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Supervisor’s Foreword

The Ph.D. thesis of Dr. Alessandro Manacorda deals with the theoretical founda-
tions of hydrodynamic models for granular flows and active matter. These systems
are considered among the most prominent examples of complex fluids, where the
collective many-particle behavior can be surprising with respect to the simplicity
of the single-particle dynamics. The work of Dr. Manacorda has been carried out at
the Physics Department of the University of Rome “Sapienza” in association with
the Institute for Complex Systems of the Italian Consiglio Nazionale delle Ricerche
(CNR-ISC). The granular part of the thesis project was setup in collaboration with
Prof. Antonio Prados of the University of Sevilla, where Dr. Manacorda has also
spent a few months of his Ph.D. period.

Granular and active systems are examples of soft matter, in the broad meaning of
condensed matter states where fluctuations are relevant. However, they are not
relegated to the microscopic world, but can be encountered along a wide range of
spatial and temporal scales. Indeed, granular matter is made of solid grains of size
from tens of microns up to centimeters or even meters (as in rocks found in
planetary rings), and active matter includes not only microscopic swimmers and
ratchets (such as actin filaments, bacteria, sperms.) but also large groups of
macroscopic animals such as fishes and birds. This brings to the fore a fundamental
property of fluctuations in granular and active matter, that is, their intrinsic
out-of-equilibrium nature. In both granular and active fluids, one has a flow of
energy coming from some external driving device (an externally vibrated box in the
granular case, some internal energy storage in the active case) which animates the
system and is eventually dissipated in the environment. This energy current pre-
vents the use of the equilibrium tools of statistical mechanics, such as the equi-
librium ensembles or the free energies. Logically, the theoretical investigation of
those systems needs to perform a backward step with respect to equilibrium sta-
tistical mechanics: We need to return to kinetic theory and work with
time-dependent (and time-asymmetrical) equations for probabilities. In order to
simplify the theory, we can look for some coarse-graining procedure, typically
focusing on a few observables or fields which evolve slowly in space and time.
Another crucial aspect of both granular and active fluids is their “small” size, in
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terms of number of elementary constituents which can be as small as a few hun-
dreds in several physical examples. As a consequence, the amplitude of fluctuations
of coarse-grained variables can be much more important than in a fluid made of
1020 molecules. The coarse-graining procedures, therefore, should include some
description of fluctuations and this—in a non-equilibrium system—represents an
unsolved challenge that puts the work of this thesis at the frontier of theoretical
physics.

The main theoretical new results presented in this thesis, all published in
peer-reviewed papers, concern the introduction of new lattice models for a granular
fluid (Chaps. 4 and 5) or an active fluid (Chap. 6) and the derivation—in both cases
through simplifying assumptions such as Molecular Chaos and Local Equilibrium
—of continuum hydrodynamic equations with noises coherent with the microscopic
probabilistic prescriptions. The derived equations, validated through comparison
with numerical Monte Carlo simulations of the lattice models, have also been
studied analytically in order to deduce interesting collective regimes and phases. In
certain cases, the analytical study of the microscopic model has gone beyond the
local equilibrium assumption, producing interesting results about spatial and tem-
poral correlations.

My opinion is that the value of this thesis is not limited to the new results, but is
enriched by the first three chapters which provide an excellent introduction to the
main subjects of this investigation, that are the physics of granular matter, the
physics of active matter, and the general theory of fluctuating hydrodynamics. This
opening discussion takes roughly half of the length of this thesis and constitutes a
complete guide for students or researchers coming from other fields. Most impor-
tantly, these first chapters offer an interesting perspective about the physical and
mathematical features shared by granular and active matter, in particular with
respect to their continuum (hydrodynamic) description. A unifying picture of active
and granular flows is rarely considered in the literature and therefore constitutes a
conceptual key point of this thesis.

Rome, Italy
April 2018

Dr. Andrea Puglisi
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Abstract

This thesis is the result of my research work as a Ph.D. student at Rome University
Sapienza, under the supervision of Dr. Andrea Puglisi, and in collaboration with Dr.
Antonio Lasanta, Prof. Antonio Prados and Carlos A. Plata from Sevilla University.
The goal of the thesis is the formulation of the fluctuating hydrodynamics in
granular and active matter by means of lattice models in the non-equilibrium
framework.

The contents of the thesis are the following: Chap. 1 is an introduction to the
physics of granular and active matter, where the definitions and the main phe-
nomenology of granular and active systems are reviewed.

Chapter 2 reviews the fundamental theoretical tools for the study of granular and
active systems. The formulation of kinetic theory for conservative interactions is
given and later applied to the granular case, introducing some of the most important
granular states. The modelization of active matter is also discussed, introducing the
most important models formulated in the last years to reproduce self-propulsion and
active interactions. The last section analyzes some key experiments showing a
possible active behavior for driven granular systems.

Chapter 3 is dedicated to hydrodynamics. The classic formulation of hydrody-
namics through the Chapman–Enskog approach is sketched and later applied to the
granular case and the study of its hydrodynamical instabilities. An overview of
hydrodynamics in active matter is given and compared with previous cases. Finally,
the mostly studied lattice models for conservative and dissipative statistical systems
are reviewed.

Chapter 4 introduces a granular lattice model to investigate the fluctuating
hydrodynamics of shear modes: The hydrodynamic equations are derived from
microscopic dynamics through a continuum limit. Depending on the boundary
conditions, the model is able to reproduce several granular states and is predictive
about their hydrodynamic instabilities.

Chapter 5 describes the properties of the granular model introduced when
molecular chaos assumption is abandoned. It is shown how velocity correlations
and energy fluctuations can be directly computed from microscopic dynamics,
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explaining the divergence of numerical results from the uncorrelated case previ-
ously studied.

Chapter 6 introduces a lattice model of active matter. The procedure of previous
chapters is used to include self-propelled particles in d[ 1, leading to the obser-
vation of collective behavior. The linear stability of the disordered state is studied
together with the fluctuations of hydrodynamic currents.

The Appendices contain the derivation of analytical results for the granular model
presented in Chaps. 4 and 5 (Appendix A) and for the active model of Chap. 6
(Appendix B). Appendix C contains a list of link to videos, aimed at a novel reader to
illustrate the phenomenology introduced in Part I.

Many results presented in Part II of this thesis have been already published in
journal articles; the research work is here presented in a detailed and consequential
manner. The interested reader can refer to:

• Chapter 4: A. Manacorda, C. A. Plata, A. Lasanta, A. Puglisi, and A. Prados.
Latticemodels for granular-like velocity fields: hydrodynamic description. J. Stat.
Phys., 164(4):810–841, Aug 2016.

• Chapter 5: C. A. Plata, A. Manacorda, A. Lasanta, A. Puglisi, and A. Prados.
Lattice models for granular-like velocity fields: finite-size effects. J. Stat. Mech.
(Theor. Exp.), 2016(9):093203, 2016.

• Chapter 6: A. Manacorda and A. Puglisi. Lattice model to derive the fluctuating
hydrodynamics of active particles with inertia. Physical Review Letters,
119(20):208003, 2017.
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Chapter 1
Introduction

Like lesser birds on the four winds
Like silver scrapes in May

Now the sands become a crust
And most of you have gone away

(Blue Öyster Cult)

Granular and active matter are among the most studied systems in out of equilibrium
statistical physics.

The study of out of equilibrium systems is still under development and represents
one of the most important progresses of statistical physics in the last century. At
the end of the 19th century, equilibrium statistical physics had developed the main
tools to investigate the physical properties of macroscopic systems as a statistical
consequence of their macroscopic behavior. The development of the kinetic theory
has related the time evolution and the equilibrium values of thermodynamic observ-
ables such as temperature and pressure to the microscopic dynamics of the enormous
number of particles constituting the material of observation. The existence of con-
servation laws such as the energy conservation principle is the basis to define the
tendency to equilibrium normally observed in gases and liquids: no matter the initial
configuration of the system, the microscopic dynamics of the system leads it to a
macroscopic equilibrium state with a given probability distribution of its dynamical
coordinates, namely the positions and velocities of the particles of a gas, deter-
mined by the Boltzmann formula e−βH for Hamiltonian systems. The existence of
an equilibrium state allows to introduce the Gibbs ensembles description and define
thermodynamical functions such as the Helmoltz free energy, the entropy and so on.

© Springer International Publishing AG, part of Springer Nature 2018
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However, out of equilibrium systems are ubiquitous. First, every system at equi-
librium can be driven out of it from a perturbation, inducing a heat or mass current
into the system, developing spatial gradients coupled with a temporal evolution of
thermodynamical quantities. This is what ceaselessly happens in transport processes,
e.g. when a fluid is flowing under a pressure gradient or an electric current arises
because of the application of a voltage. Nonequilibrium phenomena are involved in a
large amount of research fields, such as climate dynamics, chemical reactions, biolog-
ical physics and applications of physics to economics and social science. The basis
of nonequilibrium statistical physics rely on probability and stochastic processes
theory: while on one hand the huge number of microscopic components forbid any
possibility of analytical computation of their motion one by one, on the other hand it
allows to use limit theorems such as the Law of Large Numbers or the Central Limit
Theorem, getting more precise predictions as the number of microscopic particles
increase. The most ambitious goal of statistical physics is to derive the probability
distribution of the microscopic variables of the considered system: if this is achieved,
the computation of macroscopic observables is generally almost straightforward.

Granular and active matter are two kinds of out of equilibrium statistical systems.
Granular matter is everything that is made of grains, like powders, sand, cereals,
pills etc. A grain is a solid particle following the laws of classical mechanics and
interacting among each other through dissipative collisions. The last feature is what
actually makes granular matter out of equilibrium, differentiating it from colloidal
particles which follow classical mechanics but undergo elastic collisions. A sys-
tem can be at equilibrium if a phase-space trajectory and its time-reversed one have
the same probability to occur a priori. It will be shown that dissipation makes it
impossible for granular materials. Therefore, being out of equilibrium in granular
matter is not the consequence of a perturbation but rather an intrinsic property of
the physical system. This is possible because the granular description introduces a
coarse-graining of the system at a mesoscopic scale, disregarding the microscopic
degrees of freedom involved in collisions and absorbing the dissipated kinetic energy,
restoring the energy conservation principle at a more fundamental level. Neverthe-
less, the description introduced has revealed to be of practical use to describe the
main properties of granular materials. Research on granulars started from the obser-
vation of many unknown features in industrial devices: the observation that pressure
and stress propagation followed a rather different behavior from elastic materials
inaugurated a new research area, with many possible interactions with engineering
problems such as the transport of grains, the mixing or separation of different kind
of powders, the prevention of avalanches and the diffusion of fluids into a granular
material.

Active matter is every system composed by many self-propelled units. The most
natural examples are animals: their biological structure provide them the motility,
i.e. the capability to sustain a state of motion by converting the chemical energy
stored into kinetic energy. As it will be shown, the research has identified a plethora
of active systems, including humans which obviously move across the space. Active
matter exhibits a spectacular behavior when the units coordinate themselves and
give rise to collective motion: this is what we observe when fishes move together in
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huge schools, travelling across the sea and defending from predators, or when birds
coordinate their motion forming amazing flocks. Thus, active matter phenomena are
the combination of the individual self-propulsion of the units with the reciprocal
interactions established among them. Living units are very complex systems, and
the derivation of interaction rules from their biological properties is currently out
of reach. Therefore, research on active matter in the last two decades focused on
the proposal of minimal models capable to reproduce the main features of collective
motion observed in experiments.

Granular and active matter share two main properties:

• they are both intrinsically out of equilibrium: indeed, active matter continuously
converts internal energy - absorbed somehow from the environment-in kinetic
energy to sustain its state of motion; furthermore, when moving in a viscous fluid
or substrate, kinetic energy is dissipated all along the motion. This implies the
presence of continuous balance of energy injection/dissipation during the motion
of the particle. The same balance occurs in a driven granular gas: to avoid the
global “cooling” of granular motion caused by collisions, one can inject energy in
a granular media through some mechanical process, like shearing or shaking the
granular. Therefore, granular and active matter seem to have a specular behavior:
while the former loses kinetic energy in its free motion and needs to absorb it from
the environment, the latter vice versa “creates” kinetic energy from stored internal
energy and dissipates it interacting with the environment.

• grains and active units are generally small systems: even if in some physical sit-
uations they can be made of N ∼ 105 particles, this number is quite far from
Avogadro’s number NA ∼ 1023. Therefore, the validity of limit theorems is more
delicate, the fluctuations become relevant and can usually be compared with the
magnitude of macroscopic quantities of the system. A probabilistic approach must
not disregard them but rather include them in a more accurate description.

The specularity betweengranular and active particles is not an inventionof this the-
sis: many studies have connected the two, and several experiments on shaken nematic
or polar rods have shown their “active behavior”. Actually, it is established that driven
asymmetrical granular particles can behave as active units, because nematic or polar
interactions can produce an alignment and increase of velocity correlations leading
to some collective motion. Nevertheless, what has been observed numerically-and
confirmed analytically in this thesis-is that dissipative granular collisions are suffi-
cient to create velocity correlations leading a granular system to an ordered motion,
even for apolar and isotropic particles.

There are several possible descriptionswhen looking at granular and activematter:
we are interested in their hydrodynamic description. Namely, a granular material or
an active system can be treated as a fluid, where each unit is analogous to a molecule
of the fluid and the dynamical observables are the macroscopic fields of density,
velocity and temperature, defined from classical hydrodynamic description ofmolec-
ular fluids. This representation allows to recognize many collective phenomena of
granular and active motion such as vortex formation, clustering, swarming and so on.
Hydrodynamics is deeply related to kinetic theory, providing a statistical derivation of
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macroscopic observables without the need of equilibrium assumptions. Furthermore,
in the last decades the theory of fluctuating hydrodynamics has started, aiming at rein-
troducing in hydrodynamic theory all the fluctuations which are typically neglected
when considering systems with a huge number of particles. However, fluctuating
hydrodynamics of nonequilibrium systems often relies on equilibrium assumptions;
otherwise, some successful attempts of rigorous derivation for nonequilibrium sys-
tems have been done, but represent a very hard technical challenge and therefore are
limited to some specific cases.

1.1 What is Granular Matter

Every physical system made by a large amount of macroscopic or mesoscopic par-
ticles, called grains, is a granular material: typical examples are sand, dust, pills,
seeds, as well as iceberg groups and Saturn rings-see Fig. 1.1 [1, 2]. Granular matter
is ubiquitous in everyday life: when we transport food, build houses, stock prod-
ucts, project industrial processes and so on. Understanding its qualities has a great
importance to predict and reproduce the behavior of such materials.

Granular materials share the following properties:

• grains are macroscopic: they follow the laws of classical mechanics and have a
large number of internal degrees of freedom, which one does not directly observe
during experiments;

• grains are solid: they occupy a volume which is excluded to other grains during
their motion;

• grains interact by means of dissipative interactions: because of the presence of
internal degrees of freedom, after a collision the total energy of two particles
is partially dissipated, mainly because of grains deformation, as heat. Therefore
friction occurs at the first level of description for a granular fluid;

• the temperature doesn’t affect granular dynamics, i.e. grains can always be con-
sidered at T = 0. Indeed, since grains are macroscopic their mechanical energy
is typically many order of magnitude larger than their internal energy, namely
mv2 � kBT for a particle moving with velocity v. In kinetic theory a granular
temperature can be introduced from statistical properties of granular motion, but
it has nothing to do with room temperature.

Let us try to explain their physical meaning: since a granular material is made by
many particles, statistical mechanics is the principal theoretic tool to understand its
behavior. However, even if all the above-stated properties are quite general, one can
see that a granular material is intrinsically different from an elastic fluid or a solid:
the classic nature of grains makes the law of quantum mechanics unnecessary, and
therefore the correct statistical representation must consider classic observables and
interactions. Of course, each grain is made by atoms following the laws of quantum
mechanics, but at this stage the grains are the “elementary particles” of our system.
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Fig. 1.1 Several examples of granular materials. From top to bottom: sand dunes, color powders
and iceberg group (left column), charcoal, cereals and legumes, Saturn rings (right column). Credit:
NASA/JPL-Caltech/Space Science Institute

Another key feature to understand granular dynamics is the role of inelasticity: it
is known that elastic collisions are not an ideal case in physics but they ceaselessly
occurs between atoms and molecules because of energy conservation. Since grains
have many internal degrees of freedom, after a collision they can distort and even
break into more parts; these processes need energy which comes from the kinetic
energy of grains,which therefore decreases after a collision. Typically, the inelasticity
is measured by the restitution coefficient α (see Sect. 2.1), which ranges from 1 in
the elastic case to 0 when collisions are totally inelastic.

The dissipative nature of interactions has lots of consequences in granular physics;
one of themost important, which will be persistently remarked all along this thesis, is
that granularmatter is intrinsically out of equilibrium: the lack of energy conservation
at this level of description imply that the phase-space trajectories are not symmetric
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under time reversal. This is evident in the case of granular cooling, when energy
dissipation leads the system to a metastable state where all the grains stop with zero
kinetic energy-see Sect. 2.1.3.

The only way to avoid the inevitable cooling of a freely evolving granular gas is to
drive the system by supplying power from outside: this is done both theoretically and
experimentally by means of some shaking or shearing mechanism. These drivings
provide a continuous injection/dissipation of energy in the system leading to a non
equilibrium steady state (NESS).

The reader must then move away from classical concepts elaborated in statistical
mechanics, and forget about the temperature as a physical parameter of the reser-
voir surrounding the system. From now on, only granular temperature is considered,
which depends on kinetic energy of grains and generally coincides with the variance
of their velocity (if m = kB = 1). Driving devices act as a thermostat, forcing the
granular velocity distribution toward a given temperature. Typically, when consid-
ering a shaken granular gas subject to the force of gravity, the shaking acceleration
needs to be larger than the gravity acceleration g, so that a grain colliding with a wall
in the bottom gets the kinetic energy to reach the maximum height of the physical
system. The energies involved in this process are then kinetic energy and gravita-
tional potential energy. Furthermore, from now on materials with elastic interactions
will be indicated as elastic materials, as distinct from granular materials which are
always inelastic.

All the properties above-stated define a granular material: evidently they are not
independent one from another but deeply related – the dissipation is the consequence
of the mesoscopic space scale chosen, which is possible only in classical mechanics.
There is another feature which does not define a granular material but occurring in
almost all granular systems: the number of particles is large, typically ranging from
102 to 105 in most experiments and physical systems studied, therefore statistical
mechanics description is adopted because following the individual motion of each
particle is impossible at a theoretical level. However, if compared with molecular
materials, containing an Avogadro’s number of particles NA ∼ 1023, the number of
grains is very small. This is a crucial property: indeed statistical mechanics makes
plentiful use of the thermodynamic limit N → ∞, to exploit limit theorems such
as Law of large numbers and Central limit theorem. This can be done in granular
matter as well, but fluctuations become very relevant when compared with molecu-
lar systems. Therefore, their theoretical and experimental description is a key point
to understand granular dynamics: this is typically carried on by means of mathe-
matical tools such as stochastic equations and large deviations theory. The goal of
this thesis is to formulate a hydrodynamic description of granular and active matter
capable to accounting for large fluctuations: this kind of theory is called fluctuating
hydrodynamics, and will be described in Sect. 3.2.
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1.2 Granular States

Here some particular properties of granular materials at rest are reviewed: the reader
may find amore detailed and complete overview in [1, 3], with a comparison between
granular phases (solid, liquid, gases). The aim of the present section is to introduce
some characteristic granular properties underlining their differences with molecular
materials and show their connections with equilibrium statistical physics, when they
can be done.

1.2.1 Granular Pressure, Internal Stresses, Jamming

When a silo is filled with a granular, the pressure at the bottom grows with the height
of the filling in a rather different form from a classic fluid: indeed, a Newtonian fluid
follows the Stevin’s law [4]

pv(h) = ρgh , (1.1)

with pv the vertical pressure, ρ the density of the fluid, g the gravity acceleration and
h the height of the fluid column above the position of measurement. The pressure in
a granular material follows a different law, discovered by H. A. Janssen in 1895 [5],
i.e.

pv(h) = �ρg − (�ρg − pv(0))e
−h/� , (1.2)

where� is a characteristic length of the order of the cylinder radius R. The Janssen’s
law accounts for saturation in granular cylinders, which guarantees a constant flow
rate in a hourglass. Janssen himself gave a first derivation, with the following assump-
tions:

1. the vertical pressure pv is constant in the horizontal plane;
2. the horizontal pressure ph is proportional to the vertical pressure, i.e. K = ph/pv

constant in space;
3. the wall friction f = μph sustains the vertical load at contact with the wall;
4. the granular material has constant density ρ at all heights.

The mechanical equilibrium of a granular disk of radius R and height dh therefore
reads

πR2 dpv

dh
dh + 2πRμKpvdh = πR2ρgdh , (1.3)

leading to
dpv

dh
+ pv

�
= ρg , (1.4)

where � = R/(2μK ). Janssen’s law in Eq. (1.2) is the corresponding solution with
boundary condition pv(0).
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The previous assumptions are not obvious: the first one is generally false because
the pressure depends also on the radial distance from the cylinder axis, while the
second assumption should be justified from constitutive relations, relying on micro-
scopical features of the model. Nevertheless, the Janssen’s law is a good first step
to go beyond elastic fluids laws. The vertical and horizontal pressure are connected
with stresses: in an elastic fluid at equilibrium, it is known that the stress tensor
is uniform, isotropic and diagonal. This is not what actually happens in granular
materials: every grain discharges its load to underlying grains, creating long force
chains and propagating the stress in random directions depending on the specific
configuration at rest. An experimental and numerical observation of force chains is
shown in Fig. 1.2.

Another remarkable phenomenon revealed by experiments on granular statics
are pressure fluctuations: when a container is poured several times with a granular
material, the pressure at its bottom can change ofmore than 20%between two distinct
realizations [7]. Furthermore when considering a single pouring, the distribution of
stresses in the bulk or at the bottom of the silo shows an exponential tail [8].

Internal pressure behavior is directly related with sound propagation in granular
mediums: it has been experimentally shown by Liu and Nagel [9] that when the bulk
is perturbed by a harmonic force (4 Hz) the fluctuations can be very large, with a

Fig. 1.2 Force chains in a granularmaterial, experimental observations (a, c) and numerical simula-
tions (b, d). Grains are photoelastic birefringent disks subjected to pure shear (top pair) or isotropic
compression (bottom pair) [6]
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power-law spectrum f −α where α = 2.2 ± 0.05. Also, the same authors observed
that the sound group velocity can reach 5 times the phase velocity and that changing
the amplitude of vibration gives rise to an hysteretic behavior [10].

As it has been shown, the pressure acts on granular particles in a quite different
way from an elastic medium, because of the formation of long-ranged threadlike
force chains and the presence of strong fluctuations, signature of the strong disorder
in the bulk of the medium. A consequence of these features is the phenomenon of
arch formation: when a granular is flowing through a hopper, the flow can suddenly
stop because of the formation of a stable arch over the opening, able to sustain the
entire load of the grains overhead (see Fig. 1.3). This phenomenon is a very well
known experience in everyday life: many times, when pouring a granular substance
from one container to another, if the outlet is too small the grains spontaneously
stop pouring and one typically needs to shake the medium to start again. Generally
speaking, the transition occurring when vibrated or flowing granular particles get
stuck together in a single compact aggregate is called jamming transition.

In 1961, Beverloo et al. experimentally found the existence of a critical open-
ing size below which jamming occurs [12]; more recently [13], experiments have
shown the quantitative behavior of the jamming probability in function of the open-
ing parameter d = R/D > 1 and the hopper angle ϕ, where R is the diameter of
the outlet and D is the radius of monodisperse spherical grains (see Fig. 1.4a). This
effect has recently been studied in experiments by Tang and Behringer [14, 15]:

The jamming transition is a typical example of a granular phase transition,
although being out of equilibrium this has not the same meaning of equilibrium
transitions, where a free energy can be defined and the transition shifts the system
from an equilibrium state to another. The jamming transition has been investigated
theoretically [16–19] and experimentally [20, 21], leading to a strong comparison
with liquid-glass transition in glassy systems. Specifically, a phase diagram can be
written in terms of granular temperature, packing fraction and external stress [18].
When considering the behavior of dense packing of granular particles flowing down
a rough, inclined plane, it has been shown that the tilt angle behaves as a control
parameter in analogy with the temperature T in the glass transition [19]. Further-
more, experiments in a 2d granular system of photoelastic bidisperse disks with

Fig. 1.3 Arch formation and granular jamming. Left panel shows how a concave arch supports the
whole granular above it. Right panel shows arch forces near the outlet [11]
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Fig. 1.4 Probability of jamming for a granular flowing through a hopper [13], experimental setup
(left) and jamming transition (right). The jamming probability j (d) is plotted versus the opening
parameter d, for three hopper angles φ = 34◦ (circles), 60◦ (triangles) and 75◦ (squares). The solid
line is a theoretical prediction provided by the authors, the dashed line is a guide to the eye for the
φ = 75◦ case [13]

moving walls have shown a power-law behavior of the mean contact number Z and
the granular pressure P above the critical value of packing fraction φc = 0.8422,
namely Z ∼ P ∼ (φ − φc)

β , with 0.5 < β < 0.6 [21]. All the cited studies con-
verged in stating that in granular jamming a critical behavior is actually observed,
even though granular materials are far from equilibrium.

1.3 Granular Flows

When a granular material is flowing, two kinds of regime can occur: slow or rapid
flow. While in the former the grains are always in contact with their neighbors and
interact frictionally for macroscopic times, in the latter they typically move ballisti-
cally between two inelastic collisions, which are instantaneous events. The rapid or
slow behavior is generally governed by the granular density, its typical acceleration
and boundary conditions. In rapid granular flows the analogy with kinetic represen-
tation describing elastic gases is strong: in the next sections it will be shown how a
kinetic theory can be built from microscopic interactions, leading to a macroscopic
picture of granular flow and to hydrodynamics. In this section some characteristic
features of rapid granular flows are introduced.

1.3.1 Rapid Granular Flows

Many experiments have beenmade to investigate the behavior of sheared and shaken
granular fluids [22]. Two kinds of experimental setups can be distinguished:
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• Couette rheology, consisting of a granular medium placed between two cylindrical
walls with the same axis, and rotating one or both of them to induce a shear
formation in the granular. The physical parameters are the distance between the
cylinders, the rotational speed and the packing fraction of the granular.

• Shakers, consisting of a granular medium in a container whose one or more walls
are vibrated. Typical parameters of these systems are the vibrations amplitude A
and the frequency ω, which can be compared with gravity acceleration g through
the vibration parameter � = Aω2/g: when � > 1, the vibration is strong enough
to produce many phenomena that will be described below. The transition from
slow to rapid granular flow induced by vibration is often called vibrofluidization.

In both cases the shear or the shaking can be sufficient to lead the system to a
stationary state, i.e. to avoid the inelastic cooling. However, tuning the above-stated
parameters the granular medium can change qualitatively its features, moving from
a slow granular motion to a fluidized state of rapid flow. Here some characteristic
phenomena of granular fluids are reviewed:

• Stress fluctuations: it has already been mentioned that in granular statics stresses
are not homogeneous and exhibit strongfluctuations;when a2d bidisperse granular
is sheared in a Couette geometry, a strengthening/softening transition has been
observed [23]. Below a threshold value of the packing fraction φc � 0.776, stress
fluctuations are small, the granular is compressible and stress chains are long and
radial; above this value strong fluctuations occurs, compressibility becomes large
and the network of stress chains becomes tangled and dense.

• Slow convection and size segregation: when a granular is shaken or sheared, con-
vection takes place. If the granular is heterogeneous, size segregation occurs as
well. These features are known for a long time and have been recently investigated
in experiments with Couette cylinders [24] and vertically vibrated granulars [25]:
larger particles use to rise to the top of the granular medium during its motion,
carried by convective cells formation. This effect is also known as the Brazil-nut
effect, because when opening a box of cereals it is common to find the larger ones
(Brazil-nuts) at the top [26]. Further experiments have shown that size segregation
depends on relative diameter, density and shaking frequency: indeed, at low fre-
quencies segregation is governed by inertia and convection, and denser particles
rise faster. On the other hand, at high frequencies the granular is fluidized and there
is no convection, so an intruder sinks if it is denser than the surrounding grains,
and buoys up otherwise [25].

• Pattern formation: experiments have shown the formation of surface waves pat-
terns in vertically vibrated granular layers [27–30], which exhibit various and
fascinating textures (see Fig. 1.5a) depending on the set of parameters of the gran-
ular system: vibration frequency, vibration parameter �, size of the system, size
and shape of the grains, and so on. This behavior has been associated also to the
presence of oscillons, namely spatially localized excitations with the propensity
to assemble into molecular or crystalline structures, see Fig. 1.5b [31].
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Fig. 1.5 Left: patterns in a vertically vibrated granular layer: a stripes, b, e hexagons, c flat with
kink, d competing squares and stripes and f disorder [29]. Right: an oscillon, a solitary standing
wave on the surface of a vibrated granular layer [27]

• Clustering: cluster formation in granular fluids has been analyzed numerically
and theoretically in granular cooling [32] and later observed experimentally in
shaken systems [33–36]. Clustering is not observed in elastic fluids, and is carried
on by inelastic collisions: actually in a dense region the granular temperature
decreases faster than in a dilute one because collisions are dissipative, yielding
a decrease of the granular pressure: the pressure gradient created leads then to a
migration towards the dense region. Therefore, once a density fluctuation appears,
the dense region will attract other particles and grow, unless some hydrodynamic
mechanism intervene to scatter particles faster than the clustering process [32]. A
numerical sketch of a granular cluster is shown in Fig. 1.6a. Clustering appears as a
hydrodynamic instability of the homogeneous cooling state of a granular medium,
related to the shear instability: the study and analysis of instabilities will play a
crucial role in Part II of this thesis. Finally, in above-cited experiments [33, 34]
a transition has been observed when the number of particles is increased, moving
from a gas-like behavior to a collective solid-like behavior: the latter is shown in
Fig. 1.6b.

• Non-Gaussian velocities: velocity distributions in granular fluids are often non-
Gaussian. This feature has been observed in numerical simulations and confirmed
by experiments [35, 38, 39], which have proved a strong connection between
clustering and velocity distributions [40]. Indeed, when particles cluster, inelastic
collapse can occur [41, 42], namely particles stuck together because of inelastic
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(a) (b)

Fig. 1.6 Clustering: a snapshot of a clustered granular system in numerical simulations [32], b
cluster formation in a granular fluid shaken by the horizontal wall at the bottom [37]

Fig. 1.7 Horizontal velocity
distributions in a vertically
vibrated granular monolayer,
rescaled by the second
moment, for different
vibration amplitudes � [38]

collisions and start moving at the same parallel velocity. Clustering and inelastic
collapse create regions with high density and low velocities, resulting in nearly
exponential tails in the velocity distribution, see Fig. 1.7. In a different experi-
ment [43], velocity distributions revealed exponential tails in a cooling state and
exp(−v3/2) tails in a driven state, verifying theoretical predictions in [44]. Never-
theless, non-Gaussianity can be observed in absence of clustering as well: a suc-
cessive experiment measured the horizontal velocity distribution of a vertically
vibrated vertical monolayer, obtaining again a exp(−v3/2) velocity distribution
also without clustering.
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• Velocity correlations: strong long-range velocity correlations between granular
particles have been revealed in experiments with dense granular gases [45], sim-
ilar to the setup of [35] used to investigate non-Gaussian distributions. Further-
more, recent experiments studied velocity structure factors in a quasi-2d vertically
vibrated horizontal granular monolayer by means of fluctuating hydrodynamics
(see Sect. 3.2), confirming the validity of the theory [46, 47]. The experiments also
displayed a correlation length which increases with the packing fraction.

• Thermal convection: very recently, an experiment on a vibrofluidized granular
gas has shown the existence of a convection mechanism driven by the inelastic
interactions with the walls of the container where the granular is shaken [48]. We
already discussed the case of slow convection, which is generally a phenomenon
driven by bulk buoyancy for slow flows. Experiments and simulations considered
the case of a vibrated granular gas on a 2d inclined plane: the bottom wall is
shaking the gas with accelerations much greater than the effective gravity. The
presence of inelastic vertical walls is the key point of the establishment of thermal
convection: since energy is dissipated at the boundaries, an horizontal temperature
gradient is induced: thus, in any steady state of the system there must be a flow
and, since the system is closed in the horizontal, the flow will be convective.

The granular features above-described have been chosen among the main studied
and will be recalled in the following of this thesis; nevertheless, several outstanding
features and applications of granular flows have been investigated in the last years,
such as granular jets [49], stick-slip frictional properties [50, 51], a granular Leiden-
frost effect [52], Kovacs-like memory effects [53–55] and granular ratchets [56–59]
- see also Sect. 2.3. In Appendix C one can found several links to videos showing
many of these granular effects.

Many of these studies converged in giving an experimental validation of kinetic
theory [60–62]: the latter will be the starting point of our theoretical investigation,
and will be introduced in Chap.2

1.4 What is Active Matter

Many biological living units have the ability to move themselves in a fluid medium,
converting an internally stored energy into kinetic energy by means of some bio-
chemical process: this is what we call an active particle. When considering physical
systems, one usually determines the motion of a particle through the resultant of the
forces acting on it, thinking at the particle as a passive unity; on the contrary, active
particles typically generate on their own a force to attain a certain state ofmotion: this
force is called self-propulsion. Self-propulsion is made possible by the interaction of
the active particle with a substrate or a surrounding fluid: actually, the momentum of
an active unit is not conserved during its motion, but it must be so when considering
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both the particle and the environment. For instance, human beings are active parti-
cles: we convert our chemical energy stored as ATP into kinetic energy through our
muscular activity, being able to change our velocity intensity and orientation, but we
can do it only in presence of a reacting medium, i.e. when walking on the ground or
when swimming in the water, unless there is some mass exchange acting like a jet
propulsion, which will be disregarded here. This principle obviously holds for any
kind of active particle that we will see below, such as animals, bacteria, robots and
so on.

When many active particles move together in a united systemwe talk about active
matter. In this case the particles are not just self-propelling themselves but also inter-
acting among them. Active matter can be observed in several circumstances in every-
day life: bird flocks fly together in the sky; fish schools swim almost like a single
object, defending from predators; sheep herds graze together, and also human beings
use to walk together in more or less crowded environments, see Fig. 1.8. The inter-
actions between active particles give rise to collective motion, i.e. individual units
coherently move and form outstanding patterns and shapes: this phenomenon is also
known as flocking, a general notion standing for the formation of order in an active
matter system. Biological systems with active behavior are ubiquitous, and their
complete review is far beyond the aim of this thesis. Some reviews already exist [63–
66] where a wider and more detailed outlook on active systems, phenomenology
and models is given. A list of the most experimentally studied systems includes
macromolecules, bacteria colonies, amoeba, cells, insects, fishes, birds, mammals
and humans [63]. Furthermore, active matter can be also composed by non-living
units: actually, there exist several systems [63, 64]where particles absorb energy from
a substrate where chemical, thermal or electrostatic gradients are induced; where the
units are activated by some external field (typically the electromagnetic field); where
the units contain a stored energy that can be converted in kinetic energy; or finally
where the walls of the substrate are shaken and the asymmetry of the particles’ geom-
etry induces a self-propulsion mechanism [64]. The main goal of all these setups is to
generate a self-propulsion mechanism mimicking the self-propulsion characteristic
of living systems. In the last Sect. 1.4.3 some of these systems are reviewed, like
Janus particles, nano-swimmers, simple robots or vibrated polar granular particles:
the latter represent a bridge between granular and active matter, which will be exam-
ined carefully. In Appendix C a collection of links to videos is reported to show the
experimental behavior of some discussed systems.

1.4.1 Active Phenomenology

It is useful to introduce the typical phenomena of collective motion before pre-
senting the most studied active systems: indeed, a quantitative characterization of
collective behavior is needed to analyze it and compare several phases and systems.
An important feature is the presence of phase transitions, which are expected in
active matter even though the system is out of equilibrium. Phase transitions occur
when a macroscopic quantity named order parameter suddenly changes under a
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Fig. 1.8 Several examples of collective behavior in living systems: a locusts, b army ants, c golden
rays, d fishes forming a vortex, e starlings flocking, f a herd of zebra, g people walking in a street,
h sheep hanging around [63]

variation of an external variable, usually called control parameter. Typical exam-
ples of phase transitions at equilibrium are the condensation of a gas turning into
liquid or the spontaneous magnetization of a ferromagnet, both happening if the
temperature is decreased below a critical value. In these cases, the order parameters
are respectively the mass density and the magnetization, while the control param-
eter is the temperature. The liquid-gas transition is called a first-order transition,
because the order parameter discontinuously changes at the critical point; on the
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contrary, the spontaneous magnetization is called a second-order transition, because
the order parameter continuously changes with the temperature. What kind of phases
are observed in active matter, and what are the order parameters involved?

First of all, many active systems show swarming, that is when a macroscopic
fraction of the units move with the same orientation of the velocity. Such a state can
be reached in interacting systems where, after an interaction, the particles tend to
correlate their velocities aligning their orientations. An order parameter indicating
the presence of swarming is given by [63]

r = 1

Nv0

∣
∣
∣
∣
∣

N
∑

i=1

vi

∣
∣
∣
∣
∣

, (1.5)

where N is the number of the particles, v0 their mean speed and vi the velocity of
the i th particle. The swarming parameter r vanishes for disordered motion (uniform
distribution of velocity orientations, particles going in all directions as in a molecular
gas) while r = 1 for perfect swarming, i.e. active units move together in the same
direction without fluctuations. The particles spontaneously align their velocities in a
given direction, breaking the continuous rotational symmetry of the system, similarly
to what happens in the Heisenberg model of ferromagnetism. Here, the transition
from disorder to swarming is governed by the competition between an aligning
mechanism and the noise of the process: while aligning interactions force the system
towards a swarming, ordered state (as the ferromagnetic interaction does in the Ising
or Heisenberg model), the noise given by self-propulsion or interactions with the
surroundings increases the disorder. This competition will be clarified in Sect. 2.2.

The swarming state implies a strong correlation between the velocity orientation
of the active units. Furthermore, even without formation of collective motion, inter-
actions of active units can give rise to a leader-follower behavior, consisting in an
asymmetric relation between units when the motion of unit i (the leader) anticipates
the motion of another unit j (the follower). This behavior can be observed through
the directional correlation function

ci j (τ ) = 〈

vi (t) · v j (t + τ )
〉

, (1.6)

quantifying the degree of correlation between the velocity of unit i and j after a
time delay τ , where the average 〈· · · 〉 is over the starting time t . The time τ ∗

i j at
which the directional correlation function shows a maximum is the time delay of
the particle j with respect to the motion of particle i . If τ ∗

i j > 0 one can identify the
unit i as the leader and j as the follower, and vice versa for τ ∗

i j < 0, recalling that
ci j (τ ) = c ji (−τ ) [63].

Another typical active phase is clustering: as discussed for granular materials,
also active systems can form clusters during their motion. Indeed, even in presence
of purely repulsive interactions, two colliding particles can get blocked by the per-
sistence of their motion (see Fig. 1.9). When a third particle collides with them, they
grow into a cluster which is attractive under certain conditions [64]. The particles
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Fig. 1.9 Clustering of self-propelled Janus particles. Top panel: snapshots of experimental system
where the projected orientations of the caps are resolved (red arrows). Bottom panel: sketch of the
self-trapping mechanism (left). Rotational diffusion is the only way that particles have to escape
from the cluster [67]

become very correlated because of the continuous interactions between them. A
measure of local spatial ordering can be given by the radial distribution function
g(r)

g(r) = V

4πr2N 2

〈
∑

i �= j

δ(r − ri j )

〉

, (1.7)

giving the unit density ρ at distance r from a particle placed at the origin, namely
ρ(r) = ng(r), being n the averaged number density n = N/V [63]. When a cluster
grows in a dilute system, the local density sharply increases and deviates from n.
The radial density distributionmoves from a single-peaked to a double-peaked shape,
signaling the presence of a dense clustered region and a dilute region, which is called
a phase separation (see below) [68, 69]. An order parameter C can be defined as

C = 〈Nc〉
N

, (1.8)

where Nc is the number of units belonging to the larger cluster, so that C � 1 in
absence of clustering and C → 1 when clustering is present [67]. Clustered units
can move together in the same direction, giving rise to a swarming state, or form
a static cluster where they ceaselessly collide and the excluded volume prevent
them to escape the cluster. In the latter case, self-clustering can lead also to self-
jamming [64], i.e. particles get stuck together in one or more regions behaving like
a solid: they become able to support a shear, and a probe particle in the activemedium
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feels a dramatical increase of viscosity whenmoving from a dilute to a jammed zone.
The viscosity exhibits strong spatial fluctuations signaling the presence of jamming.

Phase separation in active matter is the consequence of an intrinsically non-
equilibrium mechanism called motility-induced phase separation (MIPS), which
is absent in the Brownian motion of particles at thermal equilibrium or for col-
loidal particles without attractive interactions. It has been shown [70] that for
some kind of isotropic active particles one has a stationary one-particle distribution
Ps(r,u) ∝ 1/v(r), being u the velocity orientation and v(r) the space-dependent
average speed field, which is the effect of self-propulsion. Therefore, the local den-
sity ρ(r) decreases as the self-propulsion increases and one can define a constitutive
relation v(ρ). Slower particles tend to accumulate andMIPS arises when the decrease
of the speed with the density is steep enough to make an uniform suspension unsta-
ble, leading to a coexistence of an active motile gas with a dense liquid of low
motility [71].

Finally, active systems are far from the thermodynamical limit, thus fluctuations
play an important role in their dynamics. A common phenomenon observed are
giant number fluctuations (GNF): for some systems of self-propelled units, the
fluctuations of the number of particles linearly scale with the number of units N
of an increasing region, in contrast with classic fluctuations in equilibrium systems
scaling as

√
N [66].

1.4.2 Living Systems

There exist a plethora of active systems studied in the last decades by physicist
and biologists, exhibiting many other features beyond the ones above introduced;
the present section contains an overview of the most studied, specifying how the
phenomena explained above are actually observed in living systems.

• Bacteria: bacterial colonies are one of the simplest systems made of a large num-
ber of interacting organisms and displaying a non-trivial macroscopic behavior.
Escherichia coli is one of the most studied bacteria since the observation of trav-
eling bands when seeking an optimal environment [72]. Further studies observed
the presence of collective motion patterns such as super-diffusion, rotating and
highly-correlated turbulent states.
The motion of E. coli has shown for the first time another important dynamics,
which is known as run-and-tumble motion [64]: the bacteria follow a ballistic,
constant speed motion (run) until they suddenly change their direction of motion
(tumble), starting with another run in the new direction. This motion has been
studied in several models and will be described in Sect. 2.2.3.
Further experiments on a morphotype of Bacillus subtilis at high concentration,
see Fig. 1.10, showed the existence of a collective phase called “Zooming BioNe-
matics” [73], where cell clusters move together in a swarming state at speeds
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Fig. 1.10 Collective dynamics of swimming B. subtilis cells [73]

larger than the average speed of a single bacterium. Giant number fluctuations are
present.
Some species spread very efficiently in amedium: this ability has been investigated
experimentally [74], and it has been found that certain bacteria (Myxococcus xan-
thus) regularly reverse their direction, coming back to the colony and thus walking
against a density gradient. This behavior, a waste of energy and time at first sight,
actually contributes to the alignment of swarming cells, reducing the probability
of collisions and consequently the “active viscosity” of the medium.

• Fishes: fishes are commonly known to form shoals or schools, two different col-
lective behaviors. The former indicates when fishes aggregate together, moving
without a collective order (no swarming) and many species can be included. In
the latter, fishes coherently move in the same direction (swarming), and can be
then considered a special case of shoal. A shoal can also suddenly organize into
a school and vice versa depending on the momentary activity, such as escaping
predators, feeding, resting or traveling [75].
Recording the trajectories of individual fishes in schools, both individual and col-
lective behavior have been studied. Depending on the density of units, a transition
from disorder to correlated motion has been found [76]. Also, observations on
Notemigonus Crysoleucas trajectories produced data about the structure of the
interactions in schools: the latter don’t seem to be governed by an alignment rule
but rather by a speed regulationwhich is the crucial ingredient of interactions,while
the alignment only modulates the strength of speed regulation. Furthermore, it has
been claimed that fish interactions are not pairwise, but rather multiple-bodies
interactions more suitable to explain the observed dynamics [77].
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Fish schools are a system of great interest for decision making processes into
collective motion, e.g. trying to understand if there is a leader fish or a kind of
consensus, and how the size of the school influences decisionmaking. Some exper-
iments have shown the ability of groups of fishes to influence the entire school, or
that single fishes responded when a threshold number of conspecifics performed
a particular behavior (quorum responses). Nevertheless, the comprehension of
decision making and leader-follower behavior is still under debate.

• Bird flocks: birds flying together usually form spectacular flocks exhibiting great
order in their collective behavior, giving rise to highly-coordinated motion pat-
terns, see Fig. 1.11a. These have been studied for thirty years, but in the last
decade the most important experimental observations have been carried out on
Sturnus vulgaris, European Starlings, observing flocks containing up to 2600 units:
tracking the position and velocity of each bird, it was possible to reconstruct the
dynamics of the network through the spatial distribution of nearest neighbors of
each bird, which is represented in Fig. 1.11b. In the same experiment [78], it has
been observed that birds interact with their 6–7 closest neighbors - “topological
interaction” - instead of those within a certain distance - “metrical interaction”.
Different kinds of interaction give rise to different models, especially concern-
ing the role of density in flocks. On the contrary, further experiments concerning
various species [79] suggested that the range of interaction did not change with
density. Experiments focused on velocity correlations unveiled that these follow
a power law decay with a unexpectedly small exponent, meaning that every bird
may have an effective perception range much larger than the distance with its first
neighbors [80]. All these points are still under debate and further simulations and
observations are needed.

