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Foreword to the second edition

In the revised and updated second edition of the book “Reciprocity, Spatial Mapping
and Reciprocity in Electromagnetics” (Kluwer, 1991) we have corrected some
(hopefully, most) of the misprints and minor errors in the first edition, and part
of Section 7.4 (“The compressible magnetoplasma”) has been rewritten.

An Internet search for “time reversal in electromagnetics and acoustics” reveals
a host of articles, most of them written after the first edition of this book was
published, devoted to the practical implementation of time reversal of pulsed waves
in optical, acoustic and microwave communication systems, and of earthquake
signals to locate seismic sources. This exciting topic, with its numerous applications,
is not the subject of this book, but could not be ignored in the updated second
edition and is reviewed in Section 8.1 under the heading “Time reversal by phase
conjugation - practical implementation”.

While the first edition was in press, the late Prof. Asher Peres drew our
attention to some articles published by him and others refuting claims in the
scientific literature that asymmetric chiral synthesis could be achieved in spinning
vessels. Their arguments based on the application of time-reversal and reflection
transformations to the postulated synthesis, illustrate the power of the method and
are presented in Section 8.2.

The discussion in Section 7.4 devoted to the compressible magnetoplasma with
scalar perturbation pressures is inadequate in that, in fact, the scalar pressure gradi-
ent in the Euler momentum balance equation should be replaced by the divergence
of a pressure tensor, and the adiabatic equation of continuity of the monoatomic
‘electron gas’ should be replaced by an equation of evolution of the pressure tensor.
In order to adopt the formalism used previously in Section 7.4 and elsewhere in
the book to derive the adjoint system of equations and the bilinear concomitant,
it was found convenient to introduce in Section 8.3 a shorthand symbolic notation: a
backarrow above an operator indicating that it operates backwards on the operand,
and a bidirectional arrow indicating that it operates in both forward and backward
directions.
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vi Foreword to the second edition

A difficulty arises when trying to solve the pressure evolution equation for the
tensor pressure (in order to substitute it in the momentum balance equation) insofar
as it contains terms involving cross products of the ambient magnetic field with the
pressure dyadic and their transposes. The problem is solved through the introduction
of a complete set of fourth-order orthogonal projectors. The properties of these
projectors are outlined in Appendix A.3.

The final topic, discussed in Section 8.4 (“Mode scattering in (bi)anisotropic
waveguides”), generalizes a theorem due to Harrington and Villeneuve (1958), and
illustrates the use of the time-reversal and reflection operators when applied to the
scattering relations in a waveguide in which a magnetized ferrite wire has been
inserted.

Some remarks about the notation – matrix or dyadic. Many workers in the physics
and mathematics community (Budden, Heading, Pitteway, Keller and Keller) have
used matrix notation, some have used predominantly indicial tensor notation
(Clemmow and Dougherty). The engineering community is more familiar with
the dyadic notation introduced by J.W. Gibbs (1901), a comprehensive overview of
which has been given by L.V. Lindell “Methods for Electromagnetic Field Analysis”
(Oxford, 1992). Most of this book uses matrix notation. This was particularly useful
when transposing and otherwise manipulating square matrices and the associated
column matrices, the elements of which were scalars, vectors and tensors, as in
Sections 8.3.1–8.3.3. On the other hand, when applying double-dot products of
fourth-order projectors with second-order tensors, as in Sections 8.3.4, 8.3.5 and
Appendix A.3, dyadics were indispensable. It was sometime necessary to use mixed
matrix-dyadic notation.

The topics discussed in Chapter 8 are not related and for clarity a separate list
of references is appended to each section, as well as to the Appendix A.3, and a
separate ‘Index–additions to 2nd edition’ is provided. New symbols, however, have
been included in an updated ‘List of Symbols’.

It has been a pleasure for us to revisit the many topics that we had left many years
ago, and we are thankful to Springer, which now incorporates Kluwer, for having
made this return visit possible.

Haifa – Düsseldorf C. Altman and K. Suchy
July 2010



Preface

The choice of topics in this book may seem somewhat arbitrary, even though we
have attempted to organize them in a logical structure. The contents reflect in fact the
path of ‘search and discovery’ followed by us, on and off, for the last twenty years.
In the winter of 1970–71 one of the authors (C.A.), on sabbatical leave with L.R.O.
Storey’s research team at the Groupe de Recherches Ionosphériques at Saint-Maur
in France, had been finding almost exact symmetries in the computed reflection
and transmission matrices for plane-stratified magnetoplasmas when symmetrically
related directions of incidence were compared. At the suggestion of the other
author (K.S., also on leave at the same institute), the complex conjugate wave
fields, used to construct the eigenmode amplitudes via the mean Poynting flux
densities, were replaced by the adjoint wave fields that would propagate in a medium
with transposed constitutive tensors, et voilà, a scattering theorem—‘reciprocity
in k-space’—was found in the computer output. To prove the result analytically
one had to investigate the properties of the adjoint Maxwell system, and the two
independent proofs that followed, in 1975 and 1979, proceeded respectively via
the matrizant method and the thin-layer scattering-matrix method for solving the
scattering problem, according to the personal preferences of each of the authors.
The proof given in Chap. 2 of this book, based on the hindsight provided by our
later results, is simpler and much more concise.

Further investigation revealed that the ‘conjugate’ problem, in which the scat-
tering matrix was the transpose of that in the given problem, was no more than
a reflection mapping of the the adjoint problem (i.e. of the original problem with
transposed constitutive tensors). Later, when media with bianisotropic constitutive
tensors were investigated, it was found that conjugate (reciprocal) media and wave
fields could be formed by any orthogonal spatial mapping of those in the original
problem after media and fields were reversed in time. The result was quite general
and not limited to stratified systems.

The second line of development was to find the link between ‘reciprocity in
k-space’ and Lorentz reciprocity, involving currents and sources in physical space.
This was done for plane-stratified media by applying the scattering theorem to the
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viii Preface

plane-wave spectrum of eigenmodes radiated by one current source and reaching
the second source. The reverse linkage, from Lorentz reciprocity to reciprocity in
k-space, had already been found by Kerns (1976). Application of restricted time
reversal as a means to obtain Lorentz reciprocity relations was the immediate
generalization. (Dissipative processes are not ‘time reversed’, and so the time
reversal is ‘restricted’.)

The relation between time reversal and reciprocity is not new. It has often
been discussed in the scientific literature. In the context of Lorentz reciprocity it
has been applied by Deschamps and Kesler (1967), and possibly by others. We
believe however that this is the first time that time reversal has been presented in a
systematic and mathematically well-defined procedure to serve as a tool for solving
problems of reciprocity and scattering symmetries (reciprocity in k-space). The use
of time reversal gives rise to problems of causality when sources are present, but
when the interaction between two systems is involved (Lorentz reciprocity) the non-
causal effects are irrelevant.

The insight gained during these investigations has enabled us to present many
of the earlier theorems and results, both our own and those of other workers, in a
compact and unified approach. Much of the material is new. The generalization of
Kerns’ theorem in Chap. 7, for instance, had not yet been published at the time of
writing of this book. We would like to hope that these ideas may prove stimulating
to other workers in the field.

In conclusion, one of the authors (C.A.) would like to express his indebtedness
to Professor H. Cory and Dr. E. Fijalkow for their contributions in developing the
computer programs that revealed scattering theorems in the computer printouts, in
the heroic days when programs were still punched on paper tapes and corrections
inserted with scissors and glue. He is also indebted to Dr. A. Schatzberg for his
important contribution in bridging the gap between reciprocity in k-space and
Lorentz reciprocity in physical space.

The authors would like to thank the Deutsche Forschungsgemeinschaft, the
Heinrich-Hertz-Stiftung, the Technion-Israel Institute of Technology and the Uni-
versity of Düsseldorf, for their generous financial support during the many years of
cooperation between us.

As this manuscript being prepared for press we learnt of the untimely death
of Professor John Heading, the first managing editor of the series ‘Developments
in Electromagnetic Theory and Applications’, and of this book in particular. We
are indebted to Professor Heading for having invited us to contribute to the series
and for his friendly encouragement and advice at all stages of this work. His
contribution to the subject of wave propagation and reciprocity was considerable,
and has influenced numerous workers in the field.

Haifa – Düsseldorf C. Altman and K. Suchy
January 1991
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Introduction: scope and aims

There are two underlying themes in this book. The first concerns the use and
application of the formally adjoint and the Lorentz-adjoint Maxwell system of
equations, the latter so-called since it leads to the Lorentz reciprocity theorem.
The (formally) adjoint Maxwell system is shown to play an essential role in
the derivation of scattering theorems. With the aid of the adjoint wave fields
in anisotropic and possibly absorbing media, one obtains a bilinear concomitant
vector P, having zero divergence, which in the case of the Maxwell system turns
out to be no more than a generalization of the Poynting vector and reduces to
the time-averaged Poynting vector in loss-free media. Making use of normalized
adjoint eigenmodes we may decompose an arbitrary wave field into its component
eigenmodes, and a complex amplitude a˛ and its adjoint Na˛ may be defined so that
the algebraic sum of the products Na˛a˛ for all eigenmodes equals the component
flux density Pz of the generalized Poynting vector in a specified direction Oz (normal
to the stratification, for instance, in stratified media). These results are used in
the derivation of scattering theorems (‘reciprocity in k-space’) for plane-stratified
and curved-stratified anisotropic media (Chaps. 2 and 3), and in the generalization
of a reciprocity theorem involving scattering from an arbitrary object immersed
in a homogeneous or plane-stratified anisotropic absorbing medium (Chap. 7).
In media with sources (currents) use is made of the Lorentz-adjoint, rather than
the (non-physical) formally adjoint Maxwell system, so that the fields that obey
Maxwell’s equations in a hypothetical Lorentz-adjoint medium are ‘physical’ and
obey a radiation condition at infinity. The Lorentz-adjoint fields and currents thus
obtained are related to those in the given system by a Lorentz reciprocity relation,
and the results are applied to a variety of media, anisotropic and bianisotropic,
including cold magnetoplasmas, moving media, chiral media and compressible
magnetoplasmas.

The second underlying theme concerns the relationship between the time-
reversed and the Lorentz-adjoint Maxwell systems. In loss-free media the two
systems are found to be identical: a Lorentz-adjoint medium is a time-reversed
medium. In both cases the direction of a fixed magnetic field (in a magnetoplasma,

xv
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for instance) is reversed, and a moving medium will move in the opposite direction.
In absorbing (dissipative) media the two systems are again identical if by ‘time
reversal’ we understand restricted time reversal, in which all quantities are reversed
in time except the dissipative processes. Collisional losses are thus unaffected
by restricted time reversal. The time-reversed medium is reciprocal to the given
medium, in the sense that currents and fields subject to Maxwell’s equations in
such media obey a Lorentz reciprocity relation with respect to currents and fields
in the given medium. The fact that time-reversed wave fields obey Maxwell’s
equations in the time-reversed medium, leads to immediate and intuitively self-
evident applications. If a ray path, i.e. the trajectory of a wave packet, is known
in a given medium, then the time-reversed ray path, i.e. the reverse trajectory, will
be a valid solution in the time-reversed (Lorentz-adjoint) medium. In scattering
problems, time reversal interchanges incoming and outgoing wave fields, which
is the basic idea behind the derivation of the ‘reciprocity in k-space’ scattering
theorems.

If sources are present the situation is not so simple, for one then finds that even
though the Lorentz-adjoint and the time-reversed governing equations are identical,
the solutions are different! The one is causal, being derived from retarded potentials
or retarded Green’s functions, the other is non-causal, being derived from advanced
potentials. However, this does not necessarily imply that non-causal time-reversed
solutions are of no practical interest. For if one considers the reaction of the field of
one current distribution (antenna) on another, and then compares it with that in the
reciprocal situation (in which the roles of transmitter and receiver are interchanged
and the medium is replaced by a Lorentz-adjoint medium), the same result is found
in the two cases! The receiver in the time-reversed situation sees incoming fields
converging on it from infinity, as well as the ray(s) arriving from the transmitter. In
the Lorentz-adjoint, reciprocal situation the only incoming wave fields are those that
emanate from the transmitter. The reaction of the transmitter on the receiver, which
is mediated in both cases by the same connecting ray (or rays), is thus identical too,
even though the process in the case of (restricted) time reversal is manifestly non-
causal. Time reversal thus provides an intuitively simple prescription for visualizing
or deriving the solution to a reciprocal problem (time-reversed media, time-reversed
currents and fields) if the solution to the given problem is known.

Historically, the problem of reciprocity in electromagnetics developed in two
different directions. The classic work of Lorentz (1896), and its development by
Sommerfeld (1925), Dällenbach (1942), Rumsey (1954), Cohen (1955), Harrington
and Villeneuve (1958), Kong and Cheng (1970), – the list is only partial – dealt
with the interchangeability of receiving and transmitting antennas in a given
and in a ‘transposed’, ‘complementary’ or ‘adjoint’ medium. A parallel, and
seemingly unrelated, line of development initiated by Budden (1954), Barron and
Budden (1959) and developed by Pitteway and Jespersen (1966), Heading (1971),
Suchy and Altman (1975), treated ‘reciprocity in k-space’, which dealt with the
symmetry properties of scattering matrices in cold plane-stratified magnetoplasmas.
These results were extended by Altman, Schatzberg and Suchy (1981) to more
general anisotropic or bianisotropic media, and by Suchy and Altman (1989) to
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curved-stratified media. The gap between the two approaches was bridged partially
by Kerns (1976) who demonstrated that the Lorentz reciprocity theorem could be
used to derive an ‘adjoint reciprocity (scattering) theorem’ involving an arbitrary
scattering body in free space, and by Schatzberg and Altman (1981) who showed
that the scattering theorem in plane-stratified magnetoplasmas led to Lorentz reci-
procity between fields and sources in that medium. The relationship between the two
types of reciprocity was concealed by the fact that whereas the Lorentz reciprocity
theorem interrelates fields and currents in a given and in a Lorentz-adjoint (time-
reversed) medium, the scattering theorems generally interrelate incoming and
outgoing waves in the same medium for different, symmetrically related directions
of incidence. The problem was clarified by Altman, Schatzberg and Suchy (1984)
who used the concept of a ‘conjugate’ medium, which was no more than a
spatial mapping of the Lorentz-adjoint medium. Suppose that a plane-stratified
magnetoplasma is ‘time reversed’. This means that the direction of the external
magnetic field, which is odd under time reversal, is reversed. If a reflection mapping
is now applied to the medium, viz. reflection with respect to a symmetry plane
containing the normal to the stratification and the external magnetic field, the plane-
stratified medium is unaffected but the external magnetic field, being an axial vector,
is again reversed in direction, and we have thereby recovered the original medium.
The given medium is thus ‘self-conjugate’. This means that if a scattering problem is
solved by some distribution of incoming and outgoing wave fields, another solution
will be given by time reversing all wave fields and then reflecting (mapping) them
with respect to the symmetry plane. The relations between these given and conjugate
(reflected, time-reversed) wave fields in the same medium is the substance of the
scattering theorems in plane-stratified media discussed in Chaps. 2 and 3.

The structure of the book is as follows. In Chap. 1 the refractive indices and
wave polarizations for a cold electron magnetoplasma are derived, as well as the
form of the eigenmodes in a plane-stratified plasma. The equations governing
their propagation in the stratified medium are developed (the Clemmow-Heading
coupled wave equations) and the numerical techniques for solving them (Budden’s
full-wave numerical methods, the Pitteway method of uncoupled penetrating and
non-penetrating modes, the Altman-Cory thin-layer scattering-matrix method, the
matrizant methods). This survey is far from exhaustive but is a description of each
numerical approach that led to the derivation of a scattering theorem, or that revealed
scattering (reciprocity) relations in the computed outputs, with each new scattering
theorem reflecting the computer program from which it derived. The survey is
intended as a basis for Chaps. 2 and 3, in which many of the earlier scattering
(‘reciprocity in k-space’) theorems are rederived within a unified framework with
the hindsight provided by the later work on the adjoint system, spatial mapping and
time reversal.

In Chap. 4, in the discussion of media with sources, the formally adjoint Maxwell
system is modified to give the Lorentz-adjoint system, and the Lorentz-adjoint fields
and currents are shown to be related to those in the given medium by the Lorentz
reciprocity theorem. Particular attention is paid to media that are self-conjugate, i.e.
that reduce to their original form after time reversal and an orthogonal mapping



xviii Introduction: scope and aims

(e.g. reflection) are applied to them. The resulting Lorentz-type reciprocity theorem
then involves reflected (or other orthogonally mapped) currents and fields in the
reciprocal problem.

In Chap. 5 the plane-wave spectrum of eigenmodes generated by an arbitrary
current distribution in a plane-stratified medium is developed, and a Green’s
function derived in terms of elements, reflection and transmission, of the scattering
matrix. With its aid the ‘reaction’ of the field of one current distribution on another
is found, and application of the scattering theorem for plane-stratified media then
yields a ‘conjugate’ Green’s function and a resulting Lorentz-type reciprocity
theorem relating the original currents and fields to reflected currents and fields in
the same (self-conjugate) medium. Reciprocity in k-space is thereby shown to lead
to Lorentz reciprocity in physical space, but including a reflected set of currents and
fields in the reciprocal situation.

The orthogonal mapping of vector and tensor fields is discussed in Chap. 6,
including the mapping of the tensor Green’s functions, the constitutive tensors and
the scattering matrices. Two types of transformation or mapping are considered.
The one is linked to a fixed (usually cartesian) coordinate system, whereas the other
is coordinate free. In both cases we consider only active transformations of the
vector and tensor fields that are mapped from one region of space to another. The
first type of transformation (coordinate linked) is best suited for use as a passive
transformation, in which the transformed quantities are fixed in space while the
coordinate axes are transformed. This is mathematically equivalent to the active
transformations but conceptually quite different.

In Chap. 7 the mathematical formalism of restricted time reversal is developed.
The time-reversed and Lorentz-adjoint Maxwell systems are found to be identical.
To test whether this finding has greater universality, we consider a compressible
magnetoplasma. This medium is of interest, from our point of view, mainly because
the 10-element electromagnetic-acoustic wave field that it supports consists of
four different constituents, the electric, the magnetic, the velocity and the pressure
fields. Each has its characteristic behaviour under reflection (polar- or axial-vectors)
and under time reversal (odd or even). It is found again that the Lorentz-adjoint
system may be constructed mathematically to satisfy a Lagrange identity and yield
a reciprocity relation, and that it corresponds to the time-reversed system.

Application of the properties of the formally adjoint system (from which one
derives modal biorthogonality and constructs a zero-divergence bilinear concomi-
tant vector) and of the Lorentz-adjoint system, in which the incoming (outgoing)
eigenmodes have been time reversed into outgoing (incoming) modes, leads to
a generalization of a scattering theorem due to Kerns, in which an anisotropic
scattering object is now imbedded in a homogeneous or plane-stratified, anisotropic,
and possibly absorbing medium. To complete the discussion of the behaviour of
the various types of media under spatial mapping, time reversal and reciprocity,
we consider optically active chiral media which are interesting in that they exhibit
spatial, rather than frequency dispersion. The analysis of Lorentz reciprocity in
chiral media leads to a useful formulation in which each eigenmode transmission
channel is exhibited explicitly. In the final section of Chap. 7 the non-physicality of
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the (non-causal) time-reversed wave fields is demonstrated when they are generated
by current sources. However, when determining the reaction of the field of one
current source on another in a given and in the reciprocal situation, one finds that
reaction of the field of the second current on the first in the reciprocal situation
is precisely that predicted by the time-reversal analysis, the non-physical time-
reversed fields that converge inwards from infinity playing no role in the interaction.
Here too time reversal gives a correct description of the reciprocal interaction
between two current sources.





Chapter 1
Wave propagation in a cold magnetoplasma

1.1 Conductivity and permittivity tensors of a weakly-ionized
cold magnetoplasma

A plasma permeated by an external magnetic field is a birefringent medium for the
propagation of electromagnetic waves. In this sense it is similar to uniaxial crystals,
but has some important differences. While the symmetry axes in crystals are
represented by polar vectors, the magnetic field b is an axial vector, an expression
of which is the gyration of the charges qs in a plasma about the magnetic field lines.
Thus a magnetoplasma is called a gyrotropic medium.

To relate the mean perturbed velocities �s of the charged plasma species s to the
electric field E of the wave and the external magnetic field b, we use the momentum
balance for each species in a weakly ionized plasma in the (approximate) form

msns0

�
@�s

@t
C �s�s

�
C rps � qsns0 .EC �s � b/ D fs (1.1)

with ms and qs representing the particle mass and charge respectively, ns0 the
equilibrium number density, �s the momentum-transport collision frequency with
neutral particles, ps the small-amplitude pressure perturbation and fs the force-
density source. The magnetic wave field being of order E/c, where c D 1=

p
"0�0

is the speed of light in vacuo, can be neglected in comparison with the external
magnetic field b.

Because of the small-amplitude pressure perturbation ps , we need the (approxi-
mate) energy balance [116, eq. (94.6)]

�
@

@t
C ˛s�s

�
ps C �ps0r � �s D �s (1.2)
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in Electromagnetics, DOI 10.1007/978-94-007-1530-1 1,
© Springer Science+Business Media B.V. 2011

1



2 1 Wave propagation in a cold magnetoplasma

to relate ps to the mean perturbed velocity �s . Here �D 5/3 is the translational
specific-heat ratio, �s is the power-density source and

ps0 WD ns0KT (1.3)

is the unperturbed partial pressure; K is Boltzmann’s constant and T the tempera-
ture. The factor

˛s WD 2�sn

mn

with ˛e � 1 ; ˛i � 1 (1.4)

is twice the ratio of the reduced mass �sn to the mass mn of a neutral particle [116,
eq. (94.7)].

To derive a dispersion equation and polarization ratios we consider the plasma
to be homogeneous and stationary. Far from the sources we may assume plane
electromagnetic waves with wave vectors k and angular frequency !, with wave
fields E, H, �s and ps varying as

E; H; �s ; ps � expŒi.!t � k � r/�

For media varying slowly in space and time this plane-wave ansatz can be
generalized to an eikonal ansatz

E; H; �s; ps � expŒ�i�.r; t/� with k WD r�; ! WD �@�

@t
(1.5)

which is valid in the so-called geometric optics approximation.
The momentum balance equation (1.1) becomes

msns0 .i! C �s/ �s � ikps � qsns0

 
EC �s � !cs

Ob
qs=jqsj

!
D fs (1.6)

with
Ob WD b

jbj (1.7)

denoting the unit vector in the direction of the magnetic field b, and

!cs WD jqsj
ms

jbj (1.8)

denoting the gyro-(cyclotron) frequency. The energy balance equation (1.2)
becomes

.i! C ˛s�s/ ps � i�ps0 k � �s D �s (1.9)
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In the cold plasma approximaton we neglect kps in comparison with the term
!msns0�s in (1.6). With the small-amplitude pressure perturbation ps proportional
to the square of the mean perturbed velocity �s , i.e.

ps � msns0�s
2 (1.10)

this approximation means that the mean perturbed speed �s is much smaller than
the phase velocity !/k:

�s � !

k
(1.11)

and therefore requires high phase velocities. In the energy balance (1.9) a high phase
velocity !/k is tantamount to the vanishing of the temperature T � ps0 (1.3). This is
the reason for the connotation ‘cold plasma approximation’. All plasmas in this book
will be considered to be ‘cold’, except the compressible magnetoplasma discussed
in Sec. 7.4.

Another approximation has already been implied in the momentum balance
equation (1.6) for electrons (s D e), viz. the small-collision approximation [117,
eq. (3.31)]

! � �e � j! � !cej (1.12)

If it is violated, the momentum balance (1.6) for the electrons should be replaced
by an expression for the electron mobility derived from kinetic theory [117,
eqs. (19.8d), (32.9), (32.17)].

In the cold plasma approximation eq. (1.6) may be written (neglecting kps) as

�s.qsns0/
2�s � qsns0E D fs (1.13)

in which the resistivity tensor �s is given by

�s.Ob/ WD ms

qs
2ns0

h
.i! C �s/IC sgn.qs/!cs

Ob � I
i
D �s

T .�Ob/ (1.14)

where I denotes the unit tensor and �s
T the transpose of �s . The mobility tensor �s

is defined by the relation

�s DW �sE with �s D
1

qsns0

�s
�1 (1.15)

and the conductivity tensor � in Ohm’s law for the electric (conduction) current
density, defined by

j D
X

s

qsns0�s DW � E (1.16)

is the sum of the reciprocal resistivity tensors,

� .Ob/ D
X

s

qsns0�s D
X

s

�s
�1.Ob/ D � T .�Ob/ (1.17)
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For the inversion of the resistivity tensor �s (1.14), the (complete) system of
three orthogonal projectors

P˙1 WD 1

2

�
I� ObObT ˙ i Ob � I

�
; P0 WD ObObT

(1.18)

satisfying the completeness and orthogonality relations

P1 CP�1 CP0 D I (1.19)

and
P iPj D ıij Pj (1.20)

is introduced. It is shown in Appendix A.2 that any gyrotropic tensor A whose
general form is

A.Ob/ D a?.I � ObObT
/C iax.Ob � I/C ak

ObObT

D AT
.�Ob/ (1.21)

may be decomposed into a linear combination of such projectors

A D 	1P1 C 	�1P�1 C 	0P0 (1.22)

where 	1, 	�1 and 	0 are the three distinct eigenvalues of A, given by

	1 D a? C ax; 	�1 D a? � ax; 	0 D ak (1.23)

The inverse tensor A�1 is then given by, cf. (A.11),

A�1 D 1

	1

P1 C 1

	�1

P�1 C 1

	0

P0 (1.24)

Decomposing the resistivity tensor �s (1.14) in this manner

�s D 
s;1P1 C 
s;�1P�1 C 
s;0P0 (1.25)

with 
i ! 	i representing the eigenvalues of �s , we may identify the eigenvalues as


s;˙1 D i Œ! 	 sgn.qs/!cs�C �s

qs
2ns0=ms


s;0 D i! C �s

qs
2ns0=ms

(1.26)

The reciprocal tensor �s
�1, cf. (1.24), is then

�s
�1 D 1


s;1

P1 C 1


s;�1

P�1 C 1


s;0

P0 (1.27)
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and the mobility tensor �s (1.15) becomes

�s D �sLP1 C �sRP�1 C �sP P0 (1.28)

with eigenvalues

�sL D qs=ms

i Œ! � sgn.qs/!cs�C �s

; �sR D qs=ms

i Œ! C sgn.qs/!cs�C �s

;

�sP D qs=ms

i! C �s

(1.29)

The reason for the subscripts R, L and P will become apparent later, following
eq. (1.63). The conductivity tensor � (1.17) is now

� D �LP1 C �RP�1 C �P P0 (1.30)

with the eigenvalues

�R;L;P D
X

s

qs ns0 �s R;L;P D
X

s

1


s1;�1;0

(1.31)

The first two of the following constitutive relations

D D "0E ; j D � .Ob/E ; B D �0H (1.32)

are customarily combined as

D � i

!
j D "E; with ".Ob/ D "0I� i

!
� .Ob/ D "T .�Ob/ (1.33)

defining thereby the plasma permittivity "(Ob). Its eigenvalues, in conventional
notation [113, Sec. 1-2], are

"L

"0

DW L D 1 � i�L

!"0

D 1 � 1

!

X
s

!ps
2

! � sgn.qs/!cs � i�s

(1.34a)

"R

"0

DW R D 1 � i�R

!"0

D 1 � 1

!

X
s

!ps
2

! C sgn.qs/!cs � i�s

(1.34b)

"P

"0

DW P D 1 � i�P

!"0

D 1 � 1

!

X
s

!ps
2

! � i�s

(1.34c)
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with the plasma frequencies !ps given by

!ps
2 WD qs

2ns0

ms"0

(1.35)

The plasma permittivity " may be written in terms of the orthogonal projectors,
P˙1 and P0, as

"

"0

D LP1 CRP�1 C PP0 (1.36)

as in (1.22), with 	1, 	�1, 	0 ! L; R; P . Using conventional notation, cf. [113,
Sec. 1-2],

S WD 1
2
.RC L/; D WD 1

2
.R � L/ (1.37)

we obtain
"

"0

D S.I� ObObT
/ � iD Ob � IC P ObObT

(1.38)

as in (A.25) in Appendix A.2.
In ionospheric and magnetospheric physics the following notation for the

frequency ratios is common:

Xs WD !ps
2

!2
Ys WD !cs

!
Zs WD �s

!
(1.39)

In terms of them the eigenvalues (1.34) of the plasma permittivity "/"0 now read

L D 1 �
X

s

Xs

1 � iZs � sgn.qs/Ys

; R D 1 �
X

s

Xs

1 � iZs C sgn.qs/Ys

;

P D 1 �
X

s

Xs

1 � iZs

(1.40)

and their linear combinations (1.37) are

S D 1 �
X

s

Xs.1 � iZs/

.1 � iZs/2 � Ys
2

; D D
X

s

Xs sgn.qs/Ys

.1 � iZs/2 � Ys
2

(1.41)

In a cartesian frame, with unit vectors Ox, Oy and OzD Ob, the plasma permittivity
"/"0 has the matrix representation

"

"0

D
2
4 S iD 0

�iD S 0

0 0 P

3
5 (1.42)
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Another cartesian frame, used in Sec. 2.4 with unit vectors Ox0, Oy0D Oy and Oz0, is
adapted to the Earth’s magnetic field b. With Oz0 pointing vertically upwards, y0 D 0

representing the magnetic meridian plane and I the magnetic inclination, we have

Ob D Ox0 cos I C Oz0 sin I (1.43)

with the transformation

2
4Ex0

Ey0

Ez0

3
5 D

2
4 sin I 0 cos I

0 1 0

� cos I 0 sin I

3
5
2
4Ex

Ey

Ez

3
5 (1.44)

for the components of the vector E. In this frame the matrix representation of the
plasma permittivity tensor "/"0 is given by

"

"0

D
2
4S sin2 I C P cos2 I iD sin I .P � S/ sin I cos I

�iD sin I S iD cos I

.P � S/ sin I cos I �iD cos I S cos2 I C P sin2 I

3
5

D

2
64

S � C Obx0

2
iD Obz0 �C Obx0

Obz0

�iD Obz0 S iD Obx0

�C Obx0
Obz0 �iD Obx0 S � C Obz0

2

3
75 (1.45)

where C WDS�P , and Obx0 D cosI , Oby0 D 0 and Obz0 D sinI are the direction cosines
of the Earth’s magnetic field b in the magnetic meridian plane.

1.2 Dispersion equation and polarization ratios

To establish a dispersion equation for electromagnetic waves in cold magnetoplas-
mas, Maxwell’s homogeneous equations

r �H � @D
@t
� j D 0 ; r � EC @B

@t
D 0 (1.46)

in the geometric optics approximation (1.5), viz.

ik �HC i!DC j D 0 ; k � E � !B D 0 (1.47)

have to be solved together with the the constitutive relations (1.33),

D � i

!
j D "E ; B D �0H (1.48)
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The combination of Maxwell’s two equations (1.47) together with BD�0H (1.48)
leads to the algebraic wave equation

n � .n � E/C "

"0

E D
h
nnT � n2IC "

"0

i
E D 0 (1.49)

where n is the refractive index and n the refractive index vector

n WD k
!
p

"0�0

D c

!
k ; jnj D n (1.50)

The dispersion equation is the solubility condition

det
h
nnT � n2IC "

"0

i
D 0 (1.51)

In a cartesian frame .x; y; z/ with

Oz WD Ob ; Oy WD
Ob � On
sin �

; Ox WD Oy � Oz D On � I �
ObObT

sin �
(1.52)

where cos � D Ob � On, the algebraic wave equation (1.49), with the matrix
representation (1.42) for ", becomes [113, Sec. 1-3, eq. (20)]

2
4S � n2 cos2 � iD n2 sin � cos �

�iD S � n2 0

n2 cos � sin � 0 P � n2 sin2 �

3
5
2
4Ex

Ey

Ez

3
5 D 0 (1.53)

The dispersion equation (1.51) reads [113, Sec. 1-3, eqs. (21)–(24)]

n4.S sin2 � C P cos2 �/� n2
�
.RLCSP / sin2 � C 2SP cos2 �

�CRLP D 0

(1.54a)
where the identity, cf. (1.37),

S2 �D2 D RL

has been used. This may be rearranged in the form

tan2 � D � P.n2 � R/.n2 �L/

.n2S � RL/.n2 � P /
(1.54b)

from which we obtain the dispersion relations for � D 0 D tan � , and � D �=2,
tan � !1:

� D 0 W n2 D R ; n2 D L ; P D 0

� D �

2
W n2 D P ; n2 D RL

S

(1.55)
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The cofactors of the top row of the square matrix in (1.53) give the electric wave-
field polarization ratios for the different modes [1, eq. (4.1)]

Ex W Ey W Ez

D .n2�S/.n2 sin2 � � P / W �iD.n2 sin2 � � P / W .n2�S/n2 cos � sin � (1.56)

The solutions of the dispersion equation (1.54) are [113, Sec. 1-3, eqs. (26), (27)]

n2 D
.RLC SP / sin2 � C 2SP cos2 � ˙

q
.RL � SP /2 sin4 � C 4D2P 2 cos2 �

2.S sin2 � C P cos2 �/
(1.57)

They are generally named the cold plasma modes or, in the ionospheric literature,
the magnetoionic modes. For a (one-species s ! e) electron plasma the dispersion
formula (1.57) can be rearranged (with the corresponding expressions (1.40) and
(1.41) for L, R, P, S and D) in the form

n2 D 1 � X

1 � iZ � Y 2 sin2 �

2.1�X � iZ/
˙
s

Y 4 sin4 �

4.1� X � iZ/2
C Y 2 cos2 �

(1.58)

This equation was first derived by Lassen (1927) [89, eq. 18] and independently,
without collisions, by Appleton (1928 and 1932) [16, 17], Goldstein (1928) [60] and
Hartree (1931) [64]. It is usually referred to as the Appleton-Hartree formula in
the ionospheric literature, but historically the more appropriate name seems to be
the Appleton-Lassen formula, as used for instance by Budden [34, Sec. 3], [33,
Secs. 3.12 and 4.6].

At low frequencies, !c=! DW Y > 1, when the term !p
2=!2 DW X becomes very

large because of its dependence on !�2 [we have dropped the subscript s D e in
!cs and !ps], the so called quasi-longitudinal approximation holds [104, eq. 8.1.3]

Y 4 cos4 �

4j.1� X � iZ/2j << Y 2 cos2 � (1.59)

provided only that the direction of propagation is not too transverse (with respect
to the magnetic field b), i.e. provided that � does not approach �=2. Eq. (1.58) then
reduces to

n2 � 1 � X

1� iZ ˙ Y cos �
(1.60)

If Y cos � > 1, a propagating mode—the so called whistler mode [114]—is obtained
with the lower sign in (1.60), which has interesting properties in the usual conditions
of VLF ionospheric or magnetospheric propagation, with

1 << Y cos � >> Z ; X >> Y
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and (1.60) then takes the form

n2
whist ler � 1 � X

1 � iZ � Y cos �
! X

Y cos �
(1.61)

For propagation parallel to the external magnetic field b, the dispersion equation
(1.54a) has three solutions

n2 D R ; n2 D L ; P D 0 (1.62)

with the corresponding polarization ratios (1.56)

Ex W Ey W Ez D
R‚ …„ ƒ

.1 W �i W 0/ ;

L‚ …„ ƒ
.1 W i W 0/ ;

P‚ …„ ƒ
.0 W 0 W finite/ (1.63)

The first two (propagating) modes have circular transverse polarizations with
opposite helicity, viz.

ER;L D .Ox	 i Oy/ exp.i!t/

D .Ox cos !t ˙ Oy sin !t/C i.Ox sin !t 	 Oy cos !t/

Looking down the direction of propagation, ER has right-handed polarization, EL

is left-handed, and hence the symbols R and L; the polarization of the mode P , on
the other hand, is parallel (longitudinal).

In the absence of collisions (Zs WD �s/!D 0) the eigenvalues R, L and P , (1.34)
and (1.40), of the plasma permittivity "/"0 (1.33) are real, and so too is the square
of the the refractive index n (1.57). For negative values of n2 no propagation is
possible. The corresponding mode has a cutoff at n2 D 0. Such cutoffs occur, as can
be seen from the dispersion equation (1.54a), for vanishing RLP , i.e. for

R D 0 ; L D 0 or P D 0 (1.64)

or, with the aid of (1.40), for

X
s

Xs

1C sgn.qs/Ys

D 1 ;
X

s

Xs

1 � sgn.qs/Ys

D 1 or
X

s

Xs D 1 (1.65)

In the case of an electron plasma in particular, with sgn.qe/ D �1, the cutoffs occur
when

X D 1 � Y ; X D 1C Y or X D 1 (1.66)

In Fig. 1.1 the dependence of n2 (1.58) on X DW !p
2=!2 is shown, for Y D 2,

Z D 0, with � D arccos.Ob � On/ as the parameter. The wave polarizations, right- or
left-handed, in each region are indicated, and the region in which there is whistler-
type propagation is marked.
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Fig. 1.1 Square of refractive index n2 versus X := !p
2=!2 (1.58) for a cold electron magneto-

plasma. Y WD!c /!=2, Z WD �/!=0. Three values of the parameter � WDarccos(Ob� On) are shown,
0, �=6 and �=2, see eq. (1.55). Curves for left-handed polarizations lie in the vertically-hatched
areas, right-handed polarizations in the horizontal hatching.

Denoting the two solutions (1.57) of the dispersion equation (1.54) by n˛
2 and

nˇ
2 and the corresponding electric wave fields, as determined by the polarization

ratios in (1.56), by E˛ and Eˇ , we may write the algebraic wave equation (1.49),
with the unit vector On WD n/n, as an eigenvalue equation

�
".b/

"0

� n˛
2.I� On OnT

/

	
E˛ D 0; det

�
".b/

"0

� n˛
2.I� On OnT

/

	
D 0 (1.67)
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with the two cold plasma modal wave fields E˛;ˇ as (right) eigenvectors. Consider
next the eigenmode equation for the reciprocal (left) eigenvectors, cf. (A.15) in
Appendix A.1, �

".b/T

"0

� Nnˇ
2.I� On OnT

/

	
Eˇ D 0 (1.68)

or, transposing,

Eˇ
T
�
".b/

"0

� Nnˇ
2.I � On OnT

/

	
D 0 det

�
".b/

"0

� Nnˇ
2.I � On OnT

/

	
D 0 (1.69)

The eigenvalue equations for Nn2
ˇ and n2

˛ , (1.67) and (1.69), are identical and so
clearly

Nnˇ D nˇ (1.70)

However, the direction of the refractive index vector, cf. (1.50),

Nnˇ WD
Nkˇ

!
p

"0�0

D c

!
Nkˇ; j Nnˇj DW nˇ (1.71)

is not necessarily the same as as that of nˇ . In fact if we write the first term of
Maxwell’s equations (1.47), with the aid of (1.48), in the form

�
!

"

"0

; k˛ � I
	 �

E˛

H˛

	
D 0

and the corresponding equation for the reciprocal (left) eigenvector in the form

�
!

"T

"0

; �k˛ � I
	 �

E˛

H˛

	
D
�
!

"T

"0

; Nk˛ � I
	 �

E˛

H˛

	
D 0

using the fact that
Œk � I�T D �k � I

we see that
Nk˛ D � k˛; Nn˛ D �n˛ (1.72)

This result implies that if the modal field (E˛ , H˛) propagates with a wave vector
k˛ in the medium "(b), then a ‘reciprocal wave field’ (E˛ , H˛) propagates with a
wave vector Nk˛D�k˛ in the medium "(�b)="T (b) (1.33). Recalling that Nn˛

2D n2
˛

(1.70), the polarization ratios of the electric wave fields are equal in the two cases
and we may write

E˛.�Ob;�On/ D E˛.Ob; On/; H˛.�Ob;�On/ D �H˛.Ob; On/ (1.73)
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since, from (1.47) and (1.48),

H˛ D 1

!�0

k˛ � E˛ D � 1

!�0

Nk˛ � E˛ D �H˛

The terms ‘reciprocal medium’ and ‘reciprocal wave fields’ are used in a different
context in the chapters that follow, but mathematically they are closely related if
not identical to the ones used here. We may anticipate some concepts developed in
later chapters by noting that the ‘reciprocal medium’ and ‘reciprocal wave fields’
are obtained by time reversing the original medium "(b) and wave vectors k which,
in the case of the cold magnetoplasma, means reversing the external magnetic field
b of the medium and the magnetic wave field H, and through it the direction of the
propagation vector k � D �H.

Multiplication of (1.67) from the left with Eˇ
T

and of (1.69) from the right with
E˛ , with subsequent subtraction, yields

.n˛
2 � nˇ

2/Eˇ
T

ŒI � On OnT
� E˛ D 0 (1.74)

This is a biorthogonality relation

Etˇ � Et˛ D ı˛ˇEt˛
T

Et˛ (1.75)

for the transverse (to k) components of E˛ and Eˇ:

Et˛ WD ŒI � On OnT
� E˛ ; Etˇ

T WD Eˇ
T

ŒI � On OnT
� (1.76)

since
ŒI � On OnT

� D ŒI � On OnT
� ŒI � On OnT

�

is a projector onto the plane transverse to the wave-normal direction On.
In a cartesian frame (
; 
; �), with

O� D On; O� WD
Ob � On
sin �

D Oy O� WD O� � O� D Œ On OnT � I�
sin �

� Ob (1.77)

we have, in view of (1.72) and (1.73),

E� D �E�; E
 D E
 ; E
 D �E
 (1.78)

and therefore the biorthogonality relation (1.75) takes the form

E
ˇE
˛ CE
ˇE
˛ D E
ˇE
˛ � E
ˇE
˛ D 0
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yielding the products of the transverse polarizations, �˛ and �ˇ ,

�˛ �ˇ WD
�

E


E


�
˛

�
E


E


�
ˇ

D 1 ; ˛ ¤ ˇ (1.79)

The components of E in the two cartesian frames Ox, Oy, Oz and O�, O�, O�, (1.52) and
(1.77), are related by the transformation

2
4E


E


E�

3
5 D

2
4 cos � 0 � sin �

0 1 0

sin � 0 cos �

3
5
2
4Ex

Ey

Ez

3
5 (1.80)

Using the polarization ratios (1.56) in the (x; y; z) frame, we obtain the correspond-
ing ratios in the (
; 
; �) frame [1, eq. (1.42)] in the form

E
 W E
 W E� D .n2 � S/P cos � W iD.n2 sin2 � � P / W �.n2 � S/.n2 � P / sin �

(1.81)

Note that when � ! .� C �/, i.e. Ob ! �Ob, the wave polarization, � WD E
=E
 ,
changes sign.

In Chap. 2 we shall need to express the composite 6-element wave-field eigen-
vector in the form

e˛ D .E˛; H˛/ D .E
; E
; E� I H
 ; H
; H�/ (1.82)

in which we have introduced the normalized magnetic wave-field vector, cf. [32,
Sec. 2.10],

H WD
r

�0

"0

H (1.83)

From (1.47) and (1.48) we have

k � E D !�0H D !
p

"0�0 H D k0H; k0 WD !
p

"0�0

which yields, with n D n O� D k=k0,

n � E DH ; H
 D �n E
 ; H
 D n E
 ; � WD E


E


D �H


H


(1.84)

The eigenmode wave field (1.82) for the mode ˛ then becomes

e˛ D .1 ; �˛ ; �˛ I ��˛n˛ ; n˛ ; 0/ E
;˛ (1.85)

with the longitudinal polarization � WD E�=E
 .
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1.3 Dispersion equation for a stratified magnetoplasma

If the magnetoplasma is plane stratified and its variation in the normal direction, say
Oz, is so rapid that the geometric optics approximation (1.5) is no longer valid, we
must revert to Maxwell’s differential equations (1.46) for time-harmonic waves

E ; H � exp.i!t/ (1.86)

in the form

r �H � i!"E D Je ; r � EC i!�0H D �Jm (1.87)

where Je and Jm are the electric and equivalent magnetic current densities and "WD
"0I � i� =! (1.33) is the plasma permittivity. With an ansatz for the separation of
variables

E.x; y; z/ � 
.x/ 
.y/ E.z/ ; H.x; y; z/ � 
.x/ 
.y/ H.z/ (1.88)

the separation constants kx , ky are given by

1




d


dx
D �ikx ;

1




d


dy
D �iky (1.89)

Hence, together with the expression (1.86) for time-harmonic waves, we have

E.r; t/ � E.z/ expŒi.!t � kxx � kyy/� DW E.z/ expŒi.!t � kt � r/�

H.r; t/ � H.z/ expŒi.!t � kxx � kyy/� DW H.z/ expŒi.!t � kt � r/�

(1.90)

the constancy of the tangential component kt of the wave vector k:=r� (1.5)
expressing Snell’s law.

Maxwell’s partial differential equations (1.87) become

�ikt �HC Oz � dH
d z
� i!"E D Je

�ikt � EC Oz � dE
d z
C i!�0E D �Jm

(1.91)

the common factor expŒi.!t � kt � r/� having been dropped. With the aid of the unit
tensor I this system of coupled ordinary differential equations may be written as

2
64 i!" ikt � I� Oz � I

d

d z

�ikt � IC Oz � I
d

d z
i!�0I

3
75
�

E
H

	
D
� �Je

�Jm

	
(1.92)
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or, more compactly, as

�
i!K � ikxUx � ikyUy CUz

d

d z

	
e D �j (1.93)

in terms of the 6 � 6 tensors

K WD
�
" 0

0 �0I

	
(1.94)

Ux WD
�

0 �Ox � I
Ox � I 0

	
D Ux

T
; Uy WD

�
0 �Oy � I
Oy � I 0

	
D Uy

T

Uz WD
�

0 �Oz � I
Oz � I 0

	
D Uz

T D

2
6666666664

W
0 W

W
: : : : : : : : : :

0 1 0

�1 0 0

0 0 0

: : : : : : : : :

0 �1 0 W
1 0 0 W
0 0 0 W

0

3
7777777775

(1.95)

and the 6 � 1 column vectors

e WD
�

E
H

	
; j WD

�
Je

Jm

	
(1.96)

With K;Ux and Uy combined into a single 6 � 6 tensor C,

C WD !K � kxUx � kyUy (1.97)

eq. (1.93) becomes �
iCCUz

d

d z

	
e D �j (1.98)

Note that the differential operator Uzd=dz acts only on the tangential components
Et and Ht . The remaining two equations are algebraic relations between the normal
components Ez; Hz and the the tangential components Et ; Ht .

In the following section (1.4) we shall separate differential and algebraic
equations by elimination of the normal components Ez and Hz from the differential
equations. Here we decompose the wave field e into modes by means of the formal
substitution

d

d z
! �i�.z/ (1.99)
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in the source-free 6 � 6 system (1.98), which leads to the purely algebraic 6 � 6

system
ŒC � �Uz� e D 0 (1.100)

This is an eigenvalue problem in which the eigenvalues �˛ and corresponding right
and left (reciprocal) eigenvectors e˛ and Neˇ solve the respective equations

ŒC � �˛Uz� e˛ D 0; Neˇ
T
�
C � �ˇUz

� D 0 (1.101)

Premultiplying the first equation in (1.101) with Neˇ
T , postmultiplying the second

with e˛ and subtracting, we obtain



�˛ � �ˇ

� Neˇ
T Uze˛ D 0 (1.102)

establishing the biorthogonality of Neˇ and e˛ with respect to the ‘mixed Poynting
product’, viz.

Neˇ
T Uze˛ D


 NEˇ �H˛ C E˛ � NHˇ

� � Oz D ı˛ˇ


 NE˛ �H˛ C E˛ � NH˛

� � Oz (1.103)

If we substitute d=dz ! �i� (1.99) in (1.92) and compare with Maxwell’s
equations (1.47), with the constitutive relations (1.48) inserted,

�
i!" ik � I
�ik � I i!�0I

	 �
E
H

	
D 0 (1.104)

for a slowly varying plasma, the two systems coincide when we put

k D kt C � Oz (1.105)

In terms of the refractive index vector n WD ck=! (1.50) this reads

n D nt C q Oz; n2 D nt
2 C q2 with q WD c�

!
(1.106)

and the dispersion equation

det
h c

!
C � qUz

i
D 0 (1.107)

i.e. the solubility condition for the 6 � 6 system (1.101) may therefore be deduced
from the dispersion equation, (1.51) and (1.54a), if we put

n2 cos2 � D .n � Ob/2 D .nt � ObC q Obz/
2

D .nt � Ob/2 C 2q.nt � Ob/ Obz C q2 Obz
2 (1.108)
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The resulting equation is the dispersion quartic [33, eqs. (6.15) and (6.17)]:

q4
h
S C .P � S/ Obz

2
i

C 2q3.P � S/ Obz.nt � Ob/

C q2
n
2Snt

2C.P�S/.nt � Ob/2C �
RL�SP C .P �S/nt

2
� Obz

2� .RLCSP /
o

C 2q
�
RL� SP C .P � S/nt

2
� Obz.nt � Ob/

C Snt
4 � .RLC SP /nt

2 C �RL � SP C .P � S/nt
2
�

.nt � Ob/2 CRLP D 0

(1.109)

which, for a (one-species) electron plasma, is just the quartic equation derived by
Booker (1936) [22, eq. 7].

1.4 Coupled differential equations for the tangential
components of the wave field

To obtain a 4�4 system of differential equations for the four tangential components
Et and Ht of the wave field, we eliminate the two normal components Ez and Hz

from the 6 � 6 system (1.92). Scalar multiplication of the second equality in (1.91)
with Oz yields

�i Oz � kt � EC i!�0Hz D �Jmz

We introduce the normalized magnetic wave-field vector H WD p
�0="0H, as in

(1.83). Then, with the refractive index vector n WD ck=! (1.50), we get

Hz D .Oz � nt / � Et C i
c

!
Jmz (1.110)

We now partition the permittivity tensor " (1.33),

" D
2
4"tt W E"tz

: : : � : : :

E"T
zt W "zz

3
5 (1.111)

cf. [53, eq. 8.2.(2c)], with

"t t WD
�
"xx "xy

"yx "yy

	
; E"tz WD

�
"xz

"yz

	
; E"T

zt WD
�
"zx

"zy

	T

D Œ"zx; "zy� (1.112)

For the sake of clarity in the subsequent discussion we write these column or square
matrices in their explicit vector-dyadic representation:

E"tz WD

Ox"xz C Oy"yz

�
; E"zt WD



"zx OxC "zy Oy

�
"t t WD Ox"xx OxT C Ox"xy OyT C Oy"yx OxT C Oy"yy OyT

(1.113)
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in order to unravel expressions we shall encounter presently containing terms like
Oz � E"tzE"T

zt or Oz � "tt,

Oz � E"tzE"T
zt D Oz �


Ox"xz C Oy"yz
� 


"zx OxT C "zy OyT
�

D 
Oy"xz � Ox"yz
� 


"zx OxT C "zy OyT
�

!
��"yz

"xz

	
Œ"zx; "zy� D

��"yz"zx �"yz"zy

"xz"zx "xz"zy

	
(1.114)

or

Oz � "t t D Ez �

Ox"xx OxT C Ox"xy OyT C Oy"yx OxT C Oy"yy OyT

�
D Oy"xx OxT C Oy"xy OyT � Ox"yx OxT � Ox"yy OyT

!
��"yx �"yy

"xx "xy

	
(1.115)

in which we have given the matrix representation in the last line in each case.
Dot multiplication of the first equation in (1.91) with

p
�0="0Oz leads to

�i Oz � .kt �H/� i
!

c"0


E"zt � Et C "zzEz
� Dp�0="0Jez

and solving for Ez yields, cf. [53, eq. 8.2.(3a)],

Ez D � 1

"zz


E"zt � Et C "0Oz � nt �Ht

�C i

!"zz
Jez (1.116)

Having expressed the normal components, Ez and Hz, in terms of the tangential
components, Et and Ht , we should like to transform the differential operator .Oz �
I d=dz/ into the operator .I � OzOzT /d=dz, using the transverse projector (see the
equations following (A.20) in Appendix A.2)

�.Oz � I/.Oz � l/ D l � OzOzT

where, typically �
l � OzOzT

�
H DHt

This can be achieved by cross multiplication of the equations in (1.91) with �Oz, and
substitution of H D p�0="0H, to give

dHt

d z
C iktHz C i

!

c"0

˚
.Oz � "t t / � Et C Oz � E"tzEz

� D �Oz �Z0Jet

dEt

d z
C ikt Ez � i

!

c
Oz �Ht D Oz � Jmt

(1.117)
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with Z0 WD
p

�0="0. Substituting the expressions (1.110) and (1.116) for the
normal components, Ez and Hz, into these equations we obtain, cf. [53, prob-
lem 8.1],

dEt

dz
� i

!

c
nt

E"T
zt

"zz
Et � i

!

c

�
"0

"zz
nt .Oz � nt /

T C Oz � I
�

Ht � nt

c"zz
Jez D Oz � Jmt

(1.118)

dHt

dz
C i

!

c

(
nt .Oz � nt /

T C Oz �
 

"tt

"0

� E"tzE"T
zt

"0"zz

!)
Et � i

!

c

Oz � E"tz

"zz
.Oz � nt /

T Ht

� nt Jmz D �Oz �Z0Jet (1.119)

This can be written as a 4�4 system for the four tangential components, Et and Ht ,
in the form [39]

d

dz

�
Et

Ht

	
C i

!

c
N.4/

�
Et

Ht

	
D
�

0 Oz � I
�Oz � I 0

	 �
Z0Jet

Jmt

	
C
2
4

nt

c"zz
Jez

nt Jmz

3
5 (1.120)

with the 4 � 4 matrix N.4/ given by

N.4/ WD

2
66664

�nt

E"tz

"zz
�Oz � IC "0

"zz
nt .nt � Oz/T

�Oz �
 
E"tzE"T

zt

"0"zz
� "tt

"0

!
� nt .nt � Oz/T

.Oz � E"tz/.nt � Oz/T

"zz

3
77775

(1.121)

Eq. (1.121) simplifies if the x-axis is chosen to lie in the plane spanned by Oz (normal
to the stratification) and On, the direction of the wave vector .k D k On/, so that with
Snell’s law (1.90)

nt D s Ox where s WD sin � (1.122)

With the aid of (1.114) and (1.115), eq. (1.121) becomes

N.4/ D 1

"zz

2
664

�s"zx �s"zy 0 "zz � s2"0

0 0 �"zz 0

"yz"zx � "yx"zz �"yy"zz C "yz"zy C s2"zz 0 s"yz

"xx"zz � "xz"zx �"xz"zy C "xy"zz 0 �s"xz

3
775

(1.123)

If the medium is source free, i.e. if the currents Je and Jm are everywhere zero,
then (1.120) becomes

d

dz
e.4/ C ik0N

.4/e.4/ D 0; k0 WD !

c
(1.124)
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with

e.4/ WD
�

Et

Ht

	
; Ht WD

r
�0

"0

Ht (1.125)

If the sign of any one of the four tangential components of Et ; Ht in e.4/ is changed
by multiplication of e.4/ by one of the four matrices

P.4/ W D

2
664
�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
775 ;

2
664

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 1

3
775 ;

2
664

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

3
775

or

2
664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

3
775 D

h
P.4/

i�1

(1.126)

then the signs of the corresponding row and column of the matrix N.4/, (1.121) or
(1.123), must be changed accordingly. The resultant 4 � 1 system

dg
dz
C ik0Tg D 0; g WD P.4/e.4/ D

2
664

Ex

�Ey

Hx

Hy

3
775 ; T WD P.4/N.4/P.4/ (1.127)

was first derived by Clemmow and Heading [39, eq. 16] using the second matrix in
(1.126) for P.4/. The propagation matrix T, cf. N.4/ in (1.123), is then

T D 1

"zz

2
664

�s"zx s"zy 0 "zz � s2"0

0 0 �"zz 0

"yz"zx � "yx"zz "yy"zz � "yz"zy � s2"zz 0 s"yz

"xx"zz � "xz"zx "xz"zy C "xy"zz 0 �s"xz

3
775 (1.128)

cf. [33, eq. (7.82)]. Eq. (1.127) was derived also by Rawer and Suchy [105,
eq. (13.9)] using the third matrix in (1.126) for P.4/. All four propagation matrices T
(1.127) are transposed with respect to their trailing diagonals when the direction of
the external magnetic field is reversed, b! �b, since "T .b/ D ".�b/ (1.33). This
result is used in Sec. 3.2.1 to prove the property of modal biorthogonality required
in the derivation of the eigenmode scattering theorem.

Eigenvalues and eigenvectors of the propagation matrix T

Suppose we have solved the characteristic equation for T,

ŒT � q˛I�g˛ D 0; detŒT � q˛I� D 0 (1.129)
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We construct the eigenmode matrix G from the four normalized eigenvectors Og˛:

G WD ŒOg1 Og2 Og�1 Og�2� (1.130)

in which we assume that the normalization of the eigenvectors has been performed
in some systematic way, e.g. by equating the component E˛x in each g˛ to unity. If
G is not singular then T is diagonalized by G,

G�1TG D

2
664

q1 � � �
� q2 � �
� � q�1 �
� � � q�2

3
775 DW Q (1.131)

Now an arbitrary wave field g may be decomposed into the four eigenvectors g˛ by
means of the transformation

a D G�1g; g D Ga D
X

˛

a˛ Og˛ D
X

˛

g˛ (1.132)

Substituting g from (1.132) into (1.127), and assuming that the medium is homoge-
neous, i.e. that T is constant, we get with the aid of (1.131)

Ga0 D �ik0TGa; a0 D �ik0Qa (1.133)

Using (1.131) and (1.132) we find that the solutions of (1.133) are indeed

a˛ � exp.�ik0q˛z/; g˛.z/ D g˛.0/ exp.�ik0q˛z/; ˛ D ˙1;˙2 (1.134)

The eigenvectors Og˛ of T thus represent the characteristic wave fields or eigenmodes
of the medium, and a˛ are the modal amplitudes in the eigenmode decomposition.
The eigenvalues q˛ are the roots of the Booker quartic, detŒT � q˛I� D 0 (1.129),
derived already in Sec. 1.3, eq. (1.109).

1.5 Numerical methods of solution

1.5.1 Motivation and background

Any numerical method that calculates the outgoing eigenmode wave fields or
amplitudes produced by a set of incoming eigenmodes incident on a plane-stratified
medium, is based on a set of governing equations. These may be a system of
differential equations that will be integrated numerically through the medium, or
a set of matrix relations that are recursively modified as additional layers are added
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to a plane-stratified slab until the entire medium is reconstructed. In either case the
symmetries of the scattering relations between incoming and outgoing eigenmodes
must be contained in the symmetries inherent in the governing equations. Such
symmetries in the scattering relations, which we shall call scattering theorems, were
found on several occasions in computer outputs, and the analytical proofs were then
sought and found in the governing equations. Some such scattering theorems and
their derivation from the governing equations are discussed in Chaps. 2 and 3. In this
section those numerical methods are described that are relevant to, and serve as a
basis for the later discussion. Our survey is far from exhaustive, but we shall attempt
to present an overall view of the problems and the main lines of development in this
field. An excellent summary of the numerical methods has been given by Budden
[33, Chap. 18].

The need for reflection and transmission coefficients

Until the mid-fifties the main motivation for developing numerical methods for
solving the equations governing radio-wave propagation in the plane-stratified
ionospheric magnetoplasma, was to produce a set of reflection coefficients for
plane waves having arbitrary directions of incidence on the ionosphere from below.
The ionosphere was viewed primarily as a reflecting medium permitting radio
communication between stations far beyond the line of sight. Ray tracing methods,
refined possibly by phase integral calculations near zeros or branch points of the
complex refractive indices (reflection or coupling points) where ray methods broke
down, yielded satisfactory results at high frequencies .& 1MHz/. In the low and
very low frequency ranges, where the variation in ionospheric parameters within a
wavelength in the medium was large, the methods of ray tracing were inappropriate
and full-wave solutions were mandatory.

The pioneering work by Budden and his coworkers in the fifties [21, 30, 31],
aimed at developing such techniques, was subject to the severe constraints imposed
primarily by the limited computer memory available for storage of the program and
intermediate results of computation. Pitteway’s full-wave computer program [98],
using his penetrating and non-penetrating modes, belongs to this category, and was
written for a computer which had no more than 8 (eight!) kbytes of available storage
for the program. These first generation computer codes may be regarded as models
of carefully thought-out programming, designed to produce accurate results as fast
as possible and with maximum economy in computer storage.

The concept of transmission coefficients (kTk; kT? etc.) for linearly polarized
radio waves, parallel .k/ or perpendicular .?/ to the plane of incidence, that
penetrated into ‘free space above the ionosphere’, was widespread during the 1950’s
and later. The work of Storey (1953) [114] on whistlers, cf. Secs. 1.2 and 2.1.3,
indicated however that the ionosphere extended (unexpectedly) to heights of many
thousands of kilometres, and that very low frequency signals could penetrate into
the ionosphere, follow the curved geomagnetic field lines to great heights, and
finally emerge into free space below the ionosphere in the conjugate hemisphere.
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To follow the behaviour of such waves one needed to know their transmission
coefficients as a function of height within the ionosphere, in terms of their upgoing
energy flux density (Poynting vector) which is a conserved (constant) quantity in
a slowly varying, lossless, plane-stratified medium. This then was the motivation
for developing computer programs, such as Pitteway’s full-wave method, for the
computation of transmission coefficients of whistler-type signals.

1.5.2 The full-wave methods of Budden and Pitteway.
The problem of numerical swamping

The methods of Budden [30, 31] and Pitteway [98] are based on the numerical
integration of four first-order linear differential equations, the Clemmow-Heading
coupled wave equations (1.127)

g0 D �ik0 Tg; g WD .Ex;�Ey; Hx; Hy/; H WD p�0="0H (1.135)

The numerical integration proceeds downwards, starting with two independent
upgoing wave fields well above the X D 1 C Y reflection level [see eq. (1.66)
and Fig. 1.1], with X WD !p

2=!2 and Y WD !c=! denoting the respective
electron plasma- and gyrofrequencies. One wave is essentially the upgoing whistler
mode (Fig. 1.1), the wave frequencies considered being well below the electron
gyrofrequency, ! << !c , and the other is the evanescent continuation of the mode
reflected at the X D 1C Y level. Each solution (wave field) is integrated indepen-
dently until free space below the ionosphere is reached. The numerical integration
is carried out by a Runge-Kutta method in which the derivative g0.D �ik0Tg/

is calculated several times within each integration step ız, and is equivalent to
representing the variation of g within the step by a fourth degree polynomial. Below
the ionosphere the wave fields are decomposed into two independent sets of upgoing
and downgoing (incident and reflected) waves, and suitable combinations of them
then give the required reflection coefficients. We consider some of the details.

The starting solutions

Budden’s method [30, 31] was used initially at a frequency of 16kHz. Above the
X D 1C Y reflection level, with !p; !c >> !, large values of the refractive index
n˛ are encountered, cf. (1.60) and (1.61), with a negligibly small collision frequency
�=! DW Z << 1,

n˛
2 � 1 � X

1 �	Y cos �
� ˙ !p

2

!!c cos �
; n2 D i jn1j (1.136)
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where cos � D On � Ob. The wave-normal directions by Snell’s law are nearly vertical,
so that the .x; y; z/ coordinate system used above (see also Sec. 1.3) in which the z-
axis is normal to the stratification, coincides with the .
; 
; �/ system (1.77) in which
the �-axis is along the wave normal. The wave polarizations, (1.63) and (1.81), are
given by

�˛ D Ey

Ex

D �Hx

Hy

� 	i; ˛ D 1; 2 (1.137)

so that

g1 WD .Ex; �Ey; Hx; Hy/.˛D1/ D .1; i; in1; n1/Ex;1

g2 WD .1; �i; �in2; n2/Ex;2

(1.138)

Although g2 is not an accurate representation of the upgoing evanescent wave (in
view of the approximations made), the required evanescent component will increase
exponentially in the downward integration so that any unwanted initial downgoing
components will become negligible.

The situation with the other initial solution g1, the upgoing whistler-type wave,
is not so simple. Suppose that the initial value, calculated from (1.138), differs from
the true value by an amount ıg. The governing equations automatically decompose
any ‘error field’ ıg in the downward integration into a linear superposition of
eigenmodes ıg˛ .˛ D ˙1;˙2/, cf. (1.132),

ıg D
X

˛

ıg˛ D
X

˛

ıa˛ Og˛ (1.139)

where Og˛ represents the wave field of the normalized eigenmode ˛, and ıa˛ the
elementary modal amplitude. Thus a downgoing whistler mode ıg�1, inter alia,
will appear in the initial solution, and will persist in the downward integration into
free space below the ionosphere to give a spurious reflected whistler signal. Some
upgoing evanescent mode ıg2 is also introduced via the initial error field, and will
grow exponentially in the the downward integration. However, if this solution grows
only moderately, as will occur at very low frequencies, the two solutions g1 and g2

obtained below the ionosphere will still be linearly independent, and no difficulty is
incurred from this source. This is not the case at higher frequencies, as will be seen
presently.

A more accurate method for obtaining the starting solutions has been given by
Pitteway [98]. The matrix ŒT � �I� is applied r times to an arbitrary wave field g,
where � is a constant to be selected for each initial solution. (The computer is of
course already programmed to calculate Tg for use in the numerical integration.)
Since the wave field g is a superposition of the four eigenmodes (1.132),

g D
X

˛

a˛ Og˛
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the process yields, by virtue of the eigenmode equation (1.129),

ŒT � �I�r g D
X

˛

.q˛ � �/ra˛ Og˛ (1.140)

The mode for which jq˛ � � j is the largest is the one that will survive repeated
application of ŒT � �I�, yielding Og˛ and q˛ . In the high ionosphere, at low and very
low frequencies, the values of q˛.� n˛/, cf. (1.136), are given approximately by

q1; q2; q�1; q�2 � .1; i; �1; �i/n1; n1 � !p

.!!c cos �/1=2
(1.141)

Thus if the eigenmode g1 for instance is required, � will be chosen to lie on the
negative real axis, � � �n1, so that jq˛ � � j will be the largest for q˛ D q1.
Similarly, g2 and q2 will be generated when � � �in1.

The problem of numerical swamping

The error fields in the upgoing whistler-mode (‘penetrating’) solution tend to blow
up in the downward integration with exponential z-dependence, (1.136) and (1.138),

exp
�!

c
n1jz � z0j

�
� exp

 
!1=2!pjz � z0j
c.!c cos �/1=2

!
(1.142)

This factor, although not dominant at the very low frequencies (16 kHz) used in
the earlier work, becomes a serious problem at frequencies of hundreds of kHz,
due to the exponential dependence on k � 	�1 (where 	 is the wavelength in the
medium) which, as we have just seen, is proportional to !1=2 at whistler frequencies.
Even if the initial solution g1.z0/ is computed exactly, the ‘truncation errors’ in the
downward integration, due to the finite (say, 8-figure) accuracy of the computer,
introduce the unwanted exponentially-growing ‘error field’. The result is that during
the downward integration the first, penetrating solution, which we denote g.1/—
during the integration both solutions g.1/ and g.2/ become superpositions of all
four eigenmodes g˛—tends to converge towards (to be ‘swamped by’) the second,
evanescently increasing solution and to be lost as an independent solution.

Pitteway [98] solved the problem of numerical swamping by constraining the
penetrating solution to be hermitian orthogonal to the originally evanescent, non-
penetrating one by adding to it, at regular intervals, an appropriate fraction a of the
non-penetrating solution:

g.1/ ! g.1/ C ag.2/;


g.1/ C ag.2/

�� � g.2/ D 0; a� D �g.1/� � g.2/

g.2/� � g.2/
(1.143)
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A linear combination of the two independent solutions g.1/ and g.2/ is also a
solution, and so g.2/ and the repeatedly adjusted g.1/ remain independent below
the ionosphere. Since the consecutive values of a are stored, the initial penetrating
solution can be reconstructed after the integration has been completed.

Barron and Budden [21] modified Budden’s earlier method described above, by
using a 2 � 2 admittance matrix A, rather than the wave fields, as the independent
variable. The elements of A gave the ratios of magnetic to electric wave-field
components in the two independent solutions, and consequently yielded slowly
varying ratios even for evanescent waves, thus overcoming the problem of numerical
swamping. The method was faster than the previous one, but the intermediate
values of A could not easily be related to the wave propagation processes within
the ionosphere without additional computation. It has been successfully applied
to warm plasmas by Budden and Jones [34] to calculate the angular width of the
Z-coupling radio window through which the myriametric, non-thermal electromag-
netic radiation, generated by intense upper-hybrid electroststic oscillations at the
plasmapause, can escape into the magnetospheric cavity [74].

Calculation of reflection and transmission coefficients

In Budden’s [30] treatment each solution, g.1/ and g.2/, below the ionosphere is
decomposed into up- and downgoing modes, u and d, parallel .k/ and perpendicular
.?/ to the plane of incidence:

g.1/ D u.1/ C d.1/; g.2/ D u.2/ C d.2/

u D uk C u?; d D dk C d?
(1.144)

with z-dependence

u � exp.�ik0q0z/; d � exp.ik0q0z/ (1.145)

The free-space wave vectors are k˙ D k0.s; 0;˙q0/ with k0 WD !=c; s WD
sin �; q0 WD cos � in terms of the angle of incidence � . The corresponding
normalized free-space eigenmodes Og˛.˛ D ˙1; ˙2/ may then be grouped into
a 4 � 4 modal matrix [33, eq. (11.44)]:

G W D ŒOg1 Og2 Og�1 Og�2� 
 Œ Ouk Ou? Odk Od?�

D

2
664

q0 0 �q0 0

0 �1 0 �1

0 �q0 0 q0

1 0 1 0

3
775 (1.146)
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remembering that g WD .Ex; �Ey; Hx; Hy/ (1.135). The solutions g.1/ and g.2/

may now be decomposed into eigenmodes,

g.1/ D
X

˛D˙1;˙2

a.1/
˛ Og˛ DW G a.1/; g.2/ D G a.2/; a WD

2
664

a1

a2

a�1

a�2

3
775 


2
664

akC
a?C
ak�
a?�

3
775

(1.147)
with downgoing (reflected) eigenmode amplitudes, ak� and a?�, related to the
upgoing (incident) amplitudes, akC and a?C, through the reflection matrix R:

"
a

.1/

k� a
.2/

k�
a

.1/

?� a
.2/

?�

#
DW D DW RU 


"
kRk kR?
?Rk ?R?

# "
a

.1/

kC a
.2/

kC
a

.1/

?C a
.2/

?C

#
(1.148)

Since U is non-singular (the columns of U represent independent solutions), the
reflection matrix R is then obtained through

R D DU�1 (1.149)

In Pitteway’s method the decomposition of the two solutions, g.1/ and g.2/, below
the ionosphere into up- and downgoing waves, u.i/ and d.i/; i D 1; 2, proceeds with
aid of (1.145) as follows:

g.i/ D u.i/ C d.i/

dg.i/

dz
D �ik0q0.u.i/ � d.i//

(1.150)

in which dg.i/=dz (1.135) is known from the numerical integration. u.i/ and d.i/ are
then found simply in terms of g.i/ and dg.i/=dz.

Now the upgoing wave u.2/, which becomes the evanescent solution g.2/ in the
high ionosphere, is unambiguously defined up to a multiplying constant, and is
called the ‘non-penetrating mode’, n [98], u.2/ ! un; d.2/ ! dn. The ratio of the
z-components of the downgoing to upgoing (incident) energy flux densities yields
the corresponding reflection coefficient. Either of the following expressions may
be used

jRnj2 D d�n � dn

u�n � un

D


E�n
�� � E�n


ECn
�� � ECn (1.151)

where Eṅ are the up- and downgoing electric wave vectors, two components of
which, Eẋ and Eẏ , are specified in un and dn, and the third, Eż , is obtained from
the orthogonality of k˙ and Eṅ in free space:

k˙ � Eṅ D .s; 0; q0/ �
�
Eẋ ; Eẏ ; Eż

�
D 0 (1.152)
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The upgoing constituent u.1/ of the the solution g.1/, that has been constrained to
become hermitian orthogonal to g.2/ at regular intervals, is largely arbitrary. Just as
un 
 u.2/ gives the minimum upward energy flux at great heights, it is appropriate
to construct a ‘penetrating mode’, up D u.1/ C bun, below the ionosphere so as to
maximize the energy transmission to great heights. In terms of electric wave fields,
we seek a constant b such that

ECp ! E.1/ C bECn ; or up ! u.1/ C bun (1.153)

gives maximum energy transmission. This is achieved by imposing again a condi-
tion of hermitian orthogonality, cf. (1.143):

�
ECp
�� � ECn D

�
E.1/C C bECn

�� � ECn D 0; b� D �
�

E.1/C
�� � ECn


ECn
�� � ECn (1.154)

This can easily be confirmed by noting that the upward energy flux density of the
‘penetrating mode’ is proportional to

ˇ̌
ECn
ˇ̌2

. If we add some non-penetrating mode
to it, i.e. ECp ! ECp C cECn , the energy flux at a height z in the high ionosphere is
unaffected (since the non-penetrating component is not transmitted), but the upward
energy flux at a height z0 below the ionosphere is proportional to

�
ECp C cECn

�� ��ECp C cECn
�
D
ˇ̌̌
ECp
ˇ̌̌2C ˇ̌cECn

ˇ̌2C2Re
h�

ECp
�� � cECn

i
(1.155)

the last term being zero because of (1.154). This is clearly a minimum, (and hence
the transmission coefficient, which we denote by �p.z; z0/, is a maximum), when
cD 0. Thus �p.z; z0/ may be calculated from the ratio of the time-averaged Poynting
flux densities hSz.z/i and hSz.z0/i at heights z and z0 respectively:

j�p.z; z0/j2 D hSz.z/i
hSz.z0/i hSz.z/i D Re

�
Ex
�Hy �Ey

�Hx

�
(1.156)

the wave-field components referring either to the upgoing waves in the penetrating
mode at z0 below the ionosphere or to the whistler mode at z in the high ionosphere.

A reciprocity theorem due to Pitteway and Jespersen [100], discussed in
Sec. 3.2.4, shows that the transmission coefficient for the upgoing penetrating mode
in a given incident direction equals the transmission coefficient for the downgoing
whistler mode in a symmetrically related direction.

1.5.3 Methods using discrete homogeneous strata

In the 1960’s, with the advent of faster computers with much larger storage capaci-
ties, the Runge-Kutta methods for numerical integration of the differential equations
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were replaced to a large extent by matrix multiplication techniques. In the method of
Price [102], and the earlier and essentially equivalent method of Johler and Harper
[73], the ionosphere was divided stepwise into thin homogeneous strata, and transfer
or ‘propagator’ matrices were used to compute the amplitudes of eigenmodes at each
successive interface by means of recursive matrix multiplication. A more efficient
technique, the matrizant method (discussed in Sec. 1.5.5), developed by Keller and
Keller [78] and Volland [128–130], permitted the use of a much larger step size by
taking into account the inhomogeneity of each layer. Since eigenmode amplitudes
rather than wave fields were the dependent variables in both methods, numerical
swamping was less of a problem in that numerical truncation of the progressive
wave amplitude no longer introduced errors that grew exponentially. In a matrix
multiplication method due to Nagano et al. [95], on the other hand, in which the
wave fields were the dependent variables, the ensuing swamping difficulty was
solved by means of repeated Gram-Schmidt orthogonalization of the two solutions
during the recursive matrix multiplication, as in Pitteway’s method described in the
previous section.

In the thin-layer scattering-matrix technique of Altman and Cory [3, 4] in which
the reflection and transmission coeficients (i.e. the ratio of the wave fields) were the
dependent variables, numerical swamping was avoided in the same way as with the
admittance matrix method of Barron and Budden [21].

The methods using discrete homogeneous strata, and specifically the propagator
(transfer matrix) and the scattering matrix techniques, had a number of features in
common. The eigenvalues q˛ (roots of the Booker quartic) and eigenvectors g˛ (the
characteristic modal polarizations) were calculated in each layer, and continuity of
the tangential wave-field components across each interface then yielded the new
eigenmode amplitudes (in Price’s propagator-matrix method) or the 2 � 2 interface
reflection and transmission matrices (in the scattering-matrix method). In both
methods each layer, of thickness ız, was ‘traversed’ by means of a phase matrix
� that multiplied the amplitude of each eigenmode ˛ by a complex phase factor
exp.�ik0q˛ız/, and the process was then repeated at each successive layer.

Let the eigenmode wave fields be represented, as in (1.127), by the 4-vector

g˛ WD .Ex; �Ey; Hx; Hy/˛; ˛ D ˙1;˙2

the sign of ˛ indicating the direction of propagation with respect to the z-axis,
normal to the stratification. The normalized eigenfields are given by

Og˛ WD .1; �Ey=Ex; Hx=Ex; Hy=Ex/˛ (1.157)

Continuity of the tangential wave-field components across an interface separating
layers .� � 1/ and � at z D z��1 takes the form

X
˛

a.��1/
˛ Og��1

˛ D
X

˛

a.�/
˛ Og�

˛ or G��1a��1 D G�a� (1.158)
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where a˛ is the amplitude of the eigenmode g˛, and

G WD ŒOg1 Og2 Og�1 Og�2� DW ŒGC; G��; a WD

2
664

a1

a2

a�1

a�2

3
775 DW

�
aC
a�

	
(1.159)

Consequently, we obtain from (1.158),

a� D ŒG�
��1G��1a��1 (1.160)

Alternatively, we could calculate a scattering matrix S 
 S�;��1 for the interface
.� � 1; �/. S is defined by the relation

�
a��1�
a�C

	

 aout DW Sain 


�
rC t�
tC r�

	 �
a��1C
a��

	
(1.161)

in which S has been partitioned into 2 � 2 interface reflection and transmission
matrices, r˙ and t˙, with the signed subscripts indicating the direction of incidence
with respect to the z-axis. Rearranging the terms in (1.158) we obtain, with the aid
of (1.159),

Gout aout WD
h
�G��1
� ; G�

C
i �a��1�

a�C

	
D
h
G��1
C ; �G�

�
i �a��1C

a��

	
DW Gin ain (1.162)

Hence, recalling (1.161), we get

aout D Gout
�1Ginain D Sain (1.163)

or

S D Gout
�1Gin (1.164)

so that the interface scattering matrix is determined by the relation between the
modal 4-polarizations on both sides of the interface.

