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Epigraph

Ego plus quam feci, facere non possum
Marcus Tillius Cicero
English, translation close to the original
More than I have done, I cannot do
or maybe it better sounds like this in standard English
I cannot do more than I have done






Foreword

Liquid crystals have found an important place in modern life. Just look around: we
see them in our clocks, computer displays, TV screens, telephones and calcula-
tors, car dashboards, photo-cameras, etc. Other applications include slide projec-
tion systems, spatial light modulators, temperature sensors and even liquid crystal
lasers. In all these technical innovations, which appeared over the life of only a
single generation, liquid crystals occupy a key position. This is because they
consume a barely perceptible amount of energy when they change their state
under external influences such as temperature, electric field, mechanical stress
or whatever. In addition, there are very important biological aspects of liquid
crystals.

The army of people working in the liquid crystal field continues to grow. The
first conferences held during the early part of the last century involved only tens of
participants; then, later, a few hundreds. More recently a wide river of principal
liquid crystal conferences has given rise to several subsidiary, but also quite broad
streams of meetings: Worldwide Conferences, European conferences, conferences
of National Liquid Crystal societies, separate conferences on chemistry (sometimes
only on chirality problems), optics, photonics and ferroelectricity of liquid crystals.
Each of such meetings attracts hundreds of participants, but of different profiles:
chemists, physicists, engineers for radio- and optoelectronics, biologists and phy-
sicians.

In recent years a group of several excellent top-level books have been published
on the physics of liquid crystals and many others, dealing with particular problems
related to physics of liquid crystals. Popular books on liquid crystals are very
scarce; only three of them are mentioned in the list presented in Chapter 1.
Evidently, there is a huge gap between the first group of books and the second.
The monographs have been written by theoreticians at a very high level using the
advanced mathematical apparatus of modern physics. The popular books are
written vividly without a single formula. If we consider the books as training
devices, the second group is designed for children’s school sports, the first for
Olympians. But what about the intermediate levels?

ix



X Foreword

This is the gap I would like to try to fill. The book proposed to bridge the gap has
been written by an experimentalist who, through all his life, has tried to understand
and explain to his students the complexity of liquid crystal physics using either
simple analogies or going back to the very first principles we have studied in middle
and high schools. In this book there is no sentence starting with “It is easy to
show. . ..”; either it has been shown, or explained by simple analogy. In fact I only
use mathematics at the level of engineering high school. In those cases when I need
something more (for example, the Fourier transform, tensor algebra or variation
calculus) I carefully explain all the details. In addition there are about 300 drawings
clarifying the text. The aim of the book is modest: it is to introduce to a reader the
most important ideas related to the structure and physical properties of liquid
crystals, including some of the theoretical aspects. The book is intended for a
wide spectrum of scientists, including experimental physicists, physical chemists,
engineers, and especially, for undergraduate students and Ph.D. students.

The book consists of three parts: Structure, Physical Properties, and Electro-
Optics of liquid crystals. Of course, I am aware that electro-optical properties may
be regarded as physical properties. However they are particularly relevant for
modern technology and correspond more to the author’s own interests. For these
reasons, electro-optic properties deserve a more honorable position. In the Part I,
after a brief introduction, there is a short first chapter devoted to symmetry, the
concept used throughout the book. In Chapter 2 we discuss the molecular aspects
and the fundamental issue for all liquid crystal phases (or mesophases), the problem
of the orientational distribution of molecules. In Chapter 3 there is a general
description of the most important liquid crystal phases, beginning with the nematic
phase and ending with chiral and achiral ferroelectric phases. After reading that
chapter, the reader who only wishes to make a slight acquaintance with liquid
crystals may quit or, at least, have a rest.

Chapter 4 will introduce the reader to the basic concepts of the X-ray analysis of
crystals and its applications to particular liquid crystal phases. It should be noted
that in the present literature this problem is not adequately dealt with anywhere, and
this chapter attempts to rectify this deficiency. Chapter 5 covers phase transitions,
one of the key problems of the liquid crystal physics, and which has been widely
discussed in other texts at very different levels. In this chapter I give only a detailed
explanation of the basic concepts of the phase transitions between most important
mesophases.

Chapter 6 heralds the second part of the book and introduces the reader to
anisotropy of the magnetic and electric properties of mesophases. Following in
Chapter 7 there is a focus on the anisotropy of transport properties, especially of
electrical conductivity. Without these two chapters (Chapters 6 and 7), it would be
impossible to discuss electro-optical properties in the third section of the book.
Further, Chapters 7 and 8 deal with the anisotropy of the properties of elasticity and
viscosity. Chapter 8 is more difficult than the others, and in order to present the
theoretical results as clearly as possible, the focus is on the experimental methods
for the determination of Leslie viscosity coefficients from the viscous stress tensor
of the nematic phase. Chapter 9 terminates the discussion of the anisotropy of
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physical properties. Here, the case in point is the interaction of liquid crystals,
mostly nematics, with a solid substrate. The problems of interfaces, especially,
surface polarization and anchoring conditions occupies the central place here and
the chapter is, in fact, a bridge between the second and third parts of the book.

Finally the three remaining Chapters 10—12 are devoted to optics and electro-
optics of, respectively, nematic, cholesteric and smectic (ferroelectric and antiferro-
electric) phases. In contrast to my earlier book published by Wiley in 1983, only the
most principal effects have been considered and the discussion of the underlying
principles is much more detailed.

Throughout the book the Gauss system of units is used, although all numerical
estimates of quantities have been made in both systems, Gauss and International
(SI). The referenced bibliography is rather small, because I deliberately included
only books, review articles and the seminal papers that paved the way for further
investigations. All these literature sources are presented with their titles.

This book was written over a long period of 10 years before and during my
teaching course (2003—-2009) of liquid crystal physics to Ph.D. students in Calabria
University (CU) (Italy). Among the students there were not only physicists but
chemists and engineers and even biologists. I have tried to make my course serious,
simple and interesting, but it is for others to decide if I have succeeded. I am
indebted to Prof. Roberto Bartolino for his invitation to work in Italy and to his
co-workers (Profs. G. Cipparrone, R. Barberi, C. Umeton, C. Versace, G. Strangi
and Drs. M. de Santo, A. Mazzulla, P. Pagliusi, F. Ciuchi, M. Giocondo and many
others) who were always friendly and attentive to any of my problems and from
whom I learned a lot of new things concerning both science and life. I would like to
express also many thanks to my coworkers from the Institute of Crystallography,
Russian Academy of Sciences Drs. M.I. Barnik, V.V. Lazarev, S.P. Palto, B.I.
Ostrovsky, N.M. Shtykov, B.A. Umansky, S.V. Yablonsky and S.G. Yudin with
whom I had the pleasure to work on liquid crystals for many years and have this
pleasure now. I am always thankful to my friends-colleagues Guram Chilaya,
Dietrich Demus, Elizabeth Dubois-Violette, George Durand, David Dunmur,
George Gray, Etienne Guyon, Wolfgang Haase, Wim de Jeu, Efim Kats, Mikhail
Osipov, Alexander Petrov, Sergei Pikin, Ludwig Pohl, Jacques Prost, and Katsumi
Yoshino for fruitful discussions of many topics related and more frequently not
related to liquid crystals but making our life in science more colorful.
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Chapter 1
Introductory Notes

First my middle school teachers and then my high school teachers told me that
substances could be in the form of gases, liquids and crystalline solids, between
which, on cooling, transitions could occur in the following sequence: gas —
liquid — crystal. And I believed them, although even then liquid crystals had
already been around for a respectable time. Today we tell students that if an
organic substance consists of rod-like molecules, it may, on cooling, change
from a gas to a normal (isotropic) liquid, then into a strange anisotropic liquid
(called a nematic liquid crystal), see Fig. 1.1.

Further cooling may cause the anisotropic liquid to change into a lamellar
structure, like a stack of paper, but with thin liquid sheets. Something that is a one-
dimensional crystal, but within the stack is a two-dimensional liquid. This is
the smectic A phase with molecules standing upright within the layer. Such layers
easily slide on each other. These three phases have been identified by Friedel [1]. On
further cooling the molecules may decide to tilt a little giving rise to the smectic C
phase, the tilt angle of which increases with decreasing temperature.

But this is not all. In other substances, further cooling the smectic A phase results
in the layers breaking up into hexagons but still sliding easily over each other; this is
the smectic By, phase. Only at even lower temperatures does the sample acquire a
normal crystalline structure. Thus instead of two phase transitions gas-liquid and
liquid—crystal we have found four or five transitions between different phases.

Other substances manifest other sequences. For instance, in organic compounds
having disc-like molecules we find a columnar phase built of liquid molecular
columns packed in a two-dimensional crystalline structure. It is a one-dimensional
liquid along the columns, and, at the same time, a two-dimensional crystal. An
ancient Greek temple with liquid columns would be a good model of the columnar
phase. Today we define liquid crystals as fluids with a certain long-range order in
their molecular arrangement (i.e. they are anisotropic liquids). Each mesophase is
a macroscopically uniform intermediate state between an isotropic liquid and a
crystalline solid. The history of liquid crystals began with the observation by
Reinitzer [2] of a strange phase intermediate between the liquid melt and the
crystalline phase upon heating and cooling cholesteryl benzoate. The samples of
this compound were sent by Reinitzer to O. Lehmann (Karlsruhe) who was an
expert in polarizing microscopy. In Fig. 1.2 we can see the nice photos of the two

L.M. Blinov, Structure and Properties of Liquid Crystals, 1
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Fig. 1.1 From left to right: molecular structure of isotropic, nematic, smectic A and smectic C
phases

F.Reinitzer O.Lehmann
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Fig. 1.2 Photos of Friedrich Reinitzer (/eff) and Otto Lehmann (right)

founding-fathers of the liquid crystal community taken from the book on liquid
crystal history written by Prof. Sonin [3].

It was Lehmann who, having investigated the gift of Reinitzer, understood that
he was dealing with a new state of matter. Lehmann also observed such intermedi-
ate phases in other substances and, at first, gave them the name fliefiende Kristalle
(crystals showing fluidity) [4]. Later he decided that the term fliissige Kristalle
(liquid crystals) corresponds better to the essence of mesophases and used it as a
title of the very first book on liquid crystals [5] (for more details about history of
liquid crystals see [6, 7]).

Today we know that the cholesterol esters consist of helical (chiral) molecules,
and on cooling from the isotropic phase they undergo a transition into another phase
called a cholesteric phase. This shows unique optical properties. In Fig. 1.3a we see
a photo-image of a 20 um thick polycrystalline layer of cholesteryl acetate viewed
in a polarizing microscope. Upon heating the substance melts, that is it becomes
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Fig. 1.3 Photo-image of a 20 pum thick polycrystalline layer of cholesteryl acetate placed between
two cover glasses in crystalline phase (a), cholesteric phase (b) and at the transition from the
cholesteric to isotropic phase (c)

fluid but optically anisotropic and shows bright diffraction colours, Fig. 1.3b. With
increasing temperature we observe a phase transition to the isotropic phase. The
latter is not birefringent, and therefore looks black between crossed polarizers.
In Fig. 1.3c we see black drops on the bright background of the superheated
cholesteric phase.

It should be noted that the appearance of the “cholesteric” phase of Reinitzer was
different from the appearance of the classical cholesteric phase shown in Fig. 1.3b.
The phase was opaque and had blue tint. It took a century to decipher its structure:
it appears to be a blue phase (see Chapter 4) with a structure of liquid lattice
consisting exclusively of defects of an initially ideal helical structure. This phase is
periodic and shows Bragg diffraction of light in all the three principal directions.
Therefore, Reinitzer has discovered the first generic photonic crystal! At present, a
study of photonic crystals, mostly artificial, is one of the hot topics in physics [8].

The timing of the discovery of liquid crystals was unlucky. It coincided with the
period when the beautiful foundations of modern physics were being laid, but the
stone with the mark “liquid crystals” was somehow lost in controversy. Only now,
through the enormous efforts of several generations of scientists, has the missing
stone of liquid crystals been inserted in its legitimate place in the foundation
of Science. And among those who put liquid crystals into the mainstream of physics
there were such giants as F. Leslie, A. Saupe and especially P.G. de Gennes
(The Nobel Prize in Physics, 1991).

The early book of de Gennes [9] and the subsequent one written together with
Prost [10] may be highly recommended to physicists. During the work on the
present book I used them frequently as well as the other excellent books on liquid
crystal physics [11-14]. The reader can also find a great deal of interesting
information on particular problems related to the physical properties of mesophases
in monographs [15-21]. For newcomers I would recommend a nice, philosophically
tinted book by P. Collings [22], a piece of art prepared by A.S. Sonin in Russian
[23], and a slightly more scientific book written for schoolboys by S.A. Pikin and
myself [24] (in Russian and Spanish). The literature for further reading is given at
the ends of relevant chapters.
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Part I
Structure of Liquid Crystals



Chapter 2
Symmetry

The concept of symmetry is equally important for understanding properties of
individual molecules, crystals and liquid crystals [1]. The symmetry is of special
importance in physics of liquid crystal because it allows us to distinguish numerous
liquid crystalline phases from each other. In fact, all properties of mesophases are
determined by their symmetry [2]. In the first section we consider the so-called
point group symmetry very often used for discussion of the most important liquid
crystalline phases. A brief discussion of the space group symmetry will be
presented in Section 2.2.

2.1 Point Group Symmetry

2.1.1 Symmetry Elements and Operations

There are only few symmetry elements, which generates a number of symmetry
operations [3, 4]. We may illustrate them by their applications to simple geometri-
cal objects.

(a) Proper rotation axis of nth-order, C,

Consider first rotational symmetry. Let us take an equilateral triangle and rotate it
clockwise about its center by 360°/3 = 120°, Fig. 2.1a. The new triangle would be
undistinguishable from the original one (but not identical). The symmetry element
we used is the proper rotation axis of order 3 (C;z-axis). The same triangle can be
rotated by a half of the full turn about one of the three other axes (medians going out
of each vertex), Fig. 2.1b. The corresponding symmetry element is a C, axis
(rotation angle 360°/2, n = 2). For a square, we can find one C4 axis and four C,
axes, for a hexagonal benzene molecule one Cq axis and six C, axes.

The symmetry element C; may generate two other symmetry operations. For
instance, applying C; rotation twice we again obtain an indistinguishable triangle.
Symbolically, C5* means rotation by 2 x 2m/3 = 240°. The same C; rotation
applied three times result in the exactly the same triangle. Therefore C5® is one of

L.M. Blinov, Structure and Properties of Liquid Crystals, 7
DOI 10.1007/978-90-481-8829-1_2, © Springer Science+Business Media B.V. 2011
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Fig. 2.1 Rotational a
symmetry. The illustration of
operations made by proper
rotation axes of third (a) and
second (b) order

Fig. 2.2 Bilateral symmetry.
Plane o, (vertical) is plane

of reflection that contains

the axis of the highest order
C; for the equilateral triangle.
After applying this element
points 1 and 3 exchange 1
their positions. Plane of

the triangle is reflection

plane o, (horizontal)
perpendicular to C;

the identity operations, C5> = E. Generally, the identity operation corresponds to
doing nothing with any figure and can also be obtained with C, or C, axes or with
any axis of order n: C22 = C44 =C,"=E.

(b) A plane of symmetry,

This element generates only one operation, a reflection in the plane as in a mirror,
Fig.2.2. Repeated twice this operation results in the initial structure that is 6* = E.
Taking again our triangle we can see that plane o interchanges points 1 and 3
leaving point 2 at the same place. Such symmetry is called bilateral symmetry.
There may be several symmetry planes and they designated either as o, (the plane
perpendicular to the axis C, with highest number n) or o, (plane containing the
C, axis). By convention, the C, axis with highest number # is taken as a vertical,
therefore, indices 7 and v mean “horizontal” and “vertical”. In our figure we see
the o, plane, and the plane of the triangle is o},. Note that a chiral object, for
instance a hand, has no mirror plane (however, two hands in praying position have a
mirror plane between them [4]).
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(c) Inversion center, I

This symmetry element / generates an operation of inversion through a point called
the inversion center, Fig. 2.3. Therefore now we deal with inversion symmetry. We
can take any point of an object and connect it by a straight line with the center O.
Then, along the same line behind the center and at the equal distance from it we
must find the point equivalent to the first one. A good example is a parallelogram.
Note, that two inversions result in the identical object, I’=E.

(d) Improper rotation, S,

This element is also called a rotation—reflection axis or mirror—rotation axis. It
consists of two steps, a rotation through 1/n of the full turn followed by reflection in
a plane perpendicular to the rotation axis, Fig. 2.4. A molecule of ethane in the
staggered configuration is a good illustration of S¢ rotation—reflection axis, see the
figure. Note, that this object has neither C¢ axis nor ¢ plane on their own. But after
combined operations Cg (60° clockwise) and ¢ we obtain an indistinguishable
object with interchanged positions of all hydrogen atoms. Therefore S, and,
more generally, S, is independent symmetry operation. Like element C,,, element
Se may generate several operations, for instance, S¢> = C5 because this operation
consists of rotation by 2 x 2m/6 = 120° = 2n/3 and identity operation 6> = E.
Totally, S¢? = C3E. Other examples are: S =C% 87 =0; 85 = (5 S = E.

Finally, we have five independent symmetry elements: identity E, proper rotation
axis C,,, symmetry plane G, inversion center / and rotation—reflection axis S,,, generating
single (elements E, &, I) or multiple (elements C,,, S,)) symmetry operations.

Fig. 2.3 Inversion symmetry.
Point O is inversion center and
the inversion operation
exchanges positions of points
1-1",2-2',3-3 etc.

Hs
0
H Hg C
R4 0
H,
H,C - 6
o) 2

H, o
30° B
H, OH 0
3 H;

Fig. 2.4 Improper rotation. Axis connecting points C—C is a rotation-reflection axis S¢. An ethane
molecule has a symmetry element including two subsequent operations, the rotation of the whole
structure through an angle of 30° with a subsequent reflection by plane . After this the left and
right sketch become identical
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2.1.2 Groups

Now, for each geometrical object or a molecule we can write a set of symmetry
operations, which transform the object into its equivalent formal representation. Let
consider three examples.

(i) Water molecule, Fig. 2.5a. It has the C, axis, two symmetry planes and
together with identity element we have a full set of symmetry operations E,
C,, o, ¢'. As we shall see soon this set corresponds to symmetry group Co,.

(i) The next is an ion [Co(NH3),CIBr]*® shown in Fig. 2.5b. Its set of symmetry
operations is E, Cy, C42, C43 , 46, (group Cgy).

(iii) Finally we take a flat borate molecule BCl; having the symmetry of an
equllateral trlangle therefore allowmg the followmg operations:
E, C3, C% , Ca, C2 > Cz , Ch, 53, S% > Oy, Gv, oy (group Djp).

Some operations belong to the same classes (see below), therefore we may write
the set in a more compact way: E, 2C3, 3C,, oy, 353, 30,.

