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Supervisor’s Foreword

The Standard Model (SM) of elementary particles and their fundamental interac-
tions was finally completed in 2012, when the ATLAS and CMS experiments at the
Large Hadron Collider (LHC) discovered the missing piece in the model, the Higgs
boson. It was the last step of a long journey where both theory and experiment
worked together to build one of the most successful theories in physics. Looking
back, we realized that flavor physics was at the origin of many breakthroughs in
particle physics. Looking forward, we could expect the same for beyond the SM
(BSM) field.

Nowadays, there are some theoretical and experimental open problems showing
that the SM needs to be extended, being one of the clearest related to neutrino
physics. In the last two decades, several experiments have observed neutrino
oscillations, a forbidden phenomenon in the SM and directly related to the existence
of nonzero neutrino masses. The origin of these masses is still a mystery. It could be
different from the rest of the fermions, and it is directly related to their Majorana or
Dirac nature. In order to distinguish among the many theoretical models trying to
explain neutrino masses, we could again invoke flavor physics to help us in this
task. This is the main philosophy followed in this thesis by Xabier Marcano.

Along this thesis, Xabier Marcano explores the phenomenological implications
on lepton flavor violating (LFV) physics in the so-called low-scale seesaw models,
well-motivated theories for explaining the smallness of neutrino masses. This thesis
contains new and relevant contributions to LFV processes, in particular in the Z
boson decays and in the Higgs sector, a research area that the LHC is exploiting
since the discovery of the new boson. The results in this thesis are interesting not
only for the Z and H boson decays, but also for other LFV processes mediated by
these particles, such as three-body lepton decays ‘m ! ‘k‘k‘k, l-e conversion in
heavy nuclei, or many other processes that are and will be looked for at present and
future experiments. Moreover, as the new heavy neutrinos in these models could
potentially be produced at the LHC, Xabier Marcano also investigates new
experimental signals in which LFV plays a crucial role.

vii



As a final remark, I would like to emphasize that this thesis, beyond presenting
new results and many useful formulas, contains a broad introduction about the
importance of LFV for BSM and its connection with neutrino physics. For the
non-experts in the field, this thesis is a good starting point to understand how lepton
flavor violating physics could help solving the quest of the origin of neutrino
masses.

Madrid, Spain
April 2018

Prof. María José Herrero
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Abstract

Flavor physics has been crucial in the development of particle physics, and it will
keep being so in the future. Nowadays, this kind of process, in particular lepton
flavor changing observed in neutrino oscillations, gives us the clearest evidence
of the fact that the Standard Model of fundamental interactions needs to be mod-
ified. Some of the most popular theories that try to assess this issue postulate the
existence of new heavy right-handed neutrinos, with masses in the energy range
that the LHC experiment is currently exploring. In this thesis, we study the con-
nection between the possible existence of these neutrinos and charged lepton flavor
changing physics. We consider the inverse seesaw model as a particular realization
of a low-scale seesaw model and analyze its lepton flavor violating phenomenol-
ogy, in particular the Higgs and Z boson decays to two charged leptons of different
flavor. Moreover, we also explore the possibility of having new exotic lepton flavor
violating signals at the LHC, coming from the production and decay of these new
heavy neutrinos.
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Chapter 1
Introduction

The 4th of July of 2012, the ATLAS and CMS collaborations at the CERN Large
Hadron Collider (LHC) announced the discovery [1, 2] of the last missing piece of
the Standard Model (SM) [3–6] of fundamental interactions, the Higgs boson. This
discovery completed one of the most successful theories in the annals of Physics, a
predictive model able to describe with an extraordinary precision most of the known
phenomena in Particle Physics. Nevertheless, there are at present some experimental
evidences, as neutrino masses, dark matter or the baryon asymmetry of the universe,
and theoretical issues, like the hierarchy problem, the strong-CP problemor the flavor
puzzle, which the SM fails to explain, inviting us to a journey towards new physics
beyond the SM (BSM).

The SM is a quantumfield theory based on the SU (3)C × SU (2)L × U (1)Y gauge
symmetry that describes three of the four known fundamental interactions among
elemental particles, i.e., the strong, weak and electromagnetic interactions. To its par-
ticle spectrum belong the fermions, constituents of matter, the spin one bosons, force
carriers, and theHiggs scalar boson, the remnant of themass generation procedure via
the Brout-Englert-Higgs (BEH) mechanism [7–10]. This mechanism explains how
the spontaneous electroweak symmetry breaking (EWSB) generates the observed
masses for the gauge W and Z bosons, as well as for all the fermions but the neutri-
nos, which remain massless in the SM.

Historically, experimental searches for flavor violating processes have been
essential for the theoretical developments in Particle Physics, as the Glashow-
Iliopoulos-Maiani (GIM) mechanism [11] for explaining the lack of signal from
flavor changing neutral currents or the Cabibbo-Kobayashi-Maskawa (CKM) quark
mixing matrix [12, 13] for the flavor changing charged currents. Likewise, the most
clear experimental evidence for new physics at present comes from lepton flavor
violation (LFV) in the neutrino sector. As we just said, neutrinos are massless by
construction in the SM. However, experimental evidences of LFV in neutrino oscil-
lations, first observed by the Super-Kamiokande [14] and SNO [15, 16] collabo-
rations, have showed that neutrinos do have masses, implying that the SM needs

© Springer International Publishing AG, part of Springer Nature 2018
X. Marcano, Lepton Flavor Violation from Low Scale Seesaw Neutrinos with Masses
Reachable at the LHC, Springer Theses, https://doi.org/10.1007/978-3-319-94604-7_1
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2 1 Introduction

to be modified. Moreover, if ongoing or future experiments could detect a positive
signal from the yet not observed LFV processes in the charged sector, a new window
to physics beyond the SM and beyond neutrino masses would be opened.

Looking at the SMparticle spectrum,we see that the absence of right-handed (RH)
neutrino fields in the theory forbids the neutrinos from interacting with the Higgs
field and, thus, from acquiring amass after the EWSB. Therefore, the simplest way of
incorporating neutrino masses to the SM would be adding the missing RH neutrino
fields, νR . This way, neutrinos could interact with the Higgs field via a Yukawa
coupling Yν and obtain, after the EWSB, a Dirac mass m D = vYν proportional to
the Higgs vacuum expectation value (vev), which we normalize as v = 174 GeV.
Nonetheless, this minimal extension of the SM sets out further questions: why are
neutrinos so different than the rest of the fermions? Why are their masses much
smaller with respect to other fermion masses? Moreover, since neutrinos have no
color nor electric charge, they could be Majorana fermions, i.e., they could be their
own antiparticles. If true, this would be certainly a novelty in Particle Physics.

Having a closer look to the new added νR fields, we realize that they are singlets
under the full SM gauge group and, therefore, there is nothing that forbids them
from having a Majorana mass mM . These two different masses, m D and mM , are
the basic ingredients of the well known type-I seesaw model [17–21], which usually
assumes that the Majorana mass scale mM is much heavier than m D and than the
electroweak scale v. In such case, the physical neutrino spectrum consists on one
heavy and one light Majorana neutrino per generation, with masses of the order of
mM and m2

D/mM , respectively. Therefore, the type-I seesaw elegantly explains the
smallness of the observed light neutrino masses as the ratio of two very distinct
mass scales m D and mM . Inspecting the light neutrino mass scale mν ∼ m2

D/mM ,
we also see that in order to have the experimentally suggested mν ∼ O(eV) with
large Yukawa couplings Yν ∼ O(1), we need very heavy type-I seesaw masses of
mM ∼ O(1014 GeV). On the other hand, lighter right-handed neutrino masses at the
TeV range would demand small couplings Yν ∼ O(10−5). One way or the other,
most of the phenomenology is suppressed in this type-I seesaw model. For instance,
small corrections to the mass of the Higgs in this kind of models have been found
in a complementary work that has not been included in this Thesis [22]. Therefore,
the simplicity of this argument is what makes this model appealing and, at the same
time, what makes it difficult to be tested in other low energy observables beyond the
light neutrino masses themselves.

Interesting variations of this simple type-I seesaw model that have a much richer
phenomenology are the low scale seesaw models. In this kind of models, some new
symmetry is invoked with the aim of protecting the light neutrinos of having large
masses and, therefore, allowing the new heavy neutrinos to have lower masses and
large Yukawa couplings at the same time. A particular realization of these low scale
seesaw models, on which we will focus this Thesis, is the inverse seesaw (ISS)
model [23–25], which assumes an approximately conserved total lepton number
(LN) symmetry. In the limit of exact LN conservation, the light neutrinos will be
massless. However, if this symmetry is broken by some mass parameter, the light
neutrinos have a small Majorana mass proportional to this LN breaking parameter.
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On the other hand, we can expect this parameter to be naturally small, in the sense of
’t Hooft [26], since setting it to zero increases the symmetry of the model. Therefore,
in the ISS model the lightness of the neutrino masses is related to the smallness of a
LN symmetry breaking mass parameter.

In the ISS model, the above demanded small LN breaking is obtained by intro-
ducing new fermionic singlets in pairs (νR, X) of opposite LN, and assuming that
the LN conservation is only violated by a small Majorana mass μX for the X fields.
Then, the physical spectrum consists of light Majorana neutrinos with masses sup-
pressed by the smallness of μX , and two heavy nearly degenerateMajorana neutrinos
per generation, which form pseudo-Dirac pairs and indeed behave almost as Dirac
fermions, contrary to the heavy neutrinos of the standard type-I seesaw. Interestingly,
since the μX scale ensures the smallness of light neutrino masses, the heavy neutrino
states can have, at the same time, both large Yukawa couplings to the SM neutrinos
and masses of the order of a few TeV or below, being therefore reachable at the LHC.
This makes the ISS model an appealing model, with a rich phenomenology that can
be tested at present or near-future experiments. These include, among others, studies
of lepton flavor universality violation inmeson leptonic and semileptonic decays [27,
28], lepton electric dipole moments [29, 30], lepton magnetic moments [31], heavy
neutrino production at colliders [32–39], dark matter [40], leptogenesis [41, 42] and
charged LFV processes [43–54].

On the theoretical side, the SM also suffers from some undesired properties, as
the so-called hierarchy problem. This problem refers to the instability of the Higgs
sector under radiative corrections if some new physics at a large scale is introduced.
In order to illustrate this idea we can consider the Higgs boson mass, m H , and
compute its radiative corrections under the assumption that there is no new physics
until the Planck mass MP ∼ 1019 GeV, where the gravitational effects start playing
a role. By doing this, we find that the quantum corrections �m2

H grow as the square
of the new physics scale, which gives a value very far from the experimentally
measured value m H = 125.09 ± 0.21(stat.) ± 0.11(syst.) GeV [55]. Thus, in order
to obtain a prediction that is compatible with this experimental value, a very fine
tuned cancellation among the bare mass and the quantum corrections is needed,
which is not very natural without any further explanation nor extra symmetry.

One of the most popular and elegant solutions to this problem is provided by
supersymmetry (SUSY) [56–58], a new symmetry that relates fermions and bosons.
In its simplest and minimal extension of the SM, known as the Minimal Supersym-
metric Standard Model (MSSM) [59–61], each fermion of the SM has a spin-zero
partner, called sfermion, with the same mass and quantum numbers as the original
fermion; equivalently, all the SM bosons have spin one-half partners. The fact that
there are fermions and bosons with the same couplings and masses gives the needed
cancellation of the dangerous quantum corrections to the Higgs boson mass, pro-
viding an elegant solution to the hierarchy problem. Of course, doubling the SM
spectrum is a strong prediction that experiments have tested and, unfortunately, the
SUSY part of the MSSM spectrum has not been found yet. This means that, if SUSY
exists in Nature, it cannot be an exact symmetry and it must be broken, such that the
SUSY particles must be heavier than the SM ones. This breaking, however, cannot
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spoil completely the nice solution to the hierarchy problem, so SUSY needs to be
softly broken [62], i.e., the dominant quadratic dependence on the new physics scale
of �m2

H still cancels out, although a logarithmic dependence remains.
Once these soft SUSY breaking terms are included, the MSSM is still a viable

model with a very appealing phenomenology. Nevertheless, since it is constructed
from the SM, it also demands a mechanism for neutrino mass generation. Following
the previous discussion, we can consider again the ISS model and embed it in a
supersymmetric context, adding to theMSSMspectrumnewneutrinos and sneutrinos
which can have both masses at a few TeV scale or below and with large couplings.
Thisway, this SUSY-ISSmodel combines the appealing features of both frameworks,
the SUSY and the ISS ones.

The best way of experimentally proving that any model beyond the SM is correct
would be directly detecting the new particles that it predicts. Nevertheless, this task
can in many cases be very difficult if these new particles are too heavy as to be
directly produced in present experiments, so a first indication of their existence could
come from their indirect implications to some other low energy observables. In the
particular case of neutrino mass models, one of the optimal places for this purpose
is again looking for LFV processes, concretely in the charged lepton sector, which
can be quantumly induced via heavy neutrino loop effects.

Processes involving charged lepton flavor violation (cLFV) are forbidden in the
SM if neutrinos are massless, and extremely suppressed if the small neutrino masses
from oscillation data are ad-hoc added to the SM. Consequently, a positive signal in
any of the experimental searches for cLFV processes would automatically imply the
existence of new physics, and it must be indeed beyond the SMwithminimally added
neutrino masses. Although no such processes have been observed yet, this is a very
active field that is being explored by many experiments which have set upper bounds
to this kind of cLFV processes. At present, the strongest bounds have been found in
the μ-e transitions, as the radiative μ → eγ decay or μ-e conversion in heavy nuclei,
whose branching ratios have been bounded to be below 4.2 × 10−13 and 7.0 × 10−13

by theMEG [63] and SINDRUM II [64] collaborations, respectively. Moreover, next
generation of experiments are expected to improve in several orders of magnitude the
sensitivities for LFV μ-e transitions, reaching the impressive range of 10−18 for μ-e
conversion in nuclei by the PRISM experiment in J-PARC [65]. On the other hand,
present bounds on transitions in the τ -μ and τ -e sectors are less constraining, with,
for example, upper bounds of about 10−8 for LFV tau decays from BABAR [66] and
BELLE [67, 68]. Therefore, there is some more room in these sectors than in the μ-e
one for having large LFV signals that new experiments as BELLE-II [69] would be
able to test in the near future.

Additionally, the currently running LHC has also many things to say about cLFV.
First of all, the fact that a new particle, the Higgs boson, has been discovered opens a
newwindow for possible deviations from the SM that definitely needs to be explored.
In particular, three new cLFV channels are introduced in the cLFV market, the LFV
Higgs boson decays into two leptons of different flavor, H → �k �̄m , k �= m, which
have already been searched by the CMS [70–72] and ATLAS [73] experiments.
Even though CMS saw a small but intriguing excess in the H → τμ channel after
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run-I [70], it has not been confirmed yet with run-II data and, at present, they have
been able to set an upper bound of 2.5 × 10−3 [72]. These searches of LFV Higgs
decays, as well as other explorations of the Higgs sector, will continue and surely be
improved with more data after new LHC runs.

Other interesting observables that the LHC is also looking for are the LFV Z
boson decays into two leptons of different flavor Z → �k �̄m [73, 74]. Interestingly,
after the run-I, ATLAS has already reached the previous sensitivities from the LEP
experiment [75, 76], even improving the bound for the Z → μe channel. As for
the Higgs searches, LFV Z decays will certainly continue during the new runs, so
hopefully new interesting data will come from ATLAS and CMS. Nevertheless, the
best sensitivities for LFV Z decays are expected from next generation of lepton
colliders, as long as they can work as Z factories with a very clean environment. In
particular, at future linear colliders, with an expected sensitivity of 10−9 [77, 78],
or at a Future Circular e+e− Collider (such as FCC-ee (TLEP) [79]), where it is
estimated that up to 1013 Z bosons would be produced and the sensitivities to LFV
Z decay rates could be improved up to 10−13.

Themainmotivation of this Thesis, therefore, is to explore the connection between
the existence of new right-handed neutrino particles with masses of a few TeV or
below, reachable at the LHC, and the existence of LFV in the charged lepton sector.
We are particularly interested in the two models above described, the ISS and the
SUSY-ISS model, which are very appealing models since they can provide right-
handed neutrino states with masses at the TeV range and, at the same time, with
large couplings. Charged LFV phenomenology within massive neutrino models has
been studied before [80–105], also in the ISS [43–54]. In this Thesis, we concentrate
mainly in studying the predictions for the LFV Higgs and Z boson decays, which
as we said are extremely timely to explore in the light of the recent discovery of
the Higgs boson and the new LHC data on the LFV Z decays. In addition, we also
make new predictions for other cLFV processes like �m → �kγ and �m → �k�k�k ,
as well as for other lepton flavor preserving observables that will be also relevant in
the context of the models we consider here.

We fully study for the first time the LFV H decays in presence of right-handed
neutrinos in the ISS model, as well as in presence of sneutrinos in the SUSY-ISS
model. We perform this study following two different approaches. First we present,
based on the results for the type-I seesaw model in Ref. [91], the results for the
full one-loop computation done in the physical neutrino mass basis. Second, we
use the mass insertion approximation technique, which works in the electroweak
basis and allows us to obtain useful and simple formulas for the LFV H decay
rates. For the numerical evaluation, we show that large LFV rates can be obtained
focusing on particular directions of the parameter space where μ-e transitions, the
experimentally most constrained ones, are highly suppressed. Along this same line
of research, we provide a new proposal for the building of these phenomenologically
interesting scenarios with suppressed μ-e transitions. These scenarios are based on
the μX parametrization, which is a new parametrization proposed in this Thesis. On
the other hand, LFV Z decay rates in the ISS model have been first explored in
Ref. [50]. Therefore, in the case of these observables, we directly present a more
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specific study in those particular directions of the parameters space with suppressed
μ-e transitions, that give large allowed LFVZD rates. In this sense, we perform a
complementary study of that previously done.

As we said, we are interested in models with right-handed neutrinos at the TeV
range, since they belong to the scale of energies that the LHC is now probing. In
the ISS model, due to the pseudo-Dirac character of the heavy neutrinos, standard
collider searches looking for lepton number violating final states with two same-
sign leptons, the ‘smoking gun’ signature of Majorana fermions [106–109], are not
efficient. Therefore, here we propose to use instead lepton flavor violating final states
in order to discriminate events from the production and decay of the low scale seesaw
heavy neutrinos. In particular, we focus on exotic τ±μ∓ j j or τ±e∓ j j final states with
no missing transverse energy, which could be produced in scenarios with νR masses
at and below the TeV range and where LFV is favored in the τ -μ or τ -e sector,
respectively.

This Thesis is organized as follows. In Chap.2 we review neutrino oscillation
physics and its connection with the need of introducing neutrino masses. We discuss
some popular neutrino mass models, paying special attention to models with right-
handed neutrinos with TeV range masses, as the inverse seesaw model and its SUSY
version. These are the twomodels thatwewill consider for exploring in detail theLFV
phenomenology in the following Chapters. Moreover, when studying the neutrino
sector of these models, we present a new parametrization, which we refer to as the
μX parametrization, that will turn out to be very useful for exploring the parameter
space while being always in agreement with neutrino oscillation data.

In Chap.3 we address the importance of charged LFV processes in the search
of new physics and summarize the experimental status. Then, we revisit the LFV
lepton decays in the ISS model, meaning the radiative �m → �kγ and three-body
�m → �k�k�k decays with k �= m. This new study of these processes will allow us
to learn about the behavior of the LFV as a function of the ISS parameters, as well
as to emphasize the advantages of using our μX parametrization. As a result of this
study, we will find some interesting phenomenological scenarios, well motivated by
present experimental bounds, where LFV τ -μ or τ -e transitions are favored while
keeping the μ-e transitions highly suppressed. These will be useful for exploring
LFV H and Z decays. Furthermore, we also discuss in this Chapter the implications
of right-handed neutrinos with TeVmasses to other relevant low energy observables,
which we will consider as constraints when looking for maximum allowed rates in
the next Chapters.

Chapter4 is devoted to the study of the LFV Higgs decay (LFVHD) rates in the
ISS and SUSY-ISS models. We present the results of the full one-loop calculation
of the LFVHD rates in the ISS model and systematically study their dependence
with the different parameters of this model. In order to better understand the results,
we perform a complete and independent calculation of these rates using the mass
insertion approximation, which will allow us to derive a simple expression for an
effective LFV H�k�m vertex, very useful for any author that wishes to make a fast
estimation of the LFVHD rates in this kind of models. This complete analysis will
serve us to conclude on themaximumLFVHD rates allowed by present experimental
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constraints. Moreover, we explore these rates in the SUSY-ISS model, showing that
the new SUSY loops including sleptons and sneutrinos may considerably enhance
the maximum allowed rates, reaching values close to the present experimental sen-
sitivities.

InChap.5we study the LFV Z boson decays (LFVZD) in the ISSmodel.We focus
our analysis on the previously introduced phenomenological scenarios, where large
allowed LFV rates in the τ -μ and τ -e sector can be achieved.We compare our finding
to previous works in the literature and show that, in these interesting directions of
the ISS parameter space, large allowed rates can be obtained, well within the reach
of next generation of experiments searching for LFVZD.

In Chap.6 we focus on low scale seesaw neutrino production at the LHC. We
study the possibility of detecting the production and decay of the ISS heavy neutrinos
searching for exotic LFV �±

k �∓
m j j events, with k �= m, andwith nomissing transverse

energy. Alternatively to standard Majorana neutrino searches at colliders that are not
relevant for the ISSmodel, our proposal explores the fact that the new heavy neutrino
states can have non-trivial flavor structure, leading to this kind of interesting LFV
signals. Concretely, we will apply this idea to the production of exotic τμ j j events
within the previously introduced scenarios, finding promising results for the future
LHC runs.

Finally, we summarize the main conclusions at the end of this document.
The contents presented in this Thesis, summarized along in this chapter and

Chaps. 2–5, the Conclusions and the Appendices, are original works that have been
published in Refs. [110–114] and in the conference proceedings [115–119].
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Chapter 2
Seesaw Models with Heavy Neutrinos
at the TeV Energy Range

In this Chapter we motivate the need of going beyond the Standard Model for ex-
plaining lepton flavor changing neutrino oscillation data and review some of themost
popular models for this task, the seesaw models. We will concentrate specially in
the so-called low scale seesaw models, one of which will be of special relevance
for this Thesis: the inverse seesaw model. Finally, we will introduce a Supersym-
metric version of the latter, the SUSY-ISS, an interesting model that combines the
appealing features of the Minimal Supersymmetric Standard Model and the inverse
seesaw model. Along this Chapter, we derive the μX parametrization in Sect. 2.3,
useful for accommodating neutrino oscillation data, which is a genuine contribution
of this Thesis and was first published in Ref. [1]. The implementation of the ISS
model in the SUSY framework, as given in Eqs. (2.64)–(2.74), and the derivation
of the interaction Lagrangian in the physical SUSY-ISS basis in Eq. (2.77) and in
Appendix D are original works of this Thesis that have been published in Ref. [2].

2.1 Neutrino Oscillations

In the Standard Model (SM) the neutrinos, and antineutrinos, come in three different
flavors. When they are produced by the standard charged current, they are always
produced together with a charged lepton, which is the one that labels them: if the
neutrino is producedwith an e+ or e−,wename it as electron-neutrino (νe) or electron-
antineutrino (ν̄e), respectively; if it is produced with a μ+ or μ−, we have a νμ or ν̄μ;
and if it is produced with τ+ or τ−, it is a ντ or ν̄τ . This one-to-one identification with
the charged lepton sector is, at the same time, what allows us to detect and identify
these elusive particles. These three neutrino flavor states ν� ≡ (

νe, νμ, ντ

)
form a

basis that we will refer to as the interaction basis.
Neutrinos only suffer from weak interactions and, consequently, they can travel

long distances without interacting with anything. Their evolution is given by the
Schrödinger equation, whose solutions are plane waves with energies defined by the
eigenvalues of the 3 × 3 neutrino mass matrix. These stationary solutions define a

© Springer International Publishing AG, part of Springer Nature 2018
X. Marcano, Lepton Flavor Violation from Low Scale Seesaw Neutrinos with Masses
Reachable at the LHC, Springer Theses, https://doi.org/10.1007/978-3-319-94604-7_2
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14 2 Seesaw Models with Heavy Neutrinos at the TeV Energy Range

new basis, the so-called mass or physical basis1 να ≡ (
ν1, ν2, ν3

)
, which in general

does not coincide with the above introduced interaction basis. This misalignment is
the origin of the neutrino oscillation phenomena.

The relation between the two bases can be written as:

ν� =
3∑

α=1

(
UPMNS

)
�α

να, (2.1)

where the UPMNS is a unitary 3 × 3 rotation matrix, analogous to the CKM matrix
in the quarks sector, whose name comes from Pontecorvo, who proposed neutri-
no oscillations [3], and from Maki-Nakagawa-Sakata, who introduced the mixing
matrix [4].

When a neutrino is produced, it is in a specific flavor state, which can be expressed
as a superposition of themass eigenstates. If neutrinosweremassless or degenerate in
mass, all themass eigenstates would have the same time evolution and, consequently,
the initial flavor state would remain unchanged. In such a situation, we could say
that the individual lepton flavor numbers, i.e., Le, Lμ and Lτ , were preserved. On
the contrary, if physical neutrinos had non-degenerate masses, each of the mass
eigenstates would evolve differently in time, modifying the initial superposition
and therefore the flavor of the initial neutrino state. This process, which is a direct
consequence of non-degenerate neutrinomasses, is known as neutrino oscillation and
implies that individual lepton flavor numbers are not conserved. In the ultrarelativistic
limit, the oscillation probability in vacuum from a flavor ν� to a flavor ν�′ is given
by [5]:

Pν�→ν�′
(
L , E

) =
3∑

α,β=1

U ∗
�αU�′αU�βU

∗
�′β exp

(

−i
�m2

αβL

2E

)

, (2.2)

where U ≡ UPMNS to shorten the notation, E ∼ | p| is the neutrino energy, L is the
distance between the source and the detector, and �m2

αβ ≡ m2
α −m2

β are the squared
mass differences.

Several experiments involving solar, atmospheric, reactor and accelerator neu-
trinos have established the evidences for neutrino oscillations and, therefore, for
neutrino masses (see Ref. [6] for a review). Nevertheless, and in spite of this exper-
imental effort, there are still open issues related to neutrino oscillations and masses.

First of all, we do not know the absolute neutrino mass scale, although we know
that it is at the eV scale or below from the upper limits on the effective electron
neutrino mass in β decays, given by the Mainz [7] and Troitsk [8] experiments:

mβ < 2.05 eV at 95% C.L. (2.3)

Additional information on the absolute neutrinomass scale, can be obtained fromcos-
mological observations, which are sensitive to the sum of the light neutrino masses.

1Assuming the simplest scenario where only three physical neutrinos exist.
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Fig. 2.1 The two possible neutrino mass orderings, known as normal (left) and inverted (right)
hierarchies. The colors represent the flavor composition of each of the physical neutrinos: blue for
νe, orange for νμ and green for ντ

At present, there are only upper bounds on this quantity, being the most constraining
ones provided by the Planck collaboration [9]:

∑
mν < 0.23 eV. (2.4)

Measuring neutrino oscillations in vacuum allows us to know themass differences
|�m2

21| and |�m2
31|, but it does not tell us anything about neither the absolute neutrino

mass scale nor the neutrino mass hierarchy. Additional measurements of matter
effects or the Mikheev-Smirnov-Wolfenstein (MSW) effects [10–14] in neutrino
oscillations can help solving the sign degeneracies. Nowadays, matter effects in
the sun have made possible to know that �m2

21 > 0, but the sign of �m2
31 is a

mystery yet. Therefore, two orderings are still possible, as shown if Fig. 2.1: aNormal
Hierarchy (NH) where mν1 < mν2 < mν3 and an Inverted Hierarchy (IH) where
mν3 < mν1 < mν2 . Solving this degeneracy is one of the most important open issues
in neutrino physics.

Second, being neutrinos the only electrically neutral fermions in the SM, they
could be Majorana particles, i.e., they could be their own antiparticles. This would
be in contrast to the rest of the SMmodel Dirac fermions, for which their antiparticle
is a different state. This hypothetical Majorana character of the neutrinos, although
very common in theoretical models as we will see later, does not have any impact on
neutrino oscillations and, therefore, new observables to discern between Majorana
and Dirac fermions need to be considered. The fact that a lepton can be its own
antiparticle is directly related to the conservation of the total Lepton Number (LN)
violation, since a Majorana mass terms breaks LN in two units. Consequently, LN
violating processes are usually considered as the smoking gun signatures for Majo-
rana neutrinos, like like neutrinoless double beta decay (for a review on 0νββ, see
for instance Refs. [15, 16]). Unfortunately, no experimental evidence has been found
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yet for any LN violating processes, so knowing if neutrinos are Majorana or Dirac
fermions is still an open issue.

Third, massive neutrinos add newCP-violating phases to the SM parameters. For
the case of three massive neutrinos, the PMNS matrix in Eq. (2.1) introduces one
CP-violating phase if neutrinos are Dirac fermions, known as the Dirac CP phase,
and two extra Majorana CP-violating phases if neutrinos are Majorana fermions.
However, neutrino oscillations are only sensitive to the Dirac phase and this depen-
dence appears via a particular combination of several oscillation parameters, known
as the Jarlskog invariant [17] JCP = Im

(
Uμ3U ∗

e3Ue2U ∗
μ2

)
. This fact makes difficult to

measure the Dirac phase in oscillation experiments, but experiments as T2K, NOνA,
or future Hyper-K or Dune, may be able to do it in the next years. On the other hand,
the extra Majorana phases do not play any role in neutrino oscillations. Neverthe-
less, they can be important for trying to explain the matter-antimatter asymmetry of
the universe though the mechanism known as Baryogenesis via Leptogenesis (for a
review see, for instance, Ref. [18]).

Finally, we may wonder how many neutrinos do exist in Nature. Despite the fact
that there are some anomalies [19–27] pointing towards the existence of eV-KeV
scale sterile neutrinos, we will assume in this Thesis that there are only three light
neutrinos, which is the minimal requirement to fit neutrino oscillation observations.
In this situation, the unitary PMNS matrix in Eq. (2.1) can be parametrized in its
standard form as:

UPMNS =
⎛

⎝
c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞

⎠ · P, (2.5)

where ci j = cos θi j and si j = sin θi j with θi j the neutrino mixing angles, δ is the
CP-violating Dirac phase and the diagonal matrix P = diag(1, eiφ1 , eiφ2) accounts
for the two extra CP-phases that do not play any role in neutrino oscillations, as we
said before. In order to consider all the experimental neutrino oscillation data in a
consistent way, wewill take the results from the global fit analysis done by the NuFIT
group [28]. Assuming a Normal Hierarchy, they obtain at the 1σ level:

sin2 θ12 = 0.306+0.012
−0.012, �m2

21 = 7.50+0.19
−0.17 × 10−5eV2,

sin2 θ23 = 0.441+0.027
−0.021, �m2

31 = 2.524+0.039
−0.040 × 10−3eV2,

sin2 θ13 = 0.02166+0.00075
−0.00075, δ = 261+51

−59, (2.6)

while for the Inverted Hierarchy they give

sin2 θ12 = 0.306+0.012
−0.012, �m2

21 = 7.50+0.19
−0.17 × 10−5eV2,

sin2 θ23 = 0.587+0.020
−0.024, �m2

32 = −2.514+0.038
−0.041 × 10−3eV2,

sin2 θ13 = 0.02179+0.00076
−0.00076, δ = 277+40

−46. (2.7)
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2.2 Seesaw Models for Neutrino Masses

At the time that the SM was built, there were no evidences for neutrino masses.
Moreover, experiments showed that neutrinos produced in charged weak interactions
were left-handed (LH) fields, while antineutrinos were right-handed (RH). These
facts were minimally satisfied in the SM by a chiral LH flavor field ν�L ≡ (ν�)L ,
which together with the LH charged lepton field forms a SU (2)L doublet, as required
by the SM gauge symmetry. As a result, right-handed neutrino fields were left out
and neutrinos were treated as massless fields by the SM.

Nowadays the status has changed. The strong experimental evidences of neutrino
oscillations, as mentioned in the previous section, have established that neutrinos
do have masses, claiming for new physics beyond the SM to accommodate this new
situation. In a very simple and minimalistic choice, one could reconsider the addition
ofRHneutrino fields to the SM, in such away that neutrinos could obtain theirmasses
via their Yukawa interaction with the Higgs field, mimicking the mass generation for
the rest of the SM fermions,

LYuk = −Y i j
ν Li�̃νR j + h.c. (2.8)

where Yν is the neutrino Yukawa coupling matrix, L = (νL �L)
T is the SU (2)L

lepton doublet and �̃ = iσ2�
∗ with � the Higgs SU (2)L doublet:

� =
(

G+
v + 1√

2
(H + iG0)

)
, �̃ = iσ2�

∗ =
(

v + 1√
2
(H − iG0)

−G−

)
. (2.9)

After the Electroweak Symmetry Breaking (EWSB), this Lagrangian term leads to
a Dirac mass term for neutrinos mν = mD = vYν , with v = 174 GeV. In order for
this mass to be at the eV scale, as suggested by neutrino oscillations, the Yukawa
coupling needs to be very small, of the order of 10−11. This value would extremely
suppress any kind of phenomenology beyond neutrino oscillations. Moreover, such
a tiny neutrino Yukawa coupling is five orders of magnitude smaller than the electron
Yukawa coupling and eleven orders with respect to the top Yukawa coupling, so it
would make even worse the flavor puzzle problem of understanding the hierarchy of
the fermion masses.

On the other hand, having a closer look to the new added νR fields, we realize
that they are singlets under the full SM gauge group and, therefore, there is nothing
that protects them from having a Majorana mass term. In that situation, physical
neutrinos will be Majorana particles.

In order toworkwithMajorana fermions, it is very useful to introduce the particle-
antiparticle conjugation operator Ĉ , which is defined as [5, 29]:

Ĉ : ψ → ψC = Cψ̄T . (2.10)

This matrix C fulfills:
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C−1γμC = −γ T
μ , C−1γ5C = γ T

5 , C† = C−1 = −C∗, (2.11)

which, in the Weyl representation, can be satisfied by chosing C = iγ2γ0. Conse-
quently, this operator Ĉ flips the chirality of chiral fields:

Ĉ : ψL → (ψL)
C = (ψC)R, ψR → (ψR)C = (ψC)L , (2.12)

meaning that the antiparticle of a LH field is a RH field. Moreover, the fact that
Majorana fermions coincide with their antiparticle can be expressed in terms of this
operator as:

ψC = ψ. (2.13)

These relations will be very useful when considering models with Majorana neutri-
nos, as the standard seesaw models.

On a more model independent ground, we could make use of the effective La-
grangians formalism in order to try a bottom up approach to the neutrino mass
problem. In this approach, we assume that the SM is an effective theory of a more
complete but unknown theory, which in general will contain new symmetries and
fields at a heavy scale �. If we knew the complete theory at high energies, we could
integrate out all the heavy fields with masses above the electroweak scale and obtain
a low energy Lagrangian in terms only of the SM fields. The modifications with
respect to the SM Lagrangian would then be a series of new non-renormalizable
operators suppressed by the heavy scale �, which encode all the new physics effects
at low energy. Unfortunately, we do not know the complete theory to follow this
top down way. Therefore, with the aim of covering any possible high energy theory
for neutrino physics, we can alternatively write the most general non-renormalizable
SU (2)L × U (1)Y invariant Lagrangian that involves neutrino and other SM field-
s, the low energy fields. This will lead us to an effective Lagrangian that can be
generically written as the SM Lagrangian extended with a series of higher order
non-renormalizable operators,

Leff = LSM + δLd=5 + δLd=6 + · · · (2.14)

where d stands for the dimension of the operators in δLd , which will be suppressed
by d − 4 inverse powers of the heavy scale �.

It is illustrative to look at the d = 5 Lagrangian. Since neutrinos are members of
a SU (2)L doublet, there is only one possible operator, first written by Weinberg [30]
and named after him, contributing to δL5, given by:

δLd=5 = 1

2

ci j
�

(
LC
i �̃∗)(�̃†L j

)
, (2.15)

where ci j are dimensionless complex coefficients and i, j = 1, 2, 3. After the EWSB,
this operator gives a Majorana mass term for the neutrinos:
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νRνL νL
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νL νL

H H
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ΣνL νL

H H
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Fig. 2.2 Diagrams for the tree level light Majorana mass generation in the type-I (left), type-II
(middle) and type-III (right) seesaw models

δLd=5 → v2ci j
2�

(
νC
i ν j + h.c.

)
. (2.16)

Interestingly, this Majorana mass term is naturally small, suppressed by the new
physics scale. The higher the scale �, the lower the neutrino mass, as if they were
playing with a seesaw. This is the idea behind the so-called seesaw models, the
simplest renormalizable models leading to this relation after integrating out the new
heavy particles responsible of generating neutrino masses at the tree level.

Looking at the Weinberg operator, we can already learn some properties about
the new particles of the seesaw models. In order to be gauge invariant, these new
particles can be either singlets or triplets of SU (2)L , since they need to couple to
two SU (2) doublets in a gauge invariant way. On the other hand, they can be either
fermions or scalars, so we can define three2 possible seesaw models according to
what new type of fields they add to the SM: fermionic singlets (type-I), scalar triplets
(type-II) or fermionic triplets (type-III), as shown in Fig. 2.2.

Before going to the details of these seesawmodels, we want to emphasize that any
high energy theory that introduces a Majorana mass term for the neutrinos leads to
the Weinberg operator in Eq. (2.15) when integrating out the heavy fields, as it is the
only one that can be written at lowest order. This implies that, in order to distinguish
between the different neutrino theories,we need to consider their implications beyond
the neutrino mass generations. In terms of the effective Lagrangian in Eq. (2.14), this
means looking for the effect of the d = 6 operators [31] or higher. As we will see
later, lepton flavor violating phenomenology is one of the optimal places for studying
this task.