Coming back to the propagator formalism, we note that (1.160) gave the
eigenmode amplitudes a�.z��1/ just above the interface .� � 1; �/ in terms of the
amplitudes a��1.z��1/ just below it. The amplitudes a�.z�/ just below the following
interface .�; � C 1/, i.e. at the upper end of the homogeneous layer �, whose
thickness is ız, become

a�.z�/ D ��a�.z��1/ D ��ŒG�
��1G��1a��1.z��1/ DW P�a��1.z��1/ (1.165)
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where the phase matrix �� is given by

�� WD
�
��C 0

0 ���

	
; ��˙ WD

�
exp.�ik0q˙1ız/ 0

0 exp.�ik0q˙2ız/

	
(1.166)

and P� is the propagator or transfer matrix for the layer �.
Proceeding from the lowest interface at z D z0 between the medium and free

space to any layer � D s we get, with the aid of (1.165),

as.zs/ D PsPs�1
: : : P1a0.z0/ DW P.zs; z0/ a0.z0/ (1.167)

(If the uppermost ‘layer’ s is a homogeneous infinite half-space, then Ps will of
course not contain the phase matrix �s .) The propagator P links four eigenmode
amplitudes at one interface to four amplitudes at another, and from it one can extract
in principle the four reflection and transmission matrices for the entire slab, R˙
and T˙, the signed subscripts indicating the direction of incidence, as in (1.161).
Suppose that P is partitioned so that (1.167) can be written in the form

as 

�

asC
as�

	
D
�
P1 P2

P3 P4

	 �
a0C
a0�

	

 Pa0 (1.168)

The amplitudes can be regrouped to yield

�
a0�
asC

	
DW aout D

"
�P�1

4 P3 P�1
4

P1 �P2P
�1
4 P3 P2P

�1
4

# �
a0C
as�

	

DW Sain 

�
RC T�
TC R�

	 �
a0C
as�

	
(1.169)

An equivalent result has been given by Volland [129, eq. 49], and a somewhat
different form is derived later in Sec. 3.3, eq. (3.112).

The drawback of the propagator method is that the physical processes (reflection,
mode conversion, etc.) are not apparent from the intermediate computed results.
Suppose however that we start the repeated matrix multiplication from the upper
end to obtain, by analogy with (1.167),

ar .zr / D PrPrC1
: : : Ps�1as.zs/ D Pas.zs/; r < s

and terminate with r D 0. Then we could let as.zs/ represent two upgoing wave
amplitudes at the top of the medium, and try to follow their development backwards.
But if one of the waves is strongly evanescent, then at least one of the matrix
elements will ‘blow up’ in the backward iteration. If, on the other hand, we set the
upgoing evanescent amplitude to zero, then we get information on the ‘penetrating
mode’ only.
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These difficulties are overcome when the reflection and transmission matrices
themselves are the dependent variables calculated in the iterative matrix multiplica-
tion, as we see in the following section.

The Altman-Cory thin-layer scattering-matrix method

Measurements made in satellites in the 1960’s and early 1970’s (Injun 3, Alouette 1,
OGO-6) revealed many new propagation effects within the ionosphere associated,
for instance, with ion-cyclotron whistlers or ion-cutoff whistlers at frequencies
below 1kHz. At much higher frequencies, 100–150 kHz, the explanations proposed
for phenomena such as the ‘coupling echo’ [79], [33, Sec. 16.14] and the Z-trace
coupling and reflection process had never been confirmed by a detailed computer
simulation. The thin-layer scattering-matrix technique developed by Altman and
Cory [3,4] was aimed to investigate such problems. The method was later employed
by Kennett [80], who derived the governing recursive equations independently by
a somewhat different method, to analyse problems of elastic wave propagation
in stratified media, and it has since become a widely used technique for solving
propagation problems in seismology (see, for instance, Fryer and Frazer [55]).

Consider a multilayer plane-stratified slab imbedded in a plane-stratified mul-
tilayer medium. The uppermost layer of the slab is labelled �, and the following
layers outside the slab, .�C 1/ and .�C 2/. The layer just below the slab is labelled
�. Let R�

˙ and T�
˙ denote the 2 � 2 reflection and transmission matrices for the

slab, and R�C1
˙ and T�C1

˙ the matrices for the enlarged slab formed by adding the
additional layer .� C 1/. The corresponding matrices r˙ and t˙ for the interfaces
between layers .�C1/ and .�C2/ can be determined with the aid of (1.164), (1.162)
and (1.159), since the eigenvalues q˛ and the eigenvectors g˛ are calculated for all
layers, as mentioned in the previous section. In order to determine R�C1

˙ and T�C1
˙

when R�
˙ and T�

˙ are known, we consider a positive-going wave whose component
eigenmodes have amplitudes a

�
C D



a

�
1 ; a

�
2

�
, incident on the slab from below, see

Fig. 1.2(a) in which the slab is represented as an equivalent interface between layers
� and .�C1/. The up- and downgoing amplitudes at the bottom and top of the layer
.� C 1/ are denoted a�C1

C and a�C1� respectively. The phase matrices ��C1
˙ (1.166)

Fig. 1.2 Derivation of the recursion relations in the thin-layer scattering-matrix method. (a)
Incidence from below. (b) Incidence from above. (c) The multiple reflection derivation.
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give the complex phase change of each eigenmode in traversing the layer, but note
that the negative-going modes .˛ D �1; �2/ are now followed through the layer in
the negative sense, so that ız in the exponent is negative for them. In Fig. 1.2(b)
the incident wave is represented by a�C2� , and the downgoing transmitted wave
below the slab by a��. Application of of the scattering (reflection and transmission)
matrices to each interface (with the slab considered as an equivalent interface) yields
the following two sets of equations. For upgoing incidence, Fig. 1.2(a),

a�C2
C D tC�Ca�C1

C DW T�C1
C a�

C (a)

a�C1� D rC�Ca�C1
C (b)

a�C1
C D R�

���a�C1� CT�
Ca�
C (c)

a�� D T�
���a�C1� CR�

Ca�
C DW R�C1

C a�
C (d)

(1.170)

and for downgoing incidence, Fig. 1.2(b),

a�� D T�
���a�C1� DW T�C1

� a�C2� (a)

a�C1
C D R�

���a�C1� (b)

a�C1� D rC�Ca�C1
C C t�a�C2� (c)

a�C2
C D tC�Ca�C1

C C r�a�C2� DW R�C1
� a�C2� (d)

(1.171)

Elimination of a�C1
C and a�C1� from (1.170b; c and d ) and from (1.170 a; b and c)

respectively, yields expressions for R�C1
C and T�C1

C :

a�� D
n
R�
C CT�

���
�
I � rC�CR�

���
��1

rC�CT�
C
o

a�
C DW R�C1

C a�
C

a�C2
C D tC�C

�
I �R�

���rC�C
��1

T�
Ca�
C DW T�C1

C a�
C

A corresponding pair of equations for R�C1
� and T�C1

� is obtained from (1.171
a–d) to give the following recursion equations:

R�C1
C D R�

C CT�
���

�
I � rC�CR�

���
��1

rC�CT�
C

T�C1
C D tC�C

�
I �R�

���rC�C
��1

T�
C (1.172)

R�C1
� D r� C tC�C

�
I�R�

���rC�C
��1

R�
���t�

T�C1
� D T�

���
�
I � rC�CR�

���
��1

t�

These equations, in spite of their formidable appearance, are quite simply
programmed since they involve only 2 � 2 matrices. The above derivation is
perhaps the most direct, but the original derivation [4] relied on a multiple reflection
approach which we shall now briefly describe since it provides physical insight into
the constraints imposed on step size in methods based on homogeneous thin strata.
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Consider an upgoing wave, represented by a�
C, incident on the slab from below.

The wave is partially reflected

! R�

Ca�
C
�

and partially transmitted with subsequent
phase change in traversing the layer


! �CT�
Ca�
C
�
. It is again partially reflected

and partially transmitted at the interface .�C1; �C2/. This process gives an infinite
geometric series of matrix products, representing multiply reflected and transmitted
waves, which may be summed to yield the overall reflection and transmission
matrices R�C1

C and T�C1
C :

R�C1
C D R�

C CT�
���ŒIC .rC�CR�

���/C .rC�CR�
���/2 C : : :�rC�CT�

C
D R�

C CT�
���ŒI � rC�CR�

�����1rC�CT�
C (1.173)

T�C1
C D tC�CŒIC .R�

���rC�C/C .R�
���rC�C/2 : : :�T�

C
D tC�CŒI �R�

���rC�C��1T�
C (1.174)

which are just the first two recursion relations found in (1.172). We may similarly
derive the other two by considering incidence from above.

The following features of the recursion relations (1.172) should be noted.

• If we are interested only in the overall reflection matrix RC of the medium, a
single recursion relation, the third in (1.172) is all that is needed. This yields
ostensibly only R� corresponding to incidence from above, but if we reverse the
direction of iteration, i.e. start from above and add layers at the lower end, then
this gives the reflection coefficient for incidence from below.

• If we are interested in a pair of matrices only, say RC and TC for incidence
from below, then a pair of recursion relations—the third and fourth in (1.172)—
will suffice, with the iteration starting again from above and the slab becoming
progressively thicker from its lower end.

• If, however, we wish to follow the detailed propagation processes in the medium,
to follow for instance the development of upgoing waves incident from below,
we would require the computed values of TC.z; z0/ and RC.z; z0/ for increasing
z. Then all four recursion relations are needed, with the slab thickness .z � z0/

increasing progressively in the direction of propagation, the first ‘slab’ in the
iteration being just the first interface at the required reference level z0.

• If we require the total field at a given level z, with contributions both from
the wave, incident from below, and from downgoing wave fields reflected from
above, one should also know the reflection matrix RC.zH ; z/ for the overlying
slab .zH ; z/ so that all multiply-reflected waves in the infinitely thin layer
separating the overlying and underlying slabs at z may be summed. This method
is applied in Sec. 5.3.1 in our discussion of transfer matrices in the multilayer
medium, and has been used by Cory et al. [45] to evaluate the total field that
would be measured by a rocket launched into the ionosphere. The consecutive
values of RC.zH ; z/ may be found by use of the third recursion relation in (1.172)
in a single computer run that starts at a high altitude zH and samples consecutive
values of z down to the starting height.



36 1 Wave propagation in a cold magnetoplasma

Fig. 1.3 Relative wave amplitudes expressed by the transmission matrix elements, T
C

LR and T
C

RR ,
in the thin-layer scattering matrix method, illustrating proton whistler formation (after Fijalkow
et al. [54]).

An application of the thin-layer scattering-matrix method due to Fijalkow et al.
[54] is shown in Fig. 1.3, in which the mechanism of formation of ion-cyclotron
(proton) whistlers is illustrated. The relative wave amplitudes of the upgoing left-
polarized (L) ion-cyclotron whistler and a right-polarized (R) electron whistler at
a height z, given by the transmission matrix elements TCLR.z; z0/ and TCRR.z; z0/

respectively, are shown for a vertically incident upgoing R mode of unit amplitude
at a height z0 below the nighttime ionosphere. Wave amplitudes are normalized
to be proportional to the z-component of the Poynting vector. The upgoing L-
mode (proton whistler) is seen to be completely absorbed at the �1 level, where
the proton gyrofrequency equals the wave frequency. � is the angle between the
external magnetic field b and the (vertical) wave normal. At the crossover level
[75], [33, Sec. 13.9] marked !12, the refractive indices of the two modes are equal
.nL D nR/, or nearly so, for an appreciable angular range (0 � � � 20ı in the
model used here). The wave polarizations become equal and real at a critical angle
� D �c (� 1:7ı here) and remain real, with polarization reversal as the !12 level is
crossed, for all � > �c . Appreciable intermode coupling may occur here [74], the
modal behaviour being closely analogous to that of the magnetoionic modes at the
X D 1 level (1.66) at low frequencies [6].

For large values of � .&30ı/ the electron whistler mode R is seen to pass
smoothly, with polarization reversal, into a proton whistler mode L. For small
angles, � . 20ı, ‘limiting polarization’ conditions exist [6], [33, Secs. 17.10
and 17.11] and the composite, physical wave passes through it with no polarization
change, in spite of the modal reshuffling at this level. This computer simulation
shows that the modal behaviour at crossover is determined not by the proximity to
critical coupling, as is commonly assumed, but by the angular range over which
limiting polarization conditions exist.
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Fig. 1.4 The wave-field envelopes of the penetrating and non-penetrating modes in Pitteway’s
full-wave method, illustrating standing-wave and evanescent structure. The inner curves give
instantaneous values of the field at a quarter-period time difference (after Cory [44]).

In Fig. 1.4 a different type of computer output is shown, viz. the wavefield
pattern in the ionosphere as given by Pitteway’s full-wave method for an upgoing
whistler-type wave at a frequency of 13kHz. The computed penetrating and non-
penetrating wave outputs [44] show standing wave structure due to the reflected
waves, and evanescent wave structure in the non-penetrating upgoing wave due to
total reflection at the X D 1C Y level (1.66).

The problem of step size

In the full-wave methods of Budden and Pitteway the numerical integration must
follow the detailed wave-field structure in the ionosphere, so that the number of
integration steps required (typically 50 steps per free-space wavelength) is propor-
tional to the frequency, and becomes inconveniently large at medium frequencies
.& 300kHz/.

In the homogeneous-strata methods, the influence of the step size is manifested
by two effects. The first is the approximation in the complex phase, which could
perhaps be remedied if we assumed a linear, or other, variation of q˛ within a layer,
so that the complex phase would be given by exp.�ik0

R
q˛ dz/ in that layer. The

other effect is more subtle.
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We saw in the multiple-reflection analysis leading to (1.173) and (1.174), that the
overall reflection coefficient in a layer depended on the first, third and higher odd-
order partial reflections. The transmission coefficients are modified by second and
higher even-order reflections. If reflections beyond the first order can be neglected
in a thin layer, then the overall transmission coefficient, given by the product of the
transmission coefficients of successive interfaces, reduces to a WKB approximation
[27], [5, Sec. 2], which is unaffected by further reduction in size of the interval.
The same is true of the first-order reflected waves. But if second- and third-
order reflections are not negligible, then their phases relative to the zero-order
(transmitted) and first-order (reflected) waves will be different from that in two ‘half
layers’. The error will be largest when the eigenvalues q˛ are changing rapidly.

In the scattering-matrix and propagator methods, this may be handled automati-
cally. The sorting and proper ordering of the eigenmodes in the computer relies on
the criterion of continuity. If the jump in the complex value of one of the q˛ from
one layer to the next is too large, then the interval is automatically divided into 5
(or 10) sub-intervals, and the process is repeated. The errors due to large changes in
q˛ are thereby appreciably reduced, but the upper usable frequency in these mehods
has nevertheless been found to be limited to about 500 kHz. The matrizant methods
described in the following sections are designed to overcome this limitation.

1.5.4 Matrizant methods

The matrizant methods, as developed by Keller and Keller [78] and Volland [128–
130] are based on matrix multiplication as in the propagator method described
earlier, but the variation of the parameters of the medium within each elementary
layer or interval is now taken into account. In one approach developed by Inoue
and Horowitz [71], Rawer and Suchy [105, Sec. 13�; �; 	; �] and employed by
Bossy [23], the wave fields at one height are related to those at another height by a
4 � 4 matrix called a matrizant. The matrizant may be expressed as a power series
within each layer, if one assumes that the propagation matrix T in the Clemmow-
Heading equations (1.127) varies linearly within the layer [71, eq. (15)], or that
it can be represented by a n-th order polynomial [105, Sec. 13]. Insofar as this
method uses the wave fields as the independent variables, it is subject to the same
problem of numerical swamping encountered previously. Inoue and Horowitz [71]
have described a method, differing from that of Pitteway, for solving this problem.

A second approach relies on the development of the matrizant as an infinite series
of integrals of increasing multiplicity [57, Vol. 2, Chap. 14, Secs. 5,6,7,8], [78],
[129]. In a variant due to Keller and Keller [78], developed with the aim of obtaining
a rapidly converging form of the series, the matrizant relates eigenmode amplitudes
rather than wave fields, in which the rapid phase variations have been ‘transformed
out’ of the modal amplitudes, but introduced into the integrands of the multiple
integrals in each step. This method has been successfully applied by Pitteway and
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Horowitz [99] to analyze propagation problems at high frequencies (up to 10 MHz),
with the same small number of steps required in principle at any frequency. Bossy
[24, 25] has modified the matrizant method by means of a ‘hybrid’ technique that
overcomes the problem of swamping and imparts greater flexibility to the matrizant
method. The matrizants are first calculated for successive intervals using either of
the two methods described above, and these are then cast into the form of transfer
matrices (propagators) that relate the complex eigenmode amplitudes at the two
bounding surfaces of each layer. From these the scattering matrices for each interval
are derived, as in (1.169), and thence the scattering matrix for a slab that becomes
progressively thicker from either end, as in the Altman-Cory method, so that the
propagation processes within the medium become immediately apparent from the
computer output.

We shall now discuss these methods in detail.

The Inoue-Horowitz power-series development

Inoue and Horowitz [71], as also Volland [129], introduce the matrizant M.z; z�/

within an interval .z� � z � z�C1/ using the Clemmow-Heading equations (1.135)

e0.z/ D �ik0T.z/e.z/ 
 �.z/e.z/; e WD .Ex; Ey; Hx; Hz/ (1.175)

The transverse components of H rather than of H are used (Z0 is absorbed into T),
but this is of no consequence; M.z; z�/ relates the wave fields e.z/ and e.z�/ at any
two levels, z and z� ,

e.z/ DWM.z; z�/e.z�/ (1.176)

When inserted into (1.175), with z as the independent variable and z� fixed, this
yields (with the prime denoting d/dz),

M0.z; z�/ D �ik0T.z/M.z; z�/ 
 	.z/M.z; z�/ (1.177)

We now suppose, with Rawer and Suchy [105], that 	.z/ may be expanded as an
nth order polynomial within the interval .z�; z�C1/. (This is feasible if the parameters
of the medium are known analytic functions of z. Inoue and Horowitz assume linear
variation of 	 within the interval, using the prescribed values of the parameters to
calculate 	 at the end points, z� and z�C1.) We suppose also that M.z; z�/ may be
expressed as an infinite power series within the interval:

	.z/ D 	0 C .z � z�/	1 C .z � z�/2	2 C : : :C .z � z�/n	n (1.178)

M.z; z�/ D I.4/ C .z � z�/M1 C .z � z�/2M2 C : : : (1.179)

with I.4/ denoting the 4�4 unit matrix. Inserting (1.178) and (1.179) into (1.177) we
find the following recursion relations for the coefficient matrices in the power-series
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expansion for M.z; z�/ [71, eq. (15)], [105, eq. (13.36a)]:

MrC1 D 1

r C 1

nX
sD0

	sMr�s; with M0 D I.4/ and Mr�s D 0 for s > r

(1.180)
where n, it will be recalled, is the order of the polynomial approximation for
	 (1.178). In practical applications, cf. Bossy [23], the power series (1.179) is
truncated when the the largest matrix element in the term .z�C1 � z�/rMr is less
than some predetermined value (say 10�8).

The matrizant M.z�; z0/, relating fields e.z�/ at an arbitrary height z� to those at
a fixed reference height z0, is given finally by the product of the (sub-) matrizants
for the elementary intervals,

M.z�; z0/ DM.z�; z��1/M.z��1; z��2/ : : : M.z1; z0/ (1.181)

Bossy [23], employing analytic ionospheric models and a fifth-order polynomial
for 	 in each interval, has obtained 7-figure accuracy by this method at a frequency
of 100 kHz, using 1 km intervals which are appreciably larger than those that may
be used in the homogeneous strata methods. The method is subject to numerical
swamping, as pointed out earlier, and one of the motivating factors in its further
development was to overcome this difficulty.

We note in conclusion an interesting variant of the above method employed by
Inoue and Horowitz [71]. The formal solution of (1.177) is

M.z; z�/ D exp

�
�ik0

Z z

z�

T.z/dz

�
(1.182)

which may be written in closed form (rather than as an infinite power series) in
terms of exponential functions of the eigenvalues q˛ of T, times 4 � 4 projectors.
Expressions for 3 � 3 projectors are given in eq. (A.1) of Appendix A.1. Their
generalization to 4 � 4 projectors is straightforward [57, Vol. 1, Chap. 5, Sec. 2.1].
This method simplifies, and is then a useful alternative to the power-series method,
when linear variation of T within each interval may be assumed [71, eqs. (18)
and (19)].

The Keller and Keller method

A solution of (1.177)
M0.z; z�/ D 	.z/M.z; z�/

may be derived by direct integration of the equation and use of successive
approximations for M on the right-hand side. With M.z�; z�/ D I.4/, we get
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M.z; z�/ D I.4/ C
Z z

z�

	.�1/M.�1; z�/d�1

D I.4/ C
Z z

z�

	.�1/d�1 C
Z z

z�

	.�1/d�1

Z �1

z�

	.�2/M.�2; z�/d�2

D I.4/ C
Z z

z�

	.�1/d�1 C
Z z

z�

	.�1/d�1

Z �1

z�

	.�2/d�2

C
Z z

z�

	.�1/d�1

Z �1

z�

	.�2/d�2

Z �2

z�

	.�3/ d�3 C : : : (1.183)

The resultant series, given by Gantmacher [57, Vol. 2, Chap. 14, Sec. 5] and
employed by Volland [128–130], is uniformly and absolutely convergent, but its
rate of convergence is rather slow. Keller and Keller [78] have modified this form
of solution in order to obtain a more rapidly convergent series, better suited to
numerical analysis.

We start again with the Clemmow-Heading equations (1.175), but decompose
the fields e D .Ex; Ey; Hx; Hy/ into the eigenmodes of the medium, i.e. into
the normalized eigenvectors Oe˛ .˛ D ˙1;˙2/ of the matrix T multiplied by the
corresponding eigenmode amplitudes a˛:

e0 D �ik0Te; e D E a

E W D ŒOe1; Oe2; Oe�1; Oe�2�; a WD

2
664

a1

a2

a�1

a�2

3
775 (1.184)

Hence
a0 D �ik0E

�1TE a � E�1E0a (1.185)

The eigenmodes are assumed to be linearly independent (if collisions are present
the singularities of T, i.e. the coupling points, usually appear at complex heights,
cf. [33, Sec. 16.1], and are not encountered in integrations along the real height
axis); hence E is non-singular and T in (1.185) is diagonalized by E. Eq. (1.185)
becomes

a0 D Œ�ik0
 � .� D C � /�a; � D C � WD E�1E0; 
 WD E�1TE (1.186)

with 
 diagonal; � D contains the diagonal terms of E�1E0 and � the off-diagonal
terms. Combining the diagonal matrices, we get

a0 D �ik0Qa � � a; Q WD 
 � i

k0

� D (1.187)
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Now the amplitudes a˛ in (1.187) carry the rapidly varying phases of the
eigenmodes, which would have to be followed by means of small step sizes in
the numerical integration. These phases are therefore ‘transformed out’ by the
replacement of a˛ by another set of slowly varying amplitudes f˛ ,

a.z/ D exp

�
�ik0

Z z

z0

Q dz

�
f.z/; a.z0/ D f.z0/; f WD

2
664

f1

f2

f�1

f�2

3
775 (1.188)

and (1.187) becomes

a0 C ik0Qa D exp

�
�ik0

Z z

z0

Q dz

�
f0

D �� exp

�
�ik0

Z z

z0

Q dz

�
f (1.189)

The final result is

f0.z/ D
2
4� exp

�
ik0

Z z

z0

Qdz

�
� exp

0
@�ik0

zZ
z0

Qdz

1
A
3
5 f.z/

DW T .z; z0/f.z/ (1.190)

thereby defining the matrix T which replaces T or 	 in the Clemmow-Heading
formulation (1.175), while the slowly varying amplitudes f replace the wave fields e.

We now introduce the matrizant in the form of a transfer matrix to relate
amplitudes f.z/ and f.z0/ at a height z and a fixed reference height z0 respectively,

f.z/ DM.z; z0/f.z0/ (1.191)

f0.z/ DM0.z; z0/f.z0/ (1.192)

so that (1.191) in (1.190) gives

M0.z; z0/ D T .z; z0/M.z; z0/ (1.193)

The solution, as in (1.183), is

M.z; z0/ D I.4/ C
Z z

z0

T .�1/d�1 C
Z z

z0

T .�1/d�1

Z z1

z0

T .�2/d�2 C : : : (1.194)
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Due to rapid convergence of the series, truncation after the first integral usually
yields satisfactory results, while inclusion of the double integral permits large
step sizes to be employed. Since eigenmode amplitudes rather than fields are
computed, the problem of numerical swamping is less important (see the discussion
in Sec. 1.5.3). The eigenmode amplitudes a˛ at any level may now be recovered
from the f˛ by means of (1.188), (the integrals in (1.189) have already been
determined in the matrizant calculation), to give with the aid of (1.191) and (1.188),

a.z/ D exp

�
�ik0

Z z

z0

Qdz

�
f.z/ D exp

0
@�ik0

zZ
z0

Qdz

1
AM.z; z0/a.z0/

DW P.z; z0/a.z0/ (1.195)

The matrix

P.z; z0/ D exp

�
�ik0

Z z

z0

Qdz

�
M.z; z0/ (1.196)

is seen to be equivalent to the propagator matrix (1.167) discussed in Sec. 1.5.3. The
wave fields can be recovered, if needed, from the amplitudes a.z/ by means of

e D E a; a D E�1e (1.197)

as in (1.184), the inverse relation yielding amplitudes from fields in the power-series
method discussed previously.

This method of Keller and Keller has been successfully applied by Pitteway and
Horowitz [99], who have carried the series in (1.194) to the double integral. They
showed that for all frequencies between 20 kHz with an integration range of 20 km,
to 10 Mhz with a range of 100 km, the entire integration could be performed in
30 steps, irrespective of frequency, to give three figure accuracy. In calculating the
matrizant (1.194), one must determine T in the integrand from oscillatory phase
integrals (1.190), and these were calculated by them on the assumption of linear
variation of Q in each interval. In evaluating the integrals it was assumed that

Z
eaxCbx2

dx �
Z

.1C bx2/eax dx (1.198)

It would seem to us that this method is the most suited for numerical calculations at
high frequencies .& 1 Mhz/, but we are unaware of any numerical work, besides
that of Pitteway and Horowitz, done by this technique. It is therefore not clear
whether numerical difficulties are encountered when downgoing evanescent waves,
for instance, are integrated upwards so that one or two of the elements in the
matrizant then blow up exponentially.
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Bossy’s hybrid method

We now describe the technique introduced by Bossy [24, 25] primarily as a
means of overcoming numerical swamping in the power-series method in which
wave fields at two levels, z� and z0, are related by matrizants (1.176) formed by
repeated multiplication of of sub-matrizants for consecutive elementary steps or
intervals (1.181):

e.z�/ DM.z�; z0/e.z0/; M.z; z0/ DM.z�; z��1/M.z��1; z��2/ : : : M.z1; z0/

(1.199)

The (sub-)matrizant M.z�; z��1/ for any elementary step or layer is readily
transformed with the aid of (1.197) into a propagator (transfer matrix) P relating
up- and downgoing eigenmode amplitudes at the two bounding surfaces of the layer,

a.z�/ D E.z�/�1M.z�; z��1/E.z��1/a.z��1/

DW P.z� ; z��1/a.z��1/ (1.200)

In terms of the two upgoing and two downgoing eigenmode amplitudes, aC and a�,
this becomes �

aC.z�/

a�.z�/

	
D
�
P1 P2

P3 P4

	 �
aC.z��1/

a�.a��1/

	
(1.201)

in which the propagator P has been split into four 2 � 2 matrices as in (1.168). The
four 2 � 2 reflection and transmission matrices, r˙ and t˙, are now computed for
this, and for all, elementary layers as in (1.169),

aout W D
�

a�.z��1/

aC.z�/

	
D
"
�P�1

4 P3 P�1
4

P1 �P2P
�1
4 P3 P2P

�1
4

# �
aC.z��1/

a�.z�/

	

D
�
rC t�
tC r�

	 �
aC.z��1/

aC.z��1/

	
DW S ain (1.202)

Suppose we have computed the reflection and transmission matrices, R�
˙ and

T�
˙, for the slab bounded by z0 and z� , and we now add to it the elementary

layer .z�; z�C1/ whose reflection and transmission matrices are r˙ and t˙, as in
(1.202). Let R�C1

˙ and T�C1
˙ denote the corresponding matrices for the composite

slab .z0; z�C1/. The problem is identical to that discussed in Sec. 1.5.4 and illustrated
in Fig. 1.2, except that now r˙ and t˙ refer to the overlying elementary layer rather
than the interface .� C 1; � C 2/. Furthermore, the phase matrices �˙, (1.166) and
(1.170), now reduce to unit matrices I.4/, since the overlying layer is contiguous
with the underlying slab, viz. ız D 0. The reflection and transmission matrices,
R�C1
˙ and T�C1

˙ , are now determined by the same recursion relations as in (1.172),
with �˙ ! I.4/:
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R�C1
C D R�

C CT�
�ŒI � rCR�

���1rCT�
C

T�C1
C D tCŒI �R�

�rC��1T�
C

R�C1
� D r� C tCŒI �R�

�rC��1R�
�t�

T�C1
� D T�

�ŒI � rCR�
���1t� (1.203)

These relations, given by Bossy and Claes [25] and Bossy [24], impart to the
matrizant method the flexibility of the thin-layer scattering-matrix technique, but
with the advantage of being able to work with large step sizes, and thereby to extend
considerably the upper frequency limit.

This technique is applicable also to the Keller and Keller method, in which
eigenmodes and amplitudes are recovered as in (1.195). If the problem of numerical
swamping does not arise, then it is unnecessary to employ the recursion relations
(1.203). Instead, the propagator matrix P.z; z0/ (1.196) for all slab thicknesses,
derived from the repeated product of sub-matrizants for each elementary layer, may
be transformed directly into scattering matrices by means of (1.169). It seems to us
that computer output in terms of scattering matrix elements is the most convenient
form for extracting information on the physical propagation processes.



Chapter 2
Eigenmode reciprocity in k-space

2.1 Reciprocity in physical space and in k-space

2.1.1 Overview

Until the mid 1960’s the problem of reciprocity in electromagnetics had been devel-
oping in two separate, and seemingly unrelated directions. As early as 1896 Lorentz
[91] had demonstrated that if two independent current distributions, J1.r/ and J2.r/,
generated electromagnetic fields, E1.r/; H1.r/ and E2.r/; H2.r/ respectively, in
free space, then

Z
E1.r/ � J2.r/d 3r D

Z
E2.r/ � J1.r/d 3r (2.1)

and this was recognized as an expression of the ‘interchangeability’ of transmitting
and receiving antennas. This, or an equivalent formulation,

r � .E1 �H2 � E2 �H1/ D 0 (2.2)

became to be known as the Lorentz reciprocity theorem, and will be discussed in
some detail in Chap. 4. The theorem was used, inter alia, to deduce the properties
of transmitting antennas if their properties as receiving antennas were known.
Eckersley [51], for instance, used the theorem to deduce the radiation pattern of
a transmitting antenna as modified by an imperfectly conducting ground below it,
by solving the simpler problem of its response as a receiving antenna.

Sommerfeld [110] and Dällenbach [47] pointed out that the theorem would
hold in anisotropic media provided that the electric permittivity ", the magnetic
permeability � and the conductivity � were symmetric tensors. Rumsey [106] and
Cohen [40] noted that a modified form of Lorentz reciprocity would hold also for
non-symmetric tensors provided that the second (reciprocal) system of currents and

C. Altman and K. Suchy, Reciprocity, Spatial Mapping and Time Reversal
in Electromagnetics, DOI 10.1007/978-94-007-1530-1 2,
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fields were taken in a ‘transposed medium’, characterized by the transposed tensors
"T ; �T and � T . Harrington and Villeneuve [63] applied the theorem to gyrotropic
media, such as magnetoplasmas or ferrites, in which the ‘transposed medium’ is
just the original medium with the direction of the external magnetic field reversed.
Kong and Cheng [84] and Kerns [81] extended the result to bianisotropic media (see
Sec. 2.2.2) and introduced the concept of a ‘complementary’ or ‘adjoint’ medium,
which generalizes the earlier concept of the transposed medium.

A parallel, and seemingly unrelated line of development treated what we shall
call ‘reciprocity in (transverse-) k-space’, which in its early form dealt with the
symmetry properties of the scattering matrices in a plane-stratified ionospheric
magnetoplasma. Budden [29] and Barron and Budden [21] found that the 2 � 2

reflection matrix for plane-wave incidence on a plane-stratified magnetoplasma was
the transpose of the reflection matrix for another symmetrically disposed direction
of incidence, which we shall subsequently call the ‘conjugate direction’. (Because
of Snell’s law, the component kt of the propagation vector in the stratification
plane—the ‘transverse’ component—is the same for the incoming plane wave and
for the outgoing, scattered waves.) Pitteway and Jespersen [100] and Heading
[66] found similar results relating the transmission coefficients for upgoing waves
incident on the ionosphere in a given direction, and downgoing waves incident in a
symmetrically disposed, conjugate direction. These results were later generalized by
Suchy and Altman [12, 13, 118, 119] who showed that the 4 � 4 scattering matrices
could be expressed in terms of suitably defined eigenmode amplitudes within the
gyrotropic medium, and not only in terms of linearly polarized base modes in free
space outside of the scattering medium. This result was further extended by Altman
et al. [10] to include bianisotropic media, and it was shown that a wide range
of ‘adjoint’ or ‘complementary’ reciprocal media could be generated by means
of orthogonal transformations (rotation, reflection or inversion) of the transposed
medium.

2.1.2 From physical space to k-space

The two lines of development just described converged from both directions.
A passive antenna is a scattering object, and any dielectric scattering object will re-
radiate by virtue of the currents induced by the external fields incident on it. Lorentz
reciprocity will apply to such scattering objects (see, for instance, Rumsey [106]).
Harrington and Villeneuve [63] showed that if a scattering object, characterized
by constitutive tensors, "; � and � , be considered as a generalized N terminal-
pair network, with V and I representing column matrices of ‘terminal’ voltages and
currents at the surface of the scatterer, one may define a scattering matrix S through
the relation

V DW S I (2.3)

They showed that if the medium of the object had transposed constitutive tensors
"T ; �T and � T , the scattering matrix would be transposed to ST .
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Fig. 2.1 Scattering relations illustrated schematically for object with given or Lorentz-adjoint
medium. In all cases S˛ˇ



k00

t ; k0
t

� D S
.L/

ˇ˛


�k0
t ; �k00

t

�

It was the work of Kerns [81], however, that bridged the gap from reciprocity in
real (physical) space to reciprocity in k-space. Let us suppose, with Kerns, that a
scattering object in free space, Fig. 2.1, is contained between two imaginary planes,
z� and zC. We consider an incoming wave, with an electric wave field Ein.z�/ or
Ein.zC/ incident on the object from the left or right respectively. We shall adapt
Kerns’ notation to that used by us. The transverse component (transverse to the z-
axis) of the electric field, Ein

t , may be Fourier analysed in the z D z� or z D zC
planes. Any Fourier component having a transverse wave vector

kt 
 .kx; ky/ with jkt j D
�
k0

2 � kz
2
�1=2

; k0 WD !."0�0/1=2

may be decomposed into two ‘modes’, in which the electric fields, Et1 and Et2, are
respectively parallel and perpendicular to the plane of incidence. The basis vectors
along these fields will be
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O�jj WD kt =jkt j 
 O�˙1 and O�? WD Oz � O�˙ 
 O�˙2

Fourier analysis of Ein
t .z�/ yields the spectral amplitude densities, AQ

˙̨.kt ; z�/, in
transverse-k space, with ˛ D 1; 2 or ˛ D �1;�2 for positive- or negative-going
waves respectively:

Ein
t .z�/ D 1

2�

Z Z
AQ
˙̨.kt ; z�/O�˛ expŒ�i.kxx C kyy/�dkzdky (2.4)

integrated over the entire transverse-k plane, with assumed summation over the
characteristic polarizations ˛ D 1; 2 for z D z�, or ˛ D �1;�2 for z D zC. Phase
factors exp.	ikzz�/ have been included in the spectral amplitudes AQ

˙̨. Underlying
tildes .�/ are used in this section to denote quantities that represent densities in
transverse-k space.

The outgoing scattered wave fields Eout
t .z˙/ may similarly be Fourier analyzed to

yield outgoing amplitude densities, AQ
˙̨.kt ; z˙/. It is convenient to define normalized

amplitude densities, aQ
˙̨:

aQ
˙̨ WD 
˛

1=2AQ ˛
1=2; ˛ D ˙1;˙2

where


˙1 WD !"0=jkzj D k

jkzj
r

"0

�0

and 
˙2 WD jkzj=!�0 D jkzj
k

r
"0

�0

are the characteristic wave admittances [81, eqs. (1.2–5) and (1.2–6)]. Then
ˇ̌
aQ
˙̨ ˇ̌2

will represent the spectral densities (in transverse-k space) of the z-component of
the time-averaged energy fluxes across the surfaces z D zC or z D z�:

˝
Pz�;˛

˛ D �1

2

Z Z ˇ̌
aQ ȧ .kt ; z�/

ˇ̌2
dkxdky; ˛ D ˙1;˙2 for z D z� (2.5)

for incoming waves, and

˝
Pz�;˛

˛ D C1

2

Z Z ˇ̌
aQ ȧ .kt ; z˙/

ˇ̌2
dkxdky; ˛ D ˙1;˙2 for z D z˙ (2.6)

for outgoing waves, in which, for simplicity, we have ignored the contributions from
evanescent modes [81, eqs. (1.4–2) and (1.4–3)].

Outgoing and incoming modal amplitude densities will be related by elements of
a scattering-density matrix SQ . Symbolically, we may write [81, eq. (1.3–1)]

aQ
out
˛



k00t
� D

Z Z
SQ˛ˇ



k00t ; k0t

�
aQ

in
ˇ



k0t
�

dk0x dk0y (2.7)
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which, for back- and forward-scattered waves respectively, becomes

aQ
�̨ 
k00t ; z�

� D
Z Z

SQ˛ˇ



k00t ; k0t I z�

�
aQ
˙̌ 
k0t ; z�

�
dk0x dk0y

and

aQ
�̨ 
k00t ; z˙

� D
Z Z

SQ˛ˇ



k00t ; k0t I z˙; z�

�
aQ
˙̌ 
k0t ; z�

�
dk0x dk0y

Now let the medium of the scattering object be replaced by a ‘(Lorentz-) adjoint’
medium. (Just what is meant by this is explained in Sec. 3.4. In the case of a
magnetoplasma, it means the given medium in which the external magnetic field
has been reversed in direction). Suppose also that all outgoing wave vectors k00 are
reversed in direction .k00 ! �k00/ so that they become incoming wave fields. Kerns’
(Lorentz-) adjoint scattering theorem [81, eq. (1.5–5)] states that in this case the
outgoing wave fields will be just the incoming wave fields in the original problem
with their wave vectors reversed .k0 ! �k0/. In the case of back-scattering this
means that

SQ˛ˇ



k00t ; k0t I z�

� D SQ
.L/

ˇ˛


�k0t ;�k00t I z�
�

(2.8)

and for forward scattering

SQ˛ˇ



k00t ; k0t I z˙; z�

� D SQ
.L/

ˇ˛


�k0t ;�k00t I z�; z˙
�

(2.9)

where SQ
.L/ is the scattering-density matrix for the Lorentz-adjoint medium. These

relations are illustrated schematically in Fig. 2.1.
Suppose now that the incoming wave field in (2.7) is that of a single plane wave

with a transverse propagation vector kt . Then aQ
in
ˇ becomes a Dirac delta function

(aside from a multiplying factor) in transverse-k space,

aQ
in
ˇ



k0t
� D ain

ˇ .kt /ı


k0t � kt

� D a˙̌.z�/ı


k0t � kt

�
; ain

ˇ .kt / D
ZZ

aQ
in
ˇ



k0t
�

dk0x dk0y

and (2.7) becomes
aQ

out
˛



k00t
� D SQ˛;ˇ



k00t ; kt

�
ain

ˇ .kt / (2.10)

Finally we let the scattering object be a plane-stratified slab, situated between
the planes z D z� and z D zC, i.e. all constitutive parameters of the medium are
functions of the z-coordinate only. Because of Snell’s law, the scattering-density
matrix SQ˛ˇ becomes a delta function in kt -space for plane-wave incidence, and
the amplitude densities of both the incident and scattered waves will also be delta
functions in kt -space:

SQ˛ˇ



k00t ; kt

� D S˛ˇ.kt /ı


k00t � kt

�
(2.11)

aQ
out
˛



k00t
� D aout

˛ .kt /ı


k00t � kt

� D a�̨.z�/ı


k00t � kt

�
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If SQ˛ˇ and aQ
out
˛



k00t
�

are now substituted into (2.10), and the equation then integrated
over all k00t , we obtain

aout
˛ .kt / D S˛ˇ.kt /a

in
ˇ .kt / (2.12)

The scattering relation (2.7) then reduces to a straightforward matrix relation, with
each incident mode, ˛ D ˙1;˙2, generating two reflected (back-scattered) and two
transmitted (forward-scattered) modes. With

aC WD
�
a1

a2

	
; a� WD

�
a�1

a�2

	

we have

aout WD
�

a�.z�/

aC.zC/

	
D
�
RC.kt I z�/ T�.kt I z�; zC/

TC.kt I zC; z�/ R�.kt I zC/

	 �
aC.z�/

a�.zC/

	

D S.kt /ain (2.13)

defining thereby the 4-element modal-amplitude column matrices, ain and aout, and
the 2 � 2 reflection and transmission matrices, R˙ and T˙, which constitute the
scattering matrix S. (The signed subscripts indicate the direction of the incident
mode with respect to the z-axis.)

Kerns’ theorem, (2.8) and (2.9), reduces in this case to

S.kt / D QS.L/
.�kt / (2.14)

R˙.kt I z�/ D QR.L/

˙ .�kt I z�/; T˙.kt I zC; z�/ D QT.L/

� .�kt I z�; zC/

with, typically

RC12.kt I z�/ D R
.L/C
21 .�kt I z�/; TC12



kt I zC; z�

� D T
.L/�
21 .�ktI z�; zC/

where T ˙̨̌ and R˙̨̌ , with ˛; ˇ D 1 or 2, denote elements of the 2 � 2 matrices T˙
and R˙.

This restricted form of Kerns’ scattering theorem will be discussed in Sec. 3.4
in the general context of scattering theorems in plane-stratified media. In Sec. 7.3
Kerns’ scattering theorem will be generalized to the case in which an anisotropic
scattering object is immersed in a homogeneous or plane-stratified anisotropic
medium.

2.1.3 Reciprocity in transverse-k space: a review of the earlier
scattering theorems

The interest in the ionosphere, until the mid-fifties, lay primarily in its ability to
reflect radio waves. Vertical ionospheric sounding had been employed since the
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mid-thirties to determine ionospheric structure and maximum usable frequencies
for radio communication between fixed ground stations. Point-to-point long-wave
and very-long-wave radio links had been tested experimentally to determine diurnal
and seasonal variations, as well as the directional dependence of the ionospheric
reflection coefficients. The first heroic efforts in the early fifties, especially by
Budden and his coworkers [30, 31], to produce full-wave computer programs to
solve the differential equations governing the propagation of radio waves in a plane-
stratified magnetoplasma, were aimed at producing, as their primary output, a set
of reflection coefficients for arbitrary directions of incidence. Various equalities
were then discovered in the numerically computed reflection coefficients for certain
symmetrically disposed directions of incidence. The analytical proof of these
‘reciprocity theorems’ was found only later, after the theorems were already known
from the computer output [21, 29].

In 1953 Storey [114] showed both experimentally and theoretically that very-
low-frequency (whistler) waves, guided by the earth’s magnetic field, could pen-
etrate through the ionospheric X D 1 level (where waves of similar polarization
but higher frequency would normally have been reflected — cf. Sec. 1.2) to reach a
magnetically conjugate point in the opposite hemisphere. (The frequency dispersion
of these waves—the higher frequencies arriving before the lower—generated a
whistling sound of falling frequency when the audio-frequency electromagnetic
waves were received by an antenna connected to an audio amplifying system.
Hence the name ‘whistler’.) Storey’s findings were one of the motivating factors in
developing computer programs, such as that due to Pitteway [98], to calculate very-
low-frequency transmission coefficients for propagation through the ionosphere for
plane wave incidence from both below and above the ionosphere. Equalities between
the transmission coefficients of downgoing whistler waves and upgoing ‘penetrating
modes’ were again found in the computer output, for certain symmetrically disposed
planes of incidence, and the analytical proof then followed [100].

Heading [66] undertook a systematic analysis of reciprocity (scattering) relations
in plane-stratified magnetoplasmas, by considering certain general symmetry prop-
erties of Maxwell’s second-order differential equations in such media. Equalities
were again found between elements of the reflection and transmission matrices
for certain pairs of symmetrically related directions of plane-wave incidence. The
scattering matrix elements were defined, as in Budden’s treatment [29], in terms of
linearly polarized base modes in the free space bounding the medium.

At this stage there was still no obvious connection between the results of Kerns
previously discussed, as applied to plane-stratified media, and those of Barron
and Budden, Pitteway and Jespersen, and Heading. Kerns’ scattering theorem
involved an ‘adjoint medium’, which in the case of a magnetoplasma meant a
magnetic-field reversed medium, with wave vectors reversed in direction too. The
work of Budden and others, on the other hand, compared scattering matrix elements
in the same medium, but with different directions of incidence.

The thin-layer scattering-matrix numerical technique developed by Altman and
Cory [3, 4] (see Sec. 1.5.3) led, fortuitously, to a generalized form of the scattering
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theorem in plane-stratified media. In this method the elements of the reflection
and transmission matrices were just the quantities which were recursively summed
in the numerical procedure in which thin elementary layers were added stepwise
to the plane-stratified slab. The scattering matrix elements related amplitudes of
eigenmodes emerging from slabs of varying thicknesses, imbedded in the given
statified medium, to the amplitudes of eigenmodes incident on the slab. The
‘amplitude’ of an eigenmode was taken initially to be the (square root of the)
z-component, normal to the stratification, of the time-averaged Poynting flux of
the eigenmode. The computed output yielded the elements of the scattering matrix
S.kt ; �/, (2.13), for given values of the transverse wave vector kt , and for given
azimuthal angles, �, between the plane of incidence and the magnetic meridian
plane (the plane containing the external magnetic field, b, and the normal to the
stratification, Oz). The scattering matrix S.kt ; �/, when the plane of incidence was
at an azimuthal angle �, was found to be the transpose of that for a conjugate
orientation in which the azimuthal angle was .� � �/,

S.kt ; �/ D QS.kt ; � � �/ (2.15)

as long as the medium was lossless. The exact equality broke down as soon as
collisional losses were introduced. On the basis of a procedure due to Budden
and Jull (1964) in their treatment of reciprocity of magnetoionic rays [35], the
complex conjugate wave fields, E� and H�, appearing in the expression for the mean
Poynting flux (see Sec. 2.3.1), were replaced by the computed adjoint wave fields,
E and H. This meant that the complex-conjugate transverse wave polarizations, ��,
appearing in the expression for the mean Poynting flux (see eq. 2.65 in Sec. 2.3.1)
were replaced by the adjoint wave polarizations, N� D �� (2.66). (The equality
�� D N� D �� holds only for loss-free media). The eigenmode scattering theorem
(2.15), reported by Altman in 1971 [2], was found to be exact, but the analytic proof
was only found much later by Suchy and Altman [12, 119].

This chapter deals with some of the properties of the adjoint Maxwell equations,
and their use in the derivation of the eigenmode scattering theorem. In Chap. 3 we
consider the generalization of the theorem to base modes which are not eigenmodes
of the medium, and discuss some of the earlier reciprocity (scattering) theorems in
the light of the generalized theorem.

2.1.4 From transverse-k space back to physical space

The link back from reciprocity in transverse-k space to reciprocity in physical
space was found by Schatzberg and Altman [8, 108]. Their procedure was to
Fourier-analyse currents and fields in transverse-k space, and then to set up the
angular spectrum of plane-wave eigenmodes associated with an element of current,
J1.kt ; z0/dz0, flowing in an elementary layer of thickness dz0 in the medium. With
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the aid of the scattering matrix S.kt I z; z0/ a dyadic Green’s function, G.kt I z; z0/,
was determined, so that the overall field e1.kt ; z/ at a level z in the medium was
given by

e1.kt ; z/ D
Z

G.kt I z; z0/J1.kt ; z0/dz0 (2.16)

In a similar fashion a second, independent current distribution, J2.kt ; z0/, generated
a field e2.kt ; z/.

A mirroring (reflection) transformation of the currents and fields with respect
to the magnetic meridian .b; Oz/ plane, yielded the ‘conjugate’ currents and fields,
Jc


kc

t ; z0
�

and ec


kc

t ; z
�
. Here, kc

t has been formed by reversing the sign of kt (this
will later be seen to be an expression of time reversal, which is inherent in the
reciprocity process), and then the y-component, normal to the .b; Oz/ plane, is again
sign-reversed by the reflection transformation to give

kt D k0.sx; sy/; kc
t D k0.�sx; sy/ (2.17)

With the aid of the scattering theorem (2.15), which may be written in the form

S.sx; sy/ D ST
.�sx; sy/ (2.18)

a simple relation was found between the given and conjugate dyadic Green’s func-
tions, G.kt I z; z0/ and Gc

.kc
t I z; z0/, in kt space. An inverse Fourier transfomation in

kt -space led finally to a Lorentz-type reciprocity relation in real space [8, 108]

Z
e1.r/ � J2.r/d 3r D

Z
ec

2.r/ � Jc
1.r/d 3r (2.19)

Eq. (2.19) is derived in Chap. 5. It will be noted that this result does not contain
any feature that would indicate that its validity is restricted to plane-stratified
media. In fact it is shown in Chap. 6 that in any medium that has ‘conjugation
symmetry’, the reciprocity relation (2.19) will apply. A medium will be said to
possess ‘conjugation symmetry’ if, after being ‘time reversed’, it can be mapped into
itself by means of an orthogonal transformation. A ‘time-reversed’ magnetoplasma,
for example, is one in which the external magnetic field has been reversed.

2.2 The adjoint wave fields

2.2.1 The need for an auxiliary set of equations adjoint to
Maxwell’s equations

The field equations of physics may generally be written as a system of first-order
partial differential equations or, on elimination of some of the field variables, as
higher-order equations. The Maxwell field, containing both electric and magnetic
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components, may be described by six first-order differential equations with six
possible source terms, components of the electric and equivalent magnetic currents.
The coefficients of the field components in these equations will be determined by
the constitutive relations of the medium considered, as expressed by the constitutive
tensor which relates the field vectors D and B to E and H. Examples of such tensors
and their characteristic symmetries are discussed in Sec. 4.1.

To reveal the basic symmetries of the fields it is useful to make use of an auxiliary
or adjoint set of equations, which will be satisfied by adjoint field variables. These
hypothetical adjoint fields will then exhibit a reciprocity relation with respect to the
fields in the original problem. The adjoint fields will in general be non-physical,
insofar as they satisfy the non-physical adjoint equations, but frequently they can
be related in a simple and direct way to the physical fields in another conjugate
problem, derived from the original by some sort of mapping transfomation (such as
reflection). The reciprocity relation between the given and adjoint problems then
leads to a reciprocity relation between fields (or between currents and fields, if
sources are present) in the two physical configurations of the given and conjugate
problems.

In the case of plane-stratified media both the given Maxwell field and the adjoint
field can in principle be decomposed into characteristic wave fields or eigenmodes.
It will be shown that the given and adjoint eigenmodes are biorthogonal, a
property which provides a simple procedure for decomposing a wave field into its
constituent eigenmodes, and for determining their amplitudes in a manner suitable
for application in a general scattering theorem which will be derived in Sec. 2.5.

2.2.2 Maxwell’s equations in anisotropic, plane-stratified media

The electric and magnetic wave fields in an anisotropic or bianisotropic medium
will be related in general by a 6 � 6 constitutive tensor K:

�
D
B

	
D
�

© �

� �

	 �
E
H

	

 Ke (2.20)

We note that the fundamental fields, defined by the Lorentz force on an electric
charge q

F D q.EC � � B/

are E and B, whereas D and H are derived fields which contain the additional
contributions of electric polarization and magnetization currents. Nevertheless it
is convenient, for the sake of symmetry of Maxwell’s equations, to represent the
constitutive tensor K in this form. " is the 3�3 electric permittivity tensor, and � is
the magnetic permeability tensor which, for media having no magnetic activity (such
as plasmas, with or without an ambient magnetic field) is just the scalar permeability
�0 of free space, � D �0I

.3/, where I.n/ represents the n � n unit matrix. The 3 � 3

coupling matrices � and � in (2.20) are usually zero except for a small class of
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bianisotropic media in which a magnetic field produces electric polarization, and
an electric field magnetizes the medium. (Moving media are bianisotropic since
the electric and magnetic fields are coupled by the Lorentz transformation, and
so too are the magneto-electric or so-called Tellegen media [124] in which the
elementary electric dipoles also have magnetic moment. Bianisotropic media have
been discussed by Post [101], Kong and Cheng [37, 82, 83], van Bladel [127] and
others, and are considered in some detail in Sec. 4.1.).

With time-harmonic exp.i!t/ variation of all field quantities, Maxwell’s equa-
tions take the form

Œi!KCD�e.r/ D �j.r/ (2.21)

with D, the differential operator, given by

D WD
"

0 �r � I.3/

r � I.3/
0

#
D DT (2.22)

The generalized wave-field and current vectors, e and j, are given by

e WD
�

E
H

	
; j WD

�
Je

Jm

	
(2.23)

where Je and Jm are the electric and equivalent magnetic current densities.
If we split the differential operator D into three cartesian differential operators,

(2.21) becomes
�
i!KCUx

@

@x
CUy

@

@y
CUz

@

@z

	
e.r/ D �j.r/ (2.24)

where

Ux W D
"

0 �Ox � I.3/

Ox � I.3/
0

#
D Ux

T
; Uy WD

"
0 �Oy � I.3/

Oy � I.3/
0

#
D Uy

T

Uz W D
"

0 �Oz � I.3/

Oz � I.3/
0

#
D Uz

T D

2
6666666664

W 0 1 0

0 W �1 0 0

W 0 0 0

� � � � � � � � � � � � � � � � � � �
0 �1 0 W
1 0 0 W 0

0 0 0 W

3
7777777775

(2.25)

(Note that Ux; Uy; Uz and D are all symmetric). Now assume the medium to be
plane stratified with the z-axis normal to the stratification. We denote the projection
of k on the stratification plane by kt ,

kt WD .kx; ky/ D k0.sx; sy/ (2.26)
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where sz and sy are propagation constants (Snell’s law). Fourier-transforming e(r)
and j(r) in (2.24) in the transverse (stratification) plane, we have typically

e.r/ D k2
0

4�2

Z Z
e.kt ; z/ expŒ�ik0.sxx C syy/�dsxdsy (2.27)

e.kt ; z/ D
Z Z

e.r/ expŒik0.sxx C syy/�dx dy (2.28)

Substitution in (2.24), (with K independent of x and y), yields

ik0

�
cK.z/ � sxUx � syUy � i

k0

Uz
d

d z

	
e.kt ; z/ D �j.kt ; z/

or, more concisely

ik0

�
C � i

k0

Uz
d

d z

	
e.kt ; z/ 
 Le.kt ; z/ D �j.kt ; z/ (2.29)

where

C WD ŒcK � sxUx � syUy�

and L is the Maxwell operator:

L WD ik0

�
C � i

k0

Uz
d

d z

	

2.2.3 Eigenmodes in the plane-stratified medium

In order to find the eigenmodes of the plane-stratified medium we set the source
term in (2.29) to zero

Le WD ik0

�
C � i

k0

Uz
d

d z

	
e.kt ; z/ D 0 (2.30)

and assume local plane-wave solutions

e˛.kt ; z/ D e˛.kt / exp.�ik0 q˛z/ (2.31)

to obtain the eigenmode equation

ŒC � q˛Uz�e˛.kt ; z/ D 0 (2.32)
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Since there are two null rows and columns in Uz, the equation

detŒC � q˛Uz� D 0 (2.33)

gives a quartic equation in q˛ (the Booker quartic (1.109), discussed in Sec. 1.3),
yielding two positive- and two negative-going waves with respect to the z-axis,
corresponding to ˛ D ˙1; ˙2. The eigenvectors e˛ give the characteristic wave
polarizations (the ratios of the various wave-field components) corresponding to
each eigenvalue q˛.

2.2.4 The Lagrange identity and the bilinear concomitant

We now construct the equation adjoint to (2.30) by changing the sign of the
differential operator d/dz and replacing C by its transpose CT (i.e. replacing K
by KT ):

NLNe WD ik0

�
CT C i

k0

Uz
d

d z

	
Ne.kt ; z/ D 0 (2.34)

where NL is the adjoint Maxwell operator, and Ne.kt ; z/ now denotes an adjoint wave
field, satisfying the adjoint Maxwell equations.

We should note at this point that in the case of a cold magnetoplasma per-
meated by an external magnetic field b, the constitutive tensor K
K.b/ has the
general form

K D
"

" 0
0 �0I

.3/

#
DW
"

"0.I
.3/ C 
/ 0

0 �0I
.3/

#
(2.35)

defining, for later use, the susceptibility matrix 
I " 
 ".b/(1.38) is given by

"

"0

D S.I� Ob ObT /� iD Nb � IC P Ob ObT ; Ob WD b=jbj

S, D and P being parameters of the medium, cf. (1.37), (1.40) and (1.39); ". Ob/ is
clearly gyrotropic, i.e. ".�b/ D "T .b/, by virtue of the antisymmetric term Ob � I,
and so too are K.b/ (2.35) and C.b/ (2.29),

K.�b/ D KT
.b/; C.�b/ D CT

.b/ (2.36)

The given and adjoint operators L and NL will obey the Lagrange identity

NeT Le � eT NLNe D r � P (2.37)

where the vector P is called the bilinear concomitant [94, Sec. 7.5]. In our case,
(2.34), the differential operator is just the z-component of r , and remembering
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that NeT Ce is a scalar which is equal to its transpose, and therefore eliminated on
subtraction in (2.37), we find

�
NeT Uz

de
d z
C eT Uz

d Ne
d z

	
D d

d z

�NeT Uze
�

which, with Le D NLNe D 0, (2.30) and (2.34), gives

d

d z

�NeT Uze
� D 0 (2.38)

Hence the (z-component of the) bilinear concomitant vector is a constant

NeT Uze D Pz D const (2.39)

an important result that we shall require later.
If we were to consider an arbitrary source-free medium, i.e. not necessarily

plane-stratified, governed by (2.21) with j.r/ D 0, we would write the formally
adjoint equation as before [46, p. 234–236] by replacing K by its transpose KT , and
the differential operator D (2.22) by its negative transpose �DT . If therefore the
Maxwell system, (2.21) or (2.24) with j.r/ D 0, is given by

Le WD Œi!KCD�e.r/ D
�
i!KCUx

@

@x
CUy

@

@y
CUz

@

@z

	
e.r/ D 0 (2.40)

the formally adjoint equation, with DT D D, (2.22), will be

NLNe WD Œi!KT �DT
�Ne.r/ D

�
i!KT �Ux

@

@x
�Uy

@

@y
�Uz

@

@z

	
Ne.r/ D 0 (2.41)

Application of the Lagrange identity, (2.37), then yields the result

r � P D 0; P D E �HC E �H (2.42)

and the expression NeT Uze appearing in (2.39) is seen to be the z-component of the
Poynting-like product in (2.42). This bilinear concomitant vector P was introduced
by Budden and Jull [35] in their study of reciprocity of ray paths in magnetoionic
media, and a variant of it was used by Pitteway and Jespersen [100] to derive their
reciprocity theorem discussed in Sec. 3.2.4.

It should be remarked that the above prescription .K ! KT
; D ! �DT

/ for
forming the adjoint system is not unique, and any other prescription that will satisfy
a Lagrange identity like (2.37) is equally valid. The particular form chosen by us,
yields a bilinear concomitant vector P (2.42) which reduces to the time-averaged
Poynting vector in loss-free media (see Sec. 2.3.1), and is particularly useful in
the applications discussed in this and the next chapters. Other prescriptions may be
formulated by certain orthogonal transformations of the adjoint Maxwell system.
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They have been used by Kong and Cheng [84] and by Kerns [81], and are useful
in analysing Lorentz-type reciprocity when the waves which are compared travel
in opposite directions (i.e. when the wave vectors are reversed in k-space, or the
roles of receiving and transmitting antennas are interchanged in real space). Such
transformed adjoint systems are introduced in Sec. 3.4, and discussed in some detail
in Chaps. 4 and 6.

2.2.5 Biorthogonality of the given and adjoint eigenmodes

We now derive another important result that links the given and adjoint eigenvectors.
Assuming local plane-wave solutions to the adjoint equation (2.34) of the form

Neˇ.kt ; z/ D Neˇ.kt / exp.ik0 Nqˇ z/ (2.43)

we obtain the adjoint eigenmode equation

ŒCT � NqˇUz� Neˇ.kt ; z/ D 0 (2.44)

The eigenvalues are determined by

det ŒCT � NqˇUz� D 0 (2.45)

which is seen to give the same quartic equation in q as (2.33). Hence the given and
adjoint eigenvalues are identical

Nqˇ D qˇ (2.46)

This implies that the given and adjoint modal refractive indices are also equal

Nnˇ.sx; sy ; Nqˇ/ D nˇ.sx; sy ; qˇ/ (2.47)

Note however that qˇ and Nqˇ appear in the plane-wave representations (2.31) and
(2.43) with opposite signs, but since both representations have the same exp.i!t/

time dependence, this means that the given and adjoint waves propagate in opposite
directions with respect to the z-axis (but of course in the same transverse direction,
since Nkt D kt ).

Again applying the Lagrange identity (2.37) to the eigenmode equations (2.32)
and (2.44), and remembering that Nqˇ D qˇ , we find that

.qˇ � q˛/NeT
ˇ Uz e˛ D 0 (2.48)

which gives the well known biorthogonality relation [18,53,105] between the given
and adjoint eigenmodes

NeT
ˇ Uz e˛ D const ı˛ˇ D ı˛ˇ Pz;˛ (2.49)
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with the aid of (2.39). If the eigenmodes are suitably normalized this relation may
be written

ONeT
ˇ Uz Oe˛ D ı˛ˇ sgn.˛/; ˛; ˇ D ˙1;˙2 (2.50)

To discuss the nature of the normalization, it will be necessary to define the
amplitude of an eigenmode, and this will be crucial to the scattering theorems which
will be derived later, in which ingoing and outgoing eigenmode amplitudes will be
related.

2.3 The amplitude of an eigenmode

2.3.1 Amplitude in a loss-free medium

In discussing the propagation of a characteristic (eigen-) mode in a plane-stratified
medium in which there are no collisional losses, it is useful to define the modal
amplitude as the square root of the z-component (normal to the stratification) of the
time-averaged Poynting vector (see, for instance, [100, 126]). If the medium varies
slowly, so that there are no losses due to reflection or to mode coupling, it will be
shown that the amplitude is conserved, i.e. it will remain constant even though the
parameters of the medium vary in the direction normal to the stratification.

The time-averaged Poynting vector hSi is given by

hSi D E �H� C E� �H (2.51)

aside from a factor 1/4 which we have absorbed into hSi, and its z-component is
given by

hSzi D Qe�Uz e (2.52)

Now the complex-conjugate wave field e� obeys an equation given by the
complex conjugate of (2.30)

�
C� C i

k0

Uz
d

dz

	
e�.kt ; z/ D

�
CT C i

k0

Uz
d

dz

	
e�.kt ; z/ D 0 (2.53)

since the dielectric tensor " in C is hermitian. [The hermiticity of ", or of K, can
be shown to stem from the requirement of energy conservation (see for instance
[1, p. 9] or [113, p. 65]) and conversely, as in the present discussion, will be shown
to lead to energy conservation].

Similarly, the complex-conjugate eigenwave field for a progressive plane wave
(q˛ real) becomes, from (2.32)

ŒC� � q˛Uz�e� D ŒCT � q˛Uz�e� D 0 (2.54)
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Thus the complex-conjugate wave fields in loss-free media obey the adjoint
Maxwell equations, and eqs. (2.38) and (2.39) will apply here too, with

Qe�Uze D Pz D const (2.55)

Comparison with (2.52) gives

hSzi D Pz D const (2.56)

so that in loss-free media the (z-component of the) bilinear concomitant is seen to
be just the (z- component of the) mean Poynting vector, as already noted by Budden
and Jull [35] and others [12,118,119], which expresses conservation of mean energy
flux. Analogy with (2.49) also gives the biorthogonality of the given and complex-
conjugate eigenmodes in loss-free media

Qe�̨Uzeˇ D ı˛ˇ Pz;˛ (2.57)

We could now define a modal amplitude (or at least its modulus) by equating its
square to the modal energy flux

Qe�̨Uzeˇ D sgn.˛/ı˛ˇ ja˛j2 (2.58)

and then define normalized modal wave fields, Oe˛ or Oe?
˛ , by dividing the given fields

by the modulus of the amplitudes:

e˛ D ja˛j Oe˛ e�̨ D ja˛j Oe�̨

thereby letting the normalized wave fields carry the phase information of the given
fields. Such a procedure is manifestly unsatisfactory, in that a normalized wave field
would not be uniquely defined at a given level, and it is preferable to let the complex
amplitude carry the phase information by letting it have the same phase as one of
the components of e˛ , say ex or e
 (depending on the coordinate system in which
the components of e˛ are expressed). We then have

e˛ D a˛ Oe˛ e�̨ D a�̨ Oe�̨ (2.59)

In either case a normalized modal wave field is that which generates unit energy flux
normal to the stratification:


Oe�̨�T Uz Oeˇ D sgn.˛/ı˛ˇ (2.60)

Now an arbitrary wave field e.kt / can be expressed as a linear superposition of
the eigenmodes of the medium

e.kt / D
X

˛D˙1;˙2

a˛ Oe˛.kt / (2.61)
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where, by virtue of (2.60),

a˛ D

Oe�̨�T Uz e sgn.˛/; a�̨ D .Oe˛/T Uze�sgn.˛/ (2.62)

and hence, with e D e.kt /,

hSzi D Qe�Uze D a�1 a1 C a�2 a2 � a��1a�1 � a��2a�2

D
X

˛

ja˛j2 sgn.˛/ (2.63)

We have thus expressed the energy flux normal to the stratification of an arbitrary
wave field as the algebraic sum of the energy fluxes of the component eigenmodes.

Results analogous to those derived in this section (modal orthogonality in loss-
free media and separation of overall energy flux into contributions of the component
eigenmodes) have been given by Marcuse [92, Sec. 8.5] in his discussion of optical
fibres and dielectric waveguides having cylindrical symmetry. There the form of the
modes is dictated by the geometry of the problem (i.e. by the boundary conditions)
and by a radiation condition at infinity, but the formalism is somewhat similar. In
Sec. 2.6 we discuss the problem of curved stratified media in some detail.

Suppose we wish to determine the z-component of the energy flux associated
with an eigenmode in a loss-free magnetoplasma. One method (not necessarily the
simplest) would be to determine the eigenmode components (the wave polariza-
tions) in the .
; 
; �/ coordinate system (1.77), in which the �-axis is along the
wave-normal direction and the 
-axis is in the plane spanned by the wave normal
and the external magnetic field, cf. (1.82)–(1.85) in Sec. 1.2,

E WD .E
; E
; E�/ D .1; �; �/ E


H WD .H
; H
; H�/ D Y0.��; 1; 0/nE


(2.64)

where � is purely imaginary and � purely real, as may be seen from (1.81) in Sec. 1.2
with S, P, D and n2 all real. Y0 
 1=Z0 WD ."0=�0/

1=2 is the free-space admittance.
The mean Poynting vector becomes

hSi D Y0f�.� C ��/; �.��� C ���/; 2.1C ���/gnE�
 E


D 2Y0f��; 0; 1 � �2gnE�
 E
 (2.65)

and the z-component of hSi, as well as the components of e˛ if required, are
then determined by a coordinate transformation from the .
; 
; �/ to the .x; y; z/
system (1.80).
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2.3.2 Amplitude of an eigenmode in the general case

Normalization of the wave fields

For lossy media the constitutive tensors are no longer hermitian, and the orthogo-
nality of eigenmodes with respect to the complex-conjugate modes is thereby lost,
together with the manifest advantage of being able to express modal amplitudes via
the complex-conjugate wave fields.

The adjoint wave fields, however, retain their biorthogonality with respect
to the given fields (2.49), and we may use this property in the definition of
modal amplitudes which will be valid for lossy media too. The constant bilinear
concomitant Pz D NeT Uze (2.39) evidently no longer represents the z-component
of the mean Poynting vector if absorption is present, since the energy flux would
attenuate in the direction of propagation of the wave. The point is that the amplitude
of an eigenmode, a˛ , is no longer equal in magnitude to the amplitude, Na˛ , of the
adjoint eigenmode since the constancy of the Poynting cross product (2.49) implies
that as e˛ attenuates, Ne˛ will grow correspondingly.

To obtain the adjoint eigenmode components it is convenient to express field
quantities in the .
; 
; �/ system, as in (2.64). In a magnetoplasma, as pointed out in
Sec. 2.2.4, the adjoint medium is obtained by reversing the direction of the external
magnetic field b, so that the transverse wave polarization � WD E
=E
 (1.84) in this
system is reversed in sign, while the longitudinal polarization � WD E�=E
 (1.85) is
unchanged, cf. (1.78),

N�˛ D ��˛; N�˛ D �˛ (2.66)

(the corresponding relations for the complex-conjugate polarizations

��̨ D ��˛; � �̨ D �˛

are valid only in loss-free media). Hence, if the modal field

e˛ 
 .E
; E
; E� I H
; H
; H�/˛

has the form

E˛ D .1; �˛; �˛/ E˛
; H˛ D Y0.��˛; 1; 0/n˛ E˛
 (2.67)

the adjoint field will be

NE˛ D .1; ��˛; �˛/ NE˛
; NH˛ D Y0.�˛; 1; 0/n˛
NE˛
 (2.68)
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and we may form the bilinear concomitant vector P from the Poynting-like product

P˛ D E˛ � NH˛ C NE˛ �H˛

D 2Y0


��˛; 0; 1 � �˛
2
�

n˛
NE˛
 E˛
 (2.69)

which is formally identical to (2.65), except that both � and �2 may now be complex.
The z-component may now be obtained by a coordinate transformation (1.80) to the
(x, y, z) system

Pz;˛ D NeT
˛ Uze˛ D 2Y0


��˛; 0; 1 � �˛
2
�

z n˛
NE˛
 E˛
 (2.70)

This is a convenient representation to use for normalizing eigenmodes. If we
choose

OE˛
 D ONE˛
 D f2Y0n˛sgn.˛/.�˛˛; 0; 1 � �˛
2/zg� 1

2 (2.71)

we can define the normalized eigenfields through (2.67) and (2.68)

Oe˛ D .1; �˛; �˛I �Y0n˛�˛; Y0n˛; 0/ OE˛


ONe˛ D .1; ��˛; �˛I Y0n˛�˛; Y0n˛; 0/ ONE˛


(2.72)

which yield immediately the required biorthogonality normalization

�ONe˛

�T

Uz Oeˇ D ı˛ˇsgn.˛/ (2.73)

Eigenmode amplitudes

We now relate a modal wave field to a normalized field via the modal amplitude, as
in the previous section,

e˛ D a˛ Oe˛; Ne˛ D Na˛
ONe˛ (2.74)

so that (2.49) becomes

NeT
˛ Uzeˇ D sgn.˛/ı˛ˇ Na˛a˛ (2.75)

Now an arbitrary wave field e.kt /, as well as its adjoint, can be expressed in terms
of the eigenmodes

e.kt / D
X

˛D˙1;˙2

a˛ Oe˛.kt /; Ne.kt / D
X

˛D˙1;˙2

Na˛
ONe˛.kt / (2.76)
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whence

a˛ D
�ONe˛

�T

Uz e sgn.˛/; Na˛ D OeT
˛ Uz Ne sgn.˛/ (2.77)

by virtue of (2.73) and (2.76).
Finally we have the generalized Poynting flux density (2.39)

Pz D ŒE � NHC NE �H�z D NeT Uze

D Na1a1 C Na2a2 � Na�1a�1 � Na�2a�2

D
X

˛

Na˛ a˛ sgn.˛/ D const (2.78)

expressed as the sum of the generalized flux densities of the eigenmodes, by analogy
with (2.63).

We remark in conclusion that the procedure adopted here for determining an
eigenmode amplitude in an absorbing medium may seem somewhat cumbersome,
but it is straightforward and easily incorporated into a computer program for
calculating wave fields in plane-stratified media. In most cases of practical interest
the aim of such calculations is to determine fields or scattering coefficients outside
the absorbing regions, where the squares of the modal amplitudes reduce simply to
the z-components (normal to the stratification) of the Poynting flux of each mode.
For our purposes, however, the important result is that modal amplitudes can in
principle be defined in absorbing (and hence in all) media which, in conjunction
with modal biorthogonality, permits the decomposition of generalized energy flux
into the sum of the contributions of each of the eigenmodes.

2.4 The conjugate wave fields

2.4.1 The physical content of the conjugate problem

In our review in Sec. 2.1 we noted that earlier scattering (reciprocity) theorems
for plane-stratified magnetoplasmas related the ingoing and outgoing amplitudes of
waves incident from two different directions — the given and conjugate directions.
If the transverse components (i.e. in the plane of the statification) of the incident
wave vector are kt D k0.sx; sy/, those of the conjugate wave vector are defined to
be kc

t D k0.�sx; sy/ see Fig. 2.2. To characterize the relation between the given
and conjugate wave vectors geometrically, Barron and Budden [21], Pitteway and
Jespersen [100] and others, when discussing incidence on the earth’s ionosphere
from below, have pointed out that the planes of incidence in the two cases are
‘symmetrically disposed about the vertical East–West plane, at right angles to
the magnetic meridian plane’, i.e. if the plane of incidence in the one case is at
an azimuthal angle � with respect to the meridian plane, the conjugate plane of
incidence is at an angle .� � �/.
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Fig. 2.2 Given and conjugate eigenmodes. The z-axis is normal to the stratification, and the
external magnetic field lies in the .x; z/ plane (the magnetic meridian plane)

This characterization, although perfectly true, concealed the physical nature of
the symmetry. With the hindsight provided by a number of later papers, [9,11,108],
we note that the given and conjugate planes of incidence are reflections with respect
to the magnetic meridian plane. But this is only part of the story.

If we take the original (given) problem and perform a reflection mapping, R,
with respect to some arbitrary plane, then all proper (polar) vectors, such as the
position vector r, the electric field E.r/ or the electric current density Je.r/, undergo
‘geometric mirroring’, in the sense that physical arrows would be imaged by a
mirror. All axial (pseudo-) vectors, on the other hand, such as the wave field H.r/,
the external magnetic field b or the equivalent magnetic current density Jm.r/

undergo mirroring too, but in addition, are reversed in direction. Such mappings
will be considered in detail in Chap. 6. It is well known (and will be demonstrated
in Sec. 6.2) that Maxwell’s equations are invariant under such orthogonal mappings.

We now perform a time-reversal transformation, T , on the reflected problem.
The operation T can be visualized by imagining the original process to have been
recorded on a movie film, and then observed when the film is run backwards.
Maxwell’s equations are invariant under time reversal, as will be demonstrated in
Chap. 7, and it will be shown in particular that quantities such as H; B; Je and S
(the Poynting vector) are odd (i.e. change sign) under time reversal, whereas E, D
and Jm are even. For our purposes this means that the combined action of R (with
respect to the magnetic meridian plane) and T leaves the original external magnetic
field b unchanged, i.e.

T Rb D RT b D b

and the mapped eigenmodes (i.e. reflected and time-reversed) will remain eigen-
modes of the (unchanged) mapped medium.

Absorption losses in the medium require special attention. These will be
expressed in the constitutive tensor K through an imaginary term i�, where � is
the effective collision frequency. Time reversal, as will be shown in Sec. 7.2, has the
effect of changing the sign of the collision term, or to be more precise, converts the
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constitutive tensor into its complex conjugate, thereby changing the sign not only of
�, but of b which appears also as an imaginary term, ib, in gyrotropic media. The
effect of time reversal will then be to transform the eigenvalue q˛ in the plane-wave
representation, exp.�ik0 q˛ z/ into its negative complex conjugate,

T q˛ D �q�̨

so that a damped plane wave, propagating in the positive z-direction, would be
transformed into a growing plane wave propagating in the negative z-direction.
However, insofar as we wish to describe physical processes in a physical absorbing
medium after applying our reflection-time-reversal transformation, we shall not
transform the collision frequency. Under this restricted time reversal the wave
eigenvectors k˛ will reverse their directions

k˛.sx; sy; q˛/! k�˛.�sx;�sy ;�q˛/

(but not q˛ ! �q�̨, which would yield growing waves), and the signs of the
magnetic wave-field components will also be changed, leading to a reversal in
direction of the Poynting vector.

This, then, is the rationale of the mathematical procedure (in itself quite rigorous)
which will now be used to generate the ‘conjugate eigenmodes’ by a reflection-time-
reversal transformation.

2.4.2 The conjugating transformation

The restricted time-reversal procedure

We start off by exhibiting explicitly the components, sx and sy , of kt (2.26) in the
eigenmode equation (2.32), as well as the dependence of K, and consequently of e˛ ,
on the external magnetic field b,

ŒcK.b/� sxUx � syUy � q˛Uz� e˛.bI sx; sy/ D 0 (2.79)

We reverse the direction of b, so that the adjoint eigenmode equation, (2.44) in
conjunction with (2.36), is satisfied by the field Ne˛.sx; sy/, adjoint to e˛.bI sx; sy/

L.�b/Ne˛ 
 NL Ne˛ WD ik0ŒcK.�b/� sxUx � syUy � q˛Uz� Ne˛.sx; sy/ D 0 (2.80)

where we have used the result (2.46), Nq˛ D q˛ , and it will be remembered that Ne˛

has the plane-wave ansatz exp.ik0q˛z/ (2.43).
We note that (2.80) is also satisfied by the Maxwell field e˛.�bI sx; sy/, i.e. by a

physical wave field in the magnetic-field reversed medium, that has exactly the same
wave polarization as the adjoint mode, but of course a different z-dependence. This
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polarization, and specifically the relation between the E and H fields, prescribes the
direction of the Poynting flux, which will be consistent with the direction imposed
by the sign of =m.q˛/ in the Maxwell eigenmode e˛.�bI sx; sy/, but inconsistent
with the direction of propagation of the (unphysical) adjoint eigenmode.

Next we apply the Poynting-vector reversing operator NI

NI 
 NI.6/ WD
"
I.3/

0

0 �I.3/

#
D NI�1 D NIT

(2.81)

[the direction of the Poynting vector of the wave field NIe is opposite to that of the
field e] to (2.80):

NIŒcK.�b/ � sxUx � syUy � q˛Uz� NINIe˛.�bI sx; sy/ D 0 (2.82)

in which, for clarity, Ne˛.sx; sy/ has been replaced by e˛.�bI sx; sy/. Noting that

NIUi
NI D �Ui .i D x; y; z/;

[see (2.25)], and NIKNI D K

when K is of the form given by (2.35), we get

ŒcK.�b/C sxUx C syUy C q˛Uz� NI e˛.�bI sx; sy/ D 0 (2.83)

This completes the (restricted) time-reversal transformation of the Maxwell system
(2.79), and we now proceed to reflect the system with respect to the magnetic-
meridian plane.