• Humans can be considered active matter as well. Indeed, when a large number
of people are present, self-organization takes place: for instance in the growth of
settlements, traffic dynamics or pedestrian movement. At the end of 90s some
studies started using collective motion methods to describe human behavior in
these cases. Comparisons between models and experiments have been related to
the motion of human trail systems [81] and escape panic [82], leading to possible
prescriptions on architectural and urban structures to facilitate human motion and
prevent accidents.
Further experiments focused on the role of consensus and leadership in human
crowds,where a randomly chosen person had the goal of guiding the group towards
a random target without explicit communication: providing none or some infor-
mation about the presence of a leader, the group always reached the target but with
a less accurate motion when no information about the leader where given, and
with a high accurate motion when the group knew of its presence (even without
knowing its identity) [83].
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Fig. 1.11 a Bird flocking and the representation of their 3d observed velocities [84]. b Angular
distribution of the birds’ nearest neighbors. The distribution is strongly anisotropic and there is a
lack of neighbors in the direction of motion [63, 78]

1.4.3 Non-living Systems

As it has been said before, active systems can be also realized out of biological
context. A kind of system extensively studied in the field are Janus particles: their
name come from the two-faced roman God Janus, because they consist of particles
made by two or more parts having different chemical or physical properties. Thus,
even a spherical particle can break geometrical rotational invariance and when a par-
ticle is at contact with the environment the different reactions on its surface generate
a net force acting as a self-propulsion [64]. Spherical Janus particles can be made
for instance by a hydrophilic hemisphere separated from a hydrophobic one; the
clustering of Janus particles has been shown in Fig. 1.9.

Janus particles are a special kind of non-living active particles called artifi-
cial microswimmers, i.e. artificially generated particles exploiting some kind of
symmetry breaking to self-propel themselves. There are two main categories of
propulsion mechanisms: local conversion of energy (such as catalytic processes) or
driving by an external field (e.g. electric, magnetic, acoustic); it is important to stress
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that there is a deep difference between particles that are internally driven active mat-
ter and particles brought out of equilibrium by the action of external fields: though
there exist similar effectivemodels describing both categories, they showquite differ-
ent microscopic details. An extended catalogue of such particles has been reviewed
in [64]. A category of artificial active systems made of macroscopic units are collec-
tive robotics, namely groups of robots moving on a plane (and sometimes in a 3d
region), able to sense obstacles, localize themselves with respect to a static frame and
broadcast information with the other units. The very interesting feature of collective
robotics is that interaction rules and individual behavior can be externally driven by
humans, so they can represent a practical guide to understand how collective behavior
stems from individual propulsion and local interactions. Also for collective robotics,
several collective motions have been classified, like marching, oscillations, wander-
ing and swarming [86]. There is a huge field of possible applications of collective
robotics, such as localization of hazardous emission sources, surveillance in hostile
or dangerous places, optimization of telecommunication networks. Last but not least,
driven granulars have been studied in the framework of active particles in the last
decade.Actually, a granular particlemoving on a vibrated, rough plate feels the action
of a mechanical driving mechanism able to sustain its state of motion: this feature
can be correctly interpreted as a self-propulsionmechanism. Experiments on vibrated
granular rods showed the presence of collective motion: when considering apolar,
symmetric rods, a nematic order and persisting swirling have been observed [85],
together with giant number fluctuations; moreover, varying the shape of granular
rods several patterns of orientational ordering have been found, see Fig. 1.12. Also
vortices can appear, when ordered domains made by nearly vertical granular rods
coherently swirl and grow in time (coarsening), depending on the packing fraction
and the vibration amplitude [45] (see Fig. 1.13). Conversely, apolar rods (with a head
and a tail) have also been studied, displaying local ordering, aggregating at side walls
and clustering;when the shaking amplitude is increasing, a collective swirlingmotion
is observed [87]. Collective behavior and pattern formation in granular matter have
been reviewed [27]. Many of these features suggested a comparison between driven
granular and active matter, at least from a phenomenological point of view because

Fig. 1.12 Orientational order in apolar granular rods [85]
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Fig. 1.13 Active phases in vertically vibrated granular rods. Left panel, pattern formation: a nemat-
iclike state, bmoving domains of near vertical rods, cmultiple vortices and d large vortex. See [45]
for experimental details. Right panel: phase diagram. All the realizations have frequency f = 50
Hz. Vortices appear for sufficiently high density n and vibration amplitude � [45]

of pattern formation, clustering, and so on. Experiments mostly concentrated on the
shape of grains, arguing that an oriented shape (like rods instead of disks or spheres)
was necessary to create anisotropic relations and thus an aligning mechanism. In
Sect. 2.3, it will be shown how this is not necessary and that the inelasticity can play
a crucial role in collective dynamics.
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Chapter 2
Theoretical Models of Granular
and Active Matter

Walk on, through the wind
Walk on, through the rain
Though your dreams be tossed and blown
Walk on, walk on
With hope in your heart
And you’ll never walk alone

(R. Rodgers, O. Hammerstein)

This chapter introduces the main tehoretical models used to describe and reproduce
the behavior of granular and active matter. The first Sect. 2.1 is dedicated to kinetic
theory: established for the study of elastic gases, its aim is to describe a gas in term of
mechanical coordinates of all its particles to derive its macroscopic properties such
as pressure, energy and entropy through the statistical properties of the microscopic
variables. This method, which was derived for elastic gases, can apply also for gran-
ular materials. The second Sect. 2.2 reviews the most important physical models of
active matter, focusing on the essential ingredients to produce the typical interactions
and self-propulsion discussed in Chap.1. The last Sect. 2.3 investigates a possible
theoretical comparison and symmetry between granular and active matter.

2.1 Kinetic Theory of Rapid Granular Flows

In the present section the classical kinetic theorywill be introduced, showing howone
can derive the Boltzmann Equation from the Liouville equation for elastic smooth
hard spheres, moving later to the inelastic case. The kinetic theory will be used
to describe the simplest granular regime, the homogeneous cooling state, and its
instabilities. The last part of this section is an introduction to granular steady states
and the so-called steady state representation. This section is based on the analysis
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described in [1, 2] for elastic models, while granular kinetic theory has been deeply
studied in [3, 4]. The following section follows the formulation presented in [5].

2.1.1 From Liouville to Boltzmann Equation

A system of N classical particles in a container of volume V is fully determined
once the particles’ positions and momenta configuration z(t) at a given time t and
their interaction are known, where

z(t) = {r1(t), v1(t), r2(t), v2(t), . . . , rN (t), vN (t)} ∈ V N × R
3N = � , (2.1)

introducing � as the full phase-space of the system. For an Hamiltonian system, the
configuration is given by generalized coordinates and momenta, for which kinetic
theory is usually developed. However this is not our case, because granular matter is
not Hamiltonian. Since it is impossible to follow the equations of motion of N � 1
particles, kinetic theory looks at the time-dependent probability density function
P(z, t), representing the probability of finding the system in a configuration z at time
t . This implies that the value of a dynamical observable A(z) at time t is equivalent
to ∫

�

dzP(z, 0)A(z(t)) =
∫

�

dzP(z, t)A(z) , (2.2)

which respectively correspond to the Lagrangian and Eulerian averages. The evo-
lution of A is given by the equations of motions of the configuration z, but can be
resumed into the streaming operator St , defined by A(z(t)) ≡ St (z)A(z) [5]. There-
fore, the equivalence in (2.2) means that

P(z, t) = S†
t P(z, 0) . (2.3)

where S†
t is the adjoint operator of St . In a general system where particles are sub-

jected to conservative and additive interactions and no external field is present, the
streaming operator reads

St (z) = exp[t L(z)] = exp

⎡
⎣t

⎛
⎝∑

i

L0
i −

∑
i< j

�i j

⎞
⎠
⎤
⎦ , (2.4)

where the Liouville operator L(z) · ≡ {H(z), ·} is the Poisson bracket with the
Hamiltonian function, so that
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L0
i = vi · ∂

∂ri
, (2.5a)

�i j = 1

m

∂U (ri j )

∂ri j
·
(

∂

∂vi
− ∂

∂v j

)
, (2.5b)

respectively represent the free streaming operator L0
i and the interaction term �i j

depending from the form of the binary interaction among the particles, U (ri j ). St

is a unitary operator, with S†
t = S−t and L† = −L . Rewriting Eq. (2.3) in terms of

Eq. (2.4) one obtains the Liouville equation

∂

∂t
P(z, t) =

⎛
⎝−

∑
i

L0
i +

∑
i< j

�i j

⎞
⎠P(z, t) , (2.6)

which expresses the incompressibility of the flow in phase space. Some textbooks
use to refer to this equation when introducing Liouville’s Theorem [2], stating that
the distribution function of an Hamiltonian system is constant along any trajectory
in the phase space, namely

d

dt
P(z, t) = 0 . (2.7)

Let us consider the case of a system made by N identical hard spheres of diameter
σ and mass m: the potential U (r) is defined as

U (r) =
{
0 r > σ
+∞ r < σ

, (2.8)

where r is the distance between two particles. U (r) is a discontinuous potential,
which makes the collisions instantaneous: indeed, when particles i and j collide,
their precollisional velocities (vi , v j ) abruptly change to postcollisional velocities
(v′

i , v
′
j ). In elastic collisions, momentum and energy conservation respectively read

mv′
i + mv′

j = mvi + mv j , (2.9a)

1

2
mv′2

i + 1

2
mv′2

j = 1

2
mv2

i + 1

2
mv2

j . (2.9b)

Those equations can be easily solvedmoving to the center ofmass frame, considering
the total velocity V = 1

2 (v1 + v2) and the relative velocity vi j = vi − v j ; indeed,
Eq. (2.9) yield the conservation of the total momentum and of the modulus of the
relative velocity. In the smooth hard spheres case, the velocities are reflected after a
collision with the rule

V′ = V , (2.10a)

v′
i j = −vi j . (2.10b)



34 2 Theoretical Models of Granular and Active Matter

Fig. 2.1 Elastic collision of identical hard spheres in the center of mass frame: pre- and post-
collisional velocities have equal modulus and opposite direction. The relative velocity is parallel to
the direction of collision, and is reflected after the collision. The velocity components perpendicular
to the relative velocity are not affected by the collision

So, in the laboratory frame the postcollisional velocities read

v′
i = vi − n̂

[
n̂ · (vi − v j

)]
, (2.11a)

v′
j = v j + n̂

[
n̂ · (vi − v j

)]
, (2.11b)

being n̂ = (ri − r j )/|ri − r j | the unit vector connecting the center of the sphere i
with the center of the sphere j , see Fig. 2.1. With the present rule, the collisions can
be reintroduced into the Liouville equation by imposing the boundary condition

P(z′, t) = P(z, t) , (2.12)

where z′ is the postcollisional configuration after particles i and j have collided. An
instantaneous collision occurs when particles are in contact and the relative velocity
vi j has opposite direction of n̂i j = (ri − r j )/σ: the latter requirement is known as
kinematic constraint, i.e. the particles must move towards each other to collide. The
last requirement is fundamental to guarantee that immediately after a collision the
particles do not collide any more. Namely,

ri j = σ , (2.13a)

vi j · n̂i j < 0 . (2.13b)

In this case, the postcollisional phase space configuration reads

z′ = (r1, v1, . . . , r′
i , v

′
i , . . . , r

′
j , v

′
j , . . . , rN , vN ) , (2.14a)

r′
i = ri , (2.14b)

r′
j = r j , (2.14c)
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and v′
i , v

′
j follow the collisional rule in Eq. (2.11).

Since hard spheres cannot overlap, the effect of excluded volume changes the
phase space: there is an excluded region consisting of the occupied volume called
�ov so that the actual phase space is � = V N × R

N − �ov , where

�ov = {
z ∈ V N × R

N | ∃ i, j ∈ {1, 2, . . . , N } : |ri − r j | < σ
}

. (2.15)

With the previous condition, the Liouville equation reads

∂

∂t
P(z, t) =

(
−
∑

i

vi · ∂

∂ri

)
P(z, t) when z ∈ � , (2.16a)

P(z, t) = P(z′, t) when z ∈ ∂� , (2.16b)

where∂� is the boundary of the phase space�. The interaction termhas been resumed
in the time-discontinuous boundary condition in the second line, while between two
collisions the particles undergo a free motion at constant speed vi .

The discontinuity introduced prevents the use of formal perturbation expansion
such as the ones usually employed in many-body theory. It can be shown [6] that an
alternative expression for the streaming operator can be written in terms of binary
collision operators: indeed one can write St for two particles labeled 1 and 2 as

St (1, 2) = S0
t (1, 2) +

∫ t

0
dτ S0

τ (1, 2)T+(1, 2)S0
t−τ (1, 2) , (2.17)

where S0
t is the free flow operator and T+(1, 2) a collisional operator

T+(1, 2) = σ2
∫

v12·n̂<0

dn̂ |v12 · n̂| δ (r1 − r2 − σn̂
)

(bc − 1) , (2.18)

being v12 = v1 − v2 and bc a substitution operator which replaces precollisional
velocities with postcollisional ones, (v1, v2) → (v′

1, v
′
2). Equation (2.17) can be

interpreted as the evolution of 2-particles dynamics during time t , consisting in a
free flow term (no collisions) plus a convolution term considering all eventual colli-
sions at time 0 < τ < t . Since two spheres alone cannot collide more than once, one
notices that T+(1, 2)S0

τ (1, 2)T+(1, 2) = 0 and therefore Eq. (2.17) is equivalent to

St (1, 2) = exp
{
t
[
L0(1, 2) + T+(1, 2)

]}
. (2.19)

Generalizing the equation above to the N -particles streaming operator (here in the
case of infinite volume) one has
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S±t (z) = exp

⎧⎨
⎩±t

⎡
⎣L0(z) ±

∑
i< j

T±(i, j)

⎤
⎦
⎫⎬
⎭ , (2.20)

where T−(1, 2) represents a backward collisional operator, i.e.

T−(1, 2) = σ2
∫

v12·n̂>0

dn̂ |v12 · n̂| δ (r1 − r2 − σn̂
)

(bc − 1) . (2.21)

S±t (z) is defined as thepseudo-streaming operator. Now, a continuous-timeLiouville
equation can be written by means of the adjoint of S±t , considering the adjoint
operators of T±(1, 2) which read

T †
±(1, 2) = σ2

∫

v12·n̂≶0

dn̂ |v12 · n̂| [δ (r1 − r2 − σn̂
)

bc − δ
(
r1 − r2 + σn̂

)]
.

(2.22)
At last, the pseudo-Liouville equation can be written

∂

∂t
P(z, t) =

⎛
⎝−

∑
i

L0
i +

∑
i< j

T †
−(i, j)

⎞
⎠P(z, t) , (2.23)

which represents the analogue of Eq. (2.6) for elastic hard spheres. It replaces
Eq. (2.16) and will be the starting point to write the granular pseudo-Liouville equa-
tion when considering inelastic collisions.

The first step to derive the Boltzmann equation representing the evolution of the
one-particle distribution P(r, v, t) is to consider the marginalized distribution Ps

defined as

Ps(r1, v1, . . . , rs, vs; t) =
∫

V N−s×R3(N−s)

⎛
⎝ N∏

j=s+1

dr jdv j

⎞
⎠P(r1, v1, . . . , rN , vN ; t) .

(2.24)

Integrating over
(∏N

j=s+1 dr jdv j

)
both sides of Eq. (2.16a) and implementing the

boundary condition (2.16b), it can be shown [5] that Ps follows the evolution equation

∂Ps

∂t
+

s∑
i=1

vi · ∂Ps

∂ri
= (N − s)σ2

s∑
i=1

∫

R3

∫

S+

(P ′
s+1 − Ps+1)|Vi · n̂|dn̂dv∗ , (2.25)

whereVi = vi − v∗, S+ is the hemisphere of n̂ havingVi · n̂ > 0 and P ′
s+1 is defined

as
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P ′
s+1 = P ′

s+1(r1, v1, . . . , ri , vi − n̂(n̂ · Vi ), . . . , rs, vs, ri − σn̂, v∗ + n̂(n̂ · Vi )) .

(2.26)
The interpretation of Eq. (2.25) is straightforward: its lhs represents the evolution of
Ps under the free s-particles flow, while the rhs represents the gain and loss terms
of the s-particles configuration due to collisions with one of the remaining N − s
particles, which probability is given by the Ps+1 distribution. The systemof Eq. (2.25)
is known as BBGKY hierarchy1: indeed, starting from the one-particle distribution
P1, its evolution equation contains P2, aswell as the evolution equation of P2 contains
P3 and so on... Clearly, this set of equations is closed only if one considers all the
marginalized distribution functions up to PN ≡ P(z), but this means coming back
to the original Liouville equation.

This theoretical limit can be overcome in the case of a rarefied gas, which
applies when considering a box of volume 1 cm3 at atmospheric pressure and
room temperature, for which one has N ∼ 1020, σ ∼ 10−8 cm, hence for small s
(N − s)σ2 ∼ Nσ2 ∼ 1m2; furthermore, the difference between ri and ri + σn̂ can
be neglected comparedwith system size, aswell as the occupied volume Nσ3 ∼ 10−4

cm3, so that the collision between two selected particles can be considered a rare
event. These considerations lead to the so-called Boltzmann–Grad limit, which con-
sists in taking N → ∞ and σ → 0 while Nσ2 remains finite. It is remarkable that
the scattering cross section for two hard spheres is πσ2, so that in a system with
volume and typical velocities of order 1 the total cross section multiplied by N reads
Nπσ2: the Boltzmann–Grad limit states that the single particle collision probability
must vanish while the total number of collisions remains of order 1. So, Eq. (2.25)
can be modified changing (N − s)σ2 → Nσ2 and putting σ = 0 into (2.26).

The last but crucial assumption to obtain the Boltzmann equation is theMolecular
Chaos assumption, namely

P2(r1, v1, r2, v2; t) = P1(r1, v1, t)P1(r2, v2, t) , (2.27)

for particles that are about to collide, i.e. when r2 = r1 − σn̂ and v12 · n̂ < 0. The
Molecular Chaos assumption states that the precollisional velocities of the colliding
particles are uncorrelated: it relies on theBoltzmann–Grad limit, forwhichwealready
aaid that a collision between two selected particles i, j is a rare event, hence between
two collisions of the same particles they will have collided many times with other
particles of the system, “forgetting” the possible correlation induced by the prece-
dent collision. It is important to stress that Molecular Chaos states that precollisional
velocities are uncorrelated, but doesn’t say anything about the postcollisional veloc-
ities distribution. This assumption can be clearly justified only in dilute gases and
will be heavily used in Part II of this Thesis.

The Molecular Chaos assumption in (2.27) immediately closes the BBGKY hier-
archy at s = 1: the first equation of the hierarchy then reads (writing P = P1 and
omitting time dependence)

1From Bogoliubov, Born, Green, Kirkwood and Yvon [2].
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∂P(r, v)
∂t

+ v · ∂P(r, v)
∂r

= Nσ2
∫

R3

∫

S+

[
P(r, v′)P(r, v′∗) − P(r, v)P(r, v∗)

] |V · n̂|dv∗dn̂ ,

(2.28)
with v′ = v − n̂(V · n̂), v′∗ = v∗ + n̂(V · n̂) and V = v − v∗. Equation (2.28) is the
Boltzmann equation for hard spheres. Its lhs contains the time evolution given by the
free flow in phase space coordinates and its rhs the instantaneous evolution given by
collisions. It is here evident that the first (positive) term into the integral is accounting
for all the collisionswhere one particle has the postcollisional velocity v and therefore
comes into phase space region around (r, v), whereas the second (negative) term is
accounting for all the collisions where one of the particles has the precollisional
velocity v, and therefore after a collision it escapes from the phase space region
measured by P(r, v).

Actually, it is not unusual to find the evolution equation for the single-particle
distribution P directlywrittenwithout considering the full phase space distributionP
but rather computing the gain/loss terms through probabilistic considerations, see for
instance [2]. Although this alternative derivation is well-based and legitimate, the full
information about the physical systemconsidered is given byP(z, t), while P(r, v, t)
contains less information and its derivation from the Liouville equation (2.6) has
shown the assumptions needed. However, for many practical purposes, P is the main
quantity of interest, as it will be seen in Part II.

2.1.2 Inelastic Collisions and Granular Boltzmann Equation

The aim of the present paragraph is to derive a Boltzmann equation for inelas-
tic smooth hard spheres, which are a fundamental modelization of granular parti-
cles. Before doing that, the inelastic collisions need to be well-defined: conversely
from elastic collisions, the former conserve momentum but dissipate energy, namely
Eq. (2.9) become

mv′
i + mv′

j = mvi + mv j , (2.29a)

1

2
mv′2

i + 1

2
mv′2

j <
1

2
mv2

i + 1

2
mv2

j . (2.29b)

In order to quantify the energy loss during a collision, it is common to introduce the
restitution coefficient 0 ≤ α < 1; after a collision, the relative velocity in the center
of mass frame reads

v′
i j = −αvi j . (2.30)

The last equation defines α and states that after a collision the relative velocity
along the collision direction is reflected and rescaled by a factor α: when α = 0,
the postcollisional velocity vanishes and the colliding particles get stuck together, as
when a ripe tomato crushes falling on the ground (sticky collision); conversely when
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α = 1 the collision is elastic, and the previous paragraph’s theory with Eqs. (2.9)–
(2.11) is recovered. The energy dissipation is absent when α = 1 and increases as α
decreases towards its minimum α = 0, where the dissipation is maximal.

Setting a restitution coefficient equivalent for each particle and collision event
is clearly an idealization, as well as considering all particles as spheres having the
same diameter: indeed, during a collision, the kinetic energy of particles is mainly
dissipated into work deforming the particles themselves - which cannot be exactly
spherical anymore -, and in real collisions the dissipation ratio �E/E depends on
the shape of the particles and the collision point on their surfaces as well as their
relative velocity. Actually, there are granular models considering velocity-dependent
restitution coefficientα(v) [7, 8], but their description is beyond the aimof this thesis.
Furthermore, there are no tangential frictional forces (smooth grains) which may be
taken into account considering also the rotational degree of freedom of particles: the
simplest model satisfying this condition is the rough hard spheres gas [9]. For our
purpose, a constant restitution coefficient is a good approximation.

The collisional rule for identical inelastic smooth hard spheres now reads

v′
i = vi − 1 + α

2
n̂
[
n̂ · (vi − v j

)]
, (2.31a)

v′
j = v j + 1 + α

2
n̂
[
n̂ · (vi − v j

)]
, . (2.31b)

and the energy dissipation is

�E = E ′ − E = −1 − α2

4

∣∣n̂ · (vi − v j )
∣∣2 . (2.32)

Some fundamental features of inelastic collisions deserve to be underlined.

1. Inelastic collisions are not invariant under time-reversal. Equation (2.23) is
invariant under time-reversal: indeed, the elastic collision rule (2.11) states that
(vi , v j ) → (v′

i , v
′
j ) as well as (−v′

i ,−v′
j ) → (−vi ,−v j ). On the contrary, in

inelastic collisions there is energy dissipation and the reversed collision should
increase the energy to recover the original precollisional state: indeed, precolli-
sional velocities can be obtained from postcollisional ones with the rule

vi = vi − 1 + α

2α
n̂
[
n̂ · (v′

i − v′
j

)]
, (2.33a)

v j = v j + 1 + α

2α
n̂
[
n̂ · (v′

i − v′
j

)]
, (2.33b)

which corresponds to the original collisional rule (2.31) when transforming
α → 1/α: the only invariant case is the elastic collision with α = 1. Figure 2.2
compares the outcomes of elastic and inelastic collisions.

2. Velocities align after a collision. The inelastic collisional rule shrinks the velocity
component parallel to the relative velocity, v‖ = n̂ · v but conserves the transverse
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Fig. 2.2 Elastic versus inelastic collision: elastic trajectories (continuous lines) are reflected with a
postcollisional angle θ′

el = θ equivalent to the precollisional one - time reversal invariance -, while
in the inelastic collision (dashed lines) the velocities get more aligned because θ′

in < θ

component v⊥ = v − v‖. Therefore, after a collision the transverse component
weight is increased with respect to the parallel one: the relative angle between
particles’ velocities reduces and their velocities get more aligned, see Fig. 2.2
for geometrical visualization. This feature has a great importance in momentum
transfer, because the velocities tend to get correlated at a microscopic level. In
granular flows, the velocity alignment creates groups of particles collectively
moving with almost the same velocities.

3. Inelastic collapse. It has already been mentioned in Sect. 1.3.1 that clustering is
connected with inelastic collapse: the simplest example is the case of three par-
ticles on a line [10], see top left panel of Fig. 2.3a. When outer particles move
monotonically toward each other, the central one bounces with them from both
sides. In the elastic case at least one of the outer particles would be rejected from
the collision and no more collisions occur unless a wall redirects the particles
toward each other. In the inelastic case, if the dissipation is strong enough the
outer particles don’t change their direction and they ceaselessly collide with the
central one with geometrically smaller space and time scales at each successive
cycle. The critical value of the dissipation is α < αc = 7 − 4

√
3 ∼ 0.0718 [10].

Whenα > αc, the inelastic collapse can occur in presence of an inelastic wall, see
Fig. 2.3a, if the number of particles is sufficiently high. In more than 1 dimension,
inelastic collapse can be realized in a large cluster, see Fig. 2.3b. This phenomenon
has dramatical consequences on inelastic hard spheres simulations: indeed,
since time and space scales between two collisions geometrically decrease, the
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Fig. 2.3 Inelastic collapse: a schematic trajectories showing inelastic collapse. (a) Three particle
collapse: without surrounding walls, collapse occurs when α < αc = 7 − 4

√
3 ∼ 0.0718. (b) Two

particles collide between themselves and a wall, but do not collapse since α > 0.346015. (c) At
critical α = 0.346015, the inner particle is stationary after two collisions with the outer one. (d)
For α < 3 − 2

√
2 ∼ 0.17157 there is inelastic collapse [10]. b a snapshot from a MD simulation

of inelastic hard spheres cooling in a square box with periodic boundary conditions, with α = 0.6
and N = 1024 particles. C/N = 417.6 is the total number of collisions per particle at the time
the simulation is stopped. Black particles are involved in the last two hundred collision: the linear
arrangement characteristic of inelastic collapse is evident [11]

assumption of binary collisions will fail. Furthermore, the time between two col-
lisions will become exponentially small and event-driven simulation time steps
will dramatically slow down, until at a certain time the simulation stops running
as an infinite number of collisions occur in finite time. A snapshot of this situ-
ation in 2d is plotted in Fig. 2.3b, where collapsed particles are highlighted. To
avoid the inelastic collapse, some models consider a velocity-dependent restitu-
tion coefficient, becoming more and more elastic as the relative velocity tends to
zero, in agreement with experimental observations. This description is generally
known as viscoelastic model. Simulations of such models have shown that the
inelastic collapse is removed, suggesting that it is an artificial consequence of
fixing a constant restitution coefficient [4].

Having considered the deep qualitative differences between elastic and inelas-
tic collisions, now the Boltzmann equation for granular gases can be derived.
The pseudo-Liouville equation (2.23) holds, provided that the binary collision
operator T †

−(1, 2) is now written in terms of inelastic collision rules, Eqs. (2.31)
and (2.33). Since direct and inverse transformation do not coincide anymore in the
α < 1 case, the operator bc in T− and T †

− which exchanges precollisional velocities
withpostcollisional ones must be exchanged with its inverse b−1

c . The adjoint of the
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inverse binary inelastic collision operator therefore reads

T †
−(1, 2) = σ2

∫

v12·n̂>0

dn̂ |v12 · n̂|
[
1

α2
δ
(
r1 − r2 − σn̂

) − δ
(
r1 − r2 + σn̂

)]
.

(2.34)
Deriving the BBGKY hierarchy and considering the first equation for one-particle
distribution, theMolecular Chaos assumption gives the Boltzmann equation for gran-
ular gases

(
∂

∂t
+ L0

1

)
P(r1, v1, t) = Nσ2Q(P, P) , (2.35a)

Q(P, P) =
∫

dv2

∫

v12·n̂>0

dn̂ |v12 · n̂|
[
1

α2
P(r1, v∗

1, t)P(r1, v∗
2, t) (2.35b)

−P(r1, v1, t)P(r1, v2, t)] ,

where v∗
1 and v∗

2 indicate the precollisional velocities required to have v1 and v2 as
postcollisional ones, see Eq. (2.33).

As a first approach, this equation can be studied in the spatially homogeneous
case (therefore L0

1 = 0), including the Enskog correction �(σ, n), which has been
introduced to account for velocity correlations under some assumptions, and acts as
a multiplicative factor correcting Molecular Chaos approximation [5]. The homoge-
neous equation reads

∂

∂t
P(v1, t) = �(σ, n)nσ2Q(P, P) , (2.36)

where n is the average number density; the last equation has been studied by Gold-
shtein and Shapiro [9] and by Ernst and van Noije [12]. This is the first step to derive
dynamical equations of granular quantities, as it will be done in the next paragraph.

2.1.3 The Homogeneous Cooling State and Haff’s Law

From now on only the spatially homogeneous case is considered.
The granular cooling has no stationary state, since the energy keeps dissipating

because of the collisions all along the trajectory. Therefore, it is useful to define the
rescaled velocity distribution f̃ as

N P(v, t) = n

v3
T (t)

f̃ (v/vT (t)) , (2.37)
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where the temperature T (t) = m〈v2〉/3 = mv2
T (t)/2 defines the thermal velocity

vT (t). It can be shown that N 2Q → n2v2
T Q̃, with

Q̃ =
∫

dc2

∫

c12·n̂>0

dn̂ |c12 · n̂|
[
1

α2
f̃ (c∗

1, t) f̃ (c∗
2, t) − f̃ (c1, t) f̃ (c2, t)

]
, (2.38)

defining a rescaled velocity c = v/vT . The collisions cause the temperature decay:
from Eq. (2.32), one expects that they reduce the energy by a quantity proportional
to the kinetic energy itself. The temperature evolution equation reads

d

dt

(
3

2
nT

)∣∣∣∣
coll

=
∫

dv
mv2

2
σ2N 2Q(P, P) , (2.39)

= σ2n2vT
mv2

T

2

∫
dc1c21 Q̃ = −σ2n2vT T μ2 , (2.40)

being

μp = −
∫

dc1cp
1 Q̃ . (2.41)

Therefore
dT

dt

∣∣∣∣
coll

= −ζ(t)T (t) , (2.42)

where

ζ(t) = 2
√
2

3
nσ2μ2

√
T (t)

m
. (2.43)

Equation (2.42) rules the Homogeneous Cooling State (HCS). Since the density is
constant and anyglobal velocity canbeput to 0bymeans of aGalilean transformation,
the temperature field is the only hydrodynamic relevant field in the HCS. Because
of these simplifications, the HCS is usually the starting point to study granular flows
and instabilities, see Sect. 3.1.2 and Chap.4.

Throughout homogeneous cooling all the particles continuously lose energy by
means on inelastic collisions with uniform distribution in space, which makes the
granular temperature homogeneously decreasing after having initialized the system
with some non-trivial velocity distribution. This is the reason why f̃ has been intro-
duced: indeed P(v) necessarily tends to aDirac delta δ(v). The dissipation coefficient
ζ(t) is time-dependent, i.e. ζ(t) ∝ √

T (t): this is the effect of a hard-core potential,
which makes the collision frequency proportional to the thermal velocity,

ωc ∼ vT ∼ √
T , (2.44)



44 2 Theoretical Models of Granular and Active Matter

where ωcdt is the probability that a given particle undergoes a collision between t
and t + dt .

When computing the time-derivative of the rescaled distribution, additional con-
tributions appear

∂N P

∂t
= n

v3
T

∂ f̃

∂t
+
(

−3n

v4
T

f̃ + n

v3
T

∂ f̃

∂c1

∂c1
∂vT

)
dvT

dt
, (2.45)

leading to the following evolution equation

1

vT

∂ f̃

∂t
− 1

v2
T

∂(c1 f̃ )

∂c1

dvT

dt
= σ2nQ̃ . (2.46)

The second term in the lhs can be computed through Eqs. (2.42) and (2.41),

1

v2
T

dvT

dt
=
√

m

2T

1

2T

dT

dt
= −1

3
σ2nμ2 , (2.47)

which prove it to be time-independent.
Assuming the existence of a scaling stationary solution, namely f̃HC S such that

∂ f̃HC S/∂t = 0, this must satisfy

μ2

3

∂(c1 f̃HC S)

∂c1
= Q̃ . (2.48)

The latter equation defines the Homogeneous Cooling State. Finally, in the HCS the
temperature evolution reads

THC S(t) = T (0)(
1 + ζ(0)t

2

)2 , (2.49)

which is known as the Haff’s law [13] and has the remarkable property of being
independent of the initial temperature in the long time limit, namely

T (t) ∼ 4(ζt)−2 , (2.50)

with

ζ = ζ(THC S(t))

T 1/2
HC S(t)

= ζ0vT (t)

lT 1/2
HC S(t)

, (2.51)

where l ∝ 1/(nσ2) is the mean free path and ζ0 is the dimensionless cooling rate, a
physical parameter of the system.
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2.1.4 Steady State Representation

Equation (2.43) and Haff’s law in (2.50) says that for long times

ωc(t) ∼ 2

ζt
⇒ Nc(t) ∼ ln(ζt/2) , (2.52)

where Nc(t) is the number of cumulated collisions after a time t . A new time-scale
can now be introduced

τ (t) = τ0 ln
t

t0
, (2.53)

with arbitrary τ0 and t0; Eq. (2.53) gives the trend of the mean intercollisional time
τ at time t . In this new time scale, the number of collisions in a time interval dτ is
constant. This yields

∂

∂t
= τ0

t

∂

∂τ
, (2.54)

therefore for long times one has

1

vT (t)

∂

∂t
∼ ζτ0

2

∂

∂τ
. (2.55)

Finally, the evolution equation of the one particle distribution in the new time scale
τ reads

∂ f̃

∂τ
+ nσ2μ2

3

∂(c1 f̃ )

∂c1
= σ2nQ̃ , (2.56)

which is equivalent to the Boltzmann equation of particles subjected to an external
force

F = nσ2μ2

3
c , (2.57)

acting like a positive viscosity. Actually, this equivalence makes sense as long as the
state remains homogeneous; in Sect. 3.1.2 it will be shown how the HCS is unstable
for long wavelengths perturbations [14].

Equation (2.56) is the Boltzmann equation in the steady state representation [15]:
indeed, it has been seen how looking at the system in terms of the rescaled velocity
c is equivalent to adding a propulsive continuous force, increasing the energy of the
system. The meaning is evident: the velocity rescales and as the new time scale τ
slows down when t increases, the new velocity reads

w(τ ) = dx
dτ

= dx
dt

dt

dτ
= t

τ0
v(t) , (2.58)
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so the effect of the propelling force is to inject back in the particles the same average
quantity of energy lostby collisions, which follow the same rule (2.31) because they
are instantaneous and not affected by time rescaling.

In this representation, Eq. (2.56) provides a newevolution equation for the rescaled
homogeneous temperature T̃H (τ ) = m〈w2〉/3 [15],

(
d

dτ
− 2

τ0

)
T̃H (τ ) = −ζ T̃ 3/2

H (τ ) , (2.59)

whose solution reads

T̃H (τ ) =
(

2

τ0ζ

)2
[
1 +

(
2

τ0ζ T̃ 1/2
H (0)

−
)

e−τ/τ0

]
. (2.60)

Consequently, the rescaled temperature tends to a stationary value given by

T̃st =
(

2

τ0ζ

)2

. (2.61)

From Eq. (2.51), it can be shown that τ0ṽT,st is independent from τ0 and proportional
to the dimensionless cooling rate ζ0, an intrinsic property of the system.

So, when considering rescaled variables, the steady state representation shows
how the HCS forgets its initial condition after sufficiently long times and tends
to a value determined by the parameters of the system, regardless of the initial
velocity distribution. The steady state representation provides a mapping between a
granular cooling, where no stationary state is possible, to a system where the energy
is dissipated and injected at the same rate, leading to the stationary values described
above.

2.1.5 Driven Granular Systems

Agranular fluid can reach a stationary statewhenpower is supplied in order to balance
the energy lost because of collisions. There are two main theoretical description of
driven granulars:

1. imposing boundary conditions like in a sheared or shaken granular, which is
typically done in the hydrodynamic description - seeSect. 3.1.2 - and implemented
in numerical simulations - see Sect. 4;

2. driving the granular in the bulk, i.e. supplying energy to all the particles in their
microscopic dynamics. This is the case discussed in this section.

I report the randomly driven granular gas model [16, 17], consisting of a gas made by
N identical hard objects of mass m and diameter D moving inside a d-dimensional
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box of volume V = Ld , being L the side of the box. The dynamics of the gas is ruled
by the interplay between two physical phenomena: a continuous interaction with the
environment (Langevin process) and the inelastic collisions among the grains. The
equations of motion read

d

dt
xi (t) = vi (t) , (2.62a)

m
d

dt
vi (t) = −γbvi (t) + √

2γbTbξi (t) + Fi (t) . (2.62b)

So, the grains are coupled with a thermal bath, calling τb = m/γb and Tb respectively
the characteristic time and temperature of the bath. The function ξi (t) is a stan-
dard Wiener process, i.e. 〈ξi (t)〉 = 0 and 〈ξα

i (t)ξβ
j (t

′)〉 = δ(t − t ′)δi jδαβ . The noise
coefficient

√
2γbTb satisfies the Einstein fluctuation-dissipation relation. Inelastic

collisions are taken into account by Fi (t): they occur instantaneously with a mean
intercollisional time τc.

Therefore, the parameters defining the dynamics are the restitution coefficient α
and the ratio between the characteristic time scales, ρ = τb/τc. Depending on these
(adimensional) parameters, one can define three limit cases of the dynamics

• the elastic limit α → 1−;
• the collisionless limit ρ → 0 (τc � τb);
• the cooling limit ρ → ∞ (τc � τb).

In d > 1, the elastic limit is smooth and one can take α = 1: this is equivalent to
consider an elastic gas, where the collisions contribute to the relaxation towards an
homogeneous particle distribution in space and a Maxwellian distribution of veloc-
ities, with temperature Tb. In d = 1 the situation is different because in elastic colli-
sions the particles exchange their velocities exactly, so there is no mixing because a
collision is equivalent to an exchange of labels, namely (vi , v j ) → (v j , vi ) and the
initial set of velocities is conserved in time.

In the collisionless limit τc � τb, therefore collisions are very rare and the gas
can be considered as a gas of non-interacting random Brownian walkers, which
sometimes collide between them but then relax toward a Maxwellian distribution
with temperature Tb and homogeneous density.

Finally, in the cooling limit τc � τb and collisions dominate: between two colli-
sions the particles move almost ballistically. The bath is heating the granular but this
effect can be seen only for time scales greater than τb: for intermediate observation
times τc � t � τb the gas behaves like a cooling granular gas.

2.1.6 Inelastic Maxwell Molecules

Finally, we conclude this review of granular kinetic theory focusing on inelastic
Maxwell molecules: this is a category of particles whose collision integral does
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not depend on the flux term |v12 · n̂| [18]. The kinetic theory has shown that this is
approximately the case for particles in d dimensions subject to a power law repulsive
interaction potential U (r) ∼ r−2(d−1), being r the distance between the particles [5].
The Boltzmann Equation for Maxwell molecules is greatly simplified, and in the
inelastic 1d case reads

∂

∂τ
P(v, τ ) + P(v, τ ) = β

∫
du P(u, τ )P(βv + (1 − β)u, τ ) , (2.63)

where β = 2/(1 + α) and τ is the number of collisions per particle. For Maxwell
molecules the collision frequency ωc is constant, i.e. it doesn’t depend from the
thermal velocity as for hard spheres, hence τ is linear with t and they can be used
alternatively. Otherwise, one can take the flux term |v − v′| in 1d hard rods to be
proportional to the thermal velocity,

√
T ; by means of a time reparametrization τ (t),

the latter factor can be eliminated and the Boltzmann equation reduces to Eq. (2.63).
This description is called pseudo-Maxwell model [19].

Equation (2.63) implies that at each time step an arbitrary couple of particles is
selected and their velocities are transformed following the collisional rule (2.31) in
d = 1. This model was applied by in 1999 [20] as a traffic flow model, and further
analyzed in [21]: essentially, it analyzes the dynamics of Maxwell molecules in the
mean field case, i.e. disregarding spatial structure. In the homogeneous case of zero
total momentum (i.e. in the center ofmass frame) the authors obtained an exponential
decay of velocity moments, namely

〈vn〉 ∼ e−anτ , (2.64)

but with decay rates an �= na2/2, arguing the presence of a multiscaling behav-
ior, namely that higher-order moments cannot be written as functions of the sec-
ond moment. The authors in [21] consequently exclude the existence of a rescaled
asymptotic distribution P(v, τ ) → f (v/vT (τ ))/vT (τ ) in the long time limit. On the
contrary, it has been shown [22] that the rescaled distribution function

f (v/v0(τ )) = 2

π
[
1 + (v/v0(τ ))2

]2 , (2.65)

is a physical asymptotic solution of Eq. (2.63) when considering inelastic hard rods
on a lattice. Since it has the form of a power lawwith f (c) ∼ c−4 for high c, moments
〈vn〉 with n ≥ 3 diverge and therefore do not scale with the second moment.

Remarkably, the scaling velocity distribution form in (2.65) does not depend on
the restitution coefficient α: the dynamics is completely contained in the thermal
velocity v0(τ ). Furthermore, Eq. (2.64) leads to a new version of Haff’s law (2.49)
for Maxwell molecules, namely

T (t) ∼ e−a2τ , (2.66)
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so that the temperature exponentially decays in function of the collisional clock τ .
Further studies have shown that the multiscaling behavior yields non-stationary total
energy fluctuations [23]

〈E2(τ )〉 − 〈E(τ )〉2
〈E(τ )〉2 = 1

N

[
A + B exp(2ζ2t)

]
, (2.67)

where E(τ ) = ∑N
i=1 v2

i (τ ) is the total energy, 2ζ2 = 2a2 − a4 and A and B depend
on the initial velocity distribution. The energy fluctuations vanish in the large-size
limit since they scale as 1/

√
N and so a thermal capacity can always be defined, but

it grows with time. This property will be discussed in Sect. 5.3 for the granular lattice
model introduced in Chap.4.

A great deal of attention has been focused on Maxwell molecules over the last
years, because the simplification ofMaxwell particles allows the derivation of several
analytical results.Models ofMaswellMolecules on a latticewill be described inmore
detail in Sect. 3.3.2, and will be one of the subject of this thesis analyzed in Chap.4.

2.2 Active Models

The collective phenomenology of active matter introduced in Chap.1 raises many
questions about its theoretical description: as we saw, there are many kind of collec-
tive motion exhibited by several living and non-living systems. Hence, a good mod-
elization of active matter is very difficult if one wants to replicate all the observed
features in a single, universal model, and it is rather preferable to seek for the essen-
tial ingredients of motion leading to the emergence of collective behavior. Statistical
mechanics is a powerful tool to develop a theoretical representation of active matter:
many models start from Brownian motion and add some prescriptions about inter-
actions and self-propulsion. These are the main ingredients of active matter models
and, before introducing the most established, it is useful to give a short classification
of active systems.

Active systems can be dense or dilute: in human made systems the density is a
control parameter which can be easily tuned, but biological, self-organized systems
show that the properties of their motion can strongly depend on density. The latter
affects interactions and observed phases: indeed at higher densities the effect of the
excluded volume gets more important, and self-trapping becomes more probable.
Also, in dense systems the particles are more likely to interact continuously between
the same ones, and the Molecular Chaos assumption - stated in Eq. (2.27) - does not
often give a good approximation.

The Interactions can also be produced by several different mechanisms, as it
has been described before, and have various physical features. Vicsek and Zafeiris
classified them as [24]
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• physical, chemical, visual or medium-mediated;
• isotropic or anisotropic, polar or apolar;
• metrical or topological;
• short-range or long-range.

For instance, in driven granulars the grains collide between themselves (physical
interaction) while birds in flocks almost never do it, probably interacting through a
visual mechanism. Generally speaking, the shape and symmetries of the units affect
the typology of the interactions: for instance, granular rods are nematic and apolar
particles, while Janus spheres are isotropic and polar. Any combination of these
properties is possible, accounting for several possible interactions. It has been shown
that the notion of distance in collective motion is ambiguous: birds in a flock seem
to interact through a topological rather than metrical distance, as said in Sect. 1.4.2.

The case of medium-mediated or long-range interactions deserves a specific con-
sideration: until now, a self-propulsion mechanism has always been considered as a
momentum and energy injection in a unity able to convert internal energy into kinetic
energy, or to generate a non-trivial motion in presence of external fields. However,
the role of the surrounding medium (excluding external fields) has generally been
disregarded. Actually, neglecting external forces such as gravity, active particles can
change their motion only by interacting with the surrounding fluid: the total momen-
tum of the fluid and the active unit does not change in the self-propulsion reaction,
because a particle moving in a given direction pushes the fluid in the opposite one,
as we do when we swim or we row on a boat. The particles typically creates a force
dipole, which can have various shapes depending on the self-propulsion mechanism
and propagates across the fluid, see Fig. 2.4, and reaches other units at long-range
distances [26, 27]. These are called hydrodynamic interactions and motivate two
kinds of active models: dry or wet active matter. In the latter, it is not always

Fig. 2.4 Force dipoles in a fluid medium generated by microswimmers, namely called a pushers
or b pullers, depending on the polarity of their swimming mechanism: purple arrows display the
self-propelling forces [25]
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necessary to consider the coupled evolution of the swimmers and the surrounding
fluid, but one can consider the fluid as a mediator of interactions between active
particles, transmitted for instance by means of hydrodynamic waves. These particles
are called microswimmers and have been reviewed in [25, 28]. It can be summa-
rized that in dry models the self-propulsion is an individual force, which any particle
feels independently and momentum is not conserved; conversely, in wet models the
self-propulsion is always coupled with a momentum transport, which propagates in
the medium and is transmitted to surrounding particles, and the total momentum is
always conserved.

