 1999.

E. Witten, Physical law and the quest for mathematical understanding,
Bull. Amer. Math. Soc. 40 (2003), 21–30.

The Poincaré conjecture and the Ricci flow:

H. Cao, S. Yau, and X. Zhu, Structure of Three-dimensional Space: The
Poincaré and Geometrization Conjectures, International Press, Boston,
2006..

J. Morgan and G. Tian, Ricci Flow and the Poincaré Conjecture, Amer.
Math. Soc., Providence, Rhode Island/Clay Mathematics Institute, Cam-
bridge, Massachusetts, 2007.

J. Morgan and F. Fong, Ricci Flow and Geometrization of 3-Manifolds,
Amer. Math. Soc., Rhode Island, 2010.

Exact sequences, group extensions, and homological algebra:

S. Lang, Algebra, 3rd edition, Springer, New York, 2002.

H. Cartan and S. Eilenberg, Homological Algebra, Princeton University
Press, 1956 (classic monograph).

S. Gelfand and Yu. Manin, Homological Algebra, Springer, New York, 1996
(including derived functors).

Exact sequences in sheaf cohomology and complex analysis:

K. Maurin, Methods of Hilbert Spaces, Polish Scientific Publishers, War-
saw, 1972.

O. Forster, Lectures on Riemann Surfaces, Springer, Berlin, 1981.

G. Bredon, Sheaf Theory, Springer, New York, 1998.

Yu. Manin, Gauge Fields and Complex Geometry, Springer, Berlin, 1997.

Yu. Manin, Frobenius manifolds, quantum cohomology and moduli spaces,
Amer. Math. Soc., Providence, Rhode Island, 1999.
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Exact sequences in topology:

W. Massey, Algebraic Topology: An Introduction, Springer, New York,
1967/1987 (7th edition) (emphasizing geometric intuition).

W. Massey, Singular Homology Theory, Springer, New York, 1980.

G. Bredon, Topology and Geometry, Springer, New York, 1993.

M. Atiyah, K-Theory, Benjamin, New York, 1967.

A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.

A. Hatcher, Vector Bundles and K-Theory (draft), 2010.

Internet: http://www.math.cornell.edu/∼hatcher

A. Hatcher, Spectral Sequences in Algebraic Topology (draft), 2010.
Internet: http://www.math.cornell.edu/∼hatcher

E. Spanier, Algebraic Topology, Springer, New York, 1989.

F. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott-
Foresman, Glenview, Illinois, 1971.

M. Kreck, Differential Algebraic Topology: From Stratifolds to Exotic
Spheres, Amer. Math. Soc., Providence, Rhode Island, 2009.

Exact sequences in the theory of fiber bundles:

D. Husemoller, Fibre Bundles, Springer, New York, 1994.

Exact sequences in algebraic geometry:

I. Shafarevich, Basic Algebraic Geometry, Vols. 1, 2, Springer, Berlin, 1994.

P. Griffith and J. Harris, Principles of Algebraic Geometry, Wiley, New
York, 1978.

A. Wallace, Homology Theory of Algebraic Varieties, Pergamon Press,
New York, 1958.

R. Friedman, Algebraic Surfaces and Holomorphic Vector Bundles, Sprin-
ger, New York, 1998.

D. Husemoller, Elliptic Curves, Springer, New York, 2004.

W. Ebeling, Functions of Several Complex Variables, and Their Singular-
ities, Amer. Math. Soc., Providence, Rhode Island, 2007.

Hodge theory:

K. Maurin, Analysis, Vol. 2, Reidel, Dordrecht, 1980.

W. Hodge, The Theory and Applications of Harmonic Integrals, Cam-
bridge University Press, 1941 (second revised edition 1951).

G. de Rham, Differentiable Manifolds: Forms, Currents, Harmonic Forms,
Hermann, Paris, 1955 (in French).

C. Voisin, Hodge Theory and Complex Algebraic Theory, Vols. I, II, Cam-
bridge University Press, 2002.

G. Schwarz, Hodge Decomposition– a Method of Solving Boundary Value
Problems, Springer, Berlin, 1995.

Exact sequences in number theory:

Yu. Manin and A. Panchishkin, Introduction to Modern Number Theory,
Encyclopedia of Mathematical Sciences, Vol. 49, Springer, Berlin, 2005.

C. Bergbauer and D. Kreimer, Hopf algebras in renormalization theory:
locality and Dyson–Schwinger equations from Hochschild cohomology, pp.
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133–165. In: L. Nyssen (Ed.), Physics and Number Theory, European
Mathematical Society, Zurich, 2006.

Exact sequences in non-commutative geometry:

A. Connes and M. Marcolli, Noncommutative Geometry, Quantum Fields,
and Motives, Amer. Math. Soc., Providence, Rhode Island, 2008.

M. Marcolli, Feynman Motives: Renormalization, Algebraic Varieties, and
Galois Symmetries, World Scientific, Singapore, 2009 (Tate motives) (lec-
tures given at the California Institute of Technology, Pasadena, California).

J. Várilly, Lectures on Noncommutative Geometry, European Mathemat-
ical Society, 2006.

M. Gracia-Bondia, J. Várilly, and H. Figueroa, Elements of Noncommuta-
tive Geometry, Birkhäuser, Boston, 2001.

Exact sequences and the Whitehead cohomology of Lie algebras:

V. Varadarajan, Lie Groups, Lie Algebras, and Their Representations,
Springer, New York, 1984 (Chap. 3: applications to the fundamental the-
orems of Weyl and Levi-Malcev).

N. Bourbaki, Lie Groups and Lie Algebras, Vols. 1, 2, Springer, New York,
1989/2002.

History

A comprehsive history of topology can be found in:

I. James (Ed.), History of Topology, Elsevier, Amsterdam, 1999 (1050
pages).

J. Dieudonnè, A History of Algebraic and Differential Topology, 1900–1960,
Birkhäuser, Boston, 1989.

We recommend:

C. Nash, Topology and physics – a historical essay. In: I. James (Ed.), pp.
359–416 (see above).

K. Maurin, The Riemann Legacy: Riemannian Ideas in Mathematics and
Physics of the 20th Century, Kluwer, Dordrecht, 1997.

M. Monastirsky, Riemann, Topology, and Physics, Birkhäuser, Basel, 1987.

Furthermore, we recommend:

E. Scholz, The concept of manifold, 1850–1950. In: I. James (Ed.) (1999),
pp. 25–64.

K. Sarkaria, The topological work of Henri Poincaré, 1895–1912. In: I.
James (Ed.) (1999), pp. 123–167.

S. Lefschetz, The early development of algebraic topology, 1895–1932 (ho-
mology theory and Morse theory). In: I. James (Ed.) (1999), pp. 531–560.

A. Durfee, Singularities (the work of Milnor, Brieskorn, Hirzebruch). In:
James (Ed.) (1999), pp. 417–434.

W. Massey, A history of cohomology, (1935–1999). In: I. James (Ed.), pp.
579–604.

S. MacLane, Group extensions for 45 years (homological algebra), Math.
Intelligencer 10(2) (1988), 29–35.
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V. Varadarajan, Euler through Time: A New Look at Old Themes, Amer.
Math. Soc., Providence, Rhode Island, 2006.

S. Novikov and I. Taimanov (Eds.), Topological Library, Vol. 1: Cobor-
disms and their Applications, Vol. 2: Characteristic Classes and Smooth
Structures, World Scientific, Singapore, 2007/09 (collection of fundamental
papers).

M. Atiyah, Mathematics in the 20th Century, Bull. London Math. Soc. 34
(2002), 1–15.

M. Atiyah and D. Iagolnitzer (Eds.), Fields Medallists’ Lectures, World
Scientific, Singapore, 2003.

M. Atiyah, The Work of Edward Witten, Proc. Intern. Congr. Math. Kyoto
1990, Math. Soc. Japan 1991. In: M. Atiyah, M. and D. Iagolnitzer (Eds.)
(2003), pp. 514–518.

M. Atiyah, The Geometry and Physics of Knots, Cambridge University
Press, 1990 (cobordism theory and axiomatic topological quantum field
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Problems

23.1 Proof of Theorem 23.17 on page 1049. Solution: We first show that div A = 0.
In fact, we get

div A =
μ0

4π

Z

E3
J0(x0)gradx

1

|x − x0|
dx3

0.
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Since gradx
1

|x−x0| = −gradx0
1

|x−x0| , integration by parts yields

div A =
μ0

4π

Z

E3
divx0 J0(x0) ·

1

|x − x0|
dx3

0 = 0,

because of divx0 J(x0) = 0. Set B := curlA. Then div B = 0 and

curlB = curl curlA = ΔA − grad div A = ΔA = μ0J,

by (23.27) on page 1045.
23.2 Asymptotic expansion. Prove (23.36) and (23.38) on page 1049.

Hint: Use the Taylor expansion of 1
|x−x0| .

23.3 Circular magnetic current. Prove that the circular electric current of radius R
and current strength J0 generates a magnetic field (23.40). As |x| → ∞, this
field behaves like a magnetic dipole field with magnetic moment |m| = J0 ·πR2.
Hint: Use the Biot–Savart law and the Taylor expansion of 1

|x−x0|3
.



Appendix

A.1 Manifolds and Diffeomorphisms

Special topological spaces. Topological spaces are sets where the notion of ‘open’
subset is defined. The precise definition of a topological space X can be found in
Sect. 5.5 of Vol. I. In particular, every subset of a topological space is also a topo-
logical space (with respect to the natural induced topology). An open neighborhood
U(P ) of the point P is an open subset of X which contains the point P . A subset
N(P ) of X is called a neighborhood of the point P iff it contains an open neighbor-
hood U(P ) of P . The real line R is the prototype of a separated topological space.
Moreover, the following hold:

• The open interval ]0, 1[ is an open subset of the topological space R.
• The closed unit interval [0, 1] is a compact subset of R. A subset of R is compact

iff it is bounded and closed.
• The intervals ]0, 1], [0, 1[, ]0, 1[ are relatively compact subsets of R, but they are

not compact subsets of R.
• The real line R is a locally compact and a paracompact topological space, but R

is not a compact topological space.
• A non-empty subset of R is arcwise connected iff it is an interval.

The general definitions read as follows: By an open covering of the topological space
X, we understand a family {Uα} of open subsets Uα of X such that every point P
of X is contained in some set Uα.

• The subset C of X is called compact iff every open covering of C contains a finite
subcover, that is, finitely many sets of the open covering already cover C.

• The subset S of X is called relatively compact iff the closure of S is a compact
subset of X.

• X is called locally compact iff any point P ∈ X has a compact neighborhood.
• X is called paracompact iff every open covering of X has a locally finite refine-

ment which covers X.1

• The topological spaceX is called separated (or Hausdorff) iff for any two different
points P and Q in X there exist open neighborhoods U(P ) and V (Q) which are
disjoint.

1 This means that there exists an open covering {Vβ} of X such that every set Vβ
is contained in some set Uα, and every point P ∈ X has an open neighborhood
W (P ) such that only finitely many sets Vβ intersect W (P ).
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• X is arcwise connected iff, for any pair of points P,Q ∈ X, there exists a con-
tinuous map c : [0, 1] → X such that c(0) = P and c(1) = Q. Intuitively, this is
a continuous curve which connects the point P with the point Q.

As we will show below, any separated paracompact topological space X possesses a
partition of unity which allows the globalization of physical fields. Compact topo-
logical spaces and metric spaces are paracompact. In particular, every subset of R

n,
n = 1, 2, . . ., and every subset of a Hilbert space is paracompact.

Moreover, a separated topological space X is paracompact if it possesses a
countable basis {Vj} of open sets. This means that every open subset U of X can
be represented as the union of some open sets Vj .

Much more material on topological spaces, metric spaces, uniform spaces,
Hilbert spaces, Banach spaces, and locally convex spaces can be found in the Ap-
pendix to E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. I,
third edition, Springer, New York, 1998. Reprinted: Beijing (China) 2009.

The Zariski topology in algebraic geometry. Most topological spaces ap-
pearing in analysis are separated. However, there is a crucial topology used in alge-
braic geometry which is not separated. This is the Zariski topology.2 Fix n = 1, 2, . . .
By definition, a subset V of C

n is called an affine algebraic variety iff there exist
complex polynomials pj : C

n → C, j = 1, . . . ,m such that V is precisely the solution
set of the system

pj(z1, . . . , zn) = 0, j = 1, . . . ,m, (z1, . . . , zn) ∈ C.

By definition, precisely the affine algebraic varieties are the Zariski-closed subsets
of C

n. Moreover, a subset of C
n is called Zariski-open iff it is the complement of

an affine algebraic variety. The Zariski-open sets form the open sets of the Zariski
topology of C

n. Every Zariski-open subset of C
n is also an open set of C

n with
respect to the classical topology. However, the converse is not true.

Two non-empty Zariski open subsets of C
n possess a non-empty intersec-

tion.

Therefore, the Zariski topology on C
n is not separated, in contrast to the classical

topology on C
n.

Smooth functions. Let us fix the terminology by using the method of exten-
sions.

(i) R (real line): Let −∞ < a < b < ∞. The function f :]a, b[→ R is smooth on
the open interval ]a, b[ iff it is continuous and has continuous derivatives of
arbitrary order on ]a, b[ (e.g., the function f(x) := sinx is smooth on all open
intervals).
The function f : [a, b] → R is smooth on the closed interval [a, b] iff the following
hold: f is smooth on the open interval ]a, b[, f is continuous on [a, b], and all
the continuous derivatives of f on ]a, b[ can be uniquely extended to continuous
functions on [a, b].
For example, the function f(x) := |x| is smooth on [0, 1]. We have f ′(x) = 1
for all x ∈]0, 1[. The classical derivative does not exist at the point x = 0. But,
the derivative f ′ on ]0, 1[ can be uniquely extended to the closed interval [0, 1].
Therefore, we write f ′(x) = 1 for all x ∈ [0, 1].3

(ii) R
n, n = 1, 2, . . . : Let the set C be the closure of the open subset O of R

n

(e.g, O is an open ball, and C is the corresponding closed ball). The function

2 For his fundamental contributions to modern algebraic topology, Oscar Zariski
(1899–1986) was awarded the Wolf prize in 1981.