Reflection of wave fields

In general a (polar-) vector field, such as E(r), will be mapped by reflection with
respect to the magnetic meridian plane, y D 0, into E0.r0/ D RE.r/, where

E0.r0/ D qyE.r/; r0 D qyr; qy WD
2
41 0 0

0 �1 0

0 0 1

3
5 (2.84)

On the other hand an axial-vector field such as H(r) is, in addition, reversed in sign
on reflection, so that the overall reflected electromagnetic field Re.r/ 
 e0.r0/ is
given by

e0.r0/ D Qye.r/ 

"
qy 0

0 �qy

#�
E.r/

H.r/

	
I r0 D qyr (2.85)
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We apply the reflection matrix Qy D Qy
�1 to (2.83)

QyŒcK.�b/ � sxUx � syUy � q˛Uz� Qy fQy
NIe˛.�bI sx; sy/g D 0 (2.86)

and note that

QyUxQy D Ux; QyUyQy D �Uy; QyUzQy D Uz (2.87)

Furthermore, if the magnetic field b is parallel to the y D 0 plane, then K, given by
(2.35), with " given by (1.45),

K D
"

" 0
0 �0I

.3/

#
; " D "0

2
64

S � C Ob2
x iD Obz �C Obx

Obz

�iD Obz S iD Obx

�C Obx
Obz �iD Obx S � C Ob2

z

3
75 (2.88)

is magnetic-field reversed by Qy :

QyK.b/Qy D K.�b/ (2.89)

Hence (2.86) becomes

ŒcK.b/C sxUx � syUy C q˛Uz� Qy
NI e˛.�bI sx; sy/

D ŒC.bI �sx; sy/� qc�˛Uz� ec�˛ D 0 (2.90)

with the notation of (2.29), and we have thereby formally identified the transformed
(time-reversed, reflected) wave field as the conjugate eigenmode:

� qc�˛ D q˛ D Nq˛; ec�˛.bI �sx; sy/ D Qy
NI e˛.�bI sx; sy/ (2.91)

with q˛ D Nq˛ taken from (2.46). In terms of the adjoint eigenmode this gives

ec�˛.�sx; sy/ D Qy
NI e˛.sx; sy/ 
 Qc

y Ne˛.sx; sy/ (2.92)

where the diagonal matrix Qc
y is given by

Qc
y 
 Qy

NI D
"
qy 0

0 qy

#
I qy WD

2
41 0 0

0 �1 0

0 0 1

3
5 (2.93)

with

Qc
y D QQ

c

y D ŒQc
y��1
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Since the adjoint operation is involutary, i.e. NNe D e, (2.92) may be written as

Nec�˛ D Qc
ye˛ (2.94)

determining the adjoint of a mode in the conjugate system. We note that the
conjugating matrix Qc

y imposes ‘geometrical mirroring’ on both polar and axial
vectors, i.e. it does not reverse the sign of the reflected (axial-vector) wave fields.
This leads to a reversal of the direction of the z-component of the Poynting vector,
so that upgoing waves are transformed into downgoing.

The conjugate modal amplitudes

We now apply (2.92) and (2.94) to relate the normalized eigenvectors and their
adjoints in the given and conjugate problems:

Oec
˛ D Qc

y
ONe�˛; ONe˛ D Qc

y Oe�˛ (2.95)

and use them, with the aid of (2.77), to determine the amplitudes of a conjugate
eigenmode ac

˛ and its adjoint Nac
˛:

ac
˛ D .ONec

˛/T Uz ec sgn.˛/ D ŒQc
y Oe�˛�T Uz ŒQc

y Ne� sgn.˛/

D �OeT
˛ Uz Ne sgn.˛/ (2.96)

since
Qc

yUzQ
c
y D �Uz

and hence, with �sgn.˛/ D sgn.�˛/, we find

ac
˛ D Na�˛; Nac

˛ D a�˛ (2.97)

2.4.3 Resumé

Before proceeding let us retrace some of the relevant steps we have taken till
now in this chapter. We considered a solution to Maxwell’s equations in a plane-
stratified medium, consisting of a set of eigenmodes having a common value of
kt, the projection of the propagation vector k on the stratification plane, which is
transverse to the z-axis. We constructed mathematically a set of adjoint eigenmodes,
biorthogonal to the original set, and used the biorthogonality condition to define
amplitudes of the given and adjoint eigenmodes at any level, z. Next, we performed
a conjugating transformation (reflection and time reversal) of these eigenmodes to
obtain a set of conjugate eigenmodes which was shown to be a solution of Maxwell’s
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equations (or the adjoint equations) in the conjugate problem, in which the plane
of incidence is a mirror image with respect to the magnetic meridian plane of
the original plane of incidence. Finally, a simple relation was found between the
eigenmode amplitudes in the given and conjugate problems, which will be required
in the next section to derive the scattering theorem.

The reader may well ask why we are using this somewhat elaborate conjugating
transformation, when we could have reached the same end result by a more
direct transformation which maps kt .sx; sy/ into kc

t .�sx; sy/, as will indeed be
demonstrated in Sec. 3.2.5. The reason is that the method described is much more
general in its scope than that used in the special case of planar stratification, and will
be applied in later chapters to problems possessing quite general spatial symmetries.

2.5 The eigenmode scattering theorem

2.5.1 The scattering matrix

The motivation for most numerical or analytic calculations of wave propagation
through a plane-stratified medium, is to derive eventually the reflection, transmis-
sion and intermode coupling coefficients for plane-wave incidence from either end.
These coefficients are conveniently grouped into the scattering matrix S.

Let Oe˛.z/; ˛ D ˙1;˙2, represent one of the 6-component normalized eigenvec-
tors, defined in Sec. 2.3.2, at a level z, for positive- or negative-going characteristic
waves propagating in a plane-stratified medium, with equal prescribed values of the
transverse wave vector kt D k0.sx; sy/I ONe˛ is the corresponding normalized adjoint
eigenmode. The overall wave fields, e.z/ and Ne.z/, at any level may be decomposed
into the respective eigenvectors e˛, or their adjoints Ne˛ , as in (2.76) and (2.78)

e D
X

˛

a˛ Oe˛; Ne˛ D
X

˛

Na˛
ONe˛ (2.98)

where
a˛ D ONeT

˛ Uze sgn.˛/ Na˛ D OeT
˛ Uz Ne sgn.˛/ (2.99)

It will be convenient to replace the summation representation in (2.98) by matrix
notation:

e D ECaC C E�a� D E a; Ne D NE Na (2.100)

where
E˙ D ŒOe˙1 Oe˙2�; E D ŒEC E�� D ŒOe1 Oe2 Oe�1 Oe�2�

a˙ D
�
a˙1

a˙2

	
; a D

�
aC
a�

	
D Œa1 a2 a�1 a�2�T

(2.101)

with adjoint quantities similarly defined.
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Fig. 2.3 Incoming and
outgoing eigenmodes related
by the scattering matrix
S.z; z0/

Now consider the wave amplitudes a.z/ and a.z0/ at two levels, z and z0, with
z0 > z. In terms of the wave amplitudes a˙ at z and z0, we write in condensed
notation

ain D
�

aC.z/
a�.z0/

	
; aout D

�
a�.z/
aC.z0/

	
(2.102)

(see Fig. 2.3), and define the scattering matrix S D S.sx; sy I z; z0/, and its adjoint
NS D NS.sx; sy I z; z0/, by means of

aout D S ain; Naout D NS Nain (2.103)

Written out in full, in terms of the 2 � 2 reflection and transmission matrices, R˙
and T˙, this becomes

�
a�.z/
aC.z0/

	
D
�
RC.z/ T�.z; z0/
TC.z0; z/ R�.z0/

	 �
aC.z/
a�.z0/

	
(2.104)

2.5.2 Derivation of the eigenmode scattering theorem

Relation between given and adjoint scattering matrices

Our derivation is based on the constancy of the bilinear concomitant vector, (2.39)
and (2.78),

Pz D NeT Uze D
X

˛

Na˛a˛sgn.˛/ D const (2.105)

Applying this result to the modal amplitudes at z0 and z, we have

NaTC.z0/aC.z0/� NaT�.z0/a�.z0/ D NaTC.z/aC.z/ � NaT�.z/a�.z/

and, regrouping

NaTC.z0/ aC.z0/C NaT�.z/ a�.z/ D NaTC.z/ aC.z/C NaT�.z0/ a�.z0/ (2.106)

so that, with (2.102)
NaT

outaout D NaT
inain (2.107)
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Application of (2.103) yields

NaT
in
NST

S ain D NaT
in ain

and finally
NST

S D I.4/ D S NST
(2.108)

since NST D S�1.

Relation between adjoint, conjugate and given scattering matrices

When the eigenmodes in Fig. 2.3 undergo a conjugating transformation, the in-
coming and outgoing amplitudes are correspondingly transformed, (2.97), to yield

ac˙ D
�

ac˙1

ac˙2

	
D
�Na�1

Na�2

	
D Na� (2.109)

ac
in D

�
acC.z/
ac�.z0/

	
D
� Na�.z/
NaC.z0/

	
D aout; ac

out D Nain (2.110)

and since, by (2.103)
Naout D NS Nain

this transforms to

ac
in D NS ac

out D .Sc
/�1ac

out (2.111)

by definition of Sc . Hence, with NS�1 D ST from (2.108), we get

Sc 

�
Rc
C Tc

�
Tc
C Rc

�

	
D
" QRC QTC
QT� QR�

#

 QS (2.112)

This is the eigenmode scattering theorem [12, 119], expressing ‘reciprocity in k-
space’, that we set out to prove. The reciprocity relations

Rc
˙ D QR˙; Tc

˙ D QT� (2.113)

are illustrated in Fig. 2.4.
A word as to notation. The elements of the matrix R˙ (or analogously T˙)

will be written as R1̇1; R1̇2; R2̇1 and R2̇2, the ˙ sign indicating the direction of
incidence with respect to the z-axis. It will sometimes be convenient, however,
when the modal species or polarization is specifically characterized, e.g. parallel
.jj/ or perpendicular .?/ to the plane of incidence, right- or left-circular (r or `), to
adopt and extend Budden’s [32] notation, so that jjRC? represents the conversion



76 2 Eigenmode reciprocity in k-space

Fig. 2.4 Reciprocity in k-space in a plane-stratified magnetoplasma. The z-axis is normal to the
stratification, and the external magnetic field lies in the magnetic-meridian .x; z/ plane

coefficient from a positive-going perpendicularly polarized incident mode to a
reflected (converted) negative-going parallel-polarized mode. Similarly, `T

�
r means

negative-going right circular to negative-going left circular.

2.6 Curved stratified media

2.6.1 Curvilinear coordinates

In all previous sections the spatial variation of the media under consideration was
taken to be in one cartesian coordinate only, i.e. the media were assumed to be plane
stratified. This allowed the full use of Fourier transformations in the two coordinates,
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x and y, transverse to the normal z-direction of the stratification. This restriction
to plane stratification is usually sufficient when a curved stratified medium can be
approximated by a plane stratified one in the region of propagation. But the question

remains whether the scattering theorems, NS�1 D ST (2.108) and Sc D ST (2.112),
hold also in curved stratified media. This problem has been addressed by Suchy and
Altman [120]. Replacing the generalized Poynting flux densities, Pz;˛ (2.70) and
Pz (2.78), by the corresponding Poynting fluxes, which are the integrals of Pz;˛ and
Pz over (parts of) the curved stratification surfaces, the scattering theorems (2.108),
and consequently (2.112), can be generalized to curved statified media.

To prove this statement we have to apply the Lagrange identity twice, first to
a system of partial differential equations for the two coordinates u and � in the
stratification surfaces, and then to a system of partial differential equations for u; �

and w, where the w-coordinate is directed along the normal to these surfaces, thus
generalizing (2.30).

Since we cannot employ the transverse Fourier transforms, (2.27) and (2.28), we
decompose the differential operator

r WD gu @

@u
C g� @

@�
C gw @

@w
(2.114)

into a tangential part

r t WD gu @

@u
C g� @

@�
(2.115)

and a normal part

r w WD gw @

@w
(2.116)

with the reciprocal set gu; g�; gw of base vectors, obeying

gigj D ıij:

The base vectors gu; g�; gw span the arc length element

dr D guduC g�d� C gwdw

[115, Sec. 1.14]. With the corresponding decomposition of the symmetric differen-
tial operator D D DT (2.22), viz

D D Dt CDw (2.117)

into a tangential and a normal part

Dt WD
�

0 �r t � I
r t � I 0

	
D DT

t ; Dw WD
�

0 �r w � I
rw � I 0

	
D DT

w (2.118)



78 2 Eigenmode reciprocity in k-space

with I 
 I.3/, Maxwell’s equations (2.21) and (2.22) become

Œi!KCDw CDt �e D �j (2.119)

2.6.2 The biorthogonality relation

To establish a set of eigenmodes in the curved stratified medium, we proceed in
a manner analogous to that in Sec. 2.2.3, equating the source term j to zero and
keeping the normal coordinate w constant [53, Sec. 8.2a]. Then all six (covariant)
components Eu : : : Hw of the generalized wave-field vector e WD .E; H/ (2.23)
have the same harmonic factor exp.�i�w/, where � is the separation constant.
Application of rw WD gw @=@w (2.116) leads to

Dwe D �i�Uwe with Uw WD
�

0 �gw � I
gw � I 0

	
D UT

w (2.120)

and to the eigenvalue equation

L˛e˛ D Œi!K � i�˛Uw CDt �e˛ D 0 (2.121)

instead of (2.32), which applied to plane-stratified media.
The corresponding adjoint eigenvalue equation reads, with Uw D UT

w (2.120)
and Dt D DT

t (2.118),

NL˛ Ne˛ D
h
i!KT � i N�˛Uw �Dt

i
Ne˛ D 0 (2.122)

The operators L˛ and NL˛ may now be combined to form the Lagrange identity

NeT
ˇ L˛e˛ � eT

˛
NLˇ Neˇ D Dt W e˛ NeT

ˇ � i.�˛ � N�ˇ/NeT
ˇ Uw e˛ (2.123)

in which, for compactness, we have used the scalar ‘double-dot product’ introduced
by Gibbs [58, Sec. 117]; see also [94, p.57]:

D W eNeT WD
X
i;j

Dij.ej Nei / D
X
i;j

. Nei Dijej C ej Dji Nei /

with Dij D Dji representing any symmetric differential operator. In (2.123), with
D ! Dt (2.118), e˛ WD .E˛; H˛/ (2.23) and Neˇ WD . NEˇ; NHˇ/, the first term on the
right-hand side is just the tangential divergence of the bilinear concomitant vector
P˛ˇ , viz.
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Dt W e˛ NeT
ˇ D NeT

ˇ Dt e˛ C eT
˛ Dt Neˇ

D NEˇ � r t �H˛ C NHˇ � r t � E˛ C E˛ � r t � NHˇ CH˛ � r t � NEˇ

D r t � .E˛ � NHˇ C NEˇ �H˛/ DW r t � P˛ˇ (2.124)

The second term on the right-hand side of (2.123) contains its (contravariant) normal
component:

NeT
ˇ Uw e˛ D gw � .E˛ � NHˇ C NEˇ �H˛/ D P w

˛ˇ (2.125)

With L˛e˛ D 0 (2.121) and NLˇ Neˇ D 0 (2.122), the Lagrange identity (2.123) gives

r t � P˛ˇ D i.�˛ � N�ˇ/P w
˛ˇ (2.126)

To derive a biorthogonality relation for the eigenvectors e˛ and the adjoint
eigenvectors Neˇ, we apply Gauss’ divergence theorem in two dimensions

Z
r t �P˛ˇdS D

I
O� � P˛ˇds (2.127)

to a (finite part of a) stratification surface. (In the integral on the right, the boundary
curve on the surface is encompassed in a right-hand sense about the normal gw. The
unit normal vector O� lies on the surface and points in an outward direction with
respect to the boundary curve.)

With the boundary conditions [53, eqs. 8.2.4c and 1.1.23b], (see also Secs. 4.3
and 6.3 in this book),

O� � E˛ D Z H˛ O� � NEˇ D �ZT NHˇ (2.128)

the contour integral vanishes, and the integrated Lagrange identity (2.126), which
becomes a Green’s theorem, yields

.�˛ � N�ˇ/

Z
gw � P˛ˇdS D 0 (2.129)

As a further requirement for the derivation of a biorthogonality relation, we
exclude modal concomitant vectors P˛ WD E˛ � NH˛ C NE˛ � H˛ (2.124) that lie
on a stratification surface, i.e. we require that

P w
˛ WD gw � P˛ ¤ 0 (2.130)

For loss-free media with Ne D e� (2.124), and therefore P w
˛ D hSw

˛ i (2.56), this
condition excludes surface-wave modes whose (time-averaged) Poynting vectors
hS˛i are tangential to the stratification surfaces.
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Under the condition (2.130) we can derive from Green’s theorem (2.129) first,
the identity

N�˛ D �˛ (2.131)

of the adjoint and the given eigenmodes N�˛ and �˛ , and second, the biorthogonality
relation Z

NeT
ˇ Uw e˛ dS D ı˛ˇ

Z
P w

˛ dS (2.132)

(Similar reasoning has been employed by Felsen and Marcuvitz [53, p. 53] with the
time t in place of the normal coordinate w.)

2.6.3 The generalized Poynting flux

We have obtained the simple harmonic w-dependence e˛ � exp.�i�˛w/ of the
modal eigenvectors by keeping the normal coordinate w constant in the Maxwell
system (2.119). An analogous dependence, expf�i.kuu C k��/g, on the surface
coordinates u and � is only possible if all coefficients of the (covariant) components
Eu : : : Hw in the Maxwell system (2.119) do not depend on u and � . Since

r t � E D 1p
g

�
gu

@Ew

@�
� g�

@Ew

@u
C gw

�
@E�

@u
� @Eu

@�

�	

and

gw �H D 1p
g

.g�Hu � guH�/

with the Jacobian

p
g WD gu � g� � gw D .gu � g� � gw/�1

[115, Secs. 1.14 and 1.15], this requires that the Jacobian be independent of u and � .
The only coordinate systems satisfying this requirement are those with cartesian
coordinates in which g D 1, and (circular) cylindrical coordinates �; �; z in which

u D �; � D z; w D �;
p

g D �

[56, eqs. 19 and 21]. For these two cases the application of r t D gu@=@uC g�@=@�

(2.115) leads to
Dte D Œi kuUu C i k�U� �e (2.133)

with

Uu WD
�

0 �gu � I
gu � I 0

	
; U� WD

�
0 �g� � I

g� � I 0

	
(2.134)
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and to an algebraic eigenvalue problem

Œi!K � ikuUu � ik�U� � i�˛Uw� e˛ D 0 (2.135)

With u D x; � D y; w D z; ku D k0sx; k� D k0sy ; �˛ D k0q˛, we recover
the eigenvalue equation (2.32) for plane-stratified media. Now the reasoning in
Secs. 2.2.3 to 2.5.2 can be applied without the integration over a (finite) stratification
surface as in Sec. 2.6.2, but this holds only for media whose stratification surfaces
are either planes or (circular) cylinders.

For media with other stratification surfaces we go back to Maxwell’s equations
(2.21) without sources

Le WD Œi!KCD�e D 0 (2.136)

The adjoint equation is NLNe WD Œi!KT �D�Ne D 0 (2.137)

and the Lagrange identity, by analogy with (2.123) and (2.124), reads

NeT L e � eT NL Ne D D W eNeT D r � P (2.138)

with the bilinear concomitant vector

P WD E � NHC NE �H (2.139)

For Le D 0 and NLNe D 0, the left-hand side of (2.138) vanishes. To the right-hand
side we apply Gauss’ divergence theorem (in three dimensions)

Z
r � Pd 3r D

I
P � dS (2.140)

with the surface elements dS directed outwards. The integration volume is bounded
by two stratification surfaces, and between them by walls for which the boundary
conditions (2.128) hold. The latter leave us with the contributions of the bounding
stratification surfaces: Z

NeT U! e dS 

Z

P !dS D const (2.141)

where (2.125) has been used. This is the generalization of the result (2.39) for plane
stratified media.

2.6.4 Scattering theorems

For the generalization of the scattering theorem (2.108) we introduce modal
amplitudes, a˛ and Na˛ , as in (2.74)

e˛ D a˛ Oe˛ Ne˛ D Na˛
ONe˛ (2.142)
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but with Oe˛ and ONe˛ now normalized so that, cf. (2.132),

Z
ONeT
ˇ U! Oe˛ dS D ı˛ˇ sgn .˛/ (2.143)

Putting this and the decompositions

e D
X

˛

a˛ Oe˛ Ne D
X

ˇ

Naˇ
ONeˇ (2.144)

into (2.141), we obtain X
˛

Na˛a˛ sgn .˛/ D const (2.145)

which is the same result as in (2.78) and (2.105) for plane-stratified media. This
was the basis for the derivation of the scattering theorems (2.108) and (2.112) in
Secs. 2.5.1 and 2.5.2, which need not be changed for the generalization to curved
stratified media.



Chapter 3
Generalization of the scattering theorem

3.1 Scattering theorems with generalized base modes

3.1.1 Isotropic bounding media

In most problems of practical interest the plane-stratified anisotropic medium will
be bounded by free space (or possibly by isotropic dielectric media), and one is then
interested to express the elements of the scattering matrix in terms of incoming and
outgoing plane waves having specific prescribed polarizations (linear or circular,
for instance) in these bounding media. The difficulty is that the scattering theorem
(2.112) has been defined only in terms of eigenmodes of the anisotropic medium
which exhibit a biorthogonality relationship (2.49) with respect to the (well-defined)
adjoint eigenmodes.

For simplicity we suppose that the bounding region is free space. (The ensuing
discussion will be essentially the same for loss-free dielectric bounding media,
except that the ratio of magnetic to electric wave fields will be increased by a factor
n, the refractive index of the medium.) If we have a ‘suitable’ (as yet undefined)
set of base modes, then equation (2.58) indicates that the adjoint modes in the
bounding media can be formed by taking the complex conjugates of the given
modes. In any case we can, a posteriori, test the validity of these base modes
for use in the scattering theorem by demanding that they satisfy the orthogonality
condition (2.58).

3.1.2 Determination of orthogonality conditions

We note that the biorthogonality condition (2.49), or (2.58) in loss-free media,
involves only the x- and y-components of e˛ and Neˇ , since the elements of the third

C. Altman and K. Suchy, Reciprocity, Spatial Mapping and Time Reversal
in Electromagnetics, DOI 10.1007/978-94-007-1530-1 3,
© Springer Science+Business Media B.V. 2011
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and sixth rows (and columns) of Uz (2.25) are all zero. Hence it will be convenient
in the present application to express these conditions in a condensed form:

NfT
ˇ U.4/

z f˛ D ı˛ˇPz;˛ (3.1)

ONfT

ˇ U.4/
z
Of˛ D ı˛ˇsgn.˛/ (3.2)

where f˛ and Nfˇ, given by

f˛ WD
�
Ex; Ey; Hx; Hy

�T
˛

; Nfˇ WD
�
Ex; Ey; H x; H y

�T
ˇ

contain only four of the six components of e˛ and Neˇ respectively, and

U.4/
z WD

2
664

0 0 0 1

0 0 �1 0

0 �1 0 0

1 0 0 0

3
775

is formed from Uz (2.6) by removing the null rows and columns. In general
applications we shall preserve the full 6-component wave fields in order to be able
to distinguish clearly between reflection and rotation mappings.

The normalized eigenmodes, Of˛ or ONf˛, may be juxtaposed to form the 4�4 modal
matrices, F or F, in analogy with the 4 � 6 matrices, E and E, in (2.100)

F WD
hOf1
Of2
Of�1
Of�2

i
; F WD

hONf1
ONf2
ONf�1
ONf�2

i
(3.3)

and will be used in this section to express the biorthogonality condition in a
convenient form:

F
T
U.4/

z F D
"
I.2/

0

0 �I.2/

#

 NI.4/

(3.4)

To specify the base modes in free space we use an auxiliary coordinate system
.x0; y0; z0/, formed by rotating the .x; y; z/ system through an azimuthal angle
� about the z.D z0/ axis, so that the plane of incidence will coincide with the
x0 � z0 plane, with the positive-going modal wave vectors having positive x0 and z0
components. The auxiliary conjugate system



x0c; y0c ; z0c

�
is then formed by rotating

the .x; y; z/ frame through an angle .� � �/ about the z.D z0/ axis. (Recall, cf.
Sec. 2.1.4, that the x-axis was chosen so that the external magnetic field b lies in
the x-z plane.)

The transverse wave polarizations, �1 and �2, are now defined in a coordinate
system .
; 
; �/, cf. (1.77), in which the �-axis is tied to the wave normal (which
is now at an angle of incidence �), and the 
-axis lies in the plane spanned by the
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wave normal and the external magnetic field b. In free space however (or in any
isotropic bounding medium) the external magnetic field direction is irrelevant, and
we are at liberty to choose the 
-direction at our convenience. We choose it to lie in
the plane of incidence (at an angle � with respect to the x0-axis), which provides the
only preferred direction. Then

� WD E


E


D �H


H


The modal wave fields, e˛ , in the .
; 
; �/ system, cf. (2.67), then have the form

e˛ D Œ1; �˛; 0I �Y0�˛; Y0; 0�T E˛
 (3.5)

so that positive-going 4-element base vectors f˛.˛ D 1; 2/ in the .x0; y0; z0/ system
are given by

F˛ WD
�
Ex0 ; Ey0 ; Hx0 ; Hy0

�T
˛
D Œcos �; �˛;�Y0�˛ cos �; Y0�

T E˛
 (3.6)

The negative-going base modes may be formed by reversing the signs of the H
components (and thereby of the z-components of the Poynting flux), and the overall
modal matrix becomes

F D

2
664

a cos � b cos � a cos � b cos
a�1 b�2 a�1 b�2

�a�1Y0 cos � �b�2Y0 cos � a�1Y0 cos � b�2Y0 cos �

aY0 bY0 �aY0 �bY0

3
775 (3.7)

where a and b are normalization constants. Setting F D F?, we find

F
T
U.4/

z F D 2Y0 cos �

�
P 0

0 �P
	

(3.8)

where

P WD
�
a�a.1C ��1 �1/ a�b



1C ��1 �2

�
ab�.1C �1�

�
2 / b�b



1C ��2 �2

�
	

We note that whatever the values of �1 and �2, the positive- and negative-

going modes are uncoupled, i.e. the Poynting-like products ONfT
˛ G.4/

z
Of�ˇ and ONfT�˛G

.4/
z
Ofˇ

.˛; ˇ D 1; 2/ are zero, corresponding to the off-diagonal zeros in (3.8). Further-
more, the off-diagonal terms in the sub-matrix P, corresponding to Poynting cross
products of two positive-going, or two negative-going modes, are zero, as required
by (3.4), provided that

��1 �2 D �1�
�
2 D �1 (3.9)
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If the polarizations are purely imaginary, this becomes

�1�2 D 1 (3.10)

corresponding to circularly polarized base modes, �1 D ˙i D ��2, or to elliptical
polarizations, �1 D ˙i j�1j D 1=�2, with the principal axes of the polarization
ellipses lying on the 
 and 
 axes (i.e. in the plane of incidence and perpendicular to
it), the two ellipses being mirror images with respect to a 45ı line through the origin
in the first and third quadrants.

As the eccentricity of the polarization ellipses increases indefinitely, (i.e. as they
become increasingly narrow), so that in the limit

�1 !˙i0; �2 !	i1; �1�2 D 1 (3.11)

these degenerate into straight lines (linear polarizations) with the electric wave
vectors, E1 or E2, lying respectively parallel or perpendicular to the plane of
incidence.

Normalization of the modes requires that

a D �2Y0 cos �


1C ��1 �1

��� 1
2 b D �2Y0 cos �.1C ��2 �2/

�� 1
2 (3.12)

which, together with (3.9), completes the specification of base modes in free space
that satisfy the biorthogonality condition (3.4), and thereby qualify for use in the
scattering theorem (2.112).

It should be noted that the prescription F D F�, with the ensuing N�˛ D ��̨,
is not the only one which satisfies modal biorthogonality. We could heuristically
have arrived at another prescription by imagining the isotropic region to have been
formed from a gyrotropic one in the limit b! 0, or collision frequency � becoming
very large (as at the base of the ionosphere), and then have used the magnetic field
reversal condition (2.66):

N�˛ D ��˛

The adjoint eigenmodes so formed would also exhibit biorthogonality (note the
structure of P in (3.8) with ��˛ replacing ��̨) provided that

�1�2 D 1 (3.13)

with �1 and �2 now possibly complex. This implies that any pair of elliptically
polarized waves which are mirror images of each other with respect to a 45ı line
in the first and third quadrants passing through the origin, are also acceptable base
modes. A more general formulation of the requirements on base modes to satisfy
modal biorthogonality has been given by Altman and Suchy [13].
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3.1.3 Linear and circular base modes

Linear base modes

Following the prescription of Sec. 3.1.1, we construct a set of linear modes with either
electric or magnetic wave vectors along the positive y0-axis (perpendicular to the
plane of incidence), project the otherwave field (magnetic orelectric) which is parallel
to the plane of incidence, onto the x0-axis, and normalize so that each mode will

eventually have unit Poynting flux (or to be more precise, will have
ˇ̌
ˇONfT

˛ U.4/
z
Of˛

ˇ̌
ˇ D 1):

F D 1

.2Y0 cos �/1=2

2
664

cos � 0 � cos � 0

0 1 0 1

0 �Y0 cos � 0 Y0 cos �

Y0 0 Y0 0

3
775 (3.14)

(The signs of the elements in the third column have been reversed, in order to
conform with Budden’s sign convention for linear modes [32, p. 89] and thus to
facilitate comparison with his reciprocity theorem [21,29] mentioned in Sec. 2.1.3.)

The matrix in (3.14) is purely real, and so we expect it to be self-adjoint:

F D F� D F (3.15)

Substitution of (3.14) and (3.15) into the matrix product F
T
G.4/

z F produces NI.4/
, as

in (3.4), and confirms that the columns of the matrix F (3.14) constitute a valid
orthonormal set of linear modes for use in the scattering theorem.

To construct the conjugate set of eigenmodes, Fc , we reflect the adjoint modes
with respect to the magnetic meridian plane, y D 0, and then time-reverse, cf.
Secs. 2.4.1 and 2.4.2, which in the present context means reversing the direction of
the (already reflected) magnetic wave fields, and thereby reversing the direction of
propagation .f˛ ! f�˛/. The given and conjugate linear eigenmodes are depicted
in Fig. 3.1, and we see that the conjugate eigenmodes in the



x0c ; y0c; z0c

�
coordinate

system have the same components as the given eigenmodes in the .x0; y0; z0/ system:

F0 

x0c ; y0c

� D F


x0; y0

�
(3.16)

To obtain this result formally, rather than with the hand-waving procedure just
adopted, is a little tricky. The 4-component equivalent of (2.92) is

Fc D Qc
.4/FJ; Qc

.4/ WD

2
664

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 �1

3
775 ; J WD

2
664

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

3
775

(3.17)

with Qc
.4/ effecting reflection with respect to the y D 0 plane, and reversing the

magnetic wave fields (in the sense that it treats them like polar vectors); J exchanges
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Fig. 3.1 Given and conjugate linear modes. H˙1 and E˙2 are along y0; Hc
˙1

and Ec
˙2

are along
y0

c . When the plane of incidence is normal to the magnetic meridian plane y D 0 (i.e. when
� D �=2), the given and conjugate modes coalesce.

the upgoing eigencolumns with the downgoing. Putting F D F in (3.17), we obtain
Fc

.x; y/ D �F.x; y/. But the eigenmodes are here defined in the fixed .x; y/

system, tied to the magnetic meridian plane, and the results conform with the
representation of Fig. 3.1.

Suppose that the wave fields f.kt / and fc


kc

t

�
in the given and conjugate

systems have been determined, by numerical analysis or otherwise, at the free-
space boundaries, z and z0, of a plane-stratified gyrotropic medium. These may be
decomposed into linear base modes of amplitudes [cf. (2.77)]

a˙k D ˙ONf
T

˙1G
.4/
z f; ˛?̇ D ˙ONf

T

˙2U
.4/
z f (3.18)

and similarly in the conjugate problem. The incoming and outgoing amplitudes will
then be related by the respective scattering matrices, S.sx; sy I z; z0/ (2.103) and
Sc

.�sx; sy I z; z0/, (2.111). These in turn will be related by the scattering theorem
(2.112) which, for linear modes, becomes

�
kRk kR?
?Rk ?R?

	˙
D
"
kRc
k kR

c?
?Rc
k ?Rc?

#˙
(3.19)
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�
kTk kT?
?Tk ?T?

	˙
D
"
kT c
k kT

c?
?T c
k ?T c?

#�
(3.20)

Eq. (3.19) is just the reciprocity theorem of Budden and Barron [21, 29], and
(3.20) is a generalization of it [13] for the transmission matrices. Special cases of
(3.20) have been given by Heading [66].

Circular base modes

With the aid of (3.7), (3.9), (3.10) and (3.12) we find the modal matrix for left- and
right-circular polarized modes in the .x0; y0/ coordinate frame (i.e. the frame tied to
the plane of incidence) to be

F.x0; y0/ D 1

.2Y0 cos �/
1
2

2
664

cos � cos � � cos � � cos �

i �i �i i

�iY0 cos � iY0 cos � �iY0 cos � iY0 cos �

Y0 Y0 Y0 Y0

3
775

(3.21)

We have chosen the phases (signs) of all modes so that instantaneously, at t D 0,
the rotating field vectors, E˛ and H˛ .˛ D ˙1;˙2/, point in the same direction as
E˙1 and H˙1 in the linear base-mode representation of Fig. 3.1.

With F D F�, straightforward calculation gives F
T
G.4/

z F D NI.4/
, as in (3.4),

confirming that F and F constitute a valid orthonormal set of eigenmodes for use in
the scattering theorem.

The conjugating transformation will instantaneously map the rotating wave fields
into the configuration of Ec

˙1 and Hc
˙1 in Fig. 3.1. As to the mapped polarizations,

we note that their signs are reversed twice: in the passage from F 
 F.b/ to F D
F� D F.�b/, and in the reflection with respect to the y D 0 magnetic meridian
plane (corresponding to a reversal of the direction of �b to its original orientation).
Hence

Fc 

x0c ; y0c

� D F


x0; y0

�
(3.22)

which, formally, is the same as (3.16) for linear base modes.
The formal derivation of (3.22) would require application of the transformation

(3.17) to F, which yields
Fc

.x; y/ D �F.x; y/ (3.23)

and then to revert to the tagged coordinate systems which are tied to the respective
planes of incidence. (This is most easily seen when the incidence planes are parallel
to the magnetic meridian plane.)

In terms of these modes the scattering theorem, S D eSc , takes the form

�
lRl lRr

rRl rRr

	˙
D
�

lR
c
l rR

c
l

lR
c
r rR

c
r

	˙
(3.24)
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�
l Tl l Tr

rTl rTr

	˙
D
�

lT
c
l rT

c
l

lT
c
r rT

c
r

	�
(3.25)

which is a generalization of (3.19) and (3.20) to left .l/ and right .r/ circularly
polarized modes. These could, of course, have been derived by forming the
circularly polarized modes, fl and fr , from the linear modes fk and f?:

Ofl WD 1p
2

�Ofk C i Of?
�

; Ofr WD 1p
2

�Ofk � i Of?
�

(3.26)

and applying the results for linear modes obtained earlier.

3.1.4 Magnetic field along the stratification: Heading’s mirrored
modes

When the external magnetic field b is in the plane of the stratification, the higher
degree of spatial symmetry of the medium is expressed in the symmetry structure of
the reflection and transmission matrices, R˙ and T˙. Whereas up to now the only
non-trivial transformation that mapped the medium into itself was the ‘conjugating
transformation’, the medium can now also be mapped into itself by means of
reflection with respect to the x D 0 plane. (The direction of the axial-vector field is
unchanged in this case.)

Suppose that in the original problem we had a positive-going plane wave, f.kt /,
with linearly polarized modal components, f1 WD fCk and f2 WD fC? , incident on the
stratified medium at z D z�, which produced reflected modes, f�1.z�/ and f�2.z�/,
at the lower boundary, and transmitted modes, f1.zC/ and f2.zC/, at the upper
boundary. The amplitudes of these modes, a˙1, a˙2, are related by the reflection
and transmission matrices, RC and TC [cf. (2.104)],

a�.z�/ D RC.z�/ aC.z�/; aC.zC/ D TC.zC; z�/ aC.z�/ (3.27)

or, written out in full,

�
a�1.z�/

a�2.z�/

	
D
"
kRCk kRC?
?RCk ?RC?

#�
a1.z�/

a2.z�/

	
(3.28)

�
a1.zC/

a2.zC/

	
D
"
kTCk kTC?
?TCk ?TC?

#�
a1.z�/

a2.z�/

	
(3.29)

Consider the linear modes f˙1, parallel to the plane of incidence, in Fig. 3.1.
We see on inspection that reflection with respect to the x D 0 plane produces
another set, fc˙1, of ingoing and outgoing mirrored modes in the conjugate plane
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of incidence, whereas reflection of the perpendicular modes, f˙2, produces �fc
˙2.

Both sets so produced obey Maxwell’s equations in the given medium, with

a˙1 D ac˙1; a˙2 D �ac˙2 (3.30)

(remember, as pointed out in Sec. 2.3.1, that the amplitude a˛ carries the phase,
and hence the sign, of the corresponding eigenmode) so that (3.28), for instance,
becomes �

ac�1.z�/

�ac�2.z�/

	
D
"
kRCk kRC?
?RCk ?RC?

#�
ac

1.z�/

�ac
2.z�/

	

or �
ac�1

ac�2

	
D
"
kRCk �kRC?
�?RCk ?RC?

#�
ac

1

ac
2

	
(3.31)

Identifying the 2 � 2 matrix in (3.31) with Rc
C, and noting that Rc

C D eRC, by
virtue of the scattering theorem (2.112), we find

?RCk D �kRC? ; and ?R�k D �kR�? (3.32)

by analogy. A similar analysis yields

kTCk Dk T �k ; ?TC? D? T �? ; ?T˙k D �kT�? (3.33)

giving the specific symmetry of the reflection and transmission matrices which
derive from the reflectional symmetry of this particular problem. These results,
(3.32) and (3.33), were first given by Heading [66].

We may carry through a similar analysis with circular base modes, the important
difference being the interchange of modes on mirroring in the x D 0 plane, with
˛ D ˙1 converting to ˛ D ˙2 in the mirrored/conjugate system. The result, given
by Altman and Suchy [13],

l Rṙ D r Rl̇ ; r Rṙ D l Rl̇

lTṙ D r T�l ; r Tṙ D lT
�
l ;

(3.34)

gives the specific symmetry of the scattering matrix in terms of circular base modes
in the isotropic (free-space) bounding media.

The results found in this section, 3.1.4, do not strictly speaking belong to
the category of ‘reciprocity in k-space’. They were derived by a straightforward
reflection transformation of the system, without time reversal (in contrast to the
conjugating transformation discussed previously), and the results express what
we shall later designate an ‘equivalence’ rather than a ‘reciprocity’ relation. The
difference will be appreciated in Sec. 4.3, when fields and their sources will be
considered together.
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3.2 Scattering theorems: alternative derivations

Although the earlier reciprocity theorems are contained in the eigenmode scattering
theorem (2.112), with its generalization to base modes in isotropic bounding regions
(aside from Heading’s mirror-mode relationships, discussed in Sec. 3.1.4, which
derive from the reflection symmetry of the medium), it is nevertheless worthwhile
to consider briefly other approaches which provide new insights and other points
of view.

We consider three alternative approaches. The first (the ‘classical’ approach)
is based on the symmetries of the Clemmow-Heading coupled differential equa-
tions (1.127). This approach usually by-passes some of the steps in our previous
derivation, at the expense of some of the physical insight provided by it.

The second method considers the medium to vary step-wise in a large number
of thin discrete layers, derives a scattering matrix and thence a scattering theorem
for any interface separating two adjacent layers. The result is then extended by
induction to the entire medium using a recursion process, which preserves the
symmetry of the interface scattering relation.

The third approach is based on a matrizant formulation of the differential
equations governing wave propagation in plane-stratified media, and following
a procedure similar to that adopted in the previous chapter, derives a transfer
matrix linking modal amplitudes at two different levels in the medium. This leads
to a relationship between transfer matrices for the given and conjugate planes
of incidence, which can easily be transformed into a scattering theorem relating
incoming and outgoing modal amplitudes.

3.2.1 Bilinear concomitant and modal biorthogonality
via the Clemmow-Heading equations

The Clemmow-Heading equations (1.127) give the z-variation of the transverse
.x; y/ components of the electric and magnetic fields, in the form

dg
d z
C ik0Tg D 0 (3.35)

[T should not be confused with the transmission matrix (2.104)] with

g WD .Ex;�Ey;Hx;Hy/; Hx WD Z0Hx; Hy WD Z0Hy (3.36)

and Z0 
 1=Y0 WD .�0="0/
1=2 denoting the free-space impedance. This particular

form of the field vector g, viz. with one of the tangential components having a
negative sign, has been chosen since, as may be seen from eq. (1.128), the elements
of the propagation matrix T are then transposed with respect to its trailing diagonal
when the elements of the electric permittivity tensor " are transposed about its



3.2 Scattering theorems: alternative derivations 93

leading diagonal, " ! "T . The use of magnetic field components, Hx and Hy ,
having the same dimensions as the electric field, suppresses the impedance term Z0

in the propagation matrix T. The coordinate system is now tied to the x-z plane of
incidence, so that g � exp.�ik0sx/ in both given and conjugate systems, whereas
the direction cosines of the fixed magnetic field become

Obx; Oby; Obz ! �Obx; Oby; Obz (3.37)

in passing to the conjugate system (see Fig. 3.1, with x0 and x0c replaced by x

and xc).
Because the permittivity matrix ", whose elements appear in T, is gyrotropic

(1.33), i.e.
".�b/ D "T .b/ (3.38)

we may write the adjoint (magnetic-field reversed) propagation matrix T as the
transpose of T about its trailing diagonal,

T D UeTU; U WD

2
664

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

3
775 D UT D U�1 (3.39)

In indicial notation [32, p. 390], [100], this reads

T ij D
4X

jD1

T5�j; 5�i

If the medium is loss-free, " is hermitian, i.e. "� D "T , so that ".�b/ D "�.b/

which gives T� D T.
Let us write (3.35) in matrix-operator form

�
U

d

d z
C ik0UT

	
g 
 Hg D 0 (3.40)

The adjoint equation is
�
�U d

d z
C ik0UT

	
Ng 
 TNg D 0 (3.41)

in which the sign of the differential operator has been reversed, (cf. Sec. 2.2.4), and
the matrix operator UT has been replaced by its transpose eTU D UT (3.39). The
Lagrange identity for the operators H and H leads to

NgT Hg � gT HNg D d

d z


NgT Ug
� D 0 (3.42)
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by analogy with (2.38), giving the z-component of the the bilinear concomitant
vector

NgT Ug D Pz D const: (3.43)

Now we assume local plane-wave solutions

g˛ � exp.�ik0 q˛z/; Ngˇ � exp.ik0 Nqˇz/ (3.44)

yielding, as in (2.46), (2.49) and (2.50),

Nq˛ D q˛

and the modal biorthogonality relation

NgT
ˇ Ug˛ D ı˛ˇPz;˛ (3.45)

With normalized eigenvectors, this gives

ONgT
ˇ UOg˛ D ı˛ˇ sgn.˛/ (3.46)

which is equivalent to (3.2).

3.2.2 Biorthogonality of given and conjugate eigenmodes

The transformation of adjoint to conjugate wave fields is provided by the conjugat-

ing matrix Qc
.4/ D

�
Qc

.4/

��1

(3.17), so that in general

Ng D �Qc
.4/ gc (3.47)

and, in the case of eigenmodes,

Ngˇ D �Qc
.4/ gc�ˇ (3.48)

with a minus sign inserted on the right-hand side since the coordinate system is tied
to the plane of incidence, cf. (3.22) and (3.23). Substitution of (3.47) into (3.43)
gives the bilinear concomitant Pz in terms of given and conjugate wave fields

QgcUcg D Pz D const (3.49)

and in the case of eigenmodes

Qgc�ˇU
cg˛ D Pz;˛ı˛ˇ (3.50)
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where

Uc D �Qc
.4/U D

2
664

0 0 0 �1

0 0 1 0

0 �1 0 0

1 0 0 0

3
775

D UQc
.4/ D �eUc D �.Uc

/�1 (3.51)

or, equivalently,
4X

jD1

.�1/j .gc�ˇ/j .g˛/5�j D Pz;˛ı˛ˇ (3.52)

Note that if only two forward, or two backward waves are present at any level z in
the medium, one in the given and one in the conjugate system, then ˛ and ˇ have
opposite signs and, from (3.50), we deduce that Pz D 0 at that level, and hence
throughout the medium.

With normalized eigenmodes, (3.50) reduces to

�
Ogc�ˇ

�T

Uc Og˛ D ı˛ˇ sgn.˛/ (3.53)

For later use it will be convenient to gather the normalized eigenmodes into modal
matrices, G and Gc , by analogy with the modal matrix F (3.3):

ŒOg1 Og2 Og�1 Og�2� 
 ŒGC G�� 
 G

ŒOgc
1 Ogc

2 Ogc�1 Ogc�2� 

�
Gc
C Gc

�
� 
 Gc (3.54)

Eq. (3.53) can then be written, with the aid of NI.4/
, cf. (2.81), in the form

JeGc
UcG D NI.4/ D NI; NI.4/ WD diag.1; 1;�1;�1/ (3.55)

with the matrix J, as in (3.17), interchanging positive- and negative-going eigen-
mode rows in eGc (first and second with third and fourth). Then, multiplying from the

left by GNI D GNI�1
and from the right by G�1

.Uc
/�1 D �G�1Uc we obtain, with

J WD NIJ D

2
664

0 0 1 0

0 0 0 1

�1 0 0 0

0 �1 0 0

3
775 D �JNI D �JT D �J�1

(3.56)

the biorthogonality relation

GJeGc D ŒGCG��

" eGc

�
�eGc

C

#
D �Uc (3.57)
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We note finally that the propagation matrix T is transformed into Tc in the
conjugate system by means of

Tc D �UceTUc
; or Tc

ij D
X

j

.�1/j T5�j;5�i (3.58)

This may be shown by constructing the Clemmow-Heading equations (3.35) for the
conjugate system: �

d

d z
C ik0T

c

	
gc D 0

with (3.47) substituted into (3.41) with the aid of (3.39), or directly [21, 100],
by substituting Obx ! �Obx (3.37) in the matrix elements "ij (1.45) that appear in
T (1.128).

3.2.3 Rederivation of Budden’s reciprocity theorem

Although Budden’s theorem was derived originally by use of modal biorthogonality
(3.50) [29], or the relation between the propagation matrices, T and Tc (3.58) [21],
it is instructive to follow the derivation due to Pitteway and Jespersen [100].

Consider two plane waves incident on the ionosphere from below, in the given
and conjugate systems respectively, so that above the ionosphere only upgoing
waves are present. Then Pz D 0 at all heights in the ionosphere [see the remarks
following (3.52)]. If we now let the upgoing incident wave have unit amplitude,
with the electric wave vector parallel to the plane of incidence, we obtain reflected
modes with parallel and perpendicular polarizations, and with amplitudes kRk and
?Rk respectively. In the conjugate system we suppose, for instance, that the unit-
amplitude incident wave has perpendicular polarization, so that the reflected modes
will have amplitudes kRc

? and ?Rc
?. Application of (3.50) which gives non-zero

products of upgoing modes in one system with downgoing modes in the conjugate
system yields, with Pz D 0, and with the aid of (2.105) and (2.109),

kRC? D
�
?Rc
k
�C

Other combinations of linearly polarized incident modes yield the remaining
equalities in (3.19).

Tsuruda [126] has noted that whether or not a conducting earth is present,
Pz D 0 below the ionosphere (and hence throughout the medium) for whistler
modes incident on the ionosphere from above. Suppose we have two whistler modes,
g�1 and gc�2, incident from above on the high ionosphere (where X � 1 C Y ),
in both the given and conjugate planes of incidence. Each will generate a reflected
mode (the other mode cannot propagate in this region), as well as transmitted modes
below the ionosphere which, for the moment, do not interest us. The method of
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modal biorthogonality just described, applied to the high ionosphere with Pz D 0,
yields

R�11 D


Rc

11

��
(3.59)

a result which involves eigenmodes within the anisotropic medium, rather than base
modes in free space or in isotropic bounding media.

3.2.4 Reciprocity with penetrating and non-penetrating modes

In the general framework of eigenmode scattering/reciprocity relations, the reci-
procity theorem of Pitteway and Jespersen [100], which relates ‘penetrating and
non-penetrating modes’, occupies a special place in that these ‘modes’ are not
eigenmodes of the medium. They are, in fact, specific combinations of upgoing
incident eigenmodes which maximize or minimize the transmission coefficients
through the ionosphere. The theorem can be derived by equating the constant value
of Pz high in the ionosphere with that in free space below [100]. We shall not
follow this procedure here, but shall show instead that Pitteway’s modes [98] can be
decomposed into the eigenmodes of the medium in a specific combination, and then
demonstrate that the theorem is a direct consequence of the eigenmode scattering
theorem.

Let g˙1 represent up- and downgoing whistler modes in the ionosphere. The
other modes, g˙2, are evanescent in the high ionosphere, but can propagate lower
down, below the X D 1C Y cutoff (see Sec. 1.2). We express the non-penetrating
and penetrating upward incident waves, gn and gp , at a height z0 at the base of the
ionosphere, as a combination of the two eigenmodes

gn D Og1 C b Og2; gp D Og1 C c Og2 (3.60)

where b and c are constants to be determined. As for the free-space eigenmodes, g1

and g2, we can consider them to be right- and left-circularly polarized modes (the
electron-whistler mode has ‘electronic polarization’—i.e. the electric wave vector
circles the constant magnetic field in the same sense as free electrons do). For
simplicity we have taken the amplitude of the whistler component Og1 to be unity
at z0 in the two waves, gn and gp , since we shall be interested only in transmission
coefficients which are independent of incident wave amplitudes. All field quantities
in gn and gp vary as exp.�ik0sx/, with x in the plane of incidence which is at an
azimuthal angle � with respect to the magnetic meridian plane (see Fig. 3.1).

The non-penetrating wave must, by definition, produce a zero-amplitude whistler
mode at a height z0, high in the ionosphere (the other mode g2.z0/ becomes
evanescent well below z0, and so in any case has zero amplitude at z0). If a1.z/ and
a2.z/ are the amplitudes of modes 1 and 2 at any level z, then the amplitude a1.z0/
of the whistler mode is given by

a1.z0/ D TC11 a1.z0/C TC12 a2.z0/ D 0 (3.61)
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in which TCij 
 TCij .z0; z0I s; �/, and the two eigenmodes that constitute the
non-penetrating wave at z0, cf. (3.60), have amplitudes a1.z0/ D 1 and a2.z0/ D b.
Substituting into (3.61), and using (3.60), we get

b D �TC11 =TC12 ; gn.z0/ D Og1.z0/� TC11

TC12

Og2.z0/ (3.62)

Next we determine the constant c in gp (3.60), by using the property that the
electric wave vectors in the penetrating and non-penetrating waves are hermitian
orthogonal, as shown in Sec. 1.5.2. In the .
; 
; �/ coordinate system, tied to the
wave normal and the plane of incidence below the ionosphere (as in Sec. 3.1.2), this
property, with �1 D i; �2 D �i , cf. (3.10), leads to

h
. O� C i O�/C b. O� � i O�/

i
�
h
. O� C i O�/C c. O� � i O�/

i� D 0

which gives, with (3.62),

c D �1=b� D 
TC12 =TC11

��

and

gp.z0/ D Og1.z0/C
 

TC12

TC11

!�
Og2.z0/ (3.63)

The amplitude a1.z0/ of the penetrating wave at a level z0, high in the ionosphere,
then becomes

a1.z0/ D TC11 C cTC12 D TC11 C
 

TC12

TC11

!�
TC12

where TCij 
 TCij .z0; z0/, and the 4-element wave field is

gp.z0/ D a1.z0/Og1.z
0/ D

"
TC11 C

 
TC12

TC11

!�
TC12

#
Og1.z
0/ (3.64)

The ratio of transmitted to incident energy flux, �Cp .s; �/, is then

�Cp .s; �/ D
�
gp.z0/�

�T
U gp.z0/

Œgp.z0/��T U gp.z0/
(3.65)

as in (2.63) and (3.43), with complex conjugate replacing adjoint modes in loss-free
media. In view of the modal biorthogonality (3.46), this gives with the aid of (3.63)
and (3.64)
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�Cp .s; �/ D

ˇ̌
ˇ̌TC11 C

�
T

C

12

T
C

11

��
T C12

ˇ̌
ˇ̌2

1C
ˇ̌
ˇ̌T

C

12

T
C

11

ˇ̌
ˇ̌2

D ˇ̌TC11

ˇ̌2 C ˇ̌TC12

ˇ̌2

Next consider a downgoing whistler mode gc�1 with unit amplitude, ac�1.z0/ D 1,
in the conjugate plane. The transmitted wave field at the base of the ionosphere
will be

g.z0/ D ac�1.z0/ Ogc�1.z0/C ac�2.z0/ Ogc�2.z0/

which, with

ac�1.z0/ D 
T �11

�c
ac�1.z0/ D 
T �11

�c
; ac�2.z0/ D .T �21/c

gives

g.z0/ D


T �11

�c Ogc�1.z0/C 
T �21

�c Ogc�2.z0/

D TC11 Ogc�1.z0/C TC12 Ogc�2.z0/ (3.66)

by virtue of the eigenmode scattering theorem (2.112). The ratio of transmitted to
incident energy flux is then

�c�.s; � � �/ D ˇ̌TC11

ˇ̌2 C ˇ̌TC12

ˇ̌2 D �Cp .s; �/ (3.67)

which is the first part of the of the reciprocity theorem of Pitteway and Jespersen. It
states that the ratio of transmitted to incident energy flux for a downgoing whistler
mode high in the ionosphere is equal to that of a ‘penetrating mode’ incident on the
ionosphere from below in the conjugate direction.

The relation between the wave polarizations of the two waves at the base
of the ionosphere (upgoing penetrating and transmitted downgoing whistler) can
readily be found by performing a conjugating transformation on the two component
eigenmodes in the penetrating wave (see, for instance, [14]). The result, however,
is immediately evident when it is realized that the conjugate downgoing whistler in
the high ionosphere is derived from the upgoing whistler in the original system by a
reflection-time-reversal transformation. Hence the polarization ellipse produced by
the two downgoing transmitted eigenmodes in the conjugate system will be a mirror
image of the polarization ellipse produced by the two upgoing eigenmodes in the
penetrating wave. The sense of rotation, however, will be the same in the two cases
since it has been twice reversed — first by reflection and then by time reversal.

This then completes the proof of the theorem, which is seen to fit into the general
framework of the eigenmode scattering theorem.
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3.2.5 Rederivation of the eigenmode scattering theorem without
explicit use of adjoint wave fields

It will no doubt have been noted that all previous derivations of scattering (reci-
procity) theorems, which were based in one way or another on the biorthogonality of
the given and the conjugate (rather than given and adjoint) eigenmodes, gave results
which were restricted to wave amplitudes in free space or in loss-free regions (“high
in the ionosphere”, for instance), where amplitudes could conveniently be defined
through the z-component of a Poynting vector by means of complex-conjugate fields
(as in Sec. 2.3.1). The reason, presumably, was that by bypassing the adjoint wave
fields, not only was physical insight lost as mentioned earlier, but one tended to
overlook the formalism by which the amplitude of an eigenmode in a lossy medium
could be expressed in a simple manner, and by which the energy flux in an arbitrary
wave field could be decomposed into the sum of the contributions of each of the
eigenmodes. We shall now show that the eigenmode scattering theorem can indeed
be simply derived by making use of the given and conjugate eigenmodes only.

We decompose two wave fields, g and gc , propagating in the given and conjugate
planes of incidence, into component eigenmodes, as in (2.61),

g D
X

˛

a˛ Og˛; gc D
X

˛

ac
˛ Ogc

˛ (3.68)

where
a˛ D .gc�˛/T Uc g sgn.˛/; ac

˛ D OgT�˛U
cgcsgn.˛/ (3.69)

with the aid of (3.53). With the wave fields g and gc decomposed into eigenmodes
at any level z in this way, the constant bilinear concomitant, Pz D QgcUcg (3.49),
becomes with (3.68) and (3.69)

Pz D ac�1a1 C ac�2a2 � ac
1a�1 � ac

2a�2 
 Qac�aC � QacCa� (3.70)

in which modal amplitudes have been collected into 2-element column vectors, a˙
and ac

˙, as in (2.101).
Now equate Pz.z�/ D Pz.zC/ at two levels, z� and zC.zC > z�/, and collect

incoming and outgoing modal amplitudes into 4-element columns, ain and aout, as
in (2.102):

Nac�.z�/aC.z�/C QacC.zC/ a�.zC/ D QacC.z�/a�.z�/C Qac�.zC/aC.zC/

which may be written as
Qac

out ain D Qac
inaout (3.71)

Substituting aout D Sain and ac
out D Scac

in into (3.71), we get finally

Qac
in
eScain D Qac

inS ain (3.72)

from which we have SDeSc , which is just the eigenmode scattering theorem (2.112).
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3.2.6 The scattering theorem in a multilayer medium

Quite a different approach is to derive the scattering theorem first for a plane
interface separating two adjacent thin homogeneous layers, and then to extend
the result by recursion to the multilayer structure that simulates the original
continuously varying medium [12]. If we equate transverse (tangential) electric and
magnetic wave-field components across the interface separating layers � and .�C1/,
we have

g� D g�C1

with g containing the four transverse wave-field components (3.36). Decomposing
the wave fields into positive- and negative-going eigenvectors, we may express this
relation by means of the eigenmode amplitudes, a� , as in (2.101), and the normalized
eigenmode matrices G� (3.54),

Gvav 
 �Gv
CavC CGv

�av�
� D hGvC1

C avC1
C CGvC1

� avC1�
i

 GvC1avC1 (3.73)

We now rearrange terms into outgoing and incoming eigenmodes,

h
�Gv
� G�C1

C
i � av�

avC1
C

	
D
h
Gv
C �G�C1

�
i � a�C

a�C1�

	
(3.74)

or, in condensed notation,

Gout aout D Uinain (3.75)

With aout D S ain (2.103), this becomes

GoutS ain D Ginain

or

GoutS D Gin; S D G�1
outGin (3.76)

This is an interesting result, showing that at an interface the scattering matrix can
be determined from the incoming and outgoing modal polarizations only, and not
necessarily from the incoming and outgoing modal amplitudes.

In order to relate given and conjugate scattering matrices and obtain an interface
scattering theorem, we equate the constant matrix product GJeGc D �Uc (3.57) on
both sides, � and .� C 1/, of the interface

�
G�
C Gv

�
� " eGc;v

�
�eGc;v

C

#
D
h
G�C1
C GvC1

�
i " eGc;vC1

�
�eGc;vC1

C

#
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Regrouping, we have

h
�Gv
� GvC1

C
i " eGc;v

C
�eGc;vC1

�

#
D
h
Gv
C �GvC1

�
i" �eGc;v

�
�eGc;vC1

C

#

or, in condensed notation, cf. (3.74)–(3.75),

Gout
eGc

in D Gin
eGc

out

whence

G�1
outGin D eGc

in

heGc

out

i�1 D �.Gc
out /
�1Gc

in

�T
(3.77)

With (3.76), this yields the required interface eigenmode scattering theorem

S D eSc (3.78)

To extend this result to a multilayer system, we consider a multilayer slab, as
in Sec. 1.5.3, bounded on either side by gyrotropic media which in general will
also be part of (i.e. imbedded in) the multilayer structure. We denote the uppermost
layer in the slab by �, and the following two layers, outside the slab, by .� C 1/

and .� C 2/ (see Fig. 1.2). Let the 2 � 2 reflection and transmission matrices for
the slab be denoted by R�˙ and T�

˙, and for the composite slab formed by adding
the additional layer .� C 1/; R�C1

˙ and T�C1
˙ . The corresponding matrices for the

interface separating the layers .� C 1/ and .� C 2/ are denoted by r˙ and t˙.
If R�˙; T�

˙ and r˙; t˙ are known, then R�C1
˙ and T�C1

˙ are determined by the
recursion relations (1.172) in Sec. 1.5.3. The phase matrices �˙ in these equations
give the phase change of the eigenmodes in traversing the .� C 1/th layer in terms
of the eigenvalues q�C1

˛ ; .˛ D ˙1; ˙2/, and the layer thickness ız, cf. (1.166):

�˙ D
�

exp.�ik0q
�C1
˙ ız/ 0

0 exp

�ik0q

�C1
˙2 ız

�
	

A similar set of recursion relations may be written for the conjugate system, and
it will be noted that since q˛ D �qc�˛ (2.91), the phase matrices in the conjugate
system are

�c˙ D �� (3.79)

Given the interface scattering relations (3.78), it is easy to show from the recursion
relations (1.172) that if the scattering theorem holds for the original slab, i.e. if

R�
˙ D eRc;�

˙ ; T�
˙ D eTc;�C1

� (3.80)

then it holds also for the composite slab, i.e.

R�C1
˙ D eRc;vC1

˙ ; TvC1
˙ D eTc;vC1

˙ (3.81)



3.2 Scattering theorems: alternative derivations 103

Except for the additional relationship (3.79) which is now required, the proof, which
is straightforward but tedious, is given in reference [7] for the case of normal
incidence. The proof by induction for the system as a whole now commences
with the slab which is just the first elementary layer, in which the matrices R�

˙
and T�

˙.� D 1/ are replaced by r˙ and t˙ for the first interface. These obey the
scattering relations (3.78), and hence by induction the scattering relations apply to
the system as a whole, or to any slab imbedded within the system.

It is interesting to note that in the scattering theorem of Altman and Postan
[7], which applies to eigenmodes within (possibly absorbing) gyrotropic media,
the modal amplitudes for normal incidence (motivated by the form of the WKB
solutions [32, p. 405]) were defined as

a˛ D n˛
1=2


1 � �˛

2
�

E˛;x .˛ D ˙1;˙2/ (3.82)

which, aside from a numerical factor
p

2Y0, is precisely the value obtained by
the ratio

E˛
= OE˛
 D e˛=Oe˛ D a˛

see (2.68), (2.74) and (2.75), when the .
; 
; �/ and .x; y; z/ systems coincide
(normal incidence). Their proof of the interface scattering relation made use of
the condition, �1�2 D 1, for two upgoing or two downgoing modes. Now this is
precisely the (biorthogonality) condition applying to eigenmodes propagating in the
same direction in a magnetoplasma (1.79) (see also [104, p. 17], [32, p. 50]), as
will occur if they propagate in a direction normal to the stratification. For oblique
incidence the modal propagation vectors, k˛ , are not in the same direction—only
the transverse components, kt , remain equal—so that the condition �1�2 D 1 is no
longer valid, and this explains why this method [7] could not be extended to oblique
incidence until the general formulation of modal biorthogonality was applied.

3.2.7 Reciprocity via Maxwell’s second order differential
equations

Heading’s [66] formulation of symmetries between electric wave fields, and be-
tween reflection and transmission coefficients, for modes propagating with different
directions of incidence through plane-stratified magnetoplasmas, differs in approach
from the other methods discussed until now, in that the starting point is one of
Maxwell’s second-order differential equations obtained by eliminating the magnetic
field from the first-order equations. The procedure has a certain resemblance to that
adopted by us, in which the application of a Lagrange identity (2.37) yields the
divergence of a bilinear concomitant vector. We shall adapt Heading’s notation to
ours in order to appreciate similarities and some important differences.

Consider the Maxwell system, (2.21) and (2.22),

Œi!KCD� e.r/ D 0; Qe WD �eE;eH� (3.83)
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in a source-free .j.r/ D 0/ magnetoplasma where, as in (2.35),

K D
"

" 0
0 �0I

.3/

#
D
"

"0

�
I.3/ C 


�
0

0 �0I
.3/

#

in which the susceptibility tensor 
, as used by Heading, is related to the
conductivity tensor � (1.33) through

" D "0I
.3/ � i� =!; 
 D �i�="0!

If we operate on (3.83) with the differential operator D (2.22)

D Œi!KCD� e.r/ D 0 (3.84)

the upper part of this matrix equation yields

� i!�0r �H � r � .r � E/ D 0 (3.85)

since

D2 
 DD D �
2
4r �

�
r � I.3/

�
0

0 r �
�
r � I.3/

�
3
5 (3.86)

Now substitute the upper part of (3.83),

i!"0

�
I.3/ C 


�
E � r �H D 0 (3.87)

into (3.85) to give, with k0 D !=c,

LEE WD
h
k0

2
�
I.3/ C 


�
� r �

�
r � I.3/

�i
E D 0 (3.88)

If we were to construct an equation adjoint to (3.88), the differential operator,
which is second order in r , would remain unchanged in sign. The susceptibility
tensor 
, on the other hand, would be replaced by its transpose 
T , and would
be eliminated on application of the Lagrange identity. Heading however does not
work with the Lagrange identity, nor with the adjoint media and fields. Instead,
he considers two different local plane-wave solutions, E1 and E2, of the Maxwell
system (3.88), for two different directions of incidence:

ET
2 LEE1 � ET

1 LEE2

D k0
2


ET

2 
E1 � ET
1 
E2

�C E1 � fr � .r � E2/g � E2 � fr � .r � E1/g
D k0

2ET
2

�

 � 
T

�
E1 � r � fE1 � .r � E2/ � E2 � .r � E1/g

D 0 (3.89)
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Had this been a Lagrange identity, with E2 ! E1, the first term in the third line
of (3.89) would have been eliminated, as mentioned, and the second term would
have given the divergence of a bilinear concomitant vector. In Heading’s version the
divergence term is equal to

k0
2ET

2

�

 � 
T

�
E1 D k0

2ET
2

�
" � "T

�
E1="0 D �2ik0

2D Ob � E1 � E2

rather than zero, as may be seen by use of the form of "="0 for a gyrotropic medium
in (1.38). With local plane-wave x-dependence

Ej � exp.�ik0 sjx/; j D 1; 2

in a coordinate system tied to the plane of incidence, the divergence operator has two
non-zero components, r D .�ik0sj ; 0; @=@z/, and (3.89) can be integrated over z
from below the ionosphere to above it [66]. For specialized directions of incidence,
the expressions simplify to yield relations between scattering coefficients, some of
which, (3.20) and (3.33), have been cited earlier.

This method requires more mathematical manipulation than others, and yields
relations governing wave fields in the isotropic bounding regions only. One of its
merits is that insofar as the directions of incidence are arbitrary, one is at liberty, at
the end of the z-integration, to choose all specialized directions of incidence that will
yield useful identities. The mirror-mode identities, discussed in Sec. 3.1.4, are ex-
amples of such identities that were missed by most of the other methods described.
This method lends itself to establishing generalized reciprocity theorems relating
to wave propagation governed by second order differential equations containing n

independent variables [67,68], and equations with self-adjoint differential operators
of order 2n [69].

3.3 Matrizants and transfer matrices

The mapping of a plane-stratified medium into itself by a conjugating transforma-
tion has been shown to lead to a reciprocity relation (2.112) between the scattering
matrices in the given and conjugate problems. This is a natural way to express the
symmetry between the two systems when the solution of the propagation problem is
aimed at obtaining reflection and transmission matrices as its end products. Another
approach, discussed in Sec. 1.5.4 [23,71,78,128], is to produce as output matrizants
that relate the wave fields, g.z�/ and g.zC/, at two levels, z� and zC, or matrizants
(termed transfer matrices) that relate the eigenmode amplitudes, a.z�/ and a.zC/,
at these levels. As would be expected, there is again a simple symmetry relationship
between such matrices in the given and conjugate problems [119].
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The four-component wave fields, g.z�/ and g.zC/ at z� and zC (3.36), will be
related in general by a 4 � 4 matrix, or matrizant, M.zC; z�/:

g.zC/ DM.zC; z�/ g.z�/ (3.90)

and similarly for the adjoint problem

Ng.zC/ DM.zC; z�/ Ng.z�/ (3.91)

with

M.zC; z�/ DM�1
.z�; zC/ (3.92)

The bilinear concomitant (3.43)

NgT .zC/U g.zC/ D NgT .z�/U g.z�/ D const (3.93)

yields, with (3.90) and (3.91),

NgT .z�/M
T

.zC; z�/U M.zC; z�/g.z�/ D NgT .z�/U g.z�/ (3.94)

leading to

M
T

.zC; z�/U M.zC; z�/ D U (3.95)

or, with (3.92), and recalling that U D UT D U�1 (3.39),

M.zC; z�/ D U MT
.z�; zC/U (3.96)

This means that M.zC; z�/ is just the transpose of M.z�; zC/ with respect to its
trailing diagonal [cf. (3.39)].

If in (3.91) we transform from adjoint to conjugate wave fields, as in (3.47),

Ng D �Qc
.4/g

c

with Qc
.4/ D

�
Qc

.4/

��1

defined in (3.17), we have

gc.zC/ D Qc
.4/M.zC; z�/Qc

.4/g
c.z�/ (3.97)

so that
Mc

.zC; z�/ D Qc
.4/M.zC; z�/Qc

.4/ (3.98)

When this is substituted into (3.96), with

Uc WD �Qc
.4/U D U Qc

.4/
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cf. (3.51), we have finally

Mc
.zC; z�/ D �UcMT

.z�; zC/Uc
; M c

ij .zC; z�/ D
X

j

.�1/j M5�j;5�i .z
�; zC/

(3.99)

in analogy with the relation (3.58) between Tc and T. This is the matrizant theorem,
relating matrizants in the given and conjugate problems.

Next we decompose the wave fields in (3.90) into eigenmodes, as in (3.68), with
the aid of G (3.54),

g.zC/ D G.zC/ a.zC/ DM.zC; z�/ g.z�/ DM.zC; z�/ G.z�/a.z�/ (3.100)

Hence

a.zC/ D
h
G�1

.zC/M.zC; z�/G.z�/
i

a.z�/ D P.zC; z�/ a.z�/ (3.101)

defining thereby the transfer matrix [128] or propagator [85], P.zC; z�/. Substitut-
ing (2.101) we obtain

a.zC/ W D
�

aC.zC/

a�.zC/

	
D
�
PCC.zC; z�/ PC�.zC; z�/

P�C.zC; z�/ P��.zC; z�/

	 �
aC.z�/

a�.z�/

	


 P.zC; z�/ a.z�/ (3.102)

with
P.z�; zC/ D P�1

.zC; z�/ (3.103)

The transfer matrix, defined by (3.101), is seen to be related to the matrizant through

P.zC; z�/ D G�1
.zC/ M.zC; z�/ G.z�/ (3.104)

or
M.zC; z�/ D G.zC/ P.zC; z�/ G�1

.z�/ (3.105)

There is a similar relation in the conjugate system

Mc
.zC; z�/ D Gc

.zC/ Pc
.zC; z�/ ŒGc

.z�/��1 (3.106)

We now substitute (3.105), with zC and z� interchanged, and (3.106) into (3.99),
and rearrange terms using .Uc

/�1 D �Uc (3.51), to get

h
GT

.zC/UcGc
.zC/

i
Pc

.zC; z�/ D PT
.z�; zC/

h
GT

.z�/UcGc
.z�/

i
(3.107)

yielding, with the aid of (3.55), and with eUc D �Uc
; J

T D J
�1 D �J (3.56),

JPc
.zC; z�/ D PT

.z�; zC/J (3.108)
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It will be convenient at this point to condense the notation by using

P.zC; z�/!
!
P; P.z�; zC/! �P (3.109)

and (3.108) can be put in the form

Pc 

2
4
�!
P cCC

�!
P cC��!

P c�C
�!
P c��

3
5 D

2
4
 �
PT�� �

 �
P TC�

� �PT�C
 �
PTCC

3
5 
 �J �PT J (3.110)

which is the transfer theorem, analogous to the scattering theorem (2.112) derived
in Sec. 2.5.2. If we equate submatrices such as

�!
P cCC D

 �
PT��

we get typically (in obvious notation)

�!
P c

1;1 D
 �
P �1;�1;

�!
P c

1;2 D
 �
P �2;�1 (3.111)

Eq. (3.102), which relates a.z�/ to a.zC/, or its inverse, using (3.103), gives

a.z�/ D �!P�1 a.zC/ D �P a.zC/

This can be reorganized so as to relate incoming and outgoing amplitudes, ain and
aout (2.102) [105, 119, 128], thus enabling us to express reflection and transmission
matrices in terms of the sub-matrices of P. One such symmetric form

S 

�
RC T�
TC R�

	
D
2
4
 �
P�C

 �
P�1CC

�!
P�1�� �

P�1CC
�!
PC�

�!
P�1��

3
5 (3.112)

can be understood by means of a simple example. Consider a positive-going wave,
of amplitude aC.z�/, incident on the lower boundary z� of a plane-stratified slab
(see Fig. 3.2). A reflected and a transmitted wave of amplitudes a�.z�/ and aC.zC/

are generated at the lower and upper boundaries respectively:

a�.z�/ D RC aC.z�/; aC.zC/ D TC aC.z�/ (3.113)

Clearly,

aC.z�/ D �PCC aC.zC/; a�.z�/ D  �P�C aC.zC/

since no negative-going wave is incident on the upper boundary zC, and hence

aC.zC/ D  �P�1CC aC.z�/ (3.114)

a�.z�/ D  �P�C aC.zC/ D  �P�C �P�1CC aC.z�/ (3.115)

in which we have substituted (3.114) into (3.115).
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Fig. 3.2 Relations between
scattering and transfer
sub-matrices

Comparison of the last two equations with (3.113) yields immediately

RC D
 �
P�C

 �
P�1CC; TC D

 �
P�1CC (3.116)

The other two equalities in (3.112) can be checked by a similar simple construction.
Application of the transfer theorem (3.110) to (3.112), in the given and conjugate
problems, leads after some manipulation [119], to the scattering theorem (2.112), as
could be expected.

3.4 The Lorentz-adjoint system

3.4.1 The adjoint Maxwell system: alternative formulations

It was mentioned in Sec. 2.2.4 that the prescription we adopted for forming a set of
equations adjoint to the Maxwell set .K! KT

; D ! �DT
/ was not unique, and

that any other prescription that satisfies a Lagrange identity such as (2.37) is also
valid. Consider the Maxwell system (2.40)

L e WD Œi!KCD� e.r/ D
�

i!KCUx

@

@x
CUy

@

@y
CUz

@

@z

	
e.r/ D 0 (3.117)

The adjoint equation, (2.41):

L Ne WD Œi!KT �DT
� Ne.r/ D 0 (3.118)

defined an ‘adjoint medium’, characterized by the transposed constitutive tensor
KT which, in the case of a magnetoplasma, was no more than the magnetic-
field reversed medium. Application of the Lagrange identity (2.37) yielded the
concomitant vector P (2.42):

P D E �HC E �H; r � P D 0 (3.119)
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Suppose however that we rewrite the Maxwell system in the form

L0e WD NILe D NIŒi!KCD� e.r/ D 0 (3.120)

with NI D NIT
(2.81). The equation formally adjoint to it (constructed, it will be

recalled, by transposing the matrix operators and changing the signs of the linear
differential operators)

L
0
e.L/ WD Œi!KT �DT

� NI e.L/ D 0 (3.121)

will satisfy a Lagrange identity

Qe.L/L0 e � QeL0 e.L/ D r � .E.L/ �H � E �H.L// (3.122)

with e.L/ WD .E.L/; H.L//, which with (3.120) and (3.121) gives

r � P.L/ D 0; P.L/ WD E.L/ �H � E �H.L/ (3.123)

Note the difference in form—the minus sign before the second term—between P.L/

(3.123) and P (3.119). Premultiplying (3.121) by NI gives

Œi!K.L/ CD� e.L/ D 0 (3.124)

with NI DT NI D �D; K.L/
.r/ WD NI KT

.r/NI (3.125)

For reasons which will become clear in the next section, we shall employ the
term ‘Lorentz-adjoint’ for the medium characterized by the constitutive tensor K.L/

(3.125). Kerns [81] has termed such a medium the ‘adjoint medium’, Kong and
Cheng [84] have called it the ‘complementary medium’. We shall show in Chap. 6
that in fact any orthogonal spatial mapping (rotation, reflection, inversion) of the
Lorentz-adjoint medium will serve as a reciprocal medium, in which transformed
currents and fields will exhibit a Lorentz-type reciprocity relation with respect to
the original currents and fields in the given medium. In the case of a magnetoplasma
the tensors KT and K.L/ will be identical, but will differ for bianisotropic media,
see (2.20), with

KT D
�

"T �T

�T �T

	
; K.L/ D

�
"T ��T

��T �T

	
(3.126)

In order to avoid confusion we shall henceforth reserve the name ‘adjoint’, or ‘for-
mally adjoint’, to describe the medium characterized by the transposed constitutive
tensor KT . The Lorentz-adjoint medium K.L/ will be identified in Chap. 7 with the
‘time-reversed medium’.
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We shall call e.L/, (3.122) and (3.124), the ‘Lorentz-adjoint’ or ‘Lorentz-
reversed’ field, and such fields are used in the next section to derive a version of
the eigenmode scattering theorem different to that found in our earlier treatment.
Comparison of (3.118) and (3.121) gives

e.L/.r/ D NI Ne.r/ (3.127)

We note that e.L/ obeys Maxwell’s equations (3.124) in a medium K.L/ which
could in principle be a physically realizable medium. The ‘non-physicality’ of Ne,
as opposed to e.L/, is expressed by the fact that its direction of propagation, as
defined by its plane-wave ansatz exp.ik0 q˛z/, is ‘wrong’, i.e. in a direction opposite
to that of its Poynting vector. The Poynting vector of the field e.L/ D NI Ne (3.127),
on the other hand, has been reversed by the matrix NI, which changes the sign of the
magnetic field components, and thereby restores its ‘physicality’ (see the discussion
of the restricted time-reversal procedure in Sec. 2.4.2). We recall that the conjugate
modal wave fields ec

˛ , discussed earlier in this chapter, are also ‘physical’, for the
same reason, being related to the adjoint modal fields by the transformation (2.92)

ec�˛.�sx; sy/ D Qy
NI Ne˛.sx; sy/ (3.128)

in which NI ‘restores physicality’, and Qy provides a reflection mapping of the
resultant Lorentz-reversed modes.

