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Introduction

This volume appears as an outcome of the conference Operator Theory, Analysis
and Mathematical Physics – OTAMP2008, held at Mathematical Research and
Conference Center in Bedlewo near Poznan. The volume contains few review arti-
cles as well as original research papers presented at the conference or appeared as
a result of inspiring discussions during the meeting.
The titles of conference talks followed the subjects of four special sessions:
• random and quasi-periodic differential operators
• orthogonal polynomials
• Jacobi and CMV matrices
• quantum graphs

All contributions to this volume are devoted to different chapters of operator
theory with a focus towards applications in mathematical physics. Several articles
are in the area of spectral theory of Schrödinger operators having emphasis on
problems with magnetic fields. Another subject well-represented concerns spectral
theory for non-self-adjoint problems. Spectral analysis is not restricted to just
linear and self-adjoint problems.

This volume is devoted to the memory of Mikhail Shlemovich Birman – one
of the most outstanding scientists of the last century. The influence of his ideas
on the development of mathematical physics in the whole world and especially in
Saint Petersburg will continue for decades, several of the authors contributed to
this volume have been his students and will carry over his special attitude towards
science to new generations to come.

Preparing this volume we remembered another remarkable mathematical
physicist Israel Gohberg who always supported OTAMP conferences by includ-
ing proceedings into the series Operator Theory: Advances and Applications and
helping us with selection of outstanding contributors and interesting subjects in
operator theory.

We would like to thank the European Science Foundation (ESF) for a gen-
erous financial support which allowed to transfer the OTAMP conference into a
major event in the area of mathematical physics in 2008. We are grateful to all
people working at Mathematical Research and Conference Center in Bedlewo for
creating a stimulating scientific atmosphere and help before, during and after the
conference.

Birmingham-Krakow-London
Lund-St. Petersburg-Stockholm

May 2010
The Editors
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Floquet-Bloch Theory for Elliptic Problems
with Discontinuous Coefficients

B.M. Brown, V. Hoang, M. Plum and I.G. Wood

Abstract. We study spectral properties of elliptic problems of order 2m with
periodic coefficients in L∞. Our goal is to obtain a Floquet-Bloch type rep-
resentation of the spectrum in terms of the spectra of associated operators
acting on the period cell. Our approach using bilinear forms and operators in
H−m-type spaces easily handles discontinuous coefficients and has the merit
of being rather direct. In addition, the cell of periodicity is allowed to be
unbounded, i.e., periodicity is not required in all spatial directions.

Mathematics Subject Classification (2000). 35J10, 35j30, 35J99, 35P10.

Keywords. Floquet-Bloch, 2mth-order elliptic, spectral theory.

1. Introduction

One of the most important partial differential operators in quantum physics is the
Schrödinger operator

−∆ + V (x), x ∈ R
d.

In many application areas the potential V (·) is periodic with respect to a lattice
in R

d. An extension of this equation to include a magnetic term gives rise to the
magnetic Schrödinger operator

(−i∇− A(x))2 + V (x), x ∈ R
d

where now both the potential V and the magnetic potential A are periodic with
respect to the underlying lattice. Further examples of elliptic partial differential
operators which have periodic coefficients may also be found in the periodic Dirac
operator, the fields of periodic acoustics and photonic crystals. In all these cases
of periodic coefficients, the main way of studying the spectrum of a suitable self-
adjoint realisation is via the so-called Floquet-Bloch theory where essentially the
spectral properties of the operator in R

d are read off from the behaviour on a fun-
damental cell of periodicity resulting in the well-known band-gap structure. For
further information, see [2–5, 7, 8, 10, 11, 13–15] and the references quoted therein.

Operator Theory:
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Often, in particular when the potentials are non-smooth, it is advantageous
to study these problems using an associated bilinear form, and this is the approach
that we take. We work with an mth-order elliptic Hermitian sesquilinear form on
Hm(Rd) with periodic and bounded coefficients which we also allow to be discon-
tinuous. This is equivalent to studying a selfadjoint operator L (associated with the
bilinear form) in the dual space H−m(Rd). Our motivation for this is found in the
study of crystals where in practice often two (or more) materials are combined to
form a periodic structure, which results in piecewise constant periodic coefficients.
For future investigation of wave-guide properties we will require periodicity of the
coefficients only in some spatial directions, i.e., we allow unbounded periodic cells.
Hence in general no Bloch waves are available, and we have to use other tech-
niques replacing the usual Bloch wave expansion, e.g., we prove that the Floquet
transform (which is known to be an isometric isomorphism between L2-spaces) is
an isometric isomorphism also between H−m spaces (see [10] for further mapping
properties of the Floquet transformation).

Our result gives the well-known decomposition of the spectrum of periodic
differential operators, developed, e.g., in [10], [14], [4], now also in the case of
discontinuous coefficients (including the principal ones) and unbounded periodicity
cell. A corresponding result is stated in [6], lacking however a detailed and self-
contained proof, which we will give in this paper in a rather direct way.

We shall further show that the spectrum of L coincides with the spectrum
of a suitable operator L̃ in L2(Rd) associated with the bilinear form, which is
constructed in a standard way. A direct study of the spectrum of L̃ by the “usual”
Floquet-Bloch theory in L2(Rd) seems to be problematic due to lack of smoothness
in the coefficients.

2. Definitions and preliminary results

In the following, Hm(Rd) will always denote the Sobolev space of functions which
are square Lebesgue-integrable over R

d with square integrable derivatives up to
order m. We denote the usual norm by

|||u|||2Hm(Rd) =
∑

|α|≤m
‖Dαu‖2L2(Rd) .

Let

B : Hm(Rd)×Hm(Rd)→ C

be a closed Hermitian sesquilinear form. We write d = d1 + d2 and use variables
x ∈ R

d1 and y ∈ R
d2 . We assume B is given in the form

B[u, v] :=
∑

|ρ|,|σ|≤m

∫

Rd

aρσ(x, y)(Dρu)(x, y)(Dσv)(x, y)dxdy (2.1)
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where aρσ ∈ L∞(Rd), aρσ = aσρ, and aρσ(x, y) = aρσ(x, y + ej) for any x ∈ R
d1 ,

y ∈ R
d2 , j = 1, . . . , d2, where e1, . . . , ed2 are the unit vectors1 in R

d2 . Moreover,
we assume that the leading coefficients satisfy the ellipticity condition2

∑

|ρ|,|σ|=m
aρσ(x, y)ζρζσ ≥ c

∑

|α|=m
|ζα|2 (2.2)

for some c > 0, all (x, y) ∈ R
d and all ζ = (ζα)|α|=m ∈ C

N , where N = #{α :
|α| = m}.
Remark 2.1. This condition, which (for the case of real-valued coefficients) ap-
pears, e.g., in [12], is, in general, stronger than the usual strong ellipticity condi-
tion

Re
∑

|ρ|,|σ|=m
aρσ(x, y)ξρξσ ≥ c|ξ|2m

for all ξ ∈ R
d and (x, y) ∈ R

d. We need this stronger condition, since we want to
avoid the assumption of continuity of the leading coefficients aρσ.

Throughout this paper, let Ω := R
d1× [0, 1]d2 denote the periodic cell for our

problem. We also introduce a bilinear form acting on Ω. Let

BΩ[u, v] :=
∑

|ρ|, |σ|≤m

∫

Ω

aρσ(x, y)(Dρu)(x, y)(Dσv)(x, y)dxdy, (2.3)

for u, v ∈ Hm(Ω).
Due to condition (2.2) and [1, Theorem 5.2], BΩ satisfies a G̊arding inequality

of the form

BΩ[u, u] ≥ c |||u|||2Hm(Ω) − C ‖u‖2L2(Ω) for all u ∈ Hm(Ω).

Since we are studying a spectral problem, we therefore may assume without loss
of generality (introducing a shift by C) that B and BΩ are Hm-elliptic, i.e., there
is a c > 0 such that B[u, u] ≥ c |||u|||2Hm(Rd) for all u ∈ Hm(Rd) and BΩ[v, v] ≥
c |||v|||2Hm(Ω) for all v ∈ Hm(Ω), where |||v|||2Hm(Ω) =

∑

|α|≤m ‖Dαv‖2L2(Ω). (Note
that Hm-ellipticity of BΩ implies Hm-ellipticity for B due to periodicity of the
coefficients.)

This allows us to introduce new scalar products on Hm(Rd) and Hm(Ω)
given by

〈u, v〉Hm(Rd) := B[u, v] and 〈u, v〉Hm(Ω) := BΩ[u, v]

which are equivalent to the usual scalar products in Hm(Rd) and Hm(Ω), respec-
tively. By ‖·‖Hm(Rd) and ‖·‖Hm(Ω) we denote the associated norms.

1This assumption is made for simplicity; in general, we only require d2 linearly independent

vectors in R
d2 .

2The authors wish to thank Gerd Grubb and Hans-Christoph Grunau for their related remarks.
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Definition 2.2. Let H−m(Rd) denote the dual space ofHm(Rd). Let φ : Hm(Rd) →
H−m(Rd) be defined by

〈φ[u], ϕ〉 = B[u, ϕ] for all u, ϕ ∈ Hm(Rd) (2.4)

where the 〈·, ·〉-notation indicates the dual pairing, i.e.,

〈w,ϕ〉 = w[ϕ] for all w ∈ H−m(Rd), ϕ ∈ Hm(Rd).

φ is an isometric isomorphism, and hence the scalar product on H−m(Rd)
given by

〈u, v〉H−m(Rd) := 〈φ−1u, φ−1v〉Hm(Rd)

induces a norm which coincides with the usual operator sup-norm on H−m(Rd).

Proposition 2.3. We define an operator L : D(L) → H−m(Rd) by D(L) :=
Hm(Rd) ⊂ H−m(Rd) and

Lu := φu.

Then L is self-adjoint.

Proof. For u, v ∈ Hm(Rd),

〈Lu, v〉H−m(Rd) = 〈φ−1 Lu, φ−1v〉Hm(Rd)

= 〈u, φ−1v〉Hm(Rd) = 〈φ−1v, u〉Hm(Rd) = B[φ−1v, u]

= 〈v, u〉 = 〈v, u〉L2 = 〈u, v〉L2 ;

the last line follows by (2.4). Thus L is symmetric.
Since φ is bijective it follows that L is bijective, thus L−1 : H−m(Rd) →

H−m(Rd) is defined on the whole space and is also symmetric. Therefore, L−1 is
self-adjoint. Hence L is self-adjoint. �

3. Floquet transform in Hm(Rd) and H−m(Rd)

In this section, we recall the Floquet transform on L2(Rd) and show that its
restriction to Hm(Rd) is an isometric isomorphism betweenHm(Rd) and a suitable
Hilbert space H. By a simple duality argument, we extend the Floquet transform
to an isometric isomorphism between H−m(Rd) and H′.

Definition 3.1. For a lattice R ⊂ R
n the reciprocal lattice K consists of those

points k in R
n such that

eir·k = 1
for all r ∈ R. The first Brillouin zone associated with a lattice R consists of those
points in R

n whose distance to the origin is smaller than or equal to their distance
from any other point in the reciprocal lattice.

The Brillouin zone K ⊂ R
d2 for the lattice Z

d2 , which corresponds to our
periodic cell, is K := [−π, π]d2 .
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L2(Ω)→ L2
loc(R

d) with

(Ek u)(x, y + p) := eik·pu(x, y)

for all (x, y) ∈ Ω, p ∈ Z
d2 .

The Floquet transform

U : L2(Rd)→ L2(Ω×K)

is given by

(U u)(x, y, k) :=
1

(2π)d2/2
∑

n∈Zd2

eik·nu(x, y − n) for (x, y) ∈ Ω, k ∈ K.

We need the following lemma which together with a proof can be found
in [10, Theorem 2.2.5].

Lemma 3.3. U is an isometric isomorphism and

(U−1 v)(x, y) =
1

(2π)d2/2

∫

K
(Ek v(·, ·, k))(x, y)dk.

The following lemma shows that the formula for U has a canonical extension.

Lemma 3.4. For all u ∈ L2(Rd), k ∈ K and (x, y) ∈ R
d

Ek[Uu(·, ·, k)](x, y) =
1

(2π)
d2
2

∑

n∈Zd2

eik·nu(x, y − n).

Proof. It follows from the definition of Ek that, for p ∈ Z
d2 and (x, y) ∈ Ω,

Ek[Uu(·, ·, k)](x, y + p) = eik·p Uu(x, y, k)

=
1

(2π)
d2
2

∑

n∈Zd2

eik·(n+p)u(x, y + p− (n+ p))

=
1

(2π)
d2
2

∑

ñ∈Zd2

eik·ñu(x, y + p− ñ).

Noting that (x, y + p) runs through R
d completes the proof. �

Definition 3.5. For all k ∈ K, let

Hk := {u ∈ Hm(Ω) : Ek u ∈ Hm
loc(R

d)}.
Note that being an element of Hk requires a weak form of semi-periodic boundary
conditions on ∂Ω.

We denote by Nk the mapping

Nk : H0 → Hk, (Nku)(x, y) := eik·yu(x, y)

and extend it to a mapping H′
0 → H′

k by

〈Nku, ϕ〉 := 〈u,N−1
k ϕ〉 for all u ∈ H′

0, ϕ ∈ Hk.

Definition 3.2. For all k ∈ K, we now introduce an extension operator Ek :
d
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Let

H =
{

u ∈ L2(Ω×K) : ∀′k ∈ K u(·, ·, k) ∈ Hk,
{ K → C

k 
→ 〈N−1
k u(·, ·, k), ϕ〉Hm(Ω)

} measurable for all ϕ ∈ H0,
and ‖u‖H <∞

}

where the norm ‖·‖H is induced by the scalar product

〈u, v〉H =
∫

K
〈u(·, ·, k), v(·, ·, k)〉Hm(Ω)dk.

H can be viewed as the space of all functions u(x, y, k) = (Nkv(k))(x, y) with v ∈
L2(K,H0). Nk : H0 → Hk is a homeomorphism, with Nk andN−1

k being uniformly
bounded with respect to k in the compact set K, which implies in particular that
H is a Hilbert space.

Lemma 3.6. Let M ⊆ R
d2 be any open bounded set. Then

a) the operator Ek : L2(Ω)→ L2(Rd1 ×M) is bounded,
b) the operator Ek : Hk → Hm(Rd1×M) is bounded, and Dρ(Ek u) = Ek(Dρu),

for u ∈ Hk, |ρ| ≤ m.
c) for all k ∈ K, Hk ⊆ Hm(Ω) is closed,

Proof. a) Let M ⊆ [−l, l]d2. Then
∫

Rd1×M
| Ek u |2 dxdy ≤ (2l)d2

∫

Ω

| Ek u |2 dxdy = (2l)d2
∫

Ω

| u |2 dxdy.

b) For all p ∈ Z
d2 , all ϕ ∈ C∞

0 (Ω + p), u ∈ Hk and | ρ |≤ m we have

〈Dρ(Ek u), ϕ〉L2(Rd) =
∫

Rd

Dρ(Ek u)ϕdxdy

= (−1)|ρ|
∫

Rd

Ek uDρϕdxdy

= (−1)|ρ|
∫

Rd

eik·pu(x, y − p)Dρϕ(x, y)dxdy

=
∫

Rd

eik·p(Dρu)(x, y − p)ϕ(x, y)dxdy

=
∫

Rd

Ek(Dρu)ϕdxdy = 〈Ek(Dρu), ϕ〉L2(Rd).

This implies that Dρ(Ek u) = Ek(Dρu). Hence, by part a), for all | ρ |≤ m,

‖Dρ(Ek u)‖L2(Rd1×M) = ‖Ek(Dρu)‖L2(Rd1×M) ≤ (2l)d2 ‖Dρu‖L2(Ω) .

c) Suppose (uµ) ∈ HN

k is a sequence with uµ → u in Hm(Ω) as µ → ∞. Part
b) proves that (Ek uµ) is a Cauchy sequence in Hm(Rd1 × M) and hence
converges to some w ∈ Hm(Rd1 ×M). On the other hand, Ek uµ → Ek u in
L2(Rd1 ×M) by part a). Hence, Ek u = w ∈ Hm(Rd1 ×M), which proves
u ∈ Hk. �
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We are now ready to introduce the Floquet transform on Hm(Rd).

Theorem 3.7. Let V be given by V := U |Hm(Rd). For u, v ∈ Hm(Rd) we have
V u,V v ∈ H, and

∫

K
BΩ[V u(·, ·, k),V v(·, ·, k)]dk = B[u, v],

that is

〈V u,V v〉H = 〈u, v〉Hm(Rd), (3.1)

i.e., V : Hm(Rd)→ H is an isometry.

Proof. Let u ∈ Hm(Rd) have compact support. Then

Ek[V u(·, ·, k)](x, y) =
1

(2π)
d2
2

∑

n∈Zd2

eik·nu(x, y − n) on R
d

by Lemma 3.4, and hence (V u)(·, ·, k) ∈ Hk since the sum is locally finite. Fur-
thermore, for ϕ ∈ H0,

〈N−1
k (V u)(·, ·, k), ϕ〉Hm(Ω)

1

(2π)
d2
2

∑

n∈Zd2

eik·nBΩ[N−1
k u(·, · − n), ϕ]

is a measurable function of k.
With v ∈ Hm(Rd) denoting a second compact support function, we get

〈(V u)(·, ·, k), (V v)(·, ·, k)〉Hm(Ω)

=
1

(2π)d2
BΩ

[
∑

n∈Zd2

eik·nu(·, · − n),
∑

ñ∈Zd2

eik·ñv(·, · − ñ)
]

=
1

(2π)d2
∑

n,ñ∈Zd2

eik·(n−ñ)BΩ[u(·, · − n), v(·, · − ñ)].

Since the sum is finite, this expression is integrable over K and
∫

K
〈(V u)(·, ·, k), (V v)(·, ·, k)〉Hm(Ω)dk =

∑

n∈Zd2

BΩ[u(·, · − n), v(·, · − n)]

∑

n∈Zd2

∑

|ρ|,|σ|≤m

∫

Ω

aρσ(x, y)Dρu(x, y − n)Dσv(x, y − n)dxdy

=
∑

n∈Zd2

∑

|ρ|,|σ|≤m

∫

Ω−(0,n)

aρσ(x, ỹ + n)Dρu(x, ỹ)Dσv(x, ỹ)dxdỹ

=
∑

|ρ|,|σ|≤m

∫

Rd

aρσ(x, y)Dρu(x, y)Dσv(x, y)dxdy

= B[u, v] = 〈u, v〉Hm(Rd),

which shows that V u,V v ∈ H, and that (3.1) holds.
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Now let u ∈ Hm(Rd) be arbitrary, and choose a sequence (uµ) ∈ Hm(Rd)N

of compact support functions converging to u in Hm(Rd). Since (3.1) holds for
compact support functions, (V uµ) is a Cauchy sequence in H and thus converges
to some w ∈ H. On the other hand, by Lemma 3.3, V uµ = Uuµ → Uu = V u in
L2(Ω × K). Thus, V u = w ∈ H, and V uµ → V u in H, whence (3.1) follows for
all u, v ∈ Hm(Rd). �

We next show that, moreover, V is an isomorphism.

Theorem 3.8. V : Hm(Rd) → H is an isometric isomorphism.

Proof. It remains to show that V is onto. For any w ∈ L2(Ω × K) we have, by
Lemma 3.3,

(U−1 w)(x, y) =
1

(2π)d2/2

∫

K
(Ek w)(x, y, k)dk.

Now let w ∈ H. Then Dαw ∈ L2(Ω×K) for | α |≤ m. Let ϕ ∈ C∞
0 (Rd), whence

∫

Rd

(Dαϕ)(U−1 w)dxdy =
1

(2π)d2/2

∫

Rd

Dαϕ

(∫

K
(Ek w)(x, y, k)dk

)

dxdy.

Thus Fubini’s theorem, integration by parts, and Lemma 3.6 b) yield
∫

Rd

(Dαϕ)(U−1 w)dxdy =
1

(2π)d2/2

∫

K

(∫

Rd

Dαϕ(Ek w)(x, y, k)dxdy
)

dk

=
(−1)|α|

(2π)d2/2

∫

K

(∫

Rd

ϕDα(Ek w)(x, y, k)dxdy
)

dk

=
(−1)|α|

(2π)d2/2

∫

K

(∫

Rd

ϕEk(Dαw)(x, y, k)dxdy
)

dk

=
(−1)|α|

(2π)d2/2

∫

Rd

ϕ

(∫

K
Ek(Dαw)(·, ·, k)dk

)

dxdy

= (−1)|α|
∫

Rd

ϕU−1(Dαw)dxdy,

This shows that U−1 w is differentiable and Dα(U−1 w) = U−1(Dαw) ∈ L2(Rd).
Hence U−1 w ∈ Hm(Rd) and V(U−1 w) = U(U−1 w) = w. �

For the next lemma, in which we extend the Floquet transform to H−m(Rd),
we note that H is dense in L2(Ω×K) by Lemma 3.3 and the denseness of Hm(Rd)
in L2(Rd), together with the fact that U maps Hm(Rd) into H by Theorem 3.7.

Lemma 3.9. The map V̂ := (V∗)−1 : H−m(Rd)→ H′ is an isometric isomorphism
and V̂ |L2(Rd)= U.

Proof. By Theorem 3.8, V : Hm(Rd) → H is an isometric isomorphism and thus
so is the dual map V ∗ : H′ → H−m(Rd) and hence V̂. For u ∈ L2(Rd), ϕ ∈ H
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we get

〈V̂u, ϕ〉 = 〈(V∗)−1u, ϕ〉 = 〈(V−1)∗u, ϕ〉
= 〈u,V−1 ϕ〉 = 〈u,V−1 ϕ〉L2(Rd) = 〈u,U−1 ϕ〉L2(Rd)

= 〈Uu, ϕ〉L2(Ω×K),

using Lemma 3.3 in the last line. Thus V̂u = Uu. �

4. Floquet-Bloch theory

The aim of this section is to show that the spectrum of the operator L can be
determined by considering quasiperiodic operators Lk on the periodic cell, which
establishes the main result of Floquet-Bloch theory also in our general situation
of non-smooth coefficients and unbounded periodic cell.

Definition 4.1.

(a) For k ∈ K, let D(Lk) := Hk be the domain of the operator Lk defined in H′
k

by

Lk : D(Lk) ⊆ H′
k → H′

k, 〈Lk u, ϕ〉 = BΩ[u, ϕ] for u, ϕ ∈ Hk.
Note that D(Lk) is dense in H′

k since Hk is dense in L2(Ω) and thus, by
duality L2(Ω) is dense in H′

k.
(b) For many purposes it is useful to consider, as well as Lk, also the operator

Lk := N∗
k LkNk in H′

0 with domain D(Lk) := H0. The fact that D(Lk) is
independent of k is particularly advantageous, e.g., for numerical computa-
tions. Since Lk − λ = N∗

k (Lk − λ)Nk and Nk : H′
0 → H′

k is homeomorphic,
the spectra of Lk and Lk coincide. Thus, clearly, the following theorems also
hold with σ(Lk) in place of σ(Lk).

(c) An inner product on H′
k is given by

〈u, v〉H′
k

= 〈φ−1
k u, φ−1

k v〉Hm(Ω)

with φk : Hk → H′
k denoting the canonical isometric isomorphism, i.e.,

〈φku, ϕ〉 := 〈u, ϕ〉Hk
= 〈u, ϕ〉Hm(Ω) = BΩ[u, ϕ].

Lemma 4.2. The operator Lk is self-adjoint.

Proof.

〈Lk u, v〉H′
k

= 〈φ−1
k Lk u, φ

−1
k v〉Hk

= 〈u, φ−1
k v〉Hk

= 〈φ−1
k v, u〉Hk

= 〈v, u〉 = 〈u, v〉L2 ,

whence the operator Lk is symmetric. Moreover, Lk is bijective since φk is. Hence,
L−1
k is symmetric and defined on the whole of H′

k, and therefore self-adjoint. Thus
Lk is self-adjoint. �

We are now in a position to establish the relationship between the spectra of
Lk and L. We first show the following inclusion:
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Theorem 4.3. Let σ(L) be the spectrum of L and σ(Lk) the spectrum of Lk. Then

σ(L) ⊆
⋃

k∈K
σ(Lk)

Proof. Suppose λ ∈ R, λ �∈ ∪k∈Kσ(Lk). Then there is a δ > 0 such that for all
k ∈ K, we have dist(λ, σ(Lk)) ≥ δ.

We show that for all f ∈ H−m(Rd) there exists a unique u ∈ Hm(Rd)
with (L−λ)u = f . For all k ∈ K, let w(k) ∈ H′

k be defined by 〈w(k), ϕ〉 =
〈(φ−1

H V̂f)(·, ·, k), ϕ〉Hm(Ω) for ϕ ∈ Hk, where φH : H → H′ is the canonical

isometric isomorphism. Then ‖w(k)‖H′
k

=
∥
∥
∥(φ−1

H V̂f)(·, ·, k)
∥
∥
∥
Hm(Ω)

. In order to

be able to integrate over K, we need to check measurability with respect to k.
Let z(·, ·, k) := N−1

k (φ−1
H V̂f)(·, ·, k) ∈ H0. Since φ−1

H V̂f ∈ H, we know that
k 
→ 〈z(·, ·, k), ϕ〉Hm(Ω) is measurable for all ϕ ∈ H0. Therefore,

{ K → H0

k 
→ z(·, ·, k)
}

is measurable. (4.1)

Since

‖w(k)‖2H′
k

=
∥
∥
∥(φ−1

H V̂f)(·, ·, k)
∥
∥
∥

2

Hm(Ω)
= BΩ[Nk(z(·, ·, k), Nk(z(·, ·, k)],

and the r.h.s. contains exponentials and polynomials in k and derivatives up to
order m of z(·, ·, k), this is measurable with respect to k ∈ K. Moreover,

∫

K
‖w(k)‖2H′

k
dk =

∥
∥
∥φ−1

H V̂f
∥
∥
∥

2

H
=
∥
∥
∥V̂f

∥
∥
∥

2

H′
= ‖f‖2H−m(Rd) <∞. (4.2)

Let v(·, ·, k) := (Lk−λ)−1w(k) for all k ∈ K. Then v(·, ·, k) ∈ Hk. As the
following Lemma 4.4 shows, v ∈ H.

Now, let u := V−1 v ∈ Hm(Rd). Then for all ϕ ∈ Hm(Rd) we get, by Theorem
3.8 and Lemma 3.3

〈(L−λ)u, ϕ〉 = B[u, ϕ]− λ〈u, ϕ〉L2(Rd)

=
∫

K

(
BΩ[V u(·, ·, k), (Vϕ)(·, ·, k)]− λ〈(V u)(·, ·, k), (Vϕ)(·, ·, k)〉L2(Ω)

)
dk

=
∫

K

{
BΩ[v(·, ·, k), (Vϕ)(·, ·, k)]− λ〈v(·, ·, k), (V ϕ)(·, ·, k)〉L2(Ω)

}
dk

=
∫

K
〈(Lk−λ)v(·, ·, k), (Vϕ)(·, ·, k)〉dk

=
∫

K
〈w(k), (V ϕ)(·, ·, k)〉dk =

∫

K
〈(φ−1

H V̂f)(·, ·, k), (Vϕ)(·, ·, k)〉Hm(Ω)dk

= 〈φ−1
H V̂f,Vϕ〉H = 〈V̂f,Vϕ〉 = 〈V∗ V̂f, ϕ〉 = 〈f, ϕ〉.

Thus (L−λ)u = f . So (L−λ) is onto. Since it is self-adjoint, L−λ is also
one-to-one. �
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Lemma 4.4. Let λ, δ, w(k), z and v be defined as in the proof of Theorem 4.3.
Then v ∈ H.

Proof. First, for all ϕ ∈ H0,

〈N−1
k w(k), ϕ〉 = 〈w(k), Nkϕ〉

= 〈(φ−1
H V̂f)(·, ·, k), Nkϕ〉Hm(Ω)

= 〈(Nkz)(·, ·, k), Nkϕ〉Hm(Ω)

= BΩ[Nkz(·, ·, k), Nkϕ]

is measurable with respect to k ∈ K by (4.1). So,
{ K → H′

0

k 
→ N−1
k w(k)

}

is measurable. (4.3)

Next, for k ∈ C
d2 , let D(Lk) := H0 ⊆ H′

0, Lk : D(Lk)→ H′
0 be given by

〈Lku, ϕ〉 := BΩ[Nku,Nkϕ]

=
∑

|ρ|, |σ|≤m

∫

Ω

aρσ(x, y)(DρNku)(x, y)(DσNkϕ)(x, y)dxdy

for u, ϕ ∈ D(Lk) = H0, which for all fixed u and ϕ depends analytically on k ∈ C
d2 .

Clearly, this extends the definition of Lk in Definition 4.1 (b) to complex k. By
the closedness of Lk and [9, Theorem VII.1.3],

{ KC → B(H′
0,H′

0)
k 
→ (Lk − λ)−1

}

is analytic (4.4)

on some complex open neighbourhoodKC of K which is chosen such that λ is in the
resolvent set of Lk for all k ∈ KC; note that dist(λ, σ(Lk)) = dist(λ, σ(Lk)) ≥ δ > 0
for all k ∈ K.

Even stronger,
{ KC → B(H′

0,H0)
k 
→ (Lk − λ)−1

}

is analytic (4.5)

which can be seen as follows: (4.4) implies the analyticity of

k 
→ 〈(Lk − λ)−1u, ϕ〉 = 〈(Lk − λ)−1u, ϕ〉L2(Ω)

= 〈ϕ, (Lk − λ)−1u〉L2(Ω) for each u ∈ H′
0, ϕ ∈ H0,

(4.6)

while (4.5) requires the analyticity of

k 
→ 〈(Lk − λ)−1u, ϕ〉Hm(Ω) = 〈ψ, (Lk − λ)−1u〉
for each u ∈ H′

0, ϕ ∈ H0, ψ = φ0ϕ ∈ H′
0.

(4.7)

By (4.6), analyticity of the map in (4.7) holds for ψ in the dense subset H0 of
H′

0. Moreover, by Lemma 4.5, the mapping in (4.5) is locally bounded, whence [9,
VII.1.1] implies (4.7).
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Since (Lk − λ)−1 = N∗
k (Lk − λ)−1Nk = N−1

k (Lk − λ)−1Nk, we get, for each
ϕ ∈ H0

〈N−1
k v(·, ·, k), ϕ〉Hm(Ω) = 〈N−1

k (Lk − λ)−1NkN
−1
k w(k), ϕ〉Hm(Ω)

= 〈(Lk − λ)−1N−1
k w(k), ϕ〉Hm(Ω),

which depends on k ∈ K in a measurable way, due to (4.3) and (4.5). Moreover,
using Lemma 4.5 again,

‖v(·, ·, k)‖Hk
≤ C

∥
∥N−1

k v(·, ·, k)∥∥H0
= C

∥
∥(Lk − λ)−1N−1

k w(k)
∥
∥
H0

≤ C
∥
∥N−1

k w(k)
∥
∥
H′

0
≤ C ‖w(k)‖H′

k
,

because ‖Nku‖Hm(Ω) ≤ C ‖u‖Hm(Ω) for all u ∈ Hm(Ω), k ∈ K. Thus, by (4.2),
v ∈ H. �

Lemma 4.5. Let λ ∈ R be such that dist(λ, σ(Lk)) ≥ δ > 0 for all k ∈ K. Then,
for some constant C = C(λ),

∥
∥(Lk − λ)−1g

∥
∥
H0
≤ C ‖g‖H′

0
for all g ∈ H′

0, k ∈ K.
Proof. Due to the condition on λ,

∥
∥(Lk − λ)−1g

∥
∥
H′

0
≤ 1
δ
‖g‖H′

0
(g ∈ H′

0). (4.8)

Moreover, for u ∈ H0,

〈(Lk − λ)u, u〉 = 〈LkNku,Nku〉 − λ〈u, u〉
= BΩ[Nku,Nku]− λ〈u, u〉
≥ ‖Nku‖2Hk

− |λ| ‖u‖H′
0
‖u‖H0

≥ c ‖u‖2H0
− |λ| ‖u‖H′

0
‖u‖H0

and 〈(Lk − λ)u, u〉 ≤ ‖(Lk − λ)u‖H′
0
‖u‖H0

, implying

‖u‖H0
≤ C(‖u‖H′

0
+ ‖(Lk − λ)u‖H′

0
),

which gives the assertion, using (4.8) and u := (Lk − λ)−1g. �

As a preparation for the reverse spectral inclusion we prove

Lemma 4.6. Let ψ ∈ C∞
0 (Rd2) be real-valued, u ∈ Hm

loc(R
d), and suppose that û

given by û(x, y) := ψ(y)u(x, y) is in Hm(Rd). Then for all v ∈ Hm(Rd)

B[û, v] =
∑

|ρ|,|σ|≤m

∫

Rd

aρσDρuDσ(ψv)dx+
∑

|ρ|,|σ|≤m

∫

Rd

bρσDρuDσvdx

where bρσ =
∑

β �=0,|β|≤m c
ρσβDβψ with some cρσβ ∈ L∞(Rd).
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Proof.

B[û, v] =
∑

|α|,|σ|≤m

∫

Rd

aασDαû(Dσv)dx

=
∑

|α|,|σ|≤m

∑

ρ≤α

(
α
ρ

)∫

Rd

aασ(Dα−ρψ)(Dρu)(Dσv)dx

=
∑

|ρ|,|σ|≤m

∑

|α|≤m,α≥ρ

(
α
ρ

)∫

Rd

aασ(Dα−ρψ)(Dρu)(Dσv)dx.

Also
∑

|α|,|ρ|≤m

∫

Rd

aρα(Dρu)Dα(ψv)dx

=
∑

|α|,|ρ|≤m

∑

σ≤α

(
α
σ

)∫

Rd

aρα(Dρu)(Dα−σψ)(Dσv)dx

=
∑

|ρ|,|σ|≤m

∑

|α|≤m,α≥σ

(
α
σ

)∫

Rd

aρα(Dρu)(Dα−σψ)(Dσv)dx.

Thus

B[û, v] =
∑

|ρ|,|σ|≤m

∫

Rd

aρσ(Dρu)Dσ(ψv)dx+
∑

|ρ|,|σ|≤m

∫

Rd

bρσDρuDσvdx

where

bρσ =
∑

|α|≤m,α≥ρ

(
α
ρ

)

aασ(Dα−ρψ)−
∑

|α|≤m,α≥σ

(
α
σ

)

aρα(Dα−σψ)

=
∑

|β|≤m
cρσβDβψ.

We have cρσ0 = 0 and cρσβ ∈ L∞(Rd). �

Theorem 4.7.

σ(L) ⊇
⋃

k∈K
σ(Lk)

Proof. It suffices to prove this inclusion without the closure sign since σ(L) is
closed. Let λ ∈ σ(Lk) for some k ∈ K. Then there is a singular sequence (un) ∈
D(Lk)N such that ‖un‖H′

k
= 1 and ‖(Lk−λ)un‖H′

k
→ 0 as n→∞.

Let η ∈ C∞(R) take values in the interval [0, 1] such that

η(y) =
{

1, y ≤ 1
0, y ≥ 2 .

Further, for l ≥ 1, let ηl ∈ C∞(Rd) be given by

ηl(x, y) := η(|y1|/l)η(|y2|/l) · · · η(|yd2 |/l).
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We define
un,l(x, y) := ηl(x, y)(Ek un)(x, y).

Then un,l ∈ Hm(Rd). Our aim is to show that, for a suitable choice of l = l(n),
un,l gives a singular sequence for L.

We introduce the function ζl(x, y) = η
(

|y1|√
l
−√l + 1

)

· · · η
( |yd2 |√

l
−√l + 1

)

.
Then |(Dαζl)(x, y)| ≤ C for some constant C and for all |α| ≤ m and all l ≥ 1,
and moreover, |yi|√

l
−√l + 1 ≤ 1 if |yi| ≤ l and |yi|√

l
−√l + 1 ≥ 2 if |yi| ≥ l +

√
l.

Now,

‖un,l‖H−m(Rd) = sup
ϕ∈Hm(Rd),ϕ �=0

|〈un,l, ϕ〉|
‖ϕ‖Hm(Rd)

= sup
ϕ∈Hm(Rd),ϕ �=0

∣
∣〈un,l, ϕ〉L2(Rd)

∣
∣

‖ϕ‖Hm(Rd)

≥ sup
ψ∈Hk,ψ �=0

∣
∣〈un,l, ζl(Ek ψ)〉L2(Rd)

∣
∣

‖ζl(Ek ψ)‖Hm(Rd)

.

(4.9)

Moreover, we obtain for l ≥ 1,

‖ζl(Ek ψ)‖2Hm(Rd) ≤ C
∑

|α|≤m
‖Dα(ζl Ek ψ)‖2L2(Rd)

≤ C
∑

|α|≤m

∑

β≤α

(
α
β

)
∥
∥(Dα−βζl)(Dβ(Ek ψ))

∥
∥

2

L2(Rd)

≤ C
∑

|α|≤m

∑

β≤α

∥
∥Dβ(Ek ψ)

∥
∥

2

L2(Rd1×[−l−√
l,l+

√
l]d2)

,

and thus by Lemma 3.6 b) we have

‖ζl(Ek ψ)‖2Hm(Rd) ≤ C
∑

|α|≤m

∑

β≤α

∥
∥Ek(Dβψ)

∥
∥

2

L2(Rd1×[−l−√
l,l+

√
l]d2)

≤ C
∑

|α|≤m

∑

β≤α
ld2

∥
∥Dβψ

∥
∥

2

L2(Ω)
(4.10)

≤ Cld2 ‖ψ‖2Hm(Ω) .

Furthermore

|〈un,l, ζl(Ek ψ)〉L2(Rd)| =
∣
∣
∣
∣

∫

Rd

ηlζl(Ek un)(Ek ψ)dxdy
∣
∣
∣
∣

≥
∣
∣
∣
∣
∣

∫

Rd1×[−l,l]d2

(Ek un)(Ek ψ)dxdy

∣
∣
∣
∣
∣

−
∫

Rd1×([−l−√
l,l+

√
l]d2\[−l,l]d2)

|Ek un||Ek ψ|dxdy

=: A−B,
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with

A = (2l)d2
∣
∣
∣
∣

∫

Ω

unψdxdy

∣
∣
∣
∣ , B ≤ vol(Wl)

∫

Ω

|un||ψ|dxdy

where Wl = [−l − √l, l +√l]d2 \ [−l, l]d2. We may estimate the volume of Wl in
the following way:

vol(Wl) = vol[−l −
√
l, l +

√
l]d2 − vol[−l, l]d2

= (2(l +
√
l))d2 − (2l)d2

= 2d2
(

d2∑

ν=0

(
d2

ν

)

lν
√
l
d2−ν − ld2

)

= 2d2
(
d2−1∑

ν=0

(
d2

ν

)

l
ν+d2

2

)

≤ Cld2−
1
2 .

From this it follows that

B ≤ Cld2−
1
2 ‖un‖L2(Ω) ‖ψ‖L2(Ω) ≤ Cld2−

1
2 ‖un‖L2(Ω) ‖ψ‖Hm(Ω) ,

yielding

|〈un,l, ζl(Ek ψ)〉L2(Rd)| ≥ A−B

≥ (2l)d2
(∣
∣
∣
∣

∫

Ω

unψdxdy

∣
∣
∣
∣−

C√
l
‖un‖L2(Ω) ‖ψ‖Hm(Ω)

)

and therefore, using (4.10),

|〈un,l, ζl Ek ψ〉L2(Rd)|
‖ζl(Ek ψ)‖Hm(Rd)

≥ cl
d2
2

(∣
∣〈un, ψ〉L2(Ω)

∣
∣

‖ψ‖Hm(Ω)

− C√
l
‖un‖L2(Ω)

)

. (4.11)

Thus from (4.9) and (4.11) it follows that

‖un,l‖H−m(Rd) ≥ cl
d2
2

(

‖un‖H′
k
− C√

l
‖un‖L2(Ω)

)

.

Note that ‖un‖H′
k

= 1. By choosing l = l(n) large enough so that C√
l
‖un‖L2(Ω) ≤ 1

2

we then obtain
‖un,l‖H−m(Rd) ≥ cl

d2
2 . (4.12)

Now let ϕ ∈ Hm(Rd). By Lemma 4.6 we see

〈(L−λ)un,l, ϕ〉 = B[un,l, ϕ]− λ〈un,l, ϕ〉L2(Rd)

=
∑

|ρ|,|σ|≤m

∫

Rd

aρσDρ(Ek un)Dσ(ηlϕ)dxdy − λ
∫

Rd

ηl(Ek un)ϕdxdy

+
∑

|ρ|,|σ|≤m

∫

Rd

bρσDρ(Ek un)Dσϕdxdy (4.13)
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where
bρσ =

∑

β �=0,|β|≤m
cρσβDβηl,

whence | bρσ |≤ C/l for l ≥ 1, and bρσ = 0 outside R
d1 × [−2l, 2l]d2.

Hence, using Lemma 3.6 b),
∣
∣
∣
∣
∣
∣

∑

|ρ|,|σ|≤m

∫

Rd

bρσDρ(Ek un)Dσϕdxdy

∣
∣
∣
∣
∣
∣

≤
∑

|ρ|,|σ|≤m

C

l
‖Ek(Dρun)‖L2(Rd1×[−2l,2l]d2) ‖Dσϕ‖L2(Rd)

≤
∑

|ρ|,|σ|≤m

C

l
ld2/2 ‖Dρun‖L2(Ω) ‖Dσϕ‖L2(Rd)

≤ Cld2/2−1 ‖un‖Hm(Ω) ‖ϕ‖Hm(Rd) . (4.14)

For the first two terms on the right-hand side of equation (4.13), we have
∑

|ρ|,|σ|≤m

∫

Rd

aρσDρ(Ek un)Dσ(ηlϕ)dxdy − λ
∫

Rd

(Ek un)ηlϕdxdy

=
∑

p∈Zd2

∫

Ω+(0,p)




∑

|ρ|,|σ|≤m
aρσDρ(Ek un)Dσ(ηlϕ) − λ(Ek un)ηlϕ



 dxdy

=
∑

p∈Zd2

∫

Ω

∑

|ρ|,|σ|≤m
aρσ(x, y)Dρ(Ek un)(x, y + p)Dσ(ηlϕ)(x, y + p)dxdy

−
∑

p∈Zd2

∫

Ω

λ(Ek un)(x, y + p)ηlϕ(x, y + p)dxdy

=
∑

p∈Zd2

(

BΩ[(Ek un)(·, ·+ p), (ηlϕ)(·, ·+ p)]

− λ〈(Ek un)(·, ·+ p), (ηlϕ)(·, ·+ p)〉L2(Ω)

)

=
∑

p∈Zd2

(
BΩ[eik·pun, (ηlϕ)(·, ·+ p)]− λ〈eik·pun, (ηlϕ)(·, ·+ p)〉L2(Ω)

)

=
∑

p∈Zd2

〈(Lk−λ)un, e−ik·p(ηlϕ)(·, ·+ p)〉

= 〈(Lk−λ)un,
∑

p∈Zd2

e−ik·p(ηlϕ)(·, ·+ p)〉

= (2π)d2/2〈(Lk−λ)un,U(ηlϕ)(·, ·, k)〉
= (2π)d2/2〈(Lk−λ)un,V(ηlϕ)(·, ·, k)〉.
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Noting that V(ηlϕ)(·, ·, k) ∈ Hk by Theorem 3.8, we get from (4.13) and (4.14)

| 〈(L−λ)un,l, ϕ〉 |≤ C ‖(Lk−λ)un‖H′
k
‖V(ηlϕ)(·, ·, k)‖Hk

(4.15)

+Cld2/2−1 ‖un‖Hm(Ω) ‖ϕ‖Hm(Rd) .

Now,

‖V(ηlϕ)(·, ·, k)‖Hk
= (2π)−d2/2

∥
∥
∥
∥
∥
∥

∑

p∈Zd2

eik·p(ηlϕ)(·, · − p)
∥
∥
∥
∥
∥
∥
Hm(Ω)

= (2π)−d2/2

∥
∥
∥
∥
∥
∥
∥
∥

∑

p∈[−2l,2l+1]d2 ,

p∈Z
d2

eik·p(ηlϕ)(·, · − p)

∥
∥
∥
∥
∥
∥
∥
∥
Hm(Ω)

≤ (2π)−d2/2
∑

p∈[−2l,2l+1]d2 ,

p∈Z
d2

‖(ηlϕ)(·, · − p)‖Hm(Ω)

≤ C
∑

p∈[−2l,2l+1]d2 ,

p∈Z
d2

‖ϕ(·, · − p)‖Hm(Ω)

≤ Cld2/2







∑

p∈[−2l,2l+1]d2 ,

p∈Z
d2

‖ϕ(·, · − p)‖2Hm(Ω)







1
2

≤ Cld2/2 ‖ϕ‖Hm(Rd) .

