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Preface

Research on processes which occur when electrons, positrons and photons collide
with atoms, ions and molecules has seen a rapid increase in interest, both experi-
mentally and theoretically, in recent years. This is partly because these processes
provide an ideal means of investigating the dynamics of many-particle systems at
a fundamental level and partly because a detailed understanding of these processes
is required in many fields, particularly in the analysis of astronomical observations,
in plasma physics including controlled thermonuclear fusion, in the interaction of
super intense lasers with atoms and molecules, in atmospheric physics and chem-
istry including global warming, in isotope separation, in electrical discharges in
gases and in electron surface interaction processes.

In recent years a number of important advances have been made in both exper-
iment and theory. On the experimental side these advances include the absolute
measurement of cross sections, the development of coincidence techniques, the use
of polarized beams and targets, the development of very high resolution electron
beams, the application of new light sources, the development of femtosecond and
attosecond laser beams and a rapidly increasing number of studies using high-
resolution positron and positronium beams. On the theoretical side these advances
include the development of methods which allow highly accurate excitation and
ionization cross sections to be calculated at intermediate energies, the increasing
ability to determine accurate low-energy cross sections for electron and positron col-
lisions with complex atoms and molecules and the development of non-perturbative
approaches for studying multiphoton processes for many-electron targets. Many of
these theoretical advances have been made possible by the increasing availability
of high-performance parallel computers and the development of general computer
programs which can take advantage of these facilities.

This monograph describes a generalized R-matrix theory of atomic collisions
and its application to the ab initio study of atomic, molecular and optical collision
processes. R-matrix theory was first introduced by Wigner and Eisenbud in the
late 1940s in an analysis of nuclear resonance reactions. These resonances were
described in terms of temporary compound states formed by the colliding nuclei,
which were contained in an internal region of configuration space. The R-matrix,
which represents the complexity of the compound states, relates the radial com-
ponents of the wave function to their derivatives on the boundary of the internal
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region. In the external region it was assumed that the colliding nuclei were weakly
interacting and hence the complexity of the collision process was represented by the
R-matrix. In early work the R-matrix was represented by a few parameters used to
fit the experimental observations and in later work it was calculated directly using
nuclear model potentials. This theory has been widely used in nuclear physics and
developments have been reviewed by many authors.

The realization that R-matrix theory could be developed and applied as an ab
initio approach to study atomic, molecular and optical collision processes began
to emerge in the 1960s as a result of new resonance phenomena observed using
high-resolution electron spectrometers and synchrotron radiation sources. In the
analysis of these experiments it became clear that processes such as resonant elec-
tron – atom collisions and photoionization could be understood and predicted using
R-matrix theory. Following the ideas introduced by Wigner and Eisenbud, config-
uration space describing the collision process is partitioned into three regions by
spheres of radii a0 and ap. In the internal region, where the colliding atomic or
molecular systems interact strongly, the resulting compound system behaves in a
similar way to a bound state. Consequently, configuration interaction approaches,
developed over many years to study bound-state problems, can often be extended to
provide an ab initio treatment of the compound system yielding the R-matrix on the
boundary of the internal region. In the the external and asymptotic regions, where
the colliding systems are weakly interacting, the solution of the coupled equations
describing their relative motion can be rapidly obtained using standard methods,
yielding the scattering amplitudes and cross sections.

The monograph commences by presenting an overview of collision theory in
Part I. As well as giving a self-contained summary of this theory it also provides an
introduction to the basic concepts and notation required in Part II. After an introduc-
tory chapter on potential scattering, Chap. 2 presents an overview of multichannel
collision theory with emphasis on electron collisions with atoms and atomic ions.
Chapter 3 then provides an overview of resonance theory and threshold behaviour.
In these chapters quantities such as the K -matrix, S-matrix, scattering amplitudes
and cross sections, as well as resonance and threshold behaviour, are introduced.

Part II then turns to a detailed discussion of R-matrix theory of atomic, molecular
and optical collisions and its applications. It commences in Chap. 4 with a review
of R-matrix theory in potential scattering which sets the scene for the later chapters
which develop and apply multichannel R-matrix theory to a wide range of collision
processes. One of the first detailed applications of R-matrix theory in atomic, molec-
ular and optical physics, in the early 1970s, was to electron collisions with atoms and
atomic ions, which is reviewed in Chap. 5. More general aspects of R-matrix theory
are also presented in this chapter including multichannel variational principles for
the R-matrix and the inclusion of relativistic effects. Then in subsequent chapters
the theory and application of R-matrix theory to a wide range of collision processes
are discussed including electron collisions at intermediate energies, positron colli-
sions with atoms and ions, photoionization, photorecombination and atoms in fields,
multiphoton processes using Floquet and time-dependent theory, electron, positron
and photon collisions with molecules and electron collisions with transition metal
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oxides and electron transport in semiconductor devices. For all of these applications
general computer programs have been developed and those that have been published
or are generally available are briefly reviewed.

The monograph concludes with six appendices which summarize basic mathe-
matical results and computational methods which are used in Parts I and II.

Finally, I wish to recognize my great indebtedness to Sir Harrie Massey and
Richard Buckingham who introduced me to collision theory and the crucial role
of scientific computing when I was a graduate student at University College Lon-
don in the 1950s. Also, this monograph could not have been written without the
inspiring atmosphere that Sir David Bates established in the Department of Applied
Mathematics and Theoretical Physics at the Queen’s University of Belfast where I
have been privileged to work for the last 43 years. I also wish to take this opportu-
nity to acknowledge two leading scientists and friends who made crucial contribu-
tions to the research discussed in this monograph. First, Ugo Fano for his incisive
comments and encouragement over many years, particularly in the 1960s when it
was clear there was a need for an ab initio theory which could accurately describe
and predict the wide range of atomic, molecular and optical resonance phenom-
ena being observed. Second, Mike Seaton for his support and encouragement over
many years and for showing that the R-matrix approach could be used to calcu-
late the vast amount of data required in the analysis of astronomical observations. I
would also like to acknowledge long-term collaborations with Cliff Noble, Jonathan
Tennyson, Klaus Bartschat and Charles Joachain. Throughout my years at Queen’s
University, in addition to many collaborators worldwide, I have been fortunate to
interact and to work with many outstanding members of staff and graduate stu-
dents. In particular it is a pleasure to mention Alan Hibbert, Derek Robb, Donald
Allison, John Mitchell, Keith Berrington, Ken Taylor, Arthur Kingston, Ken Bell,
Stan Scott, Penny Scott, Kevin Dunseath, James Walters, Robin Reid, Patrick Nor-
rington, Charles Gillan, Katrina Higgins, Hugo van der Hart, Cathy Ramsbottom,
David Glass and James Colgan who played a major role in the development of
the theory, computational methods and computer programs and in the calculations
discussed in this monograph.

Belfast, UK Philip G. Burke
March 2011
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Units

Atomic units (a.u.) will be used throughout this monograph. They are such that
h̄ = m = e = 1, where h̄ is Planck’s constant h divided by 2π , m is the mass of
the electron and −e is the charge of the electron. Thus the atomic unit of length
a0 = h̄2/me2 ≈ 5.292 × 10−9 cm, which is the radius of the first Bohr orbit of the
hydrogen atom with infinite nuclear mass. Using this unit of length, collision cross
sections, which have the dimension of an area, are then expressed, either in units
of a2

0 ≈ 2.800 × 10−17 cm2 or in units of πa2
0 ≈ 8.797 × 10−17 cm2. The atomic

unit of time is given by h̄3/me4 = 2.419 × 10−17 s, while the unit of velocity is
e2/h̄ = 2.188× 108 cm s−1. The atomic unit of energy is e2/a0 ≈ 27.21 eV, which
is twice the ionization energy of the hydrogen atom in its ground state and twice
the Rydberg unit of energy. The fine-structure constant α = e2/h̄c ≈ 1/137 is
dimensionless, where c is the velocity of light in a vacuum.

xvii



Part I
Collision Theory



Chapter 1
Potential Scattering

In this chapter we introduce the basic concepts of atomic collision theory by consid-
ering potential scattering. While being of interest in its own right, this chapter also
provides a basis for our treatment of electron and positron collisions with atoms,
ions and molecules in later chapters in this monograph. We commence in Sect. 1.1
by considering the solution of the non-relativistic time-independent Schrödinger
equation for a short-range spherically symmetric potential. This enables us to define
the scattering amplitude and various cross sections and to obtain explicit expres-
sions for these quantities in terms of the partial wave phase shifts. We also intro-
duce and define the K -matrix, S-matrix and T -matrix in terms of the partial wave
phase shifts and we obtain an integral expression for the K -matrix and the phase
shift. In Sect. 1.2 we extend this discussion to consider the situation where a long-
range Coulomb potential is present in addition to a short-range potential. We obtain
expressions for the scattering amplitude and the differential cross section for pure
Coulomb scattering and where both a Coulomb potential and a short-range poten-
tial are present. In Sect. 1.3 we turn our attention to the analytic properties of the
partial wave S-matrix in the complex momentum plane and we discuss the connec-
tion between poles in the S-matrix and bound states and resonances. In Sect. 1.4
we extend this discussion of analytic properties to consider the analytic behaviour
of the phase shift and the scattering amplitude in the neighbourhood of threshold
energy both for short-range potentials and for potentials behaving asymptotically as
r−s where s ≥ 2. Also in this section, we consider the threshold behaviour when
a Coulomb potential is present in addition to a short-range potential, corresponding
to electron scattering by a positive or negative ion. Next in Sect. 1.5 we derive
variational principles first obtained by Kohn for the partial wave phase shift and
for the S-matrix. We conclude this chapter by considering in Sect. 1.6 relativistic
scattering of an electron by a spherically symmetric potential. This situation occurs
for relativistic electron scattering energies or when an electron is scattered by heavy
atoms or ions. In this case the time-independent Dirac equation, which takes into
account both the spin and the relativistic behaviour of the scattered electron must
be solved. Finally we note that some of these topics have been discussed in greater
detail in monographs devoted to potential scattering by Burke [158] and Burke and
Joachain [171].

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_1,
C© Springer-Verlag Berlin Heidelberg 2011
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4 1 Potential Scattering

1.1 Scattering by a Short-Range Potential

We initiate our discussion of potential scattering by considering the solution of the
non-relativistic time-independent Schrödinger equation describing the motion of a
particle of unit mass in a potential V (r). We write this equation in atomic units as

(
−1

2
∇2 + V (r)

)
ψ(r) = Eψ(r) , (1.1)

where E is the total energy and ψ(r) is the wave function describing the motion
of the scattered particle. We assume in this section that the potential V (r) is short
range, vanishing faster than r−1 at large distances. We also assume that the potential
is less singular than r−2 at the origin.

The solution of (1.1), corresponding to the particle incident on the scattering
centre in the z-direction and scattered in the direction Ω ≡ (θ, φ) defined by the
polar angles θ and φ, has the asymptotic form

ψ(r) ∼
r→∞eikz + f (θ, φ)

eikr

r
, (1.2)

where f (θ, φ) is the scattering amplitude and the wave number k of the scattered
particle is related to the total energy E by

k2 = 2E . (1.3)

If the potential behaves as r−1 at large distances, corresponding to a long-range
Coulomb potential, then logarithmic phase factors must be included in the expo-
nentials in (1.2) to allow for the distortion caused by the Coulomb potential. We
consider this possibility in Sect. 1.2.

The differential cross section can be obtained from (1.2) by calculating the out-
ward flux of particles scattered through a spherical surface r2dΩ for large r divided
by the incident flux and by the element of solid angle dΩ . This gives

dσ

dΩ
= | f (θ, φ)|2 , (1.4)

in units of a2
0 per steradian. The total cross section is then obtained by integrating

the differential cross section over all scattering angles giving

σtot =
∫ 2π

0

∫ π

0
| f (θ, φ)|2 sin θdθdφ , (1.5)

in units of a2
0. A further cross section, of importance in the study of the motion of

electron swarms in gases, is the momentum transfer cross section defined by

σM =
∫ 2π

0

∫ π

0
| f (θ, φ)|2 (1− cos θ) sin θdθdφ . (1.6)
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In order to determine the scattering amplitude it is necessary to solve (1.1) for
ψ(r) subject to the asymptotic boundary condition (1.2). For low and intermediate
energy scattering this is most conveniently achieved by making a partial wave anal-
ysis. This method was originally used in the treatment of scattering of sound waves
by Rayleigh [779] and was first applied to the problem of scattering of electrons by
atoms by Faxén and Holtsmark [314].

We consider the case of a spherically symmetric “reduced” potential U (r) =
2V (r). We can expand the wave function ψ(r) as

ψ(r) =
∞∑
	=0

B	(k)r
−1u	(r)P	(cos θ) , (1.7)

where 	 is the orbital angular momentum quantum number of the particle, P	(cos θ)
are Legendre polynomials defined in Appendix B and the coefficients B	(k) are
determined below by requiring that the asymptotic boundary condition (1.2) is sat-
isfied. The equation satisfied by the reduced radial wave function u	(r), which does
not include the r−1 factor in (1.7), is determined by substituting (1.7) into (1.1),
premultiplying by P	(cos θ) and integrating with respect to cos θ . We find that u	(r)
satisfies the radial Schrödinger equation

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k2

)
u	(r) = 0 . (1.8)

We note that the effective potential in this equation is the sum of the reduced poten-
tial U (r) and the repulsive centrifugal barrier term 	(	+1)/r2. We also remark that
since we are considering real potentials U (r), as well as real energies and angular
momenta, there is no loss of generality in assuming that u	(r) is real.

We look for a solution of (1.8) satisfying the boundary conditions

u	(0) ∼
r→0

nr	+1 ,

u	(r) ∼
r→∞ s	(kr)+ c	(kr) tan δ	(k) , (1.9)

where n is a normalization factor and s	(kr) and c	(kr) are solutions of (1.8) in the
absence of the potential U (r), which are, respectively, regular and irregular at the
origin. We show in Appendix C.2 that they can be written for integral values of 	 in
terms of spherical Bessel and Neumann functions j	(kr) and n	(kr) as follows:

s	(kr) = kr j	(kr) =
(
πkr

2

) 1
2

J
	+ 1

2
(kr) ∼

r→∞ sin(kr − 1
2	π) (1.10)

and

c	(kr) = −krn	(kr) = (−1)	
(
πkr

2

) 1
2

J−	− 1
2
(kr) ∼

r→∞ cos(kr − 1
2	π) . (1.11)
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The remaining quantity in (1.9) is the partial wave phase shift δ	(k) which is a real
function of the wave number k when the reduced potential U (r), energy E and
angular momentum 	 are real.

It is also convenient to introduce the S-matrix, whose matrix elements are defined
in terms of the phase shifts. We first note that (1.8) satisfied by u	(r) is homogeneous
so that u	(r) is only defined up to an arbitrary multiplicative complex normalization
factor N . Hence it follows from (1.9) that

uN
	 (r) ∼r→∞N [s	(kr)+ c	(kr) tan δ	(k)] (1.12)

is also a solution of (1.8) for arbitrary N . If we choose N = −2i cos δ	 exp(iδ	) then
we can rewrite (1.12) as

u	(r) ∼
r→∞ exp(−iθ	)− exp(iθ	)S	(k) , (1.13)

where θ	 = kr − 1
2	π . The quantity S	(k) in (1.13) is then a diagonal element of

the S-matrix defined by

S	(k) = exp[2iδ	(k)] = 1+ iK	(k)

1− iK	(k)
, (1.14)

where we have also introduced the K -matrix, whose diagonal elements are defined
by

K	(k) = tan δ	(k) . (1.15)

We see from (1.9) that the phase shift, and hence the K -matrix, is a measure of the
departure of the radial wave function from the form it has when the potential U (r)
is zero.

We can obtain useful integral expressions for the K -matrix and the phase shift.
We consider the solution v	(r) of the radial Schrödinger equation, obtained from
(1.8) by setting the potential U (r) = 0. Hence v	(r) satisfies the equation

(
d2

dr2
− 	(	+ 1)

r2
+ k2

)
v	(r) = 0 . (1.16)

We choose v	(r) to be the regular solution of this equation, given by

v	(r) = s	(r) , (1.17)

where s	(r) is defined by (1.10). We then premultiply (1.8) by v	(r), premultiply
(1.16) by u	(r) and then integrate the difference of these two equations from r = 0
to∞. We obtain
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∫ ∞
0

(
v	(r)

d2u	
dr2

− u	(r)
d2v	

dr2

)
dr =

∫ ∞
0
v	(r)U (r)u	(r)dr . (1.18)

The left-hand side of this equation can be evaluated using Green’s formula and
the boundary conditions satisfied by u	(r) and v	(r), given by (1.9) and (1.10),
yielding the result −k tan δ	(k). We then substitute for v	(r) in terms of j	(kr) on
the right-hand side of (1.18) using (1.10) and (1.17). Combining these results we
find that (1.18) reduces to

K	(k) = tan δ	(k) = −
∫ ∞

0
j	(kr)U (r)u	(r)rdr , (1.19)

which is an exact integral expression for the K -matrix element and the phase shift.
If the potential U (r) is weak or the scattered particle is moving fast, the distortion
of u	(r) in (1.19) will be small. In this case u	(r) can be replaced by v	(r) and, after
using (1.10) and (1.17), we find that (1.19) reduces to

K B
	 (k) = tan δB

	 (k) = −k
∫ ∞

0
U (r) j2

	 (kr)r2dr . (1.20)

This is the first Born approximation for the K -matrix element and the phase shift
which we will use when we discuss effective range theory for long-range potentials,
in Sect. 1.4.2.

We will also need to consider solutions of (1.8) satisfying the following orthonor-
mality relation

∫ ∞
0

[
uN
	 (k, r)

]∗
uN
	 (k

′, r)dr = δ(E − E ′) , (1.21)

where we have displayed explicitly the dependence of the solution uN
	 (r) on the

wave number k and where [uN
	 (k, r)]∗ is the complex conjugate of uN

	 (k, r). Also
in (1.21) we have introduced the Dirac δ-function [263], which can be defined by
the relations

δ(x) = 0 for x �= 0 ,
∫ ∞
−∞
δ(x)dx = 1 . (1.22)

Of particular importance in applications are the following three solutions satisfying
(1.21), corresponding to different choices of the normalization factor N in (1.12).
Using (C.53) and (C.54) we define the real solution

u	(k, r) ∼
r→∞

(
2

πk

) 1
2

[sin θ	 + cos θ	K	(k)] [1+ K 2
	 (k)]−

1
2 , (1.23)

the outgoing wave solution

u+	 (k, r) ∼r→∞

(
2

πk

) 1
2 [

sin θ	 + (2i)−1 exp(iθ	)T	(k)
]

(1.24)
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and the ingoing wave solution

u−	 (k, r) ∼r→∞

(
2

πk

) 1
2 [

sin θ	 − (2i)−1 exp(−iθ	)T
∗
	 (k)

]
, (1.25)

where in (1.24) and (1.25) we have introduced the T -matrix element T	(k) which is
related to the K -matrix and the S-matrix elements by

T	(k) = 2iK	(k)

1− iK	(k)
= S	(k)− 1 . (1.26)

It is clear that if the reduced potential U (r) is zero so that there is no scattering, then
the phase shift δ	(k) = 0 and hence S	(k) = 1 and T	(k) = 0.

We are now in a position to determine an expression for the scattering amplitude
in terms of the phase shifts. To achieve this we expand the plane wave term in
(1.2) in partial waves and equate it with the asymptotic form of (1.7). The required
expansion of the plane wave term in terms of Legendre polynomials, discussed in
Appendix B.1, is

eikz =
∞∑
	=0

(2	+ 1)i	 j	(kr)P	(cos θ) . (1.27)

Since the second term in (1.2) contributes only to the outgoing spherical wave in
(1.7), we can determine the coefficients B	(k) by equating the coefficients of the
ingoing wave e−ikr in (1.7) and (1.27). Using (1.9), (1.10), and (1.11) we find that

B	(k) = k−1(2	+ 1)i	 cos δ	(k) exp[iδ	(k)] . (1.28)

Substituting this result into (1.7) and comparing with (1.2), then gives the following
expression for the scattering amplitude:

f (θ, φ) = 1

2ik

∞∑
	=0

(2	+ 1){exp[2iδ	(k)] − 1}P	(cos θ) . (1.29)

We notice that the scattering amplitude does not depend on the azimuthal angle φ
since we have restricted our consideration to an incident beam in the z-direction
scattering from a spherically symmetric potential. Also, for short-range potentials
considered in this section, δ	(k) tends rapidly to zero as 	 tends to∞ and hence the
summation in (1.29) gives accurate results at low energies when only a few terms
are retained.

An expression for the total cross section is obtained by substituting (1.29) into
(1.5). We obtain

σtot =
∞∑
	=0

σ	 = 4π

k2

∞∑
	=0

(2	+ 1) sin2 δ	(k) , (1.30)
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where σ	 is called the partial wave cross section. Also substituting (1.29) into (1.6)
yields the following expression for the momentum transfer cross section:

σM = 4π

k2

∞∑
	=0

(	+ 1) sin2[δ	+1(k)− δ	(k)] . (1.31)

Finally, we observe that the imaginary part of the scattering amplitude in the
forward direction can be related to the total cross section. Since P	(1) = 1 we
obtain from (1.29)

Im f (θ = 0, φ) = 1

k

∞∑
	=0

(2	+ 1) sin2 δ	(k) . (1.32)

Comparing this result with (1.30) gives immediately

σtot = 4π

k
Im f (θ = 0, φ) , (1.33)

which is known as the optical theorem [316]. This result, which can be generalized
to multichannel collisions, can be shown to be a direct consequence of conservation
of probability.

We conclude our discussion of scattering by a short-range potential by observing
that the procedure of adopting a partial wave analysis of the wave function and the
scattering amplitude is appropriate at low and intermediate energies when only a
relatively small number of partial wave phase shifts are significantly different from
zero. This situation is relevant to our discussion of R-matrix theory of atomic colli-
sions in Part II of this monograph. On the other hand, at high energies this procedure
breaks down because of the large number of partial waves which are required to
determine the cross section accurately. It is then necessary to obtain a solution of the
Schrödinger equation (1.1) which directly takes account of the boundary condition
of the problem. This is the basis of the procedure introduced by Lippmann and
Schwinger [600]. In this procedure the Schrödinger equation (1.1) is written in the
form

(E − H0)ψ(r) = V (r)ψ(r) . (1.34)

We can then solve this equation to yield a solution with the required asymptotic
form by introducing the Green’s function for the operator on the left-hand side. We
obtain the formal solution

ψ± = φ + 1

E − H0 ± iε
Vψ± , (1.35)

where the term ±iε in the denominator defines the contour of integration past the
singularity E = H0 and φ is the solution of the free-particle wave equation

(E − H0)φ = 0 . (1.36)
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The Lippmann–Schwinger equation (1.35) is the basic integral equation of time-
independent scattering theory and an iterative solution of this equation yields the
Born series expansion. The solution of this equation is discussed in detail in the
monographs by Burke [158] and Burke and Joachain [171].

1.2 Scattering by a Coulomb Potential

The discussion in the previous section must be modified when a long-range
Coulomb potential is present in addition to the short-range potential V (r).

We consider first scattering by a pure Coulomb potential acting between a particle
of unit mass and charge number Z1 and a particle of infinite mass and charge number
Z2. The time-independent Schrödinger equation is then

(
−1

2
∇2 + Vc(r)

)
ψc(r) = Eψc(r) , (1.37)

where the Coulomb potential

Vc(r) = Z1 Z2

r
, (1.38)

in atomic units. The solution of (1.37) was obtained by Gordon [403] and Temple
[913] by introducing parabolic coordinates

ζ = r − z, ξ = r + z, φ = tan−1 y

x
. (1.39)

In these coordinates the Laplacian becomes

∇2 = 4

ζ + ξ
[
∂

∂ζ

(
ζ
∂

∂ζ

)
+ ∂

∂ξ

(
ξ
∂

∂ξ

)]
+ 1

ζ ξ

∂2

∂φ2
. (1.40)

The solution of (1.37), corresponding to an incident wave in the z-direction and an
outgoing scattered wave, can then be written as

ψc(r) = exp(− 1
2πη)Γ (1+ iη)eikz

1 F1(−iη; 1; ikζ ) , (1.41)

where

η = β

2k
= Z1 Z2

k
, (1.42)

and Γ (z) is the gamma function. Also the function 1 F1 is defined by

1 F1(a; b; z) = 1+ a

b
z + a(a + 1)

b(b + 1)

z2

2! + · · ·

=
∞∑

n=0

Γ (a + n)Γ (b)

Γ (a)Γ (b + n)

zn

n! (1.43)
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and is related to the confluent hypergeometric function Mk,m(z), defined by
Whittaker and Watson [964], by

Mk,m(z) = zm+1/2 exp(− 1
2 z) 1 F1(

1
2 + m − k; 2m + 1; z) . (1.44)

The asymptotic form of 1 F1 can be obtained by writing

1 F1(a; b; z) = W1(a; b; z)+W2(a; b; z) , (1.45)

where

W1(a; b; z) ∼|z|→∞
Γ (b)

Γ (b − a)
(−z)−av(a; a − b + 1;−z), −π < arg(−z) < π

(1.46)
and

W2(a; b; z) ∼|z|→∞
Γ (b)

Γ (a)
ez za−bv(1− a; b − a; z), −π < arg(z) < π , (1.47)

where v has the asymptotic expansion

v(α;β; z) = 1+ αβ
z
+ α(α + 1)β(β + 1)

2!z2
+ · · ·

=
∞∑

n=0

Γ (n + α)Γ (n + β)
Γ (α)Γ (β)

(z)−n

n! . (1.48)

The W1 term corresponds to the Coulomb-modified incident wave and the W2 term
to the outgoing scattered wave in ψc(r). Thus we can write

ψc(r) ∼
|r−z|→∞I + fc(θ)J , (1.49)

where

I = exp[ikz + iη ln(kζ )]
(

1+ η2

ikζ
+ · · ·

)
(1.50)

and

J = r−1 exp[ikr − iη ln(2kr)]
(

1+ (1+ iη)2

ikζ
+ · · ·

)
. (1.51)

The Coulomb scattering amplitude is then given by

fc(θ) = − η

2k sin2(θ/2)
exp[−iη ln sin2(θ/2)+ 2iσ0] , (1.52)
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where

σ0 = argΓ (1+ iη) , (1.53)

and the differential cross section is given by

dσc

dΩ
= | fc(θ)|2 = η2

4k2 sin4(θ/2)
= (Z1 Z2)

2

16E2 sin4(θ/2)
. (1.54)

This result was first obtained by Rutherford [802] using classical mechanics to
describe the scattering of α-particles by nuclei. Since the differential cross section
diverges like θ−4 at small θ , the total Coulomb cross section obtained by inte-
grating over all scattering angles is infinite. A further difference from the result
obtained in Sect. 1.1 for scattering by short-range potentials is the distortion of
both the incident and scattered waves, defined by (1.50) and (1.51), by logarith-
mic phase factors. These phase factors are a direct consequence of the long-range
nature of the Coulomb potential. However, we see that they do not affect the form
of the differential cross section for scattering by a pure Coulomb potential given
by (1.54).

For electron–ion scattering problems of practical interest, the interaction poten-
tial experienced by the scattered electron is not pure Coulombic but is modified at
short distances by the interaction of the scattered electron with the target electrons.
In this case it is appropriate at low scattering energies to make a partial wave analysis
of the scattering wave function in spherical polar coordinates, as in Sect. 1.1 where
we considered short-range potentials.

We commence our discussion by making a partial wave analysis of the pure
Coulomb scattering problem. Following (1.7) we expand the wave function in (1.37)
in partial waves as

ψc(r) =
∞∑
	=0

Bc
	 (k)r

−1uc
	(r)P	(cos θ) , (1.55)

where uc
	(r) satisfies the radial Schrödinger equation

(
d2

dr2
− 	(	+ 1)

r2
−Uc(r)+ k2

)
uc
	(r) = 0 , (1.56)

and where

Uc(r) = 2Vc(r) = 2Z1 Z2

r
(1.57)

is the reduced Coulomb potential. Equation (1.56) is the Coulomb wave equation
that has been discussed extensively in the literature (e.g. by Yost et al. [984], Hull
and Breit [479], Fröberg [343] and Chap. 14 of Abramowitz and Stegun [1]). The
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solutions of this equation, which are regular and irregular at the origin, known as
Coulomb wave functions, are defined, respectively, by

F	(η, kr) = C	(η)eikr (kr)	+1
1 F1(	+ 1+ iη; 2	+ 2;−2ikr)

∼
r→∞ sin(kr − 1

2	π − η ln 2kr + σ	) (1.58)

and

G	(η, kr) = iC	(η)eikr (kr)	+1 [W1(	+ 1+ iη; 2	+ 2;−2ikr)

− W2(	+ 1+ iη; 2	+ 2;−2ikr)]

∼
r→∞ cos(kr − 1

2	π − η ln 2kr + σ	) , (1.59)

where η is defined by (1.42). Also in (1.58) and (1.59)

C	(η) = 2	 exp(− 1
2πη)|Γ (	+ 1+ iη)|
Γ (2	+ 2)

= C0(η)
2	

Γ (2	+ 2)

	∏
s=1

(s2 + η2)1/2 , (1.60)

with

C0(η) =
(

2πη

e2πη − 1

)1/2

, (1.61)

and σ	 is the Coulomb phase shift

σ	 = argΓ (	+ 1+ iη) . (1.62)

In order to determine the coefficients Bc
	 (k) in (1.55), we choose uc

	(r) to be
the regular Coulomb wave function F	(η, kr) and require that ψc(r) has the nor-
malization defined by (1.41). Using the orthogonality properties of the Legendre
polynomials and matching ψc(r), given by (1.41) and (1.55), in the neighbourhood
of r = 0 gives

Bc
	 (k) = k−1(2	+ 1)i	 exp(iσ	) , (1.63)

so that

ψc(r) =
∞∑
	=0

(2	+ 1)i	 exp(iσ	)(kr)−1 F	(η, kr)P	(cos θ) . (1.64)

This equation reduces to the expansion of the plane wave given by (1.27) when
η = 0.
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We now define the Coulomb S-matrix, in analogy with our discussion of scat-
tering by a short-range potential, by considering the asymptotic form of the 	th
partial wave component of ψc(r). From (1.58) and (1.64) this component has the
asymptotic form

F	(η, kr) ∼
r→∞N

[
exp(−iθc

	 )− exp(iθc
	 )S

c
	(k)

]
, (1.65)

where the normalization factor N = − exp(−iσ	)/2i, the phase factor θc
	 =

kr − 1
2	π − η ln 2kr and the Coulomb S-matrix Sc

	(k) is given by

Sc
	(k) = exp(2iσ	) = Γ (	+ 1+ iη)

Γ (	+ 1− iη)
. (1.66)

It follows from the asymptotic properties of the Gamma function that the Coulomb
S-matrix is analytic in the entire complex k-plane except for poles where 	+1+iη =
−n̄ with n̄ = 0, 1, 2, . . . . Using (1.42) we see that the corresponding values of k are
given by

kn̄ = −i
Z1 Z2

n̄ + 	+ 1
, n̄ = 0, 1, 2, . . . . (1.67)

Thus for an attractive Coulomb potential (Z1 Z2 < 0) the poles of Sc
	(k) lie on the

positive imaginary axis of the complex k-plane. At these poles it follows from (1.65)
that the wave function decays exponentially asymptotically and hence these poles
correspond to the familiar bound states with energies

En = −1

2

Z2
1 Z2

2

n2
, n = 	+ 1, 	+ 2, . . . , (1.68)

where we have introduced the principal quantum number n = n̄ + 	 + 1. The
location of poles in the S-matrix in the complex k-plane, corresponding to bound
states and resonances, is discussed further in Sect. 1.3.

We now consider the situation where an additional short-range potential V (r),
which vanishes asymptotically faster than r−1, is added to the Coulomb potential.
Again, carrying out a partial wave analysis as in (1.7), we expand the total wave
function as follows:

ψ(r) =
∞∑
	=0

Bs
	(k)r

−1us
	(r)P	(cos θ) , (1.69)

where us
	(r) satisfies the radial Schrödinger equation

(
d2

dr2
− 	(	+ 1)

r2
−U (r)−Uc(r)+ k2

)
us
	(r) = 0 , (1.70)
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where U (r) = 2V (r) and, following (1.57), the reduced Coulomb potential Uc(r) =
2Vc(r) = 2Z1 Z2/r . For large r , the potential U (r) can be neglected compared
with Uc(r) and (1.70) then reduces to the Coulomb equation (1.56). The solution
of (1.70) that is regular at the origin can thus be written asymptotically as a linear
combination of the regular and irregular Coulomb wave functions F	(η, kr) and
G	(η, kr). Hence, in analogy with (1.9), we look for a solution satisfying the bound-
ary conditions

us
	(0) ∼r→0

nr	+1 ,

us
	(r) ∼r→∞ F	(η, kr)+ G	(η, kr) tan δ	(k) . (1.71)

The quantity δ	(k) defined by these equations is the phase shift due to the short-
range potential V (r) in the presence of the Coulomb potential Vc(r). We note that
δ	(k) vanishes when the short-range potential is not present and contains all the
information necessary to describe the non-Coulombic part of the scattering.

The coefficients Bs
	(k) in (1.69) are determined by equating the coefficients of

the ingoing wave in (1.49) and (1.69). This gives

Bs
	(k) = k−1(2	+ 1)i	 cos δ	(k) exp {i[σ	 + δ	(k)]} . (1.72)

Substituting this result into (1.69) then gives

ψ(r) ∼
r→∞ ψc(r)+ (2kr)−1

∞∑
	=0

(2	+ 1)i	 exp(2iσ	){exp[2iδ	(k)] − 1}H+	 (η, kr)

× P	(cos θ) , (1.73)

where we have defined the function

H+	 (η, ρ) = exp(iσ	) [F	(η, ρ)+ iG	(η, ρ)] . (1.74)

We then find that

ψ(r) ∼
r→∞ exp[i(kz + η ln kζ )] + [ fc(θ)+ fs(θ)

] exp[i(kr − η ln 2kr)]
r

, (1.75)

where fc(θ) is the Coulomb scattering amplitude given by (1.52) and fs(θ) is the
scattering amplitude arising from the additional short-range potential V (r). We find
that

fs(θ) = 1

2ik

∞∑
	=0

(2	+ 1) exp(2iσ	){exp[2iδ	(k)] − 1}P	(cos θ) , (1.76)

which is analogous to the result given by (1.29) when there is only a short-range
potential.
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The differential cross section can be obtained in the usual way from (1.75) by
calculating the outward flux of particles scattered through a spherical surface r2dΩ
for large r per unit solid angle divided by the incident flux. This gives

dσ

dΩ
= | fc(θ)+ fs(θ)|2

= | fc(θ)|2 + | fs(θ)|2 + 2Re
[

f ∗c (θ) fs(θ)
]
. (1.77)

At small scattering angles the Coulomb scattering amplitude will dominate the dif-
ferential cross section giving a θ−4 singularity in the forward direction. However, at
larger scattering angles fs(θ) becomes relatively more important and information on
the phase of fs(θ) can be obtained from intermediate angles when the interference
term in (1.77) involving both fc(θ) and fs(θ) is important.

Finally we remark that, as is the case for pure Coulomb scattering, because of the
divergence in the forward direction the total cross section obtained by integrating
(1.77) over all scattering angles is infinite.

1.3 Analytic Properties of the S-Matrix

In this section we consider the analytic properties of the partial wave S-matrix,
defined by (1.14), in the complex momentum plane. We show that the poles in the
S-matrix lying on the positive imaginary k-axis correspond to bound states while
poles lying in the lower half k-plane close to the positive real k-axis correspond to
resonances. We also derive an expression for the behaviour of the phase shift and
the cross section when the energy of the scattered particle is in the neighbourhood
of these poles.

We consider the solution u	(r) of the radial Schrödinger equation (1.8) describ-
ing the scattering of a particle by a spherically symmetric reduced potential U (r)
which we assume is less singular than r−2 at the origin and vanishes faster than r−3

at infinity. Hence we assume

∫ ∞
0

r |U (r)|dr <∞ (1.78)

and
∫ ∞

0
r2|U (r)|dr <∞ , (1.79)

so that the solution u	(r) satisfies the boundary conditions (1.9).
Following Jost [515], we introduce two solutions f	(±k, r) of (1.8) defined by

the relations

lim
r→∞ e±ikr f	(±k, r) = 1 . (1.80)
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These boundary conditions define f	(k, r) uniquely only in the lower half k-plane
and f	(−k, r) uniquely only in the upper half k-plane. If the potential satisfies
inequalities (1.78) and (1.79) then f	(k, r) is an analytic function of k when
Im k < 0 for all r , while f	(−k, r) is correspondingly an analytic function of k
when Im k > 0 [52]. These regions of analyticity can be extended if we impose
stronger conditions on the potential. Thus if

I (μ) =
∫ ∞

0
eμr |U (r)|dr <∞, μ real > 0 , (1.81)

then f	(k, r) is analytic for Im k<μ/2 while f	(−k, r) is analytic for Im k>−μ/2.
Further, if the potential can be written as a superposition of Yukawa potentials

U (r) =
∫ ∞
μ0

ρ(μ)
e−μr

r
dμ , (1.82)

where ρ(μ) is a weight function and μ0 > 0, then f	(k, r) will be analytic in
the complex k-plane apart from a branch cut on the positive imaginary k-axis from
k = iμ0/2 to i∞while f	(−k, r)will be analytic in the complex k-plane apart from
a branch cut from k = −iμ0/2 to −i∞. These branch cuts are called Yukawa cuts.
Finally, if the potential vanishes identically beyond a certain distance a0 then I (μ)
defined by (1.81) is finite for all μ so that f	(±k, r) are analytic functions of k in
the open k-plane for all fixed values of r , that is, they are entire functions of k.

We can express the physical solution of (1.8), defined by the boundary conditions
(1.9), as a linear combination of f	(±k, r). Let us normalize this solution so that it
satisfies

lim
r→0

r−l−1u	(r) = 1 . (1.83)

From a theorem proved by Poincaré [749], the absence of a k-dependence in this
boundary condition implies that this solution is an entire function of k. The Jost
functions [515] are then defined by

f̃	(±k) = W [ f	(±k, r), u	(r)] , (1.84)

where the Wronskian W [ f, g] = f g′ − f ′g and where the primes denote the deriva-
tives with respect to r . It is straightforward to show from the differential equation
(1.8) satisfied by f	(±k, r) and u	(r) that the Wronskian is independent of r . It is
also convenient to introduce other Jost functions by the equation

f	(±k) = k	 exp(± 1
2 i	π)

(2	+ 1)!! f̃	(±k) . (1.85)

The functions f	(+k) and f	(−k) are continuous at k = 0 and approach unity at
large |k| for Im k ≤ 0 and ≥ 0, respectively.
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We now use the relations

W [ f	(±k, r), f	(∓k, r)] = ±2ik ,

W [ f	(±k, r), f	(±k, r)] = 0 , (1.86)

which follow from (1.80) and the definition of the Wronskian, to write u	(r) in the
form

u	(r) = 1

2ik
[ f̃	(k) f	(−k, r)− f̃	(−k) f	(k, r)] . (1.87)

Comparing this equation with the asymptotic form (1.13) and using (1.80) then
yields the following expression for the S-matrix elements:

S	(k) = eiπ	 f̃	(k)

f̃	(−k)
= f	(k)

f	(−k)
. (1.88)

This equation relates the analytic properties of the S-matrix with the simpler analytic
properties of the Jost functions.

In order to study the analytic properties of the Jost functions further we return to
(1.8) satisfied by the functions f	(±k, r). In particular we consider

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k2

)
f	(−k, r) = 0 . (1.89)

We now take the complex conjugate of this equation, which gives

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k∗2

)
f ∗	 (−k, r) = 0 , (1.90)

where we have assumed that r , 	 and U (r) are real but k can take complex values.
In addition, it follows from (1.89) that f	(k∗, r) is a solution of

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k∗2

)
f	(k

∗, r) = 0 . (1.91)

Now from (1.80)

f ∗	 (−k, r) ∼
r→∞ exp(−ik∗r) (1.92)

and

f	(k
∗, r) ∼

r→∞ exp(−ik∗r) , (1.93)
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so that f ∗	 (−k, r) and f	(k∗, r) satisfy the same boundary conditions. Since these
functions also satisfy the same differential equation, namely (1.90) and (1.91),
respectively, they are equal for all r , for all points in the upper half k-plane and for
all other points which admit an analytic continuation from the upper half k-plane.
Hence in this region

f ∗	 (−k, r) = f	(k
∗, r) (1.94)

and thus from (1.84) the Jost functions satisfy

f̃ ∗	 (−k) = f̃	(k
∗) . (1.95)

Combining this result with (1.88) we find that the S-matrix satisfies the following
symmetry relation

S	(k)S	(−k) = e2iπ	 f̃	(k)

f̃	(−k)

f̃	(−k)

f̃	(k)
= e2iπ	 (1.96)

and the unitarity relation

S	(k)S
∗
	 (k
∗) = f̃	(k)

f̃	(−k)

f̃ ∗	 (k∗)
f̃ ∗	 (−k∗)

= 1 . (1.97)

Also, from (1.96) and (1.97) we obtain the reflection relation

S	(k) = e2iπ	S∗	 (−k∗) . (1.98)

From (1.97), it follows that if k is real then the S-matrix has unit modulus and can
thus be expressed in terms of a real phase shift δ	(k) as

S	(k) = exp[2iδ	(k)] , (1.99)

in agreement with (1.14). In addition it follows from (1.98) that if the S-matrix has
a pole at the point k, then it also has a pole at the point −k∗ and from (1.96) and
(1.97) it has zeros at the points −k and k∗. Thus the poles and zeros of the S-matrix
are symmetrically situated with respect to the imaginary k-axis.

In order to determine the physical significance of poles in the S-matrix we note
from (1.84) that the Jost functions f̃	(±k) are finite for all finite k. Hence it follows
from (1.88) that a pole in the S-matrix must correspond to a zero in f̃	(−k) rather
than a pole in f̃	(k). Substituting this result into (1.87) and using (1.80) shows
that the physical solution of (1.8) corresponding to a pole in the S-matrix has the
following asymptotic form:

u	(r) ∼
r→∞Neikr , (1.100)
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where N is a normalization factor. When k is in the upper half k-plane, it follows
from (1.100) that the corresponding wave function vanishes exponentially and hence
is normalizable. Since the Hamiltonian is hermitian, all normalizable wave functions
must correspond to real energy eigenvalues and hence the corresponding value of
k2 must be real. This shows that if a pole in the S-matrix occurs in the upper half
k-plane in the region of analyticity connected to the physical real k-axis it must lie
on the positive imaginary axis. If we write k = iκ, where κ is real and positive, then
(1.100) becomes

u	(r) ∼
r→∞Ne−κr , (1.101)

which clearly corresponds to a bound state with binding energy−κ2/2. In the lower
half k-plane the wave function defined by (1.100) diverges exponentially and thus
cannot be normalized. The above arguments based on the hermiticity of the Hamil-
tonian then break down and the corresponding poles are then no longer confined to
the imaginary k-axis.

We present in Fig. 1.1 a possible distribution of S-matrix poles in the complex
k-plane. For potentials satisfying (1.78) and (1.79), only a finite number of bound
states can be supported and these give rise to the poles lying on the positive imagi-
nary axis in this figure. However, an infinite number of poles can occur in the lower
half k-plane. If they do not lie on the negative imaginary k-axis, they occur in pairs
symmetric with respect to this axis, as discussed above. If they lie on the negative
imaginary k-axis, they are often referred to as virtual state poles. Poles lying in the
lower half k-plane and close to the real positive k-axis give rise to resonance effects
in the cross section which will be discussed below. The corresponding resonance
states, defined by the outgoing wave boundary condition (1.100), are often called
Siegert states [876]. Poles lying in the lower half k-plane and far away from the real
positive k-axis contribute to the smooth “background” or “non-resonant” scattering.
The distribution of poles in the complex k-plane has been discussed in detail in a few
cases, most notably by Nussenzveig [700] for scattering by a square well potential.

We now consider an isolated pole in the S-matrix which lies in the lower half
k-plane close to the positive real k-axis. We show that this pole gives rise to

Fig. 1.1 Distribution
of S-matrix poles in the
complex k-plane. ×, poles
corresponding to bound
states; ◦, poles corresponding
to resonances; �, poles
corresponding to background
scattering; ∗, conjugate poles
required by the symmetry
and unitarity relations;
•, poles corresponding
to virtual states
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resonance scattering at the nearby real energy. We assume that the pole occurs at
the complex energy

E = Er − 1
2 iΓ , (1.102)

where Er , the resonance position, and Γ , the resonance width, are both real positive
numbers and where from (1.3) we remember that E = 1

2 k2. Now from the unitarity
relation (1.97) we see that corresponding to this pole there is a zero in the S-matrix
at a complex energy in the upper half k-plane given by

E = Er + 1
2 iΓ . (1.103)

For energies E on the real axis in the neighbourhood of this pole, the S-matrix can
be written in the following form which is both unitary and explicitly contains the
pole and zero:

S	(k) = exp
[
2iδ0
	 (k)

] E − Er − 1
2 iΓ

E − Er + 1
2 iΓ

. (1.104)

The quantity δ0
	 (k) in this equation is called the “background” or “non-resonant”

phase shift. Provided that the energy Er is not close to threshold, E = 0, nor to
another resonance then the background phase shift is slowly varying with energy.
Comparing (1.99) and (1.104) we obtain the following expression for the phase
shift:

δ	(k) = δ0
	 (k)+ δr

	(k) , (1.105)

where we have written

δr
	(k) = tan−1

1
2Γ

Er − E
. (1.106)

The quantity δr
	(k) is called the “resonant” phase shift which we see from (1.106)

increases through π radians as the energy E increases from well below to well
above the resonance position Er . It is also clear from (1.106) that the rapidity of this
increase is inversely proportional to Γ , the resonance width.

If the background phase shift δ0
	 (k) is zero then we obtain from (1.30) and (1.106)

the following expression for the partial wave cross section:

σ	 = 4π

k2
(2	+ 1)

1
4Γ

2

(E − Er )2 + 1
4Γ

2
. (1.107)

This expression is called the Breit–Wigner one-level resonance formula first derived
to describe nuclear resonance reactions [135]. We see that at the energy E = Er the
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partial wave cross section σ	 reaches its maximum value 4π(2	+ 1)/k2 allowed by
unitarity and decreases to zero well below and well above this energy.

If the background phase shift δ0
	 (k) is non-zero then the partial wave cross section

can be written as

σ	 = 4π

k2
(2	+ 1) sin2 δ	(k) = 4π

k2
(2	+ 1)

(ε + q)2

1+ ε2
sin2 δ0

	 (k) , (1.108)

where ε is the reduced energy

ε = E − Er
1
2Γ

(1.109)

and q is the resonance shape parameter or line profile index

q = − cot δ0
	 (k) . (1.110)

The line profile index was introduced by Fano [301] to describe resonant atomic
photoionization processes. It follows from (1.108) that the partial wave cross section
is zero when ε = −q and achieves its unitarity limit 4π(2	+ 1)/k2 when ε = q−1.
In Fig. 1.2 we illustrate the total phase shift δ	(k) and the partial wave cross section
σ	 for s-wave scattering for four different values of the background phase shift,
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Fig. 1.2 The total phase shift δ	(k) and the partial wave cross section σ	 for s-wave resonance
scattering with k2

r = 2Er = 1.0 and Γ = 0.05 for four different values of the background phase
shift. Case (a), δ0

0(k) = 0 giving q = ∞; case (b), δ0
0(k) = π/4 giving q = −1; case (c),

δ0
0(k) = π/2 giving q = 0; case (d), δ0

0(k) = 3π/4 giving q = 1. The cross section is given in
πa2

0 units and the dashed lines are the s-wave unitarity limit 4k−2
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which we assume is energy independent. Case (a) with q = ∞ corresponds to a stan-
dard Breit–Wigner resonance given by (1.107), where the non-resonant background
scattering is zero. Case (c) with q = 0 corresponds to a window resonance where
the background scattering has its maximum value allowed by unitarity. Finally, cases
(b) and (d) are intermediate cases where the resonance shapes are asymmetric.

When several resonance poles lie in the lower half k-plane and close to the pos-
itive real k-axis their effects on the cross section may overlap. In the case of n
resonances we must replace (1.104) by

S	(k) = exp
[
2iδ0
	 (k)

] n∏
j=1

E − E j − 1
2 iΓ j

E − E j + 1
2 iΓ j

, (1.111)

where the position of the j th pole is E = E j − 1
2 iΓ j . The total phase shift is then

given by

δ	(k) = δ0
	 (k)+

n∑
j=1

tan−1
1
2Γ j

E j − E
. (1.112)

In this case the total phase shift increases through nπ radians as the energy increases
from below all the resonances to above all the resonances, provided that the non-
resonant phase shift δ0

	 (k) is slowly varying over this range. The corresponding
cross section will achieve its unitarity limit n times where the total phase shift goes
through an half odd integral multiple of π radians and will have n zeros where it
goes through an integral multiple of π radians.

1.4 Effective Range Theory

In this section we consider the analytic behaviour of the phase shift and the scat-
tering amplitude in the neighbourhood of threshold energy. We show that there is
a close relationship between the low-energy scattering amplitude and the bound-
state spectrum at negative energies. We consider first the analytic properties for
short-range potentials, where the potential vanishes faster than any inverse power
of the distance. We then extend our discussion to the situation where the poten-
tial behaves asymptotically as r−s where s ≥ 2, which is relevant for low-energy
electron scattering by neutral atoms. Finally, we consider scattering by a Coulomb
potential which is relevant to electron–ion scattering.

1.4.1 Short-Range Potentials

We commence by considering the solution of the radial Schrödinger equation (1.8)
where we assume that the potential U (r) satisfies the condition

U (r) = 0, r ≥ a , (1.113)
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for some finite radius a. It follows from (1.9) and (1.15) that the solution which is
regular at the origin satisfies the asymptotic boundary condition

u	(r) = s	(kr)+ c	(kr)K	(k), r ≥ a. (1.114)

In order to determine the analytic properties of the K -matrix K	(k) we relate it to
the R-matrix R	(E) which we introduce in Sect. 4.1 and which is defined on the
boundary r = a by

u	(a) = R	(E)

(
a

du	
dr
− bu	

)
r=a

, (1.115)

where b is an arbitrary constant. Substituting (1.114) for u	(r) into (1.115) then
yields

[K	(k)]
−1 = c	(ka)− R	(E)[kac′	(ka)− bc	(ka)]

−s	(ka)+ R	(E)[kas′	(ka)− bs	(ka)] , (1.116)

where s′	(kr) and c′	(kr) are the derivatives of s	(kr) and c	(kr) with respect to the
argument kr .

The analytic properties of the R-matrix are discussed in Sect. 4.1, where we
show that it is a real meromorphic function of the energy with simple poles only on
the real energy axis. The analytic properties of the functions s	(kr) and c	(kr) and
their derivatives are related to those of the spherical Bessel and Neumann functions
j	(kr) and n	(kr) defined by (1.10) and (1.11). These functions are discussed in
Appendix C.2, where we show that they can be expanded about z = 0 as follows:

j	(z) = [(2	+ 1)!!]−1z	 + O(z	+2) ,

n	(z) = −[(2	− 1)!!]z−	−1 + O(z−	+1) . (1.117)

Hence k−	−1s	(kr), k−	s′	(kr), k	c	(kr) and k	+1c′	(kr) are entire functions of k2,
that is they are analytic functions of k2 for fixed r . It follows from (1.116) that the
M-matrix, which is defined by the equation

M	(k
2) = k2	+1 [K	(k)]

−1 , (1.118)

is a real analytic function of k2 which can be expanded in a power series in k2 about
k2 = 0. It is also useful to express the T -matrix element defined by (1.26) in terms
of M	(k2). We find using (1.118) that

T	(k) = 2ik2	+1

M	(k2)− ik2	+1
. (1.119)
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We will see in Chap. 3 that this result generalizes in a straightforward way to
multichannel scattering. Also, remembering from (1.15) that K	(k) = tan δ	(k),
it follows that we can expand k2	+1 cot δ	(k) about zero energy in the form

k2	+1 cot δ	(k) = − 1

a	
+ 1

2
re	k

2 + O(k4) , (1.120)

where a	 is called the “scattering length” and re	 is called the “effective range”. This
“effective range expansion” or “Blatt–Jackson expansion” was first derived by Blatt
and Jackson [115] and by Bethe [104].

We can obtain a simple physical picture of the s-wave scattering length a0 in
terms of the zero-energy wave function. If we adopt the following normalization of
the s-wave reduced radial wave function

u0(r) ∼
r→∞ sin kr + cos kr tan δ0(k), r ≥ a , (1.121)

then in the limit as the energy tends to zero, we find using (1.120) that

lim
k→0

u0(r) = k(r − a0), r ≥ a . (1.122)

It follows that the s-wave scattering length a0 is the intercept of the extrapolation
of the asymptote of the zero-energy s-wave reduced radial wave function with the
r -axis.

As an example of the relationship between the s-wave scattering length and the
zero-energy wave function we consider the solution of (1.8) for a square-well poten-
tial. We consider the solution of the equation

(
d2

dr2
−U (r)+ k2

)
u(r) = 0 , (1.123)

where the range r = a of the potential U (r) is taken to equal 1 so that

U (r) = −A, r < 1,

U (r) = 0, r ≥ 1 , (1.124)

and the energy E = 1
2 k2 = 0. Also the sign of the potential strength A is chosen so

that it is positive for attractive potentials and negative for repulsive potentials.
We show in Fig. 1.3, three examples of the solution u(r) of (1.123) and (1.124)

for three different potential strengths. The first example, shown in Fig. 1.3a, cor-
responds to a repulsive potential where the scattering length a0 = 0.5, the second
example, shown in Fig. 1.3b, corresponds to a weak attractive potential which does
not support a bound state where a0 = −1 and the third example, shown in Fig. 1.3c,
corresponds to a stronger attractive potential which supports one bound state where
a0 = 2.
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Fig. 1.3 The s-wave zero-energy reduced radial wave function u(r), represented by the full lines,
showing the scattering length a0 for three square-well potentials with unit radius: (a) a repulsive
potential with potential strength A = −3.667, giving a0 = 0.5; (b) a weak attractive potential with
potential strength A = 1.359, giving a0 = −1; (c) a stronger attractive potential with potential
strength A = 4.116, giving a0 = 2. Also, represented by the dashed lines in (a) and (b) are the
extrapolations of u(r) for r ≥ 1 back to its intercept r = a0 with the r -axis

The relationship between the s-wave scattering length a0 and the potential
strength A is obtained by solving (1.123) and (1.124) subject to the condition that
the solution u(r) and its derivative are continuous on the boundary r = 1. We can
show that the relationship for repulsive potentials A < 0 is

a0 = 1− α−1 tanhα, where α2 = −A , (1.125)

and the relationship for attractive potentials A > 0 is

a0 = 1− α−1 tanα, where α2 = A . (1.126)

The dependence of the scattering length a0 on the potential strength A, given
by (1.125) and (1.126), is shown in Fig. 1.4 for A in the range −30 < A < 30,
where we have indicated by crosses on this figure the (A, a0) values corresponding
to the three solutions shown in Fig. 1.3. For an infinitely strong repulsive potential,
or hard-core potential, where A = −∞, the scattering length equals the range of
the potential, which is unity in this example. As the potential strength increases
towards attractive values, the scattering length decreases and passes through zero
when A = 0, becoming infinitely negative when the asymptote of the solution u(r)
is parallel to the r -axis. We see from (1.126) that this occurs when A = (π/2)2. A
further increase in the potential strength leads to a large positive scattering length,
resulting in the support of a bound state. The scattering length again decreases with
increasing attraction, becoming infinitely negative again when A = (3π/2)2. We see
from (1.126) that this process is repeated with each new branch, corresponding to a
new state becoming bound, occurring when A = [(2n + 1)π/2]2, n = 0, 1, 2, . . . .
Finally we observe that the same general picture occurs for square-well potentials of
arbitrary range a, the strength of the potential where the asymptotes of the solution
u(r) are parallel to the r -axis then being given by A = [(2n + 1)π/(2a)]2, n =
0, 1, 2, . . . .

We now discuss the relationship between the scattering length and effective range
and the low-energy behaviour of the S-matrix, T -matrix and cross section. Provided
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Fig. 1.4 The dependence of the scattering length a0 on the potential strength A for a square-well
potential with unit range. The scattering length and potential strength corresponding to Fig. 1.3a–c
is marked by crosses on this figure

that the p-wave scattering length a1 is non-singular then the s-wave partial wave
cross section dominates low-energy scattering. It follows from (1.30) and (1.120)
that the low-energy s-wave cross section

σ0 = 4π

k2
sin2 δ0(k) = 4π

k2

1

1+ cot2 δ0(k)
= 4πa2

0

k2a2
0 + (1− 1

2re0k2a0)2
. (1.127)

The zero-energy cross section is thus 4πa2
0 . Also, when an s-wave bound state

occurs at zero energy then the scattering length and hence the cross section is infi-
nite. We now determine the behaviour of the cross section when an s-wave bound
state occurs close to zero energy. It follows from (1.15) and (1.26) that

T	(k) = S	(k)− 1 = 2i

cot δ	(k)− i
. (1.128)

Hence a pole in the S- and T -matrices occurs when cot δ	(k) = i. However, we saw
in Sect. 1.3, see Fig. 1.1, that a bound-state pole in the S-matrix and hence in the
T -matrix must lie on the imaginary k-axis, so that

kb = iκb , (1.129)



28 1 Potential Scattering

where κb is real and positive. Combining (1.128) and (1.129) we obtain the follow-
ing condition

kb cot δ0(kb) = −κb , (1.130)

for an s-wave bound state. By comparing this equation with the effective range
expansion (1.120) we find that the scattering length is related to the position of
the pole in the S- and T -matrices by

κb = a−1
0 , (1.131)

where we have retained only the first term on the right-hand side of (1.120). Sub-
stituting this result into (1.127) gives the following expression for the low-energy
s-wave cross section:

σ0 = 4π

k2 + κ2
b

. (1.132)

As we have already remarked, the s-wave cross section is infinite at zero energy
when the bound-state pole occurs at zero energy. Also, since this cross section is
independent of the sign of κb, it is not possible to distinguish by measuring the
cross section alone, whether the pole in Fig. 1.1 corresponds to a bound state with
positive κb or a virtual state with negative κb.

In the case of non-zero partial waves we obtain the following expression for the
T -matrix by combining (1.120) and (1.128)

T	(k) = 2ik2	+1

−a−1
	 + 1

2re	k2 − ik2	+1
, (1.133)

which can be written in the form

T	(k) = iΓ

Er − E − 1
2 iΓ

, (1.134)

where the resonance position is given by

Er = 1

a	re	
(1.135)

and the resonance width by

Γ = − 2

re	
k2	+1 . (1.136)

It follows that the effective range re	, corresponding to a low-energy resonance with
l ≥ 1, must be negative and its width energy dependent. This type of resonance is
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caused by the repulsive angular momentum barrier 	(	 + 1)r−2 which inhibits its
decay.

Finally, we can show that although we have derived the effective range expansion
(1.120) for a finite range potential satisfying (1.120), it is valid if the potential falls
off as fast as, or faster than, an exponential.

1.4.2 Long-Range Potentials

We now consider modifications that have to be made to the effective range expansion
(1.120) when the potential U (r) in the radial Schrödinger equation (1.8) behaves
asymptotically as follows:

U (r) = A

rs
, r ≥ a, s ≥ 2 . (1.137)

We can determine the required modifications by considering the first Born approxi-
mation for the phase shift given by (1.20), that is by

tan δB
	 (k) = −k

∫ ∞
0

U (r) j2
	 (kr)r2dr , (1.138)

which is applicable here since the coefficients in the effective range expansion arise
from the long-range tail of the potential where it is weak. In the limit as k → 0 we
can use the power series expansion (C.33) for the spherical Bessel function j	(kr) in
(1.138). It follows that the first term in the expansion of the integral in (1.138) only
converges for large r if s > 2	+ 3, which gives rise to the first term in the effective
range expansion (1.120). If s ≤ 2	+ 3 the integral diverges and the first term in the
effective range expansion is no longer defined. In a similar way, the second term in
the expansion of the integral in (1.138) only converges for large r if s > 2	+ 5 and
consequently if s ≤ 2	 + 5 the second term in the effective range expansion is not
defined. Summarizing these results for the terms in the effective range expansion
(1.120) we obtain

scattering length a	 defined if s > 2	+ 3
effective range re	 defined if s > 2	+ 5 ,

(1.139)

and so on for higher terms in the effective range expansion.
An important example of long-range potentials occurs in elastic electron scatter-

ing by an atom in a non-degenerate s-wave ground state such as atomic hydrogen
or the inert gases. We discuss this polarization potential in detail in Sect. 2.2.2, see
(2.19), where we show that U (r) has the asymptotic form

U (r) = 2Vp(r) ∼
r→∞−

α

r4
, (1.140)
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where α is the dipole polarizability. The radial Schrödinger equation (1.8) then
becomes

(
d2

dr2
− 	(	+ 1)

r2
+ α

r4
+ k2

)
u	(r) = 0, r ≥ a , (1.141)

where a is the radius beyond which the potential achieves its asymptotic form. In
order to obtain the threshold behaviour of the phase shift we use the Born approx-
imation (1.138), where we consider the contribution to this integral arising from
r ≥ a. Calling this contribution I	 we obtain, after writing x = kr ,

I	 = παk2

2

∫ ∞
ka

J 2
	+ 1

2
(x)x−3dx , (1.142)

where for 	 ≥ 1, the contribution to the integral from r < a behaves as k2	+1 for
small k and can therefore be neglected compared with I	 as k → 0. Also, for 	 ≥ 1
the integral in (1.142) converges at its lower limit for all k ≥ 0. Carrying out this
integral we find that

k2 cot δ	(k) = 8(	+ 3
2 )(	+ 1

2 )(	− 1
2 )

πα
+ higher order terms, 	 ≥ 1 . (1.143)

It follows in accord with (1.139) that the scattering length is not defined in the
presence of a long-range polarization potential when 	 ≥ 1.

For s-wave scattering in a long-range polarization potential, the contribution to
the integral from r < a dominates (1.142) and hence (1.143) is no longer applicable.
In this case O’Malley et al. [704] transformed (1.141) into a modified form of Math-
ieu’s equation. Replacing s	(kr) and c	(kr) in (1.114) by the appropriate regular and
irregular solutions of this equation and using the known analytic behaviour of the
Mathieu functions they obtained

k cot δ0(k) = − 1

a0
+ πα

3a2
0

k + 2α

3a0
k2 ln

(
αk2

16

)
+ O(k2), 	 = 0 . (1.144)

This equation differs from (1.120) due to the presence of terms containing k and
k2 ln k. Hence the scattering length a0 is defined but the effective range is not, in
accord with (1.139).

The low-energy behaviour of the total cross section in the presence of a long-
range polarization potential can be obtained by substituting the above result into
(1.30). We obtain

σtot(k) = 4π(a0 + πα
3

k + · · · )2 , (1.145)
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where we have omitted higher order terms in k and higher partial wave contributions.
It follows that the derivative of the total cross section with respect to energy is
infinite at threshold, whereas in the absence of the polarization potential it is finite.
Also, if the scattering length a0 is negative, then the total cross section will decrease
from threshold and in the absence of significant contributions from higher terms in
the expansion (1.145) will become zero when k = k0 where

k0 = −3a0

πα
. (1.146)

This leads to the Ramsauer minimum which occurs, for example, in the total cross
section for low-energy electron scattering from the heavier inert gases Ar, Kr and
Xe where the scattering length a0 is negative. On the other hand, if a0 is positive, as
is the case for electron scattering by He and Ne, there is no low-energy minimum in
the cross section.

Levy and Keller [588] have considered the general case of potentials whose
behaviour at large distances is given by (1.137). They found that

tan δ	(k) = 1
2π Aks−2 21−sΓ (s − 1)Γ (	+ 3

2 − 1
2 s)

Γ 2( 1
2 s)Γ (	+ 1

2 + 1
2 s)

, 2 < s < 2	+ 3 (1.147)

and

tan δ	(k) = − Ak2	+1 ln k

[(2	+ 1)!!]2 , s = 2	+ 3 . (1.148)

By considering the contribution from higher angular momenta we find that the total
threshold cross section is finite if s > 2 while the differential cross section is finite
if s > 3.

Another long-range potential of interest is a dipole potential which falls off
asymptotically as r−2 and is less singular than r−2 at the origin. This occurs in
many applications, for example, in the scattering of electrons by polar molecules
or by hydrogen atoms in degenerate excited states. The radial Schrödinger equation
then has the asymptotic form

(
d2

dr2
− 	(	+ 1)

r2
− A

r2
+ k2

)
u	(r) = 0, r ≥ a . (1.149)

This equation has analytic solutions which we can obtain by combining the r−2

terms as follows:

λ(λ+ 1) = 	(	+ 1)+ A , (1.150)

which has the solution

λ = − 1
2 ± 1

2

[
(2	+ 1)2 + 4A

]1/2
. (1.151)
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Using this definition, (1.149) reduces to the standard form
(

d2

dr2
− λ(λ+ 1)

r2
+ k2

)
u	(r) = 0, r ≥ a . (1.152)

where λ is in general a non-integral quantity. In analogy with (1.10) and (1.11) we
can define two linearly independent solutions of (1.152) by

sλ(kr) = kr jλ(kr) ∼
r→∞ sin(kr − 1

2λπ) (1.153)

and

cλ(kr) = −krnλ(kr) ∼
r→∞ cos(kr − 1

2λπ) , (1.154)

where it is convenient to choose the upper positive sign in (1.151) so that λ→ 	 in
the limit A→ 0.

The solution of the radial Schrödinger equation, corresponding to a dipole poten-
tial U (r), which is regular at the origin can be written in analogy with (1.114) by

u	(r) = sλ(kr)+ cλ(kr)Kλ(k), r ≥ a , (1.155)

which defines the K -matrix Kλ(k). We can relate the physical K -matrix K	(k),
defined by (1.9) and (1.15), to Kλ(k), defined by (1.155). We find that

K	(k) = sin τ + cos τKλ(k)

cos τ − sin τKλ(k)
, (1.156)

where

τ = 1
2π(	− λ) . (1.157)

It follows that when A = 0 then 	 = λ and K	(k) = Kλ(k).
In order to determine the analytic behaviour of Kλ(k) in the neighbourhood of

threshold energy, we proceed as in the derivation of (1.118) by relating Kλ(k) to the
R-matrix on the boundary r = a. We substitute u	(r), given by (1.155), into (1.115)
which yields (1.116) with 	 replaced everywhere by λ. We then use the analytic
properties of the functions sλ(kr) and cλ(kr) and their derivatives, which are related
to those of the spherical Bessel and Neumann functions jλ(kr) and nλ(kr) through
(1.10) and (1.11). In this way we can show that the M-matrix, which is defined by
the equation

Mλ(k
2) = k2λ+1 [Kλ(k)]

−1 , (1.158)

is an analytic function of k2 in the neighbourhood of threshold which is a real ana-
lytic function when λ is real. We can also express the T -matrix T	(k) defined by
(1.26) in terms of the M-matrix, using (1.156) and (1.158). We find that

T	(k) = 2ie2iτ k2λ+1

Mλ(k2)− ik2λ+1
+ e2iτ − 1 , (1.159)

which reduces to (1.119) in the limit A→ 0 so that τ → 0.
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An important feature of scattering by a dipole potential occurs for strong attrac-
tive potentials where

A < − 1
4 (2	+ 1)2 . (1.160)

In this case, the argument of the square root in (1.151) becomes negative and λ,
which then becomes complex, can be written as

λ = − 1
2 + i Im λ , (1.161)

where Im λ can be positive or negative. The factor k2λ+1 in (1.159) can then be
written as

k2λ+1 = k2i Imλ = exp(2i Im λ ln k) . (1.162)

We see immediately that this gives rise to an infinite number of oscillations in the
partial wave cross section as the collision energy tends to zero. Also, if we consider
complex values of k defined by

k = |k|eiφ , (1.163)

then the denominator Dλ(k) = Mλ(k2)− ik2λ+1 in (1.159) can be written as

Dλ(k) = Mλ(k
2)− exp(−2φIm λ) exp

[
2i
(

Im λ ln |k| + π
4

)]
. (1.164)

It follows that Dλ(k) has zeros along lines in the complex k-plane given by

|Mλ(k
2)| = exp(−2φIm λ) , (1.165)

which gives

φ = − ln |Mλ(k2)|
2 Im λ

. (1.166)

Also as |k| → 0 then the quantity

θ = Im λ ln |k| + 1
4π (1.167)

in (1.164) will increase or decrease through π radians an infinite number of times.
Hence the T -matrix has an infinite number of poles converging to the origin along
two lines in the now infinite sheeted complex k-plane, where these two lines cor-
respond to the positive and negative values of Im λ in (1.167). These lines of poles
correspond to bound states, resonances or virtual states depending on the value of φ
and whether they lie on the physical sheet of the complex k-plane.
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We will see when we discuss multichannel effective range theory in Sect. 3.3 that
the oscillatory behaviour of the cross section above threshold and the infinite series
of bound states below threshold apply in certain circumstances both to electron scat-
tering by polar molecules and by atomic hydrogen in degenerate excited states. The
above discussion provides an introduction to these more complicated and realistic
situations.

We conclude this section by considering the properties of the total and momen-
tum transfer cross sections at finite energies in the presence of a long-range r−2

potential. For high angular momentum 	 the radial wave function in (1.155) is accu-
rately represented by the first term sλ(kr). Hence the corresponding phase shift is
given by

δ	 = 1
2π(	− λ) . (1.168)

For large 	 we find by expanding the square root in (1.151) and choosing the upper
sign in this equation that

δ	 ∼
	→∞−

π A

2(2	+ 1)
+ O(	−3) . (1.169)

The total cross section, defined by (1.30), then becomes

σtot = σ1 + σ2, (1.170)

where

σ1 = 4π

k2

L∑
	=0

(2	+ 1) sin2 δ	 (1.171)

and

σ2 = 4π

k2

∞∑
	=L+1

(2	+ 1) sin2 δ	 ≈ π
3 A2

k2

∞∑
	=L+1

1

(2	+ 1)
. (1.172)

In (1.171) and (1.172) L is the value of 	 where the phase shift δ	 can be accurately
represented by the first term on the right-hand side of (1.169). It follows that σ2, and
hence the total cross section σtot, diverges logarithmically with 	. Also the scatter-
ing amplitude, defined by (1.29), and hence the differential cross section, defined
by (1.4), diverge in the forward direction. Since the contribution to the differential
cross section in the forward direction arising from the short-range component of
the potential U (r) is negligible compared with that arising from the long-range r−2

component, the corresponding angular distribution is energy independent. In prac-
tice, the divergence in the forward direction is cut off either because of the Debye
screening of the dipole potential at large distances if the scattering process occurs
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in a plasma or because of the molecular rotational splitting or the fine-structure
splitting of the target levels.

Finally, we remark that the momentum transfer cross section defined by (1.6)
remains finite in the forward direction. This follows immediately by substituting the
asymptotic expansion for the phase shift given by (1.169) into (1.31). This result can
also be seen to follow from (1.6), where the factor (1− cos θ) cuts off the divergence
in the scattering amplitude in the forward direction.

1.4.3 Coulomb Potential

Finally in this section we consider electron or positron scattering by a positive or
negative ion. In this case we consider the solution of the radial Schrödinger equation
(1.70), where we assume that the short-range part of the potential U (r) vanishes for
r ≥ a. Hence the total potential reduces in this region to the Coulomb potential
alone given by

Uc(r) = 2Z1 Z2

r
, r ≥ a , (1.173)

where Z1 and Z2 are the charge numbers corresponding to the incident particle
and the ion, respectively, and where we assume that the ion has infinite mass. The
solution of (1.70) which is regular at the origin can be written as follows:

u	(r) = F	(η, kr)+ G	(η, kr)K	(k), r ≥ a , (1.174)

where F	(η, kr) and G	(η, kr) are the regular and irregular Coulomb wave func-
tions, defined by (1.58) and (1.59), respectively, η is defined by (1.42) and K	(k) is
the K -matrix.

In order to derive an effective range expansion we commence from (1.115) which
defines the R-matrix R	(E) in terms of the radial wave function u	(r) and its deriva-
tive du	(r)/dr on the boundary r = a of the internal region. We then substitute
u	(r), defined by (1.174), into (1.115) and set the arbitrary constant b = 0. After
re-arranging terms and using the Wronskian relation F ′	G	 − G ′	F	 = 1 we obtain

[K	(k)]
−1 = −G	

F	
+ 1

F ′	F	
+ 1√

ρF ′	

[
R	(E)− ρ−1 F	

F ′	

]
1

F ′	
√
ρ
, (1.175)

where ρ = ka and F	, G	 and F ′	 and G ′	 are defined by

F	 = F	(η, ka), G	 = G	(η, ka),

F ′	 =
1

k

dF	(η, kr)

dr

∣∣∣∣
r = a

, G ′	 =
1

k

dG	(η, kr)

dr

∣∣∣∣
r = a

. (1.176)
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It follows from (1.175) that the analytic behaviour of K	(k) in the complex energy
plane can be obtained in terms of the analytic properties of F	, G	, F ′	 and R	(E),
where we remember that R	(E) is a real meromorphic function of the energy with
simple poles only on the real energy axis.

The Coulomb wave functions, which were introduced and discussed in Sect. 1.2,
can be written as follows:

F	(η, kr) = C	(η)(kr)	+1Φ	(η, kr) (1.177)

and

G	(η, kr) = (kr)−	

(2	+ 1)C	(η)

×
[
Ψ	(η, kr)+ (kr)2	+1 p	(η)

(
ln(2kr)+ q	(η)

p	(η)

)
Φ	(η, kr)

]
,

(1.178)

where Φ	(η, kr) and Ψ	(η, kr) are entire functions of k2 and C	(η) is defined by
(1.60) and (1.61). Also in (1.178)

p	(η) = 2η(2	+ 1)
C2
	 (η)

C2
0(η)

, (1.179)

and

q	(η)

p	(η)
= f (η) , (1.180)

is a rational function of η2 which tends to a constant as |η2| → ∞. Finally

f (η) = 1

2
[ψ(iη)+ ψ(−iη)] , (1.181)

where ψ(z) is the Psi (digamma) function which is defined in terms of the gamma
function Γ (z) by

ψ(z) = dΓ (z)

dz
. (1.182)

Using these properties of the Coulomb wave functions, it then follows from
(1.175) that the M-matrix, defined by

M	(k
2) = k2	+1[(2	+ 1)!!]2C2

	 (η)[K	(k)]−1 + h	(η) , (1.183)

is a real analytic function of k2, where

h	(η) = k2	+1[(2	+ 1)!!]2
[

2ητ
C2
	 (η)

C2
0(η)

− iC2
	 (η)

]
(1.184)
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and

τ = ln k + f (η)+ iπ

e2πη − 1
. (1.185)

Hence M	(k2) can be expanded in a power series in k2 giving the following effective
range expansion for a Coulomb potential

k2	+1[(2	+ 1)!!]2C2
	 (η) cot δ	(k)+ h	(η) = − 1

a	
+ 1

2
re	k

2 + O(k4) , (1.186)

where we have expressed K	(k) in (1.183) in terms of the phase shift δ	(k) using
(1.15) and where a	 is the scattering length and re	 is the effective range. Equa-
tion (1.186) was first derived for s-wave scattering by Bethe [104]. It is also conve-
nient to rewrite this effective range expansion for the T -matrix, defined by (1.26),
in terms of the M-matrix. We find that

T = 2ik2	+1[(2	+ 1)!!]2C2
	 (η)

M	(k2)− k2	+1[(2	+ 1)!!]2 p	(η)τ (2	+ 1)−1
. (1.187)

In the limit η→ 0, corresponding to short-range potentials, we can show that

[(2	+ 1)!!]2C2
	 (η)→ 1, (2	+ 1)!!]2 p	(η)τ → i, h	(η)→ 0 . (1.188)

Hence (1.186) reduces to the effective range expansion (1.120) and (1.187) reduces
to (1.119). We will consider the generalization of (1.187) to multichannel scattering
by a Coulomb potential in Sect. 3.3.3.

When the Coulomb potential is attractive, corresponding to electron scattering
by positive ions or positron scattering by negative ions, we can relate the energies
of the bound states to the positive energy scattering phase shift. We have shown in
Sect. 1.3 that the poles of the S-matrix, and hence the T -matrix, which lie on the
imaginary axis in the complex k-plane, correspond to bound states. It follows from
(1.187) that these poles occur when

M	(k
2) = k2	+1[(2	+ 1)!!]2 p	(η)τ (2	+ 1)−1 . (1.189)

The branches of the function τ in (1.189) for negative energies, corresponding to
positive imaginary k, give rise to an infinite number of solutions of (1.189) converg-
ing onto zero energy. These solutions correspond to the Rydberg series of bound
states. The relationship between positive and negative energies is obtained using
Stirling’s series for the Psi functions in the definition of f (η) given by (1.181). We
find that

τ = ln z + iπ

e2πη − 1
+ χ(k2), k2 > 0 (1.190)
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and

τ = ln z + π cot
(π z

κ

)
+ χ(k2), k2 < 0 , (1.191)

where k = iκ below threshold and z = −Z1 Z2. Also in (1.190) and (1.191) χ(k2)

is a real analytic function of k2 which has the following representation in the neigh-
bourhood of k2 = 0:

χ(k2) =
∞∑

r=1

Br

2r(2r − 1)2

(
k

z

)2r

, (1.192)

where Br are Bernoulli numbers. Hence, using (1.191), we see from (1.189) that the
bound-state energies are given by the solutions of

M	(k
2) = k2	+1[(2	+ 1)!!]22η

C2
	 (η)

C2
0(η)

[
ln z + π cot

(
π z

κb

)
+ χ(k2)

]
, (1.193)

where we have substituted for p	(η) in (1.189) using (1.179). Since M	(k2),
k2	+1[(2	 + 1)!!]22ηC2

	 (η)/C2
0(η) and χ(k2) in (1.193) are analytic functions of

energy then cot(π z/κb), where k2 = −κ2
b are the bound-state energy solutions of

(1.193), can be fitted by an analytic function of energy and extrapolated to positive
energies.

At positive energies it follows from (1.183) that

cot δ	(k) = M	(k2)− h	(η)

k2	+1[(2	+ 1)!!]2C2
	 (η)

, (1.194)

where we have rewritten [K	(k)]−1 in (1.183) as cot δ	(k). We then substitute for
M	(k2), defined by (1.193), and h	(η), defined by (1.184), in (1.194) yielding

cot δ	(k) = 2η

C2
0(η)

[
ln z + π cot

(π z

k

)
+ χ(k2)

]
− 2ητ

C2
0(η)

+ i . (1.195)

Finally, we substitute for τ , defined by (1.190), in (1.195) yielding the final result

cot δ	(k)

e2πη − 1
= cot

(
π z

κb

)
. (1.196)

We interpret this equation by extrapolating cot(π z/κb) on the right-hand side, which
is defined at the bound-state energies k2 = −κ2

b , to positive energies, where it is
defined in terms of the phase shift δ	(k), given by the expression on the left-hand
side.
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We can rewrite (1.196) in a more convenient form by introducing effective quan-
tum numbers νn and associated quantum defects μn of the bound states by the
equation

− κ2
b = −

z2

ν2
n
= − z2

(n − μn)2
, n = 	+ 1, 	+ 2, . . . , (1.197)

where μn is a slowly varying function of energy which is zero when the non-
Coulombic part of the potential vanishes. Substituting (1.197) into (1.196) gives

cot δ	(k)

1− e2πη
= cot[πμ(k2)] , (1.198)

where μ(k2) is an analytic function of energy which assumes the values μn at the
bound-state energies. For small positive energies the factor exp(2πη) is negligibly
small and (1.198) then reduces to

δ	(k) = πμ(k2) . (1.199)

This result enables bound-state energies, which are often accurately known from
spectroscopic observations, to be extrapolated to positive energies to yield electron–
ion scattering phase shifts and hence the corresponding partial wave cross sections.

Equations (1.198) and (1.199) were first derived by Seaton [851, 852] and are the
basis of single-channel quantum defect theory. The foundations of modern quantum
defect theory were laid by Hartree [443], who considered bound-state solutions of
the Schrödinger equation (1.8). Further interest in this theory was stimulated by
the work of Bates and Damgaard [75], whose Coulomb approximation provided
a powerful method for the computation of bound–bound oscillator strengths for
simple atomic systems. An interest in quantum defect theory also arose in solid
state physics discussed by Kuhn and van Vleck [551], which led to developments
in the mathematical theory described in a review article by Ham [440]. In recent
years quantum defect theory has been extended to multichannel scattering by Seaton
[854] and co-workers, and a comprehensive review of the theory and applications
has been written by Seaton [859]. We review multichannel quantum defect theory
in Sect. 3.3.4.

We show in Fig. 1.5 an application of single-channel quantum defect theory to
e−–He+ 1Se and 3Se scattering carried out by Seaton [855]. In this work

Y (k2) = A−1(k2, 	) tan[πμ(k2)] , (1.200)

rather than cot[πμ(k2)], was used in the extrapolation of the quantum defects, where
A(k2, 	) is an analytic function of energy defined by

A(k2, 	) =
	∏

s= 0

(
1+ s2k2

z2

)
, (1.201)
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Fig. 1.5 Phase shifts δ in radians versus energy ε in Rydbergs for e−–He+ 1Se and 3Se scatter-
ing. Full lines, extrapolations using single-channel quantum defect theory; broken lines, polarized
orbital calculations by Sloan [880]. The points at negative energies correspond to the experimental
bound-state energies of He (Fig. 1 from [855])

which in the present application equals unity, since the angular momentum 	 of the
scattered electron is zero. A least-squares fit was then made to the bound-state data
and the positive energy phase shifts determined using a re-arrangement of (1.198)
for tan δ	(k). We see in Fig. 1.5 that the phase shifts obtained by extrapolation from
the experimental bound-state energies are in excellent agreement with polarized
orbital phase shift calculations by Sloan [880] close to threshold and remain good
up to quite high energies. This agreement provides experimental confirmation of the
accuracy of the theoretical phase shift calculations at low energies.

An important feature of the phase shift for electron scattering from positive ions,
which is apparent from Fig. 1.5, is that it does not tend to nπ radians at threshold
energy. This is in contrast to the phase shift for scattering by neutral targets which
tends to a multiple of π radians as the scattering energy tends to zero. This is because
the attractive Coulomb potential Uc(r) pulls the scattered electron into a region
where the short-range part of the potential U (r) in (1.70) is effective, even for non-
zero angular momenta. This effect is the same as that which causes the quantum
defect μn in (1.197) to be non-zero at threshold.

When the Coulomb potential Uc(r) is repulsive, which is the situation when elec-
trons scatter from negative ions or positrons scatter from positive ions, the scattered
electron or positron is kept away from the target at low energies and the phase shift
vanishes rapidly as the energy tends to zero. In this case η = Z1 Z2/k is positive
and large. It follows from (1.61) that the quantity [C0(η)]2, which in this context is
called the Coulomb penetration factor, is given to a good approximation by

[C0(η)]2 ≈ 2πη exp(−2πη) . (1.202)

The factor exp(−2πη) in (1.202) is called the Gamow factor [361]. It then follows
from (1.186) and (1.202) that
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δ	(k) ∼
k→0

exp

(
−2π Z1 Z2

k

)
, Z1 Z2 > 0 , (1.203)

which applies for all angular momenta. It is clear that the Gamow factor strongly
inhibits scattering at low energies when the Coulomb potential is repulsive.

The case when the potential U (r) in (1.70) has a long-range component, falling
off asymptotically as r−s where s > 1, in addition to the Coulomb potential Uc(r),
has been considered by Berger and Spruch [91]. When the Coulomb potential is
attractive the threshold behaviour of the phase shift is left unmodified, since the
electron is pulled into the region where the short-range component of U (r) is dom-
inant. However, when the Coulomb potential is repulsive, the tail of U (r) is impor-
tant at low energies since this is the only part of the potential seen by the scattered
electron. An important example of this situation is when the leading non-Coulombic
component of the potential is due to the polarization of the ion so that s = 4. In this
case we find that

tan δ	(k) = 1

15
α2k5 , (1.204)

where α is the dipole polarizability. Clearly this contribution to the phase shift will
dominate the contribution arising from (1.203) at sufficiently low energies.

1.5 Variational Principles

Variational principles were introduced in scattering theory by Hulthén [480, 481],
Tamm [909–911], Schwinger [841] and Kohn [542]. In this section we derive Kohn
variational principles for the partial wave phase shift and for the S-matrix which
have been widely used in electron scattering. This section thus provides an introduc-
tion to multichannel variational principles discussed in Sects. 2.4 and 5.2. For spe-
cialized treatments of variational principles in scattering see, for example, Demkov
[259], Moiseiwitsch [656] and Nesbet [678].

We commence by considering the radial Schrödinger equation (1.8) or (1.70),
which we rewrite as

L	u	(r) = 0 , (1.205)

which defines the operator L	. We consider a solution u	(r) of (1.205) satisfying
the boundary conditions

u	(0) ∼
r→0

nr	+1,

u	(r) ∼
r→∞ sin(θ	 + τ)+ cos(θ	 + τ) tan(δ	 − τ) , (1.206)

where n is a normalization factor and where in the case of a long-range Coulomb
potential

θ	 = kr − 1
2	π − η ln 2kr + σ	 , (1.207)
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with η defined by (1.42) and σ	 defined by (1.62). Also in (1.71) τ is a fixed constant
chosen so that 0 ≤ τ ≤ π . We note that the solution defined by the boundary
conditions (1.206) differs only by a normalization factor cos δ	/ cos(δ	 − τ) from
the solution defined by the boundary conditions given by (1.71).

We now consider the functional

I	[ut
	] =

∫ ∞
0

ut
	(r)L	u

t
	(r)dr , (1.208)

where ut
	(r) is a trial function satisfying the same boundary conditions (1.206) as

u	(r)with the phase shift δ	 replaced by a trial phase shift δt
	. It is clear from (1.205)

and (1.208) that I	[u	] = 0. We then find using Green’s theorem that

∫ ∞
0
[u	(r)L	ut

	(r)− ut
	(r)L	u	(r)]dr =

[
u	

dut
	

dr
− ut

	

du	
dr

]∞
0
. (1.209)

It follows using the boundary conditions satisfied by u	 and ut
	 that

I	[ut
	] − I	[�u	] = k[tan(δ	 − τ)− tan(δt

	 − τ)] , (1.210)

where we have written

�u	(r) = ut
	(r)− u	(r) . (1.211)

Relation (1.210) was first obtained by Kato [525] and is referred to as the Kato
identity. If the trial function ut

	(r) is sufficiently close to the exact solution u	(r)
then the functional I	[�u	], which is second order of smallness, can be neglected.
Equation (1.210) can then be written as

δ[I	 + k tan(δ	 − τ)] = 0 , (1.212)

where

δ I	 = I	[ut
	] − I	[u	] = I	[ut

	] (1.213)

is the change in I	 under the variation δut
	(r) = ut

	(r)− u	(r) and

δ[tan(δ	 − τ)] = tan(δt
	 − τ)− tan(δ	 − τ) . (1.214)

Equation (1.212) is known as the Kohn variational principle [542].
The Kohn variational principle (1.212) is clearly satisfied by the exact solution

of the differential equation (1.205). It can also be used as the basis for obtaining
approximate solutions of (1.205). Thus if we start from a trial function ut

	(r) which
depends on n parameters c1, c2, . . . , cn as well as the phase shift through the quan-
tity λt

	 defined by

λt
	 = tan(δt

	 − τ) , (1.215)
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then taking the variation in (1.212) with respect to these n+ 1 parameters yields the
equations

δ I	
δλt
	

= −k (1.216)

and

δ I	
δci
= 0, i = 1, . . . , n . (1.217)

If the trial function ut
	(r) depends linearly on the parameters c1, c2, . . . , cn and λt

	

then (1.216) and (1.217) are a set of n + 1 linear simultaneous equations which
can be solved to yield these parameters. We can then use the variational principle
(1.212) to obtain an improved estimate for λ	 which is correct up to terms of second
order in the error in the trial function. It is given by

[λ	] = λt
	 +

1

k
I	[ut

	] , (1.218)

where the symbol [λ	]means that this quantity is the variational estimate of λ	. The
corresponding phase shift, correct up to terms of second order, is then obtained from
the variational estimate using the equation

[λ	] = tan(δ	 − τ) . (1.219)

It follows from the above discussion that different choices of τ in the range 0 ≤
τ ≤ π will yield different variational estimates for the phase shift. Kohn chose
τ = 0 so that the trial function satisfied the asymptotic boundary condition

ut
	(r) ∼r→∞ sin θ	 + cos θ	 tan δt

	(k) . (1.220)

Equation (1.218) then becomes

[tan δ	] = tan δt
	 +

1

k
I	[ut

	] , (1.221)

which gives the Kohn variational estimate for tan δ	 and hence, from (1.15), for the
K -matrix. On the other hand Rubinow [800] took τ = π/2 so that the trial function
satisfied the asymptotic boundary condition

ut
	(r) ∼r→∞ cos θ	 + sin θ	 cot δt

	(k) . (1.222)

In this case (1.218) yields

[cot δ	] = cot δt
	 −

1

k
I	[ut

	] . (1.223)
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This approach is often called the Rubinow or inverse Kohn variational principle
since it gives a variational estimate for cot δ	 = (tan δ	)−1.

It is also often useful to adopt the S-matrix form of the Kohn variational principle.
In this case, the solution of (1.205) is chosen to satisfy the asymptotic boundary
condition

u	(r) ∼
r→∞ exp(−iθ	)− exp(iθ	)S	(k) , (1.224)

where the S-matrix S	(k) is defined in terms of the phase shift δ	(k) by (1.14). We
also introduce a trial function ut

	(r) satisfying the asymptotic boundary condition

ut
	(r) ∼r→∞ exp(−iθ	)− exp(iθ	)S

t
	(k) . (1.225)

As before we consider the variation

δ I	 = I	[ut
	] − I	[u	] , (1.226)

which can be simplified using the boundary conditions satisfied by u	(r) and ut
	(r).

Neglecting terms of second order in�u	(r) = ut
	(r)−u	(r)we obtain the S-matrix

form of the Kohn variational principle

δ[I	 + 2ikS	] = 0 , (1.227)

where we have written

δS	 = St
	 − S	 . (1.228)

Again if the trial function ut
	(r) depends linearly on n parameters c1, c2, . . . , cn as

well as on the S-matrix St
	, then taking the variation in (1.227) with respect to these

n + 1 parameters yields the n + 1 coupled linear simultaneous equations

δ I	
δSt
	

= −2ik (1.229)

and

δ I	
δci
= 0, i = 1, . . . , n . (1.230)

Equations (1.229) and (1.230) can be solved to yield these n + 1 parameters. The
variational principle (1.227) can then be used to obtain an improved estimate for λ	
which is correct up to terms of second order in the error in the trial function. We
find that

[S	] = St
	 +

1

2ik
I	[ut

	] , (1.231)
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which can be used instead of the Kohn variational estimate for tan δ	 given by
(1.221) or the inverse Kohn variational estimate for cot δ	 given by (1.223).

In concluding this discussion of variational principles in potential scattering
we stress that they are not extremum principles but are only stationary principles.
Consequently the variational estimate can lead to misleading results if poor trial
functions are used. Indeed, it was shown by Schwartz [838, 839] that anomalous
singularities can arise in [tan δ	] and in [cot δ	] which can invalidate the variational
estimate in these cases if care is not taken, even if the number n of trial functions
is large. A detailed discussion of these anomalous singularities and methods for
avoiding them has been given, for example by Nesbet [675, 676, 678], Burke and
Joachain [171] and Cooper et al. [229] and will not be considered further here.
However, we remark that the R-matrix method, discussed in Chap. 4 and in later
chapters, provides a variational procedure for solving (1.205) which enables phase
shifts and S-matrices to be obtained which do not have these singularities.

1.6 Relativistic Scattering: The Dirac Equation

We conclude this chapter on potential scattering by considering relativistic scatter-
ing of an electron by a spherically symmetric potential. This situation occurs for
relativistic electron scattering energies or for electron collisions with heavy atoms
and ions. The wave equation which must then be solved is the time-independent
Dirac equation, which takes into account both the spin and the relativistic behaviour
of the scattered electron. We consider first the separation of the Dirac equation in
spherical polar coordinates which yields two coupled first-order differential equa-
tions satisfied by the radial functions describing the motion of the scattered electron.
We then derive expressions for the phase shifts, scattering matrix and cross sections
in terms of the asymptotic solution of these coupled equations.

The time-independent Dirac equation describing the motion of an electron in a
potential V (r) is (see [110, 171, 263, 411]),

[cα · p+ β ′c2 + V (r)]ψ(x) = Eψ(x) , (1.232)

in atomic units, where c is the velocity of light in vacuum, x ≡ (r, σ ) represents the
space and spin coordinates of the scattered electron and p = −i∇ is the electron
momentum operator. Also in (1.232), β ′ = β − I4 and α and β are the 4× 4 Dirac
matrices defined by

α =
(

0 σ

σ 0

)
, β =

(
I2 0
0 −I2

)
, (1.233)

where the components of σ , σx , σy and σz , are 2 × 2 Pauli spin matrices [723]
defined by

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (1.234)
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and I2 and I4 are 2×2 and 4×4 unit matrices, respectively. Finally, the choice of β ′
in (1.232) is made so that the energy E in this equation does not include the electron
rest mass and hence reduces in the non-relativistic limit to the energy E in (1.1).

We consider the solution of (1.232) for the case where the potential V (r) is
spherically symmetric and hence depends only on the radial variable r and not on
the angular variables. We then separate the angular variables in (1.232) from the
radial variable using the identity

α · p = αr pr + ir−1αr (� · L+ I4)

= αr pr + ir−1αrβK , (1.235)

where the radial momentum operator pr and the radial velocity operator αr are
defined by

pr = −i
1

r

∂

∂r
r, αr = r−1α · r , (1.236)

and where the operator K is defined by

K = β(� · L+ I4) , (1.237)

with

� =
(
σ 0
0 σ

)
, L =

(
� 0
0 �

)
. (1.238)

The operator K can be shown to commute with the Dirac Hamiltonian and hence its
eigenvalues are constants of the motion. Furthermore, since

� · L = 2S · L = J2 − L2 − S2 = J2 − L2 − 3

4
I4 , (1.239)

then we may rewrite the operator K as

K = β
(

J2 − L2 + 1

4
I4

)
. (1.240)

Also it follows from (1.237) that

K 2 =
(

L+ 1

2
�

)2

+ 1

4
I4 . (1.241)

Since (L + 1
2�)

2 is the square of the total angular momentum operator, which has
the eigenvalues j ( j + 1), then the eigenvalues of K 2 are ( j + 1

2 )
2 ≡ κ2 where κ is

given by

κ = ±1, ±2, ±3, . . . . (1.242)
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Using the above equations, the Dirac equation (1.232) can be written as

Hψ(x) = [cαr pr + icr−1αrβK + β ′c2 + V (r)]ψ(x) = Eψ(x) . (1.243)

The solution of (1.243) can be written as a four-component spinor in the form

ψ(x) = 1

r

(
pκ(r)ηκm(r̂, σ )

iqκ(r)η−κm(r̂, σ )

)
, (1.244)

where pκ(r) and qκ(r) are radial functions which depend on κ as described below,
and the factor i is introduced so that the radial equations satisfied by pκ(r) and qκ(r),
derived below, are real, and hence these functions can be chosen to be real. The
spin–angle functions ηκm(r̂, σ ) in (1.244) are two-component spinors defined by

ηκm(r̂, σ ) ≡ Y
	 1

2 jm(r̂, σ ) =
∑

m	ms

(	m	
1
2 ms | jm)Y	m	 (θ, φ)χ 1

2 ms
(σ ) , (1.245)

where (	m	 1
2 ms | jm) are Clebsch–Gordan coefficients defined in Appendix A.1,

Y	m	 (θ, φ) are spherical harmonics defined in Appendix B.3 and χ 1
2 ms
(σ ) are the

usual two-component Pauli spin functions given by

χ 1
2

1
2
(σ ) =

(
1
0

)
, χ 1

2− 1
2
(σ ) =

(
0
1

)
. (1.246)

It then follows from Appendices A and B that the functions Y
	 1

2 jm(r̂, σ ) defined by

(1.245) are simultaneous eigenfunctions of J2 and L2 belonging to the eigenvalues
j ( j + 1) and 	(	+ 1), respectively. Hence

(
J2 − L2 + 1

4 I2

)
Y
	 1

2 jm(r̂, σ ) =
[

j ( j + 1)− 	(	+ 1)+ 1
4

]
Y
	 1

2 jm(r̂, σ )

=
[
( j + 1

2 )
2 − 	(	+ 1)

]
Y
	 1

2 jm(r̂, σ ) . (1.247)

Using this result and the definition of K given by (1.240) andψ(x) given by (1.244),
we find that

Kψ(x) = −κψ(x) , (1.248)

where the eigenvalue κ is then defined by

κ = 	(	+ 1)− ( j + 1
2 )

2 . (1.249)

Hence the eigenvalue κ is related to the orbital and total angular momentum
quantum numbers 	 and j by the equations

κ = 	 when j = 	− 1
2 ,

κ = −	− 1 when j = 	+ 1
2 . (1.250)
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Table 1.1 Relationship of κ to the usual spectroscopic notations 	 and j

κ negative κ positive

κ = −1 s1/2 κ = +1 p1/2
κ = −2 p3/2 κ = +2 d3/2
κ = −3 d5/2 κ = +3 f5/2
.
.
.

.

.

.
.
.
.

.

.

.

This relationship is given explicitly in Table 1.1.
Using the above results for the eigenvalues of the K operator, we can now sim-

plify the Dirac equation defined by (1.243). Substituting (1.244) into (1.243) and
using (1.233) and (1.248) we obtain the following coupled equations

cσr(pr + ir−1κ)ir−1qκ(r)η−κm(r̂, σ )+ [V (r)− E]r−1 pκ(r)ηκm(r̂, σ ) = 0 ,
(1.251)

and

cσr(pr− ir−1κ)r−1 pκ(r)ηκm(r̂, σ )+[−2c2+V (r)−E]ir−1qκ(r)η−κm(r̂, σ ) = 0 .
(1.252)

These equations can be simplified using the identity

σrη±κm(r̂, σ ) = −η∓κm(r̂, σ ) , (1.253)

which follows since σr = σ · r̂ is a pseudo-scalar operator and hence it changes
the sign of the parity but leaves the total angular momentum and its z-component
unaltered. Projecting (1.251) onto the function ηκm(r̂, σ ) and (1.252) onto the func-
tion η−κm(r̂, σ ) and using (1.236) we find that the time-independent Dirac equation
reduces to the following coupled first-order differential equations satisfied by the
functions pκ(r) and qκ(r)

(
d

dr
+ κ

r

)
pκ(r)− 1

c
[2c2 + E − V (r)]qκ(r) = 0 (1.254)

and

(
d

dr
− κ

r

)
qκ(r)+ 1

c
[E − V (r)] pκ(r) = 0 , (1.255)

which must be solved for each κ . The coupled Eqs. (1.254) and (1.255) take the
place of the radial Schrödinger equation (1.8) in non-relativistic theory. We thus see
that the Dirac equation for a spherically symmetric potential can be separated with-
out approximation in spherical polar coordinates. We also note from these equations
that for scattering energies E � c2, the ratio pκ/qκ ≈ c. Hence pκ is often referred
to as the “large component” and qκ as the “small component” of the Dirac wave
function.
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It is instructive at this point to consider the non-relativistic limit of the coupled
differential equations (1.254) and (1.255). In this limit

|E − V (r)| � 2c2 , (1.256)

and hence (1.254) can be rewritten as(
d

dr
+ κ

r

)
pκ(r)− 2cqκ(r) = 0 . (1.257)

Substituting for qκ(r) from (1.257) into (1.255) then gives

1

2

(
d

dr
− κ

r

)(
d

dr
+ κ

r

)
pκ(r)+ [E − V (r)] pκ(r) = 0 , (1.258)

which can be rewritten as(
d2

dr2
− κ(κ + 1)

r2
− 2V (r)+ 2E

)
pκ(r) = 0 . (1.259)

It follows from (1.250) that κ = 	 or −	− 1, so that in both cases

κ(κ + 1) = 	(	+ 1) . (1.260)

Also we remember from Sect. 1.1 that k2 = 2E and the reduced potential U (r) =
2V (r). Hence (1.259) can be written as

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k2

)
pκ(r) = 0 , (1.261)

which is the usual form of the radial Schrödinger equation given by (1.8).
The coupled equations (1.254) and (1.255) can be reduced to Schrödinger form

even when (1.256) is not satisfied. This occurs for relativistic electron scattering
energies or when the potential V (r) corresponds to electron collisions with heavy
target atoms or ions with large nuclear charge number Z . Taking the derivative of
(1.254), substituting for dqκ/dr from (1.255) and eliminating qκ(r) then yields

d2 pκ
dr2

− A′(r)
A(r)

dpκ
dr
+
(

A(r)B(r)− A′(r)
A(r)

κ

r
− κ(κ + 1)

r2

)
pκ = 0 , (1.262)

where we have written

A(r) = 1

c
[2c2 + E − V (r)] ,

A′(r) = dA

dr
, (1.263)

B(r) = 1

c
[E − V (r)] .
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We then make the substitution

pκ(r) = [A(r)]1/2 p̃κ(r) (1.264)

in (1.262), which gives the following equation for p̃κ(r):

(
d2

dr2
− κ(κ + 1)

r2
−Uκ(r)+ k2

r

)
p̃κ(r) = 0 , (1.265)

where

k2
r =

1

c2
E(E + 2c2) (1.266)

and

Uκ(r) = 2(E + c2)V (r)

c2
− [V (r)]

2

c2
+ κ

r

A′(r)
A(r)

+ 3

4

[A′(r)]2
[A(r)]2 −

1

2

A′′(r)
A(r)

. (1.267)

After substituting for κ(κ + 1) from (1.260), we see that (1.265) has the same form
as the non-relativistic Schrödinger equation (1.8). Also, for low-energy electron
collisions with light atoms or ions, the terms involving [V (r)]2, A′(r) and A′′(r)
in (1.267) can be neglected and we obtain

A(r) = 2c, k2 = 2E, Uκ(r) = U (r) . (1.268)

Hence (1.265) reduces to the non-relativistic Schrödinger equation (1.261) or (1.8)
as expected.

However, for relativistic electron scattering energies or for electron collisions
with heavy atoms or ions all the terms in the potential Uκ(r) given by (1.267) are
appreciable. Hence the Dirac equations (1.254) and (1.255) or the equivalent rela-
tivistic Schrödinger equation (1.265) gives different results from the non-relativistic
Schrödinger equation (1.8) or (1.261) for the same potential U (r) = 2V (r). In
particular, the term containing κ in Uκ(r) corresponds to a spin–orbit interaction,
since from (1.250), κ = 	 when j = 	 − 1/2 and κ = −	 − 1 when j = 	 + 1/2.
We will see later in this section that this spin–orbit term in Uκ(r) gives rise to spin
polarization effects in electron collisions with heavy atoms or ions even for low
electron scattering energies.

We conclude our discussion of the equivalent relativistic Schrödinger equa-
tion (1.265) by noting that although it has the same form as the non-relativistic
Schrödinger equation, there are two other fundamental differences. First, the k2

r
term, defined by (1.266), depends on E2 as well as upon E and second the rel-
ativistic potential Uκ(r), defined by (1.267), depends on the energy E as well as
upon the radius r . However, for low-energy electron collisions with heavy atoms
or ions, where the electron scattering energy E � c2, these differences become
insignificant and we obtain in this limit

k2
r → k2 = 2E (1.269)



1.6 Relativistic Scattering: The Dirac Equation 51

and

Uκ(r)→ Uκ0(r) = 2V (r)− [V (r)]
2

c2
+ κ

r

A′(r)
A(r)

+ 3

4

[A′(r)]2
[A(r)]2 −

1

2

A′′(r)
A(r)

. (1.270)

The corresponding relativistic Schrödinger equation (1.265) then reduces to the
standard non-relativistic Schrödinger equation form, as shown in our discussion
leading to (1.261), where k2 = 2E and the potential does not depend on energy.
We will see in Sects. 4.6 and 5.5 that this result has important implications for
the R-matrix method of solving the Dirac equation describing low-energy electron
collisions with heavy atoms or ions.

We now derive expressions for the scattering amplitudes and cross sections by
considering the asymptotic form of the solution of the Dirac equation. We com-
mence by noting that it is only necessary to know the “large components” of the
Dirac four-component spinor in order to determine the scattering matrix (see, for
example, [171]). Thus if the Dirac four-component spinor, given by (1.244), is writ-
ten in terms of two-component spinors as follows

ψ =
(
ψA

ψB

)
, (1.271)

then we need to only consider the two-component spinor ψA containing the “large
component” pκ(r). In analogy with (1.2), we write the asymptotic form of ψA cor-
responding to a plane wave and outgoing spherical wave as

ψA(x) ∼
r→∞χ 1

2 ms
(σ )eikz+

∑
m′s=± 1

2

χ 1
2 m′s (σ )Mm′s ms (θ, φ)

eikr

r
, ms = ± 1

2 , (1.272)

where we have assumed that the potential V (r) is short range, vanishing faster
than r−1 at large distances. Equation (1.272) then defines the scattering matrix
Mm′s ms (θ, φ), where the wave number k of the scattered electron is related to the
incident electron energy E by (1.266).

In order to determine the scattering matrix, we expand ψA(x) in terms of the
spin–angle functions ηκm(r̂, σ ) ≡ Y

	 1
2 jm(r̂, σ ) defined by (1.245). We write

ψA(x) =
∞∑
	= 0

	+ 1
2∑

j = 	− 1
2

B	j (k)r
−1 p	j (r)Y	 1

2 jms
(r̂, σ ) , (1.273)

where the radial functions p	j (r) can be identified with the radial functions pκ(r)
which satisfy (1.262). Also from (1.264) and (1.265), and the result that A(r) tends
to a constant as r → ∞, it follows that the radial functions p̃κ(r) and hence the
radial functions p	j (r) can be chosen to vanish at the origin and to satisfy the
asymptotic boundary conditions

p	j (r) ∼
r→∞ sin

[
kr − 1

2	π + δ	j (k)
]
, j = 	± 1

2 . (1.274)
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In this equation we have introduced the phase shifts δ	j (k) which depend on j as
well as on 	 because of the κ dependence of Uκ(r) in (1.265).

The scattering amplitudes and cross sections can be obtained, as in Sect. 1.1, by
equating (1.272) with the asymptotic form of (1.273). We first express the incident
plane wave term in (1.272) in terms of the spin–angle function Y

	 1
2 jm . To achieve

this we note from (1.27) that

χ 1
2 ms
(σ )eikz = χ 1

2 ms
(σ )

∞∑
	= 0

(2	+ 1)i	 j	(kr)P	(cos θ) . (1.275)

Using (B.47) and the inverse of (1.245), which from Appendix A.1 is

Y	m(θ, φ)χ 1
2 ms
(σ ) =

	+ 1
2∑

j = 	− 1
2

(
	m	

1
2 ms | jm	 + ms

)
Y
	 1

2 jm	+ms
(r̂, σ ) , (1.276)

enables us to rewrite (1.275) as

χ 1
2 ms
(σ )eikz =

∞∑
	= 0

	+ 1
2∑

j = 	− 1
2

[4π(2	+ 1)]1/2 i	 j	(kr)
(
	0 1

2 ms | jms

)
Y
	 1

2 jms
(r̂, σ ) .

(1.277)
The coefficient B	j (k) in (1.273) is then determined by equating the ingoing wave
terms in (1.273) and (1.277). We find using (1.274) that

B	j (k) = k−1[4π(2	+ 1)]1/2 i	 exp[iδ	j (k)]
(
	0 1

2 ms | jms

)
. (1.278)

The second term on the right-hand side of (1.272) can now be obtained by subtract-
ing (1.277) from the asymptotic form of (1.273). Calling this term ψsc(x) we find
that

ψsc(x) ∼
r→∞

1

2ik

∞∑
	= 0

	+ 1
2∑

j = 	− 1
2

[4π(2	+ 1)]1/2{exp[2iδ	j (k)] − 1}
(
	0 1

2 ms | jms

)

× Y
	 1

2 jms
(r̂, σ )

eikr

r
. (1.279)

The scattering matrix Mm′s ms (θ, φ) is determined by substituting for the spin–angle
function Y

	 1
2 jms

(r̂, σ ) from (1.245) and comparing with (1.272). We obtain
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Mm′s ms (θ, φ) =
1

2ik

∞∑
	= 0

	+ 1
2∑

j = 	− 1
2

[4π(2	+ 1)]1/2 {exp
[
2iδ	j (k)

]− 1
} (
	0 1

2 ms | jms

)

×
(
	ms − m′s 1

2 m′s | jms

)
Y	ms−m′s (θ, φ) . (1.280)

We can write this result as a 2× 2 matrix in spin space using the explicit forms for
the Clebsch–Gordan coefficients and for the spherical harmonics defined in Appen-
dices A and B, respectively. We find that

M(θ, φ) =
(

f (θ) h(θ)e−iφ

−h(θ)eiφ f (θ)

)
, (1.281)

where the direct scattering amplitude f (θ) is given by

f (θ) = 1

2ik

∞∑
	= 0

[
(	+ 1){exp[2iδ

		+ 1
2
(k)] − 1} + 	{exp[2iδ

		− 1
2
(k)] − 1}

]

× P	(cos θ) , (1.282)

and the spin-flip scattering amplitude h(θ) is given by

h(θ) = 1

2ik

∞∑
	=1

{
exp[2iδ

		+ 1
2
(k)] − exp[2iδ

		− 1
2
(k)]

}
P1
	 (cos θ) . (1.283)

We note that if the spin–orbit coupling term in the potential is negligible so that
the interaction potential is the same for j = 	 + 1

2 and j = 	 − 1
2 , then

δ
		+ 1

2
(k) = δ

		− 1
2
(k). The spin-flip amplitude h(θ) then vanishes and the direct

scattering amplitude f (θ) reduces to the familiar form given by (1.29) where
δ	(k) = δ		+ 1

2
(k) = δ

		− 1
2
(k).

We can rewrite the scattering matrix (1.281) in terms of the 2× 2 unit matrix I2
and the Pauli spin matrices given in (1.234) as

M(θ, φ) = f (θ)I2 − ih(θ) sinφ σx + ih(θ) cosφ σy . (1.284)

This expression can be further simplified if we define the (x, z) plane to be the plane
of scattering, with the z-axis being the incident beam direction and the y-axis being
normal to this plane. Then φ = 0 and we obtain

M = f (θ)I2 + ih(θ)σy . (1.285)

If we introduce a unit vector n̂ normal to the scattering plane defined by the incident
and scattered electron vectors ki and kf , respectively, so that
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n̂ = ki × k f

|ki × k f | , (1.286)

then the scattering matrix can be written as

M = f (θ)I2 + ih(θ)σ · n̂ . (1.287)

We note that the scattering matrix M is a scalar and hence is independent of the
particular coordinate system which we have used to obtain it. In fact the expression
given by (1.287) is the most general scalar which can be formed in the case of spin
1
2 particles scattered from a spin zero target under the assumptions of rotational
invariance, time-reversal invariance and parity conservation.

Having determined the scattering matrix, we can now calculate the cross sections.
The differential cross section for a transition from a state denoted by (k,ms) to a
state denoted by (k′,m′s) is

dσm′s ms

dΩ
= |〈χ 1

2 m′s |M|χ 1
2 ms
〉|2 = |Mm′s ms (θ, φ)|2 . (1.288)

If the spin orientation of the final state is not measured, then the differential cross
section for scattering from a pure initial spin state χ 1

2 ms
is

dσms

dΩ
=

∑
m′s =± 1

2

|〈χ 1
2 m′s |M|χ 1

2 ms
〉|2

=
∑

m′s =± 1
2

〈χ 1
2 ms
|M+|χ 1

2 m′s 〉〈χ 1
2 m′s |M|χ 1

2 ms
〉

= 〈χ 1
2 ms
|M+M|χ 1

2 ms
〉 , (1.289)

where M+ is the hermitian conjugate of M. Using (1.287) and the identity

(σ · V1)(σ · V2) = V1 · V2 + iσ · (V1 × V2) , (1.290)

where V1 and V2 are any two vectors, then we find that

dσms

dΩ
= | f (θ)|2 + |h(θ)|2 + i[ f ∗(θ)h(θ)− f (θ)h∗(θ)]
× 〈χ 1

2 ms
|σ · n̂|χ 1

2 ms
〉 . (1.291)

This result can be rewritten as

dσms

dΩ
=
[
| f (θ)|2 + |h(θ)|2

] [
1+ S(θ)Pi · n̂

]
, (1.292)
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where the real function

S(θ) = i
f ∗(θ)h(θ)− f (θ)h∗(θ)
| f (θ)|2 + |h(θ)|2 (1.293)

is called the Sherman function [871] and

Pi = 〈χ 1
2 ms
|σ |χ 1

2 ms
〉 (1.294)

is the initial electron spin polarization vector. Since we are considering a pure initial
spin state we have |Pi | = 1. However, (1.292) remains valid for any degree of
polarization of the incident electron beam where 0 ≤ |Pi | ≤ 1. Spin and relativistic
effects in potential scattering are discussed further by Burke and Joachain [171] and
a discussion of polarization phenomena in atomic collisions using a density matrix
approach has been given by Blum [119]. We refer to these texts for a more detailed
presentation of these phenomena.



Chapter 2
Multichannel Collision Theory

In this chapter we introduce the basic concepts of multichannel collision theory and
we apply this theory for illustrative purposes to non-relativistic electron collisions
with multi-electron atoms and atomic ions. This chapter thus provides an introduc-
tion to our discussion of resonances and threshold behaviour presented in Chap. 3
and to R-matrix theory and applications, presented in Chap. 4 and later chapters
in this monograph. We will be mainly concerned in this chapter with low-energy
elastic scattering and excitation processes. However, we will show in Chap. 6 that
the theory and methods developed in this chapter are the basis of R-matrix meth-
ods which enable accurate excitation and ionization processes to be calculated at
intermediate energies.

We commence our discussion of multichannel collision theory in Sect. 2.1 by
considering the solution of the time-independent Schrödinger equation describing
low-energy electron collisions with multi-electron atoms and atomic ions which
contain N electrons and have nuclear charge number Z . We define the scatter-
ing amplitude in terms of the asymptotic form of the solution of the Schrödinger
equation. The differential and total cross sections are then defined in terms of this
scattering amplitude. In Sect. 2.2 we consider the atomic or ionic target eigenstates
which take part in the collision process. In order to obtain accurate scattering ampli-
tudes and cross sections it is necessary to represent the target by accurate wave
functions. We therefore give a brief overview in this section of representations of
the target eigenstates, used in most practical applications, where electron exchange
and correlation effects are both accurately represented. We also introduce the con-
cept of pseudostates, which enable long-range polarization effects to be accurately
included in low-energy electron–atom collisions. A discussion of the further role of
pseudostates in representing inelastic effects due to excitation of high-lying bound
states and continuum states at incident electron energies close to and above the
ionization threshold is reserved for Chap. 6.

In Sect. 2.3 we turn our attention to the derivation of the close coupling equa-
tions that can yield accurate low- and intermediate-energy solutions of the time-
independent Schrödinger equation describing electron–atom and electron–ion colli-
sions. We commence by showing that the wave function can be expanded in terms
of an antisymmetrized sum over target eigenstates and pseudostates multiplied by
functions representing the motion of the scattered electron. This close coupling

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_2,
C© Springer-Verlag Berlin Heidelberg 2011
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expansion is then substituted into the Schrödinger equation leading to the close
coupling equations which are a set of coupled second-order integrodifferential equa-
tions satisfied by functions representing the radial motion of the scattered electron.
Finally in this section we examine the form of the local and non-local potentials
that occur in these close coupling equations. In Sect. 2.4 we examine the asymptotic
form of the solution of the close coupling equations which enables us to define the
K -matrix which is a generalization of the expression for this quantity in potential
scattering given in Chap. 1. We show that the solution of the close coupling equa-
tions satisfies the Kohn variational principle, and hence the corresponding K -matrix
is correct to second order in the error in the collision wave function. We also show
from general considerations that the K -matrix is real and symmetric. Finally, in
Sect. 2.5 we define the multichannel S- and T -matrices in terms of the K -matrix,
which in turn leads to the derivation of expressions for the differential and total cross
sections. In this section we also summarize the angular momentum transfer formal-
ism, which enables several qualitative features of angular distributions to be simply
understood, and we define the collision strength and the effective collision strength
which have been widely used in plasma physics and astrophysics applications.

2.1 Wave Equation and Cross Section

We illustrate multichannel collision theory in this chapter by considering non-
relativistic low-energy elastic and inelastic electron collisions with multi-electron
atoms and atomic ions represented by the equation

e− + Ai → A j + e−, (2.1)

where Ai and A j are the initial and final bound states of the target. The time-
independent Schrödinger equation satisfied by the wave function Ψ describing pro-
cess (2.1) is

HN+1Ψ = EΨ, (2.2)

where HN+1 is the non-relativistic Hamiltonian defined in atomic units by

HN+1 =
N+1∑
i=1

(
−1

2
∇2

i −
Z

ri

)
+

N+1∑
i> j=1

1

ri j
(2.3)

and E is the total energy. It then follows that (2.2) and (2.3) describe the collision
of an electron with an atom or atomic ion containing N electrons and with nuclear
charge number Z , where we limit ourselves in this chapter to low Z atomic targets
so that relativistic effects are negligible. In (2.3) we have taken the origin of coor-
dinates to be the target nucleus, which we assume has infinite mass. Also ∇2

i is the
Laplacian operator defined in spherical polar coordinates in Appendix B.3 and we
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have written ri j =
∣∣ri − r j

∣∣ where ri and r j are the vector coordinates of the i th
and j th electrons.

In order to define the scattering amplitude and cross sections we first rewrite
HN+1 in terms of the target Hamiltonian HN as follows:

HN+1 = HN − 1

2
∇2

N+1 −
Z

rN+1
+

N∑
i=1

1

ri N+1
, (2.4)

where HN is defined by (2.3) with N + 1 replaced by N . We next introduce a set of
target eigenstates, and possibly pseudostates, Φi , and their corresponding energies
ei which satisfy the equation

〈Φi |HN |Φ j 〉 = eiδi j , (2.5)

where the integration in this equation is carried out over the space and spin coordi-
nates of the N target electrons. We then look for the solution of (2.2) corresponding
to the process represented by (2.1), where an electron in spin state χ 1

2 mi
collides

with a target atom or ion in state Φi and is scattered into spin state χ 1
2 m j

, leaving
the atom or ion in state Φj allowed by the conservation relations, where the z-axis
is chosen to lie along the incident beam direction. The asymptotic form of the wave
function in the case of a neutral target where N = Z is then

Ψi ∼
r→∞Φiχ 1

2 mi
exp(iki z)+

∑
j

Φ jχ 1
2 m j

f ji (θ, φ)
exp(ik jr)

r
, (2.6)

where r , θ and φ are the radial and spherical polar coordinates of the scattered
electron and where f j i (θ, φ) is the scattering amplitude for a transition from state
Φiχ 1

2 mi
to state Φ jχ 1

2 m j
corresponding to the scattering angles θ , φ. The direction

of spin quantization is usually taken to be the incident beam direction and the wave
numbers ki and k j , for the incident and scattered electrons, are related to the total
energy E of the system and to the target eigenenergies ei and e j by the equation

E = ei + 1

2
k2

i = e j + 1

2
k2

j . (2.7)

The outgoing wave term in (2.6) contains contributions from all target states that
are energetically allowed, that is for which k2

j ≥ 0. The remaining states, for which

k2
j < 0, can only occur virtually during the collision process. These virtual states

play an important role when the scattered electron lies within the target charge cloud
and we will see that they can give rise to resonances in the collision process.

If the incident electron energy is high enough then continuum states of the target
can be excited and contribute to the asymptotic form in (2.6). These terms corre-
spond to ionizing collisions. We will consider this possibility in Sect. 3.3.5 when
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we discuss the threshold behaviour of ionization and in Chap. 6 when we discuss
intermediate-energy electron–atom collisions.

We also note that when the target is an atomic ion, logarithmic phase factors
must be included in the exponentials in (2.6) to allow for the long-range distortion
caused by the Coulomb potential. This introduces no essential complications so we
will not consider these factors further here, but will return to consider their effect on
the cross section in Sect. 2.5.

The differential cross section for a transition from an initial atomic state Φi to
a final atomic state Φj , with the scattered electron spin magnetic quantum num-
ber changing from mi to mj and its wave number changing from ki to k j , can be
obtained by calculating the incident and scattered fluxes in (2.6). We obtain

dσ j i

dΩ
= k j

ki

∣∣ f j i (θ, φ)
∣∣2 (2.8)

in units of a2
0/steradian, where a0 is the Bohr radius of the hydrogen atom in its

ground state. The total cross section is then obtained by averaging over the initial
spin states, summing over the final spin states and integrating over all scattering
angles.

2.2 Target Eigenstates and Pseudostates

In order to calculate the wave function Ψ in (2.2) describing the collision process
and hence the scattering amplitude and cross sections we must first consider how
the target eigenstates, and possibly pseudostates, Φj , are represented in the theory.
In this section we give a brief overview of the representations that are adopted for
these target states in non-relativistic electron–atom and electron–ion collision cal-
culations.

2.2.1 Target Eigenstates

For multi-electron atoms and ions, the target eigenstates are not known exactly.
Hence in most electron collision calculations they are written as configuration inter-
action expansions in terms of sums over an orthonormal set of target basis configu-
rations φi in the form

Φ j (XN ) =
∑

i

φi (XN )ci j , (2.9)

as discussed by Hartree [445], Froese Fischer et al. [346, 349], Hibbert [465] and
Cowan [233]. In this equation XN ≡ x1, . . . , xN , where xi ≡ riσi , i = 1, . . . , N ,
represent the space and spin coordinates of the N target electrons and the expan-
sion coefficients ci j are obtained by diagonalizing the target Hamiltonian in (2.5) in
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this basis. These calculations can be carried out using one of a number of atomic
multiconfiguration atomic structure programs, which we refer to in Sect. 5.1.1. We
assume in the following discussion that the atomic orbitals for each orbital angular
momentum are constrained to be orthogonal, corresponding to most atomic struc-
ture and collision programs. However, we observe that non-orthogonal orbitals are
finding increasing use in atomic structure and collision calculations considered in
later chapters.

The basis configurations φi in (2.9) are constructed from N one-electron orbital
and spin functions which have the form

un	m	mi (r, σ ) = r−1 Pn	(r)Y	m	 (θ, φ)χ 1
2 mi
(σ ), (2.10)

where the reduced radial orbitals Pn	(r) satisfy the orthonormality relations

∫ ∞
0

Pn	(r)Pn′	(r)dr = δnn′, (2.11)

for each orbital angular momentum 	. Also Y	m	 (θ, φ) are spherical harmonics,
which are defined and discussed in Appendices B.3 and B.4, and χ 1

2 mi
(σ ) are elec-

tron spin eigenfunctions. In the absence of relativistic terms in the Hamiltonian, the
orbital and spin angular momenta of the one-electron functions are coupled together
to yield completely antisymmetrized configurations, which are eigenfunctions of the
square of the total N -electron target orbital and spin angular momentum operators
L2 and S2 and their z-components Lz and Sz as well as the total target parity opera-
tor π . We can write these basis configurations more explicitly as

φi (XN ) ≡ φi (1sN1i 2sN2i 2pN3i . . . βi Li Si MLi MSiπi |XN ), (2.12)

where the N ji are the occupation numbers of the target shells, which satisfy

∑
j

N ji = N , all i. (2.13)

Also in (2.12), βi denotes the coupling of the target shells, Li and Si are the total
target orbital and spin angular momentum quantum numbers, MLi and MSi are the
corresponding magnetic quantum numbers in some preferred direction and πi is the
total target parity quantum number. Each target eigenstate Φj involves a summation
over basis configurations φi that have the same total orbital, spin and parity quantum
numbers but differ in the occupation numbers or the coupling. We can thus write
these target eigenstates more explicitly as

Φj (α j L j S j ML j MS jπ j |XN ), (2.14)

where the quantity α j serves to distinguish different target states with the same total
target orbital, spin and parity quantum numbers.
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The basis configurations in (2.9) usually include the Hartree–Fock configuration
of the target ground state or a low-lying excited state. Hence the reduced radial
orbitals Pn	(r) include the self-consistent field (SCF) orbitals. Additional “physical
orbitals” are then included to represent the other target states of interest in the cal-
culation and possibly further “pseudo-orbitals” are included to represent additional
correlation and polarization effects. These orbitals are either expressed in analytical
form as a sum of Slater-type orbitals (STOs) defined by

Pn	(r) =
∑

j

b j
(2ξ j )

k j+1/2√
(2k j )!

rk j exp(−ξ j r), (2.15)

where k j ≥ 	+1 and the coefficients b j , k j and ξ j depend on n and 	, or the orbitals
are tabulated at a grid of points.

As an example, we consider the target eigenstates that have been adopted in
several studies of low-energy electron collisions with Be-like ions C2+ and O4+.
In this case electron collisional excitation cross sections between the following six
target eigenstates are important in many applications (see, for example, [97])

1s22s2 1Se; 1s22s2p 3Po, 1Po; 1s22p2 3Pe, 1De, 1Se. (2.16)

Accurate low-energy excitation cross sections can then be obtained using the follow-
ing physical orbitals and pseudo-orbitals in the representation of the target eigen-
states

1s, 2s, 2p, 3s, 3p, 3d, (2.17)

where we distinguish the 3s, 3p and 3d pseudo-orbitals from the 1s, 2s and 2p phys-
ical orbitals by placing a bar over the pseudo-orbitals.

The target eigenstates are constructed by diagonalizing the target Hamiltonian
matrix, defined in (2.5), in the basis of configurations defined by (2.9). These con-
figurations are constructed from the physical and pseudo-orbitals assuming that the
1s orbital remains doubly occupied. Configurations where one or two electrons are
excited out of the 1s orbital correspond to high-energy excitations which are not
important in low-energy electron collisions. A list of configurations that can be
constructed from the orbital basis defined by (2.17) for each target eigenstate is
given in Table 2.1, where we find it convenient to put these configurations into cat-
egories depending on whether zero, one or two electrons are excited from physical
to pseudo-orbitals.

The choice of the physical and pseudo-orbitals is not unique and care must be
taken in choosing them. One appropriate choice is to take the 1s and 2s orbitals to
be the Hartree–Fock orbitals from the 1s22s2 1Se ground state and the 2p orbital
to be the Hartree–Fock orbital from the 1s22s2p 3Po first excited state. The 3s, 3p
and 3d pseudo-orbitals, which are orthogonal to the physical orbitals with the same
angular symmetry, can then be chosen to optimize the energies of the remaining



2.2 Target Eigenstates and Pseudostates 63

Table 2.1 Configuration basis which represent the lowest six Be-like ion target eigenstates

Target state Zero-electron One-electron Two-electron
symmetry excitations excitations excitations

1Se 1s22s2 1s22s3s 1s23s
2

1s22p2 1s22p3p 1s23p
2

1s23d
2

3Po,1Po 1s22s2p 1s22s3p 1s23s 3p
1s22p3s 1s23p 3d
1s22p3d

3Pe 1s22p2 1s22p3p 1s23p
2

1s23d
2

1De 1s22p2 1s22s3d 1s23s 3d

1s22p3p 1s23p
2

1s23d
2

four excited states in (2.16). If we assume that the target eigenstates Φj in (2.9) are
expanded in terms of zero-electron and one-electron excitation configurations from
Table 2.1, then the six target eigenstates in (2.16) are expanded as follows:

Φ1 =
[
c111s22s2 + c211s22p2 + c311s22s3s+ c411s22p3p

]
1Se,

Φ2 =
[
c121s22s2p+ c221s22s3p+ c321s22p3s+ c421s22p3d

]
3Po,

Φ3 =
[
c131s22s2p+ c231s22s3p+ c331s22p3s+ c431s22p3d

]
1Po,

Φ4 =
[
c141s22p2 + c241s22p3p

]
3Pe,

Φ5 =
[
c151s22p2 + c251s22s3d+ c351s22p3p

]
1De,

Φ6 =
[
c161s22p2 + c261s22s2 + c361s22s3s+ c461s22p3p

]
1Se, (2.18)

where the dominant configuration is the first configuration in the list in each case.
The coefficients defining the pseudo-orbitals in (2.15) can be determined by mini-
mizing the energies of the excited states defined by (2.18) using an atomic structure
program (e.g. [464], or an equivalent program). For example, the 3s pseudo-orbital
could be chosen to allow for the difference of the 2s orbital in the 1s22s2 1Se ground
state and in the 1s22s2p 3Po and 1s22s2p 1Po excited states. Thus the 3s pseudo-
orbital coefficients could be optimized on a linear combination of the 1s22s2p 3Po

and 1s22s2p 1Po excited state energies. Also the 3p pseudo-orbital could be chosen
to allow for the difference of the 2p orbital in the 1s22s2p 3Po first excited state
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and in the 1s22p2 3Pe and 1s22p2 1Se excited states. Thus the 3p pseudo-orbital
coefficients could be optimized on a linear combination of the 1s22p2 3Pe and
1s22p2 1Se excited state energies. Finally, the 3d pseudo-orbital coefficients could
be optimized on the 1s22p2 1De excited state energy.

We see from Table 2.1 that in addition to the zero-electron and one-electron exci-
tation configurations, which we included in expansions (2.18) of the target eigen-
states, we could also include two-electron excitation configurations. This would
improve the target eigenstates by including additional electron–electron correlation
effects. However, it is important to ensure that the correlation effects included in
the target states balance those included in the collision wave function in order to
obtain accurate collision results. We will see in Chap. 6, where we discuss elec-
tron collisions at intermediate energies, that the inclusion of two-electron excitation
configurations in the collision wave function can give rise to unphysical or pseudo-
resonances at these energies. We will therefore defer further discussion of this point
until that chapter.

2.2.2 Target Pseudostates

In certain circumstances determination of target states which are not eigenstates
of the target Hamiltonian is required to obtain accurate electron–atom collision
cross sections. These states, which are usually called pseudostates, are found to be
particularly useful in low-energy electron–atom and electron–molecule collisions,
where the long-range polarization potential gives an important contribution to the
cross section. We will see in Chaps. 6 and 11 that target pseudostates can also be
used to represent the ionization continuum in electron–atom and electron–molecule
collisions at intermediate energies.

For an atom in a non-degenerate S-state, the long-range polarization potential
has the asymptotic form

Vp(r) ∼
r→∞−

α

2r4
, (2.19)

where the quantity α which appears in this equation is the dipole polarizability. This
is defined by the expression (see [243])

α = 2
∑

k

∫ |〈Φ0|DN |Φk〉|2
ek − e0

dk, (2.20)

where the summation and integration in this equation are taken over all target eigen-
statesΦk , including the continuum, which are coupled to the ground stateΦ0 by the
dipole operator

DN =
N∑

i=1

zi , (2.21)
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and where the eigenenergies ek are defined by

ek = 〈Φk |HN |Φk〉. (2.22)

It was shown by Castillejo et al. [205] that in the case of electron collisions with
atomic hydrogen in its ground state, 65.8% of the dipole polarizability comes from
including the 2p state in expansion (2.20) while 81.4% of the dipole polarizability
comes from the sum over all bound states, the remaining 18.6% coming from the
continuum terms in the expansion. In this case, Damburg and Karule [245] showed
that a p-wave pseudostate denoted by 2p enables expansion (2.20) to be replaced by
a single term. This polarized pseudostate has the same range as the 1s ground state
orbital and has the reduced radial form

P2p(r) =
(

8

129

)1/2 (
2r2 + r3

)
e−r . (2.23)

The corresponding pseudostate energy ep, defined by

ep = 〈Φ p|HN |Φ p〉, (2.24)

has the value −7/86 a.u., where Φ p is the pseudostate wave function. Clearly this
energy is not an eigenenergy of the target Hamiltonian. However, if this polarized
pseudostate, as well as the ground target eigenstate, is included in the close coupling
expansion of the collision wave function, as discussed in Sect. 2.3 and Chaps. 5
and 6, then the full long-range part of the polarization potential given by (2.19) is
represented in the collision process. Elastic e−–H collision calculations including
this pseudostate were first carried out at energies below the 2s and 2p excitation
threshold by Burke et al. [177].

In the case of multi-electron atoms and atomic ions, the polarized pseudostates,
like the target eigenstates, cannot be written down exactly. In this case a variational
principle [166, 167, 941] can be used to calculate these pseudostates. We consider
the following inhomogeneous equation for the unnormalized pseudostate Φ̃ p

(HN − e0)Φ̃
p = DNΦ0. (2.25)

This equation has the formal solution

|Φ̃ p〉 =
∑

k

∫ 〈Φk |DN |Φ0〉
ek − e0

|Φk〉 dk, (2.26)

where the spectral representation of the Green’s function (HN − e0)
−1 has been

used, which involves a summation over the discrete spectrum and an integration
over the continuum spectrum of HN . Substituting (2.26) into (2.20) then gives

α = 2〈Φ0|DN |Φ̃ p〉. (2.27)
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In order to write this equation in the form of (2.20) containing a single term we
normalize Φ̃ p by introducing the constant n p defined by

n p = 〈Φ̃ p|Φ̃ p〉. (2.28)

The normalized pseudostate Φ p is then given by

Φ p = n−1/2
p Φ̃ p. (2.29)

Substituting this result into (2.27) then gives

α = 2n1/2
p 〈Φ0|DN |Φ p〉. (2.30)

The final step is to eliminate n1/2
p from this equation. To do this we project (2.25)

onto Φ̃ p yielding

〈Φ̃ p |HN − e0| Φ̃ p〉 = 〈Φ̃ p |DN |Φ0〉, (2.31)

which gives, after using (2.29)

n1/2
p 〈Φ p |HN − e0|Φ p〉 = 〈Φ p |DN |Φ0〉. (2.32)

Substituting this result for n1/2
p into (2.30) then gives

α = 2
|〈Φ0|DN |Φ p〉|2

ep − e0
, (2.33)

where the energy ep of the polarized pseudostate is given by (2.24). If we include
the ground state Φ0 and the polarized pseudostate Φ p in the close coupling expan-
sion of the wave function describing electron collisions with atomic hydrogen, as
discussed in Sect. 2.3 and Chaps. 5 and 6, then the full long-range part of the dipole
polarization potential given by (2.19) is represented in the collision process. In this
way we have replaced the summation and integration in the expression for the dipole
polarizability given by (2.20) by a single pole term given by (2.33).

The problem of calculating polarized pseudostates for complex targets reduces to
solving the inhomogeneous equation (2.25) to obtain Φ̃ p and then normalizing this
solution using (2.29) to give the required polarized pseudostate Φ p. We can solve
(2.25) by introducing a trial function Φ̃ p

t and considering the variational functional

J [Φ̃ p
t ] = 〈Φ̃ p

t |HN − e0| Φ̃ p
t 〉 − 2〈Φ̃ p

t |DN |Φ0〉. (2.34)

The first-order variation δ J of the functional J with respect to small variations δΦ̃ p
t

in the trial function Φ̃ p
t is
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δ J [Φ̃ p
t ] = 2〈δΦ̃ p

t |HN − e0| Φ̃ p
t 〉 − 2〈δΦ̃ p

t |DN |Φ0〉, (2.35)

which is zero when Φ̃ p
t is an exact solution of (2.25). We construct a trial function

in analogy with the target eigenstates given by (2.9), by expanding Φ̃ p
t in terms

of a sum of orthonormal basis configurations φ̃ j with the appropriate symmetry as
follows:

Φ̃
p
t (XN ) =

m∑
j=1

φ̃ j (XN )b j . (2.36)

Substituting this expansion into (2.34) and varying the coefficients b j leads to the
system of m linear simultaneous equations

m∑
j=1

(〈φ̃i |HN | φ̃ j 〉 − e0δi j
)

b j = 〈φ̃i |DN |Φ0〉, i = 1, . . . ,m, (2.37)

which can be solved to yield the coefficients b j , and hence Φ̃ p
t and the normalized

polarized pseudostate Φ p can be constructed.
Also we see from (2.34) that the second-order variation δ2 J [Φ̃ p

t ] satisfies

δ2 J [Φ̃ p
t ] = 〈δΦ̃ p

t |HN − e0| δΦ̃ p
t 〉 ≥ 0, (2.38)

since e0 is the lowest eigenvalue of HN so that HN−e0 is a positive definite operator.
Hence the minimum value of J is obtained when Φ̃ p

t is the exact solution of (2.25).
Further at the minimum Jmin of J we have

Jmin = 〈Φ̃ p |HN − e0| Φ̃ p〉 − 2〈Φ̃ p |DN |Φ0〉
= −〈Φ̃ p |DN |Φ0〉 (2.39)

= −1

2
α,

which follows from (2.25), (2.27) and (2.34). Hence in constructing the polarized
pseudostate it is possible to improve this state by varying the radial orbitals used in
the definition of the basis configurations in (2.36) to minimize J or to maximize α.

As an example of the above theory we consider the calculation of the polarized
pseudostate required to represent low-energy elastic electron collisions with neon.
In this case a reasonably good approximation for the elastic collision process is
obtained by representing the neon ground state by the Hartree–Fock 1s22s22p6 1Se

configuration and the polarized pseudostate, which has 1Po symmetry, by a linear
combination of the following basis configurations:

1s22s22p5 js 1Po, j = 1, . . . , n,

1s22s22p5 jd 1Po, j = 3, . . . , n,

1s2 2s 2p6 jp 1Po, j = 2, . . . , n. (2.40)



68 2 Multichannel Collision Theory

The additional polarized pseudo-orbitals js, jp and jd must satisfy the usual
orthonormality relations given by (2.11) but are not physical. Indeed, like the 2p
orbital representing the polarized pseudostate in atomic hydrogen given by (2.23),
their range is determined by the range of the ground state of the target atom whose
polarizability they are representing rather than by the range of the excited states.
In a study carried out by Burke and Mitchell [166], the js, jp and jd polarized
pseudo-orbitals were expanded in terms of basis orbitals with the following reduced
radial form:

Pj	(r) =
n∑

i=	+1

ai j	 r i e−βr . (2.41)

In this equation, β is a range parameter and the coefficients ai j	 were chosen so that
these pseudo-orbitals were orthogonal to the 1s, 2s and 2p Hartree–Fock orbitals
of the same angular symmetry and orthonormal to each other. Equation (2.37) was
then solved for a series of values of this range parameter. Figure 2.1 shows the
variation of the dipole polarizability with the range parameter β for three expansions
including all configurations in (2.40) with n = 4, 5 and 6, respectively. For example,
when n = 4 six basis configurations corresponding to the pseudo-orbitals 3s, 4s,
3p, 4p, 3d and 4d are retained in expansion (2.36). Also shown in Fig. 2.1 is the
experimental value of the dipole polarizability determined from experimental data
by Dalgarno and Kingston [242]. As the number of terms in the basis increases the
curves become flatter and converge towards the experimental value. However, this
calculation does not give a rigorous lower bound on the exact dipole polarizability
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Fig. 2.1 The variation of the dipole polarizability with the range parameter β in expansion (2.41)
compared with experiment for neon. The curves are labelled by the value of n defined by (2.40)
(modified from Fig. 2 in [166])
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since an exact target ground state was not used. Polarized pseudostates of this type
have been used in electron–neon elastic scattering calculations by Blum and Burke
[120] and Fon and Berrington [327].

The above theory can be modified in a straightforward way so that pseudostates
can be calculated which represent higher multipole polarizabilities of the target and
also which represent the dipole polarizabilities of excited states of the target. In
addition, pseudostates can be chosen which allow in an average way for the loss of
flux into the infinite number of high-lying Rydberg states and continuum states of
the target, thus representing ionization in electron–atom collisions. We will discuss
the construction and application of such pseudostates when we consider electron–
atom collisions at intermediate energies in Chap. 6.

2.3 Close Coupling Equations

In the previous section we showed how accurate wave functions can be obtained
for the target eigenstates and pseudostates which occur in electron collisions with
multi-electron atoms or atomic ions. We turn our attention in this section to the
determination of the electron–atom or electron–ion collision wave function Ψ that
satisfies the non-relativistic Schrödinger equation (2.2). In Sect. 2.3.1 we review the
foundations of the method which involves the solution of a set of “close coupling
equations” also known as “coupled ID equations” which enables accurate excitation
and ionization cross sections to be determined at low and intermediate energies.
Then in Sect. 2.3.2 we describe the explicit form of the close coupling equations
which must be solved in practical calculations.

2.3.1 Foundations of the Method

The foundations of methods for solving the Schrödinger equation (2.2) to obtain
accurate elastic scattering, excitation and ionization cross sections for low- and
intermediate-energy electron–atom and electron–ion collisions were laid by Massey
and Mohr [642, 643] and Mott and Massey [665]. They introduced the following
“close coupling” expansion of the total wave function describing electron collisions
with an N -electron atom or atomic ion

Ψ (XN+1) =
∑

i

∫
Φi (XN )Fi (xN+1), (2.42)

where XN+1 ≡ x1, . . . , xN+1 and where xi ≡ riσi , i = 1, . . . , N + 1, represent
the space and spin coordinates of the N+1 electrons. The summation in (2.42) goes
over the bound target eigenstates and the integration goes over the continuum target
eigenstates, which are described by Φi (XN ), and the functions Fi (xN+1) describe
the corresponding motion of the scattered electron. We now substitute expansion
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(2.42) into the Schrödinger equation (2.2) and project onto the target eigenstates
Φi (XN ) to yield the following infinite set of coupled second-order partial differen-
tial equations satisfied by the functions Fi (xN+1)

(∇2 + k2
i )Fi (xN+1) = 2

∑
j

∫
Vi j (xN+1)Fj (xN+1). (2.43)

Here k2
i is defined by (2.5) and (2.7) and the potential matrix Vi j (xN+1) is

defined by

Vi j (xN+1) = 〈Φi (XN )

∣∣∣∣∣
N∑

i=1

1

ri N+1
− Z

rN+1

∣∣∣∣∣Φ j (XN )〉, (2.44)

where the integration in this matrix element goes over the space and spin coordinates
of the N target electrons.

Although the solution of Schrödinger’s equation (2.2) given by (2.42) and (2.43)
in principle gives an accurate description of the collision, one question which arises
is how can electron exchange, which is implicit in the theory, be calculated. The
importance of exchange is well known in many applications, for example in “for-
bidden transitions” between the 1s22s22p2 3Pe, 1De and 1Se terms of O III (O2+)
which give rise to prominent lines in the spectra of many gaseous nebulae and active
galactic nuclei [709]. On examining expansion (2.42) we see that electron exchange
arises from the continuum terms in the expansion. In this case the incident electron
labelled N + 1 is captured into a bound eigenstate and one of the target electrons
labelled 1, . . . , N is ejected into a continuum state. While this process can be cal-
culated using perturbation theory the resultant cross section can be significantly in
error (e.g. [77]). On the other hand, the corresponding solution of the coupled equa-
tions (2.43) gives rise to difficulties owing to singularities which occur in integration
over the continuum terms in the expansion corresponding to electron exchange. In
nuclear structure and collisions these singularities were avoided in early work by
Wheeler [960, 961], by expanding the total wave function in antisymmetric res-
onating groups of nucleons. We now discuss how these difficulties are resolved in
electron–atom multichannel collision theory.

In electron–atom collisions the difficulties owing to singularities arising in the
continuum due to electron exchange were overcome in a fundamental paper by
Seaton [848], who extended the Hartree–Fock equations for bound states, in which
electron exchange is treated using explicitly antisymmetric wave functions, to the
treatment of continuum states. In this paper expansion (2.42) is replaced by the close
coupling expansion

Ψ (XN+1) = A
∑

i

Φi (XN )Fi (xN+1), (2.45)
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where the summation in this equation is now restricted to a finite number of bound
antisymmetric target eigenstates Φi (XN ) which satisfy (2.5). In addition A is the
antisymmetrization operator which ensures that each term in expansion (2.45) is
antisymmetric with respect to interchange of the space and spin coordinates of any
pair of the N + 1 electrons. We find that A is defined by

A = (N + 1)−1/2

(
1−

N∑
i=1

Pi N+1

)
, (2.46)

where Pi N+1 is the operator which interchanges the space and spin coordinates of
electrons labelled i and N + 1. It follows that the total wave function Ψ (XN+1)

defined by (2.45) is antisymmetric with respect to interchange of the space and spin
coordinates of any pair of the N+1 electrons, in accordance with the Pauli exclusion
principle.

Following Burke and Seaton [164], we consider first the uniqueness of the solu-
tion defined by (2.45) and (2.46). In the case where N = 1, corresponding to elec-
tron collisions with hydrogenic targets, (2.45) becomes, after using (2.46),

Ψ (x1, x2) = 1√
2

∑
i

[Φi (x1)Fi (x2)−Φi (x2)Fi (x1)] . (2.47)

We now write

Fi (x) = Fi (x)+
∑

j

bi jΦ j (x), (2.48)

where the summation in this equation goes over the same set of bound target eigen-
statesΦi (x)which are retained in (2.47). In this way we have defined a new function
Fi (x) for any given set of coefficients bi j . Substituting (2.48) into the right-hand
side of (2.47) then gives

Ψ (x1, x2) = 1√
2

∑
i

[
Φi (x1)Fi (x2)−Φi (x2)Fi (x1)

]

+ 1√
2

∑
i j

Φi (x1)Φ j (x2)(bi j − b ji ). (2.49)

We see that if

bi j = b ji , (2.50)

then the second summation on the right-hand side of (2.49) vanishes and hence
the wave function Ψ (x1, x2) is unaltered by the transformation defined by (2.48).
It follows that the functions Fi (x) defined by (2.48) are not unique and that
different functions defined by this equation will yield the same wave function
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Ψ (x1, x2) provided that the coefficients bi j satisfy the symmetry relations given
by (2.50).

On the other hand, the asymptotic form of the functions Fi (x) is unique since the
bound target eigenstates Φi (x) retained in (2.47) vanish asymptotically. Hence the
scattering amplitudes and cross sections which are determined from the asymptotic
form of the functions Fi (x) are not modified by transformation (2.48).

We now consider three different procedures for choosing the coefficients bi j in
(2.48):

i. We may use expansion (2.47) without introducing explicit conditions which suf-
fice to define Fi (x) uniquely. This may lead to loss of accuracy in the numerical
solution of the coupled integrodifferential equations, which we will see below
are satisfied by the functions Fi (x).

ii. We may introduce conditions which are sufficient to define the functions Fi (x)
uniquely, but which do not change the form of (2.47). Thus, for example, we
could impose the orthogonality conditions

〈Φi |Fj 〉 = 0, i ≤ j, (2.51)

where we list the states in some definite order. This procedure has been widely
discussed [161, 164, 289, 848] and was shown by Norcross [692] to improve
the accuracy of the numerical integrations.

iii. We may impose the orthogonality conditions

〈Φi |Fj 〉 = 0, all i, j, (2.52)

and replace (2.47) by

Ψ (x1, x2) = 1√
2

∑
i

[Φi (x1)Fi (x2)−Φi (x2)Fi (x1)]

+ 1√
2

∑
i≤ j

[
Φi (x1)Φ j (x2)−Φi (x2)Φ j (x1)

]
ci j . (2.53)

We then have to solve for the functions Fi (x) and for the coefficients ci j , subject
to the orthogonality conditions (2.52). This method has the advantage of being
easy to generalize to the case of electron collisions with atoms and ions contain-
ing many electrons and has been adopted in many recent theoretical develop-
ments, which we discuss in Sect. 2.3.2 and in Chap. 5.

Returning to (2.45), we now substitute this expansion into the Schrödinger
equation (2.2) and project onto the target eigenstatesΦi to yield the following set of
coupled second-order integrodifferential equations, satisfied by the functions Fi (x)

(∇2 + k2
i )Fi (x) = 2

∑
j

[
Vi j (x)Fj (x)+

∫
Ki j (x, x′)Fj (x′)dx′

]
. (2.54)
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In this equation the potential matrix elements Vi j (x) coupling the target states are the
same as in (2.43) and the new exchange kernel Ki j (x, x′) arises from the operator
Pi N+1 in (2.46) and gives rise to electron exchange in the collision. The solution of
(2.54) now yields both the direct and exchange scattering amplitudes for transitions
between the target states Φi retained in the original expansion (2.45).

However, we observe that an exact solution of these coupled equations will not
yield an exact solution of the original Schrödinger equation (2.2) because of the
truncation of expansion (2.45) to a finite number of bound target eigenstates. In
many cases of interest, involving transitions between strongly coupled low-energy
eigenstates, the resultant solution will be accurate. However, the omission from
the expansion of an infinite number of bound target eigenstates lying close to the
ionization threshold, as well as all the continuum target eigenstates can lead to sub-
stantial errors for some transitions, particularly for incident-electron energies close
to and above the ionization threshold, often referred to as “intermediate energies”.
In addition, since the continuum eigenstates are omitted from expansion (2.45), the
possibility of determining ionization resulting from the excitation of these contin-
uum eigenstates is not included in the calculation.

We now consider a straightforward extension of the close coupling expansion
(2.45) which has enabled accurate ionization cross sections as well as excitation
cross sections to be determined at intermediate energies. We observed in Sect. 2.2.2
that an effective way of representing the long-range polarization potential, where
a substantial contribution to this potential comes from intermediate target eigen-
states lying in the continuum, is to introduce a quadratically integrable polarized
pseudostate which has a substantial overlap with the continuum. This pseudostate
replaces the usual integral expression for the dipole polarizability, given by (2.20),
by a single pole term, given by (2.33). In an analogous way, including a finite num-
ber of discrete quadratically integrable target pseudostates in the expansion has been
found to be an effective way of representing the continuum in electron collisions.
In this approach the eigenstate close coupling expansion (2.45) is replaced by the
following “close coupling with pseudostates” expansion suggested by Burke and
Schey [160]

Ψ (XN+1) = A
∑

i

Φi (XN )Fi (xN+1)+A
∑

i

Φ
p
i (XN )Gi (xN+1). (2.55)

The first summation in this equation goes over a finite number of bound target eigen-
states Φi (XN ), as in (2.45), and the second summation goes over a finite number of
suitably chosen quadratically integrable target pseudostates Φ p

i (XN ) representing
the highly excited and continuum target eigenstates. The functions Fi (x) and Gi (x)
represent the corresponding motion of the scattered electron. The pseudostates are
chosen to be orthogonal to the bound target eigenstates retained in the first expansion
in (2.55) and to diagonalize the target Hamiltonian HN as follows:

〈Φ p
i |HN |Φ p

j 〉 = ep
i δi j , (2.56)
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where the pseudostate energies ep
i partially span the energy range, including the con-

tinuum, which is omitted from the first expansion. Substituting expansion (2.55) into
the Schrödinger equation (2.2) and projecting onto the target eigenstates Φi (XN )

and onto the target pseudostates Φ p
i (XN ) then yields a set of coupled second-order

integrodifferential equations satisfied by the functions Fi (x) and Gi (x) which have
the same form as (2.54).

We will consider in detail the choice and role of pseudostates in the close cou-
pling expansion when we discuss electron collisions at low and intermediate ener-
gies in Chaps. 5 and 6, respectively. We will see in these chapters that approaches
based on the close coupling with pseudostates expansion, including the R-Matrix
with PseudoStates (RMPS) method, introduced by Bartschat et al. [70, 71] and dis-
cussed in Sect. 6.2, and the convergent close coupling (CCC) method, introduced
by Bray and Stelbovics [126–128] and reviewed in Sect. 6.1, yield accurate cross
sections over a wide range of electron collision energies.

2.3.2 Derivation of the Close Coupling Equations

We now turn our attention to determine the explicit form of the close coupling equa-
tions which must be solved in practical calculations. We first observe that in order
to minimize the computational effort we must use the symmetry of the Hamiltonian
to separate these equations into uncoupled blocks, corresponding to the conserved
quantum numbers, which can be solved independently. In addition, in order to make
the solution of these coupled equations tractable for electron collisions with multi-
electron atoms and ions, a partial wave analysis must also be carried out. In this way
we obtain sets of coupled second-order integrodifferential equations which are sat-
isfied by the wave functions representing the radial motion of the scattered electron.
We will then examine the detailed form of these close coupling equations including
the local direct and the non-local exchange and correlation potentials that arise. In
this way we provide the basis of the R-matrix theory approach for solving these
equations which we will discuss in Chap. 5.

Following Burke [159] the required close coupling with pseudostates expansion,
which replaces (2.55), has the following form for each set of conserved quantum
numbers represented by Γ

Ψ Γj E (XN+1) = A
n∑

i=1

Φ
Γ

i (XN ; r̂N+1σN+1)r
−1
N+1 FΓi j (rN+1)

+
m∑

i=1

χΓ
i (XN+1)c

Γ
i j , (2.57)

where j labels the linearly independent solutions of the Schrödinger equation (2.2),
which we will discuss in detail in Sect. 2.4 when we consider the asymptotic bound-
ary conditions satisfied by the functions FΓi j (rN+1). The conserved quantum num-
bers represented by Γ in (2.57) correspond to the eigenvalues of the complete set of
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operators which commute with the Hamiltonian. In the case of the non-relativistic
Hamiltonian defined by (2.3) these conserved quantum numbers are given by

Γ ≡ α L S ML MS π, (2.58)

where L and S are the total orbital and spin angular momentum quantum numbers,
ML and MS are the corresponding magnetic quantum numbers in some preferred
direction z, π is the total parity quantum number and α represents any further
quantum numbers which are conserved in the collision. Also, the channel functions

Φ
Γ

i (XN ; r̂N+1σN+1) in (2.57) are obtained by coupling the target eigenstates and
pseudostates retained in the expansion with the spin–angle functions of the scattered
electron to form eigenfunctions of the square of the total orbital and spin angular
momentum operators L2 and S2 and their z-components as well as the parity oper-
ator π . Hence the channel functions can be written as follows:

Φ
Γ

i (XN ; r̂N+1σN+1) =
∑

MLi m	i

∑
MSi mi

(Li MLi 	i m	i |L ML)

× (Si MSi
1
2 mi |SMS)Φi (XN )

× Y	i m	i
(θN+1, φN+1)χ 1

2 mi
(σN+1), (2.59)

where Φi (XN ) are the antisymmetric target eigenstates and pseudostates, discussed
above, Y	i m	i

(θN+1, φN+1) are spherical harmonics, defined in Appendix B.3,
which describe the angular motion of the scattered electron, χ 1

2 mi
(σN+1) are elec-

tron spin functions which describe the spin motion of the scattered electron and
(abcd|e f ) are Clebsch–Gordan coefficients defined in Appendix A.1. Returning to
(2.57), the reduced radial functions FΓi j (rN+1) describe the radial motion of the

scattered electron in the i th channel and the χΓi (XN+1) are quadratically integrable
functions which vanish at large distances from the nucleus. These quadratically
integrable functions are usually constructed from the same set of physical and
pseudo-orbitals used to construct the target eigenstates and pseudostates Φi (XN )

and are antisymmetric with respect to interchange of the space and spin coordinates
of any pair of the N + 1 electrons. We discuss the reasons for the inclusion of
these quadratically integrable functions in the expansion of the wave function below.
Finally, the antisymmetrization operator A defined by (2.46) ensures that the total
wave function is explicitly antisymmetric with respect to interchange of the space
and spin coordinates of any pair of the N +1 electrons, in accordance with the Pauli
exclusion principle.

We observe that in order to obtain accurate scattering amplitudes we must
include in the first expansion on the right-hand side of (2.57) all the target states of
physical interest. By this we mean that we must include both the initial and final
target eigenstates corresponding to the scattering amplitude of interest, as well as all
other target eigenstates that are expected to play an important role as intermediate
states in the transitions of interest. In particular, if one term of a target configuration
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is included in this expansion then all other terms corresponding to this configuration
are normally strongly coupled to this configuration and should also be included.
For example, if we are considering electron collisions with atomic oxygen in its
1s22s22p4 3Pe ground state, then the other 1s22s22p4 1De and 1s22s22p4 1Se terms
corresponding to this ground state configuration will be strongly coupled and must
also be included to obtain accurate results. We may also need to include pseudostates
in this expansion, either to accurately represent polarization effects at low energies,
as discussed in Sect. 2.2.2, or to represent the highly excited and continuum states
of the target in order to obtain accurate excitation and ionization cross sections at
intermediate energies, as discussed later in this section and in Chap. 6.

The second expansion on the right-hand side of (2.57), over the quadratically
integrable functions χΓi (XN+1), is included for two reasons. First, as discussed in
Sect. 2.3.1, the reduced radial functions FΓi j (r) are in many calculations constrained
to be orthogonal to the physical orbitals and pseudo-orbitals with the same angular
symmetry which are used in the construction of the target statesΦi (XN ). For exam-
ple, in electron collisions with atomic oxygen the p-wave reduced radial function is
constrained to be orthogonal to the 2p orbital in the target. However, this constraint
means that the 1s22s22p5 2Po configuration, which plays an important role as an
intermediate state in 2Po electron collisions with the 1s22s22p4 3Pe, 1De and 1Se

target states, is not represented in the first expansion. This configuration must there-
fore be included in the second expansion for completeness, to ensure that the 2Po

collision wave function represents this possibility. This example also re-emphasizes
the importance of including all three target state terms belonging to the 1s22s22p4

configuration in the first expansion in (2.57), since they are strongly coupled through
the 1s22s22p5 2Po intermediate quadratically integrable function and their omission
would lead to inconsistencies, including the appearance of low-energy pseudoreso-
nances in the cross sections, as pointed out by Gorczyca et al. [398].

The second reason for including quadratically integrable functions in the sec-
ond expansion in (2.57) is to represent short-range electron–electron correlation
effects, which may be difficult to represent accurately by including a finite expan-
sion over target states and pseudostates in the first expansion in (2.57). In the
case of one-electron targets, such as H and He+, highly accurate electron collision
phase shifts and cross sections have been obtained at low energies by Schwartz
[838, 839], Burke and Taylor [162] and Armstead [24], by taking the terms in the
second expansion to be Hylleraas-type functions. In the case of multi-electron tar-
gets these correlation effects are usually included by the introduction of additional
contracted pseudo-orbitals with approximately the same range as the Hartree–Fock
orbitals used to construct the target wave functions, but with more nodes. Additional
(N + 1)-electron quadratically integrable functions, constructed from the physical
orbitals and the pseudo-orbitals, must then be included in the second expansion in
(2.57) for consistency. Finally, we note that the inclusion of quadratically integrable
functions in the second expansion in (2.57), to represent short-range electron–
electron correlation effects, gives rise to unphysical pseudoresonances at intermedi-
ate energies. We discuss the role of these pseudoresonances later in this section and
in Chap. 6.
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We now derive coupled second-order integrodifferential equations satisfied by
the reduced radial functions FΓi j (rN+1) in (2.57). These equations are obtained by

substituting the representation for ΨΓj E (XN+1) given by (2.57) into the Schrödinger

equation (2.2) and projecting onto the channel functions Φ
Γ

i , defined by (2.59) and
onto the quadratically integrable functions χΓi (XN+1). In this way we obtain the
following set of n + m coupled equations

〈r−1
N+1Φ

Γ

i (XN ; r̂N+1σN+1)|(HN+1 − E)|ΨΓj E (XN+1)〉′ = 0, i = 1, . . . , n,
(2.60)

and

〈χΓi (XN+1)|(HN+1 − E)|ΨΓj E (XN+1)〉 = 0, i = 1, . . . ,m, (2.61)

subject to the orthogonality constraints

〈FΓi j (r)|Pns	i (r)〉 = 0, all ns . (2.62)

The prime on the Dirac bracket in (2.60) and later equations means that the inte-
gration is carried out over the space and spin coordinates of all N + 1 electrons
except the radial coordinate rN+1 of the scattered electron. In (2.61) the integration
is carried out over the space and spin coordinates of all N + 1 electrons. Finally,
the orthogonality constraints (2.62) are required to ensure that the reduced radial
functions FΓi j (r) are orthogonal to all the physical and pseudo-orbitals Pns	i (r) of
the same angular symmetry 	i , which are used to construct the target states retained
in expansion (2.57), as discussed above.

We now eliminate the expansion coefficients cΓi j in (2.57) between (2.60) and
(2.61), by substituting the expression for these coefficients obtained from (2.61) into
(2.60). After writing the Hamiltonian HN+1 in terms of HN using (2.4), we find that
the reduced radial functions FΓi j (r) satisfy the following set of n coupled second-
order integrodifferential equations which are called the “close coupling equations”
or “coupled ID equations”

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z − N )

r
+ k2

i

)
FΓi j (r)

= 2
n∑

i ′=1

{
V Γi i ′ (r)F

Γ
i ′ j (r)+

∫ ∞
0

[
WΓ

i i ′(r, r
′)+ XΓi i ′(r, r

′)
]

FΓi ′ j (r
′)dr ′

}

+
∑
ns

λins j Pns	i (r), i = 1, . . . , n. (2.63)

In (2.63) 	i is the orbital angular momentum of the scattered electron, k2
i is the wave

number squared of the scattered electron, V Γi i ′ (r), WΓ
i i ′(r, r

′) and XΓi i ′(r, r
′) are the

local direct, non-local exchange and non-local correlation potentials, respectively,
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λins j are Lagrange multipliers which are chosen so that the orthogonality constraints
defined by (2.62) are satisfied and j labels the linearly independent solutions of
these equations.

After writing HN+1 in terms of HN using (2.4), we find that the channel wave
numbers squared k2

i in (2.63) are given by

k2
i = 2

(
E − eΓi

)
, i = 1, . . . , n, (2.64)

where the channel energies eΓi are defined by

eΓi = 〈r−1
N+1Φ

Γ

i (XN ; r̂N+1σN+1)|HN |r−1
N+1Φ

Γ

i (XN ; r̂N+1σN+1)〉,
i = 1, . . . , n, (2.65)

where the channel functions Φ
Γ

i are defined by (2.59). The local direct potential
V Γi i ′ (r) in (2.63), which arises from the direct terms in the first expansion in (2.57),
has the explicit form

V Γi i ′ (rN+1) = 〈r−1
N+1Φ

Γ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣
N∑

k=1

1

rk N+1
− N

rN+1

∣∣∣∣∣
× r−1

N+1Φ
Γ

i ′ (XN ; r̂N+1σN+1)〉′, i, i ′ = 1, . . . , n, (2.66)

where the term −N/rN+1 is included in this definition so that the long-range
Coulomb potential in electron collisions with atomic ions is included on the left-
hand side of (2.63). The non-local exchange potential WΓ

i i ′(r, r
′) in (2.63), which

arises from the exchange terms in the first expansion in (2.57) has the explicit
form:

WΓ
i i ′(rN+1, rN ) = −N 〈r−1

N+1Φ
Γ

i (x1, . . . , xN ; r̂N+1σN+1)

∣∣∣∣ 1

rN N+1

∣∣∣∣
× r−1

N+1Φ
Γ

i ′ (x1, . . . , xN−1, xN+1; r̂NσN )〉′′,
i, i ′ = 1, . . . , n, (2.67)

where the double prime on the Dirac bracket means that the integration is carried out
over the space and spin coordinates of all N + 1 electrons except the radial coordi-
nates rN+1 and rN of the incident and scattered electrons. Finally, the non-local
correlation potential XΓi i ′(r, r

′) in (2.63) arises from the quadratically integrable
functions χΓi (XN+1) in expansion (2.57). We can choose these functions without
approximation to diagonalize HN+1 as follows:

〈χΓk (XN+1)|HN+1|χΓk′ (XN+1)〉 = Ekδkk′ , k, k′ = 1, . . . ,m. (2.68)
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We then define the radial functions

UΓ
ik (rN+1) = 〈r−1

N+1Φ
Γ

i (XN ; r̂N+1σN+1) |(HN+1 − E)|χΓk (XN+1)〉′,
i = 1, . . . , n, k = 1, . . . ,m. (2.69)

The elimination of expansion coefficients cΓi j in (2.57) between (2.60) and (2.61)
then yields the following expression for the correlation potential:

XΓi i ′(rN+1, rN ) = −
m∑

k=1

UΓ
ik (rN+1)

1

Ek − E
UΓ

i ′k(rN ), i, i ′ = 1, . . . , n. (2.70)

Explicit forms for the potentials V Γi i ′ (r), WΓ
i i ′(r, r

′) and XΓi i ′(r, r
′) have been given

in a few simple cases, for example, for e− – H collisions by Percival and Seaton
[726] and for electron collisions with atoms or ions with open 2pq and 3pq shells by
Henry et al. [455]. However, it is not feasible or necessary to write down the explicit
form of these potentials for electron collisions with general atoms and atomic ions.
Instead, they are constructed as part of R-matrix computer programs for solving the
close coupling equations (2.63) that we refer to in Sect. 5.1.1. Numerical methods
for solving (2.63) have been discussed by Burke and Seaton [164] and the R-matrix
approach for their solution will be presented in Chap. 5.

Nevertheless, certain general statements can be made about the form of potentials
V Γi i ′ (r), WΓ

i i ′(r, r
′) and XΓi i ′(r, r

′) which are important in understanding the physical
properties of the solution of the close coupling equations (2.63). First, we observe
that the phases of the angular integrals in (2.66), (2.67) and (2.69) can be chosen so
that these potentials are real. Also, it follows from these equations that the potentials
satisfy the following symmetry relations:

V Γi i ′ (r) = V Γi ′i (r), WΓ
i i ′(r, r

′) = WΓ
i ′i (r

′, r), XΓi i ′(r, r
′) = XΓi ′i (r

′, r),
i, i ′ = 1, . . . , n. (2.71)

These reality and symmetry conditions follow from the time-reversal invariance and
hermiticity of the Hamiltonian which we will see in Sects. 2.4 and 2.5 lead to the
reality and symmetry of the K -matrix and to the unitarity and symmetry of the
S-matrix.

We also mention here some further properties of the potentials V Γi i ′ (r), WΓ
i i ′(r, r

′)
and XΓi i ′(r, r

′). We will see when we discuss Feshbach projection operator the-
ory of resonances in Sect. 3.2.5 that we can divide Hilbert space spanned by the
eigensolutions of the Schrödinger equation into two mutually orthogonal spaces
by two projection operators P and Q, where the “optical potential” corresponding
to scattering in Q-space is represented by the sum of pole terms in the expression
defined by (3.108). We can relate Feshbach theory directly to the close coupling with
pseudostates expansion (2.57), where P-space corresponds to the space spanned by
those target states in this expansion which give rise to channels which are open at
the energy under consideration, while Q-space corresponds to the remaining target



80 2 Multichannel Collision Theory

states and pseudostates in this expansion, together with the quadratically integrable
functions representing short-range electron–electron correlation effects included in
the second expansion in (2.57). It is important to emphasize that the quadratically
integrable functions included to remove the orthogonality constraints imposed on
the radial functions FΓi j (rN+1) in (2.57) must be regarded as part of P-space and
must therefore be carefully chosen for this purpose, as discussed by Gorczyca et al.
[398]. As a result of this choice of P- and Q-spaces, we will show in our discussion
of Feshbach projection operator theory that the poles in the optical potential give rise
to resonances. Also, since the resonances arise from pseudostates and quadratically
integrable functions representing the effect of physical states not explicitly included
in the first expansion, they are unphysical pseudoresonances and the corresponding
T -matrix must be averaged over energy to obtain physically meaningful results at
intermediate energies. We will consider this averaging procedure in the context of
intermediate energy collisions in Chap. 6.

We consider next the asymptotic form of the direct potential V Γi i ′ (r) defined by
(2.66). This potential can be simplified at large distances using (B.49) which can be
written as

1

rk N+1
=

∞∑
λ = 0

rλ<
rλ+1
>

Pλ(cos θk N+1), (2.72)

where θk N+1 is the angle between the unit vectors r̂k and r̂N+1, Pλ(x) is a Legendre
polynomial and r< and r> are the smaller and larger of the two scalar distances
rk and rN+1. We now observe that the integral over rk, k = 1, . . . , N in (2.66)
involves the target states and pseudostates Φi (XN ) and Φi ′(XN ), retained in the
original expansion (2.57) which vanish exponentially at large rk . Hence we can
choose a value of the radial distance, say a0, beyond which all the target states and
pseudostates are effectively zero. The corresponding contributions to the integrals
over rk > a0, k = 1, . . . , N in (2.66) are then zero. It follows that when the
scattered electron coordinate rN+1 ≥ a0, then rλ</r

λ+1
> in (2.72) can be replaced by

rλk /r
λ+1
N+1. Hence (2.66) can be rewritten as

V Γi i ′ (r) =
λmax∑
λ=1

αΓi i ′λr
−λ−1, r ≥ a0, i, i ′ = 1, . . . , n, (2.73)

where the long-range potential coefficients αΓi i ′λ are defined by

αΓi i ′λ = 〈r−1
N+1Φ

Γ

i (XN ; r̂N+1σN+1)|
N∑

k=1

rλk Pλ(cos θk N+1)|

× r−1
N+1Φ

Γ

i ′ (XN ; r̂N+1σN+1)〉′, i, i ′ = 1, . . . , n,

λ = 1, . . . , λmax. (2.74)
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We derive an explicit expression for these coefficients in Appendix D.1; see (D.12)
and (D.21).

The leading term in the expansion of the potential matrix V Γi i ′ (r) in inverse pow-
ers of r behaves as r−2 since we remember that we have included the Coulomb
potential (Z − N )/r between the scattered electron and the target on the left-hand
side of (2.63). The upper limit λmax in the summation over λ in (2.73) results from
the triangular relations satisfied by the angular momentum quantum numbers which
arise in the integral in (2.74). We will see in Chaps. 3 and 5 that the long-range
potentials given by (2.73) play a crucial role in many low-energy electron–atom
collision cross sections. In particular, the leading dipole potential terms behaving as
r−2, which from (2.74) can be seen to couple target states between which optically
allowed transitions occur, give rise in second order to the long-range polarization
potential defined by (2.19) and (2.20). Also, we will see in Sect. 3.3.2 that the
long-range dipole potential which couples degenerate or almost degenerate target
states of neutral atoms gives rise to resonances which lie below the thresholds for
exciting these degenerate states. It follows that these long-range potentials must
be accurately represented in any computational approach which is adopted in the
low-energy electron collision region.

Finally we consider the asymptotic forms of the non-local exchange and corre-
lation potentials WΓ

i i ′(r, r
′) and XΓi i ′(r, r

′) in (2.63). We see from the definition of
WΓ

i i ′(r, r
′), given by (2.67), that its behaviour as r →∞ and r ′ → ∞ is determined

by the asymptotic behaviour of the channel functions Φ
Γ

i (x1, . . . , xN ; r̂N+1σN+1)

and Φ
Γ

i ′ (x1, . . . , xN−1, xN+1; r̂NσN ), respectively. It then follows from (2.59),
defining these functions in terms of the target states and pseudostates, that the first
channel function vanishes exponentially as rN →∞ and the second as rN+1 →∞.
Hence WΓ

i i ′(r, r
′) vanishes exponentially as r →∞ or as r ′ → ∞. In a similar way

we can see from the definition of XΓi i ′(rN+1, rN ), given by (2.70), that its behaviour
as rN → ∞ and rN+1 → ∞ is determined by the asymptotic behaviour of the
radial functions UΓ

i ′k(rN ) and UΓ
ik (rN+1), respectively. It then follows from (2.69),

defining these radial functions, that the first radial function vanishes exponentially
as rN →∞ and the second as rN+1 →∞. Hence XΓi i ′(r, r

′) vanishes exponentially
as r →∞ or as r ′ → ∞. We then find that the radius a0 where V Γi i ′ (r) achieves its
asymptotic form given by (2.73) can also be chosen so that

WΓ
i i ′(r, r

′) � 0, XΓi i ′(r, r
′) � 0, r ≥ a0 or r ′ ≥ a0. (2.75)

The close coupling equations (2.63) then reduce to coupled second-order differential
equations given by

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z − N )

r
+ k2

i

)
FΓi j (r)

= 2
n∑

i ′=1

λmax∑
λ=1

αΓi i ′λr
−λ−1 FΓi ′ j (r), r ≥ a0, i = 1, . . . , n, (2.76)
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which can be solved in a straightforward way in the region r ≥ a0 to yield the
K -matrix, S-matrix and cross sections as discussed in Sects. 2.4 and 2.5. This result
is of crucial importance in the development of the R-matrix approach for solving
the coupled integrodifferential equations (2.63) which we discuss in Chap. 5.

We conclude this section by considering, as an example, the number of coupled
channels and quadratically integrable functions which arise in the close coupling
expansion (2.57) for electron collisions with Be-like ions. We consider the example
where the six target eigenstates given by (2.16) are retained in the close coupling
expansion (2.57), where these target eigenstates are represented by (2.18) in terms
of three physical orbitals and three pseudo-orbitals 1s, 2s, 2p, 3s, 3p and 3d.

We give in Table 2.2 the orbital angular momenta 	i of the scattered electron
which are coupled to each of these six target states for total spin S = 1/2 and for
each L and π combination with L ≤ 4. We also give the total number of channels
which are coupled to these target states for each L and π combination. We see that
the number of coupled channels for L ≥ 2 equals 10 when π = (−1)L and equals
6 when π = (−1)L+1. We also note that if the total spin S = 3/2, then only the
two triplet target states 1s22s2p 3Po and 1s22p2 3Pe are coupled where the orbital
angular momenta li of the coupled channels are given by the corresponding rows in
Table 2.2.

We next consider the quadratically integrable functions which must be included
in expansion (2.57) for electron collisions with Be-like ions. We give in Table 2.3
the number of quadratically integrable functions included for total spin S = 1/2
and for each L and π combination with L ≤ 4, where we assume that the 1s orbital
remains doubly occupied and a maximum of one electron is excited to one of the

Table 2.2 Orbital angular momenta 	i of the scattered electron coupled to each of the target eigen-
states defined by (2.16) for electron collisions with Be-like ions for S = 1/2 and for each L and
π combination with L ≤ 4. Also given in this table are the corresponding total number of coupled
channels
L 0 1 2 3 4 0 1 2 3 4

π (−1)L (−1)L+1

1s22s2 1Se 0 1 2 3 4 − − − − −

1s22s2p 3Po 1 0,2 1,3 2,4 3,5 − 1 2 3 4

1s22s2p 1Po 1 0,2 1,3 2,4 3,5 − 1 2 3 4

1s22p2 3Pe − 1 2 3 4 1 0,2 1,3 2,4 3,5

1s22p2 1De 2 1,3 0,2,4 1,3,5 2,4,6 − 2 1,3 2,4 3,5

1s22p2 1Se 0 1 2 3 4 − − − − −

No. coupled
channels 5 9 10 10 10 1 5 6 6 6
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Table 2.3 Number of quadratically integrable functions corresponding to configurations that can
be formed from the physical orbitals and pseudo-orbitals, given by (2.17), with a maximum of one
electron in a pseudo-orbital, for electron collisions with Be-like ions for S = 1/2 and for each L
and π combination with L ≤ 4

L 0 1 2 3 4 0 1 2 3 4

π (−1)L (−1)L+1

1s22s22p − 1 − − − − − − − −
1s22s2p2 1 − 1 − − − 1 − − −
1s22p3 − 1 − − − − − 1 − −
1s22s23s 1 − − − − − − − − −
1s22s23p − 1 − − − − − − − −
1s22s23d − − 1 − − − − − − −
1s22s2p3s − 2 − − − − − − − −
1s22s2p3p 2 − 2 − − − 2 − − −
1s22s2p3d − 2 − 2 − − − 2 − −
1s22p23s 1 − 1 − − − 1 − − −
1s22p23p − 3 − 1 − 1 − 2 − −
1s22p23d 1 − 3 − 1 − 2 − 2 −
Total no.
of functions 6 10 8 3 1 1 6 5 2 0

3s, 3p or 3d pseudo-orbitals. These quadratically integrable functions are those that
must be retained in expansion (2.57) to ensure that the orthogonality constraints
defined by (2.62), which we assume are applied, do not lead to incompleteness in
the target orbital basis. As an example of one entry in Table 2.3, we observe that
the 1s22p23p configuration gives rise to the following three quadratically integrable
functions

1s22p2 3Pe 3p 2Po, 1s22p2 1De 3p 2Po, 1s22p2 1Se 3p 2Po, (2.77)

which must be included in expansion (2.57) for L = 1, S = 1/2 and π = −1.
In our discussion of the target eigenstates in Sect. 2.2.1, we observed that

in addition to zero-electron and one-electron excitation configurations we could
also include two-electron excitation configurations which would improve the target
eigenstates. However, in order to balance the correlation effects in the target and
the collision wave functions we would also have to include two-electron excitation
configurations in the collision wave function which would give rise to quadrati-
cally integrable functions with two electrons in pseudo-orbitals. While the inclusion
of these additional configurations usually give improved collision results at low
energies they will also give rise to unphysical pseudo-resonances at intermediate
energies, close to and above the ionization threshold, which have to be energy
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averaged to give reliable scattering amplitudes and cross sections. We will return
to this question in Chap. 6 when we discuss electron collisions with multi-electron
atoms and ions at intermediate energies.

Finally, we observe that the quadratically integrable configurations included in
Table 2.3 do not contribute to L , S and π combinations with L ≥ 5. This is an
example of a general result that quadratically integrable configurations, which are
defined in terms of target physical and pseudo-orbitals, only contribute to low L
collisions. Hence the correlation potential XΓi i ′(r, r

′) in (2.63) does not contribute at
high L . Also, while the non-local exchange potential WΓ

i i ′(r, r
′) in (2.63) is in prin-

ciple non-zero for all L , its contribution to the scattering amplitude and cross section
becomes negligible compared with the contribution from the local direct potential
V Γi i ′ (r) for large L . This is because for large L the repulsive angular momentum
term −	i (	i + 1)/r2 in (2.63) ensures that the scattered electron does not appre-
ciably penetrate the internal region, and hence it only experiences the long-range
contribution from the direct potential on the right-hand side of (2.76). This result
also has implications for methods of solution of the close coupling equations (2.63)
for large L , where the repulsive angular momentum term causes the contribution
from the direct potential to become small and hence the Born approximation for the
scattering amplitude and cross section becomes applicable, as discussed in Sect. 2.4.

2.4 K -Matrix and Kohn Variational Principle

In this section we consider the asymptotic form of the solution of the close coupling
equations (2.63) as r →∞. In this limit, we have seen that the local direct potential
V Γi i ′ (r) has the asymptotic form given by (2.73) and the non-local exchange and
correlation potentials WΓ

i i ′(r, r
′) and XΓi i ′(r, r

′) vanish exponentially so that (2.63)
reduces to (2.76). We first generalize the expression for the K -matrix given in
Sect. 1.1 for potential scattering to multichannel collisions considered in this and
later chapters. We then show that the exact solution of (2.63) satisfies the Kohn
variational principle [542] and we derive a Born series expansion for the K -matrix.
Finally, we show that the Kohn variational principle enables a corrected K -matrix to
be obtained from an approximate solution of (2.63) where this K -matrix is correct
to second order in the error in the collision wave function.

We commence our discussion by ordering the target eigenstates and pseudostates
retained in expansion (2.57), so that their energies ei defined by (2.5) are in increas-
ing order. It then follows from (2.64) and (2.65) that when the total energy E is real
the square of the channel wave numbers ki are real and satisfy

k2
1 ≥ k2

2 ≥ · · · ≥ k2
n . (2.78)

The equalities in this expression arise either because some of the target states
included in expansion (2.57) are degenerate or because more than one channel

function Φ
Γ

i in expansion (2.57) corresponds to a given target state, as is the
case when the target orbital angular momentum Li in (2.59) is non-zero (see, for
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example, Table 2.2). We now assume that at the total energy E of interest, the first
na channels are open (i.e. have k2

i ≥ 0) so that the corresponding reduced radial
functions FΓi j (r) in (2.57) and (2.63) are oscillatory or linear as r →∞ and the last

nb channels are closed (i.e. have k2
i < 0) so that the corresponding reduced radial

functions FΓi j (r) in (2.57) and (2.63) vanish as r →∞. Hence

na + nb = n, (2.79)

where the quantities na and nb depend on the total energy E . We see that when E is
greater than all the energies eΓi defined by (2.65), the channels are all open so that
na = n and nb = 0. On the other hand, when E is less than all the energies eΓi , the
channels are all closed, so that na = 0 and nb = n, corresponding to a bound state
of the electron–atom or electron–ion system.

In order to define the asymptotic boundary conditions satisfied by the reduced
radial wave functions FΓi j (r) we must consider the second index j on these func-
tions. As we have already mentioned in Sect. 2.3.2, this second index labels the
linearly independent solutions of the n close coupling equations (2.63) satisfied by
the functions FΓi j (r). It follows from the general theory of linear coupled second-
order differential equations that n coupled equations have in general 2n linearly
independent solutions. However, the requirement that the total wave function must
be normalizable near the origin implies that

FΓi j (r) ∼r→0
ni j r

	i+1, i = 1, . . . , n, all j, (2.80)

where ni j are normalization factors. Hence the reduced radial functions vanish at the
origin. The n conditions (2.80) reduce the number of physical linearly independent
solutions from 2n to n. We will see below that when some of the channels are closed,
so that nb > 0, the number of linearly independent solutions is further reduced
to n − nb = na . The second index j is thus required to label these na linearly
independent solutions.

We consider first the situation where all channels are open, so that na = n. The
asymptotic boundary conditions satisfied by the n linearly independent solutions of
(2.63), which reduce to (2.76) asymptotically, can be written in analogy with (1.71)
in potential scattering in the form

FΓi j (r) ∼r→∞k−1/2
i

[
sin θi (r)δi j + cos θi (r)K

Γ
i j

]
, i, j = 1, . . . , n. (2.81)

The quantity θi (r) in (2.81) is defined in analogy with (1.58) and (1.59) by

θi (r) = kir − 1

2
	iπ − ηi ln 2kir + σ	i , i = 1, . . . , n, (2.82)

where

ηi = − Z − N

ki
, i = 1, . . . , n (2.83)
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and

σ	i = argΓ (	i + 1+ iηi ), i = 1, . . . , n, (2.84)

for electron collisions with atoms or ions with N electrons and nuclear charge num-
ber Z . The factor k−1/2

i in (2.81), normalizes the ingoing spherical wave to unit flux
which we will see below means that the n × n-dimensional K -matrix KΓi j , defined
by the asymptotic boundary conditions (2.81), is symmetric.

When nb channels are closed then the corresponding terms sin θi (r) and
cos θi (r), i = na + 1, . . . , n in (2.81) diverge exponentially asymptotically. This
follows from (2.64) since k2

i < 0, i = na+1, . . . , n, and hence ki is pure imaginary.
Such divergent solutions are physically inadmissible since they are not normaliz-
able. Hence they must be eliminated by combining together the n linearly indepen-
dent solutions FΓi j (r), j = 1, . . . , n in (2.81). Since there are nb divergent terms to
be eliminated we are left with na = n − nb linearly independent physical solutions
which are finite at infinity. We choose these na solutions of (2.63) to satisfy the
asymptotic boundary conditions

FΓi j (r) ∼r→∞ k−1/2
i

[
sin θi (r)δi j + cos θi (r)K

Γ
i j

]
, i, j = 1, . . . , na,

FΓi j (r) ∼r→∞ 0, i = na + 1, . . . , n, j = 1, . . . , na . (2.85)

Equations (2.85) define a reduced na × na-dimensional K -matrix KΓi j which con-
nects the na open channels.

Also, since the potentials V Γi i ′ (r), WΓ
i i ′(r, r

′) and XΓi i ′(r, r
′) in the close coupling

equations (2.63) are real and the normalization factors ni j in (2.80) can be chosen
to be real, then the solutions FΓi j (r) are real. It follows that all the quantities in the
asymptotic boundary conditions (2.81) or (2.85) are real and hence the K -matrix
must be real. We will show below that the na × na-dimensional K -matrix is also
symmetric.

We now derive the multichannel Kohn variational principle for the K -matrix
satisfied by the solutions of (2.63). We consider the following integral taken over
the space and spin coordinates of all N + 1 electrons

IΓj j ′ =
∫
ΨΓ

∗
j E (XN+1)(HN+1 − E)Ψ Γj ′E (XN+1)dXN+1, (2.86)

where the solutions ΨΓj E and ΨΓj ′E are defined by (2.57). We find that

IΓj j ′ =
∫ ∞

0

n∑
i=1

n∑
i ′=1

FΓi j (r)

{
−1

2

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z − N )

r
+ k2

i

)

× FΓi j ′(r)δi i ′ + V Γi i ′ (r)F
Γ
i ′ j ′(r)

+
∫ ∞

0

[
WΓ

i i ′(r, r
′)+ XΓi i ′(r, r

′)
]

FΓi ′ j ′(r
′)dr ′

}
dr, j, j ′ = 1, . . . , na, (2.87)
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where we have used the same procedure that we adopted to reduce (2.60), (2.61),
(2.62) and (2.63). In (2.87) the subscripts j and j ′ label the linearly independent
solutions, and in the following discussion we assume there are na open channels so
that the K -matrix has dimensions na × na . Also in (2.87) the local direct poten-
tial V Γi i ′ (r) and the non-local exchange and correlation potentials WΓ

i i ′(r, r
′) and

XΓi i ′(r, r
′) are defined by (2.66), (2.67) and (2.70), respectively. In (2.87), and in

the following analysis, we find it convenient not to impose the orthogonality con-
straints, defined by (2.62). This means that the Lagrange multiplier terms in (2.63)
and the additional quadratically integrable functions, which would otherwise need
to be included in expansion (2.57) for completeness, are no longer required although
the K -matrix, which is defined by the asymptotic form of the wave function, will be
unaltered.

It is convenient to rewrite the integral, defined by (2.87), using Dirac bracket
notation as follows:

IΓ = 〈FΓ |LΓ |FΓ 〉, (2.88)

so that the close coupling equations (2.63) can be written in the following matrix
form

LΓ FΓ (r) = 0. (2.89)

Hence IΓ = 0 when FΓ (r) is an exact solution of (2.89). It follows that IΓ is an
na × na-dimensional matrix, LΓ is an n × n-dimensional integrodifferential matrix
operator and FΓ (r) is an n×na-dimensional solution matrix satisfying the boundary
conditions

FΓ (r) ∼
r→0

0,

FΓ (r) ∼
r→∞ k−1/2 [sin θ(r)+ cos θ(r)KΓ

]
, (2.90)

corresponding to (2.80) and (2.85). Also in (2.90), we have only considered the
non-vanishing asymptotic components of FΓ (r) so that k, θ(r) and KΓ are na×na-
dimensional matrices where both k and θ(r) are diagonal.

We now consider variations in IΓ due to arbitrary small variations δFΓ (r) about
the exact solution of (2.89) satisfying the boundary conditions (2.90) where the
variations satisfy the boundary conditions

δFΓ (r) ∼
r→0

0,

δFΓ (r) ∼
r→∞ k−1/2 cos θ(r)δKΓ . (2.91)

The corresponding first-order variation in IΓ is then

δIΓ = 〈δFΓ |LΓ |FΓ 〉 + 〈FΓ |LΓ |δFΓ 〉, (2.92)
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which after using (2.89) becomes

δIΓ = 〈FΓ |LΓ |δFΓ 〉 . (2.93)

We can evaluate the right-hand side of (2.93) by rewriting LΓ in the form

LΓ = DΓ +OΓ , (2.94)

where DΓ is the second-order differential operator term − 1
2 Id2/dr2 in LΓ and OΓ

represents the remaining terms in LΓ . It follows from the reality and symmetry
relations (2.71) satisfied by the potentials, that OΓ is real and symmetric so that

〈FΓ |OΓ |δFΓ 〉 = 〈OΓ FΓ |δFΓ 〉 . (2.95)

Hence using (2.89), (2.94) and (2.95), we find that (2.93) reduces to

δIΓ = 〈FΓ |DΓ |δFΓ 〉 − 〈DΓ FΓ |δFΓ 〉 . (2.96)

Integrating the terms on the right-hand side of (2.96) by parts then yields

δIΓ = −1

2

{[
FΓ (r)

]T d

dr
δFΓ (r)−

[
d

dr
FΓ (r)

]T

δFΓ (r)

}r =∞

r = 0

, (2.97)

where the superscript T means transpose. The surface terms in (2.97) can be evalu-
ated using the boundary conditions (2.90) and (2.91) satisfied by FΓ (r) and δFΓ (r)
at r = 0 and∞ giving

δIΓ = 1

2
δKΓ . (2.98)

Hence we obtain the Kohn variational principle for the K -matrix [542]

δ

(
IΓ − 1

2
KΓ
)
= 0, (2.99)

which is satisfied by the exact solution of (2.89). This equation is the multichannel
generalization of the result obtained in potential scattering given by (1.212).

It follows from the above analysis that since the potential operator OΓ in (2.94)
is real and symmetric then KΓ is a real symmetric na×na-dimensional matrix. The
K -matrix thus depends on na(na + 1)/2 real parameters, where na is the number of
open channels.