In anticipation of the spatial mappings of vector and tensor fields which will be
discussed systematically in Chap. 6, we remark that the spatial inversion mappings
of the transposed tensor KT

.r/ and the adjoint field Ne.r/ resemble those generated
by the Poynting-vector reversing operator NI in (3.125) and (3.127). The inversion
transformations will be shown to be

K0.r0/ D .�NI/ KT
.r/.�NI/ D NI KT

.r/NI; e0.r0/ D �NINe.r/; r0 D �r (3.129)

giving, inter alia, E0.r0/D �E.r/; H0.r0/DH.r/. These indeed resemble the trans-
formations just derived (besides the unimportant sign difference in the transformed
fields, which can be regarded as a 180ı phase shift), which is not surprising, since
the Poynting vector is reversed in direction in the inversion transformation too. The
important difference, however, is that in the inversion mapping (3.129), the fields are
mapped into an inverse space, r0D�r, whereas the Lorentz-reversed fields, (3.127),
are mapped into the same space.

It should be remarked in conclusion that Tai [122] has obtained a reciprocity
theorem through a rotational transformation of the magnetic-field reversed medium,
which restores the magnetic field b to its original direction, while the fields and
currents are rotated by 180ı about an axis perpendicular to the field b. If the
medium is plane stratified, the rotated field-reversed medium will in general no
longer coincide with the original medium, as does the conjugate (field-reversed,
reflected) plane-stratified medium discussed in this chapter, and hence will be of
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limited interest. In other geometries however, see for instance Figs. 4.2 and 4.4,
this may be a useful ‘conjugating transformation’, yielding Lorentz-type reciprocity
relations.

3.4.2 Lorentz-adjoint scattering theorem: the eigenmode
generalization

We now consider Kerns’ scattering theorem, discussed in Sec. 2.1.1, in the restricted
form it takes (2.14) when the scattering object becomes a plane-stratified slab, and
the scattered angular spectrum reduces to a single reflected, and a single transmitted
pair of base modes (each with parallel and perpendicular wave polarizations). We
shall consider it, however, in the more general context of eigenmodes within the
medium [10], and not restrict the discussion to linearly polarized base modes in the
free space bounding the stratified medium.

We start with the eigenmode equation (2.29) in a source-free medium,
j.kt ; z/D 0,

L e˛ WD ik0ŒcK � sxGx � syGy � q˛Gz� e˛ D 0

with K 
 K.b/; e˛ 
 e˛.bI sx; sy/ and Ux; Uy and Uz defined in (2.25). In the
field-reversed medium, with K.�b/ D KT (2.36), and with the aid of (2.44) and
(2.46), we have

L Ne˛ WD ik0ŒcK
T � sxUx � syUy � q˛Uz� Ne˛ D 0 (3.130)

Now multiply from the left with NI, using NI D NI�1
(2.81),

ŒNI L NI� ŒNI e� D 0 (3.131)

and since NIUi
NI D �Ui .i D x; y; z/, and K for a magnetoplasma is unaffected by

the transformation, i.e. NI KT NI D KT , the last two equations give

ŒcK.�b/C sxUx C syUy C q˛Uz� NI Ne˛ D 0

by analogy with (3.124). We may thus identify the ‘Lorentz-adjoint’ or ‘Lorentz
reversed’ modes (see Sec. 3.4.1)

e.L/�˛ .�bI �sx;�sy/ D NI Ne˛; Ne.L/�˛ .�bI �sx;�sy/ D NI e˛ (3.132)

to obtain [cf. (2.92), (2.94) and (2.97)]

a.L/
˛ D Na�˛; Na.L/

˛ D a�˛ (3.133)
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This relation between the ‘Lorentz-adjoint’ and the given modal amplitudes is
thus identical with that between the conjugate and the given modal amplitudes. This
is not surprising since the conjugate and Lorentz-adjoint eigenvectors are related by
a simple reflection transformation, as may be seen by comparing (2.92) and (3.132),

ec
˛ D Qy

NI e�˛ D Qy e.L/
˛

with
ec

˛ D e˛.bI �sx; sy/; e.L/
˛ D e˛.�bI �sx;�sy/

where the diagonal matrix Qy defined in (2.85), performs a reflection transformation
with respect to the y D 0 magnetic-meridian plane. The corresponding scattering
matrices are therefore equal, and hence with (2.112)

S.L/ D Sc D ST (3.134)

giving the Lorentz-adjoint reflection and transmission matrices

R.L/

˙ .�bI �sx;�sy/ D eR˙.bI sx; sy/

T.L/

˙ .�bI �sx;�sy/ D eT�.bI sx; sy/

This result is not strictly in the same category as the previously derived scattering
theorem (2.112), although closely related to it, in that here the modal amplitudes are
in two different media—the given and the adjoint (magnetic-field reversed) media.
These reciprocity (scattering) relations have proved useful, and have been employed
for instance by Bahar and Agrawal [19,20] to check the consistency of numerically
computed scattering coefficients for plane-stratified magnetoplasmas.



Chapter 4
Reciprocity in media with sources

4.1 Plane-stratified uniaxial media

Before generalizing the discussion to media with sources (currents), we extend
the scattering theorem to more general plane-stratified uniaxial anisotropic or
bianisotropic media. This has a dual purpose. First, these media exhibit reflection
symmetry, which will enable us to demonstrate the different treatment of reflection
transformations in the case of eigenmodes with a prescribed local plane-wave
variation in source-free media, and in the general case of wave fields associated
with arbitrary current distributions. Second, the stratified structure permits the
decomposition of wave fields into well-defined eigenmodes, which is a necessary
condition for the derivation and formulation of a scattering theorem. In the subse-
quent discussion, involving currents and fields in arbitrary media having reflection
symmetry, there will no longer be any need to restrict the discussion to plane-
stratified configurations.

4.1.1 The constitutive tensors in uniaxial media

In uniaxial anisotropic (crystalline), gyrotropic or bianisotropic media, the tensorial
character of all constitutive tensors depends on a single unit vector, representing the
symmetry axis of the medium. In gyrotropic media, considered in previous chapters,
this was the vector Ob, the direction of the external magnetic field. This symmetry
axis, together with the normal to the stratification, defines a plane of symmetry—the
‘meridian’ plane—to which we may tie the cartesian coordinate system (the y D 0

plane), and with respect to which we may perform symmetry transformations such
as reflection. A comprehensive discussion of such, and other, media is to be found
in the book of Kong [83].

C. Altman and K. Suchy, Reciprocity, Spatial Mapping and Time Reversal
in Electromagnetics, DOI 10.1007/978-94-007-1530-1 4,
© Springer Science+Business Media B.V. 2011
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Uniaxial anisotropic media

Under this heading we consider non-magnetic crystalline media which are described
in general by symmetric permittivity tensors, " D "T ; � D �0I

.3/. When "

is real (lossless), a real principal-axis coordinate system can always be found in
which " is diagonal. In cubic crystals the three eigenvalues "i .i D 1; 2; 3/ are
equal, and the medium is isotropic (scalar permittivity). In tetragonal, hexagonal
and rhombohedral crystals, two of the three eigenvalues "i are equal. Such crystals
are uniaxial, and the symmetry axis is called the optic axis. The constitutive tensor
has the form

" D
2
4" 0 0

0 " 0

0 0 "0

3
5 ; K D

"
" 0

0 �0I
.3/

#
D KT (4.1)

in which "1 D "2 D "; "3 D "0. In orthorhombic, monoclinic and triclinic crystals,
all three eigenvalues are different and the medium is biaxial.

Gyrotropic media

These unsymmetric, uniaxial media which have been discussed in the previous
chapters, may be gyroelectric (magnetoplasmas) or gyromagnetic (ferrites), and the
respective tensors, " or �, depend on the external field, b, cf. (2.35). In the absence
of absorption these tensors are hermitian.

Magnetoelectric bianisotropic media

When placed in an electric or a magnetic field the medium becomes both polarized
and magnetized. Such a medium, in which the permanent electric dipoles also
have magnetic moments, was conceived by Tellegen [124] as the basis of a new
network element, the ‘gyrator’. The existence of bianisotropic magneto-electric
materials was predicted, on theoretical grounds, by Dzyaloshinski [50], and many
antiferromagnetic crystals, such as chromium oxide, as well as ferromagnetic
crystals like gallium iron oxide, have been found experimentally. Dzyaloshinski
indicated that in substances like antiferromagnetic chromium oxide, the 3�3 tensors
"; �; � and �, (2.20), would all have the same symmetry axis, which we shall take
as the z-axis, with � D �, yielding symmetric uniaxial bianisotropic constitutive
tensors of the form

K D
�
" �

� �

	
D KT (4.2)

with

" D
2
4" 0 0

0 " 0

0 0 "0

3
5 ; � D

2
4� 0 0

0 � 0

0 0 �0

3
5 ; � D

2
4
 0 0

0 
 0

0 0 
 0

3
5



4.1 Plane-stratified uniaxial media 117

In the discussion which follows we consider plane-stratified systems consisting
of uniaxial media, as in (4.1) and (4.2). If the direction cosines of the axis of symme-
try are . Obx; 0; Obz/, then the matrices "; � and �, (4.1) and (4.2), have the typical form

" D

2
64
Ob2
x"0 C Ob2

z " 0 Obx
Obz."
0 � "/

0 " 0
Obx
Obz."
0 � "/ 0 Ob2

x"C Ob2
z "0

3
75 D "T (4.3)

Moving media—the Lorentz bianisotropy

For a medium which is isotropic in the rest frame, i.e. ".0/ D "I.3/
; �.0/ D

�I.3/
; �.0/ D 0 D �.0/, then in the laboratory frame in which the medium is

moving with a velocity � in the x-direction, the electric and magnetic fields are
coupled by the relativistic Lorentz transformations. The constitutive tensor then
becomes bianisotropic [83, Sec. 2.3c]:

K D

2
6666666664

" � � W � � �
� "0 � W � � �


� � "0 W � 
 �
� � � � � � � � � � � � � � � � � � �
� � � W � � �
� � 
 W � �0 �
� �
 � W � � �0

3
7777777775
D KT (4.4)

with

"0

"
D �0

�
WD 1� �2"0�0

1 � �2"�
; 
 WD �

c2

c2"�� 1

1 � �2"�

It will be found convenient later to consider the constitutive tensor K also in
a coordinate-free representation. It may be shown [83, Sec. 2.3], [36, eqs. (8.13)–
(8.16)] that K has the form

K D
"

"0.I.3/ � O� O�T
/C " O� O�T


. O� � I.3/
/

�
. O� � I.3/
/ �0.I.3/ � O� O�T

/C � O� O�T

#
(4.4a)

with "0; �0 and 
 defined above. The operator O� O�T projects E (or H) onto the unit
vector O�I .I.3/ � O� O�T / gives the transverse (to O�) projection of E (or H):

Ek D O� O�T E; E? D .I.3/ � O� O�T /E

Insofar as we are dealing with stratified media, the simplest physical model
is to assume a gradient in the z-direction of the fluid-velocity vector, �D � Ox,
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which imposes a stratification on the system even when the constitutive parameters
are isotropic and constant in the local rest frame. In Chap. 7 we shall encounter
other types of media, viz. the compressible magnetoplasma and the isotropic chiral
medium.

4.1.2 Transformation of Maxwell’s equations

Suppose, for simplicity, that the medium is crystalline (anisotropic) or magnetoelec-
tric (bianisotropic), as in (4.1) or (4.2). The medium is assumed to be source-free
and to vary in the z-direction only. The axis of symmetry of the medium is assumed
to be parallel to the y D 0 plane, and the form of the 3�3 constitutive tensor is as in
(4.3). Maxwell’s equations, when Fourier analysed in the transverse (stratification)
plane, (2.27), with fields having harmonic, exp.i!t/, time dependence, yield (2.29)

L e.kt ; z/ WD ik0

�
cK � sxUx � syUy � i

k0

Uz
d

dz

	
e.kt ; z/ D 0 (4.5)

with kt D k0.sx; sy/ (2.26), where sx and sy , by Snell’s law, are constants of the
propagation.

The equation formally adjoint to (4.5) will be, as in (2.34) and (2.43),

L Ne.kt ; z/ WD ik0

�
cKT � sxU

T
x � syU

T
y C

i

k0

UT
z

d

dz

	
Ne.kt ; z/ D 0 (4.6)

with K D KT , (4.1–4.3), and Ui D UT
i .iD x; y; z/, (2.25). These two equations,

(4.5) and (4.6), are just those found for gyrotropic media, (2.30) and (2.34).
Assumption of a local plane-wave ansatz for e and Ne,

e˛.kt ; z/ D e˛.kt / exp.�ik0 q˛z/ Neˇ.kt ; z/ D Neˇ.kt / exp.ik0 Nqˇz/ (4.7)

yields eigenmode equations, as in (2.32) and (2.44),

L e˛ WD ik0ŒcK � sxUx � syUy � q˛Uz�e˛ D 0 (4.8)

NL Neˇ WD ik0

h
cKT � sxU

T
x � syU

T
y � NqˇU

T
z

i
Ne˛ D 0 (4.9)

Since K D KT and Ui D UT
i ; .i D x; y; z/, we conclude that

Nq˛ D qˇ and Neˇ.kt / D eˇ.kt / (4.10)

i.e. that the given and adjoint eigenmodes have the same polarization (unlike the
corresponding relations—(2.67) and (2.68)—in gyrotropic media), but different
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z-dependence (4.7). Application of the Lagrange identity (2.37) gives the modal
biorthogonality relation, cf. (2.50),

ONeT
˛ Uz Oeˇ D ı˛ˇsgn.˛/; ˛; ˇ D ˙1;˙2 (4.11)

and definition of modal amplitudes in the given and adjoint systems, as in (2.77),
leads finally to a relationship between the respective scattering matrices, S and S,

S
T
S D I.4/ D SS

T
(4.12)

as in (2.108).
We now introduce the reflection matrices Qi (i D x; y or z), which generate

reflection with respect to the x; y or z D 0 plane), (2.85) and (2.84),

Qi WD
�
qi 0

0 .det qi/qi

	
D
�
qi 0

0 �qi

	
D Qi

T D Qi
�1 (4.13)

where

qx WD
2
4�1 0 0

0 1 0

0 0 1

3
5 qy WD

2
41 0 0

0 �1 0

0 0 1

3
5 qz WD

2
41 0 0

0 1 0

0 0 �1

3
5

with qi D qi
T D qi

�1. The adjoint-reflection (conjugating) matrix, Qi , is similarly
defined

Qi WD Qi
NI D

�
qi 0

0 �.detqi/qi

	
D
�
qi 0

0 qi

	
D Qi

T D Qi
�1

(4.14)

and Qi D Qy D Qy
NI 
 Qc

y , when qi D qy , cf. (2.93). The term det qy D �1

has been inserted in the matrix Qy (4.13) (see the discussion in Sec. 2.4) since Qy

operates on a mixed polar-axial electomagnetic field e,

e0 WD
�

E0
H0
	
D Qy

�
E
H

	

 Qye (4.15)

and the sign (direction) of the mapped field

H0 D .detqy/qyH (4.16)

must be reversed under reflection (or inversion) when det q D �1. The adjoint
matrix, Qy , has been derived from Qy via the matrix NI (2.81) which reverses the
sign of H0, and hence of the Poynting vector, E0 � H0. In Sec. 2.4.2 we identified
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Qy D Qc as a (restricted-)time-reversal-cum-reflection operator, although it still
remains to be seen to what extent the adjoint fields are, in general, no more than
spatially-mapped time-reversed fields.

Now apply Qy D Q
�1

y to (4.9)

Qy
NLNe˛ D ŒQy

NLQy�Qy Ne˛ D ik0ŒcKC sxUx � syUy C q˛Uz�Qy Ne˛

D ik0

�
cKC sxUx � syUy C qc�˛Uz

�
ec�˛ D 0 (4.17)

since Ui .i D x; y; z/, (2.25), is transformed as

QyUxQy D �Ux; QyUyQy D Uy; QyUzQy D �Uz; Ui D Ui
T

.i D x; y; z/
(4.18)

and K, whose assumed structure is given by (4.2) and (4.3), is transformed as

QyKQy D K D KT (4.19)

We have identified the first result in (4.17), by analogy with (2.90), as the eigenmode
equation for the conjugate system, and comparison with (4.8) gives

� qc�˛ D q˛ D Nq˛I ec�˛.�sx; sy/ D Qy Ne˛.sz; sy/ (4.20)

as in (2.91). The relation between given and conjugate eigenvectors are depicted
in Fig. 2.2. Following the same analysis as in Sec. 2.5, we find the scattering
relation (‘reciprocity in k-space’), Sc D QS (2.112), relating outgoing to incoming
eigenmode amplitudes in the given and conjugate systems.

4.1.3 Reciprocity and equivalence in k-space

In the case of crystalline, anisotropic media, (4.1), we could have arrived at another
relation between eigenmodes in the two systems by operating with Qy on (4.8)

rather than with Qy on (4.9), i.e. by a straightforward reflection mapping without
time reversal:

QyLe˛ D ŒQyLQy� Qye˛ D ik0ŒcK � sxUx C syUy � q˛Uz� Qye˛ D 0 (4.21)

Maxwell’s equations in this reflected system are simplyh
cK � s0xUx � s0yUy � q 0̨Uz

i
e0̨ D 0 (4.22)

with

e0̨
�
s0x; s0y

�
D Qye˛.sx; sy/; q 0̨ D q˛; s0x D sx; s0y D �sy
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The modes e˛ and e0̌ in the given and reflected systems are no longer biorthogonal,

their amplitudes are not linked by a reciprocity relation, S D QSc
(2.112), but rather

by a simple equivalence relation, S D S0. [The term ‘equivalence’ is sometimes
used in another sense in electromagnetics. Two sources producing the same fields
within a region of space are said to be equivalent within that region [62, Sec. 3.5].
In the case of simple geometries, for instance, this is achieved by replacing current
or charge distributions induced on bounding surfaces of a region, by electric or
magnetic images outside that region.]

This equivalence via a reflection mapping could not have been achieved with a
magnetoelectric bianisotropic medium, with the symmetry axis in the y D 0 plane,
(4.2) and (4.3), since the reflected medium is different from the original medium:
the off-diagonal matrix � changes sign under reflection, and so

K D KT but QyKQy ¤ K (4.23)

However, under reflection and time reversal, the original medium, as we have seen
(4.19), is unchanged, i.e. QyKQy D K, which can be understood physically since �

relates E fields, which are even under reflection and under time reversal, to H fields
which are odd both under reflection and under time reversal. (We are using the term
‘odd under reflection’ to describe the property of a physically reflected axial vector
whose direction is opposite to that of its geometrical reflection. A polar vector, by
analogy, will be ‘even under reflection’.)

Another way of looking at these properties of magnetoelectric media is to recall
that these consist of elements or domains possessing both magnetic-dipole and
electric-dipole moments. Under reflection the magnetic dipoles are reversed, but
not the electric dipoles. When the reflected medium, however, is also time reversed,
the magnetic dipoles are restored to their original orientations.

We consider, finally, transformations of moving media, with the motion in the
x-direction, parallel to the stratification, and K given by (4.4). Because of the
higher degree of of spatial symmetry of the medium (cf. the discussion of Heading’s
mirrored modes, Sec. 3.1.4, in which the external magnetic field b is parallel to the
stratification), the medium can be mapped into itself by means of the reflection
matrix Qy , with qi D qy , (4.13), or the conjugating matrix Qx , (4.14), with
qi D qx . This can be seen by inspection if K is given by (4.4):

QyKQy D K; QxKQx D K D KT (4.24)

The first (reflection) transformation yields an equivalence relation, the second
(conjugating) transformation yields a scattering theorem. If the eigenmodes are
linearly polarized, parallel .k/ or perpendicular .?/ to the plane of incidence in the
free-space bounding medium, as in Fig. 3.1, the scattering theorem (2.112) becomes

Sc
.sx;�sy/ D QS.sx; sy/;

�
Rc
C Tc

�
Tc
C Rc

�

	
D
" QRC QTCQT� QR�

#
(4.25)
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Fig. 4.1 Given and conjugate linear modes for moving media. The velocity vector is in the
x-direction. ‘Plane stratification’ is provided by a velocity gradient in the z-direction.

where typically, cf. (3.19) and (3.20),

�
kRc
k
�˙ DkR˙k ;



kRc?

�˙ D?R˙k

?Tc?

�˙ D?T�? ;
�
?Tc
k
�˙ DkT�?

The given and conjugate eigenmodes are depicted in Fig. 4.1. (Compare these
conjugate eigenmodes with those formed by a conjugating transformation with
respect to the y D 0 plane, Fig. 3.1.)

The equivalence relation

S0.sx;�sy/ D S.sx; sy/ (4.26)

is analogous to that obtained with Heading’s mirrored modes, Sec. 3.1.4, but the
mirroring of modes is now with respect to the y D 0 plane (rather than the x D 0

plane in the case of Heading’s modes) in order to map the polar velocity vector—the
symmetry axis—into itself. When the electric wave vector is parallel to the plane
of incidence, the mirrored mode coincides with the conjugate mode, depicted in
Fig. 4.1. When the electric vector is perpendicular to the plane of incidence, its
direction is opposite to that of the corresponding conjugate eigenmode. Comparison
of (4.25) and (4.26) thus yields the specific symmetry of the scattering matrix
S.sx; sy/, in analogy with that derived in Sec. 3.1.4, cf. (3.32) and (3.33),
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?R˙k D �kR?̇ ; kTCk Dk T�k ; ?TC? D? T�? ; ?T˙k D �kT�? (4.27)

4.2 Unbounded media with sources

4.2.1 The bilinear concomitant vector at infinity

Consider the Maxwell system (2.21) for an electromagnetic field e.r/ generated
by, or associated with, a current distribution j.r/, that is confined to a finite region
of space

L e WD Œi!KCD� e.r/ D �j.r/ (4.28)

K, D; e and j are defined in (2.20), (2.22) and (2.23). The formally adjoint
equation, (2.41), for a second, confined current system, Nj.r/, and its associated field,
Ne.r/, may be written as

NL Ne WD Œi!KT �D� Ne.r/ D �Nj.r/ (4.29)

Application of the Lagrange identity

NeT L e � eT NLNe D r � P

or
� Ne � jC e � Nj D r � P D r � . NE �HC E � NH/ (4.30)

gives a reciprocity relation when integrated over all space, the divergence term
giving a surface integral (Gauss) at infinity:

Z
.e � Nj � Ne � j/d 3r D

Z
.E � NHC NE �H/ � dS (4.31)

For this result to be physically useful, we would require the right-hand side to
equal zero, and then be left with a relation between currents and fields. Indeed, if
e.r/ were to represent a single outgoing ‘eigenmode’ of the homogeneous equation,
L e D 0, at a point r on S , described by a locally-plane wave of the form e �
exp.�ik � r/, then Ne � exp.ik � r/ would give the spatial variation of the adjoint
field. In loss-free media this adjoint field would be simply the complex conjugate
of the original field, (cf. the discussion in Sec. 2.3.1), and the surface integral in
(4.31) would be no more than the net outward energy flow — a conserved, non-zero
quantity. Indeed, in Chaps. 2 and 3, we used the constancy of (the z-component of)
the integrand, the bilinear concomitant vector P, cf. (2.55) and (2.56), as the basis for
the ensuing discussion. Here, however, we would require the bilinear concomitant
vector, P, to be zero at a large distance from the source, or at least to give a zero
surface integral.
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4.2.2 The Lorentz-adjoint wave fields at infinity

To obtain a bilinear concomitant vector, P, with vanishing surface flux at infinity,
we could use the Lorentz-adjoint system, (3.120), described in Sec. 3.4,

L0e 
 NILe WD NI Œi!KCD� e.r/ D �NIj.r/ (4.32)

The formally adjoint system, (3.121), becomes

L.L/e.L/ 
 NL0e.L/ WD Œi!KT �DT
� NIT

e.L/ D �NIj.L/.r/ (4.33)

with DT DD and NIT D NI, (2.22) and (2.81). Comparison of (4.33) with (4.29)
indicates the simple relationship [cf. (3.132)] between the Lorentz-adjoint fields
and currents, e.L/ and j.L/, and the corresponding adjoint quantities, Ne and Nj,

e.L/.r/ D NI Ne.r/; j.L/.r/ D NI Nj.r/ (4.34)

with NI D NIT D NI�1
. Application of the Lagrange identity, (3.122), to (4.32) and

(4.33) yields

Qe.L/L0e � Qe NL0e.L/ D r � P.L/; P.L/ WD E.L/ �H � E �H.L/ (4.35)

and, on integration over all space,

Z �
�Qe.L/ NI jC Qe NI j.L/

�
d 3r D

Z
P.L/ � dS D

Z
.E.L/ �H�E�H.L// � dS (4.36)

To consider the behaviour of P.L/ at large distances from the source, we need
to know the behaviour of the fields E.L/ and H.L/. Premultiplication of (4.33) by NI
yields, as in (3.124),

Œi!K.L/ CD�e.L/ D �j.L/.r/; K.L/ WD NIKT NI (4.37)

This is just the Maxwell system, cf. (4.28), for fields and currents in a medium
described by the tensor K.L/, which could in fact represent a physical medium.
Suppose, for simplicity, that we restrict ourselves for the present to media which
may be anisotropic, but not bianisotropic. In anisotropic crystalline media, for
instance, the tensor K is symmetric, so that K.L/ D KT represents the original
medium. In magnetoplasmas or ferrites, K.L/ D KT represents a physical medium
in which the direction of the external magnetic field is opposite to that in the
given medium. Thus e.L/ (4.37) represents in principle a physical field, generated
in a physical (transposed) medium by a localized current distribution, j.L/.r/. The
constituent fields, E.L/ and H.L/, which appear in (4.35) and (4.36) therefore
describe ‘outgoing’ fields at large distances on S , as do of course the given fields, E
and H, in the given medium.
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The behaviour of the concomitant vector P.L/ at infinity may be inferred by
application of the so-called radiation condition [111, p. 189], [72, p. 429]. For
isotropic media this stipulates that the wave fields at a large distance r, measured
from any point within the region containing the localized current distribution, will
be of the form of an outgoing spherical wave

jej � exp.�ikr/

r
C O

�
1

r2

�
(4.38)

Mathematically this may be expressed in the form

lim
r!1 r

�
@A

@r
� ikA

�
D 0 (4.39)

where A represents any field component transverse to r, and k D !
p

"� [53, p. 87],
[83, p. 245]. In view of the local plane-wave nature of the fields as r ! 1, the
relation between E and H will be simply

Or � E D
r

�

"
H (4.40)

The normal component of the concomitant vector, P.L/ � Or (4.35), becomes
r

"

�
fE � .Or � E.L//� E.L/ � .Or � E/g � Or D 0 (4.41)

and the surface integral in (4.36), taken over a spherical surface of radius r ! 1,
vanishes identically for isotropic media.

For anisotropic or gyrotropic media the radiation condition stipulates outward
power flow (outward ray directions) at infinity, rather than ‘outgoing wave prop-
agation’ [53, p. 748]. At any point on the surface, S , more than one ray may
intersect, implying that a number of different eigenmodes, each with a local plane-
wave spatial variation, exp.�i k˛ � r/, may be superimposed. The directions of
the characteristic propagation vectors, k˛ , will in general differ from those of the
rays, and certainly from one another. Outgoing rays could also be associated with
backward, incoming waves .k˛ � Or < 0/. Application of the ‘radiation condition’ is
thus by no means a trivial problem. We shall show however in the next section that
here too the surface integral

R
P.L/ � dS will vanish as r!1.

4.2.3 Refractive-index surfaces for given and Lorentz-adjoint
eigenmodes

Consider local plane-wave solutions of (4.32) and (4.33) in the source-free .j D 0/

far field .r!1/. With the plane-wave ansatz

e.r/ � exp.�ik � r/ and e.L/.r/ � exp.�ik0 � r/
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we get

D e! �i

�
0 �k � I

k � I 0

	
e 
 �iKe D �iKT e

D e.L/ ! �iK0e.L/ D �iK0T e.L/

(4.42)

defining thereby the symmetric matrices K and K0, by means of which (4.32) and
(4.33) become algebraic equations:

L.k/e.k/ WD iŒ!K �K� e.k/ D 0 (4.43)

NL0.k0/e.L/.k0/ WD iŒ!K.L/ �K0� NI e.L/.k0/ D 0 (4.44)

Premultiplication of (4.44) by NI gives

iŒ!K.L/ �K0� e.L/.k0/ D 0 (4.45)

Suppose that the propagation vectors, k and k0, are in a specified direction, Ok

k D k Ok; K D k OKI k0 D k0 Ok; K0 D k0 OK

The eigenvalue equations for k and k0, with OK D OKT
, are seen from (4.43) and

(4.45) to be identical for anisotropic media in which K.L/ D KT :

detŒ!K � k OK� D 0; detŒ!KT � k0 OKT
� D 0 (4.46)

yielding quartic equations in k or k0 (as becomes evident if one of the coordinate
axes is taken in the direction of Ok). If, as in the present discussion, the media are not
bianisotropic, the quartic is in fact quadratic in k2, or in n2, where n is the refractive
index: k D nk0. This is easily seen if Œ!K � k OK� in (4.43) is premultiplied and
postmultiplied by NI, the only resultant change being a reversal of the sign of k. (For
cold magnetoplasmas this quadratic is just the Appleton-Hartree-Lassen formula
(1.58), derived in Chap. 1).

The two roots, k1
2 and k2

2, of the eigenvalue equation, with k˛ D �k�˛; ˛ D 1

or 2, will correspond to left- or right-handed modes, L or R, if the wave polarization
is elliptic or circular, and to ordinary or extraordinary, O or X, if the transverse
polarization is linear. As the linear polarization passes over continuously into
elliptic, the designation, O or X, is often retained in this range too. For a given wave
frequency, !, there will thus be two sets of k-surfaces (refractive-index surfaces),
one for each modal type or polarization, which will be symmetric with respect to
the origin, k D 0. The equality of the eigenvalues, k and k0 (4.46), means that
the refractive-index surfaces will be identical for the given and Lorentz-adjoint
wave fields (i.e. for local plane-wave solutions in the given and transposed media).
It should be noted that had our starting point been the adjoint equation (4.29),
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rather than the Lorentz-adjoint equation (4.33), we would have obtained the same
eigenvalue equation (4.46) with the plane-wave ansatz Ne � exp.ik � r/, thereby
justifying a remark made in Sec. 4.2.1 that the adjoint (as distinct from the Lorentz-
adjoint) far field would vary as an incoming plane wave. For a given value of k, i.e.
for a given point on one of the refractive-surfaces, the ray direction will be normal
to the surface at that point [33, Sec. 5.3], and conversely, for a given ray direction
we could generally have up to three wave-normal directions, Ok [33, Sec. 5.4].

It is necessary, at this stage, to specify physically acceptable behaviour of the
media at large distances. In the case of a magnetoplasma, characterized by an
external magnetic field which is generated by a localized current system outside
of the source region (in which we are interrelating currents and fields), the external
magnetic field tends to zero at infinity, and the medium becomes isotropic, with
consequences that were discussed in the last section.

In the case of anisotropic media, or gyrotropic media such as ferrites, we may
assume that beyond a certain large distance r0; .r > r0/, the medium becomes
homogeneous. In the case of ferrites this would require a constant magnetization. In
such a region the rays would travel in straight lines, and in the limit, r ! 1,
the outgoing ray directions would be normal to the spherical bounding surface
S at infinity .r � r0/. In other words, there would be a single outgoing ray
direction at each point on the bounding surface, but several local plane waves or
eigenmodes, with different values of k˛ , could be superimposed at that point. This
then is the form taken by the ‘radiation condition’ in anisotropic media. In view of
the previous discussion, we may infer that the same characteristic wave vectors will
also be present in the Lorentz-adjoint wave fields, i.e. k0˛ D k˛, although with
different relative intensities as determined by the localized current distributions,
j.L/.r/ ¤ j.r/, which generate the fields.

4.2.4 The bilinear concomitant vector in the far field

Let k˛ represent the propagation vector of one of the local plane-wave eigenmodes
(4.43) at a point r on S in the given problem, and k0ˇ , one of the corresponding
eigenmodes in the Lorentz-adjoint problem (4.44). Both have the same ray direction

in common. Then, with NIT D NI (2.81) and K0T D K0 (4.42), we obtain from (4.43)
and (4.44)

hNI e.L/

ˇ

iT

L.k/ e˛ � e˛
T NL0.k0/ e.L/

ˇ D �i
h
Qe.L/

ˇ
NIT

.K˛ CK0̌ /e˛

i

D �i
�

k˛ C k0̌
�
�
�

E˛ �H.L/

ˇ � E.L/

ˇ �H˛

�

D i
�

k˛ C k0̌
�
� P.L/

˛ˇ D 0 (4.47)
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We wish to show that this implies that the bilinear concomitant vector, (4.35),

P.L/

˛ˇ WD E.L/

ˇ �H˛ � E˛ �H.L/

ˇ (4.48)

vanishes for all ˛ and ˇ.
Note first that the possibility, k˛Ck0̌ D 0, is ruled out. If k0ˇ D �k˛, then there

is also a solution, k0ˇ D k˛ [see the discussion following (4.46)]. If both the given
and the Lorentz adjoint wave vectors generate outgoing ray directions, then clearly
k0̌ D k˛ is the relevant choice.

We now consider two other possibilities. In some media, such as magneto-
plasmas, the wave field vectors, E and H, will describe ellipses in the transverse
(to k) plane, while the electric vector will also have a longitudinal component.
The result is that E and H will move in ellipses in different planes, while the
instantaneous Poynting vector, E�H, will rotate along the surface of a cone, so that
only its mean direction (along the axis of the cone) will correspond to the direction
of the ray [104, p. 191]. The Lorentz-adjoint wave fields too, will move in different
planes, the H.L/

ˇ vector in a plane transverse to k0, the E.L/

ˇ vector in a tilted plane.
Consequently, each vector product on the right-hand side of (4.48) will change its
direction continuously, as would their difference, if not equal to zero. But in that
case (4.47) could not be satisfied at all times, unless P.L/

˛ˇ D 0.
The other possibility is that the Poynting vector for each mode is in a fixed

direction, the ray direction, Or, which would then also be the direction of the
concomitant vector, P.L/, with the wave fields, E˛ and H˛ , thus lying in a plane
normal to the ray direction, i.e. tangential to the bounding surface S . Application
of (4.47) would then imply that .k˛ C k0ˇ/ � Or D 0, requiring either that both wave
normals be perpendicular to the ray direction, or else that one of the wave normals
lie in the backward direction, k � Or < 0.

Now backward waves are indeed quite common in hot plasmas having spatial
dispersion, as for instance the cyclotron-harmonic Bernstein modes, but such media
are not treated here. If we then exclude the two ‘pathological cases’ just mentioned,
we may conclude that the concomitant vector for any pair of local plane waves, or
eigenmodes, vanishes identically at large distances:

P.L/

˛ˇ D 0; r!1 (4.49)

In all other cases we could solve our problem with the simple, if inelegant, device
of assuming that the medium is ‘slightly absorbing’ at infinity, i.e. that the k-vectors
have a small negative imaginary part. Then all outgoing field vectors, both given
and Lorentz-adjoint, will vanish at infinity, including the ‘pathological cases’ just
discussed. (Note, however, that the adjoint wave fields Ne (4.29), —as opposed to the
‘Lorentz-adjoint’ fields e.L/ (4.37) that we are now discussing—would blow up as
r ! 1 in absorbing media, and the concomitant vector P would remain constant,
as mentioned in Sec. 4.2.1.)
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If, finally, we consider the overall concomitant vector, P.L/ (4.35), on the
bounding surface S , in which the wave fields consist possibly of a number of
superimposed eigenmodes,

E.r/ D
X

˛

E˛.r0/ exp.�i k˛ � r/; E.L/.r/ D
X

ˇ

E.L/

ˇ .r0/ exp.�i k0̌ � r/

then the concomitant vector for each pair of eigenmodes, ˛; ˇ, in the cross products
(4.48), will vanish, and so

P.L/ D
X

˛

X
ˇ

P.L/

˛;ˇ D 0 (4.50)

The important consequence, from our point of view, will then be that (4.36) yields

Z
.QeNIj.L/ � Qe.L/NI j/d 3r 


Z ˚

E � J.L/

e �H � J.L/
m

� � .E.L/ � Je �H.L/ � Jm/
�

d 3r

D 0 (4.51)

which is the form of the Lorentz reciprocity theorem that will be generalized in this
chapter.

4.3 Boundary conditions at impedance walls

4.3.1 Surface impedance boundaries

One often encounters problems in which the currents and fields are confined to
bounded regions of space, enclosed or separated from other regions of space by
‘impedance walls’. On these walls it is sometimes possible to define a dyadic surface
impedance, Zs.rs/, that characterizes in an approximate way the relation between
the tangential electric and magnetic wave fields at that point, rs , on the surface
[53, p. 10]. In mixed vector-matrix notation this may be written as

On � E D ZsH D ZsHt with Zs On D 0 (4.52)

where On is an outward unit normal vector at rs on the surface S . When the
surface-impedance concept is applicable, it simplifies the solution of boundary-
value problems by circumventing the need to evaluate the fields beyond the surface
boundaries.

The formal structure of Zs , which operates only on the transverse component
of H, is

Zs D Zt ŒI
.3/ � On OnT

� (4.53)



130 4 Reciprocity in media with sources

where the matrix ŒI.3/ � On OnT
�, operating on any vector a, projects it onto the plane

transverse to On:

ŒI.3/ � On OnT
�a D at ; On � at D 0 (4.54)

The matrix Zt , operating on a vector in the plane transverse to On, produces another
vector in that plane. The surface impedance is a ‘scalar’ if Zt D Zt I

.3/, so that

Zs D Zt ŒI
.3/ � On OnT

�; Zs D Zs
T (4.55)

where Zt is a complex scalar impedance, and Ht is then in the direction of On � E.
In some cases such as, for instance, the problem of diffraction by a partially

conducting wedge [53, Sec. 6.6], whose surfaces satisfy ‘homogeneous boundary
conditions’, the separability of the solutions at the boundary requires that the surface
impedance increase linearly, or decrease inversely, as the distance from the linear
edge, depending on whether the electric or magnetic wave fields, respectively, are
parallel to the edge of the wedge [53, eqs. (4.3a) and (4.4a)]. The wall impedance
can take on a tensor character, even with (scalar) resistance walls. If the walls are
banded or corrugated, for instance, then a tangential electric field, Et , at an angle to
the bands or corrugation, will generate currents in a direction different to that of
the field.

We now examine the requirements on the dyadic (tensor) surface impedance for
Lorentz reciprocity to hold in the bounded region.

4.3.2 Surface impedance and its Lorentz adjoint

Consider the surface integral in (4.36)

Z
P.L/ � dS 


Z
.E.L/ �H � E �H.L// � On dS

D
Z
f. On � E.L// �H � . On � E/ �H.L/g dS (4.56)

at any point rs on the impedance surface. With the aid of (4.52), and a similar
relation for the Lorentz-adjoint wave fields,

On � E.L/ D Z.L/
s H.L/ with Z.L/

s On D 0 (4.57)

the right-hand side of (4.56) becomes, in matrix notation,

Z n
HT Z.L/

s H.L/ � eH.L/ZsH
o

dS D
Z

HT
h
Z.L/

s �ZT
s

i
H.L/dS
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with the second term in the integrand on the left transposed. The surface integral
vanishes identically if

Z.L/
s D ZT

s (4.58)

a relation which is satisfied if, for instance, the surface impedances are scalars, as
in (4.55).

In summary, we compare solutions of Maxwell’s equations within a volume V ,
bounded by a surface S . In a given medium with a constitutive tensor K.r/ and a
surface impedance Zs.rs/; .r 2 V; rs 2 S/, the fields and current distributions are
e(r) and j(r). In an associated Lorentz-adjoint problem in the same region, in which
‘physical’ fields propagate in the Lorentz-adjoint medium K.L/

.r/ bounded by a
surface impedance Z.L/

s .rs/, the fields and currents are e.L/.r/ and j.L/.r/. Then the
currents and fields will obey the Lorentz reciprocity relation, cf. (4.36) and (4.58),

Z
.Qe NI j.L/� Qe.L/NI j/d3r 


Z ˚

E � J.L/

e �H � J.L/
m

� � .E.L/ � Je �H.L/ � Jm/
�

d3r D 0

(4.59)
provided that (4.58)

Z.L/
s D ZT

s :

4.4 Uniaxial media with sources

In this section we consider uniaxial media containing sources (currents) and a
plane of symmetry with respect to a reflection transformation, R, or a conjugating
transformation, RT . We consider initially a gyrotropic magnetoplasma, where we
can clearly distinguish between the given and transposed media, K and KT

: We no
longer restrict ourselves to plane-stratified media, and so the external field b is not
necessarily constant, nor parallel to the symmetry plane.

4.4.1 Transformation of gyrotropic media with sources

Suppose that the plasma is spherically symmetric, i.e. the plasma parameters, such
as electron or ion densities and collision frequencies, are functions of the radial
distance r only. Let the plasma be immersed in a magnetic field generated by
a magnetic dipole at the origin parallel to the z-axis (see Fig. 4.2). This may
be considered as an idealized model of the earth’s ionosphere. Recalling that the
magnetic field is an axial vector, we note that z D 0 defines a plane of reflection
symmetry: the field b0 
 b.r0/ D b.x; y; �z/ in the lower half space, z < 0, is a
reflection of the field b.r/ 
 b.x; y; z/ in the upper half space, z > 0,

b0 
 b.r0/ 
 Rb.r/ D .det qz/qzb.r/ D �qzb.r/; r0 D qzr (4.60)
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Fig. 4.2 Mapping a
gyrotropic medium
(a magnetoplasma) into itself.
b is the external magnetic
field. Currents and fields in
the half-spaces y < 0 and
y > 0 are reciprocal. Those
in z < 0 and z > 0 are
‘equivalent’.

with, cf. (4.13),

qz WD
2
4 1 0 0

0 1 0

0 0 �1

3
5 ; b0 D .�bx;�by; bz/; r0 D .x; y; �z/

The y D 0 plane, on the other hand, is a plane of symmetry under RT , the
conjugating transformation. Time reversal changes the sign of b, so that

bc 
 b.r0/ 
 RT b.r/ D �.det qy/qyb.r/ D qyb.r/; r0 D qyr (4.61)

with qy , as in (4.13), given by

qy WD
2
41 0 0

0 �1 0

0 0 1

3
5 bc D .bx;�by; bz/; r0 D .x;�y; z/

Transformation of the gyrotropic dielectric tensor "fb.r/; rg in K.r/ (2.35), with
qz or qy , gives

qz"fb.r/; rgqz D ".b0; r0/; r0 D .x; y;�z/ (4.62)

or
qy"fb.r/; rgqy D ".�bc; r0/ D "T .bc; r0/; r0 D .x;�y; z/ (4.63)

with b0; bc; qy and qz defined above in (4.60) and (4.61).
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We consider next the transformation of the Maxwell system (4.28) by means of
the reflection operator Qz and the adjoint reflection operator Qy where, cf. (4.13)
and (4.14),

Qz D
�
qz 0

0 .detqz/qz

	
D
�
qz 0

0 �qz

	
;

Qy D
"
qy 0

0 �.detqy/qy

#
D
"
qy 0

0 qy

# (4.64)

In view of (4.62) and (4.63), we note that the constitutive tensor K.b, r/, (2.35),
transforms as

QzK.b, r/Qz D K.b0; r0/; r0 D qzr; b0 D b.r0/ D Rb.r/ (4.65)

QyK.b, r/Qy D NI K.�bc ; r0/ NI D KT
.bc; r0/ D KT fb.r0/; r0g

r0 D qyr; bc D b.r0/ D RT b.r/ (4.66)

To represent these results schematically we could specify that K.r/, in the first
quadrant in Fig. 4.2, represents the ‘given medium’; then the fourth quadrant would
contain the ‘reflected medium’, and the second quadrant, the conjugate (reflected
and time-reversed) medium. The medium in the third quadrant could similarly be
described as rotated (i.e. twice reflected) and time reversed. But we could, just as
well, have taken any part of the overall medium, or all of it—i.e. all of space—as
the ‘given medium’. In the latter case the reflected or conjugate media would also
extend over all space, and would coincide of course with the original medium in all
of space.

The transformation of the differential operator D
D.r/, (2.22) and (2.24),
requires special care. The operation QiDQi or QiDQi will change the sign of
some of the elements of the 6 � 6 matrix D.r/. However, the partial derivatives,
(2.24), in D will no longer operate on the given field e.r/ (2.23), but on the
transformed field,

e0.r0/ D Qi e.r/; r0 D qir .i D x,y or z/ (4.67)

The transformed field e0.r0/ has not only a different direction to that of the original
field e.r/, but a different spatial structure. Hence

QzD.r/Qz D Qz

�
Ux

@

@x
CUy

@

@y
CUz

@

@z

	
Qz

D
�
Ux

@

@x
CUy

@

@y
�Uz

@

@z

	

D
�
Ux

@

@x0
CUy

@

@y0
CUz

@

@z0

	

D D.r0/ (4.68)
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since r0 D qzr D .x; y; �z/. Similarly, with Qy D Qy
NI D NI Qy , (4.14), we have

QyD.r/Qy D NID.r0/NI D �D.r0/ (4.69)

as in (3.125), with r0 D qyr D .x; �y; z/.

Reflection mapping of the Maxwell system

The spatial symmetries of the medium just described, are expressed in the cor-
responding transformations of Maxwell’s equations. The reflection transformation
with respect to the z D 0 plane gives, with Qz D Q�1

z ,

QzL e.r/ D ŒQzLQz� ŒQze.r/�

D QzŒi!K.b, r/CD.r/�Qz �Qze.r/ D �Qzj.r/

or, with the aid of (4.60), (4.65), (4.67) and (4.68),

Œi!K.b0; r0/CD.r0/�e0.r0/ D �j0.r0/ (4.70)

with

e0.r0/ D Qze.r/; j0.r0/ D Qzj.r/; b0 
 b.r0/ D �qzb.r/; r0 D qzr

The reflected wave field, e0.r0/, and the reflected current distribution, j0.r0/, are thus
seen to satisfy Maxwell’s equations in the reflected medium, as expected.

Adjoint mapping of the adjoint system

Consider next the mapping of the adjoint quantities by means of the ‘adjoint
operator’ Qy . We premultiply the adjoint system (4.29)

NL Ne.r/ WD
h
i!KT fb.r/; rg �D.r/

i
Ne.r/ D �Nj.r/ (4.71)

by Qy D Qy
NI D NQ�1

y , and make use of NI D NI�1
, to obtain

QyŒNI NL NI� NI Ne.r/ D QyŒi!NI KT NICD.r/� NI Ne.r/ D �Qy
NI Nj.r/ (4.72)

Making use of (3.125) and (4.37), and recalling that Qy D Qy
�1, we see that this

is no more than a reflection mapping of the Lorentz-adjoint system,

QyŒi!K.L/
.r/CD.r/�Qy �Qye.L/.r/ D �Qyj.L/.r/ (4.73)
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To perform the reflection mapping it is convenient to revert to (4.72), and with the
aid of (4.66) and (4.69) this becomes

Œi!NI K.bc ; r0/NICD.r0/�ec.r0/ D �jc.r0/; r0 D qyr; bc WD RT b.r/ D b.r0/
(4.74)

with ec.r0/ and jc.r0/, the conjugate fields and currents, satisfying Maxwell’s
equations in the conjugate medium

Kc
.r0/ 
 NIK.bc; r0/ NI D QyK

.L/
.r/Qy (4.75)

Comparison with (4.73), together with (4.34), gives

ec.r0/ D Qye.L/.r/ D Qy Ne.r/; jc.r0/ D Qyj.L/.r/ D Qy
Nj.r/ (4.76)

We draw attention to our use of NI K.bc ; r0/NI to define the conjugate medium, rather
than K.bc ; r0/. The two tensors are identical as far as gyrotropic or other anisotropic
media are concerned. They will differ however for bianisotropic media, in the same
way that the adjoint and the Lorentz-adjoint media, discussed in Sec. 3.4.1, differed
from one another. This particular formulation will later be seen to be consistent
with our definition of the conjugate medium as derived from a reflection-cum-time-
reversal transformation.

Adjoint mapping of the Maxwell system

We finally apply the adjoint operator Qy to the given (Maxwell) system, rather than
to the adjoint system,

ŒQy L Qy�Qy e.r/ 
 QyŒi!K.b, r/CD.r/�Qy �Qye.r/ D �Qyj.r/

and obtain with the help of (4.66) and (4.69)

Œi!NI KT
.bc; r0/ NI �D.r0/� Ne0.r0/ D �Nj0.r0/ (4.77)

which is just the adjoint equation for the conjugate medium. We may thus identify
Ne0 and Nj0 with the adjoint conjugate quantities, Nec and Njc

, and remembering that
Qi D NI Qi we find, with (4.67),

Ne0.r0/ 
 Nec.r0/ D Qy e.r/ D NI e0.r0/; Nj0.r0/ 
 Njc
.r0/ D Qy j.r/ D NI j0.r0/

(4.78)

representing adjoint fields and currents in the transposed conjugate medium,NIKT
.r0/NI D Kf�b.r0/; r0g.

Some of the mappings described in this section are illustrated in Fig. 4.3, in
which a current distribution, j.r/ D ŒJe.r/; Jm.r/�, in the first quadrant of the model
magnetoplasma, is mapped into the other three quadrants.
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Fig. 4.3 Mapping of electric
and magnetic currents. Each
current is shown with parallel
and perpendicular
components with respect to
the y � z plane. Currents are
mapped from one quadrant to
another by means of Qi or

Qi . If a ‘quadrant’ includes
all of space, then ‘another
quadrant’ will include all of
space too.

4.4.2 Notation and some concepts summarized and systematized

It will be convenient to pause at this stage, in order to summarize and systematize
some of the concepts and the notation we are using. For the sake of completeness
we shall anticipate some results that will be derived in later chapters.

• e(r) and j(r) are wave fields and currents that obey Maxwell’s equations in a
given medium characterized by a constitutive tensor K.r/ (4.28).

• e0.r0/; j0.r0/ and K0.r0/ are derived by mapping (reflecting, rotating or inverting)
the above wave fields, currents and constitutive tensor from a region V .r 2 V /

into a region V 0 .r0 2 V 0/ in which they too satisfy Maxwell’s equations.
(The regions V and V 0 may overlap or be distinct.) In the case of reflection
transformations, cf. (4.65), (4.67), (4.68) and (4.70)

K0.r0/ D QiK.r/Qi ; D.r0/QiD.r/Qi ; e0.r0/ D Qie.r/;

r0 D qir .i D x; y or z/
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• Ne.r/; Nj.r/ and NK.r/ 
 KT
.r/; .r 2 V /, are the adjoint fields and currents, and

the adjoint medium, which obey the adjoint Maxwell equations, derived from the
given Maxwell equations by a change of sign of the differential operators and
transposition of the constitutive tensor (4.29). If the currents are ‘physical’, then
the fields will be ‘unphysical’, insofar as they obey a non-physical, adjoint set
of equations. The transposed tensor KT

.r/ may be physically realizable, but will
differ in general from that in the original medium.

• e.L/.r/ and j.L/.r/ are the Lorentz-adjoint (Lorentz-reversed) fields and currents
which obey the physical Maxwell equations in the Lorentz-adjoint medium,
K.L/

.r/ 
 NI KT NI (4.37). They are related to the adjoint fields and currents by
the operator NI, which reverses the direction of the Poynting vector (3.127) and
(4.34): e.L/.r/ D NI Ne.r/ and j.L/.r/ D NI Nj.r/. All quantities—fields, currents
and the constitutive tensor—are related to the corresponding quantities in the
given medium by straightforward time reversal: e.L/.r/ D T e.r/; K.L/

.r/ D
T K.r/ : : :

• ec.r0/ and jc.r0/, the conjugate wave fields and currents, are derived by reflection
mappings of the Lorentz-adjoint fields and currents (4.76),

ec.r0/ D Qie.L/.r/ D Qi
NI Ne.r/ D Qi Ne.r/; jc.r0/ D Qi

Nj.r/;

and obey the physical Maxwell equations in the reflected Lorentz-adjoint
medium, Kc

.r0/DQi ŒNI KT
.r/ NI�Qi DQiK

T
.r/Qi , (4.37) and (4.75). If the

medium is not bianisotropic, the conjugate medium is then the reflected,
transposed medium treated in previous chapters. All conjugate quantities—
fields, currents and the constitutive tensor—are derived from the corresponding
quantities in the given medium by a reflection-time-reversal transformation,
ec.r0/ D RT e.r/; Kc

.r0/ D RT K.r/. The conjugate quantities are particularly
useful when the medium is self-conjugate, i.e. when the medium has a plane of
conjugation symmetry, so that we may then derive relations between currents and
fields in the same medium. In Chap. 6 the concept of a conjugate medium, and
of conjugate fields and currents, will be generalized to include any orthogonal
mapping of the Lorentz-adjoint medium and of the Lorentz-adjoint fields and
currents.

• Ne0.r0/ and Nj0.r0/ represent adjoint mappings of the given Maxwell fields and
currents (4.78),

Ne0.r0/ 
 Nec.r0/ D Qy e.r/ D NI e0.r0/ Nj0.r0/ 
 Njc
.r0/ D Qyj.r/ D NI j0.r0/

They obey the adjoint Maxwell equations in the conjugate medium, QKc
.r0/ D

K.�bc; r0/ (4.75). The current Nj0.r0/ D NI j0.r0/ D �
J0e.r0/; �J0m.r0/

�
(4.78)

is physically realizable, insofar as the constituent sources, J0e.r0/ and J0m.r0/,
are independent. In the derivation of reciprocity relations in the next section,
it will be useful to consider the Maxwell fields generated by the currents Nj0 in the
conjugate medium.
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4.4.3 Lorentz reciprocity in media with spatial conjugation
symmetry

Suppose that e1.r/ and j1.r/ satisfy Maxwell’s equations (4.28) in the given
gyrotropic medium K.b, r/, and specifically in the first quadrant in Fig. 4.2. Let
ec

2.r
0/ and jc

2.r
0/ satisfy the equations in the conjugate medium which, as we recall,

is a reflection mapping of the Lorentz-adjoint medium, (4.37) and (4.75),

Kc
.bc; r0/ D Qy ŒNI KT

.b, r/NI� Qy 
 QyK
.L/

.r/Qy (4.79)

which in our case would be the given medium in the second quadrant of Fig. 4.2,
with bc 
 b.r0/ D qyb.r/ and r0 D qyr (4.61):

L.r/ e1.r/ WD Œi!KT
.b, r/CD.r/� e1.r/ D �j1.r/ (4.80)

L.r/ ec
2.r
0/ WD Œi!Kc

.bc; r0/CD.r/� ec
2.r
0/ D �jc

2.r
0/ (4.81)

Now apply the reflection operator Qy to (4.81), noting from (4.79) with Qy D
Q�1

y that K.L/
.r/ D QyK

c
.r0/Qy , and hence

QyL.r0/ec
2.r
0/ D ŒQyL.r0/r0 Qy� Qy ec

2.r
0/ D �Qy jc

2.r0/

or
Œi!K.L/

.r/CD.r/� ec0

2 .r/ D �jc0

2 .r/ (4.82)

where, cf. (4.37),

ec0

2 .r/ WD Qyec
2.r0/ D e.L/.r/; jc0

2 .r/ WD Qy jc
2.r0/ D j.L/.r/ (4.83)

We have here identified the reflected conjugate fields and currents as the correspond-
ing Lorentz-adjoint quantities, e.L/.r/ and j.L/.r/, but it will be convenient to retain
the usage of (4.82) in order to emphasize that they are physical fields and currents,
derived from the physical fields and currents in the conjugate medium by a reflection
mapping. Now the Maxwell fields and currents in the given medium [in the present
case e1.r/ and j1.r/], and the Maxwell fields in the Lorentz-adjoint medium [in the
present case ec0

2 
 e.L/
2 .r/ and jc0

2 
 j.L/
2 .r/], are related in general by a Lorentz-

reciprocity theorem (4.51)

Z �
Qe1
NI jc0

2 � Qec0

2
NI j1

�
d 3r D 0 (4.84)

We now cast the the second term in the integrand, a scalar (invariant), into a different
form, by mapping it with the aid of (4.14) and (4.67), into the conjugate space,
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Qec0

2 .r/NI j1.r/ D Qec
2.r0/ QQy

NI j1.r/ D Qec
2.r
0/NI Qy j1.r/ D Qec

2.r
0/NI j01.r0/ (4.85)

so that (4.84) becomes finally, in mixed vector-matrix notation,

Z
e1 � NI jc0

2 d 3r D
Z

ec
2 � NI j01 d 3r 0 (4.86)

This reciprocity relation may be expressed in compact form as an equality between
the two inner products of the given wave fields, e1 and ec

2, and the adjoint reflected
sources,

NI jc0

2 .r/ 
 Qyjc
2.r
0/ and NI j01.r0/ 
 Qyj1.r/;

D
e1; NI jc0

2

E
D
D
ec

2;
NI j01
E

(4.87)

In terms of the constituent wave fields and currents, (4.86) becomes

Z 

E1 � Jc

e2
0 �H1 � Jc

m2
0�d 3r D

Z 

Ec

2 � J0e1 �Hc
2 � J0m1

�
d 3r 0 (4.88)

Using terminology due to Rumsey [106], we could describe the result (4.87) by
stating that the reaction of the source j1 (through its field e1) on the source jc0

2 , equals
the reaction of the source jc

2 (through its field ec
2) on the source j01.

If the two sources, j1 and jc0

2 , are denoted abstractly as a and b, and the reflections
of these sources, j01.r0/ D Qyj1.r/ and jc

2.r
0/ D Qyjc0

2 .r/, as a0 and b0, then (4.87)
may be written in the form

ha; bi D hb0; a0i (4.89)

i.e. the reaction of (the field of) the source a on the source b, equals the reaction
of (the field of) the reflected source b0 on the reflected source a0 in the conjugate
medium. (The fact that jc0

2 .r/! b has been taken as the ‘primary’ or ‘given’ source,
and jc

2.r
0/! b0 as the secondary, reflected source, is just a matter of convenience).

With (4.89) expressed in terms of the currents

ja WD j1.r/; jb WD jc0

2 .r/; ja0 WD j01.r0/; jb0 WD jc
2.r0/ (4.90)

the Lorentz reciprocity theorem, in terms of inner products, becomes

hea; NI jbi D heb0 ; NI ja0i (4.91)

where ea and eb0 are the (physical) Maxwell fields generated by ja and jb0

respectively. These results are illustrated schematically in Fig. 4.4. Their physical
significance will be discussed in Sec. 4.5.
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Fig. 4.4 Reciprocity and
equivalence between given
and mapped currents and
fields. eb0 and eb00 are the
Maxwell fields generated by
the sources b0 and b00 . Each
current source, symbolized by
a single arrow, is a 6-element
column representing two
independent current
distributions of different
types. The external magnetic
field is represented by curved
dashed lines.

Equivalence of given and reflected systems

In the discussion of the reflection mapping of the Maxwell system, Sec. 4.4.1, it
was noted that the reflected wave field, e0.r0/, and the reflected current distribution,
j0.r0/, satisfy Maxwell’s equations (4.70) in the reflected medium. In the symmetric
magnetoplasma model of Fig. 4.4, the current distributions, ja.r/ and jb.r/, and
the field, ea.r/, are mapped by reflection into j0a.r0/; j0b.r0/ and e0a.r0/, where
typically (4.70)

j0a.r0/ D Qzja.r/; e0a.r0/ D Qz ea.r/; r0 D qzr

With the aid of these transformations, and with Qz D Qz
T D Qz

�1, we find the
reaction between the two sources in the given and reflected media,

ha; bi D hea; NI jbi D
Z

ea
T .r/NI jb.r/ d 3r

D
Z

e0a.r0/Qz
T �Qz

NI j0b.r0/ d 3r


 he0a; NI j0bi
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which is just the reaction of the (field of the) reflected source ar on br ,

ha; bi D har ; bri (4.92)

The given and reflected current distributions and fields are said to be equivalent.
The equivalence relation (4.92) is illustrated in Fig. 4.4. We note also that the
(Lorentz-)adjoint reflected system in quadrant 2 is equivalent to the adjoint-rotated
(twice-reflected) system in quadrant 3. We consider next some of the consequences
of the reciprocity and equivalence relations just derived.

4.5 Some consequences of Lorentz reciprocity

4.5.1 Media with symmetric constitutive tensors

In order to appreciate the features specific to Lorentz reciprocity in media possessing
spatial symmetries, we shall first consider some of the consequences of the theorem
in media with symmetric, but not bianisotropic, constitutive tensors, " and �, so
that the Lorentz-adjoint media (4.37) and the given media coincide. We repeat the
formalism of the previous section, although it may appear somewhat cumbersome
in the present context, in order to highlight the common features.

Suppose that the current distribution ja.r/ and the field ea.r/ satisfy Maxwell’s
equations in the given medium, and that jb.r/ and eb.r/ satisfy the same (physical)
equations in the Lorentz-adjoint medium, which in the present case coincides with
the given medium. The Lorentz reciprocity theorem (4.91) takes the form

Z
.ea � NI jb � eb � NI ja/ d 3r D 0 (4.93)

as in (4.86). This may be written, in terms of inner products, in the form

hea; NI jbi D heb; NI jai (4.94)

and in terms of the constituent wave fields and currents, as

Z
.Ea � Je;b �Ha � Jm;b/ d 3r D

Z
.Eb � Je;a �Hb � Jm;a/ d 3r (4.95)

With the sources, ja and jb , denoted abstractly as a and b, (4.94) takes the form,
cf. (4.89),

ha; bi D hb; ai (4.96)

i.e. the reaction of (the field of) the source a on the source b, equals the reaction of
(the field of) the source b on the source a.
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4.5.2 Lorentz reciprocity for antennas

Suppose now, for simplicity, that the sources are electric currents, I1 and I2, flowing
in isolated wires or antennas. The reciprocity theorem (4.95) reduces to

Z
.E2 � Je1 � E1 � Je2/ d 3r D 0 (4.97)

Consider now an elementary length of wire dl, of cross-section �a (whose
normal is parallel to dl, which is taken in the direction of the current, I ). Then

Je d 3r ! .Je ��a/ dl D I dl

and (4.97) becomes Z
I1E2 � d l1 D

Z
I2E1 � dl2 (4.98)

where dl1 and dl2 are measured along the antenna wires, 1 and 2, respectively.
The simplest application is to elementary dipole antennas of lengths �l1 and

�l2, situated at ri (i D 1 or 2), in which uniform currents I1 or I2 flow. The
equivalent current density is then

Je;i .r/ D Ii �li ı.r � ri / (4.99)

in terms of the three-dimensional Dirac delta function. We could imagine the an-
tennas to be terminated by two small spheres or discs on which charges˙q D ˙q0

exp.i!t/ accumulate, from which it may be seen that our elementary antennas are
equivalent to Hertzian dipoles of moments

pi WD q �li with I �li D dq

dt
�li D i!pi

If I1 D I2 D I , then (4.99) in (4.98) gives

I.E2 ��l1 � E1 ��l2/ D 0

or
E12 D E21 (4.100)

which states that the EMF, E12, induced in �l1 by the the current I in �l2, equals
the EMF, E21, induced in �l2 by the same current I in �l1; in other words, in
a pair of elementary dipole antennas, one transmitting and one receiving, equal
EMF’s are induced by equal currents when the roles of transmitter and receiver
are interchanged.
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Fig. 4.5 Voltages and currents in thin-wire transmitting and receiving antennas.

We consider next two representative types of antenna configurations: a straight
wire transmitting (receiving) antenna with a pair of input (output) terminals, and an
arbitrary closed-wire (loop) antenna, containing similarly a terminal pair (Fig. 4.5).

When the antenna is used as a transmitter, an input voltage V.0/ causes a current
I.s/ to flow at a point s, measured along the antenna from the terminals at s D 0.
(An elementary length of arc along the antenna is denoted by the vector ds, which
is tangential to the wire at that point. In the open linear antenna, the values of s in
the lower half are taken as negative.) The ratio of the applied voltage at the input
terminals to the current at s, defines a transfer impedance, Z0s [77, p. 348],

Z0s D V.0/=I.s/ (4.101)

and the current at the terminals is determined by the antenna input impedance,
ZA 
 Z00,

I.0/ D V.0/=ZA (4.102)

When the antenna is used as a receiver, an incident wave field at s; Ei .s/, induces
an EMF, Ei .s/ � ds, in an element ds of the antenna, and this causes a current dIs:c:
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to flow at the output terminals when they are short-circuited. It will be convenient
in the discussion that follows to consider the element ds as a second ‘port’, which
has been short-circuited in the transmitting antenna, and which has been connected
to a zero-impedance voltage source, Ei .s/ �ds, in the receiving antenna. The applied
EMF and current are related by the transfer impedance, Zs0,

Zs0 D Ei .s/ � ds
dIs:c:

(4.103)

Now a fundamental reciprocity theorem concerning circuits composed of linear
impedances [77, p. 346–347], formulated originally by Rayleigh, states that

Z0s D Zs0 (4.104)

which gives, in the present context,

V.0/

I.s/
D Ei .s/ � ds

dIs:c:

and the short-circuited current may be integrated to give

Is:c: D 1

V.0/

Z
I.s/Ei .s/ � ds (4.105)

Knowing the short-circuit current and the terminal impedance, we may apply
Thévenin’s equivalent network theorem [52, pp. 46–48], [77, p. 353], to obtain the
open-circuit voltage at the terminals:

Vo:c: D �Is:c:ZA D � ZA

V.0/

Z
I.s/Ei .s/ � ds

D �
Z

I.s/

I.0/
Ei .s/ � ds (4.106)

which is a weighted sum of the induced elementary EMF’s Ei � ds.
Consider now two arbitrary antennas, 1 and 2. We let one serve as a transmitter

and the other as a receiver, and then reverse their roles. In the first instance a current
distribution I1.s1/ in antenna 1 (with a value I1.0/ at the terminals) generates a field
E1.s2/ at the second antenna. In the second instance a current distribution I2.s2/ in
antenna 2, with I2.0/ at the terminals, generates a field E2.s1/ at 1.

The open-circuit voltages generated in each case at the receiving antenna
terminals will be, by (4.106),
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V .2/
o:c: D

1

I2.0/

Z
I2.s2/E1.s2/ � ds2

V .1/
o:c: D

1

I1.0/

Z
I1.s1/E2.s1/ � ds1

(4.107)

Application of (4.98) to (4.107) then yields the result that the same input current
in either antenna, I1.0/ D I2.0/, induces the same open-circuit voltage in the other
antenna:

V .1/
o:c: D V .2/

o:c: when I2.0/ D I1.0/ (4.108)

It can similarly be shown by straightforward application of Thévenin’s theorem
that, if a voltage V.0/ applied to the terminals of antenna 1 produces a short-circuit
current Is:c: in antenna 2, then an equal voltage applied to 2 will produce an equal
short-circuit current in 1:

I .2/
s:c: D I .1/

s:c: when V1.0/ D V2.0/ (4.109)

Eqs. (4.108) and (4.109) are simple and useful expressions of Lorentz reciprocity in
isolated wire antennas.

Equality of directional patterns

A number of important receiving and transmitting characteristics of an antenna can
be shown to be identical with the aid of the reciprocity theorem. Such relations are
proved in many standard texts [28, Sec. 35], [77, Chap. 11], [43, Chap. 4], and will
be mentioned only briefly here. However, attention will be drawn specifically to the
directional properties of receiving and transmitting antennas, insofar as the relation
between them will be modified in anisotropic media, and reciprocity between them
will be restored only by some mapping transformation.

The directional pattern of a transmitting antenna indicates the relative strength
of the radiated field at a large fixed distance in different directions in space. The
directional pattern of a receiving antenna indicates the relative response of the
antenna to an incident locally plane wave field of constant intensity from different
directions. The directional pattern of an antenna in a homogeneous anisotropic
medium, in contrast to the situation in free space, will depend on the orientation
of the antenna in the medium, i.e. on its orientation with respect to the principal
axes of the constitutive tensor.

The directional pattern of a transmitting antenna can be measured, in principle,
by means of a short exploring dipole antenna moved about on, and tangential to, the
surface of a large sphere centred at the antenna under test, and oriented in a direction
parallel to the radiated electric field at the point of observation. (If the radiated field
is elliptically polarized, two separate measurements would have to be made, with the
dipole antenna oriented consecutively parallel and then perpendicular to the major
axis of the polarization ellipse.) For a given voltage, V.0/, applied to the antenna
being tested, the current Is:c: induced to flow in the short dipole antenna, will be
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a measure of the electric field radiated in that direction. If the same voltage, V.0/,
is now applied to the dipole antenna, the same short-circuit current Is:c: will flow
in the test antenna, in accord with (4.109), and this in turn will be a measure of its
directional response as a receiving antenna. The equality of the short-circuit currents
in the two cases thereby establishes the equality of the directional properties of the
antenna as a receiver and as a transmitter.

The effective length

The effective length `
.trans/
eff of a linear transmitting antenna, (assumed to lie parallel

to the z-axis), is the length of an equivalent antenna in which a current I.0/ (the
terminal current in the given antenna) flows at all points, z, along its length, and that
radiates the same far field as the given antenna in a direction perpendicular to its
length [77, p. 351]. Then

`
.trans/
eff D 1

I.0/

Z
I.z/ d z (4.110)

where I.z/ is the actual current at z in the transmitting antenna.
The effective length of a receiving antenna, `

.rec/

eff , is such that an incident field Ei ,
parallel to, and constant along the length of an equivalent linear antenna, induces an
open-circuit voltage,

Vo:c: D �Ei `
.rec/
eff (4.111)

equal to that induced in the given antenna. But, as shown in (4.106), the open-circuit
voltage induced in the receiving antenna by a constant electric field, Ei .z/ D Ei D
const., is

Vo:c: D � 1

I.0/

Z
I.z/Ei.z/d z D � Ei

I.0/

Z
I.z/d z D �Ei `

.trans/
eff (4.112)

using (4.110). Hence, comparing (4.111) and (4.112), we find

`
.rec/
eff D `

.trans/
eff (4.113)

Directivity (gain) and effective area

The ‘receiving cross section’ or effective area, Ar , of a receiving antenna which is
matched to its terminating load is defined [28, Sec. 37], [43, Sec. 4.4] as the ratio
of the maximum power that can be absorbed by the receiver in its most favorable
orientation to the incident power flux. (It is assumed that the polarization of the
incoming radiation is that which gives maximum received power.) The directivity
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or gain, G, of a transmitting antenna is the ratio of the power flux radiated in the
optimal direction to the mean radiated power flux averaged over all directions. For
a given free-space wavelength, 	0, it can be shown that the effective area of the
antenna as a receiver is proportional to its gain as a transmitter [28, Sec. 37], [43,
Sec. 4.4],

Ar D 	0

4�
G (4.114)

4.5.3 Reciprocity relations for antennas in anisotropic media

Let a and b, in the first quadrant of Fig. 4.4, represent antennas in which electric
currents, I .a/.sa/ and I .b/.sb/, flow. Then a0; b0 and ar ; br represent reflected
antennas and current distributions in the reciprocal medium, quadrant 2, and in
the equivalent medium, quadrant 4, respectively. a00 and b00 represent the rotated
antennas and currents in the reciprocal medium in quadrant 3.

With the aid of (4.107) we may write down the induced open-circuit voltage,
V

.b/
o:c: , induced in antenna b by the field Ea.sb/, which is generated by the current

I .a/ in antenna a:

V .b/
o:c: D �

1

I .b/.0/

Z
I .b/.sb/Ea.sb/ � dsb (4.115)

I .b/.sb/ is the current which flows in b when used as a transmitter, and the ratio
I .b/.sb/=I .b/.0/ serves as a weighting factor for the elementary induced voltages
Ea.sb/ � dsb . Note that in the derivation of (4.115) we have assumed that the
theorem of network reciprocity, and in particular the result, Z0s DZs0 (4.104), is
still valid when the antenna circuit is immersed in a non-reciprocal medium, such
as a magnetoplasma.

The open-circuit voltage, V
.a0/

o:c: , induced in a0 by a current I .b0/.sb0/ in b0, is given
similarly by

V .a0/
o:c: D �

1

I .a0/.0/

Z
I .a0/.sa0/Eb0.sa0/ � dsa0 (4.116)

Now the Lorentz reciprocity theorem (4.91),

hea; NIjbi D heb0 ; NIja0i
when applied to electric currents in antennas, becomes

Z �
Ea � J.b/

e � Eb0 � J.a0/
e

�
D 0 (4.117)

or, as in (4.98),

Z
I .b/.sb/Ea.sb/ � dsb D

Z
I .a0/.sa0/Eb0.sa0/ � dsa0 (4.118)
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Fig. 4.6 Directional patterns
of given and mapped
antennas.

Since the currents in a and in a0, as well as in b and in b0, have been assumed
to be reflections of each other in the y D 0 plane, i.e. I .a/.sa/ D I .a0/.sa0/ etc.,
we may replace I .b/.0/ by I .b0/.0/ in (4.115), and I .a0/.0/ by I .a/.0/ in (4.116).
Hence, comparing (4.115) with (4.118), we see that if an input current in a produces
an open-circuit voltage in b, then the same input current in b0 will produce the
same open-circuit voltage in a0. This then is the expression of Lorentz reciprocity
in an anisotropic (gyrotropic) medium, with the roles of receiver and transmitter
interchanged in the mapped (reflected) antennas.

Equality of directional patterns

The results just obtained, when applied to the analysis of the directional properties of
an antenna by means of a second, probing antenna, used alternatively as a transmitter
and as a receiver (see the previous section), lead to the conclusion that the directional
pattern of a transmitting antenna a in a gyrotropic medium, quadrant 1 in Fig. 4.6,
is a reflection with respect to the y D 0 plane of the directional pattern of the
reflected antenna, a0, in the conjugate (reciprocal) medium, quadrant 2, when used
as a receiver. The directional characteristic of the reflected antenna, ar , on the other
hand, situated in quadrant 4 in Fig. 4.6, when used as a transmitter, is a reflection
with respect to the z D 0 plane of the pattern of the given transmitting antenna in
quadrant 1.
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Other reciprocal properties, mentioned in the previous section may be demon-
strated analogously. The equivalent length of a linear transmitting antenna is equal
to the equivalent length of the reflected receiving antenna in the conjugate medium.
The receiving cross section or effective area of a receiving antenna equals a constant,

	2

0=4�
�
, times the directivity or gain of the reflected antenna in the conjugate

medium, cf. (4.114).
These and other examples of reciprocity relations between sources and fields in

non-reciprocal media, in which Lorentz-type reciprocity is recovered by orthogonal
mappings of the sources and fields into a correspondingly mapped and time-
reversed (conjugate) medium, have been discussed in a number of papers by Altman,
Schatzberg and Suchy [8, 9, 11, 108, 121].

4.5.4 Antennas in the magnetic meridian plane

Let us suppose the parameters of the medium (the plasma) and the external magnetic
field to have conjugation symmetry with respect to the y D 0 plane. Thus we could
be considering the axisymmetric model discussed in the previous sections, in which
any plane containing the symmetry axis (the magnetic dipole axis) could be taken as
the conjugation symmetry plane. The dipole magnetic field would then be parallel
to the plane at all points on it. We call such an arbitrarily chosen plane of reference,
the ‘magnetic meridian plane’. If this model is conceived as an idealization of the
earth’s ionosphere, then any vertical north-south plane could be considered to be
the magnetic meridian plane, which would be the plane of conjugation symmetry.
For propagation problems over distances which are short in comparison with the
earth’s radius, or the characteristic radius of curvature of the magnetic field lines,
the medium could be regarded as plane stratified, and the local magnetic north-south
vertical plane would be the magnetic meridian plane, as in Chaps. 2 and 3. We now
consider the consequences of Lorentz reciprocity for a pair of antennas located on
such a magnetic meridian plane, in a plane-stratified medium.

• If both antennas are parallel to the magnetic-meridian plane on which they are
located, then each antenna is a reflection of itself with respect to this magnetic-
meridian, conjugation plane. A reciprocity relation will then exist between the
given pair of antennas and the reflected pair (Sec. 4.5.3), i.e. the same applied
voltage in one antenna induces the same short-circuit current in the second, when
the roles of transmitter and receiver are interchanged.

• If both antennas are perpendicular to the magnetic meridian plane on which they
are located, then each antenna current is reversed in direction on reflection, i.e.
the applied and induced currents are phase shifted by � , which is just the original
situation with a half-period time shift. In other words, the two antennas are again
reciprocal.

• If one antenna is parallel, and the other perpendicular, to the magnetic-meridian
plane on which they are located, then reflection leaves one antenna current
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unchanged, but reverses the direction of the current in the other. The antenna pair
then exhibit ‘anti-reciprocity’ [33, p. 431], the received signal being reversed in
sign when the roles of transmitter and receiver are interchanged.

The above reciprocity relations between antennas in the magnetic-meridian
plane have been derived by Budden [32, Sec. 23.5], [33, p. 578] by means of
other considerations.

• As a final example, consider the above plane-stratified model, but with
propagation between two antennas, each of which is parallel to the vertical
magnetic-meridian north-south plane, but whose centres are located on an east-
west line, equidistant from the magnetic-meridian plane, which lies in between.
A given input current in the first antenna, let us say the antenna that lies to
the east, produces some open-circuit voltage in the second antenna to the west.
The reciprocal situation requires mirroring of the antennas with respect to the
magnetic-meridian plane, which lies midway between them, and interchanging
their roles, i.e. it is the second antenna which now transmits from east to west.
The reciprocity theorem tells us that for east-west propagation, the same input
current in the one antenna produces the same open-circuit voltage in the second,
when their positions are interchanged. If the antennas do not lie in vertical,
north-south planes, one must of course use mirrored antennas, which change
their orientations, when their positions are interchanged [8].



Chapter 5
From scattering theorem to Lorentz reciprocity

5.1 Green’s function in isotropic media

5.1.1 Statement of the problem

In Secs. 2.1.2 and 3.4.2 it was shown how Lorentz reciprocity in physical space
led, via Kerns’ formulation and its generaliztion to include eigenmodes within
anisotropic media, to a scattering theorem in plane-stratified systems (‘reciprocity in
k-space’). In this chapter we consider the reverse derivation. Our starting point is the
scattering theorem (2.112) for the plane-stratified medium (which for concreteness
is taken to be a magnetoplasma), and from it we shall derive the Lorentz-reciprocity
theorem, (4.89) and (4.91), relating currents and fields in a given medium and
their mirror images, with respect to a magnetic meridian plane, in a conjugate
medium. Since the plane-stratified magneto-plasma is self-conjugate, as we have
seen in Chap. 2, all fields and currents, given and conjugate, are located in the same
medium.