It is essential that any element of each set of operations can be obtained by a
combination of other elements from the same set. Application of the subsequent
symmetry operations is called multiplication. For a water molecule we can write the
corresponding multiplication table, Table 2.1. For instance, the multiplication of
operations C, from the first row and the first column corresponds to the identity
operation, C, - C, = E, shown in the table. Further, C,6 = ¢’ and 6C, = &', so
these operations commute in our particular case. Generally they may not commute
and the order of operations is important (by convention, multiplication operation
C,0 means that first we apply operation ¢ and then C»).

a
LN
¥
x >
= - G’V
Y’ |o,
G

Fig. 2.5 Set of symmetry operations and the structure for water molecule belonging to group C,,
(a) and the structure of ion Co(NH3)4C1Br]+3 belonging to group C,, (b)

Table 2.1 Multiplication table for symmetry elements of water molecule

E C, c o’
E E C, c o’
C2 Cz E o’ c
c c o’ E C,
o’ o’ c C, E
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In the mathematical sense, each set of the operations shown above and, more
generally, characterizing the symmetry of objects of different shape forms a group.
So, what is a group? A set of elements A, B, C, etc. form a group if there is a rule for
combining any two elements to form their “product” AB (or A - B) such that:

— Every “product” of two elements is an element of the same set.

— There is a unit element E such that FA = AE = A.

— The associative law is valid, that is A(BC) = (AB)C, etc.

— Each element A has its inverse element A~ belonging to the same set such that
AAT'=AT'A=E.

The group “product” might be different (multiplication, addition, permutation,
space rotation, etc).

For example, a set of integers including negative, zero and positive numbers
-0, .y —H,...,—3,—2,—1,0,1,2,3,...,n, ..., 00 form a group under addition
as a group operation. Indeed, all the group rules are fulfilled:

A+ B =C (e.g. 2 + 18 = 20) belongs to the same set,
evidently A+ B+ C)=A+B)+C
E =0 (e.g., 0 + A = A, that is addition of zero changes nothing)
A + (—A) = 0 = E (under addition as group operation (—A) symbolically means A~ ")

This group contains infinite number of elements, therefore it is an infinite group
or group of infinite order.

Another example is a set of four 2 x 2 matrices that form a finite group of order
4 (because we have four elements in the group) under multiplication operation (it
may directly be checked using the rule for matrix multiplication):

10 0 1 -1 0 0 -1
A R P s R B

Here the identity element is matrix A, the associative law for matrices is always
valid, the inverse matrices are B for D and vice versa (BD = DB = A), elements
A and C are inverses on their own (AA = A, CC = A). It is interesting that there is a
one-to-one correspondence between the elements of the group of our four matrices
and the elements of the group of complex numbers 1, i, —1, —i. The two groups
have the same multiplication table. For example, the product of the elements of the
first group (matrices) B;C; = D, corresponds to the product B,C, = D, of the
second group (numbers). Therefore, we say that these two groups are isomorphic.

The concept of isomorphism is very important. Here, we are interested in the
groups of elements whose products are symmetry operations. Each set of symmetry
operations is a group, which may be represented by a group of matrices isomorphic
to our group. To demonstrate this, let us go back to group C,, in Fig. 2.5a and pay
attention to the coordinate system: this is the basis for representation of the selected
group in the matrix form. Since the water molecule is two-dimensional the group
will be represented by 4 x 4 matrices. We shall consider the hydrogen—oxygen
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bonds as vectors x, y and the symmetry operation will transform them into vectors
x’and y’. The identity operation E does not change anything, and this operation is
represented by the unit matrix E:

10 10 1 0], [1o0
e=lp dfeslo Sleslo Awslo i e

The C, operation exchanges only y-projections of the two vectors, and this is
given by matrix C,. In our particular case, the result of G, operation is the same and
the corresponding matrices C, and o, are equal. Operation o, does not change
positions of the two vectors and is matrices E and o,/ are identical. The sums of the
diagonal elements of a matrix is a trace or a character of the matrix. Our matrices
have the following characters 2, 0, 0, 2 corresponding to one of possible representa-
tions of group C,,.

Therefore, we can operate with the matrices using a powerful apparatus of modern
mathematics and obtain important results not at all evident from the beginning. Such
a theory of group representations will not be considered here although that theory is
very powerful and widely used not only in crystallography [2] but in many areas of
physics [1, 5, 6]. In this section we shall only list the sets of symmetry operations
corresponding to the most important point symmetry groups. The term “point”
reflects the fact, that under any operation of the groups listed, at least, one point of
the object is not changed. For comparison, when an object is translated in space we
should discussed its translational symmetry and corresponding space symmetry
groups [7].

2.1.3 Point Groups

Generally, there is infinite number of point groups, but not all of them correspond to
real physical objects such as molecules or crystals. For example, only 32 point
groups are compatible with crystal lattices. Each of them is labeled by a certain
symbol according to Schonflies or according to the International classifications. The
Schonflies symbols are vivid and more often used in scientific literature. Here we
present only those point groups we may encounter in the literature on liquid
crystals.

In the Table 2.2 the Schonflies symbols are given on the left side, symmetry
operations (not symmetry elements) are given on the right side. As we see a number
of symmetry operations increases from top to bottom. Therefore, we say that Dy, is
more symmetric phase than, say, C,;,. The capital letter D (with index n =2,3,6,...)
is used when n number of C, axes appear, which are perpendicular to the principal C,,
axis. All symmetry operations except 64 have been discussed above. The operation
G4 appears in Dy, Dg, etc. to distinguish between vertical reflection planes o,
containing the C, axes and additional planes (also vertical) passing along bisectors
between already available pairs of the C, axes.
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Table 2.2 Some point groups with Schonflies and international symbols

Schonflies symbol International Symmetry operations

C, 1 E

Cs or Clh m E, Oy

CiorS, 1 E, I

C, 2 E, C,

C2h 2/m E, Cz, I, Op

Cyy mm E, C,, oy, 6,/

Csy 3m E, 2C;, 30,

Doy, mmm E, 3C,, 1, oy, Gy, G/

D3h 6}’}’[2 E, 2C3, 3C2, Ch, ZS';, 3Gv
D6h 6/mmm E, 2C6s 2C3, Cz, 3C2/, SCZH, I, 253, 256’ Oh, 30'd, 30'\,

Fig. 2.6 The procedure Operation
illustrating that, in NH;3 5C;0 = C§
molecule (group Cs,),

operations C5 and C32, belong //;,

to the same class and

operations G, ¢’, ¢’ belong to P
another class \ !
~._ O

For the sake of brevity, some operations form classes consisted of conjugate
symmetry operations. For example, consider the Cs, group: operation 2C5 includes
two conjugate operations C3 and C5% (not two C; axes!). The definition of the
conjugate elements of a group is as follows: we say operations A and B of a group
are conjugate and belong to the same class if XAX ' = B where X is any of the same
group operations and X' is its inverse operation. Therefore, B is similarity
transform of A (note, that XX ' = E). Note that single operation E forms the
class on its own because, for any X, XEX '=EXX ' =E.

Since operation G is equal to its own inverse, it is convenient to use it as X and
analyze whether operations C,. form a class or not. For example, consider NHj;
molecule (group Cs,) whose projection along the C; axis is shown in Fig. 2.6. Let us
take point P and, at first, make twice C3 operation to arrive at point P’. Then, we
start again from point P and, guided by arrows in the figure, make operation
6C;6~'. We again arrive at point P’. Therefore cC30~ ' = C5% and operations
C; and C5” belong to the same class. Now, since from the C; symmetry is evident
that C5 is inverse of C5”, we may find a conjugate of 6: C36C5” = c”. Finally, all
symmetry operations for the Cs, group, i.e. E, C3, C5%, 6, &', ¢’ can be combined in
three classes E, 2C3, 30, as shown in Table 2.2.
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2.1.4 Continuous Point Groups

There are also so-called continuous point groups, which include rotations of
objects (or coordinate systems) by infinitesimal angles. Therefore the number of
their elements tends to a limit that is infinity and the groups themselves are infinite.
The continuous point groups were introduced by P. Curie and can be represented by
physical objects [3]. Totally there are seven continuous groups. They are important
for description of very symmetric liquid crystalline phases such as nematic,
smectic A and polar nematic phase the existence of which is still under discussion.
There are also continuous space groups describing helical (chiral) phases, see
below. For the beginning consider the groups of cones. The symmetry of an
immobile cone, see Fig. 2.7a, is C,,, (or com according to the International
classification). It includes an infinite order axis C, an infinite number of symme-
try planes o, like the ABC plane but has no &}, plane. Therefore, the C.-axis has
properties of a genuine vector. We say this axis is a polar axis and the phase is also
polar, in particular, it may possess spontaneous polarization. In the liquid crystal
physics this group would describe the polar nematic phase, the very existence of
which is still questionable. The rotating cone, see Fig. 2.7b, has polar symmetry
reduced to C, (or co) because the only symmetry element is a rotation axis C,, with
n = oo. Due to rotation there is no symmetry plane. The cone may rotate either
clockwise or anti-clockwise and we can say that it has two enantiomorphic
modifications.

The next is a series of cylinders. The immobile cylinder has symmetry elements
shown in Fig. 2.8a: a rotation axis of infinite order C,,, an infinite number of C,
axes perpendicular to C,., a horizontal symmetry plane G}, and infinite number of
vertical symmetry planes o,. Its point group D, (or co/mm) corresponds
to symmetry of the conventional (non-chiral) nematic or smectic A phase. A
rotating cylinder, Fig. 2.8b, has no C, axis perpendicular to the C, rotation axis
but has a horizontal symmetry plane Gy, (no chirality). Its point group symmetry is
Coon (or oo/m). A twisted cylinder, Fig. 2.8c, is chiral therefore has lost all
symmetry planes but still has the C, axis and infinite number of C, axes perpen-
dicular to C.. Therefore, according to Schonflies, it keeps the D letter and its
symmetry group is D, (or c02) corresponding to chiral cholesteric or chiral
smectic A* phase. Both the twisted and rotating cylinders may be encountered in

Fig. 2.7 Continuous groups
of cones: symmetry elements
of an immobile cone C_,
) C
(a) and group of a rotating 'c, @
cone C, (b) !
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Fig. 2.8 Continuous groups
of cylinders: symmetry
elements of an immobile
cylinder, group D, (a), the
group of a rotating cylinder
Con (b) and chiral group of a
twisted cylinder D, (¢)

Fig. 2.9 Continuous groups
of spheres: group of a chiral
sphere K or R (a) and group
of achiral (having mirror
symmetry) sphere K;, or O (b)

two enantiomorphic modifications. Note that all cylinders and cones are optically
uniaxial.

The two objects shown in Fig. 2.9 are spheres made of different materials. The
sphere (b) is made of non-chiral material. Such a sphere has full orthogonal
symmetry group O(3) or K;, (i.e. cooom): infinite number of C,, axes, infinite
number of reflection planes passing through the center of the sphere, an inversion
center. Any isotropic achiral liquid has this point symmetry group. However,
liquids consisting of chiral molecules, which rotate the light polarization plane
(like some sugar solutions), have lower symmetry, Fig. 2.9a; they belong to the full
rotational group R(3) or K (or cooco) because they have lost all symmetry planes and
the inversion center. To conclude, the full list of seven continuous point groups
includes (in the order of reducing symmetry): spheres (Kj, K), cylinders (Do,
Coohs Doo,), and cones (C., and C,.).

2.2 Translational Symmetry

(a) Crystals made of atoms with spherical symmetry

Such crystals have only translational (i.e., positional) order and no orientational
order. Their structure is characterized by (i) the point group symmetry of an
elementary cell which includes rotations, reflections and inversion as group opera-
tion and (ii) the group of translations which includes vectors with their addition as a
group operation. The translation vector is T = n;a + n,b + n3c where a, b, ¢ are unit
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Fig. 2.10 The translation
vector T = n;a + nob + nse
withn; =2, n,=1,n3=1;
(a), (b) and (c) are unit basis
vectors

Fig. 2.11 Molecular crystal a

with rigidly fixed molecules x
(a) and Euler angles 9 and ®

(b) for a particular molecule /

vectors and n; are integers. For example, n; =2, n, = 1, n3 = 1, see Fig. 2.10. The
overall symmetry (the crystal group) is determined by combination of all these
elements.

(b) Molecular crystals

Due to anisometric (particularly elongated) shape of molecules, these crystals
possess both the translational and orientational order. The latter is determined by
Euler angles 3, ® such molecules form with respect to selected coordinate frame as
shown in the right part of Fig. 2.11. The third Euler angle ¥ describing rotation of a
molecule about its longest axis is not shown for simplicity. The point group
symmetry includes this orientational order.

(c) Plastic crystals and liquid crystals

A loss of the orientational order of a molecular crystal due to free rotation of
molecules around x, y and z-axes with the positional order remained results in
plastic crystals. The point group symmetry increases to that characteristic of
crystals with spherical atoms. However, such crystals are much softer. An example
is solid methane CH,4 at low temperature.

A loss of the translational order (at least, partially) results in liquid crystals
of different rotational and translational symmetry. On heating, one can observe
step-by-step melting and separate phase transitions to less ordered phases of
enhanced symmetry. On cooling, correspondingly one observes step-by-step “crys-
tallization”. An isotropic liquid is the most symmetric phase, it has full translational
and orientational freedom, and this can be written as a product of group multipli-
cation, O(3) x T(3), where O(3) is the full orthogonal symmetry (infinite and
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Fig. 2.12 One-dimensional b
(a) and two-dimensional (b) o
periodicity in the three- 1T
dimensional space

o0

continuous) group and T is the full infinite continuous group of translations [8].
Upon cooling, a series of phase transitions occurs, and each time the symmetry is
reduced. Each new point symmetry group is a subgroup of O(3) and a new group of
translations is a subgroup of T(3). For example, on transition to the nematic phase
the translational freedom is not confined but the rotational symmetry is lowered and
the full symmetry is reduced to D, x T(3).

In Fig. 2.12a one-dimensional periodic structure is shown in the three-dimensional
space. The curve line having point group Cyy, (or Cy) is repeated with a certain period
along the horizontal axis. Such translation may be symbolically written as T;>. It is
the same space group the smectic A phase has, see Fig. Int.1 in Chapter 1. In
Fig. 2.12b the two-dimensional hexagonal lattice in the three-dimensional space
(T,?) is presented. We shall discuss later the smectic B phase having this type of
the hexagonal order of molecules.

It should be noted that cholesteric liquid crystals (chiral nematics) having point
group symmetry D, are also periodic with the pitch considerably exceeding a
molecular size. The preferable direction of the local molecular orientation, i.e. the
director oriented along the C, axis, rotates additionally through subsequent infini-
tesimal angles in the direction perpendicular to that axis. Hence a helical structure
forms with a screw axis and continuous translation group.

(d) Classification of liquid crystals
Liquid crystals can be classified according to

(i) Their mean of formation: thermotropic (change of temperature and pressure),
lyotropic (change of the molecular concentration in water and some other
solvents), carbonized (change of polymerization degree), some rare special
mechanisms (e.g., formation of chain structures in some inorganic substances).

(ii)) Molecular shape, as discussed in Chapter 2, like rod-like or calamitic (from
Greek kadopol that means “cane”), discotic, banana- or bent-like, dendrites, etc.

(iii) Optical properties (uniaxial, biaxial, helical).

(iv) Chemical classes (biphenyls, Schiff bases, pyrimidines, tolanes, etc).

(v) The symmetry of a liquid crystalline phase which determines physical properties
of the phase. This classification is a generalization of the earlier one suggested
by G. Friedel. In Chapter 3 we consider symmetry and structure of the most
important liquid crystalline phases.
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Chapter 3
Mesogenic Molecules and Orientational Order

3.1 Molecular Shape and Properties

A great variety of organic molecules can form liquid crystalline phases. They are
called mesogenic molecules and belong to different chemical classes, see the
comprehensive book by G. Gray on chemical aspects [1] and his review articles
[2, 3]. The discussion of more recent achievements in the chemistry of liquid
crystals may be found in beautifully illustrated article by Hall et al. [4].

3.1.1 Shape, Conformational Mobility and Isomerization

Figure 3.1 represents the characteristic types of mesogenic molecules. Among them
are rods, laths, discs, helices which are more popular for physical investigations and
technological applications and also main-chain and side-chain polymers. We may
add to this list banana- or bent-shape molecules and dendrimers [4] that recently
become very popular.

Rigid rods (a), laths (b) and disks (c) have no conformational degree of freedom.
They are very convenient for theoretical discussions and computer simulations of
the mesophase structure. Closer to reality are rods (or disks) with flexible tails
(hydrocarbon chains) shown in Fig. 3.2a, which facilitate formation of layered
liquid crystal phases. As an example of conformational degrees of freedom of
flexible molecular fragments is the frans—cis isomerization. In sketch 3.2b trans-
form is on the left, cis-form in the middle, a combination of the two on the right.
The rotational isomerization is another example: in sketch 3.2c the internal rotation
of phenyl rings about the single bond in a biphenyl moiety is sketched.

A molecule having the same chemical structure can exist in different atomic
configurations [5]. It forms different stereoisomers either mesogenic or not. One
important example is a molecule of cyclohexane (CH in Fig. 3.3) having all the
bonds single. The cyclohexane can acquire a form of either chair or trough to be
compared with a flat form of the benzene molecule having conjugated single and
double bonds. Moreover, the cyclohexane molecule reveals another type of

L.M. Blinov, Structure and Properties of Liquid Crystals, 19
DOI 10.1007/978-90-481-8829-1_3, © Springer Science+Business Media B.V. 2011
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joe/o/
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j
Fig. 3.1 Different forms of mesogenic molecules: rods (a), lath-like (b), discs (c), swallow-tail (d),

bowls (e) double swallow-tails (f), main-chain (g) and comb-like (h) polymers, propellers (i) and
spirals (j)

Fig. 3.2 Different degrees a
of freedom for non-rigid
mesogenic molecules:

molecules with flexible tails P2 /\| /\l\/\j
(a), trans-, cis- and combined

trans-cis isomerisation of the c
flexible chains (b); rotational
isomerism of biphenyl
moiety (c)
a b c
c t

(4

Fig. 3.3 Rigid benzene molecule (a) and chair (b) and trough (c¢) isomeric forms of a cyclohexane
molecule

isomerization. The hydrogen atoms marked by ¢ and c letters are in nonequivalent
positions with respect to the longest molecular axes: only the trans-position is
compatible with that axis. It is known that atoms in different positions have
different chemical reactivity. For instance, the —-COOH group can be attached to
the cyclohexane moiety in the trans-position. Then, a combination of the chair CH
structure with the trans-position of that group, due to a chemical reaction, results in
an elongated overall structure of the new-synthesized molecule, which is more
appropriate for liquid crystal formation. In addition, elongated dimers can form due
to H-bonds between —COOH groups, see below.
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3.1.2 Symmetry and Chirality

The word chirality originates from Greek yi1poc (hand). Chiral objects (and
molecules) have no mirror symmetry (no one mirror plane). Examples of such
objects are spirals, propellers, screws, hands. Note that the symmetry of a liquid
crystal phase is not the same as the symmetry of constituent molecules but they
often share some symmetry elements. As an example let us look at the symmetry of
a “brick” and a “building” in Fig. 3.4. They are different although it is not a
convincing example, because our tower has not been erected by self-assembling
of bricks.

Chiral molecules, only left or only right, form chiral phases, left and right chiral
molecules in equal amount form achiral (enantiomorphic) phases [6]. Consider a
chiral molecule of a popular compound DOBAMBC (D(or L)-p-decyloxybenzyli-
dene-p’-amino-2methylbutyl cinnamate). It has an asymmetric carbon in its tail and
form a chiral SmC#* phase in the range of 95-117°C, Fig. 3.5a. A molecule with a
chiral tail looks like an ice-hockey stick and forms a helical liquid crystal phase.
Left and right forms of a chiral tail result in the left and right handedness of a
molecule Fig. 3.6. On the other hand, chirality of cholesterol esters is exclusively
due to a curvature of the molecular skeleton Fig. 3.5b.