3 Set f(x) := 1
x
. The function f is smooth on ]0, 1[, but not smooth on [0, 1].
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Fig. A.1. The surface of earth

f : O → R is smooth on the open set O iff it is continuous and has continuous
partial derivatives of all orders on O.
The function f : C → R is smooth on the closed set C iff the following hold:
f is smooth on the open set O, f is continuous on C, and all the continuous
derivatives of f of arbitrary order on O can be uniquely extended to continuous
functions on C.

The same definition applies to functions f : C → C where C is the closure of the
open subset O of C

n. Note the following peculiarity. If the function f : O → C is
smooth, then it is holomorphic (i.e., for each point P ∈ O, there exists an open
neighborhood V of P such that f can be represented as an absolutely convergent
power series on V). Such a nice result is not valid for real-valued smooth functions.

A.1.1 Manifolds without Boundary

We have to distinguish between

• manifolds with boundary, and
• manifolds without boundary.

In terms of physics, the prototype of a manifold is the surface of earth. This manifold
has no boundary. In geography, the surface of earth is described by an atlas of
geographic charts. In a chart, an open neighborhood of a point P of the surface
of earth looks like the open neighborhood of a point in the Euclidean plane (Fig.
A.1(a)).

In contrast to this, the northern hemisphere including the equator is a manifold
with boundary where the equator is the boundary. In an appropriate geographic
chart, an open neighborhood of the boundary point P looks like an open neigh-
borhood of a boundary point of the closed upper half-plane. By definition, this
is the intersection between an open neighborhood in the Euclidean plane and the
closed upper half-plane (Fig. A.1(b)). Finally, the northern hemisphere excluding
the equator is a manifold without boundary.

These concepts can be straightforward generalized to higher dimensions.
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Fig. A.2. Manifold

Smooth manifold. The definition of manifolds given in Sect. 5.4 of Vol. II
concerns a so-called smooth manifold, that is, the change of the local coordinates
is described by diffeomorphisms between open subsets of the geographic charts.

Topological manifold. By definition, a real n-dimensional topological man-
ifold is a separated paracompact topological space X which locally looks like the
Euclidean space R

n. That is, every point P of X has an open neighborhood U(P )
which is homeomorphic to an open subset U of R

n, that is, there exists a homeo-
morphism

ϕ : U(P ) → U .
The map ϕ is called a geographic chart, and the open subset U of R

n is called
the Euclidean chart space. If Q ∈ U(P ), then ϕ(Q) = (x1, . . . , xn), and the real
numbers x1, . . . , xn are called the local coordinates of the point Q. The change of
local coordinates is described by a homeomorphism between open subsets of R

n.
The topological manifold is called oriented iff these chart-change homeomorphisms
have the topological index one. For diffeomorphisms, the topological index is equal
to one iff the determinant of the linearization is equal to one. In the more general
case of a homeomorphisms, the local mapping degree has to be equal to one (see Vol.
IV). Intuitively, this means that the homeomorphisms can locally be approximated
by diffeomorphisms which have the topological index equal to one.

A.1.2 Manifolds with Boundary

Before defining manifolds with boundaries, the reader should notice the following
conventions which we will use in order to streamline the terminology and to avoid
pathologies.

Terminology and conventions. A manifold M with boundary ∂M includes
the case that the boundary is empty.

• Smooth manifolds without boundary are simply called manifolds. For example,
an open disc is a 2-dimensional real manifold (Fig. A.2). In contrast to this, a
closed disc is a manifold with boundary; the boundary is a circle (Fig. A.3).

• We have to distinguish between manifolds (i.e., smooth manifolds) and topolog-
ical manifolds. Manifolds are always topological manifolds, but the converse is
not true.

• Every manifold is a topological spaceM . A subset U ofM is called open iff every
point P ∈ U is contained in some subset O of U such that the chart image of O is
open in some geographic chart. We always assume that manifolds with boundary
are separated. Furthermore, since we assume below that a manifold possesses
only an at most countable set of Euclidean charts, by definition, manifolds with
boundary are always paracompact topological spaces.

• By abuse of language, a closed manifold is a compact manifold without boundary.
For example, the circle S

1, the 2-dimensional sphere S
2 and the n-dimensional

sphere S
n, n = 3, 4, . . . are closed manifolds.
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Fig. A.3. Manifold with boundary

• Since the definition of a manifold includes the restriction to an atlas with an
at most countable set of geographic charts, manifold are always paracompact
topological spaces. This useful convention always guarantees the existence of a
partition of unity (see page 1077).

• If we do not state explicitly the contrary, manifolds are always finite-dimensional
manifolds.4

Open neighborhood of a point in the closed upper half-plane. The
following notion is crucial for the definition of manifolds with boundary to be given
below. The set

R
2
≥ := {(u, v) ∈ R

2 : v ≥ 0}
is called the closed upper half-plane (Fig. A.3). The set

∂R
2
≥ := {(u, v) ∈ R

2 : v = 0}

is called the boundary of the upper half-plane R
2
≥. Moreover, the set

int(R2
≥) := {(u, v) ∈ R

2 : v > 0}

is called the interior of the upper half-plane R
2
≥. Let P ∈ R

2
≥. By definition, an

open neighborhood U(P ) of the point P is the intersection

U(P ) := R
2
≥ ∩ O

of the upper half-plane R
2
≥ with an open set O in R

2 where P ∈ O. Observe that if
P is a boundary point of the upper half-plane, then the set U(P ) contains boundary
points of the upper half-plane.5 For example,

• the disc {(u, v) ∈ R
2 : (u − 1)2 + (v − 2)2 < r2} with 0 < r < 2 is an open

neighborhood of the point (1, 2) in R
2
≥,

• the semidisc U := {(u, v) ∈ R
2 : (u − 1)2 + v2 < r2, v ≥ 0} with r > 0 is an

open neighborhood of the boundary point (1, 0) in R
2
≥, and

• the set V := {(u, v) ∈ R
2 : (u − 1)2 + v2 < r2, v > 0} is called the interior of

the semidisc U .

The function
g : U(P ) → R

is called smooth iff it is smooth in the sense of the general definition given on page
1070 via extension. Explicitly, g is smooth iff the following hold: g is continuous

4 The theory of infinite-dimensional manifolds and its applications is studied in
E. Zeidler, Nonlinear Functional Analysis, Vol. 4, Springer, New York, 1995.
Reprinted: Beijing (China), 2009.

5 In terms of topology, U(P ) is an open subset of R
2
≥ with respect to the topology

on the upper half-plane R
2
≥ induced by the topology on the plane R

2.
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on U(P ), g is smooth on the interior of U(P ), and all the partial derivatives of g
(of arbitrary order defined on the interior of U(P )) can be extended to continuous
functions on U(P ). For example, set

g(u, v) := u+ |v| for all u, v ∈ R
2
≥.

Then the function g is smooth on R
2
≥, but it is not smooth on R

2. Let U and V be

open neighborhoods of the upper half-space R
2
≥. A map

f : U → V

is called smooth iff its components are smooth. Moreover, f is called a diffeomor-
phism iff it is a bijective smooth map, and the inverse map f−1 : V → U is also
smooth.

This can immediately be generalized to m-dimensional half-spaces

R
m
≥ := {(u1, . . . , um) ∈ R

m : um ≥ 0}, m = 1, 2, . . .

Let P ∈ R
m
≥ . By definition, an open neighborhood U(P ) of the point P is the

intersection
U(P ) := R

m
≥ ∩ O

of the upper half-space R
m
≥ with an open set O in R

m where P ∈ O.
Basic definition of an m-dimensional manifold with boundary. Choose

m = 1, 2, . . . Roughly speaking, a real m-dimensional manifold with boundary looks
locally like an open neighborhood of an m-dimensional half-space with respect to
local coordinates, and the change of local coordinates is given by diffeomorphisms.
Boundary points correspond to boundary points in local coordinates (i.e., bound-
ary points of m-dimensional half spaces). Explicitly, the precise definition reads
similarly as the definition of real manifolds (without boundary) given in Sect. 5.4
of Vol. I.

We only replace open neighborhoods of the Euclidean space R
m by open

neighborhoods of the half-space R
m
≥ .

(M1) Chart maps: A real m-dimensional manifold with boundary is a set M to-
gether with a (finite or countable) family of bijective maps

ϕA : MA → UA.

Here, MA is a subset of M, and UA is the open neighborhood of some point
of the upper half-space R

m
≥ . We call uA = ϕA(P ) the local coordinate of the

point P ∈ M, and ϕA is called a chart map. (Naturally enough, we assume
that every point P of M lies in some set MA.)

(M2) Changing local coordinates: If the point P lies both in the sets MA and MB ,
then the two local coordinates

uA = ϕA(P ) and uB = ϕB(P )

are assigned to the point P . In this case, we assume that the transition map

uB = ϕBA(uA)

is a diffeomorphism on its natural domain of definition. Explicitly, we have
ϕBA := ϕB ◦ ϕ−1

A on ϕA(MA ∩MB) (see Fig. 5.10 in Sect. 5.4 of Vol. I).
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The family {ϕA} of chart maps is called an atlas of the manifold M. This concept
generalizes geographic atlases of the earth.

The setM can be equipped with the structure of a topological space in a natural
way, by using local coordinates . A subset U ofM is called open iff any point P ∈ U
is contained in a set V (P ) whose chart image is open on the closed upper-half space.
We always assume that the topological space M is separated.

Manifold morphism. Let M and N be manifolds with boundary. By a man-
ifold morphism, we understand a smooth map

f : M → N , (A.1)

that is, the map is smooth with respect to local coordinates. This definition does not
depend on the choice of local coordinates because of (M2) above. Furthermore, the
map (A.1) is called a manifold isomorphism iff it is a bijective manifold morphism,
and the inverse map

f−1 : N → M
is also a manifold morphism. Manifold isomorphisms are also called diffeomor-
phisms.

Orientation. The manifold M is called oriented iff all the transition maps ϕBA

from (M2) above have a positive Jacobian, that is, detϕ′
BA(u) > 0 on the natural

domain of definition ϕA(MA∩MB). The explicit form of the Jacobian can be found
on page 666.

By definition, two oriented manifolds M and N with boundary have the same
orientation iff there exists a diffeomorphism

f : M → N

such that the Jacobian of f is positive with respect to local coordinates. A manifold
with boundary is called orientable iff it is diffeomorphic to an oriented manifold.

Coherent orientation of the boundary. If the real m-dimensional manifold
M with boundary is oriented, then the boundary ∂M is an orientable manifold. In
fact, let P be a boundary point M. Then, a neighborhood of the point P on M
can be described by the local coordinates

u1, u2, . . . , um−1, um ∈ R (A.2)

with |uj | < ε if j = 1, . . . ,m − 1, and 0 ≤ um < ε (where ε is a sufficiently small
positive number). Furthermore, a neighborhood of P on ∂M is given by the local
coordinates

u1, u2, . . . , um−1 ∈ R, and um = 0

with |uj | < ε if j = 1, . . . ,m− 1. This yields the oriented manifold ∂M. A detailed
proof can be found in Zeidler (1986) (page 585 of Vol. IV) quoted on page 1089.

In order to formulate the generalized Stokes integral theorem, one needs a so-
called coherent orientation of the boundary ∂M which is depicted in Fig. 12.6 on
page 677. In order to obtain this, we have to change the notation above. That is,
we have to pass from the local coordinates (A.2) to the local coordinates

v1, v2, . . . , vm−1, vm ∈ R

where v1 := u1, . . . , vm−1 := um−1 and vm := −um.
Equivalent atlases. Two atlases M are called equivalent iff their union is again

an atlas. Intuitively, two geographic atlases of the earth are always equivalent. In
fact, putting the two atlases together, we obtain a larger atlas of the earth.
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A.1.3 Submanifolds

We have to distinguish between

• submanifolds and
• submanifolds with boundary.

A submanifold is a manifold (i.e., it has no boundary), whereas a submanifold with
boundary is a manifold with boundary. Typical examples are:

• an open ball in the 3-dimensional Euclidean manifold E
3 is a 3-dimensional sub-

manifold of E
3;

• a 2-dimensional sphere in E
3 is a 2-dimensional submanifold of E

3;
• a closed ball in E

3 is a 3-dimensional submanifold with boundary of E
3.

Roughly speaking, we have the following situation:

• A real m-dimensional manifold M looks locally like an open neighborhood of a
point in R

m (with respect to local coordinates), and
• a real r-dimensional submanifold N of M is a subset of M which looks locally

like the intersection
U ∩ L

where U is the open neighborhood of a point in R
m, and L is an r-dimensional

plane in R
m.

Basic definition. Let 0 < r ≤ m. We are given the real m-dimensional man-
ifold M. A subset N of M is called a real r-dimensional submanifold of M iff it
has the following properties:

• N is a real r-dimensional manifold;
• M and N have equivalent atlases such that, for every point P ∈ N , there exist

local coordinates u1, . . . , um in M such that a neighborhood U of the point P in
M is described by

u1, . . . , ur, ur+1, . . . , um ∈ R

with |uj | < ε if j = 1, . . . ,m, and the intersection U ∩ N is described by

u1, . . . , ur ∈ R, and ur+1 = . . . = um = 0

with |uj | < ε if j = 1, . . . , r.6

Submanifold with boundary. Consider a closed ball B which is a subset of
the Euclidean manifold E

3. If P is an interior point of B, then there exist local
coordinates

u1, u2, u3 ∈ R

of the Euclidean manifold E
3 with |u1|, |u2|, |u3| < ε which are also local coordinates

of the ball B (near the point P ). If P is a boundary point of B, then there exist
local coordinates u1, u2, u3 of E

3 (near the point P ) such that

u1, u2, u3 ∈ R with |u1|, |u2| < ε and 0 ≤ u3 < ε

describe locally the closed ball near the point P . Moreover, the boundary ∂B of the
ball is described by

u1, u2 ∈ R and u3 = 0

with |u1|, |u2| < ε (near the point P ), and u1, u2 are local coordinates of the bound-
ary ∂B (near the point P ).

This highly intuitive argument can be easily extended to a precise definition of
r-dimensional submanifolds with boundary.