Type-I Seesaw Model
The type-I seesaw model [32–36] extends the SM with right-handed neutrinos νR ,
which are fermionic singlets under the full SM gauge group. As mentioned above,
these new fields allow the neutrinos to have a Yukawa interaction with the Higgs
field, as well as a Majorana mass term for themselves. The Lagrangian of the type-I
seesaw can be thus written as:

Ltype−I = −Y i j
ν Li�̃νRj − 1

2
mi j

MνC
RiνRj + h.c. (2.17)

2The choice of a scalar singlet is not possible due to the structure of the Weinberg operator.
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where the first term is the Yukawa Lagrangian as in Eq. (2.8) and in the second term
mM is a symmetric Majorana mass matrix. If we assign to the νR fields the same
lepton number than to the L fields, we realize that the Yukawa interaction conserves
LN, while the Majorana mass term breaks it in two units. Therefore, this model
introduces a new scale that explicitly breaks LN. After the EWSB, Eq. (2.17) leads
to a neutrino mass Lagrangian that, in the electroweak interaction basis reads as:

Lmass
type−I = −mi j

DνC
LiνRj − 1

2
mi j

MνC
RiνRj + h.c. = −1

2
NL

(
0 mD

mT
D mM

)
NC

L + h.c.

(2.18)
where we have defined the LH fields as a column vector NL = (νLi , ν

C
Ri )

T . From this
mass Lagrangian, we identify the neutrino Majorana mass matrix in the EW basis:

Mν
type−I =

(
0 mD

mT
D mM

)
. (2.19)

It is illustrative to consider first the case where there is only one generation of
neutrinos. In that context, all the parameters in Eq. (2.19) are just numbers and
Mν

type−I is a 2 × 2 mass matrix which, in the seesaw limit, defined by choosing the
two involved scales very distant, mD � mM , has the following two eigenvalues:

mν 	 −m2
D

mM
= −v2Y 2

ν

mM
, mN 	 mM . (2.20)

One of the physical neutrinos is then a heavy state N with a mass close to the LN
breaking scalemM , while the other is a light state ν with a small massmν suppressed
by m−1

M . This desired suppression is a particular realization of Eq. (2.16), and can be
understood as the tree level processes in the left plot of Fig. 2.2.

For a more realistic model, we can add three3 RH fields to the SM spectrum.
In that case, Mν

type−I is a 6 × 6 matrix which, again in the seesaw limit, can be
block-diagonalized by the following 6 × 6 approximate unitary matrix:

U ν
ξ =

(
(1 − 1

2ξ
∗ξ T ) ξ ∗(1 − 1

2ξ
T ξ ∗)

−ξ T (1 − 1
2ξ

∗ξ T ) (1 − 1
2ξ

T ξ ∗)

)
+ O(ξ 4) , (2.21)

where we have introduced the small seesaw matrix parameter ξ = mDm
−1
M . This

rotation leads to two separated 3 × 3 mass matrices, given by:

U νT
ξ Mν

type−IU
ν
ξ 	

(−mDm
−1
M mT

D 0
0 mM

)
≡

(
mν

mN

)
. (2.22)

3Although the addition of two neutrinos is enough for explaining neutrino oscillation data, we prefer
to add one RH per generation.
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We see again that there are two sectors, one light sector whose mass matrix mν is
suppressed by m−1

M and a heavy sector with masses close to mM .
Without lost of generality, we can decide to work in the basis wheremM is already

diagonal and, therefore, we only need to diagonalize the light mass matrix. In order
to be in agreement with neutrino oscillation data, we can impose this light matrix to
be diagonalized by the proper UPMNS matrix and to have the right eigenvalues. This
can be done by requiring:

mν 	 −mDm
−1
M mT

D ≡ U ∗
PMNSm

diag
ν U †

PMNS. (2.23)

In this equation, mdiag
ν contains the masses of the physical light neutrino states and

the UPMNS matrix the mixing angles, as explained in the previous section. Equation
(2.23) can be solved for mD , leading to the Casas-Ibarra parametrization [37] of the
Dirac mass matrix:

mT
D = i

√
mdiag

N R

√
mdiag

ν U †
PMNS, (2.24)

where we have used the relation mdiag
N 	 mM so as to express everything in terms

of the physical masses. This parametrization allow us to use as input parameters the
physical masses, the experimentally measured mixing angles and an unknown 3× 3
complex orthogonal matrix R.

As we said, the type-I seesaw model is a simple extension of the SM that explains
the smallness of the neutrinomasses as a ratio of two very distant scales, the lowDirac
mass and the high Majorana mass scales. In order to accommodate light neutrino
masses in the eV scale, this ratio needs to be very small. Following Eq. (2.20),
we see that large Yν ∼ 1 couplings imply GUT scale Majorana masses of mM ∼
1014 GeV. On the other hand, TeV scale heavy neutrinos require very small Yukawa
couplings, of the order of 10−5. As a consequence, one way or the other, most of the
new phenomenology related with these new heavy neutrinos, as well as their direct
production at colliders, will be then very suppressed.

Type-II Seesaw Model
The type-II seesawmodel [36, 38–41] addes a new scalar SU (2)L triplet with hyper-
charge 2 to the SM. In contrast with the fermionic singlets of the type-I seesaw, this
new triplet does not interact only with the neutrino fields, but also with the rest of
the SM fields, so the full Lagrangian is more involved. Nevertheless, for the purpose
of our discussion of neutrino mass generation, it is enough to consider the following
relevant terms:

Ltype−II = −1

2
Y i j

� LC
i �̃L j − μ�T iσ2�

†� − 1

2
M2

�Tr
(
�†�

) + h.c. (2.25)

Here, � stands for the new scalar SU (2) triplet, defined as:

� =
(

�+/
√
2 �++

�0 −�+/
√
2

)
. (2.26)
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The first term in Eq. (2.25) is a Yukawa like interaction between the SM SU (2)L
leptonic doublet L and the scalar triplet, with coupling Y� and �̃ = iσ2�

∗. The
other two terms are part of the new scalar potential in this model, with M� the mass
of the triplet andμ the coupling of the triplet scalar with twoHiggs doublets. The full
scalar potential, given in Ref. [42] for instance, sets the vacuum expectation values
for the neutral components of both the doublet and triplet scalars. In the limit where
the triplet is heavy, M� 
 v, its vev is given by,

v� 	 μ
v2

M2
�

, (2.27)

which then gives a Majorana mass for the neutrinos of

mν 	 v�Y�. (2.28)

Diagrammatically, this mass term can be understood as the tree level process in the
middle of Fig. 2.2.

We can now understand how the type-II seesaw can explain the smallness of
the neutrino masses. Looking at these equations, we see that, on one hand, small
Yukawa couplings or heavy triplet masses is a possibility, as in the type-I seesaw.
On the other hand, in these equations there is an extra scale μ, which in the case
of being small, could explain the smallness of mν even for large Y� and low M�.
Furthermore, assigning to the triplet a leptonic number L = 2, we see that the only
LN violating term is precisely the one proportional to thisμ parameter and, therefore,
it is natural [43] to consider μ to be small, as setting it to zero would increase the
symmetry of the model. As a result, the smallness of neutrino masses is related
somehow to a small breaking of a symmetry.

However, the addition of a new scalar to the SM spectrum will in general modify
the Higgs sector or contribute to electroweak precision observables, which are con-
strained by experiments. For instance, precision measurements of the electroweak ρ

parameter set an upper bound on the new scalar triplet vev of v� � 3 GeV. Fortu-
nately, such a small v� can be again explained by a small LN violating mass scale
μ. Additionally, the (double) charged components of the scalar triplet could also
induce potentially large tree level flavor changing processes, not observed yet by any
experiment.

Type-III Seesaw Model
The type-III seesaw model [44] explains the neutrino masses by adding a new
fermionic SU (2)L triplet to the SM spectrum, which is defined as:

� =
(

�0/
√
2 �+

�− �0/
√
2

)
. (2.29)

As the νR of the type-I seesaw model, this � couples to the LH neutrinos and to the
Higgs doublet, with a Lagrangian given by
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Ltype−III = −Y i j
� Li�̃� − 1

2
Mi j

�Tr
(
�C

i � j
) + h.c. (2.30)

This Lagrangian is very similar to Eq. (2.17), with the Yukawa coupling Y� and the
Majorana mass M� . Consequently, in the seesaw limit M� 
 vY� , the obtained
light neutrino mass matrix is equivalent to the one in Eq. (2.23):

mν 	 −vY�M−1
� vY T

� . (2.31)

The tree level diagram generating this neutrino mass is shown in the right panel of
Fig. 2.2, which is the same as in the type-I seesaw with � instead of νR . Actually,
in this model the neutral component of � behaves like the right-handed neutrino
of the type-I seesaw. Nevertheless, being the � a SU (2)L triplet, it also has gauge
couplings to the SM. This fact can lead to new phenomenology, such as tree-level
flavor changing currents mediated by the charged components�±, which so far have
not been observed experimentally.

These three types of seesaw mechanisms are some examples of models for gener-
ating light neutrino masses. There are many other proposals in the literature, which
try different approaches to explain the lightness of neutrino masses. For instance,
in the models known as radiative seesaw models, the tree level neutrino masses are
forbidden, so they need to be generated at the loop level and, therefore, they are
naturally suppressed with respect to the rest of fermion masses (see Ref. [45] for
a recent review). This is the case in the Zee-Babu model [46, 47]. Another option
could be to assume that there is a symmetry protecting the neutrinos from having a
tree level mass term, which is spontaneously broken with a small vev that generates
small neutrino masses, as some R-parity violating supersymmetric models [48–50].
For a review of neutrino mass models, see for instance Refs. [51, 52].

In this Thesis, we are interested in the phenomenology of right-handed neutrinos
withmasses at theTeVscale, such that they can lead to not very suppressed lowenergy
effects. We are also interested in the possibility of producing them at colliders. As
we said, the type-I seesaw model introduces νR fields that can indeed be at the TeV,
although in this case their Yukawa coupling is so small than it suppresses most of
the phenomenological implications. An interesting way out of this situation is to
invoke a symmetry that protects the light neutrino masses even in the case of low
right-handed masses and large Yukawa couplings. This is the main idea behind low
scale seesaw models, as the inverse seesaw model, that we describe in full detail in
the following.

2.3 The Inverse Seesaw Model and Its Parametrizations

As we discussed above, the original type-I seesaw model cannot have right-handed
neutrinos with masses at the TeV scale and large Yukawa couplings and, at the
same time, accommodate light neutrino masses at the eV range. In low scale seesaw
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models this interesting situation is accomplished by making use of extra symmetries,
for instance a common assumption is global lepton number conservation. In order
to better understand this idea, we can first consider the simplified situation of one
generation, where there is only one left-handed neutrino as in the SM, and add two
extra fermionic singlets, νR and X . The νR field is like in the type-I seesaw model,
a right-handed partner of the νL , singlet under the full SM group and with lepton
number L = −1, while the new singlet X has the opposite lepton number L = 1. In
the limit where LN is conserved, the only terms that we can add to the SMLagrangian
are:

L = −YνL�̃νR − MRνC
R X + h.c. (2.32)

which, after the EWSB, leads to the following neutrino Majorana mass matrix in the
EW (νL , ν

C
R , XC) basis:

Mν =
⎛

⎝
0 mD 0
mD 0 MR

0 MR 0

⎞

⎠ . (2.33)

Diagonalizing this matrix we obtain two degenerate Majorana neutrinos, which form
one singleDirac neutrino, and onemassless neutrino. Thismeans that imposing exact
LN conservation gives rise to massless neutrinos and, therefore, we need to include
a LN breaking in order to generate neutrino masses. If this breaking is small, the
neutrino masses will be small. As a result, in these low scale seesaw models the
smallness of neutrino masses is related to a small breaking of a symmetry, which is
natural in the sense of ’t Hooft [43].

Different models can be defined following this idea, depending on where we
introduce the small LN violating scale that generates the masses for the light
neutrinos. Including Majorana mass terms for the new fermionic singlets, we
end up with the inverse seesaw (ISS) model [53–55], whereas a LN violating
interaction between the νL and X fields defines the linear seesaw (LSS) mod-
el vch:2Akhmedov:1995ip,ch:2Akhmedov:1995vm. In this Thesis, we will work
in the framework of the inverse seesaw model, although most of our results will also
apply to other models as the linear seesaw, since we will see that they can be easily
related.

We consider a realization of the inverse seesaw model adapted to three genera-
tions where three4 pairs of fermionic singlets (νR, X) are added to the SM. The ISS
Lagrangian in this case is given by

LISS = −Y i j
ν Li�̃νRj − Mi j

R νC
Ri X j − 1

2
μ
i j
RνC

RiνRj − 1

2
μ
i j
X X

C
i X j + h.c., (2.34)

with the favor indices i, j running from 1 to 3. Here, Yν is the 3 × 3 neutrino
Yukawa couplingmatrix, as in Eq. (2.17),MR is a lepton number conserving complex
3 × 3 mass matrix, and μR and μX are Majorana complex 3 × 3 symmetric mass

4Although the minimal realization of the ISS model that accounts for oscillation data only needs
two fermionic pairs [58], usually referred to as the (2,2)-ISS, we prefer to add one pair for each SM
family, usually denoted by (3,3)-ISS.
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Fig. 2.3 Diagram for the
tree level light Majorana
mass generation in the ISS
model

XνR νR

H H

νL νL

MR MRμX

matrices that violateLNconservationby twounits.Aswe said, these twoLNviolating
scales are naturally small in this model, as setting them to zero would restore the
conservation of LN, thus enlarging the symmetry of the model. After the EWSB, we
obtain the complete 9×9 neutrinomassmatrix, which again in the EW (νLi

, νC
Ri

, XC
i )

basis, reads,

Mν
ISS =

⎛

⎝
0 mD 0
mT

D μR MR

0 MT
R μX

⎞

⎠ . (2.35)

Since this complex mass matrix is symmetric, it can be diagonalized using a 9 × 9
unitary matrix Uν according to

UT
ν Mν

ISSUν = diag(mn1 , . . . ,mn9), (2.36)

where ni are the nine physical neutrino Majorana states, with masses mni , respec-
tively, and related to the electroweak eigenstates through the rotation Uν as:

⎛

⎝
νC
L

νR

X

⎞

⎠ = UνPR

⎛

⎜
⎝

n1
...

n9

⎞

⎟
⎠ ,

⎛

⎝
νL
νC
R

XC

⎞

⎠ = U ∗
ν PL

⎛

⎜
⎝

n1
...

n9

⎞

⎟
⎠ . (2.37)

As we did for the type-I seesaw, it is interesting to consider first the simplified
scenario where there is only one generation of (νL , νR, X ). In that case, all the
parameters in Eq. (2.35) are just numbers and Mν

ISS is a 3× 3 mass matrix which, in
the μX � mD, MR limit of approximate LN conservation, has the following three
eigenvalues:

mν 	 m2
D

m2
D + M2

R

μX , (2.38)

mN1,N2 	 ±
√
M2

R + m2
D + M2

RμX

2(m2
D + M2

R)
+ μR

2
. (2.39)

We see that the massmν of one of the states is small, since it is proportional to the
small parameter μX , and, therefore, it can be associated to the light neutrino states
observed in neutrino oscillations. Notice that, contrary to the type-I seesaw model
where the lightness of mν is related to a suppression of a large LN breaking scale,
here it is proportional to a small LN breaking scale, μX , motivating the model name
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Fig. 2.4 Schematic distribution for the mass spectrum of the six ISS heavy neutrinos, Ni=1,...,6
with mN1 < · · · < mN6 . For hierarchical MR , with MR1 < MR2 < MR3 here, there are three
quasidegenerate states with masses mN1 	 mN2 	 MR1 , mN3 	 mN4 	 MR2 and mN5 	 mN6 	
MR3 . For degenerate MR , meaning MR1,2,3 ≡ MR , all the heavy neutrino masses are close to MR ,
with small separations between the pairs of O(m2

D/MR). In both cases, there are small O(μX )

splittings between the quasidegenerate neutrinos. We demand that the light neutrino sector is as in
Fig. 2.1 by using the parametrizations described in this section. The color code represents the fact
that heavy neutrinos can have a non-trivial flavor structure, which we will further study in Chap. 6

of inverse seesaw. In the seesaw limit mD � MR , it can be further simplified to
mν ∼ μXm2

D/M2
R , which can be understood as the result of the diagram in Fig. 2.3.

The other twomass eigenstates have almost degenerate heavy masses,mN1,N2 , which
combine to form a pseudo-Dirac pair. Notice that the μR Majorana mass term for
the νR fields does not enter in Eq. (2.38), meaning that μR does not generate light
neutrinomasses at the tree level. The effects of this new scale appear only at one-loop
level in the light neutrino masses and are, consequently, more suppressed. Therefore,
we will set μR to zero for the rest of this Thesis and consider a small μX as the only
lepton number violating parameter leading to the light neutrino masses.

A similar pattern of neutrinomasses occurs in our three generations case, with one
light and two nearly degenerate heavy neutrinos per generation. In the mass range
of our interest with μX � mD � MR , the mass matrix Mν

ISS can be diagonalized
by blocks [59], leading to six heavy neutrinos that form quasidegenerate pairs with
masses approximately given by the eigenvalues of MR and with splittings of order
O(μX ). We display schematically the heavy neutrino mass spectrum in Fig. 2.4.
Regarding the light neutrino sector, it contains three light Majorana neutrinos, whose
3 × 3 mass matrix is as follows:

Mlight 	 mDM
T
R

−1
μXM

−1
R mT

D. (2.40)

In the same manner as we did in Eq. (2.23), we can ensure the agreement with
neutrino oscillation data by demanding:

Mlight ≡ U ∗
PMNSm

diag
ν U †

PMNS. (2.41)
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Then, we can solve this equation formD , as we did before to obtain the Casas-Ibarra
parametrization. In fact, this can be easily done by analogy with the type-I seesaw.
Defining a new 3 × 3 mass matrix as

M = MRμ−1
X MT

R , (2.42)

the light neutrino mass matrix can be written similarly to Eq. (2.23):

Mlight 	 mDM
−1mT

D. (2.43)

Therefore, we can modify the Casas-Ibarra parametrization in Eq. (2.24) to define a
new version for the ISS given by:

mT
D = V †

√
MdiagR

√
mdiag

ν U †
PMNS, (2.44)

where V is a unitary matrix that diagonalizes M according to M = V †MdiagV ∗ and,
as before, R is an unknown complex orthogonal matrix that can be written as

R =
⎛

⎝
c2c3 −c1s3 − s1s2c3 s1s3 − c1s2c3
c2s3 c1c3 − s1s2s3 −s1c3 − c1s2s3
s2 s1c2 c1c2

⎞

⎠ , (2.45)

with ci ≡ cos θi , si ≡ sin θi and θ1, θ2, and θ3 are arbitrary complex angles.
The Casas-Ibarra parametrization has been extensively used in the literature for

accommodating light neutrino data in this type ofmodels.Wepropose here an alterna-
tive parametrization that we find very useful to ensure the agreement with oscillation
data in the ISS model.5 The main idea is to use precisely the new scale μX to codify
light neutrino masses and mixings. This can be done by solving Eq. (2.41) for μX

instead of mD , which defines our μX parametrization:

μX = MT
R m−1

D U ∗
PMNSmνU

†
PMNS m

T
D

−1
MR . (2.46)

Notice that we have assumed that the Dirac mass matrix, or equivalently the Yukawa
coupling matrix, is not singular so it can be inverted.

Of course, physics does not depend on the parametrization one chooses, however
the efficiency in exploring the model parameter space does. When using this new
parametrization, we see two important advantages. First, Eq. (2.41) is quadratic in
mD , so solving it leads to a redundancy reflected in the orthogonal matrix R that
introduces six new unknown parameters to scan over. In contrast, Eq. (2.41) is linear
in μX , and therefore the μX parametrization does not introduce any new parameter
and the parameter space can be easily explored. Second, the μX parametrization

5Nevertheless, this idea could be generically applied to any model with a new scale responsible of
explaining the smallness of neutrino masses.
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considers Yν and MR as input parameters, while the Casas-Ibarra parametrization
works with μX as input instead of Yν . As we will see, the relevant parameters for
the LFV and related phenomenology in these models are the Yukawa coupling and
main source of the LFV, Yν , and the heavy mass scale MR . Therefore, being able
to treat them as independent input parameters is important for studying the LFV
phenomenology in these models. Furthermore, this latter point will be also important
in order to understand the decoupling behavior of the different observables in the
limit of very heavy right-handed neutrinos. All these issues will become clear in the
following Chapters.

In order to complete the theoretical set up of the model, we specify next all the
relevant neutrino interactions in their mass basis. These include the neutrino Yukawa
couplings, the gauge couplings of the charged and neutral gauge bosons,W± and Z ,
and the couplings of the corresponding Goldstone bosons, G± and G0:

LW = − g√
2

3∑

i=1

9∑

j=1

W−
μ �̄i B�i n j γ

μPLn j + h.c., (2.47)

LZ = − g

4cW

9∑

i, j=1

Zμ n̄iγ
μ
[
Cnin j PL − C∗

ni n j
PR

]
n j , (2.48)

LH = − g

2mW

9∑

i, j=1

H n̄iCni n j

[
mni PL + mn j PR

]
n j , (2.49)

LG± = − g√
2mW

3∑

i=1

9∑

j=1

G−�̄i B�i n j

[
m�i PL − mn j PR

]
n j + h.c, (2.50)

LG0 = − ig

2mW

9∑

i, j=1

G0 n̄iCni n j

[
mni PL − mn j PR

]
n j , (2.51)

where PR,L = (1 ± γ 5)/2 are the usual chirality projectors and,

B�i n j = U ν∗
i j , (2.52)

Cnin j =
3∑

k=1

U ν
kiU

ν∗
k j . (2.53)

These coupling matrices follow the subsequent interesting identities [60]:
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N∑

k=1

B�1nk B
∗
�2nk = δ�1�2 ,

N∑

k=1

B�nk Cnkni = B�ni ,

N∑

k=1

Cni nk C
∗
n j nk =

3∑

k=1

B∗
�k ni B�k n j

= Cni n j
,

N∑

k=1

mnkCni nk Cn j nk = 0,
N∑

k=1

mnk B�nk C
∗
nkni = 0,

N∑

k=1

mnk B�1nk B�2nk = 0, (2.54)

where N stands for the total number of neutrinos, i.e., N = 9 for the ISS realization
we are considering.

2.3.1 The Linear Seesaw Model

Finally, we want to briefly comment on the other low scale seesaw model above
mentioned, the linear seesaw model, and its relation with the ISS model. As we said,
in the LSS model the LN violating mass scale is introduced via a Yukawa coupling,
Ỹν , between the νL and the X singlets, in contrast to the ISS model where the LN
violating scale is introduced via the Majorana mass terms. For simplicity, we focus
this discussion on the one generation case, although it can be easily generalized to
more generations. In this case, the neutrino mass matrix in the linear seesaw, in the
same EW basis (νL , ν

C
R , XC ), reads as:

Mν
LSS =

⎛

⎝
0 mD m̃D

mD 0 MR

m̃D MR 0

⎞

⎠ , (2.55)

where m̃D = vỸν and the other parameters are as before. Assuming an approximate
LN symmetry, this new Yukawa interaction will be small, leading to a light neutrino
mass. This is given, for m̃D � mD � MR , by,

mν 	 −2m̃D
mD

MR
, (2.56)

which is linear in mD , motivating the name of the model.
In order to show the relation between the linear and inverse seesaw models, first

we may notice that they are identical in the limit of massless neutrinos, i.e., in the
limit of exact LN conservation. When LN is violated in the linear seesawmodel via a
non-zero m̃D , we can redefine the fermionic singlets in such a way that m̃D is rotated
away. This can be done by performing a rotation [61] of tan θ = m̃D/mD between
the (νR, X) fields. Then
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⎛

⎝
1 0 0
0 c s
0 −s c

⎞

⎠

⎛

⎝
0 mD m̃D

mD 0 MR

m̃D MR 0

⎞

⎠

⎛

⎝
1 0 0
0 c −s
0 s c

⎞

⎠ =
⎛

⎝
0 mD/c 0

mD/c MRs2 MRc2
0 MRc2 −MRs2

⎞

⎠ , (2.57)

where c = cos θ , s = sin θ , c2 = cos 2θ and s2 = sin 2θ . Since m̃D � mD , tan θ is
small and, therefore, the mass matrix in this rotated basis has the same pattern as the
ISSmassmatrix in Eq. (2.35). Given this relation, we emphasize again that the results
and general conclusions of this Thesis, computed and studied for the particular case
of the ISS model, could be applicable to other low scale seesaw models, like the
linear seesaw model.

It is important to notice that in this kind of low scale seesaw models, in contrast
to the standard type-I seesaw, there are three different scales which play different
roles. In the particular case of the ISS model, μX controls the smallness of the
light neutrino masses, MR the masses of the new heavy neutrinos andmD = vYν the
interaction between the newaddedneutrino sector and theSM νL fields. Since they are
independent, we can have at the same time large Yukawa couplings, Y 2

ν /4π ∼ O(1),
and right-handed neutrinos in the TeV range, i.e., reachable at present experiments
like the LHC. These two properties make the ISS model in particular, and low scale
seesaw models in general, interesting models with a rich phenomenology that we
wish to explore further in this Thesis.

2.3.2 The SUSY Inverse Seesaw Model

The Higgs mechanism of the SM introduces a fundamental scalar particle, the
recently found Higgs boson, whose mass has been experimentally set to mH =
125.09 ± 0.21 (stat.) ± 0.11 (syst.) GeV [62]. Being a fundamental scalar, it will
receive huge contributions via quantum corrections if a new heavy scale associated to
some new physics is introduced, for instance, if gravitational effects are introduced
at the Planck mass scale MP ∼ 1019 GeV. This instability of the Higgs sector under
radiative corrections is known as the hierarchy problem and it is one of the main
theoretical problems of the SM. One of the most popular and elegant solutions to
this problem is provided by supersymmetry (SUSY) [63–65]. This is a new symme-
try that relates fermions with bosons, such that their contributions to the radiative
corrections to the Higgs boson mass exactly cancel. Therefore, it introduces a new
symmetry that protects the scalar sector from unnaturally large radiative corrections.

Theminimal SUSY extension of the SM is theMinimal Supersymmetric Standard
Model (MSSM) [66–68]. We can understand the way this model extends the SM in
two steps. First, for consistency reasons, it adds a second scalar SU (2)L doublet to
the SM, in a way that one of the doublets is responsible of giving masses to the up-
type fermions and the other one to the down-type fermions. Then, it doubles all the
particles in the spectrum introducing a SUSY partner for each field. For a full review
of SUSY and the MSSM, we refer the reader to Refs. [69, 70]. However, in this
minimal extension of the SM, neutrinos remain massless as in the SM and, therefore,



2.3 The Inverse Seesaw Model and Its Parametrizations 31

it needs to be further extended in order to explain neutrino oscillation data. Here,
we shortly summarize the most relevant aspects of the simplest SUSY version of the
inverse seesawmodel, introducing the new neutrino and sneutrino sectors needed for
our forthcoming phenomenological studies, in particular for the LFV Higgs decay
computations in Sect. 4.2.

In the simplest supersymmetric realization of the ISSmodel, the SUSY-ISSmodel
in short, theMSSM superfield content is supplemented by three pairs of gauge singlet
chiral superfields N̂i and X̂i with opposite lepton numbers (i = 1, 2, 3). As in the
original ISS model, this allows to write a Yukawa interaction term for the neutrinos,
with coupling Yν , a heavy mass term M̃R between the extra singlets, and a Majorana
mass term μ̃X for the X fields. The SUSY-ISSmodel is then defined by the following
superpotential:

W = WMSSM + εab N̂Yν Ĥ
b
2 L̂

a + N̂ M̃R X̂ + 1

2
X̂μ̃X X̂ , (2.58)

with ε12 = 1 and

WMSSM = εab
[
ÊYe Ĥ

a
1 L̂

b + D̂YD Ĥ
a
1 Q̂

b + ÛYU Ĥ
b
2 Q̂

a − μĤ a
1 Ĥ

b
2

]
. (2.59)

Here, all chiral superfields are taken to be left-handed. This means that Q̂ and L̂
are respectively the chiral superfields involving the left-handed SU (2)L doublets
QL and LL , as well as their SUSY partners. For instance, the the spin 0 and spin 1

2
components of L̂ are (̃νL , ẽL) and (νL , eL). On the other hand, the chiral superfields
D̂, Û , Ê contain the dc

R , u
c
R and ecR fields and their partners, for example, we have

Ê = [
(ẽR)∗, (eR)c

]
. The down- and up-type Higgs bosons, Ĥ1 and Ĥ2 respectively,

are defined as

Ĥ1 =
(
ĥ01
ĥ−
1

)
, Ĥ2 =

(
ĥ+
2

ĥ02

)
, (2.60)

and μ is the Higgs superfield mass parameter. The couplings Ye,D,U are the Yukawa
coupling matrices. The generation indices have been suppressed for simplicity and
it should be understood in a tensor notation as N̂Yν Ĥ b

2 L̂
a = N̂i (Yν)i j Ĥ b

2 L̂
a
j .

Exact SUSY invariance requires any particles to have the same mass of its SUSY
partner, meaning that the SM spectrum should have a SUSY copy with the same
correspondingmasses. Nevertheless, the lack of any signal from such new particles in
the experiments has excluded this situation and, therefore, if SUSYexists inNature, it
must be broken. This breaking, however, cannot spoil the above commented solution
to the hierarchy problem, so it needs to be softly broken.

Even if we do not know the SUSY breaking mechanism, we can parametrize it by
introducing a set of well established soft SUSYbreaking terms [71]. In the SUSY-ISS
model, this soft SUSY breaking Lagrangian is given by
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−Lsoft = − LMSSM
soft + ν̃T

R m2
ν̃R

ν̃∗
R +

[
ν̃
†
R(AνYν )̃νLh

0
2 − ν̃

†
R(AνYν )̃eLh

+
2 + h.c.

]

+ X̃ Tm2
X̃
X̃∗ +

[
X̃†(BX μ̃X )X̃∗ + ν̃

†
R(BR M̃R)X̃∗ + h.c.

]
, (2.61)

with

−LMSSM
soft = ẽTR m2

ẽ ẽ
∗
R + d̃TR m2

d̃
d̃∗
R + ũTR m2

ũ ũ
∗
R + m2

H1
|H1|2 + m2

H2
|H2|2

+ δab(Q̃
a)†m2

Q̃
Q̃b + δab(L̃

a)†m2
L̃
L̃b + 1

2

[
M1λ̄bλb + M2λ̄

α
W λα

W + M3λ̄
α
gλα

g + h.c.

]

+ εab

[
(̃u†R(AuYu)Q̃a Hb

2 + d̃†R(AdYd )Q̃bHa
1 + ẽ†R(AeYe)L̃

bHa
1 + BμHa

2 Hb
1 + h.c.

]
.

(2.62)

These SUSY breaking Lagrangians introduce a set of new unknown parameters to
the SUSY-ISS model. From the MSSM Lagrangian, we have the squark and slepton
soft masses, m2

ẽ,d̃,ũ,Q̃,L̃
, the Higgs sector soft masses m2

H1,2
and Bμ, the gaugino

soft masses M1,2,3 and the trilinear couplings for squarks and sleptons, Au,d,e. In the
SUSY-ISSmodel, there are some extra soft parameters related to the newaddedfields,
in particular, the soft massesm2

ν̃R ,X̃
, BX μ̃X and BR M̃R , and the trilinear coupling Aν .

All these new parameters could, in principle, have a non-trivial flavor structure.
Nevertheless, when studying the SUSY-ISSmodel, and for the sake of simplicity, we
will take all soft SUSY breaking masses, as well as the lepton number conserving
mass term M̃R , to be flavor diagonal. This way, the only sources of flavor violation
are the neutrino Yukawa coupling Yν , and the lepton number violating mass term μ̃X .
The only exception will be m2

L̃
, which receives radiative corrections via the renor-

malization group equations (RGE), from a heavy scale M with universal soft SUSY
breaking parameters down to the heavy neutrino scale MR . These corrections are
also governed by Yν and, for phenomenological purposes, can be described as [72]:

(
�m2

L̃

)
i j = − 1

8π2
(3M2

0 + A2
0)

(
Y †

ν log
M

MR
Yν

)

i j
. (2.63)

After the EWSB, the neutrino sector is as in the previous ISS model, therefore the
analysis of themassmatrix diagonalization and the discussion about using the Casas-
Ibarra or the μX parametrization for accommodating oscillation data is the same as
before. Hence, it is enough to describe the new SUSY sector, and the sneutrino mass
matrix M2

ν̃
, which is defined by
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− Lν̃
mass = 1

2

(
ν̃
†
L , ν̃

T
L , ν̃T

R , ν̃
†
R, X̃ T , X̃†

)
M2

ν̃

⎛

⎜⎜⎜⎜⎜
⎜
⎝

ν̃L
ν̃∗
L

ν̃∗
R

ν̃R

X̃∗

X̃

⎞

⎟⎟⎟⎟⎟
⎟
⎠

, (2.64)

where ν̃L , ν̃R and X̃ are vectors made of 3 weak eigenstates each and they are defined
in a similar fashion, e.g. ν̃L = (ν̃

(e)
L , ν̃

(μ)

L , ν̃
(τ )
L )T . The complete 18 × 18 sneutrino

mass matrix is then expressed in terms of 3 × 3 submatrices, giving:

M2
ν̃ =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

M2
LL 0 0 M2

LR mDM∗
R 0

0 (M2
LL)

T (M2
LR)∗ 0 0 m∗

DMR

0 (M2
LR)T M2

RR 0 MRμ∗
X (BRM∗

R)∗
(M2

LR)† 0 0 (M2
RR)T BRM∗

R M∗
RμX

MT
Rm

†
D 0 μXM

†
R (BRM∗

R)† M2
XX 2(BXμ∗

X )†

0 M†
Rm

T
D (BRM∗

R)T μ∗
XM

T
R 2(BXμ∗

X ) (M2
XX )T

⎞

⎟
⎟⎟⎟⎟⎟
⎠

, (2.65)

with

M2
LL = mDm

†
D + m2

L̃
+ 1

mZ

2
cos 2β, (2.66)

M2
LR = − μ

tan β
mD + mDA

†
ν, (2.67)

M2
RR = mT

Dm
∗
D + MRM

†
R + m2

ν̃R
, (2.68)

M2
XX = MT

R M
∗
R + μXμ∗

X + m2
X̃
. (2.69)

Then, the sneutrino mass matrix is diagonalized by using:

Ũ †M2
ν̃ Ũ = M2

ñ = diag(m2
ñ1 , . . . ,m

2
ñ18), (2.70)

which corresponds to the following rotation between the interaction and mass basis

⎛

⎜⎜⎜⎜
⎜⎜
⎝

ν̃L
ν̃∗
L

ν̃∗
R

ν̃R

X̃∗

X̃

⎞

⎟⎟⎟⎟
⎟⎟
⎠

= Ũ

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

ñ1
...
...
...

ñ18

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

. (2.71)

Notice that the basis used in Eq. (2.64) uses the sneutrino electroweak eigenstates,
and their complex conjugate states and they fulfill:
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ν̃i = Ũi, j ñ j , (2.72)

ν̃∗
i = Ũ3+i, j ñ j , (2.73)

but at the same time:
(ν̃i )

∗ = Ũ ∗
i, j ñ j , (2.74)

since the physical sneutrinos are real scalar fields. While both Eqs. (2.73) and (2.74)
are equally valid, we choose Eq. (2.73).

Themassmatrices of the other SUSYparticles, namely the charginos, neutralinos,
and charged sleptons, are the same as in the SUSY type-I seesaw studied in Ref. [73],
so we will use their definitions of the corresponding rotation matrices, which in
turn were based on the conventions of Ref. [67] for the charginos and neutralinos.
Specifically, U and V will be the matrices that rotate the chargino states and N the
one that rotates the neutralino states. In addition, combinations of rotation matrices
for the neutralinos are defined as

N ′
a1 = Na1 cos θW + Na2 sin θW ,

N ′
a2 = −Na1 sin θW + Na2 cos θW . (2.75)

As for the charged sleptons, they are diagonalized by

�̃
′ = R(�)�̃, (2.76)

where �̃
′ = (ẽL , ẽR, μ̃L , μ̃R, τ̃L , τ̃R)T are theweakeigenstates and �̃ = (�̃1 , . . . , �̃6)

T

are the mass eigenstates.
Finally, we introduce the relevant interaction terms from the Lagrangian that will

be needed later in the study of the LFV Higgs decays. Following again the notation
in Ref. [73], these terms are given in the mass basis by

Lχ̃−
j �ν̃α

= −g �̄
[
A(�)
Lα j PL + A(�)

Rα j PR

]
χ̃−

j ν̃α + h.c.,

Lχ̃0
a ��̃α

= −g�̄
[
B(�)
Lαa PL + B(�)

Rαa PR

]
χ̃0
a �̃α + h.c.,

LHx s̃α s̃β = −i Hx

[
gHx ν̃α ν̃β

ν̃∗
αν̃β + gHx �̃α �̃β

�̃∗
α�̃β

]
,

LHx χ̃
−
i χ̃−

j
= −gHx

¯̃χ−
i

[
W (x)

Li j PL + W (x)
Ri j PR

]
χ̃−

j ,

LHx χ̃0
a χ̃0

b
= −g

2
Hx

¯̃χ0
a

[
D(x)

Lab PL + D(x)
Rab PR

]
χ̃0
b ,

LHx�� = −gHx �̄
[
S(x)
L ,�PL + S(x)

R,�PR

]
�. (2.77)

The coupling factors here are given in terms of the SUSY-ISS model parameters in
Appendix D.
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Summarizing, in this Chapter we have seen that the experimental evidences for
neutrino masses have established the need of new physics in order to add neutri-
no masses to the SM. We have reviewed some popular neutrino mass generation
models, paying special attention to two low scale seesaw models, the ISS and the
SUSY-ISS models, which add heavy neutrinos with masses at the reach of the L-
HC. We have discussed in detail the neutrino sector of these models and introduce
a new parametrization, the μX parametrization, that allows to accommodate neutri-
no oscillation data while choosing as input parameters the Yukawa coupling matrix
and the heavy neutrino mass matrix MR , i.e., the most relevant parameters for our
forthcoming study of the charged LFV observables.
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Chapter 3
Phenomenological Implications of Low
Scale Seesaw Neutrinos on LFV

In this Chapter we revisit some of the most relevant phenomenological implica-
tions of right-handed neutrinos with TeV scale masses, paying special attention to
their lepton flavor violating consequences. After reviewing the experimental status
of charged LFV searches, we discuss in detail the LFV radiative and three-body
lepton decays in presence of right-handed neutrinos at the TeV scale. Furthermore,
we also study other observables that are modified by the new neutrino sector, such
as electroweak precision observables, or processes with lepton number violation or
lepton flavor universality violation. This Chapter will be very useful and illustrative
to learn the general ideas about LFV fromTeV right-handed neutrinos and to describe
the main points of our analysis, as well as to introduce the set of observables that
we will consider as potential constraints when studying maximum allowed predic-
tions for LFV Higgs and Z decays in the forthcoming Chapters. The content of this
Chapter, except Sect. 3.1, is original work of this Thesis. It includes the proposal
of new scenarios with suppressed μ-e transitions, the geometrical interpretation of
the associated neutrino Yukawa coupling matrix, as well as the phenomenological
consequences of these mentioned scenarios. All these new contributions have been
published in Refs. [1, 2].