The role of equilibrium in the description and modelization of active matter is
very important and currently under debate: it is physically clear that active mat-
ter is out of equilibrium because of the continuous energy dissipation and injection
occurring in the single active units, and that non-conservative interactions are acting.
However, many studies on active matter use an equilibrium description, defining
an effective Hamiltonian, temperature and free energy, yielding the existence of
equilibrium phase transitions [29–32]. For instance, aligning interactions inspired a
modeling of birds flock as ferromagnetic models, inspired from the Ising, Heisen-
berg or XY models [33–37]. This approach is clearly motivated by the wide and
self-consistent progresses made by equilibrium statistical physics and the theory of
critical phenomena through the last century. However, its application needs some
justifications: these have been studied in the very last years and related to the char-
acteristic time scales of the system. Indeed, if a scale separation is present between
equilibrium and out-of equilibrium mechanisms, a local equilibrium approximation
can be made to consider the local time behavior of the system as an equilibrium
process. In 2016, Mora et al. [37] introduced a ferromagnetic model to study the
behavior of bird flocks, which are driven out of equilibrium by the continuous rear-
rangement of their interaction network, typically occurring in active matter. The
experimental comparison between the alignment relaxation time τr and the network
rearrangement time τn showed that τr � τn , therefore interactions occur at almost
fixed network: this result justifies a local equilibrium approximation for the model
purposed. Furthermore, fewweeks before Fodor et al. [38] published a study with the
aim of quantifying the non-equilibrium properties of an active matter model, namely
the Active Ornstein–Uhlenbeck Particles model (see Sect. 2.2.4). In this model, the
active particles feel a self-propelling persistent velocity with a correlation time τ : the
authors have shown that the entropy production is of order O(τ 2) for small τ , and
therefore argued that there exists a regimewhere direct and reversed trajectories have
the same probabilities, entropy production vanishes and the system relaxes towards
an effective Boltzmann distribution. In both studies, some specific models have been
used to give a quantitative analysis of non-equilibrium properties and justify the
local equilibrium approximations made; a general response about the limits of the
equilibrium properties in active matter is still under investigation [39].

It is now evident that an active model is composed by two ingredients: a
self-propulsion mechanism and an interaction rule. Their qualitative properties,
especially for interactions, have been overviewed in this paragraph; the following
paragraphs are dedicated to successful models that headed the study of active matter
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in the last decades. It has to be stressed that self-propulsion and interactions can
be considered separately, and that the self-propulsion mechanism of a model can
be combined with the interaction rule of another model. So, two models of interac-
tions will be introduced: the Kuramoto model and the Vicsek model, respectively
in Sects. 2.2.1 and 2.2.2. Models of self-propulsion will be introduced in further
sections. Any realistic model of active particles requires an implementation of both
ingredients.

2.2.1 The Kuramoto Model

The Kuramoto model, introduced in 1975 [40, 41], is one of the most successful
models describing the collective synchronization of coupled rotators. Its success
consisted in an essential description of a transition to order by means of “aligning”
interactions, tuned by the coupling strength acting as the control parameter of the
transition. A complete review of the model can be foundin [42]; for the need of this
thesis, also the analysis in [43, 44] is sufficient.

Consider a set of N coupled rotators of phase θ j , with quenched random frequen-
cies ω j : the standard Kuramoto model dynamics is given by

θ̇ j = ω j + K

N

N∑
k=1

sin(θk − θ j ) . (2.68)

This evolution equation describes a system of overdamped rotators moving at a fixed
and random individual frequency ω j modified by a sort of elastic interaction among
all of them, with fixed intensity K/N : each rotator feels the phase difference with
other rotators as an attractive force to the synchronized state where θk = θ j for all
j, k. The transition to synchronization can be analyzed in few steps: first, one sees
that the global motion of phases evolves through the deterministic equation

1

N

N∑
j=1

θ̇ j = 1

N

N∑
j=1

ω j = � , (2.69)

where the last equivalence defines the global frequency �. It is convenient to define
a sort of “center of mass” frame, where θ → θ − �t and ω → ω − �: the evolution
Eq. (2.68) is invariant under this translation and the new global frequency of the
system vanishes, i.e.

∑
j ω j = 0.

The synchronization can be observed through the complex order parameter

reiψ = 1

N

N∑
j=1

eiθ j , (2.70)
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which is finite in the large size limit, defining the coherence r and the global phase ψ.
Theirmeaning is evident if one considers the swarming phase described in Sect. 1.4.1:
when r ≈ 0, the rotators move with random, disordered phases and no global order
is observed; conversely, when r ≈ 1, the rotators are locked to the same phase,
oscillating with the same frequency and acting as a unique, giant rotator. By means
of the complex order parameter, the evolution equation of the single rotator can be
written as

θ̇ j = ω j + Kr sin(ψ − θ j ) , (2.71)

where r and ψ generally depend on time.
In the large size limit, let’s call g(ω) the density of natural frequenciesω j , normal-

ized to one and assumed even for simplicity and symmetry reasons. The probability
distribution of the phase θ for a rotator of given frequency ω is called ρ(θ|ω, t), and
evolves according to

∂ρ

∂t
+ ∂

∂θ
[(ω + Kr sin(ψ − θ)) ρ] = 0 , (2.72)

which stems fromEq. (2.71) andmust be completed by the initial condition ρ(θ|ω, 0).
In the infinite N limit, the complex order parameter can be computed as

reiψ = 〈eiθ〉 =
∫ π

−π

dθ
∫ +∞

−∞
dω eiθρ(θ|ω, t)g(ω) . (2.73)

The last equation has a stationary uniform solution ρ(θ|ω) = 1/(2π) for any coupling
constant K : the solution yields r = 0 and uniform distribution of phases, i.e. no
synchronization. Synchronized solutions can be found looking at fixed points of
Eq. (2.71): assuming r > 0 and ψ = 0 without loss of generality, if |ω| < Kr one
has a stable fixed point θ0 = sin−1(ω/Kr); otherwise, for |ω| > Kr there are no
fixed points. Therefore a stationary distribution of rotator’s phases can be piecewise
defined as

ρ(θ|ω) =
⎧⎨
⎩

δ
[
θ − sin−1(ω/Kr)

] |ω| < Kr

1
2π

√
ω2−(Kr)2

|ω−Kr sin θ| |ω| > Kr
, (2.74)

where the second line is given by Eq. (2.72) with ∂t = 0. The coherence r can be
computed through Eq. (2.73), and the only non-vanishing term is the one for |ω| <

Kr [45]. So,

r =
∫ π

−π

dθ
∫ Kr

−Kr
dω eiθδ[θ − sin−1(ω/Kr)]g(ω) . (2.75)

The latter has a consistent solution only if

K > Kc = 2

πg(0)
, (2.76)
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Fig. 2.5 Synchronization in Kuramoto model [45]

having assumed that the frequency distribution g(ω) has a maximum in 0. Therefore,
Kc is the critical value of the coupling strength above which synchronization occurs,
see Fig. 2.5. If g(ω) is regular up to ω2 terms around ω = 0, the coherence parameter
scales as r ∼ (K − Kc)

1/2.
The Kuramoto model has been studied and generalized including the inertia of

rotators, a friction force, non-uniform couplings Kk j and noise terms; the latter is
generally introduced adding a Gaussian White Noise (GWN) term η j (t) to the evo-
lution Eq. (2.68), with 〈η j (t)〉 = 0 and 〈ηk(t)η j (t ′)〉 = 2Dδk jδ(t − t ′). The noise
introduces a second control parameter competing with the coupling strength K ,
because the former leads the system away from order while the latter is accounting
for synchronization: a more detailed discussion on oscillators’ phases and their linear
stability can be found in [42].

2.2.2 The Vicsek Model

The Vicsek model is a milestone in the theoretical description of self-propelled
particles. Introduced in 1995 by Vicsek et al. [46], it aims at reproducing the self-
ordering of active systems. The original model consists of N point particles moving
on a periodic square cell of linear size L , with positions x j (t) and velocities v j (t) of
constant modulus v. The velocities are described only by their orientation θ j (t) and
their equations of motion in discrete time read

x j (t + �t) = x j (t) + v j (t)�t , (2.77a)

θ j (t + �t) = 〈θ(t)〉R + ξ j (t) , (2.77b)

with �t = 1, being 〈θ(t)〉R the average direction of particles’ velocities within a
circle of radius R from the focusal particle j , which is included in the average,
namely
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〈θ(t)〉R = tan−1

( 〈sin θ(t)〉R

〈cos θ(t)〉R

)
. (2.78)

The term ξ j (t) is a random number drawn with uniform distribution in the interval
[−η/2, η/2]. Since the particles have no extension, without loss of generality the
interaction radius can be taken R = 1. The free parameters of the system are then η
(noise), ρ = N/L2 (number density) and v (speed, i.e. the distance run by a particle
between two updates); the self-propulsion is guaranteed by the constant speed v.
Varying the parameters η and ρ several phases can be observed - see Fig. 2.6. Espe-
cially, at high density and small noise a global ordered swarming state arises. Fixing
the speed at v = 0.03, the authors looked at the swarming order parameter

va = 1

Nv

∣∣∣∣∣∣
N∑

j=1

v j

∣∣∣∣∣∣ , (2.79)

and observed a non-equilibrium transition when the noise is reduced below a critical
value ηc(ρ), or alternatively when the density is increased above ρc(η). The transition
is studied for several number of particles and gets sharper for large N , see Fig. 2.7.
Thus, even in a non-equilibrium system as the one studied a phase transition occurs
which is quite similar to an equilibrium transition.

From previous results the authors argued that in the thermodynamic limit the
swarming parameter scales as

va ∼ [ηc(ρ) − η]β , va ∼ [ρ − ρc(η)]δ , (2.80)

defining the critical exponents β and δ. Numerical fits gave β = 0.45 ± 0.07 and
δ = 0.35 ± 0.06. Combined results are the basis to build a phase diagram in the
plane η − ρ: the critical line has been numerically found as

ηc(ρ) ∼ ρκ (2.81)

with κ = 0.45 ± 0.05 [47].
A first application of the Vicsek model has been the description of hydrodynam-

ics and vortex formation in bacteria colonies for the case of Bacillus subtilis [48].
Further analysis on the Vicsek model showed the presence of moving clusters, a
strong connection with the XY model especially at low speed v � 1, and a similar
behavior when considering different shapes of the surface [33]; the Vicsek model has
been enhanced and modified considering nematic (apolar) particles, adding cohesion
and introducing the role of surrounding fluid [34]. Moreover, a strong connection
betweenKuramoto andVicsekmodel has been found, because the twomodels show a
similar bifurcation behavior under variation of the control parameters [49]: indeed, te
synchronization in Kuramoto model is equivalent to the swarming in Vicsek model.
The success of the Vicsek model is basically resumed in the sentence
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Fig. 2.6 Snapshots of the Vicsek model with N = 300 particles: velocities are indicated by a small
arrow and the last 20 time steps of the trajectories are shownby a short continuous curve. Panels show
a initial disordered configuration at L = 7 and η = 2.0, b formation of coherent motion groups for
small densities and noise, L = 25 and η = 0.1, c randomly moving particles with some correlation
for high density and noise, L = 7 and η = 2.0 and d collective swarming for high densities and
small noise, L = 5 and η = 0.1 [46]

Fig. 2.7 Swarming parameter va in function of noise η (left) and density ρ (right). In left panel,
the density is kept constant and the cell size is varied according to legend; in right panel, the noise
is constant and the cell size is L = 20 [46]
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We have chosen this realization because of its simplicity, however, there may be several
more interesting alternatives of implementing the main rules of the model. In particular, the
absolute value of the velocities does not have to be fixed, one can introduce further kind of
particle interactions and or consider lattice alternatives of the model [46].

Actually, the Vicsek model is a very commonly used starting point to observe col-
lective motion frommicroscopic behavior of self-propelled interacting particles, and
many subsequent models are variations of this one [24].

2.2.3 Active Brownian Particles and Run-and-Tumble
Dynamics

Having considered Kuramoto and Vicsek models as a starting point to introduce
ordering interactions in a system of active particles, the most used models of self-
propelled particles will be now introduced. The goal of all the following descriptions
is to introduce a self-propulsion mechanism accounting for two properties:

• keep the particles in a constant state of motion, avoiding cooling because of dis-
sipative collisions or interactions with the environment;

• describe the changes of direction in particles’ motion.

In this section only dry particles are considered, which means that self-propulsion
does not conserve momentum as it has been discussed above.

Active Brownian particles (ABP) are one of the most general model of active
particles [28]: eachunit is aBrownianparticle performing activemotion, generated by
internal energy storing or nonlinear velocity-dependent friction [50]. ABPs equations
of motion for a particle of unit mass m = 1 generally read

ṙ = v , (2.82a)

v̇ = Fd(r, v) − ∇U (r) + ξ(t) , (2.82b)

being Fd(r, v) a position and velocity-dependent dissipation force, U (r) an external
potential and ξ(t) a stochastic force acting on the particle. For Fd = −γv and aGWN
ξ(t) satisfying the Einstein relation 〈ξα(t)ξβ(t ′)〉 = 2γT δαβδ(t − t ′), one recovers
the classical Brownian motion at equilibrium. On the contrary, a different choice of
the dissipation is sufficient to have a self-propulsion force: a suitable choice is to
define a velocity dependent friction Fd = −γ(v)v, for instance

γ(v) = −a + bv2 = a

(
v2

v2
0

− 1

)
, (2.83)

leading the particles to the stable fixed point v0 = √
a/b: the nonlinear friction

accelerates the particle in its direction of motion for v < v0 and slows it down
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for high speed v > v0. The viscosity in Eq. (2.83) is called Rayleigh–Helmoltz fric-
tion. An exact solution of Eq. (2.82b) without noise or external potential is given in
Appendix B.1. Without noise or interactions, no changing of orientation is possible.
When the noise is Gaussian and white with variance 2D, the probability density
P(r, v, t |r0, v0, t0) of this process follows the Kramers Equation [51]

∂P

∂t
+ v · ∇ P − ∇U (r) · ∂P

∂v
= ∂

∂v

[
γ(v)vP + D

∂P

∂v

]
, (2.84)

which in the homogeneous case∇ = 0 (no spatial gradients) has a stationary solution

P0(v) = N exp[−�(v)/D] , (2.85)

where�(v) is a velocity-dependent effective potential, namely�(v) = ∫ v dv′γ(v′)v′,
holding for a general choice of γ(v); for the Rayleigh–Helmoltz viscosity, one has
�(v) = − a

2v
2 + b

4v
4. Depending on the sign of a the motion of particles can be

passive (a < 0) or active a > 0; active particles potential has the typical mexican
hat shape, leading to a continuous set of minima with speed |v| = v0, see Fig. 2.8;
there is spontaneous symmetry breaking in each trajectory where particles travel
along a given direction, which is what one observes when looking at experiments
and simulation on swarming particles.

The stationary distribution in Eq. (2.85) has a limit value for the high dissipation
regime: if b/D → ∞ while v0 = √

a/b remains finite, the distribution converges to
a delta function

P0(v) = δ(|v| − v0) . (2.86)

The latter applies when the relaxation time towards the fixed point v0 is extremely
small compared to the characteristic time of rotational diffusion. Therefore, particles
can be considered at constant speed v = v0 and their motion is described by the

Fig. 2.8 Stationary velocity distribution P0(v) (2.85) in the Cartesian plane for Rayleigh–Helmoltz
friction. Left panel: passive regime with a = −0.1. Right panel: active regime with a = 1.0. In both
cases b = 1.0 and D = 0.5 [50]
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angular orientation θ(t). Two possible dynamics of the orientation are the angular
diffusion [44] or the run-and-tumble dynamics [29, 52], which are frequently used
to describe active systems, especially for crowded environments such as bacteria
colonies [28]. In the former, the orientation evolves gradually, following a Wiener
process with diffusion coefficient DR , namely

θ̇ = √
2DRξ(t) , (2.87)

where now ξ(t) is a GWN of unit variance; on the other side, run-and-tumble dynam-
ics consists of particles following a ballistic, straight motion and undergoing instan-
taneous scattering events θ → θ + η at a rate λ per unit time, where η is a random
angular variable with distribution p(η). Both dynamics can be expressed by the
Fokker–Planck equation

∂P

∂t
+ v0e(θ) · ∇ P = I [P] , (2.88)

where e(θ) is the unit vector in the direction θ and the functional I [P] accounts for
diffusion rule, which for angular diffusion reads

I [P] = DR
∂2P

∂θ2
, (2.89)

while for run-and-tumble dynamics one has [44]

I [P] = −λP(r, θ, t) + λ

∫ +∞

−∞
dη p(η)P(r, θ − η, t) , (2.90)

Both angular diffusion and run-and-tumble dynamics reproduce the tendency of
active particles to explore space by changing their orientation, for instance when
seeking nutrients. It is usual to read of active Brownian particles as a synonym of
angular diffusionmotion. The angular diffusion is often used to describe themotion of
self-propelling Janus colloids, while run-and-tumble dynamics has been introduced
to describe the motion of E. coli bacteria [28]. It has been shown that, despite the
two models follow quite different microscopic dynamics, their diffusion properties
for long times are equivalent [53]; an effective equilibrium regime has been found
and can be applied for both models if angular diffusion and tumbles act on the same
time scale [31].

2.2.4 Active Ornstein–Uhlenbeck Particles

Another interestingmodelization of self-propelling particles is theActiveOrnstein–
Uhlenbeck Particles model (AOUPs), introduced in the last years [54–57]. Its
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simplest version consists of particles following the overdamped motion equation

ṙ = −μ∇U (r) + v(t) , (2.91)

where μ is the mobility, U (r) an external or interaction potential, and v(t) a noise
term persistent in time, namely

〈v(t)〉 = 0 , (2.92a)

〈vα(t)vβ(t ′)〉 = δαβ�(t − t ′) . (2.92b)

The memory term is often taken as �(t) = D
τ

e−|t |/τ . In this case, the noise v(t) is an
Ornstein–Uhlenbeck process [51], and the equation of motion (2.91) can be written
as

ṙ(t) = −μ∇U (r) + v(t) , (2.93a)

τ v̇(t) = −v(t) + √
2Dξ(t) , (2.93b)

where ξ(t) is GWN of unit variance. The AOUPs model is often called Gaussian
Colored Noise model (GCN). The persistence of motion produces a self-propulsion
mechanism; in the limit τ → 0, memory effects vanish and Eq. (2.93) reduce to
overdamped Brownian motion equations. The persistence is driving the system out
of equilibrium, and its characteristic time τ can be considered as a distance from the
latter [38].An effective equilibriumdescription canbedeveloped also forAOUPs [54,
57]. The model has been used to describe the behavior of active colloids [54] and the
motility-induced phase separation [55]; moreover, it turned to be a useful approach
to describe the accumulation of active particles around obstacles, and a good approx-
imation for the pressure generated by active matter [56].

Looking at Eq. (2.91), it is fundamental to clarify that in this case ṙ �= v: the
variable v is not the actual velocity of the units, feeling the action of potential U (r)
because of the overdamping, but rather an active velocity representing an internal
stochasticmechanismdriving the particles to a certain speed and energy.Actually, the
active velocity becomes the physical velocity of the unit when no external potential
or interactions are present, i.e. the unit is free to move with velocity ṙ = v, so one
may interpret the velocity v as an “intentional” velocity.

Although the discussed models have been developed to describe systems showing
different behaviors at a microscopic scale, it is tempting to find a unified descrip-
tion of their behavior at a mesoscopic or macroscopic scale (see Fig. 2.9); while
angular diffusion and run-and-tumble dynamics have shown an equivalent behav-
ior at a macroscopic scale, it is still under debate if AOUPs model shares the same
macroscopic properties [28].
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Fig. 2.9 Sample trajectories illustrating three kinds of active motion of a single particle: a angular
diffusion dynamics,b run-and-tumble dynamics, c activeOrnstein–Uhlenbeck particle. The position
of the particle (dots) is sampled every 5s [28]

2.3 Grains and Active Particles

In Sect. 1.4.3 it has been shown how granular matter has been used to produce sys-
tems of active particles, when energy dissipation is balanced through some driving
mechanism. Some questions arise: can active particles and driven granulars be con-
sidered two manifestations of the same physical phenomena? Is it possible to build
a unified theory describing both of them?

Experiments on polar or anisotropic vibrated granular particles have shown the
collective behavior illustrated in Sect. 1.4.3. A keymodel to understand how granular
collisions can lead to collective motion even for apolar and isotropic particleshas
been introduced by Grossman, Aranson and Ben Jacob [58]. The authors examined
a model of self-propelled smooth disks of unit mass moving on a 2d frictionless
surface. Interactions between particles are inelastic and passive: they actually are a
variation of granular collision rule (2.11), allowing an overlap between particles. The
degree of inelasticity is measured by the restitution coefficient α. At each time step,
the units also undergo a self-propulsion force compensating the energy lost during
collisions; the self-propelling force is constant in the direction of motion if v < 1,
and vanishes for v > 1.

The model has been numerically studied under many conditions, varying the
number of particles, the number density and the restitution coefficient. Also, both
reflecting and periodic boundary conditions have been implemented, and the model
has been simulatedwith different confined geometries (circular, squared and elliptic).
The main observation is the formation of vortices and collective migration - swarm-
ing - depending on boundary conditions and physical parameters of the system. In
Fig. 2.10 the evolution of the swarming order parameter and snapshots of the system
displaying swarming formation are shown. Furthermore, when a stochastic angular
noise is added in the motion equations - analogously to Vicsek angular noise - the
competition between noise and density yields an apparent first-order transition from
disorder to swarming, as it had been observed by Vicsek et al. [46].
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Fig. 2.10 Evolution of Grossman et al. model with periodic boundary conditions, N = 1600 par-
ticles, number density n = 0.6 and restitution coefficient α = 0.93. Top panel: time evolution

of swarming order parameter 〈v〉 = 1
N

∣∣∣∑ j v j

∣∣∣. Bottom panel: snapshots of the system showing

swarming formation. The letter of each snapshot corresponds to the time indicated in top panel [58]

So, even a system of isotropic and apolar particles without steering or sensing
capabilities has shown the presence of collective, ordered motion. The authors claim
that

[...] the results can be interpreted as if the inelastic interaction coupled with the self-
propagation serves the equivalent role of the traditional velocity alignment force in the
biologically inspired agent models. [...]

The underlying reason why coherent motion is attained in our model is that simple inelastic
collisions between isotropic particles create an increase in velocity correlation each time two
particles collide [58].
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Therefore the inelasticity, increasing the correlations between the particles, is play-
ing the role of an effective aligning force, because after an inelastic collisions the
velocities tend to increase their alignment (see Fig. 2.2). Active matter studies often
distinguish between interactions with explicit or implicit alignment rule [24], where
repulsion - like in the above-examined model - is considered a non-aligning force.
This is true when considering elastic repulsion, but in the granular case the inelastic
collisions have the same effect of aligning interactions: once the self-propelling force
is increased enough to consider the speed v as a constant, the model of Grossman
et al. is in every aspect a granular version of theVicsekmodel. In the last years, exper-
iments on vibrated granular layers confirmed and studied the presence of collective
motion for polar disks [59, 60] and a binary mixture of polar rods and spherical
beads [61].

Granular and active matter have been frequently associated and studied together.
Indeed, the continuous energy injection and dissipationmechanisms underlying their
dynamics are quite similar, especially when considering bulk driven granular matter
- see Sect. 2.1.5. Granular and active matter share similar practical applications,
one of the most interesting being Brownian motors or ratchets [5, 28], namely the
possibility of buildingdeviceswhere the randommotionof granular or active particles
is converted into directed, drifting motion of a bigger unit called the motor, thanks
to the asymmetry under time reversal characteristic of out of equilibrium systems.
However, while on one hand the kinetic theory of granular matter has been developed
in a systematic way in the last decades, on the other hand a systematic and general
kinetic theory of active matter is missing. A framework where comparisons between
granular and active matter can be done is the hydrodynamic description, which will
be analyzed in the next chapter.
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Chapter 3
Hydrodynamic Description and Lattice
Models

Quei giorni perduti a rincorrere il vento

(F. de André)

When a fluid is flowing, for instance under the action of gravity or a pressure gradient,
its motion can be described introducing the continuous hydrodynamic fields such as
density ρ(x, t), velocity u(x, t) and temperature T (x, t), which measure the local
mechanical and thermodynamical properties of the fluid at the position x and time
t . Hydrodynamic fields generally depend on time and space, and hydrodynamic
equations aim at describing their time evolution, affected by spatial gradients and
external forces.

The hydrodynamic description of a fluid relies on kinetic theory. Although
Euler and Navier–Stokes hydrodynamic equations were derived through continuum
mechanics arguments, the kinetic theory allows a derivation based on a clear sepa-
ration of time and space scales: indeed, hydrodynamics is well-defined if the typical
length of variation of the fields is much bigger than the mean free path of the particles
between two collisions. In this chapter, the classical derivation of elastic hydrody-
namics will be given in the first Sect. 3.1.1; then, the hydrodynamic descriptions of
granular matter - Sect. 3.1.2 - and active matter - Sect. 3.1.4 - will be overviewed.
Section3.2 will be devoted to fluctuating hydrodynamics, namely a hydrodynamic
theory where the role of statistical fluctuations cannot be neglected as in classical
hydrodynamics.

The second part of this chapter, Sect. 3.3, will be dedicated to the study of lattice
models. Actually, the formulation of hydrodynamics presentsmany technical difficul-
ties and needs many physical assumptions and approximations to derive a consistent
set of equations. On the contrary, lattice models developed in the last decades can
describe hydrodynamic behavior and at the same time yield exact results also on

© Springer International Publishing AG, part of Springer Nature 2018
A. Manacorda, Lattice Models for Fluctuating Hydrodynamics
in Granular and Active Matter, Springer Theses,
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fluctuating hydrodynamics. For this reason, they have become a powerful tool in
nonequilibrium statistical mechanics, and have been a guide for the development of
this thesis.

3.1 Hydrodynamics

3.1.1 Conservative Interactions

Our starting point is the Boltzmann Equation (2.28), which in presence of external
forces F reads

∂ f

∂t
+ v · ∂ f

∂r
+ F

m
· ∂ f

∂v
= Q( f, f ) , (3.1a)

Q( f, f ) = C
∫
R3

∫
S+

( f ′ f ′
∗ − f f∗)

∣∣V · n̂∣∣ dv∗dn̂ , (3.1b)

where the Enskog correction in (2.36) has been neglected and the probability density
P(r, v, t) has been rescaled to give f (r, v, t) so that

n(r, t) =
∫
R3

f (r, v, t)dv , (3.2a)

N =
∫
V

∫
R3

f (r, v, t)drdv , (3.2b)

where N is the number of particles in volume V , and n(r, t) = 1
m ρ(r, t) is the number

density with particles of mass m. The collisional term Q( f, f ) is equivalent to the
one introduced in Eq. (2.36), where the C factor includes Nσ2 and other factors
coming from the rescaling from P to f .

When considering a fluid flow on a macroscopic volume, the possibility of a
continuum description relies on the smoothness of the hydrodynamic fields, i.e. the
fields and their gradients must not diverge. This is possible thanks to the fact that the
total density, momentum and energy of two particles are conserved during collisions.
Indeed, it can be proven [1] that if a generic observable χ(r, v) satisfies the relation

χ1 + χ2 = χ′
1 + χ′

2 , (3.3)

where the primed variables indicate as usual the postcollisional observable, then one
has ∫

R3
dvχ(r, v)Q( f, f ) = 0 . (3.4)

Thus, multiplying equation (3.1a) by χ(r, v) and integrating by dv one gets
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∫
R3

dvχ(r, v)
[

∂ f

∂t
+ v · ∂ f

∂r
+ F

m
· ∂ f

∂v

]
= 0 . (3.5)

Integrating by parts and assuming that f (r, v, t) →
v→∞ 0 and that external forces do

not depend on velocity, one gets the conservation theorem

∂

∂t
〈nχ〉 + ∂

∂r
· 〈nvχ〉 − n

〈
v · ∂χ

∂r

〉
− n

〈
f · ∂χ

∂v

〉
= 0 (3.6)

where the average is performed over the velocities and is local in space and time,
namely 〈A〉 (r, t) = ∫

dvA(r, v) f (r, v, t) and f = F/m is the external force per
mass unit.

Elastic collisions conserve density,momentum and energy, so one can take respec-
tively χ = m,mv, 1

2mv2 or, equivalently, a combination of them. Introducing the
average velocity

u(r, t) = 〈v〉 (3.7)

and the temperature as (being always in d = 3)

kBT (r, t) = 1

3
m

〈|v − u|2〉 (3.8)

the conservation theorem (3.6) leads to

∂ρ

∂t
+ ∇ · (ρu) = 0 (mass conservation)

(3.9a)

ρ

(
∂

∂t
+ u · ∇

)
u = ρf − ∇ · P (momentum conservation)

(3.9b)

ρ

(
∂

∂t
+ u · ∇

)
T = −2m

3
(∇ · q + P : ∇u) (energy conservation)

(3.9c)

where the following quantities have been defined

q(r, t) ≡ 1

2
ρ

〈
(v − u) |v − u|2〉 (heat flux) (3.10)

Pi j ≡ ρ
〈
(vi − ui )(v j − u j )

〉
(pressure tensor) (3.11)

and it has been taken kB = 1. The term ∇u is the velocity gradient tensor of compo-
nents ∂ui/∂x j , and the : operator in Eq. (3.9c) is the scalar product between tensors,
namely P : ∇u ≡ ∑

i, j Pi j∂ui/∂x j .
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The Hydrodynamic equations (3.9) have only a formal value because the heat flux
and pressure tensor are determined by the distribution function f (r, v, t) solving
the Boltzmann equation. Since f is generally unknown, we need to make some
assumptions about its behavior.

As it has been stated above, we expect the hydrodynamic fields to be almost
constant over microscopic length scales, which correspond to the mean free path λ.
Therefore, if L is a characteristic length of the macroscopic system, one expects that
there is a scale separation whether

Kn = λ

L

 1, (3.12)

having defined the Knudsen number Kn, an adimensional parameter indicating the
validity of a hydrodynamic approach. In this limit, the hydrodynamic equations (3.9)
can be closed assuming that the heat flux and pressure tensor can be expressed in
terms of the uniform fields and their gradients, so [2]

q = −κ∇T, (3.13a)

Pi j = pδi j − η

(
∂ui
∂x j

+ ∂u j

∂xi
− 2

3
δi j∇ · u

)
. (3.13b)

The last expressions define the hydrostatic pressure p and the transport coefficients
η and κ, respectively the shear viscosity and the thermal conductivity. Their values
are unknown until we find a way to derive them from the Boltzmann Equation. The
pressure tensor P is the sum of a diagonal, isotropic part pδi j and a symmetric and
traceless part, to the first order in the velocity gradients.

The pressure tensor and heat flux obtained can be placed back in Eq. (3.9); how-
ever, since we are introducing linearized termswith respect to the gradients into exact
equations, the perturbative approach must be carried out carefully. This is done by
the Chapman–Enskog procedure [3, 4]: the separation of spatial scales when ε 
 11

physically means that a particle in a volume of macroscopic size ∼ Ld will undergo
an enormous number of collisions with other particles on the region, thermalizing
to some local velocity distribution: the fundamental assumption of the Chapman–
Enskog procedure is that the macroscopic gradients scale with the Knudsen param-
eter, i.e. ∇ ∼ ε, ∇2 ∼ ε2, . . . . Therefore, the distribution function can be expanded
as

f = f (0) + ε f (1) + ε2 f (2) + · · · , (3.14)

where f (0) denotes the homogeneous unperturbed solution (no gradients), f (1) the
linear approximation with respect to the field gradients, and so on. Obviously, the
zeroth order solution f (0) is theMaxwell–Boltzmann distribution, as it will be proved
below.

1From now on we call ε the Knudsen number to be consistent with literature.
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Furthermore, the collisional invariants introduce a separation of fast variables
from slow variables:while the particles’ velocities abruptly change during a collision,
conserved variables should change only over long scales of space and time.Therefore,
one assumes that the Boltzmann Equation admits a normal solution

f (r, v, t) = f [v|n(r, t),u(r, t), T (r, t))] (3.15)

where the dependence in time and space comes from the hydrodynamic (slow) fields,
and the only fast variable is the velocity v. The normal assumption (3.15) yields the
time derivative

∂ f

∂t
= ∂ f

∂n

∂n

∂t
+ ∂ f

∂u
· ∂u

∂t
+ ∂ f

∂T

∂T

∂t
. (3.16)

The last equation can be approached because the time derivatives of n = ρ/m,u and
T can be evaluated through Eq. (3.9). Substituting the expression of pressure and
heat flux from (3.13) and marking the gradients with the corresponding power of ε,
one gets

∂ρ

∂t
= −ε∇ · (ρu) (3.17a)

∂u
∂t

= −ε

(
u · ∇u − f + 1

ρ
∇ p

)
+ ε2

η

ρ

(
∇2u + 1

3
∇ (∇ · u)

)
(3.17b)

∂T

∂t
= −ε

(
u · ∇T + 2

3n
p(∇ · u)

)
+ ε2G (3.17c)

where the external force has been assumed to be of first order in ε, consistently with
a conservative force, F = −∇φ. The second order term G reads

G = 2η

3n

[
∂ui
∂x j

∂u j

∂xi
+ ∂ui

∂x j

∂ui
∂x j

− 2

3
(∇ · u)2

]
+ 2κ

3n
∇2T (3.18)

where the usual sum over repeated indices is implied.
When writing Eq. (3.17), only the first two orders in ε have been retained: this is

the so-called Navier–Stokes order of the hydrodynamic description. Adding the ε3

terms, one gets a next order description named Burnett order. Substituting Eq. (3.17)
into (3.16), the time derivative of the distribution function is given as a series of terms
at several powers of ε. This behavior suggests the need for a multiple-scale analysis,
a procedure well described in [5]: assuming a scale separation also when considering
characteristic times of the system, the time derivative can be expanded as

∂

∂t
= ∂(0)

∂t
+ ε

∂(1)

∂t
+ ε2

∂(2)

∂t
+ · · · . (3.19)
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A rigorous derivation of the procedure can be found in [4]. The physical meaning of
multiple-scale analysis in this context is the requirement that the higher the order of
the space gradient, the slower the time variation it causes [2].

Thus, the Boltzmann Equation (3.1) can be perturbatively solved at each order,
writing a local Boltzmann equation (where the time and space dependence occurs
only through the slow fields, Eq. (3.15) supplemented by the hydrodynamic equa-
tions (3.9). At first order, they read

∂(0)

∂t
f (0) = Q( f (0), f (0)) , (3.20a)

∂(0)n

∂t
= 0 , (3.20b)

∂(0)u
∂t

= 0 , (3.20c)

∂(0)T

∂t
= 0 . (3.20d)

Since all the fields are constant at this order, from Eq. (3.16) one has Q( f (0), f (0)) =
0; therefore, the homogeneous solution f (0) is the Maxwell–Boltzmann distribution

f (0) = n(0)[m/(2πmT (0))]3/2 exp
[
− m

2T (0)
|v − u(0)|2

]
, (3.21)

where n(0), u(0) and T (0) are in principle arbitrary functions of space and time,
satisfying the self-consistency equations

n(0) =
∫

dv f (0), (3.22a)

u(0) =
∫

dvv f (0), (3.22b)

T (0) =
∫

dv
1

3
|v − u|2 f (0). (3.22c)

which can be taken as the actual local hydrodynamic fields n(r, t), u(r, t) and
T (r, t) [4].

Going to the next order in the expansion, one finds

∂(0)

∂t
f (1) +

(
∂(1)

∂t
+ u · ∇

)
f (0) = Q( f (0), f (1)) + Q( f (1), f (0)) , (3.23a)

∂(1)ρ

∂t
= −∇ · (ρu) , (3.23b)

(
∂(1)

∂t
+ u · ∇

)
u = f − 1

ρ
∇ p , (3.23c)



3.1 Hydrodynamics 73

(
∂(1)

∂t
+ u · ∇

)
T = −2

3
(∇ · u)T . (3.23d)

The third equation is known as the Euler equation and for this reason this is called
the Euler order of hydrodynamics. Some remarks have to be done: first, Eq. (3.23b)
accounts formass conservation at the first order. This is called the continuity equation,
and it holds at any order. The Euler equation for the velocity is the equation for a
flow induced by external acceleration f and pressure field p in absence of viscosity.
The pressure can be derived at this order using theMaxwell–Boltzmann distribution,
and for dilute systems reads p = nT [1]. Finally, the fourth equation describes the
evolution of the temperature, and substituting ∇ · u from Eq. (3.23b) one gets

(
∂(1)

∂t
+ u · ∇

) (
ρT−3/2

) = 0 , (3.24)

which is the equation of state for an adiabatic transformation; indeed, at the Euler
order the heat flux vanishes and the local evolution of the fluid is adiabatic. Finally,
when F = −∇φ is a conservative force, the Euler equation gives the Bernoulli Equa-
tion which holds for an inviscid flow [1]

∇
(
1

2
u2 + 1

ρ
p + 1

m
φ

)
= 0 . (3.25)

The viscosity and heat flux can be recovered in the hydrodynamic equations
moving to the next order of the expansion; the first step is to derive the form of f (1)

from Eq. (3.23a) knowing f (0); the former accounts for spatial gradients and through
a quite long procedure leads to a closed expression for the transport coefficients in
function of the hydrodynamic fields [4]. For elastic hard spheres of mass m and
diameter σ, one finds [2]

η = 5

16σ2

√
mT

π
, (3.26)

κ = 75

64σ2

√
T

πm
. (3.27)

A remarkable result of the hydrodynamic derivation of viscosity is that it doesn’t
depend on the density of the fluid, contrarily to our physical intuition.

The ε dependence in Eq. (3.17) can now be reabsorbed into the gradients taking
ε = 1 and recovering the Navier–Stokes order of hydrodynamic equations, which
finally read

(
∂

∂t
+ u · ∇

)
ρ = 0 , (3.28a)
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(
∂

∂t
+ u · ∇

)
u = f − 1

ρ
∇ p + ν

[
∇2u + 1

3
∇ (∇ · u)

]
, (3.28b)

(
∂

∂t
+ u · ∇

)
uT = − 2

3n
p(∇ · u) + 2κ

3n
∇2T + 4η

3n

[
D : D − 1

3
(∇ · u)2

]
,

(3.28c)

where D is the symmetrized velocity gradient tensor Di j ≡ (∂xi u j + ∂x j ui )/2 and
ν ≡ η/ρ is the kinematic viscosity.

The equations display the fundamental features of hydrodynamic behavior. In
the lhs it always appears the material derivative ∂t + u · ∇, representing the time
variation of hydrodynamic fields in a frame comoving with the local fluid stream u.
Therefore, Eq. (3.28a) implies that the density is conserved along the streaming lines
because of the incompressibility, i.e. ∇ · u = 0. The velocity equation (3.28b) is the
balance equation for velocity, corresponding to Newton’s law F = ma for a volume
element of fluid; the Laplacian of the velocity on the rhs is given by the viscosity and
leads to a velocity diffusion. In the temperature evolution equation (3.28c), the first
term of the rhs is responsible for temperature diffusion, and the equation actually
gets back to the heat equation when the fluid is at rest, i.e. u = 0. The last term is
increasing the temperature when a shear (namely a velocity gradient) is present in a
viscous fluid: this phenomenon is called viscous heating and it is the consequence
of frictional effects dissipating kinetic energy into heat when the fluid is sheared.

3.1.2 Granular Hydrodynamics

The successful results obtained on conservative hydrodynamics inspired the formula-
tion of granular hydrodynamics. Since a kinetic theory has been consistently defined
for granular matter, the same approach can be implemented in the case of inelastic
collisions. The main difference consists in energy dissipation: mass and momentum
are still conserved by collisions while the energy is not, therefore the conservation
theorem (3.6) cannot be rigorously applied to the latter. However, one can always
derive the continuity equations (3.9) simply by integrating over 1, v, v2; while the
equations for the mass density and average velocity do not change, the temperature
evolution equation now reads [2]

ρ

(
∂

∂t
+ u · ∇

)
T = −ζT − 2m

3
(∇ · q + P : ∇u) . (3.29)

The appearance of the term ζT , known as sink term, is given by the energy dissipation
which is acting at themicroscopic level during each collision. The parameter ζ is the
cooling coefficient already encountered in Sect. 2.1.3, which stems from the rhs of
Boltzmann Equation (2.1.3) multiplied by mv2/2 and integrated over v, i.e.
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∫
dv

mv2

2
Q( f, f ) ≡ −3

2
nT ζ , (3.30)

yielding [2]

ζ(r, t) = πmσ2

24nT
(1 − α2)

∫
dvdv∗ V 3 f (r, v, t) f (r, v∗, t) . (3.31)

The zeroth order of the Chapman–Enskog equations now reads

∂(0)

∂t
f (0) = Q( f (0), f (0)) , (3.32a)

∂(0)n

∂t
= 0 , (3.32b)

∂(0)u
∂t

= 0 , (3.32c)

∂(0)T

∂t
= −ζ(0)T , (3.32d)

where the zeroth order cooling coefficient ζ(0) can be calculated through Eq. (3.31)
with the homogeneous distribution function f (0), which for a constant restitution
coefficient α reads

f (0) = n

v3
T

f̃ (0)

(
v − u
vT

)
, (3.33)

as in Eq. (2.37), yielding

ζ(0) = 2
√
2

3
nσ2μ2

√
T

m
, (3.34)

where μ2 has been defined in Eq. (2.41), and the zeroth order of ζ naturally coincides
with the HCS result of Eq. (2.43). The Chapman–Enskog procedure can be carried
on exactly as before: the only difference from the elastic case of Sect. 3.1.1 is the
presence of the sink term and that the heat flux expressed in function of the linear
gradients now reads

q = −κ∇T − μ∇n , (3.35)

where the coefficient μ relates the heat flux with the density gradient and is non
vanishing only for α < 1, as well as the cooling coefficient ζ [6]. All the transport
coefficients can be analogously computed for granular hydrodynamics: their explicit
expressions, which can be found in [2], show that in the elastic limit α → 1 the
conservative hydrodynamics values are recovered.

The last feature is the qualitative difference between granular and elastic particles.
Actually, energy dissipation occurs from the zeroth order of expansion, therefore one
cannot assume a local equilibrium behavior of the system as stated above. However,



76 3 Hydrodynamic Description and Lattice Models

if the dissipation is small enough so that the cooling coefficient can be compared with
the gradients in Chapman–Enskog procedure, the local equilibrium can be recovered.
This is known as the quasielastic limit and will be widely used in Chap.4. Finally,
the Navier–Stokes hydrodynamic equations can be written substituting Eqs. (3.29)
and (3.35) in Eq. (3.17), obtaining for a compressible fluid (∇ · u 
= 0)

(
∂

∂t
+ u · ∇

)
n = −n∇ · u , (3.36a)

(
∂

∂t
+ u · ∇

)
u = − 1

nm
∇ p + η

nm

(
∇2u + 1

3
∇ (∇ · u)

)
, (3.36b)

(
∂

∂t
+ u · ∇

)
T = −ζT − 2

3n
p(∇ · u) + 2

3n

[
κ∇2T + μ∇2n + η

(
2D : D − 2

3
(∇ · u)2

)]
.

(3.36c)

3.1.3 Hydrodynamic Instabilities and the HCS

As for conservative hydrodynamics, the Eq. (3.36) for n, u and T are coupled and
nonlinear, therefore a solution can be found only under suitable conditions. When
a stationary solution is present, one can look at its linear stability. Linear stabil-
ity analysis is widely used in dynamical systems [7]: when a dynamical observable
is evolving under the evolution equation x(t) = F(x(t)), the dynamics can be lin-
earized around a fixed point x∗ such that F(x∗) = 0, so that a perturbation near x∗
initially evolves as

d

dt
δx(t) = λδx , (3.37)

where x(t) = x∗ + δx(t) and λ = dF/dx |x∗ . Thus, the perturbation diverges for
λ > 0 (unstable fixed point) and vice versa vanishes for λ < 0 (stable fixed point).
For d > 1 case, Eq. (3.37) is a vectorial relation

d

dt
δxi (t) =

d∑
j=1

Li jδx j (t) , (3.38)

so one has to find the eigenvalues of the stability matrix Li j ≡ ∂Fi/∂x j |x∗ . The fixed
point x∗ is now stable if the real part of its eigenvalues is always negative [7].

The same linearization can be carried out for hydrodynamic equations (3.17):
hydrodynamic instabilities are an important research field in fluid dynamics, as they
have been introduced to describe the departure of hydrodynamics from a stationary
state [8, 9]. In Appendix C the reader will find some links to videos describing the
most studied. Looking at the granular case, one starts from Eq. (3.36). One of the
basic granular states is, again, the HCS, which is known to be linearly unstable [10].
A spatially dependent perturbation of the HCS reads
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n(r, t) = n + δn(r, t) , u(r, t) = δu(r, t) , T (r, t) = THCS(t) + δT (r, t) ,

(3.39)
where n = N/V is the constant and homogeneous number density, and THCS(t) is
the homogeneous Haff’s law from Eq. (2.49). As discussed in Sect. 2.1.3, the HCS
has no stationary state because of the continuous energy dissipation, so one looks at
the rescaled hydrodynamic fields

ñ ≡ δn

n

 1 ; ũ ≡ δu√

THCS(t)
, |ũ| 
 1 ; T̃ ≡ δT

THCS(t)

 1 . (3.40)

The mechanism of cluster formation, qualitatively explained in Sect. 1.3.1, is the
cause of the instability of the homogeneous state. Furthermore, inelastic collisions
are correlating the particles, reducing the outgoing angle with respect to the incoming
angle of collision and yielding an aligningmechanism - see Sect. 2.3. Thismechanism
accounts for vortex formation, which will be explained below.