6 By definition, a 0-dimensional submanifold of M is a point of M or a set of
isolated points of M.
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A.1.4 Partition of Unity and the Globalization of Physical Fields

Compact topological space. Let X be a separated compact topological space.
Suppose that we are given a finite open covering {Uj} of X, j = 1, . . . , J. Then
there exists a system {fj} of continuous functions fj : X → R, j = 1, . . . , J, such
that the following properties are satisfied for all indices j:

• 0 ≤ fj(P ) ≤ 1 for all P ∈ X, and fj vanishes outside a closed subset of Uj ;

•
PJ

j=1 fj(P ) = 1 for all P ∈ X.
Manifolds. Let X be a real n-dimensional compact manifold, and let {Uj} be

given as above. Then the functions fj can be chosen in such a way that they are
smooth.

Paracompact topological space. In this case, a slight modification is valid.
Let X be a separated paracompact topological space. Suppose that we are given
an at most countable, locally finite open covering {Uj} of X.7 Then there exists an
at most countable system {fi} of continuous functions fi : X → R such that the
following properties are satisfied for all indices i:

• 0 ≤ fi(P ) ≤ 1 for all P ∈ X, and fi vanishes outside a closed subset of Uj(i) for
some index j(i) depending on i.

•
P

i fi(P ) = 1 for all P ∈ X.
If X is a manifold, then the functions fi are smooth.

The main theorem on Riemannian manifolds. As a typical application,
let us prove that every real n-dimensional manifold M can be equipped with the
structure of a Riemannian manifold.
Proof. (I) Assume that M is compact. Using local coordinates on M , the tangent
bundle TM looks locally like the product Uj × R

n where Uj is an open subset of
M . If we equip R

n with the structure of a real Hilbert space, then we get the local
metric tensor

gj(P ) := gjkldx
k ⊗ dxl, P ∈ Uj .

Here, we sum over k, l = 1, . . . , n. Choosing a finite open covering {Uj} of M by
sufficiently small open sets (with respect to local coordinates), we define

g(P ) :=
X

j

gj(P )fj(P ) for all P ∈M.

Here, {fj} is a partition of unity corresponding to {Uj}. Then, g is the desired
Riemannian metric tensor on M .

(II) In the general case, the manifoldM is paracompact. This implies that every
open covering of M possesses a locally finite refinement. Now we argue as in (I)
by using a partition of unity with respect to the locally finite refinement. More
precisely, we set

g(P ) :=
X

i

gj(i)fi(P ) for all P ∈M

where the compact support of fi is contained in Uj(i) for some index j(i) depending
on i. �

7 Such a covering always exists on a paracompact space.
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A.2 The Solution of Nonlinear Equations

A.2.1 Linearization and the Rank Theorem

The rank theorem is fundamental for the theory of finite-dimensional man-
ifolds.

Folklore

A general strategy in mathematics is to transform equations into normal forms in
order to display the structure of the solution set. As a typical example, we want to
study linear and nonlinear systems of equations.

Linear System

The normal form. Fix m,n = 1, 2, . . . with m ≤ n. Consider the linear system

Ax = b, x ∈ R
n (A.3)

where A : R
n → R

m is a real (m× n)-matrix. Explicitly,

n
X

k=1

Aj
kx

k = bj , j = 1, . . . ,m, x ∈ R
n.

Our goal is to transform this linear system into the simple normal form

u1 = 0, . . . , ur = 0, u ∈ R
n, (A.4)

by using the transformation

u = B(x− x0), x ∈ R
n (A.5)

where B : R
n → R

n is a linear bijective map. Here, r is a fixed number with
r = 1, . . . ,m. To this end, we set

A :=

0

B

B

@

A1
1 A1

2 . . . A
1
n

...
... . . .

...

Am
1 Am

2 . . . Am
n

1

C

C

A

, x :=

0

B

B

@

x1

...

xn

1

C

C

A

, b :=

0

B

B

@

b1

...

bm

1

C

C

A

.

Here, Aj
k, x

k, bj are fixed real numbers. We are looking for x ∈ R
n.

Theorem A.1 Assume that the system (A.3) has the solution x0 ∈ R
n, and assume

that the rank of the matrix A is equal to r with 1 ≤ r ≤ m. Then there exists a
linear bijective map B : R

n → R
n such that the transformation (A.5) sends the

original linear system (A.3) to the normal form (A.4).

Consequently, the solution set of the equation (A.3) is given by

x = x0 +B−1u

where u1 = 0, . . . , ur = 0 and ur+1, . . . , un ∈ R. In other words, the solution set of
(A.3) is a real linear (n− r)-dimensional manifold.
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The favourable case. If the rank of the matrix A is maximal, that is, r = m,
then the linear operator A : R

n → R
m is surjective. In particular, for every given

b ∈ R
m, the system (A.3) has a solution, and the solution set is a linear manifold

of dimension n−m.
Trivial case. If the rank of the matrix A is equal to r = 0, then A = 0. In this

trivial case, the equation (A.3) has a solution iff b = 0. Then the solution set of
(A.3) consists of all the points x ∈ R

n.
Example (equation of a plane). Consider the linear equation

αx+ βy + γz = b, x ∈ R
3. (A.6)

We are given the real numbers α, β, γ. We are looking for (x, y, z) ∈ R
3. Suppose

that α2 +β2 + γ2 �= 0, that is, the coefficient matrix A = (α, β, γ) has the maximal
rank r = 1. Then the solution set P of (A.6) is a 2-dimensional linear manifold in
R

3, that is, P is a plane in R
3. Let x0 be a point on the plane P. Then, there exists

a linear bijective map B : R
3 → R

3 such that the transformation u = B(x − x0)
sends the equation (A.6) to the normal form

u1 = 0, (u1, u2, u3) ∈ R
3.

Then, the plane P can be described by the parametrization

x = x0 +B−1u, u = (0, u2, u3), u2, u3 ∈ R.

Nonlinear System

The linearization principle. The rank theorem for linear systems can be gen-
eralized to nonlinear systems, if we restrict ourselves to the local behavior of the
equations. That is, linear bijective transformation maps are replaced by local dif-
feomorphisms. Intuitively, this corresponds to the use of appropriate curvilinear
coordinates. The key condition is the local constancy of the rank of the linearized
coefficient matrix.
Fix m,n = 1, 2, . . . with m ≤ n. In what follows, the symbol V(x0) (resp. U(0))
denotes a sufficiently small open neighborhood of the point x0 (resp. u = 0) in R

n.
Let us consider the nonlinear system

f(x) = 0, x ∈ V(x0)

with f(x0) = 0 by using the linearized system f ′(x0)(x− x0) = 0, x ∈ R
n. In terms

of components, we investigate the real nonlinear system

fj(x) = 0, j = 1, . . . ,m, x ∈ V(x0) (A.7)

where x = (x1, . . . , xn) is a point of R
n. We assume that we know a fixed solution

x0 of the system (A.7), and we are looking for solutions x of (A.7) near the point x0.
Our goal is to transform locally the nonlinear system (A.7) into the linear system

u1 = 0, . . . , ur = 0, u ∈ U(0), (A.8)

by using a local diffeomorphism u = ϕ(x) from V(x0) onto U(0). Here, r is a fixed
number with r = 1, . . . ,m. To this end, we consider the linearized system

n
X

k=1

∂fj(x0)

∂xk
(xk − xk0) = 0, j = 1, . . . ,m, x ∈ R

n,
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and the corresponding matrix f ′(x) : R
n → R

m given by

0

B

B

@

∂f1(x)

∂x1
∂f1(x)

∂x2 . . . ∂f1(x)
∂xn

...
... . . .

...
∂fm(x)

∂x1
∂fm(x)

∂x2 . . . ∂fm(x)
∂xn

1

C

C

A

. (A.9)

We assume the following:

(H1) The real-valued functions f1, . . . , fm are smooth on some open neighborhood
of the point x0 in R

n.
(H2) Rank condition: The rank r of f ′(x) is locally constant near the point x0.

This means that the rank of the matrix (A.9) is equal to r on a sufficiently
small open neighborhood of x0 in R

n.

Note that 0 ≤ r ≤ m.

Theorem A.2 Locally, the solution set of (A.7) is an (n−r)-dimensional subman-
ifold of R

n which passes through the point x0.

Explicitly, this means the following. Let r ≥ 1. There exists a diffeomorphism

ϕ : V(x0) → U(0)

such that the transformation u = ϕ(x) with ϕ(x0) = 0 sends the original nonlinear
system (A.7) to the linear system (A.8). Here, V(x0) (resp. U(0)) is a sufficiently
small neighborhood of the point x0 (resp. u = 0) in R

n. The solutions of (A.7) are
given by the back transformation

x = ϕ−1(0, . . . , 0;ur+1, . . . , un), u ∈ U(0).

This is a local parametrization of the solution set of (A.7).8 The proof of Theorem
A.2 (together with generalizations to infinite-dimensional Banach spaces) can be
found in Zeidler (1986) (page 550 of Vol. IV) quoted on page 1089.

The implicit function theorem (special rank condition). If the matrix
f ′(x0) has maximal rank at the point x0, that is, r = m, then the assumption (H2)
is satisfied automatically. In this special case, Theorem A.2 is called the implicit
function theorem.

The trivial case r = 0. Suppose that condition (H2) is satisfied in the special
case where r = 0. Then the functions f1, . . . , fm are constant on a sufficiently small
open neighborhood V(x0) of the point x0. Obviously, if f1(x0) = 0, . . . , fm(x0) = 0,
then the solution set of (A.7) is equal to V(x0). In other words, locally, the solution
set of (A.7) is an n-dimensional submanifold of R

n which contains the point x0.
Example (n = 3,m = 1, r = 0, 1). We want to show that Theorem A.2 gen-

eralizes the classical method for constructing regular surfaces in the 3-dimensional
Euclidean manifold. To this end, consider the equation

f(x, y, z) = 0, (x, y, z) ∈ V(x0, y0, z0) (A.10)

where the real-valued function f is smooth on the sufficiently small open neighbor-
hood V(x0, y0, z0) of the point (x0, y0, z0) in R

3. We assume that f(x0, y0, z0) = 0.
The Taylor expansion

8 In terms of manifolds, the map ϕ is called a chart map of R
n, and u = ϕ(x) is

called the local coordinate of the point x ∈ R
n.
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f(x, y, z) = fx(x0, y0, z0)(x−x0)+fy(x0, y0, z0)(y−y0)+fz(x0, y0, z0)(z−z0)+ . . .

of the function f at the point (x0, y0, z0) yields the linearized system

fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0) = 0

where (x, y, z) ∈ R
3. The corresponding coefficient matrix reads as

(fx(x0, y0, z0), fy(x0, y0, z0), fz(x0, y0, z0)). (A.11)

We assume that the matrix

(fx(x, y, z), fy(x, y, z), fz(x, y, z))

has the constant rank r on a sufficiently small open neighborhood of the point
(x0, y0, z0) in R

3.
Case 1: r = 1. Then, locally, the solution manifold of (A.10) is a 2-dimensional

submanifold of R
3 which passes through the point (x0, y0, z0). In other words, there

exists a diffeomorphism ϕ : V(x0) → U(0) such that the transformation u = ϕ(x)
with ϕ(x0) = 0 sends the equation (A.10) to the linear system

u1 = 0, u ∈ U(0).

Here, V(x0) (resp. U(0)) is a sufficiently small neighborhood of the point x0 (resp.
u = 0) in R

3. The solutions of (A.10) are given by the back transformation

x = ϕ−1(0, u2, u3), u ∈ U(0).

This is a local parametrization of the solution set of (A.10)
Case 2: r = 0. Then, we have fx(x, y, z) = fy(x, y, z) = fz(x, y, z) = 0 on a suffi-

ciently small open neighborhood of (x0, y0, z0). Thus, f is constant on a sufficiently
small open neighborhood of (x0, y0, z0). By assumption, f(x0, y0, z0) = 0. Conse-
quently, the solution set of the equation (A.10) contains an open neighborhood of
the point (x0, y0, z0) in R

3.
The implicit function theorem (special rank condition). Let us mention

the following special feature. If the rank of the matrix

(fx(x0, y0, z0), fy(x0, y0, z), fz(x0, y0, z0) (A.12)

is equal to one, then the rank of the matrix (A.11) is equal to one on a sufficiently
small open neighborhood of the point (x0, y, z0). To see this, assume that, say,

fz(x0, y0, z0) �= 0. (A.13)

Then we get fz(x, y, z) �= 0 on a sufficiently small open neighborhood of the point
(x0, y0, z0) in R

3, by continuity. More precisely, condition (A.13) implies that the
solution set of the equation (A.10) reads as

(x, y, z(x, y)) for all (x, y) ∈ W(x0, y0)

where W(x0, y0) is a sufficiently small open neighborhood of the point (x0, y0) in
R

2. In terms of geometry, the equation (A.10) describes the local smooth surface

z = z(x, y), (x, y) ∈ W(x0, y0)

with z0 = z(x0, y0).
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Fig. A.4. Bifurcation

Physical interpretation. Let Θ : E
3 → R be a smooth temperature field on

the 3-dimensional Euclidean manifold E
3. Let us choose a right-handed Cartesian

(x, y, z)-coordinate system. Suppose that

gradΘ(x0, y0, z0) �= 0,

that is, the temperature gradient does not vanish at the point (x0, y0, z0). This
corresponds to the rank condition (A.12). Then, for given fixed temperature Θ0,
the isothermal surface

Θ(x, y, z) = Θ0, (x, y, z) ∈ R
3

represents a smooth 2-dimensional submanifold M of the 3-dimensional Euclidean
manifold E

3 in a sufficiently small open ball centered at the point (x0, y0, z0), and
the surface M has the normal vector gradΘ(x0, y0, z0) at the point (x0, y0, z0).
If the z-component of the gradient gradΘ(x0, y0, z0) does not vanish, that is,
Θz(x0, y0, z0) �= 0, then the isothermal surface through the point (x0, y0, z0) is
locally given by the equation

z = z(x, y), (x, y) ∈ W(x0, y0)

with z(x0, y0) = z0.

A.2.2 Violation of the Rank Condition and Bifurcation

The equation

(x− x0)
2 − (y − y0)2 = 0, (x, y) ∈ R

2 (A.14)

has the two straight lines

y = (x− x0) + y0, y = −(x− x0) + y0, x ∈ R
2

as solution set. By Fig. A.4, this solution set is not a submanifold of R
2 in a

neighborhood of the point (x0, y0). This follows from the obvious fact that there is
no tangent line at the point (x0, y0). Naturally enough, the point (x0, y0) is called
a bifurcation point of the equation (A.14).