We can extend this result to obtain an integral expression for the K -matrix. We
consider the variation of the solution δFΓ (r) corresponding to a variation in the
operator δLΓ . Equation (2.89) then becomes

(
LΓ + δLΓ ) [FΓ (r)+ δFΓ (r)] = 0. (2.100)
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After using (2.89), (2.100) formally reduces to

LΓ δFΓ (r) = −δLΓ FΓ (r)− δLΓ δFΓ (r)
= −δLΓ FΓ (r)+ δLΓ 1

LΓ + δLΓ δL
Γ FΓ (r)

= δMΓ FΓ (r) , (2.101)

where δMΓ is obtained by expanding
(
LΓ + δLΓ )−1

yielding

δMΓ = −δLΓ + δLΓ 1

LΓ
δLΓ − δLΓ 1

LΓ
δLΓ

1

LΓ
δLΓ + · · · . (2.102)

Hence we obtain from (2.101)

〈FΓ |LΓ |δFΓ 〉 = 〈FΓ |δMΓ |FΓ 〉 . (2.103)

Substituting for the left-hand side of (2.103) from (2.93) and (2.98) we then obtain

δKΓ = 2〈FΓ |δMΓ |FΓ 〉. (2.104)

It follows from (2.102) that (2.104) is an exact integral expression relating the
variation δKΓ in the K -matrix KΓ to the variation δLΓ in the integrodifferential
operator LΓ .

We can choose the variation δLΓ to correspond to the sum of the direct, exchange
and correlation potentials in (2.63), that is

δLΓ = UΓ ≡ VΓ +WΓ + XΓ . (2.105)

Equation (2.100) can then be rewritten as

(
LΓ0 + UΓ

) [
FΓ0 (r)+ δFΓ (r)

] = 0, (2.106)

where LΓ0 is the diagonal differential operator on the left-hand side of (2.63) corre-
sponding to pure Coulomb scattering in the absence of the potential UΓ , FΓ0 (r) is
the corresponding diagonal Coulomb solution defined by the boundary conditions
(2.90) with KΓ = 0 and δFΓ (r) is the variation in the solution caused by the poten-
tial UΓ . It follows from (2.104) that the K -matrix corresponding to the operator
(LΓ0 + UΓ ) is

KΓ = 2〈FΓ0 |MΓ |FΓ0 〉 , (2.107)
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where MΓ is formally defined by the expression

MΓ = −UΓ + UΓ
1

LΓ0
UΓ − UΓ

1

LΓ0
UΓ

1

LΓ0
UΓ + · · · . (2.108)

Equations (2.107) and (2.108) correspond to the Born series expansion of the
K -matrix. This expansion converges if the incident electron is fast or if the poten-
tial interaction UΓ is sufficiently weak, which occurs, for example, when the total
orbital angular momentum L becomes sufficiently large. In these cases, the first-
order Born term in the expansion of MΓ often yields an accurate estimate for the
K -matrix. However, when these conditions do not apply, higher order terms in the
Born series must be included to obtain accurate results and, even if the Born series
converges, these higher order terms are difficult to evaluate for electron collisions
with multi-electron atoms and ions. It is then usually preferable to solve the close
coupling equations (2.89) directly to obtain the K -matrix. We will consider an accu-
rate solution of these equations using the R-matrix method in Chap. 5. We will
also consider how the Born series approach can be combined with the R-matrix
method to obtain accurate results at intermediate energies in Chap. 6. Further dis-
cussion of the convergence properties of the Born series expansion has been given by
Goldberger and Watson [387] and by Joachain [503].

The Kohn variational principle can also be used to improve an approximate solu-
tion of (2.89). Thus if FΓt (r) is an approximate trial solution of (2.89) and KΓt is the
corresponding approximate K -matrix, then it follows from (2.99) that an improved
K -matrix, correct to second order in the error in the collision wave function, is given
by the Kohn-corrected K -matrix

KΓKohn = KΓt − 2IΓt , (2.109)

where IΓt is calculated from (2.88) using the trial solution FΓt (r). We note that if an
accurate solution of (2.89) is obtained, for example, by using the R-matrix method,
then the correction IΓt to the corresponding K -matrix, given by (2.109), vanishes.

The variational principle (2.99) clearly depends on the asymptotic boundary con-
dition, defined by (2.90), chosen for the reduced radial functions FΓ (r). However,
this asymptotic form is not unique and as we have already shown in Sect. 1.5
different asymptotic forms can lead to different variational principles in potential
scattering. In the present multichannel collision situation an infinity of different
variational principles can be constructed by taking different linear combinations of
the na linearly independent solutions defined by (2.90). As an example, in Sect. 2.5
we will form na solutions satisfying S-matrix asymptotic boundary conditions. The
corresponding Kohn variational principle for the S-matrix has been applied to reac-
tive scattering and electron–molecule collisions, for example, by Miller [651] and
by McCurdy and Rescigno [614] where it has been shown to have computational
advantages over the Kohn variational principle for the K -matrix. However, all of
these variational principles are satisfied by an accurate solution of the close coupling
equations (2.89).
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2.5 S-Matrix, T -Matrix and Cross Sections

In this section we define the S-matrix and T -matrix in terms of the K -matrix and
hence obtain expressions for the total and differential cross sections for electron–
atom collisions. In order to determine the S-matrix it is necessary to express the
asymptotic solutions of the close coupling equations (2.63) in terms of ingoing and
outgoing waves rather than in terms of sine and cosine waves as in (2.85). When
na channels are open the required solutions are defined by the asymptotic boundary
conditions

GΓi j (r) ∼r→∞ k−1/2
i

{
exp[−iθi (r)]δi j − exp[iθi (r)]SΓi j

}
, i, j = 1, . . . , na,

GΓi j (r) ∼r→∞ 0, i = na + 1, . . . , n, j = 1, . . . , na, (2.110)

which are linear combinations of the solutions defined by (2.85). The relationship
between these solutions is given by the matrix equation

FΓ (r) = − 1

2i
GΓ (r)

(
I− iKΓ

)
, (2.111)

where FΓ (r) satisfies the asymptotic boundary conditions (2.85) and GΓ (r) satisfies
the asymptotic boundary conditions (2.110). The na×na-dimensional open channel
S-matrix SΓ , defined by (2.110), is related to the na × na-dimensional K -matrix
KΓ , defined by (2.85), by the matrix equation

SΓ = I+ iKΓ

I− iKΓ
. (2.112)

Since KΓ is real and symmetric it follows from (2.112) that SΓ is unitary and sym-
metric. Hence SΓ can be diagonalized by the real orthogonal transformation which
also diagonalizes KΓ . Hence we can write

(AΓ )T SΓAΓ = exp(2i�), (2.113)

where AΓ is a real orthogonal matrix and (AΓ )T is the transpose of AΓ . The diag-
onal matrix exp(2i�) can be written explicitly as

exp(2i�) =

⎡
⎢⎢⎢⎢⎣

exp(2iδ1) 0 . . . 0

0 exp(2iδ2)
...

...
...

. . .

0 0 . . . exp(2iδna )

⎤
⎥⎥⎥⎥⎦ , (2.114)

where δ1, δ2, . . . , δna are na real eigenphases. In the situation when only one chan-
nel is open (na = 1), δ1 can be identified with the potential scattering phase shift
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defined by (1.9) and (1.71). However, when na > 1, a further na(na−1)/2 real mix-
ing parameters are necessary to completely specify the S-matrix. These parameters
define the real orthogonal matrix AΓ in (2.113) and are related to the independent
rotations possible in na dimensions (i.e. to the three Euler rotation angles discussed
in Appendix B.5, when na = 3). Hence the S-matrix as well as the K -matrix corre-
sponding to na open channels are specified by na(na + 1)/2 real parameters.

As an example, when na = 2, exp(2i�) is represented by two eigenphases δ1
and δ2 and the corresponding orthogonal matrix AΓ can be expressed in terms of an
additional mixing parameter as follows:

AΓ =
[

cos ε sin ε
− sin ε cos ε

]
, (2.115)

where ε is called the mixing angle. The corresponding S-matrix defined by (2.113)
is then given by

SΓ =
[

cos2ε exp(2iδ1)+ sin2ε exp(2iδ2) cos ε sin ε[exp(2iδ1)− exp(2iδ2)]
cos ε sin ε[exp(2iδ1)− exp(2iδ2)] sin2ε exp(2iδ1)+ cos2ε exp(2iδ2)

]
.

(2.116)

This equation expresses the S-matrix for two open channels explicitly in terms of
the three real parameters δ1, δ2 and ε.

It is also useful to define solutions of (2.63) satisfying outgoing wave T -matrix
asymptotic boundary conditions as follows

HΓ+
i j (r) ∼

r→∞ k−1/2
i

{
sin θi (r)δi j + (2i)−1 exp[iθi (r)]T Γi j

}
, i, j = 1, . . . , na,

HΓ+
i j (r) ∼

r→∞ 0, i = na + 1, . . . , n, j = 1, . . . , na . (2.117)

These solutions can be related to those satisfying S-matrix asymptotic boundary
conditions given by (2.110) by the matrix equation

HΓ+(r) = −(2i)−1GΓ (r). (2.118)

It follows that the na × na-dimensional T -matrix is related to the na × na-
dimensional S-matrix by the matrix equation

TΓ = SΓ − I. (2.119)

We will see that the T -matrix occurs in the expressions for the cross sections given
below. Finally, we can define solutions of (2.63) satisfying ingoing wave asymptotic
boundary conditions by

HΓ−
i j (r) ∼

r→∞ k−1/2
i

{
sin θi (r)δi j − (2i)−1 exp[−iθi (r)]T Γ �i j

}
, i, j = 1, . . . , na,

HΓ−
i j (r) ∼

r→∞ 0, i = na + 1, . . . , n, j = 1, . . . , na, (2.120)
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where T Γ
�

i j is the complex conjugate of T Γi j . These solutions are related to those
satisfying outgoing wave boundary conditions by

HΓ+(r) = HΓ−� (r) (2.121)

and are required in the calculation of transition amplitudes, for example, the atomic
photoionization amplitude discussed in Sect. 8.1.

Having obtained expressions for the multichannel S-matrix and T -matrix we
can now derive formulae for the total and differential cross sections for transitions
between the target states retained in expansion (2.57). We consider first electron
collisions with neutral atomic targets and we then generalize our results to electron
collisions with atomic ions.

Our basic problem is to relate the scattering amplitude f j i (θ, φ), defined by
(2.6), to the T -matrix T Γi j , defined by (2.117). In order to derive this relation we
first rewrite the wave function Ψi in (2.6) in terms of incident and scattered wave
functions as

Ψi = Ψ inc
i + Ψ scatt

i . (2.122)

After introducing the space and spin coordinates of the N target electrons XN and
the scattered electron xN+1 we can write the asymptotic forms of these wave func-
tions for neutral atomic targets as

Ψ inc
i ∼

rN+1→∞Φi (XN )χ 1
2 mi
(σN+1) exp(iki zN+1) (2.123)

and

Ψ scatt
i ∼

rN+1→∞
∑

j

Φ j (XN )χ 1
2 m j
(σN+1) f j i (θN+1, φN+1)r

−1
N+1 exp(ik jrN+1).

(2.124)

The scattering amplitude f j i (θN+1, φN+1) in (2.124) thus describes a transition
from the target state and incident electron spin state denoted by the quantum num-
bers i ≡ αi Li Si MLi MSiπi mi to the target state and scattered electron spin state
denoted by the quantum numbers j ≡ α j L j S j ML j MS jπ j m j , where we have used
the notation of (2.14) in describing the target states.

Following the procedure which we have used for potential scattering in Sect. 1.1,
we expand the plane wave term in Ψ inc

i in partial waves using (1.27). We also

introduce the channel functions Φ
Γ

i (XN ; r̂N+1σN+1) which are defined in terms
of the target statesΦi (XN ) by (2.59). After inverting (2.59), using the orthogonality
conditions satisfied by the Clebsch–Gordan coefficients given in Appendix A.1, we
obtain

Ψ inc
i ∼

rN+1→∞
∑

L Sπ	i

iπ1/2

ki
(Li MLi 	i 0|L ML)(Si MSi

1
2 mi |SMS)i

	i (2	i + 1)1/2

× ΦΓi (XN ; r̂N+1σN+1)r
−1
N+1

× {exp[−iθi (rN+1)] − exp[iθi (rN+1)]}, (2.125)
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where θi (rN+1) = kirN+1 − 1
2	iπ for neutral atomic targets. We now carry out a

partial wave decomposition of Ψi in (2.122) by writing

Ψi (XN+1) =
∑
L Sπ

Ψ Γi (XN+1)B
Γ
i (E), (2.126)

where the functions ΨΓi (XN+1) have the asymptotic form

ΨΓi (XN+1) ∼
rN+1→∞

n∑
j=1

Φ
Γ

j (XN ; r̂N+1σN+1)r
−1
N+1GΓj i (rN+1), (2.127)

which follows from expansion (2.57) since the exchange terms and the quadratically
integrable functions vanish in this limit. Also in (2.127) the reduced radial wave
functions GΓj i (r) are chosen to satisfy the S-matrix asymptotic boundary conditions

(2.110). The coefficients BΓi (E) in (2.126) are then chosen so that the ingoing wave
terms in Ψi and Ψ inc

i are the same. This yields

BΓi (E) =
iπ1/2

k1/2
i

i	i (2	i + 1)1/2(Li MLi 	i 0|L ML)(Si MSi
1
2 mi |SMS). (2.128)

Substituting this result into (2.126) and using (2.122) and (2.124) then gives

Ψ scatt
i ∼

rN+1→∞ −
∑

L Sπ	iα j L j S j 	 j

i

(
π

ki k j

)1/2

(Li MLi 	i 0|L ML)(Si MSi
1
2 mi |SMS)

× i	i (2	i + 1)1/2Φ
Γ

i (XN ; r̂N+1σN+1)r
−1
N+1

× exp(iθ j )
(

SΓj i − δ j i

)
. (2.129)

The scattering amplitude is obtained by expanding the channel functions

Φ
Γ

i (XN ; r̂N+1σN+1) in (2.129) in terms of the target states Φi (XN ) using (2.59)
and comparing with (2.124). This gives

f j i (θ, φ) = −
∑

L Sπ	i 	 j

i

(
π

ki k j

)1/2

i	i−	 j (2	i + 1)1/2(Li MLi 	i 0|L ML)

× (Si MSi
1
2 mi |SMS)(L j ML j 	 j m	 j |L ML)(S j MS j

1
2 m j |SMS)

× T Γj i Y	 j m	 j
(θ, φ), (2.130)

where the T -matrix elements T Γj i in this equation are defined in terms of the

S-matrix elements SΓj i by (2.119).
The differential cross section for a transition from a state represented by the quan-

tum numbers αi Li Siπi to a state represented by the quantum numbers α j L j S jπ j
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is obtained by substituting (2.130) into (2.8) resulting in an expression for the dif-
ferential cross section, given, for example, by Blatt and Biedenharn [116]. The total
cross section is then obtained by averaging this expression for the differential cross
section over the initial quantum numbers of the target atomic state and incident elec-
tron, summing over their final quantum numbers and integrating over the scattering
angles of the outgoing electron. We obtain the following result for the total cross
section:

σTot(i → j) =
∑
L Sπ

σ L Sπ (i → j), (2.131)

where the partial wave cross sections σ L Sπ (i → j) corresponding to the conserved
quantum numbers L Sπ are given in units of πa2

0 by

σ L Sπ (i → j) = (2L + 1)(2S + 1)

2k2
i (2Li + 1)(2Si + 1)

∑
	i 	 j

|T Γj i |2. (2.132)

We note that the slow convergence of expansion (2.132) for optically allowed tran-
sitions can be overcome by using a method proposed by Burke and Seaton [190]
using the Burgess sum rule [149].

The expression for the differential cross section obtained by substituting (2.130)
into (2.8) can be simplified using the angular momentum transfer formalism intro-
duced by Fano and Dill [310]. We define the angular momentum transferred from
the scattered electron to the target during the collision by �t where

�t = � j − �i = Li − L j . (2.133)

The relationship between these vectors and the total orbital angular momentum vec-
tor L is illustrated in Fig. 2.2. We now introduce a transformed T -matrix T̃ t S

ji by the
equation

T̃ t S
ji =

∑
Lπ

(−1)L(2L + 1)W (	i Li	 j L j ; L	t )T
Γ
j i , (2.134)

Fig. 2.2 Relationship
between the angular momentum
transfer vector �t and the
vectors Li , L j , �i , � j and L Li

i

j

t

L

Lj
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where W (abcd; e f ) are Racah coefficients defined in Appendix A.2. We can then
show that (2.130) for the scattering amplitude can be rewritten as

f j i (θ, φ) = −
∑
	t S	i 	 j

i

(
π

ki k j

)1/2

i	i−	 j (2	i + 1)1/2(−1)Li+L j+	i+	 j−	t+ML j

× (Si MSi
1
2 mi |SMS)(S j MS j

1
2 m j |SMS)

× (Li MLi L j − ML j |	t MLi − ML j )

× (	i 0	 j m	 j |	t MLi − ML j )T̃
t S
ji Y	 j m	 j

(θ, φ). (2.135)

The differential cross section, obtained by averaging (2.8) over the initial magnetic
quantum numbers and summing over the final magnetic quantum numbers, can be
written as

dσ j i

dΩ
=
∑
λ

Aλ(i → j)Pλ(cos θ), (2.136)

where

Aλ(i → j) = (−1)λ

8k2
i (2Li + 1)(2Si + 1)

∑
	i 	i ′	 j 	 j ′

i	i−	 j−	i ′+	 j ′

× [
(2	i + 1)(2	i ′ + 1)(2	 j + 1)(2	 j ′ + 1)

]1/2
× (	i 0	i ′0|λ0)(	 j 0	 j ′0|λ0)

∑
	t

(−1)	t (2	t + 1)W (	i	 j	i ′	 j ′ ; 	tλ)

×
∑

S

(2S + 1)T̃ t S
ji T̃ t S

j ′i ′ . (2.137)

The subscripts i , j , i ′ and j ′ on T̃ t S
ji and T̃ t S

j ′i ′ denote the channel quantum numbers
αi Li Si	iπi , α j L j S j	 jπ j , αi Li Si	i ′πi ′ and α j L j S j	 j ′π j ′, respectively.

The introduction of the angular momentum transfer 	t in the expression for the
differential cross section given by (2.136) and (2.137) replaces the double summa-
tion over L and L ′ in the earlier expression for the differential cross section given,
for example, by Blatt and Biedenharn [116], by a single incoherent summation over
	t . The corresponding evaluation of the summation is very much more efficient and
has been incorporated into several computer programs (e.g. by Salvini [808]).

A second advantage of the angular momentum transfer formalism is that it
enables simple qualitative features of the angular distribution to be readily described
and understood. For example, it is useful to introduce the concept of parity-favoured
and parity-unfavoured transitions by the equations

	i + 	 j + 	t = even, parity favoured,

	i + 	 j + 	t = odd, parity unfavoured. (2.138)
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An example of a parity-favoured transition is

e− + He(1s2 1Se)→ e− + He(1s2p 1Po). (2.139)

In this case Li = 0 and L j = 1 so from Fig. 2.2 we see that 	t = 1. On the other
hand, from the conservation of total parity, 	i − 	 j must be odd. An example of a
parity-unfavoured transition is

e− + N(1s22s22p3 4So)→ e− + N(1s22s22p3 2Po). (2.140)

In this case Li = 0 and L j = 1 so again 	t = 1. However, from conservation of
total parity, 	i − 	 j is even.

One of the most interesting features of parity-unfavoured transitions is that the
differential cross sections in the forward and backward directions vanish. This fol-
lows by considering the factor

(	i 0	 j m	 j |	t MLi − ML j )Y	 j m	 j
(θ, φ) (2.141)

in expression (2.135) for the scattering amplitude. The spherical harmonic
Y	 j m	 j

(θ, φ) contains a factor (sin θ)m	 j which causes the angular distribution to
vanish at θ = 0 and π when m	 j �= 0. However, when m	 j = 0, the Clebsch–
Gordan coefficient in (2.141) reduces to (	i 0	 j 0|	t 0) which vanishes when 	i +
	 j + 	t is odd, which proves this result.

The preceding theory must be extended to describe electron collisions with ions.
As before, we rewrite the wave functionΨi in (2.6) in terms of incident and scattered
waves as in (2.122), which now has the following asymptotic form:

Ψi ∼
r→∞ Φiχ 1

2 mi
exp[i(ki z + ηi ln kiζ )]

+
∑

j

Φ jχ 1
2 m j

f ji (θ, φ)
exp[i(k jr − η j ln 2k jr)]

r
. (2.142)

The incident Coulomb-distorted plane wave term in Ψ inc
i can be decomposed into

partial waves using (1.49) and (1.64). This gives

exp[i(kz + η ln kζ )] ∼
r→∞

∞∑
	 = 0

(2	+ 1)i	 exp(iσ	)(kr)−1 F	(η, kr)P	(cos θ)

− fc(θ)r
−1 exp[i(kr − η ln 2kr)], (2.143)

where fc(θ) is the Coulomb scattering amplitude defined by (1.52), and where we
note that (2.143) applies except when θ = 0, since in this case r → ∞ does not
imply |r − z| → ∞. After substituting (2.143) into (2.142) we then find that
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Ψ inc
i ∼

rN+1→∞
∑

L Sπ	i

{
iπ1/2k−1

i (Li MLi 	i 0|L ML)

× (Si MSi
1
2 mi |SMS)i

	i (2	i + 1)1/2 exp(iσ	i )

× Φ
Γ

i (XN ; r̂N+1σN+1)r
−1
N+1[exp(−iθi )− exp(iθi )]

}

− Φi (XN )χ 1
2 mi
(σN+1) fc(θN+1)r

−1
N+1

× exp[i(kirN+1 − ηi ln 2kirN+1)], (2.144)

where

θi = kirN+1 − 1

2
	iπ − ηi ln 2kirN+1 + σ	i . (2.145)

We then carry out a partial wave decomposition of Ψi using (2.126), where the
coefficients BΓi (E) are now chosen so that the ingoing wave terms in (2.126) and
(2.144) are the same. The scattered wave function Ψ scatt

i is then

Ψ scatt
i ∼

rN+1→∞ −
∑

L Sπ	iα j L j S j 	 j

{
iπ1/2(ki k j )

−1/2(Li MLi 	i 0|L ML)

× (Si MSi
1
2 mi |SMS)i

	i (2	i + 1)1/2 exp(iσ	i )

× Φ
Γ

i (XN ; r̂N+1σN+1)r
−1
N+1 exp(iθ j )

(
SΓj i − δ j i

)}

− Φi (XN )χ 1
2 mi
(σN+1) fc(θN+1)r

−1
N+1

× exp[i(kirN+1 − ηi ln 2kirN+1)]. (2.146)

The scattering amplitude for electron–ion collisions is obtained by expanding the

channel functions Φ
Γ

i (XN ; r̂N+1σN+1) in (2.146) and comparing with (2.142). We
obtain

f j i (θ, φ) = fc(θ)δ j i + f S
ji (θ, φ), (2.147)

where, as in (1.75), fc(θ) is the Coulomb scattering amplitude and f S
ji (θ, φ) is the

scattering amplitude arising from the additional short-range potential. We find that

f S
ji (θ, φ) = −

∑
L Sπ	i 	 j

iπ1/2(ki k j )
−1/2i	i−	 j (2	i + 1)1/2 exp[i(σ	i + σ	 j )]

× (Li MLi 	i 0|L ML)(Si MSi
1
2 mi |SMS)(L j ML j 	 j m	 j |L ML)

× (S j MS j
1
2 m j |SMS)T

Γ
j i Y	 j m	 j

(θ, φ) (2.148)

where, as in (2.119), the T -matrix is defined by T Γj i = SΓj i − δ j i . Equation
(2.148) describes a transition from a state defined by the quantum numbers
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i ≡ αi Li Si MLi MSiπi mi to a state defined by the quantum numbers j ≡
α j L j S j ML j MS jπ j m j .

The differential cross section for a transition from a state denoted by the quantum
numbers αi Li Siπi to a state represented by the quantum numbers α j L j S jπ j is
obtained by substituting (2.147) into the expression for the differential cross section,
given by (2.8), averaging over the initial quantum numbers and summing over the
final quantum numbers of the target state and scattered electron. The total cross
section for inelastic collisions is then obtained by integrating over all scattering
angles of the outgoing electron and summing over all L Sπ values giving (2.131)
and (2.132).

Finally, in applications involving electron–ion collisions it is often necessary to
determine a quantityΩ(i, j), first introduced by Hebb and Menzel [447] and subse-
quently called the collision strength by Seaton [849, 850, 857]. It is defined in terms
of the total cross section σTot(i → j) measured in units of πa2

0 by

Ω(i, j) = ωi k
2
i σ

Tot(i → j), (2.149)

where ωi = (2Li + 1)(2Si + 1) is the statistical weight of the initial state, denoted
by the quantum numbers αi Li Si . Since ki has the dimensions of a reciprocal length,
Ω(i, j) is dimensionless. It is also symmetric so that Ω(i, j) = Ω( j, i). In an
ionized plasma, we also need to consider the electron–ion collision cross section
averaged over a Maxwell distribution of electron velocities. We introduce the colli-
sional transition probability q(i → j)Ne where

q(i → j) =
∫ ∞

0
σTot(i → j)vi f (vi , Te)dvi . (2.150)

Here f (vi , Te) is the Maxwell velocity distribution function, normalized according
to

∫ ∞
0

f (vi , Te)dvi = 1, (2.151)

vi is the velocity of the incident electron, Ne is the electron density and Te is the
electron temperature of the plasma. Expressing σTot(i → j) in terms of the collision
strength we find that the probability of de-excitation is

q( j → i) = 8.63× 10−6Υ ( j, i)

ω j T
1/2
e

, e j ≥ ei , (2.152)

in cubic centimetres per second, where Te is in degrees Kelvin, ω j is the statistical
weight of the j th target state and ei and e j are the target energies defined by (2.5).
The effective collision strength Υ ( j, i) introduced in (2.152) is defined by

Υ ( j, i) =
∫ ∞

0
Ω( j, i) exp

[
− ε j

kTe

]
d

[
ε j

kTe

]
, (2.153)
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where ε j is the energy of the scattered electron in the j th state in Rydbergs and
k = 6.339 × 10−6 Rydbergs/◦K is Boltzmann’s constant. Clearly if Ω( j, i) is
independent of energy, then Υ ( j, i) = Ω( j, i). Also we find that the probability
of excitation is

q(i → j) = ω j

ωi
q( j → i) exp

(
−e j − ei

kTe

)
, e j ≥ ei . (2.154)

We also note that in many applications in plasma physics and astrophysics it is
sufficient to know the effective collision strength Υ ( j, i) rather than the collision
strength Ω( j, i) for the transitions of interest. This can be important since we will
see when we discuss recent low-energy electron–ion collision calculations in Sect.
5.6 that in many cases of interest the collision strength is dominated by resonance
structure requiring a very large number of energy values to fully resolve. However,
the corresponding effective collision strength is usually a smoothly varying function
of temperature that can be accurately represented by a few well-chosen parameters.



Chapter 3
Resonances and Threshold Behaviour

We consider in this chapter the theory of resonance reactions and the closely related
behaviour of cross sections near threshold. Our treatment will concentrate on theo-
retical methods that have found wide applicability in atomic and molecular collision
processes. For example, we will see in Chap. 5 that resonances play a crucial role
in low-energy electron collisions with multi-electron atoms and atomic ions, where
effective collision strengths can be increased by an order of magnitude or more at
low temperatures by resonance processes. We will also see in later chapters that
resonances are important in electron impact ionization, in single- and multiphoton
ionization processes, in photorecombination and in electron–molecule collisions.
Hence, understanding and interpreting resonances in collision processes are impor-
tant goals for theory and their detailed and accurate prediction provides a challenge
for computational methods.

A fundamental approach to the study of resonances and threshold behaviour is
through an analysis of the analytic properties of the S-matrix or collision matrix
introduced by Wheeler [961] and Heisenberg [452]. We have already defined the S-
matrix in Chaps. 1 and 2 in terms of the asymptotic form of the radial wave function
describing electron collisions with atoms and atomic ions. We have also considered
in Sect. 1.3 the analytic properties of the single-channel S-matrix which arises in
potential scattering. We found in that section that bound states and resonances are
closely related to poles in the S-matrix in the complex momentum plane. In this
chapter we extend our discussion of S-matrix theory to multichannel resonances
and threshold behaviour.

We commence in Sect. 3.1 by generalizing our discussion of the analytic prop-
erties of the S-matrix in Sect. 1.3 by defining multichannel Jost functions in terms
of the solutions of coupled second-order integrodifferential equations (2.63) which
describe electron collisions with multi-electron atoms and atomic ions. By express-
ing the S-matrix in terms of Jost functions we can then relate the analytic properties
of the S-matrix in the multi-Riemann-sheeted complex energy plane to the sim-
pler analytic properties of the Jost functions. This provides the basis for discussing
the distribution of bound-state and resonance poles in the S-matrix in the complex
energy plane.

In Sect. 3.2 we derive explicit expressions for the K -matrix and S-matrix in
the neighbourhood of an isolated resonance pole using a theoretical approach
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introduced by Brenig and Haag [137] and Fano [301]. In this approach, a zero-
order Hamiltonian is defined which can be solved exactly in terms of discrete and
continuum states. The full Hamiltonian then mixes these states giving rise to res-
onances in the S-matrix and we obtain expressions for the individual eigenphases
and the eigenphase sum in the neighbourhood of a resonance. We also discuss the
time-delay matrix, first introduced by Smith [881], and we relate the trace of this
matrix to the derivative of the eigenphase sum with respect to energy. We then show
that this quantity can often provide an accurate procedure for analysing overlapping
resonances. We also consider in this section, the projection operator approach of
Feshbach [320, 321], which provides a powerful framework for describing reso-
nance phenomena in a wide range of atomic, molecular and nuclear collision pro-
cesses. Finally, we discuss the hyperspherical system of coordinates which has been
important in the analysis of resonances and threshold behaviour of three-body sys-
tems, such as two electrons in a Coulomb field and three-nucleon molecules such as
H+3 , as well as in the general description of the three-body problem.

In Sect. 3.3, we consider the threshold behaviour of excitation and ioniza-
tion cross sections. This behaviour was investigated in a fundamental paper by
Wigner [970] who showed that the analytic behaviour of cross sections near thresh-
old depends, apart from a constant, on the form of the long-range interaction
between the particles. We consider first two-body collision processes where we
use the analytic properties of the multichannel R-matrix, discussed in Chap. 5, to
derive a multichannel effective range theory for short-range potentials, following
the work of Ross and Shaw [798]. We then extend this theory to treat long-range
dipole potentials considered by Gailitis and Damburg [359] and a Coulomb poten-
tial considered by Gailitis [357]. We also discuss multichannel quantum defect
theory (MQDT) introduced, developed and reviewed by Seaton [859], and we
summarize the extension of MQDT to molecular collision processes first consid-
ered by Fano [303]. Finally, we consider the threshold law of electron impact
ionization of atoms and positive ions first derived by Wannier [954, 955]. In
this analysis we adopt the hyperspherical system of coordinates, introduced in
Sect. 3.2.6.

3.1 Analytic Properties of the S-Matrix

In this section we generalize our discussion of the analytic properties of the S-matrix
in potential scattering given in Sect. 1.3 to multichannel collisions. As in Chap. 2
we illustrate this discussion by considering low-energy elastic and inelastic electron
collisions with multi-electron atoms and atomic ions described by

e− + Ai → A j + e−, (3.1)

where Ai and A j are the initial and final bound states of the target. We consider the
solution of the n coupled second-order integrodifferential equations (2.63), which
describe these collisions for a given set of conserved quantum numbers. We rewrite
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these equations using matrix notation as follows:
(

d2

dr2
− �(�+ I)

r2
+ 2(Z − N )

r
− U(r)+ k2

)
F(r) = 0, (3.2)

where Z is the nuclear charge number, N is the number of target electrons, U is
an n × n-dimensional matrix representing the sum of the local direct, non-local
exchange and non-local correlation potentials 2(V + W + X) in (2.63), I is the
n × n-dimensional unit matrix and � and k2 are n × n-dimensional diagonal matri-
ces representing the channel orbital angular momenta and wave numbers squared,
respectively. We note that in (3.2) we have not imposed the orthogonality constraints
defined by (2.62). Hence the Lagrange multiplier terms in (2.63) and the additional
quadratically integrable functions included in the original expansion (2.57) for com-
pleteness are not required. However, as pointed out following (2.87), the relaxation
of these constraints does not affect the K -matrix, S-matrix and scattering amplitudes
and hence the analytic properties of the S-matrix considered here.

We find it convenient, as in Sect. 2.4, to order the target eigenstates and pseu-
dostates retained in expansion (2.57) so that their energies defined by (2.5) are in
increasing order. It follows that the corresponding channel wave numbers squared
k2

i , defined by (2.7), satisfy (2.78) when the total energy E is real. Initially we limit
our discussion to neutral atomic targets where the nuclear charge number Z equals
the number of target electrons N . It then follows from (2.73) that the leading term
in the long-range potential experienced by the scattered electron is ∼ r−2. Later in
this chapter we will consider electron collisions with atomic ions where a long-range
Coulomb potential is also present.

In analogy with our consideration of the analytic properties of the S-matrix in
potential scattering, discussed in Sect. 1.3, we define, following Jost [515], two
linearly independent matrix solutions f(±k, r) of (3.2) by the asymptotic boundary
conditions

lim
r→∞ exp(±ikr)f(±k, r) = I, (3.3)

where the diagonal elements of k are defined by (2.7) and where the total energy
E can now be complex. Also f(±k, r) are diagonal n × n-dimensional matrices
in the limit r → ∞ but, as shown below, are in general non-diagonal for finite
values of r . For potentials which occur in electron–atom collisions, the boundary
conditions (3.3) define f(k, r) uniquely for Im ki < 0 and f(−k, r) uniquely for
Im ki > 0 for i = 1, . . . , n. If we can impose stronger conditions on the potentials
Vi j , Wi j and Xi j in (2.63) then the functions f(±k, r) can be analytically con-
tinued outside of these regions, as discussed in Sect. 1.3 in the case of potential
scattering.

The physical solutions of (3.2) which vanish at the origin can be expressed as
linear combinations of the functions f(±k, r). Let us normalize these physical solu-
tions so that they satisfy the following boundary condition at the origin:

lim
r→0

r−�−IF(k, r) = I, (3.4)
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where � is the n × n-dimensional diagonal matrix whose diagonal elements are
	i , i = 1, . . . , n and where we have introduced the n × n-dimensional solution
matrix F(k, r) which is diagonal in the limit r → 0 but is in general non-diagonal
for non-zero values of r. The second subscript k on this solution matrix Fik runs
from 1 to n and denotes the n linearly independent solutions of (3.2) which are
defined by the boundary conditions (3.4). These solutions form a complete set of
solutions which vanish at the origin. The boundary condition (3.4), which does
not depend on k, then ensures that, as in potential scattering, F(k, r) is an entire
function of k. We then define the multichannel Jost function matrices f̃(±k) by the
Wronskian

f̃(±k) = W [f(±k, r),F(k, r)], (3.5)

where f̃(±k) are n × n-dimensional matrices. Also in (3.5) we have defined the
Wronskian of any two solution vectors u and v by

W [u, v] = uTv′ − u′T v, (3.6)

where uT is the transpose of u and the prime denotes the derivative with respect to
r . It is straightforward to show that the Wronskian is independent of r .

We now use the relations

W [f(±k, r), f(∓k, r)] = ±2ik (3.7)

and

W [f(±k, r), f(±k, r)] = 0, (3.8)

which follow from (3.3), to write F(k, r) in the form

F(k, r) = (2i)−1[f(−k, r)k−1 f̃(k)− f(k, r)k−1 f̃(−k)]. (3.9)

If we compare this equation with the asymptotic form (2.110), we find that the
S-matrix can be defined in terms of the Jost functions by

Sn(k) = exp
(

1
2 iπ�

)
k−1/2 f̃(k)f̃

−1
(−k)k1/2 exp

(
1
2 iπ�

)
, (3.10)

where the subscript n on Sn refers to the dimension of the S-matrix and where in
the following discussion we assume that all channels are open so that the num-
ber of open channels na = n in (2.110). This equation enables the analytic prop-
erties of the S-matrix to be related to the simpler analytic properties of the Jost
functions.

In order to study the analytic properties of the Jost functions we return to (3.2)
satisfied by f(±k, r). We assume that f(−k, r) satisfies the equation

(
d2

dr2
− �(�+ I)

r2
+ 2(Z − N )

r
− U(r)+ k2

)
f(−k, r) = 0. (3.11)
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We then take the complex conjugate of this equation yielding
(

d2

dr2
− �(�+ I)

r2
+ 2(Z − N )

r
− U(r)+ k∗2

)
f ∗(−k, r) = 0, (3.12)

where we assume that r , �, Z , N and U are real but k, which is defined in terms of
the total energy E by (2.7), can be complex. In addition it follows, by replacing −k
by k∗ in (3.11), that f(k∗, r) is a solution of

(
d2

dr2
− �(�+ I)

r2
+ 2(Z − N )

r
− U(r)+ k∗2

)
f(k∗, r) = 0. (3.13)

Hence f ∗(−k, r) and f(k∗, r) satisfy the same differential equation and from (3.3)
they satisfy the same boundary condition. Hence

f ∗(−k, r) = f(k∗, r) (3.14)

is satisfied for all points in the upper half k-plane with Im ki > 0, i = 1, . . . , n, and
for all other points in the complex k-plane for which the potential admits an analytic
continuation from the upper half k-plane.

In a similar way, we can show from (3.11) and the boundary condition (3.4)
satisfied by F(k, r) that

F∗(k, r) = F(k∗, r) (3.15)

and

F(k, r) = F(−k, r). (3.16)

Using (3.14), (3.15) and (3.16), we find from (3.5) that the Jost functions satisfy

f̃
∗
(−k) = f̃(k∗). (3.17)

Hence we obtain from (3.10)

S∗n(k∗) = exp(− 1
2 iπ�)k−1/2 f̃(−k)f̃

−1
(k)k1/2 exp(− 1

2 iπ�). (3.18)

Combining this equation with (3.10) gives

Sn(k)S∗n(k∗) = I. (3.19)

Also, as we have shown in Sect. 2.4, the K -matrix is symmetric and hence from
(2.112) the S-matrix is also symmetric so that

Sn(k) = ST
n (k), (3.20)
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where ST
n denotes the transpose of Sn . Hence it follows from (3.19) and (3.20) that

Sn(k)S†
n(k
∗) = I, (3.21)

where S†
n denotes the hermitian conjugate of Sn . This is the generalization of the

unitarity relation given by (1.97) for potential scattering.
A further analytic property of the S-matrix can be obtained by considering

S∗n(−k∗). From (3.10) and (3.17) we obtain

S∗n(−k∗) = exp
(
− 1

2 iπ�
)

k−1/2 f̃(k)f̃−1(−k)k1/2 exp
(
− 1

2 iπ�
)
. (3.22)

Combining this equation with (3.10) and (3.20) yields

Sn(k) = exp(iπ�)S†
n(−k∗) exp(iπ�), (3.23)

which is the generalization of the reflection relation given by (1.98) in potential
scattering.

It is useful at this point to discuss the continuation paths in the complex energy
plane implied by relations (3.21) and (3.23). Since the ki occur in the definition
of the Jost functions given by (3.3) and (3.5) and hence in the S-matrix given by
(3.10), the value of Sn(k) is only defined uniquely in terms of the total energy E of
the electron–atom system if the sign ambiguities

ki = ±[2(E − ei )]1/2, i = 1, . . . , n, (3.24)

which follow from (2.7), are resolved. These signs can be chosen in 2n differ-
ent ways and consequently the S-matrix can only be made single valued, or uni-
formized, by introducing 2n Riemann sheets in the complex E-plane. We define
these sheets in Fig. 3.1, by introducing n branch points ei , i = 1, . . . , n, with their
associated branch cuts chosen to run in each case from E = ei along the real energy
axis to E = +∞. The physical sheet, which we denote by P , is defined by the
condition

Im ki > 0, i = 1, . . . , n, (3.25)

and the physical scattering region, which is illustrated in Fig. 3.1 by arrows, lies on
the real energy axis, along the upper edge of the n branch cuts.

Following Eden and Taylor [283], we let Um denote the unphysical sheet reached
from the physical sheet by crossing the branch cuts in Fig. 3.1 which originate from
the branch points ei , i = 1, . . . ,m, where 1 ≤ m ≤ n. We then find using (3.24)
that on Um

Im ki < 0, i = 1, . . . ,m,

Im ki > 0, i = m + 1, . . . , n. (3.26)
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•e1 •e2 •en−1 •en
Re E

BRANCH CUTS

P H Y S I C A L S H E E T P

Fig. 3.1 The analytic properties of the multichannel S-matrix in the complex energy plane E ,
showing the branch points ei , i = 1, . . . , n, and the associated branch cuts starting from the branch
points ei (where the branch cuts are displaced from the real energy axis for clarity). Also shown
is the physical sheet P and the paths, denoted by (arrows), from this sheet to reach the physical
scattering region on the real energy axis

Furthermore, on the real energy axis between em and em+1 ki is real for i =
1, . . . ,m and positive imaginary for i = m + 1, . . . , n. Other unphysical sheets
can be reached by following more complicated paths from the physical sheet so that
all combinations of the signs of Im ki can be achieved on these sheets.

As an example, when n = 2 there are 2n = 4 Riemann sheets, or three unphysical
sheets in addition to the physical sheet. We show in Fig. 3.2 four continuation paths
which enable E∗ on the unphysical sheets and on the physical sheet to be reached
from E on the physical sheet, where E∗ denotes the complex conjugate of E . The
path labelled (1) goes from E on P to E∗ on U1, the path labelled (2) goes from E
on P to E∗ on U2, the path labelled (1,2) goes from E on P to E∗ on U1,2 and the
path labelled (0) goes from E to E∗ on the physical sheet P . It is clear from Fig. 3.2
that on U1,2, Im k1 > 0 and Im k2 < 0. The signs of Im k1 and Im k2 for E∗ on U1
and U2 are given by (3.26), while Im k1 > 0 and Im k2 > 0 on P .

Returning to the general case illustrated in Fig. 3.3 where there are n channels,
we see that if the point represented by k in (3.21) and (3.23) lies on the physical
sheet defined by (3.25) then the point represented by k∗ lies on Un defined by (3.26)
with m = n. In addition, the point represented by −k∗ lies on the physical sheet.
Hence the unitarity relation (3.21) can be rewritten as

Sn(E on P)S†
n(E

∗ on Un) = I, (3.27)

Re E

E on P

E∗

e1 e2••
(2)(1)(1,2)

(0)

Fig. 3.2 The four continuation paths in the complex energy plane when n = 2 which enable E∗
on the three unphysical sheets and on the physical sheet to be reached from E on the physical sheet
denoted by P . The branch points are denoted by e1 and e2
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(a) E on P

E∗ on Un

E∗ on P

•
e1 •

e2 •
en−1 •

en
Re E

(b) E on P

E∗ on Um

E∗ on P

•
e1 •

em •
em+1 •

en
Re E

Fig. 3.3 Continuation paths in the complex energy plane when there are n non-degenerate chan-
nels, where P denotes the physical sheet and Un and Um denote unphysical sheets as explained in
the text. The branch points are denoted by ei , i = 1, . . . , n

where E∗ on Un is reached by the path indicated in Fig. 3.3a. In a similar way, the
reflection relation (3.23) can be rewritten as

Sn(E on P) = exp(iπ�)S†
n(E

∗ on P) exp(iπ�), (3.28)

where E∗ on P is reached by the path also indicated in Fig. 3.3a.
The above discussion can be generalized to determine the analytic properties of

the S-matrix under the continuation paths indicated in Fig. 3.3b. Under the con-
tinuation from E on P to E∗ on Um we see from (3.26) that the ki transform
according to

ki → k∗i , i = 1, . . . ,m,

ki →−k∗i , i = m + 1, . . . , n. (3.29)

Hence (3.17) and (3.18) are no longer valid under this continuation and the unitarity
relation (3.27) is not satisfied if Un is replaced by Um with m < n. However, we can
show that the m × m-dimensional leading submatrix of Sn which we call Sm does
satisfy a generalized unitarity relation analogous to (3.27).

To prove this, we introduce an n × m-dimensional solution matrix G(k, r) of
(3.11) by the equation

G(k, r) = F(k, r)A(k), (3.30)

where F is the n × n-dimensional solution matrix defined by (3.4) and A is an
n × m-dimensional matrix which is chosen so that G is real on the real energy axis
in the range between em and em+1 and so that in this energy range the exponentially
increasing components in the last n−m channels of F(k, r) are eliminated. G(k, r)
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thus corresponds to the physical solutions in the energy range em ≤ ReE < em+1,
where m channels are open and n−m channels are closed. It is then straightforward
to show that (3.15), which can be rewritten as

F(E on P) = F∗(E∗ on Un), (3.31)

is replaced by

G(E on P) = G∗(E∗ on Um). (3.32)

We now introduce an m × m-dimensional Jost function matrix by the equation

f̃m(±k) = W [fm(±k, r),G(k, r)], (3.33)

where fm(±k, r) are the first m columns of the solutions defined by (3.3). Hence, in
analogy with (3.9) we can write

G(k, r) = (2i)−1[fm(−k, r)k−1
m f̃m(k)− fm(k, r)k−1

m f̃m(−k)], (3.34)

where km is an m × m diagonal matrix with diagonal elements ki , i = 1, . . . ,m.
Comparing this equation with the asymptotic form (2.110) where na = m gives
immediately

Sm(k) = exp
(

1
2 iπ�m

)
k−1/2

m f̃m(k)f̃
−1
m (−k)k1/2

m exp
(

1
2 iπ�m

)
, (3.35)

where �m is the m × m diagonal matrix with diagonal elements 	i , i = 1, . . . ,m.
We can then show from the analytic properties of fm(±k, r) and G(±k, r) that

Sm(E on P)S†
m(E

∗ on Um) = I. (3.36)

This is the generalization of the unitarity relation given by (3.27). Equation
(3.36), together with the generalization of the reflection relation (3.28), which can
be written as

Sm(E on P) = exp(iπ�m)S†
m(E

∗ on P) exp(iπ�m), (3.37)

defines the analytic properties of the m × m-dimensional submatrix Sm .

3.2 Bound States and Resonances

In this section we commence our discussion of bound-state and resonance
poles in the S-matrix for multichannel collisions by considering their distribution
in the multi-Riemann-sheeted complex energy plane. We then derive an explicit
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expression for the multichannel K -matrix and S-matrix in the neighbourhood of
an isolated resonance pole using a theoretical approach introduced by Brenig and
Haag [137] and Fano [301]. We also derive an expression for the behaviour of the
eigenphases near this resonance. We then introduce the projection operator approach
of Feshbach [320, 321], used initially to describe nuclear resonance reactions, which
has provided a powerful framework for describing resonance phenomena in atomic
and molecular collision processes. Finally, we mention that early applications of
these theories in electron and photon collisions with atoms and molecules were
reviewed by Burke [151, 153].

3.2.1 Bound-State and Resonance Poles in the S-Matrix

In order to discuss the distribution of bound-state and resonance poles in the com-
plex energy plane we consider (3.9) and (3.10) which express, respectively, the
physical solution and the S-matrix in terms of the Jost function matrices f(±k, r)
and f̃(±k). We first diagonalize the n×n-dimensional matrix f̃(−k) by the similarity
transformation

X−1 f̃(−k)X = D, (3.38)

where D is a diagonal n × n-dimensional matrix. Let us assume that one of the
diagonal elements of D, say the first d1(E), has a simple zero at some energy E p.
It follows that f̃−1(−k) and, hence from (3.10), Sn(k) are both singular with simple
poles at E = E p. We substitute (3.38) into (3.9) and postmultiply by X yielding

FX = (2i)−1[f(−k, r)k−1 f̃(k)X− f(k, r)k−1XD]. (3.39)

Since d1(E p) = 0, the first column of f(k, r)k−1XD vanishes when E = E p. Hence
the corresponding solution can be written as

Fx1 = (2i)−1f(−k, r)k−1 f̃(k)x1, E = E p, (3.40)

where the vector x1 is the first column of X. It follows from (3.3) that at a pole in
the S-matrix

Fx1 ∼
r→∞eikr N, E = E p, (3.41)

where the normalization vector N = (2ik)−1 f̃(k)x1. This equation is the multichan-
nel generalization of (1.100).

If the energy E p lies on the physical sheet of the complex energy plane then
conditions (3.25) are satisfied. Consequently, the physical solution (3.41) vanishes
asymptotically and hence is normalizable. Since the Hamiltonian is Hermitian, all
normalizable wave functions must belong to real energy eigenvalues. Hence poles in
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the S-matrix on the physical sheet must lie on the real energy axis. If this real energy
lies below the first threshold E < e1, then it follows from (3.24) and (3.25) that

ki = +iκi = +i[2(ei − E)]1/2, i = 1, . . . , n, (3.42)

where the κi are real and positive. Hence the solution defined by (3.41) has the
asymptotic form

Fx1 ∼
r→∞e−κr N, E = E p, (3.43)

where κ is an n × n-dimensional diagonal matrix with diagonal elements κi , i =
1, . . . , n. Since the solution corresponding to (3.43) is normalizable it clearly cor-
responds to a bound state. We illustrate the position of such bound-state poles by
crosses in Fig. 3.4.

In certain circumstances poles in the S-matrix can lie on the real energy axis
with E > e1. Consider, for example, real energies in the range em < E < em+1.
Poles can lie in this range of energies if the channels with threshold energies
ei , i = 1, . . . ,m, are not coupled to the channels with threshold energies ei , i =
m+ 1, . . . , n. This occurs, for example, if these two sets of channels have a dif-
ferent conserved quantum number such as parity and hence are not coupled by the
Hamiltonian. In this case the n× n-dimensional S-matrix Sn can be partitioned into
disconnected sub-matrices as follows:

Sn =
[

Sm 0
0 Sn−m

]
, (3.44)

where Sm has dimension m×m and Sn−m has dimension (n−m)× (n−m). From
the generalized unitarity relation (3.36), Sm must be unitary and hence non-singular
in this range of energies. However, a pole can occur in Sn−m . A pole of this type
corresponds to a bound state lying in the continuum and is denoted by an open circle
in Fig. 3.4.

•
e1 •

em •
em+1 •

em+2 •
en

Re E
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Fig. 3.4 Distribution of S-matrix poles in the complex energy plane. ×, bound-state poles lying
on the physical sheet; ◦, bound-state pole lying in the continuum on the real energy axis; ∗,
resonance poles lying on unphysical sheets Um and Um+1. The arrows denote the continuation
paths from the physical sheet P to the resonance poles. The branch points are denoted by ei , i =
1, . . . , n
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In the general case, when all n channels are coupled by the Hamiltonian, poles
cannot occur in the S-matrix for real energies with E > e1 corresponding to the
physical scattering region, except in very exceptional circumstances. This is because
the unitarity equation (3.36) would then be violated. However poles can occur on
any of the unphysical sheets Um since the sign of at least one Im ki , i = 1, . . . , n,
is then negative and hence from (3.41) the corresponding wave function is then
not normalizable. If such poles lie close to the physical scattering region they give
rise to observable effects and are called resonance poles and the corresponding wave
functions, which satisfy outgoing wave boundary conditions, are often called Siegert
states [876]. We define the real and imaginary parts of the energy of such a pole by

E p = Er − 1

2
iΓ, on Um, (3.45)

where Er and Γ are both real and Γ is small and positive. Poles of this type are
denoted by an asterisk in Fig. 3.4. We also denote by arrows in this figure the con-
tinuation paths from the physical sheet to these resonance poles. The generalized
unitarity relation (3.36) shows that at the corresponding energies

E∗p = Er + 1

2
iΓ, on P, (3.46)

one of the eigenvalues of Sm has a simple zero, that is the rank of Sm is m− 1. Eden
and Taylor [283] have shown that the presence of a resonance pole on Um usually
also implies the presence of “shadow poles” on other Riemann sheets of the complex
energy plane which are further removed from the physical scattering region. These
shadow poles can play a role in a number of applications such as dissociative attach-
ment and multiphoton ionization discussed in later chapters in this monograph.

Finally, we note that the preceding discussion was based on the assumption that
bound-state and resonance poles in the S-matrix are simple. Although there is no
general principle that guarantees that all such poles are simple, in practice this is
usually the case. However, in atomic multiphoton processes, discussed in Chap. 9,
laser induced degenerate states, or LIDS, corresponding to double poles in the S-
matrix have been found in detailed calculations (see Sect. 9.2.3). If the S-matrix
does contain a double pole in the complex energy plane then the main effects will
be to distort the shape of the associated resonance profile from that considered in
the next section and to produce a decay which deviates from the usual exponential
behaviour. These effects have been considered by Goldberger and Watson [387],
Newton [683] and Kylstra and Joachain [557].

3.2.2 Behaviour of the S-Matrix Near a Resonance

In this section we derive explicit expressions for the behaviour of the multichannel
K -matrix and S-matrix in the physical scattering region near an isolated resonance
pole lying on an adjacent unphysical sheet of the complex energy plane. We also
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derive expressions for the behaviour of the eigenphases in the neighbourhood of a
resonance. This was originally discussed by Brenig and Haag [137] and by Fano
[301] and we consider here the configuration interaction theory of Fano.

Following Sect. 3.1, we consider low-energy elastic and inelastic electron col-
lisions with multi-electron atoms and atomic ions containing N electrons and we
analyse the interaction of one discrete state with n continuum states. We sub-divide
configuration space into a zero-order discrete state, represented by a quadratically
integrable function χ0

0(XN+1), which gives rise to the resonance, and n zero-order
continuum states ψ0

j E (XN+1), j = 1, . . . , n, which do not have resonances or
thresholds in the energy range of interest. We can expand these zero-order contin-
uum states as

ψ0
j E (XN+1) = A

n∑
i=1

Φ i (XN ; r̂N+1σN+1)r
−1
N+1 F0

i j (rN+1)

+
m∑

i=1

χ0
i (XN+1)b

0
i j , j = 1, . . . , n, (3.47)

where we have adopted a notation analogous to expansion (2.57) and where the
superscript Γ , which denotes the conserved quantum numbers, has been omitted for
notational convenience. It is convenient in the following analysis to include only
the n open channels in the first expansion in (3.47). The χ0

i , i = 1, . . . ,m, in
the second expansion are then zero-order quadratically integrable functions, which
represent the effect of the closed channels whose thresholds lie above the energy
range of interest.

We can now assume, without approximation, that these zero-order states satisfy
the orthonormality relations

〈χ0
0|χ0

0〉 = 1,

〈χ0
0|ψ0

j E 〉 = 0, j = 1, . . . , n, (3.48)

〈ψ0
j E |ψ0

j ′E ′ 〉 = δ j j ′δ(E − E ′), j, j ′ = 1, . . . , n.

We also define the matrix elements of the (N + 1)-electron Hamiltonian HN+1 in
this zero-order basis by the equations

〈χ0
0|HN+1|χ0

0〉 = E0,

〈χ0
0|HN+1|ψ0

j E 〉 = Vj (E), j = 1, . . . , n, (3.49)

〈ψ0
j E |HN+1|ψ0

j ′E ′ 〉 = Eδ j j ′δ(E − E ′), j, j ′ = 1, . . . , n,

where we choose real asymptotic boundary conditions for the radial functions F0
i j (r)

in (3.47) so that the Vj (E) are real. The assumption made in the last of Eqs. (3.49),
that the Hamiltonian is prediagonalized in the subspace spanned by the zero-order
continuum states, is inessential and has been relaxed by Fano and Prats [309].



114 3 Resonances and Threshold Behaviour

We introduce n new continuum basis states θ j E , j = 1, . . . , n, which are linear
combinations of the basis ψ0

j E , chosen so that only the first, θ1E , interacts through

the Hamiltonian with the discrete state χ0
0. We define

θi E =
n∑

j=1

ψ0
j EU ji (E), i = 1, . . . , n, (3.50)

where U is an orthogonal matrix whose first column is defined by

U j1(E) = Vj (E)

[
n∑

i=1

Vi (E)
2

]−1/2

, j = 1, . . . , n, (3.51)

while the remaining n − 1 columns are orthonormal and are orthogonal to the
first column but are otherwise arbitrary. In terms of this new basis, Eqs.(3.49) are
replaced by

〈χ0
0|HN+1|χ0

0〉 = E0,

〈χ0
0|HN+1|θ j E 〉 = V (E)δ j1, j = 1, . . . , n, (3.52)

〈θ j E |HN+1|θ j ′E ′ 〉 = Eδ j j ′δ(E − E ′), j, j ′ = 1, . . . , n,

where we have introduced the real quantity

V (E) =
[

n∑
i=1

Vi (E)
2

]1/2

, (3.53)

which is a measure of the strength of the interaction of the discrete state with the
continuum.

The eigensolutions of the Schrödinger equation which diagonalize the Hamilto-
nian can now be expanded in terms of these new zero-order states as follows:

Ψ1E =
∫
θ1E ′a(E, E ′)dE ′ + χ0

0b(E),

Ψ j E = θ j E , j = 2, . . . , n, (3.54)

where the coefficients a(E, E ′) and b(E) are determined by projecting the
Schrödinger equation

(HN+1 − E)Ψ1E = 0 (3.55)

onto the zero-order basis states θ1E and χ0
0. We obtain

〈θ1E ′ |HN+1 − E |Ψ1E 〉 = 0,

〈χ0
0|HN+1 − E |Ψ1E 〉 = 0. (3.56)

Substituting for Ψ1E from (3.54) into (3.56) and using (3.48) and (3.52), then gives
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E ′a(E, E ′)+ V (E ′)b(E) = Ea(E, E ′),∫
V (E ′)a(E, E ′)dE ′ + E0b(E) = Eb(E). (3.57)

The first equation in (3.57) can be formally solved for a(E, E ′) yielding

a(E, E ′) =
[ P

E − E ′
+ z(E)δ(E − E ′)

]
V (E ′)b(E), (3.58)

where P is the principal value integral and z(E) is then obtained by substituting
(3.58) for a(E, E ′) into the second equation in (3.57). We obtain

z(E) = E − E0 −Δ(E)
V (E)2

, (3.59)

where we have introduced the quantity

Δ(E) = P
∫

V (E ′)2

E − E ′
dE ′, (3.60)

which is called the resonance shift.
In order to determine the K -matrix and S-matrix for the interacting system, we

assume that the zero-order reduced radial wave function matrix F0 in (3.47) satisfies
the real K -matrix asymptotic boundary conditions

F0(r) ∼
r→∞

(
2

πk

)1/2

(sin θ + cos θK0)(I+K2
0)
−1/2. (3.61)

In this equation F0 is an n × n-dimensional matrix, k and θ are diagonal matrices,
where the diagonal elements of θ are defined by (2.82), (2.83) and(2.84), and K0 is
the multichannel zero-order n × n-dimensional K -matrix obtained in the absence
of the interaction between the zero-order discrete state and the continuum states. In
analogy with our discussion in Sect. 1.1, see (1.21), the coefficient (2/πk)1/2 and
the factor (1+K2

0)
−1/2 in (3.61) are included so that the δ-function orthonormality

relation in the last equation in (3.48) is satisfied. It follows from (3.47), (3.50) and
(3.54) that Ψ j E can be expanded as follows:

Ψ j E (x1, . . . , xN+1) = A
n∑

i=1

Φ i (x1, . . . , xN ; r̂N+1σN+1)r
−1
N+1Gi j (rN+1)

+
m∑

i=0

χ i (x1, . . . , xN )ci j , j = 1, . . . , n, (3.62)

where the reduced radial wave function matrix G in this equation is obtained by
substituting (3.58) into (3.54), using (3.61) and carrying out the integration over E ′.
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We find that G satisfies the asymptotic boundary conditions

G1(r) ∼
r→∞

(
2

πk

)1/2

{sin θ [z(E)+ πK0] + cos θ [−π + z(E)K0]}
× (1+K2

0)
−1/2U1,

G j (r) ∼
r→∞

(
2

πk

)1/2

(sin θ + cos θK0)(1+K2
0)
−1/2U j ,

j = 2, . . . , n, (3.63)

where G j and U j are the j th columns of the n × n-dimensional matrices G and U,
respectively. Also the quadratically integrable functions χ i , i = 0, . . . ,m, in (3.62)
are linear combinations of the zero-order discrete state represented by the quadrat-
ically integrable function χ0

0 and the zero-order quadratically integrable functions
χ0

i , i = 1, . . . ,m, in (3.47).
Equations (3.63) can be written in a more convenient form by post-multiplying

by U−1 and substituting for z(E) from (3.59). This gives

G(r)U−1 ∼
r→∞

(
2

πk

)1/2 [
sin θ

(
(1+K2

0)
−1/2 +K0(1+K2

0)
−1/2 1

2
Γ
γ × γ
E − Er

)

+ cos θ

(
K0(1+K2

0)
−1/2 − (1+K2

0)
−1/2 1

2
Γ
γ × γ
E − Er

)]
, (3.64)

where the partial width amplitudes γi are defined by

γi = Vi V−1, i = 1, . . . , n, (3.65)

and the resonance energy Er and total width Γ are defined by

Er = E0 +Δ,
Γ = 2πV 2. (3.66)

The quantity γ × γ in (3.64) is a real symmetric n × n-dimensional matrix with
matrix elements γiγ j where we note that the real K -matrix boundary condition
(3.61) implies that Vj (E), j = 1, . . . , n, defined by (3.49), are real and hence
the partial width amplitudes γi are real.

By taking linear combinations of the solutions defined by (3.64), we can choose
the reduced radial wave functions to have the following asymptotic form analogous
to that given by (3.61)

F(r) ∼
r→∞

(
2

πk

)1/2

(sin θ + cos θK)(I+K2)−1/2, (3.67)

where the K -matrix is defined by
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K = K0 − 1

2
Γ
(1+K2

0)
1/2γ × γ (1+K2

0)
1/2

E − Er + 1
2Γ γ

TK0γ
. (3.68)

The S-matrix, which is related to the K -matrix by (2.112), can then be written as

S = S0 − iΓ
S1/2

0 γ × γS1/2
0

E − Er + 1
2 iΓ

, (3.69)

where the zero-order S-matrix S0 is defined by

S0 = I+ iK0

I− iK0
. (3.70)

Equations (3.68) and (3.69) are the basic expressions which describe the behaviour
of the K -matrix and S-matrix in the neighbourhood of an isolated resonance. We see
that all elements of the S-matrix are singular at the complex energy E = Er − 1

2 iΓ
while the K -matrix elements are singular at the shifted real energy E = Er −
1
2Γ γ

TK0γ . Equation (3.68), which is discussed further by Burke [153], forms the
basis of a computer program written by Bartschat and Burke [64] which enables the
resonance position and its total and partial widths to be determined from K -matrix
elements calculated at a few energy values in the neighbourhood of an isolated
resonance.

Finally, using the definition of Vj (E) given by (3.49) together with the definitions
of γ j and Γ given by (3.65) and (3.66), we find that

γ jΓ
1/2 = (2π)1/2〈χ0

0|HN+1|ψ0
j E 〉, (3.71)

where the reduced radial wave functions F0
i j (r) in ψ0

j E satisfy the real K-matrix
boundary conditions (3.61). Squaring (3.71), summing over j and using (3.53) and
(3.65) then yields

Γ = 2π
n∑

j=1

[
〈χ0

0|HN+1|ψ0
j E 〉
]2
. (3.72)

This expression has often been used to calculate an approximate value for the total
resonance width Γ given approximate representations for the zero-order discrete
state χ0

0 and the zero-order continuum states ψ0
j E , j = 1, . . . , n.

3.2.3 Behaviour of Eigenphases Near a Resonance

We have shown in Sect. 1.3 that in the case of potential scattering the phase shift
increases by approximately π radians as the energy increases through the resonance
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energy, as described by (1.105) and (1.106). In this section we show that the
eigenphase sum

δsum =
n∑

i=1

δi , (3.73)

where the eigenphases δi are defined by (2.113) and (2.114), satisfies a general-
ization of these equations. In addition, we will derive an equation satisfied by the
individual eigenphases near a resonance. As in Sect. 3.2.2, we assume that n chan-
nels are open.

Following (2.113), we diagonalize the S-matrix defined by (3.69) giving

S = A exp(2iΔ)AT

= A0 exp(iΔ0)AT
0

[
1− iΓ

γ × γ
E − Er + 1

2 iΓ

]
A0 exp(iΔ0)AT

0 , (3.74)

where A and A0 are the real orthogonal matrices which diagonalize S and S0,
respectively, and Δ and Δ0 are diagonal matrices whose diagonal elements are
the eigenphases δi , i = 1, . . . , n and the zero-order non-resonant eigenphases
δ0

i , i = 1, . . . , n, respectively. We now take the determinant of both sides of (3.74)
yielding

exp (2iδsum) = exp(2iδ0
sum) det

[
1− iΓ

γ × γ
E − Er + 1

2 iΓ

]
, (3.75)

where in analogy with (3.73) we have defined

δ0
sum =

n∑
i=1

δ0
i . (3.76)

We now observe from (3.53) and (3.65) that γ Tγ = 1. Hence by diagonalizing the
matrix in square brackets in (3.75) we find that

det

[
1− iΓ

γ × γ
E − Er + 1

2 iΓ

]
= exp

[
2i tan−1

1
2Γ

Er − E

]
. (3.77)

Combining (3.75) and (3.77) then yields the equation

δsum = δ0
sum + tan−1

1
2Γ

Er − E
. (3.78)

This equation, obtained by Hazi [446], is the multichannel generalization of (1.105)
and (1.106) describing the behaviour of the phase shift near a resonance in potential
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scattering. We see that the resonant part of δsum, given by the second term on the
right-hand side of (3.78), increases by π radians as the energy increases through
the resonance, while the non-resonant term δ0

sum is smoothly varying with energy.
Equation (3.78) is often used to determine the position and width of a multichannel
resonance from the calculated S-matrix (e.g. [918]). Also, Quigley et al. [761, 762]
combined this equation with the analytic properties of the R-matrix to obtain an
accurate “QB” procedure for analysing resonances.

In order to determine the behaviour of the individual eigenphases in the neigh-
bourhood of a resonance we follow Macek [620] by diagonalizing the S-matrix
defined by (3.69) in two stages. We first transform S by the real orthogonal matrix
A0 which diagonalizes S0 giving

S′ = AT
0 SA0 = exp(2iΔ)− iΓ

exp(iΔ0)y× y exp(iΔ0)

E − Er + 1
2 iΓ

, (3.79)

where y = AT
0γ is a vector whose elements give the amplitudes for the decay of the

resonance into the eigenchannels of S0. We then substitute (3.79) into the eigenvalue
equation

S′b j = exp(2iδ j )b j , j = 1, . . . , n, (3.80)

where δ j is the j th eigenphase of S. We obtain

exp(2iδ j )b j = exp(2iΔ0)b j − iΓ
exp(iΔ0)y

E − Er + 1
2 iΓ

a j , (3.81)

where a j is defined by

a j = yT exp(iΔ0)b j . (3.82)

Equation (3.81) defines the vector b j in terms of the quantity a j . Substituting this
expression for b j into (3.82) then yields the consistency relation

a j = − iΓ

E − Er + 1
2 iΓ

n∑
i=1

y2
i

exp(2iδ0
i )

exp(2iδ j )− exp(2iδ0
i )

a j , j = 1, . . . , n. (3.83)

In order for (3.83) to have a non-trivial solution, the coefficients of a j on both sides
must be equal. Using the condition yTy = γ Tγ = 1 we obtain the required relation

E − Er = 1

2
Γ

n∑
i=1

y2
i cot(δ0

i − δ j ), j = 1, . . . , n. (3.84)

When n = 1 this equation reduces to
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δ = δ0 + tan−1
1
2Γ

Er − E
, (3.85)

which corresponds to (3.78) obtained earlier.
Equations (3.84) define the behaviour of the eigenphases δ j as a function of E .

For any given energy this equation has n solutions, each solution δ j lying between
adjacent values of the non-resonant eigenphases δ0

i . As the energy increases from a
value well below the resonance energy Er to a value well above Er , the correspond-
ing eigenphases increase from close to and just above each non-resonant eigenphase
δ0

i to close to and just below the next higher non-resonant eigenphase δ0
i+1. Taking

the derivative of (3.84) with respect to the energy E and assuming that the δ0
i are

independent of energy we obtain

1 = 1

2
Γ

dδ j

dE

n∑
i=1

y2
i cosec2(δ0

i − δ j ), j = 1, . . . , n, (3.86)

which shows that each eigenphase δ j increases monotonically with energy. It also
follows from this equation that the eigenphases δ j increase most rapidly near Er .

As an illustration of (3.84), we show in Fig. 3.5 the calculated eigenphase sum
δsum and the three eigenphases δ1, δ2 and δ3 in radians for e−–H collisions, plotted
as a function of the incident electron energy in Rydbergs in the neighbourhood of the
1Se resonance lying between the n = 2 and 3 thresholds at ∼ 0.862 Rydbergs. The
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Fig. 3.5 The behaviour of the eigenphase sum δsum and the eigenphases δ1, δ2 and δ3, labelled
(1), (2) and (3), respectively, for e−–H collisions in the neighbourhood of the 1Se resonance lying
below the n = 3 thresholds at an incident electron energy ∼ 0.862 Rydbergs
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calculation, carried out using the R-matrix method discussed in Chap. 5, retained
the six atomic hydrogen target states 1s, 2s, 2p, 3s, 3p and 3d in the close coupling
expansion (2.57) for the conserved quantum numbers L = 0, S = 0 and π = even.
This results in six coupled channels in (2.63), where three channels, corresponding
to the 1s, 2s and 2p states, are open and the three remaining channels, corresponding
to the 3s, 3p and 3d states, are closed. Hence n = 6, na = 3 and nb = 3 in (2.79)
and the corresponding K - and S-matrices have dimensions 3 × 3. The eigenphase
sum and the three eigenphases are seen to be continuous functions of energy through
the resonance which was achieved by adding or subtracting the appropriate multiple
of π radians at each calculated energy. As expected δsum, which is given by (3.78),
increases by approximately π radians as the energy increases through the resonance.
Also the individual eigenphases behave as described in the preceding paragraph.
Further details of e−–H collision calculations and the resonances that occur are
given in Sect. 5.6.1 where we discuss the results of solving (2.63) using the R-matrix
method.

3.2.4 Time-Delay Matrix

In the previous sections we have shown that the presence of poles in the S-matrix,
lying on unphysical sheets of the complex energy plane close to the physical scat-
tering region, gives rise to resonance effects in the corresponding eigenphases and
scattering amplitudes. It was shown by Wigner [971] that a resonance not only gives
a sharp peak or dip in the cross section but also gives rise to a time delay in the
collision. In this section we consider the time delay caused by these resonances and,
following the work of Smith [881], we introduce the time-delay matrix Q(E)1 on
the real energy axis. We also relate the trace of this matrix to the derivative of the
eigenphase sum with respect to energy and we show that this quantity often provides
an accurate procedure for analysing overlapping resonances.

It was shown in early work by Eisenbud [288], Bohm [121] and Wigner [971],
using wave-packet analyses, that the time delay�t which arises in a single-channel
collision can be described in terms of the derivative of the phase shift δ with respect
to energy E by

�t = 2
dδ

dE
, (3.87)

in atomic units. Remembering that the single-channel S-matrix is related to the
phase shift δ by S = exp(2iδ) we find that

�t = iS
dS∗

dE
= −i

dS

dE
S∗, (3.88)

where S∗ is the complex conjugate of S.

1 In the original work of Smith [881] Q(E) was called the lifetime matrix.
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In the analysis of Smith [881], which was considered further by Celenza and
Tobocman [206], the time delay was analysed using a steady-state wave function
describing the collision. In this analysis, the lifetime is determined by considering
the excess number of particles in an interaction region, after subtracting the number
of particles that would have been present in the absence of the interaction. This
excess number will remain finite even if the integration is taken to infinity, provided
that the interaction vanishes rapidly enough at large distances. This excess, divided
by the total flux in (or out) through a closed surface at large distances from the
centre of the interaction region, gives the required lifetime. Using this independent
analysis of the time delay yields the same results as the wave-packet analysis which
leads to (3.88).

Smith [881] also generalized (3.88) to multichannel collisions by introducing a
time-delay matrix Q. In this analysis (3.88) becomes

Q = iS
dS†

dE
= −i

dS
dE

S†, (3.89)

where Q = Q† is hermitian and, like the S-matrix S, has dimension n × n, where
n is the number of open channels at the energy E . Following Igarashi and Shima-
mura [486] we can relate the trace of the time-delay matrix Q to the eigenphase
sum δsum, defined by (3.78). We first diagonalize the S-matrix by a real orthogonal
transformation A. Following (2.113) we write

ATSA = exp(2iΔ) = Λ, (3.90)

where the diagonal elements of Λ can be expressed in terms of the eigenphases δi ,
as follows:

Λi i = exp(2iδi ), i = 1, . . . , n. (3.91)

We find using (3.90) that

2
dΔ

dE
= iΛ

dΛ†

dE
, (3.92)

and

dΛ†

dE
= AT dS†

dE
A+ dAT

dE
S†A+ ATS† dA

dE
. (3.93)

Substituting (3.93) into (3.92) and using (3.90) gives

2
dΔ

dE
= i

(
ATS

dS†

dE
A+ ATSA

dAT

dE
S†A+ AT dA

dE

)
. (3.94)

Taking the trace of this equation then gives
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Tr

(
2

dΔ

dE

)
= iTr

(
S

dS†

dE

)
+ iTr

(
A

dAT

dE
+ AT dA

dE

)
, (3.95)

since the trace of a matrix is unaltered by an orthogonal transformation. It follows
from (3.89) that the first term on the right-hand-side of (3.95) is Tr(Q) and the
second term can be written as

iTr

(
A

dAT

dE
+ AT dA

dE

)
= iTr

(
d
(
ATA

)
dE

)
= 0. (3.96)

Hence it follows from (3.95) that

TrQ = 2Tr

(
dΔ

dE

)
. (3.97)

Finally, we see from (3.90) and (3.91) that the diagonal elements ofΔ are the eigen-
phases δi and, therefore, using (3.73) we obtain

TrQ = 2
dδsum

dE
. (3.98)

This result generalizes the single-channel result given by (3.87) to multichannel
collisions.

So far we have not made any assumption concerning the functional form of the
S-matrix or the eigenphase sum. If we assume that δsum in (3.98) satisfies (3.78),
then we find that (3.98) can be rewritten as

TrQ = 2
dδsum

dE
= Γ

(E − Er )2 +
(

1
2Γ
)2
+ 2

dδ0
sum

dE
. (3.99)

In the case of N resonances, which may be overlapping, it follows immediately from
(3.99) that

dδsum

dE
=

N∑
i=1

1
2Γi

(E − Ei )2 +
(

1
2Γi

)2
+ dδ0

sum

dE
, (3.100)

where in this equation Ei are the resonance positions and Γi are the resonance
widths.

Equation (3.100) has been used by a number of workers to determine the posi-
tions and widths of resonances. For example, this approach has been used by
Stibbe and Tennyson [889] to analyse R-matrix calculations of resonances in e−–H2
and e−–H+2 collisions, by Igarashi and Shimamura [486, 487] to analyse hyper-
spherical coordinate calculations of resonances in e+–He+ collisions, by Igarashi
and Shimamura [488] and Shimamura et al. [873] to analyse hyperspherical coor-
dinate calculations of resonances in e−–Ps collisions and by Aiba et al. [5] to



124 3 Resonances and Threshold Behaviour

analyse hyperspherical coordinate calculations of resonances in e−–He and e−–Ps
collisions.

As an example of these calculations we consider results obtained by Aiba et al.
[5] for overlapping resonances in electron–positronium atom collisions at energies
below the n = 5 Ps threshold. In this case the scattered electron moves in a long-
range dipole potential, discussed in Sect. 3.3.2, which gives rise to infinite series
of overlapping resonances converging to the n = 5 and 6 thresholds. We show in
Fig. 3.6 the results of calculations in a small energy region just below the n = 5
Ps threshold. We see in Fig. 3.6a that the 1Po eigenphase sum δsum(E) increases
by about 3π in this energy region, suggesting that there may be three resonances.
However, an appreciable change of slope in δsum(E) occurs only twice. Also, we
see in Fig. 3.6b that TrQ(E) exhibits only two peaks. However, by examining
the individual eigenvalues qi (E) of the time-delay matrix in Fig. 3.6b we see that
there is a strongly avoided crossing between the two largest eigenvalues and we
observe a broad resonance peak corresponding to the third eigenvalue. This third

Fig. 3.6 A small energy region just below the Ps n = 5 threshold in electron–positronium atom
collisions showing Ps− (1Po) overlapping resonances. (a) The eigenphase sum δsum(E). (b) The
eigenvalues qi (E) of the time-delay matrix and their sum TrQ(E). (c) The three Lorentzians Li (E)
representing the three resonances, the background dδ0

sum/dE (BG) and their sum (Fig. 5 from [5])
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resonance would be very difficult to find and analyse using a resonance analysis
of the eigenphase sum δsum(E) based on (3.78). Finally, in Fig. 3.6c we show the
result of fitting the calculated result for dδsum/dE on the left-hand side of (3.100) to
three Lorentzians, defined by the first summation on the right-hand side of (3.100),
together with a smoothly varying background term δ0

sum/dE . We see that this pro-
cedure clearly shows the existence of three resonances in the energy region with an
almost negligible background and enables accurate positions and widths for these
resonances to be determined.

In conclusion, resonance analyses based on the time-delay matrix provide an
accurate procedure for resolving overlapping resonances in atomic, molecular and
nuclear physics.

3.2.5 Feshbach Projection Operator Theory

In this section we discuss the widely used theory of resonance reactions introduced
by Feshbach [320, 321]. This theory is based on a projection operator formalism
in which Hilbert space spanned by the eigensolutions of the Schrödinger equation
describing the collision process is sub-divided into two mutually orthogonal spaces
by two projection operators P and Q. In this application bound states in Q-space,
in the absence of coupling between P- and Q-spaces, evolve into resonances when
the interaction with the open channels in P-space is included. This theory, which
was first used to describe nuclear resonance reactions, has provided a powerful
framework for describing resonance phenomena in atomic and molecular collision
processes.

In Feshbach theory, the projection operators P and Q are chosen to satisfy the
equations

P + Q = 1,

P2 = P, Q2 = Q, (3.101)

P Q = Q P = 0.

Using these definitions, the Schrödinger equation (2.2), describing multichannel
collisions, can be formally rewritten as

P(HN+1 − E)(P + Q)Ψ = 0 (3.102)

and

Q(HN+1 − E)(P + Q)Ψ = 0. (3.103)

We can solve (3.103) for QΨ yielding
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QΨ = Q
1

Q(E − HN+1)Q
Q HN+1 PΨ. (3.104)

Substituting this result for QΨ into (3.102) then gives

P(HN+1 + Vopt − E)PΨ = 0, (3.105)

where Vopt, referred to as the “optical potential”, is defined here as

Vopt = P HN+1 Q
1

Q(E − HN+1)Q
Q HN+1 P. (3.106)

We see that the optical potential describes collisions through the Hamiltonian HN+1
out of P-space into Q-space, propagation in Q-space and then collisions through
the Hamiltonian back from Q-space into P-space. The optical potential contains
all the complexity resulting from coupling Q-space to P-space. It is clear from
the above derivation that the solution of (3.105) for PΨ yields identical results to
that obtained by solving the original Schrödinger equation (2.2) for Ψ and then
projecting this solution onto P-space.

Equations (3.105) and (3.106) hold for any projection operators P and Q satis-
fying (3.101). We now consider an explicit realization of these operators which has
been particularly useful in studies of resonances in atomic and molecular collision
processes. We choose P to project onto all the open channels at a particular value
of the total energy E and Q to project onto the remaining closed channels at this
energy. That is we assume that the wave function Ψ can be expanded in the form
given by (2.45) where PΨ includes all the open channels in this expansion with
the corresponding k2

i satisfying k2
i ≥ 0, i = 1, . . . , n. We now introduce the

eigenfunctions ξs of the operator Q HN+1 Q by the equation

Q HN+1 Q ξs = εs ξs, (3.107)

where, since Q = 1−P , this operator has a discrete spectrum in the energy range of
interest below the lowest threshold in Q-space, plus a continuum spectrum starting
from this threshold. The optical potential Vopt defined by (3.106) can be written as

Vopt =
∑

s

∫
P HN+1 Q|ξs〉〈ξs |Q HN+1 P

E − εs
dεs, (3.108)

where the summation in this equation goes over the discrete spectrum and the inte-
gral over the continuum spectrum of Q HN+1 Q. It is the discrete spectrum, which
corresponds physically to an electron bound in the field of an excited atom or ion in
Q-space, that gives rise to closed-channel resonance solutions of (3.105).

We now consider the solution of (3.105) for a given set of conserved quantum
numbers, when the total energy E lies in the neighbourhood of an isolated eigen-
value εs of Q HN+1 Q. We can then rewrite (3.105) as
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P

⎡
⎣HN+1 +

∑
j �=s

∫
P HN+1 Q|ξ j 〉〈ξ j |Q HN+1 P

E − ε j
dε j − E

⎤
⎦ PΨ

= − P HN+1 Q|ξs〉〈ξs |Q HN+1 P

E − εs
PΨ, (3.109)

where we have separated out on the right-hand side of this equation the rapidly
varying pole term in the optical potential, corresponding to the isolated eigenvalue
εs . In order to solve (3.109) we rewrite it as

(H ′ − E)PΨ = −HP Qξs〉〈ξsHQ P

E − εs
PΨ, (3.110)

where

HP Q = P HN+1 Q and HQ P = Q HN+1 P. (3.111)

We also introduce a quantity Λs defined by

Λs = 〈ξsHQ PΨ 〉
E − εs

. (3.112)

Hence (3.110) can be rewritten as

(H ′ − E)PΨ = −Λs HP Q ξs . (3.113)

The solution of (3.113) can be obtained by introducing outgoing and ingoing
wave solutions, Ψ+i E and Ψ−i E , of the equation

(H ′ − E)P Ψ±i E = 0, (3.114)

where the reduced radial wave functions corresponding to Ψ+i E and Ψ−i E satisfy the
outgoing wave

F+(r) ∼
r→∞

2√
k

(
sin θ + 1

2i
eiθT0

)
(3.115)

and ingoing wave

F−(r) ∼
r→∞

2√
k

(
sin θ − 1

2i
e−iθT†

0

)
, (3.116)

boundary conditions, respectively. In analogy with our discussion in Sect. 1.1, see
(1.21), Ψ±i E in (3.114) then satisfy the δ-function orthonormality relation
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〈Ψ±i E |Ψ±i ′E ′ 〉 = δi i ′ δ(E − E ′), (3.117)

where we remember from Sect. 2.5 that the T -matrix in (3.115) and (3.116) is
related to the S-matrix by

T0 = S0 − I. (3.118)

We can then formally solve (3.113) yielding

PΨ = Ψ+i E +Λs
1

E + iη − H ′
HP Q ξs, (3.119)

where η is a positive infinitesimal quantity. Substituting (3.119) into (3.112) and
collecting terms in Λs then gives

Λs = 〈ξsHQ PΨ
+
i E 〉

E − εs − 〈ξsHQ P (E + iη − H ′)−1HP Qξs〉 . (3.120)

Using this result for Λs , (3.119) becomes

PΨ = Ψ+i E+
1

E + iη − H ′
HP Qξs〈ξsHQ PΨ

+
i E 〉

E − εs − 〈ξsHQ P (E + iη − H ′)−1HP Qξs〉 . (3.121)

In order to simplify (3.121) we consider the term appearing in the denominator
on the right-hand side of this equation. We can write

〈
ξsHQ P

1

E + iη − H ′
HP Qξs

〉
=
∑

j

∫ |〈ξsHQ PΨ
+
j E ′ 〉|2

E − E ′ + iη
dE ′, (3.122)

where we have expanded the inverse operator (E + iη − H ′)−1 in terms of the
complete set of outgoing wave solutions of (3.114). The right-hand side of (3.122)
can be written as a sum of its real and imaginary parts. The real part corresponds to
the resonance shift Δs which is given by

Δs =
∑

j

P
∫ |〈ξsHQ PΨ

+
j E ′ 〉|2

E − E ′
dE ′, (3.123)

where P denotes the principal value integral. The imaginary part of (3.122) arises
from the pole at E = E ′ and is related to the resonance width Γs by the equation

1

2
iΓs = iπ

∑
j

|〈ξsHQ PΨ
+
j E 〉|2, (3.124)
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which gives

Γs = 2π
∑

j

|〈ξsHQ PΨ
+
j E 〉|2, (3.125)

where the summation is taken over all final states. We see that this result for the
resonance width has the same form as that given by (3.72) derived in Sect. 3.2.2.

Finally, we operate on the left-hand side of (3.121) by (E + iη − H ′), project
onto the ingoing wave solution Ψ−f E of (3.114) and use the results for the resonance
shift and width given by (3.123) and (3.125). The transition amplitude T f i from an
initial state i to a final state f is then given by

T f i = T0 f i +
〈Ψ−f EHP Qξs〉〈ξsHQ PΨ

+
i E 〉

E − εs −Δs + 1
2 iΓs

, (3.126)

where T0 f i is the transition amplitude describing non-resonant scattering in P-space
in the absence of the isolated eigenfunction ξs of Q HN+1 Q. We see that (3.126) has
the same general form as (3.69) describing the S-matrix in the neighbourhood of an
isolated resonance.

The above theory has been extended by Feshbach [320, 321] to treat overlap-
ping resonances. In this case T0 f i in (3.126) varies rapidly over the width of one
of the resonances and the separation of the transition amplitude into two parts,
given by (3.126), is no longer appropriate. If only a few closely spaced resonances
are involved, such that the remaining background transition amplitude omitting
these resonances is slowly varying, then the above theory can be straightforwardly
extended to include these resonances. Equation (3.110) then becomes

(H ′ − E)PΨ = −
∑

s

HP Qξs〉〈ξsHQ P

E − εs
PΨ, (3.127)

where H ′ is the Hamiltonian omitting these closely spaced resonances, and the sub-
sequent equations are modified accordingly.

However, we also have to consider the situation in electron collisions with posi-
tive ions, where infinite series of resonances converging to each excited state thresh-
old occur. In this case resonance series may overlap and it is then necessary to
include the interaction between resonance series in the theory. This is achieved using
multichannel effective range theory or multichannel quantum defect theory which
we discuss in Sect. 3.3.

3.2.6 Hyperspherical Coordinates

We conclude this section by discussing the hyperspherical system of coordinates
which has been important in the analysis of resonances and threshold behaviour
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of three-body systems. For example, Fock [326] and Demkov and Ermolaev [260]
used these coordinates in variational calculations of bound states of helium, Delves
[257, 258] used them to describe the nuclear three-body problem and Smith
[882, 883] has given a general discussion of the three-body problem in terms of
these coordinates. They have also played an important role in the analysis of dou-
bly excited resonance states of helium and other two-electron atoms, for example,
by Macek [618, 619], Lin [598, 599], Greene [416] and Fano [307] as well as in
positron collisions calculations, for example, by Igarashi et al. [485–487]. These
coordinates have also been used in the calculation of weakly bound levels of tri-
atomic molecules such as the helium trimer 4He3 and isotopomers of the He+3 ion
discussed by Kokoouline and Masnou-Seeuws [546]. Finally, we will use these
coordinates in our derivation of the Wannier [954] threshold law of ionization in
Sect. 3.3.5

Hyperspherical coordinates for two electrons moving in the field of an infinitely
heavy nucleus at the origin of coordinates are defined in terms of the electronic
spherical polar coordinates (r1, θ1, φ1) and (r2, θ2, φ2) by

R = (r2
1 + r2

2 )
1/2, α = tan−1 r2

r1
, 0 ≤ α ≤ π

2
, (3.128)

while the four remaining coordinates are usually chosen to be (θ1, φ1, θ2, φ2). The
Schrödinger equation, defined by (2.2) and (2.3) with N = 1 and nuclear charge
number Z can be expressed in terms of these coordinates as (e.g. [664])

(
d2

dR2
+ 5

R

d

dR
− Λ

2

R2
+ C

R
+ 2E

)
Ψ = 0. (3.129)

In this equation the potential function C is given in terms of the electron–electron
and electron–nuclear potentials by

C(α, θ12) = R

(
2Z

r1
+ 2Z

r2
− 2

r12

)

= 2Z

cosα
+ 2Z

sinα
− 2

(1− sin 2α cos θ12)1/2
, (3.130)

where θ12 is the angle between the radial vectors r1 and r2. Also the operator Λ2 in
(3.129) is defined by

Λ2 = − 1

sin2 α cos2 α

d

dα

(
sin2 α cos2 α

d

dα

)
+ �2

1

cos2 α
+ �2

2

sin2 α
, (3.131)

where �2
1 and �2

2 are the squared orbital angular momentum operators for elec-
trons 1 and 2, defined in Appendix B.3, with eigenfunctions Y	1m1(θ1, φ1) and
Y	2m2(θ2, φ2) belonging to the eigenvalues 	1(	1 + 1) and 	2(	2 + 1), respectively.
Λ2 is thus the square of the grand angular momentum operator in six dimensions
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and is the Casimir operator for the O(6) group. Its eigenvalues are λ(λ + 4) where
λ is a non-negative integer. It commutes with L2, S2 and the parity as well as with
�2

1 and �2
2 but it does not commute with C .

Returning to (3.129), we transform this equation to a more familiar form which
removes the first derivative with respect to R by the transformation

Ψ = R−5/2ψ. (3.132)

Equation (3.129) then becomes

(
d2

dR2
− Λ

2 + 15
4

R2
+ C

R
+ 2E

)
ψ = 0, (3.133)

which resembles the Schrödinger equation for the motion of a particle mov-
ing in the reduced potential −C/R with centrifugal potential energy given by
(Λ2 + 15/4)/R2. However, unlike the similar equation for the hydrogen atom C ,
which depends on the angular coordinates α and θ12, does not commute with Λ2.
It follows from (3.133) that at large R the dynamics of the motion of two electrons
moving in the field of the nucleus depends on the form of C as a function of α
and θ12. In Fig. 3.7 we give a three-dimensional plot of −C(α, θ12) in the range
0 ≤ α ≤ π/2 and 0 ≤ θ12 ≤ π for the case where the nuclear charge Z = 1 which
was determined by Lin [598]. At α = 0 and π/2 the potential surface tends to −∞
corresponding to the electron–nuclear attraction singularity, while at α = π/4 and

Fig. 3.7 Potential function−C(α, θ12) as a function of α and cos θ12 in Rydbergs for two electrons
moving in the field of an H+ ion (Fig. 1 from [598])
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θ12 = 0 there is a singularity corresponding to the electron–electron repulsion. The
saddle point in the potential energy surface at α = π/4 and θ12 = π corresponds
to the situation where the two electrons are equidistant from and on opposite sides
of the nucleus. We will see in Sect. 3.3.5 that it is this configuration of the outgoing
electrons that Wannier [954] showed leads to the threshold behaviour of the electron
impact ionization cross section.

In order to solve (3.133) it is convenient to introduce the eigenfunctions UΓ
K (Ω)

of the operator Λ2. These hyperspherical harmonics, or K-harmonics, satisfy the
equation

[Λ2 − K (K + 4)]UΓ
K (Ω) = 0, (3.134)

where K is a non-negative integer which can be written as

K = 	1 + 	2 + 2m, (3.135)

	1 and 	2 being the usual orbital angular momentum quantum numbers and m a
new non-negative integer quantum number associated with the motion in α. Also in
(3.134), Ω specifies the angular variables

Ω ≡ α θ1 φ1 θ2 φ2, (3.136)

and Γ represents the conserved quantum numbers defined by (2.58).
We can eliminate the first derivative term inΛ2 defined by (3.131) by introducing

the eigenfunctions

φΓ	1	2m(Ω) = sinα cosα UΓ
K (Ω), (3.137)

which satisfy the equation

[
− ∂

2

∂α2
+ �2

1

cos2 α
+ �2

2

sin2 α
− (K + 2)2

]
φΓ	1	2m(Ω) = 0. (3.138)

These eigenfunctions are given by

φΓ	1	2m(Ω) =
1√
2

[
f	1	2m(α)Y	1	2 L ML (r̂1, r̂2)+ (−1)	1+	2−L+S+m

× f	2	1m(α)Y	2	1 L ML (r̂1, r̂2)
]
, 	1 �= 	2 (3.139)

and

φΓ	1	2m(Ω) =
1√
2

[
1+ (−1)−L+S+m

]
f		m(α)Y		L ML (r̂1, r̂2),

	1 = 	2 = 	, (3.140)
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where the functions f	1	2m(α) are defined in terms of Jacobi polynomials [618] and
the functions Y	1	2 L ML (r̂1, r̂2) are defined by (B.57).

The wave function ψ in (3.133) can now be expanded for each set of conserved
quantum numbers Γ as

ψΓ (R;Ω) =
n∑

i=1

φΓi (Ω)F
Γ
i (R), (3.141)

where the subscript i represents the quantum numbers 	1	2m and where the func-
tions FΓi (R) depend only on R. Substituting this expansion into (3.133) and pro-
jecting onto the channel functions φΓi (Ω) then gives after using (3.138)

(
d2

dR2
− (Ki + 2)2 − 1

4

R2
+ k2

)
FΓi (R) = −

1

R

n∑
j=1

V Γi j FΓj (R), i = 1, . . . , n,

(3.142)
where k2 = 2E . Also in (3.142) the potential matrix

V Γi j = 〈φΓi (Ω)|C(α, θ12)|φΓj (Ω)〉, i, j = 1, . . . , n, (3.143)

where the integration which is over all angles Ω does not depend on R. We see
that (3.142), unlike (2.63) which they replace for two electrons moving in the field
of a nucleus, are a set of n coupled second-order differential equations rather than
coupled second-order integrodifferential equations, where n is the number of terms
retained in expansion (3.141). The Pauli exclusion principle is now represented by
the form of the matrix V Γi j , defined by (3.143), where the function C , defined by
(3.130), satisfies the symmetry relation

C(α, θ12) = C
(π

2
− α, θ12

)
, 0 ≤ α ≤ π

2
, (3.144)

as illustrated in Fig. 3.7. Equations (3.142) therefore partition into symmetric and
antisymmetric sets corresponding to S = 0 and 1, respectively.

In spite of their formal simplicity, (3.142) are in principle still members of an
infinite set of coupled second-order differential equations which have to be approxi-
mated in some way in practical applications. What makes the hyperspherical coordi-
nate representation particularly useful is that in describing doubly excited resonance
states of atoms, the motion in the variable R is approximately separable from the
motion in other variables in a way which is analogous to the Born–Oppenheimer
separation of the electronic and nuclear motion in the theory of molecular structure.
This follows by examining the power series expansion of the solution FΓi (R) of
(3.142) about R = 0, where we find that the leading term in the expansion does not
depend on the coupling matrix V Γi j on the right-hand side of (3.142) as discussed by
Fano [307]. This leads us to introduce the adiabatic expansion
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ψΓ (R;Ω) =
n∑

i=1

ΦΓi (R;Ω)GΓi (R), (3.145)

rather than expansion (3.141), where the functions ΦΓi (R;Ω) are chosen to diago-
nalize all the terms in (3.142) except d2/dR2 arising from the kinetic energy opera-
tor.

In order to determine the equations satisfied by GΓi (R) we introduce the sym-
metric matrix

XΓi j (R) =
(Ki + 2)2 − 1

4

R2
δi j − 1

R
V Γi j , i, j = 1, . . . , n, (3.146)

which we diagonalize by an R-dependent orthogonal transformation as follows:

(
AΓ
)T

XΓAΓ = DΓ , (3.147)

where AΓ is an orthogonal matrix and DΓ is a diagonal matrix, both of which are
functions of R. Equations (3.142) can then be rewritten as

(
d2

dR2
− DΓi (R)+ k2

)
GΓi (R) =

n∑
j=1

WΓ
i j (R)G

Γ
j (R), i = 1, . . . , n, (3.148)

where the functions ΦΓi and GΓi in (3.145) are defined in terms of the functions φΓi
and FΓi in (3.141) by the matrix equations

ΦΓ (R;Ω) = [AΓ (R)]T φΓ (Ω) (3.149)

and

GΓ (R) = [AΓ (R)]T FΓ (R). (3.150)

Also the coupling potential matrix WΓ on the right-hand side of (3.148) is defined
by

WΓ (R)GΓ (R) = −2
[
AΓ (R)

]T dAΓ

dR

dGΓ

dR
− [AΓ (R)]T d2AΓ

dR2
GΓ (R). (3.151)

The extreme adiabatic approximation is obtained by neglecting all coupling terms
on the right-hand side of (3.148), while the adiabatic approximation is obtained
by retaining in addition the diagonal terms WΓ

i i (R). If we retain all the terms in
the coupling potential WΓ

i j (R) on the right-hand side of (3.148) then (3.142) and
(3.148) give identical results.
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3.3 Threshold Behaviour of Cross Sections

In this section we consider the behaviour of excitation and ionization cross sections
in the neighbourhood of threshold. It was shown in a fundamental paper by Wigner
[970] that the behaviour of cross sections near the threshold of a new reaction does
not depend on the collision dynamics in the “reaction zone” where all the parti-
cles are close together and strongly interacting. Instead, Wigner showed that the
threshold behaviour depends, apart from a constant multiple, only on the form of the
potential between the reacting particles at large distances. This fundamental result is
the basis of our treatment of both excitation and ionization scattering amplitudes and
cross sections in the neighbourhood of threshold. We note that a review of collisions
near threshold has been written by Sadeghpour et al. [804].

We commence our discussion of threshold behaviour by generalizing our treat-
ment of effective range theory in potential scattering, to treat excitation processes
involving many coupled two-body channels. In Sect. 3.3.1 we derive a multichannel
effective range theory for the K -matrix and T -matrix for short-range potentials,
following the work of Ross and Shaw [798], where in this derivation we make use
of the analytic properties of the multichannel R-matrix introduced and discussed
in Chap. 5 and later chapters. Then in Sect. 3.3.2, we extend this theory to treat
excitation processes, where long-range dipole potentials are present, which was first
considered by Gailitis and Damburg [359]. We conclude our treatment of thresh-
old behaviour of excitation by considering in Sects. 3.3.3 and 3.3.4 the situation
which arises in electron collisions with positive and negative ions where long-range
Coulomb potentials between the interacting particles are present. We consider first
in Sect. 3.3.3 an extension of multichannel effective range theory developed by
Gailitis [357] using the analytic properties of the R-matrix. Then in Sect. 3.3.4 we
discuss multichannel quantum defect theory (MQDT), introduced, developed and
reviewed by Seaton [859] which has been widely used in the analysis of electron
collisions with positive ions and photoionization processes in the neighbourhood of
threshold. Also in this section we summarize extensions of MQDT to treat molec-
ular collision processes. Finally, in Sect. 3.3.5 we consider the threshold behaviour
of ionization with emphasis on single ionization of atoms and positive ions by elec-
trons. The foundations of this subject were laid by Wannier [954, 955] and, in an
introduction to this section, we summarize the threshold law of single ionization
and the main theoretical and experimental developments that have been made since
Wannier’s fundamental analysis. We then derive the threshold law of single ion-
ization adopting a classical analysis analogous to that used by Wannier, based on
hyperspherical coordinates discussed in Sect. 3.2.6. Finally we mention some recent
ab initio calculations of threshold behaviour of ionization which satisfy Wannier’s
threshold law.

3.3.1 Excitation: Short-Range Potentials

We commence our discussion of threshold behaviour by generalizing our treatment
of effective range theory in potential scattering given in Sect. 1.4 to treat excitation
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processes involving many coupled channels where the potential interactions are
short range. In this way we derive a multichannel generalization of (1.120) which
was first obtained by Ross and Shaw [798].

We consider the solution of n coupled second-order integrodifferential equations
corresponding to electron collisions with neutral atoms, obtained by setting N = Z
in (3.2), which then becomes

(
d2

dr2
− �(�+ I)

r2
− U(r)+ k2

)
F(r) = 0, (3.152)

where initially we assume that the potential U is short range satisfying

U(r) = 0, r ≥ a, (3.153)

for some finite radius r = a. This enables us to develop a multichannel effective
range theory which forms the basis for later developments when long-range dipole
and Coulomb potentials are present. In all of this work we assume that the target
states are ordered so that (2.78) is satisfied.

In the energy region where all the channels are open, we showed in Sect. 2.4
that the matrix solution of (3.152), which vanishes at the origin, has the following
asymptotic form:

F(r) = k−1/2[s�(kr)+ c�(kr)K], r ≥ a, (3.154)

where K is the n × n-dimensional K -matrix. Also in (3.154), s�(kr) and c�(kr) are
diagonal matrices which satisfy the following asymptotic boundary conditions

s�(kr) = kr j�(kr) =
(
πkr

2

)1/2

J
�+ 1

2
(kr) ∼

r→∞ sin
(

kr − 1
2�π

)
(3.155)

and

c�(kr) = −krn�(kr) = (−1)�
(
πkr

2

)1/2

J−�− 1
2
(kr) ∼

r→∞ cos
(

kr − 1
2�π

)
,

(3.156)
where the diagonal elements are expressed in terms of spherical Bessel functions of
half-odd integer order defined in Appendix C.2. We previously encountered these
functions in Sect. 1.1 where we observed that c�(kr) can also be expressed in terms
of spherical Neumann functions.

In order to determine the analytic properties of the K -matrix we relate it to
the analytic properties of the n × n-dimensional R-matrix R(E), introduced in
Sect. 5.1.2. In that section we show that the R-matrix, defined by (5.19), is a real
meromorphic function of energy with simple poles only on the real energy axis.
Hence the R-matrix does not contain threshold branch cuts, discussed in Sect. 3.1,
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which arise from the solution of the coupled second-order integrodifferential equa-
tions (3.152) in the external and asymptotic regions.

The solution of (3.152) which vanishes at the origin r = 0 satisfies the following
equation:

F(a) = R(E)
(

a
dF
dr
− bF

)
r=a

, (3.157)

where b is an arbitrary constant and where we have chosen the boundary of the
internal R-matrix region to be the range r = a of the potential U(r). We then
substitute the solution F(r), defined by (3.154), into (3.157) yielding

k−1/2(s� + c�K) = R(E)k−1/2[ρ(s′� + c′�K)− b(s� + c�K)], (3.158)

where the diagonal matrix ρ = ka and where the diagonal matrices s�, c�, s′� and c′�
are defined by

s� = s�(ka), c� = c�(ka), s′� =
1

k
ds�(kr)

dr

∣∣∣∣
r=a

, c′� =
1

k
dc�(kr)

dr

∣∣∣∣
r=a

.

(3.159)
Setting the arbitrary constant b = 0 in (3.157) and (3.158), using the Wronskian
relation s′�c� − c′�s� = I and re-arranging the terms in (3.158), we obtain the follow-
ing expression for the K -matrix in terms of the R-matrix evaluated at r = a:

K−1 = −c�
s�
+ I

s′�s�
+ ρ−1/2s′�

−1
(

R(E)− ρ−1 s�
s′�

)−1

s′−1
� ρ−1/2. (3.160)

The analytic behaviour of the K -matrix in the complex energy plane is therefore
given in terms of the analytic properties of the matrices s�, s′� and c� together with
that of the R-matrix R(E). We find, following our discussion in potential scattering
which led to (1.117), that k−�−1s�, k−�s′� and k�c� are diagonal matrices whose
elements are analytic functions of energy which do not contain threshold branch
cuts. Hence, after substituting these results into (3.160) we find that K−1 can be
written in the following form:

K−1 = k−�−
1
2 M(E)k−�−

1
2 , (3.161)

where the n × n-dimensional M-matrix M(E) is a real symmetric analytic function
of energy E which does not contain threshold branch cuts.

We can also obtain an analogous expression for the T -matrix, introduced in
Sect. 2.5, which is defined in terms of the K -matrix by

T = 2iK
I− iK

. (3.162)
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We find, after substituting (3.161) into (3.162), that

T = k�+
1
2

2i

M(E)− ik2�+1
k�+

1
2 . (3.163)

Equations (3.161) and (3.163) were first obtained by Ross and Shaw [798].
It follows from the above discussion that the M-matrix M(E) can be expanded

as a power series in energy

M(E) =M0 +M1 E +M2 E2 + · · · , (3.164)

where M0, M1, M2, . . . are real symmetric energy-independent matrices. This
expansion is valid through thresholds although the radius of convergence of the
expansion will in general be finite. We see that (3.161), (3.163) and (3.164) reduce,
when the number of channels n = 1, to (1.118), (1.119) and (1.120) which we
obtained for potential scattering in Sect. 1.4.1.

The above effective range theory enables theoretical calculations or experimen-
tal measurements above and below thresholds to be related. For example, we have
shown in Sect. 3.2.1 that bound states and resonances correspond to poles in the
S-matrix and hence in the T -matrix. It follows from (3.163) that these poles occur
when the denominator of this equation satisfies

det
[
M(E)− ik2�+1

]
= 0. (3.165)

Hence (3.161), (3.163) and (3.164) relate the scattering amplitudes and cross sec-
tions above threshold to the bound states and resonances below threshold through
the analytic properties of the M-matrix.

We consider briefly an application of the above theory to two coupled channels.
In this case we can relate the parameters of a resonance lying below the upper thresh-
old to the two elastic scattering amplitudes, the inelastic scattering amplitude and
the corresponding cross sections above this threshold. We see this most clearly if
the elements of the M-matrix are slowly varying over this energy range so that we
need to only consider the three independent elements of M0 in (3.164). These ele-
ments can be fitted to give the resonance position, resonance width and background
phase shift which then enables the three scattering amplitudes and hence the cross
sections to be determined over a limited energy range above this threshold. This
relationship between resonances below threshold and cross sections above thresh-
old in two-channel models has been considered by several workers. For example,
Damburg and Peterkop [244] explored this relationship in a 1s–2s model e−–H
collision calculation, and Burke [151, 152] related the resonance parameters of the
2S resonance at 19.37 eV, which lies below the 2 3S threshold in e−–He collisions,
to the 1 1S–2 3S excitation cross section in the 2S state just above this threshold.
Further discussions of resonances which arise in e−–He collisions are given in
Sect. 5.6.2.
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Finally, we remark that, as in potential scattering, although the effective range
expansion, defined by (3.161), (3.162), (3.163) and(3.164), has been derived for a
finite range potential satisfying (3.153), it is also valid for potentials that fall off
asymptotically as fast as or faster than an exponential, provided that the radius a is
chosen so that these potentials are negligibly small for r ≥ a.

3.3.2 Excitation: Dipole Potentials

In this section we extend our discussion of threshold behaviour of excitation to treat
many coupled two-body channels where long-range dipole potentials are present.
We obtain a multichannel effective range expression first derived by Gailitis and
Damburg [358, 359] and we consider an application to electron–hydrogen atom
collisions near the n = 2 threshold.

As in Sect. 3.3.1, we consider the solution of the n coupled second-order integro-
differential equations (3.2) where we set N = Z corresponding to electron collisions
with neutral atoms. We have shown in Sect. 2.3.2 that we can choose a radius r = a
such that the local direct potential included in U(r) in (3.2) is represented by a sum
of terms behaving as inverse powers of the radius r , while the non-local exchange
and correlation potentials are negligibly small beyond this radius. It follows that for
neutral atoms the leading term in the long-range potential has the form

U(r) = α

r2
, r ≥ a, (3.166)

where α is a real symmetric matrix. Hence the coupled integrodifferential equations
(3.2) corresponding to electron collisions with neutral atoms reduce to

(
d2

dr2
− �(�+ I)+ α

r2
+ k2

)
F(r) = 0, r ≥ a, (3.167)

where we have neglected higher order terms in the long-range potential. However,
these terms can be included in the internal region, r < a, together with the non-local
exchange and correlation potentials.

We now describe the modified multichannel effective range theory, developed by
Gailitis and Damburg [358, 359], which is applicable to scattering by long-range
potentials defined by (3.166). We will see that this theory describes the situation
where the off-diagonal dipole terms retained in the calculation couple degenerate
or almost degenerate channels. This includes the most important long-range poten-
tial terms in electron collisions with hydrogen atoms, where the degeneracy of the
non-relativistic target states corresponding to principal quantum numbers n ≥ 2
results in the target atom acquiring a non-zero dipole moment in the field of the
scattered electron. This theory is also applicable to electron collisions with atoms in
highly excited states which are almost degenerate and with polar molecules when
the rotational splitting of the levels can be neglected.
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We commence by introducing an r - and energy-independent orthogonal matrix
A which diagonalizes the matrix coefficient of the r−2 term �(�+ I)+ α in (3.167)
giving

A−1[�(�+ I)+ α]A = λ(λ+ I). (3.168)

In accord with the above discussion, we only retain terms in α which couple degen-
erate or almost degenerate channels. Hence �(� + I) + α has block diagonal form,
where each block corresponds to a set of degenerate channels. It follows that A has
the same block diagonal form and consequently commutes with the diagonal matrix
k2 in (3.167). We can therefore transform (3.167) to diagonal form by multiplying
on the left by A−1 yielding

(
d2

dr2
− λ(λ+ I)

r2
+ k2

)
A−1F(r) = 0, r ≥ a. (3.169)

We observe that while the elements of the diagonal matrix λ(λ + I) are real the
corresponding effective angular momentum components λi are non-integral and can
become complex for sufficiently strong long-range dipole interactions represented
by the matrix α. We will see below that this leads to new and anomalous threshold
behaviour.

In order to determine the threshold behaviour we introduce a transformed
K -matrix K in analogy with (3.154) by the asymptotic form

A−1F(r) = k−1/2[sλ(kr)+ cλ(kr)K], r ≥ a, (3.170)

where sλ(kr) and cλ(kr) are diagonal matrices which satisfy the following asymp-
totic boundary conditions

sλ(kr) = kr jλ(kr) =
(
πkr

2

)1/2

J
λ+ 1

2
(kr) ∼

r→∞ sin
(

kr − 1
2λπ

)
(3.171)

and

cλ(kr) = −krnλ(kr) =
(
πkr

2

)1/2 J−λ− 1
2
(kr)

cosλπ
∼

r→∞
cos

(
kr + 1

2λπ
)

cosλπ
. (3.172)

These equations reduce to Eqs. (3.155) and (3.156) when the dipole potential matrix
α is zero and hence the diagonal elements of λ reduce to integer values given by
�. Also, as discussed in Appendix C.2, the spherical Bessel functions, defined by
(3.171) and (3.172), have simple analytic properties in the complex energy plane
for non-integral and complex values of λ which enables the development of the
multichannel effective range theory described below.
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The analytic properties of the transformed K -matrix K can be determined by
relating it to the analytic properties of the transformed R-matrix R(E) correspond-
ing to (3.169). In analogy with (3.157) the R-matrix is defined by

A−1F(a) =R(E)
(

aA−1 dF
dr
− bA−1F

)
r=a

. (3.173)

It follows from this definition that R(E) is related to the R-matrix R(E), corre-
sponding to the original coupled integrodifferential equations, defined by (3.152)
and (3.167), by the transformation

R(E) = A−1R(E)A. (3.174)

Since R(E) is an analytic function of energy with simple poles only on the real
energy axis and since A does not depend on the energy, then R(E) is also an
analytic function of energy with poles only on the real energy axis. We set the arbi-
trary constant b = 0 in (3.173) and substitute the expression for A−1F(a) given by
(3.170) into (3.173). After re-arranging the terms and using the Wronskian relation
s′λcλ − c′λsλ = I, we obtain

K−1 = −cλ
sλ
+ I

s′λsλ
+ ρ−1/2s′λ

−1
(

R(E)− ρ−1 sλ
s′λ

)−1

s′λ
−1
ρ−1/2, (3.175)

where ρ = ka and sλ, s′λ, cλ and c′λ are defined by (3.159) with � replaced by λ. We
see that (3.175) has the same form as (3.160) where the diagonal elements of λ are
replaced by integer values given by �. The analytic behaviour of the K -matrix K in
the complex energy plane is then given in terms of the analytic properties of sλ, s′λ
and cλ together with those of the R-matrix R(E).

Following our discussion which led to (3.161), we find that K−1 can be written
in the form

K−1 = k−λ−
1
2 M(E)k−λ−

1
2 , (3.176)

where the M-matrix M(E) is an analytic function of energy which does not con-
tain threshold branch cuts. Also, it follows from (3.175) and (3.176) that M(E) is
symmetric and when all the elements of λ are real then M(E) is also real. However,
if some of the elements of λ are complex then M(E) will also be complex. Hence
M(E) can be expanded as a power series in the energy

M(E) =M0 +M1 E +M2 E2 + · · · , (3.177)

where the coefficients M0, M1, M2, . . . are in general complex symmetric
energy-independent matrices.
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In order to determine the corresponding multichannel effective range theory
expressions for the S- and T -matrices we recombine the columns of (3.170) by
multiplying on the right by a matrix B to give

A−1F(r)B = k−1/2
{

exp
[
−i
(

kr − 1
2λπ

)]
− exp

[
i
(

kr − 1
2λπ

)]
S
}
, r ≥ a,

(3.178)
where the transformed S-matrix S is defined by

S = [I+ i(I+ i tanλπ)K] [I− i(I− i tanλπ)K]−1 (3.179)

and B is defined by

B−1 = − 1

2i
[I− i(I− i tanλπ)K] . (3.180)

We then transform (3.178) by multiplying this equation on the left by A and on the
right by

C = exp
(
− 1

2 iλπ
)

A−1 exp
(

1
2 i�π

)
, (3.181)

which yields

F(r)BC = k−1/2
{

exp
[
−i
(

kr − 1
2�π

)]
− exp

[
i
(

kr − 1
2�π

)]
S
}
, r ≥ a,

(3.182)
where the S-matrix S is defined by

S = exp
(

1
2 i�π

)
A exp

(
− 1

2 iλπ
)

S exp
(
− 1

2 iλπ
)

A−1 exp
(

1
2 i�π

)
. (3.183)

Finally, we substitute for S given by (3.179) into (3.183), where K is written in
terms of M(E) using (3.176). We find that

T = exp
(

1
2 i�π

)
A exp

(
− 1

2 iλπ
)

kλ+
1
2

2i

M(E)− i(I− i tanλπ)k2λ+1

× kλ+
1
2 exp

(
− 1

2 iλπ
)

A−1 exp
(

1
2 i�π

)

+ exp
(

1
2 i�π

)
A exp(−iλπ)A−1 exp

(
1
2 i�π

)
− I, (3.184)

which is the effective range expression for the T -matrix in the presence of long-
range dipole potentials, where we remember that T = S − I. We see that when the
dipole potential matrix α is zero then λ = � and A = I so that tan λπ = 0. Equa-
tion (3.184) then reduces to (3.163) valid for short-range potentials. It follows from
(3.184) that the well-known symmetry of the S-matrix, and hence the T -matrix,
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corresponds to the symmetry of the M-matrix M(E) discussed above. In addition
it should be noted that the unitarity of the S-matrix imposes further restrictions on
M(E).

We observe that, as in potential scattering discussed in Sect. 1.4.2, for a suffi-
ciently strong long-range dipole potential U(r), defined by (3.166), individual com-
ponents λi of the diagonal matrix λ defined by (3.168) can be complex and can be
written as

λi = −1

2
+ i Im λi , (3.185)

where Im λi can be positive or negative. It follows that the corresponding compo-

nents of the factor kλ+
1
2 in the T -matrix defined by (3.184) can be written as

k
λi+ 1

2
i = ki Imλi

i = exp(i Im λi ln ki ), (3.186)

which gives rise to an infinite number of oscillations in the cross section as the
energy tends to threshold from above. Also, an infinite number of bound states or
resonances converge to this threshold from below.

As an example of the above analysis we consider electron collisions with atomic
hydrogen for total orbital angular momentum L = 0 near the n = 2 threshold. The
coupled second-order integrodifferential equations coupling the 2s and 2p states
then have the following form for r ≥ a:

(
d2

dr2
+ k2

2

)
F2s(r)− 6

r2
F2p(r) = 0,

(
d2

dr2
− 2

r2
+ k2

2

)
F2p(r)− 6

r2
F2s(r) = 0, (3.187)

where a is chosen such that non-local exchange and correlation potentials vanish for
r ≥ a so that the following analysis applies for both singlet S = 0 and triplet S = 1
total spin states. Also in (3.187) we have neglected the diagonal r−3 potential in
the 2p channel, since its presence does not significantly alter the following analysis.
Comparing (3.187) with (3.167) we see that the coefficient of the r−2 term in (3.167)
has the following matrix form

�(�+ I)+ α =
[

0 6
6 2

]
, (3.188)

which can be diagonalized, as in (3.168), to yield the matrix

λ(λ+ I) =
[

1+√37 0
0 1−√37

]
. (3.189)
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The corresponding diagonal elements of λ are then

λ1 = −1

2
±
[√

37+ 5

4

]1/2

,

λ2 = −1

2
± i

[√
37− 5

4

]1/2

, (3.190)

and the diagonalized form of (3.187) can be written as

(
d2

dr2
− λ(λ+ I)

r2
+ k2

2

)
A−1F(r) = 0, r ≥ a, (3.191)

where the orthogonal matrix A is defined by (3.168).
We now consider the zero-energy solution of (3.191) corresponding to the com-

plex second eigenvalue λ2, defined by (3.190). Writing G = A−1F we see that the
general solution of (3.191) corresponding to this eigenvalue can be written as

G2(r) = d1rλ2+1 + d2r−λ2, r ≥ a. (3.192)

After substituting for λ2 from (3.190) we can re-write (3.192) in the general form

G2(r) = br1/2 sin(Im λ2 ln r + δ), r ≥ a. (3.193)

where

Im λ2 =
[√

37− 5

4

]1/2

= 2.19835 . . . , (3.194)

and where the coefficients b and δ in (3.193) are determined by fitting to the internal
region solution of the coupled integrodifferential equations at r = a. We see that
the solution G2(r), defined by (3.193), has an infinite number of oscillations in r
in the range a ≤ r ≤ ∞, which corresponds to an infinite number of bound states
supported by the angular momentum term in (3.191), which can be written in this
case as

− λ2(λ2 + 1)

r2
= 0.25+ (Im λ2)

2

r2
, (3.195)

which is clearly attractive.
We next consider the solution of (3.191) for negative k2

2. We first observe that
an increase in the argument of the zero-energy solution (3.193) by π radians, corre-
sponding to an additional node in the oscillation, occurs when the radius r increases
by the ratio

r2

r1
= exp

(
π

Im λ2

)
. (3.196)
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When k2
2 is negative these oscillations are cut off for large r when the k2

2 term in
(3.191) dominates the angular momentum term. As the magnitude of k2

2 decreases
towards zero, additional oscillations are supported by the angular momentum term,
each corresponding to an additional bound state. We then see from (3.191) and
(3.196) that the ratio of the magnitudes of k2

2 before and after the additional oscilla-
tion is supported is

R = (k
2
2)r=r1

(k2
2)r=r2

= r2
2

r2
1

= exp

(
2π

Im λ2

)
. (3.197)

In the present example we find, using (3.194), that the resonance spacing ratio

R = 17.429 . . . . (3.198)

We note that (3.197) can be obtained directly from the multichannel effective range
theory expansion for the T -matrix, given by (3.184), assuming the constancy of the
M-matrix.

The infinite series of bound states predicted by this theory is reduced in practice
to a finite number due to relativistic splitting of the n = 2 levels of atomic hydro-
gen, which removes the degeneracy of the levels with the same principal quantum
number assumed in the above derivation. In addition, inclusion of coupling with the
open 1s channel shifts the energies of the bound states into the complex energy plane
where they give rise to a series of resonances, where the ratio of the widths of the
neighbouring resonances also satisfies (3.197) and (3.198). The first resonance in
this series with 1Se symmetry was found by Burke and Schey [160] at∼9.6 eV inci-
dent electron energy in a close coupling calculation including the 1s, 2s and 2p target
states in expansion (2.57) and was first observed experimentally by Schulz [836].

The above analysis can be carried out for electron–hydrogen atom collisions for
all total orbital angular momentum L and at all thresholds corresponding to prin-
cipal quantum numbers n ≥ 2, as discussed by Burke [151, 152] and Pathak et al.
[720, 721]. We find that complex λ values leading to anomalous threshold behaviour
are found at all thresholds with n ≥ 2 for small L . We summarize the resonance
spacing ratio R defined by (3.197) for L ≤ 6 and for n ≤ 5 in Table 3.1, where
relativistic fine-structure splitting of the levels is neglected. We see that for some
(L , n) values more than one resonance series occur. Also, as the principal quantum
number n increases we find that resonance series occur for an increasing number of
L values. We also find that for a given L , however large, resonance series will occur
for sufficiently high n.

3.3.3 Excitation: Coulomb Potential

In this and the next section we extend our discussion of the threshold behaviour
of excitation cross sections to treat many coupled two-body channels interacting
through a Coulomb potential, corresponding to electron collisions with positive and



146 3 Resonances and Threshold Behaviour

Table 3.1 Level spacing ratios R for electron–hydrogen atom resonances at thresholds corre-
sponding to total orbital angular momentum L ≤ 6 and principal quantum number n ≤ 5 for
both total spin angular momenta S = 0 and 1

n L = 0 L = 1 L = 2 L = 3 L = 4 L = 5 L = 6

2 17.429 29.334 4422.18 – – – –

3 4.823 5.164 6.134 9.323 62.416 – –
– 16.752 80.552 – – – –

4 2.982 3.047 3.197 3.485 4.070 5.608 16.698
16.210 4.360 4.940 6.494 14.492 – –

– 27.299 18.777 8.5168 – – –
– – 3226.6 – – – –

5 2.312 2.334 2.382 2.463 2.594 2.812 3.213
4.107 2.792 2.901 3.103 3.484 4.326 7.354

– 4.224 4.091 4.892 7.396 59.907 –
– 32.955 4.766 6.184 12.838 – –
– – 9.5775 25.479 – – –

The superscripts 5 and 8 are abbreviations for ×105 and ×108, respectively.

negative ions. In this section we obtain an effective range expression, first derived
by Gailitis [357] using the analytic properties of the R-matrix, and we discuss the
behaviour of the cross sections near threshold for an attractive Coulomb poten-
tial. Then in Sect. 3.3.4 we consider multichannel quantum defect theory (MQDT)
introduced, developed and reviewed by Seaton [859], which is widely used in the
analysis and calculation of electron collisions with positive ions and corresponding
photoionization processes in the neighbourhood of threshold. Also, we summarize
some of the most important extensions of MQDT to molecular collision processes.

3.3.3.1 Effective Range Theory

We consider the solution of n coupled second-order integrodifferential equations
(3.2) describing the scattering of electrons by multi-electron positive or nega-
tive ions. We assume that the potential matrix U(r) in this equation, representing
the local direct, non-local exchange and non-local correlation potentials, can be
neglected for r greater than some radius a. Hence (3.2) then reduces to

(
d2

dr2
− �(�+ I)

r2
+ 2(Z − N )

r
+ k2

)
F(r) = 0, r ≥ a, (3.199)

The general solution of (3.199) which vanishes at the origin has the following
asymptotic form:

F(r) = k−1/2 [F�(η,kr)+G�(η,kr)K] , r ≥ a, (3.200)
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where F�(η,kr) and G�(η,kr) are diagonal matrices whose diagonal elements are
the regular and irregular Coulomb wave functions, defined, respectively, by (1.58)
and (1.59), where η = −(Z − N )/k and K is the n × n-dimensional K -matrix.

In order to determine the analytic properties of the K -matrix we proceed, as in
our discussion of short-range potentials in Sect. 3.3.1, by relating the K -matrix to
the analytic properties of the n × n-dimensional R-matrix R(E), defined on the
boundary r = a by

F(a) = R(E)
(

a
dF
dr
− bF

)
r=a

, (3.201)

We then set the arbitrary constant b = 0 in (3.201) and substitute the expression for
F(a) given by (3.200) into (3.201). After re-arranging terms and using the Wron-
skian relation F′�G� −G′�F� = I we obtain

K−1 = −G�

F�
+ I

F′�F�
+ ρ−1/2F′�

−1
(

R(E)− ρ−1 F�
F′�

)−1

F′�
−1
ρ−1/2, (3.202)

where the diagonal matrix ρ = ka and the diagonal matrices F�, F′�, G� and G′� are
defined by

F� = F�(η,ka), G� = G�(η,ka), F′� =
1

k
dF�
dr

∣∣∣∣
r=a
, G′� =

1

k
dG�

dr

∣∣∣∣
r=a
.

(3.203)

We see that (3.202) has the same form as (3.160) obtained for short-range potentials
and (3.175) obtained for dipole potentials. Hence, as in those cases, the analytic
properties of the K -matrix in the complex energy plane can be obtained in terms
of the analytic properties of the matrices F�, F′� and G� together with those of the
R-matrix R(E).

The analytic properties of the Coulomb wave functions have been described
in our development of an effective range expansion for potential scattering by a
Coulomb potential in Sect. 1.4.3 and are given by (1.175) and the following equa-
tions. Using these results, we find that (3.202) yields the following multichannel
effective range expression for the T -matrix:

T = k�+
1
2 (2�+ I)!!C�(η)

2i

M(E)− k2�+1[(2�+ I)!!]2p�(η)τ (2�+ I)−1

× C�(η)(2�+ I)!! k�+ 1
2 , (3.204)

where C�(η), p�(η) and τ are diagonal matrices whose diagonal elements are
defined by (1.60), (1.179) and (1.185), respectively. We can then show that the
M-matrix in (3.204) is given by



148 3 Resonances and Threshold Behaviour

M(E) = (2�+ I)!!
a�+

1
2

{
− ��

(2�+ I)Φ�

− k2�+1p�(η)a2�+1

(2�+ I)

×
[

ln 2a + q�(η)
p�(η)

− f (η)

]
+ 1

Φ�Φ�

− 1

Φ�

[
Φ�

Φ�

− R(E)
]

1

Φ�

}

× (2�+ I)!!
a�+

1
2

, (3.205)

where

Φ� = (�+ I)Φ� + a
dΦ�

dr

∣∣∣∣
r=a

. (3.206)

Also in (3.205) we have written Φ� ≡ Φ�(η,ka), �� ≡ ��(η,ka) and Φ� ≡
Φ�(η,ka), which are diagonal matrices whose diagonal elements Φ	, Ψ	 and Φ	
are entire functions of the energy. It follows from (3.205) that the M-matrix M(E)
is a symmetric matrix which is real on the real energy axis and which is an analytic
function of energy without threshold branch cuts. Hence M(E) can be expanded as
a power series in energy

M(E) =M0 +M1 E +M2 E2 + · · · , (3.207)

where M0,M1,M2, . . . are real symmetric energy-independent matrices.
The multichannel effective range equation (3.204) was first derived by Gailitis

[357]. We can show that it reduces to (1.187) for single-channel scattering by a
Coulomb potential and to (3.163), obtained by Ross and Shaw [798], for multichan-
nel scattering by short-range potentials. It follows that (3.204) enables the T -matrix
to be extrapolated through thresholds, relating the cross sections above and below
thresholds.

3.3.3.2 Cross Sections Near Threshold

We now obtain an equation relating the T -matrix and the cross sections above
and below threshold for scattering by an attractive long-range Coulomb potential.
We consider processes involving n coupled channels, corresponding to a given set
of conserved quantum numbers, where the target states included are ordered in
increasing energy so that (2.78) is satisfied. We determine the behaviour of the cross
sections in the neighbourhood of the nth or highest threshold which we assume is
non-degenerate.

We commence by observing that the M-matrix M(E) and the quantity
k2�+1p�(η) in (3.204) are analytic through the thresholds. We then obtain the fol-
lowing relation by evaluating (3.204) just above and just below the nth threshold

[
τ + iC0(η)η

−1/2T−1η−1/2C0(η)
]a =

[
τ + iC0(η)η

−1/2T−1η−1/2C0(η)
]b
.

(3.208)
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The superscript a in (3.208) and later equations means that the quantity is evaluated
in the limit k2

n → 0 from above the nth threshold and the superscript b in this and
later equations means that the quantity is evaluated in the limit k2

n → 0 from below
the nth threshold.

In order to relate Ta and Tb using (3.208) we consider the behaviour of the diago-
nal matrices C0(η)η

−1/2 and τ in the neighbourhood of the nth threshold. It follows
from (1.61) that the first (n − 1) diagonal elements of C0(η)η

−1/2 are continuous
at the nth threshold. However, while the nth diagonal element is smoothly varying
above this threshold, where the limit at threshold is

(
C2

0(η)η
−1/2

)a = −2π, (3.209)

it is rapidly oscillating and discontinuous below this threshold. Also, it follows from
(1.190) and (1.191) that while the first (n − 1) diagonal elements of the matrix τ
are continuous at the nth threshold, the nth diagonal element is discontinuous at this
threshold. We find that

τ a
j j − τ b

j j = 0, j = 1, . . . , n − 1 (3.210)

and

τ a
nn − τ b

nn = −iπ − π cot
π z

κn
. (3.211)

Substituting these results into (3.208) and solving for the matrix Tb, we find that the
elements of the first (n − 1) × (n − 1) sub-matrix of Tb are given in terms of the
n × n matrix Ta by

T b
jk =

[(
Ta)−1 −Δ

]−1

jk
, j, k = 1, . . . , n − 1, (3.212)

where the only non-zero element of Δ is

Δnn = 1

2
i

(
cot
π z

κn
+ i

)
≡ 1

2
i(y + i), (3.213)

which defines y. On the right-hand side of (3.212), the inverse of the full n × n
matrix

[
(Ta)−1 −Δ] is first determined, and then the (n − 1)× (n − 1) sub-matrix

elements of this inverse matrix are equated to the (n− 1)× (n− 1) matrix elements
on the left-hand side of (3.212). Owing to the special form of the matrix Δ, defined
by (3.213), we can determine the inverse of

[
(Ta)−1 −Δ] explicitly in terms of the

matrix elements of Ta and Δ. We find that (3.212) can be rewritten as

T b
jk = T a

jk−
T a

jn T a
kn

T a
nn
+ T a

jn T a
kn

T a
nn

2i

(y + i) T a
nn + 2i

, j, k = 1, . . . , n−1. (3.214)
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This equation expresses the T -matrix elements T b
jk below threshold in terms of the

slowly varying T -matrix elements T a
jk above threshold, which can be taken to have

their threshold values. We can see that the T -matrix elements below threshold are
rapidly varying because of the factor y = cot(π z/κn), which has the same value at
energies for which z/κn differs by an integer. By comparing (3.214) with (3.126)
we see that the last term in (3.214) gives rise to a Rydberg series of resonances as
k2

n = −κ2
n → 0 from below the nth threshold. We can also show that the corre-

sponding resonance widths Γ are related to the distances D between resonances by
the expression

Γ

D
= 1

2π

(
2Re T a

nn − |T a
nn|2

)
= 1

2π

n−1∑
j=1

|T a
jn|2, (3.215)

which is constant for all resonances in the series.
We can also obtain a relation between the cross sections above and below

the nth threshold. We observe that the resonances become very close together as
we approach the nth threshold from below. Hence the quantity of interest just
below the threshold is the partial wave cross section averaged over resonances,
defined by

σ( j → k) = 1

D

∫ E+D/2

E−D/2
σ( j → k)dE = 1

π

∫ ∞
−∞
σ( j → k)

dy

1+ y2
, (3.216)

where the cross section is defined in terms of the T -matrix by (2.132) for
non-relativistic collisions and by (5.129) for heavy ionic targets where relativis-
tic effects become important. Using (3.214) and (3.216) we obtain the follow-
ing expression relating the partial wave cross sections above and below the nth
threshold:

σ b( j → k) = σ a( j → k)+ σ
a( j → n) σ a(n → k)∑n−1

k′=1 σ
a(n → k′)

, j, k = 1, . . . , n − 1.

(3.217)
We see from this expression that the averaged cross sections below the nth threshold
decrease abruptly at the threshold as the energy increases through this threshold. We
also see that the total cross section, obtained by summing (3.217) over k, the open
channels below the nth threshold, gives

n−1∑
k=1

σ b( j → k) =
n−1∑
k=1

σ a( j → k)+ σ a( j → n), j, k = 1, . . . , n− 1. (3.218)

Hence, the total partial wave cross section is continuous across the nth threshold
for all initial states. Also, the total cross section, obtained by summing over all
conserved quantum numbers, is continuous across thresholds. The continuity of the
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total cross section across a new threshold was first proved by Baz [83] and by Fonda
and Newton [336, 337] by averaging the imaginary part of the scattering amplitude,
which is related to the total cross section through the optical theorem.

The above theory has been generalized by Gailitis [357] to the situation where
several degenerate channels open at the highest threshold. This occurs, for exam-
ple, when several degenerate channels are coupled to a target state with non-
zero angular momentum. When the cross sections for excitation of target states
belonging to the highest threshold are small, corresponding to narrow reso-
nances below this threshold, then the generalization of (3.217) can be written as
follows:

σ b( j → k) = σ a( j → k)+
∑

l

σ a( j → l) σ a(l → k)∑
k′ σ

a(l → k′)
. (3.219)

In this equation, j and k correspond to the channels which are open below the high-
est degenerate threshold, k′ is summed over the open channels below this threshold
and l is summed over the degenerate channels corresponding to the highest thresh-
old. Hence, as in the case of one threshold channel, the averaged cross sections
below the highest degenerate threshold decreases abruptly as the energy increases
through this threshold. Also, we find by summing (3.219) over k, corresponding to
the open channels below the highest degenerate threshold, that as in (3.218) the total
cross section is continuous across this threshold. Again, this result can be obtained
by averaging the imaginary part of the scattering amplitude.

Finally, the application of R-matrix theory in the analysis of the behaviour of
electron–ion collision cross sections in the neighbourhood of thresholds has also
been considered by Lane [565]. In this work the relationship with multichannel
quantum defect theory, reviewed in the next section, was discussed.

3.3.4 Multichannel Quantum Defect Theory

In this section we conclude our discussion of the threshold behaviour of excitation
cross sections by considering electron collisions with multi-electron positive ions
using multichannel quantum defect theory (MQDT) introduced and developed by
Seaton [851, 852, 854–856, 858] who also comprehensively reviewed this theory
[859]. We then summarize some of the most important developments in the appli-
cation of MQDT to molecular collision processes.

In our discussion of atomic MQDT it is convenient to introduce z-scaled radial
and energy variables defined by

ρ = zr, ε = 2E

z2
, (3.220)

where z = Z − N is the ionic charge, Z being the nuclear charge number and N the
number of target electrons. Also, in (3.220), E is the energy of the colliding electron
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in atomic units. It is also convenient to define the z-scaled wave number k and the
quantity ν2 by the equations

k2 = ε, ε ≥ 0 ; ε = − 1

ν2
, ε < 0. (3.221)

The radial Schrödinger equation describing single-channel electron–ion collisions
in the external region r ≥ a, when the local direct, non-local exchange and non-local
correlation potentials are negligible, then becomes

(
d2

dρ2
− 	(	+ 1)

ρ2
+ 2

ρ
+ ε

)
G(ρ) = 0, ρ ≥ za. (3.222)

It is clear that (3.199) reduces to (3.222) when only one channel is coupled, where
we have written F(r) ≡ G(ρ).

Functions f , g and h which are solutions of (3.222) have been defined by Ham
[440] and Seaton [859]. The functions f and g are analytic functions of energy
through threshold such that

f (ε, 	; ρ) =
∞∑

n=0

εn fn(	; ρ), g(ε, 	; ρ) =
∞∑

n=0

εngn(	; ρ). (3.223)

Also the function h can be written as

h = −(g + G f ), (3.224)

where G is defined by the asymptotic expansion

G(ε, 	) = εA(ε, 	)

π

⎡
⎣ 	∑

p=0

p

1+ p2ε
+ 1

12

(
1+ ε

10
+ ε

2

21
+ ε

3

20
+ · · ·

)⎤⎦ ,
(3.225)

with

A(ε, 	) =
	∏

p=0

(1+ p2ε). (3.226)

For small ε, a good approximation for G is obtained by retaining a finite number
of terms in the expansion in powers of ε. Hence G and thus h are “nearly analytic
functions” of ε. The asymptotic forms of the functions f and h when ε ≥ 0 are
given by

f (ε, 	; ρ) ∼
ρ→∞

(
2

πk

)1/2 (1− exp(−2π/k)

A(k2, 	)

)1/2

sin θ (3.227)
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and

h(ε, 	; ρ) ∼
ρ→∞

(
2

πk

)1/2 ( A(k2, 	)

1− exp(−2π/k)

)1/2

cos θ, (3.228)

where

θ = kρ − 1

2
	π + 1

k
ln(2kρ)+ argΓ (	+ 1− i/k). (3.229)

The asymptotic forms of the functions f and h when ε < 0 are given by

f (ε, 	; ρ) ∼
ρ→∞(−1)	ν	+1

(
sin(πν)Γ (ν − 	)

π
ξ − cos(πν)

Γ (ν + 	+ 1)
θ

)
(3.230)

and

h(ε, 	; ρ) ∼
ρ→∞(−1)	ν	+1 A(ε, 	)

(
cos(πν)Γ (ν − 	)

π
ξ + sin(πν)

Γ (ν + 	+ 1)
θ

)
,

(3.231)
where

ξ(ε, ρ) ∼
ρ→∞

(
2ρ

ν

)−ν
exp

(ρ
ν

)
, θ(ε, ρ) ∼

ρ→∞

(
2ρ

ν

)ν
exp

(
−ρ
ν

)
. (3.232)

We now use the analytic properties of the functions f and h to derive MQDT
equations relating the K -matrix and the S-matrix above and below thresholds. We
first observe that the n coupled second-order integrodifferential equations (3.2)
reduce to (3.199) when r ≥ a. Also, we adopt the normalization defined by (3.200)
for the solutions which vanish at the origin. When all the channels are open the
general solution of (3.2), which defines the n × n-dimensional K -matrix, can then
be written as follows:

F(r) =
(
π

2z

)1/2

[f+ hK], r ≥ a, (3.233)

where f and h are diagonal n × n-dimensional matrices, whose diagonal elements
have the asymptotic forms defined by (3.227) and (3.228).

We now consider the solution of (3.2) when na channels are open and nb channels
are closed, where n = na + nb. We can analytically continue the solution defined
by (3.233) to this energy region yielding the solution

F(r) =
(
π

2z

)1/2

[f+ hK], r ≥ a, (3.234)
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where, in the nb closed channels, the corresponding diagonal elements of f and h
now have the asymptotic forms defined by (3.230) and (3.231), respectively. Also
the n × n-dimensional K -matrix K in (3.234) is the analytic continuation of the
physical K -matrix, defined by (3.233). However, because the functions f and h in
(3.234) now diverge exponentially in the closed channels, because of the ξ terms
in (3.230) and (3.231), the corresponding solution, and hence the K -matrix K, is
non-physical.

In order to obtain physical solutions when na channels are open, we take linear
combinations of the n solutions defined by (3.234), which eliminate the exponen-
tially diverging terms in the closed channels. Hence we write

F(r)C =
(
π

2z

)1/2

[f+ hK]C, r ≥ a, (3.235)

where C is an n × na-dimensional matrix and where the matrices F , K and C are
partitioned into open- and closed-channel sub-matrices as follows:

F ≡
[Foo Foc

F co F cc

]
, K ≡

[Koo Koc

Kco Kcc

]
, C ≡

[
Coo

Cco

]
. (3.236)

The na × na-dimensional open-channel sub-matrix of F(r)C is then

[F(r)C]oo ≡
(
π

2z

)1/2

[(fo + hoKoo)Coo + hoKocCco] , (3.237)

and the nb × na-dimensional closed-channel sub-matrix of F(r)C is

[F(r)C]co ≡
(
π

2z

)1/2

[hcKcoCoo + (fc + hcKcc)Cco] , (3.238)

where in these equations fo and ho are the diagonal open-channel components of
f and h, and fc and hc are the diagonal closed-channel components of f and h,
respectively. We then choose Coo = Ioo, where Ioo is the na × na-dimensional unit
matrix, so that the matrix multiplying fo in [F(r)C]oo is diagonal and we choose
the Cco so that the divergent terms in [F(r)C]co involving ξ , which arise in fc and
hc defined by (3.230) and (3.231), are eliminated. This last condition yields

A cos(πνc)KcoCoo + [sin(πνc)+ A cos(πνc)Kcc] Cco = 0. (3.239)

After setting A = I, which we see from (3.226) is valid in the neighbourhood of
threshold, we find that

Cco = − 1

Kcc + tan(πνc)
Kco, (3.240)
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where νc is an nb × nb-dimensional diagonal matrix in the closed channels, whose
diagonal elements are defined by (3.221). It follows that we can write

[F(r)C]oo =
(
π

2z

)1/2

[fo + hoKoo] , r ≥ a, (3.241)

where

Koo = Koo −Koc
1

Kcc + tan(πνc)
Kco. (3.242)

The na×na-dimensional K -matrix Koo defined by (3.242) is the physical K -matrix
in the open channels, which can be used to determine the S-matrix, T -matrix and
cross sections, as described in Sect. 2.5. We see that it is expressed in terms of the
elements of the n × n-dimensional non-physical K -matrix K which can be analyti-
cally continued through thresholds.

We can obtain a similar expression for the na × na-dimensional S-matrix Soo.
When all channels are open the n × n-dimensional physical S-matrix is defined in
analogy with (3.233) by

G(r) =
(
π

2z

)1/2

[(h− if)− (h+ if)S] , r ≥ a, (3.243)

where it follows from (3.227) and (3.228) that (h− if) and (h+ if) are ingoing and
outgoing waves, respectively. We now analytically continue the solution, defined by
(3.243) to an energy region where na channels are open and nb channels are closed,
yielding in analogy with (3.234) the solution

G(r) =
(
π

2z

)1/2

[(h− if)− (h+ if)χ] , r ≥ a, (3.244)

where the n × n-dimensional unphysical S-matrix χ is the analytic continuation of
the physical S-matrix defined by (3.243). In order to obtain the physical solution
when na channels are open, we take linear combinations of the n solutions defined
by (3.244) which eliminate the exponentially diverging terms in the closed channels.
Hence we write

G(r)D =
(
π

2z

)1/2

[(h− if)− (h+ if)χ] D, r ≥ a, (3.245)

where D is an n × na-dimensional matrix. We then partition G, χ and D into open-
and closed-channel sub-matrices as follows:

G ≡
[Goo Goc

Gco Gcc

]
, χ ≡

[
χoo χoc
χco χcc

]
, D ≡

[
Doo

Dco

]
. (3.246)
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The na × na-dimensional open-channel sub-matrix of G(r)D is then

[G(r)D]oo ≡
(
π

2z

)1/2 {[
(ho − ifo)− (ho + ifo)χoo

]
Doo

− [
(ho + ifo)χoc

]
Dco

}
, (3.247)

and the nb × na-dimensional closed-channel sub-matrix of G(r)D is

[G(r)D]co ≡
(
π

2z

)1/2 {− [(hc + ifc)χco
]

Doo + [(hc − ifc)

− (hc + ifc)χcc
]

Dco
}
. (3.248)

We then choose Doo = Ioo so that the matrix multiplying (ho − ifo) in [G(r)D]oo is
diagonal, and we choose Dco so that the divergent terms in [G(r)D]co involving ξ ,
defined by (3.232), are eliminated. This yields

Dco = − 1

χcc − exp(−2π iνc)
χco. (3.249)

It follows that we can write

[G(r)D]oo =
(
π

2z

)1/2

[(h− if)− (h+ if)Soo] , r ≥ a, (3.250)

where

Soo = χoo − χoc
1

χcc − exp(−2π iνc)
χco. (3.251)

The na × na-dimensional matrix Soo defined by (3.251) is the physical S-matrix in
the open channels, which enables the cross sections to be determined, as described
in Sect. 2.5. We see that it is expressed in terms of the elements of the non-physical
S-matrix χ , which can be analytically continued through the thresholds.

Equation (3.251) can be obtained directly from the n × n-dimensional non-
physical K -matrix K, defined by (3.234). In the energy region where na channels
are open we define an n × n-dimensional matrix S by the equation

S = iI−K
t+K , (3.252)

where t is an n × n-dimensional diagonal matrix with diagonal elements

t j j = i, open channels j = 1, . . . , na,

t j j = tanπν j , closed channels j = na + 1, . . . , n. (3.253)
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We then express the non-physical n×n-dimensional K -matrix K in (3.252) in terms
of the non-physical n × n-dimensional S-matrix χ using the equation

χ = I+ iK
I− iK , (3.254)

which is the analytic continuation of the usual expression relating the K -matrix
to the S-matrix when all channels are open, discussed in Sect. 2.5. Substituting the
expression for K in terms of χ obtained from (3.254) into the right-hand side of
(3.252) and separating out the na × na-dimensional open-channel component of
this equation yields

Soo = χoo − χoc
1

χcc − exp(−2π iνc)
χco. (3.255)

We see that the right-hand sides of (3.251) and (3.255) are identical and hence
the open-channel component of S, defined by (3.252) and (3.253), corresponds to
the physical S-matrix when na channels are open. It follows from this analysis that
the open-channel K -matrix and S-matrix can be expressed in terms of matrices K
and χ which can be analytically continued through thresholds.

In concluding our discussion of atomic MQDT we observe that there have been
many applications of this theory following its introduction and development by
Seaton. These include a series of early applications to the following atomic collision
processes: scattering of electrons by He+ by Bely [89]; absorption of radiation by Ca
atoms by Moores [657]; autoionizing and bound states of neutral beryllium atoms
by Moores [658]; extrapolation along isoelectronic sequences by Doughty et al.
[268]; resonances in the collision strengths for O+ by Martins and Seaton [638];
complex quantum defects for the e−–Be+ system by Norcross and Seaton [695];
photoionization by Dubau and Wells [273] and complex quantum defects for the
e−–He+ system by Dubau [272]. This series of papers together with many later
papers have established MQDT as an essential component of the analysis of atomic
resonance and threshold behaviour.

3.3.4.1 Molecular MQDT

Multichannel quantum defect theory has also been extended to describe resonance
and threshold behaviour of electron collisions with positive molecular ions as well
as near-threshold molecular photoionization and photoabsorption processes. In the
remainder of this section we summarize some of the most important developments
in this area.

In the pioneering work on molecular collision processes, Fano [303] extended
and applied MQDT to the analysis of high-resolution photoabsorption spectra of
H2 near threshold reported by Herzberg [458] and in two Comments [305, 306]
discussed the evolution of quantum defect methods. The work on H2 was later
extended by Jungen and Atabek [517], who developed and applied MQDT to ro-
vibronic interactions in the photoabsorption spectrum of H2 and D2, and by Jungen
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and Dill [518], who studied rotational and vibrational preionization channels of H2
obtaining good agreement with photoionization data of Dehmer and Chupka [255].
Also, Giusti [376] extended molecular MQDT to describe dissociation into two
atoms in electron collisions with molecular ions, and Giusti-Suzor and Jungen [377]
adapted molecular MQDT to treat the simultaneous vibrational preionization and
electronic predissociation in NO observed in the photoabsorption and photoioniza-
tion spectra. Jungen [516] also developed a unified MQDT treatment of dissocia-
tion and ionization processes which was applied to preionized and predissociated
resonances in the H2 spectrum and Stephans and Greene [887] presented an MQDT
procedure to calculate the broadening of preionization resonances due to competing
predissociation in the ionization continuum of H2. A review of the earlier devel-
opments and applications of molecular MQDT was written by Greene and Jun-
gen [421]. In more recent work, a non-iterative eigenchannel R-matrix approach
combined with MQDT was developed by Gao et al. [360] and applied to predis-
sociation of H2 and a unified MQDT treatment of both molecular ionization and
dissociation was developed by Jungen and Ross [519].

We conclude this section by mentioning a major series of dissociative recombina-
tion studies of the triatomic ion H+3 which has been carried out by Kokoouline and
Greene [543, 544] and by dos Santos et al. [267], and which has been extended
by Kokoouline and Greene [544, 545] to dissociative recombination of the tri-
atomic ions D+3 , H2D+ and D2H+. We will also consider in Sect. 11.1.7.4 inter-
mediate energy electron–H+3 collision calculations carried out using R-matrix the-
ory. Dissociative recombination of H+3 ion is a fundamental process in diffuse
interstellar clouds and, as the simplest triatomic ion, detailed theoretical stud-
ies can be seen as a prototype for the study of electron collisions with more
complex polyatomic molecules and molecular ions. Also, in contrast to dissocia-
tive attachment/recombination in diatomic molecules and ions there is an addi-
tional three-body dissociative pathway for H+3 where the molecule dissociates
into three hydrogen atoms. The theoretical approach developed by Kokoouline
and Greene [543, 544] for treating this process combined MQDT to represent the
closed channels, the hyperspherical coordinate approach, discussed in Sect. 3.2.6, to
represent the motion of the nuclei and inclusion of outgoing wave Siegert [876]
pseudostates to represent the vibrational continuum. These pseudostates, which are
analogous to the pseudostates introduced in intermediate-energy collisions in Sects.
6.1 and 6.2, are included to let dissociative flux escape if it reaches the hyper-radial
boundary. In the later work by dos Santos et al. [267], accurate vibrational wave
functions were used and a large number of rotational states of the H+3 ground vibra-
tional state were included in the calculation. This resulted in good agreement with
dissociative recombination measurements using the Stockholm (CRYRING) and the
Heidelberg (TSR) ion storage rings [734], showing the importance of Jahn–Teller
coupling between the electronic and vibrational motion. In conclusion, this work has
shown that recent state-of-the-art ab initio calculations on dissociative recombina-
tion of simple polyatomic molecules using MQDT and a hyperspherical coordinate
representation of the collision process are now capable of accurately describing this
complex process.
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3.3.5 Threshold Behaviour of Ionization

In this section we consider the threshold behaviour of the single ionization
process

e− + A→ A+ + e− + e−, (3.256)

where an electron is incident on a neutral atom or positive ion target which we
denote by A and an electron is ejected from the target. The foundations of this
subject were laid by Wannier [954] who, using an elegant classical analysis, showed
that the ionization cross section σion satisfies the threshold law

σion = aEm . (3.257)

In this equation a is a constant, E is the sum of the kinetic energies of the two
outgoing electrons in (3.256) which is zero at threshold and m is defined by

m = 1

4

[(
100Z − 9

4Z − 1

)1/2

− 1

]
, (3.258)

where in this case Z is the residual charge number of the ion denoted by A+
in (3.256). When Z = 1, corresponding to ionization of a neutral atomic target,
m ≈ 1.127 and as the charge number of the ion Z → ∞ we see from (3.258) that
m → 1. We note that in a later paper Wannier [955] extended the analysis to discuss
the threshold law for multiple ionization.

Further developments in the classical theory of single ionization were made by
Vinkalns and Gailitis [940], who investigated the dependence of the distribution of
the ionization cross section on the angle θ12 between the final directions of the two
outgoing electrons and found that this distribution has a sharp maximum at θ12 = π
with a width which tends to zero as E1/4 as the energy E tends to zero. The classical
analysis was extended by Read [780] to small negative values of E and to study the
energy partitioning of the two outgoing electrons in the ionization process using
accurate trajectory calculations. Wannier’s threshold law of ionization has also been
derived using semiclassical theory by Peterkop [728–730] and Crothers [236, 237]
and was shown by Rau [776] to follow from the two-electron Schrödinger equation.
There have been many other important theoretical and computational investigations
including studies by Fano [304], Rau [777], Klar and Schlecht [538], Klar [537],
Greene and Rau [419, 420], Feagin [315], Altick [15], Kazansky and Ostrovsky
[526], Macek and Ovchinnikov [622], Kato and Watanabe [522–524] and Bartlett
and Stelbovics [59]. Experimentally, the validity of Wannier’s threshold law was
first clearly verified by Cvejanović and Read [239] and other early experiments
confirming this law were carried out by Spence [884] and by Pichou et al. [735].
Finally, we mention earlier reviews of threshold behaviour of ionization written by
Rau [778] and by Read [781] and a more recent review of collisions near threshold
written by Sadeghpour et al. [804].
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Fig. 3.8 Partitioning of configuration space into three regions in the Wannier theory of threshold
ionization

Following Wannier [954], we now derive the threshold law of ionization using a
classical analysis. We consider the process represented by (3.256), where the motion
of the two electrons in the final state is described using hyperspherical coordinates
discussed in Sect. 3.2.6 and defined by (3.128). In Wannier’s analysis, configuration
space is partitioned into three regions or zones, as illustrated in Fig. 3.8. These are
an inner reaction region (0 ≤ R ≤ R0), an intermediate Coulomb region (R0 ≤ R ≤
R1) and an outer free region (R ≥ R1). Following the fundamental paper by Wigner
[970] on the behaviour of cross sections near threshold, Wannier observed that it is
not necessary to know the detailed behaviour of the two electrons taking part in the
ionization process in the reaction region. Instead, he assumed that the distribution
in phase space of the two electrons is approximately uniform (i.e. quasi-ergodic)
when they enter the Coulomb region. Wannier also assumed that for large enough
R0, the Coulomb potential varies sufficiently slowly for classical mechanics to be
applicable in the Coulomb region, even when the total energy E of the two outgoing
electrons in (3.256) tends to zero. This assumption can be seen to be valid since for
a Coulomb potential the local de Broglie wavelength

λ(R) =
(

2E + 2Z

R

)−1/2

(3.259)

is slowly varying for large R and the derivative dλ/dR tends to zero as R tends to
infinity. Finally, at very large R, where R > R1, the magnitude of the Coulomb
potential energy is less than the combined kinetic energies of the two outgoing elec-
trons, so that these electrons move essentially freely. As E → 0, then the radius
R1 → ∞ and hence the Coulomb region extends to infinity. Hence the threshold
behaviour of the ionization cross section is determined by the motion of the two
electrons in the Coulomb region.

In order to determine the threshold behaviour of the ionization cross section, we
consider the potential function−C(α, θ12) defined by (3.130) and shown in Fig. 3.7.
We have already observed that the valleys which occur at α = 0 and π/2 correspond
to the electron–nuclear attraction singularities. As a result, when E ≈ 0 nearly all
the classical trajectories end up in one or other of these valleys corresponding to
single-electron escape. In order to consider the threshold behaviour of ionization
we must consider the behaviour of the trajectories in the neighbourhood of the
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saddle point at α = π/4 and θ12 = π . Near the saddle point the effective charge
ζ(α, θ12) = C(α, θ12)/2 can be expanded as

ζ(α, θ12) = ζ0 + 1

2
ζ1

(
α − π

4

)2 + 1

8
ζ2(θ12 − π)2 + · · · , (3.260)

where

ζ0 = 4Z − 1√
2
, ζ1 = 12Z − 1√

2
, ζ2 = − 1√

2
. (3.261)

It follows that the motion is stable in θ12 but unstable in α at constant R. Clearly,
classical trajectories with α = π/4 and θ12 = π lead to double-electron escape
since as R →∞ both r1 and r2 tend to infinity.

Following Wannier, we consider the case where the total orbital angular momen-
tum L of the two electrons is equal to zero which dominates the ionization cross
section close to threshold. The motion of the electrons can then be described by
three variables R, α and θ12. The classical equations of motion then take the form

d2 R

dt2
= R

(
dα

dt

)2

+ 1

4
R sin2 2α

(
dθ12

dt

)2

− ζ

R2
, (3.262)

d

dt

(
R2 dα

dt

)
= 1

2
R2 sin 2α cos 2α

(
dθ12

dt

)2

+ 1

R

∂ζ

∂α
, (3.263)

d

dt

(
R2 sin2 2α

dθ12

dt

)
= 4

R

∂ζ

∂θ12
, (3.264)

and the energy of the system is given by

E = 1

2

(
dR

dt

)2

+ 1

2
R2
(

dα

dt

)2

+ 1

8
R2 sin2 2α

(
dθ12

dt

)2

− ζ
R
. (3.265)

We then write

�α = α − π
4
= u1, �θ12 = θ12 − π = u2, (3.266)

and we assume that �α and �θ12 are small quantities. Retaining terms of the same
order enables us to write (3.262)–(3.264) in the form

d2 R

dt2
= −ζ0

R
(3.267)
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and

d

dt

(
R2 dui

dt

)
= ζi ui

R
, i = 1, 2, (3.268)

where we note that (3.268) are linear uncoupled equations for u1 and u2. It follows
from (3.265) and (3.267) that the first integral for the velocity is given by

dR

dt
=
(

2E + 2
ζ0

R

)1/2

. (3.269)

If we introduce the dimensionless variables

ρ = E R

ζ0
, τ = E3/2t

ζ0
, (3.270)

then (3.268) and (3.269) can be written as

d

dτ

(
ρ2 dui

dτ

)
= ζi/ζ0

ρ
ui , i = 1, 2 (3.271)

and

dρ

dτ
= √2

(
1+ 1

ρ

)1/2

. (3.272)

We remark that (3.270), (3.271) and (3.272) imply that the classical orbits are invari-
ant under the transformation

R → a R, E → a−1 E, t → a3/2t, ui → ui , (3.273)

which is sometimes referred to as the “similarity principle” [729, 954]. In particular
we see that the quantities u1 and u2 depend on E only through the dimension-
less variables ρ and τ . We note that the exact classical equations given by (3.262),
(3.263) and (3.264) also satisfy this similarity principle.

Equation (3.272) can now be used to rewrite (3.271) in a form such that the
independent variable is ρ instead of τ . We find that

2ρ(1− ρ)d
2ui

dρ2
+ (3− 4ρ)

dui

dρ
= ζi/ζ0

ρ
ui , i = 1, 2. (3.274)

Since we are interested in the threshold behaviour E → 0, the situation where
E R � ζ0 (i.e. where ρ � 1) is of particular interest. Equations (3.274) then reduce
to
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d2ui

dρ2
+ 3

2ρ

dui

dρ
= ζi/ζ0

2ρ2
ui , i = 1, 2, (3.275)

which have solutions of the form

u1 = c11 Rm11 + c12 Rm12 (3.276)

and

u2 = c21 Rm21 + c22 Rm22 , (3.277)

where we have reverted to the variable R and where ci j are integration constants.
The exponents mi j in (3.276) and (3.277) are given by

mi1 = −1

4
− 1

2
μi , mi2 = −1

4
+ 1

2
μi , i = 1, 2, (3.278)

where

μ1 = 1

2

(
100Z − 9

4Z − 1

)1/2

, μ2 = i

2

(
9− 4Z

4Z − 1

)1/2

. (3.279)

Since Z ≥ 1 then μ1 is real and ≥5/2 and μ2 is imaginary when 1 ≤ Z < 9/4 and
is real and less than 1/2 when Z ≥ 9/4.

We consider first the dependence of u2, defined by (3.277), on R and E , where
we remember from (3.266) that u2 = �θ12. For sufficiently small values of E ,
(3.276) and (3.277) are valid at the inner boundary of the Coulomb region. Now
from (3.278) and (3.279) we see that Re m2i < 0 when 1/4 < Z < 9/4 and m2i

is real and < 0 when Z ≥ 9/4, for i = 1, 2. Hence when R increases, �θ12 either
oscillates with decreasing amplitude or falls off monotonically. This confirms that
near threshold the two electrons escape in opposite directions where θ12 ≈ π .

The key equation that enables us to determine the threshold behaviour of ioniza-
tion is (3.276), where we remember from (3.266) that u1 = �α. We first observe
that since μ1 is real and ≥ 5/2 when Z > 1/4, then m11 is real and < 0. Hence as
R increases the term c11 Rm11 in (3.276) will tend to zero. On the other hand, m12 is
always positive and ≥ 1 and hence the term c12 Rm12 will increase as R increases.
Therefore, unless restrictions are placed on c12 this term will cause u1 to increase
and thus α to move away from the vicinity of π/4 and to fall into one of the potential
wells at α = 0 and π/2 in Fig. 3.7, corresponding to single-electron escape. Hence
for ionizing trajectories the coefficient c12 must lie in a small interval, namely

|c12| ≤ cmax, (3.280)

where cmax → 0 as E → 0. Moreover, according to the “similarity principle”
defined by (3.273), u1 can only depend on E through E R. We must therefore write
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c12 = d12 Em12 , (3.281)

where d12 is a constant. Hence (3.276) becomes

u1 = c11 Rm11 + d12 Em12 Rm12 . (3.282)

Since, in the neighbourhood of the boundary between the reaction region and the
Coulomb region in Fig. 3.8 we have E � Z/R we see that for variations of d12 of
order unity, u1 will remain small as R increases from R0.

Wannier calculated the flux of phase space points which corresponds to double-
electron escape for constant energy E and a given hyper-radius R. Making use
of the quasi-ergodic hypothesis, he showed that this flux does not depend on the
hyper-radius and that it varies with energy in the same way as cmax. Since this flux
is proportional to the total ionization cross section σion it follows, using (3.280)
and (3.281), that the Wannier threshold law of ionization is given by (3.257) where
m = m12 is defined by (3.278) and (3.279). Hence we find that m is given by
(3.258).

As we pointed out in the introduction to this section, the Wannier threshold
law of ionization has been confirmed using both semiclassical and quantum the-
ory derivations. In addition, a number of detailed ab initio quantum theory cal-
culations have been carried out which have provided strong support both for the
threshold energy dependence of the ionization cross section and for its angular dis-
tribution predicted by Vinkalns and Gailitis [940]. These calculations include (i)
an angle–Sturmian basis expansion of the wave function in hyperspherical coordi-
nates by Macek and Ovchinnikov [622], (ii) the representation of hyperspherical
channel functions using a smooth-variable-discretization method combined with an
R-matrix propagator method by Kato and Watanabe [522–524], (iii) the application
of the time-dependent close-coupling method by Colgan et al. [221, 225] and (iv) the
use of a propagating exterior complex scaling (PECS) method by Bartlett and Stel-
bovics [59]. In this last calculation on electron–hydrogen atom ionizing collisions,
Bartlett and Stelbovics found that for L = 0 singlet scattering σion ∝ E1.122±0.015

and (π − θ12)FWHM ≈ 3.0E1/4, and for L = 1 triplet scattering σion ∝ E3.36±0.02,
in excellent agreement with classical and semiclassical predictions. Further details
of the PECS approach to electron–hydrogen atom collisions have been given by
Bartlett [57, 58]. We will return to a discussion of electron impact ionization of
atoms and atomic ions, including R-matrix calculations near threshold, when we
consider intermediate-energy collisions in Chap. 6.
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R-Matrix Theory and Applications



Chapter 4
Introduction to R-Matrix Theory:
Potential Scattering

In this chapter we commence our discussion of R-matrix theory by introducing the
fundamental concepts of this theory and its role in electron–atom collisions. We
then consider its application in non-relativistic and relativistic potential scattering,
providing an introduction to later chapters in this monograph.

R-matrix theory was introduced in 1946 and 1947 by Wigner [968, 969] and
by Wigner and Eisenbud [972] in fundamental papers describing nuclear resonance
reactions, and its extension to relativistic collisions described by the Dirac equation
was first formulated in 1948 by Goertzel [385]. This early work was reviewed and
further developments and applications of R-matrix theory in nuclear physics were
made in the 1950s and 1960s, for example by Blatt and Weisskopf [117], Lane
and Thomas [566], Breit [134], Lane and Robson [567–569, 795] and Mahaux and
Weidenmüller [630].

The realization that R-matrix theory could be extended to describe atomic and
molecular collision processes began to emerge in the 1960s when new resonance
phenomena were observed using synchrotron radiation sources and high-resolution
electron spectrometers. It became clear from this work, which was reviewed by
Fano [301], Cooper et al. [230] and Burke [153], that processes such as resonant
electron–atom collisions and photoionization could be understood and analysed
using an atomic extension of nuclear R-matrix theory. As a result, in the early 1970s
R-matrix theory was introduced by Burke et al. [178] and by Burke [155–157] as
an ab initio method for treating electron–atom collisions, which was extended by
Allison et al. [13, 14] and Robb [793] to treat atomic polarizabilities and van der
Waal’s coefficients, by Burke and Taylor [168] to treat atomic photoionization and
by Schneider et al. [821, 822, 826] and Burke et al. [180] to treat electron–molecule
collisions. R-matrix theory has since been developed and applied as an ab initio
method for calculating a wide range of atomic, molecular and optical collision
processes, stimulated by the need for a detailed understanding of these processes
in many applications and a number of reviews have been written, for example by
Barrett et al. [55], Aymar et al. [28] and Burke et al. [167, 170, 189].

The fundamental idea in R-matrix theory is to partition configuration space
describing the collision process into two or more regions where the processes in
each of these regions have distinctly different physical properties. A different repre-
sentation of the wave function describing the process is then adopted in each region,

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_4,
C© Springer-Verlag Berlin Heidelberg 2011

167



168 4 Introduction to R-Matrix Theory: Potential Scattering
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Fig. 4.1 Partitioning of configuration space into an internal and an external region by a boundary
surface of radius r = a0 in R-matrix theory of electron–atom collisions. An asymptotic region,
where the wave function can be accurately represented by an asymptotic expansion, lies beyond
the external region and is not shown in this figure

where these wave functions are connected by the R-matrix defined on the com-
mon boundaries. As an example we consider electron–atom collisions, illustrated
in Fig. 4.1, where a sphere of radius r = a0 separates an internal region from
an external region, r being the radial distance of the incident or scattered electron
from the target nucleus. The radius a0 of the sphere is chosen so that the charge
distributions of the target eigenstates of interest are essentially completely contained
in the internal region. In the internal region, where electron exchange and correla-
tion effects between the scattered electron and the target electrons are important,
a configuration interaction basis expansion of the total wave function is adopted.
The R-matrix expansion on the boundary r = a0 of the internal region then has the
general form

Ri j (E) = 1

2a0

∑
k

wikw jk

Ek − E
, (4.1)

which is a meromorphic function of energy E with poles only on the real energy
axis. The eigenenergies Ek in (4.1) are obtained by diagonalizing the total Hamil-
tonian in the internal region in a configuration interaction basis, and the surface
amplitudes wik are constructed from the wave function on the boundary r = a0 in
the i th channel, corresponding to the eigenenergies Ek . The R-matrix relates the
reduced radial wave function Fi (r), describing the radial motion of the scattered
electron in the i th channel, to its derivative on the boundary r = a0 by the equation

Fi (a0) =
∑

j

Ri j (E)a0
dFj

dr

∣∣∣∣∣∣
r=a0

. (4.2)

In Wigner and Eisenbud’s original theory, the terms in expansion (4.1) were iden-
tified with resonances at the energies Ek , where the wik were related to the partial
decay width of the kth resonance in the i th channel. In the applications of R-matrix
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theory in atomic, molecular and optical collisions, the terms in the summation in
(4.1) represent both resonant and non-resonant collision processes and their mutual
interference effects. Hence the R-matrix represents the full complexity of the multi-
electron collision process in the internal region. In the external region, the scattered
electron moves in the long-range local multipole potential of the target atom or ion
in the eigenstates of interest. The R-matrix can then be propagated outwards in this
potential from r = a0 to the boundary with the asymptotic region r = ap, where the
corresponding wave function can be fitted to an asymptotic expansion yielding the
K -matrix, S-matrix, scattering amplitudes and cross sections. Finally, other observ-
ables, such as effective collision strengths, f -values, photoionization cross sections,
opacities and damping coefficients can be calculated using these results.

In this chapter we consider first in Sect. 4.1 the solution of the radial Schrödinger
equation in potential scattering, using the approach first introduced by Wigner and
Eisenbud in their treatment of nuclear resonance reactions. In this approach the
collision wave function in the internal region is expanded in terms of a complete
set of basis functions satisfying homogeneous boundary conditions on the sur-
face of this region. The analytic properties of the R-matrix, defined by (4.1), then
enables the analytic behaviour of the phase shift and scattering amplitude to be
determined when the potential interaction in the external and asymptotic regions
can be neglected except for the long-range Coulomb potential. Next, in Sect. 4.2,
we generalize Wigner–Eisenbud theory to derive expressions for the collision wave
function and the R-matrix in terms of basis functions satisfying arbitrary boundary
conditions on the surface of the internal region, which are finding increasing use
in recent calculations. In this generalized theory we introduce a surface or Bloch
operator which when added to the Hamiltonian operator makes their sum hermitian
over the internal region in the arbitrary boundary condition basis. In Sect. 4.3 we
conclude our introduction to the basic concepts of R-matrix theory by discussing
variational principles for the R-matrix in potential scattering using approaches first
introduced by Kohn [542] and Jackson [495]. In Sect. 4.4 we turn to a discussion
of approximation methods which have been used in practical R-matrix calcula-
tions, discussed in later chapters in this monograph. In Sect. 4.4.1 we review the
homogeneous boundary condition method which has been widely used in R-matrix
calculations of electron collisions with atoms, ions and molecules as well as multi-
photon processes. Then in Sect. 4.4.2 we consider Buttle corrections to the R-matrix
and to the wave function which are necessary when homogeneous boundary condi-
tion methods are used. Next, in Sect. 4.4.3, we present an overview of arbitrary
boundary condition methods which are derivable from variational principles and,
in Sect. 4.4.4, we describe a linear equations method for calculating the R-matrix,
which avoids diagonalizing the Hamiltonian matrix and is efficient if the solution is
required at only a few energies. We then consider four arbitrary boundary condition
methods which have been used in multichannel collision calculations. These are
eigenchannel methods discussed in Sect. 4.4.5, Lagrange mesh methods discussed
in Sect. 4.4.6, B-spline basis methods discussed in Sect. 4.4.7 and a direct method
for calculating resonance parameters discussed in Sect. 4.4.8. Next, in Sect. 4.5 we
discuss R-matrix propagator methods which are appropriate when the wavelength
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of the scattered particle is small compared with the range over which the potential
interaction varies appreciably. This situation occurs in the external region where the
scattered electron moves in the long-range potential of an atom or ion or in heavy
particle collisions where the large mass of the interacting particles leads to short
scattering wavelengths. Finally, in Sect. 4.6, we consider the extension of R-matrix
theory to treat relativistic potential scattering described by the Dirac equation. This
extension is necessary in order to accurately describe relativistic electron collision
energies or electron collisions with heavy atoms and ions.

4.1 Wigner–Eisenbud Theory

We consider first the solution of the radial Schrödinger equation in potential scatter-
ing using the approach introduced by Wigner [968, 969] and Wigner and Eisenbud
[972] in their treatment of nuclear resonance reactions. We discuss initially zero
orbital angular momentum or s-wave scattering of a particle by a short-range spher-
ically symmetric potential. The radial Schrödinger equation (1.8) satisfied by the
reduced radial wave function u0(r) is then

(
d2

dr2
−U (r)+ k2

)
u0(r) = 0, (4.3)

where we assume that the potential

U (r) = 0, r ≥ a0, (4.4)

for some radius a0 called the R-matrix radius. In this way we have divided the
range of r into an “internal region” where 0 ≤ r ≤ a0 and an “external region”
where a0 ≤ r ≤ ∞.

Following (1.9) we look for the solution of (4.3) satisfying the boundary condi-
tions

u0(0) = 0,

u0(r) = sin(kr)+ cos(kr) tan δ0(k), r ≥ a0. (4.5)

The R-matrix, R0(E), is then defined in terms of the solution u0(a0) and its deriva-
tive [du0(r)/dr ]r=a0 on the boundary r = a0 between the internal and external
regions by the equation

u0(a0) = R0(E)

(
a0

du0

dr
− b0u0

)
r=a0

, (4.6)
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where b0 is an arbitrary constant which is often set zero. When b0 = 0 we see that
R0(E) is equal to the reciprocal of a0 times the logarithmic derivative of u0(r) at
r = a0.

Wigner–Eisenbud R-matrix theory is based on an expansion of the solution of
(4.3) at any energy in the internal region in terms of a complete set of continuum
basis orbitals. These basis orbitals u0i (r) are defined as eigensolutions of the origi-
nal radial Schrödinger equation (4.3) given by

(
d2

dr2
−U (r)+ k2

i

)
u0i (r) = 0, 0 ≤ r ≤ a0, (4.7)

satisfying the homogeneous boundary conditions

u0i (0) = 0,
a0

u0i (a0)

du0i

dr

∣∣∣∣
r=a0

= b0, (4.8)

and the orthonormality condition

∫ a0

0
u0i (r)u0 j (r)dr = δi j , (4.9)

where b0 in (4.8) is an arbitrary constant which we will see is the same as that
appearing in (4.6). The solution u0(r) of (4.3) at any energy E = 1

2 k2 is then
expanded in terms of this basis as

u0(r) =
∞∑

i=1

u0i (r)ci , 0 ≤ r < a0. (4.10)

This expansion converges uniformly except on the boundary r = a0 for all values
of b0. However, on the boundary this expansion cannot represent the derivative of
the solution u0(r) except at the eigenenergies Ei = 1

2 k2
i of (4.7) and (4.8).

This lack of uniform convergence of the expansion for the derivative of the wave
function on the boundary r = a0 can be understood by replacing the infinite sum-
mation on the right-hand side of (4.10) by a summation over its first n terms, which
we write as

un
0(r) =

n∑
i=1

u0i (r)ci , 0 ≤ r < a0. (4.11)

Taking the derivative of this equation term by term and letting r → a0 from below
gives
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dun
0

dr

∣∣∣∣
r=a0

=
n∑

i=1

du0i

dr

∣∣∣∣
r=a0

ci . (4.12)

We then substitute for du0i/dr at r = a0 from the boundary condition (4.8) into the
right-hand side of (4.12), giving

dun
0

dr

∣∣∣∣
r=a0

= b0

a0

n∑
i=1

u0i (a0)ci . (4.13)

Finally, substituting for the summation on the right-hand side of this equation from
(4.11) yields, in the limit r → a0 from below,

a0

un
0(a0)

dun
0

dr

∣∣∣∣
r=a0

= b0. (4.14)

This equation is only satisfied by the exact solution of (4.3) at the eigenenergies
Ei = 1

2 k2
i defined by (4.7) and (4.8), for all finite values of n, however large. For

all other energies the exact solution of (4.3) does not satisfy (4.14), showing that
the expansion for the derivative of the wave function is not uniformly convergent on
the boundary r = a0 at these energies. It is clear that this result arises because the
original basis orbitals u0i (r) satisfy the homogeneous boundary conditions (4.8) at
r = a0. However, we will see in Sect. 4.2 when we consider basis orbitals satisfying
arbitrary boundary conditions at r = a0 that this difficulty does not arise.

In order to calculate the R-matrix defined by (4.6), which involves the derivative
of the wave function on the boundary, an alternative approach must be used. We
proceed by premultiplying (4.3) by u0i (r), premultiplying (4.7) by u0(r), integrat-
ing the resultant equations over the range from r = 0 to a0 and subtracting these
integrals. This gives

∫ a0

0

(
u0i

d2u0

dr2
− u0

d2u0i

dr2

)
dr =

(
k2

i − k2
) ∫ a0

0
u0i u0dr. (4.15)

Evaluating the left-hand side of this equation using Green’s theorem and the bound-
ary conditions at the origin given by (4.5) and (4.8) and using the orthonormality
condition (4.9) and expansion (4.10) to simplify the right-hand side we then obtain

(
u0i

du0

dr
− u0

du0i

dr

)
r=a0

=
(

k2
i − k2

)
ci . (4.16)

Dividing this equation through by (k2
i − k2) and using (4.8) then gives

ci = 1

a0

u0i (a0)

k2
i − k2

(
a0

du0

dr
− b0u0

)
r=a0

. (4.17)
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Substituting this result for ci into (4.10) then yields the following expansion of the
radial wave function u0(r) in terms of the basis orbitals u0i (r):

u0(r) = 1

a0

∞∑
i=1

u0i (r)u0i (a0)

k2
i − k2

(
a0

du0

dr
− b0u0

)
r=a0

, (4.18)

which is valid for all r in the range 0 ≤ r < a0. However, when basis orbitals
satisfying homogeneous boundary conditions corresponding to (4.8) are adopted
care must be taken in the limit r → a0 from below, as discussed by Szmytkowski
and Hinze [907]. We find that the limiting process r → a0 and the summation over
i in (4.18) can be interchanged except when b0 = ±∞, which we see from (4.8)
corresponds to basis orbitals u0i (r) which vanish on the boundary r = a0. Hence
the expansion of the wave function in (4.18) converges when r = a0 except when
b0 = ±∞. We then find, after setting r = a0 in (4.18) and comparing with (4.6),
the following convergent expansion of the R-matrix:

R0(E) = 1

2a0

∞∑
i=1

[u0i (a0)]2
Ei − E

, (4.19)

where the energies Ei and E are defined in terms of k2
i and k2 by (1.3). The R-matrix

is seen to be a real meromorphic function of the energy with poles only on the real
energy axis at the eigenenergies Ei . The residues of these poles are given in terms
of the surface amplitudes u0i (a0).

The relationship between the R-matrix and the phase shift is determined by sub-
stituting the solution in the external region defined by (4.5), evaluated at r = a0,
into (4.6) giving

tan δ0(k) = − sin(ka0)+ R0(E)[ka0 cos(ka0)− b0 sin(ka0)]
cos(ka0)+ R0(E)[ka0 sin(ka0)+ b0 cos(ka0)] , (4.20)

where the phase shift δ0(k) is related to the K -matrix by (1.15) and to the S-matrix
by (1.14).

The extension of the above theory to non-zero orbital angular momenta 	 is
straightforward. The radial Schrödinger equation is then given by (1.8), namely

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k2

)
u	(r) = 0, (4.21)

where we assume that the potential U (r) is, as before, short range satisfying (4.4).
We now look for solutions of (4.21) satisfying the boundary conditions

u	(0) = 0,

u	(r) = s	(kr)+ c	(kr) tan δ	(k), r ≥ a0, (4.22)
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where s	(kr) and c	(kr) are defined by (1.10) and (1.11), respectively.
As in the s-wave case, we expand the solution u	(r) in the internal region in

terms of eigensolutions of the original radial Schrödinger equation (4.21) given by

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k2

i

)
u	i (r) = 0, (4.23)

satisfying the homogeneous boundary conditions (4.8) and the orthonormality con-
dition (4.9), where b0 can depend on the angular momentum. Defining the R-matrix
in analogy with (4.6) as

u	(a0) = R	(E)

(
a0

du	
dr
− b0u	

)
r=a0

, (4.24)

we then obtain the following expansion of the radial wave function in terms of the
basis orbitals u	i (r)

u	(r) = 1

a0

∞∑
i=1

u	i (r)u	i (a0)

k2
i − k2

(
a0

du	
dr
− b0u	

)
r=a0

, (4.25)

and the following expansion of the R-matrix

R	(E) = 1

2a0

∞∑
i=1

[u	i (a0)]2
Ei − E

, (4.26)

where, as in (4.18), expansion (4.25) converges for all r satisfying 0 ≤ r ≤ a0
except when b0 = ±∞ when it fails to converge at r = a0. The relation between
the R-matrix and the phase shift which replaces (4.20) is then

tan δ	(k) = −s	(ka0)+ R	(E)[ka0s′	(ka0)− b0s	(ka0)]
c	(ka0)− R	(E)[ka0c′	(ka0)− b0c	(ka0)] , (4.27)

where s′	(kr) and c′	(kr) are the derivatives of s	(kr) and c	(kr)with respect to their
arguments kr .

We see from (4.26) and (4.27) that a knowledge of the R-matrix enables the
phase shift and hence the scattering amplitude and cross section to be determined as
a function of energy. Also, as we have seen in Sect. 1.4, the analytic properties of the
R-matrix as a function of energy enables the analytic properties of the phase shift
and the scattering amplitude to be determined in the neighbourhood of threshold
energy.
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4.2 Generalized R-Matrix Theory

In this section we generalize Wigner–Eisenbud R-matrix theory to derive expres-
sions for the collision wave function and the R-matrix in terms of basis orbitals
satisfying arbitrary boundary conditions at r = a0. This approach avoids the need
for a Buttle correction [195] to the R-matrix, and in some applications to the wave
function, which is required when basis orbitals satisfying homogeneous boundary
conditions at r = a0 are used, as discussed in Sects. 4.4.1 and 4.4.2. In practice
analytic basis orbitals including Gaussian orbitals, Slater-type orbitals, Legendre
functions and B-splines, which are linearly independent and complete in the internal
region, have been used in the expansion of the radial wave function. We will discuss
some of these methods later in Sect. 4.4.

We proceed by first introducing an operator L	 which is defined by rewriting
(4.21) in the form

L	u	(r) = 0, (4.28)

where

L	 = d2

dr2
− 	(	+ 1)

r2
−U (r)+ k2, (4.29)

and where the potential U (r)may be non-zero for r ≥ a0. We observe that L	 is not
hermitian in the space of square-integrable functions which vanish at the origin and
satisfy arbitrary boundary conditions on the surface r = a0 of the internal region.
To see this we consider the integral

∫ a0

0
(vL	w − wL	v)dr =

∫ a0

0

(
v

d2w

dr2
− w d2v

dr2

)
dr

=
(
v

dw

dr
− w dv

dr

)
r=a0

, (4.30)

where we have used Green’s theorem and where v(r) and w(r) are arbitrary differ-
entiable functions which are quadratically integrable over the internal region and are
zero at the origin. If both v(r) and w(r) satisfy the homogeneous boundary condi-
tions (4.8), then the surface term on the right-hand side of (4.30) is zero. However,
if they satisfy arbitrary boundary conditions at r = a0 then the surface term does
not vanish and L	 is then not hermitian in this basis.

This difficulty can be overcome using a procedure first introduced by Bloch
[118]. We define a surface or Bloch operator L(a0, b0) by the equation

L(a0, b0) = δ(r − a0)

(
d

dr
− b0

r

)
, (4.31)
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where δ(r−a0) is the Dirac delta function [263, 817] and b0 is an arbitrary constant
which can depend on 	 and which we will identify with the constant b0 in (4.6). We
then consider the integral

∫ a0

0
[v(L	 − L)w − w(L	 − L)v]dr

=
(
v

dw

dr
− w dv

dr

)
r=a0

−
(
v

dw

dr
− w dv

dr

)
r=a0

= 0, (4.32)

where the terms in the first bracket on the right-hand side of this equation arise from
the operator L	 and the terms in the second bracket arise from the Bloch operator L.
In (4.32), and in later equations, the limit of the integral involving the Dirac delta
function δ(r − a0) is defined by the equation

lim
ε→0+

∫ a0+ε
f (r)δ(r − a0)dr = f (a0), (4.33)

where f (r) is some function of r , which is regular in the neighbourhood of a0. It
follows from (4.32) that the operator L	 −L is hermitian over the internal region in
the space of functions satisfying arbitrary boundary conditions at r = a0.

We can now solve (4.28) by rewriting it as

(L	 − L)u	 = −Lu	, (4.34)

which has the formal solution

u	 = −(L	 − L)−1Lu	. (4.35)

A spectral representation of the Green’s function (L	 − L)−1 in this equation can
be obtained by introducing a complete linearly independent set of square integrable
continuum basis orbitals in the internal region

φi (r), i = 1, . . . ,∞, 0 ≤ r ≤ a0, (4.36)

which are chosen to be real and which are zero at the origin and satisfy arbitrary
boundary conditions at r = a0. We then define linear combinations of these basis
orbitals by the equation

χ j (r) =
∞∑

i=1

φi (r)ci j , j = 1, . . . ,∞, 0 ≤ r ≤ a0, (4.37)

where the expansion coefficients ci j are determined by diagonalizing L	−L in this
basis so that
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∫ a0

0
χi (r)(L	 − L)χ j (r)dr = 2(E − Ei )δi j , (4.38)

where the eigenenergies Ei are real since (L	−L) is hermitian. Hence, the required
spectral representation of (L	 − L)−1 is given by

− (L	 − L)−1 = 1

2

∞∑
i=1

χi (r)χi (r ′)
Ei − E

, 0 ≤ r ≤ a0, 0 ≤ r ′ ≤ a0. (4.39)

Substituting this result into (4.35) and using (4.31) gives

u	(r) = 1

2a0

∞∑
i=1

χi (r)χi (a0)

Ei − E

(
a0

du	
dr
− b0u	

)
r=a0

, 0 ≤ r ≤ a0. (4.40)

Evaluating this equation on the boundary r = a0 of the internal region then gives

u	(a0) = R	(E)

(
a0

du	
dr
− b0u	

)
r=a0

, (4.41)

where we have written

R	(E) = 1

2a0

∞∑
i=1

[χi (a0)]2
Ei − E

. (4.42)

Thus we recover (4.24) for the logarithmic derivative of the wave function on the
boundary and (4.26) for the R-matrix.

The significance of this result is that the surface amplitudes χi (a0) are now
expressed through (4.36) and (4.37) in terms of an arbitrary set of basis orbitals
φi (r) which are complete over 0 ≤ r ≤ a0 and which vanish at the origin, rather
than in terms of eigensolutions of the original differential equation, defined by (4.7)
or (4.23). In addition, (4.40) provides an expansion of the solution u	(r) in the inter-
nal region at any energy in terms of the basis orbitals χi (r), where the expansion
coefficients involve u	(r) and its derivative on the boundary r = a0. This expansion
is important in situations such as photoionization, discussed in Chap. 8, where the
wave function, as well as the phase shift and S-matrix, is required.

We observe that (4.41) relates the reduced radial wave function u	(r) to its
derivative on the boundary r = a0 between the internal and external regions. It
is sometimes convenient to adopt an equivalent expression which relates the full
radial wave function w	(r) to its derivative on the boundary, where

w	(r) = r−1u	(r). (4.43)
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It follows immediately from this definition that

(
a0

du	
dr
− b0u	

)
r=a0

= a2
0

(
dw	
dr
− b0 − 1

r
w	

)
r=a0

. (4.44)

Hence (4.41) becomes

w	(a0) = R	(E)
(

dw	
dr
− b0 − 1

r
w	

)
r=a0

, (4.45)

where the modified R-matrix R	(E) is defined by

R	(E) = 1

2

∞∑
i=1

[χi (a0)]2
Ei − E

. (4.46)

Finally, the partial wave phase shifts and hence the scattering amplitude and cross
section can be determined by solving (4.28) in the external region r ≥ a0. The
solution in this region can be written in the form

u	(r) = f	(kr)+ g	(kr) tan δ	(k), r ≥ a0, (4.47)

where f	(kr) and g	(kr) are linearly independent solutions of (4.28) satisfying the
asymptotic boundary conditions

f	(kr) ∼
r→∞ sin

(
kr − 1

2
	π

)
, g	(kr) ∼

r→∞ cos

(
kr − 1

2
	π

)
, (4.48)

and where we have assumed that the potential U (r) vanishes faster than r−1 at large
distances. The functions f	(kr) and g	(kr) can be determined by solving (4.28) in
the external region, subject to the asymptotic boundary conditions defined by (4.48).
The phase shift is then defined in terms of the R-matrix by an equation analogous
to (4.27) given by

tan δ	(k) = − f	(ka0)+ R	(E)[ka0 f ′	(ka0)− b0 f	(ka0)]
g	(ka0)− R	(E)[ka0g′	(ka0)− b0g	(ka0)] , (4.49)

where f ′	(kr) and g′	(kr) are the derivatives of f	(kr) and g	(kr) with respect to
their arguments kr . The scattering amplitude and cross section can then be deter-
mined from the phase shifts, as described in Sect. 1.1. If the potential behaves as
r−1 at large distances, corresponding to a long-range Coulomb potential, then the
above analysis must be modified as described in Sect. 1.2.



4.3 Variational Principles for the R-Matrix 179

4.3 Variational Principles for the R-Matrix

We conclude our introduction to the basic concepts of R-matrix theory in poten-
tial scattering by discussing in this section variational principles for the R-matrix
first obtained by Kohn [542] and by Jackson [495]. Variational principles for the
R-matrix have also been considered by Lane and Robson [568], Oberoi and Nes-
bet [701, 702], Schlessinger and Payne [820], Shimamura [872], Nesbet [678],
Greene [417, 418] and Aymar et al. [28]. These principles, which we generalize to
multichannel collisions in Sect. 5.2, provide the basis for approximation methods
discussed in Sect. 4.4 and later chapters.

Kohn [542] considered the variational functional

F (1)	 [ut
	] =

∫ a0
0 ut

	(r)(−L	 + L)ut
	(r)dr

[ut
	(a0)]2 , (4.50)

where L	 is defined by (4.29), L is a Bloch operator defined by (4.31) and ut
	(r) is a

trial function which is zero at the origin and satisfies arbitrary boundary conditions
at r = a0. It follows from (4.31) and (4.41) that when u	 is an exact solution of
(4.28) then

F (1)	 [u	] = [a0 R	(E)]−1. (4.51)

We define the first-order variation δu	(r) about the exact solution u	(r) by

δu	(r) = ut
	(r)− u	(r), (4.52)

where δu	(r) satisfies the boundary condition δu	(0) = 0. The corresponding first-
order variation δF (1)	 [u	] of the functional F (1)	 [u	] is

δF (1)	 [u	] =
2
∫ a0

0 δu	(r)(−L	 + L)u	(r)dr

[u	(a0)]2 − 2F (1)	 [u	]δu	(a0)

u	(a0)
, (4.53)

where in the first term on the right-hand side of this equation we have made use of
the hermiticity of L	−L. Using (4.28) and (4.31) and substituting for F (1)	 [u	] from
(4.51) into the second term on the right-hand side of (4.53) gives immediately

δF (1)	 [u	] = 0. (4.54)

Hence F (1)	 [u	] is a variational functional which enables the R-matrix, which is

given in terms of F (1)	 [u	] by (4.51), to be determined from its stationary value.
Jackson [495] introduced a second variational functional defined as follows:

F (2)	 [ut
	] =

∫ a0

0
ut
	(r)(−L	 + L)ut

	(r)dr − 2a−1
0 ut

	(a0). (4.55)
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Unlike F (1)	 [u	], the functional F (2)	 [u	] depends on the normalization of the trial

function. We therefore consider first-order variations δF (2)	 [u	] of the functional

F (2)	 [u	] due to first-order variations δu	(r) about the exact solution u	(r) of (4.28),
subject to the normalization condition

(
a0

dut
	

dr
− b0ut

	

)
r=a0

= 1. (4.56)

It follows from (4.55) that the first-order variation δF (2)	 [u	] of the functional

F (2)	 [u	] is

δF (2)	 [u	] = 2
∫ a0

0
δu	(r)(−L	 + L)u	(r)dr − 2a−1

0 δu	(a0), (4.57)

which, using (4.28) and (4.31), reduces to

δF (2)[u	] = 2a−1
0 δu	(a0)

(
a0

du	
dr
− b0u	

)
r=a0

− 2a−1
0 δu	(a0). (4.58)

Since the exact solution u	(r) satisfies (4.56) then (4.58) shows that

δF (2)[u	] = 0. (4.59)

Also, when the exact solution u	(r) is substituted into (4.55), we obtain

F (2)	 [u	] = u	(a0)

(
du	
dr
− b0

a0
u	

)
r=a0

− 2a−1
0 u	(a0)

= a−1
0 u	(a0)− 2a−1

0 u	(a0)

= −a−1
0 R	(E), (4.60)

since from (4.24) and (4.56)

R	(E) = u	(a0)

(
a0

du	
dr
− b0u	

)−1

r=a0

= u	(a0). (4.61)

Hence F (2)	 [u	] is also a variational functional which enables the R-matrix to be
determined from its stationary value.