The linear stability of hydrodynamic equations can be better analyzed in Fourier
space, defining the Fourier transform of a generic observable a(r, t) and its inverse
as

ak(t) = 1√
V

∫
dr e−ik·ra(r, t) ,

a(r, t) = 1√
V

∑
k

eik·rak(t) ,

(3.41)

where V = L3 is the volume of the system, and k are the discrete wave vectors k =
2π
L (nx , ny, nz), with ni ∈ Z. With these transformations and changing the time t into
the mean collisional time τ (t) defined in (2.53), one gets the linearized equations [2]

∂ñk
∂τ

= −ik · ũk , (3.42a)

∂ũk
∂τ

= 1

4
ζ∗ũk − 1

2
ik

(
ñk + T̃k

)
− η∗

[
k2ũk + 1

3
k (k · ũk)

]
, (3.42b)

∂T̃k
∂τ

= −1

4
ζ∗(T̃k + 2ñk) − 5

2
k2(κ∗T̃k + μ∗ñk) − 2

3
(ik · ũk) , (3.42c)

where the coefficients ζ∗, η∗, κ∗ and μ∗ are the transport coefficients computed in
the HCS. Equation (3.42) can be written in a compact form as

∂�

∂τ
= L� , (3.43)

where L is the stability matrix defined in Eq. (3.38) and � = (ñk, ũk, T̃k) is a five-
dimensional vector containing all the hydrodynamic fields. The eigenvectors �l of
the stability matrix are called hydrodynamic modes, where l = 1, . . . , 5: if their
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corresponding eigenvalues λl(k) satisfy Re [λl(k)] < 0, the hydrodynamic mode is
stable, otherwise it is not. This analysis can be applied to any hydrodynamic state.

Looking at the HCS linearized equations (3.42), it is convenient to separate the
rescaled velocity into a longitudinal component ũ‖

k = ũk · k/k and a transverse com-
ponent ũ⊥

k = ũk − ũ‖
k. Since

ik · ũ⊥
k = 0 , ik · ũ‖

k = ikũ‖
k , (3.44)

Equation (3.42b) gives a decoupled equation for the transverse component

∂ũ⊥
k

∂τ
=

(
1

4
ζ∗ − η∗k2

)
ũ⊥
k , (3.45)

so the transverse velocity is a hydrodynamic mode with the eigenvalue

λ⊥(k) = 1

4
ζ∗ − η∗k2 . (3.46)

The last equation gives the shear instability criterion in the HCS, revealing the
existence of a threshold wavelength

k∗
⊥(α) = 1

2

√
ζ∗(α)

η∗(α)
∝

√
1 − α2 . (3.47)

Thus, for short-wave perturbations (large k) shearmodes are stable and decay rapidly,
while long-wavemodes (low k) grow exponentially. The critical equation (3.47) leads
to a critical value of the size L∗(α): indeed, since k ≥ 2π/L , the instability arises
only when the size of the system exceeds a critical value

L∗(α) = 2π

k∗
⊥(α)

∝ 1√
1 − α2

(3.48)

depending on the restitution coefficientα, accounting for dissipation. Actually, when
the system size increases over L∗(α) the wavelengths of unstable modes are smaller
than the system size and the modes can be amplified by the dynamics of the system.
The critical values of k and L are coupled to α, and as expected the instability is
absent for α = 1; at fixed size of the system, one may recover unstable modes also
increasing the dissipation over a critical value α∗.

The shear instability is responsible for vortex formation: indeed, the shear creates
long-ranged waves of transversally aligned particles. When two shear waves cross
each other, the particles on the x direction wave are moving in the y direction, where
they encounter the flux of the perpendicular shear wave and therefore they start
rotating their velocity. A clear representation of the phenomenon is given in [2].
It must be stressed that the vortex formation is observed in the rescaled variables,



3.1 Hydrodynamics 79

i.e. vortices are growing when compared with the thermal velocity vT (t), which is
decreasing with Haff’s law; they act on rapidly decreasing velocity scales, because
the total energy is decreasing by means of collisions. Finally, the meaning of the
minimal size allowing the formation of structures is controversial and still object of
debate [2].

The cluster formation can be analyzed analogously, underlining that the rescaled
density ñ has a different physical meaning with respect to rescaled velocity and
temperature, because the homogeneous density is not decaying in time. From the
stability analysis of Eq. (3.42), excluding shear modes which are independent from
the rest of the system, one finds three eigenstates corresponding to the heat modewith
real eigenvalue λH (k) and two sound modes of complex eigenvalues λS1/2(k); their
behavior is shown in Fig. 3.1. The heat eigenvalue λH changes sign at k∗

H (α), a new
critical value below which a combination of density, temperature and longitudinal
velocity grow exponentially; therefore the density grows exponentially and clustering
occurs. The critical value k∗

H (α) yields another critical size of the system. However,
one has k∗

H (α) < k∗
⊥(α), so three scenarios are possible depending on the size of the

system

• L < 2π/k∗
⊥(α): no vortex or cluster formation. The HCS is stable.

• 2π/k∗
⊥(α) < L < 2π/k∗

H (α): vortices are present, but no clusters. The shearmode
of maximumwavelength dominates the system. The HCS linearized equations are
no longer valid.

• L > 2π/k∗
H (α): vortices (sooner) and clusters (later) form. The final state is

strongly inhomogeneous.

As it can be seen, the first instability observed when increasing the system size is
the shear instability: this observation will motivate the first model purposed in this
thesis, which will be analysed in Chap.4.

Fig. 3.1 Plot of the real part
of the eigenvalues of the
hydrodynamic modes in
function of the wave vector
k. The marginal values k∗⊥,
k∗
H and k∗

S are shown,
respectively indicating the
regions of stability of the
shear mode, of the heat mode
and of the propagating sound
modes [2]
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3.1.4 Active Hydrodynamics

Active hydrodynamics has not yet reached the same level of systematic develop-
ment of conservative and granular hydrodynamics. The main reason is that an active
kinetic theory is still under development, because of the relevant differences between
active particles and passive molecules. The interactions between active particles and
the surrounding fluid can be very complex and strongly dependent on the considered
system [11]. Furthermore, as shown in Sect. 2.2, dry active systems do not conserve
their total momentum, and thus both energy and momentum do not obey the con-
servation law (3.5). In the last years some studies derived a Boltzmann Equation
for particular models of active particles, leading to a hydrodynamic description as
discussed above for the elastic and granular case [12–14].

The first attempts to derive an active hydrodynamics have been strictly connected
with the development of microscopic models such as Vicsek model. A milestone of
active hydrodynamics is the continuum field description of orientation density in an
active fluid, introduced by Toner and Tu in 1995 [15, 16]. The model is based on the
continuum equations

∂ρ

∂t
+ ∇ · (ρu) = 0 , (3.49a)

∂u
∂t

+ λ1(u · ∇)u + λ2(∇ · u)u + λ3∇(|u|2) = (3.49b)

αu − β|u|2u − ∇P + DB∇(∇ · u) + DT∇2u + D2(u · ∇)2u + f ,

P = P(ρ) =
∞∑
n=1

σn(ρ − ρ0)
n , (3.49c)

where β, DB , DT and D2 are all positive, and f is a GWN force. A transition from
disorder to order is present whenα becomes positive: indeed the first two terms of the
rhs are equivalent to the Rayleigh–Helmoltz friction described in Sect. 2.2.3, and the
equations have an homogeneous fixed point at density ρ0 and velocity u = √

α/β.
The equations are not derived through a coarse-graining procedure from aBoltzmann
Equation as in previous sections, but rather wrote down as the most general contin-
uum equations of motion for velocity and density consistent with the symmetries
ad conservation laws of the system, namely rotation invariance and number of par-
ticles conservation [17]. On the contrary, Galilean invariance doesn’t hold because
of lack of momentum conservation: for these reason, in principle all the convective
coefficients λ in lhs are present, while in the Galilean case one has λ2 = λ3 = 0 and
λ1 = 1. The pressure P is expanded around the uniform density ρ0, forcing the sys-
tem to the uniform density case. The symmetry arguments used to derive Eq. (3.49)
are very powerful; however, within this approach the transport coefficients cannot be
derived from microscopic dynamics as we have seen in previous sections, and one
must derive them from other arguments.
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The authors concentrated on the broken symmetry ordered phase with α > 0,
looking at the velocity component u⊥ perpendicular to the direction of collective
motion and at the density fluctuations δρ = ρ − ρ0. By means of renormalization
group methods they performed a scaling analysis leading to the scaling exponents
of the model. The analysis of the model is strongly supported by a comparison with
ferromagnetic models, especially the XY model, with the big difference that the
swarming transition breaks the rotational continuous symmetry also in 2d, which is
forbidden in short-range equilibrium systems [18].

Recently, a derivation of active hydrodynamics from kinetic theory has been car-
ried out by Bertin et al. [12, 13]. The authors derived a Boltzmann Equation for a
system of N pointlike particles, combining binary collisionsmimicking Vicsek inter-
actionswith run-and-tumble dynamics:when twoparticles are closer than a given dis-
tance d0, their orientations change as θi → θ′

i = θ + ηi , where θ = Arg[eiθi + eiθ j ]
is the average orientation of the two particles, and ηi are identically distributed and
independent GWN with variance σ2. The Boltzmann Equation for this model reads

∂ f

∂t
(r, θ, t) + e(θ) · ∇ f (r, θ, t) = Idi f [ f ] + Icol [ f, f ] , (3.50)

which is the extension of Eq. (2.88) to the interacting case, where in the rhs the
diffusion functional Idi f [ f ] and the collision functional Icol [ f, f ] account for run-
and-tumble dynamics and interactions, respectively. Following a coarse-graining
and scale separation procedure, the authors find the hydrodynamic equation for the
momentum w ≡ ρv

∂w
∂t

+ γ(w · ∇)w = −1

2
∇(ρ − κw2) + (μ − ξ)|w|2)w + ν∇2w − κ(∇ · w)w ,

(3.51)
recovering several features observed in Toner and Tu Eq. (3.49b). The kinetic model
allows the computation of transport coefficients frommicroscopic parameters.Again,
the homogeneous disordered and ordered phase are present, respectively whenμ < 0
and μ > 0; the authors recover a noise-dependent threshold density ρ∗(σ) above
which the ordered phase becomes stable under homogeneous perturbations, showing
the transition to collective motion. Taking into account space-dependent perturba-
tions, the homogeneous disordered state is found to be stable for any ρ < ρ∗. On
the other hand, the homogeneous flow state is unstable for long-wave longitudinal
fluctuations near the transition line, while it gets stable at high densities ρ � ρ∗:
this phenomenon is called restabilization, a delicate result because in this region the
system is far from the validity domain of the hydrodynamic description. The linear
stability must be analyzed through the Boltzmann Equation, which confirms the sta-
bility for high densities, an interesting result because it shows how hydrodynamic
equations are predictive beyond their validity domain. An agreement with numeri-
cal simulations of agent-based models has been found [13]. This model was further
analysed and modified in [19], where multibody interactions have been reintroduced
following a Vicsek-like approach: this correction allowed to recover the phase dia-
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gram of Vicsek et al. in the continuum mode. Finally, these studies proved that the
Toner and Tu theory is actually the continuum limit of the Vicsek model under a
suitable choice of the transport coefficients, confirming the generality claim in the
formulation of the model.

In the last years, active hydrodynamics models have been developed also from
overdamped, microscopic Langevin equations leading to Smoluchowski dynamics
for the density function and then to hydrodynamic equations in the coarse-grained
case. Studying the density ρ, momentum w and alignment tensor Q = ûû − 1

d I [11,
20–22], similar results have been found with respect to the above-mentioned mod-
els, typically differing in the transport coefficients because of the microscopic rules
defining the model. A rich variety of models is still under development and debate;
in Chap.6, it will be shown how an hydrodynamic description of active matter can
be derived from microscopic rules, reproducing on a lattice the kinetic behavior of
active particles in the case of a dilute system with short-range interactions.

3.2 Fluctuating Hydrodynamics

The hydrodynamic theory described in the last section is deterministic: hydrody-
namic fields are averaged quantities and fluctuations are not observable when the
number of particles in a fluid volume element is very large (for instance of the order
of Avogadro’s number). However, we know that granular and active matter are small
systems, and the number of active units or grains typically is in the range 102 ÷ 104.
This means that fluctuations become measurable: their description is the goal of
fluctuating hydrodynamics. To do this, one can generally write deterministic hydro-
dynamic equations as in the previous section and add a noise source directly in the
equations.

In general, noise can be thought as the result of a coarse-graining of the system.
For instance, for a conservative system with Hamiltonian H(p,q) one can include
the effect of an external reservoir adding a noise and dissipation term, i.e.

q̇ = ∂H

∂p
,

ṗ = −∂H

∂q
− γp + ξ(t) ,

(3.52)

where ξ(t) is a GWN satisfying
〈
ξα(t)ξβ(t ′)

〉 = Dδαβδ(t − t ′). For a canonical
Hamiltonian H = p2/2m + V (q), the probability distribution f (q,p; t) follows the
Fokker–Planck equation

∂ f

∂t
= − ∂

∂q
·
( p
m

f
)

+ ∂

∂p
· [

(∇V (q) + γp) f
] + D

2

∂2 f

∂ p2
, (3.53)
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which under a change of variables leads to the Kramers’ Equation [23]. The noise
and friction term generally stem from the average of fast variables with respect
to the Hamiltonian coordinates p and q. So, dissipation and noise come from
the same coarse-graining mechanism, and at equilibrium they are related by the
Einstein relation, namelyD = 2mγkBT . This crucial relationbetweendiffusivity and
mobility provides that the Boltzmann distribution f (p,q) ∼ exp[−H(p,q)/kBT ]
is a stationary solution of Eq. (3.53). Therefore, if the Einstein relation is satisfied the
fluctuations can be reintroduced into Hamiltonian dynamics leaving the equilibrium
Boltzmann distribution unchanged.

The procedure described above relies on the fluctuation-dissipation relations
between the linear response of an observable to a perturbation and its autocorre-
lation in time [24]. It must be stressed that the particular relation depends on the
coarse-graining applied: indeed, the viscous friction −γp instantaneously acts on
the particle without any memory effect of its trajectory; when memory effects are
present, the noise ξ must be modified as well to recover the equilibrium Boltzmann
distribution [25]. The main idea of Landau-Lifschitz fluctuating hydrodynamics is
the following [8]: given the deterministic hydrodynamic equations ∂t� = F[�],
being �(x, t) the vectorial field of density, momentum and temperature, and F the
deterministic average hydrodynamic evolution operator, the fluctuating equations
should be written

∂t�(x, t) = F[�(x, t)] + ξ(x, t) , (3.54)

where the deterministic hydrodynamic operator F is taking into account only the
average, deterministic terms and all the fluctuations are contained in ξ. Now, F
already defines dissipative terms such as viscosity and heat diffusion: therefore, in
the case of conservative interactions one may directly introduce a Gaussian noise ξ
which correlation properties are determined by equilibrium fluctuation-dissipation
relations, avoiding the ambiguity of the coarse-graining described above.

For out of equilibrium systems, the situation is more complicated because the
distribution function is generally unknown and differs from Boltzmann distribution.
This lack of information removes the constraint on noise definition. Thus, nonequi-
librium methods are necessary to derive the correct fluctuations at a mesoscopic
scale.

In 1969, a seminal paper of Bixon and Zwanzig [26] introduced the Boltzmann–
Langevin Equation: the one-particle distribution function is written as

f (x, v; t) =
N∑
j=1

δ(x j (t) − x)δ(v j (t) − v) , (3.55)

where x j (t) and v j (t) are the position and velocity of the j-th particle in the system,
with j = 1, . . . , N . The field f is a dynamical, fluctuating observable, which aver-
aged over initial conditions gives the one-particle marginalized distribution defined
in Eq. (2.24), which we here call f . Thus, the distribution deviation φ = ( f − f )/ f
in linear approximation evolves through a Boltzmann–Langevin Equation, namely a
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Boltzmann Equation modified by some noise term, i.e.

∂φ

∂t
+ v · ∇φ − Jφ = F(r, v, t) , (3.56)

where J is the linearized collision operator and F a randomnoise term,whose average
over initial conditions must vanish. The noise term is an effective term coming from
the contribution of 2-particles distribution F2(x1, v1, x2, v2; t): its contribution is
an effect of the second equation of the Boltzmann hierarchy. Equation (3.56) leads
to hydrodynamic equations through the usual Chapman–Enskog procedure, but the
pressure tensor and heat flux are now written as a sum of a deterministic and a
fluctuating component. At equilibrium, the averaged distribution is the Maxwell–
Boltzmann distribution f = fMB and the Einstein relations are recovered, validating
Landau-Lifschitz theory.

The work of Bixon and Zwanzig inspired the study of fluctuating hydrodynamics
in inelastic materials. Indeed, when equilibrium doesn’t hold, the kinetic theory is the
starting point to obtainmacroscopic predictions frommicroscopic features. Fluctuat-
ing hydrodynamics has been applied to the case of granularmaterials [27, 28]. Gener-
ally speaking, the fluctuations of the microscopic density leads to fluctuations of any
general hydrodynamic field ψ(x, t), which can be written as ψav(x, t) + δψ(x, t),
separating the average term ψav(x, t) from the zero-average fluctuations δψ(x, t).
The latter follow a generalized Langevin equation: its solution leads to the correla-
tion properties of hydrodynamic fluctuations, namely 〈δψ(x, t)δψ(x′, t ′)〉.

To see a real example, let’s focus on the shear mode, a particular hydrodynamic
mode [28]. The fluctuating transverse velocity field in Fourier space is defined as

u⊥(k, t) ≡
N∑
j=1

vy, j (t)e
−ikx j (t) , (3.57)

where k is the wave number of the mode, x j (t) is the x-coordinate and vy, j (t)
is the y-velocity of the j-th particle at time t . The shear mode is the analytically
simplest mode, as it has been shown to decouple from other modes in linearized
hydrodynamics. We aim at describing the rescaled autocorrelation function

C⊥(k, t) ≡ 〈u⊥(k, 0)u∗
⊥(k, t)〉

2T
, (3.58)

where u∗
⊥ is the complex conjugate of u⊥ and T is the (isotropic) temperature of the

system, corresponding to the room temperature for elastic fluids or to the granular
temperature for granular materials. Both the equilibrium case and the HCS can be
studied. In the former, the Landau–Lifschitz fluctuating hydrodynamics predicts the
stochastic equation

∂

∂t
u⊥(k, t) = −νk2u⊥(k, t) + ξ(k, t) , (3.59)
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where ν is the kinematic viscosity. The Einstein relation corresponds to

〈
ξ(k, t)ξ(k ′, t ′)

〉 = δk,−k ′δ(t − t ′)2T Nνk2 , (3.60)

being of order N because u⊥ is an extensive field, so the noise associated to the
intensive field u⊥/N is scaling as 1/N . Eq. (3.59) leads to the correlation function

C⊥(k, t) = N

2
e−νk2t . (3.61)

In the inelastic case, the evolution equation for the transverse velocity can be
written as

∂

∂t
u⊥(k, t) = −ν(T (t))u⊥(k, t) + ξ(k, t) . (3.62)

Here, the temperature is decaying following the Haff’s law, therefore noise corre-
lations must be time-dependent as well. A first approximation can be derived using
the granular temperature instead of the room temperature, and writing an Einstein
relation in the granular case [29]. The evolution equation for the rescaled velocity,
Eq. (3.45), can be written as

∂

∂τ
ũ⊥(k, τ ) = −z(k)ũ⊥(k, τ ) + ξ̃(k, τ ) , (3.63)

with z(k) = qk2 − ζ/2, where q = ν(T (t))/ωc(T (t)) is the time-independent ratio
between kinematic viscosity and collision rate, and ζ is the cooling coefficient, from
T (τ ) ∼ exp(−ζτ ). The coefficient z(k) is now constant and so are the noise corre-
lations. Analogously with the equilibrium case, one can now write

〈
ξ(k, t)ξ(k ′, t ′)

〉 = δk,−k ′δ(t − t ′)2T Nqk2 , (3.64)

where T is the granular temperature. The HCS is stable for z(k) > 0: for stable
modes, the stationary autocorrelation reads

C⊥(k, τ ) = N

2

qk2

z(k)
e−z(k)τ , (3.65)

which in the elastic case ζ = 0 is equivalent to the equilibrium correlation in (3.61).
This result has been obtained following the physical intuitive analogy between

granular temperature in granular fluids and physical temperature in molecular fluids,
and assuming the validity of a local Einstein relation. However, a rigorous deriva-
tion of noise correlations must follow the Boltzmann–Langevin derivation described
above. In this case, noise correlations can be computed and give [27]

〈
ξ̃(k, τ )ξ̃(k ′, τ ′)

〉
= δk,−k ′2Nk2G(|τ − τ ′|) (3.66)
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where G(s) 
= δ(s). So, memory terms are present and confirmed by numerical
simulations. The stationary autocorrelation is no longer a simple exponential, but it
has an exponential tail for long times: Eq. (3.63) in this case leads to

C⊥(k, 0) = N

2

q1k2

z(k)
, (3.67a)

C⊥(k, τ ) = N

2

(q1 + q2)k2

z(k)
e−z(k)τ τ � 1 , (3.67b)

where q1 and q2 have been computed in [27]. The time-dependent expression is
valid after a transient, indeed the value of Eq. (3.67b) at τ = 0 does not coincide
with Eq. (3.67a). In the elastic limit ζ → 0, q1 → q and q2 → 0, so the equilibrium
result of Eq. (3.61) is recovered.While the initial value and the transient are different,
for long times the correlations derived from kinetic theory get the same temperature
decay of correlations derived with the Einstein-Landau prescription in Eq. (3.64).
This result confirms that the latter is a good approximation for long times corre-
lations, while memory terms observables for short times can be obtained b means
of kinetic theory. The Einstein–Landau prescription is predictive also in the case of
driven granular gases, both for bulk [30] or boundary driving [31]. Numerical results
are in fair agreement with the theory, and again the Einstein–Landau approach has
been recovered as a limit of kinetic derivation. The case of a bulk driven granu-
lar medium including external viscosity has been analyzed theoretically [32, 33]
and experimentally: it has been shown that this is a good description of a quasi-2d
vibrated granular on a horizontal plate [34].

The shearmode is one of the simplest cases of fluctuating hydrodynamics, because
it is decoupled from the others, therefore it can be treated individually; nevertheless,
this “simplicity” leads to complicated analytical calculations. Heat and sound modes
are coupled and the derivation of fluctuating hydrodynamics from kinetic theory
is a very hard challenge. For this reasons, further methods to describe fluctuating
hydrodynamics are an important goal in current research.

Hydrodynamic fluctuations have been studied in the last years also in the frame-
work ofMacroscopic Fluctuation Theory (MFT), which has been derived to describe
macroscopic fluctuations of hydrodynamic quantities in non-equilibrium steady
states (NESS) [35, 36]. The general procedure considers a hydrodynamic density
field ρ(x, t) and its associated current j(x, t), satisfying

∂tρ + ∇ · j = 0 , (3.68a)

j(x, t) = J([ρ]; x, t) , (3.68b)

respectively the continuity equation and the constitutive relation for the current j
depending on the field ρ and eventually on time and space through the functional J.
For driven diffusive systems, the latter generally reads

J([ρ]; x, t) = −D(ρ)∇ρ + χ(ρ)E(x, t) (3.69)
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defining the diffusivity D(ρ) and the mobility χ(ρ) under the action of an exter-
nal field E(x, t). Under these assumptions, one can compute the probability of a
trajectory (ρ, j) between time t0 and t1 as

Pρ0 ≈ exp[−ε−dI[t0,t1](ρ, j)]
I[t0,t1](ρ, j) = 1

4

∫ t1

t0

dt
∫

dx [ j − J([ρ]; x, t)] · χ−1(ρ) · [ j − J([ρ]; x, t)] (3.70)

where ε 
 1 is an adimensional parameter such that ε → 0 when N → ∞, where
N is the number of particles of the system, and the trajectories are constrained to
satisfy the continuity equation (3.68a) and the initial condition ρ(t0) = ρ0. The rate
functional I[t0,t1](ρ, j) acts as a large deviation functional [37], and the average
hydrodynamic field and current correspond to the optimal path ρav(x, t), jav(x, t)
defined by

min
(ρ, j)

I[t0,t1](ρ, j) = I[t0,t1](ρav, jav). (3.71)

The theory derives back the deterministic hydrodynamic equations and obtains the
hydrodynamic fluctuations beyond the linear approximation which has been used in
the previous part of the section, which always leads to Gaussian fluctuations. The
theory represents also a bridge between nonequilibrium fluctuation relations [24,
38–40], stochastic thermodynamics [41] and hydrodynamic theory.

MFT ha been recently applied to study fluctuating hydrodynamics of active sys-
tems, when comparingABP andRun-and-Tumble dynamics [21] or investigating lat-
tice models of interacting bacteria [42]. MFT found a successful field of application
in lattice models, where a derivation of macroscopic hydrodynamic equations (3.68)
from microscopic dynamics can be done in a transparent and rigorous way [43].
Lattice models have been developed in the last 40 years as a tool to investigate
several out-of-equilibrium processes, deriving their essential macroscopic features
fromminimal microscopic dynamics. The most important lattice models for our pur-
pose will be reviewed in the following of this chapter, as they have been a guide to
introduce the lattice models of granular and active matter in Part II which are the
fundamental result of this thesis.

3.3 Lattice Models

Latticemodels have beenwidely used in statistical physics in the last century because
of the great simplifications that they introduce and consequently the possibility of
many analytical calculations. The most famous lattice models have been developed
for equilibrium systems, especially describing ferromagnetic behavior as in the Ising,
Heisenberg orXYmodel. Nevertheless, thesemodels introduce an universal behavior
and they can be adopted to describe several physical systems, such as lattice gases
and binary alloys [1]. The reason of their success is the capability to reproduce
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complex physical behavior such as phase transitions by means of few essential,
microscopic rules, yielding at the same time new theoretical predictions; furthermore,
the investigation on lattice models usually doesn’t need equilibrium assumptions but
rather relies on the microscopic dynamics of the system. Therefore, the analysis is
generally developed out of equilibrium, recovering the equilibrium case by a suitable
choice of boundary conditions [44].

A plethora of lattice models have been developed in the last years, and a sin-
gle model can lead to many others simply through a slight variation of its rules.
Here a selection of the most significant models is presented, starting in Sect. 3.3.1
from the Kipnis–Marchioro–Presutti (KMP) model describing heat conduction in a
chain of harmonic oscillators, and the simple exclusion processes (SEP) describing
the diffusion of hopping particles on a linear chain. Both these models have con-
servative interactions and can be either in or out of equilibrium, depending on the
boundary conditions. Subsequently, in Sect. 3.3.2 the case of dissipative models will
be introduced, for which inelastic interactions necessarily drive the system out of
equilibrium.

3.3.1 Conservative Models

In 1982, Kipnis, Marchioro and Presutti introduced a lattice model to describe the
time evolution and heat flux of a linear chain of L mechanically uncoupled oscillators
coupled with two thermal reservoir at both extremities [45]. A configuration of the
system is given by {qi , pi }, i.e. the set of coordinates andmomenta of all the sites,with
i = −L , . . . , L . The energy at each site reads εi = q2

i + p2i . The system undergoes
a stochastic evolution: at each discrete time step, two nearest-neighbors sites are
chosen and exchange their energy redistributing it randomly, namely

ε′
i = p(ε′

i − ε′
i+1) , ε′

i+1 ,= (1 − p)(ε′
i − ε′

i+1) , (3.72)

so that the microscopic evolution conserves the total energy. At sites i = ±L the
oscillators thermalize with the reservoirs at temperatures T+ (+L) and T− (−L), i.e.
they exchange energy with oscillators whose random energy folows the Boltzmann
distribution.

The authors derive a mathematically rigorous expression for the evolution equa-
tion of the energy distribution P({ε}, t), and prove that in the stationary limit it
converges to the local equilibrium distribution

f (ε; x, t) = 1

kBT (x)
e−ε/kBT (x) , (3.73)

where f is the one-site distribution and P({ε}, t) = ∏
x f (ε; x, t), x is the site index

x = i/L ∈ [−1, 1] which is continuous in the hydrodynamic limit L → ∞, and
T (x) the temperature profile
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T (x) = T−
1 − x

2
+ T+

1 + x

2
. (3.74)

So, after a transient time the oscillators thermalize and develop a temperature profile
depending on the temperatures at the boundaries. Although the system is out of
equilibrium for T+ 
= T−, the local equilibrium holds exactly for the system.

The heat flux q can be defined as the energy transferred from the i-th to the
i + 1-th oscillator, and therefore it is a stochastic quantity. Its average behavior can
be written as

qi (t) =
∫ ∞

0
dLεP({ε}, t)

∫ 1

0
dp

[
εi (t) − p(εi (t) + εi+1)

]
, (3.75)

and since in the steady state local equilibrium holds one has

q(x) = −kB
2

dT

dx
, (3.76)

which is the Fourier’s lawwith diffusion coefficient D = kB/2. The stochastic energy
current can be generally defined as J (x, t) = q(x, t) + ξ(x, t), and the evolution
equation of the local energies can be written as

∂tε = −∂x J (x) = −∂x

(
−kB

2
∂xε + ξ

)
, (3.77)

which is the fluctuating hydrodynamics equation for the energy field ε(x, t), namely
a stochastic diffusion equation. Now, the noise amplitude and correlations can be
directly computed through the local equilibrium distribution in (3.73); moreover,
a noise term appears in the current of Eq. (3.77), which is a continuity equation
also at a stochastic level, because energy conservation exactly holds in microscopic
interactions, and the mesoscopic equation (3.77) must respect it.

The model has been a milestone for lattice models of nonequilibrium statistical
physics, since it shows how fundamental features such as heat diffusion can be rigor-
ously recovered from lattice models, and the nonequilibrium probability distribution
can be derived through the dynamics of the system. There is no need to define an
effective Hamiltonian, or an equilibrium distribution, or to assume an Einstein rela-
tion: the local equilibrium approximation is the asymptotic limit of a nonequilibrium
process. The local equilibrium found allows to derive the current fluctuations without
the need to guess them from equilibrium dynamics.

The KMP model can be interpreted as well as the diffusion of particles on a
chain, or diffusion of excitations on a linear system. Lattice models have indeed been
applied from the beginning to describe density diffusion,magneticmodels, fermionic
systems, vibrations on a harmonic chain or electrical lines [46]. Among them, we
will concentrate on models of hopping particles on a lattice. Random walk on a
lattice is very well known, leading to the diffusion equation for the average density
∂tρ = D∂2

xρ and the diffusive relation x2(t) ∼ t . It has been shown that, when a
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particle jumps on an heterogeneous medium (where the hopping rates depend on the
position and they can be asymmetric), several regimes of motion arise depending
on the statistical properties of the hopping rates [47, 48]. The simple exclusion
processes (SEP) aim, at describing the motion of particles moving on a linear chain
with excluded volume interactions. The system is made by a random number of
particles placed on L sites: each site i = 1, . . . , L is occupied or not depending on the
occupation number ni = 1, 0. The hops are a Poissonian process: at each continuous
time interval of length dτ , a particle on i can jump either to site i − 1 or i + 1 only
if the site is empty and with probability dτ for both directions (symmetric process,
SSEP). The chain is coupled with two reservoirs of particles at the extremities,
analogous to the thermal baths of KMP model: if the site i = 0 (L) is empty, a
particle can enter the system with probability αdτ (δdτ ); otherwise, if the site i (L)
is occupied, the particle can leave the chain with probability γdτ (βdτ ); the full
dynamics of the SSEP is represented in Fig. 3.2. Thus, the system is Markovian and
it is possible to write the evolution equations for the average density 〈ni (t)〉 in the
limit dτ → 0, which read [43]

d〈n1〉
dτ

= −〈n1 [γ + (1 − n2)]〉 + 〈(1 − n1)(α + n2)〉 (3.78a)

= α − (α + γ + 1)〈n1〉 + 〈n2〉 ,

d〈ni 〉
dτ

= − 〈
n1

[
(1 − ni−1) + (1 − ni+1)

]〉 + 〈(1 − n1)(ni−1 + ni+1)〉 (3.78b)

= 〈ni−1〉 − 2〈ni 〉 + 〈ni+1〉 for i = 2, . . . , L ,

d〈nL〉
dτ

= − 〈
nL

[
β + (1 − nL−1)

]〉 + 〈(1 − nL)(δ + nL−1)〉 (3.78c)

= 〈nL−1〉 − (β + δ + 1)〈nL〉 + δ .

Equation (3.78a) and (3.78c) are the boundary conditions of the system, while the
evolution of the bulk is given by Eq. (3.78b). The derivation of a closed set of
equations for the density has been made possible by the exact cancellation of two-
point correlations 〈nini+1〉, which vanish in Eq. (3.78) regardless of their value. The
stationary solution can be found imposing d〈ni 〉/dτ = 0, yielding

Fig. 3.2 A sketch of the SSEP model [43]
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〈ni 〉 = ρa(L + 1/(β + δ) − i) + ρb(i − 1 + 1/(α + γ))

L + 1/(α + γ) + 1/(β + δ) − 1
, (3.79)

with ρa = α/(α + γ) and ρb = δ/(β + δ). In the hydrodynamic limit L → ∞, it
is natural to introduce once again the continuum position x = i/L , for which the
stationary density reads

〈ni 〉 ≡ ρs(x) = ρa(1 − x) + ρbx , (3.80)

which has the same form of the KMP equation for the temperature profile, except
that here x ∈ [0, 1]whereas for KMP x ∈ [−1, 1] (keeping the original choice of the
authors). So, ρa and ρb are the densities of the reservoirs, and if the particles carry an
energy ε the reservoirs become heat baths with temperatures Ta and Tb, satisfying

exp

[
ε

kBTa

]
= α

γ
, exp

[
ε

kBTb

]
= δ

β
. (3.81)

As for Eq. (3.78), the evolution equation of the average current and two-points cor-
relations can be computed; their steady state reads

〈J 〉 ≡ 〈ni (1 − ni+1) − ni+1(1 − ni )〉 � ρa − ρb

L
, (3.82)

〈nin j 〉c ≡ 〈nin j 〉 − 〈ni 〉〈n j 〉 = − x(1 − y)

L
(ρa − ρb)

2 , (3.83)

where x = i/L and y = j/L . Equation (3.82) gives the Fick’s law for the SSEP
model. These results show that currents and correlations are nonvanishing only when
a density gradient ρa 
= ρb is applied, and they are both finite-size effects of order
1/L .Onemay say that these can therefore be easily neglectedwhen L → ∞, however
this can be done only in first approximation as it will be shown in Chap. 4. Moreover,
when considering macroscopic quantities such as the fluctuations of the total number
of particles N in the system, one sees that

〈N2〉 − 〈N 〉2 =
∑
i

[
〈ni 〉 − 〈ni 〉2

]
+ 2

∑
i< j

〈ni n j 〉c

� L

[∫ 1

0
dxρs(x)(1−ρs(x))−2(ρa−ρb)

2
∫ 1

0
dx

∫ 1

0
dyx(1−y)

]
,

(3.84)

so the correlations contribute at the leading order to the macroscopic fluctuations of
the system.

The above-mentioned results have been derived for the discrete set of microscopic
configurations {ni }; however, from Eq. (3.78) it is tempting to move to a continuum
description in the hydrodynamic limit L → ∞. This is possible if one assumes that
averaged fields slowly vary with position, i.e. making the smoothness ansatz
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〈ni±1〉 ≡ ρ(x ± �x, τ ) = ρ(x, τ ) ± �x
∂ρ

∂x

∣∣∣∣
x,t

+ 1

2
(�x)2

∂2ρ

∂x2

∣∣∣∣
x,τ

+ O((�x)3) ,

(3.85)
so the 〈ni±1〉 terms in Eq. (3.78) can be expanded and one has

∂τρ(x = 0, t) = α − (α + γ)ρ(0, t) + �x ∂xρ(x = 0) ,

∂τρ(x, t) = (�x)2∂2
xρ(x, t) ,

∂τρ(x = 1, t) = β − (β + δ)ρ(0, t) + �x ∂xρ(x = 1) .

(3.86)

Now, the lattice spacing �x = 1/L explicitly appears in the equations in the con-
tinuum limit L → ∞: this implies that a macroscopic, hydrodynamic time must be
defined as

t = (�x)2τ (3.87)

for this model, yielding ∂τ = (�x)2∂t and canceling the explicit�x dependence. By
matching the equations at the leading orders in �x , one has the evolution equation

∂tρ(x, t) = ∂2
xρ(x, t) ,

ρ(0) = ρa , ρ(1) = ρb ,
(3.88)

which has the stationary solution of Eq. (3.80). The time rescaling defined in
Eq. (3.87) is called hydrodynamic scaling, and will be widely used in Part II: its phys-
ical meaning is that hydrodynamic phenomena are evolving with characteristic times
L2 times bigger than the characteristic time of the microscopic evolution, namely
the mean time between two hops. This is related with the scale separation intro-
duced in the Chapman–Enskog procedure, and the ratio between microscopic and
hydrodynamic times is equivalent to the Knudsen number for this model. The scaling
t = (�x)2 τ is called a diffusive scaling: indeed, in this case a diffusive behavior has
been derived, see Eq. (3.88). On the contrary, when t = (�x) τ the scaling is said to
be ballistic, because a tracer in the system follows a ballistic motion x2(t) ∼ t2. A
fluctuating hydrodynamic description of the model has been made possible, mainly
applying the Macroscopic Fluctuation Theory described in Sect. 3.2 [43].

The SSEP model can be modified by changing one of the hopping rates in the
bulk from 1 to q: this case is known as the asymmetric simple exclusion process
(ASEP). This asymmetry typically represents the effect of a driving force applied to
the system, which can be gravity acceleration, electrical field, and so on. The ASEP
model reproduces the essential features of driven diffusive models, and has been
used as a model of traffic, growth and polymer dynamics. Equations for the mean
density evolution can be derived as in (3.78), but now the correlation terms do not
vanish and must be treated carefully. The large scale ASEP behavior presents shock
waves whereas the SSEP is purely diffusive.

Those twomodels have been both investigated in the framework ofMFT to derive
fluctuating hydrodynamics predictions. Their great utility is the possibility to derive
several theoretical results far from equilibrium, and coming back to the equilibrium
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case when no gradient is applied at the boundaries. Their generalization to arbitrary
dimensions is straightforward [43].

3.3.2 Dissipative Models

The last models have been a useful guide to study the fluctuating hydrodynamics of
driven and diffusive conservative systems. However, this is not the case of granular or
active matter systems, where dissipation is present in the bulk dynamics because of
inelastic collisions and/or self-propulsion. Granular models have been often devel-
oped on a lattice; especially, granular models in one dimension have been used to
develop a rigorous hydrodynamic description [49, 50]. A granular lattice model can
be introduced as a linear chain of L grains with velocities vi , with i = 1, . . . , L;
at each discrete time step p ∈ N, a pair i, i + 1 of nearest-neighbors is drawn and
collides according to the inelastic collision rule in Eq. (2.31), which in 1d reads

v′
i = vi − 1 + α

2
(vi − vi+1) ,

v′
i+1 = vi+1 + 1 + α

2
(vi − vi+1) .

(3.89)

Similar models have been studied to find the asymptotic scaling distribution in the
HCS or investigate the multiscaling properties described in Sect. 2.16. The collision
probability Pi of the pair i, i + 1 plays a crucial role: indeed this can be chosen
uniformly, Pi = 1/L , corresponding to Maxwell molecules dynamics; or it can con-
tain a kinematic constraint Pi ∝ �(vi − vi + 1), which implies that particles collide
only when their velocities are directed towards each other; or there can be a flux
term Pi ∝ |vi − vi+1|, analogous with the flux term in the collisional operator of
Boltzmann Equation for hard spheres (2.35b), increasing the collision probability
with themagnitude of the relative velocity.When the last two terms are taken together,
the system behaves as a 1d channel of inelastic hard rods, exchanging their velocities
bymeans of collisions, with a perfect exchangewhenα = 1 (elastic case) and a slight
reduction of speeds for α < 1. It is worth stressing that in the elastic case α = 1 the
system is not really evolving in time: once given the set of initial velocities {v}t=0 the
collisions only exchange labels, say v′

i = vi+1 and v′
i+1 = vi , so the empirical veloc-

ity distribution is invariant in time. The model leads to a hydrodynamic description
and several regimes of temperature decay are found, especially in the case of high
dissipation α ≈ 0: indeed, when α = 0, after a collision two particles move with the
same velocities and don’t collide any more until a third particle change their veloc-
ity once again. Shock waves have been observed when the kinematic constraint is
included, both in molecular dynamics (MD) of inelastic hard rods and in simulations
of the lattice model; similarly, a 2d model has shown the presence of vortices spon-
taneously arising in the dynamics of the system [50]. It must be underlined that in
this model the particles are not moving: indeed, all the sites are occupied, there are
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no hops and their velocities do not represent their motion but rather the dynamical
observable involved in collisions, more or less like in the KMP model where we
disregarded the physical meaning of position qi and momentum pi to concentrate
only on the energy εi , which could be taken as the energy level of the site.

The first attempt to derive a fluctuating hydrodynamics theory of dissipative lattice
models has been done in 2011 by Prados, Lasanta and Hurtado [51, 52]: inspired
from the KMP model, they introduced a model of driven dissipative media, made by
a chain on L particles each carrying an energy ρi , and coupled with two heat baths
at the boundaries. The dynamics is equivalent to the KMP model, but with a slightly
modified interaction rule

ρ′
i = z pα(ρi + ρi+1) , ρ′

i+1 = (1 − z p)α(ρi + ρi+1) , (3.90)

where z p is a random uniform number drawn at ecach time step between 0 and 1,
and α ∈ [0, 1) is the inelasticity coefficient analogous to the restitution coefficient
in granular collisions; the particles can be extracted uniformly or according to a
distribution which typically depends on the total energy of the pair, i.e.

Pi ({ρ}) = f (�i )

L�(L)
, �(L) =

L∑
i=1

, f (�i ) (3.91)

being {ρ} the configuration of the system, �i ≡ ρi + ρi+1 the total energy of the
colliding particles and f (�) a projection functionwhich, togetherwith the collisional
rule (3.90), determines the dynamics of the system. The time dependence of variables
ρi has been omitted for simplicity. Without the need of specifying the collisional
probability f (�), the authors derived the hydrodynamic equations in the large-size
limit

∂tρav(x, t) = −∂x Jav(x, t) + dav(x, t) , (3.92)

where the “av” fields are averaged fields such 〈ρ〉 = ρav. The energy current J and
dissipation rate d can be computed through the local equilibrium approximation, i.e.
taking a Gaussian energy distribution on a site i and assuming that F2(ρi , ρi+1; t) ≈
F1(ρi , t)F1(ρi+1, t). So, one can write

Jav(x, t) = −D(ρav)∂xρav , (3.93)

dav(x, t) = νR(ρav) , (3.94)

defining a diffusion coefficient D(ρ), a transport coefficient R(ρ) related to dis-
sipation and a mesoscopic dissipation coefficient ν = (1 − α2)/2L2. The latter is
non-vanishing in the large size limit only if α = 1 − O(L−2) for large L: this is
called quasielastic limit and will be assumed as well in Chap.4, being strictly con-
nected with the local equilibrium assumption. While the scaling of 1 − α is needed
to match the current and dissipation terms in Eq. (3.92), we have already seen that
for the KMP model (α = 1) the asymptotic distribution was the Boltzmann distribu-
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tion, so we expect that the asymptotic distribution in the quasielastic limit may be a
perturbation of the equilibrium one.

The transport coefficients can be computed for a general f and read

D(ρ) = 1

6

∫ +∞

0
dr r7 f (ρr2)e−r2 , (3.95a)

R(ρ) = ρ

∫ +∞

0
dr r5 f (ρr2)e−r2 , (3.95b)

under the local equilibrium assumption. Hydrodynamic equation (3.92) can be writ-
ten in the fluctuating form

∂tρ(x, t) = −∂x J (x, t) + d(x, t) , (3.96)

with J (x, t) = J̃ (x, t) + ξ(x, t) and d(x, t) = d̃(x, t) + η(x, t). The idea is to split
the fluctuating current and dissipation in two contributions: one from the average
terms 〈 J̃ 〉 = Jav, 〈d̃〉 = dav, and the other from the noises taken as zero-average
fluctuations, ξ and η.Microscopic dynamics allows to compute the noise correlations,
yielding at the leading order in 1/L

〈
ξ(x, t)ξ(x ′, t ′)

〉 ∼ 1

L
σ(ρav)δ(x − x ′)δ(t − t ′) , (3.97a)

〈
η(x, t)η(x ′, t ′)

〉 ∼ 1

L3
ν2κ(ρ)δ(x − x ′)δ(t − t ′) , (3.97b)

so, the dissipation fluctuations are much smaller than the current fluctuations and
therefore are neglected in the following. The noises have been proved to be Gaussian.
The amplitude of the current noise is given by

σ(ρ) = 2ρ2D(ρ) , (3.98)

relating the mobility σ(ρ) to the diffusivity D(ρ). This is a kind of fluctuation-
dissipation relation, which is connected with the quasielastic limit introduced above.
Again, this relation has not been assumed from some equilibrium relation, but derived
from the microscopic dynamics. Finally, for a specific choice of f (�), the time
evolution of the energy in the HCS can be found, recovering the Haff’s law in the
hard spheres case, f (�) ∝ √

�; in the heated case, the stationary profiles of energy,
current and dissipation can be derived as well. The model has been analyzed in
the framework of MFT, confirming previous results and leading to new theoretical
prediction on his fluctuating hydrodynamics.