The linearization of equation (A.14) at the point (x1, y1) reads as

2(x1 − x0)(x− x0) + 2(y1 − y0)(y − y0) = 0, (x, y) ∈ R
2

with the coefficient matrix

(2(x1 − x0), 2(y1 − y0)).
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This matrix has the rank r = 1 if (x1, y1) �= (x0, y0) (resp. r = 0 if we have
(x1, y1) = (x0, y0)). Thus, the rank jumps at the point (x0, y0). This means that
the rank condition for the equation (A.14) is violated at the point (x0, y0).

Complex linear and nonlinear systems. The results above remain valid if
we replace the real variables x1, . . . , xn by complex variables (resp. the real-valued
functions f1, . . . , fm by complex-valued functions). That is, we replace R

n and R
m

by C
n and C

m, respectively.

A.3 Lie Matrix Groups

An elementary introduction to Lie groups can be found in Chapter 7 of Volume I.
Let us summarize additional advanced material. The proofs can be found in:

B. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary
Introduction, Springer, New York, 2003.

W. Hein, Introduction to Structure and Representation of the Classical
Groups, Springer, Berlin, 1990 (in German).

A. Kirillov, An Introduction to Lie Groups and Lie Algebras, Cambridge
University Press, 2008.

The exponential function. Let n = 1, 2, . . . Recall that GL(n,C) denotes
the group of all complex (n × n)-matrices. This is a Lie group (see Section 7.8 of
Volume I). The set gl(n,C) consists of all complex (n× n)-matrices. This is a real
Lie algebra with respect to the Lie product

[A,B]− = AB −BA for all A,B ∈ gl(n,C).

Fix t0 > 0. Let G = G(t),−t0 < t < t0, be a smooth curve on GL(n,C) with

G(0) = I. Then the derivative Ġ(0) is an element of the tangent space TIGL(n,C)
of the real manifold GL(n,C) at the unit element I. In addition,

TIGL(n,C) = gl(n,C).

We call gl(n,C) the Lie algebra of the Lie group GL(n,C). If A ∈ gl(n,C), then
eA ∈ GL(n,C). The map

A �→ eA (A.15)

sends the Lie algebra gl(n,C) to a neighborhood of the unit element of the group
GL(n,C). More precisely, the map (A.15) is a local diffeomorphism which maps
a sufficiently small open neighborhood of the zero element in gl(n,C) onto a suf-
ficiently small open neighborhood of the unit element in GL(n,C). This tells us
that:

A sufficiently small open neighborhood of the unit element I in the Lie
group GL(n,C) can be parametrized by a sufficiently small open neighbor-
hood of the Lie algebra gl(n,C).

If A,B ∈ gl(n,C), then

eA+B = lim
Δt→+0

“

eΔt AeΔt B
”1/Δt

(A.16)

and

e[A,B]− = lim
Δt→0

“

eΔtAeΔt Be−Δt Ae−Δt B
”1/(Δt)2

. (A.17)

Moreover, if A,B ∈ gl(n,C) and G ∈ GL(n,C), then we have
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• A = d
dt

etA at t = 0,

• GAG−1 = d
dt

(GetAG−1) at t = 0,

• [A,B]− = ∂2

∂t∂s
(esAetBe−sAe−tB) at t = 0, s = 0.

The proof can be found in Hein (1990) and Hall (2003) quoted above.
The beauty of Lie matrix groups. By definition, a Lie matrix group is a

closed subgroup of GL(n,C) for some n = 1, 2, . . . Let G be a Lie matrix group. By
definition, the set L consists precisely of all the matrices A ∈ gl(n,C) which have
the property that

etA ∈ G for all t ∈ R.

Then the following hold:

(i) If A,B ∈ L and α ∈ R, then αA,A + B, [A,B]− ∈ L. Thus, L is a real Lie
algebra which is a Lie subalgebra of gl(n,C).

(ii) The restriction of the map (A.15) to L is a local diffeomorphism from an open
neighborhood of the zero element in L onto an open neighborhood of the unit
element in G. Thus, G is a submanifold of GL(n,C). More precisely, G is a Lie
subgroup of the Lie group GL(n,C), and L is the Lie algebra of the Lie group
G, that is, LG = L.
The scope of Lie matrix groups. A theorem of Élie Cartan tells us that the

Lie subgroups of a Lie group are always closed. Therefore, the statement (ii) shows
that we have the following nice result:

A subgroup G of GL(n,C) is a Lie subgroup iff it is a Lie matrix group.

From the pedagogical point of view, the theory of Lie matrix groups is simpler
than the general theory of Lie groups, since one can use matrix calculus. All the
classical Lie groups are Lie matrix groups. As an introduction to Lie matrix groups,
we recommend Hall (2003) and Hein (1990) quoted above.

Every Lie matrix group is a Lie group, but the converse is not always true.

There are the following counterexamples:

• The universal covering group of the Lie matrix group SL(2,R) is a Lie group, but
not a Lie matrix group. The proof can be found in Hall (2003), p. 317, quoted
above.

• The quotient group of a Lie matrix group is a Lie group, but not always a Lie
matrix (see the Birkhoff–Heisenberg quotient group on page 110).

For the theory of general Lie groups, we refer to Kirillov (2008) quoted above.
The first main theorem on the morphisms of Lie matrix groups. Let

G and H be Lie matrix groups. Suppose that

� : G → H

is a smooth group morphism. Let A ∈ LG. Define �∗(A) := d
dt
�
`

etA
´

|t=0
. Then the

map
�∗ : LG → LH

is a Lie algebra morphism.
The proof uses (A.16) and (A.17). See Hein (1990), p. 45, quoted above. An

alternative proof can be found in Hall (2003), p. 125, quoted above.
The second main theorem on the morphisms of Lie matrix groups.

Let G and H be Lie matrix groups. Consider the Lie algebra morphism

λ : LG → LH.
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Suppose that the Lie group G is arcwise connected and simply connected. Then
there exists a unique smooth group morphism � : G → H such that �∗ = λ.

The proof uses the Baker–Campbell–Hausdorff theorem (see Sect. 8.4 of Vol.
I). The sophisticated proof can be found in B. Hall (2003) quoted above, p. 76.

A.4 The Main Theorem on the Global Structure of Lie
Groups

We are given the real finite-dimensional Lie algebra L. We want to know all the Lie
groups whose Lie algebra is isomorphic to L. The following hold:

(i) Existence and uniqueness. There exists an arcwise connected, simply connected
Lie group U whose Lie algebra LU is isomorphic to L. The Lie group U is
unique, up to Lie group isomorphism.

(ii) If the arcwise connected Lie group G has a Lie algebra LG which is isomorphic
to L, then there exists a surjective Lie group morphism

� : U → G.

The kernel ker(�) (i.e., the preimage �−1(1) of the unit element in G) is a
discrete (i.e., an at most countable) normal subgroup of U contained in the
center of U such that we have the Lie group isomorphism

G  U/ ker(�).

(iii)) Conversely, if N is a discrete normal subgroup of U contained in the center
of U , then the quotient group U/N is an arcwise connected Lie group whose
Lie algebra is isomorphic to L.
This theorem tells us that every arcwise connected Lie group G has a unique

universal covering group U , and the group U knows all the arcwise connected Lie
algebras which have the same Lie algebra as G. The sophisticated proof can be
found in L. Pontryagin, Topological Groups, Gordon and Breach, 1966, Chap. 10.
For a sketch of the proof, see Kirillov (2008), Sect. 3.8, quoted above.



Epilogue

By explanation the scientist means nothing else than a reduction to very
few and simple basic rules, which cannot be reduced any further, but which
allow a complete deduction of the phenomena.

Gauss in Electromagnetism and Magnetometer

I thank you, highly honored Sir, in the name of mankind, for presenting
us with a picture of the highest intellectual power and force together with
an inspiring and never ending warmth of feeling.

Alexander von Humboldt in a letter to Gauss, 1853

We do not claim for mathematics the prerogative of a Queen of Science;
there are other fields which are of the same or even higher importance in
education. But mathematics sets the standard of objective truth for all
intellectual endeavors. Science and technology bear witness to its practical
usefulness. Besides language and music it is one of the primary manifes-
tations of free creative power of the human mind, and it is the universal
organ for world-understanding through theoretical construction. Mathe-
matics must therefore remain an essential element of the knowledge and
abilities which we have to teach, of the culture we have to transmit, to the
next generation. Only he who knows what mathematics is, and what its
function in our present civilization, can give sound advice for the improve-
ment of our mathematical teaching.1

Hermann Weyl

Knowledge in all physical sciences – astronomy, physics, chemistry – is
based on observation. But observation can only ascertain what is. How
can we predict what will be? To that end observation must be combined
with mathematics.

Hermann Weyl (from a Radio Talk 1947)

Symmetry, Lie groups and gauge invariance are now recognized, through
theoretical and experimental developments, to play essential role in de-
termining the basic forces of the physical universe. I have called this the
principle that symmetry dictates interaction.2

Cheng Ning Yang, 1985

1 From the introduction to the Gesammelte Abhandlungen (Collected Works) by
H. Weyl, Vols. 1–4, Springer, Berlin, 1968 (reprinted with permission).

2 C. Yang, Hermann Weyl’s Contributions to Physics. In: Hermann Weyl (1885–
1955), pp. 7–21. Springer, Berlin, 1985.
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List of Symbols

A (ampere), 9841

[A,B]− = AB −BA (commutation
relation)

[A,B]+ := AB +BA (anticommutation
relation)

A(ij) := 1
2
(Aij +Aji) (symmetrization),

457
A[ij] := 1

2
(Aij −Aji) (antisymmetri-

zation), 457
Alti1...ip , 499

A = A1i + A2j + A3k (vector potential
in electromagnetism), 965

Ȧ ≡ ∂A
∂t

(time derivative)2

A = Aαdx
α (1-form of the 4-potential in

electromagnetism), 965
A = Aαdx

α (connection 1-form on the
base manifold M

4), 823
A (connection 1-form on the principal

bundle P), 823, 849, 881
[a, b] (closed interval),

{x ∈ R : a ≤ x ≤ b}
]a, b[ (open interval),

{x ∈ R : a < x < b}
[a, b[ (half-open interval),

{x ∈ R : a ≤ x < b}
arg(z) (principal value of the argument

of the complex number z),
−π < arg(z) ≤ π, 688,

arg∗(z) (multi-valued argument of z),
arg∗(z) := arg(z) + 2πk,
k = 0,±1,±2, . . ., 688

Ad (dual matrix or dual operator to A),
159, 160

Ac (complex-conjugate matrix to A),
159

z† = x− yi (complex conjugate number
to z = x+ iy)

A† (adjoint matrix), A† ≡ (Ad)c, 159
ad,Ad,Ad (adjoint representations

on Lie groups/algebras), 234, 808
A(3) = R

3
�GL(3,R), 259

An, 254
A⊗B (tensor product of linear

operators; see also ⊗ below), 316
Aut(G),Autinner(G), 207
AQ (adelic ring), 337, |r|p (p-adic valua-

tion)
ab ≡ 〈a|b〉 (inner product of vectors),

79
|a| ≡

√
a2 (length of the vector a), 79

a × b (vector product), 82
[a,b] ≡ a × b (Lie product), 82
(abc) = (a × b)c (volume product), 82
a ⊗ b (tensor product), 70, 118

(a ⊗ b)(x,y) ≡ (ax)(by)
a�b (symmetrized tensor product), 118

a � b ≡ a ⊗ b + b ⊗ a
a ∧ b (antisymmetrized tensor

product, Grassmann product, wedge
product), 70, 118
a ∧ b ≡ a ⊗ b − b ⊗ a

a ∨ b ≡ a ∧ b − ab (Clifford product,
cowedge product), 70, 128

1 The Greek letters α, β, γ, Γ, δ,Δ, ε, ε, ζ, η, θ, ϑ,Θ, ι, κ, λ, Λ, μ, ν, ξ, Ξ, o,� (omi-
cron), π,Π, �, σ, ς, Σ, τ, υ, Υ (upsilon), ϕ, φ, Φ, χ, ψ, Ψ, ω,Ω, the Hebrew letter ℵ
(aleph), the Phoenician symbol ∇ (nabla), and some special symbols (e.g., tensor
products ⊗ and integrals

R

) can be found at the end of this list. See also the list
of symbols in Volumes I and II.