The synthesis of chiral molecules is a real challenge. There are, at least, three
different approaches.

(i) A chemist needs simple chiral molecules as initial or intermediary reagents.
They can be found among natural substances because the Nature selects left or
right forms. For example, left (or right) amino acids can be used. Then the
synthesis can be continued until the left (or right) form of the final chiral product
is obtained.
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a asymmetric carbon
H

CioHa _©—CH=N —@— CH:CH-COO-CHZ-cli* — C,Hs
CHg

b

Cholesteryl acetate
Cr-26°C-Ch-41°C-Iso

CgH47-CH=CH-(CH,)1)OCO

Fig. 3.5 Chemical formulas of two important chiral molecules: DOBAMBC (a) and cholesteryl
acetate (b)

Fig. 3.6 Asymmetric Right Left

carbon and its left
H H
J>V qél\ CH
CH C,H; CaH; 8

or right surrounding
3

(ii)) As shown by Pasteur, chiral solutes can crystallize from a solution in the form
of left and right optically active crystals and left and right chiral isomers can be
separated.

(iii) The synthesis can be made in the chiral conditions (e.g., in a chiral solution,
like a cholesteric liquid crystal, or on special substrates, or using a chiral, one
directional stirring, etc.).

(iv) Chirality can be created optically by circularly polarized light.

3.1.3 Electric and Magnetic Properties

(a) Polarizability

All atoms and molecules can be polarized by an electric field. The polarization
(induced dipole of a unit volume) is P = o E where o is molecular polarizability. For
spherically symmetric atoms or molecules (like C60 fullerenes) the polarizability is
a scalar quantity (tensor of zero rank) and P||E. In general case of lath-like mole-
cules, o;; is a second rank tensor (9 components) and P; = o;E;. By a proper choice of
the reference frame the tensor can be diagonalized
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Oy O 0
w=0 a, O
0 0 oy

and components d.,,, o, and a._, represent three principal molecular polarizabilities.
For molecules having cylindrical symmetry (rods or disks) with the symmetry axis
z, only two different components remain o, = o, = o, and o, = .

(b) Permanent dipole moments

If a molecule has an inversion center it is non-polar and its dipole moment (a vector,
i.e., a tensor of rank 1) p, = 0. In a less symmetric case p, is finite. It is measured in
units Debye and in the Gauss system 1D = 10~ '® CGSQ-cm (3.3 - 10 C-m in SI
system). More vividly, 1D corresponds to one electron positive and one electron
negative charges separated by a distance of ~0.2 A. The dipole moment of a
complex molecule can be estimated as a vector sum of the moments of all intra-
molecular chemical bonds, p, = £ p;. Consider two classical examples shown in
Fig. 3.7.

(1) A molecule of 5CB (4-pentyl-4’-cyanobiphenyl) has a longitudinal electric
dipole moment about 3D due to a triple -C=N bond.

(ii) A molecule of MBBA (4-methoxy-benzylidene-4'-butylaniline) has a trans-
verse dipole moment due to the methoxy-group and, of course, both molecules
have anisotropic polarizabilities.

The vector of a permanent dipole moment p. and polarizability tensor o;
describe the linear (in field) electric and optical properties. The nonlinear properties
are described by tensors of higher ranks (this depends on the number of fields
included). For instance, the efficiency of mixing two optical waves of frequencies
®; and m; is determined by polarization Py(®w3) = v, E(®;) - E[(0,) where E(,)
and E(w,); are amplitudes of two interacting fields. Here ;5 is a third rank tensor of
the electric hyperpolarizability.

(c) Magnetic moments

A magnetic field induces magnetic moments in a molecule: p,,; = myH;. The
diamagnetic susceptibility tensor m;; has the same structure as the tensor of

_290G-N-35°C-
Fig. 3.7 The most popular 5CB  Cr-22°C-N-35°C-Iso

among physicists molecules
5CB (a) and MBBA (b) CsHyy CN
forming liquid crystals at Pe

room temperature. Note

strictly longitudinal and b MBBA Cr-21°C-N-47°C-Iso
almost transverse direction of

Pe
the dipole moments of the two HSC\
molecules with respect to )Z(—©_CH=N_©_ C4Hq
their long molecular axes
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molecular polarizability with three or two different principal components. Some
molecules possess permanent magnetic moments. For instance, the moments origi-
nate from unpaired electron spins in the inner shells of such metal atoms as M = Ni,
Co, Fe, etc. in metal-mesogenic compounds (Fig. 3.8).

Another case is free radicals with permanent magnetic moments of such molec-
ular groups as —NO, in which unpaired electron spins are located on oxygen atoms.
Stability of such radicals is provided by sterical screening of a reaction center from
the surrounding medium by bulky chemical groups (like methyl one). Such a
radical can be a fragment of an elongated mesogenic molecule. It should be
noted, however, that the field orientation of spin moments is almost decoupled
from the molecular skeleton motion (in contrast to electric moments of molecular
groups). The simultaneous orientation of spins and molecular skeletons by a
magnetic field takes place only if the so-called spin-orbital interaction is significant.

3.2 Intermolecular Interactions

Atoms in an organic molecule are mostly bound by covalent bonds with high intra-
molecular interaction energy W ~ 10'* erg/M (or 100 kJ/M in SI units). In units
more convenient for a physicist: W = 10° J/(1.6 - 107" - 6.02 - 10%) ~ 1 eV/
molecule. Intermolecular interactions are essentially weaker, of the order of
0.01-0.1 eV. Their nature can be quite different. A good example is SCB forming
molecular dimers, Fig. 3.9, due to interaction between two dipoles located on the
two cyano-groups. Below we shall briefly consider the most important mechanisms
of interactions between liquid crystal molecules. For the more advanced discussion
of intermolecular potentials see [7].

CH;(CH,), @—[ N /,

Fig. 3.8 An example of a molecule of metal-mesogenic compounds

O. 5

Fig. 3.9 A structure of a dimer formed by two molecules of compound SCB due to dipole-dipole
interaction. P, and o; are molecular dipole and polarizability

n-CB dimer
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(a) Electrostatic interaction

At a large distance from a system of charges, the electric field around the system
can be expanded in a series of multipoles, see Fig. 3.10. Correspondingly the
electrostatic molecular interactions can be classified by interaction energy as
follows [8]:

Monopole (¢) — monopole (g) (Coulomb energy): W ~ qz/r
Monopole (g) — electric dipole (p.): qurz (Fixed dipole)
quez/r4 (Free rotating dipole)
Dipole (p.) — dipole (p.) (Keesom energy): plpz/r3 (Fixed dipoles)
PP IkTrS (Free rotating dipoles)
Monopole (g) — induced dipole: ot
Dipole (p.) — induced dipole (Debye energy): pilofr®

Dipole—quadrupole, quadrupole—quadrupole, etc.

These general formulas can be used in the molecular theory of formation of
mesophases.

(b) Dispersion interaction

This is also dipole—dipole interaction but between oscillating, not permanent
dipoles. It is a pure quantum-mechanical effect of oscillatory motion of electrons
in the ground state. It is described by the London formula (here v is a frequency of a
single oscillator considered):

3(hv)a?

Upp = —
1.2 4y6

In a more general case one has a sum of different oscillators. The dispersion
interactions are partially responsible for the well known attractive term a/V>
between neutral molecules in the Van der Waals equation of state
(p+a/V*)(V — b) = RT. The corresponding energy is of the order of 0.1 kJ/M
or 10~* eV/mol. By the way, the repulsive term (V — b) in the same equation that
takes into account the excluded volume effect b is due to the steric interaction
discussed next.

(c) Steric interaction and intermolecular potential

Classically, one can consider atoms or molecules as non-penetrable for other atoms
or molecules, Fig. 3.11. In fact it is a quantum-mechanical effect related to the Pauli
principle. For spherical molecules, the Lennard-Jones (or 6—12) potential is often
used [8, 9]:

Fig. 3.10 Structures of ® @ @
different molecular %E’
multipoles, which could be monopole dipole quadrupole octupole

responsible for the interaction
of mesogenic molecules
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Fig. 3.11 The form of the U, Steric
Lennard-Jones potential for

interaction of two spherical
molecules located at a

distance r from each other :
g _
‘ w//: 6

V-d-W attraction

T 1T 1|

_2 -
. . Gay-Berne
potential

-3 T T

r

Fig. 3.12 Gay-Berne potential U(r) as a function of intermolecular distance r between elongated
molecules. Black ellipsoids mimic the pairs of interacting molecules in different geometry of
interaction. Both scales are arbitrary

where x = r/R, R and ¢ are the equilibrium distance and interaction energy shown in
the figure. For elongated molecules consisting of several atoms, the Gay—Berne
potential shown in Fig. 3.12 is more realistic. This potential takes into account a
mutual orientation of elongated molecules. From the same figure one may see how
the equilibrium distance and the depth of the energy minimum differ for differently
oriented molecules.

(d) Hydrogen bonds

This either intra- or intermolecular bond arises between strongly electro-negative
atoms, such as oxygen or nitrogen, chlorine and fluorine. These atoms can be bound
by a mediator, a proton that is partially forms a covalent bond with one of such
atoms but also strongly interacts with the other electronegative atom. In this
situation, an electrostatic interaction plays the dominant role but with some admix-
ture of the covalent bond. To some extent, a proton has common orbital for the
two connected atoms. A well-known example is water where oxygen atoms form



3.2 Intermolecular Interactions 27

a network using the hydrogen atoms as bridges between them. A typical energy of
the hydrogen bond is rather high, 10-50 kJ/M, i.e. 0.1-0.5 eV/molecule.
Hydrogen bonds can be responsible for formation of molecular dimers which, in
turn, become building blocks for liquid crystal phases as shown Fig. 3.13a. Without
O. . .H bonding, short molecules of benzoic acids would never form the nematic or
SmC phases as they, in fact, do. Another example is the derivative of the cyclohexane-
carboxylic acid (CHCA) shown in Fig. 3.13b Such cyclohexane-type dimers form
the nematic phase with very low optical anisotropy. In the molecule (monomer) the
cyclohexane moiety is in the chair-form and the —-C4Hy and —COOH groups are in
the trans-positions (¢) as explained in Fig. 3.3. Such a dimer (¢frans-isomer) may be
considered as rod-like. The corresponding cis-isomer would have a strongly bent-
shape structure hardly compatible with liquid crystal phase. By the way, similar but
reversible trans—cis—trans photo-isomerization is observed in compounds with azo-
(-N=N-) or azoxy-(-N=NO-) bridges between phenyl rings. Such compounds
may be used for the light control of the liquid crystal structure and properties.

(e) Hydrophilic and hydrophobic interactions

These interaction, although very important, are not as fundamental as the others.
They are related to the affinity to water. Hydrophilic interactions include the same
electrostatic, steric and H-bond interactions and all of them are, generally speaking,
electromagnetic. The hydrophobic “interaction” is an entropy effect; there is no
special repulsive force. For example, oil and water are immiscible. Merely water
molecules feel more comfortable among the same neighbors, to which they form a
network of H-bonds. If an oil molecule with its long hydrocarbon tail were
incorporated into water, it would destroy the network and reduce the entropy of
the mixture.

a
0..H-O0
/ \
oo —~(O—< 5—(O)—CsHn
H..0 7

O-
\a hydrogen bond
b

A
b,

o Hy

Fig. 3.13 The role of the hydrogen bond in formation of dimers of benzoic acid molecules (a) and
cyclohexane-carboxylic acid molecules (b)
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3.3 Orientational Distribution Functions for Molecules

The translational and orientational degrees of freedom can be treated separately
(this follows from fundamentals of group theory which states that groups of translations
and rotations are subgroups of the crystalline space groups: P(r, Q) = P(r) x P(Q).
Here x is a symbol of the group product. In particular case of the isotropic liquid or
nematic phase (no positional order) P(r, Q) = pP(Q) where p = constant is density.

Generally, a one-particle distribution function P(r, Q) represents a probability to
find a molecule with orientation Q at position r. Here Q includes three Euler angles
W, ® and ¢ as shown in Fig. 3.14. This probability is assumed to be independent of
other particles. In the figure, x, y, z is a Cartesian laboratory frame, the z-axis is
taken as a reference: usually it coincides with one of the symmetry axis of a
molecular system. For a nematic phase discussed in this chapter, such a symmetry
axis coincides with the preferable axis of orientation of molecules. This axis is
called the director, a unit axial vector with head and tail indistinguishable, n = —n.
We say the director has head-to-tail symmetry. If there is no interaction with
surrounding, the director may take any direction and its realignment cost no energy
(no energy gap to overcome). Such a gapless orientational motion that restores the
spherical symmetry of the isotropic phase is called a Goldstone mode. Evidently,
that the direction of the director may be fixed by a weak magnetic field or by
interaction with the surfaces, and our z-axis is assumed to be fixed by some external
factor.

The frame &, m, { is attached to a molecule. Then Euler angles correspond to

— Deflection of the longitudinal molecular {-axis from axis z (angle )

— Rotation of the molecular shortest n- axis about its own longitudinal {-axis
(angle V)

— Precession of the longitudinal {-axis within a cone surface around z (angle ®)

In this chapter we consider only an orientational distribution function f(Q) [10,
11]. Why do we need it? Because it is a kind of a bridge between the microscopic
and macroscopic descriptions of the nematic phase. We define a value

Euler angels

S e R N

_____ n
X==""" ¥
\\ \\\\

~
\\\ ~,
N\,

Fig. 3.14 Euler angles of the

. ¢ ~normal to
molecular frame &, n, € with < z(plane
respect to the Cartesian \y

laboratory frame x, y, z
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F(Q)dQ = f(®,9,¥) sind dd d9 d¥ 3.1)

as a fraction of molecules in the “angular volume” with Euler angles between ® and
d®, ¥ and d¥, ¥ and d¥. Function f{Q) is a single-particle function because
molecules are considered to be independent, i.e. any correlation in their motion is
disregarded. The total probability to find a molecule with any orientation equals 1:

21 T 21
Jf(Q)dQ:J d(I)J sinﬂdﬁJ d¥ - f(®,9,¥) = 1 (3.2)
0 0 0

We can use this normalization condition to find the f(€2) function, at least, for
the isotropic liquid or isotropic liquid crystal phase. Indeed, in this case there is
no angular dependence of f(Q)) i.e. f(®,9,¥) = const. After integrating we find:
f®.9,W);50 = 1/87°.

And what about optically uniaxial phases? In the case of a nematic, the molecu-
lar distribution is independent of the precession angle (O = const) but may depend
on angle . For a smectic A, in the first approximation, the orientational distribu-
tion function is the same as for the nematic. However, there is some interaction
between the translational and orientational degrees of freedom that can be taken
into account as a correction to f(1},®). At first, consider a distribution function for a
uniaxial phase consisting of axially symmetric molecules [12].

3.3.1 Molecules with Axial Symmetry

The molecules either have a generic infinite rotation axis (cones, rods, rotational
ellipsoids, spherocylinders or discs) or acquire this average uniaxial form due
to free rotation around the longitudinal molecular axis {. Then f{Q2) becomes
W-independent [13]: f = f(19)/41r2 with f(9) = fim — ¥9), see Fig. 3.15. This figure
shows that angle 0 and & are equally and the most populated by molecules and these
two angles correspond to the condition n = —n. The angles close to /2 are the less
populated. Now our task is to find the form of f{¢}) and relate it to experimentally
measured parameters.

As any axially symmetric function, f(¥)) can be expanded in series of the
Legendre polynomials P;(cost)

F(9) = (1/2)[1 + a1 P (cos V) + a,Py(cos ¥) + azP3(cos ) + asPy(cos 9) + ...]

(3.3)
Recall that the Legendre polynomials of general formula
1 d"(x*—1)"
P(x) = : M, n=20,1,2,...are solutions of the Legendre equation
2"n! dx"

(1 — x?)y"— 2xy’ + n(n + 1)y = 0, which are orthogonal to each other. The condi-
tion for orthogonality reads:
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Fig. 3.15 Form of the
molecular distribution
function over the polar &
Euler angles ¢ ;&;
g
0 R K3
1 1
2
P,(x)Py(x)dx =0form#n and | [P,(x)]dx = (3.4)
2m+1
—1 -1

The Legendre polynomials P,,(x) are tabulated for x = 0-1. In our case, the
polynomials depend on angle ¥ with x = cos?) and the integration should be made
from = to 0. For even or odd m the polynomials are even or odd functions of cos,
respectively:

Po(cos ) =1

Pi(cos ¥) = cosv

Ps(cos ¥) = (1/2)(3cos*d — 1)

Ps(cos 9) = (1/2)(5cos>9 — 3costd)

P4(cos ¥) = (1/8)(35¢cos™? — 30cos>d + 3), etc.

Each function has a particular symmetry (like electron shells in atoms have their
own symmetry s, p, d, etc.). The angular dependencies of the first two polynomials
are plotted in Fig. 3.16.

In order to find numerical coefficients a; we multiply both sides of Eq. (3.3) by
Py (cos?) and integrate over 1, using the orthogonality of Legendre polynomials,
Eq.(3.4):

0 0
1 2 _a _
JPL(cos Nf (9)d(cos) = 3 JaL[PL(cosﬁ)] d(cos?) = T 1L =0,1,2,...
Now we obtain
0
| Pr(cos 9)f () sin ¥dv
a = 2L+ 1)"— (3.5)

J£(9)d cos ¥

T
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Fig. 3.16 Angular dependencies of the first two Legendre polynomials in polar coordinates

with the normalization condition (3.2) in denominator. As to the numerator, it is just
the average value of polynomial P;(cosd) written in the form of the theorem of
average. Finally we obtain numerical coefficients:

ap = (2L + 1) - (Pr(cos¥)) (3.6)

Note that <P;(cost})> are 1J-dependent numbers, not functions. Finally we can
write the orientational distribution function for a uniaxial medium composed of
uniaxial molecules:

1 4+ 3(P;(cos¥))Pi(cos ) + 5(P,(cos ¥))P>(cos )+

F0)=172) 7(P3(cos1))P3(cos 1) + 9(P4(cos ¥))P4(cos ) + ... 7

The set of amplitudes a@; may be considered as a set of order parameters for the
medium discussed. All of them together provide a complete description of f(19).

For uniaxial molecules with inversion center (i.e. having head-to tail symmetry
of a cylinder) the odd terms disappear:

F(9) = (1/2)[1 + 5(P2(cos ¥))P2(cos ) + 9(P4(cos¥))Ps(cos¥) +...] (3.8)

or briefly:

> ]
F(9) =f(cos¥) =D (4l + 1)SyPy(cos V) with [ =0,1,2...  (3.9)
0

[\)

As mentioned above, coefficients S,; are unknown numbers: Sg = 1, S; =
<P(cos?)> = <cos¥>, S, = <Py(costd)> = (1/2) <3cosd — 1>, S,
=<P,(cost)> = (1/8)<35cos*® — 30cos®? + 3>, etc. Therefore, instead of
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unknown function (1)) we can operate with unknown numbers that can easier be
found from experiment.

3.3.2 Lath-Like Molecules

The phase is still uniaxial with head-to-tail symmetry, i.e., its distribution function
is independent of the precession angle @ that is f(Q) = f(J,¥)/2n . However,
nuclear magnetic resonance (NMR) shows that the free rotation of molecules about
their long axes (angle V) is, to some extent, hindered as shown in Fig. 3.17a. In
the figure the preferable direction of the longest molecular axes (director) is parallel
to z. Then we can distinguish among two different cases of local molecular
orientation with two projections S, of a short molecular axis onto the director,
either large as in Fig. 3.17b or, in fact, zero (Fig. 3.17¢).