Thus, by (4.15),

| 〈(L−λ)un,l, ϕ〉 |
‖ϕ‖Hm(Rd)

≤ C ‖(Lk−λ)un‖H′
k
ld2/2 + Cld2/2−1 ‖un‖Hm(Ω)

giving

‖(L−λ)un,l‖H−m(Rd) ≤ Cld2/2
(

‖(Lk−λ)un‖H′
k

+
1
l
‖un‖Hm(Ω)

)

and therefore, using (4.12),

‖(L−λ)un,l‖H−m(Rd)

‖un,l‖H−m(Rd)

≤ C

(

‖(Lk−λ)un‖H′
k

+
1
l
‖un‖Hm(Ω)

)

.

Now for each n, choose ln := l(n) such that

‖un‖Hm(Ω)

ln
≤ 1
n

as well as
C√
l
‖un‖L2(Ω) ≤

1
2
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which we required earlier in the proof. Then
‖(L−λ)un,l‖H−m(Rd)

‖un,l‖H−m(Rd)

≤ C

(

‖(Lk−λ)un‖H′
k

+
1
n

)

→ 0

as n→∞. Hence, λ ∈ σ(L). �

5. Equality of the H−m and L2-spectra

In the final section we show that the spectrum of the operator L in H−m(Rd) coin-
cides with the spectrum of the canonical self-adjoint operator in L2(Rd) generated
by the bilinear form B. We do this on an abstract Hilbert space level.

Suppose B : D×D → C is a closed Hermitian sesquilinear form and D ⊆ H
is dense in the Hilbert space H . E.g., for the form B defined in (2.1), we choose
H := L2(Rd) and D := Hm(Rd). Suppose also ‖u‖2D := B[u, u] ≥ c ‖u‖2H for some
c > 0. Then (D,B[·, ·]) is a Hilbert space.

Let L : D ⊆ D′ → D′, with 〈Lu, ϕ〉 = B[u, ϕ], and L̃ : D(L̃) ⊆ H → H

defined by 〈L̃u, ϕ〉H = B[u, ϕ] for all ϕ ∈ D, with domain

D(L̃) := {u ∈ D : D � ϕ→ B[u, ϕ] is bounded in H}.
D(L̃) is dense in H , see [14]. Thus, L corresponds to the operator studied in
the previous sections, and L̃ is the standard selfadjoint operator in H associated
with B. Note that D(L̃) is not easy to handle directly if B is the form (2.1) with
discontinuous coefficients aρσ. For example, multiplication with C∞

0 -functions may
lead out ofD(L̃), which causes severe problems when one tries to prove an analogue
of Theorem 4.7 for L̃ directly.

L and L̃ are self-adjoint in D′ and H , respectively. We intend to show σ(L) =
σ(L̃).

Lemma 5.1. Let λ �∈ σ(L̃). Then for all u ∈ D(L̃)

‖u‖D ≤ Cλ

∥
∥
∥(L̃−λ)u

∥
∥
∥
H
.

Proof. Since λ ∈ ρ(L̃),
‖u‖H ≤ C̃λ

∥
∥
∥(L̃−λ)u

∥
∥
∥
H

for all u ∈ D(L̃). Now, 〈(L̃−λ)u, u〉H = B[u, u]− λ〈u, u〉H , giving

‖u‖2D ≤ λ ‖u‖2H + ‖u‖H
∥
∥
∥(L̃−λ)u

∥
∥
∥
H
≤ C2

λ

∥
∥
∥(L̃−λ)u

∥
∥
∥

2

H
.

�
Lemma 5.2. For all u ∈ D and for all ψ ∈ D(L̃)

〈Lu, ψ〉 = 〈u, L̃ψ〉H .
Proof. 〈u, L̃ψ〉H = 〈L̃ψ, u〉H = B[ψ, u] = B[u, ψ] = 〈Lu, ψ〉. �
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Theorem 5.3. The spectra of L and L̃ are the same: i.e., σ(L) = σ(L̃).

Proof. As both operators are self-adjoint, it suffices to consider real λ. First let
λ ∈ R ∩ ρ(L). Then for all f ∈ D′ there is a u ∈ D such that (L−λ)u = f . This
implies in particular

∀f ∈ H ∃u ∈ D ∀ϕ ∈ D 〈(L−λ)u, ϕ〉 = 〈f, ϕ〉H
which, since 〈(L−λ)u, ϕ〉 = B[u, ϕ] − λ〈u, ϕ〉H , shows that ϕ 
→ B[u, ϕ] is a
bounded linear functional with respect to the H-norm. Thus u ∈ D(L̃) and
therefore (L̃−λ)u = f . Hence L̃−λ is onto. As L̃−λ is self-adjoint, we conclude
λ ∈ ρ(L̃).

Next assume that λ ∈ ρ(L̃). Then if (L−λ)u = 0 for some u ∈ D, we get as
above that u ∈ D(L̃) and (L̃−λ)u = 0, so u = 0. Hence (L−λ) is one-to-one. As
L is self-adjoint we therefore get that the range of (L−λ) is dense in D′. For all
ψ ∈ D, u ∈ D we have (letting ϕ = (L̃−λ)−1ψ)

〈u, ψ〉H
‖ψ‖H

=
〈u, (L̃−λ)ϕ〉H
∥
∥
∥(L̃−λ)ϕ

∥
∥
∥
H

=
〈(L−λ)u, ϕ〉H
∥
∥
∥(L̃−λ)ϕ

∥
∥
∥
H

the last equality following by Lemma 5.2. So by Lemma 5.1,

| 〈u, ψ〉H |
‖ψ‖H

≤ Cλ
‖(L−λ)u‖D′ ‖ϕ‖D

‖ϕ‖D
= Cλ ‖(L−λ)u‖D′ .

Hence, ‖u‖H ≤ Cλ ‖(L−λ)u‖D′ for all u ∈ D and

‖u‖D′ ≤ C ‖u‖H ≤ Cλ ‖(L−λ)u‖D′ .

Thus (L−λ)−1 is bounded, and so λ ∈ ρ(L). �
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1. Introduction

A well-known classical result is that a compact self-adjoint operator A acting from
a Hilbert space H into itself has the representation

Ax =
∑

n

λn(x, φn)φn, (1)

where the λn are eigenvalues of A, each repeated according to multiplicity and
ordered by decreasing modulus, while the φn are orthonormal eigenvectors of A
corresponding to the eigenvalues λn; the inner product in H is denoted by (·, ·).
There is a finite number of eigenvalues if and only if A is of finite rank, otherwise
the eigenvalues can accumulate only at zero. If the kernel of A is trivial then the
eigenvectors φn form a complete orthonormal set in H . A consequence of this result
is that if B is a compact linear operator mapping a Hilbert space H1 into another
Hilbert space H2, then B has the representation

Bx =
∑

n

µn(x, φn)1ψn, (2)
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where (·, ·)1 denotes the inner product in H1, the φn are orthonormal eigenvectors
of the positive square root |B| of B∗B corresponding to eigenvalues µn (the µn
are the singular values of B) and ψn = µ−1

n Bφn (µn �= 0). All this may be found
in [9], Chapter II, Section 5, for instance. Attempts have been made to generalise
this result to cover the case of a compact linear operator T acting between Banach
spaces X and Y . For instance, well-bounded operators were introduced by Smart
[24] and an analogue of the result for compact self-adjoint operators on a Hilbert
space established, namely, that a compact, well-bounded operator from a Banach
space into itself can be represented by means of a sum of multiples of disjoint
bounded projections: see [7] for details. This survey is based mainly on [11] where
the objective was to deal with general compact linear operators, but to restrict
the Banach spaces X and Y . It was shown that progress can be made if X and
Y are assumed to be reflexive, strictly convex and have strictly convex duals.
However, interesting new interpretations of the convergence results in [11] are
given in Remarks 6 and 8, and Theorem 7 is new. In Theorem 9, quoted from
[12], the analogue of (2) is presented for any compact linear map T : X → Y , for
reflexive Banach spaces X,Y with strictly convex duals.

The main results on the representations will be given in section 2, see Theo-
rems 2 and 3: only sketch proofs are provided as details are available in [11]. These
are intimately associated with a family of equations, indexed by a natural number
k and involving the restrictions Tk of T to decreasing subspaces Xk of X , which
are essentially the Euler equations obtained by maximising ‖Tkx‖Y subject to the
condition ‖x‖Xk

= 1. Each of these equations has a solution xk (an “eigenvector”)
corresponding to an “eigenvalue” λk. This has interesting applications. For exam-
ple, it follows almost immediately that for each k ∈ N, the Dirichlet eigenvalue
problem for the p-Laplacian in a bounded open subset of R

n has a certain type
of weak solution, called a k-weak solution, each such solution corresponding to an
“eigenvalue” αk, with αk →∞ as k →∞. A 1-weak solution is simply a classical
weak solution, but for k > 1 the k-weak solutions are, in principle, more general,
that is, weaker. Despite this, it is remarkable that the growth of αk with k is ex-
actly the same as that of the family of eigenvalues corresponding to classical weak
solutions, the existence of which is commonly established by use of the heavier
machinery of the Ljusternik-Schnirelmann category theory (see, for example, [8],
[15] and also [3]).

Applications to eigenvalue problems for the Lane-Emden equation, the ho-
mogeneous p-Laplacian and Hardy-type operators are discussed in Section 3.

2. The representation theorems

We shall suppose throughout that X and Y are real, reflexive, strictly convex
Banach spaces with strictly convex duals X∗, Y ∗ and norms ‖ · ‖X , ‖ · ‖Y : they
are assumed to be real purely for ease of presentation. The value of x∗ ∈ X∗ at
x ∈ X will be denoted by 〈x, x∗〉X , and given any closed linear subspaces M,N of
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X,X∗, respectively, we denote their polar sets by M0, 0N ; thus

M0 = {x∗ ∈ X∗ : 〈x, x∗〉X = 0 for all x ∈M},
and

0N = {x ∈ X : 〈x, x∗〉X = 0 for all x∗ ∈ N}.
The following well-known notions and facts will feature prominently. They may be
found in [6], [20] and [22].
• The polar set M0 of a closed linear subspace of X is isometrically isomorphic

to (X/M)∗;
• X is strictly convex if whenever x, y ∈ X are such that x �= y, ‖x‖X = ‖y‖X =

1 and λ ∈ (0, 1), then ‖λx + (1 − λ)y‖X < 1; equivalently, no sphere in X
contains a line segment. X is uniformly convex if, for all ε ∈ (0, 2], ‖x‖X =
‖y‖X = 1 and ‖x − y‖X ≥ ε, we have ‖x + y‖X ≤ 2(1 − δ(ε)), where the
modulus of convexity of X

δ(ε) = inf{1− ‖x+ y‖X /2 : x, y ∈ X ; ‖x‖X , ‖y‖X ≤ 1, ‖x− y‖X ≥ ε} > 0.

• The norm ‖ · ‖X is Gâteaux differentiable on X \ {0} if and only if X∗ is
strictly convex;

• The Gâteaux derivative J̃(x) := grad‖x‖X of ‖x‖X at x ∈ X \ {0} is the
unique element of X∗ such that

∥
∥
∥J̃X(x)

∥
∥
∥
X∗

= 1 and
〈

x, J̃X(x)
〉

X
= ‖x‖X ;

• The map JX : X → X∗ defined by

JX(x) = µ (‖x‖X) J̃X(x) (x ∈ X\{0}), JX(0) = 0, (3)

where µ : [0,∞) → [0,∞) is a continuous, strictly increasing function with
µ(0) = 0 and limt→∞ µ(t) = ∞, is called a duality map on X with gauge
function µ. It satisfies

〈x, JXx〉X = ‖JXx‖X∗ ‖x‖X , ‖JXx‖X∗ = µ (‖x‖X) . (4)

JX : X → X∗ is injective, surjective, strictly monotone and weakly contin-
uous; the inverse of JX is a duality map of X∗ onto X with gauge function
µ−1. If X is uniformly convex, JX is strongly continuous. We shall assume
that the gauge function on X is normalised by µ(1) = 1.

• When X is a Hilbert space, J̃X(x) = x/‖x‖X , and we identify JX (with gauge
function µ(t) = t) with the identity map of X to itself.
The starting point is the following known result:

Proposition 1. Let T : X → Y be compact and linear. Then there exists x1 ∈ X,
with ‖x1‖X = 1, such that ‖T ‖ = ‖Tx1‖Y . Moreover, x = x1 satisfies

T ∗J̃Y Tx = νJ̃Xx, (5)

with ν = ‖T ‖; in terms of duality maps this equation has the form

T ∗JY Tx = ν1JXx, ν1 = ‖T ‖µY (‖T ‖). (6)
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If x ∈ X\{0} satisfies (5) for some ν, then 0 ≤ ν ≤ ‖T ‖ and ‖Tx‖Y =
ν ‖x‖X .

Proof. The existence of x1 is well known, and the fact that it satisfies (5) is merely
a consequence of

‖T ‖ = ‖Tx1‖Y = max
x∈X\{0}

‖Tx‖Y
‖x‖X

,

since it then follows that for all x ∈ X ,

d

dt

(‖Tx1 + tTx‖Y
‖x1 + tx‖X

)∣
∣
∣
∣
t=0

= 0,

so that in terms of duality pairings,
〈

Tx, J̃Y Tx1

〉

Y
= ‖Tx1‖Y

〈

x, J̃Xx1

〉

X
,

and hence
T ∗J̃Y Tx1 = λJ̃Xx1,

with λ = ‖T ‖ : cf. [2], and see also [5] and [17] for related results.
For the converse, let x ∈ X\{0} satisfy (5) for some ν. Then

‖Tx‖Y =
〈

Tx, J̃Y Tx
〉

Y
=
〈

x, T ∗J̃Y Tx
〉

X
= ν

〈

x, J̃Xx
〉

X
= ν ‖x‖X .

Hence 0 ≤ ν ≤ ‖T ‖. �

The equation (5) can be thought of as the Euler equation for maximising
‖Tx‖Y subject to the condition ‖x‖X = 1, and ‖T ‖ is its maximum eigenvalue.

At this stage in the spectral analysis of T , when it is a compact self-adjoint
operator acting on a Hilbert space H , one applies the result just established to the
restriction of T to the orthogonal complement H2 of x1 in H , and then repeats
the procedure to obtain successive orthogonal complements Hk, k = 3, . . . , the
sequence of subspaces being infinite unless the restriction of T to one of them is
the zero operator, in which case T is of finite rank. The absence of inner products
when T : X → Y and X and Y are Banach spaces is a major hurdle, but the
following procedure was shown to work in [11].

First set X1 = X,M1 = sp{JXx1} (where sp denotes the linear span),
X2 = 0M1, N1 = sp{JY Tx1}, Y2 = 0N1 and λ1 = ‖T ‖. Since X2 and Y2 are closed
subspaces of reflexive spaces they are reflexive. Also, X∗

2 = (0M1)∗ is isometrically
isomorphic to X∗

1/M1; see [4], Proposition 9 in Section 5 of Chapter 1. From this
fact and the assumed strict convexity of X∗ it is proved in [11], Proposition 3,
that X∗

2 is strictly convex: the same argument applies to Y ∗
2 . Moreover, since by

Proposition 1,

〈Tx, JY Tx1〉Y = ν1 〈x, JXx1〉X for all x ∈ X,
it follows that T maps X2 to Y2. The restriction T2 of T to X2 is thus a compact
linear map from X2 to Y2, and if it is not the zero operator, by Proposition 1 there



Compact Operators on Banach Spaces 25

exists x2 ∈ X2\{0} such that, with obvious notation,

〈T2x, JY2T2x2〉Y2
= ν2 〈x, JX2x2〉X2

for all x ∈ X2,

where ν2 = λ2µY (λ2), λ2 = ‖Tx2‖Y = ‖T2‖. Evidently λ2 ≤ λ1 and ν2 ≤ ν1.
Continuing in this way we obtain elements x1, x2, . . . , xn of X , all with unit norm,
subspaces M1, . . . ,Mn of X∗ and N1, . . . , Nn of Y ∗, where

Mk = sp {JXx1, . . . , JXxk} and Nk = sp {JY Tx1, . . . , JY Txk}, k = 1, . . . , n,

and decreasing families X1, . . . , Xn and Y1, . . . , Yn of subspaces of X and Y re-
spectively given by

Xk = 0Mk−1, Yk = 0Nk−1, k = 2, . . . , n. (7)

Moreover, for each k ∈ {1, . . . , n}, T maps Xk into Yk, xk ∈ Xk and with Tk :=
T �Xk

, λk = ‖Tk‖ = ‖Txk‖Y , νk = λkµY (λk), we have

〈Tkx, JYk
Tkxk〉Yk

= νk 〈x, JXk
xk〉Xk

for all x ∈ Xk, (8)

and so
T ∗
kJYk

Tkxk = νkJXk
xk. (9)

Note that (8) is equivalent to

〈Tkx, JY Txk〉Y = νk〈x, JXxk〉X , x ∈ Xk. (10)

For on identifying Y ∗
k with the quotient space Y ∗/Y 0

k , it follows that JYk
y−JY y ∈

Y 0
k for any y ∈ Yk and hence, if x ∈ Xk,

〈Tkx, JYk
y〉Yk

= 〈Tkx, JY y〉Y
since Tkx ∈ Yk. Similarly for the right-hand sides of (8) and (10). Since Txk ∈
Yk = 0Nk−1, we have

〈Txk, JY Txl〉Y = 0 if l < k. (11)

The process stops with λn, xn and Xn+1 if and only if the restriction of T to Xn+1

is the zero operator. In that case, the range of T is the linear space spanned by
Tx1, . . . , Txn. For if x ∈ X , put

wk = x−
k−1∑

j=1

ξjxj , ξj = ξj(x),

for k ≥ 2, where the ξj are so chosen that wk ∈ Xk. This choice is possible, and
in a unique way, in view of (11): just take ξ1 = 〈x, JXx1〉X and for 2 ≤ l ≤ k − 1,

ξl =

〈

x−
l−1∑

j=1

ξjxj , JXxl,

〉

X

.

This means that Twn+1 = 0, so that

Tx =
n∑

j=1

ξjTxj =
n∑

j=1

λjξjyj, where yj = Txj/ ‖Txj‖Y . (12)
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If T is not of finite rank then the sequence {λn} is infinite and converges to
zero. For then, since Txn ∈ 0Nn−1,

〈

Txn, J̃Y Txm

〉

Y
= 0 if m < n. (13)

Thus if m < n,

lim
k→∞

λk ≤ ‖Txm‖Y =
〈

Txm, J̃Y Txm

〉

Y
=
〈

Txm − Txn, J̃Y Txm
〉

Y

≤ ‖Txm − Txn‖Y
∥
∥
∥J̃Y Txm

∥
∥
∥
Y ∗

= ‖Txm − Txn‖Y .
Since {xn} is bounded and T is compact, some subsequence of {Txn} must con-
verge and hence the assertion follows. Furthermore, if x ∈ ∩n∈NXn, then, for all
n ∈ N, ‖Tx‖Y ≤ λn‖x‖X → 0 as n → ∞, so that ∩n∈NXn is a subspace of the
kernel ker(T ) of T .

A key role is played by the family of maps

Sk : X →M′
k−1 := sp{x1, . . . , xk−1}, k ≥ 2,

determined by the condition that x − Skx ∈ Xk for all x ∈ X . By induction it
follows that Sk is uniquely given by

Skx :=
k−1∑

j=1

ξj(x)xj , (14)

where, as noted above,

ξj(x) =

〈

x−
j−1∑

i=1

ξi(x)xi, JXxj

〉

X

for j ≥ 2, and ξ1(x) = 〈x, JXx1〉X.

Hence Sk is linear. Also from the uniqueness, it follows that S2
k = Sk and Sk is a

linear projection of X onto M′
k−1. In fact, it is established in [11], Proposition 9

that for each k ≥ 2, X and X∗ have the direct sum decompositions

X = Xk ⊕M′
k−1, X∗ = Mk−1 ⊕ (M′

k−1)
0. (15)

The operators Sk, S∗
k are respectively linear projections of X onto M′

k−1 and X∗

onto Mk−1. The identity (10) can therefore be written as

〈T (I − Sk)x, JY Txk〉Y = νk〈(I − Sk)x, JXxk〉X , for all x ∈ X. (16)

Hence
(T ∗JY T − νkJX)xk ∈ X0

k = Mk−1,

and
(I∗ − S∗

k) (T ∗JY T − νkJX)xk = 0. (17)
Given any x ∈ X and k ∈ N, let zk be the point in Xk nearest to x, so that

zk = Pkx, where Pk = PXk
is the (in general, non-linear) projection of X onto

Xk. Then as ‖zk − x‖X ≤ ‖x‖X it follows that

‖zk‖X ≤ 2 ‖x‖X (18)
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and of course
‖Tzk‖Y ≤ λk ‖zk‖X . (19)

Since
‖zk − x‖X = inf{‖x− zk + ty‖X : y ∈ Xk},

we see that for all y ∈ Xk,

d

dt
‖x− zk + ty‖X

∣
∣
∣
∣
t=0

= 0,

and hence
〈y, JX(x− zk)〉X = 0 for all y ∈ Xk. (20)

It follows that JX(x− zk) ∈Mk−1, and thus, by (15), we have

JX(x− Pkx) = S∗
kJX(x− Pkx)

and so
x− Pkx = J−1

X S∗
kJX(x− Pkx). (21)

Furthermore, since λk → 0 as k→∞, we have on using (18) and (19),

Tx = lim
k→∞

TJ−1
X S∗

kJX(x− Pkx). (22)

If T has infinite rank, there is a strictly increasing sequence (k(j))j∈N of
natural numbers such that the weak limit

w − lim
j→∞

zk(j)

exists and it lies in kerT since ∩k∈NXk ⊆ kerT . If kerT = {0}, then zk(j) → 0
weakly and

x = w − lim
j→∞

J−1
X S∗

k(j)JX(x − Pk(j)x). (23)

This can be expressed in the form

x = w − lim
j→∞

J−1
X





k(j)−1
∑

i=1

ηi(k(j), x)JXxi



 ,

for some real constants ηi(k(j), x). However, a deeper analysis yields the following
results in [11], Theorem 17, Remarks 18 and 19, Theorem 21 and Corollary 22:

Theorem 2. Suppose that X is uniformly convex and X∗ is strictly convex; put
X∞ = ∩k∈NXk and write Pk, P∞ for the projections onto Xk, X∞, respectively.
Then for all x ∈ X, Pkx→ P∞x as k →∞ and

x = lim
k→∞

(I − Pk)Skx+ P∞x. (24)

This can be expressed as

x = lim
k→∞






J−1
X

k−1∑

j=1

ηj(k, x)JXxj






+ P∞x,
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for some real constants ηj(k, x). If ker(T ) = {0} and limk→∞ Skx exists, then
x =

∑∞
j=1 ξj(x)xj .

If X is a Hilbert space, then for any x ∈ X,

x =
∞∑

j=1

(x, xj)Xxj + P∞x.

From (24) it follows that

Tx = lim
k→∞

T (I − Pk)Skx (25)

since X∞ ⊆ kerT . If X is a Hilbert space then

Tx =
∞∑

j=1

(x, xj)XTxj.

In [11], Remark 20, it was noted that the operator T was only needed in
Theorem 2 to establish the existence of the sequence {xj} with the appropriate
properties. This has the following implication for a representation of Tx in terms
of the sequence {yj} in Y , where yj = Txj/‖Txj‖X = λ−1

j Txj. The analogues
of the maps Sk are maps Rk : Y → N ′

k−1 := sp{y1, y2, . . . , yk−1}, k ≥ 2, deter-
mined by the conditions y − Rky ∈ Yk for all y ∈ Y , and we have the direct sum
decomposition

Y = N ′
k−1 ⊕ Yk.

The Rk are linear projections onto N ′
k−1 and are uniquely given by

Rky =
k−1∑

j=1

γj(y)yj ,

where

γj(y) =

〈

y −
j−1∑

i=1

γi(y)yi, JY yj

〉

Y

, γ1(y) = 〈y, JY y1〉Y .

It follows that γj(Tx) = λjξj(x) and Rk(Tx) = TSkx. The resulting theorem is

Theorem 3. Suppose that Y is uniformly convex and Y ∗ is strictly convex; put
Y∞ = ∩k∈NYk and write Qk, Q∞ for the (generally nonlinear) projections of Y
onto Yk, Y∞ respectively. Then for all x ∈ X,QkTx→ Q∞Tx as k →∞ and

Tx = lim
k→∞

(I −Qk)TSkx+Q∞Tx, (26)

where TSkx =
∑k−1

j=1 ξj(x)Txj =
∑k−1

j=1 λjξj(x)yj .
If Y is a Hilbert space, then for all x ∈ X,

Tx =
∞∑

j=1

λjξjyj +Q∞Tx, (27)

where ξj = λ−1
j (Tx, yj)Y .
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Remark 4. When X and Y are Hilbert spaces, the duality maps are identified with
the identity and the duals with the original spaces; also S∗

k = Sk. The direct sums
in (15) are now orthogonal sums and T ∗Txk ∈ Xk. Hence Sk(T ∗T − νkI)xk =
0. On using (17), this yields |T |2xk := T ∗Txk = λ2

kxk, since νk = λ2
k. Hence

λk is a singular value of T . In this case, Theorem 3 gives the classical Schmidt
representation of T and T ∗, and Y∞ = {0}, (see, for example, Chapter II, §5 of [9]).

It is shown in [12], Theorem 6, that the final term in (27) is redundant (and
hence Y∞ = {0}) for all Banach spaces X and Y with strictly convex duals, (see
Theorem 9 below).

Remark 5. Let X be a Hilbert space and ker(T ) = {0}. We have shown in Theorem
2 that, for all x ∈ X ,

x =
∑

j

(x, xj)Xxj .

Hence, since T ∗JY Tx ∈ X , we have

T ∗JY Tx =
∑

j

(T ∗JY Tx, xj)Xxj

=
∑

j

〈Txj , JY Tx〉Y xj .

In particular, since Yj = 0Nj−1 ⊆ 0Nl if j − 1 ≥ l,

T ∗JY Txl =
∑

j≤l
〈Txj , JY Txl〉Y xj

= 〈Txl, JY Txl〉Y xl +
∑

j≤l−1

〈Txj , JY Txl〉Y xj

= νl〈xl, JXxl〉Xxl +
∑

j≤l−1

〈Txj , JY Txl〉Y xj

by (10). Since 〈xl, JXxl〉X = ‖xl‖X = 1 it follows that

T ∗JY Txl = νlxl +
∑

j≤l−1

〈Txj , JY Txl〉Y xj . (28)

Thus, as we already know, T ∗JY Txl = νlxl if l = 1 or Y is a Hilbert space, but is
the converse true?

Remark 6. It is illuminating to interpret Theorem 2 in the following way. First
define

S :=
{

z ∈
∏

k∈N

(X/Xk) : z = (zk), zk = φk(zk+1)

and ‖z‖S := sup
k

(‖zk‖X/Xk

)
<∞

}

,
(29)

where X/Xk are quotient spaces and φk : X/Xk+1 → X/Xk is the canonical map.
To simplify notation, we omit the canonical maps of X into X/X∞ and X into
X/Xk, whenever the meaning is unambiguous.
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From (15), M′
k−1 � X/Xk, and the map Sk : X →M′

k−1 in (14) satisfies

‖Skx‖X/Xk
= ‖Skx− PkSkx‖X . (30)

With u = Skx, we have from (15) that x−u ∈ Xk and so Pk(u−x) = u−x. Also,
since Pkx is the unique element w ∈ Xk for which ‖x− w‖X is minimal, we infer
from

‖x− (x − u+ Pku)‖X = ‖u− Pku‖X
that Pkx = x− u+ Pku, which gives

PkSkx− Pkx = Skx− x
and hence

PkSkx− Skx = Pkx− x.
On substituting in (30), we have

‖Skx‖X/Xk
= ‖x− Pkx‖X = ‖x‖X/Xk

. (31)

Since ‖ · ‖X/Xk
increases with k, it follows that

sup
k
‖Skx‖X/Xk

= lim
k→∞

‖Skx‖X/Xk
= ‖x‖X/X∞ , (32)

where X∞ := ∩∞
k=1Xk, this having been shown to be a subspace of the kernel of T .

For x ∈ X , define

Φ : x 
→ (Skx) =

(
k−1∑

i=1

ξi(x)xi

)

.

On continuing our abuse of notation by writing xi for φk(xi) if i ≤ k, we can assert
from (32) that Φ maps X into S and is an isometry if we assume that X∞ = {0}.
We now show that Φ maps X onto S.

Let (vk) ∈ S, that is, vk is in the conjugacy class
k−1∑

i=1

ξixi +Xk

and

sup
k

∥
∥
∥
∥

k−1∑

i=1

ξixi

∥
∥
∥
∥
X/Xk

<∞. (33)

Choose vk to be the element of the conjugacy class of minimum norm, that is

‖vk‖X =
∥
∥
∥
∥

k−1∑

i=1

ξixi

∥
∥
∥
∥
X/Xk

.

Then, by (33), {vk} is bounded in X and so contains a weakly convergent sub-
sequence (which we continue to denote by {vk}) with weak limit v, say. For
k > j, φj(vk) is constant, namely

∑j−1
i=1 ξixi, since the spaces Xk are decreas-

ing. Moreover, the canonical maps are weakly continuous. Hence φj(vk) → φj(v)
as k →∞, and φj(v) =

∑j−1
i=1 ξixi ∈M′

j−1. Thus (vj) = Φv as claimed.
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We have therefore proved

Theorem 7. Let S denote the space of formal series
∑∞
i=1 ξixi with norm

sup
k

∥
∥
∥
∥

k−1∑

i=1

ξixi

∥
∥
∥
∥
X/Xk

<∞.

and suppose X∞ = {0}. Then the map Φ : x 
→
(∑k−1

i=1 ξi(x)xi
)

: X → S is
an isometric isomorphism. If X is a separable Hilbert space, the result is just the
Parseval theorem.

If X∞ �= {0}, we can work with X/X∞ instead of X . Theorem 7 then holds
with Φ an isometric isomorphism of X/X∞ onto S.

Similarly, with W the space of formal series
∑∞

1 γiyi with norm

sup
k

∥
∥
∥
∥

k−1∑

i=1

γiyi

∥
∥
∥
∥
Y/Yk

,

the map Ψ : y 
→
(∑k−1

i=1 γi(y)yi
)

: Y/Y∞ →W is an isometric isomorphism and

Tx ∼
(
k−1∑

i=1

γi(Tx)yi

)

Remark 8. Suppose that X∞ = {0}. Then

Sn : X →M′
n−1 = sp{x1, x2, . . . , xn−1} � X/Xn

implies that
⋂

n∈N

S−1
n ({0}) =

⋂

n∈N

Xn = {0}.

The projective limit topology on X is the coarsest topology compatible with the
algebraic structure of X under which all the maps Sn are continuous, and this is
a locally convex topology; see [23]. If Vn := {vn} is a base of absolutely convex
neighbourhoods inM′

n−1, then finite intersections of S−1
n vn (vn ∈ Vn) form a base

of absolutely convex neighbourhoods of X in the projective limit topology.
We have vn = Bε(0)∩M′

n−1 for some ε > 0, where Bε(0) is the ball centre 0
and radius ε defined with respect to the norm induced by X (which is equivalent
to any other norm since M′

n−1 is of finite dimension). Since

S−1
n

(
Bε(0) ∩M′

n−1

)
=
{
Bε(0) ∩M′

n−1 +Xn

}

and
{
Bε(0) ∩M′

n−1 +Xn

}⋂{
Bδ(0) ∩M′

k−1 +Xk

}

⊇
{

Bmin{ε,δ}(0) ∩M′
min{n,k}−1 +Xmax{n,k}

}

,

a base of neighbourhoods of X is given by sets of the form
{
Bε(0) ∩M′

m−1 +Xk : ε > 0, k ≥ m
}
.
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Given ε > 0, k ∈ N, then, for n ≥ k,

Sn(x)− x ∈ Xn ⊆ Bε(0) ∩M′
m−1 +Xk.

Therefore Snx→ x in the projective limit topology on X .

The argument at the end of Remark 6 leads to a proof of the following
analogue of the Schmidt representation (2) established in [12]. However, we refer
the reader to the direct proof given in [12], Theorem 6, which is more transparent
and instructive.

Theorem 9. Let X,Y be reflexive Banach spaces with strictly convex duals and
T : X → Y a compact linear operator. Then, for all x ∈ X,TSnx → Tx in Y ,
that is,

Tx =
∞∑

i=1

λiξi(x)yi, yi := Txi/‖Txi‖Y .

If T is of finite rank, the sum is finite.

To conclude this section we consider the case in which X = Y , so that
T : X → X is a compact linear map with spectrum that, apart from the point
0, consists solely of classical eigenvalues of finite algebraic multiplicity. Let {λ̃n}
be the sequence of all non-zero classical eigenvalues of T , repeated according to
algebraic multiplicity and ordered so that

∣
∣
∣λ̃1

∣
∣
∣ ≥

∣
∣
∣λ̃2

∣
∣
∣ ≥ · · · ≥ 0.

If T has only m (< ∞) distinct classical eigenvalues and M is the sum of their
algebraic multiplicities, we put λ̃n = 0 for all n > M . Our concern here is the
relationships between the ‘eigenvalues’ λn discussed earlier in this section, the
classical eigenvalues λ̃n and various s-numbers: we recall that s-numbers form
sequences of real numbers used to help determine the ‘degree of compactness’ of
maps. These numbers are defined for any bounded linear map S : E → F , where
E and F are Banach spaces; the ones we shall need are:

(i) the approximation numbers an(S), where

an(S) := inf ‖S − L‖ (n ∈ N),

the infimum being taken over all bounded linear maps L : E → F with
rank L := dim L(E) < n;

(ii) the Gelfand numbers cn(S), where

cn(S) := inf ‖S | Ẽ‖ ,
and the infimum is taken over all linear subspaces Ẽ of E with codim Ẽ < n;

(iii) the Weyl numbers xn(S), where

xn(S) := sup{an(SA) : ‖A : l2 → E‖ ≤ 1}.
Details of the main properties of these numbers may be found in [9], [18]

and [21].
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First we observe that if λ̃ is a non-zero eigenvalue of T corresponding to a
normalised eigenvector x, then

〈

x, λ−1T ∗J̃Xx
〉

X
=
〈

λ−1Tx, J̃Xx
〉

X
=
〈

x, J̃Xx
〉

X
= 1,

so that by the strict convexity and reflexivity of X∗, we have

T ∗J̃Xx = λJ̃Xx.

This means that J̃Xx is an eigenvector of T ∗ with corresponding eigenvalue λ; by
(3), so is JXx. Moreover, since J̃X(λx) = (sgn λ)J̃Xx,

T ∗J̃XTx = T ∗J̃X(λx) = (sgn λ)T ∗J̃Xx = |λ| J̃Xx,
so that the eigenvector x of T satisfies our basic equation (5). Consideration of
suitable compact Volterra integral operators shows that solutions of (5) need not
be eigenvectors of T .

Next, since

codim Xk = dim (sp{JXx1, . . . , JXxk−1}),
it follows immediately that

cn(T ) ≤ λn (n ∈ N).

Moreover,
xn(T ) ≤ cn(T ) ≤ an(T ) (n ∈ N)

(see [21], p. 115), and
∣
∣
∣λ̃2n−1

∣
∣
∣ ≤ e

(
n∏

k=1

xk(T )

)1/n

(see [21], p. 156). Hence

∣
∣
∣λ̃2n−1

∣
∣
∣ ≤ e

(
n∏

k=1

ck(T )

)1/n

≤ e ‖T ‖(n−1)/n c1/nn (T ) ≤ e ‖T ‖(n−1)/n λ1/n
n .

However, while this gives some connection between our eigenvalues and the clas-
sical ones, it does not seem particularly useful or sharp.

3. Applications

Let Ω be a bounded open subset of R
n, let 1 < p <∞ and letW 1

p (Ω) be the Sobolev
space of all real-valued functions u ∈ Lp(Ω) all of whose first-order distributional
derivatives Dju also belong to Lp(Ω). The norm on W 1

p (Ω) is defined to be




∫

Ω






|u|p +

n∑

j=1

|Dju|p





dx





1/p

.
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We take X to be
0

W 1
p(Ω), the closure in W 1

p (Ω) of the set C∞
0 (Ω) of all infinitely

differentiable functions with compact support in Ω, and define the norm on X by

‖u‖X =





∫

Ω

n∑

j=1

|Dju|p dx




1/p

. (34)

Because of the Friedrichs inequality (see [9], Theorem V.3.22), this norm is equiv-
alent to the norm on X inherited from W 1

p (Ω). Let Y = Lp(Ω), T = id : X → Y ;
id is compact. It is plain that both X and Y are reflexive and strictly convex.
The strict convexity of Y ∗ is obvious, while that of X∗, follows easily from the
Gâteaux-differentiability of ‖·‖X on X\{0}. Direct verification shows that

J̃Y u = ‖u‖−(p−1)
p |u|p−2

u, (35)

where ‖·‖p is the usual norm on Lp(Ω). As for J̃X , we claim that

J̃Xu = −‖u‖−(p−1)
X ∆pu in the sense of distributions, (36)

where

∆pu =
n∑

j=1

Dj

(

|Dju|p−2
Dju

)

, (37)

corresponding to a version of the p-Laplacian. To verify this, note that for all
u ∈ X ,

〈

u,−‖u‖−(p−1)
X ∆pu

〉

X
= −‖u‖−(p−1)

X 〈u,∆pu〉X

= ‖u‖−(p−1)
X

∫

Ω

n∑

j=1

Dju. |Dju|p−2
Djudx

= ‖u‖X .
With µX(t) = µY (t) = tp−1, the corresponding duality maps JX , JY are given by

JX(u) = −∆pu, JY (u) = |u|p−2u.

Our basic eigenvalue equation (5) then gives
〈

v, J̃Y u1

〉

Y
= λ1

〈

v, J̃Xu1

〉

X
for all v ∈ X,

which, since ‖u1‖Y = ‖id‖ = λ1, amounts to
∫

Ω

v |u1|p−2
u1dx = λp1

∫

Ω

n∑

j=1

(Djv) |Dju1|p−2
Dju1dx, (38)

so that u1 is a weak solution of the Dirichlet eigenvalue problem

−∆pu1 = λ−p1 |u1|p−2
u1, u1 = 0 on ∂Ω. (39)
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Since id is not of finite rank, our general procedure ensures that for each k ∈ N,
there are an “eigenvector” uk and a corresponding “eigenvalue” λ−pk that satisfy

−∆puk = λ−pk |uk|p−2uk, uk = 0 on ∂Ω, (40)

in the sense that for all v ∈ Xk,
∫

Ω

v|uk|p−2ukdx = λpk

∫

Ω

n∑

j=1

(Djv)|Djuk|p−2Djukdx. (41)

We shall refer to uk as a k-weak solution of (40): note that when k = 1, all
functions in X1 = X are allowed as test functions, while for general k > 1 the test
functions have to be taken from Xk ⊂ X . The smoothness of these test functions
remains unclear to us. Results of this kind are known for the eigenvalues obtained
by the Lyusternik-Schnirel’mann procedure (see, for example, [8] and [15]), but
as remarked in the Introduction, the simplicity of the present approach has its
attractions. Moreover, information about the growth of the λ−pk can be obtained
quite painlessly. In fact, if we let id : W 1

p (Ω) → Lp(Ω) be the natural embedding,
then from the definitions of the kth Gelfand and Weyl numbers we have

λk ≥ ck(idk) ≥ ck(id) ≥ xk(id).

From [18], Theorem 3.c.5 and Remark 3.c.7 (1), we see that xk(id) ≥ ck−1/n,
where c is a positive constant independent of k. Hence λk ≥ ck−1/n, and so the
eigenvalues λ−pk of (40) are 0(kp/n). This upper estimate of the growth of the
eigenvalues is exactly that obtained for the Lyusternik-Schnirel’mann eigenvalues
in [14] and [16] (these corresponding to classical weak solutions), where lower
bounds of the same order are also established.

We recall that the mth such eigenvalue, which we denote by λ̂m, is given by
(see [1], Theorem 3.4 and [25], Chapter 44)

λ̂m = inf
K∈Am

sup
u∈K

‖u‖−pp ,

where Am is the family of all compact, symmetric subsets K of {u ∈
0

W 1
p(Ω) :

‖∇u‖p = 1} with genus γ(K) ≥ m, the genus being defined as

γ(K) = inf{k ∈ N : there is a continuous, odd map h : K → R
k\{0}}.

The corresponding quantities λ−pm obtained by our method are expressible as

λ−pm = inf
u∈Xm\{0}

‖∇u‖pp
‖u‖pp

.

It is not clear what connection there may be between the eigenvalues found by our
method and those given by the Lyusternik-Schnirel’mann procedure, nor whether
there are eigenvalues not found by either process.

If instead we suppose that 1 < p < n, q ∈
(

1, np
n−p

)

and take X =
0

W 1
p(Ω),

Y = Lq(Ω), T = id : X → Y , with Ω as before, then as id is compact, the same
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procedure establishes the existence of a countable family of eigenvectors vk and
eigenvalues µk of the p, q-Laplacian Dirichlet eigenvalue problem

−∆pv = µ |v|q−2
v, v = 0 on ∂Ω, (42)

where each vk is a k-weak solution of (42) in the sense just described. The same
holds when n = 1, 1 < p < ∞ and 1 < q < ∞ since, by [19], Remarks 5.8.4 (i),
0

W 1
p(Ω) is compactly embedded in C(Ω) and hence in Lq(Ω). Note that the special

case p = 2 of (42) is of physical interest as it involves the Lane-Emden equation,
of importance in astrophysics.

Applications to more complicated differential operators, including ones of
higher-order, can be found in [11], Section 4. Another natural application is to
Hardy-type operators of the form

(Tf)(x) = v(x)

x∫

a

u(t)f(t)dt, x ∈ I = [a, b] ⊂ R

considered as a map from Lp(I) into Lq(I), where p, q ∈ (1,∞), and u, v are given
positive functions in Lp′(I), Lq(I) respectively, with p′ = p/(p − 1). Under these
conditions it is known that T is compact (see, for example, [10], Chapter 2). Our
results give immediately that for each k ∈ N, there is an “eigenvalue” λk of the
basic equation (5), with λk → ∞ as k → ∞. In the case p = q, it is shown in [2],
that the corresponding Euler equation (5) has an infinite set of eigenvalues and that
these eigenvalues coincide with the approximation numbers of T . Furthermore, an
asymptotic formula for the eigenvalues is derived; see [13] for the general case.
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A Sharp Bound on Eigenvalues of
Schrödinger Operators on the Half-line
with Complex-valued Potentials

Rupert L. Frank, Ari Laptev and Robert Seiringer

Abstract. We derive a sharp bound on the location of non-positive eigenvalues
of Schrödinger operators on the half-line with complex-valued potentials.
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1. Introduction and main result

In this note we are concerned with estimates for non-positive eigenvalues of one-
dimensional Schrödinger operators with complex-valued potentials. We shall pro-
vide an example of a bound where the sharp constant worsens when a Dirichlet
boundary condition is imposed. This is in contrast to the case of real-valued po-
tentials, where the variational principle implies that the absolute value of the
non-positive eigenvalues decreases.

In order to describe our result, we first assume that V is real-valued. It is a
well-known fact (attributed to L. Spruch in [K]) that any negative eigenvalue λ of
the Schrödinger operator −∂2 − V in L2(R) satisfies

|λ|1/2 ≤ 1
2

∫ ∞

−∞
|V (x)| dx . (1.1)

The constant 1
2 in this inequality is sharp and attained if V (x) = cδ(x − b) for

any c > 0 and b ∈ R. (It follows from the Sobolev embedding theorem that the
operator −∂2−V can be defined in the quadratic form sense as long as V is a finite
Borel measure on R. In this case the right side of (1.1) denotes the total variation
of the measure.) From (1.1) and the variational principle for self-adjoint operators

Support through DFG grant FR 2664/1-1 (R.F.) and U.S. National Science Foundation grants
PHY 0652854 (R.F.) and PHY 0652356 (R.S.) is gratefully acknowledged.
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we immediately infer that any negative eigenvalue of the operator −∂2 − V in
L2(0,∞) with Dirichlet boundary conditions satisfies

|λ|1/2 ≤ 1
2

∫ ∞

0

|V (x)| dx . (1.2)

The constant 1
2 in this inequality is still sharp but no longer attained.