We apply these variational principles to the determination of the R-matrix using
the arbitrary boundary condition method in Sect. 4.4.3 and later sections. These
variational principles can be generalized in a straightforward way to multichannel
collisions and we consider the generalization of the second variational principle,
defined by (4.55), in Sect. 5.2.
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4.4 R-Matrix Approximation Methods

In previous sections of this chapter we have introduced the basic concepts of
R-matrix theory. In this section we discuss approximation methods that can be used
in practical calculations. We consider first in Sect. 4.4.1, the method introduced by
Wigner [968, 969] and Wigner and Eisenbud [972] in their treatment of nuclear
resonance reactions, where the basis orbitals satisfy homogeneous boundary con-
ditions on the outer boundary of the internal region. This method has had wide
use in electron–atom and electron–molecule collision calculations discussed in later
chapters. However, as first proposed by Buttle [195], a correction must be applied to
the R-matrix, and in some applications to the wave function, in order to obtain accu-
rate results. These corrections are discussed in Sect. 4.4.2. Then in Sect. 4.4.3 we
present an overview of methods which can be derived from variational principles,
discussed in Sect. 4.3, where the basis orbitals satisfy arbitrary boundary conditions
on the outer boundary of the internal region. We consider next, in Sect. 4.4.4, a
linear equations method which avoids diagonalizing the operator L	 − L in the
set of basis orbitals, which is efficient when calculations at only a few energy
values are required. In Sect. 4.4.5 we review iterative and non-iterative eigenchannel
methods which ensure that the wave function and its derivative are continuous on the
boundary of the internal region. In Sect. 4.4.6 we discuss Lagrange mesh methods
which provide variational accuracy for calculations carried out on a mesh or grid
of points. In Sect. 4.4.7 we describe B-spline methods which are finding increasing
application in electron collisions and multiphoton ionization processes. Finally, in
Sect. 4.4.8 we discuss a method which enables the position and width of Siegert
resonance states to be calculated directly.

4.4.1 Homogeneous Boundary Condition Method

We consider the solution of the radial Schrödinger equation

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k2

)
u	(r) = 0, (4.62)

in the internal region 0 ≤ r ≤ a0, where U (r) is a potential which may be non-zero
for r ≥ a0. In order to solve (4.62) in the internal region we introduce a set of
continuum basis orbitals u0

	i (r) which are eigensolutions of a zero-order differential
equation which we write as follows:

(
d2

dr2
− 	(	+ 1)

r2
−U0(r)+ k2

0i

)
u0
	i (r) = 0, (4.63)

satisfying the homogeneous boundary conditions
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u0
	i (0) = 0,

a0

u0
	i (a0)

du0
	i

dr

∣∣∣∣∣
r=a0

= b0, (4.64)

and the orthonormality conditions

∫ a0

0
u0
	i (r)u

0
	j (r)dr = δi j , (4.65)

where b0 in (4.64) is an arbitrary constant. The zero-order potential U0(r) in (4.63)
is chosen so that (4.63) and (4.64) can be easily solved to yield the eigenenergies
E0

i = 1
2 k2

0i and the corresponding basis orbitals u0
	i (r), while at the same time

representing the main features of the exact solutions of (4.62). These criteria are
particularly important in the case of electron–atom and electron–ion collisions,
which we will discuss in Sect. 5.3.1, where the original equations corresponding to
(4.62) involve many coupled channels with non-local potentials and where a careful
choice of the local zero-order potential U0(r) can greatly reduce the number of
basis orbitals required to yield accurate results and hence the time taken to solve the
relevant multichannel coupled integrodifferential equations in the internal region.

We now introduce linear combinations un
	j (r) of n zero-order basis orbitals

u0
	i (r), which are defined by

un
	j (r) =

n∑
i=1

u0
	i (r)c

n
i j , j = 1, . . . , n, 0 ≤ r ≤ a0, (4.66)

where the coefficients cn
i j are obtained by diagonalizing L	 − L according to

∫ a0

0
un
	i (r)(L	 − L)un

	j (r)dr = 2(E − En
i )δi j , i, j = 1, . . . , n, (4.67)

where L	 is the operator in (4.62) defined by (4.29) and L is the Bloch operator
defined by (4.31). Following our discussion in Sect. 4.2 we can rewrite (4.62) as

(L	 − L)u	 = −Lu	, (4.68)

which has the formal solution

u	 = −(L	 − L)−1Lu	. (4.69)

A spectral representation of the Green’s function (L	 − L)−1 in (4.69) can then
be obtained in terms of the basis functions un

	i (r) defined by (4.66) and (4.67).
Equation (4.69) can then be rewritten as
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un
	(r) =

1

2a0

n∑
i=1

un
	i (r)u

n
	i (a0)

En
i − E

(
a0

dun
	

dr
− b0un

	

)
r=a0

, 0 ≤ r ≤ a0, (4.70)

which is an approximate expression for the solution of the radial Schrödinger equa-
tion (4.62) in the internal region. Setting r = a0 in (4.70) then yields

un
	(a0) = Rn

	 (E)

(
a0

dun
	

dr
− b0un

	

)
r=a0

, (4.71)

where the R-matrix Rn
	 (E) is defined in terms of the surface amplitudes un

	i (a0) and
eigenenergies En

i by

Rn
	 (E) =

1

2a0

n∑
i=1

[
un
	i (a0)

]2
En

i − E
, (4.72)

which provides a variational expression for the R-matrix. However, its usefulness
depends on how fast the summation converges to the exact solution. We will show
in Sect. 4.4.2 that in order to obtain accurate results for reasonably small values
of n, a correction to the R-matrix, first proposed by Buttle [195], must be added
to the summation in (4.72). In addition, we will see that in certain circumstances a
correction to the wave function is also necessary.

Returning to the expression for the solution in the internal region given by (4.70),
we see that its normalization is given by the term in brackets on the right-hand side
of this equation, which is defined by the normalization of the solution of the radial
Schrödinger equation (4.62) in the external region. For example, if the potential
U (r) in (4.62) vanishes for r ≥ a0 then the solution un

	(r) is given up to an arbitrary
normalization factor by (4.22) where tan δ	(k) can be determined in terms of the
R-matrix by (4.27). All the terms on the right-hand side of (4.70) are then known and
un
	(r) can be determined corresponding to this normalization factor for 0 ≤ r ≤ a0.

If the potential U (r) is not zero for r ≥ a0, we can determine the terms in brackets in
(4.70) by first solving (4.62) in the external region a0 ≤ r ≤ ap using an analytic or
numerical method subject to the boundary condition defined by (4.71) and (4.72) at
r = a0. For example, we can use one of the R-matrix propagator methods, discussed
in Sect. 4.5 and Appendix E, for solving (4.62) in the external region a0 ≤ r ≤ ap.
We can then fit the solution to an asymptotic expansion at r = ap, discussed in
Appendix F.1, with the asymptotic form

un
	(r) ∼r→∞N sin[kr − 1

2	π + δn
	 (k)], (4.73)

where N is an arbitrary normalization factor and δn
	 (k) is the phase shift. Finally, we

can determine the solution in the internal region, corresponding to this normalization
factor, using (4.70).
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4.4.2 Buttle Corrections to the R-Matrix and Wave Function

We now consider the convergence properties of expansion (4.72) for the R-matrix
and expansion (4.70) for the wave function. As already noted in Sect. 4.4.1, (4.72)
provides a variational expression for the R-matrix. However, its usefulness depends
on how fast Rn

	 (E) converges to the exact R-matrix as n → ∞. This depends on
two factors:

i. The rapidity of convergence to their exact values of the individual surface ampli-
tudes un

	i (a0), i = 1, . . . , n, and the corresponding eigenenergies En
i as n →∞

ii. The rapidity of convergence of expansion (4.72) to its exact value as n →∞

In the homogeneous boundary condition method, discussed in Sect. 4.4.1, the
second factor usually gives the largest error at low energies and a correction for the
omitted terms in the expansion must be included in order for the resultant R-matrix
to be accurate for reasonably small values of n.

The procedure that is most often used for correcting the R-matrix for the omis-
sion of high-lying pole terms in expansion (4.72) was first proposed by Buttle [195].
In this procedure, a corrected R-matrix Rc

	(E) is defined as follows:

Rc
	(E) = Rn

	 (E)+ R(BC)
	 (E), (4.74)

where the second term on the right-hand side of this equation, called the “Buttle
correction”, is approximated by

R(BC)
	 (E) = 1

2a0

∞∑
i=n+1

[
u0
	i (a0)

]2
E0

i − E
. (4.75)

This correction at the energy E of interest can be easily determined in terms of the
solution u0

	(r) of the zero-order differential equation (4.63) at this energy, satisfying
the boundary condition

u0
	(0) = 0 (4.76)

and the normalization condition

∫ a0

0
[u0
	(r)]2dr = 1. (4.77)

The zero-order R-matrix is then given by the identity

R0
	 (E) = u0

	(a0)

(
a0

du0
	

dr
− b0u0

	

)−1

r=a0

= 1

2a0

∞∑
i=1

[
u0
	i (a0)

]2
E0

i − E
, (4.78)
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which follows from (4.71) and (4.72) by replacing un
	(a0) and un

	i (a0) by the cor-
responding exact solutions of the zero-order differential equation (4.63). Hence the
Buttle correction can be approximated by

R(BC)
	 (E) = u0

	(a0)

(
a0

du0
	

dr
− b0u0

	

)−1

r=a0

− 1

2a0

n∑
i=1

[
u0
	i (a0)

]2
E0

i − E
. (4.79)

The first term on the right-hand side of (4.79) is determined by solving the zero-
order differential equation (4.63) at the energy E of interest, subject to the boundary
condition u0

	i (0) = 0, while the second term is easily determined since the first n
eigenenergies E0

i = 1
2 k2

0i , i = 1, . . . , n, and the corresponding eigensolutions
u0
	i (r), i = 1, . . . , n, of (4.63) have already been calculated.

The Buttle correction is found to be important at all energies except very close
to or at the R-matrix poles in Rn

	 (E) given by expansion (4.72). In the neighbour-
hood of these poles the Buttle correction can be neglected compared with the pole
term since, as can be seen from (4.75), it is finite and smoothly varying at ener-
gies below the energy E0

n+1 of the lowest pole included in the Buttle correction.
It also follows from the absence of poles in the Buttle correction in the low- and
intermediate-energy regions, that this correction can be calculated at a few energy
values spanning this region and then interpolated. It is thus very quick to evaluate.
This advantage becomes even more pronounced for electron–atom and electron–ion
collisions, considered in Chap. 5, where diagonalizing L	−L in (4.67) is by far the
most time-consuming part of the calculation in the internal region.

In certain situations, for example, in the calculation of the radial integrals which
arise in atomic photoionization, considered in Chap. 8, a Buttle-type correction to
the wave function as well as to the R-matrix may be required to obtain highly accu-
rate results. This can be seen by considering the expansion of the wave function
given by (4.70). As discussed following (4.10) this expansion is not uniformly con-
vergent on the boundary r = a0 since the basis orbitals u0

	i (r), i = 1, . . . , n, satisfy
homogeneous boundary conditions given by (4.64). Consequently (4.70) only pro-
vides an accurate representation of the wave function near the boundary r = a0
when the energy E is at or very close to a pole Ei . It follows that a correction to
the wave function u	(r) may be required for r <∼ a0 to allow for the omitted terms
i = n + 1, . . . ,∞ in expansion (4.70) when highly accurate results which depend
on the wave function are required. This correction was considered by Yu Yan and
Seaton [987] in the case of the electron plus proton system where highly accurate
results are available. They found that the error in the radial integrals may be reduced
by an order of magnitude by including this correction, although the radial integrals
obtained without this correction were found to be adequate for most applications.

In order to calculate the correction to the wave function we first normalize the
wave function defined by (4.70). A convenient normalization condition is

(
a0

dun
	

dr
− b0un

	

)
r=a0

= 1, (4.80)
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which can be applied except at energies at or very close to an R-matrix pole where
the correction is negligible. Expansion (4.70) for the wave function then becomes

un
	(r) =

1

2a0

n∑
i=1

un
	i (r)u

n
	i (a0)

En
i − E

, 0 ≤ r ≤ a0. (4.81)

A corrected wave function at the energy E can be defined, in analogy with the
correction to the R-matrix given by (4.74), as follows:

uc
	(r) = un

	(r)+ u(BC)
	 (r), 0 ≤ r ≤ a0, (4.82)

where the second term on the right-hand side of this equation is the correction, given
by

u(BC)
	 (r) = 1

2a0

∞∑
i=n+1

u0
	i (r)u

0
	i (a0)

E0
i − E

, 0 ≤ r ≤ a0. (4.83)

This correction can be calculated using the identity

u0
	(r) =

1

2a0

∞∑
i=1

u0
	i (r)u

0
	i (a0)

E0
i − E

, 0 ≤ r ≤ a0, (4.84)

which follows from (4.70) after letting n →∞ and replacing un
	(r) by the solution

of the zero-order differential equation (4.63), where the zero-order solution u0
	(r) is

also normalized using (4.80). The correction to the wave function at the energy E is
then given by

u(BC)
	 (r) = u0

	(r)−
1

2a0

n∑
i=1

u0
	i (r)u

0
	i (a0)

E0
i − E

, 0 ≤ r ≤ a0. (4.85)

This correction can be calculated in a similar way to the Buttle correction to the
R-matrix defined by (4.79). The first term on the right-hand side of (4.85) is calcu-
lated by solving the zero-order differential equation (4.63) at the given energy E of
interest, while the second term is given in terms of the first n eigenenergies E0

i and
the corresponding zero-order eigensolutions u0

	i (r), i = 1, . . . , n, of (4.63). Having
calculated the corrected wave function defined by (4.82) it can be renormalized to
satisfy the relevant normalization condition for the process under consideration.

Finally, while we have observed that expansion (4.72) provides a variational
expression for the R-matrix, the inclusion of the Buttle correction in (4.74), while
essential to obtain high accuracy, means that the resultant expression for the
R-matrix is no longer variational. This disadvantage is, however, outweighed by
the much faster rate of convergence as n →∞ of the Buttle-corrected result.
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4.4.3 Arbitrary Boundary Condition Methods

In this section we consider the solution of the radial Schrödinger equation (4.62) in
the internal region 0 ≤ r ≤ a0 using basis orbitals which satisfy arbitrary boundary
conditions at r = a0. We will see that there is increasing interest in these methods
which do not require a Buttle correction to the R-matrix or wave function. Also,
following from our discussion in Sect. 4.3, we will show that the R-matrix obtained
using these basis orbitals can be derived from a variational principle.

For each orbital angular momentum 	 under consideration we introduce a linearly
independent set of n basis orbitals in the internal region as follows:

φi (r), i = 1, . . . , n, 0 ≤ r ≤ a0, (4.86)

which are chosen to be real, vanish at the origin and satisfy arbitrary boundary
conditions at r = a0. We choose this basis so that as n → ∞ this basis tends to a
complete set over 0 ≤ r ≤ a0 given by (4.36). Hence the scattering wave function
u	(r) at any energy can be expanded in the internal region in this basis. We then
introduce linear combinations of these basis orbitals defined by

χ j (r) =
n∑

i=1

φi (r)ci j , j = 1, . . . , n, 0 ≤ r ≤ a0, (4.87)

where, for notational convenience, we omit the explicit dependence of χ j (r), ci j

and related quantities on the number of terms n retained in the expansion in this and
later equations. The expansion coefficients ci j are then determined by diagonalizing
L	 − L so that

∫ a0

0
χi (r)(L	 − L)χ j (r)dr = 2(E − Ei )δi j , i, j = 1, . . . , n, (4.88)

where L	 is defined by (4.29) and L is the Bloch operator defined by (4.31). Equa-
tion (4.88) defines the eigenenergies Ei , which converge to the eigenenergies given
by (4.37) and (4.38) as n → ∞. Also, it follows from the Hylleraas–Undheim
theorem [484] that the n eigenenergies Ei defined by (4.88) are upper bounds on the
lowest n exact eigenenergies defined by (4.37) and (4.38).

We now expand the trial function ut
	(r) in expression (4.50) for the first Kohn

variational functional F (1)	 [ut
	], discussed in Sect. 4.3, in terms of the basis functions

χi (r) as follows:

ut
	(r) =

n∑
i=1

χi (r)di , 0 ≤ r ≤ a0. (4.89)

Substituting this expansion into (4.50) and using (4.88) gives
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F (1)	 [ut
	] =

2
∑n

i=1 (Ei − E) d2
i∑n

i=1
∑n

j=1 χi (a0)χ j (a0)di d j
. (4.90)

It is convenient to rewrite this expression in matrix form by introducing the diagonal
matrix Γ and the symmetric matrix Λ with components

Γi j = 2 (Ei − E) δi j , i, j = 1, . . . , n (4.91)

and

Λi j = χi (a0)χ j (a0), i, j = 1, . . . , n. (4.92)

We also introduce the column vector d with components di . Equation (4.90) can
then be rewritten as

f1 = dTΓ d
dTΛd

, (4.93)

where for notational convenience we have written f1 = F (1)	 [ut
	]. The functional f1

is stationary with respect to small variations of the expansion coefficient vector d if

∂ f1

∂d
= 2Γ d

dTΛd
− dTΓ d
(dTΛd)2

2Λd = 0, (4.94)

which reduces after using (4.93) to the generalized eigenvalue equation

Γ d = f1Λd. (4.95)

In order to solve (4.95) we diagonalize Λ by the transformation

OΛOT = D, (4.96)

where O is an orthogonal matrix. Because of the special form of Λ, defined by
(4.92), only one element of D is non-zero and the remaining elements are zero. It is
convenient to choose the elements of the first row of O to be

O1i = χi (a0)(∑n
j=1

[
χ j (a0)

]2)1/2
, i = 1, . . . , n, (4.97)

and the remaining rows to be normalized to unity and to be orthogonal to the first
row and to each other, but otherwise to be arbitrary. Hence

OOT = I. (4.98)

Substituting this definition of O into (4.96) then gives
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D11 =
n∑

i=1

[χi (a0)]
2 , Di j = 0, i or j �= 1. (4.99)

Using these definitions we find, after premultiplying (4.95) by O and using (4.98),
that

OΓ d = f1DOd. (4.100)

It then follows from (4.99) that only the first element of the vector DOd on the
right-hand side of (4.100) is non-zero and hence only the first element of the vector
OΓ d on the left-hand side of (4.100) is non-zero. Consequently the vector Γ d is
orthogonal to the last n − 1 rows of O and is therefore proportional to the first row
of O. Hence, after substituting for Γ from (4.91) and for the first row of O from
(4.97) we obtain

2(Ei − E)di = αχi (a0), i = 1, . . . , n, (4.101)

where α is a constant of proportionality. Hence

di = α χi (a0)

2(Ei − E)
, i = 1, . . . , n. (4.102)

Substituting this result for di into the first element of the vectors on both sides of
(4.100) we find, after cancelling the constant of proportionality α, that

1 = 1

2
f1

n∑
i=1

[χi (a0)]2

Ei − E
. (4.103)

Since, from (4.51), the stationary value of the functional f1 = F (1)	 [u	] =
[a0 R	(E)]−1 we then obtain the following variational expression for the R-matrix:

R	(E) = 1

2a0

n∑
i=1

[χi (a0)]2

Ei − E
. (4.104)

As the number n of basis orbitals φi (r) retained in expansion (4.87) is increased to
completeness, both the surface amplitudes χi (a0) and the R-matrix eigenenergies
Ei converge to their exact values and the R-matrix given by (4.104) converges to
the exact result given by (4.42).

We obtain the same result using expression (4.55) for the second Jackson varia-
tional functional F (2)	 [ut

	], discussed in Sect. 4.3. Substituting expansion (4.89) into
(4.55) and using (4.88) gives
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F (2)	 [ut
	] = 2

n∑
i=1

(Ei − E) d2
i − 2a−1

0

n∑
i=1

χi (a0)di . (4.105)

This functional is stationary with respect to small variations in the expansion coef-
ficients di if

∂F (2)	
∂di

= 4 (Ei − E) di − 2a−1
0 χi (a0) = 0, i = 1, . . . , n. (4.106)

This equation gives

di = 1

2a0

χi (a0)

Ei − E
, i = 1, . . . , n. (4.107)

The stationary value of the functional F (2)	 [ut
	] is obtained by substituting (4.107)

into (4.105) giving

F (2)	 [ut
	] = −

1

2a2
0

n∑
i=1

[χi (a0)]2

Ei − E
. (4.108)

Remembering from (4.60) that the stationary value of the functional F (2)	 [ut
	] =

−a−1
0 R	(E), we obtain the following variational expression for the R-matrix

R	(E) = 1

2a0

n∑
i=1

[χi (a0)]2

Ei − E
, (4.109)

which is the same as (4.104), obtained using the functional F (1)	 [ut
	].

We can also obtain an expression for the solution of (4.62) in the internal region
corresponding to the variational expression for the R-matrix given by (4.104) or
(4.109). It follows from (4.40) that

u	(r) = 1

2a0

n∑
i=1

χi (r)χi (a0)

Ei − E

(
a0

du	
dr
− b0u	

)
r=a0

, 0 ≤ r ≤ a0, (4.110)

where the term on the boundary r = a0 of the internal region, in brackets in (4.110),
is defined by the normalization of the solution of the Schrödinger equation (4.62)
in the external region. The solution in the external region has been discussed in
Sect. 4.4.1 and will not be considered further here.
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4.4.4 Linear Equations Method

In both the homogeneous and arbitrary boundary condition methods for determin-
ing the R-matrix considered in Sects. 4.4.1 and 4.4.3, we have to diagonalize the
operator L	 − L in (4.67) or (4.88) to form the bases un

	i (r) or χi (r), respec-
tively. The corresponding R-matrices, given by (4.72) or (4.104), are then expressed
directly in terms of these basis functions, evaluated on the boundary of the internal
region, and the corresponding eigenenergies Ei . It follows that the R-matrices are
determined at all energies E by a single matrix diagonalization. This approach is
efficient if the corresponding phase shifts and cross sections are required at many
energies. However, we will see in later chapters that in many applications the matri-
ces can become very large and their diagonalization can then often dominate the
total computing time. This can occur, for example, in electron collisions with atoms
and atomic ions considered in Chaps. 5 and 6. In this case methods that involve the
diagonalization of large matrices become inefficient if the R-matrix is required at
only a few energies, such as in non-resonant energy regions. It can also occur in
time-dependent multiphoton processes, discussed in Chap. 10, where the R-matrix
is required at a single energy E = 2i�t−1 where �t is the time interval used in the
propagation.

It was shown by Glass et al. [380] in a study of atomic multiphoton processes that
this inefficiency can be removed by replacing matrix diagonalization by the solution
of a set of linear simultaneous equations. To illustrate the method we consider the
homogeneous boundary condition method, discussed in Sect. 4.4.1, where the R-
matrix is given by (4.72). We rewrite this equation in matrix form as

R(E) = (2a0)
−1uT(E− EI)−1u, (4.111)

where the R-matrix R(E) is a scalar and we have introduced the column vector u,
with components un

	i (a0), i = 1, . . . , n, the diagonal matrix E, with diagonal com-
ponents En

i , i = 1, . . . , n, and the n × n unit matrix I. We can also rewrite (4.66),
evaluated at r = a0, in matrix form as

u = CTu0, (4.112)

where we have introduced the orthogonal matrix C with components cn
i j , i, j =

1, . . . , n, and the column vector u0 with components u0
	i (a0), i = 1, . . . , n. Substi-

tuting (4.112) into (4.111) then gives

R(E) = (2a0)
−1u0T

C(E− EI)−1CTu0. (4.113)

Using (4.112) we can then rewrite (4.67) in the following matrix form:

CT(L	 −L)C = 2(EI− E), (4.114)
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where L	 −L is an n × n matrix with matrix elements given by

(L	 − L)i j =
∫ a0

0
u0
	i (r)(L	 − L)u0

	j (r)dr, i, j = 1, . . . , n. (4.115)

Hence, using the orthogonality of the matrix C, we can rewrite (4.114) as

(L	 −L)−1 = 1

2
C(EI− E)−1CT. (4.116)

The right-hand side of (4.113) can now be calculated by solving the following set
of n linear simultaneous equations:

(L	 −L)x = u0, (4.117)

to yield the vector x. Combining (4.116) and (4.117) then gives

x = (L	 −L)−1u0 = 1

2
C(EI− E)−1CTu0. (4.118)

After substituting this result into (4.113), we then obtain the following expression
for the R-matrix at the energy E in terms of the vector x:

R(E) = −a−1
0 u0T

x. (4.119)

Thus we have replaced the diagonalization of the n× n-dimensional matrix L	−L
to determine all of its eigenvalues and eigenvectors by the solution of a set of n
linear simultaneous equations (4.117) with one right-hand side. However, since L	
depends on the energy E , these simultaneous equations have to be solved for each
energy of interest, so this approach is efficient if the R-matrix is required at only a
few energies.

Finally, we remark that the Buttle correction to the R-matrix, which is required
in the homogeneous boundary condition method, can be calculated and added to the
R-matrix given by (4.119) as discussed in Sect. 4.4.2.

4.4.5 Eigenchannel Methods

Eigenchannel methods are based on an approximation scheme introduced by Danos
and Greiner [249] in a study of nuclear reactions, and its early use in nuclear physics
was reviewed by Barrett et al. [54]. These methods have now been developed and
applied in atomic and molecular physics by many workers including Fano and
Lee [311], Lee [585], Shimamura [872], O’Malley et al. [705], Greene [417, 418],
Raşeev and Le Rouzo [774], Le Rouzo and Raşeev [586], Aymar et al. [28] and
Greene and Kim [422].

We commence by considering an iterative approach adopted in electron–atom
collisions and photoabsorption by Fano and Lee [311] and Lee [585], which follows
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closely the approach of Danos and Greiner [249]. In this approach, a set of n radial
functions v j (r) are introduced for the orbital angular momentum 	 under consider-
ation, which are expanded in the internal region 0 ≤ r ≤ a0 in terms of a set of m
basis orbitals φi (r) (m > n) as follows:

v j (r) =
m∑

i=1

φi (r)ai j , j = 1, . . . , n, 0 ≤ r ≤ a0. (4.120)

The basis orbitals φi (r) are quadratically integrable over the internal region 0 ≤ r ≤
a0, are zero at the origin and satisfy arbitrary boundary conditions at r = a0. In the
work of Fano and Lee [311] and Lee [585], the basis orbitals φi (r) were chosen to
be Slater-type orbitals. The coefficients ai j in (4.120) are then chosen so that v j (r)
satisfy the homogeneous boundary conditions

v j (0) = 0,

a0
dv j

dr

∣∣∣∣
r=a0

= b0v j (a0), j = 1, . . . , n, (4.121)

and the orthonormality conditions

∫ a0

0
vi (r)v j (r)dr = δi j , i, j = 1, . . . , n, (4.122)

where b0 is an arbitrary constant discussed below. In addition, the functions vi (r) are
orthogonalized to the reduced radial bound orbitals of the target atom, Pi (r), i =
1, . . . , p, corresponding to the orbital angular momentum under consideration,
yielding the constraints

∫ a0

0
Pi (r)v j (r)dr = 0, i = 1, . . . , p, j = 1, . . . , n. (4.123)

Equations (4.121), (4.122) and (4.123) enable the coefficients ai j in (4.120) to
be determined for each orbital angular momentum using, for example, a Schmidt
orthogonalization procedure. It follows that n, the number of functions v j (r), is
related to m, the number of basis orbitals φi (r), by

n = m − p − 1. (4.124)

Hence in the case of potential scattering, where p = 0, the inclusion of n + 1 basis
orbitals φi (r) yields n functions v j (r) satisfying (4.121) and (4.122).

We now consider the solution of the radial Schrödinger equation (4.62) in the
internal region 0 ≤ r ≤ a0 using the iterative eigenchannel method. We introduce
linear combinations of the n functions v j (r), by the equation
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u j (r) =
n∑

i=1

vi (r)ci j , j = 1, . . . , n, 0 ≤ r ≤ a0, (4.125)

where the coefficients ci j are obtained by diagonalizing the operator L	 − L in this
basis giving

∫ a0

0
ui (r)(L	 − L)u j (r)dr = 2(E − Ei )δi j , i, j = 1, . . . , n. (4.126)

In this equation L	 is the operator defined by (4.29) and L is the Bloch operator
defined by (4.31). This procedure gives a set of n eigenenergies Ei and the corre-
sponding eigensolutions ui (r) both of which depend on the value chosen for b0 in
(4.121). If the solution is required at a particular energy E , the value of b0 can be
varied and the above process repeated iteratively until one of the eigenvalues Ei in
(4.126), which are functions of b0, satisfies the equation

Ei (b0) = E, (4.127)

where E is the energy of interest. The wave function in the internal region is then
given by the corresponding eigensolution ui (r), defined by (4.125) and (4.126) to
within a normalization factor. It follows from (4.72) that the corresponding R-matrix
at the energy E is singular and hence the corresponding solution in the external
region satisfies the boundary condition

a0
dui

dr

∣∣∣∣
r=a0

= b0ui (a0). (4.128)

This shows that both the wave function and its derivative are continuous on the
boundary. Also, since the R-matrix is singular at the energy Ei , a Buttle correction
which is finite is not required. We also note that although an iterative procedure is in
principle required to satisfy (4.127), as described above, this process can in practice
be speeded up by plotting the eigenvalues Ei (b0) against b0 and interpolating to
determine the solution of (4.127).

Finally, the calculation of the phase shift is straightforward using the eigenchan-
nel method since the R-matrix is singular at the energy Ei . If the interaction poten-
tial vanishes for r ≥ a0 then it follows from (4.27) that

tan δ	(k) = ka0s′	(ka0)− b0s	(ka0)

−ka0c′	(ka0)+ b0c	(ka0)
. (4.129)

Once the phase shifts have been calculated for all relevant angular momenta, then
the scattering amplitude and cross sections can be determined using (1.29), (1.30)
and (1.31).
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A disadvantage of the eigenchannel method discussed so far is that an
iterative procedure is necessary in order to obtain the eigenvalue at a particular
energy defined by (4.127). Although, as we have observed, this procedure can be
speeded up using an interpolation technique, this method still suffers from the dis-
advantage that the Hamiltonian matrix must be diagonalized several times in order
to determine the required eigenvalue. This disadvantage was overcome by Greene
[417, 418] who introduced a non-iterative eigenchannel method, based on the Kohn
variational principle for the R-matrix, discussed in Sect. 4.3, which avoids repeated
diagonalization of the Hamiltonian matrix.

In the non-iterative eigenchannel method we commence, as in the arbitrary
boundary condition methods considered in Sect. 4.4.3, by introducing a linearly
independent set of real basis orbitals in the internal region as follows:

φi (r), i = 1, . . . , n, 0 ≤ r ≤ a0, (4.130)

which vanish at the origin and satisfy arbitrary boundary conditions at r = a0. We
now expand the trial function ut

	(r) directly in terms of this basis as follows:

ut
	(r) =

n∑
i=1

φi (r)ci , 0 ≤ r ≤ a0. (4.131)

Substituting this expansion into the Kohn variational functional given by (4.50) then
gives

F (1)	 [ut
	] =

∑n
i=1

∑n
j=1 ci Ai j c j∑n

i=1
∑n

j=1 ciφi (a0)φ j (a0)c j
, (4.132)

where

Ai j =
∫ a0

0
φi (r)(−L	 + L)φ j (r)dr, i, j = 1, . . . , n. (4.133)

Since −L	 +L is hermitian and the basis orbitals φi (r) are real then the matrix Ai j

is real and symmetric. We also introduce the real symmetric matrix B with matrix
elements

Bi j = φi (a0)φ j (a0), i, j = 1, . . . , n. (4.134)

We can then rewrite (4.132) in matrix form as

f1 = cTAc
cTBc

, (4.135)
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where f1 = F (1)	 [ut
	]. It then follows from the Kohn variational principle that the

functional f1 is stationary with respect to small variations of the expansion coeffi-
cients ci . Hence

∂ f1

∂c
= 2Ac

cTBc
− cTAc
(cTBc)2

2Bc = 0, (4.136)

which, after using (4.135), reduces to the generalized eigenvalue equation

Ac = f1Bc. (4.137)

Following the procedure adopted in Sect. 4.4.3, we solve (4.137) by diagonalizing
B by an orthogonal transformation O so that

OBOT = D, (4.138)

where the elements of the first row of O are defined by

O1i = φi (a0)(∑n
j=1

[
φ j (a0)

]2)1/2
, i = 1, . . . , n, (4.139)

and the remaining rows of O are normalized to unity and orthogonal to the first row
and to each other, but otherwise arbitrary, so that

OOT = I. (4.140)

Hence we can rewrite (4.137) as

Mx = f1Dx, (4.141)

where

M = OAOT and x = Oc, (4.142)

and where the elements of the matrix D are given by

D11 =
n∑

i=1

[φi (a0)]
2 , Di j = 0, i or j �= 1. (4.143)

It follows that only the first element of the vector f1Dx on the right-hand side of
(4.141) is non-zero. Hence (4.141) can be rewritten as

M′x = 0, (4.144)
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where the elements of the matrix M′ are defined in terms of the elements of the
matrix M by

M ′11 = M11 − g, M ′i j = Mi j , i or j �= 1, (4.145)

and where

g = f1

n∑
i=1

[φi (a0)]
2 . (4.146)

We now observe that (4.144) only has a non-trivial solution when

det M′ = 0, (4.147)

which is a linear equation in f1 of the form

α − β f1 = 0, (4.148)

where α and β can be obtained using a standard procedure for reducing the n linear
simultaneous equations defined by (4.144) to a single equation. Remembering that
f1 = F (1)	 [ut

	] it then follows from (4.51) that the stationary value of the R-matrix
is given in terms of α and β by

R	(E) = β

a0α
, (4.149)

which yields the R-matrix at the energy E = 2k2 corresponding to the operator L	
in the Kohn variational functional given by (4.50). This procedure for determining
α and β and hence R	(E) can be repeated for each energy of interest. Hence we see
that for each energy the R-matrix is obtained by reducing a set of linear simulta-
neous equations defined by (4.147), rather than by an iterative procedure involving
repeated diagonalization of the Hamiltonian matrix.

4.4.6 Lagrange Mesh Methods

We consider in this section Lagrange mesh methods which provide variational
accuracy for bound state and collision problems calculated on a mesh or grid of
points. The main principles of mesh calculations were discussed by Harris et al.
[441] in which they proposed a mesh representation in which the potential terms
are diagonal so that the Hamiltonian matrix generation is fast. In addition, these
methods need fewer mesh points than finite differences or finite element methods
and higher accuracy may be obtained [81]. They are also related to Gauss quadrature
methods [261] and to discrete variable representations (DVR) in quantum theory
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[596, 597]. The methods have had applications in several fields including nuclear,
atomic and molecular physics and Lagrange mesh R-matrix calculations in potential
scattering have been carried out by a number of authors including Layton [582],
Layton and Stade [583], Malegat [631] and Baye et al. [82]. In this section we
discuss the background to Lagrange mesh methods and consider their application in
potential scattering.

A Lagrange basis is defined as a set of n Lagrange functions satisfying definite
properties at n associated mesh points on an interval which we will take to be [0, 1].
The indefinitely differential Lagrange functions fi (x) satisfy the Lagrange condi-
tions

fi (x j ) = λ−1/2
i δi j , i, j = 1, . . . , n, (4.150)

which means that each function fi (x j ) vanishes at all mesh points x j , j = 1, . . . , n,
except xi . These functions also satisfy the orthonormality relations

∫ 1

0
fi (x) f j (x)dx = δi j , i, j = 1, . . . , n. (4.151)

An integration over an indefinitely differential function g(x) is then given by the
following Gauss quadrature approximation associated with the mesh

∫ 1

0
g(x)dx ≈

n∑
i=1

λi g(xi ), (4.152)

where the weights λi are generalized Christoffel numbers [900]. With this approxi-
mate quadrature, the overlap of two Lagrange functions is given by

∫ 1

0
fi (x) f j (x)dx ≈

n∑
k=1

λk fi (xk) f j (xk) = δi j , i, j = 1, . . . , n, (4.153)

where we have used the Gauss quadrature approximation defined by (4.152) and the
Lagrange conditions defined by (4.150) in evaluating this integral.

As an example, the n-dimensional Lagrange mesh associated with Legendre
polynomials of degree n, shifted from [−1,+1] to [0, 1], has been used by Malegat
[631] in a model study of scattering by an exponential potential. The corresponding
orthonormal Lagrange basis functions are

fi (x) = (−1)i [xi (1− xi )]1/2 Pn(2x − 1)

x − xi
, i = 1, . . . , n, 0 ≤ x ≤ 1, (4.154)

where the mesh points are the zeros of the shifted Legendre polynomials, discussed
in Appendix B.1, which are defined by
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Pn(2x j − 1) = 0, j = 1, . . . , n. (4.155)

It follows that fi (x) is zero at all the mesh points x j , j = 1, . . . , n, except when
j = i where the zero in Pn(2x − 1) at x = xi is cancelled by the zero in x − xi

in (4.154). The shifted Legendre polynomials then yield a Gauss–Legendre quadra-
ture defined by (4.152), where the weights are

λi =
{

xi (1− xi )
[
P ′n(2xi − 1)

]2}−1
, i = 1, . . . , n. (4.156)

Other Lagrange meshes that have been considered include those based on Jacobi,
Hermite and Laguerre polynomials [81, 82]. In addition a generalized Lagrange
basis, introduced by Baye [80], has been defined as

f̂i (x) = x−1
i x fi (x), i = 1, . . . , n. (4.157)

These functions satisfy the Lagrange conditions given by (4.150) and, while they
are not strictly orthogonal, they satisfy the Gauss orthogonality condition defined
by (4.153) which depends on the validity of (4.150). Also, in place of (4.151), they
satisfy

∫ 1

0
f̂i (x)x

−2 f̂ j (x)dx = x−2
i δi j , (4.158)

which is important in the accurate treatment of the singular centrifugal term in
the Schrödinger equation. A regularization technique which allows Lagrange mesh
methods to retain their accuracy and simplicity when the Hamiltonian is singular at
a finite distance has also been developed by Vincke et al. [939].

As a further example we consider the solution of the radial Schrödinger equation

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k2

)
u	(r) = 0, (4.159)

in an internal region 0 ≤ r ≤ a0, using the Lagrange mesh method. In order to
express the solution in terms of generalized Lagrange functions it is convenient to
transform the internal region from 0 ≤ r ≤ a0 to 0 ≤ x ≤ 1 by writing r = a0x .
Equation (4.159) then becomes

L	v	(x) =
(

d2

dx2
− 	(	+ 1)

x2
− V (x)+ p2

)
v	(x) = 0, 0 ≤ x ≤ 1, (4.160)

which defines the operator L	 and where we have written

V (x) = a2
0U (r), p2 = a2

0k2, v	(x) = u	(r). (4.161)
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We now solve (4.160) in the internal region, discussed in Sect. 4.2, by introducing
the Bloch operator

L = δ(x − 1)

(
d

dx
− b0

)
, (4.162)

where b0 is an arbitrary constant. Equation (4.160) then has the formal solution

v	 = −(L	 − L)−1Lv	. (4.163)

where the operator L	 − L is hermitian in the space of the generalized Lagrange
basis functions which satisfy arbitrary boundary conditions at x = 1. A spectral
representation of Green’s function (L	 − L)−1 in (4.163) can be obtained by intro-
ducing a new basis

χ j (x) =
n∑

i=1

f̂i (x)ci j , j = 1, . . . , n, (4.164)

where the expansion coefficients ci j are determined by diagonalizing the n × n-
dimensional matrix

Ai j =
∫ 1

0
f̂i (x)(L	 − L) f̂ j (x)dx, i, j = 1, . . . , n. (4.165)

The matrix elements in this equation, corresponding to the kinetic energy, orbital
angular momentum and potential energy terms in L	 − L, can be written in com-
pact form using the Gauss quadrature approximation. In particular, the potential is
diagonal in this approximation so that

∫ 1

0
f̂i (x)V (x) f̂ j (x)dx ≈ V (xi )δi j , i, j = 1, . . . , n. (4.166)

We can then write

∫ 1

0
χ j (x)(L	 − L)χ j ′(x)dx = 2(e − e j )δ j j ′, j, j ′ = 1, . . . , n, (4.167)

and hence, after substituting this result into (4.163) we obtain

v	(x) = 1

2

n∑
i=1

χi (x)χi (1)

ei − e

(
dv	
dx
− b0v	

)
x=1

, (4.168)

where the energy e = 2p2. Evaluating (4.168) on the boundary x = 1 of the internal
region then gives
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v	(x) = R	(e)
(

dv	
dx
− b0v	

)
x=1

, (4.169)

where the R-matrix

R	(e) = 1

2

n∑
i=1

[χi (1)]2
ei − e

. (4.170)

We can rewrite (4.169) in standard form, in terms of the reduced radial functions
u	(r), which satisfy (4.159), as follows:

u	(r) = R	(E)

(
a0

du	
dr
− b0u	

)
r=a0

, (4.171)

where the R-matrix R	(E) at the energy E is defined in terms of the R-matrix R	(e)
at the transformed energy e by the equation

R	(E) = R	(e), e = a2
0 E . (4.172)

It follows that the R-matrix R	(e) at x = 1, obtained by solving (4.160) using the
Lagrange mesh method, yields the R-matrix R	(E) at r = a0, where E = a−2

0 e.
The R-matrix R	(E) then provides the boundary condition at r = a0 for solving
(4.159) in the external region.

Since the generalized Lagrange functions f̂i (x) satisfy arbitrary boundary con-
ditions at x = 1, there is no need to add a Buttle correction to the R-matrix R	(e),
defined by (4.170), and hence to the R-matrix R	(E), defined by (4.172). Also,
following our discussion in Sects. 4.3 and 4.4.3, the R-matrix can be derived from
a variational principle using this method.

Finally, we remark that a Lagrange mesh method for determining continuum
orbitals has been incorporated by Plummer and Noble [743] into the general
R-matrix electron–atom and electron–ion collision program RMATRXII discussed
in Sect. 5.1.1.

4.4.7 B-Spline Methods

B-splines were first introduced by Schoenberg [831] in 1946, but it was not until
the publication of the monograph by de Boor [254] that they started to be used in
atomic physics studies. Since then they have been widely applied in both atomic and
molecular physics calculations, and their many applications have been reviewed by
Bachau et al. [29]. In this section we summarize the basic properties of B-splines
and their application in representing bound and continuum orbitals in electron–
atom and electron–ion R-matrix collision calculations and in multiphoton R-matrix
calculations.
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Fig. 4.2 An example of a B-spline basis using a linear distribution of knot points in a region
0 ≤ r ≤ 50 a.u. The dashed line corresponds to the sum over all B-splines which equals 1. The
first and last six B-splines differ in shape due to multiple knots on the boundaries (Fig. 1 from
[930])

We show in Fig. 4.2 an example of a B-spline basis, given by van der Hart [930],
which spans the range 0 ≤ r ≤ 50 a.u., which corresponds to the internal region in
an R-matrix calculation. In this example the full range is sub-divided into 25 equal
intervals each of length 2 a.u. by a set of 26 equally spaced knots, discussed below.
In general, the intervals need not be of equal length. For example, in atomic physics
applications the intervals are usually chosen to be smaller near the nucleus in order
to accurately represent the rapid oscillations of the electronic wave functions in this
region.

Each B-spline Bi (r) is defined by an order k > 0 and a set of k + 1 values of r
or knots ti ≤ ti+1 ≤ · · · ≤ ti+k where in certain circumstances two or more knots
can coincide, that is, have multiplicity higher than 1. This higher multiplicity usually
occurs at the beginning and end of the full range of r under consideration and results
in the first and last B-splines being non-zero on the boundaries of the range, as seen
in Fig. 4.2. This is important in R-matrix theory where the value of the B-spline on
the outer boundary of the internal region is used in the construction of the R-matrix.
Another important property of B-splines is their strong linear independence. We see
from Fig. 4.2 that the individual B-splines are positive definite and only overlap
with near neighbours. This means that the overlap matrix is sparse which leads to
matrices which are easier to diagonalize. We now mention some other properties of
B-splines:

• Bi (r) is represented by different polynomials of degree k − 1 over each interval
t j < r ≤ t j+1, j = i, . . . , i + k − 1.

• Bi (r) > 0, ti < r < ti+k .

• Bi (r) = 0, r ≤ ti and r ≥ ti+k .

• Bi (r) is continuous together with its first k − 2 derivatives at interior knots t j ,

j = i + 1, . . . , i + k − 1 of unit multiplicity.
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• The summation
∑

i Bi (r) = 1, where the summation goes over all non-zero
splines at the position r .

B-splines can be generated by a recursion relation. We define the B-spline of
order 1 by

B1
i (r) =

{
1, ti ≤ r < ti+1,

0, otherwise,
(4.173)

then

Bk
i (r) =

r − ti
ti+k−1 − ti

Bk−1
i (r)+ ti+k − r

ti+k − ti+1
Bk−1

i+1 (r), k = 2, 3, . . . . (4.174)

In the case of knot points with multiplicity larger than 1, these definitions must
be modified slightly. Using the above properties of B-splines we find, by way of
illustration, that the B-spline of order 3 corresponding to four equally spaced knots
ti = 0, ti+1 = 1, ti+2 = 2 and ti+3 = 3 is represented by the following polynomials

Bi (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2r2 0 ≤ r < 1

−r2 + 3r − 3
2 1 ≤ r < 2

1
2r2 − 3r + 9

2 2 ≤ r < 3

, (4.175)

and is zero otherwise. In general, B-splines can be calculated for arbitrary order and
arbitrary knot distributions using Fortran programs published by de Boor [254].

We now consider the application of B-splines in representing bound and con-
tinuum orbitals in electron–atom and electron–ion R-matrix collision calculations.
We introduce a B-spline basis for a given orbital angular momentum symmetry as
follows:

Bi (r), i = 1, . . . , n, (4.176)

where we assume that the order k and the location and number of knots are chosen
so that this basis provides an accurate representation of the corresponding bound
and continuum orbitals over the R-matrix internal region 0 ≤ r ≤ a0 for the energy
range under consideration. We assume that there are p � n bound orbitals, which
may include pseudo-orbitals,

Pi (r), i = 1, . . . , p, (4.177)

corresponding to the given orbital angular momentum. We also assume that these
orbitals have been determined from previous bound state calculations and are
orthonormal over the internal region, satisfying
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〈Pi |Pj 〉 = δi j , i, j = 1, . . . , p, (4.178)

where in this and later equations in this section the Dirac bracket notation corre-
sponds to integration over the range 0 ≤ r ≤ a0.

We wish to represent these bound orbitals by the B-spline basis and also to
generate a set of n−p orthonormal continuum orbitals which are also represented by
this basis. A convenient procedure is to introduce a zero-order differential operator
analogous to that used in the homogeneous boundary condition method discussed
in Sect. 4.4.1, which we write here as

H0 =
[

d2

dr2
− 	(	+ 1)

r2
−U0(r)

]
, (4.179)

where U0(r) is a zero-order potential. We then look for solutions of the equation

(H0 + L− k2)u(r) = 0, (4.180)

which are orthonormal in the internal region 0 ≤ r ≤ a0, where L is the Bloch
operator defined by (4.31) which ensures that H0 + L is hermitian in the internal
region for arbitrary b0. In order to solve (4.180) we expand u(r) in the B-spline
basis as follows:

u(r) =
n∑

j=1

B j (r)c j . (4.181)

We now consider the functional

I = 〈u|H0 + L− k2|u〉 =
n∑

i=1

n∑
j=1

〈Bi |H0 + L− k2|B j 〉ci c j . (4.182)

Variational solutions of (4.180) are then obtained by minimizing the functional I
which gives

∂ I

∂ci
=

n∑
j=1

〈Bi |H0 + L− k2|B j 〉c j = 0, i = 1, . . . , n, (4.183)

which we can rewrite in matrix form as

Hc = k2Bc, (4.184)

where the matrix elements of H are

Hi j = 〈Bi |H0 + L|B j 〉, i, j = 1, . . . , n (4.185)
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and those of B are

Bi j = 〈Bi |B j 〉, i, j = 1, . . . , n. (4.186)

The generalized eigenvalue equation (4.184) can be solved by introducing an
orthogonal matrix O which diagonalizes the real positive definite symmetric matrix
B so that

OTBO = D, (4.187)

where the diagonal elements of D are real and positive. We then introduce a new
basis

φ = D−1/2OTb, (4.188)

where φ is a column vector with n elements φi (r), i = 1, . . . , n, and b is a column
vector with n elements Bi (r), i = 1, . . . , n. Equation (4.184) then reduces to the
standard eigenvalue equation

H′d = k2d, (4.189)

where the matrix elements of H′ are defined by

H ′i j = 〈φi |H0 + L|φ j 〉, i, j = 1, . . . , n (4.190)

and

d = D1/2OTc. (4.191)

It follows that the new basis φ is orthonormal since

〈φ|φT〉 = D−1/2OT〈b|bT〉OD−1/2 = D−1/2OTBOD−1/2 = I, (4.192)

where we have used (4.187) and (4.188).
Having determined the orthonormal basis φi (r), i = 1, . . . , n, we can express

the bound orbitals in terms of this basis. We write

Pj (r) =
n∑

i=1

φi (r)ai j , j = 1, . . . , p, (4.193)

where the expansion coefficients ai j are given by

ai j = 〈φi |Pj 〉, i = 1, . . . , n, j = 1, . . . , p, (4.194)

and where it follows from (4.178) and (4.192) that
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n∑
i=1

a2
i j = 1, j = 1, . . . , p. (4.195)

We also have to determine n − p continuum orbitals which are expressed in the
B-spline basis and which are mutually orthogonal and also orthogonal to the bound
orbitals. We can achieve this using a procedure for introducing orthogonality con-
straints into basis set calculations, described by Landtman et al. [564] and Bent-
ley [90].

We consider a modified matrix eigenvalue equation in which we introduce pro-
jection operators in the n-dimensional space spanned by the orthonormal basis
φi (r), i = 1, . . . , n, defined by (4.188). The projection operators P and Q are
defined by

P = AAT, Q = I− P, (4.196)

where A is an n × p-dimensional matrix formed by the expansion coefficients ai j ,
defined by (4.194) and (4.195). It follows that P projects onto the p-dimensional
space spanned by the functions Pj (r), j=1, . . . , p, and Q projects onto the (n−p)-
dimensional space orthogonal to P. Hence P + Q projects onto the n-dimensional
space spanned by the B-spline basis Bi (r) or, equivalently, by the orthonormal basis
φi (r). It follows from (4.196) that

P2 = P, Q2 = Q, PQ = QP = I. (4.197)

We now look for solutions satisfying the matrix eigenvalue equation

(I− P)H′(I− P)a = k2a, (4.198)

where the n × n-dimensional matrix operator on the left-hand side of this equa-
tion is constructed from H′ and P, defined by (4.190), (4.194) and (4.196). We see
immediately that the p vectors defined by (4.194) and (4.195) are eigenvectors of
(4.198) belonging to the eigenvalue k2 = 0, since (I − P) operating on each of
these eigenvectors gives zero. The remaining n − p eigenvectors of (4.198) will
in general belong to non-zero and non-degenerate eigenvalues and hence will be
orthogonal to each other and to the eigenvectors spanning P-space. Hence they
provide an orthonormal representation of the n − p continuum orbitals in terms of
the basis φi (r).

It is interesting to note that the first step in the above procedure, where we expand
the bound orbitals in B-splines using an orthonormal basis φi defined by (4.188), can
be modified. Instead, the bound orbitals can be expanded directly in terms of the
original B-spline basis using a least-squares fitting procedure. The projection oper-
ator method, which has been extended by Bentley [90] to allow for the possibility of
using non-orthogonal orbitals, can then be used to determine the continuum orbitals
directly in terms of the B-spline basis. However, since this modified approach
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commences from the same B-spline basis and fits to the same bound orbitals as the
procedure described in this section, then the P and Q operators project onto the same
bound and continuum spaces. Hence both procedures will yield the same results.

Finally, we mention that recent electron–atom and electron–ion collision calcu-
lations and time-dependent multiphoton calculations, discussed in Sects. 5.6 and
10.2, respectively, have been carried out using a general B-spline R-matrix com-
puter program BSR written by Zatsarinny [992]. In this program, discussed further
in Sect. 5.1.1, the orthogonality constraint between orbitals in the R-matrix cal-
culation is relaxed and target state-dependent non-orthogonal bound orbitals and
continuum orbitals are represented by B-spline bases. This added flexibility reduces
the need for the inclusion of pseudo-orbitals to represent the target states, discussed
in Sect. 2.2, at the expense of greater complexity in the calculation of the target and
collision Hamiltonian matrices. B-spline orbital bases have also been implemented
by van der Hart in the R-matrix computer program RMATRXII, discussed in Sect.
5.1.1, which has been used in R-matrix–Floquet and time-dependent multiphoton
calculations discussed in Chaps. 9 and 10.

4.4.8 Direct Calculation of Siegert State Parameters

We consider in this section solutions of the radial Schrödinger equation (4.62) which
are zero at the origin and satisfy the outgoing wave boundary condition

u	(r) ∼
r→∞Neikr , (4.199)

where N is a normalization factor and k lies in the lower half complex k-plane.
We showed in Sect. 1.3 that these solutions correspond to resonance states when k
lies close to the real k-axis, which is illustrated in Fig. 1.1 where resonance states,
which we showed correspond to poles in the S-matrix, are denoted by open circles.
We also showed in Sect. 1.3 that the partial wave cross section at real energies
in the neighbourhood of an isolated pole is described by the Breit–Wigner one-
level resonance formula, given by (1.107), if the background phase shift is zero.
Following the work of Siegert [876], the solutions of (4.62) satisfying outgoing
wave boundary conditions are often called Siegert states.

In many applications it is necessary to determine the resonance position Er and
the resonance width Γ which appear in the partial wave cross section defined by
(1.107). These resonance parameters can be determined by calculating the phase
shift δ	(k) at a number of real energies in the neighbourhood of Er , using one
of the methods described earlier in this section, and then fitting to the analytic
expression for the phase shift given by (1.105) and (1.106). However, Schneider
[824] showed that the position of the resonance pole in the complex k-plane can be
calculated directly using a modified R-matrix method which uses real basis orbitals
and involves the diagonalization of a complex non-hermitian matrix for a few val-
ues of the complex momentum k in the neighbourhood of the resonance pole. The
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resonance position and width are then given directly in terms of the real and imagi-
nary parts of the pole position using (1.103).

In order to solve (4.62) subject to the outgoing wave boundary condition (4.199)
we proceed as in Sect. 4.4.3 by introducing a linearly independent set of n real basis
orbitals in the internal region defined by

φi (r), i = 1, . . . , n, 0 ≤ r ≤ a0, (4.200)

which vanish at the origin and satisfy arbitrary boundary conditions at r = a0. We
then expand the trial function in this basis as follows:

ut
	(r) =

n∑
i=1

φi (r)ci , 0 ≤ r ≤ a0, (4.201)

where the expansion coefficients ci will in general be complex since ut
	(r)

represents a resonant state satisfying complex asymptotic boundary conditions. The
coefficients ci in (4.201) are determined by diagonalizing the matrix

Hi j (k, b0) =
∫ a0

0
φi (r)[L	(k)− L(a0, b0)]φ j (r)dr, i, j = 1, . . . , n, (4.202)

where L	(k) is defined by (4.29) with its dependence on the momentum k shown
explicitly, and L(a0, b0) is a Bloch operator defined by (4.31). We see that L	(k),
and hence Hi j (k, b0), is complex since the momentum k, which corresponds to
the outgoing wave boundary condition (4.199), is complex. Also b0 in L(a0, b0) is
obtained by choosing an initial value of the complex momentum k and integrating
(4.62) inwards from the asymptotic region to r = a0 subject to the asymptotic
boundary condition defined by (4.199). This can be accomplished using a standard
method, such as an R-matrix propagator method discussed in Sect. 4.5. The quantity
b0 in (4.202) is then given in terms of the solution at r = a0 by

b0(k) = a0

u	(a0)

du	
dr

∣∣∣∣
r=a0

. (4.203)

After diagonalizing H, defined by (4.202), we can write

HC = CD, (4.204)

where D is a diagonal matrix whose elements are the eigenvalues of H and the
columns of C are the corresponding eigenvectors which define the eigenstates by
(4.201).

The Siegert states will then correspond to the eigenvalues of H which lie closest
to the real k-axis. However, the corresponding value of the complex momentum k
will in general differ from the value of k input in (4.202) and in the definition of
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b0 in (4.203). As a result, an iterative procedure must be adopted so that the value of
the complex momentum k obtained from diagonalizing the matrix H corresponds to
the input value of k used in the definition of b0(k). In practice Schneider [824] found
that by diagonalizing the Hamiltonian matrix H for a few values of the complex
momentum k, it is possible to locate the resonant eigenvalue and to fit it to a simple
power series. The Newton–Raphson iterative method [143, 444] may then be used to
find the precise location of the resonance eigenvalue in the complex k-plane. In this
way the position and width of the resonance can be determined in a few iterations if
the original complex momentum k is chosen appropriately.

In comparing this direct approach for calculating the Siegert state parameters
with the method mentioned above of fitting the phase shift on the real energy axis
to an analytic expression, given by (1.105) and (1.106), we observe that the latter
approach is usually only accurate if the resonance width is relatively small compared
with the range of energies over which the background phase shift varies appreciably.
If the background phase shift is rapidly varying, which occurs, for example, when
there are several resonances in close proximity, then the direct calculation of the
resonance parameters discussed in this section is to be preferred. Other examples
where it is necessary to calculate the resonance parameters directly are in the calcu-
lation of the spectra of atoms in fields discussed in Sect. 8.4, in R-matrix–Floquet
theory of multiphoton processes discussed in Sect. 9.1 and in the example of laser-
induced degenerate states discussed in Sect. 9.2.3. In this last case the resonance
width Γ corresponds to the total ionization rate of the target atom or ion in an
intense laser field. As the intensity and frequency of the laser is changed the complex
energies of these “dressed states” describe trajectories in the complex energy plane
which interact with each other in a way that can only be accurately calculated using
a direct approach.

4.5 Propagator Methods

When the wavelength of the scattered particle is small compared with the range
over which the potential interaction is important, it is no longer feasible to represent
accurately the wave function of this particle in terms of a single expansion basis.
This situation occurs, for example, in electron–atom collisions in the external region
where the electron lies outside the charge distribution of the target atom but still
experiences the long-range, slowly varying polarization and multipole potentials of
the residual atom. It also occurs in heavy particle collisions, such as H–He colli-
sions, where the wavelength of the motion of the heavy particles is short compared
with the range of the interaction even for low-energy collisions.

In order to solve the coupled second-order differential equations that arise in
these collision processes, R-matrix propagator methods have been introduced by
Light and Walker [594] and log-derivative propagator methods have been intro-
duced by Gordon [402] and Johnson [506]. In these methods the region of interest
a0 ≤ r ≤ ap is divided into a number of sub-regions, as illustrated in Fig. 4.3, where
in practice the sub-regions may be of unequal length. Equations are then derived in
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Fig. 4.3 Partitioning of configuration space into p sub-regions in R-matrix and log-derivative
propagator methods

each sub-region which enable, the R-matrix, or the log-derivative matrix, as well as
the wave function to be propagated across the sub-regions from r = a0 to ap. In this
section we illustrate this approach in potential scattering by describing two com-
monly used R-matrix propagator methods, where the generalization of these and
other propagator methods to multichannel collisions is considered in Appendix E.

4.5.1 Light–Walker Propagator

We consider first the solution of the radial Schrödinger equation (4.62) using the
R-matrix propagator method introduced by Light and Walker [594]. We write this
equation in the form

(
d2

dr2
+ V (r)+ k2

)
u(r) = 0, (4.205)

where V (r) includes the angular momentum term as well as the potential U (r).
The basic assumption made in the Light–Walker propagator method is that the

potential V (r) is a slowly varying function of r so that it can be accurately rep-
resented by a constant in each sub-region in Fig. 4.3 without the number of sub-
regions p becoming excessively large. Hence in the sth sub-region we assume that
we can write

λ2
s ≈ V (r)+ k2, as−1 ≤ r ≤ as, (4.206)

so that (4.205) becomes

Lsu(r) ≡
(

d2

dr2
+ λ2

s

)
u(r) = 0, as−1 ≤ r ≤ as . (4.207)

In order to solve (4.207) in the sth sub-region we introduce the Bloch operator
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Ls =
(
δ(r − as)

d

dr
− δ(r − as−1)

d

dr

)
. (4.208)

In analogy with (4.32) we find that

∫ as

as−1

[v(Ls − Ls)w − w(Ls − Ls)v] dr = 0, (4.209)

where v(r) and w(r) are quadratically integrable functions over as−1 ≤ r ≤ as

satisfying arbitrary boundary conditions at r = as−1 and as . Hence the operator
Ls − Ls is hermitian in the sth sub-region in this function basis. We then rewrite
(4.207) as

(Ls − Ls) u = −Lsu, as−1 ≤ r ≤ as, (4.210)

which has the formal solution

u = − (Ls − Ls)
−1 Lsu, as−1 ≤ r ≤ as, (4.211)

where the Green’s function − (Ls − Ls)
−1 in (4.211) is a solution of the equation

(Ls − Ls)Gs(r, r
′) = −δ(r − r ′). (4.212)

By integrating (4.212) across the singularities at r = as−1 and as we find that
Gs(r, r ′) satisfies the boundary conditions

dGs(r, r ′)
dr

∣∣∣∣
r=as−1

= dGs(r, r ′)
dr

∣∣∣∣
r=as

= 0, as−1 < r ′ < as, (4.213)

which are imposed by the Bloch operator defined by (4.208). Also, by integrating
(4.212) across the singularity at r = r ′ we obtain

lim
ε→0+

(
dGs(r, r ′)

dr

∣∣∣∣
r=r ′+ε

− dGs(r, r ′)
dr

∣∣∣∣
r=r ′−ε

)
= −1, (4.214)

It follows from (4.212), (4.213) and (4.214) that when λ2 ≥ 0 the Green’s function
is defined by

Gs(r, r
′) = −cos λs(r ′ − as) cos λs(r − as−1)

λs sin λs(as − as−1)
, as−1 ≤ r ≤ r ′, (4.215)

and

Gs(r, r
′) = −cos λs(r − as) cos λs(r ′ − as−1)

λs sin λs(as − as−1)
, r ′ ≤ r ≤ as . (4.216)
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Also, when λ2 < 0 the Green’s function is defined by

Gs(r, r
′) = −coshμs(r ′ − as) coshμs(r − as−1)

μs sinhμs(as − as−1)
, as−1 ≤ r ≤ r ′ (4.217)

and

Gs(r, r
′) = −coshμs(r − as) coshμs(r ′ − as−1)

μs sinhμs(as − as−1)
, r ′ ≤ r ≤ as, (4.218)

where in (4.217) and (4.218) we have written μ2 = −λ2.
We can now rewrite (4.210) explicitly in terms of the Green’s function Gs(r, r ′)

as follows:

u(r) =
∫ as

as−1

Gs(r, r
′)Lsu(r ′)dr ′, as−1 ≤ r ≤ as . (4.219)

Evaluating this equation at r = as−1 and as and using (4.208) for the Bloch operator
Ls then yields the equations

u(as−1) = Gs(as−1, as)
du

dr

∣∣∣∣
r=as

− Gs(as−1, as−1)
du

dr

∣∣∣∣
r=as−1

(4.220)

and

u(as) = Gs(as, as)
du

dr

∣∣∣∣
r=as

− Gs(as, as−1)
du

dr

∣∣∣∣
r=as−1

. (4.221)

After defining the R-matrix at r = as−1 and as by the equations

u(as−1) = Rs−1as−1
du

dr

∣∣∣∣
r=as−1

(4.222)

and

u(as) = Rsas
du

dr

∣∣∣∣
r=as

, (4.223)

we then find that (4.220) and (4.221) yield the following equations for outward and
inward propagation of the R-matrix

as Rs = Gs(as, as)− Gs(as, as−1)
[
Gs(as−1, as−1)+ as−1 Rs−1

]−1

× Gs(as−1, as) (4.224)

and
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as−1 Rs−1 = −Gs(as−1, as−1)+ Gs(as−1, as) [Gs(as, as)− as Rs]−1

× Gs(as, as−1). (4.225)

Equation (4.224) enables the R-matrix R0 at r = a0 to be propagated outwards
across the p sub-regions to yield the R-matrix Rp at r = ap. In a similar way
(4.225) enables the R-matrix Rp at r = ap to be propagated inwards across the p
sub-regions to yield the R-matrix R0 at r = a0.

Having determined the R-matrix on the boundaries r = as of the p sub-regions
we can propagate the wave function u(as) across these sub-regions using (4.220)
and (4.221). We obtain the following equations for outward and inward propagation
of the wave function

u(as) = as Rs [Gs(as, as)− as Rs]−1 Gs(as, as−1)a
−1
s−1 R−1

s−1u(as−1) (4.226)

and

u(as−1) = as−1 Rs−1
[
Gs(as−1, as−1)+ as−1 Rs−1

]−1
Gs(as−1, as)

× a−1
s R−1

s u(as). (4.227)

The wave function in the region a0 ≤ r ≤ ap is often required in the calculation
of matrix elements of various operators as, for example, in the R-matrix theory of
photoionization discussed in Chap. 8.

4.5.2 BBM Propagator

We now consider the BBM propagator method introduced by Baluja et al. [47]. We
again commence from (4.205) which we rewrite in the sth sub-region as−1 ≤ r ≤ as

as

(D − Ls + k2)u(r) = −Lsu(r), as−1 ≤ r ≤ as, (4.228)

where

D = d2

dr2
+ V (r), (4.229)

and where the Bloch operator Ls is defined by (4.208). It follows from our previous
discussion that the operator D−Ls is hermitian in the sth sub-region in the space of
quadratically integrable functions over as−1 ≤ r ≤ as satisfying arbitrary boundary
conditions at r = as−1 and as . Equation (4.228) then has the formal solution

u = −(D − Ls + k2)−1Lsu, as−1 ≤ r ≤ as . (4.230)
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A spectral representation of the Green’s function (D − Ls + k2)−1 can be obtained
by introducing an orthonormal set of basis functions φs

j (r), j = 1, . . . ,m, defined
in the sth sub-region, which satisfy arbitrary boundary conditions at r = as−1 and
as . We define linear combinations of these basis functions by the equation

χ s
i (r) =

m∑
j=1

φs
j (r)a

s
ji , as−1 ≤ r ≤ as, i = 1, . . . ,m, (4.231)

where the expansion coefficients as
ji are obtained by diagonalizing D − Ls in the

sth sub-region so that

∫ as

as−1

χ s
i (r)(D −Ls + k2)χ s

i ′(r)dr = 2(E − Es
i )δi i ′ , i, i ′ = 1, . . . ,m, (4.232)

and where k2 = 2E . Substituting this result into (4.230) then gives

u(r) =
∫ as

as−1

Gs(r, r
′)Lsu(r ′)dr ′, as−1 ≤ r ≤ as, (4.233)

where the Green’s function Gs(r, r ′) is defined by

Gs(r, r
′) = 1

2

m∑
i=1

χ s
i (r)χ

s
i (r
′)

Ei − E
. (4.234)

Evaluating (4.233) at r = as−1 and as and using (4.208) for the Bloch operator, then
yields (4.220) and (4.221), obtained using the Light–Walker propagator method.
After defining the R-matrices at r = as−1 and as by (4.222) and (4.223), the out-
ward and inward propagation equations for the R-matrix are again given by (4.224)
and (4.225), respectively, and the outward and inward propagation equations for the
wave function are again given by (4.226) and (4.227).

We observe that in the BBM propagator method, the operator D − Ls is
diagonalized once in each sub-region to yield the eigenvalues Es

i and eigenfunctions
χ s

i . After this initial diagonalization, the Green’s function, defined by (4.234) and
the corresponding propagation equations for the R-matrix and wave function, can
be rapidly applied to all required scattering energies.

In comparing the Light–Walker and the BBM propagator methods we observe
that no diagonalization is required in the former case. However, the approximation
made in the Light–Walker method of replacing V (r) + k2 in each sub-region by a
constant λ2

s , given by (4.206), means that typically the sub-region as−as−1 must be
small to yield high accuracy unless the potential is very slowly varying. Therefore,
in practice, many more sub-regions are required in the Light–Walker method and
hence the BBM method is usually preferred in resonance regions where the calcu-
lation must be carried out at many scattered energy values to accurately resolve the
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resonances. On the other hand, when the scattering amplitude is smoothly varying
with energy, which usually occurs at higher energies or in heavy particle collisions,
the Light–Walker method is to be preferred. The relative merits of these and other
propagator methods are discussed further in Appendix E where multichannel colli-
sions are considered.

4.6 Dirac R-Matrix Theory

We conclude this chapter by extending R-matrix theory to treat relativistic potential
scattering described by the Dirac equation, which we introduced in Sect. 1.6. We
will see in Sect. 5.5 that this extension is necessary in order to accurately describe
electron collisions with heavy atoms and atomic ions where the nuclear charge
number Z is large and where consequently relativistic effects are important even
at low incident electron energies. This section thus provides an introduction to
R-matrix theory of electron collisions with heavy atoms and atomic ions using the
Dirac Hamiltonian.

In this section we follow our discussion of non-relativistic potential theory in
Sects. 4.1 and 4.2, by considering the solution in an internal and an external region,
where r = a0 is the R-matrix radius separating these regions. We consider first
the solution in the internal region where relativistic effects are most important. The
radial Dirac equations, introduced in Sect. 1.6, must then be solved to yield the
R-matrix on the boundary of this region. We then consider the convergence prop-
erties of the solution on the boundary of the internal region and compare these
properties with non-relativistic R-matrix theory. Finally, we consider the solution
of the Dirac equation or the equivalent Schrödinger equation in the external region
to yield the scattering matrix and cross sections.

We have shown in Sect. 1.6 that the Dirac equation reduces to two coupled first-
order differential equations (1.254) and (1.255) which can be written for each κ as

(
d

dr
+ κ

r

)
p(r)− 1

c

[
2c2 + E − V (r)

]
q(r) = 0 (4.235)

and
(

d

dr
− κ

r

)
q(r)+ 1

c
[E − V (r)] p(r) = 0, (4.236)

where for notational convenience we have omitted the subscript κ on p(r) and q(r),
and we remember that the energy E in this equation does not include the electron
rest mass and hence reduces in the non-relativistic limit to the energy E in (1.1).
Also, the relationship of κ in (4.235) and (4.236) to the usual spectroscopic notation
	 and j is given in Table 1.1. We can rewrite these equations in matrix form as
follows:

HDθ = Eθ, (4.237)
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where the Dirac Hamiltonian matrix HD is defined by

HD =
⎛
⎝ V (r) −c

(
d
dr − κ

r

)
c
(

d
dr + κ

r

)
−2c2 + V (r)

⎞
⎠ (4.238)

and the solution matrix θ(r) is defined by

θ(r) =
(

p(r)
q(r)

)
. (4.239)

We consider first the solution of (4.237) in the internal region 0 ≤ r ≤ a0. As
in non-relativistic R-matrix theory we observe that the Hamiltonian matrix HD in
(4.237) is not hermitian in the internal region in the space of functions satisfying
arbitrary boundary conditions at r = a0 because of the derivative terms d/dr occur-
ring in its off-diagonal elements. To explore this further we consider the integral

∫ a0

0
v(r)

dw

dr
dr = [v(r)w(r)]r=a0 −

∫ a0

0

dv

dr
w(r)dr, (4.240)

where v(r) andw(r) are real square-integrable functions which are chosen to vanish
at the origin and to satisfy arbitrary boundary conditions at r = a0. The presence of
the surface term on the right-hand side of (4.240), which arises from the integration
by parts of the integral on the left-hand side, gives rise to the non-hermiticity. As
in Sect. 4.2, this non-hermiticity can be eliminated by introducing a Bloch operator.
Thus we rewrite (4.240) in the form

∫ a0

0
v(r)

(
d

dr
− 1

2
δ(r − a0)

)
w(r)dr =

∫ a0

0

[(
− d

dr
+ 1

2
δ(r − a0)

)
v(r)

]

× w(r)dr. (4.241)

It follows that if we introduce the matrix Bloch operator

LD = 1

2
c

(
0 1
−1 0

)
δ(r − a0), (4.242)

then we find that

∫ a0

0
θT

1 (r)
(
HD + LD) θ2(r)dr =

∫ a0

0

[(
HD + LD) θ1(r)

]T
θ2(r)dr, (4.243)

for real square-integrable two-dimensional vector functions θ1(r) and θ2(r) which
vanish at the origin and which satisfy arbitrary boundary conditions at r = a0, where
T represents matrix transpose. Hence HD + LD is a real hermitian matrix operator
over the internal region in this basis.
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The matrix Bloch operator LD, defined by (4.242), is not the most general opera-
tor which, when added to HD, yields a real hermitian matrix operator. The most gen-
eral matrix operator can be obtained by adding an arbitrary real symmetric matrix
to (4.242) giving

LD = 1

2
c

(
a d + 1

d − 1 b

)
δ(r − a0), (4.244)

where a, b and d are real numbers which we determine below.
Using this matrix Bloch operator we can now solve the radial Dirac equation

(4.237) in the internal region by rewriting it as

(HD + LD − E)θ = LDθ. (4.245)

The formal solution of (4.245) is then

θ = (HD + LD − E)−1LDθ. (4.246)

An explicit representation for the Green’s function (HD+LD− E)−1 in (4.246)
can be obtained by introducing the following real orthonormal vector basis functions

θ0
i (r) =

(
p0

i (r)
q0

i (r)

)
, i = 1, . . . , n, (4.247)

defined over the internal region 0 ≤ r ≤ a0, where p0
i (r) and q0

i (r) are the corre-
sponding continuum basis orbitals. Following our discussion of the non-relativistic
homogeneous boundary condition method in Sect. 4.4.1, we consider an analogous
approach which has been adopted in many applications of Dirac R-matrix theory.
We choose the basis functions θ0

i (r) to be eigensolutions of the following coupled
first-order differential equations

(HD
0 − E0

i )θ
0
i (r) = 0, (4.248)

satisfying homogeneous boundary conditions at r = 0 and a0 given, respectively,
by

θ0
i (0) =

(
p0

i (0)
q0

i (0)

)
= 0 (4.249)

and

LDθ0
i = 0, (4.250)
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and the orthonormality conditions

∫ a0

0
θ0

i
T
(r)θ0

j (r)dr =
∫ a0

0

[
p0

i (r)p
0
j (r)+ q0

i (r)q
0
j (r)

]
dr = δi j . (4.251)

Also, as in Sect. 4.4.1, the Dirac Hamiltonian matrix HD
0 in (4.248) is defined by

(4.238) with V (r) replaced by a zero-order potential V0(r), which is chosen so that
(4.248), (4.249) and (4.250) can be easily solved. This is important when we con-
sider Dirac R-matrix theory of electron collisions with atoms and ions in Sect. 5.5,
where the original equations corresponding to (4.235) and (4.236) involve many
coupled channels. Writing (4.250) explicitly using (4.244) yields

(
a d + 1

d − 1 b

)(
p0

i (a0)

q0
i (a0)

)
= 0. (4.252)

This equation has a non-trivial solution only if the determinant of the matrix is zero.
Hence we require

ab = d2 − 1. (4.253)

A further relationship between a, b and d can be obtained by requiring that the
boundary condition at r = a0 goes over in the non-relativistic limit to that given by
(4.64). As discussed in Sect. 1.6, the non-relativistic limit of the coupled differen-
tial equations (4.235) and (4.236) is obtained by neglecting |E − V (r)| compared
with 2c2. The first differential equation in (4.248), corresponding to (4.235), can
then be rewritten following (1.257) as

2cq0
i (r) =

dp0
i

dr
+ κ

r
p0

i (r), i = 1, . . . , n. (4.254)

In order to obtain a simple relation between the boundary condition at r = a0
satisfied by p0

i (r) and q0
i (r) and the non-relativistic boundary condition at r = a0

satisfied by the functions u0
	i (r) defined by (4.64), we introduce a quantity br defined

by

q0
i (a0) = br

2a0c
p0

i (a0), i = 1, . . . , n. (4.255)

We then set r = a0 in (4.254) and substitute for q0
i (a0) from (4.255) yielding

a0

p0
i (a0)

dp0
i

dr

∣∣∣∣∣
r=a0

= br − κ, i = 1, . . . , n. (4.256)

Hence by comparing this result with (4.64) we find that in the non-relativistic limit
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br = b0 + κ. (4.257)

It follows that if we introduce the quantity b′ defined by

b′ = br

2a0c
, (4.258)

then (4.252), (4.253) and (4.255) give

a

d + 1
= d − 1

b
= −b′. (4.259)

Finally, we set d = 0 which we will see ensures that our theory yields the usual
formula for the R-matrix in the non-relativistic limit. Substituting these results into
(4.244), we find that the matrix Bloch operator can be written as

LD = 1

2
c

(−b′ 1
−1 b′−1

)
δ(r − a0), (4.260)

which depends only on a single parameter b′. We now determine the basis functions
θ0

i (r), 0 ≤ r ≤ a0, by solving (4.248) subject to the boundary conditions defined
by (4.249) and (4.250) where LD is defined by (4.260).

Having determined the basis functions θ0
i (r) we introduce a linear combination

of these functions, defined by

θn
j (r) =

n∑
i=1

θ0
i (r)c

n
i j , j = 1, . . . , n, (4.261)

where the coefficients cn
i j are determined by diagonalizing HD + LD as follows:

∫ a0

0
θn

i
T
(r)
(
HD + LD) θn

i ′ (r)dr = En
i δi i ′ , i, i ′ = 1, . . . , n. (4.262)

We can expand the formal solution of the radial Dirac equation (4.246) in the inter-
nal region in terms of the functions θn

i (r) as follows:

θn(r) =
n∑

i=1

θn
i (r)

1

En
i − E

〈θn
i (r)|LD|θn(r)〉. (4.263)

Substituting for the matrix Bloch operator LD defined by (4.260) into (4.263) yields

θn(r) = 1

2a0

n∑
i=1

θn
i (r)θ

n
i

T(a0)

En
i − E

Bθn(a0), 0 ≤ r < a0, (4.264)
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where the matrix B is defined by

B = a0c

(−b′ 1
−1 b′−1

)
. (4.265)

The function θn(r) defined by (4.264) is an approximate solution of (4.237) in the
internal region 0 ≤ r < a0 which depends on the choice of the zero-order basis
functions θ0

i (r), defined by (4.248), (4.249), (4.250) and (4.251), and on the number
n of these basis functions retained in expansion (4.261).

We next consider the convergence of (4.264) in the limit as r → a0 from below.
We rewrite (4.264) in this limit in the following form as

θn(a0) = Rn(E)Bθn(a0), (4.266)

where the R-matrix Rn(E) is defined by

Rn(E) = 1

2a0

n∑
i=1

θn
i (a0)θ

n
i

T(a0)

En
i − E

, (4.267)

and where the θn
i (a0) are the surface amplitudes. Equations (4.266) and (4.267) cor-

respond to (4.71) and (4.72) obtained in our derivation of non-relativistic R-matrix
theory in Sect. 4.4.1. However, as already mentioned in Sect. 4.1, where we consid-
ered non-relativistic Wigner–Eisenbud R-matrix theory of potential scattering, care
must be taken in proceeding to the limit r → a0 when the solution is expanded in
terms of basis functions θ0

i (r) satisfying homogeneous boundary conditions (4.255)
at r = a0, an aspect of the solution considered by Szmytkowski and Hinze [907].

In order to explore the limit r → a0 from below we rewrite (4.264) in terms of
its matrix elements as follows:

(
pn(r)
qn(r)

)
= 1

2a0

n∑
i=1

(
pn

i (r)
qn

i (r)

)
1

En
i − E

Ai , 0 ≤ r < a0, (4.268)

where the scalar

Ai = θn
i

T
(a0)Bθ

n(a0). (4.269)

We can now rewrite Ai defined by (4.269) using the homogeneous boundary condi-
tions at r = a0 satisfied by the orbitals pn

i (r) and qn
i (r)

qn
i (a0) = b′ pn

i (a0), i = 1, . . . , n, (4.270)

which follows from (4.255) and (4.261), where b′ is defined by (4.258). We then
obtain
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Ai = pn
i (a0)

[
2a0cqn(a0)− brpn(a0)

]
, i = 1, . . . , n. (4.271)

Substituting (4.271) into (4.268) then yields the following two equations:

pn(r) = 1

2a0

n∑
i=1

pn
i (r)p

n
i (a0)

En
i − E

[
2a0cqn(a0)− brpn(a0)

]
, 0 ≤ r < a0 (4.272)

and

qn(r) = 1

2a0

n∑
i=1

qn
i (r)p

n
i (a0)

En
i − E

[
2a0cqn(a0)− brpn(a0)

]
, 0 ≤ r < a0. (4.273)

We now consider the limit of (4.272) and (4.273) when r → a0 from below. We
obtain after using (4.270) the following equations:

pn(a0) = Rn(E)
[
2a0cqn(a0)− brpn(a0)

]
(4.274)

and

qn(a0) = b′Rn(E)
[
2a0cqn(a0)− brpn(a0)

]
, (4.275)

where Rn(E) is the (1,1) element of the R-matrix defined by (4.267), which is
defined by

Rn(E) = 1

2a0

n∑
i=1

[
pn

i (a0)
]2

En
i − E

. (4.276)

We then rewrite (4.274) and (4.275) in matrix form as

(
1+ brRn(E) −2a0cRn(E)(

b2
r /2a0c

)
Rn(E) 1− brRn(E)

)(
pn(a0)

qn(a0)

)
= 0. (4.277)

We see that the determinant of the 2×2 matrix in (4.277) equals 1 for all finite values
of Rn(E). Hence for finite values of Rn(E), (4.277) only has the trivial solution
pn(a0) = qn(a0) = 0. On the other hand, at the poles En

i in Rn(E), (4.277) yields
the non-trivial solution

2a0cqn(a0) = brpn(a0), (4.278)

which corresponds to the homogeneous boundary condition (4.255) satisfied by the
basis orbitals p0

i (r) and q0
i (r).

In order to examine this result further, we consider first the non-relativistic limit
of (4.274). It follows from (1.256) and (1.257) that in this limit q(r) can be written
in terms of p(r) as follows:
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q(r) = 1

2c

(
d

dr
+ κ

r

)
p(r). (4.279)

Substituting this result into (4.274) and using (4.257) then gives

pn(a0) = Rn(E)

(
a0

dpn

dr
− b0 pn

)
r=a0

. (4.280)

Hence in the non-relativistic limit, (4.274) reduces to (4.280) which is the usual
equation relating the reduced radial wave function to its derivative on the bound-
ary of the internal region given by (4.71). Also in Sect. 1.6, we showed that the
radial Dirac equations (4.235) and (4.236) reduce in the non-relativistic limit to the
equivalent radial Schrödinger equation

(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k2

)
p(r) = 0, (4.281)

where U (r) = 2V (r). It follows that, after a Buttle correction to the R-matrix
has been included, (4.274) reduces in the non-relativistic limit to the usual bound-
ary condition at r = a0 for integrating the non-relativistic Schrödinger equation
outwards to the asymptotic region to yield the phase shift and partial wave cross
section.

We consider next the non-relativistic limit of (4.275). It follows from our dis-
cussion of (4.277) that since (4.274) has a non-trivial solution at all energies, then
(4.275) can only be satisfied at the poles of the R-matrix Rn(E). Hence since q(r)
in (4.273) is related through the first Dirac equation (4.235) to the derivative dp/dr ,
then it follows that the expansion of the derivative given by (4.273) is not uniformly
convergent on the boundary r = a0 except at these poles. This result corresponds to
that obtained in non-relativistic R-matrix theory described in Sect. 4.1, see (4.11),
(4.12), (4.13) and (4.14), where we show that when the wave function is expanded
in terms of basis functions satisfying homogeneous boundary conditions at r = a0
then the expansion of the derivative of the wave function in terms of the derivative
of these basis functions is not uniformly convergent on the boundary r = a0 of the
internal region except at the poles of the R-matrix.

It follows from the above discussion that (4.274) provides the boundary condi-
tion at r = a0 for integrating the coupled differential equations (4.235) and (4.236)
outwards from r = a0 in the external region, where the R-matrix in (4.274) must
include a Buttle correction as discussed below. The corresponding boundary condi-
tion for electron collisions with a general atom are discussed in Sect. 5.5.2.

The final step in determining the solution of (4.237) in the internal region is
the calculation of the Buttle correction to the R-matrix Rn(E), defined by (4.276),
which is required in order to obtain accurate results when basis functions satisfying
homogeneous boundary conditions, defined by (4.249) and (4.250), are adopted. In
order to calculate the Buttle correction to the R-matrix we proceed as in our dis-
cussion of the non-relativistic homogeneous boundary condition method, discussed
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in Sect. 4.4.1. We determine the solution of the zero-order Dirac equations (4.248)
which we rewrite as follows:

(
d

dr
+ κ

r

)
p0(r)− 1

c

[
2c2 + E − V0(r)

]
q0(r) = 0 (4.282)

and
(

d

dr
− κ

r

)
q0(r)+ 1

c
[E − V0(r)] p0(r) = 0, (4.283)

at the energy E of interest, subject to the boundary condition

θ0(0) =
(

p0(0)
q0(0)

)
= 0. (4.284)

Following our discussion in Sect. 4.4.2, the R-matrix Rn(E) defined by (4.276) is
corrected in analogy with (4.74) and (4.75) as follows:

Rc(E) = Rn(E)+R(BC)(E), (4.285)

where the Buttle correction on the right-hand side of this equation is approximated
by

R(BC)(E) = 1

2a0

∞∑
i=n+1

[
p0

i (a0)
]2

E0
i − E

. (4.286)

This correction can be determined in terms of the solution of the zero-order equa-
tions (4.282) and (4.283) at the energy E subject to the boundary condition (4.284).
We obtain

R0(E) = p0(a0)
[
2a0cq0(a0)− brp0(a0)

]−1
, (4.287)

where we have used (4.274) with n = 0 to express the zero-order R-matrix in
terms of the solution of the zero-order Dirac equations (4.282) and (4.283) on the
boundary r = a0. Hence, it follows from (4.285), (4.286) and (4.287) that the Buttle
correction at the energy E is given in analogy with (4.79) by

R(BC)(E) = p0(a0)
[
2a0cq0(a0)− brp0(a0)

]−1 − 1

2a0

n∑
i=1

[
p0

i (a0)
]2

E0
i − E

. (4.288)

The first term on the right-hand side of (4.288) is determined by solving the zero-
order equations (4.282) and (4.283) at the energy E of interest subject to the bound-
ary condition (4.284). The second term on the right-hand side of (4.288) is given
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in terms of the first n eigenenergies E0
i and the corresponding eigensolutions p0

i (r)
which we obtained by solving the zero-order equations defined by (4.248), (4.249),
(4.250) and (4.251). It follows that all the terms on the right-hand side of (4.288)
can be easily calculated and hence the Buttle correction to the R-matrix determined.
As in non-relativistic theory, the Buttle correction is a smoothly varying function of
energy in the low- and intermediate-energy regions and hence can be calculated at
a few energy values, spanning the energy range of interest, and interpolated at the
required energies.

Having determined the corrected R-matrix on the boundary r = a0 of the internal
region, the coupled Dirac equations (4.235) and (4.236) have to be solved in the
external region a0 ≤ r ≤ ap. It follows from the above discussion that (4.274),
with Rn(E) replaced by Rc(E), provides the boundary condition at r = a0 for
integrating the coupled Dirac equations outwards from r = a0 to ap. However, for
low-energy electron collisions with atoms and atomic ions, where |E − V (r)| � c2

in the external region, we have shown in Sect. 1.6 that the coupled Dirac equations
can be reduced to the equivalent radial Schrödinger equation (4.281). This equa-
tion can then be integrated outwards from r = a0 to ap, subject to the boundary
condition (4.280), using an R-matrix propagator method discussed in Sect. 4.5 and
Appendix E where, if basis functions satisfying homogeneous boundary conditions
defined by (4.249) and (4.250) are adopted, a Buttle correction defined by (4.288)
must be added to the R-matrix Rn(E).

We note, however, that for electron collisions with heavy ions, where the residual
charge on the ion Z − N is large, the procedure for reducing the equations is more
complicated. As shown in Sect. 1.6, the coupled first-order Dirac equations can be
reduced to the following second-order differential equation with first-order deriva-
tive term:

d2 p

dr2
− A′(r)

A(r)

dp

dr
+
(

A(r)B(r)− A′(r)
A(r)

κ

r
− κ(κ + 1)

r2

)
p(r) = 0, (4.289)

where A(r), A′(r) and B(r) are defined by (1.263). Equation (4.289) is now in a
form that can be solved in the external region using the propagator method dis-
cussed in Appendix E.5, where the inhomogeneous term θ(r) is zero. The quantity
P(r) = −A′(r)/A(r) in (E.94), which is zero in the non-relativistic limit, is a
slowly varying function of r which can be accurately represented by its value at the
mid-point of each sub-region in Fig. E.1 and the R-matrix at the start of the external
region propagation r = a0 is given by

R0(E) = a−1
0 p(a0)

(
dp

dr
+ 1

2
P(r)p(r)

)−1

r=a0

, (4.290)

which follows from (E.105). The quantities p(r) and dp/dr at r = a0 in (4.290)
can be obtained from the solution in the internal region, described earlier in this
section where, if basis functions satisfying homogeneous boundary conditions are
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adopted in the internal region, Buttle corrections to p(a0) and dp/dr |r=a0 , analo-
gous to that discussed in Sect. 4.4.2, will be necessary to obtain accurate results. The
R-matrix and, if necessary, the wave function can then be propagated outwards from
r = a0 to ap using (E.106) and (E.110), where either the Light–Walker or the BBM
propagator method, discussed in Sects. 4.5.1 and 4.5.2, respectively can be used to
calculate the Green’s functions.

We also remember from our analysis in Sect. 1.6 that the second-order differ-
ential equation (4.289) can be further reduced to Schrödinger form by making the
substitution

p(r) = [A(r)]1/2 p̃(r), (4.291)

which we see from (1.265) gives the following equation for p̃(r):

(
d2

dr2
− κ(κ + 1)

r2
−Uκ(r)+ k2

r

)
p̃(r) = 0, (4.292)

where k2
r and Uκ(r) are defined by (1.266) and (1.267), respectively. In principle

(4.292) can be solved using one of the standard propagator methods discussed in
Sect. 4.5 and Appendix E. However, the complexity of the calculation of the poten-
tial Uκ(r)makes this approach less attractive, and the R-matrix propagation solution
of (4.289) discussed above and the direct solution of the original Dirac equations
(4.235) and (4.236) using a standard approach for solving first-order differential
equations (see, for example, [573]) are to be preferred.

Finally, having integrated either the equivalent Schrödinger equation or the cou-
pled Dirac equations outwards from r = a0 to ap, the solution is then fitted to the
asymptotic boundary conditions discussed in Sect. 1.6. The scattering amplitudes
and cross sections can then be obtained as described in that section.



Chapter 5
Electron Collisions with Atoms and Ions

In this chapter we commence our discussion of multichannel R-matrix theory by
considering its application in the study of low-energy electron collisions with atoms
and atomic ions. As well as describing an important application of the theory, this
chapter provides an introduction to the basic concepts of multichannel R-matrix the-
ory which will be applied in later chapters to a wide range of other atomic, molecular
and optical collision processes. We restrict our consideration in this chapter to low-
energy electron collisions, where only elastic scattering and excitation processes are
energetically allowed or play a significant role in the collision process. We consider
electron collisions with atoms and atomic ions at intermediate energies, which range
from close to the ionization threshold to several times this threshold, in Chap. 6.

We introduce multichannel R-matrix theory in Sect. 5.1 by considering first
electron collisions with light multi-electron atoms and atomic ions where an accu-
rate representation of the collision process can be obtained by solving the time-
independent non-relativistic Schrödinger equation. We commence in Sect. 5.1.1
with a general introduction to R-matrix theory describing the partitioning of config-
uration space adopted in this theory. We then give a brief overview of the computer
programs that have been developed to implement this theory, where we mention
further developments of these programs to include relativistic effects which can be
described using the Breit–Pauli Hamiltonian. In the rest of this section we describe
in detail the solution of the Schrödinger equation, first in an internal region in Sect.
5.1.2, then in an external region in Sect. 5.1.3 and finally in an asymptotic region
in Sect. 5.1.4, yielding the K -matrix and S-matrix from which the collision cross
sections can be determined.

In Sect. 5.2, we derive a variational principle for the R-matrix defined on the
boundary of the internal region. We consider explicitly low-energy electron colli-
sions with atoms and atomic ions although the variational principle that we obtain
will be applicable for any multichannel collision process which can be described
in the internal region by coupled second-order integrodifferential equations. In
Sect. 5.3 we consider methods for determining zero-order radial continuum basis
orbitals which represent the scattered electron in the expansion of the total wave
function in the internal region. We also discuss methods for calculating corrections
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to the R-matrix and wave function. We consider first in Sect. 5.3.1 an approach
using basis orbitals which satisfy homogeneous boundary conditions on the surface
of the internal region. We then show in Sect. 5.3.2 that when the radial contin-
uum basis orbitals satisfy homogeneous boundary conditions a Buttle correction to
the R-matrix must be included to obtain accurate results. We also discuss how a
Buttle-type correction to the wave function near the boundary of the internal region
can be calculated, which may be required in some applications. In Sect. 5.3.3, we
summarize methods for determining analytic continuum basis orbitals which sat-
isfy arbitrary boundary conditions on the surface of the internal region, where these
methods have been reviewed in Sect. 4.4. In recent years these basis orbitals have
found increasing use in many applications of R-matrix theory, ranging from electron
collisions with atoms and molecules to photoionization and multiphoton ionization
processes. Then, in Sect. 5.3.4 we describe a partitioned R-matrix method where the
calculation of the R-matrix is sub-divided into two parts: a low-energy part which is
accurately determined and a high-energy part for which an approximation is derived
which enables much larger problems to be treated.

Next, in Sect. 5.4 we consider electron collisions with atoms and ions with higher
nuclear charge number Z where relativistic effects must be included in the calcu-
lation. Initially as Z increases these effects are small and in this case the colli-
sion calculation can first be carried out in L Sπ -coupling, using the non-relativistic
Hamiltonian. The K -matrices, obtained from this calculation, are then recoupled to
give K -matrices, cross sections and collision strengths including relativistic effects.
We consider this approach in Sect. 5.4.1. Then as the nuclear charge number Z
increases further, relativistic effects must be included in both the target wave func-
tion and the collision wave function. Provided Z is not too large, this can be achieved
by replacing the non-relativistic Hamiltonian in these calculations by the Breit–
Pauli Hamiltonian. We consider this approach in Sect. 5.4.2. Next, in Sect. 5.4.3,
we consider a frame-transformation theory approach where relativistic effects are
omitted, or only partly included, in the internal region with considerable saving in
computational effort. However, for the heaviest atomic targets it is necessary to treat
both the target and the collision wave functions using the Dirac Hamiltonian. We
consider this approach in Sect. 5.5 where we follow our analysis of non-relativistic
collisions, in Sect. 5.1, by considering the solution in internal, external and asymp-
totic regions in turn, enabling the K -matrix, S-matrix and cross sections to be
determined.

Finally, in Sect. 5.6 we describe the results of some representative low-energy
electron–atom and electron–ion collision calculations.

5.1 Multichannel R-Matrix Theory

In this section we introduce R-matrix theory by considering low-energy electron
collisions with multi-electron atoms and ions which are accurately described by the
non-relativistic Schrödinger equation.
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5.1.1 Introduction and Computer Programs

We consider the following low-energy electron collision process:

e− + Ai → A j + e−, (5.1)

where Ai and A j are the initial and final bound states of the target atom or ion
which we assume contains N electrons and has nuclear charge number Z . For light
atoms and ions this process can be accurately described by the time-independent
Schrödinger equation

HN+1Ψ = EΨ, (5.2)

whereΨ is the collision wave function and HN+1 is the non-relativistic Hamiltonian
defined in atomic units by

HN+1 =
N+1∑
i=1

(
−1

2
∇2

i −
Z

ri

)
+

N+1∑
i> j=1

1

ri j
. (5.3)

In this equation we have taken the origin of coordinates to be the target nucleus,
which we assume has infinite mass, and we have written ri j =

∣∣ri − r j
∣∣ where ri

and r j are the vector coordinates of the i th and j th electrons.
In order to solve (5.2), and the corresponding equations in relativistic R-matrix

theory discussed in Sects. 5.4 and 5.5, the theory commences, as briefly discussed
in our introduction to Chap. 4, by partitioning configuration space into an internal
region, an external region and an asymptotic region as shown in Fig. 5.1. The three
regions are separated, as shown in this figure, by spheres of radius r = a0 and
ap which are centered on the target nucleus where r is the radial coordinate of the
scattered electron. We now consider the calculation of the solutions in each of these
regions in turn.

In the internal region 0 ≤ r ≤ a0, where r is the radial coordinate of the scat-
tered electron relative to the target nucleus, electron exchange and electron–electron

Internal Region
N+1 electrons

exchange
and

correlation
important

External Region
scattered electron only

long-range potential simportant

Sub-
region

1

Sub-
region
p−1

Sub-
region

p

Asymptotic Region
scattered electron

only
long-range
potentials

weak

0 a0 a1 ap−2 ap−1 ap ∞
Radial coordinate of scattered electron

Fig. 5.1 Partitioning of configuration space in R-matrix theory of electron–atom and electron–ion
collisions
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correlation effects between the scattered electron and the N electrons in the target
are important and the (N+1)-electron collision complex behaves in a similar way to
a bound state. Consequently, a configuration interaction expansion of this complex,
similar to that used in Sect. 2.2 for target eigenstates and pseudostates, is adopted.
We discuss the solution in this region in Sect. 5.1.2 and we consider the continuum
basis orbitals which are used to represent the scattered electron in this region in
Sect. 5.3.

In the external region a0 ≤ r ≤ ap, electron exchange and correlation effects
between the scattered electron and the target are negligible if the radius a0 of the
sphere is chosen, as discussed in Sect. 2.3.2, so that the charge distributions of the
target eigenstates and pseudostates retained in the configuration interaction expan-
sion in the internal region are negligible for r ≥ a0. This is achieved if we choose
the radius a0 so that

Pn	(r) ≈ 0, r ≥ a0, (5.4)

where the Pn	(r) are the reduced radial physical and pseudo-orbitals used to con-
struct the target eigenstates and pseudostates. With this definition, the scattered
electron then moves in the external region in the long-range multipole potential
of the target, defined by (2.73) and (2.74), and the corresponding reduced radial
wave functions describing the motion of this electron satisfy the coupled second-
order differential equations (2.76). The solution in this region can be obtained by
sub-dividing it into p sub-regions, as illustrated in Fig. 5.1, and using a standard
method for solving ordinary coupled second-order differential equations. We dis-
cuss the solution in the external region in Sect. 5.1.3 and we consider R-matrix and
log-derivative methods for propagating the solution of these equations across the p
sub-regions in Appendix E.

Finally, in the asymptotic region r ≥ ap, the solution is represented by an asymp-
totic expansion where ap is chosen large enough that the expansion yields accurate
results on this boundary. We show how the solution can be fitted to this expansion
at r = ap in Sect. 5.1.4, yielding the K -matrix, S-matrix and cross sections and we
consider asymptotic expansion methods in Appendix F.1.

Hence we see that by a suitable choice of radii a0 and ap, the wave function in the
internal, external and asymptotic regions have very different properties and thus it is
appropriate both from a physical and from a computational point of view to obtain
the solutions in these regions independently and then to link these solutions by the
R-matrix on their common boundaries. It is also important to appreciate that this
sub-division of configuration space is appropriate even in the presence of long-range
Coulomb potentials, since electron exchange and correlation effects are confined to
a volume defined by the range of the target states and pseudostates included in the
calculation which decay exponentially at large distances.

To conclude this introductory section we briefly summarize in Fig. 5.2 the
computer programs developed to obtain accurate target states and electron–atom
and electron–ion phase shifts and collision cross sections, when relativistic effects
are either not important or can be accurately described using the Breit–Pauli
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Target

CIV3 or SUPERSTRUCTURE or AUTOSTRUCTURE or MCHF

Internal Region

RMATRXI or RMATRXII or BSR

External and Asymptotic Regions

FARM or STGF

Fig. 5.2 Computer programs which have been developed and used in R-matrix electron–atom
and electron–ion collision calculations classified into three stages corresponding to (i) target state
calculations; (ii) internal region calculations yielding the R-matrix on the boundary r = a0; (iii)
external and asymptotic region calculations yielding the K -matrix, S-matrix and collision cross
sections

Hamiltonian, discussed in Sect. 5.4.2. We will briefly summarize the corresponding
computer programs used when the solution of the Dirac equation is appropriate in
Sect. 5.5.1.

In the first stage of the calculation shown in Fig. 5.2 we mention four programs
that have been written to obtain accurate target state energies and wave functions,
which are used in the following stages of the R-matrix calculations. These are

i. CIV3 written by Hibbert [464] and extended by Glass and Hibbert [381, 383]
ii. SUPERSTRUCTURE written by Eissner et al. [290]

iii. AUTOSTRUCTURE written by Badnell [30, 31], which incorporates
SUPERSTRUCTURE

iv. MCHF written by Froese Fischer et al. [344–350].

An important component of these atomic structure calculations are general
programs to calculate angular integrals written by Hibbert and Froese Fischer
[463, 466].

In the second stage of the calculation shown in Fig. 5.2 we mention three pro-
grams written to solve the electron–atom collision problem in the R-matrix internal
region shown in Fig. 5.1. These are

i. RMATRXI written by Berrington et al. [95, 98] and extended to include rel-
ativistic effects using the Breit–Pauli Hamiltonian by Scott and Burke [843],
Scott and Taylor [844] and Berrington et al. [102]. A parallel version of
RMATRXI has been developed by Mitnik et al. [654, 655] which is summarized
by Ballance and Griffin [43], and a no-exchange program RMATRX NX has
been developed by V.M. Burke et al. [192], which enables R-matrix calculations
at higher energies and for higher angular momenta to be carried out efficiently.

ii. RMATRXII written by Burke et al. [185], which extended the procedure
adopted in RMATRXI for evaluating the angular integrals. Relativistic effects
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are not included in RMATRXII. Instead, an extra stage FINE, transforms the
non-relativistic R-matrix surface amplitudes calculated on the internal region
boundary r = a0 to include relativistic fine-structure effects, ready for the
inclusion of these effects in the external region calculation.

iii. BSR written by Zatsarinny [992], which includes relativistic effects using the
Breit–Pauli Hamiltonian. It describes the target states using non-orthogonal
term-dependent orbitals and represents the bound and continuum orbitals by
expansions in B-splines, discussed in Sect. 4.4.7.

In the third stage of the calculation shown in Fig. 5.2 we mention two programs
that have been written to solve the electron–atom collision problem in the R-matrix
external and asymptotic regions shown in Fig. 5.1. These are

i. FARM, written by V.M. Burke and Noble [191], which uses R-matrix propagator
methods, discussed in Appendices E.1 and E.3. A parallel version of FARM
(PFARM) has been developed by Sunderland et al. [896] as part of the electron–
atom and electron–ion collision program PRMAT which combines PFARM with
the internal region program RMATRXII.

ii. STGF, written by Seaton [860], which calculates solutions which are correct to
second order in the long-range potentials. A parallel version PSTGF which runs
on massively parallel computers has been developed by Mitnik et al. [654].

These programs enable the K -matrix, S-matrix and hence collision cross sections
to be determined.

5.1.2 Internal Region Solution

We consider first the solution of the non-relativistic Schrödinger equation (5.2) in
the internal region defined in Fig. 5.1 for each set of conserved quantum numbers Γ
defined by (2.58). The R-matrix expansion of the collision wave function Ψ in this
region at a total energy E takes the form

ΨΓj E (XN+1) =
nt∑

k=1

ψΓk (XN+1)A
Γ
k j (E), (5.5)

where j labels the linearly independent solutions of (5.2), ψΓk are energy-indepen-
dent basis functions and AΓk j (E) are energy-dependent expansion coefficients,
which depend on the asymptotic boundary conditions satisfied by the wave function
ΨΓj E at the energy E . Following our discussion in Sect. 2.3, we expand the basis

functions ψΓk in an R-matrix expansion, which has the same general form as the
close coupling with pseudostates expansion (2.57), which we write here as
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ψΓk (XN+1) = A
n∑

i=1

nc∑
j=1

Φ
Γ

i (XN ; r̂N+1σN+1)r
−1
N+1u0

i j (rN+1)a
Γ
i jk

+
m∑

i=1

χΓi (XN+1)b
Γ
ik, k = 1, . . . , nt , (5.6)

where n is the number of channels retained in the expansion, nc is the number
of radial continuum basis orbitals retained in each channel, m is the number of
quadratically integrable functions and nt = nnc + m is the total number of linearly

independent basis functions in this expansion. The channel functions Φ
Γ

i and the
quadratically integrable functions χΓi in (5.6) are defined following (2.57) and do
not need to be discussed further here except to note that condition (5.4) satisfied by
the physical and pseudo-orbitals implies that these functions are negligible by the
boundary r = a0 of the internal region. However, the radial continuum basis orbitals
u0

i j (r), j = 1, . . . , nc in (5.6), which replace the reduced radial functions FΓi j (r) in
(2.57), are now defined only over the range 0 ≤ r ≤ a0. They represent the radial
motion of the scattered electron in the internal region and are chosen to vanish at
the origin and are in general non-zero on the boundary r = a0 of the internal region,
thus providing a link between the solutions in the internal and external regions. We
will consider their explicit form in Sect. 5.3. Also we note that the coefficients bΓik
multiplying the quadratically integrable functions in (5.6) are related to the corre-
sponding coefficients in (2.57) through the expansion of the collision wave function
ΨΓj E in terms of the basis functions ψΓk given by (5.5). Finally we determine the

coefficients aΓi jk and bΓik in (5.6) by diagonalizing HN+1 + LN+1 in this basis as
follows:

〈ψΓk |HN+1 + LN+1|ψΓk′ 〉int = EΓk δkk′ , k, k′ = 1, . . . , nt , (5.7)

where LN+1 is a Bloch operator [118], discussed below, and where the integration in
this equation is carried out over the space and spin coordinates of all N+1 electrons
and where the radial integrals are confined to the internal region.

The Bloch operator LN+1 in (5.7) has been introduced, following our discussion
in potential scattering in Sect. 4.2, since the kinetic energy operators − 1

2∇2
i , i =

1, . . . , N + 1, in HN+1 are not hermitian over the internal region in the space of
functions satisfying arbitrary boundary conditions on the surface of the sphere of
radius r = a0 enveloping this region. The appropriate Bloch operator which ensures
that HN+1 + LN+1 is hermitian is defined by the equation

LN+1 = 1

2

N+1∑
i=1

δ(ri − a0)

(
d

dri
− b0 − 1

ri

)
, (5.8)

where, as in potential scattering, b0 is an arbitrary constant which can depend on
the channel of the scattered electron and which is set zero in most applications. We
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can prove that HN+1+LN+1 is hermitian in the internal region by showing that the
following integral is zero:

〈ψ(1)|HN+1 + LN+1|ψ(2)〉int − 〈ψ(2)|HN+1 + LN+1|ψ(1)〉int = 0, (5.9)

where ψ(1) and ψ(2), which are defined over the internal region, are arbitrary
quadratically integrable functions of the space and spin coordinates x1, . . . , xN+1
of the N + 1 interacting electrons which vanish at the origin and satisfy arbitrary
boundary conditions on the surface r = a0 of the internal region. Also in (5.9) the
integrations are carried out over all N + 1 electronic space and spin coordinates,
where the integration over radial coordinates ri of the electrons is restricted to the
internal region so that

0 ≤ ri ≤ a0, i = 1, . . . , N + 1. (5.10)

In the evaluation of (5.9) we have to consider radial integrals of the form

I =
∫ a0

0

{
r−1v(r)

[
− 1

2r2

d

dr
r2 d

dr
+ 1

2
δ(r − a0)

(
d

dr
− b0 − 1

r

)]
r−1w(r)

}

× r2dr, (5.11)

where v(r) and w(r) are arbitrary differentiable functions of r , which are quadrat-
ically integrable over the internal region and which vanish at the origin and satisfy
arbitrary boundary conditions at r = a0. Also the first term in the square brackets
in (5.11) is the radial part of the kinetic energy operator − 1

2∇2. It is straightforward
to show that (5.11) reduces to

I =
∫ a0

0
v(r)

[
−1

2

d2

dr2
+ 1

2
δ(r − a0)

(
d

dr
− b0

r

)]
w(r)dr. (5.12)

It then follows that, as in potential scattering, see (4.32), the operator in square
brackets in (5.12) is hermitian over the internal region for arbitrary b0 and hence the
integral I in (5.11) can be rewritten as

I =
∫ a0

0

{
r−1w(r)

[
− 1

2r2

d

dr
r2 d

dr
+ 1

2
δ(r − a0)

(
d

dr
− b0 − 1

r

)]
r−1v(r)

}

× r2dr. (5.13)

This shows that the operator in the square brackets in (5.11) and (5.13) is hermitian
over the internal region and hence, from (5.9), that the operator

HN+1 + LN+1 (5.14)

is hermitian over the internal region.
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We can now solve (5.2) in the internal region, for each set of conserved quantum
numbers Γ and for each linearly independent solution labelled by j , by including
the Bloch operator term LN+1Ψ on both sides of this equation giving

(HN+1 + LN+1 − E) Ψ Γj E = LN+1Ψ
Γ
j E , (5.15)

where the solution ΨΓj E corresponds to (5.5), (5.6) and (5.7). Equation (5.15) then
has the formal solution in the internal region

ΨΓj E = (HN+1 + LN+1 − E)−1 LN+1Ψ
Γ
j E . (5.16)

The spectral representation of the Green’s function (HN+1 + LN+1 − E)−1 in
(5.16) can be obtained in terms of the R-matrix basis functions ψΓk defined by (5.6)
and (5.7). Equation (5.16) then becomes

|ΨΓj E 〉 =
nt∑

k=1

|ψΓk 〉
1

EΓk − E
〈ψΓk |LN+1|ΨΓj E 〉. (5.17)

We then project (5.17) onto the n channel functions Φ
Γ

i (XN ; r̂N+1σN+1) and eval-
uate it on the boundary rN+1 = a0 of the internal region. We find using (5.5) and
(5.6) that the reduced radial wave functions FΓi j (r) describing the motion of the
scattered electron in the i th channel at the energy E satisfy the equation

FΓi j (a0) =
n∑

i ′=1

RΓi i ′(E)

(
a0

dFΓi ′ j
dr
− b0 FΓi ′ j

)
r = a0

, i = 1, . . . , n, (5.18)

where the elements of the R-matrix RΓi i ′(E) are defined by

RΓi i ′(E) =
1

2a0

nt∑
k=1

wΓikw
Γ
i ′k

EΓk − E
, i, i ′ = 1, . . . , n, (5.19)

the functions FΓi j (r) are defined by

FΓi j (rN+1) = 〈r−1
N+1Φ

Γ

i |ΨΓj E 〉′, i = 1, . . . , n (5.20)

and the surface amplitudes wΓik are defined by

wΓik = 〈r−1
N+1Φ

Γ

i |ψΓk 〉′rN+1 = a0

=
nc∑

j=1

u0
i j (a0)a

Γ
i jk, i = 1, . . . , n, k = 1, . . . , nt . (5.21)
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We can also write down an alternative expression for the reduced radial wave func-
tions FΓi j (r) in the internal region by substituting for ΨΓj E from (5.5) into (5.20)
giving

FΓi j (rN+1) =
nt∑

k=1

〈r−1
N+1Φ

Γ

i |ψΓk 〉′AΓk j (E), i = 1, . . . , n. (5.22)

The primes on the Dirac brackets in (5.20), (5.21) and (5.22) mean that the inte-
grations are carried out over the space and spin coordinates of all N + 1 electrons
in the internal region, except the radial coordinate rN+1 of the scattered electron,
where the r−1

N+1 factors in these and later integrands correspond to the r−1
N+1 factor

on the right-hand side of (5.6). Also the number of linearly independent solutions,
denoted by the subscript j in (5.18), (5.20) and (5.22), is discussed below.

Equations (5.18) and (5.19) are the basic equations describing electron collisions
with atoms and atomic ions in the internal region. The R-matrix, defined by (5.19),
is determined at all energies by a single diagonalization of HN+1 + LN+1 in (5.7)
in the basis defined by (5.6) for each set of conserved quantum numbers Γ , which
yields the surface amplitudes wΓik and the corresponding eigenenergies EΓk . The
logarithmic derivatives of the reduced radial wave functions FΓi j (r) on the boundary
of the internal region are then given by (5.18). This equation provides the boundary
condition for the solution of the electron–atom collision problem in the external
region considered in the next section.

We consider next the determination of the reduced radial wave functions FΓi j (r),
defined in the internal region by (5.20) and (5.22), and the full collision wave func-
tion ΨΓj E (XN+1), defined in the internal region by (5.5), which we will see are

required in many applications. We first observe that while (5.20) defines FΓi j (r)
for all r , it is only when the exchange and quadratically integrable functions in
(5.6) are negligible, that FΓi j (r) has a simple form. This occurs in the external and
asymptotic regions, discussed in Sects. 5.1.3 and 5.1.4, respectively, and near the
boundary r = a0 in the internal region. It follows from (5.5), (5.6) and (5.22) that
near the boundary r = a0 in the internal region, the expression for FΓi j (r) reduces
to the following simple form:

FΓi j (r) =
nt∑

k= 1

wΓik(r)A
Γ
k j (E), i = 1, . . . , n, r <∼ a0, (5.23)

where the functionswΓik(r) can be expanded in terms of the continuum basis orbitals
u0

ik(r) in (5.6) by

wΓik(r) =
nc∑

j = 1

u0
i j (r)a

Γ
i jk, i = 1, . . . , n, k = 1, . . . , nt . (5.24)
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Comparing this result with (5.21) we see that wΓik = wΓik(a0). It follows that in order
to determine FΓi j (r) near the boundary r = a0 in the internal region and the full

collision wave function ΨΓj E (XN+1) in the internal region, we have to determine the

expansion coefficients AΓk j (E) in (5.5). This can be achieved by comparing (5.17)
with (5.5) giving

AΓk j (E) =
1

EΓk − E
〈ψΓk |LN+1|ΨΓj E 〉,

k = 1, . . . , nt . (5.25)

We then substitute in this equation for ψΓk from (5.6) and for the Bloch operator
LN+1 from (5.8). We also use the result

ΨΓj E (XN+1) =
n∑

i = 1

Φ
Γ

i (XN ; r̂N+1σN+1)r
−1
N+1 FΓi j (rN+1), rN+1 = a0, (5.26)

which follows from (5.20). Equation (5.25) then reduces to

AΓk j (E) =
1

2a0(EΓk − E)

n∑
i=1

wΓik

(
a0

dFΓi j

dr
− b0 FΓi j

)
r = a0

, k = 1, . . . , nt .

(5.27)

We see from this equation that in order to determine the expansion coefficients
AΓk j (E) we have to determine dFΓi j /dr and FΓi j (r) on the boundary r = a0 of the
internal region. This is achieved by solving the relevant coupled second-order differ-
ential equations in the external and asymptotic regions, as discussed in Sects. 5.1.3
and 5.1.4, respectively, subject to the R-matrix boundary condition at r = a0 defined
by (5.18) and (5.19). These solutions can be combined to yield the relevant asymp-
totic boundary conditions, enabling AΓk j (E) to be determined. We will see that the
number of linearly independent solutions labelled by j depends on these asymptotic
boundary conditions and will usually correspond to the number of open channels na

at the energy E considered. In this way we can determine the reduced radial wave
functions FΓi j (r) in the external and asymptotic regions. We also show in Sect. 5.3.2

that when the radial continuum basis orbitals u0
i j (r), retained in expansion (5.6),

satisfy homogeneous boundary conditions a Buttle correction to the reduced radial
wave function is required near the boundary r = a0 in the internal region. Hence
we can determine the full collision wave function ΨΓj E (XN+1), defined by (5.5)
in the internal region, which is important in applications such as photoionization,
discussed in Chap. 8, where the collision wave function in the internal region as
well as the R-matrix is required.

We conclude this section by remarking that the R-matrix, defined by (5.18) and
(5.19), together with the basis functions ψΓk , defined by (5.6), and the expansion
coefficients AΓk j (E), defined by (5.27), provide a complete description of the col-
lision process in the internal region. Furthermore, it follows from (5.19) that the
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R-matrix is a real symmetric analytic function of energy with simple poles only
on the real energy axis. This property has been used as the basis of the develop-
ment of multichannel effective range theories in Sect. 3.3 which enable the analytic
properties of the K -matrix and T -matrix to be determined in the neighbourhood of
thresholds.

5.1.3 External Region Solution

We now consider the solution of the Schrödinger equation (5.2) in the external
region, corresponding to a0 ≤ r ≤ ap in Fig. 5.1, for each required energy E .
We have seen that a0 is chosen so that electron exchange and correlation effects
between the scattered electron and the target atom or atomic ion can be neglected in
this region. The close coupling expansion (2.57) of the total wave function at energy
E for each set of conserved quantum numbers Γ then reduces to

ΨΓj E (XN+1) =
n∑

i=1

Φ
Γ

i (XN ; r̂N+1σN+1)r
−1
N+1 FΓi j (rN+1), rN+1 ≥ a0, (5.28)

where j labels the linearly independent solutions. Also the channel functions Φ
Γ

i
retained in this expansion are the same as those retained in the internal region expan-
sion (5.6) and FΓi j (r) are energy-dependent reduced radial wave functions, defined
by (5.20). In comparing (5.28) with (5.5) and (5.6), we see that we no longer include
the antisymmetrization operator A in (5.28), since the scattered and target elec-
trons occupy different regions of space and hence exchange effects are negligible,
enabling more efficient algorithms to be used in solving the coupled equations in this
region, as discussed in Appendix E. In addition, the quadratically integrable func-
tions χΓi , which are included in expansion (5.6), vanish in the external region since
the boundary a0 is chosen so that the target physical and pseudo-orbitals Pn	(r),
used to construct these functions, satisfy (5.4).

The coupled second-order differential equations, satisfied by the reduced radial
wave functions FΓi j (r) in (5.28), are obtained by substituting (5.28) into the

Schrödinger equation (5.2) and projecting onto the channel functions Φ
Γ

i . We then
find that the functions FΓi j (r) satisfy the following set of coupled equations:

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z − N )

r
+ k2

i

)
FΓi j (r) = 2

n∑
i ′=1

V Γi i ′ (r)F
Γ
i ′ j (r),

i = 1, . . . , n, r ≥ a0, (5.29)

where 	i is the orbital angular momentum of the scattered electron, Z is the nuclear
charge number, N is the number of target electrons and k2

i is the square of the wave
number of the scattered electron defined by (2.64) and (2.65). Also the potential
matrix V Γi i ′ (r), which is defined by (2.66), can be written as a summation over
inverse powers of r given by (2.73), that is by
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V Γi i ′ (r) =
λmax∑
λ=1

αΓi i ′λr
−λ−1, r ≥ a0, i, i ′ = 1, . . . , n. (5.30)

The long-range potential coefficients αΓi i ′λ in (5.30) are defined by (2.74) and a
general expression for them is derived in Appendix D.1. We see that the coupled
second-order differential equations (5.29) can be obtained from (2.63) by setting the
non-local exchange potential WΓ

i i ′ and the non-local correlation potential XΓi i ′ zero,
and omitting the Lagrange multiplier terms which vanish in the external region.

The solution of (5.29) in the external region for each required energy E can be
obtained by sub-dividing this region into p sub-regions, as illustrated in Fig. 5.1. In
Appendices E.1, E.2 and E.3 we describe methods for propagating the R-matrix, or
the log-derivative matrix, and the reduced radial wave functions across this region,
where the R-matrix at r = a0 is usually defined by setting the arbitrary constant
b0 = 0 in (5.18) which, as pointed out following (5.8), is the value adopted in most
applications.

However, if b0 is not set equal to zero in the internal region calculation, we can
relate the corresponding R-matrix to that obtained by setting b0 = 0. To obtain this
relation we rewrite (5.18), where b0 is non-zero, in matrix form as follows:

F(a0) = Rb0(E)

(
a0

dF
dr
− b0F

)
r = a0

, (5.31)

where we have shown explicitly in this equation the dependence of the R-matrix
Rb0(E) on the value of b0. The boundary condition corresponding to setting b0 = 0
in (5.31) is then

F(a0) = R0(E) a0
dF
dr

∣∣∣∣
r = a0

. (5.32)

Eliminating F(a0)/(dF/dr)r = a0 between (5.31) and (5.32) then yields the following
relation between the R-matrices

R0(E) = Rb0(E)

I+ b0Rb0(E)
, (5.33)

which can be inverted giving

Rb0(E) =
R0(E)

I− b0R0(E)
. (5.34)

Equations (5.33) and (5.34) are the required relations between the R-matrix Rb0(E),
defined when b0 is non-zero, and the R-matrix R0(E), defined when b0 is zero. It is
interesting to note that this transformation shifts the pole positions in the R-matrix,
where the poles of Rb0(E) now occur where

det [I− b0R0(E)] = 0. (5.35)
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This can be useful in situations where calculations close to a pole in the R-matrix
lead to inaccuracies. In the present context we set the arbitrary constant b0 = 0 in
the rest of Sect. 5.1, as well as in Appendix E.

Finally, we observe that since the expression for the long-range potential coeffi-
cients αΓi i ′λ, derived in Appendix D.1, is diagonal in the target spin quantum number
Si for non-relativistic collisions and the non-local exchange and correlation poten-
tials vanish in the external region, it follows that the coupled second-order differen-
tial equations (5.29) sub-divide into two uncoupled sets of equations depending on
whether the target spin Si = S − 1/2 or Si = S + 1/2. This enables more efficient
R-matrix propagator methods to be used, as discussed in Appendix E.6. Using one
of these methods, the R-matrix at r = a0 can be propagated from r = a0 to ap to
yield the R-matrix at r = ap, thus providing the boundary condition satisfied by the
solution in the asymptotic region r ≥ ap.

5.1.4 Asymptotic Region Solution

The final step in solving the Schrödinger equation (5.2) is to determine the solution
in the asymptotic region, corresponding to r ≥ ap in Fig. 5.1, and hence to calculate
the K -matrix, S-matrix and cross sections for each required energy E . In this region
the close coupling expansion again reduces to (5.28) where the reduced radial wave
functions FΓi j (r) satisfy the coupled second-order differential equations (5.29). We
will assume that the radius ap is chosen large enough that one of the asymptotic
expansion methods discussed in Appendix F.1 gives an accurate solution of (5.29)
for r satisfying ap ≤ r ≤ ∞.

Following our discussion in Appendix F.1 we assume that the channels are
ordered so that

k2
1 ≥ k2

2 ≥ · · · ≥ k2
n, (5.36)

where, at the energy E of interest, the first na channels are open with k2
i ≥ 0

and the last nb channels are closed with k2
i < 0, where na + nb = n. We show

in Appendix F.1 that we can determine n + na linearly independent asymptotic
solutions of (5.29) which are regular as r → ∞. In this section we find it conve-
nient to define these n + na solutions to satisfy the following asymptotic boundary
conditions:

si j (r) ∼
r→∞ k−1/2

i sin θiδi j , i = 1, . . . , n, j = 1, . . . , na,

ci j (r) ∼
r→∞ k−1/2

i cos θiδi j , i = 1, . . . , n, j = 1, . . . , na, (5.37)

ci j (r) ∼
r→∞ exp(−φi )δi j , i = 1, . . . , n, j = na + 1, . . . , n,

where

θi = kir − 1

2
	iπ − ηi ln 2kir + σ	i , i = 1, . . . , na, (5.38)
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with

ηi = − Z − N

ki
, i = 1, . . . , na (5.39)

and

σ	i = arg(	i + 1+ iηi ), i = 1, . . . , na, (5.40)

and where

φi = |ki |r − Z − N

|ki | ln(2|ki |r), i = na + 1, . . . , n. (5.41)

When na channels are open we showed in Sect. 2.4 that there are na linearly
independent physical solutions which vanish at the origin and are finite at infinity.
These physical solutions, defined by (2.85), can be written in terms of the n + na

asymptotic solutions defined by (5.37) as follows:

FΓ (r) = s(r)+ c(r)NΓ , r ≥ ap, (5.42)

where FΓ (r) has dimension n× na , s(r) has dimension n× na , c(r) has dimension
n × n and NΓ has dimension n × na . The matrix NΓ can be written in the form

NΓ =
[

KΓ

LΓ

]
, (5.43)

where KΓ is the usual na × na-dimensional K -matrix defined by (2.85) and LΓ is a
subsidiary nb×na-dimensional matrix which multiplies the decaying solutions c(r)
defined by the last equation in (5.37). We see from (5.42) that KΓ postmultiplies the
first na columns of the matrix c(r) while LΓ postmultiplies the last nb columns of
the matrix c(r).

We can now express the na×na-dimensional K -matrix KΓ in terms of the n×n-
dimensional R-matrix RΓp (E) at r = ap. Since we have set the arbitrary constant
b0 = 0 then these matrices are related by the equation

FΓ (ap) = RΓp (E)apḞΓ (ap), (5.44)

where ḞΓ (r) is the derivative of FΓ (r), which from (5.42) can be written as

ḞΓ (r) = dFΓ

dr
= ṡ(r)+ ċ(r)NΓ , r ≥ ap. (5.45)

We then substitute the expressions for FΓ (ap) and ḞΓ (ap), given respectively by
(5.42) and (5.45), into (5.44). After rearranging the terms we obtain
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[
c(ap)− apRΓp (E)ċ(ap)

]
NΓ = −s(ap)+ apRΓp (E)ṡ(ap), (5.46)

which is a set of n linear simultaneous equations with na right-hand sides. The solu-
tion of these equations for each required energy E yields the n × na-dimensional
matrix NΓ , from which the na × na-dimensional K -matrix KΓ can be determined
from (5.43). It follows from (5.37) and (5.42) that the required physical solution
matrix FΓ (r) satisfies the asymptotic boundary conditions

FΓ (r) ∼
r→∞k−1/2 [sin θ + cos θKΓ

]
(5.47)

in the open channels, since the decaying solutions in (5.37) vanish asymptotically.
We also find it convenient to define a solution matrix satisfying the asymptotic

boundary conditions

GΓ (r) ∼
r→∞k−1/2 [exp(−iθ)− exp(iθ)SΓ

]
, (5.48)

which is obtained by taking linear combinations of the solutions defined by (5.47).
The na × na-dimensional S-matrix SΓ in (5.48) is defined in terms of the na × na-
dimensional K -matrix by the matrix equation

SΓ = I+ iKΓ

I− iKΓ
. (5.49)

The T -matrix and cross sections can then be determined using the procedure
described in Sect. 2.5. The solutions in the internal, external and asymptotic regions
can be determined in a similar way for all relevant L Sπ values enabling the corre-
sponding total cross sections, angular distributions and rate coefficients to be calcu-
lated, as described in Sect. 2.5.

5.2 Variational Principle for the R-Matrix

In this section we derive a variational principle for the multichannel R-matrix
defined on the boundary r = a0 of the internal region. We consider explicitly low-
energy electron collisions with atoms and atomic ions. However, the variational
principle that we obtain will be applicable for any multichannel collision process
which can be described in an internal region by coupled second-order integro-
differential equations with the form defined by (2.63). Variational principles for
the R-matrix have been considered by many workers, as discussed in Sect. 4.3. Our
approach is a generalization of the variational principles derived by Kohn [542] and
Jackson [495], which we considered in Sect. 4.3 in the special case of potential
scattering.

Following our treatment of multichannel collisions in Sects. 2.3 and 5.1.2, we
expand the wave function describing the collision of an electron with an N -electron
atom or atomic ion in the internal R-matrix region as follows:
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ΨΓj E (XN+1) = A
n∑

i=1

Φ
Γ

i (XN ; r̂N+1σN+1)r
−1
N+1 FΓi j (rN+1)

+
m∑

i=1

χΓi (XN+1)c
Γ
i j , j = 1, . . . , n. (5.50)

In this equation we have adopted the same notation for the channel functions Φ
Γ

i
and the quadratically integrable functions χΓi as in (2.57) and (5.6) and we observe
that the coefficients cΓi j in (5.50) can be written in terms of the coefficients bΓik in

(5.6) and the coefficients AΓk j (E) in (5.5) by the equation

cΓi j =
nt∑

k=1

bΓik AΓk j (E), i = 1, . . . ,m, j = 1, . . . , n. (5.51)

Also the subscript j in (5.50) labels the complete set of n linearly independent
solutions of the corresponding coupled second-order integrodifferential equations
(2.63), where the reduced radial functions FΓi j (r) vanish at the origin r = 0. Since
we are considering a variational principle for the n×n-dimensional R-matrix on the
surface r = a0 of the internal region, we are not restricted in this analysis to the na

solutions which are regular at infinity as in Sect. 5.1.4. We now derive a variational
principle for the solutions of (2.63) in the internal region 0 ≤ r ≤ a0, where a0 is
such that electron exchange and correlation effects between the scattered electron
and the target atom or ion can be neglected for r ≥ a0.

We commence by defining the integral

I j j ′ = 〈Ψ j |HN+1 + LN+1 − E |Ψ j ′ 〉int, j, j ′ = 1, . . . , n, (5.52)

where we have omitted the superscript Γ and the subscript E on the wave functions
ΨΓj E and ΨΓj ′E for notational convenience, where Γ represents the conserved quan-
tum numbers and E is the total energy being considered. The integrations in (5.52)
are carried out over the space and spin coordinates of all N + 1 electrons, where
the radial integrations are confined to the internal region. Also LN+1 is the Bloch
operator, defined by (5.8), which ensures that HN+1 + LN+1 is hermitian in the
internal region for functions satisfying arbitrary boundary conditions on the surface
r = a0 of the internal region. The first-order variations of δ I j j ′ in I j j ′ corresponding
to first-order variations δΨ j in Ψ j and δΨ j ′ in Ψ j ′ about the exact solutions of the
coupled second-order integrodifferential equations (2.63) in the internal region are
then given by

δ I j j ′ = 〈Ψ j |HN+1+LN+1−E |δΨ j ′ 〉int+〈δΨ j |HN+1+LN+1−E |Ψ j ′ 〉int. (5.53)

Using the hermiticity of HN+1 + LN+1, (5.53) can be written as
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δ I j j ′ = 〈δΨ j ′ |HN+1+LN+1−E |Ψ j 〉int+〈δΨ j |HN+1+LN+1−E |Ψ j ′ 〉int. (5.54)

On the boundary r = a0 of the internal region the exchange terms and the quadrati-
cally integrable functions in (5.50) vanish and hence this equation reduces to

Ψ j (XN+1) =
n∑

i=1

Φ i (XN ; r̂N+1σN+1)r
−1
N+1 Fi j (rN+1), j = 1, . . . , n. (5.55)

Substituting (5.55) into (5.54) and remembering that Fi j (r) and Fi j ′(r) are both
exact solutions of (2.63) in the internal region, we obtain

δ I j j ′ = 1

2

n∑
i=1

[
δFi j ′(a0)

(
dFi j

dr
− b0

a0
Fi j

)
r = a0

+ δFi j (a0)

(
dFi j ′

dr
− b0

a0
Fi j ′
)

r = a0

]
, (5.56)

where we have used definition (5.8) for the Bloch operator.
Following our discussion of the variational principle introduced by Jackson [495]

in Sect. 4.3, we now consider the variational functional

F
[
Ψ t

j , Ψ
t
j ′
]
= 〈 Ψ t

j |HN+1 + LN+1 − E |Ψ t
j ′ 〉int

− 1

2a0

[
Ft

j j ′(a0)+ Ft
j ′ j (a0)

]
, (5.57)

where Ψ t
j is a trial function and Ft

j ′ j (r) is the corresponding reduced radial wave
function. We consider first-order variations δΨ j in Ψ j and δΨ j ′ in Ψ j ′ about the
exact solutions of (2.63) in the internal region, subject to the boundary conditions

(
a0

dFt
i j

dr
− b0 Ft

i j

)
r = a0

= δi j , i, j = 1, . . . , n. (5.58)

It follows from (5.52) and (5.56) that this functional is stationary for first-order
variations about the exact solutions so that

δF
[
Ψ j , Ψ j ′

] = 0, (5.59)

where we note that the boundary condition (5.58) defines n particular linear
combinations of the n linearly independent solutions of (2.63) which vanish at the
origin. We see that (5.57), (5.58) and (5.59) are the multichannel generalization of
the variational principle for potential scattering given by (4.55), (4.56) and (4.59),
respectively.

When the exact solutions of (2.63) are substituted into (5.57) we find that
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F
[
Ψ j , Ψ j ′

] = 1

2

[〈Ψ j |LN+1|Ψ j ′ 〉 + 〈Ψ j ′ |LN+1|Ψ j 〉
]

− 1

2a0

[
Fj j ′(a0)+ Fj ′ j (a0)

]
. (5.60)

Substituting for the Bloch operator and using the boundary condition (5.58) then
yields

F
[
Ψ j , Ψ j ′

] = − 1

4a0

[
Fj j ′(a0)+ Fj ′ j (a0)

]
. (5.61)

However, the R-matrix on the boundary r = a0 of the internal region is defined by
(5.18) which, when combined with the boundary condition (5.58), reduces to

Fi j (a0) = Ri j (E). (5.62)

Hence, it follows from (5.61) and (5.62) and the symmetry of the R-matrix that

F
[
Ψ j , Ψ j ′

] = − 1

2a0
R j j ′(E). (5.63)

This shows that the R-matrix can be determined from the stationary value of the
functional F

[
Ψ j , Ψ j ′

]
.

We now demonstrate that this variational principle provides a variational pro-
cedure for calculating the R-matrix. Following (5.6), we introduce a basis in the
internal region defined by

ψk(XN+1) = A
n∑

i=1

nc∑
j=1

Φ i (XN ; r̂N+1σN+1)r
−1
N+1u0

i j (rN+1)ai jk

+
m∑

i=1

χi (XN+1)bik, k = 1, . . . , nt , (5.64)

where, as in (5.6), nt = nnc + m is the number of linearly independent basis
functions. Also in (5.64) u0

i j (r) are radial continuum basis orbitals defined over

the internal region 0 ≤ r ≤ a0 and the functions Φ i and χi are defined as in (2.57)
and (5.6). The coefficients ai jk and bik are obtained by diagonalizing HN+1+LN+1
in this basis as follows:

〈ψk |HN+1 + LN+1|ψk′ 〉int = Ekδkk′ , k, k′ = 1, . . . , nt , (5.65)

where, as in (5.52), the integration is carried out over the internal region. Following
(5.5) we now expand the wave functions Ψ t

j and Ψ t
j ′ in the functional F

[
Ψ t

j , Ψ
t
j ′
]

in this basis giving
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Ψ t
j (XN+1) =

nt∑
k= 1

ψk(XN+1)Akj (E), j = 1, . . . , n,

Ψ t
j ′(XN+1) =

nt∑
k= 1

ψk(XN+1)Akj ′(E), j ′ = 1, . . . , n, (5.66)

where Akj (E) and Akj ′(E) are variational coefficients which depend on the total
energy E of interest. Substituting these expansions into (5.57) then gives the fol-
lowing equation for this functional

F
[
Ψ t

j , Ψ
t
j ′
] =∑

kk′
(Ek − E)Akj (E)Ak′ j ′(E)δkk′

− 1

2a0

∑
k

[
w jk Ak j ′(E)+ w j ′k Ak j (E)

]
, (5.67)

where the surface amplitudes w jk are defined by

w jk =
nc∑

i=1

u0
j i (a0)a jik, j = 1, . . . , n, k = 1, . . . , nt . (5.68)

Writing F j j ′ ≡ F
[
Ψ t

j , Ψ
t
j ′
]
, for notational convenience, and using the stationary

property of this functional with respect to variations in the wave functions Ψ t
j and

Ψ t
j ′ we obtain

∂F j j ′

∂Akj
= (Ek − E)Akj ′(E)− 1

2a0
w j ′k = 0 (5.69)

and

∂F j j ′

∂Akj ′
= (Ek − E)Akj (E)− 1

2a0
w jk = 0. (5.70)

Both these equations give the following result:

Akj (E) = 1

2a0

w jk

Ek − E
, j = 1, . . . , n, k = 1, . . . , nt . (5.71)

The stationary value of the functional F j j ′ is obtained by substituting (5.71) into
(5.67) yielding
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F j j ′ = 1

4a2
0

nt∑
k=1

w jkw j ′k
Ek − E

− 1

2a2
0

nt∑
k= 1

w jkw j ′k
Ek − E

= − 1

4a2
0

nt∑
k= 1

w jkw j ′k
Ek − E

, j, j ′ = 1, . . . , n. (5.72)

We then combine this result with (5.63), which relates the stationary value of the
functional F j j ′ ≡ F

[
Ψ t

j , Ψ
t
j ′
]

to the R-matrix, to give the following variational
expression for the R-matrix:

R j j ′(E) = 1

2a0

nt∑
k= 1

w jkw j ′k
Ek − E

, j, j ′ = 1, . . . , n. (5.73)

We see that this equation for the R-matrix is identical to (5.19) showing that our
procedure for calculating the R-matrix described in Sect. 5.1.2 yields a variational
result.

We can also obtain a variational expression for the wave function Ψ j by substi-
tuting the expansion for Akj (E) given by (5.71) into (5.66). This gives

Ψ j (XN+1) = 1

2a0

nt∑
k= 1

ψk(XN+1)
w jk

Ek − E
, j = 1, . . . , n, (5.74)

where the reduced wave functions Fi j (r) in expansion (5.50) of Ψ j satisfy the
boundary condition (5.58) at r = a0. This result corresponds to the expression
for the full collision wave function given by (5.5) and (5.27) when we impose the
boundary conditions (5.58). As pointed out in Sect. 5.1.2, where we determined the
solution in the internal region, this result is important in applications such as pho-
toionization, discussed in Chap. 8, where the wave function as well as the R-matrix
is required.

5.3 Continuum Basis Orbitals and Correction Methods

In this section we consider methods for determining the zero-order radial contin-
uum basis orbitals u0

i j (r) in (5.6) which represent the radial motion of the scattered
electron in the expansion of the wave function in the internal region 0 ≤ r ≤ a0.
We also consider methods for calculating and correcting the R-matrix. In principle,
as discussed in the case of potential scattering in Sect. 4.4, members of any linearly
independent set of orbitals which vanish at the origin and are complete over the
range 0 ≤ r ≤ a0 can be used. However, a careful choice of basis orbitals will
enable the convergence of expansion (5.6) to be made more rapid. We consider
first in Sect. 5.3.1 an approach using radial continuum basis orbitals which satisfy
homogeneous boundary conditions on the surface of the internal region. We then
show in Sect. 5.3.2 that a Buttle correction to the R-matrix must be included to
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obtain accurate results. We also consider in this section how a Buttle-type correction
to the wave function can be determined. We will see later that this approach has been
widely used in calculations of electron collisions with atoms, ions and molecules.
Then in Sect. 5.3.3 we summarize methods where the radial continuum basis orbitals
satisfy arbitrary boundary conditions on the surface of the internal region. Some of
these methods have been reviewed in Sect. 4.4, where we showed that in general
they avoid the need for a Buttle correction to the R-matrix and to the wave function
and, as a consequence, the resultant solution can be derived from a variational prin-
ciple. However, it is found that for electron collisions with multi-electron atomic
targets the number of continuum orbitals required to obtain converged results can
often be larger than when homogeneous boundary conditions are used with a Buttle
correction. Finally, in Sect. 5.3.4 we consider a method for partitioning the R-matrix
into a part which can be accurately determined and a part which is approximated,
enabling accurate results to be efficiently obtained when the Hamiltonian matrix
becomes large.

5.3.1 Homogeneous Boundary Condition Method

We consider first a procedure for calculating the radial continuum basis orbitals
u0

i j (r) in (5.6) in the R-matrix internal region, which was described by Robb [791]
and adopted by Burke et al. [155, 178] in their study of low-energy electron colli-
sions with multi-electron atoms and atomic ions.

In this method, the radial continuum basis orbitals u0
i j (r) in (5.6) are chosen to

be solutions of the following zero-order differential equation for each continuum
orbital angular momentum 	i

(
d2

dr2
− 	i (	i + 1)

r2
−U0(r)+ k2

i j

)
u0

i j (r)

=
	i+n	i∑

nb = 	i+1

λi jnb Pnb	i (r), i = 1, . . . , n, j = 1, . . . , nc, (5.75)

satisfying the homogeneous boundary conditions

u0
i j (0) = 0, i = 1, . . . , n, j = 1, . . . , nc (5.76)

and

a0

u0
i j (a0)

du0
i j

dr

∣∣∣∣∣
r = a0

= b0, i = 1, . . . , n, j = 1, . . . , nc, (5.77)

where b0 is an arbitrary constant which can depend on the orbital angular momen-
tum 	i , although in most applications b0 is set equal to zero. Also in (5.75), the
summation nb goes over the n	i reduced radial physical bound orbitals Pnb	i (r),
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which are included in the representation of the atomic target states for each 	i . How-
ever, any pseudo-orbitals retained in the configuration interaction representation of
the target states are not included in this summation, since their inclusion would
slow the convergence of the expansion over the radial continuum basis orbitals,
as described below. Finally, the λi jnb in (5.75) are Lagrange multipliers which are
chosen so that the continuum basis orbitals are orthogonal to the physical bound
orbitals with the same orbital angular momentum symmetry, so that

∫ a0

0
u0

i j (r)Pnb	i (r)dr = 0, j = 1, . . . , nc, nb = 	i + 1, . . . , 	i + n	i (5.78)

are satisfied for each 	i . It follows that the continuum basis orbitals, generated in
this way for each 	i , are mutually orthogonal and in addition can be normalized so
that

∫ a0

0
u0

i j (r)u
0
i j ′(r)dr = δ j j ′, j, j ′ = 1, . . . , nc. (5.79)

It also follows that for each 	i the reduced radial orbitals

Pnb	i (r), nb = 	i + 1, . . . , 	i + n	i ; u0
i j (r), j = 1, . . . , nb (5.80)

form a complete set over the range 0 ≤ r < a0 in the limit nc →∞ for any b0 and
zero-order potential U0(r) in (5.75).

In order to obtain rapid convergence of the R-matrix expansion (5.19), includ-
ing the Buttle correction discussed below, the zero-order potential U0(r) in (5.75)
should provide a good representation of the charge distribution of the target atom or
ion. In many applications the simple form

U0(r) = −2N

r
exp(−Z1/3r)− 2(Z − N )

r
(5.81)

suggested by the Thomas–Fermi statistical model of the atom (see, for example,
[817]) has proved suitable, in that it has the correct form near the nucleus and
asymptotically and a reasonably accurate charge distribution radius. A more sophis-
ticated potential which also satisfies these criteria is the static potential of the target
atom or ion in its ground state with possibly the addition of a local polarization
potential. Such a form becomes increasingly appropriate for high Z atoms and ions.
It is important to note that in practical electron–atom and electron–ion collision
calculations, the solution of (5.75), (5.76), (5.77), (5.78) and (5.79) to generate the
radial continuum basis orbitals takes a very small part of the overall computer time.
Hence the use of a more sophisticated zero-order potential is fully justified if it
increases the rate of convergence of the R-matrix expansion.

The inclusion of Lagrange multiplier terms on the right-hand side of (5.75) is
related to the inclusion of Lagrange multiplier terms in (2.63) which ensure that the
orthogonality constraints (2.62) are satisfied. In the present situation the inclusion
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of these terms in (5.75) has the following further justification. It is well known
that in the static exchange approximation in electron–atom collisions, the difference
between the phase shift at zero energy and at infinite energy for each orbital angular
momentum satisfies the equation

δ(0)− δ(∞) = (nbs + n p)π, (5.82)

which is a generalization of Levinson’s theorem [587] first studied by Swan [899]. In
(5.82), nbs is the number of bound states of the electron–atom system and n p is the
number of states excluded by the Pauli principle corresponding to the orbital angular
momentum symmetry being considered. For example, in the case of electron colli-
sions with Ne which has the Hartree–Fock ground-state configuration 1s22s22p6 1Se

and where nbs = 0, we have n p = 2 for s-wave scattering, since the scattered
electron is excluded from the fully occupied 1s and 2s shells, and n p = 1 for
p-wave scattering, since the scattered electron is excluded from the fully occupied
2p shell. The effect of including the 1s and 2s orbitals on the right-hand side of (5.75)
for s-wave scattering, and the 2p orbital for p-wave scattering and using a suitable
zero-order potential U0(r) ensures that the zero-order solution also satisfies (5.82).
We see therefore that the inhomogeneous term on the right-hand side of (5.75) plays
the role of an exchange potential, while at the same time ensuring that the con-
tinuum basis orbitals are orthogonal to the physical orbitals. Hence the inclusion
of the Lagrange multiplier terms on the right-hand side of (5.75) in the generation
of the zero-order radial continuum basis orbitals usually means that the R-matrix
expansion over these orbitals will converge rapidly. We note that an inhomogeneous
term of this type was used by Lippmann and Schey [601] in their model study of
elastic e−–H collisions. Finally, as observed in our discussion following (2.57), the
imposition of orthogonality constraints on the radial continuum basis orbitals means
that additional quadratically integrable functions must be included in the second
expansion in (5.6) to ensure completeness of the collision wave function.

5.3.2 Buttle Correction to the R-Matrix and Wave Function

Since the radial continuum basis orbitals u0
i j (r), retained in expansion (5.6) in the

homogeneous boundary condition method, satisfy the zero-order differential equa-
tion (5.75) subject to homogeneous boundary conditions (5.76) and (5.77) it is
necessary to add a Buttle correction to the R-matrix to obtain accurate results. This
procedure, first introduced by Buttle [195] and discussed in the case of potential
scattering in Sect. 4.4.2, corrects for the omission of high-lying pole terms in expan-
sion (5.19) of the R-matrix RΓi j (E). In our discussion here, which is a straightfor-
ward generalization of potential scattering theory given in Sect. 4.4.2 to multichan-
nel collisions, we consider in turn the Buttle correction to the R-matrix and to the
wave function.
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5.3.2.1 Buttle Correction to the R-Matrix

An important simplification which arises in applying the Buttle correction to the
multichannel R-matrix expansion (5.19) is that usually only the diagonal elements
of the R-matrix need to be corrected. This can be seen by examining the elements
of the Hamiltonian matrix which is diagonalized to yield the basis functions ψΓk in
(5.7). If the zero-order differential equation (5.75) provides a good representation
of the electron–atom or electron–ion collision process at high energies, then the
Hamiltonian matrix corresponding to the high-lying zero-order radial continuum
basis orbitals u0

i j (r) will be dominated by the diagonal elements. In this case we

can augment the internal region expansion (5.6) of the basis functions ψΓk by the
following zero-order basis functions:

BΓk (XN+1) = AΦΓi (XN ; r̂N+1σN+1)r
−1
N+1u0

i j (rN+1), i = 1, . . . , n,

j = nc + 1, . . . ,∞, k = nt + 1, . . . ,∞, (5.83)

where the integers i , j and k are related by

k = nt + i + ( j − nc − 1)n. (5.84)

Hence, in each channel i = 1, . . . , n, an infinite number of zero-order basis func-
tions j = nc + 1, . . . ,∞ are included in the internal region expansion, where nc is
the number of radial continuum basis orbitals retained in expansion (5.6) for each
channel.

The Buttle correction to the diagonal elements of the R-matrix defined by (5.19)
corresponding to the inclusion of the additional zero-order basis functions (5.83) is
then given by

RΓ (BC)
i i (E) = 1

2a0

∞∑
j=nc+1

[u0
i j (a0)]2

E0
i j − E

, i = 1, . . . , n, (5.85)

where the summation over j goes over the zero-order continuum basis orbitals
included in (5.83) for each channel i , and the zero-order energies E0

i j are obtained

from the corresponding zero-order eigenvalues k2
i j in (5.75) which, using (2.7), gives

E0
i j = ei + 1

2
k2

i j . (5.86)

As in potential scattering, see (4.79), this correction can be rewritten as

RΓ (BC)
i i (E) = u0

i (a0)

(
a0

du0
i

dr
− b0u0

i

)−1

r = a0

− 1

2a0

nc∑
j=1

[u0
i j (a0)]2

E0
i j − E

,

i = 1, . . . , n, (5.87)
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where the first term on the right-hand side of this equation is obtained by solving
the zero-order equation (5.75), subject to the boundary condition (5.76) and the
orthogonality constraint (5.78) at the given energy E of interest, while the second
term is obtained from the zero-order continuum basis orbitals included in expansion
(5.6). Both terms can be rapidly calculated and the correction added to the diagonal
elements of the R-matrix given by (5.19). Indeed, since the Buttle correction is
smoothly varying without poles in the low-energy region of interest, it can usually
be calculated at a few energies in this region and interpolated to give the correction
at any required energy.

5.3.2.2 Buttle Correction to the Wave Function

We now discuss how a Buttle correction to the wave function near the boundary in
the internal region can be determined. We have already remarked in our discussion
of potential scattering that such a correction may be required to obtain accurate
results in, for example, atomic photoionization calculations where the accuracy of
the wave function near the boundary r = a0 of the internal region may be important.
In order to derive a correction to the wave function in multichannel collisions, we
commence from (5.17) which we rewrite here as

|ΨΓj E 〉 =
nt∑

k=1

|ψΓk 〉
1

EΓk − E
〈ψΓk |LN+1|ΨΓj E 〉, j = 1, . . . , n, (5.88)

where the subscript j on the functions ΨΓj E now labels the n linearly independent
solutions that can be formed in the internal region. We project this equation onto

the n channel functions Φ
Γ

i (x1, . . . , xN ; r̂N+1σN+1) yielding the following expres-
sion for the reduced radial wave functions FΓi j (r) near the boundary r = a0 of the
internal region

FΓi j (r) =
1

2a0

nt∑
k= 1

n∑
i ′=1

wΓik(r)w
Γ
i ′k(a0)

EΓk − E

(
a0

dFΓi ′ j
dr
− b0 FΓi ′ j

)
r = a0

,

i, j = 1, . . . , n, (5.89)

where the amplitudes wΓik(r) are defined by (5.24). It is convenient to choose these
n solutions to satisfy the boundary condition

(
a0

dFΓi j

dr
− b0 FΓi j

)
r = a0

= δi j , i, j = 1, . . . , n, (5.90)

where we note that any other linearly independent set of solutions in the internal
region can be expressed as a linear combination of these solutions. Substituting this
boundary condition into (5.89) then yields the following expression for the reduced
radial wave function near the boundary of the internal region:
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FΓi j (r) =
1

2a0

nt∑
k=1

wΓik(r)w
Γ
jk(a0)

EΓk − E
, i, j = 1, . . . , n. (5.91)

In determining the correction to the reduced radial wave function defined by
(5.91) we observe that the simplification adopted in our derivation of the Buttle
correction to the R-matrix, that only the diagonal elements need correcting, also
applies in the present case. Hence the correction to the wave function (5.91) can be
written, in analogy with the correction to the R-matrix (5.85), as

FΓ (BC)
i i (r) = 1

2a0

∞∑
j=nc+1

u0
i j (r)u

0
i j (a0)

E0
i j − E

, i = 1, . . . , n, (5.92)

where the summation j goes over the additional zero-order continuum basis orbitals
included in (5.83) and the zero-order energies E0

i j are again given by (5.86). Equa-
tion (5.92) can then be rewritten as

FΓ (BC)
i i (r) = 1

2a0

∞∑
j=1

u0
i j (r)u

0
i j (a0)

E0
i j − E

− 1

2a0

nc∑
j=1

u0
i j (r)u

0
i j (a0)

E0
i j − E

,

i = 1, . . . , n, (5.93)

where the first term on the right-hand side of this equation can be written in terms
of the solution of the zero-order equation (5.75) as

1

2a0

∞∑
j=1

u0
i j (r)u

0
i j (a0)

E0
i j − E

= u0
i (r)

(
a0

du0
i

dr
− b0u0

i

)−1

r = a0

, i = 1, . . . , n, (5.94)

which follows from (5.89) by replacing FΓi j (r) with the solution of the zero-order
equation (5.75) at the energy E . Hence the correction to the wave function near the
boundary of the internal region is given by

FΓ (BC)
i i (r) = u0

i (r)

(
a0

du0
i

dr
− b0u0

i

)−1

r = a0

− 1

2a0

nc∑
j=1

u0
i j (r)u

0
i j (a0)

E0
i j − E

,

i = 1, . . . , n. (5.95)

Both terms on the right-hand side of this equation can be rapidly calculated in terms
of the solutions of (5.75).

In the above derivation we have seen that with our special choice of boundary
condition defined by (5.90) only the diagonal elements of the reduced radial wave
function near the boundary r = a0 need correcting. However, the general solution of
the Schrödinger equation, defined by (5.89), is a linear combination of the solutions
satisfying (5.90). Hence each element of the general solution will be corrected.
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We conclude this section by remarking that including a Buttle correction to the
R-matrix and the wave function, obtained using the homogeneous boundary con-
dition method, means that these quantities are no longer derivable from the varia-
tional principle discussed in Sect. 5.2. However, this does not mean that the resultant
R-matrix and wave function are less accurate than the R-matrix and wave function
which are derived from a variational principle. Indeed in many practical situations
the inclusion of a Buttle correction enables accurate results to be obtained using
fewer terms in the R-matrix expansion.

5.3.3 Arbitrary Boundary Condition Methods

In this section we summarize methods where the radial continuum basis orbitals
u0

i j (r) in the R-matrix expansion (5.6) are represented by functions which satisfy
arbitrary boundary conditions at r = a0. The application of some of these methods
in potential scattering has been reviewed in Sect. 4.4.

In recent years R-matrix calculations using arbitrary boundary condition bases
have found increasing application in the study of electron collisions with atoms and
molecules as well as photoionization and multiphoton ionization processes. Non-
orthogonal continuum basis orbitals satisfying arbitrary boundary conditions have
also been found to give rapid convergence in studies of atomic vibrations in self-
consistent field models of condensed matter by Liberman and Bennett [593] and in
studies of electron transport in semiconductor devices discussed in Sect. 12.2.

The use of orbitals satisfying arbitrary boundary conditions removes the need
to include a Buttle correction to the R-matrix, as well as to the wave function,
as discussed in Sect. 5.3.2. In addition, the resultant solution can be derived from
the multichannel variational principle for the R-matrix, as discussed in Sect. 5.2.
Although homogeneous boundary condition methods with an appropriate choice
of the zero-order differential equation (5.75) can often give fast convergence, for
example, for electron collisions with atoms and atomic ions with many open and
closed channels at low and intermediate energies, the use of arbitrary boundary con-
dition basis orbitals is required to obtain accurate results in some applications. This
is particularly true for time-dependent R-matrix theory of multiphoton processes
discussed in Chap. 10, where the time evolution operator requires an accurate rep-
resentation of the wave function on and near the boundary of the internal region.

A wide variety of basis orbitals satisfying arbitrary boundary conditions have
been used in R-matrix calculations including Gaussian-type orbitals, Slater-type
orbitals, Legendre functions, Lagrange meshes and B-splines. In early work on elec-
tron collisions with diatomic molecules, discussed further in Sect. 11.1, Schneider
[821, 822] and Schneider and Hay [826] expanded the continuum orbitals in terms
of Gaussian orbitals, yielding low-energy static-exchange cross sections for electron
collisions with H2 and F2. Also, the convergence properties of Slater-type orbital
bases were explored by Noble et al. [690] for electron collisions with H2 and N2,
where it was found that accurate results can be efficiently obtained at low electron
impact energies, but because of linear dependence problems numerical continuum
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basis functions satisfying homogeneous boundary conditions were to be preferred at
higher energies. A procedure for generating these continuum orbitals for electron–
molecule collisions, analogous to that used in Sect. 5.3.1, was later developed by
Tennyson et al. [922]. More recently, a considerable body of work has been carried
out using Gaussian-type orbitals to represent both the bound and continuum orbitals
in electron collisions with polyatomic molecules, in particular by Nestmann and
Peyerimhoff [680], Pfingst et al. [732, 733], Nestmann et al. [682], Morgan et al.
[661, 662] and Faure et al. [313]. This work showed that Gaussian-type orbitals can
give accurate phase shifts and cross sections at low electron impact energies with
relatively small bases.

Legendre basis functions have also been used in R-matrix collision calculations.
For example, shifted Legendre polynomials have been used by Baluja et al. [47]
and Sunderland et al. [896] in their implementation of the BBM propagator method
for solving the coupled differential equations (5.29) in the external R-matrix region,
discussed in Appendix E.3. These basis functions were also used in time-dependent
R-matrix theory calculations of multiphoton processes in potential scattering by
Burke and Burke [172]. Lagrange mesh methods have also been used in R-matrix
calculations and work using these methods is reviewed in Sect. 4.4.6.

Recently, B-spline methods, which are reviewed in Sect. 4.4.7, have been increas-
ingly used in R-matrix calculations. For example, van der Hart [930] used B-spline
bases in R-matrix calculations for two-electron processes, obtaining accurate results
for low-energy electron collisions with atomic hydrogen. This work was later
extended by van der Hart [931] to electron impact excitation and ionization of He+,
by van der Hart and Feng [318, 319, 935] to study double-electron ionization of He
and by McKenna and van der Hart [623] to study single- and two-photon ionization
of Ca. B-spline bases have also been used in time-dependent multiphoton ionization
calculations by van der Hart et al. [937, 938] and by Lysaght et al. [603–606], which
are discussed in Chap. 10.

Also, Zatsarinny [991] and Zatsarinny and Froese Fischer [993] have developed
a general computer program for calculating matrix elements in atomic structure with
non-orthogonal orbitals, which has been extended by Zatsarinny and Froese Fischer
[994] to enable B-splines to be used in R-matrix calculations, with an application
to Li photoionization. This program, which has been further extended to enable a
wide range of atomic continuum processes to be calculated using non-orthogonal
orbitals represented by B-splines, has been published by Zatsarinny [992]. This has
enabled accurate calculations to be carried out for a number of collision processes
including investigations by Zatsarinny et al. on photodetachment of He− [1002], by
Zatsarinny and Tayal on low-energy electron collisions with atomic oxygen [995]
and sulphur [996, 997] and by Zatsarinny and Bartschat on electron collisions with
neon [998], argon [999], zinc [1000] and Fe+ [1001]. Finally we mention the use of
B-spline bases in time-dependent multiphoton ionization calculations by Guan et al.
[429, 431, 432] which are discussed in Chap. 10.

In conclusion, we will present results from R-matrix calculations using both
homogeneous and arbitrary boundary condition methods in Sect. 5.6 and in later
chapters.
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5.3.4 Partitioned R-Matrix Method

We have seen in Sect 5.1 that in order to calculate the R-matrix, defined by (5.19),
which determines the boundary condition (5.18) satisfied by the external region
solution at r = a0, it is necessary to diagonalize the Hamiltonian matrix HN+1
plus Bloch operator LN+1 in a set of basis functions ψΓk yielding the eigenener-
gies EΓk , defined by (5.7), and surface amplitudes wΓik defined by (5.21). We will
see when we discuss recent low-energy electron collision calculations in Sect. 5.6
that the dimension of the Hamiltonian matrix can become very large and hence the
time taken to diagonalize this matrix may dominate the total computation time. For
example, in our discussion of electron collisions with Fe II in Sect. 5.6.5, we will
see that the number of coupled channels can exceed many thousands and hence the
dimension of the corresponding Hamiltonian matrix will be many tens of thousands.
Also, in electron–molecule collisions the number of coupled channels can become
very large. In this section we consider a partitioned R-matrix method, introduced for
electron–atom and electron–ion collisions by Berrington and Ballance [94] which
alleviates this difficulty. In this method, the eigenvalues and eigenvectors of the
Hamiltonian matrix are partitioned into two groups, the first consisting of those with
low eigenvalues which are accurately determined and the remainder with higher
eigenvalues for which an approximation is derived. This enables accurate results to
be obtained more efficiently, particularly when the Hamiltonian becomes large.

The partitioned R-matrix method commences from (5.6), which we rewrite using
matrix notation as

ψ = φX, (5.96)

where we have defined the quantities in this equation as follows:

ψ – row vector with dimension nt , corresponding to ψΓk in (5.6);

φ – row vector with dimension nt , corresponding to Φ
Γ

i r−1
N+1u0

i j and
χΓi in (5.6);

X – matrix with dimensions nt × nt , corresponding to the coefficients
aΓi jk and bΓik in (5.6).

The coefficient matrix X is determined by diagonalizing the Hamiltonian matrix
HN+1 plus Bloch operator LN+1 in the basis φ where we define

Hi j = 〈φi |HN+1 + LN+1|φ j 〉int, i, j = 1, . . . , nt . (5.97)

It then follows from (5.96) that (5.7) can be rewritten as

XTHX = E, (5.98)
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where E is a diagonal nt × nt -dimensional matrix with diagonal elements Ek, k =
1, . . . , nt . Also, since H defined by (5.97) is a real symmetric matrix, then X is a
real orthogonal matrix.

The partitioned R-matrix method assumes that we have accurately determined
only the l lowest eigenvalues E j and the corresponding eigenvectors of the matrix
H. It follows from (5.98) that

nt∑
k=1

Hik Xkj = Xi j E j , i = 1, . . . , nt , j = 1, . . . , l. (5.99)

The remaining eigenvalues are then approximated by a single degenerate energy E0
such that

nt∑
k=1

Hik Xkj ≈ Xi j E0, i = 1, . . . , nt , j = l + 1, . . . , nt , (5.100)

where the combined nt × nt -dimensional eigenvector matrix X is still real and
orthogonal satisfying

XTX = XXT = I. (5.101)

In order to determine E0 we minimize the following functional formed from (5.100)

X (E0) =
nt∑

i=1

nt∑
j = l+1

(
Xi j E0 −

nt∑
k=1

Hik Xkj

)2

, (5.102)

which gives

∂X
∂E0

= 2
nt∑

i=1

nt∑
j = l+1

Xi j

(
Xi j E0 −

nt∑
k=1

Hik Xkj

)
. (5.103)

After using (5.101) we obtain

∂X
∂E0

= 2

⎛
⎝ nt∑

j = l+1

E0 −
nt∑

i=1

nt∑
j = l+1

nt∑
k=1

Hik Xi j Xk j

⎞
⎠ . (5.104)

Then, setting ∂X /∂E0 = 0 and using (5.101) gives

E0 =
(

TrH−∑l
i=1 Ei

)
(nt − l)

, (5.105)
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where

TrH =
nt∑

i=1

Hii . (5.106)

The partitioned R-matrix which replaces RΓi j (E) in (5.19) is then given by

Rp
i j (E) =

l∑
k=1

wikw jk

Ek − E
+ 1

E0 − E

nt∑
k=l+1

wikw jk, i, j = 1, . . . , n, (5.107)

which can be rewritten as

Rp
i j (E) =

l∑
k=1

wikw jk

Ek − E
− 1

E0 − E

l∑
k=1

wikw jk + 1

E0 − E

nt∑
k=1

wikw jk,

i, j = 1, . . . , n. (5.108)

The first two terms on the right-hand side of (5.108) can be calculated since we
know the surface amplitudes wik, i = 1, . . . , nt , k ≤ l from the solution of (5.99).
The last term on the right-hand side of (5.108) can be calculated using expansion
(5.21) for the surface amplitudes wik . We obtain

nt∑
k=1

wikw jk =
nc∑

k′=1

nc∑
k′′=1

u0
ik′(a0)u

0
jk′′(a0)

nt∑
k=1

aik′ka jk′′k . (5.109)

It then follows from the orthogonality relation (5.101) that the following summation
in (5.109) is given by

nt∑
k=1

aik′ka jk′′k = δi jδk′k′′ , (5.110)

and hence

nt∑
k=1

wikw jk =
nc∑

k=1

[
u0

ik(a0)
]2
δi j = Siδi j , (5.111)

which defines Si . Substituting this result into (5.108) gives the following expression
for the partitioned R-matrix

Rp
i j (E) =

l∑
k=1

wik

(
ε−1

k − ε−1
0

)
w jk +

[
Siε
−1
0 + Rc

i (E)
]
δi j , (5.112)
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where we have written

εk = Ek − E, k = 0, . . . , l, (5.113)

and where Rc
i (E) is an estimate of the partitioning error. It follows from (5.19) and

(5.107) that this error is given by

Rc
i j (E) =

nt∑
k= l+1

wikw jk

(
1

Ek − E
− 1

E0 − E

)
. (5.114)

We can obtain an estimate for this error by replacing the surface amplitudes wik in
(5.114) by the corresponding zero-order radial continuum basis orbitals u0

i j (a0) in
(5.21) obtained by neglecting the off-diagonal terms in diagonalizing HN+1+LN+1
in the internal region. This is analogous to our choice of radial continuum basis
orbitals used in the Buttle correction described in Sect. 5.3.2. With this approxima-
tion (5.114) yields the following estimate of the partitioning error:

Rc
i (E) =

nc∑
j=Ni+1

[
u0

i j (a0)
]2
(

1

Ei j − E
− 1

E0 − E

)
, (5.115)

where Ei j is the energy of the radial continuum basis orbital and Ni is such that
the radial continuum basis orbitals in the i th channel above Ni lie above the highest
eigenvalue explicitly included in (5.108).

The above theory has been extended to electron–molecule collisions by
Tennyson [916]. In this case several modifications of the above theory were found
to be necessary, which also apply to a lesser extent in electron–atom collisions. The
first modification arises from the procedure used to generate the continuum orbitals
for the electron–molecule collision problem. The need to orthogonalize the contin-
uum orbitals to the bound orbitals used to represent the target [662, 922] means
that the energies of the resultant continuum orbitals are not well defined, which
requires a modification to the energies Ei j of the radial continuum basis orbitals
in (5.115). The second and more important modification concerns the definition of
E0 in (5.105). This definition averages over all diagonal elements of the Hamilto-
nian matrix regardless of whether the configuration involved makes any contribu-
tion to the boundary amplitude. This means that many high-lying L2 configurations
included in the second expansion on the right-hand side of (5.6), which make no
contribution to the boundary amplitude, contribute to the value of E0. As a result, a
systematic improvement in the configuration interaction representation of the target
and the consequent increase in the number of L2 configurations included in the
expansion leads to an undesirable increase in E0, even if all the other parameters of
the calculation remain the same. It is therefore preferable to define E0 using only
those configurations which contribute directly to the boundary amplitude and hence
to the R-matrix; a procedure for achieving this is given by Tennyson [916]. A final
problem arises from the error correction procedure leading to (5.115). The use of
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the entire boundary amplitude of the higher lying radial continuum basis orbitals[
u0

i j (a0)
]2 in the error correction will lead to an over correction if these orbitals con-

tribute to any significant extent to the lower l surface amplitudes retained explicitly
in the first summation in (5.112). It is straightforward to estimate the contribution
of these orbitals to the surface amplitudes not explicitly included in the summation
in (5.112) and to make a corresponding modification to the error correction formula
(5.114).

Finally, we observe that, if the radial continuum basis orbitals u0
i j (r) retained

in expansion (5.6) satisfy homogeneous boundary conditions (5.76) and (5.77), as
discussed in Sect. 5.3.1, then it is necessary to add a Buttle correction to the par-
titioned R-matrix defined by (5.112). However, if these orbitals satisfy arbitrary
boundary conditions, as discussed in Sect. 5.3.3, then this correction will usually
not be required although it will still be appropriate to include the partitioning error
correction defined by (5.115).

5.4 Inclusion of Relativistic Effects

As the charge number Z on the atomic nucleus increases, relativistic effects become
progressively more important in the collision process. In this section and in Sect. 5.5
we consider how these effects can be accurately represented in low-energy electron
collisions with heavy atoms and atomic ions. There are two main ways in which
relativistic effects play a role in low-energy electron collisions. First, there is a
direct effect which is due to the relativistic distortion of the wave function of the
scattered electron induced by the strong nuclear potential, when this electron is in
the neighbourhood of the nucleus. Second, there is an indirect effect caused by the
change in the charge distribution of the target electrons due to relativity which in
turn affects the motion of the scattered electron. Our objective in this section and
the next is to show how these two effects can be included in multichannel R-matrix
theory, in addition to electron exchange and electron–electron correlation effects
which we considered earlier in this chapter.

There are several procedures for including relativistic effects in low-energy elec-
tron collisions with atoms and atomic ions. For relatively light targets, these effects
are small so that the energy intervals between the fine-structure levels of the target
are small compared both with the energy intervals between the L Sπ -coupled energy
levels of the target and with the energy of the scattered electron. In this case the col-
lision calculation can first be carried out in L Sπ -coupling using the non-relativistic
Hamiltonian, as described earlier in this chapter. The K -matrices obtained from this
calculation are then recoupled to give the K -matrices, and hence the corresponding
cross sections, for transitions between the fine-structure levels of the target. This
approach was introduced by Saraph [810, 811] and extended by Griffin et al. [426]
and Badnell and Griffin [34] using multichannel quantum defect theory. We discuss
this approach in Sect. 5.4.1.

As the nuclear charge number Z increases, relativistic effects must be included
both in the calculation of the N -electron wave function describing the target and
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in the calculation of the (N + 1)-electron wave function describing the collision
process. Provided Z is not too large, this can be achieved by replacing the non-
relativistic Hamiltonian, defined by (5.3), by the Breit–Pauli Hamiltonian discussed,
for example, by Bethe and Salpeter [105], Akhiezer and Berestetsky [7] and Glass
and Hibbert [382]. The conserved quantum numbers are now J the total angular
momentum of the electron target atom collision wave function, MJ its z-component
and π the total parity rather than L , S, ML , MS and π defined following (2.58).
This leads to many more coupled channels which have to be included in the expan-
sion of the collision wave function and to many more coupled integrodifferential
equations which have to be solved. We consider in detail the extension of R-matrix
collision theory to include the relativistic Breit–Pauli terms in the Hamiltonian
in Sect. 5.4.2, having summarized the computer programs which implement this
approach in Sect. 5.1.1. Then in Sect. 5.4.3 we consider a frame-transformation
theory extension of this approach where the relativistic terms in the Breit–Pauli
Hamiltonian are omitted in the high-energy spectrum in the internal R-matrix region
but are included in the low-energy spectrum in the internal region and also in
the external and asymptotic regions, with considerable saving in computational
effort.

Finally, we observe that the above approaches for including relativistic effects
using the Breit–Pauli Hamiltonian have been used with considerable success to treat
electron collisions with a wide range of low and intermediate Z atoms and ions.
However, in order to obtain accurate results for electron collisions with the heaviest
atomic targets it is necessary to treat both the target and the collision wave function
using the Dirac Hamiltonian. We present a detailed discussion of Dirac R-matrix
theory of electron collisions with heavy atoms and ions in Sect. 5.5.

5.4.1 Transformation of the K- and S-Matrices

This approach is appropriate for light atomic or ionic targets where relativistic
effects are small and hence the energy intervals between the fine-structure levels of
the target are small compared with the energy intervals between the L Sπ -coupled
energy levels of the target and the energy of the scattered electron. K -matrices are
first calculated, omitting all relativistic terms in the Hamiltonian, as described in
Sect. 5.1. These K -matrices are then transformed to full intermediate coupling to
yield cross sections corresponding to transitions between fine-structure levels of
the target. This is the basis of a widely used computer program JAJOM, written
by Saraph [810, 811] for electron–ion collisions. We also consider an extension
of this approach using multichannel quantum defect theory by Griffin et al. [426]
and Badnell and Griffin [34], which yields accurate transformed K - and S-matrices
when some channels are closed.

For the situation where relativistic effects are not large, it is convenient to adopt
the pair-coupling scheme defined by the equations

Li + Si = Ji , Ji + �i = Ki , Ki + si = J, (5.116)
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where Li , Si and Ji are the orbital, spin and total angular momentum operators of
the target atom or ion, �i and si are the orbital and spin angular momentum operators
of the scattered electron, Ki is an intermediate angular momentum operator and J is
the total angular momentum operator of the electron plus target atom or ion system
which is conserved in the collision. This pair-coupling scheme can be related to the
L Sπ -coupling scheme adopted in Sect. 5.1 which is defined by the equations

Li + �i = L, Si + si = S, L+ S = J. (5.117)

The recoupling coefficient between these schemes can be simply expressed in terms
of Racah coefficients, defined in Appendix A.2, as follows:

〈[(Li Si )Ji , 	i ]Ki
1
2 ; J MJ |(Li	i )L , (Si

1
2 )S; J MJ 〉

= [(2L + 1)(2S + 1)(2Ji + 1)(2Ki + 1)]1/2W (L	i Si Ji ; Li Ki )

×W (L J Si
1
2 ; SKi ). (5.118)

We can then express the K -matrix K Jπ
αβ (E), defined in the pair-coupling scheme,

in terms of the K -matrix KΓi j (E), determined in the L Sπ -coupling scheme by the
equation

K Jπ
αβ (E) =

∑
L S

〈[(Li Si )Ji , 	i ]Ki
1
2 ; J MJ |(Li	i )L , (Si

1
2 )S; J MJ 〉KΓi j (E)

×〈(L j	 j )L , (S j
1
2 )S; J MJ |[(L j S j )J j , 	 j ]K j

1
2 ; J MJ 〉, (5.119)

where the summation goes over all L S values which contribute to the J value con-
sidered. Also the channel subscripts α and β on the K -matrix elements K Jπ

αβ (E) in
(5.119) represent the quantum numbers

α ≡ αi Li Si Ji 	i Ki
1
2 , β ≡ α j L j S j J j 	 j K j

1
2 . (5.120)

It follows that the K -matrix must first be determined in L Sπ -coupling for all signif-
icant L Sπ values when relativistic terms in the Hamiltonian are omitted. Equation
(5.119) is then used to transform the K -matrix from the L Sπ -coupling scheme to
the pair-coupling scheme for all relevant Jπ values.

For atoms and ions where the term splitting1 in the target due to relativistic effects
is small compared with the term separation, the transformation involving the angular
momentum variables given by (5.119) provides an accurate representation of the
collision. However, with increasing nuclear charge number Z , relativistic effects
increase in importance and the target Hamiltonian can no longer be treated as diag-
onal with respect to the target quantum numbers Li and Si . If relativistic effects are

1 In this discussion a term corresponds to a target state belonging to the quantum numbers αi Li Siπi
in the absence of relativistic effects (see, for example, [232]).
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not large, it is appropriate to represent these effects by expanding the resultant target
states in terms of the target states retained in the original L Sπ -coupled expansion
defined by (5.5) and (5.6) omitting relativistic effects. We first recouple the original
L Sπ -coupled target states as follows:

Φi (αi Li Si Ji MJiπi |XN ) =
∑

MLi MSi

(Li MLi Si MSi |Ji MJi )

× Φi (αi Li Si MLi MSiπi |XN ), (5.121)

where (Li MLi Si MSi |Ji MJi ) are Clebsch–Gordan coefficients defined in
Appendix A.1 and where we have explicitly denoted the dependence of the target
states on the angular momentum quantum numbers, as in (2.14). We then expand the
target states including relativistic effects in terms of these recoupled states accord-
ing to
Φi (Δi Ji MJiπi |XN ) =

∑
αi Li Si

f (Δi Jiπi ;αi Li Siπi )Φi (αi Li Si Ji MJiπi |XN ),

(5.122)

where the summation goes over all the target states retained in the original L Sπ -
coupled expansion defined by (5.6) which can couple to Ji MJiπi and where we
have introduced a parameter Δi which replaces αi and which serves to distinguish
different target states with the same total angular momentum and parity. The term-
coupling coefficients f (Δi Jiπi ;αi Li Siπi ), defined by (5.122) [509, 510], can be
obtained by diagonalizing the Breit–Pauli target Hamiltonian HBP

N , which includes
relativistic terms as described in Sect. 5.4.2, in this new basis for each Jiπi as
follows:

〈Φi (Δi Ji MJiπi |XN )|HBP
N |Φ j (Δ j J j MJjπ j |XN )〉 = eJiπi

i δi j , i, j = 1, . . . , ni ,

(5.123)

where ni is the number of target states with Jiπi symmetry represented by the
parameters Δi and Δ j . The K -matrix K Jπ

μν (E) in this “full intermediate coupling”

representation is then given in terms of the original K -matrix K Jπ
αβ (E), defined by

(5.119), by

K Jπ
μν (E) =

∑
αi Li Si

∑
α j L j S j

f (Δi Jiπi ;αi Li Siπi )K
Jπ
αβ (E) f (Δ j J jπ j ;α j L j S jπ j ),

(5.124)

where the channel subscripts μ and ν on the K -matrix elements K Jπ
μν (E) in this

equation represent the following quantum numbers:

μ ≡ Δi Ji 	i Ki
1
2 , ν ≡ Δ j J j 	 j K j

1
2 . (5.125)

The multichannel S-matrix and hence the T -matrix in the pair-coupling scheme
are then obtained in terms of the K -matrices defined by (5.119) and (5.124) using
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the procedure described in Sect. 2.5. The S-matrix is defined in terms of the
K -matrix, in analogy with (2.112), by the matrix equation

SJπ = I+ iKJπ

I− iKJπ
, (5.126)

and the corresponding T -matrix is defined in analogy with (2.119) by

TJπ = SJπ − I. (5.127)

The cross sections and collision strengths for transitions between the fine-structure
levels of the target can be obtained in this new coupling scheme, as described in
Sect. 2.5. We obtain the following result for the total cross section

σTot(i → j) =
∑
Jπ

σ Jπ (i → j), (5.128)

where the partial wave cross sections

σ Jπ (i → j) = (2J + 1)

2k2
i (2Ji + 1)

∑
	i 	 j Ki K j

|T Jπ
j i |2 (5.129)

are given in units of πa2
0.

The transformation procedure using (5.119) and (5.124) is appropriate when all
the channels included in (5.5) and (5.6) are open. However, a difficulty arises at low
electron impact energies where some of these channels are closed. In this energy
region, some of the terms included in the term coupling expansion (5.122) corre-
spond to open channels and others correspond to closed channels. Consequently,
the transformation of the K -matrix to full intermediate coupling, defined by (5.119)
and (5.124), breaks down since the K -matrix, which has dimension na × na , only
includes the na open channels. The procedure usually adopted for dealing with this
situation, using the Saraph computer program [810, 811], has been to set all the
energy levels corresponding to a given term equal and to include after renormal-
ization only those components of the term-coupling coefficients corresponding to
open channels in the calculation. However, this procedure can lead to poor threshold
energies, incorrect resonance structure and anomalous threshold effects in the cross
sections as new terms are included in the calculation when the energy increases
through the term thresholds.

In more recent electron–positive ion collision calculations by Griffin et al. [426]
and Badnell and Griffin [34], the inconsistencies discussed in the previous para-
graph have been removed using multichannel quantum defect theory (MQDT), dis-
cussed in Sect. 3.3.4. In this intermediate coupling frame transformation (ICFT)
method, the unphysical K -matrices (K) and S-matrices (χ), defined in Sect. 3.3.4,
are first calculated on a coarse mesh in L Sπ -coupling, neglecting relativistic effects.
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These unphysical matrices are analytic functions of energy, which do not contain
the threshold branch cuts, and have the dimension n × n at all energies, where n is
the number of coupled channels. Hence they can be interpolated onto a fine energy
mesh. The resultant unphysical matrices can then be transformed to full intermediate
coupling using (5.119) and (5.124) for all required energies both above and below
the thresholds. The physical K - and S-matrices in the open channels are then shown
in Sect. 3.3.4 to be related to the unphysical K - and S-matrices as follows:

KJπ
oo = KJπ

oo −KJπ
oc

1

KJπ
cc + tan(πνc)

KJπ
co (5.130)

and

SJπ
oo = χ Jπ

oo − χ Jπ
oc

1

χ Jπ
cc − exp(−2π iνc)

χ Jπ
co , (5.131)

where νc is a diagonal matrix in the closed channels whose diagonal elements are
defined by

ν2
i = −

(Z − N )2

k2
i

, i = na + 1, . . . , n, (5.132)

where na is the number of open channels at the energy under consideration.
The T -matrix and cross sections for transitions between the fine-structure levels

corresponding to the open channels are then given in terms of the open channel
physical S-matrix SJπ

oo by (5.127), (5.128) and (5.129). Since the unphysical K - and
S-matrices are smooth functions of energy, the fine-structure splitting of the energy
levels of the target can be accurately included in the calculation. Also resonance
structures which converge to all excited thresholds are included through the inverse
terms in (5.130) and (5.131). In conclusion, this application of MQDT enables
relativistic effects and resonance structures to be accurately included in electron–
positive ion collisions for relatively light targets, by solving the time-independent
Schrödinger equation in L Sπ -coupling on a coarse mesh of energies using the non-
relativistic R-matrix method, discussed in Sect. 5.1.

5.4.2 Breit–Pauli Hamiltonian

As the nuclear charge number Z increases relativistic effects must be included in
the Hamiltonian used to determine both the target atom or ion wave function and the
electron–target atom or ion collision wave function. This can be achieved, provided
Z is not too large, by using the Breit–Pauli Hamiltonian (e.g. [7, 105, 382]).

The (N + 1)-electron Breit–Pauli Hamiltonian can be written as

HBP
N+1 = HNR

N+1 + HREL
N+1, (5.133)
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where HNR
N+1, the non-relativistic Hamiltonian, is defined by (5.3) and HREL

N+1 con-
sists of one- and two-body relativistic terms resulting from the reduction of the Dirac
equation and the Breit interaction to Pauli form.

The one-body terms are defined by

HMC
N+1 = −

1

8
α2

N+1∑
i=1

∇4
i , relativistic mass-correction, (5.134)

HD1
N+1 = −

1

8
α2 Z

N+1∑
i=1

∇2
i

(
1

ri

)
, one-body Darwin, (5.135)

HSO
N+1 =

1

2
α2 Z

N+1∑
i=1

r−3
i (�i · si ), spin–orbit, (5.136)

and the two-body terms are defined by

HSOO
N+1 = −1

2
α2

N+1∑
i �= j=1

(
ri j

r3
i j

× pi

)
· (si + 2s j ), spin–other orbit, (5.137)

HOO
N+1 = −

1

2
α2

N+1∑
i< j=1

(
pi · p j

ri j
+ ri j (ri j · pi ) · p j

r3
i j

)
, orbit–orbit, (5.138)

HSS
N+1 = α2

N+1∑
i< j=1

1

r3
i j

(
si · s j − 3(si · ri j )(s j · ri j )

r2
i j

)
, spin–spin, (5.139)

HD2
N+1 =

1

4
α2

N+1∑
i< j=1

∇2
i

(
1

ri j

)
, two-body Darwin, (5.140)

HSSC
N+1 = −8πα2

3

N+1∑
i< j=1

(si · s j )δ(ri · r j ), spin–spin contact. (5.141)

The Breit–Pauli Hamiltonian can then be rewritten as

HBP
N+1 = HNR

N+1 + HFS
N+1 + HNFS

N+1, (5.142)

where HFS
N+1 are fine-structure terms defined by

HFS
N+1 = HSO

N+1 + HSOO
N+1 + HSS

N+1, (5.143)

while HNFS
N+1 are non-fine-structure terms defined by

HNFS
N+1 = HMC

N+1 + HD1
N+1 + HOO

N+1 + HD2
N+1 + HSSC

N+1. (5.144)
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The non-fine-structure terms commute with the operators L2, S2, Lz , Sz and π while
the fine-structure terms only commute with the operators J2, Jz and π . Thus it is
necessary to use a representation which is diagonal in J2, Jz and π . In practice, for
electron collision calculations, the one-body terms defined by (5.134), (5.135) and
(5.136) are found to be the most important and often only these terms in addition to
HNR

N+1 are retained in calculations using the Breit–Pauli Hamiltonian HBP
N+1. How-

ever, other terms, including in particular the spin–other orbit term (5.137), can also
play a significant role and have been included in some recent R-matrix calculations.

We now consider the solution of the time-independent Breit–Pauli equation

HBP
N+1Ψ = EΨ. (5.145)

As in non-relativistic R-matrix theory of electron collisions with atoms and atomic
ions, we partition configuration space into three regions as illustrated in Fig. 5.1. We
now discuss the solution in each of these regions in turn.

5.4.2.1 Internal Region Solution

In the internal region, corresponding to 0 ≤ r ≤ a0 in Fig. 5.1, the collision wave
function can be written in analogy with (5.5) as

Ψ
J MJπ
j E (XN+1) =

∑
k

ψ
J MJπ
k (XN+1)A

J MJπ
k j (E), (5.146)

for each set of conserved quantum numbers J , MJ and π , where J is the total
angular momentum quantum number, MJ is the corresponding magnetic quantum
number and π is the parity. Also in (5.146) j labels the linearly independent solu-
tions of (5.145), ψ J MJπ

k are energy-independent basis functions and AJ MJπ
k j (E) are

energy-dependent expansion coefficients which depend on the asymptotic boundary
conditions satisfied by the wave function Ψ J MJπ

j E at the energy E . In analogy with

(5.6) we expand the basis functions ψ J MJπ
k as follows:

ψ
J MJπ
k (XN+1) = A

n∑
i=1

nc∑
j=1

Φ
J MJπ

i (XN ; r̂N+1σN+1)r
−1
N+1u0

i j (rN+1)a
Jπ
i jk

+
m∑

i=1

χ
J MJπ
i (XN+1)b

Jπ
ik , k = 1, . . . , nt , (5.147)

where n is the number of channel functions, nc is the number of continuum orbitals
retained in each channel, m is the number of quadratically integrable functions and
nt = nnc + m is the total number of linearly independent basis functions retained
in this expansion. As noted earlier, the values of n, nc, m and nt are now con-
siderably larger than the values corresponding to equivalent calculations using the
non-relativistic expansion (5.6).
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In order to determine the channel functionsΦ
J MJπ

i in (5.147) we commence with
the target states Φi (αi Li Si MLi MSiπi |XN ) which diagonalize the non-relativistic
target Hamiltonian HNR

N as described in Sect. 2.2. We then recouple these states as
in (5.121) to yield target states Φi (αi Li Si Ji MJiπi |XN ) belonging to the quantum
numbers Li Si Ji MJiπi . If relativistic effects in the target are not important then the
channel functions are determined in the pair-coupling scheme defined by (5.116) as
follows:

Φ
J MJπ

i (XN ; r̂N+1σN+1)

=
∑

MJi m	i

∑
MKi mi

(Ji MJi 	i m	i |Ki MKi )(Ki MKi
1
2 mi |J MJ )

× Φi (αi Li Si Ji MJiπi |XN )Y	i m	i
(θN+1, φN+1)χ 1

2 mi
(σN+1). (5.148)

However, with increasing nuclear charge number Z the channel functions Φ
J MJπ

i
can no longer be accurately represented by eigenstates of the total orbital and spin
angular momentum operators L2

i and S2
i , as assumed in (5.121) and (5.148). If the

relativistic effects are not too large, then the target states can be represented by
an expansion over the target states defined by (5.121) for each Ji MJiπi symmetry.
Following our discussion in Sect. 5.4.1 we write

Φi (Δi Ji MJiπi |XN ) =
∑
αi Li Si

f (Δi Jiπi ;αi Li Siπi )Φi (αi Li Si Ji MJiπi |XN ),

(5.149)

where the summation in this equation goes over all target states retained in the
original R-matrix expansion in (5.147) with the given Jiπi symmetry, and where
we have introduced a level parameter Δi in this equation to distinguish differ-
ent target states with the same Ji MJiπi symmetry. The term-coupling coefficients
f (Δi Jiπi ;αi Li Siπi ) in (5.149) are determined by diagonalizing the target Breit–
Pauli Hamiltonian HBP

N in the basis Φi (αi Li Si Ji MJiπi |XN ) for each Jiπi symme-

try as in (5.123) yielding the target energies eJiπi
i . Equation (5.148), defining the

channel functions, is then replaced by

Φ
J MJπ

i (XN ; r̂N+1σN+1)

=
∑

MJi m	i

∑
MKi mi

(Ji MJi 	i m	i |Ki MKi )(Ki MKi
1
2 mi |J MJ )

× Φi (Δi Ji MJiπi |XN )Y	i m	i
(θN+1, φN+1)χ 1

2 mi
(σN+1). (5.150)

Next the quadratically integrable functions χ J MJπ
i in (5.147) can be obtained by

recoupling the quadratically integrable functions χΓi retained in (5.6) in the absence
of relativistic effects. In analogy with (5.121) we write
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χ
J MJπ
i (αL S J MJπ |XN+1) =

∑
ML MS

(L ML SMS|J MJ )χ
Γ
i (αL SML MSπ |XN+1).

(5.151)
Finally, the continuum basis orbitals u0

i j (r) in (5.147) can be determined using a
similar approach to that described in Sect. 5.3.