The model of Prados, Lasanta and Hurtado introduced above has been a key guide
to develop this thesis. I did not report the technical calculations, becausemanyof them
will be explained for the granular shearedmodel of Chap.4; a rigorous derivation can
be found in [53]. Finally, lattice models have been developed also to describe active
matter: in 1995, Csahók and Vicsek developed a lattice model of active particles,
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interlacing the Vicsek model of collective motion with lattice gas methods [54].
More recently, in 2011 Thompson et al. introduced a 1d model of run-and-tumble
bacteria, hopping on a lattice without excluded volume, aiming at reproducing the
observed features in off lattice run-and-tumble dynamics and deriving the fluctuating
hydrodynamics of the system [42]. As it has been shown, latticemodels lead to a huge
number of theoretical predictions, especially on fluctuating quantities. The analytical
power together with the phenomenological realism inspired us to derive the models
in Part II.
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Chapter 4
Granular Lattice: Fluctuating
Hydrodynamics

Jusqu’ici tout va bien

(La Haine)

Inspired from the works of Baldassarri et al. [1] and Prados et al. [2], we formulated a
granular latticemodel to derive fluctuating hydrodynamics frommicroscopic ingredi-
ents under controlled assumptions, considering only shear modes on a granular linear
chain [3]. The evolution of the system conserves momentum and dissipates energy,
as in granular collisions. The new model is different from the previous proposals
in a few crucial aspects. In [1], the velocity field evolved under the enforcement of
the so-called kinematic constraint, which is disregarded here. In [2], only the energy
field was considered, therefore momentum conservation was absent. The results
I present especially focus on the hydrodynamic behavior of the model; the analysis
of velocity distribution evolution and a detailed approach to a mesoscopic fluctuation
theory of our model can be found respectively in [4–6].

The aim of the model is reproducing the shear hydrodynamics of a granular
system and deriving its fluctuating behavior starting from microscopic rules. As it
has been shown in Sect. 3.1.2, there is a range of sizes of granular systems such
as the only linearly unstable mode in the HCS is the shear mode: this implies that
the velocity field is incompressible and the density does not evolve from its initial
uniform configuration. Such a regime may be observed for a certain amount of time
(longer and longer as the elastic limit is approached). In two dimensions, granular

The material in this chapter is mostly directed adapted from the following Springer publication
and is reproduced here with permission: Alessandro Manacorda, Carlos A. Plata, Antonio Lasanta,
Andrea Puglisi, andAntonio Prados. Latticemodels for granular-like velocity fields: Hydrodynamic
description. J. Stat. Phys., 164(4):810–841, Aug 2016.
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hydrodynamic equations (3.36) are obeyed with constant density and, for instance,
ux = 0 whereas the hydrodynamic fields uy and T only depend on x , leading to

∂t uy(x, t) = (nm)−1∂x [η∂xuy(x, t)], (4.1a)

∂t T (x, t) = 1

n
η[∂xuy(x, t)]2 + 1

n
∂x [κ∂x T (x, t)] − ζT . (4.1b)

In Sect. 4.2 we will see that our lattice model is well described, in the continuum
limit, by the same equations.

It is interesting to put in evidence that Eq. (4.1) also sustain also particular sta-
tionary solutions. Seeking time-independent solutions thereof, one finds

∂x [η∂xu
(s)
y (x)] = 0 , η[∂xu

(s)
y (x)]2 = −∂x [κ∂x T

(s)(x)] + nζT (s)(x) . (4.2)

The general situation is that both the average velocity and temperature profiles are
inhomogeneous: this is the so-called Couette flow state, which also exists in molec-
ular fluids. Yet, in granular fluids, there appears a new steady state in which the
temperature is homogeneous throughout the system, T (s)(x) ≡ T , and the average
velocity has a constant gradient, ∂xuy ≡ a: this is the Uniform Shear Flow (USF)
state, characterized by the equations

∂2
x u

(s)
y (x) = 0, η[∂xu

(s)
y (x)]2 = nkBζT (s) . (4.3)

Such a steady state is peculiar of granular gases where the viscous heating term is
locally compensated by the energy sink term. In a molecular fluid, this compensation
is lacking and viscous heating must be balanced by a continuous heat flow toward the
boundaries, which entails a gradient in the temperature field, typical of the Couette
flow.

The formal definition of the model is given in Sect. 4.1. In Sect. 4.2 the hydro-
dynamic equations are derived as the continuum limit of the microscopic balance
equations. Section4.3 is devoted to the analysis of some relevant physical states such
as the Homogeneous Cooling State (HCS), the Uniform Shear Flow (USF) and the
Couette flow. In Sect. 4.4 the fluctuating currents are defined and their correlations
are derived. Section4.5 contains the numerical analysis of hydrodynamic states and
fluctuating currents discussed in previous sections.

4.1 Definition of the Model

In this section, the granular model is introduced by means of a Markovian process,
defining an evolution equation of the phase-space probability distribution PN and
later deriving the evolution equation of the single particle distribution P1. In the rest
of the chapter, these quantities will not be part of the analysis, as we will focus on
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hydrodynamic fields. Nevertheless, the present section shows that a “kinetic” deriva-
tion of hydrodynamic equations is possible, following the approach of Sect. 2.1.
Furthermore, theMarkovian description is transparent andwithout ambiguities, illus-
trating also the residence-time algorithm which will actually be used in simulations.
In our work, the derivation of hydrodynamics from microscopic balance equations
preceded in time the Markovian description; since the two procedures have shown
to be equivalent, the microscopic balance equations are contained in Appendix A.1
for the sake of completeness.

4.1.1 Master Equation for the Lattice Model

The model is defined on a 1d lattice with N sites, but it can be generalized to higher
dimensions. In each site there is a scalar velocity vi , so that the state of the system
is determined by the vector v ∈ R

N . The evolution is a Markov jump process which
- in general - takes place in continuous time τ , each jump representing a collision.
The latter are counted by the integer p ∈ {0, 1, 2...}. The random time increment δτp
between two collisions p → p + 1 is given by

δτp = �p(L)−1| lnχ|, �p(L) = ω

L∑

l=1

|vl,p − vl+1,p|β , (4.4)

in which χ is a stochastic variable homogeneously distributed in the interval (0, 1),
ω is a constant frequency that determines the time scale, and L is the number of pairs
that can collide (i.e. L = N when periodic boundary conditions are considered, or
L = N + 1 when thermostatted boundaries are taken into account). The physical
meaning of Eq. (4.4) is clear:�p(L) is the total exit rate from the state of the system,
as given by its velocity configuration v, at time p, and the time increment δτ follows
the distribution P(δτ ) = �p(L) exp[−�p(L)δτ ] as in a Poissonian process. The
parameter β ≥ 0 affects the collision rate: for β = 0, the collision rate is independent
of the relative velocity, similarly to the case of pseudo-Maxwell molecules [1]. For
this reason, we refer to β = 0 as the MM case, while β = 1 and β = 2 are analogous
to the hard spheres (HS) [7] and “very hard-core” [8, 9] collisions, respectively.

It is convenient to define �l = vl − vl+1, and to introduce the operator b̂l , which
evolves the vector v by colliding the pair (l, l + 1) according to the granular collision
rule (2.31), i.e.

b̂l(v1, ..., vl , vl+1, ..., vN ) =
(

v1, ..., vl − 1 + α

2
�l , vl+1 + 1 + α

2
�l , ..., vN

)
,

(4.5)
where α ∈ [0, 1] is the restitution coefficient. After the p-th collision the momentum
is conserved, vl,p + vl+1,p = vl,p+1 + vl+1,p+1, while the energy, if α < 1, is not:
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v2
l,p+1 + v2

l+1,p+1 − v2
l,p − v2

l+1,p = (α2 − 1)�2
l,p/2 < 0 . (4.6)

Also, note that for a generic function of the velocities f (v) one has

∫
dv′|v′

l − v′
l+1|βδ(v − b̂lv′) f (v′) = |�l |β

αβ+1
f (b̂−1

l v) . (4.7)

The operator b̂−1
l is the inverse of b̂l , that is, it changes the post-collisional velocities

into the pre-collisional ones when the colliding pair is (l, l + 1).
The continuous time Markov process is fully described by the two-time con-

ditional probability PN (v, τ |v0, τ0) with τ ≥ τ0, which evolves according to the
following forward Master Equation,

∂τ PN (v, τ |v0, τ0) =
∫
dv′W (v|v′)PN (v′, τ |v0, τ0) − �(v)PN (v, τ |v0, τ0) , (4.8)

where the transition rates W (v′|v) and the total exit rate �(v) are given by

W (v′|v) = ω

N∑

l=1

|�l |βδ(v′ − b̂lv), �(v) =
∫

dv′W (v′|v) = ω

N∑

l=1

|�l |β .

(4.9)
The Master Equation can be simplified by making use of (4.7), with the final result

∂τ PN (v, τ |v0, τ0) = ω

L∑

l=1

|�l |β
[
PN (b̂−1

l v, τ |v0, τ0)
αβ+1

− PN (v, τ |v0, τ0)
]

.

(4.10)
The conditional probability distribution PN (v, τ |v0, τ0) is the solution of the above
equation with the initial condition PN (v, τ0|v0, τ0) = δ(v − v0). On the other hand,
the one-time probability distribution PN (v, τ ) verifies the same equation but with an
arbitrary (normalized) initial condition PN (v, 0).

Residence time algorithms that give a numerical integration of themaster equation
in the limit of infinite trajectories [10, 11] show that either Eqs. (4.8) or (4.10) is
the Master equation for a continuous time jump Markov process consisting in the
following chain of events:

1. at time τ , a random “free time” τ f ≥ 0 is extracted with a probability density
�(v)exp[−�(v)τ f ] which depends upon the state of the system v;

2. time is advanced by such a free time τ → τ + τ f ;
3. the pair (l, l + 1) is chosen to collide with probability ω|�l |β/�(v);
4. the process is repeated from step 1.

The Master equation derived above can be considered our “Liouville equation”,
that is, it evolves the probability in full phase-space. It is tempting, from such equa-
tion, to derive a Lyapunov (or “H”) functional which is minimized by the dynamics,
as it is customary forMarkov processes [12]. However, in the general case our system
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does not admit an asymptotic steady state, apart from the trivial zero, and therefore the
usual H function (which relies upon the existence of the steady state) cannot be built.
However, this programme can be carried on in the presence of appropriate boundary
conditions, e.g. thermostats, which allow the system to reach a steady state [13, 14].
Recently, an H -theorem for the driven system has been formulated and proven to
hold under certain mathematical assumptions on the initial distribution [15].

4.1.2 Physical Interpretation

The model, if taken literally, implies that there is no mass transport, particles are at
fixed positions and they only exchange momentum and kinetic energy. As discussed
above, this can be a valid assumption in an incompressible regime which is expected
when the velocity field is divergence free, for instance during the first stage of the
development of the shear instability, or in the so-called Uniform Shear Flow. We
are also disregarding the so-called kinematic constraint, which is fully considered
in [1]: indeed a colliding pair is chosen independently of the sign of its relative
velocity, while in a real collision only approaching particles can collide. Evenwithout
the kinematic constraint, the model has a straightforward physical interpretation: the
dynamics occurs inside an elongated 2d or 3d channel, the lattice sites represent
the positions on the long axis,while the transverse (shorter) directions are ignored; the
velocity of the particles do not represent their motion along the lattice axis but rather
along a perpendicular one, see Fig. 4.1. One may easily imagine that the (hidden)
component along the lattice axis is of the order of the perpendicular component, but
with random direction. On the one hand, this justifies the choice of disregarding the
kinematic constraint, while on the other, the collision rate may still be considered
proportional to some power β of the velocity difference (in absolute value). A fair
confirmation of this interpretation comes from the average hydrodynamics equations
derived in Sect. 4.2, which, as anticipated in the introduction, replicate the transport
equations (4.1) for granular gases in d > 1 restricted to the shear (transverse) velocity
field.

Fig. 4.1 A sketch of the granular lattice model with periodic boundaries. The velocities are repre-
sented by red arrows
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4.1.3 Evolution Equation for the One-Particle Distribution

Let us now apply the usual procedure of kinetic theory and map the Master equation
into aBBGKYhierarchy. In particular,we focus on the evolution equation for the one-
particle distribution function at site l and at time τ , which we denote by P1(v; l, τ ).
The behavior of the one-particle distribution P1 will be deeply analyzed in [6]. By
definition,

P1(v; l, τ ) =
∫

dvPN (v, τ )δ(vl − v). (4.11)

It is easy to show that none of the terms in the sum (4.10) contribute to the time
evolution of P1 except those corresponding to l − 1 and l, because the collisions
involving the pairs (l − 1, l) and (l, l + 1) are the only oneswhich change the velocity
at site l. Therefore,

∂τ P1(v; l, τ ) = ω ×{∫ +∞

−∞
dvl−1|�l−1|β

[
P2(b̂

−1
l−1{vl−1, v}; l − 1, l, τ )

αβ+1
− P2(vl−1, v; l − 1, l, τ )

]

+
∫ +∞

−∞
dvl+1|�l |β

[
P2(b̂

−1
l {v, vl+1}; l, l + 1, τ )

αβ+1
− P2(v, vl+1; l, l + 1, τ )

]}
,

(4.12)

where, for the sake of simplicity, we also denote by b̂−1
l the backward collisional

operator acting only on the velocities of the colliding particles. In the equation above,
we have the two-particles probability distribution P2(v, v′; l, l + 1, τ ) for finding the
particles at the l-th and (l + 1)-th sites with velocities v and v′, respectively. For the
special case β = 0, the evolution equation for P1 can be further simplified, because
the terms on the rhs of (4.12) coming from the loss (negative) terms of the master
equation can be integrated. We get

∂τ P1(v; l, τ ) = ω

[
−2P1(v; l, τ ) + 1

α

∫ +∞

−∞
dvl−1P2(b̂

−1
l−1{vl−1, v}; l − 1, l, τ )

+ 1

α

∫ +∞

−∞
dvl+1P2(b̂

−1
l {v, vl+1}; l, l + 1, τ )

]
. (4.13)

The equation for P1, either (4.12) for a genericβ or (4.13) forβ = 0, could be con-
verted to a closed equation for P1 by introducing the Molecular Chaos assumption,
which in our present context means that

P2(v, v′; l, l + 1, τ ) = P1(v; l, τ )P1(v
′; l + 1, τ ) + O(L−1) . (4.14)
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By neglecting the O(L−1) terms in (4.14), we obtain a pseudo-Boltzmann or kinetic
equation for P1, which determines the evolution of the one-time and one-particle
averages under the assumption of O(L−1) correlations. Note that since L/N → 1
for a large system, independently of the boundary conditions, orders of inverse powers
of N and L are utterly equivalent. It is important to stress that the range of validity of
assumption (4.14) is assessed in numerical simulations, see Sect. 4.5. In Chap.5 the
conjecture that two-particle correlations scale with L−1 will be proven analytically.
Note that this “smallness” of two-particle correlations do not prevent them from
being long-ranged.

The structure of the kinetic equation for P1 is thus much simpler for the MM
case. In particular, we see along the next sections that the evolution equations for the
moments are closed under the molecular chaos assumption, without further knowl-
edge of the probability distribution P1. This is the reason why, from now on, we
restrict ourselves to the MM case β = 0, since the mathematical treatment needed
for the β �= 0 case is much more complicated and then is deferred to further studies.

4.2 Hydrodynamics

In the following section, we derive the hydrodynamic behavior for β = 0, in which
the evolution equations for the averages are closed. Moreover, the MM case makes
it possible to grasp the essential points.

4.2.1 Microscopic Balance Equations

From Eq. (4.8) it is straightforward to get the evolution rule for vl,p (for any site l)
at collision index p:

vl,p+1 − vl,p = − jl,p + jl−1,p , (4.15)

where the momentum current, that is, the flux of momentum from site l to site l + 1
at the p-th collision reads

jl,p = 1 + α

2
�l,pδyp,l , (4.16)

Here δyp,l is Kronecker’s δ and yp ∈ [1, L] is a random integer which selects the
colliding pair.

The corresponding equation for the energy, obtained by squaring (4.15), reads

v2
l,p+1 − v2

l,p = −Jl,p + Jl−1,p + dl,p . (4.17)
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Again, the energy current from site l to site l + 1 is defined as

Jl,p = (vl,p + vl+1,p) jl,p . (4.18)

In addition, the energy dissipation at site l is

dl,p = (α2 − 1)[δyp,l�2
l,p + δyp,l−1�

2
l−1,p]/4 < 0 . (4.19)

The total energy of the system at the p-th collision is Ep = ∑N
l=1 v2

l,p.
It is customary to define, as relevant fields for hydrodynamics, the following local

averages, at a given collision number p, over initial conditions and noise realizations:

ul,p = 〈vl,p〉, El,p = 〈v2
l,p〉, Tl,p = El,p − u2l,p. (4.20)

A few words should be spent for commenting the choice of the relevant fields: in
the usual conservative kinetic theory, the velocity and energy fields are naturally
“slow” because of their global conservation (recall that there is no density transport
in the model, as discussed before in Sect. 4.1.2). For a granular gas, the energy is not
necessarily slow: however, when α approaches 1, as it is in many physical situations,
the total energy evolves quite slowly and can be thought of as a quasi-slow variable.
In the following, we show that the continuum limit necessary to get a hydrodynamic
description requires α → 1 if dissipation of energy and diffusion take place over
the same time scale. It is important to realize, however, that such an elastic limit
is singular here: in 1d, when α = 1 the dynamics corresponds to a pure relabelling
without mixing or ergodicity.

The microscopic equations for the evolution of averages at time (number of col-
lisions) p at site l are obtained by averaging equations (4.15) and (4.17):

ul,p+1 − ul,p = −〈 jl,p〉 + 〈 jl−1,p〉 , (4.21)

El,p+1 − El,p = −〈Jl,p〉 + 〈Jl−1,p〉 + 〈dl,p〉 . (4.22)

For the case of MM (β = 0, i.e. all sites collide with the same probability) we have
that 〈δyp,l f (vp)〉 = L−1〈 f (vp)〉 and therefore we can write the averages as

〈 jl,p〉 = 1 + α

2L
〈�l,p〉 , (4.23a)

〈Jl,p〉 = 1 + α

2L
〈�l,p(vl,p + vl+1,p)〉 , (4.23b)

〈dl,p〉 = α2 − 1

4L
〈�2

l,p + �2
l−1,p〉 . (4.23c)
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From these equations, it is readily obtained that

〈 jl,p〉 = 1 + α

2L

(
ul,p − ul+1,p

)
, (4.24a)

〈Jl,p〉 = 1 + α

2L

(
Tl,p − Tl+1,p + u2l,p − u2l+1,p

)
(4.24b)

〈dl,p〉 = α2 − 1

4L

[
2Tl,p + Tl+1,p + Tl−1,p ,

+2

(
ul,p − ul+1,p + ul−1,p

2

)2

+ 1

2
(ul+1,p − ul−1,p)

2

]
. (4.24c)

In order to write the average dissipation, we have neglected O(L−1) terms, since
we have made use of the molecular chaos approximation, more specifically of the
equality 〈vl,pvl±1,p〉 = ul,pul±1,p + O(L−1).

Had we considered β �= 0, we would have had an extra factor |�l,p|β in the
averages on the rhs of (4.23). This extra factor would have made it necessary, apart
from the “molecular chaos” hypothesis, to use further assumptions about the one-
particle distribution function. More specifically, we would have needed to know
its shape, at least in some approximation scheme, to calculate the moments in the
average currents and dissipation in terms of the hydrodynamic fields u and T , that
is, the so-called constitutive relations.

4.2.2 Balance Equations in the Continuum Limit

We now assume that ul,p and El,p are smooth functions of space and time and
introduce a continuum, “hydrodynamic”, limit (CL). First, the macroscopic space
and time variables (x, t) are defined which are related to the microscopic ones (l, p)
through size-dependent factors:

x = l/L , t = p/L3. (4.25)

Note that both x and t are dimensionless variables. The choice of the above scalings is
dictated by the aimof: (i)workingwith a “reduced” unit size to prevent L factors enter
into the solutions through the boundary conditions, and (ii) matching the dominant L
dependence on the right hand side and left hand side of the balance equations. With
the identification fl,p = f (l/L , p/L3), we say that f (x, t) is a smooth function if

fl±1,p − fl,p = ±L−1∂x f (x, t) + O
(
L−2

)
, (4.26)

fl,p±1 − fl,p = ±L−3∂t f (x, t) + O
(
L−6

)
. (4.27)
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It is natural, on the scales defined by the CL, to define the mesoscopic fields u(x, t),
E(x, t) and T (x, t) such that

ul,p = u(l/L , p/L3) , El,p = E(l/L , p/L3) , Tl,p = T (l/L , p/L3) . (4.28)

and assume them to be smooth.
Using these definitions and the smoothness assumption, one finds that each dis-

crete spatial derivative inEqs. (4.21) and (4.22) introduces a L−1 leading factor. Then,
the difference between the current terms in the balance equations is of the order of
L−3, because the average currents 〈 jl,p〉 and 〈Jl,p〉 are of the order of L−2, as we have
discrete derivatives of the currents therein. Those terms, therefore, perfectly balance
the 1/L3 dominant scaling on the left-hand side, i.e. the time-derivative. Since 〈dl,p〉
is of the order of (1 − α2)/L , to match the scaling 1/L3 of the other terms, we define
the macroscopic inelasticity

ν = (1 − α2)L2 , (4.29)

and assume it to be order 1 when the limit is taken. This choice implies that when
L → ∞ one has α → 1, that is, microscopic collisions are quasi-elastic.

From a mathematical point of view, the following results for the average hydro-
dynamic behavior become exact in the double limit α → 1, L → ∞ but finite
ν = (1 − α2)L2, provided that the initial conditions are smooth in the sense given
by Eq. (4.26). Nonetheless, for a large-size system, the following results will hold
over a certain time window, which is expected to increase as its size L increases.
An analysis of the limits of validity of our hydrodynamic equations is carried out in
Sect. 4.3.4.

By defining the average mesoscopic currents

jav(x, t) = lim
L→∞ L2〈 jl,p〉 , Jav(x, t) = lim

L→∞ L2〈Jl,p〉 , (4.30)

and the average mesoscopic dissipation of energy

dav(x, t) = lim
L→∞ L3〈dl,p〉 , (4.31)

one gets the CL of (4.21) and (4.22), which are

∂t u(x, t) = −∂x jav(x, t) , (4.32a)

∂t E(x, t) = −∂x Jav(x, t) + dav(x, t) . (4.32b)

Therein, the average currents and dissipation follow from (4.30), (4.31) and (4.24),
with the result



4.2 Hydrodynamics 111

jav(x, t) = −∂xu(x, t) , (4.33a)

Jav(x, t) = −∂x
[
u2(x, t) + T (x, t)

]
, (4.33b)

dav(x, t) = −νT . (4.33c)

Note that (i) 1 + α has been replaced by 2, because α2 = 1 − νL−2, and we
have already neglected L−1 terms and (ii) Jav(x, t) = −∂x E(x, t), with E(x, t) =
u2(x, t) + T (x, t), consistently with (4.20).

Taking into account the above expressions, the following average hydrodynamic
equations are obtained,

∂t u(x, t) = ∂xxu(x, t) , (4.34a)

∂t T (x, t) = −νT (x, t) + ∂xx T (x, t) + 2 [∂xu(x, t)]2 . (4.34b)

These equations must be supplemented with boundary conditions for the situation
of interest. The identification with the granular Navier–Stokes hydrodynamic equa-
tions (4.1) in the shear mode regime is immediate, particularized for the case of
constant (time and space-independent) κ and η.

Additionally, the time evolution of higher central moments of the one-particle
distribution function, such as

μ3 = 〈(v − u)3〉, μ4 = 〈(v − u)4〉, (4.35)

can be derived. These moments are particularly relevant to check deviations from
the Gaussian behavior, since for a Gaussian distribution with variance T one has that
μ3 = 0 and μ4 = 3T 2. Their evolution equations are

∂tμ3 = −3

2
νμ3 + ∂xxμ3 + 6 (∂xu) (∂x T ) , (4.36a)

∂tμ4 = −2 νμ4 + ∂xxμ4 + 8 (∂xμ3) (∂xu) + 12T (∂xu)2 . (4.36b)

Again, these evolution equations must be supplemented with appropriate boundary
conditions, which also depend on the physical situation of interest. It is important
to stress that μ3 and μ4 are not hydrodynamic fields because (v − u)n with n ≥ 3 is
not conserved during collisions, not even in the quasielastic limit as considered in
Sect. 4.2.1. The derivation of equation (4.36b) is given in Appendix A.2.

4.3 Physically Relevant States

In this section, always under the assumption β = 0, we analyze some physically
relevant states that are typical of dissipative systems such as granular fluids. Specifi-
cally,we investigate theHomogeneousCoolingState (HCS), theUniformShear Flow
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(USF) state and the Couette Flow state. The theoretical results obtained throughout
are compared to numerical results in Sect. 4.5.

4.3.1 The Homogeneous Cooling State

We now focus our attention on the case of spatial periodic boundary conditions, with
an initial “thermal condition”: vl,0 is a random Gaussian variable with zero average
and unit variance, that is, Tl,0 ≡ T (x, 0) = 1. Starting from this condition, the sys-
tem typically falls into the so-called Homogeneous Cooling State (HCS), where the
total energy decays in time and the velocity and temperature fields remain spatially
uniform. In this case, the solution of the average hydrodynamic equations (4.34)
reads

u(x, t) = 0 , THCS(x, t) = T (t = 0)e−νt . (4.37)

The exponential decrease of the granular temperature is typical ofMM,where the col-
lision frequency is velocity-independent. It replaces the so-called Haff’s law which
was originally derived in the HS case, where THCS ∼ t−2 because Ṫ ∝ −T 3/2 [16].

The HCS is known to be unstable: as discussed in Sect. 3.1.2, it breaks down
in too large or too inelastic systems. In our model and in the hydrodynamic
limit, this condition is expected to be replaced by a condition of large ν. The
stability is studied by introducing rescaled fields ũ(x, t) = u(x, t)/

√
THCS(t) and

T̃ (x, t) = T (x, t)/THCS(t) and by linearizing the hydrodynamic equations near the
HCS, i.e. T̃ (x, t) = 1 + δT̃ (x, t) and ũ(x, t) = δũ(x, t). The analysis of linear equa-
tions becomes straightforward by space-Fourier-transforming, which gives

∂tδũ(k, t) = ν − 2k2

2
δũ(k, t) , ∂tδT̃ (k, t) = −k2δT̃ (k, t) . (4.38)

Therefore, δũ is unstable for wave numbers that verify ν − 2k2 > 0. In continuous
space, the system size is 1, so that the minimum available wavenumber is kmin = 2π.
Thus, recalling that ν = (1 − α2)L2 there is no unstable mode for ν (lengths) below
a certain threshold νc (Lc), with

νc = 8π2, Lc = 2π
√
2

(
1 − α2

)−1/2
. (4.39)

On the contrary, for ν > νc (L > Lc), the HCS is unstable and the rescaled modes
with wave numbers verifying k <

√
ν/2 amplify with time. This instability mecha-

nism is identical to the one found in granular gases for shear modes and described in
Sect. 3.1.2. Theoretical predictions and simulated results perfectly agree, as shown in
Fig. 4.2. It is important to stress that the amplification appears in the rescaled velocity
ũ(x, t) and not in the velocity u(x, t). The same result is found and compares well
with simulations in the HS case. The numerical analysis of the HCS instability and
the existence of a critical dissipation (length) νc (Lc) will be carried out in Sect. 4.5.
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Fig. 4.2 Top: numerical results (circles) and theoretical predictions (lines) for HCS average tem-
perature, T (t) = ∫

dxT (x, t), with ν = 10, 20, 30, 40. and N = 1000. Bottom: rescaled velocity
profile maximum Umax = ũ(xM , t) as a function of time, where xM = 1/4. Trajectories start from
a sinusoidal average velocity profile u(x, 0) = u0 sin(2πx) (here u0 = 0.1), which gives hydrody-
namic predictions ũ(x, t) = u0 sin(2πx)e(ν−νc)t/2 (drawn as solid lines). The averages have been
taken over M = 105 trajectories

The one-particle velocity distribution has been derived; although of course
p(v) → δ(v) because of the cooling, when looking at rescaled variables it has been
found that the shape of the initial distribution is not altered in the HCS: it only
“shrinks” with the thermal velocity [4].

Perturbation of the HCS: Non-homogeneous Cooling

The average hydrodynamic equations (4.34) are non-linear, but for the MM case we
are considering they can be solved for general periodic initial conditions u(x, 0) and
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T (x, 0): the evolution of the velocity profileu(x, t) is decoupled from the evolution of
the temperature profile T (x, t) and then u(x, t) can be readily obtained. Afterwards,
the evolution equation for T (x, t) can be integrated, with the non-linear viscous
heating term (∂xu)2 playing the role of a inhomogeneity. Going to Fourier space, it
is easily shown that

u(x, t) =
+∞∑

n=−∞
e−n2νct/2eikn x û(kn, 0) , (4.40)

being û(k, 0) the Fourier-transform of the velocity at the initial time, and kn = 2πn.
This general result shows that the damping coefficient of the n-th shear mode is
νcn2/2; therefore, the slowest decaying mode is the first mode n = 1, which yields
the instability of the HCS for ν > νc. Note that û(k0, 0) = 0, since in the center-
of-mass frame we have that

∫ 1
0 dxu(x, 0) = 0 and total momentum is conserved for

periodic boundary conditions.
To be concrete, let’s consider an initial perturbation that only excites one Fourier

mode in the velocity field, whereas the temperature remains homogeneous. The
general solution for an arbitrary initial perturbation will be derived in Sect. 4.3.2.
Thus,

u(x, 0) = u0 sin(2πm x) , T (x, 0) = T0 , (4.41)

being m an integer number. Then, on the one hand the velocity profile can be imme-
diately written by making use of Eq. (4.40) and, on the other, the viscous heating
term (∂xu)2 gives rise to two Fourier modes in the evolution of the temperature,
corresponding to n = 2m and n = 0. Namely, we have

u(x, t) = e−m2νct/2u0 sin(2πm x) , (4.42a)

T (x, t) = T0e
−νt + e−m2νct

u20
2
m2νc×

[
1 − e−(ν−m2νc)t

ν − m2νc
+ cos(4πm x)

1 − e−(ν+m2νc)t

ν + m2νc

]
. (4.42b)

The presence of a velocity gradient induces the development of a non-homogeneous
temperature profile, through the local mechanism of viscous heating.

4.3.2 The Uniform Shear Flow Steady State

Here we consider that our system is sheared at the boundaries: we impose a velocity
difference a (shear rate) between the velocities at the left and right ends of the system.
This is done by considering the Lees-Edwards boundary conditions [17]
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u(1, t) − u(0, t) = a, u′(1, t) = u′(0, t), T (1, t) = T (0, t), T ′(1, t) = T ′(0, t),
(4.43)

in which the prime stands for the spatial derivative ∂x .
With the above conditions, there is a steady solution of the hydrodynamic equa-

tions (4.34) characterizedby a linear velocity profile and ahomogeneous temperature:

us(x) = a(x − 1/2), Ts = 2a2/ν . (4.44)

This steady state is called Uniform Shear Flow and it is peculiar of dissipative sys-
tems, in which the continuous energy loss in collisions may compensate the viscous
heating.

TheUSF state is expected to be globally stable, in the sense that the system tends to
it from any initial condition compatible with the Lees-Edwards boundary conditions.
This stems from the energy injection allowing the system to fully explore its phase
space, which entails that the H -theorem for the master equation holds [12–14].
Therefore, the N -particles distribution PN (v; x, t) approaches the steady solution
of the master equation P (s)

N (v; x) corresponding to the USF monotonically as time
increases.

Contrarily from the HCS, where the initial shape of the rescaled velocity distribu-
tion was conserved in time, the velocity distribution of the USF tends to a Gaussian
stationary distribution with average local velocity us(x) and homogeneous tempera-
ture Ts [4]. In a recent paper, Plata and Prados showed that in theUSF the one-particle
velocity distribution follows an H -theorem under some mathematical assumptions,
which can be generalized to the bulk driven case [15].

Transient Evolution Towards the USF

We here consider the hydrodynamic equations (4.34) with the Lees-Edwards bound-
ary conditions (4.43), and look for the general time-dependent solution thereof.

To start with, we consider the deviations of the average velocity and temperature
with respect to their USF values, namely

δu(x, t) = u(x, t) − us(x), δT (x, t) = T (x, t) − Ts . (4.45)

The Lees-Edwards boundary conditions for (u, T ) are changed into periodic bound-
ary conditions for (δu, δT ). The latter satisfy the equations

∂tδu = ∂xxδu, ∂tδT = −νδT + ∂xxδT + 4a∂xδu + 2(∂xδu)2 . (4.46)

Since no linearization has been done when deriving the above equations from
Eq. (4.34), they exactly describe the approach of the system to the USF state. Note
that if we set a = 0 in Eq. (4.46), we reobtain the exact evolution equations for the
deviations from theHCS. Therefore, the general solution for the hydrodynamic fields
in the HCS correspond to putting a = 0 in the expressions derived below. Now, we
go to Fourier space by defining
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δu(x, t) =
+∞∑

n=−∞
û(kn, t)e

ikn x , δT (x, t) =
+∞∑

n=−∞
T̂ (kn, t)e

ikn x . (4.47)

The initial values for the Fourier components (û, T̂ ) are given by

û(kn, 0) =
∫ 1

0
dx δu(x, 0)e−ikn x , T̂ (kn, 0) =

∫ 1

0
dx δT (x, 0)e−ikn x . (4.48)

Recall that (i) kn = 2nπ and (ii) û(k0, t) = 0 in the centre of mass frame.
The quadratic term in Eq. (4.46) that stems from viscous heating couples different

Fourier modes. More specifically, the evolution equations in Fourier space read

∂t û(kn, t) = −k2n û(kn, t) , (4.49a)

∂t T̂ (kn, t) = −(ν + k2n)T̂ (kn, t) + 4iaknû(kn, t)

+
+∞∑

m=−∞
km(km − kn)û(km, t)û∗(km − kn, t) . (4.49b)

The solution of the equation for û(kn, t) can be written straight away; afterwards,
this solution is inserted into the equation for T̂ (kn, t) that is thus transformed into a
closed non-homogeneous linear equation. Hence, we get

û(kn, t) = û(kn, 0)e
−k2n t , (4.50a)

T̂ (kn, t) = T̂ (kn, 0)e
−(ν+k2n )t + 4iaknû(kn, 0)e

−k2n t
1 − e−νt

ν

+2e−k2n t
+∞∑

m=−∞
km(km − kn)û(km, 0)û∗(km − kn, 0)

e−νt − e−2km (km−kn)t

2km(km − kn) − ν
.

(4.50b)

Note that there are no unstable modes in the USF of our model: when the denomi-
nators in (4.50) are zero, the numerators also vanish and the corresponding fractions
remain finite. This is consistent with the (linear) stability of the USF state of a dilute
granular gas of hard spheres described by the Boltzmann equation with respect to
perturbations in the velocity gradient (the only possible ones in our model) [18].
Nevertheless, here the analysis is not restricted to small perturbations, at the level of
the hydrodynamic equations the USF is globally stable.

4.3.3 The Couette Flow Steady State

As introduced in Sect. 4.2.2, Eq. (4.34) yields a steady state solution when the system
is coupled to reservoirs at its boundaries, e.g. when at sites 0 (L) and N + 1 (R)
we have two particles with independent normal velocity distributions, with average
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uL/R and variance TL/R . Thus the system is no longer periodic, there are L = N + 1
colliding pairs and the boundary conditions for themesoscopic fields read u(0) = uL ,
u(1) = uR , T (0) = TL and T (1) = TR . It must be stressed that momentum is no
longer conserved for this choice of boundary conditions, since in general u′(1, t) �=
u′(0, t).

The stationary solution for hydrodynamic equations (4.34), setting symmetric
conditions

TR = TL = TB , uR = −uL = a/2 , (4.51)

is

u(x) = a

(
x − 1

2

)
, T (x) = 2a2

ν
+

(
TB − 2a2

ν

)
cosh

[√
ν (x − 1/2)

]

cosh
(√

ν/2
) .

(4.52)
Here, we have put ourselves in the centre of mass frame by considering that uR =
−uL , and we see that when TB = 2a2/ν the USF state described in Sect. 4.3.2 is
recovered. On the other hand,when TB �= 2a2/ν, the average velocity profile remains
linear but the temperature develops a gradient, because the viscous heating that
stems from the velocity gradient is not locally compensated by the energy sink,
which is proportional to the temperature. In other words, when TB = 2a2/ν, the
velocity gradient a is exactly the one needed to satisfy (4.34) with an homogeneous
temperature throughout the system. Otherwise, if the velocity gradient is smaller, the
bulk temperature will be lower than that at the boundaries, and vice versa when the
velocity gradient is steeper.

These results satisfy the energy balance (4.32b) required to have a stationary state,
namely

Jav(x = 0) − Jav(x = 1) = ν

∫ 1

0
dx T (x) , (4.53)

where the lhs is the energy flow entering the system at the boundaries and the rhs is
the energy loss in collisions.

The one-particle distribution function is not Gaussian in this steady state, except
in the case TB = 2a2/ν for which we recover the USF. This can be readily seen by
taking into account the time evolution of higher-order-than-two central moments of
the velocity, whose evolution is governed by Eq. (4.36). In the Couette case, we have
Gaussian distributions at the boundaries and the appropriate boundary conditions are
μ3(0, t) = μ3(1, t) = 0, μ4(0, t) = μ4(1, t) = 3T 2

B . Equation (4.36a) clearly shows
the point: if the term ∂xu ∂x T �= 0, the third central moment μ3 cannot be identically
zero in the steady state and the one-particle distribution is non-Gaussian.

Therefore, the only steady state with a Gaussian probability distribution in the
present model is the USF. We recall that the HCS is not a steady state, although the
probability distribution for the rescaled velocity is a time-independent Gaussian if
it starts from a Gaussian shape. The theoretical expressions for μ3 and μ4 are not
particularly illuminating and will be disregarded here.

We do not write down the theoretical expressions forμ3 andμ4 in Couette’s steady
state because they are not particularly illuminating.
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4.3.4 Validity of the Hydrodynamic Description

There are some analogies between our expansion in terms of L−1 and the Chapman-
Enskog expansion of the Boltzmann equation. In both cases, terms up to the second
order in the gradients (of the order of k2, being k thewave vector, in Fourier space) are
kept. On the one hand, and from a purely mathematical point of view, in our model
Eq. (4.34) becomes exact in the limit L → ∞, with ν = (1 − α2)L2 of the order of
unity, as previously stated. On the other hand, on a physical basis, the hydrodynamic
equations are approximately valid whenever the terms omitted upon writing them
are negligible against the ones we have kept.

Following the discussion in the preceding paragraph, wemust impose that L � 1.
Moreover, we have also to impose that t � L in order to have an approximate
hydrodynamic description, which stems from the correlations 〈vivi±1〉 being of the
order of L−1 as compared to the granular temperature, see Sect. 5.1. For example,
in the elastic case at equilibrium, the correlations 〈vivi+ j 〉 do not depend on the dis-
tance j , and therefore 〈vivi+ j 〉 = −T (L − 1)−1, ∀ j �= 0. More specifically, the term
proportional to the correlations in the evolution equation for the granular tempera-
ture over the microscopic time scale τ is of the order of (1 − α2)L−1, which must
also be negligible against the second spatial derivative terms, of the order of L−2.
Then, (1 − α2)L � 1 must be further imposed when the correlations are neglected
in Eq. (4.34). This condition, although less restrictive that 1 − α2 = O(L−2), also
implies that the microscopic dynamics is quasi-elastic. In Chap. 5 it will be shown
how to relax these conditions and take into account spatial correlations in the system.

4.4 Fluctuating Hydrodynamics

4.4.1 Definition of Fluctuating Currents

The size of granular systems is limited both in real experiments and in numerical
or theoretical studies, as discussed before, particularly when the instability of the
HCS was analysed in Sect. 4.3.1. Therefore, it is important to investigate finite size
effects and the first way to take into account such effects is to develop a fluctuating
hydrodynamic description, as introduced in Sect. 3.2: the microscopic currents are
split in two terms, their “main” contribution that depends only on the hydrodynamic
variables, and their corresponding “noises”, with zero average.

The main physical idea under the fluctuating hydrodynamics approach is to calcu-
late the averages that lead from themicroscopic dynamics to the hydrodynamic equa-
tions in two steps. First, the average over the “fast” variables (namely yp) is taken,
conditioned to given values of the hydrodynamic fields. This defines the “main”
contribution to the current, which is still a function of the “slow” hydrodynamic
variables. The difference between the microscopic current and its main contribution
is the noise of the current, which by definition has zero average: it is clear that the
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average value of the microscopic current (both over the “fast” and “slow” variables)
coincides with the average of the main contribution (only over the “slow” variables).
Specifically, each physical magnitude is written as x = x + ξ(x), where x is its main
contribution and ξ(x) is its noise.

Following the above discussion we start by splitting the microscopic currents in
their main parts and their noises, namely

jl,p = j l,p + ξ
( j)
l,p , Jl,p = J l,p + ξ(J )

l,p , dl,p = dl,p + ξ(d)
l,p . (4.54)

As stated above, overlined variables correspond to partial averages over the fast
variables yl,p conditioned to given values of the slow ones vl,p. We are considering
the particular case of MM, that is, β = 0. Consequently,

j l,p = 1 + α

2L
�l,p , (4.55a)

J l,p = 1 + α

2L
�l,p(vl,p + vl+1,p) , (4.55b)

dl,p = α2 − 1

4L
(�2

l,p + �2
l−1,p) . (4.55c)

It is clear that such choices guarantee that all noises ξ( j), ξ(J ) and ξ(d) have zero
average.

4.4.2 Noise Correlations

Noise Correlations: Momentum Current

We start by studying the properties of the current noise correlation function ξ
( j)
l,p =

jl,p − j l,p, namely the moment 〈ξ( j)
l,pξ

( j)
l ′,p′ 〉, which reads

〈ξ( j)
l,pξ

( j)
l ′,p′ 〉 = 〈 jl,p jl ′,p′ 〉 − 〈 j l,p j l ′,p′ 〉 . (4.56)

In order to obtain the noise correlations, we exploit a series of conditions. First, it is
straightforward that 〈ξ( j)

l,pξ
( j)
l ′,p′ 〉 = 0 for p �= p′, because yp and yp′ are independent

random numbers. For equal times, p = p′, the second term on the right hand of
(4.56) is negligible because it is O(L−2), while the leading behavior of the first term
will be shown to be O(L−1). Using now the definition (4.16) of the microscopic
momentum current, we get

jl,p jl ′,p′ = (1 + α)2

4
�l,pδyp,l�l ′,p′δy′

p,l
′ . (4.57)
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Second, we take into account, setting again β = 0, that 〈δyp,lδyp,l ′ 〉 = δl,l ′ 〈δyp,l〉 =
L−1δl,l ′ . Thus, for p = p′, we have

〈ξ( j)
l,pξ

( j)
l ′,p〉 = (1 + α)2

4L

〈
�2

l,p

〉
δl,l ′ + O(L−2) . (4.58)

At this point, we can make use of (i) the quasi-elasticity of the microscopic dynamics
to substitute (1 + α)/2 by 1 (neglecting terms of order L−2) and (ii) the molecular
chaos assumption to obtain 〈�2

l,p〉, with the result

〈�2
l,p〉 = Tl,p + Tl+1,p + (ul,p − ul+1,p)

2 + O(L−1) ∼ 2Tl,p , (4.59)

because both ul+1,p − ul,p and Tl+1,p − Tl,p are of the order of L−1. Therefore,

〈ξ( j)
l,pξ

( j)
l ′,p′ 〉 ∼ 2L−1Tl,p δl,l ′ δp,p′ . (4.60)

In the large size system, jl,p scales as L−2, as given by Eq. (4.30) (an analogous
scaling has been found in other simple dissipative models, see [19]). Therefore, the
mesoscopic noise of the momentum current is defined as

ξ( j)(x, t) = lim
L→∞ L2ξl,p , j (x, t) = j(x, t) + ξ( j)(x, t) , (4.61)

inwhich, again, j(x, t) = limL→∞ L2 j l,p. Going to the continuous limit and remem-
bering the scaling (4.25), which implies that δl,l ′/�x ∼ δ(x − x ′) and δp,p′/�t ∼
δ(t − t ′), the noise amplitude of the momentum current reads

〈ξ( j)(x, t)ξ( j)(x ′, t ′)〉 ∼ 2L−1 T (x, t) δ(x − x ′)δ(t − t ′) . (4.62)

Noise Correlations: Energy Current

We are here interested in the correlation properties of the noise ξ(J )
l,p = Jl,p − J l,p

〈ξ(J )
l,p ξ(J )

l ′,p′ 〉 = 〈Jl,p Jl ′,p′ 〉 − 〈J l,p J l ′,p′ 〉 . (4.63)

Similarly to the case of the current noise, we have that (i) 〈ξ(J )
l,p ξ(J )

l ′,p′ 〉 = 0 for p �= p′,
(ii) the second term on the right-hand side is O(L−2) and thus subdominant in the
limit L → ∞ and (iii) the noise correlation is dominated by the contribution that
stems from the first term on the rhs. Therefore, making use of Eq. (4.18), and again
of the relation (for β = 0) 〈δyp,lδyp,l ′ 〉 = δl,l ′ 〈δyp,l〉 = δl,l′

L , we obtain

〈ξ(J )
l,p ξ(J )

l ′,p′ 〉 ∼ L−1
〈(

v2
l,p − v2

l+1,p

)2〉
δl,l ′δp,p′ . (4.64)
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In general, the moment

〈(
v2
l,p − v2

l+1,p

)2
〉
is not a function of the hydrodynamic

variables u and T , unless the one-particle distribution is Gaussian.
In order to obtain a closed fluctuating hydrodynamic description, we need to write

〈(v2
l,p − v2

l+1,p)
2〉 in terms of the hydrodynamic variables. Then, on top of theMolec-

ular Chaos assumption (i.e. the factorization of the moments involving several sites),
we introduce the so-called local equilibrium approximation (LEA): the one-particle
distribution function P1 is assumed to be the equilibrium distribution corresponding
to the local values of the hydrodynamic variables, which in our case corresponds to
a Gaussian distribution of the velocities. There is strong numerical evidence that the
LEA gives a good quantitative description of the noise amplitudes in some dissipa-
tive models without momentum conservation [2, 19–21], as a consequence of the
quasi-elasticity of the underlying microscopic dynamics. In our model, we know that
the LEA is not an approximation but an exact result for some physical states, such
as the HCS1 or the USF. For other states like the Couette flow, its range of validity
is a priori unknown.