3.1 Experimental Status of Charged LFV and Constraints

Lepton flavor violating processes are forbidden in the SM due to the assumption
of massless neutrinos, therefore any observation of lepton flavor violation would
automatically imply the presence of new physics beyond the SM. This was the case
whenLFVwas observed in neutrino oscillations,what led to the need of extending the
SM to include neutrino masses, as we discussed in Chap.2. Interestingly, if neutrino
masses and mixings are minimally added to the SM, they radiatively induce LFV in
the charged lepton sector (cLFV), although with extremely small ratios, suppressed
by the smallness of the neutrino masses. For instance, using neutrino oscillation
data in Eq. (2.6), the predictions for the μ → eγ ratio are of the order of 10−50.
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Fig. 3.1 Evolution of cLFV
transition upper limits from
several experiments,
including expected
sensitivities for some next
generation experiments.
Figure borrowed from
Ref. [3]

Consequently, a positive experimental signal for cLFV would open a new window
for BSM physics and could also help throwing light on the question of what is the
mechanism that generates the neutrino masses.

Unfortunately, cLFV has not been observed yet in Nature, although there is
an extensive experimental program developing different strategies to look for new
physics signals in the charged lepton sector and, indeed, there are already very com-
petitive upper bounds on several cLFV processes. One of the standard searches
focuses on the radiative decay of a muon into a electron and a photon, concretely
on the μ+ → e+γ channel, which has impressively evolved from the first bound of
less than a 10% by Hincks and Pontecorvo [4] in 1947, to the latest upper bound
by the MEG collaboration [5] of 4.2 × 10−13 in 2016. We schematically show this
evolution in Fig. 3.1, borrowed from Ref. [3]. For a complete historical review see,
for instance, Refs. [6, 7]. In the next few years, the upgrade fromMEG toMEG-II [8]
is expected to improve the sensitivity to this cLFV channel in one order of magnitud.

Another possible LFV decay channel of the muon is μ → 3e, complementary
to the μ → eγ channel and very interesting for many BSM models. The best cur-
rent upper bound is provided by SINDRUM [9] which sets BR(μ+ → e+e+e−) <

1.0 × 10−12, although a huge improvement is expected to be obtained by the Mu3e
experiment [10]. This experiment has been proposed at PSI, with the aim of reach-
ing decay rates up to O(10−15) with the current muon beamline and O(10−16) if an
upgrade to a High Intensity Muon Beam (HiMB) is achieved at PSI.

Alternatively to muon decays, LFV between muons and electrons has been exten-
sively searched for in μ → e conversion experiments. Here, muons are stopped in a
thin layer and formmuonic atoms, in which amuon can be converted into an electron,

μ− + N → e− + N . (3.1)
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Table 3.1 Present upper bounds and future expected sensitivities for cLFV transitions

LFV Obs. Present bound (90%CL) Future sensitivity

BR(μ → eγ) 4.2 × 10−13 MEG (2016) [5] 6 × 10−14 MEG-II [8]

BR(τ → eγ) 3.3 × 10−8 BABAR
(2010) [11]

10−9 BELLE-II [12]

BR(τ → μγ) 4.4 × 10−8 BABAR
(2010) [11]

10−9 BELLE-II [12]

BR(μ → eee) 1.0 × 10−12 SINDRUM
(1988) [9]

10−16 Mu3E (PSI) [10]

BR(τ → eee) 2.7 × 10−8 BELLE
(2010) [13]

10−9,−10 BELLE-II [12]

BR(τ → μμμ) 2.1 × 10−8 BELLE
(2010) [13]

10−9,−10 BELLE-II [12]

BR(τ → μη) 2.3 × 10−8 BELLE
(2010) [14]

10−9,−10 BELLE-II [12]

CR(μ − e,Ti) 4.3 × 10−12 SINDRUM II
(2004) [15]

10−18 PRISM
(J-PARC) [16]

CR(μ − e,Au) 7.0 × 10−13 SINDRUM II
(2006) [17]

CR(μ − e,Al) 3.1 × 10−15 COMET-I
(J-PARC) [18]

2.6 × 10−17 COMET-II
(J-PARC) [18]

2.5 × 10−17 Mu2E
(Fermilab) [19]

Such a conversion in the field of the nucleus has as a clear signal the emission of
a monochromatic electron of E � 100 MeV, where the precise value of its energy
depends on the nucleus [20]. Current upper bound comes from the SINDRUM II col-
laboration, which is set to 7.0 × 10−13 using gold atoms [17]. Nevertheless, a strong
experimental effort is planned in this direction, implying extraordinary expected
sensitivities of O(10−18) for the next generation of μ-e conversion experiments, as
PRISM [16] at J-PARCorMu2E at Fermilab [19]. Interestingly, theseμ-e conversion
experiments can also be used to look for a muon conversion into a positron

μ− + N (A, Z) → e+ + N (A, Z − 2) , (3.2)

in a process that violates, besides lepton flavor, total lepton number in two units.
These searches are complementary to other experiments looking for LN violation,
like neutrinoless double beta decay (0νββ), and therefore, they are very interesting
for testing theMajorana character of the neutrinos. Although the experimental signal
is not as clear as in the μ−-e− conversions, the SINDRUM II collaboration was able
to set a very compelling upper bound on the μ− + Ti → e+ + Ca(g.s.) transition of
4.3 × 10−12 at the 90% CL [15]. Furthermore, additional cLFV evidences are being
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Fig. 3.2 Summary on present LFV τ decay upper limits by the HFLAV group [21]

looked for, like μ+e− → μ−e+ transitions of muonium atoms. We refer to Ref. [6]
for a complete review of cLFV in muon transitions.

In order to study LFV processes in the tau sector, we need to look at B facto-
ries. The BABAR collaboration put the most constraining upper bounds of LFV
radiative tau decays, setting BR(τ± → μ±γ) < 4.4 × 10−8 and BR(τ± → e±γ) <

3.3 × 10−8 [11]. On the other hand, BELLE was able to constraint LFV three body
decays [13], settingBR(τ− → μ−μ+μ−) < 2.1 × 10−8,BR(τ− → e−e+e−) < 2.7 ×
10−8, and similar bounds for mixed combinations of muons and electrons in the
final state. The LHCb collaboration has also performed searches for τ− → μ−μ+μ−
decays, finding an upper bound of 4.6 × 10−8 [22]. This analysis, done with 1 fb−1 of
proton-proton collision at

√
s = 7 TeV and 2 fb−1 at 8 TeV, already has a sensitivity

close to the best current bounds, so we could expect that LHCb can tell us something
new about this decay channel in a near future. Moreover, in 2018, the BELLE-II
experiment [12] will start its operation with the aim of improving the sensitivities to
both types of LFV τ decays in up to two orders of magnitude. We summarize the
current upper bounds, as well as future expected sensitivities, on cLFV transitions
in Table3.1.

An interesting feature about τ leptons is that their mass is large enough to decay
into hadrons. This fact opens a new experimental window looking for semileptonic
LFV tau decays.We summarize current upper bounds on theLFV τ decays in Fig. 3.2,
taken from the Heavy Flavor Average (HFLAV) group [21], which are around 10−8–
10−7. Nevertheless, we can expect that BELLE-II will improve these sensitivities in
about two orders of magnitude.
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Table 3.2 Present upper bounds for some LFV/LNV meson decays

LFV/LNV Obs. Present bound (90%CL)

BR(π0 → μe) 3.59 × 10−10 KTeV (2008) [23]

BR(KL → μe) 4.7 × 10−12 BNL E871 (1998) [24]

BR(KL → π0μe) 7.56 × 10−11 KTeV (2008) [23]

BR(KL → π0π0μe) 1.64 × 10−10 KTeV (2008) [23]

BR(K+ → π+μ+e−) 1.3 × 10−11 BNL E777/865 (2005) [25]

BR(K+ → π+μ−e+) 5.2 × 10−10 BNL E865 (2000) [26]

BR(K+ → π−μ+e+) 5.0 × 10−10 BNL E865 (2000) [26]

BR(K+ → π−e+e+) 6.4 × 10−10 BNL E865 (2000) [26]

BR(K+ → π−μ+μ+) 1.1 × 10−9 NA48/2 (2010) [27]

BR(B+ → K−μ+μ+) 5.4 × 10−8 LHCb (2012) [28]

BR(B+ → π−μ+μ+) 5.8 × 10−8 LHCb (2012) [28]

Experimental searches of meson decays are also extremely interesting for look-
ing for both LFV and LNV processes. LFV neutral kaon decay, KL → μe, has
been extensively searched at experiments (see Ref. [7] for a review) and cur-
rently the most stringent bound by the BNL collaboration sets BR(KL → μ±e∓) <

4.7 × 10−12 [24]. Other LFV or LNV KL or π0 decays, as well as charged kaon
K+ → π±�+

1 �∓
2 decays, have been searched at several experiments, although no

positive signal has been found yet. We summarize in Table3.2 some of these upper
bounds.

We conclude this overview about cLFV experimental searches by commenting
on possible Z and Higgs boson LFV decays. LEP, as a Z factory, searched for LFV
Z → ��′ decays with no luck [29, 76]. Thus, it established upper limits to these
processes, as we summarize in Table3.3, which are still the most constraining ones
when a tau lepton is involved. At present, these processes are being searched at
the LHC and ATLAS is already at the level of LEP results for the LFV Z decay
rates, and even better for Z → μe channel [31]. Thus, we can expect that new LHC
runs would help testing these channels. Moreover, the sensitivities to LFV Z decay
rates are expected to highly improve at the next generation of colliders. In particular,
following the discussion in Ref. [32], the future linear colliders are expected to reach
sensitivities of 10−9 [33, 34], and at a Future Circular e+e− Collider (such as FCC-
ee (TLEP) [35]), where it is estimated that up to 1013 Z bosons would be produced,
the sensitivities to LFVZD rates could be improved up to 10−13. More recently, the
discovery of the Higgs boson has opened new channels for looking for LFV in the
charged sector with the LFV H decays H → ��′. The first search of this kind was
done by CMS for H → τμ at

√
s = 7 TeV [39] and, interestingly, a 2.4σ excess was

found with a best fit value of

BR(H → τμ) = 8.4+3.9
−3.7 × 10−3 , (3.3)
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Table 3.3 Present upper bounds at 95%CL on LFV decays of Z and H bosons

LFV Obs. Present bounds (95%CL)

BR(Z → μe) 1.7 × 10−6 LEP (1995) [29] 7.50 × 10−7 ATLAS
(2014) [31]

BR(Z → τe) 9.8 × 10−6 LEP (1995) [29]

BR(Z → τμ) 1.2 × 10−5 LEP (1995) [30] 1.69 × 10−5 ATLAS
(2014) [36]

BR(H → μe) 3.5 × 10−4 CMS (2016) [37]

BR(H → τe) 6.1 × 10−3 CMS (2017) [38] 1.04 × 10−2 ATLAS
(2016) [36]

BR(H → τμ) 2.5 × 10−3 CMS (2017) [38] 1.43 × 10−2 ATLAS
(2016) [36]

which coincided with a smaller excess of around 1σ at ATLAS. Unfortunately, this
excess has not been confirmed with more data at

√
s = 8 TeV neither with the

LHC run II. Therefore, both ATLAS and CMS have constraint these ratios at the
O(10−3,−4), as summarized in Table3.3. All these bounds have been obtained using
the run-I data at

√
s = 7 and 8 TeV, with the exception of the very recent result by

CMS [38], where the upper bounds BR(H → τe) < 0.61% and BR(H → τμ) <

0.25% have been set after analyzing 35.9 fb−1 of data at
√
s = 13 TeV. These upper

bounds improve previous constraints from indirect measurements at LHC [40] by
roughly one order ofmagnitude (see also [41]), and it is close to the previous estimates
in [42] that predicted sensitivities of 4.5 × 10−3 (see also, [43]). The future perspec-
tives for LFVHD searches are encouraging due to the expected high statistics of
Higgs events at future hadronic and leptonic colliders. Although, to our knowledge,
there is no realistic study, including background estimates, of the expected future
experimental sensitivities for these kinds of rare LFVHD events, a naive extrapola-
tion from the present situation can be done. For instance, the future LHC runs with√
s = 14 TeV and total integrated luminosity of first 300 fb−1 and later 3000 fb−1

expect the production of about 25 and 250 millions of Higgs events, respectively,
to be compared with 1 million Higgs events that the LHC produced after the first
runs [44–46]. These large numbers suggest an improvement in the long-term sensitiv-
ities to BR(H → �k �̄m) of at least two orders ofmagnitudewith respect to the present
sensitivity. Similarly, at the planned lepton colliders, like the international linear col-
lider (ILC) with1

√
s = 1 TeV and 2.5 ab−1 [47], and the future electron-positron

circular collider (FCC-ee) as the TLEP with
√
s = 350 GeV and 10 ab−1 [48], the

expectations are of about 1 and 2 million Higgs events, respectively, with much
lower backgrounds due to the cleaner environment, which will also allow for a large
improvement in LFV Higgs decay searches with respect to the current sensitivities.

Overall, we see that an incredible experimental effort is being made in searching
for charged lepton flavor violating processes. As we said, any positive signal will

1We thank J. Fuster for private communication with the updated ILC perspectives.
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automatically imply the existence of new physics even beyond the SM model with
a minimal ad-hoc addition of neutrino masses. Nowadays, the lack of such a signal
has allowed to several experiments to establish upper bounds on this kind of pro-
cesses, specially in μ-e transitions, where the bounds are in general several orders
of magnitude stronger than the equivalent ones for τ -e or τ -μ sectors. Nevertheless,
we hope that the expected improved sensitivities for next generation of experiments
will find evidences for new physics in the form of charged lepton flavor violation.

3.2 Study of �m → �kγ and �m → �k�k�k in the ISS

In order to better understand the implications on cLFV phenomenology of the TeV
scale right-handed neutrinos, we first explore in this section the LFV lepton decays
that, as we can see in Table3.1, are one of the most constrained cLFV observables.
Concretely, we will consider the ISS model as a specific realization of low scale
seesaw models and study in this section the LFV radiative decays �m → �kγ and the
LFV three body decays �m → �k�k�k with k �= m. The numerical estimations will
be done using the full one-loop formulas given in Refs. [49, 50], which we collect
in Appendix A for completeness.

In all the forthcoming study, we will always impose agreement with light neutrino
data2 in Eq. (2.6). For that purpose, we will make use of one of the two parametriza-
tions described in Sect. 2.3 at a time, i.e., the Casas-Ibarra parametrization given in
Eq. (2.44) or the μX parametrization in Eq. (2.46). By comparing the results when
using these two parametrizations we will learn about the advantages and disadvan-
tages of using one parametrization or the other for exploring the parameter space of
the model.

We focus first on the LFV radiative decays, since their analytical expressions are
simpler and therefore very useful to gain intuition about cLFV processes in this kind
of models. We stress that all the numerical estimates and plots are made using the
full formulas in Appendix A. Nevertheless, for the purpose of the discussion, we
have derived the following simple but useful approximated expression:

BR(�m → �kγ) ≈ α3
Ws2W

1024π2m4
W

m5
�m

��m

v4

M4
R

∣
∣
∣

(

YνY
†
ν

)

km

∣
∣
∣

2
, (3.4)

which works quite well for a single heavy mass scale, MR = MR1, and in the seesaw
limit vYν 	 MR , as we will see.

We display in Fig. 3.3 the numerical results for the LFV �m → �kγ decay rates
when using the Casas-Ibarra parametrization to accommodate neutrino oscillation
data. As explained before, this parametrization builds the Yukawa coupling matrix
taking MR , μX , m

diag
ν and the orthogonal matrix R as input parameters in Eq. (2.44).

2We will show our results for the case of a Normal Hierarchy, although similar results have been
obtained for an Inverted Hierarchy.
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Fig. 3.3 Comparison of the full one-loop (solid lines) and approximate (dashed lines) rates for the
radiative decays �m → �kγ as functions of MR and their relation with the (YνY

†
ν )km non-diagonal

matrix elements in the Casas-Ibarra parametrization. Dotted lines in the right panel indicate non-
perturbative Yukawa coupling according to |Y i j

ν |2/4π > 1.5. The other input parameters are set to
μX = 10−7 GeV, mν1 = 0.1 eV, and R = 1

In this first plot, we consider a simplified scenario where both MR and μX matrices
are diagonal and degenerate, i.e., MR ≡ MR1 and μX ≡ μX1. Concretely, we set
μX = 10−7 GeV,mν1 = 0.1 eV and R = 1, while we vary MR from 200 to 107 GeV.
The left panel of Fig. 3.3 illustrates the numerical predictions of BR(�m → �kγ) rates
in this scenario, using both the full analytical expression in Eq. (A.5) (solid lines)
and the approximated expression in Eq. (3.4) (dashed lines). This plot already shows
that the approximated expression works very well for large enough values of MR , as
we anticipated. Therefore, we can make use of Eq. (3.4) in order to understand the
analytical dependence of these ratios with de heavy neutrino mass MR .

In this left panel of Fig. 3.3 we clearly see that these rates saturate to a constant
value for increasing MR , leading to an apparent non-decoupling behavior with the
mass of the heavy neutrinos. Nevertheless, this non-decoupling effect is an artifact of
the Casas-Ibarra parametrization, since it induces a MR dependence in the Yukawa
coupling matrix, although they are both in principle independent parameters. More
precisely, looking at Eq. (2.44) we can see that the elements of the relevant combina-
tion in Eq. (3.4), (YνY

†
ν ), grow with MR approximately as M2

R , as can be seen in the
right panel of Fig. 3.3. Therefore, the final prediction for BR(�m → �kγ) is constant
with MR .

We will deal with this kind of apparent non-decoupling effects every time we
use the Casas-Ibarra parametrization. The growing of the Yν coupling with MR

will compensate the suppression coming from the heavy mass scale running in the
loops, leading to a fake violation of the decoupling theorem [51]. Nevertheless, we
have checked that for constant value of the Yukawa coupling the predictions for
the different one-loop processes considered in this Thesis decrease with MR , as can
be seen for the LFV radiative decay rates in Eq. (3.4). This expected decoupling
behavior will become manifest when using the μX parametrization, since it works
with Yν and MR as independent input parameters.
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Finally, we can compare the results for the LFV radiative decay rates in Fig. 3.3
with the present experimental upper bounds in Table3.1. We see that, for this choice
of parameters,μ → eγ is the closest one to its upper bound of 4.2 × 10−13 [5]. Being
this bound much stronger that the ones on LFV radiative τ decays, we found that
μ → eγ is themost constraining radiative decay formost of the parameter spaceof the
model. Moreover, looking at Table3.1, we see that in general strongest cLFV bounds
will come from processes involving a μ-e transition, not only from the mentioned
μ → eγ, but also from μ → eee or μ-e transitions in nuclei. Consequently, we can
try to find areas in the parameter space where these strong bounds are avoided by a
suppressed prediction of μ-e transitions. We can then expect that the largest allowed
τ -μ and τ -e transitions will lie precisely in these areas.

3.2.1 Proposal of Scenarios with Suppressed μ-e Transitions

Motivated by the fact that experimental searches in Table3.1 show much more con-
strained cLFV processes in the μ-e sector than in the other τ -μ and τ -e sectors, we
look for phenomenological scenarios where μ-e transitions are suppressed. In order
to do this, we find more useful to consider the μX parametrization instead of the
Casas-Ibarra one, since it allow us to consider the Yukawa coupling directly as an
input parameter. Looking again at Eq. (3.4), we learn that, for diagonal and degen-
erate MR matrix, the relevant Yukawa combination for cLFV processes is YνY

†
ν ,

which is simplified to YνY
T
ν in the case of real matrices.3 Then, it will be very useful

and instructive to consider a geometrical interpretation of the Yukawa matrix where
its entries are interpreted as the components of three generic (ne, nμ, nτ ) neutrino
vectors in flavor space,

Yν =
⎛

⎝

Y 11
ν Y 12

ν Y 13
ν

Y 21
ν Y 22

ν Y 23
ν

Y 31
ν Y 32

ν Y 33
ν

⎞

⎠ ≡ f

⎛

⎝

ne

nμ

nτ

⎞

⎠ , (3.5)

which for the relevant combination in cLFV processes give:

YνY
T
ν = f 2

⎛

⎝

|ne|2 ne · nμ ne · nτ

ne · nμ |nμ|2 nμ · nτ

ne · nτ nμ · nτ |nτ |2

⎞

⎠ . (3.6)

This means that the 9 input parameters determining the Yν matrix can be seen as
the 3 modulus of these three vectors (|ne|, |nμ|, |nτ |), the 3 relative flavor angles
between them (θμe, θτe, θτμ), with θi j ≡ n̂in j , and 3 extra angles (θ1, θ2, θ3) that
parametrize a global rotationO of these 3 vectors that does not change their relative

3In the following derivation of the μ-e suppressed scenarios, we will assume the situation of having
real matrices in order to avoid potential constraints from lepton electric dipole moments.
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Fig. 3.4 Predictions for the BR(τ → μγ) and BR(τ → eγ) as functions of MR in the μX
parametrization. The input Yν matrix is written as explained in the text, with different values of
the strength parameter f . In the left (right) panel τ -μ (τ -e) transitions are maximized by setting
cτμ(cτe) = 1. The other cosines are set to zero, the modulus |ne,μ,τ | = 1 and O = 1

angles. In addition, we have introduced an extra parameter f that characterizes the
global Yukawa coupling strength and that will be useful in forthcoming analysis.
Since the combination YνY

T
ν / f 2 is symmetric, it only depends on 6 parameters that

we take to be the 3 modulus (|ne|, |nμ|, |nτ |) and the cosine of the three flavor angles
(cμe, cτe, cτμ), with ci j ≡ cos θi j . The names of the angles are motivated by the fact
that the cosine of the angle θi j controls the LFV transitions in the �i -� j sector, which
we write in short as LFV�i � j . It is interesting to notice that the global rotationO does
not enter in the YνY

T
ν combination and, therefore, it will not affect any of the cLFV

processes studied in this work.
Before going to the scenarios with suppressed μ-e transitions, we study in Fig. 3.4

the predictions for the LFV radiative decay rates in terms of the most relevant param-
eters in this parametrization. In the left panel, we show BR(τ → μγ) in a scenario
where τ -μ transitions are maximized by setting4 cτμ = 1, while they are suppressed
in the τ -e and μ-e sectors, cτe = cμe = 0. Equivalently, the right panel displays
BR(τ → eγ) in a scenario where τ -e transitions are favored. Both plots show the
dependence of these observables on the heavy neutrino mass scale MR for several
values of the Yukawa coupling strength factor f .

First of all, we see that both observables show the expected decoupling behavior
with MR . This is in contrast with the apparent non-decoupling effects we saw in
Fig. 3.3 when using the Casas-Ibarra parametrization. As we explained before, the
difference is that now the Yukawa coupling is treated as an independent parameter
and, therefore, the dominant dependence on the MR comes from the mass in the
propagators of the right-handed neutrinos running in the loops and whose effects
decrease as MR becomes heavier. On the other hand, the rates are bigger the larger
the Yukawa coupling strength f is, as expected. Moreover, although not shown here,
we have checked that the rates for τ → μγ (τ → eγ) grow with cτμ (cτe), |nτ |
and |nμ| (|ne|), while being independent of the other parameters, in particular the

4We actually set cτμ = 0.99 for this plot, since the μX parametrization in Eq. (2.46) requests a
non-singular Yν . Nevertheless, the results for cLFV processes are basically the same as setting
cτμ = 1.
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rotation matrixO. In summary, the full radiative decays rates follow the behavior of
the approximated formula in Eq. (3.4).

Second, we learn that the predictions for τ → μγ in the left panel are the same
than those for τ → eγ in the right panel. The reason for this similarity is that they
are related by the interchange nμ ↔ ne in Eq. (3.5) and, therefore, we expect to have
basically the same results in both scenarios. Based on this relation, we will show
most of our results only for the τ -μ sector, knowing that the conclusions for the τ -e
sector can be obtained by just exchanging nμ with ne.

Third, we observe that the predictions can reach the present experimental upper
bounds from BABAR (see Table3.1) and, therefore, they will constrain our param-
eter space when exploring other observables. In particular, for these scenarios with
favored τ -μ or τ -e transitions, maximum values of f ∼ O(0.5 − 1) forMR = 1TeV,
or minimum values for MR of ∼ O(1–2) TeV for f = 1, are allowed. In the future,
searches at BELLE-II are expected to improve the sensitivity up to 10−9 for these
channels, so they will be able to probe values of f � 0.3 for 1 TeV neutrinos.

As we have seen, using this geometrical interpretation of the Yukawa matrix the
μ-e suppression can be easily realized by just assuming that ne and nμ are orthogonal
vectors, i.e., cμe = 0. Such condition defines a family of ISS scenarios that can be
parametrized using the following Yukawa matrix:

Yν = A · O with A ≡ f

⎛

⎜
⎝

|ne| 0 0
0 |nμ| 0

|nτ |cτe |nτ |cτμ |nτ |
√

1 − c2τe − c2τμ

⎞

⎟
⎠ , (3.7)

where O is the above commented orthogonal rotation matrix, which does not enter
in the product YνY

T
ν , and f is again the parameter controlling the global strength of

the Yukawa coupling matrix. The fact that we are assuming real and non-singular
Yν imposes the condition c2τe + c2τμ < 1. Notice that the Yν matrix in Eq. (3.7) is the
most general one that satisfies the condition

(

YνY
T
ν

)

μe = 0.
Wecannowexplore the predictions forBR(�m → �kγ)when this kind of scenarios

are considered. Looking at Eq. (3.4), we can easily see that the LFV radiative decays
of the τ lepton depend on the most relevant parameters, f , MR and cτ� as follows:

BR(τ → �γ) ∼ v4 f 4

M4
R

c2τ� with � = e,μ. (3.8)

The case of μ → eγ is different, since the assumption cμe = 0 cancels the leading
order contribution given by the approximate formula in Eq. (3.4), and therefore
the first relevant contribution in this observable is of higher order in the expansion
series in powers of the Yukawa coupling over MR . Specifically, it is of the type
v4(YνY

T
ν YνY

T
ν )/M4

R . Consequently, it is suppressed with respect to Eq. (3.8) and the
predicted rates for this observable turn out to depend on the product of both cτe and
cτμ:
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Fig. 3.5 Left panel: Contour lines for BR(μ → eγ) as a function of BR(τ → eγ) and BR(τ → μγ)
rates, for fixed MR = 1 TeV, |ne,μ,τ | = f = 1 values and varying c2τe and c2τμ from 0 to 0.6, as
shown in the right and top axes. The yellow area represents the region that cannot be accessed with
real Yukawa matrices. The red area is excluded by the upper bound on μ → eγ from MEG, while
the orange (green) arrow marks the present upper bound on τ → eγ (τ → μγ) from BABAR, see
Table3.1. Right panel: Zoom on the lower left corner of the plot in the left panel which allows
for a better reading of the region allowed by present experimental data. The extra darker red line
represents the future expected sensitivity of 4 × 10−14 by MEG-II [8]

BR(μ → eγ) ∼ v8 f 8

M8
R

c2τec
2
τμ . (3.9)

Therefore, in order to define a scenario where all μ-e transitions are completely
suppressed, i.e.,

(

YνY
T
ν

)

μe = (

YνY
T
ν YνY

T
ν

)

μe = · · · = 0, we see that the condition
cμe = 0 is not enough and that we also need cτe = 0 or cτμ = 0.

These behaviors of the BR(�m → �kγ) rates are numerically illustrated in Fig. 3.5,
where the full one-loop formulas in Appendix A have been used. These plots show
contourlines for BR(μ → eγ) in terms of the other radiative decay rates. It also
displays the above commented correlations between the BR(τ → μγ) and BR(τ →
eγ) rates and the parameters cτμ and cτe, respectively. The contour lines for BR(μ →
eγ) are obtained by varying c2τμ and c2τe within the interval (0, 0.6), which in turn
provide predictions for BR(τ → μγ) and BR(τ → eγ) that are represented in the
vertical and horizontal axes respectively. This is for the simple case with |ne,μ,τ | =
f = 1, MR = 1 TeV and O = 1 (although we checked again that the rates do not
depend on O), but similar qualitative conclusions can be obtained for other choices
of these parameters. Notice that the above mentioned condition of c2τe + c2τμ < 1
from the Yukawa matrix in Eq. (3.7) makes the yellow area, where c2τe + c2τμ ≥ 1,
not accesible to our analysis. We also find that the rates for τ → μγ (τ → eγ) can in
general be large and, for the values of the parameters selected in this plot, they are of
the order of the present upper bounds from BABAR [11], marked here with a green
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Fig. 3.6 BR(τ → μμμ) as a function of MR in two TM-like scenarios with cτμ = 1 and cτe = 0.
Left panel: Full predictions for |ne,μ,τ | = 1 and three values of f . Right panel: Full prediction
(solid line) in the TM-5 scenario with f = 1, decomposed in its contributions from γ penguin
(blue dot-dashed), boxes (gray dotted) and Z penguin (yellow dashed), the dominant one. Purple
shadowed area is excluded by BELLE

(orange) arrow. Moreover, we see that they depend just on c2τμ (c2τe), in agreement
with the approximate expression in Eq. (3.8).

We also learn that the predictions for BR(μ → eγ) are between 3 and 4 orders
of magnitude smaller than the τ radiative decay rates, as expected from Eq. (3.9).
Nevertheless, they are still above the upper bound from the MEG experiment for
most of the parameter space. In fact, the MEG bound excludes everything but the
area close to the axes, since the BR(μ → eγ) goes asymptotically to zero when
approaching the axes, as can be seen in the zoom over the lower left corner, shown
in the right panel of Fig. 3.5. When lying just on top of these axes, the predictions
for BR(μ → eγ) completely vanish, as seen in Eq. (3.9), implying that BR(τ → eγ)
must be small in order to allow for large BR(τ → μγ), and viceversa.

Therefore, we can identify our phenomenological scenarios with suppressed μ-
e transitions, which we will refer to as ISS-���LFVμe, with the two axes in Fig. 3.5.
We then consider two classes of scenarios: the TM scenarios along the LFVτμ axis
(cτe = 0) that may give sizable rates for τ -μ transitions, but always give negligible
contributions to LFVμe and LFVτe; and the TE scenarios along the LFVτe axis
(cτμ = 0) that may lead to large rates only for the τ -e transitions. In Table3.4 we list
some specific examples that we will use along this Thesis for the numerical estimates
of our selected TM scenarios. Equivalent examples for the TE scenarios are obtained
by exchanging μ and e everywhere in these TM scenarios. Notice that we introduced
the notation Y (1)

τμ , Y
(2)
τμ and Y (3)

τμ for the Yukawamatrices in the scenarios TM-5, TM-6
and TM-7, respectively, which corresponds to the original notation in Ref. [1]. We
will indistinguishably use both notations along this Thesis.

We can next study the predictions for the LFV three body decays �m → �k�k�k
in this kind of scenarios. Figure3.6 shows the BR(τ → μμμ) rates in a TM-like
scenario of maximized τ -μ transitions, i.e., cτμ = 1 and cτe = cμe = 0, although the
general conclusions are the same for BR(τ → eee) in a TE scenario. In the left panel,
the dependence of the full decay rate is displayed as a function of MR for different
values of f . We clearly see that the rates are again large, within present and future
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Table 3.4 TM scenarios for numerical estimates of large τ -μ transitions. Notation ‘�’ means
cτμ = 0.99 instead of 1 in order to have non-singular Yν matrices, see Eq. (2.46). The notation

Y (1−3)
τμ corresponds to the original one introduced in Ref. [1]. Equivalent TE scenarios are easily

obtained by exchanging μ and e in these TM ones

Scenario
name

cτμ |ne| |nμ| |nτ | Example

TM-1 1/
√
2 1 1 1 Yν = f

⎛

⎜
⎝

1 0 0

0 1 0

0 1/
√
2 1/

√
2

⎞

⎟
⎠

TM-2 1 1 1 1 Yν � f

⎛

⎜
⎝

1 0 0

0 1 0

0 1 0

⎞

⎟
⎠

TM-3 1/
√
2 0.1 1 1 Yν = f

⎛

⎜
⎝

0.1 0 0

0 1 0

0 1/
√
2 1/

√
2

⎞

⎟
⎠

TM-4 1 0.1 1 1 Yν � f

⎛

⎜
⎝

0.1 0 0

0 1 0

0 1 0

⎞

⎟
⎠

TM-5 1
√
2 1.7

√
3 Yν ≡ Y (1)

τμ = f

⎛

⎜
⎝

0 1 −1

0.9 1 1

1 1 1

⎞

⎟
⎠

TM-6 1/3
√
2

√
3

√
3 Yν ≡ Y (2)

τμ = f

⎛

⎜
⎝

0 1 1

1 1 −1

−1 1 −1

⎞

⎟
⎠

TM-7 0.1
√
2

√
3 1.1 Yν ≡ Y (3)

τμ = f

⎛

⎜
⎝

0 −1 1

−1 1 1

0.8 0.5 0.5

⎞

⎟
⎠

TM-8 1 1/2 1/3 1/4 Yν � f

⎛

⎜
⎝

1 0 0

0 0.5 0

0 0.08 0.32

⎞

⎟
⎠

TM-9 0.77 0.1 0.46
√
2 Yν = f

⎛

⎜
⎝

0.1 0 0

0 0.46 0.04

0 1 1

⎞

⎟
⎠

TM-10 0.64 0.1 0.94
√
2 Yν = f

⎛

⎜
⎝

0 0.1 0

0.94 0 0.08

1 0 −1

⎞

⎟
⎠

experimental sensitivities, specially for large f values and low MR . For example, in
this particular case of cτμ = 1, the present bound from BELLE of BR(τ → μμμ) <

2.1 × 10−8 excludes large couplings of f � 1 for heavy neutrinos below 1 TeV.
Future expected sensitivities at BELLE-II may be able to probe values of MR up to
2–3 TeV for f = 1.
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As in the case of the radiative decay τ → μγ, we see again that the rates decrease
with increasing MR , manifesting the decoupling behavior expected when using the
μX parametrization. Although we do not show all the plots here, we have explored
how the rates for τ → μμμ depend on the most relevant parameters finding that they
grow with f , cτμ, |nτ | and |nμ|, whereas they are independent of cτe, cμe, |ne| and
the rotation O.

Nevertheless, the dependence of τ → μμμ on these parameters is not exactly
equal to that of τ → μγ, since the former receives contributions from different types
of diagrams, namely, the γ-penguin, Z -penguin and box diagrams. In order to better
understand this, we display separately the contributions from each type of diagram to
the total decay rate in the right panel of Fig. 3.6. We choose the TM-5 scenario from
Table3.4, although similar qualitative results are found for other TM scenarios. The
dependences on f , MR and cτμ are slightly different for each of the contributions,
leading to a more complicated dependence for the total decay rate. Moreover, we
see that, for this value of f , the dominant contribution is mostly coming from the Z -
penguin. This fact will be important when studying the LFVZ decay rates Z → �k �̄m
in Chap.5.

In the rest of this Thesis we will consider the two parametrizations described in
Chap.2.We will consider more generic searches using the Casas-Ibarra parametriza-
tion for scanning the ISS parameter space, although in that case it will be difficult to
access to these particular directions and, therefore, to conclude onmaximum allowed
rates. Therefore, we will focus on the scenarios in Table3.4 for studying maximum
allowed LFV rates involving τ leptons making sure that we are not generating poten-
tially constrained μ-e transitions.

3.3 Other Implications from Low Scale Seesaw Neutrinos

Generically, the addition of heavy Majorana neutrinos to the particle content of the
SM has a phenomenological impact on several low energy observables via their
mixing with the active neutrinos. These observables can be related to lepton flavor
violation, as the ones above studied, lepton number violation, lepton universality or
others. Therefore, we want to ensure that our forthcoming analysis in Chaps. 4, 5
and 6 comply with the relevant theoretical and experimental constraints in all the
regimes of the considered right handed neutrino masses and couplings. We briefly
discuss in the following the constraints that we have found to be the most relevant
ones for the present Thesis and which we consequently include in our analysis. For
this study we have used our own Mathematica code which includes all the relevant
formulas for the constraining observables that are taken from the literature and that
we include in Appendix B for completeness.



54 3 Phenomenological Implications of Low Scale Seesaw Neutrinos on LFV

Fig. 3.7 Predictions for�rk and�(Z → inv.) as functions ofMR . In both plots we set |ne,μ,τ | = 1,
cτμ = 1, cμe = cτe = 0,O = 1 and consider three values of f . The shadowed band in the left (right)
plot is the present excluded (allowed) region at 3σ

3.3.1 Lepton Flavor Universality

Leptonic and semileptonic decays of pseudoscalar mesons (π, K , D, Ds , B) could
put important constraints on themixing between the active and the sterile neutrinos in
the ISS model, as it has been shown in Refs. [52, 53]. In particular, the most severe
bounds arise from the violation of lepton universality in leptonic kaon decays.5

Following these references, we consider the contributions of the sterile neutrinos to
the �rk parameter, defined as:

�rk = RK

RSM
K

− 1 with RK = �(K+ → e+ν)

�(K+ → μ+ν)
. (3.10)

The comparison of the theoretical calculation in the SM [54, 55] with the recent
measurements from the NA62 collaboration [56, 57] shows that the experimental
measurements agree with the SM prediction within 1σ:

�rk = (4 ± 4) × 10−3. (3.11)

We compute the new physics contributions to �rk using the formulas listed in
Appendix B that we take from Ref. [52] and compare the results with the bound
in Eq. (3.11) at the 3σ level.

We display in Fig. 3.7 our numerical findings using the μX parametrization. In
particular, we choose for this plot a maximized τ -μ scenario with cτμ = 1, cτe =
cμe = 0, |ne,μ,τ | = 1, O = 1 and three different values of f . We see that �rk is
always negative, meaning that RK < RSM

K . Nevertheless, RK tends to RSM
K , and

hence�rk → 0, for large values of MR , as the new physics effects decouple with the
heavy scale. We also see that the deviations from the SM values are larger for larger
values of f , implying that the bound from NA62 can exclude the parameter space

5We do not consider other lepton universality tests in view of the fact that they give similar bounds,
as in the case of �rπ , or they are less constraining, like the ones involving τ leptons [53].
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region of low MR and large f . Furthermore, we have found that this observable is
also independent of the rotation matrixO and very sensitive to the modulus |ne| and
|nμ|, as expected. Actually, the bound from this observable becomes an important
constraint at low values of MR when the ratio between |ne| and |nμ| is different from
one.