Motivated by concrete physical examples and problems in computational
mathematics, an increasing interest in eigenvalue estimates for complex-valued po-
tentials has developed in recent years. A beautiful observation of [AAD] is that
(1.1) remains valid for all eigenvalues in C \ [0,∞) even if V is complex-valued.
The same is not true for (1.2) ! Indeed, our main result is

Theorem 1.1. For a ∈ R let

g(a) := sup
y≥0

∣
∣ eiay − e−y

∣
∣ . (1.3)

Any eigenvalue λ = |λ|eiθ ∈ C \ [0,∞) of the operator −∂2 − V in L2(0,∞) with
Dirichlet boundary conditions satisfies

|λ|1/2 ≤ 1
2
g(cot(θ/2))

∫ ∞

0

|V (x)| dx . (1.4)

This bound is sharp in the following sense: For any given m > 0 and θ ∈ (0, 2π)
there are c ∈ C and b > 0 such that for V (x) = cδ(x−b) one has |c| = ∫ |V (x)| dx =
m and the unique eigenvalue of −∂2 − V is given by (m2/4) g(cot(θ/2))2eiθ, that
is, equality is attained in (1.4).

Remark 1.2. Our bound does not apply to positive eigenvalues. In the case of real-
valued potential it is known that there are no positive eigenvalues if V ∈ L1(R).

We note that 1 < g(a) < 2 for a > 0. The following lemma discusses the
function g in more detail.

Lemma 1.3. For a ≥ 0, the function g(a) is monotone increasing, with g(0) = 1
and lima→∞ g(a) = 2. Moreover,

g(a) = 1 +O( e−π/(3a) ) (1.5)

for small a, and

g(a) = 2− π

a
+O(a−2) (1.6)

as a→∞.

In Figure 1 we plot the curve {|z| = g(cot(θ/2))2}. It follows from (1.6) that
this curve hits the positive real axis at the point 4 with slope 2/π. Close to the
point −1 the curve coincides with a semi-circle up to exponentially small terms,
as (1.5) shows.
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Figure 1. The maximal value of 4|λ| on the half-line with
∫∞
0
|V (x)| dx = 1. The dashed line is the corre-

sponding bound on the whole line.

Using that supa g(a) = 2 we find

Corollary 1.4. Any eigenvalue λ ∈ C \ [0,∞) of the operator −∂2−V in L2(0,∞)
with Dirichlet boundary conditions satisfies

|λ|1/2 ≤
∫ ∞

0

|V (x)| dx . (1.7)

The bound is not true in general if the right side is multiplied by a constant < 1.

Inequality (1.7) follows also from inequality (1.1) for complex-valued poten-
tials. Indeed, the odd extension of an eigenfunction of the Dirichlet operator is an
eigenfunction of the whole-line operator with the potential V (|x|) with the same
eigenvalue. The remarkable fact is that the inequality is sharp in the complex-
valued case, as shown in Theorem 1.1.

By the same argument (1.7) is also valid if Neumann instead of Dirichlet
boundary conditions are imposed. In this case equality holds for any V (x) = cδ(x)
with Re c > 0. In particular, in the Neumann case (1.7) is sharp for any fixed
argument 0 < θ < 2π of the eigenvalue λ. The analogue for mixed boundary
conditions is

Proposition 1.5. Let σ ≥ 0. Any eigenvalue λ ∈ C\ [0,∞) of the operator −∂2−V
in L2(0,∞) with boundary conditions ψ′(0) = σψ(0) satisfies

|λ|1/2 ≤
∫ ∞

0

|V (x)| dx . (1.8)

The bound is sharp for any σ ≥ 0 and any fixed argument 0 < θ < 2π of the
eigenvalue λ.

Note that if σ < 0 a bound of the form (1.8) can not hold since there exists
a non-positive eigenvalue even in the case V = 0.
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Remark 1.6. In the self-adjoint case inequality (1.1) for whole-line operators is
accompanied by bounds

|λ|γ ≤ Γ(γ + 1)√
π Γ(γ + 3/2)

(
γ − 1/2
γ + 1/2

)γ−1/2 ∫ ∞

−∞
|V (x)|γ+1/2 dx (1.9)

for γ > 1/2; see [K, LT]. In contrast, in the non-selfadjoint case it seems to be
unknown whether the condition V ∈ Lγ+1/2(R) for some 1/2 < γ < ∞ implies
that all eigenvalues in C \ [0,∞) lie inside a finite disc; see [DN, FLLS, LS, S] for
partial results in this direction. We would like to remark here that even if a bound
of the form (1.9) were true in the non-selfadjoint case with 1/2 < γ <∞, then (in
contrast to (1.1) for γ = 1/2) the constant would have to be strictly larger than
in the self-adjoint case. To see this, consider V (x) = α(α+1)

cosh2 x
with Reα > 0. Then

λ = −α2 is an eigenvalue (with eigenfunction (coshx)−α) and the supremum

sup
Reα≥0

|λ|γ
∫∞
−∞ |V (x)|γ+1/2 dx

=
(∫ ∞

−∞

dx

cosh2 x

)−1

sup
Reα≥0

|α|γ−1/2

|α+ 1|γ+1/2

is clearly attained for purely imaginary values of α.

2. Proofs

Proof of Theorem 1.1. Assume that −∂2ψ(x)− V (x)ψ(x) = −µψ(x) with ψ(0) =
0, ψ �≡ 0 and µ = −λ ∈ C \ (−∞, 0]. Then the Birman-Schwinger operator

V 1/2 1
−∂2 + µ

|V |1/2 , V 1/2 := (sgnV )|V |1/2 ,

has an eigenvalue 1, and hence its operator norm is greater or equal to 1.
The integral kernel of this operator equals

V (x)1/2
e−

√
µ|x−y| − e−

√
µ(x+y)

2
√
µ

|V (y)|1/2 ,

and hence
∣
∣
∣
∣

(

ψ , V 1/2 1
−∂2 + µ

|V |1/2 ϕ
)∣
∣
∣
∣ ≤

‖V ‖1
2
√|µ| ‖ψ‖2‖ϕ‖2 sup

x,y≥0

∣
∣
∣ e−

√
µ|x−y| − e−

√
µ(x+y)

∣
∣
∣ .

Without loss of generality, we can take the supremum over the smaller set x ≥
y ≥ 0. Then

sup
x≥y≥0

∣
∣
∣ e−

√
µ(x−y) − e−

√
µ(x+y)

∣
∣
∣ = sup

x≥y≥0
e−xRe

√
µ
∣
∣
∣ e

√
µy − e−

√
µy
∣
∣
∣ .

Since Re
√
µ > 0, the supremum over x is achieved at x = y, and hence

sup
x,y≥0

∣
∣
∣ e−

√
µ(x−y) − e−

√
µ(x+y)

∣
∣
∣ = sup

y≥0

∣
∣
∣1− e−2

√
µy
∣
∣
∣ .
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If we write µ = −|µ| eiθ with 0 < θ < 2π, then

sup
y≥0

∣
∣
∣1− e−2

√
µy
∣
∣
∣ = sup

y≥0

∣
∣
∣ e2i

√
|µ| cos(θ/2)y − e−2

√
|µ| sin(θ/2)y

∣
∣
∣ = g(cot(θ/2))

with g from (1.3). Hence we have shown that
∥
∥
∥
∥V

1/2 1
−∂2 + µ

|V |1/2
∥
∥
∥
∥ ≤

‖V ‖1
2
√|µ| g(cot(θ/2)) . (2.1)

Since the left side is greater or equal to 1, as remarked above, we obtain (1.4).
For V (x) = cδ(x− b) the Birman-Schwinger operator reduces to the number

c(1− e−2
√
µb)/(2

√
µ) and inequality (2.1) becomes equality provided

√
µb satisfies

|1− e−2
√
µb| = g(cot(θ/2)). For given m > 0 and θ ∈ (0, 2π) this determines b and

|c|. The phase of c is found from the equation c(1 − e−2
√
µb)/(2

√
µ) = 1. �

Proof of Lemma 1.3. By continuity for a > 0 there exists an optimizer y0 such that
g(a) = | eiay0 − e−y0 |. We claim that y0 satisfies π/3 < ay0 ≤ π. To see the lower
bound, note that | eiay − e−y | ≥ 1 if and only if 2 cos(ay) ≤ e−y . In particular,
cos(ay0) < 1/2. For the upper bound, if 2π > ay > π and 2 cos(ay) < e−y ,
replacing ya by 2π − ya leads to a contradiction. Similarly, if ya > 2π it can
replaced by ya− 2π in order exclude that y is the optimizer.

It is elementary to check that | eiay − e−y | is monotone increasing in a for
every fixed y with 0 ≤ y ≤ π/a. Since we know already that y0 ≤ π/a, the
monotonicity of g follows.

Plugging in y = π/a, we obtain g(a) ≥ 1+ e−π/a ≥ 2−π/a. For large enough
a, it follows from this that y0 is close to π/a. In particular, y0 ≥ π/(2a), and hence
| eiay0 − 1| ≥ g(a) ≥ 2 − π/a. This implies that y0 = π/a + O(a−2), and thus
g(a) = 2− π/a+O(a−2), as claimed.

For an upper bound for small a, we use the triangle inequality and the bound
ay0 ≥ π/3 to find g(a) ≤ 1 + e−y0 ≤ 1 + e−π/(3a) . �

Proof of Proposition 1.5. We proceed as in the proof of Theorem 1.1. The Birman-
Schwinger operator has the kernel

V (x)1/2
e−

√
µ|x−y| +

√
µ−σ√
µ+σ e−

√
µ(x+y)

2
√
µ

|V (y)|1/2 .

The assertion follows as above using that

sup
y≥0

∣
∣
∣
∣1 +

√
µ− σ√
µ+ σ

e−2
√
µy

∣
∣
∣
∣ ≤ 2

by the triangle inequality and the fact that |√µ−σ| ≤ |√µ+σ|. The fact that the
bound (1.8) is sharp for given argument 0 < θ < 2π of the eigenvalue λ follows by
choosing V (x) = −ci eiθ/2 δ(x) for c > 0 and letting c→∞. �
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Zero-range Model of p-scattering
by a Potential Well

Yu.E. Karpeshina

Abstract. A well-known method of zero-range potentials consists of replac-
ing a deep potential well of a small radius by a boundary condition at the
point of the centre of the well. However, in passing to the limit from a deep
and narrow potential well to the zero-range model, information, concerning p-
scattering and scatterings of higher orders, disappears. Traditional zero-range
model describes only bound states and s-scattering. The principal mathemat-
ical difficulty, which arises in the mathematical construction of a zero-range
model, describing p-scattering, is that p-scattered waves have a square non-
integrable singularity at the point, where the well should be located. It is
not possible to construct the corresponding energy operator in L2(R

3). We
construct the energy operator in some Hilbert space, which naturally arises
from the problem and includes L2(R

3). We explicitly construct the complete
system of generalized eigenfunctions in this space.

Mathematics Subject Classification (2000). 35Q40, 81V45.

Keywords. Zero-range potential, p-scattering.

1. Introduction

Behavior of scattered waves at large distances from a potential well is often de-
scribed by the following expansion:

Ψ(k, x) =|x|→∞ Ψ0(k, x), (1.1)

Ψ0(k, x) = ei(k,x) +
∑

n∈N3
0

νn(k)
∂|n|

∂xn
ei|k||x|

|x| , (1.2)

where νn(k) are scattering amplitudes,

N0 = {0, 1, 2, . . .}, n = (n1, n2, n3),
∂|n|

∂xn
=

∂n1+n2+n3

∂xn1
1 ∂xn2

2 ∂xn3
3

.
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The term corresponding to n = (0, 0, 0) in (1.2) is called S-scattered wave, the
terms corresponding to the first derivatives are P -scattered waves. A basic prob-
lem in Scattering Theory is to connect characteristics of the well with scattering
amplitudes.

There is a method of zero-range potential, widely used in Quantum Mechan-
ics, which connects properties of the well with the S-scattered wave. The method
consists of replacing a deep potential well of a small radius by a boundary condition
at the centre of the well, [1]–[3]. Namely, let

HV = −∆ + V, (1.3)

where

V (x) =
{ −E0, |x| ≤ r0,

0, |x| > r0.
(1.4)

Let r0 tends to zero, E0 > 0, E0 is of order r−2
0 . It is possible to choose E0(r0) in

such a way that H has a fixed negative eigenvalue −α2 for all sufficiently small r0.
The corresponding eigenfunction is close to the Green function ce−α|x||x|−1 outside
the well. This observation motivated physicists to replaceHV by an operatorH(α),
which acts in L2(R3) and is described by the formula:

H(α)u(x)|x|�=0 = −∆u(x). (1.5)

The domain of H(α) is the set of functions u which admit the representation
u = u0 + ce−α|x|/|x|, where u0 ∈ W 2,0

2 , c ∈ C, W 2,0
2 being the closure in W 2

2 of the
set of infinitely differentiable functions with the support in R

3\{0}. By embedding
theorem [4], u0 is continuous and u0(0) = 0. Hence, u(x) satisfies the following
asymptotic near the origin:

u(x) =|x|→0 c(|x|−1 − α) + o(1). (1.6)

The first rigorous description ofH(α) is given in [5]. The family of operatorsH(α),
α ∈ R, is a family of self-adjoint extensions of a symmetric operator H0 = −∆,
D(H0) = W 2,0

2 acting in L2(R3). The operator H0 has the deficiency indices equal
to (1, 1). Its self-adjoint extensions can be described by von Neumann formulas [6]
and turned out to coincide with the family H(α), α ∈ R∪ {∞}. Spectral study of
H(α) is rather simple. The negative spectrum of H(α) consists of an eigenvalue
−α2 if α > 0 and empty if α ≤ 0. The spectrum ofH(α) includes the positive semi-
axis [0,∞). The positive part of the spectrum is absolutely continuous. Generalized
eigenfunctions have a form of scattered plane waves:

Ψ(k, x) = ei(k,x) + ν0(k)ei|k||x|/|x|, k ∈ R
3,

where the coefficient ν0(k) is defined by the asymptotic (1.6):

ν0 = − 1
α+ i|k| .

Different configurations of such “atoms” are widely used in physics to describe
atomic systems (see, e.g., [2, 3]).
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A shortcoming of the zero-range model is that it describes only spherically
symmetric scattered waves ν0(k)ei|k||x|/|x| (S-scattering). In passing to the limit
from a deep and narrow potential well to the zero-range model, information, con-
cerning p-scattering and scatterings of higher orders on the well, vanishes.

The principal mathematical difficulty, which arises in the rigorous construc-
tion of a zero-range potential, describing p-scattering, is that a p-scattered wave
is a combination of the first derivatives of eik|x|/|x|. The derivatives have a singu-
larity at the point x = 0, which is not square integrable. For this reason it is not
possible to construct an energy operator in L2(R3).

There are a lot of different approaches to constructing an operator, describ-
ing P -scattering from a narrow well. Some of them rely on using standard Hilbert
spaces. For example, the space of functions being square integrable with the func-
tional weight | x |β , β > 1/2 is considered in [7]. However, Laplacian is not
symmetric in this space and has to be replaced by | x |−β ∆. Eigenfunctions of
this operator don’t obey the Helmholtz equation, which is expected to describe
behavior of eigenfunctions in the whole space R

3 except the region of the well. In
the case of other standard Hilbert spaces similar problems arise. Energy operator
turns out to be trivial (just the Laplacian) or not self-adjoint or its eigenfunctions
don’t satisfy Helmholtz equation. Other approaches include an indefinite metric
approach, see, e.g., [8]–[20]. The main problem, arising in the indefinite metric
approach is that the constructed Hamiltonian is not a self-adjoint operator in a
Hilbert space. Its spectrum may have non-real eigenvalues. One more approach
has been developed in [21], where a potential well is replaced by a semitransparent
sphere with a condition on a boundary jump of the normal derivative. In this case
variables turn out to be separable and, therefore, the problem can be explicitly
solved. However, since this model is not zero-range, solutions are difficult to get
in the case of several wells.

The model constructed here is essentially described long time ago in [22].
Since then new publications have appeared. It was discovered in [24]–[26] that
it is possible to determine P -scattering through self-adjoint operators in a cer-
tain extended Hilbert space. The method of “triplet extensions” was developed
in [27], [28].

We suggest an approach different from those developed until now. The op-
erator constructed here has the following properties. First of all, it is zero-range:
its eigenfunctions satisfy Helmholtz equation for all x ∈ R

3, x �= 0. Next, eigen-
functions have the form of p-scattered waves. Finally, the energy operator is self-
adjoint in some Hilbert space, which naturally arises from the problem and includes
L2(R3). p-scattered waves form a complete orthogonal system in this space.

The scheme of the construction is the following. First, we introduce a set
of functions ψ(k, x), k ∈ R

3, which have a form of p-scattered waves, satisfying
the Helmholtz equation in R

3 \ {0}, and have the prescribed asymptotic behavior,
when x→ 0, see (see (2.4)). A positive parameter α is included in this asymptotic
formula. Different values of the parameter correspond to different wells, which are
approximated by the zero-range model. Next, we describe explicitly the Hilbert



48 Yu.E. Karpeshina

space, where the system of these p-scattered waves is complete and orthogonal.
After that, we define the Hamiltonian as the operation of multiplication by the
variable | k |2 in this system. Finally, we show that this Hamiltonian acts on
functions from its domain simply as a Laplacian everywhere, except the point
x = 0.

In Section 6 we present a boundary conditions and the operator corresponding
to a spherically symmetric well. It should be noted that following this scheme one
can consider scattering of higher orders and consider other elliptic systems, f.e.
for Lamé equations. Furthermore, this model can be easily generalized to cases of
many centers and, therefore, be used for the study of scattering by complicated
systems of wells.

2. P -scattered waves and boundary conditions

Since a potential is “concentrated” at the origin, we expect that P - scattered waves
to have a form:

ψ(k, x) = (2π)−3/2 exp i(k, x) + ν(k)G′
|k|2+i0(x) (2.1)

G′
|k|2+i0(x) =

∂

∂x1

exp ik | x |
| x | , (2.2)

with some coefficient ν(k) ∈ C. It is easy to see that ψ(k, x) has the following
asymptotic expansion near the origin:

ψ(k, x) =x→0 ν(k)
∂ | x |−1

∂x1
+ (2.3)

+b(k)
∂ | x |
∂x1

+ (2π)−3/2 + a(k)x1 + i(2π)−3/2k2x2 + i(2π)−3/2k3x3 + o(| x |),

a(k) = i(2π)−3/2k1 + ν(k)(i|k|)3/3, b(k) = −k
2ν(k)
2

.

By analogy with (1.6), we choose a condition connecting coefficients in front of
the singularity and in front of x1. Namely, βν(k) = a(k), where β is a negative
coefficient, the same for all k ∈ R

3. It is convenient (we will see this later) to write
β in the form β = (−α)3/3, α > 0. Thus, ψ(k, x) has an asymptotic:

ψ(k, x) =x→0 ν(k)
(
∂ | x |−1

∂x1
− α3

3
x1

)

+ b(k)
∂ | x |
∂x1

(2.4)

+(2π)−3/2 + i(2π)−3/2k2x2 + i(2π)−3/2k3x3 + o(| x |).
We immediately get formula for ν(�k) from the equation a(k) = α3ν(k)/3:

ν(k) = − (2π)−3/23ik1

α3 + (i | k |)3 . (2.5)

We do not have physical motivation for choosing condition (2.4). To our best
knowledge, the boundary conditions at zero, corresponding to a small inclusion
are not established; here by inclusion we mean a potential well or elastic inclusion.
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The difficulty in establishing such a connection is that a direct computation should
hold for all values of k ∈ R

3. The purpose of the paper is to describe a new approach
in constructing a self-adjoint operator, corresponding to boundary conditions (1)
and waves ψ(k, x).

3. Space Hα and Operator Aα

To begin with we consider the Hilbert space Hα of the functions, which can be
represented in the form:

F = f + γG′
−α2(x), (3.1)

where f ∈ L2(R3), γ ∈ C,

G′
−α2(x) =

∂

∂x1

exp(−α | x |)
| x | , (3.2)

α being a positive value fixed for a givenHα. A scalar product in Hα is determined
as follows:

[F1, F2] = (f1, f2) + 2παγ1γ2, (3.3)

(·, ·), being the scalar product in L2(R3). We show, that Hα can be constructed
as the closed span of ψ(k, x), k ∈ R

3.
Note that all the spaces Hα, α > 0 may be defined by the same set of

functions H:

H =
{

F (x) = f(x) + γ

(
∂

∂x1

1
|x|

)

χ(x), f ∈ L2(R3), γ ∈ C
}

χ being the characteristic function of the unit ball centered at the origin. Spaces
Hα differ by their scalar product. Note that the difference is not trivial, the scalar
products differ more essentially than just by a constant multiplier. In fact,

‖F‖Hα1
= ‖F‖Hα2

, if F ∈ L2(R3), (3.4)

for any pair α1, α2, ‖ · ‖Hα being the norm in Hα. However,

‖G′
−α2

1
‖Hα1

=
√

2πα1,

‖G′
−α2

2
‖Hα2

=
√

2πα2.

Note that G′
−α2

1
−G′

−α2
2
∈ L2(R3), since it has a weaker singularity than G′

−α2
1

or
G′

−α2
2
. By (3.4),

‖G′
−α2

1
−G′

−α2
2
‖Hα1

= ‖G′
−α2

1
−G′

−α2
2
‖Hα2

= ‖G′
−α2

1
−G′

−α2
2
‖2L2

=
(α1 − α2)2

12π2(α1 + α2)
.
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Therefore for any F being a linear combination of G′
−α2

1
, G′

−α2
2
, F = ν1G

′
−α2

1
+

ν2G
′
−α2

2
, we have the following norms:

‖F‖2Hα1
= 2πα1(ν1 + ν2)2 + ν2

2

(α1 − α2)2

12π2(α1 + α2)
,

‖F‖2Hα2
= 2πα2(ν1 + ν2)2 + ν2

1

(α1 − α2)2

12π2(α1 + α2)
.

A function ψ(k, x) has oscillatory behavior at infinity and therefore does not
belong to Hα. However, ψ(k, x)ϕ0 ∈ Hα for any ϕ0 ∈ C∞

0 (R3), here and below
C∞

0 (R3) is the set of infinitely differentiable functions with compact support. It
is easy to show that ψ(k, x)ϕ0(x) = fΨ(k, x) + ν(k)G′

−α2 (x), where fΨ(k, x) ∈
L2(R3),

fΨ(k, x) = (2π)−3/2 exp i(k, x)ϕ0(x)

+ ν(k)
(

G′
|k|2+i0(x)ϕ0(x)−G′

−α2(x)
)

.
(3.5)

Let H0
α be the set of functions F in Hα whose L2(R3)-component f(x) belongs to

C∞
0 (R3). Obviously, H0

α is dense in Hα. We consider the scalar product [F, ψ(k)],
F ∈ H0

α. Strictly speaking the scalar product is not yet defined, since ψ(k, x) �∈ Hα.
However, [F, ψ(k)ϕ0] is defined for any ϕ0 ∈ C∞

0 (R3). Indeed, it is easy to show
that

[F, ψ(k)ϕ0] =
∫

R3
f(x)fΨ(k, x)dx+ 2παγν̄

for any ϕ0(x) equal to 1 on the support of f . Note that the right-hand side does
not depend on ϕ0, since fϕ0(x) = f . From now on we define [F, ψ(k)] by the
formula

[F, ψ(k)] = [F, ψ(k)ϕ0] =
∫

R3
f(x)fΨ(k, x)dx + 2παγν̄, F ∈ H0

α. (3.6)

We formulate below our main Theorems and discuss their proofs in Sections
4 and 5.

Theorem 1. There is an isometry V between Hα and L2(R3) which is defined by
the formulae

(V F )(k) = [F, ψ(k)], (3.7)

(V −1F̃ )(x) =
∫

R3
F̃ (k)ψ(k, x)dk, (3.8)

for any F ∈ H0
α and F̃ in C∞

0 (R3).

Corollary 1. Theorem 1 enables us to extend the definition of [F, ψ(k)] to the whole
space Hα by the formula:

[F, ψ(k)] = V F.
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In fact, [F, ψ(k)] is defined for F : f ∈ C∞
0 by formula (3.6) and according to

the theorem [F, ψ(k)] = V F . Since the set H0
α is dense in Hα and V is an isometry,

we just extend the formula
[F, ψ(k)] = V F

to the whole space by continuity of V .

Corollary 2. If F (x) is such that [F, ψ(k)] ∈ C0(R3), then

F (x) =
∫

R3
[F, ψ(k)]ψ(k, x)dk. (3.9)

Let Ãα be the operator of multiplication by |k|2 in L2(R3), i.e.,

(ÃαF̃ )(k) = |k|2F̃ (k),

D(Ãα) =
{

F̃ (k) :
∫

R3
(| k |4 +1) | F̃ |2 dk <∞

}

.

Clearly, this operator is self-adjoint and its spectrum is [0,∞).
Let Aα = V −1ÃαV . By definition, the operator Aα is a self-adjoint operator

in Hα.

D(Aα) =
{

F :
∫

R3
(| k |4 +1) | [F, ψ(k)] |2 dk <∞

}

. (3.10)

AαF =
∫

R3
| k |2 [F, ψ(k)]ψ(k, x)dk (3.11)

for all F : [F, ψ(k)] ∈ C0(R3). It is enough to define the action of the operator on
this set, since it is dense in the domain in the norm ‖Aα · ‖+ ‖ · ‖.
Theorem 2. Action of the operator Aα on its domain can be described by the
formula:

AαF (x) =x �=0 −∆F (x). (3.12)

We will prove that G′
−α2(x) can be represented as a linear combination of

functions ψ(k, x):

G′
−α2(x) = 2πα

∫

R3
ν(k)ψ(k, x)dk, (3.13)

ν(k) being given by formula (2.5). FunctionG′
−α2(x) does not belong to the domain

of A, since |k|2ν(k) is not square integrable. Thus, G′
−α2(x) is not an eigenfunction

of G′
−α2(x) even though it satisfies the equation

−∆G′
−α2(x) =x �=0 α

2G′
−α2(x).

Obviously, functions ψ(k, x) form a complete set of generalized eigenfunctions of
the operator Aα.
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4. Proof of Theorem 1

The main goal is to construct the operator V satisfying Theorem 1. We prove the
theorem in several steps. First, we introduce a set Qα dense in L2(R3). We define
V ′ : Qα → L2(R3) by the formula V ′f = [f, ψ(k)] reduced to Qα. We show that V ′

is isometric. We extend it by continuity to the whole space L2(R3). We prove that
the formula V ′f = [f, ψ(k)] holds for all f with compact support. This part of the
proof is covered by Lemmas 1–3. We denote the range of V ′ by H0, H0 ⊂ L2(R3).
Introducing the operator W = (V ′)−1 on H0, we show that its action is described
by (3.8). This is made in Lemmas 4–6. Further we prove that the co-dimension of
H0 in L2(R3) is equal to one. The subspace orthogonal to H0 is spanned by the
function ν(k), where ν(k) is the scattering amplitude given by (2.5). This result
is proven in Lemma 7. Next, we define V : Hα → L2(R3) by the formula:

V |L2(R3)= V ′, V ′f = [f, ψ(k)], (4.1)

V G′
−α2(x) = 2παν(k). (4.2)

By definition of [·, ψ(k)], see (3.6), 2παν(k) = [G′
−α2 , ψ(k)], since f = 0, γ = 1 for

F (x) = G′
−α2(x). Therefore,

V F = [F, ψ(k)] for any F ∈ Hα. (4.3)

Proving (3.13) (Lemma 8), we show that (3.8) holds on the orthogonal complement
ofH0 too. Hence, (3.8) holds in the whole space L2(R3). Checking that ‖ν̄‖L2(R3) =
(2πα)−1/2 and considering the coefficient 2πα in the definition (3.3) of [·, ·], we
obtain that V is isometric (Lemma 9).

We start with introducing new notations.
1) Let f ∈ C∞

0 , then

If (z) =
∫

R3
f(x)G

′
z(x)dx, (4.4)

where,

G′
z(x) =

∂

∂x1

exp(−√−z | x |)
| x | , Re

√−z ≥ 0, (4.5)

(4.5) obviously being in agreement with (3.2).
2) Let

f̃(k) =
∫

R3

f(x)ψ(k, x)dx, (4.6)

ψ(k, x) being given by (2.1), (2.5).
3) Let f̂(k) be the Fourier transform of f :

f̂(k) = (2π)−3/2

∫

R3
f(x) exp(−i(k, x))dx. (4.7)

We prove some auxiliary lemmas.

Lemma 1. If f ∈ C∞
0 , then (|k|2 + 1)f̃(k) ∈ L2(R3).

Corollary 3. If f ∈ C∞
0 , then f̃(k) ∈ L1(R3).
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Proof. We prove the estimate:
∫

R3
| f̃ |2 (| k |2 +1)2dk <∞. (4.8)

Obviously,
f̃(k) = f̂(k) + ν(k)If (| k |2 +i0), (4.9)

where, in accordance with (4.4),

If (| k |2 +i0) =
∫

R3
f(x)

∂

∂x1

(
exp−i | k || x |

| x |
)

dx. (4.10)

Now we see that the integral (4.8) can be estimated from above by the sum:

2
∫

R3
| f̂ |2(| k |2 +1)2dk + 2

∫

R3
| ν̄(k) |2| If (| k |2 +i0) |2 (| k |2 +1)2dk. (4.11)

The first integral converges since f is smooth. We prove the convergence of the
second integral. It is easy to see from the definition (2.5) of ν(k) that ν̄(k) ∈
L2(R3). Therefore, it suffices to show that

|If (|k|2 + i0)| < C

|k|2 + 1
. (4.12)

We rewrite If in the form:

If (|k|2 + i0) =
∫ ∞

0

exp(−i | k | |x|)(g1 − i | k | g2)d|x|,

g1(|x|) = −
∫

S1

x1|x|−1f(x)dϑ,

g2(|x|) =
∫

S1

x1f(x)dϑ,

S1 being the unit sphere. Obviously, g1, g2 are twice continuously differentiable
functions of |x| with compact supports. Producing a Taylor expansion of f(x)
near the origin, we readily get: g1(0) = g2(0) = g′2(0) = 0. Integration by parts
yields (4.12). �

We denote by Qα the set of functions f ∈ C∞
0 for which If (−α2) = 0. Note

that Qα = L2(R3), since G′
−α2 �∈ L2(R3). It is easy to see that

f̃(k) = [f, ψ(k)], when f ∈ Qα, (4.13)

[f, ψ(k)] being given by (3.5) and (3.6).

Lemma 2. If f ∈ C∞
0 and g ∈ Qα, then

(f̃ , g̃) = (f, g). (4.14)
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Proof. Since (f̂ , ĝ) = (f, g) it is suffices to prove that I = 0, I being defined by
the formulae:

I = I2 + I2 + I3, (4.15)

I1 =
∫

R3
f̂(k)ν(k)Ig(| k |2 +i0)dk,

I2 =
∫

R3
ν(k)If (| k |2 +i0)ĝ(k)dk,

I3 =
∫

R3
ν(k)ν(k)If (| k |2 +i0)Ig(| k |2 +i0)dk.

Note that the integrals I1, I2, I3 converge, since f̂ , ĝ, ν ∈ L2(R3) and If , Ig satisfy
(4.12). We introduce the spherical coordinates k =| k | ϑ and integrate with respect
to ϑ, taking into account that If (| k |2 ±i0), Ig(| k |2 ±i0) do not depend on ϑ
and ν(k) depends on ϑ only through the factor k1. For I1 we obtain:

∫

S1

f̂(k)ν(k)dϑ = −3(2π)−3/2(α3 + (i | k |)3)−1B(k), (4.16)

where

B(k) =
∫

S1

ik1f̂(k)dϑ. (4.17)

We show that

B(k) = −i(2π)1/2|k|−1(If (| k |2 +i0)− If (| k |2 −i0)), (4.18)

where

If (| k |2 −i0) =
∫

R3
f(x)

∂

∂x1

(
exp i | k || x |

| x |
)

dx. (4.19)

In fact,

B(k) =
∫

S1

ik1f̂(k)dϑ

= (2π)−3/2

∫

S1

ik1

∫

R3
f(x) exp−i(k, x)dxdϑ

= −(2π)−3/2

∫

R3
f(x)

∂

∂x1

∫

S1

exp−i(k, x)dϑ.

(4.20)

Using the well-known relation

i|k|
2π

∫

S1

exp−i(k, x)dϑ =
exp(i | k || x |)

| x | − exp(−i | k || x |)
| x | , (4.21)

we obtain:

B(k) = i(2π)−1/2|k|−1

∫

R3
f(x)(G′

|k|2+i0(x)−G′
|k|2−i0(x))dx

= i(2π)−1/2|k|−1
(
If (| k |2 −i0)− If (| k |2 +i0)

)
.

(4.22)
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Thus, (4.18) is proved. Substituting (4.16) and (4.18) in the integral I1, we get:

I1 = 3i(2π)−2

∫ ∞

0

(
If (| k |2 +i0)− If (| k |2 −i0)

)
Ig(| k |2 +i0)

α3 + (i | k |)3 | k | d | k | .
(4.23)

Obviously, I2(f, g) = I1(g, f). Therefore,

I2 = −3i(2π)−2

∫ ∞

0

(
Ig(| k |2 +i0)− Ig(| k |2 −i0)

)
If (| k |2 +i0)

α3 − (i | k |)3 | k | d | k | .
(4.24)

In I3 the integration is trivial:
∫

S1

ν(k)ν(k)dϑ = 9(2π)−3

∫

S1

k2
1

(α3 − (i | k |)3)(α3 + (i | k |)3 dϑ

=
6(2π)−2 | k |2

(α3 − (i | k |)3)(α3 + (i | k |)3) .
(4.25)

Thus

I3 = 6(2π)−2

∫ ∞

0

If (| k |2 +i0)Ig(| k |2 +i0)
(α3 − (i | k |)3)(α3 + (i | k |)3 | k |

4 d|k|. (4.26)

Note that

−3(2π)−2i

( |k |
α3−(i |k |)3 −

|k |
α3 +(i |k |)3

)

+
6(2π)−2 |k |4

(α3−(i |k |)3)(α3 +(i |k |)3) =0.

(4.27)
Adding (4.23), (4.24), (4.26) and using the last relation we obtain:

I = −3i(2π)−2

∫ ∞

0

If (| k |2 −i0)Ig(| k |2 +i0)
α3 + (i | k |)3 | k | d|k|

+ 3i(2π)−2

∫ ∞

0

If (| k |2 +i0)Ig(| k |2 −i0)
α3 − (i | k |)3 | k | d|k|.

(4.28)

The integrals converge, since If , Ig are bounded when k→∞. Making the change
of the variables |k| → −|k| in the second term, we arrive to the formula:

I = −3i(2π)−2

∫ ∞

−∞

If (| k |2 −i0)Ig(| k |2 +i0)
α3 + (i | k |)3 | k | dk. (4.29)

The integrand is an analytical exponentially decaying function of | k | in the upper
half-plane, since the function (4.19) depends on | k | analytically in the upper half-
plane decaying at infinity and Īg(k2 + i0) = Ig(k2− i0). The integrand has a single
pole in the upper half-plane at the point | k |= iα. Calculating the integral by
residue calculus, we obtain:

I =
1

2πα
If (−α2)Ig(−α2). (4.30)

Since g ∈ Qα, we have Ig(−α2) = 0. Therefore, I = 0. �
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Next, we introduce the operator V ′ : L2(R3)→ L2(R3) by the formulae:

D(V ′) = Qα, (4.31)

V ′f(x) = [f, ψ(k)]. (4.32)

By (4.13) and Lemma 2, V ′ is an isometry:

‖V ′f‖L2(R3) = ‖f‖L2(R3). (4.33)

Since Qα = L2(R3), V ′ can be extended by continuity to the whole space L2(R3).
Thus, the operator V ′ acts from L2(R3) on a subspace of L2(R3), which we denote
by H0, i.e.,

H0 = V ′Qα. (4.34)

Lemma 3. If f ∈ L2(R3) and has a compact support, then

(V ′f)(k) =
∫

R3
f(x)

(

ψ(k, x)− ν(k)G′
−α2 (x)

)

dx. (4.35)

Corollary 4. If f ∈ L2(R3) and has a compact support, then

V ′f = [f, ψ(k)]. (4.36)

We get the corollary comparing (4.35) with (3.5), (3.6), where γ = 0.

Proof. In fact, let fn ∈ Qα, n ∈ N, and limn→∞ fn = f in L2(R3), the support of
functions fn being uniformly bounded. It is easy to see that

(V ′fn)(k) =
∫

R3
fn(x)ψ(k, x)dx

=
∫

R3
fn(x)ψ(k, x) − ν(k)G′

−α2 (x)dx.
(4.37)

The function ψ(k, x)−νG′
−α2 (x) is in L2,loc, since it has a singularity at zero of the

type O( 1
|x|). Therefore, we can pass to the limit in the last integral for any k. �

We use formula (4.36) to extend the definition of [f, ψ(k)] to the whole space
L2(R3). Namely, for any f ∈ L2(R3)

[f, ψ(k)] = (V ′f)(k). (4.38)

Next, let us consider φ(k) :
√|k|2 + 1φ(k) ∈ L2(R3) and the integral:

(Wφ)(x) =
∫

R3
φ(k)ψ(k, x)dk. (4.39)

Lemma 4. If φ(k) :
√|k|2 + 1φ(k) ∈ L2(R3), then (Wφ)(x) ∈ L1,loc(R3).

Proof. To make sense out of the right part, we first assume that φ(k) ∈ C∞
0 (R3).

Obviously, the integral converges for all x �= 0 and

(Wφ)(x) =
1

(2π)3/2

∫

R3
φ(k) exp i(k, x)dk

+
∫

R3
φ(k)ν(k)G′(|k|2 + i0)(x)dk.

(4.40)
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The first integral is just the Fourier transform of φ(k) and, therefore, can be
extended by continuity to all function in L2(R3). The second integral converges
for all φ(k) :

√|k|2 + 1φ(k) ∈ L2, since ν(k) ∈ L2(R3) and G′(|k|2+i0)(x) satisfies
the inequality:

|G′
|k|2+i0(x)| <

c
√|k|2 + 1

√|x|2 + 1
|x|2 , (4.41)

when x �= 0. Thus, formula (4.40) defines (Wφ)(x) for all φ(k) :
√|k|2 + 1φ(k) ∈

L2(R3). It is easy to see that (Wφ)(x) ∈ L1,loc(R3). In fact, the first term on
the r.h.s. of (4.40) is a square-integrable function of x, and the second term is a
continuous function of x when x �= 0 and has a singularity of the type O( 1

|x|2 ) at
x = 0. �
Lemma 5. If f(x) ∈ Qα, then

f(x) = (W f̃)(x). (4.42)

f̃ , W being defined by (4.6), (4.39).

Proof. Let g(x) ∈ C∞
0 (R3). Using (4.39) and formally exchanging the order of

integration with respect to x and k, we obtain:
∫

R3
(Wf̃)(x)g(x)dx =

∫

R3
f̃(k)g̃(k)dk = (f̃ , g̃). (4.43)

By Lemma 2, (f̃ , g̃) = (f, g). Therefore,
∫

R3
(Wf̃)(x)g(x)dx =

∫

R3
f(x)g(x)dx.

The last relation holds for any g(x) ∈ C∞
0 (R3), and (Wf̃)(x) ∈ L1,loc(R3). There-

fore, (4.42) is true. It remains to justify the change of the order of integration. It
is enough to show that

f̃(k)ψ(k, x)ḡ(x) ∈ L1(R3 × R
3) (4.44)

and to apply Fubini’s theorem. We consider f̃(k)ψ(k, x)ḡ(x) as a sum of two func-
tions:

K1(k, x) = f̃(k)ei(k,x)ḡ(x), K2(k, x) = f̃(k)ν(k)G′
|k|2+i0(x)ḡ(x).

By Corollary 3, f̃ ∈ L1(R3). Hence, K1(k, x) ∈ L1(R3 ×R
3). Using Lemma 1, the

estimate (4.41) and the relation ν(k) ∈ L2(R3), it is easy to show that K2(k, x) ∈
L1(R3 × R

3). Thus, (4.44) holds. �
Let us define the operator W : H0 → L2(R3) as follows. Its domain D(W ) is

V ′Qα, see (4.31), (4.32). For any φ ∈ D(W ),

Wφ = Wφ. (4.45)

By Lemmas 2 and 5 the operator W is isometric. Therefore, it can be extended
by continuity to the whole subspace H0.

Let I be the identity operator in L2(R3) and I0 be the identity operator inH0.
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Lemma 6. The operators V ′,W satisfy to the following relations:

WV ′ = I. (4.46)

V ′W = I0, (4.47)

Proof. By Lemma 5 and formula (4.32), WV ′f = f for any f ∈ Qα. Since V ′ and
W are continuous, it is true for any f in L2(R3), i.e., (4.46) holds. Applying W
to the both parts of (4.46) and considering (4.32), we obtain: V ′Wf̃ = f̃ for any
f̃ ∈ V ′Qα. Since V ′ and W are continuous, it is true for any f̃ in H0, i.e., (4.47)
holds. �

Now we consider the subspace H0, i.e., the set of functions, which can be
represented in the form:

F (k) = [f, ψ(k)], f ∈ L2(R3).

We determine the co-dimension of H0.

Lemma 7. The co-dimension of the subspace H0 in L2(R3) is equal to 1. The
function ν(k) is orthogonal to H0 in L2(R3). Formula (4.45) holds for all φ ∈
H0 ∩ C∞

0 .

Proof. Let us denote by H ′
0 the subspace of L2(R3) orthogonal to ν̄(k). The goal

is to prove that H ′
0 = H0.

First we prove that H0 ⊂ H ′
0. Assume that f ∈ Qα. We prove that the

function [f, ψ(k)] is orthogonal ν(k) in L2(R3), that is γf = 0, γf being the integral:

γf =
∫

R3
[f, ψ(k)]ν(k)dk. (4.48)

According to Lemma 5,

f(x) =
∫

R3
[f, ψ(k)]ψ(k, x)dk. (4.49)

Therefore,

f(x) = F1 + F2 + γfG
′
−α2(x), (4.50)

where

F1 = (2π)−3/2

∫

R3
[f, ψ(k)] exp i(k, x)dk, (4.51)

F2 =
∫

R3
[f, ψ(k)]ν(k)(G′

k2+i0(x) −G′
−α2(x))dk. (4.52)

Suppose we have proved the relations

F1 ∈ L2,loc(R3), F2 ∈ L2,loc(R3). (4.53)
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Then, taking into account that f is a smooth function, we obtain γf = 0. Thus, it
suffices to check (4.53). It is easy to see that F1 ∈ L2(R3), since [f, ψ(k)] ∈ H0 ⊂
L2(R3). Next, we use the obvious inequality

| G′
k2+i0(x)−G′

−α2(x) |< c
√

|k|2 + 1 |x|−1, c �= c(k).

Moreover,
√|k|2 + 1 [f, ψ(k)] ∈ L2(R3) by Lemma 1. Taking into account also

that ν(k) ∈ L2(R3), we obtain F2 ∈ L2,loc. Thus, we have shown that γf = 0,
when f ∈ Qα. This means that V ′Qα is orthogonal to ν̄(k). Taking into account
(4.32), (4.34), (4.38), we obtain that H0 is orthogonal to ν̄(k), i.e., H0 ⊂ H ′

0.
Next we prove that H ′

0 ⊂ H0. The set of smooth functions, vanishing at
infinity, is dense in H ′

0. Therefore, it suffice to prove that any function φ(k) ∈
C∞

0 (R3) orthogonal to ν(k) belongs to H0. We start with considering (Wφ)(k),
see (4.39). By Lemma 4, (Wφ)(k) ∈ L1,loc. Suppose we have proved that

‖Wφ‖L2(R3) = ‖φ‖L2(R3), when φ ∈ H ′
0 ∩ C∞

0 . (4.54)

Then, we define the operator W ′ : H ′
0 → L2(R3) as follows:

D(W ′) = H ′
0 ∩ C∞

0 , W ′f = Wf. (4.55)

Formula (4.54) means that W ′ is isometric and therefore can be extended by
continuity to the whole subspaceH ′

0. Considering thatH0 ⊂ H ′
0 and the definitions

of W , W ′, we obtain that W ⊂W ′.
Let

f(x) = (W ′φ)(x), φ ∈ H ′
0 ∩ C∞

0 .

By Lemma 6,

f = WV ′f = W ′V ′f,

since V ′f ∈ H0 by the definition of H0. By the first part of this lemma V ′f ∈ H ′
0.