As a consequence, the refraction index component perpendicular to the director
n, is larger in case b than in case ¢, and the component 7 is smaller. Therefore, the
optical anisotropy An = n; — n, in case b is smaller. To take the new situation into
account, two local order parameters are introduced for the uniaxial nematic phase,
one is the same as discussed above for the longitudinal molecular axes (S = S;;),
and the other describes the local order of the shortest molecular axes that is local
biaxiality (D):

1
S =

ce

<3C05219 -1 >

\o]

(3.10)

D = Sz — S, = = (sin®Y cos 2¥)

N W

For the ideal nematic with sint = 0 and S; = 1 there is no difference between
cases b and c. The locally (microscopically) biaxial nematic phase should not be
confused with macroscopically biaxial phases to be discussed in the next section.

a b c

Sn

short
\‘axis
\ -

long .+
axis

Fig. 3.17 Local packing of lath-like molecules that hinders rotation of individual molecules about
their longest axes (a) and illustration of a large (b) or zero (c) projections S, of a short molecular
axis onto the director axis z. s and / are the shortest and longest axes of a lath-like molecule
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3.4 Principal Orientational Order Parameter
(Microscopic Approach)

We discuss nematics, therefore n = —n (no polarity) and f(+)) is cylindrically
symmetric function (point group D.). We would like to know this function
for each particular substance at variable temperature but, unfortunately, f{¢}) (that
is all amplitudes S,; in expansion (3.9)) is difficult to measure. We may, however,
limit ourselves with one or few leading terms of the expansion and find approximate
form of f(¢}).

For instance, why not to take Sy or §;? For conventional nematics they are
useless because Sy is angle independent and §; = <cos?¥> is an odd function
incompatible with n = —n condition. By the way, S; is very useful for discussion of
phases with polar order, in which the head-to-tail molecular symmetry is broken
(e.g., in phases with the conical symmetry C,,, instead of cylindrical symmetry
Doon)-

The next is coefficient S, = (1/2) <3cos*9— 1> introduced by Tsvetkov [14] that
describes the quadrupolar order. It looks suitable, at least, when we consider
important particular cases:

(i) For the ideal nematic with all rod-like molecules parallel to each other
<cos’9>=1and S, = 1.

(ii) For complete orientational disorder <cos?¥> = 1/3, S, = 0 and this corre-
sponds to the isotropic phase.

(iii) There is another possible molecular orientation also corresponding to <cos*>
= 1/3 and §, = 0: it is a “magic” orientation (see below), that would correspond
to the nematic phase with finite higher S,,; coefficients.

(iv) One can put all molecules in the plane perpendicular to the principal axis
and then everywhere 9 = m/2, <cos*¥> = 0 and S, = —1/2. The phase with
S, = —1/2 would still be conventional nematic phase, but such nematics have
not been found yet. However, by evaporation of organic compounds consisted
of rod-like molecules onto a solid substrate, one can prepare amorphous solid
films of the D, symmetry which would mimic the nematic phase with S, ~
—1/2, see Fig. 3.18.

From (i) to (iv) we conclude that, as the first approximation to the microscopic
orientational distribution function of a nematic, we can take from Eq. (3.9) only one
term with / = 1 and S, = (1/2) <3cos?y — 1>:

F(9) =f(cos) = (1/2)(4L + 1)S2P2(cos ) = (5/2)S,P(cos ) (3.11)

The function (3.11) with coefficient 5/2 ignored is shown in Fig. 3.19 for two
different values of S,. The curves marked as S, = 1 and S, = 0.6 correspond to the
ideal and typical nematics, respectively. For the isotropic phase the corresponding
curve would coincide with zero line.
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Fig. 3.18 Illustration of a 3 2
virtual nematic phase with §=-172 .
order parameter S = —1/2
y
-
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Fig. 3.19 Orientational distribution function of molecules for two different values of order
parameter S5

Parameter S, can be found from the anisotropy of magnetic susceptibility,
optical dichroism and birefringence, NMR, etc. The determination of higher order
parameters requires for more sophisticated techniques. For instance, S, can be
found from Raman light scattering [15], luminescence or other two-wave interac-
tion optical experiments. Data on S, Sg are not available at present. In some cases,
the X-ray scattering can even provide f{(¢) as a whole but with limited accuracy.

To illustrate the importance of higher order terms, particularly S, consider two
molecular distributions shown in Fig. 3.20. On the left side, all molecules of a
virtual nematic phase are at the same angle ¥ = 54.73 deg, therefore f () o< 6(1 —
54.73). For this “magic” orientation, cos?Y = 1/3, cos*9 = 1/9 and $,=0,8,=-7/18
(see Legendre polynomials P, and P, written above). On the right side, the
molecules of another virtual nematic are scattered over angles around ¥ = 54.73
deg in such a special way that the average <cos*¥> calculated with new f(19)
function is again equal to 1/3 and, as before, S, =0. However, <cos*9> calculated
with new f(19) and new S, is different from —7/18. Therefore to distinguish between
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Fig. 3.20 Illustration of 1
importance of higher order
terms: the two very different,
virtual molecular
distributions have the same S,
order parameter but differ by
the values of higher order
parameters Sy, Sg, etc.

N -
N7 |-
ANIEAN]

V72227774
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N/

two molecular distributions we have to take into account at least S4 or as many S»;
coefficients as possible.

3.5 Macroscopic Definition of the Orientational
Order Parameter

3.5.1 Tensor Properties

Generally, properties of liquid crystals depend on direction, they are tensorial.
Some of them (like density in nematics) may be scalar. A scalar is a tensor of
rank 0. It has one component in a space of any dimensionality, 1°=2°=3° ... =1.
Other properties, like spontaneous polarization P (e.g., in chiral smectic C¥*)
are vectors, i.e., the tensors of rank 1. In the two-dimensional space they have 2!
= 2 components, in the 3D space there are 3' = 3 components. For instance in
the Cartesian system P = iP, + jP, + kP,. Such a vector can be written as a row
(P, Py, P,) or as a column. Properties described by tensor of rank 2 have 22 =4
components in 2D space and 3% = 9 components in the 3D-space. They relate two
vector quantities, such as magnetization M and magnetic induction B, M = %B,
where 7 is magnetic susceptibility. Each of the two vectors has three components
and, generally, each component (projection) M,, (o = x,y,z) may depend on each of
Bp components (B = x,y,z):
M, = /(MB\ + X,\‘yBy + XXZBZ; My = nyBx + nyBy + Xysz; M. = XZXB,\‘ + XzyBy +
1B or in the matrix form:
M, T Zi2 x| |[Bi
My | =122 X2 X23|-|B2
M3 X1 A2 x| B3

The matrix representation can be written in a more compact form

My =" 1,5Bp = ZpBp- (3.12)
b
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Here o, B = 1, 2, 3 and, following Einstein, the repeated index [ means
summation over f.

The magnetization was only taken as an example. Many other properties
(dielectric susceptibility, electric and thermal conductivity, molecular diffusion,
etc.) are also described by second rank tensors of the same (quadrupolar) type ¥
Microscopically, such properties can be described by single-particle distribution
functions, when intermolecular interaction is neglected. There are also properties
described by tensors of rank 3 with 3° = 27 components (e.g., molecular hyperpo-
larizability v;;) and even of rank 4 (e.g., elasticity in nematics, Kjj) with 3* =181
components. Microscopically, such elastic properties must be described by many-
particle distribution functions.

As physical properties of the matter are independent of the chosen frame, suffixes
o and P can be interchanged. Therefore, ¥, = Xp, and only 6 components of s are
different, three diagonal and the other three off-diagonal. Such a symmetric tensor
(or matrix) can always be diagonalized by a proper choice of the Cartesian frame
whose axes would coincide with the symmetry axes of the LC phase. In that
reference system only three diagonal components Y, (2> and Y33 are finite.

3.5.2 Uniaxial Order

For a uniaxial phase (nematic, discotic nematic, SmA, SmB, etc.) with the symme-
try axis along z, all properties along x and y are the same and ;= %2> 7 ¥33. The
corresponding matrix

2. 0 0
Aop = 0O . O (3.13)
0 0

has only two different components and the relevant physical quantity can be
decomposed into two parts, the mean value <y> = (1/3)( x; + 2x.) and the
anisotropic part Ay = ¥. = X — AL

The anisotropic part of tensor (3.13) is

158 = g — (1)8ap

where 8,p is second rank unit tensor with trace 8. + 8, + 5.. = 3. Hence, the
anisotropy tensor is traceless, has dimension of the y value and becomes zero in the
isotropic phase:

0 0] | o o 1 0 0
0 - 1/3Xa 0
0 0 gy 0 0 (1 0 0 A,

P
]
=
|
(e}
=X
—
o
|
o
—~
=X
~
(e
I
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In principle, this tensor might be used as orientational order parameter for a
uniaxial phase, however, its dimensionless form would be more preferable. Therefore,
we normalize anisotropy J, to the maximum possible anisotropy corresponding to
the ideal molecular alignment as in a solid crystal at absolute zero temperature.
Then we arrive at the order parameter tensor [16]:

@ ~1/3 0 0
Qup = b = Lo ~1/3 0 (3.14)
op M 0 0 2/3

Here S = y,/x™ is a scalar modulus of the order parameter dependent on the

degree of molecular (statistical) order whereas the tensor shows the orientational
part of the order parameter. With such an approach, the macroscopic and micro-
scopic definitions of the order parameter would coincide if we assume

S = o 1 =8y = <Py(cos)> =

a

(3cos*9 — 1) (3.15)

| =

The experimental values of the orientational order parameter found macroscop-
ically for conventional nematics from the magnetic or optical anisotropy are
in good agreement with those calculated from microscopic data (NMR, Raman
spectroscopy).

Order parameter tensor can be written using the director components 7., (4=x,y,z).

1

La 1
off — o —*8“ = o —*80( 3.16
Oup T (nang 3 p) = S(nanp 3 5) (3.16)

For example, for nllz the director components are (0, 0, 1) and from (3.16) we
immediately get the form (3.14). Here we clearly see the two components of the
order parameter, the scalar amplitude S and the orientational part (in parentheses).

Fig. 3.21 Packing of
molecules in a macroscopic
nematic biaxial phase of
symmetry D,y
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Fig. 3.22 A molecule of a
potassium (K) laurate with

deuterium (D) label (a) and a

structure of the lyotropic K
lamellar phase (b)

D

Fig. 3.23 Lamellar lyotropic L
phase of potassium laurate: 02—
orientational order parameter r
for individual links of the 01
molecular chain as a function » E
of the distance of the link 0.05 -
from the potassium atom -

0.02 -

2 4 6 8 10 12
No. of carbon atoms

3.5.3 Macroscopic Biaxiality

In contrast to quite common microscopically biaxial nematics belonging to point group
D, and discussed in the previous section, the macroscopically biaxial phase (group
D,yp,) shown in Fig. 3.21 has unequivocally been found only in lyotropic nematics [17]
formed by some biphilic (or amphiphilic) molecules in water solutions [18]. Some
other cases are still under discussion (nematics formed by metallomesogens, banana-
like [19] or polymer molecules [20]). Strictly speaking, cholesteric liquid crystals (or,
more generally, chiral nematics) may be regarded as weakly biaxial. Less symmetric
phases such as smectic C, smectic E, etc. are, of course, macroscopically biaxial.

In macroscopically biaxial phase all the three components of a physical property
are different, e.g., (11 7 Y22 7 X33, the trace of tensor Yup is X11 + Y22 + X33 =
3<y> and the tensor itself can be written as )3 = 3<y>Q,p With the traceless
order parameter tensor

—(1/3)(Q) — 0y) 0 0
Qup = 0 —(1/3)(Q + 0,) 0 (3.17)
0 0 (2/3)0;
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Now the biaxial nematic phase has two order parameters Q; and O, and, in
general, three different phases can be distinguished, namely, isotropic (Q; = O, = 0),
uniaxial nematic (Q,0» = 0) and biaxial nematic (Q,0>) phases. Note that biaxial
molecules may form both biaxial and uniaxial phases; the latter appear due, for
instance, to free rotation of biaxial molecules around their long molecular axes. As
to the uniaxial molecules, they may also form either uniaxial (as a rule) or biaxial
phases; the latter may be formed by biaxial dimers or other “building blocks”
formed by uniaxial molecules.

3.6 Apparent Order Parameters for Flexible Chains

When molecules are not so simple as rigid rods or discs, one may introduce
apparent partial order parameters different for different molecular moieties. This
is especially evident for lyotropic liquid crystals [21], such as, for instance, the
lamellar phase formed by surfactants in water, see Fig. 3.22b. A good example is a
water solution of potassium laurate. A flexible hydrocarbon chain K—CH,—
CH,-CD,-CH,-. .. can be deuterated with a position of deuterium label varied
along the chain, as shown by in Fig. 3.22a. Then, by the NMR technique sensitive
only to deuterium nuclei, the apparent order parameter of the corresponding chain
link can be determined. As shown in Fig. 3.23, it decreases with increasing the
distance from the potassium atom due to flexibility of the hydrocarbon chain. Thus,
we can say that the hydrocarbon tail is “solid” at the left end and “liquid” at the right
one [22].
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Chapter 4
Liquid Crystal Phases

This chapter presents a review of different liquid crystal phases. The main attention
is paid to the thermotropic liquid crystals, which manifest rich polymorphism upon
variation of temperature. Moreover, the thermotropic phases are subdivided into
rod-like or calamitic and discotic ones; the latter are discussed only briefly. At first,
we discuss achiral media with lyotropic phases included and then consider the role
of chirality.

4.1 Polymorphism Studies

The polymorphic transformations can be studied by different techniques that are
illustrated below by some characteristic examples.

4.1.1 Polarized Light Microscopy

It is very simple and vivid method [1]. One can observe characteristic streaks
(Schlieren-textures) showing particular macroscopic defects, e.g., disclinations
and establish the phase symmetry. In Fig. 4.1a the characteristic defects of the
nematic phase (disclinations), are well seen. Fan-shape texture of the smectic C
phase is shown in Fig. 4.1b. One can also distinguish between different types of
uniform molecular orientation in different liquid crystal preparations using a cono-
scopy technique (microscopic observations in the convergent light beam): in this
case symmetry of the pattern corresponds to the texture symmetry.

A very useful technique is a study of miscibility of different substances [2]. As a
rule, only identical phases are mixed with each other (nematic with nematic,
smectic A (SmA) with SmA, SmC with SmC etc.). Therefore, using a well inves-
tigated substance as a reference, one can make a preliminary conclusion about a
structure of a new compound not doing X-ray and other cumbersome structural
studies. For instance, by mixing with a reference liquid crystal, it was concluded

L.M. Blinov, Structure and Properties of Liquid Crystals, 41
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Fig. 4.1 Textures of the nematic (a) and smectic C (b) phases observed with a polarization
microscope

Fig. 4.2 Miscibility
diagram: Ref and Inv mean
the reference compound with
well known phase sequence
and unknown compound to
be investigated. Starting with
molar content ¢ = 1 and
proceeding to the left while
measuring phase transition
temperatures one finally
arrives at ¢ = 0 with
complete phase diagram,

Temperature —

ef
|

therefore, having information 0 . 0:2 . 0:4 . 0:6 . 0..8 . 1
about the unknown molar parts
compound

that substance p-methoxy-p’-pentylstilbene (MOPS), see Fig. 4.2, has the SmB
(below 110°C), Nematic (110-125°C) and Isotropic (above 125°C) phases.

4.1.2 Differential Scanning and Adiabatic Calorimetry
(DSC and AC)

These techniques are widely used in investigations of phase transitions. DSC allows
the express measurements of the transition enthalpy and determination of the phase
transition type. For example, at the SmB-Cr (crystal) transition a great amount of
enthalpy is released as evident from Fig. 4.3. Therefore, with high probability, this
transition is of strong first order, the others shown in the figure (Isotropic phase-
SmA and SmA-SmB) are not as strong and may be referred to as weak first order
transitions. True second order transitions may not be seen in DSC plots due to
negligibly small transition enthalpy. Specific features of such transitions are studied
by adiabatic calorimetry (e.g., anomaly in heat capacitance) and dilatometry
(density changes at transitions).
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Fig. 4.3 Qualitative example
of a DSC spectrum: latent
heat of transitions as a
function of temperature

Cr SmB SmA Iso

Latent heat —>

Temperature —>

Shutter “~~-___--
BDR

Fig. 4.4 Scheme of an X-ray diffractogram for a smectic A phase. The beam is impinged on the
sample perpendicularly to the figure plane and forms a cone of diffraction. The directly transmitted
beam is blocked by a shutter. The sharp ring BDR means the small-angle Bragg diffraction ring
while IPS means diffuse wide-angle in-plane scattering halo

4.1.3 X-Ray Analysis

This is a very powerful method [3, 4] and later we shall discuss it in detail in
Chapter 5. Here, only a schematic picture is presented, Fig. 4.4. An X-ray beam
passes through a liquid crystal preparation and the diffracted beams form a cone
with 21 angle at the apex and are registered by a photodetector. In this particular
example a smectic A liquid crystal is not oriented and the presented pattern is
an analog of a Lauegram observed on crystalline powders. First we see a very
sharp ring at small angles. It is a fingerprint of a lamellar structure. Like in solid
crystals, the X-ray beam of wavelength A can be reflected from stacks of parallel
molecular layers according to the Bragg law to be discussed in Section 5.2.2:
2dp sind = m, Am = 1,2,3, ..., where h, k, [ are Miller indices (001, 002, etc.
in our case), d is interlayer distance and 9 is the diffraction angle. From this formula
d can be found from the ¥-angle measured: for instance, if 29 ~ 3° for m=1 (first
order reflection), then sin® =~ 0.026 and A ~ 0.1 nm, d ~ 1.9 nm. Thus, the
interlayer distance corresponds to the length of the molecule and the phase is an
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orthogonal smectic. A diffuse ring at wide angle shows that the in-plane structure is
liquid like therefore the phase is most probably SmA. The average intermolecular
distance in the transverse direction may be estimated from the radius of the diffuse
ring using the same formula.

4.2 Main Calamitic Phases

4.2.1 Nematic Phase

The isotropic phase formed by achiral molecules has continuous point group
symmetry Ky, (spherical). According to the group representations [5], upon cooling,
the symmetry Ky, lowers, at first, retaining its overall translation symmetry T(3) but
reduces the orientational symmetry down to either conical or cylindrical. The cone
has a polar symmetry C.., and the cylinder has a quadrupolar one D..,. The
absence of polarity of the nematic phase has been established experimentally. At
least, polar nematic phases have not been found yet. In other words, there is a head-
to-tail symmetry taken into account by introduction of the director n(r), a unit axial
vector coinciding with the preferred direction of molecular axes dependent on
coordinate (r is radius-vector).
The nematic phase is characterized by the following properties:

(i) n(r)= —n(r) (absence of polarity) and, in the Cartesian system shown in Fig. 4.5a
the director has components (ny, ny, n,) = (0, 0, 1).

(ii) Point group symmetry is D}, (according to Schonflies) or co/mm (interna-
tional). There are one oco-fold rotation axis, i.e., the director axis, the infinite
number of vertical symmetry planes containing n and one mirror plane
perpendicular to n. The same symmetry has a discotic nematic phase. The

Fig. 4.5 The nematic phase: molecular orientation (a), optical indicatrix (b) and characteristic
microscopic texture (c)
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(iii)

@iv)

)

orientational order is characterized by a tensor discussed in Chapter 3 whose
amplitude (order parameter) is § = (1/2)<3c0s*® — 1> (here O is an angle
the individual molecule forms with the direction n).