3.3.2 The Invisible Decay Width of the Z Boson

The invisible decay width of the Z boson puts very strong constraints on how many
neutrinos with masses below mZ are present. The Z invisible decay width was mea-
sured in LEP to be [58]:

�(Z → inv.)Exp = 499 ± 1.5 MeV, (3.12)

which is about 2σ below the SM prediction:

�(Z → inv.)SM =
∑

ν

�(Z → νν̄)SM = 501.69 ± 0.06 MeV. (3.13)

Although we are not considering the possibility of having mN < mZ here, the pres-
ence of sterile neutrinos affects the tree level predictions of the Z invisible width
even if they are above the kinematical threshold, since they modify the couplings of
the active neutrinos to the Z boson. We compute the tree level predictions using the
formulas provided in Ref. [53], which we collect in Appendix B for completeness,
and we further include the ρ parameter that accounts for the part of the radiative
corrections coming from SM loops, i.e.,

�(Z → inv.)ISS =
3

∑

i, j=1
i≤ j

�(Z → nin j )ISS = ρ�(Z → inv.)treeISS , (3.14)

where ni runs over all kinematically allowed neutrinos and ρ is evaluated as:

ρ = �(Z → inv.)SM
�(Z → inv.)treeSM

. (3.15)

We have also estimated the size of the extra loop corrections induced by the new
heavy neutrino states using the formulas of Ref. [59] and found out that they are
numerically very small compared with the SM loop corrections, in agreement with
Ref. [59], and therefore we will neglect them in the following.

We show our numerical results as a function of MR in Fig. 3.7, for cτμ = 1 and
three values of f . We see again that the deviations from the SM value decrease with
MR while they grow with f . Moreover, we found that the Z invisible width only
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Fig. 3.8 Predictions for |mee| and theElectroweakPrecisionParameters S,T ,U (the latter enhanced
by a factor of 10 to see it more clearly) as functions of MR . In both plots we set |ne,μ,τ | = 1,
cτμ = 1, cμe = cτe = 0, O = 1 and for three different values of f . The shadowed bands are the
present excluded regions at 3σ

depends onMR , f and themodulus |ne,μ,τ |, while it is not dependent onO and on the
flavor angles (cτμ, cτe), as it was expected, sincewhen adding all the possible neutrino
final states in Eq. (3.14) the dependence on O and on the flavor angles appearing
in each channel disappears in the sum. When comparing with data we require our
predictions to be within the 3σ experimental band, see Eq. (3.12). As we can see in
Fig. 3.7, the Z invisible width provides in general quite strong constraints, indeed
comparable or even tighter in some cases than the previous constraints from the LFV
lepton decays. For instance, for this scenario with cτμ = 1 and f = 1, this observable
also excludes MR values lower than around 1–2 TeV, similar to the constraints from
τ → μγ and τ → μμμ.

3.3.3 Neutrinoless Double Beta Decay

Models that introduce neutrinos with Majorana mass terms allow for lepton number
violating processes, such as neutrinoless double beta decay [60]. Within the ISS
framework with 6 sterile fermions added to the SM particle content, the effective
neutrino mass mee is given by [61–63]

mee �
9

∑

i=1

(Beni )
2 p2

mni

p2 − m2
ni

�
⎛

⎝

3
∑

i=1

(Beni )
2 mni

⎞

⎠ + p2

⎛

⎝

9
∑

i=4

(Beni )
2 mni

p2 − m2
ni

⎞

⎠ ,

(3.16)
where p2 � −(125 MeV)2 is an average estimate over different values fromdifferent
decaying nucleus of the virtual momentum of the neutrino exchanged in the process.

Although current experiments are searching for neutrinoless double beta decay,
it has not been observed yet. This lack of signal has allowed to the experiments
with highest sensitivity such as GERDA [64], EXO-200 [65, 66] and KamLAND-
ZEN [67] to set strong bounds on the neutrino effective mass. These bounds on the



3.3 Other Implications from Low Scale Seesaw Neutrinos 57

effective neutrino Majorana mass in Eq. (3.16) lie in the range

|mee| � 140 meV − 700 meV . (3.17)

In our analysis, we will apply the most recent constraint of |mee| � 190 meV from
Ref. [66].

Figure3.8 displays the behavior ofmee withMR for different values of theYukawa
strength f . As can be seen in this plot, a maximum value of |mee| ∼ 10 meV is
reached at large MR � 1 TeV and for all studied values of f . We have checked that
this asymptotic value depends linearly on the mass of the light active neutrinos, i.e.,

mν1 ∼ 0.01(0.1) eV → |mee| ∼ 0.01(0.1) eV . (3.18)

As a conclusion, we learn that the prediction for this observable will be below the
current experimental bound and, therefore, it will not impose an important constraint
to our parameter space.

3.3.4 Electroweak Precision Observables

The addition of new physics in the neutrino sector will, in general, modify the pre-
diction of Electroweak Precision Observables (EWPO), which are well determined
by experiments. We take into account the constraints to the ISS model from EWPO
by computing the S, T and U parameters [68] and comparing our predictions to the
experimental results [58]:

S = −0.03 ± 0.10 , T = 0.01 ± 0.12 , U = 0.05 ± 0.10 . (3.19)

We use the formulas from Ref. [69] (which we report in Appendix B) and compare
them with the 3σ experimental bands.

We show in Fig. 3.8 the prediction for S, T and U versus MR , choosing again
a scenario with maximized τ -μ transitions. As can be seen, the predictions rapidly
decrease with MR and, in consequence, the constraints from these observables are in
general weaker than from the LFV lepton decays and from the Z invisible width. In
this anmost of the studied scenarios, we have found that themost constrainingEWPO
is the T parameter and next, although quite close, the S parameter. For instance, for
f = 1 and cτμ = 1 we find that MR below around 300 GeV are excluded by T .

3.3.5 Heavy Neutrino Decay Widths

In this Thesis, we are considering sizable neutrino Yukawa couplings, so we should
check that they are still within the perturbative regime. In order to impose perturba-
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Fig. 3.9 Theoretical constraints from the requirement of perturbativity (left panel) and from the
consistency of the μX parametrization (right panel), for the scenario TM-5. The regions excluded
by the constraints are the shadowed areas

tivity we will either choose a direct constraint on the maximum allowed size of the
Yukawa matrix entries, for instance |Y i j

ν |2/(4π) < 1 or, alternatively, we will apply
a constraint on an observable that grows with this Yukawa coupling, like it is the
case of the total width of the heavy neutrinos. When choosing the second method,
we will require that the total decay width of each heavy neutrino is always somehow
smaller than the corresponding heavy neutrino mass.

The computation of the total decay width, in the limit MR � mD that we work
with, is reduced to a few possible decay channels. In this limit, the masses of all
the heavy neutrinos are almost degenerate, close to MR with small differences of
O(m2

DM
−1
R ) between the different pseudo-Dirac pairs, see Fig. 2.4, and therefore,

their potential decays into other heavy neutrinos are suppressed. In consequence,
the dominant decay channels are simply N j → Zνi , Hνi and W±�∓

i , and the total
neutrino width can be then easily computed by adding the corresponding partial
widths of these four decays. The partial decaywidth of the decay channel N j → W�i
is given by:

�N j→W�i =
√

(

m2
N j

− m2
�i

− m2
W

)2 − 4m2
�i
m2

W

16πm3
N j

∣
∣FW

∣
∣
2
. (3.20)

The other channels have similar expressions and the corresponding form factors are
defined as,

∣
∣FH

∣
∣2 =

g2m4
N j

4m2
W

{(

1 − √
xi

)2
[(

1 − √
xi

)2 − xH
]∣
∣Cni n j

∣
∣2 + 4

√
xi

(

2 + 2xi − xH
)(

ReCni n j

)2
}

,

∣
∣FZ

∣
∣2 =

g2m4
N j

4m2
W

{[(

1 − xi
)2 + xZ

(

1 + xi − 6
√
xi

)

− 2x2Z

]
∣
∣Cni n j

∣
∣2 + 12xZ

√
xi

(

ReCni n j

)2
}

,

∣
∣FW

∣
∣2 =

g2m4
N j

4m2
W

∣
∣B�i N j

∣
∣2

{(

1 − xi
)2 + xW (1 + xi ) − 2x2W

}

, (3.21)
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where xH ≡ m2
H/m2

N j
, xZ ≡ m2

Z/m2
N j
, xW ≡ m2

W/m2
N j

and xi ≡ m2
i /m

2
N j

with mi

the mass of the corresponding lepton. The total width is then computed as

�N j =
3

∑

i=1

(

�N j→hνi + �N j→Zνi + 2 �N j→W+�−
i

)

. (3.22)

When summing over all flavors i = 1, 2, 3 in the final state, the four ratios turn out
to be approximately equal [70]:

BR(N j → Hν) = BR(N j → Zν) = BR(N j → W+�−) = BR(N j → W−�+) = 25% .

(3.23)
Wehave explored three different assumptions to complywith the perturbative unitary
condition. In particular we have taken:

�Ni

mNi

< 1,
1

2
,
1

4
for i = 1, . . . , 6 . (3.24)

The results for the TM-5 scenario from Table3.4 are displayed in the left panel of
Fig. 3.9, although similar qualitative results are found for other scenarios. Here, we
show the areas in the (MR, f ) plane that are excluded by the different assumptions in
Eq. (3.24). We find that this perturbativity requirement is not much sensitive to MR ,
giving an excluded area in the (MR, f ) plane that is a nearly horizontal band located
at the top, which constrains basically just the size of the global Yukawa coupling f ,
in the most restricted scenarios, to be below order 2–3.

For the rest of this Thesis, we will take the second choice, 1/2, in Eq. (3.24) when
we decide to use heavy neutrino widths as perturbativity criteria.

3.3.6 Validity Range of the μX Parametrization

As explained before, one of the novelties of this Thesis is the introduction and use
of the μX parametrization as a tool for exploring the model parameter space being
always in agreement with oscillation data. In order to check the validity range of
this parametrization, we require that both the predicted light neutrino mass squared
differences and the neutrino mixing angles that we obtain from the diagonalization
of the full neutrino mass matrix in Eq. (2.35), lie within the 3σ experimental bands
[71–75].

More specifically, we demand that the corresponding entries of theUν matrix that
refer to the light neutrino sub-block agree with the 3σ range given in Ref. [71]:

|U 3σ
PMNS| =

⎛

⎝

0.801 → 0.845 0.514 → 0.580 0.137 → 0.158
0.225 → 0.517 0.441 → 0.699 0.614 → 0.793
0.246 → 0.529 0.464 → 0.713 0.590 → 0.776

⎞

⎠ . (3.25)
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We show in the right panel of Fig. 3.9 the predictions for the constraints found in
the (MR, f ) plane for the TM-5 scenario. As can be seen in this figure, the bounds
obtained from the constraints on the active neutrinos squared mass differences are
in this scenario stronger than the ones from the light neutrino mixing matrix entries.
For other scenarios, like TM-8, we have checked that this can be reversed, i.e., the
constraints from the neutrino mixings can be stronger than from the neutrino masses.
Additionally, we have also compared the range of validity of this parametrization for
two values of the input lightest neutrino mass, 0.1 and 0.01eV (the chosen value for
Fig. 3.9), and we have concluded that the μX parametrization works better for the
case with a smaller value of the light neutrino mass.

In general, we found that the area in the (MR, f ) parameter space that is allowed
by all the experimental bounds above studied is also allowed by the consistency
checks of the μX parametrization, meaning that the parametrization works well for
the parameter space allowedbydata.Nevertheless, the validity of this parametrization
can be improved by considering next order contributions to Mlight in Eq. (2.40), as it
was done in Ref. [76].

Summarizing, in this Chapter we have learnt that the presence of right-handed
neutrinos at the TeV scale can have a large impact in many low energy observables if
their couplings are sizable. Since the aim of this Thesis is to study LFV consequences
of these νR fields, we focused mostly on the LFV radiative and three-body decays
of the leptons, i.e., �m → �kγ and �m → �k�k�k with k �= m. This study allowed us
to acquire some general ideas about LFV processes in this kind of models, to dis-
cuss the advantages and disadvantages of using the two parametrizations described
in Chap.2, as well as to introduce the phenomenological TM and TE scenarios in
Table3.4, where the experimentally most constrained μ-e transitions are ad-hoc sup-
pressed. Additionally, we also reviewed the effects of the TeV neutrinos in other
observables, including processes with lepton number violation, lepton flavor uni-
versality violation, precision physics or theoretical implications, as perturbativity of
the new Yukawa coupling. All these observables will be important in the follow-
ing Chapters, as they will constraint the allowed parameter space for our study of
maximum LFV H and Z decays in presence of TeV right-handed neutrinos.
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Chapter 4
LFV Higgs Decays from Low Scale
Seesaw Neutrinos

The recent discovery of the Higgs boson has opened a new experimental area to
search for new physics beyond the SM, in particular with new LFV Higgs decay
(LFVHD) channels. As we discussed before, LFV transitions are forbidden in the
SM, therefore any observation of a LFV Higgs decay would automatically imply the
existence of new physics.

The ATLAS and CMS collaborations are actively searching for these LFV Higgs
boson decay processes. Interestingly, the CMS collaboration saw an excess on the
H → τμ channel after the run-I, with a significance of 2.4σ and a value of BR(H →
τμ) = (0.84+0.39

−0.37)%. Unfortunately, neither this excess, nor other positive LFVHD
signal, have been observed at the present run-II, so ATLAS and CMS have set bounds
on these processes, as summarized in Table 3.3. At present, ATLAS has released their
results after analyzing 20.3 fb−1 of data at a center of mass energy of

√
s = 8 TeV,

reaching sensitivities of the order of 10−2 for the H → τμ and H → τe channels [1].
On the other hand, CMS has also searched for the H → μe channel after the run-I [2]
and has further improved the sensitivities of the H → τμ and H → τe channels with
new run-II data [3] of

√
s = 13 TeV, setting the most stringent upper bounds for the

LFV Higgs decays, which at the 95% CL are given by:

BR(H → μe) < 3.5 × 10−4 , (4.1)

BR(H → τe) < 6.1 × 10−3 , (4.2)

BR(H → τμ) < 2.5 × 10−3 . (4.3)

Additional indirect constraints on LFVHD rates have been also derived using other
LFV transitions [4, 5]. For instance, the upper bounds on μ → eγ can be translated
into a very strong upper bound of BR(H → μe) < O(10−8). On the contrary, much
weaker indirect upper bounds, of orderO(10%), are derived for the other two chan-
nels. This fact further motivates the kind of phenomenological scenarios that we
introduced in Sect. 3.2.1, where μ-e transitions are ad-hoc suppressed.
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From the theoretical point of view, there are many extensions of the SM that nat-
urally predict large ratios for these LFV Higgs decays. For instance, they have been
studied in the context of supersymmetric models [6–23], in composite Higgs mod-
els [24], two Higgs doublet models [25–29], the Zee model [30], minimal flavor vio-
lation [31–34], Randall-Sundrum models [35, 36], using effective Lagrangians [37–
40] and many others [41–51]. Likewise, the addition of new right-handed neutrinos
to the SM can induce large LFVHD rates, specially if they are allowed to have large
Yukawa interactions, which is in fact the interaction to the Higgs boson. As we saw
in Chap.2, this is precisely the case in the low scale seesaw models, as the ISS or
the SUSY-ISS models, where neutrinos can have large Yukawa couplings and mod-
erately heavy neutrino masses. Consequently, we consider extremely timely to study
the LFV Higgs boson decays in these low scale seesaw models.

TheLFVHiggs decayswere analyzed in the context of theSMenlargedwith heavy
Majorana neutrinos for the first time in Refs. [52, 53]. Later, they were computed in
the context of the type-I seesaw model in Ref. [54], and they were found to lead to
extremely small rates due to the strong suppression from the very heavy right-handed
neutrino masses, at 1014−15 GeV, in that case. This motivates our study of the LFV
Higgs decays in the case where the right-handeutrino masses lie in contrast at the
O(TeV) energy scale and, at the same time, can have large Yukawa couplings. As
we saw in Chap.2, the ISS model contemplates this possibility and, therefore, the
rates are expected to be larger than in the type-I seesaw model case.

In this Chapter we perform a detailed study of lepton flavor violating Higgs boson
decays H → �k �̄m . We consider the inverse seesaw model as an explicit realization
of a low scale seesaw model and analyze, both analytically and numerically, the
one-loop induced LFV H decays. Furthermore, we make use of the mass insertion
approximation to compute a simple effectiveLFV H�k�m vertex that allows to rapidly
estimate these rates in models with right-handed neutrinos. Additionally, we also
explore a supersymmetric realization of the ISS model and study the new one-loop
contributions to the LFV H decays coming from sneutrinos with TeV masses. The
results presented in this Chapter have been published in Refs. [55–57].

4.1 LFV H Decays in the ISS Model

LFV Higgs decay rates within the SMwith new heavy Majorana neutrinos were first
studied in Refs. [52–54]. In this Section, we analyze these rates in the context of the
ISSmodelwith three pairs of fermionic singlets added to the SM, and fully study their
one-loop contributions to the LFVHD rates. As we did for the LFV radiative decays
in the previous Chapter, we use the two parametrizations introduced in Sect. 2.3, the
Casas-Ibarra and the μX parametrization, to explore these LFVHD rates and discuss
the main differences of using one parametrization versus the other.

The decay amplitude of the process H(p1) → �k(−p2)�̄m(p3) can be generically
decomposed in terms of two form factors FL ,R by:
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iM = −igū�k (−p2)(FL PL + FR PR)v�m (p3) , (4.4)

and the partial decay width is then written as follows:

�(H → �k �̄m) = g2

16πmH

√
√
√
√

(

1 −
(
m�k + m�m

mH

)2
) (

1 −
(
m�k − m�m

mH

)2
)

×
(

(m2
H − m2

�k
− m2

�m
)
(|FL |2 + |FR|2) − 4m�km�mRe(FL F

∗
R)

)

.

(4.5)

Here, p1, −p2 and p3 are the momenta of the ingoing Higgs boson, the outgo-
ing lepton �k and the outgoing antilepton �̄m , respectively, and the conservation of
momentum has been implemented as p1 = p3 − p2. Moreover, mH stands for the
Higgs mass and m� = v Y� for lepton masses (with v = 174 GeV). The widths of
the CP-conjugate channels H → �m �̄k are trivially related to the previous ones and
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Fig. 4.1 One-loop diagrams contributing to the full computation of H → �k �̄m decays in the
physical neutrino mass eigenstate basis and in the Feynman-’t Hooft gauge
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their numerical values will coincide for the case of real mass matrices, as will be the
case for most of this Thesis.

In the calculation of the LFV Higgs decay rates, we will first work in the physical
basis for the neutrinos and consider the full set of contributing one-loop diagrams in
the Feynman-’t Hooft gauge, drawn in Fig. 4.1. The form factors can be written in
this case as the sum of the different contributions:

FL =
10

∑

i=1

F (i)
L , FR =

10
∑

i=1

F (i)
R . (4.6)

These form factors were computed in the context of the type-I seesaw in Ref. [54]
and we have adapted them to our present ISS case. The complete results are given in
the Appendix C.

The process H → �k �̄m with k �= m does not exist at the tree level, neither in the
SM nor in the context of the ISS model we study here, therefore the full one-loop
process must be finite. We have explicitly checked that the diagrams (2)-(6) are finite
and that the divergent terms from diagrams (7) and (9) are cancelled when adding
up to all the neutrinos running in the loop. Hence, the only divergent contributions
to the LFV Higgs decays arise from the diagrams (1), (8), and (10), and we have
checked that they cancel among each other, giving rise to a total finite result. This
cancellation is in agreement with the results for the type-I seesaw [54].

The numerical estimates of these LFV Higgs form factors and the LFV Higgs
partial decay widths have been done with our private Mathematica code. In order
to get numerical predictions for the BR(H → �k �̄m) rates we use mH = 125GeV
and its corresponding SM total width is computed with FeynHiggs [58–60] including
two-loop corrections.

In order to be in agreement with present neutrino oscillation data in Eq. (2.6), we
will make use of the two parametrizations presented in Chap.2.We start this study by
taking the matrices MR and μX as input parameters and reconstructing the Yukawa
coupling by means of the Casas-Ibarra parametrization in Eq. (2.44). Next, we will
follow the idea behind the μX parametrization of choosing the MR and Yν matrices
as input parameters and then building the proper μX matrix that leads to the right
light neutrino masses and mixing angles.

In order to compare the predictions of the LFVHD rates with other LFV observ-
ables, we also present here the predictions for the related radiative decay rates,
BR(μ → eγ), BR(τ → eγ) and BR(τ → μγ). We will consider a more complete
set of constraining observables and the corresponding updated bounds when looking
for the maximum allowed LFV H decay rates at the end of this Chapter.
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4.1.1 LFVHD with the Casas-Ibarra Parametrization

We present first our numerical results for the LFVHiggs decay rates, BR(H → μτ̄ ),
BR(H → eτ̄ ) and BR(H → eμ̄), when using the Casas-Ibarra parametrization to
accommodate light neutrino data.We start by considering the simplest scenariowhere
bothMR andμX matrices are diagonal at the same time,MR ≡ diag(MR1 , MR2 , MR3 )
and μX ≡ diag(μX1 ,μX2 ,μX3 ). Although this is not the most general case, it will be
very illustrative to learn how these observables depend on the parameters of the
model and to find an optimal strategy to study a most general scenario afterwards.

We study the LFV rates as functions of the input ISS parameters in this case,
namely, MRi , μXi , the lightest

1 neutrino mass mν1 and the angles θi of the R matrix
in Eq. (2.45), trying to localize the areas of the parameter space where the LFVHiggs
decays can both be large and respect the constraints on the radiative decays. For a
given set of these input parameters, we will build the Yukawa coupling by using
Eq. (2.44). Nevertheless, since this procedure can generate arbitrarily large Yukawa
couplings, we will enforce their perturbativity in this study by setting an upper limit
on the entries of the neutrino Yukawa coupling matrix, given by

∣
∣Yi j

∣
∣
2

4π
< 1.5 , for i, j = 1, 2, 3 . (4.7)

The results of this first case will be presented in two generically different scenarios
for the heavy neutrinos: the case of (nearly) degenerate heavy neutrinos, and the case
of hierarchical heavy neutrinos.

The case of (nearly) degenerate heavy neutrinos is implemented by choosing
degenerate entries in MR and in μX , i.e., by setting MRi ≡ MR and μXi ≡ μX for
i = 1, 2, 3, see Fig. 2.4. First we show in Fig. 4.2 the results for all the LFV rates
as functions of the common right-handed neutrino mass parameter MR . The left
panel shows the LFV Higgs decay channels, while the right panel displays de LFV
radiative decays. Here we have fixed the other input parameters to μX = 10−7 GeV,
mν1 = 0.05 eV, and R = 1. We find that the largest LFV Higgs decay rates are for
BR(H → μτ̄ ) and the largest radiative decay rates are for BR(τ → μγ). We also
see that, for this particular choice of input parameters, all the predictions for the
LFV Higgs decays are allowed by the present experimental upper bounds on the
three radiative decays (dashed horizontal lines in this and following plots for the
radiative decays) for all explored values of MR in this interval of (200, 107)GeV.
Nevertheless, it shows clearly that the most constraining radiative decay at present
is by far μ → eγ.

Regarding the MR dependence shown in Fig. 4.2, we manifestly see that the
LFVHD rates grow faster with MR than the radiative decays, which tend, as we
already saw in Chap.3, to a constant value for MR above ∼ 103 GeV. In fact,

1We will show again our results for a Normal Hierarchy, varying the value of the lightest neutrino
mass mν1 and setting the other two masses using the mass differences in Eq. (2.6). Although not
shown here, we found similar results for the Inverted Hierarchy.
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Fig. 4.2 Predictions for the LFV decay rates as functions of MR in the degenerate heavy neutrinos
casewith theCasas-Ibarra parametrization inEq. (2.44). Left panel: BR(H → μτ̄ ) (upper blue line),
BR(H → eτ̄ ) (middle dark brown line), BR(H → eμ̄) (lower red line). Right panel: BR(τ → μγ)

(upper blue line), BR(μ → eγ) (middle red line), BR(τ → eγ) (lower dark brown line). The other
input parameters are set to μX = 10−7 GeV, mν1 = 0.05 eV, R = 1. Dotted lines indicate non-
perturbative Yν , meaning that Eq. (4.7) is not fulfilled. Horizontal dashed lines in the right panel
are the (90% C.L.) upper bounds: BR(τ → μγ) < 4.4 × 10−8 [61] (blue line), BR(τ → eγ) <

3.3 × 10−8 [61] (dark brown line), BR(μ → eγ) < 4.2 × 10−13 [62] (red line)

the LFVHD rates can reach quite sizable values at the large MR region of these
plots, yet allowed by the constraints on the radiative decays. For example, we obtain
BR(H → μτ̄ ) ∼ 10−6 for MR ∼ 106 GeV. However, our requirement of perturba-
tivity for the neutrino Yukawa coupling entries in Eq. (4.7) does not allow for such
large MR values as they lead to too large Yν values in the framework of the Casas-
Ibarra parametrization of Eq. (2.44). This non-perturbative region is illustrated using
dotted lines in these plots.

The qualitatively different functional behavior with MR of the LFVHD and the
radiative rates shown in Fig. 4.2 is an interesting feature that we wish to explore
further. The results for the radiative decay rates can be understood with the approx-
imated formula in Eq. (3.4), valid for large values of MR . As already explained in
Chap.3, the (YνY

†
ν )km elements grow with MR as M2

R when using the Casas-Ibarra
parametrization in Eq. (2.44), and therefore the radiative decay rates saturate to a
constant value at large values of MR , as can be seen in the plot on the right in
Fig. 4.2. This simple behavior with MR is certainly not the case of the LFVHD rates,
and we conclude that these do not follow this same behavior with |(YνY

†
ν )km |2. This

different functional behavior of BR(H → �k �̄m) with MR will be further explored
and clarified later by our study using the mass insertion approximation. However, we
want to emphasize again that the apparent non-decoupling behavior of the LFV rates
with the heavy mass scale MR is an artifact of the Casas-Ibarra parametrization. As
we already said in Chap. 3, the expected decoupling behavior with MR will become
manifest when using the μX parametrization, as we will see in Sect. 4.1.2.

Next we study the sensitivity of the LFV rates to other choices of μX . For this
study we focus on the largest LFVHD rates, BR(H → μτ̄ ), and on the most con-
straining BR(μ → eγ) rates, although similar qualitative results are found for the
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Fig. 4.3 BR(H → μτ ) (left panel) and BR(μ → eγ) (right panel) as functions of MR for different
values of μX = (10−8, 10−6, 10−4, 10−2) GeV from top to bottom. In both panels, mν1 = 0.05
eV and R = 1. The horizontal red dashed line denotes the current experimental upper bound on
μ → eγ and dotted lines non-perturbative Yν as defined in Eq. (4.7)

other channels. In Fig. 4.3 we show the predictions for the LFV rates for different
values ofμX = (10−8, 10−6, 10−4, 10−2)GeV. The other input parameters have been
fixed here to mν1 = 0.05 eV and R = 1. On the left panel of Fig. 4.3 we see again
the increase of BR(H → μτ ) as MR grows, which is more pronounced in the region
where MR is large and μX is low, i.e., where the Yukawa couplings are large (see
Eq. (2.44)). We have checked that, in this region, the dominant diagrams are by far
the divergent diagrams (1), (8) and (10), and that the BR(H → μτ ) rates grow as
M4

R . Diagrams (2)-(6) have relevant contributions to BR(H → μτ ) only for low val-
ues of the Yukawa couplings, while diagrams (7) and (9) are subleading. Again, this
will be further explored using the MIA in Sect. 4.3. We also observe that the LFV
Higgs rates grow as μX decreases from 10−2 GeV to 10−8 GeV. However, not all
the values of MR and μX are allowed, because they may generate non-perturbative
Yukawa entries, as we have already said, expressed again in this figure by dotted
lines. Therefore, the largest LFV Higgs rates that are permitted by our perturbativity
requirements in Eq. (4.7) are approximately of BR(H → μτ ) ∼ 10−9, obtained for
μX = 10−8 GeV and MR � 104 GeV. Larger values of MR , for this choice of μX ,
would produce Yukawa couplings that are not perturbative.

On the other hand,wemust also pay attention to the predictions ofBR(μ → eγ) for
this choice of parameters, because the present experimental upper bound on this ratio
is quite constraining. We explore this observable in the right panel of Fig. 4.3, where
the dependence of BR(μ → eγ) on MR is depicted for the same parameter choice as
in the left panel. The horizontal red dashed line denotes again its present bound of
BR(μ → eγ)< 4.2 × 10−13 [62]. In addition to what we have already learned about
the constant behavior of BR(μ → eγ) with MR , we also learn from this figure about
the generic behavior with μX , which leads to increasing LFV rates for decreasing μX

values. This latter behavior is actually true for both LFV observables. In particular,
we see that too small values ofμX ≤ O(10−8 GeV) lead toBR(μ → eγ) rates that are
excluded by the experimental upper bound. Taking this into account, the largest value
of BR(H → μτ ), for this choice of parameters that is allowed by the BR(μ → eγ)
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Fig. 4.4 Branching ratios of H → μτ (left) and μ → eγ (right) as functions of μX for different
values of MR = (106, 105, 104, 103) GeV from top to bottom. In both panels, mν1 = 0.05 eV and
R = 1. The horizontal red dashed line denotes the current experimental upper bound on μ → eγ
and dotted lines non-perturbative Yν as defined in Eq. (4.7)

Fig. 4.5 Branching ratios of H → μτ (left panel) and μ → eγ (right panel) as functions of mν1
for MR = 104 GeV, R = 1 and different values of μX = (10−8, 10−7, 10−5, 10−3) GeV from top
to bottom. The horizontal red dashed line denotes the current experimental upper bound on μ → eγ
and dotted lines non-perturbative Yν as defined in Eq. (4.7)

upper bound is around 10−12, which is obtained for MR ∼ 105 GeV and μX ∼ 10−6

GeV.
The predictions of BR(H → μτ ) and BR(μ → eγ) as functions of μX , for several

values of MR , mν1 = 0.05 eV, and R = 1, are displayed in Fig. 4.4. As already seen
in Fig. 4.3, both LFV rates decrease asμX grows; however, the functional dependence
is not the same. The LFV radiative decay rates decrease approximately as μ−2

X , in
agreement with the approximate expression in Eq. (3.4), while the LFVHD rates go
as μ−4

X in the regime of large Yukawa couplings. For a fixed value of μX , the larger
MR is, the larger BR(H → μτ ) can be, while the prediction for BR(μ → eγ) is
the same for all tested values of MR . We have already learned this independence
of the LFV radiative decays on MR from the previous figure, which can be easily
confirmed on the right panel of Fig. 4.4, where all the lines for different values of MR

are overplaced. We also see in this figure that the smallest value of μX that is allowed
by the BR(μ → eγ) upper bound is μX ∼ 10−7 GeV, which is directly translated to
a maximum allowed value of BR(H → μτ ) ∼ 10−9, for MR ∼ 104 GeV.
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Fig. 4.6 Comparison
between the predicted rates
for BR(H → μτ ) computed
with the full one-loop
formulas (dashed lines), just
the contributions from
diagrams (1), (8), and (10) of
Fig. 4.1 (solid lines); and the
approximate formula of
Eq. (4.10) (dotted lines).
Here we set mν1 = 0.05 eV
and R = 1

The dependence of BR(H → μτ ) and BR(μ → eγ) on the lightest neutrino mass
mν1 is studied in Fig. 4.5, for different values of μX with MR = 104 GeV and R =
1. For the chosen parameters, a similar dependence on mν1 is observed in both
observables, in which there is a nearly flat behavior with mν1 until mν1 � 0.01 eV,
where the LFV rates start to decrease. The behavior of BR(�m → �kγ) with mν1

can be understood again from Eq. (3.4). In this simplified case of real R and UPMNS

matrices, and degenerate MR and μX , we find the following simple expression for
the non-diagonal

(

YνY
†
ν

)

km elements after using Eq. (2.44):

v2
(

YνY †
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)

km

M2
R
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1

μX
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√
�m2 UT

PMNS

)

km
, for m2
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� |�m2

i j | ,

1

μX

(

UPMNS�m2 UT
PMNS

)

km

2mν1

, for m2
ν1

� |�m2
i j | ,

(4.8)

where we have defined:

�m2 ≡ diag(0,�m2
21,�m2

31) , (4.9)

and we have expanded properly mν2 and mν3 in terms of mν1 and �m2
i j . Using these

equations, we conclude that the BR(μ → eγ) rates have a flat behavior with mν1 for
low values ofmν1 � 0.01 eV, but they decrease withmν1 for larger values, explaining
the observed behavior in Fig. 4.5. Again, the predictions for the BR(H → μτ̄ ) rates
do not follow exactly the same pattern as for the BR(μ → eγ).

By taking into account all the behaviors learned above, we have tried to find an
approximate simple formula that could explain themain features of theBR(H → μτ )
rates. As we have already said, in contrast to what we have seen for the LFV radiative
decays in Eq. (3.4), a simple functional dependence being proportional to |(YνY

†
ν )23|2

is not enough to describe our results for the BR(H → μτ ) rates. Considering that,
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in the interesting region where the Yukawa couplings are large, the LFVHD rates
are dominated by diagrams (1), (8) and (10), we have looked for a simple expression
that could properly fit the contributions from these dominant diagrams. From this
numerical fit we have found the following approximate formula:

BRapprox
H→μτ̄ = 10−7 v4

M4
R

∣
∣
∣
∣
(YνY

†
ν )23 − 5.7(YνY

†
ν YνY

†
ν )23

∣
∣
∣
∣

2

, (4.10)

which turns out to work reasonably well. This particular analytical form in Eq. (4.10)
will be justified later in Sect. 4.3.

In Fig. 4.6 we show the predicted rates of BR(H → μτ ) computed with the full
one-loop formulas (dashed lines); taking just the contributions from diagrams (1),
(8) and (10) of Fig. 4.1 (solid lines); and using Eq. (4.10) (dotted lines). We see
clearly that Eq. (4.10) reproduces extremely well the contributions from diagrams
(1), (8), and (10) and approximates reasonably well the full rates, particularly in the
fast growing as M4

R in the large MR region.
This approximate expression in Eq. (4.10) contains an extra contribution in the

amplitude ofO(Y 4
ν )with respect to the one for radiative decays in Eq. (3.4). By using

again the parametrization in Eq. (2.44), we obtain,

v2(YνY
†
ν YνY

†
ν )km

M2
R

= M2
R

v2μ2
X

(

UPMNS�m2 UT
PMNS

)

km
. (4.11)

Thus, we can clearly see from the above result that the second contribution in
Eq. (4.10) is the one that dominates the LFVHD rates at large MR and low μX ,
i.e., at large Yukawa couplings, and, indeed, it reproduces properly the behavior of
BR(H → μτ ) ∝ M4

R/μ4
X in this limit. It is also independent of mν1 , explaining the

flat behavior in Fig. 4.5 for low values of μX . Moreover, since the two contributions
in Eq. (4.10) have opposite signs, they interfere destructively, leading to dips in the
contribution from these diagrams to the full decay rates, as seen in Fig. 4.6. As we
said, the particular choice for the fitting functions will become clear from our poste-
rior analysis in Sect. 4.3, where we will study in full analytical detail this observable
by applying the MIA.

Next, we study the effects of taking R �= 1. We display in Fig. 4.7 the dependence
of the H → μτ and μ → eγ decay rates on |θ1| for different values of argθ1 =
0,π/8,π/4, with MR = 104 GeV, μX = 10−7 GeV, and mν1 = 0.1 eV. First, we
wish to highlight the flat behavior of both LFV rates with |θ1| for real R matrix
(argθ1 = 0). This is a direct consequence of the degeneracy of MR and μX , since the
LFV rates for the degenerate heavy neutrinos case are independent of R if it is real.
Once we abandon the real case and consider values of argθ1 different from zero, a
strong dependence on |θ1| appears. The larger |θ1| and/or argθ1 are, the larger the
LFV rates. However, only values of |θ1| lower than π/32 with argθ1 = π/8 in this
figure are allowed by the BR(μ → eγ) constraint, which allows us to reach values
of BR(H → μτ̄ ) ∼ 10−12 at the most. We have also explored the dependence on
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Fig. 4.7 Branching ratios of H → μτ (left panel) and μ → eγ (right panel) as functions of |θ1|
for MR = 104 GeV, μX = 10−7 GeV, mν1 = 0.1 eV and different values of argθ1. The horizontal
red dashed line denotes the current experimental upper bound on BR(μ → eγ) and dotted lines
represent non-perturbative Yν as defined in Eq. (4.7)

Fig. 4.8 Left panel: Contour lines of BR(H → μτ̄ ) in the (MR,μX ) plane in the case of degenerate
heavy neutrinos. Right panel: Contour lines of BR(H → μτ̄ ) in the (MR3 ,μX ) plane in the case of
hierarchical heavy neutrinos with MR1 = 900 GeV and MR2 = 1000 GeV. In both panels R = 1

andmν1 = 0.05 eV. Horizontal area in pink is excluded by the upper current bound on μ → eγ and
the oblique area in blue is excluded by the perturbativity requirement for Yν in Eq. (4.7)

complex θ2 and θ3 and we have reached similar conclusions as for θ1. Therefore,
we conclude that, in the case of degenerate MR and μX matrices, choosing complex
θ1,2,3 does not increase the allowed LFVHD rates respect to te previous R = 1 case.

Once we have studied the behavior of all the LFV observables considered here
with the most relevant parameters, we next present the concluding results for the
maximum allowed LFVHiggs decay rates in the case of heavy degenerate neutrinos.
The left panel in Fig. 4.8 shows the contour lines of BR(H → μτ̄ ) in the (MR,μX )

plane for R = 1 and mν1 = 0.05 eV. The horizontal area in pink is excluded by the
upper bound on BR(μ → eγ). The oblique area in blue is excluded by not respect-
ing the perturbativity requirement of the neutrino Yukawa couplings, according to
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Eq. (4.7). These contour lines summarize the previously learned behavior with MR

and μX , which lead to our findings for the largest values for the LFVHD rates that
we localized at large MR and low μX , i.e., in the bottom right-hand corner of the
plot. As a conclusion from this contour plot in the left panel of Fig. 4.8, we learn
that a maximum allowed LFVHD rates of approximately BR(H → μτ̄ ) ∼ 10−10

are found for degenerate MR ∼ 2 × 104 GeV and μX ∼ 10−7 GeV. We have found
similar conclusions for BR(H → eτ̄ ).