Since W ′ is isometry and W ′φ = W ′V ′f ,

φ(k) = V ′f,

and therefore, φ ∈ H0. The last relation holds for any φ ∈ H ′
0, therefore, H ′

0 ⊂ H0.
Thus, H0 = H ′

0 and W = W ′. Formula (4.45) follows from (4.55) and the latter
relation. Thus, it remains to prove (4.54).

The Fourier transform of f(x) = Wφ is obviously given by the formula:

f̂(ξ) = φ(ξ) +
∫

R3
φ(k)ν(k)ϕ1(ξ, k)dk, (4.56)

where ϕ1(k, τ) is the Fourier transform of the function G′
|k|2+i0(x) :

ϕ1(ξ, k) =
2(2π)−1/2iξ1

| ξ |2 − | k |2 −i0 .



60 Yu.E. Karpeshina

It is not difficult to check that f̂(ξ) is continuous. It is clear that

‖f‖L2(R3) = ‖f̂‖L2(R3) = I0 + I1 + I2 + I3, (4.57)

I0 = lim
R→∞

∫

|ξ|<R
|φ(ξ)|2dξ,

I1 = lim
R→∞

∫

|ξ|<R

∫

R3
φ(k)φ(ξ)ν(k)ϕ1(ξ, k)dkdξ,

I2 = lim
R→∞

∫

|ξ|<R

∫

R3
φ(ξ)φ(τ)ν(τ)ϕ1(ξ, τ)dτdξ,

I3 = lim
R→∞

∫

R3×R3
φ(k)φ(τ)ν(k)ν(τ)ϕR(k, τ)dkdτ,

where

ϕR(k, τ) =
∫

|ξ|<R
ϕ1(ξ, k)ϕ1(ξ, τ)dξ.

Obviously, I0 = ‖φ‖L2(R3). Since φ(ξ) ∈ C∞
0 (R3), the passage to the limit is trivial

in I1 and I2. Changing the names of variables of integration for more convenient
ones (the same for both integrals), we obtain:

I1 =
∫

R3×R3
φ(k)φ(τ)ν(k)ϕ1(τ, k)dkdτ,

I2 =
∫

R3×R3
φ(k)φ(τ)ν(τ)ϕ1(k, τ)dkdτ.

A straightforward calculation gives:

ν(k)ϕ1(τ, k) + ν(τ)ϕ1(k, τ) = − i4πν(k)ν(τ)(| τ |
3 + | k |3)

3(| k |2 − | τ |2 +i0)
.

Therefore,

I1 + I2 = −
∫

R3×R3

4πiφ(k)φ(τ)ν(k)ν(τ)(| τ |3 + | k |3)
3(| k |2 − | τ |2 +i0)

dkdτ.

Next we calculate ϕR. Integrating over the unit sphere with respect to ξ we obtain:

ϕR = 8/3
∫ R

0

r4

(r2− | k |2 −i0)(r2− | τ |2 +i0)
dr

= 4/3
∫ ∞

−∞

(
r4

(r2− | k |2 −i0)(r2− | τ |2 +i0)
− 1

)

dr + 8R/3 +O(R−1).

The integral on the right-hand side can easily be calculated using residues at the
points r = |k|+ i0 and r = −|τ |+ i0. Thus,

ϕR =
4πi(| τ |3 + | k |3)

3(| k |2 − | τ |2 +i0)
+

8πR
3

+ o(R).
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Substituting ϕR into the formula for I3 and taking into account, that φ(k) is
orthogonal to ν(k), we get that the part of the integral containing 8R/3 vanishes
and, therefore,

I3 = 4/3πi
∫

R3×R3

4πiφ(k)φ(τ)ν(k)ν(τ)(| τ |3 + | k |3)
3(| k |2 − | τ |2 +i0)

dkdτ

= −(I1 + I2).

Using the relation I3 = −(I1 + I2) and formula (4.57) we obtain (4.54). �

Next, we consider the function ν(k) being orthogonal to H0. Taking into
account that

∫∞
0

r4 dr
1+r6 = π

3 , it is not hard to calculate the norm of ν(k) in L2(R3):

‖ν‖ ≡ ‖ν‖L2(R3) =
(∫

R3

9k2
1

(2π)3(α6+ | k |6)dk
)1/2

= (2πα)−1/2. (4.58)

Now we determine the function, which corresponds to ν(k) in the x-representation.

Lemma 8. The following formula for G′
−α2(x) is valid:

G′
−α2(x) = 2πα

∫

R3
ν(k)ψ(k, x)dk. (4.59)

Proof. To calculate the integral on the right-hand side we represent it as a sum of
A1 and A2:

A1 = (2π)−3/2

∫

R3
ν(k) exp i(k, x)dk,

A2 =
∫

R3
|ν(k)|2G′

|k|2+i0(x)dk.

Using relation (4.21), we obtain:

A1 =
∫ ∞

0

3|k|
(

G′
|k|2+i0 −G′

|k|2−i0
)

(x)

i(2π)2(α3 − (i|k|)3) dk.

Integrating with respect to angle variables, we get:

A2 =
∫ ∞

0

3 | k |4
2π2(α6+ | k |6)G

′
|k|2+i0(x)d|k|.

Taking into account the obvious relation

2 | k |4
α6+ | k |6 =

i|k|
α3 − (i | k |)3 −

i|k|
α3 + (i | k |)3 ,
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we see that

4π2(A1 +A2) =
∫ ∞

0

3i | k |
α3 − (i | k |)3G

′
|k|2−i0(x)d | k |

−
∫ ∞

0

3i | k |
α3 + (i | k |)3G

′
|k|2+i0(x)d | k |

= −
∫ ∞

−∞

3it
α3 + (it)3

∂

∂x1

eit|x|

|x| dt.

The integrand on the right-hand side has a single pole in the upper half-plane
and rapidly decays, when t tends to infinity. Calculating the residue at the point
t = iα, we obtain:

A1 +A2 = (2πα)−1G′
−α2(x). �

We consider the operator V : Hα → L2(R3), defined as follows:

V |L2(R3) = V ′, (4.60)

V G′
−α2(x) = 2παν(k). (4.61)

By definition (3.6) of [·, ψ(k)],

[G′
−α2 , ψ(k)] = 2παν(k), (4.62)

since f = 0, γ = 1, when F (x) = G′
−α2(x). Using also (4.36), we obtain:

V F = [F, ψ(k)], for all F ∈ Hα. (4.63)

Lemma 9. Operator V is an isometric isomorphism between Hα and L2(R3).

Proof. Since operator V ′ is defined on the whole space L2(R3), formulas (4.60),
(4.61) define operator V on Hα. We prove that

‖V F‖L2(R3) = ‖F‖Hα , (4.64)

for any F in Hα. Using formulae (3.1), (4.60) and (4.61) we obtain:

V F = V ′f + γ2παν(k). (4.65)

Taking into account, that V ′f ∈ H0 and ν(k) is orthogonal to H0 (see Lemma 7),
we get:

‖V F‖2L2(R3) = ‖V ′f‖2L2(R3)+ | γ |2 4π2α2‖ν‖2L2(R3).

Taking into account that V ′ is an isometry and using relations (4.58) and (3.3),
we obtain (4.64).

According to Lemma 7 the element ν(k) spans up the orthogonal complement
of H0 in L2(R3). By the definition of H0 we have V ′L2(R3) = H0. By the definition
of V we have V G′

−α2(x) = 2παν(k), i.e., V G′
−α2 is orthogonal to H0. Therefore,

the range of V is L2(R3). �
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Proof of Theorem 1. By Lemma 9, V is an isometry. Formula (3.7) is the same as
(4.63). To prove relation (3.8) we represent F̃ ∈ L2(R3) in the form:

F̃ = φ+ γ̃ν(k), φ ∈ H0. (4.66)

According to the definition of operator V

V −1φ = V ′−1φ,

V −1ν(k) = (2πα)−1G′
−α2(x)

By Lemma 6, V ′−1φ = Wφ. Suppose φ ∈ H0 ∩C∞
0 . By Lemma 7,

Wφ =
∫

R3
φ(k)ψ(k, x)dk. (4.67)

Using relations (4.59) and (4.61) we obtain

γ̃V −1ν(k) =
∫

R3
γ̃ν(k)ψ(k, x)dk.

Adding the last two equalities and using formula (4.66), we verify relation (3.8).
�

5. Construction of the energy operator

We consider in L2(R3) the operator of multiplication by | k |2:
ÃαF̃ (k) =| k |2 F̃ (k) (5.1)

Naturally, its range is the set of functions, for which the integral
∫

R3
(| k |4 +1) | F̃ (k) |2 dk (5.2)

converges.
Next, we consider the operator Aα = V −1ÃαV . Using Theorem 1 we obtain

that the domain of A is described by the condition:
∫

R3
(| k |4 +1) | [F, ψ(k)] |2 dk <∞ (5.3)

The action of the operator Aα is described by the formula

AαF (x) =
∫

R3
| k |2 [F, ψ(k)]ψ(k, x)dk (5.4)

for functions F (x) such that [F, ψ(k)] ∈ C0(R3). For other F (x) in D(Aα) we can
obtain AαF by closing (5.4) in the norm of ‖ · ‖+ ‖Aα · ‖.
Proof of Theorem 2. Suppose F is such that [F, ψ(k)] ∈ C∞

0 (R3). It is clear that
F ∈ D(Aα), since the condition (5.3) is satisfied. The set C∞

0 (R3) is dense in the
domain of Aα with respect to the norm ‖ · ‖ + ‖Aα · ‖. Therefore, it suffices to
verify formula (3.12) assuming that [F, ψ(k)] is a function with compact support.
Relation (3.12) is obvious, because | k |2 ψ(k, x) =x �=0 −∆xψ(k, x). �
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Remark. Note that G′
−α2(x) does not belong to D(A). In fact,

[G′
−α2(x), ψ(k)] = ν(k) (5.5)

But ν(k) �∈ D(Aα), since the integral (5.2) diverges for F̃ = ν. By Lemma 8,
G′

−α2(x) can be represented as an integral of functions ψ(k, x). It follows that
G′

−α2(x) is not an eigenfunction of Aα, even though it formally satisfies the differ-
ential equation for an eigenfunction.

6. Possible Generalizations

We can consider the case of spherically symmetric inclusion by taking P -scattered
waves in the form:

ψ(k, x) = (2π)−3/2 exp i(k, x) +
3∑

j=1

νj(k)
∂G|k|2+i0(x)

∂xj
, (6.1)

νj(k) = − (2π)−3/23ikj
α3 + (i | k |)3 . (6.2)

It correspond to a spherically symmetric inclusion, since scattered waves depend on
x only through the product (k, x). All considerations are analogous to the previous
case.

It is not hard to generalize all theorems to the case of negative α, taking
instead of function G′

−α2(x) the function

G′
−α2

+
(x) + iG′

−α2
−
(x), α± =| α | exp±iπ/3.

In formula (3.3) instead of α one should substitute −α.
The model can be generalized also to the case of stronger singularities, of the

types
∂|m|

∂xm1
1 ∂x2m2∂x

m3
3

e−α

|x| ,

which correspond to scattered waves of higher orders. In the case | m |�= 1 one can
obtain H�α by adding N,N = [m/2] + 1, singular elements to L2(R3).

Finally, it is possible to generalize the model to the case of α which are
functions of |k|: α = α(|k|). In particular, Theorem 1 is valid, when

1. Function α(|k|) is analytic in the upper half-plane with respect to | k |.
2. Function α(k) is real and continuous for real | k |.
3. ν(k) =|k|→∞ O(|k|−2), where ν(k) = 3ik1(α(k)3 + (i | k |)3)−1.
4. Function α(|k|)3 + (i | k |)3 has an unique zero in the upper half-plane. This

zero belongs to the imagine axis.
5. The function (| α(k)3 − (i | k |)3)−1 has a subexponential growth when
|k| = Reiϑ, R→∞, 0 < ϑ < π.
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Abstract. The similarity problem for restrictions of a non-selfadjoint operator
with absolutely continuous spectrum to its spectral subspaces corresponding
to arbitrary Borel subsets δ of the spectrum is considered, generalizing the
results of [7, 11]. Necessary and sufficient conditions of such similarity are
obtained in the form of a pair of integral estimates on δ ⊂ R. The results are
then applied to the analysis of the one-dimensional non-selfadjoint Friedrichs
model operator.
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1. Preliminaries

A non-selfadjoint operator L acting in the Hilbert space H is called similar to a
self-adjoint operator A if there exists a bounded, boundedly invertible operator X
in H , such that L = X−1AX . The similarity problem thus arises, i.e., to ascertain
whether a given non-selfadjoint operator L is similar to some self-adjoint operator
A or not and to give preferably necessary and sufficient conditions of this.

A criterion for similarity of a general non-selfadjoint operator with real spec-
trum to a self-adjoint one was established in a form of a pair of integral estimates
involving the resolvent of the operator in [15, 4] (see (3.2) below). Unfortunately,
this criterion, although given in a very concise form, is hard to verify in applica-
tions. This is why it seems reasonable to rewrite it in an equivalent (and suitable
for applications) form under some additional assumptions on the class of opera-
tors considered. One such assumption that has yielded rather interesting results in
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the case of additive non-selfadjoint perturbations of self-adjoint operators (see [7])
and in the case of non-selfadjoint extensions of symmetric operators with equal
deficiency indices (see [9]) is that the spectrum of the operator L is absolutely con-
tinuous, i.e., the absolutely continuous spectral subspace of the operator coincides
with the Hilbert space H (see Section 2 below for the definition and Remark 3.2).
An essential ingredient of the approach suggested by us in [7] was the functional
model of a non-selfadjoint operator.

Later, Malamud [11] has pointed out, that the result announced in [7] can be
obtained in a different way, with no explicit use of functional model and related
techniques.

In [9] it has been shown, that results similar to those of [7, 11] can be obtained
in the case of non-selfadjoint extensions of symmetric operators with finite and
equal deficiency indices. The technique used in this paper heavily involved the
corresponding functional model, although its construction in this class of operators
is quite different to the class considered in [7] and in the present paper. The
existence of a concise model description of spectral projection to an arbitrary
Borel set of absolutely continuous spectrum has further allowed in [9] to “localize”
the similarity problem, i.e., to prove a criterion of similarity for the initial operator
restricted to its spectral subspace, corresponding to an arbitrary Borel set of its
a.c. spectrum. Results of this nature would seem to be impossible to derive using
Malamud’s technique.

The conditions of similarity to a selfadjoint operator derived in the present
paper differ from ones that have been known previously (that is, the ones of [15, 4])
in that they are formulated in terms of objects defined on the real line only, whereas
the existing ones were formulated in terms of half-planes of the complex plane. In
a nutshell, using the functional model we have been able to pass to a limit in
the Naboko-Van Casteren criterion under the only additional assumption that the
operator L has absolutely continuous spectrum.

In the present paper, we present results analogous to [9] in the case of additive
non-selfadjoint perturbations of self-adjoint operators, thus effectively generalizing
the corresponding results of both [7] and [11].

The structure of the paper is as follows.
Since the functional model of a non-selfadjoint operator is of crucial impor-

tance for our approach and the proof of our main result relies heavily upon the
symmetric form of the Nagy-Foiaş functional model due to Pavlov [20, 19] (see
also the paper [14] by Naboko), we continue with a brief introduction to the main
concepts and results obtained in this area in Section 2.

Section 3 contains our main result, which is a criterion of similarity of restric-
tions of non-selfadjoint operator under investigation to spectral subspaces corre-
sponding to arbitrary Borel sets of the real line. Concise sufficient conditions follow
almost immediately.

Finally, Section 4 demonstrates applicability of our results to analysis of the
similarity problem for non-selfadjoint Friedrichs model operator on the real line.
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2. The functional model

In the present section we briefly recall the functional model of a non-selfadjoint
operator constructed in [16, 19] in the dissipative case and then extended in [12,
13, 14, 22] to the case of a wide class of non-dissipative operators. We consider a
class of non-selfadjoint operators of the form [14] L = A + iV , where A is a self-
adjoint operator in H defined on the domain D(A) and the perturbation V admits
the factorization V = αJα/2, where α is a non-negative self-adjoint operator in
H and J is a unitary operator in an auxiliary Hilbert space E, defined as the
closed range of the operator α: E ≡ R(α). This factorization corresponds to the
polar decomposition of the operator V . It can also be easily generalized1 to the
“node” case [25], where J acts in an auxiliary Hilbert space H and V = α∗Jα/2,
α being an operator acting from H to H. In order that the expression A+ iV be
meaningful, we impose the condition that V be (A)-bounded with relative bound
less than 1, i.e., D(A) ⊂ D(V ) and for some a and b (a < 1) the condition
‖V u‖ ≤ a‖Au‖+ b‖u‖, u ∈ D(A) is satisfied, see [6]. Then the operator L is well
defined on the domain D(L) = D(A).

Alongside with the operator L we are going to consider the maximal dissipa-
tive operator L‖ = A+ iα

2

2 and the one adjoint to it, L−‖ ≡ L‖∗ = A− iα2

2 . Since
the functional model for the dissipative operator L‖ will be used below, we require
that L‖ is completely non-selfadjoint, i.e., that it has no reducing self-adjoint parts.
This requirement is not restrictive in our case due to Proposition 1 in [14].

We now briefly describe a construction of the self-adjoint dilation of the
completely non-selfadjoint dissipative operator L‖, following [16, 19], see also [14].

The characteristic function S(λ) of the operator L‖ is a contractive, analytic
operator-valued function acting in the Hilbert space E, defined for Imλ > 0 by

S(λ) = I + iα(L−‖ − λ)−1α. (2.1)

In the case of an unbounded α the characteristic function is first defined by the
latter expression on the manifold E ∩ D(α) and then extended by continuity to
the whole space E. The definition given above makes it possible to consider S(λ)
for Imλ < 0 with S(λ) = (S∗(λ))−1 provided that the inverse exists at the point
λ. Finally, S(λ) possesses boundary values on the real axis in the strong topology
sense: S(k) ≡ S(k + i0), k ∈ R (see [16]).

Consider the model space H = L2( I S
∗

S I ), which is defined in [19] (see also
[17] for description of general coordinate-free models) as Hilbert space of two-
component vector-functions (g̃, g) on the axis (g̃(k), g(k) ∈ E, k ∈ R) with metric

〈(
g̃

g

)

,

(
g̃

g

)〉

=
∫ ∞

−∞

〈(
I S∗(k)

S(k) I

)(
g̃(k)
g(k)

)

,

(
g̃(k)
g(k)

)〉

E⊕E
dk.

It is assumed here that the set of two-component functions has been factored by
the set of elements with norm equal to zero. Although we consider (g̃, g) as a

1Results of Section 3 below admit natural generalization to the “node” case. We have chosen to
refrain from including the corresponding details in order to simplify the reading.
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symbol only, the formal expressions g− := (g̃ + S∗g) and g+ := (Sg̃ + g) (the
motivation for the choice of notation is self-evident from what follows) can be
shown to represent some true L2(E)-functions on the real line. In what follows we
plan to deal mostly with these functions.

Define the following orthogonal subspaces in H :

D− ≡
(

0
H2−(E)

)

, D+ ≡
(
H2

+(E)
0

)

, K ≡ H� (D− ⊕D+),

where H2
+(−)(E) denotes the Hardy class [16] of analytic functions f in the up-

per (lower) half-plane taking values in the Hilbert space E. These subspaces are
“incoming” and “outgoing” subspaces, respectively, in the sense of [10].

The subspace K can be described as K = {(g̃, g) ∈ H : g− ≡ g̃ + S∗g ∈
H2

−(E), g+ ≡ Sg̃+ g ∈ H2
+(E)}. Let PK be the orthogonal projection of the space

H onto K, then

PK

(
g̃

g

)

=
(
g̃ − P+(g̃ + S∗g)
g − P−(Sg̃ + g)

)

,

where P± are the orthogonal Riesz projections of the space L2(E) onto H2
±(E).

The following Theorem holds [16, 19]:

Theorem 2.1. The operator (L‖ − λ0)−1 is unitarily equivalent to the operator
PK(k − λ0)−1|K in the space K for all λ0, Imλ0 < 0.

This means, that the operator of multiplication by k in H serves as a minimal
(closImλ�=0(k − λ)−1K = H) self-adjoint dilation [16] of the operator L‖.

Provided that the non-real spectrum of the operator L is countable, the
characteristic function of the operator L is defined for Im λ �= 0 by the expression
Θ(λ) ≡ I + iJα(L∗ − λ)−1α and under an additional assumption that V is a
relatively compact perturbation2 can be shown to be a meromorphic, J-contractive
(Θ∗(λ)JΘ(λ) ≤ J, Imλ > 0) operator-function [3]. The characteristic function
Θ(λ) admits [1, 12] a factorization (also called Ginzburg-Potapov factorization of a
J-contractive function [2]) in the form of a ratio of two bounded analytic operator-
functions (in the corresponding half-planes Imλ < 0, Imλ > 0) triangular with
respect to decomposition of the space E into the orthogonal sum E = (X+E) ⊕
(X−E), X± := (I ± J)/2:

Θ(λ) = Θ′∗
1 (λ)(Θ′∗

2 )−1(λ), Im λ > 0;
Θ(λ) = Θ∗

2(λ)(Θ∗
1)

−1(λ), Im λ < 0,
(2.2)

where the factors Θ1,2 and Θ′
1,2 are introduced as follows [13]:

Θ1(λ) = X− + S(λ)X+, Θ2(λ) = X+ + S(λ)X−;
Θ′

1(λ) = X− + S∗(λ)X+, Θ′
2(λ) = X+ + S∗(λ)X−,

(2.3)

and S(λ) is the characteristic function of the dissipative operator L‖.

2This assumption guarantees that the non-real spectrum of L is discrete.
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Following [13], we define the linear sets N̂± in H as follows:

N̂± ≡
{(

g̃

g

)

:
(
g̃

g

)

∈ H, P± (Θ′∗
1 g̃ + Θ∗

2g) ≡ P± (X+g+ + X−g−) = 0
}

(2.4)

and introduce subspaces N± = closPKN̂±. Then, as it is shown in [14], one gets
for Im λ < 0 (Im λ > 0) and (g̃, g) ∈ N̂−(+), respectively:

(L− λ)−1PK

(
g̃

g

)

= PK
1

k − λ
(
g̃

g

)

. (2.5)

Conversely, the property (2.5) for Im λ < 0 (Im λ > 0) guarantees that the vector
(g̃, g) belongs to the set N̂−(+).

Absolutely continuous and singular subspaces of the non-selfadjoint operator
L were defined in [12]: let N ≡ N̂+ ∩ N̂−, Ñ± ≡ PKN̂±, Ñe ≡ Ñ+ ∩ Ñ−. Then3

Ne ≡ clos
(

Ñ+ ∩ Ñ−
)

= closPKN ≡ clos Ñe; Ni ≡ K �Ne(L∗), (2.6)

where Ne(L∗) denotes the absolutely continuous subspace of the operator L∗,
which can be easily described in similar way in terms of the same model space H.

One can also ascertain that the linear sets Ñ± can be characterized in terms,
independent of the functional model, in the following way:

Ñ+(−) =
{

u ∈ H : X+(−)α(L− λ)−1u ∈ H2
+(−)(E)

}

. (2.7)

Here X+(−)α(L − λ)−1u4 is treated as an analytic vector function of λ ∈ C+(−)

taking values in the auxiliary Hilbert space E. It can be verified [14] that the
projections X± can be dropped altogether in the definition (2.7). The existence of
this description gives ground to calling the vectors belonging to the named linear
sets “smooth”.

The definition (2.6) in the case of maximal dissipative operators leads to
the same subspace as the classical definition by L.A. Sahnovich [23] (the latter
definition introduces the absolutely continuous subspace as the maximal invariant
subspace reducing the operator L to an operator with purely outer characteristic
function) and was later developed by V.A. Ryzhov (in the case of more general non-
dissipative operators) [22] and A.S. Tikhonov [24] (the so-called weak definition of
the absolutely continuous subspace). Recently it turned out that in the dissipative
situation the weak definition coincides with the strong one (2.6) (see [21]).

The subspaces N±(L∗) for the adjoint to L operator L∗ are defined in a
similar way using the same model representation.

3The linear set Ñe is called the set of “smooth” vectors of the operator L (see [14]).
4That is, analytic continuations of the vector X+(−)α(L−λ)−1u from the domain of analyticity

of the resolvent to the half-plane C+(−).
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3. Similarity problem for additive non-selfadjoint perturbations
with absolutely continuous spectrum

Definition 3.1. We call a nonselfadjoint operator A acting in Hilbert space H an
operator with absolutely continuous spectrum if its absolutely continuous subspace
Ne(A) coincides with H .

Remark 3.2. It has to be noted that the requirement Ne(A) = H doesn’t actually
guarantee that the spectrum of the operatorA is purely absolutely continuous. Due
to the possibility that the absolutely continuous and singular spectral subspaces
may intersect, one might face the following situation: Ne(A) = H ; Ni(A) �= {0}
and Ni(A) ⊂ Ne(A). See [26] for one rather transparent example of this case.
Nevertheless, due to the fact that Ni(A∗) ≡ H � Ne(A), one easily sees that in
the situation of Ne(A) = H the singular spectral subspace of the adjoint operator
A∗ is trivial.

The spectral projection Pδ corresponding to the “portion” of the absolutely
continuous spectrum contained in a Borel set δ was constructed in model terms in
[13]. Namely, the following result holds:

Proposition 3.3. Suppose that L is a completely non-selfadjoint operator with ab-
solutely continuous spectrum. For any Borel set δ ⊂ R put

PδPK
(
g̃

g

)

= PKXδ
(
g̃

g

)

, (3.1)

where
(
g̃
g

) ∈ N and Xδ is the operator of componentwise multiplication by the
characteristic function of the set δ. For the operator Pδ defined by (3.1) on the set
of smooth vectors Ñe the following assertions hold:

(i) PδÑe ⊂ Ñe;
(ii) (L− λ0)−1Pδ = Pδ(L − λ0)−1, Imλ0 �= 0;
(iii) PδPδ′ = Pδ∩δ′ , δ, δ′ ⊂ R;
(iv) Pδu −→ u as δ → (−∞,∞), u ∈ Ñe (in fact, as 1−Xδ → 0 in L∞(R));
(v) Pδu = limε→+0

1
2πi

∫

δ
[(L− k − iε)−1 − (L− k + iε)−1]udk, u ∈ Ñe.

We remark that the assertion (v) above establishes the connection between
the definition of a spectral projection in terms of the functional model with the
usual approach to the definition of spectral projections based on the Riesz integral
for the resolvent, and thus the term “spectral projection” is justified.

Based on this result, in the present Section we obtain conditions, necessary
and sufficient for the restrictions of the non-selfadjoint operator A of the class
considered in this paper to its spectral subspaces (i.e., to subspaces of the form
clos PδNe) to be similar to selfadjoint operators. We assume throughout that the
operator L is an operator with absolutely continuous spectrum.

It’s proved in [15, 4], that a non-selfadjoint operator A acting in Hilbert space
H , the spectrum σ(A) of which is a subset of real axis, is similar to a selfadjoint
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operator if and only if there exists a finite constant C such that on any vector
u ∈ H the following estimates hold:

sup
ε>0

ε

∫ ∞

−∞
‖(L− k − iε)−1u‖2dk ≤ C‖u‖2

sup
ε>0

ε

∫ ∞

−∞
‖(L∗ − k − iε)−1u‖2dk ≤ C‖u‖2

sup
ε>0

ε

∫ ∞

−∞
‖(L− k + iε)−1u‖2dk ≤ C‖u‖2

sup
ε>0

ε

∫ ∞

−∞
‖(L∗ − k + iε)−1u‖2dk ≤ C‖u‖2

(3.2)

Furthermore, it’s not hard to see that the first pair of estimates above is equivalent
to the second pair (i.e., the first pair of estimates in (3.2) holds on any u ∈ H iff
the second pair of estimates holds on any u ∈ H). This makes it possible to prove
the following

Theorem 3.4. Provided that the spectrum of L is absolutely continuous, the follow-
ing assertions are equivalent5:
(a) The restriction of the operator L to its spectral invariant subspace, corre-

sponding to a Borel set δ ⊂ R, is similar to a self-adjoint operator acting in
clos PδNe;

(b) There exists a C <∞ such that for any u ∈ clos PδNe the following estimates
hold:

∫

δ

((
Θ(k − i0)JΘ∗(k − i0)− J)X+α(L−‖ − k − i0)−1u,

X+α(L−‖ − k − i0)−1u
)

dk ≤ C‖u‖2
∫

δ

((
J −Θ∗(k + i0)JΘ(k + i0)

)X−α(L−‖ − k − i0)−1u,

X−α(L−‖ − k − i0)−1u
)

dk ≤ C‖u‖2;
(c) There exists a C <∞ such that for any u ∈ clos PδNe the following estimates

hold:
∫

δ

((
J −Θ(k + i0)JΘ∗(k + i0)

)X−α(L‖ − k + i0)−1u,

X−α(L‖ − k + i0)−1u
)

dk ≤ C‖u‖2
∫

δ

((
Θ∗(k − i0)JΘ(k − i0)− J)X+α(L‖ − k + i0)−1u,

X+α(L‖ − k + i0)−1u
)

dk ≤ C‖u‖2.

5Under our assumptions the characteristic function Θ(λ) might have no boundary values on the

real line on its own; however, the boundary values of its J-forms J − Θ∗JΘ and ΘJΘ∗ − J do
exist due to [14]. The corresponding boundary values below should be understood accordingly.
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Proof. Our first goal is to rewrite estimates (3.2) in terms of the functional model
for additive non-selfadjoint perturbations of self-adjoint operators described in
Section 2 above. We will see that provided that the spectrum of the operator in
question is absolutely continuous it’s possible to compute the limits of the left-
hand sides in the resulting estimates when ε→ 0 precisely, thus making it possible
to replace (3.2) with much more simple conditions, formulated in terms of objects
defined on the real line only.

This passage from the uniform integral estimates in the half-plane to the
integral estimates on the boundary values simplifies matters in the case of one-
dimensional Friedrichs model (see [18, 8], cf. [15]). As shown in [8], our approach
reduces the similarity problem to the question of boundedness of certain singular
integral operators. The latter could be examined by standard methods of analysis
yielding necessary and sufficient conditions for the similarity of the operator of
the Friedrichs model to a self-adjoint one. It is also worth mentioning that in the
process of this limit procedure we reduce the consideration to analytic functions
taking values in Hilbert spaces of (potentially) lower dimensions.

The following proposition holds:

Proposition 3.5. The estimates in (3.2), considered on the vectors u ∈ clos PδNe,
are one-to-one equivalent to the following ones:

∥
∥
∥
∥P+

(
g̃ + S∗g
−(Sg̃ + g)

)∥
∥
∥
∥

2

H
≤ C

∥
∥
∥
∥PK

(
g̃

g

)∥
∥
∥
∥

2

H
∥
∥
∥
∥

(
P+(g̃ + S∗g)− c2(k)

−P+(Sg̃ + g) + S(k)c2(k)

)∥
∥
∥
∥

2

H
≤ C

∥
∥
∥
∥PK

(
g̃

g

)∥
∥
∥
∥

2

H
∥
∥
∥
∥P−

(
g̃ + S∗g
−(Sg̃ + g)

)∥
∥
∥
∥

2

H
≤ C

∥
∥
∥
∥PK

(
g̃

g

)∥
∥
∥
∥

2

H
∥
∥
∥
∥

(−P−(g̃ + S∗g) + S∗(k)c1(k)
P−(Sg̃ + g)− c1(k)

)∥
∥
∥
∥

2

H
≤ C

∥
∥
∥
∥PK

(
g̃

g

)∥
∥
∥
∥

2

H
,

(3.3)

where
(
g̃
g

) ∈ XδN and

T1(λ) ≡ [X− + S∗(λ)X+]−1

T2(λ) ≡ [X+ + X−S(λ)]−1

c1(λ) ≡ T1(λ)(P−(g̃ + S∗g)(λ) + P−(Sg̃ + g)(λ))

c2(λ) ≡ T2(λ)(P+(g̃ + S∗g)(λ) + P+(Sg̃ + g)(λ)),

the boundary values of c1(λ) and c2(λ) almost everywhere on the real line existing
for all (g̃, g) ∈ XδN .

The proof does not differ from the case of non-selfadjoint extensions of sym-
metric operators and therefore we refer the reader to the paper [9].

In order to complete the proof of Theorem 3.4, we need to rewrite the esti-
mates obtained by virtue of Proposition 3.5 in terms of the initial Hilbert space
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H and of the operators in it. To this end, we will first rewrite our estimates
in terms of H, the three-component unitary image of H, see [19, 14]. The space
H ≡ D−⊕H⊕D+ consists of three-component vector-functions (ṽ−, u, ṽ+), where
ṽ− ∈ L2(R−;E), ṽ+ ∈ L2(R+;E) and u ∈ H . The unitary operator (see [14]) that
maps H onto H is given by the following formulae:

g̃ + S∗g = − 1√
2π
α(L‖ − k + i0)−1u+ S∗(k)v−(k) + v+(k)

Sg̃ + g = − 1√
2π
α(L−‖ − k − i0)−1 + v−(k) + S(k)v+(k),

where6

v±(k) ≡ 1√
2π

∫

eikξ ṽ±(ξ)dξ ∈ H±
2 (E)

by the Paley–Wiener theorem [5].
We are going to use this mapping extensively. First of all, note that the fact

that
(
g̃
g

) ∈ N in the model representation is equivalent to

X−(g̃ + S∗g) = 0

X+(Sg̃ + g) = 0
, (3.4)

which is of course also true for the subspace we are considering, PδN . Next, for
the latter subspace we clearly have

Xδ(g̃ + S∗g) = g̃ + S∗g

Xδ(Sg̃ + g) = Sg̃ + g
, (3.5)

and finally,

X+(−)α(L‖(−‖) + (−)i0)−1u ∈ H2
−(+)(E)

X+v−(k) = 0 for a.a. k

X−v+(k) = 0 for a.a. k

X−S∗(k)v−(k) =
1√
2π
X−α(L‖ − k + i0)−1u for a.a. k

X+S(k)v+(k) =
1√
2π
X+α(L−‖ − k − i0)−1u for a.a. k,

(3.6)

where we have used (3.4) and the orthogonality of H2
+(E) and H2−(E) in L2(E).

We prove now that the assertions (a) and (c) of Theorem 3.4 are equivalent.
In order to do so we need to show, that the third and fourth estimates in the
statement of Proposition 3.5 are respectively equivalent to the ones provided by
the assertion (c) of Theorem 3.4.

6We assume here that the functions ṽ−, ṽ+ have been extended by zero to the complementary
semiaxes.
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We begin with the third estimate. One immediately obtains:
∥
∥
∥
∥

(
P−(g̃ + S∗g)
−P−(Sg̃ + g)

)∥
∥
∥
∥

2

H

=
∫

δ

dk
(

‖P−(g̃ + S∗g)‖2 + ‖P−(Sg̃ + g)‖2 − 2 Re
(
SP−(g̃ + S∗g), P−(Sg̃ + g)

))

,

where we have used (3.4), (3.5) and the following simple observation:
∫

R

(P−f1(k), f2(k))dk =
∫

R

(P−f1(k), P−f2(k))dk

=
∫

δ

(f1(k), P−f2(k))dk =
∫

δ

(P−f1(k), f2(k))dk when f1(k) = Xδf1(k).
Direct computation now shows that the third estimate of Proposition 3.5 is equiv-
alent to the following one:
∫

δ

dk
(

‖X−v−‖2 − ‖X+S
∗v−‖2

)

(3.7)

+ 2 Re
∫

δ

dk

(
1√
2π
X+α(L‖ − k + i0)−1u, (S∗(k)X− − X+S

∗(k)) v−(k)
)

≤ C‖u‖2,
where we have taken into account that [14]

∫

δ

∥
∥
∥
∥

1√
2π
X+α(L‖ − k + i0)−1u

∥
∥
∥
∥

2

dk ≤ C‖u‖2.

The conditions (3.6) when applied to (3.7) show the equivalence of the latter
estimate to
∫

δ

dk
(

(X−SX−)−1(I − SS∗)(X−S∗X−)−1X−α(L‖ − k + i0)−1u ,

X−α(L‖ − k + i0)−1u
)

≤ C‖u‖2,
where X−SX− is treated as a bounded linear operator on X−E for a.a. k. On the
basis of Hilbert identity it can be now shown, that

(X−S(λ)X−)−1 = X−Θ(λ)X−.

Then
((X−S(λ)X−

)−1(
I − S(λ)S∗(λ)

)(X−S∗(λ)X−
)−1X−α(L‖ − λ)−1u,

X−α(L‖ − λ)−1u
)

=
(

X−Θ(λ)X−Θ2(λ)J
(
J −Θ(λ)JΘ∗(λ)

)
JΘ∗

2(λ)X−Θ∗(λ)X−α(L‖ − λ)−1u,

X−α(L‖ − λ)−1u
)

=
(

J
(
J −Θ(λ)JΘ∗(λ)

)
JX−α(L‖ − λ)−1u,X−α(L‖ − λ)−1u

)

,
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since, clearly, Θ∗
2(λ)X−Θ∗(λ)X− = X−. The last identity leads to the desired

estimate.
Analogous computations based on (3.4), (3.5) and (3.6) applied to the fourth

estimate of the Lemma 3.5 show that the latter is equivalent to the following one:
∫

δ

dk((X− + S(k)X+)−1(I − SS∗)(X− + X+S
∗(k))−1X+α(L‖ − k + i0)−1u,

X+α(L‖ − k + i0)−1u) ≤ C‖u‖2. (3.8)

Taking into account that

X− + X+S
∗(λ) = (X− + S(λ)X+)∗ = Θ∗

1(λ),

we have:

((X− + S(λ)X+)−1(I − S(λ)S∗(λ))(X− + X+S
∗(λ))−1X+α(L‖ − λ)−1u,

X+α(L‖ − λ)−1u)

= (Θ−1
1 (λ)Θ2(λ)J(J −Θ(λ)JΘ∗(λ))JΘ∗

2(λ)Θ∗−1
1 (λ)X+α(L‖ − λ)−1u,

X+α(L‖ − λ)−1u)

= (Θ∗(λ)J(J −Θ(λ)JΘ∗(λ))JΘ(λ)X+α(L‖ − λ)−1u,X+α(L‖ − λ)−1u)

= ((Θ∗(λ)JΘ(λ)− J)X+α(L‖ − λ)−1u,X+α(L‖ − λ)−1u),

which finishes the proof of the equivalence of the assertions (a) and (c) of the
Theorem 3.4.

The equivalence of assertions (a) and (b) is shown in analogous fashion, so
we omit the corresponding calculations here. �

The results obtained look still quite complicated since the integral estimates
of Theorem 3.4 involve the boundary values of the resolvent of the dissipative
operator L‖ and its adjoint, rather then the boundary values of the operators L
and L∗ like the conditions (3.2). Therefore we now prove a modification of the
Theorem 3.4. Namely, the following result holds:

Theorem 3.6. Provided that the spectrum of L is absolutely continuous, the follow-
ing assertions are equivalent:

(a) The restriction of the operator L to its spectral invariant subspace, corre-
sponding to a Borel set δ ⊂ R, is similar to a self-adjoint operator acting in
clos PδNe;

(b) For any u ∈ clos PδNe the following estimates hold:
∫

δ

((I − S∗(k)S(k))X+α(L− k − i0)−1u,X+α(L − k − i0)−1u)dk ≤ C‖u‖2
∫

δ

((I − S∗(k)S(k))X−α(L∗ − k− i0)−1u,X−α(L∗ − k− i0)−1u)dk ≤ C‖u‖2;
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(c) For any u ∈ clos PδNe the following estimates hold:
∫

δ

((I − S(k)S∗(k))X−α(L− k + i0)−1u,X−α(L− k + i0)−1u)dk ≤ C‖u‖2
∫

δ

((I − S(k)S∗(k))X+α(L∗ − k+ i0)−1u,X+α(L∗ − k + i0)−1u)dk ≤ C‖u‖2.

Proof. This theorem is proved by direct computation. For example, for the first
estimate of the assertion (b) of Theorem 3.4 one has:

((Θ(λ)JΘ∗(λ)− J)X+α(L−‖ − λ)−1u,X+α(L−‖ − λ)−1u)

= (Θ∗
1(λ)X+(Θ(λ)JΘ∗(λ)− J)X+Θ1(λ)α(L − λ)−1u, α(L− λ)−1u),

since

α(L−‖ − λ)−1 = Θ1(λ)α(L − λ)−1.

Then

Θ∗
1(λ)X+(Θ(λ)JΘ∗(λ)− J)X+Θ1(λ)

= (X+ −X+S
∗(λ)X−)J(X+ −X−S(λ)X+)−Θ∗

1(λ)X+JX+Θ1(λ)

= (X+ −X+S
∗(λ)X−)(X+ + X−S(λ)X+)

− (X− + X+S
∗(λ))X+(X− + S(λ)X+)

= X+ −X+S
∗(λ)X−S(λ)X+ −X+S

∗(λ)X+S(λ)X+

= X+(I − S∗(λ)S(λ))X+,

where we have used the fact that by the Hilbert identity

Θ∗(λ)X+Θ1(λ) = X+ −X−S(λ)X+.

In the case of the other respective pairs of estimates the proof is carried out
similarly. �

Corollary 3.7. Provided that the spectrum of the operator L is absolutely con-
tinuous, either of the following conditions is sufficient for the restriction of the
operator L to its spectral invariant subspace, corresponding to a Borel set δ ⊂ R,
to be similar to a self-adjoint operator acting in clos PδNe:
(a) There exists a constant C <∞ such that for all u ∈ clos PδNe the following

estimates hold:
∫

δ

∥
∥X+α(L− k − i0)−1u

∥
∥

2
dk ≤ C‖u‖2

∫

δ

∥
∥X−α(L∗ − k − i0)−1u

∥
∥

2
dk ≤ C‖u‖2

(3.9)
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(b) There exists a constant C <∞ such that for all u ∈ clos PδNe the following
estimates hold:

∫

δ

∥
∥X−α(L − k + i0)−1u

∥
∥

2
dk ≤ C‖u‖2

∫

δ

∥
∥X+α(L∗ − k + i0)−1u

∥
∥

2
dk ≤ C‖u‖2.

(3.10)

In the last section of the present paper we are going to apply the results
obtained above (more specifically, the result of Corollary 3.7) to the analysis of the
similarity problem for the operator of one-dimensional non-selfadjoint Friedrichs
model.

4. Application: Friedrichs model operator

We consider the operator acting on its natural domain in the Hilbert space L2(R)
and defined by the formula

(Lu)(x) = xu(x) + ψ(x)
∫

u(t)ϕ(t) dt, ϕ, ψ ∈ L2(R). (4.1)

The determinant of perturbation D(λ) in this case is given by the following ex-
pression: D(λ) = 1 +

∫
ϕ(t)ψ(t)(t−λ)−1 dt. In order to simplify the calculation of

the operators α and X± we restrict ourselves to the case of orthogonal functions
ϕ, ψ: (ϕ, ψ) = 0. The corresponding calculations can clearly be carried out in the
general case as well.

Denote the class of the functions f analytic in the upper (lower) half-plane
and satisfying the condition

sup
ε>0 (ε<0)

∫

|f(k + iε)|p dk

1 + k2
<∞

by Hp,loc
+ (Hp,loc

− ).
The following Lemma, characterizing the structure of the spectrum of the

operator under investigation, can be derived from (2.7) by a rather straightforward
calculation:

Lemma 4.1.

(i) Let the spectrum of the operator (4.1) be absolutely continuous. Then
(D(λ))−1 ∈ H2,loc

± , (D(λ))−1(ψ(t)(t − λ)−1, ψ(t)) ∈ H2
±.

(ii) Provided, that
(a) (D(λ))−1 ∈ H2+δ,loc

± , δ > 0,
(b) ψ(t) ∈ L∞(R),

the spectrum of the operator (4.1) is absolutely continuous.
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The condition (3.9) for the operator (4.1) can now be reduced to the test of
boundedness of certain singular integral operators acting in L2(R). Denote

γ(k) :=
1− i ‖ϕ‖‖ψ‖−1(ψ(x)(x − k − i0)−1, ψ(x))

D(k + i0)

γ∗(k) :=
1− i ‖ψ‖‖ϕ‖−1(ϕ(x)(x − k − i0)−1, ϕ(x))

D∗(k + i0)
,

where D∗(λ) ≡ D(λ).