2 The notation ẋ dates back to Newton (1643–1727) who used the ‘dot’ for in-

dicating the first time derivative. The symbols dx
dt

, ∂f
∂t

(partial derivative) and
δf (variation) were used by Leibniz (1646–1716), Clairaut (1713–1765), and La-
grange (1736–1813), respectively.
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B (magnetic field), 935
H (derived magnetic field), 980
B = μ0H + M, 980

B
2 (closed unit disc),
{(x, y) ∈ R

2 : x2 + y2 ≤ 1}
int(B2) (open unit disc),

{(x, y) ∈ R
2 : x2 + y2 < 1}

B
N (closed N -dimensional unit ball),

{x ∈ R
N : x2

1 + . . .+ x2
N ≤ 1},

x = (x1, . . . , xN )

int(BN ) (open N -dimensional unit ball),

{x ∈ R
N : x2

1 + . . .+ x2
N < 1}

c (velocity of light in a vacuum),
c2 = 1/ε0μ0, 969, 985

c.c (complex conjugate term), 817

ab+ c.c := ab+ (ab)†

C (field of complex numbers)
C

× (multiplicative group of nonzero
complex numbers)

C (closed Gaussian plane),

C := C ∪ {∞}
coim(A) (coimage), 1006
coker(A) (cokernel), 1006
curl v, 558, 576
C∞(Ω,R), C∞

0 (Ω,R), 448
C∞

2π(R), 1029

D (derived electric field), 980
D = ε0E + Pel

deg(�), 189
det(A) (determinant of A), 75
Diffm(O), 448
δS, δx (variation), 405
δS
δx

(functional derivative), 407

δS
δx(t)

(local functional derivative), 407

dvΘ = vi∂iΘ (directional derivative of
the temperatuure field Θ), 646

(dΘ)(v) = dvΘ (differential dΘ), 646
δΘ
δx

(functional derivative), 646

δΘ(P,h) (variation), 646

δnΘ (nth variation of the temperature
field Θ), 653

Dẋ(t)
dt

(covariant acceleration), 595
Dv(t)
dt

, 597

Dvw (covariant directional derivative of
the vector field w, 611

(Dw)(v) = Dvw (covariant differential
Dw of w), 613

Dvψ (covariant directional derivative of
the physical field in gauge theory),
819, 498, 822, 844

dx, dy, dz (cobasis to i, j,k –
basis of the dual space Ed

3 ), 87,
dx(x) := x, dy(x) := y, dz(x) := z,
x = xi + yj + zk

dx⊗ dy (tensor product), 118
(dx⊗ dy)(a,b) = dx(a)dy(b)

dxk, 80
dxi ⊗ dxj , 118
dxi ∧ dxj ≡ dxi ⊗ dxj − dxj ⊗ dxj , 448
dxi ∨ dxj , 477

∂(xi′ ,...,xn′
)

∂(x1,...,xn)
(x) (Jacobian), 445

∂k = ∂
∂xk (partial derivative), 441

∂t ≡ ∂
∂t

(partial time derivative)

∂ ≡ ∇ = i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z

(Hamilton’s nabla operator), 557
∂Θ ≡ gradΘ (gradient of the tempera-

ture field Θ), 558,
∂Θ ≡ Θ′ ≡ ∂

∂x
≡ δΘ

δx
(if the temper-

ature field Θ is smooth)
∂v ≡ div v (divergence of the vector

field v), 558, 576
∂ × x ≡ curl v (curl of the velocity

vector field v), 558, 576
(a∂)Θ, 560
D = ∂t + ∂, 557
D(R3),D′(R3) (see Vol. I)
ΔΘ (Laplacian of the temperature

field Θ), 558
ΔΘ ≡ −∂2Θ ≡ − div gradΘ
ΔΘ ≡ −Θxx −Θyy −Θzz,

3

ΔΘ ≡ −gij∇i∇jΘ, 471
Δω = (d∗d+ dd∗)ω (the Hodge

Laplacian for differential
forms ω), 471

d+ d∗ (the Hodge square root),
(d+ d∗)2 = Δ, 519

dω (Cartan’s exterior differential), 519
d∗ω (Hodge’s codifferential), 519
d�ω (Kähler’s codifferential), 480
d∨ω (Kähler’s interior differential), 479

∇kT
i1...ir
j1...js

(covariant partial derivative

3 Our sign convention for the classical Laplacian coincides with the sign convention
for the Hodge Laplacian used in modern differential geometry.
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of a tensorial family), 498
Dαψ (covariant partial derivative of

the physical field ψ in gauge theory),
Dψ = ∂αψ+Aαψ, 498, 819, 822, 844

Dvψ (covariant directional derivative of
the physical field ψ in gauge theory),
819, 498, 822, 844

dkωi1...ip (Cartan derivative), 464
δkω (Kähler derivative), 476

(δkW)i2...ip (Weyl derivative), 524

DT,DT i1...ir
j1...js

, Dψ (covariant differen-

tial), 500, 847

DvT,DvT
i1...ir
j1...js

, Dvψ (covariant direc-

tional derivative), 500, 819, 822, 845
Dψ(σ)
dσ

(covariant derivative with respect
to the real parameter σ), 878

δF
δx

(functional derivative), 653
δF (x)
δx

≡ F ′(x) (the functional deri-
vative equals the Fréchet derivative)

δF (x)
δxi

(partial functional derivative), 653

der(f) (derivation), 532

E (electric field), 935
D (derived electric field), 980,
D = ε0E + Pel

e (positive electric charge of a proton)
−e (negative electric charge of an

electron)4

eV (electron volt), 984
E3 (Euclidean Hilbert space), 71

Ed
3 (dual space), 105

E
3 (Euclidean manifold), 71
E+(3) = R

3
� SO(3), 256

E(3) = R
3

�O(3), 259

Ei1...in , Ei1...in , 460
εijk, εi1,...,in = εi1...in , 72, 453
End(TS

2
r), 610

Ext(G,H), 309

F ⊗G (multilinear functionals), 118
F ∧G ≡ F ⊗G−G⊗ F , 118
F �G ≡ F ⊗G+G⊗ F , 118
{Ft} (flow), 648
F ′(x) (Fréchet derivative), 328, 653

F ′(x) ≡ δF (x)
δx

(the Fréchet deriva-
tive equals the functional deriva-
tive if the functional is smooth)

F ′′(x) (second Fréchet derivative),

F ′′(x)(h, k) ≡ δ2F (x;h, k), 328, 653
F(u,v) (Riemann curvature operator),

F(u,v)w = (Rl
ijku

ivjwk)∂l, 510

Fij = (Rl
ijk), 508

F = 1
2
Fij dx

i ∧ dxj (curvature 2-form),
508

F = 1
2
Fαβ dx

α∧dxβ (2-form of the elec-
tromagnetic field), 962

F = 1
2
Fαβ dx

α∧ (curvature 2-form on

the base manifold M
4), 823, 845, 877

F (curvature 2-form on the principal
bundle P), 823, 845, 882

f∗v (pull-back of the velocity vector
field v), 662

f∗v (push-forward of the velocity vector
field v), 661

f∗ω (pull-back of the differential
form ω), 476

FE
3 (frame bundle of the Euclidean
manifold E

3), 327, 588
FS

2
r (frame bundle of the sphere S

2
R),

621

gradΘ (gradient), 558
|G|, 181
GL(n,C), GL(n,R), 189
gl(n,R), gl(n,C), glC(n,C), 188
GL(X), gl(X), 189
gij (metric tensorial family), 460
g (metric tensor), 169

g ≡ gijdxi ⊗ dxj ,
g(u,v) = gij u

ivj

g(x) = det(gij(x)), 461
G(E3) (Grassmann bundle), 704

Gi′
i , G

i
i′ , 445

H (derived magnetic field), 980
B = μ0H + M, 980

H (quaternions), 97
Hom(G,H), 308

Hk(S1) (kth de Rham cohomology
group of the unit circle), 1030

Hk(M) (kth de Rham cohomology
group of the manifold M), 1030

I, id (identity map)
1 (unit element, unit matrix)
im(A) (image of the operator A), 1003
ivω ≡ v�ω, 468, 714

4 Observe that the notation is not uniform in the literature. Some of the authors
use the symbol e for the negative charge of the electron.
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i, j,k (right-handed orthonormal basis),
71

J (joule), 984
J (electric current density vector; charge

per time and surface area), 936
J = J1i + J2j + J3k

J (electric current strength; charge per
time), 936

J = Jαdx
α (1-form of the electric cur-

rent), 962

K (kelvin) (see the Appendix of Vol. I)
K = R,C
K(A,B) (Killing form), 234, 809
KP (u,v) (sectional curvature), 516
ker(A) (kernel of the operator A), 1003

ln z := ln |z|+i arg(z) (principal value of
the logarithm ln z), 688,

ln∗ z := ln |z| + i arg∗(z) (multi-valued
logarithm)

L(M4) (Lorentz group acting on the
Minkowski space M4), 924

LG (Lie algebra of the Lie group G), 265

LvT
i1...ir
j1...js

(Lie derivative), 490

LvΘ (Lie derivative of the temperature
field Θ), LvΘ ≡ dvΘ, 651

Lvw (Lie derivative of the velocity
vector field w), 663

Lvω (Lie derivative of the
differential form ω), 712

m (magnetic dipole moment), 947
M (magnetization), 980
M4 (Minkowski space), 924
M

4 (Minkowski manifold), 929
Mn(X), 118
M(2, 2; C),MR(2, 2; C),MC(2, 2; C), 100
M (Maurer–Cartan form), M = G−1dG,

357, 806

n (outer normal unit vector), 677
N (semiring of nonnegative integers

0, 1, 2, . . .)
N

× (semiring of proper natural numbers,
1, 2, . . .)

N � G, 257

O (origin), 321
o(g(x)) = f(x), x→ x0 (see Vol. I)
O(g(x)) = f(x), x→ x0 (see Vol. I)
O(3) (orthogonal group), 372

O(1, 3) (Lorentz matrix group), 916

p (momentum vector), 927, 978
P (canonical momentum vector), 978
pel (electric dipole moment), 945,
π (momentum density vector), 975
Pel (electric polarization), 980
P (set of prime numbers), 333
P (1, 3) (Poincaré group), 921
p(1, 3) (Poincaré algebra), 921
P (M4) (Poincaré group acting on the

Minkowski space M4), 925
P(SU(E3)), 566

Q (electric charge), 938
Q (field of rational numbers)
Qp (field of p-adic numbers), 333
q0, q1, q2, q3 (Cayley matrices), 100

R (field of real numbers)
R

× (multiplicative group of nonzero real
numbers)

R
×
+ (multiplicative group of positive real

numbers, x > 0)
R+ (additive semigroup of nonnegative

real numbers, x ≥ 0)
R≥ (set of nonnegative real numbers,

x ≥ 0)
R> (set of positive real numbers, x > 0)
R≤ (set of nonpositive real numbers,

x ≤ 0)
R< (set of negative real numbers, x < 0)

R (closed real line),

R := R ∪ {±∞} ≡ [−∞,+∞]
R

3
� SO(3), 257

R
4

�O(1, 3) = P (1, 3), 925
R(q, p) (irreducible representation

of the group SU(3)), 233
F(u,v) (Riemann curvature operator),

615
R(u,v,w) = F(u,v)w (Riemann–Weyl

curvature tensor), 510

Rl
ijk, Fij = (Rl

ijk), 504

R(u,v,w) = (Rl
ijku

ivjwk)∂l
R(u,v,w, z) = 〈R(u,v,w)|z〉, 515

(Riemann–Christoffel curvature
tensor)

Rijkl = Rs
ijkgsl, 515

R(u,v,w, z) = Rijklu
ivjwkzl

Ric(u, z) = gjkR(u, ∂j , ∂k, z〉
(Ricci curvature tensor), 516

Ril = gjkRijkl, 516
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Ric(u, z) = Rilu
izl, 516

R = gilRil = Ri
ijkg

jk (scalar curvature),
516

S (energy current density vector of the
electromagnetic field; Poynting
vector), 975

S ⊆ T , subset
S ⊂ T, proper subset
S(Rn),S ′(Rn) (see Vol. I)
S/G (orbit space), 205
S1,S2,S3 (spin operators), 428
S

1 (unit circle),
{(x, y) ∈ R

2 : x2 + y2 = 1}
S
N (N -dimensional unit sphere),

{x ∈ R
N+1 : x2

1 + . . .+ x2
N+1 = 1}

S
2
r, 595

Sect(TS
2
r), 609

Sect(V) (the space of smooth sections of
the

vector bundle π : V → M), 876
sgn(π), 183

sgn
“

dx′

dx

”

, 442

SL(n,C), sl(n,C), slC(n,C), 188

SO↑(1, 3), 918
Sp(2,C) ≡ SL(2,C), 997
SU(n), su(n), 187
SU(X), 187
SU(E3)  SO(3), 371
su(E3)  so(3), 374
Sym(n), 181
Sym(S), 205
Symi1...ip

, 499

S (angular momentum tensor), 973

S ≡ Sαβγ ∂α ⊗ ∂β ⊗ ∂γ

T (energy-momentum tensor), 973

T ≡ Tαβ∂α ⊗ paβ
T (the Maxwell stress tensor), 975
TP f (tangent map of f at the point P ),

655
Tf (tangent map of f – linearization

of f), 655
TP (E3) (tangent space of E

3 at the
point P ), 325, 701

TE
3 (tangent bundle of E

3), 325
T ∗
P (E3) (cotangent space of E

3

at the point P ), 325, 701
T ∗

E
3 (cotangent bundle of E

3), 325
Tm
n (E3) (tensor bundle of tensors of

type (m,n) on E
3), 326

Nm
n (TE

3) (space of smooth tensor

fields of type (m,n) on E
3), 326

TS
2
r (tangent bundle of the
sphere S

2
r), 609

T ∗
S

2
r (cotangent bundle of S

2
r), 608

Tm
n (S2

r) (tensor bundle of tensors
of type (m,n) on S

2
r), 610

Nm
n (S2

r) (space of smooth tensor

fields of type (m,n) on S
2
r), 610

Λp(S2
r) (space of smooth differential
p-forms on S

2
r), 610

End(TS
2
r), 610

T(i1...ir) (symmetrization), 457
T[i1...ir ] (antisymmetrization), 457

T i1...im
j1...jn

(tensorial family of type (m,n)),
452

T i1...im
j1...jn

dxj1 ⊗ · · · dxjm ⊗ ∂i1 ⊗ · · · ⊗ ∂n,
482

(∗T )ip+1...in (Levi-Civita duality), 463

(∗T )ip+1...in , 463
T

2 (2-dimensional torus), 1032
Tor(G,H), 309
T(u,v) (torsion), 503

T k
ij , 499

tr(A) (trace), 170
T3, |T|2 (isospin), 231, 235

U (electrostatic potential), 939
QU (mechanical potential energy;
Q is the electric charge), 939

U(1), u(1), 355
U(n), u(n), 187
U(X), 190
U(E3), 371
U(1,H), 99

V (volt), 984
Vect(E3), 663
Vect(S2

r), 609
[v,w] = Lvw (Lie bracket of velocity

vector fields), 555, 664
(v grad)Θ, 558
τ∗v (pull-back of the velocity vector

field v), 662
τ∗v (push-forward of the velocity vector

field v), 661

W (watt), 984
Wb (weber), 984
Wijkl (conformal Weyl curvature

tensor), 517
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x =
−−→
OP (position vector pointing from
the origin O to the point P ), 321

Xd (dual space), 118
X × Y (direct product of sets

or groups), 255
X �� Y (semidirect product of groups),

256
X ⊗ Y (tensor product of linear

spaces), 122, 314
X ⊕ Y (direct sum of linear spaces;

see Vol. II)

Y (hypercharge), 231
Yc, 242

Z (ring of integers)
Z2,Z2, 194
Zm,Zm, 254, 335
z = x+ yi, z̄ ≡ z† = x− iy, 443
∂
∂z
, ∂
∂z̄
, 443