We can now move to the case of hierarchical heavy neutrinos. This case refers
here to the assumption of hierarchical masses among the heavy neutrino generations
and it is implemented, still assuming diagonal MR and μX matrices, but choosing
instead hierarchical entries in the MR = diag(MR1 , MR2 , MR3) matrix, see Fig. 2.4.
As for the μX = diag(μX1 ,μX2 ,μX3) matrix that introduces the tiny splitting among
the heavy masses in the same generation we choose them still to be degenerate,
μX1,2,3 = μX . We focus here on the normal hierarchy case MR1 < MR2 < MR3 , since
we have found similar conclusions for other hierarchies.

The results of the LFV rates for both Higgs (left panel) and radiative (right panel)
decays in this MR1 < MR2 < MR3 hierarchical case are shown in Fig. 4.9. This figure
shows that the behavior of these rates in the hierarchical case with respect to the
heaviest neutrino mass MR3 is similar to the previously found one for the degenerate
case with respect to the common MR . As before, the BR(H → �k �̄m) rates grow fast
with MR3 at large MR3 > 3000GeV, whereas the BR(�m → �kγ) rates stay flat with
MR3 .We also see in this plot that, for the chosen parameters, the hierarchical scenario
leads to larger BR(H → �k �̄m) rates than the previous degenerate case. For instance,
BR(H → μτ̄ ) reaches 10−9 at MR3 = 3 × 104 GeV, to be compared with 10−11 at
MR = 3 × 104 GeV that we got in Fig. 4.2 for the degenerate case. We have found
this same behavior of enhanced LFVHD rates by approximately one or two orders of
magnitude in the hierarchical case as compared to the degenerate case in most of the
explored parameter space regions. This same enhancement can also be seen in the

Fig. 4.9 Predictions for the LFV Higgs (left panel) and radiative (right panel) decay rates as
functions of MR3 in the hierarchical heavy neutrinos case with MR1 < MR2 < MR3 . The other
input parameters are set to MR1 = 900 GeV, MR2 = 1000 GeV, μX = 10−7 GeV, mν1 = 0.05 eV
and R = 1. The color code is as in Fig. 4.2
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Fig. 4.10 Predictions for BR(H → μτ̄ ) (blue lines) and BR(H → eτ̄ ) (dark brown lines) rates as a
function of real θ1 (left panel) and θ2 (right panel). The other input parameters are set to μX = 10−7

GeV, mν1 = 0.1 eV, MR1 = 0.9 TeV, MR2 = 1 TeV, MR3 = 30 TeV, θ2 = θ3 = 0 in the left panel
and θ1 = θ3 = 0 in the right panel. The dotted lines indicate non-perturbative neutrino Yukawa
couplings and the crossed lines are excluded by the present upper bound on BR(μ → eγ). The solid
lines are allowed by all the constraints

contour plot in the right panel of Fig. 4.8, where themaximumallowedBR(H → μτ̄ )

rates reach larger values up to about 10−9 for MR1 = 900GeV, MR2 = 1000GeV,
MR3 = 3 × 104 GeV, μX = 10−7 GeV, mν1 = 0.05 eV and R = 1.

Finally, we study the effects of the R matrix for this case of hierarchical heavy
neutrinos. In contrast to the degenerate case, there is a dependence on the R matrix
even if it is real. Thus, we explore the behavior with the real θ1,2 angles. We find that
for this particular hierarchy ofMR1 < MR2 < MR3 , there is nearly an independence of
θ3 but there is a clear dependence with θ1 and θ2, as it is illustrated in Fig. 4.10. These
plots also show that the BR(H → �k �̄m) rates with θ1,2 �= 0 can indeed increase or
decrease with respect to the reference R = 1 case. In particular, for 0 < θ1 < π we
find that BR(H → μτ̄ ) is always lower than for R = 1, whereas BR(H → eτ̄ ) can
be one order of magnitude larger if θ1 is near π/2. For the case of 0 < θ2 < π, we
find again that BR(H → μτ̄ ) is always lower than for R = 1, and BR(H → eτ̄ ) can
be one order of magnitude larger than for R = 1 if θ2 is near π/4. In this latter case,
it is interesting to notice that in the region of θ2 close to π/4 BR(H → eτ̄ ) reaches
the maximum value close to 10−9 and it is allowed by the constraints on the radiative
decays and by the perturbativity condition. The results for the other decay channel
BR(H → eμ̄) are not shown here because they again give much smaller rates, as in
the degenerate case. We have also tried other choices for the hierarchies among the
three heavy masses MR1,2,3 , finding similar conclusions.

4.1.2 LFVHD with the μX Parametrization

Next, we explore the implications on LFVHiggs decays of going beyond the simplest
previous hypothesis of diagonal μX and MR mass matrices in the ISS model. Here,
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we will focus on the case of degenerate MR and will explore only the LFV Higgs
decay channels with the largest rates, namely, H → μτ̄ and H → eτ̄ , looking for
the maximum rates allowed by the radiative decays.

In order to get an idea of how large the LFVHD rates could be, we first make
a rough estimate of the expected maximal rates for the H → μτ̄ channel by using
our approximate formula of Eq. (4.10), which is given just in terms of the neutrino
Yukawa coupling matrix Yν and MR . On the other hand, in order to keep the predic-
tions for the radiative decays below their corresponding experimental upper bounds,
we need to require a maximum value for the non-diagonal (YνY

†
ν )i j entries. By using

our approximate formula of Eq. (3.4) and the present bounds in Table3.1, we obtain:

v2(YνY
†
ν )max

12 /M2
R ∼ 2.5 × 10−5, (4.12)

v2(YνY
†
ν )max

13 /M2
R ∼ 0.015, (4.13)

v2(YνY
†
ν )max

23 /M2
R ∼ 0.017. (4.14)

Then, in order to simplify our search, and given the above relative strong suppression
of the 12 element, it seems reasonable to neglect it against the other off-diagonal
elements. In that case, by assuming (YνY

†
ν )12 � 0 we have

(YνY
†
ν YνY

†
ν )23 � (YνY

†
ν )22(YνY

†
ν )23 + (YνY

†
ν )23(YνY

†
ν )33, (4.15)

and the approximate formula of Eq. (4.10) can then be rewritten as follows:

BRapprox
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. (4.16)

This equation clearly shows that the maximal BR(H → μτ̄ ) rates are obtained
for the maximum allowed values of (YνY

†
ν )23, (YνY

†
ν )22, and (YνY

†
ν )33. Thus, before

going to any specific assumption for the Yν texture we can already conclude on these
maximal rates, by setting the maximum allowed value for v2(YνY

†
ν )max

23 /M2
R to that

given in Eq. (4.14) and fixing the values of (YνY
†
ν )22 and (YνY

†
ν )33 to their maximum

allowed values that are implied by our perturbativity condition in Eq. (4.7). This
leads to our approximate prediction for the maximal rates:

BRmax
H→μτ̄ � 10−5 . (4.17)

We found similar conclusions for the H → eτ̄ channel.
For the purpose of reaching these large rates, we find more useful and effective to

use the μX parametrization instead of the Casas-Ibarra one. As explained in Chap. 3,
the main advantage when using this parametrization is that it allows us to consider
MR and Yν , the relevant parameters for the LFV processes, as the independent input
parameters. Furthermore, it makes very easy to focus our analysis directly on the
TM and TE scenarios introduced in Table3.4, which are designed to explore the
parameter space directions where τ -μ or τ -e transitions are maximized, respectively,
whereas the μ-e transitions are extremely suppressed.
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Fig. 4.11 Predictions for the LFVHD rates versusMR obtainedwhen using theμX parametrization.
Left panel: BR(H → μτ̄ ) for Y (1)

τμ (upper green line), Y (2)
τμ (middle red line) and Y (3)

τμ (lower blue
line) given in Table3.4 with f = √

6π. Right panel: BR(H → eτ̄ ) for the equivalent TE scenarios.
Solid (dotted) lines indicate input values allowed (disallowed) by upper bounds on radiative decays

We present in Fig. 4.11 our predictions for the LFVHD as a function of the degen-
erate right-handed neutrino mass MR when using the μX parametrization for accom-
modating neutrino oscillation data. Here, we show the results in the scenarios TM-5
(

Y (1)
τμ

)

, TM-6
(

Y (2)
τμ

)

and TM-7
(

Y (3)
τμ

)

in Table3.4 for f = √
6π, although similar

results are found in other scenarios. As before, we have used the full one-loop for-
mulas, even though we have also checked that the approximate formula in Eq. (4.10),
and the equivalent one for H → eτ̄ obtained by choosing the 13 entries instead of
the 23 ones, gives a quite good estimate in the large MR region. Notice again that
the μX parametrization makes explicit the expected decoupling behavior with MR ,
in contrast with the previous plots done with the Casas-Ibarra parametrization.

The main numerical conclusion from these plots is that in these scenarios one can
indeed reach large LFVHD rates of the order of 10−5 and still be compatible with
all the bounds from radiative decays, mainly τ → μγ (τ → eγ) in the left (right)
panel. The scenario with input Yτμ (Yτe) corresponding to lower cτμ (cτe) allows for
lower MR values and vice versa. Thus, Y (1)

τμ (Y (1)
τe ) leads to the maximum allowed

BR(H → μτ̄ ) (BR(H → eτ̄ )) rates for MR around 10 TeV, Y (2)
τμ (Y (2)

τe ) 6 TeV and
Y (3)

τμ (Y (3)
τe ) around 2 TeV.

Summarizing, in this Sectionwe have studied the LFVHiggs and radiative decays,
by considering two different parametrizations to accommodate light neutrino data:
theCasas-Ibarra and theμX parametrization.Wehave showed the advantages of using
the latter for looking for large allowed LFVHD rates. By doing this, we found larger
rates for BR(H → μτ̄ ) and BR(H → eτ̄ ) of about 10−5 in the TM and TE scenarios,
respectively. Of course, in order to properly conclude on maximum allowed LFVHD
rates, one must take into account a more complete set of constraining observables.
We will do this at the end of this Chapter, in Sect. 4.4. Furthermore, we have also
learnt that LFVHD rates do not behave with the heavy MR mass as the LFV radiative
decays, as can be seen from the plots presented in this Section and by comparing
the respective approximated expressions in Eqs. (4.10) and (3.4). We will study this
particular behavior un more detail using the MIA in Sect. 4.3.
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Nevertheless, before going to the full analysis of the right-handed neutrino con-
tribution to the LFVHD rates, we want to explore these rates also in a different
model, where the ISS is embedded in a supersymmetric context. In such a case, new
important contributions could arise from diagrams with SUSY particles running in
the loops and, as we will present next, they can considerably increase the LFVHD
rates.

4.2 LFV H Decays in the SUSY-ISS Model

We have seen in Chap.2 that the ISS model can be easily embedded into a Super-
symmetric context, leading to a new model that we refer to as the SUSY-ISS model.
Interestingly, previous studies have demonstrated that supersymmetric contributions
usually enhance the LFV rates (see, for instance, Refs. [54, 63–66]). In particular,
in the present SUSY-ISS model, we expect that a lower value of the heavy neutrino
mass scale MR in the ISS, compared with the type-I seesaw, will enhance the slepton
flavor mixing due to the RGE-induced radiative effects by the large neutrino Yukawa
couplings, and this mixing will in turn generate via the slepton loops an enhance-
ment in the LFVHD rates. On the other hand, new relevant couplings appear, like
the neutrino trilinear coupling Aν , which for sneutrinos with O(1TeV) masses may
lead to new loop contributions to LFVHD that could even dominate [64]. This calls
up for a new evaluation of the LFVHD rates in the SUSY-ISS model.

Additionally, as we said in Sect. 3.1, the CMS experiment saw an interesting
excess in the H → μτ channel after the LHC run-I [67] with a value of BR(H →
μτ ) = 8.4+3.9

−3.7 × 10−3 and a significance of 2.4σ. Motivated by the fact that the ISS
model could not explain such a large ratio, we start by exploring the size of the new
SUSYparticle contribution to theseLFVHDrates.Of course, amore detailed analysis
considering the full set of contributions in the SUSY-ISS model is needed and will
come in a future work. Nonetheless, we expect that the dominant contributions will
come from the new SUSY particles and, therefore, we study first their impact on
LFVHD rates.

In this Section, then, we consider a full one-loop diagrammatic computation of all
the supersymmetric loops within the SUSY-ISS model for BR(Hx → �k �̄m), where
Hx refers in this Section to the three neutral MSSM Higgs bosons, Hx = (h, H, A).
This is in contrast to the previous estimate in Ref. [64], where an effective Lagrangian
description of the Higgs mediated contributions to LFV processes was used, which
was valid to capture just the relevant contributions at large tan β, and where the mass
insertion approach was used to incorporate, working in the electroweak basis, the
flavor slepton mixing (�m2

L̃
)i j . However, an expansion up to the first order in the

mass insertion approximation may not be enough for the type of scenarios studied
here, due to the large value of the flavor-non-diagonal matrix entries. On the other
hand, we are interested also in small and moderate tan β values and we also wish
to explore more generic soft masses for the SUSY particles and scan over the rele-
vant neutrino/sneutrino parameters, mainly MR , Aν and m ν̃R , not focusing only on
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scenarios with universal or partially universal soft parameters nor fixing the relevant
parameters to one particular value as in Ref. [64]. Therefore, we perform the calcu-
lation instead in the more convenient mass basis for all the SUSY particles involved
in the loops, i.e., the charged sleptons, sneutrinos, charginos, and neutralinos.

The decay amplitude for Hx → �k �̄m can be written, similarly to Eq. (4.4), as

i Fx = −igū�k (−p2)(FL ,x PL + FR,x PR)v�m (p3) , (4.18)

where again Hx = (h, H, A) and p1 = p3 − p2 is the ingoing Higgs boson momen-
tum. The full LFVHD widths can be then obtained from Eq. (4.5), with the proper
substitution of mH → mHx for the Higgs masses and FL/R → FL/R,x in the form
factors.

Since we work in the mass basis, the set of diagrams contributing to the LFV
Higgs decays is the same as in the SUSY type-I seesaw model which was previ-
ously considered in Ref. [54]. We display this set of 8 diagrams, four diagrams with
charginos and sneutrinos in the loops, and four more with neutralinos and charged
sleptons, in Fig. 4.12. The contributions of the SUSY diagrams are summed in FL ,x

and FR,x according to

FL ,x =
8

∑

i=1

F (i)
L ,x , FR,x =

8
∑

i=1

F (i)
R,x . (4.19)

We take the analytical expressions from Ref. [54] and properly adapt them to the
SUSY-ISS model. The resulting formulas are collected in AppendixD.

As in the non-SUSY case, this observable does not exist at the tree level and,
therefore, the full one loop contributions must give a finite result. In the type-I
seesaw SUSY model, we have checked that each diagram in Fig. 4.12 gives a finite
contribution to the Hx → �k �̄m process when summing over all internal indexes, in
agreement with Refs. [19, 54]. This is not the case in the SUSY-ISS model, where
we have found that the new terms in the coupling factor A(�)

Rα j
, see Eq. (D.1), give rise
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Fig. 4.12 One-loop supersymmetric diagrams contributing to the process Hx → �k �̄m
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to divergent terms in diagrams (3) and (4). Nevertheless, these divergences cancel
out when adding both diagrams, such that the full result is finite, as expected. Notice
that the contributions from the sneutrino-chargino sector, adding diagrams (1)–(4),
and the ones from the slepton-neutralino sector, adding diagrams (5)–(8), are finite
separately and, therefore, it is legit to study both contributions separately, as we will
do below.

Next, we show the numerical results of the LFV decay rates of the lightest neutral
Higgs boson, BR(h → τ μ̄), as a function of the most relevant parameters for the full
SUSY contribution to LFVHD, namely, MR , Aν and m ν̃R . We will assume that the
lightest CP-even Higgs boson, h, is the particle found by the LHC with a mass of
125 GeV, and explore, consequently, the process h → τ μ̄. In order to ensure a Higgs
boson mass in agreement with the experimental value, we will adjust the squark
parameters, since they are irrelevant for the LFVHD studied here, and make sure
that they lead to a supersymmetric spectrum allowed by ATLAS and CMS searches.
As in the non-SUSY case, we restrict ourselves to the case of heavy neutrinos and
sneutrinos above the Higgs boson mass, with MR > mh , avoiding constraints from
the invisible Higgs decay widths, and consider only real UPMNS and mass matrices,
making constraints from lepton electric dipole moments irrelevant. Furthermore, this
absence of CP violation makes BR(h → τ μ̄) = BR(h → μτ̄ ) and, therefore, a factor
of two should be added to our results when comparing with experimental data for
BR(h → τμ)≡ BR(h → τ μ̄)+BR(h → μτ̄ ).

As in the previous section, we will also compute here, using the expressions
in Ref. [68], the LFV radiative decays as a good reference of the most relevant
experimental constraints on LFV, whose current upper limits at the 90% C.L. are

BR(μ → eγ) ≤ 4.2 × 10−13 [62] , (4.20)

BR(τ → eγ) ≤ 3.3 × 10−8 [61] , (4.21)

BR(τ → μγ) ≤ 4.4 × 10−8 [61] . (4.22)

In the following plots, the points excluded by LFV radiative decays will be denoted
by crosses, while triangles will represent the allowed ones. We present here the
predictions of BR(h → τ μ̄) for three examples of the TM scenarios exposed in
the Table3.4 that maximize τ -μ transitions ensuring, at the same time, practically
vanishing LFV in the μ-e sector, in particular, leading to BR(μ → eγ) ∼ 0 and
BR(h → eμ̄) ∼ 0. It should be noticed that in these TM scenarios LFV transitions
in the τ -e sector are also substantially suppressed and, therefore, the most stringent
radiative decay is that of the related LFV radiative decay τ → μγ. Although not
shown here, we want to emphasize again that equivalent results are obtained for
BR(h → τ ē) in the TE scenarios.

In Fig. 4.13, we show the behavior of BR(h → τ μ̄) as a function of MR in the
above commented scenarios, Y (1)

τμ from TM-5 (upper left panel), Y (2)
τμ from TM-6

(upper right panel), and Y (3)
τμ from TM-7 (lower left panel), for different values of the

scaling factor f . First of all, we clearly see that, as expected, the larger the value of f
is, the larger the LFV rates are. We also observe qualitatively different behaviors of
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Fig. 4.13 BR(h → τ μ̄) as a function of MR for Y (1)
τμ (upper left panel), Y (2)

τμ (upper right panel),

and Y (3)
τμ (lower left panel) with M2 = 750 GeV, μ = 2 TeV, Aν = 0, tan β = 5 and different

values of the scaling factor f = 0.01, 0.1, 1,
√
4π,

√
6π. The lower right panel shows the results

in these three scenarios with M2 = μ = 500 GeV, Aν = 2.5 TeV, tan β = 10 and f = √
6π. In all

panels, mL̃ = mẽ = m ν̃R = mX̃ = 1 TeV, mA = 800 GeV and M0 = 1 TeV. We set, in these and
all the figures of this Section, A0 = Ae = BX = BR = 0, M = 1018 GeV and the GUT inspired
relation M1 = 5/3 M2 tan2 θW . Crosses (triangles) represent points in the SUSY-ISS parameter
space excluded (allowed) by the upper bound BR(τ → μγ) < 4.4 × 10−8 [61]

the LFV rates between small ( f < 1) and large ( f > 1) neutrino Yukawa couplings.
This difference comes from the different behavior with the parameters of the two
participating types of loops, the ones with charged sleptons, where the LFV is gen-
erated exclusively by the mixing (�m2

L̃
)i j , and the ones with sneutrinos where the

LFV is generated by both (�m2
L̃
)i j and (Yν)i j . For small values of f , the dominant

contributions come from the slepton-neutralino loops, which only depend logarith-
mically on MR , as can be seen from Eq. (2.63), leading to the apparent flat behavior.
Nevertheless, we checked that this flat behavior disappears when both MR and M0,
and consequently all slepton and sneutrino masses, increase simultaneously. On the
other hand, when the scale factor f becomes larger, contributions from sneutrino-
chargino loops become sizable and even dominate at low MR . These contributions
decrease withMR , due to the increase in the singlet sneutrino masses, which explains
the decrease in BR(h → τ μ̄) observed in the plots in Fig. 4.13 for large f > 1. In this
latter situation, the appearance of dips due to negative interferences between the two
types of loops marks the transition between the two regimes, with the main contribu-
tion coming from sneutrino-chargino loops at low MR and from slepton-neutralino
loops at large MR .
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Regarding the numerical predictions, we find that, for these parameters, the largest
BR(h → τ μ̄) allowed by the τ → μγ upper limit are obtained for f = √

4π or
√
6π

and MR < 2 TeV, with a value of around 10−4 for the three shown scenarios, which
could be probed in future runs of the LHC. Nonetheless, these predictions can have
strong dependencies on the SUSY parameters, as we want to further explore next.
In particular, we study the effects on these LFV observables of the trilinear coupling
Aν , which had been set to zero up to now. On the lower right panel of Fig. 4.13
we have chosen Aν = 2.5 TeV and show the behavior of BR(h → τ μ̄) with MR

for the three textures with a scaling factor f = √
6π. This value of Aν leads to

an enhancement of the BR(h → τ μ̄) while simultaneously suppressing the τ → μγ
rates. As a consequence, very large LFVHD branching ratios can be obtained for Y (3)

τμ

with low MR close to 1 TeV achieving values up to 7 × 10−3 allowed by τ → μγ.
These large rates are within the sensitivity of the present experiments.

We next study the behavior of the h → τ μ̄ rates as a function of the SUSY mass
scales in a simplified scenario where all the SUSY masses are equal to a common
parameter mSUSY, namely,

mSUSY = mL̃ = mẽ = m ν̃R = mX̃ = M0 = M1 = M2 . (4.23)

The left panel of Fig. 4.14 shows the expected decoupling behavior with mSUSY,
where BR(h → τ μ̄) decreases when increasing all the heavy sparticle masses. This
plot is for the particular case of the TM-5 scenario

(

Y (1)
τμ

)

, but similar behaviors (not
shown) are obtained for the other scenarios. In this figure we have included the full
predictions forBR(h → τ μ̄), aswell as the separated contributions coming only from
sneutrino-chargino loops, diagrams (1)–(4) in Fig. 4.12, and from slepton-neutralino
loops, diagrams (5)–(8) in Fig. 4.12. We see that not only the full prediction but also
the separated contributions from these two subsets decreasewithmSUSY, showing that

Fig. 4.14 BR(h → τ μ̄) as a function of the common SUSYmass parametermSUSY in Eq. (4.23) for
the TM-5 scenario

(

Y (1)
τμ

)

with MR = 1 TeV, f = √
6π, mA = 800 GeV, μ = 2 TeV, tan β = 10

and Aν = 2.5 TeV. Left panel: Contributions from sneutrino-chargino loops, denoted by ν̃ -̃χ−,
slepton-neutralino loops, denoted by �̃-̃χ0, and full results for BR(h → τ μ̄). Right panel: Individual
contributions fromeach ν̃ -̃χ−, diagrams (1)–(4) in Fig. 4.12, and full result in the case of�mL̃i j

= 0,

where the �̃-̃χ0 contributions vanish
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the decoupling occurs in both, the charginos-sneutrinos and the neutralinos-sleptons
sectors, as expected from the decoupling theorem.

In this heavy sparticle scenario, the full predictions are dominated by the contribu-
tions from the sneutrino-chargino sector, which is the one containing new sparticles
with respect to the MSSM. In order to better understand the contributions from this
sector, we study the simple case of �mL̃i j

= 0, where the contributions from the
slepton-neutralino sector vanish. We show in the right panel of Fig. 4.14 the full
result in this situation, as well as the individual contributions from diagrams (1)–(4)
in Fig. 4.12. We see that the vertex correction, diagram (2), and the self-energies,
diagrams (3) and (4), clearly compete in size and that their interference is destruc-
tive, manifesting a strong cancellation among them. The contributions from diagram
(1), on the other hand, are subleading by several orders of magnitude. Notice also
that the finite contributions from the divergent diagrams (3) and (4) do not decouple
individually with mSUSY, but their addition does, as expected.

As mentioned before, we have found that the LFVHD rates are indeed very sen-
sitive to the particular value of the trilinear coupling Aν . Thus, we study in Fig. 4.15
the behavior of BR(h → τ μ̄) with Aν for the two SUSY scenarios considered in
Fig. 4.13, with MR = 1 TeV and f = √

6π. The strong dependence on Aν is mani-
fest in both panels, presenting deep dips in different positions that depend mainly on
the values of Yν ,μ,mA and tan β. These parameters control, in particular, the h-ν̃L -ν̃R

coupling and the ν̃L -ν̃R mixing, which would lead to the appearance of dips in the
regime where contributions from sneutrino-chargino loops dominate, as it is the case
of Fig. 4.15. It is interesting to note that, for this choice of parameters, practically
all the parameter space is excluded by τ → μγ except the points within the dips
and surrounding them, where the LFV radiative decay τ → μγ suffers also a strong
reduction. We find as a relevant feature that the location of the dips in BR(h → τ μ̄)
and BR(τ → μγ) usually does not coincide, therefore allowing for large LFV Higgs

Fig. 4.15 Dependence of BR(h → τ μ̄) on Aν for scenarios TM-5
(

Y (1)
τμ

)

, TM-6
(

Y (2)
τμ

)

, and TM-7
(

Y (3)
τμ

)

, withM2 = 750GeV, tan β = 5 andμ = 2 TeV (left panel) or with tan β = 10 andM2 = μ =
500 GeV (right panel). On both panels, mA = 800 GeV, M0 = 1 TeV, MR = mL̃ = mẽ = m ν̃R =
mX̃ = 1 TeV, and the scaling factor f = √

6π. Crosses (triangles) represent points in the SUSY-ISS
parameter space excluded (allowed) by the τ → μγ upper limit, BR(τ → μγ) < 4.4 × 10−8 [61]
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Fig. 4.16 Dependence of BR(h → τ μ̄) on m ν̃R = mX̃ for scenarios TM-5
(

Y (1)
τμ

)

, TM-6
(

Y (2)
τμ

)

,

and TM-7
(

Y (3)
τμ

)

, with MR = mL̃ = mẽ = 1 TeV, M2 = 750 GeV, μ = 2 TeV, tan β = 5 and Aν =
0 (left panel) or with MR = 200 GeV, mL̃ = mẽ = 1 TeV, M2 = μ = 500 GeV, tan β = 10 and
Aν = 2.5 TeV (right panel). On both panels, mA = 800 GeV, M0 = 1 TeV, and f = √

6π. Crosses
(triangles) represent points in the SUSY-ISS parameter space excluded (allowed) by the τ → μγ
upper limit, BR(τ → μγ) < 4.4 × 10−8 [61]

decays rates, above 10−3 and within the reach of the LHC experiments, that are not
excluded by τ → μγ.

Finally, the dependence of the LFVHD rates on the new sneutrino soft SUSY
breaking scalar masses, m ν̃R and mX̃ , is depicted in Fig. 4.16, where we vary these
parameters independently from the SUSY scale. As when modifying MR , increasing
m ν̃R and mX̃ makes the singlet sneutrinos heavier and decreases the size of the
chargino contribution. In the case of Y (1)

τμ and Y (2)
τμ which are dominated by this

contribution, the BR(h → τ μ̄) exhibits a strong decrease in the range explored in
Fig. 4.16, by more than five orders of magnitude in the case of Y (2)

τμ . For Y
(3)
τμ a

dip can be observed, due again to cancellations between the chargino and neutralino
contributions, with the latter dominating at largem ν̃R . For the benchmark point in the
left panel, the largest h → τ μ̄ rates allowed by the τ → μγ upper limit are obtained
for Y (2)

τμ with m ν̃R = 200 GeV, with a maximum value of ∼ 3 × 10−4, just one order
of magnitude below the present LHC sensitivity. In the second benchmark point in
the right panel of Fig. 4.16, we found large LFVHD rates with MR = 200 GeV, Aν =
2.5 TeV and low values of m ν̃R . We observe a huge increase in BR(h → τ μ̄) for the
three Yukawa couplings Y (1)

τμ , Y
(2)
τμ , and Y

(3)
τμ , with maximum values of approximately

4 × 10−3, 8 × 10−3 and 1.5 × 10−2, respectively, due mainly to the low values of
m ν̃R and MR . Unfortunately, the τ → μγ upper limit excludes all the parameter
space for the Y (1)

τμ and Y (2)
τμ cases. In contrast, most of the points for the Y (3)

τμ texture
are in agreement with this upper bound, since they are located in a region where
the τ → μγ rates suffer a strong suppression as a consequence of the value set for
Aν , in this case, Aν = 2.5 TeV. This fact allows us to obtain a maximum value of
BR(h → τ μ̄) ∼ 1.1%, completely within the reach of the current LHC experiments
and large enough to explain theCMS excess if confirmed by other experiments and/or
future data.
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Summarizing, in this Section we have studied the LFVHD rates in presence of
the SUSY particles in the SUSY-ISS model. We have seen that much larger contri-
butions from the SUSY loops are obtained with respect to the predicted rates in the
type-I seesaw due to large Y 2

ν /(4π) ∼ O(1), the presence of right-handed sneutri-
nos at the TeV scale and an increased RGE-induced slepton mixing from the GUT
scale down to the MR scale. We also demonstrated that in the SUSY-ISS model new
contributions coming from the SUSY particle loops can considerably enhance the
LFVHD rates with respect to the non-SUSY ISS model. We have found particularly
interesting the new contributions from the trilinear coupling Aν , since, in addition
to enhance the LFVHD rates, it can lead to suppressions in the corresponding LFV
radiative decay rates. We find these results very promising and therefore this calls
up for a more complete analysis. We will therefore present in a future work a com-
plete study including both the SUSY and non-SUSY contributions in the SUSY-ISS
model, exploring also the heavyHiggs bosons LFVdecays and considering a detailed
analysis of experimental constraints beyond radiative LFV decays.

4.3 The Effective LFV H�k�m Vertex from Heavy
νR Within the Mass Insertion Approximation

As we have seen in Sect. 4.1, LFV H decays in the ISS model do not behave as other
LFVprocesses like the radiative decays. By comparing the approximated expressions
for the LFV radiative decays in Eq. (3.4) and for the H decays in Eq. (4.10), it is
clear that the latter contains, in addition to the usual O(Y 2

ν ) contribution, an extra
contribution of O(Y 4

ν ) that is not present in the former.
In order to understand these results, we will perform a completely different and

independent analysis of the LFVHD rates within the ISS model. Instead of using
the physical neutrino basis, we will perform our computation of the LFVHD widths
directly in the chiral electroweak interaction basis with left- and right-handed neu-
trinos being the fields propagating in the loops. This will allow us to express the
results explicitly in terms of the most relevant model parameters, namely, the neu-
trino Yukawa coupling matrix Yν and the right-handed mass matrix MR .

We will do this new one-loop computation by using the mass insertion approxi-
mation (MIA), which turns out to be a very powerful tool in presence of heavy right-
handed neutrinos. In this context, the MIA provides the results in terms of a well
defined expansion in powers of Yν , which is the unique relevant coupling originating
lepton flavor violation in this model, and therefore it is a very useful and convenient
method for an easier and clearer interpretation of the related phenomenology.

For the present study of the H → �k �̄m decay amplitude we will calculate this
MIA expansion first to the leading order, O((YνY

†
ν )km), and second to the next to

leading order O((YνY
†
ν YνY

†
ν )km). In addition, we will also use the MIA to compute

the one-loop effective vertex H�k�m , that is the relevant one for these decays. For this
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purpose, we will explore the proper large MR mass expansion, which in the present
case we must apply for the assumed mass hierarchy,

m�i, j � vYν,mW ,mH � MR , (4.24)

with m�i, j the lepton masses, v the Higgs vacuum expectation value and mW and
mH , the W boson and Higgs particle masses, respectively. As we will see, the most
appealing feature of our computation is that it provides very simple formulas, which
turn out to work very well for both the one-loop effective H�k�m LFV vertex and the
partial width �(H → �k �̄m) in terms of the most relevant parameters Yν and MR .
These simple formulas could be easily used by other authors to rapidly estimate,
without the need of a heavy numerical computation, the LFVHD rates with their
own inputs for Yν and MR . Moreover, since these results are based only in the mass
hierarchy in Eq. (4.24) and the fact that Yν is the main source of LFV, they could
presumably be used in alternative neutrino models that share these properties. In
order to make this statement clearer, we explain in more detail the hypothesis behind
our calculation in the next Section.

4.3.1 The Proper Basis and Feynman Rules
for a MIA Computation

In order to use the MIA for the computation of the one-loop generated effective
H�k�m vertex from right-handed neutrinos, it is important first to choose the proper
EW interaction basis and to set up the necessary Feynman rules in terms of these
fields. The main point of the MIA is precisely based on the use of the EW basis
instead of the mass basis, which is the one usually used in the literature for the
one-loop generated LFV observables in models with massive Majorana neutrinos.
Nevertheless, the MIA computations can be even further simplified by choosing the
proper EW basis for each model, as we discuss in the following.

In the case of the ISS model, the 9 × 9 mass matrix in Eq. (2.35) provides all
the relevant masses and mass insertions for the EW eigenstates that are needed for
our computation. These mass insertions connect two different neutrino states, they
are in general flavor non-diagonal, and can be expressed in terms of the three 3 × 3
matrices mD , μX and MR . Specifically, the mass insertion given by mD connects
νL and νR fields, MR connects νR and X , and μX connects two X . To simplify the
computation, we will use again the freedom of redefining the new fields (νR, X ) in
such a way that the MR matrix is flavor diagonal. Thus, all the flavor violation is
contained in the matrices μX and mD . Nevertheless, since we are working with μX

being extremely small as to accommodate the light neutrino masses, this mass matrix
will be irrelevant for the LFV physics that we will study in this Thesis. Therefore,
the only relevant flavor violating insertion will be provided by the mD matrix and,
in consequence, by the Yukawa coupling matrix Yν .
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On the other hand, it should be noticed that the flavor preserving mass insertions
given by MR can be very large if MR is taken to be heavy, as it will be our case with
MR being at the TeV scale. Since we are finally interested in a perturbative MIA
computation of the one-loop LFV Higgs form factors and effective vertices that are
valid for heavy MR masses, we find convenient to use a different chiral basis where
‘the big insertions’ given by MR are resumed in such a way that the ‘large mass’
MR appears effectively in the denominator of the propagators of the new states. The
key point in choosing this proper chiral basis is provided by the fact that for the
quantities of our interest here, having H, �k and �m as the external particles, the only
neutrino states that interact with them are νL and νR . The singlet fields X interact
exclusively with the νR fields via the MR mass insertions and, therefore, they will
only appear in the computation of the loop diagrams for LFV as internal intermediate
states inside internal lines that start and end with νR’s. This motivates clearly our
choice of modified propagators for the νR fields which are built on purpose to include
inside all the effects of the sequential insertions of the X fields, given each of these
insertions byMR .More concretely, we sum all theMR insertions and define two types
ofmodified propagators: onewith the same initial and final particle, corresponding to
an even number of MR mass insertions which we call fat propagators, and one with
different initial and final particles, corresponding to an odd number of insertions.
The fat propagator, which propagates a νR into a νR and contains the sum of all the
infinite series of even number of MR insertions due to the interactions with X , is the
one we need for the present computation. The details of the procedure to reach this
proper chiral basis and the derivation of the modified propagators are explained in
AppendixE.1. Similar results are obtainedwithin the context of the Flavor Expansion
Theorem2 [69, 70].

In order to complete the set-up for our computations, we summarize the relevant
Feynman rules in our previously chosen proper chiral basis in Fig. 4.17. These include
the relevant flavor changing mass insertions, given by mD , the relevant propagators,
both the usual SM EW propagators and the new fat propagators of the νR’s, as well
as the relevant interaction vertices needed for our computation, both the SM EW
vertices and the new ones involving the νR’s.

Finally, we want to stress that, although we have considered the ISS model to
make our computations, our results could be applied in practice to any low scale
seesaw model that leads to the same Feynman rules as in Fig. 4.17. These are indeed
quite generic Feynman rules in models with right-handed heavy neutrinos. The few
specific requirements are that the only relevant LFV source is the Yukawa neutrino
coupling matrix and that the heavy right-handed neutrino propagator is like our fat
propagator introduced above.

2We warmly thank Michael Paraskevas for his kind comment about the similarities between our fat
propagators and the results in the Flavor Expansion Theorem.
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Fig. 4.17 Relevant Feynman rules for the present MIA computation of BR(H → �k �̄m) in the
Feynman-’t Hooft gauge. The rules involving neutrinos are written in terms of the proper EW chiral
basis for νR and νL , as defined in the text. For completeness, some additional SM Feynman rules
that are needed are also included. The momenta pH and pG are incoming. The thick solid line
represents the fat propagator of νR introduced in the text
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4.3.2 �(H → �k�̄m) to One-Loop Within the MIA

Oncewe have introduced the set-up for ourMIA calculation, we are ready to compute
the LFVHD rates. We perform a diagrammatic MIA calculation of �(H → �k �̄m)

considering the following points:

1. We use the EW chiral neutrino basis.
2. We treat the external particles H , �k and �̄m in their physical mass basis.
3. We use the fat propagator for the heavy right-handed neutrinos and the Feynman

rules as described in Sect. 4.3.1.
4. The LFVHD amplitude is evaluated at the one-loop order in the Feynman-’t

Hooft gauge. In the AppendixE.4 we show that the same result is obtained in
the Unitary gauge.

5. All the loops must contain at least one right-handed neutrino, since they are the
only particles transmitting LFV through the flavor off-diagonal neutrino Yukawa
matrix entries.

6. According to the Feynman rules in Fig. 4.17, these flavor changing Yukawa
couplings, appear just in two places, the mass insertions given by mD and the
interactions of H with νL and νR , being proportional to Yν .

7. All the one-loop diagrams will get an even number of powers of Yν , since Yν

appears twice for each νR in an internal line, and because of the absence of
interactions containing two right-handed neutrinos.

8. We further simplify our computation by considering that the diagonal matrixMR

has degenerate entries, i.e.,MRi ≡ MR . The generalization to the non-degenerate
case will be commented in AppendixE.