The following theorem follows immediately:

Theorem 4.2. Let the spectrum of the one-dimensional perturbation of the multi-
plication operator (4.1) be absolutely continuous. Assume that (ϕ, ψ) = 0. Assume
that γϕ, γ∗ψ ∈ L2(δ) for a given Borel set δ ⊂ R. Let singular integral operators
defined by their respective kernels

T1(k, t) =
i ψ(t)
t− k + γ(k)

ϕ(t)
t− k ,

T2(k, t) =
i ϕ(t)
t− k + γ∗(k)

ψ(t)
t− k ,

(4.2)

i.e., the linear operators

T1 : u 
→ v.p.

∫

T1(k, t)u(t)dt and T2 : u 
→ v.p.

∫

T2(k, t)u(t)dt

be bounded as operators acting from L2(R) to L2(δ). Then the restriction of the
operator L to its spectral invariant subspace, corresponding to the set δ ⊂ R, is
similar to a self-adjoint operator acting in clos PδNe.

The proof of this theorem is a straightforward application of the Corollary 3.7
to the operator under investigation. If one assumes some additional smoothness of
the functions ϕ and ψ, the latter result can be formulated in a more concise form.

Corollary 4.3. Let the spectrum of the one-dimensional perturbation of the multi-
plication operator (4.1) be absolutely continuous. Assume that (ϕ, ψ) = 0 and let
further ϕ, ψ ∈ Cβ(R) for some β > 0. If singular integral operators T ′

1 and T ′
2

defined as above by their respective kernels

T ′
1(k, t) =

1
D(k − i0)

ϕ(t)
t− k ,

T ′
2(k, t) =

1
D∗(k − i0)

ψ(t)
t− k

(4.3)

are bounded from L2(R) to L2(δ) for a given Borel set δ ⊂ R, then the restriction
of the operator L to its spectral invariant subspace, corresponding to the set δ ⊂ R,
is similar to a self-adjoint operator acting in clos PδNe.
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Remark 4.4. The last result shows that under the assumption of some minimal
additional smoothness the similarity problem reduces to the problem of (local)
boundedness of a Hilbert-like transform in a weighted L2, where the weight is
determined by the determinant of perturbation D.
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Introduction

There is a long history to the study of connections between the spectrum of a
selfadjoint differential operator and properties of generalized solutions to the as-
sociated eigenvalue equation. In this context, the following two “meta theorems”
have attracted particular attention:

• Positive generalized eigenfunctions exist for energies below the spectrum and
the spectrum begins at the energy, where positive generalized eigenfunctions
cease to exist.

• The spectrum is given by those energies, for which a (suitably) bounded
generalized solution exists.

The first statement is sometimes discussed under the name of “Allegretto
Piepenbrink theorem”. The second statement is discussed under the heading of
“Shnol theorem”. Precise versions (and proofs) of these statements have been given
in various contexts. It turns out that the framework of (strongly local) Dirichlet
forms allows one to give a unified and structurally rather simple discussion of
these two results. This has recently be shown in [45] (for the Allegretto Piepen-
brink theorem) and in [23] for the Shnol type result, see the results on expansion
in eigenfunctions in [22] as well. The mentioned framework includes a variety of
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operators among them Schrödinger operators, (uniform) elliptic operators on man-
ifolds and (suitable) quantum graphs. Accordingly, the mentioned results have a
rather broad applicability.

Our aim here is to discuss this approach to basic spectral theory via Dirichlet
forms in a way that is accessible to the non-specialist. In this way, we will not only
feature the Shnol Theorem and the Allegretto Piepenbrink theorems of [23, 45]
but also hope to advertise the use of Dirichlet forms in spectral problems. For this
reason we also conclude the paper with a discussion of various applications. The
results in this paper are concerned with strongly local Dirichlet forms. A study of
similar results for non-local Dirichlet forms (e.g., graphs) can be found in [34].

The organisation of this paper is as follows. We give a introduction into
Dirichlet forms in Sections 1, 2 and 3. This introduction is aimed at a non-
specialist. We then discuss a version of Allegretto-Piepenbrink Theorem in Sec-
tion 4 and results related to Shnol’s Theorem in Section 5. These sections contain
sketches of ideas and proofs. Finally, we discuss applications in Section 6.

1. Strongly local Dirichlet forms

In this section we describe the set-up used throughout the paper. We refer to [35]
as to the classical standard reference as well as [21, 28, 36, 47] for literature on
Dirichlet forms. We treat real and complex function spaces at the same time and
write K to denote either R or C.

Throughout we will work with a locally compact, separable metric space X
endowed with a positive Radon measure m with suppm = X .

Dirichlet forms

The central object of our studies is a regular Dirichlet form E with domain D in
L2(X) and the selfadjoint operator H0 associated with E . In order to precisely
define these notions we recall the basic terminology of Dirichlet forms: Consider
a dense subspace D ⊂ L2(X,m) and a sesquilinear and non-negative map E : D ×
D → K such that D is closed with respect to the energy norm ‖ · ‖E , given by

‖u‖2E = E [u, u] + ‖u‖2L2(X,m),

in which case one speaks of a closed form in L2(X,m). In the sequel we will write

E [u] := E [u, u].

The selfadjoint operator H0 associated with E is then characterized by

D(H0) ⊂ D and E [f, v] = (H0f | v) (f ∈ D(H0), v ∈ D).

Such a closed form is said to be a Dirichlet form if D is stable under certain
pointwise operations; more precisely, T : K → K is called a normal contraction if
T (0) = 0 and |T (ξ)− T (ζ)| ≤ |ξ − ζ| for any ξ, ζ ∈ K and we require that for any
u ∈ D also

T ◦ u ∈ D and E [T ◦ u] ≤ E [u].
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In the real case, this condition is often replaced by equivalent but formally weaker
statement involving u ∨ 0 and u ∧ 1, see [35], Thm. 1.4.1 and [47], Section I.4.

A Dirichlet form is called regular if D ∩ Cc(X) is large enough so that it is
dense both in (D, ‖ · ‖E) and (Cc(X), ‖ · ‖∞), where Cc(X) denotes the space of
continuous functions with compact support.

Examples

Here, we discuss some examples showing the wide range of applicability of Dirichlet
forms.

The Laplacian on Euclidean space. The Laplacian in Euclidean space is the
typical example to be kept in mind. It is given by

H0 = −∆ on L2(Ω), Ω ⊂ R
d open,

in which case

D = W 1,2
0 (Ω) and E [u, v] =

∫

Ω

(∇u|∇v)dx.

Note that for differentiable contractions T : R −→ R the chain rule easily
gives the crucial Dirichlet form property for real-valued functions u as

E(Tu) =
∫

Ω

(∇Tu,∇Tu)dx =
∫

Ω

|T ′(u(x))|2(∇u,∇u)dx ≤ E(u)

as |T ′(z)| ≤ 1 for all z ∈ C.

Uniform elliptic operators in Euclidean space: In the previous example we can
allow for quite irregular coefficients of the differential operator. More precisely, let
Ω ⊂ R

d open and let A be a measurable map from Ω into the symmetric d × d
matrices. Assume that there exist c, C > such that the eigenvalues of A(x) lie in
[c, C] for all x ∈ Ω. Then, the form EA defined on W 1,2

0 (Ω) by

EA[u, v] =
∫

Ω

(A(x)∇u|∇v)dx

is a regular Dirichlet form.

Laplace Beltrami and unifom elliptic operators on manifolds: The previous
example can easily be generalized to Laplace Beltrami operators on Riemannian
manifolds: Let M be a Riemannian manifold with metric tensor g and exterior
derivative d. Then, the form

Ec(u, v) :=
∫

M

(du, dv)dx

defined for u, v ∈ C∞
c (M) is closable. The closure is a Dirichlet form and its

domain of definition is given by W 1,2
0 (M). The generator is the Laplace Beltrami

operator. Again, we can allow for a measurable map A from M into the symmetric
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linear maps on the corresponding cotangent spaces with eigenvalues lying in some
interval [c, C] for c, C > 0 and obtain the Dirichlet form

EA(u, v) :=
∫

M

(Adu, dv)dx

defined on W 1,2
0 (M). These examples can be further generalized to allow for some

subriemannian manifolds. We will not give details here.

Quantum graphs with Kirchhoff boundary conditions : This example has re-
ceived attention in recent times. We refrain from giving details here but refer to
the last section of the paper.

Capacity

The capacity is a set function that allows one to measure the size of sets in a way
that is adapted to the form E .

For U ⊂ X , U open, we define

cap(U) := inf{‖v‖2E | v ∈ D, χU ≤ v},
where we set (inf ∅ =∞). For arbitrary A ⊂ X , we then set

cap(A) := inf{cap(U) | A ⊂ U}
(see [35], p. 61f.). We say that a property holds quasi-everywhere, short q.e., if
it holds outside a set of capacity 0. A function f : X → K is said to be quasi-
continuous, q.c. for short, if, for any ε > 0 there is an open set U ⊂ X with
cap(U) ≤ ε so that the restriction of f to X \ U is continuous.

A fundamental result in the theory of Dirichlet forms says that every u ∈ D
admits a q.c. representative ũ ∈ u (recall that u ∈ L2(X,m) is an equivalence
class of functions) and that two such q.c. representatives agree q.e. Moreover, for
every Cauchy sequence (un) in (D, ‖ · ‖E) there is a subsequence (unk

) such that
the (ũnk

) converge q.e. (see [35], p. 64f).
Whenever we will write expressions containing pointwise evaluations of func-

tions u in the future, we will assume that a quasi continuous representative has
been chosen.

Strong locality and the energy measure

E is called strongly local if
E [u, v] = 0

whenever u is constant a.s. on the support of v.
Every strongly local, regular Dirichlet form E can be represented in the form

E [u, v] =
∫

X

dΓ(u, v)
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where Γ is a nonnegative sesquilinear mapping from D×D to the set of K-valued
Radon measures on X . It is determined by

∫

X

φdΓ(u, u) = E [u, φu]− 1
2
E [u2, φ]

for real-valued u ∈ D, φ ∈ D ∩ Cc(X) and called energy measure; see also [21].
Obviously, all examples discussed in the preceding subsection are strongly

local. In the case of the Laplacian in Euclidean space, the measure Γ is given by
(∇u|∇v)dx appearing above.

We discuss properties of the energy measure next (see, e.g., [21, 35, 67]).
The energy measure inherits strong locality from E viz χUdΓ(η, u) = 0 holds

for any open U ∈ X and any η, u ∈ D with η constant on U . This directly allows
one to extend Γ to Dloc defined as

{
u ∈ L2

loc | for all compact K ⊂ X there is φ ∈ D s. t. φ = u m-a.e. on K
}
,

We will denote this extension by Γ again. This extension is strongly local again,
i.e., satisfies

χUdΓ(η, u) = 0,

for any open U ∈ X and any η, u ∈ Dloc with η constant on U . The set D is then
given as the set of all u ∈ Dloc with

∫
1dΓ(u) < ∞. The energy measure satisfies

the Leibniz rule,

dΓ(u · v, w) = udΓ(v, w) + vdΓ(u,w),

for all u, v ∈ Dloc∩L∞
loc(X). (In fact strong locality of E is equivalent to the validity

of the Leibniz rule for functions in D∩L∞
loc.) The energy measure also satisfies the

chain rule

dΓ(η(u), w) = η′(u)dΓ(u,w)

whenever u,w ∈ Dloc ∩ L∞
loc are real-valued and η is continuously differentiable.

We write dΓ(u) := dΓ(u, u) and note that the energy measure satisfies the
Cauchy-Schwarz inequality:

∫

X

|fg|d|Γ(u, v)| ≤
(∫

X

|f |2dΓ(u)
) 1

2
(∫

X

|g|2dΓ(v)
) 1

2

≤ 1
2

∫

X

|f |2dΓ(u) +
1
2

∫

X

|g|2dΓ(v)

for all u, v ∈ Dloc and f, g : X −→ C measurable.
Due to Leibniz rule the sets D and Dloc resp. have certain closedness prop-

erties under multiplication. This is an interesting feature and we discuss it next.
It is not hard to see that any function in u ∈ Dloc with compact support

belongs in fact to D (as
∫
dΓ(u) =

∫

suppu
dΓ(u) < ∞). More generally, localized

versions of functions fromDloc belong to D. More precisely, the following holds [45].
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Lemma 1.1.

(a) Let Ψ ∈ Dloc ∩ L∞
loc(X) and ϕ ∈ D ∩ L∞

c (X) be given. Then, ϕΨ belongs to
D.

(b) Let Ψ ∈ Dloc and ϕ ∈ D ∩ L∞
c (X) be such that dΓ(ϕ) ≤ C · dm. Then, ϕΨ

belongs to D.

Part (a) of the lemma gives in particular that D∩Cc(X) = Dloc∩Cc(X) and
D ∩ L∞

c (X) = Dloc ∩ L∞
c (X) are closed under multiplication.

In order to introduce weak solutions on open subsets U of X , we extend E to
Dloc(U)×Dc(U): where,

Dloc(U) := {u ∈ L2
loc(U) | ∀compact K ⊂ U∃ φ ∈ D s. t. φ = u m-a.e. on K}
Dc(U) := {ϕ ∈ D|suppϕ compact in U}.

For u ∈ Dloc(U), ϕ ∈ Dc(U) we define

E [u, ϕ] := E [ηu, ϕ].

Here, η ∈ D ∩ Cc(U) is arbitrary with constant value 1 on the support of ϕ. This
makes sense as the RHS does not depend on the particular choice of η by strong
locality.

Obviously, also Γ extends to a mapping Γ : Dloc(U)×Dloc(U)→MR(U).

The intrinsic metric, strict locality and cut-off functions

Using the energy measure one can define the intrinsic metric

ρ : X ×X −→ [0,∞]

by
ρ(x, y) = sup{|u(x)− u(y)| |u ∈ Dloc ∩ C(X) and dΓ(u) ≤ dm}

where the latter condition signifies that Γ(u) is absolutely continuous with respect
tom and the Radon-Nikodym derivative is bounded by 1 onX . Despite its name, in
general, ρ need not be a metric. However, it is a pseudo metric viz it is symmetric,
satisfies ρ(x, x) = 0 for all x ∈ X and satisfies the triangle inequality.

We say that E is strictly local if ρ is a metric that induces the original topology
on X .

Note that strict locality implies that X is connected, since otherwise points
x, y in different connected components would give ρ(x, y) = ∞, as characteris-
tic functions of connected components are continuous and have vanishing energy
measure.

We denote the intrinsic balls by

B(x, r) := {y ∈ X |ρ(x, y) ≤ r}.
An important consequence of strict locality is that the distance function ρx(·) :=
ρ(x, ·) itself is a function in Dloc with dΓ(ρx) ≤ dm, see [67]. This easily extends
to the fact that for every closed E ⊂ X the function ρE(x) := inf{ρ(x, y)|y ∈ E}
enjoys the same properties (see the Appendix of [23]). This has a very important
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consequence. Whenever ζ : R −→ R is continuously differentiable, and η := ζ ◦ρE,
then η belongs to Dloc and satisfies

dΓ(η) = (ζ′ ◦ ρE)2dΓ(ρE) ≤ (ζ′ ◦ ρE)2dm. (1.1)

For this reason a lot of good cut-off functions are around in our context. More
explicitly we note the following lemma (Lemma 1.3 in [45], see [23] as well).

Lemma 1.2. For any compact K in X there exists a ϕ ∈ Cc(X) ∩ D with ϕ ≡ 1
on K, ϕ ≥ 0 and dΓ(ϕ) ≤ C dm for some C > 0. If L is another compact set
containing K in its interior, then ϕ can be chosen to have support in L.

Irreducibility

We will now discuss a notion that will be crucial in the proof of the existence
of positive weak solutions below the spectrum. In what follows, h will denote a
densely defined, closed semibounded form in L2(X) with domain D(h) and posi-
tivity preserving semigroup (Tt; t ≥ 0). We denote by H the associated operator.
Actually, the cases of interest in this paper are the situation that h = E is a
Dirichlet form as discussed above, or a measure perturbation thereof h = E + ν.
Here it is assumed that the positive and negative part of the measure ν obey
ν+ ∈ MR,0, ν− ∈ MR,1, where the classes MR,0,MR,1 are discussed in the next
section.

We say that h is reducible, if there is a measurable set M ⊂ X such that
M and its complement M c are nontrivial (have positive measure) and L2(M) is a
reducing subspace for M , i.e., 1MD(h) ⊂ D(h), h restricted to 1MD(h) is a closed
form and E(u, v) = E(u1M , v1M ) + E(u1Mc , v1Mc) for all u, v. If there is no such
decomposition of h, the latter form is called irreducible. Note that reducibility can
be rephrased in terms of the semigroup and the resolvent:

Theorem 1.3. Let h be as above. Then the following conditions are equivalent:
(i) h is irreducible.
(ii) Tt is positivity improving, for every t > 0, i.e., f ≥ 0 and f �= 0 implies that

Ttf > 0 a.e.
(iii) (H + E)−1 is positivity improving for every E < inf σ(H).

We refer to [56], XIII.12 and a forthcoming paper [46] for details.
It is quite easy to see that a disconnected space easily leads to reducible

forms. The converse is not exactly right, but there are recent results that go far
in this direction and characterize irreducibility, cf. [31].

Assumptions

For the convenience of the reader we gather in this section assumptions and nota-
tion used in the sequel.

We will exclusively deal with regular, strongly local Dirichlet forms E . The
corresponding energy measure is denoted by Γ. The associated intrinsic metric is
denoted by ρ.

We always choose quasi continuous representatives for elements of Dloc.
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The strongly local Dirichlet form E is strictly local if ρ is a metric that induces
the original topology on X . This condition can be slightly weakened. It suffices to
assume that the pseudometric ρ induces the original topology on X (as for a given
x ∈ X one can then always restrict attention to the set of y with ρ(x, y) <∞).

Later we will also encounter a growth assumption on the intrinsic metric.

(G) All intrinsic balls have finite volume with subexponential growth:

e−α·Rm(B(x,R)) → 0 as R→∞ for all x ∈ X,α > 0.

Finally, we note that E is called ultracontractive if for each t > 0 the semi-
group e−tH0 gives a map from L2(X) to L∞(X).

2. Measure perturbations

We will be dealing with Schrödinger type operators, i.e., perturbationsH = H0+V ,
where H0 is associated to a strictly local Dirichlet form and the function V is a
suitable potential. In fact, we can even include measures as potentials. Here, we
follow the approach from [64, 65]. Measure perturbations have been regarded by
a number of authors in different contexts, see, e.g., [11, 37, 67] and the references
there.

We denote by MR(U) the signed Radon measures on the open subset U of
X and by MR,0(U) the subset of measures ν that do not charge sets of capacity
0, i.e., those measures with ν(B) = 0 for every Borel set B with cap(B) = 0. In
case that ν = ν+ − ν− ∈ MR,0(X) we can define

ν[u, v] =
∫

X

ũṽdν for u, v ∈ D with ũ, ṽ ∈ L2(X, ν+ + ν−).

Of course, a special instance of such measures is given by ν = V dm whenever V
belongs to L1

loc(X).
We have to rely upon more restrictive assumptions concerning the negative

part ν− of our measure perturbation. We write MR,1 for those measures ν ∈
MR(X) that are E-bounded with bound less than one; i.e., measures ν for which
there is a κ < 1 and a cκ ≥ 0 such that

ν[u, u] ≤ κE [u] + cκ‖u‖2.
The set MR,1 can easily be seen to be a subset of MR,0.

By the KLMN theorem (see [55], p. 167), the sum E + ν given by D(E + ν) =
{u ∈ D | ũ ∈ L2(X, ν+)} is closed and densely defined (in fact D ∩ Cc(X) ⊂
D(E+ν)) for ν with ν+ ∈MR,0, ν− ∈ MR,1. We denote the associated selfadjoint
operator by H0 + ν. Note that D ∩ L∞

c (X) ⊂ D(E + ν).
An important subclass of MR,0 with very nice properties of the associated

operators is the Kato class and the extended Kato class. In the present framework
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it can be defined in the following way: For µ ∈M0 and α > 0 we set

Φ(µ, α) : Cc(X)+ → [0,∞],

Φ(µ, α)ϕ :=
∫

X

(
(H0 + α)−1ϕ

)
˜ dµ.

The extended Kato class is defined as

ŜK := {µ ∈M0|∃α > 0 : Φ(µ, α) ∈ L1(X,m)′}
and, for µ ∈ ŜK and α > 0,

cα(µ) := ‖Φ(µ, α)‖L∞(X,m)(= ‖Φ(µ, α)‖L1(X,m)′), cKato(µ) := inf
α>0

cα(µ).

The Kato class is originally defined via the fundamental solution of the Laplace
equation in the classical case. In our setting it consists of those measures µ with
cKato(µ) = 0.

As done in various papers, one can even allow for more singular measures, a
direction we are not going to explore here.

As already discussed our measure perturbations preserve closability of the
form. They preserve further properties. In fact, regularity is preserved in our con-
text as well.

Theorem 2.1 ([45]). Let (E ,D) be a strongly local, regular Dirichlet form. Let ν
with ν+ ∈ MR,0, ν− ∈MR,1 be given. Then, the perturbed form (E + ν,D(E + ν))
is regular as well.

Measure perturbations also preserve irreducibility, as can be seen from the
following result.

Theorem 2.2 ([46]). Let (E ,D) be a strictly local, regular, irreducible Dirichlet
form. Let ν with ν+ ∈ MR,0, ν− ∈ MR,1 be given. Then, the perturbed form
(E + ν,D(E + ν)) is irreducible as well.

3. Weak solutions

Our main aim is to relate properties of weak solutions or generalized eigenfunctions
to spectral properties of H0 +µ. The necessary notation concerning weak solutions
is introduced in this section. Throughout this section we consider a strongly local,
regular Dirichlet form, (E ,D) on X and denote by Γ : Dloc × Dloc → M(X) the
associated energy measure. We will be concerned with weak solutions Φ of the
equation

(H0 + V )Φ = λ · Φ, (3.1)
whereH0 is the operator associated with E and V is a real-valued, locally integrable
potential. In fact, we will consider a somewhat more general framework, allowing
for measures instead of functions, as presented in the previous section. Moreover,
we stress the fact that (3.1) is formal in the sense that Φ is not assumed to be in
the operator domain of neither H0 nor V . Here are the details.
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Recall that we could extend Γ to a measure-valued function on U . In the same
way, we can extend ν[·, ·], using that every u ∈ Dloc(U) admits a quasi continuous
version ũ.

Definition 3.1. Let U ⊂ X be open and ν ∈MR,0(U) be a signed Radon measure
on U that charges no set of capacity zero. Let λ ∈ R and Φ ∈ L2

loc(U). We say
that Φ is a weak solution of (H0 + ν)Φ = λ ·Φ in U if:

(i) Φ ∈ Dloc(U),
(ii) Φ̃dν ∈MR(U),

(iii) ∀ϕ ∈ D ∩Cc(U), E [Φ, ϕ] +
∫

U

ϕΦ̃dν = λ · (Φ|ϕ).

If V ∈ L1
loc(U) we say that Φ is a weak solution of (H0 + V )Φ = λ ·Φ in U if it is

a weak solution of (H0 + ν)Φ = λ ·Φ for ν = V dm.

Next, we briefly discuss these assumptions.

Remark 3.2.

(1) If ν = V dm and V ∈ L2
loc(U), then property (ii) of the definition above is

satisfied.
(2) If Φ ∈ L∞

loc(U) and ν ∈MR(U) then (ii) of the definition above is satisfied.
(3) If ν ∈ MR(U) satisfies (ii) above then ν − Edm ∈ MR(U) satisfies (ii) as

well and any weak solution of (H0 + ν)Φ = λ · Φ in U is a weak solution of
(H0 + ν − Edm)Φ = 0 in U . Thus it suffices to consider the case λ = 0.

(4) By regularity we can replace (iii) by E [Φ, ϕ] +
∫

U ϕΦ̃dν = λ · (Φ|ϕ) for all
ϕ ∈ Dloc ∩ L∞

c (U) (see [45] for details).

4. Positive weak solutions and the infimum of the spectrum

Throughout this section we consider a strongly local, regular Dirichlet form, (E ,D)
on X and denote by Γ : Dloc×Dloc →M(X) the associated energy measure. The
results discussed in this section are taken from [45] to which we refer for further
details and proofs.

Ground state transform and consequences

We start with a theorem giving the so-called ground state transform in our general
setting.

Theorem 4.1. Let (E ,D) be a regular, strictly local Dirichlet form, H0 be the asso-
ciated operator and ν a measure with ν+ ∈MR,0, ν− ∈ MR,1. Suppose that Φ is a
weak solution of (H0 + ν)Φ = λ ·Φ in X with Φ > 0 m-a.e. and Φ,Φ−1 ∈ L∞

loc(X).
Then, for all ϕ, ψ ∈ D(E + ν), the products ϕΦ−1, ψΦ−1 belong to Dloc and the
formula

E [ϕ, ψ] + ν[ϕ, ψ] =
∫

X

Φ2dΓ(ϕΦ−1, ψΦ−1) + λ · (ϕ|ψ) (4.1)

holds.
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The proof of the theorem proceeds essentially in two steps. In the first step
a local version of the theorem is proven for “smooth” u, v. In the second step this
local version is then extended to the whole space. Note also that the conditions on
Φ in the theorem imply that Φ−1 is in Dloc. As the local version may be of inde-
pendent interest and has a very simple proof we include statement and proof next.

Theorem 4.2. Let (E ,D) be a regular, strictly local Dirichlet form, H0 be the
associated operator and ν ∈ MR,0(U). Suppose that Φ is a weak solution of
(H0 + ν)Φ = λ · Φ in U with Φ > 0 m-a.e. and Φ,Φ−1 ∈ L∞

loc(U). Then, for
all ϕ, ψ ∈ D ∩ L∞

c (U):

E [ϕ, ψ] + ν[ϕ, ψ] =
∫

U

Φ2dΓ(ϕΦ−1, ψΦ−1) + λ · (ϕ|ψ).

Proof. For the proof we may assume λ = 0 without restriction. Without loss of
generality we may also assume that ϕ and ψ are real-valued functions. We now
evaluate the RHS of the above equation, using the following identity. The Leibniz
rule implies that for arbitrary w ∈ Dloc(U):

0 = dΓ(w, 1) = dΓ(w,ΦΦ−1) = Φ−1dΓ(w,Φ) + ΦdΓ(w,Φ−1) (�)

Therefore, for ϕ, ψ ∈ D ∩ Cc(X):
∫

X

Φ2dΓ(ϕΦ−1, ψΦ−1) =
∫

X

ΦdΓ(ϕ, ψΦ−1) +
∫

X

Φ2ϕdΓ(Φ−1, ψΦ−1)

(by symmetry) =
∫

X

dΓ(ϕ, ψ) +
∫

X

ΦψdΓ(ϕ,Φ−1)

+
∫

X

Φ2ϕdΓ(ψΦ−1,Φ−1)

= E [ϕ, ψ] +
∫

X

Φ2dΓ(ϕψΦ−1,Φ−1)

(by (�)) = E [ϕ, ψ]−
∫

X

dΓ(ϕψΦ−1,Φ)

= E [ϕ, ψ]− E [ϕψΦ−1,Φ].

As Φ is a weak solution we can now use part (4) of the previous remark to continue
the computation by

· · · = E [ϕ, ψ]− (−ν[ϕψΦ−1,Φ]
)

= E [ϕ, ψ] + ν[ϕ, ψ].

This finishes the proof. �

The ideas behind our proof allow for some further generalizations. This is
shortly indicated in the following remark.
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Remark.

(1) This proof actually shows the following statement: Assume that there is a
weak supersolution Φ of (H0 + ν)Φ = λ · Φ on X with Φ > 0 m-a.e. and
Φ,Φ−1 ∈ L∞

loc(X). Then E + ν ≥ λ.
(2) We can allow for complex measures ν without problems. In the context of

PT-symmetric operators there is recent interest in this type of Schrödinger
operators, see [15]

(3) Instead of measures also certain distributions could be included. Cf. [38] for
such singular perturbations.

We explicitly note the following immediate consequence of (both) of the the-
orems of this section.

Corollary 4.3. Let (E ,D) be a regular, strictly local Dirichlet form, H0 be the
associated operator and ν a measure on X with ν+ ∈ MR,0, ν− ∈ MR,1. Suppose
that Φ is a weak solution of (H0 + ν)Φ = λ · Φ in X with Φ > 0 m-a.e. and
Φ,Φ−1 ∈ L∞

loc(X). Then, H0 + ν ≥ λ.

Harnack principles and existence of positive solutions below the spectrum

The previous subsection shows that H0 + ν ≥ λ whenever E + ν is closable and
admits a positive weak solution of (H0 + ν)Φ = λΦ. In this subsection we discuss
the converse under suitable conditions. A key property is related to the celebrated
Harnack inequality.

Definition 4.4.

(1) We say that H0 + ν satisfies a Harnack inequality for λ ∈ R if, for every
relatively compact, connected open X0 ⊂ X there is a constant C such that
all positive weak solutions Φ of (H0 + ν)Φ = λΦ on X0 are locally bounded
and satisfy

esssupB(x,r)u ≤ CessinfB(x,r)u,

for everyB(x, r) ⊂ X0 where esssup and essinf denote the essential supremum
and infimum.

(2) We say that H0 + ν satisfies the Harnack principle for λ ∈ R if for every rel-
atively compact, connected open subset U of X and every sequence (Φn)n∈N

of nonnegative solutions of (H0 + ν)Φ = λ ·Φ in U the following implication
holds: If, for some measurable subset A ⊂ U of positive measure

supn∈N ‖Φn1A‖2 <∞
then, for all compact K ⊂ U also

supn∈N ‖Φn1K‖2 <∞.
(3) We say that H0 + ν satisfies the uniform Harnack principle if for every

bounded interval I ⊂ R, every relatively compact, connected open subset U of
X and every sequence (Φn)n∈N of nonnegative solutions of (H0+ν)Φ = λn ·Φ
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in U with λn ∈ I the following implication holds: If, for some measurable sub-
set A ⊂ U of positive measure

supn∈N ‖Φn1A‖2 <∞
then, for all compact K ⊂ U also

supn∈N ‖Φn1K‖2 <∞.
Note that validity of a Harnack principle implies that a nonnegative weak

solution Φ must vanish identically if it vanishes on a set of positive measure (as
Φn := nΦ has vanishing L2 norm on the set of positive measure in question). Note
also that validity of an Harnack inequality extends from balls to compact sets by
a standard chain of balls argument. This easily shows that H0 + ν satisfies the
Harnack principle for λ ∈ R if it obeys a Harnack inequality for λ ∈ R. Therefore,
many situations are known in which the Harnack principle is satisfied:

For ν ≡ 0 and λ = 0 a Harnack inequality holds, whenever E satisfies a
Poincaré and a volume doubling property; cf. [20] and the discussion there. The
most general results for H0 = −∆ in terms of the measures ν that are allowed
seem to be found in [37]. The uniformity of the estimates from [37] immediately
gives that the uniform Harnack principle is satisfied for Kato class measures. Of
the enormous list of papers on Harnack’s inequality, let us also mention [8, 18, 19,
26, 37, 39, 41, 49, 57, 58, 69, 70]

Apart from the Harnack principle there is a second property that will be
important in the proof of existence of positive general eigensolutions at energies
below the spectrum.

Definition 4.5. The form E satisfies the local compactness property if D0(U) :=

D ∩ Cc(U)
‖·‖E is compactly embedded in L2(X) for every relatively compact open

U ⊂ X .

In case of the classical Dirichlet form the local compactness property follows
from Rellich’s Theorem on compactness of the embedding of Sobolev spaces in L2.

It turns out that the situation is somewhat different depending on whether
X is compact or not. In both cases we will need the assumption of irreducibility in
order to obtain solutions which are positive almost everywhere. This is clear as in
the reducible case a nontrivial solution could still vanish on some “components”.

We first get the case of compact X out of our way.

Theorem 4.6. Let (E ,D) be a regular, strictly local, irreducible Dirichlet form,
H0 be the associated operator and ν a measure with ν+ ∈ MR,0, ν− ∈ MR,1.
Suppose that X is compact and E satisfies the local compactness property. Then,
H0 +ν has compact resolvent. In particular, there exists a positive weak solution to
(H0 + ν)Φ = λ0Φ for λ0 := inf σ(H0 + ν). This solution is unique (up to a factor)
and belongs to L2(X). If H0 + ν satisfies a Harnack principle, then λ0 is the only
value in R allowing for a positive weak solution.
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We can now state our result in the case of non-compact X .

Theorem 4.7. Let (E ,D) be a regular, strictly local, irreducible Dirichlet form,
H0 be the associated operator and ν with ν+ ∈ MR,0, ν− ∈ MR,1. Suppose that
E satisfies the local compactness property and X is noncompact. Then, if λ <
inf σ(H0 + ν) and H0 + ν satisfies the Harnack principle for λ, there is an a.e.
positive solution of (H0 + ν)Φ = λΦ.

That we have to assume thatX is noncompact can easily be seen by looking at
the Laplacian on a compact manifold. In that situation any positive weak solution
must in fact be in L2 due to the Harnack principle. Thus the corresponding energy
must lie in the spectrum (see Theorem 4.6).

Characterizing the infimum of the spectrum

The previous results do not yet settle the existence of a positive weak solution
for the groundstate energy inf σ(H0 + ν) in the noncompact case. The uniform
Harnack principle settles this question:

Theorem 4.8. Let (E ,D) be a regular, strictly local, irreducible Dirichlet form,
H0 be the associated operator, ν with ν+ ∈ MR,0, ν− ∈ MR,1. Suppose that E
satisfies the local compactness property and H0 + ν satisfies the uniform Harnack
principle. Then there is an a.e. positive weak solution of (H0 + ν)Φ = λΦ for
λ = inf σ(H0 + ν).

5. Weak solutions and spectrum

In this section we relate energies in the spectrum to energies for which (suitably
bounded) weak solutions exist. The results are taken from [23]. The final charac-
terization relies on [22] as well.

A Weyl type criterion

We include the following criterion for completeness. It is taken from [66], Lemma
1.4.4, see also [30], Lemma 4.1 for the same result in a slightly different formulation.

Proposition 5.1. Let h be a closed, semibounded form and H the associated self-
adjoint operator. Then the following assertions are equivalent:

(i) λ ∈ σ(H).
(ii) There exists a sequence (un) in D(h) with ‖un‖ → 1 and

sup
v∈D(h),‖v‖h≤1

|(h− λ)[un, v]| → 0,

for n→∞.

A Caccioppoli type inequality

In this section we prove a bound on the energy measure of a generalized eigen-
function on a set in terms of bounds on the eigenfunction on certain neighborhood
of the set.
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We need the following notation: For E ⊂ X and b > 0 we define the b-
neighborhood of E as

Bb(E) := {y ∈ X : ρ(y,E) ≤ b}.
Theorem 5.2. Let E be a strictly local regular Dirichlet form. Let µ+ ∈ M0 and
µ− ∈ M1 be given. Let λ0 ∈ R and b0 > 0 be given. Then, there exists a C =
C(b0, λ0, µ−) such that for any generalized eigenfunction u to an eigenvalue λ ≤ λ0

of H0 + µ the inequality
∫

E

dΓ(u) ≤ C

b2

∫

Bb(E)

|u|2dm

holds for any closed E ⊂ X and any 0 < b ≤ b0.

Remark. For compact E both sides in the above inequality are finite, for E merely
closed, one or both sides might be infinite. In any case, it suffices to prove the
compact case since Γ is a Radon measure.

The Caccioppoli inequality replaces the familiar commutator estimates that
are used for Schrödinger operators.

A 1/2 Shnol type result: How suitably bounded solutions force spectrum

In this section, we first present an abstract Shnol type result. Unfortunately, we
have to start with a disclaimer. In [23] we messed up the reference to Shnol’s
original result (as do many other authors). In fact, [59] is the correct citation but
there are two more papers with quite similar titles [60, 61] and [59] does not appear
in MathSciNet.

The latter article deals with Schrödinger operators on the half-line and says
that for spectrally almost every λ ∈ R the solution on the eigenvalue problem is
bounded by const x

1
2+ε as x → ∞ and vice versa. By “the solution” we mean a

solution with the prescribed boundary condition at 0 and such a solution always
exists since we are dealing with ODE. In this section we show 1

2 Shnol, even a
little stronger: if a weak solution with suitable exponential bounds exist for a
given energy, that energy is in the spectrum.

We need the following notation. For E ⊂ X and b > 0 we define the inner
b-collar of E as

Cb(E) := {y ∈ E : ρ(y,Ec) ≤ b}.
Theorem 5.3. Let E be a strictly local regular Dirichlet form. Let µ+ ∈ M0 and
µ− ∈ M1 be given. Let λ ∈ R with generalized eigenfunction u be given. If there
exists b > 0 and a sequence (En) of compact subsets of X with

‖uχCb(En)‖
‖uχEn‖

−→ 0, n −→ 0,

then λ belongs to σ(H).

We will now specialize our considerations to subexponentially bounded eigen-
functions.
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A function J : [0,∞) −→ [0,∞) is said to be subexponentially bounded if
for any α > 0 there exists a Cα ≥ 0 with J(r) ≤ Cα exp(αr) for all r > 0. A
K-valued function f on a pseudo metric space (X, ρ) with measure m is said to
be subexponentially bounded if for some x0 ∈ X and ω(x) = ρ(x0, x) the function
e−αωu belongs to L2(X,m) for any α > 0. Recall that a strictly local regular
Dirichlet form E gives rise to an intrinsic pseudo metric ρ and an associated pseudo
metric space (X, ρ).

Theorem 5.4. Let E be a strictly local regular Dirichlet form, x0 ∈ X arbitrary
and ω(x) = ρ(x0, x). Let µ+ ∈ M0 and µ− ∈ M1 be given. Let u �= 0 be a
subexponentially bounded generalized eigenfunction. Then, λ belongs to σ(H).

A 1/2 Shnol type result: How spectrum forces suitably bounded generalized eigen-
functions.

In the last subsection we have discussed that existence of suitably bounded weak
solutions implies that an energy belongs to the spectrum. In this section we discuss
a converse given in [22] that was known before for ordinary Schrödinger operators;
see the literature cited in the monograph [16].

Recall that E is called ultracontractive if for each t > 0 the semigroup e−tH0

gives a map from L2(X) to L∞(X).

Theorem 5.5. Let E be a strictly local, regular, ultracontractive Dirichlet form
satisfying condition (G). Let µ = µ+ − µ− with µ+ ∈ M0 and µ− ∈ ŜK with
cKato(µ) < 1. Define H := H0 + µ. Then for spectrally a.e. λ ∈ σ(H) there is a
subexponentially bounded generalized eigenfunction u �= 0 with Hu = λu.

Actually, as remarked in [22], one does arrive at generalized eigenfunctions
with polynomial bounds if one assumes that the volume of balls grows polynomially
as well.

A Shnol type result: Characterizing the spectrum by subexponentially bounded
solutions

We can now put together the results of the preceding subsections and obtain a
characterization of the spectrum via subexponentially bounded solutions.

Corollary 5.6. Let E be a strictly local, regular, ultracontractive Dirichlet form
satisfying (G). Let µ = µ+ − µ− with µ+ ∈ M0 and µ− ∈ ŜK with cKato(µ) < 1.
Define H := H0 + µ. Then the spectral measures of H are supported on

{λ ∈ R|∃ subexponentially bounded u �= 0 with Hu = λu}.

6. Examples and applications

Several different types of operators to which our results can be applied have already
been mentioned in Section 1. This includes classical examples like Schrödinger op-
erators and symmetric elliptic second-order differential operators on unbounded
domains in R

d. More generally, Laplace-Beltrami operators and rather general el-
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liptic second-order differential operators on Riemannian manifolds fall also within
this class. In this section we will discuss in some more detail two types of examples
which have attracted attention more recently, namely singular interaction Hamil-
tonians and quantum graphs. Moreover, we discuss here applications of the ground
state transformation.

Hamiltonians with singular interactions

Hamiltonians with singular interactions arise when the Laplacian is perturbed
by a perturbation which is localized on a set of Lebesgue measure zero. Here we
consider more specifically operators with an interaction supported on an orientable,
compact sub-manifold M ⊂ R

d of class C2 and codimension one. The manifold M
may or may not have a boundary. In the sequel we follow roughly the exposition
in [43]. For more background see [24] or Appendix K of [10].

The simplest type of Hamiltonian with a potential perturbation supported
on M is formally given by

(HασM )f(x) :=
(−∆− α · δ(x−M)

)
f(x) , (6.1)

where α > 0 is a coupling constant. To show that the operator HασM can be given
a rigorous meaning we establish next that it falls into the framework outlined in
Section 2.

For this purpose denote by νM the Dirac measure in R
d with support on M .

This means that for any Borel set G ⊂ R
d we have νM (G) = sd−1(G ∩M). Here

sd−1 is the d − 1-dimensional surface measure on M . From Theorem 4.1 in [24]
we infer that the measure νM belongs to the Kato class. In particular, for such a
measure and an arbitrary a > 0 there exists ba <∞ such that

∫

Rd

|ψ(x)|2νM (dx) ≤ a‖∇ψ‖2 + ba‖ψ‖2 .
As mentioned in Section 2 this implies that the form EανM := E + ανM is closed
on the domain D and densely defined. The unique selfadjoint operator associated
to EανM acing on L2(Rd) will be denoted by HανM .

It is possible to define the operatorHανM by appropriate selfadjoint boundary
conditions onM , cf. [24, 43]. To explain this more precisely we need some notation.
Denote by n: M → S

d a global unit normal vectorfield on M . Denote by D(H̃ανM )
the set of functions

ψ ∈ C(Rd) ∩W 1,2(Rd) ∩ C∞(Rd \M) ∩W 2,2(Rd \M)

which satisfy for all x ∈M
lim
ε↘0

ψ(x+ εn(x)) − ψ(x)
ε

+ lim
ε↘0

ψ(x− εn(x)) − ψ(x)
ε

= −αψ(x)

Using Green’s formula one concludes as in Remark 4.1 of [24] that the closure of
−∆ with domain D(H̃ανM ) is the selfadjoint operator HανM .

Since the measure νM belongs to the Kato class and is supported on a com-
pact set, the essential spectrum of HανM equals [0,∞), cf. Theorem 3.2 in [24]. In
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space dimension two HανM has nonempty discrete spectrum for any positive value
of the coupling constant α. This can be seen using the proof of Corollary 11 in
[25]. For higher dimensions there is a critical value αc > 0 such that there exists a
negative eigenvalue if and only if α ≥ αc, cf. the discussion on page 20 of [33].

Quantum graphs

Quantum graphs are given in terms of a metric graph Γ and a Laplace (or more
generally) Schrödinger operator H defined on the edges of Γ together with a set
of (generalised) boundary conditions at the vertices which make H selfadjoint. To
make this more precise we define the geometric structure of metric graphs, as well
as the operators acting on the associated L2-Hilbert space.

We start with the definition of a metric graph which is appropriate for our
purposes.

Definition 6.1. Let V and E be countable sets, l− a positive real, and G a map

G : E → V × V × [l−,∞], e 
→ (ι(e), τ(e), le).

Here [l−,∞] means [l−,∞) ∪ {+∞}. We call the triple Γ = (V,E,G) a metric
graph, elements of V = V (Γ) vertices, elements of E = E(Γ) edges, ι(e) the initial
vertex of e, τ(e) the terminal vertex of e and le the length of e. Both ι(e) and
τ(e) are called endvertices of e, or incident to e. The number of edges incident to
the vertex v is called the degree of v. We assume that the degree is finite for all
vertices.

Note that the two endvertices of an edge are allowed to coincide and there
may be multiple edges connecting two vertices. We let Xe := {e} × (0, le), X =
XΓ = V ∪⋃e∈E Xe and Xe := {e}× [0, le]. On the set X it is possible to define in
a natural way the length of paths and, using this notion, also a metric, cf. Section
1 in [44].

Now we introduce the relevant Hilbert spaces on which the Laplace, respec-
tively, Schrödinger operators will act. For k ∈ {0, 1, 2} we set

W k,2(E) :=
⊕

e∈E
W k,2(0, le)

and for W 0,2(E) we use the usual notation L2(E). Given k ∈ {0, 1, 2} and a
function u ∈W 1,k(E) we denote by ue the projection of u to the space W k,2(0, le).
Thus we can identify each u ∈ W 1,k(E) with a family (ue)e∈E , ue ∈W 0,2(0, le).