In the large system size limit, Jl,p scales as L−2 and it is expected that the noise
does too. Along the same lines as in the preceding section, after using the LEA and
neglecting terms of the order of L−2, we obtain the autocorrelation of the energy
current noise,

〈ξ(J )(x, t)ξ(J )(x ′, t ′)〉 ∼ 4L−1T (x, t)[T (x, t) + 2u2(x, t)]δ(x − x ′)δ(t − t ′) .

(4.65)
Thus, the energy current noise is also white and its amplitude scales as L−1 with the
system size L , accordingly with the physical intuition.

Noise Correlations: Dissipation Field

Now we deal with the third “current” in the system, the dissipation field dl,p by
repeating the same procedure as before.We are interested in the correlation properties
of the noise ξ(d)

l,p = dl,p − dl,p.

Once more, 〈ξ(d)
l,pξ

(d)
l ′,p′ 〉 = 0 for p �= p′ and the dominant contribution for p = p′

comes from the dissipation correlation 〈dl,pdl ′,p〉. Making use of the definition of
Eq. (4.19),

〈dl,pdl ′,p〉 = (α2 − 1)2

16L

[
δl,l ′ 〈(vl,p − vl+1,p)

4 + (vl−1,p − vl,p)
4〉+

δl,l ′−1〈(vl,p − vl+1,p)
4〉 + δl,l ′+1〈(vl−1,p − vl,p)

4〉] . (4.66)

Therefore, by taking into account the LEA and neglecting O(L−2) terms,

〈ξ(d)
l,pξ

(d)
l ′,p′ 〉 ∼ 3(α2 − 1)2

4L
T 2
l,p[2δl,l ′ + δl,l ′−1 + δl,l ′+1]δp,p′ . (4.67)

1For the usual choice of an initial Gaussian distribution, see Sect. 4.3.1.
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In the large size system dl,p scales as L−3 and we expect the same scaling for the
noise. Going to the continuous limit, we get

〈ξ(d)(x, t)ξ(d)(x ′, t ′)〉 ∼ L−3 3ν2T (x, t)2δ(x − x ′)δ(t − t ′) . (4.68)

In summary, the noise of the dissipation is subdominant with respect to the moment
and energy currents, its amplitude being proportional to L−3, and therefore it is
usually negligible.

4.4.3 Cross-Correlations of the Noises and Gaussianity

Interestingly, being in the presence of two fluctuating fields, correlations between
different noises appear. The cross correlations between different noises are straight-
forwardly obtained, along similar lines:

〈ξ( j)(x, t)ξ(J )(x ′, t ′)〉 = 4L−1T (x, t)u(x, t)δ(x − x ′)δ(t − t ′) , (4.69)

〈ξ( j)(x, t)ξ(d)(x ′, t ′)〉 = 0 , 〈ξ(J )(x, t)ξ(d)(x ′, t ′)〉 = 0 ,

up to and including O(L−1). Theoretical predictions for noise correlations, ampli-
tudes and Gaussianity have been successfully tested in simulations, see Sect. 4.5.

In the large system size limit L � 1, the current noise introduced in the Sect. 4.4.1
is Gaussian and white. We can introduce a new noise field ξ̃(x, t) by

ξ( j)(x, t) = L−1/2ξ̃(x, t) , (4.70)

and ξ̃(x, t) remains finite in the large system size limit L → ∞,

〈ξ̃(x, t)〉 = 0, 〈ξ̃(x, t)ξ̃(x ′, t ′)〉 ∼ 2 T (x, t)δ(x − x ′)δ(t − t ′) . (4.71)

It will be here shown that all the higher-order cumulants of ξ̃(x, t) vanish in the ther-
modynamic limit as L → ∞. Let us consider a cumulant of ordern of themicroscopic
noise ξl,p that is equal to the n-th order moment of the ξ plus a sum of nonlinear
products of lower moments of ξ. A calculation analogous to the one carried out for
the correlation 〈ξ( j)

l,pξ
( j)
l ′,p′ 〉 shows that the leading behavior of any moment is of the

order of L−1, which is obtained when all the times are the same. Therefore, the
moment 〈 jl,p jl ′,p′ ... jl(n),p(n)〉 gives the leading behavior of the considered cumulant,
which is thus of the order of L−1 for p = p′ = ... = p(n); any other contribution to
the cumulant is at least of the order of L−2. We have that

〈 jl,p jl ′,p′ · · · jl(n),p(n)〉 ∼ L−1〈Cl,p〉δl,l ′δl ′,l ′′δl(n−1),l(n) · · · δp,p′δp′,p′′δp(n−1),p(n) , (4.72)
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where 〈Cl,p〉 is certain average that remains finite in the large system size limit as
L → ∞. In the continuous limit, each current introduces a factor L2 due to the scaling
introduced in Sect. 4.4. Moreover, we take into account the relationship between
Kronecker and Dirac δ’s in the continuum limit to write the cumulants 〈〈· · · 〉〉 of the
rescaled noise introduced in Eq. (4.70) as

〈〈ξ̃(x, t)ξ̃(x ′, t ′) · · · ξ̃(x (n), t (n))〉〉 ∼ L3(1− n
2 )〈C(x, t)〉 ×

δ(x − x ′)δ(x ′ − x ′′)δ(x (n−1) − x (n)) · · · δ(t − t ′)δ(t ′ − t ′′)δ(t (n−1) − t (n)) .

(4.73)

Thus, in the limit as L → ∞,

〈ξ̃(x, t)ξ̃(x ′, t ′) · · · ξ̃(x (n), t (n))〉 = 0 , for all n > 2 , (4.74)

and the vanishing of all the cumulants for n > 2 means that the momentum current
noise is Gaussian in the infinite size limit.

The same procedure can be repeated for the energy current noise, by defining
ξ(J )(x, t) = L−1/2η̃(x, t)), with the result

〈〈η̃(x, t)η̃(x ′, t ′) · · · η̃(x (n), t (n))〉〉 ∼ L3(1− n
2 )〈D(x, t)〉 ×

δ(x − x ′)δ(x ′ − x ′′)δ(x (n−1) − x (n)) · · · δ(t − t ′)δ(t ′ − t ′′)δ(t (n−1) − t (n)) .

(4.75)

In the equation above, 〈D(x, t)〉 is a certain average, different from 〈C(x, t)〉, but
also finite in the large system size limit. Thus, we have that

〈η̃(x, t)η̃(x ′, t ′) · · · η̃(xn, tn)〉 = 0, for all n > 2 , (4.76)

and the energy current noise also becomes Gaussian in the continuum limit.
Note that the Gaussianity of the noises is independent of the validity of the local

equilibrium approximation, which is only needed to write 〈C(x, t)〉 and 〈D(x, t)〉 in
terms of the hydrodynamic fields u(x, t) and T (x, t). Besides, a similar procedure
for the dissipation noise gives that the corresponding scaled noise vanishes in the
continuum limit, since the power of L in the dominant contribution to the n-th order
cumulant is 3 − 5n/2 instead of 3 − 3n/2. This means that the dissipation noise is
subdominant as compared to the currents noises in the continuum limit, and can be
neglected.

We conclude this section mentioning that, in general, our noise amplitudes do not
seem to satisfy any “equilibrium-like” Fluctuation-Dissipation relation of the 2nd
kind (see for instance [22]). This is however not surprising, considered that it is a
non-conservative model.
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4.5 Numerical Results

4.5.1 General Simulation Strategy

Simulations have been made reproducing M times the phase-space trajectory of a
system of N particles, each one carrying a velocity vl and being at a definite position
l = 1, . . . , L , with L = N for periodic or Lees-Edwards boundaries and L = N + 1
for a thermostatted system. For each trajectory, the system starts with a random
extraction of velocities vl normally distributed with 〈vl〉 = 0 and

〈
v2
l

〉 = T0, unless
otherwise specified. Afterwards, we move to the centre of mass frame making the
transformation vl ⇒ v′

l = vl − 1
L

∑L
l=1 vl , so that the total momentum of the system

is zero.
Monte Carlo simulations of the system dynamics have been carried out through

the residence time algorithm described in Sect. 4.1.1 [10, 11]. This procedure allows
us to compute the time-evolution of our model for every collision rate β, although
we focus here only on the case β = 0 (MM).

4.5.2 Homogeneous and Non-homogeneous Cooling

Following the above-mentioned procedure, we have simulated the homogeneous
cooling state described in Sect. 4.3.1 a system made of 103 particles, with peri-
odic boundaries and starting from a flat velocity profile u(x, 0) ≡ 0 with unit vari-
ance T (x, 0) ≡ T0 = 1. Theoretical predictions for average velocity and temperature
decay in Eq. (4.37) perfectly agree with simulations. The instability of the HCS has
been investigated through the rescaled velocity field for a perturbed initial condition

u(x, 0) = A sin(2πx) , (4.77)

introducing a small sinusoidal perturbation and measuring the time evolution of
its rescaled amplitude ũ. Theory and simulations are compared in Fig. 4.2, where
the existence of a threshold value of the dissipation around νc = 8π2 is evi-
dent. Also, simulations of non-homogeneous cooling have been performed, start-
ing as in Sect. 4.3.1 from a sinusoidal periodic average velocity profile u(x, 0) =
u0 sin(2πmx), withm integer, and a homogeneous temperature T (x, 0) = T0 = 1 as
before. The simulations show the cooling of the system, as expected from Eq. (4.42),
with the development of a temperature profile given by viscous heating. Comparisons
between numerical results and theoretical predictions for the non-homogeneous case
are displayed in Fig. 4.3.
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Fig. 4.3 Top: numerical results (points) and theoretical values (solid lines) for the average sinusoidal
velocity profile u(x, t) in the HCS, with u0 = 1, ν = 40, N = 500, T0 = 1 and m = 1 for νt =
0, 1, 2, 5, 20. Bottom: same plot for the temperature profile T (x, t) of the system.Here, the averages
have been taken over M = 105 trajectories

4.5.3 Uniform Shear Flow State

The Uniform Shear Flow described in Sect. 4.3.2 can be simulated by introducing
appropriate boundary conditions in the simulations. When the pair (1, N ) is chosen
to collide at time p, there are two separate collisions: particle 1 (N ) undergoes a
collision with a particle with velocity vN ,p − a (v1,p + a). These boundary collision
rules introduce a shear rate a between the left and right ends of the system, and at
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Fig. 4.4 Steady temperature in the USF state as a function of the shear rate a. We consider three
different values of ν in a system of size N = 500, with averages over M = 105 realizations. In
the vertical axis the numerical and theoretical values of νTs are plotted, the latter being given by
Eq. (4.44). In the inset, the numerical value of the velocity gradient ∂x us(x) as a function of the
shear rate is shown. Note the logarithmic scale in both axes

the hydrodynamic level they are represented by the Lees-Edwards conditions (4.43).
This can be readily shown by considering the special evolution equations for v1,p
and vN ,p with the above boundary collision rules in the continuum limit.

Theoretical predictions in the USF state, given by (4.44), have been tested for the
steady (i) profile of the average velocity and (ii) value of the temperature. Simulations
have been performed in a system with N = 500 particles and three different values
of ν, namely ν = 10, 20 and 40. As seen in Fig. 4.4, the agreement is excellent in
all cases.

Furthermore, Figs. 4.5 and 4.6 show the tendency of the hydrodynamic variables
u and T towards their USF values, as predicted in Sect. 4.3.2. In both figures the
evolution of the velocity and temperature profiles towards its steady value has been
plotted, starting from an initial state such that (i) T (x, t = 0) = T0 = 1 and (ii)

u(x, t = 0) = us(x) + A sin(2πx), A = 1, (4.78)

u(x, t = 0) = us(x) + A sin(2πx) + B cos(2πx), A = B = 1, (4.79)

respectively. In both cases, only the n = 1 Fourier mode is present. However, an
important physical difference should be stressed: the temperature profile is always
horizontal at the boundaries in Fig. 4.5, which is not in Fig. 4.6. Therefore, there is
heat flux at the system boundaries in the latter case but not in the former. Anyhow,
the agreement between simulation and theory is excellent in both situations.
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Fig. 4.5 Transient evolution of the velocity (top) and the temperature (bottom) to their steady
profiles in the USF state, for a = 10. The numerical curves are plotted with points, whereas the
solid lines correspond to the theoretical expression (4.50). The agreement between simulation and
theory is excellent in both cases. The system size is N = 500, the dissipation coefficient is ν = 20,
and the number of trajectories is M = 105. In this case, initial conditions correspond to Eq. (4.78),
namely A = 1 and B = 0
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Fig. 4.6 Same as in Fig. 4.5, but for initial conditions defined in Eq. (4.79), namely A = B = 1

4.5.4 The Couette Flow State

We now consider a system coupled to two reservoirs at both ends, as described in
Sect. 4.3.3. In the simulations, two “extra” sites 0 and N + 1 are introduced, so that
the number of colliding pairs is L = N + 1. When the colliding pair involves one
boundary particle (that is, pairs (0, 1) or (N , N + 1)), the same collision rule for
the bulk pairs (1, 2), . . . , (N − 1, N ) is applied but the velocity of the “wall” par-
ticles is drawn from a Gaussian distribution with fixed average velocities uL/R and
temperatures TL/R . This is the only change in the simulations, which no longer
correspond to periodic boundary conditions either in u or T . In particular, the
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Fig. 4.7 Numerical results (symbols) and theoretical values (solid lines) for the stationary velocity
profile u(x) (top) and the stationary temperature profile T (x) (bottom) in the Couette state. The
parameter values are ν = 20, N = 500,M = 105, for g = 0.25, 1, 4. The profiles have been plotted
at the final time νt = 20.

non-periodicity of u′ implies that momentum is not conserved in the time evolu-
tion of the system, conversely to the case of the HCS and USF states.

Figure4.7 shows the comparison between simulations and theoretical predictions
from Eq. (4.52), for different values of the parameter g = 2a2/(νTB). The boundary
conditions are chosen as TL/R = TB = 1, uR = −uL = a/2. It should be recalled
that g = 1 corresponds to the case in which the Couette steady state coincides with
the USF state and there is no heat current in the system. For g > 1 (g < 1), viscous
heating is stronger (weaker) than that of the USF, and the steady temperature profile
is concave (convex), that is, T ′′ < 0 (T ′′ > 0) and displays a maximum (minimum)
at the centre of the system x = 1/2. Simulations start from a non-stationary profile,
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Fig. 4.8 Third and fourth central moments μ3 (top) and μ4 (bottom) in the Couette steady state
for the same simulation as in Fig. 4.7. Numerical results are shown with symbols whereas the lines
stand for the theoretical prediction, i.e. the solutions of Eq. (4.36). It is evident that, excluding the
case g = 1, the one particle distribution is far from Gaussian in most of the spatial domain

initial particle velocities are drawn from a Gaussian distribution with local average
velocity u(x, 0) = 0 and temperature T (x, 0) = 1. An excellent agreement is found
in all the cases.

Figure4.8 depicts the third and fourth central moments of the one-particle veloc-
ity distribution, scaled with their corresponding powers of the temperature, namely
μ3/T 3/2 and μ4/T 2. Both moments display a non-trivial structure. In particular, the
non-vanishing third moment clearly shows that the one-particle distribution is not
symmetric with respect to the average velocity u. It is evident that the distribution is
non-Gaussian, except for the case TB = 2a2/ν, which corresponds to the USF state.
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Fig. 4.9 Top: amplitude of the momentum current as a function of x in the USF state. Specifically,
the rescaled amplitude L〈 j2(x, t)〉/Ts in the simulations (red line) and the theoretical constant
value (black line) are plotted. Bottom: amplitude of the energy current as a function of x in the USF
state. The numerical values of L〈J 2(x, t)〉/4T (x, t) − T (x, t) (red line) and 2u2s (x) (blue line) are
here plotted. All the simulations have been done in a system with N = 500, ν = 20, a = 5, and
M = 105

4.5.5 Fluctuating Currents

A comparison for the amplitudes of noise for the velocity and energy currents is
shown in Fig. 4.9. We carry it out in the USF state, in which the steady distribution
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is Gaussian but the average velocity is not homogeneous. This allows us to make a
more exigent test of the theoretical result for the amplitude of the energy current,
as given by Eq. (4.65), which contains a term proportional to u2. The agreement is
excellent for the amplitudes of both noises.
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Chapter 5
Granular Lattice: Beyond Molecular
Chaos

I’m looking for a complication
Looking cause I’m tired of trying

Make my way back home when I learn to fly high

(Foo Fighters)

The hydrodynamic behavior derived in Chap.4 and numerically analyzed in Sect. 4.5
has been obtained through theMolecular Chaos ansatz (4.14), mathematically equiv-
alent to the factorization of velocity correlations

〈vl,pvl ′,p〉 = 〈vl,p〉〈vl ′,p〉. (5.1)

This approximation has been found acceptable when comparing the numerical data
with the theoretical results. However, when looking at the time behavior of the
rescaled temperature T̃ (t) = T (t)/THCS(t), numerical analysis has shown a diver-
gence from the stationary solution T̃ = 1 which is expected in the region of stability
of the HCS, so the Haff’s law is violated as can be seen in Fig. 5.1. The main rea-
son of this violation is the presence of velocity correlations between next-neighbor
particles: in this section, we will analyze the effect of the correlations on the free
cooling of the system. Interestingly, for the case of Maxwell molecules the effect
of the correlations in the cooling can be determined in quite a detailed way. It will
be shown that long-range correlations arise in the system, and tend to a stationary
value. A multiple scales analysis of the temperature decay yields a “renormalised”
mesoscopic dissipation coefficient νr , equivalent to ν in the limit L → ∞. Finally,
rescaled fluctuations of the total energy (expected to be stationary in the HCS)
also have a divergent behavior in time: their time evolution is again derived from
microscopic balance equations, showing the fact that two-particles energy corre-
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lations are not scaling with the square of the temperature and therefore produce an
increase of energy fluctuationswith time. Numerical observations are shown together
with analytical results.

5.1 Perturbative Solution for Temperature
and Correlations

The system is assumed to be invariant under spatial translations, such as in the HCS
case, see Sect. 4.3.1. The correlation of the velocity at time τ between two particles
at distance k is

Ck(τ ) = 〈v j (τ )v j+k(τ )〉. (5.2)

Throughout this section, themicroscopic continuous time τ will be used, being equiv-
alent to the collisional discrete time p with 〈δτp〉 = (ω�p(L))−1, see Sect. 4.1.1. For
k = 0, the correlations reduce to the average temperature

T (τ ) ≡ C0(τ ) = 〈v2
j (τ )〉. (5.3)

From theMaster Equation 4.10 one can derive the evolution equations of the velocity
correlations, namely

ω−1∂τ C0 = (α2 − 1)(C0 − C1), (5.4a)

ω−1∂τ C1 = 1 − α2

2
(C0 − C1) + (1 + α)(C2 − C1), (5.4b)

ω−1∂τ Ck = (1 + α)(Ck+1 + Ck−1 − 2Ck), 2 ≤ k ≤ (L − 1)/2, (5.4c)

C L+1
2

= C L−1
2

, ∀τ . (5.4d)

The τ -dependence of the correlations has been omitted in the above equations to
keep the notation simple. Here we have taken an odd L , because the boundary
condition (5.4d) is simpler to write, and obviously this choice is irrelevant in the
large size limit L → ∞. The same equations can be derived in discrete time p by
averaging Eq. (4.17).

The momentum conservation yields the “sum rule”

C0(τ ) + 2

L−1
2∑

k=1

Ck(τ ) = 0, ∀τ , (5.5)

holding in the center ofmass frame. In the equilibrium casewith conservative interac-
tions and α = 1, the correlations do not depend on the sites’ distance k and they read
C eq

k = −T (L − 1)−1, ∀k > 0, see Appendix A.4.1, therefore being of order O(L−1).
In a non-equilibrium state, correlations may be non-uniform in space, but we still
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assume them to be of order O(L−1). Then, we introduce the rescaled correlation
Dk(τ ) as

Dk(τ ) = LCk(τ ), (5.6)

which is assumed to be finite in the infinite size limit.
In the large system size limit we expect Dk(τ ) to be a smooth function of space,

in the sense that Dk+1(τ ) − Dk(τ ) = O(L−1). Then, introducing again the typical
hydrodynamic length and time scales defined in Eq. (4.25), i.e.

x = k − 1

L
, t = ωτ

L2
= p

L3
, (5.7)

we can nowwrite Eq. (5.4) in the large size limit. Keeping solely terms up to O(L−1),
we arrive at

dT (t)

dt
= −ν

[
T (t) − L−1ψ(t)

]
, (5.8a)

νT (t) + 4∂x D(x, t)|x=0 = L−1

(
dψ(t)

dt
+ νψ(t)

)
, (5.8b)

∂t D(x, t) = 2 ∂xx D(x, t), (5.8c)

∂x D(x, t)|x=1/2 = 1

2
L−1 dχ(t)

dt
, (5.8d)

having defined
ψ(t) = lim

x→0
D(x, t), χ(t) = lim

x→ 1
2

D(x, t). (5.9)

These equations hold exactly up to times t 
 L2, since the O(L−2) terms are the
lower order terms neglected; those would lead to the appearance of fourth derivatives
in space in Eq. (5.8b). Equation (5.8a) shows the presence of a O(L−1) correction of
the cooling rate, given by the non-vanishing nearest-neighbor velocity correlation.

The derived equations are - and must be - consistent with the sum rule (5.5).
Retaining only terms up to O(L−1) included, we find (see Appendix A.3 for details)

T (t) + 2
∫ 1

0
dx D(x, t) + L−1 [ψ(t) − 2χ(t)] = O(L−2). (5.10)

The lhs of the above equation is a constant of motion, as can be readily shown from
the evolution equations (5.8).

The solution of the above system can be made easier defining the scaled (tilde)
fields with their corresponding power of THCS(t), analogously with Sect. 4.3.1. Intro-
ducing

T̃ (t) = T (t)

THCS(t)
, D̃(x, t) = D(x, t)

THCS(t)
, (5.11)

the rescaled fields obey the equations
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dT̃ (t)

dt
= νL−1ψ̃(t), (5.12a)

ν T̃ (t) + 4∂x D̃(x, t)|x=0 = L−1 dψ̃(t)

dt
, (5.12b)

∂t D̃(x, t) = ν D̃(x, t) + 2 ∂xx D̃(x, t), (5.12c)

∂x D̃(x, t)|x=1/2 = 1

2
L−1

(
dχ̃(t)

dt
− νχ̃(t)

)
. (5.12d)

The system above is linear in (T̃ , D̃), so it is possible to look for its exact solution:
this has been done in [1, 2]. We are here interested in the cooling rate correction
introduced by the velocity correlations, so we look for a solution of Eq. (5.12) by
means of a perturbative approach. We define the expansion of all functions of time
in powers of L−1 as

T̃ (t) = T̃0(t) + L−1T̃1(t) + O(L−2), (5.13a)

D̃(x, t) = D̃0(x, t) + L−1 D̃1(x, t) + O(L−2), (5.13b)

with analogous expansions for ψ̃(t) and χ̃(t).
To the lowest order, one gets

d

dt
T̃0 = 0, (5.14a)

ν T̃0 + 4∂x D̃0|x=0 = 0, (5.14b)

∂t D̃0 = ν D̃0 + 2 ∂xx D̃0, (5.14c)

∂x D̃0|x=1/2 = 0. (5.14d)

The first equation yields the constant solution T̃0 = 1. Furthermore, the scaled cor-
relations tend to a stationary value for long times, given by

D̃0(x) = −A cos

[
π

√
ν

νc
(1 − 2x)

]
, A = π

√
ν

νc
csc

(
π

√
ν

νc

)
. (5.15)

Looking for the first order corrections, the correction to the dissipation coefficient
is given by the equation for T̃1(t), namely

d

dt
T̃1(t) = νψ̃0(t). (5.16)

When the correlations reached the stationary profile (5.15), we can write

d

dt
T̃1(t) = νψ HCS, (5.17)
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defining ψ HCS as

ψ HCS ≡ −π

√
ν

νc
cot

(
π

√
ν

νc

)
. (5.18)

Therefore, for t �1 the rescaled temperature is linearly diverging as

T̃ (t) ∼ 1 + νψ HCS

L
t + O(L−2), (5.19)

neglecting the transient terms for T̃1. The last result explains the divergence of the
rescaled temperature in time, and it has been compared with simulations in Fig. 5.1.
Equation (5.19) also yields the presence of a transition at ν = νψ = 2π2, where
ψ HCS = 0 and first-order corrections to Haff’s law vanish.

The theoretical prediction (5.15) for the velocity correlations in the HCS has been
numerically checked in Fig. 5.2. The nearest-neighbors rescaled correlation ψ̃(t) and
the amplitude A are there plotted in function of time t and dissipation ν respectively,
and compared with Eq. (5.15). Trajectories start from a random configuration of
velocities with uniform distribution and zero average, i.e. u(x, 0) ≡ 0. A very good
agreement is found once more.

It has been already observed that the solution of Eq. (5.19) is valid only for
ψ HCSνt/L 
 1, while in this section the stationary value of the correlations has
been used supposing t � 1. These conditions may be consistent or not depending
on the value of ν and L: actually, simulated data in Fig. 5.2 clearly agree with the
theoretical prediction of Eq. (5.19) for ν < 60, while for higher values of the dissi-
pation the nearest-neighbor correlations do not seem to have reached their stationary
value. Therefore, longer trajectories should be observed and this leads to the diver-
gence of the first order perturbation O(t/L), breaking the validity of the perturbative
expansion introduced.

5.2 Temperature and Correlations Evolution:
Multiple-Scale Analysis

In order to build up a consistent theory over long times, we now introduce a
multiple-scale perturbative solution of Eq. (5.12). Following the approach in [3],
from Eq. (5.12a) two distinct time scales can be defined: the usual time t and a slow
time scale σ, namely

s = t, σ = L−1t, ∂t=∂s + L−1∂σ. (5.20)

This notation allows a distinction between∂t (with constant x) and∂s (with constant x
and σ). All functions of time are expanded in powers of L−1 as before and considered
as functions of two independent times (s,σ). So, to the lowest order we have
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Fig. 5.1 Top panel: rescaled temperature T̃ as a function of time. The numerical values of T̃
(circles) and the linear fits (lines) in the second part of the trajectory are compared, for several
values of ν (see legend). Bottom panel: the slope m = L dT̃ /d(νt) as a function of ν. Comparison
between the fitted slopes in the top panel (circles) and their theoretical values, given by ψ HCS in
Eq. (5.16) (blue line). The horizontal dashed line marks the transition at νψ = 2π2. Simulations are
made with L = 1000 sites

∂s T̃0(s,σ) = 0, (5.21a)

ν T̃0 + 4∂x D̃0|x=0 = 0, (5.21b)

∂s D̃0 = ν D̃0 + 2 ∂xx D̃0, (5.21c)

∂x D̃0|x=1/2 = 0. (5.21d)
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Fig. 5.2 Top panel: time evolution of nearest-neighbor rescaled correlations ψ̃(t). Numerical values
(circles) for severalν (see legend) are plotted as a functionof the dimensionless timeνt , togetherwith
their theoretical stationary values given by Eq. (5.18) (lines). The correlations reach their stationary
value for all ν ≤ 60 in the plotted time window, while they do not for ν = 70. This discrepancy will
be analyzed in Fig. 5.3. Simulations made with L = 1000. Bottom panel: correlation amplitude
A, defined in Eq. (5.15), as a function of ν. The numerical value (symbols) and its theoretical
expectation (black line) are plotted. Simulations with L = 250, 500, 1000. A very good agreement
is found for all ν < 70

having the same form of Eq. (5.14), but now T̃0 depends also on the slow time scale
σ; more precisely, Eq. (5.21a) prove that it depends only on1 σ, T̃0(�s,σ) = T̃0(σ).
Also, a pseudo-stationary solution for D̃0(x,�s,σ) can be found from Eq. (5.21), for
long time scales s � 1 but finite σ, namely

1Note that T̃0(σ) remains undetermined at the lowest order.
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D̃0(x,σ) = −T̃0(σ)A cos

[
π

√
ν

νc
(1 − 2x)

]
, (5.22)

differing from (5.15) because of theσ dependence of T̃0(σ). The latter can be obtained
by writing down the equations for the first order corrections. In fact, for the present
purposes, it suffices to write the evolution equation for T1(s,σ),

∂s T̃1 + d

dσ
T̃0 = νψ̃0, ψ̃0 = T̃0ψ HCS. (5.23)

Since the rescaled energy should not contain linear terms in time (see [1, 2] for a
rigorous proof), the first lhs term of (5.23) must vanish, and

νψ HCST̃0(σ) − d

dσ
T̃0 = 0 ⇒ T̃0(σ) = eνψ HCSσ, (5.24)

taking into account that T̃0(t = 0) = 1. Going back to the unscaled variables,
Eq. (5.24) can be rewritten as

T (t) = T (0) exp
[−νr

HCSt
] + O(L−1), νr

HCS = ν
(
1 − L−1ψ HCS

)
. (5.25)

The last result gives the finite size correction of the cooling rate in the Haff’s law.
Obviously, if we consider that σ = t/L 
 1 and retain only the linear terms in L−1,
the results of Eq. (5.19) are reobtained,

The renormalization of theHaff’s lawpredicted byEq. (5.25) is verified in Fig. 5.3:
simulations made over long times νtψ HCS ∼ L show the exponential behavior of
the rescaled temperature, as predicted from the multiple-scale analysis. Numerical
results are in good agreementwith the theoretical prediction (5.24). Nearest-neighbor
correlations have been studied as in Fig. 5.1: Fig. 5.3 shows that for ν = 50, 60 they
converge to their expected value after a very short transient, whereas for ν = 70 the
stationary value is smaller than its theoretical prediction. It is here possible that next
order corrections are becoming relevant when approaching the critical dissipation
νc, where it is known that ψ HCS is divergent.

5.3 Total Energy Fluctuations and Multiscaling

The distribution of the extensive energy E(τ ) = ∑
l v2

l (τ ) is a central problem in
granular systems. Usually, granular models present non-Gaussian distributions that
can be mostly characterized by the study of their fluctuations [4]. Within the same
spirit of Sect. 5.1, this section aims to derive the total energy rescaled fluctuations
�(τ ), defined as

�2(τ ) =
〈
E2(τ )

〉 − 〈E(τ )〉2
〈E(τ )〉2 . (5.26)
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Fig. 5.3 Top panel: log-linear plot of the rescaled temperature. Simulated values are plotted for
ν = 50, 60, 70 (circles), together with the fits upon the second part of the long trajectories (lines).
The time evolution is clearly exponential as predicted from Eq. (5.24). Inset: time evolution of the
nearest-neighbor rescaled correlations ψ̃(t) for long trajectories, simulations (circles) and theoretical
stationary values (lines). Bottom panel: slope ml of the time evolution of ln T̃ . The fitted values
from the top panel (squares) are shown together with the theoretical prediction (5.24) (black line).
All the realizations have been done with L = 1000 particles up to a maximum time νt = 200

Assuming the Local Equilibrium Approximation (LEA) one immediately finds the
constant solution �2(τ ) = 2/L . However, the time evolution of �2(τ ) numerically
observed is clearly divergent from the LEA solution, as can be seen in Fig. 5.4.

This kind of anomalous behavior is generally associated with the presence of a
multiscaling of the velocitymoments [5], i.e. themoments are not scaling proportion-
ally to the granular temperature T (τ ) = 〈

v2(τ )
〉
. Notwithstanding, this phenomenon
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Fig. 5.4 Total energy rescaled fluctuations as a function of dimensionless time νt . Numerical results
are plotted for ν = 10, 20, . . . , 70, always with L = 1000. The divergence from the expected LEA
value is evident and grows with ν

can also be explained by a well-defined scaled distribution function with some diver-
gent moments [6, 7]. Following the same approach of Sect. 5.1, we look for a direct
calculation of the energy fluctuations by means of the evolution equations for the 4th
order moments and correlations.

In the homogeneous case, the evolution equations read

〈
E2(τ )

〉 =
L∑

l=1

〈
v4

l (τ )
〉 +

L∑

l=1

L−1∑

k=1

〈
v2

l (τ ) v2
l+k(τ )

〉
(5.27a)

= L
〈
v4(τ )

〉 + L

[
(L − 1)T 2(τ ) + 2

(L−1)/2∑

k=1

C2,2
k (τ )

]
,

〈E(τ )〉 = LT (τ ), (5.27b)

having defined the two-particle squared velocity correlation function

C2,2
k (τ ) = 〈

v2
l (τ )v2

l+k(τ )
〉 − T 2(τ ), k �= 0. (5.28)

Therefore, the energyfluctuations dynamics is givenby the dynamics of T (τ ),q(τ ) =〈
v4(τ )

〉
and C2,2

k (τ ) altogether.
Rescaled energy fluctuations hence read

L�2(t) = 2 + a2(t) + 2

T 2(t)

∫ 1
2 − 3

2L

0
D2,2(x, t)dx, (5.29)
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moving to continuum fields through the hydrodynamic scaling defined in Eq. (5.7)
and introducing the excess kurtosis field a2(t) = q(t)/T 2(t) − 3. The correlation
field D2,2 = LC2,2 has been defined analogously with the scaling used in Sect. 5.1,
and is expected to be finite in the large size limite. The evolution equations for
these fields can be computed from the microscopic dynamics (4.15). A pertur-
bative approach analogous to the one in Sect. 5.1 gives a set of equations sim-
ilar to Eq. (5.14), coupling all the one-particle and two-particles fourth-degree
fields, namely q(t), D2,2(x, t) and D3,1(x, t). The latter is the large-size limit of
D3,1

k (τ ) = L
〈
v3

l (τ ) vl+k(τ )
〉
. Also, these equations contain the three-particles veloc-

ity correlations, namely C1,2,1
i, j (τ ) = 〈

vl−i (τ ) v2
l (τ ) vl+ j (τ )

〉
. To get a closed set, we

need tomakeuse of the clustering ansatz, i.e. the three-particles correlationsC1,2,1 are
simplified through a cluster expansion and the purely correlated terms are neglected,
namely

C1,2,1
i, j (τ ) = 〈

v2
l (τ )

〉 〈
vl−i (τ ) vl+ j (τ )

〉 + 2 〈vl(τ ) vl−i (τ )〉 〈
vl(τ ) vl+ j (τ )

〉

+O(L−3) = 1

L
T (τ )D|i+ j |(τ ) + 2

L2
Di (τ )D j (τ ) + O(L−3).

(5.30)

The derivation frommicroscopic dynamics is lengthy and painful but conceptually
easy to understand: it relies on the expansion of correlation fields and moments,
analogous to the one defined in Eq. (5.13). The main steps and the final results are
here shown; in Appendix A.4 the reader will find the detailed calculations to obtain
the results presented in the section.
Starting from the microscopic dynamics defined in Eq. (4.15) and moving to the
continuum limit, with the clustering ansatz one gets to the lowest order

d

dt
q̃0(t) = 0, (5.31a)

ν
[
q̃0(t) + 3T̃ 2

0

]
+ 8∂x D̃3,1

0 |x=0 = 0, (5.31b)

∂t D̃3,1
0 = ν

2

(
D̃3,1

0 + T̃0 D̃0

)
+ 2 ∂xx D̃3,1

0 , (5.31c)

∂x D̃3,1
0 |x=1/2 = 0, (5.31d)

∂x D̃2,2
0 |x=0 = 0, (5.31e)

∂t D̃2,2
0 = 2 ∂xx D̃2,2

0 , (5.31f)

∂x D̃2,2
0 |x=1/2 = 0. (5.31g)

These equations can be readily solved. If the initial distribution is Gaussian, we have
at any time q̃0 = 3 T̃ 2

0 . Furthermore, in the long time limit t � 1, the stationary fields
read

D̃3,1
0 (x) = 3 D̃0(x), D̃2,2

0 (x) = 0, (5.32)
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Fig. 5.5 Slope of the energy fluctuations in function of time. The fitted values (symbols) in the
second part of the trajectories are compared with the theoretical prediction m�(ν) in (5.38) (black
line). Simulations are carried out as in Fig. 5.4 but with L = 250, 500, 1000 particles

recalling that T̃0 = 1. It must be noticed that these results do not lead to any multi-
scaling effect such as the one observed into the simulations.

In light of the above, it is necessary to compute the next perturbative order. The
equations needed from the definition (5.29) are those for q̃1 and D̃2,2

1 , i.e.

d

dt
q̃1(t) = 2νψ̃3,1

0 (t), (5.33a)

ν T̃0ψ̃0 + ∂x D̃2,2
1 |x=0 = 0, (5.33b)

∂t D̃2,2
1 = 2 ∂xx D̃2,2

1 + 4 ν D̃2
0, (5.33c)

∂x D̃2,2
1 |x=1/2 = 0, (5.33d)

where ψ̃3,1(t) = limx→0 D̃3,1(x, t). Equation (5.33a) can be easily solved for long
times since D̃3,1

0 (x, t) is known from (5.32), yielding

q̃1(t) = 2νψ3,1
0 = 6νψ HCS. (5.34)

Looking at the D̃2,2
1 field from Eq. (5.29), for our purposes it is sufficient to compute

the integral �1(t) = ∫ 1
0 dx D̃2,2

1 (x, t). Considering Eq. (5.33), we have that

d

dt
�1(t) = 4ν

[
ψ0(t) +

∫ 1

0
dx D̃2

0(x, t)

]
, (5.35)
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having used the boundary condition

∂x D̃2,2
1 |x=1− = −∂x D̃2,2

1 |x=0+ . (5.36)

Therefore, in the long time limit the stationary correlation profile D̃(x) from
Eq. (5.15) yields a stationary growth of �1(t), namely

d

dt
�1(t) = 2ν

[
π
√

ν/νc

sin
(
π
√

ν/νc
)
]2 [

1 − sin
(
2π

√
ν/νc

)

2π
√

ν/νc

]
. (5.37)

It is now possible to compute the energy fluctuations of Eq. (5.29). To the first
order, from Eqs. (5.34) and (5.16) we can see that the excess kurtosis a2(t) vanishes
for all times if it initially did so, so a2(t) = O(L−2). Therefore the steady-state
linear divergence of the energy fluctuations (to the first order) is given by the D2,2

correlations term in (5.37). Specifically, for t � 1, we have

d

dt
�2(t) = 1

L

d

dt
�1(t) = ν

L
m�(ν), (5.38)

where the factor m�(ν) = d�1/d(νt) is the slope of the energy fluctuations in func-
tion of the dimensionless time νt .

In conclusion, it seems that the observed energymultiscaling stems from themulti-
scaling of two-particles and three-particles correlationfields,while the single-particle
fourth moment still scales with the squared granular temperature. This theoretical
result has been compared with simulations in Fig. 5.5. Although their agreement is
slightly less accurate than in the previous cases - especially for high ν - we see that
they both exhibit a similar trend over three decades of m� values.

In order to improve the agreement between theory and simulations, a multiple
scale analysis has also been performed, analogous to that in Sect. 5.2, keeping the
clustering ansatz (5.30). Nevertheless, this step does not improve the agreement with
the numerics, therefore the clustering ansatz may be the main responsible for the
discrepancy observed.

References

1. C.A. Plata, A. Manacorda, A. Lasanta, A. Puglisi, A. Prados, Lattice models for
granular-like velocity fields: finite-size effects. J. Stat. Mech. (Theor. Exp.) 2016(9),
093203 (2016). http://stacks.iop.org/1742-5468/2016/i=9/a=093203, https://doi.org/10.1088/
1742-5468/2016/09/093203

2. C.A. Plata, Ph.D. thesis, To be defended
3. C.M. Bender, S.A. Orszag, in Advanced Mathematical Methods for Scientists and Engineers

(Springer, Berlin, 1999)

http://stacks.iop.org/1742-5468/2016/i=9/a=093203
https://doi.org/10.1088/1742-5468/2016/09/093203
https://doi.org/10.1088/1742-5468/2016/09/093203


148 5 Granular Lattice: Beyond Molecular Chaos

4. J.J. Brey, A. Domínguez, M.I. García de Soria, P. Maynar, Mesoscopic theory of critical fluc-
tuations in isolated granular gases. Phys. Rev. Lett. 96, 158002 (2006). https://doi.org/10.1103/
PhysRevLett.96.158002

5. E. Ben-Naim, P.L. Krapivsky, Multiscaling in inelastic collisions. Phys. Rev. E 61, R5–R8
(2000). https://doi.org/10.1103/PhysRevE.61.R5

6. A. Baldassarri, U.M.B. Marconi, A. Puglisi, Influence of correlations on the velocity statistics
of scalar granular gases. EPL (Europhys. Lett.) 58(1), 14 (2002). https://doi.org/10.1209/epl/
i2002-00600-6

7. G. Costantini, U.M.B. Marconi, A. Puglisi, Velocity fluctuations in a one-dimensional inelastic
Maxwell model. J. Stat. Mech. Theory Exp. 2007(08), P08031 (2007). http://stacks.iop.org/
1742-5468/2007/i=08/a=P08031, https://doi.org/10.1088/1742-5468/2007/08/P08031

https://doi.org/10.1103/PhysRevLett. 96.158002
https://doi.org/10.1103/PhysRevLett. 96.158002
https://doi.org/10.1103/PhysRevE.61.R5
https://doi.org/10.1209/epl/i2002-00600-6
https://doi.org/10.1209/epl/i2002-00600-6
http://stacks.iop.org/1742-5468/2007/i=08/a=P08031
http://stacks.iop.org/1742-5468/2007/i=08/a=P08031
https://doi.org/10.1088/1742-5468/2007/08/P08031


Chapter 6
Active Lattice Fluctuating
Hydrodynamics

It don’t mean a thing
If it ain’t got that swing

(D. Ellington)

The granular lattice model analyzed in the last chapters has shown to reproduce
realistic physical phenomena and to lead towards new analytical results on nonequi-
librium fluctuating hydrodynamics [1–3]. The generality of the method brought us
to the formulation of a lattice model of active matter, which will be developed along
the same lines [4].

Here we introduce a model of granular active particles (GAP) on the lattice where
pairwise interactions combine excluded volume and dissipative alignment, quite sim-
ilarly to the off-lattice model in [5] described in Sect. 2.3. The main result is a set of
hydrodynamic equations for the density, momentum and energy fields with fluctu-
ating currents and source terms, in analogy with granular lattice results in Chap.4.
An application of these general equations is given in the dilute limit, assuming local
equilibrium [6], where they describe a gas-swarming phase transition through the lin-
ear instability of the homogeneous disordered state. The homogeneous swarming [7]
state arises when either the noise amplitude is small enough or the aligning force is
strong enough. Numerical simulations are in fair agreement with the theory - includ-
ing predictions of the macroscopic noise amplitudes - for packing fraction smaller
than 10%: they also suggest that the instability is discontinuous in the large volume
limit. Simulations also display the emergence of clustering and phase separation at
higher packing fraction, where our assumptions fail.

© Springer International Publishing AG, part of Springer Nature 2018
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6.1 Definition of the Model

6.1.1 Microscopic Ingredients

We consider a square lattice in d dimensions of volume V = Ld , with 1 � N ≤ V
self-propelled particlesmoving on it. A lattice site i = (i1, i2, . . . , id) ∈ {1, L}d = �

can be occupied at most by one particle (excluded volume) and is described by its
occupation number ni ∈ {0, 1} and its “active velocity” vi ∈ R

d (the meaning of this
variable is discussed later). The elementary moves that constitute the microscopic
evolution of each particle, see Fig. 6.1, amount to

• hopping;
• nearest-neighbors interactions;
• self-propulsion;
• noise.

Hopping means that a particle at site i can move to an adjacent site i + σel , being
el the unit vector in the lth direction and σ = ±1 the orientation of the hop, with
l = 1, . . . , d. The probability of hopping per unit of time can generally be velocity-
dependent.

Pairwise interactions are represented by a contact force: when two particles with
active velocities v and v′ are nearest-neighbors, they act on each other with a force

f (2)(v, v′) = −f (2)(v′, v) , (6.1)

where f (2)(v, v′) represents the force transmitted from a particle with velocity v
to a particle with velocity v′. The above relation implies the conservation of total
momentum during interactions. The force can be dissipative or conservative; from
Sect. 6.2 on we will focus on the dissipative case, in analogy with granular collisions.

Self-propulsion consists of a velocity-dependent force f (1)(v): indeed, the speed
of active particles v = |v| is not fixed and the self-propulsion acts to maintain the
state of motion of the particles, typically pushing them towards a fixed point of the
speed vs . The self-propulsion is combined with a vectorial Wiener process �Wi(t)
independently acting upon each component of the velocity of each particle, with a
velocity-diffusion tensor B(v).