Translational symmetry is T(3), the translational motion of molecules is
possible in any direction, therefore, the density is independent of coordinates,
p = const, and the nematic phase is the most fluid one. For this reason it is the
most interesting for applications to displays.

It is optically uniaxial phase, as a rule positively uniaxial, n, = ny > n, = n, =
n,. The optical indicatrix presented in Fig. 4.5b has a form of the prolate
ellipsoid contrary to oblate optical ellipsoid typical of discotic nematics
which, as a rule, are optically negative. The dielectric ellipsoid is discussed
in more detail in Section 11.1.1.

The nematic phase has very characteristic microscopic texture observed with
crossed polarizers. In Fig. 4.5¢c we can see typical point disclinations, the
nuclei of divergent brushes or threads. The threads (Greek vepo) have given
the name “nematic” to the phase considered. The structure of disclinations is
accounted for by modern theory of elasticity, Section 8.4.

4.2.2 Classical Smectic A Phase

The classical SmA phase can form on cooling the nematic phase or directly from
the isotropic phase. Now we meet a new feature: the phase becomes periodic in one
direction. In Fig. 4.6 the interlayer distance equal in this case to period is marked by
letter d. Thus, the SmA phase is simultaneously a one-dimensional solid and a two-
dimensional liquid. There is no correlation between molecular positions in the
neighbor layers. Such a phase predominantly forms by more or less symmetric
molecules with long alkyl chains.
The SmA phase is characterized by the following properties:

@

Fig. 4.6 A lamellar structure

of the
phase

As in the nematic phase, n(r)= —n(r). In the figure the director has components
(nx, ny, n,) = (0, 0, 1).

Smectic A

thermotropic smectic A < —
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(i) The point group symmetry is also D.,. However, the translational invariance
retains only in two directions and the symmetry group is different from that of
nematics: D, x T(2).

(iii) The density is independent of x and y, py, py = const, however, p, is a periodic
function along the normal to smectic layers z. It has to be even function
because there is a symmetry plane perpendicular to the director (e.g. it can
be the middle plane of the three layer system shown in the Figure):

o0
p(z) = py+ D p,cos ngz. Here n = 1, 2, 3, ... and ¢ = 2n/d is the wave-

vector of the periodic structure. The modulation of density is not very strong,
Pn < Po and, to the first approximation, the density wave may be represented
by a single harmonic (n = 1):

p(z) = po + py cos gz (4.1)

The value of p; is usually taken as translational order parameter, see
Section 6.3.

(iv) The orientational order parameter has the same form as in nematics, but its
absolute value is larger S > Sn. The phase is optically positive.

(v) Typical texture of the SmA is shown in Fig. 4.7a. We see here the so-called
“fans” consisted of “focal-conic” domains. Such domains are originated from
a layered structure [1, 6]. Although layers are more or less rigid, they can be
bent and may form cylinders and tori with central disclination lines (I'y) or
more complex structures with disclinations of the I, type. The sketches in
Fig. 4.7b represent projections of the tori on the x,z-plane perpendicular to I';
(upper sketches) and on the y,z-plane including I'; (lower sketches).

4.2.3 Special SmA Phases

The structure of the so-called de Vries phase is shown in Fig. 4.8. It is a uniaxial
smectic A phase (group D) with very strong molecular tilt (about 20°) in any

Fig. 4.7 Smectic A: fan-shape texture (a) and the structure of typical defects (b)
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Fig. 4.8 Structure of a z

uniaxial smectic A phase with /
very strong molecular tilt (de

Vries phase). & is tilt %\\
correlation length /

Fig. 4.9 Structure of polar A, A, Aq
smectic A phases Aj, A, and ‘
Aq4 and a frustrated phase A,oq M T l

i A

azimuthal direction. The local molecular tilt is correlated along a certain distance &
within a smectic layer but on average the tilt is zero. Properties of this phase are
different from those of the classical SmA, for example, the birefringence is smaller,
i.e., n,is closer to n,, n, than in SmA. The dielectric response is also spectacular. De
Vries phase formed by chiral molecules manifests very interesting electrooptical
effects.

Some compounds consisting of molecules with longitudinal permanent dipoles
form locally polar smectic A phases and also so-called frustrated phases. In Fig. 4.9
are shown three structure A, A; and A4 which have the same point group symmetry
but differ by translational symmetry due to specific packing of the molecules. The
A, phase is the classical SmA discussed above: its interlayer distance, i.e., the
structure period, is equal to molecular length. Dipoles are antiparallel within each
nonpolar layer. A, is a smectic with polar layers and antiparallel (sometimes-called
antiferroelectric) packing of molecular dipoles in the neighbor layers. Phase A4
represents a more general intermediate case. The spectacular orientation of dipoles
results in modulation of charge density along the smectic normal and the period of
the charge density wave may be different from the period of the mass density wave.
Therefore, there are two waves along the smectic normal, a density one and the
electric polarization one. These waves can be incommensurate that is the ratio of
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their periods is not an integer, e.g., 1 < I'/l < 2. In some cases, two tendencies,
namely, a formation of either monolayer or bilayer structure are in conflict and the
resulting phase is “frustrated” or, in other words, is modulated not only along the
normal to the layers but also along the smectic plane like the phase A4 shown in
the same figure.

4.2.4 Smectic C Phase

In the SmC phase the longitudinal molecular axes are tilted from the smectic layer
normal by an angle 1, Fig. 4.10. The phase has the following properties:

(i) The director n coincides with the direction of molecular axes and, as before,
n = —n. Its components are (n,, ny, n;) = (sindcos®, sinsin®, cosy). The
projection of n onto the smectic layer plane is called c-director, ¢ = sindexp
(£i®). The c-director is taken as a two-component order parameter of the C-
phase. Sind and ® may be considered as the amplitude and phase of the tilt
angle (sign + determines a sign of rotation). In experiment, angle v varies
from 0° to 45°.

(i) The point group symmetry is C,, or 2/m (a twofold axis x and a symmetry plane
zy). The symmetry group is Cyp, X T(2).

(iii) The density wave has the same form (4.1) as that of the SmA phase.

(iv) The spatial positions of molecules in neighbor layers are uncorrelated but their
tilt is correlated.

(v) The phase is optically biaxial, Fig. 4.11a, there is no rotation axis coinciding
with the director and n; # n, # ns (z is the smectic normal).

(vi) In SmC the director is free to rotate along the conical surface with an apex angle
249, therefore, as in a nematic, the Schlieren-texture is observed seen in the
central part of Fig. 4.11b. On the other hand, the smectic structure reveals the
fan-shape texture seen in the left-bottom corner of the same figure.

Smectic C

c-director

Fig. 4.10 Smectic C.
Molecular structure (a) and
definition of the c-director (b)
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Fig. 4.11

SmB symmetry plane
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Fig. 4.12 Structure (a) and a microscopic texture (b) of the smectic B (SmB) phase

4.2.5 Smectic B

In this phase we have:

(i) Head-to-tail symmetry n = —n.

(i1) One sixfold rotation z-axis, one mirror plane perpendicular to that axis and 12
mirror planes including the sixfold axis. Six of them connect the hexagon
angles as shown in Fig. 4.12a and, the other six bisect the angles between those
planes. The point group symmetry is D¢, (or 6/mmm) and the phase has the
following properties:

(a) Optical uniaxiality 7y #n, and, as a rule, n, > n, = ny.
(b) Three-dimensional density wave along x, y and z axes:

p(x,y,2) = pycos(quz) - p, cos(qix) - p; cos(qLy) 4.2)

with different density modulation depth parallel and perpendicular to the
director. In this respect Smectic B should be referred to as a three dimensional
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crystal. However, the situation is not as simple and dependent on correlation
in molecular positions in neighbor layers. If such correlations do exist, we deal
with a normal 3D crystal having a very small shear modulus corresponding to
the velocity gradient Ov,,/0z. If there is no interlayer molecular correlations,
the phase is called hexatic and will be considered in Section 5.7.3 in more
detail.

(iii) A typical, so-called mosaic texture of the SmB is shown in Fig. 4.12b.

4.3 Discotic, Bowl-Type and Polyphilic Phases

One should distinguish between the discotic nematic, Np phase shown in Fig. 4.13b
and several discotic columnar phases, e.g. that shown in Fig. 4.13a. The discotic
nematics form on cooling the isotropic phase consisting of disc-like molecules,
e.g. of triphenylen type, see Fig. 4.14. The symmetry reduces from T(3) x O(3) to
T(3) X Dyon. The new phase is not miscible with calamitic nematics despite the same
symmetry: n = —n, point group D.,, p = const, optical uniaxiality. However,
hydrodynamic properties of discotic nematics are quite different from those of
calamitic nematics. A columnar phase is an example of a two-dimensional (2D)
crystal and 1D liquid, a lattice of liquid threads. The translational motion of
molecules is allowed only along their normals, the translation group is T(1) and
the point group can be different. For example it is D¢, for an orthogonal hexagonal
phase or C,;, for a tilted phase. We meet even more phases formed by disc-like
molecules, namely Isotropic I, nematic Np, Dy (columnar orthogonal), D, (columnar
tilted) and K (crystalline) ones.

a 7, b
e O e i n
. ] ’,V :"‘ i
e o 5 36 e
¥ l X
1
S i
Fig. 4.13 Structure of }-j'é - ,-%"
discotic columnar (a) and '@_"__‘:‘ ‘\,l
nematic (b) phases ar”
R
@i
R R = OCOC;Hag
R
@
Fig. 4.14 Molecular formula R

and a phase sequence of a o8 _8Fc 110 [y 122% |
triphenylene compound 0 1 2
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Fig. 4.15 Possible bowl phases: forms of molecules (a) and bowls (b), polar and non-polar
columns consisting of bowl molecules (c), and two types of column packing, ferroelectric (/eft)
and antiferroelectric (right) (d)

A molecule that, in principle, may form a bowl phase should itself have the bowl
form like that seen in Fig. 4.15a [7]. Molecular bowls may have different symmetry
as shown on the top of Fig. 4.15b and the corresponding phases could be either
uniaxial or biaxial. The packing of bowls into the columns may have specific
features. For example, when all molecules in the column are oriented bottom
down then the head-to-to tail symmetry is broken and the column has conical, i.e.
polar symmetry C..,, Fig. 4.15c. Only polar columns may form ferroelectric or
antiferroelectric phases shown in Fig. 4.15d.

Actually, such bowl phases are still to be found. However, polar achiral phases
have been observed in the so-called polyphilic compounds [8]. The rod-like mole-
cules of these compounds consist of distinctly different chemical parts, a hydro-
philic rigid core (a biphenyl moiety) and hydrophobic perfluoroalkyl- and alkyl-
chains at opposite edges. Such molecules form polar blocks that, in turn, form a
polar phase manifesting pyroelectric and piezoelectric properties with a field-
induced hysteresis characteristic of ferroelectric phases.

4.4 Role of Polymerization

There are two types of polymers, which form thermotropic liquid crystals, the side-
chain, Fig. 4.16a and the main-chain polymers, Fig. 4.16b. In the side-chain
polymers the mesogenic units are attached to a backbone by more or less flexible
chains. In the main-chain polymers mesogenic units are incorporated into the
polymer backbone and separated from each other by flexible chains [9, 10]. Flexible
chains (spacers) are necessary to provide a certain freedom to mesogenic moieties
to form an ordered state. For the side-chain polymer to be in the nematic or smectic
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Fig. 4.16 Structure of
polymer chains appropriate
for side-chain (a) and main-
chain (b) polymer liquid
crystals

Fig. 4.17 Scheme of packing a b
of main chain polymer

mesogenic groups in the

nematic (a) and smectic A

(b) phases

phase is quite natural, because mesogenic units can easily be arranged parallel to
each other, Fig. 4.17a. However, even in the main chain polymers with long enough
flexible spacers between the mesogenic groups, the latter can form nematic and
even smectic phases and the flexible backbones are forced to acquire the liquid
crystalline structure, Fig. 4.17b.

In the same way one can synthesized liquid crystalline copolymers in which
mesogenic groups alternate with some functional groups like chiral, polar, photo-
chromic, luminescent, etc., groups useful for various applications especially in
nonlinear optics. For example, incorporating chromophores, manifesting a light-
induced intramolecular charge transfer, one can develop materials with enhanced
nonlinear susceptibility, so-called x®- or x®-materials capable of wave mixing,
generation of light harmonics, etc. Polymer liquid crystals with photochromic
moieties, showing reversible and multiple photo-induced cis—trans—cis isomeriza-
tion, are very perspective for holographic grating recording, polarimetry, optical
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information processing, lasers without mirrors and so on. The nematic phase formed
by main-chain polymers can be used in a technological process of manufacturing
extra strong polymer fibers, because the material goes through draw plates in the
well-oriented nematic state and the fiber contains less defects.

Polymers can form the same thermotropic phases as low-molecular mass com-
pounds (nematic, smectic A, C, B, chiral phases as well). Despite the same
symmetry, physical properties of polymer liquid crystals are very specific. They
are very viscous due to the entangling of long polymer chains hindering the
translational motion (flow). On cooling the polymer liquid crystal acquire a glassy
state very useful for many applications. For example, one can create some macro-
scopic structures in the nematic phase very sensitive to external fields (for instance,
a grating, or a field induced polar, pyroelectric structure) and then froze it into the
glassy state which is not crystalline but mechanically solid and use the latter for
applications. You can also make cholesteric polymer doped with a proper lumines-
cent dye for laser devices with distributed feedback (due to natural periodicity of
the helical structure). Some polymer liquid crystals can be as elastic as rubber
(elastomers). They have very good prospects as piezoelectric materials as well as
materials having mechanically tunable optical properties.

4.5 Lyotropic Phases

Lyotropic liquid crystalline phases form by water solutions of amphiphilic (particu-
larly biphilic) molecules [11, 12]. The building blocks of those phases are either
bilayers, Fig. 4.18, or micelles. The form of the micelles can be spherical or
cylindrical, Fig. 4.19a, b. For low concentration of oil in water, the micelles are
normal (sketch (a), tails inside, polar heads outside, in water). For high concentration,
the structure is inversed ((b) and (c), water and polar heads inside, tails outside).
Examples of the structure of some typical lyotropic phases (lamellar, cubic, hax-
agonal) are shown in Fig. 4.20. Under a microscope they show characteristic features,

iy i?i %E

hydrophilic

tails
Fig. 4.18 Bilayers formed by h
eads
biphilic molecules having
polar hydrophilic heads and

hydrophobic tails
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Fig. 4.20 Lamellar, cubic and hexagonal lyotropic phases

Fig. 4.21 Microphotograph
of the hexagonal lyotropic
phase texture

Hexagonal
lyotropic phase

e 1] -1

e.g., a fan-shape texture is typical of the hexagonal lyotropic phase presented in
Fig. 4.21.

There is also a group of the so-called lyotropic nematics. They are intermediate
between the isotropic micellar phase and structured (lamellar or hexagonal) phases
and can be formed by both discotic and calamitic molecules. The lyotropic nematics
can be aligned by an electric or magnetic field and show Schlieren texture as
thermotropic nematics. The building blocks of these mesophases are vesicles or
similar mesoscopic objects. From the symmetry point of view the nematic phases
can be uniaxial or biaxial, as shown in Fig. 4.22. In fact, the biaxial nematics have
been found unequivocally only in the lyotropic systems [13].
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Fig. 4.22 Structure of lyotropic nematics: a phase Ny is formed by disc-like blocks (a) and phase
N, by cylindrical rod-like blocks (b)
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Fig. 4.23 Structure of the cholesteric phase. Each sheet models a cross-section of the helical
structure within one period of the helix Py. The helix axis is directed from the left to the right. The
short bars show orientation of chiral molecules within each sheet

Table 4.1 Point group

: ° Phase/ chirality Achiral Chiral
symmetry of main achiral -
and chiral phases Isotropic K K
Nematic or smectic A Doon Do
Smectic C Con G

4.6 General Remarks on the Role of Chirality

Chirality is lack of mirror symmetry. The name came from Greek word for “hand”.
W.H. Thomson (Lord Kelvin) defined it as follows: “any geometrical figure has
chirality if its image in a plane mirror cannot be brought into coincidence with
itself”. Examples of chiral phases are the cholesteric, schematically shown in
Fig. 4.23, and smectic C* ones (the asterisk at letter C is used to distinguish this
phase from the achiral smectic C). Unfortunately there is no quantitative definition
of chirality [14]. The chirality of a molecule results in a spatial modulation of liquid
crystalline phases. Table 4.1 shows how the point group symmetry is changed when
the achiral liquid crystal material is doped with a chiral compound. The isotropic
liquids formed by chiral molecules, e.g. sugar solutions in water, have continuous
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group symmetry K (no mirror plane). Experimentally, this can be recognized by a
rotation of the polarization plane of transmitted light (optical activity). In case of
the racemic solution with equal amount of the right and left isomers of the same
molecule, the symmetry is Ky, and the optical activity is absent.

The nematic phase has point group symmetry D_;,. If we add some amount of
chiral, e.g., right-handed molecules, the symmetry is reduced from D, to D
(symmetry of a twisted cylinder). Such a phase is called chiral nematic phase.
Chiral molecules used as a dopant (solute) in nematic solvent considerably modify
the nematic surrounding and the overall structure becomes twisted with a helical
pitch Py incommensurate with a molecular size a, Py # na (n is an integer) and
usually Py > a. Typically, a < 10 nm, Py = 0.1-10 pm.

The pitch of the helix depends on concentration ¢ of a dopant; for small ¢ P~ ' ~
oc and o is called helical twisting power of the dopant [15]. However, with
increasing ¢ the dependence becomes nonlinear and the helix handedness can
even change sign (the case of cholesteryl chloride dopant in p-butoxybenzyli-
dene-p’-butylaniline, BBBA, see Fig. 4.24). The same chiral, locally nematic
phase with a short pitch in the range of 0.1-1 pum is traditionally called cholesteric
phase because, at first, it has been found in cholesteryl esters. Such short-pitch
phases manifest some properties of layered (smectic) phases.

The smectic C* phase formed by chiral molecules (SmC* phase) has also a
helical superstructure having a pitch incommensurate with the smectic layer thick-
ness. Theoretically chiral phases can also be formed by achiral molecules due to
very specific packing [16]. For instance, three achiral rod-like molecules of differ-
ent length may form a chiral trimer or a tripod due to Van der Waals interactions
between their fragments, see Fig. 4.25a, and such trimers, in their turn, may form a
kind of helical structure. Another example is bent-core or banana like-molecules [17]
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Fig. 4.25 Hypothetical chiral a
trimers formed by rod like

molecules due to specific Van

der Waals interaction (a) and

achiral bent-core molecules

capable of formation chiral

domains (b)
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Fig. 4.26 Interaction of two rod-like molecules, one molecule (1) on the top of the other (2) at an
angle ¢ (a). The forms of the interaction potential in different models: for achiral molecules
harmonic (b), and anharmonic (¢) and harmonic potential for chiral molecules (c)

that can form a smectic multidomain system with right and left domains depending
on the direction of the tilt of long molecular axes / with respect to the x,z-plane
Fig. 4.25b. On the other hand, chiral molecules can be packed in such a way that the
phase would lose their optical anisotropy, for example in the so-called blue phase
(see below) or optically isotropic SmC* phase.