The basic idea, briefly outlined already in Sec. 2.1.4, is the following. In a plane-
stratified medium, represented schematically in Fig. 2.4, with the z-axis normal to
the stratification, the positive- and negative-going (with respect to z) propagation
vectors k˙ have transverse (to z) components kt D k0.sx; sy/, and the amplitudes
a˛.˛ D ˙1;˙2/ of the eigenmodes (cf. Sec. 2.3.2) are related by the 2�2 reflection
and transmission matrices, R˙ and T˙ (2.104), which compose the 4�4 scattering
matrix S (2.103). In a conjugate problem, in which the propagation vectors of the
incident plane waves have transverse components kc

t D k0.�sx; sy/, the eigenmode
amplitudes are ac

˛ .˛ D ˙1;˙2/, related by the reflection and transmission matrices
Rc
˙ and Tc

˙ which compose the scattering matrix Sc . The scattering theorem relates
the given and conjugate scattering matrices, (2.112) and (2.113),

Sc D QS; Rc
˙ D QR˙ Tc

˙ D QT�
and these relations are illustrated in Fig. 2.4.

C. Altman and K. Suchy, Reciprocity, Spatial Mapping and Time Reversal
in Electromagnetics, DOI 10.1007/978-94-007-1530-1 5,
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Now the propagation vectors k˙ or kc
˙ in Fig. 2.4 may be regarded as single

components of an angular spectrum of plane waves or eigenmodes generated by a
current element at A in the given medium, or at B 0 in the conjugate medium, and
arriving at the corresponding current elements at B or at A0 in the two respective
media. The current elements at A0 or B 0 are taken to be the (adjoint) reflection
mappings (as in the passage from quadrant 1 to 2 in Fig. 4.3) of the current
elements at A or B . In those sections of this chapter where only electric currents
Je are considered, it will not be necessary to distinguish between ‘reflection’ and
‘adjoint-reflection’ mappings of the current systems (see Sec. 4.4.1). The variation
in amplitude of any one of the component eigenmodes in its passage from a level
z0 to z (the levels at which the ‘transmitting’ and ‘receiving’ points are located)
is determined with the aid of the appropriate transmission or reflection matrices,
T˙.kt ; z; z0/; R˙.kt / or Tc

˙


kc

t ; z; z0
�

and Rc
˙


kc

t

�
, which are presumed to be

known, or which in principle can be calculated by numerical methods discussed
in Chap. 1. The wave field at the receiving point, i.e. at the current element at B

or A0, would then be obtained by a Fourier synthesis of the angular spectrum of
plane waves or eigenmodes reaching it. Integration over all elements in the current
distributions a and b0, or a0 and b, of which the elements at A and B , or A0 and
B 0, form a part, would finally yield the ‘reaction’ ha; bi or ha0; b0i of the field of
one source on the other in each of the two media. If the two reactions are shown
to be equal, cf. (4.89) and (4.91), Lorentz reciprocity in physical space is thereby
established.

To carry out this program it will be necessary initially to derive the angular spec-
trum of plane waves or eigenmodes generated by an arbitrary current distribution
in free space, or in a plane-stratified gyrotropic medium. The angular spectrum,
given explicitly as a function of the direction cosines, sx and sy , of the transverse
propagation vector kt , which is a propagation constant (Snell’s law), is then in
a form permitting direct application of elements of the scattering matrix S.kt /.
The given and adjoint eigenmode spectrum leads to the construction of a dyadic
(tensor) Green’s function in transverse-k space which is applied to an elementary
homogeneous slab in the stratification, and thence, with the aid of the elements
of the scattering matrix, to the plane-stratified system as a whole. This approach,
developed by Schatzberg and Altman [8, 108] for determining the reaction of (the
field of) one source on another, provides the framework for the analysis described
in this chapter.

5.1.2 The plane-wave transverse-k spectrum of a current
distribution in free space

We consider an electric current distribution, J.r/ 
 Je.r/, in free space outside
a plane-stratified medium. The z-axis is normal to the stratification. We propose
initially to determine the free-space wave fields, E.r/ and H.r/, as integrals over
sx and sy , the direction cosines of kt . All currents and fields, J.r/; E.r/ and H.r/,
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which are assumed to have exp.i!t/ time dependence, with k0 WD !=c, are Fourier
analyzed in k-space, so that typically

Hk.kx; ky; kz/ D
Z Z Z

H.r/ exp.ik � r/d 3r

D
Z Z Z

H.x; y; z/ exp Œi.kxx C kyy C kzz/�dx dy dz (5.1)

H.r/ D 1

8�2

Z Z Z
Hk.kx; ky; kz/ exp Œ�i.kxx C kyy C kzz/�dkx dky dkz

(5.2)

where k 
 .kx; ky; kz/ is an arbitrary point in k-space, and all points in this space
are included in the Fourier integration. Maxwell’s equations in free space

r � E.r/ D �@B.r/

@t
D �i!�0H.r/

r �H.r/ D @D.r/

@t
C J.r/ D i!"0E.r/C J.r/

(5.3)

when Fourier analyzed in k-space become, cf. (5.2), with E.r/ ! Ek; H.r/ !
Hk; r ! �ik,

k � Ek D k0Z0Hk

k �Hk D �k0Y0Ek C iJk

(5.4)

where Z0 
 1=Y0 
 .�0="0/
1=2. Eliminating Ek or Hk in (5.4), and using the

relation k �Hk D 0 (which follows from r �H.r/ D 0), we obtain

Hk D ik � Jk

k0
2 � k2

(5.5)

Ek D � iZ0

k0

"
k.k � Jk/ � k0

2Jk

k0
2 � k2

#
(5.6)

Substitution of (5.5) in (5.2) yields

H.r/ D 1

8�3

Z Z Z
k � Jk

k0
2 � kx

2 � ky
2 � kz

2
exp Œ�i.kxxCkyyCkzz/� dkx dky dkz

(5.7)
and substitution of (5.6) yields similarly

E.r/ D � iZ0

8�3

Z Z Z
�

k
�

k
k0

� Jk

�
� k0Jk

	

k2
0 � k2

x � k2
y � k2

z

expŒ�i.kxxCkyyCkzz/� dkx dky dkz

(5.8)
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Now we wish to get rid of the dependence on the longitudinal component of k by
performing explicitly the integration over kz. To be able to handle the poles of kz in
a physically meaningful way, we revert to a physically more transparent formulation
by substituting for Jk its inverse Fourier transform, cf. (5.1). Thus (5.7) becomes

H.r/ D i

8�3

Z Z Z Z Z Z
k � J.r0/

k2
0 � k2

x � k2
y � k2

z

: expŒ�ifkx.x � x0/C ky.y � y0/C kz.z � z0/g� d 3r 0 dkx dky dkz (5.9)

and similarly for E.r/. (Note that in the present chapter primed coordinates, z0 or
r0, will be used for the source location, unprimed coordinates for the observation
point.)

It will be convenient to express all three components of k in terms of k0:

k D k0.sx; sy ; n/ D .kt ; k0n/; kt DW k0.sx; sy/; k0 n WD kz (5.10)

so that (5.9) takes the form

H.r/ D ik0

8�3

Z Z Z Z Z Z
k � J.r0/

1 � s2
x � s2

y � n2

: expŒ�ik0fsx.x � x0/C sy.y � y0/C n.z � z0/g� d 3r 0dsx dsy dn (5.11)

We now keep sx and sy fixed, i.e. kt D k0.sx; sy/ D const, and integrate over
all n. If sx

2 C sy
2 > 1 then there are poles on the imaginary axis at n D

˙q 
 ˙i


sx

2 C sy
2 � 1

�1=2
, and we get evanescent waves decaying away from the

source. If sx
2 C sy

2 < 1, the poles are located at n D ˙q 
 ˙i


1� sx

2 � sy
2
�1=2

.
To facilitate the computation, we close the integration path along the Re(n) axis
by a semi-circle at infinity in the upper or lower complex-n plane, see Fig. 5.1,
according as z > z0 or z < z0 respectively, so that the additional integration path will
contribute nothing to the integral [112, Sec. 7.15]. We may now indent around the
poles, as in Fig. 5.1, which is equivalent to supposing that the positive (negative)
pole has a small negative (positive) imaginary part. When z > z0, i.e. when the
integration path is closed in the negative imaginary half plane, the pole at n D q 


1 � sx

2 � sy
2
�1=2

is captured; when z < z0, i.e. when the integration path is closed

in the positive imaginary half plane, the pole at n D �q 
 � 
1 � sx
2 � sy

2
�1=2

is
captured. Hence, by the Cauchy residue theorem, (5.11) becomes

H.r/ D .	2�i/

��ik2
0

8�3

�Z Z Z Z Z
.sx; sy;˙q/ � J.r0/

˙2q

: exp Œ�ik0fsx.x � x0/C sy.y � y0/˙ q.z � z0/g� d 3r 0dsx dsy
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Fig. 5.1 The complex-n
plane integration contours.

in which the sign in .	2�i/ is determined by the sense (clockwise or anticlockwise)
in which the contour is traversed, and the sign of .˙q/ in the denominator is
determined by the sign of the pole,˙q, which is captured. We have finally

H.r/ D �k0
2

8�2q

Z Z Z Z Z
Ok˙0 � J.r0/ exp

��ik0̇ � .r � r0/
�

d 3r 0dsx dsy (5.12)

where

k0̇ WD k0.sx; sy;˙q/ and Ok˙0 WD .sx; sy;˙q/ (5.13)

and similarly for the electric field (5.8)

E.r/ D k0
2

8�2Y0q

Z Z Z Z Z h Ok˙0
n Ok˙0 � J.r0/

o
� J.r0/

i

: exp
��ik0̇ � .r � r0/

�
d 3r 0dsx dsy (5.14)

Eqs. (5.12) and (5.14) give the required plane-wave angular spectrum of an electric
current distribution J.r0/ in free space in terms of the direction cosines of kt

in transverse-k space. When the current distribution is confined to a plane (the
‘transverse’ plane), then (5.12) and (5.14) reduce to a form derived by Clemmow
[38, Sec. 2.2.4].

Now there is more to (5.14) than meets the eye. For the present we note that

Ok˙0
n Ok˙0 � J.r0/

o
� J.r0/ D �J?̇.r0/ (5.15)

and the vector expression in the integrand is seen to be no more than the sign-
reversed projection of the electric-currnt vector J.r0/ on the plane perpendicular to
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the propagation vector k0̇ , i.e. on the plane containing the field vectors E˙ and H˙,
according as z > z0 or z < z0. Eq. (5.14) then simplifies to

E.r/ D �k0
2

8�2Y0q

Z Z Z Z Z
J?̇.r0/ exp

�
ik0̇ � .r � r0/

�
d 3r 0dsxdsy (5.16)

5.1.3 The transverse-k eigenmode expansion in free space

Our next step is to replace E(r) and J?̇.r0/ in (5.16) by their Fourier transforms in
kt -space. We note that

Z Z
J?̇.r0/ exp

�
ik0



sxx0 C syy0

��
dx0dy0 D J?̇



kt ; z0

�
(5.17)

where r0 D .x0; y0; z0/ and kt D k0.sx; sy/, so that (5.16) with the aid of (5.17)
becomes

E.r/ D �k0
2

8�2Y0q

Z Z Z
J?̇.r0/ expŒ�ik0fsxx C syy ˙ q.z � z0/g�dsxdsydz0

D k0
2

4�2

Z Z
E.kt ; z/ expŒ�ik0.sxx C syy/�dsxdsy (5.18)

the second equality being just the Fourier transform of E.r/ in kt -space. Equating
the two integrands in (5.18), we get

E.kt ; z/ D �1

2Y0q

Z
J?̇.kt ; z0/ exp

�	ik0q.z � z0/
�

dz0 (5.19)

according as z > z0 or z < z0.
In order to facilitate comparison with results to be derived in anisotropic media,

we would like to extract from (5.19) the eigenfields e˛ 
 .E˛; H˛/; ˛ D ˙1;˙2,
generated by the current distribution J.kt ; z0/. Consider the elliptically polarized
eigenmodes e˛ , whose electric-field components have the form

E˛ D .1; �˛; 0/E
;˛; ˛ D ˙1;˙2 (5.20)

in the .
; 
; �/ cartesian coordinate system (1.77) in which the �-axis is along k0̇ and
makes an angle � with respect to the z-axis, with cos � D ˙q (5.13); the direction of
the 
-axis, which is in the plane of incidence, depends on the direction of the k0̇ , and

will be specified by the corresponding unit vectors O�˙; the direction of the 
-axis is
normal to the plane of incidence and does not depend on the direction of k0̇ in this
plane. We recall that the direction of the z-axis, and through it the orientation of the
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‘plane of incidence’, are determined by the stratified medium which bounds the free
space in which our waves are propagating. To ensure eigenmode biorthogonality,
the wave polarizations �˛ WD E
˛=E
˛, must satisfy the relation (1.79)

�1�2 D 1 D ��1��2 (5.21)

In order to decompose the electric wave field E of a positive- or negative-
going wave into the respective eigenmode wave fields E˙1 and E˙2, we construct
a biorthogonal, rotating elliptic basis in .
; 
/ space, with base vectors and their
adjoints given by

O�˛ D 1

.1 � �˛
2/1=2

� O�˙ C �˛ O�
�

; ON�˛ D 1

.1 � �˛
2/1=2

� O�˙ � �˛ O�
�

(5.22)

with ˛ D ˙1;˙2. When �˙1 D i and �˙2 D �i , these base vectors become
rotating, circular base vectors [72, Sec. 7.2], and the adjoint base vectors reduce to
the complex conjugates, ON�˛ D O� �˛ . For linear modes, parallel and perpendicular to
the plane of incidence, the given and the adjoint linear base modes coincide.

The base vectors (5.22) are biorthogonal,

ON�˛ � O�ˇ D ı˛ˇ .˛; ˇ D 1; 2 or � 1;�2/ (5.23)

as can be verified by inspection, which permits the decomposition of any positive-
or negative-going wave field, E.z/ D E



k0̇ ; z

�
, into the constituent eigenmodes.

When z D z0, then

E.kC0 ; z0/ D E1.z
0/O�1 C E2.z

0/O�2 D
hON�1 � E.z0/

i
O�1 C

h ON�2 � E.z0/
i

O�2

E.k�0 ; z0/ D E�1.z0/O��1 CE�2.z0/O��2 D
hON��1 � E.z0/

i
O��1 C

h ON��2 � E.z0/
i

O��2

(5.24)

Now the scalar product ON�˛ �E.z0/; ˛ D ˙1;˙2, represents the complex amplitude of
the eigenmode ˛ and carries the phase information of the mode (cf. Sec. 2.3.1). Thus
at any level z, the complex modal amplitude becomes ON�˛ �E.z0/ expŒ	ik0 q.z� z0/�,
according as z > z0 or z < z0, and so from (5.24) we obtain

E.k0̇ ; z/ D
X

˛D1;2.z>z0/

aD�1;�2.z<z0/

h ON�˛ � E


k0̇ ; z0

�i O�˛ expŒ	ik0q.z � z0/� (5.25)

The associated magnetic fields are given by, cf. (5.4),

H.k0̇ ; z/ D Y0
Ok˙0 � E.z/; H˛.z/ D Y0

Ok˙0 � E˛.z/; ˛ D ˙1;˙2 (5.26)
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so that when only the electric wave vector E.kt ; z/ is specified, as in (5.19), the
overall wave field, e.kt / WD fE.kt /; H.kt /g, may be reconstructed from it with
the aid of the normalized eigenvectors Oe˛, (2.71) and (2.72). Thus, from (5.21)
and (5.26),

e.kt ; z/ D .2Y0q/1=2
hnON�˙1 � E.z0/

o
Oe˙1 C

nON�˙2 � E.z0/
o
Oe˙2

i
expŒ	ik0 q.z � z0/�

(5.27)

where Oe˛, the normalized eigenvectors in free space [with the refractive index n˛ D
1, and the wave polarization ratios �˛ D 0; O� � Oz D q sgn.˛/ (5.13)], are given by

Oe˛ D .1; �˛; 0I �Y0�˛; Y0; 0/=Œ2Y0q.1 � �˛
2/�1=2 (5.28)

as in (2.72). Note that the term sgn.˛/ in the denominator of (2.71) is cancelled when
multiplied by the z-component of the vector



0; 0; 1� �˛

2
�

in .
; 
; �/ coordinates,
which equals



1 � �˛

2
�

q sgn.˛/.

The corresponding normalized adjoint eigenvectors ONe˛ , (2.71) and (2.72), are
obtained by means of �˛ ! ��˛ ,

ONe˛ D .1;��˛; 0IY0�˛; Y0; 0/=Œ2Y0q.1 � �˛
2/�1=2 (5.29)

It should be noted that the electric field components of ONe˛ and ONe˛ are just the
elliptic basis vectors O�˛ and ON�˛ (5.22) respectively, aside from a normalizing factor
.2Y0q/1=2, which appears in (5.27).

The overall wave field e.kt ; z/ generated by the current distribution J.kt ; z/ (5.19)
may now be obtained with the aid of (5.27):

e.kt ; z/ D �1

.2Y0q/1=2

X
˛D1;2.z>z0/

˛D�1;�2.z<z0/

Z hON�˛ � J?̇.z0/
i
Oe˛ expŒ	ik0q.z� z0/�dz0 (5.30)

As a final step, we recall that ON�˛ .˛ D 1; 2/ and JC? both lie in a plane

perpendicular to kC0 , just as ON�˛.˛ D �1;�2/ lie in a plane perpendicular to k�0 .
Hence the scalar product ON�˛ �J˙? in (5.30) can be replaced in both cases by ON�˛ �J.kt /,
where J.kt / is the overall Fourier-transformed current rather than its projection.
Furthermore, if J 
 Je is replaced formally by the 6-current vector j WD .Je; Jm/

with Jm D 0, then the unit vector ON�˛ in the scalar product can be replaced by
.2Y0q/1=2 ONe˛ [note the different normalizations of ON�˛ and ONe˛ in (5.22) and (5.29)]:

ON�˛ � J?̇ D ON�˛ � J.kt / D .2Y0q/1=2 ONe˛ � j.kt / (5.31)

and we obtain finally, with (5.31) in (5.30),
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e.kt ; z/ D �
X

˛D1;2.z>z0/

˛D�1;�2;.z<z0/

Z hONe˛ � j.kt ; z0/
i
Oe˛ expŒ	ik0q.z � z0/�dz0 (5.32)

The reader who is still with us at this point may well ask what we have achieved
by converting a relatively straightforward expression such as (5.16), involving
‘tangible’ physical quantities such as electric fields and currents, into a form which,
albeit having a certain formal symmetry and simplicity, involves abstract quantities
such as normalized 6-component eigenfields and their adjoints. Well, we have in
fact arrived at a formulation which is quite general, and will be shown to apply also
to anisotropic media where the eigenmode expansion must of necessity replace the
plane-wave spectrum. The detailed derivation for the free-space currents and fields
should then, hopefully, provide some insight into the eigenmode expansion in the
more general case.

Eq. (5.32) gives us the field e.kt ; z/ as the integrated sum of eigenmodes a˛ ,
each of amplitude �ONe˛ � j.z0/dz0, generated by the current elements j.kt ; z0/dz0. It
is interesting to note that a result of the same form is obtained in waveguides [72,
eq. (8.140)], where the amplitude AC	 of a positive-going eigenmode 	, generated
by a current J.r0/ is given by

AC	 D �
Z
OE�	 � J.r0/d 3r 0

(aside from a normalizing factor), where bE�	 is the normalized wavefield of the
negative-going (adjoint) eigenmode.

5.1.4 From eigenmode expansion to Green’s functions

The current distribution j.kt ; z0/ and the field it generates, e.kt ; z0/, are related by a
6 � 6 dyadic (tensor) Green’s function G.kt ; z; z0/:

e.kt ; z/ D
Z

G.kt ; z; z0/j.kt ; z0/d z0 (5.33)

and comparison with (5.32) yields an expression for the Green’s function in
transverse-k space:

G.kt ; z; z0/ D �
X

˛ D 1; 2.z > z0/

˛ D �1;�2.z < z0/

Oe˛
ONeT
˛ expŒ�ik0q˛.z � z0/� (5.34)

where q˛ WD q sgn.˛/.
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The Green’s function in physical space is defined by

e.r/ D
Z

G.r; r0/j.r0/d 3r 0 (5.35)

and may be derived from (5.33) by expressing e(r) and j.kt ; z0/ in terms of their
transforms:

e.r/ D k 2
0

4�2

Z Z
e.kt ; z/ expŒ�ik0.sxx C syy/�dsxdsy

j.kt ; z0/ D
Z Z

j.r0/ expŒik0.szx
0 C syy0/�dx0dy0

These, in conjunction with (5.33), give

e.r/ D k2
0

4�2

Z Z
G.kt ; z; z0/j.r0/ expŒ�ik0fsx.x � x0/C sy.y � u0/g�d 3r 0 d 2s

(5.36)
with

R R � � � dsxdsy !
R � � �d 2s. Substitution of (5.34) in (5.36), and comparison

with (5.35), give finally the Green’s function in physical space,

G.r; r0/ D k 2
0

4�2

Z Z
G.kt ; z; z0/ expŒ�ik0fsx.x � x0/C sy.y � y0/g� dsx dsy

D �
X

˛ D 1; 2.z > z0/

˛ D �1;�2.z < z0/

k2
0

4�2

Z
Oe˛
ONeT
˛ expŒ�ik˛ � .r � r0/�d 2s (5.37)

with k˛ WD k0.sx; sy ; q˛/. A similar result is given by Felsen and Marcuvitz [53,
Sec. 1.4a, eq. (17)].

5.2 Green’s function in anisotropic media

5.2.1 Green’s function outside the source region

Before attempting to construct a Green’s function in a multilayer anisotropic
medium, we first address the problem of finding one in transverse-k space in
an infinite homogeneous medium. An elementary layer or slab imbedded in the
multilayer system may be considered as such a homogeneous medium, with the
influence of the two bounding interfaces of each layer being treated separately
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by a multiple-reflection analysis or, equivalently, by wave-field matching at the
interfaces.

In order to formulate the Green’s function compactly, it will be convenient to
include the phase factors exp.�ik0 q˛z/ and exp.ik0 q˛z0/, cf. (5.34), in the given
and adjoint normalized eigenvectors, so that we define

Oe˛.z/ WD Oe0
˛ exp.�ik0 q˛z/; ONe˛.z0/ WD ONe0

˛ exp.ik0 q˛z0/; (5.38)

with Oe0
˛ 
 Oe˛.0/ and ONe0

˛ 
 ONe˛.0/ corresponding to what until now were denoted Oe˛

and ONe˛ , (2.71) and (2.72). Then Oe˛.z/ and ONe˛.z/ represent the plane-wave ansätze for
the given and adjoint eigenmodes, cf. (2.31) and (2.43), whose amplitudes satisfy the
biorthogonality normalization. The eigenvectors Oe˛.z/ and ONe˛.z/ themselves satisfy
the normalization condition, (2.50), when both are at the same level z,

ONeˇ

T
.z/Uz Oe˛.z/ D ı˛ˇsgn.˛/; ˛; ˇ D ˙1;˙2 (5.39)

and they obey the homogeneous Maxwell’s equations, (2.30) and (2.32), and the
adjoint equations, (2.34) and (2.44), respectively:

L Oe˛.z/ WD ik0

�
C � 1

k0

Uz
d

d z

	
Oe˛.z/ D ik0ŒC � q˛Uz�Oe˛.z/ D 0 (5.40)

NL Oe˛.z/ WD ik0

�
CT C 1

k0

Uz
d

d z

	
ONe˛.z/ D ik0ŒC

T � Nq˛Uz�ONe˛.z/ D 0 (5.41)

with Nq˛ D q˛ (2.46). The amplitude normalized eigenmodes are finally grouped
together into modal matrices, E.z/ and NE.z/, by analogy with (2.100) and (2.101),

E.z/ WD ŒOe1.z/ Oe2.z/ Oe�1.z/ Oe�2.z/�; NE.z/ WD ŒONe1.z/ ONe2.z/ ONe�1.z/ ONe�2.z/� (5.42)

and eigenmode biorthogonality (5.39) may be expressed with the aid of (2.81) as

QNE.z/ Uz E.z/ D NI.4/
(5.43)

Let us return to the Maxwell system for plane stratified media (2.29),

Le.kt ; z/ WD ik0

�
C � i

k0

Uz
d

d z

	
e.kt ; z/ D �j.kt ; z/ (5.44)

If e.kt ; z/ is related to j.kt ; z0/ by a dyadic Green’s function G.kt ; z; z0/, as in (5.33),
then (5.44) yields

ik0

�
C � i

k0

Uz
d

d z

	
G.kt ; z; z0/ D �I.6/

ı.z� z0/ (5.45)
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as can be verified by multiplying both sides from the right by j.kt ; z0/ and integrating
over z0. Our aim in this section is to find the functional form or structure of the 6� 6

matrix G.kt ; z; z0/ that will satisfy (5.45).
Now G.kt ; z; z0/ should satisfy the following requirements:

• When z ¤ z0, i.e. outside the source region, the columns of G must satisfy the
homogeneous system (5.40), and hence should consist of linear combinations of
the eigenvectors Oe˛.z/ (5.38).

• If the medium is isotropic, then G should reduce to the form (5.34), as derived in
Secs. 5.1.3 and 5.1.4.

• G depends on z and z0 only through their difference .z � z0/, [see the governing
equation (5.45)], and we also demand that G vanish for .z � z0/! ˙1, at least
for slightly absorbing media.

All these requirements are satisfied by the Green’s function given in (5.34), with
q˛ now representing one of the roots of the Booker quartic (2.33):

G.kt ; z; z0/ D �
X

˛ D 1; 2.z > z0/

˛ D �1;�2.z < z0/

Oe0
˛
ONe0 T
˛ expŒ�ik0 q˛.z � z0/�

D �
X

˛ D 1; 2.z > z0/

˛ D �1;�2.z < z0/

Oe˛.z/ONeT
˛ .z0/ (5.46)

An equivalent result has been given by Felsen and Marcuvitz [53, Sec. 1.4, eqs. (14)
and (16)].

Substituting (5.46) in (5.33) in order to relate fields to currents, we recover (5.32)
with Oe0

˛ and ONe0
˛ replacing Oe˛ and ONe˛, and q˛ replacing˙q:

e.kt ; z/ D �
X

˛ D 1; 2.z > z0/

˛ D �1;�2.z < z0/

Z hONe0
˛ � j.kt ; z0/

i
Oe0

˛ expŒ�ik0q˛.z� z0/�d z0

D �
X

˛

a˛.kt ; z/Oe0
˛.kt ; z/ (5.47)

in which we have decomposed the field e.kt ; z/ into its constituent eigenmodes
(2.98). We may therefore consider the elementary amplitude da˛.kt ; z0/, generated
by the current element j.kt ; z0/dz0 to be given by

da˛.kt ; z0/ D ONe0
˛ � j.kt ; z0/d z0 (5.48)

with the term expŒ�ik0 q˛.z � z0/� giving the phase change in da˛.z0/ at any other
level z.
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Although (5.46) clearly satisfies (5.45) when z ¤ z0, i.e. outside of the source
plane, it remains to be seen to what extent the solution is complete when the
source plane is included. In order to facilitate the mathematical manipulation of
the discontinuities at z D z0, implied by the summation conditions in (5.46), we
introduce the unit step function h.z � z0/, defined by

h.z � z0/ WD
(

0; z < z0

1; z > z0
(5.49)

which can be conceived as an integrated Dirac delta function,

h.z � z0/ D
Z

ı.z� z0/d z;
d

d z
h.z� z0/ D ı.z� z0/ (5.50)

We now incorporate the unit step function into a 4 � 4 unit step matrix,

H.z� z0/ WD

2
664

h.z � z0/ 0 0 0

0 h.z � z0/ 0 0

0 0 1 � h.z � z0/ 0

0 0 0 1 � h.z � z0/

3
775 (5.51)

and by means of it we may express the Green’s function (5.46), using the modal
matrices (5.42), as

G.kt ; z; z0/ D �E.kt ; z/H.z � z0/ QNE.kt ; z0/ (5.52)

We note, for later use, that in view of (5.50) we may write

d

d z
H.z � z0/ D NI.4/

ı.z� z0/ (5.53)

with NI.4/
as in (2.81).

5.2.2 The need for a Green’s function in the source region

The Green’s function, (5.46) or (5.52), which relates a 6-component wave field to
an arbitrary 6-component current distribution should span a 6-dimensional space.
But, in effect, it is constructed from only four independent eigenvectors e˛, which
span a 4-dimensional space. That something is lacking can be seen when (5.52) is
substituted in (5.45). The differential operator Uzd=dz, when operating on the unit
step matrix H.z � z0/, see (5.53), produces four of the six delta functions of (5.45),
(details are given in Sec 5.2.3), but since the third and sixth rows of Uz are null
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(2.25), the delta functions appearing on the right-hand side in the third and sixth
rows are unaccounted for. The delta functions must therefore appear explicitly in
the third and sixth rows of G.kt ; z; z0/.

Now we could have defined an adjoint Green’s function NG.kt ; z; z0/ relating
adjoint fields Ne.r/ and adjoint currents Nj.r0/, by analogy with (5.33), and governed
by the adjoint Maxwell equations:

ik0

�
CT C i

k0

Uz
d

dz

	
NG.kt ; z; z0/ D �NI.6/

ı.z� z0/ (5.54)

By reasoning similar to the above we find, after interchanging z and z0, that

NG.kt ; z0; z/ D NE.kt ; z0/H.z0 � z/ QE.kt ; z/

D GT
.kt ; z; z0/

(5.55)

(remembering that H.z � z0/ is odd in its argument). To account for the delta
functions on the right-hand side, in the third and sixth rows, we require that the
delta functions appear explicitly in the third and sixth rows of NG, i.e. in the third
and sixth columns of G. The upshot then is that the Green’s matrix has delta
functions symmetrically placed in the third and sixth rows and columns, to account
for the source region. In Sec. 5.2.3 it is shown in fact that for media which are not
bianisotropic, the Maxwell system (5.45) is satisfied, in the source region too, by
adding a pair of delta functions to the (3,3) and (6,6) positions of the dyadic Green’s
function.

To put the present analysis into perspective we note that Tai [123] and Collin [41]
had long drawn attention to the incompleteness of the eigenmode expansion of the
Green’s function in waveguides, and various approaches have since been adopted
[41, 97, 103, 123, 136] to obtain the complete dyadic Green’s function, including
explicit delta-function terms in the source region. Weiglhofer [132, 133] has used
rather simple algebraic matrix identities to invert the tensor differential operators
governing the field equations, and has thereby obtained the complete dyadic Green’s
functions for anisotropic and chiral media. In general, the form of the Green’s
function, i.e. of the eigenmode expansion and the source term, is determined by
the geometry or the boundary conditions of the problem considered, and the source
term derived in the next section is specific to the plane-stratified anisotropic media
considered in this chapter.

5.2.3 The complete Green’s function in homogeneous anisotropic
media

In order to determine the exact form of the complete Green’s function, and to
verify that it satisfies the governing differential equations (5.45), it will be useful
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to separate fields, currents, tensors and matrix operators into terms which are
transverse .t/ and normal .z/ to the stratification. For instance,

e!
�

et

ez

	
; Qet D ŒEx; Ey; Hx; Hy�; Qez D ŒEz; Hz�; E.z/!

�
Et .z/
Ez.z/

	

(5.56)

so that (5.43) may be written in the form

Œ
QNEt .z/;

QNEz.z/�

�
Ut 0
0 0

	 �
Et .z/
Ez.z/

	
D
"
NI.4/

0
0 0

#
(5.57)

with Ut 
 U.4/
z , defined in (3.2). Hence, multiplying from the left with NI.4/ D

.NI.4/
/�1, we get

hNI.4/ QNEt .z/
i

ŒUt Et .z/� D I.4/

D Ut Et .z/NI.4/ QNEt .z/ (5.58)

in which we have interchanged the order of
hNI.4/ QNEt .z/

i
and ŒUtEt .z/�, since they

are reciprocal. We shall need this relation presently.
The homogeneous Maxwell system (5.40) and its adjoint (5.41) become


�
Ct C1

C2 Cz

	
� i

k0

�
Ut 0
0 0

	
d

dz

� �
Et .z/
Ez.z/

	
D 0 (5.59)

and (" QCt
QC1

QC2
QCz

#
C i

k0

�
Ut 0
0 0

	
d

dz

) � NEt .z/NEz.z/

	
D 0 (5.60)

The elements of C and QC (2.29) and (2.20), have been regrouped in (5.59) and (5.60)
so that typically, for media which are not bianisotropic,

Cz D QCz D c

�
"33 0

0 �33

	
(5.61)

The transposed z-component of (5.60) gives

QNEt .z/C1 C QNEz.z/Cz D 0

or
.
QNEt .z//

�1 QNEz.z/CC1 C�1
z D 0 (5.62)
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In view of the discussion in Sec. 5.2.2, the proposed Green’s function, after
regrouping the matrix elements is, with (5.52),

G.kt ; z; z0/ D �
�
Et .z/
Ez.z/

	
H.z � z0/

h QNEt .z
0/; .
QNEz.z
0/
i
CG0

.kt ; z; z0/ (5.63)

where G0, the additional source-term dyadic, is assumed to have the form

G0 D
�

0 0
0 G0

z

	
; G0

z D
i

k0

A ı.z� z0/ (5.64)

where the 2 � 2 matrix A is still to be determined. [That the form of the dyadic
source term G0 is indeed given by (5.64) can be demonstrated by direct ma-
nipulation of the governing equations [107], without the need to make a priori
assumptions.] We wish to confirm that G, with the appropriate value of A inserted,
satisfies (5.45) which becomes

ik0


�
Ct C1

C2 Cz

	
� i

k0

�
Ut 0
0 0

	
d

dz

�
G.kt ; z; z0/ D �I.6/

ı.z� z0/ (5.65)

Note that the differential operator d/dz in (5.65) operates successively on the
matrices E.z/ 
 fEt .z/; Ez.z/g and H.z � z0/ composing G (5.63). Thus, with the
aid of (5.59) and (5.53), the left-hand side of (5.65) becomes

� ı.z� z0/

�

Ut 0
0 0

	 �
Et .z/
Ez.z/

	
NI.4/

Œ
QNEt .z/;

QNEz.z/�C
�

0 C1A
0 CzA

	�

D �ı.z� z0/
"
UtEt .z/NI.4/ QNEt .z/ UtEt .z/NI.4/ QNEz.z/CC1A

0 CzA

#

D �ı.z� z0/
"
I.4/

Œ
QNEt .z/��1 QNEz.z/CC1A

0 CzA

#
(5.66)

the last step stemming from (5.58). With the aid of (5.62) the above expression is
seen to be equal to

�ı.z� z0/
"
I.4/ 0
0 I.2/

#

 �ı.z� z0/I.6/

provided that A D C�1
z , and the Maxwell system (5.65) for the complete Green’s

function is thereby satisfied. For a medium that is not bianisotropic we have, with
Cz given by (5.61),

A D C�1
z D

1

c

�
"�1

33 0

0 ��1
33
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and from (5.64) the source term in the Green’s dyadic becomes

G0
z .kt ; z; z0/ D i

!

�
"�1

33 0

0 ��1
33

	
ı.z� z0/ (5.67)

with ! D k0c.
Just what is the significance of this source term? If we start with the inhomo-

geneous Maxwell system (2.24) and solve it for the longitudinal field components
.Ez; Hz/ in terms of the other field components and currents, the result can be
shown to be, cf. Felsen and Marcuvitz [53, Sec. 8.2, eq. (3)],

�
Ez

Hz

	
D

2
664
�Q"zt

"zz

r t � I.2/

i!"zz

�r t � I.2/

i!�zz

� Q�zt

�zz

3
775
�

Et

Ht

	
�

2
664

Jez

i!"zz

Jmz

i!�zz

3
775 (5.68)

where

Q"zt WD Œ"zx; "zy�; Q�zt WD Œ�zx; �zy�; r t � I.2/ WD
�
� @

@y
;

@

@x

	

The eigenmode expansion of the Green’s function, (5.46) or (5.52), with its built-in
discontinuity at the current source, satisfies (5.68) when .Jez; Jmz/ D 0. Thus the
first row of (5.68) with Jez D 0 becomes

rt �Ht � i!."zt � Et C "zzEz/ D .r �H/z � @Dz

@t
D 0 (5.69)

which solves one of Maxwell’s equations outside the source region, in which there
are only outgoing wave fields. In the source region itself the additional contribution,
.�Jez=i!"zz; �Jmz=i!�zz/, to Ez and Hz must be taken into account to satisfy the
inhomogeneous Maxwell system, and this additional point relation is expressed by
means of the two delta functions we have found in the dyadic Green’s function,
(5.63) and (5.67).

These source terms in the Green’s function will have no influence on the
propagation analysis, and will therefore be ignored henceforth. Their importance
from our point of view is that they have enabled us to resolve the problem of
completeness of the Green’s function.

5.3 Green’s function in a multilayer medium

5.3.1 Transfer matrices in the multilayer medium

We have seen in Secs. 5.1.4 and 5.2.1, eqs. (5.33) and (5.48), how to determine
the amplitude da˛.z0/ of eigenmodes radiated by a current element j.kt ; z0/ dz0
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in an elementary layer of thickness dz0. To determine the amplitude daˇ.z/ of
the eigenmodes reaching an elementary layer at z (supposing z > z0), we could
simply multiply the initial amplitude da˛.z0/ by the transmission matrix element
Tˇ˛ (2.13), i.e. daˇ.z/ D Tˇ˛.z; z0/da˛.z0/, on condition that z0 and z were located
in infinite homogeneous half-spaces bounding the multilayer system at both ends.
If however z0 and z are located in elementary layers embedded in the multilayer
system, then two modifications must be made. First, the eigenmodes generated at z0
are multiply reflected with accompanying mode conversion within the layer, so that
the net positive-going wave amplitudes differ from the primary radiated amplitudes.
Second, the eigenmodes arriving at z from z0 will be multiply reflected with
mode conversion within that elementary layer too, with consequent modification
of amplitudes. Thus a multiple reflection analysis must be performed at both ends
of the propagation path.

We have seen, cf. (5.48), that the ‘primary’ amplitudes da˛ of the eigenmodes
generated by the current element j.kt ; z0/dz0 in an elementary layer of thickness dz0,
are given by

da˛ D �ONe0
˛.kt ; z0/ � j.kt ; z0/dz0; ˛ D ˙1; ˙2 (5.70)

(We note that since the parameters of the medium are functions of z0, so too is ONe0
˛

(5.38) which is constant for homogeneous media.) Grouping the four elementary
amplitudes into a column matrix, as in (2.101), we may write (5.70) in matrix form,

da D � QNE0
.kt ; z0/j.kt ; z0/dz0 (5.71)

with the notation

da WD
�
daC
da�

	
; da˙ WD

�
da˙1

da˙2

	
(5.72)

QE0
.z/ WD �Oe0

1.z/ Oe0
2.z/ Oe0�1.z/ Oe0�2.z/

�T
(5.73)

and QNE0
.z/ similarly defined. Note that E0

.z/ and NE0
.z/ do not carry the phase factors

exp.	ik0q˛z/, as do the corresponding modal matrices E.z/ and NE.z/ (5.42).
The eigenmodes e˛ undergo multiple reflections and multiple mode conversions

within the elementary layer dz0, and these may be summed as an infinite geometric
series in the matrix products [4], or calculated directly as follows, to yield the net
positive- or negative-going wave amplitudes dA˙:

dAC D daC CR�dA�
dA� D da� CRCdAC

(5.74)

with dA˙ defined in analogy with da˙ (5.72), and R˙ 
 R˙.kt / is the reflection
matrix (2.13). All quantities in (5.74) are measured at z0. We may solve (5.74) for
dAC and dA�:
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ŒI.2/ �R�RC�dAC D daC CR�da� D ŒI.2/
; R��

�
daC
da�

	

or

dAC.z0/ D NC.z0/ŒI.2/
; R�.z0/�da.z0/; NC WD ŒI.2/ �R�RC��1 (5.75)

and similarly

dA�.z0/ D N�.z0/ŒRC.z0/; I.2/
/� da.z0/; N� WD ŒI.2/ �RCR���1 (5.76)

(Had we used the alternative multiple-reflection procedure [4], as we presently do,
the matrices N˙ 
 ŒI.2/ � R�R˙��1 would have appeared as a consequence of
summing an infinite geometric series of multiply-reflected waves.) We note, for later
use, that

R˙ŒI.2/ �R�R˙��1 D ŒI.2/ �R˙R���1R˙

and hence NC and N�, (5.75) and (5.76), are related by

N�R˙ D R˙N˙ (5.77)

The initial, or primary, amplitudes da˙.z/ of the eigenmodes reaching an
elementary layer at z will be

da˙.z/ D T˙.kt ; z; z0/dA˙.z0/; z ? z0 (5.78)

where T˙.z; z0/ is the transmission matrix (2.13) from z0 to z, the plus/minus
sign corresponding to z ? z0. We now perform a multiple-reflection analysis (see
Fig. 5.2) in the layer dz. The resultant positive-going wave amplitude, with daC.z/
given by (5.78), is

dAC.z/ D ŒI.2/ CR�RC C .R�RC/2 C � � � �daC.z/

D ŒI.2/ �R�RC��1daC 
 NC.z/daC.z/; z > z0 (5.79)

in which we have summed the infinite geometric series. [As could be expected this
is just the result given by (5.75), with z replacing z0, when the ‘primary’ input wave

Fig. 5.2 Multiple reflections in an elementary layer.
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is upgoing only, i.e. when da� D 0; da D .daC; 0/]. Summing all elementary
waves reflected back from the upper interface we obtain

dA�.z/ D ŒI.2/ CRCR� C .RCR�/2 C � � � �RCdaC

D ŒI.2/ �RCR���1RCdaC D N�.z/RC.z/daC.z/; z > z0 (5.80)

which again is just (5.76), with z$ z0 and da� D 0.
Similarly, if z < z0 we get with da�.z/ given by (5.78),

dAC.z/ D NC.z/R�.z/da�.z/; z < z0 (5.81)

dA�.z/ D N�.z/da�.z/; z < z0 (5.82)

which are also derivable from (5.75) and (5.76) with z$ z0 and daC D 0.
With the aid of (5.77), equations (5.79) – (5.82) may be written compactly in

the form:

dA.z/ WD
�
dAC.z/
dA�.z/

	
D

8̂̂
ˆ̂<
ˆ̂̂̂
:

"
I.2/

RC.z/

#
NC.z/daC.z/; z > z0

"
R�.z/

I.2/

#
N�.z/da�.z/; z < z0

(5.83)

Substituting (5.75) and (5.76) in (5.78), and the result in (5.83), we obtain finally
the transfer matrices, F˙.kt ; z; z0/; z ? z0, relating primary modal amplitudes at z0
to resultant amplitudes at z:

dA.z/ D F˙.kt ; z; z0/da.z0/; z ? z0 (5.84)

with

FC.kt ; z; z0/ D
"

I.2/

RC.z/

#
NC.z/TC.z; z0/NC.z0/ŒI.2/

; R�.z0/�; z > z0 (5.85)

F�.kt ; z; z0/ D
"
R�.z/
I.2/

#
N�.z/T�.z; z0/N�.z0/ŒRC.z0/; I.2/

�; z < z0 (5.86)

in which R˙; T˙ and N˙ are all functions of kt . We note that these transfer
matrices are not directly comparable with the transfer matrices P.kt ; z; z0/ defined
in Sec. 3.3. The latter related four eigenmode amplitudes at one level to four
at another level (3.102) in a source-free medium, and the analysis was based on
the homogeneous Maxwell equations. In the present analysis on the other hand, the
source of the eigenmodes at z is the current element in the layer at z0 (5.70), and the
transfer matrix F relates explicitly to the elementary modal amplitudes in that layer
radiated by the current element.
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5.3.2 From transfer matrix to Green’s function

The elementary amplitudes dA.z/ determined in (5.84) correspond to an elementary
wave field, cf. (2.76), (5.72), (5.73) and (5.74),

de.kt ; z/ D
X

˛

dA˛.z/Oe0
˛.kt ; z/ D E0

.kt ; z/dA (5.87)

Substitution of (5.84) in (5.87) gives

de.kt ; z/ D E0
.kt ; z/F˙.kt ; z; z0/da.z0/; z ? z0 (5.88)

Now substitute the value of da given by (5.71) and integrate over all z0 to obtain

e.kt ; z/ D �
Z

E0
.kt ; z/F˙.kt ; z; z0/ QNE0

.kt ; z0/j.kt ; z0/dz0 (5.89)

Comparing this with our definition of the Green’s function (5.33), yields finally

G.kt ; z; z0/ D �E0
.kt ; z/F˙.kt ; z; z0/ QNE0

.kt ; z0/; z ? z0 (5.90)

which is the dyadic Green’s function expressed in terms of the given and adjoint
eigenmodes, and a transfer matrix which is a function of the reflection and
transmission matrices, (5.85) and (5.86), at the two levels of the multilayer system.

5.4 Conjugate medium and Lorentz reciprocity

5.4.1 Green’s function in the conjugate medium

The quantities R˙; T˙ and N˙, appearing in the expressions for the transfer
matrices F˙ in the previous section, are functions of kt 
 k0.sx; sy/. The
corresponding quantities in the conjugate system, in which kc

t WD k0.�sx; sy/,
are related to those in the given system by the scattering theorem (2.113), in which

Rc
˙


kc

t ; z
� D eR˙.kt ; z/; Tc

˙


kc

t ; z; z0
� D eT�.kt ; z0; z/ (5.91)

In the conjugate system Nc
˙.kt ; z/, (5.75) and (5.76), becomes with the aid of (5.91),

Nc
˙


kc

t ; z
� WD hI.2/ �Rc

�R
c
˙
i�1 D

h
I.2/ � eR�eR˙

i�1

D

h

I.2/ �R˙R�
i�1

� T

D eN�.kt ; z/ (5.92)
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The conjugate transfer matrix Fc
C


kc

t ; z0; z
�
, cf. (5.85), becomes with the aid of

(5.91), (5.92) and (5.86)

Fc
C


kc

t ; z0; z
� WD

"
I.2/

Rc
C.z0/

#
Nc
C.z0/Tc

C.z0; z/Nc
C.z/ŒI.2/

;Rc
�.z/�

D J

"eRC.z0/
I.2/

#
eN�.z0/eT�.z; z0/eN�.z/

heR�.z/; I.2/
i
J

D trans

(
J

"
R�.z/
I.2/

#
N�.z/T�.z; z0/N�.z0/ŒRC.z0/; I.2/

�J

)

D JeF�.kt ; z; z0/J (5.93)

where ‘trans’ means ‘the transpose of’, and J (3.17), given by

J WD
"

0 I.2/

I.2/ 0

#
DeJ D J�1 (5.94)

has been used to interchange the order of columns (rows) when used as a pre-(post-)
multiplier. In a similar fashion

Fc
�.kt ; z0; z/ D JeFC.kt ; z; z0/J (5.95)

As a final step towards relating the Green’s function in the given medium (5.90)
to that in the conjugate medium, we need to map the modal matrices, E0

.kt ; z/ and

E
0
.kt ; z0/, into the conjugate medium. With the aid of (2.92) and (2.93), viz.

ec�˛.kc
t ; z/ D Qy Ne˛.kt ; z/

with

Qy 
 Qc
y WD

"
qy 0

0 qy

#
D eQy; kc

t WD k0.�sx; sy/

we find
E0

c.k
c
t ; z/ D Qy

hONe0
–1; ONe0

–2; ONe0
1; ONe0

2

i
D QyE

0
.kt ; z/J (5.96)

and similarly

E
0

c.kc
t ; z/ D QyE

0
.kt ; z/J (5.97)

Green’s function in the conjugate system, Gc 
kc
t ; z0; z

�
, by analogy with (5.90),

then becomes with the aid of (5.93)–(5.97),

Gc
.kc

t ; z0; z/ D �E0
c.k

c
t ; z0/Fc

˙.kc
t ; z0; z/eE0

c.kc
t ; z/

D �QyE
0
.kt ; z0/eF�.kt ; z; z0/ eE0.kt ; z/Qy

D Qy
eG.kt ; z; z0/Qy (5.98)
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or, equivalently,

G.kt ; z; z0/! G.sx; sy I z; z0/ D Qy
eGc.�sx; sy I z0; z/Qy (5.99)

As a final step towards relating the Green’s functions in physical rather than
transverse-k space, we substitute (5.99) in (5.37):

G.r; r0/ D k0
2

4�2

Z Z
G.sx; sy I z; z0/ expŒ�ik0fsx.x � x0/C sy.y � y0/g� d 2s

D k2
0

4�2
Qy


Z Z eGc.�sx; sy I z0; z/ expŒ�ik0f�sx.x0 � x/ � sy.y0 � y/g�d 2s

�
Qy

Finally, changing sx ! �sx as an integration variable, and comparing the second
with the first line in the above equation, we find

G.r; r0/ D Qy
eGc.r0c; rc/Qy (5.100)

with
r0c WD qyr0 D .x0;�y0; z0/; rc WD qyr D .x;�y; z/

Eq. (5.100), which is an expression of Lorentz reciprocity, as will now be seen,
has been reached after a lengthy proof requiring, inter alia, application of the
scattering theorem (2.112) and the relation between eigenmodes in the adjoint and
conjugate media (2.92). A much shorter and straightforward proof [9,121], based on
a reflection mapping of the Lorentz-adjoint system in a medium possessing a plane
of conjugation symmetry, is given in Chap. 6.

5.4.2 From conjugate Green’s function to Lorentz reciprocity

Suppose that the field e1.r/ and the current distribution j1.r/ satisfy Maxwell’s
equations in the given medium. We shall calculate the reaction he1; Ij2i of e1 on
a second, independent current distribution j2.r/. First, we define the reflection
mappings, cf. (2.85), of j1.r/ and j2.r/ with respect to a plane of conjugation
symmetry, y D 0,

jc
i .rc/ D Qyji .r/; i D 1; 2; rc D qyr (5.101)

and suppose that the current jc
2.rc/ and the field ec

2.rc/ satisfy Maxwell’s equations
in the conjugate medium.
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With the help of (4.86), (4.87), (5.35), (5.100) and (5.101) we have

he1; I j2i WD
Z
Qe1.r/ I j2.r/ d 3r

D
Z Z

Qj1.r0/eG.r; r0/I j2.r/d 3r 0d 3r

D
Z Z nQjc

1.r
0
c/
eQy

o n
QyG

c
.r0c; rc/Qy

o
I Qy jc

2.rc/d 3rc d 3r 0c

in which the currents and Green’s function have been mapped into the conjugate
medium in the last line. With Qy WD I Qy and Qy D eQy D Q�1

y (2.93), this
becomes

he1; I j2i D
Z Z nQjc

1.r
0
c/
eIoGc

.r0c; rc/ jc
2.rc/d

3rc d 3r 0c

D
Z

ec
2.r
0
c/ � I jc

1.r
0
c/d

3r 0c

D hec
2; I jc

1i (5.102)

This is just the Lorentz reciprocity theorem (4.91) found in Sec. 4.4.3, which states
that reciprocity between two current distributions or antennas, in a non-reciprocal
medium possessing a plane of conjugation symmetry, may be achieved by going
over to a reflected pair of current distributions and the fields they generate in a
symmetrically disposed conjugate medium.

We have thereby achieved our aim of showing how the scattering theorem
(2.112), in plane-stratified source-free media, leads to Lorentz reciprocity when
the relation between currents and fields is expressed by means of an eigenmode
expansion (Green’s function) in the given and conjugate media.



Chapter 6
Orthogonal mappings of fields and sources

In previous chapters we considered the mapping of a region into itself if the
medium possessed a plane of reflection or conjugation symmetry. In the one case the
mapping yielded an equivalence relation, in the other a reciprocity relation. In this
chapter we shall generalize the previous procedures in two essential ways. First, we
shall no longer confine ourselves to media possessing a spatial symmetry structure,
but shall compare two different spatial regions in which the constitutive tensor in
the one can be mapped from the given, or from the Lorentz-adjoint constitutive
tensor in the other, by means of an orthogonal spatial mapping (rotation, reflection
or inversion). Second, the orthogonal spatial mappings will no longer be restricted
to reflections or to rotations through an angle � , but will be extended to include
the ‘full rotation group’ [61, Sec. 6.2–7] which comprises rotation through arbitrary
angles, with or without reflection or inversion. Conceptually there will be little new
in these generalizations, but they will permit the formal systematization of the ideas
developed till now.

Much of the analysis will be limited to rotations through an angle � about the
three coordinate axes, to reflections with respect to the three coordinate planes or
to inversion with respect to the origin. These, together with the identity operator,
constitute a subgroup of the full rotation group. The results that will be derived
in this restricted framework will be valid also for the full rotation group, as will
be shown, but the simpler mathematical representation allows a rather simple
derivation of the results and highlights their main features.

6.1 Mapping of the vector fields

6.1.1 Orthogonal transformations in a cartesian basis

Consider two spatial regions V1 and V2 which are symmetrically related, so that for
every point r D .x1; x2; x3/ in V1, there is a corresponding point r0 D 


x01; x02; x03
�

in V2, such that

C. Altman and K. Suchy, Reciprocity, Spatial Mapping and Time Reversal
in Electromagnetics, DOI 10.1007/978-94-007-1530-1 6,
© Springer Science+Business Media B.V. 2011
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r0 D �r (6.1)

where � is an orthonormal matrix which preserves the length of the vectors on which
it operates,

� WD
2
4

Q̀
1

Q̀
2

Q̀
3

3
5 ; � Q� D Q�� D I.3/ i:e: Q̀i`j D ıij (6.2)

We have here expressed � in terms of its rows Q̀i, each of which is a unit vector
orthogonal to the other two. The transformation (6.1) is often used in physics to
represent a transformation of the coordinate system while the point r is fixed in
space. This is sometimes called a passive transformation [59, end of Sec. 4–2]. In
the present discussion it is the coordinate system that is considered fixed, and we
then have an active transformation or mapping of r from one region of space into
another. From (6.2) we obtain

detŒ Q��� D .det �/2 D 1; det � D ˙1 (6.3)

Hence, with (6.2),
det � D `1 � .`2 � `3/ D ˙1

or, in general, in terms of the third-rank antisymmetric Levi-Civita tensor �ijl [87,
Sec. 6],

`i � .`j � `l / D �ijl det � (6.4)

Since `1; `2 and `3 are orthonormal, eq. (6.4) may be written in the form

`i D .`j � `l /�ijl det � (6.5)

(without summation over repeated indices).
If the mapping transformation is one of rotation then det �D 1; if it is one of

reflection or inversion then det � D �1. These statements become self-evident when
the transformation matrix � is diagonal, and the symbol q will then be used instead
of �, as in the previous chapters.

6.1.2 The D2h point-symmetry group

With a diagonal transformation matrix, q, the mapping of the position vector r is
given by

r0 D qr 
 ˙qnr n D 0; 1; 2; 3 (6.6)

The matrices, q D Cqn; n D 1; 2; 3,

q1 WD
2
41 0 0

0 �1 0

0 0 �1

3
5 q2 WD

2
4�1 0 0

0 1 0

0 0 �1

3
5 q3 WD

2
4�1 0 0

0 �1 0

0 0 1

3
5 (6.7)
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with det qD 1, produce rotations through an angle � about the coordinate axes
x1; x2 and x3, respectively, while the matrices q D �qn .nD 1; 2; 3/, with det
q D �1, produce reflections with respect to the coordinate planes, xnD 0. Two
successive rotations (reflections) with respect to the same axis (plane) generate the
identity operation:

.˙qn/.˙qn/r D q0 r 
 I.3/r D r (6.8)

Successive rotations with respect to two perpendicular axes are equivalent to a
rotation about the third axis; successive reflections with respect to two perpendicular
planes are equivalent to a rotation about their line of intersection:

.˙q1/.˙q2/ D q3 (6.9)

The inversion operation,
r0 D �q0r D �r (6.10)

is produced by successive reflection and rotation about the xn D 0 plane and the
xn axis respectively, or equivalently, by successive reflections with respect to three
perpendicular planes:

� q0 D .�qn/.Cqn/ D .�q1/.�q2/.�q3/ (6.11)

The eight transformations generated by q D ˙qn, constitute the D2h point-
symmetry group [61, Sec. 2–7], which is a subgroup of the full rotation group. In
general

q D Qq D q�1 (6.12)

6.1.3 Mapping of polar vector fields

In mapping a vector field from a region V1 to another region V2, we must distinguish
between polar (proper) and axial (pseudo) vectors. Polar vectors, such as the electric
field E(r), the electric current density Je.r/, the propagation vector k.r/ and the
velocity vector �.r/ (of a moving fluid or plasma medium, for instance), are mapped
like the position vector r. If E0.r0/ and k0.r0/, for instance, denote the mapped vector
fields at the position r0, then

E0.r0/ D �E.r/; k0.r0/ D �k.r/I r0 D �r; r 2 V1; r0 2 V2 (6.13)

and expressing the matrix � in terms of its rows (6.2), we have typically

k0i.r0/ D `i � k.r/; i D 1; 2; 3 with r0 D �r (6.14)

We note that if instead of mapping both E and its argument r separately, we
had performed a ‘passive’ coordinate transformation with the aid of � (in which
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‘reflection’, for instance, would imply going over from a right-handed to a left-
handed system), the result mathematically would have been the same, but the
procedure is conceptually different. The relation between ‘active’ (mapping) and
‘passive’ transformations will become apparent in the discussion of the full rotation
group in Sec. 6.1.5. The mapping procedure is the better suited to our needs.

The differential operator r 
 @=@r must also be mapped. With � orthonormal
(6.2), i.e. ��1 D Q�, we have

r0 D �r; r D Q�r0I r WD .x1; x2; x3/; r0 WD 
x01; x02; x03
�

or in indicial notation, with summation over repeated indices assumed,

x0i D 	ijxj ; xj D 	jix
0
i D 	ijx

0
i ;

@xj

@x0i
D 	ij (6.15)

Hence, with the aid of the last equation in (6.15),

@

@x0i
D @xj

@x0i
@

@xj

D 	ij
@

@xj

(6.16)

and r is seen to transform like the position vector:

r 0 
 @

@r0
D �

@

@r

 �r (6.17)

i.e. like a polar vector.

6.1.4 Mapping of axial vector fields

We consider next the mapping of axial vector fields such as H.r/; B.r/; Jm..r//.
Now the different behaviour of these vectors under reflection and inversion map-
pings, as compared with that of the polar vectors, is a physical property, expressing
the physical nature of the entities which are mapped. However, the physical nature
of axial vectors is expressed in the mathematical formulae, such as Maxwell’s
equations, which describe the physical laws. Consequently we can deduce the
behaviour of these vectors under mapping transformations from the structure of the
mathematical formulae in which they appear.

We examine first the transformation properties of the antisymmetric matrix
operators, r � I.3/ or k.r/ � I.3/, (2.22) or (4.42), which appear in Maxwell’s
equations. These operators are defined by the relations

Œr � I.3/
�� WD r � �;

h
k.r/ � I.3/

i
�.r/ WD k.r/ � �.r/
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(�.r/ represents any vector field), and may be expressed in matrix form or in terms
of the antisymmetric Levi-Civita tensor �ijl,

h
k.r/ � I.3/

i
WD
2
4 0 �k3 k2

k3 0 �k1

�k2 k1 0

3
5 D Œ�ijl kl .r/� (6.18)

Consider the transformation of k.r/ � I.3/ by means of the orthonormal matrix
� (6.2):

�
h
k.r/ � I.3/

i Q� D
2
4
Q̀

1

Q̀
2

Q̀
3

3
5k.r/ � Œ`1; `2; `3� (6.19)

The .i; j /th component of (6.19) may be written with the aid of (6.5) and (6.14) as

`i � fk.r/ � `j g D �k.r/ � .`i � `j / D �k.r/ � `l �ijl det �

D �k0l .r0/�ijl det �
(6.20)

Comparing this with (6.18) we conclude this is just the .i; j /th component of
.det �/Œk0.r0/ � I.3/

�, and hence, with r0 D �r, we get

h
k0.r0/ � I.3/

i
D .det �/�

h
k.r/ � I.3/

i Q� (6.21)

Similarly, with r 0 WD @=@r0 (6.17), and r0 D �r, we obtain

h
r 0 � I.3/

i
D .det �/�

h
r � I.3/

i Q� (6.22)

Chen [36, eq. (1.118)] has derived a relation equivalent to (6.21) or (6.22).
If we now postmultiply both sides of (6.22) with the polar vector E0.r0/ D �E.r/

we get, with Q�� D I.3/ (6.2),

r 0 � E0.r0/ D .det �/�Œr � E.r/� (6.23)

and since, from Maxwell’s equations,

r � E D �@B
@t
D �i!B

with ! a scalar, we infer that

B0.r0/ D .det �/�B.r/ (6.24)

Vectors which are mapped like B.r/ in (6.24) are called axial or pseudo vectors.
For rotations, when det � D 1, they are mapped like polar vectors, but under
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Fig. 6.1 Reflection of an
axial-vector field H(r)
considered as the reflection of
rotating electric charges. The
reflected electric vectors are
shown for comparison.

reflection or inversion when det � D �1, they are reversed in sign (i.e. in direction)
as compared with the correspondingly mapped polar-vector fields. Axial vectors
(such as B) are sometimes represented as antisymmetric second-rank tensors, .Bij/,
which are said to be ‘dual’ to the axial vectors [87, Sec. 6]. Such representations are
very useful in relativity theory, since there is no 4-dimensional analogue of the axial
vectors in 3-dimensional space.

The cross product of two polar vectors, in analogy with (6.23), transforms like
and therefore is an axial vector, whereas the cross product of a polar and an axial
vector transforms as a polar vector. Thus the Poynting vector, S.r/ WD E.r/�H.r/,
is polar:

S0.r0/ WD E0.r0/ �H0.r0/ D �S.r/ D �ŒE.r/ �H.r/�; r0 D �r (6.25)

as was implied in the discussion on the conjugate wave fields in Sec. 2.4.
The axial-vector nature of vector fields like H(r) can be understood if one

considers the field H(r) to have been generated by solenoidal currents, or more
specifically by circulating electric charges. The behaviour of the circulating charges
under reflection then determines the behaviour of H(r). This is illustrated in Fig. 6.1.

We consider finally the transformation (mapping) of the mixed 6-element polar-
axial fields and currents used in the previous chapters. In general each constituent
field will be transformed differently, so that

e0.r0/ WD
�

E0.r0/
H0.r0/

	
D
�
� 0

0 .det �/�

	 �
E.r/

H.r/

	

 
e.r/; r0 D �r (6.26)

with


 WD
�
� 0

0 .det �/�

	

and similarly for j0 WD ˚
J0e.r0/; J0m.r0/

�
. In the D2h symmetry group when � is

diagonal, cf. (6.7), these become

e0.r0/ D
�
q 0

0 .detq/q

	 �
E.r/

H.r/

	

 Q e.r/ (6.27)
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with q D ˙qn (6.7), and

Q WD
�
q 0

0 .detq/q

	
D QT D Q�1

For reflection mappings, when �! q D �qn in the D2h symmetry group, with
detq D �1 (Sec. 6.1.2), the mapping of an axial-vector field such as B(r) (6.24) is
given by

B0.r0/ D �qB.r/ D qnB.r/; r0 D qr D �qnr (6.28)

Thus it might seem that the B field is rotated byCqn. However, although the vector
B itself is rotated, the overall B(r) field, with r0 D �qnr, is reflected—as can be
seen if the field is time-harmonic. In that case the configuration of the reflected
B0.r0/ field a half period later, when B0 ! �B0, is exactly the same as it would have
been if it were a reflected polar-vector field.

6.1.5 The full rotation group: coordinate-free representation

In Sec. 6.1.1 we considered the full rotation group in a cartesian coordinate
basis. Insofar as the transformations were linked to the coordinate system chosen,
the formalism was best suited for describing ‘passive’ transformations of the
coordinate system, in which the vector (or vector field) was fixed in space. In the
present section we consider ‘coordinate-free’ mapping transformations, in which
the ‘active’ transformation of the vector field is performed without reference to
a coordinate system. Although the coordinate-linked mapping operators � (or 
)
used in the cartesian coordinate basis in Sec. 6.1.1, and the mapping operator �

(or � ) that will be used in the coordinate-free representation in this section, are
mathematically equivalent, it will be convenient to differentiate between them by
using different symbols in the two cases.

In three-dimensional space an orthonormal tensor is represented by three pa-
rameters and the value of its determinant .˙1/. The original nine tensor elements
must satisfy three orthogonality conditions and three normalization conditions, thus
leaving three independent tensor elements. Since these six conditions are second
degree in the tensor elements, the signs of these elements are left undetermined, and
hence also the sign of the determinant.

Proper rotations of vectors

The three independent parameters of an orthonormal tensor can be taken as the three
components of a vector �, or preferably as the two independent components of the
unit vector O�, and the modulus ', i.e � D ' O�. We shall now show that when the
tensor

�C.�/ WD expŒ� � I�; I 
 I.3/ (6.29)



182 6 Orthogonal mappings of fields and sources

operates on a vector �, it conserves the longitudinal component �k D O� O�T
� of �

along O� but rotates the transverse (to O�) component �? D .� � O� O�T
�/ through an

angle ' about O�.
The exponential of the antisymmetric tensor � � I is defined by its usual Taylor

expansion, where the powers of � � I are defined as repeated matrix products of
� � I. Hence

�C.�/ WD expŒ� � I� D IC Œ� � I�C Œ� � I�2

2Š
C Œ� � I�3

3Š
C � � � (6.30)

We thus have

Œ� � I�� D � � �

Œ� � I�2� D � � .� � �/ D �.� � �/� '2� D �'2
h
I � O� O�T

i
�

Œ� � I�3� D �'3Œ O� � �� D �'3
h O� � I

i
�

Œ� � I�4� D �'4
h O� � I

i2 D '4
h
I � O� O�T

i
�

with O� � O� O�T D 0. Hence, by iteration,

Œ� � I�2n D .�1/n'2nŒI � O� O�T
�

Œ� � I�2nC1 D .�1/n'2nC1Œ O� � I�

so that

�C.�/ WD expŒ� � I�

D O� O�T C
�

1 � '2

2Š
C '4

4Š
� � �
�h

I� O� O�T
i
C
�

' � '3

3Š
C '5

5Š
� � �
�

Œ O� � I�

D O� O�T C cos '
h
I� O� O�T

i
C sin '

h O� � I
i

(6.31)

Now let �C.�/ operate on a vector �:

�C.�/� D O� O�T
�C cos 'ŒI � O� O�T

��C sin 'Œ O� � I��

D �k C �? cos ' C . O� � �?/ sin '

D �k C �0? D �0 (6.32)

and we have thereby obtained a transformed vector �0, whose projection �0? on the
plane transverse to O� has been rotated by an angle ' with respect to �?. In the
second line of (6.32), the terms �? cos ' and . O� � �?/ sin ' represent respectively
the projections of �0? on two unit vectors, one along �? and the other perpendicular
to �? in the transverse plane.
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To express �C.�/ in terms of cartesian components, we let O�! Oz, so that

�k D �z; �? D �x C �y D ŒOxOxT C OyOyT ��

O� � �? D Oz � ŒOxOxT C OyOyT
��? D ŒOyOxT � OxOyT ��?

(6.33)

and hence, going back to the column-matrix representation of a vector, we have

2
4� 0x

� 0y
� 0z

3
5 D

2
4Ox

T

OyT

OzT

3
5�0 D

2
4cos ' � sin ' 0

sin ' cos ' 0

0 0 1

3
5
2
4�x

�y

�z

3
5

with

�C.' Oz/ D
2
4cos ' � sin ' 0

sin ' cos ' 0

0 0 1

3
5 (6.34)

We may now better appreciate the difference between a ‘passive’ coordinate
transformation, and an ‘active’ mapping transformation of a (polar) vector. In both
cases the mathematical relation between the original and the transformed vector is
the same: �0 D �.�/�. However, in the mapping transformation (6.32), �0 has
been rotated through an angle ' about O�, whereas the equivalent transformation of
a vector generated by (6.34) is easily recognized as representing a rotation of the
.x0; y0; z0/ system through an angle �' about the z-axis, while � is kept fixed in
space—a result that is not unexpected.

Since Œ�� I� which appears in the definition (6.29) of �C.�/ is an antisymmetric
tensor, (6.18), we have with (6.30),

Œ� � I�T D �Œ� � I�T ; and �CT .�/ D expŒ� � I�T D expŒ�� � I� D �C.��/

and so
�CT .�/�C.�/ D I; �CT .�/ D .�C/�1.�/ (6.35)

which proves the orthonormality of the tensor �C.�/. Furthermore, if �C.�/ is
written as a matrix as in (6.34), we see that

det �C.�/ D 1 (6.36)

Note finally that when � D � Oz we obtain, with the aid of (6.34) and (6.7),

�C.� Oz/ D
2
4�1 0 0

0 �1 0

0 0 1

3
5 
 q3 (6.37)

giving, as expected, a rotation of � about the z-axis.
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Rotation with inversion or reflection of a vector

Consider next the transformation generated by the tensor

��.�/ WD � expŒ�� I�; with ��T D .��/�1; det ��.�/ D �1 (6.38)

by analogy with (6.33) and (6.34). This tensor effects a rotation of ' about O�
generated by the tensor �C.�/, followed by an inversion generated by �I. The net
effect is thus equivalent to a rotation of .'˙�/ O� followed by reflection with respect
to a plane perpendicular to O�. This can be seen in (6.34) with O� D Oz: the rotation
through .' ˙ �/ changes the signs of the trigonometric functions in (6.34), and the
reflection with respect to the z D 0 plane changes the sign of the .z; z/ component
fromC1 to �1. When � D � Oz we have, with (6.7)

��.� Oz/ D
2
41 0 0

0 1 0

0 0 �1

3
5 
 �q3 (6.39)

which generates a pure reflection with respect to the z D 0 plane. When ' D 0 we
have pure inversion:

��.0/ D
2
4�1 0 0

0 �1 0

0 0 �1

3
5 
 �q0 (6.40)

It is only in the D2h subgroup (Sec. 6.1.2), with q D ˙qn (6.7), that we have pure
rotation only (through �), pure reflection or inversion.

The transformations generated by � WD�˙ or equivalently by the matrix operator
� discussed in Sec. 6.1.1, constitute the full rotation group. The use of �˙ in
systematic discussion as in this chapter, has the advantage that the operations
performed are transparent, with the axis and angle of rotation being given ex-
plicitly as arguments of the operator, without reference to an irrelevant coordinate
system.

6.1.6 Mapping of mixed vector and tensor fields

Polar-vector fields such as E(r) are mapped from a region V1 to another region V2,
just as in other representations when the matrix operators � (6.13) or q (Sec. 6.1.2)
were used, by means of

E0.r0/ D �E.r/; r0 D �r; � WD �˙; r 2 V1; r0 2 V2 (6.41)
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The operators which generate vector products, such as Œk�I.3/
� or Œr�I.3/

� in (6.21)
and (6.22), transform as:

Œk0 � I.3/
� D .det �/�Œk � I.3/

��T ; I 
 I.3/ (6.42)

Œr 0 � I.3/
� D .det �/�Œr � I.3/

��T (6.43)

in which, with (6.33), (6.34) and (6.38),

� WD �˙.�/ D ˙ expŒ� � I�; �T D ��1; det � D ˙1 (6.44)

From these we infer that axial vectors, such as B.r/ � Œr � I.3/
�E.r/, are mapped

according to

B0.r0/ D .det �/�B.r/I r0 D �r; r 2 V1 r0 2 V2 (6.45)

whereas the electric field, E.r/ � r �H.r/, or the Poynting vector, S.r/ D E.r/ �
H.r/, are polar vectors.

In two-constituent polar-axial vector fields or current distributions such as

e.r/ WD
�

E.r/

H.r/

	
; j.r/ WD

�
Je.r/

Jm.r/

	

each constituent is mapped separately, so that

e0.r0/ D
�

E0.r0/
H0.r0/

	
D
�
� 0

0 .det �/�

	 �
E.r/

H.r/

	
DW � e.r/

j0.r0/ D � j.r/; r0 D �r (6.46)

in which � is the analogue of 
 (6.26) in the cartesian representation, or of Q in
the D2h symmetry group (6.27). From (6.44) we deduce that � is also orthonormal:

� T D � �1; det � D det � D ˙1 (6.47)

Consider next the mapping of the constitutive tensor K.r/, which relates two
mixed vector fields (2.20),

d.r/ WD
�

D.r/

B.r/

	
D
�
".r/ �.r/

�.r/ �.r/

	 �
E.r/

H.r/

	

 K.r/e.r/ (6.48)

With the aid of (6.46) and (6.47), eq. (6.48) becomes

d0.r0/ D � K.r/� T e0.r0/ D K0.r0/e0.r0/



186 6 Orthogonal mappings of fields and sources

so that

K0.r0/ D � K.r/� T ; r0 D �r (6.49)

and in the D2h point-symmetry group, with Q D QT (6.27),

K0.r0/ D QK.r/Q; r0 D qr (6.50)

We note, from (6.46), (6.48) and (6.49), that the constitutive tensors that link a pair
of polar or a pair of axial vectors, are mapped as

"0.r0/ D �".r/�T ; �0.r0/ D ��.r/�T ; r0 D �r (6.51)

Those which link a polar to an axial vector are mapped as

� 0.r0/ D .det �/��.r/�T ; �0.r0/ D .det �/��.r/�T ; r0 D �r (6.52)

" and � are proper tensors, � and � are pseudotensors which change sign in
reflection or inversion mappings (det � D �1). The pseudotensor character of � and
� is evident in the constitutive relations for moving media. There we had, cf. (4.4a),

� D 
. O� � I.3/
/; 
 WD �

c2

c2"�� 1

1 � �2"�

which, as we have seen from its mapping (6.42), is indeed a pseudotensor. In
Chap. 7, eq. (7.19), we shall encounter an example of a biisotropic constitutive
tensor [83, end of Sec. 1.2c] in isotropic chiral media, which has the general
structure

K D
"

"I.3/ �i˛I.3/

i˛I.3/
�I.3/

#

Since˙i˛I.3/ are pseudotensors, it is evident that the scalar multiplier ˛ is in fact a
pseudoscalar that changes sign in reflection or inversion mappings [72, Sec. 6.11].

The antisymmetric tensor Œr � I.3/
�, is also mapped like a pseudotensor (6.43),

and consequently the mapping of the differential operator D.r/ (2.22) has the form

D.r0/ WD
"

0 �r 0 � I.3/

r 0 � I.3/
0

#
D �

"
0 �r � I.3/

r � I.3/
0

#
� T


 � D.r/� T (6.53)

with r WD @=@r; r 0 WD @=@r0. This was proved in Sec. 4.4.1, in the case of
a reflection mapping (4.68), with the aid of the antisymmetric cartesian tensors
Ux; Uy and Uz.
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Consider finally the mapping of surface impedances in closed systems, cf.
Sec. 4.3. The tensor (dyadic) surface impedance Zs.rs/ links the tangential electric
and magnetic wave fields at a point rs on the bounding surface (4.52):

On.rs/ � E.rs/ D Zs.rs/H.rs/ with Zs On D 0 (6.54)

where On.rs/ is an outward unit normal vector on the surface S . The stipulation that
On.rs/ and its mapping On0 
r0s� are both outward, determines that it is a polar vector.
(If On were taken in the direction of the elementary surface element dr1 � dr2, it
would be an axial vector, so that an outward normal would map under reflection
into an inward normal.) Thus the vector On�E is axial, and Zs which links two axial
vectors is a tensor (not a pseudo-tensor) cf. (6.51), with

Zs
0 
r0s� D �Zs.rs/�

T ; r0s D �r (6.55)

6.2 Mapping the Maxwell system

6.2.1 Invariance of Maxwell’s equations under orthogonal
mapping

Suppose that two symmetrically related regions V1 and V2 are filled with media
having constitutive tensors K1.r/ and K2.r0/; r 2 V1 and r0 2 V2, and possibly
enclosed by bounding surfaces S1 and S2 whose surface impedances are Z1.r/ and
Z2.r0/ respectively. With exp.i!t/ time dependence, Maxwell’s equations in V1

(2.21), as we have seen, may be written in the form

Le WD Œi!K1.r/CD.r/� e.r/ D �j.r/; r 2 V1 (6.56)

If V1 is enclosed by impedance walls, then the relation between the tangential
components of E and H on the bounding surface S1 is given by (6.54):

On.r/ � E.r/ D Z1.r/H.r/; Z1 On D 0; r 2 S1 (6.57)

Eqs. (6.56) and (6.57) may be mapped into the region V2 which is symmetrically
related to the region V1, viz. for every point r in V1 there is a corresponding point
r0 in V2 such that r0 D �r. We premultiply (6.56) by � and (6.57) by .det �/� ,
noting that both � and � are orthonormal: � T � D I.6/ (6.47) and �T � D I.3/

(6.44). Thus
� Œi!K1.r/CD.r/� � T � � e.r/ D �� j.r/ (6.58)

and
.det �/�Œ On.r/ � E.r/� D �Z.r/�T � �.det �/H.r/ (6.59)
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With the aid of (6.46), (6.49), (6.53) and (6.55), which specify the behaviour e, j,
K, D and Z under orthogonal transformations, these become

Œi!K0.r0/CD.r0/� e0.r0/ D �j0.r0/; r0 2 V2 (6.60)

On0.r0/ � E0.r0/ D Z01.r0/H0.r0/; r0 2 S2 (6.61)

and we have retrieved Maxwell’s equations, which are thereby seen to be invariant
under orthogonal mappings, (6.58) and (6.59).

If the constitutive tensor K2.r0/ of the medium occupying the region V2 is just the
mapped tensor K01.r0/, and the surface impedance Z2.r0/ is the mapped impedance
Z01.r0/, i.e. if

K2.r0/ 
 K01.r0/ D � K1.r/� T

Z2.r0/ 
 Z01.r0/ D �Z1.r/�T

�
r 2 V1; r0 2 V2; r0 D �r (6.62)

then the two media are said to be equivalent; a system of currents and fields which
satisfies Maxwell’s equations in one medium, will satisfy them also in the second
medium (cf. Sec. 4.4.1 and Fig. 4.2).

6.2.2 The adjoint mapping

Examples of adjoint mappings were first encountered in Chap. 2, in which we used
the adjoint reflection operator (2.93)

NQy 
 Qc
y WD Qy

NI D NIQy (6.63)

to transform unphysical, adjoint eigenmodes into physical, conjugate eigenmodes:

ec�˛.�sx; sy/ D Qc
y Ne˛.sx; sy/ (6.64)

with the matrix NI (2.81) in the product Qc
y D Qy

NI, serving to reverse the direction
of the Poynting vector by changing the sign of the axial-vector constituent H when
operating on a wave field e0 WD .E0; H0/.

We encountered a similar adjoint reflection mapping in Sec. 4.4.1 in which, in
addition to mapping the wave fields (4.76),

ec.r0/ D NQy Ne.r/ or Nec.r0/ D NQy e.r/; r0 D qyr (6.65)

the adjoint operator NQy also served to change the sign of the differential operator
D.r/ (4.69), NQy D.r/ NQy D �D.r0/; r0 D qyr (6.66)
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These results can be generalized immediately by defining the adjoint mapping
operator

N� WD � NI D NI� ; with N� T D N� �1
(6.67)

the last equality stemming from (6.47), with NI D NIT D NI�1
(2.81).