Having defined the channel functions, quadratically integrable functions and con-
tinuum basis orbitals in (5.147), we can determine the coefficients a Jπ

i jk and bJπ
ik by

diagonalizing HBP
N+1 + LN+1 in this basis as follows:

〈ψ J MJπ
k |HBP

N+1 + LN+1|ψ J MJπ

k′ 〉int = E Jπ
k δkk′ , k, k′ = 1, . . . , nt , (5.152)

where the Bloch operator LN+1 in this equation ensures that HBP
N+1 + LN+1 is

hermitian in the space of functions satisfying arbitrary boundary conditions on the
surface of the sphere of radius r = a0 enveloping the internal region. It is defined
by (5.8) since we will see that the relativistic terms in the Breit–Pauli Hamilto-
nian do not modify the form of the coupled second-order differential equations,
given by (5.159), which are satisfied by the scattered electron on the boundary
r = a0 of the internal region, for the intermediate values of Z of interest in this
section.

We then proceed using a straightforward extension of the approach adopted
in non-relativistic electron collisions with atoms and atomic ions, described in
Sect. 5.1.2. The reduced radial wave functions F Jπ

i j (r), describing the motion of
the scattered electron in the i th channel, satisfy the equation

F Jπ
i j (a0) =

n∑
i ′=1

R Jπ
i i ′ (E)

(
a0

dF Jπ
i ′ j

dr
− b0 F Jπ

i ′ j

)
r = a0

, i = 1, . . . , n, (5.153)

where the elements of the R-matrix R Jπ
i i ′ (E) are defined by

R Jπ
i i ′ (E) =

1

2a0

nt∑
k= 1

w Jπ
ik w

Jπ
i ′k

E Jπ
k − E

, i, i ′ = 1, . . . , n, (5.154)

the functions F Jπ
i j (r) are defined by

F Jπ
i j (rN+1) = 〈r−1

N+1Φ
J MJπ

i |Ψ J MJπ
j E 〉′, i = 1, . . . , n (5.155)

and the surface amplitudes wJπ
ik are defined by
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w Jπ
ik = 〈r−1

N+1Φ
J MJπ

i |ψ J MJπ
k 〉′rN+1= a0

=
nc∑

j=1

u0
i j (a0)a

Jπ
i jk , i = 1, . . . , n, k = 1, . . . , nt . (5.156)

A Buttle correction to the R-matrix and wave function can be included as discussed
for non-relativistic electron collisions in Sect. 5.3.2. We can also write down an
alternative expression for the reduced radial wave functions F Jπ

i j (r) by substituting

for Ψ J MJπ
j E from (5.146) into (5.155) giving

F Jπ
i j (rN+1) =

nt∑
k=1

〈r−1
N+1Φ

J MJπ

i |ψ J MJπ
k 〉′AJ MJπ

k j (E), i = 1, . . . , n. (5.157)

As in (5.20), (5.21) and (5.22), the primes on the Dirac brackets in (5.155), (5.156)
and (5.157) mean that the integrations are carried out over the space and spin coordi-
nates of all N + 1 electrons in the internal region, except the radial coordinate rN+1
of the scattered electron, where the resulting integral is independent of the magnetic
quantum number MJ . Finally, we note that (5.153) provides the boundary condition
for the solution of the electron–atom collision problem in the external region.

5.4.2.2 External Region Solution

In the external region, corresponding to a0 ≤ r ≤ ap in Fig. 5.1, electron exchange
and correlation effects between the scattered electron and the target atom or atomic
ion can be neglected and (5.147) reduces to

Ψ
J MJπ
j E (XN+1) =

n∑
i=1

Φ
J MJπ

i (XN ; r̂N+1σN+1)r
−1
N+1 F Jπ

i j (rN+1), rN+1 ≥ a0,

(5.158)

where j labels the linearly independent solutions. Also, the channel functions

Φ
J MJπ

i in (5.158) are defined by either (5.148) or (5.150), depending on the
importance of relativistic effects in the target, and F Jπ

i j (r) are energy-dependent
reduced radial wave functions, defined by (5.155). Following our discussion of non-
relativistic collisions given in Sect. 5.1.3, the coupled equations satisfied by the
reduced radial functions F Jπ

i j (r) in (5.158) are obtained by substituting (5.158) into

the Breit–Pauli equation (5.145) and projecting onto the channel functions Φ
J MJπ

i .
We find that the functions F Jπ

i j (r) satisfy the following set of coupled second-order
differential equations:

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z − N )

r
+ k2

i

)
F Jπ

i j (r) = 2
n∑

i ′=1

V Jπ
i i ′ (r)F

Jπ
i ′ j (r),

i = 1, . . . , n, r ≥ a0, (5.159)
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where 	i is the orbital angular momentum of the scattered electron, k2
i is the square

of the wave number of the scattered electron defined by

k2
i = 2

(
E − eJiπi

i

)
, i = 1, . . . , n (5.160)

and the potential matrix V Jπ
i i ′ (r) is defined by

V Jπ
i i ′ (rN+1) = 〈r−1

N+1Φ
J MJπ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣
N∑

k=1

1

rk N+1
− N

rN+1

∣∣∣∣∣
× r−1

N+1Φ
J MJπ

i ′ (XN ; r̂N+1σN+1)〉′, i, i ′ = 1, . . . , n, (5.161)

which replaces (2.66) when relativistic terms are retained in the Hamiltonian. Fol-
lowing our discussion in Sect. 2.3, this potential matrix can be written as a summa-
tion over inverse powers of r as follows:

V Jπ
i i ′ (r) =

λmax∑
λ=1

α Jπ
i i ′λr

−λ−1, r ≥ a0, i, i ′ = 1, . . . , n, (5.162)

where the long-range potential coefficients α Jπ
i i ′λ are defined, in analogy with (2.74),

by the equation

α Jπ
i i ′λ = 〈r−1

N+1Φ
J MJπ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣
N∑

k=1

rλk Pλ(cos θk N+1)

∣∣∣∣∣
× r−1

N+1Φ
J MJπ

i ′ (XN ; r̂N+1σN+1)〉′, i, i ′ = 1, . . . , n,

λ = 1, . . . , λmax. (5.163)

We derive explicit expressions for these coefficients in Appendix D.1; see (D.25)
and (D.26).

The solution of (5.159) can be obtained by sub-dividing the external region into
p sub-regions, as illustrated in Fig. 5.1, and propagating the R-matrix for each
required energy from r = a0 to ap as described in Appendix E. Since the expression
for the long-range potential coefficients, defined by (D.25) and (D.26), is diagonal in
the quantum number Ki , defined following (5.116), then the set of second-order dif-
ferential equations (5.159) sub-divide into two uncoupled sets of equations depend-
ing on whether Ki = J − 1

2 or Ki = J + 1
2 . This enables more efficient R-matrix

propagator methods to be used with considerable saving in computational effort, as
discussed in Appendix E.6. This is analogous to the situation in non-relativistic col-
lisions of electrons with atoms and atomic ions, discussed in Sect. 5.1.3, where the
corresponding second-order differential equations sub-divide into two uncoupled
sets of equations depending on whether the target spin Si = S − 1

2 or Si = S + 1
2 .
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5.4.2.3 Asymptotic Region Solution

The solution of the time-independent Breit–Pauli equation (5.145) in the asymp-
totic region, corresponding to ap ≤ r ≤ ∞ proceeds as in non-relativistic electron
collisions described in Sect. 5.1.4. In this region (5.147) again reduces to (5.158),
where the reduced radial wave functions F Jπ

i j (r) satisfy the coupled second-order
differential equations (5.159). As in Sect. 5.1.4 we assume that the radius ap is
chosen large enough that one of the asymptotic expansion methods discussed in
Appendix F.1 gives an accurate solution of (5.159) in this region. We are then able
to use these solutions to relate the na × na-dimensional K -matrix KJπ (E) to the
n × n-dimensional R-matrix RJπ (E) at r = ap, where na is the number of open
channels at the energy under consideration. Finally, having determined the K -matrix
we can determine the S-matrix and hence the T -matrix, as described in Sect. 5.1.4.

The total and partial wave cross sections for transitions between fine-structure
levels of the target are then given by (5.128) and (5.129). We see that the definition
of the cross section is formally the same as that given in Sect. 5.4.1, where the
transformed K -matrices, defined by (5.119) and (5.124), are used to calculate the
S- and T -matrices. However, using the Breit–Pauli Hamiltonian correctly accounts
for the kinematics of the scattered electron and gives a consistent treatment of the
collision above and below thresholds.

5.4.3 Frame-Transformation Theory

One computational difficulty, which arises as a result of using the Breit–Pauli
Hamiltonian (5.133) rather than the non-relativistic Hamiltonian (5.3), is that the
number of coupled channels included in the internal region expansion (5.147) is
greatly increased for the same set of target states included in the non-relativistic
expansion (5.6). This results in a corresponding increase in the size of the Hamil-
tonian matrices in (5.152) that must be diagonalized. For example in e−–Fe II col-
lisions, considered in Sect. 5.6.5, if all L Sπ -coupled target states corresponding to
the five target configurations

3d64s, 3d7, 3d64p, 3d54s2, 3d54s4p (5.164)

are included in the expansion of the total wave function then, when relativistic
effects are omitted, a maximum of 818 coupled channels are obtained for total
spin state S = 1 and a maximum of 354 coupled channels are obtained for total
spin state S = 2. On the other hand, if relativistic Breit–Pauli terms are included
in the Hamiltonian then the calculation must be carried out in Jπ -coupling which
results in a maximum of 5,076 coupled channels. However, it is pointed out in Sect.
5.6.5 that converged results at low energies may require target states from additional
configurations to be included in the R-matrix expansion. For example, we see from
Table 5.2 that if target states from the 10 configurations, illustrated in Fig. 5.10, are
included in the expansion then the maximum number of coupled channels increases
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to 2,575 in L Sπ -coupling and to 15,576 in Jπ -coupling. In both the 5 and 10 target
configuration cases, including relativistic terms in the Hamiltonian increases the
time required to diagonalize the Hamiltonian matrices by more than two orders of
magnitude, making the calculations much more demanding.

In order to address this computational difficulty we observe that for many low-
energy electron–atom and electron–ion collision calculations, where relativistic
effects play an important role, it is often appropriate to omit or partly omit the
relativistic terms in the Hamiltonian in the internal region, although these terms
must still be included in the external and asymptotic regions in order to obtain accu-
rate threshold energies and hence accurate scattering amplitudes and cross sections.
Also, we will see in Chap. 6, where we consider electron collisions at intermediate
energies, that it is often necessary to include a large number of pseudostates to allow
for inelastic effects above the ionization threshold. In this case, it is not necessary
to include relativistic effects involving these pseudostates although these effects can
still be important for the physical states included in the R-matrix expansion. In a
similar way, it is not necessary to include relativistic effects in the higher continuum
basis orbitals represented by the expansion over j in (5.147) which are included to
give a converged R-matrix expansion.

In the frame-transformation theory (FTT) method, the relativistic Breit–Pauli
terms in the Hamiltonian are omitted in the internal region in the high-energy
spectrum, where they are dominated by the electron kinetic energy contribution to
the total energy. However, they can be included in the internal region in the low-
energy spectrum. These terms are then fully included in the external and asymptotic
regions, where they give rise to the relativistic term splitting of the channels which
plays an important role, particularly for low-energy electron collisions with atoms
and near neutral ions. The corresponding partitioning of configuration space is illus-
trated in Fig. 5.3, which can be compared with Fig. 5.1 applicable when the FTT
method is not used.

EBP

Total
Energy

Radial coordinate of scattered electron
a0 ap0

Internal Region

exchange and
correlation
important

B –P terms omitted

exchange and
correlation
important

B –P terms included

External and Asymptotic Regions

exchange and correlation

negligible

B –P terms included

Fig. 5.3 Partitioning of configuration space in the FTT method showing the procedure for
including relativistic Breit–Pauli (B–P) terms in the internal, external and asymptotic regions
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In the FTT method the calculation is carried out in the following four steps:

(i) The non-relativistic Hamiltonian HN+1 defined by (5.3) is first diagonalized
in the internal region in the basis (5.6) for all L Sπ values of importance. The
R-matrices RΓ (E) on the boundary r = a0 of the internal region defined by
(5.19) are calculated in the usual way, as described in Sect. 5.1.2. If required,
this step of the calculation can be made more efficient by using the partitioned
R-matrix method discussed in Sect. 5.3.4.

(ii) The R-matrices RΓ (E) at r=a0 calculated in step (i) are transformed from the
L Sπ -coupling scheme to the pair-coupling scheme by transformation (5.119).
Also, if relativistic effects in the target are important, a further transformation
(5.124) of the R-matrices to full intermediate coupling is made using term-
coupling coefficients, yielding the R-matrices RJπ (E) for each Jπ . This can
be achieved using the computer program FINE discussed in Sect. 5.1.1.

(iii) The R-matrices calculated in step (ii) are partitioned for each Jπ into two
sub-matrices RJπ

A (E) and RJπ
B (E) as follows:

RJπ (E) = RJπ
A (E)+ RJπ

B (E). (5.165)

The sub-matrix RJπ
A (E) corresponds to the terms in the R-matrix expansion

where the energies of the R-matrix poles EΓk satisfy EΓk > EBP and the
sub-matrix RJπ

B (E) corresponds to the remaining terms in the R-matrix expan-
sion where the energies of the R-matrix poles Ek satisfy EΓk ≤ EBP, where
the energy EBP shown in Fig. 5.3 separates the high-energy spectrum from
the low-energy spectrum in the internal region. The Breit–Pauli Hamiltonian
HBP

N+1, defined in (5.133), is then diagonalized in the internal region in the
basis defined by the sub-matrix RJπ

B (E) for each Jπ , and the corresponding
R-matrix RJπ

B (E) calculated. The R-matrix replacing (5.165) is then given by

RJπ
FTT(E) = RJπ

A (E)+RJπ
B (E). (5.166)

In some situations involving electron collisions with intermediate Z atoms and
ions it is appropriate to choose EBP so that EΓk > EBP for all k. Hence, in this
case step (iii) is omitted and

RJπ
FTT(E) = RJπ

A (E). (5.167)

This approach has been used by Cassidy et al. [204] who carried out low-
energy electron collision calculations for Ni II. In this calculation the non-
relativistic program RMATRXII was used to determine the surface amplitudes
for the R-matrix RΓ (E) on the boundary r = a0 of the internal region. The
program FINE, discussed in Sect. 5.1.1, was then used to transform these sur-
face amplitudes to full intermediate coupling yielding the R-matrix RJπ

FTT(E)
on the boundary r = a0.
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(iv) Finally, the R-matrix RJπ
FTT(E) at r = a0 provides the boundary condition at

r = a0 for determining the solution in the external and asymptotic regions
using the Breit–Pauli Hamiltonian, as discussed in Sect. 5.4.2. As shown in
Sect. 5.4.2 the corresponding coupled second-order differential equations sub-
divide into two uncoupled sets of equations depending on whether the quantum
number Ki = J− 1

2 or J+ 1
2 with considerable saving in computational effort.

Finally, the K -matrix, S-matrix and T -matrix are determined for each energy
E and Jπ , as described in Sect. 5.4.2, and the cross sections determined. We
see in this way that the FTT method correctly accounts for the kinematics of
the scattered electron giving a consistent treatment of the collision above and
below thresholds.

In conclusion, we observe that the ICFT method, discussed in Sect. 5.4.1, can
be regarded as a further approximation to the FTT method. In the ICFT method the
R-matrices RΓ (E) at r = a0 resulting from step (i) are propagated outwards across
the external region in L Sπ -coupling, neglecting the relativistic terms in the Hamil-
tonian in this region. The transformation to full intermediate coupling is then carried
out on the K -matrices in the asymptotic region, rather than on the R-matrices on the
internal region boundary in the FTT method. Hence the FTT method includes the
relativistic terms in the Hamiltonian fully in the external region. This can be impor-
tant for neutral targets where the ICFT method, which uses multichannel quantum
defect theory, is not applicable and for low-energy electron collisions with targets
where the relativistic term splitting is large. However, both methods reduce the size
of the very large Hamiltonian matrices which arise when relativistic terms in the
Breit–Pauli Hamiltonian are fully included in the internal region and are therefore
much less demanding computationally.

5.5 Dirac R-Matrix Theory

In this section we extend R-matrix theory to treat electron collisions with heavy
atoms and atomic ions where the nuclear charge number Z is large and as a result
relativistic effects must be included using the Dirac Hamiltonian. We commence in
Sect. 5.5.1 by introducing the Dirac Hamiltonian describing electron collisions with
an N -electron target atom or ion. We then summarize the historical background of
work in this area commencing with the first introduction of Dirac R-matrix the-
ory in nuclear physics and its first application in the study of electron–atom colli-
sions. We conclude this section by summarizing recent theoretical developments
and computer programs. Then in Sect. 5.5.2 we commence our detailed analy-
sis of Dirac R-matrix theory by considering the solution of the time-independent
Dirac equation in an internal region yielding the R-matrix on the boundary of this
region. This analysis takes advantage of our discussion of the solution of the Dirac
equation in potential scattering in Sect. 1.6 and our discussion of Dirac R-matrix
theory in potential scattering in Sect. 4.6. We also consider the convergence of the
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solution on the boundary of the internal region when radial continuum basis orbitals
satisfying homogeneous boundary conditions are used; a problem which we also
considered in non-relativistic potential scattering in Sect. 4.1. Having determined
the R-matrix on the boundary of the internal region, we then consider the solu-
tion of the Dirac equation, or the equivalent Schrödinger equation, in the external
region in Sect. 5.5.3 and in the asymptotic region in Sect. 5.5.4 which yields the
K -matrix, S-matrix and collision cross sections. Finally, in Sect. 5.5.5 we consider
the procedure usually adopted for calculating the radial continuum basis orbitals in
the expansion of the wave function in the internal region. Since in many applications
these orbitals satisfy homogeneous boundary conditions, similar to those adopted
in many non-relativistic calculations, we conclude our analysis in Sect. 5.5.6 by
describing the procedure for calculating a Buttle correction to the R-matrix which
is required in this case.

5.5.1 Introduction and Computer Programs

The Dirac Hamiltonian describing electron collisions with N -electron target atoms
or ions with nuclear charge number Z is given in atomic units by

HD
N+1 =

N+1∑
i=1

(
cα.pi + β ′c2 − Z

ri

)
+

N+1∑
i> j=1

1

ri j
, (5.168)

where, adopting the notation introduced in potential scattering in Sect. 1.6, α and
β ′ = β − I4 are 4 × 4-dimensional Dirac matrices defined by (1.233) and (1.234).
The solution of the time-independent Dirac equation

HD
N+1Ψ = EΨ (5.169)

is then required for each set of conserved quantum numbers J , MJ and π , where J
is the total angular momentum quantum number, MJ is the corresponding magnetic
quantum number in some preferred direction and π is the total parity.

Dirac R-matrix theory was first introduced by Goertzel [385] who extended
Wigner [968, 969] and Wigner and Eisenbud [972] R-matrix theory of nuclear
reactions using the Dirac equation and a theory of electron–hydrogen atom colli-
sions using the Dirac Hamiltonian was developed by Carse and Walker [203]. Dirac
R-matrix theory of atomic collisions was first formulated by Chang [211–213] who
wrote a computer program which he used to study electron collisions with Ne II and
Ne photoionization. Later, Thumm and Norcross [926, 927] carried out low-energy
electron–Cs collision calculations and Szmytkowski and Hinze [903–908] analysed
the application of Dirac R-matrix theory in electron–atom collisions with emphasis
on the convergence of the R-matrix expansion.

Recent work using Dirac R-matrix theory to study electron–atom collisions is
based on the development of the general-purpose relativistic atomic structure pro-
gram GRASP by Grant et al. [279, 408–410, 413–415, 514, 625, 718, 719]. As well
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as calculating the target states used in electron–atom collision calculations described
below, GRASP enables oscillator strengths and radiative decay rates for high Z
atoms and ions to be determined. It also includes the facility for calculating correc-
tions to the electron–electron interaction considered by Breit [131–133], as well as
other quantum electrodynamic (QED) corrections.

Following the development of the relativistic atomic structure program GRASP,
Norrrington and Grant [696, 697] initiated the development of a general electron–
atom Dirac atomic R-matrix collision program DARC which they used to study
electron collisions with Ne II, Fe VII and Fe XXIII. Later further calculations were
carried out by Wijesundera et al. [973–975], Ait-Tahar et al. [6] and other workers
to study electron collisions with a wide range of heavy atoms and atomic ions and
a detailed description of the program has been written by Norrington and Grant
[698]. The theory and the DARC program have been further developed by Badnell
[32] to treat electron collisions with atoms and atomic ions at intermediate energy,
extending the analysis presented in Chap. 6, and recent developments of the theory
have been discussed by Grant [411, 412].

5.5.2 Internal Region Solution

Following our discussion of non-relativistic R-matrix theory of electron–atom colli-
sions in Sect. 5.1 we partition configuration space into an internal region, an external
region and an asymptotic region, as shown in Fig. 5.1. We consider first the solution
of the Dirac equation (5.169) in the internal region 0 ≤ r ≤ a0 for each set of
conserved quantum numbers J , MJ and π . The first step is to determine the target
states and pseudostates included in the expansion of the collision wave function.
These states are defined in terms of four-component spinor basis functions φi (x)
which can be written following (1.244) as

φi (x) = 1

r

(
Pa

i (r)ηκi mi (r̂, σ )
iQa

i (r)η−κi mi (r̂, σ )

)
, (5.170)

where the two-component spinors ηκm(r̂, σ ) are defined by (1.245). Also in (5.170)
the reduced radial orbitals Pa

i (r) and Qa
i (r) are usually chosen to satisfy the

orthonormality relations

∫ ∞
0
[Pa

i (r)P
a
j (r)+ Qa

i (r)Q
a
j (r)]dr = δi j , all i and j, (5.171)

for each κ defined by (1.250) and Table 1.1. The radius a0 of the internal region in
Dirac R-matrix theory is then chosen so that the reduced radial orbitals Pa

i (r) and
Qa

i (r) satisfy

Pa
i (r) ≈ 0, Qa

i (r) ≈ 0, r ≥ a0, all i, (5.172)
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which ensures that electron exchange and correlation effects between the scattered
electron and the target atom are negligible in the external and asymptotic regions,

discussed below. The target states and pseudostates Φ
Ji MJi πi

i (XN ), which are con-
structed from these orbitals are then chosen to diagonalize the target Hamiltonian
HD

N as follows:

〈Φ Ji MJi πi

i |HD
N |Φ

J j MJ j π j

j 〉 = eJiπi
i δi j , (5.173)

for each Ji MJiπi , where Ji is the total target angular momentum quantum number,
MJi is the corresponding target magnetic quantum number, πi is the target parity
and eJiπi

i is the target energy.
Having determined the target states and pseudostates the collision wave function

Ψ
J MJπ
j E (XN+1) at a total energy E can be expanded in analogy with (5.5) as follows:

Ψ
J MJπ
j E (XN+1) =

∑
k

ψ
J MJπ
k (XN+1)A

Jπ
k j (E), (5.174)

where j labels the linearly independent solutions of (5.169), ψ J MJπ
k are energy-

independent basis functions and AJπ
k j (E) are energy-dependent expansion coeffi-

cients, which depend on the asymptotic boundary conditions satisfied by the wave
function Ψ J MJπ

j E at the energy E . We then expand the basis functions ψ J MJπ
k in

(5.174) for each J MJπ in analogy with (5.6) as follows:

ψ
J MJπ
k (XN+1) = A

n∑
i=1

nc∑
j=1

Φ
J MJπ

i (XN ; r̂N+1σN+1)r
−1
N+1u0

i j (rN+1)a
Jπ
i jk

+
m∑

i=1

χ J MJπ
i (XN+1)b

Jπ
ik , k = 1, . . . , nt , (5.175)

where n is the number of channels retained in the expansion, nc is the number of
continuum basis functions retained in each channel, m is the number of quadratically
integrable functions and nt = nnc + m is the total number of linearly independent

basis functions in this expansion. The channel functionsΦ
J MJπ

i are defined by cou-
pling the target states and pseudostatesΦ Ji Miπi

i (XN )with the relativistic spin–angle
functions describing the scattered electron, as follows:

Φ
J MJπ

i (XN ; r̂N+1σN+1)

=
∑
Mi mi

(Ji Mi ji mi |J MJ )Φ
Ji Miπi
i (XN )φ

ji mi
i (r̂N+1, σN+1), (5.176)

where the four-component spin–angle functions φ ji mi
i (r̂, σ ) describing the scattered

electron are defined by
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φ
ji mi
i (r̂, σ ) =

(
ηκi mi (r̂, σ )

iη−κi mi (r̂, σ )

)
. (5.177)

As in (5.170), the spin–angle functions ηκi mi (r̂, σ ) in this equation are two-
component spinors defined by (1.245), where the angular momentum quantum num-
ber ji is given in terms of the eigenvalue κi by (1.250). Finally, the radial motion
of the scattered electron in the internal region is described by the two-component
reduced radial continuum basis functions u0

i j (r) in (5.175) which are defined by

u0
i j (r) =

(
p0

i j (r)
q0

i j (r)

)
, i = 1, . . . , n, 0 ≤ r ≤ a0, (5.178)

where p0
i j (r) and q0

i j (r) are reduced radial continuum basis orbitals. Hence, in anal-
ogy with (1.244), we can rewrite (5.177) and (5.178) as a four-component spinor

r−1u0
i j (r)φ

ji mi
i (r̂, σ ) ≡ 1

r

(
p0

i j (r)ηκi mi (r̂, σ )
iq0

i j (r)η−κi mi (r̂, σ )

)
, i = 1, . . . , n, 0 ≤ r ≤ a0.

(5.179)

Following our discussion of Dirac R-matrix theory in potential scattering in
Sect. 4.6, the reduced radial continuum basis orbitals p0

i j (r) and q0
i j (r) in (5.178)

are chosen to vanish at the origin and to be non-zero on the boundary r = a0 of
the internal region. We describe a procedure in Sect. 5.5.5 which is often adopted
for calculating these orbitals when they satisfy homogeneous boundary conditions
at r = a0.

Returning to (5.175), A is the usual antisymmetrization operator defined by
(2.46) which ensures that each term in the first expansion is antisymmetric with
respect to interchange of the space and spin coordinates of any pair of the N + 1
electrons. Also, the functions χ J MJπ

i (XN+1) are quadratically integrable functions
which are constructed from the bound spinor basis functions φi (x) defined by
(5.170) which are negligible by the boundary r = a0 of the internal region. As
in the non-relativistic expansion (5.6), these quadratically integrable functions are
included in the expansion of the wave function for two reasons. First, for com-
putational convenience the radial continuum basis orbitals p0

i j (r) and q0
i j (r) are

usually constrained to be orthogonal to the physical orbitals used to construct the
target states included in (5.175). Appropriate quadratically integrable functions
constructed from these orbitals must therefore be included in the second expan-
sion for completeness. The second reason for including the quadratically integrable
functions is to represent short-range electron–electron correlation effects which are
difficult to accurately represent by including a finite number of target states and
pseudostates in the first expansion in (5.175).

We can determine the coefficients a Jπ
i jk and bJπ

ik in (5.175) by diagonalizing the

operator HD
N+1 + LD

N+1 as follows:
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〈ψ J MJπ
k |HD

N+1 + LD
N+1|ψ J MJπ

k′ 〉int = E Jπ
k δkk′ , k, k′ = 1, . . . , nt , (5.180)

where LD
N+1 is a matrix Bloch operator, discussed below, and where the integrations

in this equation are carried out over the space and spin coordinates of all N+1 elec-
trons, the radial integrals being confined to the internal region. It follows from the
rotational symmetry of the Hamiltonian and the Bloch operator that the coefficients
a Jπ

i jk and bJπ
ik and the energy E Jπ

k depend on J and π but are independent of the
magnetic quantum number MJ .

The matrix Bloch operator LD
N+1 in (5.180), which operates only on the two-

component space part of the scattered electron wave function, is introduced, as in
(5.7), so that HD

N+1 + LD
N+1 is hermitian in the space of quadratically integrable

functions ψ(1) and ψ(2) which vanish at the origin and satisfy arbitrary boundary
conditions on the surface r = a0 of the internal region. Hence, in analogy with
(5.9), it follows that

〈ψ(1)|HD
N+1 + LD

N+1|ψ(2)〉int − 〈ψ(2)|HD
N+1 + LD

N+1|ψ(1)〉int = 0, (5.181)

where the integration is carried out over all N + 1 electronic space and spin coor-
dinates which are confined to the internal region. Following our discussion of Dirac
R-matrix theory in potential scattering given in Sect. 4.6, the required matrix Bloch
operator, which is a generalization of (4.260), is given by

LD
N+1 =

1

2
c

N+1∑
i=1

(−b′ 1
−1 b′−1

)
δ(ri − a0), (5.182)

where b′ is an arbitrary constant. In the non-relativistic limit b′ and hence br, intro-
duced in Sect. 4.6, are related to the arbitrary constant b0 in (5.8) by (4.257) and
(4.258) which give

b′ = br

2a0c
= 1

2a0c
(b0 + κ), (5.183)

where κ is defined in terms of the orbital and total scattered electron angular momen-
tum quantum numbers 	 and j by (1.250) and Table 1.1. Hence b′ and br will depend
on the corresponding quantum numbers of the scattered electron in each channel.

We can now solve (5.169) in the internal region for each linearly indepen-
dent solution defined by (5.174). In analogy with the procedure adopted in non-
relativistic R-matrix theory in Sect. 5.1.2, we first include the Bloch operator term
LD

N+1Ψ on both sides of (5.169) giving

(
HD

N+1 + LD
N+1 − E

)
Ψ

J MJπ
j E = LD

N+1Ψ
J MJπ
j E . (5.184)

Equation (5.184) then has the formal solution in the internal region given by

Ψ
J MJπ
j E = (HD

N+1 + LD
N+1 − E

)−1 LD
N+1Ψ

J MJπ
j E . (5.185)
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The spectral representation of the Green’s function
(
HD

N+1 + LD
N+1 − E

)−1
in

(5.185) can be obtained in terms of the R-matrix basis functions ψ J MJπ
k defined

by (5.175) and (5.180) giving

|Ψ J MJπ
j E 〉 =

nt∑
k=1

|ψ J MJπ
k 〉 1

E Jπ
k − E

〈ψ J MJπ
k |LD

N+1|Ψ J MJπ
j E 〉. (5.186)

We then project (5.186) onto the n channel functions Φ
J MJπ

i (XN ; r̂N+1σN+1),
defined by (5.176), and substitute for the matrix Bloch operator LD

N+1 defined by
(5.182). We find using (5.174) and (5.175) that

F Jπ
i j (r) =

1

2a0

n∑
i ′=1

nt∑
k=1

v Jπ
ik (r) [v Jπ

i ′k (a0)]T
E Jπ

k − E
Bi ′ F Jπ

i ′ j (a0),

i = 1, . . . , n, 0 ≤ r < a0, (5.187)

where the two-component reduced radial wave functions F Jπ
i j (r) are defined by

F Jπ
i j (rN+1) = 〈r−1

N+1Φ
J MJπ

i |Ψ J MJπ
j E 〉′, i = 1, . . . , n, (5.188)

and where the two-component functions v Jπ
ik (r) are defined by

v Jπ
ik (rN+1) = 〈r−1

N+1Φ
J MJπ

i |ψ J MJπ
k 〉′, i = 1, . . . , n, k = 1, . . . , nt . (5.189)

As in (5.20) and (5.21), the primes on the Dirac brackets in (5.188) and (5.189) mean
that the integrations and summations are carried out over the space and spin coordi-
nates of all N + 1 electrons in the internal region, except the radial coordinate rN+1
of the scattered electron. Also, as in (5.20) and (5.21), the contributions from the
exchange terms and quadratically integrable functions in (5.175) to the integrals in
(5.188) and (5.189) become negligibly small near the boundary r = a0 of the inter-
nal region. Hence near the boundary r = a0 the expression for F Jπ

i j (r) reduces to

F Jπ
i j (r) =

nt∑
k=1

v Jπ
ik (r)A

Jπ
k j (E), i = 1, . . . , n, r <∼ a0, (5.190)

where the functions v Jπ
ik (r) can be expanded in terms of the radial continuum basis

functions u0
i j (r) in (5.178) as follows:

v Jπ
ik (r) =

nc∑
j=1

u0
i j (r)a

Jπ
i jk , i = 1, . . . , n, k = 1, . . . , nt , 0 ≤ r ≤ a0. (5.191)

Finally in (5.187), the Bi , which arise from the Bloch operator LD
N+1 defined by

(5.182), are 2× 2 matrices given by
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Bi = a0c

(−b′i 1
−1 b′i

−1

)
, i = 1, . . . , n, (5.192)

where the elements b′i in this matrix are defined in terms of the orbital and total scat-
tered electron angular momentum quantum numbers in the i th channel by (5.183)
and (1.250). Also in the above equations, F Jπ

i j (r), v
Jπ
ik (r) and u0

i j (r) are two-

component functions, where the radial continuum basis functions u0
i j (r) are defined

by (5.178). We observe that when the number of channels n = 1, (5.187) reduces to
(4.264) obtained in our discussion of Dirac R-matrix theory in potential scattering.

Following our discussion of Dirac R-matrix theory in potential scattering in Sect.
4.6, we now consider the convergence of expansion (5.187) as r → a0 from below
when the continuum basis orbitals p0

i j (r) and q0
i j (r) satisfy homogeneous boundary

conditions at r = a0. We first rewrite the reduced radial wave functions F Jπ
i j (r) and

the functions v Jπ
ik (r) in terms of their components as follows:

F Jπ
i j (r) =

(
P Jπ

i j (r)
Q Jπ

i j (r)

)
, i = 1, . . . , n (5.193)

and

v Jπ
ik (r) =

(
w Jπ

ik (r)
y Jπ

ik (r)

)
=

nc∑
i ′=1

(
p0

i i ′(r)
q0

i i ′(r)

)
a Jπ

i i ′k, i = 1, . . . , n, k = 1, . . . , nt .

(5.194)
Substituting these equations into (5.187) then yields the coupled equations

P Jπ
i j (r) =

1

2a0

n∑
i ′=1

nt∑
k=1

w Jπ
ik (r)

E Jπ
k − E

Ci ′k j , i = 1, . . . , n, 0 ≤ r < a0 (5.195)

and

Q Jπ
i j (r) =

1

2a0

n∑
i ′=1

nt∑
k=1

y Jπ
ik (r)

E Jπ
k − E

Ci ′k j , i = 1, . . . , n, 0 ≤ r < a0, (5.196)

where

Cik j = a0c
[
w Jπ

ik (a0) y Jπ
ik (a0)

] (−b′i 1
−1 b′i

−1

)(
P Jπ

i j (a0)

Q Jπ
i j (a0)

)
. (5.197)

We now assume that the radial continuum basis orbitals p0
i j (r) and q0

i j (r) satisfy
homogeneous boundary conditions at r = a0 defined by

q0
i j (a0) = b′i p0

i j (a0), i = 1, . . . , n, j = 1, . . . , nc, (5.198)
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which corresponds to the boundary condition procedure often adopted in calculating
these orbitals, described in Sect. 5.5.5. Hence it follows from (5.194) that

y Jπ
ik (a0) = b′iw Jπ

ik (a0), i = 1, . . . , n, k = 1, . . . , nt . (5.199)

Substituting this result into (5.197) we find that (5.195) and (5.196) become

P Jπ
i j (r) =

1

2a0

n∑
i ′=1

nt∑
k=1

w Jπ
ik (r)w

Jπ
i ′k (a0)

E Jπ
k − E

[
2a0cQ Jπ

i ′ j (a0)− bri ′ P
Jπ

i ′ j (a0)
]
,

i = 1, . . . , n, 0 ≤ r < a0 (5.200)

and

Q Jπ
i j (r) =

1

2a0

n∑
i ′=1

nt∑
k=1

y Jπ
ik (r)w

Jπ
i ′k (a0)

E Jπ
k − E

[
2a0cQ Jπ

i ′ j (a0)− bri ′ P
Jπ

i ′ j (a0)
]
,

i = 1, . . . , n, 0 ≤ r < a0, (5.201)

where using (5.183) we have written

bri = b0 + κi = 2a0cb′i , i = 1, . . . , n. (5.202)

We see that when the number of channels n = 1 then (5.200), (5.201) and (5.202)
reduce to (4.272), (4.273) and (4.258) which we obtained in Dirac R-matrix theory
in potential scattering, where we remember that nt in (5.200) and (5.201) is the total
number of basis functions retained in expansion (5.175), which corresponds to n in
(4.272) and (4.273).

The limit of (5.200) and (5.201) when r → a0 from below is then given by

P Jπ
i j (a0) =

n∑
i ′=1

RJπ
i i ′ (E)

[
2a0cQ Jπ

i ′ j (a0)− bri ′ P
Jπ

i ′ j (a0)
]
, i = 1, . . . , n

(5.203)
and

Q Jπ
i j (a0) = b′i

n∑
i ′=1

RJπ
i i ′ (E)

[
2a0cQ Jπ

i ′ j (a0)− bri ′ P
Jπ

i ′ j (a0)
]
, i = 1, . . . , n,

(5.204)
where the n × n-dimensional R-matrix RJπ

i j (E) is defined by

RJπ
i j (E) =

1

2a0

nt∑
k=1

w Jπ
ik (a0)w

Jπ
jk (a0)

E Jπ
k − E

, i, j = 1, . . . , n (5.205)

and where the surface amplitudes w Jπ
ik (a0) are defined by (5.194). As in Dirac

R-matrix theory in potential scattering considered in Sect. 4.6, see (4.274), (4.275),
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and (4.276) and the following discussion, we can only find a trivial solution of both
(5.203) and (5.204) given by

P Jπ
i j (a0) = Q Jπ

i j (a0) = 0, i = 1, . . . , n, (5.206)

when the R-matrix RJπ
i j (E) is non-singular. To see this we substitute for the sum-

mation on the right-hand side of (5.204) from (5.203) showing, after using (5.202),
that the terms [2a0cQ Jπ

i j (a0)−bri P Jπ
i j (a0)] in both (5.203) and (5.204) are zero.

However, at the poles of the R-matrix RJπ
i j (E) we obtain, after using (5.202), the

non-trivial solution of (5.203) and (5.204) given by

Q Jπ
i j (a0) = b′i P Jπ

i j (a0), i = 1, . . . , n, (5.207)

which corresponds to the homogeneous boundary condition (5.198) satisfied by the
radial continuum basis orbitals.

We can understand this result by considering the non-relativistic limit of (5.203)
and (5.204) as r → a0 from below. In analogy with our discussion of Dirac R-
matrix theory in potential scattering following (4.274), we see that (5.203) reduces
in the non-relativistic limit to the usual equation relating the reduced radial wave
function to its derivative on the boundary r = a0 of the internal region. On the
other hand, (5.204) reduces in this limit to an expansion of the derivative of the
wave function on the boundary of the internal region. However, when radial con-
tinuum basis orbitals satisfying homogeneous boundary conditions are adopted in
the analysis, this expansion only converges to the exact solution at the poles of the
R-matrix when (5.207) is satisfied. Hence, in this case, expansion (5.201) is not
uniformly convergent on the boundary r = a0 except at the poles of the R-matrix.
A detailed analysis of the structure of the two-point boundary value problem for the
Dirac operator by Grant [412] confirms that (5.203), where the R-matrix is defined
by (5.205), provides the boundary condition at r = a0 for integrating the coupled
differential equations in the external region outwards from r = a0, as discussed in
Sect. 5.5.3.

Finally, we note that, as in non-relativistic collisions, in order to obtain accu-
rate results when radial continuum basis orbitals satisfying homogeneous boundary
conditions are adopted, a Buttle correction to the R-matrix must be included. We
consider a procedure for calculating these continuum basis orbitals in Sect. 5.5.5
and for calculating a Buttle correction to the R-matrix in Sect. 5.5.6.

5.5.3 External Region Solution

We consider in this section the solution of the Dirac equation (5.169) in the external
region, corresponding to a0 ≤ r ≤ ap in Fig. 5.1. As in non-relativistic electron
collisions, the radius a0 is chosen so that the charge distribution of the target eigen-
states and pseudostates retained in expansion (5.175) are negligible for r ≥ a0 and
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hence electron exchange and correlation effects between the scattered electron and
the target atom or atomic ion are negligible in this region. The expansion of the total
wave function Ψ J MJπ

j E (XN+1) defined by (5.174) and (5.175) then reduces to

Ψ
J MJπ
j E (XN+1) =

n∑
i=1

Φ
J MJπ

i (XN ; r̂N+1σN+1)r
−1
N+1 F Jπ

i j (rN+1), (5.208)

where j labels the linearly independent solutions. Also, the channel functions

Φ
J MJπ

i retained in expansion (5.208) are the same as those retained in the inter-
nal region expansion (5.175) and defined by (5.176). Finally, the reduced radial
functions F Jπ

i j (r) in (5.208) can be written as energy-dependent two-component

functions defined in terms of the reduced radial continuum orbitals P Jπ
i j (r) and

Q Jπ
i j (r) by (5.193).
We obtain coupled first-order differential equations satisfied by the reduced

radial continuum orbitals P Jπ
i j (r) and Q Jπ

i j (r) in the external region by
substituting (5.208) into (5.169) and projecting onto the channel functions

Φ
J MJπ

i (XN ; r̂N+1σN+1). This gives the following coupled first-order differential
equations

(
d

dr
+ κi

r

)
P Jπ

i j (r)−
1

c

(
2c2 + εi + z

r

)
Q Jπ

i j (r) = −
1

c

n∑
i ′=1

V Jπ
i i ′ (r)Q

Jπ
i ′ j (r),

i = 1, . . . , n (5.209)

and

(
d

dr
− κi

r

)
Q Jπ

i j (r)+
1

c

(
εi + z

r

)
P Jπ

i j (r) =
1

c

n∑
i ′=1

V Jπ
i i ′ (r)P

Jπ
i ′ j (r),

i = 1, . . . , n, (5.210)

where r ≥ a0. Also in (5.209) and (5.210) z = Z − N , εi are the channel energies
in atomic units and the potential matrix V Jπ

i i ′ (r), which has a similar form to (2.66)
in non-relativistic electron collisions with atoms and atomic ions, is defined by

V Jπ
i i ′ (rN+1) = 〈r−1

N+1Φ
J MJπ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣
N∑

k=1

1

rk N+1
− N

rN+1

∣∣∣∣∣
× r−1

N+1Φ
J MJπ

i ′ (XN ; r̂N+1σN+1)〉′, i, i ′ = 1, . . . , n, (5.211)

where the prime on the Dirac bracket in (5.211) and later equations means that the
integration is carried out over the space and spin coordinates of all N + 1 electrons
except the radial coordinate rN+1 of the scattered electron. Also, the inclusion of
the term −N/rN+1 in the definition of V Jπ

i i ′ (r) means that the long-range Coulomb
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potential experienced by the scattered electron is completely included on the left-
hand side of (5.209) and (5.210). Also, as in non-relativistic electron collisions, the
potential terms on the right-hand side of (5.209) and (5.210) can be simplified using
(2.72). We obtain

V Jπ
i i ′ (r) =

λmax∑
λ=1

α Jπ
i i ′λr

−λ−1, r ≥ a0, i, i ′ = 1, . . . , n, (5.212)

where the long-range potential coefficients αΓi i ′λ are defined, in analogy with (2.74)
in non-relativistic collisions, by

α Jπ
i i ′λ = 〈r−1

N+1Φ
J MJπ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣
N∑

k=1

rλk Pλ(cos θk N+1)

∣∣∣∣∣
× r−1

N+1Φ
J MJπ

i ′ (XN ; r̂N+1σN+1)〉′, i, i ′ = 1, . . . , n,

λ = 1, . . . , λmax, (5.213)

and where the upper limit λmax in the summation over λ in (5.212) results from
the triangular relations satisfied by the angular momentum quantum numbers which
arise in the integral in (5.213).

For low-energy electron collisions with atoms and atomic ions, where the ionic
interaction potential (Z − N )/r in the external region and the channel energies are
both small compared with c2 then the coupled differential equations (5.209) and
(5.210) can be reduced to non-relativistic limiting form. Following our discussion
of the Dirac equation in potential scattering, given in Sect. 1.6, these equations can
be transformed to the non-relativistic limiting form given by

(
d2

dr2
− κi (κi + 1)

r2
+ 2(Z − N )

r
+ k2

i

)
P Jπ

i j (r) = 2
n∑

i ′=1

V Jπ
i i ′ (r)P

Jπ
i ′ j (r),

i = 1, . . . , n, r ≥ a0, (5.214)

where k2
i = 2εi . In addition in the non-relativistic limit (5.203) reduces to

P Jπ
i j (a0) =

n∑
i ′=1

RJπ
i i ′ (E)

(
a0

dP Jπ
i ′ j

dr
− b0 P Jπ

i ′ j

)
r = a0

, i = 1, . . . , n, (5.215)

where we have used (5.183) and (5.202) to relate bri in (5.203) to b0 in (5.215).
Equations (5.214) and (5.215) are in standard non-relativistic form as discussed
in Sect. 5.1.3. Hence, after the Buttle correction, discussed in Sect. 5.5.6, has been
added to the diagonal elements of the R-matrix RJπ

i j (E), defined by (5.205), (5.214)
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can be integrated outwards from r = a0, subject to the boundary condition at
r = a0, defined by (5.215), to r = ap and fitted to an asymptotic expansion
to yield the K -matrix and S-matrix, using the procedure discussed in Sects. 5.1.3
and 5.1.4.

However, for electron collisions with highly ionized ions, where Z−N and hence
the excitation energies are large, the use of (5.214) in the external and asymptotic
regions can lead to error. For example, for electron collisions with the He-like ion
Fe XXV, which has a residual charge of 24, an incident electron energy of ∼ 500
Rydbergs is required to excite the target from the ground state [985]. For these
incident electron energies the velocity v of the electron is approximately 0.16 c.
Hence for ionic targets with high values of the effective charge Z − N , one pos-
sibility is to transform the coupled first-order differential equations (5.209) and
(5.210) to coupled second-order differential equations with a first-order derivative
term, analogous to (4.289) in potential scattering. The R-matrix can then be prop-
agated outwards from r = a0 to ap, using the propagator method discussed in
Appendix E.5. Alternatively, the original coupled first-order differential equations
(5.209) and (5.210) can be integrated outwards from r = a0 to ap, using a standard
approach for solving these equations (see, for example, [573]). In both cases a Buttle
correction, discussed in Sect. 5.5.6, has to be added to the R-matrix RJπ

i j (E) defined
by (5.205) if continuum basis orbitals satisfying homogeneous boundary conditions
at r = a0 are used in the internal region.

5.5.4 Asymptotic Region Solution

We now consider the solution of (5.209) and (5.210) in the asymptotic region, cor-
responding to r ≥ ap in Fig. 5.1. We have seen in our discussion of the external
region solution in Sect. 5.5.3 that for low-energy collisions, when the interaction
potential (Z − N )/r and the channel energies are small compared with c2, (5.209)
and (5.210) can be reduced to non-relativistic form. In this case we can solve the
resultant equations in the asymptotic region as discussed in Sect. 5.1.4 yielding the
S-matrix, T -matrix and cross sections. However, for electron collisions with highly
ionized ions it is necessary to determine the asymptotic region solution of (5.209)
and (5.210) directly. In this analysis we assume that the channels are ordered so that
the channel energies εi in (5.209) and (5.210) satisfy

ε1 ≥ ε2 ≥ · · · ≥ εn, (5.216)

where the first na channels are open with εi ≥ 0 and the last nb channels are closed
with εi < 0, where na + nb = n. As in non-relativistic collisions, considered in
Sect. 5.1.4, we define, in analogy with (5.37), n+ na linearly independent solutions
of (5.209) and (5.210) satisfying the following asymptotic boundary conditions:
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pi j (r) ∼
r→∞ gi sin θiδi j , qi j (r) ∼

r→∞
εi

ki c
gi cos θiδi j ,

i = 1, . . . , n, j = 1, . . . , na,

pi j (r) ∼
r→∞ gi cos θiδi j , qi j (r) ∼

r→∞−
εi

ki c
gi sin θiδi j ,

i = 1, . . . , n, j = 1, . . . , na,

pi j (r) ∼
r→∞ gi exp(−φi )δi j , qi j (r) ∼

r→∞
εi

|ki |c gi exp(−φi )δi j ,

i = 1, . . . , n, j = na + 1, . . . , n, (5.217)

where

gi =
[

1

ki

(
1+ εi

2c2

)]1/2

, ki =
[εi

c

(εi
c
+ 2c

)]1/2
, gi =

[
1

|ki |
(

1+ εi

2c2

)]1/2

.

(5.218)

Also in (5.217),

θi = kir− 1

2
(γi−1)π+yi ln 2kir+ψi−argΓ (γi+iyi ), i = 1, . . . , na, (5.219)

where

γi =
(
κ2

i −
z2

c2

)1/2

, yi = z

ki

(
1+ εi

c2

)
, ψi = 1

2i
ln

(
iz/ki − κi

γi − iyi

)
(5.220)

and

φi = |ki |r − yi ln 2kir. (5.221)

These asymptotic boundary conditions are discussed by Young and Norrington
[985] who obtained asymptotic expansions for these solutions, analogous to the
non-relativistic asymptotic expansions considered in Appendix F.1 [160, 356].

Following our discussion in Sect. 5.1.4, we can find na linearly independent
solutions of the coupled differential equations (5.209) and (5.210) that vanish at the
origin and are finite at infinity. The na × na-dimensional K -matrix is then defined
in terms of the large components in the na open channels as follows:

PJπ (r) ∼
r→∞

[
1

k

(
I+ ε

2c2

)]1/2 [
sin θ + cos θKJπ

]
, (5.222)

where the corresponding components in the nb closed channels vanish asymptot-
ically. By taking linear combinations of these solutions we can define a solution
matrix GJπ (r) satisfying the asymptotic boundary conditions
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GJπ (r) ∼
r→∞

[
1

k

(
I+ ε

2c2

)]1/2

[exp(−iθ)− exp(iθ)SJπ ], (5.223)

where the S-matrix, defined by this equation, and the corresponding T -matrix can
be expressed in terms of the K -matrix by the usual matrix equations

SJπ = I+ iKJπ

I− iKJπ
, TJπ = SJπ − I. (5.224)

The cross sections can then be determined using the procedure described in
Sect. 2.5. The partial cross section for a transition from an initial state i ≡ αi Ji ji to
a final state f ≡ α f J f j f corresponding to the conserved quantum numbers Jπ is
given by

σ Jπ (i → f ) = 2J + 1

2k2
i (2Ji + 1)

∑
ji j f

|T Jπ
f i |2, (5.225)

where αi and α f distinguish target states with the same total angular momentum
Ji and J f , and where ji and j f are the initial and final angular momenta of the
scattered electron. The total cross section is then defined by

σTot(i → f ) =
∑
Jπ

σ Jπ (i → f ), (5.226)

in units of πa2
0.

5.5.5 Continuum Basis Orbitals

We now consider the procedure usually adopted for calculating the reduced radial
continuum basis orbitals p0

i j (r) and q0
i j (r) which are used in definition (5.178)

of u0
i j (r) in the internal region. In most applications these orbitals have been

chosen to satisfy homogeneous boundary conditions similar to those adopted in
non-relativistic electron collisions, described in Sect. 5.3.1 and, as a result, a Buttle
correction to the R-matrix, considered in Sect. 5.5.6, is required. However, as
in non-relativistic electron–atom collisions and multiphoton ionization, arbitrary
boundary condition methods, considered in Sect. 5.3.3, can also be used to deter-
mine the continuum basis orbitals.

In analogy with the coupled first-order differential equations (4.248), which arise
in Dirac R-matrix theory in potential scattering, we consider here orbitals p0

i j (r)

and q0
i j (r) which satisfy the following coupled first-order differential equations for

each κi
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(
d

dr
+ κi

r

)
p0

i j (r)−
1

c
[2c2 + εi − V0(r)]q0

i j (r) = −
1

c

∑
k

λi jk Qa
k (r),

i = 1, . . . , n, j = 1, . . . , nc (5.227)

and

(
d

dr
− κi

r

)
q0

i j (r)+
1

c
[εi − V0(r)]p0

i j (r) =
1

c

∑
k

λi jk Pa
k (r),

i = 1, . . . , n, j = 1, . . . , nc, (5.228)

subject to the homogeneous boundary conditions, defined in analogy with (4.249)
and (4.250), which can be written here as

(
p0

i j (0)
q0

i j (0)

)
= 0, i = 1, . . . , n, j = 1, . . . , nc (5.229)

and

q0
i j (a0) = b′i p0

i j (a0), i = 1, . . . , n, j = 1, . . . , nc. (5.230)

Also in (5.227), (5.228), (5.229) and (5.230), n is the number of channels retained in
the R-matrix expansion and nc is the number of continuum basis functions retained
in each channel. In the non-relativistic limit we have seen that b′i in (5.230) is related
to b0 and κi by (5.183). Also the summations over k on the right-hand sides of
(5.227) and (5.228) go over the reduced radial physical bound orbitals Pa

k (r) and
Qa

k (r) used to construct the target states retained in expansion (5.175) corresponding
to the κi under consideration and the λi jk are Lagrange multipliers which are chosen
so that the following orthogonality constraints

∫ a0

0
[p0

i j (r)P
a
k (r)+ q0

i j (r)Q
a
k (r)]dr = 0, i = 1, . . . , n (5.231)

are satisfied for all j and k, for each κi . It follows that the reduced radial continuum
basis orbitals p0

i j (r) and q0
i j (r) generated in this way are orthogonal and can be

normalized so that

∫ a0

0
[p0

i j (r)p
0
i j ′(r)+ q0

i j (r)q
0
i j ′(r)]dr = δ j j ′, i = 1, . . . , n (5.232)

for all j and j ′. For each κi , the reduced radial physical bound orbitals Pa
k (r) and

Qa
k (r), retained on the right-hand side of (5.227) and (5.228), together with the cor-

responding reduced radial continuum orbitals p0
i j (r) and q0

i j (r), generated by solv-
ing (5.227), (5.228), (5.229) and (5.230) subject to the orthonormality constraints
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given by (5.231) and (5.232), form a complete set over the range 0 ≤ r < a0 in the
limit nc →∞, for any value of br in (5.183) and zero-order potential V0(r).

In order to obtain rapid convergence of the R-matrix expansion (5.205), including
the Buttle correction discussed below, the zero-order potential V0(r) in (5.227) and
(5.228) should provide a good representation of the charge distribution of the target
atom or ion. In practice, the static potential of the target atom or ion in its ground
state is often adopted. Also, as in non-relativistic collisions, the inhomogeneous
terms on the right-hand sides of (5.227) and (5.228) play the role of an exchange
potential while at the same time ensuring that the continuum basis orbitals are
orthogonal to the physical orbitals used to construct the target states.

5.5.6 Buttle Correction

When the reduced radial continuum basis orbitals p0
i j (r) and q0

i j (r) in definition

(5.178) of u0
i j (r) satisfy the zero-order coupled differential equations (5.227) and

(5.228) subject to homogeneous boundary conditions (5.229) and (5.230), then it is
necessary to add a “Buttle correction” to the R-matrix to obtain accurate results.
Our procedure, which is analogous to that adopted in non-relativistic collisions
discussed in Sect. 5.3.2, corrects for the omission of the high-lying pole terms in
expansion (5.205) of the R-matrix RJπ

i j (E). Also, as in non-relativistic electron
collisions with atoms and ions, only the diagonal elements of the R-matrix usually
need to be corrected.

The diagonal elements of the R-matrix RJπ
i j (E) are determined in terms of the

solution of the coupled zero-order differential equations (5.227) and (5.228) used to
calculate the reduced radial continuum basis orbitals p0

i j (r) and q0
i j (r). The diagonal

elements of the zero-order R-matrix R0
i j (E) at an arbitrary energy E are given,

following (4.287), by

R0
i i (E) = p0

i (a0)
[
2a0cq0

i (a0)− bri p0
i (a0)

]−1
, i = 1, . . . , n, (5.233)

where p0
i (r) and q0

i (r) are solutions of (5.227) and (5.228) at the energy E , subject
to the boundary condition (5.229) at the origin and to the orthogonality constraints
(5.231). The diagonal elements of the zero-order R-matrix can also be written in
terms of the infinite set of eigensolutions p0

i j (r) of (5.227) and (5.228), subject to the
boundary conditions (5.229) and (5.230) and the orthogonality and normalization
constraints (5.231) and (5.232). We obtain

R0
i i (E) =

1

2a0

∞∑
k=1

[
p0

ik(a0)
]2

E0
k − E

, i = 1, . . . , n. (5.234)

Finally, the Buttle correction to the diagonal elements of the R-matrix RJπ
i j (E),

defined by (5.205), can be written as
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RJπ(BC)
i i (E) = 1

2a0

∞∑
k= nt+1

[
p0

ik(a0)
]2

E0
k − E

, i = 1, . . . , n. (5.235)

Using (5.233) and (5.234) we then find that

RJπ(BC)
i i (E) = p0

i (a0)
[
2a0cq0

i (a0)− bri p0
i (a0)

]−1

− 1

2a0

nt∑
k=1

[
p0

ik(a0)
]2

E0
k − E

, i = 1, . . . , n. (5.236)

The first term on the right-hand side of (5.236) is obtained by solving the coupled
differential equations (5.227) and (5.228) at the energy E of interest and the sec-
ond term is given in terms of the reduced radial continuum basis orbitals evaluated
on the boundary r = a0 of the internal region together with the corresponding
eigenenergies. As in non-relativistic collisions, both terms in (5.236) can be rapidly
calculated at a few energies and since the Buttle correction is smoothly varying in
the low-energy region of interest it can be interpolated to give the correction at the
required energies.

5.6 Low-Energy Electron Collision Calculations

Over the last 40 years a vast number of electron–atom and electron–ion collision
calculations have been carried out using R-matrix computer programs which have
implemented the theory reviewed in this chapter. These calculations have been
undertaken both in support of experiment and also to provide data required in the
analysis of applications, for example, in plasma physics, laser physics and astro-
physics. In this section we consider low-energy electron–atom and electron–ion
collision calculations where only elastic scattering and excitation processes are
energetically allowed or are important, reserving a discussion of electron collisions
at intermediate energies, where ionizing collisions are important, to Chap. 6. The
examples that we present illustrate both the criteria necessary to obtain reliable cross
sections and the accuracy now obtainable for low-energy electron collisions with
atoms and atomic ions. However, we will see that difficulties are still experienced
for heavier open d- and f-shell targets involving many coupled channels.

5.6.1 Electron Collisions with H

We begin by considering electron collisions with atomic hydrogen, the lightest
one-electron target atom. This simplifies the collision calculation since the non-
relativistic hydrogen atom wave functions are known exactly and hence we are
not concerned with electron–electron correlation effects among the target electrons
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which arise in more complex atomic targets. However, the Schrödinger equation for
the electron–hydrogen atom system describes a three-body problem and is there-
fore not solvable exactly. The importance of obtaining accurate numerical solutions
for this system is not only because of its intrinsic importance arising from the fact
that atomic hydrogen is the most abundant atom in the universe, but also because
these solutions illustrate features, such as resonances and threshold effects, which
are common to multi-electron atomic targets. Hence calculations carried out for
electron–hydrogen atom collisions provide a test of methods, such as the R-matrix
method, which are applicable to general multi-electron targets.

We have pointed out in Sects. 2.2 and 2.3 that in order to obtain accurate low-
energy electron–atom collision cross sections it is necessary to include target pseu-
dostates in the expansion of the collision wave function to represent the long-range
polarization of the target in the field of the scattered electron. In early calculations
by Burke et al. [177] and Fon et al. [328] full account of the long-range polarization
potential was taken by including the 2p pseudostate defined by (2.23) as well as
the 1s target eigenstate in the “close coupling with pseudostates” expansion (2.55).
Differential cross sections for elastic scattering were calculated from 1 to 200 eV by
Fon et al. [328] which compared well with absolute angular distribution measure-
ments by Williams [977–979]. However, the 2p state has an unphysical threshold
at ∼11.4 eV and the omission of physical excited states in the expansion meant
that resonance and threshold effects in the 9–13.6 eV range were not accurately
represented.

In order to obtain accurate elastic and inelastic e−–H collision cross sections at
low energies, including resonance and threshold effects, Bartschat et al. [72] carried
out benchmark calculations using two independent R-matrix methods and also using
the convergent close-coupling (CCC) method developed by Bray and Stelbovics
[126, 127] and reviewed by Bray et al. [129, 130]. The two R-matrix methods, the
R-matrix with pseudostates (RMPS) method and the intermediate energy R-matrix
(IERM) method, which are described in detail in Chap. 6, are designed to obtain
accurate collision cross sections close to and above the ionization threshold. How-
ever, both methods give convergent results at low energies. In the RMPS calcu-
lation eight S-states, eight P-states and three D-states were included in expansion
(5.6), where the lowest six states corresponded to the exact n = 1, 2 and 3 non-
relativistic H atom eigenstates, while the remaining 13 states were pseudostates,
allowing for long-range polarization and short-range correlation effects. The corre-
sponding IERM calculation also included the six n = 1, 2 and 3 H atom eigenstates
as well as orbitals representing long-range polarization and short-range correlation
effects. We show the results of these three calculations for the total elastic and 1s–2s
and 1s–2p excitation cross sections between the n = 2 and 3 thresholds compared
with the experimental data of Williams [980] in Fig. 5.4. We see that the agreement
between theory and experiment is excellent, with theory accurately reproducing the
resonance structure converging to the n = 3 threshold at 0.8889 Rydbergs and the
1Po resonance just above the n = 2 threshold, which had been analysed in detail by
Macek and Burke [621]. We note that the 1Se resonance at ∼0.862 Rydbergs has
been discussed in Sect. 3.2.3 (see Fig. 3.5).
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Fig. 5.4 Total electron–hydrogen atom 1s–1s elastic cross section and 1s–2s and 1s–2p excitation
cross sections for collision energies between the n = 2 and 3 thresholds. Full curve, RMPS; broken
curve, IERM; chain curve, CCC. The dots represent the experimental data of Williams [980] (Fig. 4
from [72])

In conclusion, low-energy scattering amplitudes and cross sections for e−–H
collisions can be accurately calculated using the R-matrix method for low n states.
However, there are still major computational problems remaining in order to obtain
accurate low-energy excitation cross sections for high n states of atomic hydrogen
which, for example, are of importance in some diffuse hydrogen clouds in the cold
interstellar medium. This computational difficulty is due to the many coupled chan-
nels involved and the large extent of the corresponding target atom wave functions.
We will return to this difficulty when we discuss electron collisions with hydrogen
atoms at intermediate energies in Chap. 6.

5.6.2 Electron Collisions with He

Results from electron–helium atom collision calculations have many applications.
Helium is relatively easy to study in the laboratory, so many experiments have been
performed providing stringent tests for theory. In astronomy, helium is the second
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most abundant element in the universe, after atomic hydrogen, and helium lines
associated with the excited n = 2, n = 3 and higher states are ubiquitous in spec-
tra from many types of astronomical objects (see [709]). Since most emission line
spectra observed in astronomy are produced by electron impact excitation or by
radiative capture, followed by radiative decay of excited states, it is clear that there
is a demand for high-quality atomic data to interpret these lines.

Also, helium is the simplest multi-electron atom and electron–helium collision
calculations exhibit many features of calculations for more complex atomic targets.
The most obvious difference from electron–hydrogen atom collisions is that the
helium target wave function cannot be represented exactly; the system of nucleus
plus two electrons being a three-body problem. Approximate target wave functions
have to be used, usually employing configuration interaction expansions. Another
difference is that the helium target can be in either a singlet or a triplet spin state
rather than in just a doublet state as in the case of atomic hydrogen, which doubles
the number of excited states for each principal quantum number n. Both of these
differences result in increasing complexity in the corresponding collision calcula-
tions.

5.6.2.1 Elastic Scattering

The first low-energy e−–He elastic scattering R-matrix calculations were carried
out by Robb [792] using a static-exchange approximation where the target was
represented by a configuration interaction expansion. These calculations were later
extended by O’Malley et al. [705] who used an R-matrix eigenchannel method, dis-
cussed in Sect. 4.4.5. In this latter work, O’Malley et al. adopted a multiconfigura-
tional helium ground-state wave function together with 1P and 1D pseudostates, con-
structed from the Hartree–Fock ground state 1s orbital and 2s–4f pseudo-orbitals.
These pseudo-orbitals were optimized to simultaneously minimize the ground-state
energy and maximize the dipole and quadrupole polarizabilities of the target, as
discussed by Vo Ky Lan et al. [941]. In this way they obtained 98% of the ground-
state correlation energy as well as 99.8% of the dipole polarizability and approxi-
mately the correct quadrupole polarizability. The estimated error in the calculated
total cross section below 8 eV was about 1% and this was born out by the excellent
agreement with experiments by Kennerly and Bonham [530]. Both the total and
momentum transfer cross sections were also in good agreement with variational
calculations by Nesbet [677].

5.6.2.2 Inelastic Collisions

A series of R-matrix calculations have been carried out to determine the con-
vergence of low-energy e−–He excitation cross sections and resonance structure.
In these calculations He target eigenstates were included in expansion (5.6) with
progressively higher principal quantum number n. These were 5-state calculations
by Berrington et al. [96] which included all eigenstates with n ≤ 2, 11-state
calculations by Freitus et al. [341] and Berrington et al. [99] which included all
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eigenstates with n ≤ 3, 19-state calculations by Berrington and Kingston [93] and
Fon et al. [332] which included all eigenstates with n ≤ 4, and 29-state calculations
by Sawey et al. [815] and Fon et al. [333–335] which included all eigenstates with
n ≤ 5. The main conclusion from these calculations was that as the number of
target eigenstates retained in the calculation increased, the cross sections converged
at the lowest energies. However, the calculated cross sections were in error above
the threshold of the highest eigenstate retained in the R-matrix expansion. That is
the 5-state calculation had not converged above the n = 2 thresholds, the 11-state
calculation had not converged above the n = 3 thresholds and so on. We will show
in Chap. 6, when we discuss intermediate-energy collisions, that it is necessary to
include pseudostates representing highly excited states and the ionization contin-
uum in the R-matrix expansion, in order to obtain converged results close to and
above the ionization threshold. We have also observed in Sect. 2.2.2 that, in order to
obtain highly accurate results at low energies, it is necessary to include pseudostates
in this expansion which represent long-range polarization effects and other virtual
transitions via high-lying excited states and the continuum.

Recently, close to converged inelastic e−–He R-matrix collision cross section
calculations have been carried out and compared with experiment by Stepanović
et al. [886] and by Lange et al. [570]. In the work of Stepanović et al. cross sections
for exciting the 33S and 31S states of helium near threshold were studied. In the
work of Lange et al. cross sections for exciting both the n = 2 and 3 states of helium
were studied and were also compared with accurate calculations by Fursa and Bray
[355] using the convergent close coupling method. We illustrate this work by show-
ing in Fig. 5.5 the angle-integrated cross sections for excitation of helium to the
33S and 31S states. The calculations were carried out using the B-spline R-matrix
(BSR) computer program written by Zatsarinny [992], discussed in Sect. 5.1.1. The
collision model adopted included 69 target states with S, P, D and F symmetries
consisting of all target eigenstates with these symmetries up to n = 5, together with
42 pseudostates representing higher bound and continuum states. The experimental
cross sections were obtained using a high-resolution electron impact spectrometer,
in a crossed beam geometry, described in detail by Cvejanović et al. [240]. The
experimental data were normalized to the theory, including a cascade contribution,
at 23.20 eV for both the 33S and 31S states since the cross sections exhibit a smooth
energy dependence in the neighbourhood of this energy and hence the experimental
energy resolution does not play a significant role. The cascade contribution was
found to be important only for the 33S excitation, whereas it was negligible for
the 31S state. Overall the experimental cross sections shown in Fig. 5.5 are in good
agreement with the optical excitation functions published by Heddle et al. [448]. The
convoluted theoretical cross sections also exhibit remarkably good agreement with
experiment although there are some discrepancies in the near-threshold region for
excitation of the 33S state where theory predicts somewhat higher values for the res-
onance structure than observed experimentally. This may be due to the higher model
sensitivity of the predicted resonance structure very close to threshold. A detailed
analysis of this resonance structure is given by Lange et al. [570].
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Fig. 5.5 Angle-integrated cross sections for electron impact excitation of the 33S and 31S states
of helium. The experimental results are represented by circles. The theoretical R-matrix results
without (dashed line) and with (solid line) cascade contributions were convoluted with a Gaussian
of 37 meV (FWHM). The vertical bars in the lower panel represent the thresholds for the helium
target states (Fig. 2 from [886])

Finally, we note that the results presented in both Figs. 5.4 and 5.5 show the
important role that resonances play in determining low-energy electron–atom col-
lision cross sections. In earlier work on He it was shown [175, 176] that two pro-
nounced peaks which dominate the 11S–23S collision strength close to threshold
were due to 2Po and 2De shape resonances, in agreement with angular distribution
measurements by Ehrhardt and William [285] and Ehrhardt et al. [287]. Detailed
elastic collision calculations below the 23S threshold also revealed the presence of
a 2Se resonance at ∼19.31 eV, which was first observed by Schulz [835] and which
has been discussed more recently by Hudson et al. [478]. We will see when we
discuss further examples in this section that resonances are a common feature of all
low-energy electron–atom and electron–ion collision cross sections.
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5.6.3 Electron Collisions with Ne

We consider next low-energy electron collisions with neon atoms which are impor-
tant both in fundamental studies and for their many applications. The latter include
modelling applications in the lighting and lasing industry, in plasma processing and
in the interpretation of astrophysical observations.

Elastic electron collisions with inert gases have been studied both experimentally
and theoretically for many years. In particular, elastic scattering R-matrix calcula-
tions have been carried out by Fon and co-workers on He [329], Ne [327], Ar [330]
and Kr [331], in which the ground state of the target together with a 1Po polarized
pseudostate, representing the full dipole polarizability of the target, were included
in the R-matrix expansion. In addition, elastic electron–neon collision calculations
have been carried out by many other workers including McEachran and Stauffer
[617], Dasgupta and Bhatia [250] and Saha [805], where in all these calculations
good agreement with experiment was obtained. However, until recently the situa-
tion for inelastic collisions has been less satisfactory where, as shown by Khakoo
et al. [533], none of the theoretical methods discussed in their paper were able to
consistently reproduce the experimental data for angle-differential cross sections for
excitation of the 2p53s states, or their ratios.

However, more recent calculations carried out by Zatsarinny and Bartschat [998],
using the B-spline R-matrix computer program BSR, have obtained very good
agreement with experiments by Buckman et al. [146], which measured the cross
section for exciting the 2p53s 3Po

0,2 states of neon from threshold to just above the

3p53p thresholds. The sum of these two excitation cross sections had been used
by Brunt et al. [141, 142] and Buckman et al. [146] to analyse the details of the
resonance structure seen in these cross sections, discussed in the review of atomic
negative ion resonances by Buckman and Clark [145].

Also, in later studies by Bömmels et al. [122] and Allan et al. [12], excellent
agreement was obtained between R-matrix calculations and experiment for excita-
tion of the 2p53s states from threshold to above the 3p53p thresholds. As an exam-
ple, we show in Fig. 5.6 a comparison of calculated and experimental cross sections
for excitation of the Ne 2p53s 3P2, 3P1, 3P0 and 1P1 states reported by Allan et al.
[12]. The experimental results were obtained using an electron scattering apparatus
involving two-stage hemispherical analysers with an energy resolution (FWHM) of
9 meV [11]. Absolute cross sections reliable to ±15% were obtained by normal-
ization to helium results. The R-matrix calculations were obtained including the
2p6 1S0 ground state of neon together with the 2p53s and 2p53p excited states in
the R-matrix internal region expansion. This figure illustrates prominent resonance
features just above the 2p53s thresholds and a Wigner cusp together with a group
of narrow resonances associated with the higher lying 2p53p thresholds. The lower
resonances can be assigned as core-excited shape resonances with the dominant
configuration 2p53s3p as discussed by Bömmels et al. [122], while further work is
required to fully identify the resonances at the higher thresholds. Overall the excel-
lent agreement between theory and experiment indicates that the main features of
this collision process are accurately reproduced by the R-matrix calculation. Finally,
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Fig. 5.6 Absolute cross sections (experiment in the left panels and R-matrix calculations in the
right panels) for electron impact excitation of the 2p53s states of Ne at a scattering angle θ = 135◦.
The vertical bars indicate the excitation thresholds including those of the 2p53p 3S1 and 1S0 states
of Ne (Fig. 2 from [12])

we note that the B-spline R-matrix computer program has been used to study a
number of other electron–atom collision processes including low-energy electron
collisions with argon [999], zinc [1000] and oxygen [1003].

5.6.4 Electron Collisions with Si III

As our next example we consider electron collisions with Si III (Si2+). There is
considerable demand for excitation rates for this ion, particularly in the study of lab-
oratory plamas and in the analysis of solar spectra where, for example, the intensity
ratio of Si III lines have been used to determine the electron densities of quiet and
active regions of the sun (e.g. [228]). Absorption lines of Si III have also been found
in quasi-stellar objects [41]. Of particular importance is the following excitation
process

e− + Si III (3s2 1S)→ Si III (3s3p 3Po)+ e−

↘ ↗
Si II (3s3p 1Po n	) (5.237)

which is dominated close to threshold by a Rydberg series of Feshbach resonances.
These resonances are caused by capture of the incident electron into a bound
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Rydberg state in the field of Si III in the excited 3s3p 1Po state, which decays
leaving the target ion in its 3s3p 3Po first excited state. R-matrix calculations for this
process have been carried out by Baluja et al. [46] and Griffin et al. [425], where the
latter authors also studied transitions in the isoelectronic ion Ar VII (Ar6+). In these
calculations the 12 lowest target eigenstates of Si III were included in expansion
(5.6), where each eigenstate was represented by a configuration interaction expan-
sion. We present in Fig. 5.7 the collision strength for the 3s2 1S→ 3s3p 3Po transi-
tion calculated by Baluja et al. [46], compared with distorted wave results calculated
by Blaha (quoted by Nicolas [684]). We see that at these low energies, the colli-
sion strength is dominated by resonance structure while the distorted wave results,
which omit the intermediate resonance states in the collision, represent the much
smaller non-resonant background. The importance of resonances for this transition
is demonstrated in Table 5.1 where we compare the effective collision strength,

Fig. 5.7 Collision strength for the transition 3s2 1S → 3s3p 3Po in Si III. Full line, R-matrix
calculation [46]; dashed line, distorted wave calculation [684] (Fig. 1 from [46])

Table 5.1 Effective collision strength for the transition 3s2 1S→ 3s3p 3Po in Si III as a function
of electron temperature for R-matrix and distorted wave calculations

Electron temp
104 K R-matrix Distorted wave

0.50 6.898 1.120
0.75 5.961 1.111
1.00 5.428 1.101
2.00 4.407 1.065
5.00 3.188 0.969

10.00 2.292 0.842
20.00 1.529 0.667
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Fig. 5.8 Cross section for 3s2 1S → 3s3p 3Po electron impact in Si III. Points represent average
experimental values and bars give relative uncertainties at 90% confidence level. Dashed curve,
R-matrix calculation [46]; solid curve, R-matrix calculation [425], both calculations convoluted
with a Gaussian width 0.24 eV (Fig. 3 from [946])

defined by (2.153), for these two calculations for a range of electron temperatures.
At 5,000 K the R-matrix result is larger by a factor of about 6 and even at 2× 105 K
it is still more than a factor of 2 higher.

More recently, absolute excitation cross sections for the 3s2 1S→ 3s3p 3Po and
1Po transitions in Si III were measured close to threshold by Wallbank et al. [946]
using a merged electron–ion beams energy-loss technique. We show in Fig. 5.8 the
measured cross section for the 3s2 1S → 3s3p 3Po transition compared with the
R-matrix calculation by Baluja et al. [46] and Griffin et al. [425]. The resonance
peak close to the threshold seen in the R-matrix calculations is confirmed by exper-
iment which is also in good agreement with its predicted magnitude. However, the
agreement between the R-matrix calculations and experiment is less good at ener-
gies more than 1 eV above threshold, which Wallbank et al. believe may be due to
the omission of backscatter electrons in the experiment.

In conclusion, the important experiment by Wallbank et al. [946] has shown
that R-matrix theory can accurately predict low-energy cross sections for relatively
light multi-electron ions. This work again demonstrates the crucial role that reso-
nances play in enhancing low-energy electron–atom and electron–ion collision cross
sections.

5.6.5 Electron Collisions with Fe II

Electron impact excitation cross sections and the related effective collision strengths
for all ionization stages of iron peak elements are of crucial importance in the
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quantitative analysis of many astronomical spectra, see, for example, [79]. As a
result, for nearly two decades there has been a major effort as part of the interna-
tional Iron Project [482] to calculate electron impact excitation data for all ionization
stages of iron peak elements using R-matrix computer programs, and around 70
papers describing the results have been published in Astronomy and Astrophysics.
Of particular importance is singly ionized iron where its high cosmic abundance,
its relatively low ionization potential and its complex open d-shell atomic structure
ensure that a very large number of electron impact excited lines are observed in
objects as diverse as gaseous nebulae, active galactic nuclei, quasars, Seyfert galax-
ies and supernovae remnants. In addition, collisional data are required in the analysis
of many laboratory plasmas which occur, for example, in laser plasma interactions
and controlled thermonuclear fusion devices.

In the absence at present of experimental data for electron impact excitation cross
sections for Fe II, this requirement for accurate collisional data can only be met by
detailed and accurate calculations. However, there are a number of reasons why
the calculation of collision cross sections for this and similar iron peak elements is
difficult. First, the complexity of the open d-shell target means that large configura-
tion interaction expansions, discussed in Sect. 2.2.1, are required to obtain accurate
target wave functions and energies. Second, a very large number of coupled channels
are required to accurately represent the collision wave function even for low-energy
electron collisions. Third, the complex resonance structure which dominates the
low-energy cross sections requires a very fine energy mesh to accurately resolve.

In order to illustrate the complexity of this problem we show in Fig. 5.9 the
energy level diagram of Fe II below 30,000 cm−1 (∼3.72 eV), taken from the tables
of Johansson [505] and Corliss and Sugar [232], with some forbidden infra-red and
optical transitions observed in gaseous nebulae indicated. In this low-energy region
there are 16 L S-coupled states of Fe II resulting in 46 fine-structure levels, where
particular interest in earlier work has focused on transitions between the four lowest
L S-coupled states, corresponding to the 3d64s a 6D ground state and the 3d7 a 4F,
3d64s a 4D and 3d7 a 4P excited states. In order to obtain accurate excitation cross
sections involving these states it is important to represent them by accurate configu-
ration interaction expansions, as discussed in Sect. 2.2.1, and to adequately represent
higher states that play an important role in the transitions as virtual states. In particu-
lar, these higher states give rise to resonances that lie in the energy range of interest
which we will see below dominate the low-energy cross sections. We present in
Fig. 5.10 an energy level diagram of Fe II which shows the range of energies of
the L S-coupled states which could play an important role in low-energy electron
collisions. As an indication of the size of the computation involved in including in
the R-matrix expansion (5.6) all target states corresponding to the 10 lowest lying
configurations 3d64s, 3d7, 3d54s2, 3d64p, 3d54s4p, 3d65s, 3d64d, 3d65p, 3d64f and
3d54p2, we give in Table 5.2 the maximum number of channels that can occur both
in L Sπ -coupling and in Jπ -coupling including relativistic effects as an increasing
number of these configurations are included in the calculation.

Over more than 25 years, a number of increasingly sophisticated e−–Fe II col-
lision calculations have been carried out. We summarize here some of the most
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Fig. 5.9 The 16 L S-coupled states of Fe II below 30,000 cm−1 showing the corresponding 46
fine-structure levels and some forbidden infra-red and optical transitions observed in gaseous
nebulae, with their wavelengths given in Angstrom (Fig. 2 from [188])
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Table 5.2 Maximum number of L S-coupled target states and coupled channels and the corre-
sponding maximum number of fine-structure target states and coupled channels in an R-matrix
expansion for e−–Fe II collisions, where the numbers correspond to retaining in the calculation an
increasing number of the target configurations illustrated in Fig. 5.10

L Sπ Jπ

No. of configs States Channels States Channels

1 24 73 63 420
2 32 98 82 540
3 48 148 119 792
4 116 366 299 2,052
5 261 818 716 5,076
6 285 891 779 5,496
7 389 1,254 1,055 7,596
8 457 1,472 1,235 8,856
9 585 1,980 1,581 11,796

10 770 2,575 2,094 15,576

significant studies. The first detailed calculations were made by Nussbaumer and
Storey [699], who included in their expansion of the collision wave function the
four lowest L S-coupled states of Fe II shown in Fig. 5.9. However, these calcu-
lations were only carried out for three energies above all thresholds and hence no
resonance structure was found. Later, Baluja et al. [48] extended this earlier work
by adopting configuration interaction wave functions for the target and carrying out
an R-matrix calculation including the four lowest L S-coupled states of Fe II using
a finer energy mesh, which also included the resonance region below the highest
threshold. It was found that even in the non-resonant region the excitation cross
sections differed by a factor of 2 from the earlier results [699]. This work was
further extended by Berrington et al. [101] who included relativistic terms from
the Breit–Pauli Hamiltonian, discussed in Sect. 5.4.2, in the calculation of both
the target and the collision wave functions, yielding effective collision strengths
for transitions between the 16 fine-structure levels corresponding to the 4 lowest
L S-coupled states of Fe II. The collision strengths obtained from this calculation
were subsequently used by Keenan et al. [527] to obtain electron density-sensitive
relative populations for the 3d64s a 6D fine-structure levels down to a temperature
of 100 K and densities Nc = 102–106 cm−3 applicable to astrophysical plasmas,
which were found to be a factor of 2 different from previous calculations.

With the rapid increase in computer power, Pradhan and Berrington [755] were
able to carry out more sophisticated R-matrix calculations, which included all 38
quartet and sextet L S-coupled target states belonging to the 3d64s, 3d7 and 3d64p
configurations. It was found that the additional states belonging to the 3d64p con-
figuration, omitted in previous calculations, played an important role due to strong
coupling with the 3d64s states. Later, Zhang and Pradhan [1007] and Bautista and
Pradhan [78] extended this L S-coupled calculation to yield collision strengths
and effective collision strengths between the corresponding fine-structure levels,
by recoupling the K -matrix elements using the pair-coupling scheme defined by
(5.119). The rate coefficients for the transitions among the lowest 16 fine-structure
levels were found to be substantially different from those predicted by Keenan
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et al. [527] and by Nussbaumer and Storey [699], indicating that further work was
required to obtain reliable rate coefficients.

In a series of more recent R-matrix calculations by Ramsbottom et al. [770–772]
and by Zatsarinny and Bartschat [1001] all 113 quartet and sextet L S-coupled target
states belonging to the lowest five configurations, 3d64s, 3d7, 3d54s2, 3d64p and
3d54s4p in Fig. 5.10, were included in the expansion of the total wave function.
This gave rise to a maximum of 354 channels for the total spin state S = 2 cou-
pling the quartet and sextet target states. These calculations, carried out using two
independent R-matrix computer programs RMATRXII and BSR, discussed in Sect.
5.1.1, were generally in good agreement although there were some differences in
the low-energy region dominated by resonances caused by different representations
of configuration interaction effects.

In order to calculate collision strengths and effective collision strengths for
low-lying fine-structure forbidden transitions required in many astrophysical appli-
cations, Ramsbottom et al. [769, 773] also carried out Breit–Pauli R-matrix calcu-
lations including all fine-structure levels corresponding to the 3d64s, 3d7 and 3d64p
target configurations. It follows from Table 5.2 that this calculation included 262
coupled target states and a maximum of 1,800 coupled channels. We note that the
target states and channels corresponding to the 3d54s2 and 3d54s4p configurations,
which we see from Fig. 5.10 lie in the same energy range as the 3d64p configuration,
were not included in this calculation since their effect on the low-energy transitions
of interest was expected to be small. We illustrate the results obtained in this calcula-
tion by showing in Fig. 5.11 the collision strength between the 3d64s a 6De

9/2 and the
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Fig. 5.11 Collision strengths for the 3d64s a 6De
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9/2 fine-structure transition in e−–
Fe II collisions. Solid line: Ramsbottom et al. 262-state calculation [773]; dashed line: Zhang and
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from [773])
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3d7 a 4Fe
9/2 fine-structure levels, which are compared with the earlier calculations

by Zhang and Pradhan [1007] and by Nussbaumer and Storey [699]. We see that
the collision strength is dominated by resonances, which required the evaluation
at 16,200 distinct energy values to accurately delineate, 16,000 being in the reso-
nance region and 200 above this region. We also note that the agreement between
the calculations by Ramsbottom et al. [773] and by Zhang and Pradhan [1007] is
quite good, although the non-resonant background collision strength of the latter
calculation appears lower at incident electron energies around 0.1 Rydbergs. The
corresponding effective collision strength for this transition is shown in Fig. 5.12
for the temperature range from 30 to 100,000 K, which incorporates temperatures
important in astrophysical and plasma applications. We see that the effective col-
lision strengths predicted by Zhang and Pradhan [1007] lie between 10 and 15%
higher than the Ramsbottom et al. [773] values. However, the single temperature
value of Bautista and Pradhan [78] lies a factor of 3 lower than the Ramsbottom
et al. [773] results. For this transition the early prediction of Berrington et al. [101] is
in reasonably good agreement with the most recent results but the results of Keenan
et al. [527] differ significantly from the most recent work [773]. It is thus clear from
this figure that more work needs to be carried out to confirm the result for even
this low-lying transition. Since there are no experimental measurements to compare
these calculations with, accurate results can only be confirmed by systematically
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increasing the number of configurations included in the target and in the collision
wave functions until convergence is obtained.

In conclusion, we see by examining Fig. 5.10 that, in addition to configurations
included in the recent calculations, target states belonging to higher and omitted
configurations are expected to play an important role, particularly for transitions
involving higher states of interest in applications. The role of the continuum, which
could be represented by pseudostates discussed in Chap. 6, may also be important.
We see from Table 5.2 that the inclusion of these additional target states greatly
increases the number of coupled channels, particularly when collision strengths for
transitions between fine-structure levels of the target are required. However, with
the development of parallel R-matrix collision programs and the implementation
of efficient methods for including relativistic terms in the calculation, discussed in
Sects. 5.4 and 5.5, these objectives, while presenting a computational grand chal-
lenge [188], should be achievable in the near future.

5.6.6 Electron Collisions with Fe XV

We have observed in our discussion of electron collisions with Fe II in Sect. 5.6.5
that accurate calculations of collision strengths for many transitions of importance in
the analysis of astronomical spectra will require the inclusion of relativistic effects
in the Hamiltonian. We have also seen in Sects. 5.4 and 5.5 that there are several pro-
cedures for including these effects, whose accuracy depends on the nuclear charge
number Z of the atomic nucleus, ranging from transforming the non-relativistic
K -matrix for relatively small Z targets to solving the Dirac equation for large Z
targets. An important question that arises is when can accurate results be obtained
using the Breit–Pauli Hamiltonian, discussed in Sect. 5.4.2, and when is it neces-
sary to use the Dirac Hamiltonian, discussed in Sect. 5.5. In this section we con-
sider detailed R-matrix collision strength calculations for Mg-like Fe XV which
addressed this question.

There have been a number of R-matrix calculations of electron impact excitation
of Fe XV. These include Breit–Pauli R-matrix calculations by Eissner et al. [291]
and Griffin et al. [427] and Dirac R-matrix calculations by Aggarwal et al. [3].
In this last work it was found that there were significant differences between the
Breit–Pauli and the Dirac calculations and it was therefore suggested that a fully
relativistic Dirac calculation is necessary in order to obtain accurate results for a 14
times ionized Z = 26 target.

In order to explain whether the differences in the calculations were due to the
different treatment of the relativistic effects or to the approximations made in solv-
ing the resultant equations, Berrington et al. [103] carried out detailed calculations
for electron collisions with Fe XV using both the Breit–Pauli computer program
RMATRXI, discussed in Sect. 5.1.1, and the Dirac computer program DARC,
discussed in Sect. 5.5.1, removing as far as possible any variation in algorithmic
features, such as the energy mesh and the target states included in the expansion. In
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both calculations 45 Jπ target states were retained in the R-matrix expansion cor-
responding to the 9 configurations 3s2, 3s3p, 3s3d, 3s4s, 3s4p, 3s4d, 3p2, 3p3d and
3d2. In addition, the configuration interaction representation of these target states
was expanded in terms of the same set of configurations. In this way the possibility
of pseudoresonances was avoided. Finally, in both calculations a fine energy mesh
was adopted in order to fully resolve the resonance structure. As an example of the
results obtained, the effective collision strengths for two double-electron transitions
are shown in Fig. 5.13. We see that the Breit–Pauli and Dirac R-matrix results are in
close agreement, with the variations between the calculations at lower temperatures
being primarily attributed to the differences in the resonance positions determined
by the Breit–Pauli and the Dirac target orbitals.

In conclusion, it was found that the average difference between the Breit–Pauli
and Dirac R-matrix effective collision strengths for the 990 transitions considered
between the 45 target states was only 6.14%. Furthermore, there is evidence from
this work that the small differences that persist between the two calculations are due

0 2e+06 4e+06 6e+06 8e+06
0.085

0.090

0.095

0.100

0.105

0.110

0.115

0 2e+06 4e+06 6e+06 8e+06

Temperature (K)

0.018

0.020

0.022

0.024

0.026

0.028

0.030

E
ff

ec
tiv

e 
co

lli
si

on
 s

tr
en

gt
h 

Fig. 5.13 Electron collisions with Fe XV. Effective collision strengths for the 3s2 1S0 → 3p2 1D2
(upper graph) and 3s2 1S0 → 3p2 3P2 (lower graph) transitions. Breit–Pauli R-matrix results are
represented by solid lines and the Dirac R-matrix results are represented by dashed lines (Fig. 2
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primarily to variations in the target states rather than due to differences in collision
theories. Consequently, this work shows that the Breit–Pauli Hamiltonian can be
used with confidence in calculating transitions between the relatively low-Z iron
peak elements.

5.6.7 Electron Collisions with Xe XXVII

As our last example in this chapter we consider Dirac R-matrix calculations of
electron collisions with Ni-like Xe XXVII (Xe26+) ions by Badnell et al. [37].
The spectra arising from electron impact excitation of heavier ions, such as ions

Fig. 5.14 Electron collisions with Xe26+. Collision strength for the 129-state Dirac R-matrix J =
0–0 3d10 1S0–3d94d 1S0 transition (Fig. 2 from [37])

Fig. 5.15 Electron collisions with Xe26+. Effective collision strength for the 129-state Dirac
R-matrix J = 0–0 3d10 1S0–3d94d 1S0 transition. Solid curve: 129-state Dirac R-matrix calcu-
lation; dashed curve: plane wave Born approximation (Fig. 3 from [37])
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of Xe, are important in many applications such as found in ITER (International
Thermonuclear Experimental Reactor) and in the context of microlithographic light
sources required to provide the next generation of etching for the semiconductor
industry. In this work results for “feature photon emissivity coefficients”, which
are important in these applications, were obtained for Xe26+ from the calculated
collision strengths.

In order to obtain accurate results for this relatively heavy ion the Dirac R-matrix
program DARC, discussed in Sect. 5.5.1, was used in the internal R-matrix region
which was interfaced with an extended and parallelized version of the external
region program, originally developed for the Opacity Project [100, 860], discussed
in Sect. 8.3. The calculation included 129 states of Xe26+ arising from the con-
figurations 3d10 and 3d9n	 for n = 4 and 5 and 	 = 0 to n − 1, which yield a
maximum of 821 coupled channels. Also, 21 continuum basis orbitals were retained
in each channel for 2J = 1–43 and 16 continuum basis orbitals were retained for
2J = 44–71, resulting in Hamiltonian matrices of rank 17,356 and 13,136, respec-
tively. The contribution to the cross sections from 2J > 71 (“top-up”) was obtained
for dipole-allowed transitions using the sum rule proposed by Burgess [149] and for
non-dipole transitions by assuming a geometric series in energy.

As an example of this study we show in Fig. 5.14 the results of the 129-state cal-
culation of the strong J = 0–0 collision strength for the 3d10 1S0–3d94d 1S0 transi-
tion, which populates the upper level of the lasing transition 3d94d 1S0–3d94p 1P1
in Xe26+. We see that over most of this energy range the collision strength is dom-
inated by resonance structure which has to be included to obtain accurate results.
To see this we compare the Maxwellian-averaged effective collision strength for
this transition with plane wave Born approximation calculations in Fig. 5.15. We
see that the Dirac R-matrix calculation is ∼18% larger than the Born result at
log T (K ) = 6.8, which corresponds to the temperature of peak fractional abun-
dance for Xe26+ over a wide range of electron densities. We also see that at lower
temperatures this discrepancy becomes even larger.

In conclusion, these calculations show that the Dirac R-matrix calculations give
significantly different effective collision strengths from the Born approximation in
the temperature range of interest. In addition, the resonance enhancement of the
effective collision strength plays a crucial role in obtaining accurate results. In gen-
eral, the Dirac R-matrix method will play an essential role in obtaining accurate
electron collision strengths for the heaviest atomic targets at energies and tempera-
tures of importance in many applications.



Chapter 6
Intermediate-Energy Collisions

In this chapter we consider electron collisions with atoms and atomic ions at inter-
mediate energies which are defined to range from close to the ionization threshold to
several times this threshold. In this energy range the target can be ionized as well as
excited and, since the energy is not high, strong coupling effects can exist between
the channels leading to excitation and to ionization, which can involve intermediate
resonances. Hence, theoretical methods that give reliable results for excitation and
ionization cross sections at intermediate energies must accurately represent these
effects.

We commence our discussion of intermediate-energy collisions in Sect. 6.1 by
considering examples that illustrate the complexity of the processes that can occur
at these energies. We then give a brief overview of methods that have been devel-
oped to enable accurate electron scattering amplitudes and cross sections to be cal-
culated at intermediate energies. This provides an introduction to our description
of the R-matrix with pseudostates (RMPS) method in Sect. 6.2, which in recent
years has enabled accurate electron collision and photoionization cross sections
to be calculated at low and intermediate energies for multi-electron atoms, ions
and molecules. In Sect. 6.3 we describe the intermediate-energy R-matrix (IERM)
method where the emphasis is to enable accurate electron impact excitation and
ionization cross sections involving highly excited states to be calculated close to the
ionization threshold. In Sect. 6.4 we analyse the analytic behaviour of the scatter-
ing amplitude and cross sections at intermediate energies using these methods. We
show that the scattering amplitude exhibits non-physical resonances which must
be eliminated by energy averaging the corresponding T -matrices in order to obtain
accurate scattering amplitudes and cross sections. Then in Sect. 6.5 we describe
distorted wave and Born series R-matrix methods for electron impact ionization. In
the distorted wave method, the faster ionizing electron is represented by a distorted
wave and a slower ejected electron and resultant residual ion are represented by
an R-matrix expansion. This enables processes, such as excitation–autoionization
discussed below, to be accurately calculated when the incident ionizing electron
energy is well above the ionization threshold. Finally, in Sect. 6.6 we present results
from some recent electron–atom and electron–ion collision R-matrix calculations at
intermediate energies.

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_6,
C© Springer-Verlag Berlin Heidelberg 2011
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6.1 Overview of Intermediate-Energy Methods

The complexity of the processes that can occur at intermediate energies is illustrated
below for electron collisions with C IV (C3+), which has been the subject of exper-
iments [235, 669] as well as detailed R-matrix calculations [653, 842]. In addition
to excitation and to the direct ionization (DI) process, which we write as

e− + C3+(1s22s)→ C4+(1s2)+ 2e−, (6.1)

three important indirect ionization processes can occur. These are as follows:

i. Excitation–autoionization (EA), where the target is excited to an intermedi-
ate doubly excited resonance state which autoionizes with the emission of an
electron

e− + C3+(1s22s)→ C3+∗∗(1sn′	′n′′	′′)+ e−

↓
C4+(1sn	)+ e−. (6.2)

ii. Resonant excitation–double-autoionization (REDA), where the incident elec-
tron is captured into an intermediate triply excited resonance state which decays
with the sequential emission of two electrons

e− + C3+(1s22s)→ C2+∗∗∗(1sn′	′n′′	′′n′′′	′′′)
↓
C3+∗∗(1sn′′′′	′′′′n′′′′′	′′′′′)+ e−

↓
C4+(1sn	)+ e−. (6.3)

iii. Resonant excitation–auto-double-ionization (READI), where the incident elec-
tron is captured into an intermediate triply excited resonance state which decays
with the simultaneous emission of two electrons

e− + C3+(1s22s)→ C2+∗∗∗(1sn′	′n′′	′′n′′′	′′′)
↓
C4+(1sn	)+ 2e−. (6.4)

The intermediate resonance states in (6.2), (6.3) and (6.4) are indicated by asterisks
and the excited electron orbitals in these states are marked by primes. In all three
processes C4+ can be left in its ground state or in an excited state. In addition to
these processes, the scattered electron can be captured into an intermediate reso-
nance state which can decay with the emission of a photon giving rise to dielec-
tronic recombination. This radiative decay process becomes particularly important
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for Rydberg resonances involving highly charged ions, which we will discuss in
Sect. 8.2.

Many approaches have been developed to enable accurate electron impact exci-
tation and ionization cross sections of atoms and ions to be calculated at inter-
mediate energies. These include optical potential methods (e.g. [612, 613]), Born
series methods (e.g. [503, 948]) and distorted wave methods (e.g. [512, 513, 629]),
where Born series and distorted wave methods are perturbative approaches which
are appropriate when the coupling between the initial and final states is not
strong.

Considerable progress has also been made in recent years in extracting accurate
continuum information from expansions in square (L2) integrable functions, which
are applicable when the coupling between the bound and continuum states becomes
strong. In these L2 integrable methods the usual specification of the asymptotic form
of the wave function is avoided by expanding it in terms of functions which vanish
asymptotically. Diagonalization of the Hamiltonian in an L2 integrable basis then
yields a discretization of the continuum spectrum from which electron scattering or
photoionization information can be extracted. A number of procedures for extracting
this information have been developed. These include T -matrix extrapolation from
complex energies [266, 616, 818, 819], Fredholm analytic continuation [787] and
Stieltjes imaging and moment T -matrix methods [571, 572, 981, 982]. These L2

approaches, which have been reviewed by Reinhardt [785, 786], have been particu-
larly successful in the calculation of resonance positions and widths and in the study
of photoionization cross sections.

More recently, an exterior complex scaling (ECS) method, proposed by Simon
[877] and developed further by Rescigno et al. [789], has been used with consid-
erable success by Rescigno et al. [790], Baertschy et al. [39, 40] and McCurdy
et al. [615] to obtain accurate electron–hydrogen atom ionization cross sections at
intermediate energies. In this method, the time-independent Schrödinger equation
is solved numerically on a two-dimensional grid where the radial coordinates are
rotated into the complex plane at a radius R0, using the transformation

z(r) =
{

r r < R0

R0 + (r − R0)eiη r ≥ R0
. (6.5)

The transformation defines a box of side R0 such that in the box the radial coordi-
nates are real and outside the box one or both the radial coordinates are complex.
Inside the box the Schrödinger equation can be solved using standard numerical pro-
cedures and outside the box the ECS procedure transforms any outgoing wave into
a function that falls off exponentially. Also, a propagating exterior complex scaling
(PECS) method has been developed by Bartlett and Stelbovics [59, 60], Bartlett et al.
[61] and Bartlett [57, 58] which has been used to obtain accurate electron impact
differential ionization cross sections for hydrogenic targets with Z ≤ 4 and which
gave strong support for the Wannier threshold behaviour of the electron–hydrogen
atom ionization cross section discussed in Sect. 3.3.5. It has also been shown that
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this approach has the potential to treat electron collisions with multi-electron atoms
and ions at intermediate energies.

In the next section we consider R-matrix methods based on the “close coupling
with pseudostates” expansion introduced in Sect. 2.3.1. These methods have some
aspects of similarity to the L2 integrable methods mentioned above, in that the close
coupling expansion is carried out in terms of basis functions confined to an internal
region and the summation over target bound states is augmented by a summation
over suitably chosen L2 integrable pseudostates, representing the highly excited and
continuum eigenstates of the target Hamiltonian. In this method, coupling between
bound states and continuum states is treated to all orders at the expense of a con-
siderable increase in the number of coupled second-order integrodifferential equa-
tions that have to be solved. We will see that this close coupling with pseudostates
expansion is the basis of recent applications of R-matrix theory which have yielded
accurate cross sections at intermediate energies for electron impact excitation and
ionization, as well as for photoionization, of multi-electron atoms and ions. We
will also consider the extension of this method to electron–molecule collisions at
intermediate energies in Chap. 11.

The importance of strong coupling effects between bound and continuum states
of the target in electron–atom collisions has long been recognized and many workers
have considered including pseudostates in the close coupling expansion in order
to represent the continuum states of the target. Early work, carried out by Burke
and Schey [160], suggested that pseudostates should be retained in their low-energy
electron–atomic hydrogen close coupling calculations, which included the 1s, 2s and
2p target eigenstates, in order to remove certain inadequacies in their results. At the
same time Rotenberg [799] introduced a Sturmian basis in positron–hydrogen atom
elastic scattering, where this basis was discrete and non-orthogonal and where the
first member was the hydrogen atom ground state and the remaining members were
pseudostates. Also, as we have already mentioned in Sect. 2.2.2, the observation
by Castillejo et al. [205], that 18.6% of the polarizability of atomic hydrogen in its
ground state comes from the continuum terms in the expansion of the polarizability,
led Damburg and Karule [245] to point out that the full polarizability in electron
scattering by atomic hydrogen can be obtained by including a single 2p polar-
ized pseudostate in the close coupling expansion. This polarized pseudostate was
incorporated in close coupling with pseudostates calculations for elastic electron–
hydrogen atom collisions by Burke et al. [177] and Fon et al. [328], giving improved
convergence over calculations including only target eigenstates. Also, Geltman and
Burke [368] and Burke and Webb [163] extended this work by including several
pseudostates in the electron–hydrogen atom close coupling expansion used to study
the excitation of the 2s and 2p states, with improved agreement with experiment.
Later, polarized pseudostates were incorporated into elastic electron–helium, neon
and argon collision calculations by Fon et al. [327, 329, 330].

In the applications of pseudostate methods that we have discussed so far, there
has been no systematic attempt to explore the convergence of the pseudostate expan-
sion. In order to address this question, we compare in Fig. 6.1 the exact spectrum of
a typical target atom or ion with its approximate representation by a close coupling
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Fig. 6.1 Exact spectrum of a target atom or ion and its approximate representation by a bound
with pseudostates spectrum at low and intermediate energies

with pseudostates expansion corresponding to expansion (2.55). We see that the
lowest bound target eigenstates are accurately represented by the close coupling
with pseudostates expansion. However, the infinite number of high-lying Rydberg
state energies and the continuum spectrum of the target are represented by a dis-
crete spectrum so that ionization is approximated by an appropriate summation over
excitations of pseudostates lying at higher energies in the continuum. It is thus clear
that, in order to obtain an accurate representation of both excitation and ionization
at intermediate energies, the continuum must be spanned by a sufficiently dense
pseudostate basis.

An early study of the convergence of the close coupling with pseudostates expan-
sion was made by Burke and Mitchell [165] for electron collisions with hydrogen
atoms. They included the 1s and 2s eigenstates and up to three s-wave pseudostates
in this expansion and found that the 1s–2s excitation cross section converged rapidly
at intermediate energies to a result significantly smaller than that obtained omitting
the pseudostates. However, the resultant cross sections exhibited non-physical reso-
nances associated with the pseudostate thresholds which had to be averaged over to
obtain physically meaningful results, as we will discuss in Sect. 6.4. These calcu-
lations were extended by Oza and Callaway [711] and by Oza [710], who included
further s-wave eigenstates and pseudostates in the expansion of the wave function,
giving results in good agreement with accurate results obtained by Poet [747, 748]
for this s-wave model. In more elaborate studies of e−–H collisions at intermediate
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energies, Callaway and Wooten [198, 199] and Callaway [197] included 1s, 2s,
2p and 3d target eigenstates together with seven pseudostates in this expansion.
They found that the 1s–2s and 1s–2p excitation cross sections at intermediate ener-
gies were lower than the cross sections obtained including 1s, 2s and 2p eigen-
states alone, with substantially better agreement with experiment. Later, as greater
computing resources became available, Callaway and Unnikrishnan [200] extended
these calculations to study excitation of the n = 3 states of atomic hydrogen at inter-
mediate energies where they retained seven target eigenstates and ten pseudostates
in the close coupling with pseudostates expansion.

Finally, in important more recent developments we mention the “convergent
close coupling” (CCC) method, introduced by Bray and Stelbovics [126–128], in
which the radial basis of the target eigenstates and pseudostates is expanded in
members of a complete Laguerre basis, and the scattering amplitude is obtained
by solving the resultant coupled integrodifferential equations in momentum space.
Using this method the cross sections have been shown to be rapidly convergent
as the Laguerre basis is expanded towards completeness. The CCC method has
been successfully applied to both electron impact excitation of atoms and ions with
one active electron as well as photoionization of atoms and the method and results
have been reviewed by Bray and Stelbovics [129] and Bray et al. [130]. We also
mention the time-dependent close coupling method which was first applied to cal-
culate total cross sections for electron impact ionization of H by Pindzola et al.
[736, 737] and photon double ionization of He by Pindzola and Robicheaux [738].
In this method, the time-dependent close coupled second-order partial differential
equations are solved using a wave packet approach on a two-dimensional numerical
lattice for total and differential cross sections and on a three-dimensional numerical
lattice for electron impact ionization of atoms and ions. Applications of this method,
which now include electron and photon collisions with few-electron atoms, ions and
molecules, have been reviewed by Pindzola et al. [740].

6.2 R-Matrix with Pseudostates Method

In this section we describe the R-matrix with pseudostates (RMPS) method,
introduced by Bartschat et al. [70, 71] and further developed by Bad-
nell and Gorczyca [33], Gorczyca and Badnell [394] and Marchalant and
Bartschat [633, 634]. The RMPS method has enabled accurate electron colli-
sion cross sections to be calculated at low and intermediate energies for arbi-
trary multi-electron atoms and ions. It has also been used to determine accu-
rate atomic photoionization cross sections and electron–molecule collision cross
sections at low and intermediate energies, as discussed in Chaps. 8 and 11,
respectively.

The RMPS method commences, as in standard R-matrix theory described in
Sect. 5.1, by partitioning configuration space into an internal region, an external
region and an asymptotic region as illustrated in Fig. 5.1. The time-independent
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Schrödinger equation (5.2) is then solved by expanding the total wave function using
(5.5) and (5.6) in the internal region and using (5.28) in the external and asymptotic
regions. The new feature of the RMPS method arises in the choice of the target
eigenstates and pseudostates representing the exact spectrum in Fig. 6.1. These are
chosen to diagonalize the N -electron target Hamiltonian HN as follows:

〈Φi |HN |Φ j 〉 = eiδi j , (6.6)

where for notational convenience both the target eigenstates and pseudostates are
denoted by Φi . Hence, in accord with our discussion of Fig. 6.1, it follows that the
lowest energies ei in (6.6) provide an accurate representation of the lowest bound-
state eigenenergies of the target, while the higher energies ei provide a discrete
representation of the high-lying bound and continuum spectrum of the target. As in
Sect. 2.2, we expand both the target eigenstates and pseudostates as a summation
over an orthonormal set of target configurations φi in the form

Φ j (XN ) =
∑

i

φi (XN )ci j , (6.7)

where the φi are constructed from both physical and pseudo-orbitals and where the
coefficients ci j are obtained by diagonalizing the target Hamiltonian in (6.6).

We consider first the choice of the physical and pseudo-orbitals used to construct
the target eigenstates and pseudostates included in expansion (6.7). We consider a
procedure analogous to that used by Bartschat et al. [70] in their RMPS study of
electron–hydrogen atom collisions at low and intermediate energies. For illustrative
purposes, we assume that the following orbitals are retained in the calculation:

1s 2s 3s 4s . . . nmaxs
2p 3p 4p . . . nmaxp

3d 4d . . . nmaxd,
(6.8)

where 1s, 2s, 2p are physical orbitals and 3s, 3p, 3d, . . . , nmaxs, nmaxp, nmaxd, which
are denoted here and below by a bar, are pseudo-orbitals. In the case of atomic
hydrogen the 1s, 2s and 2p physical orbitals are the exact non-relativistic orbitals of
the hydrogen atom and in the case of general multi-electron atoms and ions, such as
Be-like ions considered in Sect. 2.2.1, the physical orbitals are usually chosen to be
the Hartree–Fock orbitals of the target ground state and low-lying excited states.

The choice of the pseudo-orbitals in (6.8) can be made in many different ways
subject to the condition that as nmax → ∞ the orbital basis is complete for each
orbital angular momentum 	. A convenient choice is to expand the radial component
of the pseudo-orbitals in a Sturmian-type basis as follows:

Pn	(r) =
n∑

i = 	+1

an
i	r

i e−αr , n = nmin, . . . , nmax, (6.9)
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where nmin is the minimum value of n, which is 3 in the example defined by (6.8) and
nmax is the maximum value of n. The coefficients an

i	 in (6.9) are then determined
so that, for each orbital angular momentum 	, the pseudo-orbitals are orthogonal to
the corresponding physical orbitals and are orthonormal so that

∫ a0

0
Pn	(r)Pn′	(r) = 0,

∫ a0

0
Pn	(r)Pn′	(r) = δnn′, all n and n′. (6.10)

In this analysis we have assumed that the radius a0 of the internal region is chosen
so that both the physical and pseudo-orbitals are effectively zero for r ≥ a0. Owing
to the completeness of the Sturmian-type basis, the choice of the range parameter
α in (6.9) is in principle arbitrary. However, its choice will affect the convergence
properties of the pseudostate expansion, with different choices of α being required
to obtain the most rapid convergence in different energy regions and for different
transitions. Also, by adopting a pseudostate expansion, we see from Fig. 6.1 that
we have replaced the continuum spectrum of the atom by a discrete spectrum, thus
introducing non-physical pseudostate thresholds into the calculation. By varying α
or the value of nmax in (6.9) we can move the non-physical thresholds, associated
with pseudo-resonances, away from the energy range of interest. We will return to
this question again in Sect. 6.4 where we consider a T -matrix energy-averaging
procedure for eliminating the non-physical thresholds and pseudo-resonances.

We now consider the relationship between the physical and pseudo-orbitals,
determined as discussed above, and the continuum basis orbitals u0

i j in (5.6), which
we assume are generated by solving (5.75) subject to the boundary conditions (5.76)
and (5.77) and the orthonormality conditions (5.78) and (5.79), which ensures that
the continuum orbitals are orthogonal to the physical bound orbitals with the same
orbital angular momentum symmetry. We assume that for a given orbital angular
momentum 	 we have defined the following basis orbitals:

physical orbitals, Pi (r), i = 1, . . . , q,

pseudo-orbitals, Pi (r), i = 1, . . . , p, (6.11)

continuum orbitals, ui (r), i = 1, . . . , nc.

We have seen that while the physical orbitals are orthogonal to both the pseudo-
orbitals and the continuum orbitals, the pseudo-orbitals defined by (6.9) and (6.10)
are only orthogonal to the physical orbitals. Hence the normalization and overlap
integrals involving the pseudo-orbitals and the continuum orbitals can be summa-
rized by the three matrix equations

〈P P
T〉 = I, 〈UUT〉 = I, 〈UP

T〉 =M, (6.12)

where we have used Dirac bracket notation to represent the integration over the
range 0 ≤ r ≤ a0 and where P and U are vectors with components Pi (r) and ui (r),
respectively.
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While non-orthogonal B-spline orbitals have been used with considerable
success in a number of R-matrix applications, for example, by Zatsarinny and
Froese Fischer [994], Zatsarinny and Tayal [995–997], Zatsarinny and Bartschat
[998–1001] and van der Hart et al. [930, 937, 938], the evaluation of the Hamiltonian
matrix elements in (5.7) is simplified if the continuum orbitals are orthogonalized
to the pseudo-orbitals. This can be achieved by introducing a new vector V with
components

vi (r), i = 1, . . . , p + nc. (6.13)

We then express this new basis in terms of P and U by the following matrix equation:

V =
[

P
AP+ BU

]
, (6.14)

where A has dimensions nc × p and B has dimensions nc × nc. We require that this
new basis is orthonormal so that

〈VVT〉 = I, 〈(AP+ BU)P
T〉 = 0. (6.15)

This yields the following equations:

AAT + BBT + AMTBT + BMAT = I (6.16)

and

A = −BM, (6.17)

where we have used (6.12) in simplifying these equations. After substituting for A
from (6.17) into (6.16) we obtain

B(I−MMT)BT = I. (6.18)

A solution of these equations yielding an orthonormal basis can be obtained
using the Schmidt orthogonalization procedure [976]. For example, in the approach
adopted by Burke and Robb [167] and Bartschat et al. [70], the last nc elements in
V defined by (6.14) are written in the form

vi+p(r) =
p∑

j=1

ai j P j (r)+
i∑

j=1

bi j u j (r), i = 1, . . . , nc, (6.19)

which can be solved recursively in the order i = 1, 2, . . . , nc. At each step the p+ i
coefficients ai j , j = 1, . . . , p, and bi j , j = 1, . . . , i, are determined by imposing
the following p orthogonality conditions
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〈P j vi+p〉 = 0, j = 1, . . . , p, (6.20)

and i orthonormality conditions

〈v j+p vi+p〉 = δi j , j = 1, . . . , i. (6.21)

In this way the matrices A and B in (6.16) are determined, where the matrix B has
zero elements in the upper triangle, so that

bi j = 0, j > i, i, j = 1, . . . , nc. (6.22)

This approach has been widely used and has proved to be satisfactory provided
that the number of pseudo-orbitals does not exceed 2 or 3 for each orbital angular
momentum. However, as p → ∞ the Gram–Schmidt procedure becomes unsta-
ble since the pseudo-orbital basis and the continuum orbital basis become linearly
dependent in this limit. This follows since the continuum orbital basis is complete
in the limit nc →∞ in the space orthogonal to the physical orbitals over the range
0 ≤ r < a0. Hence we can expand the pseudo-orbitals in this basis as follows:

Pi (r) =
∞∑
j=1

ci j u j (r), 0 ≤ r < a0, i = 1, . . . , p, (6.23)

which is uniformly convergent except in the neighbourhood of the boundary r = a0.
This does not cause difficulties for low-energy electron collisions where only a few
pseudo-orbitals of each angular symmetry are required and where the convergence
of the R-matrix expansion is fast. However, errors due to linear dependence can
arise at higher energies where nc is larger and where many pseudo-orbitals may be
required for each orbital angular momentum to represent ionization.

To explore this problem in more detail we assume that, for nc values which accu-
rately describe intermediate-energy collisions, p � nc and we can write to a high
degree of accuracy

Pi (r) =
nc∑

j=1

ci j u j (r), 0 ≤ r < a0, i = 1, . . . , p. (6.24)

It follows, using the notation of (6.12), that

I = 〈P P
T〉 = C〈U UT〉CT = CCT, (6.25)

where C is the p × nc matrix with matrix elements ci j . Also

M = 〈U P
T〉 = 〈U UT〉CT = CT, (6.26)
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so that the nc × nc-dimensional matrix MMT in (6.18) can be written as

MMT = CTC. (6.27)

We now construct nc − p additional orthonormal vectors which are orthogonal to
the p rows of the matrix C but which are otherwise arbitrary. These nc − p vectors
together with the p rows of C then span an nc-dimensional space. We call the matrix
whose rows correspond to these nc − p vectors D. It follows that

CDT = 0, DDT = I. (6.28)

We then define the nc × nc matrix B in (6.18) in terms of C and D as follows:

B =
[

C
D

]
. (6.29)

Then

BBT =
[

C
D

]
[CT DT] =

[
CCT CDT

DCT DDT

]
= I, (6.30)

where we have used (6.25) and (6.28). Hence B is an orthogonal matrix. We now
consider

BMMTBT = BCTCBT =
[

I O
O O

]
. (6.31)

Hence the orthogonal matrix B diagonalizes the matrix MMT where the first p
diagonal elements are unity and the last nc − p diagonal elements are zero. Also
it follows that the matrix I−MMT which arises in (6.18) is also diagonalized by B
giving

B(I−MMT)BT =
[

O O
O I

]
, (6.32)

where now the first p diagonal elements are zero and the last nc − p diagonal ele-
ments are unity. We see from this result that the p eigenvalues of I−MMT, which
are zero, correspond to the p pseudo-orbitals, which can be accurately represented
in terms of the continuum orbitals by expansion (6.24) and which give rise to the
linear dependence problem discussed above.

In practice, the matrix obtained by diagonalizing I−MMT is only approximated
by the form given by (6.32) since expansion (6.24) is not exact. However, the eigen-
values of I −MMT, which are close to zero, correspond to eigenvectors which are
accurately represented by the pseudo-orbitals and hence can be omitted from the
expansion without appreciable error. This is the basis of the method proposed by
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Gorczyca and Badnell [394], who omitted from the expansion those eigenvectors
corresponding to eigenvalues below a certain threshold, which they took to be 10−4.
Hence they included in their expansion the physical orbitals and pseudo-orbitals
defined in (6.11) and a reduced set of continuum orbitals vi (r), defined by (6.14),
corresponding to eigenvalues of I−MMT larger than the threshold. In this way they
avoided the errors due to linear dependence discussed above.

An extension to the procedure for calculating the Buttle correction, described
in Sect. 5.3.2, is required if pseudostates are retained in (5.5) and (5.6). If the
Gram–Schmidt orthonormalization method discussed above is used then additional
high-energy R-matrix poles arising from these additional pseudostates occur in the
R-matrix expansion (5.19). These additional pole terms, which duplicate part of the
Buttle correction, can lead to significant error and have to be discarded before the
Buttle correction is included.

On the other hand, if the procedure adopted by Gorczyca and Badnell [394] for
omitting eigenvectors corresponding to eigenvalues of I − MMT close to zero is
used, then these additional high-energy R-matrix poles do not arise. However, the
second term on the right-hand side of (5.87) defining the Buttle correction must be
replaced by

Rcorr = 1

2a0
V(a0)

1

H0 − E
VT(a0), (6.33)

where V(a0) is the vector of transformed continuum orbitals obtained after omitting
those corresponding to eigenvalues of I −MMT below a certain threshold and H0
is the zero-order Hamiltonian defined by (5.75). Due to the admixture in V(a0) of
the pseudo-orbitals Rcorr is not in general diagonal although all the eigenvalues and
surface eigenvectors of (5.75) are recovered.

Having determined the R-matrix at r = a0, corresponding to the target
eigenstates and pseudostates retained in (5.5) and (5.6), we can then solve the
Schrödinger equation in the external and asymptotic regions, as described in
Sects. 5.1.3 and 5.1.4. The K -matrix, S-matrix and cross sections for transitions
between the target eigenstates and pseudostates can then be calculated for each
set of conserved quantum numbers L , S and π and the ionization cross section
is then defined as the sum of the excitation cross sections to the pseudostates whose
energies lie above the ionization threshold in Fig. 6.1.

6.3 Intermediate-Energy R-Matrix Method

In this section we describe the intermediate-energy R-matrix (IERM) method intro-
duced by Burke et al. [182] and developed by a number of workers including
LeDourneuf et al. [584], Scholz [832], Dunseath et al. [277] and Heggarty et al.
[449, 450]. A two-dimensional R-matrix propagator computer program 2DRMP
has been written by Scott et al. [845], which implements this method for electron
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collisions with H-like atoms and ions and uses a modified version of the program
FARM [193] discussed in Sect. 5.1.1.

In the IERM method we consider the following electron impact excitation and
ionization processes:

e− + Ai → A+j + 2e−↗↘
A∗k + e−

A+l + 2e−,
(6.34)

where Ai is an atom or atomic ion. In the intermediate state in (6.34) both the
electron ejected from the target and the scattered electron are in orbitals which can
extend out to distances much greater than those of the electrons in the residual ion
A+j , and in the final state one of these outer electrons can be captured into the ground

or excited state A∗k of the target or can result in an ionized state A+l of the target.
This method enables excitation cross sections to highly excited Rydberg states and
ionization cross sections to be accurately calculated close to threshold, whereas the
RMPS method, discussed in Sect. 6.2, which yields accurate excitation and ion-
ization cross sections over a wide energy range, requires an excessive number of
long-range pseudostates to obtain similar accuracy close to the ionization threshold.
We also observe that this method has the potential for application in time-dependent
R-matrix theory of multiphoton processes, discussed in Chap. 10, enabling double
ionization via the recollision mechanism to be accurately calculated. In this mech-
anism a single electron is first ejected from the target atom or ion near the peak of
the laser field which then returns to the target, as the field changes sign, with suffi-
cient energy to ionize a second electron, as described by Corkum [231] and Schafer
et al. [816].

6.3.1 General Procedure

We now describe the general procedure for carrying out calculations using the IERM
method, reserving a detailed discussion of electron collisions with atoms and ions
containing one active electron until Sect. 6.3.2. We consider electron collisions
with an (N + 1)-electron atom or atomic ion, described by the time-independent
Schrödinger equation

HN+2Ψ = EΨ, (6.35)

where the non-relativistic Hamiltonian HN+2 is defined in atomic units by

HN+2 =
N+2∑
i=1

(
−1

2
∇2

i −
Z

ri

)
+

N+2∑
i> j=1

1

ri j
. (6.36)
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Fig. 6.2 Partitioning of the two-dimensional plane into sub-regions in the IERM method as fol-
lows: an internal region containing N + 2 strongly interacting electrons; two external regions
labelled 1 and 2 containing one electron moving in the potential field of the remaining strongly
interacting N + 1 electrons; an external region labelled 3 containing two interacting electrons
moving in the potential field of the remaining strongly interacting N electrons and two asymptotic
regions labelled 1 and 2 containing one electron moving in the long-range potential field of the
remaining N + 1 electrons

It follows that in the processes defined by (6.34), the initial state Ai and the final
state A∗k each contain N + 1 electrons and the final ionized state A+l contains
N electrons. We introduce a two-dimensional plane, illustrated in Fig. 6.2, where
the radial coordinates of the two continuum electrons in ionization are denoted by
rN+1 and rN+2 which label the axes. This plane is sub-divided into a number of
sub-regions, as follows. First, an internal region of radius a0, where the N + 2
electrons are strongly interacting and exchange and correlation effects, involving
all these electrons, are important. Second, two external regions labelled 1 and 2,
where the radial coordinate of one of the electrons, either rN+1 or rN+2, lies in the
range a0 ≤ r ≤ ap and where the remaining N + 1 electrons lie in the internal
region. These external regions, which are related by symmetry, are sub-divided into
p sub-regions. Third, an external region labelled 3, where the radial coordinates of
two electrons, rN+1 and rN+2, lie in the range a0 ≤ r ≤ ap and the remaining
N electrons lie in the internal region. This external region is sub-divided into sub-
regions, where the symmetry of the Hamiltonian means that only the diagonal sub-
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regions and the off-diagonal sub-regions where rN+2 > rN+1 need to be considered,
as shown in Fig. 6.2. We discuss in Sect. 6.3.2 a procedure which enables the
R-matrix, describing the motion of these two electrons in the field of the remaining
N electrons, to be propagated across external regions 2 and 3. Finally, two asymp-
totic regions labelled 1 and 2 where the radial coordinate of one of the electrons,
either rN+1 or rN+2, lies in the range r ≥ ap and where the remaining N + 1 elec-
trons lie in the internal and external regions. The R-matrix describing the motion of
this outer electron in the potential field of the remaining N +1 electrons can then be
propagated outwards in asymptotic region 2 and the solution fitted to an asymptotic
expansion yielding the K -matrix, S-matrix and cross sections.

We now consider the form of the (N + 2)-electron wave functions in each of the
regions illustrated in Fig. 6.2.

6.3.1.1 Internal Region

In this region we replace the (N + 1)-electron basis (5.6), adopted in low-energy
electron collisions with atoms and atomic ions, by the following (N + 2)-electron
basis

ψΓk (XN+2) = A
∑
i jl

Φ
Γ

i (XN ; r̂N+1σN+1r̂N+2σN+2)r
−1
N+1u0

j (rN+1)

× r−1
N+2u0

l (rN+2)a
Γ
i jlk +

∑
i

χΓ
i (XN+2)b

Γ
ik . (6.37)

The channel functions Φ
Γ

i in this equation are obtained by coupling the N -electron
wave function Φi (XN ) representing the residual ion A+j in (6.34) with the spin–
angle functions of the two continuum electrons to form eigenstates belonging to the
conserved quantum numbers denoted by Γ , defined by (2.58). The basis orbitals
u0

j (rN+1) and u0
l (rN+2) represent the radial motion of the two continuum elec-

trons in the internal region, which are non-zero on the boundaries rN+1 = a0 and
rN+2 = a0 of this region. Also in (6.37), χΓi (XN+2) are quadratically integrable
functions which vanish by the boundaries rN+1 = a0 and rN+2 = a0 of the inter-
nal region and are included for completeness and to represent additional electron–
electron correlation effects, as discussed following (2.57). Finally, the coefficients
aΓi jlk and bΓik are determined by diagonalizing the operator HN+2+LN+2 in the basis

ψΓk (XN+2) defined by (6.37), where HN+2 is the (N + 2)-electron Hamiltonian,
defined by (6.36) and LN+2 is a Bloch operator which is included to ensure that
HN+2+LN+2 is hermitian in the internal region in this basis which does not vanish
on the boundaries rN+1 = a0 and rN+2 = a0.

6.3.1.2 External Region 2

In external region 2 in Fig. 6.2, where the electron with radial coordinate rN+2 lies
in the sub-range at−1 ≤ rN+2 ≤ at and the remaining N + 1 electrons lie in the
internal region, we expand the wave function in the following (N+2)-electron basis:
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ψΓk (XN+2) =
∑

i j

Θ
Γ

i (XN+1; r̂N+2σN+2)r
−1
N+2ut

j (rN+2)c
Γ
i jk . (6.38)

The channel functionsΘ
Γ

i in this equation are obtained by summing over the (N+1)
-electron wave functions Θγi (XN+1), describing the N + 1 electrons in the internal
region, which are coupled with the spin–angle function of the (N+2)th electron and
the basis orbitals ut

j (rN+2) represent the radial motion of the continuum electron in

the sub-range at−1 ≤ rN+2 ≤ at . The functions "γi (XN+1) are in turn expanded as
follows:

Θ
γ

i (XN+1) = A
∑

jl

Φ
γ

j (XN ; r̂N+1σN+1)r
−1
N+1u0

l (rN+1)a
γ

jli

+
∑

j

η
γ

j (XN+1)b
γ

j i , (6.39)

where the channel functions Φ
γ

j in this equation are obtained by coupling the

N -electron wave function Φ j (XN ), representing the residual ion A+j in (6.34), with
the spin–angle functions of the (N+1)th electron remaining in the internal region to
form eigenstates belonging to the conserved quantum numbers denoted by γ. Also in
(6.39), ηγj (XN+1) are quadratically integrable functions included for completeness
and to represent additional electron–electron correlation effects. The coefficients
cΓi jk in (6.38) are obtained by diagonalizing the operator HN+2 +LN+2 in the basis

(6.38) and the coefficients aγjli and bγj i in (6.39) are obtained by diagonalizing the
operator HN+1 + LN+1 in the basis (6.39), where LN+1 and LN+2 are the appro-
priate Bloch operators.

6.3.1.3 External Region 3

In the shaded external sub-region in Fig. 6.2, where the electron with radial coor-
dinate rN+1 lies in the sub-range as−1 ≤ rN+1 ≤ as , the electron with radial
coordinate rN+2 lies in the sub-range at−1 ≤ rN+2 ≤ at and the remaining N
electrons lie in the internal region, we expand the wave function in the following
(N + 2)-electron basis:

ψΓk (XN+2) =
∑
i jl

Φ
Γ

i (XN ; r̂N+1σN+1r̂N+2σN+2)r
−1
N+1us

j (rN+1)

× r−1
N+2ut

l (rN+2)a
Γ
i jlk . (6.40)

As in (6.37) the channel functions Φ
Γ

i in this equation are obtained by coupling
the N -electron wave function Φi (XN ), representing the residual ion A+j in (6.34),
with the spin–angle functions of the two continuum electrons to form eigenstates
belonging to the conserved quantum numbers denoted by Γ . Also, the basis orbitals
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us
j (rN+1) and ut

l (rN+2) represent the radial motion of the two continuum electrons
in sub-ranges as−1 ≤ rN+1 ≤ as and at−1 ≤ rN+2 ≤ at respectively. The coeffi-
cients aΓi jlk in (6.40) are obtained by diagonalizing the operator HN+2 + LN+2 in
the basis (6.40), where LN+2 is the appropriate Bloch operator which ensures that
HN+2 + LN+2 is hermitian in this sub-region.

6.3.1.4 Asymptotic Region 2

Finally, we consider the solution of the Schrödinger equation (6.35) in asymptotic
region 2 in Fig. 6.2, where the radial coordinate rN+2 ≥ ap and the remaining N+1
electrons lie in the internal and external regions. The (N+2)-electron wave function
in this region is expanded as follows:

ΨΓj E (XN+2) =
∑

i

Φ
Γ

i (XN+1; r̂N+2σN+2)r
−1
N+2 FΓi j (rN+2), (6.41)

which is analogous to (5.28) adopted in the external and asymptotic regions in low-

energy electron–atom collisions. The channel functions Φ
Γ

i in (6.41) are obtained
by coupling the (N +1)-electron wave functionΦi (XN+1) representing the residual
ion, which can be in a bound or continuum state, with the spin–angle functions of the
(N+2)th electron. A detailed description of the form of the wave function represent-
ing the residual atom or ion is given in Sect. 6.3.2 where we discuss the two-electron
example. We can then derive a set of coupled second-order differential equations
satisfied by the reduced radial wave functions FΓi j (rN+2), by substituting expan-
sion (6.41) into the Schrödinger equation (6.35) and projecting onto the channel

functions Φ
Γ

i in (6.41). The solution of these coupled differential equations, which
have a form analogous to (5.29), is then fitted on the boundary rN+2 = ap to the
R-matrix obtained from the solutions in the internal and external regions in Fig. 6.2.
The solution of these coupled differential equations can, if necessary, be first inte-
grated outwards from rN+2 = ap, using one of the R-matrix propagator methods
discussed in Appendix E, and then fitted to an asymptotic expansion. However, in
most applications the value of ap is such that the R-matrix can be fitted directly
to an asymptotic expansion at rN+2 = ap. The K -matrix and S-matrix can be
determined as discussed in Sect. 5.1.4 and the corresponding scattering amplitudes
and cross sections for transitions between bound and continuum states in (6.34)
calculated.

6.3.2 Two-Electron Example

In order to illustrate the new features of the IERM method in greater detail, we con-
sider electron collisions with atoms and atomic ions containing one active electron,
such as atomic hydrogen or alkali-like metal atoms and ions with a closed-shell
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core. The time-independent Schrödinger equation describing this collision can be
written in the form of (6.35) with N = 0 as follows:

H2Ψ = EΨ, (6.42)

where the two-electron Hamiltonian H2 is defined in atomic units by

H2 =
2∑

i=1

(
−1

2
∇2

i + V (ri )

)
+ 1

r12
, (6.43)

and where the interaction of the active target electron and the scattered electron
with the nucleus and with the remaining core electrons is represented by a model
potential V (r). This model potential represents electron exchange and correlation
effects with the closed-shell core in the internal region and the long-range potential
seen by the ejected and scattered electrons in the external and asymptotic regions.
It follows that in this two-electron example, the wave function takes a similar form
in the internal region and in the external regions in Fig. 6.2 with only the boundary
conditions where r1 = 0 and where r2 = 0 distinguishing the internal region and
external regions 1 and 2 from external region 3. Therefore, in the following analysis
we will consider the solution in the internal and external regions together.

The two-electron time-independent Schrödinger equation (6.42) is first solved
in the internal region and external regions 2 and 3 in Fig. 6.2 where we note the
symmetry of the Hamiltonian means that we do not need to consider the solution
in external region 1. Also, since N = 0 in this two-electron example, the radial
coordinates r1 and r2 now label the axes. External regions 2 and 3 are divided into a
number of sub-regions, where again the symmetry of the Hamiltonian means that we
need to only consider the solution in the internal region and in the diagonal external
sub-regions and off-diagonal external sub-regions where r2 > r1. The solution is
obtained by diagonalizing the Hamiltonian in a basis in the internal region and in
each of the external sub-regions and the R-matrix propagated across the internal
and external sub-regions using a two-dimensional extension of propagator methods
discussed in Appendix E. This yields the R-matrix on the boundary 0 ≤ r1 ≤ ap,
r2 = ap of external regions 2 and 3 with the asymptotic region. In the asymptotic
region, where r2 ≥ ap, the reduced radial wave function describing the motion of
the scattered electron satisfies a set of coupled second-order differential equations.
These equations can, if necessary, be integrated outwards using a standard proce-
dure, as discussed in Sect. 5.1.3, and the solution then fitted to an asymptotic expan-
sion, as discussed in Sect. 5.1.4. This yields the K -matrix and S-matrix and hence
the cross sections for elastic scattering and exciting bound and continuum states of
the target. We now consider the solutions in the internal, external and asymptotic
regions in greater detail.

6.3.2.1 Internal and External Regions Solution

We consider first the solution of the time-independent Schrödinger equation (6.42)
in a general (s, t) sub-region, illustrated by shading in Fig. 6.2, where the
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two-electron Hamiltonian H2 is defined by (6.43). The space part of the collision
wave function can be expanded in this (s, t) sub-region, in analogy with (5.5) as
follows:

ΨΓst j (r1, r2) =
∑

k

ψΓstk(r1, r2)A
Γ
stk j (E), (6.44)

for each set of conserved quantum numbers Γ defined by (2.58). Also in (6.44), j
labels the linearly independent solutions of (6.42) at the energy E , ψΓstk are energy-
independent basis functions and AΓstk j (E) are energy-dependent expansion coeffi-
cients, which depend on the asymptotic boundary conditions satisfied by the wave
function ΨΓst j . We now expand the basis functions ψΓstk , in analogy with (5.6), as
follows:

ψΓstk(r1, r2) =
∑
n1	1

∑
n2	2

ΦΓn1	1n2	2
(r1, r2)a

Γ
n1	1n2	2k . (6.45)

In the diagonal sub-regions in Fig. 6.2 where s = t , the normalized two-electron
functions ΦΓn1	1n2	2

(r1, r2) are defined by

ΦΓn1	1n2	2
(r1, r2) = 1√

2

(
1+ (−1)S P12

)
r−1

1 ut
n1	1
(r1)r

−1
2 ut

n2	2
(r2)

× Y	1	2 L ML (r̂1, r̂2), (6.46)

and in the off-diagonal sub-regions where s < t , the functions ΦΓn1	1n2	2
(r1, r2) are

defined by

ΦΓn1	1n2	2
(r1, r2) = r−1

1 us
n1	1
(r1)r

−1
2 ut

n2	2
(r2)Y	1	2 L ML (r̂1, r̂2). (6.47)

In (6.46) and (6.47), us
n	(r1) are orthonormal one-electron radial basis orbitals,

defined over as−1 ≤ r1 ≤ as , ut
n	(r2) are orthonormal one-electron radial basis

orbitals, defined over at−1 ≤ r2 ≤ at , which are determined as described below,
and Y	1	2 L ML (r̂1, r̂2) are two-electron angular functions, defined by (B.57). The
operator P12 in (6.46) exchanges the space coordinates of electrons labelled 1 and 2
so that the space part of the two-electron wave functions in the internal and external
diagonal sub-regions are symmetric for singlet spin states (S = 0) and antisymmet-
ric for triplet spin states (S = 1), in accordance with the Pauli exclusion principle.
The summations over n1, 	1, n2 and 	2 in (6.45) are restricted in the internal and
external diagonal sub-regions to include only linearly independent 2-electron func-
tions. The angular momenta 	1, 	2 and L in (6.46) and (6.47) are also restricted by
the triangular relations imposed by the Clebsch–Gordan coefficient in the definition
of Y	1	2 L ML (r̂1, r̂2). In addition, the range of summations over n1 and n2 in (6.45)
has some given maximum nmax and the range of summations over 	1 and 	2 has
some given maximum 	max. Finally, we observe that the Pauli exclusion principle
is not applicable in the off-diagonal external sub-regions since the two electrons
then occupy different regions of space. However, the wave functions in sub-regions
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which are reflections of each other in the line r1 = r2 in Fig. 6.2 must satisfy the
symmetry relation

ψΓk (r1, r2) = (−1)SψΓk (r2, r1). (6.48)

Consequently the calculations need only be carried out for the internal region and
for external diagonal sub-regions and external sub-regions where r2 > r1 shown in
Fig. 6.2.

We consider next the choice of the one-electron radial basis orbitals us
n	(r) and

ut
n	(r) in (6.46) and (6.47) in each (s, t) sub-region. In the case of electron collisions

with a general atomic target, the radius a0 of the internal region in Fig. 6.2 is chosen
so that the reduced radial orbitals Pn	(r) of the closed-shell residual ion A+j in (6.34)
satisfy the condition

Pn	(r) = 0, r ≥ a0. (6.49)

With this choice, only the wave functions of the scattered and active target electrons
extend beyond r = a0. In addition, it follows that the model potential V (r) in (6.43)
achieves its asymptotic form for r ≥ a0 where it is given by

V (r) = 2(Z − N + 1)

r
, r ≥ a0, (6.50)

where Z is the nuclear charge number and N − 1 is the number of electrons in the
closed-shell core. In principle, a potential behaving asymptotically as r−4, r ≥ a0,
caused by polarization of the closed-shell core electrons by the two outer electrons,
can be added to V (r) in (6.50) without essential modification of the following dis-
cussion. The one-electron radial continuum basis orbitals in the internal region can
then be chosen using a procedure analogous to that adopted in Sect. 5.3.1. That is,
the orbitals are defined to be eigensolutions of the following zero-order differential
equation:

(
d2

dr2
− 	(	+ 1)

r2
+ V (r)+ k2

n	

)
u0

n	(r) =
∑

n′
λnn′	Pn′	(r),

n = 1, . . . , nmax, 	 = 0, . . . , 	max, 0 ≤ r ≤ a0, (6.51)

satisfying the homogeneous boundary conditions

u0
n	(0) = 0

a0

u0
n	(a0)

du0
n	

dr

∣∣∣∣∣
r = a0

= b0, (6.52)

where b0 is an arbitrary constant, which is usually taken to be zero. Also the
Lagrange multipliers λnn′	 are chosen so that the eigensolutions u0

n	(r) satisfy the
orthogonality constraints
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∫ a0

0
u0

n	(r)Pn′	(r)dr = 0, (6.53)

for all closed-shell orbitals Pn′	(r) of the residual ion. Finally, the basis orbitals,
which are orthogonal, are chosen to be normalized so that

∫ a0

0
u0

n	(r)u
0
n′	(r)dr = δnn′, n, n′ = 1, . . . , nmax, 	 = 0, . . . , 	max. (6.54)

With this choice of orbitals a Buttle correction must be added to the R-matrix at
r = a0 to obtain accurate results, as discussed in Sect. 5.3.2.

For all other sub-ranges as−1 ≤ r1 ≤ as, s = 1, . . . , p, and at−1 ≤ r2 ≤ at ,

t = 1, . . . , p, the basis orbitals us
n	(r1) and ut

n	(r2) can be represented by members
of any linearly independent complete basis. For example, in a number of recent
calculations, the basis orbitals have been represented by shifted Legendre polyno-
mials as in the BBM propagator method described in Appendix E.3. In this case the
basis orbitals satisfy arbitrary boundary conditions at r1 = as−1 and r1 = as and at
r2 = at−1 and r2 = at , respectively, and hence a Buttle correction is not required.

The final step in our determination of the R-matrix basis functions ψΓstk defined
by (6.45) is to diagonalize the Hamiltonian H2 in the internal region and in each
external (s, t) sub-region in the corresponding basis. Let us consider the (s, t) sub-
region in Fig. 6.2 with edges labelled 1, 2, 3 and 4 where r1 and r2 satisfy the
inequalities

as−1 ≤ r1 ≤ as, at−1 ≤ r2 ≤ at , (6.55)

and where we assume initially that, as in Fig. 6.2, the sub-region is neither diagonal
where s = t nor bounded by the r2-axis. We introduce the Bloch operator Lst in this
(s, t) sub-region, defined by

Lst = 1

2

[
δ(r2 − at )

(
d

dr2
− b3 − 1

r2

)
− δ(r2 − at−1)

(
d

dr2
− b1 − 1

r2

)

+ δ(r1 − as)

(
d

dr1
− b4 − 1

r1

)
− δ(r1 − as−1)

(
d

dr1
− b2 − 1

r1

)]
, (6.56)

which ensures that H2+Lst is hermitian in the space of functions satisfying arbitrary
boundary conditions on the four edges of the (s, t) sub-region, for arbitrary values of
the constants b1, b2, b3 and b4, which are usually taken to be zero. The coefficients
aΓn1	1n2	2k in (6.45) are then determined by diagonalizing the operator H2 + Lst in
the R-matrix basis in the (s, t) sub-region as follows:

〈ψΓstk |H2 + Lst |ψΓstk′ 〉 = EΓstkδkk′ , k, k′ = 1, . . . nst . (6.57)
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The integrations in this equation are carried out over all space variables where the
radial variables satisfy inequalities (6.55) and where nst is the number of linearly
independent basis functions retained in the (s, t) sub-region.

The Schrödinger equation (6.42) can be rewritten in the (s, t) sub-region as

(H2 + Lst − E)Ψ Γst = LstΨ
Γ
st , (6.58)

which has the formal solution

ΨΓst = (H2 + Lst − E)−1LstΨ
Γ
st . (6.59)

The spectral representation of the Green’s function (H2 + Lst − E)−1 in the (s, t)
sub-region can be obtained in terms of the R-matrix basis functions ψΓstk defined by
(6.45) and (6.57). Equation (6.59) then becomes

|ΨΓst 〉 =
nst∑

k=1

|ψΓstk〉
1

EΓstk − E
〈ψΓstk |Lst |ΨΓst 〉. (6.60)

The required R-matrix equations in the (s, t) sub-region are obtained by projecting
(6.60) onto the channel functions

φ1
μ(r1, r̂2) = r−1

1 ut
n	1
(r1)Y	1	2 L ML (r̂1, r̂2), (6.61)

and evaluating the result at the edges r2 = at−1 and at , and by projecting (6.60)
onto the channel functions

φ2
μ(r̂1, r2) = r−1

2 us
n	2
(r2)Y	1	2 L ML (r̂1, r̂2), (6.62)

and evaluating the result at the edges r1 = as−1 and as , where the channel index μ
in these equations is defined by

μ = n	1	2. (6.63)

This yields the following matrix equations:

F i =
4∑

j=1

Ri jη jD j , i = 1, . . . , 4, (6.64)

where the generalized radial wave functions on the edges of the (s, t) sub-region are
given by
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F1μ = 〈φ1
μ(r1, r̂2)|Ψ 〉r2 = at−1,

F2μ = 〈φ2
μ(r̂1, r2)|Ψ 〉r1 = as−1 ,

F3μ = 〈φ1
μ(r1, r̂2)|Ψ 〉r2 = at ,

F4μ = 〈φ2
μ(r̂1, r2)|Ψ 〉r1 = as , (6.65)

and the corresponding generalized derivatives are given by

D1μ = 〈φ1
μ(r1, r̂2)

∣∣∣∣
(

d

dr2
− b1 − 1

r2

)∣∣∣∣Ψ 〉r2= at−1,

D2μ = 〈φ2
μ(r̂1, r2)

∣∣∣∣
(

d

dr1
− b2 − 1

r1

)∣∣∣∣Ψ 〉r1= as−1 ,

D3μ = 〈φ1
μ(r1, r̂2)

∣∣∣∣
(

d

dr2
− b3 − 1

r2

)∣∣∣∣Ψ 〉r2= at ,

D4μ = 〈φ2
μ(r̂1, r2)

∣∣∣∣
(

d

dr1
− b4 − 1

r1

)∣∣∣∣Ψ 〉r1= as , (6.66)

where in these equations and in the following equations we have omitted the con-
served quantum numbers Γ and the (s, t) sub-region indices for notational conve-
nience. The R-matrix Ri j in (6.64) is then defined by

(Ri j )μμ′ = 1

2

∑
k

wiμkw jμ′k
Ek − E

, i, j = 1, . . . , 4, (6.67)

where the surface amplitudes are given by

w1μk = 〈φ1
μ(r1, r̂2)|ψk〉r2= at−1,

w2μk = 〈φ2
μ(r̂1, r2)|ψk〉r1= as−1 ,

w3μk = 〈φ1
μ(r1, r̂2)|ψk〉r2= at ,

w4μk = 〈φ2
μ(r̂1, r2)|ψk〉r1= as , (6.68)

and where η1 = η2 = −1 and η3 = η4 = +1 in (6.64). We observe that the
R-matrix defined by (6.67) and (6.68) relates the full radial wave functions to their
derivatives in (6.64), in analogy with (4.45) in Sect. 4.2.

In order to propagate the R-matrix across the (s, t) sub-region defined in Fig. 6.2,
it is convenient to rewrite (6.64) in the following block matrix form:

(
fI
fO

)
=
(−rII rIO
−rOI rOO

)(
dI
dO

)
, (6.69)

where the subscript I represents the input edges 1 and 2 and the subscript O repre-
sents the output edges 3 and 4 of the (s, t) sub-region. Thus we have written
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rII =
(

R11 R12
R21 R22

)
, rIO =

(
R13 R14
R23 R24

)
,

rOI =
(

R31 R32
R41 R42

)
, rOO =

(
R33 R34
R43 R44

)
. (6.70)

We then introduce a global input R-matrix RI associated with the input edges
5, 1, 2, 6, 7 in Fig. 6.2 and a global output R-matrix RO associated with the output
edges 5, 4, 3, 6, 7 in Fig. 6.2, where we refer to the common edges 5, 6 and 7 by the
subscript X . We can then write the global input R-matrix as

RI =
(

RI
II RI

IX

RI
X I RI

X X

)
, (6.71)

and the global output R-matrix as

RO =
(

RO
OO RO

OX

RO
XO RO

X X

)
, (6.72)

where the corresponding generalized functions and derivatives satisfy the equations

(
fI
fX

)
=
(

RI
II RI

IX

RI
X I RI

X X

)(
dI
dX

)
(6.73)

and

(
fO
fX

)
=
(

RO
OO RO

OX

RO
XO RO

X X

)(
dO
dX

)
. (6.74)

Finally, we eliminate fI and dI from (6.69) and (6.73) to obtain the following expres-
sions relating the sub-matrices of RO to the sub-matrices of RI and the matrices
rII, rIO, rOI and rOO,

RO
OO = rOO − rOI(RI

II + rII)
−1rIO,

RO
OX = rOI(RI

II + rII)
−1RI

IX ,

RO
XO = RI

X I(RI
II + rII)

−1rIO,

RO
X X = RI

X X −RI
X I(RI

II + rII)
−1RI

IX . (6.75)

Equations (6.75) express the global output R-matrix RO obtained by propagating
the global input R-matrix RI across the (s, t) sub-region. Repeated use of these
equations enables the global R-matrix to be propagated outwards across the sub-
regions in the lower triangular plane shown in Fig. 6.2 to the outer boundary 0 ≤
r1 ≤ ap, r2 = ap.
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It is clear from the above discussion that the procedure that we can adopt for
propagating the global R-matrix is not unique. One commonly used procedure,
adopted by Heggarty et al. [450], and incorporated in the computer program 2DRMP
written by Scott et al. [845], is to propagate the global R-matrix in successive verti-
cal strips of sub-regions (s, t), as follows:

(0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2), . . . , (p, p), (6.76)

commencing with the (0, 0) internal region and finishing with the (p, p) external
sub-region in Fig. 6.2. In this way we can determine the global R-matrix on the
outer boundary 0 ≤ r1 ≤ ap, r2 = ap of external regions 2 and 3.

While (6.75) can be applied across an arbitrary sub-region, two special cases
should be noted. First, propagation across the internal or diagonal external sub-
regions where s = t and second, propagation across an external sub-region bounded
by the r2-axis at the beginning of a new vertical strip. In the case of the internal or
diagonal external sub-regions, the symmetry or antisymmetry of the wave function
under exchange of the space coordinates of the scattered target electrons means that
(6.69) simplifies to

(
fI
fO

)
=
(−2R22 2R23
−2R32 2R33

)(
dI
dO

)
, (6.77)

where the input and output edges are labelled 2 and 3, respectively, in Fig. 6.2.
Hence we obtain

rII = 2R22, rIO = 2R23, rOI = 2R32, rOO = 2R33, (6.78)

and (6.75) can be applied as in the propagation across an arbitrary sub-region. In
the case of an external sub-region bounded by the r2-axis at the beginning of a
new vertical strip we observe that the input boundary consists of only one input
edge labelled 1 in Fig. 6.2, reducing the size of the matrices in (6.75). In addition,
when propagating across the first (0, 1) sub-region in external region 2, there are no
common edges X so that only the first equation in (6.75) needs to be solved.

6.3.2.2 Asymptotic Region Solution

In order to calculate accurate elastic scattering, excitation and ionization cross sec-
tions we must determine the solution in asymptotic region 2, in Fig. 6.2, given the
R-matrix on the boundary r2 = ap. In most applications the value of ap is such
that the solution in the asymptotic region can be accurately determined by fitting the
external region solution directly to an asymptotic expansion. However, we will also
discuss the possibility that the value of ap is such that it is first necessary, in order
to obtain accurate results, to propagate the R-matrix out to a larger radius before
fitting to an asymptotic expansion. We commence by assuming that the boundary
ap is large enough so that exchange effects between the scattered and the active
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target electron are negligible outside of this boundary. The solution can then be
described by the R-matrix procedure, considered in Sects. 5.1.3 and 5.1.4.

We expand the total wave function in asymptotic region 2, in analogy with (5.28),
in a close coupling expansion as follows:

ΨΓ (r1, r2) =
∑

n	1	2

r−1
1 vn	1(r1)Y	1	2 L ML (r̂1, r̂2)r

−1
2 FΓn	1	2

(r2),

0 ≤ r1 ≤ ap, r2 ≥ ap. (6.79)

The reduced radial target orbitals and pseudo-orbitals vn	1(r1) in (6.79) can be cho-
sen to be eigensolutions of the following differential equation:

(
d2

dr2
− 	i (	i + 1)

r2
+ V (r)+ k′n	

2
)
vn	(r) =

∑
n′
λ′nn′	Pn′	(r),

n = 1, . . . , n′max, 	 = 0, . . . , 	max, 0 ≤ r ≤ ap, (6.80)

satisfying the homogeneous boundary conditions

vn	(0) = 0
ap

vn	(ap)

dvn	

dr

∣∣∣∣
r = ap

= b0, (6.81)

where V (r) is the model potential adopted in the two-electron Hamiltonian H2

defined by (6.43) and k′n	
2 are the corresponding eigenvalues. The range of angular

momenta 	 = 0 to 	max in (6.80) is the same as that used in the definition of the
basis functions in the internal region and b0 is an arbitrary constant, which is usually
taken to be zero. Also, the Lagrange multipliers λ′nn′	 are chosen so that the orbitals
vn	(r) satisfy the orthogonality constraints

∫ ap

0
vn	(r)Pn′	(r)dr = 0, (6.82)

where the Pn′	(r) are bound orbitals corresponding to the residual closed-shell ion
in electron collisions with alkali-like atoms and ions. Finally, the orbitals vn	(r) are
normalized so that
∫ ap

0
vn	(r)vn′	(r)dr = δnn′, n, n′ = 1, . . . , n′max, 	 = 0, . . . , 	max. (6.83)

We observe that the reduced radial target orbitals and pseudo-orbitals vn	(r), defined
by (6.80), (6.81), (6.82) and (6.83), satisfy equations similar to those satisfied by
the one-electron basis orbitals u0

n	(r), defined by (6.51), (6.52), (6.53) and (6.54).
The essential difference is that the orbitals vn	(r) are defined over the larger range
0 ≤ r ≤ ap whereas u0

n	(r) are defined only over 0 ≤ r ≤ a0. This means that the
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orbitals vn	(r) will accurately represent higher energy bound states of the target and
provide a denser spectrum of pseudostates representing the continuum. It follows
that propagating the global R-matrix across the sub-regions in Fig. 6.2 to larger
values of ap will provide an increasingly accurate representation of the exact bound
and continuum spectrum in Fig. 6.1 close to the ionization threshold.

We can derive coupled second-order differential equations satisfied by the
reduced radial functions FΓn	1	2

(r2) by substituting expansion (6.79) into the

Schrödinger equation (6.42) and projecting onto the channel functions r−1
1 vn	1(r1)

Y	1	2 L ML (r̂1, r̂2). We find that the functions FΓn	1	2
(r2) satisfy coupled second-order

differential equations analogous to (5.29) for r2 ≥ ap. On the boundary r2 = ap, the
R-matrix R in the close coupling basis defined by (6.79) is obtained from the global
R-matrix R in the two-dimensional propagation basis at r2 = ap, by an orthogonal
transformation

R = OTRO, (6.84)

where the elements of the orthogonal matrix O are the projections of the one-
electron R-matrix reduced radial basis orbitals us

n	(r1), in each sub-region as−1 ≤
r1 ≤ as , onto the reduced radial target orbitals and pseudo-orbitals vn	(r1) giving

Os
n	n′	 = 〈us

n	|vn′	〉 =
∫ as

as−1

us
n	(r1)vn′	(r1)dr1. (6.85)

The resultant R-matrix can then be propagated outwards from r2 = ap, using one of
the R-matrix propagator methods discussed in Appendix E, to a value of r2 where
the solution can be accurately fitted to an asymptotic expansion, as in Sect. 5.1.4.
In this way, the K -matrix and hence the S-matrix and cross sections for transitions
between the target physical and pseudostates can be calculated for each set of con-
served quantum numbers Γ .

In conclusion, since the boundary radius ap in Fig. 6.2 using the IERM method
can be made much larger than the internal region boundary r = a0 in the RMPS
method, the IERM method will enable excitation cross sections to considerably
higher Rydberg states to be accurately calculated. Also, as the value of the radius ap

becomes larger the density of continuum pseudostates increases. Since the ioniza-
tion cross section is defined as the sum of excitation cross sections to pseudostates
lying in the continuum, as illustrated in Fig. 6.1, increasing the value of ap will
enable the ionization cross section to be determined with greater accuracy, particu-
larly close to threshold.

6.4 T -Matrix Energy Averaging

In this section we consider the analytic properties of the T -matrix and the scat-
tering amplitude in the complex energy plane for electron–atom and electron–ion
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collisions where we represent the total wave function by a close coupling with
pseudostates expansion defined by (2.57) or equivalently by an R-matrix expansion
defined by (5.5) and (5.6). In both cases the exact spectrum of the target is approx-
imated by the bound with pseudostates spectrum, illustrated in Fig. 6.1, and the
T -matrix and scattering amplitude will, as a result, exhibit unphysical structures
due to the presence of pseudothresholds and pseudoresonances.

As an example of the unphysical structures that can occur at intermediate ener-
gies, we show in Fig. 6.3 the total collision strength for the 2s2 1Se–2s2p 3Po tran-
sition in e−–C2+ collisions calculated using the R-matrix method [97, 181]. In this
calculation six target eigenstates, defined by (2.16), were included in the first expan-
sion in (5.6), where 3s, 3p, 3d and 4f pseudo-orbitals were optimized to improve the
energies of these states. Also quadratically integrable functions constructed from the
physical and pseudo-orbitals were included in the second expansion in (5.6). We see
that the calculated collision strength, denoted by the full curve in Fig. 6.3, exhibits
pseudoresonance structure for electron collision energies above about 2 Rydbergs.
This pseudoresonance structure is caused by the capture of the incident electron
into these quadratically integrable functions which partially represent the discrete
and continuum channels not explicitly included in the R-matrix expansion. Later in
this section we will show how to extract physically meaningful cross sections from

Fig. 6.3 Total collision strength defined by (2.149) for the 2s2 1Se–2s2p 3Po transition in e−–
C2+ collisions. Full curve: calculated collision strength using the R-matrix method; chain curve:
collision strength obtained by averaging the T -matrix over pseudoresonances; broken curve: col-
lision strength obtained by averaging the calculated collision strength over pseudoresonances
(Fig. 6 from [181])
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this pseudoresonance structure, where we will also consider the significance of the
chain curve and the broken curve in this figure.

The R-matrix calculation [97, 181] did not include pseudostates in the R-matrix
expansion. However, the pseudoresonances are not all removed by their inclusion,
as pointed out in our discussion of the close coupling with pseudostates expansion
following (2.71). For example, detailed e−–H scattering calculations were carried
out by Callaway [197] and by Callaway and Unnikrishnan [200], which included
seven and ten pseudostates, respectively, in the close coupling with pseudostates
expansions. In order to obtain physically meaningful results at intermediate ener-
gies, these workers used the T -matrix energy-averaging procedure, discussed below,
to remove the strong energy-dependent structures due to pseudoresonances, which
they found near the pseudostate thresholds. The presence of pseudoresonances in
close coupling with pseudostate calculations is an indication that the wave function
and hence the T -matrix and cross sections have not fully converged.

A procedure for energy averaging the T -matrix over the pseudoresonance struc-
ture, to obtain physically meaningful scattering amplitudes and cross sections, was
developed by Burke et al. [181] and by Slim and Stelbovics [878, 879]. We com-
mence our consideration of this procedure by examining the analytic structure in the
complex energy plane of the T -matrix, defined by (2.117) and (2.119). Following
our discussion of the behaviour of the S-matrix near a resonance in Sect. 3.2.2, we
show schematically in Fig. 6.4 the analytic structure of the T -matrix corresponding
to the close coupling with pseudostates expansion of the wave function given by
(5.6), compared with the analytic structure of the exact T -matrix. By comparing

∗ ∗ ∗ ∗ ∗ ∗∗ ∗∗ ∗ ∗ ∗

b. Approximate structure

pseudostate branch points

pseudoresonance poles

Re E

Im E

a. Exact structure

bound-state
branch points

continuum branch cut

ionization threshold

Re E

Im E

Fig. 6.4 Analytic structure of the T -matrix in the complex energy plane where the branch cuts are
shown displaced from the real energy axis for clarity: (a) the exact structure; (b) for comparison,
the approximate structure. The pseudoresonance poles represented by asterisks lie in the complex
energy plane close to and below the real energy axis
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this figure with Fig. 6.1, we see that the exact T -matrix in Fig. 6.4a has an infinite
number of threshold branch points and corresponding branch cuts converging onto
the ionization threshold of the target, together with a continuum branch cut com-
mencing at this threshold. On the other hand, the approximate T -matrix in Fig. 6.4b
has a finite number of physical and pseudostate branch points and corresponding
physical and pseudostate branch cuts, which arise from the first expansion in (5.6),
together with the pseudoresonance poles which arise from the quadratically inte-
grable functions included in the second expansion in (5.6). We see that only the four
lowest branch points and branch cuts in Fig. 6.4b provide an accurate representation
of the exact branch points and branch cuts in Fig. 6.4a. We remember from our
discussion following (2.71) that the quadratically integrable functions, which give
rise to the majority of these poles and hence pseudoresonances in the T -matrix, are
included in the second expansion to represent electron–electron correlation effects
in the wave function which are not included in the first expansion rather than to
remove the orthogonality constraints imposed on the scattered electron radial wave
functions, as discussed following (2.57).

The physical ideas underlying the T -matrix averaging procedure that we con-
sider below were introduced in the development of the optical potential model
in nuclear reactions, discussed, for example, by Friedman and Weisskopf [342],
Feshbach et al. [320, 322] and Brown [140]. This work suggested that the physical
T -matrix element corresponding to a transition between target states retained in the
first expansion in (5.6) can be defined by

T (E) = lim
n→∞〈T

n
approx(E)〉Av. (6.86)

In this equation 〈T n
approx(E)〉Av is an appropriate energy average of the T -matrix ele-

ment calculated retaining n quadratically integrable functions in the second expan-
sion in (5.6), where the energy interval over which the average is taken is large
compared with the distance between pseudoresonances but small compared with
the range over which the background T -matrix varies appreciably.

Following Brown [140], Burke et al. [181] adopted the following averaging
function:

ρ(E − E ′) = I

π

1

(E − E ′)2 + I 2
, (6.87)

where I is the energy-averaging interval. The energy-averaged T -matrix element at
a real energy E is then related to the calculated T -matrix element at the real energies
E ′ by

〈T (E)〉Av =
∫ ∞
−∞
ρ(E − E ′)T (E ′)dE ′ = T (E + iI ), (6.88)

which is valid for functions like the T -matrix that have poles only in the lower half
energy plane. In the limit when the number of quadratically integrable functions
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n → ∞, the width and separation of the pseudoresonances tend to zero and hence
we can let the energy-averaging interval I → 0. In complementary work, Slim
and Stelbovics [878, 879] adopted the definition of the energy average proposed by
Friedman and Weisskopf [342] given by

〈T (E)〉Av = 1

Eb − Ea

∫ Eb

Ea

T (E ′)dE ′, Ea ≤ E ≤ Eb, (6.89)

where the energy interval Eb − Ea → 0 as the number of quadratically integrable
functions n → ∞. These workers also considered an averaging procedure which
consisted of fitting a low-degree polynomial in the energy variable.

In order to examine the validity of the T -matrix energy-averaging procedure,
Burke et al. [181] applied it to a two-coupled channel S-wave model represented by
the following coupled second-order differential equations:

(
d2

dr2
− V11(r)+ k2

1

)
F1(r) = V12(r)F2(r),

(
d2

dr2
− V22(r)+ k2

2

)
F2(r) = V21(r)F1(r). (6.90)

A series of calculations were carried out with the potentials

V11(r) = V22(r) = −1.5
exp(−r)

r
,

V12(r) = V21(r) = −0.5 exp(−r), (6.91)

where the excitation energy was 0.1 Rydbergs so that

k2
2 = k2

1 − 0.1. (6.92)

The coupled equations (6.90) were first solved, using an accurate numerical pro-
cedure, to yield the coupled channel elastic scattering T -matrix and cross section.
The first differential equation in (6.90) was then solved, omitting the coupling with
the second inelastic equation, yielding the single-channel elastic scattering T -matrix
and cross section. Finally, the solution in the second inelastic equation in (6.90) was
represented by an expansion in quadratically integrable basis functions given by

ui (r) = r i exp(−αr), i = 1, . . . , n, (6.93)

with α = 0.5 and n = 10. The elastic T -matrix containing resonance structures,
due to these basis functions, was then calculated and energy averaged using (6.88)
and the energy-averaged elastic scattering cross section determined. We present the
results of these calculations in Fig. 6.5 . We see that there is good agreement between
the elastic scattering cross section obtained by solving the coupled channel problem
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Fig. 6.5 Elastic cross section calculated in four approximations. Broken curve: accurate coupled
channel calculation; full curve: accurate single-channel calculation; chain curve: inelastic channel
represented by quadratically integrable basis functions; dotted curve: T -matrix energy-averaged
calculation (Fig. 4 from [181])

exactly and the result obtained by representing the inelastic channel by quadrati-
cally integrable functions and energy averaging the resultant elastic T -matrix over
the pseudoresonances. In the limit when the number of basis functions retained in
(6.93) n →∞, the elastic scattering cross section obtained by energy averaging the
T -matrix tends to the exact solution of (6.90).

In the work of Slim and Stelbovics [878, 879], both two- and three-channel
S-wave models with separable potentials were considered, where the inelastic chan-
nel wave functions were expanded in Laguerre bases. This had the advantage that
the resultant equations were amenable to analytic solution. In the two-channel
model, it was shown analytically that averaging the amplitude using (6.89), where
the energy interval becomes infinitesimal, converged to the exact amplitude, while
the moments obtained by fitting to a low-degree polynomial also converged to
the exact moments. In the three-channel case, the moments of a polynomial fit
of degree 2 were also found to converge to the exact result using a numerical
procedure.

In general, as emphasized by Scholz [832], we observe that the T -matrix energy-
averaging procedure removes flux from the channels included explicitly in the first
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expansion in (5.6) into the channels represented by the quadratically integrable func-
tions included in the second expansion in (5.6). It follows that the corresponding
energy-averaged S-matrix 〈S(E)〉Av, coupling the channels included in the first
expansion in (5.6), and defined in terms of the energy-averaged T -matrix
〈T(E)〉Av, by

〈S(E)〉Av = 〈T(E)〉Av + I (6.94)

is not unitary. On the other hand, the S-matrix S(E) obtained before energy averag-
ing, which is defined in terms of the T -matrix T(E) by (2.119), is unitary at each
energy since it is calculated by solving a set of coupled second-order differential
equations with real symmetric potentials. Hence the energy-averaged cross section,
which is proportional to 〈|T(E)|2〉Av, is different from the cross section obtained
from the energy-averaged T -matrix, which is proportional to |〈T(E)〉Av|2. This dif-
ference has already been observed in Fig. 6.3 where the broken curve, which corre-
sponds to the energy-averaged cross section, is very different from the chain curve,
which corresponds to the energy-averaged T -matrix. Our discussion in this section
has shown that the dotted curve in Fig. 6.5 is obtained using the correct T -matrix
energy-averaging procedure for extracting physically meaningful cross sections at
intermediate energies from this calculation and that spurious results can be obtained
by energy averaging the cross section.

In conclusion, we observe that in general, as the number of pseudostates included
in the expansion of the collision wave function is increased, so that the representa-
tion of the continuum spectrum by pseudostates in Fig. 6.1 is expanded towards
completeness, then the role of the quadratically integrable functions, which give
rise to pseudoresonances, decreases. We find that the inclusion of pseudostates in
the R-matrix expansion, together with T -matrix energy averaging over pseudores-
onances where necessary, enables accurate scattering amplitudes and cross sections
to be determined at intermediate energies.

6.5 Distorted Wave and Second-Born Methods

The intermediate-energy R-matrix methods discussed in Sects. 6.3 and 6.4 have
been applied to a wide range of electron–atom and electron–ion collisions, yield-
ing accurate excitation and ionization cross sections at intermediate energies. These
methods have also been extended to enable accurate positron–atom collision cross
sections, atomic photoionization cross sections and electron–molecule collision
cross sections, considered in later chapters in this monograph, to be calculated at
intermediate energies. However, as the incident or ejected electron energy increases
the number of pseudostates that need to be included in expansions (5.6) and (5.28)
to yield reliable results at intermediate energies also increases. Since the resultant
computing requirement increases as the cube of the number of target eigenstates
and pseudostates included in these expansions, these requirements quickly become
excessive.
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However, if the energies of the incident and scattered electrons are well above
the ionization threshold, then, in the absence of resonant capture, the interaction
time of the electron with the target is short. In this case, the interaction of this
electron with the target can often be reliably treated using distorted waves or a
second-Born expansion, rather than by the non-perturbative approach of expand-
ing in pseudostates. As an example, we consider the excitation–autoionization pro-
cess illustrated by (6.2). If the energies of the incident and scattered electrons
are well above the energy necessary to excite the intermediate autoionizing state
C3+∗∗(1sn′	′n′′	′′) then their motion can often be accurately described by a distorted
wave or Born series approximation. On the other hand, the slower electron emitted
in the decay of the autoionizing state will usually be strongly coupled to the residual
state C4+(1sn	), and hence this interaction will need to be treated non-perturbatively
using a close coupling or R-matrix expansion, possibly including pseudostates.
This is the basis of the distorted wave R-matrix (DWRM) method, introduced by
Bartschat and Burke [65], which extended the Coulomb–Born exchange and dis-
torted wave exchange approximations using close coupling wave functions devel-
oped by Jacubowicz and Moores [497]. In the following discussion we will describe
the DWRM method and we will then mention further developments which have
been made to extend its range of validity.

We consider the electron–atom or electron–ion excitation–ionization process

e−(k0)+ Aq+
j → e−(k1)+

[
A(q+1)+

f + e−(k2)
]
, (6.95)

where we make the following assumptions:

i. The incident and scattered electrons e−(k0) and e−(k1) with momenta k0 and
k1 are both fast and can therefore be described by distorted waves.

ii. The initial bound state of the target Aq+
j and the final continuum state of the

target
[

A(q+1)+
f + e−(k2)

]
, which we assume contain N+1 electrons, can both

be accurately described by R-matrix expansions analogous to (5.5) and (5.6) in
the internal region and (5.28) in the external region.

iii. Only the direct Coulomb interactions between the fast incident and scattered
electrons and the N + 1 target electrons are retained in the calculation.

iv. The exchange interactions between the fast incident and scattered electrons and
the N + 1 target electrons can be neglected.

v. Relativistic effects are neglected in the following analysis, although their inclu-
sion using the Breit–Pauli or the Dirac Hamiltonian, discussed in Sects. 5.4 and
5.5, respectively, would be straightforward.

The scattering amplitude describing the ionization process (6.95) is then given in
the distorted wave approximation [123, 628, 666] by
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f (k0,k1,k2) = −(2π)−5/2〈Ψ−f E (k2;XN+1)φ
−
1 (k1; xN+2) |V (XN+1, xN+2)|

× Ψ j (XN+1)φ
+
0 (k0; xN+2)〉, (6.96)

where xN+2 denotes the space and spin coordinates of the incident and scattered
electrons, XN+1 denotes the space and spin coordinates of the N+1 target electrons
and V (XN+1, xN+2) is the Coulomb interaction between the incident and scattered
electrons and the N + 1 target electrons which is defined by

V (XN+1, xN+2) =
N+1∑
i=1

1

|ri − rN+2| . (6.97)

Finally, the integration in the matrix element, which appears on the right-hand side
of (6.96), goes over the space and spin coordinates of all N + 2 electrons.

We now consider the approximations made for the initial and final state wave
functions in (6.96). The distorted waves describing the incident and scattered elec-
trons in this equation are expanded in partial waves as follows:

φ+0 (k0; x) = 4π

k1/2
0 r

∑
	m	

i	 exp(iδ	)Y
∗
	m	 (θk0 , φk0)Y	m	 (θ, φ)

× Pk0	(r)χ 1
2 m0
(σ ) (6.98)

and

φ−1 (k1; x) = 4π

k1/2
1 r

∑
	m	

i	 exp(−iδ	)Y
∗
	m	 (θk1 , φk1)Y	m	 (θ, φ)

× Pk1	(r)χ 1
2 m1
(σ ), (6.99)

where χ 1
2 m0
(σ ) and χ 1

2 m1
(σ ) are the spin functions of the incident and scat-

tered electrons, respectively, and Y	m	 (θ, φ) are spherical harmonics defined in
Appendix B.3. The reduced radial functions Pk	(r) in (6.98) and (6.99) are usually
taken to satisfy a radial Schrödinger equation with the general form

(
d2

dr2
− 	(	+ 1)

r2
+ 2U (r)+ k2

)
Pk	(r) = 0, (6.100)

satisfying the boundary conditions

Pk	(0) = 0, Pk	(r) ∼
r→∞k1/2 sin(kr − 1

2	π + δk	), (6.101)

where we have assumed that the target is neutral. If it is ionic then the usual Coulomb
phase and logarithmic terms would have to be included in (6.98), (6.99) and (6.101),
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as discussed in Sect. 2.5. Finally, U (r) in (6.100) is a suitably chosen model poten-
tial which represents the charge distribution of the target atom or ion.

We consider next the calculation of the initial bound stateΨ j (XN+1) and the final
continuum state Ψ−f E (k2;XN+1) in (6.96). Both of these states can be determined in
the R-matrix internal region using expansions (5.5) and (5.6), where the coefficients
AΓk j (E) are defined by (5.27) as described in Sect. 5.1.2. In (5.27), FΓi j (r) is the
i th component of the reduced radial wave function describing the motion of the
(N + 1)th electron in the external and asymptotic regions defined in Fig. 5.1. We
can determine FΓi j (r) and dFΓi j /dr at r = a0, the radius of the internal region, by
integrating the coupled second-order differential equations (5.29), satisfied by these
functions, from r = a0 to ap using a propagator method discussed in Appendix E.
In the case of the initial bound state Ψ j we then fit the solution on the boundary
r = ap to a decaying wave asymptotic boundary condition

FΓi j (r) ∼r→∞Ni j exp(−κi j r), all i. (6.102)

Since all the channels are closed, the wave number ki j of the (N + 1)th electron
in the i th channel satisfies k2

i j = −κ2
i j so that ki j = iκi j . Also in (6.102) Ni j

are normalization factors. The boundary condition given by (6.102) is achieved by
iteratively varying the total energy E j of the initial bound state and re-solving the
coupled second-order differential equations (5.29) in the external and asymptotic
regions until the asymptotic boundary condition (6.102) is satisfied. In the case of
an atomic target, an infinite number of solutions can be obtained, corresponding to
the ground and excited Rydberg states, where in most experiments the target Aq+

j
in (6.95) will be in its ground state corresponding to the lowest energy solution. The
wave function Ψ j (XN+1) in (6.96) is then obtained by normalizing the total wave
function in the internal, external and asymptotic regions to unity so that

〈Ψ j , Ψ j ′ 〉 = δ j j ′ , (6.103)

which yields the normalization factor Ni j in (6.102).
Finally, we consider the calculation of the continuum state Ψ−f E (k2;XN+1) in

(6.96). In this case we expand the wave function in the internal region using (5.5)
and (5.6) for each required continuum-state energy and for all total orbital angular
momenta L and parities π which give a significant contribution to the scattering
amplitude defined by (6.96). We note that for relatively light targets there is no
summation over the total spin angular momenta S since this quantity is conserved
in non-relativistic theory considered here. The expansion coefficients in (5.5), which
we denote here by AΓ−k f (E), are again determined using (5.27) which can be written
here as

AΓ−k f (E) =
1

2a0(EΓk − E)

n∑
i=1

wΓik

(
a0

dFΓ−i f

dr
− b0 FΓ−i f (r)

)
r = a0

, (6.104)
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for each L and π . We can determine FΓ−i f (r) and dFΓ−i f /dr at r = a0, by integrating
(5.29) from r = a0 to ap and fitting to an asymptotic expansion, as discussed in
Appendix F.1. In this case the leading term in the asymptotic expansion can be
written in matrix notation as

FΓ−(r) ∼
r→∞

(
2

πk

)1/2

(sin θ + cos θK)(I+ iK)−1, (6.105)

where K is the usual K -matrix and the elements of the diagonal matrix θ are defined
by (5.38). The total wave function then satisfies the normalization condition

〈Ψ−f E |Ψ−f ′E ′ 〉 = δ f f ′δ(E − E ′), (6.106)

and the ingoing wave boundary condition

Ψ−f E ∼
rN+1→∞Ψ

inc
f E + Ψ ing

f E , (6.107)

required by definition (6.96) of the scattering amplitude, where (6.107) corresponds
to a Coulomb modified plane wave plus ingoing waves in all channels.

An R-matrix computer program package RMATRX-ION, which implements the
above theory for electrons incident on a general atom or atomic ion, was devel-
oped by Bartschat [62], based on the electron–atom collision program RMATRXI,
discussed in Sect. 5.1.1, although the relativistic options were not implemented.
This program has been used to calculate electron impact ionization cross sections
at intermediate energies for a number of atoms and ions including He, Ne6+, Ar,
Ar9+ and Cr [65, 66, 69, 560, 561, 768, 782]. RMATRX-ION was later extended
by Bartschat [63] enabling positron collisions with noble gases to be calculated at
intermediate energies.

The computer program RMATRX-ION was also extended by Schweinhorst et al.
[840] to enable double-differential cross sections (DDCS) and triple-differential
cross sections (TDCS) to be calculated. They then used this program to calculate
DDCS and TDCS for helium which they compared with experiment. The exper-
imental data for DDCS were well reproduced by the theory at incident electron
energies of 200 and 300 eV. However, a more detailed comparison with TDCS data
showed that higher order effects should be included to further improve the theoret-
ical model. This conclusion is consistent with TDCS studies of helium ionization
by Byron et al. [196] and other workers that have demonstrated the necessity of
including second-Born approximation terms in the scattering amplitude to account
for details of the observations. In order to explore this possibility further, Reid et al.
[783, 784] included second-order effects in the DWRM method by replacing the
potential V (XN+1, xN+2) in (6.96) by

V + V lim
η→0+(E − H0 + iη)−1V, (6.108)
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where H0 + V (XN+1, xN+2) is the Hamiltonian for the (N + 2)-electron system.
In order to calculate the contribution from the second-order term in (6.108) several
approximations were made, including restricting the evaluation of the additional
matrix elements to the internal region. The inclusion of second-order effects in this
way improved the overall agreement between the experimental data for helium and
the theoretical predictions. However, the results for the TDCS were found to be
sensitive to the representation of the initial state.

A further important extension of the theory was made by Fang and Bartschat
[298–300] who replaced the distorted waves used by Reid et al. [783, 784] by plane
waves in a second-Born R-matrix with pseudostates (RMPS) theory. This enabled
analytical simplifications to be made in the theory and, as a result, it was not only
possible to perform calculations at higher incident electron energies, where the par-
tial wave expansion converges more slowly, but it also enabled a larger number of
coupled target eigenstates to be included in the expansion. Some results of this work
are shown in Sect. 6.6.3.

Finally, we mention more recent work by Bartschat and Grum-Grzhimailo [68],
in which simultaneous electron impact excitation–ionization has been reformulated
in terms of irreducible tensors, and benchmark calculations carried out for e−–He
collisions, where the decay photon from He+(2p 2Po) is observed in triple coin-
cidence with the two outgoing electrons. Also Andersen and Bartschat [17] have
considered the dipole polarization of a coherently excited Stark manifold for the
simplest case of excitation–ionization of the He+(2s, 2p) manifold in e−–He col-
lisions. It is thus clear, from this and other work reported in this section, that the
distorted wave R-matrix method and the associated second-Born RMPS method
have opened up important new areas of electron–atom and electron–ion collision
calculations at intermediate energies.

6.6 Intermediate-Energy Electron Collision Calculations

In this section we present results from some recent electron–atom and electron–
ion collision calculations and experiments at intermediate energies. In Sect. 11.1.7
we present results for an electron–H+3 collision calculation at intermediate energies
using a molecular extension of the RMPS method.

6.6.1 Electron Collisions with H

As our first example of electron collisions with atoms and ions at intermediate
energies, we consider RMPS and convergent close coupling (CCC) calculations
for electron impact ionization of the 1s state of atomic hydrogen, carried out by
Bartschat and Bray [67]. We present in Fig. 6.6 results obtained using the RMPS
method and the CCC method (discussed in Sect. 6.1) for the total ionization cross
section σI and for the ionization spin asymmetry AI of atomic hydrogen compared
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with experiment over the energy range from the ionization threshold at 13.6–100 eV.
The total ionization cross section measurements σI were made by Shah et al. [869]
and the ionization spin asymmetry measurements AI were made by Fletcher et al.
[324] and by Crowe et al. [238], where AI is defined by

AI = 1

Pe PA

Na − Np

Na + Np
= σ

s
I − σ t

I

σ s
I + σ t

I
. (6.109)

Fig. 6.6 Total ionization cross section σI (left) and ionization spin asymmetry AI (right) for elec-
tron impact ionization of atomic hydrogen using the RMPS and CCC methods compared with
experiment (Fig. 1 from [67])

In this equation Na and Np are the count rates for ionization with antiparallel and
parallel scattered electron (Pe) and target (PA) spin polarizations, respectively, while
σ s

I and σ t
I are the singlet and triplet contributions to the total ionization cross section,

respectively. The agreement between the results from the two independent calcula-
tions is very good for both σI and AI. Also, the agreement between theory and
experiment for σI is excellent and, while there are some discrepancies between these
calculations and experiments for AI, we observe that there is also some scattering in
the corresponding experimental data. This comparison between theory and exper-
iment shows that both the RMPS and CCC methods, which include pseudostates
in the expansion, can yield reliable cross sections over a wide energy range for
atomic hydrogen. More recent work by Mouret et al. [667] has shown that the IERM
approach, discussed in Sect. 6.3, also gives accurate total ionization cross sections
and spin asymmetries for electron–hydrogen atom collisions.

The RMPS method has also been applied by Anderson et al. [18] to obtain elec-
tron impact excitation cross sections and effective collision strengths for transitions
in atomic hydrogen between target states up to principal quantum number n = 5.
In these calculations, the 15 n = 1, 2, 3, 4 and 5 target eigenstates together with 24
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Fig. 6.7 Electron impact excitation cross section for the 3d–4d transition in atomic hydrogen.
Solid curve: 15 target states plus 24 pseudostates calculation [18]. Dashed curve: 15 target states
calculation with no pseudostates [2] (Fig. 3 from [18])

target pseudostates were included in the R-matrix expansion (5.6) giving reliable
effective collision strengths up to a temperature of 25 eV. As an example of these
calculations, we show in Fig. 6.7 the excitation cross section for the 3d–4d transition
obtained by Anderson et al. compared with an R-matrix calculation by Aggarwal
et al. [2] who included the first 15 target eigenstates up to n = 5 in their calculation
but did not include any pseudostates. We see that the two calculations are in good
agreement at low energies but above about 14 eV the discrepancies are in excess
of 30%. This pattern is continued but the discrepancy is even larger for transitions
between the n = 4 and 5 target states. This result is in accord with the results
of electron–helium atom collision calculations discussed in Sect. 5.6.2, where it
was found that in the absence of pseudostates in the R-matrix expansion, the cross
sections were in error above the threshold of the highest eigenstate retained in the
R-matrix expansion.

The results for electron–hydrogen atom collisions obtained by Anderson et al.
[18], which are of importance for diagnostic applications in fusion plasmas, have
now been extended by Ballance et al. [45] to the hydrogen-like ions He+, Li2+,
Be3+, B4+, C5+, O7+ and Ne9+.

Finally, we remark that extending these calculations to target states with higher
principal quantum numbers n <∼ 10, of astrophysical interest, would prove expen-
sive using the RMPS approach because of the very large number of target states
and pseudostates that would have to be included in the expansion and also because
of their range which behaves as n2. In this situation, calculations using the IERM
method would have some advantages, as discussed in Sect. 6.3.
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Fig. 6.8 Electron impact ionization of C3+. Full curve: RMPS calculation smoothed [842];
short-broken curve: RMPS calculation unsmoothed [842]; long-broken curve: RMPS calculation
unsmoothed [653]; dotted curve with diamonds: CCC calculation [125]; chain curve: distorted
wave calculation [986]; full circles: experiment [235] (Fig. 1 from [842])

6.6.2 Electron Collisions with C IV

As a further example of electron collisions at intermediate energies, we present in
Fig. 6.8 independent RMPS calculations by Mitnik et al. [653] and Scott et al. [842]
for electron impact ionization of C IV (C3+) given by

e− + C3+(1s22s)→ C4+(1s2)+ 2e−, (6.110)

compared with a CCC calculation by Bray [125], a distorted wave calculation by
Younger [986] and with experiments by Crandall et al. [235]. In the RMPS calcula-
tion [842], the five lowest target eigenstates of C3+, 1s22s 2Se, 1s22p 2Po, 1s23s 2Se,
1s23p 2Po and 1s23d 2De, together with 21 pseudostates with the form 1s2n	 up to
9s, 9p, 7d, 6f and 6g were included in expansion (5.6) in the internal region and in
expansion (5.28) in the external and asymptotic regions. The small oscillations in
the cross section before smoothing resulted from the representation of the contin-
uum by a discrete pseudostate basis and are damped as this basis is increased. We
see from this figure that there is good overall agreement between the RMPS and
CCC calculations (discussed in Sect. 6.1) and experiment and there is also good
agreement between the distorted wave calculation and experiment, indicating that
intermediate states are not playing a major role in this case.

In addition to the direct ionization process considered above, we have seen that
there are three important indirect processes, defined by (6.2), (6.3) and (6.4). An
RMPS calculation of the indirect processes that arise in electron impact ionization



352 6 Intermediate-Energy Collisions

Fig. 6.9 Electron impact inner-shell ionization of C3+ showing autoionizing resonance features.
Full curve: convoluted RMPS results [842]; dashed curve: experimental measurements [669]
(Fig. 4 from [842])

of C3+ was also made by Scott et al. [842] by augmenting the 5 eigenstates and 21
pseudostates retained in expansions (5.6) and (5.28), discussed above, with an addi-
tional 16 autoionizing states, where only one electron was retained in the 1s orbital.
In this way intermediate states in (6.2), (6.3) and (6.4) were represented in the calcu-
lation. We compare their calculated ionization cross section in the energy range from
284 to 356 eV with the experimental data of Müller et al. [669] in Fig. 6.9, where the
calculated cross section was convoluted with a 2.0 eV full width at half maximum
Gaussian to simulate the experimental energy resolution. The RMPS calculation
reproduces a number of resonance features observed in the experiment. However,
the calculated non-resonant background is about 10% higher than experiment and
there is an energy shift of the calculated resonance peaks by about 2 eV from their
observed positions. This shift indicates that more pseudostates should be included in
the calculation to give convergence, while the discrepancy in normalization between
theory and experiment is larger than that shown for direct ionization in Fig. 6.8,
indicating that part of this discrepancy could be attributed to experiment. However,
in view of the complexity of these indirect processes and the difficulty of the exper-
iment, the overall agreement is encouraging.

6.6.3 Electron Impact Excitation–Ionization of He

Although the previous example shows that the RMPS method can accurately
describe ionizing collisions at incident electron energies well above the ionization
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threshold, the number of coupled channels required to obtain accurate results can
often become very large. In this case, as discussed in Sect. 6.5, in the absence of
resonant capture of the incident or scattered electron by the target, accurate results
can be obtained by treating this electron by a distorted wave or Born series expan-
sion.

As an example, we present the results of calculations by Fang and Bartschat [298]
who considered the following simultaneous electron impact excitation–ionization
process in He:

Fig. 6.10 Electron impact excitation–ionization of He showing in-plane angular distribution of
the ejected electron for excitation–ionization to the He+ n = 2 states. The experimental data of
Avaldi et al. [27] for an incident electron energy of 1,585 eV, final electron energies of 1,500 and
20 eV and a detection angle of 4◦ for the fast electron are compared with the results obtained
from several models. Top, second-order results: full curve, 23-state RMPS model; broken curve,
12-state RMPS model; chain curve, 6-state eigenstate model. Bottom, second-order 23-state RMPS
model for intermediate-state energies of the fast electron: full curve 1,543 eV; chain curve 1,521 eV;
broken curve 1,565 eV. The energies in the bottom curves correspond to the geometric mean of the
initial and final energies as well as one value closer to each one of these energies (Fig. 2 from
[298])
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e− + He(1s2 1S)→ He+(2s, 2p)+ 2e−, (6.111)

where the He+ ion in the final state is left in a 2s or 2p excited state. As noted by
Marchalant et al. [635–637], who carried out first- and second-Born (e, 2e) calcu-
lations of this process, the inclusion of second-order effects clearly improves the
agreement between theory and experiment in the shape of the angular distribution
and to a lesser extent in the magnitude. In the calculations by Fang and Bartschat the
incident and scattered electrons were described using the second-Born approxima-
tion, while the initial He bound state and the final He+ excited state plus the ejected
electron were described by a 23-state RMPS expansion, which included the first
six 1s, 2s, 2p, 3s, 3p and 3d He+ eigenstates, together with up to 17 He+
pseudostates. We compare these calculations with experiments by Avaldi et al. [27]
in Fig. 6.10 for an incident electron energy of 1,585 eV. We see from the top results
presented in this figure that the 23-state and 12-state second-Born RMPS results
are in good agreement with experiment. However, the 6-state second-Born results,
which only included the lowest 6 He+ eigenstates in the R-matrix expansion, show
a deviation at small ejected angles indicating a lack of convergence in the represen-
tation of the intermediate He+ + e− state. It should also be noted from the bottom
results presented in Fig. 6.10 that these results are, as expected, insensitive to chang-
ing the average energy of the fast electron in the intermediate state.

Overall there is qualitative agreement between the results of Fang and Bartschat
and those of Marchalant et al. regarding the effect of the second-order correction
on the results. However, the results differ quantitatively. While part of the deviation
may be due to the different treatment of the fast incident and scattered electrons it
is probable that the most important reason for the difference is the more accurate
R-matrix expansion treatment of the interaction between the ejected electron and
the residual ion in the former calculation [298]. Thus it is found that the 6-state
results are closer to those of Marchalant et al. than the 12-state and 23-state pre-
dictions, which appear close to convergence. In general, the convergence of the
Fang and Bartschat results with respect to the number of pseudostates included in
the R-matrix expansion indicate that the treatment of this aspect of the model has
converged to a few percent.

In conclusion, the treatment of electron impact excitation–ionization of atoms
and ions by fast electrons, where the incident and scattered electrons are treated
using a second-Born approximation and the ejected electron and residual ion are
treated using an R-matrix with pseudostates expansion, can yield close to converged
results.



Chapter 7
Positron Collisions with Atoms and Ions

In this chapter we extend our discussion of multichannel R-matrix theory of elec-
tron collisions with atoms and atomic ions given in Chaps. 5 and 6 to consider
positron collisions with these targets. Since the positron is distinguishable from
the target electrons, we no longer have to antisymmetrize the total wave function
with respect to interchange of the positron coordinates with those of the target
electrons. However, this simplification is balanced by the additional channels that
have to be included where the incident positron combines with one of the target
electrons to form a bound state of the positron–electron system, called positronium
(Ps). In this respect, positron collisions with atoms and ions have similarities to
electron–molecule collisions which we will consider in Chap. 11 where rearrange-
ment processes corresponding to dissociation and dissociative attachment can occur.
A further process that can occur in positron collisions with atoms and ions is where
the incident positron annihilates with one of the target electrons with the emission of
γ -rays providing a further important test of collision theory. Also processes where
positronium atoms are incident on atomic targets are of increasing interest both
experimentally and theoretically.