α = e2

4πε0�c
= 1

137.04
(dimensionless fine

structure constant), 952
βk(M) (kth Betti number of the

manifold M), 1030

Γ l
ik (Christoffel symbol), 495, 512

Ai = (Γ l
ik),A = Aidx

i

γ0, γ1, γ2, γ3 (Dirac–Pauli matrices),
995

δij , δ
ij , δij , 80

δS, δx (variation), 405
δS
δx

(functional derivative), 407

δS
δx(t)

(local functional derivative), 407

δnΘ (nth variation of the temperature
field Θ), 653

δΘ(P )(x)
δx

≡ Θ′(P ), 653

∂Θ, 558
ε0 (electric field constant in a vacuum),

ε0μ0c
2 = 1 (see μ0 below), 938, 985

ε (dielectricity constant of a material),
980

εijk, εi1,...,in = εi1...in , 72, 453
ζ, θ (Kähler operators), 475
ηαβ (elements of the Minkowski

matrix), 907
gαβ (metric tensorial family of
the Minkowski manifold M

4;
in inertial systems: gαβ ≡ ηαβ), 924

η ≡ ηαβdxα ⊗ dxβ (Minkowski’s metric

tensor in an inertial system), 929
η (electromagnetic energy density), 972
ϑ (geographic latitude), 572

ϕ (geographic length), 572
θ, ζ (Kähler operators), 475
Θ (temperature)
Θ′(P ) (Fréchet derivative of Θ

at the point P ), 653
Θ′(P )h ≡ (dΘ(P ))h ≡ dhΘ(P )

≡ δΘ(P ;h), 653
ιO (orientation function), 452
κ (coupling constant), 13, 816
κg (geodesic curvature), 597
λ1, . . . , λ8 (Gell-Mann’s matrices), 230
Λp(E3) (real linear space of smooth

differential p-forms on E
3), 701

Λ(E3) (real Grassmann algebra of
smooth differential forms on E

3), 701
Λp(S2

r) (space of smooth differential
p-forms on the sphere S

2
r), 610

Λp(S1), 1029

Λp(M) (space of smooth differential
p-forms on the manifold M),
610, 1030

Vp(T ∗
PE

3), 702
V

(T ∗
PE

3) (Grassmann algebra generated
by the cotangent space T ∗

p (E3) of the

Euclidean manifold E
3 at the

point P ), 703
μ0 (magnetic field constant of a

vacuum), μ0 = 4π · 10−7N/A2,
μ0ε0c

2 = 1 (c velocity of light
in a vacuum), 941, 985

μ (magnetic permeability constant of a
material), εμc2∗ = 1 (c∗ velocity of
light in a material)

� (wave operator), 966
π (momentum density vector), 975
π : V → M (vector bundle over the

base manifold M), 821, 876
π : P → M (principal bundle over the

base manifold M), 825, 880
� (electric charge density)
σ1, σ2, σ3 (Pauli matrices), 100

S1,S2,S3 (spin operators), 428
τ∗ω (pull-back of the differential

form ω), 475, 706
τ∗ω (push-forward of the differential

form ω), 475, 706
τ∗v (pull-back of the velocity vector

field v), 662
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τ∗v (push-forward of the velocity
vector field v), 661

υ = 1
n!
Ei1...indxi1 ∧ · · · ∧ dxin

(volume form), 469
υ(a,b, c) ≡ (abc) (volume function), 85
ϕ (geographic length), 572

ϑ (geographic latitude), 572
χ(M) (Euler characteristic of the mani-

fold M), 1030
χel (electric susceptibility), 980
χmagn (magnetic susceptibility), 980

ψ := ψ†γ0 (Dirac’s adjoint field
function), 996

ω = 1
p!
ωi1...ip dx

i1 ∧ · · · ∧ dxip ,

(differential form), 448
ωi1...ip ∧ μj1...jq , 464
τ∗ω (pull-back of the differential

form ω), 475, 706
τ∗ω (push-forward of the differential

form ω), 706
ivω ≡ v�ω, 468, 714
R

M ω (integral over a differential
form ω on the manifold M), 682

∗ω (Hodge duality), 470
$ω (Kähler duality), 480
Ω (ohm), 985

ℵ(a) (Riesz duality), 89

∇kT
i1...ir
j1...js

(covariant partial

derivative of a tensorial family), 498
Dαψ (covariant partial derivative of

the physical field ψ in gauge theory),
Dψ = ∂αψ+Aαψ, 498, 819, 822, 844

Dvψ (covariant directional derivative of
the physical field ψ in gauge theory),
498, 819, 822, 844

∇ ≡ ∂ ≡ i ∂
∂x

+ j ∂
∂y

+ k ∂
∂z

(Hamilton’s

nabla operator)

⊕ (direct sum) (see Vol. II)

X ⊕ Y (direct sum of linear spaces;
see Vol. II)

L

αXα (direct sum; see Vol. II)

⊗ (tensor product), 118, 316

A⊗B (tensor product of linear
operators), 316

F ⊗G (tensor product of multilinear

functionals), 118

X ⊗ Y (tensor product of linear

spaces), 122,
N

(X), 120
N

sym(X), 121
Nm

n (S2
r) (space of smooth tensor fields

of type (m,n) on the sphere S
2
r), 610

Nm
n (M) (space of smooth tensor fields
of type (m,n) on the manifold M),
610

V

(X), 121
W

(X), 175
V

(Ω),
W

(Ω), 474
R

f dxdydz (classic volume integral),
R

f dxdydz ≡
R

fυ, 681
R

f dS (classic surface integral), 679
R

Fdx (classic line integral), 685
R

M ω (integral over a differential form ω
on the manifold M), 682

R

τ∗M τ∗ω (pull-back of the integral
R

M ω), 682



Index

A (ampere), 941, 944, 983
Abel, 92, 179
– theorem, 94
Abelian (commutative) group, 811
absolute system of reference, 908
acceleration, 69, 323
– covariant, 598
action functional, 404
Adams’ theorem, 56
addition theorem, 367
additive group (see Vol. I), 306, 310
adele, 337
adelic
– cosmology, 338
– harmonic oscillator, 338
– physics, 66, 337
– ring, 337
adjoint operator, 146
adjoint representation, 234, 319, 991
– and spin, 991
– of a Lie algebra, 193
– of a Lie group, 194
adjunct, 77
admissible system of observers, 449
– G-system, 450
Ado’s theorem, 112
affine
– connection, 486, 496
– – family, 497
– – torsion-free, 499
– – trivial, 514
– geodesic, 520, 577
– – prototype, 596
– group, 259
– transformation, 718
Ahlfors, 18
Albeverio, XIII
aleph, 1091
Alexander polynomial, 296
algebra, 116
– graded, 287, 704

– supersymmetry, 704
algebraic geometry
– commutative, 298
– noncommutative, 298
almost complex structure, 607
alternating product, 70, 86
ambient isotopic, 295
Ampère, 777, 952
– force law, 941, 1044
Ampère–Maxwell law, 955
angular momentum, 69, 432
anomalous magnetic moment of the

electron, 952
anomaly, 417
antiderivation, 749
antiholomorphic, 129
antilinear operator, 170
antipode, 300
antiquarks, 236
antisymmetric polynomial, 269
antisymmetrization, 73, 457, 458
antisymmetry (skew symmetry), 457
Appolonius of Perga, 201
arc length, 8, 606
Archimedes, 623
arcwise connected topological space,

1070
Ariadne’s thread
– calculus of differential forms, 666
– differential geometry, 593
– electromagnetism, 936
– general relativity, 7
– harmonic analysis, 355
– homology and cohomology, 1003
– invariant theory, 440, 557
– – index principle of mathematical

physics, 573
– – principle of the correct index

picture, 443
– pseudo-differential operators, 360
– special relativity, 905
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– symmetry, 181
– temperature fields, 645
– tensor algebra, 118
– tensor calculus, 10
– velocity vector fields, 659
Aristotle, 588
Artin, 6, 179, 1060
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Cartan (Élie), IX, 3, 70, 99, 179, 285,
358, 439, 486, 712, 731, 777, 788, 953

– calculus of differential forms, 328
– – basic ideas, 666
– – matrix calculus, 36
– – summary of key formulas, 37
– connection form
– – local, 36
– covariant differential, 882
– curvature form
– – local, 36
– derivative, 523
– differential, 706
– – covariant, 700
– – dual, 772
– – prototype, 669
– exterior algebra, 704
– family, 464
– frame equations, 585, 637
– global approach
– – basic ideas, 50
– global connection form, 587
– method of moving frames, 788
– – basic ideas, 51, 583
– propagator equation, 582
– structural equation, 508
– – global, 38
– – local, 36
– – on a sphere, 618
– subalgebra
– – standard, 204
– subalgebra of slC(3,C)
– – standard, 248
– subalgebra of su(3), 232
– theory of semisimple Lie algebras,

248

– thesis, 260
Cartan (Henri), 3
– magic formula, 492, 714
Cartan–Kähler theory, 789
Cartesian
– coordinate system, 71
– – reflected, 72
– gauge, 588
Cartesius (see Descartes), 23
cartography, 15
– as a paradigm, 22
– in higher dimensions, 22
Casimir, 266
– force (effect), 266
– operator, 266, 429
Cauchy, 439, 722, 777
Cauchy–Riemann differential equation
– and the Clifford algebra

W

(E2), 129
causality, 930
– cone, 931
– Markov property, 351
– principle, 931
– semigroup, 351
Cayley, 20, 21, 70, 74, 98, 99
center of gravity, 389, 421
centrifugal force, 396
Ceres, 379
chain, 310
– regular, 684
– rule
– – classical, 654
– – global, 654, 655, 657
– singular, 684
Chamberlain, 895
Chapman–Kolmogorov equation, 350
character, 369
– of a representation, 190
characteristic
– class, 55, 813
– system, 448
charge conjugation, 958
Chern, 777
– class, 898
Chern–Simons action, 1058
Chevalley, 71, 260, 337, 712
chirality, 196
– of knots, 297
Christoffel, 7
– family, 38
– matrices, 35
– symbols, 11, 13, 486, 494, 495, 578,

580, 613, 863
– – effective computation, 604



1102 Index

– – prototype, 576, 580
– – spherical coordinates, 604
circulation theorem, 680
Clairaut, 783
Clebsch, 440
Clebsch–Gordan coefficients, 230, 437
Clifford, 98
– algebra, 126, 128
– product, 103
– relation, 675, 996
closed manifold, 1072
cobasis, 105
coboundary, 1035
cocycle, 1035
Codazzi, 634
codimension, 150
coercive, 720
coherent orientation, 677, 1075
cohomologous, 1055
cohomology
– algebra, 1055
– basic ideas, 1009
– class, 1035
– electric circuit, 1009
– group, 1025
– Lie algebra, 250
coil, 1014
coimage, 1006
coinverse (antipode), 300
cokernel, 1006
colorless bound state of quarks, 894
column rank, 161
commutant, 255
commutator, 255
compact
– Lie group, 355
– support (see Vol. I), 993
– topological space, 370, 1070
compactification, 295, 1058
complete
– configuration, 756
– velocity vector field, 649
completely
– integrable, 769
– symmetric polynomial, 271
completeness relation, 171
complexification, 244, 245
– linear space, 317
composite particles and tensor product,

89
conformal
– curvature tensor, 517
– mapping, 18

– transformation, 692
conformally flat, 518
congruence mod pm (see Vol. II), 335
conic section, 201
conjugacy class, 183, 206, 808
conjugate quaternion, 97
connection, 701, 863
– affine, 496
– basic ideas, 608
– coefficient, 591
– Euclidean, 576
– family, 38, 497
– form
– – global, 39, 587, 593, 881
– – local, 35, 579, 583, 592, 883
– – transformation law under gauge

transformations, 38, 40
– matrices, 35
– symbol, 495
connection on
– frame bundle, 620
– principal bundle, 881
– – prototype, 620
– sphere, 608
– tangent bundle, 608
– vector bundle, 877
– – prototype, 608
conservation law, 652, 663, 695
– basic ideas, 695
– electric charge, 955
– heat energy, 695
– integral invariant, 731
– mass, 697
constitutive law
– and hysteresis, 981
– electric current, 980
– electric material, 980
– in electromagnetism, 980
– magnetic material, 980
constraining force, 380, 595, 601
constraints
– dynamic (secondary), 411
– holonomic, 379
– in quantum field theory, 398
– nonholonomic, 378, 379, 382
– static (primary), 411
contact
– form, 752
– geometry (see also Vol. II), 61
– – basic idea, 752
– isomorphism, 752
– morphism, 752
continuity equation, 695, 735



Index 1103

contractible topological space, 1032
contraction, 317, 455
– complete, 455
– principle, 455
– product, 714
contragredient matrix, 165, 192, 450
contravariant
– tensorial family, 11, 453
– tensorial transformation law, 11, 164
Cooper, 836
– pair, 836
– pair, 840
Cooper pair, 838
coordinate
– algebra, 298
– – C(SL(2,C)) of the Lie group

SL(2,C), 300
– line, 678
– transformation, 665
coproduct, 300, 704
Coriolis force, 396
correct index picture, 443
coslope function, 759
cosmology, 717
costate, 172
cotangent
– bundle, 53, 325
– – prototype, 609
– space, 25, 323
– vector (covector), 325
Coulomb, 690, 952
– force law, 691, 937, 1043
– gauge condition, 400, 1049
counit, 301
coupling constant, 815, 816
covariant
– acceleration, 598
– differential, 882
– directional derivative, 510
– – prototype on a sphere, 611
– tensorial family, 11, 453
– tensorial transformation law, 11, 164
– time derivative, 879
covector, 105, 610, 668, 702
– component, 165
– field, 54, 325, 665, 728
– – beauty of differential forms, 665
covelocity field function, 756
covering space, 689, 720
cowedge (Clifford) product, 1091
Coxeter, 281
CP (charge conjugation/parity)

violation, 895

CPT (charge conjugation/parity/time
reversal) invariance, 895, 959, 998

Cramer, 74
critical
– exponent, 344
– phenomena, 344
Cronin, 895
cross section (see section), 876
crossing point, 295
crystals and Lie algebras, 280
C∗-algebra (see Vol. II), 318
Curie (Pierre), 344
– Curie–Weiss law, 344
– temperature, 344, 981
curl, 104
current algebra, 243
curvature
– form, 35, 822
– – global, 39, 851, 867, 882
– – local, 35, 845, 854, 883
– – transformation law under gauge

transformations, 38, 40, 846
– operator, 46, 660
curve of minimal length, 579
curvilinear coordinates, 567
cycle, 181, 1033
– essential, 1043
– in electromagnetism, 1043
– regular, 787
– smooth, 783
– symbol, 182
– trivial, 1043
cyclic group, 254, 306
– Z2,Z2, 367
cyclotomic
– equation, 92
– field, 92
cylindrical coordinates
– regular, 570
– singular, 570

d’Alembert, 941
– principle of
– – virtual power, 377, 378
– – virtual work, 377, 378
dark energy, 13
de Rham, 712, 777, 788, 953, 1037
– duality
– – discrete, 1026
– theory, 788
– – discrete, 1026
decay rate, 320
Dedekind, 179