By analogy with (6.66), application of N� to the differential operator D.r/ yields,
with the aid of (6.53) and (4.69),

N� D.r/ N� T D NIŒ� D.r/ N� T
�NI D NID.r0/NI D �D.r0/ (6.68)

with r0 D �r.

Suppose that the mapped constitutive tensor N� K1.r/ N� T
equals the transpose of

the constitutive tensor K2.r0/ in the second medium:

N� K1.r/ N� T D � ŒNIK1.r/NI� � T D K2
T

.r0/; r0 D �r (6.69)

or, on transposition and use of the orthonormality of � (6.47),

K2.r0/ D � ŒNIK1
T

.r/NI� � T ; r 2 V1; r0 2 V2 (6.70)

Thus K2.r0/ represents an orthogonal mapping of the Lorentz-adjoint constitutive
tensor K.L/ WD NIKT NI (4.37) of the medium in V1, and we call such a medium
a conjugate medium, or a medium which is conjugate to the given medium. We
thereby generalize our earlier usage, cf. Sec. 2.4 and eqs. (4.75) and (4.79), in which
the concept of a conjugate medium was restricted to a reflection mapping of the
Lorentz-adjoint medium.

Let us now map Maxwell’s equations (2.21) from V1 to V2 by means of the adjoint
operator N� , (6.67),

N� L.r/e.r/ WD N� Œi!K1.r/CD.r/� N� T N� e.r/ D � N� j.r/

yielding, with (6.69) and (6.68),

h
i!K2

T
.r0/�D.r0/

i N� e.r/ D � N� j.r/ (6.71)

This is just the adjoint Maxwell system in the conjugate medium, in which we may
identify

K2.r0/ 
 Kc
2.r
0/; N� e.r/ D Nec.r0/; N� j.r/ D Njc.r0/ (6.72)

and recalling that the adjoint operation is involutary, i.e. NNec.r0/ D ec.r0/, we have
with (6.67),

N� T
ec.r0/ D Ne.r/; N� T

jc.r0/ D Nj.r/ (6.73)

by analogy with (4.76).
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It will be convenient in what follows to work, as in Sec. 4.4.3, with physical rather
than with adjoint fields and currents. If we start with the (physical) Lorentz-adjoint
Maxwell equations in V1 and map them into V2, by analogy with eqs. (4.71)–(4.74),
we obtain with (4.37) and use of the orthonormality of � ; � T � D I.6/ (6.47),

� L.L/e.L/.r/ D �
h
i!NIK1

T
.r/NICD.r/

i
� T � e.L/.r/ D �� j.L/.r/ (6.74)

where NIK1
T

.r/NI 
 K.L/
1 .r/. Thus, with (6.70) and (6.72), we get

Œi!Kc
.r0/CD.r0/� ec.r0/ D �jc.r0/ (6.75)

in which we have identified

� e.L/.r/ D ec.r0/; � j .L/.r/ D jc.r0/; � K.L/
.r/ � T D Kc

.r0/ (6.76)

The inverse mappings from V2 to V1 with � �1 D � T (6.47), are

e.L/.r/ D � T ec.r0/; j.L/.r/ D � T jc.r0/; K.L/
.r/ D � T Kc

.r0/� (6.77)

and the mappings of fields and currents are equivalent to those in (6.73), with
e.L/.r/D NINe.r/; j.L/.r/D NI Nj.r/ as in (4.34), thereby justifying the definitions
in (6.76).

A necessary condition for the identification of the mapped with the conjugate
fields and currents, (6.72) or (6.76), is that the mapped and conjugate surface
impedances are the same. In Sec. 4.3.2 we found the relation between the Lorentz-
adjoint and the given surface impedances, Z.L/ and Z 
 Z1 (4.57) and (4.58),

On.r/ � E.L/.r/ D Z.L/
.r/H.L/.r/; Z.L/

.r/ D ZT
.r/ (6.78)

in which we have dropped the subscript s. With e.L/.r/ D NINe.r/ (4.34), viz.

E.L/.r/ D NE.r/; H.L/.r/ D � NH.r/ (6.79)

we find from (6.78) that

On.r/ � NE.r/ D �Z.L/
.r/ NH.r/ D NZ.r/ NH.r/ (6.80)

so that

� NZ.r/ D Z.L/
.r/ D ZT

.r/ (6.81)

The conjugate surface impedance Zc
.r0/ is defined by analogy with (4.52)

On.r0/ � Ec.r0/ D Zc
.r0/Hc.r0/ (6.82)
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Expressing the axial vectors On.r0/ � Ec.r0/ and Hc.r0/ as orthogonal mappings of
On.r/ � E.L/.r/ and H.L/.r/ respectively, we obtain, with ec.r0/ D � e.L/.r/, (6.76),

.det�/�Œ On.r/ � E.L/.r/� D Zc
.r0/.det �/� H.L/.r/

With (6.78) and (6.81) this yields

Zc
.r0/ D �Z.L/

.r/�T D �ZT
.r/�T (6.83)

We summarize as follows. If for all r 2 V1; r0 2 V2, the constitutive tensors
K.r/ 
 K1.r/ and Kc

.r0/ 
 K2.r0/, and the dyadic surface impedances (if any),
Z.r/ and Zc

.r0/, are linked by the relations

Kc
.r0/ D N� KT

.r/ N� T
; Zc

.r0/ D �ZT
.r/�T ; r0 D �r (6.84)

then the orthogonal mapping (6.74) of the Maxwell currents and fields in the
Lorentz-adjoint medium, NIKT NI, yields solutions of the Maxwell system (6.75) in the
conjugate medium. We shall say that the Maxwell systems in the two orthogonally
mapped regions display conjugation symmetry.

6.2.3 Lorentz reciprocity in regions possessing conjugation
symmetry

Consider the Maxwell fields and currents e1.r/ and j1.r/ in a medium K.r/; r 2 V1,
and ec

2.r0/ in a medium Kc
.r0/; r0 2 V2. Suppose that the constitutive tensors and

surface impedances (if any) possess conjugation symmetry, i.e. that they are related
as in (6.84). Maxwell’s equations in V1 and V2 respectively are

L.r/e1.r/ WD Œi!K.r/CD.r/� e1.r/ D �j1.r/ (6.85)

L.r0/ec
2.r
0/ WD Œi!Kc

.r0/CD.r0/� ec
2.r
0/ D �jc

2.r
0/ (6.86)

An orthonormal mapping of (6.86) from V2 to V1:

� T L.r0/ec
2.r
0/ D � T L.r0/� � T ec

2.r0/ D �� T jc
2.r
0/

yields, with the aid of (6.77),

Œi!K.L/
.r/CD.r/� ec0

2 .r/ D �jc0
2 .r/ (6.87)

where

ec0
2 .r/ WD � T ec

2.r
0/ D e.L/

2 .r/; jc0
2 .r/ WD � T jc

2.r
0/ D j.L/

2 .r/ (6.88)
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by analogy with (4.82) and (4.83). Just as in Sec. 4.4.3 we use the notation ec0
2 .r/ and

jc0
2 .r/, rather than the equivalent Lorentz-adjoint quantities, e.L/.r/ and j.L/.r/, in

order to emphasize that they are derived by an orthogonal mapping of physical fields
and currents in the conjugate medium. Now the given and Lorentz-adjoint fields and
currents, (6.85) and (6.87), have been shown in Sec. 4.2.2, eqs. (4.32)–(4.37), to be
related by a reciprocity relation, which in the present case takes the form

Z
V1

�
Qe1
NIjc0

2 � Qec0

2
NI j1

�
d 3r D

Z
S1

�
Ec0

2 �H1 � E1 �Hc0

2

�
� On dS

D
Z n�

On � Ec0

2

�
�H1 � . On � E1/ �Hc0

2

o
dS

D
Z � QH1 Z.L/Hc0

2 � QHc0

2 ZH1

�
dS

D
Z
QH1.Z

.L/ � ZT
/ Hc0

2 dS (6.89)

In the third line the vector products, On�E, have been replaced by surface impedance
terms, (6.78) and (6.57), and the second term in the integrand has been transposed
in the last line. The right-hand side equals zero, since Z.L/ D ZT (4.58), and so
finally

Z
V1

�
Qe1
NIjc0

2 � Qec0

2
NI j1

�
d 3r D 0 (6.90)

as in (4.84). Here too it is convenient to map the second term in the integrand, a
scalar (invariant), into the conjugate region V2, with the aid of (6.88),

Qec0

2 .r/NIj1.r/ D Qec
2.r
0/� NIj1.r/ D Qe.L/

2 .r0/NI� j1.r/

D Qec
2.r0/NIj01.r0/ (6.91)

with j01.r0/ WD � j1.r/, so that (6.90) becomes, in mixed vector-matrix notation,

Z
V1

e1 � NIjc0
2 d 3r D

Z
V2

ec
2 � NIj01 d 3r 0 (6.92)

as in (4.86). The subsequent conclusions and applications discussed in Chap. 4 are
all applicable here, but the mapping from region V1 to V2 is no longer restricted to
reflection or other elements of the D2h symmetry group, but includes all orthogonal
mappings in the full rotation group. It should be noted that the identity mapping,
generated by � ! q0 
 I.3/ (6.8), belongs to this general category. With this
mapping the conjugate constitutive tensor (6.84) is simply

Kc
.r0/ D NIKT

.r/NI 
 K.L/
.r/; r0 D r; V1 D V2;
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the conjugate fields and currents reduce to the Lorentz-adjoint quantities, and (6.90)
reduces to the usual Lorentz reciprocity theorem

Z �
e1 � NIj.L/

2 � e.L/
2 � NI j1

�
d 3r D 0 (6.93)

6.3 Mapping the Green’s functions and scattering matrices

6.3.1 Mapping the Green’s functions

In Chap. 5 the structure of the Green’s function in transverse-k space was found
in terms of the eigenmodes and transfer matrices for any two levels in the medium
(5.90). The relation between the Green’s functions in the conjugate and given media
was then determined, first in transverse-k space (5.99), and then by Fourier synthesis
in physical space (5.100) The relationship between them was then used to prove the
Lorentz reciprocity theorem for currents and fields in real (physical) space. In the
present section we proceed in the opposite direction. It will be shown that if Lorentz
reciprocity is assumed, then the relation between the given and conjugate Green’s
functions is very simply derived. The derivation relies on the form of the adjoint
Green’s function, which was found in transverse-k space in Chap. 5, eq. (5.55),
although details of the derivation were not given. In this section the form of the
adjoint Green’s function in terms of the given function is inferred as an immediate
consequence of the Lorentz reciprocity relation.

Orthogonal mapping of the Green’s function

The dyadic (tensor) Green’s function G.r; r0/ relates the field e.r/ at an observation
point r, to the integrated contributions of currents j.r0/ at all points in the region V1

(5.35), which may be bounded or unbounded,

e.r/ D
Z

V1

G.r; r0/j.r0/ d 3r0 (6.94)

(Source points are denoted here by r0 rather than r0, as in Chap. 5, the primes being
reserved in this chapter to denote mapped vectors and tensors.) If the orthogonally
mapped fields and currents

e0.r0/ D � e.r/; j0.r0/ D � j.r/; r0 D �r; r 2 V1; r0 2 V2

are solutions of Maxwell’s equations in the region V2, implying that the constitutive
tensor K0.r0/ and the surface impedance tensor Z0.r0/, if there is one, are related to
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those in the given region V1 by an equivalence mapping (6.62), then we may map
eq. (6.94) from V1 to V2, recalling that � T � D I.6/ (6.47),

e0.r0/ D � e.r/ D
Z

� G.r; r0/� T � j.r0/d
3r0

D
Z

� G.r; r0/�
T j0.r00/d 3r 00; r0 D �r; r00 D �r0

D
Z

V2

G0.r0; r00/j0


r00
�

d 3r00 (6.95)

Comparison of the last two lines yields finally

G0


r0; r00

� D � G .r; r0/ � T ; r0 D �r; r00 D �r0 (6.96)

The adjoint Green’s functions

Suppose that the fields and currents, e(r) and j(r), satisfy Maxwell’s equations (4.28)
in a region V , and that Ne.r/ and Nj.r/ satisfy the adjoint equations (4.29) in the same
region. Then the Lorentz reciprocity theorem (4.51) takes the form

Z ˚
e.r/ � Nj.r/� Ne.r/ � j.r/

�
d 3r D 0 (6.97)

If the fields e(r) and Ne.r/ are related to their sources through the corresponding
Green’s functions, as in (6.94), this becomes

Z Z nNjT.r/G.r; r0/j.r0/� jT.r/ NG.r; r0/Nj.r0/
o

d 3r d 3r0 (6.98)

If we transpose the first term, and then interchange the variables r $ r0 in the
second term (which is legitimate since we integrate over all r and all r0 in the same
space), (6.98) becomes

Z Z
jT.r0/

n
GT

.r; r0/� NG.r0; r/
o Nj.r/ d 3r d 3r0 D 0 (6.99)

Since this result is true for arbitrary currents, j and Nj, we conclude, as in [53,
eq. 1.1.28], that

NG.r0; r/ D GT
.r; r0/ (6.100)

which is the same result given in (5.55) for transverse-k space.
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The conjugate Green’s function

Let us premultiply the defining equation for the adjoint Green’s function by the

adjoint operator N� , remembering that N� T N� D I.6/ (6.67),

N� Ne.r0/ D
Z

V1

N� NG.r0; r/ N� T N� Nj.r/d 3r; r; r0 2 V1 (6.101)

Now since, by (6.73),

ec.r0/ D N� Ne.r/; jc.r0/ D N� Nj.r/; r0 D �r (6.102)

we obtain from (6.101), with the aid of (6.100),

ec


r00
� D

Z
N� NG.r0; r/ N� T

jc.r0/d 3r 0; r00 D �r0

D
Z
N� GT

.r; r0/ N� T
jc.r0/d 3r 0

D
Z

Gc
r00; r0
�

jc.r 0/d 3r 0 (6.103)

the last line being the defining equation for Gc . The equality of the integrands in all
three equations, which holds for arbitrary jc , gives

Gc
r00; r0
� D N� GT

.r; r0/ N� T D N� NG.r0; r/ N� T
(6.104)

with r0 D �r; r00 D �r0, which is the generalization of the result (5.100) found for
plane-stratified media under adjoint reflection mappings.

If the defining equation for NG is premultiplied by NI, rather than by N� as in (6.101),

we get with e.L/ D NINe; j.L/ D NINj (4.34) and NI D NI�1
(2.81),

NINe.r0/ D e.L/.r0/ D
Z

G.L/
.r0; r/j.L/.r/d 3r (6.105)

so that the Lorentz-adjoint Green’s function is given by

G.L/
.r0; r/ D NI NG.r0; r/NI (6.106)

Comparison with (6.104) yields the conjugate Green’s function as an orthogonal
mapping of the Lorentz-adjoint Green’s function

Gc
r00; r0
� D � G.L/

.r0; r/� T (6.107)
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We note finally from (6.100), (6.104) and (6.106) that the adjoint, the conjugate
and the Lorentz-adjoint Green’s functions are mutually related, not unexpectedly, in
the same way as the corresponding constitutive tensors.

6.3.2 Mapping the scattering matrices

In Chaps. 2, 3, and 4 the scattering matrices S and Sc were determined for
stratified media possessing conjugation symmetry, and were found to be related
by a scattering theorem (2.112). A conjugate medium was understood to be one
whose constitutive tensor was formed by a reflection mapping with transposition
(or time-reversal) of the constitutive tensor of the given medium. In Sec. 6.2.2
the concept of a pair of media conjugate to each other, cf. Secs. 2.4.1 and 2.4.2,
was extended to include any pair of media whose constitutive tensors and surface
impedances (if any) were mutually transposed when subject to an adjoint mapping,
as in (6.84).

We would expect that the scattering theorem (2.112) could also be generalized
to accommodate such adjoint transformations. Now the scattering matrices link the
amplitudes of incoming and outgoing eigenmodes (2.103), and in order to treat the
transformation of scattering matrices, we must first investigate the transformation
of eigenmodes and their amplitudes under general conjugation transformations.

Orthogonal transformations in equivalent media

In the ‘active’ transformations we have been using, the coordinate axes remained
fixed while the constitutive tensors, the fields and current distributions were mapped.
On the other hand, in the formalism used in Chaps. 2–4 to treat eigenmodes in plane-
stratified media, the z-axis was always taken normal to the stratification. In order to
combine both formalisms, we shall restrict the mappings to rotations and reflections
within the transverse (stratification) plane. The most general transformation or
mapping of the plane-stratified system will then be an arbitrary rotation � D ' Oz
about the z-axis, with or without reflection with respect to any plane containing
the z-axis. This reflection plane can be taken as the y D 0 plane, without loss of
generality, since the reflection of the vector r, and hence of any polar-vector field
�.r/ with respect to the ' D '0 plane .'0 D const:/, is equivalent to a reflection
with respect to the ' D 0 plane (i.e. the y D 0 plane) followed by a rotation of
2'0 about the z-axis. Thus, with � D ' Oz, the transformation matrix has the form,
cf. (6.34),

� 

2
41 0 0

0 ˙1 0

0 0 1

3
5
2
4cos ' � sin ' 0

sin ' cos ' 0

0 0 1

3
5 D

�
�.2/.�/ 0

0 1

	
; det � D ˙1 (6.108)
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the plus/minus sign depending on whether or not a reflection is involved. The 2 � 2

matrix � .2/ operates only on the transverse components of a vector.
Consider the homogeneous Maxwell system which, with the plane-wave ansatz

e.r/ � exp.�ik � r/, takes the form, cf. (4.42) and (4.43),

ŒcK.z/� OK� e.r/ D 0; OK WD 1

k
K WD

"
0 �Ok � I.3/

Ok � I.3/
0

#
(6.109)

where k D .kt ; kz/; in plane-stratified media, K is a function of z only, and Okt WD
.sx; sy/ is a constant (Snell’s law), so that (6.109) becomes an eigenmode equation.
If the operator bK is split for convenience into three cartesian components, cf. (2.24)
and (2.25), and k � r in the exponent of the plane-wave ansatz for e˛.r/ is also
decomposed, e˛.r/ D e˛.kt ; z/ expŒ�ik0.sxx C syy/�, eq. (6.109) becomes

ŒcK.z/ � sxUx � syUy � q˛Uz�e˛.kt ; z/ D 0 (6.110)

in which, with Ok˛ WD .sx; sy; q˛/, the operator bK! bK˛ in (6.109) is given by

OK˛ WD
"

0 �Ok˛ � I.3/

Ok˛ � I.3/
0

#
D sxUx C syUy C q˛Uz (6.111)

When eq. (6.109) with k D k˛ , or equivalently eq. (6.110), is mapped from V1

to V2 in the transverse plane by means of � (6.46), in which the constituent 3 � 3

operator � WD �.�/, as in (6.108), acts only on the transverse vector components,
we obtain

� ŒcK � sxUx � syUy � q˛Uz� � T � e˛.kt ; z/

D
h
cK0 � s0xUx � s0yUy � q 0̨Uz

i
e0̨


k0t ; z

� D 0 (6.112)

in which

K0.z/ D � K.z/� T ; OK0˛ D � OK˛� T D
"

0 �Ok0˛ � I.3/

Ok0˛ � I.3/
0

#
I

Ok0˛ D � Ok˛ with

"
s0x
s0y

#

 Ok0t D � .2/ Okt 
 �.2/

�
sx

sy

	
and

Ok0z 
 q 0̨ D q˛ 
 OkzI e0̨ .r0/ D � e˛.r/; r0 D �r

The adjoint eigenmodes are similarly mapped.
The z-component of the concomitant vector, Pz (2.39), is invariant under this

mapping, since

Pz WD QNeUze D QNe0� Uz�
T e0 D QNe0Uze0 D P 0z (6.113)
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as can be seen when Uz is written in terms of the antisymmetric matrices	Oz � I.3/

(2.25). Thus, with the aid of (6.42), we have

� Uz�
T WD �

"
0 �Oz � I.3/

Oz � I.3/
0

#
� T

D
"

0 �.det �/�.Oz � I.3/
/�T

.det �/�.Oz � I.3/
/�T 0

#

D
"

0 �Oz0 � I.3/

Oz0 � I.3/
0

#
D Uz (6.114)

since Oz0 D Oz under this mapping, as assumed. We could have reached this conclusion
directly by noting that the bilinear concomitant vector P (2.42) is a polar vector, and
therefore its z-component is invariant under the assumed mapping.

The modal amplitudes, a˛ and a0̨ , are thus equal, cf. (2.78), as are also the adjoint
amplitudes, Na˛ and Na0̨ . The given and the mapped problems are equivalent, and the
scattering matrices are equal

S0


k0t
� D S.kt /; k0t D �.2/kt (6.115)

where � .2/ (6.108) is an arbitrary 2 � 2 orthogonal transformation matrix that maps
transverse vector components in the stratification plane.

Adjoint transformations in conjugate media

Consider next the mapping of eigenmodes from a given plane-stratified medium into
a conjugate medium, related by [cf. (6.70) and (6.72)]

Kc
.z0/ D N� KT

.z/ N� T
; z0 D z (6.116)

in which N� D � NI D NI� (6.67) and � , given by (6.108), generate rotations about
the z-axis, with or without reflections with respect to planes containing the z-axis.
The z-components (normal to the stratification) of polar-vector fields are thus, as
before, unaffected by the mapping. (The z-component of axial-vector fields would
be reversed under reflection.)

The adjoint eigenmode equation in the given medium, (2.44), with the plane-
wave ansatz Ne˛ � exp.ik0 Nq˛z/ (2.43), is

ŒcKT
.z/� sxUx � syUy � Nq˛Uz� Ne˛.kt ; z/ D 0 (6.117)
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with Nq˛ D q˛ (2.46). When transforming (mapping) this equation with the aid of N�
we note, with (6.67) and (2.82), that

N� Ui N� T D � NIUi
NI� T D �� Ui�

T ; i D x; y or z (6.118)

and so, using (6.114) and (6.112), we obtain

N� ŒcKT � sxUx � syUy � Nq˛Uz� N� T N� Ne˛.kt ; z/

D
h
cKc C s0xUx C s0yUy C Nq˛Uz

i N� Ne˛.kt ; z/ D 0 (6.119)

Note that when the field Ne˛.kt ; z/ is mapped with N� , the transverse propagation

vector kt is mapped too into k0t D �kt , with k0t D k0

�
s0x; s0y

�
and kt D k0.sx; sy/.

Comparison of (6.119) with the conjugate eigenmode equation

h
cKc � sc

xUx � sc
yUy � qc

˛Uz

i
ec�˛



kc

t ; z
� D 0 (6.120)

cf. (2.90), yields finally

� qc�˛ D Nq˛ D q˛; ec�˛

�
�s0x;�s0y

�
D N� Ne˛.sx; sy/ (6.121)

by analogy with (2.91), where under reflection with respect to the y D 0 plane

we had
�
�s0x; �s0y

�
! .�sx; sy/. Since the adjoint operation is involutary, we

have also
Nec�˛

�
�s0x;�s0y

�
D N� e˛.sx; sy/ (6.122)

by analogy with (2.94). The conjugate modal amplitudes are directly related to the
adjoint modal amplitudes, as in (2.96) with Ne D Ne˛,

Na˛ D OeT
˛ Uz Ne˛sgn.˛/ D

�ONec�˛

�T N� Uz N� T
ec�˛sgn.˛/

D �
�ONec�˛

�T

Uz ec�˛sgn.˛/ D ac�˛ (6.123)

with the aid of (6.114) and (6.118), and with sgn.˛/ D �sgn.�˛/. We conclude
then that

ac
˛ D Na�˛; Nac

˛ D a�˛ (6.124)

From here on the proof of the scattering theorem follows the same lines as in
Sec. 2.5. The constancy of the z-component of the concomitant vector, (2.39)
and (2.78), leads to a scattering theorem relating the given and adjoint scattering
matrices, as in (2.108),

NST
S D I.4/ D S NST

; S 
 S.kt /; NS 
 NS.kt / (6.125)
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This theorem, together with the relation between conjugate and adjoint modal
amplitudes (2.109), then leads to the scattering theorem relating given and conjugate
scattering matrices, as in (2.112),

Sc 
kc
t

� D ST
.kt /; kc

t D �.2/kt (6.126)

where � .2/ effects an arbitrary rotation or reflection in the tranverse, stratifica-
tion plane.

We remark finally that the scattering theorems, (2.108) and (2.112), have been
generalized in two important respects. In Sec. 2.6 the constancy of the normal
(to the stratification) components of the bilinear concomitant vector P was shown
to apply also to curved stratifications, and hence the scattering theorems may be
generalized to include curved stratified media. In the present section the concept
of a conjugate medium has been generalized to include any plane-stratified medium
whose transposed constitutive tensor can be derived, as in (6.116), by any orthogonal
adjoint mapping in the transverse, stratification plane.

6.4 Mapping the constitutive tensors

6.4.1 Uniaxial crystalline media

These media are self-adjoint, as we have seen in Sec. 4.1.1, with K D KT (4.1),
and are also Lorentz self-adjoint, viz.

K.r/ D K.L/
.r/ WD NIKT

.r/NI (6.127)

cf. (4.37). Lorentz reciprocity (4.94) thus applies to currents and fields in any spatial
region V1 containing the medium K.r/:

hea; NIjbi D
D
e.L/

b ; NIj.L/
a

E
D heb; NIjai (6.128)

where

hea; NIjbi WD
Z

V1

ea.r/ � NIjb.r/ d 3r (6.129)

Any orthogonal mapping (rotation, reflection or inversion) of the right-hand side of
(6.129) from V1 into V2; .r 2 V1; r0 2 V2/, by means of the matrix � (6.46) gives,
with � T � D I.6/ (6.47) and � NI D NI� (6.67),

heb; NIjai W D
Z

V1

Qeb.r/� T � NIja.r/ d 3r D
Z

V2

Qe0b.r0/NIj0a.r0/d 3r 0

D
Z

V2

Qeb0
.r0/NIja0.r0/d 3r 0 D heb0 ; NIja0i (6.130)
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where a; b and a0; b0 denote symbolically the given and mapped sources respec-
tively: ja ! a; j0a 
 ja0 ! a0. Note that the passage from e0b in the first line of the
above equation to eb0 in the second line, is not just an alternative notation for the
same thing, but expresses the equality between the mapped field e0b.r0/ D � e.r/

and the field eb0.r0/ radiated by the mapped current j0b.r0/ in V2, as in (4.90). This is
equivalent to saying that the mapped field and currents solve Maxwell’s equations
in the mapped region. Eq. (6.130) states simply that the inner product of eb and ja,
a scalar, is invariant under an orthogonal mapping, which is not surprising. In view
of (6.128), we deduce from (6.130) that

hea; NIjbi D heb0 ; NIja0i (6.131)

Now we could just as well have have mapped the (scalar) inner product on the
left-hand side of (6.128), and obtained directly

hea; NIjbi D hea0 ; NIjb0i (6.132)

and we see from (6.131) and (6.132) that the given and mapped sources and fields
are both Lorentz-reciprocal and equivalent. Using Rumsey’s reaction notation, cf.
(4.89), we may combine (6.131) and (6.132) in the compact form

ha; bi D hb0; a0i D ha0; b0i (6.133)

6.4.2 Gyrotropic media

Gyrotropic media have been discussed in some detail in Sec. 4.4. The Lorentz-
adjoint medium is characterized by the field-reversed (time-reversed) constitutive
tensor, cf. (4.37), (2.36), (2.81) and (2.35),

K.L/
.r/ WD NIKT

.b; r/NI D NIK.�b; r/NI D K.�b; r/ (6.134)

If ea.r/ and ja.r/ satisfy Maxwell’s equations in V1, and e.L/

b .r/ and j.L/

b .r/ satisfy
them in the Lorentz-adjoint medium, also in V1, then as we have seen in (4.94)
or (6.128), the two sets of currents and fields are reciprocal. The medium Kc

.r0/
formed by any orthogonal mapping of the Lorentz-adjoint medium from V1 into
another region V2.r0 2 V2/ is the conjugate medium:

Kc
.r0/ D � K.L/

.r/� T ; r0 D �r (6.135)

The Lorentz-adjoint fields and currents which are mapped into the conjugate
medium Kc

.r0/,

ec
b.r0/ D � e.L/

b .r/; jc
b.r0/ D � j.L/

b .r/; r0 D �r (6.136)
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satisfy Maxwell’s equations in that medium, as we have seen in Sec 6.2.1, and are
reciprocal to the fields and currents in the given medium,

D
ea; NIjb

E
D
D
ec

b0 ; NIjc
a0

E
(6.137)

This result follows immediately from the mapping of the (scalar) inner productD
e.L/

b ; NIj.L/
a

E
(6.128) into the conjugate region.

Orthogonal mappings of the given, rather than the Lorentz-adjoint constitutive
tensor, currents and fields, yields an equivalence relation

D
ea; NIjb

E
D
D
ea0 ; NIjb0

E
; K0.r0/ D � K.r/� T (6.138)

6.4.3 Bianisotropic magnetoelectric media

We consider magnetoelectric crystalline media whose constitutive tensors have the
form, as in (4.2) and (4.3),

K 

�

" �

� �

	
D KT

; " D "T ; � D �T ; � D �T (6.139)

in which the 3�3 uniaxial tensors "; � and � are all symmetric, and have a common
symmetry axis.

The Lorentz-adjoint constitutive tensor

K.L/ WD NIKT NI D NIKNI D
�

" ��

�� �

	
(6.140)

is not ‘physical’ in the following sense. It was pointed out in Sec. 4.1.3 that if K
in (6.139) corresponds to a medium in which, under the influence of an external
electric or magnetic field, both the electric and magnetic dipole elements become
aligned in a direction parallel to the external field, then K.L/ (6.140) corresponds to
a medium in which the respective electric and magnetic dipoles become aligned in
opposite directions.

Two types of mapping will lead to the same physical constitutive tensor (in
the sense just used) in the mapped region. First, a rotation mapping of the given
medium,

K0.r0/ 

�
"0 �0
� 0 �0

	
D � K.r/� T (6.141)
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with, cf. (6.29),

r0 D �r; � 
 �C.�/ WD expŒ� � I�; det � D 1 (6.142)

leading to

� WD
�
� 0

0 .det �/�

	
D
�
�C.�/ 0

0 �C.�/

	
(6.143)

The 3 � 3 matrices composing K0 in (6.141) are given by

"0.r0/ D �C".r/�CT ; �0.r0/ D �C�.r/�CT ; � 0.r0/ D �C�.r/�CT

with r0 D �Cr, and the mapped matrix K0 thus preserves its original form.
Second, a mapping of the Lorentz-adjoint medium consisting of a rotation

through an angle �, followed by inversion:

K0.r0/ D � K.L/
.r/� T D N� KT

.r/ N� T D N� K.r/ N� T
; r0 D �r (6.144)

with K.L/ given by (6.140), N� WD � NI (6.67) and � , with the aid of (6.38), given by

� D ��.�/ WD � expŒ� � I� D ��C.�/; det � D �1 (6.145)

This leads to

N� WD
�
� 0

0 �.det �/�

	
D
�
��.�/ 0

0 ��.�/

	
(6.146)

and, with ��.�/ D ��C.�/ as in (6.145),

"0.r0/ D ��".r/��T D �C".r/�CT ; �0.r0/ D ���.r/��T D �C�.r/�CT

� 0.r0/ D ���.r/��T D �C�.r/�CT ; r0 D ��r (6.147)

Thus the constitutive tensor K0.r0 D �Cr/ in (6.141), with � given by (6.143), is
identical to K0.r0 D ��r/ in (6.144), where the constituent tensors of � are given by
(6.147), although the spatial structure of the two media is different. But the different
spatial structure of K0.r0/ in the two cases, in relation to that of K.r/ in the given
medium, leads to the striking difference that in the case of a rotation mapping only
an equivalence relation with the given medium is obtained,

D
ea; NIjb

E
D
D
ea0 ; NIjb0

E
(6.148)

whereas the rotation plus inversion (or reflection) mapping gives a reciprocity
relation only: D

ea; NIjb

E
D
D
eb0 ; NIja0

E
(6.149)
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6.4.4 Bianisotropic moving media

The essential features specific to this type of bianisotropy is exhibited by a medium
which is isotropic in its rest frame,

".0/ D "I.3/
; �.0/ D �I.3/

; �.0/ D �.0/ D 0

In the laboratory frame, in which the medium is moving with a velocity � D ˇc in
the x-direction, the constitutive tensor, given in (4.4), becomes

K D
�

" �

�T �

	
D KT

; � D
2
40 0 0

0 0 �


0 
 0

3
5 D ��T (6.150)

with " and � diagonal and 
 D �.c2"� � 1/=c2.1 � �2"�/.
As in the case of the magnetoelectric medium, the Lorentz-adjoint tensor is

given by

K.L/ WD NIKT NI D
�

" ��

��T �

	
(6.151)

but in this case the medium is ‘physical’, corresponding to a reversal of its direction
of motion with respect to the laboratory frame, � ! ��. If everywhere in the
medium �D � Ox, then the salient features of the different mappings are demonstrated
by simple transformations.

The constitutive tensor K in the given medium (6.150) can be retrieved by
a number of mappings. Equivalence relations will result either from a rotation
mapping about the x-axis, which is the direction of the relative velocity vector �,
generated by q1:

r0 D q1r; q D q1 WD
2
4 1 0 0

0 �1 0

0 0 �1

3
5 ; detq D 1 (6.152)

or by a reflection mapping with respect to the y D 0 or z D 0 planes, generated by
q�2 or q�3,

q D q�2 WD
2
41 0 0

0 �1 0

0 0 1

3
5 ; q D q�3 WD

2
41 0 0

0 1 0

0 0 �1

3
5 ; detq D �1 (6.153)

In both cases

K0.r0/ D QK.r/Q D K.r/; with Q WD
�
q 0

0 .detq/q

	
(6.154)
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and fields and currents in the given medium will be equivalent to the mapped fields
and currents in the mapped medium.

The constitutive tensor K.r/ in the given system can also be retrieved by a
number of mappings of the Lorentz-adjoint (velocity reversed) system, and the
mapped fields and currents will be reciprocal to those in the given system. Thus

K0.r0/ D QK.L/
.r/Q D NQKT

.r/ NQ D NQK.r/ NQ D K.r/ (6.155)

if q D q2; q3 or q�1, corresponding to rotations about the y- or z-axes or reflections
with respect to the x D 0 plane. The three transformations generated by q in these
cases reverse the sign of �, but this is restored to its original value by the adjoint
operator NQ WD QNI (6.63). The mapped fields and currents

ec.r0/ D Qe.L/.r/; jc.r0/ D Qj.L/.r/; r0 D q r

are reciprocal to those in the given system,

D
ea; NIjb

E
D
D
ec

b; NIjc
a

E
(6.156)



Chapter 7
Time reversal and reciprocity

A number of phenomena discussed in earlier chapters indicated a close relationship
between Lorentz adjointness and time reversal. In Secs. 2.4.1–3, Secs. 6.2.2–3 and
also in Secs. 4.4.1, 4.4.3 and 4.5.3 (Figs. 4.2, 4.4 and 4.6) we noted that spatially
transformed time-reversed gyrotropic media were ‘conjugate’ or ‘reciprocal’ to the
given medium. The spatial transformation needed to be no more than an identity
transformation, so that it was the time reversal (specifically, the reversal in direction
of the external magnetic field) that rendered the medium ‘reciprocal’. Furthermore,
the Lorentz-adjoint fields and currents that obeyed Maxwell’s equations in this
reciprocal medium were found to be related to the fields and currents in the given
medium by a Lorentz reciprocity relationship, one of the consequences of which
was the interchange of roles of receiving and transmitting antennas. This too could
be seen as an expression of time reversal of the transmitting-receiving process.

In order to analyze this relationship more closely, we shall develop the time-
reversal transformation of time-harmonic vector quantities such as fields and
currents, and of tensors such as the constitutive tensor K. We then demonstrate that
the time-reversed fields and currents obey Maxwell’s equations in the time-reversed
medium; in other words, Maxwell’s equations are invariant under time reversal. It is
shown that the Maxwell time-reversed and Lorentz-adjoint equations are identical,
and in source free media the solutions are identical too. In this case time reversal
may be employed to give useful physical results.

The concept of time-reversed wave fields is applied to the mapping of ray
paths (the trajectory of wave packets) from a given to a reciprocal medium; to
the rederivation of the eigenmode scattering theorem for plane-stratified media;
and finally, to the generalization of Kerns’ scattering theorem to scattering objects
imbedded in plane-stratified anisotropic (and possibly absorbing) media which,
as a special case, reduces to the problem of a scattering object imbedded in a
homogeneous anisotropic medium.

To provide further insight into the relationship between the time-reversed and
the Lorentz-adjoint equations, a compressible magnetoplasma is considered, which
can support both electromagnetic and acoustic field variables, E, H, � and p,

C. Altman and K. Suchy, Reciprocity, Spatial Mapping and Time Reversal
in Electromagnetics, DOI 10.1007/978-94-007-1530-1 7,
© Springer Science+Business Media B.V. 2011
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where � and p are the macroscopic velocity and pressure variables of the ‘electron
gas’. The 10-component electromagnetic-acoustic field, with the corresponding
10-component source terms, have their Lorentz-adjoint and time-reversed counter-
parts, and a comparison between them provides additional insights. The application
of time reversal to a compressible magnetoplasma to obtain a reciprocal medium,
and thence a Lorentz reciprocity theorem, has already been employed by Deschamps
and Kesler [48, Sec. 6].

All media considered hitherto have been frequency dispersive (implying nonlo-
cality in time in the constitutive relations). For the sake of completeness we consider
Lorentz adjointness, reciprocity and time reversal in optically active, chiral media
which exhibit spatial dispersion (implying nonlocality in space in the constitutive
relations).

Finally, we compare the Lorentz-adjoint and time-reversed Maxwell equations
in media containing sources. Although the equations are identical, the solutions
are different! One is ‘causal’ and the other is ‘non-causal’. Nevertheless, if we
consider the ‘reaction’ of one current system (antenna) on another, via the field it
radiates, then the time-reversed wave fields have only one thing in common with the
reciprocal, Lorentz-adjoint wave fields—the rays that link the two current systems
or antennas. But bearing in mind that any reaction between the two current systems
is mediated precisely by these (time-reversible) rays that link the two systems, we
may expect the time-reversed solution to produce precisely the response predicted
by Lorentz reciprocity.

7.1 Time reversal of time-harmonic quantities

Until now we have confined our attention to fields, currents and related quantities
having harmonic exp.i!t/ time dependence. These could be regarded as the Fourier
spectral components of quantities such as E.t/ or Jm.t/, having arbitrary time
dependence, so that typically

E.t/ D 1

2�

Z 1
�1

E.!/ exp.i!t/ d! (7.1)

E.!/ D
Z 1
�1

E.t/ exp.�i!t/ dt (7.2)

Insofar as we have hitherto been discussing time-harmonic fields and currents, we
should strictly speaking have denoted them e.!/ and j.!/ to emphasize that they
were quantities specified in the frequency, rather than time, domain. The same is true
of the constitutive tensors K.!/ that relate the time-harmonic fields, as in (2.20):

D.!/ D ".!/E.!/C �.!/H.!/; B.!/ D �.!/E.!/C �.!/H.!/ (7.3)
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We suppose, for the present, that the media are not spatially dispersive, so that
(7.3) represents a local, point relation in space, and the dependence on the spatial
coordinate r of all quantities in (7.3) has been omitted.

Let us consider, for simplicity, an isotropic medium in which D.!/ in (7.3) is
given by

D.!/ D ".!/E.!/ D "0f1C �.!/gE.!/ (7.4)

where ".!/ is the scalar permittivity, and �.!/ the scalar susceptibility, of the
medium. In this and in the subsequent treatment ! is taken to be real. Fourier
transforming back to the time domain yields D.t/ in terms of a convolution integral,

D.t/ D "0E.t/C "0

Z 1
�1

G.�/E.t � �/ d� (7.5)

where the susceptibility kernel G.�/, given by

G.�/ D 1

2�

Z 1
�1

�.!/ exp.i!�/ d! (7.6)

may be expected to vanish for � < 0, cf. [72, Sec. 7.10], because of causality
requirements. Eqs. (7.4)–(7.6) imply that if a medium is frequency dispersive, i.e.
".!/ ¤ const, then the polarization of the medium given by the nonlocal part of
D.t/ in (7.5) depends on the value of the field E.t � �/ at earlier times, t � � < t .

Consider next the time reversal of a time-harmonic field or, what amounts to the
same thing, the Fourier transform of a time-reversed field E0.t 0/, where

E0.t 0/ WD T E.t/ WD E.�t/; t 0 WD �t (7.7)

E0.!/ WD T E.!/ D
Z 1
�1

E.�t/ exp.�i!t/dt

D
Z 1
�1

E.t/ exp.i!t/dt; t ! �t

D E.�!/ D E�.!/ (7.8)

Thus the time-reversed field is just the complex conjugate of the given field,
E0.!/ D E�.!/. We could just as well use E0.!/ D E.�!/, but because ! is
not always displayed explicitly, it is better practice to use complex conjugation as a
general prescription for time reversal. A plane wave propagating in the Ox-direction

E.x; !/ D E.!/ exp.�ikx/; k D !."�/1=2 (7.9)

with ! real, is time reversed to

E0.x; !/ D E�.!/ exp.ik�x/; k� D !."���/1=2 (7.10)
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the real part of k and k� taken as positive in (7.9) and (7.10). Thus an attenuated
plane wave propagating in a given direction is transformed under time reversal into
a growing plane wave propagating in the opposite direction. It should be noted that
in the above formalism, the harmonic time dependence, exp.i!t/, is the same for
both given and time-reversed quantities, as can be seen in the Fourier transformation
of E.t/ and E.�t/ respectively in (7.2) and (7.8).

Now in the above example we advisedly used the electric field E.t/ which is even
under time reversal. Let us explain more precisely what we mean by ‘time reversal’.
We perform the following thought experiment, already mentioned in Sec. 2.4.1.
We imagine the given process, say the emission of an electromagnetic pulse by
an antenna into a magnetoplasma, to have been recorded on a movie film. If the
film were run back to front, we would observe a reflected version of the process
which would nevertheless obey the laws of physics, since Maxwell’s equations are
invariant under reflection. But suppose next that the film is run backwards, i.e. from
the end to the beginning. We would then observe the process with time reversed.
The original pulse which propagated away from the antenna, would be seen to
converge on it. Electrons that moved with a velocity � would appear to move with
a velocity ��, and by the same token an electric current Je (composed of moving
charges) would also be reversed in direction. Magnetic fields, that are equivalent
to rotating electric charges (see for example Fig. 6.1), would also be reversed
in direction, since the rotating charges would be seen to rotate in the opposite
sense. Thus some physical quantities like � (the electric charge density), E; Jm; f
(force) and p (pressure) are even (i.e. retain their sign) under time reversal, cf.
[72, Sec. 6.11], whereas � (velocity), H; Je and S (the Poynting vector) are odd
(i.e. change sign) under time reversal. Thus, with primes indicating time-reversed
quantities, we may write, with t 0 WD �t ,

�0.t 0/ D �.�t/; E
0

.t
0

/ D E.�t/; J0m.t 0/ D Jm.�t/

�0.t 0/ D ��.�t/; H0.t 0/ D �H.�t/; J0e.t 0/ D �Je.�t/ (7.11)

Under time reversal the 6-field and 6-current vectors, e.t/ and j.t/, become

e0.t 0/ D NI.6/
e.�t/ D

�
E.�t/

�H.�t/

	
; j0.t 0/ D �NI.6/

j.�t/ D �
�

Je.�t/

�Jm.�t/

	
(7.12)

with NI.6/
defined in (2.81). We revert now to time-harmonic quantities, bearing in

mind that H.t/ and Je.t/ are odd under time reversal, so that the prescription (7.8),
when applied to the 6-component vectors e.!/ and j.!/, yields

e0.!/ D NI.6/
e?.!/ D

�
E?.!/

�H?.!/

	
; j0.!/ D �NI.6/

j?.!/ D �
�

J?
e .!/

�J?
m.!/

	
(7.13)
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Consider finally the constitutive tensor K.!/ that relates electric and magnetic
fields, as in (2.20),

d.!/ WD
�

D.!/

B.!/

	
D
�
".!/ �.!/

�.!/ �.!/

	 �
E.!/

H.!/

	

 K.!/e.!/ (7.14)

Taking the complex conjugate of this equation and premultiplying by NI.6/
, with

NI.6/ D .NI.6/
/�1 (2.81), we find with the aid of (7.13)

NI.6/
d?.!/ W D d0.!/ D fNI.6/

K?
.!/NI.6/gNI.6/

e?.!/

D K0.!/e0.!/ (7.15)

in which we have identified

K0.!/ WD T K.!/ D NI.6/
K?

.!/NI.6/ D
�

"?.!/ ��?.!/

��?.!/ �?.!/

	
(7.16)

The change in sign of the off-diagonal matrices in K, viz. � and �, on time reversal
was to be expected [101, Sec. 8.1], since each of them links a vector which is odd
to one which is even under time reversal.

In the next section we consider examples of time-reversed constitutive tensors.

7.2 Time reversal and Lorentz adjointness

7.2.1 The constitutive tensors

In comparing and attempting to identify the time-reversed with the Lorentz-adjoint
constitutive tensors, we use a restricted time-reversal procedure (discussed in
Sec. 2.4.1) which provides a recipe for treating collision losses, expressed in the
constitutive tensor K through an imaginary term i�, where � is an effective collision
frequency. The time-reversal procedure, as pointed out above, changes the sign of
all imaginary terms, and in particular of i�, so that damped plane waves propagating
in a given direction are transposed into growing plane waves propagating in the
opposite direction. To ensure ‘physicality’ we therefore adopt the restricted time-
reversal procedure whereby complex conjugation is applied to all terms except
those expressing absorption losses. It will subsequently be shown that Maxwell’s
equations are invariant under time reversal. The restricted time-reversal procedure
provides another valid solution of Maxwell’s equations, but it will be convenient
initially to limit the discussion to loss-free media and to adopt the time-reversal
procedure of the preceding section.
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We compare the time-reversed constitutive tensor K0.!/ WD NI.6/
K�.!/NI.6/

with

the Lorentz-adjoint tensor K.L/ D NI.6/
KTNI.6/

(4.37). These are equal provided that
the constitutive tensor K.!/ is hermitian. Indeed it is if the medium is loss-free, as
can be proved from requirements of energy conservation [83, Sec. 1.2b], so that for
lossless media we have

K? D KT
; "? D "T; �? D �T; �? D �T

and hence
K0.!/ WD T K.!/ D K.L/

.!/ (7.17)

Suppose now that an effective collision frequency � is included in the constitutive
relations to account for dissipation. Let us assume, for simplicity, that in the above
only the electric permittivity tensor ", and hence the susceptibility tensor 
, is
anisotropic, where " D "0.I

.3/ C 
/. � will appear in the equation of motion (the
equation of momentum transfer) of charged particles, cf. (1.1), in the form

m
d�

dt
C �m� D �m!2U r D qEC fother forces linear in r or Prg

with Pr D i!r; d�=dt D �!2r and U WD 1� i�=!. If this is solved for E in terms of
r (or equivalently, in terms of the polarization vector P of the medium), we obtain
an equation of the form

E D 1

"0


�1P

with � appearing as an imaginary term along the diagonal of 
�1 in the form
.1 � i�=!/I.3/ DW U I.3/. In the absence of absorption 
, and hence also 
�1, are
hermitian, so that

T 
 D 
? D 
T; T 
�1 D .
�1/? D .
?/�1 D .
T/�1 (7.18)

If absorption is present, we let T represent the restricted time-reversal operator
which imposes complex conjugation on all elements in 
�1 except the collision
factor i� which appears in the term U I.3/ along the main diagonal. This is equivalent
to regarding U as a real quantity as far as the complex conjugation is concerned,
U � ! U; .iU/� ! �iU, and in this sense both 
�1 and 
 are ‘hermitian’. Thus


0.!/ WD T 
.!/ D 
T.!/

as in (7.18), and by generalization we again arrive at (7.17), but with T now
representing the restricted time-reversal operator.

One can easily confirm that all the constitutive tensors discussed until now
have been hermitian in the absence of dissipation. We note, inter alia, that in the
magnetoplasma (2.35) the imaginary off-diagonal terms are proportional to the
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external magnetic field b, and these change sign in the complex conjugation (time
reversal) or when the matrix is transposed (in the Lorentz-adjoint medium).

In the case of moving media that are isotropic in the rest frame, the elements of K
(4.4) are all real, but the sign of the velocity vector � contained in the off-diagonal

elements, ˙�, is changed by the NI.6/
matrices (2.81) both in the time-reversal and

the Lorentz-adjoint transformations.
In Sec. 7.5, in our discussion of isotropic chiral media, we shall encounter a

constitutive tensor of the form:

K D 1

1 � ˇ2"�!2

"
"I.3/ �iˇ"�!I.3/

iˇ"�!I.3/
�I.3/

#
(7.19)

where ˇ, a small real constant .ˇk � 1/, is a measure of the chirality or
‘handedness’ of the medium. (Kong [83, end of Sec. 1.2c] has termed such a medium
‘biisotropic’.) The hermiticity is again evident.

7.2.2 Time reversal of Maxwell’s equations

Let us take the complex conjugate of Maxwell’s equations (2.21)

Œi!K.!; r/CD�e.!; r/ D �j.!; r/ (7.20)

and premultiply by �NI.6/
, with NI.6/ D .NI.6/

/�1 (2.81), to obtain

�NI.6/
Œ�i!K?

.!; r/CD�NI.6/NI.6/
e?.!; r/ D NI.6/

j?.!; r/

or with D (2.22) transformed as in (2.81), NI.6/
D NI.6/ D �D,

Œi!NI.6/
K?

.!; r/NI.6/ CD� NI.6/
e?.!; r/ D NI.6/

j?.!; r/ (7.21)

Application of (7.13) and (7.16) then gives

Œi!K0.!; r/CD�e0.!; r/ D �j0.!; r/ (7.22)

and we have retrieved Maxwell’s equations, which are obeyed by the time-reversed
fields and currents, e0.!; r/ and j0.!; r/, in the time-reversed medium K0.!; r/.

The equation formally adjoint to (7.20), cf.(4.29), is

Œi!KT
.!; r/�D�Ne.!; r/ D �Nj.!; r/ (7.23)

and premultiplication by NI.6/
, with NI.6/ D .NI.6/

/�1, gives

Œi!NI.6/
KTNI.6/ CD�NI.6/ Ne.!; r/ D �NI.6/Nj.!; r/



214 7 Time reversal and reciprocity

or

Œi!K.L/
.!; r/CD�eL.!; r/ D �j.L/.!; r/ (7.24)

with e.L/ WD NI.6/ Ne; j.L/ WD NI.6/Nj; K.L/D NI.6/
KTNI.6/

, as in (4.34) and (4.37).
Comparison of (7.22) with (7.24), with K0.!; r/ D K.L/

.!; r/ (7.17), shows that
the time-reversed and Lorentz-adjoint currents and fields obey the same equations.
Are we to conclude that if the currents are identical then so too are the fields?
We shall address this question in Sec. 7.6, but here the discussion will be confined to
media without sources, and first we compare eigenmodes in the source-free region.

Insertion of the plane-wave ansätze

e˛.!; r/ � exp.�ik˛ � r/ (7.25)

Neˇ.!; r/ � exp.i Nkˇ � r/ (7.26)

in the respective given and adjoint source-free equations, i.e. with j and Nj equal zero
in (7.20) and (7.23):

Œi!K.!; r/CD�e.!; r/ D 0 (7.27)

Œi!KT
.!; r/ �D�Ne.!; r/ D 0 (7.28)

yields two algebraic equations for the eigenmodes e˛ and Neˇ propagating in the˙Ok
direction (with k˛ D k˛

Ok; Nkˇ D Nkˇ
Ok),

Œ!K.!; r/ � k˛
OK�e˛ D 0 (7.29)

Œ!KT
.!; r/ � Nkˇ

OK�Neˇ D 0 (7.30)

The symmetric matrix OK is given by K DW k OK with K defined in (4.42). The
eigenvalue equations

det Œ!K.!; r/ � k˛
OK� D 0; det Œ!KT

.!; r/ � Nkˇ
OK� D 0 (7.31)

with OK D OKT
, are identical, so that

k˛ D Nk˛ (7.32)

As to the given and adjoint eigenmodes, e˛ and Neˇ, we note that for progressive
plane-wave solutions k˛ and Nk˛ are real, as is OK. Furthermore, K is hermitian, i.e.
KT D K�. Hence the entire matrix operator multiplying e˛ in (7.29) is the complex
conjugate of that multiplying Neˇ in (7.30). Consequently

Ne˛ D e�̨ (7.33)
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Now the time-averaged Poynting vector hS˛i for the eigenmode ˛ in loss-free
media is given (aside from a factor 4) as in (2.51), by

hS˛i D E˛ �H�̨ C E�̨ �H˛ (7.34)

For the adjoint modes, given by (7.33), the time averaged Poynting vector is
unaltered,

h NS˛i D hS˛i (7.35)

and therein lies the non-physicality of the adjoint eigenmodes: the direction of
phase propagation as given by the plane-wave ansatz (7.26) has been reversed,
while the direction of the Poynting vector (7.35) has not. ‘Physicality’ is restored
in the Lorentz-adjoint eigenmodes, cf. (7.24), in which the sign of the magnetic

wavefields, and hence of the Poynting vector, is changed by the matrix NI.6/
:

e.L/
˛ WD NI.6/ Ne˛ D NI.6/ Ne�̨ D e0�˛ D T e˛ (7.36)

by virtue of (7.33), (7.13) and (7.7). In a lossy medium the Lorentz-adjoint
eigenmodes would correspond to the restricted time-reversed eigenmodes, and we
should then refrain from using overall complex conjugation if we wish to obtain
physically meaningful results.

We note also, for later use, that the given and adjoint normalized eigenmodes, Oe˛

and ONe˛ , defined in (2.72), are similarly transformed under (restricted) time reversal:

T Oe˛ WD Oe0�˛ D NI
.6/ ONe˛; T ONe˛ WD ONe0�˛ D NI

.6/ Oe˛ (7.37)

The reader may well object to our conclusion that in a source-free medium
the Lorentz-adjoint and time-reversed eigenmodes are identical, recalling that in
Sec. 4.2.3 it was shown that the refractive-index surfaces for the given and Lorentz-
adjoint eigenmodes were identical. Now the given and time-reversed eigenmodes
are surely not always equal. However, that result was obtained for anisotropic
(but not bianisotropic) media, in which the eigenvalues k˛ satisfied a biquadratic
equation, so that for every k.L/

˛ D �k˛ there was also a solution k.L/
˛ D k˛. This is

not true in general for bianisotropic media.

7.2.3 Ray paths – the motion of wave packets

The result just found may be generalized to include the motion of wave packets.
A wave packet may be considered to be a linear superposition of a frequency and an
angular (directional) spectrum of plane waves or eigenmodes, which in free space
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Fig. 7.1 Ray paths in a spherically symmetric plasma immersed in an external dipole mag-
netic field.

for instance could be derived mathematically by a Fourier analysis of the wave
packet in !- and in k-space. (The problematics of eigenmode decomposition in
anisotropic media has been illustrated in Chap. 5, but can be performed in principle).
If each eigenmode in the spectrum were time-reversed, it would represent a solution
of Maxwell’s equations in the time-reversed (Lorentz-adjoint) medium, and the
superposition of such time-reversed eigenmodes would then yield a time-reversed
wave packet propagating ‘backwards’ in the time-reversed medium. In an absorbing
medium the attenuation of the wave packet would be the same for the given and the
Lorentz-adjoint (restricted time-reversed) eigenmodes and wave packet.

The trajectory of the wave packet is the (directed) ray path. If the ray path in
the given medium is known, then the reversed ray path (i.e. the reversed trajectory)
will also be a valid solution in the time-reversed medium. Spatial mappings of both
given and time-reversed trajectories will also be valid solutions in the given and
time-reversed mapped media. This is illustrated in Fig. 7.1 in which the medium
is the same spherically symmetric plasma immersed in a dipole magnetic field,
discussed in Sec. 4.4.1 and illustrated in Fig. 4.2. The given ray path in the first
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quadrant has been reflected or rotated, with or without time reversal, into the other
quadrants, subject to the same spatial or temporal transformations as the media in
the corresponding quadrants.

We could have derived this result with the aid of the Lorentz reciprocity theorem
using a fixed transmitting (or receiving) antenna and a second, exploring probe
antenna (receiving or transmitting) which could follow the given or mapped ray
paths in each quadrant. This procedure is cumbersome compared with the intuitively
simple result offered by the time-reversal analysis.

7.3 Scattering theorems and time reversal

7.3.1 Scattering from plane-stratified slabs

In Sec. 7.2.2 we discussed the transformation of eigenmodes under (restricted) time
reversal. In order to rederive the scattering theorem (2.112) with the aid of time
reversal, we must determine how the eigenmode amplitudes are transformed under
this operation. We recall that the amplitudes, a˛ and Na˛ , of the respective given
and adjoint eigenmodes, e˛ and Ne˛ , were related to the normalized eigenmodes by
(2.74), viz.

e˛ D a˛ Oe˛; Ne˛ D Na˛
ONe˛ (7.38)

Applying the relations (7.36) and (7.37) between the given and time-reversed
eigenmodes to (7.38), we obtain

NI.6/ Ne0�˛ D a˛
NI.6/ ONe0�˛ (7.39)

or, upon premultiplication by NI.6/ D .NI.6/
/�1,

Ne0�˛ DW Na0�˛
ONe0�˛ D a˛

ONe0�˛ (7.40)

Hence
Na0�˛ D a˛; and a0�˛ D Na˛ (7.41)

This means that in the treatment of eigenmode scattering from a plane-stratified slab
(see Fig. 2.3) all incoming (outgoing) eigenmodes are (restricted) time reversed to
the adjoint outgoing (incoming) amplitudes:

ain D Na0out; aout D Na0in
Nain D a0out; Naout D a0in

(7.42)

The incoming- and outgoing-amplitude column matrices, ain and aout, and their
adjoints are defined as in (2.101) and (2.102).
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The definition (2.103) of the scattering matrices S and NS, viz.

aout DW S ain; Naout DW NS Nain (7.43)

thus becomes, when the equalities in (7.42) are substituted,

Na0in D SNa0out D S NS0 Na0in (7.44)

with Na0out DW NS
0 Na0in. Hence

S NS0 D I.4/ D NS0S (7.45)

since NS0 D S�1, and similarly

NSS D I.4/ D S0 NS (7.46)

Now the constancy of the bilinear concomitant vector and the biorthogonality of
eigenmodes, (2.39), (2.78) and (2.105), led to the relation (2.108) linking the given
and adjoint scattering matrices:

NST
S0 D I.4/ D ST NS (7.47)

Comparison with (7.46) yields
S0 D ST (7.48)

i.e. the time-reversed scattering matrix is just the transpose of the given scattering
matrix. To relate this to the scattering theorem, (2.112) or (6.126), we recall from
Sec. 7.2.2 that the (restricted-) time-reversed and the Lorentz-adjoint eigenmodes
are identical, and hence the time-reversed and Lorentz-adjoint scattering matrices
that relate them are identical too:

S0 D S.L/ (7.49)

Furthermore, the scattering matrices were shown in Sec. 6.3.2 to be invariant under
orthogonal mappings of the field vectors in the stratification plane, cf (6.115). All
such invariant mappings of the Lorentz-adjoint scattering matrix S.L/ yield what
was termed the conjugate scattering matrix Sc , i.e. the scattering matrix in the
conjugate medium. Thus

Sc D S.L/ D S0

and (7.48) becomes
Sc D ST (7.50)

which is just the generalized scattering theorem given in (6.126).
It will no doubt have been noted that this proof could have been given without

mention of time reversal, by use of the Lorentz-adjoint eigenmodes only. However,
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just as the use of time reversal in the analysis of reciprocal ray paths in the previous
section provided an intuitively simpler solution, we believe that this approach in
scattering problems provides clearer physical understanding of the mathematical
procedure.

7.3.2 Eigenmode generalization of Kerns’ scattering theorem

We now make use of the time-reversal approach to outline a proof of an eigenmode
generalization of Kerns’ scattering theorem, (2.8) and (2.9). Consider a scattering
object imbedded in an anisotropic plane-stratified medium, rather than in free
space, so that the incoming and outgoing angular spectra of plane waves consist
of eigenmodes of the medium for each value of the transverse wave vector kt .
A special case of this generalization is obtained when the plane-stratified medium
is replaced by a homogeneous anisotropic medium.

The scattering object, as in Fig. 2.1 and with the notation of Sec. 2.1.2, is
contained between two planes, z D z� and z D zC, parallel to the stratification
(if any). The scattering object and the medium between z� and zC are assumed to
be loss-free, i.e. absorb no energy, although the rest of the medium may be lossy.
As before, the wave fields are assumed to be time harmonic, with exp.i!t/ time
dependence.

• First, we need to decompose the field e(r) into eigenmodes (four in all, cf.
Sec. 2.2.3) for each value of kt 
 .kx; ky/:

e.x; y; z/ D 1

4�2

Z 1
�1

Z 1
�1

aQˇ


k0t ; z

� Oeˇ



k0t
�

exp
h
�i
�
k0xx C k0yy

�i
dk0xdk0y

(7.51)

with summation over the repeated index, ˇD˙1;˙2, implied; Oeˇ is a normalized
eigenmode, as in (2.72), and aQˇ



k0t ; z

�
is an amplitude density in transverse-k

space, cf. eq. (2.4) and the discussion following it, where now

aQ˛.kt ; z/ D ONe˛

T
.kt /UzeQ.kt ; z/sgn.˛/

D
Z 1
�1

Z 1
�1
ONe˛

T
.kt /Uze.x; y; z/sgn.˛/ expŒi.kxx C kyy/�dx dy

(7.52)

in which ONe˛.kt / is a normalized adjoint eigenmode (2.72) and Uz is defined
in (2.25); eQ.kt ; z/ has been replaced in the second line by its inverse Fourier
transform. The first equality in (7.52) is a generalized form of (2.77), which may
be recovered if we write

aQ˛.kt / D a˛.kt /ı


k0t � kt

�
; eQ.kt / D e.kt /ı



k0t � kt

�
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If (7.51) is substituted in (7.52) we recover the conditions for orthogonality in
kt -space and for modal biorthogonality (2.50) for any given value of kt :

aQ˛.kt ; z/ D 1

4�2

Z Z Z Z
ONe˛

T
.kt /Uz Oeˇ



k0t
�

sgn.˛/

� exp
h
i
n


kx � k0x
�

x C
�
ky � k0y

�
y
oi

aQˇ


k0t ; z

�
dk0xdk0ydx dy

D
Z Z

ı˛ˇ ı


kt � k0t

�
aQˇ


k0t ; z

�
d 2k0t (7.53)

(with dk0x dk0y ! d 2k0t ), in terms of the Kronecker delta ı˛ˇ and the Dirac delta
function, cf. [72, eq. 2.46],

1

4�2

Z Z
exp

h
i
n


kx � k0x
�

x C
�
ky � k0y

�
y
oi

dx dy D ı


kt � k0t ;

�
(7.54)

• Second, we need to express the constancy of the energy flux across all planes
in loss-free regions, and in particular across the planes z D zC and z D z�
between which the scattering object is situated. This flux turns out to be the flux
density of the mean Poynting vector hSzi (2.52), summed over all eigenmodes
and integrated over the entire transverse-k plane. This in turn equals the total flux
of the bilinear concomitant vector Pz (2.78) across the planes z D z˙, since Pz D
hSzi (2.56) in loss-free regions. Furthermore, the constancy of Pz;˛ (2.49) for any
eigenmode in plane-stratified media, whether loss-free or absorbing, implies that
the total integrated flux of Pz;˛ has a constant value over the entire region z � z�
and z � zC.

The total time-averaged energy flux across the planes z D z� and z D zC is
given, with the aid of (2.52), (7.51), (7.25), (7.26) (7.54) and (2.50) by

Z Z
hSzidx dy D

Z Z
NeT.x; y/Uze.x; y/dx dy

D 1

4�2

Z Z Z Z Z Z
aQ˛.kt /ONe˛

T
.kt /UzaQˇ



k0t
� Oeˇ



k0t
�

� exp
h
i
n


kx � k0x
�

x C
�
ky � k0y

�
y
oi

dx dy d 2k0t d 2kt

D
Z Z Z Z

aQ˛.kt / aQˇ


k0t
�nONe˛

T
.kt /Uz Oeˇ.kt /

o
ı


kt�k0t

�
d 2k0t d 2kt

D
Z Z

ı˛ˇ sgn.˛/ aQ .̨kt / aQˇ.kt / d 2kt

D
Z Z

aQ˛.kt / aQ˛.kt / sgn.˛/ d 2kt (7.55)
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with summation over repeated subscripts, ˛ or ˇ, implied. This is a straight
forward generalization of Parseval’s theorem [72, Sec. 14.5], in which the (time-
averaged) energy flux density integrated over any plane has been shown to be
equal to the energy flux density of all eigenmodes integrated over the kt -plane.
We note that the expression in the last line of (7.55) is just the z-component of
the concomitant vector Pz (2.78) integrated over the transverse-k plane, which is
constant throughout the region z � z� and z � zC:

Z Z
NaQ˛.kt /aQ˛.kt / sgn.˛/d 2kt D

Z Z
Pz.kt / d 2kt D const (7.56)

• The next step is to discretize all integrations over the kt -plane by converting them
into matrix products, and thereby enabling us to repeat the various steps in the
proof of the scattering theorem for plane-stratified slabs given in the previous
section.

We shall suppose that those transverse-k vectors that are physically relevant
to the scattering problem occupy a finite area in the kt -plane, of the order of
�k2

max, where kmax is the largest value of jk˛j


k2

˛ D k2
t C k2

x

�
encountered in the

eigenmode decomposition (7.51). If we exclude the possibility of resonances,
kmax will be finite. Values of jkt j greater kmax will correspond to evanescent
modes that will not contribute to the energy flux in (7.55) and may consequently
be ignored in the application of (7.56).

Let us divide the physically relevant kt -plane into a very large number N of
equal elementary areas, d 2kt ! ıAk, which we shall number in some systematic
way from 1 to N . For each elementary area, i.e. for each value of kt , there will be
four corresponding eigenmodes, ˛ D ˙1;˙2, as noted earlier, and hence there
will be 4N different eigenmodes which we shall number as follows:

1; 2; : : : N„ ƒ‚ …
˛D1

N C 1; N C 2; : : : 2N„ ƒ‚ …
˛D2

�1;�2; : : : �N„ ƒ‚ …
˛D�1

�.N C 1/;�.N C 2/; : : : � 2N„ ƒ‚ …
˛D�2

Eq. (7.56) now becomes

Z Z
Pz.kt /d

2kt ! ıAk

2NX
iD�2N

NaQiaQ i sgn.i/ D const (7.57)

where ıAk WD ıkx ıky D const. It is convenient at this stage to define elementary
eigenmode amplitudes, ai and Nai ,

ai WD .ıAk/1=2aQ i ; Nai WD .ıAk/1=2 NaQi (7.58)
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to replace the amplitude densities, aQ i and NaQi , so that (7.57) takes the form

2NX
iD�2N

Nai ai sgn.i/ D const (7.59)

Equating the integrated flux of Pz on z D z< with that on z D z>, where z<

and z> represent any value of z in the respective regions z � z� and z � zC, we
obtain, after regrouping terms as in (2.106),

2NX
iD1

Nai .z
</ai .z

</C
�2NX
iD�1

Nai .z
>/ai .z

>/ D
�2NX
iD�1

Nai .z
</ai .z

</C
2NX
iD1

Nai .z
>/ai .z

>/

(7.60)
We now introduce the 4N -element column matrices, ain and aout, (or Nain and

Naout), by analogy with (2.102), in terms of the 2N -element columns aC and a�,
as in (2.101):

ain WD
�

aC.z</

a�.z>/

	
WD

2
6666666664

a1.z</
:::

a2N .z</

a�1.z>/
:::

a�2N .z>/

3
7777777775

; aout WD
�

a�.z</

aC.z>/

	
WD

2
6666666664

a�1.z</
:::

a�2N .z</

a1.z>/
:::

a2N .z>/

3
7777777775

(7.61)

with the adjoint column matrices Nain and Naout defined analogously. Flux conser-
vation of Pz (7.60) then takes the compact form, as in (2.107),

NaT
inain D NaT

outaout (7.62)

Furthermore, ain; aout and their adjoints are related by the 4N � 4N scattering
matrices S and NS, as in (2.103):

aout D S ain; Naout D NS Nain (7.63)

or, written out in full, cf. (2.104),

�
a�.z</

aC.z>/

	
WD
�

RC.z</ T�.z<; z>/

TC.z>; z</ R�.z>/

	 �
aC.z</

a�.z>/

	
(7.64)

in terms of the 2N � 2N reflection and transmission matrices R˙ and T˙.
Substitution of (7.63) in (7.62) yields

NaT
inain D NaT

in
NST

S ain
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or, as in (2.108),
NST

S D I4N D S NST D NSST (7.65)

since NST D S�1.
• The final step in the proof involves time-reversal of the eigenmodes and their

amplitudes, as in Sec. 7.3.1, so that with primes denoting time-reversed quantities
we have, as in (7.42),

ain D Na0out aout D Na0in
Nain D a0out Naout D a0in

(7.66)

Substitution into the second equation in (7.63) yields, as in (7.46),

a0in D NS a0out D NSS0a0in (7.67)

with a0out DW S0a0in, and hence
NSS0 D I.4n/ (7.68)

Comparison with (7.65) yields
S0 D ST (7.69)

and since, as noted in Sec. 7.3.1,

S0 D S.L/ D Sc

we have finally
S.L/ D Sc D ST (7.70)

The conjugate scattering matrix Sc operates on the amplitudes of eigenmodes
in the conjugate medium, produced by orthogonal mappings in the transverse
stratification plane of the Lorentz-adjoint eigenmodes that propagate in the Lorentz-
adjoint medium, with the medium of the scattering object similarly mapped.
The equality between the elements of the matrices in (7.70) gives typically

Sc
ij D Sji or Sc

˛ˇ


�kc
t ;�kc0

t

� D Sˇ˛



k0t ; kt

�
(7.71)

where �kc
t and �kc0

t are the conjugate (time-reversed orthogonal) mappings of kt

and k0t respectively.
If we revert to the original integral, rather than matrix, representation we

would have, as in (2.7), a scattering-density matrix element SQ ˛ˇ relating amplitude
densities:

aQ
out
˛ .kt / D

Z
SQ˛ˇ



kt ; k0t

�
aQ

in
ˇ



k0t
�

d 2k0t
and the scattering theorem (7.71) for forward scattered eigenmodes, for instance,
would have the form, cf. (2.9),

SQ˛ˇ.kt ; k0t I z>; z</ D SQ
c
ˇ˛


�kc0
t ;�kc

t I z<; z>
�

(7.72)
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If the medium is homogeneous and loss-free, the theorem reduces to a straight-
forward generalization of Kerns’ theorem, where the amplitude densities now
refer to the eigenmodes of the anisotropic medium, and the reciprocal scattering
situation requires that the constitutive tensors of both the scattering object and the
surrounding medium be Lorentz adjoint.

If the medium surrounding the object is plane stratified, then in principle we
have scattering both by the object and by the medium. A typical situation could
involve, for instance, a scattering object having a scalar constitutive tensor, situated
in the high ionospheric magnetoplasma, or below the ionosphere, satisfying the
requirement in both cases that it be immersed in a locally loss-free medium.
Such a medium, as discussed in Chaps. 2–4, would be self-conjugate under time
reversal and reflection, and the scattering theorem, (7.71) and (7.72), would then
require the scattering object in the conjugate scattering problem to be a reflection of
the given object with respect to a magnetic meridian plane.

7.4 The compressible magnetoplasma

In our discussion of Lorenz reciprocity relating fields and their sources, we found
that the (restricted-) time-reversed and Lorentz-adjoint equations were identical, and
that both represented the behaviour of fields and currents in ‘physically acceptable’
media. The question of the physicality of the Lorentz-adjoint magnetoelectric
medium, mentioned in Sec. 4.1.3, was problematic, but the problem could be
resolved by a further reflection transformation of the medium. In this section
we consider a ‘warm’, compressible electron magnetoplasma which can support
acoustic wave variables, p and �, the pressure and macroscopic velocity of the
electron gas, in addition to the electromagnetic field variables, E and H. Whereas
the electric field E is a polar vector even under time reversal, and the magnetic field
H is an axial vector odd under time reversal, the velocity vector � is polar but odd
under time reversal.

If a dissipative term is introduced into the Maxwell-Euler system through an
effective collision frequency in the equation of motion, then (unrestricted) time
reversal converts an absorbing medium into an amplifying medium.

7.4.1 The Maxwell-Euler equations for a compressible
magnetoplasma

We consider a warm electron magnetoplasma in which the free electrons, com-
posing an ‘electron gas’, move freely in a background of heavy and essentially
stationary ions. Very low frequency behaviour involving participation of heavy
ions in the wave motion, and possibly entailing oscillatory motion of the external
magnetic field lines, is not considered. Phenomena such as ion cyclotron whistlers,
ion acoustic waves, magnetosonic waves, Alfvén shear waves etc. are thereby
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excluded. The electron gas is considered to be ‘warm’ rather than ‘hot’, implying
that the electron thermal velocities are much smaller than the phase velocities
of the electromagnetic-like waves that propagate in the plasma, so that the wave-
particle interactions characteristic of a hot plasma may be ignored. The problem of
radiation and waves in a compressible electron magnetoplasma has been treated by
Deschamps and Kesler [48], by Wait [131, Chaps. 5 and 8] and Felsen and Marcuvitz
[53, Secs. 1.1c and 1.3d], but the treatment here is based largely on ref. [15].

The governing equations, written out later in (7.77), include Maxwell’s equations
(2.21), in which the electric current term is separated into an external current source
Je, and an internal current density n0q�, due to the macroscopic, locally averaged
electron velocity � in the plasma; q D �jqj and n0 are the are the electronic charge
and the equilibrium number density respectively. (All equations are linearized, and
so we have n0q� rather than nq�, where n is the instantaneous number density.)

Next, we have Euler’s equation of motion [88, Sec. 2] governing the macroscopic
motion of the electron ‘fluid’, with the electrons subject to electric and magnetic
Lorentz forces, n0q.EC��b/ per unit volume, a pressure gradient force�rp and
an external force density f (gravity for example), cf. (1.1):

n0m
@�

@t
D �rp C n0qE � n0qb � �C f (7.73)

The hydrodynamic time derivative in Euler’s equation,

d�

dt

 @�

@t
C .� � r /�

has been linearized — the second term on the right which is second order in � has
been discarded; b is the external magnetic field and m is the electronic mass.

Finally, the changes in velocity and density (and through it of pressure) of the
electron gas are related by the linearized equation of continuity:

@�

@t
C �0r � � D �0s (7.74)

where �0 D n0m is the equilibrium density, and �0s, the source term on the
right, represents the rate of electron mass production (as for instance by ionizing
radiation). With adiabatic (acoustic) pressure and density changes governed by

p��� D const;
1

p0

@p

@t
D �

�0

@�

@t
(7.75)

where p0 D n0KT is the background pressure and � D 5/3 is the electron-gas
specific heat ratio (Sec. 1.1), the equation of continuity, cf. (1.2), becomes

1

�p0

@p

@t
C r � � D s (7.76)
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With harmonic time variation of all fields and sources, we obtain the Maxwell-
Euler system of equations, as derived by Deschamps and Kesler [48, Sec. 7.2]:

2
6664

i!"0I
.3/ �r � I.3/

n0qI
.3/

0

r � I.3/ i!�0I
.3/

0 0

�n0qI
.3/

0 n0.i!mI.3/ C qb � I.3/
/ r

0 0 Qr i!
�p0

3
7775

2
664

E
H
�

p

3
775 D �

2
664

Je

Jm

�f
�s

3
775
(7.77)

or compactly, by analogy with the Maxwell system (2.21), as

Le WD Œi!K.b/CD�e D �j (7.78)

where now

e WD

2
664

E
H
�

p

3
775 ; j WD

2
664

Je

Jm

�f
�s

3
775 (7.79)

and noting that b � I.3/ on the main diagonal is antisymmetric,

K.b; q/ WD

2
6664

"0I
.3/

0 � i
!

n0qI
.3/

0

0 �0I
.3/

0 0
i
!

n0qI
.3/

0 n0.mI.3/ � i
!

qb � I.3/
/ 0

0 0 0 1
�p0

3
7775 D KT

.b;�q/ (7.80)

D WD

2
6664

0 �r � I.3/
0 0

r � I.3/
0 0 0

0 0 0 r
0 0 Qr 0

3
7775 D DT (7.81)

Note that we have structured the Maxwell-Euler system (7.77) to ensure that K is
hermitian, K? D KT , anticipating the equality between the time-reversed and the
Lorentz adjoint media, as in (7.17).

Putting j = 0 in (7.78) and assuming plane-wave solutions, e � expŒ�ik Ok � r�,
we obtain an eigenmode equation of degree 6 in k, giving two predominantly
electromagnetic modes and one predominantly acoustic, in both forward and
backward directions. Examples of such waves (albeit with anisotropic pressure
tensors, as discussed in Chap. 8) are the Bernstein modes which pass into Langmuir
modes as the angle †.k; b/ between the direction of propagation and the external
magnetic field decreases from 90ı to zero.
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7.4.2 The Lorentz-adjoint system and Lorentz reciprocity

The Maxwell-Euler system formally adjoint to (7.78), cf. (4.29), is

L Ne WD
h
i!KT

.b; r/ �DT
i
Ne.r/ D �Nj.r/ (7.82)

in which KT
.b; q/ D K.b;�q/ (7.80). Application of the Lagrange identity to the

Maxwell-Euler and adjoint systems, (7.78) and (7.82),

NeT Le � eT L Ne D r � P (7.83)

leads to the reciprocity relation

� NeT jC eT Nj D NeT DeC eT D Ne
D r � .E �HC E �H C Np�C p N�/ (7.84)

with the bilinear concomitant vector P representing a Poynting-like energy flux
density. Again, as in Sec. 4.2.2, the adjoint fields are unphysical in that the direction
of energy flow is ‘wrong’ in relation to the direction of phase propagation. It is
easily seen that the direction of energy flow is reversed, and the unphysical adjoint
system (7.82) is transformed into a physical Lorentz-adjoint system by means of the

operator I
.10/

, which changes the sign of the fields H and N� which are odd under
time-reversal,

e.L/ WD I
.10/ Ne D

2
664

E
�H
�N�
Np

3
775 ; I

.10/ WD

2
6664

I.3/ � � �
� �I.3/ � �
� � �I.3/ �
� � � 1

3
7775 (7.85)

Since I
.10/ D I

.10/�1

, we may substitute

Ne.r/ D I
.10/

e.L/.r/ and Nj.r/ D I
.10/

j.L/.r/ (7.86)

in (7.82), and premultiplying by I
.10/

we obtain the Lorentz-adjoint system

L.L/e.L/ WD ŒI
.10/

L I
.10/

�e.L/ D �i!K.L/ CD
�

e.L/ D �j.L/ (7.87)

with
K.L/ WD I

.10/
KT I

.10/
; I

.10/
DT I

.10/ D �D (7.88)

thereby restoring the Maxwell-Euler system in a Lorentz-adjoint medium K.L/.
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What about the physicality of K.L/? We see by inspection that

K.L/
.b; q/ D K.�b; q/ (7.89)

so that the Lorentz-adjoint system satisfies the Maxwell-Euler equations in the
magnetic field reversed medium, in complete analogy with the Maxwell system and
its Lorentz-adjoint (see the discussion following (4.37)).