In summary, taking into account all the points exposed above, the one-loop con-
tributions to the LFV Higgs decay amplitude, as computed with the MIA, will then
be given by an expansion in even powers of Yν , concretely as YνY

†
ν . Therefore, the

form factors defined in Eq. (4.4), which we recall here for completeness,

iM = −igū�k (−p2)(FL PL + FR PR)v�m (p3) , (4.25)

can be written as follows:

FMIA (Y 2+Y 4)
L ,R = (

YνY
†
ν

)km
f (Y 2)
L ,R + (

YνY
†
ν YνY

†
ν

)km
f (Y 4)
L ,R , (4.26)

where O(YνY †
ν ) are the Leading Order (LO) terms and O(YνY †

ν YνY †
ν ) the Next to

Leading Order (NLO) terms in our expansion. We expect that, in the perturbativity
regime of the neutrino Yukawa couplings, the next terms in this expansion, i.e., those
of O(Y 6

ν ) and higher, will be very tiny and can be safely neglected. Furthermore,
as will be explained in more detail below, considering this expansion in powers of
Yν and working with the hypothesis of MR being the heaviest scale, also lead to
an implicit ordering of the various contributions in powers of v/MR . In fact, we
will demonstrate, by an explicit analytical expansion of the form factors in the large
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MR � v limit, that the dominant terms of the two contributions in Eq. (4.26), the
LO f (Y 2)

L ,R and the NLO f (Y 4)
L ,R , indeed both scale as (v/MR)2. In contrast, the next

order contributions, i.e., those of O(Y 6
ν ), scale as (v/MR)4, and therefore they will

be negligible for heavy right-handed neutrinos, even when the Yukawa couplings are
sizable. Thus, considering just these twofirst termsof theMIAexpansion inEq. (4.26)
will be sufficient to approach quite satisfactorily the full one-loop calculation of the
neutrino mass basis in the case of μX � mD � MR that we are interested in.

In order to estimate the validity of theMIA results for the present study of the LFV
Higgs decays we include a numerical comparison of these MIA results with those of
the full one-loop computation in the physical neutrino basis presented in Sect. 4.1.
For an easy comparison, we adopt in theMIA the same notation (i) (i= 1, ..., 10) for
the ten types of generic diagrams as in the full computation shown in Fig. 4.1. They
can be classified into diagrams with vertex corrections, i = 1, .., 6, and diagrams
with external leg corrections, i = 7, .., 10.

For the one-loop computation in the MIA, we also follow a diagrammatic proce-
dure that consists of the systematic insertion of right-handed neutrino fat-propagators
in all possible places inside the loops, which are built with the interaction vertices
and propagators of Fig. 4.17. Generically, diagrams with one right-handed neutrino
propagator will contribute to the form factors ofO(Y 2

ν ), whereas diagrams with two
right-handed neutrino propagators will contribute to the form factors of O(Y 4

ν ). We
show in Figs. 4.18, 4.19, 4.20 and 4.21 the relevant one-loop diagrams in the MIA
corresponding to the dominant contributions of the LO and the NLO in Eq. (4.26),
respectively. These are also classified into those of vertex corrections and those of
leg corrections type. The MIA form factors are then obtained accordingly as the sum
of all these contributions that can be summarized as follows:

FMIA
L ,R =

10
∑

i=1

FMIA(i)
L ,R . (4.27)

At LO, i.e., O(Y 2
ν ), each FMIA(i)

L ,R receives contributions from all diagrams con-
taining 1 right-handed neutrino propagator and one of these three combinations: (i) 1
vertex with νR and 1 mD insertion, (ii) 0 vertices with νR and 2 mD insertions, (iii) 2
vertices with νR and 0mD insertions. This leads to the relevant diagrams in Figs. 4.18
and 4.19 whose contributions are given, in an obvious correlated notation, by:

FMIA(1) (Y2)
L ,R = F (1a)

L ,R + F (1b)
L ,R + F (1c)

L ,R + F (1d)
L ,R ,

FMIA(2) (Y2)
L ,R = F (2a)

L ,R + F (2b)
L ,R ,

FMIA(3) (Y2)
L ,R = F (3a)

L ,R ,

FMIA(4) (Y2)
L ,R = F (4a)

L ,R + F (4b)
L ,R ,

FMIA(5) (Y2)
L ,R = F (5a)

L ,R + F (5b)
L ,R ,

FMIA(6) (Y2)
L ,R = F (6a)

L ,R + F (6b)
L ,R + F (6c)

L ,R + F (6d)
L ,R ,
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Fig. 4.18 Relevant vertex diagrams for the MIA form factors of LFVHD to O(Y 2
ν )

FMIA(7) (Y2)
L ,R = F (7a)

L ,R ,

FMIA(8) (Y2)
L ,R = F (8a)

L ,R + F (8b)
L ,R + F (8c)

L ,R + F (8d)
L ,R ,

FMIA(9) (Y2)
L ,R = F (9a)

L ,R ,

FMIA(10) (Y2)
L ,R = F (10a)

L ,R + F (10b)
L ,R + F (10c)

L ,R + F (10d)
L ,R . (4.28)
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Fig. 4.19 Relevant external leg diagrams for the MIA form factors of LFVHD to O(Y 2
ν )

The explicit analytical results for all these form factors are given in Eqs. (E.8) and
(E.10) of the AppendixE.2. These results are expressed in terms of the usual one-
loop Veltman-Passarino functions [71] of two points (B0 and B1), three points (C0,
C11, C12 and C̃0) and four points (D12, D13 and D̃0), whose definitions are given in
Eqs. (E.5)–(E.7).

At NLO, i.e. O(Y 4
ν ), each FMIA(i)

L ,R receives contributions from all diagrams con-
taining 2 right-handed neutrino propagators and one of these three combinations: (i)
2 vertices with νR and 2 mD insertions, (ii) 3 vertices with νR and 1 mD insertion,
(iii) 1 vertex with νR and 3 mD insertions. Other possible combinations will provide
subleading corrections in the heavy MR case of our interest, since they will come
with extra powers of MR in the denominator. Thus, we find that the most relevant
diagrams are those of type (1), (8) and (10) summarized in Figs. 4.20 and 4.21, whose
respective contributions are given by:
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Fig. 4.20 Relevant vertex diagrams for the MIA form factors of LFVHD to O(Y 4
ν )
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Fig. 4.21 Relevant external leg diagrams for the MIA form factors of LFVHD to O(Y 4
ν )
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FMIA(1) (Y4)
L ,R = F (1e)

L ,R + F (1f)
L ,R + F (1g)

L ,R + F (1h)
L ,R + F (1i)

L ,R + F (1j)
L ,R + F (1k)

L ,R + F (1�)
L ,R ,

FMIA(8) (Y4)
L ,R = F (8e)

L ,R + F (8f)
L ,R + F (8g)

L ,R ,

FMIA(10) (Y4)
L ,R = F (10e)

L ,R + F (10f)
L ,R + F (10g)

L ,R . (4.29)

Their explicit analytical results are collected in Eqs. (E.96) and (E.11) of the
AppendixE.2.

Some comments about the analytical properties of the previous MIA results are
in order. First, we analyze their ultraviolet behavior. From the results presented in
Sect. 4.1, we know that in the full one-loop computation of the mass basis, only the
contributions to the amplitude from diagrams (1), (8) and (10) of Fig. 4.1 are ultra-
violet divergent separately, and that the total sum from these diagrams (1)+(8)+(10)
is finite, therefore providing a total one-loop amplitude that is ultraviolet finite as it
must be. We have explored the divergences of the MIA diagrams and found the same
results. Our calculation in the MIA also shows that diagrams of type (2), (3), (4), (5),
(6), (7) and (9) are convergent separately, while each contribution of O(Y 2

ν ) from
diagrams (1), (8) and (10) is divergent, although their divergences cancel out again
in their sum. For this reason, we will show (1)+(8)+(10) whenever we present results
for each diagram in the next numerical analysis, which is convergent and therefore
meaningful, instead of the contributions from each of these diagrams separately.

Second, it is also worth to comment on the gauge invariance of our previous MIA
results for the decay amplitude, computed in the Feynman-’t Hooft gauge. In order
to prove the gauge invariance of our results, we have computed the amplitude also in
other gauges and checked that we get the same result. Specifically, we have computed
the form factors FL ,R in the Unitary gauge and in an arbitrary Rξ gauge. The details
of the Unitary gauge computation are collected in AppendixE.4.

Next, we show our numerical results of these LO results in theMIA, together with
the outcome from the full computation in the physical basis. We display our results
only for scenarios TM-4 and TM-5 in Table3.4, although we have found similar
conclusions for other scenarios and input values of Yν .

We first display in Fig. 4.22 the partial decay width of the full calculation together
with our predictions from the MIA to O(Y 2

ν ), separating the contributions from the
various diagrams.We observe here that the contribution from each diagram (or group
of diagrams in the case of (1)+(8)+(10)) to the form factor, and in consequence to the
width, decreases with MR . This behavior will be very well understood in Sect. 4.3.3
with our simple formulas of the large MR expansions in Eq. (E.14). In particular,
when adding the three contributions (1)+(8)+(10) in the MIA we will see explicitly
the cancellation of the divergent contributions from � terms and the corresponding
cancellation of the regularization μ scale dependent terms. The final behavior of the
remaining finite terms in each form factor will go generically as ∼ (v2/M2

R), and in
addition there will also be logarithmic terms going as ∼ (v2/M2

R)(Log(v2/M2
R)).

We see in Fig. 4.22 a consistent agreement between the MIA and full results
for diagrams (2), (3), (4), (5), (6), (7) and (9). For the sum (1)+(8)+(10), the MIA
reproduces the behavior of the full calculation very well but there is a mismatch in
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Fig. 4.22 Contributions from the various diagrams to �(H → τ μ̄) as a function of MR in the TM-
4 scenario from Table 3.4 for f = 0.5. Dashed lines are the predictions from the MIA to O(Y 2

ν ),
while solid lines are from the full one loop computation in the mass basis

the partial decay width, which depends on the value of f . The larger f , the worse the
discrepancy between them. This disagreement is then translated to the total partial
width, as can be seen in Fig. 4.23. In order to give a quantitative statement on this
observation, we define the ratio R = �MIA/�full. From the bottom of Fig. 4.23, we
have R close to 1 for low values of f ( f = 0.1) and large MR above 1 TeV. If we
increase f up to 1, poor values of R far from 1 are obtained in the whole studied MR

interval, so the MIA results to O(Y 2
ν ) do not reproduce satisfactorily the results of
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Fig. 4.23 Predictions for the partial width �(H → τ μ̄) and branching ratio BR(H → τ μ̄) as a
function of MR . The dashed lines are the predictions from the MIA to O(Y 2

ν ). The solid lines are
the predictions from the full one-loop computation in the mass basis. Here the scenarios TM4 (left
panel) and TM5 (right panel) from Table3.4 are chosen with f = 0.1, 0.5, 1. In the bottom of these
plots the ratio R = �MIA/�full is also shown

Fig. 4.24 Predictions for the partial width �(H → τ μ̄) and branching ratio BR(H → τ μ̄) as a
function of MR . The dashed lines are the predictions from the MIA toO(Y 2

ν + Y 4
ν ). The solid lines

are the predictions from the full one-loop computation in the mass basis. Here the scenarios TM4
(left panel) and TM5 (right panel) from Table3.4 are chosen with f = 0.1, 0.5, 1. In the bottom of
these plots the ratio R = �MIA/�full is also shown

the full calculation. We conclude that for large values of f , which are the interesting
ones from a phenomenological point of view, theMIA only reproduces the functional
behavior with MR but not the numerical values. Thus, it is necessary to include in
the MIA computation the next order contributions, i.e., O(Y 4

ν ).
The results after including all the relevant O(Y 2

ν + Y 4
ν ) contributions are shown

in Fig. 4.24. We can clearly see that the sum of the MIA diagrams is in very good
agreement with the full results for different values of f . Therefore, we can conclude
that ourMIAcalculationwith the inclusion of themost relevantO(Y 4

ν ) terms, corrects
theO(Y 2

ν ) contributions and achieves a better fit to the full numerical results for this
process in the large MR � vYν mass range. In particular, we see this improvement
with respect toO(Y 2

ν ) contributions from the closeness of R to 1 for different values
of f . How large MR should be in order to get a good numerical prediction of the
LFVHD rates depends obviously on the size of the Yukawa coupling. For small



4.3 The Effective LFV H�k�m Vertex from Heavy νR Within the Mass 99

Fig. 4.25 Predictions for the partial width �(H → τ μ̄) and branching ratio BR(H → τ μ̄) as a
function of the global Yukawa coupling strength f . The dashed lines are the predictions from the
MIA to O(Y 2

ν + Y 4
ν ). The solid lines are the predictions from the full one-loop computation in the

mass basis. Here the scenarios TM4 (left panel) and TM5 (right panel) from Table3.4 are chosen
with MR = 500, 1000 GeV

Yukawa coupling, i.e., for small f � 0.5 the MIA works quite well for MR above
400 GeV, whereas for larger couplings, say f above 0.5, the MIA also provides a
good result but requires heavier MR , above 1000 GeV.

Before going to the derivation of the effective vertex in the large MR limit, we
concentrate on the dependence of the branching ratios with f . In Fig. 4.25, we show
thepartialwidth andbranching ratio as a functionof f for the scenariosTM4andTM5
with two different values of MR . In the perturbativity range of Yukawa couplings
(implying approximately f � 3.5) we find a significant increase in the branching
ratios up toO(10−4) for large f ∼ O(2). However, for such large f values the MIA
provides an accurate prediction only for large MR values, say above 1000 GeV, as
can be seen in Fig. 4.25. Overall, we can conclude that the results for the MIA form
factors toO(Y 2

ν + Y 4
ν )work reasonably well for MR heavy enough, say above 1 TeV,

and f values not too large, such that Yν is within the perturbativity region, given by
Y 2

ν /4π < 1.

4.3.3 Computation of the One-Loop Effective Vertex
for LFVHD

In this Section we present our results in the large MR limit of the form factors
involved in our computation of the LFVHD rates. In order to reach this simple
expression for the effective vertex, valid in the large MR � v regime, we perform a
systematic expansion in powers of (v/MR) of the one-loop MIA amplitude that we
have computed in the previous Section. Generically, the first order in this expansion is
O(v2/M2

R), the next order isO(v4/M4
R), etc. There is also a logarithmic dependence

with MR , which is not expanded but left explicit in this calculation. In the final result
for the effective vertex we will be interested just in the leading terms ofO(v2/M2

R),
which are by far the dominant ones for sufficiently heavy MR .
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We start with the formulas found in the previous Section and in AppendixE.2
for the one-loop LFVHD form factors in the MIA. Assuming the hierarchy m� �
mW ,mH � MR , we may first ignore the tiny contributions that come from terms
in the sum with factors of the lepton masses in our analytical results of Eqs. (E.8)–
(E.11). This leads to the following compact formula for the total one-loop MIA form
factors to O(Y 2

ν + Y 4
ν ),

FMIA
L = 1

32π2

m�k

mW

(

YνY
†
ν

)km (

C̃0(p2, p1,mW , 0, MR) − B0(0, MR ,mW )

− 2m2
W

(

(C0 + C11 − C12)(p2, p1,mW , 0, MR) + (C11 − C12)(p2, p1,mW , MR , 0)
)

+ 4m4
W (D12 − D13)(0, p2, p1, 0, MR ,mW ,mW )

− 2m2
Wm2

H D13(0, p2, p1, 0, MR ,mW ,mW ) + 2m2
W

(

C0 + C11 − C12
)

(p2, p1, MR ,mW ,mW )

+ m2
H

(

C0 + C11 − C12
)

(p2, p1, MR ,mW ,mW )
)

+ 1

32π2

m�k

mW

(

YνY
†
ν YνY

†
ν

)km
v2

(

− 2(C11 − C12)(p2, p1,mW , MR , MR)

+ D̃0(p2, 0, p1,mW , 0, MR , MR) + D̃0(p2, p1, 0,mW , 0, MR , MR) − C0(0, 0, MR , MR ,mW )
)

.

(4.30)

Here, we have ordered the various contributions as follows: the first line is from
diagrams (1)+(8)+(10), the second line from (2), the third line from (3), the fourth
line from (4)+(5), the fifth line from (6) and the last two lines containing the O(Y 4

ν )

contribution are from (1)+(8)+(10). Notice that there are not final contributions from
(7)+(9), since they cancel each other. Similarly, for the right-handed form factor we
get:

FMIA
R = 1

32π2

m�m

mW

(

YνY
†
ν

)km (

C̃0(p2, p1,mW , MR , 0) − B0(0, MR ,mW )

− 2m2
W (C12(p2, p1,mW , 0, MR) + (C0 + C12)(p2, p1,mW , MR , 0))

+ 4m4
W D13(0, p2, p1, 0, MR ,mW ,mW )

− 2m2
Wm2

H (D12 − D13)(0, p2, p1, 0, MR ,mW ,mW ) + 2m2
W

(

C0 + C12
)

(p2, p1, MR ,mW ,mW )

+ m2
H

(

C0 + C12
)

(p2, p1, MR ,mW ,mW )
)

+ 1

32π2

m�m

mW

(

YνY
†
ν YνY

†
ν

)km
v2

(

− 2C12(p2, p1,mW , MR , MR)

+ D̃0(p2, p1, 0,mW , MR , MR , 0) + D̃0(p2, 0, p1,mW , MR , MR , 0) − C0(0, 0, MR , MR ,mW )
)

,

(4.31)

where the explanation for the various contributions in each line is as specified for FL .
Note also that the right-handed form factor can be obtained from the left-handed one
by exchanging p2 andm�k with p3 andm�m , respectively. From the previous compact
formulas, assuming the hierarchy m�k � m�m , it is also clear that the left-handed
form factor is the dominant one for the decay mode H → �k �̄m . Conversely, the
right-handed form factor will be the dominant one in the opposite case m�m � m�k .
For the rest of this Section, we will assumem�k � m�m and, therefore, we will focus
on the dominant FL .
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The next step is to perform the large MR expansion of the loop integrals appearing
in theMIA form factor. The details of howwe perform these expansions are explained
in AppendixE.3, where we also collect the results for both the loop integrals and the
separate contributions to the form factors from all type of diagrams, i=1…10. Finally,
by plugging these large MR expansions into Eq. (4.30) we get the one-loop effective
vertex, FL � V eff

H�k�m
, which parametrizes the one-loop amplitude of H → �k �̄m as

iM � −igū�k V
eff
H�k�m

PLv�m , (4.32)

with the corresponding partial decay width:

�(H → �k �̄m) � g2

16π
mH

∣
∣V eff

H�k�m

∣
∣
2
. (4.33)

At the end, we find the following simple result for the on-shell Higgs boson effective
LFV vertex:

V eff
H�k�m

= 1

64π2

m�k

mW

[

m2
H

M2
R

(

r
(m2

W

m2
H

)

+ log

(

m2
W

M2
R

))
(

YνY
†
ν

)km − 3v2

M2
R

(

YνY
†
ν YνY

†
ν

)km
]

,

(4.34)
where,

r(λ) = − 1

2
− λ − 8λ2 + 2(1 − 2λ + 8λ2)

√
4λ − 1 arctan

(
1√

4λ − 1

)

+ 16λ2(1 − 2λ) arctan2
(

1√
4λ − 1

)

. (4.35)

Notice that this solution is valid for mH < 2mW and that for the physical values of
mH = 125 GeV and mW = 80.4 GeV we obtain numerically r(m2

W/m2
H ) ∼ 0.31.

The partial width is then simplified correspondingly to:

�(H → �k �̄m)MIA = g2m2
�k
mH

216π5m2
W

∣
∣
∣
∣

m2
H

M2
R

(

r
(m2

W

m2
H

)

+ log

(

m2
W

M2
R

))
(

YνY
†
ν

)km − 3v2

M2
R

(

YνY
†
ν YνY

†
ν

)km
∣
∣
∣
∣

2

.

(4.36)

Some comments are in order. First we notice that the dominant behavior with MR of
V eff
H�k�m

for large MR goes as log(M2
R)/M2

R and the next dominant one goes as 1/M2
R .

Second, the terms of O(Y 2
ν ) depend on mH , whereas the terms of O(Y 4

ν ) do not.
Notice also that the two contributions ofO(Y 2

ν ) andO(Y 4
ν ) getM2

R in the denominator
and not M4

R as one could naively expect for the O(Y 4
ν ) term. Third, we have also

checked that we recover the simple phenomenological formula in Eq. (4.10), which
we obtained by a naive numerical fit of the dominant contributions at large MR

from diagrams (1)+(8)+(10) in the physical mass basis. Specifically, if we extract
the contributions exclusively from diagrams (1), (8) and (10) in our MIA results in
Eq. (4.36), we get:



102 4 LFV Higgs Decays from Low Scale Seesaw Neutrinos

BR(H → �k �̄m)MIA
(1)+(8)+(10) = g2m2

�k
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216π5m2
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∣
∣
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2
, (4.37)

where in the last line we have used the numerical values of the physical parameters
withmH = 125 GeV and �H given by the predicted value in the SM. As announced,
we reach the previous result in Eq. (4.10).

It is also illustrative to compare our previous MIA result in Eq. (4.36) for the
partial width in the large MR regime with the analytical approximate formula in
Ref. [52] which was found after expanding the full one-loop computation in the
physical neutrino mass basis in inverse powers of the physical heavy neutrino mass
mN . Concretely we compare our result in Eq. (4.36) with those in Eqs. (26), (31)–
(34) of Ref. [52], which were obtained assuming m2

H/m2
W � 4 and m2

H/m2
N � 1.

By doing some algebra to express the physical neutrino couplings B�i n j and Cnin j

appearing in those equations in terms of the Yukawa couplings, and by extracting
just the mH independent terms, we obtain complete agreement with our result in
Eq. (4.36) in the mH → 0 limit. Specifically, by using

∑

i∈Heavy
B�kni B

∗
�mni � v2

m2
N

(

YνY
†
ν

)km
, (4.38)

∑

i, j∈Heavy
B�kni Cni n j B

∗
�mn j

� v4

m4
N

(

YνY
†
ν YνY

†
ν

)km
, (4.39)

and neglecting O(1/m4
N ) and higher order terms, we get from Ref. [52],

�(H → �k �̄m)full = g2m2
�k
mH

216π5m2
W

∣
∣
∣
∣
− 3m2

W

m2
N

(

YνY
†
ν

)km − 3v2

m2
N

(

YνY
†
ν YνY

†
ν

)km
∣
∣
∣
∣

2

,

(4.40)
which matches with our result in Eq. (4.36) after the substitution

(m2
H/m2

W )r(m2
W/m2

H ) → −3 , (4.41)

corresponding to the limit mH → 0. In this sense, although a complete comparison
is out of the scope of this work, we conclude that our MIA effective vertex and
the effective vertex of the mass basis in Ref. [52] agree analytically in the limit
mH → 0. Nevertheless, we have checked by a numerical estimate of the LFVHD
widths that the approximation of neglecting the Higgs boson mass in the effective
vertex does not provide in general an accurate result and, therefore, in order to obtain
a realistic estimate of these branching ratios, our final formula for the effective vertex
in Eq. (4.34) should be used, which is specific for on-shell Higgs decays and accounts
properly for the Higgs boson mass effects.
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Fig. 4.26 Left panel: Predictions for H → τ μ̄ with the effective vertex computed with the MIA
(dashed lines) for Y TM9

ν . Right panel: Predictions for H → τ ē with the effective vertex computed
with the MIA (dashed lines) for Y TE10

ν . The chosen examples TM9 and TE10 are explained in
the text. Solid lines are the corresponding predictions from the full one-loop computation in the
mass basis. Shadowed areas to the left part of these plots (in purple) are disallowed by global fits.
Shadowed areas to the right part of these plots (in yellow) give a non-perturbative Yukawa coupling

Finally, we wish to illustrate numerically the accuracy of our simple results of the
effective vertex and the partial width in Eqs. (4.34) and (4.36), respectively. For that
purpose, we compare again our numerical predictions from these simple formulas
with the predictions from the full one-loop results of themass basis in Fig. 4.26. Here,
we display the results for the most interesting channels, H → τ μ̄ and H → τ ē, and
for two scenarios, Y TM9

ν and Y TE10
ν in Table3.4. Nonetheless, we have checked that

the effective vertex in Eq. (4.34) also works for other choices of scenarios.
The plots in Fig. 4.26 show the predictions of both the LFVHD partial widths

and branching ratios, as functions of MR and three different values of f = 2, 1, 0.5,
with the colored areas being disallowed by global fit constraints (purple) or by non-
perturbativeYukawacouplings (yellow).Concretely,wehave imposed the constraints
on all the entries of the η matrix (see Eq. 4.42) that we have taken from the global
analysis in Ref. [72] at the three sigma level. For the perturbativity bound, we impose
the condition |Y i j

ν |2/(4π) < 1 for every entry of the Yν coupling matrix. The areas
in white are in consequence the regions that are allowed by the global fits and by
perturbativity.

From these plots we learn that the agreement between the full prediction and the
MIA result obtained from the effective vertices computed in this Section is quite good
for values of MR above 1 TeV and for all the explored Yukawa coupling examples. In
fact, the MIA works extremely well for the whole region of interest where both the
global fits constraints and the perturbativity of the Yukawa coupling are respected.
Consequently, we conclude that the simple expression for the effective vertex in
Eq. (4.34) is quite accurate and provides a good approximation for the partial width
in Eq. (4.36), in agreement with the full LFVHD rates. Therefore, it is a very useful
formula for making fast numerical estimations of these rates in terms of the relevant
model parameters Yν and MR .
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4.4 Maximum Allowed BR(H → �k�̄m)

We conclude this Chapter by combining everything we have learnt about LFV H
decays and by trying to conclude on the maximum rates allowed by a more com-
plete set of present constraints, including both LFV and lepton flavor preserving
observables. For this purpose, we consider the constraints obtained by the global fit
analysis done in Ref. [72], where upper bounds on the η matrix were derived. More
concretely, these constraints define a maximum allowed by data η matrix given by:

ηmax
3σ =

⎛

⎝

1.62 × 10−3 1.51 × 10−5 1.57 × 10−3

1.51 × 10−5 3.92 × 10−4 9.24 × 10−4

1.57 × 10−3 9.24 × 10−4 3.67 × 10−3

⎞

⎠ , (4.42)

We can easily apply these bounds by means of the μX parametrization introduced
in Eq. (2.46). As we said, this parametrization allows us to choose the Yν and MR

matrices as input parameters of the model. In our situation of degenerate MR matrix,
the η matrix is related to the Yukawa matrix approximately by,

η = v2

2M2
R

YνY
†
ν . (4.43)

Therefore, we can combine Eq. (4.42) and (4.43) in order to find a Yukawa matrix
that saturates the ηmax

3σ bounds. Then, the Eq. (2.46) will ensure the agreement with
oscillation data by building the proper μX matrix.

A possible solution to this problem is given by our choice:

YGF
ν = f

⎛

⎝

0.33 0.83 0.6
−0.5 0.13 0.1
−0.87 1 1

⎞

⎠ , (4.44)

which saturates the ηmax
3σ bounds in a parameter space line given by the ratio f/MR =

(3/10)TeV−1, i.e., for ( f, MR) = (3, 10 TeV), (1, 3.3TeV), (0.3, 1TeV), …, etc.
The Yukawa coupling matrix in Eq. (4.44) defines our last scenario, that we refer to
as GF.

We show the numerical results in Fig. 4.27 for the most promising channels H →
τ μ̄ and H → τ ē in the GF scenario. We also computed the H → μē channel, but we
do not show the results for this case here, since the rates are extremely small due to
strong bounds on ημe. As before, the purple area covers the parameter space region
where the η matrix is above the 3σ bound in Eq. (4.42), at least in one entry. The
yellow area represents violation of the perturbativity bound

∣
∣Yi j

∣
∣
2

4π
< 1 , for i, j = 1, 2, 3 . (4.45)
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Fig. 4.27 Predictions for H → τ μ̄ (left panel) and H → τ ē (right panel) with the effective vertex
computed with the MIA (dashed lines) for YGF

ν . The chosen example GF is explained in the text.
Solid lines are the corresponding predictions from the full one-loop computation in the mass basis.
Shadowed areas to the left part of these plots (in purple) are disallowed by global fits. Shadowed
areas to the right part of these plots (in yellow) give a non-perturbative Yukawa coupling

Our predictions are done with both full expressions in the mass basis, derived in
Sect. 4.1, and the effective vertex obtained in Sect. 4.3. We see again that the agree-
ment of the simple formula in Eq. (4.34) is excellent in all the region allowed by
both the global fit and the perturbativity constrains. Finally, we can conclude on
the maximum LFVHD rates allowed by the complete set of present constraints as
extracted from the approach of a global fit analysis. From Fig. 4.27 we learn that the
maximum allowed branching ratios values are, respectively:

BR(H → τ μ̄)max ∼ 10−8 , (4.46)

BR(H → τ ē)max ∼ 10−7 . (4.47)

Finally, we shortly summarize our findings in this Chapter, where we have
explored in full detail the LFV H decays induced from right-handed neutrinos from
the ISS model. We found that, having these neutrinos TeV scale masses and large
Yukawa couplings at the same time, the LFVHD rates are manifestly enhanced with
respect to the standard type-I seesaw, where rates of O(10−30) were obtained [54].
After applying present bounds from a global fit analysis, we foundmaximum allowed
rates of 10−7 and 10−8 for H → τ ē and H → τ μ̄, respectively, which unfortunately
are far from present LHC experimental sensitivities. However, in our aim of fully
understanding the predictions for this observable, we have derived a one-loop effec-
tive vertex for the LFV interaction of our interest here, namely, the interaction of a
Higgs boson with two leptons of different flavor H�k�m with k �= m. With such a
simple expression for the involved effective vertex, one may perform a fast estimate
of the LFV Higgs decay rates for many different input parameter values, mainly
for Yν and MR , without the need of a diagonalization process to reach the physical
neutrino basis, and thus avoiding the full computation of the one-loop diagrams in
this basis, which is by far more computer time consuming. Moreover, the explicit
dependence on the relevant parameters Yν and MR facilitates the interpretation of
the numerical results. We find this simple formula useful also for other models that
share the desired basic properties with the ISS model, since they can be easily used



106 4 LFV Higgs Decays from Low Scale Seesaw Neutrinos

by other authors to obtain a fast estimate of the LFVHD rates, which are ready for
an easy test with experimental data.

We have also explored these rates in the SUSY-ISS model, finding that new
loops involving SUSY particles, sleptons and sneutrinos, could enhance the predic-
tions for the allowed LFVHD rates close to the present or near future experimental
sensitivities.
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Chapter 5
LFV Z Decays from Low Scale Seesaw
Neutrinos

Aswe previously discussed, the LHC is providing new data on lepton flavor violating
Z boson decays, Z → �k �̄m . After LHC run-I, the ATLAS experiment has improved
previous bounds for Z → μe [1] and it is already at the level of the LEP results for
the Z → τμ channel. These searches will continue in the next LHC runs with more
luminosity and higher energies and, thus, the LHC will provide new data on these
LFV observables. Furthermore, the sensitivity to LFVZD rates is expected to highly
improve at future linear colliders, with an expected sensitivity of 10−9 [2, 3], or at a
Future Circular e+e− Collider (such as FCC-ee (TLEP)[4]), where it is estimated that
up to 1013 Z bosons would be produced and the sensitivities to LFVZD rates could
be improved up to 10−13. Therefore, we consider extremely timely to explore the
predictions for these LFVZD rates in any new physics scenario that could be related
to neutrino physics, as it has been previously done in beyond the Standard Model
frameworks like those with massive (Majorana and/or Dirac) neutrinos [5–14], or
those using an effective field theory approach [15–18].

In this Chapter, we consider again the inverse seesaw model with three pairs
of right-handed neutrinos as a specific realization of the low scale seesaw models,
which, as we saw in previous chapters, it is an appealing model with a very rich
phenomenology, in particular for the charged LFV processes. Nevertheless, as we
discussed before, the present experimental upper bounds in Table 3.1 for cLFV
processes involvingμ-e transitions, here calledLFVμe in short, aremuch stronger that
the ones in the other sectors, i.e., cLFV processes involving τ -μ and τ -e transitions,
named here in short LFVτμ and LFVτe, respectively. These very stringent constraints
in the μ-e sector motivate the directions in the parameter space considered here,
which incorporate automatically this suppression in their input. Specifically, we will
implement thisμ-e suppression requirementwithin the context of the ISS, byworking
with the TM and TE scenarios we introduced in Table 3.4. These particular ISS
settings with suppressed LFVμe rates provide very interesting scenarios for exploring
the relevant ISS parameter space directions that may lead to large cLFV rates in the
other sectors, τ -μ and/or τ -e.
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110 5 LFV Z Decays from Low Scale Seesaw Neutrinos

Motivated by all the peculiarities exposed above, in this chapter we perform a
dedicated study of the LFVZD rates, in particular BR(Z → τμ) and BR(Z → τe),
in the context of these ISS scenarioswith an ad-hoc suppression ofLFVμe rates,which
will be called from now on ISS-���LFVμe in short. LFVZD processes in the presence of
low scale heavy neutrinos have recently been studied considering the full one-loop
contributions [13] or computing the relevantWilson coefficients [14]. In these works,
maximum allowed LFVZD rates in the reach of future linear colliders were found
when considering a minimal “3+1” toy model, with BR(Z → τμ) up toO(10−8) for
a neutrino mass in the few TeV range. For more realistic models, like the (2, 3) or
(3, 3) realizations of the ISS model, and after imposing all the relevant theoretical
and experimental bounds, smaller LFVZD rates were achieved, BR(Z → τμ) �
O(10−9), which would be below the reach of future linear colliders sensitivities and
might be accessible only at future circular e+e− colliders. The main difference of
our study with the ones previously done relies on the different settings of the ISS
parameters, as we will focus on some specific directions that are more difficult to
access with a random scan of the ISS parameter space. We have learnt about this
issue when studying the LFV Higgs boson decays in Chap.4. In the following, we
will perform a complementary analysis to the one in Ref. [13] and we will show that
larger maximum allowed rates for BR(Z → τμ) and BR(Z → τe) can be obtained
by considering the particular TM and TE scenarios in Table 3.4, such that for some
specific directions of the parameter space they could be reached at future linear
colliders. The results presented in this chapter have been published in Ref. [19].

5.1 LFV Z Decays in the ISS Model

LFV Z decays (LFVZD) in the context of right-handed neutrinos were first studied
in Refs. [5, 11, 12]. More recently, LFVZD processes in the presence of low-scale
heavy neutrinos have been studied [13, 14], considering a simplified “3+1” model as
well as different realizations of the ISS model. In this Section, we revisit these decay
rates in the ISS model with three pairs of fermionic singlets, focusing on the μX

parametrization and the scenarios in Table 3.4, which have been proven to be useful
for finding large rates in the case of LFV Higgs decays, as discussed in Chap.4.

Following Refs. [11–13], we canwrite the partial decaywidth for the LFV process
Z → �k�m process as,

�(Z → �k�m) = α3
W

192π2c2W
mZ

∣
∣FZ

∣
∣
2
, (5.1)

after neglecting final state lepton masses. In the Feynman-’t Hooft gauge, the one-
loop form factor FZ receives contributions from the ten diagrams shown in Fig. 5.1.
Then, we can write it as,
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Fig. 5.1 One-loop diagrams in the Feynman-’t Hooft gauge for LFV Z decays with massive neu-
trinos

FZ =
10

∑

a=1

F (a)
Z . (5.2)

We have taken the full one-loop formulas from Ref. [11] and we have adapted them
to the ISS model we consider, rewriting them in terms of the proper physical neu-
trino masses and couplings introduced in Sect. 2.3. We include these formulas, for
completeness, in Appendix F where we have also adapted the loop functions to the
usual notation in the literature.

For the numerical analysis of the BR(Z → �k�m) = BR(Z → �k �̄m) + BR(Z →
�m �̄k) rates, we will evaluate these expressions with our code and with the help
of the LoopTools [20] package for Mathematica. As for the LFV H decays analy-
sis, we will always demand a good agreement with experimental data coming from
neutrino oscillations. This can be easily done by using any of the two parametriza-
tions explained in Chap.2, i.e., the Casas-Ibarra parametrization in Eq. (2.44) or the
μX -parametrization in Eq. (2.46). As explained before, the choice of parametriza-
tion cannot change physics, however it can help to study the parameter space more
efficiently or to design scenarios with phenomenologically appealing features.

As we said, the LFVZD in the context of the ISS model with three pairs of
fermionic singlets were first studied in Ref. [13]. In this work, the Authors used
the Casas-Ibarra parametrization to accommodate the neutrino oscillation data and
they scanned over a large range of the parameter space. Concretely, the modu-
lus of the entries of the input MR and μX matrices were randomly taken between
(0.1MeV, 106 GeV) and (0.01 eV, 1MeV), respectively, with complex entries for
μX and varying also the complex angles of the R matrix in Eq. (2.45) between 0
and 2π. After applying all the constraints, the Authors concluded from the scatter
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Fig. 5.2 Predictions for BR(Z → τμ) within the ISS model as a function of the heavy neutrino
mass parameter MR (two upper panels), the neutrino Yukawa coupling strength f (lower left panel)
and cτμ (lower right panel) for various choices of the relevant parameters. In all plots we have fixed,
cτe = 0 and |ne,μ,τ | = 1. The upper shadowed areas (in green) are excluded by LEP [21]. We found
similar results for BR(Z → τe) by exchanging cτe and cτμ

plots in their Figs. 8–10 that maximum allowed rates of BR(Z → τμ) ∼ 10−9 can
be obtained in our same realization of the ISS model.

As we saw in the context of LFV Higgs decays in Chap.4, random scans with the
Casas-Ibarra parametrization allow one to explore a large region of the parameter
space and to study the general features of the model, however, they are not always
optimal to reach specific directions along the parameter space that are still allowed
by experimental constraints and that can give indeed large predictions for some LFV
observables. In the case of LFVHD, for instance, we found maximum allowed rates
for H → τμ and H → τe when using the μX parametrization and the scenarios in
Table 3.4 that were two orders of magnitude larger than those found when using
the Casas-Ibarra parametrization. In this sense, the study of this ad-hoc scenarios
looking for maximum allowed rates is complementary to the general scan over the
full parameter space. Therefore, in the followingwe focus on the LFV Z decays along
these particular directions in the parameters space, with the aim of complementing
the study in Ref. [13] covering points that a generic random scan could have missed.