1104 Index

deformation of
– classical mechanics
– – to quantum mechanics, 297, 907
– – to the theory of special relativity,

907
– Lie algebras, 300
– Lie groups, 300
deformation operator, 719
degree of
– differential form, 464
– field extension, 93
– representation, 208
Deninger, XIII, 339
density, 462
– pseudo-tensorial, 462
– tensorial, 462
derivation, 332, 531, 748, 749
derivative, 40, 43, 651
derived
– electric field D, 979
– magnetic field H, 979
Descartes (Cartesius), 23
– Discourse de la méthode, 23
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– shape of the earth, 779
– symmetry in mathematics and

physics, 279
– theory of invariants, 439
– vector algebra, 69
– Weyl’s work, 899
– Yang–Baxter equation, 291
Hodge, 70, 139, 777, 953, 1038
– ∗-operator (star operator), 139, 140,

470, 674, 772, 931
– codifferential, 469, 519, 674, 772, 932
– duality, 469, 931
– – basic ideas, 87
– – in special relativity, 932
– – in the Euclidean space, 138
– homology rule, 932
– Laplacian, 519, 674, 779
– square root of the Laplacian, 519
– theory, 1038
Hollands, XIII, 294
holonomic constraints, 378, 382
holonomy, 828
Hom (homomorphism product), 308
HOMFLY polynomial, 296
– in knot theory, 295
homological algebra, 306
homologous, 787
homology, 1033
homology group
– electric circuits, 1024
homomorphism, 308
homotopically equivalent, 1031–1033
homotopy (see Vol. II), 1033
Hooke, 777
– law, 724
Hopf (Heinz), 179
– algebra
– – SLq(2,C (quantum group), 301
– – slq(2,C) (quantum algebra), 302
– – definition (see Vol. II), 300
– fibration (see Vol. I), 99
horizontal tangent vector, 882
– prototype, 850
Hurwitz, 102
hypercharge, 231
hysteresis, 981

ideal, 116, 261, 262
ideal fluid, 727
– equation of motion, 727
idele, 337
idempotent, 220
image of a map, 146, 152, 1003
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implicit function theorem, 1080
incompressible fluid, 727, 734
index
– Einstein summation convention, 164
– free, 164
– of an operator, 152
index principle, 455, 494
– correct index picture, 442–444
– – on bundles, 861
– inverse, 494
– killing of indices, 29, 442
inductance (henry), 985, 1014
inertia
– force, 378
– tensor, 392
inertial system, 908, 912
– and pseudo-orthonormal basis, 925
– strictly positively oriented, 926, 960
infinitesimal
– Lie group, 265
– motion, 332
– rotation, 363, 374
– transformation, 739, 744
infinitesimally
– semisimple, 265
– small quantity, 740
– solvable, 265
injective, 253
inner
– automorphism, 206
– friction, 727
– product (see Vol. I), 512
integrability condition, 581, 584, 637
– global, 783
– local, 783
– prototype, 767
integral
– invariant, 731
– – absolute, 734
– – relative, 735
– over a differential form on a manifold,

483, 527
– theorems
– – history, 781
integration by parts, 666, 671, 678, 988
interior
– differential calculus, 790
– product (Clifford product), 144, 714,

790
invariant
– function, 11, 565
– subgroup, 207
– subspace, 190

invariant theory
– and the electromagnetic field, 969
– and the energy density, 971
– and the energy-momentum tensor,

971
– and the Lorentz force, 971
– application to
– – classical surface theory, 623
– – the rotation group, 557
– – the sphere, 593
– basic philosophy, 442
– geometry and Klein’s Erlangen

program, 20, 788, 899
– history, 20, 439
– two strategies, 529
inverse
– function theorem
– – global, 720
– – local, 1080
– matrix, 75, 77
inversion with respect to the unit

sphere, 692
involution, 770
isometry, 733
– group, 733
– infinitesimal, 732
isomorphism, 116, 254
isospin, 231, 235, 282, 437
isothermal surface, 646
isotopic embeddings, 292
isotropic
– function, 565
– – proper, 565
– tensor function, 566
Itô, 348, 351, 352
– differential, 351
– stochastic calculus, 348

J (joule), 944, 984
Jacobi, 41, 109, 777
– canonical transformation, 750
– identity, 6, 83, 84
– – and the Bianchi identity, 869
Jacobian, 445, 666
– product rule, 683
– variety, 786
Jaffe, XIII
Jones polynomial, 296
Jordan (Camille), 179, 293
– curve, 293
– – closed, 293
– – isotopic, 293
– normal form, 203
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Jordan (Pascal), 202, 293
– algebra, 293
Jost (Jürgen), XIII
Joule, 953
– heat energy law, 944
Joyce, 283
Justitian, 588

K (kelvin), 983
Kähler, 473, 777
– codifferential, 474, 479
– differential, 474
– – ideal, 789
– duality, 474, 479
– form, 788
– interior differential calculus, 474, 790
– manifold, 788
– potential, 788
– star operator, 474, 479
Kassel, 291
Kastrup, XIII
Kelvin (see also Thomson), 691, 777
– transformation, 692
Kendall, 896
Kepler, 1
kernel, 146, 254, 1003
ket-vector, 171
Kijowski, XIII
Killing, 179, 260, 284, 365, 440
– form, 234, 809
– – of slC(n,C), 248
– vector field
– – metric, 732
– velocity vector field, 365
killing of indices, 443
Kirchhoff’s voltage rule, 1013
Kirsten, XIII
Klein (Felix), 2, 20, 179, 623, 777
– Erlangen program, 20, 788, 899
Klein (Oskar), 2, 953
Klein–Fock–Gordon equation, 814, 815,

818
knot, 295
– invariant, 296
Kobayashi, 896
Kohn, 841
Kolmogorov, 348
– backward equation, 350
– forward equation, 350
Kreimer, XIII
Kronecker, 179, 332
– product, 190
K-theory (see Vol. II), 333

Künneth, 777, 1032
– product formula, 1032
Kummer, 179
Kusch, 895

Lagrange, 21, 439, 777, 778
– identity, 84
– multiplier, 381
– multiplier rule, 601
Lagrangian, 404
Landau (Lev), 344
Landau (Lev9, 836
Lang, 1060
Langlands, 94
– program, 94
Laplace, 777, 780
– equation, 779
Laplace–Runge–Lenz vector, 280
Laplacian, 674, 779
– sign convention, 472
lattice, 310
Lebesgue, 329
– integral, 329, 330
Lederman, 896
Lee, 4, 895
Lefschetz, 1009
left translation, 357, 586, 804
left-invariant velocity vector field, 357
Legendre, 777
– manifold (see Vol. II), 699
– polynomial, 780
– transformation, 409
– transformation (see Vol. II), 699
Leibniz, 41, 74, 94, 348, 439, 666, 777
– rule, 328, 348, 612
– – classical, 42, 709
– – derivation, 532
– – differential forms on vector bundles,

864
– – for tensor fields, 49
– – generalized, 49
– – graded (supersymmetric), 37, 328,

465, 469, 701, 709
– – Lie derivative, 490
– – universal extension strategy on

vector bundles, 858
Leipzig Acta Eruditorum, 328
length
– contraction, 911
– of a curve, 627
– of a vector, 78
Lenz (Heinrich), 280
Lenz (Wilhelm), 280
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Leutwyler, 243
lever principle, 375
Levi (Beppo), 265
Levi (Eugenio), 265
– decomposition theorem, 265
Levi-Civita, 7, 439
– connection on a sphere, 596
– duality, 460
– parallel transport
– – prototype, 596, 846
– tensorial family, 460
lexicographic order
– Young frames, 221
– Young tableaux, 221
LHC (Large Hadron Collider), 940
Li–York theorem on chaos, 345
Lie, 20, 41, 71, 179, 281, 358, 550, 659,

750, 777
– bracket, 488, 555
– derivative, 45, 523, 651
– – and the flow of a fluid, 651
– main trick of cancellation, 42
– product, 41
– – of vectors, 82
– – of vectors fields, 45
– super algebra, 288
Lie algebra
– G2, F4, E6, E7, E8, 260
– C ⊗ p(1, 3), 923
– gl(3,R),, 586
– gl(X), 193
– gl(n,R), gl(n,C), 109
– glC(n,R), gl(n,R), glC(n,C), 188
– o(1, 3), 919
– p(1, 3), 922
– sl(2,C), 246
– – and Pauli matrices, 99
– sl(2,R), 246
– slC(2,C), 246
– slC(3,C), 248
– so(3), 586
– su(2), 246
– – and Pauli matrices, 99
– – and the isospin of the proton, 437
– su(3), 230, 248
– su(3)  so(3), 374
– su(N), 50, 188
– sut(3,R) (Heisenberg algebra), 110,

263
– u(1)  o(2)  so(2), 355, 362
– u(E2)  su(E2)  o(2)  so(2), 363,

368
– u(N), 187

– adjoint representation, 319, 583
– and crystal, 280
– basic properties (see Vol. I), 110
– calculus, 802
– Cartan subalgebra of su(N), 204
– classification, 259
– cohomology, 250
– complexification, 244, 245
– definition (see Vol. I), 110
– Euclidean space, 82
– exceptional, 260
– – in physics, 260
– Gell-Mann matrices of su(3), 231
– Heisenberg algebra, 107
– isomorphism, 363
– linear representation, 193
– morphism, 363
– of velocity vector fields, 664
– Poisson algebra and quantization,

108
– prototype, 83
– realification, 244
– representation, 193
– semidirect product, 921
– semisimple, 262
– simple, 259
– – classification, 259
– solvable, 110, 261, 263
– velocity vector fields, 614
Lie group, 109, 804, 1083
– D3, 210, 211
– GL(3,R), 586
– GL(n,C), GL(n,R), 188
– GL(n,R), GL(n,C), 109
– O(1, 1), 915
– O(1, 3), 916
– O(3), 372
– P (1, 3), 921
– SL(2,C), 300
– SO(3), 256, 586

– SO↑(1, 3), 922
– SU(2)
– – and the electron spin, 427
– – irreducible representations, 427
– SU(2)  U(1,H), 433, 948
– SU(3), 230
– – and quarks, 225, 226
– SU(E2)  SO(2)  U(1), 366
– SU(E3)  SO(3), 372
– SU(N), 50, 102, 188, 226
– SU(X), 226
– SUT (3,R), 110
– Sp(2,C), 305
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– Sp(2,R), 305
– Sym(2), 214, 222
– Sym(3), 215, 217, 223
– Sym(n), 181, 224
– U(E2)  O(2), 362
– U(E2)  O(2)  Z2 × SO(2), 366
– U(E3)  O(3), 372
– U(N), 102, 187, 226
– Z2 (additive), 194, 367
– Z2 (multiplicative), 367
– Z2  Sym(2), 194
– basic properties (see Vol. I), 107
– Birkhoff–Heisenberg quotient group,

110
– calculus, 802
– compact, 188, 355
– curvature, 806
– definition (see Vol. I), 107
– epimorphism � : SU(2) → SO(3),

433, 948
– global parallel transport, 804
– global structure, 1085
– Heisenberg group (see also Vol. II),

107
– infinitesimal, 265
– introduction (see Vol. I), 1083
– irreducible representations of SU(3),

233
– left-invariant velocity vector field,

805
– linear representation, 191
– locally compact, 188, 355
– maximal torus of SU(N), 204
– prototype, 355
– the paradigm U(1), 187, 355
– universal covering group, 1085
Lie matrix algebra
– basic definitions (see Vol. I), 1084
Lie matrix group, 109, 1083, 1084
– basic definitions (see Vol. I), 1084
– first main theorem, 1084
– second main theorem, 1084
– universal covering group, 1085
Lie–Cartan formula, 491
Lieb, XIII
lifting of a curve in fiber bundles, 888
light
– cone, 931
– ray, 969
– velocity in linear materials, 981
limit
– inductive (direct) (see Vol. II), 335
– projective (inverse) (see Vol. II), 335

linear
– equivalence, 1003
– isomorphism (see Vol. I), 105
– manifold, 150
– material, 981
– – electric, 980
– – magnetic, 980
– morphism (see Vol. I), 78
– operator (Vol. I), 1004
– quotient space, 1004
– space (see Vol. I), 78
linearization
– covariant directional derivative, 611,

821
– – connection, 877
– differential, 646
– directional derivative, 645
– Fréchet derivative, 653
– functional derivative, 646
– global, 654
– Lie derivative, 647
– local, 645, 650, 653
– of a transformation, 739
– principle, 655, 659, 1079
– tangent bundle
– – prototype, 654
– tangent map, 655
– variation, 652
linearly
– dependent, 78
– independent, 78
link, 295
Liouville, 91
Lipschitz, 731
– constant, 731
– continuous, 731
Littlewood (Dudley), 274
Littlewood (John), 274
Littlewood–Richardson rules, 273
local
– connection form, 582, 592
– equivalence principle, 13
– phase factor, 821, 827
– – prototype in geometry, 583
– – prototype in physics, 821
– symmetry, 817
local-global principle in
– mathematics, 336
– quantum field theory (analyticity of

the S-matrix), 336
locally
– compact topological space, 370
– conformally flat, 518
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– flat, 518
long-term development in mathematics

and physics
– differential geometry and Einstein’s

theory of general relativity, 7
– differential geometry and gauge

theory, 891
– potential theory and differential

forms, 777
– references, 792
Lorentz (Hendrik), 935, 953
– boost, 905, 922, 924
– force
– – motivation, 971
– group, 917, 922, 924
– – orthochronous, 917, 922
– – proper, 917, 922
– matrix group, 917
– transformation, 906
– – orthochronous, 922, 924
– – proper, 922, 924
Lorenz (Ludvig), 953
– gauge condition, 400, 964, 966
Louis, XIII
Lüst, XIII