4.7 Cholesterics

4.7.1 Intermolecular Potential

Basically the structure of the molecules forming nematic and cholesteric phases is
similar. However, chiral molecules possess a certain chiral asymmetry that results
in asymmetry of intermolecular interactions. This asymmetry is weak and, there-
fore, the helical pitch is much larger than a molecular size. Consider now an
interaction potential V() between two rod-like molecules (1) and (2) as a function
of the twist angle ¢ between their long molecular axes, see Fig. 4.26a. Molecule (1)
is considered to be fixed. The twist corresponds to rotation of the longitudinal axis
of molecule (2) about the axis connecting gravity centers of the two molecules. For
achiral molecules, the two-particle potential curve W(d) is symmetric, Fig. 4.26b. It
may be described in terms of the Legendre polynomial P, and order parameter S:

W]z(d)) = —VSP2 (COS (1)) (43)
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For chiral molecules the mirror symmetry is broken and such a curve cannot be
symmetric. We can distinguish three cases:

(i) The interaction is still harmonic but centered at a finite angle ¢g # 0 as in
Fig. 4.26d:

Wu((j)) = —VSPZ COS(d) — (])0) (44)

This is a “classical” cholesteric with local nematic structure. The value of
o determines the equilibrium pitch (a is the diameter of a rod-like molecule):

Py =2na / ™ 4.5)

(ii) The potential is centered at ¢ = 0 but the interaction is anharmonic and cannot
be described in terms of cylindrically symmetric functions. In this case, the
equilibrium pitch is determined by an average ¢,, shown in Fig. 4.26c.

(iii)) Both (i) and (ii) factors contribute to chirality together.

Of course, in each case a particular form of the potential curve depends on
chemical structure of constituting molecules. For instance, in nemato-cholesteric
mixtures, V(¢) depends on the structure of both a nematic matrix and a chiral dopant.

4.7.2 Cholesteric Helix and Tensor of Orientational Order

We can imagine a cholesteric as a stuck of nematic “quasi-layers” of molecular
thickness a with the director slightly turned by 8¢ from one layer to the next one. In
fact it is Oseen model [18]. Such a structure is, to some extent, similar to lamellar
phase. Indeed, the quasi-nematic layers behave like smectic layers in formation of
defects, in flow experiments, etc. Then, according to the Landau—Peierls theorem,
the fluctuations of molecular positions in the direction of the helical axis blur the
one-dimensional, long-range, positional (smectic A phase like) helical order but in
reality the corresponding scale for this effect is astronomic.

In the first approximation, the parameter of the local orientational order of a
cholesteric liquid crystal is the same uniaxial traceless tensor Q;; = S(n;n; — 9;;/3)
as in the nematic phase with the director axis always lying in the x,y-plane, e.g.
along the x direction at a selected cross-section of the helix:

+25 0 0

In the helical structure this tensor, as well as the tensor of the dielectric
anisotropy (ellipsoid) rotates upon the translation along the z-axis as shown in
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Fig. 4.27 Helical stricture of ©
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Fig. 4.27. Then, the components of the director are n = (cosqz, singz, 0). In the
uniaxial approximation, there are only two principal components of the local
dielectric tensor, g; and €, and two refraction indices, n; and n, = n,. As a rule
m; > n,, and a uniaxial cholesteric is locally optically positive. For the overall
helical structure, one can introduce average refraction indices, one along the helical
axis n, = n, and the other perpendicular to it, nx,y2 = (1/2)(11”2 +n lz). Thus the
helical axis becomes the optical axis. As a rule, n, ~ 1.5 and n, y ~ 1.6 and the
overall helical structure is usually optically negative.

4.7.3 Tensor of Dielectric Anisotropy

In general, however, tensor Q~l-j is biaxial but the biaxiality is small, on the order of
&/Po where & is the length corresponding to nematic correlations. This correlation
length may be found, for example, from the light scattering in the isotropic phase
close to the transition to the nematic phase. Then, at each point, that is locally, the
anisotropic part of dielectric susceptibility tensor is biaxial and traceless dg; +
682 + 683 = 0 with 682 ~ 683.

¢ 0 0 5 0 0
= 0 8 O :71 0 —1+n 0 (4.6)
0 0 dg; 0 0 —-1-—n

Here 1 is a measure of biaxiality

1’]:(682— 683)/581:(2882+ 581)/581
=(208em+ der)+ 1. (4.7)

Particularly, for n = 0 we return to the nematic tensor of dielectric anisotropy
with factor 2/3 included in d¢g;:

i 10 0
Se=d8(0 —1/2 0 (4.8)
0 0 —1)2
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To obtain the tensor of the cholesteric helical structure one should imagine that
the local tensor rotates in the laboratory co-ordinate system, or, alternatively, to
introduce a rotating co-ordinate system. In the latter case, one should make trans-
formation

88 = RyOER ! 4.9)

where 154,,154:' are the matrix of rotation about the z-axis and its inverse matrix,
respectively. Both matrices are known from the textbooks on the matrix algebra:

3 cos¢p —sind O 3 cosd sing O
Ry = |[sing cos¢p O Rq’)1 = | —sindp cosd O (4.10)
0 0 1 0 0 1

Note that for our rotation matrix, which is antisymmetric, the inverse matrix is
equal to the transposed one. Now using Egs. (4.9) and (4.10) we write

o cos¢p —sind 0 1 0 0 cos¢ sind O
BE:R¢6‘§R4:1: sing cos¢p 0f-6e| 0 —1/2 0 -|—sindp cosd 0
0 0 1 0 0 -1/2 0 0 1

and then multiply the dielectric tensor first by the inverse matrix on the right and
then multiply the rotation matrix from the left side by the result of the first
operation. Next, we obtain the tensor of dielectric anisotropy of a locally uniaxial
cholesteric.

Se 14+ 3cos2¢ 3sin2¢ 0
SE:ZZ 3sin2¢ 1—3cos2¢p O 4.11)
0 0 -2

Finally, we can write the tensors of the orientational order parameter QN,j in the
rotating frame for locally uniaxial and biaxial cholesteric liquid crystal (ChLC):
Uniaxial ChLC:

3 1+ 3cos2d 3sin2¢ 0
Oj" =gS| 3sin2¢  1-3cos2¢ 0 (4.12)
0 0 -2

Biaxial ChLC
o 1+n+(3—mn)cos2¢ (3 —m)sin2¢ 0
Qﬁ}':§5 (3 —m)sin2d 14+1n—(3—m)cos2¢ 0
0 0 B, T,
4.13)

with 1 defined by Eq. (4.7)
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4.7.4 Grandjean Texture

This interesting texture is observed in the so-called Cano wedges formed by two
optically polished glasses with a gap filled by a cholesteric liquid crystal (CLC). Let
the equilibrium helical pitch of the CLC in a bulky sample is Py. In the wedge the
molecules are oriented along its acute edge. Since the boundary condition are fixed
the equilibrium pitch can only be undistorted when the layer thickness is exactly
equal to d = mPy/2 where m is an integer as shown in Fig. 4.28a. In the close
proximity of each d’ value, the helix can still fit to the boundary conditions at the
cost of some pitch compression or dilatation. Therefore rather large areas form with
the same number of half-turns within the gap, which are marked by numbers m = 0,
1, 2, 3 in Fig. 4.28b. These are Grandjean zones separated by the defects called
disclinations (thin lines seen in the photo, Fig. 4.28c). At each disclination, the
number of half-turns changes usually by one. In the zero zone, the cholesteric is
unwound but its properties (e.g., elastic moduli) in this quasi-nematic area are
different from the corresponding achiral nematic. Grandjean textures are very

Fig. 4.28 A wedge type cell
filled with a cholesteric (a)
with Grandjean zones marked
by numbers 0, 1,2, 3,4 ...
and the disclination lines
shown by arrows. The
distance dependence of the
helix pitch in different zones
with numbers m is
schematically shown in
sketch (b). Photo of
disclinations limiting the
Grandjean zones (c)
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useful as an experimental tool: one can study and compare different physical,
especially electrooptical effects at different thickness under the same conditions
(same material, alignment, ambient conditions, fields, etc.) One can also observe
the Grandjean zones on preparations without cover slips because a drop of a CLC
has an edge with decreasing thickness. Since the free surface can also align liquid
crystals the Grandjean zones form in this natural wedge at the border of the
preparation. By the way, in smectics such zones exist in a form of microscopic
steps, which could be measured by an atomic force microscope (AFM).

4.7.5 Methods of the Pitch Measurements

Due to its periodic structure cholesteric liquid crystals manifest very interesting
optical properties. In fact, a cholesteric is one-dimensional photonic crystal having
forbidden frequency bands (stop-bands) for a particular circular polarization. This
band appears due to the Bragg diffraction of light on the helical structure. In the
vicinity of the stop band a giant optical rotation of light is observed. Since the pitch
of the helix can easily be changes by external factors such as composition, temper-
ature, UV light, mechanical tension, electric and magnetic field, a variety of tunable
optical devices (like filters and lasers) has been suggested. We shall discuss the
optical properties of cholesterics in detail in Chapter 12.

The key parameter for the tunability is the helical pitch P, which can be found
from the measurements of

(i) The wedge thickness in the centers of Grandjean zones, Py = 2d’/m, as shown
in Fig. 4.28.

(i) The angular position of diffraction spots for the light incident perpendicularly
to the helical axis Fig. 4.29a. Such a texture is formed by the so-called
homeotropic boundary conditions with liquid crystal molecules oriented per-
pendicularly to the plane glasses. Due to the head-to-tail symmetry the period
of the optical properties is Po/2 and wavevector of the optical structure gy =
41/Py. The diffraction spots are located at angles +26 symmetric with respect
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Fig. 4.29 Measurements of the pitch of the helix in a cholesteric. (a) Geometry for monochro-
matic light diffraction on the focal-conic texture. The pitch is found from the angle 21J between the
incident and diffracted beams with wavevectors ky and k; (b) Spectral measurements of the light
transmission by a planar cholesteric texture (/o and /7 are intensities of the incident and transmitted
beam)
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Fig. 4.30 A fingerprint
texture of a cholesteric liquid
crystal seen in a polarization
microscope (the distance
between stripes equals a
half-pitch)

to the incident beam (zero order diffraction). The modulus of the scattering
wavevector is ¢ = 2kom sin 0,,/2 where incident light vector kg = w/c. The
first order diffraction (m = 1) is very intense and, using angle m,,_; and the
wavevector conservation law ¢ = g, the pitch can be found Py = Ay /m sind.
(iii) The spectral position of the selective reflection or transmission band A in the
planar texture formed by the homogeneous, planar boundary conditions with
molecules oriented parallel to the glasses, Fig. 4.29b. In this case, we may use
unpolarised light and the Bragg condition for one of the circular polarizations

mA = mlo/{n) =2(Py/2)sindg,m=1,2,3... 4.14)

with incident angle Yo = /2 and m = 1. Therefore, Py = A9/ <n> where <n>
is related to the two principal refraction indices n; and n, parallel and
perpendicular to the director: <n> = (n; + n,)/2.

(iv) The distance between stripes observed under a polarization microscope in the
fingerprint texture, shown in Fig. 4.30. Again due to the head-to-tail symmetry
the distance between stripes equals a half-pitch.

4.8 Blue Phases

These phases were an enigma of the centuries. Since the experiments of Reinitzer
[19] up to recent times it was not clear whether it was a special texture of the known
cholesteric phase or a thermodynamically new phase. The textures of the blue
phases are often of blue color, Fig. 4.31. Properties of the blue phases are very
interesting from the fundamental point of view.

(1) There are three blue phases BPI, BPII and BPIII (or foggy) phase [20]. All blue
phases are usually observed in rather a narrow temperature interval between
the isotropic phase and cholesteric (Ch) phase. Recently, however, a wide
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Fig. 4.31 A texture of blue
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Fig. 4.32 A phase diagram 0 ISO
showing phase transition lines 2
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temperature blue phases have been prepared using stabilization of the helical
structure by a polymer network [21]. A typical example of a phase diagram is
shown in Fig. 4.32 [20]. In the diagram, the abscissa is a percentage of the
racemic component in a mixture with a chiral component of the same com-
pound.

X-ray diffraction shows that local order is liquid-like.

Drops of a BP1 show facets typical of solid crystals seen in Fig. 4.31.
Blue phases strongly rotate the light polarization plane.

Despite properties (iii) and (iv) the blue phases do not show any birefrin-
gence. Blue phases are optically isotropic.

BP1 and BPII show the optical reflections similar to the X-ray reflections
from solid crystals. Bragg reflections correspond to the three-dimensional
periodicity at the micrometer scale like in three-dimensional photonic band-
gap crystals.

The phase transition between the isotropic and a blue phase III is accom-
panied by a very blurred anomaly in specific heat (H), and there are also
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Fig. 4.33 Double-twist cylinder (a) and the structure of the body-centered cubic phase BP1 (b)
and simple cubic phase BPII (c¢), both consisted of double-twist cylinders (adapted from [22])

noticeable H anomalies between the BPIII and BPI phases [22] and also at
the BP-cholesteric phase transition. This means that we deal not with
different textures of the cholesteric phase but with different phases.

(viii) NMR spectra of BP are different from those of the Ch phase.

It has been concluded that blue phases I and II are three-dimensional periodic
structures, formed by pieces of the helix, a kind of regular lattice of defects having a
period comparable with the wavelength of visible light. How such a phase can be
modeled? One of the most interesting models is a defect structure made of double-
twist cylinders as building blocks [23]. The helical structure forms in two direc-
tions, Fig. 4.33a. Such cylinders can be packed either in the body-centered lattice
forming the BPI phase as shown in Fig. 4.33b or in more symmetric simple cubic
lattice, Fig. 4.33c that may correspond to the high temperature BPII blue phase. The
foggy phase is, more probably, amorphous. It is important that the concept of a
lattice of defects is quite general and can be used in other areas of physics of the
condensed matter (theory of melting, theory of phase transitions, superfluidity and
Abrikosov vortices, structure of amorphous medium, etc).

4.9 Smectic C* Phase

4.9.1 Symmetry, Polarization and Ferroelectricity

The chirality of molecules breaks the mirror symmetry C,y, of the achiral smectic C
phase. The only symmetry element left is a twofold rotation axis C,, and the point
symmetry group becomes C, instead of C,;,. The structure of a single smectic C*
layer is shown in Fig. 4.34. As in achiral smectic C, the molecules in the layer obey
head-to-tail symmetry, the director n coincides with average orientation of
molecular axes and form angle ) with the smectic normal h.
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Fig. 4.34 Structure of a
single monolayer of chiral

h
smectic C*. Rotation axis C,
is polar axis. Chiral molecules
are tilted through angle ¥ the
director n forms with layer /é

normal h

C, axis
Fig. 4.35 Correlation of DOBAMBC
temperature dependencies of 2
the molecular tilt ¥ and P, nC/em 6, deg

spontaneous polarization Pg 10
for a ferroelectric compound

DOBAMBC (for the formula

see Fig. 3.5a)

The smectic C and C* order parameters are the same, the two-component tilt
Jexp(ip). However, the plane of the figure is no longer a mirror plane and the C,
axis is a polar axis directed forward or backward with respect to the tilt plane 4,n.
This depends on a sign of handedness. Such symmetry allows for the existence of
the spontaneous polarization vector P (that is a dipole moment of a unit volume)
directed along the polar axis. Thus, each SmC* layer is polar and possess pyroelec-
tric properties. Moreover, the direction of P, can be aligned by an electric field in
any direction. At a certain boundary conditions provided by e.g. aligning glasses,
the layer manifests two memory states, and, under this condition, each smectic layer
may be considered ferroelectric, for details see Chapter 13. For small tilt angles, the
value of the spontaneous polarization is proportional to ¢ as illustrated in Fig. 4.35
by experimental curves for the DOBAMBC (for formula see Fig. 3.5a), the first
liquid crystal ferroelectric compound synthesized in Orsay (France) following ideas
of Meyer [24]. The value of P, in DOBAMBC is rather small, about 6 nC/cm? at
room temperature, however, nowadays there have been synthesized many com-
pounds with P of several hundreds nC/cm?.

4.9.2 Helical Structure

Due to chiral intermolecular interaction the overall multi-layered structure of
smectic C* becomes twisted, like in cholesterics. The twist angle of the tilt plane is
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that is the tilt plane rotates about z upon translation along z, Fig. 4.36. The period
(pitch) of the helical superstructure P, is incommensurate to the thickness of a
molecular layer. The helicity is a secondary phenomenon. By proper mixing left
and right molecular isomers one can compensate for helicity. For racemic mixtures,
this is trivial and results in the achiral SmC structure with unpolar layers. However,
we can mix right and left isomers of chemically different molecules. In this case, the
helicity is compensated for, but not the polarity of layers. Alternatively, one
can compensate for the spontaneous polarization but keep the helical structure as
it is [25].

In the helical structure, the optical ellipsoid of the smectic C* phase rotates
together with the tilt plane. Like in cholesterics, we can imagine that helical turns
form a stuck of equidistant quasi-layers that results in optical Bragg reflections in
the visible range. Therefore, like cholesterics, smectic C* liquid crystals are one-
dimensional photonic crystals. However, in the case of SmC#*, the distance between
the reflecting “layers” is equal to the full pitch Py and not to the half-pitch as
in cholesterics, because at each half-pitch the molecules in the SmC* are tilted in
opposite directions. Hence, we have a situation physically different from that in
cholesterics.

In Fig. 4.37 the location of the Bragg reflections on the optical wavelength scale
is compared for a cholesteric and smectic C* (Og,c+ = 25°) liquid crystals. The
spectra have been calculated numerically using the Palto’s software [26] with the
same parameters for both materials: Py = 0.25 pm, sample thickness d = 4 um and
principle refraction indices 1.73 and 1.51. The calculations are made for normal and
oblique light incidence angles of o = 0 (dash line), and 45° (solid lines). The Bragg
formula (3.14) is valid for both materials. However, at the light incidence along the
helical axis (o = 0) , the left edge of the first order Bragg reflection (m = 1) in
the cholesteric corresponds to 4y = Py<n> =2 380 nm but, in the smectic C* phase, the
first order corresponds to the full pitch 1y = 2Py<n> = 730 nm. At this wavelength
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i i LTI
T
ATy
ALTATULAIR T T Y - P
LA AR AL ALV
AR R i

Fig. 436 Helicalsructurc of i

Py is a pitch of the heltx NI 10T 17—

>




68 4 Liquid Crystal Phases

Fig. 4.37 Comparison of the 1.0 -
calculated transmission

spectra of a cholesteric (fop

panel) and smectic C* 0.8 1
(bottom panel) for two angles
of incoming light incidence:
dashed curves for o = 0
(along the helical axis), solid
curves for o = 45° with
respect to the helical axis.
Both materials have helical
pitch 0.25 pm, refraction
indices n;, = 1.73 and n, =
1.51, cell thickness 4 pm. Tilt
angle for the SmC* is 25°
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and o = 0, the band is invisible (forbidden) due only to the coincidence of effective
refraction indices for the same absolute value of the tilt |£0,,,c«. The band at about
380 nm is the second diffraction order (m = 2). In the smectic C* phase, the first
order Bragg diffraction band appears only at an oblique light incidence, see the
transmission minimum at about 680 nm for oo = 45° in the same figure. Such a shift
to the shorter waves of both m = 1 and m = 2 bands in the smectic C* (as well as of
m = 1 band in the cholesteric) increases with increasing angle of light incidence.