Next we discuss pointwise properties of functions in u ∈ W 1,k(0, le). Recall
that for any l > 0 any element h of W 1,2(0, l) has a continuous version; we will
always pick this version and then the boundary value h(0) := limx→0+ h(x) exists
and satisfies

|h(0)|2 ≤ 2
l
‖h‖2L2(0,l) + l‖h′‖2L2(0,l) (6.2)

by standard Sobolev type theorems. Consider now an edge e, the vertex v =
ι(e) ∈ V and u ∈ W 1,2(0, le). Then the limit u(v) := limt→0 u(t) exists, as
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well as u(w) := limt→le u(t) for w = τ(e) and (6.2) holds (with the obvious
modifications). Similarly, for an edge e and the vertex v = ι(e) and the vertex
w = τ(e) and u ∈ W 2,2(0, le) the limits u′(v) := limx→v,x∈e u′(x) and u′(w) :=
− limx→w,x∈e u′(x) exist. Note that our sign convention is such that the defini-
tion of the derivative is canonical, i.e., independent of the choice of orientation
of the edge. For f ∈ W 1,2(E) and each vertex v we gather the boundary values
of fe(v) over all edges e adjacent to v in a vector f(v). More precisely, denote
by Ev := {e ∈ E|v ∈ {ι(e), τ(e)}} the set of edges incident to v and define
f(v) := (fe(v))e∈Ev ∈ C

Ev and similarly, for f ∈ W 2,2(E) we further collect the
boundary values of f ′

e(v) over all edges e adjacent to v in a vector f ′(v) ∈ C
Ev .

These boundary values of functions will be used to define the boundary condi-
tions of the Laplacian, respectively the domains of definition of the forms we will
be considering. Here we restrict ourselves to Kirchhoff boundary conditions and
call a function (ue)e∈E ∈ W 1,2(E) continuous, if, for any vertex v and all edges
adjacent to it ue(v) = ue′(v). Now set

D(s0) := W 1,2(E) ∩C(X) (6.3)

s0(f, g) :=
∑

e∈E

∫ l(e)

0

f ′
e(t)g

′
e(t)dt (6.4)

Obviously, the form s0 is bounded below, closed a Dirichlet form and strongly local.
Hence, there exists a unique associated self-adjoint operator which we denote by
HP . It can be explicitly characterized by

D(HK) :=
{

f ∈ W 2,2(E) ∩ C(X) :
∑

e∈Ev

fe(v) = 0 for all v ∈ V
}

(HKf)e : = −f ′′
e for all e ∈ E.

It is possible to define quantum graphs with more general generalised boundary
conditions at the vertices but not all reasonable choices will lead to Dirichlet
forms; in [40] a characterization of those boundary conditions for which the form
is a Dirichlet form is given. However the setup is somewhat different from ours.

Applications

The ground state transformation which featured in Theorem 4.1 can be used to
obtain a formula for the lowest spectral gap. To be more precise let us assume
that E , ν and Φ satisfy the conditions of Theorem 4.1. Assume in addition that Φ
is in D(E + ν). Then Φ is an eigenfunction of H corresponding to the eigenvalue
λ = minσ(H). We denote by

λ′ := inf{E [u, u] + ν[u, u] | u ∈ D, ‖u‖ = 1, u ⊥ Φ}
the second lowest eigenvalue below the essential spectrum of H , or, if it does not
exist, the bottom of σess(H). Then we obtain the following formula

λ′ − λ = inf
{u∈D(E+ν),‖u‖=1,u⊥Φ}

∫

X

Φ2dΓ(uΦ−1, uΦ−1) (6.5)
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which determines the lowest spectral gap. It has been used in [42, 43, 72] to de-
rive lower bounds on the distance between the two lowest eigenvalues of different
classes of Schrödinger operators (see [63] for a related approach). In [42] bounded
potentials are considered, in [43] singular interactions along curves in R

2 are stud-
ied, and [72] generalizes these results using a unified approach based on Kato-class
measures.

If for a subset U ⊂ X of positive measure and a function u ∈ D with ‖u‖ = 1
and u ⊥ Φ the non-negative measure Γ(uΦ−1, uΦ−1) is absolutely continuous on U
with respect to m, one can exploit formula (6.5) to derive the following estimate
(cf. Section 3 in [72], and [42, 43] for similar bounds). Denote by γ(uΦ−1) =
dΓ(uΦ−1,uΦ−1)

dm the Radon-Nykodim derivative. Then an application of the Cauchy-
Schwarz inequality gives

∫

U

Φ2dΓ(uΦ−1, uΦ−1) ≥ 1
m(U)

inf
U

Φ2

(∫

U

√

γ(uΦ−1)dm
)2

Now we formulate more precisely the setting in which the above-mentioned
results [42, 43, 72] apply. In fact, we choose here to formulate the main theorem
of [72]. It applies to more general situations than [42] and [43] and is formulated
in the language of Dirichlet forms. Consider the case where X = R

d, E is equal
to the classical Dirichlet form, ν is a non-negative, compactly supported measure
satisfying for some cν ∈ (0,∞), α ∈ [0, 2) the bound ν(B(x, r)) ≤ cνr

d−α for all
r > 0, x ∈ R

d, and D denotes the diameter of the support of ν. Let us assume
that the bottom of the spectrum of E + ν consists of two isolated eigenvalues,
which will be denoted by λ0 < λ1. Under these assumptions there exist constants
C,C0, p, q ∈ (0,∞) such that

λ1 − λ0 ≥ C

(cν + 1)p(D + 1)q
· |λ0| · e−C0(D+1)·

√
|λ0|

The ground state transformation plays an important role in other situations
as well. It is for instance used in the study of Lp-Lq mapping properties of the
semigroup associated to E [29]. In the theory of random Schrödinger operators it
is used to remove a symmetry condition from the proof of of Lifschitz tails [48].
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Abstract. We investigate trace formulas for one-dimensional Schrödinger op-
erators which are trace class perturbations of quasi-periodic finite-gap oper-
ators using Krein’s spectral shift theory. In particular, we establish the con-
served quantities for the solutions of the Korteweg–de Vries hierarchy in this
class and relate them to the reflection coefficients via Abelian integrals on the
underlying hyperelliptic Riemann surface.
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1. Introduction

Trace formulas for one-dimensional (discrete and continuous) Schrödinger opera-
tors have attracted an enormous amount of interest recently (see, e.g., [3], [18],
[20], [27], [30], [34], [39]). However, most results are in connection with scatter-
ing theory for a constant background. On the other hand, scattering theory for
one-dimensional Schrödinger operators with periodic background is a much older
topic first investigated by Firsova in a series of papers [9]–[11]. Nevertheless, many
questions which have long been answered in the constant background case are still
open in this more general setting.

The aim of the present paper is to help filling some of these gaps. To this end,
we want to find the analog of the classical trace formulas in scattering theory for
the case of a quasi-periodic, finite-gap background. In the case of zero background
it is well known that the transmission coefficient is the perturbation determinant
in the sense of Krein [22] (see, e.g., [19], [32], [38] see also [15], [16] and the

Work supported by the Austrian Science Fund (FWF) under Grant No. Y330.
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references therein for generalizations to non trace class situations) and our first
aim is to establish this result for the case considered here; thereby establishing
the connection with Krein’s spectral shift theory. Our second aim is to find a
representation of the transmission coefficient in terms of the scattering data – the
analog of the classical Poisson–Jensen formula.

Moreover, scattering theory for one-dimensional Schrödinger operators is not
only interesting in its own right, it also constitutes the main ingredient of the
inverse scattering transform for the Korteweg–de Vries (KdV) hierarchy (see, e.g.,
[5], [28]). Again the case of decaying solutions is classical and trace formulas for this
case were studied exhaustively in the past (cf. [14] and the references therein). Here
we want to investigate the case of Schwartz type perturbations of a given finite-
gap solution. The Cauchy problem for the KdV equation with initial conditions in
this class was only solved recently by Egorova, Grunert, and Teschl [8] (see also
[6], [7], [12]). Since the transmission coefficient is invariant when our Schrödinger
operator evolves in time with respect to some equation of the KdV hierarchy,
the corresponding trace formulas provide the conserved quantities for the KdV
hierarchy in this setting.

Our work extends previous results for Jacobi operators by Michor and Teschl
[29], [36]. For trace formulas in the pure finite-gap case see Gesztesy, Ratnaseelan,
and Teschl [17] and Gesztesy and Holden [13].

2. Notation

We assume that the reader is familiar with quasi-periodic, finite-gap Schrödinger
operators which arise naturally as the stationary solutions of the KdV hierarchy.
Hence we only briefly recall some notation and refer to the monograph [13] (see
also [28]) for further information.

Let

Hq = − d2

dx2
+ Vq(x) (2.1)

be a finite-gap Schrödinger operator in L2(R) whose spectrum consists of g + 1
bands:

σ(Hq) =
g−1⋃

j=0

[E2j , E2j+1] ∪ [E2g,∞). (2.2)

It is well known that Hq is associated with the Riemann surface M of the function

R
1/2
2g+1(z), R2g+1(z) =

2g∏

j=0

(z − Ej), E0 < E1 < · · · < E2g, (2.3)

g ∈ N0. M is a compact, hyperelliptic Riemann surface of genus g. Here R1/2
2g+1(z)

is chosen to have branch cuts along the spectrum with the sign fixed by the as-
ymptotic behavior R1/2

2g+1(z) =
√
zzg + · · · as z →∞.
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A point on M is denoted by p = (z,±R1/2
2g+1(z)) = (z,±), z ∈ C. The point at

infinity is denoted by p∞ = (∞,∞). We use π(p) = z for the projection onto the
extended complex plane C ∪ {∞}. The points {(Ej , 0), 0 ≤ j ≤ 2g} ∪ {p∞} ⊆ M

are called branch points and the sets

Π± = {(z,±R1/2
2g+1(z)) | z ∈ C\Σ} ⊂ M, Σ = σ(Hq), (2.4)

are called upper and lower sheet, respectively. Note that the boundary of Π±
consists of two copies of Σ corresponding to the two limits from the upper and
lower half-plane.

We recall that upon fixing the spectrum σ(Hq), the operator Hq is uniquely
defined by choosing a Dirichlet divisor

{(
µ1, σ1

)
, . . . ,

(
µg, σg

)}
, µj ∈ [E2j−1, E2j ]. (2.5)

For every z ∈ C the Baker–Akhiezer functions ψq,±(z, x) are two (weak) solutions
of Hqψ = zψ. They are the two branches of one function which is meromorphic on
M\{p∞} with simple poles at the Dirichlet divisor (2.5) and simple zeros at some
other points

{(
µ1(x), σ1(x)

)
, . . . ,

(
µg(x), σg(x)

)}
, µj(x) ∈ [E2j−1, E2j ], (2.6)

which can be computed from the Dubrovin equations

µ′
j(x) =

−2σj(x)R
1/2
2g+1(µj(x))

∏

k �=j µj(x)− µk(x)
(2.7)

using the initial conditions µj(0) = µj , 1 ≤ j ≤ g. Moreover, Vq(x) is explicitly
given by the trace formula

Vq(x) = E0 +
g∑

j=1

(
E2j−1 + E2j − 2µj(x)

)
. (2.8)

The Baker–Akhiezer functions are linearly independent away from the band-edges
{Ej}2gj=0 since their Wronskian is given by

W (ψq,−(z), ψq,+(z)) =
2iR1/2

2g+1(z)
∏g
j=1(z − µj)

. (2.9)

Here Wx(f, g) = f(x)g′(x) − f ′(x)g(x) denotes the usual Wronskian and µj are
the Dirichlet eigenvalues at base point x0 = 0. We recall that ψq,±(z, x) have the
form

ψq,±(z, x) = θq,±(z, x) exp(±ixk(z)), (2.10)
where θq,±(z, x) is quasi-periodic with respect to x and

k(z) = −
∫ p

E0

ωp∞,0, p = (z,+), (2.11)

denotes the quasimomentum map. Here ωp∞,k is a normalized Abelian differential
of the second kind with a single pole at p∞ = (∞,∞) and principal part ζ−k−2dζ



110 A. Mikikits-Leitner and G. Teschl

where ζ = z−1/2. It is explicitly given by

ωp∞,0 = −
∏g
j=1(π − λj)dπ

2R1/2
2g+1

, (2.12)

where λj ∈ (E2j−1, E2j), 1 ≤ j ≤ g. In particular,
∣
∣eik(z)

∣
∣ < 1 for z ∈ C\σ(Hq)

and |eik(z)| = 1 for z ∈ σ(Hq).

3. Asymptotics of Jost solutions

After we have these preparations out of our way, we come to the study of short-
range perturbationsH ofHq associated with a potential V satisfying V (x) → Vq(x)
as |x| → ∞. More precisely, we will make the following assumption throughout
this paper:

Let

H = − d2

dx2
+ V (x) (3.1)

be a perturbation of Hq such that
∫ +∞

−∞

∣
∣V (x)− Vq(x)

∣
∣dx <∞. (3.2)

We first establish existence of Jost solutions, that is, solutions of the perturbed
operator which asymptotically look like the Baker–Akhiezer solutions.

Theorem 3.1. Assume (3.2). For every z ∈ C\{Ej}2gj=0 there exist (weak) solutions
ψ±(z, .) of Hψ = zψ satisfying

lim
x→±∞ e∓ixk(z)

(
ψ±(z, x)− ψq,±(z, x)

)
= 0, (3.3)

where ψq,±(z, .) are the Baker–Akhiezer functions. Moreover, ψ±(z, .) are contin-
uous (resp. holomorphic) with respect to z whenever ψq,±(z, .) are and

∣
∣e∓ixk(z)

(
ψ±(z, x)− ψq,±(z, x)

)∣
∣ ≤ C(z), (3.4)

where C(z) denotes some constant depending only on z.

Proof. Since Hψ = zψ is equivalent to (Hq − z)ψ = −V̂ ψ, where V̂ = V − Vq,
we can use the variation of constants formula to obtain the usual Volterra integral
equations for the Jost functions,

ψ±(z, x) = ψq,±(z, x)− 1
W (ψq,+, ψq,−)

∫ ±∞

x

(
ψq,−(z, x)ψq,+(z, y)

− ψq,−(z, y)ψq,+(z, x)
)
V̂ (y)ψ±(z, y)dy. (3.5)

Moreover, introducing ψ̃±(z, x) = e∓ixk(z)ψ±(z, x) the resulting integral equation
can be solved using the method of successive iterations in the usual way. This
proves the claims. �
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Theorem 3.2. Assume (3.2). The Jost functions have the following asymptotic
behavior

ψ±(z, x) = ψq,±(z, x)
(

1∓ 1
2i
√
z

∫ ±∞

x

(
V (y)− Vq(y)

)
dy + o(z−1/2)

)

, (3.6)

as z →∞, with the error being uniformly in x.

Proof. Invoking (3.5) we have

ψ±(z, x)
ψq,±(z, x)

= 1− 1
W (ψq,+, ψq,−)

∫ ±∞

x

(

ψq,−(z, x)ψq,+(z, y)
ψq,±(z, y)
ψq,±(z, x)

− ψq,−(z, y)ψq,+(z, x)
ψq,±(z, y)
ψq,±(z, x)

)

V̂ (y)
ψ±(z, y)
ψq,±(z, y)

dy

= 1∓
∫ ±∞

x

(

Gq(z, x, x)
ψq,±(z, y)2

ψq,±(z, x)2
−Gq(z, y, y)

)

V̂ (y)
ψ±(z, y)
ψq,±(z, y)

dy,

(3.7)

where

Gq(z, x, y) =
1

W (ψq,+, ψq,−)

{
ψq,+(z, x)ψq,−(z, y), x ≥ y,
ψq,+(z, y)ψq,−(z, x), x ≤ y,

(3.8)

is the Green function of Hq. We have

Gq(z, x, x) =
ψq,+(z, x)ψq,−(z, x)
W (ψq,+, ψq,−)

=
i
∏g
j=1

(
z − µj(x)

)

2R1/2
2g+1(z)

. (3.9)

Hence for z near ∞ one infers

Gq(z, x, x) =
i

2
√
z

(

1 +
1
2
Vq(x)

1
z

+O
( 1
z2

))

, (3.10)

where we made use of the trace formula (2.8). Next we insert (3.10) into (3.7) such
that iteration implies

ψ±(z, x)
ψq,±(z, x)

= 1∓ i
2
√
z

(∫ ±∞

x

ψq,±(z, y)2

ψq,±(z, x)2
V̂ (y)dy −

∫ ±∞

x

V̂ (y)dy
)

+O

(
1
z

)

.

Next we will show that the first integral vanishes as
√
z →∞. We begin with the

case Im(
√
z)→∞. For that purpose note that

k(z) =
√
z + c+O(z−1/2), as z →∞,

for some constant c ∈ C. Thus we compute
∣
∣
∣

∫ ±∞

x

ψq,±(z, y)2

ψq,±(z, x)2
V̂ (y)dy

∣
∣
∣ ≤ C

∫ ±∞

x

exp
(∓ 2Im(

√
z)(y − x))∣∣V̂ (y)

∣
∣dy

≤ C

∫ x+ε

x

∣
∣V̂ (y)

∣
∣dy + C · exp

(∓ 2Im(
√
z)ε

)
∫ ±∞

x+ε

∣
∣V̂ (y)

∣
∣dy,

such that the first integral can be made arbitrary small if ε > 0 is small and the
second integral vanishes as Im(

√
z) →∞.
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Otherwise, if Re(
√
z)→∞, we use (2.10) to rewrite the integral as

∫ ±∞

x

(
θq,±(z, y)2

θq,±(z, x)2
V̂ (y) exp

(∓ 2Im(
√
z)(y − x))

)

exp
(± 2iRe(

√
z)(y − x))dy.

Since
∣
∣
∣
∣

θq,±(z, y)2

θq,±(z, x)2
V̂ (y) exp

(∓ 2Im(
√
z)(y − x))

∣
∣
∣
∣ ≤ C|V̂ (y)|

the integral vanishes as Re(
√
z) → ∞ by a slight variation of the Riemann–

Lebesgue lemma.
Hence we finally have

ψ±(z, x)
ψq,±(z, x)

= 1± i
2
√
z

∫ ±∞

x

V̂ (y)dy + o

(
1√
z

)

(3.11)

as z →∞. �

For later use we note the following immediate consequence

Corollary 3.3. Under the assumptions of the previous theorem we have

lim
x→±∞ e∓ixk(z)

(

ψ̇±(z, x)∓ ixk̇(z)ψ±(z, x)− ψ̇q,±(z, x)± ixk̇(z)ψq,±(z, x)
)

= 0,

where the dot denotes differentiation with respect to z.

Proof. Just differentiate (3.3) with respect to z, which is permissible by uniform
convergence on compact subsets of C\{Ej}2gj=0. �

We remark that if we require our perturbation to satisfy the usual short-range
assumption as in [1], [9, 10, 11] (i.e., the first moment is integrable, see (5.1)),
then we even have e∓ixk(z)(ψ̇±(z, x)− ψ̇q,±(z, x)) → 0.

From Theorem 3.2 we obtain a complete characterization of the spectrum of H .

Theorem 3.4. Assume (3.2). Then (H − z)−1 − (Hq − z)−1 is trace class. In
particular, we have σess(H) = σ(Hq) and the point spectrum of H is confined to
R\σ(Hq). Furthermore, the essential spectrum of H is purely absolutely continuous
except for possible eigenvalues at the band edges.

Proof. That (H − z)−1 − (Hq − z)−1 is trace class follows as in [37, Lem. 9.34]
(cf. also [25, Sect. 4]). The fact that the essential spectrum is purely absolutely
continuous follows from subordinacy theory ([37, Sect. 9.5]) since the asymptotics
of the Jost solutions imply that no solution is subordinate inside the essential
spectrum. �

Note that (3.2) does neither exclude eigenvalues at the boundary of the essential
spectrum nor an infinite number of eigenvalues inside essential spectral gaps (see
[31], [26] or [1] for conditions excluding these cases).
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Our next result concerns the asymptotics of the Jost solutions at the other side.

Lemma 3.5. Assume (3.2). Then the Jost solutions ψ±(z, .), z ∈ C\σ(H), satisfy

lim
x→∓∞

∣
∣e∓ixk(z)

(
ψ±(z, x)− α(z)ψq,±(z, x)

)∣
∣ = 0, (3.12)

where

α(z) =
W (ψ−(z), ψ+(z))
W (ψq,−(z), ψq,+(z))

∏g
j=1(z − µj)

2iR1/2
2g+1(z)

W (ψ−(z), ψ+(z)). (3.13)

Proof. Since H and Hq have the same form domain, the second resolvent equation
([37, Lem. 6.30]) for form perturbations implies

G(z, x, x)−Gq(z, x, x) =
∫ ∞

−∞
G(z, x, y)V̂ (y)Gq(z, y, x)dy,

where V̂ = V − Vq. By (3.8) and

G(z, x, y) =
1

W (ψ+, ψ−)

{
ψ+(z, x)ψ−(z, y), x ≥ y,
ψ+(z, y)ψ−(z, x), x ≤ y,

we obtain

G(z, x, x)−Gq(z, x, x) =
ψq,+(z, x)ψ+(z, x)

W (z)Wq(z)

∫ x

−∞
V̂ (y)ψq,−(z, y)ψ−(z, y)dy

+
ψq,−(z, x)ψ−(z, x)

W (z)Wq(z)

∫ ∞

x

V̂ (y)ψq,+(z, y)ψ+(z, y)dy,

(3.14)

where W (z) = W (ψ+, ψ−) and Wq(z) = W (ψq,+, ψq,−). Next, by (3.4), note that
∣
∣ψq,±(z, x)

∣
∣ ≤ c1e∓εx,

∣
∣ψ±(z, x)

∣
∣ ≤ c2e∓εx, (3.15)

as x→ +∞, where c1, c2 denote some constants and ε > 0 does only depend on z.
Now one can show that the first term in (3.14) tends to 0 when x→ +∞ using the
same kind of argument as in the proof of Theorem 3.2. Similarly one then checks
that the second term in (3.14) tends to 0 when x→ −∞. Thus

lim
x→±∞G(z, x, x) −Gq(z, x, x) = 0

and using

Gq(z, x, x) =
ψq,−(z, x)ψq,+(z, x)
W (ψq,−(z), ψq,+(z))

, G(z, x, x) =
ψ−(z, x)ψ+(z, x)
W (ψ−(z), ψ+(z))

implies
lim

x→±∞
(
ψ−(z, x)ψ+(z, x)− α(z)ψq,−(z, x)ψq,+(z, x)

)
= 0,

respectively,

lim
x→−∞ψq,−(z, x)

(
ψ+(z, x)− α(z)ψq,+(z, x)

)
= 0,

which is the claimed result. �
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To see the connection with scattering theory (see, e.g., [1]), we introduce the
scattering relations

T (λ)ψ±(λ, x) = ψ∓(λ, x) +R∓(λ)ψ∓(λ, x), λ ∈ σ(Hq), (3.16)

where the transmission and reflection coefficients are defined as usual,

T (λ) =
W (ψ±(λ), ψ±(λ))
W (ψ∓(λ), ψ±(λ))

, R±(λ) := −W (ψ∓(λ), ψ±(λ))
W (ψ∓(λ), ψ±(λ))

, λ ∈ σ(Hq).

(3.17)
In particular, α(z) is just the inverse of the transmission coefficient T (z). It is
holomorphic in C\σ(Hq) with simple zeros at the discrete eigenvalues of H .

Corollary 3.6. Assume (3.2). Then we have

T (z) = exp
(

−
∫ +∞

−∞

(
m±(z, x)−mq,±(z, x)

)
dx

)

, (3.18)

where

m±(z, x) = ±ψ
′
±(z, x)
ψ±(z, x)

, mq,±(z, x) = ±ψ
′
q,±(z, x)
ψq,±(z, x)

(3.19)

are the Weyl–Titchmarsh functions. Here the prime denotes differentiation with
respect to x.

Proof. From the definition (3.19) we get the following representations of the Jost
and Baker–Akhiezer functions

ψ±(z, x) = ψ±(z, x0) exp
(

±
∫ x

x0

m±(z, y)dy
)

,

ψq,±(z, x) = ψq,±(z, x0) exp
(

±
∫ x

x0

mq,±(z, y)dy
)

,

and thus
ψ±(z, x)
ψq,±(z, x)

=
ψ±(z, x0)
ψq,±(z, x0)

exp
(

±
∫ x

x0

(m±(z, y)−mq,±(z, y))dy
)

= exp
(±

∫ x

±∞
(m±(z, y)−mq,±(z, y))dy

)
.

Making use of that and (3.12) we get

α(z) = lim
x→∓∞

ψ±(z, x)
ψq,±(z, x)

exp
(

±
∫ ∓∞

±∞
(m±(z, y)−mq,±(z, y))dy

)

,

which finishes the proof. �
Corollary 3.7. Assume (3.2). Then T (z) has the following asymptotic behavior

T (z) = 1 +
1

2i
√
z

∫ ∞

−∞

(
V (y)− Vq(y)

)
dy + o(z−1/2), (3.20)

as z →∞.

Proof. Use (3.12) and (3.6). �



Trace Formulas for Schrödinger Operators 115

4. Connections with Krein’s spectral shift theory
and trace formulas

To establish the connection with Krein’s spectral shift theory we next show:

Lemma 4.1. We have

d

dz
α(z) = −α(z)

∫ +∞

−∞

(
G(z, x, x)−Gq(z, x, x)

)
dx, z ∈ C\σ(H), (4.1)

where G(z, x, y) and Gq(z, x, y) are the Green’s functions of H and Hq, respec-
tively.

Proof. The Lagrange identity ([37], eq. (9.4)) implies

Wx(ψ+(z), ψ̇−(z))−Wy(ψ+(z), ψ̇−(z)) =
∫ x

y

ψ+(z, r)ψ−(z, r)dr, (4.2)

hence the derivative of the Wronskian can be written as

d

dz
W (ψ−(z), ψ+(z)) = Wx(ψ̇−(z), ψ+(z)) +Wx(ψ−(z), ψ̇+(z))

= Wy(ψ̇−(z), ψ+(z)) +Wx(ψ−(z), ψ̇+(z))−
∫ x

y

ψ+(z, r)ψ−(z, r)dr.

Using Corollary 3.3 and Lemma 3.5 we have

Wy(ψ̇−(z), ψ+(z)) = Wy(ψ̇− + ik̇yψ−, ψ+)

−ik̇
(
yW (ψ−, ψ+)− ψ−(z, y)ψ+(z, y)

)

→ αWy(ψ̇q,− + ik̇yψq,−, ψq,+)

−αik̇
(
yW (ψq,−, ψq,+)− ψq,−(z, y)ψq,+(z, y)

)

= α(z)Wy(ψ̇q,−(z), ψq,+(z))

as y → −∞. Similarly we obtain

Wx(ψ−(z), ψ̇+(z)) → α(z)Wx(ψq,−(z), ψ̇q,+(z))

as x→ +∞ and again using (4.2) we have

Wy(ψ̇q,−(z), ψq,+(z)) = Wx(ψ̇q,−(z), ψq,+(z)) +
∫ x

y

ψq,+(z, r)ψq,−(z, r)dr.

Collecting terms we arrive at

Ẇ (ψ−(z), ψ+(z)) =−
∫ +∞

−∞

(

ψ+(z, r)ψ−(z, r)− α(z)ψq,+(z, r)ψq,−(z, r)
)

dr

+ α(z)Ẇ (ψq,−(z)ψq,+(z)).
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Abbreviating Wq = W (ψq,−, ψq,+) we now compute

d

dz
α(z) =

d

dz

(W

Wq

)

= − Ẇq

W 2
q

W +
1
Wq

(

−
∫ +∞

−∞

(
ψ+ψ− − αψq,+ψq,−

)
dr + αẆq

)

= − 1
Wq

∫ +∞

−∞

(

ψ+(z, r)ψ−(z, r)− α(z)ψq,+(z, r)ψq,−(z, r)
)

dr,

which finishes the proof. �

Since (H − z)−1 − (Hq − z)−1 is trace class with continuous integral kernel
G(z, x, x)−Gq(z, x, x), we have ([2])

tr
(
(H − z)−1− (Hq − z)−1

)
=
∫ +∞

−∞

(
G(z, x, x)−Gq(z, x, x)

)
dx, z ∈ C\σ(H),

(4.3)
and the last result can be rephrased as

d

dz
T (z) = T (z)tr

(
(H − z)−1 − (Hq − z)−1

)
, z ∈ C\σ(H). (4.4)

As an immediate consequence we can establish the connection with Krein’s
spectral shift function ([22]). We refer to [38] for Krein’s spectral shift theory in
the case when only the resolvent difference is trace class; which is the case needed
here.

Theorem 4.2. The transmission coefficient T (z) has the representation

T (z) = exp
(∫

R

ξ(λ)dλ
λ− z

)

, (4.5)

where

ξ(λ) =
1
π

lim
ε↓0

argT (λ+ iε) (4.6)

is the spectral shift function of the pair H, Hq. Moreover, (V −Vq)1/2(Hq−z)−1|V −
Vq|1/2 is trace class and T (z) is the perturbation determinant of the pair H and Hq:

T (z) = det
(
1l + (V − Vq)1/2(Hq − z)−1|V − Vq|1/2

)
. (4.7)

If in addition (V − Vq)(Hq − z)−1 is trace class we have

T (z) = det
(
1l + (V − Vq)(Hq − z)−1

)
. (4.8)

Proof. The function Im log(T (z)) is a bounded harmonic function in the upper
half-plane and hence has a Poisson representation (cf. [21])

Im log(T (z)) =
∫

R

y

(x− λ)2 + y2
ξ(λ)dλ. z = x+ iy.

Moreover, by ξ(λ) = 0 for λ below the spectrum of H and ξ(λ) = O(λ−1/2) as
λ → +∞ (by Corollary 3.7) we obtain equality in (4.5) up to a real constant.
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The missing constants follows since both sides tend to 1 as z → ∞. Moreover,
combining (4.5) with (4.4) we see

tr
(
(H − z)−1 − (Hq − z)−1

)
=
∫

R

ξ(λ)dλ
(λ− z)2 ,

which shows that ξ(λ) is the spectral shift function.
That T (z) is the perturbation determinant is standard if (V −Vq)(Hq−z)−1 is

trace class (see, e.g., [38]) for the slightly more general case when (V −Vq)1/2(Hq−
z)−1|V − Vq|1/2 is trace class we refer to [15, Sect. 4], [18, Sect. 7]. That this last
condition holds will be shown in the next lemma below. �

To following result needed in the previous proof is of independent interest.

Lemma 4.3. Assume (3.2). Then (V − Vq)1/2(Hq − z)−1|V − Vq|1/2 is trace class.
If we even have

‖V − Vq‖2;1 =
∑

n∈Z

(∫ n+1

n

|V (x)− Vq(x)|2
)1/2

<∞, (4.9)

then (V − Vq)(Hq − z)−1 is trace class.

Proof. To see the first claim we begin with the fact [32, Prop. 2.2] that |V −
Vq|1/2(H0 − z)−1|V − Vq|1/2 is trace class, where H0 = − d2

dx2 . Let z < 0 and set
A(z) = (V −Vq)1/2(H0−z)−1/2. Then A(z)A(z)∗ = |V −Vq|1/2(H0−z)−1|V −Vq|1/2
is trace class and thus A(z) is Hilbert–Schmidt. In fact, since A(z) = A(z0)(H0 −
z0)1/2(H0 − z)−1/2 this holds for all z ∈ ρ(H0) and not just for z < 0. Hence,
using (Hq−z)−1 = (H0−z)−1/2C(z)(H0−z)−1/2, where C(z) is bounded (cf. [37,
Thm. 6.25]), we see |V −Vq|1/2(Hq−z)−1|V −Vq|1/2 = AC(z)A∗ which establishes
the claim.

The see the second claim we again begin with the fact [33, Theorem 4.5] that
(4.9) implies that (V − Vq)(H0 − z)−1 is trace class. Now the second resolvent
equation (Hq− z)−1 = (H0− z)−1− (H0− z)−1Vq(Hq− z)−1 establishes the claim
since Vq(Hq − z)−1 is bounded (cf. [37, Sect. 9.7]). �

Note that in the case Vq = 0 [33, Prop. 4.7] implies that the condition (4.9)
is optimal. Moreover, the norm in (4.9) dominates the L1 norm, ‖V ‖1 ≤ ‖V ‖2;1
by the Cauchy–Schwartz inequality, but the converse is of course not true (since
(4.9) forces the function to be locally square integrable).

5. The transmission coefficient

Throughout this section we make the somewhat stronger assumption that
∫ +∞

−∞
(1 + |x|)∣∣V (x) − Vq(x)

∣
∣dx <∞ (5.1)
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in order to ensure that there is only a finite number of eigenvalues in each gap [31].
Our aim is to reconstruct the transmission coefficient T (z) from its boundary values
and its poles. To this end, recall that T (z) is meromorphic in C\σ(Hq) with simple
poles at the eigenvalues ρj ofH . Moreover, for z ∈ σ(Hq) the boundary values from
the upper, respectively, lower, half-plane exist and satisfy |T (z)|2 = 1− |R±(z)|2,
where R±(z) are the reflection coefficients defined in the previous section.

In the case where Vq = 0, this can be done via the classical Poisson–Jensen
formula. In the more general setting here, the reconstruction needs to be done
on the underlying Riemann surface. We essentially follow [36], where the analog
problem for Jacobi operators was solved.

Denote by ωp q the normalized Abelian differential of the third kind with
poles at p and q. Then the Blaschke factor is defined by

B(p, ρ) = exp
(

g(p, ρ)
)

= exp
(∫ p

E0

ωρ ρ∗

)

exp
(∫ ρ

E(ρ)

ωp p∗

)

, π(ρ) ∈ R, (5.2)

where E(ρ) is E0 if ρ < E0 and either E2j−1 or E2j if ρ ∈ (E2j−1, E2j), 1 ≤ j ≤ g.
It is a multi-valued function with a simple zero at ρ and simple pole at ρ∗ satisfying
|B(p, ρ)| = 1, p ∈ ∂Π+. It is real-valued for π(p) ∈ (−∞, E0) and satisfies

B(E0, ρ) = 1 and B(p∗, ρ) = B(p, ρ∗) = B(p, ρ)−1. (5.3)

Then we have

Theorem 5.1. The transmission coefficient is given by

T (z, x) =
( g∏

j=1

B(p, ρj)−1

)

exp
(

1
2πi

∫

∂Π+

log(1− |R±|2)ωp p∞
)

, p = (z,+),

(5.4)
where we set R±(p) = R±(z) for p = (z,+) and R±(p) = R±(z) for p = (z,−).

Proof. Just literally follow the argument in [36, Sect. 3]. �

Remark 5.2. A few remarks are in order:
(i) Using symmetry, |R±(p∗)| = |R±(p)| for p ∈ ∂Π+, of the integrand we can

rewrite (5.4) as

T (p, x) =
( g∏

j=1

exp
(

−
∫ ρj

E(ρj)

ωp p∗
))

exp
( 1

2πi

∫

Σ

log(1− |R±|2)ωp p∗
)

, (5.5)

where the integral over Σ is taken on the upper sheet.
(ii) There exist explicit formulas for Abelian differentials of the third kind:

ωpq =

(

R
1/2
2g+1 +R

1/2
2g+1(p)

2(π − π(p))
− R

1/2
2g+1 +R

1/2
2g+1(q)

2(π − π(q))
+ Ppq(π)

)

dπ

R
1/2
2g+1

,

ωpp∞ =

(

−R
1/2
2g+1 +R

1/2
2g+1(p)

2(π − π(p))
+ Ppp∞(π)

)

dπ

R
1/2
2g+1

,
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where Ppq(z), Ppp∞(z) are polynomials of degree g − 1 which have to be
determined from the normalization condition to have vanishing a-periods. In
particular,

ωpp∗ =

(

R
1/2
2g+1(p)

π − π(p)
+ Ppp∗(π)

)

dπ

R
1/2
2g+1

.

(iii) The function

T (p) =

{

T (z), p = (z,+),
T (z)−1, p = (z,−),

solves the following scalar meromorphic Riemann–Hilbert factorization prob-
lem:

T+(p, x) = T−(p, x)(1 − |R(p)|2), p ∈ ∂Π+,

(T (p, x)) = D∗
ρ −Dρ

T (p∞, x) = 1.

(5.6)

Here the subscripts in T±(p) denote the limits from Π±, respectively. Com-
pare [23], [24].

As was pointed out in [36], this implies the following algebraic constraint on
the scattering data.

Theorem 5.3. The transmission coefficient T defined via (5.4) is single-valued if
and only if the eigenvalues ρj and the reflection coefficients R± satisfy

∑

j

∫ ρj

ρ∗j

ζ� − 1
2πi

∫

∂Π+

log(1− |R±|2)ζ� ∈ Z. (5.7)

6. Conserved quantities of the KdV hierarchy

Finally we turn to solutions of the KdV hierarchy (see [13]). Let Vq(x, t) be a
finite-gap solution of some equation in the KdV hierarchy, KdVr(Vq(x, t)) = 0,
and let V (x, t) be another solution, KdVr(V (x, t)) = 0, such that V (., t)− Vq(., t)
is Schwartz class for all t ∈ R. Existence of such solutions has been established
only recently in [8].

Since the transmission coefficient T (z, t) = T (z, 0) ≡ T (z) is conserved (see
[8] – formally this follows from unitary invariance of the determinant), conserved
quantities of the KdV hierarchy can be obtained by computing the asymptotic
expansion at ∞.

To this end, we begin by recalling the following well-known asymptotics for
the Weyl m-functions in case of smooth potentials:

Lemma 6.1. Suppose V (x) ∈ C∞(R) is smooth. The Weyl m-functions have the
following asymptotic expansion for large z

m±(z, x) ! i
√
z ±

∞∑

n=1

χn(x)
(±2i

√
z)n

, (6.1)
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with coefficients defined recursively via

χ1(x) = V (x), χn+1(x) = − ∂

∂x
χn(x) −

n−1∑

m=1

χn−m(x)χm(x). (6.2)

The corresponding expansion coefficients associated with Vq will be denoted
by χq,m(x). It is also known that the even coefficients are complete differentials
[4] and the first few are explicitly given by

χ1(x) = V (x),

χ2(x) = −V ′(x),

χ3(x) = V ′′(x)− V (x)2,

χ4(x) = −V ′′′(x) + 4V (x)V ′(x),

χ5(x) = V ′′′′(x) − 6V ′′(x)V (x) − 5V ′(x)2 + 2V (x)3.

Theorem 6.2. Suppose V (x) − Vq(x) ∈ S(R) is Schwartz. Then logT (z) has an
asymptotic expansion around z =∞:

logT (z) ! i
√
z

∞∑

k=1

τk
zk
.

The quantities τk are given by

τk =
∫ ∞

−∞

χ2k−1(x) − χq,2k−1(x)
(−1)k22k−1

dx (6.3)

and are conserved quantities for the KdV hierarchy. Explicitly,

τ1 =− 1
2

∫ ∞

−∞

(
V (x)− Vq(x)

)
dx,

τ2 =− 1
8

∫ ∞

−∞

(
V 2(x)− V 2

q (x)
)
dx,

τ3 =− 1
32

∫ ∞

−∞

(
2V 3(x)− 5V 2

x (x) − 6Vxx(x)V (x)

− 2V 3
q (x) + 5V 2

q,x(x) + 6Vq,xx(x)Vq(x)
)
dx,

etc.

Proof. Represent the Jost solutions in the form

ψ±(z, x) = ψq,±(z, x) exp
(

∓
∫ ±∞

x

(
m±(z, y)−mq,±(z, y)

)
dy

)

. (6.4)

Then iterating the Volterra integral equations (3.7) one sees that ψ±(z, x) have an
asymptotic expansion uniformly with respect to x and given by

log
ψ±(z, x)
ψq,±(z, x)

! −
∞∑

n=1

1
(±2i

√
z)n

∫ ±∞

x

(
χn(y)− χq,n(y)

)
dy. (6.5)



Trace Formulas for Schrödinger Operators 121

Then, letting x→ ∓∞ using (3.12) yields (6.3). In particular, equality of the plus
and minus cases shows that all even expansion coefficients must vanish (which
alternatively also follows from the fact that the even expansion coefficients are
complete differentials). �

Theorem 6.3. Consider the expansion coefficients τk of logT (z) defined in (6.3).
Then the following trace formulas are valid:

τk = 2i
g∑

j=1

∫ ρj

E(ρj)

ωp∞,2k−2 − 1
π

∫

Σ

log |T |2ωp∞,2k−2, (6.6)

where ωp∞,k is the Abelian differential of the second kind with a pole of order k+2
at p∞.

Proof. From dk

dzkωpE0 = k!ωp∞,k−1 we get that

ωpE0 = ωp∞ E0 +
∞∑

k=1

ζkωp∞,k−1, ζ = z−1/2,

ωp∗ E0 = ωp∞ E0 +
∞∑

k=1

ζkωp∞,k−1, ζ = −z−1/2.

Using this it follows

ωp p∗ = ωpE0 − ωp∗ E0 = 2
∞∑

k=1

ωp∞,2k−2ζ
2k−1, ζ = z−1/2.

Hence we have

−
g∑

j=1

∫ ρj

E(ρj)

ωp p∗ +
1

2πi

∫

Σ

log |T |2ωp p∗

= −
g∑

j=1

∫ ρj

E(ρj)

2
∞∑

k=1

ζ2k−1ωp∞,2k−2 +
1
πi

∫

Σ

log |T |2
∞∑

k=1

ζ2k−1ωp∞,2k−2.

Thus, since |T |2 = 1 − |R±|2 and R±(λ) decays faster than any polynomial as
λ→∞ [8], one obtains

logT (z) ! −
∞∑

k=1

(

2
∞∑

j=1

∫ ρj

E(ρj)

ωp∞,2k−2 − 1
πi

∫

Σ

log |T |2ωp∞,2k−2

)

ζ2k−1,

where ζ = z−1/2 denotes the local coordinate at z = ∞. �

Remark 6.4. The differentials ωp∞,2k−2, k = 1, 2, . . . , are explicitly given by

ωp∞,2k−2 =

(

πg+k−1

R
1/2
2g+1

+ Pk(π)

)

dπ. (6.7)

Here Pk(π) is a polynomial of degree g + k − 2 which has to be chosen such that
all a-periods vanish.
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Abstract. We prove the existence and uniqueness theorem of inner-outer fac-
torization for weighted Schur class functions over multiply connected domains.
Using our extension for the Sz.-Nagy-Foiaş functional model we give descrip-
tions for absolutely continuous and singular subspaces and derive the inner-
outer factorization theorem employing the link between factorizations and
invariant subspaces.
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0. Introduction

An operator-valued function Θ ∈ H∞(D,L(N+,N−)) is called a function of Schur
class if ||Θ||∞ ≤ 1, that is,

∀ |z| < 1 ∀ n ∈ N+ ||Θ(z)n|| ≤ ||n|| ,
where D is the open unit disk, N± are separable Hilbert spaces, H∞ is the Hardy
space [1, 2]. Schur class functions play a remarkable role in many mathematical
disciplines, in function theory [1, 3, 4], in operator theory [2, 4], in mathematical
physics (e.g., scattering theory) [5] and so on. Theory of such functions is well
developed and a pertinent survey can be found, e.g., in [2] or [4].

The inner-outer factorization, i.e., a representation of an analytic operator
function Θ(z) of Schur class on the unit disk in the form Θ(z) = Θi(z)Θe(z),
where the boundary values for the inner function Θi(z) are isometrical almost
everywhere on the unit circle and the outer function Θe(z) has no inner divisors,

Acknowledgement. Research for this article was supported by INTAS grant, project 05-1000008-
7883.
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is well known [1, 2]. This factorization is fundamental in function theory, operator
theory, and for prediction theory of stochastic processes.

In this paper we prove the existence and uniqueness theorem of inner-outer
factorization for weighted Schur class functions over multiply connected domains

SΞ := { (Θ,Ξ+,Ξ−) : Θ ∈ H∞(G+,L(N+,N−)) ,

∀ ζ ∈ C ∀ n ∈ N+ ||Θ(ζ)n||−,ζ
a.e.≤ ||n||+,ζ} ,

where G+ is a finitely connected domain of the complex plane bounded by a
rectifiable Carleson curve C, G− = C \ clos G+ and ∞ ∈ G−; Θ(ζ) are boundary
values of Θ(z), z ∈ G+; Ξ± are operator-valued weights such that Ξ±,Ξ−1

± ∈
L∞(C,L(N±)), Ξ±(ζ) ≥ 0, ζ ∈ C, and ||n||±,ζ := (Ξ±(ζ)n, n)1/2, n ∈ N±.

Note that we consider the triplets θ = (Θ,Ξ+,Ξ−) of the function Θ and the
two weights Ξ±, but we will use for them both the terms “triplet” and “weighted
Schur class function” interchangeably.