Substitution of Ne and Nj, (7.85) and (7.86), in (7.84) yields the Lorentz-adjoint
reciprocity relations

�Qe.L/I
.10/

jCNe I
.10/

j.L/ D r �P.L/; P.L/ D E.L/�H�E�H.L/Cp.L/��p �.L/ (7.90)

On integration over all space the divergence term vanishes, to give

Z
Qe.L/I

.10/
j d 3r D

Z
Qe I

.10/
j.L/ d 3r; he.L/; I

.10/
ji D he; I

.10/
j.L/i (7.91)

or
Z

.E.L/ � Je �H.L/ � Jm C �.L/ � f � p.L/s/ d 3r

D
Z

.E � J.L/

e �H � J.L/

m C � � f.L/ � p s.L// d 3r (7.92)

If the sources are purely electromagnetic, i.e. electric or magnetic currents,
the reciprocity relation (7.92) reduces to that of a cold magnetoplasma, discussed
in previous chapters. If the only sources are mechanical transducers, that act as
localized distributions of body force f that generate or detect the velocity field �,
then (7.92) reduces to

Z
�.L/ � f d 3r D

Z
� � f.L/ d 3r (7.93)

The Maxwell-Euler system, (7.78) or (7.87), is readily shown to be invariant
under orthogonal mappings [15], and such mappings of the Lorentz-adjoint system
from a region V1 to a region V2 yield a conjugate Maxwell-Euler system in the
(reciprocal) medium in V2, cf. (6.74)-(6.76). The resultant reciprocity relations for
purely acoustic sources, i.e. for mechanical transducers, are illustrated in Fig. 7.2.
The reaction of an acoustic source fa (through its velocity field �a) on a second
source fb, equals the reaction of the mapped source fb0 (through its field �b0 ) in the
conjugate medium on the mapped source fa0 , cf. (4.89) and (4.91):

h�a ; fbi D h�b0 ; fa0i (7.94)
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Fig. 7.2 Reciprocity between given and mapped acoustic sources and fields in a compressible
magnetoplasma.

7.4.3 The time-reversed Maxwell-Euler equations

Following the prescription developed in Sec. 7.1 for (restricted) time reversal of
time-harmonic quantities, cf. (7.13), we may time-reverse the plasma field e
e(!)
in (7.79) to give

e0 WD T e WD

2
664

E0
H0
�0
p0

3
775 D

2
664

E?

�H?

���
p?

3
775 D I

.10/
e? (7.95)

recalling that H and � are odd under time reversal.
The source distribution, j
j(!), is similarly time-reversed,

j0 WD T j WD

2
664

J0e
J0m
�f 0
�s0

3
775 D

2
664
�J?

e

J?
m

�f ?

s?

3
775 D �I.10/

j? (7.96)

with Je and s odd under time reversal.
We now take the complex conjugate of the Maxwell-Euler system (7.78) and

premultiply by �I.10/
, using I

.10/ D
h
I
.10/
i�1

, to obtain

� I
.10/

Œ�i!K?
.b/CD� I

.10/
I
.10/

e? D I
.10/

j? (7.97)
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which, with the aid of (7.95), (7.96) and (7.81), becomes

Œi!K0.b/CD�e0 D �j0 (7.98)

in which we have identified the time-reversed constitutive tensor K0 as

K0.b/ WD I
.10/

K?
.b/ I

.10/ D K.�b/ (7.99)

and hence, not unexpectedly, the Maxwell-Euler system is seen to be invariant under
time reversal.

It is convenient to introduce at this stage a dissipation term explicitly into the
Maxwell-Euler system through an effective collision frequency � in the Euler
equation of motion (7.73). The left-hand term, n0m@�=@t ! i!n0m�, will be
modified by momentum loss to .i! C �/n0m�, so that the third diagonal term in
the matrix operator in (7.77) will have the form

n0

h
.i! C �/m I.3/ C q b � I.3/

i

and will appear in K.b; q/ (7.80) as

n0

�
.1 � i

�

!
/mI.3/ � i

!
q b � I.3/

	

The (unrestricted) time reversal transformation will thus lead to

K0.�; b/ D K.��;�b/ (7.100)

in which the effect of changing the sign of the collision frequency will be to convert
an absorbing medium into an amplifying medium.

When the time-reversed loss-free tensor K0.b/ (7.99) is compared with the
Lorentz-adjoint tensor K.L/ (7.88) we find that

K0 D K.L/
; i.e. I

.10/
K?I

.10/ D I
.10/

KT I
.10/

(7.101)

since K is Hermitian, K? D KT , and the time reversed and Lorentz-adjoint medium
are the same.

7.5 Isotropic chiral media

7.5.1 Phenomenological background

Till now we have restricted our attention to media in which the constitutive tensor
K.!; r/, which related the fields D.!; r/ and B.!; r/ to E.!; r/ and H.!; r/ in the
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frequency (Fourier-transform) domain, was frequency dependent (see the discussion
in Sec, 7.1). This expressed the nonlocal dependence in the time domain of D.t; r/

on E.t; r/, for instance, in the form of a convolution integral as in (7.5). Such
media are said to exhibit temporal dispersion. If, on the other hand, the relation
between D.r/ and E.r/ involves spatial derivatives or integrals, then the dependence
of D.r/ on E.r/ will be nonlocal in space, and the medium will be said to be
spatially dispersive. In Fourier-transform .!; k/-space this becomes, in general, a
point relation:

d.!; k/ WD
�

D.!; k/

B.!; k/

	
D K.!; k/

�
E.!; k/

H.!; k/

	
DW K.!; k/e.!; k/ (7.102)

We shall complete our discussion of Lorentz-adjointness, reciprocity and time
reversal in different types of media by considering an isotropic chiral medium as an
example of a spatially dispersive medium. Objects, including molecules, that cannot
be superposed on their mirror images are said to possess chirality or ‘handedness’.
Chiral media, when transparent, are optically active, and will rotate the plane of
polarization of a monochromatic plane-polarized beam of light either to the left or
to the right (the medium is then said to be `-rotatory or r-rotatory). In optics the
convention is to specify the sense of rotation with respect to the observer who is
looking towards the source. Thus in a circularly-polarized left-handed mode, the
electric wave-vector E at a fixed point in space rotates in an anti-clockwise sense
when observed head-on. In the radio-wave and plasma literature the handedness
of rotation of circular (elliptic) polarization, is generally specified with respect
to an observer who is looking along the direction of propagation Ok, cf. Budden
[33, Sec. 4.3]. In this section we adopt the optical convention. An unambiguous
characterization of the handedness of a wave is its helicity [72, Sec. 7.2], which
specifies the direction (C or �) of the angular momentum vector of the wave with
respect to Ok. Thus a left-handed wave is said to have ‘positive helicity’.

The optical activity of a medium may stem from the chirality of its crystalline
structure, or from the chirality of molecules that are distributed with random
orientation in an isotropic host medium. An example of the first type is a quartz
.SiO2/ crystal in which the silicon or oxygen atoms lie along helices about the
optic axis, with either a left- or a right-handed screw sense [90, Sec. 5.5.4].
Examples of the second type are aqueous solutions of sugar — sucrose or dextrose
(d -glucose) which are optically r-rotatory, or levulose (fructose) which is `-rotatory.
Naturally occurring amino acids, with a single exception (glycine), are all `-rotatory
[70, Sec. 8.10.2].

The specific rotation of a sample, which specifies the angle of rotation of a plane-
polarized beam of monochromatic light per unit length of the medium, is a function
of the wavelength (frequency) of the light. This may be demonstrated by passing
a plane-polarized microwave beam through a box containing arbitrarily oriented
copper helices [125]. It is found that the specific rotation follows a Drude equation
[49, Sec. 6.5, eq. (7.36)] of the form

˛ D A

	2 � 	2
0

(7.103)
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where A is a constant and 	0 is a characteristic resonant wavelength. ˛ is seen
to change sign as a resonant wavelength is crossed, and more than one resonant
frequency may be present and affect the optical behaviour in a given frequency
region. If an absorption term is inserted in (7.103), the sharp resonance broadens
into an absorption band, and (7.103) then gives a reasonably good description of the
behaviour of an optical system on both sides of the absorption band [93, Sec. 2.2].
Certain substances, the so-called cholesteric liquid crystals, have a helical molecular
structure of very small pitch and exhibit extremely large specific rotations, of the
order of 40;000ı=mm [70, Sec. 8.10.1].

It is found experimentally that both left and right circularly polarized light
can propagate independently in a chiral medium, i.e. they are eigenmodes of the
medium. A plane-polarized incident beam may be decomposed into two oppositely
rotating circular modes, each travelling with a different phase velocity. The slower
mode, say the left-handed mode, will have the smaller wavelength, and hence in its
passage through the medium will undergo a larger specific rotation ˛ (7.103) than
the other mode, and so the medium will be left-handed. The characteristic behaviour
of the real and imaginary components of the modal refractive indices, nL and nR,
in and around an absorption band, described by A. Cotton in 1896, constitute
the Cotton effect, and can be represented by a superposition of two Drude-type
equations (7.103), including absorption, for each of the two modes, [93, Sec. 2.2].

7.5.2 Eigenmodes in the chiral medium

The constitutive relations that have been proposed, cf. [109, eq. 7.3], for isotropic
chiral media are

D.k/ D "ŒE � iˇ.k/k � E�

B.k/ D �ŒH � iˇ.k/k �H� (7.104)

where the small chirality constant ˇ .ˇk � 1/ is a measure of the optical activity,
i.e. of the specific rotatory power, of the medium. Since k � E is an axial vector
and k �H is polar, (see Sec. 6.1.4), it is evident that ˇ must be a pseudoscalar that
changes sign in a reflection or inversion mapping. The pseudoscalar character of ˇ

is also evident from the constitutive tensor K (7.19) for chiral media, which will be
derived presently, in view of the discussion in Sec. 6.1.6.

We now substitute these constitutive relations into the source-free .jD 0/

Maxwell system (2.21), assume a plane-wave ansatz

e � exp.�ik � r/; k D k˛
Ok (7.105)

and look for solutions (eigenvalues) k˛ for a given direction of propagation, Ok.
The ansatz (7.105) converts the differential matrix operator D into an algebraic
matrix operator, cf. (4.42) and (4.46),
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D! �ik˛

"
0 �Ok � I.3/

Ok � I.3/
0

#
DW �ik˛

bK; bK D bKT
(7.106)

and we obtain, cf. (4.43),

Œi!.K0 � iˇk˛
bC/� ik˛

bK�e˛. Ok/ D 0 (7.107)

where

K0 WD
"

"I.3/
0

0 �I.3/

#
; bC WD

"
" Ok � I.3/

0

0 � Ok � I.3/

#
D �bCT

(7.108)

bC may be termed the ‘chirality operator’.

Premultiplying (7.107) by Œ OkT
; OkT

�, we find Ok �E˛ D Ok �H˛ D 0; in other words,
the wave vectors E˛ and H˛ , as expected, lie in a plane perpendicular to Ok. Hence
(7.107) is a relation between the transverse components of E and H. Let us take the
z-axis along Ok, and express the wave fields in terms of the rotating circular basis
vectors:

O�˙ WD 1p
2

.Ox˙ i Oy/; .O�C/� � O�C D O�� � O�C D 1; .O�C/� � O�� D 0 (7.109)

The components E˙ and H˙ of the wave fields in this basis are

E˙ D .O�˙/� � E D O�� � E; H˙ D .O�˙/� �H D O�� �H (7.110)

where

E D O�CEC C O��E� DW EC C E� and H D O�CHC C O��H� DW HC CH�
(7.111)

Furthermore, with Ok D Oz, we have

Ok � O�˙ D 1p
2

.Oy˙ i Ox/ D ˙ip
2

.Ox	 iOy/ D 	iO�˙ (7.112)

so that

Œ Ok � I.2/
� �



EC
E�

�
D �i



EC
�E�

�
; Œ Ok � I.2/

� �



HC
H�

�
D �i



HC
�H�

�
(7.113)

and (7.107) then separates into two independent pairs of equations,

�
i!".1 � ˇkC/ kC
�kC i!�.1 � ˇkC/

	 �
EC
HC

	
D 0

�
i!".1� ˇk�/ �k�

k� i!�.1 � ˇk�/

	 �
E�
H�

	
D 0 (7.114)
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The eigenvalues, k D k˙, associated with the wave fields .EC; HC/ and
.E�; H�/ respectively, are obtained by equating the determinants of the 2 � 2

matrices in (7.114) to zero, and we get

k2˙ D !2"�.1	 ˇk˙/2 (7.115)

There are two pairs of solutions, which we denote k
.C/

˙ and k
.�/

˙ , corresponding to
propagation in the positive- or negative-z directions,

k
.C/

˙ D �k
.�/
� D

!
p

"�

1˙ !
p

"�ˇ
(7.116)

In terms of the eigenmodes k˛ in (7.107) this reads

k˛ D k
.C/

˙ ; k�˛ D k
.�/
� ; ˛ D 1; 2

When propagating in the positive-z direction, the wave field
�

E.C/
C ; H.C/

C
�

, associ-

ated with the eigenvalue k.C/
C , is right-handed (in the optical convention), rotating

in a clockwise sense in a given plane z D const when viewed head on. When
propagation is in the negative-z direction, it is the wave field .E.�/� ; H.�/� /, associated
with the eigenvalue k.�/� , that is right-handed. Thus in a fixed plane, transverse to Ok,
they rotate in opposite directions, but when viewed head on from opposite directions
they have the same ‘handedness’. Compare this with the circularly polarized
modes that propagate in a magnetoplasma, parallel or anti-parallel to the external
magnetic field b. The labelling of the eigenmodes there depends only on the sense
of rotation of the wave-field vectors with respect to the external magnetic field, and
not on their sense of rotation with respect to the direction of propagation Ok.

Let us consider only the positive eigenmode solutions of (7.115), k˙ D k.C/

˙ ,
bearing in mind that the negative-going eigenmodes are related to them by (7.116).
The wavelengths 	˙ of the two eigenmodes are, with (7.116),

	˙ D 2�

k˙
D 2�

!
p

"�
˙ 2�ˇ (7.117)

so that 2�ˇ is seen to be the increase or decrease of the wavelength due to the
chirality of the medium. In a distance �z the k� wave will rotate through an angle
k��z to the left, the kC wave will rotate through kC�z to the right, and a plane-
polarized wave will rotate through �' to the left or right, according as ˇ ? 0:

�' D k� � kC
2

�z D !2"�ˇ

1 � !2"�ˇ2
�z � ˇ!2"��z (7.118)

with the aid of (7.116).
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7.5.3 The Lorentz-adjoint system and Lorentz reciprocity

With the purpose of deriving a Lorentz-adjoint Maxwell system, we note that the
constitutive relation (7.104) may be derived from the relationship [86, eq. 7.2],

d WD
�

D
B

	
D
"

".I.3/ C ˇr � I.3/
/ 0

0 �.I.3/ C ˇr � I.3/
/

#�
E
H

	
DW ŒK0 C ˇD0�e

(7.119)
with

K0 WD
"

"I.3/
0

0 �I.3/

#
; D0 WD

"
"r � I.3/

0

0 �r � I.3/

#
D �DT

0 (7.120)

when a plane-wave ansatz (7.105) is assumed.
The Maxwell system (2.21), with exp.i!t/ time dependence, then becomes

Le WD Œi!.K0 C ˇD0/CD�e D �j (7.121)

with D D DT defined in (2.22). Following the procedure adopted in Sec. 4.2.2, we
write

L0e WD NILe WD Œi!.K0 C ˇD0/CD�e D �NIj (7.122)

and the equation formally adjoint to (7.122) is then

L.L/e.L/ 
 NL0e.L/ WD
h
i!
�
KT

0 � ˇDT
0

�
�DT

i NIT
e.L/

D Œi!.K0 C ˇD0/ �D�NIe.L/ D �NIj.L/ (7.123)

with the aid of (7.120) and the substitutions DT D D (2.22) and NI D NIT
(2.81). If

(7.123) is premultiplied by NI, the Maxwell system (7.121) is recovered with the field
e and current j replaced by e.L/ and j.L/ respectively. This means that the isotropic
chiral medium is Lorentz self-adjoint or self-reciprocal. Application of the Lagrange
identity to (7.122) and (7.123) yields, cf. (4.35),

Qe.L/L0e � Qe NL0e.L/ D r � P.L/

P.L/ D .E.L/ �H � E �H.L//C i!ˇ."E � E.L/ � �H �H.L// (7.124)

To show that P.L/ vanishes at infinity, where the given and Lorentz-adjoint
eigenmodes are superpositions of outgoing, circularly polarized eigenmodes we
note, with (7.109), that

O�˙ � O�� D 	i Oz; O�˙ � O�˙ D 0 (7.125)
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so that if the wave fields e and e.L/ in (7.5.3) are decomposed into circularly
polarized components, as in (7.110), the concomitant vector P.L/ in (7.5.3) becomes

P.L/ D i OzŒ.E.L/�HC �E.L/CH�/� .E�H .L/C � ECH .L/�/�

�!ˇOzŒ".E.L/CE� � E.L/�EC/� �.H .L/CH� �H .L/�HC/�

(7.126)

From (7.114), (7.116) and (7.123) it is easily shown that

p
"E˙ D ˙i

p
�H˙

p
"E.L/˙ D ˙i

p
�H .L/˙ (7.127)

and when this is substituted into (7.126) we find that P.L/ vanishes. This is true of
course only at large distances from the sources, where the given and Lorentz-adjoint
modes propagate radially outwards, so that their wave fields at any point may be
expressed in terms of the same circular rotating basis vectors O�˙. Integration of
(7.5.3) over all space then gives, with the aid of (7.121), (7.123) and (7.5.3), with
P.L/ D 0 in the far field, Z

.QeNIj.L/ � Qe.L/NIj/d 3r D 0 (7.128)

This is just the Lorentz reciprocity theorem, cf. (4.51), in an isotropic, chiral
medium.

If the theorem is applied to two independent current sources, ja and jb , and the
fields they generate, ea and eb , (7.128) may be written in the form

hea; NIjbi D heb; NIjai or ha; bi D hb; ai (7.129)

in which we have dropped the superscript .L/, since the medium is Lorentz self-
adjoint. This straightforward form of the Lorentz reciprocity theorem has been
derived by Lakhtakia et al. [86].

7.5.4 The eigenmode formulation of the Lorentz reciprocity
theorem

The formally adjoint and Lorentz-adjoint eigenmodes

In this section we consider the Lorentz reciprocity problem when the reaction of
one localized current distibution (or antenna) on another is mediated by a single
eigenmode, or by several eigenmodes, which propagate from one source to the other.
For this purpose we must be able to identify which Lorentz-adjoint eigenvalues (and
eigenmodes) correspond to the given eigenvalues, k.C/

C and k.C/� (7.116). We do this
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systematically by constructing first the system that is formally adjoint to the given
system (7.121) in a source-free .j D 0/ medium:

NLNe WD
h
i!
�
KT

0 � ˇDT
0

�
�DT

i
Ne D Œi!.K0 C ˇD0/ �D�Ne D 0 (7.130)

with KT
0 D KT

; DT
0 D �D0; DT D D, cf. (7.120) and (2.22). Application of the

plane-wave ansatz
Ne˛ � exp.i Nk˛z/ (7.131)

to (7.130) yields with the aid of (7.106), (7.108) and (7.120), and with r ! i Nk˛
Ok,

Œi!.K0 C iˇ Nk˛
OC/� i Nk˛

OK� Ne˛ D 0 (7.132)

This is the same as the given eigenmode equation (7.107) if we let ˇ ! �ˇ and
consequently, instead of (7.115), we obtain

Nk2

˙ D !2"�.1˙ ˇ Nk˙/2 (7.133)

where Nk˙ is associated with the adjoint fields .E
˙

; H
˙

/. Comparison of (7.133)
with (7.115), and (7.132) with (7.107), yields

Nk2˙ D k2�; Nk˙ D k� (7.134)

(This is analogous to the relation Nq˛ D q˛ (2.46) in a magnetoplasma — although
Nq˛ was there associated with a differently polarized eigenmode that propagated in a
magnetic field reversed medium.)

The direction of phase propagation has been reversed in the adjoint mode
[compare the plane-wave ansatz in the given and in the adjoint mode, (7.105)
and (7.131)], but the ratio of H˙ to E˙, and consequently the direction of the
Poynting vector, has remained unchanged. ‘Physicality’ is restored to the Lorentz-
adjoint modes (see the discussion in Sec. 3.4.1) by the matrix operator NI (2.81)
which reverses the magnetic wave fields, and thereby the direction of energy flow,
and hence

k.C/

˙ D �k.L/.�/
� (7.135)

where k˙ and k.L/

˙ are associated with the respective fields

e˙ WD
�

E˙
H˙

	
and e.L/

˙ WD
2
4E.L/

˙
H.L/

˙

3
5

Let us clarify what we have just proved. The eigenvalue Lorentz-adjoint to the
given eigenvalue k.C/

˙ is k.L/.�/
� which, by (7.135) and (7.116), yields

k.L/.�/
� D k.�/

� (7.136)
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This was to be expected since the medium is Lorentz self-adjoint. The mode that is
Lorentz-adjoint to the given mode has the same handedness as the given mode but
propagates in the opposite direction. For the sake of clarity in the ensuing discussion
it will be convenient to rename the modes according to their handedness, ` or r . Thus

k.C/
C 
 k.C/

r ; k.C/� 
 k.C/

` ; k.�/
C 
 k.�/

` ; k.�/� 
 k.�/
r (7.137)

so that (7.116) and (7.136) take the simple form:

k.C/

r;` D �k.�/

r;` ; k.L/.˙/

r;` 
 k
.˙/

r;` (7.138)

and the eigenvalue, Lorentz-adjoint to the given eigenvalue k.C/

r;` , is consequently

�k.L/.�/

r;` D �k.�/

r;` .

Eigenmode linkage between two antennas

Suppose that the antennas a and b, i.e. the localized current distributions ja and
jb , radiate and receive only left-handed eigenmodes. In the case of radiowaves this
could be achieved by using crossed dipole antennas in which the input or induced
currents were phase shifted by 90ı [42, Sec. 5.2]. It will suit our purposes better
to use an optical model. We suppose that the current sources are enclosed by
filters that transmit only circularly polarized light, say left handed, from either side.
[Cholesteric liquid crystals, for instance, have just such a property [65, Chap. 14]: in
a narrow band of wavelengths centred at a certain wavelength 	0, where the specific
rotation changes sign and becomes zero, light of a given circular polarization, say
left handed, is completely transmitted, and the other (right-handed) mode is totally
reflected. Alternatively, one could conceive an optically active material in which one
mode is transmitted and the other is absorbed. Technical details are not essential for
our thought experiments as long as the setup is feasible in principle!]

The Lorentz reciprocity theorem (7.129) then takes the form

D
ea

` ; NIjb

E
D
D
eb

` ; NIja

E
(7.139)

where ea
` and eb

` are the left-handed modal wave-field components generated by the
currents ja and jb . This may be written symbolically as

˝
a


TC11

�
b
˛ D ˝b 
T �11

�
a
˛

(7.140)

and represents a short-hand form of the statement: the reaction of the field of the
source a, via the transmission channel T C11 , on the source b, equals the reaction of
the source b, via the reverse transmission channel T �11 , on the source a. The left-hand
mode has been denoted mode 1, the right-hand mode will be denoted mode 2.
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If the two sources are encompassed by right circularly polarized filters we obtain
similarly ˝

a


TC22

�
b
˛ D ˝b 
T �22

�
a
˛

(7.141)

If, on the other hand, a is enclosed by a left-handed filter and b by a right-handed
one, the reaction between the two sources will differ from zero provided that the
medium is non-homogeneous, so that intermode coupling occurs in the intervening
medium. The reciprocity theorem then takes the form

˝
a


TC12

�
b
˛ D ˝b 
T �21

�
a
˛

(7.142)

Suppose next that a is encompassed by a left-handed filter whereas b has no
encompassing filter. We could describe the result symbolically as follows:

˝
a


TC11 ; TC12

�
b
˛ D

�
b

�
T �11

T �21

�
a

�
(7.143)

Finally, we remove all filters, i.e. all transmission channels are open, and the
result may be written symbolically as

�
a

�
TC11 TC12

TC21 TC22

�
b

�
D ha; bi D hb; ai D

�
b

�
T �11 T �21

T �12 T �22

�
a

�
(7.144)

or
ha.TC/bi D ha; bi D hb; ai D hb. QT�/ai (7.145)

In summary, the Lorentz reciprocity theorem may in general be written in the
form

ha.TC/bi D hb. QT�/ai (7.146)

with T˙ defined by (7.144) and (7.145). If all eigenmode transmission channels
are open then T˙ may be dropped in the formulation. However, if only part of
the eigenmodes are transmitted or received because of the antenna structure, or
because of filtering, then the appropriate matrix elements of T˙ in (7.146) will
describe the resultant reciprocal interaction.

The two antennas could of course be linked by more than a single ray path for
each type of polarization. If there were n different left-handed, and m different right-
handed ray paths, then T˙ would simply be a .nCm/ � .nCm/ square matrix to
express the contributions of the nCm different ‘modes’.

Application to gyrotropic or other media

Suppose that the sources a and b above are immersed in a gyrotropic medium, such
as a magnetoplasma. Suppose also, for simplicity, that the two sources are linked
by one of the external magnetic field lines b, so that the eigenmodes mediating the
reaction between a and b are circularly polarized. Let the two sources be enclosed
by the left-handed filters described above.
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The reaction of a on b via the left-handed transmission channel is given
by

˝
a


TC11

�
b
˛
, as before. In the reciprocal, Lorentz-adjoint medium the external

magnetic field is reversed in direction, and so the backward propagating mode
remains left-handed. It will consequently pass through both filters and the reaction
will be given by

˝
b


T �11

�
a
˛
, as in (7.140).

By similar arguments we may show that (7.146) is the eigenmode generalization
of Lorentz reciprocity in any medium and its Lorentz-adjoint counterpart.

7.5.5 Time reversal and reflection mapping of eigenmodes
in the chiral medium

The time-reversed modes

Intuitively we would expect that under time reversal (‘running the film backwards’),
a right- or left-handed mode would reverse its direction of propagation but remain
right- or left-handed. Let us check whether this is borne out by the mathematical
formalism developed in Secs. 7.1 and 7.2.

We take the complex conjugate of the Maxwell system (7.121) and pre-multiply

it by �NI, with NI D NI�1
(2.81), to give

� NI ��i!


K�0 C ˇD�0

�CD
� NINIe� D NIj� (7.147)

If ˇ and the scalars " and � in K0 and D0 are assumed to be real, and with time-
reversed fields and currents, e0 and j0 (7.13), given by

e0 D NIe�; j0 D �NIj� (7.148)

(7.147) becomes, with NIDNI D �D, (2.28) and (2.81), and with NID0
NI D D0 (7.120),

Œi!.K0 C ˇD0/CD�e0 D �j0 (7.149)

with NIK�0 NI D K0. We have retrieved the original Maxwell system (7.121), and in a
source-free region .j D 0/ we may expect to obtain the same eigenmodes as in the
original system, but ordered differently. Note that the rotating basis vectors (7.109)
are interchanged by complex conjugation,

O��˙ D O��

and NI operating on an eigenmode e˛ reverses its direction of propagation. Hence
(7.148) yields

k0 .C/

˙ D �k.�/
� (7.150)
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which is exactly the same as the relation (7.135) that links the Lorentz-adjoint to the
given eigenmodes, with the time-reversed eigenmodes preserving the handedness of
the given eigenmodes, as anticipated.

We noted in Sec. 7.2.1 that the Lorentz-adjoint and time-reversed constitutive
tensors coincide, provided that the tensor is hermitian. Now the constitutive relations
in k-space are given by (7.104). Maxwell’s equations for a monochromatic plane
wave, e � exp i.!t � k � r/, have the form

k � E D !B; k �H D �!D (7.151)

When substituted into (7.104) these give the biisotropic constitutive tensor (7.19)
for an isotropic chiral medium, which is indeed hermitian.

Eigenmodes in a reflected chiral medium

Here too we would expect r-rotatory media to be mapped by reflection into
`-rotatory media (right-handed helices become left-handed), and left- and right-
handed eigenmodes to be interchanged.

Let us apply a reflection mapping, cf. (6.58) and (6.60), to the Maxwell system
(7.107),

� Œi!.K0.r/� ˇk OC/ � ik OK/�� T� e.r/ D 0 (7.152)

with

� WD
�
� 0

0 .det �/�

	
; � T D � �1

as in (6.46) and (6.47), with det � D det � D �1 in a reflection mapping. Using
primes to denote reflected quantities in this subsection we have, with (6.21),

� e.r/ D e0.r0/; �. Ok � I.3/
/�T D .det �/ Ok0 � I.3/ D �Ok0 � I.3/

� K0.r/� T D K0.r0/; �r D r0

� OC� T D �
"

" Ok0 � I.3/
0

0 � Ok0 � I.3/

#
D � OC0

� OK� T D
"

0 �Ok0 � I.3/

Ok0 � I.3/
0

#
D OK0

cf. (6.45), (6.46), (6.53), (7.106) and (7.108). Thus (7.152) becomes

Œi!.K0.r0/C ˇk OC0/� ik OK0�e0.r0/ D 0 (7.153)

and we have retrieved the original system (7.107), but with the chirality constant ˇ

reversed in sign. This confirms that ˇ is a pseudo-scalar, as pointed out in Sec. 7.2.2.
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To examine the behaviour of an eigenfield such as E˙ WD E˙ O�˙ (7.110) under
reflection (here the direction of propagation is in the z-direction and O�˙ is given by
(7.109)), we consider for simplicity a reflection mapping with respect to the y D 0

plane. Then, with q D �q2 
 �qy (6.7), we obtain

qO�˙ D O�� (7.154)

so that an eigenmode .E˙; H˙/ is mapped into


E0�; H0�

�
, and the sense of rotation

is reversed, as expected.

7.6 Time reversal and causality

It was seen in Sec. 7.2.2 that the time-reversed and Lorentz-adjoint inhomogeneous
Maxwell equations, (7.21) and (7.24), with K0 D K.L/ (7.18), were identical.
We then raised the question whether the solutions were also identical. In the case of
eigenmodes and ray paths, i.e. solutions in source-free media, the answer was in the
affirmative. We now reexamine the question when the media contain sources.

Suppose that the sources are currents that flow in two antennas, a and b, and
we consider the Lorentz-reciprocity problem. An input current I .a/.0/ in antenna
a produces an outgoing wave field which propagates in the given medium and
induces an open-circuit voltage V

.b/
o:c: in antenna b. In the reciprocal problem an

input current I .b/.0/ in antenna b emits an outgoing wave field which propagates in
the Lorentz-adjoint (i.e. time-reversed) medium and induces an open-circuit voltage
V

.a/
o:c: in antenna a. We saw in Sec. 4.5.2, cf. (4.108), that V

.b/
o:c: D V

.a/
o:c: when

I .a/.0/ D I .b/.0/.
Now if in the two cases we restrict our attention to a comparison of the wave

fields only, it is evident that the fields in the second case are not a time-reversed
copy of the fields in the first case — except for the ray (or rays) connecting the two
antennas which, in view of the results of Sec. 7.2.3, is just that! This is illustrated
in Fig. 7.3. It is evident that the field structures at both the receiver and transmitter
are ‘non-physical’ in the time-reversed problem. There is no outgoing wave field at
the transmitter b, except along the ray path (or paths) linking it to the receiver a.
On the other hand there is an incoming wave field, converging from infinity in all
directions on the receiver a. Time reversal has simply transformed the ‘retarded’,
causal solutions into ‘advanced’, non-causal (and non-physical) solutions.

Does this mean that the time-reversal procedure gives invalid or incorrect results
when sources are present? Not necessarily! In fact, it is clear that the only possible
interaction between the transmitting and receiving antennas, in both the given and
the Lorentz-adjoint problems, is mediated by the ray (or rays) which emanates from
one antenna and terminates on the other. But the spatial configuration of the ray,
and even the attenuation of the wave field along it, is identical in both the given
and in the Lorentz-adjoint (i.e. in the restricted time-reversed) problems. This is the
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Fig. 7.3 Reciprocity and time reversal with two antennas.

physical basis of the Lorentz reciprocity theorem, and in this sense, i.e. the linking of
the receiving and transmitting antennas by the same ray path in both directions, one
may say that Lorentz reciprocity is an expression of the invariance of Maxwell’s
equations under time reversal. (In a different context, Budden has performed the
reciprocity calculations for antennas linked by the same ray path [33, Secs. 14.13–
14.15]; see also [35].)

In connection with the above discussion one recalls the result found by Wheeler
and Feynman [134], summarized in ref. [96, Sec. 21.12] in which it is shown
that even if it is assumed that advanced potentials and fields have the same
physical validity as the corresponding retarded quantities, and if both are included
symmetrically in the solutions of Maxwell’s equations, the net interaction between
any two charges will be given by the retarded, causal fields only.



Chapter 8
Epilog: Time reversal and reciprocity revisited

8.1 Time reversal by phase conjugation - practical
implementation

Until now we have considered time reversal as an abstract concept, useful for
predicting the behavior of electromagnetic waves in magnetic field reversed magne-
toplasmas, for instance, or the outcome of interchanging the roles of transmitters and
receivers in electromagnetic or acoustic communication problems. The last twenty
years, however, have seen a surge of activity related to the practical implemen-
tation of “time reversal mirrors” (TRM) for optical, acoustic and electromagnetic
(micro-)wave applications, and a host of insights associated with them.

8.1.1 Optical phase conjugation

The pioneering work appears to have been that of Zel’dovich and coworkers
(Zel’dovich et al., 1972, Shkunov and Zel’dovich, 1985), who found that when a
high-intensity pulsed laser beam was incident on a transparent medium, then above
a certain threshold intensity the medium lost its transparency and each pulse in the
the beam was reflected backwards almost completely, the end of each pulse being
retro-reflected first, i.e. it was “time reversed”, retracing the path of the incident
beam. This was interpreted as due to stimulated Brillouin scattering, in which the
strong incident beam scatters off thermally fluctuating sound waves. Those scattered
backwards generate a standing wave in the medium which, due to the electrostrictive
effect, gives rise to surfaces of compression and rarefaction in the medium parallel
to the wavefront of the incident wave which alter the refractive index to form a
spatial diffraction grating with a lattice spacing of a half-wavelength, d D	=2.
The incident beam is Bragg-reflected by the grating, which in turn reinforces the
standing wave pattern. This positive feedback process results finally in almost total
time-reversed retro-reflection of the wave.

C. Altman and K. Suchy, Reciprocity, Spatial Mapping and Time Reversal
in Electromagnetics, DOI 10.1007/978-94-007-1530-1 8,
© Springer Science+Business Media B.V. 2011
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Several years later, following a proposal by Yariv (1976), the operation of
an optical time-reversal mirror, which did not require large input power, was
demonstrated by Hellwarth (1977) using a four-wave mixing scheme in a non-linear
medium. The polarization P of an isotropic medium subject to an electric field E is
given by

P D "0.�E C �.2/E2 C �.3/E3 C :::/ (8.1)

where � is the susceptibility of the medium, and the refractive index n D 1CP="0E ,
equals .1 C �) in a linear medium, cf. [7.4]. In certain media, such as BaTi O3

crystals, the third order term �E3 may be appreciable, but other non-linear media
include optical fibers, liquids, plasmas, and atomic vapors. Suppose that two
counter-propagating pump waves, E1 � cos.!t � k1 � r/ and E2� cos.!t � k2 � r/,
where k1D�k2, as well as a third, probe wave, E3 � cos.!t � k3 � r/, are
incident on the medium. Because of the nonlinearity of the medium a fourth wave
E4 � .E1 C E2 C E3/

3 will be generated. Writing each cosine term in its complex
representation, we find that the only terms in the expansion having both exp.i!t/

time variation and exp�i.k1 C k2/ � r spatial variation are, (cf. Lipson et al., 1995,
Sec. 13.5.3),

E4 � exp i Œ!t � .k1 C k2 � k3/ � r� D exp i.!t C k3 � r/; k1 C k2 D 0 (8.2)

in which the probe wave E3 has been time-reversed by phase-conjugation of its
spatial part:

E4.r/ � exp.�ik4 � r/ D exp ik3 � r � E ?
3 .r/

in accord with our discussion in Sec. 7.1 for a medium which is isotropic and
lossless.

What happens to the conjugate wave if the phase conjugation mirror lies in a
gyrotropic medium, such as a magnetoplasma, or in a biisotropic chiral medium
(cf. Sec. 7.5.2)? In the case of the magnetoplasma the wave has been time-reversed
but not the medium, since the magnetic field of the plasma is unchanged, and the
reflected eigenmodes will no longer have the appropriate polarizations, cf. [1.81], to
retrace the incident beam. In the case of the chiral medium, on the other hand, the
conjugate waves retain their chirality and see the same medium as before.

Let us briefly review the physical basis of the conjugating process. The two
counter-propagating pump beams, one forward (F) and one backward (B), with
kBD�kF , are incident on the non-linear medium, together with a probe beam
(P), in which kP , coherent with the other two beams, is incident at an angle �

with respect to the forward beam. The probe and forward pump beams form
a standing wave pattern of electric wave-field intensity in the medium which,
through the electrostrictive effect, (cf. Pepper et al., 1990), create a grid of varying
refractive index that serves as a Bragg-diffraction lattice (a three dimensional
hologram). The backward pump beam is diffracted off this lattice to generate the
backward (phase-conjugated) wave. The probe beam reacts at the same time with
the backward pump beam to form another spatial lattice from which the forward
pump beam is diffracted, again generating (reinforcing) the conjugate beam. Finally,
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the counter-propagating probe and conjugate beams form a reflecting lattice from
which the probe beam is reflected into the conjugate beam. All in all, there are
several positive feedback mechanisms, each of which lead to the creation by optical
phase conjugation (OPC) of a strong, possibly amplified, time-reversed beam.

It should be realized, however, that since the end of each incident pulse is the
beginning of the time reversed pulse, the phase conjugating process can only be
started after the entire pulse has entered the phase conjugating medium, which limits
the maximum duration of pulses which can be time reversed.

Some of the applications of OPC have been discussed by Pepper (1986). A
projected image of a cat is scarcely recognizable after passing through a frosted
glass plate. But the original image is restored after the beam is phase-conjugated and
re-traverses the plate. This double-pass geometry may be exploited to amplify a laser
beam without distortion. Suppose a low-power laser beam traverses an amplifier,
made up typically of a solid or gas of highly excited atoms or molecules. The highly
amplified beam loses its directivity due to scattering from inhomogeneities in the
amplifying medium, but after phase conjugation and a reverse pass through the
medium the beam is both directive and amplified.

Another example of a double-pass geometry is the self-targeting of radiation,
in which a target, such as a deuterium-tritium fusion pellet, is illuminated by a
low-power laser. The light scattered from the pellet is highly amplified and the
intense time-reversed beam then converges on the target. This is the basis of a very
promising technique, described in the next sub-section, for use with intense ultra-
sonic waves.

The self-targeting technique may also be used for tracking a satellite. The light
received at the ground from an illuminated satellite can be amplified and time-
reversed to converge back on the satellite, eliminating the distortion created by
atmospheric turbulence.

Perhaps the most significant recent breakthrough in the applications of optical
phase conjugation (OPC) is the upgrading of long-distance optical fiber communica-
tion systems in which the transmission bit-rate of ultra-short optical pulses is limited
by pulse broadening due to group-velocity dispersion of the different spectral
components, and to spectral self-broadening arising from the non-linearity of the
optical fibres (for a review see Sec. 7.4 in G. S. He, 2002). Following a proposal
by Yariv et al. (1979), the insertion of an OPC forward four-wave mixing device
(Inoue, 1992) midway along span of the fibre was found to remove most of the pulse
distortion and broadening created in the first half of the communication path, the
dispersion in the forward trajectory apparently being sufficiently similar to that in
the backward trajectory as to re-focus the time-reversed, phase-conjugated, signal.

8.1.2 Acoustic time reversal

The time reversal of incident signals is in principle much simpler when the signals
are acoustic rather than optical, as they are no longer required to be monochromatic
or coherent, nor is a delay required to build up the phase conjugated signal. The input
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signal is recorded by a microphone, digitalized and time reversed by a computer,
reconverted to analog form and retransmitted by a loudspeaker. The functions
of microphone and loudspeaker are usually performed by the same piezoelectric
transducer, or array of transducers, which serve as the ‘time-reversing mirror’. If
you call out “HELLO” towards this array your call comes back to you as “OLLEH”,
focusing at your mouth (Fink, 1992, 1999).

Suppose a time-reversed signal produces a focal spot at the source, of width
generally much wider than the diffraction limit of a half wavelength, 	=2. If
between the source and the TRM a ‘forest’ of rods or scatterers is inserted so that
a large number of signals arrive at the TRM at different times and from different
directions, and all multiply-scattered waves are thereafter time reversed and arrive
simultaneously at the source, the focal width shrinks considerably because of
increase of the equivalent angular aperture of the TRM. The effect is even more
pronounced if the experiment is performed in a reverberating room, when the source
is effectively sampled from all directions, and the focal width may readily attain the
	=2 limit (Fink, 1997).

The time reversal technique is particularly valuable in medical imaging where
one wishes to send ultrasonic pulses through bone and tissue to target tumors with
precision or to shatter kidney stones. (At a frequency of 100 kHz the wavelength
of an ultrasonic wave in water would be 14 mm, in air it would be 3.3 mm.) First,
the target is illuminated with a short pulse. The reflected beam is now time reversed
and amplified and will focus back on the target despite all the distortion of the
intervening medium. If reflections are obtained from several targets the process can
be iterated until most of energy is directed towards the principal target.

The technique can be used to locate mines or submarines in the sea, and for
long distance underwater communication. Edelmann et al. (2002) used arrays of
hydrophones and [piezoelectric] slotted cylinders in sea water to receive and time
reverse 2 msec pure tone pulses centered at 3.5 kHz, in a 11 km long underwater
communication channel at depths ranging from 110 to 130 m. Signals which were
dispersed by multi-path reflections from the sea floor and sea surface were refocused
at the receiver after time reversal and amplification of the probe beam at the distant
transmitter.

8.1.3 Electromagnetic (microwave) time reversal

The use of time reversal in microwave electromagnetics (mobile telephone com-
munication, for instance, in cluttered urban environments) will no doubt be a
major application of the technique in the future. The main difficulty lies in the
much higher sampling frequencies required to digitize the microwaves for computer
time reversal compared with the ultrasonic case. The feasibility of time-reversal
mirroring of electromagnetic waves in the GHz range was demonstrated by Lerosey
et al. (2004). Short pulses, mI .t/, with a central frequency of 3 MHz were used to
modulate a carrier wave of frequency �0 D 2:45 GHz to generate a probe signal
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e.t/ WD mI .t/ cos.2��0t/. The novelty of the method was that at the receiving end
the lower frequency modulation was digitized and time reversed by the computer
while the carrier frequency was phase conjugated directly without the need for
sampling. The procedure was as follows. The transmitted probe signal e.t/ arrived
at the receiver as s.t/ D m0I .t/ cos.2��0t/ C m0Q.t/ sin.2��0t/. The quadrature
components (cos and sin) were separated and demodulated, and the modulating
signals were digitized and time reversed by the computer. The carrier waves were
again modulated to produce the required time reversed signal m0I .�t/ cos.2��0t/�
m0Q sin.2��0t/ which is retransmitted to the target antenna. (Note that the carrier
wave has been time reversed by the substitution t ! �t which changes the sign of
the sin term.)

The use of microwaves in imaging small targets (like tumors in the body) has
been limited by the diffraction limit which does not permit the imaging of details
sharper than 	=2 (for a 3 GHz signal 	 D 10 cm) – the finer details being carried
by evanescent waves which decay before reaching the time reversal mirror. In
an ingenious solution Lerosey et al. (2005) placed a random distribution of sub-
wavelength scatterers in the near-field of the target where the evanescent waves, by
diffracting off the scatterers, could convert into propagating waves that reached the
far-field TRM. On the return path these components were reconverted to evanescent
waves at the scatterers to participate in the refocusing process, yielding focal widths
far below the diffraction limit.

Another solution relies on a class of “superlenses”, consisting of a slab of neg-
ative refractive index material (such as silver or gold at certain optical frequencies
and synthetic composites at microwave frequencies) which have the property of
amplifying evanescent waves and converting them to propagating waves inside the
slab. The slab then acts as a lens for all the fields which will reassemble further out
to a sharp image (Pendry, 2000) which, if it lies just before a time reversal mirror,
will be retro-reflected to refocus sharply at the target, the evanescent waves having
re-formed on the backward passage through the slab.

All the applications of time reversal mirrors assume that the medium between
the TRM and the target is reciprocal. Dietz et al. (2009) report that time reversal
is indeed violated (not unexpectedly!) when a magnetized ferrite is placed within
a microwave cavity. In Sec. 8.4 we shall elaborate under what circumstances an
enclosed structure (a waveguide) containing a magnetized ferrite would be ‘Lorentz
self-adjoint’.

8.1.4 Earthquake location by time reversal

The exponential growth of computing power in the last decades, with continued
increase in the number of seismic stations whose data are easily stored and shared,
has permitted the application of time reversal (TR) techniques to locate seismic
sources and to unravel their spatio-temporal development. The technique differs
from that described previously in that the complex seismic signal which is time
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reversed in the computer is not propagated back into the medium, but propagated
numerically into a model of the earth, in which the best estimates of the appropriate
elastic constants as a function of depth, including all known inhomogeneities, have
been inserted.

The seismic signal generally includes the body waves which have propagated
within the earth’s interior, including the compressional P waves which arrive first
(primus), and the shear S waves which arrive next (secundus), followed by multiply-
reflected secondary waves. The surface waves arrive after the P and S waves.
Whereas the amplitudes of the three-dimensional body waves attenuate as r�1,
the two-dimensional surface waves attenuate as r�1=2, and so are generally much
stronger and destructive. The surface waves consist of compressional (longitudinal)
Rayleigh waves in which the particles of the medium have retrograde elliptical
polarization along the path of propagation, and shear Love waves which have
transverse horizontal polarization.

The traditional method of earthquake location requires that the component waves
in the complex seismic signal be identified (which is not always possible). The
direction of the source is generally deduced from the polarization of the surface
waves, and its distance (and depth) is estimated by measuring the time delay
between the various components of the seismic signal. The estimates are then
upgraded by means of triangulation using the estimates of other stations.

Some seismic signals, such as glacial earthquakes, generated by sliding and
sudden arrest of glaciers, or tilting and slipping of huge ice masses into the sea,
are not easily identified and source location is not always possible by traditional
means.

In the TR method it is not necessary to identify each component wave in the
seismic signal. The entire signal is time reversed and if the modelization of the
elastic structure of the earth is reasonably accurate, the reversed waves should
refocus at the source before diverging again. If the time reversed signals of
numerous seismographs spread over the earth’s surface are followed back in time
and superimposed, they focus strongly at the source; the relative background noise
is reduced, and inhomogeneities missed in the earth models tend to cancel.

The radiation pattern of the source is determined in general by the orientation
of the tectonic plates which slide past each other. A strike-slip fault like the
San Andreas fault in California involves two blocks sliding past each other at an
approximately vertical interface. At a subduction zone, on the other hand, two
blocks slide past each other at a roughly horizontal interface. An example of the
latter is the great Sumatra earthquake of 2004 which produced seismograms of
about 400 seconds duration. Larmat et al. (2006), using input from 165 stations,
performed a time reversal analysis that revealed a 1200-km-long south-to-north
traveling rupture between horizontal tectonic plates.

For a glacial earthquake in Greenland seismic signals from 146 stations were
frequency-filtered, time reversed and rebroadcast into a model earth (Larmat et al.,
2008). Mapping the vertical component of the surface velocity at the quake’s onset,
revealed a downward thrusting motion at the eastern seafront of Greenland where
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the glacier was presumably plunging into the sea, and an upward motion at the
western upstream end of the glacier.

Time reversal methods appear to be a powerful tool in earthquake location and the
elucidation of seismic processes. The successful application of the method depends
on adequate coverage by seismic stations, a reasonably accurate model of the earth’s
elastic parameters and sufficient computational resources.
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8.2 Asymmetric chiral synthesis in a spinning vessel?

An interesting application of combined use of time-reversal and reflection transfor-
mations is the analysis of the possibility of achieving asymmetric synthesis of chiral
compounds by performing the experiment in a spinning vessel.

Edwards et al. (1980) report the results of a chemical synthesis in which,
under normal conditions, a racemic mixture (containing equal amounts of left- and
right-handed chiral molecules) is obtained, but, they claim, when the experiment
is performed in a rotating vessel, asymmetric synthesis (an excess of one of the
enantiomers) is achieved, the largest effect being obtained when the rotation vector
! is parallel to the gravitational field g.

It had already been shown by de Gennes (1970) and by Mead et al. (1977) that
asymmetric synthesis was impossible in static electric and magnetic fields. The
argument was that if the system were time-reversed (T ), and then reflected (R) with
respect to a plane containing the vectors E and B, the field E would be unaffected by
either of these operations; the field B would be reversed by each operation and so,
in all, would also be unaffected. The time-reversed, reflected medium would thus be
indistinguishable from the original one. The chirality of the molecules, on the other
hand, would be interchanged since they would be unaffected by T but interchanged
by R, which implies that the amounts of left- and right-handed enantiomers must
be equal.

It was pointed out by Mead and Moscowitz (1980) and by Peres (1980) that in the
set-up of Edwards et al. (1980), the gravitational field g, a polar vector, is analogous
to E, and the axial vector field ! of the rotating medium is analogous to B, and so,
by the same arguments as above, no enantiomeric excess is possible. Peres clarifies:
“...if we make a movie of the rotating vessel and then run that movie backward in
time and reflected in a vertical mirror, we see the same g and !. Since the reversed-
reflected movie is identical with the original one, there can be no preponderance
of left handed or right handed molecules, as the latter are interchanged by R and
invariant under T .”

Peres points out, however, that a vessel rotating in a static electromagnetic field
(for example, with E, B and ! perpendicular to each other) could in principle lead to
asymmetric synthesis, because the pseudoscalar ! �E�B changes sign under R but
not under T . The same is true for ! � g� Bearth, where Bearth is the earth’s magnetic
field, but the magnitudes involved would be far too weak to have any appreciable
effect, and in any case with ! parallel to g, as in the experiment reported by Edwards
et al. (1980), this pseudoscalar is zero.
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8.3 Compressible magnetoplasma with anisotropic
perturbation pressure

The discussion in Sec. 7.4 of the compressible magnetoplasma with scalar perturba-
tion pressures is here generalized to include anisotropic perturbation pressures. The
scalar pressure gradient in the Euler equation of motion (7.73) must be replaced
by the divergence of a pressure tensor, and the adiabatic equation of continuity of
the ‘monatomic’ electron gas (7.76) is replaced by an equation of evolution of the
pressure tensor.

8.3.1 The collisionless Maxwell-Euler system

Consider the governing equations. For the sake of completeness we write the
Maxwell curl equations with external electric and equivalent magnetic current
densities, Je and Jm, and a linearized internal electric current density n0q� due
to the macroscopic motion of the charged particles:

i!"0E � r �HC n0q� D �Je (8.3)

r � EC i!�0H D �Jm (8.4)

With a scalar background pressure, p0 D n0KT , a background magnetic field b
and a symmetric tensor perturbation pressure p, the momentum balance equation
(the Euler equation of motion) is

� n0qEC i!n0m�C n0qb � �C r � p D f (8.5)

where f, as before, is the external force density.
The fourth equation describing the time evolution of the pressure tensor, with

collisional damping ignored, has been given by Kulsrud (1964, eq. 4.13) and
Clemmow and Dougherty (1969, eq. 11.19). In dyadic notation this equation is

i!

p0

pC Ir� �C Œr�C .r�/T �C 1

p0

r �Q.3/ C q

mp0

Œb � pC .b � p/T � D �s

(8.6)
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where I is the 3�3 unit dyadic .OxOxC OyOyCOzOz/, and s is the source dyadic, analogous
to the scalar s in (7.74) (the factor � D 5/3 multiplying s has been introduced
to be consistent with the source term s in the scalar pressure problem (7.76));
Q.3/, the third-order heat-flux tensor, is neglected in the discussion that follows,
in which the processes analyzed are assumed to be adiabatic. Eq. (8.6) involves six
equations for the six independent components of the pressure tensor for a single-
species plasma (twelve equations for a two-species plasma), in addition to the nine
equations corresponding to the components of E, H and �. It is difficult to work,
especially analytically, with such large systems (see, for example, Delcroix et al.,
1962), and the usual procedure, following Kulsrud (1964, eq. 4.14) and Clemmow
and Dougherty (1969, Sec. 11.3.1), is to assume that if the magnetic field is strong
(i.e. if jY j:D j�cj=! � 1), the pressure tensor can be decomposed into two
diagonal components, parallel or perpendicular to the external magnetic field b,
p D pk

ObObC p?.I� ObOb/:

In the discussion that follows we shall use dyadic and matrix notation inter-
changeably, recalling that the dyadic dot product r �� becomes rT � or Qr� in matrix
notation, whereas r� represents either a dyadic or a 3�3 matrix. I�poDpo in dyadic
notation becomes I poDpo in matrix notation.

We shall employ an alternative decomposition of the perturbation pressure tensor
involving no approximations nor prior assumptions regarding its structure, and not
requiring a strong magnetic field. Note that the second term in (8.6) has no trace-free
part, whereas b � p is trace free (because of the symmetry of p), and so the trace,
3p, of p and its trace-free part, po, (the superscript ‘o’ on a second degree tensor
denoting ‘the trace-free part of’ that tensor), obey different equations. By taking the
double-dot products of I with (8.6) we may decompose it, as in Suchy and Altman
(1997a), using

p D p IC po; p D 1

3
trace.p/; s D sIC so; s WD 1

3
trace.s/;

b � I D I � b D �.b � I/T

and the double-dot products of I, namely,

I W p D trace.p/; I W I D 3; I W r� D r � �
to obtain

i!p

p0

C 5

3
r � � D �s; � D 5

3
; p0 D n0KT (8.7)

Subtraction of (8.7) times I from (8.6) gives the evolution equation for po which,
with Q.3/D 0, becomes

i!po

p0

C Œr�C .r�/T �o C q

mp0

ŒBpo C .Bpo/T � D �so; B WD b � I (8.8)
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Equations (8.3), (8.4), (8.5), together with (8.7) and (8.8), form the basic set of
five linear first-order differential equations in our further calculations. We would
like to write them in the compact ‘canonical form’ (7.78) with the constitutive and
differential operator matrices, K and D, and the column matrices, e and j, suitably
modified. We shall introduce the following symbolic notation: a backarrow above an
operator indicates that it operates backwards on the operand, a bidirectional arrow
indicates that it operates in both forward and backward directions. Thus, cf. Altman
and Suchy (1998),

 �r � WD .r�/T ;
 !r � WD .r C �r /� D r�C .r�/T (8.9)

with the symmetrized trace-free dyadic,
 !
ro �, in (8.8) given by

Œr�C .r�/T �o DW
 !
r o � D .I � �II W/.r C �r /�; I W !r � D trace.

 !r �/

(8.10)

and noting that po is symmetric and B antisymmetric, we have .Bpo/T D �poB,
so that the third, trace-free, dyadic term in (8.8) becomes (in matrix notation)

Bpo C .Bpo/T DW
 !
Bpo D Bpo � poB (8.11)

Finally, since po is trace free and symmetric, we highlight the symmetry of the
differential matrix operator D (8.18) that follows by writing the pressure divergence
in the momentum balance equation (8.5) as r �pDrpCr �po, where

r � po �! Qrpo D 1

2
. Qrpo C QrpoT / DW 1

2

 !Qr po D 1

2
.
 !
ro /T po (8.12)

These equalities may also be derived, without recourse to bidirectional operators,
with the aid of the dot and double-dot products of suitably constructed third and
fourth-order tensors (Suchy and Altman, 1997a).

Equations (8.5), (8.7) and (8.8) become

�n0qEC i!n0m�C n0qB�C rp C 1

2
.
 !
ro /T po D f (8.13)

i!p

�p0

C Qr� D s (8.14)

i!po

2p0

C 1

2

 !
r o �C q

2mp0

 !
B po D �so

2
(8.15)

and the Maxwell-Euler (M-E) system (7.78)

Le WD Œi!K.b/CD�e D �j (8.16)
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may be written out in full with the aid of (8.3), (8.4) and (8.13) – (8.15), with

K.b; q/ D

2
666666666664

"0I 0 �i
n0q

!
I 0 0

0 �0I 0 0 0

i
n0q

!
I 0 n0m.I� i

q

m!
B/ 0 0

0 0 0
1

�p0

0

0 0 0 0
1

2p0

.I� i
q

m!

 !
B /

3
777777777775

D KT
.b;�q/ (8.17)

D D

2
6666666664

0 �r � I 0 0 0

r � I 0 0 0 0

0 0 0 r .
 !
r o /T=2

0 0 rT 0 0

0 0
 !
ro =2 0 0

3
7777777775
D DT (8.18)

analogously to (7.80) and (7.81), with modified column matrices

e WD

2
666664

E
H
�

p

po

3
777775

; j WD

2
666664

Je

Jm

�f
�s

��so=2

3
777775

(8.19)

8.3.2 The adjoint Maxwell-Euler system and Lorentz reciprocity

The set of equations formally adjoint to the ME set (8.16) is

L Ne WD Œi!KT �D� Ne D �Nj; D D DT (8.20)

Application of the Lagrange identity to (8.16) and (8.20) gives

NeT L e � eT L Ne D NeT D eC eT D Ne D r � P D NeT j � eT Nj (8.21)

where P is the bilinear concomitant, cf. (2.37) and (2.42). We require this to be a
scalar equation, so that eT and NeT in (8.21) are understood to mean
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eT 
 ŒE�; H�; ��; p; poW�; NeT 
 ŒE�; H�; N��; Np; NpoW� (8.22)

noting that E, H and � form dot products, and po a double-dot product with the

corresponding terms in L Ne or Nj. With 1
2
.
 !
ro /T po D r � po (8.12), substitution of

D (8.18) and e (8.19) (with Ne defined analogously) in (8.21) then yields

r � P D NeT

2
666664

�r �H
r � E

rp C r � po

r � �
.1=2/.r�C .r�/T /

3
777775
C eT

2
666664

�r �H
r � E

r Np C r � Npo

r � N�
.1=2/.r N�C .r N�/T /

3
777775

D r � ŒE �HC E �HC p N�C Np�C po � N�C Npo � ��

D r � Œ.E �HC E �H/C .p � N�C Np � �/� (8.23)

in which we have used the relation

r � .p ��/ D � � .r �p/Cp W .r�/T D � � .r �p/CpT W .r�/; pT D p (8.24)

or, in terms of tensor and vector components, with summation over repeated indices
understood,

@.pik�k/

@xi

D @pik

@xi

�k C pik

@�k

@xi

; pik D pki

The bilinear concomitant vector P (8.23) is a generalization of the Poynting-like
energy flux density derived in Sec. 7.4.2, with p replacing p in the scalar pressure
case. If the medium is loss-free, the constitutive tensor K is hermitian, KT D K?, so
that the adjoint wave fields may be replaced by their complex conjugates, Ne ! e?,
and P reduces to the zero-divergence generalized Poynting vector in a source-free
medium.

The unphysical formally adjoint system, (8.20), may be transformed into a

physical Lorentz-adjoint system by means of the operator I
.13/

, which changes the
sign of the fields H and N� which are odd under time reversal,

e.L/ WD I
.13/ Ne D

2
666664

E
�H
�N�
Np
Npo

3
777775

; I
.13/ WD

2
666664

I � � � �
� �I � � �
� � �I � �
� � � 1 �
� � � � I

3
777775

(8.25)
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Pre-multiplying (8.16) with I
.13/

and substituting NeD I
.13/

e.L/, NjD I
.13/

j.L/ with

I
.13/D I

.13/�1

, we recover the physical Maxwell-Euler system in a magnetic-field
reversed medium,

L.L/e.L/ WD I
.13/

L I
.13/ Ne D Œi!K .L/ CD�e.L/ D �j.L/ (8.26)

with

I
.13/

D I
.13/ D �D; K.L/

.b/ WD I
.13/

KT I
.13/ D K.�b/ (8.27)

noting that the antisymmetric tensors BDb�I and
 !
B on the main diagonal of

K (8.17) change sign either with transposition of K or with magnetic-field reversal.
The Lorentz-adjoint tensor K.L/ may be shown to be equal to the time-reversed loss-
free tensor K0(b)DK(–b) (see the discussion in Sec. 7.4.3), with the time-reversed
wave fields obeying the Maxwell-Euler equations in this medium.

Finally, if we integrate (8.21) over all space, the divergence term r �P vanishes,

and substituting NeD I
.13/

e.L/ and NjD I
.13/

j.L/, we obtain the Lorentz reciprocity
relation Z

Qe.L/ I
.13/

j d 3r D
Z
Qe I

.13/
j.L/ d 3r (8.28)

or
Z

.E.L/ � Je �H.L/ � Jm C �.L/ � f � p.L/s � .�=2/po.L/ W so/ d 3r

D
Z

.E � J.L/

e �H � J.L/

m C � � f.L/ � ps.L/ � .�=2/po W so.L// d 3r (8.29)

which reduces to (7.92) if we ignore the trace-free part so of the source term.

8.3.3 The generalized bilinear concomitant in the Maxwell-Euler
system

In previous chapters we constructed a system of equations adjoint to the Maxwell,
or Maxwell-Euler, system by transposing all matrix operators and reversing the sign
of the spatial differential operator r . The given and adjoint systems then obeyed a
Lagrange identity, (7.82)-(7.84), which yielded a reciprocity relation and a bilinear
concomitant vector P, representing a Poynting-like energy flux density. If, however,
we also change the sign of the temporal differential operator @=@t , another adjoint
system is generated, and application of the Lagrange identity will then be shown
to yield a more general bilinear concomitant, the temporal part of which giving
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the energy density associated with each of the components in the electromagnetic-
acoustic wave field. The treatment that follows is based largely on Suchy and Altman
(1997a and b).

Let us rewrite the Maxwell-Euler system, eqs. (8.3), (8.4) and (8.13)–(8.15),
without Fourier transforming the temporal part of the fields and currents. The
resultant set of equations may be written as

L. @
@t

; r /e WD ŒK.b/CD.4/
. @

@t
; r /e D �j; e D e.t; r/; j D j.t; r/ (8.30)

or, in full, with the form of e and j as in (8.19),

2
666666664

"0I @
@t
�r � I n0qI 0 0

r � I �0I @
@t

0 0 0

�n0qI 0 n0m.I @
@t
C q

m
B/ r 1

2
.
 !
ro /T

0 0 rT 1
�p0

@
@t

0

0 0 1
2

 !
r o 0 1

2p0
.I @

@t
C q

m

 !
B /

3
777777775

e D �j (8.31)

K D

2
6666664

� � n0qI � �
� � � � �

�n0qI � n0qB � �
� � � � �
� � � � q

2p0m

 !
B

3
7777775
D �KT

; B WD b � I D �BT (8.32)

D.4/ WD D.4/
. @

@t
; r / D

2
66666666664

"0I @
@t
�r � I 0 0 0

r � I �0I @
@t

0 0 0

0 0 n0mI @
@t

r 1
2
.
 !
r o /T

0 0 rT 1
�p0

@
@t

0

0 0 1
2

 !
r o 0 1

2p0
I @

@t

3
77777777775
D D.4/T

(8.33)
We construct the equation formally adjoint to (8.30) by transposing all matrix
operators and reversing the sign of all differential operators,

L. @
@t

; r ; b/ Ne.t; r/ WD ŒKT �D.4/
. @

@t
; r /� Ne.t; r/ D �Nj.t; r/ (8.34)

to obtain the Lagrange identity

NeT Le � eT L Ne D �Ne � jC e � Nj

D NeT D.4/eC eT D.4/ Ne D @

@t
P t C r � P (8.35)
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with the temporal and spatial parts of the bilinear concomitant (Morse and Feshbach
1953, eq. 7.5.4) given by

P t D "0E � EC �0H �HC n0m� � N�C 3

5p0

p Np C 1

2p0

po W Npo (8.36)

P D E �HC E �HC p N�C Np�C po � N�C Npo � � (8.37)

When there are no sources (j D Nj D 0/, (8.35) reduces to a simple equation of
energy conservation,

@

@t
P t C r � P D 0 (8.38)

in which P t is the energy density associated with each of the field components and
P is the energy-flux density.

It is convenient to work with local plane waves in the Fourier domain, with

e.t; r/! e.!; k/ WD e0 expŒi.!t � k � r/�

j.!; k/ WD j0 expŒi.!t � k � r/� (8.39)

so that

D.4/
. @

@t
; r /e.t; r/! D.4/

.i!;�ik/e.!; k/ D iD.4/
.!;�k/e0 expŒi.!t � k � r/�

(8.40)

and the M-E system (8.30) is conveniently written as

L0.!;�k/ e.!; k/ WD �iL.i!;�ik/ e.!; k/ WD �i ŒKCiD.4/
.!;�k/� e.!; k/

WD ŒK0CD.4/
.!;�k/� e.!; k/Di j.!; k/; K0 WD �i K (8.41)

If we assume that the adjoint wave fields and currents are phase conjugated,

Ne.t; r/! Ne.!; k/ WD Ne0 expŒ�i.!t � k � r/� (8.42)

(for a loss-free plasma ! and k may be taken as real) the M-E system adjoint to
(8.41) becomes

L0 .!; k/ Ne.!; k/ D ŒK0T �D.4/
.�!; k/� Ne.!; k/

D ŒK0T CD.4/
.!;�k/� Ne.!; k/

D �i Nj.!; k/ (8.43)

Compare this with the complex conjugate of (8.41), noting that D.4/(!;�k) is purely
real and K0 D �iK purely imaginary, with

K0? D �.iK/? D iK D �iKT D .K0/T
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so that

L0?.!;�k/e.!; k/?D ŒK0? CD.4/
.!;�k/�e.!; k/?

D ŒK0T CD.4/
.!;�k/� Ne.!; k/

DL0T .!;�k/ Ne.!; k/ (8.44)

where, from (8.39),

e.!; k/? D e?
0 expŒ�i.!t � k � r/� D Ne0 expŒ�i.!t � k � r/� D Ne.!; k/ (8.45)

(since the wave-field amplitude Ne0 is arbitrary), and the adjoint wave fields (and
currents) may be replaced by the complex conjugates of the original set.

The temporal and spatial parts of the bilinear concomitant vector, (8.46) and
(8.47), are seen to be real quantities with the phase dependence eliminated

P t D "0E � E? C �0H �H? C n0m� � �? C 3

5p0

pp? C 1

2p0

po W po? (8.46)

P D E �H? C E? �HC p�? C p?�C po � �? C po? � � (8.47)

Altman and Suchy (2004) have used these relations to identify unequivocally
the wave modes (backward Bernstein modes, electrostatic Langmuir modes, left-
and right-handed electromagnetic modes and acoustic modes) derived from a
fluid model for various propagation angles in a single species magnetoplasma
with anisotropic pressure. In a two species plasma they were used to distinguish
between the various Alfvén modes—(field-guided) shear waves, (isotropic) fast
magnetosonic waves and (guided acoustic) slow magnetosonic waves—found in a
fluid model analysis (Altman and Suchy, 2007).

8.3.4 Solution of the homogeneous Maxwell-Euler system

Consider the homogeneous adiabatic Maxwell-Euler system, in which the source
terms, Je, Jm, f, s and so in (8.3), (8.4), (8.5), (8.7) and (8.8) are equated to zero.
We look for local plane-wave solutions, with perturbation quantities varying as
expŒi.!t � k � r/�. Elimination of H from (8.3) and (8.4) gives (in dyadic notation)

i
q

m
E D !X

1 � n2
.I � nn/ � �; n WD jnj (8.48)

where n:D kc/! is the refractive index vector, and X W D !2
p=!2 WD n0q

2="0m!2.
The momentum balance equation and the trace and detraced part of the pressure
balance equation become, cf. (8.13)–(8.15),

!n0m� � kp � k � po � in0qEC in0qb � � D 0 (8.49)
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!p D 5

3
p0k � � (8.50)

!po C .2iq=m/.b� po/so D 2p0.k�/so (8.51)

the superscript ‘s’ indicating the symmetric part of a (second-order) tensor, so that
.k�/s WD .k�C �k/=2; note too that Bpo in (8.8) has been written as

Bpo WD Œb � I�po D b � po

In order to solve (8.51) for po, use is made of a set of five fourth-order orthogonal
projectors P .4/

	 , 	D˙2;˙1; 0 (Suchy, 1997; Suchy and Altman, 2003, App. B), that
symmetrize and detrace any second-order tensor by double scalar multiplication –
for details see Appendix A.3 – to yield

po D 2p0

2X
	D�2

P .4/

	

! C 	�
W .k�/so; � WD qjbj=m (8.52)

k � p D kp C k � po D 5

3

p0

!
kk � �C 2p0

2X
	D�2

 
k � P .4/

	

! C 	�
� k
!
� �

DW p0k
2

!
A � � (8.53)

where the (dimensionless) compression tensor A is given by

A WD 5

3
OkOkC 2

2X
	D�2

Ok � P .4/

	

1C 	�=!
� Ok; Ok WD k

jkj (8.54)

Substitution of (8.48) and (8.53) in (8.49) yields a set of equations D ��D 0, (Suchy
and Altman, 2003, eqs. 5.5, 5.6 and B 12; Altman and Suchy, 2004, eq. 2.5 and
Appendix), with the vanishing determinant of the dispersion tensor, D,

det D D 0 (8.55)

yielding the dispersion equation, a fifth-order polynomial in n2, the square of
the refractive index. The five roots represent five distinct eigenmodes, all real
or complex conjugate pairs. The two lowest-n modes are electromagnetic; at
frequencies close to, but less than the plasma frequency the third mode is a
longitudinally polarized electrostatic Langmuir mode for propagation parallel to b
(cf. Brambilla, 1998, Sec. 25.1), and at frequencies higher than the gyrofrequency
it is a longitudinally polarized Bernstein mode for propagation perpendicular to
b (Bernstein, 1958). All Bernstein modes are backward in gyro-harmonic bands
below the upper hybrid frequency, !uh WD.!2

p C�2/1=2 (Crawford, 1965). The two
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highest-n modes are essentially acoustic, with the acoustic wave fields, �, p and
po, contributing most of the energy density and energy flux of the modes. The
kinetic analysis, (Akhiezer et al., 1975; Ichimaru, 1973), which takes into account
the detailed wave-particle interactions – as opposed to our fluid analysis which
considers averaged macroscopic wave fields in a one-species fluid – shows, however,
that for a Maxwellian magnetoplasma, these acoustic modes which are loss-free in
the fluid analysis, suffer strong Landau damping.

8.3.5 The homogeneous two-component Maxwell-Euler system

The earth’s magnetosphere, and most of interplanetary and intergalactic space,
consists of a multicomponent plasma, primarily of free electrons and protons
(ionized hydrogen atoms). The two-component electron-proton plasma can support
an interesting menagerie of plasma waves, the most common of which are the
Alfvén waves which propagate at frequencies below the local ion gyrofrequency,
! < �i . These plasmas may be considered to be collision free, and the momentum
and pressure balance equations (8.49)-(8.51) will apply separately to the ionic
and electronic components, �i , �e , pi and pe . The two components are coupled,
however, through Maxwell’s homogeneous equations, (8.3) and (8.4), without
source terms which, with plane-wave solutions assumed, become

i!"0EC ik �HC P
sDi;e

n0qs�s D 0; qe D �qi (8.56)

�k � EC !�0H D 0 (8.57)

Elimination of H from (8.56) and (8.57) yields

i.I� n2IC n2 OkOk/ � E D 1

!"0

X
sDi;e

n0qs�s (8.58)

We now substitute k �psD .p0k
2=!/As ��s (8.53) into the momentum balance

equation (8.49) to give, for each particle species sD i; e,

!n0ms�s � p0k
2

!
As � �s � in0qsEC in0qsb � �s D 0 (8.59)

which, with

Xs WD !p
2
s

!2
WD n0qs

2

"0ms!2
; Ys WD �s

!
D qsjbj

ms!
; �s WD p0

n0msc2
D KT

msc2
;

n WD kc

!
; Ob WD b

jbj (8.60)
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may be written as

Rs � n0qs�s D i!"0XsE; Rs WD IC iYs
Ob � I� �sn

2As (8.61)

defining thereby the (dimensionless) resistivity tensor Rs for each particle species.
Note that the temperature parameter �s is the particle’s kinetic energy in terms of its
(relativistic) rest energy; n is the eigenmode refractive index to be determined by
solution of the dispersion equation. This is now obtained by inverting (8.61) to give
n0qs�s ,

n0qs�s D i!"0XsRs
�1 � E D i!"0Xs

adjRs

detRs

� E (8.62)

which is inserted into (8.58) to yield

 
n2 OkOk� n2IC I�

X
s

Xs

adjRs

detRs

!
� E DW D � E D 0 (8.63)

and hence the dispersion equation

det D D 0 (8.64)

It is convenient to multiply (8.64) by the product of the determinants of the ion and
electron resistivity tensors to get rid of the unwanted denominators. The modified
dispersion equation

detD0 WD det

 
D
Y

s

detRs

!
D 0 (8.65)

is obtained, which yields a polynomial of order 20 in n2, the square of the refractive
index, which can be shown with the aid of a ‘Mathematica’ computer program
(Altman and Suchy, 2007), to factorize into an octic polynomial in n2 and two
squared third-order polynomials that do not contain the plasma density terms Xs

(8.60), and which may therefore be factored out. The time-consuming algebraic
factorization of the large 20th-order polynomial detD0 is performed only once, after
which the octic polynomial is extracted and stored for all subsequent calculations.

The eight distinct roots of the octic polynomial are either purely real or appear in
complex conjugate pairs. In the Alfvén domain (! < �i � !pi ), the three lowest
refractive indices correspond to the familiar Alfvén modes, whereas the solutions
with higher refractive indices are found by a kinetic analysis to be highly absorbed
or evanescent. The kinetic analysis shows the slow magnetosonic (acoustic) Alfvén
wave also to be highly damped, but this damping is reduced considerably if the
electron temperature is much larger than the ion temperature (see, e.g., Altman and
Suchy, 2007, Table 6).
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The polarization ratios of the electric field E in each wave mode is given by
the cofactors of any of the rows of the modified dispersion tensor D0 (8.65). The
polarization ratios of the ion or electron velocity fields are then given by (8.62), and
the trace and trace free parts of the pressure fields, pi ; pe; po

i and po
e , are obtained

from (8.50) and (8.52) respectively. We can now determine the relative contributions
of the electromagnetic and acoustic wave fields to the energy density P t and energy
flux density P of each mode (cf. (8.46) and (8.47) for the single-species plasma),

P t D "0E � E? C �0H �H? C
X
sDi;e

�
n0ms�s � �?

s C
3

5p0

psp
?
s C

1

2p0

po
s W po

s
?

�

(8.66)

P D E �H? C E? �HC
X
sDi;e
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? � �s

�
(8.67)

In a collisionless plasma in which !i � �i (i.e. Yi � 1) the temporal and
spatial variations are generally much slower and smoother than those due to the
gyro-motion of the particles, and the plasma behaves as a highly conducting fluid
governed by the simplified ‘magnetohydrodynamic’ (MHD) equations. The pressure
tensor p, as noted in Sec. 8.3.1, may then be decomposed into two independent
diagonal components,

p D pk
ObObC p?.I� ObOb/ (8.68)

If the magnetic field is along the z-axis this implies that

p? D pxx D pyy; pk D pzz

This approximation is frequently used in the theoretical analysis of Alfvén wave
phenomena, and the third-order heat-flux tensor Q.3/ (8.6) too, ignored in our
discussion (as well as higher-order tensors) may be reduced to a few diagonal terms.
If Yi >1, then jYej is several orders of magnitude greater than unity, and the electron
pressure tensor pe is then always diagonal as in (8.68). But if Yi 6�1, the reduction
of the ion pressure tensor pi to diagonal form (8.68) is generally not valid. The
formalism developed in this and previous sections, by calculating all elements of
the (symmetric) pressure tensors, pi and pe , enables these assertions to be tested.

Consider two typical cases, in which elements of the ion pressure tensor have
been calculated by the authors, for slow and fast magnetosonic Alfvén modes, sms
and fms respectively, at an oblique direction of propagation, †.k; b/ D 45o. Two
cases are considered: Yi � 1 and Yi 6� 1. In both cases Xi > 105 and the ratio
of Alfvén to ionic thermal velocity, �A=�t , is 2.9). Elements of the pressure tensor
which are less than the dominant diagonal element by a factor of 1/40 at least have
been ignored. (The absolute values of the terms in the pressure tensors, which are
derived from a normalization of the electromagnetic power flux, are not significant.)
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First case: Yi D 10

pi .fms/ D
2
4 1:15 � �
� 1:15 :06i

� :06i :64

3
5 ; pi .sms/ D

2
4 4:75 � �
� 4:70 :50i

� :50i 15:6

3
5 (8.69)

Second case: Yi D 2

pi .fms/ D
2
4 1:28 :30i �:20

:30i 1:24 :93i

�:20 :93i :67

3
5 ; pi .sms/ D

2
4 3:76 �1:02i 1:47

�1:02i :69 3:84i

1:47 3:84i 13:1

3
5

(8.70)

In the first case the approximation is quite good and improves for yet higher values
of Yi . In the second case the approximation is no longer valid and computation in
terms of the trace-carrying and trace-free parts of the pressure tensor appears to be
the best solution. This is true in general also for the single species plasma discussed
previously.
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8.4 Mode scattering in (bi)anisotropic waveguides

In Sec. 7.3.2 we discussed an eigenmode generalization of a scattering theorem due
to Kerns (Sec. 2.1.2, eqs. 2.8 and 2.9) for a (bi)anisotropic (i.e. anisotropic or bian-
isotropic) scattering object immersed in an infinite plane-stratified (bi)anisotropic
medium. For each value of the transverse wave vector kt (the projection of the
wave vector k on the stratification plane) there were four corresponding eigenmodes
having two distinct wave polarizations and propagating in the positive or negative
z-directions, normal to the stratification. Since kt could take on any a priori value,
the modal amplitude were necessarily in the form of amplitude densities in kt -space,
linked by elements of a scattering-density matrix.