The processes involved in positron and positronium collisions with atoms and
ions clearly provide new challenges for both experiment and theory. This has stim-
ulated new developments in the measurement of positron and positronium collision
cross sections and in the theory and calculation of positron– and positronium–atom
collision cross sections, where applications of R-matrix theory by Walters et al.
[949–953] have been particularly successful. Reviews of these developments and
applications have been written by Armour and Humbertson [23], Laricchia [576]
and Surko et al. [898]. They have also been discussed in the proceedings of confer-
ences edited by Surko and Gianturco [897] and by Gribakin and Walters [423].

We commence in Sect. 7.1 with a general discussion of the processes that can
occur in positron and positronium collisions with atoms and atomic ions. We then
consider the new extensions to multichannel R-matrix theory of electron collisions
with atoms and ions, considered in Chaps. 5 and 6, to enable the channels corre-
sponding to positronium collisions to be included in the theory. Finally, in Sect. 7.2
we present the results of some recent positron and positronium collision calculations
using R-matrix theory.

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_7,
C© Springer-Verlag Berlin Heidelberg 2011
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7.1 Multichannel R-Matrix Theory

In this section we introduce R-matrix theory of positron and positronium collisions
with atoms and atomic ions by summarizing in Sect. 7.1.1 the various processes
that can occur and we compare and contrast these processes with those that occur in
electron collisions with atoms and atomic ions discussed in Chap. 5. We also con-
sider the form of the Schrödinger equation which describes positron or positronium
collisions with an atom or atomic ion and we discuss the partitioning of configura-
tion space into internal, external and asymptotic regions. We then consider in turn
the solution in the internal region in Sect. 7.1.2, in the external region in Sect. 7.1.3
and in the asymptotic region in Sect. 7.1.4 yielding the K -matrix, S-matrix and cross
sections for positron and positronium collisions with atoms and ions.

7.1.1 Introduction

In collisions of positrons with atoms and atomic ions the following processes can
occur:

e+ + Ai → Ai + e+ elastic scattering,

→ A j + e+ excitation,

→ A+j + e− + e+ ionization,

→ A+j + Ps Ps formation,

→ A2+
j + Ps− Ps− formation,

→ A2+
j + Ps+ e− transfer ionization with Ps formation,

→ A3+
j + Ps− + e− transfer ionization with Ps− formation,

→ A+j + γ rays annihilation.

(7.1)

The positronium atom (Ps) in (7.1), which can be formed in an excited state, consists
of a bound state of the positron and a target electron and is formally the same as the
hydrogen atom but with a reduced mass of 0.5 a.u. rather than 1 a.u. Consequently,
Ps bound states are classified in the same way as those of atomic hydrogen but with
half the energy of the corresponding states, i.e. En	m = −0.25 n−2 a.u., where
n is the principal quantum number. Positronium can be formed in two spin states,
referred to as “ortho” where the positron and electron spins are in the triplet state
and as “para” where the two spins are in the singlet state. An interesting discussion
of the electron–positron system has been given by Jauch and Rohrlich [499] and
recent detailed quantum electrodynamic calculations of Ps lifetimes have been dis-
cussed by Kniehl and Penin [539]. In the work of Kniehl and Penin it was shown
that the para-positronium 1s state decays predominantly into two photons with a
lifetime of 0.125 ns and the ortho-positronium 1s state decays predominantly into
three photons with a lifetime of 142 ns. As a result of the relatively long lifetime
of ortho-positronium, monoenergetic energy-tunable beams of ortho-positronium
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have been developed and the following elastic, inelastic and positronium ionization
(fragmentation) collision processes have been studied:

Ps+ Ai → Ai + Ps elastic scattering,

→ A j + Ps atomic excitation,

→ A+j + e− + Ps atomic ionization,

→ Ai + Ps∗ positronium excitation,

→ Ai + e− + e+ positronium ionization.

(7.2)

Returning to (7.1), we have also included the process where a positronium negative
ion Ps− is formed which can also occur in positronium collisions. Wheeler [962]
showed that Ps could bind an electron to form a negative ion Ps−, which is the
analogue of H−, and recent values of its binding energy and lifetime are 0.3267 eV
and 0.477 ns, respectively [351]. Finally, we observe that the last process listed in
(7.1), where the incident positron is annihilated with the emission of γ -rays, is suf-
ficiently weak that it can be ignored in calculating cross sections for the previous
positron collision processes listed in (7.1). However, the annihilation rate, which
is proportional to the probability of finding the positron and an atomic electron at
the same position in space, provides a further important test of the validity of the
approximations made in collision theory and calculations.

We observe that the essential distinction between electron and positron colli-
sions with atoms and ions is that in the former case the Pauli exclusion principle
means that the wave function must be antisymmetrized with respect to the collid-
ing electron and the target electrons, whereas in the latter case the strong attractive
interaction between the positron and the target electrons causes the target atom to
be strongly distorted at low incident energies. It follows that short-range correlation
effects are more important in low-energy positron collisions than in low-energy elec-
tron collisions. As a result the additional complexity of using antisymmetrized wave
functions in electron collisions is replaced by the greater importance of correlation
effects in positron collisions. While these effects can be represented by including
additional terms in the expansion of the collision wave function at energies below
the positronium formation threshold, they are most appropriately represented by
including positronium formation channels in the expansion of the collision wave
function, even if results are only required for positron–atom collision channels.

We consider next the form of the Schrödinger equation which describes positron
or positronium collisions with an atom or atomic ion with nuclear charge number Z .
For light atomic targets, where relativistic effects can be neglected, we must solve
the time-independent Schrödinger equation

HN+pΨ = EΨ, (7.3)

where HN+p is the non-relativistic Hamiltonian corresponding to a positron moving
in the field of an N -electron atom or a positronium atom moving in the field of an
(N − 1)-electron ion. In order to determine explicit expressions for HN+p and Ψ
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Fig. 7.1 Jacobi coordinates
for positron–atom and
positronium–ion collisions,
where the i th target atom
electron is captured to form
positronium

A ith electronri

Ri

positron

rp

ρi

in (7.3) we introduce a Jacobi system of coordinates illustrated in Fig. 7.1, where in
this figure rp and ri are the vector coordinates of the positron and the i th electron
in the atom with respect to the atomic nucleus labelled A which is assumed to be
infinitely heavy and which is chosen as the origin of coordinates. Also, ρi and Ri in
Fig. 7.1 are defined by

ρi = rp − ri , Ri = 1

2
(rp + ri ). (7.4)

We can write HN+p in two distinct forms, the first corresponding to positron–
atom collisions and the second corresponding to positronium–ion collisions. In the
first form

HN+p = HN − 1

2
∇2

p +
Z

rp
−

N∑
i=1

1

ρi
, (7.5)

where HN is the non-relativistic atomic Hamiltonian defined by (5.3) with N + 1
replaced by N , − 1

2∇2
p is the positron kinetic energy operator and the remaining

two terms on the right-hand side of (7.5) are the potential interaction of the positron
with the atomic nucleus, with charge number Z , and with the N target electrons,
respectively.

In the second form corresponding to positronium–ion collisions, one of the N
target atom electrons is captured to form positronium. When the i th electron is
captured, the Hamiltonian can be written as

HN + p = HN − i + Hpi − 1

4
∇2

Ri
+ VN− i pi . (7.6)

In this equation, HN − i is the residual (N − 1)-electron ion Hamiltonian which is
defined by
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HN− i =
N∑

j=1
j �=i

(
−1

2
∇2

j −
Z

r j

)
+

N∑
j> j ′=1
j, j ′ �=i

1

|r j − r j ′ | , (7.7)

Hpi is the positronium atom Hamiltonium, formed by the positron and the i th
captured electron, which is defined by

Hpi = ∇2
ρi
− 1

ρi
, (7.8)

− 1
4∇2

Ri
is the positronium atom kinetic energy operator defined relative to the

atomic nucleus and VN−i pi is the potential interaction between the residual (N−1)-
electron ion and the positronium atom, which is defined by

VN−i pi = − Z

ri
+ Z

rp
+

N∑
j=1
j �=i

1

|r j − ri | −
N∑

j=1
j �=i

1

ρ j
, (7.9)

where in the above equations p refers to the positron and i to the i th electron
captured by the positron to form the positronium atom. It follows from the indis-
tinguishability of the N atomic electrons that the Hamiltonian defined by (7.6) is
invariant with respect to interchange of any pair of the N electrons.

In order to solve (7.3) using multichannel R-matrix theory we partition con-
figuration space into internal, external and asymptotic regions, as illustrated in
Fig. 7.2, which we will see is analogous to the partitioning of configuration space in
non-adiabatic electron–molecule collision theory shown in Fig. 11.4. The positron–
atom complex in the internal region where all the particles are strongly interact-
ing, defined by 0 ≤ rp ≤ a0 and 0 ≤ Ri ≤ A0, i = 1, . . . , N , can dissociate
into both positron–atom collision channels and positronium–ion collision channels.
The radius a0 is chosen so that the amplitudes of the target atom states of interest
are negligible for rp ≥ a0 and the radius A0 is chosen so that the amplitudes of
the positronium atom and the target ion states of interest have negligible overlap
for Ri ≥ A0, i = 1, . . . , N . We discuss the solution in the internal region in
Sect. 7.1.2. In the external region, corresponding to positron–atom collisions where
a0 ≤ rp ≤ ap and positronium–ion collisions where A0 ≤ RN ≤ Aq , the scattered
positron and positronium atom move in the long-range multipole potentials of the
residual atom or ion, where from symmetry we need to only consider the motion of
the positronium atom formed by the positron and the N th target atom electron. In
this region the potential interaction between the scattered particles and the residual
atom or ion is strong and must be treated by solving the resultant differential equa-
tions using accurate numerical propagation methods, as discussed in Sect. 7.1.3.
Finally, in the asymptotic region where for positron–atom collisions rp ≥ ap and for
positronium–ion collisions RN ≥ Aq , the solutions can be obtained using asymp-
totic expansions in each of these regions which enable the K -matrix and S-matrix
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Fig. 7.2 Partitioning of configuration space in R-matrix theory of positron–atom and positronium–
ion collisions, where the N th target atom electron is captured to form positronium

to be determined, as discussed in Sect. 7.1.4. We now consider the solution in the
internal, external and asymptotic regions in turn.

7.1.2 Internal Region Solution

We consider first the solution of the non-relativistic Schrödinger equation (7.3) in
the internal region in Fig. 7.2 for each set of conserved quantum numbersΛ defined
below. In analogy with expansions (5.5) and (5.6) adopted in electron–atom colli-
sions we expand the positron–atom collision wave function as follows:

ΨΛj E (XN ; xp) =
∑

k

ψΛk (XN ; xp)A
Λ
k j (E) . (7.10)

In this equation

XN ≡ x1, x2, . . . , xN , (7.11)

where xi ≡ riσi represents the space and spin coordinates of the i th electron,
xp ≡ rpσp represents the space and spin coordinates of the positron, j labels the lin-
early independent solutions of (7.3),ψΛk are energy-independent basis functions and
AΛk j (E) are energy-dependent expansion coefficients which depend on the asymp-

totic boundary conditions satisfied by the wave function ΨΛj E at the energy E . Also
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in (7.10), Λ represents the conserved quantum numbers in the collision defined by

Λ ≡ α L S ML MS mp π, (7.12)

where L and ML are the total orbital angular momentum quantum numbers of the
positron–atom and positronium–ion collision processes, S and MS are the total
electron spin angular momentum quantum numbers of the target atom and mp is
the spin magnetic quantum number of the positron, which are separately conserved,
π is the total parity and α represents any further quantum numbers which are con-
served in the collision. Unlike the conserved quantum numbers Γ in electron–atom
collisions, defined by (2.58), we have not coupled the spin of the positron to that
of the target atom since the positron is distinguishable from the target electrons and
hence, in the absence of relativistic spin–orbit interactions, MS and mp are sepa-
rately conserved in the positron–atom collision. It follows that the collision wave
function ΨΛj E and the basis functions ψΛk in (7.10) are antisymmetric with respect to
interchange of any pair of the space and spin coordinates xi ≡ riσi , i = 1, . . . , N ,
of the target electrons, but are not antisymmetrized with respect to interchange of
the space and spin coordinates xp ≡ rpσp of the positron with those of the target
electrons.

We now expand the basis functions ψΛk in (7.10) in the form

ψΛk (XN ; xp) =
n∑

i=1

nc∑
j=1

Φ
Λ

i (XN ; r̂pσp)r
−1u0

i j (rp)a
Λ
i jk

+ AN

m∑
i=1

mc∑
j=1

Θ
Λ

i (XN−1; ρNσNσp; R̂N )

× R−1
N v

0
i j (RN )b

Λ
i jk

+
b∑

i=1

χΛ
i (XN ; xp)c

Λ
ik, k = 1, . . . , nt , (7.13)

where nt = nnc + mmc + b is the number of linearly independent basis func-
tions included in these expansions. The first expansion on the right-hand side of
(7.13) corresponds to positron–atom collisions, the second expansion corresponds to
positronium–ion collisions, where the N th electron is captured to form positronium
leaving the remaining N − 1 electrons in the residual ion and the third expansion
is over quadratically integrable functions which are included for completeness and

to represent correlation effects. Also in (7.13), Φ
Λ

i and u0
i j are the channel func-

tions and radial continuum basis orbitals corresponding to positron–atom collisions

and Θ
Λ

i and v0
i j are the channel functions and radial continuum basis orbitals cor-

responding to positronium–ion collisions, which are discussed below. Finally, in
(7.13) AN is the antisymmetrization operator which ensures that each term in the
second expansion is antisymmetric with respect to interchange of the space and spin
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coordinates of any pair of the N electrons taking part in the collision. In analogy
with (2.46) AN is defined by

AN = N−1/2

(
1−

N−1∑
i=1

Pi N

)
, (7.14)

where Pi N is the operator which interchanges the space and spin coordinates of
electrons labelled i and N .

We observe that the expansions over the channel functions Φ
Λ

i and Θ
Λ

i in (7.13)
may both include pseudostates representing the continuum in positron–atom col-
lisions and positronium–ion collisions, respectively. We have seen in Chaps. 2, 5
and 6 that the inclusion of pseudostates is required both to accurately represent the
polarizability of the target by the incident particle at low energies and to allow for
ionization at intermediate energies. As a result, in principle, the two expansions span
the same configuration space, which could lead to instability in the solution if close
to complete sets of target basis functions are included in each expansion. However,
in practical calculations both expansions are truncated to a finite number of basis
functions and hence any difficulty due to over completeness usually does not arise.
Retaining both expansions together with the expansion over quadratically integrable
functions χΛi in (7.13) then gives faster convergence and enables positron collision
and positronium formation cross sections to be defined and accurately calculated at
low and intermediate energies.

The channel functions Φ
Λ

i in (7.13) corresponding to positron–atom collisions
are constructed by coupling the orbital angular momentum of the antisymmetrized
N -electron target atom wave functions ΦN

i with the orbital angular momentum of
the scattered positron as follows:

Φ
Λ

i (XN ; r̂pσp) =
∑
Mi mi

(Li Mi	i mi |L ML)Φ
N
i (XN )Y	i mi (θp, φp)χ 1

2 mp
(σp),

i = 1, . . . , n, (7.15)

where the boundary radius a0 of the internal region in Fig. 7.2 is chosen so that the
target atom wave functions ΦN

i (XN ) are negligible for ri ≥ a0, i = 1, . . . , N .

The channel functionsΘ
Λ

i in (7.13) corresponding to positronium–ion collisions
are constructed by coupling the orbital and spin angular momenta of the antisym-
metrized residual atomic ion wave function ΦN−1

i (XN−1) with the orbital and spin
angular momenta of the positronium atom wave function, where we assume that
the N th atomic electron and the positron form the positronium atom. We now
introduce the following wave function describing the positron and the N th atomic
electron:

ξi (ρN ; σNσp) = φi (ρN )χ 1
2 m N

(σN )χ 1
2 m p
(σp), (7.16)
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where φi (ρN ) is the space part of the positronium atom wave function, χ 1
2 m N

(σN )

is the N th atomic electron spin function and χ 1
2 m p
(σp) is the positron spin function.

Using (A.20), we can rewrite (7.16) as a linear combination of singlet and triplet
positronium atom spin functions χ si ms (σNσp) as follows:

ξi (ρN ; σNσp) =
∑

si

(
1
2 m N

1
2 m p|si ms

)
φi (ρN )χ si ms (σNσp), (7.17)

where the Clebsch–Gordan coefficients in this equation are defined in Sect. A.1. The

channel functions Θ
Λ

i in (7.13) are then defined by

Θ
Λ

i (XN−1; ρNσNσp; R̂N )

=
∑

M ′L m′	

∑
MK m j

∑
M ′SmS

(L ′i M ′L	′i m′	|Ki MK )(Ki MK ji m j |L ML)

× (S′i M ′Ssi ms |SMS)Φ
N−1
i (XN−1)φi (ρN )

× χ si ms (σNσp)Y ji m j (θN , φN ), i = 1, . . . ,m, (7.18)

where the boundary radius A0 of the internal region in Fig. 7.2 is chosen so that the
overlap of the residual atomic ion wave functionsΦN−1

i (XN−1) and the positronium
wave function φi (ρN ) is negligible for RN ≥ A0.

The angular momentum coupling scheme that we have adopted in (7.18), in

defining the channel functions Θ
Λ

i in (7.13), is summarized in Fig. 7.3. The orbital
and spin angular momentum quantum numbers of the residual atomic ion are L ′i ,
M ′L , S′i , M ′S , the orbital angular momentum quantum numbers of the positron-
ium atom are 	′i , m′	 and the spin magnetic quantum numbers of the captured
N th electron and the positron are m N and mp, respectively. Then Ki and MK are
intermediate angular momentum quantum numbers obtained by coupling the orbital
angular momenta of the residual ion denoted by L ′i and M ′L with the orbital angular

Fig. 7.3 Positronium–ion
orbital and spin angular
momentum coupling scheme
defining the positronium
wave function ξi in (7.17)

and the channel functions Θ
Λ

i
in (7.18)
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momenta of the positronium atom denoted by 	′i and m′	, ji and m j are the orbital
angular momentum quantum numbers describing the orbital motion of the positro-
nium atom relative to the residual ion and L and ML are the total conserved orbital
angular momentum quantum numbers of the positronium atom and the residual ion.
Also S and MS are the total conserved electron spin angular momentum quantum
numbers of the positronium atom and the residual ion obtained by coupling the
electron spin angular momentum of the residual ion denoted by S′i and M ′S with the
spin angular momentum of the positronium atom denoted by si and ms . We also
remember from (7.16) and (7.17) that electron and positron spins are coupled to
yield the positronium atom spin quantum numbers si and ms . Finally, we observe
that the total parity π in (7.12), defined by

π = πi (−1)	i = π ′i (−1)	
′
i+ ji , (7.19)

is conserved in the collision where πi is the parity of the N -electron target atom and
π ′i is the parity of the residual atomic ion.

The zero-order radial continuum basis orbitals u0
i j (rp) and v0

i j (RN ) in (7.13) are
defined over the ranges 0 ≤ rp ≤ a0 and 0 ≤ RN ≤ A0, respectively, in the internal
region defined in Fig. 7.2. In practice the continuum basis orbitals can be calcu-
lated using a homogeneous boundary condition method similar to that described in
Sect. 5.3.1 for electron–atom collisions (e.g. [531]). However, since the positron is
distinguishable from the electrons in the target atom or residual ion, the Lagrange
orthogonalization procedure adopted for electron–atom collisions is not required.
Hence, the continuum basis orbitals in (7.13) can be obtained by solving equations
analogous to (5.75) with the right-hand side set zero. In the case of u0

i j (rp), cor-
responding to the positron–atom collision channels, the potential U0(r) in (5.75)
can be taken to be the repulsive static potential of the target atom ground state.
In the case of v0

i j (RN ), corresponding to the positronium–ion collision channels,
the potential U0(r) in (5.75) can be taken to be zero. This is justified for positron
collisions with alkali metal atoms since the diagonal elements of the potential cor-
responding to positronium collisions with the resultant closed-shell ion are zero.

The final step in the definition of the quantities in (7.13) is to determine the
coefficients aΛi jk , bΛi jk and cΛik . This is achieved by diagonalizing the operator HN+p+
Lr + LR in the basis ψΛk defined by (7.13) where the integral is taken over the
internal region in Fig. 7.2 as follows:

〈ψΛk |HN+p + Lr + LR |ψΛk′ 〉int = EΛk δkk′ , k, k′ = 1, . . . , nt . (7.20)

In this equation we have introduced the Bloch operator for positron–atom collision
channels in (7.13) defined by

Lr = 1

2
δ(rp − a0)

(
d

drp
− b0 − 1

rp

)
, (7.21)
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which corresponds to the form of the Hamiltonian defined by (7.5), and the Bloch
operator for positronium–ion collision channels in (7.13) defined by

LR = 1

4

N∑
i=1

δ(Ri − A0)

(
d

dRi
− B0 − 1

Ri

)
, (7.22)

which corresponds to the form of the Hamiltonian defined by (7.6), where b0 in
(7.21) and B0 in (7.22) are arbitrary constants. It follows that HN+p + Lr + LR is
hermitian in the basis of quadratically integrable functions (7.13), satisfying arbi-
trary boundary conditions on the surface of the internal region in Fig. 7.2 where
rp = a0 and Ri = A0, i = 1, . . . , N .

The solution of (7.3) in the internal region for each set of conserved quantum
numbers Λ defined by (7.12) can be obtained by rewriting (7.3) as follows:

(HN+p + Lr + LR − E)Ψ Λ = (Lr + LR)Ψ
Λ, (7.23)

which has the formal solution

ΨΛ = (HN+p + Lr + LR − E)−1(Lr + LR)Ψ
Λ. (7.24)

The spectral representation of the Green’s function in this equation can be written
in terms of the basis functions ψΛk defined by (7.13) and (7.20). We obtain

|ΨΛ〉 =
nt∑

k=1

|ψΛk 〉
1

EΛk − E
〈ψΛk |Lr + LR |ΨΛ〉. (7.25)

We then project (7.25) onto the n channel functions Φ
Λ

i , i = 1, . . . , n, defined
by (7.15) and evaluate it on the boundary rp = a0 and project (7.25) onto the m

channel functions Θ
Λ

i , i = 1, . . . ,m, defined by (7.18) and evaluate it on the
boundary RN = A0. We obtain, after using (7.21) and (7.22)

FΛi (a0) =
n∑

j=1

RΛi j (E)

(
a0

dFΛj
drp
− b0 FΛj

)
rp= a0

+
m∑

j=1

RΛi j+n(E)

(
A0

dGΛj
dRN

− B0GΛj

)
RN=A0

, i = 1, . . . , n (7.26)
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and

GΛi (A0) =
n∑

j=1

RΛi+n j (E)

(
a0

dFΛj
drp
− b0 FΛj

)
rp= a0

+
m∑

j=1

RΛi+n j+n(E)

(
A0

dGΛj
dRN

− B0GΛj

)
RN=A0

, i = 1, . . . ,m . (7.27)

In (7.26) and (7.27), the reduced radial functions FΛi (rp), which correspond to
positron–atom collisions, are obtained by projecting the total wave function ΨΛ

onto the channel functions Φ
Λ

i defined by (7.15) as follows:

FΛi (rp) = 〈r−1
p Φ

Λ

i |ΨΛ〉′, i = 1, . . . , n, (7.28)

and the reduced radial functions GΛi (RN ), which correspond to positronium–ion
collisions, are obtained by projecting the total wave function ΨΛ onto the channel

functions Θ
Λ

i defined by (7.18) as follows:

GΛi (RN ) = 〈R−1
N Θ

Λ

i |ΨΛ〉′, i = 1, . . . ,m. (7.29)

The R-matrices in (7.26) and (7.27) are then combined into a generalized R-matrix
defined by

RΛi j (E) =
1

2a0

nt∑
k=1

wΛikw
Λ
jk

EΛk − E
, i = 1, . . . , n + m, j = 1, . . . , n (7.30)

and

RΛi j (E) =
1

4A0

nt∑
k=1

wΛikw
Λ
jk

EΛk − E
, i = 1, . . . , n+m, j = n+1, . . . , n+m , (7.31)

where the surface amplitudes in these equations are defined by

wΛik = 〈r−1
p Φ

Λ

i |ψΛk 〉′rp= a0

=
nt∑

j=1

u0
i j (a0)a

Λ
i jk, i = 1, . . . , n, k = 1, . . . , nt (7.32)
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and

wΛi + n k = 〈R−1
N Θ

Λ

i |ψΛk 〉′RN=A0

=
mc∑
j=1

v0
i j (A0)b

Λ
i jk, i = 1, . . . ,m, k = 1, . . . , nt , (7.33)

which follow from (7.13). The primes on the Dirac brackets in the above equations
mean that the integrations are carried out over all coordinates except the radial
coordinate rp in (7.28) and (7.32) and except the radial coordinate RN in (7.29)
and (7.33).

Equations (7.26) and (7.27) are the basic equations which result from the solu-
tion of the Schrödinger equation (7.3) describing positron–atom collisions and
positronium–ion collisions in the internal region. The R-matrix defined by (7.30)
and (7.31) is determined at all energies by diagonalizing HN+p + Lr + LR in
the basis defined by (7.13) to yield the eigenenergies EΛk in (7.20) for each set of
conserved quantum numbers Λ. If the zero-order radial continuum basis orbitals
u0

i j (rp) and v0
i j (RN ) in (7.13) are calculated using the homogeneous boundary con-

dition method then a Buttle correction to the diagonal elements of the R-matrix must
be applied as described in Sect. 5.3.2. Having determined the R-matrix, (7.26) and
(7.27) then provide the boundary conditions satisfied by the solution of the equations
describing positron–atom collisions and positronium–ion collisions in the external
region described in the next section.

7.1.3 External Region Solution

The external region, defined in Fig. 7.2, is divided into two sub-regions
corresponding to positron–atom collision channels and positronium–ion collision
channels. We assume that the corresponding radii a0 and A0 are chosen large enough
so that for the channels of interest the corresponding wave functions in these two
external sub-regions have negligible overlap and can therefore be treated indepen-
dently.

In the external sub-region corresponding to positron–atom collisions, we expand

the total wave function in terms of channel functions Φ
Λ

i defined by (7.15) as
follows:

ΨΛj E (XN ; rpσp) =
n∑

i=1

Φ
Λ

i (XN ; r̂pσp)r
−1
p FΛi j (rp) , (7.34)

where j labels the linearly independent solutions. We then substitute this expansion
into the Schrödinger equation (7.3), where the Hamiltonian HN+p is defined by

(7.5), and project this equation onto the channel functions Φ
Λ

i . We then find that
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the reduced radial functions FΛi j (rp) in (7.34) satisfy the following set of coupled
second-order differential equations:

(
d2

dr2
p
− 	i (	i + 1)

r2
p

− 2(Z − N )

rp
+ k2

i

)
FΛi j (rp) = 2

n∑
i ′=1

VΛi i ′ (rp)F
Λ
i ′ j (rp) ,

i = 1, . . . , n, rp ≥ a0 , (7.35)

where 	i is the orbital angular momentum of the scattered positron, Z is the nuclear
charge number, N is the number of target electrons and k2

i is the square of the wave
number of the scattered positron defined by

k2
i = 2

(
E − eΛi

)
, i = 1, . . . , n , (7.36)

where

eΛi = 〈r−1
p Φ

Λ

i (XN ; r̂pσp)|HN |r−1
p Φ

Λ

i (XN ; r̂pσp)〉, i = 1, . . . , n. (7.37)

Finally in (7.35), VΛi i ′ (rp) is the potential matrix defined in analogy with (2.66) by

VΛi i ′ (rp) = 〈r−1
p Φ

Λ

i (XN ; r̂pσp)

∣∣∣∣∣−
N∑

k=1

1

ρk
+ N

rp

∣∣∣∣∣ r−1
p Φ

Λ

i ′ (XN ; r̂pσp)〉′,

i, i ′ = 1, . . . , n. (7.38)

We see that (7.35) has the same general form as the coupled second-order dif-
ferential equations (5.29) describing electron–atom collisions in the external region.
This is because the electron exchange terms in electron–atom collisions are confined
to the internal region and hence the potential in (5.29) only describes the long-range
interaction between the electron and the atom. The differences between (7.35) and
(5.29) then arise because the positron has positive charge and the electron nega-
tive charge. This results in the change in sign in the long-range Coulomb potential
−2(Z − N )/rp and in the sign of the potential matrix VΛi i ′ (rp). It follows that

VΛi i ′ (rp) = −V Γi i ′ (r), rp = r, i, i ′ = 1, . . . , n, (7.39)

where in the external region the conserved quantum numbers in positron–atom
collisions represented by Λ are the same as the conserved quantum numbers in
electron–atom collisions represented by Γ . Hence we find that the potential matrix
VΛi i ′ (rp) in (7.35) can be written as a summation over inverse powers of rp where the
coefficients in the expansion have the opposite sign to those given in (5.30).

In the external sub-region in Fig. 7.2 corresponding to positronium–ion colli-

sions, we expand the total wave function in terms of channel functions Θ
Λ

i defined
by (7.18) as follows:
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ΨΛj E (XN−1; ρNσNσp;RN ) =
m∑

i=1

Θ
Λ

i (XN−1; ρNσNσp; R̂N )R
−1
N GΛi j (RN ),

(7.40)

where j , which has the same meaning as in (7.34), labels the linearly independent
solutions. We then substitute this expansion into the Schrödinger equation (7.3),
where the Hamiltonian HN+p is now defined by (7.6) and where, as in Fig. 7.2,
we assume that the N th target atom electron has been captured to form positro-

nium. After projecting (7.3) onto the channel functions Θ
Λ

i we then find that the
reduced radial functions GΛi j (RN ) in (7.40) satisfy the following coupled second-
order differential equations:

(
d2

dR2
N

− ji ( ji + 1)

R2
N

+ K 2
i

)
GΛi j (RN ) = 4

m∑
i ′=1

UΛ
i i ′(RN )G

Λ
i ′ j (RN ),

i = 1, . . . ,m, RN ≥ A0 . (7.41)

In this equation ji , defined in Fig. 7.3, is the angular momentum quantum number in
the i th channel corresponding to the orbital motion of the positronium atom relative
to the residual ion. Also in (7.41) K 2

i is the square of the wave number Ki of the
positronium atom in the i th channel defined by

K 2
i = 4

[
E − (EN−1)i − (EpN )i

]
, (7.42)

where (EN−1)i is the energy of the residual (N − 1)-electron ion in the i th channel
defined by

(EN−1)i = 〈ΦN−1
i (XN−1)|HN−1|ΦN−1

i (XN−1)〉, i = 1, . . . ,m , (7.43)

and (EpN )i is the energy of the positronium atom in the i th channel defined by

(EpN )i = 〈φi (ρN )χ si ms (σNσp)|HpN |φi (ρN )χ si ms (σNσp)〉, i = 1, . . . ,m ,
(7.44)

where HN−1 and HpN are defined by (7.7) and (7.8), respectively, with i replaced
by N . Finally in (7.41), UΛ

i i ′(RN ) is the potential matrix defined by

UΛ
i i ′(RN ) = 〈R−1

N Θ
Λ

i (XN−1; ρNσNσp; R̂N )|VN−1 pN |
× R−1

N Θ
Λ

i ′ (XN−1; ρNσNσp; R̂N )〉, i, i ′ = 1, . . . ,m, (7.45)

where VN−1 pN is the potential interaction between the residual ion and the positro-
nium atom defined by (7.9), with i replaced by N .



370 7 Positron Collisions with Atoms and Ions

Having determined the coupled second-order differential equations (7.35) and
(7.41), satisfied by the functions FΛi j (rp) and GΛi j (RN ), respectively, the generalized

(n+m)× (n+m)-dimensional R-matrix RΛ defined by (7.30) and (7.31) can then
be propagated outwards from the boundaries rp = a0 and RN = A0 to the outer
boundaries rp = ap and RN = Aq in Fig. 7.2 using the procedure described in
Appendix E.6. The R-matrix at the outer boundaries then provides the boundary
condition for the solution in the asymptotic region, discussed in Sect. 7.1.4.

7.1.4 Asymptotic Region Solution

The solution of (7.3) in the asymptotic region, where rp ≥ ap and RN ≥ Aq in
Fig. 7.2, proceeds using an extension of the method adopted in the asymptotic region
in electron–atom collisions, discussed in Sect. 5.1.4. First, we assume that we have
chosen the radii ap and Aq in Fig. 7.2 large enough that the asymptotic expansion
methods discussed in Appendix F.1 can be used to obtain accurate linearly inde-
pendent solutions of (7.35) when rp ≥ ap and of (7.41) when RN ≥ Aq . Follow-
ing our discussion in Sect. 5.1.4, we then assume that the n positron–atom colli-
sion channels corresponding to (7.35), which we distinguish by a bar, are ordered
so that

k
2
1 ≥ k

2
2 ≥ · · · ≥ k

2
n, (7.46)

where at the energy E of interest the first na channels are open with k
2
i ≥ 0 and the

last nb channels are closed with k
2
i < 0, where na + nb = n. We then determine

n + na linearly independent asymptotic solutions of (7.35), which are regular as
rp →∞ and which satisfy the following asymptotic boundary conditions:

si j (rp) ∼
rp→∞ k

−1/2
i sin θ iδi j , i = 1, . . . , n, j = 1, . . . , na,

ci j (rp) ∼
rp→∞ k

−1/2
i cos θ iδi j , i = 1, . . . , n, j = 1, . . . , na,

ci j (rp) ∼
rp→∞ exp(−φi )δi j , i = 1, . . . , n, j = na + 1, . . . , n, (7.47)

where θ i and φi are defined by equations analogous to (5.38), (5.39), (5.40) and
(5.41). Also, we assume that the m positronium–ion collision channels correspond-
ing to (7.41), which we distinguish by a tilde, are ordered so that

k̃ 2
1 ≥ k̃ 2

2 ≥ · · · ≥ k̃ 2
m, (7.48)

where at the energy E of interest the first ma channels are open with k̃2
i ≥ 0 and the

last mb channels are closed with k̃2
i < 0, where ma + mb = m. We then determine
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m + ma linearly independent asymptotic solutions of (7.41), which are regular as
RN →∞ and which satisfy the following asymptotic boundary conditions:

s̃i j (RN ) ∼
RN→∞ k̃ −1/2

i sin θ̃iδi j , i = 1, . . . ,m, j = 1, . . . ,ma,

c̃i j (RN ) ∼
RN→∞ k̃ −1/2

i cos θ̃iδi j , i = 1, . . . ,m, j = 1, . . . ,ma,

c̃i j (RN ) ∼
RN→∞ exp(−φ̃i )δi j , i = 1, . . . ,m, j = ma + 1, . . . ,m , (7.49)

where θ̃i and φ̃i are also defined by equations analogous to (5.38), (5.39), (5.40)
and (5.41).

We observe that at an energy E where na channels of (7.35) and ma channels of
(7.41) are open, we can determine na + ma linearly independent physical solutions
of the combined internal and external region equations which vanish at the origin
and which are finite at infinity. In analogy with (5.42), these solutions can be written
in terms of the n + na asymptotic solutions defined by (7.47) and the m + ma

asymptotic solutions defined by (7.49) as follows

FΛ(ρ) = s(ρ)+ c(ρ)NΛ, rp ≥ ap, RN ≥ Aq , (7.50)

where we have written s(ρ) to represent s(r) or s̃(RN ) and c(ρ) to represent c(r)
or c̃(RN ) and where the variable ρ represents rp in the channels corresponding to
(7.35) and RN in the channels corresponding to (7.41). It follows that in (7.50)

FΛ(ρ) has dimension (n + m)× (na + ma),

s(ρ) has dimension (n + m)× (na + ma),

c(ρ) has dimension (n + m)× (n + m),

NΛ has dimension (n + m)× (na + ma). (7.51)

Also, so that the ordering of open and closed channels in (7.50) is the same as in
(5.42), we have re-ordered the channels in (7.50) so that the first na + ma channels
are open and the last nb + mb channels are closed. Hence the ordering of open and
closed channels in (7.50) is as follows:

channels 1 to na ≡ na open channels in (7.35),

channels na + 1 to na + ma ≡ ma open channels in (7.41),

channels na + ma + 1 to n + ma ≡ nb closed channels in (7.35),

channels n + ma + 1 to n + m ≡ mb closed channels in (7.41). (7.52)

In analogy with (5.43), the matrix NΛ in (7.50) can then be rewritten in the form

NΛ =
[

KΛ

LΛ

]
, (7.53)
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where KΛ is the (na + ma) × (na + ma)-dimensional K -matrix which cou-
ples the na + ma open channels in (7.35) and (7.41) and LΛ is a subsidiary
(nb+mb)×(na+ma)-dimensional matrix which couples the solutions in (7.47) and
(7.49) which vanish asymptotically. We see that KΛ postmultiplies the first na+ma

columns in the matrix c(ρ) in (7.50) and LΛ postmultiplies the last nb+mb columns
of c(ρ).

Following our discussion in Sect. 5.1.4, we now express the (na + ma)× (na +
ma)-dimensional K -matrix coupling the open channels in (7.35) and (7.41) in terms
of the (n + m)× (n + m)-dimensional R-matrix RΛ, defined on the outer bound-
aries of the external region rp = ap and RN = Aq in Fig. 7.2, obtained using
the propagator method described in Appendix E.6, or an equivalent procedure. The
R-matrix on the boundary rp = ap and RN = Aq is then defined in analogy with
(E.116) and (E.117) as follows:

FΛ(ap, Aq) = RΛ11(ap, Aq)apFΛ
′
(ap, Aq)+ RΛ12(ap, Aq)AqGΛ

′
(ap, Aq),

GΛ(ap, Aq) = RΛ21(ap, Aq)apFΛ
′
(ap, Aq)+ RΛ22(ap, Aq)AqFΛ

′
(ap, Aq), (7.54)

where FΛ′ and GΛ′ are the derivatives dFΛ/drp and dGΛ/dRN , respectively.
We now observe that the components of the asymptotic solution FΛ, defined by

(7.50), and their derivatives, defined by

FΛ′(ρ) = s′(ρ)+ c′(ρ)NΛ, rp ≥ ap, RN ≥ Aq , (7.55)

correspond on the boundary rp = ap and RN = Aq to solutions (7.54), after
appropriate re-ordering corresponding to (7.52). Hence, following our analysis in
Sect. 5.1.4, we can substitute the appropriate re-ordered asymptotic solutions FΛ

and FΛ′ defined by (7.50) and (7.55) on the boundary rp = ap and RN = Aq

of the external region for the functions FΛ and GΛ and the derivatives FΛ′ and
GΛ′ in (7.54). This yields a set of n+m linear simultaneous equations with na+nb

right-hand sides, which are analogous to (5.46). The solution of these equations then
yields the elements of the (n + m)× (na + ma)-dimensional matrix NΛ and hence
from (7.53) the (na + ma)× (na + ma)-dimensional K -matrix KΛ.

It follows from (7.50) that the required physical solution matrix FΛ(ρ) satisfies
the asymptotic boundary condition

FΛ(ρ) ∼
rp→∞
RN→∞

s(ρ)+ c(ρ)KΛ, (7.56)

where we remember from (7.52) that the first na channels in (7.56) correspond
to open positron–atom channels, and the next ma channels in (7.56) correspond
to open positronium–ion channels. Hence the K -matrix KΛ couples the na open
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positron–atom channels and the ma open positronium–ion channels. The (na +
ma)× (na +ma)-dimensional S-matrix SΛ is then defined in terms of the K -matrix
KΛ in the usual way by the matrix equation

SΛ = I+ iKΛ

I− iKΛ
. (7.57)

The corresponding T -matrix and cross sections describing transitions between the
open positron–atom channels and the open positronium–ion channels can then be
determined using the procedure described in Sect. 2.5. The solutions in the inter-
nal, external and asymptotic regions in Fig. 7.2 can be determined in a similar
way for all relevant conserved quantum numbers Λ defined by (7.12) enabling the
corresponding cross sections for transitions between the open positron–atom and
positronium–ion channels to be determined.

7.2 Positron and Positronium Collision Calculations

In recent years detailed positron– and positronium–atom collision calculations have
been carried out using R-matrix computer programs, where a major motivation for
these theoretical and computational advances has been new developments in exper-
iments. In addition to R-matrix calculations for positron collisions with atomic
hydrogen carried out by Higgins et al. [467, 468, 470] and Kernoghan et al.
[531, 532] detailed R-matrix calculations have been carried out for positron col-
lisions with “one-electron” alkali metal atoms Li, Na, K, Rb and Cs by McAlin-
den et al. [607–611], Campbell et al. [202] and Walters et al. [950, 951] and
with “two-electron” atoms He, Mg, Ca and Zn by Campbell et al. [202]. Also
in recent years there has been a rapid increase in the experimental capability to
produce monoenergetic, energy-tunable beams of the longer life ortho-positronium
which are used in collision experiments, for example, by Laricchia et al. [574,
575, 577–580], Charlton et al. [215, 216], Zafar et al. [988–990], Garner et al.
[362–364], Gilbert et al. [372], Armitage et al. [20] and Brawley et al. [124]. These
developments have stimulated considerable interest in the calculation of positron-
ium collisions with atoms and detailed R-matrix calculations have been carried out
for positronium collisions with H by Campbell et al. [201] and Blackwood et al.
[112–114] and with He, Na, Ar, Kr and Xe by Blackwood et al. [111, 113]. We will
discuss examples of these collision calculations in the following sections.

7.2.1 Positron Collisions with H

As our first example we consider R-matrix calculations of positron collisions with
atomic hydrogen at low and intermediate energies carried out by Kernoghan et al.
[531, 532]. In this work they considered the following processes:
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e+ + H(1s)→ H(1s)+ e+ elastic scattering,

→ H(2s, 2p)+ e+ excitation,

→ H+ + e− + e+ ionization,

→ H+ + Ps(1s, 2s, 2p) Ps formation,

(7.58)

where they compared their results with experimental measurements by Jones et al.
[508] and Zhou et al. [1010].

The R-matrix calculations were carried out in the energy range 0–110 eV using a
33-state approximation which included in expansion (7.13) the 1s, 2s and 2p eigen-
states of both positronium and atomic hydrogen with 27 atomic hydrogen pseu-
dostates, which represented the hydrogen atom ionization continuum. The results
presented in Fig. 7.4 show excellent agreement between the calculations and exper-
iment for the total positronium formation cross section, the ionization cross section
and the total cross section over the full range of energies considered, showing that
the 33-state calculation can accurately describe the main features of the cross section
for positron collisions with the ground state of atomic hydrogen. In particular, the
inclusion of pseudostates in this calculation gives an accurate representation of the
ionization continuum at intermediate energies.

Fig. 7.4 Positron collisions with atomic hydrogen: (a) total positronium formation cross section,
(b) ionization cross section, (c) total cross section. Solid curve: 33-state calculation [532]; points:
experimental data from [508, 1010] (Fig. 1 from [953])
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7.2.2 Positronium Collisions with He

We consider next R-matrix calculations of positronium collisions with helium
atoms where initially the target helium atom is restricted to its 1Se ground state.
This “frozen-target” approximation has been successfully applied by Blackwood
et al. [111] to describe elastic scattering, positronium excitation and positronium
ionization in the energy range 0–40 eV. However, this work also highlighted sig-
nificant discrepancies between theory and experiment for low-energy positronium–
helium atom collisions. Hence in Sect. 7.2.3 we consider calculations for positron-
ium collisions with helium and hydrogen atoms by Walters et al. [952] which, by
including virtual transitions in the target, show the importance of target polarization
in low-energy collisions.

7.2.2.1 Frozen-Target Approximation

We consider first R-matrix calculations for positronium collisions with helium
atoms carried out by Blackwood et al. [111] who studied the following collision
processes:

Ps+ He→ He+ Ps elastic scattering,

→ He+ Ps(n = 2) positronium excitation,

→ He+ e− + e+ positronium ionization.

(7.59)

In this work results from three levels of approximation were reported, where in each
case the frozen-target approximation is adopted where only the 1Se ground state
of He was retained in the second expansion in (7.13). In the first static exchange
approximation, only the Ps(1s) state and the He(1Se) state were retained in (7.13).
In the second nine-state approximation (9ST), the 1s, 2s and 2p eigenstates of Ps
together with 3s, 3p, 3d, 4s, 4p, 4d pseudostates were retained in (7.13). Finally, in
the third 22-state approximation (22ST), the 1s, 2s and 2p eigenstates of Ps as well
as 3s–7s, 3p–7p, 3d–7d and 4f–7f pseudostates were retained in (7.13). In all of these
calculations we note that since the target helium atom is restricted to the 1Se ground
state, an ortho-positronium projectile cannot be converted into a para-positronium
projectile or vice versa. Hence in this approximation the collision cross sections for
ortho-positronium and para-positronium collisions are the same.

We show in Fig. 7.5 the total cross section for the 22ST approximation and its
principal components, i.e. the elastic cross section, the positronium ionization (frag-
mentation) cross section and the positronium excitation cross section to the 2s and
2p states, calculated by Blackwood et al. [111]. The ionization cross section was
extracted from the calculation [532, 611] by taking

σion(Ps) =
∑

j

f jσ j (Ps), (7.60)
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Fig. 7.5 Cross sections for positronium collisions with helium atoms calculated in the 22ST
R-matrix approximation by Blackwood et al. [111]. Solid curve: total cross section; short dashed
curve: elastic scattering cross section; dash-dot curve: Ps ionization (fragmentation) cross section;
long-dashed curve: Ps(n = 2) excitation cross section; solid circles: total cross section measure-
ments by Garner et al. [362, 363] (Fig. 2 from [111])

where σ j (Ps) is the cross section for exciting the j th positronium pseudostate and
f j is the fraction of this state overlapping the positronium continuum. We see from
this figure that the calculated total cross section is in good agreement with the mea-
surements of Garner et al. [362, 363].

We also compare the calculated positronium ionization cross section with later
measurements by Armitage et al. [20] and with Born approximation calculations by
Biswas and Adhikari [109] in Fig. 7.6. We see from this figure that including pseu-
dostates in the R-matrix calculation gives a good representation of the ionization

Fig. 7.6 Positronium
ionization cross section
for positronium collisions
with helium atoms. Solid
curve: R-matrix calculation
by Blackwood et al. [111];
dashed curve: Born
approximation calculation
by Biswas and Adhikari
[109]; solid circles:
experimental measurements
by Armitage et al. [20]
(Fig. 2. from [20])
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cross section in this energy range. However, it is also clear from this figure that the
Born approximation is, as expected, not accurate at these relatively low energies.

7.2.3 Target Polarization in Positronium Collisions

In order to study the effect of target polarization on low-energy collision cross
sections, Walters et al. [952] carried out a series of calculations for positronium
collisions with helium and atomic hydrogen targets including excited states and
pseudostates in both the expansions of the positronium and target states.

In the case of S-wave positronium collisions with helium, 1s, 2s and 2p eigen-
states and 3s, 3p, 3d, 4s, 4p, 4d pseudostates of Ps together with 1 1Se, 2 1Se, 2 1Po

eigenstates and 3 1Se, 3 1Po, 3 1De, 4 1Se, 4 1Po, 4 1De pseudostates of helium were
retained in expansion (7.13) giving a 9Ps9He calculation. In the case of P-wave
positronium collisions with helium some numerical instabilities were encountered

Fig. 7.7 S-wave and P-wave cross sections for Ps(1s) elastic scattering by He(1 1Se) and H(1s).
The Ps–H cross sections are for collisions in the electron spin triplet state. For He: solid curve,
9Ps9He approximation for S-wave and 7Ps7He approximation for P-wave; dashed curve, 9Ps1He
approximation for S-wave and 7Ps1He approximation for P-wave. For H: solid curves, 9Ps9H
approximation; dashed curves, 9Ps1H approximation for S-wave and for P-wave (Fig. 5 from
[952])
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so a reduced 7Ps7He calculation was adopted in which the positronium and helium
D-wave pseudostates were omitted. We compare in Fig. 7.7 the corresponding S-
and P-wave Ps–He elastic scattering cross sections with results obtained using
frozen He target approximations corresponding to 9Ps1He for S-wave and 7Ps1He
for P-wave scattering. Also shown in Fig. 7.7 are corresponding results for positro-
nium collisions with atomic hydrogen in the triplet electronic spin state. We see
from this figure that the results for both atomic hydrogen and helium targets are
similar with a significant reduction in the cross section occurring at low energies
when virtual transitions in the target are included in the calculation. Also we observe
that the reduction is more significant for atomic hydrogen, probably because of the
higher excitation energies for the He target.

In conclusion, these calculations show that target polarization plays an important
role in low-energy positronium–atom collisions and that virtual transitions of the
target must be included to obtain accurate low-energy collision cross sections.



Chapter 8
Photoionization, Photorecombination
and Atoms in Fields

In recent years there has been a considerable growth of interest in atomic photoion-
ization and photorecombination processes stimulated, for example, by the need to
analyse increasingly sophisticated experiments using synchrotron radiation sources
and to calculate atomic data required in many applications. In this chapter we
consider the development of R-matrix theory to treat atomic photoionization and
photorecombination processes, where we restrict our consideration to single photon
processes, reserving a treatment of multiphoton processes to Chaps. 9 and 10. We
also consider an extension of R-matrix theory to describe the spectra of atoms in
external fields.

We commence our analysis of atomic photoionization processes in Sect. 8.1 by
deriving a general expression for the differential cross section for photoionization of
an unpolarized atom or atomic ion by a polarized beam of photons. The differential
photoionization cross section is then written in a general form consisting of an inte-
grated cross section and an asymmetry parameter, which follows from invariance
arguments discussed by Yang [983]. We then extend multichannel R-matrix theory,
introduced in Chap. 5, to enable atomic photoionization cross sections to be calcu-
lated using an approach developed by Burke and Taylor [168]. This section includes
a discussion of R-matrix methods for calculating both the initial bound state of the
target atom and the final continuum state. We also consider methods for carrying out
calculations in the neighbourhood of R-matrix poles using an approach introduced
by Burke and Seaton [169].

In Sect. 8.2 we consider photorecombination and radiation damping in electron
collisions with positive ions. In photorecombination a free electron is accelerated
by the ion and as a result emits a photon of sufficient energy that the electron is cap-
tured into a bound state. This process can proceed non-resonantly or, alternatively,
resonantly through intermediate doubly excited states which is called dielectronic
recombination. Also, for electron collisions with highly ionized ions, the scattering
amplitude must be modified to include radiation damping, where the lifetimes of
intermediate resonance states can be strongly affected by the interaction between
the radiation field and the scattered and target electrons. After a general intro-
duction to photorecombination and radiation damping and a summary of recent
work, we describe a generalization of R-matrix theory for electron–ion collisions
in the presence of a radiation field. In this theory we extend the usual Schrödinger

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_8,
C© Springer-Verlag Berlin Heidelberg 2011
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equation describing electron–ion collisions by the addition of a “radiation damping
potential”. By solving this modified Schrödinger equation in internal, external and
asymptotic regions, as discussed in Chap. 5, we show how photorecombination and
free–free scattering cross sections, modified by radiation damping, can be calcu-
lated.

In Sect. 8.3 we summarize the objectives and achievements of the international
Opacity Project, initiated and led by Seaton [861, 863], which is an important appli-
cation of the processes discussed earlier in this chapter. A knowledge of the opacity
of stellar material is of importance in studies of stellar structure and evolution, of
stellar atmospheres and of solar element abundancies. After discussing the rela-
tionship between the cross sections for absorption or scattering of radiation and the
Rosseland-mean opacity a brief summary of the calculations carried out is given and
the R-matrix computer programs used in these calculations are briefly reviewed.

In Sect. 8.4 we describe a computational approach, introduced and developed by
Halley et al. [438, 439] and Seipp and Taylor [867], which describes the spectra of
atoms in external fields. This approach combines the complex coordinate rotation
method with a new external region R-matrix method. We commence by describ-
ing the complex coordinate rotation method which has played an important role in
the study of atoms, ions and molecules in external fields. We then show how this
method can be combined with a new external region R-matrix method, introduced
by O’Mahony and Taylor [703], to accurately describe the spectra of atoms in labo-
ratory strength electric and magnetic fields.

Finally, in Sect. 8.5 we present illustrative results of atomic photoionization, pho-
torecombination and radiation damping calculations. We also consider a calculation
of the photoionization spectrum of an atom in an external magnetic field.

8.1 Atomic Photoionization

In this section we commence by giving a general introduction to the theory of
atomic photoionization and we derive expressions for the integrated and differential
photoionization cross sections. We then describe how these cross sections can be
calculated using multichannel R-matrix theory.

8.1.1 Introduction and General Theory

We consider the following process where an atom is ionized by a photon of fre-
quency ν

hν + Ai → A+j + e− (8.1)

where Ai is the atom in state i and A+j is the residual positive ion in state j . Both Ai

and A+j can be in their ground states or either or both can be in excited states. We
also consider the analogous photoionization process for positive ions defined by
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hν + An+
i → A(n+1)+

j + e−, (8.2)

and for negative ions defined by

hν + A−i → A j + e−, (8.3)

where the latter process is called photodetachment.
We assume that a beam of photons, linearly polarized in the z-direction denoted

by the unit vector ε̂, is incident in the x-direction on an atom or ion at the origin
of coordinates, as illustrated in Fig. 8.1. The photoelectron is then ejected at polar
angles (θk, φk) with respect to a right-handed Cartesian frame of reference (x, y, z).
The differential photoionization cross section for a transition from an atomic or ionic
state i to state j is defined by

dσi j

dΩ
= 1

f
W ji , (8.4)

where W ji is the transition probability per unit time from state i to state j at an
energy E and f is the incident photon flux. From first-order time-dependent pertur-
bation theory, which is valid for the weak photon fields considered in this section,
we obtain in atomic units

Wji = 2π
∣∣Tji

∣∣2 ρ j , (8.5)

where the transition amplitude

Tji = 〈Ψ−j E |H ′|Ψi B〉, (8.6)

and ρ j is the density of final states. In (8.6) Ψi B is the initial bound-state wave
function of the target atom, which is normalized to unity according to

〈Ψi B |Ψi B〉 = 1, (8.7)

incident photon beam
x

target atom
or ion

k photoelectron

z

θkφk

ˆ

Fig. 8.1 Basic atomic photoionization process where the incident photon beam is linearly polar-
ized in the z-direction denoted by the unit vector ε̂
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and Ψ−j E is the final ingoing wave continuum-state wave function belonging to
the energy E describing the residual ion and the ejected photoelectron, which we
assume is normalized according to

〈Ψ−j E |Ψ−j ′E ′ 〉 = δ j j ′δ(E − E ′), (8.8)

corresponding to the density of states ρ j = 1 in (8.5). We will consider the ingoing
wave boundary condition satisfied by Ψ−j E below.

We can express the interaction term H ′ in the Hamiltonian appearing in the tran-
sition amplitude Tji in (8.6), in terms of the vector potential A(r, t) by

H ′ = − i

c

N+1∑
i=1

A(ri , t) ·∇i , (8.9)

where we assume that the atomic system in the initial state consists of an atom or
ion with N + 1 electrons with coordinates ri , i = 1, . . . , N + 1. Also, we have
adopted the Coulomb gauge such that the vector potential A satisfies div A = 0 and
the scalar potential φ = 0. The vector potential corresponding to a beam of photons
linearly polarized in the z-direction, defined in Fig. 8.1, is given by

A(r, t) = ε̂A0 cos(κ · r− ωt)

= ε̂ 1

2
A0 exp[i(κ · r− ωt)] + ε̂ 1

2
A0 exp[−i(κ · r− ωt)], (8.10)

where ω = κc is the angular frequency and κ is the direction of the incident photon
beam x in Fig. 8.1. Also in (8.10), the first term corresponds to photon absorption
and the second term corresponds to photon emission. The incident photon flux f
can be expressed in terms of the Poynting vector P defined by (e.g. [817])

P = c

4π
E×H, (8.11)

where the electric and magnetic field strengths E and H are given by

E = −1

c

∂A
∂t
= −κ ε̂A0 sin(κ · r− ωt) (8.12)

and

H = curlA = −κ × ε̂A0 sin(κ · r− ωt). (8.13)

The Poynting vector is thus in the direction κ and its magnitude, averaged over a
period of the oscillation 2π/ω, is

PAv = ω2

8πc
A2

0. (8.14)
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It follows that the photon flux given by the number of photons passing through unit
area in unit time is

f = 1

ω
PAv = ν

4c
A2

0, (8.15)

where the frequency ν = ω/2π . Combining these results and assuming that the
dipole approximation is valid (i.e. the wavelength of the photon field is large com-
pared with the size of the atomic target so that exp(iκ · r) in (8.10) can be replaced
by unity) we obtain the dipole velocity form of the differential photoionization cross
section

dσ V
i j

dΩ
= 2π

cν

∣∣∣〈Ψ−j E |ε̂ · DV |Ψi B〉
∣∣∣2 , (8.16)

where the dipole velocity operator

DV =
N+1∑
i=1

∇i . (8.17)

We can also obtain the dipole length form of the differential photoionization cross
section using the operator identity

p = dr
dt
= −i[r, H ], (8.18)

which yields

dσ L
i j

dΩ
= 8π3ν

c

∣∣∣〈Ψ−j E |ε̂ · DL |Ψi B〉
∣∣∣2 , (8.19)

where the dipole length operator

DL =
N+1∑
i=1

ri . (8.20)

The velocity form of the differential photoionization cross section can then be
written as

dσ V
i j

dΩk
= 4π2αa2

0

ω

∣∣∣〈Ψ−j E (k̂)|ε̂ · DV |Ψi B〉
∣∣∣2 , (8.21)

and the length form of this cross section as

dσ L
i j

dΩk
= 4π2αa2

0ω

∣∣∣〈Ψ−j E (k̂)|ε̂ · DL |Ψi B〉
∣∣∣2 , (8.22)
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where in these equations α is the fine-structure constant and ω is the incident photon
energy expressed in atomic units.

If exact wave functions are used for the initial and final states, the dipole velocity
and the dipole length forms of the cross sections give identical results. However,
agreement between the dipole velocity and length cross sections is a necessary but
not a sufficient condition for the accuracy of the wave functions. Also, in addition
to the above two forms of the cross sections, Chandrasekhar [209] defined a further
cross section which uses the acceleration form of the dipole operator. This empha-
sizes the wave function close to the nucleus and usually gives poorer results than
the other two forms when approximate wave functions are used, although we will
see in Sect. 9.1.6 that using the acceleration frame in the asymptotic region in the
treatment of multiphoton processes can simplify the analysis.

We now derive explicit expressions for the differential photoionization cross sec-
tions defined by (8.21) and (8.22) in terms of the bound- and continuum-state wave
functions Ψi B and Ψ−j E (k̂), where we confine our attention to targets where rela-
tivistic effects can be neglected. We consider first the continuum-state wave function
Ψ−j E (k̂) which has the following asymptotic form:

Ψ−j E (k̂) ∼ Ψ inc
j E (k̂)+ Ψ ing

j E (k̂), (8.23)

where Ψ inc
j E (k̂) is a Coulomb-modified plane wave incident in direction k̂ on the

residual ion and Ψ ing
j E (k̂) is the corresponding ingoing wave which has components

in all channels coupled to Ψ inc
j E (k̂) by the interaction. These ingoing wave boundary

conditions have been discussed by many authors, see, for example, [136, 387, 454,
665].

The Coulomb-modified incident plane wave in (8.23) can be written as

Ψ inc
j E (XN+1) = A

[(
k j

(2π)3

)1/2

Φ j (XN )χ 1
2 m j
(σN+1)ψ

−
cj (rN+1)

]
, (8.24)

where we have adopted the notation introduced in Sect. 2.3, describing an electron
labelled N + 1 interacting with an N -electron atom or ion. Thus A is the usual
antisymmetrization operator, Φ j is the residual atom or ion wave function, χ 1

2 m j
is

the ejected electron spin function and ψ−cj is a Coulomb wave function representing

the ejected electron in the j th channel. We can expand ψ−cj as follows:

ψ−cj (r) =
∞∑
	=0

(2	+ 1)i	 exp(−iσ	)(k jr)
−1 F	(η j , k jr)P	(cos θ), (8.25)

which is obtained from (1.64) by replacing exp(iσ	) by exp(−iσ	) so that
exp(−iσ	)F	(η, kr) has the following asymptotic form

exp(−iσ	)F	(η, kr) ∼
r→∞(2i)−1 [exp(iθc

	 )− exp(−iθc
	 )S

c
	(k)

]
, (8.26)
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corresponding to a Coulomb-modified plane wave plus an ingoing Coulomb scat-
tered wave. Also, θ in (8.25) is the angle between the ejected electron vector r and

the vector ε̂ in Fig. 8.1. Finally, the factor
[
k j/(2π)3

]1/2
in (8.24) ensures that Ψ inc

j E

and hence Ψ−j E satisfy the normalization condition (8.8). We now substitute (8.25)

for ψ−cj (r) into (8.24) and expand P	(cos θ) in terms of spherical harmonics using
(B.48), giving

Ψ inc
j E (XN+1) = A

∑
	 j m	 j

Φ j (XN )χ 1
2 m j
(σN+1)i

	 j exp(−iσ	 j )Y
∗
	 j m	 j

(θk, φk)

× Y	 j m	 j
(θN+1, φN+1)r

−1
N+1u0

j (rN+1), (8.27)

where (θk, φk) and (θN+1, φN+1) are the spherical polar coordinates of k and rN+1
with respect to the (x, y, z) Cartesian coordinate frame of reference in Fig. 8.1 and

u0
j (r) =

2

(2πk j )1/2
F	 j (η j , k jr) ∼

r→∞
i

(2πk j )1/2

[
exp(−iθc

j )− exp(iθc
j )
]
. (8.28)

where θc
j is defined by (2.82), (2.83) and (2.84). The final step in our determination

of Ψ inc
j E is to rewrite (8.27) as an expansion in terms of channel functions Φ

Γ ′
j ,

introduced in Sect. 2.3.2. It follows by inverting (2.59) that we can write

Φ j (XN )Y	′j m	′j
(θN+1, φN+1)χ 1

2 m′j
(σN+1)

=
∑
L ′S′
(L ′j ML ′j 	

′
j m	′j |L ′ML ′)(S

′
j MS′j

1
2 m′j |S′MS′)

× ΦΓ ′j (XN ; r̂N+1σN+1), (8.29)

where Γ ′ ≡ α′L ′S′ML ′MS′π ′ are the conserved quantum numbers for the final
continuum state.1

We now substitute (8.29) into (8.27) and include, as in (8.23), the contribution
from the incident channels in the ingoing wave channels allowed by the conserved
quantum numbers. The continuum wave function Ψ−j E then has the asymptotic form

Ψ−j E ∼ A
∑
	′j m	′j

∑
L ′S′

∑
α′i L ′i S′i 	′i

(L ′j ML ′j 	
′
j m	′j |L ′ML ′)(S

′
j MS′j

1
2 m′j |S′MS′)

× i	
′
j exp(−iσ	′j )Y

∗
	′j m	′j

(θk, φk)Φ
Γ ′
i (XN ; r̂N+1σN+1)

× r−1
N+1uΓ

′−
i j (rN+1), (8.30)

1 We note that in (8.29), and in subsequent equations, we have used primes to denote the quantum
numbers corresponding to the final continuum state, while the quantum numbers of the initial
bound state are left unprimed.
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where, using matrix notation, the reduced radial wave functions uΓ
′−

i j (r) satisfy the
asymptotic ingoing wave boundary conditions

uΓ
′−(r) ∼

r→∞− i(2πk)−1/2
[
exp(iθ)− exp(−iθ)SΓ

′∗] . (8.31)

The quantity SΓ
′∗ is the complex conjugate of the usual S-matrix, where the matrix

elements SΓ
′

i j describe the scattering between channels denoted by the quantum
numbers i ≡ α′i L ′i S′i	′i and j ≡ α′j L ′j S′j	′j corresponding to the final continuum
state for each Γ ′. The quantum numbers α′i L ′i S′i and α′j L ′j S′j define the states of
the residual atom or ion, as discussed in Sect. 2.2, and 	′i and 	′j are the orbital
angular momentum quantum numbers of the ejected photoelectron. We note that
uΓ
′− = (2/π)1/2HΓ

′−, where HΓ
′− is the solution satisfying ingoing wave asymp-

totic boundary conditions, defined by (2.120).
In practical calculations it is usually convenient to use K -matrix boundary condi-

tions rather than the ingoing wave boundary conditions defined by (8.31). To achieve
this we rewrite (8.31) in the equivalent form

uΓ
′−(r) ∼

r→∞

(
2

πk

)1/2 (
sin θ + cos θKΓ

′) (
I+ iKΓ

′)−1
, (8.32)

where, as in Sect. 2.5, we have defined the open-channel S-matrix SΓ
′

in terms of
the K -matrix KΓ

′
, by

SΓ
′ = I+ iKΓ

′

I− iKΓ ′
. (8.33)

Also in these calculations it is convenient to expressΨ−j E in terms of functions which
can be determined using the R-matrix method. To achieve this we rewrite (8.30) in
the form

Ψ−j E =
∑
	′j m	′j

∑
L ′S′
(L ′j ML ′j 	

′
j m	′j |L ′ML ′)

(
S′j MS′j

1
2 m′j |S′MS′

)

× i	
′
j exp(−iσ	′j )Y

∗
	′j m	′j

(θk, φk)Ψ
Γ ′−
j E , (8.34)

where ΨΓ
′−

j E is defined in analogy with (2.57) by the expansion

ΨΓ
′−

j E (XN+1) = A
∑

i

Φ
Γ ′
i (XN ; r̂N+1σN+1)r

−1
N+1uΓ

′−
i j (rN+1)

+
∑

k

χΓ
′

k (XN+1)b
Γ ′−
k j . (8.35)

The second summation in (8.35) over quadratically integrable functions χΓ
′

k van-
ishes when any electron radial coordinate ri ≥ a0, i = 1, . . . , N + 1, where
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a0 is the radius of the internal R-matrix region. Hence in the asymptotic limit
(8.34) goes over to the asymptotic form defined by (8.30) and (8.31). We will show
in Sect. 8.1.2.1 that the functions ΨΓ

′−
j E can be determined by solving the non-

relativistic time-independent Schrödinger equation (5.2) using the R-matrix method
for all Γ ′ coupled to the initial state Ψi B by the electric dipole operators in (8.21)
and (8.22).

We also need to consider the initial bound-state wave function Ψi B in (8.21) and
(8.22). This wave function can be represented by a similar expansion to that adopted
for ΨΓ

′−
j E in (8.35). Thus we can write

ΨΓi B(XN+1) = A
∑

j

Φ
Γ

i (XN ; r̂N+1σN+1)r
−1
N+1v

Γ
j i (rN+1)

+
∑

k

χΓ
k (XN+1)b

Γ
ki , (8.36)

where Γ ≡ αL SMl MSπ represents the conserved quantum numbers for the ini-
tial bound state and the radial basis functions vΓj i satisfy the asymptotic boundary
conditions corresponding to a bound state given by

vΓj i (r) ∼r→∞0. (8.37)

Since the second expansion in (8.36), as in (8.35), is over quadratically integrable
functions the wave function ΨΓi B vanishes asymptotically and is normalizable. We
will show in Sect. 8.1.2.2 that the function ΨΓi B can also be determined by solving
(5.2) using the R-matrix method.

Having obtained explicit expressions for both the continuum-state and bound-
state wave functions ΨΓ

′−
j E and ΨΓi B , we can now derive expressions for the matrix

elements of the dipole operators which arise in (8.21) and (8.22) and hence for
the differential photoionization cross section. We use the Wigner–Eckart theo-
rem, discussed in Appendix D.1, see (D.8), to write the dipole matrix elements
〈ΨΓ ′−j E |Dμ|ΨΓi B〉 appearing in (8.21) and (8.22) in terms of the reduced matrix ele-
ments 〈α′j L ′j S′j	′j L ′S′||D||αi L S〉 defined by the following equation:

〈ΨΓ ′−j E |Dμ|ΨΓi B〉 = (2L ′ + 1)−1/2(L ML1μ|L ′ML ′)

×〈α′j L ′j S′j	′j L ′S′||Dμ||αi L S〉δSS′δMS MS′ . (8.38)

In this equation, Dμ are the spherical components of either the dipole velocity or
dipole length operators in (8.21) or (8.22), respectively, which are defined in terms
of their Cartesian components by

D1 = − 1√
2
(Dx + iDy),

D0 = Dz, (8.39)

D−1 = 1√
2
(Dx − iDy).
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It follows from (8.34) and (8.38) that the matrix elements which arise in (8.21) and
(8.22) can be written as

〈Ψ−j E |Dμ|Ψi B〉 =
∑
	′j m	′j

∑
L ′S′
(L ′j ML ′j 	

′
j m	′j |L ′ML ′)

(
S′j MS′j

1
2 m′j |S′MS′

)

× (L ML1μ|L ′ML ′)(2L ′ + 1)−1/2(−i)	
′
j exp(iσ	′j )Y	′j m	′j

(θk, φk)

× 〈α′j L ′j S′j	′j L ′S′||D||αi L S〉δSS′δMS MS′ . (8.40)

We now substitute this expression into the equations for the differential cross sec-
tion for photoionization of an unpolarized atom or ion by a polarized photon beam.
These equations are obtained from (8.21) and (8.22) by averaging over the initial
magnetic quantum numbers and summing over the final magnetic quantum numbers
yielding

dσ V,L
i j

dΩ
= AV,L

(2L + 1)(2S + 1)

∑
ML MS

∑
ML′MS′

∑
m′j

∣∣∣〈Ψ−j E |Dμ|Ψi B〉
∣∣∣2 , (8.41)

where the coefficients AV and AL are defined by

AV = 4π2αa2
0

ω
, AL = 4π2αa2

0ω. (8.42)

Finally, we substitute (8.40) into (8.41) and carry out the summations over the mag-
netic quantum numbers using angular momentum algebra techniques discussed in
Appendix D.4. We obtain

dσ V,L
i j

dΩ
= AV,L

4π(2L + 1)

∑
	

A	(μ)P	(cos θk), (8.43)

where

A	(μ) =
∑

L ′L ′′	′j 	′′j

(−1)L+L ′j+μ exp(−iσ	′j + iσ	′′j )
[
(2	′j + 1)(2	′′j + 1)

]1/2

× [
(2L ′ + 1)(2L ′′ + 1)

]1/2
(1−μ1μ|	0)(	′j 0	′′j 0|	0)

× W (L ′	′j L ′′	′′j ; L ′j	)W (1L ′1L ′′; L	)

× 〈α′j L ′j S′j	′j L ′S||D||αi L S〉∗〈α′j L ′j S′j	′′j L ′′S||D||αi L S〉. (8.44)

For incident photons linearly polarized in the z-direction in Fig. 8.1, it follows from
(8.39) that μ = 0. The Clebsch–Gordan coefficient (1−μ1μ|	0) in (8.44) then has
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only two values, (1010|	0) = 1 when 	 = 0 or 2 and (1010|	0) = 0 when 	 = 1.
It follows that we can write the differential photoionization cross section as

dσ V,L
i j

dΩ
= σ

V,L
i j

4π

(
1+ βV,L

i j P2(cos θk)
)
, (8.45)

where σ V,L
i j is the integrated, or total, photoionization cross section and βV,L

i j is
called the asymmetry parameter. From (8.43) and (8.45) we obtain the following
expression for the total cross section:

σ
V,L
i j = AV,L

(2L + 1)
A0(0). (8.46)

After substituting the values of the Clebsch–Gordan and Racah coefficients, defined
in Appendices A.1 and A.2, respectively, into (8.44) we find that

σ
V,L
i j = AV,L

3(2L + 1)

∑
	′j L ′

∣∣∣〈α′j L ′j S′j	′j L ′S||D||αi L S〉
∣∣∣2 . (8.47)

Also, from (8.45), the asymmetry parameter is given by

σ
V,L
i j β

V,L
i j = AV,L

(2L + 1)
A2(0). (8.48)

Again substituting for A2(0) from (8.44) gives

σ
V,L
i j β

V,L
i j = AV,L

(2L + 1)

(
2

3

)1/2 ∑
L ′L ′′	′j 	′′j

(−1)L+L ′j exp(−iσ	′j + iσ	′′j )

×
[
(2	′j + 1)(2	′′j + 1)(2L ′ + 1)(2L ′′ + 1)

]1/2

× (	′j 0	′′j 0|20)W (L ′	′j L ′′	′′j ; L ′j 2)W (1L ′1L ′′; L2)

× 〈α′j L ′j S′j	′j L ′S||D||αi L S〉∗〈α′j L ′j S′j	′′j L ′′S||D||αi L S〉. (8.49)

The general form of (8.45) follows from invariance arguments discussed by Yang
[983]. These are first that only one direction in space is defined by the photon polar-
ization direction, second it follows from parity conservation that only final states of
one parity are present, and hence interference effects between even and odd parities
do not occur, and finally since photon absorption takes place through an electric
dipole operator the summation over 	 in (8.43) is restricted to two values, 0 and 2.

If the photons are unpolarized we can obtain the resultant angular distribution
from (8.45) by assuming that the incident beam is composed of an incoherent mix-
ture of two beams linearly polarized at right angles. In this case we obtain
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[
dσ V,L

i j

dΩ

]
unpol

= σ
V,L
i j

4π

(
1− 1

2
β

V,L
i j P2(cos θ)

)
, (8.50)

where θ is the azimuthal angle defined relative to the incident photon beam direc-
tion x in Fig. 8.1, and σ V,L

i j and βV,L
i j are given as before by (8.47) and (8.49),

respectively.
The requirement that both differential photoionization cross sections given by

(8.45) and (8.50) are positive or zero at all angles implies that the asymmetry param-
eter satisfies

− 1 ≤ βV,L
i j ≤ 2. (8.51)

Further, for photoionization of an atom or ion in an s-state βV,L
i j = 2 at all energies.

It follows that the differential photoionization cross section given by (8.50) vanishes
in the incident photon propagation direction, a result which follows from angular
momentum conservation considerations.

8.1.2 R-Matrix Theory

In this section we extend multichannel R-matrix theory, introduced in Chap. 5, to
calculate atomic photoionization cross sections using the approach first developed
by Burke and Taylor [168]. In the previous section we showed that the integrated
photoionization cross section and the asymmetry parameter, defined by (8.47) and
(8.49), respectively, can both be expressed in terms of reduced matrix elements
which contain all the information on the detailed structure of the target atom or
ion. These reduced matrix elements depend on the initial bound-state and final
continuum-state wave functions ΨΓi B and ΨΓ

′−
j E through (8.38). Our objective in

this section is to show how R-matrix theory can be used to accurately calculate
these wave functions and hence to calculate the reduced matrix elements, asymmetry
parameter and cross sections.

8.1.2.1 Final Continuum-State Wave Function

Both the initial bound-state wave function ΨΓi B , defined by (8.36), and the final

continuum-state wave function ΨΓ
′−

j E , defined by (8.35), are solutions of the time-
independent Schrödinger equation

HN+1Ψ = EΨ, (8.52)

where HN+1 is the (N + 1)-electron non-relativistic Hamiltonian in the absence of
the photon field, defined by (5.3).
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We consider first the calculation of the final continuum-state wave functionΨΓ
′−

j E

for all Γ ′ coupled to the initial state ΨΓi B by the electric dipole operator in (8.21) or
(8.22). Following our discussion in Sect. 5.1 we consider in turn the calculation
of this wave function in the internal, external and asymptotic regions illustrated in
Fig. 5.1, where for notational simplicity we do not give explicitly the ranges of the
variables in this section.

In the internal region, 0 ≤ r ≤ a0, the final continuum-state wave function is
expanded, following (5.5), as

ΨΓ
′−

j E (XN+1) =
∑

k

ψΓ
′

k (XN+1)A
Γ ′−
k j (E), (8.53)

where the R-matrix basis functions ψΓ
′

k are defined by (5.6) and (5.7) with Γ
replaced by Γ ′. Following our discussion in Sect. 5.1.2, the Schrödinger equation
(8.52) can be rewritten for each Γ ′ as

(HN+1 + LN+1 − E) Ψ Γ
′−

j E = LN+1Ψ
Γ ′−
j E , (8.54)

where LN+1 is the Bloch operator defined by (5.8) which ensures that
HN+1 + LN+1 is hermitian in the internal region. Equation (8.54) has the formal
solution

ΨΓ
′−

j E = (HN+1 + LN+1 − E)−1 LN+1Ψ
Γ ′−
j E , (8.55)

where the Green’s function (HN+1 + LN+1 − E)−1 in this equation can be
expanded in terms of the R-matrix basis functions ψΓ

′
k . Following (5.17), we find

that the final continuum-state wave function can be expanded in the internal region
as follows:

|ΨΓ ′−j E 〉 =
∑

k

|ψΓ ′k 〉
1

EΓ
′

k − E
〈ψΓ ′k |LN+1|ΨΓ ′−j E 〉. (8.56)

Projecting (8.56) onto the channel functions Φ
Γ ′
i (XN ; r̂N+1σN+1) defined by

(2.59), which we assume are n′ in number, and evaluating it on the boundary
rN+1 = a0 of the internal region give

uΓ
′−

i j (a0) =
∑

i ′
RΓ

′
i i ′ (E)

⎛
⎝a0

duΓ
′−

i ′ j
dr

− b0uΓ
′−

i ′ j

⎞
⎠

r=a0

, (8.57)

where the elements of the R-matrix RΓ
′

i i ′ (E) at r = a0 are defined by
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RΓ
′

i i ′ (E) =
1

2a0

∑
k

wΓ
′

ik w
Γ ′
i ′k

EΓ
′

k − E
, (8.58)

and where, if necessary, a Buttle correction is added to the R-matrix as discussed
in Sect. 5.3.2. The reduced radial wave functions uΓ

′−
i j (r), which we introduced in

(8.35), are then defined on the boundary of the internal region by

uΓ
′−

i j (a0) = 〈r−1
N+1Φ

Γ ′
i |ΨΓ

′−
j E 〉′rN+1=a0

=
∑
i ′k

u0
i i ′(a0)a

Γ ′
i i ′k AΓ

′−
k j (E), (8.59)

and the surface amplitudes wΓ
′

ik are defined by

wΓ
′

ik = 〈r−1
N+1Φ

Γ ′
i |ψΓ

′
k 〉′rN+1=a0

=
∑

i ′
u0

i i ′(a0)a
Γ ′
i i ′k . (8.60)

Also, the coefficients aΓ
′

i i ′k in (8.59) and (8.60) are determined by diagonalizing

the operator HN+1 + LN+1 in the basis ψΓ
′

k defined by (5.6) where, as in (5.20)
and (5.21), the primes on the Dirac brackets in (8.59) and (8.60) mean that the
integrations are carried out over all the electronic space and spin coordinates of
the N + 1 electrons, except the radial coordinate rN+1 of the ejected electron,
which is set equal to the radius a0 of the internal region. We can determine the
final continuum-state wave function in the internal region, defined by (8.53), by
comparing this equation with (8.56) which yields the following expression for the
expansion coefficients AΓ

′−
k j (E) in (8.53):

AΓ
′−

k j (E) = 1

EΓ
′

k − E
〈ψΓ ′k |LN+1|ΨΓ ′−j E 〉. (8.61)

Substituting the definition of ψΓ
′

k given by (5.6) and the explicit form of the Bloch
operator LN+1 given by (5.8) into (8.61), then yields

AΓ
′−

k j (E) = 1

2a0(EΓ
′

k − E)

∑
i

wΓ
′

ik

⎛
⎝a0

duΓ
′−

i j

dr
− b0uΓ

′−
i j (r)

⎞
⎠

r=a0

. (8.62)

It follows from (8.62) that in order to determine the expansion coefficients AΓ
′−

k j ,

and hence the final continuum-state wave function ΨΓ
′−

j E in the internal region,
defined by (8.53), we need to know the values of the reduced radial wave functions
uΓ
′−

i j and their derivatives on the boundary r = a0 of the internal region. These
quantities are determined by solving the Schrödinger equation (8.52) in the external
and asymptotic regions.



8.1 Atomic Photoionization 393

We choose the radius a0 of the internal region, as in Sect. 5.1.3, so that electron
exchange and correlation effects between the ejected photoelectron and the residual
atom or ion can be neglected for r ≥ a0. Hence in the external and asymptotic
regions the expansion of the final continuum-state wave function defined by (8.35)
reduces to

ΨΓ
′−

j E (XN+1) =
∑

i

Φ
Γ ′
i (XN ; r̂N+1σN+1)r

−1
N+1uΓ

′−
i j (rN+1),

rN+1 ≥ a0. (8.63)

Following our discussion in Sect. 5.1.3 we then find that the reduced radial wave
functions uΓ

′−
i j (r) satisfy the coupled second-order differential equations

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z − N )

r
+ k2

i

)
ui j (r) = 2

∑
i ′

Vii ′(r)ui ′ j (r),

r ≥ a0. (8.64)

The potential matrix Vii ′(r) in this equation can be written as a summation in inverse
powers of r given by (5.30). We also note that in (8.64) and in our later analysis we
have omitted the superscripts on ui j (r) and Vii ′(r) for notational convenience.

In order to solve (8.64) to obtain the continuum-state wave function for r ≥ a0
we can proceed, as discussed in Sects. 5.1.3 and 5.1.4, by first propagating the R-
matrix, defined at r = a0 by (8.58), outwards from r = a0 to ap, using one of
the propagator methods discussed in Appendix E. For example, if the Light–Walker
propagator method is used then we would propagate the R-matrix using (E.27). We
then determine n′+n′a solutions s(r) and c(r) in the asymptotic region ap ≤ r <∞
satisfying the boundary conditions (5.37), as discussed in Appendix F.1, where n′a is
the number of channels above threshold at the energy under consideration. By taking
linear combinations of these n′ + n′a solutions we obtain an n′ × n′a-dimensional
solution matrix satisfying the boundary conditions (8.32), which we can rewrite in
terms of s(r) and c(r) as follows:

u(r) =
(

2

π

)1/2

[s(r)+ c(r)N] (I+ iK)−1 , r ≥ ap, (8.65)

where the n′ × n′a-dimensional matrix N, which is defined in terms of the K -matrix
and the subsidiary L-matrix by (5.43), is determined by fitting this solution matrix to
the R-matrix boundary conditions (8.57) at r = ap. Finally, in order to determine the
solution matrix satisfying the asymptotic boundary conditions (8.65) in the region
a0 ≤ r ≤ ap, we propagate the solution inwards from r = ap to a0 using one of the
propagators discussed in Appendix E. For example, if the Light–Walker propagator
method is used then we would propagate the solution using (E.30).

Having calculated the solution matrix u(r) and hence its derivative at r = a0,
we can determine the expansion coefficients AΓ

′−
k j (E) given by (8.62), and the final
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continuum-state wave function in the internal region ΨΓ
′−

j E given by (8.53). Hence

we have shown how the final continuum-state wave functionΨΓ
′−

j E can be accurately
calculated in the internal, external and asymptotic regions.

8.1.2.2 Initial Bound-State Wave Function

We now consider the calculation of the initial bound-state wave functionΨΓi B defined
by (8.36). This wave function is also a solution of the time-independent Schrödinger
equation (8.52) belonging to the bound-state eigenenergy EΓi B . It follows that as well
as calculating this wave function we must also determine the corresponding eigenen-
ergy. The approach described here for calculating bound-state wave functions and
eigenenergies using the R-matrix method differs from that used by Seaton [860]
and Berrington and Seaton [92] in that a propagator method is used to determine the
solution in the external region rather than a perturbation method.

In the internal region, 0 ≤ r ≤ a0 the initial bound-state wave function is
expanded, following (5.5), as

ΨΓi B(XN+1) =
∑

k

ψΓk (XN+1)A
Γ
ki (Ei B), (8.66)

where the R-matrix basis functions ψΓk are defined by (5.6) and (5.7) and where
EΓi B , the initial bound-state eigenenergy, is determined by an iterative procedure
discussed below. Following our procedure for determining the final continuum-state
wave function, we rewrite the Schrödinger equation describing the bound state in
the same form as (8.54), that is, as

(
HN+1 + LN+1 − EΓi B

)
ΨΓi B = LN+1Ψ

Γ
i B . (8.67)

We then observe that (8.67) has a formal solution analogous to (8.55), where the

Green’s function
(
HN+1 + LN+1 − EΓi B

)−1
is expanded in terms of the R-matrix

basis functions ψΓk . Hence we find that the initial bound-state wave function can be
expanded in the internal region as follows:

|ΨΓi B〉 =
∑

k

|ψΓk 〉
1

EΓk − EΓi B

〈ψΓk |LN+1|ΨΓi B〉. (8.68)

Projecting (8.68) onto the channel functionsΦ
Γ

j (XN ; r̂N+1σN+1) defined by (2.59),
which we assume are n in number, and evaluating it on the boundary rN+1 = a0 of
the internal region then gives

vΓj i (a0) =
∑

j ′
RΓj j ′(E)

(
a0

dvΓj ′i
dr
− b0v

Γ
j ′i

)
r=a0

, (8.69)
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where the elements of the R-matrix RΓj j ′(E) at r = a0 are defined by

RΓj j ′(E) =
1

2a0

∑
k

wΓjkw
Γ
j ′k

EΓk − E
, (8.70)

and where, if necessary, a Buttle correction is added to the R-matrix, as discussed
in Sect. 5.3.2. The reduced radial wave functions vΓj i (r), which we introduced in
(8.36), are then defined on the boundary r = a0 of the internal region by

vΓj i (a0) =
〈
r−1

N+1Φ
Γ

j |ΨΓi B

〉
rN+1=a0

=
∑
i ′k

u0
j i ′(a0)a

Γ
j i ′k AΓki (E

Γ
i B), (8.71)

and the surface amplitudes wΓjk are defined by

wΓjk =
〈
r−1

N+1Φ
Γ

j |ψΓk
〉′
rN+1=a0

=
∑

i

u0
j i (a0)a

Γ
j ik . (8.72)

We can determine the initial bound-state wave function ΨΓi B in the internal region,
defined by (8.66), by comparing this equation with (8.68) which yields the following
expression for the expansion coefficients AΓki (E

Γ
i B):

AΓki (E
Γ
i B) =

1

2a0(EΓk − EΓi B)

∑
j

wΓjk

(
a0

dvΓj i
dr
− b0v

Γ
j i

)
r=a0

. (8.73)

It follows from (8.73) that in order to determine the expansion coefficients
AΓki (E

Γ
i B), and hence the initial bound-state wave function ΨΓi B in the internal

region, we need to know the reduced radial wave functions vΓj i and their deriva-
tives on the boundary r = a0 of the internal region. These quantities are deter-
mined by solving the Schrödinger equation (8.52) in the external and asymptotic
regions.

In the external region a0 ≤ r ≤ ap the reduced radial wave functions vΓj i satisfy
the coupled second-order differential equations (8.64) corresponding to the con-
served quantum numbers Γ . The solutions of these coupled equations are obtained
by propagating the R-matrix, defined at r = a0 by (8.70), outwards from r = a0
to ap across the p sub-regions in the external region, defined in Fig. 5.1, using
one of the propagators discussed in Appendix E. This yields the R-matrix RΓp
at r = ap.

In the asymptotic region r ≥ ap, the reduced radial wave functions vΓj i satisfy the
asymptotic boundary conditions given by (8.37). Hence the number of linearly inde-
pendent asymptotic solutions of (8.64) in this region is n since the number of open
channels na = 0. These solutions can be determined as described in Appendix F.1
for ap ≤ r ≤ ∞. We define these solutions here by asymptotic boundary conditions
which vanish exponentially at infinity according to
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ei j (r) ∼
r→∞ exp(−φi )δi j , i, j = 1, . . . , n, (8.74)

where φi is defined by (F.19). Hence the required bound-state solution of (8.64)
can be written as a linear combination of these n linearly independent solutions as
follows:

vΓj (r) =
n∑

k=1

e jk(r)ck, j = 1, . . . , n, ap ≤ r ≤ ∞. (8.75)

In order to determine the expansion coefficients ck, k = 1, . . . , n, we substitute
(8.75) into the equation defining the R-matrix at r = ap yielding

e(ap) c = apRΓp e′(ap) c, (8.76)

where e′(ap) = (de/dr)r=ap and where we have set the arbitrary constant b0 in
the definition of the R-matrix to zero. Also in (8.76), e(ap), e′(ap) and RΓp are
n × n-dimensional matrices and c is an n-dimensional vector with components ck .
Equation (8.76) corresponds to a set of n homogeneous coupled linear simultaneous
equations for the n unknown expansion coefficients ck, k = 1, . . . , n. In general
these equations will only have a non-trivial solution when the energy EΓi B adopted
corresponds to a bound-state eigenenergy of the original Schrödinger equation.
Hence finding non-trivial solutions of (8.76) provides a procedure for calculating the
bound-state eigenenergies and the corresponding eigensolutions of the Schrödinger
equation.

In order to show how (8.76) may be used to determine the bound-state eigenen-
ergies, we rewrite this equation in the form

n∑
j=1

ai j (E)cj = 0, i = 1, . . . , n, (8.77)

where the coefficients ai j (E) are functions of a trial energy E assumed for EΓi B .
As discussed above, these coefficients are determined by solving the problem in
the internal, external and asymptotic regions for the trial energy E . We now set
one of the c j, say c1, in (8.77) equal to 1 and rewrite the last n − 1 equations as
follows:

n∑
j=2

ai j (E)cj = −ai1, i = 2, . . . , n. (8.78)

These are n − 1 linear simultaneous equations in n − 1 unknowns which can be
solved for the coefficients c j , j = 2, . . . , n. We then rewrite the discrepancy of the
first equation in (8.77) as
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d(E) =
n∑

j=2

a1 j (E)c j + a11(E). (8.79)

When d(E) = 0, then it is clear that (8.77) has a non-trivial solution and the cor-
responding energy E is a bound-state eigenenergy EΓi B of the Schrödinger equa-
tion. The problem of determining the eigenenergies EΓi B thus reduces to finding
the zeros of the discrepancy function d(E). This can be achieved by solving the
coupled differential equations (8.64) in the external and asymptotic regions as
described above for a series of values of the energy E , and determining the zeros
of the discrepancy function d(E) using a standard method, such as the Newton–
Raphson method [143, 757]. It is important to note that in this iterative procedure,
the solution in the internal region does not have to be repeated for each energy,
since the R-matrix defined by (8.70) on the boundary r = a0 is obtained at all the
required energies E by a single diagonalization of the Hamiltonian in the internal
region.

Having obtained the bound-state eigenenergies EΓi B of interest and the coef-
ficients ck, k = 1, . . . , n, then the corresponding eigensolutions can be calcu-
lated in the asymptotic region using (8.75). In order to calculate the eigensolu-
tion in the external region, we propagate the solution inwards from r = ap to a0
across the p sub-regions using one of the propagators discussed in Appendix E.
The expansion coefficients AΓki (E

Γ
i B) defined by (8.73) can then be calculated

given the eigensolution and its derivative at r = a0. Hence the eigensolution
in the internal region can be determined using (8.66). The initial bound-state
wave function ΨΓi B has thus been calculated in the internal, external and asymp-
totic regions up to an overall normalization factor. This factor can be deter-
mined by requiring that the bound-state wave function satisfies (8.7). Having
determined both the initial bound-state wave function and the final continuum-
state wave function, the dipole velocity and dipole length reduced matrix ele-
ments, defined by (8.38), can then be calculated. The photoionization cross section
and asymmetry parameter are then obtained immediately from (8.47) and (8.49),
respectively.

If we are considering photoionization from the target ground state or from a
low-lying excited state, then the above procedure can often be simplified due to
the short-range nature of this state. The charge distribution of the initial bound
state is then usually contained within the internal region radius a0, which has
been chosen, as discussed in Sect. 5.1, to contain the charge distribution of the
residual ion states retained in expansions (8.35) and (8.36). In this case there is
no contribution to the reduced matrix elements coming from the integral over
the wave functions in the external and asymptotic regions. The calculation of the
initial bound-state and the final continuum-state wave functions in the external
and asymptotic regions is then not required. However, the continuum-state wave
function will still have to satisfy the ingoing wave asymptotic boundary condition
defined by (8.32) and (8.65), which will require propagating the corresponding
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R-matrix out to the boundary r = ap and fitting to the appropriate asymptotic
expansion.

On the other hand, if the initial bound state is a highly excited Rydberg state or a
weakly bound negative ion state then a substantial contribution to the reduced matrix
elements comes from the integral over the bound-state and continuum-state wave
functions in the external and asymptotic regions. The above general theory which
describes the calculation of these wave functions in the external and asymptotic
regions is then required.

8.1.2.3 Calculations Near an R-Matrix Pole

In certain circumstances, the energy of interest can lie near to the energy EΓk of
an R-matrix pole. This can occur when the photoionization or electron collision
calculations are carried out at a very fine energy mesh in order to resolve resonance
structure in the cross sections. We have seen that this happens in the collision of
electrons with Fe II which has been discussed in Sect. 5.6.5. There is then a high
probability that one of these energies will lie very near to an R-matrix pole. Another
example of a near coincidence occurs when bound-state eigenenergies and wave
functions are calculated which we have discussed earlier in this section. In partic-
ular, for highly excited Rydberg states the energy of separation between adjacent
bound-state energies for a given symmetry is proportional to n−3, where n is the
principal quantum number. As n →∞ this separation tends to zero and again there
is a high probability of a near coincidence.

In both of these examples, expressions for quantities such as the K -matrix and
S-matrix in electron–ion collision calculations and for bound-state eigenenergies
and wave functions in bound-state calculations become indeterminate at energies
which are equal to the R-matrix pole energy EΓk . In this section we will show that
determinate expressions can be obtained using a diagonalization procedure intro-
duced by Burke and Seaton [169]. An alternative procedure for calculating physical
quantities at energies near poles in the R-matrix has been described by Mil’nikov
and Nakamura [652].

We consider the R-matrix defined by (5.19), which is determined on the bound-
ary r = a0 of the internal region. We write this equation in matrix notation as

R(E) =
∑

k

γ kγ
T
k

Ek − E
, (8.80)

where we assume there are n coupled channels, so that R(E) is an n×n-dimensional
matrix and where in this equation and later equations in this section we have omitted
the superscript Γ for notational convenience. Also in (8.80), γ k is an n-dimensional
column vector whose elements are given in terms of the surface amplitudes wik by

γki =
(

1

2a0

)1/2

wik, (8.81)
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where thewik are defined by (5.21). The reduced radial wave function is then related
to its derivative on the boundary r = a0 by (5.18) which we rewrite here in matrix
notation as

F(a0) = R(E)F′(a0), (8.82)

where

F′(a0) =
(

a0
dF
dr
− b0F

)
r=a0

. (8.83)

We now consider energies E close to an isolated R-matrix pole which we can
assume without loss of generality to be E1. Equation (8.80) can then be rewritten as

R(E) = P
E1 − E

+Q(E), (8.84)

where

P = γ1γ
T
1 (8.85)

and

Q(E) =
∞∑

k=2

γ kγ
T
k

Ek − E
. (8.86)

It follows that Q(E) is regular in the neighbourhood of E = E1.
As an example of the difficulty that arises when E is near E1, we consider first

the calculation of the K -matrix described in Sect. 5.1.4. For illustrative purposes, we
assume that there are na open channels for energies in the neighbourhood of E1 and
hence it follows from (5.37) that there are n + na linearly independent asymptotic
solutions. Also we assume that these solutions can be accurately determined on the
boundary r = a0 of the internal region and can thus be substituted directly into
(8.82). We now proceed using the approach adopted in Sect. 5.1.4 which led to
(5.46). We remember that the solution matrix

F(r) = s(r)+ c(r)N, r ≥ a0, (8.87)

where s(r) and c(r) are linearly independent solutions of the coupled second-order
differential equations (5.29) satisfying the asymptotic boundary conditions (5.37)
and where N is an n×na-dimensional matrix, defined by (5.43), which involves the
open-channel K -matrix. We then find after substituting (8.87) into (8.82) that on the
boundary r = a0

[
c(a0)− R(E)c′(a0)

]
N = −s(a0)+ R(E)s′(a0), (8.88)
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where, following (8.83), we have defined

s′(a0) =
(

a0
ds
dr
− b0s

)
r=a0

(8.89)

and

c′(a0) =
(

a0
dc
dr
− b0c

)
r=a0

. (8.90)

Substituting for R(E) from (8.84) into (8.88) then yields

N =
[
c(a0)−Q(E)c′(a0)− (E1 − E)−1Pc′(a0)

]−1

×
[
−s(a0)+Q(E)s′(a0)+ (E1 − E)−1Ps′(a0)

]
. (8.91)

Since in general c(a0), s(a0), c′(a0) and s′(a0) are regular functions of E in the
neighbourhood of E1, then if |E1 − E | is very small (8.91) reduces to

N ≈ − [Pc′(a0)
]−1 [Ps′(a0)

]
. (8.92)

It follows from (8.85) that det P = 0 and hence [Pc′(a0)]−1 in (8.92) is singular.
Consequently expression (8.91) for N and hence for the K -matrix becomes indeter-
minate as E → E1. Our problem is therefore to define N at E = E1 and hence to
obtain an accurate and stable method for computing the K -matrix when |E1− E | is
small.

We solve this problem by introducing a real orthogonal n×n-dimensional matrix
U which diagonalizes P according to

UTPU = D, (8.93)

where D is a diagonal matrix. However, (8.93) does not define U uniquely. We
therefore proceed as follows. We choose the first column of U to be a unit vector
proportional to the vector γ 1 so that

Ui1 = γi1Γ
−1, (8.94)

where

Γ =
(

n∑
i=1

γ 2
i1

)1/2

. (8.95)

We then choose the remaining n − 1 columns of U to span the (n − 1)-dimensional
space orthogonal to γ1, and to be mutually orthonormal so that U is orthogonal and
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satisfies

n∑
i=1

Ui jUik = δ jk, j, k = 1, . . . , n. (8.96)

It follows that the matrix elements of D are

Di j = Γ 2δi1δ j1, i, j = 1, . . . , n. (8.97)

We note that any orthonormal choice of vectors for the last n−1 columns of U span-
ning the (n − 1)-dimensional space orthogonal to γ 1 would yield (8.97). However,
the following discussion does not depend on this choice.

We now define

x = E1 − E, (8.98)

and we use (8.84) to rewrite (8.88) as

[
c(a0)−Q(E)c′(a0)− x−1Pc′(a0)

]
N = − s(a0)+Q(E)s′(a0)

+ x−1Ps′(a0). (8.99)

We then premultiply (8.99) by UT and use (8.93) to give

(a− x−1Db)N = p+ x−1Dq, (8.100)

where we have defined

a = UT [c(a0)−Q(E)c′(a0)
]
,

b = UTc′(a0),

p = UT [−s(a0)+Q(E)s′(a0)
]
,

q = UTs′(a0). (8.101)

Multiplying (8.100) by x and writing this equation explicitly in terms of its matrix
elements gives, after using (8.97),

n∑
j=1

(
xai j − Γ 2

n∑
i ′=1

δi1δi ′1bi ′ j

)
Njk = xpik + Γ 2

n∑
i ′=1

δi1δi ′1qi ′k, i = 1, . . . , n.

(8.102)

We see that the term involving Γ 2 on both sides of (8.102) only occurs in the first
equation where i = 1. We can therefore rewrite these equations as
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n∑
j=1

(
xa1 j − Γ 2b1 j

)
Njk = xp1k + Γ 2q1k, i = 1,

n∑
j=1

ai j Njk = pik, i = 2, . . . , n. (8.103)

Equations (8.103) give a unique solution for N, and hence from (5.43) for the
K -matrix, for all values of x including the limiting case where x → 0.

This diagonalization procedure can also be extended to obtain determinate
results for bound-state eigenenergies and wave functions, where the bound-state
eigenenergy EB lies at or near an R-matrix pole. This can occur when calculat-
ing the initial bound-state wave function in photoionization discussed earlier in this
section. In this case we have to solve the matching equation (8.76). We rewrite this
equation here using the notation defined by (8.83) as

e(a0)c = R(E)e′(a0)c, (8.104)

where the functions e(r) decay exponentially at infinity and where we again assume
that the matching can be carried out on the boundary r = a0 of the internal
region. Equation (8.104) gives an eigenvalue problem for determining the bound-
state eigenenergy. As before, we assume that the energy E is close to an isolated
R-matrix pole E1, so that the R-matrix can be written in the form given by (8.84).
Substituting this result into (8.104) and putting x = E1 − E yields

[
e(a0)−Q(E)e′(a0)− x−1Pe′(a0)

]
c = 0. (8.105)

We then premultiply (8.105) by UT, defined by (8.93), to give

(a− x−1Db)c = 0, (8.106)

where

a = UT [e(a0)−Q(E)e′(a0)
]
,

b = UTe′(a0). (8.107)

Multiplying (8.106) by x and writing it explicitly in terms of its matrix elements
gives, after using (8.97), the following set of n coupled homogeneous equations for
the coefficients c j , j = 1, . . . , n,
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n∑
j=1

(
xa1 j − Γ 2b1 j

)
c j = 0, i = 1,

n∑
j=1

ai j c j = 0, i = 2, . . . , n. (8.108)

These equations are well behaved for all values of x , including the limiting case
where x → 0. They can be solved using an iterative procedure to yield the bound-
state eigenenergy EB and the coefficients c j , j = 1, . . . , n, as described earlier in
our solution of (8.77).

We now consider the calculation of the bound-state wave function, which is
defined in the internal region up to an overall normalization factor by (8.66). Clearly
when x = E1 − EB = 0, where EB is the bound-state eigenenergy determined as
described above, then the expansion coefficient A1i defined by (8.73) is singular.
We can remove this singularity by introducing new expansion coefficients Bki which
are defined in terms of the Aki by

Bki = (E1 − EB)Aki . (8.109)

The new bound-state wave function, which is defined by

Ψi B =
∑

k

ψk Bki , (8.110)

is then related to the wave function defined by (8.66) by the overall normalization
factor x = E1 − EB and is well behaved for all values of x , including the limiting
case where x → 0. Having obtained a well-behaved bound-state wave function, the
final step is to normalize this wave function to unity so that it satisfies (8.7).

We have assumed in the above analysis that the asymptotic region solutions,
defined by (5.37), can be matched to the R-matrix on the boundary r = a0 of
the internal region. However, if these solutions have not achieved their asymptotic
form on this boundary, we would have to solve the coupled second-order differential
equations (8.64) corresponding to the initial bound state or the final continuum state
to determine the solutions in the external region. This would enable the solutions at
r = a0 to be related to the corresponding asymptotic region solutions at r = ap.
One way of achieving this is by propagating the R-matrix from r = a0 to ap across
the external region, as discussed in Appendix E. In this case, as well as singulari-
ties arising in the matching equations at the R-matrix poles, singularities can also
arise in the R-matrix propagation equations. Again, the resultant expression can be
made determinate by a modification of the above diagonalization procedure, which
transforms the singular term into one of the diagonal elements of the corresponding
propagation equations.

In conclusion, we have shown in this section that determinate results can be
obtained for the K -matrix, S-matrix and bound-state eigenenergies and wave func-
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tions for energies at or near R-matrix poles. However, we observe that this prob-
lem has rarely given rise to difficulties in practical calculations. This is because the
underlying stability of the matching equations, discussed in this section, implies that
the energy of interest can lie very close to an R-matrix pole without significantly
affecting the accuracy of the results.

8.2 Photorecombination and Radiation Damping

In this section we commence with a general introduction to the theory of photore-
combination and radiation damping in which we summarize early developments and
recent advances. We then describe a generalization of R-matrix theory of electron–
ion collisions in the presence of a radiation field, which enables photorecombination
and radiation damping processes to be calculated.

8.2.1 Introduction

We commence with an introductory survey of photorecombination and radiation
damping in electron collisions with highly charged ions. In photorecombination a
free electron is accelerated by a charged atomic ion and, as a result, emits a photon of
sufficient energy that the electron is captured into an atomic or ionic bound state by
the attractive Coulomb field of the ion. This is an important cooling mechanism in
hot plasmas and is also used as a plasma diagnostic [895]. In the absence of radiation
damping, which we discuss below, the cross section for photorecombination σPR is
related to the cross section for photoionization σPI through detailed balance given
by the Milne relation (e.g. [709])

σPR = σPI
gi

g j

α2 E2
ph

4(Eph − I )
, (8.111)

in atomic units. In this equation gi and g j are the statistical weights of the initial and
residual ions respectively, Eph and I are the photon energy and ionization potential
of the final ionic state, respectively, and α is the fine-structure constant.

Photorecombination can proceed non-resonantly through the electron–ion con-
tinuum as follows:

e− + An+
i
↗
↘

An+
j + e−

A(n−1)+
k + hν,

(8.112)

which is called radiative recombination (RR). It can also proceed resonantly through
intermediate doubly excited states as follows:
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e− + An+
i →

(
A(n−1)+

l

)∗∗ ↗
↘

An+
j + e−

A(n−1)+
k + hν,

(8.113)

which is called dielectronic recombination (DR) since two electrons are actively
involved in the excitation and decay processes. In both cases, photorecombina-
tion occurs in competition with electron–ion scattering, as indicated in (8.112) and
(8.113). In addition, the emitted photon can be recaptured by the ion, giving rise
to a modification of the electron–ion collision cross section called radiation damp-
ing. We also mention that a photon can be emitted leaving behind an electron–ion
collision state as follows:

e− + An+
i → An+

j + e− + hν, (8.114)

which again can occur resonantly or non-resonantly. This process is known as free–
free scattering or bremsstrahlung.

The DR process was discussed in early work by Massey and Bates [644] and
Bates and Massey [74], who were concerned with recombination in plasmas at
fairly low temperatures such as occur in the Earth’s ionosphere, and this process
was investigated further by Bates [73], Bates and Dalgarno [76], Seaton [853] and
Burgess and Seaton [150]. Also, Burgess [147, 148] showed that the DR process can
be one to two orders of magnitude larger than the RR process at higher temperatures
where complete Rydberg series of resonances converging to excited states of the ion
contribute to recombination. This work proved to be of crucial importance in resolv-
ing a problem concerning the temperature of the solar corona; namely, the tempera-
ture deduced from studies of the ionization equilibrium was significantly lower than
that deduced from the density gradient of the corona and from the Doppler widths
of the spectral lines. A very interesting summary of the historical background to
this work, as well as a general review of DR, has been written by Seaton and Storey
[864].

It was shown by Davies and Seaton [251] that in order to determine accurate
electron–ion collision cross sections, as well as photoionization and photorecom-
bination cross sections, for highly ionized atomic targets, the scattering amplitudes
must be modified to include radiation damping where the lifetimes of intermediate
resonance states can be strongly affected by the interaction between the radiation
field and the scattered and target electrons. In their work on radiation damping,
Davies and Seaton adopted an approach analogous to that used by Weisskopf and
Wigner [958, 959] who were concerned with radiative transitions between bound
states. An R-matrix theory of free–free scattering was also developed by Bell et al.
[87]. Later, a general theory of dielectronic recombination including radiative chan-
nels and using quantum defect theory was developed by Bell and Seaton [88]. This
enabled Rydberg series of resonances converging to excited states of the ion to be
treated and was applied by Pradhan and Seaton [754] to determine the effects of
radiative decays on collision strengths for electron impact excitation of positive ions.
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Also, Sakimoto et al. [806] showed the importance of radiation damping on bound–
continuum transitions involving highly ionized ions in the energy range correspond-
ing to low-lying resonances, where they used R-matrix computer programs to solve
the resultant electron–ion close coupling equations. R-matrix programs were also
used in studies of photorecombination, for example, by Terao and Burke [923] and
Nahar and Pradhan [671,672,673].

More recently, Robicheaux et al. [794] developed a non-perturbative approach for
including radiation damping in the close coupling equations describing electron–ion
collisions, which they showed could be implemented using R-matrix theory and
computer programs. Using this approach many detailed photorecombination and
radiation damping calculations have been carried out for highly charged ions using
extensions of the R-matrix computer program RMATRXI, discussed in Sect. 5.1.1,
where relativistic effects were included using the Breit–Pauli Hamiltonian. These
calculations included detailed studies by Gorczyca et al. [397, 399, 400], Gorczyca
and Badnell [392, 393], Badnell et al. [36] and Whiteford et al. [963], where we
note that Gorczyca et al. [400] found that fundamental difficulties arose in the cal-
culation of DR which overestimated the rate near the series limit. Also, independent
R-matrix calculations of photorecombination and radiation damping have been car-
ried out by Zhang et al. [1006, 1008, 1009] and by Pradhan and Zhang [756], again
using an extension of the computer program RMATRXI where relativistic effects
were included using the Breit–Pauli Hamiltonian. Finally, we mention radiation
damping calculations, carried out by Ballance and Griffin [44] and by Griffin and
Ballance [424], where relativistic effects were included using an extension of the
Dirac R-matrix program DARC, discussed in Sect. 5.5.1. We consider two examples
of radiation damping calculations in Sects. 8.5.4 and 8.5.5.

We conclude this introductory survey by mentioning treatments of photorecom-
bination using Feshbach projection operator methods by LaGattuta [558, 559], Haan
and Jacobs [434] and Jacobs and Behar [496]. Reviews of this work on photorecom-
bination and related resonance processes have also been written by Hahn [435, 436]
and Hahn and LaGattuta [437].

8.2.2 R-Matrix Theory

In this section we extend multichannel R-matrix theory to treat photorecombination
and radiation damping in low-energy electron collisions with an N -electron ion with
nuclear charge number Z . These processes are described by the time-dependent
Schrödinger equation

[
HBP

N+1 + Hrad(t)
]
Ψ̃ (XN+1, t) = i

∂

∂t
Ψ̃ (XN+1, t), (8.115)

where we adopt the convention used in Chap. 9 that the tilde on Ψ̃ (XN+1, t) indi-
cates that the wave function is time dependent. In (8.115), HBP

N+1 is the (N + 1)-
electron Breit–Pauli Hamiltonian, defined by (5.133), which accurately describes
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many higher Z ionic targets of importance in applications. Also, Hrad(t) describes
the interaction of the radiation field with the electron–ion system. This interaction
Hamiltonian can be written in the length gauge as

Hrad(t) =
∑
μ

∫ ∞
0

(
2ω3α3

3π

)1/2 [
Rμ exp(−iωt)+ R∗μ exp(iωt)

]
dω, (8.116)

in atomic units (e.g. [88]), where the first term in square brackets in (8.116) cor-
responds to absorption (annihilation) of a photon with angular frequency ω and
polarization μ and the second term corresponds to emission (creation) of a photon
with angular frequency ω and polarization μ. Also in (8.116)

Rμ =
N+1∑
i=1

riμ, μ = −1, 0, +1, (8.117)

where riμ are the spherical tensor components of the radial coordinate ri of the i th
electron which are defined by

ri −1 = 1√
2
(xi − iyi ), ri 0 = zi , ri +1 = − 1√

2
(xi + iyi ), (8.118)

so that

Rμ =
(

4π

3

)1/2 N+1∑
i=1

ri Y1μ(θi , φi ), μ = −1, 0, +1, (8.119)

where Y1μ(θ, φ) are spherical harmonics defined in Appendix B.3.
We now consider the interaction of an element Vμ(t) of the radiation field with

the electron–ion system, where

Vμ(t) = Dμ exp(−iωt)+ D∗μ exp(iωt), (8.120)

with

Dμ =
(

2ω3α3

3π

)1/2

Rμ, μ = −1, 0, +1. (8.121)

We expand the time-dependent wave function Ψ̃ (XN+1, t) in (8.115) as follows:

Ψ̃ (XN+1, t) = exp(−iEt)
∞∑

n=−∞
exp(−inωt)Ψn(XN+1), (8.122)

which is analogous to the Floquet–Fourier expansion (9.8) adopted in R-matrix Flo-
quet theory, considered in Sect. 9.1. Substituting expansion (8.122) into (8.115) with
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Hrad(t) set equal to Vμ(t) and equating the coefficients of exp[−i(E+nω)t] to zero
yields the following set of coupled time-independent equations

Dμ(ω)Ψn−1 + (HBP
N+1 − E − nω)Ψn + D∗μ(ω)Ψn+1 = 0, n = −∞, . . . ,+∞.

(8.123)
The initial state in (8.112), (8.113) and (8.114), corresponding to electron–ion col-
lisions in the absence of photons, is Ψ0 in (8.123) while the final state in these
equations, with one emitted photon, is Ψ−1 in (8.123). Hence the equations coupling
these states correspond to taking n = −1 and 0 in (8.123) which, when written out
explicitly, are

(HBP
N+1 − E + ω)Ψ−1 + D∗μ(ω)Ψ0 = 0 (8.124)

and

Dμ(ω)Ψ−1 + (HBP
N+1 − E)Ψ0 = 0, (8.125)

where we have omitted Ψ−2 in (8.124) and Ψ1 in (8.125), which correspond, respec-
tively, to emission of two photons and absorption of one photon from the field, both
of which will not be important in the process under consideration here.

When the interaction with the radiation field is weak, corresponding to electron
collisions with ions with small ionic charge Z − N , we can neglect the Dμ(ω) term
in (8.125), which corresponds to re-absorption of the emitted photon, and solve
the resulting equations (8.124) and (8.125) using first-order perturbation theory.
This leads to the Milne relation (8.111). However, as the ionic charge increases,
higher order effects become important and we must retain the Dμ(ω) term and solve
the resultant coupled equations (8.124) and (8.125) accurately.

We now consider the solution of (8.124) and (8.125) when Ψ−1 is a bound
state of the electron–ion system, corresponding to the photorecombination processes
depicted by (8.112) and (8.113). In this case the formal solution of (8.124) can be
written as

Ψ−1 = −(HBP
N+1 − E + ω)−1 D∗μ(ω)Ψ0. (8.126)

Substituting this result into (8.125) yields

(
HBP

N+1 +
Dμ(ω)|Ψb〉〈Ψb|D∗μ(ω)

E − Eb − ω − E

)
Ψ0 = 0, (8.127)

where we have relabelled the bound state as Ψb and

Eb = 〈Ψb|HBP
N+1|Ψb〉. (8.128)

Equation (8.127) describes electron–ion collisions with the emission and subsequent
absorption of a photon of energy ω and polarization μ. In order to determine the full
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interaction of the radiation field, defined by (8.116), with the electron–ion collision
system we must integrate the interaction term in (8.127) over the photon energy ω,
sum over the photon polarization directions μ and over the bound states Ψb which
are coupled by the radiation field. This yields the equation

⎛
⎝HBP

N+1 + lim
δ→0

∑
μb

∫ Dμ(ω)|Ψb〉〈Ψb|D∗μ(ω)
E − Eb − ω ± iδ

dω − E

⎞
⎠Ψ0 = 0, (8.129)

where the ±iδ term in the denominator of this equation defines the contour of inte-
gration past the singularity at ω = E = Eb. We will show later that the summa-
tion over intermediate bound states in (8.129) can be extended in a straightforward
way to include continuum states corresponding to free–free scattering depicted by
(8.114).

The real part of the integral over ω in the second term in (8.129) diverges. How-
ever, after mass renormalization using quantum electrodynamics (e.g. [499]), this
yields an energy shift, analogous to the Lamb shift, which is small for most systems
of interest. We will therefore not consider this shift further. The remaining imaginary
part of the integral corresponds to radiation damping in the electron–ion collision
process. Hence we obtain an additional potential contribution arising from this term
given by

Vrad = −iπ
∑
μb

Dμ(ωb)|Ψb〉〈Ψb|D∗μ(ωb), (8.130)

where

ωb = E − Eb (8.131)

is the energy difference between the electron–ion collision state and the bound state.
The sign chosen for the “radiation damping potential” Vrad, defined by (8.130), is
such that it is antihermitian and corresponds to absorption. It gives rise to loss of flux
from the electron–ion scattering channels into the photorecombination channels. We
also observe from (8.130) that we must sum over the photon polarization directions
μ and over the bound states Ψb to obtain the full radiation damping potential. We
note that the form of the radiation damping potential given by (8.130) was derived
from a different viewpoint by Robichaux et al. [794].

We now consider the solution of (8.129) describing electron–ion collisions in
the presence of the radiation field using R-matrix theory. We partition configuration
space into three regions as illustrated in Fig. 5.1. In the internal region 0 ≤ r ≤ a0
in Fig. 5.1 we expand Ψ0 in analogy with (5.146) as

Ψ
J MJπ
j E (XN+1) =

∑
k

ψ
J MJπ
k (XN+1)A

J MJπ
k j (E), (8.132)

for each set of conserved quantum numbers J , MJ and π , where J is the total angu-
lar momentum quantum number, MJ is the corresponding magnetic quantum num-
ber and π is the parity. Also in (8.132), j labels the linearly independent solutions of
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(8.129), ψ J MJπ
k are energy-independent basis functions and AJ MJπ

k j (E) are energy-
dependent expansion coefficients which depend on the asymptotic boundary condi-
tions satisfied by the wave functionΨ J MJπ

j E at the energy E . In analogy with (5.147),

the basis functions ψ J MJπ
k in (8.132) can be expanded in the internal region as

ψ
J MJπ
k (XN+1) = A

n∑
i=1

nc∑
j=1

Φ
J MJπ

i (XN ; r̂N+1σN+1)r
−1
N+1u0

i j (rN+1)a
Jπ
i jk

+
m∑

i=1

χ J MJπ
i (XN+1)b

Jπ
ik , k = 1, . . . , nt , (8.133)

which we rewrite as

ψ
J MJπ
k (XN+1) =

nt∑
k′=1

θ
J MJπ

k′ (XN+1)O
Jπ
k′k , k = 1, . . . nt , (8.134)

where θ J MJπ

k′ represents the nt = nnc + m linearly independent basis functions in
(8.133) and O Jπ

k′k represents the coefficients a Jπ
i jk and bJπ

ik in (8.133).
In order to determine the solution of (8.129) in the internal region we rewrite this

equation using (8.130) as

(HBP
N+1 + Vrad + LN+1 − E)Ψ J MJπ

j E = LN+1Ψ
J MJπ
j E , (8.135)

where LN+1 is the usual Bloch operator defined so that HBP
N+1 +LN+1 is hermitian

in the internal region. Equation (8.129) then has the formal solution in the internal
region given by

Ψ
J MJπ
j E = (HBP

N+1 + Vrad + LN+1 − E)−1LN+1Ψ
J MJπ
j E . (8.136)

We then introduce matrices H and D whose matrix elements are defined by the
following integrals over the internal region

Hkk′ = 〈θk |HBP
N+1 + LN+1 − E |θk′ 〉int, k, k′ = 1, . . . , nt (8.137)

and

Dkj = 〈θk |Dμ(ωb)|Ψb〉int, k = 1, . . . , nt , j = 1, . . . , nv, (8.138)

where in (8.138) the index j goes over the combination of the polarization index μ
and the bound state index b in (8.130), which we define to be nv in number. Also in
(8.137) and (8.138) and in later equations we omit the conserved quantum number
superscripts J , M j and π for notational convenience. It thus follows from (8.130),
(8.137) and (8.138) that



8.2 Photorecombination and Radiation Damping 411

〈θk |HBP
N+1 + Vrad + LN+1 − E |θk′ 〉int = (H− iπDD†)kk′ , k, k′ = 1, . . . , nt ,

(8.139)

where the matrix D† is the hermitian conjugate of D and hence −iπDD† is an
nt × nt -dimensional antihermitian matrix. Also HBP

N+1 + LN+1 is hermitian in the
internal region and with the usual choice of phase H, defined by (8.137), is real
and symmetric. We then choose the matrix O in (8.134) to be orthogonal and to
diagonalize H as follows:

OTHO = E− EI, (8.140)

where E is a diagonal nt × nt -dimensional matrix with diagonal elements Ek and I
is the unit matrix. It follows that

〈ψk |HBP
N+1 + LN+1 − E |ψk′ 〉int = (Ek − E)δkk′ , k, k′ = 1, . . . , nt , (8.141)

where the basis functionsψk are defined by (8.134). We see that (8.141) corresponds
to (5.152) which arises in the absence of radiation damping.

In determining the matrix elements of H−iπDD† in (8.139), we have to carry out
a summation over the intermediate states that arise in the matrix multiplication in
DD†, where D is defined by (8.138). This can be achieved by solving the collision
problem in the internal region, corresponding to the conserved quantum numbers
J ′, MJ ′ and π ′, which are coupled by the radiation field to the collision state corre-
sponding to J , MJ and π . In analogy with (8.133) the required basis functions can
be expanded in the internal region as

ψ
J ′MJ ′π ′
k (XN+1) = A

n′∑
i=1

n′c∑
j=1

Φ
J ′MJ ′π ′
i (XN ; r̂N+1σN+1)r

−1
N+1u0

i j (rN+1)a
J ′π ′
i jk

+
m′∑

i=1

χ J ′MJ ′π ′
i (XN+1)b

J ′π ′
ik , k = 1, . . . , n′t , (8.142)

where the coefficients a J ′π ′
i jk and bJ ′π ′

ik are determined by diagonalizing HBP
N+1 +

LN+1 as follows:

〈ψ J ′MJ ′π ′
k |HBP

N+1 + LN+1|ψ J ′MJ ′π ′
k′ 〉int = E J ′π ′

k δkk′ . (8.143)

The summation over intermediate states in DD† can then be replaced by a summa-

tion over the basis functions ψ
J ′MJ ′π ′
k for each intermediate symmetry. Also, the

inclusion of the continuum in the summation over intermediate states in DD† can be
achieved by including quadratically integrable pseudostates in expansion (8.142).
This procedure is analogous to that used in the representation of the continuum in
intermediate-energy electron–atom collisions, discussed in Chap. 6, and its contri-
bution will often be necessary to obtain accurate radiation damping results.
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We now use these results to obtain an explicit form for the solution of (8.136) in
the internal region. We rewrite this equation as

|Ψ j E 〉 =
nt∑

k=1

nt∑
k′=1

|ψk〉〈ψk |(HBP
N+1 + Vrad + LN+1 − E)−1|ψk′ 〉int

× 〈ψk′ |LN+1|Ψ j E 〉. (8.144)

We then consider the following matrix element in this equation:

〈ψk |(HBP
N+1 + Vrad + LN+1 − E)−1|ψk′ 〉int

=
nt∑

j=1

nt∑
j ′=1

O jk〈θ j |(HBP
N+1 + Vrad + LN+1 − E)−1|θ j ′ 〉int O j ′k′

=
[
OT(H− iπDD†)−1O

]
kk′
, (8.145)

where we have used (8.134) and (8.139). Using (8.140) we can then show that

OT(H− iπDD†)−1O = (E− EI)−1 − (E− EI)−1OTDC−1

× D†O(E− EI)−1, (8.146)

where

C = J−1 + D†O(E− EI)−1OTD, (8.147)

and where J is defined in terms of the nv × nv-dimensional unit matrix Iv by

J = −iπIv. (8.148)

Substituting this result into (8.144) then yields

|Ψ j E 〉 =
nt∑

k=1

nt∑
k′=1

|ψk〉[(E− EI)−1 − (E− EI)−1D̃C−1D̃†(E− EI)−1]kk′

× 〈ψk′ |LN+1|Ψ j E 〉, (8.149)

where D̃ = OTD has the matrix elements

D̃k j = 〈ψk |Dμ(ωb)|Ψb〉int, k = 1, . . . , nt , j = 1, . . . , nv, (8.150)

which follows from (8.134) and (8.138).
We now proceed as in standard R-matrix theory in the absence of radiation damp-

ing, discussed in Sect. 5.4.2. We project (8.149) onto the n channel functions Φ i

retained in expansion (8.133) and evaluate it on the boundary rN+1 = a0 of the
internal region. We obtain
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Fi j (a0) =
n∑

i ′=1

R̃ii ′(E)

(
a0

dFi ′ j
dr
− b0 Fi ′ j

)
r=a0

, i = 1, . . . , n, (8.151)

where the elements of the R-matrix R̃ii ′(E) are defined by

R̃ii ′(E) = 1

2a0

nt∑
k,k′=1

wik

[
(E− EI)−1 − (E− EI)−1D̃C−1D̃†(E− EI)−1

]
kk′

× wi ′k′ , i, i ′ = 1, . . . , n, (8.152)

the reduced radial wave functions Fi j (r) are defined by

Fi j (rN+1) = 〈r−1
N+1Φ i |Ψ j 〉′, i = 1, . . . , n (8.153)

and the surface amplitudes wik are defined by

wik = 〈r−1
N+1Φ i |ψk〉′rN+1=a0

=
nc∑

j=1

u0
i j (a0)ai jk, i = 1, . . . , n, k = 1, . . . , nt . (8.154)

The primes on the Dirac brackets in (8.153) and (8.154) mean that the integrations
are carried out over the space and spin coordinates of all N + 1 electrons in the
internal region, except the radial coordinate rN+1 of the scattered electron.

It is important to note that the second term in square brackets in (8.152), which
corresponds to radiation damping, means that the R-matrix is no longer real nor her-
mitian. In addition, since the matrix C, defined by (8.147), depends on the energy E
a matrix inversion has to be carried out for each scattering energy of interest. This
must be compared with the situation in the absence of radiation damping when a
single matrix diagonalization to obtain the surface amplitudes wik and eigenener-
gies Ek yields the R-matrix at all energies. However, the dimension nv × nv of the
matrix C to be inverted is much less than the dimension nt × nt of the matrix to be
diagonalized in standard R-matrix theory, so the additional computational effort is
usually not excessive.

Having determined the R-matrix on the boundary r = a0 of the internal region,
we can then propagate it outwards across the external region from r = a0 to ap,
using one of the methods discussed in Appendix E, where the radiation damping
term can be included in the external region if necessary. Finally, we fit the solution
on the outer boundary r = ap of the external region to an asymptotic expansion
which yields the K -matrix and S-matrix. Since the R-matrix is no longer real and
symmetric, the K -matrix will no longer be real and symmetric and hence the S-
matrix will no longer be unitary and symmetric.

As a result of the non-unitarity of the S-matrix, flux is lost from the electron–
ion scattering channels into photorecombination and free–free scattering channels.
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Hence the partial wave cross sections σ Jπ(i → j) for each Jπ combination, given
by (5.129), are modified corresponding to radiation damping, and the partial wave
cross sections for photorecombination including free–free scattering are given by

σ Jπ
PR =

2J + 1

2k2
i (2Ji + 1)

ni∑
i=1

⎡
⎣1−

na∑
j=1

S∗j i S ji

⎤
⎦ , (8.155)

in units of πa2
0, where na is the number of open channels, ni is the number of

channels coupled to the target state and Ji is the angular momentum of the target
state.

In conclusion we mention that a related optical potential R-matrix approach,
combined with multichannel quantum defect theory, has been introduced by
Gorczyca and Robicheaux [395] to treat photoionization in the vicinity of the
2p−1ns(nd) photoexcited resonance states in argon. In this approach the infinite
number of Auger decay channels are correctly treated by the optical potential,
which is based on similar ideas to the radiation damping potential (8.130). In addi-
tion to argon, other applications of this approach include inner-shell photoexcited
resonances in neon by Gorczyca [391] and in atomic oxygen by Gorczyca and
McLaughlin [396]. This optical potential approach has also been applied to post-
collision recapture in K-shell photodetachment of Li− by Gorczyca et al. [401],
while in later work discussed in Sect. 9.1.2 two-photon detachment of K-shell elec-
trons in Li− has been calculated by van der Hart [932].

8.3 The Opacity Project

An important application of the processes discussed earlier in this chapter has been
the calculations carried out by the international Opacity Project (OP). In this sec-
tion we briefly describe the objectives and achievements of this project. The OP,
which was initiated in 1983 and led by Seaton [861, 863], has involved research
workers from many countries in Europe and North and South America who have
collaborated in the calculation of stellar opacities. Knowledge of the opacity of
stellar material is of importance in all studies of stellar structure and evolution
and of stellar atmospheres. The opacities are determined by a very large number
of atomic processes (radiative bound–bound, bound–free and free–free transitions)
and in cooler stars by molecular processes. Calculations of the necessary atomic
parameters have spanned more than 20 years, using R-matrix computer programs
which are summarized below, where the earlier work has been republished in two
volumes by the “Opacity Project Team” [706, 707].

More recently, as a result of detailed comparisons with work carried out by an
independent study of stellar opacities, called OPAL, at the Lawrence Livermore
National Laboratory, see, for example, Iglesias et al. [489, 490], the importance of
the contribution of inner-shell transitions to the opacity has been realized. In a major
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new initiative the contribution to stellar opacities from these transitions has been
calculated by Badnell and Seaton [35], Seaton and Badnell [865] and Badnell et al.
[38], using an extension of the atomic structure configuration interaction computer
program AUTOSTRUCTURE [30, 31], discussed in Sect. 5.1.1.

We now outline the theory connecting the Rosseland-mean opacity used by
astronomers with the cross sections for absorption or scattering of radiation, cal-
culated by atomic structure and collision programs. In a stellar interior an atom of
an element, denoted by k, can exist in a number of ionization stages, denoted by i ,
and energy levels, denoted by j . We then define the cross section for absorption or
scattering of radiation by a level, denoted by (i, j, k) as σi jk(u), where the frequency
variable u = hν/kBT , kB being Boltzmann’s constant, and where the correction
factor for stimulated emission [1 − exp(−u)] is not included in the definition of
σi jk(u).2 The monochromatic opacity cross section for element k is then defined by

σk(u) =
∑

i j

pi jkσi jk(u). (8.156)

The mean cross section for a mixture of elements is then

σ(u) =
∑

k

fkσk(u), (8.157)

where fk is the fractional abundance of the element which is normalized to unity as
follows:

∑
k

fk = 1. (8.158)

The Rosseland-mean cross section σR is then given by

1

σR
=
∫ ∞

0

F(u)

σ (u)[1− exp(−u)]du, (8.159)

where

F(u) = 15

4π4
u4 exp(−u)

[1− exp(−u)]2 . (8.160)

Finally, the Rosseland-mean opacity per unit mass is

κR = σR

μ
, (8.161)

where μ is the mean atomic weight.

2 We consider here the quantity actually tabulated in the OP archives [863].
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Target

CIV3 or SUPERSTRUCTURE or AUTOSTRUCTURE

Internal Region

RMATRXI

External and Asymptotic Regions

STGB STGF STGD

Bound States Collision Strengths Damping Constants

STGBB STGBF STGFF

f–values Free–free OpacitiesPhotoionization
X-sections

Fig. 8.2 The Opacity Project computer programs

The first results from the Opacity Project were reviewed by Seaton et al. [866]
and involved detailed calculations of atomic energy levels, oscillator strengths, col-
lision strengths, photoionization cross sections and electron line broadening and
damping constants for a wide range of atomic ions of high stellar abundance. These
calculations were carried out using the R-matrix method together with a range of
new computer programs for calculating external and asymptotic region solutions
and dipole integrals, which were described by Berrington et al. [100]. We conclude
this section by summarizing in Fig. 8.2 the computer programs used in these cal-
culations. We have already briefly reviewed the atomic structure programs CIV3,
SUPERSTRUCTURE and AUTOSTRUCTURE, the R-matrix internal region pro-
gram RMATRXI and the external and asymptotic region program STGF in our
discussion of computer programs used in electron–atom collision calculations in
Sect. 5.1.1. In addition, a number of new programs were developed specifically
for the OP. These were STGB to calculate bound-state wave functions and ener-
gies; STGD to calculate damping constants; STGBB to calculate bound–bound
oscillator strengths; STGBF to calculate bound–free photoionization cross sections
and STGFF to calculate free–free opacities.

8.4 Spectra of Atoms in Fields

In this section we describe a computational approach which enables the spectra of
atoms in laboratory strength electric and magnetic fields to be accurately calculated.
This approach, which combines a new external region R-matrix method with the
complex coordinate rotation method, was introduced by Halley et al. [438, 439] and
Seipp and Taylor [867].
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The complex coordinate rotation method, which has been reviewed, for example,
by Reinhardt [786] and Junker [520], has played an important role in the study of the
properties of atoms and ions in external electric and magnetic fields. In this method,
the radial variable r is rotated into the complex plane by the transformation r →
r exp(iθ)where θ is a real positive rotation angle. Similarly, the momentum variable
p is rotated in the opposite direction by the transformation p → p exp(−iθ) which
preserves the canonical commutation relations. When all the radial and momentum
variables are scaled in this way the Hamiltonian H is transformed to a new rotated
Hamiltonian H(θ) which is a non-hermitian operator whose spectrum is complex.
In addition, if H(θ) is represented by real basis functions the resultant matrix is
complex and symmetric.

Following our discussion of the analytic properties of the S-matrix in the com-
plex energy plane in Sects. 3.1 and 3.2.1, see, for example, Figs. 3.1 and 3.4, we
show in Fig. 8.3 how the bound and resonance states of H(θ) behave as a result of
the rotation θ . In Fig. 8.3a we show the distribution of bound-state and resonance
S-matrix poles, branch points and branch cuts of the Hamiltonian H in the absence
of the rotation. We note that, unlike Fig. 3.1, the branch cuts which start from the
branch points ei , i = 1, . . . , 4, are not shown displaced from the real energy axis
but lie on top of each other along this axis. Following Fig. 3.4, we also show the
continuation paths from the physical sheet to the resonance poles, corresponding to
Siegert states, which lie on unphysical sheets in the complex energy plane. Then
in Fig. 8.3b we show the distribution of bound-state and resonance S-matrix poles,
branch points and branch cuts of the Hamiltonian H(θ) corresponding to the rota-
tion θ . An important aspect of the transformation is that the bound states of H
remain real isolated eigenstates of H(θ), while the resonance states of H lying in
the lower complex energy plane are now revealed by the rotation of the threshold
branch cuts through 2θ . These states are now square-integrable (L2) eigenstates of
H(θ) corresponding to complex eigenvalues. Thus diagonalizing the non-hermitian
Hamiltonian H(θ) with real L2 basis functions gives a description of both the
discrete and continuum spectra of the Hamiltonian H including the positions and
widths of the resonances revealed by the rotation.

The development and application of the external region R-matrix method in a
study of atoms in magnetic fields were first made by O’Mahony and Taylor [703]
who considered the quadratic Zeeman effect in Sr and Ba atoms. Following an
observation by Clark and Taylor [219], they pointed out that for magnetic fields
of laboratory strength (5–50 kG or β = 10−6–10−5 a.u.) the quadratic Zeeman
potential 1

2βr2 sin2 θ can be ignored compared with the atomic electron–nucleus
and electron–electron potentials in an internal region extending out to several hun-
dred atomic units from the nucleus. Hence, in order to represent the effects of the
magnetic field, O’Mahony and Taylor expanded the wave function in a basis set in
the external region rather than in the internal region, as in standard R-matrix theory.
The external R-matrix theory expansion was then combined with the complex coor-
dinate rotation method by Halley et al. [438, 439] and Seipp and Taylor [867]. In this
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(a)

•
e1 •

e2 •
e3 •

e4

∗
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∗
× ×

(b)

•
e1 •

e2 •
e3 •

e4

∗
∗ ∗ ∗

∗
× ×

2θ 2θ 2θ 2θ

Fig. 8.3 Distribution of S-matrix poles in the complex energy plane and the corresponding branch
points and associated branch cuts. (a) Poles of H when the rotation angle θ = 0. (b) Poles of
H(θ) when the rotation angle θ is non-zero. ×, bound-state poles lying on the physical sheet; ∗,
resonance poles which lie on unphysical sheets when θ = 0 and which are revealed by the rotation
of the branch cuts by 2θ . The branch points are denoted by ei , i = 1, . . . , 4, and the arrows denote
the continuation paths from the physical sheet to the resonance poles

combined method the atomic wave function in the internal region must accurately
describe the ejected electron on the boundary r = a0 of this region, where this
electron may be in a highly excited or continuum state. Following Halley et al.
[439] we illustrate this method by considering a one-channel problem where the
highly excited or continuum electron moves in the external region in the Coulomb
potential of the residual ion and an external field.

In the internal region the solution on the boundary r = a0 of this region can
be accurately described using quantum defect theory, discussed in Sect. 3.3.4, as
follows:

F	(a0) = s	(a0)+ tan(μ	π)c	(a0). (8.162)

In this equation s	(r) and c	(r) are energy-normalized regular and irregular
Coulomb wave functions and μ	 is the quantum defect corresponding to the orbital
angular momentum 	. The quantum defect can be obtained by accurate measure-
ment or calculation of the field-free target atom in the internal region.

We now consider the bound-state solutions in the external region where a0 ≤
r ≤ ∞ using R-matrix theory, commencing with the solution when there is no
complex coordinate rotation. In this case the Schrödinger equation satisfied by the
reduced radial wave function F	(r) describing the highly excited electron moving
in the potential U (r) is
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(
d2

dr2
− 	(	+ 1)

r2
−U (r)+ k2

)
F	(r) = 0, a0 ≤ r ≤ ∞, (8.163)

subject to the asymptotic boundary condition

lim
r→∞ F	(r) = 0, (8.164)

where U (r) represents the interaction of the electron with the external field and with
the residual ion. In order to solve (8.163) in the external region we first write this
equation in the form

L	F	(r) = 0, a0 ≤ r ≤ ∞, (8.165)

and we introduce a Bloch operator L(a0, b0) on the boundary r = a0 defined by

L(a0, b0) = δ(r − a0)

(
d

dr
− b0

r

)
, (8.166)

where b0 is an arbitrary constant. Following our discussion in Sect. 4.2, we find that

∫ ∞
a0

[v(r) (L	 + L) w(r)− w(r)(L	 + L)v(r)]dr = 0, (8.167)

for L2 integrable functions v(r) and w(r) which satisfy arbitrary boundary condi-
tions at r = a0 and vanish asymptotically as r → ∞. It follows that L	 + L is
hermitian over the external region in the space of these functions.

We then solve (8.163) in the external region by introducing a complete linearly
independent set of real L2 integrable basis functions

φi (r), i = 1, . . . ,∞, a0 ≤ r ≤ ∞, (8.168)

which satisfy the above boundary conditions at r = a0 and r → ∞. In practice,
a set of Sturmian functions has been used in detailed calculations by Halley et al.
[438, 439]. We then form a linear combination of these basis functions

χ j (r) =
∞∑

i=1

φi (r)ci j , j = 1, . . . ,∞, a0 ≤ r ≤ ∞, (8.169)

where the expansion coefficients ci j are determined by diagonalizing L	+L in this
basis so that

∫ ∞
a0

χi (r)(L	 + L)χ j (r)dr = 2(E − Ei )δi j , (8.170)
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where the energy E = k2/2 and where the eigenenergies Ei are real since L	 + L
is hermitian. We can now solve (8.165) by rewriting this equation as

(L	 + L) F	(r) = LF	(r), (8.171)

which has the formal solution

F	(r) = (L	 + L)−1 LF	(r), (8.172)

where the spectral representation of the Green’s function (L	 + L)−1 is given by

(L	 + L)−1 = 1

2

∞∑
i=1

χi (r)χi (r ′)
E − Ei

, a0 ≤ r ≤ ∞, a0 ≤ r ′ ≤ ∞. (8.173)

Hence it follows from (8.166) and (8.172) that

F	(a0) = R(E)

(
a0

dF	
dr
− b0 F	

)
r=a0

, (8.174)

where the R-matrix

R(E) = 1

2a0

∞∑
i=1

[χi (a0)]2
E − Ei

. (8.175)

In conclusion, we see from (8.169), (8.170) and (8.175) that the calculation of the
R-matrix at r = a0 involves the diagonalization of the Hamiltonian in an external
region basis. On the other hand, the function F	(a0) and the derivative (dF	/dr)r=a0

are given by the solution defined by (8.162) in the internal region. Hence (8.162) and
(8.174) can only be simultaneously satisfied at negative real eigenenergies which
can be determined by an iterative procedure. The corresponding eigensolutions will
then correspond to bound states defined over the full range 0 ≤ r ≤ ∞.

We now briefly review the corresponding analysis when the complex coordinate
rotation method is used in the external region. In this case r in (8.163) is replaced by
r exp(iθ), where θ is a fixed positive rotation angle, and we again include a potential
U (r) representing the interaction of the electron with the residual ion and with the
field in the external region. Equation (8.163) then becomes

(
e−2iθ d2

dr2
− e−2iθ 	(	+ 1)

r2
−U

(
reiθ )+ k2

)
F	
(
reiθ ) = 0, a0 ≤ r ≤ ∞,

(8.176)
where r is a real variable. We then look for L2 integrable solutions of this equation
which vanish asymptotically and which correspond to bound states and to resonance
states which are revealed by the rotation, as in Fig. 8.3b. Following our analysis of
the solution in the external region when the rotation angle θ = 0, we determine
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a basis χi (r exp iθ) by diagonalizing L	(θ) + L(θ) in a set of real L2 integrable
functions analogous to (8.168), where L	(θ) is the operator in brackets on the left-
hand side of (8.176) and L(θ) is the corresponding Bloch operator defined by

L(θ) = e−2iθ δ(r − a0)
d

dr
, (8.177)

where we have set the arbitrary constant b0, which we included in (8.166), equal to
zero. We then obtain

∫ ∞
a0

χi
(
reiθ ) [L	(θ)+ L(θ)]χ j

(
reiθ ) dr = 2(E − Ei )δi j , (8.178)

where the energy E = k2/2 can now be complex since θ is non-zero. We then find
in analogy with (8.174) and (8.175) that

F	
(
reiθ ) = R(E, θ) a0

dF	
(
reiθ

)
d
(
reiθ

)
∣∣∣∣∣
r=a0

, (8.179)

where the R-matrix at r = a0 is given by

R(E, θ) = e−iθ

2a0

∞∑
i=1

[
χi
(
a0eiθ

)]2
E − Ei

, (8.180)

which we see is a function of the complex energy E and the rotation angle θ .
Having calculated the R-matrix at r = a0 we can now match the solution in the

external region to the solution in the internal region at r = a0 defined by (8.162).
Unlike the situation discussed earlier in the absence of the complex coordinate rota-
tion, the energy E that is varied in the matching can now be complex, corresponding
to resonances which are revealed by the rotation, which increases the computa-
tional effort required in the search for a match. In practice it was found [438, 439]
that this effort could be reduced using the procedure introduced by Schneider
[824], discussed in Sect. 4.4.8, where information from the inner region solution
is built into the calculation before the diagonalization of L	(θ) + L(θ) in (8.178)
is performed.

Following Delande et al. [256] the photoionization cross section σ(ω) from an
initial state ψ0 with energy E0 in an external field is given by

σ(ω) = 4πω

c
Im 〈ψ0

∣∣∣∣T 1

H − ω − E0 − iε
T

∣∣∣∣ψ0〉, (8.181)

where T = ε̂ · r is the dipole operator for polarization in the direction of the unit
vector ε̂. The matrix element in (8.181) can be rewritten by introducing the complex
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rotation angle θ and by writing |ψ〉 as the complex rotation transform of T |ψ0〉.
After expressing |ψ〉 as a linear combination of the eigenvectors of H(θ) with com-
plex coefficients ci (θ), we then obtain

σ(ω) = 4πω

c
Im
∑

i

c2
i (θ)

Ei (θ)− ω − E0
. (8.182)

For a given resonance which is uncovered by the rotation angle θ , neither Ei nor
ci depends on θ . On the other hand, there is a θ -dependence for the continuum
states. However, the sum over all eigenstates of the rotated Hamiltonian in (8.182)
is θ -independent.

Finally, we summarize a number of calculations that have been carried out using
the external region R-matrix with complex coordinate rotation method. In the initial
work by Halley et al. [438], discussed in Sect. 8.5.6, detailed calculations were
carried out for the diamagnetic spectrum of Li obtaining almost perfect agreement
with the high-resolution experiments by Iu et al. [494]. This work was extended by
Halley et al. [439] who calculated the diamagnetic spectrum of Ba and Sr obtaining
excellent agreement with the experimental results of Lu et al. [602]. Later, Seipp
and Taylor [867] applied the method to the Stark and Stark diamagnetic Rydberg
spectra of Na. The results obtained for the spectrum in an electric field were in
satisfactory agreement with experiment and with theoretical results obtained using
a different theoretical approach and new results were obtained for the spectrum in
combined electric and magnetic fields. Atomic resonance effects in parallel electric
and magnetic fields for H and Na atoms were also obtained using the combined
R-matrix and complex coordinate approach by Seipp et al. [868]. Also, precision
measurements on lithium atoms in electric fields were compared by Stevens et al.
[888] with calculations using the R-matrix with complex coordinate method and
with two other theories showing that the R-matrix approach was the most accurate.
Finally, we mention related work by Rao and Taylor [775] which used the exter-
nal region R-matrix method with an unrotated coordinate system which enabled
the photoabsorption spectrum of Ba in crossed electric and magnetic fields to be
accurately calculated. This last study shows the importance of the external region
R-matrix method without rotation in the study of the bound-state spectra of atoms
in external electric and magnetic fields.

8.5 Illustrative Examples

In this section we present illustrative examples of atomic photoionization, photore-
combination and radiation damping calculations. We also consider a calculation of
the photoionization spectrum of an atom in an external magnetic field.
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8.5.1 Photoionization of Li

In recent years, many R-matrix calculations have been carried out in support
of atomic photoionization experiments at synchrotron radiation facilities. As our
first example we discuss photoionization measurements of hollow-atom–hollow-ion
decay paths of triply excited lithium, carried out at the Advanced Light Source
at Berkeley, by Diehl et al. [262]. Understanding the many-electron behaviour of
hollow lithium atoms, in which all three electrons are in excited states, provides a
formidable challenge to both experimentalists and theorists. Hollow-atom dynamics
are also of considerable interest, for example, in the interpretation of ion–surface
collision processes [138].

In the experiment by Diehl et al. the following resonant two-step decay process
was observed for photon energies in excess of 151.7 eV:

hν + Li(1s22s 2S)→ Li∗∗∗(n	n′	′n′′	′′)
↓
Li+∗∗(n′′′	′′′n′′′′	′′′′)+ e−

↓
Li2+(1s)+ e−. (8.183)

We illustrate this process schematically in Fig. 8.4. The incident photon first excites
the lithium atom to a triply excited hollow-atom state Li∗∗∗. This state then decays
with the emission of an electron to a doubly excited state Li+∗∗ which in turn decays
with the emission of a further electron to the Li2+(1s) ground state. Observing the
secondary Li+ Auger decays in (8.183) as a function of the incident photon energy
in the experiment was found to be a valuable technique for the detection of new
triply excited hollow-atom resonances of the parent lithium ion.

In the R-matrix calculation, 29 Li+ ground and singly excited states and 10 Li+
doubly excited states were included in the internal region expansion (8.53) and the
external region expansion (8.63) of both the final e− + Li+ collision wave function
and in the corresponding initial Li bound-state wave function. In this way triply
excited resonance states of Li∗∗∗ in (8.183) and their contribution to the photoion-
ization cross section were calculated.

We compare in Fig. 8.5 the relative experimental partial photoionization cross
section measurements for Li atoms when the Li+ ion is left in the 2s2 1Se, 2s2p 3Po

and 2s2p 1Po state together with their sum, with the corresponding ab initio R-
matrix calculation for incident photons in the energy range from 160.1 to 163.6 eV.
The R-matrix resonance predictions show a small systematic energy shift from the
experimental values. However, the number and relative magnitudes of the reso-
nances and even small spectral features are well reproduced by the theory. Overall,
the good agreement between theory and experiment has enabled a clear understand-
ing of the excitation and decay mechanisms of the hollow-atom states summarized
in (8.183) to be obtained.



424 8 Photoionization, Photorecombination and Atoms in Fields

Fig. 8.4 Schematic energy level diagram for neutral lithium, Li+ and Li2+ in the energy region
corresponding to the production of hollow Li and hollow Li+ states using a synchrotron radiation
source. A selection of the hollow-atom and hollow-ion levels are shown to illustrate the excitation,
indicated by the upward pointing arrows, and the decay paths, indicated by arrows labelled A and
Auger (Fig. 1 from [262])

8.5.2 Photoionization of Fe VII

As our second example of photoionization calculations we present results from one
of many calculations carried out as part of the Opacity Project, reviewed in Sect.
8.3. We consider the work of Saraph et al. [812] who carried out detailed R-matrix
calculations for radiative transitions in Fe VII and Fe VIII. We show in Fig. 8.6 their
results for two transitions in Fe VII. The transitions shown in Fig. 8.6 are

hν + Fe VII (3p63d4p 1Po)→ Fe VIII+ e−,

hν + Fe VII (3p5(2Po) 3d3(2Db)
1Po)→ Fe VIII+ e−, (8.184)
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Fig. 8.5 Partial cross sections for photoionizing lithium atoms to (a) 2s2 1Se, (b) 2s2p 3Po,
(c) 2s2p 1Po and (d) their sum for incident photons in the energy range 160.1–163.6 eV. Full
curves: R-matrix calculation convoluted with an experimental bandpass of 0.11 eV. Dots: experi-
mental measurements. The vertical scales on the right-hand side give the theoretical cross section
in MBarn (×10−3). The vertical scales on the left-hand side provide relative experimental values
(Fig. 3 from [262])

where 31 states of Fe VIII with configurations 3p63d, 3p53d2, 3s3p63d2, 3p64s,
3p64p, 3p64d and 3p64f, were retained in the internal region expansion (8.53)
and the external region expansion (8.63) representing both the initial bound and
final continuum states of Fe VII. The cross section in Fig. 8.6a for photoioniza-
tion of the 3p63d4p 1Po state was found to be strongly enhanced by PEC (pho-
toexcitation of the core) resonances corresponding to intermediate autoionizing
states with configurations 3p53d24p and 3p64p2. In general, the photoionization
cross sections of these and similar ions are found to be dominated by resonances
at low energies, which must be accurately determined in order to obtain reliable
opacities.
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Fig. 8.6 Calculated photoionization cross sections in Mb from (a) 3p63d4p 1Po valence electron
state of Fe VII and (b) 3p5(2Po) 3d3(2Db)

1Po open core state of Fe VII (Fig. 4 from [812])

8.5.3 Photorecombination in Electron Collisions with O VIII

In this example we consider electron–ion photorecombination calculations includ-
ing the effect of radiation damping which were carried out by Zhang et al. [1008].
Results were obtained for C V, C VI, O VIII and Fe XXV, using both non-relativistic
and relativistic versions of the RMATRXI program, discussed in Sect. 5.1.1, where
the latter calculations included one-body terms from the Breit–Pauli Hamiltonian,
discussed in Sect. 5.4.2. In these calculations all target states up to and including
n = 3 were included in the R-matrix expansion. We illustrate this work by showing
in Fig. 8.7 recombination cross sections for the H-like ion O VIII (O7+), where
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the non-resonant and resonant contributions, corresponding to (8.112) and (8.113),
respectively, were obtained as part of the same R-matrix calculation. The resonant
contribution to the cross section, corresponding to (8.113), proceeds through doubly
excited states of O VII (O6+) as follows:

e− + O7+(1s)→
[
O6+(2	, n′	′)

]∗∗ ↗
↘

O7+(1s)+ e−

O6+(1s, n′′	′′)+ hν.
(8.185)

We see that in this process the electron incident on the H-like O VIII ion is captured
in a doubly excited state of O VII, where one electron is in an excited 2s or 2p orbital
and the second electron is in an excited n′	′ orbital, where resonances corresponding
to n′ = 2, 3, 4, . . . are shown in Fig. 8.7. These doubly excited states then decay
leaving either O VIII in its ground state plus an emitted electron or leaving O VII
in its ground state plus an emitted photon. We see by comparing Figs. 8.7a and b
that inclusion of relativistic effects introduces additional fine-structure resonances

Fig. 8.7 Photorecombination cross sections for e− + O VIII→ O VII+ hν; (a) non-relativistic
L S-coupling calculations, (b) relativistic Breit–Pauli calculations without radiation damping, (c)
relativistic Breit–Pauli calculations with radiation damping (Fig. 5 from [1008])
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and modifies the cross sections. Also, by comparing Figs. 8.7b and c, we see that
the effect of including radiation damping is to significantly reduce the photore-
combination cross sections. Finally, we observe that the resultant photorecombi-
nation cross section was found to be in good agreement with experimental results
reported by Kilgus et al. [534] obtained using the heavy-ion Test Storage Ring
in Heidelberg.

8.5.4 Radiation Damping in Electron Collisions with Fe XXVI

As an example of the effect of radiation damping on electron collisions, we consider
electron impact excitation of the n = 2 states of the hydrogen-like ion Fe XXVI.
Calculations carried out by Gorczyca and Badnell [392] used the RMATRXI pro-
gram, discussed in Sect. 5.1.1, which included the one-body terms from the Breit–
Pauli Hamiltonian, discussed in Sect. 5.4.2, and which was extended to include
the radiation damping potential defined by (8.130). In these calculations all nine
fine-structure target states up to n = 3 were retained in the R-matrix expansion
and excitation cross sections from the 1s1/2 ground state to the 2s1/2, 2p1/2 and
2p3/2 excited states were calculated, both including and omitting radiation damp-
ing. The resultant cross sections are given in Fig. 8.8 where 10,000 energy points
were retained in the energy range shown. We see from this figure the important
role that radiation damping plays in these cross sections. Thus the KLn resonances,
primarily the 2pn	 (n ≥ 20) resonances just above the 2s1/2 and 2p1/2 thresholds,
are completely damped, as are the KMn resonances for n ≥ 6 (E ≥ 590 Ryd-
bergs). Also we see that even the KMM resonances at E ∼ 535 Rydbergs show
approximately 10% damping. These results show the importance of including radi-
ation damping in calculations for highly ionized ions even for relatively low-lying
resonances.

8.5.5 Radiation Damping in Electron Collisions with W XLVII

In this example we consider the effect of radiation damping on electron impact
excitation of Ni-like tungsten, W46+, obtained using relativistic Dirac R-matrix cal-
culations by Ballance and Griffin [44]. Accurate atomic collision data are needed
in many applications involving tungsten. For example, plans for the International
Thermonuclear Experimental Reactor (ITER) include the use of tungsten for certain
facing components in the diverter region. Tungsten will also be used for diagnostics
of the erosion of heavy species into the plasma. In addition there have been numer-
ous experiments using tungsten within existing tokamaks generating a demand for
theoretical electron impact ionization, recombination and excitation data for tung-
sten and its ions. Of particular importance in this work is the need for electron
impact excitation data for Ni-like tungsten since it emits some of the most intense
spectral lines resulting from the ionization stages of tungsten.
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Fig. 8.8 R-matrix calculation for electron impact excitation of Fe XXVI from the ground state to
the (a) 2s1/2 (b) 2p1/2 and (c) 2p3/2 states, convoluted in each case with a 2.5 Rydberg FWHM
Gaussian. Dotted line: undamped; full line: damped (Fig. 1 from [392])

In these R-matrix calculations the target orbitals, energy levels and radiative rates
were obtained using the relativistic Dirac–Fock atomic structure program GRASP,
and the electron–atom collision calculations were carried out using the Dirac atomic
R-matrix collision program DARC, discussed in Sect. 5.5.1. The Dirac programs
were augmented by sections from the parallel Breit–Pauli RMATRXI package and
PSTGF, discussed in Sect. 5.1.1, which had been extended to include radiation
damping by Gorczyca et al. [36, 392, 397].
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In the W46+ calculation 115 target levels were retained in the R-matrix expansion
and in the configuration interaction expansion of the target. These levels arose from
the 13 configurations 3d10, 3d94s, 3d94p, 3d94d, 3d94f, 3d95s, 3d95p, 3p53d104s,
3p53d104p, 3p53d104d, 3p53d104f, 3s3p63d104s and 3s3p63d104p. Also 25 basis
orbitals were included for each continuum-electron angular momentum using an
R-matrix boundary of 2.0 a.u. All partial waves from J = 0.5 to 35.5 were included
in the Jπ partial wave expansions and the contribution from the higher partial waves
was estimated using a top-up procedure.

As an example of these calculations we compare in Fig. 8.9 the results for the
effective collision strength, which is defined in terms of the collision strength by
(2.153), for two transitions from the 3p63d10 1S0 ground state to (a) the 3d94p

Fig. 8.9 Effective collision strengths for electron impact excitation of Ni-like tungsten (W46+)
from the 3p63d10 1S0 ground state to (a) the 3d94p (5/2,3/2)1 level and (b) the 3d94d (3/2,3/2)1
level. The long dashed curves with solid squares are the results with no radiation damping and the
solid curves with solid circles are with radiation damping (Fig. 4 from [44])
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(5/2,3/2)1 and (b) the 3d94d (3/2,3/2)1 levels, where a j j designation is employed
since the excited states are highly mixed in L S-coupling. The first transition is
an electric dipole-allowed excitation while the second is a much weaker dipole-
forbidden transition. However, in both cases the original cross sections have large
low-energy resonance contributions. It can be seen from this figure that radiation
damping causes a pronounced change in the effective collision strength resulting
from its influence on the original cross sections.

In analysing the results it was found that the damping involves the transition of
a core electron, leaving the Rydberg electron unchanged. This corresponds to the
transitions 3p63d94	n	′ → 3p63d10n	′ and 3p53d104	n	′ → 3p63d10n	′ which are
referred to as type I damping. In conclusion we observe that while the damping
effects are not as large as might be expected for a 46 times ionized species, due to
the closed-shell nature of the Ni-like ground state, they are sufficiently significant
that they should be included in collisional–radiative modelling of this ion.

8.5.6 Photoionization Spectrum of Li in a Magnetic Field

As our last example we consider R-matrix calculations of the photoionization spec-
trum of Li in a magnetic field by Halley et al. [438], using a combination of
the external region R-matrix method and the complex coordinate rotation method,
discussed in Sect. 8.4. In Fig. 8.10 we compare the calculated spectrum obtained

Fig. 8.10 Comparison of an above-threshold experimental spectrum for Li (full line above) with
the calculated spectrum (full line below) and with a previously calculated spectrum for H atoms
(broken line below). The experimental spectrum was obtained by photoionizing the 3s state of
Li in a measured magnetic field of 6.1131 ± 0.001 T. The calculations were carried out for the
3s state in a field of 6.1143 T and convoluting the cross section with a Gaussian window with a
1 × 10−3 cm−1 line width equal to the experimental resolution (Fig. 2 from [438])
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by Halley et al. [438] for photoionization of Li, from the 3s state to an m = 0 odd
parity final state, in a magnetic field of strength 6.1143 T over an energy range of
6.7–7.8 cm−1, with previously calculated results for H atoms, obtained by Iu et al.
[494] using a complex coordinate approach, and with high-resolution experimental
measurements by Iu et al. [493, 494]. The Li calculation by Halley et al. [438]
involved the inclusion of 62,500 basis functions in the R-matrix expansion.

The following comments can be made about the calculated results for Li: (i) the
absolute values of experimental and theoretical energies of the peaks are in almost
perfect agreement where the order of magnitude of the discrepancy is 10−3 cm−1

which is within the experimental accuracy. This is in contrast to the H-atom
spectrum calculated by Iu et al. [494], which did not use the external region
R-matrix method, where the discrepancy was of the order 3 × 10−3 cm−1; (ii) the
calculated results for Li give a more accurate representation of the peaks around
7.15 cm−1; (iii) some peaks in the H-atom calculation are shifted to higher energies
and some to lower energies compared with the Li calculation.

In conclusion, this calculation has shown that the combination of the external
region R-matrix method and the complex coordinate rotation method yields accu-
rate results for the spectrum of Li. Calculations using this method for other atoms
in electric and magnetic fields, discussed in Sect. 8.4, have also yielded very satis-
factory results.



Chapter 9
Multiphoton Processes: Floquet Theory

The study of the interaction of intense laser fields with atoms and molecules has
attracted considerable attention in recent years. In particular, the availability of
increasingly intense lasers has made possible the observation of a wide variety of
multiphoton processes, including multiphoton ionization, laser-assisted electron–
atom collisions and harmonic generation. Also, in the case of molecules, the loss of
spherical symmetry and the degrees of freedom associated with the nuclear motion
give rise to additional computational difficulties and new effects including multipho-
ton dissociation. Many reviews of these processes have been written and we mention
here comprehensive overviews by Gavrila [365], Burnett et al. [194], Mason [639],
Protopapas et al. [759] and Joachain et al. [504] where the emphasis is on atomic
multiphoton processes, and by Bandrauk et al. [50, 51], Giusti-Suzor et al. [378]
and Posthumus [751], where the emphasis is on molecular multiphoton processes.
In our discussion of these processes we observe that the atomic unit of electric
field strength experienced by an electron in the ground state of atomic hydrogen
εa ≈ 5.1 × 109 V/cm corresponds to a laser intensity Ia ≈ 3.5 × 1016 W/cm2.
Lasers delivering pulses with intensities much larger than this are now available
using the “chirped pulse amplification” (CPA) scheme, in which the laser pulses
are stretched, amplified and then compressed [891]. Consequently, many new pro-
cesses have been observed as a result of exposing atoms and molecules to intense
laser fields which require a fully non-perturbative approach for their analysis going
beyond the first-order perturbation theory treatment of photoionization considered
in Chap. 8. Finally, we mention the fourth-generation light sources which are now
coming online which will address new fundamental scientific challenges through
their ultra-fast and ultra-bright nature [338].

We commence our discussion of multiphoton processes by considering in this
chapter atomic R-matrix–Floquet (RMF) theory and applications, reserving a dis-
cussion of time-dependent R-matrix theory, necessary to treat the interaction of
ultra-short laser pulses with atoms and ions, until Chap. 10 and R-matrix–Floquet
theory of molecular multiphoton processes until Chap. 11. In Sect. 9.1 we consider
atomic RMF theory, based on the Floquet–Fourier ansatz [218, 325, 632, 874],
which was first formulated by Burke et al. [183, 184] and by Dörr et al. [264]
and has since been applied to a wide range of atomic multiphoton processes,

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_9,
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including multiphoton ionization, laser-assisted electron–atom collisions and har-
monic generation. This is an ab initio theory, which is fully non-perturbative and
is applicable to arbitrary multi-electron atoms and atomic ions, allowing an accu-
rate description of electron–electron correlation effects. In principle this theory
is confined to treating laser pulses involving many cycles of the field, typically
exceeding tens of femtoseconds (10−15 s) and we will discuss applications of this
theory to multiphoton ionization, laser-assisted electron–atom collisions and to har-
monic generation. We also discuss an extension of this theory using multistate
non-hermitian Floquet dynamics [253, 473, 746], which has enabled detailed cal-
culations to be carried out for shorter laser pulse interactions which are in good
agreement with fully time-dependent calculations.

Finally, in Sect. 9.2 we present the results of some recent R-matrix–Floquet cal-
culations of multiphoton processes which illustrate the theory presented earlier in
this chapter.

9.1 R-Matrix–Floquet Theory

In this section we describe an ab initio R-matrix–Floquet theory of atomic multi-
photon processes where we consider the interaction of an intense laser field with
an atom or atomic ion, which we assume has N +1 electrons and nuclear charge
number Z .

9.1.1 Introduction

We consider the following three processes: first, multiphoton ionization

nhν + Ai → A+j + e−, (9.1)

where the target atom or ion Ai and the residual ion A+j may be in their ground or
excited states; second, laser-assisted electron–atom collisions

nhν + e− + Ai → A j + e−, (9.2)

where again the target atom or ion Ai and the final atom or ion A j may be in their
ground or excited states; and third, harmonic generation

nhν + Ai → Ai + hν′, (9.3)

where Ai may be an atom or an ion and the frequencies ν and ν′ are related by
ν′ = nν. We mainly consider processes where there is at most one ejected or scat-
tered electron. However, as in Chap. 6, two electrons in the continuum can be treated
by including pseudostates in the R-matrix expansion.
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In R-matrix–Floquet theory the laser field, which is treated classically, is usually
assumed to be monochromatic, monomode, linearly polarized and spatially homo-
geneous, and its wavelength is assumed to be large compared with the size of the
target atom. The corresponding electric field vector can then be written as

E(t) = −1

c

d

dt
A(t) = ε̂E0 cosωt, (9.4)

where ε̂ is a unit vector along the laser polarization direction as in Fig. 8.1, E0 is
the electric field strength and ω is the angular frequency. The corresponding vector
potential A(t) is then given by

A(t) = ε̂A0 sinωt, (9.5)

where A0 = −cE0/ω and where we have adopted the Coulomb gauge such that
divA = 0. Neglecting relativistic effects, the atomic system in the presence of the
external laser field is described by the time-dependent Schrödinger equation

[
HN+1 + 1

c
A(t) · PN+1 + N + 1

2c2
A2(t)

]
Ψ̃ (XN+1, t) = i

∂

∂t
Ψ̃ (XN+1, t), (9.6)

where HN+1 is the non-relativistic Hamiltonian of the (N + 1)-electron atomic sys-
tem in the absence of the laser field defined by (5.3) and

PN+1 =
N+1∑
i=1

pi (9.7)

is the total electron momentum operator. Also in (9.6) and later equations in this
chapter, the tilde on the time-dependent wave function Ψ̃ distinguishes it from time-
independent wave functions Ψ which we consider later in our analysis.

In accordance with multichannel R-matrix theory of electron–atom collisions
discussed in Chap. 5 we partition configuration space into three regions as illustrated
in Fig. 9.1. We see that the same partitioning is used as in electron–atom collisions,
illustrated in Fig. 5.1. Also the same physical criteria for defining the boundaries
a0 and ap between the three regions, described in Sect. 5.1, are adopted. Having
divided configuration space into three regions, we must solve the time-dependent
Schrödinger equation (9.6) in each region. Since the laser field, defined by (9.4), has
constant amplitude E0 and angular frequency ω, we can represent the wave function
Ψ̃ (XN+1, t) in each of the three regions by a Floquet–Fourier expansion [218, 325,
632, 874] in terms of time-independent wave functions Ψn(XN+1) as follows:

Ψ̃ (XN+1, t) = exp(−iEt)
∞∑

n=−∞
exp(−inωt)Ψn(XN+1). (9.8)
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Fig. 9.1 Partitioning of configuration space in R-matrix–Floquet theory

After substituting (9.8) into (9.6) and equating the coefficients of exp[−i(E+nω)t]
to zero, we obtain an infinite set of coupled time-independent equations for the
functionsΨn , where in practical calculations a finite number of positive and negative
terms are retained in the expansion over n in (9.8). The solutions of these equations
in each region are then matched on the boundaries a0 and ap between the regions
using the R-matrix.

In the internal region it is convenient and appropriate to use the length gauge
since in this gauge the laser–atom interaction tends to zero at the origin and hence
the Floquet–Fourier expansion (9.8) converges more rapidly. However, at larger dis-
tances the interaction in the length gauge diverges and hence we use the velocity
gauge to describe the ejected or scattered electron in the external region. Finally,
in the asymptotic region we derive an asymptotic expansion where the ejected or
scattered electron is described in the velocity gauge. We also consider an asymptotic
expansion where the ejected or scattered electron is described in the acceleration
frame of reference [453, 547] which enables the asymptotic boundary conditions to
be expressed in a simple way.

9.1.2 Internal Region Solution

In the internal region in Fig. 9.1 we transform the time-dependent Schrödinger equa-
tion (9.6) to the dipole length gauge defined by the unitary gauge transformation

Ψ̃ (XN+1, t) = exp

[
− i

c
A(t) · RN+1

]
Ψ̃ L(XN+1, t), (9.9)

where

RN+1 =
N+1∑
i=1

ri , (9.10)

and the boldface superscript L in (9.9) and later equations indicates that the N+1
electrons are described in the dipole length gauge. Substituting (9.9) into (9.6) we
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find that the wave function Ψ̃ L satisfies the time-dependent Schrödinger equation

(HN+1 + E(t) · RN+1) Ψ̃
L(XN+1, t) = i

∂

∂t
Ψ̃ L(XN+1, t). (9.11)

In order to solve this equation we introduce the Floquet–Fourier expansion defined
by (9.8) which in this region can be written as

Ψ̃ L(XN+1, t) = exp(−iEt)
∞∑

n=−∞
exp(−inωt)Ψ L

n (XN+1), (9.12)

where E is the quasi-energy of the corresponding stationary state. Substituting
(9.12) into (9.11) and equating the coefficient of exp[−i(E + nω)t] to zero yields
the infinite set of coupled time-independent equations

(HN+1 − E − nω)Ψ L
n + DN+1(Ψ

L
n−1 + Ψ L

n+1) = 0, (9.13)

where the dipole length operator

DN+1 = 1

2
E0ε̂ · RN+1. (9.14)

If we regard the functions Ψ L
n as the components of a vector Ψ L in photon space,

then (9.13) can be written as a matrix equation in this space as

(
HL

F − EI
)
Ψ L = 0, (9.15)

where the Floquet–Fourier Hamiltonian HL
F is an infinite-dimensional tridiagonal

matrix operator in photon space with components

HL
F =

⎡
⎢⎢⎢⎢⎢⎢⎣

. . . 0
HN+1 − (n − 1)ω DN+1

DN+1 HN+1 − nω DN+1
DN+1 HN+1 − (n + 1)ω

0
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦
. (9.16)

Also in (9.15), Ψ L is a solution vector with components . . . , Ψ L
n−1, Ψ

L
n , Ψ

L
n+1, . . .

and I is a unit matrix operator.
In order to solve (9.15) in the internal region we expand the solution vector Ψ L,

in analogy with (5.5), as follows:

Ψ
Lγ
j E (XN+1) =

∑
k

ψ
Lγ
k (XN+1)A

Lγ
k j (E). (9.17)
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In this equation, and in the following equations, we introduce a superscript γ which
represents the quantum numbers which are conserved in the laser–atom interaction
process discussed below. Also in (9.17), j labels the linearly independent solutions
of (9.15), ψLγ

k are energy-independent vector basis functions with Floquet–Fourier

components ψLγ
nk defined by (9.20) and ALγ

k j (E) are energy-dependent expansion
coefficients which depend on the asymptotic boundary conditions satisfied by the
solution Ψ Lγ

j E .
The conserved quantum numbers γ depend on the symmetry of the atomic target

state and the polarization of the laser field. One example of considerable experimen-
tal and theoretical interest is the interaction of linearly polarized laser light with a
closed-shell atom such as neon or argon initially in its 1Se

0 ground state. We show
in Fig. 9.2 the allowed transitions from the 1Se

0 ML = 0 state as linearly polar-
ized photons are absorbed or emitted. In this case the conserved quantum numbers
represented by γ are given by

γ ≡ α S MS ML π
′, (9.18)

where S is the total spin angular momentum, MS and ML are the total spin and
orbital magnetic quantum numbers in the laser polarization direction, π ′ is defined
in terms of the parity π of the target atom by

π ′ = (−1)nπ (9.19)

Fig. 9.2 Allowed transitions for linearly polarized laser light incident on an atom in a 1Se
0 state.

L is the total orbital angular momentum of the atom and n is the number of photons absorbed, or
emitted, corresponding to the Floquet–Fourier expansion index in (9.12). The arrowed lines show
the transitions allowed by the laser field
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and α represents any other quantum numbers which are conserved in the collision.
Unlike the conserved quantum numbers Γ in non-relativistic electron–atom colli-
sions, defined by (2.58), we see that the total orbital angular momentum L of the
target atom or ion is not conserved. Also, since the total orbital magnetic quan-
tum numbers of the target atom and the linearly polarized laser light are zero, see
(B.55), it follows from the parity selection rule (A.27), satisfied by the Clebsch–
Gordan coefficients, that dipole transitions such as 1Pe

0 → 1Po
0, 1De

0 → 1Do
0 are

forbidden. This limits the number of L Sπ states that are coupled to one-half the
maximum number, as illustrated in Fig. 9.2, and results in the conservation of π ′
defined by (9.19). However, π ′ would not be conserved for linearly polarized laser
light incident on target atoms where ML �= 0 nor for circularly polarized laser light
incident on an arbitrary atom. As a second example, we show in Fig. 9.3 the allowed
transitions from the 1Se

0 ML = 0 state as circularly polarized photons are absorbed
or emitted, where the subscript on the target states in this figure is the ML value,
which is now not conserved in the transitions.

Following (5.6) we expand each Floquet–Fourier component of the vector basis
functions ψLγ

k (XN+1) in (9.17) in a close coupling with pseudostates expansion
given by

ψ
Lγ
nk (XN+1) = A

∑
Li j

Φ
γ

nLi (XN ; r̂N+1σN+1)r
−1
N+1u0

nLi j (rN+1)a
Lγ
nLi jk

+
∑
Li

χγ
nLi (XN+1)b

Lγ
nLik,

k = 1, . . . , nt , (9.20)

Fig. 9.3 Allowed transitions for circularly polarized laser light incident on an atom in a 1Se
0 state.

L is the total orbital angular momentum of the atom and n is the number of photons absorbed, or
emitted, corresponding to the Floquet–Fourier expansion index in (9.12). The arrowed lines show
the transitions allowed by the laser field
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where Φ
γ

nLi are channel functions obtained by coupling the residual atom or ion
states in the case of multiphoton ionization (or target atom or ion states in the case
of laser-assisted electron–atom collisions) and possibly pseudostates with the spin –
angle functions of the ejected or scattered electron, u0

nLi j are radial continuum basis

orbitals, χγnLi are quadratically integrable functions and nt is the total number of
terms retained in the expansion. By reference to Figs. 9.2 and 9.3, we see that, in
addition to the usual expansion (5.6) for each L Sπ combination which appear in
these figures, a summation must also be carried out over the number of photons
n absorbed or emitted and over the number of total orbital angular momenta L
retained in the expansion of ψLγ

k in (9.17). Hence the value of nt will be very much
larger than that arising in electron–atom collisions in the absence of the laser field,
defined following (5.6). The coefficients aLγ

nLi jk and bLγ
nLik in (9.20) are determined

by diagonalizing the matrix operator HL
F + LN+1 in the basis functions ψLγ

k as
follows:

〈Ψ Lγ
k |HL

F +LN+1|Ψ Lγ
k′ 〉int = ELγ

k δkk′ , k, k′ = 1, . . . , nt , (9.21)

where HL
F is the Floquet Hamiltonian matrix defined by (9.16) and LN+1 is a Bloch

matrix operator which has the following form:

LN+1 =
N+1∑
i=1

1

2
δ(ri − a0)

(
d

dri
− b0 − 1

ri

)
I, (9.22)

where I is a unit matrix in photon space. It follows from our analysis in Sect. 5.1.2
that HL

F + LN+1 is hermitian in the internal region in the basis of quadratically
integrable vector functions in photon space satisfying arbitrary boundary conditions
at r = a0.

We can now solve (9.15) in the internal region to determine Ψ Lγ
j E , defined by

(9.17). We rewrite (9.15) as

(
HL

F +LN+1 − EI
)
Ψ

Lγ
j E = LN+1Ψ

Lγ
j E , (9.23)

which has the formal solution

Ψ
Lγ
j E =

(
HL

F +LN+1 − EI
)−1 LN+1Ψ

Lγ
j E . (9.24)

Using the spectral representation of HL
F + LN+1 given by (9.21), we can rewrite

(9.24) as

|Ψ Lγ
j E 〉 =

∑
k

|Ψ Lγ
k 〉

1

ELγ
k − EI

〈Ψ Lγ
k |LN+1|Ψ Lγ

j E 〉. (9.25)
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We then project this equation onto the nth component in photon space and onto
the channel functions Φ

γ

nLi included in expansion (9.20). We obtain after setting
rN+1 = a0

FLγ
nLi j (a0) =

∑
n′L ′i ′

RLγ
nLin′L ′i ′(E)

⎛
⎝a0

dFLγ
n′L ′i ′ j
dr

− b0 FLγ
n′L ′i ′ j

⎞
⎠

r=a0

, (9.26)

where we have introduced the R-matrix RLγ
nLin′L ′i ′(E) in the length gauge by

RLγ
nLin′L ′i ′(E) =

1

2a0

nt∑
k=1

w
Lγ
nLikw

Lγ
n′L ′i ′k

Eγk − E
, (9.27)

the reduced radial wave functions FLγ
nLi j (r) defined by

FLγ
nLi j (rN+1) = 〈r−1

N+1Φ
γ

nLi |Ψ Lγ
nj E 〉′ (9.28)

and the surface amplitudes wLγ
nLik by

w
Lγ
nLik = 〈r−1

N+1Φ
γ

nLi |ψLγ
nk 〉′rN+1=a0

=
∑

j

u0
nLi j (a0)a

Lγ
nLi jk . (9.29)

As in (5.20) and (5.21), the primes on the Dirac brackets in (9.28) and (9.29) mean
that the integrations are carried out over the space and spin coordinates of all N + 1
electrons in the internal region except the radial coordinate rN+1 of the ejected or
scattered electron. Also, Ψ Lγ

nj E in (9.28) are the Floquet–Fourier components of the

solution vector Ψ Lγ
j E defined by (9.17). We note that if the radial continuum basis

orbitals u0
nLi j (r), retained in expansion (9.20), satisfy homogeneous boundary con-

ditions at r = a0, then a Buttle correction must be added to the R-matrix defined by
(9.27), as discussed in Sect. 5.3.2.

Equations (9.26) and (9.27) are the basic equations describing the solution of
(9.6) in the internal region, where (9.26) provides the boundary condition at r = a0
for solving (9.6) in the external region considered in the next section.

9.1.3 External Region Solution

In the external region, shown in Fig. 9.1, the ejected or scattered electron with
radial coordinate a0 ≤ rN+1 ≤ ap is described using the velocity gauge, while
the remaining N electrons with radial coordinates ri ≤ a0, i = 1, . . . , N , are
described using the length gauge. This is possible since the outer electron and the
N inner electrons occupy different regions of space and are distinguishable. Hence
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their wave functions can be transformed independently. The corresponding unitary
transformation of the time-dependent Schrödinger equation (9.6) is given by

Ψ̃ (XN+1, t) = exp

[
− i

c
A(t) · RN − i

2c2

∫ t

A2(t ′)dt ′
]
Ψ̃ V(XN+1, t), (9.30)

where

ri ≤ a0, i = 1, . . . , N , rN+1 ≥ a0, (9.31)

and where RN is defined by (9.10) with N+1 replaced by N . Substituting (9.30)
into (9.6) then yields the following time-dependent Schrödinger equation satisfied
by Ψ̃ V(XN+1, t) :

(
HN+1 + E(t) · RN + 1

c
A(t) · pN+1

)
Ψ̃ V(XN+1, t) = i

∂

∂t
Ψ̃ V(XN+1, t),

(9.32)

where the boldface superscript V in (9.30) and (9.32) and later equations indicates
that the ejected or scattered electron is described in the velocity gauge.

Following our discussion of the internal region solution we now make a Floquet –
Fourier expansion of the wave function Ψ̃ V as follows:

Ψ̃ V(XN+1, t) = exp(−iEVt)
∞∑

n=−∞
exp(−inωt)Ψ V

n (XN+1), (9.33)

where EV is the quasi-energy in the velocity gauge. The quasi-energy EV has
a negative imaginary part for multiphoton ionization and harmonic generation,
corresponding to Siegert [876] outgoing wave boundary conditions, discussed in
Sect. 1.3, and is real for laser-assisted electron–atom collisions. The relationship
between EV and the quasi-energy E in (9.12) is given by (9.48) and (9.52). Substi-
tuting (9.33) into (9.32) and equating the coefficient of exp[−i(EV + nω)t] to zero
yields the following infinite set of coupled time-independent equations:

(
HN+1 − EV − nω

)
Ψ V

n + DN

(
Ψ V

n−1 + Ψ V
n+1

)
+ PN+1

(
Ψ V

n−1 − Ψ V
n+1

)
= 0,

(9.34)

where the dipole length operator DN is defined by (9.10) and (9.14) with N +1
replaced by N and the dipole velocity operator PN+1 is defined by

PN+1 = i
A0

2c
ε̂ · pN+1. (9.35)

In analogy with (9.15) the functions Ψ V
n can be regarded as components of a vector

Ψ V in photon space and hence (9.34) can be written as a matrix equation in this
space as



9.1 R-Matrix–Floquet Theory 443

(
HV

F − EVI
)
Ψ V = 0, (9.36)

where the Floquet Hamiltonian HV
F is an infinite-dimensional tridiagonal matrix

operator in photon space.

9.1.3.1 Derivation of Coupled Differential Equations

In order to solve (9.36) in the external region we adopt the following close coupling
expansion of the components Ψ Vγ

n of the total wave function at energy E , for each
set of conserved quantum numbers denoted by γ ,

Ψ
Vγ
nj E (XN+1) =

∑
Li

Φ
γ

nLi (XN ; r̂N+1σN+1)r
−1
N+1 FVγ

nLi j (rN+1), rN+1 ≥ a0,

(9.37)

where the channel functions Φ
γ

nLi retained in this expansion are the same as those

retained in the internal region expansion (9.20). Also in (9.37), FVγ
nLi j (r) are the

reduced radial wave functions in the velocity gauge corresponding to FLγ
nLi j (r) in

the length gauge defined by (9.28) and j labels the linearly independent solutions
of (9.15) and (9.36). We note that (9.37) is not antisymmetrized with respect to the
(N+1)th electron since, as pointed out above, this electron now occupies a different
region of space than the remaining N electrons and hence is distinguishable. Also,
the quadratically integrable functions in (9.20), which are confined to the internal
region, are not included in (9.37).

After substituting (9.37) into (9.36) and projecting onto the channel functions
Φ
γ

nLi we obtain the following coupled second-order differential equations, satisfied

by the reduced radial functions FVγ
nLi j (r) :

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z − N )

r
+ k2

ni

)
FVγ

nLi j (r)

= 2
∑

n′L ′i ′
W Vγ

nLin′L ′i ′(r)F
Vγ
n′L ′i ′ j (r), r ≥ a0, (9.38)

where 	i is the orbital angular momentum of the ejected or scattered electron and
k2

ni can be expressed in terms of the channel energies ei of the residual N -electron
ion by the equation

k2
ni = 2

(
EV − fni

)
, (9.39)

where

fni = ei + nω. (9.40)
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Also in (9.38), W Vγ
nLin′L ′i ′(r) is the long-range potential matrix coupling the channels

which can be written in matrix notation as1

WVγ = VEγ + VDγ + VPγ , (9.41)

where VEγ , VDγ and VPγ arise, respectively, from HN+1, DN and PN+1 and are
defined by the following matrix elements:

V Eγ
nLin′L ′i ′ = 〈r−1

N+1Φ
γ

nLi (XN ; r̂N+1σN+1)

∣∣∣∣∣∣
N∑

j=1

1

r j N+1
− N

rN+1

∣∣∣∣∣∣
× r−1

N+1Φ
γ

n′L ′i ′(XN ; r̂N+1σN+1)〉′δnn′, (9.42)

V Dγ
nLin′L ′i ′ = 〈r−1

N+1Φ
γ

nLi (XN ; r̂N+1σN+1) |DN | r−1
N+1

× Φγn′L ′i ′(XN ; r̂N+1σN+1)〉′
(
δnn′−1 + δnn′+1

)
(9.43)

and

V Pγ
nLin′L ′i ′ = 〈r−1

N+1Φ
γ

nLi (XN ; r̂N+1σN+1)

∣∣∣∣i A0

2c
ε̂ · pN+1

∣∣∣∣ r−1
N+1

× Φγn′L ′i ′(XN ; r̂N+1σN+1)〉′
(
δnn′+1 − δnn′−1

)
. (9.44)

The integrals in these matrix elements are carried out over all N+1 electron space
and spin coordinates except the radial coordinate of the (N+1)th electron.

9.1.3.2 Boundary Condition at r = a0

The boundary condition at r = a0 satisfied by the reduced radial functions FVγ
nLi j (r)

in (9.38) can be determined by expressing these functions in terms of the functions
FLγ

nLi j (r) in (9.26) at r = a0. The relationship between FVγ
nLi j (a0) and FLγ

nLi j (a0) can
be obtained from (9.9) and (9.30) which gives

Ψ̃ V(XN+1, t) = exp

[
i

2c2

∫ t

A2(t ′)dt ′ − i

c
A(t) · rN+1

]
Ψ̃ L(XN+1, t), (9.45)

where

ri ≤ a0, i = 1, . . . , N , rN+1 = a0. (9.46)

1 Explicit expressions for the potential matrices VEγ , VDγ and VPγ in (9.41) are derived in
Appendix D.2.
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We make use of the explicit form of the vector potential A(t), given by (9.5), to
rewrite (9.45) as

Ψ̃ V(XN+1, t) = exp

(
iA2

0

4c2
t

)
exp

[
− iA2

0

8ωc2
sin(2ωt)− iA0

c
ε̂ · rN+1 sin(ωt)

]

× Ψ̃ L(XN+1, t), (9.47)

where we have taken the lower limit of integration in (9.45) to be zero. The first
exponential on the right-hand side of (9.47) has the form exp(iEpt), where

Ep = A2
0

4c2
= E2

0

4ω2
(9.48)

is the ponderomotive energy of the ejected or scattered electron. This energy is the
average kinetic energy of a free electron oscillating in a laser field corresponding to
the vector potential defined by (9.5) and the electric field vector defined by (9.4). The
second exponential in (9.47) can be expanded in a Fourier series using the equation

exp(iz sin θ) =
∞∑

n=−∞
Jn(z) exp(inθ), (9.49)

which follows from (C.9) by writing t = exp(iθ), where the Jn(z) are Bessel func-
tions of the first kind. Substituting the Floquet–Fourier expansions for Ψ̃ L and Ψ̃ V,
given by (9.12) and (9.33), respectively, into (9.47) then gives

exp(−iEVt)
∞∑

n=−∞
exp(−inωt)Ψ V

n (XN+1)

= exp[−i(E − Ep)t]
∞∑

	=−∞
f	(A0, ε̂ · rN+1) exp(−i	ωt)

×
∞∑

n′=−∞
exp(−in′ωt)Ψ L

n′ (XN+1), (9.50)

where

f	(A0, ε̂ · rN+1) =
∞∑

	′=−∞
J	′

(
A2

0

8ωc2

)
J	−2	′

(
A0

c
ε̂ · rN+1

)
. (9.51)

From (9.50) we deduce that the quasi-energies E and EV are related by

EV = E − Ep (9.52)
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and that

Ψ V
n (XN+1) =

∞∑
n′=−∞

fn−n′(A0, ε̂ · rN+1)Ψ
L
n′ (XN+1). (9.53)

Projecting (9.53) onto the channel functions Φ
γ

nLi retained in the internal and exter-
nal regions in expansions (9.20) and (9.37), evaluating the result on the boundary
rN+1 = a0 and remembering that FLγ

nLi j and FVγ
nLi j are defined by (9.28) and (9.37),

respectively, we obtain

FVγ
nLi j (a0) =

∑
n′L ′i ′

CγnLin′L ′i ′F
Lγ
n′L ′i ′ j (a0), (9.54)

where we have introduced the matrix elements

CγnLin′L ′i ′ = 〈r−1
N+1Φ

γ

nLi (XN ; r̂N+1σN+1)| fn−n′(A0, ε̂ · rN+1)|
× r−1

N+1Φ
γ

n′L ′i ′(XN ; r̂N+1σN+1)〉′, rN+1 = a0. (9.55)

For notational convenience we rewrite (9.54) in matrix notation as

FVγ
j (a0) = CFLγ

j (a0), (9.56)

where FVγ
j (a0) and FLγ

j (a0) are column vectors, for each linearly independent solu-
tion j , whose dimensions are the number of coupled channels, and C is an orthogo-
nal matrix.

We can determine the required relation between FVγ
j and dFVγ

j /dr on the bound-
ary r = a0 by first rewriting (9.26) in matrix notation as

FLγ
j (a0) = RLγ (E)a0

dFLγ
j

dr

∣∣∣∣∣∣
r=a0

, (9.57)

where we have set the arbitrary constant b0 = 0. Taking the derivative of both sides
of (9.56) with respect to r and using (9.57) gives

dFVγ
j

dr
=
{

dC
dr
+ a−1

0 C
[
RLγ (E)

]−1
}

C−1FVγ
j , r = a0. (9.58)

This equation can be rewritten as

FVγ
j (a0) = RVγ (E)a0

dFVγ
j

dr

∣∣∣∣∣∣
r=a0

, (9.59)
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where

RVγ (E) = a−1
0 C

{
dC
dr
+ a−1

0 C
[
RLγ (E)

]−1
}−1

. (9.60)

Equation (9.60) enables the R-matrix RVγ (E) in the velocity gauge at r = a0 to
be determined in terms of the R-matrix RLγ (E) in the length gauge at r = a0, and
hence provides the boundary condition at r = a0 satisfied by the solution of (9.38)
in the external region.

9.1.3.3 Solution of Coupled Differential Equations

In order to solve the coupled second-order differential equations (9.38) in the exter-
nal region we rewrite these equations in matrix form as follows:

(
d2

dr2
+ P

d

dr
+Q

1

r
+ V(r)+ D+ k2

)
FV(r) = 0, (9.61)

where the P and Q terms arise from the VPγ term in (9.41), the D term arises from
the VDγ term in (9.41) and the V(r) term arises from the VEγ term in (9.41) together
with the orbital angular momentum and Coulomb terms on the left-hand side of
(9.38), as discussed in Sect. D.2. For notational convenience, we omit the super-
scripts V and γ on the quantities in this and later equations except for the superscript
V on FV(r) and related functions and on EV. For example, RVγ (E), defined by
(9.60), is written as R(E). Also in (9.61), the diagonal matrix k2, defined by (9.39),
is written as

k2 = 2EVI− 2f, (9.62)

where I is the unit matrix, the diagonal matrix f is real and the quasi-energy EV is
complex for multiphoton ionization and real for laser-assisted electron–atom col-
lisions. The matrices P, Q, V(r) and D are shown in Appendix D.2 to have the
following properties using the Fano–Racah phase convention:

P — pure imaginary, symmetric, antihermitian, r -independent

Q — pure imaginary, antisymmetric, hermitian, r -independent

V — real, symmetric, hermitian, r -dependent

D — pure imaginary, antisymmetric, hermitian, r -independent.