4.10 Chiral Smectic A*

4.10.1 Uniform Smectic A*

This is a chiral smectic A* with symmetry D.. Its properties are similar to those of
the achiral SmA. However, close to the transition to the smectic C* phase, the chiral
smectic A* phase shows interesting pretransitional phenomena in the dielectric and
electrooptical effects (the so-called soft dielectric mode and electroclinic effect).
They will be discussed in Chapter 13.

4.10.2 TGB Phase

This phase consists of uniform SmA* blocks separated by defect walls [22]. At each
wall, the normal to smectic layers in one blocks turns through a small angle with
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respect to the layer normal in the preceding block as very schematically shown in
Fig. 4.38. From such blocks, a helical structure forms. Thus, the phase is twisted,
consists of grains and has defects in a form of grain boundaries. That is why it is
called a twist-grain-boundary or TGB phase. We should distinguish among the
TGBA and TGBC phases based, respectively, on the smectic A* or smectic C*
structure of their blocks. The TGB phases having a helical pitch shorter than light
wavelength are optically isotropic. Such substances, especially based on side-chain
polymers with photochromic moieties are interesting for optical information
recording and applications to holography.

4.11 Spontaneous Break of Mirror Symmetry

This phenomenon has been discovered in the liquid crystal phases consisting of
so-called banana (or bent-core) shape molecules [17, 27]. A mechanical model in
Fig. 4.39a illustrates the idea. Each of the two dumb-bells has symmetry D, with
infinite number of mirror planes containing the longitudinal rotation axis and one
mirror plane perpendicular to that axis. Imagine now that one of the dumb-bells is
lying on the table and we try to put another one on the top of the first one parallel to

TGBA phase
gl
Fig. 4.38 Schematic picture I
of the block structure of the 11 | \\
twist-grain-boundary smectic W \\
A* (TGBA) phase
a b
w
homogeneous
achiral
Left phase
0
TNE
i Left right
Right N domains

Fig. 4.39 A mechanical model of two interacting dumb-bells illustrating a break of the mirror
symmetry (a) and the potential curves with two minima corresponding to two possible azimuthal
angles between the dumb-bells (b). The same curves qualitatively illustrate the energy of the
achiral phase and two chiral domains (left- and right-handed) as functions of the tilt angle ¥ of
molecules in the smectic layer
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the other. Such a construction, although unstable, would have mirror symmetry. In
reality, the dumb-bells will form a kind of a chiral propeller, left or right, shown in
the figure. The reason is that the gravitational potential energy of the upper dumb-
bell is lower in a chiral construction. Due to this, the mirror symmetry is broken.
Since the formation of right- and left-hand propellers is equally probable, the
potential energy roughly has a shape of a two minima curve, see Fig. 4.39b, that
will also be discussed below.

Something similar happens with achiral banana or bent-shape molecules. Chem-
ical formula of a typical compound is given in Fig. 4.40. In this particular case, the
dipole moment is approximately directed from up to down. The molecules have
banana-like shape and located within the plane of the drawing forming a single
layers with long molecular axes perpendicular to the smectic plane, Fig. 4.41. Such
amonolayer is achiral and can be unpolar (a) or polar (b). Note that the polar achiral
layer possesses spontaneous polarization Pg located within the figure plane and
directed depending on the sign of molecular dipole moment (to the right in the
figure). If the direction of P can be switched by an external electric field between
two stable positions the monolayer is ferroelectric. A stuck of unpolar or polar
layers may form either an unpolar or polar smectic phase. An example (a polar
phase) is shown in Fig. 4.41c. Packing of polar layers with opposite in-plane
directions of P results in the antiferroelectric phase, like in chiral antiferroelectrics
(see Chapter 13).

you
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Fig. 4.40 Chemical formula of a typical bent-shape molecule. The electro-negative CI atom is
responsible for the molecular dipole moment directed approximately down close to the vertical
axis

Fig. 4.41 Structure of single
non-polar (a) and polar

(b) smectic layers formed by
bent-shape molecules: the
longitudinal axes are aligned
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Fig. 4.42 Breaks of the mirror symmetry by the molecular tilt. Due to the collective tilt of
molecules the zy plane is no longer a mirror plane. Three vectors, namely, molecular dipole
moment Py, the normal to the layers h and the director n form the right-handed triple of vectors.
For the tilt angle equal to (—1J) the triple changes the sense of chirality, i.e. becomes left-handed.
As a result, right-handed and left-handed domains are observed

Table 4.2 Symmetry and structural features of the most popular thermotropic liquid crystal
phases consisting of rod-like molecules (for the nomenclature we follow [28])

Symbol Symmetry Structural features

T orIso Ky, x T(3) Ordinary liquid phase with full rotational and translational
symmetry

I (chiral) K x T(3) Liquid consisted of chiral molecules showing rotation of linearly
polarized light

N Doon X T(3)  Uniaxial nematic phase possessing long range orientational order
and no translational order

Ny Do, x T(3) Biaxial nematic phase possessing long range orientational order
and no translational order

N* or Ch D, x T(3) Chiral nematic or cholesteric phase with twist axis perpendicular
to the director and macroscopic periodicity

SmA Doon X T(2)  Uniaxial lamellar smectic A phase possessing one-dimensional

periodicity along the director (i.e. layer normal). Quasi-long-
range positional order along the layer normal and two-
dimensional liquid-like order within the layer plane

SmA¥* Do, x T(2) Optically active, chiral version of SmA phase

SmC Con x T(2) Optically biaxial, tilted, lamellar phase: the director forms an
angle with the normal to layers. Quasi-long-range positional
order along the layer normal and two-dimensional liquid-like
structure within the layer plane

SmC* Cy x T(2) Optically active chiral analogy of SmC phase showing
macroscopic periodicity with twist axis perpendicular to
smectic layers. Quasi-long-range positional order along the
layer normal and two-dimensional liquid-like structure within
the layer plane. Single layers of the same symmetry may form
different phases in the bulk: ferroelectric (SmC¥*),
antiferroelectric (SmC,*) and ferrielectric (SmC,*).

TGBA¥* or Do, x T(2) or Twist-grain-boundary (chiral) phases consisted of twisted grains

TGBC* C, x T(2) or blocks of the smectic A* (or C*) phases with defect walls
(boundaries) between them
SmBjex Dgn, x T(1) A stack of interacting hexatic layers with three-dimensional, long-

range, sixfold, bond orientational order and liquid-like
positional correlations within the layers

(continued)
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Table 4.2 (continued)
Symbol Symmetry Structural features

SmF Con x T(1) Tilted analogy of the hexatic phase. A stack of interacting hexatic
layers with three-dimensional, long-range, sixfold, bond
orientational order and liquid-like positional correlations
within the layers

BPI 0’ x T(0) Blue phases BPI (body-centered cubic) and BPII (simple cubic)
BPII 0? x T(0) are chiral phases with three-dimensional macroscopic
BPIIL Unknown periodicity and liquid-like molecular correlations. Three-

dimensional photonic bandgap crystals showing optical
activity but no birefringence. BPIII is lower symmetry “foggy”
phase strongly scattering light

By, B,,...,B, Unknown Series of achiral phases formed by banana- or bent-shape
molecules. The phase symmetry reduces with suffix 7.
Manifest spontaneous brake of mirror symmetry and
interesting ferroelectric and antiferroelectric properties

SmB,, Dgn x T(0) Crystalline lamellar phase with upright molecules and hexagonal
lattice. True three-dimensional positional order. Soft crystal
with small shear elastic modulus

SmE D, x T(0) Biaxial crystal with upright molecules having true three-
dimensional positional order. Rectangular in-plane lattice and
herringbone packing of molecules (orthorhombic syngony).
Soft crystal with small shear elastic modulus

Now we are ready to discuss spontaneous break of mirror symmetry. An achiral
phase is spatially uniform and has mirror symmetry, i.e. its potential energy has a
minimum located at zero tilt angle 1, see Fig. 4.39b. With decreasing temperature,
the same molecules can acquire a collective tilt, some of them become tilted to the
left with respect to the smectic layer normal (positive ¢ in Fig. 4.42), the others to
the right (negative ¢) in equal amounts. In fact, due to the tilt a triple of non
coplanar vectors occurs, the vector of layer normal h, the vector of polarization P
and the director n, that is necessary condition for chirality. This results in a break of
the uniform structure and formation of right-handed and left-handed ferroelectric
domains. Now the potential energy has two minima at the tilt angles +¢ and —J for
the two types of domains, like in Fig. 4.39b. The banana phases manifest remark-
able electrooptical properties; for example, upon application of a d.c. voltage, the
directors rotate in opposite direction in the domains of opposite chirality.

In conclusion of this chapter we demonstrate Table 4.2, in which the most
important liquid crystal phases and their structural properties are listed.
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Chapter 5
Structure Analysis and X-Ray Diffraction

5.1 Diffraction Studies and X-Ray Experiment

5.1.1 General Consideration

The diffraction of the electromagnetic waves or the de Broglie waves of electrons
and neutrons on a liquid, liquid crystalline or crystalline structures results in a
characteristic pattern from that one can restore a distribution of density in space or
density function p(r) [1, 2]. What kind of density we speak about?

The electron density is probed by electromagnetic waves, as in optics. In fact, the
same theory of light diffraction and dispersion is relevant to the X-ray diffraction
for wavelengths comparable to the size of atoms. For X-rays, the wavelength Ay ~
05-1 A depends on material of the anticathode in an X-ray tube. In a synchrotron,
the electromagnetic wave spectrum is very large and determined by the speed of
moving electrons. From the experiment we can find the density (or number) of
electrons in atomic shells.

An electric potential of a substance is probed by charge particles emitted, for
example, by an electronic gun or an accelerator. The electron beam is scattered by
the electric potential of positive nuclei and negative electrons and the maximum
positive potential corresponds to the center of an atom. The electrons in the beam
have the de Broglie wavelength A. dependent on their velocity v, i. e. on the
accelerating voltage V, namely, eV = m,v, 22 = W

Ao = h/mev - h/(ZmeW)l/z. (5.1)

Here m, is electron mass and 4 is Planck’s constant. Hence, for electron energy
W =1 eV-10 keV, the wavelength is A, ~ 10-0.1 A. From this diffraction
experiment we can find the distribution of the electric potential correlated to
some extent with the distribution of the mass density. Another technique for
mapping the local electric potential is Atomic Force Microscopy [3].

The distribution of the mass of nuclei almost equal to the full mass density is
probed by neutron beams. To this effect, one can use the so-called thermal or cold
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neutrons with energy W = 0.05 eV provided by nuclear reactors. The corresponding
wavelength is in the proper range for structure analysis, A,, = 1-1.5 A, because the
mass of a neutron is large, m, = 1840m,.

All these techniques have certain advantages and disadvantages. The electron
diffraction experiment requires for vacuum or low pressure gas, and thin films, very
often on conductive substrates (otherwise the surface is charged by incoming
electrons). On the other hand, the interaction between charges is very strong and
one may operate with small samples and short expositions and, due to short
wavelengths, the spatial resolution can be very high. In addition, the data process-
ing is sometimes simpler due to a small curvature of the Ewald sphere to be
discussed later. Using electrons even light atoms like hydrogen are well seen.

Neutron diffraction requires for larger samples (linear dimension about 1 cm)
and the reactors producing short lifetime (minutes) cold neutrons are expensive. On
the other hand, in contrast to X-rays, neutrons are sensitive to isotopes and atoms
with slightly different atomic mass, such as Co and Ni. In addition, a neutron has an
intrinsic magnetic moment about two Bohr magnetons, p,, = 1.9 pg. For this
reason, neutrons strongly interact with magnetic moments of electrons and nuclei.
Thus, a neutron experiment provides a unique possibility for studying different
magnetic structures, spin effects, para- and ferro-magnetism. However, the X-ray
technique is the most universal for the structure analysis. In fact, the majority of
structures of crystals from the simplest ones to those formed by protein molecules
were found by the X-ray diffraction.

5.1.2 X-Ray Experiment

One can use conventional low intensity sources (X-ray tubes) providing very narrow
spectral lines, but low intensity. A set-up consists of an X-ray tube (X), beam
collimators (C), one or several monochromators (M), a detector (D) and a data
acquisition system (PC). A sample is installed in a camera with controllable tempera-
ture, Fig. 5.1. In the case of a liquid crystal, a magnetic or electric field is necessary
for the sample orientation. Historically, for a long time, fluorescent screens and

Fig. 5.1 A set-up for a study of X-ray diffraction on liquid crystals: X-ray tube (X), beam
collimators (C), mirrors (M), a detector (D) and a data acquisition system (PC). A sample is
represented by a stack of parallel layers placed in a camera with controllable temperature installed
between the poles of a magnet
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photographic films were primary tools for detecting X-rays. The latter are two-
dimensional, very cheap and sensitive but their processing requires densitometers
for the image digitizing. Since few decades, point detectors have been using every-
where based on the proportional and scintillation counters both one- and two-dimen-
sional. Automatic two-dimensional detectors are very convenient because they grasp
the entire diffraction pattern and save a lot of time.

Nowadays, however, synchrotrons are available that provide million times
higher intensity and wide spectrum of the polarized emission. One can use different
wavelength ranges and short expositions when studying dynamic processes. Of
course, there are not so many synchrotron accelerators all over the world but they
have many output beams, as shown in Fig. 5.2, and attached are many experimental
stations. Such a work is usually organized at the international level.

What does an X-ray diffraction experiment bring about? In fact, a lot:

1. Number of diffraction peaks on a diffractogram, their precise positions and the
symmetry of the pattern

2. The peak amplitudes / and areas A under peaks as functions of temperature,
pressure, external fields, etc.

3. The peak profile that is the profile of the diffraction intensity /(¢) within a
particular diffraction spot, which is a function of the diffraction angle or
scattering wavevector g. The key problem of X-ray analysis is how to relate
1(g) to the electron density function or density correlation function that takes into
account thermal fluctuations.

5.2 X-Ray Scattering

5.2.1 Scattering by a Single Electron

Protons and electrons are charge particles interacting with electromagnetic waves
and their number and particular location determine the amplitude of scattered waves.
As the electrons are very light they contribute much stronger to X-ray scattering than
protons (nuclei). In fact intensity of scattering is even measured in electron units.
Therefore, scattering by a single electron deserves a brief consideration.

radiation

Fig. 5.2 A geometry of
electromagnetic wave
emission from an accelerator
of relativistic particles
(synchrotron). R is radius of
the synchrotron ring. X-ray
emission in the form of the R orbit of
cone is delivered to one of the electrons
many experimental stations
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Let linearly polarized, plane electromagnetic wave of amplitude E; is incident
on a free electron, Fig. 5.3. The equation of oscillatory motion of the electron about
the centre of coordinate is:

m,(d*r/d*) = (m,/e)(d*d/dt*) = eEq cos(wt + o) (5.2)

where vector r is displacement of the electron that creates a dipole momentd = er.
The current produced by moving electron is proportional to its velocity v, i.e.
Jj = ev = dd/dt, which, in turn, is a source the electromagnetic field in point P [4].

62
WRO [(E() X n) X n] (53)

E [(dxn)xn]=

CZR 0

Vector (Eg X n)is perpendicular to vector n and has modulus Egsiny where
v=(n/2)—06. Therefore, the modulus of the scattered field amplitude is Eycos26.
Note that the angle between the wavevectors of incident and scattered wave is
assumed to be 20 according to the convention adopted below (see Fig. 5.4) and used
throughout the book.

The energy flux is given by the Pointing vector

S = (c/4n)E™n (5.4)

and the dipolar emission energy incident on a small surface element df = R3dQ in a
solid angle dQ is given by dW = Sdf = (c/4n)E’R3dQ. After substituting E* = E?
from Eq. 5.3 we find the intensity of the scattered, polarized wave.

42

E
AW = —£20_ 6622040 (5.5)
drm?c3

Fig. 5.3 Geometry of
scattering linearly polarized
electromagnetic wave by a
single electron. The incident
wave field Eq causes
oscillatory displacement r of
an electron and the scattered
wave is detected in point P

Fig. 5.4 Tllustration of an
electromagnetic wave
scattering by two material
points: ko and k are vector of
incident and scattered waves,
q is vector of scattering
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Now, normalizing Eq. 5.5 by the Pointing vector of the incident wave E, we find
the differential cross-section of one-electron scattering:

do, = (ez/mecz)2 c0s 20dQ (5.6)

The emission of the dipole is symmetric with respect to the dipole axis x,
Fig. 5.3, and has the oo-form in the xz plane (no emission exactly along the
x-axis). It is spectacular that the cross section is independent of frequency.

In order to obtain the fotal cross-section of scattering we should integrate the
diagram over ¢ from O to 21 and over 2?9 from 0 to « in the polar coordinates with
the vertical polar axis x. The angle y=(1t/2) — 20 will be a polar angle and angle ¢
an azimuthal angle in the zy plane. Then, with a volume element dQ=sinydyd, the
integral [ sin*ydydyp = 87/3 and the overall scattering cross-section of an electron
irradiated by a linearly polarized light is given by the Thomson formula:

81 [ & 2
c, = 3 (m c2> 5.7

Since we are mostly interested in scattering unpolarised X-ray radiation we
should average Eq. 5.7 over all directions of vector E perpendicular to the direction
of the wavevector of the incident wave kj, i.e. around the z-axis. Then we find the
differential cross-section of one-electron scattering in unpolarized light:

do, = %(ez/mECZ)z(l + c0s°20)dQ (5.8)

As to the total cross-section of scattering by free electron irradiated by unpo-
larized light, it is described by the same Thomson formula (5.7) that is easy to check
by integrating (5.8) over 20 (from 0 to ) and over @ (from 0 to 2m).

5.2.2 Scattering by Two Material Points

Let the plane wave with wavevector Ky is incident onto two scattering points fixed
at O and O, see Fig. 5.4. The center of the reference polar coordinate system is at
point O and point O’ is characterized by radius-vector r. Both points are sources of
secondary spherical waves propagating in all directions (Huygens’ principle). The
mechanism of scattering is not important because now we consider a very general
geometry of wave scattering, not its amplitude. Consider a wave with wavevector k
scattered by two points at angle 20 with respect to kg and introduce the wavevector
of scattering (or diffraction) as a difference between the two vectors

q=k—ko (5.9)
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It is equal to the momentum taken by a fixed material point. In our case, modulus
Ikl = kgl (i.e. A=Xp). This corresponds to elastic scattering because the points do
not take energy from the photons and the light frequency remains unchanged.
Hence, as seen from the figure the scattering wavevector amplitude is

47 sin 0
q:ZkosinO:% (5.10)

and the scattering angle between incident and scattered waves is 20.

This is very general equation that will be used further on. From the same figure
we can extract another useful relationship between the q-vector and the wave path
difference A accumulated along the distance between the particles. It is just a
difference of two scalar products:

A =kr —kor = (k —ko)r = qr (5.11)

5.2.3 Scattering by a Stack of Planes (Bragg Diffraction)

Let an electromagnetic wave is incident on the system of two parallel planes at an
angle 0 with respect to the planes. Then, as seen in Fig. 5.5, the scattering vector is
again described by Eq. 5.9. Now, let us introduce a new vector, a wavevector of the
structure with period d: gy = 2mn/d. Then, at a certain “resonance” angle 0, the
wavevectors of scattering and structure coincide:

(4n/A\)sin By = 27/d or 2dsinfy = A (5.12)

The same condition can easily be found by comparison of the wave path
difference 2dsind with wavelength A.
For a stack of layers we will have m multiple reflections and equation

mh =2dsin®y, m=1,2,3.. (5.13)

Fig. 5.5 Bragg scattering (or
reflection) of an
electromagnetic wave by a
stack of parallel planes in
vacuum (d is period of the dsin® ky* I
stack structure, q is vector of d
scattering)
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called Bragg (sometimes Bragg-Wulf) formula for the diffraction (resonance)
angles of X-ray scattering from the stack of planes. For example, it could be crystal
planes (& k ) or smectic layers with interlayer distance d.