The state of the system is completely determined by its microscopic configuration
{ni, vi}. The system evolves with a discretized time. The index p ∈ N denotes the
number of performed time steps. Physical time reads t = p�t ∈ R, where �t will
go to zero when taking the continuum limit, as well as the physical distance between
two lattice sites �x .
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Fig. 6.1 Sketch of active particles in a 2d lattice. Particles A–D show hopping (black arrows) to
neighbor sites according to the directions of their active velocity (blue arrows), including periodic
conditions (A, dashed arrow) and excluded volume (C, D). Next-neighbors interact (E, F), with a
force which aligns velocities (from blue to red arrows). Self-propulsion acts in the direction of the
velocity and brings the speed toward a fixed value (G, from blue to green arrow). The velocity of
a particle can be modified also by external noise (H, from blue to green). All the contributions are
acting on every particle at the same time, but they are represented separately for the sake of clarity

6.1.2 Physical Interpretation

Themodel possesses the main features of active matter models described in Sect. 2.2.
The interplay between an interaction rule and a self-propulsion is present [8], com-
bined with a noise term which can be interpreted as the effect of hidden degrees
of freedom like the action of surrounding fluid or the random exploration of space
performed by active units [9–13]. Conversely from the granular case, the particles
move on the lattice when hopping, similarly with the exclusion processes described
in Sect. 3.3.1 [14–16]. Additionally, particles hop from one site to another depending
on the active velocity degree of freedom directly entering in the hopping probabil-
ities: indeed, with the “natural active velocity” hopping probability defined in the
next subsection, a probe particle on an empty lattice follows a ballistic motion with
〈x(t) − x(0)〉 = v t , where v is constant in absence of self-propulsion, noise and
interactions. However, this is not the case in a crowded environment: when all the
adjacent sites are occupied, a particle with a non-vanishing active velocity does not
move at all because of excluded volume. This is why we call vi the active velocity
of a particle in the site i: it represents the tendency of active particles to move with
a given direction and speed provided that the direction of motion is not occupied by
other particles. This behavior may reproduce the clustering behavior of bacteria or
Janus particles [17, 18], when they all point towards the same direction and therefore
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self-clustering arises. So, in our model it is generally wrong to say that ẋ = v, as in
the case of Active Ornstein–Uhlenbeck particles introduced in Sect. 2.2.4 [19–22].
However, in the latter model this was the consequence of an overdamping of the
motion equations; here, it directly stems from the presence of excluded volume: the
equations for our model are not overdamped in any considered case.

6.1.3 Microscopic Balance Equations

Wenowwrite themicroscopic evolution equations for occupation ni, momentum nivi
and energy ei ≡ 1

2ni
∑

k v2
i,k . From now on, the index l is associated to the direction

of hopping while the index k indicates a general component of vectorial quantities.
At each infinitesimal time step p two random vectors are extracted: the random

site ξ p ∈ �, determining the hopping particle, and the random direction ζ p = ±el
determining the direction and orientation of the hop. The probability of extraction
satisfies

δξ p,iδζ p,σel = ni,p(1 − ni+σel ,p)g(σvl,p)
�t

�x
, (6.2)

where σ = ±1 and · · · represents the average over the fast variables ξ p, ζ p condi-
tioned by the actual microscopic configuration {ni,p, vi,p} at time p. The first two
factors in the rhs guarantee that hopping can only occur from an occupied to an
empty site, as for SEP models. The projection function g relates the active velocity
component l with the hopping probability in the lth direction: since g(σvl,p)�t/�x
must be dimensionless, g must have the dimension of a velocity. In our model, we
will choose it as proportional to the projection of vi along the direction l, namely

g(σvl) = �(σvl)|σvl | , (6.3)

where �(x) is the Heaviside step function. We call this rule the “natural active
velocity” prescription. Equations (6.2) and (6.3) provide that a free particle follows
an average ballistic motion with 〈ẋ〉 = v if all the forces are absent. The hopping
probability (6.2) also includes a constraint �t � �x which will be analyzed later.
The total hopping probability is generally under-normalized, i.e. there can be no hops
during a time step.

The evolution of microscopic variables is given by balance equations: for each
of the quantities above defined, we can compute the gain and loss terms at each time
step. For instance, the occupation number ni increases by 1 if a particle from an
adjacent site hops into it, and vice versa if the occupying particle hops away from it.
So,
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ni,p+1 = ni,p +
d∑

l=1

∑

σ=±1

(
δξ p,i−σel δζ p,σel − δξ p,iδζ p,σel

)
. (6.4)

The discrete continuity equation for occupation number reads

�ni = −
d∑

l=1

(
ji − ji−el

)
l , (6.5)

where�ni ≡ ni,p+1 − ni,p and the time dependence from now on is omitted because
every variable in the rhs is evaluated at time p. Equation (6.5) defines the density
current vector as

ji,l ≡ δξ p,iδζ p,el − δξ p,i+el δζ p,−el , (6.6)

which is either 1 if the particle is leaving the site i in the “positive” direction (right,
top...) or−1 if a particle is incoming from the same direction. The particles can not be
created or destroyed, so the occupation number obeys an exact continuity equation.

Analogously, the evolution of the active velocity can be obtained through active
momentum balance, i.e.

�(nivi) =
d∑

l=1

∑

σ=±1

[
δξ p,i−σel δζ p,σelvi−σel − δξ p,iδζ p,σelvi+

+nini−σel f
(2)
(
vi−σel , vi

)
�t
]+ ni

[
f (1)(vi)�t + B(vi) · �Wi(t)

]
,

(6.7)
or, writing the components explicitly,

�(nivi,k) = −
d∑

l=1

(
Ji − Ji−el

)
kl + ni

[

f (1)
k (vi)�t +

d∑

l=1

Bkl(vi)�Wi,l(t)

]

,

(6.8)
accounting for momentum transport through hopping and pairwise interactions and
momentum injection by means of the self-propulsion f (1) and the random force
B(vi) · �Wi acting on the unit. The transported momentum defines the momentum
current tensor J, whose components read

Ji,kl ≡ δξ p,iδζ p,elvi,k − δξ p,i+el δζ p,−elvi+el ,k + nini+el f
(2)
k (vi, vi+el )�t , (6.9)

representing the momentum in direction k transported in direction l.
The evolution of microscopic kinetic energy is given by
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�ei =(nivi) · �(nivi) + 1

2

⎡

⎣
∑

l,σ

(
δξ p,i−σel δζ p,σel vi−σel − δξ p,iδζ p,σel vi

)
⎤

⎦

2

+ 1

2

[

ni

d∑

l=1

Bkl(vi)�Wi,l(t)

]2

= −
∑

k,l

(nivi,k)
(
Ji − Ji−el

)
kl +

d∑

k=1

[

(nivi,k)

(

f (1)
k (vi)�t +

d∑

l=1

Bkl(vi)dWi,l(t)

)

+1

2

∑

l,σ

(
δξ p,i−σel δζ p,σel v

2
i−σel ,k + δξ p,iδζ p,σel v

2
i,k

)
+ 1

2
ni

d∑

l=1

[Bkl(vi)]2�t

⎤

⎦

= −
d∑

l=1

(
Ji − Ji−el

)
l + nivi · B(vi) · �Wi(t) + Di �t ,

(6.10)
defining the energy current Ji as

Ji = J(hops)
i + J(int)

i ,

J (hops)
i,l = δξ p,iδζ p,el ei − δξ p,i+el δζ p,−el ei+el ,

J (int)
i,l = 1

2
nini+el (vi + vi+el ) · f (2)(vi, vi+el )�t ,

(6.11)

and the energy injection/dissipation terms

Di = D(int)
i + D(self)

i + D(noise)
i ,

D(int)
i = −1

2

∑

l,σ

nini+σel (vi − vi+el ) · f (2)(vi, vi+el ) ,

D(self)
i = nivi · f (1)(vi) ,

D(noise)
i = 1

2
ni

1,d∑

k,l

[Bkl(vi)]2 ≡ 1

2
niB(vi) ,

(6.12)

where the contributions from hopping, interactions, self-propulsion and noise have
been written separately.

Equations (6.5), (6.8) and (6.10) are the microscopic balance equations of the
system. Their validity is not restricted to any equilibrium approximation or hypoth-
esis on the configuration distribution function. At this stage, they are equivalent to
Eqs. (4.15) and (4.17) of the granular model.
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6.2 Hydrodynamic Limit

The derivation of the hydrodynamic equations for the model can be done through a
continuum limit of microscopic balance equations derived in the previous section.
The hydrodynamic fields considered are density, momentum and temperature. The
probability of a configuration {ni, vi} at time t is defined as P({ni, vi}; t). The
2-sites (i, j) and 1-site (i) marginalized distributions are respectively given by
P (2)
i,j (ni, nj, vi, vj; t) and P (1)

i (ni, vi; t). Locally averaged fields are defined as

ρi(t) = 〈ni〉 , (6.13a)

ρi(t)ui,k(t) = 〈nivi,k〉 , (6.13b)

ρi(t)Ti(t) = 1

d
〈ni|vi − ui|2〉 , (6.13c)

where

〈 f (ni, vi)〉 =
∏

i∈�

(
∑

ni=0,1

∫

R

dvi

)

P({ni, vi}; t) f (ni, vi) , (6.14)

and in Eq. (6.13c) we assumed the isotropy of local temperature. From now on we
make only use of continuous time t = p�t . The temperature is related to the energy
through the relation

Ti(t) ≡ 1

d

〈|v − u|2〉i = 1

d

(
2

ρi(t)
〈ei(t)〉 − u2i (t)

)

. (6.15)

We move to a large volume limit L → ∞, N → ∞ at constant number density
φ = N/V . In this limit the physical spacing between two adjacent lattice sites is
sent to 0 as �x = 1/L , such that a spatial position in the system is denoted by a
continuous x ∈ [0, 1]d .

To get a closed set of equations, we make use of two assumptions

1. Molecular Chaos (expected to be valid in the dilute limit φ → 0) with isotropic
velocity factorization:

P (2)
i,j (ni, nj, vi, vj; t) = P (1)

i (ni, vi; t)P (1)
j (nj, vj; t) , (6.16)

P (1)
i (ni, vi; t) = pi(ni ; t)

d∏

k=1

Pi,k(vi,k; t) ; (6.17)

2. smoothness in space of averages of generic observables F(n, v):

〈F〉i±el ,t = 〈F〉(x, t) ± 1

L

∂

∂xl
〈F〉|(x,t) + O(1/L2) , (6.18)
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being l a Cartesian direction l ∈ {1, d}.
With the hypothesis above stated, it is straightforward to perform averages and

limits of the currents. At the first order, these read

〈
ji,p
〉→ �t

�x
jav(x, t) , (6.19a)

jav(x, t) = ρ(x, t) [1 − ρ(x, t)]G(0)(x, t) , (6.19b)

〈
Ji,p
〉→ �t

�x
Jav(x, t) , (6.20a)

Jav(x, t) = ρ(x, t) [1 − ρ(x, t)]G(1)(x, t) , (6.20b)

〈
Ji,p
〉→ �t

�x
Jav(x, t) , (6.21a)

Jav(x, t) = ρ(x, t) [1 − ρ(x, t)]G(2)(x, t) , (6.21b)

where G(0), G(1) and G(2) are defined as the hop vectors and tensor, respectively
accounting for transport of particles, momentum and energy. They read

G(0)
l (x, t) ≡

∫

dvP(v; x, t)h(vl) , (6.22a)

G(1)
kl (x, t) ≡

∫

dvP(v; x, t)h(vl)vk , (6.22b)

G(2)
l (x, t) ≡

∫

dvP(v; x, t)h(vl)
1

2
v2 , (6.22c)

with h(vl) ≡ g(vl) − g(−vl).
We also take the averages of the gain/loss terms, which read

〈
nf (1)(v)(x, t)

〉 = ρ(x, t)
∫

dvP(v; x, t)f (1)(v) ≡ ρ(x, t)f s(x, t) , (6.23)

〈
D(int)(x, t)

〉 = −dρ2(x, t)
∫

dvdv′P(v; x, t)P(v′; x, t)(v − v′) · f (2)(v, v′)

≡ −dρ2(x, t)�d(x, t) ,

(6.24)
〈
D(self)(x, t)

〉 = ρ(x, t)
∫

dvP(v; x, t)v · f (1)(v) ≡ dρ(x, t)�s
0(x, t) , (6.25)
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〈
D(noise)(x, t)

〉 = ρ(x, t)
∫

dvP(v; x, t)B(v) ≡ dρ(x, t)�n(x, t) , (6.26)

and - for the following - it is also useful to define

�s(x, t) ≡
∫

dvP(v; x, t) [v − u(x, t)] · f (1)(v)/d . (6.27)

With the above assumptions and definitions, through a direct local averaging of
Eqs. (6.5), (6.8) and (6.10) and in the large volume limit one gets the following
hydrodynamic equations:

∂tρ = − ∇ · j, (6.28a)

ρ∂tu = − ∇ · J + u(∇ · j) + ρf s, (6.28b)

ρ∂t T =
(

T − u2

d

)

∇ · j + 2

d
u∇ : J − 2

d
∇ · J (6.28c)

− 2ρ2�d + 2ρ(�s + �n).

Equation (6.28) are the most general hydrodynamic equations which can be
derived for our system. Since we retained only the first order gradients from the
analytical expansion of averaged fields in Eq. (6.18), Eq. (6.28) are equivalent to
the “Euler” hydrodynamic equations (3.20). At this stage their meaning is formal,
because the actual expressions of currents and source terms are unknown. These can
be computed only once the specific forms of projection function g(σvl), interac-
tion f (2), self-propulsion f (1) and diffusion tensor B are given. Furthermore, we will
see that the one-particle distribution must be specified to close the hydrodynamic
equations at this order.

It is remarkable that, without any assumption on the velocity distribution, the
momentum current associated with interactions vanishes in Eq. (6.22b) at the lead-
ing order because of the interplay between Molecular Chaos ansatz and momentum
conservation in continuum limit: indeed, if correlations are neglected, the exchange
of momentum is symmetrical between two particles with the same one-particle dis-
tribution function at the leading order because of the smoothness ansatz (6.18). Thus,
its expression is of the first order in spatial gradients and therefore subleading with
respect to hopping terms. A clear derivation of this fact is given in Appendix B.2.
The physical consequence of this result is the absence of viscosity in hydrodynamic
equations at the leading order.

Let’s now derive the hydrodynamic equations for some specificmicroscopic rules.
For the “natural active velocity” prescription, we have
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G(0)
l (x, t) =

∫

dvP(v; x, t)vl = ul ,

G(1)
kl (x, t) =

∫

dvP(v; x, t)vlvk = 〈vlvk〉 ,

G(2)
l (x, t) =

∫

dvP(v; x, t)vl 1
2
v2 = 1

2

d∑

k=1

〈
vlv

2
k

〉
.

(6.29)

The above quantities can be further simplified by defining a “stress” tensor

Qkl(x, t) ≡ G(1)
kl (x, t) − uk(x, t)G

(0)
l (x, t) =

∫

dvP(v; x, t)h(vl) [vk − uk(x, t)] ,

(6.30)
and a “heat” vector

Rl(x, t) ≡
∫

dvP(v; x, t)h(vl)

[
1

d
|v − u(x, t)|2 − T (x, t)

]

. (6.31)

Within the “natural active velocity” prescription, we have

G(1)
kl (x, t) = T (x, t)δkl + uk(x, t)ul(x, t) ,

G(2)
l (x, t) = 〈v3

l 〉(x, t) + (d − 1)ul(x, t)T (x, t) + ul(x, t)u2(x, t) − u3l (x, t) ,

Qkl(x, t) = T (x, t)δkl ,

Rl(x, t) = 1

d

[〈v3
l 〉(x, t) − 3ul(x, t)T (x, t) − u3l (x, t)

]
,

(6.32)
provided that the Cartesian components of the active velocity are statistically inde-
pendent and that the temperature is isotropic, i.e.

P(v; x, t) =
d∏

k=1

Pk(vk; x, t) , 〈(vk − uk)
2〉 = T ∀k . (6.33)

With the additional assumption that central odd velocity moments are zero, we get

〈(vl − ul)
3〉 = 0 ⇒ 〈v3〉 = 3Tul + u3l , (6.34)

and, as a consequence, G(2)
l and Rl simplify into

G(2)
l (x, t) = 1

2
ul(x, t)

[
(d + 2)T (x, t) + u2(x, t)

]
, Rl(x, t) = 0 . (6.35)

In conclusion, in the continuous limit, the balance Eqs. (6.5), (6.7) and (6.10) with
the average currents and noise terms for the choice of the “natural active velocity”
read
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∂tρ = −∇ · [ρ (1 − ρ)u] , (6.36a)

ρ∂tu = −{∇ [ρ (1 − ρ) T ] + ρ (1 − ρ) (u · ∇) u} + ρf s , (6.36b)

ρ∂t T = −ρ (1 − ρ)

[
2

d
T ∇ · u + (u · ∇) T

]

− 2ρ2�d + 2ρ
(
�s + �n

)
. (6.36c)

These equations are completely analogous to Euler equations (3.20), except for the
terms ρ(1 − ρ) appearing in the currents: their presence clarifies the meaning of
our “active velocity” vi , which as explained above is not equivalent to the actual
infinitesimal displacement of the particle. The excluded volume can be seen as a
modification of the particles’ mobility, which is vanishing in the dense case ρ → 1.
On the contrary, in the dilute limit ρ → 0 this is not a relevant difference, but it can
be appreciated at relatively moderate densities.

We now specify the interaction, self-propulsion and noise terms: the former is
taken as

f (2)(v, v′) = ωd(v − v′) . (6.37)

This choice deserves some justification: indeed, it reproduces a sort of “soft” inter-
action between velocities of nearest-neighbor particles. Actually, the force above-
defined has two main properties

1. it mimics the behavior of Kuramoto andVicsek aligning interactions, with a stable
fixed point for v = v′;

2. it is a source of dissipation because, as it will be shown, it yields �d > 0.

The interaction in Eq. (6.37) is a deterministic force and the result of a compromise
betweenVicsekmodel and granular collisions. Itmust be stressed that the interactions
are acting continuously instead than being instantaneous as for granular hard spheres:
this is an important difference with respect to our previous granular model. Also, the
characteristic frequency ωd cannot be directly associated to the restitution coefficient
α, and there is no elastic limit for this kind of interaction. However, the comparison
between granular and active hydrodynamic equations allows a mapping of inelastic
collisions into Vicsek-like force (6.37). Moreover, a further version of the active
model may easily include granular collisions as an instantaneous process, with the
same procedure described in Sects. 4.2.1 and 6.1.3.

Self-propulsion is taken as

f (1)(v) = ωsv
(

1 − v2

v2
s

)

, (6.38)

having the same form of the Rayleigh-Helmoltz viscosity introduced in Sect. 2.2.3.
The effect of self-propulsion is to push the particles towards the stable fixed point
v = vs ; on the contrary, the fixed point v = 0 is unstable. The self-propulsion
doesn’t change the direction or orientation of the velocity, but rather acts only on
its magnitude. The analytical solution of the motion equation v̇ = f (1)(v) is given in
Appendix B.1.
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Finally, we choose an isotropic and constant diffusion tensor B(v), namely

Bkl(v) = √
2Dδkl , (6.39)

defining the diffusivity D. For all these choice of microscopic features, the average
source terms read

f sk (x, t) = ωsuk(x, t)
[

1 − 1

v2
s

(
(d + 2)T (x, t) + u2(x, t)

)
]

, (6.40a)

�d(x, t) = 2d ωdT (x, t) , (6.40b)

�s(x, t) = ωsT (x, t)
[

1 − d + 2

v2
s

(

T (x, t) + 1

d
u2(x, t)

)]

, (6.40c)

�n(x, t) = D , (6.40d)

where the first and third equations, stemming from self-propulsion force (6.38), have
been derived under the Local Equilibrium assumption, namely

P(v; x, t) = [2πT (x, t)]−d/2 exp
[−|v − u(x, t)|2/2T (x, t)

]
, (6.41)

because of the presence of 〈v4〉 terms in the averages.
Substituting the above expressions into Eq. (6.36) we get the average hydrody-

namic equations with the above specified prescriptions and the Local Equilibrium
assumption, which read

∂tρ = − ∇ · [ρ (1 − ρ) u] , (6.42a)

ρ∂tu = − {∇ [ρ (1 − ρ) T ] + ρ (1 − ρ) (u · ∇) u} (6.42b)

+ ρωsu
[

1 − 1

v2
s

(
(d + 2)T + u2

)
]

,

ρ∂t T = − ρ (1 − ρ)

[
2

d
T ∇ · u + (u · ∇) T

]

(6.42c)

− 4dωdρ
2T + 2ρωsT

[

1 − d + 2

v2
s

(

T + 1

d
u2
)]

+ 2ρD .

6.2.1 Homogeneous Fixed Points

We look at the fixed points of hydrodynamic equations (6.36). Our case of study is
the homogeneous case, in analogy with the HCS described in the granular model.
Homogeneity greatly simplify hydrodynamic equations, which now read
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ρ̇ =0 , (6.43a)

u̇ =f s , (6.43b)

Ṫ = − 2ρ�d + 2
(
�s + �n

)
. (6.43c)

Thus, the homogeneous density is constant and equivalent to the packing fraction
ρ ≡ φ. The stationary velocity and temperature must satisfy the condition of van-
ishing self-propulsion and balancing energy source terms. For the specific choice of
Eq. (6.40), one has

u̇ = ωsu

{

1 − 1

v2
s

[
(d + 2)T + u2

]
}

, (6.44a)

Ṫ = −4d φωdT + 2ωsT

[

1 − d + 2

v2
s

(

T + 1

d
u2
)]

+ 2D , (6.44b)

where u = |u| is the speed field. Now, we move to adimensional variables, defining

t̃ = ωs t ,

x̃ = (ωs/vs)x ,

ũ = u/vs ,

T̃ = t/v2
s ,

γ = ωd/ωs ,

� = D/(ωsv
2
s ) ,

(6.45)

which will be used in the rest of the chapter, and the tilde will be omitted for the sake
of simplicity. The physical parameters of our system can now be defined:

1. the packing fraction or density φ
2. the relative dissipation γ, i.e. the ratio of dissipation and self-propulsion charac-

teristic frequencies
3. the relative noise �, measuring the amplitude of noise with respect to self-

propulsion strength

Under the assumptions stated until now, the behavior of the system is completely
determined by these parameters together with the boundary conditions (which we
always take as periodic).

Homogeneous dimensionless equations have the same form of Eq. (6.44), because
only constant coefficients have been redefined. We observe that there are three pos-
sible fixed points

1. A disordered fixed point (u0, T0), where particles are moving with zero mean
velocity but positive temperature, so that cooling is avoided. This is similar to a
gas of granular particles in presence of a bulk driving, without collective motion.
The fixed points read
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u = 0 , T = T0 = 1 − 2dφγ +√(1 − 2dφγ)2 + 4(d + 2)�

2(d + 2)
, (6.46)

The presence of noise is determinant: indeed, for � = 0, the temperature is posi-
tive only until γ < 1/(2dφ). For higher values of dissipation, the stationary solu-
tion reads T = 0 and self-propulsion cannot prevent the system from cooling. On
the contrary, when � > 0 the disordered fixed point is always present.

2. Two ordered fixed points (u±, T±), with u± > 0. They exist if

� <
(1 + 2d2φγ)2

2d(d + 2)
, (6.47)

and are given by

u2± = 1

2

(
1 − 2d2φγ ∓

√
(1 + 2d2φγ)2 − 2d(d + 2)�

)
,

T± = 1 + 2d2φγ ±√(1 + 2d2φγ)2 − 2d(d + 2)�

2(d + 2)
.

(6.48)

The first point (u−, T−) exists only if γ < 1/(2d2φ) ∨ � < 4d/(d + 2)φγ.
The second point (u+, T+) exists only if γ < 1/(2d2φ) ∧ � > 4d/(d + 2)φγ.

The existence of fixed points with u > 0 suggests the presence of a stationary swarm-
ing state, where a macroscopic collective motion arises spontaneously breaking the
rotational symmetry because in every trajectory the units move together in a random
direction. This is actually observed in simulations. However, it must be underlined
that homogeneous equations (6.44) have been derived under the Local Equilibrium
assumption with a Gaussian distribution, which may have nothing to do with the dis-
tribution of the swarming state. On the other hand, the Local Equilibrium assumption
is expected to be physically consistent in the disordered state, so we focus on its sta-
bility.

6.2.2 Stability Analysis of the Disordered State

We introduce small, spatially dependent fluctuations around the fully disordered
fixed point as

δρ = ρ(x, t) − φ ,

δu = u(x, t) ,

δT = T (x, t) − T0 .

(6.49)

The linearized hydrodynamic equations now read
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∂tδρ = −φ (1 − φ)∇ · δu , (6.50a)

∂tδu = −1 − 2φ

φ
T0∇δρ + C(γ, �)δu − (1 − φ)∇δT , (6.50b)

∂tδT = −4dγT0δρ − 2

d
(1 − φ)T0∇ · δu − 2r(γ, �)δT , (6.50c)

with
r(γ, �) =

√
(1 − 2dφγ)2 + 4(d + 2)� ,

C(γ, �) = 1

2
(1 + 2dφγ − r(γ, �)) .

(6.51)

After converting to Fourier space, decomposing ûk in a parallel (to k) and
d − 1 transverse components (û‖

k, û
⊥
k ), and defining �̂k = (ρ̂k, û

‖
k, û

⊥
k , T̂k), the time-

evolution of the modes linearized near that fixed point reads

∂t�̂k = L(k)�̂k , (6.52)

with L(k) equal to

⎛

⎜
⎜
⎝

0 −φ(1 − φ)2πik 0 0
− 1−2φ

φ
T02πik C(γ, �) 0 −(1 − φ)2πik
0 0 C(γ, �) 0

−4dγT0 − 2
d (1 − φ)T02πik 0 −2r(γ, �)

⎞

⎟
⎟
⎠ . (6.53)

The first outcome is that the shear mode - which is reminiscent of swarming phases
- separates from other modes and it is stable only when C(γ, �) < 0, i.e.

� >
2d

d + 2
φ γ . (6.54)

Shear modes are stabilized by large noise �, and its threshold is linearly decreasing
with the relative dissipation rate γ. At zero dissipation the shear mode is stable for
any non-zero noise amplitude. Conversely, at zero noise amplitude, the shear mode is
always unstable. Noticeably, in the absence of a k-dependent competing mechanism
for stability (such as shear viscosity), stability of the shearmode is lost synchronously
at any k. In Sect. 6.4 it will be numerically shown how shear instability is a strong
signal of the appearance of a swarming state.

Numerical analysis of the eigenvalues of L(k) reveals that at a given γ, at least in
the range 0 < γ < 1/(2φ), the eigenvalue associated with shear is the first to change
sign when � is reduced, i.e. shear instability is the leading one. Being such a result
the outcome of linear stability analysis, it does not imply that the bifurcation leads
the system to amacroscopic shear-like state: we can only say that the fully disordered
state is replaced by a different state which - at the beginning - looks ordered in the
velocity field.
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6.3 Fluctuating Hydrodynamics

The last analytical result on the active model is the derivation of fluctuating currents.
Hydrodynamic equations (6.28) can be seen as fluctuating hydrodynamics equations;
the microscopic currents j, J and J depend both upon the “fast” variables ξ p, ζ p and
the “slow” variables ni,p, vi,p. Therefore, analogously with Sect. 4.4.1, at finite L
the non-averaged currents can be written as the sum of their averages over the fast
variables plus remainders. In particular we can write

jl(x, t) = jl(x, t) + σl(x, t) , (6.55a)

Jkl(x, t) = Jkl(x, t) + ςkl(x, t) , (6.55b)

Jl(x, t) = Jl(x, t) + �l(x, t) . (6.55c)

for density, momentum and energy respectively. The terms σl , ςkl and �l are current
noises with zero average.

The current’s noise correlations in Eq. (6.55) can be deduced from microscopic
dynamics, analogously with the granular case in Sect. 4.4.2. We here focus on the
fluctuations of density current, since the derivation of the others follows the same
procedure. First of all, one has in discrete space and time variables

〈
σi,p,lσi′,p′,l ′

〉 ∼ 〈 ji,p,l ji′,p′,l ′
〉
. (6.56)

With the definition in (6.6) and the “natural active velocity” prescription, only the
diagonal terms are non vanishing and expanding fluctuations in �t and �x one
obtains

〈
ji,p,l ji′,p′,l ′

〉 = δi,i′δp,p′δl,l ′ ρi,p(1 − ρi,p) 〈|vl |〉i,p �t

�x
, (6.57)

hence the current’s noise is white in space, time and components; its derivation can
be found in Appendix B.3. This expression is meaningful if �t � �x , introducing
a constraint in hydrodynamic scaling.

From Eq. (6.19a), the hydrodynamic limit of the currents reads

jl(x, t) = �x

�t
ji,p,l , (6.58)

and the delta functions in continuum limit become

δi,i′ = δ(x − x′)(�x)d , δp,p′ = δ(t − t ′)�t , (6.59)

therefore Eq. (6.57) reads

〈
jl(x, t) jl ′(x′, t)

〉 = δ(x − x′)δ(t − t ′)δl,l ′ ρ(x, t)[1 − ρ(x, t)] 〈|vl |〉 (x, t) (�x)d+1 .

(6.60)



6.3 Fluctuating Hydrodynamics 165

With the Gaussian velocity assumption, one finally finds

〈
σl(x, t)σl ′(x

′, t ′)
〉 ∼ δ(x − x′)δ(t − t ′)δl,l ′ρ(x, t)[1 − ρ(x, t)]

√
2

π
T (x, t)(�x)d+1 .

(6.61)

This result can be generalized to momentum and energy currents given by hop-
ping particles; indeed, computing the current noise correlation η

(χ)

l for the generic
transported quantity χ(n, v), with analogous steps one has

〈
η

(χ)
l (x, t)η(χ)

l (x′, t ′)
〉
∼ δ(x − x′)δ(t − t ′)δl,l ′

〈
n(1 − n)χ2(n, v) |vl |

〉
(x, t) (�x)d+1 ,

(6.62)
always considering the leading term in �t and �x expansion. Interaction terms in
Eq. (6.9), (6.11) are subleading and therefore do not appear at this level. The explicit
expressions for momentum and energy are straightforward and read

〈
ςl (x, t)ςl ′(x

′, t ′)
〉 ∼ δ(x − x′)δ(t − t ′)δl,l ′ρ(x, t)[1 − ρ(x, t)] 〈|vl |vkvk′

〉
(�x)d+1 ,

(6.63)

〈
�l (x, t)�l ′(x

′, t ′)
〉 ∼ δ(x − x′)δ(t − t ′)δl,l ′ρ(x, t)[1 − ρ(x, t)]

〈

|vl |
(

v2

2

)2〉

(�x)d+1 , .

(6.64)

Having shown that fluctuating currents are white and having found their amplitudes,
we can show they are Gaussian. Again, the procedure adopted is equivalent to the one
used in Sect. 4.4.3. Considering the rescaled current ĵl = ĵ av

l + σ̂l = (�x)(d−1)/2 jl ,
from previous results we have that

〈
σ̂l(x, t)

〉 = 0 , (6.65a)
〈
σ̂l(x, t)σ̂l ′(x′, t ′)

〉 ∼ δ(x, x′)δ(t − t ′)δl,l ′A(2)
l (x, t) , (6.65b)

where A(2)
l (x, t) is the rescaled amplitude of the second cumulant, which is finite

when rescaling the current. For the generic cumulant of order n, we get

〈
σ̂l1(x1, t1) · · · σ̂ln (xn, tn)

〉 ∼
n−1∏

i=1

[
δ(xi − xi+1)δ(ti − ti+1)δli ,li+1

]
(6.66)

× A(n)
l1

(x1, t1) (�x)(d+1)( n
2 −1) ,

which is non vanishing in the hydrodynamic limit only when n = 2, because the
amplitudesA(n)

l are all finite. The rescaled noise σ̂l is Gaussian in the large size limit
and therefore the original noise σl is Gaussian too.
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6.4 Numerical Results

Simulations of the system have shown the existence of two macroscopically ordered
states:

1. a swarming state, where particles align their velocities and walk across the lattice
as a global swarm;

2. a clustering state, where a macroscopic fraction of the particles group and form
a large, standing aggregate when they all point towards the center of the cluster.

A swarming and a clustering order parameters are defined and their evolution
is studied and compared with linear stability analysis of Sect. 6.2.2. A preliminary
study on the finite-size behavior suggests that the disorder-swarming transition may
be discontinuous in the infinite size limit. Finally, the amplitude of the fluctuating
density current is computed and compared with theoretical predictions.

6.4.1 General Simulation Strategy

The simulation strategy for the active model is analogous to the one used for the
granular model. M stochastic trajectories of a system of N particles on a 2d periodic
square lattice have beenperformed, locating each particle at a discrete position ri (t) ∈
� and carrying a continuous 2d velocity vi (t). For each trajectory, the system starts
from a random configuration with uniform distribution of occupation numbers and
normal distribution of velocities, with 〈vl〉 = 0 and

〈
v2
l

〉 = T0, being T0 the stationary
temperature of the disordered state defined in Eq. (6.46). At each time step �t , a
random number χ ∈ [0, 1] is drawn to determine the particle eventually hopping,
according to the “natural active velocity” prescription in (6.3): the normalization
of the probability yields a constraint on the time interval, which we took �t ≤
(10NL)−1 to guarantee that the total probability of a hop is Ph ≤ 1, where Ph is
defined as

Ph =
N∑

i=1

∑

l=1,2
σ=±1

(1 − nri (t)±σel )g(σvi,l)
�t

�x
. (6.67)

The condition Ph < 1 has been verified throughout the simulations: it is reasonable to
think that the self-propulsion force is lowering high-velocities tails. Simulations have
been carried out for several values of γ and� and densitiesφ of 1, 5 and 10%, sincewe
are interested in the dilute limit. The lattice size has been taken L = 100 (V = 104

sites), except the case of finite-size effects where the size is changed keeping the
density constant.
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Fig. 6.2 A snapshot of the system configuration in the homogeneous swarming regime. Here
φ = 0.05, γ = 9, � = 0.135, and the order parameters result to be r = 0.994 (strong swarming)
and C = 0.057 (negligible clustering)

6.4.2 Swarming Instability

Figure 6.2 displays the arisingof swarming states in themodel. These canbe identified
through the usual swarming order parameter r(t) identified to be

r(t) =
∣
∣
∣
∣
∣
∣

1

N

N∑

j=1

eiθ j (t)

∣
∣
∣
∣
∣
∣

, (6.68)

where θ j is the direction of velocity of the j th particle, so that r(t) ≈ 0 in the fully
disordered state and r(t) ≈ 1 in the case of all particles’ velocities aligned along the
same direction.

Monitoring r(t) up to times tmax larger than the inverse of the minimum of the
eigenvalues of L(k) gives a reasonable idea of the fate of this initial condition and
allows us to compare the system’s phase diagram with the predictions of linear
stability analysis. The swarming order is shown in Fig. 6.3 parameter r , averaged
over the time interval [tmax/2, tmax] so that the system has settled in the stationary
regime, for three values of the densityφ, together with the line predicted in Eq. (6.54).
The comparison is fair at all values of φ, especially for φ = 0.05. It is likely that this
value matches our analysis being the best compromise between the dilute and the
large size limits at fixed volume V : on the contrary, for φ = 0.01 there are N = 100
particles in the lattice, and for such a small value the fluctuations seem relevant;
nevertheless, for φ = 0.1 we have N = 1000 particles, so the fluctuations decrease
but at the same time the system is moving away from the dilute limit.
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Fig. 6.3 Swarming phase parameter r (going from0 in the disordered phase to 1 in the full swarming
phase, see color legend on the right) as a function of relative noise amplitude � and rescaled relative
dissipation rate φγ, for three different packing fractions φ. The solid lines indicate the theoretical
transition, Eq. (6.54)
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Fig. 6.4 A snapshot of the system configuration in the coexistence regime “cluster+gas”. Here
φ = 0.1, γ = 1.5, � = 4.5, and the order parameters result to be r = 0.027 (negligible swarming)
and C = 0.874 (macroscopic clustering)

6.4.3 Clustering Instability

Clustering is another ordered phase observed in simulations. Contrarily from swarm-
ing, clustering is nonhomogeneous: typically, active units form a single, giant aggre-
gate somewhere in the lattice while the rest of them swarm around, occasionally
falling on the cluster or kicking away some particles at its borders. The typical clus-
tered state in shown in Fig. 6.4.
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Fig. 6.5 Clustering phase parameterC (see color legend on the right) as a function of relative noise
amplitude � and rescaled relative dissipation rate φγ. Same parameters of Fig. 6.3

In simulations, we can count the number Nl(t) of pairs of first neighbors at time
t , a number that goes from Nl ≈ 2φN in the unclustered case, up to Nl ≈ 2N in the
fully clustered case, so that

C(t) = Nl(t)

2N
∈ [φ, 1] , (6.69)

is a good estimate of the clustering degree in the system. Of course, this parameter
is significant only in dilute cases, with φ � 1. As for the swarming state, a phase
diagram in the (γ − �) can be created, see Fig. 6.5.

It is clear that in the dilute cases, roughly speakingφ < 10%, there is no clustering
in both disordered and swarming phases (i.e. above and below the solid line, see also
Fig. 6.3).

On the contrary, at larger packing fraction φ ≥ 10% clustering arises as a stable
phase above the critical noise amplitude for swarming. Looking at single configu-
rations in the simulations - see Fig. 6.4 - we can attempt an interpretation: it seems
that when swarming is possible (e.g. below the transition line), many particles in the
dilute phase coordinate and erode efficiently the clusters. This is a sort of of “viscous
heating” mechanism.

6.4.4 Finite-Size Effects Near the Transition

A preliminary study of the effect of lattice volume V has been performed to assess
the quality of the observed gas-swarming transition in the dilute case. Choosing a
dilute value of φ and an average value of γ, the swarming parameter 〈r〉 has been
measured when moving from high noise � > �c(γ,φ) to low noise � < �c(γ,φ),
where �c(γ,φ) = 2d

d+2γφ (see Eq. (6.54)), repeating this protocol for increasing val-
ues of V . If the transition is discontinuous in the continuum limit, we expect that the
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Fig. 6.6 Average value of the swarming parameter r , which goes from 0 in the disordered phase to
1 in the full swarming phase, as a function of the lattice volume V at a constant value of φ (dilute
case) and γ, for four values of the relative noise amplitude �: two values are below the instability
swarming threshold, two are above

separation between the swarming phase (high 〈r〉) and the disordered phase (low 〈r〉)
increases with V . The result of the study is shown in Fig. 6.6. It indicates that the gap
r+ − r− between the value of r respectively slightly above and slightly below the
transition tends to increase with V . This result gives the first hint that the observed
transition may be discontinuous.

6.4.5 Fluctuating Currents

Numerical simulations have been also implemented in order to verify the prediction
about current noises, defined in Eq. (6.55). In the case of Gaussian local velocity
distribution, the noise correlation for the hopping current reads

〈
σl(x, t)σl ′(x′, t ′)

〉 = δ(x − x′)δ(t − t ′)δl,l ′φ(1 − φ)

√
2

π
T (t) (�x)d+1 . (6.70)

In the simulation the microscopic current ji,p,l = 0,±1 can be measured, repre-
senting the number of particles hopping - in the pth time step - from site i to its
neighbors in the lth direction. In the homogeneous fully disordered state, Eq. (6.70)
is equivalent, assuming ergodicity, to
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Fig. 6.7 Amplitude of fluctuations of the hopping current (symbols), and its theoretical prediction
Eq. (6.70)–(6.71) (solid line), as function of φ for various sizes L . Here φγ = 0.25, � = 4 and the
system is prepared at the steady temperature T0 = 1. The fluctuations’ amplitude is also averaged
over its components, 〈σ2

1〉 and 〈σ2
2〉

1,V∑

i,i ′

1,tmax/�t∑

p,p′
ji,p,l ji ′,p′,l ′ � L3φ(1 − φ)

√
2

π
T0 tmax . (6.71)

The verification of this relation is shown in Fig. 6.7: we see that for φ < 10% the
numerical results tend to the theoretical value as L → ∞. This trend is broken when
φ > 10%, as expected in view of the used assumptions (Molecular Chaos and local
Gaussian equilibrium) which are reasonable only in the dilute limit.
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Chapter 7
Conclusions

In this thesis, we first of all reviewed themain properties of granular and activematter,
underlining remarkable similarities between their physical behavior. The properties
of their individual and collective motion have been analyzed in the framework of
nonequilibrium statistical mechanics. Experiments and simulations suggested us a
specularity between granular and active particles, especially because of the con-
tinuous energy exchanges driving the systems out of equilibrium and leading to
the observed collective motion. Hydrodynamics has been introduced to describe
the macroscopic behavior of fluid systems. Indeed, when many active or granular
units are present, they can be seen as a flowing material under some assumptions.
A derivation of hydrodynamics for conservative systems has been introduced and
later extended to the granular case, while the recent developments on hydrodynamic
descriptions of active matter have been reviewed. Finally, lattice models have been
introduced as a powerful tool to analyze and foresee the behavior of nonequilibrium
systems. My thesis’ work has been focused on the analysis of granular and active
matter through the formulation of two lattice models.

The first model we introduced is a lattice model of granular particles on a linear
chain. A hydrodynamic description of the system has been derived: although some
realism has been sacrificed in the formulation of the model, the latter has reproduced
the average hydrodynamic equations derived from the kinetic theory of sheared
granular gases. The characteristic granular states like the Homogeneous Cooling
State, the Uniform Shear Flow and the Couette Flow have been derived and their
hydrodynamic equations have been solved for each case, even in the transient or
non-homogeneous state. The Homogeneous Cooling instability has been recovered,
obtaining an exact expression for the critical value of dissipation and system size.We
derived the fluctuating hydrodynamic currents and computed their noise properties
at the leading order from microscopic dynamics, without the need of an equilibrium
approximation: the latter has been used only in some cases of need to formulate the
noise correlations in terms of hydrodynamic fields.
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174 7 Conclusions

Interestingly, the interplay between momentum conservation and energy dissipa-
tion has shown several unforeseen properties: for finite systems, the global cooling
contributes to the development of long-range spatial velocity correlations, which at
the same time affect the temperature evolution. Velocity correlations between col-
liding particles are generally disregarded because of the Molecular Chaos ansatz. In
our model, we can avoid this ansatz and obtain a closed set of equations for temper-
ature and correlations from microscopic dynamics: both of them decay in time at the
same rate, and the rescaled correlation profile tends to a steady value independent
from initial conditions. Furthermore, the mesoscopic dissipation coefficient has been
redefined through amultiple scales analysis. The fluctuations of rescaled total energy
have shown a divergent behavior in time, an unexpected feature in our model: again,
a microscopic derivation through average balance equations allowed the computa-
tion of the many-particles velocity moments and has shown a multiscaling behavior
driving the fluctuations away from a stationary value. So, the model enables direct
computations of fluctuating quantities under a few controlled assumptions, by means
of a perturbative approach which may be easily extended to next orders, depending
on the required accuracy.

The encouraging results on the granular lattice model inspired the formulation
of a lattice model of active granular particles; the model was enhanced allowing
hopping (and therefore compressibility) and moving to a general d > 1 case. Again,
the model provided a clear and general derivation of hydrodynamic equations in the
dilute limit from the microscopic rules of the model. For a specific choice of micro-
scopic ingredients, hydrodynamic equations can be derived in the Local Equilibrium
Approximation yielding the existence of homogeneous disordered and ordered states.
The former has been proved to be unstable depending on the relative strength of noise,
dissipation and self-propulsion: we derived a phase diagram, showing the competi-
tion between noise (fostering disorder) and dissipation (fostering order). When the
disordered system is unstable, ordered phases like swarming or clustering arise. Two
essential points must be underlined: first, hydrodynamic equations have shown that
viscosity and heat transport are not required for the existence of a disorder-swarming
transition. Second, when moving to the unstable region all the modes become simul-
taneously unstable: this is in contrast withHCS instability, whichwas actually caused
by the first mode (longest wavelength) amplification and driven by viscosity, which
is absent in our model of active matter. Furthermore, fluctuating currents have been
computed also in the active case, and the theoretical results have shown a fair agree-
ment with simulations.

The main result of this thesis is the development of a class of lattice models and a
procedure to reproduce the average hydrodynamic equations of granular and active
systems and derive their fluctuating hydrodynamics from microscopic behavior. In
addition, the Molecular Chaos ansatz is not always needed because it is sometimes
possible to compute the correlations in the system, as it has be shown for granu-
lar Maxwell Molecules: analytical results successfully explain the new phenomena
observed in simulations. The procedure introduced may be applied to several other
cases.
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Table 7.1 A comparative recap of granular and active models

Dissipation Injection Noise Disordered
state

Instability

Granular
model

Inelasticity Formal
rescaling

absent Homogeneous
cooling state

Shear
instability
ν > νc

Active model Aligning
forces

Self-
propulsion

White noise Homogeneous
disordered
state

Swarming
γ > γc(�)

The results obtained in the two models can be compared: indeed we have seen
that strong analogies between granular and active model are present. In Table 7.1, the
main features are presented both considering microscopic ingredients defining the
models - dissipation, injection and noise terms - and concerning the most analyzed
hydrodynamic states , namely theHomogeneous Cooling State and the homogeneous
disordered state. Those are the most suitable for a direct comparison, which can be
enhanced in further studies.

The models have shown to be adaptive, i.e. the rules determining their evolution
can be easily changed separately. Further perspectives of the granular model include
the generalization to d > 1, a dilute case with hopping particles and the introduction
of hard-spheres collisions.Also, adapting themodel to the frameworkofMacroscopic
Fluctuation Theory would be an intriguing challenge, since this has never been done
for models with momentum conservation such as the one described here.

The active model can represent a basis for several possible developments: the first
one is that theordered phase still needs to be studied analytically.Anext stepmay then
be the hydrodynamic analysis of ordered phases such as swarming or clustering. It is
probable that the Local Equilibrium Approximation will not be a good assumption
any more for these states, so the development of a theory beyond Local Equilibrium
andMolecular Chaosmay be attempted, following the results derived for the granular
model. Thereafter, the generality of the active system allows to introduce several
choices for collisions, self-propulsion and all the physical parameters. A comparative
study may clarify the role of microscopic parameters in macroscopic behavior, both
in theoretical analysis and empirical observations. Further investigationsmay include
the introduction of “Navier-Stokes” terms such as viscosity and heat conductivity.