We consider first the solution of (9.61) in the external region using the R-matrix
propagator method described in Appendix E.5, or an equivalent method, where the
first derivative term is non-zero. In order to reduce (9.61) to standard form, we first
diagonalize the r -independent terms D+k2. Since D is hermitian and independent of
energy and the quasi-energy E-dependent part of k2, defined by (9.39), is a multiple
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of the unit matrix, then D + k2 can be diagonalized by a unitary, r - and energy-
independent matrix U1 giving

U†
1

(
D+ k2

)
U1 = K2. (9.63)

Equations (9.61) can then be rewritten as

(
d2

dr2
+P d

dr
+ V(r)+K2

)
FV(r) = 0, (9.64)

where

P = U†
1PU1,

V(r) = U†
1

[
Q

1

r
+ V(r)

]
U1,

FV(r) = U†
1FV(r). (9.65)

The unitary transformation (9.63) defines a new target basis which is a linear com-
bination of the original basis and corresponds to target states which are “dressed”
by the laser field. The elements of the diagonal matrix K2 are the modified kinetic
energies of the ejected or scattered electron corresponding to these dressed states
and hence the corresponding wave numbers given by the diagonal elements of K
are shifted by the laser field from their original values given by k. In practice only
a finite number of terms can be retained in the original Floquet–Fourier expansion
(9.8). It is then found that while the shifts in the channel wave numbers given by
K corresponding to small n in this expansion are small, the shifts become larger
as n tends to the upper and lower limits of n retained in expansion (9.8). In some
calculations this shift has been neglected. However, it was shown by Day et al. [252],
in a model potential study, that while the results obtained neglecting this shift tend to
the same limit as those obtained including this shift as the number of terms retained
in the Floquet–Fourier expansion (9.33) tends to infinity, convergence is faster for
calculations which use the shifted wave numbers. In the remainder of our analysis
we will therefore assume that shifted wave numbers are used.

Equation (9.64) is now in a form that can be solved in the external region using
the R-matrix propagator method described in Appendix E.5 where the inhomo-
geneous term is omitted. In this case, the R-matrix is defined by (E.104) where
T(as−1) is omitted and s = 1, corresponding to r = a0. Hence we can write

FV(a0) =R0(E)a0

(
dFV

dr
+ 1

2
PFV

)
r=a0

, (9.66)

where FV and P are defined by (9.65). In order to determine the R-matrix R0(E)
defined by (9.66) at r = a0, we observe that the boundary condition satisfied by
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FV(r) at r = a0 is given by (9.59), where the R-matrix R(E) in the velocity gauge
at r = a0 is defined in terms of the R-matrix in the length gauge at r = a0 by (9.60).
We now substitute for FV(a0) and (dFV/dr)r=a0 from (9.65) into (9.66) giving

U†
1FV(a0) =R0(E)a0

(
U†

1
dFV

dr
+ 1

2
PU†

1FV

)
r=a0

. (9.67)

After substituting for (dFV/dr)r=a0 from (9.59) into (9.67) and re-arranging terms
we obtain

R0(E) =
(

U†
1 [R(E)]−1 U1 + 1

2
a0P

)−1

, (9.68)

which defines the R-matrix R0(E) at r = a0 in terms of the R-matrix R(E) at
r = a0, obtained from the solution in the internal region using (9.60). R0(E)
can then be propagated outwards from r = a0 to ap, using the propagator method
described in Appendix E.5, yielding the R-matrix Rp(E) at r = ap which satisfies
the equation

FV(ap) =Rp(E)ap

(
dFV

dr
+ 1

2
PFV

)
r=ap

. (9.69)

Alternatively, we can eliminate the first derivative term in (9.64) and propa-
gate the resultant R-matrix using the R-matrix propagator method described in
Appendix E.1 or an equivalent method. Since P in (9.61) is antihermitian and U1 is
unitary, it follows from (9.65) that P is also antihermitian and hence can be diago-
nalized by a unitary r -independent matrix U2 as follows:

U†
2PU2 = 2id, (9.70)

where d is a real, diagonal r -independent matrix. We now introduce a new radial

function FV
(r) defined in terms of FV(r) by the equation

FV
(r) = exp(idr)U†

2FV(r). (9.71)

Substituting this expression for FV(r) into (9.64) then yields the following second-

order differential equation without first derivative satisfied by FV
(r) :

(
d2

dr2
+W(r)+ d2

)
FV
(r) = 0, (9.72)
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where the potential matrix W(r) is defined in terms of V(r) and K2 by

W(r) = exp(idr)U†
2

(
V(r)+K2

)
U2 exp(−idr). (9.73)

The final step is to determine the boundary condition satisfied by the function

FV
(r) at r = a0 in terms of the boundary condition satisfied by FV(r) defined by

(9.59). It follows from (9.65) and (9.71) that

FV(r) = U1U2 exp(−idr)FV
(r), (9.74)

and taking the derivative of this equation gives

dFV

dr
= U1U2 exp(−idr)

(
dFV

dr
− idFV

)
. (9.75)

We now substitute for FV(r) and dFV/dr at r = a0 into (9.59) yielding the following

boundary condition satisfied by FV
(r) :

FV
(a0) =R(E)a0

dFV

dr

∣∣∣∣∣
r=a0

, (9.76)

where the R-matrix R(E) at r = a0 is defined by

R(E) =
(

I+ ia0R(E)d
)−1 R(E), (9.77)

and the intermediate matrix R(E) is defined by

R(E) = exp(ida0)U
†
2U†

1R(E)U1U2 exp(−ida0). (9.78)

Equation (9.76) defines the boundary condition at r = a0 satisfied by the solution

FV
(r) of (9.72), where the R-matrix R(E) is defined in terms of R(E) by (9.77)

and (9.78). The R-matrix R(E) at r = a0, defined by (9.60), is determined by the
solution in the internal region.

Since the potential W(r), defined by (9.73), is energy dependent the use of the
BBM propagator method, discussed in Appendix E.3, is not appropriate. However,
the Light–Walker propagator, discussed in Appendix E.1, or any equivalent method
of solving coupled second-order differential equations without first derivative, can
be used to propagate the R-matrix from r = a0 to ap.
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9.1.4 Asymptotic Region Solution in the Velocity Gauge

In the asymptotic region, shown in Fig. 9.1, the ejected or scattered electron with
radial coordinate rN+1 ≥ ap can be described either in the velocity gauge or in
the acceleration frame of reference while the remaining N electrons, with radial
coordinates ri ≤ a0, i = 1, . . . , N , are described in the length gauge. We consider
first in this section the asymptotic solution in the velocity gauge which involves
modifying the asymptotic expansion used in field-free transitions. We then consider
in Sects. 9.1.5 and 9.1.6 two approaches when the solution in the asymptotic region
is treated in the acceleration frame of reference. In Sect. 9.1.5 the transformation to
the acceleration frame of reference is carried out at a relatively small radius ap and
involves a detailed discussion of the transformation from the velocity gauge to the
acceleration frame. In Sect. 9.1.6 the transformation is carried out at a much larger
radius ap which simplifies the analysis. In both cases the wave function describing
the ejected or scattered electron is described in a frame of reference where the target
states are dressed by the laser field, as described in our discussion following (9.63).

We consider the solution of the coupled second-order differential equations
(9.64) when the velocity gauge is adopted. It is convenient first to transform these
equations by the r -independent unitary matrix U2, defined by (9.70), yielding the
coupled second-order differential equations

(
d2

dr2
+ 2id

d

dr
+W(r)

)
GV(r) = 0, (9.79)

where we have introduced the reduced radial solution matrix

GV(r) = U†
2FV(r) (9.80)

and the potential matrix

W(r) = U†
2

(
V(r)+K2

)
U2. (9.81)

Also V(r) and K2 in (9.81) are defined by (9.65) and (9.63), respectively. It follows
that we can expand W(r) as

W(r) =
λmax∑
λ=0

Wλr
−λ, (9.82)

where λmax is determined by the angular momentum triangular relations satisfied by
the potential V(r) in (9.61). Also it follows from (9.63), (9.81) and (9.82) that

W0 = U†
2U†

1(D+ k2)U1U2, (9.83)
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where k2 is defined by (9.62). Hence W0 is non-hermitian if EV in (9.62) is com-
plex, corresponding to multiphoton ionization, and W0 is hermitian if EV is real,
corresponding to laser-assisted electron–atom collisions. Also the Wλ in (9.82)
when λ ≥ 1 do not depend on EV and are hermitian.

In Appendix F.2 we derive a complete set of asymptotic solutions of the coupled
second-order differential equations (9.79), which we assume here are nt in number.
We obtain 2nt solutions with the following asymptotic form:

GV
j (r) =

∞∑
s=0

r−s exp

(
ip jr + i

Z j

p j
ln 2p jr

)
As

j , j = 1, . . . , 2nt . (9.84)

Physical solutions corresponding to multiphoton ionization or laser-assisted
electron–atom collisions are obtained by taking linear combinations of these solu-
tions which satisfy R-matrix boundary conditions at r = ap and the appropriate
asymptotic boundary conditions as r →∞.

We also show in Appendix F.2 that the effective momenta p j and the corre-
sponding vector coefficients A0

j in (9.84) are determined by solving the 2nt coupled
equations

(
Ip2

j + 2dp j −W0

)
A0

j = 0, j = 1, . . . , 2nt , (9.85)

where I is the unit matrix and W0 is defined by (9.83). These equations have non-
trivial solutions when

det
(

Ip2
j + 2dp j −W0

)
= 0. (9.86)

Expanding this determinant yields a set of algebraic equations of order 2nt which
has 2nt solutions

p j , j = 1, . . . , 2nt . (9.87)

Substituting for each p j into (9.85) then gives a set of nt linear simultaneous equa-
tions which enable the nt components of the vector A0

j to be determined up to an
overall normalization factor. Finally, the effective charges Z j , j = 1, . . . , 2nt ,
and the vectors As

j , j = 1, . . . , 2nt , for s ≥ 1 in (9.84) are determined from the
recurrence relations derived in Appendix F.2.

We consider first the solution of (9.79) corresponding to multiphoton ionization.
In this case we have to find the solutions of (9.86) when W0 is non-hermitian. We
observe that in the limit when the laser field strength is zero then (9.86) reduces to

det
(

Ip2
j − k2

)
= 0, (9.88)
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which follows from (9.83) since the unitary matrices U1 and U2 are both equal to
the unit matrix and D = 0. It then follows that if an element k2

j of the diagonal

matrix k2 satisfies k2
j ≥ 0 then the corresponding effective momentum p j = ±k j .

On the other hand, if an element k2
j satisfies k2

j < 0 then the corresponding effective
momentum p j = ±i|k j |. Hence, the solutions of (9.88) either appear in pairs on
the real momentum axis or they appear in pairs in the complex momentum plane
where one is the complex conjugate of the other. We can then show that when the
laser field is switched on the two solutions corresponding to k2

j ≥ 0 move off the
real momentum axis, one into the upper half complex momentum plane and the
other into the lower half complex momentum plane. Also, the two solutions cor-
responding to k2

j < 0 move in the complex momentum plane but are no longer
complex conjugates of each other. Hence, when the laser field is non-zero we find
an equal number of solutions of (9.86) in the upper and lower halves of the complex
momentum plane. The 2nt solutions of (9.86) can therefore be written as

p j = a j + ib j , j = 1, . . . , nt ,

p j = c j − id j , j = nt + 1, . . . , 2nt , (9.89)

where aj , bj , cj and dj are all real and where bj and dj are both positive. The general
solution of (9.79) can then be written as a linear combination of the following 2nt

solutions defined by (9.89) with the asymptotic form

GV
i j (r) ∼r→∞ exp

(
ip jr + i

Z j

p j
ln 2p jr

)
A0

i j + O(r−1),

i = 1, . . . , nt , j = 1, . . . , 2nt , (9.90)

where it is convenient to normalize the solutions by requiring that

nt∑
i=1

|A0
i j |2 = 1, j = 1, . . . , 2nt . (9.91)

It follows from (9.89) that the first nt solutions GV
i j (r), j = 1, . . . , nt , correspond

to ingoing waves and the last nt solutions GV
i j (r), j = nt + 1, . . . , 2nt , corre-

spond to outgoing wave solutions. The required solution GMI
i (r) corresponding to

multiphoton ionization is then a linear combination of the outgoing wave solutions

GMI
i (r) =

2nt∑
j=nt+1

GV
i j (r)c j , i = 1, . . . , nt . (9.92)

In order to determine the coefficients c j , j = nt + 1, . . . , 2nt , in (9.92) we
substitute GMI

i (r) into the equation obtained by propagating the R-matrix in the
velocity gauge, defined at r = a0 by (9.66), from r = a0 to ap, as described in
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Appendix E.5. We then find, after using (9.70) and (9.80), that GMI
i (r) satisfies the

equation

GMI(ap) = R̃p(E)ap

(
dGMI

dr
+ idGMI

)
r=ap

, (9.93)

where R̃p(E) in this equation is related to Rp(E) resulting from propagating the
R-matrix from r = a0 to ap by

R̃p(E) = U†
2Rp(E)U2. (9.94)

Substituting for GMI(ap), given by (9.92), into (9.93) then yields a set of nt

linear homogeneous simultaneous equations satisfied by the coefficients c j , j =
nt + 1, . . . , 2nt , which will only have a non-trivial solution when the complex
quasi-energy EV in (9.62) corresponds to a Siegert [876] outgoing wave solution
of (9.79). In order to determine this solution, an iterative procedure can be adopted
analogous to that used in determining the initial bound-state energy in photoioniza-
tion, described in Sect. 8.1.2. The complex quasi-energy EV, corresponding to the
solution of (9.93), can then be written as

EV = E0 +Δ− 1

2
iΓ, (9.95)

where E0 is the field-free energy of the target atom, Δ is the dynamic Stark shift
and Γ is the total multiphoton ionization rate. The corresponding Siegert outgoing
wave solution defined by (9.90) and (9.92) then has the asymptotic form

GMI
i (r) ∼r→∞

2nt∑
j=nt+1

exp

(
ip jr + i

Z j

p j
ln 2p jr

)
A0

i j c j + O(r−1), i = 1, . . . , nt ,

(9.96)

where p j and Z j depend on the quasi-energy EV. The branching ratios of the
ejected electron can then be obtained from the coefficients A0

i j and c j . Finally, we
note that our discussion leading to (9.96) also defines the asymptotic form of the
wave function in harmonic generation which we will consider in Sect. 9.1.7.

We consider next the solution of (9.79) corresponding to laser-assisted electron–
atom collisions. In this case W0 is hermitian and hence if the effective momentum
p j is a solution of (9.85) then the complex conjugate p∗j is also a solution. It follows
that the solutions of (9.85) are either real or occur in nt−na complex conjugate pairs.
We can, therefore, write the effective momenta as follows:

p j = −a j , j = 1, . . . , na, (9.97)

p j = c j − id j , j = na + 1, . . . , nt , (9.98)

pnt+ j = b j , j = 1, . . . , na, (9.99)
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pnt+ j = c j + id j , j = na + 1, . . . , nt , (9.100)

where aj , bj , cj and dj are all real and where aj , bj and dj are positive. We note
that this division between real and complex and also between positive and negative
solutions follows from the solutions of (9.88) when the laser field is switched on.

We can now write the general solution of (9.79) as a linear combination of the
nt + na solutions defined by (9.97), (9.99) and (9.100) where the solutions corre-
sponding to (9.98) are excluded since they diverge asymptotically and hence are
non-physical. We can therefore define na ingoing wave solutions

GI
i j (r) = (−p j )

−1/2GV
i j (r), i = 1, . . . , nt , j = 1, . . . , na, (9.101)

na outgoing wave solutions

GO
i j (r) = (pnt+ j )

−1/2GV
int+ j (r), i = 1, . . . , nt , j = 1, . . . , na, (9.102)

and nb = nt − na decaying wave solutions

GO
i j (r) = GV

int+ j (r), i = 1, . . . , nt , j = na + 1, . . . , nt . (9.103)

In (9.101) and (9.102) we have normalized the solutions to unit ingoing and out-
going wave fluxes, respectively. The general solution of (9.79) corresponding to
laser-assisted electron–atom collisions can then be written in terms of these solu-
tions in analogy with our discussion of electron–atom collisions in Sect. 5.1.4. We
obtain

GC(r) = GI(r)−GO(r)H, (9.104)

where GI(r) has dimension nt×na , GO(r) has dimension nt×nt and H has dimen-
sion nt × na . Also, H is defined by

H =
[

S
M

]
, (9.105)

where S is the na × na-dimensional S-matrix which multiplies the outgoing wave
solutions GO

i j (r), defined by (9.102), and M is the nb × na-dimensional subsidiary

matrix which multiplies the decaying wave solutions GO
i j (r), defined by (9.103).

Hence (9.104) reduces asymptotically to

GC(r) ∼
r→∞GI(r)−GO(r)S, (9.106)

where GI(r) and GO(r) are the nt × na asymptotic solution matrices defined by
(9.101) and (9.102), respectively. This equation is analogous to (5.48) which defines
the S-matrix in electron collisions with atoms and ions.
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The final step in determining the S-matrix in (9.106) follows our analysis in
multiphoton ionization leading to (9.93). The R-matrix in the velocity gauge is
propagated from r = a0 to ap. The solution GC(r), defined by (9.104), then satisfies
the equation

GC(ap) = R̃p(E)ap

(
dGC

dr
+ idGC

)
r=ap

, (9.107)

where R̃p(E) is defined by (9.94). We can then determine the S-matrix in (9.106)
by substituting (9.104), evaluated at r = ap, into (9.107) which yields a set of nt

coupled linear simultaneous equations with na right-hand sides. The matrix H, and
hence the S-matrix, is then determined from the solution of these equations, and the
solution of (9.79) corresponding to laser-assisted electron–atom collisions is then
given by (9.104).

9.1.5 Asymptotic Region Solution in the Acceleration Frame

The transformation of the wave function describing the ejected or scattered electron
from the velocity gauge, adopted in the external region in Sect. 9.1.3, to the acceler-
ation frame of reference is accomplished using the following Kramers–Henneberger
transformation [453, 547]:

Ψ̃ V(XN+1, t) = exp

[
− i

c
pN+1 ·

∫ t

A(t ′)dt ′
]
Ψ̃ A(XN+1, t), (9.108)

where

ri ≤ a0, i = 1, . . . , N , rN+1 ≥ ap. (9.109)

The boldface superscript A in (9.108) and later equations indicates that the functions
describing the ejected or scattered electron are defined in the acceleration frame of
reference. We now substitute (9.108) into the time-dependent Schrödinger equation
(9.32) satisfied by the solution in the external region, and multiply this equation on
the left by exp[iα(t) · pN+1]. After using the operator identity

exp[iα(t) · p][ f (r)g(r)] = f [r+ α(t)] exp[iα(t) · p]g(r), (9.110)

where f (r) and g(r) are analytic functions of r, we obtain the following time-
dependent Schrödinger equation satisfied by the wave function Ψ̃ A(XN+1, t) :

[
H̃A

N+1(t)+ E(t) · RN

]
Ψ̃ A(XN+1, t) = i

∂

∂t
Ψ̃ A(XN+1, t). (9.111)
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The time-dependent Hamiltonian H̃A
N+1(t) in (9.111) is defined by

H̃A
N+1(t) = HN − 1

2
∇2

N+1 −
Z

|rN+1 + α(t)| +
N∑

i=1

1

|rN+1 + α(t)− ri | , (9.112)

where the tilde on H̃A
N+1(t) indicates that it is time dependent. Also in (9.111) and

(9.112) E(t) is defined by (9.4) and

α(t) = 1

c

∫ t

A(t ′)dt ′ = ε̂α(t) = ε̂α0 cosωt, (9.113)

where α0 = E0ω
−2. By expanding the last two terms in (9.112) in powers of α(t)

we can write this equation as [184]

H̃A
N+1(t) = HN+1 + ÃN+1(t), (9.114)

where

ÃN+1(t) = α(t)
[

Z − N

r2
N+1

cos θN+1 + 1

r3
N+1

N∑
i=1

ri cos θi

− 3

r3
N+1

cos θN+1

N∑
i=1

ri cosφi + O
(

r−4
N+1

)]

+ O
[
α(t)2r−3

N+1

]
, (9.115)

and where

cos θi = r̂i · ε̂, i = 1, . . . , N + 1 (9.116)

and

cosφi = r̂i · r̂N+1, i = 1, . . . , N . (9.117)

In practice, all terms in ÃN+1(t), except the leading term behaving as α(t)r−2
N+1, can

often be neglected. In Sect. 9.1.6 we consider a simplified analysis in the accelera-
tion frame where the propagation in the velocity gauge is carried out to a sufficiently
large radius r = ap so that the leading term α(t)r−2

N+1 can also be neglected.
Following the above analysis, (9.111) can be written as

[
HN+1 + E(t) · RN + ÃN+1(t)

]
Ψ̃ A(XN+1, t) = i

∂

∂t
Ψ̃ A(XN+1, t), (9.118)

which describes the motion of the ejected or scattered electron in a frame of ref-
erence in which this electron is oscillating in the laser field, while the remaining
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N target electrons, which are bound to the nucleus, are described in the length
gauge. This representation has the advantage that the time-dependent Hamiltonian
H̃A

N+1(t), defined by (9.114), (9.115), (9.116) and (9.117), reduces to the field-free
Hamiltonian HN+1 when the radial coordinate rN+1 of the ejected or scattered
electron tends to infinity, enabling simple asymptotic boundary conditions for this
electron to be introduced.

In order to solve (9.118) in the asymptotic region we proceed as in Sect. 9.1.3 by
introducing the Floquet–Fourier expansion

Ψ̃ A(XN+1, t) = exp
(
−iEAt

) ∞∑
n=−∞

exp(−inωt)Ψ A
n (XN+1), (9.119)

where EA is the quasi-energy in the acceleration frame. Substituting (9.119) into
(9.118) and equating the coefficient of exp[−i(EA+nω)t] to zero yields the infinite
set of time-independent equations

(
HN+1 − EA − nω

)
Ψ A

n + DN

(
Ψ A

n−1 + Ψ A
n+1

)
+ AN+1

(
Ψ A

n−1 + Ψ A
n+1

)
= 0,

(9.120)

where the acceleration term

AN+1 = 1

2
α0

[
Z − N

r2
N+1

cos θN+1 + 1

r3
N+1

N∑
i=1

ri cos θi

− 3

r3
N+1

cos θN+1

N∑
i=1

ri cosφi + O(r−4
N+1)

]
, (9.121)

and we have omitted terms of O[α(t)2r−3
N+1] in (9.115) which only contribute at

high laser intensities. Also in (9.120) DN is defined by (9.10) and (9.14) with N+1
replaced by N . We see that (9.120) has the same general form as the corresponding
equation (9.34) obtained using the velocity gauge in the external region except that
the last term in (9.34), involving the dipole velocity operator PN+1, is now replaced
by the last term in (9.120), involving the acceleration term AN+1. We then rewrite
(9.120) as a matrix equation in photon space as follows:

(
HA

F − EAI
)
Ψ A = 0, (9.122)

where the Floquet Hamiltonian HA
F is an infinite-dimensional matrix in this space.

Also we introduce the following close coupling expansion for the components Ψ Aγ
n

of the total wave function at energy E for each set of conserved quantum numbers
denoted by γ
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Ψ
Aγ
nj E (XN+1) =

∑
Li

Φ
γ

nLi (XN ; r̂N+1σN+1)r
−1
N+1 FAγ

nLi j (rN+1), rN+1 ≥ ap,

(9.123)

where the channel functions Φ
γ

nLi retained in this expansion are the same as those
retained in the internal and external region expansions (9.20) and (9.37) and where
j labels the linearly independent solutions. After substituting (9.123) into (9.122)
and projecting onto the channel functions Φ

γ

nLi we obtain the following coupled
second-order differential equations satisfied by the reduced radial wave functions
FAγ

nLi j (r):

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z − N )

r
+ k2

ni

)
FAγ

nLi j (r)

= 2
∑

n′L ′i ′
W Aγ

nLin′L ′i ′(r)F
Aγ
n′L ′i ′ j (r), r ≥ ap, (9.124)

where

k2
ni = 2

(
EA − fni

)
, (9.125)

and where fni is defined by (9.40). Also in (9.124), W Aγ
nLin′L ′i ′(r) is the potential

matrix coupling the channels which can be written in matrix notation as

WAγ = VEγ + VDγ + VAγ . (9.126)

The VEγ and VDγ terms arise, respectively, from the HN+1 and DN terms in
(9.120), which are the same as those found in the velocity gauge in (9.41), and
the VAγ term arises from the acceleration term AN+1 in (9.120) and is defined by
the matrix elements

V Aγ
nLin′L ′i ′ = 〈r−1

N+1Φ
γ

nLi (XN ; r̂N+1σN+1) |AN+1| r−1
N+1

× Φγn′L ′i ′(XN ; r̂N+1σN+1)〉′(δnn′−1 + δnn′+1). (9.127)

Finally, we note that the integrals in (9.127) are carried out over the space and
spin coordinates of all N+1 electrons except the radial coordinate of the (N+1)th
electron.

9.1.5.1 Boundary Condition at r = ap

In order to solve (9.124) in the asymptotic region we must determine the boundary
condition satisfied by the solution FAγ

nLi j (r) at r = ap. This boundary condition
can be determined by matching the solution of (9.38) in the velocity gauge with the
solution of (9.124) in the acceleration frame at r = ap. This can be achieved by sub-
stituting the Floquet–Fourier expansions for Ψ̃ V(XN+1, t) and Ψ̃ A(XN+1, t) given
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by (9.33) and (9.119), respectively, into the Kramers–Henneberger transformation
(9.108). We obtain

exp
(
−iEAt

) ∞∑
n=−∞

exp(−inωt)Ψ A
n (XN+1)

= exp
{
−i
[

EVt − α(t) · pN+1

]} ∞∑
n′=−∞

exp
(−in′ωt

)
Ψ V

n′ (XN+1), (9.128)

where we have used (9.113) to rewrite the integral in the exponent on the right-
hand side of (9.108). We then substitute the close coupling expansions (9.37) and
(9.123) for Ψ Vγ

nj E and Ψ Aγ
nj E , respectively, into (9.128) giving

exp
(
−iEAt

)∑
nLi

exp(−inωt)Φ
γ

nLi (XN ; r̂N+1σN+1)r
−1
N+1 FAγ

nLi j (rN+1)

= exp
{
−i
[

EVt − α(t) · pN+1

]} ∑
n′L ′i ′

exp
(−in′ωt

)
Φ
γ

n′L ′i ′(XN ; r̂N+1σN+1)

× r−1
N+1 FVγ

n′L ′i ′ j (rN+1). (9.129)

In order to analyse (9.129), we consider the following expression that appears on
the right-hand side of this equation:

I = exp[iα(t) · pN+1]Φγn′L ′i ′(XN ; r̂N+1σN+1)r
−1
N+1 FVγ

n′L ′i ′ j (rN+1). (9.130)

We expand the channel function in (9.130) as follows:

Φ
γ

n′L ′i ′(XN ; r̂N+1σN+1)

=
∑

MLi ′m	i ′

(Li ′MLi ′ 	i ′m	i ′ |L ′ML ′) Θ
γ

n′Li ′MLi ′ i
′(XN ; σN+1)

× Y	i ′m	i ′ (θN+1, φN+1), (9.131)

where Θ
γ

n′L ′MLi ′ i
′(XN ; σN+1) are reduced channel functions in which the N -elect-

ron state is coupled to the spin state but not to the orbital angular momentum state
of the scattered or ejected electron. Equation (9.130) then becomes

I = exp[iα(t) · pN+1]
∑

MLi ′m	i ′

(Li ′MLi ′ 	i ′m	i ′ |L ′ML ′)Θ
γ

n′Li ′MLi ′ i
′(XN ; σN+1)

× Y	i ′m	i ′ (θN+1, φN+1)r
−1
N+1 FVγ

n′L ′i ′ j (rN+1). (9.132)

We can evaluate this expression for I using the operator identity

exp[iα(t) · p] f (r) = f [r+ α(t)] ≡ f (rα), (9.133)
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Fig. 9.4 Coordinate system
representing the action of the
operator exp(iα · p)

P

rrα

A O

θθα

φ, φα

α
z

which follows from (9.110) by setting g(r) equal to unity. Hence the action of the
operator exp[iα(t) · p] on f (r) is to yield the function f [r+α(t)] centred on a new
origin. This is illustrated in Fig. 9.4 where we have chosen the z-axis to lie along
the laser polarization direction α and where we have defined rα(t) = r+ α(t). The
displaced origin in this figure is denoted by A and the original origin is denoted by
O. The two coordinate systems are thus related by the following equations:

r2
α = α2 + r2 + 2αr cos θ, rα sin θα = r sin θ,

rα cos θα = r cos θ + α, φα = φ, (9.134)

where in this equation and the following equations we observe that α, rα and θα are
functions of time t .

In order to evaluate the expression I , defined by (9.132), we follow a procedure
similar to that adopted by Harris and Michels [442], who determined an expansion
for molecular orbitals on a displaced centre expanded about the original centre. We
consider an orbital un	m(rα) centred on A which we wish to expand about O in
Fig. 9.4. We assume that this orbital can be written in terms of spherical harmonics,
defined in Appendix B.3, as follows:

un	m(rα) = un	(rα)Y	m(θα, φα), (9.135)

where n represents all the quantum numbers except 	 and m necessary to define the
orbital. We then expand un	m(rα) about O in Fig. 9.4 as follows:

un	m(rα) =
∞∑
	′=m

vn	m	′(α, r)Y	′m(θ, φ), (9.136)

which can be inverted, after substituting for un	m from (9.135), giving

vn	m	′(α, r) =
∫ 2π

0

∫ π

0
Y ∗	′m(θ, φ)un	(rα)Y	m(θα, φα) sin θdθdφ. (9.137)

The integration over φ can be carried out immediately, giving 2π , and the integration
over θ can be carried out numerically remembering, after using (9.134), that
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un	(rα) = un	

[(
α2 + r2 + 2αr cos θ

)1/2
]

(9.138)

and

cos θα = r cos θ + α
(α2 + r2 + 2αr cos θ)1/2

. (9.139)

Hence the radial functions vn	m	′(α, r) in (9.136) can be calculated for all required
values of 	′, α and r . If α is much smaller than r then the rate of convergence in
(9.136) will be very rapid.

It follows from the above analysis that the following operation in (9.132) can be
written as

exp(iα · pN+1)
[
r−1

N+1 FVγ
n′L ′i ′ j (rN+1)Y	i ′m	i ′ (θN+1, φN+1)

]

= r−1
α FVγ

n′L ′i ′ j (rα)Y	i ′m	i ′ (θα, φ). (9.140)

The function on the right-hand side of this equation can be expanded about O in
Fig. 9.4 in analogy with (9.136) as follows:

r−1
α FVγ

n′L ′i ′ j (rα)Y	i ′m	i ′ (θα, φ) =
∞∑

	=m	i ′

r−1
N+1uVγ

n′L ′i ′	i ′m	i ′ 	j (α, rN+1)

× Y	m	i ′ (θN+1, φN+1). (9.141)

Then, in analogy with (9.137), we can invert (9.141) giving

r−1
N+1uVγ

n′L ′i ′	i ′m	i ′ 	j (α, rN+1)

=
∫ 2π

0

∫ π

0
Y ∗	m	i ′ (θN+1, φN+1)r

−1
α FVγ

n′L ′i ′ j (rα)Y	i ′m	i ′ (θα, φN+1)

× sin θN+1dθN+1dφN+1. (9.142)

As in (9.137) the integration over φN+1 can be carried out immediately and the
integration over θN+1 can be carried out numerically enabling uVγ

n′L ′i ′	i ′m	i ′ 	j (α, r)

to be determined for all 	, α and r values of importance.
We now substitute (9.140) into (9.132) and use (9.141). We then obtain

I =
∑

MLi ′m	i ′

(Li ′MLi ′ 	i ′m	i ′ |L ′ML ′)Θ
γ

n′Li ′MLi ′ i
′(XN ; σN+1)

×
∞∑

	=m	i ′

r−1
N+1uVγ

n′L ′i ′	i ′m	i ′ 	j (α, rN+1)Y	m	i ′ (θN+1, φN+1). (9.143)
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We next express the reduced channel functions Θ
γ

n′Li ′MLi ′ i
′(XN ; σN+1) in (9.143)

in terms of the original channel functions Φ
γ

n′L ′i ′(XN ; r̂N+1σN+1) in (9.130) by the
equation

Θ
γ

n′Li ′MLi ′ i
′(XN ; σN+1)Y	m	i ′ (θN+1, φN+1)

=
∑
L ′′
(Li ′MLi ′ 	m	i ′ |L ′′ML ′)Φ

γ

n′L ′′i ′(XN ; r̂N+1σN+1). (9.144)

Substituting this result into (9.143) gives

I =
∑

MLi ′m	i ′

∞∑
	=m	i ′

∑
L ′′
(Li ′MLi ′ 	i ′m	i ′ |L ′ML ′)(Li ′MLi ′ 	m	i ′ |L ′′ML ′)

× Φγn′L ′′i ′(XN ; r̂N+1σN+1)r
−1
N+1uVγ

n′L ′i ′	i ′m	i ′ 	j (α, rN+1). (9.145)

In order to evaluate I we expand the function uVγ
n′L ′i ′	i ′m	i ′ 	j (α, rN+1) as follows:

uVγ
n′L ′i ′	i ′m	i ′ 	j (α, rN+1) =

∞∑
s=−∞

exp(−isωt)uVγ
n′L ′i ′	i ′m	i ′ 	s j (rN+1), (9.146)

where we remember that α is a function of t , defined by (9.113). After substituting
this result into I , defined by (9.145), we find that (9.129) can be rewritten as

exp(−iEAt)
∑
nLi

exp(−inωt)Φ
γ

nLi (XN ; r̂N+1σN+1)r
−1
N+1 FAγ

nLi j (rN+1)

= exp(−iEVt)
∑

n′L ′i ′s
exp[−i(n′ + s)ωt]

∑
MLi ′m	i ′

∞∑
	=m	i ′

∑
L ′′
(Li ′MLi ′ 	i ′m	i ′ |L ′ML ′)

× (Li ′MLi ′ 	m	i ′ |L ′′ML ′)Φ
γ

n′L ′′i ′(XN ; r̂N+1σN+1)r
−1
N+1

× uVγ
n′L ′i ′	i ′m	i ′ 	s j (rN+1). (9.147)

From the requirement that the time dependence on both sides of (9.147) is the same
then

EA = EV (9.148)

and

n = n′ + s. (9.149)
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Hence, the summations over n′ and s on the right-hand side of (9.147) can be
replaced by a single summation over n′. Our final step is to project (9.147) onto
the channel functions Φ

γ

nLi which gives

FAγ
nLi j (r) =

∑
n′L ′	

∑
MLi m	i

(Li MLi 	i m	i |L ′ML)(Li MLi 	m	i |L ML)

× uVγ
n′L ′i	i m	i 	s j (r), (9.150)

where s = n − n′ here and below. This equation, together with (9.142) and (9.146),
relates the reduced radial wave function FAγ

nLi j (r) in the acceleration frame to the

reduced radial wave function FVγ
nLi j (r) in the velocity gauge.

We can now determine the R-matrix RAγ (E) in the acceleration frame of ref-
erence at r = ap. We define this R-matrix, in analogy with (9.26), in terms of the

reduced radial wave function FAγ
nLi j (r) by

FAγ
nLi j (ap) =

∑
n′L ′i ′

RAγ
nLin′L ′i ′(E) ap

dFAγ
n′L ′i ′ j
dr

∣∣∣∣∣∣
r=ap

, (9.151)

where for notational convenience we have set the arbitrary constant b0 = 0. The
function FAγ

nLi j (ap) in (9.151) is given by (9.150) and

dFAγ
nLi j

dr

∣∣∣∣∣∣
r=ap

=
∑
n′L ′	

∑
MLi m	i

(Li MLi 	i m	i |L ′ML)(Li MLi 	m	i |L ML)

×
{

d

dr

[
uVγ

n′L ′i	i m	i 	s j (r)
]}

r=ap

, (9.152)

which follows by taking the derivative of (9.150). Also, by inverting (9.146) we find
that

{
d

dr

[
uVγ

n′L ′i ′	i ′m	i ′ 	s j (r)

]}
r=ap

= ω

2π

∫ 2π/ω

0
exp[isωt]

{
d

dr

[
uVγ

n′L ′i ′	i ′m	i ′ 	j (α, r)

]}
r=ap

dt, (9.153)

where the derivative term on the right-hand side of this equation can be obtained

by differentiating (9.142) numerically. Thus both FAγ
nLi j (ap) and

[
dFAγ

nLi j/dr
]

r=ap

in (9.151) can be calculated and hence the R-matrix RAγ (E) at r = ap, which
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provides the boundary condition for the solution of the coupled differential equa-
tions (9.124) in the asymptotic region, can be determined.

Finally, we consider the solution of the coupled second-order differential equa-
tions (9.124) in the asymptotic region. We rewrite these equations in matrix form as

(
d2

dr2
+ V(r)+ VA(r)+ D+ k2

)
FA(r) = 0, (9.154)

where V(r) and D are the same as in (9.61) and VA(r) is the long-range accel-
eration potential term, defined by (9.121) and (9.127) and where, for notational
convenience, we have omitted the superscript γ representing the conserved quan-
tum numbers. It follows that V(r) and VA(r) are real and symmetric and can be
expanded as summations in inverse powers of r . On the other hand, D is hermitian
and r -independent. We therefore follow the procedure adopted in the velocity gauge
by diagonalizing D+k2 by a unitary, r - and energy-independent matrix U1, defined
by (9.63). Equation (9.154) can then be rewritten as

(
d2

dr2
+ V(r)+K2

)
FA(r) = 0, (9.155)

where

V(r) = U†
1

[
V(r)+ VA(r)

]
U1,

FA(r) = U†
1FA(r). (9.156)

It follows that the potential V(r) can be expanded in inverse powers of r as follows:

V(r) = 2(Z − N )

r
I+ 2

∞∑
λ=1

cλr−λ−1, (9.157)

where we note that, as in (9.64), the unitary transformation (9.156) defines a new
target basis corresponding to target states which are “dressed” by the laser field.

Equation (9.155) is now in a form that can be solved in the asymptotic region,
using one of the asymptotic expansion methods described in Appendix F.1. In the
case of laser-assisted electron–atom collisions we follow the procedure used to
describe electron collisions with atoms and ions, discussed in Sect. 5.1.4, yielding a
solution matrix FA(r) satisfying the asymptotic boundary condition

FA(r) ∼
r→∞K−1/2 [sin θ + cos θK] , (9.158)

in the open channels, where K is the K -matrix. We also define a solution matrix
satisfying the asymptotic boundary conditions

GA(r) ∼
r→∞K−1/2 [exp(−iθ)− exp(iθ)S

]
, (9.159)
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which is obtained by taking linear combinations of the solutions defined by (9.158),
where S is the S-matrix which is defined in terms of the K -matrix by (5.49). The
T -matrix and cross sections can then be determined using the procedure described
in Sect. 2.5.

In the case of atomic multiphoton ionization we must determine a solution of
(9.155) satisfying Siegert outgoing wave boundary conditions [876] defined by

HA(r) ∼
r→∞N exp(iKr), (9.160)

where N is a normalization vector. It follows from our discussion in Sect. 3.2.1 that
this solution corresponds to a pole in the S-matrix lying on an unphysical sheet in
the complex energy plane, as illustrated in Fig. 3.4. The corresponding quasi-energy
EA can then be rewritten as

EA = E0 +Δ− 1

2
iΓ, (9.161)

where E0 is the field-free energy of the target state,Δ is the dynamic Stark shift and
Γ is the total multiphoton ionization rate. In order to determine the position of this
pole, the energy EA defined by (9.161) is varied iteratively and the solution in the
asymptotic region re-calculated until the Siegert outgoing wave boundary condition
(9.160) is satisfied. This iterative procedure is analogous to that used to calculate the
initial bound state wave function in photoionization, discussed in Sect. 8.1.2, and to
that used in determining the asymptotic solution in the velocity gauge, discussed in
Sect. 9.1.4.

9.1.6 Asymptotic Region Solution: Simplified Analysis

In this section we consider a simplified analysis of the solution in the asymptotic
region in the acceleration frame, where the transformation from the velocity gauge
to the acceleration frame is carried out at such a large radius r = ap that the
term ÃN+1(t) on the right-hand side of (9.114) can be neglected. This approach,
which was first considered by Charlo et al. [214], was analysed in detail by Terao-
Dunseath and Dunseath [924] and has been developed and applied to a number of
laser-assisted electron–atom collision calculations [275, 276, 278, 925].

In this approach the time-dependent Schrödinger equation (9.118) in the acceler-
ation frame reduces to

(HN+1 + E(t) · RN ) Ψ̃
A(XN+1, t) = i

∂

∂t
Ψ̃ A(XN+1, t), (9.162)

which corresponds to a free electron moving in the field of the atom or ion where
the N target electrons, which are bound to the nucleus, are described in the length
gauge. In order to solve (9.162) we follow our discussion in Sect. 9.1.5 leading to
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(9.124). We first introduce the following Floquet–Fourier expansion in the acceler-
ation frame:

Ψ̃ A(XN+1, t) = exp
(
−iEAt

) ∞∑
n=−∞

exp(−inωt)Ψ A
n (XN+1), (9.163)

where EA is the quasi-energy in this frame. Substituting (9.163) into (9.162) and
equating the coefficient of exp[−i(EA + nω)t] to zero yields the infinite set of
time-independent equations

(
HN+1 − EA − nω

)
Ψ A

n + DN

(
Ψ A

n−1 + Ψ A
n+1

)
= 0, (9.164)

where DN is defined by (9.10) and (9.14) with N + 1 replaced by N . We then
introduce the following close coupling expansion

Ψ
Aγ
nj E (XN+1) =

∑
Li

Φ
γ

nLi (XN ; r̂N+1σN+1)r
−1
N+1 FAγ

nLi j (rN+1), rN+1 ≥ ap,

(9.165)

using the same notation as (9.123). Substituting (9.165) into (9.164) and projecting
onto the channel functions Φ

γ

nLi then yields the following coupled second-order
differential equations:

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z − N )

r
+ k2

ni

)
FAγ

nLi j (r)

= 2
∑

n′L ′i ′
W Aγ

nLin′L ′i ′(r)F
Aγ
n′L ′i ′ j (r), r ≥ ap, (9.166)

where

k2
ni = 2

(
EA − fni

)
, (9.167)

and fni is defined by (9.40). We see that (9.166) has the same form as (9.124).
However, the potential W Aγ

nLin′L ′i ′(r) can now be written in matrix notation as

WAγ = VEγ + VDγ , (9.168)

where VEγ and VDγ are the same as arose in (9.126) and in the velocity gauge in
(9.41), but the acceleration term VAγ is now absent.

In order to determine the solution of (9.166) we follow our discussion in
Sect. 9.1.3 and rewrite this equation in matrix form as follows:

(
d2

dr2
+ V(r)+ D+ k2

)
FA(r) = 0, (9.169)
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where for notational convenience we have omitted the superscript γ representing
the conserved quantum numbers. Following our discussion of (9.61) describing the
corresponding equation in the velocity gauge, we transform (9.169) by the unitary
r - and energy-independent matrix U1, defined by (9.63). Equation (9.169) can then
be rewritten as

(
d2

dr2
+ V(r)+K2

)
FA(r) = 0, (9.170)

where

V(r) = U†
1V(r)U1 (9.171)

and

FA(r) = U†
1FA(r). (9.172)

Also we order the channels in (9.170) so that

K2
1 ≥ K2

2 ≥ · · · ≥ K2
nt

(9.173)

where nt is the total number of coupled channels, where the first na channels are
open with K2

i ≥ 0 and the last nb channels are closed with K2
i < 0 and where

na + nb = nt . Following our discussion of electron–atom collisions in Sect. 5.1.4
we define nt+na linearly independent solutions of (9.170) satisfying the asymptotic
boundary conditions

hA
i j (r) ∼r→∞ K−1/2

i exp(−iθi )δi j , i = 1, . . . , nt , j = 1, . . . , na,

hA
i j (r) ∼r→∞ K−1/2

i exp(iθi )δi j , i = 1, . . . , nt , j = na + 1, . . . , 2na,

hA
i j (r) ∼r→∞ exp(−φi )δi j−na , i = 1, . . . , nt , j = 2na + 1, . . . , nt + na,

(9.174)

where for neutral atomic targets

θi = Ki r − 1

2
	iπ, i = 1, . . . , na,

φi = |Ki |r, i = na + 1, . . . , nt , (9.175)

with modifications defined by (5.38), (5.39), (5.40) and (5.41) for ionic targets.
In order to determine the S-matrix we transform these nt + na solutions from

the acceleration frame to the velocity gauge and we then match these solutions at
r = ap to the R-matrix Rp(E) obtained by propagating R0(E), defined by (9.66),
from r = a0 to ap as described following (9.68). We commence by rewriting the
Kramers–Henneberger transformation (9.108) in the form
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Ψ̃ V(XN+1, t) = exp
[−iα(t) · pN+1

]
Ψ̃ A(XN+1, t), (9.176)

where

α(t) = 1

c

∫ t

A(t ′)dt ′ = ε̂α0 cosωt. (9.177)

We then substitute for Ψ̃ A(XN+1, t), given by (9.163) and (9.165), into the right-
hand side of (9.176) giving

Ψ̃ V
j (XN+1, t) = exp

[−iα(t) · pn+1
]∑

n

exp(−inωt)
∑
Li

Φ
γ

nLi (XN ; r̂N+1σN+1)

× r−1
N+1

∑
k

(U1)nLikFA
k j (rN+1), rN+1 ≥ ap, (9.178)

where we have used (9.172). Also we observe, following our discussion of (9.147),
that the time-dependent term exp(−iEAt), which appeared on the right-hand side of
(9.178), has cancelled the term exp(−iEVt) which appeared on the left-hand side of
this equation.

We now consider the action of the operator exp[−iα(t) · pn+1] on the function
on the right-hand side of (9.178). Following our discussion of (9.133) and Fig. 9.4
we find that

exp(−iα · p) f (r) = f (r− α) ≡ f (rα), (9.179)

which yields in analogy with (9.134)

r2
α = α2 + r2 − 2αr cos θ, rα sin θα = r sin θ,

rα cos θα = r cos θ − α, φα = φ. (9.180)

Hence in the limit r , and hence rα , tends to∞

rα = r − α0 cosωt cos θ + O(r−1),

r−1
α = r−1 + O(r−2),

θα = θ + O(r−1),

φα = φ, (9.181)

where, as in Fig. 9.4, the z-axis is chosen along the laser polarization direction α.
It follows that in this limit, the operator exp[−iα(t) · pn+1] in (9.178) modifies the
asymptotic forms of the functions FA

k j (rN+1) while leaving the channel functions

Φ
γ

nLi (XN ; r̂N+1σN+1) unmodified to first order. Therefore, we need to only con-
sider the effect of the operator exp[−iα(t) · pn+1] on the asymptotic form of the
nt + na functions defined by (9.174). That is we introduce the nt + na functions
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HV
i j (r) = exp[−iα(t) · p]hA

i j (r), i = 1, . . . , nt , j = 1, . . . , nt + na, (9.182)

which in the case of neutral targets satisfy the asymptotic boundary conditions

HV
i j (r) ∼r→∞ K−1/2

i exp

[
−i

(
Ki r − 1

2
	iπ

)]
exp (iKiα0 cosωt cos θ) ,

i = 1, . . . , nt , j = 1, . . . , na,

HV
i j (r) ∼r→∞ K−1/2

i exp

[
i

(
Ki r − 1

2
	iπ

)]
exp (−iKiα0 cosωt cos θ) ,

i = 1, . . . , nt , j = na + 1, . . . , 2na,

HV
i j (r)| ∼r→∞ exp (− |Ki | r) exp (|Ki |α0 cosωt cos θ) ,

i = 1, . . . , nt , j = 2na + 1, . . . , nt + na, (9.183)

with appropriate modifications in the case of ionic targets. In (9.183) it is convenient
to expand the following exponentials:

exp (±iKiα0 cosωt cos θ) = 1± 1

2
iKiα0[exp(iωt)+ exp(−iωt)] cos θ + O(α2

0)

(9.184)

and

exp (|Ki |α0 cosωt cos θ) = 1+ 1

2
|Ki |α0[exp(iωt)+ exp(−iωt)] cos θ + O(α2

0),

(9.185)

where in most applications it is only necessary to retain the first-order terms in α0,
although the higher order terms in α0 can be retained for high laser intensities.

It follows from the above analysis that we can determine nt + na linearly inde-
pendent asymptotic solutions in the velocity gauge by substituting HV

k j defined by

(9.182) and (9.183) for exp[−iα(t) · pN+1]FA
k j (rN+1) in (9.178). We obtain

Ψ̃ V
j (XN+1, t) =

∑
n

exp(−inωt)
∑
Li

Φ
γ

nLi (XN ; r̂N+1σN+1)

× r−1
N+1

∑
k

(U1)nLik HV
k j (rN+1, θN+1, t),

j = 1, . . . , nt + na, (9.186)

where we observe from the definitions of HV
k j that these functions depend on rN+1,

θN+1 and t . We now rewrite (9.186) in standard form as
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Ψ̃ V
j (XN+1, t) =

∑
n

exp(−inωt)
∑
Li

Φ
γ

nLi (XN ; r̂N+1σN+1)

× r−1
N+1

∑
k

(U1)nLikFV
k j (rN+1),

j = 1, . . . , nt + na, (9.187)

where FV
k j (r) is defined by the last of equations (9.65). It follows, after express-

ing the functions HV
k j in (9.186) in terms of the functions hA

i j (r) using (9.182)
and (9.183) and then projecting (9.186) and (9.187) onto the channel functions
Φ
γ

nLi (XN ; r̂N+1σN+1) and onto the Floquet–Fourier expansion component denoted
by n, that we can determine a linear relation between the functions hA

i j (r) in (9.186)

and the functions FV
k j (r) in (9.187). In principle this relation is exact only if an

infinite number of channel functions and Floquet–Fourier components are retained
in the expansion. However, rapid convergence in the number of terms retained in
these expansions will occur for laser field strengths of most interest. It follows that
we can write

FV
k j (r) =

nt∑
i=1

Cki h
A
i j (r), k = 1. . . . , nt + na, (9.188)

where the matrix Cki is the required linear transformation which is independent of
r and the solution index j .

We now consider the determination of the S-matrix and hence the scattering
amplitudes and cross sections. This is achieved by returning to the solution of
(9.170) in the acceleration frame. The required solution has the asymptotic form

FA(r) ∼
r→∞ K−1/2 [exp(−iθ)− exp(iθ)S

]
, open channels,

FA(r) ∼
r→∞ 0, closed channels, (9.189)

where S is the usual na × na-dimensional S-matrix. In order to determine the
S-matrix we rewrite (9.189) as

FA = IA(r)−OA(r)MA, (9.190)

where IA(r) and OA(r) are ingoing and outgoing waves whose matrix elements can
be expressed in terms of the nt + na linearly independent solutions hA

i j (r) defined
by (9.174). We find that

I A
i j (r) = hA

i j (r), i = 1, . . . , nt , j = 1, . . . , na,

OA
i j (r) = hA

i j+na
(r), i = 1, . . . , nt , j = 1, . . . , na,

OA
i j (r) = hA

i j+na
(r), i = 1, . . . , nt , j = na + 1, . . . , n. (9.191)



472 9 Multiphoton Processes: Floquet Theory

Also, the matrix MA can be written in the form

MA =
[

SA

NA

]
, (9.192)

where SA is the na × na-dimensional S-matrix in (9.189) and NA is a subsidiary
matrix, with dimensions (nt − na)× na , which multiplies decaying wave solutions
in the closed channels in (9.189).

We can now determine the S-matrix SA by matching the solution in the velocity
gauge to the nt ×nt -dimensional R-matrix Rp(E) in the velocity gauge determined
at r = ap, as described in Sect. 9.1.3 where we showed that the required solution
satisfies (9.69). We now remember that FV is related to hA and hence to IA and OA

by the linear transformation (9.188) which we can rewrite as

hA(r) = C−1FV(r), (9.193)

where C−1 is the inverse of C defined by (9.188). We then multiply (9.69) on the
left by C−1 and substitute for FA in terms of IA and OA using (9.190) and (9.191).
After re-arranging the terms we obtain the following coupled equations:

⎡
⎣OA(ap)− apC−1Rp(E)C

dOA

dr

∣∣∣∣∣
r=ap

− 1

2
C−1PCOA(ap)

⎤
⎦MA

= IA(ap)− apC−1Rp(E)C
dIA

dr

∣∣∣∣∣
r=ap

− 1

2
C−1PCIA(ap), (9.194)

where the derivatives of IA and OA, evaluated at r = ap, can be determined from
the solution of (9.170) subject to the boundary conditions (9.190) and (9.191). Equa-
tions (9.194) are a set of nt linear simultaneous equations with na right-hand sides
which can be solved to yield the nt × na-dimensional matrix MA. The na × na-
dimensional S-matrix is then determined from (9.192) and hence the corresponding
scattering amplitude and cross section for laser-assisted electron–atom collisions
determined using the procedure described in Sect. 2.5.

Finally, in order to calculate the atomic multiphoton ionization rate, we must
determine a solution satisfying Siegert outgoing wave boundary conditions [876]
corresponding to a pole in the S-matrix. This is achieved by an iterative process, as
discussed in Sect. 9.1.4, yielding (9.95), and in Sect. 9.1.5, yielding (9.161). In this
way we obtain the complex quasi-energy EA given by

EA = E0 +Δ− 1

2
iΓ, (9.195)

where E0 is the field-free energy of the target atom, Δ is the dynamic Stark shift
and Γ is the total multiphoton ionization rate.



9.1 R-Matrix–Floquet Theory 473

9.1.7 Harmonic Generation

Atoms interacting with an intense laser field can emit radiation at multiples, or
harmonics, of the pump laser frequency, as illustrated in (9.3). For an initial tar-
get state with a given parity, the harmonic frequency ν′ in (9.3) is an odd multi-
ple of the laser frequency ν, i.e. ν′ = nν where n = 3, 5, 7, . . . . This process,
called harmonic generation, has attracted considerable interest in recent years with
the availability of intense lasers making it possible to observe high harmonics
[590–592, 626, 627, 758]. For example, L’Huillier and Balcou [590] observed
the emission spectra of various inert gases using a “pump” laser of wavelength
λ = 1053 nm and found harmonic frequencies ν′ with n = 133 in neon at an
intensity I = 1.5× 1015 W/cm2. In these observations the harmonic spectrum
exhibited characteristic behaviour of a rapid decrease for the first few harmonic
yields, followed by a plateau and an abrupt cut-off at high harmonics.

The theoretical treatment of harmonic generation by an intense laser field inter-
acting with a gaseous medium has two aspects, discussed by L’Huillier et al. [591]
and Burnett et al. [194]. First, the microscopic, single-atom response to the laser
field must be analysed, where the harmonic spectrum emitted by a single atom is
calculated by solving the appropriate Schrödinger equation. Second, the single-
atom response must then be combined to obtain the macroscopic harmonic fields
generated from the coherent emission of all the atoms in the laser focus. This is
achieved by using the single-atom response as source terms in Maxwell’s equations
[591]. In this section we will be concerned with the single-atom aspect of harmonic
generation, which we will treat by solving the time-dependent Schrödinger equation
using R-matrix–Floquet theory.

There have been many contributions to the study of harmonic generation by
direct numerical solution of the time-dependent Schrödinger equation. For exam-
ple, this method has been used to study harmonic generation by one-dimensional
model atoms [280, 281], by model atoms with three-dimensional delta-function
potentials [85, 86] and by realistic three-dimensional atoms in the single active
electron approximation [548, 549, 552–554, 589]. In particular, the time-dependent
calculations of Krause et al. [548] showed that for low laser frequencies the maxi-
mum cut-off energy at the end of the plateau mentioned above is approximated by
Ip + 3Ep where Ip is the ionization potential of the atom and Ep is the pondero-
motive energy of an electron in the laser field defined by (9.48). This simple result
can be understood using a semi-classical model proposed by Kulander et al. [555]
and Corkum [231], in which the electron first tunnels through the potential barrier
formed by the atomic potential and the oscillating laser field. After escaping from
the atom, some electrons driven by the oscillating laser field return to the residual
ion and emit harmonics by recombining into the atomic ground state. The cut-off
energy for the harmonics predicted by this rescattering model is given by Ip+3.2Ep
which is in good agreement with the time-dependent calculations of Krause et al.
[548]. Detailed calculations of harmonic generation rates have also been carried out
using the Floquet–Fourier ansatz by Potvliege and Shakeshaft [753], who expanded
the harmonic components for atomic hydrogen in terms of Sturmian basis functions.
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In this work they calculated non-perturbative harmonic generation rates in a linearly
polarized laser field, where the intensity ranged from 1012 to 3× 1013 W/cm2

and the wavelength ranged from 265 to 1064 nm. However, the extension of this
approach to multi-electron atoms becomes computationally very demanding.

More recently, a major programme of work going beyond the single active elec-
tron approximation has been undertaken by Parker et al. [713] and in later publica-
tions. In this work, the time-dependent Schrödinger equation for helium is solved
making full allowance for two-electron correlation effects. This work has yielded
accurate multiphoton double-electron ionization cross sections and harmonic gen-
eration spectra for helium. However, the extension of this work to more than two
strongly interacting electrons presents a major computational challenge which we
will return to in Sect. 10.1.5 where we discuss time-dependent R-matrix theory.

9.1.7.1 R-Matrix–Floquet Theory

We now consider R-matrix–Floquet theory of harmonic generation which is non-
perturbative and includes electron–electron correlation effects in multi-electron tar-
gets. This theory, which is an extension of R-matrix–Floquet theory of multiphoton
ionization and laser-assisted electron–atom collisions, discussed in earlier sections
in this chapter, was developed by Gȩbarowski et al. [366] and has been applied to
multi-electron atomic targets by Gȩbarowski et al. [367] and by Plummer and Noble
[744, 745].

We consider an (N+1)-electron atomic system Ai in (9.3) in a laser field which is
treated classically and which is assumed to be monochromatic, monomode, linearly
polarized and spatially homogeneous, where the electric field vector is defined by
(9.4) and the corresponding vector potential is defined by (9.5). The rate of sponta-
neous emission of photons of frequency Ω = nω with a specific polarization ε̂ in a
direction n̂ is then given by [753]

dR(Ω, ε̂)

dn̂
= Ω3

8πc3

∣∣ε̂∗ · D∣∣2 , (9.196)

corresponding to an electric dipole moment Re [D exp(−iΩt)] oscillating at a fre-
quency Ω , where the quantity D can be related to the oscillating electric dipole
moment d(t) of the atom induced by the laser field which is given by

d(t) = −〈Ψ̃T(XN+1, t) |RN+1| Ψ̃ (XN+1, t)〉. (9.197)

In (9.197) Ψ̃ (XN+1, t) satisfies the time-dependent Schrödinger equation (9.6),
RN+1 is defined by (9.10) and Ψ̃T(XN+1, t) is the time-reversed wave function cor-
responding to Ψ̃ (XN+1, t), which we discuss below. The wave function Ψ̃ (XN+1, t)
is expressed as a Floquet–Fourier expansion (9.8), where the functions Ψn(XN+1) in
this equation are the time-independent harmonic components of the wave function
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and the quasi-energy E , which corresponds to Siegert [876] outgoing wave bound-
ary conditions, can be written as

E = E0 +Δ− 1

2
iΓ. (9.198)

In this equation E0 is the field-free energy of the target atom,Δ is the dynamic Stark
shift and Γ is the total multiphoton ionization rate of the atom.

The reason for using the time-reversed wave function Ψ̃T(XN+1, t) in (9.197) has
been discussed by a number of authors including Potvliege and Shakeshaft [753],
Piraux and Shakeshaft [741] and Plummer and McCann [742]. If we adopt a wave
function satisfying the Floquet–Fourier ansatz with Siegert outgoing wave boundary
conditions, then the norm of the wave function satisfies

〈Ψ̃ (XN+1, t)|Ψ̃ (XN+1, t)〉 ≈ χ(0) exp(−Γ t), (9.199)

where χ(0) is constant in time. However, the norm of the exact wave function satis-
fies

〈Ψ̃ (XN+1, t)|Ψ̃ (XN+1, t)〉 = C, (9.200)

where C is a constant and the integral is taken over an expanding region of space
where the wave function is non-zero. The reason for this anomaly is that when we
make the Floquet–Fourier ansatz, we treat the atom as having a definite complex
energy defined by (9.198) whereas, in fact, the atom has a distribution of energies
with a width Γ and should be represented by a localized wave packet which is
initially the bound state of the atom. The factor − 1

2 iΓ in (9.198) then describes the
electron loss from the bound state into the continuum, which is correctly treated by
the Floquet–Fourier ansatz because the Floquet state vector describes an electron
which is not localized.

In order to resolve these contrasting views, Piraux and Shakeshaft [741] observed
that if a fixed region of space, rather than an expanding region of space, is adopted
in (9.200) then flux will leave this region as the atom expands in the laser field
and the norm will decrease. However, they showed that it is possible to define a new
norm corresponding to a fixed finite region of space which remains constant in time.
This is achieved by introducing the time-reversed wave function Ψ̃T(XN+1, t) and
defining a new norm by

〈Ψ̃T(XN+1, t)|Ψ̃ (XN+1, t)〉F = N , (9.201)

where the integral is taken over the fixed finite region of space denoted by F . In this
case N is a constant, because in the time-reversed state flux enters the fixed finite
region of space and compensates for the flux leaving this region in the original state.

Returning to (9.197) we represent the wave functions for the induced dipole
moment in this expression by the Floquet–Fourier expansion (9.8) giving
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d(t) = −
∞∑

m=−∞

∞∑
n=−∞

〈Ψm(XN+1) |RN+1|Ψn(XN+1)〉 exp[−i(n−m)ωt]. (9.202)

Writing q = n − m and defining the dipole moments

dqn = −〈Ψn−q(XN+1) |RN+1|Ψn(XN+1)〉 (9.203)

and

dq =
∞∑

n=−∞
dqn, (9.204)

we then find that (9.202) becomes

d(t) = d0 +
∞∑

q=1

[dq exp(−iqωt)+ CC], (9.205)

where CC is the complex conjugate term. Since dq = d∗−q we can write (9.205) in
the form

d(t) = d0 + 2
∞∑

q=1

Re [dq exp(−iqωt)], (9.206)

By comparing (9.196) and (9.206) it follows that the rate for generating photons of
frequency Ω = qω and polarization ε̂ is obtained by putting D = 2dq in (9.196).
Hence we obtain

dR(Ω, ε̂)

dn̂
= Ω3

2πc2

∣∣ε̂∗ · dq
∣∣2 . (9.207)

The rate of emission of photons into a given solid angle dn̂ is obtained by summing
over polarizations of the emitted radiation. Finally, the total emission rate is obtained
by integrating over all directions n̂.

In order to calculate the quantities dq in (9.207), required to determine the
harmonic generation emission rates, we proceed following our treatment of mul-
tiphoton ionization and laser-assisted electron–atom collisions discussed earlier in
this chapter. We partition configuration space into three regions, as illustrated in
Fig. 9.1. We then solve the time-dependent Schrödinger equation (9.6) by introduc-
ing Floquet–Fourier expansions of the wave function in each region, as discussed in
Sects. 9.1.2, 9.1.3 and 9.1.4. In the internal region, where the radial coordinate of all
N+1 electrons satisfy ri ≤ a0, we describe all N+1 electrons in the length gauge.
In the external and asymptotic regions, where the radial coordinate of the ejected
electron rN+1 ≥ a0 and the radial coordinate of the remaining N electrons satisfy
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ri ≤ a0, i = 1, . . . , N , we adopt the velocity gauge for the ejected electron and
the length gauge for the remaining N inner electrons. Having obtained the solution
of (9.6) in each of these three regions, we then fit the radial asymptotic form of the
ejected electron to outgoing wave Siegert [876] boundary conditions corresponding
to (9.95) or (9.198). This is achieved, as described in Sect. 9.1.4, using an iterative
procedure analogous to that used in determining the initial bound state energy in
photoionization, described in Sect. 8.1.2. In this way we determine the complex
quasi-energy EV defined by (9.95), and the corresponding outgoing reduced radial
wave solution (9.96) satisfied by the ejected electron up to an overall normaliza-
tion factor. The Floquet–Fourier expansion of the total wave function describing the
N + 1 electrons, defined by (9.8), is then obtained in all three regions in Fig. 9.1 up
to an overall normalization factor.

Finally, in order to calculate the dipole moments dqn , defined by (9.203), the
integrals must be confined to a finite region of space corresponding to (9.201). In
most applications the range of integration can be confined to the internal region in
Fig. 9.1 since, as pointed out by L’Huillier et al. [592], the main contribution to
the dipole matrix elements comes from the region near the nucleus. In this case the
wave function is defined by expansion (9.17). However, if necessary, the integration
can be extended to part or all of the external region in Fig. 9.1 where the wave
function is defined by expansion (9.37). In both cases, the wave function must be
normalized to unity in the region included in the evaluation of the matrix elements
and the Siegert outgoing wave boundary conditions (9.96) imposed on the wave
function in the asymptotic region, to ensure the solution has the correct asymptotic
form.

9.1.8 Non-hermitian Floquet Dynamics

In this section we consider atomic multiphoton ionization in short-pulse laser fields
that cannot be accurately described by the Floquet–Fourier ansatz considered in
earlier sections of this chapter. As pointed out by Potvliege and Shakeshaft [752], the
Floquet–Fourier expansion (9.8) corresponding to a laser field defined by (9.4) and
(9.5) contains no information about the way the field is turned on and is only valid
if the initial state of the atom is not significantly depopulated during the rise time of
the field. In addition, the laser pulse at constant amplitude must be sufficiently long
that the multiphoton ionization rate corresponding to this amplitude is accurately
defined.

In order to accurately describe atoms in short-pulse laser fields, we consider a
coupled dressed state formalism, proposed by Ho and Chu [473] and generalized
by Day et al. [253] to non-hermitian outgoing wave Siegert states. This procedure
has been applied to multiphoton ionization of atomic hydrogen by Day et al. [253]
and to multiphoton ionization of argon, using an R-matrix approach, by Plummer
and Noble [746] and yields accurate results when the laser pulse is not so short that
the direct R-matrix method for solving the time-dependent Schrödinger equation,
considered in Chap. 10, must be used.
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The non-hermitian Floquet approach to multiphoton ionization commences from
solutions of the time-dependent Schrödinger equation (9.6) given by the following
Fourier–Floquet expansion (9.8), which we write here as

Ψ̃ j (XN+1, t) = exp(−iE j t)
∞∑

n=−∞
exp(−inωt)Ψnj (XN+1), (9.208)

corresponding to Siegert outgoing wave boundary conditions defined by (9.160) and
(9.161). In (9.208) the energies E j are given by

E j = E0 j +Δ j − 1

2
iΓ j , (9.209)

where E0 j are the field-free energies of the target states included in the analysis,
Δ j are the dynamic Stark shifts of these states and Γ j are the total multiphoton
ionization rates of these states corresponding to the vector potential field strength A0
in (9.5). We described earlier in this chapter how these quantities can be determined
using R-matrix–Floquet theory. We now rewrite (9.208) as follows:

Ψ̃ j (XN+1, t) = exp(−iE j t)ψ̃ j (XN+1, t). (9.210)

We then assume that the wave function describing the atom or ion in a short-pulse
laser field can be described, to a good approximation, by a finite superposition
of Floquet wave functions of decaying dressed bound states defined by (9.210)
given by

Ψ̃ (XN+1, t) =
n∑

j=1

a j (t)ψ̃ j (XN+1, t), (9.211)

where a j (t) are time-dependent coefficients. In order to determine these coeffi-
cients we introduce the adjoint or time-reversed state corresponding to Ψ̃ j (XN+1, t),
defined by

Ψ̃
†
j (XN+1, t) = exp(−iE∗j t)ψ̃†

j (XN+1, t), (9.212)

which satisfies ingoing wave boundary conditions. It therefore follows that both
Ψ̃ j (XN+1, t) and Ψ̃ †

j (XN+1, t) are periodic functions of time with period T =
2π/ω, where ω is the angular frequency of the field, and reduce to the field-free
wave functions in the limit A0 → 0. Also, pairs of these Floquet wave functions are
bi-orthogonal in the sense that for fixed A0

〈〈ψ̃†
j |ψ̃k〉〉 ≡ 1

T

∫ T

0
〈ψ̃†

j |ψ̃k〉dt = δ jk, (9.213)
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where we have imposed the normalization condition 〈〈ψ̃†
j |ψ̃ j 〉〉 = 1 on the wave

function. Using this result and the time-dependent Schrödinger equation satisfied
by Ψ̃ (XN+1, t), Day et al. [253] show that the coefficients a j (t) in (9.211) satisfy
the following coupled differential equations:

i
da j

dt
= E j a j (t)− i

dA0

dt

n∑
k=1

〈〈ψ̃†
j |ψ̃ ′k〉〉ak(t), j = 1, . . . , n, (9.214)

where the laser field is treated as stationary when performing the cycle-averaging
time integration of the matrix elements. Also in (9.214), ψ̃ ′k denotes the derivative
of ψ̃k with respect to A0. The coefficients a j (t) in (9.211) then represent the atomic
state probability amplitudes at the beginning and end of the laser pulse.

As an example of this approach, we show in Fig. 9.5 non-hermitian Floquet cal-
culations for multiphoton transitions between the 1s and 3p states in atomic hydro-
gen compared with results obtained by Day et al. [253] for the direct solution of the
time-dependent equations. The laser pulses used in these calculations have a finite
duration, with a temporal envelope A0(t) = A00 sin2Ωt and are linearly polarized.
The results presented in this figure show that there is a small but non-negligible
transition from the 1s ground state to the 3p excited state, where the probability is
marked by “Stückelberg oscillations” [892] caused by a Stark-shift-induced three-
photon resonance between the 1s and 3p states dressed by the laser field. We see that
there is excellent agreement between the non-hermitian Floquet results and accurate
fully time-dependent calculations except for ultra-short laser pulses, less than a few
cycles of the field, showing the accuracy of the non-hermitian Floquet results for all
but the shortest laser pulses.

Finally, we note that the non-hermitian R-matrix–Floquet calculation carried out
by Plummer and Noble [746] for argon has shown how the laser pulse length and
shape can be used, together with a knowledge of the Floquet states, to control the
atomic populations both during and at the end of each pulse. Future work comparing

Fig. 9.5 Probability that a hydrogen atom, initially in the 1s state before a laser pulse, is in the 3p
state at the end of a laser pulse of 300 nm wavelength and 8× 1013 W/cm2 peak intensity plotted
against the duration of the pulse. Solid line, two-state (1s, 3p) non-hermitian Floquet results; dotted
line, full time-dependent results (Fig. 1 from [253])
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this and similar calculations for other atoms and ions with results obtained using the
direct R-matrix solution of the time-dependent Schrödinger equation considered in
Chap. 10 would be of considerable interest.

9.2 Illustrative Examples

In this section we present the results of some recent R-matrix–Floquet calculations
of multiphoton processes which illustrate the theory presented in this chapter.

9.2.1 Resonances in Multiphoton Ionization

In the presence of an intense laser field, the ionization threshold energy of an atom
and the energies of the associated Rydberg states are increased by approximately the
ponderomotive energy Ep defined by (9.48). If the electric field strength E0 of the
laser is sufficiently high then this will result in channel closing which occurs when

Eg + nhν − Ep < 0, (9.215)

where Eg is the energy of the ground state and n is the number of photons required to
ionize the atom at low laser intensities. This effect is responsible for peak suppres-
sion in above-threshold ionization (ATI) and for resonance-enhanced multiphoton
ionization (REMPI).

To illustrate the role of the ponderomotive energy in REMPI we consider the
following multiphoton ionization process in helium:

nhν+ He(1s2 1S)→ He+(1s 2S) +e−.
↘ ↗
hν + He∗(1sn	)

(9.216)

We illustrate this process in Fig. 9.6 which shows the energy level diagram of helium
with the ionizing transitions that occur in the field of a KrF laser with wavelength
248 nm and for an intensity close to zero and for an intensity of 5× 1014 W/cm2.
When the intensity of the KrF laser is close to zero we see in Fig. 9.6 that five
photons are required to ionize helium from its ground state, but that four photons
are insufficient to reach the lowest excited state and so no intermediate resonance
occurs. As the laser intensity is increased the effective ionization threshold and the
energies of the excited states are increased by the ponderomotive energy Ep with
the result that six photons are then required to ionize the atom. Also, the excited
state energies 1sn	 in (9.216) come into resonance, one at a time as the intensity
is increased, with the energy of five photons giving rise to a series of resonances
in the six-photon ionization rate. In Fig. 9.6 we see that at a laser intensity of
5× 1014 W/cm2 the five-photon energy corresponds closely to the energy of the
1s2p 1Po excited state of helium giving rise to a REMPI enhancement in the six-
photon ionization rate.
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Fig. 9.6 Energy levels of He
in a KrF laser field with
intensity I close to zero and
with intensity 5× 1014

W/cm2, showing multiphoton
ionization in each case. The
shaded areas represent the
continuum spectrum of He
and the horizontal lines
represent the ground state and
two excited states of He
(Fig. 1 from [379])
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To explore this situation in greater detail, Glass and Burke [379] carried out R-
matrix–Floquet (RMF) calculations for helium multiphoton ionization correspond-
ing to (9.216). In these calculations two approximations were considered. In the
first, only the 1s 2S ground state of He+ was included in the RMF expansions (9.20)
and (9.37), corresponding to the internal and external regions, respectively. In the
second, 2s and 2p pseudostates representing electron–electron correlation effects
were also included, where these pseudostates spanned the same range as the 1s 2S
ground state. Also, in order to obtain converged results at the higher laser intensities,
up to 18 Floquet blocks (including 15 for absorption) and 10 angular momenta were
retained in the RMF expansions.

The results of these calculations, which are presented in Fig. 9.7, illustrate the
features mentioned above. At low intensities, five-photon ionization can occur and
the behaviour is close to that predicted by the perturbative power law for the depen-
dence of the ionization rate on intensity. Channel closing occurs at an intensity of
6.7× 1013 W/cm2 while at higher intensities six-photon ionization is the domi-
nant process and the influence of REMPI on the total ionization rate now becomes
apparent. Just above the intensity at which channel closing takes place five-photon
resonances occur between the ground state and highly excited bound states with
odd parity and, as the intensity increases further, the fifth photon sweeps through
Rydberg series of these resonances. We note that for intensities close to the channel-
closing intensity (6.7× 1013 W/cm2) the calculation became more difficult due to
the large radial extent of the intermediate high-energy Rydberg states, requiring
large propagation distances r = ap in the external region in Fig. 9.1, so results are
not given in this region.

Multiphoton ionization rates for He have also been calculated by van der Hart
et al. [936] for the frequency-doubled Ti:Sapphire laser wavelength of 390 nm
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Fig. 9.7 Total ionization rate
for He in a 248 nm KrF laser
field as a function of laser
intensity. The arrow marks
the intensity where
channel closing takes place.
Below this intensity
five-photon ionization occurs,
while at higher intensities at
least six photons are required
for ionization (Fig. 2 from
[379])
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using both RMF theory and also by solving the time-dependent Schrödinger equa-
tion using direct numerical integration. The two calculations were found to be in
excellent agreement for intensities between 1× 1014 and 2.5× 1014 W/cm2 where
the ionization rate is strongly enhanced by resonances. RMF multiphoton ioniza-
tion calculations have also been carried out for Ar by Plummer and Noble [744],
for Ne and Ar by McKenna and van der Hart [624] and by van der Hart [933]
and for Ca by McKenna and van der Hart [623]. In the work on Ar by van der
Hart [933], wavelengths between 248.6 and 390 nm were considered, where for
the frequency-doubled Ti:Sapphire laser wavelength of 390 nm the ionization rates
for Ne and Ar were investigated up to 2.5× 1014 W/cm2. We show in Fig. 9.8
the resonance-enhanced multiphoton ionization rate for Ar subjected to 390 nm
laser light as a function of laser intensity using RMF theory compared with ADK

Fig. 9.8 Ionization rate for
Ar subjected to 390 nm laser
light as a function of laser
intensity. RMF calculations
(solid line) are compared
with ADK calculations
(dashed-dotted line). The
label 5s indicates the
3s23p55s 1Po resonance and
the label 3d indicates the
3s23p53d 1Po resonance
(Fig. 5 from [933])
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calculations. The RMF calculation included the 3s23p5 2Po Ar+ ground state and
retained 21 Floquet blocks (15 absorption and 5 emission) and angular momenta
up to L = 10 in the RMF expansion. In the intensity region shown, between
1.8× 1013 and 2× 1014 W/cm2, a minimum of six photons need to be absorbed
to achieve ionization. Including the 3s3p6 2Se Ar+ excited state in the RMF expan-
sion modifies the off-resonance ionization rates by ∼2% and the resonance peaks
then occur at 1% higher intensity. The ionization rate increases rapidly with laser
intensity from ∼1.6×109 s−1 at an intensity of 2× 1013 W/cm2 to 2.7× 1013 s−1

at an intensity of 1.9× 1014 W/cm2. However, this is considerably less than the
power law I 6 would yield. Also, the results are more than two orders of magnitude
greater than the ADK tunnelling model [16, 727] at the lower laser intensities due
to the exponential decay of the ADK rate compared with the I 6 behaviour of the
RMF rate.

Recently, there has been increasing interest in resonance effects in multipho-
ton ionization of negative ions. We conclude this section by discussing R-matrix–
Floquet calculations of two-photon detachment of Li− by van der Hart [932]. We
note that Li− has also been the subject of R-matrix photoionization studies by Gor-
czyca et al. [401], mentioned in Sect. 8.2.2.

While most multiphoton detachment studies of negative ions have focused on
outer-shell electrons, there is currently increasing interest in inner-shell processes.
The simplest negative ion for which a distinction can be made between outer and
inner electrons is Li− which has a 1s22s2 1Se ground state configuration. In the work
of van der Hart the following two-photon detachment process was considered:

2hν + Li−(1s22s2 1Se)→ Li(1s 2s2 2Se)+ e−, (9.217)

followed by

Li(1s 2s2 2Se)→ Li+(1s2 1Se)+ e−. (9.218)

We see that an inner-shell 1s electron is first detached leaving the Li atom in a
1s 2s2 2Se doubly excited state which subsequently autoionizes leaving the Li+ ion
in its 1s2 1Se ground state.

In the R-matrix–Floquet calculations by van der Hart 20 Li states were included
in the internal region expansion. These consisted of eight physical states where two
electrons were retained in the 1s orbital, six pseudostates where two electrons were
retained in the 1s orbital and six physical states where only one electron was retained
in the 1s orbital. In order to obtain convergence at the laser intensity 1012 W/cm2

considered, five Floquet blocks were included in the calculation where three cor-
responded to absorption and one corresponded to emission. This gave 142 coupled
channels where 66 channels described detachment. Finally, an internal region radius
of 35 a.u. was adopted and the R-matrix then propagated out to 40 a.u. where it was
matched to an asymptotic expansion.

Detachment of an inner-shell electron following absorption of two photons
becomes possible for photon energies above 28.53 eV, the threshold photon energy
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Fig. 9.9 Two-photon 1s-electron detachment rates for Li− in a laser field of 1012 W/cm2 as a
function of photon energy leaving the residual Li atom in the excited 1s 2s2 2Se state. The total
rate (solid line) has been separated into the contribution from the emission of an s-electron (dashed
line) and a d-electron (dot-dashed line) (Fig. 1 from [932])

for the 1s 2s2 2Se state of Li in (9.217) and (9.218). We show in Fig. 9.9 the results
of the calculation for the two-photon detachment rate of ground state Li− leaving the
Li atom in the excited 1s 2s2 2Se state. We see that the photodetachment rate rises
quickly from the threshold at 28.53 eV to a maximum of 2.6 × 106 s−1 and then
drops rapidly before rising again due to two shape resonances. The first is identified
as a 1s 2s 2p2 1De shape resonance which occurs just above the 1s (2s 2p 3Po) 2Po

threshold and the second is identified as a 1s 2s 2p2 1Se shape resonance which
occurs just above the 1s (2s 2p 1Po) 2Po threshold.

We see from Fig. 9.9 that the 1De channel contributes significantly less than the
1Se channel apart from the contribution from the 1s 2s 2p2 1De shape resonance.
This can be understood by observing that near the nucleus the d-orbital experi-
ences significant repulsion due to the centrifugal potential barrier while the s-orbital
experiences no repulsion. Hence two-photon absorption to the 1De continuum only
becomes important at higher continuum energies.

In conclusion, this R-matrix calculation has shown the importance of shape reso-
nances in multiphoton ionization of inner-shell electrons in negative ions. It provides
a challenge for future calculations and experiments in this field.

9.2.2 Harmonic Generation

A further example of the importance of resonances in multiphoton processes is their
role in harmonic generation. This is illustrated by RMF calculations by Plummer
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and Noble [745], who considered resonance-enhanced harmonic generation in argon
at the KrF fundamental laser wavelength of 248 nm. In this work they considered
the following process:

3hν + Ar(3p6 1Se)→ Ar∗(3p54d 1Po)→ Ar(3p6 1Se)+ hν′, (9.219)

as well as the process where a further n photons are absorbed by the intermediate
excited state of argon

nhν + Ar∗(3p54d 1Po)→ Ar∗∗(3p5k	 1Po)→ Ar(3p6 1Se)+ hν′′, (9.220)

where ν′ = 3ν and ν′′ = (n + 3)ν, with n even. At the KrF laser wavelength and
low intensities, ∼ 7.5× 1012 W/cm2, there is a three-photon resonance between
the 3p6 1Se ground state and the 3p54d 1Po excited state of argon. If three photons
with this intensity are absorbed by argon in its ground state, then the 3p54d 1Po

state is excited which can decay back to the ground state with the emission of
a photon with frequency ν′ = 3ν, as indicated in (9.219). Alternatively, before
decaying, the 3p54d 1Po excited state can absorb a further n photons as indicated
in (9.220). The energy of the resultant argon atom then lies in the continuum and
a laser-induced continuum structure (LICS) state2, denoted by Ar∗∗(3p5k	 1Po) in
(9.220), is formed. If the total number of photons n absorbed in (9.219) and (9.220)
is odd and the spin and angular symmetry of the LICS state is 1Po, then this state
can decay back to the ground state with the emission of a photon with frequency
ν′′ = (n + 3)ν.

In the RMF calculations by Plummer and Noble, both the 3s23p5 2Po ground
state and the 3s3p6 2Se first excited state of Ar+ were included in the RMF expan-
sions (9.20) and (9.37). In addition, between 8 and 10 Floquet blocks corresponding
to absorption and between 3 and 5 Floquet blocks corresponding to emission were
retained in the expansion. We show in Figs. 9.10 and 9.11 the third and fifth har-
monic generation rates as a function of laser intensity. We see that there is a strong
resonant enhancement of the rates at a laser intensity of 7.5× 1012 W/cm2 caused
by the relative ponderomotive shifts of the 1Se ground state and the 1Po excited
state. Also we see that there is a factor of about 600 in the relative heights of the
peak rates between these two harmonics. The seventh harmonic, not shown, also
has significant enhancement at this laser intensity, although the peak rate is now
only ∼10−9 of the peak rate of the third harmonic.

The resonant enhancement of harmonic generation that we have described is a
general feature of harmonic generation and similar results are expected for other
atoms and ions. For example, RMF calculations by Gȩbarowski et al. [367] have
shown strong enhancement of the third harmonic generation in Mg, corresponding

2 See Sect. 9.2.3 for a further discussion of LICS states.
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Fig. 9.10 Third harmonic generation rate in Ar as a function of laser intensity for the KrF laser
wavelength 248 nm (Fig. 2 from [745])
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Fig. 9.11 Fifth harmonic generation rate in Ar as a function of laser intensity for the KrF laser
wavelength 248 nm (Fig. 3 from [745])

to resonant excitation of the 3s3p 1Po autoionizing state and seven-photon reso-
nances are predicted by Plummer and Noble [745] for neon in a frequency-doubled
Ti:Sapphire laser field. Also for neon, there is predicted to be a resonance-enhanced
boost to the 13th harmonic in a fundamental Ti:Sapphire laser field. Given the sta-
bility of the inert gases and the important role played by resonances, we expect inert
gases to be stable sources for generating harmonics.
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9.2.3 Laser-Induced Degenerate States

“Laser-induced degenerate states” (LIDS) arise when an autoionizing state in
electron–ion collisions and a state lying in the continuum corresponding to an atom
dressed by the laser field become degenerate at certain laser intensities and frequen-
cies. To illustrate the LIDS mechanism we consider the following processes:

e− + A+ → A∗∗1

nhν + A → A∗∗2

↘
↗ A+ + e−. (9.221)

The upper process in (9.221) corresponds to an electron–ion collision, which pro-
ceeds through an intermediate autoionizing state A∗∗1 lying in the continuum with
a complex energy E1. The lower process in (9.221) corresponds to multiphoton
ionization from the ground state A which proceeds through a “Laser-induced con-
tinuum structure” (LICS) state A∗∗2 (discussed by Knight et al. [540, 541]) which
also lies in the continuum with a complex energy E2. This is illustrated in Fig. 9.12
where the LICS state A∗∗2 , formed by four-photon absorption from the ground state,
lies close in energy to the autoionizing state A∗∗1 . By varying both the laser intensity
and frequency, the real and imaginary parts of the energies E1 and E2 in the complex
energy plane can be made to coincide, giving rise to a LIDS state corresponding to
a double pole in the laser-assisted electron–ion collision S-matrix.

Latinne et al. [581] and Cyr et al. [241] first observed LIDS in RMF calcu-
lations of multiphoton ionization of argon. In these calculations, the 3s23p5 2Po

ground state and the 3s3p6 2Se first excited state of Ar+ were included in the RMF

Fig. 9.12 Doubly excited
autoionizing state A∗∗1 , with
complex energy E1, and
laser-induced continuum
structure (LICS) state A∗∗2 ,
with complex energy E2,
which gives rise to a
laser-induced degenerate
state (LIDS)
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expansions (9.20) and (9.37). In this way the 3s3p64p 1Po autoionizing state, cor-
responding to A∗∗1 in (9.221), and the 3s23p6 1Se ground state dressed by the laser
field, corresponding to A∗∗2 in (9.221) were both included in the calculations. The
RMF equations were solved in the internal, external and asymptotic regions and
the solution fitted to Siegert outgoing wave boundary conditions [876], yielding the
complex energy defined by (9.95), (9.161) or (9.195).

We now consider for illustrative purposes the results obtained by Latinne et al.
[581] when n = 1 in (9.221) corresponding to one-photon absorption. We show
in Fig. 9.13 the resultant trajectories in the complex energy plane of the Floquet
energies E1 and E2 in Fig. 9.12 as the laser intensity is varied for fixed values of
the angular frequency ω. Also for illustrative purposes, the Floquet energies E1 and
E2 are both shifted down by the laser angular frequency ω. The zero-field posi-
tion of the Ar ground state lies on the real axis at Eg = −0.57816 a.u., while the
zero-field positions of the autoionizing state (denoted by circles in Fig. 9.13) lie at
a complex energy of 0.40936− 0.00119i− ω a.u., where the zero-field resonance
width Γa = 2× 0.00119 a.u. For each angular frequency there are two trajecto-
ries, one originating at the zero-field position of the ground state and the other
originating at the shifted zero-field position of the autoionizing state. We see by
inspecting Fig. 9.13 that there are two complex energies where the trajectory orig-
inating from the ground state and the trajectory originating from the autoionizing
state exchange their roles, corresponding to two LIDS. This occurs for laser angu-
lar frequencies ω ≈ 0.98555 and 0.98945. At large positive or negative detunings

Fig. 9.13 Trajectories in the complex energy plane as a function of laser intensity for Ar showing
two LIDS. The trajectories correspond to the Floquet energies for the 3s3p64p 1Po autoionizing
state of Ar and the 3s23p6 1Se ground state of Ar dressed by one photon (each shifted down
by the laser angular frequency ω), for laser intensities varying from 0 to 5× 1013 W/cm2. The
corresponding value of the laser angular frequency is indicated on the trajectories and the dots on
the trajectories give the increase in the laser intensity in steps of 9× 1012 W/cm2 (Fig. 1 from
[581])
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from these angular frequencies, the autoionizing state does not move appreciably
from its zero-field position, while the width of the ground state increases rapidly
from zero with increasing intensity. On the other hand, at intermediate detunings
(e.g. ω ≈ 0.987) the opposite occurs, with the width of the trajectory connected
to the shifted autoionizing state increasing rapidly with intensity, while the ground
state trajectory remains “trapped” close to the real energy axis. Finally, we observe
that at these critical laser angular frequencies and intensities the two complex ener-
gies are degenerate. The corresponding LIDS therefore each results in a double pole
in the S-matrix.

It has been known for many years that multiple poles in the S-matrix give rise
to new phenomena, including a modification of the exponential decay law and the
Breit–Wigner resonance profile (e.g. [387, 683]). Also, the physical implications of
LIDS have been discussed by Kylstra and Joachain [557]. However, while LIDS
occur quite generally in multiphoton processes and have been demonstrated for a
number of targets including Ar, He and H−, more work needs to be carried out both
theoretically and experimentally to reveal the full implications of this interesting
phenomenon in atomic and molecular multiphoton collision processes.

9.2.4 Laser-Assisted Electron–Atom Collisions

In recent years increasing attention has been given to laser-assisted electron–atom
collisions defined by (9.2). This process is of fundamental interest as an aspect of
laser–atom interactions and is of importance, for example, in the laser heating of
plasmas and high-power gas lasers. One of the most interesting features of this pro-
cess is the possibility of exciting the target atom at electron collision energies below
the field-free threshold via the simultaneous absorption of one or more photons. The
first experimental investigations of simultaneous electron–photon excitation (SEPE)
of atoms were performed by Mason and Newell [640, 641] on helium in the field of
a CW CO2 laser (photon energy 0.117 eV, wavelength 10.6 µm) at intensities from
104 to 105 W/cm2. This was followed by studies up to 108 W/cm2 using a pulsed
CO2 laser by Wallbank et al. [945–947] and further experiments were carried out
by Wallbank and Holmes [942–944] in which angular distributions were measured
yielding cross sections which were much larger than those predicted by the low-
frequency theory of Kroll and Watson [550]. An extensive review of early work in
this field has been given by Mason [639].

In this section we discuss the results of laser-assisted electron–atom collision cal-
culations carried out by Terao-Dunseath et al. [925] using the simplified R-matrix–
Floquet analysis in the asymptotic region discussed in Sect. 9.1.6. In this work,
the SEPE of helium atoms for exciting the 2 3S and 2 3P states near threshold was
investigated in a linearly polarized Nd-YAG laser (photon energy 1.17 eV) with an
intensity of I = 1010 W/cm2, where it was assumed that the colliding electron was
incident along the polarization direction of the field. Also in these calculations, the
first five target states 1 1S, 2 3S, 2 1S, 2 3Po and 2 1Po of helium were included in
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the R-matrix expansion, together with eight Floquet components with −3 ≤ n ≤ 4.
This was sufficient to ensure convergence for the laser intensity and energy range
considered. This approximation also gives good agreement, in the absence of the
laser field, with the positions and widths of the resonances obtained in electron–
helium atom collision calculations and experiments, discussed in Sect. 5.6.2.

We present in Fig. 9.14 cross sections for SEPE of the 2 3S state of He from
the ground state together with the field-free excitation cross section. Also we note
that although in this laser field there is AC Stark mixing between states (e.g. the
1s2s 3Se and 1s2p 3Po states), for simplicity of notation we denote the field-dressed
states by the quantum numbers of their dominant component. A prominent feature
in Fig. 9.14 is the pronounced isolated resonance in the excitation cross section
corresponding to the absorption of one photon. This occurs below the 2 3S threshold
at an energy corresponding to the 1s2s2 2Se He− resonance in the field-free elastic
cross section, first observed by Schulz [835]. It corresponds to the process where the
incoming electron is first captured in the 1s2s2 2Se He− resonance state. This state
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Fig. 9.14 Cross sections for electron impact excitation of the helium ground state into the He(2 3S)
excited state in the presence of a laser field with angular frequency ω. Light solid line: excitation
with no exchange of photons; dashed line: excitation with absorption of one photon; dash-dotted
line: excitation with absorption of two photons; dotted line: excitation with emission of one photon;
heavy solid line: field-free cross section for exciting He(2 3S). The field-free excitation thresholds
are indicated by vertical bars above the figure (Fig. 2 from [925])
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is then ionized by absorbing a laser photon leaving the helium atom in its 1s2s 3Se

excited state, giving rise to the peak in the corresponding excitation cross section.
The cross section for exciting the 2 3S state with no net exchange of photons in

Fig. 9.14 is similar in shape to the field-free cross section but is about 40% lower
in magnitude. A narrow resonance feature is obtained at an incident electron energy
of 0.7492 Hartrees, which corresponds to the position of the 1s2s2 2Se resonance
shifted up by one photon energy. The origin of this resonance feature corresponds
to the process where the electron–helium atom system emits one photon and the
electron is temporarily captured in the 1s2s2 2Se resonance state. It then absorbs
one photon leading to excitation with no net exchange of photons. This explanation
is supported by the fact that the width of this feature is only slightly larger than the
one-photon absorption feature discussed above.

We also observe in Fig. 9.14 a small peak in the cross section for excitation of
the 2 3S state with the absorption of two photons. This corresponds to the process
where the incoming electron together with a photon is captured in the 1s2s2 2Se

He− resonance state. This state is then ionized by absorbing a second laser photon
leaving the helium atom in its 1s2s 3Se excited state. In this case the resultant peak
is much reduced in size since, as well as resulting from a two-photon process, the
initial state of the electron plus helium atom is non-resonant. Similar results have
also been reported by Terao-Dunseath et al. [925] for laser-assisted excitation of the
helium ground state to the 1s2p 3Po excited state.

In conclusion we note that the calculations on helium have been extended to CO2
laser fields and to very low-energy collisions by Dunseath and Terao-Dunseath [275,
276]. Also, general selection rules for differential cross sections for laser-assisted
electron–atom collisions have been derived for the geometry in which a linearly
polarized laser field is perpendicular to the scattering plane and results presented for
electron–helium atom collisions in CO2 and in Nd-YAG laser fields by Dunseatha
et al. [278]. There is currently considerable interest in extending this work to other
atoms and ions and to other laser intensities and frequencies.



Chapter 10
Multiphoton Processes: Time-Dependent Theory

In this chapter we consider the interaction of ultra-short laser pulses with atoms
and atomic ions, where the laser pulses may involve only a few cycles of the field.
In recent years there has been increasing interest in the production and applica-
tion of these femtosecond (10−15 s) and attosecond (10−18 s) laser pulses which
have opened up the possibility of time-resolved studies of unprecedented resolution,
enabling the electronic motion in atoms, ions, molecules, plasmas and solids to be
resolved for the first time. Examples of this work include the measurement of the
response of an atomic system to a sub-femtosecond soft X-ray pulse by Hentschel
et al. [456], the observation of a train of attosecond pulses from high harmonic gen-
eration by Paul et al. [722], the observation of the relaxation of core-excited atoms
using a few-femtosecond visible light pulse with a sub-femtosecond soft X-ray pulse
by Drescher et al. [269] and the observation of multiple ionization of Ne and Ar
atoms by 25- and 7-femtosecond laser pulses by Rudenko et al. [801]. Of particu-
lar interest is the role that the re-collision mechanism plays in multiphoton ioniza-
tion. This mechanism, which was discussed by Schafer et al. [816], was shown by
Corkum [231] to lead with significant probability to the ejection of a second electron
corresponding to double-electron multiphoton ionization. More recently, extreme
ultraviolet (XUV) single-cycle isolated attosecond pulses with stable and tuneable
carrier phases have been reported by Sansone et al. [809] and attosecond pulses
have, for example, allowed the profiling of the electric field of few-femtosecond
laser pulses by Goulielmakis et al. [407] and have enabled the stroboscopic study
of single ionization events in Ar by Mauritsson et al. [647]. Recent reviews of
few-femtosecond and attosecond laser science have been written by Agostini and
DiMauro [4], Pfeifer et al. [731] and Scrinzi et al. [847], and an overview of recent
developments in theoretical femtosecond physics has been written by Grossman
[428].

The interaction of intense ultra-short laser pulses with atomic targets cannot
be accurately treated by R-matrix–Floquet theory or by using multistate non-
hermitian Floquet dynamics, considered in Chap. 9. Instead the full time-dependent
Schrödinger equation describing the laser–atom interaction must be solved. Several
groups have developed time-dependent approaches for He and other He-like two-
electron atoms, including Parker et al. [713, 714, 716, 717], Scrinzi and Piraux [846]
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and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_10,
C© Springer-Verlag Berlin Heidelberg 2011

493



494 10 Multiphoton Processes: Time-Dependent Theory

and Lagmago et al. [562], and a time-dependent R-matrix theory that can be applied
to arbitrary many-electron atoms was described by Burke and Burke [172]. More
recently R-matrix methods and computer programs have been developed by van der
Hart et al. [937, 938], Lysaght et al. [603–606] and Guan et al. [429, 431, 432] which
have been applied to describe the full dynamics of general multi-electron atoms and
ions in intense ultra-short laser pulses.

As well as providing a unique way of studying ultra-short laser pulse interactions
with atomic targets, time-dependent theory complements Floquet theory by empha-
sizing the time domain instead of the energy domain of the process, as discussed
in the case of helium by Parker et al. [715]. The time-dependent approach can
accurately model laser–atom interactions with arbitrary laser pulse profiles and is
the natural description of atomic processes in the intense field limit when ionization
may occur in the order of a few field periods. However, new phenomena may be dif-
ficult to interpret using time-dependent theory, while the Floquet approach provides
a framework for achieving this by describing the behaviour in terms of atomic states
dressed by the laser field. The energies of dressed states are directly calculated in
the Floquet approach, and in a wide range of multiphoton processes the dynamics
can be understood very simply in terms of just a few dressed states. Thus, for longer
laser pulses where both theories are applicable, they provide two ways of looking at
the same problem which can lead to a deeper understanding of the physics involved.

In Sect. 10.1 we describe ab initio non-perturbative time-dependent R-matrix
theories of atomic multiphoton processes which enable the interaction of few-
femtosecond and attosecond laser pulses with arbitrary multi-electron atoms and
atomic ions to be calculated. We commence with a derivation and analysis of the
basic equations which enable the atomic wave function in the presence of the laser
field to be propagated forward in time in internal and external R-matrix regions.
Computational methods for solving these equations are then discussed and an anal-
ysis of the application of theoretical and computational methods to single- and
double-electron multiphoton ionization is given. Finally, in Sect. 10.2 we describe
results of recent calculations of ultra-short laser pulse interactions with neon and
argon atoms using R-matrix computer programs developed in the last few years.

10.1 Time-Dependent R-Matrix Theory

In this section we describe ab initio time-dependent R-matrix theories of multipho-
ton ionization of atoms and atomic ions by intense ultra-short laser pulses, where we
assume that the target atom or ion contains N + 1 electrons and has nuclear charge
number Z .

10.1.1 Introduction

Following our discussion of R-matrix–Floquet theory in Chap. 9, we assume that
the laser field, which is treated classically using the dipole approximation, is lin-
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early polarized, spatially homogeneous and is described by the vector potential A(t).
Neglecting relativistic effects, the atomic system in the presence of the laser field is
then described by the time-dependent Schrödinger equation (9.6), which we rewrite
here as

[
HN+1 + 1

c
A(t) · PN+1 + N + 1

2c2
A2(t)

]
Ψ (XN+1, t) = i

∂

∂t
Ψ (XN+1, t). (10.1)

In this equation HN+1 is the non-relativistic Hamiltonian of the (N + 1)-electron
atom or ion in the absence of the laser field defined by (5.3) and PN+1 is the total
electron momentum operator defined by (9.7). As discussed in the introduction to
this chapter, the R-matrix–Floquet approach for solving (10.1) adopted in Chap. 9 is
not applicable for ultra-short laser pulses and we must therefore solve (10.1) directly
using time-dependent theory. Also, as in R-matrix–Floquet theory, double-electron
multiphoton ionization could be treated by including pseudostates in the expansion
of the wave function, as discussed in Sect. 6.2 and analysed in Sect. 10.1.5, or by
using the IERM method discussed in Sect. 6.3. We now consider the direct solu-
tion of the time-dependent equation (10.1) by partitioning configuration space into
internal and external regions.

In R-matrix–Floquet theory, discussed in Chap. 9, we found it convenient and
appropriate to describe all N + 1 interacting electrons in the internal region in the
dipole length gauge and to describe the ejected or scattered electron in the dipole
velocity gauge or the acceleration frame in the external and asymptotic regions. This
asymmetry between the ejected or scattered electron and the remaining N electrons
is not possible in the internal region where all N + 1 electrons occupy the same
region of space, since they are then strongly interacting and indistinguishable, and
hence are described by an antisymmetrized wave function. It follows that the trans-
formation from the length gauge to the velocity gauge for the ejected or scattered
electron is carried out on the boundary between the internal and external regions in
R-matrix–Floquet theory.

However, in time-dependent R-matrix theory it was found in a one-dimensional
potential model calculation [172] that, in order to avoid build-up of errors in the
time propagation algorithm due to the gauge transformation, the same gauge should
be used to describe the ejected or scattered electron in both the internal and exter-
nal regions. Hence, since in the multi-electron atom all N + 1 electrons must be
described in the same gauge in the internal region, the scattered or ejected electron
has been described in the same gauge in the external region. In time-dependent cal-
culations for He and other He-like two-electron systems, the dipole velocity gauge
has been used throughout. However, the use of the dipole velocity gauge in the
internal region for multi-electron atoms or ions emphasizes short-range electron–
electron correlations near the nucleus and hence requires a much better description
of the atomic structure than required using the length gauge. It has therefore so
far not proved appropriate to adopt the velocity gauge in the internal region in the
multi-electron calculations discussed in Sect. 10.2 and the length gauge has been
used throughout. However, as pointed out in Sect. 9.1.1, this raises a problem in the
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external region if the integration needs to be taken out to large distances since the
dipole length gauge then diverges. Further work is therefore needed to avoid build-
up of errors in the gauge transformation. In this chapter we consider the solution
of the time-dependent Schrödinger equation using the dipole velocity gauge in both
regions and we also consider modifications to the theory that are necessary when
the dipole length gauge is adopted throughout.

In order to solve the time-dependent Schrödinger equation in the dipole velocity
gauge we transform (10.1) using the unitary gauge transformation

Ψ (XN+1, t) = exp

[
−i

N + 1

2c2

∫ t

A2(t ′)dt ′
]
Ψ V(XN+1, t), (10.2)

to eliminate the A2(t) term in (10.1). Substituting (10.2) into (10.1) yields the fol-
lowing time-dependent equation:

[
HN+1 + 1

c
A(t) · PN+1

]
Ψ V(XN+1, t) = i

∂

∂t
Ψ V(XN+1, t). (10.3)

Alternatively, in order to solve the time-dependent Schrödinger equation in the
dipole length gauge, we follow our discussion in Sect. 9.1.2 by transforming (10.1)
using the unitary gauge transformation

Ψ (XN+1, t) = exp

[
− i

c
A(t) · RN+1

]
Ψ L(XN+1, t), (10.4)

which yields the following time-dependent equation:

[
HN+1 + E(t) · RN+1

]
Ψ L(XN+1, t) = i

∂

∂t
Ψ L(XN+1, t), (10.5)

where E(t) is defined by (9.4) and RN+1 is defined by (9.10). The boldface super-
scripts V and L in (10.3) and (10.5), respectively, indicate that the interacting
electrons are described in the dipole velocity and in the dipole length gauges, respec-
tively.

We now rewrite both (10.3) and (10.5) in the form

H(t)Ψ (XN+1, t) = i
∂

∂t
Ψ (XN+1, t), (10.6)

where

H(t) = HN+1 + 1

c

N+1∑
i=1

A(t) · pi (10.7)
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in the dipole velocity gauge corresponding to (10.3) and

H(t) = HN+1 +
N+1∑
i=1

E(t) · ri (10.8)

in the dipole length gauge corresponding to (10.5). In order to solve (10.6) we intro-
duce a discrete mesh in time defined by

tm = m�t, m = 0, 1, 2, . . . , (10.9)

where Δt is the time interval.
In the procedure adopted by van der Hart et al. [937, 938] and Lysaght et al.

[603–606] and used in an earlier one-dimensional potential calculation by Burke and
Burke [172], the solution of (10.6) at t = tm+1 is expressed in terms of the solution
at t = tm using the Cayley form of the time propagation operator exp[−it H(t)]
discussed by Goldberg et al. [386]. This gives

Ψ (XN+1, tm+1) =
1− 1

2 i�t H(tm+ 1
2
)

1+ 1
2 i�t H(tm+ 1

2
)
Ψ (XN+1, tm)+ O(�t3), (10.10)

where

tm+ 1
2
= tm + 1

2
�t. (10.11)

This operator, as well as being unitary, has the further desirable property of being
correct to O(�t2). If we neglect terms of O(�t3) then (10.10) can be rewritten as

[
H(tm+ 1

2
)− E

]
Ψ (XN+1, tm+1) = Θ(XN+1, tm), (10.12)

where

Θ(XN+1, tm) = −
[

H(tm+ 1
2
)+ E

]
Ψ (XN+1, tm) (10.13)

and the energy

E = 2i�t−1 (10.14)

is imaginary. In the calculations carried out by van der Hart et al. and by Lysaght
et al. the dipole length gauge, given by (10.8), is used for the interaction with the
laser field. Using an L2 basis expansion for the wave function in an internal region
and a close coupling expansion in an external region, (10.12) then enables the wave
function to be propagated forward in time, as discussed in Sects. 10.1.2 and 10.1.3.
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In the procedure adopted by Guan et al. [429, 431, 432] the Arnoldi–Lanczos
time propagator method [25, 563, 712] is used, where a general discussion and
error analysis of the method has been given by Saad [803] and a computer program
ALTDSE which implements this method has been written by Guan et al. [433]. The
time-dependent Schrödinger equation (10.6), using the dipole length gauge for the
interaction with the laser field, is rewritten by expanding the wave function in an L2

nt -dimensional basis in an internal region as follows:

H(t)C(t) = i
∂

∂t
C(t). (10.15)

In this equation the Hamiltonian matrix H(t) = H0 + E(t)D where H0 and D are
time independent and E(t) = E0 cosωt . In the Arnoldi–Lanczos time propagator
method a reduced Krylov space is constructed at time tm+1 = tm+�t of dimension
p which is defined by the basis

u1 = vm, u2 = H(tm)vm, . . . , up = [H(tm)]p−1vm . (10.16)

In this equation the vector vm describes the previously computed solution at time tm
and the vectors ui are generated by repeatedly operating on vm with the Hamiltonian
H(tm). The value of p is defined such that for larger values of p the basis ui will be
linearly dependent. The vectors ui are not used directly in the calculation, but are
orthonormalized using the Lanczos recursion relation

βn+1wn+1 = (H− αn)wn − βnwn−1, (10.17)

to transform the Hamiltonian matrix to tridiagonal form [803] as long as the orig-
inal matrix is hermitian. The elements αn and βn of the tridiagonal matrix may be
computed during the recursion process using simple scalar products. The resultant
tridiagonal matrix is then diagonalized using a standard method (e.g. [976]). The
result of the above procedure is an nt × p-dimensional matrix Q which transforms
the matrix H with rank nt to a matrix h with rank p. The time evolution from t = tm
to t = tm +�t is then achieved through the relation

C(tm +�t) = Q exp(−ih�t)Q†C(tm). (10.18)

At each time step m of the process, a convergence test can be applied. As long as
the rank p of the process is substantially less than the original matrix size nt the
process can be very effective. Finally, we note that the Arnoldi–Lanczos algorithm
outlined above conserves the norm, |C(tm +�t)|2 = |C(tm)|2.

We now consider the partitioning of configuration space used in propagating the
wave function in time. In the calculations by van der Hart et al. [937] and by Guan
et al. [429, 431, 432] a single extended internal region was adopted, whereas in the
calculations by Lysaght et al. [603–605] an external region was also included in the
calculation. This enabled the internal region to be restricted to where exchange and
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Fig. 10.1 Partitioning of configuration space in time-dependent R-matrix theory

correlation effects between the ejected electron and the residual ion are important
thus allowing a much smaller internal region, and hence a much smaller internal
region basis, to be adopted. In the following discussion we will assume that two
regions, illustrated in Fig. 10.1, are retained in the calculation.

We note that the partitioning of configuration space into two regions in Fig. 10.1
differs from that adopted in electron–atom collisions and in R-matrix–Floquet the-
ory, given by Figs. 5.1 and 9.1, respectively, in that the asymptotic region is now
omitted. However, the conditions used to define the boundary r = a0 between the
internal and external regions are the same as in R-matrix–Floquet theory. That is,
in the internal region electron exchange and electron–electron correlation effects
between the ejected electron and the remaining N electrons are important, while in
the external region electron exchange and correlation effects between the ejected
electron and the remaining N electrons are negligible and hence this electron moves
in the local long-range multipole potential of the residual N -electron atom or atomic
ion together with the laser field. In many calculations of interest the radius ap of
the outer boundary of the external region can be chosen so large that the ejected
electron does not reach this boundary in the length of time of the laser pulse under
consideration. If this is not the case an absorbing mask function can be retained in
the calculation near the outer boundary so that the ejected electron is not reflected.

In the rest of Sect. 10.1 we describe in detail a procedure which enables the wave
function to be propagated forward in time using (10.12), commencing from an initial
bound state of the atom or ion before the laser pulse is switched on. In Sects. 10.1.2
and 10.1.3 we describe an R-matrix approach for propagating the wave function
in the internal and external regions, respectively, and in Sect. 10.1.4 we summa-
rize the computational methods adopted. Finally, in Sect. 10.1.5 we analyse how
the theoretical and computational methods can be applied to calculate single- and
double-electron ionization of neutral and singly ionized neon and argon atoms.

10.1.2 Internal Region Solution

We consider first the propagation of the solution of the time-dependent Schrödinger
equation (10.6) in the internal region, defined in Fig. 10.1, using the Cayley time
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propagator (10.12). In this region we expand the wave function Ψ (XN+1, tm+1) in
(10.12) in a completely antisymmetric R-matrix basis ψk(XN+1, tm+ 1

2
) in analogy

with (5.5) as follows:

Ψ
γ

j (XN+1, tm+1) =
∑

k

ψ
γ

k (XN+1, tm+ 1
2
)Aγk j (tm+ 1

2
). (10.19)

In this equation, j labels the solution of (10.12) which corresponds to the initial
bound state of the atom or ion before the laser is switched on and Aγk j (tm+ 1

2
) are the

time-dependent expansion coefficients, which depend on the boundary conditions
satisfied by the wave function Ψ γj at the initial time t = 0. Also, we have introduced
the superscript γ representing the conserved quantum numbers which depend on
the symmetry of the atomic state and the polarization of the laser photons. As an
example of the conserved quantum numbers represented by γ , we consider linearly
polarized photons incident on an atom or ion in a 1Se state, where relativistic effects
can be neglected. In this case we showed in Sect. 9.1.2 that

γ ≡ α S MS ML π
′, (10.20)

where S is the total spin angular momentum quantum number, MS and ML are the
total spin and orbital magnetic quantum numbers in the laser polarization direc-
tion, π ′ is the product of the parities of the target state and the absorbed or emitted
photons and α represents any other quantum numbers which are conserved in the
collision.

Following (5.6) and (9.20) we then expand the basis functions ψγk in (10.19) in
a close coupling with pseudostates expansion given by

ψ
γ

k (XN+1, tm+ 1
2
) = A

∑
pl

Φ
γ

p(XN ; r̂N+1σN+1)r
−1
N+1u0

pl(rN+1)a
γ

plk(tm+ 1
2
)

+
∑

p

χγp(XN+1)b
γ

pk(tm+ 1
2
), k = 1, . . . , nt . (10.21)

As in (9.20), the channel functionsΦ
γ

p in (10.21) are obtained by coupling the resid-
ual atom or ion states, and possibly pseudostates, with the spin–angle function of
the ejected electron, u0

pl are radial continuum basis functions describing the ejected

electron and χγp are quadratically integrable functions. Also, the summation over
the subscript p in (10.21) corresponds to the summation over the subscripts L and i
in (9.20) but, unlike (9.20), there is no longer a dependence on the Floquet–Fourier
index. We also assume in (10.21), and in later equations, that n channel functions
Φ
γ

p are retained in the first expansion, nc radial continuum basis functions u0
pl are

retained in each channel and nb quadratically integrable functions χγp are retained in
the second expansion. Finally, the expansion coefficients aγplk(tm+ 1

2
) and bγpk(tm+ 1

2
)



10.1 Time-Dependent R-Matrix Theory 501

in (10.21) are time dependent. We then find it convenient to rewrite (10.21) in the
concise form

ψ
γ

k (XN+1, tm+ 1
2
) =

nt∑
k′=1

ξ
γ

k′ (XN+1)c
γ

k′k(tm+ 1
2
), k = 1, . . . , nt , (10.22)

where nt = nnc + nb is the total number of linearly independent basis functions
ξ
γ

k′ (XN+1) retained in (10.21) and cγk′k(tm+ 1
2
) represents the time-dependent coeffi-

cients aγplk(tm+ 1
2
) and bγpk(tm+ 1

2
) in (10.21).

We now consider the solution of (10.12) in the internal region to yield the
wave function Ψ γj (XN+1, tm+1) at the end of the time step t = tm+1, given the

inhomogeneous term Θγj (XN+1, tm) which is defined in terms of the wave function

Ψ
γ

j (XN+1, tm) at the end of the previous time step t = tm by (10.13). We consider
first the solution of (10.12) using the dipole velocity gauge, where the Hamiltonian
H(tm+ 1

2
) in (10.12) is defined by (10.7). We then briefly consider the modifications

to this analysis which must be made when the dipole length gauge is adopted.
In order to solve (10.12) in the internal region we observe that the Hamiltonian

H(tm+ 1
2
), defined by (10.7), is not hermitian in this region in the space of functions

satisfying arbitrary boundary conditions at r = a0, owing to the presence of the
kinetic energy operator terms − 1

2∇2
i , i = 1, . . . , N + 1 and the laser interaction

terms c−1A(tm+ 1
2
) · pi , i = 1, . . . , N + 1, in H(tm+ 1

2
). Hence we introduce the

Bloch operator

L1 = 1

2

N+1∑
i=1

δ(ri − a0)

(
d

dri
− b0 − 1

ri

)
, (10.23)

which is such that HN+1+L1 is hermitian in the internal region for any value of the
arbitrary constant b0, which in later equations we take to be zero. Also we introduce
the Bloch operator

L2(tm+ 1
2
) = i

2c
A(tm+ 1

2
)

N+1∑
i=1

δ(ri − a0) cos θi , (10.24)

which is such that c−1∑N+1
i=1 A(tm+ 1

2
) · pi + L2(tm+ 1

2
) is hermitian in the internal

region, where we have chosen the z-axis to lie along the laser polarization direction
ε̂ so that

1

c

N+1∑
i=1

A(tm+ 1
2
) · pi = − i

c
A(tm+ 1

2
)

N+1∑
i=1

(
cos θi

∂

∂ri
− sin θi

r

∂

∂θi

)
. (10.25)

It follows that H(tm+ 1
2
)+ L1 + L2(tm+ 1

2
) is hermitian in the internal region.
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Using these results, we can solve (10.12) in the internal region for each set of
conserved quantum numbers γ by including the Bloch operators L1 and L2(tm+ 1

2
)

on both sides of this equation giving

[
H(tm+ 1

2
)+ L1 + L2(tm+ 1

2
)− E

]
Ψ
γ

j =
(
L1 + L2(tm+ 1

2
)
)
Ψ
γ

j +Θγj , (10.26)

which has the formal solution in the internal region

Ψ
γ

j =
[

H(tm+ 1
2
)+ L1 + L2(tm+ 1

2
)− E

]−1 [(
L1 + L2(tm+ 1

2
)
)
Ψ
γ

j +Θγj
]
.

(10.27)

The spectral representation of the Green’s function in (10.27) can be obtained in
terms of the R-matrix basis functions ψγk defined by (10.22), where the coefficients
cγk′k(tm+ 1

2
) in this equation are determined by diagonalizing the operator H(tm+ 1

2
)+

L1 + L2(tm+ 1
2
) in this basis as follows:

〈
ψ
γ

k |H(tm+ 1
2
)+ L1 + L2(tm+ 1

2
)|ψγk′

〉
int
= Eγk (tm+ 1

2
)δkk′ , k, k′ = 1, . . . , nt ,

(10.28)

where the integration in this equation is taken over the space and spin coordinates of
all N +1 electrons and where the radial integrals are confined to the internal region.
Equation (10.27) then becomes

|Ψ γj 〉 =
nt∑

k=1

|ψγk 〉
1

Eγk − E
〈ψγk |

[
(L1 + L2)|Ψ γj 〉 + |Θγj 〉

]
, (10.29)

which can be written as

Ψ
γ

j (XN+1, tm+1) =
nt∑

k=1

ψ
γ

k (XN+1, tm+ 1
2
)Bγk j (E, tm+1). (10.30)

Our objective is to determine the coefficients Bγk j (E, tm+1), which express the wave

function Ψ γj (XN+1, tm+1) in the internal region in terms of the R-matrix basis func-

tions ψγk (XN+1, tm+ 1
2
) defined by (10.22) and (10.28).

Before considering how to obtain the coefficients Bγk j (E, tm+1) in (10.30) by
diagonalizing the operator in (10.28), we briefly discuss how the required internal
region solution Ψ γj can also be obtained by solving a set of linear simultaneous

equations. To achieve this we expand Ψ γj in terms of the original basis ξγk retained
in (10.21) and (10.22 ) as follows:
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Ψ
γ

j (XN+1, tm+1) =
nt∑

k=1

ξ
γ

k (XN+1)a
γ

k j (tm+ 1
2
). (10.31)

Substituting expansion (10.31) into (10.12) and projecting onto the basis functions
ξ
γ

i yield the following set of linear simultaneous equations satisfied by the coeffi-
cients aγk j (tm+ 1

2
):

nt∑
k=1

Aγik(E)a
γ

k j = Ci j , i = 1, . . . , nt , (10.32)

where

Aγik(E) = 〈ξγi |H(tm+ 1
2
)− E |ξγk 〉int (10.33)

and

Ci j = 〈ξγi |Θγj 〉int, (10.34)

and where the integrals in (10.33) and (10.34) are taken over the internal region.
Equation (10.32) can be solved using a standard linear simultaneous equations
method [757, 976]. Also, by retaining the Bloch operators L1 and L2(tm+ 1

2
) on both

sides of (10.32), as in (10.26), the R-matrix on the boundary r = a0 of the internal
region can be determined at the energy E using a multichannel generalization of the
linear equations method discussed in Sect. 4.4.4.

We now consider in detail the procedure for determining the coefficients
Bγk j (E, tm+1) using (10.29). In order to achieve this objective we project (10.29)

onto the n channel functions r−1
N+1Φ

γ

p and evaluate the result on the boundary
rN+1 = a0 of the internal region. We obtain

Fγpj (a0) =
n∑

p′=1

Rγpp′(E)a0 F
γ

p′ j (a0)+ T γpj (a0), p = 1, . . . , n, (10.35)

where, for notational convenience, we have omitted the time dependence of
Fγpj (rN+1), Rγpp′(E), F

γ

p′ j (rN+1) and T γpj (a0) in (10.35) and later equations and
where the quantities in this equation are defined in turn as follows. The reduced
radial wave functions Fγpj (a0) are defined by

Fγpj (a0) = 〈r−1
N+1Φ

γ

p(XN ; r̂N+1σN+1)|Ψ γj 〉′rN+1=a0
, p = 1, . . . , n, (10.36)

where the prime on the matrix element in (10.36) and later matrix elements means
that the integral is carried out over the space and spin coordinates of all N + 1
electrons except the radial coordinate rN+1 of the ejected electron. The R-matrix
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elements Rγpp′(E) in (10.35) are defined by

Rγpp′(E) =
1

2a0

nt∑
k=1

w
γ

pkw
γ

p′k
Eγk − E

, p, p′ = 1, . . . , n, (10.37)

where the surface amplitudes wpk are defined by

w
γ

pk = 〈r−1
N+1Φ

γ

p(XN ; r̂N+1σN+1)|ψγk 〉′rN+1= a0
, p = 1, . . . , n, k = 1, . . . , nt ,

(10.38)

which becomes, after substituting for ψγk from (10.21),

w
γ

pk =
nc∑

l=1

u0
pl(a0)a

γ

plk, p = 1, . . . , n, k = 1, . . . , nt . (10.39)

Also, the modified derivative functions F
γ

pj (a0) in (10.35) are defined by

F
γ

pj (a0) =
dFγpj

dr

∣∣∣∣∣
r = a0

+ 1

2

n∑
p′=1

Pγpp′F
γ

p′ j (a0), p = 1, . . . , n, (10.40)

where the first term on the right-hand side of this equation arises from the Bloch
operator L1 defined by (10.23) with b0 set zero and the second term arises from the
Bloch operator L2 defined by (10.24). It follows that the n × n-dimensional matrix
Pγ is defined by

Pγpp′ =
2i

c
A(tm+ 1

2
)〈r−1

N+1Φ
γ

p(XN ; r̂N+1σN+1)| cos θN+1|
× r−1

N+1Φ
γ

p′(XN ; r̂N+1σN+1)〉′rN+1 = a0
, p, p′ = 1, . . . , n. (10.41)

The matrix Pγ also appears in the external region solution, see (10.55), and its
matrix elements are determined in Appendix D.3. Finally, the inhomogeneous vec-
tor T γpj (a0) in (10.35) is obtained by projecting the inhomogeneous term on the
right-hand side of (10.29) onto the n channel functions, where the radial integrals
are confined to the internal region. This gives after setting rN+1 = a0

T γpj (a0) =
nt∑

k=1

w
γ

pk(E
γ

k − E)−1Sγk j , p = 1, . . . , n, (10.42)
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where it follows from (10.13) that

Sγk j = 〈ψγk |Θγj 〉int

= −
〈
ψ
γ

k (XN+1, tm+ 1
2
)|H(tm+ 1

2
)+ E |Ψ γj (XN+1, tm)

〉
int
,

k = 1, . . . , nt . (10.43)

The wave function Ψ γj (XN+1, tm) in (10.43) has been determined at the end of the

previous time step t = tm and is thus known. Hence the vector Sγk j and all the other
quantities on the right-hand side of (10.42) can be calculated and the inhomogeneous
vector T γpj (a0) determined.

Returning to (10.30), the coefficients Bγk j (E, tm+1) can now be written as

Bγk j (E, tm+1) = 1

Eγk − E

⎡
⎣1

2

n∑
p=1

w
γ

pk F
γ

pj (a0)+ Sγk j

⎤
⎦ , k = 1, . . . , nt ,

(10.44)

where wγpk , F
γ

pj (a0) and Sγk j are defined by (10.38), (10.40) and (10.43), respec-

tively. The only unknown quantity in the definition of Bγk j (E, tm+1) is F
γ

pj (a0)

which we will see, in Sect. 10.1.4.3, can be determined from the result of the prop-
agation in the external region. Hence Bγk j (E, tm+1) can be calculated and the wave

function Ψ γj (XN+1, tm+1), which provides the starting point for the calculation in
the next time step, can be determined from (10.30).

In concluding our analysis of the solution using the dipole velocity gauge in the
internal region, it is convenient to rewrite the solution on the boundary r = a0 of
the internal region, given by (10.35), in matrix notation as

Fγj (a0) = Rγ (E)a0F
γ

j (a0)+ Tγj (a0), (10.45)

where it follows from (10.40) that

F
γ

j (a0) =
(

dFγj
dr
+ 1

2
PγFγj

)
r=a0

. (10.46)

The R-matrix Rγ and the inhomogeneous vector Tγj at r = a0 in (10.45) are
defined by (10.37) and (10.42), respectively. These equations then provide the
boundary condition for propagating Rγ and Tγj in the external region, as described
in Sect. 10.1.3 and Appendix E.4.

In the above analysis we obtained the solution of (10.12) in the internal region
when the dipole velocity gauge was adopted. We now briefly consider the modi-
fication of the above analysis that must be made when the dipole length gauge is
adopted. In the dipole length gauge the Hamiltonian H(tm+ 1

2
) in (10.12) is defined

by (10.8) instead of (10.7) used in the above analysis. We see from (10.8) that
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H(tm+ 1
2
) is also not hermitian in the internal region. However, this is now due

only to the kinetic energy operator terms − 1
2∇2

i , i = 1, . . . , N + 1, in the non-
relativistic atomic Hamiltonian HN+1, defined in the absence of the laser field by
(5.3). The laser interaction term

∑N+1
i=1 E(t) · ri in (10.8), unlike the corresponding

term c−1∑N+1
i=1 A(t) · pi in (10.7), is hermitian. Hence, only the Bloch operator L1

defined by (10.23) is required to ensure H(tm+ 1
2
) + L1 is hermitian in the internal

region. It follows that (10.12) can now be written in the internal region as follows:

[
H(tm+ 1

2
)+ L1 − E

]
Ψ
γ

j = L1Ψ
γ

j +Θγj , (10.47)

which has the formal solution

Ψ
γ

j =
[

H(tm+ 1
2
)+ L1 − E

]−1 (
L1Ψ

γ

j +Θγj
)
, (10.48)

instead of (10.26) and (10.27). The spectral representation of the Green’s function
in (10.48) then proceeds as in the analysis following (10.27) except for the omission
of the Bloch operator term L2(tm+ 1

2
). Hence the second term on the right-hand side

of (10.40) involving the matrix P no longer appears in this analysis.
In concluding our discussion of the solution using the dipole length gauge in the

internal region we find that, instead of (10.45), this solution satisfies the following
boundary condition at r = a0:

Fγj (a0) = Rγ (E)a0
dFγj
dr

∣∣∣∣∣
r = a0

+ Tγj (a0), (10.49)

where in the calculation of Rγ (E) and Tγj (a0) the dipole length operator∑N+1
i=1 E(t) ·ri is included in the Hamiltonian instead of the dipole velocity operator

c−1∑N+1
i=1 A(t) · pi used in the calculation of Rγ (E) and Tγj (a0) in (10.45).

10.1.3 External Region Solution

In this section we consider the solution of (10.12) in the external region defined in
Fig. 10.1. In this region we expand the wave function as follows:

Ψ
γ

j (XN+1, tm+1) =
n∑

p= 1

Φ
γ

p(XN ; r̂N+1σN+1)r
−1
N+1 Fγpj (rN+1),

a0 ≤ rN+1 ≤ ap, (10.50)
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where, as in the internal region, we have omitted the time dependence of Fγpj (rN+1)

for notational convenience. Also the reduced radial functions Fγpj (rN+1) in (10.50)
correspond to the functions which are defined by (10.36) on the boundary r = a0
of the internal region. We see that expansion (10.50) is not antisymmetrized with
respect to the (N+1)th electron, since this electron, which has been ejected from the
target atom or ion, now occupies a different region of space from the remaining N
electrons and hence is distinguishable. Also, the quadratically integrable functions
χγp in (10.21) are not included in (10.50) since they are confined to the internal
region where electron–electron correlation effects are important.

Coupled inhomogeneous second-order differential equations satisfied by the
reduced radial wave functions Fγpj (r), which represent the motion of the ejected
electron in the pth channel, are obtained by substituting (10.50) into (10.12) and
projecting onto the channel functions Φ

γ

p yielding

(
d2

dr2
− 	p(	p + 1)

r2
+ 2(Z − N )

r
+ k2

p

)
Fγpj (r)− 2

n∑
p′=1

W γ

pp′(r)F
γ

p′ j (r)

= Mγ

pj (r), p = 1, . . . , n, a0 ≤ r ≤ ap. (10.51)

In this equation 	p is the orbital angular momentum of the ejected electron and k2
p

can be expressed in terms of the energy ei of the i th residual N -electron atom or ion
and the time interval �t , by the equation

k2
p = 2(2i�t−1 − ei ), (10.52)

where we have used (2.5) and (10.14) and where we remember from our discussion
following (10.21) that the pth channel is related to a specific residual atom or ion
state denoted by the subscript i . Also, W γ

pp′(r) in (10.51) is the long-range potential
coupling the channels, which depends on whether the dipole velocity gauge or the
dipole length gauge is used to describe the interaction of the ejected or scattered
electron with the laser field. In the following discussion we assume that the dipole
velocity gauge is used to describe this interaction, which corresponds to our treat-
ment of this interaction in R-matrix–Floquet theory given in Sect. 9.1.3. However,
as discussed in our treatment of the solution in the internal region in Sect. 10.1.2, the
modifications required in the analysis to adopt the dipole length gauge are straight-
forward.

Following our discussion in Sect. 9.1.3, the long-range potential W γ

pp′(r) in

(10.51) can be rewritten in matrix notation as1

Wγ = VEγ + VDγ + VPγ . (10.53)

1 Explicit expressions for the potential matrices VEγ , VDγ and VPγ in (10.53) and for the potential
matrices P, Q, V(r) and D in (10.55) are derived in Appendix D.3.
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Here VEγ arises from the electron–electron and electron–nuclear potential terms
in the Hamiltonian H(tm+ 1

2
), while VDγ and VPγ arise, respectively, from the

interaction of the laser field with the residual N -electron atom or ion and from the
interaction of the laser field with the ejected electron.

Finally, the inhomogeneous term Mγ

pj (r) in (10.51) is defined by

Mγ

pj (rN+1) = −2〈r−1
N+1Φ

γ

p(XN ; r̂N+1σN+1)|Θγj (XN+1, tm)〉′, (10.54)

where for notational convenience we have omitted the time variable in the inhomo-
geneous term Mγ

pj (rN+1) and in the potential terms W γ

pp′(r) in (10.51).
In order to solve the coupled inhomogeneous second-order differential equations

(10.51) we follow our discussion of equations (9.38), which were rewritten in matrix
form as (9.61), to rewrite (10.51) in matrix form as follows:

(
d2

dr2
+ P

d

dr
+Q

1

r
+ V(r)+ D+ k2

)
F(r) =M(r). (10.55)

We show in Appendix D.3 that when using the Fano–Racah phase convention these
matrices have the following properties:

P — real, antisymmetric, antihermitian, r -independent

Q — real, symmetric, hermitian, r -independent

V — real, symmetric, hermitian, r -dependent

D — real, symmetric, hermitian, r -independent.

Since D is real and symmetric and the imaginary part of k2, defined by (10.52), is
a multiple of the unit matrix, then D+ k2 can be diagonalized by a real orthogonal
transformation as follows:

AT(D+ k2)A = K2. (10.56)

As discussed following (9.63), this orthogonal transformation defines a new target
basis which is a linear combination of the original target basis and corresponds to
target states “dressed” by the laser field.

Following the procedure adopted in solving (9.61) we can solve (10.55) by elim-
inating the first derivative term, reducing this equation to standard form. We use the
operator identity

exp

(
1

2
Pr

)(
d2

dr2
+ P

d

dr

)
exp

(
−1

2
Pr

)
=
(

d2

dr2
− 1

4
P2
)

(10.57)
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and (10.52) to write (10.55) as

(
d2

dr2
− 1

4
P2 + V(r)+ 4i

�t

)
F(r) =M(r), (10.58)

where in (10.58) the potential

V(r) = exp

(
1

2
Pr

)(
Q

1

r
+ V(r)+ D− 2e

)
exp

(
−1

2
Pr

)
, (10.59)

the function

F(r) = exp

(
1

2
Pr

)
F(r) (10.60)

and the inhomogeneous term

M(r) = exp

(
1

2
Pr

)
M(r). (10.61)

Finally, e in (10.59) is a diagonal matrix with diagonal elements ei . Since P is anti-
hermitian then the matrix exp( 1

2 Pr) is unitary, and hence the potential matrix V(r)
is hermitian.

Equation (10.58) can be further reduced by diagonalizing the real symmetric
matrix P2 as follows:

OTP2O = −4d2, (10.62)

where O is a real r -independent orthogonal matrix and the diagonal elements of d2

are real and greater than or equal to zero. Transforming (10.58) using this matrix
then yields the coupled inhomogeneous second-order differential equations

(
d2

dr2
+ U(r)+ g2

)
Y(r) = φ(r), (10.63)

where

U(r) = OTV(r)O, (10.64)

Y(r) = OTF(r), (10.65)

φ(r) = OTM(r), (10.66)

and the diagonal matrix g2 is defined by

g2 = d2 + 4i

�t
I. (10.67)
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Equation (10.63) is now in standard form.
We also need to determine the boundary condition at r = a0 satisfied by the

function Y(r) in (10.63). This is achieved by transforming the R-matrix obtained
from the internal region solution. It follows from (10.60) and (10.65) that

F(r) = exp

(
−1

2
Pr

)
OY(r). (10.68)

Also, by differentiating this equation it follows that since both P and O are
r -independent

dF
dr
= exp

(
−1

2
Pr

)(
O

dY
dr
− 1

2
POY

)
. (10.69)

Substituting these results for F(r) and dF/dr into (10.45) gives

Y(a0) = R0a0
dY
dr

∣∣∣∣
r = a0

+ Z(a0), (10.70)

where the R-matrix R0 at r = a0 is defined in terms of the R-matrix R obtained
from the internal region solution at r = a0 by

R0 = OT exp

(
1

2
Pa0

)
R exp

(
−1

2
Pa0

)
O, (10.71)

and the transformed inhomogeneous term Z(a0) is defined in terms of the inhomo-
geneous term T(a0) in (10.45) by

Z(a0) = OT exp

(
1

2
Pa0

)
T(a0). (10.72)

Finally, we observe that if the dipole length gauge had been used to describe
the interaction of the laser field with the atomic system in the external region, then
the coupled second-order differential equations describing the motion of the ejected
electron would reduce directly to (10.63) without the intermediate analysis which
eliminated the first derivative term in (10.55).

In Appendix E.4 we describe an R-matrix propagator method which enables
(10.63) to be solved in the external region in Fig. 10.1 to yield the R-matrix and
wave function on the boundaries of the sub-regions r = as, s = 0, . . . , p. Also in
Appendix E.5 we show that the coupled inhomogeneous second-order differential
equations (10.55) can be solved directly without eliminating the first derivative term.
Alternatively, a finite-difference propagation method for solving these equations in
the external region has been proposed by Nikolopoulos et al. [685].
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10.1.4 Computational Methods

In this section we describe computational methods for propagating the wave func-
tion of an atomic target in an ultra-short laser pulse forward in time. These methods
are based on the analysis presented in Sects. 10.1.2 and 10.1.3 corresponding to the
solutions in the internal and external regions defined in Fig. 10.1.

10.1.4.1 Target State Computation

Before the laser pulse is switched on we assume that the target is initially in an
eigenstate of the target Hamiltonian HN+1 defined by (5.3). This eigenstate will
usually be the ground state but can be an excited bound state or a continuum state if
we are considering laser-assisted electron–atom collisions. In this section we restrict
our consideration to the situation where the initial state is a bound eigenstate.

The initial bound state of the target Ψ (XN+1, t) satisfies either the time-
dependent Schrödinger equation (10.3) or (10.5) with A(t) or E(t) set zero.2 We
can then separate out the time dependence in the usual way by writing

Ψ (XN+1, t) = Ψin(XN+1)e
−iEt , (10.73)

where Ψin(XN+1) is the time-independent bound state wave function in the initial
state. Substituting (10.73) into (10.3) or (10.5) then yields the time-independent
Schrödinger equation

HN+1Ψin = EΨin. (10.74)

The R-matrix method for solving (10.74) for bound-state calculations has been
described in Sect. 8.1.2.2 where we determined the initial bound-state wave function
in photoionization calculations. We will therefore not discuss this method further
here except to note that in the internal region, defined in Fig. 10.1, the wave function
Ψin is expanded, in analogy with (8.66), as follows:

Ψin(XN+1) =
nt∑

k=1

ψk(XN+1)Bk(E), (10.75)

where the basis functions ψk are defined by (10.21) and the coefficients Bk(E) and
the eigenenergy E are obtained by matching to a decaying wave solution of (10.74)
in the external region using an iterative procedure. If the initial state is the ground
state of the target then the internal region radius r = a0 is taken to be large enough
that the wave function is effectively zero for r ≥ a0. Alternatively, if initially one

2 For notational convenience we will not include the usual subscripts and superscripts on the
functions and operators in this section.



512 10 Multiphoton Processes: Time-Dependent Theory

target electron is in a Rydberg orbital then a0 is chosen so that the wave function of
the residual N -electron atom or ion is effectively zero for r ≥ a0 while that of the
outer Rydberg electron is zero for r ≥ ap. This is discussed in the external region
computation section below.

10.1.4.2 Internal Region Computation

We assume that in this region the time-dependent wave function Ψ (XN+1, tm),
required to compute the function Sk in (10.43) and hence Tp(a0) in (10.42), has
been determined either by solving (10.74) before the laser pulse is switched on
or by determining the wave function from the previous time step in the external
region computation as described below. The R-matrix R defined by (10.37) can be
determined by diagonalizing the operator H + L1 + L2 in (10.28) which yields
the R-matrix basis functions ψk and the eigenenergies Ek , and hence the surface
amplitudes wpk defined by (10.38) and (10.39). Alternatively, the R-matrix can be
determined by solving the linear simultaneous equations (10.32) including the Bloch
operator terms, as discussed in Sect. 4.4.4. Finally, we determine the potential P
defined by (10.41) using the analysis described in Appendix D.3.

We note that the computational steps involving the calculation of the angular
and radial integrals for complex atomic targets occurring in the matrix elements in
(10.28) and (10.43) are independent of the time step and hence need to be carried out
only once using one of the standard procedures adopted in electron–atom collisions.
Hence, most of the computing time in the internal region for each time step is taken
in the diagonalization of the Hamiltonian matrix operator H + L1 + L2 in (10.28)
or by solving the equivalent linear simultaneous equations. We describe an efficient
procedure for diagonalizing the Hamiltonian matrix below.

10.1.4.3 External Region Computation

In this region we consider the solution of the coupled inhomogeneous second-
order differential equations (10.63) using the propagator method described in
Appendix E.4, where (10.63) corresponds to (E.74). In order to use the outward
propagation equations (E.87) and (E.88) we first need to determine the R-matrix
R0 on the boundary of the internal region, which is given by (10.71), and the inho-
mogeneous term Z(a0) on the boundary of the internal region, which is given by
(10.72). We also need to determine the vector J(r), defined by (E.82), for r =
as, s = 0, . . . , p. Equations (E.87) and (E.88) can then be propagated outwards
across the p sub-regions from r = a0 to ap, as described in Appendix E.4, yielding
the R-matrix Ri and the inhomogeneous term Z(ai ), for all values i = 0, . . . , p.

We now assume that the outer radius r = ap is chosen large enough that the
reduced radial wave function F(r) in (E.74), i.e. Y(r) in (10.63), describing the
ejected electron or the electron in a Rydberg orbital, vanishes by r = ap. Taking
the boundary condition Y(ap) = 0, we can then propagate the wave function Y(r)
inwards from r = ap to a0 using (E.92), where the R-matrix Ri and the inhomoge-
neous term Z(ai ) are those determined in the outward propagation described above.
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This yields the reduced radial wave function F(r) on the internal region boundary
r = a0.

Finally, it is necessary to determine the wave function Ψ (XN+1, tm+1) ready
to proceed to the internal region computation for the next time step, as discussed
in Sect. 10.1. We observe that, having determined Y(r) in (10.63) at r = a0, as
described above, we can then determine F(a0) using (10.65) and hence F(a0) using
(10.60). We can then determine F(a0) from (10.45), which is a set of n linear simul-
taneous equations which can be solved for the components of F(a0). We can then
calculate the expansion coefficients Bk(E, tm+1), k = 1, . . . , nt , using (10.44).
Hence the wave function Ψ (XN+1, tm+1) can be determined in the internal region
using (10.30) and the computation for the next time step initiated.

For ultra-short laser pulses it is possible to choose the outer radius r = ap of the
external region large enough so that during the time of the pulse the ejected electron
does not reach this boundary. The boundary condition Y(ap) = 0 that we then
impose accurately represents the physical situation. For example, for a typical atom
we might choose a0 ≈ 20 a.u., which is large enough to contain the charge distribu-
tions of the initial ground state of the target and the residual ion, and ap ≈ several
hundred to a few thousand atomic units, which will contain the ejected electron wave
function for attosecond or few-femtosecond laser pulses of moderate intensities.
However, for longer laser pulses, where the ejected electron can reach this bound-
ary during the pulse, this boundary condition leads to an unphysical reflected wave
which can give rise to spurious results. To overcome this an absorbing mask function
can be introduced near the outer boundary, similar to that used by Krause et al. [549]
which proved successful in R-matrix potential scattering calculations [172].

We conclude this section by remarking that in the above analysis we consid-
ered the solution of the coupled inhomogeneous second-order differential equa-
tions (10.63) using the propagator method described in Appendix E.4. Instead we
could have solved the original coupled inhomogeneous equations (10.55) with-
out eliminating the first derivative term using the propagator method described in
Appendix E.5.

10.1.4.4 Diagonalization of the Hamiltonian Matrix

In order to determine the R-matrix R and the inhomogeneous vector T in (10.45), we
consider a procedure where the Hamiltonian matrix operator H+L1+L2 in (10.28)
is diagonalized at each time step where, for illustrative purposes, we consider the
calculation when the dipole velocity gauge is adopted. In this section we consider
an iterative procedure which enables this part of the calculation to be carried out
efficiently.

We first remember that before the laser pulse has been switched on we have
to determine the initial bound state of the target by solving the time-independent
Schrödinger equation (10.74), which is achieved using an iterative procedure as
described in Sect. 8.1.2.2. In this calculation the conserved quantum numbers Γ ,
defined by (2.58), correspond only to the initial bound state. Hence the number of
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coupled channels will be relatively small. It follows that this stage of the calculation
will be rapid.

However, when the laser pulse is switched on many more channels will be cou-
pled and hence the corresponding Hamiltonian matrix will be much larger. Remem-
bering that the R-matrix basis functions ψk(XN+1, tm+ 1

2
) in (10.28) are expanded

in terms of the time-independent basis functions ξk(XN+1) according to (10.22), we
then have to diagonalize the following nt ×nt -dimensional matrix at each time step:

Hkk′(tm+ 1
2
) =

〈
ξk |H(tm+ 1

2
)+ L1 + L2(tm+ 1

2
)|ξk′

〉
int
, k, k′ = 1, . . . , nt .

(10.76)

It follows that before the laser pulse is switched on the matrix Hkk′(tm+ 1
2
) is block

diagonal with only one diagonal block, corresponding to the quantum numbers Γ
of the initial target state, being non-zero. After the laser pulse has been switched on
the matrix will be non-zero with each block corresponding to different sets of the
quantum numbers Γ coupled by the laser field.

We now describe an iterative procedure which enables Hkk′(tm+ 1
2
) to be effi-

ciently diagonalized by taking advantage of the small change which occurs in this
matrix between time steps. Using (10.7), we can rewrite (10.76) as

H(tm+ 1
2
) = H0 + A(tm+ 1

2
)H1, (10.77)

where the matrix elements of H0 and H1 are defined by

(H0)kk′ = 〈ξk |HN+1 + L1|ξk′ 〉int, k, k′ = 1, . . . , nt (10.78)

and

(H1)kk′ = 〈ξk |DN+1 + L′2|ξk′ 〉int, k, k′ = 1, . . . , nt . (10.79)

Also, it follows from (10.25) that the time-independent operator DN+1 in (10.79) is
defined by

DN+1 = − i

c

N+1∑
i=1

(
cos θi

∂

∂ri
− sin θi

r

∂

∂θi

)
, (10.80)

and using (10.24), the time-independent operator L′2 in (10.79) is defined by

L′2 =
i

2c

N+1∑
i=1

δ(ri − a0) cos θi , (10.81)
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so that L2 = A(tm+ 1
2
)L′2. Hence the matrices H0 and H1 are both time independent

and the only time dependence in (10.77) comes from the strength of the laser vector
potential A(tm+ 1

2
).

Let us assume that we have diagonalized H(tm− 1
2
) corresponding to the previous

time step t = tm−1 to tm so that

CT(tm− 1
2
)H(tm− 1

2
)C(tm− 1

2
) = E(tm− 1

2
), (10.82)

where C(tm− 1
2
) is an orthogonal matrix with elements ckk′(tm− 1

2
) defined by

(10.22) and (10.28), and E(tm− 1
2
) is a real diagonal matrix with diagonal elements

Ek(tm− 1
2
). We now consider the diagonalization of H(tm+ 1

2
) corresponding to the

current time step t = tm to tm+1. It follows from (10.77) that we can write

H(tm+ 1
2
) = H(tm− 1

2
)+�A(tm)H1, (10.83)

where

�A(tm) = A(tm+ 1
2
)− A(tm− 1

2
). (10.84)

Since the time interval�t = tm+1−tm = tm+ 1
2
−tm− 1

2
used in the propagation of the

wave function is taken to be so small that the term O(�t3) in (10.10) is negligible,
then �A(tm)H1 in (10.83) is much smaller than H(tm− 1

2
). In order to diagonalize

H(tm+ 1
2
) we consider the matrix

H(tm+ 1
2
) = CT(tm− 1

2
)H(tm+ 1

2
)C(tm− 1

2
). (10.85)

It follows from (10.82) and (10.83) that

H(tm+ 1
2
) = E(tm− 1

2
)+�A(tm)CT(tm− 1

2
)H1C(tm− 1

2
). (10.86)

Hence H(tm+ 1
2
) is a symmetric matrix whose off-diagonal elements are much

smaller than its diagonal elements.
We now have to diagonalize H(tm+ 1

2
). There are several efficient procedures for

diagonalizing matrices which are diagonally dominant. For example, the parallel
Jacobi procedure described by Golub and Van Loan [389] will converge quadrati-
cally and only one or two “sweeps” will be required. An analysis of the convergence
properties of the Jacobi method is given by Wilkinson [976]. If D(tm+ 1

2
) is the resul-

tant orthogonal matrix that diagonalizes H(tm+ 1
2
) so that

DT(tm+ 1
2
)H(tm+ 1

2
)D(tm+ 1

2
) = E(tm+ 1

2
), (10.87)



516 10 Multiphoton Processes: Time-Dependent Theory

then it follows from (10.85) that the orthogonal matrix C(tm+ 1
2
) that diagonalizes

H(tm+ 1
2
) is given by

C(tm+ 1
2
) = C(tm− 1

2
)D(tm+ 1

2
). (10.88)

We have thus determined the eigenvalues and eigenvectors of H(tm+ 1
2
) + L1 +

L2(tm+ 1
2
) enabling the internal region calculation for the present time step to be

carried out as described in Sect. 10.1.4.2.
Finally, we observe that this iterative procedure for diagonalizing the Hamilto-

nian matrix can also be used if the dipole length gauge instead of the dipole velocity
gauge is adopted in the calculations. This procedure can also be used to diagonalize
matrices which arise in the external region propagation in time-dependent R-matrix
theory of atomic multiphoton processes discussed in Sects. E.4 and E.5.

10.1.5 Analysis of Applications

In this section we analyse the application of the theoretical and computational
methods described in the previous sections to the calculation of atomic multiphoton
processes in ultra-short laser pulses. We consider applications to single-electron
multiphoton ionization of neutral and singly ionized neon and argon atoms and
double-electron multiphoton ionization of neon atoms. This provides an introduc-
tion to the illustrative examples considered in Sect. 10.2. We also show that an accu-
rate treatment of double-electron multiphoton ionization of multi-electron atoms
and atomic ions by ultra-short laser pulses, which includes the re-collision mecha-
nism, will result in substantial calculations.

10.1.5.1 Single-Electron Multiphoton Ionization of Ne and Ar

We consider first multiphoton ionization of neutral neon and argon atoms where a
single electron is ejected from the target. This is the dominant process below the
non-sequential double ionization regime which commences in the intensity range
∼1014–1015 W/cm2 as discussed by Becker and Faisal [84]. In the following analy-
sis we assume that the electron is ejected from the outer s- and p-shells of neon and
argon as follows:

nhν + Ne (1s22s22p6 1Se)
↗
↘

Ne+ (1s22s22p5 2Po)+ e−

Ne+ (1s22s2p6 2Se)+ e−
(10.89)

and
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nhν + Ar (1s22s22p63s23p6 1Se)
↗
↘

Ar+ (1s22s22p63s23p5 2Po)+ e−

Ar+ (1s22s22p63s3p6 2Se)+ e−.
(10.90)

In many cases of interest there is expected to be strong coupling between chan-
nels where the electron is ejected from the outer p-shell and channels where the
electron is ejected from the outer s-shell. Hence in our discussion both these pos-
sibilities will be retained in the analysis. However, we note that the ejection of
an electron from an inner shell has lower probability and is weakly coupled to
the above channels at the laser intensities considered here and hence will not be
considered.

In general the L Sπ states of the target neon or argon atoms which are coupled
by the laser field are given in Fig. 10.2 where we have truncated the infinite series at
total orbital angular momentum L = 6. Also in Fig. 10.2, the absorption or emission
of a photon is indicated by a horizontal or a vertical line. In this analysis we consider
the emission and absorption of linearly polarized laser photons. Hence, if the neon or
argon atoms are initially in their 1Se ground state where ML = 0, as in (10.89) and
(10.90), then they will remain in a state with ML = 0. The corresponding Clebsch–
Gordan coefficient (L ML10|L ′ML), which occurs in the transition matrix element,
see (D.63) and (D.69) in Appendix D.3, is then zero unless L ′ = L ± 1. It follows
that in this case transitions between states in the upper line and in the lower line in
Fig. 10.2 where L = L ′ are forbidden. However, if ML = ±1, then the Clebsch–
Gordan coefficient (L ML10|L ′ML) is non-zero for L = L ′ and these transitions are
allowed. The coupled channels for each L Sπ state of neon or argon are obtained
by coupling the spin and orbital angular momenta of the ejected electron with the
spin and orbital angular momenta of the residual ion state in (10.89) and (10.90),
respectively. The orbital angular momenta of the ejected electron coupled to each
residual ion state for each target state in the upper line of Fig. 10.2 are given in
Table 10.1 together with the corresponding number of coupled channels. We see
that 20 channels are coupled if the total orbital angular momentum is restricted to
L ≤ 6. It follows that if 20 radial continuum basis functions u0

pl are retained in each
channel in expansion (10.21), then the corresponding dimension of the Hamiltonian
matrix defined by (10.76) that has to be diagonalized at each time step is∼400. This,
together with the propagation of the corresponding coupled differential equations in
the external region, can be accomplished very rapidly using the procedure described
in Sect. 10.1.4.3.
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1Fo

1Fe

1Ge
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1Io

1De

1So

...

...

Fig. 10.2 L Sπ states of neutral Ne or Ar coupled by the laser field
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Table 10.1 Ejected electron orbital angular momenta and number of coupled channels for multi-
photon ionization of neutral neon or argon atoms by linearly polarized photons

Atom state
No. coupled

Ion state 1Se 1Po 1De 1Fo 1Ge 1Ho 1Ie channels
2Po 1 0,2 1,3 2,4 3,5 4,6 5,7 13
2Se 0 1 2 3 4 5 6 7

10.1.5.2 Single-Electron Multiphoton Ionization of Ne+ and Ar+

We consider next multiphoton ionization of Ne+ and Ar+ where again a single
electron is ejected. The processes which then replace (10.89) and (10.90) are

nhν + Ne+ (1s22s22p5 2Po)
↗
↘

Ne2+ (1s22s22p4 3Pe,1 De,1 Se)+ e−

Ne2+ (1s22s2p5 3Po, 1Po)+ e−,
(10.91)

and analogous processes for Ar+, where again we only consider the dominant pro-
cesses where the electron is ejected from the outer s- or p-shells. The L Sπ states of
Ne+ and Ar+ which are coupled by the laser field are given in Fig. 10.3 where again
we have truncated the infinite series at total orbital angular momentum L = 6. In this
case, if the Ne+ or Ar+ ion is in its 2Po ground state then the corresponding value
of ML = 0 or ±1. If ML = 0 then, as in the case of neutral neon and argon targets,
transitions between states in the upper and lower lines in Fig. 10.3 are forbidden
for laser photons which are linearly polarized along the z-direction. However, if
ML = ±1, then the Clebsch–Gordan coefficient (L ML10|L ′ML) is non-zero for
L = L ′ and these transitions are allowed.

The orbital angular momenta of the ejected electron coupled to each residual ion
state for each target state in Fig. 10.3 are given in Tables 10.2 and 10.3 together with
the corresponding number of coupled channels, where Table 10.2 refers to the target
states in the upper line in Fig. 10.3 and Table 10.3 refers to target states in the lower
line in Fig. 10.3. We see from Table 10.2 that 57 channels are coupled if the total
orbital angular momentum is restricted to L ≤ 6 and ML = 0. Also it follows from
Table 10.3 that a further 35 channels are coupled if ML = ±1 making a total of 88
coupled channels, since both the 2Se and the 2So target states cannot be coupled in
this case. Assuming that we retain 20 radial continuum basis functions u0

pl in each
channel in expansion (10.21), then the corresponding dimension of the Hamiltonian
matrix that has to be diagonalized at each time step when ML = ±1 is ∼1,800.
While the computer time required to carry out this diagonalization together with
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Fig. 10.3 L Sπ states of Ne+ or Ar+ ions coupled by the laser field
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Table 10.2 Ejected electron orbital angular momenta and number of coupled channels for multi-
photon ionization of Ne+ and Ar+ by linearly polarized photons when ML = 0

Initial ion state
No. coupled

Final ion state 2Se 2Po 2De 2Fo 2Ge 2Ho 2Ie channels
3Pe – 1 2 3 4 5 6 6
1De 2 1,3 0,2,4 1,3,5 2,4,6 3,5,7 4,6,8 18
1Se 0 1 2 3 4 5 6 7
3Po 1 0,2 1,3 2,4 3,5 4,6 5,7 13
1Po 1 0,2 1,3 2,4 3,5 4,6 5,7 13

Table 10.3 Additional ejected electron orbital angular momenta and number of coupled channels
for multiphoton ionization of Ne+ and Ar+ by linearly polarized photons when ML = ±1

Initial ion state
No. coupled

Final ion state 2So 2Pe 2Do 2Fe 2Go 2He 2Io channels
3Pe – 0,2 1,3 2,4 3,5 4,6 5,7 12
1De – 2 1,3 2,4 3,5 4,6 5,7 11
1Se – – – – – – – –
3Po – 1 2 3 4 5 6 6
1Po – 1 2 3 4 5 6 6

the propagation of the corresponding coupled differential equations in the external
region, as described in Sect. 10.1.4.3, is considerably more than that required for
neutral neon and argon atoms, due to the open shell nature of the target ions, the
calculation is still easily accomplishable using present-day high-performance com-
puting facilities.

10.1.5.3 Double-Electron Multiphoton Ionization of Ne

In recent years the development of laser technology has enabled atoms to be rou-
tinely subjected to laser light approaching or exceeding the atomic unit of intensity
Ia ≈ 3.5× 1016 W/cm2. At these intensities the laser field becomes comparable in
magnitude to the Coulomb field in an atom and double-electron multiphoton ion-
ization shows a dramatic increase, as discussed by van der Hart and Burnett [934].
Of particular interest and importance is the re-collision mechanism considered by
Corkum [231], which plays a significant role in this process. In this mechanism,
the first ejected electron wave packet moves in the laser field and, within the first
laser period after ionization, there is a significant probability that this electron will
return to the vicinity of the residual ion and excite or ionize a second electron.
This re-collision mechanism has, for example, been observed by Mauritssen et al.
[647] who used a combination of an intense attosecond XUV laser pulse which
ionized the target atom, together with a femtosecond IR laser which was sufficiently
strong to reverse the initial direction of the ejected electronic motion, causing it
to rescatter from the parent ion. In concluding this introduction we mention that
double-electron multiphoton ionization of He has been studied by many workers,
including calculations by van der Hart and Feng [318, 319, 935] using B-spline
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bases in R-matrix–Floquet theory, by Parker et al. [717], Feist et al. [317] and Guan
et al. [430] who solved the full-dimensional time-dependent Schrödinger equation
numerically. Also, Guan et al. [432] developed a time-dependent B-spline R-matrix
approach for a general atom which they used to study double-electron multiphoton
ionization of He. Finally, we note that double-electron two-photon ionization of
neon has recently been studied experimentally by Kurka et al. [556].

In this section we consider double-electron multiphoton ionization of neon
atoms, both directly and via the re-collision mechanism, by the inclusion of pseu-
dostates in the R-matrix expansion. We note that these processes could also be
studied using the IERM method discussed in Sect. 6.3. In direct double-electron
multiphoton ionization we consider the following processes

nhν + Ne (1s22s22p6)

↗
→
↘

Ne2+ (1s22s22p4)+ 2e−

Ne2+ (1s22s2p5)+ 2e−

Ne2+ (1s22p6)+ 2e−

, (10.92)

where we assume that double-electron multiphoton ionization can occur from both
the 2s and 2p shells. In the re-collision mechanism we consider the following pro-
cesses:

nhν + Ne (1s22s22p6)
↗
↘

Ne+ (1s22s22p5)+ e−

Ne+ (1s22s2p6)+ e−,
(10.93)

where the ejected electron then returns under the influence of the laser field and
ionizes a second electron from the Ne+ ion as follows:

e− + Ne+ (1s22s22p5)
↗
↘

Ne2+ (1s22s22p4)+ 2e−

Ne2+ (1s22s 2p5)+ 2e−
(10.94)

or

e− + Ne+ (1s22s 2p6)
↗
↘

Ne2+ (1s22s 2p5)+ 2e−

Ne2+ (1s22p6)+ 2e−,
(10.95)

where again we assume that double-electron ionization can occur from both the 2s
and 2p shells.

In order to describe the above processes we commence by defining the following
Ne2+ target atom basis
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Ne2+ (1s22s22p4 3Pe, 1De, 1Se),

Ne2+ (1s22s2p5 3Po, 1Po),

Ne2+ (1s22p6 1Se), (10.96)

which allows double-electron multiphoton ionization from both the 2s and 2p shells.
These basis states can be determined using standard atomic structure programs, as
discussed in Sect. 2.2.1.

The next step is to determine an Ne+ target basis which should include the
Ne+ (1s22s22p5 2Po) and Ne+ (1s22s2p6 1Se) states together with further excited
states and pseudostates representing the higher excited states and continuum states
of Ne+. This can be achieved by introducing a set of pseudo-orbitals, for example,
3s, 3p, 3d, 4f and higher pseudo-orbitals in addition to the 1s, 2s and 2p orbitals
used in constructing the Ne2+ target basis (10.96). The Ne+ target Hamiltonian is
then diagonalized in the following basis:

Ne+ (1s22s22p4 3Pe, 1De, 1Se n	),

Ne+ (1s22s2p5 3Po, 1Po n	),

Ne+ (1s22p6 1Se n	), (10.97)

where n	 represents the 2s and 2p physical orbitals which correspond to the ground
and excited states of Ne+, and additional pseudo-orbitals including 3s, 3p, 3d and
4f which correspond to highly excited and continuum states of Ne+.

In Table 10.4 we give the L Sπ symmetries of the Ne+ pseudostates which can be
constructed from the Ne2+ basis states given in (10.96) and 3s, 3p, 3d and 4f pseudo-
orbitals. Only doublet pseudostates are given in this table since spin conservation in
non-relativistic theory means that quartet pseudostates cannot be excited from the
singlet ground state of the target atom in (10.93). We see from this table that 52
Ne+ pseudostates can be formed from the 3s, 3p, 3d and 4f pseudo-orbitals, where

Table 10.4 L Sπ symmetries of the pseudostates of Ne+ ions and number of pseudostates which
can be constructed from the Ne2+ basis states given in (10.96) and 3s, 3p, 3d and 4f pseudo-orbitals

Pseudo-orbital
No. of Ne+

Ne2+ state 3s 3p 3d 4f pseudostates
3Pe 2Pe 2So,2Po,2Do 2Pe,2De,2Fe 2Do,2Fo,2Go 10

1De 2De 2Po,2Do,2Fo 2Se,2Pe,2De 2Po,2Do,2Fo

2Fe,2Ge 2Go,2Ho 14

2× 1Se 2Se 2Po 2De 2Fo 2× 4

3Po 2Po 2Se,2Pe,2De 2Po,2Do,2Fo 2De,2Fe,2Ge 10

1Po 2Po 2Se,2Pe,2De 2Po,2Do,2Fo 2De,2Fe,2Ge 10
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we observe from (10.97) that there are two Ne2+ doubly ionized states with 1Se

symmetry, corresponding to the configurations 1s22s22p4 and 1s22p6.
Having determined the bound and pseudostates basis of Ne+ we can then proceed

as in Sects. 10.1.2 and 10.1.3 to include these as target states in the internal region
expansion (10.21) and in the external region expansion (10.50). As discussed in
Sect. 10.1.4, the initial Ne (1s22s22p6 1Se) target state in (10.93) is determined as
a bound state of Ne+ and the remaining electron as in photoionization calculations,
described in Sect. 8.1.2. We then propagate the wave function forward in time as
described in Sect. 10.1.4.

We now consider the number of channels which can be coupled in the internal
and external region calculations corresponding to the Ne+ target states and pseu-
dostates discussed above. The orbital angular momenta of the first ejected elec-
tron coupled to the residual Ne+ ion pseudostates for each symmetry are given in
Table 10.5 for each symmetry of the target neon atom. We note that parity and
orbital angular momentum conservation forbids any channels coupled to the 2So

pseudostate. If the laser intensity is not high so that the energy region where double-
electron multiphoton ionization is important is restricted to low energies, then we
can limit the orbital angular momentum of the pseudo-orbitals. We assume in this
discussion that only target pseudo-orbitals with 	 ≤ 3 are included. We also assume
that we can restrict the total orbital angular momentum L of the target atom to
L ≤ 5. In this case we see from Table 10.5 that including the 3s, 3p, 3d and 4f
pseudo-orbitals in the calculation yields 626 coupled channels. In order to obtain
accurate results, it would probably be necessary to include ∼10 pseudo-orbitals for
each angular symmetry in the calculation which would then yield 10×626 = 6, 260
coupled pseudo-channels in addition to the 20 coupled physical channels, given in
Table 10.1, representing single-electron multiphoton ionization. Hence, if 20 radial

Table 10.5 Orbital angular momenta of the first ejected electron and number of channels coupled
to the residual Ne+ ion pseudostates for double-electron multiphoton ionization of neutral neon
atoms by linearly polarized photons

Pseudostates Sym. of collision state
No. coupled

Symmetry No. 1Se 1Po 1De 1Fo 1Ge 1Ho channels
2Se 5 0 1 2 3 4 5 30
2So 1 – – – – – – 0
2Pe 5 – 1 2 3 4 5 25
2Po 9 1 0,2 1,3 2,4 3,5 4,6 99
2De 9 2 1,3 0,2,4 1,3,5 2,4,6 3,5,7 135
2Do 6 – 2 1,3 2,4 3,5 4,6 54
2Fe 4 – 3 2,4 1,3,5 2,4,6 3,5,7 48
2Fo 7 3 2,4 1,3,5 0,2,4,6 1,3,5,7 2,4,6,8 126
2Ge 3 4 3,5 2,4,6 1,3,5,7 0,2,4,6,8 1,3,5,7,9 60
2Go 2 – 4 3,5 2,4,6 1,3,5,7 2,4,6,8 28
2Ho 1 5 4,6 3,5,7 2,4,6,8 1,3,5,7,9 0,2,4,6,8,10 21

Totals 52 626
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continuum basis orbitals are retained in each channel to obtain convergence then
the total dimension of the Hamiltonian matrix will be more than 100,000. The
internal region calculation involving a matrix of this size, as well as the propaga-
tion of the corresponding coupled differential equations in the external region at
each time step, as described in Sect. 10.1.4.3, will clearly result in a substantial
calculation.

We observe that if the re-collision mechanism is being considered then the time
over which the calculation must be carried out will be lengthened by the need to
follow the motion of the wave packet representing the first ejected electron until it
returns to excite or ionize the residual Ne+ ion, as in (10.94) and (10.95). One com-
putational simplification that is possible is to omit the coupling to the Ne+ higher
bound and continuum pseudostates in the internal and external region calculations at
early times since the role of these pseudostates is mainly to represent excitation and
ionization of the second electron at later times. However, these higher bound and
continuum pseudostates will need to be included in the calculation at later times
in order to accurately represent the excitation and ionization process caused by the
re-collision mechanism. Finally, a further simplification in early work would be to
omit multiphoton ionization and re-collision ionization from the inner 2s shell with
considerable reduction in computational effort.

In concluding this section, we have shown that accurate time-dependent calcula-
tions of single-electron multiphoton ionization of neon and argon atoms by intense
laser pulses can be carried out very rapidly, as discussed in the illustrative examples
in Sect. 10.2. Also, accurate time-dependent calculations of single-electron multi-
photon ionization of Ne+ and Ar+ ions, while more lengthy because of the open-
shell nature of the target, are also relatively easily accomplishable. However, while
we have shown that accurate calculations of double-electron multiphoton ionization
of neon atoms, and hence of argon atoms, which arise either directly or via the
re-collision mechanism are substantial, they are now being considered by workers
in this field.

10.2 Illustrative Examples

We summarized in the introduction to this chapter the increasing experimental and
theoretical interest in recent years in the interaction of ultra-short laser pulses with
atoms and atomic ions. Until quite recently the most advanced theoretical advances
had been restricted to two-active electron systems, such as He-like atoms and ions.
However, in the last few years considerable effort has been given by van der Hart
et al. [937, 938], Lysaght et al. [603–606] and Guan et al. [429, 431, 432] to develop-
ing R-matrix computer programs which have enabled the interaction of ultra-short
laser pulses with general multi-electron atoms and ions to be accurately calculated.
In this section we describe some illustrative results for ultra-short laser pulse inter-
actions with neon and argon atoms using these programs that have opened up a new
era of experimental and theoretical collaboration.
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10.2.1 Multiphoton Ionization of Ne

In this section we describe the results of two independent time-dependent R-matrix
calculations of ultra-short laser pulse interactions with neon atoms obtained by Guan
et al. [429] and by Lysaght et al. [603].

In the work of Guan et al. [429], the calculations were carried out using an
extension of the B-spline R-matrix BSR computer program [992], discussed in
Sect. 5.1.1, which used the Arnoldi–Lanczos method of time propagation, outlined
in Sect. 10.1.1. A linearly polarized laser field was adopted using the length form
of the dipole operator and the 1s22s22p5 2Po ground state of Ne+ was retained in
expansion (10.21). Also, an extended internal region with a boundary radius of 100
a.u. and an absorbing potential, to avoid artificial reflections from this boundary,
was used in the calculations.

Calculations were carried out for the response of the neon atom in its
1s22s22p6 1Se ground state to the effect of laser pulses with a sin2 envelope. As
an example we show in Fig. 10.4 the form of a 10-cycle laser pulse, where the laser
frequency ω = 0.825 a.u. In Fig. 10.5 we show the response of the neon atom in its
1s22s22p6 1Se ground state to the effect of 10-cycle laser pulses with peak intensity
of 3.5× 1014 W/cm2 and laser frequencies ω = 0.425 and 0.27 a.u., where two
and three photons, respectively, need to be absorbed in order to ionize the atom. It
was found that in order to obtain converged results, symmetries up to total angular
momentum L = 6 needed to be retained in the expansion. We see from these results
that for ω = 0.27 a.u. excitation rather than ionization is the dominating mecha-
nism. On the other hand, for the higher laser frequency ω = 0.425 ionization is the
dominant process.

Finally, we mention that as a check on this work, Guan et al. [429] made a com-
parison at a few energies with the R-matrix–Floquet (RMF) predictions of McKenna
and van der Hart [624]. Satisfactory agreement was obtained at energies away from
the first resonance structure, corresponding to the intermediate 1s22s22p53s 1Po

state, where the resonance was found to be broader and shifted from the RMF

Fig. 10.4 Form of laser pulse with a sin2 envelope used in neon multiphoton ionization calcula-
tions by Guan et al. [429] corresponding in this example to a 10-cycle pulse with a laser frequency
ω = 0.825 a.u. (Fig. 1a from [429])
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Fig. 10.5 Neon ground state survival probability (left scale) and total excitation and ionization
probabilities (right scale) for laser frequencies of ω = 0.425 and 0.27 a.u. and for a peak laser
intensity of 3.5× 1014 W/cm2 (Fig. 2 from [429])

position. The broadening was due to the frequency width of the time-dependent
laser pulse, while the shift in the position was due to the different structure models
used in the two calculations.

We now turn to a discussion of R-matrix calculations of ultra-short laser pulse
interactions with neon atoms carried out by Lysaght et al. [603], where the laser field
was assumed to be linearly polarized and spatially homogeneous and the Cayley
method of time propagation, outlined in Sect. 10.1.1, was used. In the internal region
the calculation used an extension of the R-matrix RMATRXII computer program for
electron impact collisions with atoms and ions [185], discussed in Sect. 5.1.1, which
represented the continuum orbitals by expansions in B-spline functions discussed in
Sect. 4.4.7. The laser field was described using the dipole length gauge form of
the dipole operator and the linear equations method was used to solve (10.32) in
the internal region at each time step. This yielded the R-matrix R and the inho-
mogeneous vector T in (10.35) on the boundary r = a0 of the internal region,
where a0 = 20 a.u. In the external region, which was partitioned as in Fig. 10.1, the
R-matrix and T -vector were propagated at each time step out to typically 400 a.u.
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using a modification of the method described in Appendix E.4. Again a B-spline
basis was used to represent the Green’s function in the BBM propagator and a linear
equations method used to solve the equations in each sub-region. Finally, both the
1s22s22p5 2Po ground state and the 1s22s2p6 2Se first excited state of Ne+ together
with channels up to total orbital angular momentum L = 9 were included in the
internal and external region expansions (10.21) and (10.50).

Calculations were carried out corresponding to a proposed ultra-fast pump-probe
experiment illustrated in Fig. 10.6. In this experiment neon in its ground state
is irradiated with a 17 eV few-cycle free-electron-laser (FEL) pulse that is reso-
nant with the 1s22s22p53s 1Po excited bound state, as shown in the figure. During
this FEL pulse, population is transferred from the 1s22s22p6 1Se ground state to
the 1s22s22p53s 1Po excited state. During this few-cycle pulse, neon is irradiated
with an XUV ultra-short laser pulse that has a high enough frequency to transfer
population from the 1s22s22p53s 1Po state to the continuum coupled to the Ne+
1s22s2p6 2Se ionic state. By varying the time delay �τ between the FEL pulse and
the XUV ultra-short laser pulse it is possible to study the time-dependent transfer of
population between the ground state and the resonant excited state by investigating
how the population in the channels coupled to the 1s22s2p6 2Se ionic state varies as
a function of �τ .

Fig. 10.6 Schematic diagram of a proposed ultra-fast pump-probe experiment in which neon in
its 1s22s22p6 1Se ground state is irradiated with a 17 eV few-cycle FEL pulse and with an XUV
ultra-short laser pulse leaving the atom in a continuum state coupled to the Ne+ 1s22s2p6 2Se ionic
state (Fig. 1 from [603])
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In these calculations the 17 eV FEL pulse has a three-cycle electric field sin2

turn-on, 14 cycles at constant peak amplitude followed by a three-cycle sin2 turn-off.
The XUV ultra-short laser pulse consists of a combination of the 15th, 17th, 19th
and 21st harmonics of 780 nm radiation with a Gaussian time envelope. The profile
of the electric field is given in the top half of Fig. 10.7 where the position of the
XUV ultra-short laser pulse is shown for two time delays �τ = ±1.5 fs relative to
the FEL pulse. The FEL pulse has peak intensity of 5× 1013 W/cm2 and the XUV
ultra-short laser pulse has peak intensity of 1.72× 1012 W/cm2.

In the bottom half of Fig. 10.7, the population in the continuum channels coupled
to the 1s22s2p6 2Se ionic state of Ne+ are shown as a function of time corresponding
to the two different values of �τ shown in the top half of Fig. 10.7. The population
is determined by calculating the norm of the wave function beyond 50 a.u. The
population in the continuum channels coupled to the 2Se ionic state after both pulses
is greater for �τ = +1.5 fs than for �τ = −1.5 fs, as more population has been
transferred from the ground state to the 1s22s22p53s 1Po state at this late stage in the
evolution of the FEL pulse. The delayed increase in the population of the continuum
channels after the end of the laser pulse, in Fig. 10.7, is due to the time taken for
the outgoing wave packets to reach the spatial region beyond 50 a.u. where the
population is calculated. The Rabi oscillation of the population for �τ = −1.5 fs
can be explained by the large difference between the FEL 17 eV photon energy
and the transition energy difference of ≈27 eV between the 2Se ionic state and the
1s22s22p5 2Po ground state of Ne+. This leads to rapid population and depopulation
of channels coupled to the 2Se ionic state with a Rabi period of ≈0.8 fs.

Fig. 10.7 Top Half: Electric field strength in arbitrary units. The FEL field is shown as black
dots. The XUV ultra-short laser pulse is shown as a solid line (�τ = −1.5 fs) and as heavy
dots (�τ = +1.5 fs). Bottom half: Population in the continuum channels coupled to the Ne+
1s22s2p6 2Se ionic state are shown as a function of time for the two different time delays between
the FEL pulse and the XUV ultra-short laser pulse. The solid line results are for�τ = −1.5 fs and
the dotted line results are for �τ = +1.5 fs (Fig. 2 from [603])
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In conclusion, this work has shown the importance of core excitation in
multiphoton processes involving ultra-short laser pulses. An understanding of these
ultra-fast, inner-shell processes will become of increasing interest as a result of
the present rapid development of experimental techniques to attain higher photon
energies, shorter pulse duration and increasing stability.

10.2.2 Multiphoton Ionization of Ar

In this section we describe the results of two independent time-dependent R-matrix
calculations of ultra-short laser pulse interactions with argon atoms obtained by van
der Hart et al. [937] and by Guan et al. [431].

In the work of van der Hart et al. [937] on argon, the calculations were carried
out using the R-matrix computer program described in our earlier discussion in
Sect. 10.2.1 of time-dependent R-matrix calculations for neon by Lysaght et al.
[603]. The laser field was described using the length form of the dipole operator in
an extended internal region with a radius of 100 a.u. and an outer absorbing bound-
ary potential. The linear equations R-matrix method was used to solve the time-
propagation equations (10.32) at each time step. For most of the results reported only
the 1s22s22p63s23p5 2Po ground state of Ar+ was retained in expansion (10.21).
Ionization rates were then calculated for frequency-doubled Ti:Sapphire laser light
with a wavelength of 390 nm enabling the results to be compared with earlier accu-
rate R-matrix–Floquet calculations by van der Hart [933]. The results also showed
how detailed atomic structure can affect the atomic response in the time domain.

To demonstrate the accuracy of the time-dependent calculation, the time-
dependent results were compared with R-matrix–Floquet calculations reported in
Sect. 9.2.1. The Ti:Sapphire laser pulse shape adopted had a three-cycle sin2 turn-on
of the electric field, followed by typically between 0 and 14 cycles of the oscillating
field with constant amplitude, followed by a three-cycle sin2 turn-off. Also typically
2,000 time steps per cycle were used. This enabled the ionization rates at a constant
intensity to be determined allowing comparisons with other work to be made. The
ionization rates were determined in two different ways: first by calculating the sur-
vival probability as a function of the number of cycles during which a constant field
intensity is maintained and second by calculating the decrease in the norm of the
wave function during the pulse.

We show in Fig. 10.8 how the norm of the total wave function and the pop-
ulation of the field-free ground state wave function change as a function of the
time dependence of the laser pulse, which is maintained at constant peak intensity
for 12 optical cycles. The calculation extends beyond the end of the pulse to demon-
strate that it takes time for the emitted electron to be absorbed by the absorbing
boundary. The ground state population shows the expected rapid depopulation and
repopulation during the laser pulse (see, for example, [739]). Also, the intensity
was chosen such that the Ar ground state energy in the laser field is almost resonant
with intermediate 3s23p53d 1Po and 1Fo states [933]. The slow oscillation in the
maximum population in the ground state as a function of time is due to resonant
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Fig. 10.8 Time dependence of the norm of the wave function (dashed line) and the population of
the field-free ground state (solid line) for argon subjected to 390 nm laser light with a peak intensity
of 0.7× 1014 W/cm2. The pulse has a three-cycle sin2 turn-on, a constant amplitude oscillating
field for 12 cycles and a three-cycle sin2 turn-off. The time-dependent Schrödinger equation is
solved for a further six cycles of the field at the end of the pulse (Fig. 2 from [937])

transfer of population into these excited states and back into the ground state. The
norm of the wave function shows an exponential decay (with a small oscillation due
to the influence of an excited state) and the ionization rate can be estimated from
this decay curve.

Next, in Fig. 10.9 we compare the intensity dependence of the ionization rate for
argon obtained using time-dependent R-matrix theory calculations with R-matrix–
Floquet (RMF) calculations by van der Hart [933] and ADK tunnelling model calcu-
lations [16, 727], where the RMF and ADK calculations were previously compared
in Fig. 9.8. The agreement between the time-dependent R-matrix and the R-matrix–
Floquet calculations is excellent, being typically much better than 10%. Also, while
it was found to be difficult to extend the R-matrix–Floquet calculation to intensi-
ties above 2.0× 1014 W/cm2, due to channel closing occurring at this intensity,
the time-dependent calculation allows the rates to be determined to much higher
intensities, as evidenced by the ionization rates plotted at I = 2.5× 1014 W/cm2

and 3.0× 1014 W/cm2 in Fig. 10.9.
Finally, we consider R-matrix calculations of ultra-short laser pulse interactions

with argon atoms carried out by Guan et al. [431], which use the procedure outlined
in our earlier discussion in Sect. 10.2.1 of time-dependent R-matrix calculations on
neon carried out by Guan et al. [429]. In the work on argon the 3s23p5 2Po ground
state and the 3s3p6 2Se and 3s23p43d 2Se excited states of Ar+ were retained in the
R-matrix expansion and an internal region radius of 500 a.u. was adopted, which
avoided the need for an absorbing potential, which was used in the previous work
on neon. Also in these calculations, channels up to total orbital angular momentum
L = 5 were included in the case of two-photon ionization and up to L = 9 were
included for five-photon ionization.
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Fig. 10.9 Comparison of the ionization rates for argon irradiated with 390 nm laser light as a
function of laser intensity. The rates using time-dependent R-matrix calculations (solid circles) are
compared with those using the RMF approach (solid line) and the ADK approach (dashed line).
The label 5s indicates the 3s23p55s 1Po resonance and the label 3d indicates the 3s23p53d 1Po

resonance (Fig. 4 from [937])

We show in Fig. 10.10 time-dependent results for two-photon ionization of argon
in the photon energy range from 8 to 14 eV compared with R-matrix–Floquet (RMF)
calculations by McKenna and van der Hart [624]. The laser pulse had a peak inten-
sity of 1012 W/cm2 and a duration of 30 cycles including a linear ramp on and ramp
off over five cycles. The results exhibit three resonances in this intensity range with
peaks around photon energies of 12.0, 12.75 and 13.9 eV which we see also occur in

Fig. 10.10 Comparison of ionization rates for time-dependent two-photon ionization of argon
atoms with a laser intensity of 1012 W/cm2 obtained by Guan et al. [431] compared with RMF
calculations by McKenna and van der Hart [624]. The filled circles represent the total time-
dependent ionization yield, the open circles are the results obtained by summing the ionization
yield from individual channels and the solid line shows the RMF results (Fig. 1 from [431])
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the R-matrix–Floquet calculations, which corresponded to an infinitely long pulse
and hence a sharply defined photon energy.

We note in Fig. 10.10 that there are two results for the ionization yield at the end
of the pulse, namely the total yield and the sum of the partial ionization yields in
the individual channels. For the dominant two-photon process described in this cal-
culation, the latter yield corresponds to the 1Se and 1De final continuum states. We
see from Fig. 10.10 that there are no significant differences between these yields for
photon energies below about 13 eV. However, when the photon energy approaches
the threshold for one-photon ionization we see that the cross section extracted from
the total ionization yield is noticeably larger than that obtained from the two-photon
1Se and 1De contributions. In this case the total ionization cross section contains
contributions from the 1Po symmetry corresponding to the single-photon ionization
probability.

We also consider results obtained by Guan et al. [431] for processes requiring
more than two photons to ionize the argon atoms. In Fig. 10.11 we show cross
sections for time-dependent five-photon ionization of argon in the wavelength range
between 330 and 390 nm obtained by Guan et al. [431] compared with R-matrix–
Floquet calculations by van der Hart [933]. We see that the two calculations are
in good agreement, bearing in mind the broadening of the features in the time-
dependent calculation caused by the finite duration of the laser pulse and the dif-
ference in the atomic structure models.

In conclusion, the results presented in this section, obtained with two independent
time-dependent R-matrix computer programs, have enabled for the first time accu-
rate calculations of ultra-short laser pulse interactions with general multi-electron
atoms and atomic ions to be carried out.

Fig. 10.11 Generalized cross sections for time-dependent five-photon ionization of argon atoms as
a function of photon energy from a 30-cycle laser pulse of peak intensity 1013 W/cm2 calculated
by Guan et al. [431] compared with RMF calculations by van der Hart [933] (Fig. 6 from [431])



Chapter 11
Collisions with Molecules

So far in this monograph we have considered the collisions of electrons, positrons
and photons with atoms and atomic ions. In this chapter we extend R-matrix theory
to treat electron and positron collisions with molecules and we also consider an
extension of R-matrix theory to treat molecular multiphoton processes. The pro-
cesses that occur in electron–, positron– and photon–molecule collisions are con-
siderably more varied and challenging than those that arise in electron collisions
with atoms and atomic ions, partly because of the loss of spherical symmetry and
partly because of the possibility of exciting degrees of freedom associated with the
motion of the nuclei in the molecule. In this chapter we consider developments of
both collision theory and R-matrix theory which enable these additional aspects of
collision processes to be accurately treated.

We commence our discussion of electron–molecule collisions in Sect. 11.1.1 by
reviewing the processes that occur in these collisions which, as well as excitation
and ionization, considered in Chaps. 5 and 6, now include rotational and vibrational
excitation, dissociative attachment and recombination, and dissociation including
dissociative ionization. In Sect. 11.1.2 we introduce R-matrix theory of electron–
molecule collisions by giving a detailed discussion of the fixed-nuclei approxima-
tion, where the electronic degrees of freedom are calculated in the molecular or
body-fixed frame of reference. In Sect. 11.1.3 we consider methods for including
molecular rotation, vibration and dissociation in the theory. First we consider the
adiabatic-nuclei approximation, which is valid when the electron collision time is
short compared with the rotation and vibration times, enabling scattering amplitudes
for these transitions to be obtained from fixed-nuclei approximation results. This
procedure owes its validity to the large ratio of the nuclear to the electronic mass,
which is the basis of the Born–Oppenheimer separation of the electronic and nuclear
motion made in molecular structure calculations. We then consider calculations
carried out in the laboratory frame of reference, which involve solving the many
coupled second-order integrodifferential equations describing rotational, vibrational
and electronic motion. Finally we briefly review the frame-transformation theory
of Chang and Fano [210], which takes advantage of the qualitative different fea-
tures of the electron–target interaction as their relative distance changes and which
has been influential in electron–atom as well as in electron–molecule collisions.

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_11,
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Also in this section, we compare the partitioning of configuration space in frame-
transformation theory with that adopted in R-matrix theory. Then in Sect. 11.1.4 we
describe non-adiabatic R-matrix theory of electron–molecule collisions, introduced
by Schneider et al. [829], which enables dissociative processes as well as vibrational
and electronic processes to be described in a unified theory. Next, in Sect. 11.1.5 we
briefly describe a semi-phenomenological resonant R-matrix theory of electron–
molecule collisions introduced by Fabrikant [293, 294]. We then conclude our dis-
cussion of electron–molecule collision theory in Sect. 11.1.6 by deriving expres-
sions for electron–molecule scattering amplitudes and cross sections for diatomic
and linear polyatomic molecules, which extend the corresponding derivations for
electron collisions with atoms and ions given in Sect. 2.5. Finally, in Sect. 11.1.7
we present illustrative examples of electron–molecule collision calculations using
non-adiabatic R-matrix theory and computer programs.

In Sect. 11.2 we extend our discussion of electron–molecule collisions to con-
sider collisions of positrons with molecules. We observe that as well as processes
which occur in the collision of electrons with molecules, we now have the possibility
of positronium formation which we first considered in Chap. 7, where we discussed
positron collisions with atoms and atomic ions. Hence, the additional complexity
of using antisymmetrized wave functions in electron–molecule collisions is now
replaced by the importance of correlation or polarization effects in the collision
due to the strong attraction between the positron and the target electrons which
gives rise to positronium formation. In Sect. 11.2.1 we consider the implications of
these differences between electron– and positron–molecule collisions by discussing
the most significant processes that can occur in positron–molecule collisions. We
then summarize the advances that have been made in recent years in positron–
molecule collision calculations commencing with simple studies of positron col-
lisions with molecular hydrogen and nitrogen to recent studies of collisions with
polyatomic molecules. Finally, in Sect. 11.2.2 we present illustrative examples of
recent positron–molecule collision calculations which show the importance of polar-
ization effects in low-energy positron collisions with non-polar molecules and we
consider how these effects can be accurately included in future calculations.

In Sect. 11.3 we briefly consider an extension of our discussion of atomic mul-
tiphoton processes, considered in Chap. 9, to the interaction of intense laser fields
with molecules using R-matrix–Floquet theory. As well as the additional complica-
tions due to loss of spherical symmetry and exciting degrees of freedom associated
with the nuclear motion mentioned above, the laser field gives rise to new effects, for
example, the modification of the nuclear potential energy curves by the laser field
which gives rise to bond softening or hardening and the alignment of the molec-
ular axis by the laser field which can play an important role in the dynamics of
multiphoton processes. In Sect. 11.3.1 we describe developments made by Colgan
et al. [187, 222–224] which extend R-matrix–Floquet theory to treat these processes.
These developments have enabled the study of the interaction of intense laser fields
with diatomic molecules using the fixed-nuclei approximation to be undertaken,
providing an important first step to a full understanding of molecular multipho-
ton processes. Finally, in Sect. 11.3.2 we illustrate this theory by considering its
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application to multiphoton ionization of H2 in the fixed-nuclei approximation.
Extensions of R-matrix theory and computer programs to include the nuclear motion
using non-adiabatic R-matrix theory and to treat the interaction of ultra-short laser
pulses with molecules, using an extension of time-dependent R-matrix theory dis-
cussed in Chap. 10, are now under active consideration.

11.1 Electron Collisions with Molecules

In this section we extend our treatment of electron collisions with atoms and atomic
ions, considered in early chapters of this monograph, to electron collisions with
molecules.

11.1.1 Introduction

We commence by briefly reviewing the processes that occur in electron–molecule
collisions. As well as electronic excitation and ionization, which also occur in
electron–atom collisions, additional processes that can now take place include ro-
vibrational excitation

e− + AB jv → AB j ′v′ + e−, (11.1)

dissociative attachment and dissociative recombination

e− + AB jv → A + B−, (11.2)

e− + AB+jv → A + B, (11.3)

and dissociation and dissociative ionization

e− + AB jv → A + B + e−, (11.4)

e− + AB jv → A + B+ + 2e−. (11.5)

In these equations AB jv means that the molecule AB is in the j th rotational state
and the vth vibrational state, where for notational simplicity we restrict our attention
to diatomic molecules, although these processes will occur in electron collisions
with polyatomic molecules.

A further complexity that arises in electron–molecule collisions is the multicentre
and non-spherical nature of the collision process resulting in the need to solve much
larger sets of coupled integrodifferential equations. The multicentre integrals that
arise in the evaluation of the Hamiltonian matrix elements are also more difficult to
calculate than the single-centre integrals that occur in electron–atom collisions.
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There are two other distinctive features of electron–molecule collisions. The first
is the crucial role that resonances play in vibrational excitation and in dissociative
attachment and recombination. This is because when the scattered electron energy
is near a resonance, this electron has a high probability of being captured into a res-
onant state where it can spend sufficient time in the neighbourhood of the molecule
to transfer energy to the nuclear motion. The important role that resonances play
in vibrational excitation was first examined theoretically by Herzenberg and Mandl
[461] and experimentally by Schulz [834, 837], and early work was reviewed by
Herzenberg [460] and more recent work by Hotop et al. [476]. The second feature
is the distinctive nature of the long-range interaction potential between the scattered
electron and the molecule. Thus for a linear neutral molecule, this potential has the
asymptotic form

V (r, R̂) = − μ
r2

P1(cos θ)− Q

r3
P2(cos θ)− α0

2r4
− α2

2r4
P2(cos θ), (11.6)

plus higher order terms, where R̂ is the unit vector along the internuclear axis, r is
the vector coordinate of the scattered electron referred to the centre of gravity of the
molecule and θ is the angle between r and R̂. Also in (11.6) μ is the dipole moment,
Q is the quadrupole moment and α0 and α2 are the polarizabilities of the molecule,
which are given in terms of the polarizabilities α‖ and α⊥ along and perpendicular
to the molecular axis by

α0 = 1

3
(α‖ + 2α⊥), α2 = 2

3
(α‖ − α⊥). (11.7)

For polar molecules, where μ is non-zero, the corresponding term in V (r, R̂) domi-
nates the differential cross section in the forward direction. Also, if μ is sufficiently
large, as is the case for hydrogen halides, then this term in V (r, R̂) gives rise to
bound and virtual states in the electron–molecule system that lead to threshold
peaks in the cross section first observed by Rohr and Linder [796]. Furthermore,
the long-range nature of the quadrupole moment term Q and the polarization terms
α0 and α2 in V (r, R̂) often give rise to enhanced resonance effects at low incident
electron energies. We conclude this section by noting that a review of these res-
onance and threshold effects in electron–molecule collisions has been written by
Domcke [265].