Definitions. A triplet θ = (Θ,Ξ+,Ξ−) ∈ SΞ is called

• Ξ-inner if ||Θ(ζ)n||−,ζ a.e.= ||n||+,ζ ;
• Ξ-outer if it has no non-trivial left Ξ-inner divisors;
• Ξ-unitary constant if θ is Ξ-inner and Θ−1 ∈ H∞(G+,L(N−,N+)).

We define the product

θ2θ1 := (Θ2Θ1,Ξ1+,Ξ2−)

of two triplets θ1 = (Θ1,Ξ1+,Ξ1−) and θ2 = (Θ2,Ξ2+,Ξ2−) provided Ξ2+ = Ξ1−.
We are going to prove the following

Main Theorem. Let θ ∈ SΞ. Then ∃ θin, θout ∈ SΞ such that

θ = θinθout ,

where θin is Ξ-inner and θout is Ξ-outer triplets. This factorization is unique (up
to Ξ-unitary constant factors).

The extension of Sz.-Nagy-Foiaş’s functional model from [6, 7] (see some details
in the following section) is the main tool for the proof. In outline, we follow the
way of proof from [8].

Besides, we describe certain subspaces (singular and absolutely continuous
invariant subspaces) in the functional model, which correspond to the factors in the
inner-outer factorization, and give another characterization for Ξ-outer functions.

1. Factorizations and invariant subspaces

Here we survey the connection mentioned in the title of section. This fundamen-
tal link between factorizations of characteristic functions and invariant subspaces
dates back to [9, 10]. In [11] we extended results developed in [2] to the class
of weighted Schur functions and the paper [11] is a basic reference for presented
information.
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First, we recall the construction of free functional model of Sz.-Nagy-Foiaş
type. Let Π = (π+, π−) be a pair of operators π± ∈ L(L2(C,N±),H) such that
(i)1 (π∗

±π±)z = z(π∗
±π±); (i)2 π∗

±π± " 0;
(ii)1 (π†

−π+)z = z(π†
−π+); (ii)2 P−(π†

−π+)P+ = 0;
(iii) Ranπ+ ∨ Ranπ− = H,
where N±,H are separable Hilbert spaces; A " 0 means that ∃ c > 0 such that
∀u (Au, u) ≥ c(u, u); the (nonorthogonal) projections P± are uniquely determined
by conditions RanP± = E2(G±,N±) and KerP± = E2(G∓,N±) (since the curve
C is a Carleson curve, the projections P± are bounded); the spaces E2(G±,N±)
are Smirnov’s spaces [12] of vector-valued functions with values in N±; the op-
erators π†

± are adjoint to π± if we regard π± : L2(C,Ξ±) → H as operators
acting from weighted L2 spaces with operator-valued weights Ξ± = π∗

±π±. In this
interpretation π± are isometries.

There is a one-to-one correspondence between weighted Schur class functions
and functional models. The mapping Π 
→ θ defined by the formula

θ = (π†
−π+, π

∗
+π+, π

∗
−π−)

is one of the directions of this correspondence. The operator π†
−π+ must be re-

garded as an analytic continuation of operator of multiplication by operator-valued
function on the curve C into the domain G+. Conversely, for a given θ ∈ SΞ, it is
possible to construct (up to unitary equivalence) a functional model Π such that
θ = (π†

−π+, π
∗
+π+, π

∗−π−).
Further, there exists a normal operator U ∈ L(H) with absolutely continuous

spectrum on C, which is uniquely determined by conditions Uπ± = π±z. Define
also the projection Pθ := (I − π+P+π

†
+)(I − π−P−π

†
−) onto the subspace Kθ :=

RanPθ. Then one can consider the “main” operator T ∈ L(Kθ)

Tf := Uf − π+
1

2πi

∫

C

(π†
+f)(z) dz , f ∈ Kθ .

Now we are ready to state our extension of the above-mentioned fundamental link
between factorizations of characteristic function Θ(z) and invariant subspaces of
operator T .

Fix weighted Schur class function θ = (Θ,Ξ+,Ξ−) and the corresponding
functional model Π = (π+, π−).

Let L ⊂ Kθ be an invariant subspace, (T − z)−1L ⊂ L for all z ∈ G−. Then
there exists an operator π ∈ L(L2(C,N),H) such that

(π∗π)z = z(π∗π); π∗π " 0;
(π†π+)z = z(π†π+); (π†

−π)z = z(π†
−π);

P−(π†π+)P+ = 0; P−(π†
−π)P+ = 0;

π†
−π+ = (π†

−π)(π†π+)

(F&I)

and L = Kθ1 = RanPθ1 , where Pθ1 = Pπ+∨π(I − π+P+π
†
+)(I − πP−π†) and

Pπ+∨π is the orthoprojetion onto Ranπ+ ∨Ranπ. Thus, if we denote Θ1 = π†π+,
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Θ2 = π†
−π, Ξ = π∗π, θ1 = (Θ1,Ξ+,Ξ), θ2 = (Θ2,Ξ,Ξ−), then we obtain the

regular factorization θ = θ2θ1. Recall [2] that a factorization θ = θ2θ1 is called
regular if

Ran (I −Θ†
2(z)Θ2(z))1/2 ∩ Ran (I −Θ1(z)Θ

†
1(z))

1/2 = {0} , a.e. z ∈ T ,

where Θ†
1 and Θ†

2 are adjoint to the operators Θ1 and Θ2 in the corresponding
weighted L2-spaces, respectively.

Conversely, if a factorization θ = θ2θ1 is regular, then there exists an operator
π ∈ L(L2(C,N),H) satisfying the conditions (F&I) such that Θ1 = π†π+ and
Θ2 = π†

−π. Then the subspace Kθ1 is invariant under the resolvent (T − z)−1,
z ∈ G−.

The above-described correspondence between factorizations and invariant
subspaces is one-to-one (up to Ξ-unitary constant factors). Moreover, this cor-
respondence is order-preserving. For factorizations θ = θ′2θ

′
1, θ = θ2θ1 and for cor-

responding invariant subspaces Kθ′1 , Kθ1 , we have

Kθ′1 ⊂ Kθ1 ⇐⇒ θ′2θ
′
1 ≺ θ2θ1 .

We say that θ′2θ′1 ≺ θ2θ1 if there exists a weighted Schur class function ϑ such that
θ1 = ϑθ′1 and θ′2 = θ2ϑ, where all the factorizations are regular.

Additionally we will need to know more details about geometry of invariant
subspaces. Let θ = θ2θ1 be a regular factorization, (π+, π−) be a functional model
corresponding to θ and π be an operator corresponding to the factorization. We saw
Kθ1 ⊂ Kθ. But, in general, Kθ2 � Kθ. Here Kθ2 = RanPθ2 and Pθ2 = Pπ−∨π(I −
πP+π

†)(I − π−P−π
†
−). Nevertheless, we have

Pθ1Pθ2 = Pθ2Pθ1 = 0, PθPθ1 = Pθ1 , Pθ2Pθ = Pθ2 ,

Pθ(Pθ1 + Pθ2)Pθ = Pθ, (Pθ1 + Pθ2)Pθ(Pθ1 + Pθ2) = (Pθ1 + Pθ2).

2. Inner-outer factorization

First, we note that for a weighted Schur class function θ = (Θ,Ξ+,Ξ−) ∈ SΞ one
can consider the dual triplet θ∗ := (Θ∼,Ξ∼−1

− ,Ξ∼−1
+ ) ∈ SΞ, where A∼(z) := A(z̄)∗.

In this connection, we define the dual notions.

Definitions. A triplet θ = (Θ,Ξ+,Ξ−) ∈ SΞ is called
• ∗-Ξ-inner if θ∗ is Ξ-inner ;
• ∗-Ξ-outer if θ∗ is Ξ-outer.

Thus it suffices to establish the existence and uniqueness theorem for the dual
∗-outer-inner factorization θ∗ outθ∗ in, which is connected with inner-outer factor-
ization θinθout by the identity (θinθout)∗ = θ∗ outθ∗ in.

We divide the proof of the Main Theorem into parts, which we arrange as
separate assertions. From now on and to the end of the section, we fix weighted
Schur class function θ = (Θ,Ξ+,Ξ−) and the corresponding functional model
Π = (π+, π−).
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We start with

Lemma 2.1. Let K∗ in := {f ∈ Kθ : (I − π+π
†
+)f = 0}. Then K∗ in is an invariant

subspace (T −z)−1K∗ in ⊂ K∗ in , z ∈ G−. If π ∈ L(L2(C,N),H) corresponds to the
invariant subspace K∗ in and Θ∗ in := π†π+, then Θ∗ inΘ†

∗ in = I.

Proof. For f ∈ K∗ in and z ∈ G−, we have

(I − π+π
†
+)(T − z)−1f = (I − π+π

†
+)(U − z)−1(f − π+(π†

+f)(z))

= (U − z)−1((I − π+π
†
+)f − (I − π+π

†
+)π+(π†

+f)(z)) = (U − z)−10 = 0 .

Hence (T − z)−1f ∈ K∗ in, that is, the subspace K∗ in is invariant. Further,

0 = (I − π+π
†
+)Pθ1π = (I − π+π

†
+)(I − π+P+π

†
+)(I − πP−π†)π

= (I − π+π
†
+)(π − πP−) = (I − π+π

†
+)πP+

and we get (I − π+π
†
+)π = 0. Then

I −Θ∗ inΘ†
∗ in = I − π†π+π

†
+π = π†π − π†π+π

†
+π = π†(I − π+π

†
+)π = 0 . �

We have obtained the factorization θ = θ∗ outθ∗ in, which corresponds to the
subspace K∗ in. The factor θ∗ in is ∗-Ξ-inner and therefore the factorization is reg-
ular. This factorization is extremal as it is shown in

Lemma 2.2. Let θ = θ′2θ
′
1 and θ′1 is ∗-Ξ-inner. Then θ′2θ

′
1 ≺ θ∗ outθ∗ in.

Proof. Since θ′1 is ∗-Ξ-inner, the factorization θ = θ′2θ′1 is regular. Then it suffices
to check that Kθ′1 ⊂ K∗ in. Let an operator π′ ∈ L(L2(C,N′),H) correspond to the
factorization θ = θ′2θ′1. We have

π′†(I − π+π
†
+)(I − π+π

†
+)π′ = π′†(I − π+π

†
+)π′ = I − θ′1θ′†1 = 0 .

Hence (I − π+π
†
+)π′ = 0 and (I − π+π

†
+)Pπ+∨π′ = 0. Then ∀f ∈ Kθ′1 ⊂ Kθ

(I − π+π
†
+)f = (I − π+π

†
+)Pπ+∨π′(I − π+P+π

†
+)(I − π′P−π′†)f = 0

and therefore Kθ′1 ⊂ K∗ in. �

Corollary. The factor θ∗ out is ∗-Ξ-outer.

Proof. Let θ∗ out = θ2θ1 and θ1 be ∗-Ξ-inner. Since θ1θ∗ in is ∗-Ξ-inner and θ =
θ∗ outθ∗ in = θ2(θ1θ∗ in), we get θ2(θ1θ∗ in) ≺ θ∗ outθ∗ in. Then there exists ϑ ∈ SΞ

such that θ∗ in = ϑθ1θ∗ in. Taking the main component Θ∗ in of the triplet θ∗ in, we
can rewrite the condition that θ∗ in ∗-Ξ-inner in the form Θ∗ inΘ†

∗ in = I. Similarly,
I = Θ1Θ

†
1. Multiplying the identity Θ∗ in = ΘΘ1Θ∗ in by Θ†

∗ in, we get I = ΘΘ1.
Together with I = Θ1Θ

†
1 it implies Θ−1

1 = Θ ∈ H∞(G+), that is, θ1 is a Ξ-unitary
constant. �

Lemma 2.3. Let θ′∗ out be ∗-Ξ-outer, θ′∗ in be ∗-Ξ-inner and θ = θ′∗ outθ
′
∗ in. Then

there exists a Ξ-unitary constant ϑ such that θ′∗ out = θ∗ outϑ and θ∗ in = ϑθ′∗ in.
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Proof. By Lemma 2.2, we have θ′∗ outθ
′
∗ in ≺ θ∗ outθ∗ in. Hence there exists ϑ ∈ SΞ

such that θ′∗ out = θ∗ outϑ and θ∗ in = ϑθ′∗ in. Using the elementary lemma (Let
A = BC and A,B be isometries ⇒ C is an isometry), we get ϑ is ∗-Ξ-inner. Since
θ′∗ out is ∗-Ξ-outer, the triplet ϑ is a Ξ-unitary constant. �

Thus we have obtained the existence and uniqueness theorem of ∗-inner-outer
factorization

Theorem 2.4. Let θ ∈ SΞ. Then ∃ θ∗ in, θ∗ out ∈ SΞ such that

θ = θ∗ outθ∗ in ,

where θ∗ in is ∗-Ξ-inner and θ∗ out is ∗-Ξ-outer triplets. This factorization is unique
(up to Ξ-unitary constant factors).

The Main Theorem is a direct consequence of this theorem.

Remark. For simply connected domains, using factorizations Ξ± = χ∗
±χ±, it is pos-

sible to reduce this theorem to the classical inner-outer factorization theorem [2].
But in the multiply connected case, the factors χ± can be multi-valued. This
multi-valuedness requires uniformization technique or analytic vector bundles [13]
(see [14] with outline of possible proof of the theorem). However we prefer to work
with the domain G+ directly (than with its universal cover), especially because it
is important for us to expose the link of inner-outer factorization with the invari-
ant subspaces K∗ in and Kout. We have already described the subspace K∗ in and
are going to obtain description for Kout in the last section of the paper.

Example. At the end of the section we present an example of non-trivial Ξ-unitary
constant θ = (Θ,Ξ+,Ξ−). First, we consider the character-automorphic function

fk,r,R(z) =
(z

r

) ln k
ln R−ln r

, r < |z| < R

with the properties

fk,r,R(zeit)|t=2π = e
2πi ln k

ln R−ln r fk,r,R(z)

|fk,r,R(reit)| = 1 , |fk,r,R(Reit)| = k .

This function is unique (up to unimodular constant multiplier) among character-
automorphic functions such that |f(reit)|=1,|f(Reit)| = k and 0<c< |f(z)|<C .

We put Θ(z) = fk,r,R(z) = z
r , with ln k = lnR− ln r and

Ξ+(ζ) =
{

1 , |ζ| = r
k2k2

1 , |ζ| = R
, Ξ−(ζ) =

{
1 , |ζ| = r
k2
1 , |ζ| = R

.

The function Θ(z) is single-valued and the triplet θ = (Θ,Ξ+,Ξ−) is a Ξ-unitary
constant. But, if ln k1

lnR−ln r /∈ Z, the corresponding functions χ+(z) = fk1k,r,R(z) and
χ−(z) = fk1,r,R(z) are multi-valued and it is impossible (using only single-valued
functions) to reduce Θ(z) to a unitary (in the usual meaning) constant.
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3. Description of outer functions and corresponding
invariant subspaces

For θ ∈ SΞ, we define Eθ := {u ∈ E2(G−) : Θu ∈ E2(G+)}, (see, e.g., [7]).

Lemma 3.1. K∗ in = {π+u : u ∈ Eθ}.
Proof. Let f ∈ K∗ in. Then (I − π+π

†
+)f = 0 and therefore f = π+u, where

u = π†
+f . Since f ∈ Kθ, we have u = π†

+f ∈ E2(G−) and Θu = π†
−π+π

†
+f =

π†
−f ∈ E2(G+). Hence, f ∈ {π+u : u ∈ Eθ}.

Conversely, let f ∈ {π+u : u ∈ Eθ}. Then (I − π+π
†
+)f = (I − π+π

†
+)π+u =

π+(I−π†
+π+)u = π+(I−I)u = 0, π†

+f = u ∈ E2(G−), and π†
−f = Θu ∈ E2(G+).

Hence, f ∈ K∗ in. �
We need to make use of the following pairing

〈u, v〉C :=
1

2πi

∫

C

(u(z), v(z̄))N dz , u ∈ L2(C,N), v ∈ L2(C̄,N) .

It can be shown in the usual way that any linear continuous functional F ∈
E2(Ḡ±)∗ can be represented in the form F (u) = 〈u, v〉 with v ∈ E2(G∓). Thus,
E2(Ḡ±)∗ � E2(G∓) and it can easily be checked that E2(G±)〈⊥〉 = E2(Ḡ±).

Theorem 3.2. Eθ = {0} ⇐⇒ closΘ∼E2(Ḡ+) = E2(Ḡ+) .

Proof. Let u ∈ Eθ. Then ∀v ∈ E2(Ḡ+) 0 = 〈Θu, v〉 = 〈u,Θ∼v〉 and therefore
u 〈⊥〉 closΘ∼E2(Ḡ+). If closΘ∼E2(Ḡ+) = E2(Ḡ+), then u ∈ E2(G+). Since
u ∈ E2(G−), we have u = 0 and Eθ = {0}.

Conversely, let Eθ = {0}. Assume that ∃w ∈ E2(Ḡ+) \ clos Θ∼E2(Ḡ+) such
that w �= 0. Then, by Hahn-Banach theorem, there exists F ∈ E2(Ḡ±)∗ such
that F (closΘ∼E2(Ḡ+)) = 0 and F (w) �= 0. Since E2(Ḡ±)∗ � E2(G∓), there
exists v ∈ E2(G−) such that 0 =

〈
Θ∼E2(Ḡ+), v

〉
=
〈
E2(Ḡ+),Θv

〉
and therefore

Θv ∈ E2(G+). Hence, v ∈ Eθ and v = 0. This contradicts 〈w, v〉 �= 0. Thus,
closΘ∼E2(Ḡ+) = E2(Ḡ+). �
Corollary. θ ∈ SΞ is ∗-Ξ-outer if and only if closΘ∼E2(Ḡ+) = E2(Ḡ+) .

Proof. By Lemma 3.1, K∗ in = {0} ⇔ Eθ = {0}. �
Thus we arrive at the following description for Ξ-outer functions

Theorem 3.3. θ ∈ SΞ is Ξ-outer if and only if closΘE2(G+) = E2(G+) .

To describe the corresponding invariant subspace Kout we need to prove the
following two lemmas.

Lemma 3.4. Let P, P1, P2 be projections in H such that

P1P2 = P2P1 = 0, PP1 = P1, P2P = P2,

P (P1 + P2)P = P, (P1 + P2)P (P1 + P2) = (P1 + P2).

Let K∗ = RanP ∗, H1 = RanP1, H2∗ = RanP ∗
2 . Then H2∗ = K∗

⋂
H⊥

1 .
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Proof. Let g ∈ K∗
⋂
H⊥

1 . Then ∀f ∈ H 0 = (P1f, g) = (f, P ∗
1 g) and therefore

P ∗
1 g = 0. Further,

P ∗
2 g = P ∗P ∗

2 g = P ∗(P ∗
1 + P ∗

2 )g = P ∗(P ∗
1 + P ∗

2 )P ∗g = P ∗g = g .

Hence g ∈ H2∗ and K∗
⋂
H⊥

1 ⊂ H2∗.
Conversely, let g ∈ H2∗. Then ∀f ∈ H

(P1f, g) = (P1f, P
∗
2 g) = (P2P1f, g) = 0 .

Hence g ⊥ H1. Since P ∗P ∗
2 = P ∗

2 , we have g ∈ K∗ and H2∗ ⊂ K∗
⋂
H⊥

1 . �

Lemma 3.5. Let P be projection in H, K = RanP, K∗ = RanP ∗. Let M be a
linear closed subspace in H. Then K∗

⋂
(K⋂M)⊥ = closP ∗M⊥.

Proof. Let f = P ∗g, g ⊥M . Obviously, f ∈ K∗ and ∀h ∈ K⋂M we have

(f, h) = (P ∗g, h) = (g, Ph) = (g, h) = 0 .

Hence, f ∈ K∗
⋂

(K⋂M)⊥ and closP ∗M⊥ ⊂ K∗
⋂

(K⋂M)⊥.
Conversely, let f ∈ K∗

⋂
(K⋂M)⊥. Then P ∗f = f and f ∈ (K⋂M)⊥ =

K⊥ ∨M⊥. Hence, f = limn→∞(kn + mn), where kn ⊥ K and mn ⊥ M . Since
∀g ∈ H (P ∗kn, g) = (kn, P g) = 0 and therefore P ∗kn = 0, we have

f = P ∗f = P ∗( lim
n→∞(kn +mn))

= lim
n→∞(P ∗kn + P ∗mn)

= lim
n→∞P ∗mn ∈ closP ∗M⊥ .

Hence, K∗
⋂

(K⋂M)⊥ ⊂ closP ∗M⊥. �

Theorem 3.6. Kout = closPθ Ran(I − π−π†
−).

Proof. Let θ = θ2θ1 be the ∗-inner-outer factorization factorization of θ ∈ SΞ

and (π+, π−) be the corresponding functional model. Let π be the operator corre-
sponding (see (F&I)) to the invariant subspace H1 = K∗ in. Taking in Lemma 3.4
P = Pθ, P1 = Pθ1 , P2 = Pθ2 , we get H2∗ = RanP ∗

2 = K∗
⋂
H⊥

1 . On the other
hand, K∗ in = K⋂M , where M = Ker(I − π+π

†
+). Then, by Lemma 3.5, we have

H2∗ = RanP ∗
2 = closP ∗M⊥. Thus we arrive at the description for K∗ out

H2∗ = RanP ∗
2 = closP ∗ Ran(I − π+π

†
+)

= closP ∗ Ran(I − π∗−π†
∗−) ,

but for the dual model (π∗+, π∗−), where the operators π∗± are uniquely deter-
mined by conditions (f, π∗∓v)H =< π†

±f, v >C , f ∈ H , v ∈ L2(C̄,N∓). Taking
into account the identity P ∗

θ = Pθ∗ , we can write the description for the terms of
the original model Kout = closPθ Ran(I − π−π†

−). �
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Remark. The invariant subspaces

K∗ in = {f ∈ Kθ : (I − π+π
†
+)f = 0}

and
Kout = closPθ Ran(I − π−π†

−)

play important role for spectral analysis (see, e.g., [15]). The subspaceK∗ in is called
singular and Kout is called absolutely continuous. This terminology descends from
self-adjoint theory. To clarify it we define the spectral components [6]

M(T ) = { f ∈ H : ∀ g ∈ H ((T − z)−1f, g)+ = ((T − z)−1f, g)− }
and

N(T ) = clos
{

f ∈ H : ∀ g ∈ H ((T − z)−1f, g) ∈ E2
(

G+

⋃

G−
)}

,

where ((T − z)−1f, g)± are the boundary limits of ((T − z)−1f, g) from G±. In the
case when the operator T is self-adjoint (or unitary) we have Hsing(T ) = M(T )
and Hac(T ) = N(T ). In the case when T is the main operator in functional model
and Θ(z)−1 possesses boundary values a.e. on C, we have K∗ in = M(T ) and
Kout = N(T ).
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Eigenvalue Asymptotics for Magnetic Fields
and Degenerate Potentials

Françoise Truc

Abstract. We present various asymptotic estimates of the counting function of
eigenvalues for Schrödinger operators in the case where the Weyl formula does
not apply. The situations treated seem to establish a similarity between mag-
netic bottles (magnetic fields growing at infinity) and degenerate potentials,
and this impression is reinforced by an explicit study in classical mechanics,
where the classical Hamiltonian induced by an axially symmetric magnetic
bottle can be seen as a perturbation of the Hamiltonian derived from an
operator with a degenerate potential.
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1. Introduction

In this review are presented several results of spectral analysis, based for most
of them on the min-max variational principle. These are mainly “non-Weyl-type”
asymptotics for some “non generic” Schrödinger operators. In the appropriate
setup, the Weyl formula describes the asymptotic relationship between the number
of eigenvalues less than some fixed value λ and the volume, in phase space, of
trajectories with energy less than λ for the corresponding classical problem. To be
more precise, let us consider a continuous positive-valued potential V on R

m, and
let us make the following assumption for V (x):

V (x) → +∞ when |x| → +∞ (1.1)

(we call such a V (x) a non degenerate potential). Then for any value of the pa-
rameter h in ]0, 1], the operator Hh = −h2∆ + V defined on L2(Rm) is essentially
self-adjoint and has a compact resolvent [49]. Moreover, denoting by N(λ,Hh) the
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number of eigenvalues less than some fixed value λ, we get the following semi-
classical asymptotic behaviour, when h→ 0:

N(λ,Hh) ∼ h−m(2π)−mvm
∫

Rm

(λ− V (x))m/2+ dx . (1.2)

In this so-called semi-classical Weyl asymptotic formula, vm denotes the volume
of the unit ball in R

m, and by W+ we mean that we take the positive part of W .
If we take h = 1 in the previous formula we get the asymptotics for large

energies of the operator H1 = −∆ + V :

N(λ,H1) ∼λ→+∞ (2π)−mvm
∫

Rm

(λ− V (x))m/2+ dx . (1.3)

The right-hand side of the formula (1.2) can be seen more generically as the volume,
in phase space, of the set {(x, ξ),H(x, ξ) ≤ λ}, where H(x, ξ) = ξ2 + V (x) is the
principal symbol of Hh and the Hamiltonian of the associated dynamics.

A naturel question is then the following: what can be said of a Schrödinger
operator which has a discrete spectrum but does not verify the non-degeneracy
condition (1.1)? In that case the volume of {(x, ξ), ξ2 + V (x) ≤ λ} may happen
to be infinite, so that the formula (1.2) becomes irrelevant. This is the case for
instance for the following potential (in R

2)

V (x, y) = (1 + x2)y2

(see Figure 1).
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Figure 1. The potential V (x, y) = (1 + x2) y2.
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The problems presented below discuss precisely this question for various sit-
uations, and the estimates obtained will be called non-Weyl-type asymptotics.

First we recall the results obtained in ([39], [41]), for a class of degenerate
potentials in the sense we previously defined. These potentials can be seen as a
generalization of the preceding example; they are of the form

V (x) = f(y)g(z), x = (y, z) ∈ R
n × R

p,

f ∈ C(Rn; R∗
+) g ∈ C(Rp; R+),

g homogeneous of degree a.

Then we consider Schrödinger operators with magnetic field Hh(A) = ((h∇−
iA))2. One can call them degenerate in the sense that the principal symbol of
Hh(A), which is H(x, ξ) = (ξ − A(x))2, annihilates on a non compact mani-
fold of T ∗(Rm). If the magnetic field B = dA is such that the counting func-
tion N(λ,Hh(A)) can be defined, then we can look for some alternative to Weyl
formula. In particular, when the magnetic field B = dA satisfies some so-called
magnetic bottles conditions:

‖B(x)‖ → +∞ if |x| → +∞ , (1.4)

Hh(A) is essentially self-adjoint and has a compact resolvent on L2(Rm) [3]. The
spectral asymptotics for large energies were computed by Y. Colin de Verdière [6].
Here are discussed the semi-classical version of this result [59], and the case of
magnetic bottles in the hyperbolic context ([42] for the Poincaré half-plane, [43]
for geometrically finite hyperbolic surfaces). These non-Weyl-type asymptotics can
be seen as the expression of an integrated density of states on the whole space.
For a constant magnetic field B =

∑r
j=1 bjdxj ∧ dyj , b1 ≥ b2 ≥ · · · ≥ br > 0, the

density of states is given by, (for some universal constant Cr):

νB(λ) = Crb1b2 · · · br
∑

nj≥0



λ−
r∑

j=1

(2nj + 1)bj





d/2−r

+

.

In the hyperbolic context r(x) = 1 for any x and the intensity b(x) is defined in a
slightly different way according to the hyperbolic geometry.

We discuss also another “degenerate” problem in the framework of the super-
conductivity theory. In order to minimize the associated Ginzburg-Landau func-
tional associated to a given open set Ω in R

3, we study the spectral properties of
the magnetic Laplacian H = ((∇ − iA))2, with the so-called magnetic Neumann
condition at the boundary:

ν(x) · (∇− iA)u(x) = 0 ∀x ∈ δΩ .

This comes from the fact that (0, σA) is a trivial critical point for the functional
(σ is a parameter related to the magnetic intensity); the magnetic Laplacian pre-
viously defined is precisely the Hessian computed at this point.

The magnetic field B = dA is assumed to be constant, and the spectrum
contains an absolutely continuous part, which is the whole interval [b,+∞[. (b =
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‖B‖ is the magnetic intensity). However, if we consider the case of the half-space,
e.g., for (t, x, y) in Ω = R+×R

2, the Neumann realization of the magnetic Laplacian

H = (Dt −A1)2 + (Dx −A2)2 + (Dy −A3)2,

with Ds = −i( ∂∂s), and if we assume that the magnetic field is not orthogonal to
the boundary δΩ = {(0, x, y), (x, y) ∈ R

2}, we get that the lower bound of the
spectrum is strictly less than b, [36], [24]. It can be proved that the part of the
spectrum less than b consists of a finite number of eigenvalues, each one having an
infinite multiplicity [40].

Furthermore, this number tends to infinity as the angle between the magnetic
field and the boundary δΩ tends to zero, and this leads to a non-Weyl-type de-
scription of the number of eigenvalues less than a fixed real number less than b [40].

The last section is devoted to a problem of magnetic bottle, but in the classical
context [58]. This problem is indeed at the origin of the results proved in the
semi-classical and quantum mechanics context. The magnetic field considered here
is axially symmetric in R

3 and verifies the condition (1.4). Are there bounded
trajectories, as suggested by numerical simulations? The operator associated to
the Hamiltonian by the Weyl quantification has a discrete spectrum: we are in
the case of the magnetic bottles defined previously. However in the classical setup
we have to use the results of the KAM theory. The conditions needed to apply
Moser’s twist theorem have to be checked and then we can conclude that there
exists an open set of initial conditions such that the trajectory is bounded. The
interesting fact is that the Hamiltonian can be described as a perturbation of an
effective Hamiltonian, which is precisely the principal symbol of the Schrödinger
operator with the degenerate potential

V (x, y) = B2(x, 0) y2 .

2. Degenerate potentials

2.1. The Tauberian approach

There are a lot of works on the subject, and we refer to [60] for a review. However
for the reader’s convenience we recall briefly the main results in this approach.
Roughly speaking, the Tauberian technique consists on studying the asymptotic
behaviour of the Green’s function of the operator H1 and applying a Tauberian
theorem. [12] is the first result where (1.3) is proved for a class of non degenerate
potentials, then refinements can be found in [56], [33], [31] and [51], where the
formula (1.3) is proved under minimal conditions on V .

In [53] Solomyak makes the following remark:

Lemma 2.1. Let V be a positive a-homogeneous potential:

V (x) ≥ 0; V (tx) = taV (x) for any t ≥ 0 (a > 0).
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If moreover V (x) is strictly positive (V (x) �= 0 if x �= 0) the spectrum of H1

is discrete and the formula (1.3) takes the form:

N(λ,H1) ∼ γm,aλ
2m+am

2a

∫

Sm−1
(V (x))−m/adx (2.1)

(γm,a is a constant depending only on the parameters m and a.)

From that lemma comes out naturally the idea of investigating the spectrum
without the condition of strict positivity (and thus in a case of degeneracy of the
potential); the two main results are [53]:

Theorem 2.2. The formula (2.1) still holds for a positive a-homogeneous potential
such that J(V ) =

∫

Sm−1(V (x))−m/adx is finite.

The second result deals with a case where J(V ) is infinite:

Theorem 2.3. Let V (x) = F (y, z), y ∈ R
n, z ∈ R

p, n + p = m, m ≥ 2, such
that F (sy, tz) = sbta−bF (y, z) (with 0 < a < b) and F (y, z) > 0 for |z||y| �= 0.
Denote by λj(y) the eigenvalues of the operator −∆z + F (y, z) in L2(Rp) and let
s = 2b

2+a−b , then:

If
n

b
>
m

a
N(λ,H1) ∼ γn,sλ

2m+am
2b

∫

Sm−1
Σ(λj(y))−n/sdx,

if
n

b
=
m

a
N(λ,H1) ∼ a(a+ 2)

2b(a− b)γm,aλ
2m+am

2b lnλ
∫

Sn−1Sp−1
F (y, z)−m/adx.

The proof is based on variational techniques and spectral estimates of [51].
In [50] D. Robert extends the theory of pseudodifferential operators to pseu-

dodifferential operators with operator symbols. It is thus possible to study cases
where the operator has a compact resolvent but the condition lim∞ V (x) = +∞
is not fulfilled. As an example it gives the asymptotics of N(λ,H1) for the two-
dimensional potential V (y, z) = y2k(1 + z2)l, where k and l are strictly positive.
The asymptotics are the following:

Theorem 2.4.

If k > l N(λ,H1) ∼ γ1λ
l+k+1

2l ,

if k = l N(λ,H1) ∼ γ2λ
2k+1
2k lnλ,

if k < l N(λ,H1) ∼ γ3λ
2k+1
2k .

The constants γi depend only on k and l, but the first one γ1 takes into
account the trace of the operator (−∆z + z2k)−(k+1)/2l in L2(R).

In the two-dimensional case let us mention the results of B. Simon [52]. He
first recalls Weyl’s famous result: let H be the Dirichlet Laplacian in a bounded
domain Ω in R

2, then the following asymptotics hold:

N(λ,H) ∼ 1
2
λ|Ω|



140 F. Truc

and then he considers domains Ω for which the volume (denoted by |Ω|) is infinite
but the spectrum of the Laplacian is still discrete. These domains are of the type

Ωµ = {(y, z); |y||z|µ ≤ 1}.
Actually the problem can be derived from the study of the asymptotics of

Schrödinger operators with the homogeneous potential: V (y, z) = |y|α|z|β.
In order to compute eigenvalue asymptotics, he uses the Feynman-Kac for-

mula and the Karamata-Tauberian theorem, but the main tool is what he calls
“sliced bread inequalities”, which can be seen as a kind of Born-Oppenheimer ap-
proximation. More precisely let H = −∆+V (y, z) be defined on R

n+p, and denote
by λj(y) the eigenvalues of the operator −∆z + V (y, z) in L2(Rp). (If the z’s are
electron coordinates and the y’s are nuclear coordinates, the λj(y) are the Born-
Oppenheimer curves). He proves the following lemma:

Tre−tH ≤ Σje−t(−∆y+λj(y))

(when the second term exists).
Thus he gets the two following coupled results:

Theorem 2.5. If H = −∆ + |y|α|z|β and α < β, then

N(λ,H) ∼ cνλ
2ν+1

2

(

ν =
β + 2
2α

)

Corollary 2.6. If H = −∆Ωµ (µ > 1), then N(λ,H) ∼ cµλ
1

2µ+1 .

Theorem 2.7. If H = −∆ + |y|α|z|α, then N(λ,H) ∼ 1
πλ

1+ 1
α ln λ.

Corollary 2.8. If H = −∆Ωµ (µ = 1), then N(λ,H) ∼ 1
πλ ln λ.

The constant cµ depends only on µ, and the constant cµ takes in account the
trace of the operator (−∆z + |z|β)−ν in L2(R).

2.2. The min-max approach

The result presented in this section [39] is based on the method of Courant and
Hilbert, the min-max variational principle.

Thanks to this method, which requires only to study the associated quadratic
form, (using appropriate partitions and simplified models) no assumptions on the
evolution semi-group are needed, and we get non-Weyl-type asymptotics for a large
class of degenerate potentials, namely potentials of the following form:

V (x) = f(y)g(z), x = (y, z) ∈ R
n × R

p, n+ p = m, m ≥ 2

f ∈ C(Rn; R∗
+), g ∈ C(Rp; R+),

∃ a > 0 t.q. g(tz) = tag(z) ∀t > 0, g(z) > 0 ∀z �= 0.
(2.2)

This class contains the potentials studied in [50], [52] and [53].
According to the assumption (2.2) the spectrum of the operator −∆z + g(z)

on L2(Rp) is discrete and positive. Let us denote by µj its eigenvalues.



Eigenvalue Asymptotics for Magnetic Fields . . . 141

We have moreover:

Remark 2.9. If f(y)→ +∞ when |y| → +∞, then Hh = −h2∆+V has a compact
resolvent.

Of course if f was assumed to be homogeneous, the asymptotics would be
given by Theorem 2.3. But here the only additional assumption made on f is a
locally uniform regularity:

∃ b, c > 0 t.q. c−1 ≤ f(y) and

|f(y)− f(y′)| ≤ cf(y)|y − y′|b, ∀(y, y′) t.q. |y − y′| ≤ 1.
(2.3)

Theorem 2.10. Let us assume the previous conditions on f and g. Then there exists
σ, τ ∈]0, 1[ such that, for any λ > 0, one can find h0 ∈]0, 1[, C1, C2 > 0 in order
to have

(1− hσC1)nh,f (λ− hτC2) ≤ N(λ;Hh) ≤ (1 + hσC1)nh,f(λ + hτC2) ∀h ∈]0, h0[

with nh,f (λ) = h−n(2π)−nvn
∫

Rn

Σj∈N[λ− h2a/(2+a)f2/(2+a)(y)µj ]
n/2
+ dy.

Provided some additional conditions on f , the previous result can be refined
as follows:

Theorem 2.11. If moreover one can find a constant C3 such that, for any µ > 1:
∫

{y,f(y)<2µ}
f−p/a(y)dy ≤ C3

∫

{y,f(y)<µ}
f−p/a(y)dy ,

then one can take C2 = 0 in Theorem 2.10:

(1− hσC1)nh,f(λ) ≤ N(λ;Hh) ≤ (1 + hσC1)nh,f (λ) ∀h ∈]0, h0[ .

Remark 2.12. If f−p/a ∈ L1(Rn) and g ∈ C1(Rp\{0}), then the formula (1.3)
holds.

The proof of Theorem 2.10 is based on a suitable subdivision of R
n into

cubes {Qr(rγ), γ ∈ Z
n} . According to the min-max variational principle we are

then reduced to study Dirichlet and Neumann problems in cylinders of R
m:

N(λ,HD
h,γ) ≤ N(λ,Hh) ≤ N(λ,HN

h,γ)

HD,N
h,γ = −h2∆y − h2∆z + f(y)g(z) on Qr(rγ)× R

p ,

with Dirichlet (or Neumann) condition at the boundary.
In each cube Qr(rγ) f(y) is bounded from above by f(y∗γ) where y∗γ is a

minimum for f .
Using the homogeneity of g one gets that the eigenvalues of the operator

−h2∆z + f(y∗γ) g(z) are of the form {(haf(y∗γ))α µj } ( α = 2/(2 + a)).
One gets then a lower bound for N(λ,Hh) by taking the sum, for all cubes,

of the sum for all j’s of N
(
λ− (haf(y∗γ))

α µj , −h2∆D
Qr(rγ)

)
.

One gets the upper bound following the same procedure.
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Concerning the proof of Theorem 2.11, the main tool is an asymptotic formula
of the moment of eigenvalues of −h2∆z + g(z), which is again obtained using the
min-max principle.

As a conclusion, let us notice that if there is some information on the growth
of f at infinity, then the asymptotics can be computed in terms of power of h:

Remark 2.13. If there exist k > 0 and C > 0 such that
1
C
|y|k ≤ f(y) ≤ C|y|k for |y| > 1,

then

if k > a N(λ,Hh) ≈ h−m

if k = a N(λ,Hh) ≈ h−m ln
1
h

if k < a N(λ,Hh) ≈ h−n−
pa
k

Remark 2.14. The formula in Theorem 2.10 gives us a hint of what can be said
about the behaviour of the eigenvalues themselves. Actually this question is an-
swered precisely by using Born-Oppenheimer-type methods in [41], where we com-
pute first-order approximations for low energies and middle energies, and apply
the results to a potential vanishing on a hypersurface.

3. Magnetic bottles

3.1. General setting

We are now interested in magnetic Laplacians, in various situations when it is
possible to look for non-Weyl-type estimates. This leads us to give a definition of
magnetic bottles in a general Riemannian context.

Let us denote by (M, g) a connected Riemannian manifold of dimension d

and by A =
∑d
j=1 ajdxj a real one-form on M . For any h ∈ ]0, 1[ we can define

the semi-classical magnetic Laplacian

Hh(A) = (ih d+A)�(ih d+A) ,

(ih d+A)u = ih du +Au , ∀ u ∈ C∞
0 (M) .

(3.1)

The magnetic field is the exact two-form B = dA.
The two-form B is associated to a linear operator LB on the tangent space

defined by

B(X,Y ) = g(LB.X, Y ) ; ∀ X , Y ∈ TM × TM . (3.2)

The magnetic intensity b is given by

b =
1
2
tr
(

(B�B)1/2
)

. (3.3)



Eigenvalue Asymptotics for Magnetic Fields . . . 143

It is possible to define Hh(A) more geometrically, using the Hermitian connection
∇ on a complex-line bundle L over M with curvature equal to iB. This connection
exists provided that the cohomology class of B/2π is an integer.

It is defined by ∇Xf = df(X)− iA(X)f , where A is a real one-form verifying
B = dA. One introduces on C∞

0 (M ;L) the quadratic form q(f) =
∫

M
‖∇f‖2dx,

and by Friedrich’s process one gets an operator, which is Hh(A).

Remark 3.1 (Gauge invariance). If A′ = A + dφ is another magnetic potential
associated to B, the operators Hh(A) and Hh(A′) are unitarily equivalent.

This property implies that Hh(A) and Hh(A′) have the same spectrum.
Therefore we give the following definition, which does not depend from the choice
of the magnetic potential A:

Definition 3.2. (M,h,B) is called a magnetic bottle if
1) Hh(A) is essentially self-adjoint with domain C∞

0 (M ;L),
2) Hh(A) has a compact resolvent.

In [3], which is the first paper on the subject, and also in [14], [30] one can find
necessary conditions or sufficient conditions forHh(A) to have a compact resolvent.

3.2. The Euclidean case

3.2.1. The results. Let us take for (M, g) the Euclidean space R
d. The operator

defined in (3.1) is

Hh(A) =
d∑

j=1

(
h

i

∂

∂xj
− aj

)2

.

Furthermore there exists, for any x ∈ R
d, an orthonormal basis (ej(x)) of R

d such
that B(x) has the following expression

B(x) =
r(x)
∑

j=1

bj(x)dxj ∧ dyj , b1(x) ≥ b2(x) ≥ · · · ≥ br(x) > 0 . (3.4)

The magnetic intensity is equal to the norm of the vector B(x) = (bj(x))j . The
bj(x) are the moduli of the non zero eigenvalues of the endomorphism LB asso-
ciated to B(x) and 2r(x) is the rank of LB. For odd dimension in particular 0 is
always an eigenvalue. We assume moreover the following properties for B:
(B1) lim‖x‖→∞ ‖B(x)‖ =∞,
(B2) there exists C > 0 such that, for every x and x′ verifying:

‖x− x′‖ ≤ 1, ‖B(x)‖ ≤ C‖B(x′)‖,
(B3) M(x) = o

(

‖B(x)‖ 3
2

)

when ‖x‖ → ∞ where

M(x) = max
|β|=2

(

sup‖x−x′‖≤1 ‖DβA(x′)‖
)

.

The high energy behaviour of N(λ,H1(A)), (h = 1, λ→ +∞), is given by Y. Colin
de Verdière in [6]:
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Theorem 3.3. Under the conditions (B1–B3), (Rd, 1, B) is a magnetic bottle and

Nas
B [λ(1 − o(1))] ≤ N(λ,H1(A)) ≤ Nas

B [λ(1 + o(1))] (λ→ +∞) .

The expression for Nas
B is the following:

Nas
B (λ) =

[d/2]
∑

r=1

Ck,r
∑

(n1,...,nr)∈Z+
r

∫

Ar

(
λ−

r∑

i=1

(2ni + 1)bi(x)
)k/2

+

r∏

i=1

bi(x)dx .

We used the following notations:
• Ar = {x ∈ Rd; r(x) = r}
• Ck,r = γk

(2π)k+r , γk = volume of the unit ball of Rk.

In [59] we give an equivalent of N(E,Hh(A)) for a fixed energy E when h
tends to zero. This is the semi-classical version of the previous asymptotics.

We first notice thatHh(A) = h2H1(A/h). H1(A/h) is the (non semi-classical)
Schrödinger operator associated to the magnetic field B

h :

H1(A/h) =
d∑

i=1

(
1
i

∂

∂xj
− aj
h

)2

. (3.5)

Consequently, we get N(E,Hh(A)) = N
(
E
h2 , H1(A/h)

)
for any fixed energy E.

Using an adaptation of the method explained in [6], we get the following
asymptotics [59]:

Theorem 3.4. Under the conditions (B1–B3), (Rd, h, B) is a magnetic bottle and
we have, for any energy E:

1
hd
Nas
hB[E(1− o(1))] ≤ N(E,Hh(A)) ≤ 1

hd
Nas
hB[E(1 + o(1))] (h→ 0) .