The models presented can be seen as part of a wider framework, nonequilibrium
statistical physics, and further studiesmaydealwith several theoretical problems such
as entropy production or fluctuation-dissipation relations. The theoretical achieve-
ments could be compared with further experimental evidences, pointing out new
issues and research directions. The possibility of deriving new and more general
results from the theoretical analysis here developed is still to be explored.



Appendix A
Analytical Results for the Granular Model

A.1 Microscopic Derivation of Balance Equations

Microscopic balance equations in Sect. 4.2.1 can be directly derived computing the
gain and loss terms of local velocity vl,p as a stochastic processes in discrete time,
writing a pseudo-Langevin equation. For our granular model, velocity vl,p evolves as

vl,p+1 = (1 − δyp,l − δyp,l−1)vl,p + δyp,l

[
vl,p − 1 + α

2

(
vl,p − vl+1,p

)]

+ δyp,l−1

[
vl,p + 1 + α

2

(
vl−1,p − vl,p

)]
,

(A.1)

where δyp,l is selecting the colliding particle at the p-th time step. We can also write

vl,p+1 = vl,p − δyp,l
1 + α

2

(
vl,p − vl+1,p

) + δyp,l−1
1 + α

2

(
vl−1,p − vl,p

)
= vl,p − jl,p + jl−1,p, (A.2)

introducing the momentum current jl,p, which for our system reads

jl,p = 1 + α

2
δyp,l

(
vl,p − vl+1,p

)
. (A.3)

For the evolution of the kinetic energy, we square equation (A.2) and we obtain

v2
l,p+1 = v2

l,p + δyp,l

[(
1 + α

2

)2 (
vl,p − vl+1,p

)2 − (1 + α)vl,p
(
vl,p − vl+1,p

)]

+ δyp,l−1

[(
1 + α

2

)2 (
vl−1,p − vl,p

)2 + (1 + α)vl,p
(
vl−1,p − vl,p

)]
,

(A.4)
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which can be written as

v2
l,p+1 = v2

l,p + α2 − 1

4

[
δyp,l

(
vl,p − vl+1,p

)2 + δyp,l−1
(
vl−1,p − vl,p

)2]

− (vl,p + vl+1,p) jl,p + (vl−1,p + vl,p) jl−1,p.

(A.5)

We now compute the averages. For the velocity we have that

ul,p+1 − ul,p = −〈 jl,p − jl−1,p〉, (A.6)

with
ul,p = 〈vl,p〉. (A.7)

Reminding that 〈δyp,l〉 = 1/L in the MM case, we can compute the mean current

〈 jl,p〉 =
〈
1 + α

2
δyp,l

(
vl,p − vl+1,p

) 〉

= 1 + α

2L
〈vl,p − vl+1,p〉

= 1 + α

2L
(ul,p − ul+1,p). (A.8)

Then, the time evolution equation for the mean velocity is

ul,p+1 − ul,p = 1 + α

2L
(ul+1,p + ul−1,p − 2ul,p). (A.9)

For the mean quadratic velocity, from Eq. (A.5) we have that

〈
v2
l,p+1

〉 − 〈
v2
l,p

〉 = α2 − 1

4L

〈(
vl,p − vl+1,p

)2 + (
vl−1,p − vl,p

)2〉

− 1 + α

2L

〈 (
vl,p + vl+1,p

) (
vl,p − vl+1,p

) − (vl−1,p + vl,p)
(
vl−1,p − vl,p

) 〉
.

(A.10)

Developing the terms on the rhs, we find

〈
v2
l,p+1

〉 − 〈
v2
l,p

〉 = α2 − 1

4L

[〈
v2
l+1,p

〉 + 2
〈
v2
l,p

〉 + 〈
v2
l−1,p

〉 − 2〈vl,pvl+1,p + vl−1,pvl,p〉
]

− 1 + α

2L

[
2
〈
v2
l,p

〉 − 〈
v2
l+1,p

〉 − 〈
v2
l−1,p

〉]
(A.11)
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In order to close the rhs of the last equation, we factorize the 2-points correlations
〈vl,pvl±1,p〉 = ul,pul±1,p: this assumption correspond to the Molecular Chaos ansatz
assumed in Sect. 4.2.1. Now, in the rhs of Eq. (A.5) we have

〈
v2
l,p+1

〉 − 〈
v2
l,p

〉 = −1 − α2

L

[〈
v2
l,p

〉 − 1

2
ul,p(ul+1,p + ul−1,p)

]

+
(
1 + α

2

)2 1

L

(〈
v2
l+1,p

〉 + 〈
v2
l−1,p

〉 − 2
〈
v2
l,p

〉)
. (A.12)

Equations (A.9) and (A.12) are the balance equations for our lattice system, with
discrete sites l at discrete times p. Introducing the hydrodynamic scaling of Eq. (4.25)

x = l

L
, �x = 1

L
, �t = 1

L3
, (A.13)

and by assuming that ul,p and Tl,p are both smooth functions x = l/L , we can develop
the following terms

ul±1,p = ul,p ± ∂u

∂x

1

L
+ 1

2

∂2u

∂x2
1

L2
+ O(L−3) (A.14)

〈v2
l±1,p〉 = 〈

v2
l,p

〉 ± ∂〈v2〉
∂x

1

L
+ 1

2

∂2〈v2〉
∂x2

1

L2
+ O(L−3). (A.15)

and with a similar development in �t = 1/L3 we have the evolution equations for
the fields u(x, t) and 〈v2〉(x, t)

1

L3

∂u

∂t
=1 + α

2

1

L3

∂2u

∂x2
+ O(L−4) (A.16a)

1

L3

∂〈v2〉
∂t

= − 1 − α2

L
(〈v2〉 − u2) +

(
1 + α

2

)2 1

L3

∂2〈v2〉
∂x2

+ 1 − α2

4

1

L3
2u

∂2u

∂x2
+ O(L−4) (A.16b)

We here introduce themacroscopic inelasticity coefficient ν, that in this case reads

ν = L2(1 − α2) > 0, (A.17)

and if we want ν to be finite we need 1 − α = O(L−2). So, multiplying by L3 and
neglecting O(L−1) terms, we have

∂u

∂t
=1 + α

2

∂2u

∂x2
(A.18a)

https://doi.org/10.1007/978-3-319-95080-8_4
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∂〈v2〉
∂t

= − ν(〈v2〉 − u2) +
(
1 + α

2

)2 ∂2〈v2〉
∂x2

+ 1 − α2

4
2u

∂2u

∂x2
. (A.18b)

Now,we find evolution equations for u(x, t) and T (x, t) by replacing 〈v2〉(x, t) =
T (x, t) + u2(x, t) in Eq. (A.18b); the derivatives read

∂〈v2〉
∂t

= ∂T

∂t
+ 2u

∂u

∂t
= ∂T

∂t
+ 1 + α

2
2u

∂2u

∂x2
(A.19a)

∂2〈v2〉
∂x2

= ∂

∂x

(
∂T

∂x
+ 2u

∂u

∂x

)
= ∂2T

∂x2
+ 2

(
∂u

∂x

)2

+ 2u
∂2u

∂x2
(A.19b)

and substititung them into Eq. (A.18b), the 2u ∂2u/∂x2 terms vanish and we have

∂u

∂t
= 1 + α

2

∂2u

∂x2
(A.20a)

∂T

∂t
= −νT +

(
1 + α

2

)2
[

∂2T

∂x2
+ 2

(
∂u

∂x

)2
]

, (A.20b)

which are the evolution equations for u and T continuous in our model. Since the
limit L → ∞ yields (1 + α)/2 → 1, we finally have

∂u

∂t
= ∂2u

∂x2
(A.21a)

∂T

∂t
= −νT + ∂2T

∂x2
+ 2

(
∂u

∂x

)2

. (A.21b)

We found then that the velocity field u(x, t) follows a diffusion equation, while the
temperature evolution equation (A.21b) shows the presence of sink, diffusion pro-
cesses and viscous heating, represented respectively by the first, second and third
term in Eq. (A.21b). The obtained results are equivalent to the ones discussed in
Sect. 4.2.1: I presented an alternative derivation of hydrodynamic equations, without
the need of a Boltzmann Equation, which has been our first derivation of hydrody-
namic equations in this work.

A.2 Balance Equations for Moments with n ≥ 3

Starting from the microscopic evolution equation (A.2), we can get the dynamic
equations for any moment of the velocity with few considerations.

First of all, let’s look at the δ-functions in Eq. (A.2); since we need to compute
averages over trajectories, it is useful to see that for MM one has

https://doi.org/10.1007/978-3-319-95080-8_4
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〈
δnyp,l

〉
= 〈

δyp,l
〉 = 1

L
,

〈
δnyp,lδ

m
yp,l ′

〉
= 0 ∀ m, n > 1 (l �= l ′) (A.22)

So, we can write

vn
l,p+1 − vn

l,p =
n∑

k=1

(
n

k

)
vn−k
lp

(
jl−1,p − jl,p

)k

=
n∑

k=1

(
n

k

)
vn−k
lp

k∑
h=0

(
k

h

)(
1 + α

2

)k

×

×δk−h
yp,l−1δ

h
yp,l

(
vl−1,p − vl,p

)k−h (
vl+1,p − vl,p

)h
. (A.23)

When we average the two sides over the trajectories, we can exploit the properties
in Eq. (A.22): the only terms remaining in the sum over h are for h = 0, k. Then,
defining ζ = (1 + α)/2

〈
vn
l,p+1

〉 − 〈
vn
l,p

〉 = 1

L

n∑
k=1

(
n

k

)
ζk
〈
vn−k
lp

[(
vl−1,p − vl,p

)k + (
vl+1,p − vl,p

)k]〉
.

(A.24)
After some algebra, the term into square brackets reads

(
vl−1,p − vl,p

)k + (
vl+1,p − vl,p

)k =
k∑
j=0

(
k

j

)
(−1)k− jv

k− j
l,p

(
v
j
l−1,p + v

j
l+1,p

)
,

(A.25)
then

〈
vn
l,p+1

〉 − 〈
vn
l,p

〉 = 1

L

n∑
k=1

(
n

k

)
ζk

k∑
j=0

(
k

j

)
(−1)k− j

〈
v
n− j
l,p

(
v
j
l−1,p + v

j
l+1,p

)〉
.

(A.26)
We can now use the Local Equilibrium approximation to split the average into two
parts: namely, the LEA is equivalent to

〈vm
l,pv

n
l+1,p〉LE = 1

2π
√
Tl,pTl+1,p

∫ +∞

−∞
dvl

∫ +∞

−∞
dvl+1 vm

l vn
l+1

× exp

{
− (vl − ul,p)2

2Tl,p

}
exp

{
− (vl+1 − ul+1,p)

2

2Tl+1,p

}

= 〈
vm
l,p

〉
LE

〈
vn
l+1,p

〉
LE

, (A.27)

which includes not only Molecular Chaos but also the Gaussianity of the velocity
distribution. This assumption allows us to compute all the moments independently.
Furthermore, the expansion in Eq. (A.15) can be generalized and then
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〈
vn
l,p+1

〉 − 〈
vn
l,p

〉 = 1

L

n∑
k=1

k∑
j=0

(
n

k

)(
k

j

)
ζk(−1)k− j

〈
v
n− j
l,p

〉 [
2
〈
v
j
l,p

〉
+ 1

L2
∂2
x

〈
v
j
l,p

〉]
.

(A.28)
We now move to the L → ∞ limit: to lighten the notation, we introduce the

momentum fields un(x, t) defined as

un(x, t) = lim
L→∞

〈
vn
l,p

〉
, (A.29)

so that, with the continuum limit defined in Eqs. (A.13), (A.28) yields

∂t un(x, t) =
n∑

k=1

k∑
j=0

(
n

k

)(
k

j

)
ζk(−1)k− j un− j (x, t)

[
2L2u j (x, t) + ∂2

x u j (x, t)
]
,

(A.30)
where the L2 factor doesn’t baffle us because the sum of the ζk will give the leading
and also the subleading terms, knowing that 1 − ζ = O(L−2). It is then possible to
derive all the required moments, and to compute the central moments. For n = 1, 2,
we recover the results of the previous paragraph; for n ≥ 3, we have all the new
dynamic equations we were looking for. For instance,

∂t u3(x, t) = − 3

2
ν [u3(x, t) − u1(x, t)u2(x, t)] + ∂2

x u3(x, t) (A.31a)

∂t u4(x, t) = − 2ν [u4(x, t) − u1(x, t)u3(x, t)] + ∂2
x u4(x, t) (A.31b)

. . . and so on.
The last equations are the first step of an infinite hierarchy. Interestingly, they are

closed at each order: the equation for u3 contains only n ≤ 3 fields, the equation for
u4 only n ≤ 4, etc. etc. So, starting from the equation for u1 ≡ u(x, t) one can solve
the equations at any order for given boundary conditions. Equation (A.31) give us the
evolution equations for central moments μn = 〈(v − u)n〉, which have been written
in (4.36b).

A.3 Sum Rule

Here, we rigorously derive, in the continuum limit and up to O(L−1), the sum rule
(5.10) that stems from momentum conservation.

Our starting point is (5.5), which is equivalent to

T (t) + 2

L−1
2∑

k=1

Dk(t)�x = 0, �x = L−1. (A.32)

https://doi.org/10.1007/978-3-319-95080-8_4
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Now, we go to the continuum limit by making use of (5.7). To be precise, we denote
here x = (k − 1)/L by xk . Then,

∫ xk+1

xk

dx D(x, t) = L−1D(xk, t) + L−2

2
∂x D(x, t)|xk + O(L−3). (A.33)

Hence,

L−1
2∑

k=1

D(xk , t)︸ ︷︷ ︸
Dk (t)

�x =
∫ 1

2 − 1
2L

0
dx D(x, t) − L−1

2

∫ 1
2 − 1

2L

0
dx ∂x D(x, t) + O(L−2)

=
∫ 1

2 − 1
2L

0
dx D(x, t) − L−1

2

[
D

(
1

2
− 1

2L
, t

)
− D(0, t)

]
+ O(L−2). (A.34)

The expression above can be further simplified to

L−1
2∑

k=1

Dk(t)�x =
∫ 1

2

0
dx D(x, t) + L−1

2
[ψ(t) − 2χ(t)] + O(L−2), (A.35)

where we have made use of the definitions of ψ and χ in (5.9). If we insert (A.35)
into (A.32), we obtain (5.10) of the main text.

A.4 Energy Fluctuations

We here look at the normalized energy fluctuations for the granular model with
Maxwell molecules. Our aim is a theoretical derivation of the quantity

�2(t) ≡
〈
E2(t)

〉 − 〈E(t)〉2
〈E(t)〉2 (A.36)

where E(t) = limL�1 Ep = limL�1
∑L

l=1 v2
lp.

From now on all our calculations will be done in the homogeneous state, i.e. where
the system is invariant for space translation and inversion; hence, all the one-point
fields become spatially flat fields, all the two-point fields become one-point fields,
and so on.

If we assume local equilibrium, we have 〈E(t)〉 = LT (t) and
〈
E2(t)

〉 = 3LT 2(t).
So, local equilibrium prediction is L�2(t) = 2. However, numerical results diverge
from this value as time increases in trajectories. The numerical behavior of L�2(t) is
shown inFig. 5.4. This behavior cannot be explainedwith a local equilibriumassump-
tion. We need to compute a result without using it, so let’s go back to Eq. (A.36): we
can see that

https://doi.org/10.1007/978-3-319-95080-8_5
https://doi.org/10.1007/978-3-319-95080-8_5
https://doi.org/10.1007/978-3-319-95080-8_5
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〈
E2(t)

〉 =
〈

1,L∑
l,l ′

v2
lpv

2
l ′ p

〉
=

L∑
l=1

〈
v4
lp

〉 +
L∑

l=1

1,L∑
l ′ �=l

〈
v2
lpv

2
l ′ p
〉

= L

[
qp +

L−1∑
k=1

(
C22
kp + T 2

p

)]
(A.37)

with the following definitions (the last will appear later)

〈
v4
lp

〉 ≡ qp, (A.38a)〈
v2
lpv

2
l±k,p

〉 ≡ C22
kp + T 2

p , (A.38b)〈
v3
lpvl±k,p

〉 ≡ C31
kp, (A.38c)〈

vl∓m,pv
2
lpvl±n,p

〉 ≡ C121
mnp. (A.38d)

Hence, in the continuum limit we have

�2(t) = 1

L2T 2(t)

[
Lq(t) + L(L − 1)T 2(t) + L2

∫ 1

0
dx C22(x, t) − L2T 2(t)

]

= 1

L

q(t) − T 2(t) + L
∫ 1
0 dx C22(x, t)

T 2(t)
(A.39)

From Sect. 5.1, we already know T (t) up to the L−1 order; we need to compute q(t)
and C22(x, t) out of a local equilibrium approximation.

InEq. (A.38) there are all the quartic fields thatwewill consider in these notes; they
are all evolving in time with a Langevin equation that depends on the microscopic
dynamics, as usual. For instance, reminding the velocity current definition

jlp = ζδyp,l
(
vlp − vl+1,p

)
with ζ = 1 + α

2
(A.40)

for qp we have

qp+1 = 〈
v4
l,p+1

〉 = 〈(
vlp − jlp + jl−1,p

)4〉 =
= 〈

v4
lp

〉 − 4
〈
v3
lp

(
jlp − jl−1,p

)〉 + 6
〈
v2
lp

(
j2lp + j2l−1,p

)〉
− 4

〈
vlp

(
j3lp − j3l−1,p

)〉 + 〈
j4lp + j4l−1,p

〉 =
= qp + 1

L

{
− 4ζ

〈
v3
lp

(
vlp − vl+1,p − vl−1,p + vlp

)〉

+ 6ζ2
〈
v2
lp

[(
vlp − vl+1,p

)2 + (
v2
l−1,p − vlp

)2]〉

− 4ζ3
〈
vlp

[(
vlp − vl+1,p

)3 − (
v2
l−1,p − vlp

)3]〉

+ζ4
〈(

vlp − vl+1,p
)4 + (

v2
l−1,p − vlp

)4〉} =

https://doi.org/10.1007/978-3-319-95080-8_5
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= · · · =
= qp − 4ζ (1 − ζ)

L

{
[2 − ζ (1 − ζ)]

(
qp − C31

1p

) + 3ζ (1 − ζ)
(
C31
1p − C22

1p

)}
,

(A.41)

where we exploited the delta properties in the partial averages of the velocity current,
which for Maxwell molecules read (from Eq. (A.40))

〈
f (vp) jlp

〉 = ζ

L

〈
f (vp)

(
vlp − vl+1,p

)〉
(A.42a)

〈
f (vp) jlp jl ′ p

〉 = ζ2

L
δl,l ′

〈
f (vp)

(
vlp − vl+1,p

)2〉
(A.42b)

· · ·〈
f (vp)

(
n∏

i=1

jli ,p

)〉
= ζn

L

(
n∏

i=2

δl1,li

) 〈
f (vp)

(
vl1,p − vl1+1,p

)n 〉
. (A.42c)

Equation (A.41) is very similar to Eq. (5.4) in Sect. 5.1. Indeed, for the temperature
we had

Tp+1 = Tp − 4ζ (1 − ζ)

L

(
Tp − C1p

)
(A.43)

where from its definition in Eq. (A.40) we have that 4ζ (1 − ζ) = 1 − α2 = νL−2.
We write Eq. (A.41) with its explicit dependence on L as

qp+1 − qp = −2ν

L3

[(
1 − ν

8L2

) (
qp − C31

1p

) + 3ν

8L2

(
C31
1p − C22

1p

)]
, (A.44)

hence, neglectingO(L−2) terms in the rhs, for L � 1 we have the continuous equa-
tion

q̇(t) = −2ν
[
q(t) − �31(t)

]
(A.45)

using the same continuum limit of Sect. 5.1, i.e. �31(t) = limx→0 C31(x, t) and
�22(t) = limx→0 C22(x, t).

Since we don’t have any information about the magnitude of C31 and C22, we
perform a cluster expansion; in our homogenous case with

〈
vlp

〉 = 0, we have

〈
v3
lpvl±k,p

〉 = 3
〈
v2
lp

〉 〈
vlpvl±k,p

〉 + g31kp

= 3TpCkp + g31kp, (A.46)〈
v2
lpv

2
l±k,p

〉 = 〈
v2
lp

〉 〈
v2
l±k,p

〉 + 2
〈
vlpvl±k,p

〉2 + g22kp

= T 2
p + 2C2

kp + g22kp, (A.47)
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where g31 and g22 are the purely correlated terms. Then, continuous fields are

C31(x, t) = 3T (t)C(x, t) + g31(x, t), (A.48)

C22(x, t) = 2C2(x, t) + g22(x, t). (A.49)

The leading terms in the rhs of Eqs. (A.46), (A.47) are respectively 3TC = O(T 2
0 /L)

and T 2. Then, we assume1 that purely correlated terms are subleading with respect to
previous ones, then g31(x, t) = O(T 2

0 /L2) and g22(x, t) = O(T 2
0 /L). So, we have

that both C31 and C22 are at most O(T 2
0 /L). Then, �31 in Eq. (A.45) is a L−1

correction and introducing the same expansion of Sect. 5.12

q(t) = q0(t) + 1

L
q1(t) + 1

L2
q2(t) + . . . , (A.50a)

LC31(x, t) ≡ D31(x, t) = D31
0 (x, t) + 1

L
D31

1 (x, t) + . . . , (A.50b)

LC22(x, t) ≡ D22(x, t) = D22
0 (x, t) + 1

L
D22

1 (x, t) + . . . , (A.50c)

we can solve Eq. (A.45) at the zeroth order that is

{
q̇0 = −2νq0

q0(t = 0) = 3T 2
0 (t = 0)

⇒ q0(t) = 3T 2
0 (t = 0)e−2νt . (A.51)

This solution is the local equilibrium solution that is exact when L = ∞. We see
that the quartic velocity field is cooling as T 2

0 (t), so we introduce the usual rescaled
fields

q̃(t) ≡ q(t)/T 2
0 (t) = q(t)e2νt/T 2

0 (t = 0), (A.52)

and analogously we define D̃31 and D̃22. The tilde represent the Haff’s law scaling
taking into account the dimension of the field, so T̃ (t) and D̃(x, t) are still scaled
with T0(t = 0)e−νt .

Hence, we have the following equations for q̃0 and q̃1

d

dt
q̃0 = 0, (A.53)

d

dt
q̃1 = 2νψ31(t). (A.54)

So we have q̃0 = 3, and the first order correction for q(t) may be computed once we
know D31(x, t).

1Ansatz n.1.
2Wherewe use the rescaled fields D31 and D22, which shouldn’t necessarily vanish in the continuum
limit, and we define ψ31 = L�31, ψ22 = L�22.

https://doi.org/10.1007/978-3-319-95080-8_5
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We thenmove to the study of the time evolution of D31 and D22: first, we introduce
the following exact initial conditions for our model

T (t = 0) = T0(t = 0)

(
1 − 1

L

)
, (A.55a)

D(x, t = 0) = −T0(t = 0), (A.55b)

q(t = 0) = 3T 2
0 (t = 0)

(
1 − 1

L

)2

, (A.55c)

D31(x, t = 0) = −3T 2
0 (t = 0)

(
1 − 1

L

)
, (A.55d)

D22(x, t = 0) = 2

L
T 2
0 (t = 0). (A.55e)

which derivation can be found in Sect. A.4.1. Second, we derive evolution equa-
tions for D31 and D22 with the same technique used for D field; then, we write
the difference in time for C31

1p, C
31
kp , C

22
1p, C

22
kp (with k ≥ 2); we neglect the equation

for k = L/2 because the symmetry of the system yields a reflecting boundary at all
orders at x = 1/2 (however I studied it in calculations, you can check this result if
you wish).

After some painful algebra one gets

C31
1,p+1 =

〈(
vlp − jlp + jl−1,p

)3 (
vl+1,p − jl+1,p + jlp

)〉 =
= · · · =
= C31

1p + 1

L

{
−7ζ (1 − ζ)

[
1 − 8

7
ζ (1 − ζ)

]
C31
1p+

+ (
ζ3 + ζ

) (
C31
2p − C31

1p

)+

+ ζ (1 − ζ) [1 − 2ζ (1 − ζ)]
(
qp + 3T 2

p + 3C22
1p

)+

+3ζ (1 − ζ)
[
(1 − ζ)C121

1,1,p + ζC121
−2,1,p

]}
(A.56)

C31
k,p+1 =

〈(
vlp − jlp + jl−1,p

)3 (
vl+k,p − jl+k,p + jl+k−1,p

)〉 =
= · · · =
= C31

kp + 1

L

{
− 6ζ (1 − ζ)C31

kp+

+ (
ζ3 + ζ

) (
C31
k+1,p + C31

k−1,p − 2C31
kp

)+
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+ 3ζ (1 − ζ)

[
(1 − ζ)

(
C121

−1,k,p + C121
1,k,p

)+

+ ζ
(
C121
1,k−1,p + C121

−1,k+1,p

)]}
(A.57)

C22
1,p+1 =

〈(
vlp − jlp + jl−1,p

)2 (
vl+1,p − jl+1,p + jlp

)2〉 − T 2
p+1 =

= · · · =
= C22

1p + 1

L

{
−8ζ (1 − ζ)

[
1 − 3

4
ζ (1 − ζ)

]
C22
1p+

+ 2ζ2
(
C22
2p − C22

1p

) − 8ζ (1 − ζ) TpC1p+

+ 4ζ (1 − ζ) [1 − 2ζ (1 − ζ)]C31
1p+

+ 2 [ζ (1 − ζ)]2
(
qp + 3T 2

p

) + 4ζ (1 − ζ)C121
−2,1,p+

− 16
[ζ (1 − ζ)]2

L

(
Tp − C1p

)2}
(A.58)

C22
k,p+1 =

〈(
vlp − jlp + jl−1,p

)2 (
vl+k,p − jl+k,p + jl+k−1,p

)2〉 − T 2
p+1 =

= · · · =
= C22

kp + 1

L

{
− 8ζ (1 − ζ)

(
C22
kp + TpC1p

)

+ 2ζ2
(
C22
k+1,p + C22

k−1,p − 2C22
kp

)+

+ 4ζ (1 − ζ)
(
C121

−k,k−1,p + C121
−(k+1),k,p

)+

−16
[ζ (1 − ζ)]2

L

(
Tp − C1p

)2}
(A.59)

where the · · · indicate long, painful but straightforward algebra.
These equations rule the time evolution of C31 and C22; before going to the

continuum limit, we notice that they all contain the 3-point correlation function

C121
i, j,p =

〈
vl∓i,pv

2
lpvl± j,p

〉
defined in Eq. (A.38d). We don’t want to derive ad hydro-

dynamic equation for this field too; so, we use a cluster expansion to approximate it,
and we find

C121
i j p = 〈v2

lp〉
〈
vl∓i,pvl± j,p

〉 + 2
〈
vlpvl∓i,p

〉 〈
vlpvl± j,p

〉 + g121i, j,p

= TpCi+ j,p + 2CipC jp + g121i, j,p (A.60)
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so we see that the leading term is TpC1p = O(L−1). To get a closed set of equations,
we neglect g121i, j,p

3 and we write

C121
1,1,p � TpC2p + 2C2

1p (A.61a)

C121
−2,1,p � TpC1p + 2C1pC2p (A.61b)

C121
−1,k,p � TpCk−1,p + 2C1pCkp (A.61c)

· · ·

... and so on.
With this second ansatz and the quasielastic limit 4ζ (1 − ζ) = νL−2, through the

usual hydrodynamic scaling for space and time

�x = 1

L
, x = k − 1

L
(A.62a)

�t = 1

L3
, t = p

L3
(A.62b)

we get the continuous evolution equations for both fields:

1

L4
∂tψ

31(t) = 1

L4

{
− 7ν

4

(
1 − 2ν

7L2

)
ψ31(t)+

+ 2L

(
1 − ν

2L2
+ O(L−4)

)(
∂x D

31|x=0 + 1

2L
∂2x D

31|x=0 + O(L−2)

)

+ ν

4

(
1 − ν

2L2

)[
L
(
q(t) + 3T 2(t)

)
+ 3ψ22(t)

]
+

+ 3ν

4

[
ν

4L2

(
T (t)

(
ψ(t) + L−1∂x D|x=0 + O(L−2)

)
+ 2L−1ψ2(t)

)
+

+
(
1 − ν

4L2

)(
T (t)ψ(t) + 2L−1ψ(t)

(
ψ(x, t) + L−1∂x D|x=0 + O(L−2)

))]}

(A.63)

1

L4 ∂t D
31(x, t) = 1

L4

{
−3ν

2
D31(x, t)+

+ 2
(
1 − ν

2L2 + O(L−4)
) (

∂2
x D

31
)

+

+ 3ν

4

[ ν

4L2

(
2T (t)D(x, t) + O(L−2)

)
+

+
(
1 − ν

2L2

) (
2T (t)D(x, t) + 4L−1ψ(t)D(x, t) + O(L−2)

)]}

(A.64)

3Ansatz n.2.
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1

L4
∂tψ

22(t) = 1

L4

{
−2ν

(
1 − 3ν

16L2

)
ψ22(t) − νT (t)ψ(t)+

+ 2L
(
1 − ν

2L2
+ O(L−4)

)
∂x D

22|x=0 + ν
(
1 − ν

2L2

)
ψ31(t)+

+ 2ν

L
ψ(t)

(
ψ(t) + L−1∂x D|x=0 + O(L−2)

)+

+ ν2

8L

(
q(t) + 3T 2(t)

)− ν2

L2

(
T (t) − 1

L
ψ(t)

)2
}

(A.65)

1

L4
∂t D

22(x, t) = 1

L4

{
− 2νD22(x, t) + 4ν

L
D2(x, t) + O(L−2)+

+ 2
(
1 − ν

2L2
+ O(L−4)

) (
∂2
x D

22 + O(L−2)
)+

− ν2

L2

(
T (t) − 1

L
ψ(t)

)2
}

(A.66)

Equations (A.63)–(A.66) are the coupled evolution equations for the 4th order cor-
relations: they can be solved separately at each order, together with the perturbative
solution of q(t) from Eq. (A.45). we then write the first order with the help of the
expansion defined in Eq. (A.50), in terms of rescaled fields as defined in Eq. (A.52).
So, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂t D̃31
0 (x, t) = 2∂2

x D̃
31
0 (x, t) + ν

2

[
D̃31

0 (x, t) + 3D̃0(x, t)
]

∂x D̃31
0 (x, t)|x=0 = −3

4
ν

∂x D̃31
0 (x, t)|x=1/2 = 0

D̃31
0 (x, t = 0) = −3

(A.67)

where we used the result T̃0 = 1, and for long times we have the solution

D̃31
0 (x) = 3D̃0(x) (A.68)

which confirm that at the first order the clustering approximation is good.

For D̃22
0 (x, t) we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t D̃22
0 (x, t) = 2∂2

x D̃
22
0 (x, t)

∂x D̃22
0 (x, t)|x=0 = 0

∂x D̃22
0 (x, t)|x=1/2 = 0

D̃22
0 (x, t = 0) = 0

(A.69)
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that immediately lead to the flat solution

D̃22
0 (x, t) ≡ 0 (A.70)

So, we can compute the correction to the cooling of q(t) and solve Eq. (A.53): for
long times we have

q̃1(t) = q̃1(ts) + 6ψ̃∞ν(t − ts) (A.71)

where ts is the time at which we have ∂t D̃(x, t)|t≥ts = 0.
The results of Eqs. (A.68), (A.70), (A.71) can be plugged into Eq. (A.39), yielding

Lσ2(t) = q̃(t) + ∫ 1
0 dx D̃22(x, t)

T̃ 2(t)
− 1 =

=
q̃0 + ∫ 1

0 dx D̃22
0 + L−1

(
q̃1 + ∫ 1

0 dx D̃22
1

)
+ · · ·

T̃0 + 2L−1T̃0 T̃1 + · · · − 1 =

= 2 + 1

L

[
q̃1(ts) + 6ψ̃∞ν(t − ts) +

∫ 1

0
dx D̃22

1 − 6
(
T̃1(ts) + ψ̃∞ν(t − ts)

)]
+ O(L−2)

(A.72)

Equation (A.72) shows that local equilibrium result is valid only at first order in
L−1; corrections are found, but linearly increasing contributions vanish. So, the time
dependence shown in Fig. 5.4 must come from D22

1 (x, t); going to this order (now
the leading order for D22), from Eqs. (A.65), (A.66) we have that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂t D̃22
1 = 2∂2

x D̃
22
1 (x, t) + 4ν D̃0

2
(x, t)

∂x D̃22
1 |x=0 = −νψ̃0(t)

∂x D̃22
1 |x=1/2 = 0

D̃22
1 (x, t = 0) = 2

(A.73)

We don’t know how to solve this system; however, all we need to know to compute
the fluctuations is

∫ 1
0 dxD22

1 (x, t) = d̃1(t). So, integrating over x the first equation
in Eq. (A.73), we have

d

dt
d̃1(t) = 2

[
∂x D̃22

1 |x=1− − ∂x D̃22
1 |x=0+

]
+ 4ν

∫ 1

0
dx D̃0

2
(x, t) =

= 4ν

[
ψ̃0(t) +

∫ 1

0
dx D̃0

2
(x, t)

]
(A.74)

when for long times we have

https://doi.org/10.1007/978-3-319-95080-8_5
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D̃0(x, t) →
t�1

D̃∞(x) = −1

2

√
ν

2

cos
(
1
2

√
ν
2 (1 − 2x)

)
sin

(
1
2

√
ν
2

) (A.75)

ψ̃0(t) →
t�1

ψ̃∞ = −1

2

√
ν

2
cot

(
1

2

√
ν

2

)
(A.76)

hence the long times solution of Eq. (A.74) reads

d̃1(t) = d̃1(ts) + 4

[
−1

2

√
ν

2
cot

(
1

2

√
ν

2

)
+ ν

16 sin2
( 1
2

√
ν
2

)
(
1 + sin

√
ν/2√

ν/2

)]
ν(t − ts)

(A.77)

= d̃1(ts) + m�(ν)ν(t − ts) (A.78)

for which fluctuations can be written as

L�2(t) = 2 + 1

L

(
q̃1(ts) − 6T̃1(ts) + d̃1(ts) + m�(ν)ν(t − ts)

)
+ O(L−2)

(A.79)

We have derived an analytical prediction for the slope of L�2(t) for long times;
the constant term depends on the transient evolution and cannot be computed at this
stage. The final result is the slope of energy fluctuations

m(ν) =
√

ν/2

sin
(
1
2

√
ν
2

)
[

1
2

√
ν
2

sin
(
1
2

√
ν
2

) − cos

(
1

2

√
ν

2

)]
ν (A.80)

leading to the result in (5.37).
The result has been derived through a linear perturbative expansion; however,

a multiple-scales approach has been developed as well. The calculations are very
complicated and don’t lead to a improved agreement with simulation, so we don’t
report them here.

A.4.1 Initial Conditions in the Center of Mass Frame

To get the initial conditions in Eq. (A.55), we have to consider the correct velocity
distribution to perform the averages.

At t = 0, we draw L velocities wl with zero average and T0 variance, hence their
pdf is

P(w) =
L∏

l=1

p(wl)

with p(wl) = exp
(−w2

l /2T0
)
/
√
2πT0.

https://doi.org/10.1007/978-3-319-95080-8_5
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We move to the center of mass inertial frame, so we make a change of variables
with the new ones

vi = wi − 1

L

L∑
l=1

wl

Then we can compute the averages: to compute the initial variance, for example, we
have

〈
v2
i

〉 =
∫

dwi p(wi )

(
wi − 1

L

L∑
l=1

wl

)2

=
∫

dwi p(wi )

(
w2

i − 2

L
wi

L∑
l=1

wl + 1

L2

1,L∑
l,l ′

wlwl ′

)

= 〈
w2

i

〉 − 2

L

L∑
l=1

〈wiwl〉 + 1

L2

⎛
⎝ L∑

l=1

〈
w2

l

〉 +
1,L∑
l �=l ′

〈wlwl ′ 〉
⎞
⎠

= T0 − 2

L

L∑
l=1

T0δil + 1

L2

L∑
l=1

T0

= T0

(
1 − 1

L

)

To compute the initial correlation function, we exploit the property that velocities
are i.i.d., i.e. correlations are flat and all site pairs are equivalent; so, when i �= j

〈
viv j

〉 =
∫

dwi p(wi )

(
wi − 1

L

L∑
l=1

wl

)(
w j − 1

L

L∑
l ′=1

wl ′

)

= 〈
wiw j

〉 − 1

L

L∑
l=1

〈(
wi + w j

)
wl
〉 + 1

L2

1,L∑
l,l ′

〈wlwl ′ 〉

= − 1

L

L∑
l=1

T0
(
δil + δ jl

) + 1

L2

L∑
l=1

T0

= −T0
L

Similarly all the initial fields can be computed with the right correction in powers of
L−1.



Appendix B
Analytical Results for the Active Model

B.1 Self-propulsion with Nonlinear Friction

The Rayleigh–Helmoltz friction (2.82b) used as a self-propulsion force in (6.38) is
a first-order differential equation equivalent to the Cauchy problem

y′(x) = y(x)(1 − y2(x))

y(0) = y0
(B.1)

in adimensional variables, namely y = v/vs and x = ωs t . The equation can be inte-
grated by separating its variables, and the solution reads

y(x) = y0ex√
1 + y20 (e

2x − 1)
(B.2)

when |y0| < 1 andC is an integration constant. A similar solution showing exponen-
tial approach to the fixed point y = 1 can be found for |y0| > 1. Note that the solu-
tions are symmetrical when changing y0 → −y0, then y(x) → −y(x). In Fig. B.1
the solutions for three different initial values y0 = −0.2, 0.5, 4: it is worth remark-
ing the absence of oscillations when approaching the fixed point y = 1 and the fast
relaxation when |y0| > 1 compared to the slow one for |y0| < 1.

B.2 Absence of Viscosity at First-Order

Themomentum current given bymomentum transport in pairwise interaction is given
by Eq. (6.9) and reads

J (int)
i,kl ≡ nini+el f

(2)
k (vi, vi+el )�t (B.3)
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Fig. B.1 Solution of the differential equation in (B.1) for three different values of initial conditions,
see legend

Its averaged value can be computed as

〈
J (int)
i,kl

〉
= ρi(1 − ρi+el )

∫
dv dv′ Pi(v, t) Pi+el (v

′, t) f (2)
k (v, v′)�t (B.4)

where we have used the Molecular Chaos assumption stated in (6.16) and the fac-
torization in (6.17). Now we move to the continuum limit through the smoothness
ansatz in (6.18), which is equivalent to

Pi+el (v, t) = P(v; x, t) ± 1

L

∂P

∂xl

∣∣∣∣
(x,t)

+ O(1/L2). (B.5)

This expansion can be introduced in Eq. (B.4), leading to

〈
J (int)
kl

〉
(x, t) = ρ[1 − ρ + O(1/L)]

×
∫

dv dv′ P(v; x, t)
[
P(v; x, t) ± 1

L

∂P

∂xl
+ O(1/L2)

]
f (2)
k (v, v′)�t

(B.6)
but the first term in the parenthesis vanishes because of momentum conservation

in (6.1), f (2)(v, v′) = −f (2)(v′, v). So, one has
〈
J (int)
kl

〉
(x, t) = O(�t/L) and J (int)

kl

does not enter in the average momentum evolution equation (6.20b) at the first order
O(�t).
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B.3 Fluctuating Currents of Active Matter

The noise correlations of the density current can be derived substituting microscopic
(fluctuating) density current from Eq. (6.6) into Eq. (6.56), yielding

〈
ji,p,l ji′,p,l ′

〉 = 〈
(δξ p,iδζ p,el − δξ p,i+el δζ p,−el )(δξ p,i′δζ p,e

′
l
− δξ p,i′+e′

l
δζ p,−e′

l
)
〉

(B.7)

taking the current at equal time p = p′ because fast variables ξ p and ζ p are inde-
pendent at different times, so the correlations must vanish.

The only non vanishing terms are the product between the first and ones in the two
parenthesis, because they respectively account for particles hopping in the positive
or negative directions. One easily sees that

〈
δξ p,iδζ p,el δξ p,i′δζ p,e

′
l

〉
= δi,i′δl,l ′

〈
δξ p,iδζ p,el

〉

= δi,i′δl,l ′
〈
ni(1 − ni+el )�(vi,l |vi,l |

〉 �t

�x

(B.8)

and analogously

〈
δξ p,i+el δζ p,−el δξ p,i′+el δζ p,−e′

l

〉
= δi,i′δl,l ′

〈
ni+el (1 − ni)�(−vi+el ,l |vi+el ,l |

〉 �t

�x
.

(B.9)

Separating the (independent) density and velocity contribution and using Molecular
Chaos one has

〈
ji,p,l ji′,p,l ′

〉 = δi,i′δp,p′δl,l ′ [ρi(1 − ρi+el )
〈
�(vi,l)|vi,l |

〉
+ ρi+el (1 − ρi)

〈
�(−vi+el ,l)|vi+el ,l |

〉]. (B.10)

Smoothness assumption on the probability distribution in (B.5) yields

〈
�(−vi+el ,l)|vi+el ,l |

〉 = 〈
�(−vi,l)|vi,l |

〉+ O(1/L) (B.11)

so the two terms in the rhs of Eq. (B.10) sum up and at the first order give

〈
ji,p,l ji′,p,l ′

〉 ∼ δi,i′δp,p′δl,l ′ρi(1 − ρi)
〈|vi,l |〉 �t

�x
(B.12)

because [�(x) + �(−x)]|x | = |x |. The procedure shown is completely general and
holds as well for momentum and energy currents: one simply has to compute the
correlations through Eq. (B.7) substituting the current of the transported quantity
χ(v), namely

J (χ)

i,l ≡ δξ p,iδζ p,elχ(vi) − δξ p,i+el δζ p,−elχ(vi+el ). (B.13)
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Appendix C
Videos

This appendix contains a collection of links to video showing experiments and sim-
ulations on granular matter, active matter and hydrodynamics, cited in Part II, which
can be useful to clarify the meaning of the discussed phenomenology.

C.1 Granular Matter

• Granular jamming through a hopper: https://youtu.be/lWSJwZhqoQw, by J. Tang
and R.P. Behringer, Duke Physics.

• A demonstration of possible applications of granular jamming: https://youtu.be/
ZKOI_lVDPpw by Cornell Creative Machines Lab.

• Convection and segregation can be seen through an experimental realization of the
Brazil-nut effect, see https://youtu.be/PGDP5DomhWc by Chung, Liaw and Ju.

• Pattern formation is shown at https://youtu.be/s0XYrW1X0ig (experiment and
simulations) and https://youtu.be/CpZaRn0Bez0 (simulations), respectively made
by Howard Duan at Toronto university and by Simons Foundation.

• A granular simulation showing clustering during cooling of a granular gas is
shown at https://youtu.be/ObyE8mrDjRE, made by Stefan Luding at Twente
University ; another clustering simulation can be found at https://youtu.be/ap_
PcMC2cdE, made by the MPIDS-DCF group.

• Experimental visualization and qualitative explaination of granular jets: https://
youtu.be/Nt4jzVUEJjo, by Sixty Symbols with Roger Bowley.

• An experiment on a shaken granular showing several granular phases and Leiden-
frost effect: https://youtu.be/ueCtAlHXxCU, by Bagnoli and Guarino at Florence
University

• Agranular rotor used to build a ratchet is shownat https://youtu.be/aHrdY4BC71k,
made by the GranularChaos group in Rome.
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C.2 Active Matter

• Synchronization ofmetronomes (Kuramoto): https://youtu.be/Aaxw4zbULMs, by
Harvard Natural Science Lectures Demonstrations.

• Swarming bacteria: https://youtu.be/q27Jn3h4kpE byMatthewCopeland, Univer-
sity of Wisconsin.

• Bird flocks in Rome: https://youtu.be/8V6qUUWa4zk (Science Channel).
• Simulations showing active matter phase separation: https://youtu.be/JtY2rtw
P9v0, ratchet effect: https://youtu.be/oOtKNO-AEbY and shepherding: https://
youtu.be/aIcaAuqP_KY. Made by Danielle McDermott at Wabash University.

C.3 Hydrodynamic Instabilities

Here the main hydrodynamic instabilities connected with the

• The Rayleigh–Taylor instability: https://youtu.be/yabqo7VFTYs, by Jens
Niemeyer at Göttingen University

• The Kelvin–Helmoltz instability is experimentally presented at https://youtu.be/
UbAfvcaYr00 and numerically shown at https://youtu.be/mZ19gLn6Fx4. Videos
respectivelymadeby theDAMTP,University ofCambridge, andby JensNiemeyer.

• ThePlateau–Rayleigh instability: https://youtu.be/UYRGEINpO50, by theBYUS-
plashLab, Ira A. Fulton College.

• The Saffman–Taylor instability: https://youtu.be/FqC7VGTGh4U, by Fluid
Dynamics students at Dalhousie University, lecturer David Barclay.
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https://youtu.be/q27Jn3h4kpE
https://youtu.be/8V6qUUWa4zk
https://youtu.be/JtY2rtwP9v0
https://youtu.be/JtY2rtwP9v0
https://youtu.be/oOtKNO-AEbY
https://youtu.be/aIcaAuqP_KY
https://youtu.be/aIcaAuqP_KY
https://youtu.be/yabqo7VFTYs
https://youtu.be/UbAfvcaYr00
https://youtu.be/UbAfvcaYr00
https://youtu.be/mZ19gLn6Fx4
https://youtu.be/UYRGEINpO50
https://youtu.be/FqC7VGTGh4U
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