MacLane, 1060
Maclaurin, 74
MacPherson, 294
magnetic
– charge, 951, 984
– dipole, 947
– flow (weber), 985
– monopole, 951
– polarization (magnetization), 935
magnetic field B, 935
– derived (or effective) magnetic field

H, 979
– of a magnetic dipole, 947
– of a magnetic monopole, 951
– strength, 935
magnetization (magnetic polarization),

585, 935, 979, 980
main theorem of calculus, 666, 671,

677, 729
Mainardi, 634
Mainardi–Codazzi equation, 631
manifold, 1069, 1072
– closed (compact and no boundary),

1072
– compact, 1070
– definition (see also Vol. I), 1072
– global analysis, 526

– isomorphism (diffeomorphism), 1075
– linear, 150
– morphism (smooth map), 1075
– orientable, 1075
– oriented, 1075
– paracompact, 1073
– prototype, 1071
– smooth, 1072
– terminology and conventions, 1072
– topological, 1072
– with boundary, 1071, 1072
– without boundary, 1072
Manin, 337
– quantum plane, 298
Marathe, XIII, 295
Marcolli, XIII
Markov, 348
– process, 351
– property (causality), 351
Maskawa, 896
mathematical structures
– statistics of, 1056, 1060
Mather, 896
matrix, 74
– and linear operator, 157
– orthogonal, 365
– product, 74
– unitary, 365
Maurer, 358
Maurer–Cartan
– form, 357, 583, 585, 806, 849
– structural equation, 358, 769, 807
Maurin, XIII
maximal torus, 204
Maxwell, 691, 731, 777, 908, 953
Maxwell equations in a vacuum, 983
– conservation laws, 957
– de Rham cohomology, 964, 1027,

1039
– electrostatics, 1045
– energy–momentum tensor, 971
– existence and uniqueness theorem,

1052
– four-potential, 964
– gauge invariance, 964, 977
– global form, 954
– historical background, 936
– Hodge duality, 962
– invariant formulation, 958
– language of
– – differential forms, 962
– – fiber bundles, 967
– – tensor calculus, 960
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– – vector calculus, 958
– – Weyl derivative, 983
– local form, 957
– magnetostatics, 1048
– motion of charged particles, 970, 977
– physical units, 983
– principle of critical action, 976
– relativistic invariance, 935
Maxwell equations in materials
– constitutive law, 980
– language of
– – Cartan and Weyl derivative, 983
– – tensor calculus, 983
– – vector calculus, 980
– linear material, 981, 983
– physical units, 983
– Weyl duality, 979
Maxwell–Hodge–Yang–Mills equation,

472
Mayer (Robert), 972
mean curvature, 629
Menelaos, 599
Mercator, 15
meson, 816
messenger particle, 894
method of
– moving frame, 580, 585, 621, 636
– – prototype, 585
– orthogonal projection, 694, 796
– orthonormal frame, 557
metric
– Riemann curvature tensor, 30
– space (see Vol. II), 333
– tensor, 169, 924
– – basic idea, 85
– – field, 715
– – prototype, 568
– tensorial family
– – inner product, 512
– – Levi-Civita connection, 512
– – parallel transport, 513
– – pseudo-Riemannian, 469
– – Riemannian, 469
MeV (mega electron volt), 940
Millennium Prize Problems, 61, 728
Millikan, 948
Milnor, 623
Minerva, 21
minimal surface, 606
Minkowski, 71, 98, 905
– manifold, 71
– matrix, 924
– space, 71, 923

– symbol, 9, 924
Minkowski–Hasse theorem on Diophan-

tine equations, 336
modularity theorem, 65
module, 310
– finitely generated, 311
– free, 311
– isomorphism, 311
– left R-module, 310
– main theorem on finitely generated

modules, 310
– morphism, 311
– right R-module, 310
moduli, 18
– space, 64, 205, 1056
Molin, 285
moment, 780
– of inertia, 421
momentum, 69
– density vector, 975
– operator, 948
– vector, 927, 978
– – canonical, 978
Monge–Ampère equation, 789
monomial, 115
monomorphism, 254
monopole
– electric, 937
– magnetic, 951
Moore (John), 59
morphism, 116
– classification, 254
Morse index, 202, 469
motion of a
– charged relativistic particle, 970, 977
– free relativistic particle, 927
moving frame, 71, 557, 580, 621, 636,

788
– dual Cartan equation, 585
– Gauss’ equation, 580
MRI (magnetic resonance imaging),

948
Müller (Alexander), 836
multilinear functional, 75
multivector, 142

N (newton), 944, 984
nabla
– calculus, 563
– operator, 104, 557, 774
– symbol, 557
Nambu, 896
natural
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– basis vectors, 609, 622
– frame, 570
– number, 1094
– – proper, 1094
Navier, 722
Navier–Stokes equations in hydrody-

namics, 727
Ne’eman, 283
Neukirsch, 332
Neumann (Carl), 952
neutral current, 894
neutrino, 895
Newton, 69, 271, 348, 623, 652, 691,

777, 908, 952
– and Leibniz, 328
– law of motion, 324
Nobel prizes for discoveries in

elementary particle physics, 895
Noether (Emmy), 179, 285, 413, 777,

1060
– principle
– – symmetry and conservation laws,

737
– theorem (see also Vol. II), 413, 737,

975
non-Abelian (noncommutative) group,

811
non-inertial system, 396
non-standard analysis, 330
non-standard analysis (see Vol. II), 740
noncommutative geometry, 299
– and the Standard Model in particle

physics, 345
noncommutative space-time, 347
nonholonomic constraints, 378, 382
nonlinear system, 1079
normal form strategy in mathematics,

1078
normal subgroup (see Vol. II), 254, 368

Oberguggenberger, XIII
observer, 442, 529
– admissible system, 449
– cocycle, 449
octonion, 176
odd element, 288
Oeckl, XIII
Oerstedt, 952
Ohm, 944, 953
– law, 944, 980, 1012, 1013
ohm (electric resistance), 985
Okubo, 235
one-parameter group, 365

– of diffeomorphisms, 739
operator module, 312
orbit, 205
order parameter, 839
orientable manifold, 1075
orientation, 452, 526, 926, 1075
– coherent, 1076
– function, 452
– number, 452
– positive, 926
– strictly positive, 926
orientation-preserving map, 442
orthogonal
– complement, 146
– decomposition, 146
– matrix, 365
orthonormal frame, 559
Ortner, XIII
Ostrogradsky, 777
Ostrowski, 91, 333

Pa (pascal/pressure), 985
p-adic number, 332
– basic properties, 333
– classification, 335
– construction, 333
– integer, 335
paracompact topological space, 1070
parallel transport, 31, 323, 581, 827,

846, 849, 882
– and curvature, 618
– basic ideas, 31
– global, 56, 576, 585
– of frames, 51
– of phase factor, 51
– of physical fields, 51
– on a sphere, 596
– on the Euclidean manifold, 581
parallelizable sphere, 56
parametrix, 265
parametrized linear algebra, 610
parity, 183, 195
– additive, 287
– group, 922
– multiplicative, 288
– number, 452
– of quantum states, 195
– permutation, 182
– transformation, 958
– violation, 196
Parseval, 80
– equation, 80, 82
– – generalized, 173
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partial derivative, 40
– commutativity relation, 42
– covariant, 43, 818, 844
– summary of classical identities, 40
partition
– of unity, 1077
– Young frame, 217
Patras, XIII
Pauli, 71, 98, 282, 950
– equation
– – transformation law, 991
– exclusion principle, 197, 950
– – and the color of quarks, 241
– matrices, 100, 246
– spin equation, 948
– spin-statistics principle, 950
Penrose, 58
Penzias, 895
periods, 784
– Cauchy, 784
– Poincaré, 787
Perl, 896
permutation, 73
– essential properties, 181
Peter–Weyl theory, 195
Pfaff, 278, 698, 777
– normal form
– – second law of thermodynamics, 771
– problem, 698, 769
Pfaffian, 278
phase
– factor, 51
– space
– – extended, 752
– transition, 832
philosophical question
– existence of
– – a local-global principle in the

universe, 336
– – adelic physics, 334, 338
photoelectric effect (see Vol. I), 929
photon, 929
Planck
– quantum of action, 297
– satellite, 699
Plateau, 18
– problem, 18
Plato, 1, 300, 588
– Academy, 588
– cave parable, 588
– realm of ideas, 588
Poincaré, 113, 777, 787, 953
– algebra p(1, 3), 921, 922

– – complexified, 923
– cohomology rule, 465, 710
– – discrete, 1019, 1026
– cohomology theorem
– – global, 1032
– – local, 763
– conjecture, 66
– duality, 1032
– group P (1, 3)  P (M4), 259, 921,

924, 975
– – important subgroups, 922
– – infinitesimal transformations, 922
– homology, 1033
– no-go theorem for velocity vector

fields, 623
– polynomial, 1030
Poincaré–Cartan
– contact 1-form, 747
– contact 2-form, 752
– integral invariant, 749
Poincaré–Hopf theorem, 55
Poisson, 777, 952
– bracket, 109
– equation, 779
Poisson–Lie algebra, 108
polar coordinates, 571
polarization, 979, 980
– current, 955
– electric, 935, 936
– magnetic, 935, 936
Politzer, 244, 894
polynomial, 115
– algebra, 116
– – generalized, 298, 301
– antisymmetric, 269
– – Vandermonde polynomial, 272
– completely symmetric, 271
– elementary symmetric, 270
– generalized, 298
– power sum, 271
– ring of invariants, 565
– symmetric, 269
– – Schur polynomial, 272
Pontryagin duality, 369
Popov, 895
position space, 655
positive real number, 1094
potential, 778, 779, 939
– difference, 1041
– electrostatic potential and voltage,

939
– energy, 399
– four-potential, 964
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– gauge transformation, 399, 964
– multi-valued, 687
– scalar potential, 399, 964
– single-valued, 685
– vector potential, 399, 964
Powell, 895
power sum, 271
Poynting vector, 1095
pre-Hilbert space (see Vol. I), 694
principal
– argument, 688
– axes of
– – a self-adjoint operator, 200
– – inertia, 392
– axes theorem, 718
– – for a rigid body, 392
– – in geometry and quantum geometry,

200
– moments of inertia, 392
– – ball, 422
– – circular cylinder, 422
principal bundle
– associated, 881
– cocycle strategy, 873, 881
– connection, 849, 881
– – prototype, 826
– curvature, 826, 851, 883
– – and the electromagnetic field, 823
– definition, 880
– general strategy, 875
– intuitive prototype, 880
– position space of a rigid body, 397
principle of
– critical action
– – Hamiltonian approach, 746
– exclusion (Pauli), 197, 950
– general relativity (Einstein), 9, 442
– indistinguishability of quantum

particles, 197
– killing indices, 30
– local symmetry, 817
– – charged meson, 817
– special relativity (Einstein), 908
– spin-statistics (Pauli), 950
– the correct index picture, 236, 443,

444, 526
– – on bundles, 861
probability amplitude, 27
Proca equation, 835
product
– alternating (Grassmann), 86
– contraction, 714
– direct, 255

– exterior (Grassmann), 714
– interior (Clifford), 714, 790
– semidirect, 256
production
– function, 695
– of heat energy, 695
projective
– limit (see Vol. II), 335
propagator, 827, 853
proper
– map, 720
– time, 8, 9, 927, 970
pseudo-differential operator
– prototyp, 360
– symbol, 360
pseudo-holomorphic curve, 61
pseudo-inner product, 512
pseudo-invariant, 452
pseudo-orthonormal basis, 926
– and inertial system, 925
pseudo-Riemannian manifold, 526
pseudo-tensorial
– density, 462
– – family, 462
– family, 460
pull-back of
– differential form, 476, 667, 673
– set, 667, 672, 673
– temperature field, 651, 657
– velocity vector field, 662
push-forward of
– temperature field, 657
– velocity vector field, 661

QCD (quantum chromodynamics), 243,
854, 894

QED (quantum electrodynamics), see
Vol. II, 935

QFT (quantum field theory), see Vols.
I/II

– open questions, VIII
quadrupole moment, 780, 947
quantization, 108
quantum
– algebra
– – slq(2,C), 302, 305
– – Drinfeld–Jimbo, 318
– determinant, 301
– group
– – duality, 370
– – further reading, 546
– – summary, 304
– group SLq(2,C), 301
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– plane, 298, 299
– – complex, 299
– – real, 299
– super plane, 299
– symmetry, 305, 414
quantum chromodynamics (see QCD),

243
quark, 225, 894
– color, 241
– – and the Pauli exclusion principle,

241
– confinement, 894
– flavor, 226
quasicrystal, 280
quaternion, 70, 97
– history, 94
quotient
– algebra (see Vol. II), 258, 261
– field (see Vol. II), 333
– group (see Vol. II), 111, 257, 258
– Lie algebra (see Vol. II), 261, 264
– space (see Vol. II), 150
– topology (see Vol. II), 294

radical, 264
Ramanujan, 221
range of an operator, 146
rank of
– linear operator, 146, 1006
– matrix, 161
– module, 307
rank theorem
– linear, 1078
– nonlinear, 1079
rate-of-strain tensor, 715, 724
realification, 244, 245
reciprocal basis, 170
– in crystallography, 168
Reeb velocity vector field, 61
references, 1089
– complete list on the Internet, 1089
reflection, 195
– group, 195
– – representation, 195
regular k-cycle, 1035
– fundamental system, 1035
Rehren, XIII
Reines, 896
Remmert, 90
renormalization
– fixed-point theory, 345
– in chaotic dynamical systems, 340
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voltage, 691, 1009, 1041
Volterra, 777
volume
– product, 82
– tensorial family, 463
volume form, 85, 359, 469, 762
– prototype, 569
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– pseudo-tensorial density family, 462
– tensorial density family, 462
– tuple, 232, 252
Weinberg, 837, 893, 894
Weinstein conjecture, 61
Weitzenböck, 520
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