Looking again at the present experimental upper bounds, summarized in Sect. 3.1,
we see that the constraints on cLFV processes involving μ-e transitions are much
stronger that the ones in the other sectors, i.e., cLFV processes involving τ -μ and τ -e
transitions. These very stringent constraints in the μ-e sector motivated the class of
scenarios introduced in Table 3.4, which incorporate automatically this suppression
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in their input. We showed that these directions were not usually reached by the
scans using the Casas-Ibarra parametrization, however theywere easily implemented
by using our μX parametrization and the geometrical interpretation of the Yukawa
matrix introduced in Eq. (3.5). On the other hand, these particular ISS settings with
suppressed LFVμe rates provide very interesting scenarios for exploring the relevant
ISS parameter space directions that may lead to large cLFV rates in the other sectors,
τ -μ and/or τ -e, as we saw in the context of LFV Higgs decays in Chap.4. Thus, we
will analyze the LFV Z decay rates Z → τμ and Z → τe within these directions.

Before going to the analysis of maximum allowed LFV Z decay rates in these
directions, we study how this observable depends on the most relevant parameters.
We show here our results for the particular case of BR(Z → τμ) within the TM
scenarios, which are defined by taking cτe = 0 in Eq. (3.7), although similar results
are found for BR(Z → τe) within the TE scenarios. Along these directions, only the
Z → τμ channel gives relevant ratios and their predictions depend mainly on MR ,
f , |nτ |, |nμ| and cτμ.
We display in Fig. 5.2 the behavior of the BR(Z → τμ) rates with the MR , f and

cτμ parameters for fixed values of |ne| = |nμ| = |nτ | = 1, cτe = 0 and O = 1. As
can be seen in this figure, these ISS directions give in general large rates for the LFV
Z → τμ decay, close, indeed, to the upper bound from LEP (and also close to the
present LHC sensitivity) in the upper left corner of the two upper plots and in the
upper right corner of the two lower plots. We also see that the rates decrease with
the heavy scale MR and grow with the Yukawa coupling strength f , as expected. We
found this growth to be approximately as f 4 in the low f region and as f 8 in the high
f region of the studied interval of this parameter. This suggests that, in contrast to the
radiative decays, two kinds of contributions YνY

†
ν and YνY

†
ν YνY

†
ν participate in this

observable, similar to what we obtained for the LFV H decays (see Eq.4.34). These
dependencies will be further studied by means of the mass insertion approximation
in a forthcoming work.

In the lower right panel, we observe that the rates also grow with cτμ, albeit the
dependence is milder, approximately as c2τμ. Although not shown here, we have also
studied the dependence of the decay rates with the modulus of the vectors, |ni |,
finding that the predictions for BR(Z → τμ) grow with both |nμ| and |nτ |, while
they are constant with |ne|, as expected. Finally, we checked that the results do not
depend on the global rotation O, as argued when the parametrization for the Yν

coupling matrix was motivated.
In order to conclude on the maximum allowed LFV Z decay rates, we need

to consider all the relevant constraints. Nevertheless, prior to the full study, we find
interestingfirst to compare the predictions of theseLFV Z decayswith the predictions
of the three body LFV lepton decays in our particular ISS scenarios with suppressed
μ-e transitions. Looking back to the right panel of Fig. 3.6, we notice again that in
these ISS directions, the τ → μμμ decay ismostly dominated by the Z penguin. This
fact implies a strong correlation between τ → μμμ and Z → τμ, as it was already
found in Ref. [13]. We have also checked in some examples of the ISS parameter
space that our numerical predictions of these two observables are in agreement with
that reference.

https://doi.org/10.1007/978-3-319-94604-7_3
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Fig. 5.3 Correlation plot for BR(Z → μτ ) and BR(τ → μμμ) for scenarios TM-5 (green), TM-6
(yellow) and TM-7 (blue) defined in Table 3.4. The dots are obtained by varying f ∈ (0.1, 2) and
MR ∈ (0.2, 10) TeV, while the stars are for the reference point f = 1 and MR = 3 TeV. Purple
(green) shadowed area is excluded by BELLE [22] (LEP [21]), while the dashed line denotes
expected future sensitivity from BELLE-II (future linear colliders)

We study this correlation in more detail in Fig. 5.3, where we consider three of the
scenarios given in Table 3.4, concretely TM-5, TM-6 and TM-7, and vary the values
of the parameters within the ranges of f ∈ (0.1, 2) and MR ∈ (0.2, 10) TeV. We see
that both observables grow with f and decrease with MR in approximately the same
way, due to the already mentioned Z penguin dominance in the three body decays.
Although the predicted rates in each scenario are obviously different, see for instance
the position of the reference points with f = 1 and MR = 3 TeV, we clearly see that
there is a strong correlation between the two observables in these ISS directions. We
can also conclude from this plot that by considering just the constraints from the three
body decays, i.e., the present upper bound on τ → μμμ from BELLE, it already
suggests a maximum allowed rate of BR(Z → τμ) ∼ 2 × 10−7, which is clearly
within the reach of future linear colliders (10−9 in the most conservative option).
Interestingly, comparing the future expected sensitivities for both observables, we
find some parameter space points where the LFVZD rates are in the reach of future
linear colliders while the cLFV three body decay rates would not be accessible in
other facilities, as BELLE-II. This fact suggests that experiments looking for LFVZD
would be able to provide additional information about the model that complements
the results of other searches, like the ones in Table 3.1.We found a similar correlation
between BR(τ → eee) and BR(Z → τe) in the TE scenarios.

5.2 Maximum Allowed BR(Z → �k�m)

In the following we present our full analysis of the LFVZD rates in the ISS scenar-
ios with suppressed μ-e transitions introduced in Sect. 3.2.1, including all the most
relevant constraints. For this analysis we have explored the (MR, f ) plane for the

https://doi.org/10.1007/978-3-319-94604-7_3
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eight TM scenarios given in Table 3.4 and provide numerical predictions for the
BR(Z → �k�m) rates together with the predictions of the most constraining observ-
ables and their present bounds, which we reviewed in Chap.3. Alternative checks of
the allowed ISS parameter space can be made by using global fits results [23–29],
but we prefer to make the explicit computations of the selected observables here and
to compare them directly to their experimental bounds.

We show in Fig. 5.4 the results for BR(Z → τμ) together with the constraints
from: τ → μμμ, τ → μγ, Z → inv., �rK and the EWPO (S, T and U ). As in
the previous Section, we show our results only for the LFVτμ sector in the TM
scenarios, although the conclusions are very similar for LFVτe in the TE scenarios.
We use different colors in the shadowed areas to represent the exclusion regions
from each of the constraints listed above. Specifically, the purple area is excluded
by the upper bound on BR(τ → μμμ), the green area by BR(τ → μγ), the yellow
area by the Z invisible width, the cyan area by �rk and the area above the pink solid
line is excluded by the S, T , U parameters. Although we are not explicitly showing
them here, we have also checked that the total parameter space allowed by all these
constraints is also permitted by our requirements on perturbativity and on the validity
of the μX parametrization explored in Sect. 3.3.6. Notice that some of the colored
areas are hidden below the excluded regions corresponding to the more constraining
observables.

On top of all the bounds, we display in Fig. 5.4 the predicted contour lines for
BR(Z → τμ) as dashed lines. As expected from the correlation studied in Fig. 5.3,
we see that these contour lines have approximately the same slope as the border of
the exclusion region from BR(τ → μμμ), and in particular, the line corresponding
to BR(Z → τμ) = 2 × 10−7 is very close to the upper bound line of the three body
decay in all the TM scenarios (i.e., the border of the purple line). Furthermore, in
the large MR and large f region of these plots we see that for several TM scenarios,
concretely TM-2, TM-3, TM-4 and TM-5, the BR(τ → μμμ) is indeed the most
constraining observable.

In contrast, in the low MR and low f region, the most constraining cLFV observ-
able is the radiative decay τ → μγ. On the other hand, regarding the flavor preserving
observables, it is clear that the EWPO do not play a relevant role here, but both �rK
and the invisible Z width put relevant constraints in some scenarios. In particular,
�rK is the most constraining observable in the case of TM-8, and the Z invisible
width is so in the scenarios TM-1, TM-6 and TM-7. We also learn that, typically,
the Z invisible width is the most constraining observable in the region of low MR

values, whereas BR(τ → μμμ) is the most constraining observable in the region of
highMR values. Thus, generically, it is the crossing of these two excluded areas in the
(MR, f ) plane what gives the focus area of the maximum allowed LFV Z decay rates
with a value of BR(Z → τμ) ∼ 2 × 10−7, as we already inferred from Fig. 5.3. This
crossing occurs at different values of MR and f in each scenario. For example, in the
TM-4 and TM-5 scenarios it happens at MR ∼ 2 − 4 TeV and for f ∼ O(1), while
in the TM-6 MR is around 10 TeV and f ∼ O(2). On the other hand, if we focus
our attention on the mass range of interest for present direct neutrino production
searches at LHC, say masses around 1 TeV and below, we observe that the allowed
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Fig. 5.4 Contour lines for BR(Z → τμ) (dashed lines) in the (MR, f ) plane of the ISS model
for the eight TM scenarios in Table 3.4. Shadowed areas are the excluded regions by τ → μμμ
(purple), τ → μγ (green), Z invisible width (yellow) and �rk (cyan). The region above the pink
solid line is excluded by the S, T , U parameters. We obtain similar results for BR(Z → τe) in the
TE scenarios by exchanging μ and e in these plots of the TM scenarios

https://doi.org/10.1007/978-3-319-94604-7_3
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BR(Z → τμ) rates are smaller than thismaximumvalue 2 × 10−7; nevertheless they
are still in the reach of future linear colliders (10−9) for some scenarios, like TM-4
or TM-5.

Summarizing, in this chapter we have studied in full detail the LFV Z decays
in scenarios with suppressed μ-e transitions that are designed to find large rates for
processes including a τ lepton, and we have investigated those that are allowed by
all the present constraints. We have therefore fully explored in parallel also the most
relevant constraints within these scenarios of the ISS model. Important constraints
come from experimental upper bounds on the LFV three body lepton decays, since
they are strongly correlated to the LFVZD in these scenarios. Taking into account all
the relevant bounds, we found that heavy ISS neutrinos with masses in the few TeV
range can induce maximal rates of BR(Z → τμ) ∼ 2 × 10−7 and BR(Z → τe) ∼
2 × 10−7 in the TM and TE scenarios, respectively, larger than what was found in
previous studies. These rates are potentially measurable at future linear colliders and
FCC-ee. Therefore, we have shown that searches for LFVZD at future colliders may
be a powerful tool to probe cLFV in low scale seesaw models, in complementarity
with low-energy (high-intensity) facilities searching for cLFV processes. Another
appealing feature of our results is that the here presented improved sensitivity to
LFVZD rates could come together with the possibility that the heavy neutrinos could
be directly produced at LHC, as we will explore in the next chapter.
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Chapter 6
Exotic LFV Signals from Low Scale
Seesaw Neutrinos at the LHC

One of the most interesting phenomenological implications of the existence of low
scale seesaw neutrinos with masses in the energy range from the hundreds of GeV
up to few TeV, is that they can be directly searched for at the CERN LHC and that, if
their couplings to the SM particle are large, the probability of producing them can be
sizable. The most frequently studied signatures of heavy neutrinos are those related
to their Majorana nature [1–4] and, in particular, the most characteristic signal is the
same-sign dilepton plus two jets events which is being searched for at the LHC.

In the low scale seesaw models we are interested in, as long as they assume an
approximated lepton number conservation to fit the observed light neutrino masses,
the heavyneutrinos formpseudo-Dirac pairs,with a smallMajorana character propor-
tional precisely to the small LN breaking scale. Therefore, the rates of the smoking-
gun signal ofMajorana neutrinos are suppressed in thesemodels.Alternative searches
for this pseudo-Dirac character of the heavy neutrinos have also been explored in
the literature in connection with the appearance of other interesting multilepton sig-
nals [5] at the LHC, like the trilepton final state [6–13].

In this Chapter, we propose a new exotic signal of the right-handed neutrinos at
the LHC that is based on another interesting feature of the low scale seesaw models,
the fact that they incorporate large lepton flavor violation for specific choices of
the model parameters, as we have extensively studied in the previous Chapters of
this Thesis. We focus again on the inverse seesaw model as a specific realization of
these low scale seesaw models and study the LFV effects coming from the neutrino
Yukawa couplings Yν . Our specific proposal here is to look at rare LHC events of the
type of �±

k �∓
m j j , and more specifically with one muon, one tau lepton and two jets

in the final state that are produced in these ISS scenarios with large LFV, and that
presumably will have a very small SM background. This Chapter then summarizes
our computation of the rates for these exotic μτ j j events due to the production and
decays of the heavy quasi-Dirac neutrinos at the LHC within the ISS. The results
presented in this Chapter have been published in Ref. [14].
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Fig. 6.1 Heavy neutrino flavor mixings, as defined in Eq. (6.1), within some of the ISS scenarios
of Table 3.4. Blue, orange and green colors represent the relative mixing with the electron, muon
and tau flavor, respectively

6.1 The Flavor of the Heavy Neutrinos

As we have seen in previous Chapters, radiatively induced LFV processes are sen-
sitive to a particular combination of the Yukawa coupling matrix, i.e., to |YνY

†
ν |.

Therefore, in terms of the heavy neutrino flavor mixing, B�N as introduced in Eq.
(2.52), they constrain the combination |B�Ni

B∗
�′Ni

|, but not the B�N itself, which is
the relevant element that controls the flavor pattern of each of the heavy neutrinos.

In Fig. 6.1 we show the flavor content of each heavy neutrino for some of the TM
scenarios in Table 3.4 in the same language of the flavor structure in Fig. 2.1 for the
light neutrinos. Concretely we chose as examples the scenarios from TM-1 to TM-8,
and define the length of the colored bars as

S�Ni = |B�Ni |2∑

�=e,μ,τ

|B�Ni |2
, (6.1)

and, therefore, it represents the relative mixing of the heavy neutrino Ni with a
given flavor �. It should be further noticed, that the values of these B�N mixing
parameters are determined within the ISS model in terms of the input mD and MR

mass matrices and, therefore, in the range where mD � MR they are suppressed
as B�N ∼ O(mDM

−1
R ). This fact implies that, for our assumptions of degenerate

entries of the diagonal MR matrix, the relative mixings defined as in Eq. (6.1) are
independent of MR in this situation.

We learn from Fig. 6.1 that, although these TM scenarios share the property of
suppressing the LFV μ-e and τ -e rates while maximizing the τ -μ ones, the heavy
neutrino flavor mixing pattern is not always the same in each scenario. We also
see that some heavy neutrinos carry an interesting amount of both μ and τ flavors,
specially in the first six scenarios, pointing towards signals with both μ and τ lep-
tons simultaneously. Therefore, in the following we will explore the possibility of
producing this kind of events at the LHC, concretelly τ±μ∓ j j events, which can
be considered as naively background free in the SM, and are therefore interesting
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Fig. 6.2 The two main processes, Drell-Yan and γW fusion, producing exotic τ±μ∓ j j events via
heavy neutrino production and decay at the LHC

exotic events to search for. Moreover, we notice that similar results can be obtained
for τej j events if the TE scenarios are considered.

6.2 Predictions of Exotic τμj j Event Rates from Heavy
Neutrinos

Heavy neutrinos with masses of the TeV order and below can be produced at present
and future colliders, in particular in the new runs of the LHC. The dominant pro-
duction mechanism in this case is the Drell-Yan (DY) process, Fig. 6.2 left, where
the heavy neutrino is produced in association with a charged lepton. The γW fusion,
Fig. 6.2 right, also produces the same signal with two extra jets and, in fact, can
be also relevant especially for large neutrino masses in the O(1 TeV) energy range
[15, 16].

In order to estimate the heavy neutrino production at the LHC, we have used
Feynrules [17] to implemente the model in MadGraph5 [18]. Following Ref. [16],
we have used a K -factor of 1.2 for the DY-process and split the γW process in three
regimes characterized by the virtuality of the photon1: elastic, inelastic and deep
inelastic scattering (DIS) regimes. In particular, we have set the boundaries between
these three regimes to�Elas

γ = 1.22 GeV and�DIS
γ = 15GeV. In order to detect them

and to regularize possible collinear singularities, we have also imposed the following
cuts to the transverse momentum and pseudorapidity of the outgoing leptons:

p�
T > 10 GeV, |η�| < 2.4 . (6.2)

The results for the scenarios TM-5, TM-6 and TM-7 from Table 3.4 are shown
in Fig. 6.3, where the dominant DY production cross sections normalized by f 2 are

1Wewarmly thank Richard Ruiz, Tao Han andDaniel Alva for their generous help and clarifications
in the implementation of the γW process.
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plotted as a function of the heavy mass parameter MR . We see that the production
cross sections can be of the fb order, reachable then at the LHC, for masses MR �
600GeV. Notice that the results are always equal for the pseudo-Dirac pairs, since
their Majorana character plays a subleading role in their production.

We can also learn that the flavor of the associated charged lepton is different
depending on the heavy neutrino produced and the scenario considered, and that
this pattern can be understood looking at the mixing in Fig. 6.1. For example, N3/4

are mainly electronic neutrinos in the TM-1,2,4,5,7 scenarios and, therefore, they
are basically produced exclusively with electrons. N1/2 are equally produced with
muons and taus in the TM-1,2,4,5 scenarios, dominantly produced with electrons in
the TM-3 scenario, and mainly produced with taus in the TM-7 and 8 scenarios. On
the other hand, N5/6 are equally produced with muons and taus in TM-1,2,3,4,5,6
scenarios, mainly produced with muons in the TM-7 scenario and mostly produced
with electrons in the TM-8 scenario.

Once the heavy neutrinos are produced, they will decay inside the detector. As
mentioned in Sect. 3.3.5, in the limit MR � mD the heavy neutrino masses are close
to MR , with small differences of O(m2

DM
−1
R ) between the different pseudo-Dirac

pairs and, therefore, assuming that they are practically degenerate, their decay into
each other should be suppressed, with the dominant channels, then, being N j →
Zνi , Hνi ,W±�∓

i . The expressions for these relevant decay channels are given in
Eqs. (3.20) and (3.21).

It is interesting to study the rich flavor structure of the decay products, which
depends on the decaying heavy neutrino and the scenario we are considering. Like
in the production, the flavor preference of the decays to W±�∓, which are the ones
relevant to this study (see Fig. 6.2), also follows the same pattern as in Fig. 6.1.
Therefore, we can expect the production and decay of the heavy neutrinos to lead to
exotic μτ j j events with no missing energy and Mj j ∼ MW , with Mj j the invariant
mass of the two jets.

Using the narrow width approximation, the total cross section of the exotic events
we are interested in is given by:

σ(pp → μτ j j) =
6∑

i=1

{
σ(pp → Niμ

±)BR(Ni → W±τ∓) + σ(pp → Ni τ
±)BR(Ni → W±μ∓)

}

× BR(W± → j j) , (6.3)

with μτ j j = μ+τ− j j + μ−τ+ j j .
Figure6.3 shows the expected number of exotic events μτ j j at the LHC for an

integrated luminosity of L = 300 fb−1 at
√
s = 14 TeV. The lower solid lines for

each choice of f are the number of events considering only the DY-production.
Moreover, γW fusion processes can also contribute to this kind of exotic events

if the pT of the extra jets are below a maximum value pmax
T and, therefore, they can

be considered as soft or collinear jets which can escape detection. In this case the
predicted total number of exotic events is the sum of the events produced by DY and
γW channels. These total contributions for different values of pmax

T = 10, 20 and
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Fig. 6.3 Left panels: Heavy neutrino DY-production, normalized by f 2, at the LHC for scenarios
TM-5 (Y (1)

τμ ), TM-6 (Y (2)
τμ ), TM-7 (Y (3)

τμ ) from Table 3.4. Processes not shown are negligible. Right
panels: Number of exotic μτ j j events at the LHC for the same scenarios and for three values of
f . For each f , the bottom solid line is the prediction of μτ j j events from DY and the upper lines
on top of each of the three shadowed regions are the predictions after adding the μτ j j events from
γW , and imposing pmax

T = 10, 20, 40 GeV, from bottom to top, to the two extra jets. The upper red
shadowed areas are excluded by τ → μγ

40 GeV are shown as the border lines on top of the shadowed areas with gradual
decreasing intensity above each solid line. In addition we have included in the plots
red shadowed areas that represent the regions excluded by the experimental upper
bound on BR(τ → μγ), which, as we saw in the previous Chapters, is the most
constraining LFV observable at this range of masses. We can see that, after con-
sidering all the LFV constraints, the three scenarios lead to an interesting number
of O(10 − 100) total μτ j j exotic events for the range of MR studied here of [200
GeV, 1 TeV]. Applying constraints from other observables beyond the LFV ones,
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like the ones studied in Sect. 3.3, could change this final conclusion. For example,
looking at Fig. 5.4, we see that in the TM-5 scenario for MR values in the (200, 1000)
GeV interval, the Z invisible width sets a maximum value for f of about 1.5 times
stronger, meaning that the maximum allowed number of events would be about 2–3
times smaller. Similarly, considering the global fit constraints as in Sect. 4.4 would
increase the excluded red area, reducing the maximum number of events predicted in
the allowed parameter space. A more complete analysis deserves further study and
will be done in a forthcoming work, where we will also explore the larger luminosity
options for future LHC phases.

The SM backgrounds for events with two leptons of different flavor have been
studied in Ref. [19]. However, a high efficiency in the τ -tagging and a good recon-
struction of the W boson invariant mass from the two leading jets would help in
reducing the background. In that case, the main background would come from pro-
cesses with photons or jets misidentified as leptons, mainly fromW/Z + γ∗,W/Z+
jets andmultijet eventswith at least four jets with one of themmisidentified as amuon
and another as a tau; and from Z/γ∗ + jets → μ+μ− + jets if one of the muons is
misidentified as a τ candidate. Nevertheless, a dedicated background study for these
particular μτ j j exotic events is needed and will be done in a future work.

Summarizing, in this Chapter we have proposed a new interesting way to study
the production and decay of the heavy neutrinos of the ISS in connection with LFV.
We have presented the computation of the predicted number of exotic μτ j j events
which can be produced in these ISS scenarios with large LFV by the production of
heavy pseudo-Dirac neutrinos together with a lepton of flavor �, both via DY and γW
fusion processes, and their subsequent decay intoW plus a lepton of different flavor.
We have concluded that, for the three TM-like scenarios studied here, a number of
O(10 − 100) total μτ j j exotic events without missing energy can be produced at the
next run of the LHC when 300 fb−1 are collected, for values of MR from 200 GeV
to 1 TeV. Similarly, rare τej j processes could be produced within the equivalent TE
ISS scenarios. Although in other scenarios with large LFV μej j events could also be
produced, whichwould be interesting since they could provide in addition observable
CP asymmetries [20], the number of events would be strongly limited by the μ → eγ
upper bound. This idea of looking for τμ j j exotic events has been recently explored
in the context of a 100 TeV pp collider in Ref. [21], finding promising results for a
luminosity of L = 10 ab−1. Of course, a more realistic study of these exotic events,
including detector simulation, together with a full background study should be done
in order to reach a definitive conclusion, but this will be addressed in a future work.
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Chapter 7
Conclusions

Flavor violating processes have been, are and will be crucial for the construction and
development of Particle Physics theory. In the last years, the observation of lepton
flavor violation in the neutral sector via neutrino oscillations has established that
neutrinos do have masses, which is at present the most clear experimental evidence
telling us that the SM must be extended. In the same manner, any evidence of LFV
transitions in the charged sector would automatically imply the presence of new
physics, even beyond the SMwith neutrinomassesminimally added. This fact makes
charged LFV processes an optimal place to look for new physics. Unfortunately, no
such cLFV processes have been observed yet, although a strong experimental effort
is being made in this direction, and future experiments are planning to improve the
sensitivities up to really impressive levels.

In general, any modification of the neutral lepton sector in order to account for
neutrino masses will affect directly or indirectly, mainly via quantum corrections,
to the charged lepton sector, leaving a trail of phenomenological implications that
experiments could potentially observe. Among the many different extensions for
addressing neutrino mass generation, we have focused on low scale seesaw models,
in particular in the ISS and SUSY-ISS models, which share the appealing feature of
adding new right-handed neutrinos with masses at the TeV range, i.e., at the energy
scale that present colliders as the LHC are exploring. Therefore, in this Thesis we
have explored the connection between the presence of right-handed neutrinos at the
TeV mass scale and the potential existence of processes with charged LFV.

As we discussed when introducing the inverse seesawmodel in Chap.2, one of its
most important features is that it introduces three different mass scales with three dif-
ferent purposes: a small lepton number violating scale, μX , responsible of explaining
the smallness of the light neutrino masses; a large MR scale that governs the masses
of the heavy pseudo-Dirac neutrino pairs; and a Dirac mass at the electroweak scale,
mD = vYν , which controls the interaction between the (mainly left-handed) light
and (mainly right-handed) heavy neutrinos with the Higgs boson. Along this The-
sis, we have clearly seen that the most relevant parameters for the cLFV processes
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that we are interested in are MR and Yν . Consequently, we have introduced a new
parametrization for accommodating neutrino oscillation data, the μX parametriza-
tion, alternative to the often used Casas-Ibarra parametrization, that allows to choose
precisely MR and Yν as independent input parameters of the model.

In order to gain intuition on the general properties of cLFV processes in the
ISS model, we have first revisited in Chap. 3 the LFV lepton decays, meaning the
radiative decays �m → �kγ and the three body decays �m → �k�k�k with k �= m.
This study has allowed us to establish the basic ideas of our analysis, as well as
to understand the main differences of using the Casas-Ibarra parametrization or the
μX parametrization. We have seen that, although physics must not depend on the
parametrization one chooses, the efficiency of an analysis in reaching some particular
but interesting directions in the parameter spacemay radically change. As a particular
example of this idea, we have studied the LFV radiative decays when using the μX

parametrization, where the Yukawa coupling matrix is one of the independent input
parameters. Using this freedom, and the geometrical interpretation of the Yukawa
matrix discussed in Sect. 3.21, we were able to define directions in the parameter
space where the cLFV transitions are favored between two particular flavors, while
keeping μ-e transitions always highly suppressed. This is particularly interesting in
the light of present experimental constraints on cLFV processes, since there are very
strong bounds in the μ-e sector, while they are weaker in the τ -e and τ -μ sectors
and, therefore, there is more room for larger allowed LFV predictions in these two
latter sectors.

InChap.4we have studied in full detail the LFVHiggs decays H → �k �̄m induced
at the one-loop level from the ISS right-handed neutrinos. We have presented a full
one-loop computation of the BR(H → �k �̄m) rates for the three possible channels,
�k �̄m = μτ̄ , eτ̄ , eμ̄, and have also analyzed in full detail the predictions as functions
of the various relevant ISS parameters. We found, as in the LFV lepton decays,
that the most relevant parameters are MR and Yν . Nevertheless, we have seen that,
interestingly, the dependence of the LFVHD rates on these parameters is not the
same as that of the LFV radiative decays.

In order to better understand these differences, we have performed a new and
independent computation using a very different approach which turns out to provide
simpler and more useful analytical results. Instead of applying the usual diagram-
matic method of the full one-loop computation, we have used the mass insertion
approximation, which works with the chiral EW neutrino basis, including the left-
and right-handed states νL and νR and the extra singlets X of the ISS, instead of
dealing with the nine physical neutrino states, n1...9, of the mass basis.

To further simplify this MIA computation, we have first prepared the chiral basis
in a convenient way, such that all the effects of the singlet X states are collected
into a redefinition of the νR propagator, which we have called here fat propagator,
and then we have derived the set of Feynman rules for these proper chiral states that
summarizes the relevant interactions involved in the one-loop computation of the
LFVHD rates. The peculiarity of using this particular chiral basis is that it leads to a
quite generic set of Feynman rules for the subset of interactions involving the neutrino
sector, mainly νL and νR , which are the relevant ones for the LFV observables of
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our interest here, and therefore our results could be valid for other low scale seesaw
models sharing these same Feynman rules. With the MIA we have then organized
the one-loop computation of the LFVHD rates in terms of a perturbative expansion
in powers of the neutrino Yukawa coupling matrix Yν . It is worth recalling that in
the ISS model, the Yν matrix is the unique relevant origin of LFV and, thus, it is the
proper expansion parameter in the MIA computation.

We have presented the analytical results using the MIA for the form factors that
define the one-loop LFVHD amplitude, and we have done this computation first to
leading order, O((YνY

†
ν )km), and later to the next to leading order, i.e., including

terms up toO((YνY
†
ν YνY

†
ν )km). Moreover, we have demonstrated that our analytical

results are gauge invariant, obtaining the same result in the Feynman-’t Hooft gauge
and in the unitary gauge. This is certainly a good check of our analytical results.
Numerically, we have found that in order to get a good numerical convergence of
the MIA with the full results, it is absolutely necessary to include both O(Y 2

ν ) and
O(Y 4

ν ) terms. Indeed, the presence of theO(Y 4
ν ) terms is what explains the different

functional behavior with the parameters that we observed for the LFVHD rates with
respect to the radiative decays, which are well described with only theO(Y 2

ν ) terms.
We have then checked numerically that the MIA works pretty well in a big range of
the relevant model parameters Yν and MR . For a small Yukawa coupling, given in
our notation by a small global factor, say f < 0.5, we have obtained an extremely
good convergence of the MIA and the full results even for moderate MR of a few
hundred GeV and above. For larger Yukawa couplings, say with 0.5 < f < 2 we
have also found a good convergence, but for heavier MR of above O(1TeV).

In addition to the form factors, we have also derived in Sect. 4.3.3 an analytical
expression of the LFV effective vertex describing the H�k�m coupling that is radia-
tively generated to one-loop from theheavy right-handedneutrinos. For that computa-
tionwe have presented our systematic expansion of the form factors in inverse powers
of MR , which is valid in the mass range of our interest, m� � mD,mW ,mH � MR ,
and we have found the most relevant terms ofO(v2/M2

R) in this series. In doing this
expansion, we have taken care of the contributions from the external Higgs boson
momentum which are relevant since in this observable the Higgs particle is on-shell,
and we have also followed the track of all the EWmasses involved, likemW andmH ,
which are both of order v and therefore contribute to the wanted O(v2/M2

R) terms.
The lepton masses (except for the global factor from the heaviest leptonm�k � m�m )
do not provide relevant corrections and have been neglected in this computation of
the effective vertex. We have shown with several examples that this simple MIA
formula works extremely well for the interesting window in the (Yν, MR) parame-
ter space which is allowed by the present experimental constraints. Therefore, we
believe that our final analytical formula for the LFV effective H�k�m vertex given
in Eq. 4.34 is very simple and can be useful for other authors who wish to perform
a fast estimate of the LFVHD rates in terms of their own preferred input parameter
values for Yν and MR .
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For the numerical estimates of the full one-loop results of the LFVHD rates,
we have explored the ISS parameter space considering again the two discussed
parametrizations for accommodating light neutrino masses and mixings. First, we
have considered the Casas-Ibarra parametrization and explored the LFVHD rates
from the simplest case of diagonal μX and MR matrices with degenerate entries for
MRi , to a more general case with hierarchical heavy neutrinos. In these cases, we
concluded that the largest maximum LFV Higgs decay rates within the ISS that are
allowed by the constraints on the LFV radiative decays are for BR(H → eτ̄ ) and
BR(H → μτ̄ ) and reach at most 10−10 for the degenerate heavy neutrino case and
10−9 for the hierarchical case. Second, we have considered the μX parametrization
and explored the phenomenologically well motivated scenarios that aremore promis-
ing for LFVHD searches in the τ -e and τ -μ sectors. We have demonstrated that in
this kind of ISS scenarios there are solutions with much larger allowed LFVHD rates
than in the previous cases, leading to maximal rates allowed by the bounds on the
radiative decays of around 10−5 for either BR(H → μτ̄ ) or BR(H → eτ̄ ).

Finally, we have considered the effects of other kind of constraints to the ISS
parameter space by making use of the global fit analysis to present data and the
perturbativity requirements on the Yukawa couplings. These constraints result in
allowed BR(H → eτ̄ ) and BR(H → μτ̄ ) ratios being at most of about 10−7, which
are unfortunately far below the present experimental sensitivities and, therefore,
future experiments would be needed for testing these predictions.

In Sect. 4.2, we have also addressed the question of whether the SUSY realization
of the ISSmodel can lead to enhanced predictions for the LFVHiggs decay rates.We
have considered theMSSMmodelwith the lightestCP-evenHiggs bosonh identified
as the SM-like Higgs boson, and extended with three pairs of ISS neutrinos and their
corresponding SUSY partners, the sneutrinos. We have then presented the results
of an updated and full one-loop calculation of the SUSY contributions to lepton
flavor violating Higgs decays in the SUSY-ISS model. These contributions come
from chargino-sneutrino loops with sneutrino couplings off-diagonal in flavor, and
from neutralino-slepton loops, due to the misalignment in flavor between the slepton
and lepton sectors caused by running effects. We found much larger contributions
than in the type-I seesaw model coming from the lower values of MR ∼ O(1 TeV),
an increased RGE-induced slepton mixing, and the presence of new right-handed
sneutrinos at the TeV scale. Then, the couplings of both sleptons and sneutrinos can
transmit sizable LFV due to the large Y 2

ν /(4π) ∼ O(1) we considered. We showed
that the branching ratio of h → τ μ̄ exhibits different behaviors as a function of the
seesaw and SUSY scale if it is dominated by chargino or neutralino loops. Moreover,
a non-zero trilinear coupling Aν leads to increased LFVHD rates. Choosing different
benchmark points, we found that BR(h → τ μ̄) of the order of 10−2 can be reached
while agreeing with the experimental limits on radiative decays, which can be tested
at the present runs of the LHC. This calls up for a complete study including non-
supersymmetric contributions in the SUSY-ISS model, like those from the extended
Higgs sector, and a detailed analysis of experimental constraints beyond radiative
LFV decays, which will be addressed in a future work.
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In Chap.5 we have revisited the LFV Z decays in presence of right-handed neutri-
nos with TeV range masses, which are very interesting observables that are currently
being searched for at the LHC and will be further explored by the next generation
of experiments. A first study of these observables within the ISS context with three
pairs of fermionic singlets was done in Ref. [1], finding maximum allowed ratios
of about 10−9. Here, we have alternatively studied in full detail the LFVZD rates
in our selected TM and TE scenarios, which as we said are designed to find large
rates for processes including a τ lepton, and we have investigated those that are
allowed by all the present constraints. In addition to the radiative decays, important
constraints come from experimental upper bounds on the LFV three body lepton
decays, since they are strongly correlated to the LFVZD in these scenarios. Taking
into account all the relevant bounds, we found that heavy ISS neutrinos with masses
in the few TeV range can induce maximal rates of BR(Z → τμ) ∼ 2 × 10−7 and
BR(Z → τe) ∼ 2 × 10−7 in the TM and TE scenarios, respectively. These rates are
considerably larger than what was found in previous studies and potentially measur-
able at future linear colliders and FCC-ee. Therefore, we have seen that searches for
LFVZD at future colliders may be a powerful tool to probe cLFV in low scale seesaw
models, in complementarity with low-energy (high-intensity) facilities searching for
cLFV processes.

Another appealing feature of our results is that the predictions for the cLFV
processes come togetherwith the possibility that the heavy neutrinos could be directly
produced at the LHC. Being the ISS neutrinos pseudo-Dirac fermions, the standard
same-sign dilepton searches for heavyMajorana neutrinos are not effective, implying
that new search strategies need to be explored. In Chap.6 we have proposed a new
interesting way of studying the production and decay of the heavy neutrinos of the
ISS in connection with LFV. We have presented the computation of the predicted
number of exotic μτ j j events, which can be produced in the TM scenarios with large
LFV, where the heavy pseudo-Dirac neutrinos are produced together with a lepton of
a given flavor, both via Drell-Yan and γW fusion processes, and then decay into aW
and a lepton of different flavor. We have concluded that, for the studied benchmark
scenarios, a number ofO(10 − 100) totalμτ j j exotic events without missing energy
can be produced at the next run of theLHCwhen300 fb−1 of integrated luminosity are
reached, and for values ofMR from 200GeV to 1 TeV respecting the constraints from
LFV violating observables. Similarly, other rare processes like τej j or μej j could
be produced within other ISS scenarios with large LFV, although for the latter ones
the number of events would be strongly limited by the μ → eγ upper bound. These
promising results deserve a more realistic study of these exotic events, including
detector simulation, together with a full background study, which should be done in
order to reach a definitive conclusion and it will be addressed in a future work.

As an overall conclusion of this Thesis, we can state that searching for charged
lepton flavor violating processes is a very powerful strategy for testing the presence
of low scale seesaw neutrinos with masses of a few TeV or below, which on the other
hand are common in many models for explaining the observed neutrino masses. As
we have seen along this Thesis, the addition to the SM of these new states, not much
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heavier that the EW scale and with a potentially complex flavor structure, has an
important impact in the phenomenology of the charged leptons, which could be seen
at lepton flavor violating processes. Flavor physics has been crucial in the history of
the SM and it will play a major role in the discovery of new physics.
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Appendix A
Formulas for LFV Lepton Decays

In this Appendix we collect, for completeness, the needed formulas for the full one-
loop computation of the LFV lepton decays in the particle mass basis, both the three
body �m → �k�k�k and the radiative �m → �kγ decays, with k �= m. We have taken
these expressions from Refs. [1, 2] and implemented them in our code.

In the case of the three body decays, the branching ratio BR(�m → �k�k�k) can
be expressed as [1, 2]:

BR(�m → �k�k�k) = α4
W

24576π3

m4
�m

m4
W

m�m

��m

×
{
2
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4

]}
. (A.1)

The BR(�m → �k�k�k) contains several form factors, corresponding to the dipole,
penguin (photon and Z ) and box diagrams. The expressions for these form factors
are given by:

G�m�k
γ =

9∑
i=1

B�kni B
∗
�mni Gγ(xi ) ,

F�m�k
γ =

9∑
i=1

B�kni B
∗
�mni Fγ(xi ) ,

F�m�k
Z =

9∑
i, j=1

B�kni B
∗
�mn j

(
δi j FZ (xi ) + Cnin j GZ (xi , x j ) + C∗

ni n j
HZ (xi , x j )

)
,

F�m�k�k�k
Box =
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∗
�mn j
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∗
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(A.2)
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where xi stands for the dimensionless ratio of masses (xi = m2
ni /m

2
W ). Moreover,

the following loop functions enter in the previous form factors [1, 2]:

FZ (x) = − 5x
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(A.3)

In the limit of degenerate neutrinomasses (x = y), we get the following expressions:

GZ (x, x) = x(−1 + x − 2 ln x)/(2(1 − x)) ,

HZ (x, x) = −x(4 − 5x + x2 + (4 − 2x + x2) ln x)/(4(1 − x)2) ,

FBox(x, x) = (4 − 19x2 + 16x3 − x4 − 2x(−4 + 4x + 3x2) ln x)/(4(1 − x)3) ,

GBox(x, x) = x
(
6 − 8x + 4x2 − 2x3 + (4 + x2 + x3) ln x

)
/(−1 + x)3 . (A.4)

For the LFV radiative decay rates, we use the analytical formulas appearing in [1–3]
that have also been implemented in our code:

BR(�m → �kγ) = α3
Ws2W

256π2

(
m�m

mW

)4 m�m

��m

∣∣Gmk

∣∣2, (A.5)

where ��m is the total decay width of the lepton �m , and

Gmk =
9∑

i=1

B�kni B
∗
�mni Gγ (xi ) , (A.6)

with Gγ(x) defined in Eq. (A.3) and, again, xi ≡ m2
ni /m

2
W .



Appendix B
Formulas for Low Energy Flavor Conserving
Observables

In this Appendix we collect the expressions needed for computing the low energy
observables described in Sect. 3.3. These formulas are taken from the literature and
summarized here for completeness.