In a waveguide the problem is in a sense simpler, in that the eigenmodes
constitute a discrete set rather than a continuum. On the other hand kt , for a given
mode, will no longer be constant over the cross section of the guide if the medium
is transversely inhomogeneous. Modal biorthogonality between the given and the
formally adjoint eigenmodes is therefore no longer a property of a point in the
medium, but now involves integrations over the cross sectional area of the guide.
In other respects the same basic procedures are again applied. The formally adjoint
eigenmodes are used to define eigenmode amplitudes for use in a scattering theorem,

and a simple relation, S
TDS�1, is found between the scattering matrices, S and S,

in the given and adjoint problems respectively. The Lorentz-adjoint modes, which
are closely related to the formally adjoint modes, are shown to be eigenmodes in the
time-reversed (Lorentz-adjoint) waveguide medium, and are just the original modes
‘running backwards’, with the roles of incident and scattered waves interchanged.
These backward propagating modes are related by a Lorentz-adjoint scattering
matrix S.L/, which is shown to be equal to the transpose ST of the scattering matrix
in the original problem. The discussion that follows is based largely on the treatment
of Altman and Suchy, (1996). In this section we revert to matrix, rather than dyadic,
notation.

8.4.1 The Maxwell and formally adjoint systems in a waveguide

The homogeneous (source free) Maxwell and formally adjoint systems for a
(bi)anisotropic medium, (4.28) and (4.29), are given respectively by

Le.r/ WD Œi!K.r; !/CD�e.r/ D 0 (8.71)
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L Ne.r/ WD Œi!KT
.r; !/�DT

� Ne.r/ D 0 (8.72)

where, cf. (4.4) and (2.22),

K WD
�

" �
� �

	
; D WD

�
0 �r � I

r � I 0

	
D DT (8.73)

If � and � are zero, the medium is anisotropic, otherwise it is bianisotropic. If the
medium is dissipationless then K is hermitian, KT DK?, and �T D�

?. Taking the
complex conjugate of (8.71) then yields

� L?e?.r/ WD Œi!K?
.r; !/ �D�e?.r/ D 0 (8.74)

and the formally adjoint and complex conjugate systems and wavefields coincide,
with Ne(r)!e?(r).

The Maxwell and formally adjoint systems obey a Lagrange identity (2.37)

NeT L e � eT L Ne D r � P DW r � .E �HC E �H/

D 0; if there are no sources (8.75)

Eq. (8.75) implies that the flux density of the bilinear concomitant vector, P, is
constant, even for lossy media. If the medium is loss-free, P reduces to the Poynting
vector. We call P the generalized energy flux density.

In a waveguide it is convenient to split the gradient operator r into longitudinal
and transverse parts,

r D Oz @

@z
C rt ; rt WD Ox @

@x
C Oy @

@y
(8.76)

Integrating (8.75) over the transverse (x; y) plane we obtain with the aid of Gauss’
divergence theorem in two dimensions, cf. (2.127), with dS 
 dx dy,

� @

@z

Z
S

Pz dS D
Z

S

rt � Pt dS D
I

C

.E �HC E �H/ � On d` (8.77)

where On is a unit outward normal vector on the bounding curve C at the wave-
guide surface. The last integral will vanish if there is no lateral (generalized) energy
outflow, for example, if On � E D 0 (perfectly conducting walls) or, in the case
of dielectric waveguides, if there are no leaky modes in the incident or scattered
wavefields. We then get from (8.77)

@W

@z
WD @

@z

Z
S

Pz dS D 0; W WD
Z

S

Pz dS D const (8.78)
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i.e. the integrated generalized energy flux parallel to the waveguide axis is conserved
even in dissipative media if there is no lateral outward energy flux.

8.4.2 Modal biorthogonality of given and adjoint eigenmodes

To obtain eigenmode equations from the given and adjoint Maxwell systems, we
split the differential operator D (8.73) in the governing equations, (8.71) and (8.72),
into longitudinal and transverse parts, as in (8.76), to obtain

�
i!K.r/CUz

@

@z
CDt

	
e.r/ D 0;

�
i!KT

.r/�Uz
@

@z
�Dt

	
Ne.r/ D 0

(8.79)
where

Uz WD
�

0 �Oz � I
Oz � I 0

	
D UT

z ; Oz � I D
2
4 0 �1 0

1 0 0

0 0 0

3
5 (8.80)

Dt WD
�

0 �rt � I
rt � I 0

	
D DT

t (8.81)

Suppose that a given and an adjoint eigenmode, e˛ and Neˇ , propagate along the
waveguide according to the ansätze

e˛.r/ D e˛.x; y/ exp.�i�˛z/; Neˇ.r/ D Neˇ.x; y/ exp.�i N�ˇz/ (8.82)

�˛ and N�ˇ are assumed to be constant, requiring the constitutive tensor K to be
independent of z, K.r/ D K.x; y/. (Note that for the sake of uniformity of notation
in this Section we have used a different ansatz for the formally adjoint eigenmode
in (8.82) to that used earlier, cf. (2.43) or (7.26)). The eigenmodes e˛ are numbered
in some systematic manner

˛ D ˙1;˙2; : : :˙N

the sign of ˛ indicating the direction of energy flow with respect to the z-axis; j˛j
increases with decreasing jRe(�˛)j, and ˛ D N is the last propagating mode prior
to cutoff. (For lossy media we may need to increase N to include some complex
modes beyond ‘cutoff’.) The evanescent modes, j˛j > N , in which Re(�˛)D 0
and jIm(�˛)j increases with j˛j, will be found to be irrelevant in the subsequent
discussion. Substituting (8.82) in the respective governing equations (8.79), we
obtain the given and formally adjoint eigenmode equations

Œi!K.x; y/�i�˛UzCDt � e˛.x; y/ D 0; Œi!KT
.x; y/Ci�ˇUz�Dt � Neˇ.x; y/ D 0

(8.83)
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Premultiplication of the first equation by NeT
ˇ , the second by eT

˛ , subtraction and
integration over the transverse (x; y) plane, yields

i.�˛ C N�ˇ/

Z
NeT

ˇ Uz e˛ dS D
Z �
NeT

ˇ Dt e˛ C eT
˛ Dt Neˇ

�
dS

D
Z

rt � .E˛ �Hˇ C Eˇ �H˛/ dS

D
I

C

.E˛ �Hˇ C Eˇ �H˛/ � On d` (8.84)

with the aid of Gauss’ theorem, cf. (8.77), and relying on NeT
ˇ Uz e˛ being a scalar

and therefore equal to its transpose, with UzDUT
z (8.80). The last integral over the

bounding curve C at the waveguide surface vanishes, as in (8.77), giving

i.�˛ C N�ˇ/

Z
NeT

ˇ Uz e˛ dS D 0 (8.85)

When ˛Dˇ the integral is just the nonzero generalized energy flux W˛, cf. (8.78),
of the mode ˛ along the waveguide,

W˛ D
Z

Pz;˛ dS D
Z
NeT

˛ Uz e˛ dS

D
Z

.E˛ �H˛ C E˛ �H˛/ � Oz dS D W ˛ (8.86)

Thus (8.85) implies that
N�˛ D ��˛ (8.87)

so that the formally adjoint eigenmode propagates in a direction opposite to that
of the given eigenmode which is the common direction of energy flow, W˛ D W ˛

(8.86), and is thus seen to be unphysical (cf. the remarks following (7.84); note
too that the governing adjoint equation (8.72) is unphysical in that the sign of the
differential operator D is opposite to that in the (physical) Maxwell system (8.71)).

When �ˇ D � N�ˇ ¤ �˛, the integral in (8.85) vanishes and the modes are
biorthogonal

Z
NeT

ˇ Uz e˛ dS D W˛ ı˛ˇ; or
Z
ONeT
ˇ Uz Oe˛ dS D ı˛ˇ sign.˛/ (8.88)

in which the eigenmodes have been normalized, Oe˛ D e˛=
pjW˛j, ONeˇ D eˇ=

pjWˇj.
A similar biorthogonality relation for confined anisotropic media has been given by
Villeneuve (1959).
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If two different eigenmodes, ˛ ¤ ˇ, are degenerate, i.e. if �˛D �ˇ , then (8.85)
no longer implies that the modes are biorthogonal,

Z
ONeT
ˇ Uz Oe˛ dS D c ¤ 0

Z
ONeT

˛ Uz Oeˇ dS D Nc ¤ 0; ˛ ¤ ˇ (8.89)

In this case, however, the mode Oe˛ can be replaced by the linear combination

Oe 0̨ D aOe˛ C bOeˇ

which is also a waveguide eigenmode associated with the eigenvector �˛. If we now
demand that Oe 0̨ be orthogonal to Oeˇ, we find the orthonormalized eigenmode to be

Oe 0̨ D .Oe˛ � c Oeˇ/=
p

1 � c Nc;

Z
ONe 0˛

T
Uz Oe 0̨ dS D 1

This is a variant of the Schmidt orthogonalization procedure, well known in
quantum mechanics (Merzbacher, 1961), and the orthogonalization procedure may
be continued to accommodate any number of degenerate modes. Thus, without loss
of generality, we may assume all eigenmodes to be biorthogonal and to constitute a
complete set.

8.4.3 The Lorentz-adjoint and time-reversed systems: eigenmode
scattering in a waveguide

As we have noted in the previous section, the formally adjoint wavefields Ne are
unphysical, in that the direction of energy flow is ‘wrong’ in relation to that of
phase propagation. The direction of energy flow is reversed by means of the operator

I
.6/ WD diag.I; �I/ D . I

.6/
/�1 (2.81),

e.L/ 

�

E.L/

H.L/

	
WD I

.6/ Ne WD
�

I 0

0 �I
	 �

E
H

	
D
�

E
�H

	
; with Ne.L/ D I

.6/
e

(8.90)

which changes the sign of the magnetic field H, thereby defining the Lorentz-adjoint

field e.L/, cf. (7.85). Premultiplying (8.72) by I
.6/

, and substituting Ne(r)D I
.6/

e.L/(r),
we obtain the homogeneous Lorentz-adjoint system

L.L/e.L/ WD
h
I

.6/
L I

.6/
i

e.L/ DW �i!K.L/ CD
�

e.L/ D 0 (8.91)

with
K.L/ WD I

.6/
KT I

.6/
; I

.6/
DT I

.6/ D �D (8.92)
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and the Lorentz-adjoint field e.L/ obeys Maxwell’s equations (8.71) in the Lorentz-
adjoint medium K.L/, and is a physical field provided that K.L/ represents a
physically realizable medium. (The direction of the ambient magnetic field in a
magnetoplasma, for instance, or of the magnetization vector in a ferrite, is reversed
in the Lorentz-adjoint medium.) In a waveguide the Lorentz-adjoint eigenmode
e.L/

˛ (r) obeys the eigenmode equation

Œi!K.L/
.x; y/ � i�.L/

˛ Uz CDt � e.L/
˛ .x; y/ D 0 (8.93)

with e.L/
˛ (r), as in (8.82) and (8.90), given by

e.L/
˛ .r/ D e.L/

˛ .x; y/ exp.�i�.L/
˛ z/

D I
.6/ Ne�˛.x; y/ exp.�i N�˛ z/ (8.94)

implying, with (8.87), that
�.L/

˛ D N�˛ D ��˛ (8.95)

and the Lorentz-adjoint eigenmode propagates in a direction opposite to that of the
given (Maxwell) eigenmode.

We have seen in Sec. 7.2 in the previous chapter that the time-reversed and
Lorentz-adjoint systems are equivalent if the constitutive tensor is hermitian, i.e.
if

K0 
 T K D I
.6/

K? I
.6/ D I

.6/
KT I

.6/ D K.L/

where T is the time-reversal operator. If absorption is present, T represents
the restricted time-reversal operator, which imposes complex conjugation on all
elements in K except the imaginary absorption terms which appear along the
main diagonal. Applying (8.94) and (8.95) we find the normalized time-reversed
eigenmodes, cf. (7.37),

T Oeˇ WD Oe 0�ˇ D I
.6/ ONeˇ D Oe.L/

�ˇ (8.96)

or, for later use, remembering that I
.6/D . I

.6/
/�1,

ONeˇ D I
.6/ Oe.L/

�ˇ; Oeˇ D I
.6/ ONe.L/

�ˇ (8.97)

Note that the sign assigned to the subscripts ˛ or ˇ in (8.94), (8.96) and (8.97)
indicates the direction of energy flux of the eigenmode with respect to the z-axis.
The direction of energy flow of the formally adjoint eigenmodes Neˇ is unchanged,
W˛ D W ˛ (8.86), even though the direction of phase propagation is reversed. The
energy flux of the Lorentz-adjoint eigenmodes however is reversed.
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Modal amplitudes and the eigenmode decomposition of a wavefield

The modal wavefields eˇ and Neˇ, and their Lorentz-adjoint counterparts e.L/

ˇ and

Ne.L/

ˇ , are related to the normalized wavefields Oeˇ, ONeˇ , Oe.L/

ˇ and ONe.L/

ˇ via the modal
amplitudes

eˇ DW aˇ Oeˇ; Neˇ DW Naˇ
ONeˇ; e.L/

ˇ DW a.L/

ˇ Oe.L/

ˇ ; Ne.L/

ˇ DW Na.L/

ˇ
ONe.L/

ˇ (8.98)

from which, with (8.88), we may express the generalized flux of an eigenmode in
terms of its amplitude
Z
NeT

ˇ Uz e˛ dS D ı˛ˇ Naˇ a˛ sign.ˇ/ D ı˛ˇ Wˇ; Wˇ D Naˇ aˇ sign.ˇ/ (8.99)

Now arbitrary wavefields, e(x; y) and Ne(x; y), may be expressed as a superposition
of (a complete set of) eigenmodes,

e.x; y/ D
X

ˇ

aˇ Oeˇ.x; y/; Ne.x; y/ D
X

ˇ

Naˇ
ONeˇ.x; y/ (8.100)

the summation, for completeness, including the evanescent modes. The eigenmode
amplitudes, aˇ and Naˇ , are now obtained with the aid of (8.88), (8.98) and (8.100),

aˇ D sign.ˇ/

Z
ONeT

ˇ Uze.x; y/ dS; Naˇ D sign.ˇ/

Z
Oe T
ˇ Uz Ne.x; y/ dS (8.101)

The generalized energy flux of an arbitrary wavefield parallel to the axis of the
waveguide may now be obtained in terms of the eigenmode amplitudes with the aid
of (8.78), (8.86) and (8.99),

W D
Z
NeT Uze dS D

Z
.E �HC E �H/ � Oz dS

D
X

ˇ

Wˇ D
NX

ˇD�N

Naˇ aˇ sign.ˇ/

D Na1 a1 C Na2 a2 C : : : � Na�1 a�1 � Na�2 a�2 � : : : D const (8.102)

The summation extends up to jˇj D N only, since the evanescent modes do not
contribute to the energy flux.

Finally, to find the Lorentz-adjoint generalized energy flux W .L/ for an arbitrary
wavefield in the Lorentz-adjoint (time-reversed) medium, we note that substitution

of (8.97) and (8.90) in (8.101), with I
.6/

Uz I
.6/D�Uz, yields

a
.L/

ˇ D Na�ˇ; Na.L/

ˇ D a�ˇ but W
.L/

ˇ D �W�ˇ (8.103)
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By analogy with (8.102) we then get

W .L/ D
Z

.Ne.L//T Uze.L/ dS

D Na.L/

1 a
.L/

1 C Na.L/

2 a
.L/

2 C : : : � Na.L/

�1a
.L/

�1 � Na.L/

�2a
.L/

�2 � : : :

D a�1 Na�1 C a�2 Na�2 C : : : � a1 Na1 � a2 Na2 � : : : D �W (8.104)

confirming that the direction of energy flow in the Lorentz-adjoint medium, as
expected, is time reversed.

Derivation of the scattering theorem

The treatment here is analogous to that in Sec. 7.3.1. Suppose that a scattering object
is located in the waveguide between two planes, zDz< and zDz>. The generalized
energy flux is conserved, so that with (8.102)

W.z</ D W.z>/;

NX
ˇD�N

Naˇ.z</ aˇ.z</ sign.ˇ/ D
NX

ˇD�N

Naˇ.z>/ aˇ.z>/ sign.ˇ/

(8.105)
becoming, after regrouping,

NX
ˇD1

Naˇ.z</ aˇ.z</C
�NX

ˇD�1

Naˇ.z>/ aˇ.z>/ D
�NX

ˇD�1

Naˇ.z</ aˇ.z</C
NX

ˇD1

Naˇ.z>/ aˇ.z>/

(8.106)

which states that the ingoing generalized energy flux entering the scattering region
equals the outgoing flux. This may be written compactly by introducing the N -
element column matrices, aC and a�, and the 2N -element columns, ain and aout,

ain WD
�

aC.z</
a�.z>/

	
WD

2
6666666664

a1.z</
:::

aN .z</

a�1.z>/
:::

a�N .z >/

3
7777777775

; aout WD
�

a�.z</
aC.z>/

	
WD

2
6666666664

a�1.z</
:::

a�N .z</

a1.z>/
:::

aN .z >/

3
7777777775

(8.107)

with the adjoint column matrices, Nain and Naout , similarly defined. Generalized
energy flux conservation (8.106) then takes the form

NaT
inain D NaT

outaout (8.108)
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ain, aout and their adjoints are related by the 2N �2N scattering matrices S and S,

aout DW Sain; Naout DW S Nain (8.109)

or, written out in full with the aid of (8.107), the left-hand equation becomes
�

a�.z</
aC.z>/

	
D
�

RC.z</ T�.z<; z>/

TC.z>; z</ R�.z>/

	 �
aC.z</
a�.z>/

	
(8.110)

in which S has been expressed in terms of the N �N reflection and transmission
matrices RC and T�, the subscripted sign indicating the direction with respect to
the z-axis of the incident mode. Substitution of (8.109) in (8.108) yields

NaT
in ain D NaT

in S
T
Sain so that S

T
S D I.2N / (8.111)

where I.2N / is the 2N�2N unit matrix. This relation between the given and formally
adjoint scattering matrices is the first part of the scattering theorem.

The Lorentz-adjoint modal-amplitude column vectors, a
.L/

in and a
.L/

out are con-
structed as in (8.107) and converted with the aid of (8.103) into formally adjoint
columns,

a
.L/

in WD
"

a
.L/

C .z</
a.L/� .z>/

#
D
� Na�.z</
NaC.z>/

	
DW Naout ; and a

.L/

out D Nain (8.112)

Transposing (8.108) and substituting for Nain and Naout from (8.112) we obtain

aT
ina

.L/

out D aT
outa

.L/

in ; aT
inS

.L/a
.L/

in D aT
inS

T a
.L/

in (8.113)

using aout DWSain (8.109) and a
.L/

out DWS.L/a
.L/

in . From (8.113) we have finally

S.L/ D ST (8.114)

which is the required scattering theorem. Written out in full in terms of the reflection
and transmission sub-matrices (8.110), this becomes

R.L/

C .z</ D RT
C.z</; R.L/

� .z>/ D RT
�.z>/

T.L/

C .z>; z</ D TT
�.z<; z>/; T.L/

� .z<; z>/ D TT
C.z>; z</ (8.115)

and in terms of the scattering matrix elements

S
.L/

˛ˇ.�˛; �ˇ/ D S�ˇ;�˛.��ˇ;��˛/ (8.116)

A simplified version of this scattering theorem has been given by Harrington and
Villeneuve, 1958.
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a b c d

Fig. 8.1 Scattering symmetries in a waveguide

8.4.4 An application of the scattering theorem

For applications of the scattering theorem it will often be useful to perform reflection
transformations (R), in addition to the (restricted) time reversal transformation (T )
that is implicit in the scattering theorem. As an illustration we suppose that a
thin ferrite wire (the scattering object) is located in a waveguide filled with some
isotropic medium. The waveguide structure will be assumed to have reflection
symmetry with respect to any (x; z) plane. The ferrite lies in the (y; z) plane and
is magnetized along its axis, as indicated by the arrow in Fig. 8.1(a). It is assumed
that the ferrite is so shaped that an incident mode ˛ is almost completely scattered
into mode ˇ (Fig. 8.1(a)). We pose the question: under what circumstances will an
incident mode ˇ be almost completely scattered into mode ˛?

Under time reversal (T ), Fig. 8.1(b), mode -ˇ is scattered into mode -˛, and
the direction of magnetization of the wire is reversed in direction. Next, perform
a reflection transformation (Rz) with respect to any (x; y) plane (cf. (6.7)). The
modes -ˇ and -˛ are mirrored into ˇ and ˛, and ˇ is now the incident mode,
Fig. 8.1(c). The reflected scattering object is now a mirror image of the original,
but the magnetization vector, being an axial (pseudo-) vector, is also reversed in
direction. A final reflection transformation, Ry , with respect to the (x; z) symmetry
plane, Fig. 8.1(d), gives a mirror image of the scattering object with respect to this
plane, but reverses the the magnetization vector so that its magnetization vector is
again positive. (The successive reflections, Rz and Ry , are equivalent to a 180o

rotation with respect to the x-axis.) The scattering object in Fig. 8.1(d), if placed
above that in Fig. 8.1(a), would give very little net scattering under the postulated
conditions.
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If the waveguide had reflection symmetry with respect to the (y; z) plane in
which the ferrite wire lies, then a reflection transformation Rx performed on the
time reversed configuration described in Fig. 8.1(b) would reverse the magnetization
back to the original configuration, Fig. 8.1(a). We will thereby have recovered the
original problem, but with the incident and scattered modes interchanged. The
original problem would then be ‘self-reciprocal’ or ‘Lorentz self-adjoint’.

References to Section 8.4

Altman C. and Suchy K. (1996) Mode scattering reciprocity relations in waveguides with
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Harrington R.F. and Villeneuve A.T. (1958) Reciprocity relations for gyrotropic media, IRE Trans.
Microwave Theory Tech. 6, 308-310.
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Villeneuve A.T. (1959) Orthogonality relations for waveguides and cavities with inhomogeneous
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A.1 The spectral resolution of a matrix

The tensors associated with a cold magnetoplasma, such as the conductivity or
dielectric tensors, are characterized by a single real axis of symmetry, the direction Ob
of the external magnetic field. They belong to a class of tensors, named cyclotonics
by Gibbs [58, Sec. 133], having the following structure

A WD 	1 Oa1 Na1T C ˛
�
Oa2 Na2T C Oa3 Na3T

�
C ˇ

�
Oa3 Na2T � Oa2 Na3T

�

where Oa1; Oa2 and Oa3 represent a set of linearly independent, but not necessarily
orthogonal normalized base vectors, and Na1; Na2 and Na3 represent the reciprocal set
of base vectors [135]. The eigenvalues are

	1; 	2 D ˛ C iˇ; 	3 D ˛ � iˇ

For any matrix A having three distinct eigenvalues, 	1; 	2 and 	3, as above for
example, we may construct the (complete) system of three orthogonal projectors
P1; P2 and P3 of the matrix A (see for instance [26, Sec. 3.6]),

P1 D Œ	2I�A�Œ	3I�A�

.	2 � 	1/.	3 � 	1/
; P2 D Œ	3I�A�Œ	1I�A�

.	3 � 	2/.	1 � 	2/
; P3 D Œ	1I�A�Œ	2I�A�

.	1 � 	3/.	2 � 	3/
(A.1)

Now the pairs of matrices in each of the numerators above commute so that, with
the characteristic equation for the matrix A,

Œ	i I�A� Oui D 0; i D 1; 2 or 3 (A.2)

where Oui denotes the (normalized) eigenvectors of A, we find that

P i Ouj D ıij Ouj (A.3)

C. Altman and K. Suchy, Reciprocity, Spatial Mapping and Time Reversal
in Electromagnetics, DOI 10.1007/978-94-007-1530-1,
© Springer Science+Business Media B.V. 2011
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Since any vector u may be expressed as a linear combination of the eigenvectors Oui,

u D �1 Ou1 C �2 Ou2 C �3 Ou3 (A.4)

we obtain, with the aid of (A.3),

P iu D P i

X
j

�j Ouj D �i Oui (A.5)

so that P i is seen to project an arbitrary vector onto the (normalized) eigenvector
Oui, and hence its name.

Applying P i again to (A.5), we find

P i
2u D �i Oui D P iu

so that
P i

2 D P i (A.6)

(matrices possessing this property are said to be idempotent) whereas

P iPj u D �j P i Ouj D 0

because of (A.3). The projectors are thus orthogonal

P iPj D ıijPj (A.7)

Furthermore, by virtue of (A.3) and (A.4),

ŒP1 CP2 CP3�u D �1 Ou1 C �2 Ou2 C �3 Ou3 D u

so that, with I denoting the unit matrix,

P1 CP2 CP3 D I (A.8)

which is the completeness condition for the three projectors.
Now apply the matrix A to an arbitrary vector u. Using (A.4), (A.2) and (A.3)

we get

Au D A
X

i

�i Oui D
X

i

�i 	i Oui D 	i �i	iP i Oui

D
X

i

	iP i

X
j

�j Ouj Œin view of .A.3/�

D Œ	1P1 C 	2P2 C 	3P3�u (A.9)
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yielding the spectral resolution of the matrix A:

A D 	1P1 C 	2P2 C 	3P3 (A.10)

in terms of the eigenvalue spectrum 	i and the projectors P i.
The reciprocal tensor A�1 may now be derived with the aid of (A.7), (A.8) and

(A.10). Consider the expression

A
�

1

	1

P1 C 1

	2

P2 C 1

	3

P3

	
D
�

1

	1

P1 C 1

	2

P2 C 1

	3

P3

	
A

D ŒP1 CP2 CP3� D I

which yields

A�1 D 1

	1

P1 C 1

	2

P2 C 1

	3

P3 (A.11)

We note finally that the matrix

U WD Œ Ou1 Ou2 Ou3� (A.12)

formed by the juxtaposition of the three linearly independent eigenvectors Oui is non-
singular, and the reciprocal matrix NU may be formed:

NU WD U�1 


2
64
Nu1T

Nu2T

Nu3T

3
75 (A.13)

where Nui T

.i D 1; 2; 3/ denotes any of the three rows of NU. Since NUU D I, we have
(in vector or matrix notation),

Nui � Ouj 
 Nui T Ouj D ıij (A.14)

thereby determining the system of reciprocal eigenvectors Nui that are biorthogonal
to the eigenvectors Ouj .

The matrix U diagonalizes A (this property may be derived with aid of (A.2))

AU D U
; 
 WD
2
4	1 0 0

0 	2 0

0 0 	3

3
5

or
U�1A D ƒU�1

; NuiT

A D 	i NuiT

so that
AT Nui D 	i Nui (A.15)
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The reciprocal eigenvectors are thus seen to be eigenvectors of the transposed matrix
AT , and are often referred to as the left eigenvectors of A. In view of (A.14) it is
clear that the projectors may be expressed in terms of the given and reciprocal sets
of eigenvectors,

P i D Oui NuiT (A.16)

A.2 Application to gyrotropic tensors

The various tensors associated with a magnetoplasma (such as the mobility tensor
�s, the resistivity tensor �s, the conductivity tensor � , the dielectric tensor ") are
gyrotropic, i.e. they have a single symmetry axis Ob, the direction of the (axial)
magnetic-field vector, and are a special case of the cyclotonic tensors discussed
above. Their general form, cf. Chen [36, Sec. 1.10], is

A. Ob/ D a?.I� Ob ObT
/C ia�. Ob � I/C ajj Ob ObT

D AT
�
�Ob
�

(A.17)

and the three orthogonal projectors are given by

P˙1 WD 1

2
.I � Ob ObT ˙ i Ob � I/; P0 WD Ob ObT

(A.18)

The completeness relation for the projectors

1X
jD�1

Pj D 1 (A.19)

is clearly satisfied, and their orthogonality,

Pj Pk D ıjkPk (A.20)

cf. (A.7), follows from the expansion

. Ob � I/. Ob � I/ D Ob � . Ob � I/ D Ob ObT � I

This can be verified by post-multiplication with an arbitrary vector v so that, in
mixed matrix and vector notation,

. Ob � I/. Ob � I/v D Ob � . Ob � v/ D Ob Ob � v � v D . Ob ObT � I/v

The linear combinations

P1 CP�1 D I� Ob ObT
; P1 �P�1 D i Ob � I (A.21)
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of the two projectors have the following interpretation. If applied to an arbitrary

vector the first, (I� ObObT
), projects it onto the plane perpendicular to b, whereas the

second, (b�I), does the same but in addition rotates it through an angle �/2 about b.
Finally, the spectral resolution of the matrix (A.10)

A.Ob/ D 	1P1 C 	�1P�1 C 	0P0


 a?.P1 CP�1/C a�.P1 �P�1/C akP0 (A.22)

yields the eigenvalues

	1 D a? C a�; 	�1 D a? � a�; 	0 D ak (A.23)

and hence, with the aid of (A.11), the inverse matrix is determined. With the
coefficients a?, ak and a� expressed in terms of the eigenvalues:

a? D 1

2
.	1 C 	�1/; a� D 1

2
.	1 � 	�1/; ak D 	0 (A.24)

the general form of the gyrotropic tensor (A.17) becomes

A.Ob/ D 1

2
.	1 C 	�1/.I� ObObT

/C i

2
.	1 � 	�1/.Ob � I/C 	0

ObObT
(A.25)

A.3 Fourth-order orthogonal projectors

This Appendix follows the treatment of Suchy (1997) and Suchy and Altman (2003,
App. B), which is based on the work of Hess (1970) and Hess and Waldmann (1971).
The motivation for the use of fourth-order orthogonal projectors is to solve equations
such as the pressure balance equation (8.51) which have the form

˛UC ˇŒb �U�s D V; Œb �U�s WD 1

2
Œb �UC .b �U/T � (A.26)

where U and V are symmetric tracefree tensors.
Insofar as extensive use is made of scalar dot and double-dot products with

fourth-order projectors and other tensors, matrix notation becomes unwieldy and it
will be more convenient to work with dyadic notation. Thus the three second-order
orthogonal projectors (A.18), T, will be written as

Ṗ 1 WD 1

2
.I � ObOb˙ i Ob � I/ D .P�1/

T ; P0 WD ObOb (A.27)
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We shall consider second-order projectors Pi that are derived from the spectral
resolution of cyclotonic tensors A, (tensors characterized by a single real axis
of symmetry), cf. (A.1) and (A.10), and particularly of gyrotropic tensors, A(Ob)
(A.17). Pi projects any vector u onto the (normalized) eigenvector, Oui , of A, cf.
(A.3-A.5), with Pi Oui = Oui . The reciprocal (contravariant) vector, Oui , is an eigenvector
of the transposed tensor AT , with Oui � Ouj D ıi

j , (A.15) and (A.14). (The reciprocal
vector was denoted Nui in Appendix A.2 in order to emphasize that the transposed
tensor was magnetic-field reversed, AT

.Ob/ D A.�Ob/, (A.17)). We showed that
the second-order projectors could be represented as a dyadic product of the
normalized covariant and reciprocal (contravariant) eigenvectors of the tensor A
(A.16)

Pi D Oui Oui (A.28)

First we introduce the commutative ring product of vectors and dyads (Suchy
1997, eq. 8; Suchy and Altman 2003, eq. B5)

a ıb WD 1

2
.abC ba/ D b ıa D .ab/s (A.29)

a1a2 ı b1b2 WD 1

4
.a1b1 C b1a1/.a2b2 C b2a2/ D .a1b1/s.a2b2/

s (A.30)

and, in particular, since the second-order projectors, (A.28), are dyads

a1a2 ıa2a1 D .a1 ıa2/.a2 ıa1/ D .a1a2/
s.a1a2/

s

Pi ıPi
T D Pi

sPi
s (A.31)

Next we define basic fourth order tensors in terms of a set of covariant base
vectors, gi , and a reciprocal (contravariant) set, gi , (i = 1,2,3), where gk � giDık

i .
These reduce to the unit vectors Ox, Oy and Oz in a cartesian system. Vectors and second-
order tensors in a covariant basis are represented typically as e D ei gi and X D
Xikgi gk.

• The fourth-order unit tensor, I.4/, which maps any second-order tensor X onto
itself by a double scalar product:

I.4/ WD gi I gi D gi I gi with I WD gj gj D gj gj (A.32)

with summation over repeated indices implied,

I.4/ W X D gi I gi W gj gkXjk D gi I � ıi
j gkXjk D gi gkXik D X (A.33)

where ıi
j is the Kronecker delta, gi � gj D ıi

j and I � gk D gj gj � gk D gk.
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• The fourth-order transposer, T .4/, which transposes any second-order tensor X
by a double scalar product:

T .4/ WD gi gj gigj D gigj gigj D gigj gi gj (A.34)

T .4/ W X D gigj gigj W gkglX
kl D gigj ıi

l ı
j

k Xkl D gi gj Xj i D XT (A.35)

• The fourth-order symmetrizer, I.2=2/, which symmetrizes any second-order
tensor by a double scalar product:

I.2=2/ WD 1

2
.I.4/ C T .4// D 1

2
Œgi I gi C gigj gi gj � D 1

2
Œgi gj gj gi C gigj gigj �

D 1

4
Œgi gj gj gi C gigj gi gj C gj gigi gj C gj gigj gi �

D 1

4
.gi gj C gj gi /.gi gj C gj gi / D .gi ı gj /.gi ı gj /

D gigi ı gj gj D I ı I (A.36)

substituting the unit tensor I from (A.32), interchanging indices i and j in the
second line and applying the ring products, (A.30) and (A.31) respectively, in the
third and fourth lines. Thus

I.2=2/ W X D I ı I W X D 1

2
.I.4/ C T .4// W X D 1

2
.XCXT

/ D Xs (A.37)

and finally:

• The fourth-order reducer, R.4/, which symmetrizes and detraces any second-
order tensor by a double scalar product

R.4/ WD I.2=2/ � 1

3
I I D I ı I � 1

3
I I (A.38)

R.4/ W X D .I ı I� 1

3
I I/ W X D Xs � 1

3
.traceX/ I D Xso (A.39)

If we now insert the completeness condition, (A.8), for the second-order
projectors

I D P0 CP1 CP�1 (A.40)
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into (A.38), recalling that the projectors Pi are dyads (A.28), we obtain

.I ı I � I I=3/ D R.4/

D .P0 CP1 CP�1/ ı .P0 CP1 CP�1/ � I I=3

D P0 ıP0 C 2P1 ıP�1 � I I=3„ ƒ‚ …
P .4/

0

C 2P0 ıP1„ ƒ‚ …
P .4/

1

C 2P0 ıP�1„ ƒ‚ …
P .4/
�1

CP1 ıP1„ ƒ‚ …
P .4/

2

CP�1 ıP�1„ ƒ‚ …
P .4/
�2

DW
2X

	D�2

P .4/

	 (A.41)

which is the completeness condition for the fourth order projectors P .4/

	 , defined
here in terms of ring products of the second-order projectors Pi , with

2X
	D�2

P .4/

	 W X D Xso (A.42)

We now calculate the projectors P .4/

	 in terms of these ring products.

• Representation of the projectors P .4/

	 with the eigenvectors Oui and Oui .

We note that Pi OuiDOui (A.3) and Oui � Ouj D ıi
j (A.14), and recall that the second-order

projectors (A.27) are dyads, so that (A.31) and (A.41) give

Pi ıP�i D Pi ı .Pi /
T D Pi

sPi
s (A.43)

P .4/
0 D P0 ıP0 C 2P1 ıP�1 � 1

3
I I D P0 ıP0

T C 2P1 ıP1
T � 1

3
I I

D P0P0 C 2P1
sP1

s � 1

3
I I

D ObObObObC 1

2
.I � ObOb/.I� ObOb/� 1

3
I I

D 3

2
.ObOb� 1

3
I/.ObOb � 1

3
I/ (A.44)

in which we have used the definitions (A.27) of P0 and P1, and

P .4/

˙1 D 2P0 ıP˙1 D 2ObOb ı Ou˙1 Ou˙1 D 2.Ob ı Ou˙1/.Ob ı Ou˙1/ (A.45)

P .4/

˙2 D 2P˙1 ıP˙1 D 2 Ou˙1 Ou˙1 ı Ou˙1 Ou˙1 D Ou˙1 Ou˙1 Ou˙1 Ou˙1 (A.46)
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• The projector property, P .4/
i W P .4/

i D P .4/
i .

We use the eigenvector representation of P .4/
i , (A.44-46), noting that

.ObOb� 1

3
I/ W .ObOb � 1

3
I/ D 2=3

P .4/
0 W P .4/

0 D
3

2

3

2
.ObOb � 1

3
I/.ObOb� 1

3
I/ W .ObOb � 1

3
I/.ObOb� 1

3
I/ D P .4/

0

P .4/

˙1 W P .4/

˙1 D 4.Ob ı Ou˙1/.Ob ı Ou˙1/ W .Ob ı Ou˙1/.Ob ı Ou˙1/

D 4.Ob ı Ou˙1/.
Ob Ou˙1 C Ou˙1 Ob

2
W
Ob Ou˙1 C Ou˙1

Ob
2

/.Ob ı Ou˙1/

D P .4/

˙1

P .4/

˙2 W P .4/

˙2 D Ou˙1 Ou˙1 Ou˙1 Ou˙1 W Ou˙1 Ou˙1 Ou˙1 Ou˙1 D P .4/

˙2 (A.47)

• Orthogonality of the fourth-order projectors, P .4/
i :P .4/

j =ıijP .4/
j .

We need the relation I : abDa�b and the orthogonality relations, (A.14):

Ob � Ou˙1 D Ob � Ou˙1 D Ou˙1 � Ou˙1 D 0

the last equality stemming from the relation, (A.7), P�1 � P˙1 D 0, which with
(A.27), P�1 D P˙1

T , and (A.28) yields Ou˙1 Ou˙1 � Ou˙1 Ou˙1 D 0. With (A.44-46)

P .4/
0 W P .4/

˙1 D
3

2
.ObOb� 1

3
I/.ObOb� 1

3
I/ W .Ob Ou˙1 C Ou˙1

Ob/.Ob ı Ou˙1/ D 0

P .4/
0 W P .4/

˙2 D
3

2
.ObOb� 1

3
I/.ObOb� 1

3
I/ W Ou˙1 Ou˙1 Ou˙1 Ou˙1 D 0

P .4/

˙1 W P .4/

˙2 D .Ob ı Ou˙1/.Ob Ou˙1 C Ou˙1 Ob/ W Ou˙1 Ou˙1 Ou˙1 Ou˙1 D 0

P .4/
1 W P .4/

�1 D .Ob ı Ou1/.Ob Ou1 C Ou�1 Ob/ W .Ob Ou�1 C Ou�1
Ob/.Ob ı Ou�1/ D 0

P .4/
2 W P .4/

�2 D 0; by analogy (A.48)

• Contraction of dyadic ring-products with a second-order tensor; the fourth-order
Hess-Waldmann tensor operator.

.a1a2 ıb1b2/ W c1c2 D .a1 ıb1/.a2 ı b2/ W c1c2 D Œa1a2 � .c1c2/
s � b2b1�

s

(A.49)

applying (A.29) and (A.30). Generalizing for tensors A, B and X, we get

.A ıB/ W X D
�
A �Xs �BT

�s

(A.50)
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and with A! a � I, and B! I

.a � I ı I/ W X D .a �Xs
/s D 1

2

�
a �Xs C .a �Xs

/T
�

(A.51)

a � I ı I is the fourth-order Hess-Waldmann tensor operator for an arbitrary vector
a. In order to represent it with fourth-order projectors, we let a! Ob in (A.51) and
apply (A.27), (A.40) and (A.41) to yield

i Ob � I ı I D .P1 �P�1/ ı .P0 CP1 CP�1/

D P0 ıP1 �P0 ıP�1 CP1 ıP1 �P�1 ıP�1

D P .4/
1 =2� P .4/

�1=2C P .4/
2 � P .4/

�2 D
1

2

2X
	D�2

	P .4/

	 (A.52)

• Solution of the pressure balance equation, (8.51),

!po C .2iqb=m/.Ob� po/so D 2p0.k�/so; Ob WD b=jbj DW b=b (A.53)

Using (A.38), (A.39), (A.41), (A.51) and (A.52), we substitute

poDR.4/ W poD
2X

	D�2

P .4/

	 W po; 2i.Ob � po/so D
2X

	D�2

	P .4/

	 W po

noting that Ob � po is trace free since po is symmetric, and (A.53) becomes

X
	

.! C 	˝/P .4/

	 W po D 2p0.k�/so; ˝ WD qb=m; 2.k�/so D .k�C �k/o

(A.54)
The solution is now obtained by the double-dot multiplication of (A.53) byX

	

1

! C 	˝
P .4/

	 , using the orthogonality (A.48) of the fourth-order projectors,

P .4/
i :P .4/

j =ıijP .4/
i , and recalling, (A.41), that

P
i P

.4/
i W po D po. The final result, as

in (8.52), is

po D 2p0

2X
	D�2

P .4/

	

! C 	˝
W .k�/so (A.55)
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électromagnétiques effectuées au sol, en fusée ou en satellite. 1., Ann. Géophys. 26, 665–669.
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exakten Naturwissenschaften 35, 103–294.
117. Suchy K. (1984) “Transport Coefficients and Collision Frequencies for Aeronomic Plasmas”

in Encyclopedia of Physics Vol. 49/7, Geophysics III/7, pp. 57–221, ed. K.Rawer, Springer,
Heidelberg.

118. Suchy K. and Altman C. (1975a) The Maxwell field, its adjoint field and the ‘conjugate’ field
in anisotropic absorbing media, J. Plasma Phys. 13, 299–316.

119. Suchy K. and Altman C. (1975b) Reflection and transmission theorems for characteristic
waves in stratified anisotropic absorbing media, J. Plasma Phys. 13, 437–449.

120. Suchy K. and Altman C. (1989) Relations between eigenmode scattering matrices in curved-
stratified cold magnetoplasmas, J. Atmos. Terr. Phys. 51, 707–714.

121. Suchy K., Altman C. and Schatzberg A. (1985) Orthogonal mappings of time-harmonic
electromagnetic fields in inhomogeneous (bi)anisotropic media, Radio Sci. 20, 149–160.

122. Tai C.T. (1961) On the transposed radiating systems in an anisotropic medium, IRE Trans.
Antennas Propagat. 9, 502.

123. Tai C.T. (1973) On the eigenfunction expansion of dyadic Green’s functions, Proc. IEEE 61,
480–481.

124. Tellegen B.D.H. (1948) The gyrator, a new electric network element, Philips Res. Reps. 3,
81–101.

125. Tinoco I. and Freeman M.P. (1957) The optical activity of oriented copper helices, J. Phys.
Chem. 61, 1196–1200.

126. Tsuruda K. (1973) Penetration and reflection of VLF waves through the ionosphere: Full wave
calculations with ground effect, J. Atmos. Terr. Phys. 35, 1377–1405.

127. van Bladel J. (1984) Relativity and Engineering, Springer-Verlag, Berlin.
128. Volland H. (1962a) The propagation of plane electromagnetic waves in a horizontally

stratified ionosphere, J. Atmos. Terr. Phys. 24, 853–856.
129. Volland H. (1962b) Die Streumatrix der Ionosphäre, Archiv Elektr. Übertragung 16, 328–334.
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Notation and Symbols

N.1 Type styles and notation

Three basic type styles are used, ‘roman’, ‘sans serif’ and ‘italic’, the first two also
in bold variants: bold roman, and bold sans serif. Greek and calligraphic letters,
both in ordinary and bold type, are used too: �; �; T ; T .

• Components of vectors and scalar quantities are denoted by italic letters (Ex; k˛;

a; q).
• Vectors, column and row matrices are denoted by bold roman letters (E, e). Bold

Greek letters are used for unit vectors ( O�; O�; O�˙). Exceptions are a; �; l ; `; �.
• Tensors and matrix operators (but not row and column matrices) are denoted

by bold sans serif letters (q, K, D, L), by bold Greek (�, �, � ), and by bold
calligraphic letters (K, M, T ).

• Square brackets [...] and parentheses (...). The equation

e D
�

E
H

	
D ŒEx Ey Ez Hx Hy Hz�

T

is understood to mean that e equals a column matrix formed from E and H, and
equals the transpose of a 6-element row matrix, whereas

e D .E; H; �; p/

states that the constituents of the vector e are the three vectors E, H, � and the
scalar p.

• The transpose of a matrix is denoted by a superscript ‘T ’ or by a tilde (�),
according to typographical convenience. Thus eGc is the transpose of Gc ,
while GT is the transpose of G.

• Primes (e0; j0; K0) are generally used to denote spatially mapped (rotated, re-
flected, inverted) quantities; but in Chap. 7 they denote time-reversed quantities.

C. Altman and K. Suchy, Reciprocity, Spatial Mapping and Time Reversal
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• Overbars ( Nq˛, Ne, E,K) denote adjoint (non-physical) quantities that satisfy a
non-physical, adjoint equation. Adjoint vectors are related to the corresponding
physical quantities by a biorthogonal relationship.

• The superscript (L) (a.L/, e.L/, K.L/) denotes ‘Lorentz-adjoint’ quantities. These
obey Maxwell’s equations, or the Maxwell-Euler equations, in a (restricted) time-
reversed medium (‘restricted’ in the sense that dissipative processes are not time
reversed). These are physical quantities, and in the case of the electromagnetic
field, a reversal of sign (direction) of the formally-adjoint magnetic field yields
the Lorentz-adjoint field.

• The superscript c (qc , ec , Kc , Sc) denotes ‘conjugate’ quantities. In Chap. 2 this
concept is used for quantities that obey Maxwell’s equations in a reflected, time-
reversed medium, that is identical with the original medium. Later the concept
is extended to all spatially mapped, time-reversed quantities, that are just spatial
mappings of the corresponding Lorentz-adjoint quantities, and obey Maxwell’s
equations in the mapped time-reversed medium.

• Fourth-order tensors (in Chap. 8) are denoted by calligraphic letters (I.4/, I.2=2/,
R.4/, P .4/

	 ). Bold calligraphic letters are use for third-order tensors (Q.3/).
• The superscript s denotes a symmetrized tensor, Xs WD .X C XT /=2, or

symmetrized dyadic (in Chap. 8), .ab/s WD .abC ba)/2.
• The commutative ring product of vectors and dyads is used in Chap. 8: a ı b WD

1
2
.abC ba/ D .ab/s , and a1a2 ı b1b2 WD .a1b1/

s.a2b2/
s .

• The superscript ı (in Chap. 8) denotes the trace-free part of a tensor or dyadic,
po WD p� I trace.p/.

N.2 List of symbols

a˛ eigenmode amplitudes, ˛D ˙1;˙2; : : :˙N 22, 269

�
a˙1

˛ :D 

1=2
˛ �

A˙1
˛ , normalized amplitude density 50

da column of ‘primary’ eigenmode amplitudes generated
by current element j(kt ,z0)d z0 168

a :D(a1, a2, a�1, a�2), column of eigenmode amplitudes 22, 41
ain, aout column of incoming/outgoing eigenmode amplitudes 31, 274
aC, a� :D(a1,..aN ) or (a�1,..a�N ), N-element amplitude columns 31, 274
ha; bi reaction of field a on source b 139
A, As (dimensionless) compression tensor 262

�
A˙1

˛ spectral amplitude density in kt -space 50
dA˙.z0/ column of multiply-reflected wave amplitudes at z0 168
Obx, Oby , Obz direction cosines of b in (x; y; z) frame 7
Obx0 , Oby0 , Obz0 direction cosines of b in (x0,y0,z0) frame 7
b external (Earth’s) magnetic induction field 1
B magnetic induction field 5
B WDb � I, antisymmetric tensor representation of b 255
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c speed of light in vacuo 1
C :D S � P , plasma parameter 7
C !K � kxUx � kyUy ; 16

(also, times 1/k0)! cK � sxUx � syUy 58
Ct ,C1;2,Cz partitioned sub-matrices of C 165bC 6 � 6 chirality operator in optically active media 233
d downgoing wave-field component of g (Du + d) 27
dn wave field of downgoing non-penetrating mode 28
D :D .R �L/=2, plasma parameter 6
D electric displacement field 5
D 2 � 2 downgoing amplitude matrix for modes in g.1/; g.2/ 28

D :D
�

0 �r � I
r � I 0

	
, 6�6 Maxwell differential operator; 57

(also) 10�10, 13�13, M-E differential operator; 226
D.4/ :DD.4/( @

@t
,r ), temporal and spatial M-E differential operator 259

Dt ; .D!/ tangential (and normal) parts of differential operator D 77, 269
e :D(Ex , Ey , Ez; Hx , Hy , Hz), 6-component wave field; 57

used also for transverse components (Ex, Ey , Hx , Hy); 39
:D(E, H, �, p), 10-component compressible plasma wave field; 226
:D(E, H, �, p,po), mixed 5-element wave-field column matrix 256

e.4/ :=(Ex, Ey ,Hx ,Hy), 4-component transverse wave field 20
e˛ eigenmodes in stratified media (˛D ˙1;˙2); 41, 58

(also) eigenmodes in waveguides (˛D ˙1; ::˙ n) 269
Ne, Ne˛ 6-component adjoint wave fields or eigenmodes 59, 269
Oe˛, ONe˛ :D .1;˙�˛; 0I	Y0�˛; Y0; 0/=Œ2Y0 q .1 � �˛

2/�1=2, given (upper
sign) and adjoint normalized free-space eigenvectors 158

e0 spatially mapped 6-component wave field; 136, 185
(in Chap. 7) time reversed 6-component wave field 210

e.L/ :D I NeD(E.L/, H.L/), Lorentz-adjoint wave field; 110

:D I
.10/NeD(E;�H;�N�; Np;), compressible plasma, scalar p 227

:D I
.13/NeD(E;�H;�N�; Np; Npo), compressible plasma, tensor p 257

e˛
` , e˛

r left/right-handed wave fields generated by current j˛ 238
Ez component of E normal to stratification 18
E, E given/adjoint electric wave field 1, 60
Et projection of E on stratification plane 18
Eṗ , Eṅ up(+) or downgoing(–) electric fields in up , un, dp , dn 29
Ein, Eout scattered incoming/outgoing electric wave fields 49, 50
Ek, E? projection of E on/normal to relative velocity vector � 117
E˛ , H˛ adjoint eigenmode wave fields; 65

(also) reciprocal (left) eigenvectors 12
Ek , Hk Fourier-analyzed wave fields in k-space 153
E :D[Oe1 Oe2 Oe�1 Oe�2], 4�6 normalized eigenmode matrix 41, 73
E normalized 4�6 adjoint eigenmode matrix 73
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EC; E� :D[Oe˙1 Oe˙2], 2�6 normalized eigenmode matrices 73
f, fs force density on particles (of species s) 1
f˛ modal amplitude with rapid phase variation removed 42
f :D[f1; f2; f�1; f�2], column of eigenmode amplitudes 42
f˛ WD.Ex; Ey; Hx; Hy/˛, 4-component eigenmode 84
F :D[Of1

Of2
Of�1
Of�2], normalized 4�4 eigenmode matrix 84

Ḟ (kt ,z,z0) transfer matrices relating primary to resultant multiply-
reflected amplitudes, dA.z/ DW F˙.kt ; z; z0/ da.z0/ 170

gu, g� , gw basis vectors in u; �; w frame, drD:guduC g�d� C gwdw 77
gu, g� , gw basis vectors reciprocal to gu, g� , gw, i.e. gi gjDıij 77
g˛ :D .Ex;�Ey;Hx;Hy/˛ , 4-element transverse eigenvector 21
g.1/, g.2/ independent solutions of coupled wave equations 26, 27
G.�/ :D(1/2�/

R1
�1 �.!/ exp.i!�/ d!, susceptibility kernel 209

G :D[Og1 Og2 Og�1 Og�2], normalized 4�4 eigenmode matrix 22
GC; G� :D[Og1 Og2], [Og�1 Og�2], normalized 2�4 eigenmode matrices 31
Gin; Gout normalized 4�4 incoming/outgoing eigenmode matrices 31
G(r,r0) dyadic Green’s function, e(r)D:

R
G.r; r0/ j.r0/ d 3r 0 160

G, Gc , G.L/ adjoint/conjugate/Lorentz-adjoint Green’s functions 194/5
G(kt ,z,z0) dyadic Green’s function in kt -space 159
G0

z(kt ,z,z0) source term in the Green dyadic G(kt ,z,z0) 166/7
h.z � z0/ unit step function 163
Hz component of H normal to stratification 18
H, H given/adjoint magnetic wave fields 2, 60
Ht projection of H on stratification plane 18
H(z � z0) diagonal 4�4 unit step matrix 163
H :D p�0="0 H, normalized magnetic wave field 14
I inclination of earth’s magnetic field 7
Ii ; I.s/; I.0/ current in antenna i /at point s/ at input terminals 142/3
Is:c: current at short-circuited antenna output terminals 144
I.4/ fourth-order unit tensor, I.4/: XDX 285
I.2=2/ fourth-order symmetrizer, I.2=2/: XD(XCXT )/2DXs 285
I, I.n/ (n � n) unit tensor 3, 56

I, I
.4/ WDdiag.1; 1;�1;�1/, 4�4 adjoint unit matrix 95

I, I
.6/

:Ddiag(I.3/,�I.3/), Poynting-vector reversing operator 70, 271

I
.10/

:Ddiag
�
I.3/

;�I.3/
;�I.3/

; 1
�

, 10�10 adjoint unit matrix 227

I
.13/

:Ddiag
�
I.3/

;�I.3/
;�I.3/

; 1; I.3/
�

, 13�13 adjoint unit matrix 257

j :D(Je, Jm), 6-component current density; 16
(also) used for 3-component electric current density; 3
:D(Je; Jm;�f; �s), 10-component plasma current density; 226
:D(Je; Jm;�f;�s;��so=2), mixed current density column 256

j0 spatially mapped 6-component current density; 136, 185
(Chap. 7) time-reversed 6-(10-)component current density 210, 229
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Nj adjoint 6-component current density 123
j.L/ :D I Nj, Lorentz-adjoint current density 124

J
?̇

:D[I–Ok˙0 Ok
˙
0 ] J, projection of current density J (DJe) on

plane perpendicular to wave vector Ok˙0 155
Je, Jm electric/equivalent magnetic current density 15
Jet ; Jmt projection of current densities on stratification plane 20

J :D
"

0 I.2/

I.2/
0

#
, interchanges up/downgoing modes 87

J :D I
.4/

J 95
k0 :D !

p
"0�0 D !=c 14

k propagation (wave) vector 2
kt projection of k on stratification plane 15
k0t , k00t values of kt for incident/scattered waves (Fig. 2.1) 49, 50
k

.˙/

C , k.˙/� :Dk.˙/
r , k

.˙/

` , wave-vector eigenvalues for circularly polarized
(r; `) propagation in positive/negative (˙) direction 237/8

K :D
�

" �

� �

	
, 6�6 constitutive tensor; 16, 56

(also) 10�10 or 13�13 plasma constitutive tensor 226, 259
K0 :D� K� T , mapped K (rotated, reflected, inverted); 202

(in Chap. 7) time-reversed constitutive tensor 212, 230
K.L/ :D IKT I, Lorentz-adjoint constitutive tensor 110

K :D
�

0 �k � I
k � I 0

	
DW kbK, derived from curl operator D 126

`
.trans/
eff ,`.rec/

eff effective length of transmitting/receiving antenna 146
Q̀

1, Q̀2, Q̀3 orthonormal row vectors of mapping matrix � 176
d ì ; � ì elementary antenna length 142
L; R; P eigenvalues of plasma permittivity tensor 5, 6
L :D[i!KCD], the Maxwell operator; 109, 226, 255

! Œik0CCUzd=d z� in plane-stratified media 58
L :D[i!KT �DT ], adjoint Maxwell(-Euler) operator; 109, 227

! Œik0C
T �Uzd=d z� in plane-stratified media 59

L.L/, L
0 WDŒi!KT �DT

� I
T

, Lorentz-adjoint Maxwell operator 124
m; ms electron mass, particle mass of species s 1, 225
M matrizant relating wave fields at two different levels 39
M,Mc adjoint/conjugate matrizants 106
M matrizant relating slowly varying amplitudes at two levels 42
n, ( On) :D c k=!, refractive index vector, ( On:Dn/jnj/ 8, 11
On (also) outward unit vector at bounding surface 129
nt projection of n on stratification plane 17
n :D jnj, refractive index 8
nˇ , Nnˇ given and adjoint modal refractive indices 61
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n0, ns0 equilibrium particle number density (plasma species s) 1, 225
N.4/ 4�4 propagation matrix in coupled wave equations 20
P˛ˇ :D E˛ �Hˇ C Eˇ �H˛ , bilinear concomitant vector 78/9
P :D E �HC E �H, bilinear concomitant for Maxwell system; 60

:D E �H? C E? �HC p�? C p?�C po � �? C po? � �, spatial
part of concomitant for compressible magnetoplasma 261

P t temporal part of bilinear concomitant 260, 261
P.L/ :D E.L/�H � E �H.L/, Lorentz-adjoint concomitant vector 110
hPz�; ˛i time-averaged energy flux of mode ˛ across surfaces z D z� 50
p :DpI+po, trace-carrying + trace-free parts of pressure tensor 254
p, ps pressure perturbation (in plasma species s) 1, 225
pk, p? pressure tensor diagonal components, pDpk

ObOb+p?(I–ObOb) 265
P polarization vector of medium 212
P,P� propagator (for �th layer) relating wave amplitudes,

a(zC)D:P(zC, z�)a(z�) 31/2
!
P,
 
P propagators,

!
P:DP(zC, z�),

 
P:DP(z�, zC), zC > z� 107/8

P0, P˙1 (second-order) orthogonal projectors 4, 280
P .4/

	 set of fourth-order orthogonal projectors (	 D 0;˙1;˙2) 262, 286
q; qs charge of particle (of species s) 1, 225
q; q˛ :=nz, component of refractive index vector normal to

stratification; eigenvalue of Maxwell operator for
stratified media, roots of Booker quartic equation 17, 21, 58

:D .1 � sx
2 � sy

2/1=2, poles of n in complex Fourier space 154
q :D ˙qn, n D 1; 2; 3, reflection/rotation operator w.r. to

xnD0 plane/xn axis;˙q0, the identity/inversion operator 176
qx ,qy , qz 3�3 diagonal reflection matrices with elements (�1; 1; 1),

.1;�1; 1/; .1; 1;�1/ 70, 176

Qi

�
qi 0
0 �qi

	
, .i D x; y; z/, 6�6 reflection matrix 70, 133

Qi ,Q
c
i :DQi I, .i D x; y; z/, adjoint/conjugate reflection matrix 71, 119

Qc
.4/ 4�4 equivalent of Qy 87

Q :D
�

q 0
0 .det q/q

	
, 6�6 diagonal mapping operator; 181

(also) diagonal matrix with eigenvalues q˛ as elements 22
Q.3/ third-order heat flux tensor 253
r, r0 given/mapped position vector, r0Dqr, �r or �r; 177/8, 184

(in Chap. 5) observation/source point 154
rC, r� interface reflection matrix for up/downgoing incidence 31
Rn reflection coefficient for non-penetrating mode 28
R,R˙ 2�2 reflection matrices (up/downgoing incidence) for:

linear free-space modes, kRk, kR?, ?Rk, ?R?; 28, 88
left-, right-handed free-space modes `R`, `Rr , rR`, rRr ; 89
eigenmode reflection matrix, R˙̨;ˇ (˛,ˇD 1 or 2) 52
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R.L/

˙ , Rc
˙ Lorentz-adjoint/conjugate reflection matrices 52, 75

Rs (dimensionless) resistivity tensor for plasma species s 264
R reflection mapping operator 68
R.4/ fourth-order reducer, R.4/: XDP	 P

.4/

	 W X=Xso 285
s WDsIC so, plasma ion production rate 254
s �0s is electron production rate in plasma; 225

:Dsin � , � is angle of incidence on stratified medium; 20
plasma species, s D e refers to an electron plasma 1

sx , sy components of kt /k0 55
S :D(RC L)/2, plasma parameter 6
hSzi, hSi (z-component of) time-averaged Poynting vector 29, 62

S :D
�

RC T�
TC R�

	
, scattering matrix, aoutD:Sain 32, 275

S, Sc ,S.L/ adjoint/conjugate/Lorentz-adjoint scattering matrices 52, 74, 75

�
S,

�
S˛;ˇ scattering-density matrix (element of) 50

tC, t� interface transmission matrices, up/downgoing incidence 31
T ˙̨;ˇ ˛,ˇD1,2, symbolic modal transmission channels 238/9
TCLR, TCRR elements of TC for right-/left-handed modes in medium 36
T, T˙ 2�2 transmission matrix (up/downgoing) in terms of:

linear free-space modes, kTk, kT?, ?Tk, ?T?; 89
left-/right-handed free-space modes, `T`, `Tr , rT`, rTr ; 90
eigenmode transmission matrix, T ˙̨;ˇ (˛,ˇD1 or 2) 33, 52

T.L/

˙ , Tc
˙ Lorentz-adjoint/conjugate transmission matrices 52, 75

T 4�4 propagation matrix in coupled wave equations 21
T time-reversal operator 68
T propagation matrix relating f 0 and f (analogous to T) 42
T .4/ fourth-order transposer, T .4/: XD XT 285
u; �; w orthogonal curvilinear coordinates on curved surface 77
u upgoing wave-field component of g (Du+d) 27
up , un upgoing penetrating/non-penetrating modes 28/9

Ux , Uy , Uz :D
�

0 �Oxi � I
Oxi � I 0

	
, Oxi ! Ox; Oy; Oz 16

Uw as in Uxi , with Oxi ! gw 78
U.4/

z ,Ut 4�4 form of Uz with null rows and columns removed 84, 165
U 2�2 upgoing amplitude matrix for modes in g.1/, g.2/ 28
�, �s mean particle velocity (of species s) in a plasma 1, 225
� velocity of medium in laboratory frame 117
V(0) voltage at antenna input terminals 143
V

.i/
o:c: open-circuit voltage at terminals of antenna i 144

W :D RS Pz dS , generalized energy flux in waveguide 270
x; y; z cartesian frame with Oz vertically up and Oy normal to

magnetic meridian plane (Fig. 2.2); 55, 68
also used (Chap. 1) with Oz:DOb, Oy:D Ob � On=jOb � Onj 8
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x0, y0, z0 auxiliary frame with Oz0 vertically up and Oy0 normal to
plane of incidence (Fig. 3.1); 84, 87/8

also used (Chap. 1) with Oz0 vertically up and Oy0 normal to
magnetic meridian plane 7

x0c , y0c , z0c conjugate frame with incidence plane Ox0,Oz0 (†� w.r. to Ob,Oz0
plane) rotated by (� � �) about Oz0 (Fig. 3.1) 84, 87/8

X; Xs :D !2
p=!2; !2

ps=!2, plasma parameter 6, 9
Y0 :=

p
"0=�0 = 1=Z0, admittance of free space 64

Y; Ys :D !c=!; !cs=!, plasma parameter; 6, 9
(in Chap. 8) Ys WD ˝s=! WD qs jbj=.ms!/ 265

ız thickness of elementary layer 31
Z; Zs :D �=!; �s=!, plasma parameter 6, 9
Z0 :D p�0="0, impedance of free space 20
ZA :D V.0/=I.0/, antenna input impedance 143
Z0s :D V.0/=I.s/, antenna transfer impedance 143
Zs On�ED:ZsH, Zs OnD0, surface impedance tensor 129

˛ specific rotation of linearly polarized light in medium 231
˛, ˇ (D ˙1;˙2; ::˙N ), eigenmode numbers 58, 269
ˇ chirality constant in optically active medium 232
� specific heat ratio 2
� :D�˙D ˙ expŒ� � I�, coordinate-free rotation operator

without/with inversion 181, 184

� :D
�

� 0
0 .det �/�

	
, 6�6 coordinate-free mapping operator 185

� :D� ID I� , 6�6 adjoint mapping operator 189
�D; � the diagonal/off-diagonal parts of E�1E0 41
�� 4�4 diagonal phase matrix with elements ��˙ 32
�˙, ��˙ 2�2 diagonal phase matrices with elements exp.�ik0q˙1ız/

and exp.�ik0q˙2ız/ 32, 34
r :D @=@r D gu@=@uC g�@=@� C gw@=@w D Oz@=@zC r t 77
r t :D gu@=@uC g�@=@� , tangential differential operator 77, 270
rw :D gw@=@w, normal differential operator 77
 �r � :D .r�/T , backward dyadic differential operation 255
 !r � :D .r C �r /�, bidirectional dyadic differential operation 255
ro� :D .r�/o, trace-free part of dyadic r� 255
"0, �0 transformed values of " and � in moving media 117
"0 permittivity of free space 5
"L, "R, "P eigenvalues of plasma permittiviy tensor 5
" electric permittivity tensor, constituent of K 5, 56
"tt, E"tz, E" T

zt , "zz constituents of partitioned permittivity tensor " 18
O�k, O�˙1 :D kt =jkt j, basis vectors for kz > 0 or kz < 0 50
O�?, O�˙2 :D Oz � O�˙1, basis vectors 50
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O�˙ WD.Ox˙ i Oy/=
p

2, rotating circular basis vectors 233

O�˛ WD. O�˙C �˛ O�/=.1� �˛
2/1=2; ˛ D ˙1; ˙2, elliptic

basis vectors 157
ON�˛ WD. O�˙� �˛ O�/=.1� �˛

2/1=2, adjoint elliptic basis vectors 157

s;0, 
s;˙1 eigenvalues of resistivity tensor for species s 4

˙1, 
˙2 :D !"0=jkzj; jkzj=!�0, characteristic wave admittances 50
�s resistivity tensor for plasma species s 3
� off-diagonal coupling tensor in K 56
� :Darccos.Ob � On/; 8

:Darccos. On � Oz/, angle of incidence 20
� :Dkz, wave-vector component normal to stratification 17
�˛ eigenmode wave number in waveguide 269
	 wavelength of light in medium 231
� orthonormal mapping operator in Cartesian frame 176


 :D
�

� 0
0 .det �/�/

	
, 6�6 cartesian mapping operator 180

�0 permeability of free space 5
�sL, �sR , �sP eigenvalues of mobility tensor for plasma species s 5
�, �s magnetic permeability tensor (for species s), constituent of K 56
�; �s collision frequency (of plasma species s) with neutrals 1, 10
O� unit normal to boundary curve 79

; 
; � cartesian frame with O�:DOn, O�:D Ob � On=jOb � Onj 13

 relativistic coupling term in moving media 117
� off-diagonal coupling tensor in K 56
�0 :D n0m, equilibrium density of plasma 225
�; �˛ WD.E
=E
/˛, transverse (modal) wave polarization 14
�, �˛ WD.E�=E
/˛ , longitudinal (modal) wave polarization 14
�R, �L, �P eigenvalues of plasma conductivity tensor 5
� conductivity tensor 3,5
�p transmission coefficient for penetrating mode 29
	 :D �ik0T, form of propagation matrix T 39
� :D 'b� , angle ' times unit vector along rotation axis 181
�.!/ scalar susceptibility, D(!)D: "0f1+�.!/gE(!) 209

 :D �i� ="0!, susceptibility tensor 104
! (angular) wave frequency 2
!c , !cs WDjqsbj=ms, gyrofrequency (of plasma species s) 2, 9
!p , !ps WD.q2

s ns0=ms"0/
1=2, plasma frequency (of species s) 6, 9

� WDqjbj=m; j˝j D !c 262



Index

A
Adjoint

eigenmode, 56, 61–62, 65, 69–73, 83, 86,
100, 118, 125–127, 152, 159, 161,
171, 188, 197, 198, 214, 215,
217–219, 223, 235–238, 267,
269–272

amplitude, 32, 38, 62, 198
non-physicality of, 215
normalized, 73, 215, 219

mapping operator, 189
mappings in conjugate media, 198–200
Maxwell equations, 54, 59, 63, 137, 164,

190, 208, 242
in chiral media, 164

Maxwell operator, 59
system, prescription for, 60
wave fields, 54–62, 65, 100, 124–125, 127,

128, 130, 208, 257, 260, 261, 271
in definition of modal amplitude, 65,

119
in (
, 
, �) frame, 13, 14

Adjoint mapping of the
adjoint eigenmodes, 188
adjoint system, 134–135
differential operator, 59, 104
Maxwell system, 135–136, 188–191

Advanced and retarded fields, 242
Agrawal, B.S., 113
Akhiezer, A.I., kinetic analysis, 263
Alfvén modes, magnetosonic, 261, 264

magnetohydrodynamic (MHD)
approximation, 265

Allis, W.P., 9, 14, 62
Altman, C., xvi–xvii, 30, 33–37, 39, 48, 53–54,

77, 86, 91, 103, 149, 152, 254, 255,
259, 261, 262, 264, 267, 283, 284

Amplitude
density in k-space (see Modal (eigenmode)

amplitude)
normalized, 219

Angular (Fourier) spectrum
of modes in gyrotropic media, 152
of plane waves in free space, 54, 152, 155,

215–216
Antenna(s)

closed-wire (loop), 143
directional pattern, 145–146, 148–149

of given and mapped, 147–148
receiver-transmitter equality, 145,

148–149
effective area (receiving), 146, 147,

149
effective length, 146

receiver-transmitter equality, xvi,
146

elementary Hertzian dipole, 142
gain or directivity (transmitting), 146–147,

149
proportional to effective area, 146–147

in gyrotropic media, 116
in magnetic-meridian plane, 149–150

input (terminal) impedance, 143
open-circuit voltage, 144, 146, 147, 150,

242
short-circuit current, 145, 146,

149
straight thin-wire, 143

transfer impedance, 143–144
Appleton, E.V., 9, 126
Appleton-Hartree-Lassen formula, 126
Arnaud, J.A., 61
Asymmetric chiral synthesis, 252

of left/right-handed enantiomers, 252
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B
Backward/bidirectional operators, 255
Bahar, E., 113
Balmain, K.G., 143–146
Barron, D.W., xvi, 23, 27, 30, 48, 53, 67, 87,

89, 96
Base modes (vectors)

circular, rotating, 89–90
orthogonality of, 87

elliptical, 86, 157
linear, 87–89

Bernstein modes, forward/backward, 128, 226,
261

upper hybrid frequency dependence,
262–263

Bers, A., 9, 14, 62
Bianisotropic constitutive tensors

off-diagonal matrices
odd under time reversal, 211
pseudotensor character of, 186

Bilinear concomitant (vector), 59–61, 63,
65–66, 74, 81, 92–94, 100, 103,
105, 106, 123, 128, 198, 218, 227,
256–261, 268

in arbitrary media, 115
in chiral media, 164

vanishing at infinity, 124
for compressible magnetoplasma, 224–226
in curved-stratified media, 77

tangential divergence, 78
in the far field, 127–129

in the (
, 
, �) frame, 236
for given and conjugate modes, 88
Lorentz-adjoint

behaviour at infinity, 124–125
in plane-stratified media, 60

constancy of, 220
temporal and spatial parts, 260, 261, 265
via Clemmow-Heading equations, 92–94

Biorthogonality
of basis vectors in free space, 236
of electric field vectors, 83, 92

in curved stratification, 77
in free space, 49, 86, 156

of given and adjoint modes, 269–271
given and complex-conjugate modes,

94–96
of modal matrices, 96
with 4� 4 modal matrices, 84
with normalized modes, 95
of right and left eigenmodes, 241
via Clemmow-Heading equations, 92–94,

96
Booker, H.G., 18, 22, 30, 59, 162
Booker quartic equation, 59

Bossy, L., 38–40, 44–45
Bradbury, T.C., 279
Brambilla, M., 262
Bremmer, H., 38, 145–147
Buchsbaum, S.J., 9, 14, 62
Budden, K.G., vi, xvi, xvii, 9, 23–30, 37, 48,

53, 54, 60, 63, 67, 87, 89, 96, 150,
231, 243

C
Cauchy residue theorem, 154
Causality. See Time-reversal and causality
Cheng, D.K., xvi, 48, 57, 61, 110
Chen, H.C., 117, 179, 282
Chirality, 213, 231–234, 241, 246, 252

constant, pseudoscalar, 232, 241–242
operator, 233

Claes, H., 45
Clemmow, P.C., vi, xvii, 20, 21, 24, 38, 39, 41,

42, 92–94, 96, 155, 253–254
Cohen, M.H., xvi, 47
Cold plasma approximation, 3
Cold plasma modes, 9
Collin, R.E., 145–147, 164, 238
Conductivity tensor, 3, 5, 104, 282
Conjugate

currents and fields, 131–132
direction, 48, 67, 99
eigenmode amplitude, 66–67
eigenmodes

in free space, 63
in gyrotropic media, 201–202
in moving media, 117–118

problem, physical content, 67–69
wave vector, 67

Conjugating matrix, 72, 94, 119, 121
Conjugating transformation, 69–72, 75, 89–91,

99, 105, 112, 121, 122, 131, 132
generalized, 70

Conjugation symmetry, 55, 137–141, 149,
173–175, 191–193, 196

Constitutive relations, 5, 7, 17, 56, 186, 208,
212, 232, 235, 241

for chiral media, 232
for compressible magnetoplasma, 118

Constitutive tensor, vii, xviii, 48, 56, 59, 65,
68–69, 109–110, 115–118, 131,
133, 136, 137, 141, 145, 175,
185–189, 191–193, 196, 200–205,
207–208, 211–213, 224, 230, 232,
241, 257, 269, 272

biisotropic, 186, 241
pseudoscalars in, 186

for chiral media, 186, 213
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for compressible magnetoplasma, 224
Lorentz-adjoint, 227–229
time-reversed, 229–230
with anisotropic pressure tensor, 256,

259
coupling matrices in, 56–57
gyrotropic, 116, 201–202
hermiticity of, 213

and energy conservation, 62, 212
magnetoelectric, 116–118, 202–203
for moving media, 204–205

coordinate free, 181
pseudotensor coupling matrices, 186

for uniaxial crystals, 200–201
Coordinate system

cartesian (
, 
, �), 13, 14, 156
cartesian (x0; y0; z0), 6–7, 14
cartesian (x; y; z), 8
cartesian conjugate (x0

c ; y0
c ; z0

c/, 175–176
curvilinear, 76–78

Coordinate transformation
from (x; y; z) to (
, 
, �), 64
from (x; y; z) to (x0; y0; z0), 183

Cory, H., viii, xvii, 30, 33–39, 53, 168, 169
Cotton effect, 232
Coupled wave equations, xvii, 24

Clemmow-Heading equations, 24
Courant, R., 60
Covariant, contravariant components, 79, 284
Crawford, F.W., 262
Current densities

electric and equivalent magnetic, 15, 57,
68, 142

generalized (6-component), 163, 210
generalized (10-component), 226
generalized (13-component), 256

Curved stratification
eigenvalue equation, 78, 81
Jacobian, 80

Cyclotonic tensors, 282, 284
gyrotropic, 282

D
Dällenbach, W., xvi, 47
de Gennes, P.G., 252
Delcroix, J.L., 254
Deschamps, G.D., viii, 208, 225, 226
Dietz, B., 249
Differential operator

6� 6, 159, 162
cartesian, 57
tangential and normal, 77

10� 10, 226
13� 13, 256, 259
in chiral media, 164

Dirac delta function, plane-wave expansion,
51, 142, 163, 220

Discretization of kt -integration, 221
Dispersion equation, 2, 7–18, 262, 264

propagation along b, 10, 21
stratified magnetoplasma, 15–18

Double-dot product, 78, 254, 255, 257, 283
Dougherty, J.P., 253–254
Drude, P., 231–232
Dyadic representation of tensor, 18
Dzyaloshinskii, I.E., 116

E
Eckersley, T.L., 47
Edelmann, G.F., 248
Edwards, D., 252
Eigenmode equation, for

chiral media, 237
specified direction of k, 126
stratified media, xvii, 197

Eigenmodes
circular polarized, in chiral media, 232

filtering of, 238, 239
expansion for currents in free space,

156–159
in moving media, xv, 121, 122
normalization condition, 161
normalized, xv, 14, 22, 25, 27, 41, 62, 63,

66, 73, 84, 95, 101, 159, 161, 215,
219, 270, 272, 273, 299, 300

in free space, 25, 27, 84, 159, 219
for specified direction of k, xv
in stratified magnetoplasma, vii, 48, 76,

151
Eigenmode (4-element) wave field, 98

free-space normalization, 84–85
Eigenmode (6-element) wave field, 14

in (
, 
, �) frame, 14
normalization, general case, 65–66
normalization, in loss-free media, xv

Eigenvalues
in chiral media, 232
with direction of k specified, 126
in stratified magnetoplasma, 17

Eikonal ansatz, 2
Electric permittivity tensor, 56, 92–93, 212

hermitian in loss-free media, 92–93, 212
Energy balance, 1–3
Energy flux, normal to stratification

as sum of eigenmode fluxes, 64
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Equivalence
of currents and fields, 140, 202
given and mapped systems, 140, 175
in k-space, 91, 120

via reflection mapping, 121
Everitt, W.L., 144

F
Felsen, L.B., 80, 160, 162, 167, 225
Feshbach, H., 260
Feynman, R.P., 243
Fijalkow, E., viii, 36
Fink, M., 248
Force density, 1, 225, 253, 300
Fourier transform, 58, 76–77, 154, 156, 158,

209, 210, 219, 230–231
of time-reversed field, 209

Fourth-order tensors
Hess–Waldmann operator, 287–288
orthogonal projectors, 262, 283–288
reducer, 285
symmetrizer, 285
transposer, 285
unit tensor, 284

Frazer, L.N., 33
Freeman, M.P., 231
Free-space admittance, 64
Fryer, G.J., 33
Full-rotation group

in cartesian basis, 181
coordinate-free representation, 181–184
proper rotation of vectors, 181–183
rotation with reflection, 184

Full-wave numerical methods, xvii, 24–29
numerical swamping, 24–29
Runge-Kutta integration, 24
starting solutions, 24–26

G
Gans, R., 80
Gantmacher, F.R., 41
Geometric optics approximation, 2, 7, 15
Gibbs, J.W., vi, 78, 279
Goldstein, H., 176
Goldstein, S., 9
Green’s function, dyadic, 55, 152, 161, 164,

167, 171, 193
adjoint

in Kt -space, 55
in physical space, 152, 193

complete Green’s function
containing delta functions, 164, 167
in homogeneous medium, 160

conjugate, xviii, 55, 151, 152, 157,
171–174

as mapping of Lorentz-adjoint, 173
in physical and kt -space, 173

from eigenmode expansion
in anisotropic media, 159, 164
in free space, 156–159
incompleteness of, 164

given and conjugate, 55, 174, 193
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