11.1.2 Fixed-Nuclei R-Matrix Theory

The fixed-nuclei approximation was first used to describe low-energy electron col-
lisions with diatomic molecules by Stier [890], Fisk [323] and Massey and Ridley
[645]. In recent years it has been widely used as the basis of ab initio computational
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methods that yield accurate cross sections for electron collisions with diatomic
and polyatomic molecules. These methods include the complex Kohn variational
method (Rescigno et al. [788]), the Schwinger variational method (Huo [483]) and
the R-matrix method (e.g. Gillan et al. [373, 375], Tennyson and Morgan [920],
Pfingst et al. [732, 733], Schneider [825], Burke and Tennyson [173] and Tennyson
[917]).

The R-matrix method, first introduced to describe electron collisions with atoms
and ions discussed in Chap. 5, was extended to treat electron collisions with
diatomic molecules by Schneider [821, 822], Schneider and Hay [826] and Burke
et al. [180]. In order to formulate the electron–molecule collision process in the
fixed-nuclei approximation we adopt a frame of reference which is rigidly attached
to the molecule, where the centre of gravity of the molecule is chosen as the origin
of coordinates. In the case of diatomic molecules, which we will use as an exam-
ple of the general case in the following discussion, we introduce a molecular fixed
frame of reference where the z-axis is chosen to lie along the internuclear axis, as
illustrated in Fig. 11.1. Also in this figure G is the centre of gravity of the two nuclei
labelled A and B, which are fixed in space, R = RA + RB is the distance between
the nuclei and the vector distances between A, B and G and the i th electron are
rAi , rBi and ri , respectively. Finally, we assume the target molecule has N elec-
trons and the nuclear charge numbers corresponding to A and B are Z A and Z B ,
respectively.

We consider first the collision process represented by the equation

e− + ABi → AB j + e−, (11.8)

where ABi and AB j are the initial and final electronic bound states of the target
molecule. We assume that the target nuclei are light so that relativistic effects can be
neglected for low-energy electron collisions. The collision process is then described
by the time-independent Schrödinger equation

HN+1Ψ = EΨ, (11.9)

Fig. 11.1 Molecular frame
of reference for electron
collisions with diatomic
molecules where the nuclei
at A and B have nuclear
charge numbers Z A and Z B ,
respectively, and G
is the centre of gravity

ith electron

rirAi rBi

A B
G

θi

RA RB

z
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Fig. 11.2 Partitioning of configuration space in fixed-nuclei R-matrix theory of electron–molecule
collisions

where HN+1 is the non-relativistic fixed-nuclei Hamiltonian defined in atomic
units by

HN+1 =
N+1∑
i=1

(
−1

2
∇2

i −
Z A

rAi
− Z B

rBi

)
+

N+1∑
i> j=1

1

ri j
+ Z A Z B

R
. (11.10)

In order to solve (11.9) using R-matrix theory we proceed, as in electron–atom
collisions discussed in Chap. 5, by partitioning configuration space into an internal
region, an external region and an asymptotic region as illustrated in Fig. 11.2. We
now consider the solution in each of these regions in turn.

11.1.2.1 Internal Region Solution

In the internal region 0 ≤ r ≤ a0, where r is the radial coordinate of the scattered
electron relative to the centre of gravity G of the target nuclei, electron exchange
and electron–electron correlation effects between the scattered electron and the N
target electrons are important and the (N+1)-electron collision complex behaves in
a similar way to a bound state. Consequently a configuration interaction multicentre
expansion of this complex, similar to that used for molecular bound-state calcula-
tions, is used for each internuclear separation R. In the case of diatomic molecules,
a computer program using prolate spheroidal coordinates and Gaussian-type orbital
(GTO) basis functions was first developed and used by Schneider [821, 822] and by
Schneider and Hay [826]. Also, in more recent work a diatomic molecular computer
program based on Slater-type orbitals (STOs) was developed and used by Buckley
et al. [144], Kendrick and Buckley [528], Noble et al. [690], Gillan et al. [373, 375]
and Morgan [660], and polyatomic computer programs using GTOs were devel-
oped and used by Nestmann and Peyerimhoff [680], Nestmann et al. [681, 682],
Pfingst et al. [732, 733], Morgan et al. [661, 662], Tennyson and Morgan [920] and
Faure et al. [313]. In this more recent work these orbitals are centred on the nuclei
and are combined with continuum basis functions centred on the centre of gravity
as discussed below. Finally, we note that a number of these computer programs have
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been extended to enable electron–molecule collision calculations to be carried out
using non-adiabatic R-matrix theory discussed in Sect. 11.1.4.

The solution of (11.9) in the internal region, which is analogous to that used to
describe electron–atom collisions in Sect. 5.1.2, takes the following form:

ΨΔj E (XN+1; R) =
∑

k

ψΔk (XN+1; R)AΔk j (E), (11.11)

where, as in (5.5), j labels the linearly independent solutions of (11.9) at the energy
E , ψΔk are energy-independent basis functions and AΔk j (E) are energy-dependent
expansion coefficients, which depend on the asymptotic boundary conditions satis-
fied by the wave function ΨΔj E at the energy E , as well as parametrically on R. As

in Sect. 5.1.2 we expand the basis functions ψΔk as follows:

ψΔk (XN+1; R) = A
n∑

i=1

nc∑
j=1

Φ
Δ

i (XN ; r̂N+1σN+1)r
−1
N+1u0

i j (rN+1)a
Δ
i jk

+
m∑

i=1

χΔ
i (XN+1)b

Δ
ik, k = 1, . . . , nt , (11.12)

for each fixed internuclear separation R, where nt = nnc + m is the number

of linearly independent basis functions. The channel functions Φ
Δ

i , the contin-
uum orbitals u0

i j and the quadratically integrable functions χΔi depend parametri-
cally on R and have the same meaning as the corresponding functions in expan-
sion (5.6) in electron–atom collisions. Also Δ, which is discussed further when
we consider scattering amplitudes and cross sections in Sect. 11.1.6, represents
the quantum numbers which are conserved in the collision. Adopting this rep-
resentation reduces to a minimum the number of coupled equations which have
to be solved to obtain accurate results, and hence the complexity of the collision
problem.

The channel functions Φ
Δ

i in (11.12) are formed by coupling the target physical
states and possibly pseudostatesΦi , including polarized pseudostates, to the angular
and spin functions of the scattered electron, and the quadratically integrable func-
tions χΔi are constructed from STOs or GTOs centred on the nuclei and possibly on
the centre of gravity G. The radius a0 is chosen so that these orbitals vanish by the
boundary of the internal region r = a0.

On the other hand the continuum basis orbitals u0
i j in (11.12), which represent

the scattered electron, are non-vanishing on the boundary of the internal region
r = a0 and are used to construct the R-matrix linking the internal and external
regions. In early work by Kendrick and Buckley [528] using the diatomic molecule
program, these orbitals were formed from STOs centred on the centre of gravity
G. However, difficulties have been experienced at higher incident electron energies
due to linear dependence of these orbitals (Noble et al. [690]). Hence they are more
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usually generated numerically as solutions of a zero-order second-order differential
equation similar to that adopted in electron–atom collisions considered in Sect. 5.3.1
(Tennyson et al. [922]). In the case of the polyatomic molecule programs, repre-
sentation of the continuum basis orbitals by GTOs centred on G has proved to
be appropriate (e.g. Nestmann and Peyerimhoff [680] and Tennyson and Morgan
[920]).

Finally, the coefficients aΔi jk and bΔik in (11.12) are obtained by diagonalizing the

operator HN+1+LN+1 for fixed internuclear separation R in the basis ψΔk over the
internal region as follows:

〈ψΔk |HN+1 + LN+1|ψΔk′ 〉int = EΔk δkk′ , k, k′ = 1, . . . , nt , (11.13)

where LN+1 is the Bloch operator

LN+1 =
N+1∑
i=1

1

2
δ(ri − a0)

(
d

dri
− b0 − 1

ri

)
, (11.14)

where b0 is an arbitrary constant. We can then show that HN+1 + LN+1 is her-
mitian in the basis of quadratically integrable functions satisfying arbitrary bound-
ary conditions at r = a0. We note that LN+1 has the same single-centre form as
(5.8) used in electron–atom collisions since the only components of ψΔk which are
non-zero on the boundary r = a0 are the continuum basis orbitals centred on G.
The Hamiltonian matrix elements in (11.13) involve the product of the number of
target configurations multiplied by the number of continuum basis orbitals summed
over the target states, which can present a major computational challenge when
accurate results are required. To meet this challenge, an efficient algorithm has
been developed by Tennyson [915], which has been incorporated into the UK
molecular R-matrix computer programs and leads to a large reduction in both the
number of integrals and matrix elements which need to be explicitly constructed
and evaluated.

Equation (11.9) is solved in the internal region for each fixed internuclear sepa-
ration R and for each set of conserved quantum numbers denoted byΔ, by rewriting
it as follows:

(HN+1 + LN+1 − E) Ψ Δj E = LN+1Ψ
Δ
j E , (11.15)

which has the formal solution

ΨΔj E = (HN+1 + LN+1 − E)−1 LN+1Ψ
Δ
j E . (11.16)
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We expand the inverse operator in this equation in terms of the basis defined
by (11.12) and (11.13), project this equation onto the channel functions

Φ
Δ

i (XN ; r̂N+1σN+1) and evaluate the result on the boundary of the internal region
rN+1 = a0. We then obtain

FΔi j (a0) =
n∑

i ′=1

RΔi i ′(E)

(
a0

dFΔi ′ j
dr
− b0 FΔi ′ j

)
r=a0

, i = 1, . . . , n, (11.17)

where the elements of the R-matrix RΔi i ′(E) at r = a0 are defined by

RΔi i ′(E) =
1

2a0

nt∑
k=1

wΔikw
Δ
i ′k

EΔk − E
, i, i ′ = 1, . . . , n. (11.18)

The reduced radial wave functions FΔi j (r) in (11.17) are defined by

FΔi j (rN+1) = 〈r−1
N+1Φ

Δ

i |ΨΔj 〉′, i = 1, . . . , n, (11.19)

and the surface amplitudes wΔik in (11.18) are defined by

wΔik = 〈r−1
N+1Φ

Δ

i |ψΔk 〉′rN+1= a0

=
nc∑

j=1

u0
i j (a0)a

Δ
i jk, i = 1, . . . , n, k = 1, . . . , nt . (11.20)

The primes on the Dirac brackets in (11.19), (11.20) and later equations mean that
the integrations are carried out over all N+1 electronic space and spin coordinates in
the internal region except the radial coordinate rN+1 of the scattered electron. Equa-
tions (11.17), (11.18), (11.19) and (11.20) are identical in form to those obtained
in Sect. 5.1.2 describing electron–atom collisions in the internal region. They are
the basic equations which describe the collision of electrons with molecules in the
internal region for fixed internuclear separation.

In concluding our discussion of the internal region solution we note that, as men-
tioned above in the case of diatomic molecules, the continuum basis orbitals u0

i j
in (11.12) are often generated numerically as solutions of second-order differential
equations subject to homogeneous boundary conditions at r = 0 and r = a0. The
fixed boundary condition at r = a0 then results in slow convergence in the R-matrix
expansion given by (11.18). Consequently we then have to add a Buttle correction
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to the diagonal elements of the R-matrix and possibly to the wave function to obtain
accurate results, as discussed in the case of electron collisions with atoms and ions
in Sect. 5.3.2.

11.1.2.2 External Region Solution

In the external region, defined in Fig. 11.2, a0 is chosen, as in electron–atom col-
lisions discussed in Sect. 5.1.3, so that electron exchange and electron–electron
correlation effects between the scattered electron and the target electrons can be
neglected. The total wave function can then be expanded in the form

ΨΔj E (XN+1; R) =
n∑

i=1

Φ
Δ

i (XN ; r̂N+1σN+1)r
−1
N+1 FΔi j (rN+1), rN+1 ≥ a0.

(11.21)

In this expansion the multicentre channel functions Φ
Δ

i are the same as those
retained in the internal region expansion (11.12). However we no longer include
the antisymmetrization operator, since the scattered electron and the target electrons
occupy different regions of space. Also, the multicentre quadratically integrable
functions χΔi vanish in the external region and the scattered electron is represented
by the single-centre reduced radial functions FΔi j (r).

Substituting (11.21) into the Schrödinger equation (11.9) and projecting onto

the channel functions Φ
Δ

i then yields the following set of coupled second-order
differential equations satisfied by the reduced radial functions:

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z A + Z B − N )

r
+ k2

i

)
FΔi j (r)

= 2
n∑

i ′=1

VΔi i ′(r)F
Δ
i ′ j (r), i = 1, . . . , n, r ≥ a0. (11.22)

In these equations 	i is the orbital angular momentum of the scattered electron in
the i th channel and

k2
i = 2(E − ei ), i = 1, . . . , n, (11.23)

where the channel energies ei are defined by

ei = 〈r−1
N+1Φ

Δ

i (XN ; r̂N+1σN+1)|HN |r−1
N+1Φ

Δ

i (XN ; r̂N+1σN+1)〉,
i = 1, . . . , n, (11.24)

HN being the target molecule Hamiltonian. Also the potential matrix VΔi i ′ in (11.22)
is defined by
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VΔi i ′(rN+1) =
〈
r−1

N+1Φ
Δ

i (XN ; r̂N+1σN+1)

×
∣∣∣∣∣

N∑
k=1

1

rk N+1
− Z A

rAN+1
− Z B

rB N+1
+ Z A + Z B − N

rN+1

∣∣∣∣∣
× r−1

N+1Φ
Δ

i ′ (XN ; r̂N+1σN+1)

〉′
, i, i ′ = 1, . . . , n. (11.25)

As in electron–atom collisions VΔi i ′(r) can be written as a summation over inverse
powers of r as follows:

VΔi i ′(r) =
∞∑
λ=1

αΔi i ′λr
−λ−1, i, i ′ = 1, . . . , n, r ≥ a0, (11.26)

where the long-range potential coefficients αΔi i ′λ can be determined by carrying out
the multicentre integrals in (11.25) and where, in general, only the first few terms
in the expansion over λ play a significant role in the collision in the external and
asymptotic regions.

The long-range interaction potentials in (11.6) are defined in terms of the coef-
ficients αΔi i ′λ in (11.26). Thus the dipole moment μ and the quadrupole moment
Q are defined in terms of the diagonal elements αΔi i1 and αΔi i2, respectively, while the
polarization terms α0 and α2 are given by a second-order summation over interme-
diate states involving the dipole terms αΔi i ′1. The inclusion of polarized pseudostates
in expansions (11.12) and (11.21), which represent the target continuum, is usually
necessary in order to obtain an accurate representation of the polarizability. Alter-
natively, a procedure for including the effect of polarization in the external region,
suggested by Nesbet et al. [679], can be used, where the long-range polarization
and quadrupole moment terms in (11.6) are explicitly included in the external region
propagation. The importance of the continuum contribution to the polarizability was
first discussed by Castillejo et al. [205] in the case of electron collisions with atomic
hydrogen and is considered in Sects. 2.2.2 and 6.2.

The solution of (11.22) can be obtained, as in electron–atom collisions, by prop-
agating the R-matrix across the p sub-regions illustrated in Fig. 11.2 using one of
the propagator methods discussed in Appendix E. Given the R-matrix at r = a0
defined by (11.18), the R-matrix at r = ap can be obtained, providing the boundary
condition for the solution in the asymptotic region.

11.1.2.3 Asymptotic Region Solution

The solution in the asymptotic region, defined in Fig. 11.2, proceeds as in electron–
atom collisions considered in Sect. 5.1.4, using an asymptotic expansion solution of
(11.22) as discussed in Appendix F.1. A solution matrix, satisfying the asymptotic
boundary conditions
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FΔ(r) ∼
r→∞k−1/2 [sin θ + cos θKΔ

]
, (11.27)

is obtained in the open channels (k2
i ≥ 0), where θ is a diagonal matrix with diagonal

elements

θi = kir − 1

2
	iπ − ηi ln 2kir + σ	i , (11.28)

with

ηi = − Z A + Z B − N

ki
(11.29)

and

σ	i = argΓ (	i + 1+ iηi ). (11.30)

In this way the na × na-dimensional K -matrix KΔ is determined in terms of the
n × n-dimensional R-matrix at r = ap, where na is the number of open channels at
the incident electron energy under consideration.

In our discussion of the scattering amplitude and cross section in Sect. 11.1.6, we
also find it convenient to define a solution matrix satisfying the asymptotic boundary
conditions

GΔ(r) ∼
r→∞k−1/2 [exp(−iθ)− exp(iθ)SΔ

]
, (11.31)

which can be obtained by taking linear combinations of the solutions defined by
(11.27). The na × na-dimensional S-matrix SΔ in (11.31) is defined in terms of the
K -matrix by the matrix equation

SΔ = I+ iKΔ

I− iKΔ
. (11.32)

The cross section in the molecular fixed frame can be expressed in terms of the
S-matrix as described in Sect. 11.1.6.

11.1.3 Inclusion of Nuclear Motion

In this and the following section we review the theory of electron–molecule colli-
sion processes which involve the nuclear motion. In particular, we are interested in
rotational and vibrational excitation and dissociative processes, defined by (11.1),
(11.2), (11.3), (11.4) and (11.5). In this section we present a brief overview of
these theoretical methods including a discussion of frame-transformation theory,
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reserving a detailed discussion of non-adiabatic R-matrix theory of nuclear motion
to Sect. 11.1.4.

11.1.3.1 Adiabatic-Nuclei Approximation

One of the most widely used approaches for including the nuclear motion is the
adiabatic-nuclei approximation which was introduced by Drozdov [270, 271] and
Chase [217] in studies of neutron scattering by nuclei. In the case of diatomic
molecules in a 1# state the scattering amplitude for a transition between elec-
tronic, vibrational and rotational states defined by the quantum numbers iv jm j and
i ′v′ j ′m j ′ is given by

fi ′v′ j ′m j ′ ,iv jm j (k · r̂) = 〈ηi ′v′(R)Y j ′ m j ′ (θR, φR)| fi ′i (θ, φ)|
× ηiv(R)Y jm j (θR, φR)〉, (11.33)

where fi ′i (θ, φ) is the fixed-nuclei scattering amplitude for an electronic transi-
tion from state i to state i ′, calculated in the laboratory frame as described in
Sect. 11.1.2, which depends parametrically on the inter-nuclear coordinate R, and
ηiv and Y jm j are the molecular vibrational and rotational eigenfunctions, respec-
tively. This approximation is valid provided that the collision time is short com-
pared with the vibration and rotation times. Hence it can be accurately applied in
non-resonant regions or at higher energies which are not close to threshold.

11.1.3.2 Laboratory Frame of Reference

The adiabatic-nuclei approximation breaks down in the neighbourhood of nar-
row resonances or close to thresholds (e.g. Morrison [663]). This is because, as
pointed out in Sect. 11.1.1, the scattered electron then spends an appreciable time
in the neighbourhood of the molecule increasing the probability of its transfer-
ring energy to the nuclear motion. One procedure for overcoming this difficulty
is to carry out the calculation in the laboratory frame of reference including the
nuclear motion explicitly. The time-independent Schrödinger equation (11.9) is then
replaced by

(HN+1 + TR)Ψ (XN+1;R) = EΨ (XN+1;R), (11.34)

where HN+1 is the fixed-nuclei Hamiltonian, TR is the kinetic energy operator of
nuclear motion, which includes both rotational and vibrational terms, and R rep-
resents the radial and angular coordinates of the internuclear motion of the target
molecule.

We now briefly review the derivation of the coupled second-order differential
equations corresponding to (11.34) which yield scattering amplitudes and cross sec-
tions for transitions between rotational and vibrational states as well as electronic
states of the target molecule. Following our discussion of the derivation of the close
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coupling equations describing electron–atom collisions in Sect. 2.3.2, we expand
the total wave function satisfying (11.34) as follows:

ΨΥj E (XN+1;R) = A
s∑

p=1

Θ
Υ

p (XN+1; r̂N+1σN+1;R)r−1
N+1 FΥpj (rN+1)

+
t∑

p=1

ηΥp (XN+1;R)bΥpj , (11.35)

where j labels the linearly independent solutions of (11.34) at the energy E .

Also, the channel functions Θ
Υ

p and the quadratically integrable functions ηΥp in
(11.35) are formed by coupling the corresponding electronic wave functions in the
fixed-nuclei expansion (11.12) to the rotational and vibrational states of the target
molecule to yield functions which belong to the generalized conserved quantum
numbers represented by Υ . It follows that the summation p in (11.35) now goes over
the rotational and vibrational states of the molecule as well as over the electronic
states.

We obtain coupled second-order integrodifferential equations satisfied by the
reduced radial wave functions FΥpj describing the radial motion of the scattered elec-
tron in expansion (11.35), by substituting this expansion into (11.34) and projecting

onto the channel functions Θ
Υ

p and onto the quadratically integrable functions ηΥp .
After eliminating the coefficients bΥpj these equations take the general form

(
d2

dr2
+ k2

p

)
FΥpj (r) = 2

s∑
q=1

(
V Υpq +WΥ

pq + XΥpq

)
FΥq j (r), p = 1, . . . , s,

(11.36)

where V Υpq , WΥ
pq and XΥpq are local, non-local exchange and non-local correlation

potentials, respectively, and where we have included the diagonal angular momen-
tum and nuclear Coulomb terms in V Υpq for notational simplicity. We see that
these equations are similar in form to the close coupling equations (2.63) describ-
ing electron–atom collisions although, of course, the inclusion of the summations
over the ro-vibrational quantum numbers greatly increases the number of coupled
channels.

Coupled equations of this type have been studied by many workers. For example,
Arthurs and Dalgarno [26] first obtained coupled equations describing the scattering
of an electron by a rigid rotator which have been widely applied. Also, Chandra and
Temkin [207, 208] used a hybrid theory in a study of electron collisions with N2
molecules in the neighbourhood of the low-energy 2$g resonance, which included a
summation over vibrational states in (11.35) but which treated the rotational motion
adiabatically. However, in general, the number of channels that have to be included
in (11.35) using this approach becomes prohibitively large for polyatomic molecules
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when ro-vibrational as well as electronic channels are included in the expansion of
the wave function.

11.1.3.3 Frame-Transformation Theory

We now briefly review the frame-transformation theory of Chang and Fano [210]
and we consider its relation to R-matrix theory. Frame-transformation theory, which
has clarified the role of nuclear motion effects in electron–molecule collisions, has
also been influential in the theory of electron–atom collisions. Following early
work by Fano [303], who considered the extension of the quantum defect theory
of Seaton [859] to molecular photoabsorption discussed in Sect. 3.3.4, Chang and
Fano pointed out that the electron–molecule interaction exhibits qualitatively dif-
ferent physical features when the radial distance r of the scattered electron from
the centre of gravity of the molecule lies in different regions. This enables different
analytic and computational procedures to be adopted in these different regions, in
analogy with the different computational procedures adopted in different regions of
configuration space in R-matrix theory.

We illustrate the main features adopted in the partitioning of configuration space
in frame-transformation theory in Fig. 11.3a where we compare it with the parti-
tioning of configuration space adopted in R-matrix theory in Fig. 11.3b. We see in
Fig. 11.3a that if the vibrational motion of the nuclei is not considered in frame-
transformation theory, configuration space is sub-divided into two regions A and B.
In region A, where r ≤ b2, the molecular frame of reference can be used to describe
the collision and the (N + 1)-electron collision complex can be described as in
molecular bound-state calculations. At larger distances in region B, where r > b2,
the coupling of the scattered electron to the molecular axis no longer dominates
and the laboratory frame of reference should be used. However, if the vibrational
motion is considered, region A must be partitioned into two sub-regions Aa and
Ab. In sub-region Aa, where r ≤ b1, the scattered electron spends only a short time
compared with the vibration time so that the Born–Oppenheimer approximation
separation of the nuclear and electronic motion is appropriate and the problem can
be solved as a function of the internuclear separation. On the other hand in region
Ab where b1 ≤ r < b2, the vibrational motion must be included non-adiabatically,
particularly in the description of collisions at energies in the neighbourhood of nar-
row resonances or close to thresholds.

We now consider the partitioning of configuration space adopted in R-matrix
theory shown in Fig. 11.3b and also in more detail in Fig. 11.2. We see that in
R-matrix theory partitioning of configuration space is determined by the need to
include electron–electron exchange and correlation effects in the internal region
r ≤ a0, where the scattered electron penetrates the electronic cloud corresponding to
the molecular target states of interest. An antisymmetrized multicentre configuration
interaction expansion of the total electron–molecule wave function in the molecular
frame of reference is adopted in this region. However, when r > a0, the scattered
electron lies outside the target electronic cloud and moves in the long-range mul-
tipole potential of the residual molecule including polarization terms which can be
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Fig. 11.3 Partitioning of configuration space in electron–molecule collisions as a function of the
radial coordinate r of the scattered electron: (a) in frame-transformation theory, (b) in R-matrix
theory

conveniently represented by a single-centre expansion. If rotational and vibrational
motion of the molecule is being considered, then a transformation from the molec-
ular frame of reference to the laboratory frame of reference is applied to the single-
centre wave function at r = a0, as required in frame-transformation theory dis-
cussed above. However, although a0 is shown to be less than b1 in Fig. 11.3 this
may not be the case when electron collisions with excited molecular states are con-
sidered. In this case a0 may need to be greater than b1 in order to include electron
exchange and correlation effects arising from the long-range tail of the excited state
wave functions. In this case, since the representation of electron exchange by the
usual antisymmetrized wave function requires that the whole of the internal region
is treated uniformly, then the vibrational motion must be included explicitly in the
whole of the internal region r ≤ a0, as discussed in our treatment of non-adiabatic
R-matrix theory in Sect. 11.1.4.

Finally we note that frame-transformation theory must be extended to enable
dissociative processes as well as rotational, vibrational and electronic processes to
be calculated. In this case, as well as including the dependence on the radial coordi-
nate r of the scattered electron it is also necessary to consider the dependence on the
internuclear coordinate of the dissociating atoms. We consider this additional degree
of freedom when we describe non-adiabatic R-matrix theory of electron–molecule
collisions in Sect. 11.1.4.

11.1.4 Non-adiabatic R-Matrix Theory

In this section we describe non-adiabatic R-matrix theory of electron–molecule col-
lisions, introduced by Schneider et al. [829] and generalized by Gillan et al. [373],
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which enables dissociative processes as well as vibrational and electronic excitation
processes to be calculated. In the case of diatomic molecules or molecular ions this
theory enables the following processes to be studied:

e− + ABiv → ABiv + e− elastic scattering

→ ABi ′v′ + e− vibrational and electronic excitation

→ Ai ′ + B−i ′ dissociative attachment/recombination

→ Ai ′′ + Bi ′′ + e− dissociation,

(11.37)

where i , i ′ and i ′′ label the electronic states of the molecule and dissociating atoms
or ions and v and v′ label the vibrational states of the molecule. We have not
included the rotational quantum number j in (11.37) since rotational transitions
can usually be included adiabatically as discussed in Sect. 11.1.3.

In non-adiabatic R-matrix theory we solve the following time-independent
Schrödinger equation:

(HN+1 + TR)Ψ (XN+1; R) = EΨ (XN+1; R), (11.38)

where the molecular frame of reference adopted for electron collisions with
diatomic molecules is illustrated in Fig. 11.1. In (11.38), Ψ (XN+1; R) is the total
wave function describing the processes defined by (11.37), HN+1 is the fixed-nuclei
Hamiltonian defined by (11.10) and TR is the nuclear kinetic energy operator which
is approximated by

TR = − 1

2μ

d2

dR2
, (11.39)

where μ is the reduced mass of the two nuclei and R is the internuclear separation.
Also, the z-axis is chosen to lie along the internuclear axis, or along an axis of
symmetry in the case of polyatomic molecules, where we assume that the molecule
does not rotate appreciably during the collision.

In order to solve the Schrödinger equation (11.38) we partition configuration
space into internal, external and asymptotic regions as illustrated in Fig. 11.4, which
we see is analogous to the partitioning of configuration space in positron–atom col-
lisions including positronium formation, given in Fig. 7.2.

In the internal region in Fig. 11.4 where 0 ≤ r ≤ a0 and Ain ≤ R ≤ A0
all the particles are strongly interacting. The electron–molecule complex can then
dissociate either into electron–molecule collision channels, where the molecule can
be vibrationally or electronically excited, or into an atom and a negative ion or
into two atoms, corresponding to dissociative attachment/recombination or disso-
ciation channels. The radius r = a0 is chosen so that the electronic states of the
target molecule of interest have negligible amplitudes for r ≥ a0. The inner radius
R = Ain is chosen to exclude the nuclear Coulomb repulsion singularity at R = 0,
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Fig. 11.4 Partitioning of configuration space in non-adiabatic R-matrix theory of electron–
molecule collisions leading to molecular vibrational and electronic excitation and to dissociative
attachment or dissociative recombination

where the wave function describing the molecular nuclear motion is negligible.
Finally, the radius R = A0 is chosen so that the target vibrational states of interest
have negligible amplitude for R ≥ A0. In the external region corresponding to
electron–molecule collisions, where a0 ≤ r ≤ ap, the scattered electron moves in
the long-range potential of the residual molecule, and in the external region corre-
sponding to dissociation, where A0 ≤ R ≤ Aq , the dissociating atoms or ions move
in the long-range multipole potential interaction between them. In these regions the
potential interactions between the scattered particles are strong and must be treated
by solving the resultant differential equations using accurate numerical propagation
methods. Finally, in the asymptotic regions where for electron–molecule collisions
r ≥ ap and for atom–atom or atom–ion collisions R ≥ Aq , the solutions can be
obtained using asymptotic expansions which enable the K -matrix and S-matrix to
be determined. We now consider the solutions in the internal, external and asymp-
totic regions in turn.

11.1.4.1 Internal Region Solution

The solution of (11.38) in the internal region in Fig. 11.4 can be written in analogy
with (11.11) as follows:

ΨΔj E (XN+1; R) =
∑

k

ΘΔk (XN+1; R)AΔk j (E), (11.40)
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where j labels the linearly independent solutions of (11.38) at the energy E , ΘΔk
are energy-independent basis functions and AΔk j (E) are energy-dependent expansion
coefficients, which depend on the asymptotic boundary conditions satisfied by the
wave function ΨΔj E at the energy E . We now expand the basis functions in the inter-
nal region as follows:

ΘΔk (XN+1; R) =
∑

is

ψΔi (XN+1; R)ζs(R)c
Δ
isk, (11.41)

where the ψΔi are the fixed-nuclei R-matrix electronic basis functions defined by
(11.12) and (11.13), which are solved over a mesh of fixed internuclear separations
R spanning the range Ain ≤ R ≤ A0 in Fig. 11.4, and the ζs(R) are linearly
independent basis functions representing the nuclear motion, which are members
of a complete set over this range. In practice shifted Legendre polynomials are often
used to represent this basis.

The next step in determining the solution of (11.38) in the internal region is to
diagonalize the operator HN+1 + TR + LN+1 + LR in the basis (11.41), where the
Bloch operators LN+1 and LR are introduced so that HN+1 + TR + LN+1 + LR is
hermitian in a basis of quadratically integrable functions defined over the internal
region and satisfying arbitrary boundary conditions on the boundaries of this region.
We have already defined LN+1 by (11.14) such that HN+1 + LN+1 is hermitian for
fixed internuclear separation R. The Bloch operator LR , which is defined by

LR = 1

2μ

[
δ(R − A0)

(
d

dR
− B0

R

)
− δ(R − Ain)

(
d

dR
− Bin

R

)]
, (11.42)

where B0 and Bin are arbitrary constants, is such that TR +LR is hermitian over the
range Ain ≤ R ≤ A0. It follows that HN+1+TR+LN+1+LR satisfies the required
hermitian property.

In diagonalizing the operator HN+1 + TR + LN+1 + LR in the basis (11.41)
we assume, in accordance with the Born–Oppenheimer (BO) approximation, that
the contributions from the nuclear kinetic energy operator TR acting on the elec-
tronic basis functions ψΔi are small and can be neglected. This assumption can be
understood, following the discussion by Schneider [823], by observing that while
the adiabatic-nuclei approximation breaks down for low-energy electron collisions,
which led to the hybrid theory of Chandra and Temkin [207, 208] discussed in Sect.
11.1.3.2, the electronic and vibrational degrees of freedom of the compound (N+1)-
electron system can still be separated as in the BO approximation. The appropriate
expansion of the total wave function for the BO approximation to be valid is thus
given in terms of electronic states of the compound (N + 1)-electron system. In
R-matrix theory these compound states are the fixed-nuclei (N +1)-electronic basis
functions ψΔi in expansion (11.41). Hence, using the BO approximation we can
write
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〈ΘΔk |HN+1 + TR + LN+1 + LR |ΘΔk′ 〉int

=
∑

is

∑
i ′s′
〈ψΔi ζs |HN+1 + TR + LN+1 + LR |ψΔi ′ ζs′ 〉int cΔisk cΔi ′s′k′

= 〈ξΔi t |TR + EΔi (R)+ LR |ξΔi ′t ′ 〉int δi i ′

= εΔi t δi i ′ δt t ′, (11.43)

where we have used (11.13), remembering that the energy EΔk in (11.13) is now a
function of the internuclear separation R. Also in (11.43) we have introduced the
vibrational functions ξΔi t , representing the nuclear motion in the i th electronic state
ψΔi , which are determined by diagonalizing the operator TR+EΔi (R)+LR for each
i th electronic state in the zero-order basis ζs . Hence we have written

ξΔi t (R) =
∑

s

ζs(R)c
Δ
isk, (11.44)

where the subscript t goes over the range 1 to nv for each i , where nv is the number
of zero-order basis functions ζs retained in expansion (11.41). Hence for a given i ,
the subscripts t and k in (11.44) are related by

t = k − (i − 1)nv. (11.45)

Equation (11.38) can now be solved in the internal region for each set of conserved
quantum numbers Δ by rewriting it as follows:

(HN+1 + TR + LN+1 + LR − E)Ψ Δj E = (LN+1 + LR)Ψ
Δ
j E , (11.46)

which has the formal solution

ΨΔj E = (HN+1 + TR + LN+1 + LR − E)−1 (LN+1 + LR)Ψ
Δ
j E , (11.47)

where, using (11.41) and (11.43), the inverse operator in (11.47) can be written as

(HN+1 + TR + LN+1 + LR − E)−1 =
∑

i t

|ψΔi ξΔi t 〉〈ψΔi ξΔi t |
εΔi t − E

. (11.48)

Also we introduce the channel functions θΔiv corresponding to vibrational and elec-
tronic excitation in (11.37) defined by

θΔiv(XN ; r̂N+1σN+1; R) = ΦΔi (XN ; r̂N+1σN+1)ηiv(R) (11.49)

and the channel functions corresponding to dissociative attachment and dissociative
recombination in (11.37) defined by



11.1 Electron Collisions with Molecules 553

φΔi (XN+1) =
[
ψAi ′ (XA)⊗ ψBi ′′ (XB)

]Δ
i . (11.50)

In (11.49) Φ
Δ

i are the fixed-nuclei channel functions introduced in (11.12), which
depend parametrically on the internuclear separation R, and ηiv are vibrational wave
functions for the molecule in the i th electronic state. Also in (11.50), ψAi ′ and ψBi ′′
are wave functions of the dissociating atoms or ions A and B, with electronic space
and spin coordinates denoted by XA and XB , respectively, which are coupled to give
eigenstates labelled i , belonging to the conserved quantum numbersΔ. Dissociation
in (11.37) can be represented in this theory by including additional pseudostate
channel functions θΔiv , defined by (11.49), representing the vibrational continuum
spectrum of ABiv , in analogy with our treatment of ionization in Sect. 6.2.

We can then determine the R-matrix on the boundaries of the internal region in
Fig. 11.4 by substituting the representation for (HN+1 + TR +LN+1 +LR − E)−1

given by (11.48) into (11.47), projecting onto the channel functions θΔiv and φΔi and
evaluating the projected equations at r = a0 and R = A0. We obtain

FΔiv j (a0) =
∑
i ′v′

RΔivi ′v′(E)

(
a0

dFΔi ′v′ j
dr

− b0 FΔi ′v′ j

)
r = a0

+
∑

i ′
RΔivi ′(E)

(
A0

dGΔi ′ j
dR

− B0GΔi ′ j

)
R= A0

(11.51)

and

GΔi j (A0) =
∑
i ′v′

RΔi i ′v′(E)

(
a0

dFΔi ′v′ j
dr

− b0 FΔi ′v′ j

)
r = a0

+
∑

i ′
RΔi i ′(E)

(
A0

dGΔi ′ j
dR

− B0GΔi ′ j

)
R= A0

, (11.52)

where the second term in the Bloch operator LR defined by (11.42) does not con-
tribute since Ain is chosen so that the wave functions describing the vibrational
motion of the nuclei and their derivatives are negligibly small for R ≤ Ain.

The reduced radial wave functions FΔiv j (r) in (11.51) and (11.52) are obtained

by projecting the total wave function ΨΔj E (XN+1; R) onto the channel functions
defined by (11.49) as follows:

FΔiv j (rN+1) = 〈r−1
N+1θ

Δ
iv(XN ; r̂N+1σN+1; R)|ΨΔj E (XN+1; R)〉′, (11.53)

and the radial wave functions GΔi j (R) in (11.51) and (11.52) are obtained by pro-

jecting the total wave function ΨΔj E (XN+1; R) onto the channel functions defined
by (11.50) as follows:
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GΔi j (R) = 〈φΔi (XN+1)|ΨΔj E (XN+1; R)〉′, (11.54)

where the primes on the Dirac brackets in these equations mean that the integrations
are carried out over all coordinates except rN+1 in (11.53) and except R in (11.54).
Also the R-matrices in (11.51) and (11.52) are defined by

RΔivi ′v′(E) =
1

2a0

∑
kt

wΔivktw
Δ
i ′v′kt

εkt − E
, (11.55)

RΔivi ′(E) =
1

2μA0

∑
kt

wΔivktw
Δ
i ′kt

εkt − E
, (11.56)

RΔi i ′v′(E) =
1

2a0

∑
kt

wΔiktw
Δ
i ′v′kt

εkt − E
, (11.57)

RΔi i ′(E) =
1

2μA0

∑
kt

wΔiktw
Δ
i ′kt

εkt − E
, (11.58)

where the surface amplitudes in (11.55), (11.56), (11.57) and (11.58) are defined by

wΔivkt = 〈r−1
N+1θ

Δ
iv(XN ; r̂N+1σN+1; R)|ψΔk (XN+1; R)ξkt (R)〉′rN+1 = a0

, (11.59)

wΔikt = 〈φΔi (XN+1)|ψΔk (XN+1; R)ξkt (R)〉′R= A0
. (11.60)

Substituting the expressions for the R-matrices given by (11.55), (11.56), (11.57)
and (11.58) into (11.51) and (11.52) provides the boundary conditions satisfied by
the solutions of (11.38) in the external region considered below.

The above procedure for calculating the R-matrices has proved to be satisfactory
in most applications. However, Gillan et al. [373] pointed out that this procedure
must be modified in situations where there are strongly avoided crossings between
the eigenvalues EΔk in (11.13) as a function of the internuclear separation R. In
this situation the Born–Oppenheimer approximation separation of the electronic and
nuclear motion is not valid in the neighbourhood of these avoided crossings and, as
a result, the effect of the nuclear kinetic energy operator TR , acting on the electronic
basis functions ψΔk in (11.43), is no longer negligible. In principle this effect, which
couples the electronic states involved in the avoided crossings, can be calculated.
However, an alternative procedure, which is straightforward to apply, was proposed
by Gillan et al. They replaced the expansion basis defined by (11.41) by a modified
expansion given by

ΘΔk (XN+1; R) =
∑

is

ψΔi (XN+1; R0)ζs(R)γ
Δ
isk, (11.61)
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where the electronic basis functions ψΔi in this expansion are defined for a given
fixed internuclear separation R0 and are thus independent of R. The diagonalization
of the Hamiltonian HN+1 + TR + LN+1 + LR is then more difficult to apply than
that given by (11.43) since the electronic basis functions no longer diagonalize the
electronic part of the Hamiltonian except at R = R0. However, a practical proce-
dure for treating this problem was described by Gillan et al. which was used in a
study of electron collisions with nitrogen molecules. This work has been extended
to molecular ions where Rydberg series of resonances occur and to study disso-
ciative recombination (Sarpal et al. [813]) and vibrational excitation (Rabadán and
Tennyson [763]).

11.1.4.2 External Region Solution

The external region, defined in Fig. 11.4, can be divided into two sub-regions,
corresponding to electron–molecule collisions and to dissociation. In the follow-
ing discussion we assume that the corresponding radii a0 and A0 are chosen large
enough so that for the channels of interest the corresponding wave functions in these
external sub-regions have negligible overlap.

In the external sub-region corresponding to electron–molecule collisions, we
expand the total wave function in terms of the channel functions θΔiv , defined by
(11.49) as follows:

ΨΔj E (XN+1; R) =
∑
iv

θΔiv(XN ; r̂N+1σN+1; R)r−1
N+1 FΔiv j (rN+1). (11.62)

We substitute this expansion into the Schrödinger equation (11.38) and project it
onto the channel functions θΔiv . This yields the following set of p = nnv cou-
pled second-order differential equations satisfied by the reduced radial functions
FΔiv j (r):

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z A + Z B − N )

r
+ k2

iv

)
FΔiv j (r)

= 2
n∑

i ′=1

nv∑
v′=1

VΔivi ′v′(r)F
Δ
i ′v′ j (r), i = 1, . . . , n, v = 1, . . . , nv, r ≥ a0, (11.63)

where we assume that n electronic channels each with nv vibrational states have
been retained in expansion (11.62). Also in (11.63)

k2
iv = 2(E − Eiv), i = 1, . . . , n, v = 1, . . . , nv, (11.64)

where Eiv is the energy of the vth vibrational state in the i th electronic channel
which is defined by

Eiv = 〈ηiv(R)|ei |ηiv(R)〉, i = 1, . . . , n, v = 1, . . . , nv. (11.65)
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The energies ei in (11.65), which are functions of the internuclear separation R, are
defined by (11.24) in the fixed-nuclei approximation. Finally, the potential matrix
VΔivi ′v′(r) in (11.63) is defined by

VΔivi ′v′(r) = 〈ηiv(R)|VΔi i ′(r)|ηi ′v′(R)〉, (11.66)

which can be written as a summation over inverse powers of r as follows:

VΔivi ′v′(r) =
∞∑
λ=1

aΔivi ′v′λr
−λ−1, i, i ′ = 1, . . . , n,

v, v′ = 1, . . . , nv, r ≥ a0, (11.67)

where the potential matrix VΔi i ′ (r) in (11.66), which is a function of the internuclear
separation R, is defined by (11.25) in the fixed-nuclei approximation.

In the external sub-region corresponding to dissociative attachment or disso-
ciative recombination, we expand the total wave function in terms of the channel
functions defined by (11.50) as follows:

ΨΔj E (XN+1; R) =
∑

i

φΔi (XN+1)G
Δ
i j (R). (11.68)

In order to derive coupled second-order differential equations satisfied by the radial
functions GΔi j (R), we rewrite the Hamiltonian HN+1 in (11.38) in the following
alternative form:

HN+1 = HA + HB +UAB, (11.69)

where HA and HB are the Hamiltonian operators corresponding to the dissociating
atoms or ions in (11.37), which we assume contain NA and NB electrons, respec-
tively, and UAB is the long-range multipole potential interaction between these
atoms or ions. We now substitute expansion (11.68) into the Schrödinger equation
(11.38) and project it onto the channel functions φΔi . This yields the following set
of m coupled second-order differential equations satisfied by the radial functions
GΔi j (r):

(
d2

dR2
− 2μ(Z A − NA)(Z B − NB)

R
+ k2

i

)
GΔi j (R)

= 2μ
m∑

i ′=1

UΔ
i i ′(R)G

Δ
i ′ j (R), i = 1, . . . ,m, R ≥ A0, (11.70)

where we assume that m dissociation channels have been retained in expansion
(11.68). Also in (11.70) we have defined
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k2
i = 2μ(E − E Ai − EBi ), (11.71)

where E Ai and EBi are the energies of the atomic states defined by

〈ψAi (XA)|HA|ψAi ′ (XA)〉 = E Ai δi i ′ (11.72)

and

〈ψBi (XB)|HB |ψBi ′ (XB)〉 = EBi δi i ′ . (11.73)

Finally, the potential matrix UΔ
i i ′(R) in (11.70) is defined in terms of the Coulomb

interaction term UAB in (11.69) by

UΔ
i i ′(R) =

〈
φΔi (XN+1)

∣∣∣∣UAB(XN+1; R)− (Z A − NA)(Z B − NB)

R

∣∣∣∣
× φΔi ′ (XN+1)

〉
, (11.74)

where the integrals in this equation are carried out over the space and spin coordi-
nates of all N+1 electrons. We then find that UΔ

i i ′(R) can be written as a summation
over inverse powers of R as follows:

UΔ
i i ′(R) =

∞∑
λ=1

AΔi i ′λR−λ−1, i, i ′ = 1, . . . ,m, R ≥ A0, (11.75)

where AΔi i ′λ are long-range potential coefficients.
The generalized (p + m)× (p + m)-dimensional R-matrix, defined by (11.55),

(11.56), (11.57) and (11.58), can be propagated outwards from the boundaries of the
internal region r = a0 and R = A0 to r = ap and R = Aq in Fig. 11.4 by solv-
ing the two sets of coupled second-order differential equations (11.63) and (11.70)
where channels in different sets are not coupled, using the procedure described in
Appendix E.6. The R-matrix at r = ap and R = Aq then provides the boundary
condition for the solution in the asymptotic region.

11.1.4.3 Asymptotic Region Solution

The solution in the asymptotic region, where r ≥ ap and R ≥ Aq in Fig. 11.4,
can be obtained by a procedure analogous to our treatment of the asymptotic region
solution in positron collisions with atoms and ions given in Sect. 7.1.4. We assume
that we have chosen the radii ap and Aq in Fig. 11.4 large enough that asymptotic
expansion methods discussed in Appendix F.1 can be used to obtain accurate lin-
early independent solutions of (11.63) where r ≥ ap and of (11.70) where R ≥ Aq .

We consider first the linearly independent solutions of (11.63) corresponding to
electron–molecule collisions. We re-order the p = nnv coupled channels to be in
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increasing energy order and we introduce the quantities k
2
i , i = 1, . . . , p, distin-

guished by a bar, corresponding to the re-ordered k2
iv in (11.64) so that

k
2
1 ≥ k

2
2 ≥ · · · ≥ k

2
p. (11.76)

We then assume that at the energy E of interest the first pa of the re-ordered channels

are open with k
2
i ≥ 0 and the last pb channels are closed with k

2
i < 0, where

pa + pb = p. Using the asymptotic expansion methods discussed in Appendix F.1,
we then determine n+na linearly independent solutions of the re-ordered equations
(11.63), which are regular as the radial coordinate of the scattered electron r →∞
and which satisfy the asymptotic boundary conditions

si j (r) ∼
r→∞ k

−1/2
i sin θ iδi j , i = 1, . . . , p, j = 1, . . . , pa,

ci j (r) ∼
r→∞ k

−1/2
i cos θ iδi j , i = 1, . . . , p, j = 1, . . . , pa,

ci j (r) ∼
r→∞ exp(−φi )δi j , i = 1, . . . , p, j = pa + 1, . . . , p, (11.77)

where θ i and φi are defined by equations analogous to (5.38), (5.39), (5.40) and
(5.41).

We consider next the linearly independent solutions of (11.70) corresponding to
dissociative attachment or dissociative recombination. We assume that the m cou-
pled channels, which we distinguish by a tilde, are ordered so that

k̃ 2
1 ≥ k̃ 2

2 ≥ · · · ≥ k̃ 2
m, (11.78)

where the k̃ 2
i correspond to the re-ordered quantities k2

i defined by (11.71). We now
assume that at the energy E of interest the first ma channels are open with k̃ 2

i ≥ 0
and the last mb channels are closed with k̃ 2

i < 0, where ma + mb = m. Using the
asymptotic expansion methods discussed in Appendix F.1, we then determine m +
ma linearly independent solutions of (11.70), which are regular as the internuclear
separation R →∞ and which satisfy the asymptotic boundary conditions

s̃i j (R) ∼
R→∞ k̃ −1/2

i sin θ̃iδi j , i = 1, . . . ,m, j = 1, . . . ,ma,

c̃i j (R) ∼
R→∞ k̃ −1/2

i cos θ̃iδi j , i = 1, . . . ,m, j = 1, . . . ,ma,

c̃i j (R) ∼
R→∞ exp(−φ̃i )δi j , i = 1, . . . ,m, j = ma + 1, . . . ,m, (11.79)

where θ̃i and φ̃i are again defined by equations analogous to (5.38), (5.39), (5.40)
and (5.41).

We now observe that at an energy E where pa channels of (11.63) are open and
ma channels of (11.70) are open, we can determine pa + ma linearly independent
physical solutions of the combined internal and external region equations, which
vanish at the origin and which are finite at infinity. In analogy with (7.50), these
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solutions can be rewritten in terms of the p + pa asymptotic solutions defined by
(11.77) and the m + ma asymptotic solutions defined by (11.79) as follows:

FΔ(ρ) = s(ρ)+ c(ρ)NΔ, r ≥ ap, R ≥ Aq , (11.80)

where we have written s(ρ) to represent s(r) and s̃(R) and c(ρ) to represent c(r)
and c̃(R) and where the variable ρ represents r in the channels corresponding to
(11.63) and R in the channels corresponding to (11.70). It then follows using our
analysis in Sect. 7.1.4 that the matrix NΔ has dimension (p + m)× (pa + ma) and
can be written as

NΔ =
[

KΔ

LΔ

]
, (11.81)

where KΔ is the (pa +ma)× (pa +ma)-dimensional K -matrix which couples the
open channels in (11.63) and (11.70) and LΔ is a subsidiary (pb+mb)×(pa+ma)-
dimensional matrix which couples the solutions in (11.77) and (11.79) which vanish
asymptotically.

It then follows from our analysis in Sect. 7.1.4 that the (pa +ma)× (pa +ma)-
dimensional K -matrix KΔ in (11.81) corresponding to the open channels in (11.63)
and (11.70) can be determined in terms of the (p + m) × (p + m)-dimensional
R-matrix obtained on the boundaries r = ap and R = Aq of the external region by
solving a set of linear simultaneous equations analogous to (7.54). Also it follows
from (11.80) that the required physical solutions satisfy the asymptotic boundary
condition

FΔ(ρ) ∼
ρ→∞s(ρ)+ c(ρ)KΔ (11.82)

in the open channels where, following our discussion in Sect. 7.1.4, the first pa

channels in (11.82) correspond to open electron–molecule collision channels, and
the last ma channels in (11.82) correspond to open dissociation channels. Hence the
(pa + ma) × (pa + ma)-dimensional K -matrix KΔ couples the pa open electron–
molecule channels and the ma open dissociation channels. Finally, the (pa +ma)×
(pa +ma)-dimensional S-matrix SΔ is defined in terms of the K -matrix KΔ by the
matrix equation

SΔ = I+ iKΔ

I− iKΔ
. (11.83)

The corresponding T -matrix and cross sections for electron–molecule collisions
including dissociative attachment and dissociative recombination in (11.37) can
then be determined. We obtain expressions for the scattering amplitude and cross
sections for electron collisions with diatomic and linear polyatomic molecules in
Sect. 11.1.6.
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11.1.5 Resonant R-Matrix Theory

We conclude our discussion of R-matrix theory of electron–molecule collisions by
briefly describing a semi-phenomenological resonant R-matrix theory, introduced
and developed by Fabrikant [292–295], which has enabled low-energy resonant
electron impact vibrational excitation and dissociative processes to be calculated
for both diatomic and polyatomic molecules.

The fundamental assumption made in electron–molecule resonant R-matrix the-
ory is that at low incident electron energies, vibrational excitation and dissociation
cross sections are caused by a single discrete low-energy resonance state. This the-
ory, which we illustrate by considering a single electronic channel, commences from
the following resonant expression for the R-matrix in the fixed-nuclei approxima-
tion on the boundary r = a0 of the internal region

R(ρ) = γ 2(ρ)

E1(ρ)− Ee
+ Rr , (11.84)

where r is the radial coordinate of the scattered electron relative to the centre-of-
gravity of the molecule. Also in (11.84), ρ is the internuclear distance, Ee is the
incident electron energy, γ (ρ) and E1(ρ) are the usual resonance parameters and
Rr is a background term which is weakly dependent on ρ and Ee. The vibrational
dynamics is then included, as in non-adiabatic R-matrix theory, by the R-matrix

R(ρ) = γ (ρ) [HI (ρ)− Et I]−1 γ T(ρ)+ Rr , (11.85)

which couples the vibrational channels including the continuum, where the
Hamiltonian

HI (ρ) = T+ U(ρ), (11.86)

with

U(ρ) = V0(ρ)+ E1(ρ). (11.87)

In these equations T is the kinetic energy operator for nuclear motion, V0(ρ) is the
potential energy function describing the nuclear motion and Et is the total energy.

In the external and asymptotic regions, where the radial coordinate of the scat-
tered electron r ≥ a0, the solution is given in terms of the vibrational wave functions
of the target molecule which involve a summation over the discrete vibrational states
and an integration over the vibrational continuum states corresponding to dissoci-
ation. The reduced radial wave function u(r), with vibrational components uv(r),
can then be written asymptotically in terms of ingoing and outgoing wave functions
as follows:

u(r) ∼
r→∞k−1/2 [exp(−iθ)− exp(iθ)S

]
, (11.88)
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where k and θ are diagonal matrices and S is the S-matrix. This matrix, and hence
the scattering amplitudes and cross sections, is determined by substituting the solu-
tion u(r) at r = a0 into the R-matrix equation

u(a0) = R(ρ)
du
dr

∣∣∣∣
r = a0

. (11.89)

In practice, u(r) is often determined for a0 ≤ r ≤ ∞ by retaining the main compo-
nents of the long-range interaction potential between the scattered electron and the
molecule in the calculation, given by (11.6).

In comparing this analysis with that adopted in non-adiabatic R-matrix theory,
discussed in Sect. 11.1.4, we can make several observations. First, it follows from
(11.84) and (11.85) that the electronic motion is represented by a single pole term
in the R-matrix which describes low-energy resonant vibrational excitation and
dissociative attachment, whereas in non-adiabatic R-matrix theory the R-matrix is
described by many pole terms, providing an ab initio description of both resonant
and non-resonant collisions over a wide energy range. Also, the internal region
boundary r = a0 is usually larger in non-adiabatic R-matrix theory in order to
fully include electron exchange effects between the scattered electron and the target
molecule. Finally, in non-adiabatic theory the long-range potential between the scat-
tered electron and the target is fully retained in the external and asymptotic regions.
As a result, non-adiabatic R-matrix calculations are much larger than those arising
in resonant R-matrix theory discussed in this section. However, the relative simplic-
ity of electron–molecule resonant R-matrix theory, and of the corresponding calcu-
lations, enables the role of resonances in low-energy electron–molecule collisions to
be rapidly determined and evaluated, which can be a valuable guide to experiment
and to more detailed theoretical studies using, for example, non-adiabatic R-matrix
theory.

Finally, we mention a number of applications of electron–molecule resonant R-
matrix theory that have been carried out. They include electron impact vibrational
excitation of HCl by Fabrikant [292, 295], vibrational resonance and threshold
effects in inelastic electron collisions with methyl iodide molecules by Schramm
et al. [833], dissociative electron attachment to CH3I by Fabrikant and Hartop [297]
and electron attachment to van der Waal’s clusters by Fabrikant [296].

11.1.6 Scattering Amplitudes and Cross Sections

In this section we derive expressions for the electron–molecule scattering ampli-
tudes and cross sections, which extend our analysis given in Sect. 2.5 where we
considered electron collisions with atoms and atomic ions. We limit our discus-
sion to diatomic and linear polyatomic molecules. However, the analysis has been
extended to electron collisions with non-linear polyatomic molecules by Burke et al.
[179] and by Gianturco and Jain [369].
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Fig. 11.5 Laboratory frame
for electron–molecule
collisions scattered

electron beam

z
θ φ

incident electron
beam

We consider first the scattering amplitude and cross section in the fixed-nuclei
approximation discussed in Sect. 11.1.2. We commence by introducing the labo-
ratory frame of reference, illustrated in Fig. 11.5, where the z′-axis is taken to lie
along the incident electron beam direction and the scattered beam is in the direction
(θ ′, φ′) relative to this direction. In this frame of reference the molecular frame of
reference, illustrated in Fig. 11.1, is oriented in a direction defined by the Euler
angles α, β, γ , discussed in Appendix B.5, which take the laboratory frame of
reference into the molecular frame of reference.

The asymptotic form of the solution of the time-independent Schrödinger equa-
tion (11.9) can be written in the laboratory frame of reference as

Ψi = Ψ inc
i + Ψ scatt

i , (11.90)

where the incident plane wave

Ψ inc
i

∼
r ′N+1→∞

Φi (XN )χ 1
2 mi
(σN+1) exp(iki z

′
N+1), (11.91)

and the outgoing scattered wave

Ψ scatt
i

∼
r ′N+1→∞

∑
j

Φ j (XN )χ 1
2 m j
(σN+1) f j i (θ

′
N+1, φ

′
N+1)

exp(ik jr ′N+1)

r ′N+1
, (11.92)

where we assume that the molecule is neutral. In (11.91) and (11.92) Φi and Φ j are
the physical and possibly pseudostates retained in expansions (11.12) and (11.21),
χ 1

2 mi
and χ 1

2 m j
are the spin functions of the incident and scattered electron, f j i is

the scattering amplitude and ki and k j are the wave numbers of the incident and scat-
tered electron defined by (11.23). The differential cross section for a transition from
an initial target state Φi to a final target state Φ j with the spin magnetic quantum
numbers mi and m j is then given by

dσ j i

dΩ
= k j

ki
| f j i (θ

′, φ′)|2, (11.93)

in units of a2
0/steradian. We see that the above equations are analogous to those

considered in Sect. 2.5 in our discussion of electron–atom collisions.
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For light diatomic or linear polyatomic molecular targets, where relativistic
effects can be neglected, the conserved quantum numbers represented by Δ in
(11.12) and in subsequent equations are given by

Δ ≡ α Λ S MS π, (11.94)

where Λ = λi + m	i is the component of the total orbital angular momentum of
the electron–molecule system along the internuclear axis, λi and m	i being, respec-
tively, the corresponding components of the orbital angular momenta of the target
and scattered electron, and S and MS are the total spin angular momentum and its
component in some preferred direction, respectively. Also, in the case of a homonu-
clear diatomic molecule, or a linear polyatomic molecule, where the Hamiltonian
is symmetric about its centre of gravity, the parity quantum number π is also con-
served. Finally, α represents any further quantum numbers which are conserved in
the collision.

The channel functions Φ
Δ

i (XN ; r̂N+1σN+1) in (11.12) and (11.21) can then be
written as

Φ
Δ

i (XN ; r̂N+1σN+1) ≡ ΦSMS
i (XN ; σN+1) Y	i m	i

(θN+1, φN+1), (11.95)

where the functions Φ
SMS
i are obtained by coupling the spin of the target with the

spin of the scattered electron as follows:

Φ
SMS
i (XN ; σN+1) =

∑
MSi mi

Φi (XN )χ 1
2 mi
(σN+1)(Si MSi

1
2 mi |SMS), (11.96)

which can be inverted giving

Φi (XN )χ 1
2 mi
(σN+1) =

∑
S

Φ
SMS
i (XN ; σN+1)(Si MSi

1
2 mi |SMS). (11.97)

Also Y	i m	i
(θN+1, φN+1) in (11.95) is a spherical harmonic defined in Appendix

B.3 and (Si MSi
1
2 mi |SMS) in (11.96) and (11.97) are Clebsch–Gordan coefficients

defined in Appendix A.1. The summation over i in (11.12) and (11.21) thus involves

both a summation over the functions Φ
SMS
i and also over the spherical harmon-

ics Y	i m	i
subject to conservation of the quantum numbers represented by Δ.

The incident plane wave, defined by (11.91), can then be written in terms of these
channel functions using (11.97) and (B.53). We obtain

Ψ inc
i

∼
r ′N+1→∞

iπ1/2

kir ′N+1

∑
S	i

i	i (2	i + 1)1/2 Φ
SMS
i (XN ; σN+1)(Si MSi

1
2 mi |SMS)

× [
exp(−iθ ′i )− exp(iθ ′i )

]
Y	i 0(θ

′
N+1, 0), (11.98)
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where θ ′i = kir ′N+1 − 1
2	iπ for neutral molecular targets.

We now expand the solutionΨi , defined by (11.90), in terms of solutions obtained
by solving the Schrödinger equation in the fixed-nuclei approximation as described
in Sect. 11.1.2. Using the channel functions defined by (11.95), the solutions defined
by (11.21) can be written as

ΨΔi (XN+1; R) =
n∑

j=1

Φ
SMS
j (XN ; σN+1)Y	 j m	 j

(θN+1, φN+1)r
−1
N+1GΔj i (rN+1),

(11.99)

where we have introduced the reduced radial wave functions GΔj i (r) which satisfy
S-matrix boundary conditions defined by (11.31). We then expand Ψi in terms of
these solutions as follows:

Ψi (XN+1; R) =
∑
ΛSπ

ΨΔi (XN+1; R)AΔi , (11.100)

where this equation applies for each value of MS which is conserved in the collision.
The coefficients AΔi are obtained by comparing the ingoing wave terms on the right-
hand side of (11.100) with the ingoing wave term in Ψ inc

i , defined by (11.98). In
making this comparison we remember that Ψ inc

i is referred to the laboratory frame
of reference, while ΨΔi in (11.100) is referred to the molecular frame of reference.
Hence we must use the following equation:

Y	m(θ
′, φ′) =

∑
m′

D	∗mm′(α, β, γ )Y	m′(θ, φ), (11.101)

which relates the spherical harmonics in these frames of reference, where
D	mm′(α, β, γ ) are Wigner rotation matrices, which are defined in Appendix B.5
and α, β and γ are Euler angles which transform the laboratory frame of reference
into the molecular frame of reference, as discussed following Fig. 11.5. Substituting
(11.101) into (11.98) and comparing the ingoing wave term with (11.100) then gives

AΔi =
iπ1/2

k1/2
i

i	i (2	i + 1)1/2(Si MSi
1
2 mi |SMS) D	i∗

0m	i
(α, β, γ ). (11.102)

After substituting this expression for AΔi into (11.100) and using (11.90) and (11.92)
we obtain the following result for the scattering amplitude:
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f j i (θ
′, φ′) = −i

(
π

ki k j

)1/2 ∑
ΛSπ

∑
	i m	i 	 j m	 j m	 j ′

i	i−	 j (2	i + 1)1/2

× (Si MSi
1
2 mi |SMS)(S j MS j

1
2 m j |SMS)T

Δ
j i

× D	i∗
0m	i

(α, β, γ )D
	 j
m	 j ′m	 j

(α, β, γ )Y	 j m	 j ′ (θ
′, φ′), (11.103)

where the T -matrix in this equation is defined in terms of the S-matrix by the usual
matrix equation

TΔ = SΔ − I, (11.104)

for each Λ, S and π . Substituting (11.103) for the scattering amplitude into (11.93)
gives an expression for the differential cross section for electrons with spin compo-
nent mi incident on a molecule in state i with spin component MSi and orientation
defined by the Euler angles (α, β, γ ), leading to a scattered electron with spin com-
ponent m j and a molecule in state j with spin component MS j .

If the initial state is unpolarized and we do not observe the spins in the final
state then we must average over initial spin components and sum over final spin
components. Also, if the electrons are scattered from a molecular gas then we must
average over all molecular orientations defined by the Euler angles (α, β, γ ), to
obtain the observed differential cross section. The resultant averaged cross section
is given by

[
dσ j i

dΩ

]
av
= 1

8π2

∫ 2π

0
dα
∫ π

0
sinβdβ

∫ 2π

0
dγ

[
dσ j i

dΩ

]
spin av

. (11.105)

The summation over the spin magnetic quantum numbers can be carried out using
the orthogonality relations satisfied by the Clebsch–Gordan coefficients. The inte-
grals over the Euler angles in (11.105) can be carried out using the orthogonality
relations satisfied by the Wigner rotation matrices.

Finally, the total cross section for a transition from a molecular state represented
by the quantum numbers αiλi Siπi to a state represented by the quantum numbers
α jλ j S jπ j is obtained by integrating the resultant differential cross section over the
scattering angles (θ ′, φ′) defined in Fig. 11.5. We obtain

σTot(i → j) = 1

2k2
i (2Si + 1)

∑
ΛSπ

∑
	i m	i 	 j m	 j

(2S + 1)
∣∣∣TΔj i

∣∣∣2 , (11.106)

in units of πa2
0.



566 11 Collisions with Molecules

11.1.7 Illustrative Examples: N2, O2, N2O, H+
3

In this section we present four illustrative examples of electron–molecule collision
calculations using non-adiabatic R-matrix theory and computer programs.

11.1.7.1 Resonances in Electron Collisions with N2

Resonances have been observed in low-energy electron collisions with nitrogen
molecules by many workers including Schulz [834, 837], Heideman et al. [451],
Golden and Nakano [388], Andrick and Ehrhardt [19], Ehrhardt and Willmann
[286], Kennerly [529] and Allan [10]. In early theoretical work by Herzenberg and
Mandl [461], mentioned in Sect. 11.1.1, it was pointed out that resonances play a
crucial role in vibrational excitation and dissociative attachment and these authors
extended the Kapur–Peierls [521] resonance formalism, originally developed for
resonant collisions in nuclear physics, to treat resonances in electron–molecule col-
lisions.

The analysis of resonances in vibrational excitation of molecules by slow elec-
trons was reviewed by Herzenberg [460] and a “boomerang” model was developed
for resonant e−–N2 collisions by Herzenberg et al. [108, 274, 459] in which the
lifetime of the resonance is such that the nuclei only have time for a single vibra-
tional cycle before the colliding electron departs, after exchanging energy with the
vibrational motion of the nuclei. However, this model, while presenting a convincing
physical picture of the resonant process, involves parameters and does not describe
the non-resonant background.

An ab initio non-adiabatic R-matrix theory of electron–molecule collisions,
which enables resonant vibrational excitation and dissociative attachment cross sec-
tions to be calculated, was introduced by Schneider et al. [829] and is described in
Sect. 11.1.4. The first application of this theory to resonant vibrational excitation of
N2 was made by Schneider et al. [830] who obtained good agreement with vibra-
tional excitation measurements of Ehrhardt and Willmann [286]. More recently this
theory has been extended and applied to N2 by Morgan [659] and by Gillan et al.
[373, 374], where in the work of Morgan cross sections were obtained for electron
impact excitation of vibrational levels up to v = 19 for incident electron energies
in the range 1–7 eV. In the calculations by Morgan, the N2 target was represented
at each internuclear separation by an SCF wave function, and target polarization
effects were taken into account by including in the second expansion in (11.12)
all terms describing two-particle-one-hole excitations. The hole was in one of the
N2 bound-state orbitals and the two particles occupied all possible combinations of
virtual orbitals allowed by the symmetry of the state. In this calculation, a total of
7 σg, 7 σu, 3 πu and 3 πg orbitals were used.

We compare the total cross section calculations of Morgan [659], obtained by
summing the cross sections over all vibrational states, with the absolute measure-
ments of Kennerly [529] in Fig. 11.6. We see that the cross section is dominated by
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Fig. 11.6 Total cross sections
for electron collisions with
N2. Full curve: R-matrix
calculations by Morgan
[659]; broken curve:
experiment by Kennerly
[529] (Fig. 1 from [659])

peaks in the energy range from 2 to 4 eV, which are found to be due to a low-energy
2$g N−2 shape resonance. The overall agreement between theory and experiment
is satisfactory. However, the theoretical positions of the peaks are shifted slightly
to higher energies and are more widely spaced than experiment, which can be
attributed to a small difference between the theoretical N2 ground state potential
energy curve and experiment. A more significant discrepancy between theory and
experiment occurs at low energies below the resonance region where the theoretical
cross section is too high. This discrepancy in the total cross section may be due
to inaccurate representation of the target polarization in the theoretical model and
would probably be removed if the polarization effect is represented by the inclusion
of polarized pseudostates in the R-matrix expansion.

Morgan also compared the results of individual vibrational excitation cross sec-
tions for σ(0→ v) for v =1–19 with relative experimental measurements by Allan
[10]. The experimental features of all the cross sections were well reproduced by the
theory, particularly in the substructure of the lower energy peaks, although again the
peaks in the cross sections are shifted slightly to higher energies and are more widely
spaced than experiment.

In conclusion, the results obtained by Schneider et al. [830], Gillan et al.
[373, 374] and Morgan [659] demonstrate that reliable results for resonant low-
energy vibrational excitations in e–N2 collisions can be obtained using the non-
adiabatic R-matrix theory, described in Sect. 11.1.4, which treats the fixed-nuclei
electron collision problem using the static exchange plus polarization approximation
together with a non-adiabatic treatment of the nuclear motion.
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11.1.7.2 Electron Collisions with O2

A detailed knowledge of low-energy electron molecular oxygen collision cross sec-
tions is of importance in understanding a wide range of processes occurring in the
earth’s upper atmosphere, in gaseous discharges and in laboratory plasmas. Much
experimental and theoretical effort has therefore been given over many years both
to measure and to calculate the low-energy vibrational and electronic excitation
cross sections and to determine the corresponding resonance structure. We show in
Fig. 11.7 the low-energy potential energy curves of O2 and the corresponding curves
of O−2 , which control the low-energy collision processes, calculated by Noble et al.
[691]. The nine O2 target potential energy curves shown in Fig. 11.7 have the assign-
ments

1π4
u 1π2

g X3#−g , a 1�g, b 1#+g (11.107)

Fig. 11.7 Calculated potential energy curves in Rydbergs for O2 target states (full curves) and for
O−2 resonance states (dotted curves) (Fig. 1 from [691])
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and

1π3
u 1π3

g c 1#−u , C3�u, A3#+u , B3#−u , 1�u,
1#+u (11.108)

and the four O−2 resonance curves shown in Fig. 11.7 have the assignments

1π4
u 1π3

g
2$g, 1π3

u 1π4
g

2$u, 1π4
u 1π2

g
3#−g 3σu

4#−u , 1π4
u 1π2

g
3#−g 3σu

2#−u .
(11.109)

In early electronic excitation R-matrix calculations by Noble and Burke [688]
only the three lowest target states of O2, given in (11.107), were included in the
R-matrix expansion. However, in the later work by Noble and Burke [689], Higgins
et al. [471, 472] and Noble et al. [691] all nine target states given in (11.107) and
(11.108) and shown in Fig. 11.7 were included in the R-matrix expansion. In these
9-state calculations, each state was represented by a configuration interaction expan-
sion, including up to 20 basis functions, which yielded relative excitation energies
for the three lowest target states accurate to about 0.2 eV, and relative excitation
energies for the three target states which lie approximately 6 eV above the ground
state accurate to about 0.1 eV.

It was found in the 9-state calculations [471, 689] that the X3#−g → a 1�g and

X3#−g → b 1#+g electronic excitation cross sections were dominated by the 2$g

and 2$u resonances from threshold to 15 eV and were in good agreement with
experiments by Middleton et al. [650]. In addition, it was found in the calculations
by Noble et al. [691] that the 4#−u resonance and, to a lesser extent, the 2#−u res-
onance dominate the vibrational excitation cross sections in the O2 X3#−g ground
state in the incident electron energy range 0–14 eV. We compare these R-matrix
calculations for vibrational excitation from the v = 0 to the v′ = 1, 2, 3, 4 states in
the X3#−g ground state with experiments reported by Noble et al. [691] and Shyn
and Sweeney [875] in Fig. 11.8. The peak in the cross section near 11 eV arises
mainly from the 4#−u shape resonance where the scattered electron is temporarily
captured into the 3σu orbital while the O2 target remains unexcited in its X3#−g
ground state. There is also a significant contribution from the 2#−u shape resonance
above about 10 eV where similar arguments apply. However, the contribution from
the 2$u resonance is small and only plays a significant role at the lowest energies.
We also note from Fig. 11.8 that the peak in the experimental cross section occurs at
a slightly lower energy and is larger than the theoretical predictions. The most likely
cause of this discrepancy is the inadequate representation of the ground state polar-
ization in the 9-state model. Representing the full polarizability by the inclusion of
pseudostates in the expansion, as discussed in Sects. 2.2.2 and 6.2, would further
improve the agreement between theory and experiment. However, we see that there
is good overall agreement between the 9-state R-matrix calculations and experiment
in this energy range.
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Fig. 11.8 Total vibrational
excitation cross sections in
10−18 cm2 from the v = 0 to
the v′ = 1, 2, 3, 4 states for
e−–O2 collisions in the
X3#−g ground electronic
state. Solid line: R-matrix
calculations including only
the 4#−u total symmetry;
dotted line: including in
addition the 2#−u total
symmetry; vertical lines
including error bars:
experiments reported by
Noble et al. [691]; crosses:
experiments by Shyn and
Sweeney [875] (Fig. 2 from
[691])

11.1.7.3 Electron Collisions with N2O

Nitrous oxide is of considerable interest because of its role in a number of important
processes and applications. For example, it has been found to be of considerable
importance in the chemistry of the upper atmosphere where it plays a major role
in the destruction of the ozone layer, discussed for example by Wayn [957]. In
addition, N2O lasers are used in medical applications and the gas is widely used
as an anaesthetic.

There have been a number of experimental measurements of both total and dif-
ferential electron–N2O collision cross sections. Of particular interest in our com-
parison with the R-matrix calculations are total cross section measurements by
Szmytkowski et al. [901, 902]. There have been two calculations, using indepen-
dent polyatomic R-matrix computer programs, carried out by Morgan et al. [661]
and by Sarpal et al. [814]. In the calculations by Morgan et al. two models were
considered: a static-exchange (SE) model and a static-exchange-plus-polarization
(SEP) model. In the SE model the N2O target ground state was included in the
first expansion in (11.12) and the second term in (11.12) was restricted to have the
same form as the first, but with the additional electron occupying one of the virtual
orbitals from the self-consistent-field (SCF) basis used to construct the target ground
state. In the SEP model, the second term in (11.12) was constructed by allowing
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one target electron to be excited from the target ground-state wave function into a
virtual orbital, but the N -electron target part of the wave function was restricted to
have the same spin symmetry as the target wave function used in the first term of
(11.12). In the calculations by Sarpal et al. additional configurations were added in
their SEP model to treat correlation effects in the states corresponding to the lower
R-matrix poles.

We compare the SE and SEP integrated total cross section calculation results
by Morgan et al. [661] with the experiments of Szmytkowski et al. [901, 902] in
Fig. 11.9. The SE calculations of Morgan et al. [661] and Sarpal et al. [814] gave
very similar results. Both calculations found a low-energy 2$ shape resonance just
below 4 eV which can be seen to have a major effect on the total cross section.
However, the two SEP calculations produced somewhat different results. The SEP
calculations of Morgan et al. found the 2$ shape resonance at about 2 eV, close to
but slightly lower than the experiments of Szmytkowski et al. However the Sarpal
et al. calculations placed the SEP resonance at 0.8 eV. It is clear that the differ-
ence between the two SEP calculations is due to the difference in their treatment of
the second L2 term in the R-matrix expansion (11.12). A lack of balance between
configuration interaction effects included in the first term in (11.12), representing
electron correlation in the target, and configuration interaction effects included in
the second term in (11.12), representing target polarization, can lead to errors in the
location and width of the resonance.

Finally, we note that differential cross section results were also reported by Mor-
gan et al. [661] over a range of energies from 5 to 10 eV. These were found to be in
good agreement with experiments by Johnstone and Newell [507] except for some
discrepancies at small and large scattering angles.
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Fig. 11.9 Integrated total cross section for electron–N2O collisions. Full curve: SEP model of
Morgan et al. [661]; broken curve: SE model of Morgan et al. [661]; full circles: experiment by
Szmytkowski et al. [901, 902] (Fig. 1 from [661])
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11.1.7.4 Electron Collisions with H+
3

Finally, we consider intermediate-energy electron–H+3 collision calculations by
Gorfinkiel and Tennyson [404, 405] using a molecular extension of the R-matrix
with pseudostates (M-RMPS) method discussed in Sect. 6.2. This work is partic-
ularly interesting since H+3 , which is the simplest polyatomic molecular ion, is the
dominant ion in low-temperature hydrogen plasmas. It also plays a fundamental role
in interstellar chemistry and has been observed in planetary aurora and diffuse inter-
stellar media where significant populations of energetic electrons are to be found.
We have also mentioned in Sect. 3.3.4 that detailed dissociative recombination cal-
culations have been carried out for this ion, combining multichannel quantum defect
theory with a hyperspherical coordinate representation of the nuclear motion.

In the R-matrix calculations [404] two approximations have been considered.
The first corresponds to an earlier calculation by Faure and Tennyson [312] where
the lowest four target electronic states of H+3 , X1A′1, 3E′, 1E′ and 3A′′2 in D3h sym-
metry were included in the R-matrix expansion. However, since the polyatomic R-
matrix program uses D2h or lower symmetry, the calculation was carried out using
the C2v point group. In this point group the doubly degenerate E′ states split into
A1 and B2 states yielding a 6-state R-matrix calculation corresponding to the X1A1,
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Fig. 11.10 Total cross section for electron impact excitation of the first excited electronic3E′ state
in H+3 from the X1A′1 ground state at low and intermediate energies. Dark full line: 6-state calcula-
tion with no pseudostates; light full line: 64-state M-RMPS calculation; dashed line: fit to 64-state
calculation above the ionization threshold, denoted by I.T. The arrows indicate the second excited
threshold E.T. in each calculation and the I.T (Fig. 1 from [404])
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3A1, 3B2, 1A1, 1B2 and 3B1 target states. In the second calculation, by Gorfinkiel
and Tennyson, a further 58 pseudostates were included in the R-matrix expansion
giving in total a 64-state M-RMPS calculation.

The total cross sections for electron impact excitation of the first excited elec-
tronic 3E′ state from the X1A′1 ground state in the 6-state and 64-state approxima-
tions are presented in Fig. 11.10. We see that these two approximations are in good
agreement at energies below about 20 eV. However, at energies above 20.78 eV, the
energy of the highest target eigenstate included in the expansion, the M-RMPS cal-
culation results in much reduced excitation cross sections due to loss of flux into the
pseudostates. We also observe that the 6-state calculation exhibits more pronounced
pseudoresonance structure at intermediate energies than the 64-state calculation
which is close to a fully converged solution. In conclusion, this calculation shows
that cross sections for electron collisions with simple polyatomic molecules can now
be accurately calculated at both low and intermediate energies.

11.2 Positron Collisions with Molecules

In this section we consider briefly the extension of R-matrix theory to treat positron–
molecule collisions and we present two illustrative examples of recent calculations.
We commence in Sect. 11.2.1 by summarizing the extensions of R-matrix theory
of positron collisions with atoms and ions given in Chap. 7 and R-matrix theory
of electron collisions with molecules given in Sect. 11.1 of this chapter to enable
positron–molecule collision processes to be accurately determined. We then con-
sider the advances that have been made in recent years in positron–molecule col-
lision calculations using R-matrix computer programs. Finally, in Sect. 11.2.2, we
discuss the results of two recent positron–molecule collision calculations. Reviews
of earlier positron–molecule collision theory and calculations have been given by
Armour [22], Armour and Humberston [23] and Surko et al. [898].

11.2.1 R-Matrix Theory and Calculations

In collisions of positrons with molecules the following are the most significant
processes that can occur:

e+ + ABiv → ABiv + e+ elastic scattering

→ ABi ′v′ + e+ vibrational and electronic excitation

→ AB+i ′v′ + e− + e+ ionization

→ AB+i ′v′ + Ps positronium formation

→ Ai ′ + Bi ′ + e+ dissociation,

(11.110)



574 11 Collisions with Molecules

which we see correspond to a combination of processes listed in (7.1) and (11.37).
As in (11.37), we have not included the rotational quantum number j in (11.110)
since rotational transitions can usually be included adiabatically.

The main difference between electron–molecule collision processes listed in
(11.37) and positron–molecule collision processes listed in (11.110) is positronium
formation where a positronium atom is formed leaving the residual molecular ion
in its ground or an excited state. As pointed out in our discussion of positron colli-
sions with atoms and ions in Sect. 7.1, the additional complexity of using antisym-
metrized wave functions in electron collisions is replaced by the greater importance
of including correlation (or polarization) effects due to the strong attraction between
the positron and the electrons in positron collisions. While these effects can be rep-
resented by including additional correlation terms in the expansion of the positron
collision wave function at low energies, it is clear that in order to calculate positro-
nium formation cross sections, positronium formation channels must be included in
the wave function expansion as in (7.13). Indeed, we observed in our discussion of
positron collisions with atoms and ions in Chap. 7 that the inclusion of positronium
formation channels in the wave function expansion is found to be necessary to obtain
accurate positron–atom collision cross sections over a wide energy range as well as
enabling positronium formation cross sections to be determined. We will see in our
discussion of recent positron–molecule collision calculations in Sect. 11.2.2 that
positronium formation channels should also be included in this case as well in order
to obtain accurate collision cross sections for neutral molecules.

Before discussing in more detail two recent positron–molecule collision calcu-
lations in Sect. 11.2.2, we first summarize some important calculations that have
been carried out in recent years using R-matrix theory. In practice most of these cal-
culations have been based on expansions (11.11) and (11.12) in the internal region
where, as discussed above, the antisymmetrization operator in (11.12) is omitted and
additional quadratically integrable functions are included in the second expansion
in (11.12) to allow for short-range positron–electron polarization effects.

In the first application of R-matrix theory to positron–molecule collisions,
Tennyson [914] carried out low-energy calculations for e+–H2 and e+–N2 colli-
sions using a modification of the diatomic electron–molecule computer program
based on Slater-type orbitals [144, 528, 690]. In the case of e+–H2 good agreement
was obtained with the Kohn variational calculation by Armour [21] provided that
sufficient orbitals were included in the second expansion in (11.12) to represent
important short-range polarization effects. In a later calculation by Tennyson and
Morgan [919], these calculations were extended to low-energy e+–CO collisions
where, as well as elastic collision cross sections, rotationally inelastic and momen-
tum transfer cross sections were obtained. The calculations were carried out using
a number of different models representing the polarization and it was found that
the computed total and momentum transfer cross sections varied widely between
the different models employed. In a further important study of e+–HF collisions,
Danby and Tennyson [246] obtained strong evidence for a bound state of the e+–HF
system. Also, in e+–H2 collision calculations by Danby and Tennyson [247], results
were presented for energies below the positronium formation threshold for a variety
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of target representations. In addition two pseudostates were included in the expan-
sion to account for polarization. Results were calculated for several symmetries
and total and differential cross sections obtained. Danby and Tennyson [248] also
extended the earlier work on e+–HF collisions to determine vibrationally resolved
e+–N2 collision cross sections using the adiabatic theory of Chase [217], discussed
in Sect. 11.1.3, and the non-adiabatic R-matrix theory of Schneider et al. [829] and
Gillan et al. [373], discussed in Sect. 11.1.4. Calculations were carried out in the
fixed-nuclei approximation with up to 22 polarized pseudostates and for 12 internu-
clear separations, including the ground state and 10 polarized pseudostates. Cross
sections were obtained for #+g , #+u ,$g,$u,�g and�u symmetries for vibrational
transitions v = 0 → 0, v = 0 → 1 and v = 0 → 2 and it was found that
non-adiabatic effects are significant for the v = 0 → 1 cross section and dominate
the v = 0→ 2 cross section.

Finally, we mention more recent R-matrix calculations for positron collisions
with polyatomic molecules. Baluja et al. [49] considered low-energy positron colli-
sions with water, Franz et al. [339] considered low-energy positron collisions with
carbon dioxide and Franz et al. [340] considered low-energy positron collisions
with acetylene. In each case the R-matrix results were compared with other the-
oretical approaches and conclusions drawn concerning the accuracy and validity
of the methods adopted. We consider the results of two of these calculations in
Sect. 11.2.2.

11.2.2 Illustrative Examples: H2O, CO2

In this section we discuss in greater detail the R-matrix calculations by Baluja et al.
[49] who considered positron collisions with water and by Franz et al. [339] who
considered positron collisions with carbon dioxide. The role of target polarization
effects in the CO2 calculation is of crucial importance and methods for its inclusion
are examined.

11.2.2.1 Positron Collisions with H2O

We consider first the R-matrix calculations by Baluja et al. [49] who reported differ-
ential, integral and momentum transfer cross sections for vibrationally elastic and
rotationally inelastic collisions of positrons with water at energies below 10 eV. The
water molecule was described by an ab initio multicentre wave function and the cal-
culations were carried out using a reprogrammed version of the electron–polyatomic
molecule computer program (Morgan et al. [661, 662]) which uses Gaussian-type
orbitals (GTOs). In the internal region the calculations were based on expansions
(11.11) and (11.12) where the antisymmetrization operator in (11.12) was omit-
ted. The H2O ground state wave function was retained in the first expansion in
(11.12), and quadratically integrable functions were included in the second expan-
sion in (11.12) to relax orthogonality between the target and continuum orbitals
and to allow for short-range polarization effects. In the external region the positron
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moves in the long-range potential defined by the multipole moments of the target.
For strongly dipolar molecules, such as water, it is also necessary to correct for the
truncated partial wave expansion used in the calculation and this was achieved using
the Born approximation.

The calculations were performed at the equilibrium geometry of the molecule
and three independent models were used to represent the polarization effects. In
the first “static” model the target was frozen in its ground state and the positron
allowed to occupy all target and continuum orbitals with the appropriate symmetry.
In the second “static + polarization” model, polarization effects were included by
augmenting the target in the static model with 125 singlet excited states and the
positron was allowed to occupy all target and continuum orbitals with the appropri-
ate symmetry. Finally, in the third “natural orbital or NO” model polarization effects
were introduced, as in electron–atom and electron–molecule collisions, by retaining
four polarized pseudostates in expansion (11.12).

In Fig. 11.11 we compare rotationally summed elastic cross sections for positron
collisions with water as a function of energy, calculated by Baluja et al. [49] for
the different models discussed above. Also shown in this figure are cross sections
calculated by Gianturco et al. [371] using a single-centre expansion where the static
potential term in the positron–water interaction was augmented by a polarization
potential determined from a homogeneous electron gas model. It can be seen that
the dominant nature of the dipole moment of the water means that the results are

Fig. 11.11 R-matrix calculations of elastic (rotationally summed) integral cross sections for
positron collisions with water as a function of the collision energy for three R-matrix models
discussed in the text. Also shown are single-centre results calculated by Gianturco et al. [371] and
results obtained without the Born correction which lie well below the other cross sections shown
in the figure (Fig. 2 from [49])
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rather insensitive to the degrees of polarization included in the model. Thus we see
that the static, static + polarization and NO models all give similar results, which
are also very similar to the results obtained by Gianturco et al. [371]. However,
including the Born correction leads to a very significant increase in the calculated
cross sections, particularly at low energies.

The elastic scattering results were also compared with several experiments and
although there is considerable scatter in these experiments due to the importance of
forward scattering, there is reasonable agreement between the best NO model and
the most recent measurements by Zecca et al. [1004].

In conclusion, we see that once the Born correction is included to allow for
the high partial waves contribution to the cross section arising from the large
dipole moment of water, there is little difference between the integral cross sections
obtained from the various models considered. The results obtained in this calcu-
lation are therefore expected to provide a realistic estimate of the positron–water
elastic (rotationally summed) cross section below the positronium formation thresh-
old.

11.2.2.2 Positron Collisions with CO2

As our second example we consider the R-matrix calculations of positron collisions
with carbon dioxide by Franz et al. [339] who reported differential and integral cross
sections for positron collision energies below 8 eV. In this calculation particular
attention was given to the inclusion of target polarization which plays a more impor-
tant role than in positron collisions with polar molecules, such as water, discussed
in our previous example.

In these calculations the multicentre polyatomic computer program using
Gaussian-type orbitals (GTOs), adopted in the previous example, was used to
describe the collision in a static-plus-polarization (SP) model based on expansions
(11.11) and (11.12) without the antisymmetrization operator. In this model config-
uration space for the electrons was built up from the Hartree–Fock ground state by
including all single-electron excitations into the virtual target molecular orbitals.
Also the positron was allowed to occupy all target molecular orbitals as well as a
set of single-centred diffuse Gaussian orbitals which were used to represent the con-
tinuum in the R-matrix internal region. In addition, in order to model polarization
effects which were not fully described in this SP model, the electron–positron attrac-
tion integrals were scaled by an empirically adjusted enhancement factor f which
increased the effect of target polarization on the collision cross section. Finally, in
all the calculations reported the effect of the target quadrupole moment Q and the
long-range polarizabilities α0 and α2 in (11.6) were included in the R-matrix expan-
sion in the internal region, where the values α0 = 15.608 a3

0 and α2 = 14.910 a3
0, a0

being the atomic unit of length, were calculated using density functional theory.
In Fig. 11.12 we compare the integral cross section for positron collisions with

carbon dioxide calculated by Franz et al. [339] with experiment. The figure also
shows the unscaled and the scaled R-matrix results as the polarization enhance-
ment factor f is increased. The best agreement between theory and experiment is
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Fig. 11.12 Integral cross section for positron collisions with carbon dioxide showing the R-matrix
results by Franz et al. [339] with no scaling and as the polarization enhancement factor f is
increased. The experimental results are from Hoffman et al. [475], Sueoka and Hamada [893]
and Zecca et al. [1005] (Fig. 1 from [339])

obtained with an enhancement factor f = 1.002, i.e. an enhancement of 0.2%.
We see that without any scaling ( f = 1) the calculated cross section is too low
at incident positron energies below about 3 eV, but agrees well with experiment at
higher energies. By using the enhancement factor the failure to fully describe the
effect of molecular polarization at low energies is corrected, while maintaining the
good agreement at higher energies.

Also in Fig. 11.13 we compare differential cross section (DCS) R-matrix calcula-
tions by Franz et al. [339] at 6.75 eV with experimental measurements by Przybyla
et al. [760] where, since these measurements were not absolute, they have been
scaled to give approximate agreement with theory. Also in this figure we have plot-
ted single-centre calculations by Gianturco and Paioletti [370] at 7 eV, who used a
local parameter-free correlation–polarization potential. In the absence of any scaling
the R-matrix calculation shows a maximum in the forward direction and almost
no oscillatory structure, while introducing a scaling factor f = 1.002 introduces
oscillations in the DCS as a function of the scattering angle. However, while some
oscillatory behaviour can be seen in the experimental data, the overall agreement
between theory and experiment in the DCS remains unsatisfactory.

In conclusion, this calculation shows that in order to obtain agreement with
experiment at low energies a scaling factor has to be introduced in order to fully rep-
resent the polarization of the molecule in positron–molecule collisions. As discussed
in Sect. 11.2.1, it is clear that in order to represent the very strong attraction between
the positron and the target electrons in a completely ab initio theory, positronium
formation channels must be included in the expansion of the wave function, in anal-
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Fig. 11.13 Differential cross section in Å2/sr for positron collisions with carbon dioxide at
6.75 eV showing R-matrix results by Franz et al. [339] with no scaling and results with an enhance-
ment factor f = 1.002, compared with measurements by Przybyla et al. [760] and single-centre
calculations by Gianturco and Paioletti [370] at 7 eV (Fig. 5 from [339])

ogy with expansion (7.13) adopted in positron collisions with atoms and atomic
ions. As pointed out by Franz et al. [339] this development, which is now under
active consideration, is considerably more demanding for positron collisions with
polyatomic molecules.

11.3 Molecular Multiphoton Processes

In this section we extend our discussion of R-matrix–Floquet theory of atomic mul-
tiphoton processes, considered in Chap. 9, to the interaction of intense laser fields
with diatomic molecules. In Sect. 11.3.1 we consider R-matrix–Floquet theory of
multiphoton ionization of a general diatomic molecule by an intense laser field.
Then in Sect. 11.3.2 we illustrate this theory by considering its application to mul-
tiphoton ionization of H2.

11.3.1 Molecular R-Matrix–Floquet Theory

We consider the following molecular multiphoton ionization process

nhν + ABi → AB+j + e−, (11.111)
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where ABi is the initial electronic state of the diatomic molecule and AB+j is the
final electronic state of the molecular ion. We observe that, as in atomic R-matrix–
Floquet theory considered in Sect. 9.1, laser-assisted electron–molecule collisions
and harmonic generation can be treated by a straightforward extension of the theory
presented in that section. The molecule, which in the present analysis contains N+1
electrons and is composed of two nuclei labelled A and B with nuclear charge num-
bers Z A and Z B , respectively, is immersed in an intense laser field with polarization
direction ε̂ as illustrated in Fig. 11.14. As in our discussion of electron–molecule
collisions in Sect. 11.1.2, we treat the molecule in the fixed-nuclei approximation.

Following the theoretical developments given by Colgan et al. [187, 222–224],
we proceed as in Sect. 9.1.1 by treating the laser field classically, using the dipole
approximation and assuming it to be monochromatic, monomode, linearly polar-
ized and spatially homogeneous. The corresponding electric field vector can then be
written as

E(t) = ε̂E0 cosωt, (11.112)

where ε̂ is a unit vector along the laser polarization direction and ω is the angular
frequency. The corresponding vector potential A(t) then satisfies

A(t) = ε̂A0 sinωt, (11.113)

where A0 = −cE0/ω and where we have adopted the Coulomb gauge such that
div A = 0. In Fig. 11.14 we have introduced two cartesian coordinate systems.
First, a molecular fixed coordinate system (x, y, z) where the z-axis is chosen to
lie along the internuclear axis from A to B. Second, a laser field fixed coordinate
system (x ′, y′, z′), where the z′-axis is chosen to lie along the laser field polarization
direction ε̂. The origins of both these coordinate systems are chosen to be the centre
of gravity of the molecule, labelled G, and we introduce the Euler angles (α, β, γ ),
defined in Appendix B.5, which transform the (x, y, z) coordinate system into the
(x ′, y′, z′) coordinate system. Also, the vector distances between A, B and G and

GRA RB
B

R

z′ laser
polarization
direction

ith electron

rirAi rBi

A

z

ε̂

Fig. 11.14 Molecular frame of reference for multiphoton ionization of a diatomic molecule by a
laser with polarization direction ε̂, where the nuclei at A and B have nuclear charge numbers Z A
and Z B and G is the centre of gravity of the molecule
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the i th electron are given by rAi , rBi and ri , respectively, and the corresponding
distances of the two nuclei from G are RA and RB , where R = RA + RB is the
internuclear separation.

Neglecting relativistic effects, the molecular system in the presence of the laser
field is described by the time-dependent Schrödinger equation

[
HN+1 + 1

c
A(t) · PN+1 + N + 1

2c2
A2(t)

]
Ψ̃ (XN+1, t) = i

∂

∂t
Ψ̃ (XN+1, t),

(11.114)

where HN+1 is the non-relativistic fixed-nuclei Hamiltonian of the (N +1)-electron
molecular system in the absence of the laser field defined by (11.10) and where

PN+1 =
N+1∑
i=1

pi (11.115)

is the total electron momentum operator. Also, as in Chap. 9, the tilde on the time-
dependent wave function Ψ̃ in (11.114) and later equations distinguishes it from
time-independent wave functions Ψ which we consider later in our analysis.

In order to solve (11.114) using R-matrix–Floquet theory we proceed, as in
atomic multiphoton processes considered in Sect. 9.1.1 and in electron–molecule
collisions considered in Sect. 11.1.2, by partitioning configuration space into three
regions illustrated in Fig. 11.15, where the same criteria for defining the boundaries
a0 and ap between the three regions, described in our discussion of Figs. 9.1 and
11.2, are adopted. We assume that the laser electric field vector defined by (11.112)
has constant amplitude E0 and angular frequency ω so that we can represent the
wave function in each region by a Floquet–Fourier expansion [325, 874] as follows:

Ψ̃ (XN+1, t) = exp(−iEt)
∞∑

n=−∞
exp(−inωt)Ψn(XN+1). (11.116)

Internal Region

N + 1 electrons

Multicentre

expansion

Length gauge

External Region

ejected or scattered electron only

Single-centre expansion

Velocity gauge

Sub-
region

1

Sub-
region
p − 1

Sub-
region

p

Asymptotic Region
one electron
Single-centre
expansion

Velocity gauge

or Acceleration
Frame

0 a0 a1 ap−2 ap−1 ap ∞
Radial coordinate of ejected or scattered electron

Fig. 11.15 Partitioning of configuration space in R-matrix–Floquet theory of molecular multipho-
ton processes
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After substituting (11.116) into (11.114), we obtain an infinite set of coupled time-
independent equations for the functions Ψn . The solutions of these equations in each
region are then matched on the boundaries a0 and ap between the regions using the
R-matrix. Finally, as described in Sect. 9.1.1, it is convenient and appropriate to use
the length gauge to describe the laser–molecule interaction in the internal region and
the velocity gauge to describe this interaction in the external and asymptotic regions.
However, as discussed in Sects. 9.1.5 and 9.1.6, it is sometimes advantageous to
adopt the acceleration frame in the asymptotic region. We now consider the solution
in each of the three regions in turn.

11.3.1.1 Internal Region Solution

Following our analysis in Sect. 9.1.2, we transform (11.114) in the internal region
to the dipole length gauge defined by the unitary transformation

Ψ̃ (XN+1, t) = exp

[
− i

c
A(t) · RN+1

]
Ψ̃ L(XN+1, t), (11.117)

where

RN+1 =
N+1∑
i=1

ri (11.118)

and where the boldface superscript L in (11.117) and later equations indicates that
the functions are defined in the dipole length gauge. Substituting (11.117) into
(11.114) we find that Ψ̃ L satisfies the time-dependent Schrödinger equation

(HN+1 + E(t) · RN+1) Ψ̃
L(XN+1, t) = i

∂

∂t
Ψ̃ L(XN+1, t). (11.119)

We solve this equation by introducing the Floquet–Fourier expansion

Ψ̃ L(XN+1, t) = exp(−iEt)
∞∑

n=−∞
exp(−inωt)Ψ L

n (XN+1), (11.120)

where E is the quasi-energy of the corresponding stationary state. Substituting this
expansion into (11.119) and equating the coefficient of exp[−i(E + nω)t] to zero
yields the infinite set of coupled time-independent equations

(HN+1 − E − nω)Ψ L
n + DN+1(Ψ

L
n−1 + Ψ L

n+1) = 0, (11.121)

where the dipole length operator

DN+1 = 1

2
E0ε̂ · RN+1 = 1

2
E0

N+1∑
i=1

z′i . (11.122)
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In (11.122), z′i is the z-coordinate of the i th electron in the (x ′, y′, z′) coordinate sys-
tem defined in our discussion of Fig. 11.14. The calculation of the matrix elements
of DN+1 between the molecular states referred to the molecular fixed coordinate
system (x, y, z) requires DN+1 to be transformed from the (x ′, y′, z′) coordinate
system to the (x, y, z) coordinate system. This transformation can be expressed in
terms of Wigner rotation matrices using (B.91) which can be written here as

Y	m(θ
′, φ′) =

∑
m′

D	m′m(α, β, γ )Y	m′(θ, φ), (11.123)

where Y	m(θ ′, φ′) and Y	m′(θ, φ) are spherical harmonics defined by (B.32) which
are referred to the (x ′, y′, z′) and (x, y, z) coordinate systems, respectively. Using
(11.123), and noting from (B.54) that

z′ = r ′ cos θ ′ = (4π/3)1/2r ′Y10(θ
′, φ′), (11.124)

we find that

DN+1 = 1

2
E0

(
4π

3

)1/2 N+1∑
i=1

ri

+1∑
m=−1

D1
m0(α, β, γ )Y1 m(θi , φi ), (11.125)

where we note that if the Fano–Racah phase convention is adopted, see
Appendix B.4, then the spherical harmonic Y1 m(θi , φi ) in (11.125) would be
replaced by −iY1m(θi , φi ) according to (B.64). Having determined DN+1 we can
then rewrite (11.121) as an infinite-dimensional matrix equation in photon space
with the form

(
HL

F − EI
)
Ψ L = 0, (11.126)

where HL
F is the Floquet Hamiltonian which is an infinite-dimensional tridiagonal

matrix, with the form given by (9.16), Ψ L is a column vector with components
. . . , Ψ L

n−1, Ψ
L
n , Ψ

L
n+1, . . . and I is a unit matrix operator.

In order to solve (11.126) in the internal region in the fixed-nuclei approximation,
we expand the solution vector Ψ L, in analogy with (11.11) and (9.17), as follows:

Ψ Lδ
j E (XN+1; R) =

∑
k

ψLδ
k (XN+1; R)ALδ

k j (E). (11.127)

In this equation and the following equations, we introduce a superscript δ which
represents the quantum numbers conserved by the laser–molecule interaction pro-
cess, in a similar way to the introduction of the superscript γ in (9.17). Also, as in
(11.11) and (9.17), j labels the linearly independent solutions of (11.126), ψLδ

k are
energy-independent basis functions and ALδ

k j (E) are energy-dependent expansion
coefficients, which depend on the asymptotic boundary conditions satisfied by the
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solutions Ψ Lδ
j E at the energy E . Following (9.20), we expand each Floquet–Fourier

component of the vector basis functions ψLδ
k in a close coupling with pseudostates

expansion given by

ψLδ
nk (XN+1; R) = A

∑
Δi j

Φ
δ

nΔi (XN ; r̂N+1σN+1)r
−1
N+1u0

nΔi j (rN+1)a
Lδ
nΔi jk

+
∑
Δi

χδ
nΔi (XN+1)b

Lδ
nΔik, k = 1, . . . , nt , (11.128)

for each fixed internuclear separation R, where nt is the total number of terms
retained in the expansion. Also in (11.128), the summation over Δ goes over the
molecular symmetries not conserved by the laser interaction, the channel functions

Φ
δ

nΔi and quadratically integrable functions χδnΔi are constructed from STOs or
GTOs centred on the nuclei which vanish by the boundary r = a0 of the internal
region and finally the continuum basis orbitals u0

nΔi j are represented by numerical
basis functions centred on G in Fig. 11.14 which are non-vanishing on the boundary
r = a0 of the internal region.

The coefficients aLδ
nΔi jk and bLδ

nΔik in (11.128) are determined by diagonalizing

the operator HL
F +LN+1 in this basis over the internal region as follows

〈ψLδ
k |HL

F +LN+1|ψLδ
k′ 〉int = ELδ

k δkk′ , k, k′ = 1, . . . , nt , (11.129)

where ELδ
k is a diagonal matrix in photon space. Also in (11.129), LN+1 is a Bloch

operator which is diagonal in photon space and is chosen so that HL
F + LN+1 is

hermitian in the internal region in the basis of quadratically integrable functions
satisfying arbitrary boundary conditions at r = a0. We can write this operator as

LN+1 =
N+1∑
i=1

1

2
δ(ri − a0)

(
d

dri
− b0 − 1

ri

)
I, (11.130)

where I is a unit matrix in photon space and b0 is an arbitrary constant which is often
set equal to zero. We note that LN+1 has the same single-centre form as the Bloch
matrix (9.22) adopted in atomic R-matrix–Floquet theory, since only the continuum
basis orbitals u0

nΔi j (r) in expansion (11.128), which are centred on the centre of
gravity G in Fig. 11.14, are non-zero on the boundary r = a0. These calculations
can be performed using standard molecular structure program packages used to
diagonalize HN+1 + LN+1 in (11.13), extended to calculate the matrix elements
of the dipole length operator DN+1 defined by (11.125).

We can now solve (11.126) in the internal region in the usual way by rewriting
it as

(
HL

F +LN+1 − EI
)
Ψ Lδ

j E = LN+1Ψ
Lδ
j E , (11.131)
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which has the formal solution

Ψ Lδ
j E =

(
HL

F +LN+1 − EI
)−1 LN+1Ψ

Lδ
j E . (11.132)

Using the spectral representation of HL
F +LN+1 given by (11.129), we can rewrite

(11.132) in the form

|Ψ Lδ
j E 〉 =

∑
k

|ψLδ
k 〉

1

ELδ
k − EI

〈ψLδ
k |LN+1|Ψ Lδ

j E 〉. (11.133)

Projecting this equation onto the channel functions Φ
δ

nΔi and onto the nth compo-
nent in photon space and evaluating on the boundary r = a0 yields

FLδ
nΔi j (a0) =

∑
n′Δ′i ′

RLδ
nΔin′Δ′i ′(E)

(
a0

dFLδ
n′Δ′i ′ j
dr

− b0 FLδ
n′Δ′i ′ j

)
r = a0

, (11.134)

where we have introduced the R-matrix RLδ
nΔin′Δ′i ′(E) in the length gauge by

RLδ
nΔin′Δ′i ′(E) =

1

2a0

nt∑
k=1

wLδ
nΔikw

Lδ
n′Δ′i ′k

ELδ
k − E

, (11.135)

the reduced radial wave functions FLδ
nΔi j (r) by

FLδ
nΔi j (r) = 〈r−1

N+1Φ
δ

nΔi |Ψ Lδ
nj E 〉′, (11.136)

and the surface amplitudes wLδ
nΔik by

wLδ
nΔik = 〈r−1

N+1Φ
δ

nΔi |ψLδ
nk 〉′rN+1= a0

=
∑

j

u0
nΔi j (a0)a

Lδ
nΔi jk . (11.137)

As in (9.28) and (9.29), the primes on the Dirac brackets in (11.136) and (11.137)
mean that the integrations are carried out over the space and spin coordinates of all
N+1 electrons in the internal region except the radial coordinate rN+1 of the ejected
or scattered electron. Also Ψ Lδ

nj E in (11.136) are the components of the solution

vector Ψ Lδ
j E defined by (11.127). If necessary, a Buttle correction to the R-matrix

is added to the summation in (11.135) as discussed in Sect. 5.3.2. The R-matrix
then provides the boundary condition at r = a0 for solving (11.114) in the external
region.
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11.3.1.2 External Region Solution

In the external region, defined in Fig. 11.15, the ejected or scattered electron, with
radial coordinate a0 ≤ rN+1 ≤ ap, is described using the velocity gauge, while
the remaining N electrons, with radial coordinates ri ≤ a0, i = 1, . . . , N , are
described using the length gauge. We proceed, as in Sect. 9.1.3 describing atomic
R-matrix–Floquet theory, by reducing the time-dependent Schrödinger equation
(11.114) using a Floquet–Fourier expansion to yield the following infinite set of
coupled time-independent equations:

(
HN+1 − EV − nω

)
Ψ V

n + DN

(
Ψ V

n−1 + Ψ V
n+1

)
+ PN+1

(
Ψ V

n−1 − Ψ V
n+1

)
= 0,

(11.138)

where in analogy with (11.125) the dipole length operator DN is now defined by

DN = 1

2
E0

(
4π

3

)1/2 N∑
i=1

ri

+1∑
m=−1

D1
m0(α, β, γ )Y1 m(θi , φi ), (11.139)

where Y1 m(θi , φi ) is replaced by−iY1m(θi , φi ) if the Fano–Racah phase convention
is adopted. Also the dipole velocity operator PN+1 is defined by

PN+1 = i
A0

2c
ε̂ · pN+1. (11.140)

As in Sect. 9.1.3, we rewrite (11.138) in matrix form as

(
HV

F − EVI
)
Ψ V = 0, (11.141)

where HV
F is the Floquet Hamiltonian which is an infinite-dimensional tridiagonal

matrix operator in photon space.
In order to solve (11.141) we introduce the following single-centre close coupling

expansion for the components Ψ Vδ
n of the total wave function at energy E for each

set of conserved quantum numbers denoted by δ, which has the same general form
as (9.37)

Ψ Vδ
nj E (XN+1) =

∑
Δi

Φ
δ

nΔi (XN ; r̂N+1σN+1)r
−1
N+1 FVδ

nΔi j (rN+1), rN+1 ≥ a0,

(11.142)
where the channel functions Φ

δ

nΔi , retained in this expansion, are the same as those
retained in the internal region expansion (11.128) and the multicentre quadratically
integrable functions χδnΔi in (11.128), which are confined to the internal region,
are now omitted. Also, as in (11.127), j labels the linearly independent solutions
of (11.141). Substituting expansion (11.142) into (11.141) and projecting onto the

channel functions Φ
δ

nΔi and onto the nth component of the wave function in photon
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space then yields the following set of coupled second-order differential equations:

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z − N )

r
+ k2

ni

)
FVδ

nΔi j (r)

= 2
∑

n′Δ′i ′
W Vδ

nΔin′Δ′i ′(r)F
Vδ
n′Δ′i ′ j (r), r ≥ a0. (11.143)

In this equation, 	i is the orbital angular momentum of the ejected or scattered elec-
tron, Z is the sum of the nuclear charge numbers which, for the diatomic molecule
illustrated in Fig. 11.14, is given by

Z = Z A + Z B, (11.144)

and

k2
ni = 2

(
EV − ei − nω

)
, (11.145)

where the channel energies ei are defined by (11.24). Finally in (11.143),
W Vδ

nΔin′Δ′i ′(r) is the long-range potential matrix coupling the channels. Following
our discussion of atomic multiphoton processes considered in Sect. 9.1.3, this poten-
tial can be written in matrix notation as

WVδ = VEδ + VDδ + VPδ, (11.146)

where, as in (9.41), VEδ , VDδ and VPδ arise, respectively, from the HN+1, DN

and PN+1 terms in (11.138). We derive explicit expressions for the matrix elements
corresponding to VEγ , VDγ and VPγ which arise in atomic R-matrix–Floquet the-
ory in Appendix D.2 and a similar procedure can be used in the case of the matrix
elements arising in (11.146).

In order to solve (11.143) in the external region, the boundary condition satisfied
by the functions FVδ

nΔi j (r) at r = a0 can be determined from the R-matrix in the
length gauge, defined by (11.135), using the same procedure adopted in our discus-
sion of atomic multiphoton processes, considered in Sect. 9.1.3. Finally, the coupled
second-order differential equations (11.143) have the same form as the correspond-
ing equations (9.38) obtained in our discussion of atomic multiphoton processes.
Hence the same procedure considered in Sect. 9.1.3 can be used to propagate the
R-matrix across the external region from r = a0 to ap.

11.3.1.3 Asymptotic Region Solution

In the asymptotic region, shown in Fig. 11.15, the ejected or scattered electron with
radial coordinate rN+1 ≥ ap can be described either in the velocity gauge or in
the acceleration frame, while the remaining N electrons with radial coordinates



588 11 Collisions with Molecules

ri ≤ a0 , i = 1, . . . , N , are described in the length gauge. In both cases the collision
process is described, after using a Floquet–Fourier expansion, by a single-centre
expansion and the corresponding solution can be obtained as in atomic R-matrix–
Floquet theory considered in Sects. 9.1.4, 9.1.5 and 9.1.6. In the case of multiphoton
ionization, which has been of most experimental interest, the coupled differential
equations, which can be written in the same form as (9.61), are usually solved in the
velocity gauge. After reducing these equations to the form given by (9.79), the solu-
tion is then determined by an asymptotic expansion as described in Appendix F.2.
The required outgoing wave solution is then determined by an iterative procedure
yielding the complex quasi-energy EV which can be written as (9.95), where Γ is
the total multiphoton ionization rate. In the case of laser-assisted electron–molecule
collisions, the solution in the velocity gauge can be transformed to the acceleration
frame, as described in Sect. 9.1.5 or 9.1.6, where the asymptotic form of the solution
is defined, yielding the S-matrix and the collision cross sections in the fixed-nuclei
approximation.

11.3.2 Illustrative Example: H2

We conclude our discussion of molecular multiphoton processes by considering the
application of molecular R-matrix–Floquet theory to multiphoton ionization of H2
by Colgan et al. [223, 224]. We also note that two-photon double-electron ionization
calculations of H2 have been carried out by Colgan et al. [226] using the time-
dependent close coupling method reviewed by Pindzola et al. [740]. In the R-matrix
calculations by Colgan et al. [223, 224] the following process was considered:

nhν + H2 → H+2 + e−, (11.147)

where the molecule was assumed to be aligned along the linearly polarized laser
field direction and the fixed-nuclei approximation was adopted, in which the motion
of the ejected and target electrons was calculated in the laser field and in the field
of the nuclei which were fixed in space. Two target states of the residual H+2 ion
were retained in the R-matrix expansion (11.128), corresponding to the 1σg X 2#+g
ground state and the 1σu

2#+u first excited state. These states were represented by
LCAO–MO–SCF wave functions, which were constructed from a 1s-2s-2p STO σ
basis which had been adopted by Tennyson et al. [921] in a study of electron colli-
sions with H+2 . Also, the continuum orbitals u0

nΔi j (r) in (11.128) were represented
by numerical basis functions obtained using a Schmidt orthogonalization procedure
(Tennyson et al. [922]), and the quadratically integrable functions χδnΔi in (11.128)
were included to ensure completeness within the two-target state model.

The calculations were carried out for a number of fixed internuclear separations
R, ranging from 1.0 to 2.6 a.u., where the potential energy curves for the system
are illustrated in Fig. 11.16. Also shown in this figure are the Rydberg bound states
converging to the H+2 (X 2#+g ) ground state and doubly excited states converging
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Fig. 11.16 Potential energy
curves of H2 and H+2 . The
broken curves represent
Rydberg bound states
converging to the
H+2 (X 2#+g ) ground state
and doubly excited states
converging to the H+2 ( 2#+u )
first excited state. Two- and
four-photon processes are
illustrated by vertical lines
(Fig. 1 from [224])

to the H+2 ( 2#+u ) first excited state. Multiphoton ionization rates were obtained
corresponding to one-photon, two-photon and four-photon ionization. In addition,
calculations were carried out using both a one-state approximation, i.e. where just
the H+2 (X 2#+g ) ground state was included in the R-matrix expansion, and using

a two-state approximation, where the H+2 (X 2#+g ) ground state and the H+2 ( 2#+u )
first excited electronic state were included in the expansion. The results of the four-
photon ionization rates, calculated using both the one-state approximation and the
two-state approximation at the equilibrium internuclear separation of 1.4 a.u., are
presented in Fig. 11.17. These calculations were carried out at three laser intensi-
ties 1013, 3× 1013 and 1014 W/cm2 for a range of frequencies, which included the
fundamental KrF laser frequency and the third harmonic of the Ti:Sapphire laser
frequency, which are indicated by arrows in this figure. We see that the multipho-
ton ionization rates are dominated by resonance-enhanced multiphoton ionization
(REMPI) peaks, where the first three photons excite a Rydberg bound state of the
H2 molecule and the fourth photon ionizes this state, as shown in Fig. 11.16. Due
to the ponderomotive shift of the ionization threshold and the associated Rydberg
states, these peaks go in and out of resonance as the laser intensity is increased, as
discussed in Sect. 9.2.1. The good agreement between the results obtained using the
one-state and two-state approximations indicates that the two-state results are close
to convergence at the laser intensities and the low ejected electron energies consid-
ered in these calculations. Calculations were also carried out by Colgan et al. [224]
which showed that the positions of the REMPI peaks are strongly dependent on the
internuclear separation. This suggests that the population in different H+2 (X 2#+g )
vibrational states can be controlled by varying the laser intensity and frequency. In
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Fig. 11.17 Four-photon ionization rates in H2, calculated at the equilibrium internuclear separa-
tion of 1.4 a.u. for three laser intensities as a function of laser frequency. The full curves and
broken curves give the results obtained in the one- and two-state approximations, respectively. The
frequencies of the KrF laser and the third harmonic of the Ti:Sapphire laser are indicated by arrows
(Fig. 9 from [224])

addition, the probability of dissociation via the H+2 ( 2#+u ) repulsive state, illustrated
in Fig. 11.16, will also depend strongly on the laser parameters. However, a full
understanding of these processes will require the inclusion of the nuclear motion
using non-adiabatic R-matrix theory of molecular multiphoton ionization, analo-
gous to non-adiabatic R-matrix theory of electron–molecule collisions, discussed in
Sect. 11.1.4.

In conclusion, we have seen that R-matrix–Floquet theory of multiphoton ion-
ization of H2 in the fixed-nuclei approximation yields interesting and important
results. The extension of non-adiabatic R-matrix theory to include nuclear motion
and to consider more complex multi-electron molecules are important objectives
for future work in this field. Also, the extension of R-matrix theory and computer
programs to treat the interaction of ultra-short laser pulses with molecules, using an
extension of time-dependent R-matrix theory discussed in Chap. 10, is under active
consideration.



Chapter 12
Electron Interactions in Solids

In this chapter we consider two extensions of R-matrix theory which describe inter-
actions of electrons in solids. In Sect. 12.1 we consider an extension of R-matrix
theory by Michiels et al. [648, 649] and Jones et al. [511] which describes low-
energy electron collisions with transition metal oxides. This theory enables recent
electron energy loss spectroscopy (EELS) experiments to be analysed and we show
that calculations using this theory are in reasonable agreement with electron spin-
flip measurements of Müller et al. [670] and with spin-averaged differential cross
section measurements by Gorschlüter and Merz [406]. We also note that work has
been initiated by Higgins et al. [186, 469] extending R-matrix theory to describe
low-energy electron collisions with surface adsorbates.

In Sect. 12.2, we consider an extension of R-matrix theory which describes
electron transport in two-dimensional semiconductor devices in the presence of an
external field. This extension was introduced by Jayasekera et al. [500, 501], in an
analysis of experiments by Goel et al. [384], which showed that R-matrix theory
could be used to describe the transmission of electrons in four-terminal devices.
Further developments and applications to solid-state devices have also been made
by Jayasekera et al. [502].

We conclude this introduction by observing that a closely related “embedding
method” of solving Schrödinger’s equation for solid-state systems, in which space
is divided into sub-regions, has been considered by Inglesfield [491]. For example,
in the study of surfaces using the embedding method a surface potential is derived
which can be added to Schrödinger’s equation for a limited region of space embed-
ded in an extended bulk substrate. This potential, which is energy dependent and
non-local, is added to the Hamiltonian for the surface region and is determined from
the Green’s function for the bulk substrate. The embedding method was reviewed
by Inglesfield [492] who considered two surface applications of the method. The
first was the study of Rydberg series of electron states bound by the image potential
[674], and the second was the study of Xe adsorbed on the surface of Ag [220].
Inglesfield also discussed a quite different application of the embedding method to
the problem of electrons confined by a hard wall potential [234]. He then considered
its relation to the R-matrix method, where the links with the R-matrix method are
not just in the division of space into two or more regions but also in the mathematical
structure of the method.

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_12,
C© Springer-Verlag Berlin Heidelberg 2011
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12.1 Electron Collisions with Transition Metal Oxides

In this section we consider an extension of R-matrix theory by Michiels et al.
[648, 649] and Jones et al. [511] which describes electron transport in transition
metal oxides using electron energy loss spectroscopy (EELS) experiments.

12.1.1 Introduction

Low-energy electron collision experiments with solid-state targets provide an
important probe of the electronic structure of solids, yielding information on
the momentum and energy transfer associated with excitations (see, for example,
Fuggle and Inglesfield [354]). At high incident electron energies this process can be
described in the Born approximation by a dielectric loss function. However, recently
there has been increasing interest in low-energy EELS (LE-EELS) in which incident
electrons, with energy typically in the range 20–100 eV, excite non-dipole-allowed
transitions including electron exchange effects which can give rise to multiplicity-
changing transitions. These LE-EELS experiments, which show a wealth of angle,
spin polarization and energy-dependent structure (Fromme et al. [352, 353] and
Gorschlüter and Merz [406]), have been used to study the localized 3d–3d excita-
tions in transition metal compounds, such as NiO and CoO, and also the even more
localized 4f–4f excitations in rare earth metals, such as Gd (Matthew et al. [646]
and Porter et al. [750]). However, while the energy loss spectra, measured in this
way, can be described by parametrized crystal field models, the R-matrix approach
described in this section is one of the first ab initio procedures which can explain
the energy loss spectra and their dependence on incident energy, angle of scattering
and spin polarization.

12.1.2 R-Matrix Theory

The generalization of R-matrix theory to describe low-energy electron collisions
with transition metal oxides was made by Michiels et al. [648, 649] and Jones et al.
[511] where the localized 3d–3d excitations in the transition metal compound NiO
were studied. Following Jones et al. [511] we now briefly describe how R-matrix
theory of electron collisions with atoms and atomic ions, discussed in Chap. 5, can
be extended to describe the electronic transitions of Ni2+ ions which are situated in
a crystal field. In contrast to electron collisions with a free Ni2+ ion, which can be
treated using R-matrix theory presented in Chap. 5, we will see that the crystal field
potential has a strong effect on the interaction between the scattered electron and
the target ion.

We consider first the target states of the Ni2+ ion in an octahedral crystal
field, where we limit our discussion to states associated with 3d–3d excitation,
although other transitions can be treated by a straightforward extension of the theory
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considered here. The Ni2+ 3d8 configuration gives rise to the following five terms
in the spherical environment of the free ion

1Se, 3Pe, 1De, 3Fe, 1Ge, (12.1)

where 3Fe is the ground term. Also the crystal field potential has the form [894]

VC(r, θ, φ) =
(

7

12

)1/2

βr4

[
Y40(θ, φ)+

(
5

14

)1/2

[Y44(θ, φ)+ Y4−4(θ, φ)]
]

+ VM, (12.2)

where the Madelung potential VM is the electrostatic shift at the origin due to the
neighbouring ions which is fitted to Hartree–Fock band structure calculations [929].
This potential splits the 5 spherical terms into 11 target states as follows

1Se → 1A1g

3Pe → 3T1g

1De → 1Eg + 1T2g

3Fe → 3A2g + 3T1g + 3T2g

1Ge → 1A1g + 1Eg + 1T1g + 1T2g, (12.3)

where the labelling of the states on the right corresponds to the irreducible repre-
sentations of the octahedral Oh symmetry group [928]. These states are determined
as linear combinations of the five spherical states, determined by a Hartree–Fock
calculation of Ni2+.

Having determined the target states, we are now in a position to construct the
configuration interaction basis in the internal region, corresponding to expansion
(5.6) in electron collisions with atoms and atomic ions. The channel functions are
formed by coupling the target states, having symmetries defined by (12.3), with
the spin–angle function of the scattered electron. The angular functions, which are
appropriate to cubic symmetry are constructed from spherical harmonics, as follows

X pμ
h	 (θN+1, φN+1) =

∑
m

Y	m(θN+1, φN+1)b
pμ
h	m, (12.4)

where p denotes the irreducible representation (IR) and μ its component. Also h
labels the different possible linear combinations of the spherical harmonics with
angular momentum 	 that transform according to the pth IR. The radial contin-
uum basis orbitals u0

i j (r) in (5.6) representing the scattered electron are chosen to
satisfy a zero-order differential equation corresponding to (5.75). The additional
quadratically integrable functions, which are included in (5.6), come from the 3d9

configuration of Ni+ with spherical 2De symmetry which splits into 2Eg and 2T2g
symmetries in the octahedral crystal field. Finally, the coefficients corresponding to
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aΓi jk and bΓik in (5.6) are obtained by diagonalizing the (N + 1)-electron crystal field

Hamiltonian and Bloch operator HCF
N+1 + LN+1 in the internal region where

HCF
N+1 = HN+1 + V C

N+1, (12.5)

and where LN+1 is the Bloch operator, defined by (5.8). Also in (12.5), HN+1 is the
non-relativistic Hamiltonian in the absence of the crystal field defined by (5.3) and

V C
N+1 =

N+1∑
i=1

VC(ri , θi , φi ), (12.6)

where VC is the crystal field potential defined by (12.2).
The radius a0 of the internal region in Fig. 5.1 should, in principle, extend fur-

ther out than the distance between neighbouring atoms in the crystal. Typically, for
electron collisions with Ni2+ ions in free space a0 ∼ 7 a.u. However, in a solid-state
environment the scattered electron “feels” the full Coulomb potential of the ion over
a much shorter distance, typically the atomic sphere radius, and beyond this radius
it interacts predominantly with the neighbouring atoms. This corresponds to the
muffin-tin or atomic sphere approximation that is frequently made in band structure
calculations (e.g. Gonis [390]). The atomic sphere radius of Ni2+ in NiO is taken to
be 2.58 a.u. from conventional band structure calculations, and the scattering ampli-
tude is determined at this radius. In a full multiple-scattering calculation, scattering
by all the atomic spheres would be included. However, the calculations carried out
so far use a single-scattering approximation taking a constant potential outside the
atomic sphere radius.

In order to determine the scattering amplitude at the smaller radius, the internal
region calculation is first carried out using a radius a0 = 7 a.u. The R-matrix on this
boundary is then propagated backwards from r = 7 a.u. to r = 2.58 a.u., using the
propagator equation (E.28), where the Green’s function in this equation is calculated
using the same one-electron Hamiltonian used to calculate the radial continuum
basis functions u0

i j (r) in (5.6). Given the R-matrix on the boundary r = 2.58 a.u.,
the corresponding K -matrix and S-matrix can be determined by fitting to an asymp-
totic region solution as in Sect. 5.1.4. Hence the differential and total cross sections
for transitions between the target states defined by (12.3) can be calculated. Results
from this calculation are presented in Sect. 12.1.3, where this model is compared
with experiment.

12.1.3 Illustrative Example

In this section we illustrate the theory described in Sect. 12.1.2 by comparing
R-matrix LE-EELS calculations for NiO, carried out by Jones et al. [511], with
experiment. We show in Fig. 12.1 calculations of the spin-flip spectra of electrons
scattered by NiO compared with experimental data obtained by Müller et al. [670].
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Fig. 12.1 Comparison
of calculated spin-flip spectra
(top) with experimental data
(bottom) for electrons
scattered from NiO
as a function of scattering
angle α and energy loss. The
scattering angles are in the
range 73◦ ≤ α ≤ 123◦ in
intervals of 3.125◦ with 73◦
being the lowest line (Figs.
13 and 14 from [511])

In this experiment, the energy loss of polarized electrons incident at an angle of
45◦ to the normal to the surface with an incident energy of 33 eV and undergoing a
spin-flip was measured for 17 scattering angles α in the range 73◦ ≤ α ≤ 123◦ at an
interval of 3.125◦. (The scattering angle α is related to the angle to the normal θ f by
θ f = 135◦ − α.) In the theoretical model the elastic peak is ignored as is the 0.6 eV
loss peak, which is due to a surface excitation. The small 1.05 eV loss peak is due
to 3T2g excitation and the big peak at 1.7 eV is due to two overlapping transitions
1Eg (1.70 eV) and 3T1g (1.75 eV). The 3.2 eV loss peak is due to two overlap-

ping transitions 3T1g (3.13. eV) and 1T1g (3.28 eV) and appears to be too narrow
due to the contributing states being closer together than the experiment. It also lies
slightly above experiment. Most significantly, at 2.7 eV we see a small shoulder at
α = 73◦ that increases and becomes dominant at 123◦. This peak is of interest as it
is a combination of two triplet–singlet excitations to the 1A1g (2.80 eV) and 1T2g
(2.70 eV) states for which spin-flip dominates. Overall these results, taken together
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with comparisons made with spin-averaged differential cross section measurements
by Gorschlüter and Merz [406], show good agreement with experiment.

In conclusion, we have shown that the single inelastic scattering approximation,
adopted in the above theory, provides an overall understanding of the main features
of the experiment. However, a complete R-matrix theory of LE-EELS must also
include a treatment of multiple-elastic scattering events that occur before and after
the inelastic scattering event. In order to do this Jones et al. [511] suggested that
the results from the theory of diffuse low-energy electron diffraction (LEED), used
to treat an additional scatterer by Pendry et al. [725, 807], could be used with the
further simplification that the cross section for inelastic scattering is small compared
with elastic scattering, so that we need to only consider a single inelastic scattering
with no multiple events. Jones et al. [511] also pointed out that it is possible to
include the damping of the propagating electrons due to the mean free path effects
in the electron gas, in this multiple-scattering formalism. The inclusion of multiple
scattering and damping in the R-matrix formalism is thus a challenge for future
work on LE-EELS from NiO and other transition metal oxides.

12.2 Electron Transport in Semiconductor Devices

In this section we consider a recent extension of R-matrix theory which describes
electron transport in two-dimensional semiconductor devices in the presence of an
external magnetic field perpendicular to the device. This theory was introduced by
Jayasekera et al. [500, 501] in an analysis of experiments by Goel et al. [384] who
observed significant bend resistance in InSb four-terminal devices. The theory has
enabled the transmission coefficients in these devices to be calculated, and further
developments and applications have been made to solid-state devices by Jayasekera
et al. [502].

12.2.1 Introduction

Modern experiments can fabricate two-dimensional semiconductor devices in which
the mean free path of an electron is larger than the size of the device. As a result, the
electron transport properties of these devices have been of interest both theoretically
and experimentally for several years. Studies of magnetotransport have led to many
advances, such as the quantum Hall effect [724], as well as to applied devices, such
as magnetic field sensors and spin-based devices.

We consider a two-dimensional device illustrated in Fig. 12.2 which consists
of a rectangular internal region and four leads which has been used in a negative
bend resistance (NBR) experiment by Goel et al. [384], analysed by Jayasekera
et al. [500, 501]. In this experiment, a current is injected from lead 2 to lead 3 (I23)
in Fig. 12.2 and the voltage, V14, between leads 1 and 4 is measured. The bend
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Fig. 12.2 Schematic diagram of a four-terminal two-dimensional junction device. It consists of
an internal region and an external region made up of four leads, where the dashed lines indicate
the boundary between the internal region and the external region and where a magnetic field B is
applied perpendicular to the plane of the device. A local coordinate system (x ,y) is introduced in
the internal region, and local coordinate systems (x p, yp), p = 1, . . . , 4, are introduced in each
lead, where x p = 0, p = 1, . . . , 4, is where the pth lead meets the internal region. Finally, in the
rectangular internal region the coordinates x and y satisfy −a ≤ x ≤ a and −b ≤ y ≤ b

resistance is defined as RB = V14/I23. If the electron transport is ballistic, charges
tend to go forward into lead 4 giving a negative bend resistance. When an external
magnetic field is applied perpendicular to the device electrons tend to deflect into
lead 3 which suppresses the bend resistance. The bend resistance therefore decreases
as a function of the applied magnetic field.

12.2.2 R-Matrix Theory

We now consider the generalization of R-matrix theory to describe the transport of
electrons through a two-dimensional device in the presence of an applied perpen-
dicular magnetic field B as illustrated in Fig. 12.2. In this analysis we assume that
the electron transport is ballistic and we model the transport using a single-electron
picture. We commence from the time-independent Schrödinger equation

HΨ j = EΨ j , (12.7)

where Ψ j is the two-dimensional wave function describing the scattered electron
and j labels the linearly independent solutions of (12.7). Also in (12.7), E is the
total collision energy and the Hamiltonian H is given by

H = 1

2m∗
(P− eA)2 + V, (12.8)
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where m∗ is the effective mass of the electron and A is the vector potential. We
observe that for devices made of InSb the electron has a small effective mass
m∗ = 0.0139m, where m is the free electron mass. We also note that the potential
V in (12.8) is set zero in the calculations undertaken, although this is not essential
in the R-matrix formalism.

In order to solve (12.7) in the internal region in Fig. 12.2 it is convenient to
transform this equation so that the Hamiltonian is dimensionless [500]. We mea-
sure the lengths in terms of a characteristic length in the device; typically the
width of the input lead, w0 = 2b, is chosen. We measure the energies in terms
of E0 = h̄2/m∗w2

0 and define E = E/E0. Also a quantity l2
B = h̄/eB is introduced,

where lB , which has the dimension of length, is called the “magnetic length” and
is the average radius of the lowest Landau level of the system. Finally we define
the dimensionless magnetic field B = w2

0/ l2
B . The Schrödinger equation (12.7) then

becomes

[
−1

2

(
∂2

∂x2
+ ∂2

∂y2

)
+ iB

(
Ax

∂

∂x
+Ay

∂

∂y

)
+ B2

2

(
A2

x +A2
y

)]
Ψ j = EΨ j ,

(12.9)

where x and y are dimensionless coordinates and A is the dimensionless vector
potential.

In the following discussion of the solution in the internal region we will con-
sider the general solution of (12.9). However, as discussed by Jayasekera et al.
[500, 501] different gauges can be used in the solution. In the symmetric gauge
we have Asym = (−y/2, x/2, 0) and in the asymmetric gauge Aasym = (−y, 0, 0).
While both gauges produce the same magnetic field the choice of gauge is important
when the problem is solved approximately. We have to choose the gauge such that
the solution will satisfy the boundary conditions of the system and the use of the
appropriate gauge will give faster convergence. We will see when we discuss the
solution in the external region that the asymmetric gauge is used. Finally, for future
reference we rewrite (12.9) as follows

HΨ j = EΨ j , (12.10)

and we consider in turn the solutions of this equation in the internal and external
regions in Fig. 12.2.

12.2.2.1 Internal Region Solution

We consider first the solution of (12.10) in the internal region defined in Fig. 12.2.
Following our discussion of electron–atom collisions in Sect. 5.1.2, we expand the
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wave function Ψj in terms of energy-independent basis functions ψk which we write
here as

Ψj (x, y) =
∑

k

ψk(x, y)Akj (E), (12.11)

where Akj (E) are energy-dependent expansion coefficients, which depend on
boundary conditions satisfied by the wave function Ψj at the energy E . We then
expand the basis functions ψk in terms of non-orthogonal energy-independent func-
tions φi (x, y) as follows

ψk(x, y) =
n∑

i=1

φi (x, y)aik . (12.12)

Finally, we determine the coefficients aik in (12.12) by diagonalizing H+ L in this
basis giving

〈ψk |H+ L|ψk′ 〉int = Ekδkk′ , (12.13)

where H is defined by (12.9) and (12.10) and L is a Bloch operator which ensures
H + L is hermitian in the internal region, where the integration in this equation is
carried out over this region.

The Bloch operator L in (12.13) has four components. The first two correspond
to the kinetic energy terms in (12.9) and the second two to the magnetic field
terms involving B in (12.9). The remaining terms in (12.9) involving B2 are her-
mitian in the internal region. We consider first the kinetic energy terms in (12.9).
We find that

− 1

2

(
∂2

∂x2
+ ∂2

∂y2

)
+ Lx + L y (12.14)

is hermitian in the internal region where

Lx = 1

2

[
δ(x − a)

∂

∂x
− δ(x + a)

∂

∂x

]
(12.15)

and

L y = 1

2

[
δ(y − b)

∂

∂y
− δ(y + b)

∂

∂y

]
. (12.16)
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Next we consider the magnetic field terms in (12.9). We find that

iB
(
Ax

∂

∂x
+Ay

∂

∂y

)
+ Lx + Ly (12.17)

is hermitian in the internal region where

Lx = −1

2
iBAx [δ(x − a)− δ(x + a)] (12.18)

and

Ly = −1

2
iBAy

[
δ(y − b)− δ(y + b)

]
. (12.19)

It follows that the Bloch operator L in (12.13) is defined by

L = Lx + L y + Lx + Ly, (12.20)

where the boundaries of the internal region in the above definitions of the Bloch
operators Lx , L y , Lx and Ly correspond to x = ±a and y = ±b in Fig. 12.2.

We can now solve (12.10) in the internal region by including the Bloch operator
L, defined by (12.20), on both sides of this equation giving

(H+ L− E) Ψ j = LΨ j . (12.21)

This equation has the formal solution in the internal region

Ψ j = (H+ L− E)−1 LΨ j , (12.22)

where the spectral representation of the Green’s function (H+ L− E)−1 can be
obtained in terms of the energy-independent basis functions ψk defined by (12.12)
and (12.13). Equation (12.22) then becomes

|Ψ j 〉 =
n∑

k=1

|ψk〉 1

Ek − E 〈ψk |L|Ψ j 〉. (12.23)

Equation (12.23) can now be evaluated on the four boundaries between the internal
and the external regions in Fig. 12.2 and hence enables an R-matrix to be defined
which relates the wave functions to the normal derivatives on these boundaries.
By projecting this equation onto the transverse eigenfunctions for each lead in the
external region, the transmission amplitudes between the leads can be determined.
It has been found by Jayasekera et al. [500] that expanding the wave function ψk

in (12.12) in terms of functions φi which are non-orthogonal and which satisfy
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arbitrary boundary conditions avoids the use of a Buttle correction, required when
homogeneous boundary conditions are used (see Sect. 5.3.2), and improves the
convergence.

12.2.2.2 External Region Solution

We consider next the solution of (12.10) in the external region defined in Fig. 12.2.
As in the internal region we assume that the leads are rectangular. For each lead we
define a local coordinate system (x p, yp) as in Fig. 12.2, where yp is the transverse
coordinate and x p is the longitudinal coordinate in the pth lead. In the absence of
a magnetic field, the transverse confining potential is an infinite square well with
V = 0 in the lead. The transverse lead eigenfunctions are therefore sine functions.
However, these functions are not applicable if a magnetic field is present, so we
seek transverse functions f pνp (yp) and wave numbers kpνp in the pth lead, where
νp is the transverse quantum number. Following [501] we choose the asymmetric
gauge to describe the vector potential where A = (−Byp, 0, 0), which we note is
different for different leads. Also, as in (12.9), we measure the length in terms of
the width w0 = 2b of the input lead and we define E = E/E0, l2

B = h̄/eB and the
dimensionless magnetic field B = w2

0/ l2
B . The Schrödinger equation in the pth lead

then becomes

[
−1

2

d2

dy2
p
+ 1

2

(
k2

pνp
+ ypB

)2
]

f pνp (yp) = E f pνp (yp). (12.24)

This equation is then solved numerically for the transverse functions f pνp (yp), as
discussed by Tamura and Ando [912], and the collision wave function in the pth
lead is expanded in terms of these functions as

Ψ j E (x p, yp) =
∑
νp

τpνp exp(ikpνp x p) f pνp (yp). (12.25)

The transmission amplitudes τpνp in (12.25) can then be determined by substituting
the expression (12.25) for the collision wave functions for each lead into the inter-
nal region solution (12.23) evaluated on the boundary between the internal and the
external regions. This enables the flux Jp in the pth lead to be determined using the
result

Jp ∼
∫

dyp

[
Ψ ∗j E (x p, yp)

(
−i

d

dx p
− Ax p

)
Ψ j E (x p, yp)

+Ψ j E (x p, yp)

(
i

d

dx p
− Ax p

)
Ψ ∗j E (x p, yp)

]
. (12.26)

Finally, from the resulting transmission amplitudes τpνp , we can calculate the trans-
mission coefficients Ti j = Ji/J j , where Ji and J j are calculated using (12.26).
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In comparing this analysis with that adopted in electron collisions with atoms,
ions and molecules we observe that in the present analysis the external and asymp-
totic regions required in electron collisions are combined into one external region.
This is because we have been able to match the solution on the outer boundary
of the internal region directly with a linear combination of asymptotic solutions
defined by (12.25). Of course, this simplification is compensated for by the more
complicated nature of the boundary between the internal and the external regions in
semiconductor devices, as illustrated in Fig. 12.2.

12.2.3 Illustrative Example

We consider calculations of transmission coefficients carried out by Jayasekera et al.
[501] for a four-terminal symmetric square device consisting of a sample of InSb
with an electron concentration 1.90 × 1011 cm−2 which is slightly less than the
experimental value. The Fermi energy at this concentration is 32.7 meV, which
equals 60 in the units E0 used in this calculation. The width of the internal region in
this device w = 2a = 2b, illustrated in Fig. 12.2, is 0.1 µm.

We show the transmission coefficients calculated for this device in Fig. 12.3. At
zero magnetic field, shown in Fig. 12.3a, T12 and T32 lie on top of one another and
T42 is always larger than the transmission coefficients for the sidearms. Therefore,
more electrons accumulate in the forward lead than in the sidearms giving a negative
bend resistance. However, as shown in Fig. 12.3b, we see that in the presence of a
magnetic field, electrons are more likely to be deflected into the sidearms. Thus we
see that at some energies the transmission coefficient T32 is larger than the forward

Fig. 12.3 Transmission coefficients for electrons injected into the four-terminal square device
shown in Fig. 12.2. (a) shows the transmission coefficients at zero magnetic field. (b) shows the
transmission coefficients when B = w2

0/ l2
B = 6 (Fig. 2 from [501])
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transmission coefficient T42. In this case fewer electrons accumulate in lead 4, and
the negative bend resistance (NBR), discussed in Sect. 12.2.1, is suppressed. The
sign and magnitude of the bend resistance RB depend on the ratio of these transmis-
sion coefficients.

Finally, we mention that R-matrix theory methods have also been used to cal-
culate the cooling properties of several two-dimensional devices by Jayasekera
et al. [502]. It is thus clear from the work reported in this section that R-matrix
theory methods play an important role in the analyses of electron transport in
semiconductor devices.
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Appendix A
Clebsch–Gordan and Racah Coefficients

In this appendix we summarize the formulae describing the coupling of two or
more angular momenta required in our analysis of atomic, molecular and optical
collision processes. This leads to the introduction of Clebsch–Gordan coefficients,
Racah coefficients, 6- j symbols, 9- j symbols as well as higher order 3n- j symbols.
For a detailed discussion of these topics reference should be made to specialized
monographs on angular momentum by Wigner [965, 967], Biedenharn et al. [106],
Rose [797], Edmonds [284], Fano and Racah [308] and Brink and Satchler [139]
and to the reprint volume by Biedenharn and van Dam [107].

A.1 Clebsch–Gordan Coefficients

Let us consider two independent quantum systems, or parts of a single system, with
angular momenta denoted by the angular momentum operators J1 and J2. For exam-
ple, J1 and J2 may be the orbital and spin angular momentum operators of a single
particle or they may be the orbital angular momentum operators of two different
particles. The Cartesian components of these operators satisfy the commutation
relations (with h̄ = 1)

[J1x , J1y] = iJ1z, [J1y, J1z] = iJ1x , [J1z, J1x ] = iJ1y, (A.1)

[J2
1, J1z] = 0 (A.2)

and

[J2x , J2y] = iJ2z, [J2y, J2z] = iJ2x , [J2z, J2x ] = iJ2y, (A.3)

[J2
2, J2z] = 0, (A.4)

and they commute with each other so that

[J1, J2] = 0. (A.5)

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_13,
C© Springer-Verlag Berlin Heidelberg 2011
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We denote by ψ j1m1(1) and ψ j2m2(2) the simultaneous angular momentum
eigenfunctions of these quantum systems which satisfy

J2
1ψ j1m1(1) = j1( j1 + 1)ψ j1m1(1), J1zψ j1m1(1) = m1ψ j1m1(1), (A.6)

where

m1 = − j1,− j1 + 1, . . . , j1, (A.7)

and

J2
2ψ j2m2(2) = j2( j2 + 1)ψ j2m2(2) , J2zψ j2m2(2) = m2ψ j2m2(2), (A.8)

where

m2 = − j2,− j2 + 1, . . . , j2. (A.9)

Simultaneous eigenfunctions of the operators J2
1, J1z , J2

2 and J2z are then given by
the product ψ j1m1(1)ψ j2m2(2). We now define the total angular momentum operator
of the two systems by

J = J1 + J2, (A.10)

and the z-component of this total angular momentum operator by

Jz = J1z + J2z . (A.11)

The operators J2
1, J2

2, J2 and Jz form a set of commuting operators. Let us denote by
ψ j1 j2 jm(1, 2) the coupled eigenfunctions which are simultaneous eigenfunctions of
the operators J2

1, J2
2, J2 and Jz . These simultaneous eigenfunctions satisfy

J2ψ j1 j2 jm(1, 2) = j ( j + 1)ψ j1 j2 jm(1, 2),

Jzψ j1 j2 jm(1, 2) = mψ j1 j2 jm(1, 2), (A.12)

where

j = | j1 − j2|, | j1 − j2| + 1, . . . , j1 + j2, (A.13)

and

m = − j,− j + 1, . . . , j. (A.14)

The (2 j1 + 1)(2 j2 + 1) simultaneous eigenfunctions ψ j1 j2 jm(1, 2) of the oper-
ators J2

1, J2
2, J2 and Jz are related to the (2 j1 + 1)(2 j2 + 1) product
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eigenfunctions ψ j1m1(1)ψ j2m2(2) of the operators J2
1, J1z , J2

2 and J2z by the unitary
transformation

ψ j1 j2 jm(1, 2) =
∑

m1m2

( j1m1 j2m2| jm)ψ j1m1(1)ψ j2m2(2). (A.15)

The expansion coefficients ( j1m1 j2m2| jm) in this transformation are called vector
coupling or Clebsch–Gordan coefficients. These coefficients vanish unless (A.13)
and (A.14) are satisfied and

m = m1 + m2. (A.16)

To define these coefficients unambiguously, the relative phases of the eigenfunctions
ψ j1m1(1)ψ j2m2(2) and ψ j1 j2 jm(1, 2) must be specified. We adopt here the phase
convention of Condon and Shortley [227] where

( j1 j1 j2 j2| j1 + j2 j1 + j2) = 1. (A.17)

With this choice of phase the Clebsch–Gordan coefficients are real and satisfy the
orthogonality relations

∑
m1m2

( j1m1 j2m2| jm)( j1m1 j2m2| j ′m′) = δ j j ′δmm′ , (A.18)

which reduces to a single summation since (A.16) is satisfied, and

∑
jm

( j1m1 j2m2| jm)( j1m′1 j2m′2| jm) = δm1m′1δm2m′2 . (A.19)

Using (A.19) we can invert (A.15) to yield

ψ j1m1(1)ψ j2m2(2) =
∑

j

( j1m1 j2m2| jm)ψ j1 j2 jm(1, 2). (A.20)

The Clebsch–Gordan coefficients satisfy the following symmetry relations

( j1m1 j2m2| jm) = (−1) j1+ j2− j ( j1 − m1 j2 − m2| j − m), (A.21)

= (−1) j1+ j2− j ( j2m2 j1m1| jm), (A.22)

= (−1) j1−m1

(
2 j + 1

2 j2 + 1

)1/2

( j1m1 j − m| j2 − m2), (A.23)
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= (−1) j2+m2

(
2 j + 1

2 j1 + 1

)1/2

( j − mj2m2| j1 − m1), (A.24)

= (−1) j1−m1

(
2 j + 1

2 j2 + 1

)1/2

( jm j1 − m1| j2m2), (A.25)

= (−1) j2+m2

(
2 j + 1

2 j1 + 1

)1/2

( j2 − m2 jm| j1m1). (A.26)

The Clebsch–Gordan coefficients also satisfy

( j10 j20| j0) = 0, unless j1 + j2 + j is even, (A.27)

and

( j1m100| jm) = δ j1 jδm1m . (A.28)

Equation (A.27) gives rise to the parity selection rule in applications.
The symmetry relations satisfied by the Clebsch–Gordan coefficients can be sim-

plified by introducing the 3- j symbols defined by Wigner [967]. These are defined
by

(
j1 j2 j3

m1 m2 m3

)
= (−1) j1− j2−m3(2 j3 + 1)−1/2( j1m1 j2m2| j3 − m3). (A.29)

The 3- j symbols are invariant under an even permutation of the columns, while an
odd permutation is equivalent to multiplication by (−1) j1+ j2+ j3 . Thus

(−1) j1+ j2+ j3

(
j1 j2 j3

m1 m2 m3

)
=
(

j2 j1 j3
m2 m1 m3

)
=
(

j1 j3 j2
m1 m3 m2

)

=
(

j3 j2 j1
m3 m2 m1

)
. (A.30)

Also the analogue of (A.21) is

(
j1 j2 j3

m1 m2 m3

)
= (−1) j1+ j2+ j3

(
j1 j2 j3
−m1 −m2 −m3

)
. (A.31)

The orthogonality relations satisfied by the 3- j symbols are

∑
m1m2

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j ′3

m1 m2 m′3

)
= (2 j3 + 1)−1δ j3 j ′3δm3m′3 (A.32)
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and

∑
j3m3

(2 j3 + 1)

(
j1 j2 j3

m1 m2 m3

)(
j1 j2 j3

m′1 m′2 m3

)
= δm1m′1δm2m′2 . (A.33)

We conclude this section by giving the following closed expression for the Clebsch–
Gordan coefficients (see Wigner [965])

( j1m1 j2m2| jm)

=
[
(2 j + 1)( j + j1 − j2)!( j − j1 + j2)!( j1 + j2 − j)!( j + m)!( j − m)!
( j1 + j2 + j + 1)!( j1 − m1)!( j1 + m1)!( j2 − m2)!( j2 + m2)!

]

×
∑
κ

(−1)κ+ j2+m2
( j2 + j3 + m1 − κ)!( j1 − m1 + κ)!

κ!( j − j1 + j2 − κ)!( j + m − κ)!(κ + j1 − j2 − m)!
× δm,m1+m2 , (A.34)

where the summation is over all integral values of κ such that none of the factorial
arguments is negative. The explicit values of the Clebsch–Gordan coefficients when
j2 = 1/2 and j2 = 1 are given in Tables A.1 and A.2, respectively.

Table A.1 Clebsch–Gordan coefficients ( j1 m − m2
1
2 m2| j m)

j m2 = 1/2 m2 = −1/2

j1 + 1
2

[
j1+m+ 1

2
2 j1+1

]1/2 [
j1−m+ 1

2
2 j1+1

]1/2

j1 − 1
2 −

[
j1−m+ 1

2
2 j1+1

]1/2 [
j1+m+ 1

2
2 j1+1

]1/2

Table A.2 Clebsch–Gordan coefficients ( j1 m − m2 1 m2| j m)

j m2 = 1 m2 = 0 m2 = −1

j1 + 1
[
( j1+m)( j1+m+1)
(2 j1+1)(2 j1+2)

]1/2 [
( j1−m+1)( j1+m+1)

(2 j1+1)( j1+1)

]1/2 [
( j1−m)( j1−m+1)
(2 j1+1)(2 j1+2)

]1/2

j1 −
[
( j1+m)( j1−m+1)

2 j1( j1+1)

]1/2
m

[ j1( j1+1)]1/2
[
( j1−m)( j1+m+1)

2 j1( j1+1)

]1/2

j1 − 1
[
( j1−m)( j1−m+1)

2 j1(2 j1+1)

]1/2 −
[
( j1−m)( j1+m)

j1(2 j1+1)

]1/2 [
( j1+m+1)( j1+m)

2 j1(2 j1+1)

]1/2
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A.2 Racah Coefficients

We now consider three independent quantum systems, or parts of a single system,
with angular momenta denoted by the operators J1, J2 and J3. We can write the total
angular momentum operator J as

J = J1 + J2 + J3. (A.35)

However, there is no unique way of carrying out this addition. For example, we can
first couple the angular momentum eigenfunctionsψ j1m1(1) andψ j2m2(2) belonging
to J1 and J2 to form eigenfunctions of J12 = J1 + J2 according to

ψ j1 j2 j12m12(1, 2) =
∑

m1m2

( j1m1 j2m2| j12m12)ψ j1m1(1)ψ j2m2(2) . (A.36)

These eigenfunctions can then be coupled with the angular momentum eigenfunc-
tions ψ j3m3(3) belonging to J3 to form eigenfunctions of J according to

ψ jm( j12) =
∑

m12m3

( j12m12 j3m3| jm)ψ j1 j2 j12m12(1, 2)ψ j3m3(3). (A.37)

Alternatively, we can first couple ψ j2m2(2) and ψ j3m3(3) to form eigenfunctions of
J23 = J2 + J3 according to

ψ j2 j3 j23m23(2, 3) =
∑

m2m3

( j2m2 j3m3| j23m23)ψ j2m2(2)ψ j3m3(3) (A.38)

and then couple these eigenfunctions with ψ j1m1(1) to form eigenfunctions of J
according to

ψ jm( j23) =
∑

m1m23

( j1m1 j23m23| jm)ψ j1m1(1)ψ j2m2(2)ψ j2 j3 j23m23(2, 3). (A.39)

Finally, we can first couple ψ j1m1(1) and ψ j3m3(3) to form eigenfunctions of
J13 = J1 + J3 and then couple the resultant eigenfunctions with ψ j2m2(2) to form
eigenfunctions of J.

These three representations of the eigenfunctions of J are related by unitary trans-
formations. For example, we can write

ψ jm( j12) =
∑
j23

R( j23, j12)ψ jm( j23). (A.40)

The Racah coefficients W are then defined by the equation (Racah [764–767])

R( j23, j12) = [(2 j23 + 1)(2 j12 + 1)]1/2W ( j1 j2 j j3; j12 j23). (A.41)
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We can derive a relation between the Racah coefficients and the Clebsch – Gordan
coefficients by expressing ψ jm( j12) and ψ jm( j23) in terms of ψ j1m1(1), ψ j2m2(2)
and ψ j3m3(3). Equations (A.36) and (A.37) yield

ψ jm( j12) =
∑

m1m12

( j1m1 j2m12 − m1| j12m12)( j12m12 j3m − m12| jm)

× ψ j1m1(1)ψ j2m12−m1(2)ψ j3m−m12(3) (A.42)

and (A.38) and (A.39) yield

ψ jm( j23) =
∑

m2m23

( j2m2 j3m23 − m2| j23m23)( j1m − m23 j23m23| jm)

× ψ j1m−m23(1)ψ j2m2(2)ψ j3m23−m2(3). (A.43)

Substituting (A.42) and (A.43) into (A.40) and using (A.41) gives

∑
f

[(2e + 1)(2 f + 1)]1/2W (abcd; e f )(bβdδ| fβ + δ)(aα fβ + δ|cα + β + δ)

= (aαbβ|eα + β)(eα + βdδ|cα + β + δ). (A.44)

Using the properties of the Clebsch–Gordan coefficients given by (A.18) and (A.19)
and by (A.21), (A.22), (A.23), (A.24), (A.25) and (A.26) we obtain the following
additional relations

[(2e + 1)(2 f + 1)]1/2W (abcd; e f )(aα fβ + δ|cα + β + δ)
=
∑
β

(aαbβ|eα + β)(eα + βdδ|cα + β + δ)(bβdδ| fβ + δ), (A.45)

where β + δ is a fixed parameter, and

[(2e + 1)(2 f + 1)]1/2W (abcd; e f )

=
∑
αβ

(aαbβ|eα + β)(eα + βdδ|cα + β + δ)(bβdδ| fβ + δ)

× (aα fβ + δ|cα + β + δ), (A.46)

where α + β + δ is a fixed parameter.
It follows from the above definitions that the six angular momenta in

W (abcd; e f ) satisfy the following four triangular relations

Δ(abe), Δ(cde), Δ(ac f ), Δ(bd f ), (A.47)
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a

b

f
d

e

c

Fig. A.1 Tetrahedron illustrating the triangular relations satisfied by the arguments of the Racah
coefficient W (abcd; e f )

where, for example, the notation Δ(abe) means that the three angular momenta a,
b and e form the sides of a triangle. These four triangular relations can be combined
by representing the six angular momenta by the sides of a tetrahedron as illustrated
in Fig. A.1.

The Racah coefficients satisfy certain symmetry relations under the 24 possible
permutations of the 6 arguments which preserve the 4 triangular relations. These
symmetry relations, which result in at most a change of phase, are given by

W (abcd; e f ) = W (badc; e f ) = W (cdab; e f ) = W (acbd; f e) (A.48)

and

W (abcd; e f ) = (−1)e+ f− a− d W (ebc f ; ad) = (−1)e+ f− b− cW (ae f d; bc)
(A.49)

together with the symmetry relations which can be obtained by applying the above
symmetry relations more than once.

The Racah coefficients also satisfy the orthogonality relation

∑
e

(2e + 1)(2 f + 1)W (abcd; e f )W (abcd; eg) = δ f g (A.50)

and the sum rules

∑
e

(−1)a+ b− e(2e + 1)W (abcd; e f )W (bacd; eg) = W (ag f b; dc) (A.51)

and

∑
g

(2g + 1)W (a′gdc; ac′)W (bgec′; b′c)W (a′g f b; ab′)

= W (adbe; c f )W (a′db′e; c′ f ). (A.52)

Hence when there is a sum over a product of several Racah coefficients it is
often possible to reduce the number of terms in the product. Finally, if one of the
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arguments of the Racah coefficient is zero we can use the symmetry relations and
the following result

W (abcd; 0 f ) = (−1) f− b− dδabδcd

[(2b + 1)(2d + 1)]1/2 (A.53)

to simplify the expression.

A.3 6- j Symbols

The symmetry relations satisfied by the Racah coefficients can be simplified using
the 6- j symbols introduced by Wigner [967] which are defined by

{
j1 j2 j3
j4 j5 j6

}
= (−1) j1+ j2+ j4+ j5 W ( j1 j2 j5 j4; j3 j6). (A.54)

The 6- j symbols are invariant under any permutation of the three columns, i.e.

{
j1 j2 j3
j4 j5 j6

}
=
{

j2 j3 j1
j5 j6 j4

}
=
{

j3 j1 j2
j6 j4 j5

}
=
{

j2 j1 j3
j5 j4 j6

}

=
{

j1 j3 j2
j4 j6 j5

}
=
{

j3 j2 j1
j6 j5 j4

}
. (A.55)

They are also invariant under interchange of the upper and lower arguments in each
of any two columns, i.e.

{
j1 j2 j3
j4 j5 j6

}
=
{

j1 j5 j6
j4 j2 j3

}
=
{

j4 j2 j6
j1 j5 j3

}
=
{

j4 j5 j3
j1 j2 j6

}
. (A.56)

A.4 9- j Symbols

In many applications we need to transform between two coupling schemes involving
four angular momenta. This occurs, for example, in the transformation from j j-
coupling to L S-coupling for two particles possessing both orbital and spin angular
momenta. In this example the total angular momentum vector of the first particle is
given by

j1 = �1 + s1 (A.57)

and of the second particle is given by

j2 = �2 + s2. (A.58)
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The total angular momentum of the two-particle system in j j-coupling is then
given by

J = j1 + j2. (A.59)

Alternatively, the total orbital angular momentum vector of the two particles is
given by

L = �1 + �2, (A.60)

and the total spin angular momentum vector is given by

S = s1 + s2. (A.61)

The total angular momentum of the two-particle system in L S coupling is then
given by

J = L+ S. (A.62)

The transformation between these coupling schemes is related to the 9- j symbol
introduced by Wigner [967] by the following equation

< (	1s1) j1, (	2s2) j2; J M |(	1	2)L , (s1s2)S; J M >

= [(2 j1 + 1)(2 j2 + 1)(2L + 1)(2S + 1)]1/2
⎧⎨
⎩
	1 s1 j1
	2 s2 j2
L S J

⎫⎬
⎭ , (A.63)

which is independent of the total magnetic quantum number M . The 9- j symbol in
the curly bracket in this equation can be written as the sum over products of three
6- j symbols by expressing the bra vector in (A.63) in terms of the ket vector in
(A.63) through repeated use of the recoupling transformation defined by (A.40) and
(A.41). We obtain in the general case

⎧⎨
⎩

j1 j2 j12
j3 j4 j34
j13 j24 j

⎫⎬
⎭ =

∑
κ

(−1)2κ(2κ + 1)

{
j1 j3 j13
j24 j κ

}{
j2 j4 j24
j3 κ j34

}

×
{

j12 j34 j
κ j1 j2

}
. (A.64)

An even permutation of the rows or columns of the 9- j symbol leaves it unchanged
as does the transposition obtained by interchanging rows and columns. An odd per-
mutation of the rows or columns causes the 9- j symbol to be multiplied by the
factor

f = (−1) j1+ j2+ j12+ j3+ j4+ j34+ j13+ j24+ j . (A.65)
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The 9- j symbols satisfy the orthogonality relation

∑
j12 j34

(2 j12 + 1)(2 j34 + 1)(2 j13 + 1)(2 j24 + 1)

⎧⎨
⎩

j1 j2 j12
j3 j4 j34
j13 j24 j

⎫⎬
⎭
⎧⎨
⎩

j1 j2 j12
j3 j4 j34
j ′13 j ′24 j

⎫⎬
⎭

= δ j13 j ′13
δ j24 j ′24

(A.66)

and the sum rule

∑
j13 j23

(−1)2 j2+ j24+ j23− j34(2 j13 + 1)(2 j24 + 1)

⎧⎨
⎩

j1 j2 j12
j3 j4 j34
j13 j24 j

⎫⎬
⎭
⎧⎨
⎩

j1 j3 j13
j4 j2 j24
j14 j23 j

⎫⎬
⎭

=
⎧⎨
⎩

j1 j2 j12
j4 j3 j34
j14 j23 j

⎫⎬
⎭ . (A.67)

When one of the arguments of the 9- j symbol is zero we can use the symmetry
relations and the following result

⎧⎨
⎩

a b e
c d e
f f 0

⎫⎬
⎭ =

(−1)b+c+e+ f

[(2e + 1)(2 f + 1)]1/2
{

a b e
d c f

}
(A.68)

to reduce the 9- j symbol to a 6- j symbol times a factor.

A.5 Higher Order 3n- j Symbols

We conclude this appendix by noting that in the theory of electron and photon inter-
actions with complex atoms and ions with many open shells, it is often necessary
to consider the recoupling of more than four angular momenta. For example, in
the case of recoupling five angular momenta, 12- j symbols arise whose properties
have been discussed by Jahn and Hope [498] and by Ord-Smith [708]. However,
we will not discuss these higher order 3n- j symbols further here but remark that in
practical calculations they can be evaluated in terms of sums over products of Racah
coefficients by repeated use of (A.40) and (A.41), and general computer programs
have been written for this purpose by Shapiro [870], Burke [154] and Bar-Shalom
and Klapisch [56].



Appendix B
Legendre Polynomials and Related Functions

In this appendix we first summarize formulae for Legendre polynomials, associ-
ated Legendre functions and spherical harmonics, which are required in defining
the eigenfunctions of the orbital angular momentum operator. We then consider the
phase of the spherical harmonics and its relation to the time-reversal operation, and
we review two phase conventions that have been used in applications, referred to
as the Condon–Shortley and the Fano–Racah phase conventions. Finally, we con-
sider the transformation properties of wave functions under rotations of the axis
of quantization in which we introduce and define Euler angles and Wigner rotation
matrices. For a detailed discussion of spherical harmonics reference should be made
to Hobson [474].

B.1 Legendre Polynomials

Let x be a real variable such that −1 ≤ x ≤ 1. In physical problems the variable
x is usually the cosine of an angle θ so that x = cos θ . Legendre polynomials of
degree 	 are then defined by Rodrigue’s formula

P	(x) = 1

2		!
d	

dx	
(x2 − 1)	, 	 = 0, 1, 2, . . . . (B.1)

An equivalent definition of P	(x) is given in terms of a generating function, namely

F(x, y) = (1− 2xy + y2)−1/2 =
∞∑
	= 0

P	(x)y
	, (B.2)

where this relation has a meaning only when the summation converges, which
occurs when |x | ≤ 1 and |y| < 1. By differentiating (B.2) with respect to x we
obtain the following useful relation

(1− 2xy + y2)−3/2 =
∞∑
	=1

P ′	(x)y	−1, (B.3)

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_14,
C© Springer-Verlag Berlin Heidelberg 2011
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where P ′	(x) = dP	(x)/dx .
The Legendre polynomials satisfy the following differential equation

[
(1− x2)

d2

dx2
− 2x

d

dx
+ 	(	+ 1)

]
P	(x) = 0 (B.4)

and recurrence relations

(	+ 1)P	+1 − (2	+ 1)x P	 + 	P	−1 = 0, (B.5)

P ′	+1 − x P ′	 = (	+ 1)P	, (B.6)

P ′	+1 − P ′	−1 = (2	+ 1)P	, (B.7)

(x2 − 1)P ′	 = 	x P	 − 	P	−1. (B.8)

These recurrence relations are valid for the case 	 = 0 if we define P−1(x) = 0.
The Legendre polynomials also satisfy the orthogonality relation

∫ +1

−1
P	(x)P	′(x)dx = 2

2	+ 1
δ		′ (B.9)

and the closure relation

1

2

∞∑
	= 0

(2	+ 1)P	(x)P	(x
′) = δ(x − x ′). (B.10)

They have parity (−1)	 so that

P	(−x) = (−1)	P	(x) (B.11)

and satisfy the boundary conditions

P	(1) = 1, P	(−1) = (−1)	, (B.12)

with 	 zeros in the interval −1 < x < 1. Explicit expressions for the first few
Legendre polynomials are

P0(x) = 1,

P1(x) = x,

P2(x) = 1

2
(3x2 − 1),

P3(x) = 1

2
(5x3 − 3x),
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P4(x) = 1

8
(35x4 − 30x2 + 3),

P5(x) = 1

8
(63x5 − 70x3 + 15x),

P6(x) = 1

16
(231x6 − 315x4 + 105x2 − 5),

P7(x) = 1

16
(429x7 − 693x5 + 315x3 − 35x). (B.13)

Explicit values for the higher order polynomials are usually calculated using the
recurrence relation (B.5).

B.2 Associated Legendre Functions

The associated Legendre functions Pm
	 (x) are defined over the interval−1 ≤ x ≤ 1

by the relation

Pm
	 (x) = (1− x2)m/2

dm

dxm
P	(x), 0 ≤ m ≤ 	. (B.14)

They are seen to be the product of the function (1 − x2)m/2 and a polynomial of
degree (	−m) and parity (−1)	−m , having 	− m zeros in the interval−1 ≤ x ≤ 1.
As with the Legendre polynomials, a generating function can be defined for the
associated Legendre functions. It is given by

(2m)!(1− x2)m/2

2mm!(1− 2xy + y2)m+ 1/2
=
∞∑
	= 0

Pm
	+m(x)y

	. (B.15)

The associated Legendre functions satisfy the differential equation

[
(1− x2)

d2

dx2
− 2x

d

dx
+ 	(	+ 1)− m2

1− x2

]
Pm
	 (x) = 0 (B.16)

and the recurrence relations

(	− m + 1)Pm
	+1 − (2	+ 1)x Pm

	 + (	+ m)Pm
	−1 = 0, 0 ≤ m ≤ 	− 1, (B.17)

Pm+1
	 − 2mx

(1− x2)1/2
Pm
	 + (	+m)(	−m+1)Pm−1

	 = 0, 0 ≤ m ≤ 	−1, (B.18)

(2	+ 1)(1− x2)1/2 Pm
	 = Pm+1

	+1 − Pm+1
	−1 , 0 ≤ m ≤ 	− 2, (B.19)
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(2	+ 1)(1− x2)1/2 Pm
	 = (	+ m)(	+ m − 1)Pm−1

	−1 − (	− m + 1)

× (	− m + 2)Pm−1
	+1 , 0 ≤ m ≤ 	, (B.20)

(1− x2)
dPm
	

dx
= (	+ 1)x Pm

	 − (	− m + 1)Pm
	+1, 0 ≤ m ≤ 	, (B.21)

= −	x Pm
	 + (	+ m)Pm

	−1, 0 ≤ m ≤ 	− 1. (B.22)

The associated Legendre functions also satisfy the orthogonality relations

∫ +1

−1
Pm
	 (x)P

m
	′ (x)dx = 2(	+ m)!

(2	+ 1)(	− m)!δ		′ (B.23)

and have the values

Pm
	 (1) = Pm

	 (−1) = 0, m �= 0, (B.24)

and

Pm
	 (0) = (−1)s

(2s + 2m)!
2	s!(s + m)! , 	− m = 2s,

= 0, 	− m = 2s + 1. (B.25)

Explicit expressions for the first few associated Legendre functions are

P1
1 (x) = (1− x2)1/2,

P1
2 (x) = 3x(1− x2)1/2,

P2
2 (x) = 3(1− x2),

P1
3 (x) =

3

2
(5x2 − 1)(1− x2)1/2,

P2
3 (x) = 15x(1− x2),

P3
3 (x) = 15(1− x2)3/2,

P1
4 (x) =

5

2
(7x3 − 3x)(1− x2)1/2,

P2
4 (x) =

15

2
(7x2 − 1)(1− x2),

P3
4 (x) = 105x(1− x2)3/2,

P4
4 (x) = 105(1− x2)2. (B.26)
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B.3 Spherical Harmonics

The spherical harmonics Y	m(θ, φ) are simultaneous eigenfunctions of �2 and 	z ,
where in quantum theory � = −i(r×∇) (with h̄ = 1) is the orbital angular momen-
tum operator of a particle and 	z is its z-component. Thus

�2Y	m(θ, φ) = 	(	+ 1)Y	m(θ, φ), 	 = 0, 1, 2, . . . , (B.27)

	zY	m(θ, φ) = mY	m(θ, φ), m = −	,−	+ 1, . . . , 	, (B.28)

where, using spherical polar coordinates θ and φ,

�2 = −
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
(B.29)

and

	z = −i
∂

∂φ
. (B.30)

The Laplacian ∇2 can be written in terms of �2 as follows

∇2 = 1

r2

∂

∂r
r2 ∂

∂r
− 1

r2
�2, (B.31)

where the kinetic energy of a particle of unit mass is − 1
2∇2.

The spherical harmonics are defined in terms of the associated Legendre func-
tions by

Y	m(θ, φ) = (−1)m
[
(2	+ 1)(	− m)!

4π(	+ m)!
]1/2

Pm
	 (cos θ) exp(imφ), m ≥ 0,

(B.32)
where those with m < 0 can be obtained from the following important property

Y ∗	m(θ, φ) = (−1)mY	−m(θ, φ). (B.33)

In these and later equations ∗ corresponds to complex conjugation, and we have
adopted the phase convention of Condon and Shortley [227] here and in the rest
of this section. It follows from (B.32) and (B.33) that the spherical harmonics
Y	m(θ, φ) have parity (−1)	, so that under a reflection in the origin, such that
(θ, φ)→ (π − θ, φ + π), we have

Y	m(π − θ, φ + π) = (−1)	Y	m(θ, φ). (B.34)
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The spherical harmonics satisfy the orthonormality relation

∫ 2π

0

∫ π

0
Y ∗	′m′(θ, φ)Y	m(θ, φ) sin θdθdφ = δ		′δmm′ (B.35)

and the closure relation

∞∑
	= 0

+	∑
m=−	

Y ∗	m(θ, φ)Y	m(θ ′, φ′) = δ(Ω −Ω ′), (B.36)

where

δ(Ω −Ω ′) = δ(θ − θ
′)δ(φ − φ′)
sin θ

. (B.37)

They also satisfy the following product relation

Y	1m1(θ, φ)Y	2m2(θ, φ) =
	1+ 	2∑
	=|	1−	2|

[
(2	1 + 1)(2	2 + 1)

4π(2	+ 1)

]1/2

(	1m1	2m2|	m1 + m2)

× (	10	20|	0)Y	m1+m2(θ, φ), (B.38)

where (	1m1	2m2|	m1+m2) are Clebsch–Gordan coefficients defined in
Appendix A. Using the result that Y10(θ, φ) = (3/4π)1/2 cos θ , (B.38) yields the
recurrence relation

cos θ Y	m(θ, φ) =
[
(	+ m + 1)(	− m + 1)

(2	+ 1)(2	+ 3)

]1/2

Y	+1m(θ, φ)

+
[
(	+ m)(	− m)

(2	− 1)(2	+ 1)

]1/2

Y	−1m(θ, φ). (B.39)

Another useful relation which follows from (B.21) and (B.22) is

sin θ
∂

∂θ
Y	m(θ, φ) = 	

[
(	+ m + 1)(	− m + 1)

(2	+ 1)(2	+ 3)

]1/2

Y	+1m(θ, φ)

− (	+ 1)

[
(	+ m)(	− m)

(2	− 1)(2	+ 1)

]1/2

Y	−1m(θ, φ). (B.40)

Other recurrence relations can be obtained by introducing the shift operators

	± = 	x ± i	y = exp(±iφ)

(
± ∂
∂θ
+ i cot θ

∂

∂φ

)
. (B.41)
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We find that

	±Y	m(θ, φ) = [(	∓ m)(	± m + 1)]1/2Y	m±1(θ, φ), (B.42)

	+Y		(θ, φ) = 0, (B.43)

	−Y	−	(θ, φ) = 0. (B.44)

The orthonormality relation (B.35) and the product relation (B.38) enable the fol-
lowing integral over three spherical harmonics to be evaluated

∫ 2π

0

∫ π

0
Y ∗	3m3

(θ, φ)Y	1m1(θ, φ)Y	2m2(θ, φ) sin θdθdφ

=
[
(2	1 + 1)(2	2 + 1)

4π(2	3 + 1)

]1/2

(	1m1	2m2|	3m3)(	10	20|	30). (B.45)

Another important relation is the spherical harmonic addition theorem

Y	0(θ, 0) =
(

4π

2	+ 1

)1/2 +	∑
m=−	

Y ∗	m(θ1, φ1)Y	m(θ2, φ2), (B.46)

where (θ1, φ1) and (θ2, φ2) are the spherical polar angles of two vectors r1 and r2
and θ is the angle between these vectors. Using the result that

Y	0(θ, φ) =
(

2	+ 1

4π

)1/2

P	(cos θ), (B.47)

the addition theorem can be written as

P	(cos θ) = 4π

2	+ 1

+	∑
m=−	

Y ∗	m(θ1, φ1)Y	m(θ2, φ2). (B.48)

A further useful formula can be derived from the generating function satisfied by
the Legendre polynomials, (B.2), which we write here as

1

|r1 − r2| =
∞∑
	= 0

r	<
r	+1
>

P	(cos θ), (B.49)

where θ is the angle between the vectors r1 and r2 and r< is the smaller and r> is
the larger of r1 and r2. Using (B.48) we can write (B.49) as

1

|r1 − r2| =
∞∑
	= 0

+	∑
m=−	

4π

2	+ 1

r	<
r	+1
>

Y ∗	m(θ1, φ1)Y	m(θ2, φ2). (B.50)
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Also we have

exp(ik|r1 − r2|)
|r1 − r2| = ik

∞∑
	= 0

(2	+ 1) j	(kr<)h
(1)
	 (kr>)P	(cos θ), (B.51)

where j	 and h(1)	 are, respectively, spherical Bessel and spherical Hankel func-
tions of the first kind (see Appendix C). Finally, the plane wave exp(ik · r) can be
expanded in spherical harmonics as

exp(ik · r) = 4π
∞∑
	= 0

+	∑
m=−	

i	 j	(kr)Y ∗	m(θk, φk)Y	m(θ, φ), (B.52)

where (θk, φk) and (θ, φ) are the spherical polar angles of the two vectors k and r,
respectively. If we use the addition theorem (B.48) and choose the z-axis to coincide
with the direction of k then (B.52) reduces to the partial wave expansion

exp(ik · r) =
∞∑
	= 0

(2	+ 1)i	 j	(kr)P	(cos θ). (B.53)

Explicit expressions for the first few spherical harmonics are

Y00(θ, φ) =
(

1

4π

)1/2

,

Y10(θ, φ) =
(

3

4π

)1/2

cos θ,

Y1±1(θ, φ) = ∓
(

3

8π

)1/2

sin θ exp(±iφ),

Y20(θ, φ) =
(

5

16π

)1/2

(3 cos2 θ − 1),

Y2± 1(θ, φ) = ∓
(

15

8π

)1/2

sin θ cos θ exp(±iφ),

Y2± 2(θ, φ) =
(

15

32π

)1/2

sin2 θ exp(±2iφ),

Y30(θ, φ) =
(

7

16π

)1/2

(5 cos3 θ − 3 cos θ),

Y3±1(θ, φ) = ∓
(

21

64π

)1/2

sin θ(5 cos2 θ − 1) exp(±iφ),
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Y3±2(θ, φ) =
(

105

32π

)1/2

sin2 θ cos θ exp(±2iφ),

Y3±3(θ, φ) = ∓
(

35

64π

)1/2

sin3 θ exp(±3iφ). (B.54)

It follows that we can write the first-order (	 = 1) spherical harmonics in terms of
the Cartesian coordinates x , y and z as

Y1m(θ, φ) =
(

3

4π

)1/2 1

r

⎧⎪⎨
⎪⎩
− 1√

2 (x + iy), m = 1,

z, m = 0,
− 1√

2 (x − iy), m = −1.
(B.55)

Finally, we find it convenient to define two-particle angular functions
Y	1	2 L ML (r̂1, r̂2) which are simultaneous eigenfunctions of the square of the total
orbital angular momentum operator L2 and its z-component Lz of two particles
labelled 1 and 2, where

L = �1 + �2 and Lz = 	1z + 	2z . (B.56)

It follows from (A.15) that these eigenfunctions are defined by

Y	1	2 L ML (r̂1, r̂2) =
∑

m1m2

(	1m1	2m2|L ML)Y	1m1(θ1, φ1)Y	2m2(θ2, φ2), (B.57)

which can be inverted using (A.19) giving

Y	1m1(θ1, φ1)Y	2m2(θ2, φ2) =
∑

L

(	1m1	2m2|L ML)Y	1	2 L ML (r̂1, r̂2). (B.58)

Also, it follows from the symmetry relation (A.22) satisfied by the Clebsch–Gordan
coefficient in (B.57) that these eigenfunctions satisfy

Y	1	2 L ML (r̂1, r̂2) = (−1)	1+ 	2− L Y	2	1 L ML (r̂2, r̂1). (B.59)

In addition, it follows from the orthonormality relation (B.35) satisfied by the spher-
ical harmonics that

∫ ∫
Y ∗	1	2 L ML

(r̂1, r̂2)Y	′1	′2 L ′ML′ (r̂1, r̂2)dr̂1dr̂2 = δ	1	
′
1
δ	2	

′
2
δL L ′δML ML′ , (B.60)

where in this and the above equations we have written r̂1 ≡ (θ1, φ1) and r̂2 ≡
(θ2, φ2) for notational simplicity. These two-particle angular functions are important
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in the quantum theory of two-electron systems, such as electron collisions with
atomic hydrogen or with atoms containing one active electron as in the alkali metal
atoms.

B.4 Phase of Spherical Harmonics

The phase of the spherical harmonics Y	m(θ, φ), defined by (B.32) and (B.33), cor-
responds to that adopted by Condon and Shortley [227] and is referred to in this
monograph as the “Condon–Shortley phase convention”. However, it was pointed
out by Huby [477] that a careful choice of this phase has to be made in proving the
equality of a matrix element to its complex conjugate by means of the time-reversal
operation. In particular, the functions used in the vector addition of angular momenta
must be defined in such a way that the operation of time reversal gives the same form
of the result before and after vector addition. Although the principles involved are
well known, an inconsistency in the choice of phase has led to discrepancies in some
results. This was discussed by Breit [134] in the context of the Wigner and Eisenbud
[972] R-matrix theory of nuclear reactions.

Let us consider the application of the time-reversal operator K (Wigner [966])
on an angular momentum eigenstate ψ jm . We have

Kψ jm = α( j)i2mψ j −m, (B.61)

where α( j) can be varied by multiplying the eigenstates by an arbitrary phase factor
which is independent of m. It is desirable to choose α( j) so that the form of (B.61) is
invariant under the vector addition of angular momenta defined by (A.15). Hence we
require that ifψ j1m1(1) andψ j2m2(2) in (A.15) conform to (B.61) thenψ j1 j2 jm(1, 2)
should do likewise. It is found that when we use the conventional real representation
of the Clebsch–Gordan coefficients ( j1m1 j2m2| jm), this requirement is satisfied by
taking

α( j) = i−2 j (B.62)

so that (B.61) becomes

Kψ jm = (−1) j−mψ j −m . (B.63)

In the case when ψ jm represents a spherical harmonic, we must adopt a new defini-
tion for the phase of this quantity defined by

Y	m(θ, φ) = i	Y	m(θ, φ), (B.64)

where Y	m(θ, φ) is the spherical harmonic defined by (B.32) and (B.33). It then
follows from (B.33) and (B.64) that

Y∗	m(θ, φ) = (−1)	+mY	−m(θ, φ). (B.65)
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This modified phase convention for the spherical harmonics Y	m(θ, φ) was
adopted by Fano and Racah [308], and it was used by Fano [302] in his analysis
of the interaction between configurations with several open shells. Following this
work, this convention was adopted by Hibbert [462, 464] in a general computer
program for atomic structure calculations and by Burke et al. [178], Berrington
et al. [95, 98, 102] and Scott and Taylor [844] in their general computer program for
atomic continuum calculations using the R-matrix method. In this monograph this
phase convention will be referred to as the “Fano–Racah phase convention”.

In practice, the modifications which have to be made to the formulae given in
Appendix B.3 due to the adoption of the Fano–Racah phase convention are small.
However, care has to be taken to ensure that the same phase convention is used
consistently throughout the analysis and calculation of any given process. As an
example, we derive in Appendix D.1 explicit expressions for the long-range mul-
tipole potential coefficients in non-relativistic electron collisions with atoms and
ions using both the Fano–Racah and the Condon–Shortley phase conventions. We
give below formulae obtained using spherical harmonics satisfying the Fano–Racah
phase convention.

We observe first that the spherical harmonics defined by (B.64) satisfy the usual
orthonormality relation given by (B.35), which can be written as

∫ 2π

0

∫ π

0
Y∗	′m′(θ, φ)Y	m(θ, φ) sin θdθdφ = δ		′δmm′ . (B.66)

However, the expression for the product of two spherical harmonics given by (B.38)
now becomes

Y	1m1(θ, φ)Y	2m2(θ, φ) =
∑
	

i	1+ 	2− 	
[
(2	1 + 1)(2	2 + 1)

4π(2	+ 1)

]1/2

× (	1m1	2m2|	m1 + m2)

× (	10	20|	0)Y	m1+m2(θ, φ). (B.67)

Using the result that Y10(θ, φ) = i(3/4π)1/2 cos θ , (B.67) then reduces to

cos θY	m(θ, φ) =
∑
	′

i	− 	′
[

2	+ 1

2	′ + 1

]1/2

(10	m|	′m)(10	0|	′0)Y	′m(θ, φ).
(B.68)

In addition it follows from (B.40), by comparing with (B.39) and after using
(B.68), that

sin θ
∂

∂θ
Y	m(θ, φ) =

∑
	′

i	− 	′ f (	, 	′)
[

2	+ 1

2	′ + 1

]1/2

(10	m|	′m)

× (10	0|	′0)Y	′m(θ, φ), (B.69)
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where

f (	, 	′) =
{
	, 	′ = 	+ 1
−	− 1, 	′ = 	− 1.

(B.70)

Also we find that the integral over three spherical harmonics given by (B.45)
reduces to

∫ 2π

0

∫ π

0
Y∗	3m3

(θ, φ)Y	1m1(θ, φ)Y	2m2(θ, φ) sin θdθdφ

= i	1+	2−	3

[
(2	1 + 1)(2	2 + 1)

4π(2	3 + 1)

]1/2

(	1m1	2m2|	3m3)(	10	20|	30),(B.71)

where the factor i	1+	2−	3 is real since, from (A.27), the Clebsch–Gordan coefficient
(	10	20|	30) vanishes unless 	1 + 	2 − 	3 is even.

The matrix element of the momentum operator ε̂ · p, which occurs in our dis-
cussion of multiphoton processes in intense laser fields in Chaps. 9 and 10, can
be obtained from (B.68) and (B.69). If we take the z-axis to lie along the laser
polarization direction ε̂ then

ε̂ · p = −i
∂

∂z
= −i

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
. (B.72)

Using (B.68) and (B.69) we then obtain the following expression for the matrix
elements

〈Y	m(θ, φ)|ε̂ · p|Y	′m′(θ, φ)〉 = i	
′−	−1

[
2	′ + 1

2	+ 1

]1/2

(10	′m′|	m)

× (10	′0|	0)
(

d

dr
− f (	′, 	)

r

)
δmm′ , (B.73)

where f (	′, 	) is defined by (B.70), with 	 and 	′ interchanged. Also, in our eval-
uation of the matrix elements which occur in multiphoton processes, discussed in
Chaps. 9 and 10 and Appendix D, see, for example, (9.44) and (D.40), it is necessary
to determine the angular integrals which arise in the following matrix element

M = 〈r−1 f (r)Y	m(θ, φ)|ε̂ · p|r−1g(r)Y	′m′(θ, φ)〉. (B.74)

After separating the radial and angular integrals in (B.74) we can rewrite this equa-
tion as

M = 〈r−2 f (r)|Mang|g(r)〉, (B.75)
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where the angular matrix element Mang is defined by

Mang = i	
′−	−1

[
2	′ + 1

2	+ 1

]1/2

(10	′m′|	m)(10	′0|	0)

×
(

d

dr
− f (	′, 	)

r
− 1

r

)
δmm′ . (B.76)

Comparing (B.76) with the angular matrix element defined by (B.73), we see that
the additional factor−1/r , which occurs in (B.76), arises from the operation of ε̂ ·p
on the radial wave function r−1g(r) in (B.74). The angular matrix element Mang
then operates on the reduced radial wave function g(r) in (B.75).

Finally, we note that the expansions of the Legendre polynomial and the plane
wave, given by (B.48) and (B.52), respectively, can be rewritten in terms of spherical
harmonics, defined using the Fano–Racah phase convention as

P	(cos θ) = 4π

2	+ 1

+	∑
m=−	

Y∗	m(θ1, φ1)Y	m(θ2, φ2) (B.77)

and

exp(ik · r) = 4π
∞∑
	=0

+	∑
m=−	

i	 j	(kr)Y∗	m(θk, φk)Y	m(θ, φ). (B.78)

Also, the simultaneous eigenfunctions of the square of the total orbital angular
momentum operator L2 and its z-component Lz of two particles labelled 1 and 2,
defined earlier by (B.57), are now given by

Y	1	2 L ML (r̂1, r̂2) =
∑

m1m2

(	1m1	2m2|L ML)Y	1m1(θ1, φ1)Y	2m2(θ2, φ2), (B.79)

where, as before, these eigenfunctions satisfy the symmetry relation

Y	1	2 L ML (r̂1, r̂2) = (−1)	1+	2−LY	2	1 L ML (r̂2, r̂1) (B.80)

and the orthogonality relation

∫ ∫
Y∗	1	2 L ML

(r̂1, r̂2)Y	′1	′2 L ′ML′ (r̂1, r̂2)dr̂1dr̂2 = δ	1	
′
1
δ	2	

′
2
δL L ′δML ML′ . (B.81)



632 Appendix B Legendre Polynomials and Related Functions

B.5 Transformation Under Rotations

In Appendix A.1 we considered a quantum system described by a set of wave func-
tions ψ jm which were simultaneous eigenfunctions of the total angular momentum
operator squared J2 and its z-component Jz belonging to the eigenvalues j ( j + 1)
and m, respectively. In this appendix we consider how these functions transform
under rotations of the axis of quantization with the physical system fixed in space.
An important example of the need for this development arises in electron–molecule
collisions, which we consider in Chap. 11, where the transformation of the collision
wave function from the molecular to the laboratory frame of reference is required in
the calculation of the scattering amplitudes and cross sections.

We specify a general rotation by three Euler angles α, β and γ . We adopt a right-
handed coordinate system, as used by Rose [797], Edmonds [284] and Fano and
Racah [308]. The Euler angles are defined by the following three rotations which
are performed successively, as illustrated in Fig. B.1:

i. A rotation about the z-axis through an angle α (0 ≤ α < 2π ) giving the new
coordinate axes x ′, y′, z′, as illustrated in Fig. B.1 (i).

ii. A rotation about the new y′-axis through an angle β (0 ≤ β < π ) giving the
new coordinate axes x ′′, y′′, z′′, as illustrated in Fig. B.1 (ii).

iii. A rotation about the new z′′-axis through an angle γ (0 ≤ γ < 2π ) giving the
final coordinate axes x ′′′, y′′′, z′′′, as illustrated in Fig. B.1 (iii).

The Euler angles α, β, γ are each defined by a positive or zero right-hand screw
rotation.

We now consider the effect on the wave function of a particle due to a rota-
tion of the coordinate system through the Euler angles α, β, γ . The wave func-
tion ψ(x, y, z) in the original coordinate system is related to the wave function

Fig. B.1 Right-handed
coordinate system showing
the Euler angles α, β, γ

(i) zz

x

x
y

yα

(ii) zz

x

x

y , y

β

(iii) z z

x
x

y

y

γ
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ψ ′(x ′, y′, z′) in the rotated coordinate system by the product of three unitary opera-
tors as follows:

ψ ′ = R(α, β, γ )ψ = Rγ Rβ Rαψ, (B.82)

where the operators Rα , Rβ and Rγ correspond to successive rotations about the z-,
y′- and z′′-axes, respectively. For an infinitesimal rotation dθ about the z-axis we
find that

Rψ(x, y, z) = (1− idθ Jz)ψ(x, y, z), (B.83)

where the angular momentum operator Jz , introduced in this equation, and the
corresponding angular momentum operators Jx and Jy , obtained by infinitesimal
rotations about the x- and y-axes, respectively, are defined by

Jx = −i

(
y
∂

∂z
− z

∂

∂y

)
, (B.84)

Jy = −i

(
z
∂

∂x
− x

∂

∂z

)
, (B.85)

Jz = −i

(
x
∂

∂y
− y

∂

∂x

)
. (B.86)

It follows from (B.83) that a finite rotation about the z-axis can be written as

Rψ = exp(−iθ Jz)ψ. (B.87)

Hence, the sequence of rotations defined by the Euler angles α, β, γ in (B.82) are
represented by the operator

R(α, β, γ ) = exp(−iγ Jz′′) exp(−iβ Jy′) exp(−iα Jz), (B.88)

where Jz , Jy′ and Jz′′ are the components of J along the z-, y′- and z′′-axes, respec-
tively, in Fig. B.1. We can also show that the operator R(α, β, γ ) in (B.88) can
be expressed in terms of rotations made in the original coordinate system by the
equation

R(α, β, γ ) = exp(−iα Jz) exp(−iβ Jy) exp(−iγ Jz), (B.89)

which correspond to a rotation γ about the z-axis, followed by a rotation β about
the y-axis and finally a rotation α about the z-axis. We observe that since the
above equations have been obtained using the commutation relations satisfied by
the orbital angular momentum operators, defined by (B.84), (B.85) and (B.86), they



634 Appendix B Legendre Polynomials and Related Functions

are valid for general angular momentum operators satisfying these commutation
relations.