Lepton Universality: �rk

We collect here the formulas to calculate the quantity �rK (see Eq. 3.10), which
parametrizes the deviation with respect to the SM prediction arising from the sterile
neutrinos contribution, as a test of lepton flavor universality. The expression for�rK
in a generic SM extension with sterile neutrinos has been given in [4]:

�rK = m2
μ(m2

K − m2
μ)2

m2
e (m

2
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e )
2
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j=1 |Bμn j |2

[
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K (m2
n j

+ m2
μ) − (m2

n j
− m2

μ)2
]
λ1/2(mK ,mn j ,mμ)

− 1 ,

(B.1)
where Ne,μ

max is the heaviest neutrino mass eigenstate kinematically allowed in associ-
ationwith e orμ respectively, and the kinematical functionλ(mK ,mni ,m�) reads [4]:

λ(a, b, c) = (a2 − b2 − c2)2 − 4 b2 c2 . (B.2)

The Z invisible decay width

The Z invisible decay width in presence of massive Majorana neutrinos, like it is the
case of the present ISS model, reads [5]:
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∑
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where Nmax is the heaviest neutrino mass which is kinematically allowed and λ is
given in Eq. (B.2).

Oblique parameters: S, T,U

The Majorana neutrino contributions to the S, T,U parameters have been computed
in Ref. [6]. We apply those formulas to compute the sterile neutrinos contributions
to the oblique parameters in the ISS model.

The equation for the T parameter reads:

Ttot = TISS + TSM = −1

8πs2Wm2
W

{ 3∑
α=1

m2
�α
B0(0,m

2
�α

,m2
�α

) − 2
9∑

i=1

3∑
α=1

∣∣B�αni

∣∣2 Q(0,m2
ni ,m

2
�α

)

+
9∑

i, j=1

(
Cni n j Cn j ni Q(0,m2

ni ,m
2
n j

) + (Cni n j )
2mni mn j B0(0,m

2
ni ,m

2
n j

)
)}

, (B.4)

with the index α refering to the charged leptons and

Q(q2,m2
1,m

2
2) ≡ (D − 2)B00(q

2,m2
1,m

2
2) + q2

[
B1(q

2,m2
1,m

2
2) + B11(q

2,m2
1,m

2
2)
]
, (B.5)

where D ≡ 4 − 2ε (ε → 0) and B0, B1, B11 and B00 are the Passarino-Veltman
functions [7] in the LoopTools [8] notation.

The SM contribution can be cast as:

TSM = − 1

8πs2Wm2
W

{
3Q(0, 0, 0) − 2

3∑
α=1

Q(0, 0,m2
�α

) +
3∑

α=1

m2
�α
B0(0,m

2
�α

,m2
�α

)

}
,

(B.6)
where it has been used that the active neutrino masses are zero and the leptonic
mixing matrix U is unitary in the SM.

The equation for the S parameter is:

Stot = SISS + SSM = − 1

2πm2
Z

{ 9∑
i, j=1

Cnin j Cn j ni �Q(m2
Z ,m2

ni ,m
2
n j
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)
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3∑
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2
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2
Z ,m2

�α
,m2

�α
)
)+ Q(m2

Z ,m2
�α

,m2
�α

)

}
,

(B.7)
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where �Q(q2,m2
1,m

2
2) ≡ Q(0,m2

1,m
2
2) − Q(q2,m2

1,m
2
2) and

SSM = − 1

2πm2
Z
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3�Q(m2
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+
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.

(B.8)

Finally, the U parameter is given by:

Utot = UISS +USM = 1

2πm2
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(B.9)

and its SM contribution reads:

USM = 1

2πm2
Z

{
3�Q(m2

Z , 0, 0) +
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m2
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(
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�α
,m2

�α
) − 2
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Appendix C
Form Factors for LFVHD in the ISS Model

In this Appendix we collect the analytical results for the form factors contributing to
the LFV Higgs decay H → �k �̄m , as defined in Eq. (4.4). They are computed in the
Feynman-’t Hooft gauge and expressed in the physical basis. The numbers (1)–(10)
correspond to the diagrams in Fig. 4.1. These formulas are taken from Ref. [9] and
adapted for the case of the ISS model with three pairs of fermionic singlets. Notice
that we have corrected the global signs of F (1)

L , F (4)
L ,R and F (5)

L ,R , which were typos in
the original expressions given in [9].

In all these formulas, summation over neutrino indices is understood, which run
as i, j = 1, . . . , 9. The loop functions are the Passarino-Veltman functions [7] and
they are defined in Eqs. (E.5) and (E.6).
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4m3
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2
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,
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,

where C11,12 = C11,12(m2
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,m2
H ,m2

W ,m2
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2
n j

) and C̃0 = C̃0(m2
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2
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).
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Appendix D
Form Factors for LFVHD in the SUSY-ISS
Model

In this Appendix we present the form factors that correspond to the diagrams of Fig.
4.12, together with the relevant couplings needed for performing the computation.
The original calculation in the SUSY type-I seesaw was done in Ref. [9] in the mass
basis and in the Feynman-’t Hooft gauge, which we have adapted to the SUSY-ISS
model. In order to do that, we have derived the new relevant couplings with respect
to the SUSY type-I seesaw model, which we give in the following.

When compared with the SUSY type-I seesaw, only the coupling factors A(�)
Rα j

and gHx ν̃αν̃β
are modified. In the SUSY inverse seesaw, they are defined in the mass

basis with diagonal charged leptons by

A(e,μ,τ )
Rα j = Ũ(1,2,3)αVj1 − mD (1,2,3)k√
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+ (g(x)
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]
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2 , (D.1)

which are summed over the internal indices, with i , k = 1 , . . . , 3 and x referring to
Hx = (h, H, A). We reproduce below, for completeness, the unmodified coupling
factors from Ref. [9] (correcting a typo in W (x)

Ri j ) in the mass basis with diagonal
charged leptons
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j2Ũ(1,2,3)α ,

B(e,μ,τ )
Lαa = √

2

[
me,μ,τ

2mWcosβ
N∗
a3R

(�)
(1,3,5)α +

[
sin θW N

′∗
a1 − sin2 θW

cosθW
N

′∗
a2

]
R(�)

(2,4,6)α

]
,

B(e,μ,τ )
Rαa = √

2

[(
− sin θW N

′
a1− 1

cos θW
(
1

2
− sin2 θW )N

′
a2

)
R(�)

(1,3,5)α + me,μ,τ

2mW cosβ
Na3R

(�)
(2,4,6)α

]
,

W (x)
Li j = 1√

2

(
−σ

(x)
1 U∗

j2V
∗
i1 + σ

(x)
2 U∗

j1V
∗
i2

)
,

W (x)
Ri j = 1√

2

(
−σ

(x)∗
1 Ui2Vj1 + σ

(x)∗
2 Ui1Vj2

)
,

D(x)
Lab = 1

2 cos θW

[
(sin θW N∗

b1 − cos θW N∗
b2)(σ

(x)
1 N∗

a3 + σ
(x)
2 N∗

a4)

+ (sin θW N∗
a1 − cos θW N∗

a2)(σ
(x)
1 N∗

b3 + σ
(x)
2 N∗

b4) ] ,

D(x)
Rab = D(x)∗

Lab ,

S(x)
L ,�

= − m�

2mW cosβ
σ

(x)∗
1 ,

S(x)
R,�

= S(x)∗
L ,�

,

gHx �̃α �̃β
= −ig

[
g(x)
LL ,e R

∗(�)
1α R(�)

1β + g(x)
RR,e R

∗(�)
2α R(�)

2β + g(x)
LR,e R

∗(�)
1α R(�)

2β + g(x)
RL ,e R

∗(�)
2α R(�)

1β

+ g(x)
LL ,μR

∗(�)
3α R(�)

3β + g(x)
RR,μR

∗(�)
4α R(�)

4β + g(x)
LR,μR

∗(�)
3α R(�)

4β + g(x)
RL ,μR

∗(�)
4α R(�)

3β

+ g(x)
LL ,τ R

∗(�)
5α R(�)

5β + g(x)
RR,τ R

∗(�)
6α R(�)

6β + g(x)
LR,τ R

∗(�)
5α R(�)

6β + g(x)
RL ,τ R

∗(�)
6α R(�)

5β

]
,

g(x)
LL ,�

= mZ

cos θW
σ

(x)
3

(
1

2
− sin2 θW

)
+ m2

�

mW cosβ
σ

(x)
4 ,

g(x)
RR,�

= mZ

cos θW
σ

(x)
3

(
sin2 θW

)
+ m2

�

mW cosβ
σ

(x)
4 ,

g(x)
LR,�

=
(
−σ

(x)
1 A� − σ

(x)
5 μ

) m�

2mW cosβ
,

g(x)
RL ,�

= g(x)∗
LR,�

. (D.2)

Here, Ũ is the sneutrino rotation matrix defined in Eq. (2.71), R(�) the rotation of
charged sleptons according to Eq. (2.76), U and V are the rotation matrices for the
charginos, N the ones that rotates the neutralinos, with N (′)

a1,a2 defined in Eq. (2.75),
and,
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⎛
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⎛
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⎠ . (D.3)

Besides using these new couplings, the only changes required to adapt the original
form factors to the SUSY-ISS model are the sum over sneutrinos that has to be
extended to the 18 mass eigenstates. In the following formulas, summation over
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all indices corresponding to internal propagators is understood, meaning α ,β =
1 , . . . , 18 for the sneutrinos, i , j = 1 , 2 for the charginos, α ,β = 1 , . . . , 6 for the
charged sleptons and a , b = 1 , . . . , 4 for the neutralinos. The contributions from
the sneutrino-chargino loops are given by,
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where the contributions from slepton-neutralino loops read as,
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where,

B0 =
{
B0(m2

Hx
,m2

χ̃−
i
,m2

χ̃−
j
) in F (1)

L ,x ,

B0(m2
Hx

,m2
χ̃0
a
,m2

χ̃0
b
) in F (5)

L ,x ,

and

C0,11,12 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C0,11,12(m2
�k

,m2
Hx

,m2
ν̃α

,m2
χ̃−
i
,m2

χ̃−
j
) in F (1)

L ,x ,

C0,11,12(m2
�k

,m2
Hx

,m2
χ̃−
i
,m2

ν̃α
,m2

ν̃β
) in F (2)

L ,x ,

C0,11,12(m2
�k

,m2
Hx

,m2
l̃α
,m2

χ̃0
a
,m2

χ̃0
b
) in F (5)

L ,x ,

C0,11,12(m2
�k

,m2
Hx

,m2
χ̃0
a
,m2

l̃α
,m2

l̃β
) in F (6)

L ,x .



146 Appendix D: Form Factors for LFVHD in the SUSY-ISS Model

The couplings and self-energies from the neutralino contributions to the form
factors were defined as

κ
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(x)
LabB

(�m )∗
Lαb ,

κ
x, χ̃0

L7 = B(�k )
LαaD

(x)
LabB

(�m )∗
Rαb ,

�
χ̃0
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The couplings and self energies from the chargino contributions to the form fac-
tors, κx, χ̃−

, ιx, χ̃
−
, and �χ̃−

can be obtained from the previous expressions κx, χ̃0
,

ιx, χ̃
0
and �χ̃0

by using the following replacement rules mχ̃0
a
→ mχ̃−

i
, m �̃α

→ m ν̃α
,

B(�) → A(�), D(x) → W (x), a → i , and b → j .
The form factors F (i)

R,x , i = 1, . . . , 8 can be obtained from F (i)
L ,x , i = 1, . . . , 8

through the exchange L ↔ R in all places.



Appendix E
Formulas for the MIA Computation

In this Appendix we give the technical details of our MIA computation of the LFV
Higgs decay rates in Sect. 4.3. More concretely, we explain the derivation of the fat
propagators, used in our MIA computation in the Feynman-’t Hooft and unitary
gauges. We give our results for the form factors, up to O(Y 4

ν ) order in the MIA
expansion, showing explicitly that we obtain the same in both gauges. Furthermore,
we explore the large MR limit and derive useful approximate expressions for the loop
integrals needed for computing the H�k�m effective vertex of Eq. (4.34).

E.1 Modified Neutrino Propagators

Here we derive the right-handed neutrino fat propagators used for the computations
in Sect. 4.3. The idea is to resumall possible large flavor diagonalMR mass insertions,
which we denote with a dot in order to distinguish them from the flavor off-diagonal
ones, in a way such that the large mass appears effectively in the denominator of the
propagators of the new states.

In order to make a MIA computation in the electroweak basis (νL , νc
R , Xc),

we need to take into account all the propagators and mass insertions given by the
neutrino mass matrix. In the ISS model we are considering, this mass matrix is given
by Eq. (2.35), which we repeat here for completeness:

MISS =
⎛
⎝ 0 mD 0
mT

D 0 MR

0 MT
R μX

⎞
⎠ . (E.1)

From this mass matrix, we obtain the propagators and mass insertions summarized
in Fig.E.1. It is important to notice the presence of the PL and PR projectors for the
chiral fields, which have been properly added according to:
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νRi
νRi

=
νRi

+
νRi

Xc
i νRi

+ · · ·

νRi
Xc

i
=

νRi
Xc

i
+

νRi
Xc

i νRi
Xc

i + · · ·

Fig. E.1 Propagators and mass insertions in the electroweak basis. Big black dots denote flavor
diagonal mass insertions

νc
L , νR, X −→ RHfields,

νL , ν
c
R, Xc −→ LHfields.

(E.2)

As previously mentioned, there are three types of mass insertions and they are
controlled by thematricesmD ,MR andμX . Themass insertionsMR that relate νR and
X fields are taken to be flavor diagonal and are denoted by a big dot in Fig.E.1. On
the other hand, crosses indicate flavor non-diagonal insertions coming frommD (big
cross) and μX (small cross), which connect the fields νL -νR and two X ’s respectively.
Nevertheless, given that we work under the assumption that μX is a tiny scale, we
neglect μX mass insertions for our LFVHD computations and, therefore, we consider
mD as the only relevant LFV insertion.

Since our motivation in this work is to make a MIA computation for LFV H
decays by perturbatively inserting LFV mass insertions, we find convenient to take
into account first the effects of all possible flavor diagonal MR insertions. Moreover,
this procedure allows us to consider MR also as a heavy scale so we can define an
effective vertex for the H -�i -� j interaction. This can be done by defining two types
of modified propagators, one for same initial and final state consisting of all possible
even number of MR insertions (which we call fat propagator), and one for different
initial and final states with an odd number of MR insertions, as it is schematically
shown in Fig.E.2. We can then define two modified propagators starting with νR by
adding the corresponding series:

Prop νRi →νRi
= PR

i

/p
PL + PR

i

/p
PL
(

− iM∗
Ri PL

)
PL

i

/p
PR

(
− iMRi PR

)
PR

i

/p
PL + · · ·

= PR
i

/p

∑
n≥0

( |MRi |2
p2

)n

PL = PR
i /p

p2 − |MRi |2
PL , (E.3)

Prop νRi →Xc
i

= PL
i

/p
PR

(
− iMRi PR

)
PR

i

/p
PL

+ PL
i

/p
PR

(
− iMRi PR

)
PR

i

/p
PL
(

− iM∗
Ri PL

)
PL

i

/p
PR

(
− iMRi PR

)
PR

i

/p
PL + · · ·

= PL
iMRi

p2
∑
n≥0

( |MRi |2
p2

)n

PL = PL
iMRi

p2 − |MRi |2
PL . (E.4)
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νLi
PL

i

/p
PR

νRi
PR

i

/p
PL

Xi
PR

i

/p
PL

νRj
νLi −imDij

PR

νRi
Xc

i −iMRii
PR

Xj Xc
i −i μXij

PR

Fig. E.2 Modified neutrino propagators after resuming an infinite number of MR mass insertions,
denoted here by big black dots. We use fat arrow lines with same (different) initial and final states
to denote that all possible even (odd) number of MR insertions have been considered. The fat lines
with same initial and final νR states are referred to in this work as fat propagators

And we can similarly define other modified propagators considering also the νc
R and

X states. In the present study of LFVHD, it happens that the X fields do not interact
with any of the external legs involved in the LFV process we want to compute.
Consequently, to take into account the effects from X in the LFVHD, it is enough to
consider the fat propagator in Eq. (E.3) when computing the one-loop contributions
to H → �k �̄m .

E.2 MIA Form Factors in the Feynman-’t Hooft Gauge

Here we present the analytical results for the form factors FL ,R involved in the
computation of the LFVHD decay rates when computed with the MIA to one-loop
order. We consider the leading order corrections, O(Y 2

ν ), and the next to leading
corrections, O(Y 4

ν ), as explained in the text. This means the computation of all the
one-loop diagrams in Figs. 4.18, 4.19, 4.20 and 4.21. They are written in terms of
the usual one-loop functions for the two-point B ′s, three-point C ′s, and four-point
D′s functions. We follow these definitions and conventions:

μ4−D
∫

dDk

(2π)D

{1; kμ}
[k2 − m2

1][(k + p1)2 − m2
2]

= i

16π2

{
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1 B1
}
(p1,m1,m2) ,

(E.5)

μ4−D
∫

dDk

(2π)D

{1; k2; kμ}
[k2 − m2

1][(k + p1)2 − m2
2][(k + p1 + p2)2 − m2

3]
= i

16π2

{
C0; C̃0; pμ

1C11 + pμ
2C12

}
(p1, p2,m1,m2,m3) , (E.6)
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We startwith the left-handed form factors andpresent the contributions diagramby
diagram, following the notation explained in the text and shortening mk,m ≡ m�k,m .
We will restrict ourselves to the dominant contributions, meaning those that will
provide O(v2/M2

R) terms when doing the large MR expansion, as explained in the
next Appendix. For instance, contributions from loop functions of type Di where
MR appears in two of the mass arguments go as 1/M4

R and provide subdominant
corrections that are not considered here.

The results of the O(Y 2
ν ) contributions are:
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The results of the dominant O(Y 4
ν ) contributions are:
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Next, we present the right-handed form factors. The results of the O(Y 2
ν ) contribu-

tions are:
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The results of the dominant O(Y 4
ν ) contributions are:
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The arguments of the above one-loop integrals are the following:
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C̃0,Ci = C̃0,Ci (p2, p1,mW , 0, MR) in (1a), (1c), (2a)

C̃0,Ci = C̃0,Ci (p2, p1,mW , MR, 0) in (1b), (1d), (2b)
Ci = Ci (p2, p1,mW , MR, MR) in (1e), (1 f ), (1i), (1 j)
D̃0 = D̃0(p2, 0, p1,mW , 0, MR, MR) in (1g)
D̃0 = D̃0(p2, p1, 0,mW , 0, MR, MR) in (1h)

D̃0 = D̃0(p2, p1, 0,mW , MR, MR, 0) in (1k)
D̃0 = D̃0(p2, 0, p1,mW , MR, MR, 0) in (1l)
Di = Di (0, p2, p1, 0, MR,mW ,mW ) in (3a), (4b), (5b), (6d)

Ci = Ci (p2, p1, MR,mW ,mW ) in (4a), (4b), (5a), (5b), (6a), (6b), (6c)
C12 = C12(0, p2, 0, MR,mW ) in (7a), (8d)

Bi = Bi (p2, MR,mW ) in (8a), (8b), (8c)
Ci = Ci (0, p2, MR, MR,mW ) in (8e), (8 f ), (8g)
C12 = C12(0, p3, 0, MR,mW ) in (9a), (10d)

Bi = Bi (p3, MR,mW ) in (10a), (10b), (10c)
Ci = Ci (0, p3, MR, MR,mW ) in (10e), (10 f ), (10g) .

We want to remark that the above formulas are valid for the degenerate MRi = MR

case. Nevertheless, they can be easily generalized to the non-degenerate case by
properly including the summation indices. For example, it would be enough to change

(YνY
†
ν )kmCα(p2, p1,mW , 0, MR) → (Y ka

ν Y †am
ν )Cα(p2, p1,mW , 0, MRa ) ,

(YνY
†
ν YνY

†
ν )kmCα(p2, p1,mW , MR, MR) → (Y ka

ν Y †ai
ν Y ib

ν Y †bm
ν )Cα(p2, p1,mW , MRa , MRb ) ,

(E.12)

and similarly for all the terms.

E.3 The Large MR Expansion

Herewepresent our analytical results for the loop-functions and form factors involved
in our computation of LFVHD rates in the large MR limit. To reach this limit we
perform a systematic expansion of the amplitude in powers of (v2/M2

R). Generically,
the first order in this expansion is O(v2/M2

R) the next order is O(v4/M4
R), etc. The

logarithmic dependence with MR is left unexpanded. In the final expansion we will
keep just the dominant terms in the form factors of O(v2/M2

R) which have been
shown to be sufficient to describe successfully the final amplitude for LFVHD in the
heavy right-handed neutrino mass region of our interest, i.e., MR � v.

Wefirst calculate the largeMR expansions of all the one-loop functions and second
we plug these expansions in the form factors formulas. To do this, we perform
first the integration of the Feynman’s parameters and next expand them for large
MR � v. Since themass of theHiggs boson enters here, we cannot take themost used
approximation of neglecting external momentum particles. In fact our expansions
presented in this Appendix will apply to the present case of on-shell Higgs boson,
i.e., with p21 = m2

H and mH being the realistic Higgs boson mass. Furthermore,
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it should be noticed that in principle there are three very different scales of masses
involved in the computation: the lepton sector masses (m�m andm�k ), the electroweak
sector masses (mW and mH ) and the new physics scale MR . As we said, in a good
approximation we can neglect the lepton masses in the one-loop functions at the
beginning. However, both electroweak massesmW andmH must be retained in order
to calculate the O(M−2

R ) terms of the one-loop functions. Actually, in practice we
consider the vacuum expectation value v, which is the common scale entering in
both electroweak masses within the SM, and as we said above, we perform a well
defined expansion in powers of an unique dimensionless parameter that is given by
the ratio v2/M2

R .
At the numerical level, we have checked that all the expansions presented in the

following are in very good accordance with the numerical results from LoopTools.
The analytical expansions that we get for the dominant terms of the loop functions,
i.e., up to O(M−2

R ), are summarized as,

B0 (p, MR,mW ) = � + 1 − log
(M2

R

μ2

)
+

m2
W log

(
m2

W

M2
R

)
M2

R

+ p2

2M2
R

,

C0 (p2, p1,mW , 0, MR) = C0 (p2, p1,mW , MR, 0) =
log
(
m2

W

M2
R

)
M2

R

,

C0
(
p2, p1, MR,mW ,mW

) =
2
√
4λ − 1 arctan

(√
1

4λ−1

)
− 1 + log

(
m2

W

M2
R

)
M2

R

,

C0 (p2, p1,mW , MR, MR) = − 1

M2
R

,

C0
(
0, plep, MR, MR,mW

) = − 1

M2
R

,

C̃0 (p2, p1,mW , MR, 0) = C̃0 (p2, p1,mW , 0, MR)

= � + 1 − log
(M2

R

μ2

)
+

m2
W log

(
m2

W

M2
R

)
M2

R

+ m2
H

2M2
R

,

D̃0 (p2, 0, p1,mW , 0, MR, MR) = D̃0 (p2, p1, 0,mW , 0, MR, MR) = − 1

M2
R

,

D̃0 (p2, 0, p1,mW , MR, MR, 0) = D̃0 (p2, p1, 0,mW , MR, MR, 0) = − 1

M2
R

,

B1 (p, MR,mW ) = −�

2
− 3

4
+ 1

2
log
(M2

R

μ2

)
−

m2
W

(
2 log

(
m2

W

M2
R

)
+ 1
)

2M2
R

− p2

3M2
R

,

C11 (p2, p1,mW , 0, MR) =
1 − log

(
m2

W

M2
R

)
2M2

R

,
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C12 (p2, p1,mW , 0, MR) = 1

2M2
R

,

C11 (p2, p1,mW , MR, 0) =
1 − log

(
m2

W

M2
R

)
2M2

R

,

C12 (p2, p1,mW , MR, 0) = −
log
(
m2

W

M2
R

)
2M2

R

,

C11 (p2, p1, MR,mW ,mW ) = 2C12 (p2, p1, MR,mW ,mW )

= −
4
√
4λ − 1 arctan

(√
1

4λ−1

)
+ 2 log

(
m2

W

M2
R

)
− 1

2M2
R

,

C11 (p2, p1,mW , MR, MR) = 2C12 (p2, p1,mW , MR, MR) = 1

2M2
R

,

C12
(
0, plep, 0, MR,mW

) =
− log

(
m2

W

M2
R

)
− 1

2M2
R

,

C12
(
0, plep, MR, MR,mW

) = 1

2M2
R

,

D12 (0, p2, p1, 0, MR,mW ,mW ) = 2D13 (0, p2, p1, 0, MR,mW ,mW )

=
2
(
−4λ arctan2

(√
1

4λ−1

)
+ 2

√
4λ − 1 arctan

(√
1

4λ−1

)
− 1
)

M2
Rm

2
H

,

(E.13)

where we have used the usual definitions in dimensional regularization, � = 2/ε −
γE + Log(4π) with D = 4 − ε and μ the usual scale, and we have denoted the mass
ratio λ = m2

W/m2
H to shorten the result.

Taking into account the formulas in Eq. (E.13), plugging them into the results of
the form factors in the Appendix E.2, neglecting the tiny terms with lepton masses,
and pairing diagrams conveniently, we finally get the results for the dominant terms
of the various type diagrams (i), see Fig. 4.1, of the MIA form factors valid in the
large MR � v regime:

F (1)
L = 1

32π2

mk

mW

[ (
YνY

†
ν

)km
⎛
⎜⎜⎝� + 1 − log(

M2
R

μ2 ) +
m2

W log

(
m2

W
M2

R

)

M2
R

+ m2
H

2M2
R

⎞
⎟⎟⎠

−5

2

v2

M2
R

(
YνY

†
ν YνY

†
ν

)km ]
,

F (2)
L = − 1

32π2

mk

mW

(
YνY

†
ν

)km m2
W

M2
R

(
1 + log

(
m2

W

M2
R

))
,
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F (3)
L = 1

8π2

mk

mW

(
YνY

†
ν

)km λm2
W

M2
R

(
−4λ arctan2

(
1√

4λ − 1

)

+2
√
4λ − 1 arctan

(
1√

4λ − 1

)
− 1

)
,

F (4+5)
L = 1

32π2

mk

mW

(
YνY

†
ν

)km m2
W

M2
R

(
8λ arctan2

(
1√

4λ − 1
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−2
√
4λ − 1 arctan

(
1√

4λ − 1
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+ 1

2
+ log

(
m2

W

M2
R
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,

F (6)
L = 1

32π2

mk

mW

(
YνY

†
ν

)km m2
H

M2
R
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4λ − 1 arctan

(
1√

4λ − 1
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− 3

4
+

log

(
m2

W
M2

R

)

2

⎞
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F (7+9)
L = 0 ,

F (8+10)
L = − 1

32π2

mk

mW

[ (
YνY

†
ν

)km
⎛
⎜⎜⎝� + 1 − log(

M2
R

μ2 ) +
m2

W log

(
m2

W
M2

R

)

M2
R

⎞
⎟⎟⎠

− v2

M2
R

(
YνY

†
ν YνY

†
ν

)km ]
. (E.14)

And similar formulas can be obtained for the FR form factors. Notice that in the
results above we have included all the relevant contributions, i.e., up toO(Y 2

ν + Y 4
ν )

and it turns out, as announced in Sect. 4.3, that they are just the diagrams (1)+(8)+(10)
that provide contributions of O(Y 4

ν ) with a v2/M2
R dependence. The other diagrams

will also give O(Y 4
ν ) contributions but they will be suppressed since they go with a

v4/M4
R dependence, and we do not keep these small contributions in our expansions.

E.4 MIA Form Factors in the Unitary Gauge

In order to check the gauge invariance of our results for the LFVHD form factors (and
therefore the partial width) that we have computed in theMIA by using the Feynman-
’t Hooft gauge, we present here the computation of these same form factors but using
a different gauge choice, in particular the unitary gauge (UG). We will demonstrate
that when computing the MIA form factor FL toO(Y 2

ν + Y 4
ν ) we get the same result

as in Eq. (4.30). A similar demonstration can be done for FR but we do not include it
here for shortness. For this exercise, we ignore the tiny terms suppressed by factors
of the lepton masses as we did in Eq. (4.30).

First, we list the relevant one-loop diagrams contributing to the form factor FL

in the UG. Since, in this gauge there are not Goldstone bosons, there will be just
diagrams of type: (2), (3), (7) and (9). Generically, each of these diagrams will get
contributions ofO(Y 2

ν ) andO(Y 4
ν ). Second, we write the propagator of theW gauge

boson in the UG, PUG
W , by splitting it into two parts, Pa

W and Pb
W :

https://doi.org/10.1007/978-3-319-94604-7_4
https://doi.org/10.1007/978-3-319-94604-7_4
https://doi.org/10.1007/978-3-319-94604-7_4
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νLj

νRi

νLk

W

(2c)

H

�k

�̄m

νLk

νRi
νLj

νRk
νLm

W
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H

�k

�̄m
νRa

νLj

νRi

νLk

νLm

W
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H

�k

�̄m

νLj
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νLm

νRi

νLk

W

(2f)

H

�k

�̄m

νLk

νRi

νLj

νRa

νLm

W

W
(3b)

H
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�̄m
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(7b)

H

�k

�̄m

�̄k
W

νLk

νRi
νLj
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Fig. E.3 Relevant diagrams for the form factors to O(Y 4
ν ) in the unitary gauge

PUG
W = Pa

W + Pb
W = − igμν

p2 − m2
W

+ i pμ pν

m2
W (p2 − m2

W )
, (E.15)

such that, Pa
W coincides with the W propagator in the Feynman-’t Hooft gauge.

Then, each diagram of type (i), i =2, 3, 7, 9,will receive three kind of contributions:
(1) from the part Pa

W one gets the same contributions to O(Y 2
ν ) as those we got in

the Feynman-’t Hooft gauge from the five diagrams (2a), (2b), (3a), (7a) and (9a)
in Figs. 4.18 and 4.19; (2) new contributions to O(Y 2

ν ) that come from considering
the new propagator term Pb

W in these same diagrams (2a), (2b), (3a), (7a) and (9a);
(3) contributions toO(Y 4

ν ) that come from new diagrams which were not relevant in
the Feynman-’t Hooft gauge, but they are relevant in the UG. By relevant we mean
leading to dominant O(M−2

R ) contributions in the large MR expansion. These new
diagrams contributing to order O(Y 4

ν ) in the UG are the seven diagrams shown in
Fig.E.3. Thus, we get in total twelve one-loop diagrams contributing in the UG: (2a),
(2b), (2c), (2d), (2e), (2f), (3a), (3b), (7a), (7b), (9a) and (9b).

Next we present the results in the UG for each type of diagram (i), specifying the
various contributions explained above, which for clarity we present correspondingly
ordered in three lines, the first line is for kind (1), the second line is for kind (2) and
the third line is for kind (3). The UG FL form factors toO(Y 2

ν + Y 4
ν ) that we get are,

as follows:

https://doi.org/10.1007/978-3-319-94604-7_4
https://doi.org/10.1007/978-3-319-94604-7_4
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FUG(2)
L = − 1

16π2 mkmW
(
YνY

†
ν

)km (
(C0 + C11 − C12)(2a) + (C11 − C12)(2b)

)

+ 1

32π2

mk

mW

[(
YνY

†
ν

)km (
(C̃0)(2a) − (B1)(2b)

)

+ (YνY
†
ν YνY

†
ν

)km
v2
(
−(C11)(2c) + (D̃0)(2d) + (D̃0 − (C11 − C12))(2e) − (C11 − C12)(2 f )
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,

FUG(3)
L = 1

8π2 mkm
3
W

(
YνY

†
ν

)km
(D12 − D13)(3a)

− 1

32π2

(
YνY

†
ν

)km mk

mW

[
2B0 + B1 − (2m2

W + m2
H )(C0 + C11 − C12) + 2m2

Wm2
H D13

]
(3a)

− 1

32π2

(
YνY

†
ν YνY

†
ν

)km mk

mW
v2 [2C0 + C12](3b) ,
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L = 1

16π2 mkmW
m2
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m2
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m

(
YνY

†
ν

)km
(C12)(7a)

1

32π2

mkm2
m
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YνY

†
ν

)km
(2B0 + B1)(7a)
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†
ν YνY
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)km
v2(2C0 + C12)(7b)
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,

FUG(9)
L = − 1

16π2 mkmW
m2

m

m2
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YνY

†
ν

)km
(C12)(9a) ,

− 1

32π2

mkm2
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YνY

†
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)km
(2B0 + B1)(9a)

+ (YνY
†
ν YνY
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)km
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, (E.16)

where the arguments of the one-loop functions are:

C̃0,Ci = C̃0,Ci (p2, p1,mW , 0, MR) in (2a)

Bi = Bi (plep,mW , MR) in (2b)
Ci = Ci (p2, p1,mW , MR, 0) in (2b)
Ci = Ci (plep, 0,mW , MR, MR) in (2c)
D̃0 = D̃0(p2, p1, 0,mW , 0, MR, MR) in (2d)

Ci = Ci (p2, p1,mW , MR, MR) in (2e), (2 f )
D̃0 = D̃0(p2, 0, p1,mW , 0, MR, MR) in (2e)
Bi = Bi (plep, MR,mW ) in (3a), (7a), (9a)

Ci = Ci (p2, p1, MR,mW ,mW ) in (3a)

Di = Di (0, p2, p1, 0, MR,mW ,mW ) in (3a)

Ci = Ci (0, plep, MR, MR,mW ) in (3b), (7b), (9b)
Ci = Ci (0, plep, 0, MR,mW ) in (7a), (9a) .

The comparison of the previous results with that in Eq. (4.30) then goes as follows.
First, it is clear from the above results, that once again the contributions fromdiagrams
(7) and (9) cancel out fully, as it happened in the Feynman-’t Hooft gauge. Therefore,
FUG
L = FUG(2)

L + FUG(3)
L . Then, the first line in FUG(2)

L and the first line in FUG(3)
L

match correspondingly with the contributions from (2) and (3) in the Feynman-’t
Hooft gauge. Next, by using the relation,

B0(plep, MR,mW ) + B1(plep, MR,mW ) + B1(plep,mW , MR) = 0 , (E.17)

https://doi.org/10.1007/978-3-319-94604-7_4
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we get that the sum of the second line in FUG(2)
L and the second line in FUG(3)

L gives
exactly the contributions toO(Y 2

ν ) from (1)+(8)+(10)+(4)+(5)+(6) in the Feynman-’t
Hooft gauge. Finally, by using the relation

C11(plep, 0,mW , MR, MR) + (C0 + C12)(0, plep, MR, MR,mW ) = 0 , (E.18)

we get that the sum of the third line in FUG(2)
L and the third line in FUG(3)

L gives
exactly the contributions to O(Y 4

ν ) from (1)+(8)+(10). Therefore, in summary, we
get the identity of the total result for FL computed in both gauges, leading to the
gauge invariant result of Eq. (4.30).

https://doi.org/10.1007/978-3-319-94604-7_4


Appendix F
Form Factors for LFVZD in the ISS Model

In this Appendix we give the analytical expressions for the form factors contributing
to Z → �k�m , as they are defined in Eqs. (5.1) and (5.2). In the Feynman-t’Hooft
gauge, they are obtained by computing the ten diagrams shown in Fig. 5.1. We take
the results from [10–12] and adapt them to our notation and to the convection of
LoopTools [8] for the loop functions.

The form factors of the different diagrams are

F (1)
Z = 1

2
B�kni B

∗
�mn j

{
−Cnin j xi x j m

2
WC0 + C∗

ni n j

√
xi x j

[
m2

Z C12 − 2C00 + 1

2

]}
,

(F.1)
where C0,12,00 ≡ C0,12,00(0,m2

Z , 0,m2
W ,m2

ni ,m
2
n j

);

F (2)
Z = B�kni B

∗
�mn j

{
−Cni n j

[
m2

Z

(
C0 + C1 + C2 + C12

)
− 2C00 + 1

]
+ C∗

ni n j

√
xi x j m

2
WC0

}
,

(F.2)
where C0,1,2,12,00 ≡ C0,1,2,12,00(0,m2

Z , 0,m2
W ,m2

ni ,m
2
n j

);

F (3)
Z = 2c2W B�kni B

∗
�mni

{
m2

Z

(
C1 + C2 + C12

)
− 6C00 + 1

}
, (F.3)

where C1,2,12,00 ≡ C1,2,12,00(0,m2
Z , 0,m2

ni ,m
2
W ,m2

W );

F (4)
Z + F (5)

Z = −2s2W B�kni B
∗
�mni xi m

2
WC0, (F.4)

where C0 ≡ C0(0,m2
Z , 0,m2

ni ,m
2
W ,m2

W );

F (6)
Z = −(1 − 2s2W ) B�kni B

∗
�mni xi C00, (F.5)

where C00 ≡ C00(0,m2
Z , 0,m2

ni ,m
2
W ,m2

W );
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F (7)
Z + F (8)

Z + F (9)
Z + F (10)

Z = 1

2
(1 − 2c2W ) B�kni B

∗
�mni

{(2 + xi )B1 + 1} , (F.6)

where B1 ≡ B1(0,m2
ni ,m

2
W ).

In all these formulas, sum over neutrino indices, i, j = 1, . . . , 9 has to be under-
stood, xi ≡ m2

ni /m
2
W and the charged lepton masses have been neglected.
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