Remark 3.5. The expression for Nas
B becomes more explicit when d = 2. We have

then
b1(x) = ‖B(x)‖ = b(x),

and
1
hd
Nas
hB(E) =

1
2πh2

∫

R2
b(x)

∑

n∈N

[
E − (2n+ 1)hb(x)

]+

0
dx . (3.6)

[ρ]0+ is the Heaviside function:

[ρ]0+ =
{

1 , if ρ > 0
0 , if ρ ≤ 0 .

Remark 3.6. H. Matsumoto recovers the conclusions of this theorem by studying
the semi-group exp(−tHh) [38]. The following equivalent is obtained:

Tr
(
exp(−tHh)

)
=

1
hd
ZhB(t)

where ZhB(t) = (4πt)−d/2
∫

Rd

∏r(x)
i=1

htbi(x)
sinhhtbi(x)

dx is the Laplace transform of the
function Nas

hB(λ) introduced previously. In the three-dimensional case Tamura [55]
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obtains a result of the same kind, involving only the norm of the magnetic field.
However they both require stronger conditions for B, in order to make sure that
exp(−tHh) is a trace semi-group. This comes from the philosophy of the min-max
method, which does not deal with the evolution semi-group but requires only to
study the quadratic form, using partitions and asymptotic formulas for simplified
operators (namely here for constant fields in cubes), so that we can get a formula
with the minimal assumptions.

Remark 3.7. The operators verifying the assumptions of the theorem are special
examples of the hypoelliptic operators

∑d
i=1X

∗
kXk introduced by L. Hörmander

[25], in the case of real vector fields Xk.

Remark 3.8. Let us set

νB(x)(λ) = Ck,r
∑

(n1,...,nr)∈Z+
r

(

λ−
r∑

i=1

(2ni + 1)bi(x)

)k/2

+

r∏

i=1

bi(x) .

(In this definition, the numbers k and r depend on x.) The function Nas
B (λ) has

then the following expression:

Nas
B (λ) =

∫

Rd

νB(x)(λ)dx .

In the case of a constant magnetic field, the function νB(λ) can be seen as a density
of states for the Schrödinger operator in R

d.

The proof consists of two main parts which we develop in next sections: the
asymptotic spectral estimate for the Dirichlet problem in the cube [0, R]d in the
case of a constant field, and the appropriate subdivision in cubes which makes
possible the reduction to the simplified problem.

3.2.2. The Dirichlet problem in a cube for a constant magnetic field. When the
field B is constant, the function νB(λ) is used to estimate NB,R(λ), the counting
function of the spectrum concerning Dirichlet problem for the Schrödinger operator
with the magnetic field B in the cube [0, R]d. We recall the precise estimate, given
in [6]:

Theorem 3.9. There exists a constant c depending only on d such that, for any A
with 0 < A < R/2, the following inequalities hold:

• NB,R(λ) ≤ Rd νB(λ).
• NB,R(λ) ≥ (R−A)d νB(λ− C/A2).

The proof of this result uses the spectrum for constant fields on a torus, and a
method due to Polya, which consists in subdividing R

d into cubes and taking an
approximation by a “large” torus ([6], [8] and [9]).
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To be more precise we have:

Lemma 3.10 (Constant field on a torus). Let B =
∑r
j=1 bjdxj ∧ dyj , b1 ≥ · · · ≥

br > 0 on the torus M = R
d/Γ, where d = r + k and Γ0 is a lattice on R

k.
It is assumed that Γ =

⊕r
j=1 ρjZ

2 ⊕ Γ0 and that bjρ2
j ∈ 2πZ. Then

1) the cohomology class of B/2π is an integer,
2) the spectrum of Hh(B) is constituted of the eigenvalues λ =

∑r
i=1(2ni+1)bi+

µ, where ni ∈ N
∗, and µ is an eigenvalue of the Laplacian on R

k/Γ0,
3) the multiplicity of λ is equal to the sum of the multiplicity of µ and of

∏r
i=1

biρ
2
i

2π .

3.2.3. A subdivision of Rd into appropriate cubes.

Lemma 3.11. Under the assumptions (B1–B3), and for a fixed ε > 0, there exists
for any h a subdivision of Rd in cubes (Ωi)i≥0 of sides ri, and numbers (ai)i≥1 (0 <
ai ≤ ri/2) such that, if we set Mi = max‖β‖=2 supx∈Ωi

‖Dβa(x)‖, the following
inequalities hold, for any x in Ωi and for any integer i ≥ 1:

i) r2iMi ≤ εh‖B(x)‖1/2
ii) Mi ≤ ε3‖B(x)‖3/2
iii) 1/a2

i ≤Mx,ε = max
(

4ε‖B(x)‖
h , 1/ε

)

.

3.3. The hyperbolic half-plane

3.3.1. The setup. Now, we consider the case where M = H is the hyperbolic

plane: H = R×]0,+∞[ , endowed with the hyperbolic metric g =
dx2 + dy2

y2
.

We have ρB = b̃ dv, where dv = y−2dxdy is the Riemannian measure on M .
Thus we have b̃ = y2 (∂xA2 − ∂yA1) and

H1(A) = y2(Dx −A1)2 + y2(Dy −A2)2 , (3.7)

We define b = |b̃| .
The hyperbolic framework has been used mainly for studying the Maass

Laplacian, which corresponds to the constant magnetic field case. This case has
been studied by many authors [21], [15], [11] [13]. In [27] Y. Inahama and S. Shirai
consider asymptotically constant magnetic fields and in [29] they deal with Pauli
operators. In [26] N. Ikeda studies the relationship between Maass Laplacian and
Schrödinger operators with Morse potentials.

From an other point of view, the asymptotic distribution of large eigenvalues
in the hyperbolic context has already been studied for Schrödinger operators (with-
out magnetic field) [28]. The method is based on Feynman-Kac representation of
the heat kernel and the Tauberian theorem. As already mentioned our own method
involves only min-max techniques so it does not require to study properties of the
evolution semigroup. We get the asymptotic distribution of large eigenvalues for a
certain type of magnetic bottles following the method used in the Euclidean case,
but replacing cubes by rectangles adapted to the hyperbolic geometry.
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The result is very similar to (3.6), according to the hyperbolic definition of
the intensity b̃ of the magnetic field. Moreover the techniques are local, so they
have been successfully applied to geometrically finite hyperbolic surfaces of infinite
area [43].

We give first the basic results in the case of a constant magnetic field.

3.3.2. The Maass Laplacian. The first paper on Maass Laplacian is due to
J. Elstrodt [15].

We consider the case where b̃ = y2(∂xA2(x, y) − ∂yA1(x, y)) is constant.
We choose a gauge such that A2 = 0, so A1(x, y) = b̃y−1. We can assume that
A1(x, y) = by−1, by eventually performing the change x → −x, which is a unitary
operator on L2(H). The operator we are interested in is

H1A
b = y2(Dx − by−1)2 + y2D2

y , with b ≥ 0 constant. (3.8)

Let U be the unitary operator

U : L2(H) → L2(R× R+) , Uf = y−1f ; (3.9)

R× R+ is endowed with the standard Lebesgue measure dxdy. Then

Pb = U(−∆Ab)U� = (Dx − by−1)y2(Dx − by−1) + Dyy
2Dy . (3.10)

Using partial Fourier transform we get that sp(Pb) =
⋃

ξ∈R

sp(Pb(ξ)), where Pb(ξ)

is the self-adjoint operator on L2(R+) defined by

Pb(ξ)f = (yξ − b)2f(y) +Dy(y2Dyf)(y) ; ∀ f ∈ C∞
0 (R+) . (3.11)

Moreover we have

sp(Pb(ξ)) = sp(Pb(1)) , if ξ > 0 .

sp(Pb(ξ)) = sp(Pb(−1)) , if ξ < 0 .

This leads to the well-known following theorem:

Theorem 3.12. The spectrum of Pb(±1) is formed by its absolutely continuous part
and its discrete part, and

sp(Pb(−1)) = spac(Pb(−1)) = spac(Pb(1)) =
[

b2 +
1
4
,+∞

[

sp(Pb(1)) = spac(Pb(1)) , if b ≤ 1
2

spd(Pb(1)) =
{

(2j + 1)b− j(j + 1) ; j ∈ N , j < b− 1
2

}

if b >
1
2
.

Corollary 3.13. The spectrum of −∆Ab is essential: sp(−∆Ab) = spes(−∆Ab). Its
absolutely continuous part is given by spac(−∆Ab) =

[
b2 + 1

4 ,+∞
[
. The remaining

part of its spectrum is empty if 0 ≤ b ≤ 1/2, otherwise it is formed by a finite
number of eigenvalues of infinite multiplicity given by

spp(−∆Ab) =
{

(2j + 1)b− j(j + 1) ; j ∈ N , j < b− 1
2

}

,
(

if
1
2
< b

)

.
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3.3.3. Non-Weyl-type asymptotics (high energy). Let us assume that

Aj(x, y) ∈ C2(H; R) , ∀ j . (3.12)

It is well known that H1(A) defined by (3.7) is then essentially self-adjoint on
L2(H), see for example [54]. We assume moreover the following magnetic bottles-
type assumptions.
• b(x, y) → +∞ as d(x, y) → +∞ , (3.13)

(d(x, y) denotes the hyperbolic distance from (x, y) to the point (0, 1)).
• ∃ C0 > 0 such that, for any vector field X on H,

|Xb̃| ≤ C0(|b̃|+ 1)
√

g(X,X) ; (3.14)

Theorem 3.14. Under the assumptions (3.12), (3.13) and (3.14)
1) the operator H1(A) has a compact resolvent.
2) for any δ ∈ ] 13 ,

2
5 [, there exists a constant C > 0 such that

1
2π

∫

H

(

1− C

(b(m) + 1)(2−5δ)/2

)

b(m)
+∞∑

k=0

[

λ(1−Cλ−3δ+1)− 1
4
−(2k+1)b(m)

]0

+

dv

≤ N(λ,H1(A)) ≤ (3.15)

1
2π

∫

H

(

1+
C

(b(m) + 1)(2−5δ)/2

)

b(m)
+∞∑

k=0

[

λ(1+Cλ−3δ+1)− 1
4
−(2k+1)b(m)

]0

+

dv

Remark 3.15. Comparing this result with the one obtained in [6] and in particular
with the formula (3.6), it turns out that they differ only by the additional term
− 1

4 , which comes from the geometry of the problem. This term becomes really
significant in the following corollary:

Corollary 3.16. Under the assumptions of Theorem 3.14 and if the function

ω(µ) =
∫

H

[µ− b(m)]0+dv

verifies

∃ C1 > 0 s.t. ∀ µ > C1 , ∀ τ ∈ ]0, 1[ , ω ((1+τ) µ)−ω(µ) ≤ C1 τ ω(µ) , (3.16)

then

N(λ;H1(A)) ∼ 1
2π

∫

H

b(m)
∑

k∈N

[

λ− 1
4
− (2k + 1)b(m)

]0

+
dv . (3.17)

The assumption (3.16) is satisfied for example when ω(λ) ∼ αλk lnj(λ) when
λ→ +∞, with k > 0, or k = 0 and j > 0.

For example this allows us to consider magnetic fields of the type

b(x, y) =
(
x

y

)2j

+ g(y),

with j ∈ N
� and g(y) = p1(y) + p2(1/y), where p1(s) and p2(s) are, for large s,

polynomial functions of order ≥ 1.
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The function ω(λ) indeed verifies in that case ω(λ) ∼ αλ
1
2j ln(λ) when

λ→ +∞. and

N(λ;H1(A)) ∼ C

2π
λ1+1/2j ln(λ) .

In next section we give an outline of the proof of theorem 3.14, by describing
the techniques specific to the hyperbolic context: definition of a diffeomorphism
from R

2 to H, control of the magnetic field by a constant one in a suitable rectangle,
partition of R

2 into such appropriate rectangles, so that we can apply the min-max
variational method.

3.3.4. Outline of the proof.

A diffeomorphism from R
2 to H. Let us consider the diffeomorphism

φ : R
2 → H

(x, y) = φ(x, t) := (x, et) which induces a unitary operator

Û : L2(H; dv) → L2(R2; dxdt)

(Ûf)(x, t) = e−t/2f(x, et) for any f ∈ L2(H).
The quadratic form associated to H1(A) is given by (∀u ∈ L2(H))

q(u) =
∫

H

[|y(Dx −A1)u|2 + |y(Dy −A2)u|2
] dxdy

y2
.

Writing Ãi(x, t) = Ai(x, et), i = 1, 2, and w = Ûu, we get after computation

q(u) = q̂Ã(w) =
∫

R2

[

|et(Dx − Ã1)w|2 + |(e−t/2Dte
t/2 − etÃ2)w|2

]

dxdt .

The operator associated to q̂Ã is Ĥ(Ã) = ÛH1(A)Û−1.
This gives Ĥ(Ã)e2t(Dx − Ã1)2 + (Dt − etÃ2)2 + 1/4.
The additional term 1/4 appears here naturally as a by-product of the trans-

formation which allows us to deal with a problem in R
2 instead of the initial

problem in H.
Gauge. We want to work with a gauge such that A2 = 0. Since

b̃ = y2 (∂xA2 − ∂yA1)

one can take

A1(x, y) = −
∫ y

1

b̃(x, s)
s2

ds

The associated quadratic form is

q̂Ã(w) =
∫

R2

[

|et(Dx − Ã1)w|2 + |Dtw|2 + 1/4|w|2
]

dxdt .

Localization. According to the assumption (3.14) we can control the magnetic field
by a constant one on an appropriate rectangle:
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We set

Ω(x0, y0, a, ε0) := {(x, y) / |x− x0| ≤ aε0 y0, |y − y0| ≤ ε0y0}
(a > 0 and ε0 > 0 small enough).

Lemma 3.17. There exists C1 > 0 such that, for any (x0, y0) ∈ H with
b(x0, y0) > 1, the following holds

1
C1

b(x0, y0) ≤ b(x, y) ≤ C1 b(x0, y0) ∀ (x, y) ∈ Ω(x0, y0, a, ε0).

Partition of R
2. For any α ∈ Z

2, let us denote by K(α) the rectangle

K(α) =
]

−e
α2

2
+ eα2α1 , e

α2α1 +
eα2

2

[

×
]

−1
2

+ α2 , α2 +
1
2

[

. (3.18)

Therefore R
2 = ∪αK(α) andK(α)∩K(β) = ∅ for any α �= β. According to Lemma

3.17, it is possible to subdivide each K(α), (if necessary), into M(α) rectangles:

K(α) = ∪M(α)
j=1 Kα,j (3.19)

Kα,j =
]

− εα,je
tα,j

2
+ xα,j , xα,j +

εα,je
tα,j

2

[

×
]

− εα,j
2

+ tα,j , tα,j +
εα,j
2

[

,

with
1

a0(1 + bδ0(xα,j , etα,j ) )
≤ εα,j ≤ a0

(1 + bδ0(xα,j , etα,j ) )
, (3.20)

and such that Kα,k ∩Kα,j = ∅ if k �= j.

This lemma is the hyperbolic version of Lemma 3.11 for the Euclidean case.
The partition R

2 = ∪αK(α) and the partition on H obtained after applying
the diffeomorphism φ are represented on Figures 2 and 3.

-2

0 4

-1

-2

1

2
0

-4

Figure 2. Partition of R
2 by the rectangles K(α).
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4

3

-4

2

0

4

1

20-2

Figure 3. Partition of H by the cubes φ(K(α)).

3.4. Geometrically finite hyperbolic surfaces

3.4.1. Introduction. Concerning magnetic bottles in hyperbolic geometry the min-
max method can be generalized to the geometrically finite hyperbolic surfaces, in
the case when these manifolds are of infinite volume. Such manifolds contain cusps
and funnels [43].

Actually, when the hyperbolic manifolds are compact the result is given by [7]
in the more general context of compact Riemannian manifolds, where it is shown
that the Weyl asymptotics hold. For the case of non compact manifolds of finite
volume we refer to [20], where the authors study examples for which the Weyl
formula is still valid:

N(λ) ∼+∞
λ

4π
|M|.

It seems to be the standard result in this context.
In the case of the Poincaré half-plane, M = H, we have seen previously that

the Weyl formula does not hold:

lim
λ→+∞

λ−1N(λ) = +∞.

For example when b(z) = a2
0(x/y)

2m0 + a2
1y
m1 + a2

2/y
m2 , aj > 0 and

mj ∈ N
�, then

N(λ) ∼+∞ λ1+1/(2m0) ln(λ)α(m0,m1,m2) .

It turns out [43] that it is still the case when M has an infinite area and is geo-
metrically finite, and if we adapt the preceding example to this new situation, i.e.,
m0 is absent, m1 appears in the cusps and m2 in the funnels, we get

N(λ) ∼+∞ λ1+1/m2α(m2) .

The interesting point is that the cusps do not contribute to the leading part
of N(λ).

Let us explain the result, and first what is such a surface.
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3.4.2. Definition. If (M, g) is a smooth connected Riemannian manifold of di-
mension two, it is called a geometrically finite hyperbolic surface of infinite area if
it can be decomposed in the following way:

M =





J1⋃

j=0

Mj




⋃

(
J2⋃

k=1

Fk

)

; (3.21)

where the Mj and the Fk are open sets of M, such that the closure of M0 is
compact, and if J1 > 0, the other Mj are cuspidal ends of M, and the Fk are
funnel ends of M.

This means that, for any j, 1 ≤ j ≤ J1, there exist strictly positive constants
aj and Lj such that Mj is isometric to S×]a2

j ,+∞[, equipped with the metric

ds2j = y−2( L2
j dθ

2 + dy2 ) . (3.22)

(S = S
1 is the unit circle.)

In the same way, for any k, 1 ≤ k ≤ J2, there exist strictly positive constants
αk and τk such that Fk is isometric to S×]α2

k,+∞[, equipped with the metric

ds2k = τ2
k cosh2(t)dθ2 + dt2 . (3.23)

Moreover, for any two integers j, k > 0, we have

Mj ∩ Fk = ∅ and Mj ∩Mk = Fj ∩ Fk = ∅ if j �= k.

3.4.3. Assumptions on the magnetic field. Let us choose some z0 ∈ M0 and let
us define

d : M → R+ ; d(z) = dg(z, z0) ; (3.24)

dg( . , . ) denotes the distance with respect to the metric g.
We assume the smooth one-form A to be given such that the magnetic field

b̃ satisfies

lim
d(z)→∞

b(z) = +∞ . (3.25)

If J1 > 0, there exists a constant C1 > 0 such

|Xb̃(z)| ≤ C1(b(z) + 1)ed(z)|X |g ; (3.26)

∀z ∈Mj, ∀X ∈ TzM and ∀j = 1, . . . , J1.
There exists a constant C2 > 0 such

|Xb̃(z)| ≤ C2(b(z) + 1)|X |g ; (3.27)

∀z ∈ Fk, ∀X ∈ TzM and ∀k = 1, . . . , J2.
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3.4.4. Asymptotics for large energies.

Theorem 3.18. Under the above assumptions, −∆A has a compact resolvent and
for any δ ∈ ] 1

3 ,
2
5

[
, there exists a constant C > 0 such that

1
2π

∫

M

(

1− C

(b(m) + 1)(2−5δ)/2

)

N (λ(1 − Cλ−3δ+1)− 1
4
,b(m)) dm

≤ N(λ,−∆A) ≤ (3.28)
1
2π

∫

M

(

1 +
C

(b(m) + 1)(2−5δ)/2

)

N (λ(1 + Cλ−3δ+1)− 1
4
,b(m)) dm

where

N (µ,b(m)) = b(m)
+∞∑

k=0

[µ− (2k + 1)b(m)]0+ if b(m) > 0 ,

and
N (µ,b(m)) = µ/2 if b(m) = 0 .

[ρ]0+ is the Heaviside function:

[ρ]0+ =
{

1 , if ρ > 0
0 , if ρ ≤ 0 .

The Theorem remains true if we replace
∫

M

by
J2∑

k=1

∫

Fk

, due to the fact that

the other parts are bounded by Cλ.

Corollary 3.19. Under the assumptions of Theorem 3.18 and if the function

ω(µ) =
∫

M

[µ− b(m)]0+dm

satisfies, ∃ C1 > 0 s.t. ∀ µ > C1 , ∀ τ ∈ ]0, 1[,

ω ((1 + τ) µ)− ω(µ) ≤ C1 τ ω(µ) , (3.29)

then

N(λ;−∆A) ∼ 1
2π

∫

M

N
(

λ− 1
4
,b(m)

)

dm . (3.30)

For example this allows us to consider magnetic fields of the following type:

on Fk, b(θ, t) = pk(1/ cosh(t)),

and on Mj , j > 0, b(θ, y) = qj(y) ,

where the pk(s) and the qj(s) are, for large s, polynomial functions of order ≥ 1.
In this case, if d is the largest order of the pk(s), then

N(λ;−∆A) ∼ αλ1+1/d ,

for some constant α > 0, depending only on the funnels Fk where the order of
pk(s) is d.
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4. A Neumann problem with magnetic field

4.1. A problem arising from super-conductivity

In super-conductivity theory the following question has to be answered: can we
minimize, for a given open set Ω of R

d, and a given potential A ∈ H1(Ω; Rd), the
Ginzburg-Landau functional:

G(ψ, Ã) =
∫

Ω

|(∇− iκÃ)ψ|2 +
κ2

2
(|ψ|2 − 1)2 dx · · ·

· · ·+ κ2

∫

Ω

|−→rotÃ− σ−→rotA|2 dx

on the set (ψ, Ã) ∈ H1(Ω; C)×H1(Ω; Rd). κ and σ denote parameters related to
the intensity of the magnetic field, and the dimension d considered is either 2 or
3. (0, σA) turns out to be a trivial critical point of G(ψ, Ã); in order to study the
Hessian matrix of the functional at this point we are then reduced to investigate the
spectral properties, (modulo the parameters κ and σ) of the magnetic Laplacian
Hh = ((h∇− iA))2, with the Neumann-type boundary conditions:

ν(x) · (h∇− iA)u(x) = 0 ∀x ∈ δΩ .

A lot has been done to understand the properties of this operator. In partic-
ular it is known from the works by K. Lu and X.B. Pan [34]–[36] and by B. Helffer
and A. Morame [22]–[24] that unlike the Dirichlet case, the lower bound of its
spectrum can be less than hb = h infΩ ‖B‖ if B = dA denotes the magnetic field.
This comes from the following fundamental fact, which makes the basic difference
between Dirichlet and Neumann problems:

If we consider the Neumann operator on L2(R+) defined by

Qx = D2
t + (t− x)2,

and if we denote by µ(x) its first eigenvalue, then

inf
x∈R

µ(x) = µ(x0) = Θ0 < 1 .

If we consider the Dirichlet operator the corresponding quantity is equal to 1.
As a consequence, in the case where b ≥ Θ0 b

′, (with b′ = infδΩ ‖B‖), we get
that the lower bound of the spectrum for the Neumann problem is hΘ0 b

′.
Furthermore, for a constant non zero B, any normalized fundamental eigen-

function is localized exponentially (for h going to 0) in the neighbourhood of points
of the boundary with maximal curvature (see [22] for dimension 2 and [23] for di-
mension 3). Superconductivity comes precisely from this crucial feature. We should
also mention the papers by B. Helffer and S. Fournais, in particular [16] for as-
ymptotic estimates of low eigenvalues in dimension 2, and [17] about the “critical
fields”, which are responsible for the transitions from superconducting states to
normal states. This list of papers on the subject is far from being exhaustive. . .
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4.2. The spectrum in the case of the half-space, for a constant field and for h = 1
Let us consider, for (t, x, y) in Ω = R+ × R

2, the Neumann realization of the
magnetic Laplacian

H = (Dt −A1)2 + (Dx −A2)2 + (Dy −A3)2

where Ds = −i ( ∂∂s
)
.

Let us denote by b the norm of B, and by θ the angle between B = dA, seen
as a three-dimensional vector field, and the boundary ∂Ω.

This implies that a suitable choice for the gauge A is the 1-form

A = b(x sin θ − t cos θ)dy

so that the operator H can be written as

Hb
θ = D2

t +D2
x + (Dy − b(x sin θ − t cos θ))2 .

By homogeneity we get:

σ(Hb
θ) = bσ(Hθ)

with
Hθ = D2

t +D2
x + (Dy − (x sin θ − t cos θ))2 .

• θ = 0. The spectrum of the Neumann operator H0 is absolutely continuous.
More precisely one has:

σ(H0) = σac(H0) = [bΘ0,+∞[ . (4.1)

• θ = π
2
. The spectrum of Hπ

2
is still absolutely continuous but

σ(Hπ
2
) = σac[b,+∞[ . (4.2)

• θ ∈ ]
0, π

2

[
. The spectrum of Hθ is no longer absolutely continuous as proved

by K. Lu and X-B. Pan [35], (see also [23]).

We prove in [41] the following:

Theorem 4.1. If θ ∈ ]0, π2
[
,

σ(Hb
θ) ∩ ]−∞, b[ = {bν1(θ), bν2(θ), . . . , bνj(θ), bνj+1(θ), . . .} . (4.3)

(Each bνj(θ) is an eigenvalue of infinite multiplicity of Hθ).

To prove this result we first observe that σ(Hθ) =
⋃

τ∈R

σ(Hθ,τ ), where Hθ,τ denotes

the Neumann realization in the half-plane F = R+ × R of the operator

Hθ,τD
2
t +D2

x + (τ − (x sin θ − t cos θ))2.

Furthermore using for any τ the change of coordinates x→ x− τ

b sin θ
, we see that

σ(Hθ,τ ) = σ(Pθ), with

Pθ = D2
t +D2

x + (t cos θ − x sin θ)2 ,
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and thus the spectrum of Hθ is essential and given by:

σ(Hθ) = σess(Hθ) = σ(Pθ). (4.4)

In [35], (see also [23]), it was proved that

inf σ(Pθ) = ν(θ) < 1 = inf σess(Pθ), (4.5)

so there exists a countable set of eigenvalues (νj(θ))j∈I , (I ⊂ N), contained in
[ν(θ), 1[.

4.3. Non-Weyl-type asymptotics when the field is nearly tangent to the boundary

For any d ≤ 1 let us denote by N(d, Pθ) the number of eigenvalues of Pθ in
]−∞, d[:

N(d, Pθ) = Tr(E]−∞,d[(Pθ)) = �{j; νj(θ) < d} . (4.6)

We prove the following results [41]:

Theorem 4.2. For any θ ∈ ]
0, π2 [, Pθ admits a finite number of eigenvalues in

]−∞, 1
[
, and there exists a constant C ≥ 1 such that

N(1, Pθ) ≤ C

sin θ
. (4.7)

It can be noticed that the upper bound of N(1, Pθ) goes to infinity when the
angle θ between the magnetic field and the boundary tends to zero. Therefore we

can consider θ (or more precisely
sin θ√
cos θ

) as a semi-classical parameter, and using

once more min-max techniques we give a non-Weyl-type asymptotic estimate of
N(d, Pθ) for d < 1 [41]:

Theorem 4.3. If d ∈]Θ0, 1
[
, there exists a constant Cd > 0 such that

∣
∣
∣
∣N(d, Pθ) − 1

2π sin θ

∫

R

[
d− µ(x)

]1/2

+
dx

∣
∣
∣
∣ ≤ Cd . (4.8)

In this expression clearly appears an “effective” potential, as in the previous case
of degenerate potentials. This is not so surprising, since the operator we finally
study is

Pθ = D2
t +D2

x + (t cos θ − x sin θ)2 ,

which turns out to be a Schrödinger operator with the degenerate potential
Vθ(x, t) = (t cos θ − x sin θ)2. The “effective” potential here is the function of one
variable µ(x) previously introduced, which is responsible for the superconductivity.
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5. A problem of magnetic bottle in classical mechanics

5.1. The Lorentz equation

The motion in R
3 of a particle of mass m and charge e in a magnetic field �B can

be described by Lorentz equation:

mẍ = eẋ ∧ �B .

To this equation corresponds the following Lagrangian (for m = e = 1):

L(x, ẋ) =
1
2
ẋ2 + ẋ · A(x) , (5.1)

where A denotes a magnetic potential:
−→
rotA = �B. To obtain the associated Hamil-

tonian, we compute the conjugate momenta

ξj =
∂L
∂ẋj

(5.2)

which writes ξ = ẋ+A(x) so we get:

H(x, ξ) = ξẋ− L(x, ẋ) =
1
2
(ξ −A(x))2 . (5.3)

When �B is a constant field (in time and position) the Hamiltonian is integrable,
the trajectories are helicoidal and the axis of the motion is the direction of the field.
There are three numbers conserved during the motion (the integrals of motion)
which are the energy (e.g., the Hamiltonian itself), the Larmor radius ρ = v⊥

B

and the magnetic moment I = v2⊥
2B . We denote respectively by v⊥ the orthogonal

component (to field lines) of the velocity and by B the norm of �B.

Remark 5.1. Applying Weyl quantification to H(x, ξ) we obtain the Schrödinger
operator defined on L2(R3) by

Hh(A) =
3∑

j=1

(
h

i

∂

∂xj
−A(xj))2 .

In the case when �B is a constant vector field the spectrum of the operator Hh(A)
is composed of eigenvalues of infinite multiplicity, which are the Landau levels
λj(h) = h (2j + 1) B.

5.2. Adiabatic invariants

Let us consider a magnetic field slowly varying in position so that it is almost
constant throughout a whole rotation of the particle: the motion is approximatively
a circle and the center of this circle (the guiding center) is slowly moving along
the direction of the field, with a very small rotation period.

Under the previous conditions the Hamiltonian slowly depends on the posi-
tion variables, except for one (denoted by x0); it can be written as

H = H(x, εx0, ξ, ξ0),

where ε is a small parameter.
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Let us assume that, for the Hamiltonian H0(x, ξ) obtained by fixing the
value of εx0 and ξ0, there exist closed trajectories in phase space (with a non
vanishing frequency). Then one can introduce the action-angle variables (I, φ).
The action variable I((x, εx0, ξ, ξ0) corresponds to the magnetic moment; it is not
an integral of motion as it is in the constant case, but it turns out from the method
of moyennisation [1] that it is an adiabatic invariant, which means more precisely:

∃c > 0 t.q. |I((x(t), εx0(t), ξ(t), ξ0(t))− I((x(0), εx0(0), ξ(0), ξ0(0))| < c ε

for 0 ≤ t ≤ 1/ε.
Performing symplectic transformations one can get the invariance of I to all

orders ([32], [46]). Furthermore, if the magnetic field is a convex function along the
field lines (seen as a function of the arc length s) there exists another invariant,

which is longitudinal and given by J =
∮ v2

‖
B
ds. The trajectory is actually reflected

at the points s1, s2 verifying IB(si) = H, and the integral is computed on a whole
oscillation [48].

M. Gardner [18] proves the invariance of this quantity to all orders.
V.I. Arnold [2] considers the following question: is it possible to get the

particles not only adiabatically but really confined? Considering a magnetic field
with symmetry axis he wrote the corresponding Hamiltonian, with two degrees of
freedom, as a perturbation of an integrable one, for which the motion in phase
space is on a torus.

Under a non-degeneracy condition (the ratio of frequencies varies in time) he
applies KAM theorem to get that the invariant tori are not all destroyed under
the perturbation and he concludes by a dimension argument that the action I is
a perpetually adiabatic invariant.

The difficult point here is to check the non-degeneracy condition, according to
the fact that the ratio of frequencies is of small order. Arnold checks that condition
only in the special case when the Hamiltonian writes H = 1

2 (ξ21 + ξ20) + U(x1, x0)
with: U(x1, x0) = 1

2x
2
1(1 + ε2x2

0).
Another method consists in applying a theorem of J. Moser [44] which gives

the existence of periodic solutions for systems next to an integrable one. M. Braun
[5] proves by this way the existence of a region where the particles submitted to
the earth magnetic field are indefinitely retained.

In [58] we apply Moser’s theorem in the case of a magnetic field which is
linear and symmetric in position

�B(x, y, z) = (x, y,−2z) , (5.4)

and we get an open set of initial conditions for which the motion remains bounded.
This field is actually of the“magnetic bottle” type, since its norm tends to

infinity as position tends to infinity. As already mentioned, the operator obtained
from the Hamiltonian by Weyl’s quantification has a compact resolvent. The result
of quantum mechanics seems to be stronger compared with the classical one. This
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is a well-known fact that it is harder to get informations on the classical motion
than on the spectrum of the quantum operator . . .

5.3. Bounded trajectories

5.3.1. The Hamiltonian in cylindrical coordinates. According to the symmetry of
the magnetic field (5.4), we introduce cylindrical coordinates. Considering B as a
2-form we have

B = d(−r2z) ∧ dθ,
so we can choose the following gauge

A = (Ar, Aθ, Az) = (0,−rz, 0).

The field lines are characterized by θ = constant and r2z =constant.
The conjugate moments, (defined by (5.2)) have the following expression

(ξr , ξθ, ξz) = (ṙ, r2(θ̇ − z), ż) ,
so we get, using formula (5.3)

H(r, θ, z, ξr, ξθ, ξz) =
1
2
(ξ2r + ξ2z) +

1
2r2

(ξθ + r2z)2 . (5.5)

Writing the second equation of Hamilton

ξ̇θ = −∂H
∂θ

(5.6)

one gets the existence of an integral of motion, which is ξθ.
Dimension has been reduced according to the symmetry of the problem. We

have to study a Hamiltonian with 2 degrees of freedom which is defined as follows:

HM (r, z, ξr, ξz) =
1
2
(ξ2r + ξ2z ) +

(M + r2z)2

2r2
. (5.7)

5.3.2. The reduced Hamiltonian and the magnetic field lines. The value of M = ξθ
is fixed by the initial conditions, so is the energy E (E is the value taken by the
Hamiltonian, and it is a constant of motion too). M may be negative. let us
consider the magnetic field line (LM ) defined by r2z = −M . There exists a unique
point ΩM such that the norm B at that point is minimal on (LM ). Thus, to any
point P (r, z) we associate new coordinates (u, v) as follows:
• v is the distance from P (r, z) to the magnetic field line (LM )
• u is the arc length between the projection of P on (LM ) to ΩM .

We denote by k(u) the curvature of (LM ) at the point (u, 0) and we set:

H0(u, v, ξu, ξv) =
1
2

(
ξ2u

[1 + vk(u)]2
+ ξ2v +B2(u, 0)v2

)

. (5.8)

According to the new coordinates the Hamiltonian HM (u, v, ξu, ξv) obtained from
the expression (5.7) can be reexpressed as a perturbation of H0(u, v, ξu, ξv) in the
following way:
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Proposition 5.2. For any initial conditions satisfying

E < 2|M |4/3 and E <
ε2

16
|M |2/3 (CI)

• the distance v from the trajectory to the magnetic field line (LM ) is less than ε,
• there exists a constant C (depending only on E and M) such that

|HM (u, v, ξu, ξv)−H0(u, v, ξu, ξv)| < Cε3.

Remarks

1) The first condition is a consequence of the second one for ε small enough.
2) The proposition comes from the fact that according to the inequality

(M+r2z)2

2r2 < E the motion has to remain inside a strip B around (LM ) (see
Figure 4).

-1

x

65432

y

1

3

0

2

1

0

Figure 4. The strip B and the magnetic field line (LM ).

3) Since v is small the original Hamiltonian can be seen indeed as a perturbation
of the Hamiltonian 1

2

(
ξ2u + ξ2v +B2(u, 0)v2

)
which corresponds quantically to

an operator with a degenerate potential, precisely of the form described in
section 2.2.

4) The Hamiltonian Hu = 1
2

(
ξ2v +B2(u, 0)v2

)
represents for a fixed value of u

the energy of a harmonic oscillator. The point (v, ξv) moves along the ellipse
Hu = constant for some constant depending on u and the corresponding
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action, which is (up to a factor 2π) the area enclosed by the ellipse, has the
following expression

Iu =
ξ2v +B2(u, 0)v2

2 B(u, 0)
.

5) Conditions (CI) entail the following inequality

B(u, 0)Iu <
ε2

16
|M |2/3 + Cε3 .

As a consequence, if Iu is bounded from below by a constant independent of
time, we get an upper bound for B(u, 0) and hence for the trajectory itself
since B(u, 0) is an increasing function of u.

5.3.3. Action variables. We set
u = εu1, v = εv1, ξu = ε ξu1 , ξv = ε ξv1 , HM = ε2 KM , E = ε2E′.
We perform some symplectic transformations (in the language of mechanics,

we perform some changes of canonical variables) in order to get explicit action-
angle coordinates (I, J, φ, ψ) such that

Theorem 5.3.

KM (u1, v1, ξu1 , ξv1) = KM (I, J, φ, ψ) = E′ +B(εu1, 0) [I + c(εJ) +O(ε)] , (5.9)

where the second derivative of the function c(εJ) does not vanish on an interval
of the type ]A,+∞[.

The action variable I is, up to a multiplicative factor ε−2, the variable Iu we
defined previously. For the points of the motion situated on the magnetic field
line, we recognize the magnetic moment I = v2⊥

2B mentioned in the introduction.
The second action variable is a function J(c), which represents the area enclosed
by the curve Cc defined as follows: 1

2 ξ2u1
− c B(εu1, 0) = E′. If we denote by

BM the minimal value of B on (LM ), Cc is a closed curve for c ∈] − E′
BM

, 0[ (see
Figures 5, 6).

We have

J(c) =
∮

Cc

ξu1du1 = ε−1

∫ umax

umin

√

2[E′ + cB(u, 0)]du .

To obtain (5.9) it remains to check that (εJ)(c) is an increasing function on ] −
E′
BM

, 0[, and that its derivative is also increasing on an interval of the type ]a, 0[.
This is due to the asymptotic behaviour of B(u) at infinity. On figure 6 we set
E′ = BM = 1; it can be seen that the area enclosed by the curve Cc is increasing
as c grows from −0, 9 to −0, 1.

The theorem (5.3) entails that c′′(εJ) vanishes only on a finite number of
values J1, . . . , Jp. It is possible then to apply Moser’s theorem on each annulus
of the type A(εJk, εJk+1) and on each annulus exterior to the circles J = J1 and
J = Jp.
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Figure 5. The function B(u).
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Figure 6. Curves Cc.



Eigenvalue Asymptotics for Magnetic Fields . . . 163

1
0,5

16

1,5 0

12

8

1 -0,5

z(t)

4

y(t)0,5

0

-1x(t) 0 -1,5-0,5

Figure 7. A trajectory.

On such an annulus the action J can be expressed as a function of the
new time φ. One shows that the diffeomorphism of the annulus (J(0), ψ(0)) →
(J(2π), ψ(2π)) verifies Moser’s condition (see [44], [45]). In fact this condition ex-
presses the fact that c′′(εJ) does not vanish. Let us notice that Moser’s condition
can be shown to be equivalent to the weak non-degeneracy condition introduced
by Arnold in [2]. The interesting fact is that it is possible to check it explicitly in
this setup.

Therefore we obtain the existence of an infinite number of curves which are
invariant by this diffeomorphism. The curves generate invariant tori ; they foliate
the surface of energy H = E so that any trajectory starting between two tori
remains between those tori. Consequently the quantity Iu is a perpetual adiabatic
invariant.

According to Remark 5 of the previous section we get then the following
result:

Theorem 5.4. Let M be fixed. There exist ε0 > 0 and K > 0 such that the trajectory
of the solution is bounded, provided the following conditions are fulfilled

(CI) E <
ε2

16
|M |2/3.

(CI)′ Iu(0) > 2Kε3.

for an ε < ε0.

The conditions (CI) and (CI)′ are compatible. They express the fact that
the velocities have to be small compared with positions whereas the component of
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Figure 8. The same trajectory, continued.

the velocity normal to the magnetic field line has to be not too small compared
with the total energy. In particular this excludes the case z(0) = ż(0) = θ̇(0) = 0,
which corresponds to a particle starting on the magnetic field line (L0) (defined
by θ = θ(0), z = 0) with a velocity parallel to this line. Obviously in that case the
motion is not bounded since the particle rolls up along the line (L0), which can be
seen as the bottom of the well for the degenerate potential V (u, v) = B(u, 0) v2.

Figures 7 and 8 represent the motion of a particle computed by numerical
simulation. The initial conditions are M0(1, 1, 0) and V0(0, 15;−0, 25; 0, 25). When
the particle goes away from the origin, the strip B in which it is contained (con-
sidering a vertical section) clearly appears. The numerical simulation seems to
suggest that the motion downwards is bounded: the radius of the helix decreases
but the motion is stabilized and reflected and the particle is returning towards the
origin to an other helicoidal-like motion.

6. Open problems and conclusion

• The last work presented gives of course only a partial answer. The symmetry
argument is crucial, because the invariant tori generated by the unperturbed
Hamiltonian prevent the particle to go away. In the non symmetric case the
phase space has dimension 6, the energy surface has dimension 5 and the
tori do not play a limitative role any longer. It would be of real interest
to investigate if there exists a drift exponentially small for that situation,
as suggested by the works of Nekhoroshev and Georgilli [47], [19]. There is a
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paper by G. Benettin and P. Sempio [4] which goes in that direction, requiring
three time scales for such a motion.

• Concerning magnetic bottles in hyperbolic geometry, we gave a generaliza-
tion to the geometrically finite hyperbolic surfaces, in the case when these
manifolds are of infinite volume.

Another generalization of the result would be to investigate the three-
dimensional case. What properties should we require on the magnetic field
to get a non-Weyl-type estimate in the hyperbolic half-space?

Finally, from a more geometrical point of view it would be nice to un-
derstand what term is replacing the additional term 1/4, which is a feature
of the hyperbolic geometry, when another metric is considered.

• Another natural problem about magnetic bottles has been considered in [10].
Let us consider a particle in a domain Ω in R

d (d ≥ 2) in the presence
of a magnetic field B. The topological boundary ∂Ω of Ω is assumed to be
compact. At the classical level, if the strength of the field tends to infinity as x
approaches the boundary ∂Ω, the charged particle is expected to be confined
and never visit the boundary: the Hamiltonian dynamics is complete. At the
quantum level the fact that the particle never feels the boundary amounts
to saying that the magnetic field completely determines the motion, so there
is no need for boundary conditions. At the mathematical level, the problem
is to find conditions on the behavior of B(x) as x tends to ∂Ω which ensure
that the magnetic operator HA is essentially self-adjoint on C∞

o (Ω). These
conditions will not depend on the gauge A, but only on the field B. This
question may be of technological interest in the construction of tokamacs for
the nuclear fusion [57]. The ionized plasma which is heated is confined thanks
to magnetic fields.

The result is the following: under some continuity assumption on the
direction of B(x) at the boundary, for any ε > 0 and R > 0, there exists a
constant Cε,R ∈ R such that, ∀u ∈ C∞

o (Ω), the quadratic form hA satisfies
the quite optimal bound

hA(u) ≥ (1− ε)
∫

Ω∩{x| |x|≤R}
|B|sp |u|2 |dx| − Cε,R ‖u‖2 . (6.1)

Here |B(x)|sp is a suitable norm on the space of bi-linear antisymmetric
forms on R

d, called the spectral norm. This implies that HA is essentially
self-adjoint if |B(x)|sp ≥ (1 + η)D(x)−2 where η > 0 and D is the distance
to the boundary of Ω.
Examples of such magnetic bottles are given in the following cases:

– The domain Ω is a polytope
– The boundary is smooth and the Euler characteristic vanishes (toroidal

domain)
– The boundary is smooth and the Euler characteristic does not vanish

(non toroidal domain)
– Monopoles and dipoles in Ω = R

3 \ 0
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For any ε > 0 and when Ω is the unit disk, an example of a non essentially
self-adjoint operator HA is given with |B(x)|sp ∼ (

√
3/2− ε)D(x)−2 showing

that the previous bound is rather sharp.
The following questions seem to be quite interesting:

– What are the properties of a classical charged particle in a confining
magnetic box? Are almost all trajectories not hitting the boundary?

– What is the optimal constant C in the estimates |B(x)|sp ≥ CD(x)−2?
(We know that the optimal constant lies in the interval [

√
3/2, 1].)

• In conclusion, we tried in this paper to highlight the relationship between
magnetic bottles and degenerate potentials, as well in the classical mechanics
context as in the quantum mechanics one. The Weyl asymptotics have to be
revisited in both cases, and the classical Hamiltonian induced by a magnetic
bottle can be seen as a perturbation of the Hamiltonian derived from an
operator with a degenerate potential. It could be nice to go further in that
comparison, by trying to express the non-Weyl-type asymptotics in a unified
way.
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dimensionnelles. Prépublications de l’Institut Fourier 33 (1985).

[9] Y. Colin de Verdière Minorations de sommes de valeurs propres d’un domaine et
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