The matrix elements of the rotation operator R(α, β, γ ) in (B.82) are defined by
the equation

D j
m′m(α, β, γ ) = 〈ψ jm′ |R(α, β, γ )|ψ jm〉, (B.90)

where j is a conserved quantum number since J2 commutes with each term in the
expression for R(α, β, γ ) defined by (B.89). Also when ψ in (B.82) is taken to be
ψ jm we obtain

R(α, β, γ )ψ jm =
∑
m′

D j
m′m(α, β, γ )ψ jm′ . (B.91)

The quantities D j
m′m(α, β, γ ) in (B.90) and (B.91) are known as Wigner rotation

matrices.
In order to obtain an explicit expression for D j

m′m(α, β, γ ) we substitute (B.89)
into (B.90) giving

D j
m′m(α, β, γ ) = 〈ψ jm′ | exp(−iα Jz) exp(−iβ Jy) exp(−iγ Jz)|ψ jm〉. (B.92)

It follows from (A.6) that Jzψ jm = mψ jm , and hence (B.92) can be written as

D j
m′m(α, β, γ ) = exp(−im′α) d j

m′m(β) exp(−imγ ), (B.93)

where the reduced rotation matrix d j
m′m(β) is defined by

d j
m′m(β) = 〈ψ jm′ | exp(−iβ Jy)|ψ jm〉. (B.94)

Using the Condon–Shortley phase convention, discussed in Appendix B.4, the
reduced rotation matrices are real and are defined by

d j
m′m(β) =

∑
t

(−1)t+m′−m [( j + m)!( j − m)!( j + m′)!( j − m′)!]1/2
( j − m′ − t)!( j + m − t)!(t + m′ − m)!t !

×
(

cos 1
2β
)2 j+m−m′−2t (

sin 1
2β
)m′−m+2t

, (B.95)

where the summation is over all integer values of t such that the arguments of the
factorials are greater than or equal to zero.
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We can show that the reduced rotation matrix satisfies the following symmetry
relations:

d j
m′m(β) = d j

mm′(−β), (B.96)

d j
m′m(β) = (−1)m

′−md j
mm′(β), (B.97)

d j
m′m(β) = (−1)m

′−md j
−m′ −m(β). (B.98)

We can also show that the rotation matrices satisfy the following symmetry
relations:

D j
m′m(−γ,−β,−α) = D j∗

mm′(α, β, γ ), (B.99)

D j
m′m(α, β, γ ) = (−1)m

′−m D j∗
−m′ −m(α, β, γ ). (B.100)

They also satisfy the orthonormality relations

∑
m

D j∗
m′m(α, β, γ )D

j
m′′m(α, β, γ ) = δm′m′′ , (B.101)

∑
m

D j
mm′(α, β, γ )D

j
mm′′(α, β, γ ) = δm′m′′ . (B.102)

These equations follow from (B.91), which corresponds to a unitary transformation
from one set of orthogonal eigenfunctions ψjm to another set of orthogonal eigen-
functions R(α, β, γ )ψ jm , obtained by rotating the coordinate axes. Explicit values

for the reduced rotation matrices d j
m′m are given in Tables B.1, B.2 and B.3 for

j = 1/2, 1 and 3/2, respectively.

Table B.1 Reduced rotation matrices d j
m′m for j = 1

2

m′ m = 1
2 m = − 1

2

1
2 cos 1

2β − sin 1
2β

− 1
2 sin 1

2β cos 1
2β

Table B.2 Reduced rotation matrices d j
m′m for j = 1

m′ m = 1 m = 0 m = −1

1 cos2 1
2β − 1√

2
sinβ sin2 1

2β

0 1√
2

sinβ cosβ − 1√
2

sinβ

−1 sin2 1
2β

1√
2

sinβ cos2 1
2β
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Table B.3 Reduced rotation matrices d j
m′m for j = 3

2 where p = 3 sin2( 1
2β) − 2 and q =

3 cos2( 1
2β)− 2

m′ m = 3
2 m = 1

2 m = − 1
2 m = − 3

2

3
2 cos3 1

2β −√3 cos2 1
2β sin 1

2β
√

3 cos 1
2β sin2 1

2β − sin3 1
2β

1
2

√
3 cos2 1

2β sin 1
2β q cos 1

2β p sin 1
2β

√
3 cos 1

2β sin2 1
2β

− 1
2

√
3 cos 1

2β sin2 1
2β −p sin 1

2β q cos 1
2β −√3 cos2 1

2β sin 1
2β

− 3
2 sin3 1

2β
√

3 cos 1
2β sin2 1

2β
√

3 cos2 1
2β sin 1

2β cos3 1
2β

The spherical harmonics discussed in Appendix B.3 correspond to a particular
example of functions satisfying (B.91). We can write (B.91) in this case as

Y	m(θ
′, φ′) =

∑
m′

D	m′m(α, β, γ )Y	m′(θ, φ). (B.103)

If m = 0 we find, using (B.47) and the spherical harmonic addition theorem (B.48),
that

D	m0(α, β, 0) =
(

4π

2	+ 1

)1/2

Y ∗	m(β, α). (B.104)

The rotation matrices also satisfy the following orthogonality relation

∫ 2π

0

∫ π

0

∫ 2π

0
D j ′∗

m′n′(α, β, γ )D
j
mn(α, β, γ )dα sinβdβdγ

= 8π2

2 j + 1
δ j j ′δmm′δnn′, (B.105)

which reduces to (B.35) satisfied by the spherical harmonics when n = n′ = 0.
We conclude this appendix by observing that the Wigner rotation matrices are

eigenfunctions of the total angular momentum operator of a rigid body whose ori-
entation is specified by the Euler angles (α, β, γ ) and which has two of its principal
moments of inertia equal. The rotational kinetic operator of this body, which corre-
sponds to a symmetric top molecule, is given by

TR = 1

2I1
(	2

1 + 	2
2)+

1

2I2
	2

3, (B.106)

where 	2
1, 	2

2 and 	2
3 are the squares of the components of the angular momentum

operator along the principal axes of inertia which are fixed in the body. The normal-
ized eigenfunctions belonging to this operator are
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φL K M (α, β, γ ) =
(

2L + 1

8π2

)1/2

DL∗
K M (α, β, γ ), (B.107)

where both K and M can assume integral values which go over the range −L to L .
The corresponding eigenenergies E(L , K ) of the rotational kinetic energy operator
can be obtained by writing (B.106) as

TR = 1

2I1
�2 + 1

2

(
1

I2
− 1

I1

)
	2

3, (B.108)

where �2 = 	2
1 + 	2

2 + 	2
3. Hence the eigenenergies are given by

E(L , K ) = 1

2I1
L(L + 1)+ 1

2

(
1

I2
− 1

I1

)
K 2. (B.109)

The rotational eigenfunctions of a general polyatomic molecule are described by the
asymmetric top wave function

ψL Kλ(α, β, γ ) =
(

2L + 1

8π2

)1/2∑
M

aL MλDL∗
K M (α, β, γ ), (B.110)

where the coefficients aL Mλ can be obtained by diagonalizing the rotational kinetic
energy operator

TR = 	2
1

2I1
+ 	2

2

2I2
+ 	2

3

2I3
(B.111)

in the basis of the symmetric top eigenfunctions φL K M (α, β, γ ) defined by (B.107).
These coefficients have been given by King et al. [535, 536] and the rotational
eigenfunctions and eigenfunctions of polyatomic molecules have been discussed
by Herzberg [457].



Appendix C
Bessel Functions and Related Functions

In this appendix we summarize the properties of Bessel functions, spherical Bessel
functions and related functions. These functions are required in the solution of the
radial Schrödinger equation and in the derivation of formulae for scattering ampli-
tudes and cross sections. They are also important in the discussion of other topics in
this monograph including multiphoton processes. For more complete presentations
of their properties, reference should be made to specialized monographs on mathe-
matical functions such as Abramowitz and Stegun [1], Watson [956] and Whittaker
and Watson [964].

C.1 Bessel Functions

We commence by considering the solution of Bessel’s equation

z2 d2 y

dz2
+ z

dy

dz
+ (z2 − ν2)y = 0, (C.1)

where ν is a parameter. In general, Bessel functions of order ν are defined by the
following power series expansion solution of (C.1):

Jν(z) =
∞∑

s= 0

(−1)s

s!Γ (s + ν + 1)

( z

2

)2s+ν
, | arg z| < π, (C.2)

where Γ is the Gamma function. Jν(z) are also called Bessel functions of the first
kind. Further solutions of (C.1) can be obtained by replacing ν by−ν in (C.2) giving

J−ν(z) =
∞∑

s= 0

(−1)s

s!Γ (s − ν + 1)

( z

2

)2s−ν
, | arg z| < π. (C.3)

Equations (C.2) and (C.3) define two linearly independent solutions of Bessel’s
equation except when ν is an integer n. In this case Jn(z) and J−n(z) are not linearly
independent but are related by

J−n(z) = (−1)n Jn(z). (C.4)

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_15,
C© Springer-Verlag Berlin Heidelberg 2011
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1.0
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n=0

n=1
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Fig. C.1 Bessel functions Jn(x) for n = 0, 1 and 2 and 0 ≤ x ≤ 10

The Bessel functions J0(x), J1(x) and J2(x) are illustrated in Fig. C.1 for small real
arguments x .

Other important solutions of Bessel’s equation are Neumann functions

Nν(z) = 1

sin(νπ)
[cos(νπ)Jν(z)− J−ν(z)], ν �= 0, ±1, ±2, | arg z| < π,

(C.5)

which are also called Bessel functions of the second kind and are sometimes denoted
by Yν(z), and Hankel functions

H (1)
ν (z) = Jν(z)+ iNν(z), (C.6)

H (2)
ν (z) = Jν(z)− iNν(z), (C.7)

which are also called Bessel functions of the third kind. When ν is an integer n, the
linearly independent solutions corresponding to Jn(z) are defined by

Nn(z) = lim
ν→n

Nν(z), n = 0, ±1, ±2, | arg z| < π. (C.8)

The function pairs {Jν(z), Nν(z)} and {H (1)
ν (z), H (2)

ν (z)} are linearly independent
solutions of Bessel’s equation (C.1) for all values of ν. We can also define Bessel
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functions of the first kind Jn(z) for integral n in terms of a generating function
exp[(z/2)(t − 1/t)]. We expand this generating function in a Laurent series as

exp

[
z

2

(
t − 1

t

)]
=

∞∑
n=−∞

Jn(z)t
n, t �= 0. (C.9)

Expanding the exponential on the left-hand side of this equation and equating the
coefficients of tn , for n ≥ 0, then yields the power series solution for Jn(z) given by
(C.2).

An integral representation for Jn(z) can be derived from (C.9) by multiplying
this equation by t−n−1 and integrating in a counter-clockwise sense in the complex
plane about the point t = 0. We obtain

Jn(z) = 1

2π i

∮
t−n−1 exp

[
z

2

(
t − 1

t

)]
dt. (C.10)

This equation can be written in a more usual form by replacing t by 2s/z. Equation
(C.10) then becomes

Jn(z) = 1

2π i

( z

2

)n
∮

s−n−1 exp

[
s − z2

2s

]
ds. (C.11)

It can be shown that (C.2) and (C.11) are equivalent definitions of Jn(z) for both
integral and non-integral values of n. However, for non-integral n the argument of
the integral in (C.11) is a multivalued function. Hence care has to be taken in the
choice of the contour of integration which must enclose the origin. Reference should
be made to Watson [956] and Whittaker and Watson [964] which discuss the choice
of this contour.

We can transform (C.10) when n is a positive integer or zero by taking the contour
of integration to be the circle |t | = 1 with t = exp(iθ). In this way (C.10) reduces
to Bessel’s integral

Jn(z) = 1

π

∫ π

0
cos(nθ − z sin θ)dθ,

= i−n

π

∫ π

0
exp(iz cos θ) cos(nθ)dθ, n = 0, 1, 2. (C.12)

If Cν(z) denotes Jν(z), Nν(z), H (1)
ν (z) or H (2)

ν (z) then we can show that the follow-
ing recurrence relations for Cν(z) and its derivative C ′ν(z) = dCν/dz are satisfied
for ν real or complex

Cν−1(z)+ Cν+1(z) = 2ν

z
Cν(z), (C.13)

Cν−1(z)− Cν+1(z) = 2C ′ν(z), (C.14)
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Cν−1(z)− ν
z

Cν(z) = C ′ν(z), (C.15)

−Cν+1(z)+ ν
z

Cν(z) = C ′ν(z). (C.16)

When ν is fixed and z → 0, we have

Jν(z) ∼
z→0

(z/2)ν

Γ (ν + 1)
, ν �= −1, −2, −3, (C.17)

N0(z) ∼
z→0

2

π
ln z, (C.18)

Nν(z) ∼
z→0
−Γ (ν)

π

( z

2

)−ν
, Re ν > 0. (C.19)

Also, when ν is fixed and |z| → ∞ we have the asymptotic expressions

Jν(z) ∼
|z|→∞

(
2

π z

)1/2

cos

(
z − 1

2
νπ − 1

4
π

)
, | arg z| < π, (C.20)

Nν(z) ∼
|z|→∞

(
2

π z

)1/2

sin

(
z − 1

2
νπ − 1

4
π

)
, | arg z| < π, (C.21)

H (1)
ν (z) ∼

|z|→∞

(
2

π z

)1/2

exp

[
i

(
z − 1

2
νπ − 1

4
π

)]
,−π < arg z < 2π, (C.22)

H (2)
ν (z) ∼

|z|→∞

(
2

π z

)1/2

exp

[
−i

(
z − 1

2
νπ − 1

4
π

)]
,−2π < arg z < π. (C.23)

C.2 Spherical Bessel Functions

When the order ν of the Bessel functions is half an odd integer, then Jν(z) takes a
simple form which is related to the trigonometric functions. Let us make the substi-
tution

y(z) = z1/2w(z), (C.24)

in (C.1). Then we find that w(z) satisfies the equation

d2w

dz2
+ 2

z

dw

dz
+
[

1− 	(	+ 1)

z2

]
w = 0, (C.25)

where we have written

ν = 	+ 1

2
, (C.26)

with 	 = 0, 1, 2, . . . .
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Particular solutions of (C.25) are spherical Bessel functions

j	(z) =
(
π

2z

)1/2

J
	+ 1

2
(z), (C.27)

which are also called spherical Bessel functions of the first kind, and spherical
Neumann functions

n	(z) =
(
π

2z

)1/2

N
	+ 1

2
(z), (C.28)

which are also called spherical Bessel functions of the second kind. We see from
(C.5) that when 	 is an integer (C.28) reduces to

n	(z) = (−1)	+1
(
π

2z

)1/2

J−	− 1
2
(z). (C.29)

When 	 is non-integral or complex, which occurs in some applications, it is conve-
nient to define the spherical Bessel function of the second kind by

n	(z) = − 1

cos 	π

(
π

2z

)1/2

J−	− 1
2
(z), (C.30)

which reduces to (C.29) when 	 is an integer. This definition is obtained from (C.5)
by omitting the J

	+ 1
2
(z) component, yielding simpler analytic properties in the

complex z-plane in the neighbourhood of z = 0. Linearly independent solutions
of spherical Bessel’s equation (C.25) for non-integral or complex 	 are thus usually
defined in terms of (C.27) and (C.30). Finally, other solutions of (C.25) are spherical
Hankel functions of the first and second kind

h(1)	 (z) = j	(z)+ in	(z) =
(
π

2z

)1/2

H (1)

	+ 1
2

(z), (C.31)

h(2)	 (z) = j	(z)− in	(z) =
(
π

2z

)1/2

H (2)

	+ 1
2

(z), (C.32)

which are also called spherical Bessel functions of the third kind.
It follows from (C.27) and (C.28) that spherical Bessel functions of the first kind

are defined by the power series

j	(z) = 2	
∞∑

s= 0

(−1)s(s + 	)!
s!(2s + 2	+ 1)! z

2s+	, (C.33)

and spherical Bessel functions of the second kind are defined by the power series

n	(z) = (−1)	+1

2	

∞∑
s= 0

(−1)s(s − 	)!
s!(2s − 2	)! z2s−	−1, (C.34)



644 Appendix C Bessel Functions and Related Functions

where negative factorials in expansion (C.34) are avoided by using the identity

(s − 	)!
(2s − 2	)! =

(−1)	−s(2	− 2s)!
(	− s)! , s < 	. (C.35)

Written out explicitly, the power series for j	(z) and n	(z) are

j	(z) = z	

(2	+ 1)!!
[

1− z2/2

1!(2	+ 3)
+ (z2/2)2

2!(2	+ 3)(2	+ 5)
− · · ·

]
, (C.36)

n	(z) = − (2	− 1)!!
z	+1

[
1− z2/2

1!(1− 2	)
+ (z2/2)2

2!(1− 2	)(3− 2	)
− · · ·

]
. (C.37)

Hence for fixed 	 and z → 0 we see that

j	(z) ∼
z→0

z	

(2	+ 1)!! , (C.38)

n	(z) ∼
z→0
− (2	− 1)!!

z	+1
, (C.39)

which are important in deriving the threshold behaviour of collision processes.
The first few spherical Bessel, Neumann and Hankel functions are given explic-

itly by

j0(z) = sin z

z
,

j1(z) = sin z

z2
− cos z

z
,

j2(z) =
(

3

z3
− 1

z

)
sin z − 3

z2
cos z, (C.40)

n0(z) = −cos z

z
,

n1(z) = −cos z

z2
− sin z

z
,

n2(z) = −
(

3

z3
+ 1

z

)
cos z − 3

z2
sin z, (C.41)

h(1)0 (z) = −
i

z
exp(iz),

h(1)1 (z) = −
(

i

z2
+ 1

z

)
exp(iz), (C.42)
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h(2)0 (z) =
i

z
exp(−iz),

h(2)1 (z) =
(

i

z2
− 1

z

)
exp(−iz). (C.43)

Also, when 	 is an integer and z  	(	+ 1)/2 we have the asymptotic expressions

j	(z) ∼
|z|→∞

1

z
sin

(
z − 1

2
	π

)
, (C.44)

n	(z) ∼
|z|→∞ −

1

z
cos

(
z − 1

2
	π

)
, (C.45)

h(1)	 (z) ∼
|z|→∞ −

i

z
exp

[
i

(
z − 1

2
	π

)]
, (C.46)

h(2)	 (z) ∼
|z|→∞

i

z
exp

[
−i

(
z − 1

2
	π

)]
. (C.47)

When 	 is not an integer, then (C.44) is still valid but n	(z) defined by (C.30) has
the modified asymptotic expression

n	(z) ∼|z|→∞ −
1

z cos 	π
cos(z + 1

2	π), (C.48)

which reduces to (C.45) when 	 is an integer. When 	 is not an integer (C.46) and
(C.47) are also modified.

If f	(z) denotes j	(z), n	(z), h(1)	 (z) or h(2)	 (z) then the following recurrence
relations for f	(z) and its derivative f ′	(z) = d f	/dz are satisfied when 	 > 0:

f	−1(z)+ f	+1(z) = 2	+ 1

z
f	(z), (C.49)

	 f	−1(z)− (	+ 1) f	+1(z) = (2	+ 1) f ′	(z), (C.50)

f	−1(z)− 	+ 1

z
f	(z) = f ′	(z), (C.51)

− f	+1(z)+ 	
z

f	(z) = f ′	(z). (C.52)

Finally, spherical Bessel and Neumann functions satisfy the orthonormality relations

∫ ∞
0

j	(kr) j	(k
′r)r2dr = π

2k2
δ(k − k′), (C.53)

∫ ∞
0

n	(kr)n	(k
′r)r2dr = π

2k2
δ(k − k′), (C.54)

which are useful when normalizing the scattering solutions of the radial Schrödinger
equation.



Appendix D
Applications of Angular Momentum Algebra

In this appendix we consider four applications of the angular momentum algebra
theory described in Appendices A and B. In these applications we obtain explicit
expressions for quantities that occur in the main body of this monograph. We first
derive expressions for the long-range multipole potential coefficients, which arise in
our discussion of both non-relativistic and relativistic electron–atom and electron–
ion collisions. We then derive expressions for the long-range multipole potentials
which arise in R-matrix–Floquet theory and in time-dependent R-matrix theory of
multiphoton processes. Finally, we obtain an expression for the atomic differential
photoionization cross section.

In these applications it is important to adopt a consistent phase convention
throughout the analysis, although the final physical observables will not depend
on the phase convention chosen. We have pointed out in Appendix B.4 that two
phase conventions for spherical harmonics have been used in applications, referred
to as the Condon–Shortley and the Fano–Racah phase conventions. In this appendix
we adopt the Fano–Racah phase convention which has been used in many applica-
tions of R-matrix theory. However, in order to illustrate the importance of adopting
a consistent phase convention in the analysis, we also derive explicit expressions
in Appendix D.1.1 for the long-range multipole potential coefficients in non-
relativistic electron collisions with atoms and ions when the Condon–Shortley phase
convention is adopted.

D.1 Long-Range Electron–Atom Potential Coefficients

D.1.1 Non-relativistic Collisions

In this section we derive explicit expressions for the long-range multipole potential
coefficients in non-relativistic electron collisions with atoms and ions using both
the Fano–Racah and the Condon–Shortley phase conventions. We consider first the
expression obtained using the Fano–Racah phase convention.

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_16,
C© Springer-Verlag Berlin Heidelberg 2011
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We have shown in Sect. 5.1.3 that the long-range local potential completely
describes the electron–target interaction beyond some radius a0 where the non-local
exchange and correlation potentials are negligible. This enables R-matrix propaga-
tor methods to be used to solve the resultant coupled differential equations (5.29) in
this external region. We also note that the long-range potential coefficients are used
in the development of asymptotic expansion methods for solving these equations,
described in Appendix F.1.

In the absence of relativistic effects, the long-range potential coefficients αΓi i ′λ in
(2.73) and (5.30) are defined by the equation

αΓi i ′λ = 〈r−1
N+1Φ

Γ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣
N∑

k=1

rλk Pλ(cos θk N+1)

∣∣∣∣∣
× r−1

N+1Φ
Γ

i ′ (XN ; r̂N+1σN+1)〉′, (D.1)

where the integration in this equation is carried out over all the (N + 1)-electron
space and spin coordinates except the radial coordinate of the (N + 1)th or scat-
tered electron. We expand Pλ(cos θk N+1) in (D.1) in terms of spherical harmonics
satisfying the Fano–Racah phase convention, using (B.77) which we rewrite here as

Pλ(cos θk N+1) = 4π

2λ+ 1

+λ∑
m=−λ

Yλm(θk, φk)Y∗λm(θN+1, φN+1), (D.2)

and we define the channel functions Φ
Γ

i in (D.1) as follows

Φ
Γ

i (XN ; r̂N+1σN+1) =
∑

MLi m	i

∑
MSi mi

(Li MLi 	i m	i |L ML)

× (Si MSi
1
2 mi |SMS)Φ

FR
i (XN )

× Y	i m	i
(θN+1, φN+1)χ 1

2 mi
(σN+1) (D.3)

and an analogous expression for Φ
Γ

i ′ . We also introduce the tensor operators

MFR
λm =

(
4π

2λ+ 1

)1/2 N∑
k=1

rλk Yλm(θk, φk) (D.4)

and

CFR
λm =

(
4π

2λ+ 1

)1/2

Yλm(θN+1, φN+1). (D.5)
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Substituting these results into (D.1) and carrying out the summations over the spin
magnetic quantum numbers, which yield δSi Si ′ , then gives

(
αΓi i ′λ

)FR =
∑

m

∑
MLi m	i

∑
MLi ′m	i ′

〈ΦFR
i (XN )|MFR

λm |ΦFR
i ′ (XN )〉

× 〈Y	i m	i
(θN+1, φN+1)|CFR

λm
∗|Y	i ′m	i ′ (θN+1, φN+1)〉

× (Li MLi 	i m	i |L ML)(Li ′MLi ′ 	i ′m	i ′ |L ML)δSi Si ′ . (D.6)

The integration over the scattered electron angular coordinates r̂N+1 in (D.6) can be
carried out using (B.71) yielding

〈Y	i m	i
(θN+1, φN+1)|CFR

λm
∗|Y	i ′m	i ′ (θN+1, φN+1)〉

= i	i ′−	i−λ(−1)m
[

2	i ′ + 1

2	i + 1

]1/2

(λ−m	i ′m	i ′ |	i m	i )(λ0	i ′0|	i 0). (D.7)

In order to carry out the summation over the orbital magnetic quantum num-
bers, we introduce the reduced multipole moments of the target expressed as
〈αi Li Siπi ||MFR

λ ||αi ′Li ′ Si ′πi ′ 〉 which are defined by the equation

〈ΦFR
i (XN )|MFR

λm |ΦFR
i ′ (XN )〉 = (2Li + 1)−1/2(Li ′MLi ′λm|Li MLi )

×〈αi Li Siπi ||MFR
λ ||αi ′Li ′ Si ′πi ′ 〉. (D.8)

This result follows from the Wigner–Eckart theorem (Wigner [965], Eckart [282])
which states that the dependence of the matrix element 〈Φi |Mλm |Φi ′ 〉 on the mag-
netic quantum numbers MLi , MLi ′ and m is entirely contained in the Clebsch–
Gordan coefficient (Li ′MLi ′λm|Li MLi ). The reduced multipole moments of the
target thus depend on the detailed atomic structure of the target states but not on
their magnetic quantum numbers.

We now collect together the terms involving the orbital magnetic quantum num-
bers from (D.6), (D.7) and (D.8). We define the summation

S =
∑

m

∑
MLi m	i

∑
MLi ′m	i ′

(−1)m(Li MLi 	i m	i |L ML)(Li ′MLi ′ 	i ′m	i ′ |L ML)

× (λ−m	i ′m	i ′ |	i m	i )(Li ′MLi ′λm|Li MLi ). (D.9)

This summation can be evaluated using the symmetry property of the Clebsch–
Gordan coefficient

(λ−m	i ′m	i ′ |	i m	i ) = (−1)	i−	i ′+m
[

2	i + 1

2	i ′ + 1

]1/2

(λm	i m	i |	i ′m	i ′ ), (D.10)
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which follows from (A.21) and (A.23) and the definition of the Racah coefficient
given by (A.46). We then obtain

S = (−1)	i−λ−L+Li [(2	i + 1)(2Li + 1)]1/2 W (Li Li ′	i	i ′ ; λL), (D.11)

where we have also used the symmetry properties of the Racah coefficients given
by (A.48) and (A.49). Using this result, we find that the expression given by (D.6)
for the long-range potential coefficients reduces to

(
αΓi i ′λ

)FR = i	i+	i ′−λ(−1)Li−L(2	i + 1)1/2(	i 0λ0|	i ′0)W (Li Li ′	i	i ′ ; λL)

×〈αi Li Siπi ||MFR
λ ||αi ′Li ′ Si ′πi ′ 〉δSi Si ′ , (D.12)

where we note that the term i	i+	i ′−λ = ±1, since it follows from (A.27) that
(	i 0λ0|	i ′0) = 0 unless 	i + 	i ′ − λ is even. It also follows from (D.12) that αΓi i ′λ is
real and from (D.1) that αΓi i ′λ is symmetric so that αΓi i ′λ = αΓi ′iλ.

We next derive an explicit expression for the long-range potential coefficients
when we adopt the Condon–Shortley phase convention. We again commence from
(D.1), but we now expand Pλ(cos θk N+1) in terms of spherical harmonics using
(B.48) which we rewrite here as

Pλ(cos θk N+1) = 4π

2λ+ 1

+λ∑
m=−λ

Yλm(θk, φk)Y
∗
λm(θN+1, φN+1), (D.13)

and we define the channel function Φ
Γ

i in (D.1) as follows

Φ
Γ

i (XN ; r̂N+1σN+1) =
∑

MLi m	i

∑
MSi mi

(Li MLi 	i m	i |L ML)

× (Si MSi
1
2 mi |SMS)Φ

CS
i (XN )

× Y	i m	i
(θN+1, φN+1)χ 1

2 mi
(σN+1), (D.14)

and an analogous equation for Φ
Γ

i ′ . We also introduce the tensor operators

MCS
λm =

(
4π

2λ+ 1

)1/2 N∑
k=1

rλk Yλm(θk, φk) (D.15)

and

CCS
λm =

(
4π

2λ+ 1

)1/2

Yλm(θN+1, φN+1). (D.16)
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Substituting these results into (D.1) and carrying out the summations over the spin
magnetic quantum numbers then give

(
αΓi i ′λ

)CS =
∑

m

∑
MLi m	i

∑
MLi ′m	i ′

〈ΦCS
i (XN )|MCS

λm |ΦCS
i ′ (XN )〉

× 〈Y	i m	i
(θN+1, φN+1)|CCS

λm
∗|Y	i ′m	i ′ (θN+1, φN+1)〉

× (Li MLi 	i m	i |L ML)(Li ′MLi ′ 	i ′m	i ′ |L ML)δSi Si ′ . (D.17)

The integration over the scattered electron angular coordinates r̂N+1 in (D.17) can
be carried out using (B.45) yielding

〈Y	i m	i
(θN+1, φN+1)|CCS

λm
∗|Y	i ′m	i ′ (θN+1, φN+1)〉

= (−1)m
[

2	i ′ + 1

2	i + 1

]1/2

(λ−m	i ′m	i ′ |	i m	i )(λ0	i ′0|	i 0), (D.18)

and we introduce the reduced multipole moments of the target by the equation

〈ΦCS
i (XN )|MCS

λm |ΦCS
i ′ (XN )〉 = (2Li + 1)−1/2(Li ′MLi ′λm|Li MLi )

×〈αi Li Siπi ||MCS
λ ||αi ′Li ′ Si ′πi ′ 〉. (D.19)

Substituting (D.18) and (D.19) into (D.17) and collecting terms involving the orbital
magnetic quantum numbers then yield the following summation

S =
∑

m

∑
MLi m	i

∑
MLi ′m	i ′

(−1)m(Li MLi 	i m	i |L ML)(Li ′MLi ′ 	i ′m	i ′ |L ML)

×(λ−m	i ′m	i ′ |	i m	i )(Li ′MLi ′λm|Li MLi ), (D.20)

which is the same as (D.9) and can thus be evaluated yielding (D.11). Substitut-
ing this result into (D.17) then gives the following expression for the long-range
potential coefficients using the Condon–Shortley phase convention

(
αΓi i ′λ

)CS = (−1)Li+	i−L(2	i + 1)1/2(	i 0λ0|	i ′0)W (Li Li ′	i	i ′ ; λL)

×〈αi Li Siπi ||MCS
λ ||αi ′Li ′ Si ′πi ′ 〉δSi Si ′ . (D.21)

Comparing this result with (D.12) we see that the Condon–Shortley reduced mul-
tipole matrix element is replaced by the equivalent Fano–Racah matrix element
and the overall phase factor is modified, although in both cases αΓi i ′λ is real and
symmetric. Hence, as pointed out in the introduction to this appendix, a consistent



652 Appendix D Applications of Angular Momentum Algebra

phase convention must be adopted throughout the analysis in order to obtain correct
results for the physical observables.

D.1.2 Inclusion of Relativistic Effects

The above analysis has to be extended as the nuclear charge number Z increases and
relativistic effects start to play an important role in low- and intermediate-energy
electron collisions with atoms and atomic ions. In this section we derive explicit
expressions for the long-range potential coefficients, using the Fano–Racah phase
convention, when relativistic effects can be accurately described by the Breit–Pauli
Hamiltonian discussed in Sect. 5.4.2.

We commence by deriving an expression for the long-range potential coefficients
when relativistic effects in the target can be neglected. Adopting the pair-coupling
scheme, defined by (5.116), we obtain the following expression for the long-range
potential coefficients α Jπ

i i ′λ in terms of the long-range potential coefficients, αΓi i ′λ
defined by (D.1) in the absence of relativistic effects,

α Jπ
i i ′λ =

∑
L S

〈[(Li Si )Ji , 	i ]Ki
1
2 ; J MJ |(Li	i )L , (Si

1
2 )S; J MJ 〉

×αΓi i ′λ〈(Li ′	i ′)L , (Si ′
1
2 )S; J MJ |[(Li ′Si ′)Ji ′ , 	i ′ ]Ki ′

1
2 ; J MJ 〉. (D.22)

We see that the transformation in this equation has the same form as the transfor-
mation of the K -matrix defined by (5.119). We can carry out the summation over
L and S in (D.22) using the expression for the recoupling coefficients in terms of
Racah coefficients given by (5.118) and for the long-range potential coefficient αΓi i ′λ
given by (D.12). After using the orthogonality relation and the sum rule satisfied by
the Racah coefficients, given by (A.50) and (A.52), we find that (D.22) reduces to

α Jπ
i i ′λ = i	i+	i ′−λ(−1)Li ′+Si−Ki−λ [(2	i + 1)(2Ji + 1)(2Ji ′ + 1)]1/2

× (	i 0λ0|	i ′0)W (	i Ji	i ′ Ji ′ ; Kiλ)W (Li Ji Li ′ Ji ′ ; Siλ)

× 〈αi Li Siπi ||MFR
λ ||αi ′Li ′ Si ′πi ′ 〉δSi Si ′ δKi Ki ′ . (D.23)

This equation can be further simplified by introducing the following reduced multi-
pole moments corresponding to the fine-structure levels of the target

〈αi Li Si Jiπi ||MFR
λ ||αi ′Li ′ Si ′ Ji ′πi ′ 〉

= (−1)Li ′+Si−λ [(2Ji + 1)(2Ji ′ + 1)]1/2 W (Li Ji Li ′ Ji ′ ; Siλ)

× 〈αi Li Siπi ||MFR
λ ||αi ′Li ′ Si ′πi ′ 〉δSi Si ′ , (D.24)
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where the reduced multipole moment on the right-hand side of this equation is
defined by (D.8). The expression (D.23) for the long-range potential coefficients
then becomes

α Jπ
i i ′λ = i	i+	i ′−λ(−1)−K i (2	i + 1)1/2(	i 0λ0|	i ′0)W (	i Ji	i ′ Ji ′ ; Kiλ)

× 〈αi Li Si Jiπi ||MFR
λ ||αi ′Li ′ Si ′ Ji ′πi ′ 〉δKi Ki ′ . (D.25)

In (D.24) and (D.25) we have introduced the quantities Si and K i which are
the integral parts of Si and Ki , respectively, so that Si − K i = Si − Ki .
This ensures that the transformed reduced multipole moments of the target
〈αi Li Si Jiπi ||MFR

λ ||αi ′Li ′ Si ′ Ji ′πi ′ 〉 defined by (D.24) are real. It follows from
(D.24) and (D.25) that the long-range potential coefficients are diagonal in the quan-
tum numbers Si and Ki .

When relativistic effects in the target are important then the long-range
potential coefficients must be transformed using the term-coupling coefficients
f (Δi Jiπi ;αi Li Siπi ) defined by (5.122). The transformed long-range potential
coefficients are then given by

α Jπ
μμ′λ =

∑
αi Li Si

∑
αi ′ Li ′ Si ′

f (Δi Jiπi ;αi Li Siπi )α
Jπ
i i ′λ f (Δi ′ Ji ′πi ′ ;αi ′Li ′ Si ′πi ′),

(D.26)
where the channel subscripts μ and μ′ on the coefficients α Jπ

μμ′λ are defined by

μ ≡ Δi Ji 	i Ki
1
2 , μ′ ≡ Δi ′ Ji ′ 	i ′ Ki ′

1
2 . (D.27)

The summation over Si and Si ′ in (D.26) means that the transformed long-range
potential coefficients are no longer diagonal in the spin quantum number Si . How-
ever, it follows from (D.25) and (D.26) that these coefficients are still diagonal in
the quantum number Ki . This conservation rule follows from the definition of the
pair-coupling scheme given by (5.116). Since the total angular momentum quan-
tum number J is conserved, and since the spin si of the scattered electron is also
conserved in the external region, where electron exchange effects are zero, then the
quantum number Ki is also conserved. As discussed in Sect. 5.4.2, conservation of
Ki results in the coupled second-order differential equations, describing the radial
motion of the scattered electron in the external and asymptotic regions, sub-dividing
into two uncoupled sets of equations with considerable saving in computational
effort.

In conclusion, we see from (D.12), (D.25) and (D.26) that the problem of calcu-
lating the long-range potential coefficients has been separated into two distinct parts:
first, the calculation of the Clebsch–Gordan and Racah coefficients which depend on
the target orbital angular momenta, the total angular momentum and λ and second,
the calculation of the reduced multipole moments of the target which involves the
detailed atomic structure of the target states.
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D.2 R-Matrix–Floquet Multiphoton Potential

As our second application of angular momentum algebra theory, we derive explicit
expressions for the long-range potential which arises in R-matrix–Floquet theory of
atomic multiphoton processes, discussed in Sect. 9.1, where in this analysis and in
later examples discussed in this appendix we adopt the Fano–Racah phase conven-
tion discussed in Appendix B.4. We have shown in Sect. 9.1.3 that this potential is
defined by (9.41) as follows

WVγ = VEγ + VDγ + VPγ . (D.28)

We consider these three terms successively below.
First, VEγ arises from the electron–electron and electron–nuclear potential terms

in the Hamiltonian HN+1 defined by (5.3). Its matrix elements are defined by (9.42)
as follows

V Eγ
nLin′L ′i ′ = 〈r−1

N+1Φ
γ

nLi (XN ; r̂N+1σN+1)

∣∣∣∣∣∣
N∑

j=1

1

r j N+1
− N

rN+1

∣∣∣∣∣∣
× r−1

N+1Φ
γ

n′L ′i ′(XN ; r̂N+1σN+1)〉′δnn′, (D.29)

where the integration in this equation is carried out over all the (N + 1)-electron
space and spin coordinates except the radial coordinate of the (N + 1)th electron.
Also the term −N/rN+1 is included so that the long-range Coulomb interaction
experienced by the ejected or scattered electron is completely included on the left-
hand side of (9.38). Using expansion (B.49) for the 1/r j N+1 terms in (D.29) we
obtain

V Eγ
nLin′L ′i ′(r) =

λmax∑
λ=1

α
γ

i i ′λr
−λ−1δnn′δL L ′ , r ≥ a0, (D.30)

which is the same as the long-range potential arising in electron collisions with
atoms and atomic ions defined by (2.73) and (2.74). An explicit expression for the
real coefficients αγi i ′λ has been derived in Appendix D.1.1 and is given by (D.12)
using the Fano–Racah phase convention, where we observe that in these expressions
the total orbital angular momentum L = L ′ is conserved. The potential V(r) in
(9.61) is then given in terms of VEγ by

V(r) = −�(�+ I)
r2

+ 2(Z − N )

r
I− 2VEγ (r), (D.31)

where the first two terms on the right-hand side of this equation are diagonal
matrices.
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Next, the VDγ term in (D.28) arises from the dipole length operator DN in (9.34)
which we write here using the Fano–Racah phase convention as

DN = 1

2
E0

N∑
i=1

zi = −iDN = − i

2

(
4π

3

)1/2

E0

N∑
i=1

riY10(θi , φi ), (D.32)

where we have taken the z-axis to lie along the laser polarization direction ε̂. The
matrix elements of DN , defined by (9.43), are then given by

V Dγ
nLin′L ′i ′ = 〈r−1

N+1Φ
γ

nLi (XN ; r̂N+1σN+1) |DN | r−1
N+1

× Φγn′L ′i ′(XN ; r̂N+1σN+1)〉′
(
δnn′−1 + δnn′+1

)
. (D.33)

We expand the channel functions Φ
γ

nLi and Φ
γ

n′L ′i ′ in terms of the residual atom or
ion states Φi and Φi ′ by an equation analogous to (D.3). The summation over the
orbital magnetic quantum numbers in (D.33) can then be carried out by introducing
the reduced dipole matrix elements of the target 〈αi Li Siπi ||DN ||αi ′Li ′ Si ′πi ′ 〉, in
analogy with (D.8). That is, we write

〈Φi (XN )|DN |Φi ′(XN )〉 = (2Li + 1)−1/2(Li ′MLi ′10|Li MLi )

× 〈αi Li Siπi ||DN ||αi ′Li ′ Si ′πi ′ 〉. (D.34)

Following the angular momentum algebra procedure adopted in the simplification
of αγi i ′λ defined by (D.6) we find that (D.33) reduces to

V Dγ
nLin′L ′i ′ = −i(−1)Li ′+	i+L+L ′+ML+1(δnn′ − 1 + δnn′ + 1)

×
[
(2L + 1)(2L ′ + 1)

3

]1/2

(L ML L ′ −ML ′ |10)W (L Li L ′Li ′ ; 	i 1)

× 〈αi Li Siπi ||DN ||αi ′Li ′ Si ′πi ′ 〉δ	i 	i ′ δm	i m	i ′ δML ML′ δMLi MLi ′

× δSi Si ′ δMSi MSi ′ δSS′δMS MS′ δmi mi ′ . (D.35)

We see that the VDγ term is independent of the radial coordinate r of the ejected or
scattered electron and connects channels where

n = n′ ± 1, Li = Li ′ , Li ′ ± 1, 	i = 	i ′ , L = L ′, L ′ ± 1, ML = ML ′ (D.36)

and also where the spin quantum numbers are conserved.
The symmetry properties of VDγ follow immediately from the symmetry

relations satisfied by the Clebsch–Gordan and Racah coefficients in (D.35)
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and the following symmetry property of the reduced matrix element in this
equation

〈αi Li Siπi ||DN ||αi ′Li ′ Si ′πi ′ 〉 = 〈αi ′Li ′ Si ′πi ′ ||DN ||αi Li Siπi 〉. (D.37)

Also, this reduced matrix element can be shown to be real. Hence it follows that

(
VDγ

)T = −VDγ and
(

VDγ
)† = VDγ (D.38)

so that VDγ is pure imaginary, antisymmetric, hermitian and independent of r . We
also note that the potential D in (9.61) is given in terms of VDγ by

D = −2VDγ . (D.39)

We observe that if instead of using the Fano–Racah phase convention for the spheri-
cal harmonics we had used the Condon–Shortley phase convention then VDγ would
have been real, symmetric and hermitian.

Finally, the VPγ term in (D.28) arises from the dipole velocity operator PN+1
defined by (9.35). Its matrix elements are defined by (9.44) as follows:

V Pγ
nLin′L ′i ′ = 〈r−1

N+1Φ
γ

nLi (XN ; r̂N+1σN+1)

∣∣∣∣i A0

2c
ε̂ · pN+1

∣∣∣∣ r−1
N+1

× Φγn′L ′i ′(XN ; r̂N+1σN+1)〉′
(
δnn′+1 − δnn′−1

)
. (D.40)

In order to evaluate this expression we again take the z-axis to lie along the laser
polarization direction ε̂ so that ε̂ · p is defined by (B.72). Also, we remember
that the channel functions Φ

γ

i are defined by (D.3) using the Fano–Racah phase
convention and the matrix elements of ε̂ · p in a spherical harmonic basis are
given by (B.73). We then find after some angular momentum algebra that (D.40)
reduces to

V Pγ
nLin′L ′i ′ =

A0

2c
(δnn′+1 − δnn′−1)i

	i ′−	i (−1)	i+L−Li [(2	i + 1)(2L + 1)]1/2

× (	i 010|	i ′0)(L ML10|L ′ML)W (L	i L ′	i ′ ; Li 1)

×
(

d

dr
− f (	i ′ , 	i )

r
− 1

r

)
δSS′δMS MS′ δML ML′ δLi Li ′ δMLi MLi ′

× δSi Si ′ δMSi MSi ′ δm	i m	i ′ δmi mi ′ , (D.41)

where f (	i ′ , 	i ) is defined by (B.70) with the primed and unprimed quantities inter-
changed. In addition, following our analysis of (B.74), we observe that the 1/r term
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in the brackets in (D.41) arises from the operation of ε̂ · pN+1 in (D.40) on the
radial wave function r−1 FVγ

nLi j (r), where the reduced radial wave function FVγ
nLi j (r)

satisfies (9.38). Hence we find that V Eγ
nLin′L ′i ′ defined by (9.42), operates, as required,

on the reduced radial wave function FVγ
nLi j (r) in (9.38).

The symmetry properties of VPγ follow immediately from (D.41) and (B.70).
Since 	i = 	i ′ ± 1 in (D.41) then i	i ′−	i = ∓i, and since all other terms in this
equation are real then VPγ is pure imaginary. The potentials P and Q in (9.61) are
defined in terms of VPγ by

P
d

dr
+Q

1

r
= −2VPγ . (D.42)

It then follows from (D.41) and (D.42) that P and Q are pure imaginary and inde-
pendent of the radial coordinate r . It follows from the symmetry properties of the
Clebsch–Gordan and Racah coefficients, given in Appendix A, and the symmetry
of the function f (	i ′ , 	i ), defined by (B.70), that

PT = P and QT = −Q, (D.43)

where PT and QT are the transposes of P and Q. Hence it follows that

P† = −P and Q† = Q, (D.44)

where P† and Q† are the hermitian conjugates of P and Q, respectively, so that P is
antihermitian and Q is hermitian.

If instead of using the Fano–Racah phase convention for the spherical harmonics
we had used the Condon–Shortley phase convention then both P and Q would have
been real but (D.44) would still have been satisfied. In both cases it follows from
(D.41) and (D.42) that the diagonal elements of P and Q are zero.

D.3 Time-Dependent Multiphoton Potential

As our third application of angular momentum algebra theory we derive explicit
expressions for the long-range potential that arises in time-dependent R-matrix
theory of atomic multiphoton processes, discussed in Sect. 10.1, using the Fano–
Racah phase convention. We have shown in Sect. 10.1.3 that this potential is defined
by (10.53) as follows:

Wγ = VEγ + VDγ + VPγ , (D.45)

where in the following analysis we will assume that the dipole velocity gauge is
adopted. We now consider the three terms in (D.45) successively below.
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First, VEγ arises from the electron–electron and electron–nuclear potential terms
in the Hamiltonian HN+1 defined by (5.3). Its matrix elements are given, in analogy
with (D.29), by

V Eγ
i i ′ = 〈r−1

N+1Φ
γ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣∣
N∑

j=1

1

r j N+1
− N

rN+1

∣∣∣∣∣∣
× r−1

N+1Φ
γ

i ′(XN ; r̂N+1σN+1)〉′, (D.46)

where the integration in this equation is carried out over all the (N + 1)-electron
space and spin coordinates except the radial coordinate of the (N + 1)th electron.
Following our analysis in Appendix D.2, see (D.30), we obtain the following expres-
sion for this potential:

V Eγ
i i ′ (r) =

λmax∑
λ=1

α
γ

i i ′λr
−λ−1, r ≥ a0, (D.47)

which is the same as the long-range potential arising in electron collisions with
atoms and atomic ions defined by (2.73) and (2.74). The potential V(r) in (10.55) is
then given in terms of VEγ by

V(r) = −�(�+ I)
r2

+ 2(Z − N )

r
I− 2VEγ (r), (D.48)

where the first two terms on the right-hand side of this equation are diagonal
matrices.

The VDγ and VPγ terms in (D.45) arise from the dipole velocity operator term
c−1A(t) · PN+1, which when t = tm+ 1

2
, can be written as

P = 1

c

N+1∑
i=1

A(tm+ 1
2
) · pi = PN + PN+1, (D.49)

where PN arises from the laser interaction with the residual ion containing N elec-
trons, defined by

PN = 1

c

N∑
i=1

A(tm+ 1
2
) · pi , (D.50)

and PN+1 arises from the laser interaction with the ejected or scattered electron,
defined by

PN+1 = 1

c
A(tm+ 1

2
) · pN+1. (D.51)

We now consider the contribution to the potential from PN and PN+1 in turn.
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The matrix elements of the potential VDγ in (D.45), which corresponds to the
interaction of the laser with the residual ion, are given by

V Dγ
i i ′ = 〈r−1

N+1Φ
γ

i (XN ; r̂N+1σN+1) |PN | r−1
N+1Φ

γ

i ′ (XN ; r̂N+1σN+1)〉′, (D.52)

where, taking the z-axis to lie along the laser polarization direction ε̂, we can write

PN = − i

c
A(tm+ 1

2
)

N∑
j=1

(
cos θ j

∂

∂r j
− sin θ j

r j

∂

∂θ j

)
, (D.53)

which follows from (B.72). Hence we can write

V Dγ
i i ′ = V D1γ

i i ′ + V D2γ

i i ′ , (D.54)

where

V D1γ

i i ′ = − i

c
A(tm+ 1

2
)〈r−1

N+1Φ
γ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣∣
N∑

j=1

cos θ j
∂

∂r j

∣∣∣∣∣∣
× r−1

N+1Φ
γ

i ′(XN ; r̂N+1σN+1)〉′ (D.55)

and

V D2γ

i i ′ = i

c
A(tm+ 1

2
)〈r−1

N+1Φ
γ

i (XN ; r̂N+1σN+1)

∣∣∣∣∣∣
N∑

j=1

sin θ j

r j

∂

∂θ j

∣∣∣∣∣∣
× r−1

N+1Φ
γ

i ′(XN ; r̂N+1σN+1)〉′. (D.56)

In order to evaluate V D1γ

i i ′ , defined by (D.55), we expand the channel functions

Φ
γ

i and Φ
γ

i ′ in terms of the residual atom or ion states Φi and Φi ′ using (D.3) with
Γ replaced by γ . Also, it follows from (B.54) and (B.64) that

cos θ = −i

(
4π

3

)1/2

Y10(θ, φ), (D.57)

and we define the reduced matrix element 〈αi Li Siπi ||P(1)N ||αi ′Li ′ Si ′πi ′ 〉, in analogy
with (D.34), as

〈Φi (XN )

∣∣∣∣∣∣
N∑

j=1

Y10(θ j , φ j )
∂

∂r j

∣∣∣∣∣∣Φi ′(XN )〉

= (2Li + 1)−1/2(Li ′MLi ′10|Li MLi )〈αi Li Siπi ||P(1)N ||αi ′Li ′ Si ′πi ′ 〉. (D.58)
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In order to evaluate V D2γ

i i ′ , defined by (D.56), we again expand the channel func-

tions Φ
γ

i and Φ
γ

i ′ in terms of the residual atom or ion states Φi and Φi ′ using (D.3)
with Γ replaced by γ . Also, it follows from (B.40) and (B.64) that

sin θ
∂

∂θ
Y	m(θ, φ) = −ia(	,m)Y	+1m(θ, φ)− ib(	,m)Y	−1m(θ, φ), (D.59)

where

a(	,m) = 	
[
(	+ m + 1)(	− m + 1)

(2	+ 1)(2	+ 3)

]1/2

(D.60)

and

b(	,m) = (	+ 1)

[
(	+ m)(	− m)

(2	− 1)(2	+ 1)

]1/2

, (D.61)

and where we have included the operation of sin θ∂/∂θ in (D.56) on the angular
function Y	m(θ, φ) in Φ

γ

i ′ . Hence we see that the operation of sin θ∂/∂θ in (D.56)
modifies the orbital angular momenta of the residual ion by ±1 while leaving the
magnetic quantum numbers unaltered. It follows that we can define the reduced
matrix element 〈αi Li Siπi ||P(2)N ||αi ′Li ′ Si ′πi ′ 〉 by

〈Φi (XN )

∣∣∣∣∣∣−
N∑

j=1

sin θ j

r j

∂

∂θ j

∣∣∣∣∣∣Φi ′(XN )〉

= −i

(
4π

3

)1/2

(2Li + 1)−1/2
∑
Li ′′
(Li ′′MLi ′10|Li MLi )

×〈αi Li Siπi ||P(2)N ||αi ′Li ′′ Si ′πi ′ 〉, (D.62)

where, by comparing this result with (D.58), we see that there is an additional sum-
mation over Li ′′ , corresponding to the terms on the right-hand side of (D.59). Also,
we have included the factor −i(4π/3)1/2 in (D.62) which corresponds to the factor
in (D.57) used to transform (D.55). We then obtain after some angular momentum
algebra that the matrix elements of V Dγ

i i ′ , defined by (D.54), (D.55) and (D.56), can
be written in terms of the reduced matrix elements, defined by (D.58) and (D.62),
as follows:



D.3 Time-Dependent Multiphoton Potential 661

V Dγ
i i ′ =

1

c

(
4π

3

)1/2

A(tm+ 1
2
)(−1)L

′+	i (2L + 1)1/2(L ML10|L ′ML)

×
∑
Li ′′

[
W (L Li L ′Li ′′ ; 	i 1)〈αi Li Siπi ||P(1)N ||αi ′Li ′′ Si ′πi ′ 〉(−1)Li ′′ δLi ′ Li ′′

+ W (L Li L ′Li ′′ ; 	i 1)〈αi Li Siπi ||P(2)N ||αi ′Li ′′ Si ′πi ′ 〉(−1)Li ′′
]

× δML ML′ δMLi MLi ′ δSS′δMS MS′ δSi Si ′ δMSi MSi ′ δ	i 	i ′ δm	i m	i ′ δmi mi ′ . (D.63)

We see that V Dγ
i i ′ is independent of the radial coordinate of the ejected or scattered

electron and connects channels where

L = L ′, L ′ ± 1, ML = ML ′ , (D.64)

and where the spin quantum numbers are conserved. The reduced matrix elements
in (D.63) can be shown to be antisymmetric and hence VDγ is real, symmetric,
hermitian and independent of r . We also note that the potential D in (10.55) is given
in terms of VDγ by

D = −2VDγ . (D.65)

Finally, we consider the matrix elements of VPγ in (D.45), corresponding to the
interaction of the laser with the ejected or scattered electron. In this case the matrix
elements are given by

V Pγ
i i ′ = 〈r−1

N+1Φ
γ

i (XN ; r̂N+1σN+1) |PN+1| r−1
N+1Φ

γ

i ′(XN ; r̂N+1σN+1)〉′, (D.66)

where PN+1 is defined by (D.51). After taking the z-axis to lie along the laser polar-
ization direction ε̂, we can write

PN+1 = − i

c
A(tm+ 1

2
)

(
cos θN+1

∂

∂rN+1
− sin θN+1

rN+1

∂

∂θN+1

)
. (D.67)

We then expand the channel functions Φ
γ

i and Φ
γ

i ′ in (D.66) in terms of the residual
atom or ion states Φi and Φi ′ using (D.3) with Γ replaced by γ , and we use (B.72)
and (B.73) to write

〈Y	m(θ, φ)|PN+1|Y	′m′(θ, φ)〉

= 1

c
A(tm+ 1

2
)i	
′−	−1

[
2	′ + 1

2	+ 1

]
(10	′m|	m)(10	′0|	0)

(
d

drN+1
− f (	′, 	)

rN+1

)

× δmm′ , (D.68)
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where f (	′, 	) is defined by (B.70) with the primed and unprimed quantities inter-
changed. Using these results we then obtain after some angular momentum algebra
that (D.66) reduces to

V Pγ
i i ′ = −

i

c
A(tm+ 1

2
)i	
′
i−	i (−1)	i+L−Li [(2	i + 1)(2L + 1)]1/2

× (	i 010|	i ′0)(L ML10|L ′ML)W (L	i L ′	i ′ ; Li 1)

(
d

dr
− f (	i ′ , 	i )

r
− 1

r

)

× δSS′δMS MS′ δML ML′ δLi L ′i δMLi MLi ′ δSi Si ′ δMSi MSi ′ δmi mi ′ δm	i m	i ′ .

(D.69)

We see that (D.69) has a similar form to (D.41), which arises in R-matrix–Floquet
theory in Chap. 9. Also, it follows from the Clebsch–Gordan coefficients that the
potential V Pγ

i i ′ connects channels where

	i = 	i ′ ± 1, L = L ′, L ′ ± 1. (D.70)

By comparing VPγ with the potentials in (10.55) we find that

P
d

dr
+Q

1

r
= −2VPγ . (D.71)

Also both P and Q are real since the factor i	
′
i−	i+1 in (D.69) is real. In addition, it

can be shown from (D.69) that P is antisymmetric, and hence antihermitian and Q
is symmetric and hence hermitian so that

PT = −P and QT = Q. (D.72)

D.4 Atomic Photoionization Cross Section

In our final application of angular momentum algebra theory we derive an explicit
expression for the differential photoionization cross section given in Sect. 8.1.1 by
(8.43) and (8.44). In that section we obtained the following result for the differen-
tial cross section for photoionization of an unpolarized atom or ion by a polarized
photon beam, see (8.41),

dσ V,L
i j

dΩ
= AV,L

(2L + 1)(2S + 1)

∑
ML MS

∑
ML′MS′

∑
m′j

|〈Ψ−j E |Dμ|Ψi B〉|2, (D.73)

where AV,L is a constant defined by (8.42) and where we write 〈Ψ−j E |Dμ|Ψi B〉 in
terms of the reduced matrix element 〈α′j L ′j S′j	′j L ′S′||D||αi L S〉, defined by (8.38)
as follows, see (8.40),
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〈Ψ−j E |Dμ|Ψi B〉 =
∑
	′j m	′j

∑
L ′S′
(L ′j ML ′j 	

′
j m	′j |L ′ML ′)(S

′
j MS′j

1
2 m′j |S′MS′)

× (L ML1μ|L ′ML ′)(2L ′ + 1)−1/2(−i)	
′
j exp(iσ	′j )Y	′j m	′j

(θk, φk)

×〈α′j L ′j S′j	′j L ′S′||D||αi L S〉δSS′δMS MS′ . (D.74)

We now substitute (D.74) into (D.73) yielding

dσ V,L
i j

dΩ
= AV,L

(2L + 1)(2S + 1)

×
∑

ML MS

∑
ML′MS′

∑
	′j m	′j L ′

∑
	′′j m	′′j L ′′

∑
m′j

[(2L ′ + 1)(2L ′′ + 1)]−1/2

× i	
′
j−	′′j exp(−iσ	′j + iσ	′′j )Y

∗
	′j m	′j

(θk, φk)Y	′′j m	′′j
(θk, φk)

× (L ′j ML ′j 	
′
j m	′j |L ′ML ′)(L

′
j ML ′j 	

′′
j m	′′j |L ′′ML ′′)(S

′
j MS′j

1
2 m′j |SMS)

× (S′j MS′j
1
2 m′j |SMS)(L ML1μ|L ′ML ′)(L ML1μ|L ′′ML ′′)

×〈α′j L ′j S′j	′j L ′S||D||αi L S〉∗〈α′j L ′j S′j	′′j L ′′S||D||αi L S〉. (D.75)

In order to simplify (D.75) we first observe from (A.16), satisfied by the Clebsch–
Gordan coefficients, that

ML ′ = ML ′′ and m	′j = m	′′j . (D.76)

Also, the summation over the spin magnetic quantum numbers MS , MS′ and m′j in
(D.75) can be carried out using (A.18) yielding a factor (2S + 1). We then use the
following result satisfied by the Fano–Racah spherical harmonics:

Y∗
	′j m	′j

(θk, φk)Y	′′j m	′′j
(θk, φk)

= i−	
′
j+	′′j (−1)

m	′j
∑
	

(4π)−1[(2	′j + 1)(2	′′j + 1)]1/2(	′j − m	′j 	
′′
j m	′′j |	0)

× (	′j 0	′′j 0|	0)P	(cos θk), (D.77)

which follows from (B.33), (B.38), (B.47) and (B.64). We also use (A.45) and the
symmetry relations given by (A.21), (A.22), (A.23), (A.24), (A.25), and (A.26) to
carry out the following summations over Clebsch–Gordan coefficients in (D.75):
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∑
m	′j

(−1)
m	′j (L ′j ML ′j 	

′
j m	′j |L ′ML ′)(L

′
j ML ′j 	

′′
j m	′j |L ′′ML ′′)(	

′
j −m	′j 	

′′
j m	′j |	0)

= (−1)L
′
j+ML′ [(2L ′ + 1)(2L ′′ + 1)]1/2(L ′ML ′L

′′ −ML ′ |	0)
×W (L ′	′j L ′′	′′j ; L ′j	) (D.78)

and

∑
ML ML′

(−1)ML′ (L ML1μ|L ′ML ′)(L ML1μ|L ′′ML ′)(L
′ML ′L

′′ −ML ′ |	0)

= (−1)L+μ[(2L ′ + 1)(2L ′′ + 1)]1/2(1−μ1μ|	0)W (1L ′1L ′′; L	). (D.79)

Using (D.76), (D.77) and (D.78) we find that (D.75) can be rewritten in the form

dσ V,L
i j

dΩ
= AV,L

4π(2L + 1)

∑
	

A	(μ)P	(cos θk), (D.80)

where

A	(μ) =
∑

L ′L ′′	′j 	′′j

(−1)L+L ′j+μ exp(−iσ	′j + iσ	′′j )
[
(2	′j + 1)(2	′′j + 1)

]1/2

× [
(2L ′ + 1)(2L ′′ + 1)

]1/2
(1−μ1μ|	0)(	′j 0	′′j 0|	0)

× W (L ′	′j L ′′	′′j ; L ′j	)W (1L ′1L ′′; L	)

× 〈α′j L ′j S′j	′j L ′S||D||αi L S〉∗〈α′j L ′j S′j	′′j L ′′S||D||αi L S〉. (D.81)

This result for the differential photoionization cross section was used in Sect. 8.1.1
to obtain expressions for the integrated photoionization cross section and the asym-
metry parameter.



Appendix E
Propagator Methods

In this appendix we describe R-matrix and log-derivative propagator methods that
have been used to solve the coupled second-order differential equations which arise
in R-matrix theory of atomic, molecular and optical collision processes in the exter-
nal region. This generalizes and extends our discussion of propagator methods in
potential scattering in Sect. 4.5.

R-matrix propagator methods were introduced by Light and Walker [594] and
log-derivative methods were introduced by Gordon [402] and Johnson [506] in
order to solve the coupled differential equations that arise in atom–molecule reactive
and non-reactive collisions. Further developments including applications to atomic,
molecular and optical collision processes were made by many workers including
Stechel et al. [885], Schneider and Walker [827], Light et al. [595], Schneider
and Taylor [828], Baluja et al. [47], Mrugala and Secrest [668], Alexander and
Manolopoulos [8, 9], Burke and Burke [172] and Sunderland et al. [896]. In Appen-
dices E.1, E.2 and E.3 we illustrate these methods by considering the solution of
coupled homogeneous second-order differential equations which arise in the exter-
nal region in electron–atom and electron–ion collisions, discussed in Chaps. 5 and 6.
We also observe that these methods are applicable in R-matrix theory of positron
collisions with atoms and ions considered in Chap. 7, in R-matrix theory of atomic
photoionization processes considered in Chap. 8, in R-matrix–Floquet theory of
multiphoton processes considered in Chap. 9 and in R-matrix theory of molec-
ular collision processes considered in Chap. 11. In Appendix E.4, we generalize
the R-matrix propagator method to solve the coupled inhomogeneous differential
equations which arise in time-dependent R-matrix theory of atomic multiphoton
processes considered in Chap. 10. In Appendix E.5 we derive an R-matrix prop-
agator method for coupled inhomogeneous differential equations containing a first
derivative term, which arise in atomic multiphoton processes when the interaction of
the scattered or ejected electron with the laser field is treated in the velocity gauge.
Finally, in Appendix E.6 we extend R-matrix propagator methods to treat channels
which are strongly coupled in the internal R-matrix region but which separate in
the external and asymptotic regions into two or more sets of channels which are
uncoupled, although channels within each set remain strongly coupled. This occurs,
for example, in positron collisions with atoms and ions leading to positronium

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_17,
C© Springer-Verlag Berlin Heidelberg 2011
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Fig. E.1 Partitioning of configuration space into p sub-regions in R-matrix and log-derivative
propagator methods

formation, considered in Chap. 7, and in electron collisions with molecules leading
to dissociative attachment, considered in Chap. 11.

The R-matrix and log-derivative propagator methods discussed in Appendices
E.1, E.2, E.3, E.4 and E.5 commence by dividing the external region of interest
a0 ≤ r ≤ ap into p sub-regions, which may be of unequal length, as illustrated in
Fig. E.1. Equations are then derived in each sub-region which enable the R-matrix,
or log-derivative matrix, and the wave function, to be propagated from r = a0 across
each of the p sub-regions to r = ap. Equations are also derived to enable inward
propagation of the R-matrix, or log-derivative matrix, and the wave function from
r = ap to a0. The R-matrix or log-derivative matrix at r = ap can then be fitted to
an asymptotic expansion enabling the K -matrix, S-matrix, cross sections and other
observables to be determined, while the wave function can be used in the calculation
of various matrix elements required in the analysis of collision processes.

We conclude this introduction by noting that the propagator methods discussed in
this appendix have been incorporated in computer programs that have been widely
used to obtain results reported in the main body of this monograph. In particular, the
Light–Walker and BBM propagator methods, discussed in Sects. E.1 and E.3, have
been incorporated in the FARM and PFARM programs written by Burke and Noble
[191] and by Sunderland et al. [896] respectively, which are discussed in Sect. 5.1.1.

E.1 Light–Walker Propagator Method

We consider first the solution of the homogeneous coupled second-order differen-
tial equations (5.29) that arise using the R-matrix propagator method introduced
by Light and Walker [594]. As discussed in the introduction to this appendix, this
method and the methods discussed in Appendices E.2 and E.3 are applicable to a
number of collision processes considered in this monograph.

We commence by rewriting (5.29) in matrix form as follows:

(
I

d2

dr2
+ V(r)+ k2

)
F(r) = 0, (E.1)
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where I in this and later equations in this appendix is the unit matrix, V(r) is the
potential matrix, which includes the angular momentum, electron–target nucleus
and electron–electron potential terms in (5.29) and is real and symmetric and hence
hermitian, and k2 is a real diagonal matrix of wave numbers squared. We rewrite
(E.1) as

(
−1

2
I

d2

dr2
+ V(r)− EI

)
F(r) = 0, (E.2)

where the effective potential matrix V(r) is defined by

V(r) = −1

2

[
V(r)+ k2

]
+ EI. (E.3)

Also in (E.2) and (E.3) E is the total energy which we have explicitly separated out
in (E.2) and which can be measured from any fixed position, for example, from the
lowest target threshold so that E = k2

1/2. In this way the potential matrix V(r) is
independent of the value of E .

The basic assumption made in the Light–Walker propagator method is that the
potential matrix V(r), and hence V(r), is a slowly varying function of r such that
it can be accurately represented by a constant matrix in each sub-region in Fig. E.1
without the number of sub-regions p becoming excessively large. Hence in each
sub-region we assume that V(r), defined by (E.3), can be accurately represented by
a constant matrix as follows:

V(r) = Vs, as−1 ≤ r ≤ as, s = 1, . . . , p, (E.4)

where Vs is real and symmetric.
In order to solve (E.2) in the sth sub-region we diagonalize Vs by an orthogonal

transformation matrix Os , which is independent of the total energy E , so that

OT
s VsOs = ν2

s , s = 1, . . . , p, (E.5)

and we introduce a transformed radial wave function F s(r) by

F s(r) = OT
s F(r), s = 1, . . . , p. (E.6)

Equation (E.2) can then be rewritten in the sth sub-region as

− 1

2

(
I

d2

dr2
+ λ2

s

)
F s(r) = 0, as−1 ≤ r ≤ as, s = 1, . . . , p, (E.7)

where we have introduced the real diagonal matrix

λ2
s = −2ν2

s + 2EI, s = 1, . . . , p, (E.8)
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which depends on the total energy E . We then define the diagonal matrix operator

Ls = −1

2

(
I

d2

dr2
+ λ2

s

)
(E.9)

and we introduce the diagonal Bloch operator

Ls = 1

2
I
[
δ(r − as)

d

dr
− δ(r − as−1)

d

dr

]
, (E.10)

where we take the arbitrary constant b0, included in the usual definition of the Bloch
operator defined by (4.31), to be zero. It follows that the diagonal matrix operator
Ls + Ls is hermitian over the sth sub-region in the space of functions satisfying
arbitrary boundary conditions at r = as−1 and as . We can then rewrite (E.7) as

(Ls +Ls)F s(r) = LsF s(r), (E.11)

which has the formal solution in the sth sub-region

F s(r) = (Ls +Ls)
−1LsF s(r). (E.12)

We now define the diagonal Green’s function Gs(r, r ′) as the solution of the
equation

(Ls +Ls)Gs(r, r
′) = 1

2
Iδ(r − r ′). (E.13)

By integrating (E.13) across the singularities at r = as−1 and as we find that
Gs(r, r ′) satisfies the boundary conditions

dGs(r, r ′)
dr

∣∣∣∣
r = as−1

= dGs(r, r ′)
dr

∣∣∣∣
r = as

= 0, as−1 < r ′ < as . (E.14)

Also, by integrating (E.13) across the singularity at r = r ′ we obtain

lim
ε→0+

[
dGs(r, r ′)

dr

∣∣∣∣
r = r ′+ε

− dGs(r, r ′)
dr

∣∣∣∣
r = r ′−ε

]
= −I. (E.15)

It follows from (E.13), (E.14) and (E.15) that when the i th element of the diago-
nal matrix λ2

s defined by (E.8) satisfies λ2
is ≥ 0, then the corresponding diagonal

elements of Green’s function are given by

Gis(r, r
′) = −cos λis(r ′ − as) cos λis(r − as−1)

λis sin λis(as − as−1)
, as−1 ≤ r ≤ r ′, (E.16)
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and

Gis(r, r
′) = −cos λis(r − as) cos λis(r ′ − as−1)

λis sin λis(as − as−1)
, r ′ ≤ r ≤ as . (E.17)

Also when λ2
is < 0, then the corresponding diagonal elements of Green’s function

are given by

Gis(r, r
′) = −coshμis(r ′ − as) coshμis(r − as−1)

μis sinhμis(as − as−1)
, as−1 ≤ r ≤ r ′ (E.18)

and

Gis(r, r
′) = −coshμis(r − as) coshμis(r ′ − as−1)

μis sinhμis(as − as−1)
, r ′ ≤ r ≤ as, (E.19)

where in (E.18) and (E.19) we have written μ2
is = −λ2

is .
We can now rewrite (E.12) explicitly in terms of the Green’s function Gs(r, r ′)

as follows:

F s(r) = 2
∫ as

as−1

Gs(r, r
′)LsF s(r

′)dr ′, as−1 ≤ r ≤ as . (E.20)

Remembering that the functions F s(r) are defined in terms of the original functions
F(r) by (E.6) then it follows from (E.20) that

F(r) = 2
∫ as

as−1

Gs(r, r
′)LsF(r ′)dr ′, as−1 ≤ r ≤ as, (E.21)

where the Green’s function Gs(r, r ′) is defined by

Gs(r, r
′) = OsGs(r, r

′)OT
s . (E.22)

Evaluating (E.21) at r = as−1 and as and using (E.10) for the Bloch operator Ls

then yields the equations

F(as−1) = Gs(as−1, as)
dF
dr

∣∣∣∣
r = as

−Gs(as−1, as−1)
dF
dr

∣∣∣∣
r = as−1

(E.23)

and

F(as) = Gs(as, as)
dF
dr

∣∣∣∣
r = as

−Gs(as, as−1)
dF
dr

∣∣∣∣
r = as−1

. (E.24)
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Following (5.32) it is convenient to define the R-matrices at r = as−1 and as by the
equations

F(as−1) = Rs−1as−1
dF
dr

∣∣∣∣
r = as−1

(E.25)

and

F(as) = Rsas
dF
dr

∣∣∣∣
r = as

, (E.26)

where the arbitrary constant b0 in the usual definition of the R-matrix is set zero.
We then find that (E.23) and (E.24) yield the propagation equations

asRs = Gs(as, as)−Gs(as, as−1)
[
Gs(as−1, as−1)+ as−1Rs−1

]−1

× Gs(as−1, as) (E.27)

and

as−1Rs−1 = −Gs(as−1, as−1)+Gs(as−1, as) [Gs(as, as)− asRs]−1

× Gs(as, as−1). (E.28)

Equations (E.27), for s = 1, . . . , p, enable the R-matrix R0 at r = a0 to be prop-
agated outwards across the p sub-regions to yield the R-matrix Rp at r = ap. In
a similar way (E.28), for s = p, . . . , 1, enable the R-matrix Rp at r = ap to be
propagated inwards across the p sub-regions to yield the R-matrix R0 at r = a0.

Having determined the R-matrix on the boundaries r = as of the p sub-regions
we can propagate the reduced radial wave function F(as) across these sub-regions
using (E.23), (E.24), (E.25) and (E.26). We obtain the following equations for out-
ward and inward propagation of the wave function:

F(as) = asRs [Gs(as, as)− asRs]−1 Gs(as, as−1) a−1
s−1 R−1

s−1 F(as−1) (E.29)

and

F(as−1) = as−1Rs−1
[
Gs(as−1, as−1)+ as−1Rs−1

]−1 Gs(as−1, as)

× a−1
s R−1

s F(as). (E.30)

The wave function is often required in the calculation of matrix elements such as
occur in the study of photoionization processes discussed in Chap. 8.

The computational effort in this method involves diagonalizing the matrix Vs

in each sub-region according to (E.5), calculating Green’s functions using (E.16),
(E.17), (E.18), (E.19) and (E.22) and then propagating the R-matrix across the sub-
regions using (E.27) or (E.28). We note that only a single diagonalization is required
in each sub-region for all energies E in (E.2) considered.
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E.2 Log-Derivative Propagator Method

In this section we consider the solution of the coupled second-order differential
equations (E.1) using the log-derivative propagator method introduced by Gordon
[402] and Johnson [506]. This method, combined with a linear reference equation
using an Airy function basis, has been developed by many workers including Mru-
gala and Secrest [668] and Alexander and Manolopoulos [8, 9]. It has had wide
use in the computational study of atom–atom and atom–molecule collisions and has
recently been developed and applied as an efficient method for solving the coupled
differential equations that arise in the R-matrix external region.

Following our discussion of the R-matrix propagator method in Appendix E.1,
we consider the solution of the coupled second-order differential equations (E.1)
which we rewrite in the form

(
I

d2

dr2
+W(r)

)
F(r) = 0, (E.31)

where W(r) includes the potential matrix V(r) and k2 and is real and symmetric.
We consider the propagation of the log-derivative matrix defined by

Y(r) = dF
dr

F(r)−1, (E.32)

where we observe that Y(r) is related to the R-matrix by

Y(r) = r−1R(r)−1 (E.33)

and the R-matrix is defined by (E.26) with as replaced by r . We note that the log-
derivative matrix is r−1 times the inverse of the R-matrix.

Following the procedure adopted in Sect. E.1 we sub-divide the external region
a0 ≤ r ≤ ap into p sub-regions, as illustrated in Fig. E.1, and we consider the
propagation of the log-derivative matrix across these sub-regions. In order to solve
(E.31) in the sth sub-region we introduce an orthogonal transformation Os which
diagonalizes W(r) at the mid-point r = as− 1

2
of this sub-region where

as− 1
2
= 1

2
(as−1 + as), s = 1, . . . , p. (E.34)

Hence Os is defined by the equation

OsWsOT
s = k̃2, s = 1, . . . , p, (E.35)

where k̃2 is diagonal,

Ws =W(as− 1
2
), s = 1, . . . , p, (E.36)
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and Os is independent of r in each sub-region. It follows that the solution F(r) of
(E.31), its derivative F′(r) and the corresponding log-derivative matrix are trans-
formed in each sub-region as follows:

F̃s(r) = OsF(r), F̃′s(r) = OsF′(r), Ỹs(r) = OsY(r)OT
s , s = 1, . . . , p.

(E.37)
We now rewrite (E.31) in each sub-region by expanding W(r) about the mid-point
r = as− 1

2
. Equation (E.31) then becomes

(
I

d2

dr2
+Ws + (r − as− 1

2
)W′

s +
1

2
(r − as− 1

2
)2W′′

s + · · ·
)

F(r) = 0, (E.38)

where W′
s equals dW/dr and W′′

s equals d2W/dr2 both evaluated at r = as− 1
2
.

After multiplying (E.38) on the left by Os we then obtain

(
I

d2

dr2
+ k̃2

s + (r − as− 1
2
)W̃′

s +
1

2
(r − as− 1

2
)2W̃′′

s + · · ·
)

F̃s(r) = 0, (E.39)

where

W̃′
s = OsW′

sOT
s , W̃′′

s = OsW′′
s OT

s , . . . . (E.40)

It follows that the potential functions W̃′
s , W̃′′

s , . . . are independent of r in each
sub-region but are different in each sub-region.

In order to propagate the solution of (E.31), or equivalently (E.39), across the sth
sub-region we consider the “imbedding-type” matrix propagator defined by

[
F̃′s(as−1)

F̃′s(as)

]
=
[

Gs
11 Gs

12
Gs

21 Gs
22

] [−F̃s(as−1)

F̃s(as)

]
. (E.41)

Introducing the transformed log-derivative matrix on the boundaries of the sth sub-
region by

Ỹs(as−1) = F̃′s(as−1)̃F−1
s (as−1) (E.42)

and

Ỹs(as) = F̃′s(as )̃F−1
s (as) (E.43)

we find that (E.41) yields the following log-derivative propagation equation:

Ỹs(as) = Gs
22 −Gs

21

[
Gs

11 + Ỹs(as−1)
]−1

Gs
12. (E.44)
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We see that this propagator has the same general form as the propagator (E.27) for
the R-matrix.

We also consider the “Cauchy” matrix propagator defined by

[
F̃s(as)

F̃′s(as)

]
=
[

Cs
11 Cs

12
Cs

21 Cs
22

] [
F̃s(as−1)

F̃′s(as−1)

]
, (E.45)

which we can show yields the same log-derivative propagator relation as (E.44) if
the matrices Gs

i j in (E.41) and Cs
i j in (E.45) are related by the equations

Gs
11 =

(
Cs

12

)−1 Cs
11,

Gs
12 =

(
Cs

12

)−1
,

Gs
21 = Cs

22

(
Cs

12

)−1 Cs
11 − Cs

21,

Gs
22 = Cs

22

(
Cs

12

)−1
. (E.46)

If the off-diagonal elements of the matrices W̃′
s , W̃′′

s and higher order deriva-
tive terms in (E.39) are neglected, then the Cauchy matrices Cs

11, Cs
12, Cs

21 and
Cs

22 in (E.45) and (E.46) are diagonal. We can then express the diagonal elements
of the Cauchy matrices in terms of any two linearly independent solutions of the
corresponding uncoupled equations, called the “reference equations”, which are
defined by

[
d2

dr2
+
(̃

k2
s

)
i i
+ (r − as− 1

2
)
(
W̃′

s

)
i i +

1

2
(r − as− 1

2
)2
(
W̃′′

s

)
i i + · · ·

]
us

i (r)

= 0, i = 1, . . . , n, (E.47)

where n is the number of coupled channels. If we introduce the following two lin-
early independent solutions of (E.47)

f s
i (r), gs

i (r), i = 1, . . . , n, (E.48)

and we denote the corresponding r -independent Wronskian in the sth sub-region by

ws
i = f s

i (r)g
s
i
′
(r)− f s

i
′
(r)gs

i (r), i = 1, . . . , n, (E.49)

then the non-zero diagonal elements of the Cauchy matrices are given by the equa-
tions
(
Cs

11

)
i i =

[
f s
i (as)g

s
i
′
(as−1)− f s

i
′
(as−1)g

s
i (as)

] (
ws

i

)−1
, i = 1, . . . , n, (E.50)

(
Cs

12

)
i i =

[
f s
i (as−1)g

s
i (as)− f s

i (as)g
s
i (as−1)

] (
ws

i

)−1
, i = 1, . . . , n, (E.51)

(
Cs

21

)
i i =

[
f s
i
′
(as)g

s
i
′
(as−1)− f s

i
′
(as−1)g

s
i
′
(as)

] (
ws

i

)−1
, i = 1, . . . , n, (E.52)
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(
Cs

22

)
i i =

[
f s
i (as−1)g

s
i
′
(as)− f s

i
′
(as)g

s
i (as−1)

] (
ws

i

)−1
, i = 1, . . . , n. (E.53)

We can also show that the non-zero diagonal elements of the Cauchy matrices are
related by the equation

(
Cs

11

)
i i

(
Cs

22

)
i i −

(
Cs

12

)
i i

(
Cs

21

)
i i = 1, i = 1, . . . , n. (E.54)

It then follows that the diagonal elements of the imbedding matrices defined by
(E.41), corresponding to the reference equations (E.47), are defined in terms of the
diagonal elements of the Cauchy matrices by

(
Gs

11

)
i i =

(
Cs

12

)−1
i i

(
Cs

11

)
i i , i = 1, . . . , n, (E.55)

(
Gs

12

)
i i =

(
Cs

12

)−1
i i , i = 1, . . . , n, (E.56)

(
Gs

21

)
i i =

(
Cs

12

)−1
i i , i = 1, . . . , n, (E.57)

(
Gs

22

)
i i =

(
Cs

22

)
i i

(
Cs

12

)−1
i i , i = 1, . . . , n. (E.58)

These equations enable the transformed log-derivative matrix Ỹs(r) to be propa-
gated across the sth sub-region from r = as−1 to as using (E.44), where the Cauchy
matrices are defined in terms of the two linearly independent solutions of the refer-
ence equations (E.47).

We now consider the linearly independent solutions of the reference equations
(E.47). In practice, second and higher order derivative terms in these equations are
small and can be neglected and the resultant equations reduce to the following linear
reference equation with the general form

(
d2

dx2
− x

)
y(x) = 0. (E.59)

The reference solutions of this equation are “Airy functions” Ai(x) and Bi(x) with
the Wronskian

w(x) = Ai(x)Bi ′(x)− Ai ′(x)Bi(x) = π−1. (E.60)

These functions, which are related to Bessel functions of order ±1/3, have been
discussed by Abramowitz and Stegun [1] and their present role as solutions of the
linear reference equation has been considered by many authors including Gordon
[402] and Alexander and Manolopoulos [9]. In the latter work explicit expressions
are obtained for the imbedding propagator in terms of Airy functions, where it is
found convenient to represent the Airy functions for both positive and negative
arguments in terms of their moduli and phases. In this way both classically allowed
and classically forbidden regions can be accurately treated.
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Having propagated the log-derivative matrix across the sth sub-region, as
described above, it is then necessary to transform this matrix at r = as in order
to initiate the propagation outwards across the (s+1)th sub-region. We remember
from (E.37) that the transformation to the local basis in the sth sub-region is defined
by the orthogonal matrix Os and the transformation to the local basis in the (s+1)th
sub-region is defined by the orthogonal matrix Os+1. Hence it is necessary to trans-
form the log-derivative matrix on the boundary r = as between the two regions by
the orthogonal transformation

Ỹs+1(as) = PsỸs(as)PT
s , (E.61)

where

Ps = Os+1OT
s . (E.62)

In this way the log-derivative matrix Y(r) can be propagated outwards across the p
sub-regions in Fig. E.1 from r = a0 to ap.

We can also propagate the log-derivative matrix Y(r) backwards across the p
sub-regions in Fig. E.1 from r = ap to a0. By inverting (E.44) we find that

Ỹs(as−1) = −Gs
11 +Gs

12

[
Gs

22 − Ỹs(as)
]−1

Gs
21, (E.63)

which we see has the same general form as propagator (E.28) for the R-matrix.
As before, the diagonal elements of the imbedding matrices, defined by (E.41), can
be expressed in terms of the diagonal elements of the Cauchy matrices by (E.55),
(E.56), (E.57) and (E.58) enabling backward propagation to be carried out.

E.3 BBM Propagator Method

The BBM propagator method, introduced by Baluja et al. [47], like the Light–
Walker propagator method discussed in Sect. E.1, commences from (E.1) which
is again solved by sub-dividing the external region a0 ≤ r ≤ ap into p sub-regions,
as illustrated in Fig. E.1. We now rewrite (E.1) in the sth sub-region as

(H+Ls − EI)F(r) = LsF(r), (E.64)

where

H = −1

2

(
I

d2

dr2
+ V(r)+ k2

)
+ EI, (E.65)

and, as in (E.3), the total energy E can conveniently be measured from the lowest
target threshold. Also, the Bloch operator Ls , defined by (E.10), is such that the
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operator H + Ls is hermitian over the sth sub-region in the space of functions sat-
isfying arbitrary boundary conditions at r = as−1 and r = as . Equation (E.64) then
has the formal solution in the sth sub-region

F(r) = (H+Ls − EI)−1 LsF(r). (E.66)

A spectral representation of the Green’s function (H + Ls − EI)−1 in (E.66) is
obtained by introducing an orthonormal basis vs

j (r), j = 1, . . . ,m, in each channel
i = 1, . . . , n in the sth sub-region. This basis is often chosen to be orthonormal
shifted Legendre polynomials defined by

vs
j (r) =

(
2 j − 1

as − as−1

)1/2

Pj−1(x), j = 1, . . . ,m, (E.67)

where

x = 2

as − as−1

(
r − as−1 + as

2

)
, (E.68)

and Pj−1(x) in (E.67) are Legendre polynomials of degree j − 1 which are defined
in Appendix B.1. However, members of other complete bases, such as B-splines
discussed in Sect. 4.4.7, have also been used in the sub-regions.

Having chosen the basis vs
j (r), we define the functions us

ik(r) as follows:

us
ik(r) =

m∑
j=1

vs
j (r)a

s
i jk, as−1 ≤ r ≤ as, i = 1, . . . , n, k = 1, . . . , nm,

(E.69)
where n is the number of coupled channels and the coefficients as

i jk are determined
by diagonalizing the operator H+Ls in the sth sub-region so that

∫ as

as−1

usT
k (r) (H+Ls) us

k′(r)dr = Es
kδkk′ , k, k′ = 1, . . . , nm. (E.70)

In this equation, us
k(r) is a column vector whose elements are us

ik(r), i = 1, . . . , n.
Equation (E.66) can then be written in the sth sub-region as

F(r) =
∫ as

as−1

nm∑
k=1

us
k(r)u

sT
k (r

′)
Es

k − E
LsF(r ′)dr ′, as−1 ≤ r ≤ as, (E.71)

which can be rewritten as

F(r) = 2
∫ as

as−1

Gs(r, r
′)LsF(r ′)dr ′, as−1 ≤ r ≤ as, (E.72)
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where the Green’s function Gs(r, r ′) in the sth sub-region is defined by

Gs(r, r
′) = 1

2

nm∑
k=1

us
k(r)u

sT
k (r

′)
Es

k − E
. (E.73)

Evaluating (E.72) at r = as−1 and as and using (E.10) for the Bloch operator Ls

then yields (E.23) and (E.24), obtained using the Light–Walker propagator method.
After defining the R-matrices by (E.25) and (E.26), the outward and inward prop-
agation equations for the R-matrix are again given by (E.27) and (E.28), respec-
tively, and the outward and inward propagation equations for the wave function
are given by (E.29) and (E.30), respectively. We observe that, as in the Light–
Walker and log-derivative propagator methods, a single diagonalization in each sub-
region enables the Green’s function to be calculated from (E.73) for all energies E
considered.

In comparing the Light–Walker, log-derivative and BBM propagator methods
we observe that, in general, the Light–Walker and log-derivative methods require a
larger number of sub-regions than the BBM method to obtain the same accuracy.
However, in each sub-region the Light–Walker and log-derivative methods diag-
onalize a matrix of order n whereas the BBM method diagonalizes one of order
nm, where n is the number of coupled channels and m is the number of basis
functions retained in each channel in the BBM method. Hence the BBM method
is particularly useful in resonance regions, for example, in electron–ion collisions at
low energies where the cross sections have to be calculated at a very large number
of energy values to accurately represent the resonance structure. In this case the
matrix diagonalization time is often small compared with the R-matrix propaga-
tion time. The BBM method is also appropriate if the potential V(r) in (E.1) is
rapidly varying with r so that a prohibitively large number of sub-regions have to
be used in the Light–Walker and log-derivative methods to obtain accurate results.
On the other hand, the Light–Walker and log-derivative methods are usually pre-
ferred when results at only a few energies are required. This occurs, for example, in
electron–atom and electron–ion collisions at energies above the resonance energy
region where the cross sections are varying smoothly with energy. However, we
observe that in the calculation of time-dependent multiphoton processes, discussed
in Chap. 10, where the outward and inward propagations in the external region are
only carried out at a single energy for each time step, the BBM method has been
found to be efficient. In this case, the Green’s function in (E.66) is determined in
each sub-region by solving a set of linear simultaneous equations, rather than diag-
onalizing a matrix, as discussed in Sect. 4.4.4. This approach is discussed further in
Appendix E.4.

Finally, we remark that the Light–Walker, log-derivative and BBM propagator
methods can on occasions be combined with advantage. For example, the BBM
method can be used at distances close to r = a0 in Fig. E.1 where the potential V(r)
in (E.65) is varying most rapidly, and the Light–Walker or log-derivative method
used further out where the potential becomes a slowly varying function of distance.
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E.4 Propagation of Driven Equations

In this section we derive an R-matrix propagator method for solving coupled
inhomogeneous (driven) second-order differential equations. This method was
introduced by Schneider and Taylor [828] for the direct calculation of transition
matrix elements which arise in photoionization or photodissociation. We consider
here the solution of coupled inhomogeneous differential equations which arise in
time-dependent R-matrix theory of atomic multiphoton processes in the external
region, discussed in Sects. 10.1.3 and 10.1.4. This method generalizes R-matrix
propagator methods for solving coupled homogeneous second-order differential
equations described in Appendices E.1 and E.3.

We consider the solution of the coupled inhomogeneous second-order differential
equations (10.63) which we rewrite here as

(
I

d2

dr2
+ V(r)+ k2

)
F(r) = φ(r), (E.74)

where we note that this equation can be obtained from (E.1) by including the
inhomogeneous term φ(r) on the right-hand side. Following our discussion in
Appendices E.1 and E.3 we rewrite (E.74) in the form

(H− EI)F(r) = θ(r), (E.75)

where

H = −1

2

(
I

d2

dr2
+ V(r)+ k2

)
+ EI (E.76)

and

θ(r) = −1

2
φ(r). (E.77)

As in (E.2) and (E.64) the total energy E in (E.75) and (E.76) can conveniently be
measured from the lowest target threshold.

We now consider the propagation of the R-matrix corresponding to (E.75) across
the p sub-regions illustrated in Fig. E.1. We rewrite (E.75) in the sth sub-region as
follows:

(H+Ls − EI)F(r) = LsF(r)+ θ(r), (E.78)

where the Bloch operator Ls is defined by (E.10). It follows that the operator H+Ls

is hermitian over the sth sub-region in the space of functions satisfying arbitrary
boundary conditions at r = as−1 and as . Equation (E.78) then has the formal solu-
tion in the sth sub-region

F(r) = (H+Ls − EI)−1 [LsF(r)+ θ(r)] . (E.79)
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The Green’s function in this equation is defined as the solution of the following
equation in the sth sub-region

(H+Ls − EI)Gs(r, r
′) = 1

2
Iδ(r − r ′). (E.80)

We can then rewrite (E.79) as

F(r) = 2
∫ as

as−1

Gs(r, r
′)LsF(r ′)dr ′ + J(r), as−1 ≤ r ≤ as, (E.81)

where

J(r) = 2
∫ as

as−1

Gs(r, r
′)θ(r ′)dr ′, as−1 ≤ r ≤ as . (E.82)

Evaluating (E.81) at r = as−1 and as and using (E.10) for the Bloch operator Ls

then yields the equations

F(as−1) = Gs(as−1, as)
dF
dr

∣∣∣∣
r = as

−Gs(as−1, as−1)
dF
dr

∣∣∣∣
r = as−1

+ J(as−1) (E.83)

and

F(as) = Gs(as, as)
dF
dr

∣∣∣∣
r = as

−Gs(as, as−1)
dF
dr

∣∣∣∣
r = as−1

+ J(as). (E.84)

We see that these equations only differ from (E.23) and (E.24), obtained by solv-
ing the homogeneous equation (E.1), by the presence of the inhomogeneous terms
J(as−1) and J(as) on the right-hand sides.

In order to determine the inward and outward propagation equations for the
R-matrix, we define R-matrices at r = as−1 and as as follows:

F(as−1) = Rs−1as−1
dF
dr

∣∣∣∣
r = as−1

+ Z(as−1) (E.85)

and

F(as) = Rsas
dF
dr

∣∣∣∣
r = as

+ Z(as). (E.86)

The inhomogeneous terms Z(as−1) and Z(as), which we have introduced in (E.85)
and (E.86), are required to represent the effect of the inhomogeneous terms J(as−1)

and J(as) in (E.83) and (E.84). If these inhomogeneous terms are not included, then
(E.85) and (E.86) reduce to the usual definition of the R-matrix, given by (E.25)
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and (E.26). In the application to time-dependent atomic multiphoton processes the
R-matrix Rs and the matrix Z(as) are given on the boundary r = a0 of the internal
region by (10.71) and (10.72).

Substituting F(as−1) and F(as), given by (E.85) and (E.86), into (E.83) and
(E.84) yields the following outward propagation equations for the R-matrix Rs and
for the inhomogeneous term Z(as)

asRs = Gs(as, as)−Gs(as, as−1)
[
Gs(as−1, as−1)+ as−1Rs−1

]−1

× Gs(as−1, as) (E.87)

and

Z(as) = J(as)+Gs(as, as−1)
[
Gs(as−1, as−1)+ as−1Rs−1

]−1

× [
Z(as−1)− J(as−1)

]
. (E.88)

We can invert these equations to give the following inward propagation equations:

as−1Rs−1 = −Gs(as−1, as−1)+Gs(as−1, as) [Gs(as, as)− asRs]−1

× Gs(as, as−1) (E.89)

and

Z(as−1) = J(as−1)+Gs(as−1, as) [Gs(as, as)− asRs]−1

× [Z(as)− J(as)] . (E.90)

Equations (E.87) and (E.89) are identical to the corresponding equations (E.27) and
(E.28) which arise in the propagation of the R-matrix corresponding to the homoge-
neous equation (E.1). However, we also have to propagate the inhomogeneous term
Z(as) using (E.88) and (E.90) in order to relate the solution to its derivative using
(E.85) and (E.86).

Having determined the R-matrix Rs and the inhomogeneous term Z(as) on the
boundaries r = as, s = 0, . . . , p, of the p sub-regions we can then propagate
the wave function F(as) across these sub-regions using (E.83) to (E.86). We
obtain the following equations for outward and inward propagation of the wave
function:

F(as) = asRs [Gs(as, as)− asRs]−1
{

Gs(as, as−1)a
−1
s−1R−1

s−1

× [
F(as−1)− Z(as−1)

]+Gs(as, as)a
−1
s R−1

s Z(as)− J(as)
}

(E.91)
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and

F(as−1) = as−1Rs−1
[
Gs(as−1, as−1)+ as−1Rs−1

]−1 {Gs(as−1, as)

× a−1
s R−1

s [F(as)− Z(as)]+Gs(as−1, as−1)a
−1
s−1R−1

s−1Z(as−1)

+ J(as−1)} . (E.92)

Equations (E.91) and (E.92) reduce to (E.29) and (E.30) obtained by solving the
homogeneous equation (E.1) when the inhomogeneous terms J(as), J(as−1), Z(as)

and Z(as−1) are absent.
The Green’s functions in (E.87), (E.88), (E.89), (E.90), (E.91) and (E.92), which

are solutions of (E.79), can be calculated using, for example, the Light–Walker
method discussed in Appendix E.1 or the BBM method discussed in Appendix E.3.
In both cases the calculation can use either matrix diagonalization or the solution of
linear simultaneous equations. In the Light–Walker method this involves diagonal-
izing matrices or solving linear equations of order n, while in the BBM method it
involves diagonalizing matrices or solving linear equations of order nm, where n is
the number of coupled channels and m is the number of basis functions retained in
each channel. However, we observed in our study of multiphoton processes using
time-dependent theory in Chap. 10 that the outward and inward propagations in the
external region are carried out at a single energy E = 2i�t−1 at each time step,
where �t is the small time interval used in the propagation. An efficient method
for diagonalizing the Hamiltonian matrix when using either the Light–Walker or
the BBM propagator would then be the Jacobi iterative procedure discussed in
Sect. 10.1.4, which commences from the solution at the previous time step. How-
ever, the procedure that has been adopted by van der Hart et al. [937, 938] and
by Lysaght et al. [603–606] in their time-dependent multiphoton ionization studies
of neon and argon atoms, discussed in Sect. 10.2, uses a basis of B-splines in the
BBM method and determines the Green’s functions by solving linear simultaneous
equations in each sub-region as discussed in Sect. 4.4.4, which has proved to be very
effective in practice.

E.5 Propagator Method with First-Order Derivative

We have seen in our discussion of atomic multiphoton processes in Chaps. 9 and 10
that the coupled second-order differential equations describing the radial motion
of the scattered or ejected electron contain a first-order derivative term when the
interaction of this electron with the laser field is treated in the velocity gauge. Also,
we have seen in Sects. 1.6, 4.6 and 5.5.3 that the coupled first-order Dirac equations
can be reduced to a second-order differential equation with a first-order derivative
term. Although we showed in Sect. 9.1.3 that this first-order derivative term can be
eliminated by a unitary transformation, enabling propagator methods described pre-
viously in this appendix to be used, a propagator method that can be applied directly
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to the solution of differential equations containing a first-order derivative term was
developed by Burke and Burke [172]. We now consider the solution of the coupled
inhomogeneous differential equations (10.55) which arise in time-dependent R-
matrix theory of atomic multiphoton processes, discussed in Chap. 10. However, the
method can also be applied to the coupled homogeneous equations (9.61), obtained
in R-matrix-Floquet theory, by omitting the inhomogeneous term in the following
analysis.

We rewrite (10.55) in the following general form:

(H− EI)F(r) = θ(r), (E.93)

where

H− EI = −1

2

(
I

d2

dr2
+ P

d

dr
+W(r)+ k2

)
, (E.94)

where we find it convenient to measure the energy E in (E.93) and (E.94) from
the lowest target threshold so that the operator H is independent of the value of E .
Also in (E.94), P is an antihermitian matrix and W(r) is a hermitian matrix which
represents the remaining potential terms in (10.55).

We now consider the propagation of the R-matrix and solution of the coupled
inhomogeneous second-order differential equations (E.93) across the p sub-regions
illustrated in Fig. E.1. We introduce the Bloch operators L1s and L2s defined by the
equations

L1s = 1

2
I
[
δ(r − as)

d

dr
− δ(r − as−1)

d

dr

]
(E.95)

and

L2s = 1

4
P
[
δ(r − as)− δ(r − as−1)

]
, (E.96)

which are such that − 1
2 Id2/dr2 + L1s and − 1

2 Pd/dr + L2s are both hermitian in
the sth sub-region as−1 ≤ r ≤ as , in the space of functions satisfying arbitrary
boundary conditions at r = as−1 and as . It follows that H+L1s +L2s is hermitian
in this sub-region. We can then rewrite (E.93) in the sth sub-region as

(H+L1s +L2s − EI)F(r) = (L1s +L2s)F(r)+ θ(r), (E.97)

which has the formal solution

F(r) = (H+L1s +L2s − EI)−1 [(L1s +L2s)F(r)+ θ(r)]. (E.98)

The Green’s function in this equation is defined as the solution of the following
equation in the sth sub-region:

(H+L1s +L2s − EI)Gs(r, r
′) = 1

2
Iδ(r − r ′). (E.99)
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We can then rewrite (E.98) as

F(r) = 2
∫ as

as−1

Gs(r, r
′)(L1s +L2s)F(r ′)dr ′ + J(r), as−1 ≤ r ≤ as, (E.100)

where

J(r) = 2
∫ as

as−1

Gs(r, r
′)θ(r ′)dr ′, as−1 ≤ r ≤ as . (E.101)

Evaluating (E.100) at r = as−1 and as and using (E.95) and (E.96) for the Bloch
operators L1s and L2s then yield the equations

F(as−1) = Gs(as−1, as)

(
dF
dr
+ 1

2
PF
)

r = as

−Gs(as−1, as−1)

×
(

dF
dr
+ 1

2
PF
)

r = as−1

+ J(as−1) (E.102)

and

F(as) = Gs(as, as)

(
dF
dr
+ 1

2
PF
)

r = as

−Gs(as, as−1)

×
(

dF
dr
+ 1

2
PF
)

r = as−1

+ J(as). (E.103)

We see that these equations only differ from (E.83) and (E.84) by the generalization
of the differential operator dF/dr . We now define the R-matrices at r = as−1 and
as by the equations

F(as−1) = Rs−1as−1

(
dF
dr
+ 1

2
PF
)

r = as−1

+ T(as−1) (E.104)

and

F(as) = Rsas

(
dF
dr
+ 1

2
PF
)

r = as

+ T(as), (E.105)

where the inhomogeneous terms T(as−1) and T(as), which we have introduced in
(E.104) and (E.105), represent the effect of the inhomogeneous terms J(as−1) and
J(as) in (E.102) and (E.103), respectively. We see that in time-dependent multipho-
ton theory the R-matrix Rs and the matrix T(as) for s = 0 are given on the boundary
r = a0 of the internal region by (10.37) and (10.42), respectively.

Following our discussion leading to (E.87), (E.88), (E.89) and (E.90) we obtain
the following outward propagation equations for Rs and T(as):

asRs = Gs(as, as)−Gs(as, as−1)
[
Gs(as−1, as−1)+ as−1Rs−1

]−1

× Gs(as−1, as) (E.106)
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and

T(as) = J(as)+Gs(as, as−1)
[
Gs(as−1, as−1)+ as−1Rs−1

]−1

× [
T(as−1)− J(as−1)

]
. (E.107)

These equations can be inverted to give the following inward propagation equations
for Rs and T(as):

as−1Rs−1 = −Gs(as−1, as−1)+Gs(as−1, as) [Gs(as, as)− asRs]−1

× Gs(as, as−1) (E.108)

and

T(as−1) = J(as−1)+Gs(as−1, as) [Gs(as, as)− asRs]−1

× [T(as)− J(as)] . (E.109)

Finally we obtain the following outward and inward propagation equations for the
wave function

F(as) = asRs [Gs(as, as)− asRs]−1
{

Gs(as, as−1)a
−1
s−1R−1

s−1

× [
F(as−1)− T(as−1)

]+Gs(as, as)a
−1
s R−1

s T(as)

− J(as)
}

(E.110)

and

F(as−1) = as−1Rs−1
[
Gs(as−1, as−1)+ as−1Rs−1

]−1
{

Gs(as−1, as)a
−1
s R−1

s

× [F(as)− T(as)]+Gs(as−1, as−1)a
−1
s−1R−1

s−1T(as−1)

+ J(as−1)
}
. (E.111)

We conclude by observing that, as in Appendix E.4, the Green’s functions in the
above equations which are solutions of (E.99) can be calculated using either the
Light–Walker or the BBM propagator method.

E.6 Propagation of Sets of Uncoupled Channels

In this section we extend the propagator methods discussed in the previous sec-
tions of this appendix to treat channels which are strongly coupled in the internal
R-matrix region but which separate in the external and asymptotic regions into two
or more sets of channels, where channels in different sets are uncoupled although
channels within each set remain strongly coupled. This arises in positron collisions
with atoms and ions which we considered in Chap. 7. In this case the positron–atom
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collision channels and positronium–ion collision channels are strongly coupled in
the internal region but separate into two sets of uncoupled channels in the external
and asymptotic regions. It also arises in electron collisions with molecules which
we considered in Chap. 11. In this case the electron–molecule collision channels
and molecular dissociation channels are strongly coupled in the internal region but
separate into two sets of uncoupled channels in the external and asymptotic regions.
We also observe that in the case of positron–molecule collisions, separation into
three sets of uncoupled channels in the external and asymptotic regions is possible,
corresponding to positron–molecule collision channels, positronium–molecular ion
collision channels and molecular dissociation channels which can be analysed by an
extension of the analysis presented in this section.

Channel decoupling also arises in low-energy electron collisions with atoms and
ions, considered in Chap. 5. In this case electron exchange couples target states
with different spins in the internal region, but target states with different spins are
not coupled in the external and asymptotic regions where electron exchange effects
vanish. A similar decoupling effect, discussed in Sect. 5.4.2, occurs in low-energy
electron collisions with heavy atoms and ions where relativistic effects are impor-
tant. In this case the channels that are strongly coupled by relativistic effects in the
internal region divide into two uncoupled sets depending on the quantum number
Ki in the external region.

We consider two sets of channels which are strongly coupled in the internal
region and which separate into two sets of uncoupled channels in the external and
asymptotic regions, which is the situation that occurs most often in applications,
although the theory can be extended in a straightforward way to treat separation
into three or more sets of uncoupled channels. We assume that the reduced radial
wave functions in the first set of coupled channels satisfy the following set of n1
coupled second-order differential equations in the external and asymptotic regions:

(
I1

d2

dr2
+ V1(r)+ k2

1

)
F1(r) = 0, r ≥ a0, (E.112)

and we assume that the reduced radial wave functions in the second set of coupled
channels satisfy the following set of n2 coupled second-order differential equations
in the external and asymptotic regions:

(
I2

d2

dR2
+ V2(R)+ k2

2

)
F2(R) = 0, R ≥ A0, (E.113)

where in (E.112) and (E.113) I1 and I2 are unit matrices with dimensions n1 × n1
and n2 × n2, respectively, and we define n = n1 + n2. We subdivide the external
region, where r ≥ a0 and R ≥ A0, into sub-regions as follows:

as−1 ≤ r ≤ as, s = 1, . . . , p (E.114)

and

At−1 ≤ R ≤ At , t = 1, . . . , q. (E.115)
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2
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Fig. E.2 Partitioning of configuration space into sub-regions in R-matrix theory for two sets of
channels which are strongly coupled in the internal region but uncoupled in the external and
asymptotic regions

We illustrate this partitioning of configuration space in Fig. E.2.
As a result of the calculation in the internal region and the propagation of the

resultant R-matrix in the external region from r = a0 to as and from R = A0 to At

we assume that the functions F1 and F2 are related to the derivatives F′1 ≡ dF1/dr
and F′2 ≡ dF2/dR by the equations

F1(s, t) = R11(s, t)asF′1(s, t)+ R12(s, t)At F′2(s, t) (E.116)

and

F2(s, t) = R21(s, t)asF′1(s, t)+ R22(s, t)At F′2(s, t), (E.117)

where the notation adopted in these equations recognizes that the functions and
derivatives as well as the R-matrix sub-matrices R11, R12, R21 and R22 depend on
both radial distances r = as and R = At . We can write (E.116) and (E.117) using
the following compact matrix notation:

F(s, t) = R(s, t)ρ(s, t)F′(s, t), (E.118)

where the n-dimensional functions and derivatives F and F′ are defined by

F(s, t) =
[

F1(s, t)
F2(s, t)

]
, F′(s, t) =

[
F′1(s, t)
F′2(s, t)

]
, (E.119)
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and the n × n-dimensional matrices R and ρ are defined by

R(s, t) =
[

R11(s, t) R12(s, t)
R21(s, t) R22(s, t)

]
, ρ(s, t) =

[
I1as O
O I2 At

]
. (E.120)

We now consider the propagation of the R-matrix R(s−1, t−1) from the boundaries
r = as−1 and R = At−1 to the boundaries r = as and R = At to yield the R-matrix
R(s, t). Since (E.112) and (E.113) are not coupled in the external region then (E.23)
and (E.24) can be applied independently to F1 and F2. Hence we obtain

F(s − 1, t − 1) = Gst (s − 1, t − 1; s, t)F′(s, t)−Gst (s − 1, t − 1; s − 1, t − 1)

× F′(s − 1, t − 1) (E.121)

and

F(s, t) = Gst (s, t; s, t)F′(s, t)−Gst (s, t; s − 1, t − 1)F′(s − 1, t − 1), (E.122)

where the n× n-dimensional Green’s function matrix has the following block diag-
onal form:

Gst (s, t; s′, t ′) =
[

G1s(s, s′) O
O G2t (t, t ′)

]
. (E.123)

The Green’s functions G1s and G2t correspond to (E.112) and (E.113), respectively,
and can be calculated using either the Light–Walker or the BBM propagator method
discussed in Sects. E.1 and E.3, respectively. Using (E.121) and (E.122) we find that
the R-matrix R(s, t) is related to the R-matrix R(s−1, t−1), using a straightforward
generalization of (E.27), by

R(s, t)ρ(s, t) = Gst (s, t; s, t)−Gst (s, t; s − 1, t − 1)

× [Gst (s − 1, t − 1; s − 1, t − 1)+ R(s − 1, t − 1)

× ρ(s − 1, t − 1)
]−1 Gst (s − 1, t − 1; s, t), (E.124)

and similarly R(s − 1, t − 1) is related to R(s, t), using a straightforward general-
ization of (E.28), by

R(s − 1, t − 1)ρ(s − 1, t − 1)

= − Gst (s − 1, t − 1; s − 1, t − 1)+Gst (s − 1, t − 1; s, t)
× [

Gst (s, t; s, t)− R(s, t)ρ(s, t)
]−1 Gst (s, t; s − 1, t − 1). (E.125)

Having determined the R-matrix on the boundaries of the sub-regions using
(E.124) or (E.125) we can propagate the wave functions across the sub-regions,
using straightforward generalizations of (E.29) and (E.30), given by

F(s, t) = R(s, t)ρ(s, t)
[
Gst (s, t; s, t)− R(s, t)ρ(s, t)

]−1 Gst (s, t; s − 1, t − 1)

× ρ−1(s − 1, t − 1)R−1(s − 1, t − 1)F(s − 1, t − 1) (E.126)
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and

F(s − 1, t − 1) = R(s − 1, t − 1)ρ(s − 1, t − 1) [Gst (s − 1, t − 1; s − 1, t − 1)

+ R(s − 1, t − 1)ρ(s − 1, t − 1)
]−1 Gst (s − 1, t − 1; s, t)

× ρ−1(s, t)R−1(s, t)F(s, t). (E.127)

We see that (E.124), (E.125), (E.126) and (E.127) have the same form as the propa-
gator equations (E.27), (E.28), (E.29) and (E.30). However, for the same total num-
ber of channels n, (E.124), (E.125), (E.126) and (E.127) take less time to solve
since the Green’s function matrix defined by (E.123) is block diagonal. This feature
of the equations was used by Sunderland et al. [896] to develop an efficient parallel
algorithm which was used to propagate the R-matrix for electron collisions with
light atoms and atomic ions, where the coupled equations describing the collision in
the external region decouple for different target spins.

In certain situations it will not be necessary nor appropriate to propagate the
R-matrix and wave functions corresponding to (E.112) and (E.113) over the same
number of steps in the external region. This will occur, for example, in electron–
molecule collisions leading to dissociative attachment when the collision processes
corresponding to (E.112) and (E.113) are very different in the external region. We
will therefore derive a procedure for propagating the R-matrix and wave function
when the value of r corresponding to (E.112) is propagated through one step from
r = as−1 to as while the value of R corresponding to (E.113) remains fixed at
R = At . That is we will propagate the R-matrix R(s−1, t), defined by the equation

F(s − 1, t) = R(s − 1, t)ρ(s − 1, t)F′(s − 1, t), (E.128)

forward one step to yield the R-matrix R(s, t), defined by (E.118).
The equations corresponding to propagation of F1 through one step from

r = as−1 to as keeping the radial coordinate R fixed at At are given by (E.23)
and (E.24) which we can rewrite using our present notation as

F1(s − 1, t) = G1s(s − 1, s)F′1(s, t)−G1s(s − 1, s − 1)F′1(s − 1, t) (E.129)

and

F1(s, t) = G1s(s, s)F′1(s, t)−G1s(s, s − 1)F′1(s − 1, t). (E.130)

We then eliminate F1(s − 1, t) and F′1(s − 1, t) from (E.128) using (E.129) and
(E.130) and write the resultant equation in the form of (E.118). We find that the
R-matrix R(s, t) has the components

R11(s, t)as = G1s(s, s)−G1s(s, s − 1) [G1s(s − 1, s − 1)

+ R11(s − 1, t)as−1
]−1 G1s(s − 1, s), (E.131)
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R12(s, t)At = G1s(s, s − 1)
[
G1s(s − 1, s − 1)+ R11(s − 1, t)as−1

]−1

× R12(s − 1, t)At , (E.132)

R21(s, t)as = R21(s − 1, t)as−1
[
G1s(s − 1, s − 1)+ R11(s − 1, t)as−1

]−1

× G1s(s − 1, s), (E.133)

R22(s, t)At = R22(s − 1, t)At − R21(s − 1, t)as−1 [G1s(s − 1, s − 1)

+ R11(s − 1, t)as−1
]−1 R12(s − 1, t)At . (E.134)

On the other hand, if we eliminate F1(s, t) and F′1(s, t) from (E.118) using (E.129)
and (E.130) and write the resultant equation in the form of (E.128) we find that the
resultant R-matrix R(s − 1, t) has the components

R11(s − 1, t)as−1 = − G1s(s − 1, s − 1)+G1s(s − 1, s)

× [G1s(s, s)− R11(s, t)as]−1 G1s(s, s − 1), (E.135)

R12(s− 1, t)At = G1s(s− 1, s) [G1s(s, s)− R11(s, t)as]−1 R12(s, t)At , (E.136)

R21(s−1, t)as−1 = R21(s, t)as [G1s(s, s)− R11(s, t)as]−1 G1s(s, s−1), (E.137)

R22(s − 1, t)At = R22(s, t)At + R21(s, t)as [G1s(s, s)− R11(s, t)as]−1

× R12(s, t)At . (E.138)

Equations (E.131), (E.132), (E.133) and (E.134) describe the outward propagation
of the R-matrix from r = as−1 to as , while (E.135), (E.136), (E.137) and (E.138)
describe the inward propagation of the R-matrix from r = as to r = as−1, in both
cases keeping the radial coordinate R fixed at At .

Having determined the R-matrix on the boundaries of the sub-regions using
either (E.131), (E.132), (E.133) and (E.134) or (E.135), (E.136), (E.137) and
(E.138), we can derive equations which enable the wave function to be propagated
either outwards or inwards across the sub-regions. We first write (E.118) in terms
of its matrix components and solve the resultant equations for F′1(s, t) and F′2(s, t)
giving

F′1(s, t) =
[
I1 − R−1

11 (s, t)R12(s, t)R
−1
22 (s, t)R21(s, t)

]−1
a−1

s

×
[
R−1

11 (s, t)F1(s, t)− R−1
11 (s, t)R12(s, t)

× R−1
22 (s, t)F2(s, t)

]
(E.139)



690 Appendix E Propagator Methods

and

F′2(s, t) =
[
I2 − R−1

22 (s, t)R21(s, t)R
−1
11 (s, t)R12(s, t)

]−1
A−1

t

×
[
R−1

22 (s, t)F2(s, t)− R−1
22 (s, t)R21(s, t)

× R−1
11 (s, t)F1(s, t)

]
. (E.140)

We then write (E.128) in terms of its matrix components and solve the resultant
equations for F′1(s − 1, t) and F′2(s − 1, t) giving

F′1(s − 1, t) =
[
I1 − R−1

11 (s − 1, t)R12(s − 1, t)R−1
22 (s − 1, t)R21(s − 1, t)

]−1

× a−1
s−1

[
R−1

11 (s − 1, t)F1(s − 1, t)− R−1
11 (s − 1, t)

× R12(s − 1, t)R−1
22 (s − 1, t)F2(s − 1, t)

]
(E.141)

and

F′2(s − 1, t) =
[
I2 − R−1

22 (s − 1, t)R21(s − 1, t)R−1
11 (s − 1, t)R12(s − 1, t)

]−1

× A−1
t

[
R−1

22 (s − 1, t)F2(s − 1, t)− R−1
22 (s − 1, t)

× R21(s − 1, t)R−1
11 (s − 1, t)F1(s − 1, t)

]
. (E.142)

The required propagation equations for the wave functions can then be obtained
from the six matrix equations (E.129), (E.130), (E.139), (E.140), (E.141) and
(E.142), which are linear homogeneous equations in the following four functions
and four derivatives:

F1(s − 1, t), F1(s, t), F2(s − 1, t), F2(s, t),

F′1(s − 1, t), F′1(s, t), F′2(s − 1, t), F′2(s, t), (E.143)

where we see that the coefficients in these six matrix equations are defined in terms
of Green’s functions and R-matrices which can be determined using either the
Light–Walker or the BBM propagator method. We proceed by eliminating the four
derivative functions on the second row of (E.143) from these six matrix equations
yielding two linear homogeneous matrix equations relating the four functions on the
first row of (E.143), which can be written in the following form:

F1(s, t) = A11F1(s − 1, t)+ A12F2(s − 1, t)

F2(s, t) = A21F1(s − 1, t)+ A22F2(s − 1, t), (E.144)
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where the matrices A11, A12, A21 and A22 are determined in terms of Green’s
functions and R-matrices. Equations (E.144) then enable the functions F1(r, R) and
F2(r, R) to be propagated outwards from r = as−1 and R = At to r = as and
R = At . In a similar way, we can derive two linear equations which enable the
functions F1(r, R) and F2(r, R) to be propagated inwards from r = as and R = At

to r = as−1 and R = At . In both the outward and inward propagations we observe
that, although we are only propagating the radial coordinate r corresponding to the
first set of channels in Fig. E.2, the functions F2 corresponding to the second set of
channels in Fig. E.2 will also be modified.

Finally, the above procedure can be extended to propagate the functions F1 and
F2 outwards and inwards by a range of steps in the r and R variables depending on
the physical process under consideration. Also, we again observe that the computa-
tional effort required for propagating the R-matrix and the wave function is reduced
from that required if all n = n1 + n2 channels are coupled in the external region
since the inversions involve sub-matrices whose dimensions are n1 and n2 rather
than n.



Appendix F
Asymptotic Expansions

In this appendix we describe asymptotic expansion methods which have been
developed and applied in the study of electron, positron and multiphoton colli-
sion processes. We consider first asymptotic expansion solutions of the coupled
second-order differential equations which arise in the study of electron and positron
collisions with atoms, ions and molecules. We then consider asymptotic expan-
sion solutions of the coupled second-order differential equations which arise in
R-matrix–Floquet theory of multiphoton ionization and laser-assisted electron–
atom and electron–ion collisions when the velocity gauge is adopted in the asymp-
totic region.

F.1 Electron and Positron Collisions

In this section we consider asymptotic expansion solutions of the coupled second-
order differential equations which arise in electron collisions with atoms, ions and
molecules, considered in Chaps. 5, 6 and 11 and in positron collisions with atoms,
ions and molecules, considered in Chaps. 7 and 11. In the external and asymptotic
regions, defined, for example, in Sect. 5.1.1, these coupled differential equations
take the following general form:

(
d2

dr2
− 	i (	i + 1)

r2
+ 2(Z − N )

r
+ k2

i

)
Fi (r) = 2

n∑
i ′= 1

Vii ′(r)Fi ′(r),

i = 1, . . . , n, r ≥ a0, (F.1)

where the potential matrix Vii ′(r) can be written as a summation in inverse powers
of r as follows:

Vii ′(r) =
λmax∑
λ=1

αi i ′λr
−λ−1, i, i ′ = 1, . . . , n, r ≥ a0, (F.2)

P.G. Burke, R-Matrix Theory of Atomic Collisions, Springer Series on Atomic, Optical,
and Plasma Physics 61, DOI 10.1007/978-3-642-15931-2_18,
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where a general expression for the long-range potential coefficients αi i ′λ, which
occur in electron collisions with atoms and atomic ions, has been derived in
Appendix D.1.

We commence by describing the asymptotic expansion method introduced by
Burke and Schey [160] in their study of electron–hydrogen atom collisions, which
was later generalized by Burke et al. [174] and Burke and Seaton [164] to treat
electron–atom and electron–ion collisions. We assume in this derivation that the
channels in (F.1) are ordered as follows:

k2
1 ≥ k2

2 ≥ · · · ≥ k2
n (F.3)

so that na open channels, with k2
i ≥ 0, occur first and nb = n − na closed chan-

nels, with k2
i < 0, occur last in this list. We first define na asymptotic solutions of

(F.1) for r ≥ ap in Fig. 5.1, satisfying outgoing wave boundary conditions by the
equation

ui j (r) = exp(iθ j )

∞∑
s= 0

cs
i j r
−s, i = 1, . . . , n, j = 1, . . . , na, (F.4)

where na is the number of open channels and θ j is defined by, see (2.82),

θ j = k jr − 1

2
	 jπ − η j ln 2k jr + σ	 j , j = 1, . . . , na, (F.5)

where

η j = − Z − N

k j
= − z

k j
, j = 1, . . . , na (F.6)

and

σ	 j = arg(	 j + 1+ iη j ), j = 1, . . . , na . (F.7)

We then substitute the outgoing wave expansion (F.4) for Fi (r) into (F.1) and
replace the potential matrix Vii ′(r) by expansion (F.2). Equating the coefficient of
r−s exp(iθ j ) to zero then yields the following recurrence relations for the expansion
coefficients cs

i j in (F.4)

(k2
i − k2

j )c
s
i j − 2ik j (s − 1)cs−1

i j + [(s − 1)(s − 2)− η2
j + iη j (2s − 3)]cs−2

i j

−	i (	i + 1)cs−2
i j − 2

n∑
i ′=1

λmax∑
λ=1

αi i ′λcs−λ−1
i ′ j = 0, i = 1, . . . , n, j = 1, . . . , na .

(F.8)
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We then determine na solutions for each j = 1, . . . , na by setting

c0
i j = δi j , i = 1, . . . , n, j = 1, . . . , na (F.9)

and

cs
i j = 0, s < 0, i = 1, . . . , n, j = 1, . . . , na . (F.10)

The recurrence relations (F.8) then enable us to determine the remaining coefficients

cs
i j , 1 < s ≤ smax, i = 1, . . . , n, j = 1, . . . , na, (F.11)

where smax is some suitably chosen maximum value of the expansion index s in
expansion (F.4) which may depend on i and j . This enables us to obtain na lin-
early independent solutions of (F.1) satisfying the outgoing wave boundary condi-
tions (F.4).

In a similar way, we define na asymptotic solutions of (F.1) satisfying ingoing
wave boundary conditions by the equation

ui j+na (r) = exp(−iθ j )

∞∑
s= 0

cs
i j + na

r−s, i = 1, . . . , n, j = 1, . . . , na, (F.12)

where the coefficients cs
i j + na

satisfy recurrence relations obtained from (F.8) by
replacing k j by −k j . We then determine na solutions for each j = 1, . . . , na by
setting

c0
i j + na

= δi j , i = 1, . . . , n, j = 1, . . . , na (F.13)

and

cs
i j + na

= 0, s < 0, i = 1, . . . , n, j = 1, . . . , na . (F.14)

The recurrence relations (F.8) then enable us to determine the remaining coefficients

cs
i j + na

, 1 < s ≤ smax, i = 1, . . . , n, j = 1, . . . , na . (F.15)

We can then obtain na linearly independent solutions of (F.1) satisfying the ingoing
wave boundary conditions (F.12). It follows that we have determined 2na solutions
of (F.1) which satisfy the outgoing and ingoing wave boundary conditions

ui j (r) ∼
r→∞ exp(iθ j )δi j , i = 1, . . . , n, j = 1, . . . , na,

ui j + na (r) ∼r→∞ exp(−iθ j )δi j , i = 1, . . . , n, j = 1, . . . , na . (F.16)

In order to define the K -matrix in Sect. 5.1.4 we also need solutions satisfying
sine and cosine asymptotic boundary conditions. These are defined in terms of the
outgoing and ingoing wave solutions as follows:
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vi j (r) = 1

2i

[
ui j (r)− ui j + na (r)

]
∼

r→∞ sin θiδi j , i = 1, . . . , n, j = 1, . . . , na,

vi j + na (r) =
1

2

[
ui j (r)+ ui j + na (r)

]
∼

r→∞ cos θiδi j , i = 1, . . . , n, j = 1, . . . , na . (F.17)

If nb channels are closed, we must also define nb solutions of (F.1) satisfying
decaying wave boundary conditions by the equation

ui j + na (r) = exp(−φ j )

∞∑
s= 0

cs
i j + na

r−s, i = 1, . . . , n, j = na + 1, . . . , n,

(F.18)
where φ j is defined by

φ j = |k j |r − z

|k j | ln(2|k j |r), j = na + 1, . . . , n. (F.19)

The coefficient cs
i j + na

in (F.18) satisfy recurrence relations obtained from (F.8) by
setting

k j = iκ j , j = na + 1, . . . , n, (F.20)

where in the closed channels k j is positive imaginary. Hence we obtain the recur-
rence relations

(k2
i − k2

j )c
s
i j + 2κ j (s − 1)cs−1

i j +
[
(s − 1)(s − 2)+ z2

κ2
j

− z

κ j
(2s − 3)

]
cs−2

i j

−	i (	i + 1)cs−2
i j − 2

n∑
i ′=1

λmax∑
λ=1

αi i ′λcs−λ−1
i ′ j = 0, i = 1, . . . , n,

j = na + 1, . . . , n. (F.21)

We then determine nb solutions for each j = na + 1, . . . , n by setting

c0
i j + na

= δi j i = 1, . . . , n, j = na + 1, . . . , n, (F.22)

and

cs
i j + na

= 0, s < 0, i = 1, . . . , n, j = na + 1, . . . , n. (F.23)

This enables the nb decaying wave solutions to be calculated by determining the
remaining coefficients from the recurrence relations. It follows that the nb = n−na

solutions of (F.1) defined in this way satisfy the boundary conditions
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vi j + na (r) = ui j+na (r) ∼r→∞ exp(−φ j )δi j , i = 1, . . . , n, j = na + 1, . . . , n.
(F.24)

The n+na asymptotic solutions defined by (F.17) and (F.24) are the complete set of
solutions which enable the K -matrix to be determined from the R-matrix at r = ap,
as discussed in Sect. 5.1.4. Since expansions (F.4), (F.12) and (F.18) are asymptotic
(see, for example, Whittaker and Watson [964]) their accuracy is limited by the
value of r at which they are evaluated, and for each r there is an optimum number
of terms smax+1 which can be included in the expansions for the highest accuracy to
be obtained. In practice, there are several circumstances where the required accuracy
can only be obtained by taking very large values for the radius ap in Fig. 5.1 where
the expansions are evaluated. These circumstances are as follows:

i. when one of the coefficients (k2
i − k2

j ) multiplying one of the first terms in (F.8)
or (F.21) is very small. This occurs when two almost degenerate channels are
coupled by the long-range potential matrix. This becomes increasingly likely as
the complexity of the target atom or ion increases, necessitating the inclusion of
many channel functions in the expansion of the total wave function to obtain
accurate results. However, if the channels are degenerate, which occurs, for
example, in electron scattering by H-like ions, or when several angular momenta
are coupled to a single target state, then the corresponding coefficients in (F.8)
or (F.21) vanish and this difficulty does not arise. In practice, it is often conve-
nient to adjust the energies of the channels that are almost degenerate making
them exactly degenerate, so avoiding this cause of the rapid divergence of the
asymptotic expansion;

ii. when one of the coefficients 2k j (s − 1) or 2κ j (s − 1) multiplying one of the
second terms in (F.8) or (F.21) is very small and the corresponding first term
in (F.8) or (F.21) vanishes. This occurs when the momentum k j or κ j of the
scattered electron in the relevant channel is small and hence the channel energy
is close to threshold. Again this becomes increasingly likely as the complexity
of the target increases and hence the thresholds become increasingly dense in
the energy region of interest;

iii. when the value of η j or one or more of the orbital angular momenta 	i in (F.8)
or (F.21) are large;

iv. when one or more of the long-range multipole moment coefficients αi i ′λ in (F.8)
or (F.21) are large.

Several procedures have been suggested to overcome these difficulties which lead
to a rapid divergence of the asymptotic expansions. Norcross and Seaton [694] and
Norcross [693] suggested that the terms exp(±iθ j ) and exp(−φ j ) in expansions
(F.4), (F.12) and (F.18) should be replaced by appropriate Coulomb functions cal-
culated using an iterated WKB approximation. This leads to values of the radius ap

which remain finite in the limit k j or κ j tends to zero. However, expansions (F.4),
(F.12) and (F.18) become more accurate than the iterated WKB approximation as
the energy moves away from threshold and are more easy to apply. We therefore
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limit our discussion here to considering extensions of expansions (F.4), (F.12) and
(F.18) suggested by Gailitis [356] which overcome some of the above-mentioned
difficulties and are relatively easy to apply.

Gailitis [356] replaced the asymptotic expansion (F.4) by the asymptotic expan-
sion

ui j (r) =
[
G	 j (η j , k jr)+ iF	 j (η j , k jr)

] ∞∑
s= 0

ds
i j r
−s, i = 1, . . . , n,

j = 1, . . . , na, (F.25)

where F	 j (η j , k jr) and G	 j (η j , k jr) are the regular and irregular Coulomb wave
functions which are defined by (1.58) and (1.59). These functions have been care-
fully studied by many workers (e.g. Abramowitz and Stegun [1]), and algorithms
and computer programs have been developed by Barnett [53], Seaton [862] and
Noble [686] to accurately calculate these functions for all relevant values of 	 j , η j

and k jr . Hence, in order to apply expansion (F.25), it is only necessary to derive
recurrence relations for the coefficients ds

i j .
In order to obtain these recurrence relations, we first derive an asymptotic expan-

sion for the Coulomb wave functions in (F.25). We write

G	 j (η j , k jr)+ iF	 j (η j , k jr) = exp(iθ j )

∞∑
s= 0

bs
jr
−s, (F.26)

where θ j is defined by (F.5). Substituting expansion (F.26) into the Coulomb wave
equation (1.56) and equating the coefficient of r−s exp(iθ j ) to zero gives the recur-
rence relations

2ik j sbs
j − [s(s − 1)− η2

j + iη j (2s − 1)− 	 j (	 j + 1)]bs−1
j = 0. (F.27)

It follows that if we set

b0
j = 1, bs

j = 0, s < 0, (F.28)

then the recurrence relations (F.27) enable us to determine the remaining coefficients

bs
j , 1 < s ≤ smax, (F.29)

where again smax is some suitably chosen maximum value of s in expansion (F.26).
We now substitute (F.26) into (F.25) to yield

ui j (r) = exp(iθ j )

∞∑
s= 0

∞∑
s′= 0

bs
j d

s′
i j r
−s−s′ . (F.30)



F.1 Electron and Positron Collisions 699

Comparing this expansion with expansion (F.4) we find the following relation
between the expansion coefficients

cs
i j =

s∑
s′= 0

bs−s′
j ds′

i j . (F.31)

Remembering from (F.28) that b0
j = 1 and re-arranging (F.31) we obtain the fol-

lowing recurrence relations for the coefficients ds
i j

ds
i j = cs

i j −
s−1∑
s′= 0

bs−s′
j ds′

i j , s = 0, 1, . . . . (F.32)

Since we can determine the coefficients cs
i j for s ≥ 0 from the recurrence relations

(F.8) and (F.10), and we can determine the coefficients bs
j for s ≥ 0 from the recur-

rence relations (F.27) and (F.28), (F.32) can be solved to yield the coefficients ds
i j for

s ≥ 0. In a similar way we can determine asymptotic expansions satisfying ingoing
wave boundary conditions defined by (F.12).

Gailitis [356] also considered two further expansions with the form

ui j (r) = R	 j (r)
∞∑

s= 0

αs
i j r
−s + Ṙ	 j (r)

∞∑
s= 0

βs
i j r
−s (F.33)

with

Ṙ	 j (r) =
1

k j

dR	 j

dr
(F.34)

and

ui j (r) = R	 j (r)
∞∑

s= 0

γ s
i j r
−s + R	 j+1(r)

∞∑
s= 0

δs
i j r
−s . (F.35)

In (F.33) and (F.35) we may use any solution of the Coulomb wave equation (1.56)
as the function R	 j (r). Recurrence relations can then be derived for the coefficients
αs

i j and βs
i j and for the coefficients γ s

i j and δs
i j which have a similar form to (F.8) and

(F.21). However, expansion (F.25) has the most acceptable form, since it contains
only Coulomb functions for the channels under investigation, and has therefore been
most widely used.

The advantage of the asymptotic expansions proposed by Gailitis compared with
expansions (F.4), (F.12) and (F.18) can be easily seen. By examining (F.8) we see
that the radius ap where the asymptotic expansion gives an accurate result depends
on, amongst other factors, the value of η j = −z/k j . If either z becomes large or
k j becomes small then the asymptotic expansion diverges rapidly for small ap. By
including the Coulomb wave function exactly in (F.25), (F.33) and (F.35) this cause
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of rapid divergence is removed. The Gailitis expansion also avoids the divergence
problems that arise when the orbital angular momentum 	i becomes large.

In spite of these advantages, the expansions proposed by Gailitis can still diverge
rapidly when two or more channels which are strongly coupled by the long-range
potential are almost degenerate or when the channel energy lies very close to a
threshold. These difficulties can be partially alleviated by rewriting the asymp-
totic expansion as a continued fraction as suggested by Noble and Nesbet [687],
corresponding to the use of Padé approximants (e.g. see the monograph by Baker
and Gammel [42]). However, difficulties still arise as the complexity of the target
increases giving rise to many closely coupled channels. Hence large values of ap

often have to be used to obtain accurate results in such situations.

F.2 Multiphoton Processes

In this section we derive asymptotic expansion solutions of the coupled second-
order differential equations (9.79) which arise in R-matrix–Floquet theory of multi-
photon ionization and laser-assisted electron–atom and electron–ion collisions when
the velocity gauge is adopted in the asymptotic region. These equations, first dis-
cussed by Dörr et al. [264], which we assume are n in number, take the following
general form

(
d2

dr2
+ 2id

d

dr
+W(r)

)
G(r) = 0, (F.36)

where d is a real, diagonal matrix and W(r) is a potential matrix, which following
(9.82) can be written as a summation in inverse powers of r as

W(r) =
λmax∑
λ= 0

Wλr
−λ. (F.37)

In (F.37) λmax is determined by the angular momentum triangular relations satisfied
by the potential V(r) in (9.61). We find that W0 is hermitian if the energy EV

in (9.62) is real, corresponding to laser-assisted electron–atom collisions, and is
non-hermitian if EV is complex, corresponding to multiphoton ionization. Also, the
matrices Wλ, λ ≥ 1, do not depend on EV and are hermitian.

We now define 2n linearly independent solutions of (F.36), for r ≥ ap in Fig. 9.1,
satisfying the following asymptotic expansion

G j (r) =
∞∑

s= 0

r−s exp

(
ip jr + i

Z j

p j
ln 2p jr

)
As

j , j = 1, . . . , 2n, (F.38)

where the vector coefficients As
j for s ≥ 1, each of which has n components, can be

determined from recurrence relations which we derive below. Also, we will see that
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the effective momenta p j and effective charge numbers Z j in (F.38) are determined
from the requirement that the recurrence relations are self-consistent.

Substituting expansion (F.38) into (F.36) and equating the coefficients of the
terms r−s exp[ip jr + iZ j ln(2p jr)/p j ] to zero gives the following recurrence rela-
tions:

[
−p2

j − 2dp j +W0

]
As

j +
[
−2(d+ p j )

Z j

p j
− 2i(d+ p j )(s − 1)+W1

]
As−1

j

+
[
(s − 1)(s − 2)− i

Z j

p j
(2s − 3)− Z2

j

p2
j

+W2

]
As−2

j

+
λmax∑
λ= 3

WλAs−λ
j = 0, s = 0, 1, 2, . . . , j = 1, . . . , 2n, (F.39)

where we set

As
j = 0, s < 0, j = 1, . . . , 2n. (F.40)

We now consider the solution of the recurrence relations (F.39) for s = 0, 1, 2, . . .
in turn.

We consider first the solution of (F.39) when s = 0. In this case (F.39) reduces to
n coupled equations for the n components of A0

j

[
p2

j + 2dp j −W0

]
A0

j = 0, j = 1, . . . , 2n, (F.41)

which we rewrite as

L j A0
j = 0, j = 1, . . . , 2n, (F.42)

defining the n × n-dimensional matrix L j . Equations (F.42) are a set of n linear
simultaneous equations for each j which will have non-trivial solutions when

det L j = 0. (F.43)

Expanding the determinant of L j then yields an algebraic equation of order 2n in
p j which will, in general, have 2n solutions

p j , j = 1, . . . , 2n. (F.44)

If W0 in (F.41) is hermitian, corresponding to laser-assisted electron–atom colli-
sions, then the solutions p j of (F.43) occur in real pairs or in complex conjugate
pairs p j and p∗j or in some combination of real and complex conjugate pairs. On
the other hand, if W0 is non-hermitian, corresponding to multiphoton ionization, the
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solutions p j of (F.43) will in general be complex with no special relation between
the 2n values.

Having determined the n × n-dimensional matrices L j , j = 1, . . . , 2n, we now
determine the corresponding eigenvalues and eigenvectors defined by

L j yi j = λi j yi j , i = 1, . . . , n, (F.45)

where this equation and the following analysis are repeated for each j = 1, . . . , 2n.
Equation (F.45) defines a complete set of n eigenvalues λi j , i = 1, . . . , n, and
n eigenvectors yi j , i = 1, . . . , n, for each j . It follows from (F.43) that one
of these eigenvalues must be zero. We order the n eigenvalues and the corre-
sponding eigenvectors so that the equation with the zero eigenvalue occurs first.
Hence

L j y1 j = 0, (F.46)

where λ1 j = 0. By comparing (F.42) and (F.46) we see that the required solutions
A0

j of (F.42) are the eigensolutions y1 j corresponding to the zero eigenvalue of L j .
We will also see that in order to solve the recurrence relations (F.39) for s ≥ 1 we
will need to determine the complete set of n eigenvalues and eigenvectors of L j for
each j = 1, . . . , 2n.

In order to determine the n eigenvalues and eigenvectors of L j , we observe that
if W0 is hermitian and p j is real then the corresponding matrix L j will be hermitian
so that L j = L†

j . Hence in this case, the eigenvectors yi j of L j , defined by (F.45),
belong to real eigenvalues λi j , i = 1, . . . , n. Taking the hermitian conjugate of
(F.45) then gives

y†
i j L j = λi j y

†
i j , i = 1, . . . , n. (F.47)

It follows that when L j is hermitian the right eigenvectors of L j defined by (F.45)
and the left eigenvectors of L j defined by (F.47) are identical and can be chosen to
satisfy the orthonormality relation

y†
i j yk j = δik, i, k = 1, . . . , n. (F.48)

On the other hand, if W0 is not hermitian or p j is not real then L j will
not be hermitian. The eigenvalues λi j of L j will then in general be complex,
except the first λ1 j defined by (F.46) which is zero. If the eigenvalues of L j are
written as

λ1 j , λ2 j , . . . , λnj , (F.49)

then the corresponding eigenvalues of L†
j are
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λ∗1 j , λ
∗
2 j , . . . , λ

∗
nj . (F.50)

The right eigenvectors yi j of L j belonging to the eigenvalues λi j are then defined
by (F.45), and the left eigenvectors xi j of L†

j belonging to the eigenvalues λ∗i j are
defined by

L†
j xi j = λ∗i j xi j , i = 1, . . . , n. (F.51)

We now multiply (F.45) on the left by x†
k j and multiply the hermitian conjugate of

(F.51) on the right by yk j . We then find after subtracting these results that

(λi j − λk j )x
†
k j yi j = 0, i, k = 1, . . . , n. (F.52)

Hence the eigenvectors of L j and L†
j belonging to different pairs of eigenvalues,

given by (F.49) and (F.50), are orthogonal. Also, if two or more eigenvalues in (F.49)
and hence in (F.50) are identical, then the corresponding eigenvectors belonging to
these eigenvalues can be chosen to be orthogonal.

Finally, if U j is the n × n-dimensional matrix whose columns are the n left
eigenvectors xi j , i = 1, . . . , n, and V j is the n × n-dimensional matrix whose
columns are the n right eigenvectors yi j , i = 1, . . . , n, then it follows from the
above analysis that

U†
j L j V j = � j , (F.53)

where � j is a diagonal matrix with diagonal elements λi j , i = 1, . . . , n.
We consider next the solution of (F.39) when s = 1. In this case the recurrence

relations (F.39) reduce to

[
−p2

j − 2dp j +W0

]
A1

j +
[
−2(d+ p j )

Z j

p j
+W1

]
A0

j = 0, j = 1, . . . , 2n,

(F.54)
which is a set of n linear simultaneous equations for the n components of the vector
A1

j , j = 1, . . . , 2n. We rewrite these equations as

L j A1
j =M j A0

j , (F.55)

where L j is defined by (F.41) and (F.42) and

M j = −2(d+ p j )
Z j

p j
+W1, (F.56)

and where these equations and the following analysis are repeated for each j =
1, . . . , 2n. In order to solve (F.55) we expand A1

j in terms of the complete set of
right eigenvectors of L j , defined by (F.45), as follows:
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A1
j =

n∑
i = 1

yi j c
1
i j . (F.57)

Substituting expansion (F.57) into (F.55) then gives

n∑
i = 2

L j yi j c
1
i j =M j A0

j , (F.58)

where we have used (F.46) to eliminate the i = 1 term in this expansion. We then
project this expansion onto the n left eigenvectors xk j , k = 1, . . . , n of L j , defined
by (F.51), giving

n∑
i = 2

x†
k j L j yi j c

1
i j = x†

k j M j A0
j , k = 1, . . . , n. (F.59)

This is a set of n linear simultaneous equations in n − 1 coefficients c1
i j , i =

2, . . . , n, and the effective charge number Z j in M j defined by (F.56). In order
to solve these equations we observe that since the first eigenvalue λ1 j of L j is zero,
it follows from (F.51) that

x†
1 j L j = 0. (F.60)

Hence the left-hand side of the first equation in (F.59) corresponding to k = 1 is
zero. It follows that the right-hand side of the first equation in (F.59) is zero, i.e.

x†
1 j M j A0

j = 0, (F.61)

which enables Z j , which is the only unknown in this equation, to be determined.
Using this value of Z j the remaining n − 1 equations in (F.59) corresponding to
k = 2, . . . , n can be solved to yield the coefficients c1

i j , i = 2, . . . , n.

It follows from this analysis that we have determined all the components of A1
j ,

defined by (F.57), except the component y1 j with coefficient c1
1 j . This component

will be determined below by considering the recurrence relation (F.39) when s = 2.
We consider next the solution of (F.39) when s = 2. In this case the recurrence

relations (F.39) reduce to

[
−p2

j − 2dp j +W0

]
A2

j +
[
−2(d+ p j )

Z j

p j
− 2i(d+ p j )+W1

]
A1

j

+
[
−i

Z j

p j
− Z2

j

p2
j

+W2

]
A0

j = 0, j = 1, . . . , 2n, (F.62)



F.2 Multiphoton Processes 705

which is a set of n linear simultaneous equations for A2
j , j = 1, . . . , 2n. In analogy

with (F.57) we expand A2
j as follows:

A2
j =

n∑
i = 1

yi j c
2
i j , (F.63)

where this equation and the following analysis is repeated for each j = 1, . . . , 2n.
We then project (F.62) onto the first left eigenvector x1 j of L j and use the result that

x†
1 j

[
−p2

j − 2dp j +W0

]
= −x†

1 j L j = 0, (F.64)

which follows from (F.60). We obtain

n∑
i = 1

x†
1 j

[−2(d+ p j )− 2i(d+ p j )+W1
]

yi j c
1
i j = x†

1 j

[
i
Z j

p j
+ Z2

j

p2
j

−W2

]
A0

j .

(F.65)
Since we have calculated the coefficients c1

i j , i = 2, . . . , n, by solving (F.59), the

only unknown in (F.65) is c1
1 j which can now be determined. Hence all the terms on

the right-hand side of (F.57) have been calculated and A1
j is now known.

We next project (F.62) onto the left eigenvectors xk j , k = 2, . . . , n giving

n∑
i=2

x†
k j L j yi j c

2
i j = x†

k j

[−2(d+ p j )− 2i(d+ p j )+W1
]

A1
j

+ x†
k j

[
−i

Z j

p j
− Z2

j

p2
j

+W2

]
A0

j , k = 2, . . . , n. (F.66)

This is a set of n − 1 linear simultaneous equations in n − 1 coefficients c2
i j ,

i = 2, . . . , n, which can be solved to yield the values of these coefficients. Hence
we have determined all the components of A2

j , defined by (F.63), except the compo-

nent y1 j with coefficient c2
1 j . This component can be determined by considering the

recurrence relation (F.39) when s = 3 in a similar way to our determination of c1
1 j

considered above.
We consider last the solution of (F.39) when s ≥ 3. In this case we expand As

j as
follows:

As
j =

n∑
i=1

yi j c
s
i j , (F.67)
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where this equation and the following analysis is repeated for each j = 1, . . . , 2n.
We project (F.39) onto x1 j yielding the expansion coefficient cs−1

i j , and we project
(F.39) onto xk j , k = 2, . . . , n, yielding n − 1 linear simultaneous equations whose
solution yields cs

k j , k = 2, . . . , n.
In summary the recurrence relations (F.39) enable the coefficients As

j , 0 ≤ s ≤
smax to be determined, where smax is some suitably chosen maximum value of the
expansion index s in (F.38), yielding G j (r) on the boundary r = ap. This procedure
is repeated for each j = 1, . . . , 2n yielding the complete set of 2n solutions of
the coupled second-order differential equations (F.36). Appropriate linear combi-
nations of these solutions yield the physically required solutions corresponding to
laser-assisted electron–atom collisions or multiphoton ionization, as discussed in
Sect. 9.1.4.

Finally we observe that, as discussed in Sect. F.1, since expansion (F.38) is
asymptotic, its accuracy is limited by the value of r = ap at which it is evaluated.
For each ap there is a related number of terms smax which should be retained in the
expansion to obtain the maximum accuracy. This difficulty can be partially allevi-
ated by rewriting the asymptotic expansion as a continued fraction, as mentioned
in Sect. F.1. However, in general, if higher accuracy is required then the coupled
second-order differential equations (9.61) must be integrated out to a larger value of
ap as described in Sect. 9.1.3.
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A
Adiabatic-nuclei approximation, 545, 551
ADK tunnelling theory, 482–483
Angular momentum algebra applications

for long-range potentials, 647–653
for photoionization cross section, 662–664
for R-matrix–Floquet potential, 654–657
for time-dependent potential, 657–662

Angular momentum transfer, 95–96
Antisymmetrization operator, 71
Arnoldi–Lanczos time propagator, 498
Associated Legendre functions

properties of, 621–622
recurrence relations for, 621

Asymmetry parameter, see Atomic
photoionization

Asymptotic boundary conditions
ingoing wave, 92
for K -matrix, 86
outgoing wave, 92
for S-matrix, 91
for T -matrix, 92

Asymptotic expansions for electron and
positron collisions

Burke–Schey, 694–697
continued fraction, 700
differential equations for, 693
Gailitis, 698–700
introduction, 693
recurrence relations for, 694, 696, 698–699

Asymptotic expansions for multiphoton
processes

differential equations for, 700
introduction, 700
recurrence relations for, 701, 703–706
solution of recurrence relations, 701–706

Atomic photoionization, see also Photoioniza-
tion R-matrix theory

asymmetry parameter, 389–390

bound-state wave function, 387
continuum-state wave function, 384–387
differential cross section, 381–384,

388–390, 662–664
dipole acceleration operator, 384
dipole length operator, 383
dipole velocity operator, 383
Fano line profile index, 22
general theory, 390
Hamiltonian, 382
Poynting vector, 382–383
total cross section, 389–390

Atomic R-matrix–Floquet theory, see also
Molecular R-matrix–Floquet theory

allowed transitions, 438–439
asymptotic region solution in acceleration

frame, 456–466
asymptotic region solution in velocity

gauge, 451–456
asymptotic region solution: simplified

analysis, 466–472
Bloch operator, 440
conserved quantum numbers, 438–439
coupled differential equations for, 443–447
coupled differential equations solution,

447–450
dressed states, 448
dynamic Stark shift, 454, 466, 472, 475,

478
external region solution, 441–450
Floquet–Fourier expansion, 435–437, 442,

448, 458, 474
gauge adopted, 436
Hamiltonian for, 437
harmonic generation, 473–477
harmonic generation in Ar, 484–485
harmonic generation in Mg, 485
internal region solution, 436–441
K -matrix for, 465
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Kramers–Henneberger transformation,
456, 468–469

laser-assisted electron–atom collisions,
454–456, 489–491

laser-induced continuum structure (LICS),
487

laser-induced degenerate states (LIDS),
487–489

LIDS for Ar, 487–489
long-range potential in, 444, 654–657
multiphoton detachment of Li−, 483–484
multiphoton excitation of H, 479
multiphoton ionization of Ar, 482–483
multiphoton ionization of He, 480–482
multiphoton ionization rate, 454, 466, 472,

475, 478
multiphoton processes, 434
partitioning of configuration space, 435
R-matrix in acceleration frame, 464
R-matrix expansion, 441
R-matrix in length gauge, 441
R-matrix in velocity gauge, 447
Schrödinger equation for, 435
S-matrix for, 455–456, 466, 471–472
surface amplitudes, 441

B
Bessel functions

asymptotic expressions for, 642
integral representation for, 641
Laurent series for, 641
power series expansion for, 639
spherical, 5–6, 642–645

Blatt–Jackson expansion, see Effective range
theory in potential scattering

Bloch operator
in Breit–Pauli theory, 270
in Dirac theory, 216–217, 280–281
in electron–atom collisions, 233–235
in electron–molecule fixed-nuclei theory,

540
in electron–molecule non-adiabatic theory,

551
in electron–semiconductor theory, 599–600
in electron–transition metal theory, 594
in Floquet theory, 440
in IERM method, 331
in molecular Floquet theory, 584
in photoionization, 391, 392
in photorecombination, 410
in positron–atom collisions, 364
in potential scattering, 175
in time-dependent theory, 501

Born approximation
Born series expansion, 90
in potential scattering, 7
second-Born, 348

Born–Oppenheimer approximation in
electron–molecule collisions, 547, 551,
554

Breit–Pauli R-matrix theory
asymptotic region solution, 272
Bloch operator, 269
Buttle correction in, 270
computer programs for, 230–232
continuum basis orbitals, 269
cross section, 272
external region solution, 270–271
frame-transformation theory, 272–275
general introduction, 265–267
Hamiltonian for, 265–267
internal region expansion, 267
internal region solution, 267–270
partitioning of configuration space, 267
reduced radial wave function, 270
R-matrix expansion, 269
S-matrix, 272
surface amplitudes, 269
target states, 268

Breit–Wigner resonance formula, 21
Bremsstrahlung, 405
B-spline methods

application in electron collisions, 203–207
application in multiphoton processes, 207
B-spline basis, 202
computer programs for, 203, 207, 232
introduction, 201
orthogonality constraints in, 206–207
properties of B-splines, 201–203

Buttle correction in electron–atom collisions
to R-matrix, 251–252, 291–292
to wave function, 252–254

Buttle correction in potential scattering
in Dirac R-matrix theory, 222–224
to non-relativistic R-matrix, 184–185
to non-relativistic wave function, 185–186

C
Calculations near an R-matrix pole, 398–404
Cayley time propagator, 497
Clebsch–Gordan coefficients

properties of , 607–611
tables of, 611
three- j symbols and, 610
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Close coupling equations, see also
Electron–atom collision theory

asymptotic boundary conditions for, 85–87,
91

asymptotic form of, 81
conserved quantum numbers for, 74–75
correlation potential for, 79
coupled differential equations, 77
derivation of, 74–84
direct potential for, 78
exchange potential for, 78
foundations of method, 69–74
Hartree–Fock theory for, 70
Hylleraas functions for, 76
K -matrix for, 84–90
long-range potential coefficients for,

80–81
quadratically integrable functions for,

75–77
resonating group theory and, 70
short-range correlation effects in, 76
uniqueness of solution of, 71–72
with pseudostates, 73–74

Close coupling with pseudostates, see Close
coupling equations and Intermediate
energy collisions

Collision strength, 99–100
Complex coordinate rotation method, see also

Spectra of atoms in fields, 417
Computer programs

ALTDSE, 498
AUTOSTRUCTURE, 231, 415–416
BSR, 231–232
CIV3, 231, 416
DARC, 277
2DRMP, 322
FARM, 231–232
FINE, 232
GRASP, 276
JAJOM, 261
MCHF, 231
PFARM, 232
PRMAT, 232
PSTGF, 232
RMATRXI, 231, 416
RMATRXII, 231
RMATRX-ION, 347
RMATRX NX, 231
STGB, 416
STGBB, 416
STGBF, 416
STGD, 416
STGF, 231–232, 416

STGFF, 416
SUPERSTRUCTURE, 231, 416

Computer programs for
angular momentum transfer, 96
Arnoldi–Lanczos method, 498
atomic structure, 60–61, 230
B-spline methods, 203, 207, 232
Coulomb wave functions, 698
distorted wave method, 347
electron–atom collisions, 230–232
electron–molecule collisions, 538–540
IERM method, 322
Lagrange mesh methods, 201
3n- j symbols, 617
Opacity Project, 416
photorecombination, 406
propagator methods, 666
radiation damping, 406
relativistic atomic structure, 230, 276–277
relativistic electron–atom collisions,

230–232, 277
relativistic transformation, 261, 274
resonance analysis, 117, 119

Condon–Shortley phase convention
for long-range potentials, 650–652
for spherical harmonics, 623, 628

Convergent close coupling method, 74, 316
Coulomb potential scattering

bound-state energies, 37–40
differential cross section for, 12
effective range theory for, 35–41
long-range potential and, 41
M-matrix for, 36–38
parabolic coordinates for, 10–11
partial wave analysis, 12–16
phase shift, 13
quantum defect theory for, 39–40
Rutherford formula for, 12
scattering amplitude, 11
with short-range potential, 14–16
S-matrix for, 14
T -matrix for, 37

Coulomb wave functions
analytic properties of, 35–36
asymptotic behaviour of, 14
in asymptotic expansions, 697–700
computer programs for, 698
definition of, 13

Coupled integrodifferential equations, see
Close coupling equations

Cross sections in multichannel collisions
angular momentum transfer formalism for,

95–96
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differential electron–atom, 60, 96
electron–molecule, 561–565
photoionization, 381–384, 388–390
positron–atom, 370–373
threshold behaviour of, 135–164
total electron–atom, 95

Cross sections in potential scattering
Breit–Wigner resonance in, 21
differential, 4, 12
Fano line profile index for, 22
low-energy behaviour of, 28, 30–31
momentum transfer, 4, 9
optical theorem for, 9
partial wave expansion of, 8
Ramsauer minimum in, 31
threshold behaviour of, 23–41
total, 4, 8

D
Dielectronic recombination, 405–406
Dipole polarizability for Ne, 67–69
Dipole potential in potential scattering

bound states and resonances for, 33
cross sections for, 34–35
effective range theory for, 31–35
M-matrix for, 32
T -matrix for, 32

Dirac δ-function, 7
Dirac matrices, 45
Dirac R-matrix theory in electron–atom

collisions
asymptotic region solution, 287–289
Bloch operator, 280–281
Buttle correction in, 291–292
computer programs for, 277
continuum basis orbitals, 279, 289–291
convergence of expansion, 282–284
coupled differential equations, 289–291
cross section, 289
external region solution, 284–287
general introduction, 275–277
Hamiltonian for, 276
internal region expansion, 278
internal region solution, 277–284
K -matrix for, 288
long-range potential coefficients, 286
non-relativistic limit, 284, 286
partitioning of configuration space, 277
reduced radial wave function, 282–284
R-matrix expansion, 283
S-matrix for, 289
surface amplitudes, 283
target states, 277–278

Dirac R-matrix theory in potential scattering
Bloch operator, 216–217
Buttle correction in, 222–224
continuum basis orbitals, 217–218
convergence of expansion, 220–222
coupled differential equations, 215
cross section, 225
external region solution, 224–225
general introduction, 215
Hamiltonian for, 216
internal region expansion, 219
internal region solution, 217–224
non-relativistic limit, 221–222
R-matrix expansion, 220
surface amplitudes, 220

Dirac theory in potential scattering
coupled equations, 48
cross sections for, 51–55
differential cross section for, 54–55
direct scattering amplitude for, 53
eigenvalues of K , 46–48
K operator for, 46
non-relativistic limit, 49
reduction to Schrödinger form, 49–51
scattering amplitudes for, 51–55
scattering matrix for, 51–54
Sherman function for, 55
spin–angle functions for, 47
spin-flip scattering amplitude for, 53

Distorted wave R-matrix method
computer programs for, 347
for intermediate energy collisions, 343–348
theory, 343–348

Dynamic Stark shift, 454, 466, 472, 475, 478

E
ECS method, see Exterior complex scaling

method
Effective collision strength, 99
Effective range theory in multichannel

collisions
for a Coulomb potential, 146–148
for dipole potentials, 139–145
K -matrix for a Coulomb potential, 147
K -matrix for dipole potentials, 140–141
K -matrix for short-range potentials, 137
M-matrix for a Coulomb potential,

147–148
M-matrix for dipole potentials, 141–143
M-matrix for short-range potentials,

137–138
for short-range potentials, 135–139
T -matrix for a Coulomb potential, 147–148
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T -matrix for dipole potentials, 142
T -matrix for short-range potentials, 137

Effective range theory in potential scattering
Blatt–Jackson expansion, 25
for a Coulomb potential, 35–41
effective range in, 25
for long-range r−2 potentials, 31–35
for long-range r−4 potentials, 29–31
for long-range r−s potentials, 29–35
for short-range potentials, 23–29
relation with R-matrix, 24
scattering length in, 25

Eigenchannel methods for R-matrix
iterative, 192–195
non-iterative, 195–197

Eigenphases, see S-matrix in multichannel
collisions

Electron–atom collision theory, see also
Relativistic effects in electron–atom
collisions

analyticity of S-matrix in, 104–109
antisymmetrization operator, 71
B-splines in, 203–207
collision strength, 99
conserved quantum numbers, 75
coupled differential equations for, 77
differential cross section, 60, 96
effective collision strength, 99
Hamiltonian for, 58–59
Jost functions for, 104–106
K -matrix for, 84–90
Kohn variational principle for, 86–90
long-range potential coefficients, 80–81,

239, 647–653
at low energies, 102–109
pseudo-orbitals in, 62–64
Riemann sheets in, 106–109
scattering amplitude for, 93–94
Schrödinger equation for, 58
S-matrix for, 91–94, 104–109
target eigenstates in, 60–64
target pseudostates in, 64–69
threshold behaviour of excitation, 135–145
threshold behaviour of ionization, 159–164
T -matrix for, 92–96
total cross section, 95

Electron–atom long-range potential
coefficients

Condon–Shortley phase convention for,
650–652

Fano–Racah phase convention for, 647–650
inclusion of relativistic effects in, 652–653
for non-relativistic collisions, 647–652

Electron–atom R-matrix theory, see also
Electron–atom collision theory and
Intermediate energy R-matrix method

arbitrary boundary condition methods in,
254–255

asymptotic region solution, 240–242
Bloch operator, 233–235
Breit–Pauli Hamiltonian, see Breit–Pauli

R-matrix theory
Buttle correction in, 250–254
calculations near an R-matrix pole,

398–404
computer programs for, 230–232
continuum basis orbitals for, 233
cross sections, 242
Dirac Hamiltonian, see Dirac R-matrix

theory in electron–atom collisions
external region solution, 238–240
Hamiltonian for, 229
homogeneous boundary condition method

for, 248–250
internal region solution, 232–238
K -matrix for, 241–242
long-range potential coefficients, 239
low-energy collisions, 229–242
partitioned R-matrix method, 256–259
partitioning of configuration space,

229–230
reduced radial wave function, 235–242
relativistic effects in, 260–292
R-matrix expansion, 235
S-matrix for, 242
surface amplitudes, 235
variational principle for R-matrix,

242–247
Electron collisions with C III

intermediate energy, 338–339
T -matrix energy averaging, 338–339

Electron collisions with C IV
excitation–autoionization, 351–352
intermediate energy processes, 312
ionization, 351–352

Electron collisions with Fe II
collision strengths, 305–307
coupled states and channels, 302–304
effective collision strengths, 305–307
energy level diagrams, 302–303
excitation, 301–307
fine-structure transitions, 305–307

Electron collisions with Fe XV
Breit–Pauli and Dirac calculations,

307–309
effective collision strengths, 307–308
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Electron collisions with Fe XXVI
excitation of n = 2 states, 428
radiation damping in, 428

Electron collisions with H
elastic scattering, 292–294
excitation, 292–294, 348–350
ionization, 348–349
ionization spin asymmetry, 348–349
resonances in, 120–121, 292–294
resonances near excitation thresholds,

143–145
threshold behaviour of ionization, 164

Electron collisions with H+3
dissociative recombination, 158
electronic excitation, 572–573
intermediate energy, 572–573
multichannel quantum defect theory for,

158
Electron collisions with He

elastic scattering, 295
excitation, 295–297
excitation–ionization, 352–354
laser-assisted, 489–491
resonances in, 295–297

Electron collisions with N2
resonances in, 566–567
total cross section, 566–567

Electron collisions with Ne
dipole polarizability for, 67–69
elastic scattering, 298
excitation, 298
resonances in, 298

Electron collisions with N2O
applications, 570
differential cross section, 571
shape resonance in, 571
total cross section, 570–571

Electron collisions with O2
electronic excitation, 569
potential energy curves, 568–569
vibrational excitation, 569

Electron collisions with Si III
excitation, 299–301
resonances in, 299–301

Electron collisions with Xe XXVII
collision strengths, 309–310
effective collision strengths, 310

Electron collisions with W XLVII
excitation of n = 4 states, 429–431
radiation damping in, 428–431

Electron collisions with transition metal oxides
asymptotic region solution, 594
Bloch operator, 594

crystal field potential, 592–594
Hamiltonian for, 594
internal region solution, 593–594
introduction, 592
K -matrix for, 594
LE-EELS for NiO, 594–596
Madelung potential, 593
S-matrix for, 594
spin-flip spectra for NiO, 594–596

Electron interactions in solids, see Electron
transport in semiconductor devices and
Electron collisions with transition metal
oxides

Electron–ion collision theory, see also
Electron–atom collision theory

for Be-like ions, 62–64, 82–84
bremsstrahlung, 405
collision strength for, 99–100
dielectronic recombination, 405–406
effective collision strength for, 99
free–free scattering, 405
multichannel quantum defect theory,

151–157
photorecombination, 404–406
radiation damping, 405–406
radiative recombination, 404
scattering amplitude for, 97–98
threshold behaviour of excitation,

145–158
threshold behaviour of ionization,

159–164
Electron–molecule collision theory

adiabatic-nuclei approximation, 545, 551
Born–Oppenheimer approximation, 547,

551, 554
cross section expressions, 561–565
fixed-nuclei R-matrix theory, 536–544
frame-transformation theory, 547–548
hybrid theory, 546, 551
laboratory frame of reference, 545–547
long-range potential, 536
molecular polarizabilities, 536
non-adiabatic R-matrix theory, 548–559
partitioned R-matrix method, 259–260
processes, 535
resonant R-matrix theory, 560–561
scattering amplitude for, 561–565

Electron–molecule fixed-nuclei R-matrix
theory, see also Electron–molecule
collision theory

asymptotic region solution, 543–544
Bloch operator, 540
computer programs for, 538–540
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coupled differential equations for, 542
external region solution, 542–543
Hamiltonian for, 538
internal region expansion, 539
internal region solution, 538–541
K -matrix for, 544
molecular frame of reference, 537
partitioning of configuration space, 538
R-matrix expansion, 541
Schrödinger equation for, 537
S-matrix for, 544
surface amplitudes, 541

Electron–molecule non-adiabatic R-matrix
theory, see also Electron–molecule
collision theory

asymptotic region solution, 557–559
Bloch operators, 551
Born–Oppenheimer approximation, 551,

554
computer programs for, 538–540
coupled differential equations for, 555–557
external region solution, 555–557
Hamiltonian for, 549, 556
internal region expansion, 550
internal region solution, 550–555
K -matrix for, 559
partitioning of configuration space,

549–550
processes studied, 549
R-matrix expansions, 554
Schrödinger equation for, 549
S-matrix for, 559
surface amplitudes, 554

Electron–molecule resonant R-matrix theory
applications, 561
fundamental assumptions, 560–561
R-matrix for, 560
S-matrix for, 561

Electron transport in semiconductor devices
Bloch operator, 599–600
external region solution, 601–602
Hamiltonian for, 597
illustrative example, 602–603
internal region solution, 598–601
introduction, 596–597
Schrödinger equation for, 598
transmission coefficients, 601–603

Euler rotation angles
definition of, 632
and Wigner rotation matrices, 634–635

Exterior complex scaling method, 313–314
External region R-matrix method, see Spectra

of atoms in fields

F
Fano line profile index, 22
Fano’s configuration interaction resonance

theory, 113–117
Fano–Racah phase convention

in computer programs, 629
for long-range potentials, 647–650
for R-matrix–Floquet multiphoton

potential, 654–657
for spherical harmonics, 629
for time-dependent multiphoton potential,

657–662
Feshbach projection operator theory

analysis of resonances in, 125–129
optical potential in, 126–127
outgoing and ingoing wave solutions in,

127
P and Q projection operators in, 125
transition amplitude in, 129

Floquet–Fourier expansion, see Atomic
R-matrix–Floquet theory and
Molecular R-matrix–Floquet theory

Frame-transformation theory
inclusion of nuclear motion, 547–548
inclusion of relativistic effects, 272–275
partitioning of configuration space, 273,

547–548
relation to ICFT method, 275
relation to R-matrix theory, 547–548

Free–free scattering, 405
FTT method, see Frame-transformation theory

G
Gamow factor, 40–41

H
Hamiltonian

atomic Floquet–Fourier, 437
atomic photoionization, 382
Breit–Pauli, 265–267
Dirac, 216, 276
electron–atom, 58–59, 229
electron–molecule, 538, 549, 556
electron–semiconductor, 597
electron–transition metal, 594
intermediate energy electron–atom, 323
photorecombination, 406–407
positron–atom, 358
positronium–ion, 358–359
time-dependent multiphoton, 495

Hankel functions, see also Bessel functions
asymptotic expressions for, 642
definition of, 640
spherical, 643–645
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Harmonic generation
general introduction, 473–474
induced dipole moment, 474–477
partitioning of configuration space, 476
R-matrix–Floquet theory, 474–477
time-reversed wave function, 474–475

Harmonic generation in Ar, 484–485
Harmonic generation in Mg, 485
Hartree–Fock approximation

for continuum states, 70–71
for Hartree–Fock orbitals, 62–64
for target states, 62–64

Hyperspherical coordinates
adiabatic approximation for, 133–134
definition of, 130
hyperspherical harmonics for, 132
K-harmonics for, 132
potential function for, 130–131
for three-body system, 130–134
for threshold law of ionization, 160–164

I
ICFT method, see Intermediate coupling frame

transformation method
IERM method, see Intermediate energy

R-matrix method
Intermediate coupling frame transformation

method, 264–265
Intermediate energy electron collisions

close coupling with pseudostates, 73–74,
314–316

convergent close coupling method, 74, 316
distorted wave, 343–348
electron collisions with C IV, 312, 351–352
electron collisions with H, 348–350
electron excitation–ionization of He,

352–354
exterior complex scaling, 313–314
IERM method, 322–337
optical potential model, 340–343
overview of methods, 312–316
RMPS method, 316–322
second-Born, 348
spectrum of target, 314–315
time-dependent close coupling method,

316
T -matrix energy averaging, 337–343

Intermediate energy R-matrix method
asymptotic region solution, 327, 335–337
Bloch operator, 331
computer program for, 322
cross sections, 337
external region solution, 325–335

global R-matrix, 334
Hamiltonian for, 323
internal region solution, 325, 328–335
overview, 322–327
partitioning of configuration space,

324–327
R-matrix expansion, 332–333
R-matrix propagation, 333–335
Schrödinger equation for, 323
surface amplitudes, 333
two-electron example, 327–337

Inverse Kohn variational principle, see
Variational principles in potential
scattering

Iron Project, 302

J
Jackson variational principle, see Variational

principles in potential scattering
Jacobi coordinates in positron collisions, 358
Jost functions in multichannel collisions

analytic properties of, 104–106
for electron–atom collisions, 104–106
representation of S-matrix by, 104–109

Jost functions in potential scattering
analytic properties of, 16–19
definition of, 16
differential equations satisfied by, 18
representation of S-matrix by, 18
Wronskian relations for, 17

K
Kato identity, 42
K-harmonics, see Hyperspherical coordinates
K -matrix in multichannel collisions

behaviour near a resonance, 112–117
Born series expansion for, 88–90
definition of, 84–86
integral expression for, 89
Kohn variational principle for, 86–88
quantum defect theory for, 153–155
relation to M-matrix, 137, 141
relation to S-matrix, 91
symmetry properties of, 88
variational correction for, 90

K -matrix in potential scattering
Kohn variational estimate for, 43
relation to M-matrix, 24, 32
relation to phase shift, 6
relation to R-matrix, 24, 35
relation to S-matrix, 6
relation to T -matrix, 8
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Kohn variational principle, see Variational
principles in potential scattering

Kramers–Henneberger transformation, 456,
468–469

L
Lagrange mesh methods

basis for, 198–199
general introduction, 197–198
internal region solution, 199–201

Laser-assisted electron–atom collisions,
454–456, 489–491

Laser-induced continuum structure
definition, 487
relation to LIDS, 487

Laser-induced degenerate states
double poles in S-matrix, 489
for Ar, 487–489
introduction, 487–488

LE-EELS, see Low-energy electron
energy-loss spectroscopy

Legendre polynomials
generating function for, 619
properties of, 619–621
recurrence relations for, 620
Rodrigue’s formula for, 619

LICS, see Laser-induced continuum structure
LIDS, see Laser-induced degenerate states
Line profile index, 22
Lippmann–Schwinger equation, 10
Long-range potential coefficients, see Close

coupling equations
Low-energy electron energy-loss spectroscopy

introduction, 592
multiple scattering and damping, 596
for NiO, 594–596
R-matrix theory of, 592–594
spin-flip spectra, 594–596

M
Madelung potential, 593
Milne relation, 404, 408
Mixing parameters, see S-matrix in

multichannel collisions
M-matrix in multichannel collisions

for a Coulomb potential, 147–148
for dipole potentials, 141–143
for short-range potentials, 137–138
relation to T -matrix, 138, 142, 147

M-matrix in potential scattering
for a Coulomb potential, 36–38
for dipole potentials, 32
for short range potentials, 24–25
relation to T -matrix, 24, 32, 37

Molecular polarizabilities, 536
Molecular R-matrix–Floquet theory, see also

Atomic R-matrix–Floquet theory
asymptotic region solution, 587–588
Bloch operator, 584
coupled differential equations for, 587
external region solution, 586–587
fixed-nuclei approximation, 580
Floquet–Fourier expansion, 581–582
internal region solution, 582–585
molecular frame of reference, 580
multiphoton ionization of H2, 588–590
multiphoton ionization process, 579
partitioning of configuration space, 581
R-matrix expansion, 585
Schrödinger equation for, 581
surface amplitudes, 585

Momentum transfer cross section
for potential scattering, 4, 9

MQDT, see Multichannel quantum defect
theory

Multichannel quantum defect theory
for dissociative recombination, 157–158
for electron–ion collisions, 151–157
for electron–molecular ion collisions,

157–158
for the K -matrix, 153–155
for molecular photoionization and

photoabsorption, 157–158
for relativistic transformations, 264–265
for the S-matrix, 155–157

Multiphoton detachment of Li−
R-matrix–Floquet theory, 483–484
two-photon detachment rate, 483–484

Multiphoton excitation of H
non-hermitian Floquet dynamics, 479
Stückelberg oscillations in, 479

Multiphoton ionization, see Atomic
R-matrix–Floquet theory, Molecular
R-matrix–Floquet theory and
Time-dependent R-matrix theory

Multiphoton ionization of Ar
ADK tunnelling theory, 482–483
LIDS in, 487–489
REMPI in, 482–483
R-matrix–Floquet calculation, 482–483
time-dependent calculations, 528–531

Multiphoton ionization of H2
four-photon ionization rates, 589
potential energy curves of H2 and H+2 ,

588
REMPI in, 589–590
R-matrix–Floquet calculation, 588–590
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Multiphoton ionization of He
REMPI in, 480–482
R-matrix–Floquet calculation, 480–482

Multiphoton ionization of Ne
time-dependent calculations, 524–528

Multiphoton ionization rate, 454, 466, 472,
475, 478

Multiphoton processes, 434

N
Neumann functions, see also Bessel functions

asymptotic expressions for, 642
definition of, 640

Nine- j symbols
properties of, 615–617
transformation between coupling schemes,

616
Non-hermitian Floquet dynamics

introduction, 477
multiphoton excitation of H, 479
multiphoton ionization, 477–480
Siegert states in, 477–478
Stückelberg oscillations in H, 479

O
Opacity Project

computer programs for, 416
objectives and achievements, 414–415
Opacity Project Team, 414
Rosseland-mean cross section, 415
Rosseland-mean opacity, 415

Optical potential model
and intermediate energy collisions,

340–343
T -matrix energy averaging, 340–341

Optical theorem, 9

P
Parity favoured transitions, 96–97
Parity unfavoured transitions, 96–97
Partial wave analysis in electron–atom

collisions
of differential cross section, 94–96
of scattering amplitude, 93–96
of Schrödinger equation, 77–79
of total cross section, 94–95

Partial wave analysis in potential scattering
of cross section, 8
of Dirac equation, 48
of plane wave, 8
of scattering amplitude, 8, 15
of Schrödinger equation, 5–6, 12–13

Partitioned R-matrix method
for electron–atom collisions, 256–259
for electron–molecule collisions, 259–260

Pauli spin matrices, 45
Phase shift in potential scattering

Blatt–Jackson expansion for, 25
Coulomb, 13
for Dirac equation, 52
effective range theory for, 23–41
Kohn variational principle for, 41–45
quantum defect theory for, 39–40
for polarization potential, 30–31
for short-range potential, 5–6
resonance behaviour of, 21

Phase of spherical harmonics
in computer programs, 629
Condon–Shortley, 623, 628
Fano–Racah, 629
general discussion, 628–631
time-reversal operation and, 628

Photoionization, see Atomic photoionization
and Photoionization R-matrix theory

Photoionization of Fe VII
from 3p53d31Po state, 424–425
from 3p63d4p1Po state, 424–425

Photoionization of Li
decay of triply excited states, 423
energy level diagram, 424
partial cross sections, 423–425

Photoionization R-matrix theory, see also
Atomic photoionization

Bloch operator, 391, 392
bound-state eigenenergies, 396–397
bound-state R-matrix, 395
bound-state wave function, 394–398
calculations near an R-matrix pole,

398–404
continuum-state R-matrix, 391
continuum-state wave function, 390–394
surface amplitudes, 392, 395

Photorecombination, see also Electron–ion col-
lision theory and Photorecombination
R-matrix theory

dielectronic recombination, 405–406
introduction, 404–406
Milne relation, 404, 408
radiative recombination, 404

Photorecombination R-matrix theory, see also
Photorecombination

asymptotic region solution, 413–414
Bloch operator, 410
computer program for, 406
cross section, 414
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external region solution, 413
Hamiltonian for, 406–407
internal region solution, 409–413
optical potential approach, 414
radiation damping, 409, 413
R-matrix expansion, 413
Schrödinger equation for, 406
surface amplitudes, 413
time-independent equations for,

408–409
Photorecombination with O VIII

effect of radiation damping, 426–428
experimental comparison, 428
role of doubly excited states, 427–428

Plane wave
Coulomb modified, 11
expansion in partial waves, 8, 626, 631

Poincaré theorem, 17
Polarization potential

in effective range theory, 30–31
pseudostate representation of, 64–69
Ramsauer minimum due to, 31

Polarized pseudostates
for electron–H collisions, 65
for electron–Ne collisions, 67–69
variational principle for, 66–67

Ponderomotive energy
definition, 445–446
for Ar, 482–483
for H2, 588–590
for He, 480–482

Positron–atom collision processes, 356
Positron–atom collision theory, see also

Positron–atom R-matrix theory
Hamiltonian for, 358
Jacobi coordinates for, 358
processes in, 356
Schrödinger equation for, 357

Positron–atom R-matrix theory, see also
Positron–atom collision theory

asymptotic region solution, 370–373
Bloch operator, 364
channel functions for, 362
conserved quantum numbers, 361
external region solution, 367–370
internal region solution, 360–367
K -matrix for, 372
partitioning of configuration space,

359–360
positronium formation in, 356–359
R-matrix expansion, 366
S-matrix for, 373
surface amplitudes, 366

Positron collisions with CO2
differential cross section, 578–579
integral cross section, 577–578
role of positronium formation, 578

Positron collisions with H
ionization, 373–374
positronium formation, 373–374
total cross section, 373–374

Positron collisions with H2O
Born correction, 577
integral cross sections, 575–577

Positron–molecule R-matrix theory
collision processes, 573
positronium formation, 574
summary of calculations, 574–575

Positronium–atom collision processes, 357
Positronium atom properties, 356–357
Positronium collisions with H

elastic scattering, 377–378
target polarization, 377–378

Positronium collisions with He
elastic scattering, 375–378
positronium excitation, 375–377
positronium ionization, 375–377
target polarization, 377–378

Positronium–ion collision theory, see also
Positronium–ion R-matrix theory

Hamiltonian for, 358–359
Jacobi coordinates for, 358
Schrödinger equation for, 357

Positronium–ion R-matrix theory, see also
Positronium–ion collision theory

angular momentum coupling, 363–364
asymptotic region solution, 370–373
Bloch operator, 365
channel functions for, 362–363
conserved quantum numbers, 361
external region solution, 367–370
internal region solution, 360–367
K -matrix for, 372
partitioning of configuration space,

359–360
R-matrix expansion, 366
S-matrix for, 373
surface amplitudes, 366

Positronium negative ion, 357
Poynting vector, 382–383
Programs, see Computer programs and

Computer programs for
Propagator methods in multichannel collisions,

see also Propagator methods in
potential scattering

BBM, 675–677
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computer programs for, 666
for driven equations, 678–681
with first derivative, 681–684
general introduction, 665–666
Light–Walker, 666–670
log-derivative, 671–675
partitioning of configuration space, 666
for sets of uncoupled channels, 684–691

Propagator methods in potential scattering,
see also Propagator methods in
multichannel collisions

BBM, 213–215
Light–Walker, 210–213
partitioning of configuration space,

209–210
Pseudostates, see Target pseudostates

and Polarized pseudostates

Q
Quantum defect theory, see also Multichannel

quantum defect theory
single-channel, 39–40

R
Racah coefficients

properties of, 612–615
six- j symbols and, 615

Radiation damping
general discussion, 405–406
in electron collisions with Fe XXVI, 428
in electron collisions with W XLVII,

428–431
potential for, 409
R-matrix theory of, 406–414

Radiative recombination, 404
Ramsauer minimum, 31
Reduced rotation matrices, see also Wigner

rotation matrices
definition of, 634
tables of, 635, 636

Relativistic effects in electron–atom collisions
Breit–Pauli R-matrix theory, 265–272
Dirac R-matrix theory, 275–292
frame-transformation theory, 272–275
general introduction, 260–261
ICFT method, 264–265
transformation of K - and S-matrices,

261–265
Relativistic effects in potential scattering

Dirac R-matrix theory, 215–225
Dirac theory, 45–55

REMPI, see Resonance-enhanced multiphoton
ionization

Resonance-enhanced multiphoton ionization
for Ar, 482–483
for H2, 589–590
for He, 480–482
role of ponderomotive energy, 480–483

Resonances in multichannel collisions
behaviour of eigenphases near, 118–121
behaviour of K -matrix near, 112–117
behaviour of S-matrix near, 112–117
computer programs for analysis of, 117,

119
Fano’s configuration interaction theory of,

113–117
Feshbach projection operator theory of,

125–129
for e−–Fe II, 305–307
for e−–H, 120–121, 143–145, 292–294
for e−–He, 295–297
for e−–N2, 566–567
for e−–Ne, 298
for e−–N2O, 571
for e−–O2, 569
for e−–Si III, 299–301
poles in the S-matrix, 110–112
QB procedure for analysing, 119
Siegert states and, 112
time-delay matrix for, 121–125

Resonances in potential scattering
Breit–Wigner resonance formula, 21
line profile index for, 22
poles in the S-matrix for, 20
position in the complex k-plane, 20–21
shape parameter for, 22
Siegert states and, 20
width of, 21

Resonating group theory, 70
Riemann sheets in multichannel collisions,

106–109
R-matrix computer programs, see Computer

programs and Computer programs for
R-matrix–Floquet theory, see Atomic

R-matrix–Floquet theory and
Molecular R-matrix–Floquet theory

R-matrix theory in electron–atom collisions,
see Electron–atom R-matrix theory

R-matrix theory in potential scattering
analytic properties of, 24, 168, 173
arbitrary boundary conditions for, 175–178,

187–190
Bloch operator, 175
B-spline methods, 201–207
Buttle correction in, 184–186
continuum basis orbitals for, 176, 181
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definition of, 24
eigenchannel methods, 192–197
external region solution, 178
homogeneous boundary conditions for,

181–183
Jackson variational functional for, 189–190
Jackson variational principle for, 179–180
Kohn variational functional for, 187–189
Kohn variational principle for, 179
Lagrange mesh methods, 197–201
linear equations method, 191–192
phase shift for, 178
R-matrix expansion, 168, 173, 177, 183
surface amplitudes, 168, 173, 177, 183
variational expression for R-matrix in,

187–190
variational principles for R-matrix in,

179–180
R-matrix theory of photoionization, see

Photoionization R-matrix theory
R-matrix theory of photorecombination,

see Photorecombination and
Photorecombination R-matrix theory

R-matrix with pseudostates method
application to H, 348–350
application to He, 352–354
application to C IV, 351–352
orthogonality of orbitals, 318–321
overview, 316–322
physical orbitals in, 317–322
pseudo-orbitals in, 317–322
second-Born with, 348

RMPS method, see R-matrix with pseudostates
method

Rubinow variational principle, see Variational
principles in potential scattering

Rutherford scattering formula, 12

S
Scattering amplitude in multichannel collisions

cross section in terms of, 60
definition of, 59
for electron–atom collisions, 93–94
for electron–ion collisions, 97–98
for electron–molecule collisions, 561–565
in terms of T -matrix, 93–94

Scattering amplitude in potential scattering
for a Coulomb potential, 11
for short-range potential, 4, 8

Scattering length
definition of, 25
dependence on potential strength, 25–27
for long-range potentials, 29–35

low-energy cross section and, 26
relation to pole in S- and T -matrices,

26–28
zero-energy cross section and, 27
zero-energy wave function and, 25

Schrödinger equation in multichannel
collisions

close coupling equations for, 69–84
for electron–atom collisions, 58, 229
for electron–molecule collisions, 537, 549
for intermediate energy electron–atom

collisions, 323
for molecular multiphoton processes, 581
for multiphoton processes, 435
for photoionization, 390
for photorecombination, 406
for positron–atom collisions, 357
for positronium–ion collisions, 357
for time-dependent R-matrix theory, 495

Schrödinger equation in potential scattering
boundary conditions for, 5, 15
for a Coulomb potential, 10
for short-range potential, 4
partial wave analysis of, 5–6, 12–13
scattering amplitude for, 4, 8, 11, 15

SEPE, see Simultaneous electron–photon
excitation

Sherman function, 55
Siegert states

direct calculation of, 207–209
in atoms in fields, 417
in harmonic generation, 475
in multichannel collisions, 112
in multiphoton ionization, 454, 466, 472
in non-hermitian Floquet dynamics,

477–478
in potental scattering, 20
and S-matrix poles, 20, 112, 207, 417

Simultaneous electron–photon excitation, 489
Six- j symbols

Racah coefficients and, 615
symmetry relations, 615

Slater-type orbitals
atomic orbital expansion in, 62
definition of, 62

S-matrix in multichannel collisions
analytic properties of, 102–109
analyticity on Riemann sheets, 106–109
behaviour near a resonance, 112–117
bound-state poles in, 110–112
definition of, 91
double poles in, 112, 489
eigenphases of, 91
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electron–atom, 91, 242, 264, 272, 289
electron–molecule, 544, 559, 561
in terms of Jost functions, 104–109
laser-assisted electron–atom, 455–456,

466, 471–472
mixing parameters for, 92
poles in the complex energy plane,

110–112, 207, 417
poles revealed by rotation, 417
positron–atom, 373
positronium–ion, 373
quantum defect theory for, 155–157
relation to K -matrix, 91
relation to T -matrix, 92
resonance poles in, 110–112, 207, 417
shadow poles in, 112
Siegert states and, 112, 207, 417

S-matrix in potential scattering
analytic properties of, 16–23
bound-state poles in, 20
definition of, 6
Kohn variational principle for, 44
poles in the complex k-plane, 19–20
relation to K -matrix, 6
relation to phase shift, 6
relation to T -matrix, 8
representation by Jost functions, 18
resonance poles in, 20
Siegert states and, 20

Spectra of atoms in fields
complex coordinate rotation method, 417
external region R-matrix method solution,

418–421
internal region solution, 418
photoionization cross section, 421
Siegert states in, 417
S-matrix poles in the complex energy

plane, 417
S-matrix poles revealed by rotation, 417
summary of calculations, 422

Spectrum of Li in a magnetic field
comparison with H, 431–432
photoionization of 3s state, 431–432

Spherical Bessel functions, see also Bessel
functions, 642–645

Spherical Hankel functions, see also Bessel
functions, 643–645

Spherical harmonics
addition theorem for, 625
expansion of plane wave in, 626
expressions for, 626–627
orthonormality relation, 624, 629
parity of, 623

phase of, 628–631
product relation, 624, 629
properties of, 623–628
recurrence relations, 624–625
transformation under rotations, 632–636
two-particle angular functions, 627

Spherical Neumann functions, see also Bessel
functions, 643–645

STOs, see Slater-type orbitals
Stückelberg oscillations in H, 479
Surface amplitudes in R-matrix theory

in atomic Floquet theory, 441
in Breit–Pauli theory, 269
in Dirac theory, 220, 283
in electron–atom collisions, 235
in electron–molecule fixed-nuclei theory,

541
in electron–molecule non-adiabatic theory,

554
for intermediate energies, 333
in molecular Floquet theory, 585
in photoionization, 392, 395
in photorecombination, 413
in positron–atom collisions, 366
in positronium–ion collisions, 366
in potential scattering, 168, 173, 177, 183
in time-dependent multiphoton ionization,

504

T
Target pseudostates

in intermediate energy collisions, 73–74,
314–316

representing target polarization, 64–69
Three-body system

hyperspherical coordinates for, 130–134
Three- j symbols

Clebsch–Gordan coefficients and, 610
symmetry relations, 610

Three n- j symbols, 617
Threshold behaviour of cross section

for e−–H atom collisions, 143–145
for excitation by Coulomb potentials,

145–158
for excitation by dipole potentials, 139–145
for excitation by short-range potentials,

135–139
for ionization, 159–164

Time-delay matrix
definition of, 121–122
resonance analysis using, 123–125
Wigner time-delay, 121

Time-dependent close coupling method, 316
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Time-dependent computational methods
Arnoldi–Lanczos time propagator, 498
Cayley time propagator, 497
for external region, 512–513
for internal region, 512
for matrix diagonalization, 513–516
for target state, 511–512

Time-dependent R-matrix theory
analysis of applications, 516–523
analysis of double-electron ionization of

Ne, 519–523
analysis of single-electron ionization of Ne

and Ar, 516–517
analysis of single-electron ionization of

Ne+ and Ar+, 518–519
Arnoldi–Lanczos time propagator, 498
Bloch operators for, 501
Cayley time propagator, 497
conserved quantum numbers, 500
coupled differential equations for, 507–510
external region solution, 506–510
gauges adopted in, 495–496
Hamiltonian for, 495
internal region solution, 499–506
introduction, 494–499
long-range potential in, 507–508, 657–662
multiphoton ionization of Ar, 528–531
multiphoton ionization of Ne, 524–528
partitioning of configuration space, 499
R-matrix expansion, 504
Schrödinger equation for, 495
surface amplitudes, 504

Time propagators
Arnoldi–Lanczos, 498
Cayley, 497

Time-reversal operator, 628
T -matrix energy averaging

analytic structure of T -matrix, 339–340
electron collisions with C III, 338–339
in intermediate energy collisions, 337–343
optical potential model, 340–341
over pseudoresonances, 337–340
separable potential model, 342
two-channel model, 341–342

T -matrix in multichannel collisions
cross sections in terms of, 94–96
definition of, 91–92
relation to M-matrix, 138, 142, 147
relation to S-matrix, 92
scattering amplitude in terms of, 93–94

T -matrix in potential scattering

relation to K -matrix, 8
relation to M-matrix, 24, 32, 37
relation to S-matrix, 8

Total cross section in multichannel collisions
for electron–atom collisions, 95
for electron–molecule collisions, 565
for photoionization, 389–390
for positron–atom collisions, 373
for positronium–ion collisions, 373
relation to collision strength, 99
in terms of T -matrix, 95

Transformation under rotations
angular momentum operators, 633
Euler rotation angles in, 632
general discussion, 632
reduced rotation matrices in, 634–635
of wave function, 632–634
Wigner rotation matrices in, 634–636

V
Variational principles in multichannel

collisions
for K -matrix, 84–90
for R-matrix, 242–247
for S-matrix, 90

Variational principles in potential scattering
inverse Kohn for cot δ, 43–44
Jackson for R-matrix, 179–180
Kato identity in, 42
Kohn for R-matrix, 179
Kohn for S-matrix, 44
Kohn for tan δ, 42
Rubinow for cot δ, 43–44
variational estimate, 43–45

W
Wannier threshold law of ionization, 159
Wigner–Eisenbud R-matrix theory

convergence of R-matrix expansion,
171–173

definition of the R-matrix, 170
phase shift for, 173, 174
R-matrix expansion, 173, 174
wave function expansion, 173, 174

Wigner rotation matrices
definition of, 634
and Euler rotation angles, 634
and reduced rotation matrices, 634–635
and symmetric top molecules, 636
properties of, 634–637

Wigner time-delay, see Time-delay matrix
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