This interlayer distance can be found as d=A/2sin?, from the X-ray experiment
measuring the angle of the first-order diffraction spot (m = 1) or from higher order
reflections. It is convenient to plot the diffracted beam intensity as a function of ¢;
then different diffraction orders are located at equidistant positions, as shown in
Fig. 5.6:

g = (4n/)) sind = mqy = 2nm/d

Note that Egs. 5.9-5.11 tell us nothing about the amplitude of waves and the
intensity of scattering because we used only the momentum conservation law.

5.2.4 Amplitude of Scattering for a System of Material Points

Generally, the amplitude of a wave scattered by material point O and measured at
any distant point P (R) corresponds to the Huygens principle:

1
Fp = ofoexpikR (5.14)

and is determined by a scattering efficiency f, of the point O (depending on its
electron mass), a distance R between the scattering center and point P and a
wavevector k of a scattered wave (through multiplier exp/kR). Below we shall
disregard term (1/R) (it may be taken into account if necessary) but always operate
with vector of scattering q = k — k¢ having in mind that k, has fixed direction
along the selected coordinate axis. It is vector q that is responsible for all the
interfering scattered beams propagating in direction to point P as was shown for two
scattering points, see Eq. 5.11.

Consider now N scattering points having different scattering efficiency f; and
located at different distances r; from one of the scattering points O selected as

1 Smectic A

18! order

Fig. 5.6 Illustration of the
Bragg diffraction with the
qualitative angular diffraction j\ 3rd

spectrum of the smectic A
phase 0 % 2q0 3 q
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a b
Z 0l
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Na
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0.2 0.4 0.6 0.8 1
sin /A (A1)

Fig.5.7 (a) Geometry of scattering by several objects with vectors r; between them and the beams
scattered in direction to point P; (b) angular dependencies of scattering intensity by different
atoms. The plot shows strong scattering in forward and back directions and the weak scattering in
the direction perpendicular to the incident beam

areference, Fig. 5.7a. All these points contribute to scattering in q direction defined
by Eq. 5.10. Then the amplitude of the field of N scattering points “measured” at
point P is superposition of all N- amplitudes:

N
Fp(q) =) _fiexpi(qr)) (5.15)

J=1

Here q is the wavevector of scattering defined by Eq. 5.9 for two material points.
Now we make a generalization, i.e. consider a body with continuous density of
scattering points p(r) (that is density of electrons, atoms and molecules). Then the
scattering amplitude is an integral over the scattering volume in the three-dimensional
r-space shown by dash line in Fig. 5.7a:

F(q) = Jp(r) expi(qr)dv (5.16)

Thus, the amplitude of scattering in point P is just a Fourier integral of the
electron density function (generally complex). The variation of the position of point
P means variation of scattering vector q, therefore suffix P at Fp(q) is skipped. At
each q we collect total amplitude of scattering from all the body with density p(r)
usually situated far from point P. In the Cartesian system:

F(q) = m p(x,y,z) expi(qex + qyy + g.z)dxdydz (5.17)
\%4
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5.2.5 Scattering Amplitude for an Atom

An atom has a spherical symmetry, therefore p,(r)= p,(r). However, the incident
beam propagating along the x-axis breaks the overall spherical symmetry of
scattering. In the spherical reference system, with radius r, polar angle ¥ (0—m),
azimuthal angle \y (0 — 21), a volume element is dV = r* sint) ddd\rdr and A=qr
~ grcosv. The integral (5.16) is triple integral and, at first, we integrate with respect
to J:

T o o .
eiqrcosﬁ sinddd = — ieiquOSﬂrr: 3 eldr — e’ _ 2sin qr
iqr 0 qr 2i qr
0
Next integrating with respect to ¢ results in 2. Now we should integrate (5.16)
with respect to r and find the angle (or ¢-) dependence of the field intensity scattered
by an atom

ST (5.18)
qr

Flq) = j4m~2pa<r>
0

We see that the scattering amplitude depends only on the modulus of q and is
spherically symmetric in the g-space. Since p,(r) is unknown there is no universal
formula for each atom but we can analyze two asymptotic cases:

forq — 0, singr/qr — land F(0) = J4nr2pa(r)dr = J p,(r)dV =2
o o

and
forq — oo, singr/qr — 0, F(q) — 0.

Indeed, according to (5.10), for a finite Ao, the case of g—0 means 6—0 (forward
scattering) the scattering amplitude is proportional to the number of electrons Z in
the atom. It means strong forward scattering as in case of a single electron. The
intensity of scattering will be proportional to Z2. However, for directions strongly
perpendicular to the primary beam the scattering is absent. This is a result of
interference of different scattered waves from individual electronic oscillators.
The calculated angular dependencies of scattering intensity for different atoms
are shown in Fig. 5.7b (in electron charge units) [2]. Since sinB/A=g/4m, see
Eq. 5.10, the abscissa is, in fact, the vector of scattering.
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5.3 Diffraction on a Periodic Structure

5.3.1 Reciprocal Lattice

Now we consider periodic crystalline structures. The simplest case is one-dimensional
structure realized, for instance, in the smectic A phase, see Fig. 5.8a: the density is
periodic along x with period a, and wavevector ¢ = g, = h(2n/a), h is an integer.
Then the density function can be written as

p() =3 6(x — ha)

and in accordance with (5.16) the scattering amplitude is given by

o0

Fla) =Y gja(x — ha)edy =13 e,

h=—00

As exp(ig,ha) = 1 only for g, = 2n/a (otherwise it equals 0) the same equation
may be rewritten as
1 & 2n
Fi(q:) = Flg) == > 0lqy——h) (5.19)

—00

Therefore, F(g) is a set of the d-like peaks on the g-scale separated by distances
2n/a! These peaks form a one-dimensional reciprocal lattice with basic vector 2n/a,
shown in Fig. 5.8b.

In the three-dimensional-lattice, there are three basic vectors a, b, and c,
Fig. 5.9a, and we can introduce a concept of the reciprocal three-dimensional
lattice. It is a lattice in the wavevector space having the dimension of inverse length
for each coordinate in the inverse space. Such a lattice may be built by translations
of the elementary cell shown in Fig. 5.9b. The basic vectors of the reciprocal lattice
are a*, b*, ¢* and the vector of the reciprocal lattice is given by

H= Hhkl = ha* + kb* + Ic* (520)

1D lattice

p(x) | « .

1D reciprocal lattice

0 : O
X 2n/a [75%

Fig. 5.8 Periodic density distribution (density wave) in one-dimensional crystal (a) and one-
dimensional direct and reciprocal lattices with periods a and 2m/a (b)
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Fig. 5.9 A crystal lattice cell a b
built on the a, b, ¢ vector basis A
(a) and a cell of the reciprocal c
lattice based on vectors a*, b*,
c* (b)
(O 74N
AN ar

I
I c* o
[}
1
X-ray 1 oa*
b
o 1
° ™
b electrons

Fig. 5.10 Projection of the Ewald sphere on the a*,c* plane in reciprocal lattice for crystal
irradiated by X-rays (solid semicircle) and electrons (dash line). Radius of the sphere is 27/A.
Lattice vector H connects two points of the reciprocal lattice. When vector of scattering (k — ko)
coincides with H, a strong diffraction is observed at a particular angle defined by Eq. 5.10

where h, k, [ are integers. Vector H is a fundamental characteristic of a three-
dimensional crystal. In the simplest case of a rectangular cell, the reciprocal lattice
has periods 2n/a, 2n/b and 2m/c. For crystals of other symmetry, a* = 2n(b x ¢)/
(a-b x ¢),b* = 2n(c x a)/(a-b x ¢),and ¢* = 2n(a x b)/(a-b x c¢) where we see
in denominator the mixed product of the three vectors corresponding to the volume
of elementary cell.

When the crystal is irradiated by an X-ray beam, its lattice scatters the radiation
selectively. A strong diffraction is observed when the wavevector of scattering for a
particular angle (i.e. q) coincides with the vector of reciprocal lattice, as shown in
the Ewald sphere, Fig. 5.10. The condition

q:k—k():H

means the conservation of linear momentum of electromagnetic wave. Then,
according to (5.16) the amplitude of scattering is given by

1 .
Fhkl = V J p(l") exp erhkldV (521)

V.

where integrating is taken over the volume V.. of a single crystallographic cell in the
direct space.
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Hence, for the elastic scattering, the ends of the scattering vector of the scattered
beam k must coincide with the points of the reciprocal lattice determined by the
three-dimensional Ewald sphere [1] of radius k = 2m/A(. The center of the sphere is
defined by the direction of k¢ (horizontal in the figure) and one of the points. The
X-ray wavelengths are close to the periods of crystal lattices and the sphere
curvature is large. For electrons, the wavelength is much shorter, the sphere radius
of the corresponding Ewald sphere is longer and the sphere surface in the figure is
very flat.

5.3.2 Intensity of Scattering

Consider a three-dimensional crystal. For the scattering amplitude of a discrete
system of j atoms in an elementary cell we can write a formula similar to (5.15):

N
Fug =Y _frexpi(Hyr)), (5.22)
j=1

Now the summation is performed over all atoms in one cell and f; is scattering
efficiency of a particular atom. The vector Hy,; determines the angular positions of
the diffraction spots, the coefficient f; determines their form, i.e. the angular
distribution of the scattering intensity within the spot. But how to estimate the
scattered field intensity related to the energy dW/dQ scattered at a certain angle +J in
a unit solid angle?

The magnitude of the energy flux O = dW/dQ scattered by an object is deter-
mined by the number of electrons in the object, their spatial configuration and the
differential cross-section of scattering by one electron, given by Eq. 5.8. The latter is
normalized to the energy of the primary X-ray beam and is independent of the
distance between an object and a detector. From the measurements of the flux we
can find the scattering efficiency of an atom f;, molecule or any object. The spatial
configuration of electrons determines the scattering amplitude (electric field strength)
at the detector and the flux of the energy is proportional to the squared modulus of the
complex amplitude that is IF (q)l2 = F(q) F*(q). Therefore, for incident flux of
unpolarized beam Qy = 1, on account of (5.8), the scattered flux is given by

= F(a)

2\ 1+ cos229 )
mc?

0(q) = (

The differential intensity calculated in that way is related to a point in the
diffraction pattern corresponding to wavevector (. Usually, all multipliers are
excluded, although they can be taken into account when necessary (for example
c0s?219), and the scattering intensity /(q) is expressed in relative, “electron units”
[electronz] as follows:

I(q) = |F(q)]> = F(q)F"(q) (5.23)
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The intensity can be found from the X-ray diffraction experiment and the result
compared with calculated diffraction pattern that is angular spectrum of the scat-
tered X-ray intensity. To this effect, we should make a Fourier transform F(q) of the
density function p(r) i.e. find the scattering amplitude and then take square of it,
I(q) = IF*(q)l. This works well for solid crystals, but is not always convenient for
liquids, liquid crystals and other soft matter materials in which the thermal fluctua-
tions play a very substantial role. In such cases, the so-called density autocorrela-
tion function appears to be more convenient. However, before to proceed along that
way, we should separate two sources of scattering.

5.3.3 Form Factor and Structure Factor

These are key functions in the X-ray analysis. Let us take Eq. 5.15 for the scattering
amplitude of N scattering objects, e.g. by molecules forming a molecular crystal,
and write the scattering intensity

N N
I(q) = F(@F (q) = Y _ Y _f(Q)fi(a) expig(r; — ri)
Tk

Here r; and ry are the same vectors corresponding to the distances shown in
Fig. 7a and sign minus at ry comes from the complex conjugation. Both summations
are made from 1 to N. The same equation may be presented in another form:

N N N-1

1(q) = > _fi@fi(a) expia(ry —r) + Y > fi@)fi(a) expig(rj —ri) (5.24)

j=k # ok

In the first N terms j = k, q(rj — r) = 0 and, this sum corresponds to the
intensity coming from the individual atoms or molecules without interference or
diffraction. Such scattering and corresponding terms exist even in the gas phase
(so-called, “gas component”). Thus f;(q)fi(q) = F}o,,m(q) is a smooth decaying
function of q like the square of the atom scattering amplitude shown in Fig. 5.7b.
The second term includes N — 1 times more terms than the first one and has very
sharp maxima at q(rj — r) = 2r due to periodicity of the crystal lattice. For

identical objects we may also extract fify = F 2f(,,.m(q) from the second sum symbols:

N_(N-1)
I(q) = NF},,,(@) +NF;,,,(@) Y > expiq(r; —ry).
#ok
The normalized intensity is given by

1(a) S ey
i@ ; ij expiq(r; — 1) = S(q) (5.25)
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where S(q) is a structure factor determined by relative positions of the objects
(atoms or molecules) in a medium of given symmetry and the character of their
positional correlations. The normalized scattering intensity is given in “electron”
units.

From (5.25) we may conclude that the total intensity of scattering of a crystal is a
product of a sharp structure factor and a smooth form-factor that is a series of sharp
peaks with a smoothly decaying envelope fif;. The structure factor can be found
from the experimental angular dependence of the scattering intensity. But what is
the relation between structure factor S(q) and density function?

Theoretically they are related by the Fourier transform

S(q) = JG(r) exp(iqr)dV (5.26)

of a new function, the so-called density correlation function G(r). According to
(5.26) a diffraction structure factor S(q) related to intensity pattern may be calcu-
lated form the known G(r) function by direct Fourier transform (this is a direct
problem of the X-ray analysis). On the contrary, the density correlation function
G(r) may, in principle, be calculated from the measured function S(q) by the
inverse Fourier transform (an inverse problem). Below we shall use these proce-
dures, but, at first, let us consider the Fourier transforms and related operations
more carefully.

5.4 Fourier Transforms and Diffraction

5.4.1 Principle

We know several important examples of the Foutier transform in physics. For
instance, the time evolution of the electric signal f(f) may be related to the
frequency specrum F() of the same signal by a Fourier transform. In the diffrac-
tion study we relate spatial periodicity of a density p(r) to the spectrum of the
wavevectors (or angular spectrum) F (¢) of the same structure. The direct Fourier
transform of density function is given by operation:

Fl@) = [ o) explian)av = 30 (5.27)
14
The inverse Fourier transform of scattering amplitude is given by:

1 1
= s jF(q) exp(—iqr)dq = S~ o] (5.28)
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Note that factor (21)* correspond to three-dimensional (3D) case. For 2D and 1D
cases we would have (2m)* and (21), respectively. However, very often the factor
(2m)® is skipped at all. The direct and inverse Fourier operators applied consecu-
tively restore the initial density function.

3 [S[p(0)]] = p(r)

We meet this case in technics. For instance, in an optical microscope, lenses
fulfil the direct and inverse Fourier transforms: the light is focused by a condenser
onto the object, then diffracted, then collected by an objective, and finally the image
is taken by a video camera and seen on a screen. The form of the object is seen as an
intensity pattern that is a flat distribution of the optical density, because the phases
of the waves forming the image are lost. A holographic technique, which always
uses an interference of scattered rays with a reference beam having a known phase,
allows the restoration of a volume image of the object.

Unfortunately, some important information is also lost in the X-ray diffraction
experiment:

1. The phases of scattered rays are not recorded

2. As density p is real quantity, F(q) = F(—q), the scattering pattern is always
centrosymmetric (Friedel theorem)

3. A possible range of vectors of scattering ¢ = (4r/A)sind is limited by ¢« = 4
/A

4. An absence of lenses for the X-ray range restricts X-ray applications in compar-
ison with optics

Therefore, it is very difficult to solve the inverse problem mentioned above, that
is to find p(r) from the data on scattering intensity /(q), and one usually tries
different p(r) or G(r) model functions with subsequent calculations of S(q) and
then /(q) for comparison with experiment. Below we consider few examples of such
direct problem solutions.

5.4.2 Example: Form Factor of a Parallelepiped
Consider diffraction by a single transparent parallelepiped with edge lengths
A, B, C, Fig. 5.11a.

—A/2<x<A/2,-B/2<y<B/2,-C/2<z<C(C/2

Assume density p=const within the parallelepiped and p=0 outside of its
volume. According to Eq. 5.17, the scattering amplitude is

A2 B2 CJ2

F(q) = J J J pexpi(qex + qyy + g.z)dxdydz
—AJ2 —B/2 —CJ2
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The integral over —A/2 < x < A/2:

AJ2
. p . A/2 sin(Aqy/2)
dx = — : =Ap———>=ApA:(A, g, 5.29
P AJ/Z €Xp 1gxadx lq} eXP(lq,xX)LA/z p (Aqx/z) P ,\( 7‘])) ( )

The plot of scattered field amplitude A, is shown in the upper part of Fig. 5.11b.
It is the so-called sine-integral function. The scattering intensity is shown in the
lower part of the figure. Integrating over the y and z co-ordinates we obtain the
three-dimensional scattering amplitude F(q)= pVAAyA, and intensity I(q)=
PP VA(AA A

Note that, for infinitely thick parallelepiped (A— o0), there is no diffraction, only
directly transmitted beam is left and the integral becomes d-function. Generally, the
larger parallelepiped dimensions the narrower is the central peak. We shall come
back to this point when discussing the diffraction on thin layers of a smectic
A liquid crystal.

Consider two interesting particular cases shown in Fig. 5.12:

1. In the top left sketch, the parallelepiped is degenerated into the infinitely thin
plane with dimensions A—oo, B—o00, C—9d(z). All its density is concentrated in

a b
A -1
B
A Ax
— et
Fig. 5.11 Geometry of the c
parallelepiped discussed (a)
and the patterns (b) of the
diffraction amplitude (above) Ay
and intensity (below)
a Tb
z Perec0 z P00
| —
é 2 ? y
- y
X | X
q
: /F 0000 FococO
qdz
Fig. 5.12 Fourier transforms q #1
(lower drawings) of a plane q v > v
into a line (a) and a line into a x | q
plane (b) € x
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plane x,y that symbolically can be written as p....0 Then, scattering field
amplitude F(q) = Fooo is degenerated into a line along the z-axis, as shown
in the bottom left sketch. The square of the field amplitude corresponds to the
form-factor of an infinite square (or roughly speaking, to a very large square-like
molecule).

2. Density pgoso i concentrated along the z line, C—o0, A—8(x), B—06(y). Then
F(q) = Fococo, that is the scattering amplitude is degenerated into the gy, gy-
plane with A, —d(q,), see right sketches. The intensity pattern corresponds to
the form-factor of an infinite rod (or, roughly speaking, to a very long rod-like
molecule).

5.4.3 Convolution of Two Functions

The structure of a molecular or a liquid crystal is a result of convolution of two
density functions, the density of a group of atoms in a molecule and periodic density
function of a lattice. Let us look at the convolution procedure. By definition, the
convolution of two functions f;(x) and f>(x) is given by the expression

0(x) = i (x) fal) = jfl ()l — )Y (5.30)

Here, the asterisk means the convolution operation. Such a convolution gives
distribution of one function over a law given by the other. For example, on the
top of Fig. 5.13 there are two functions of the same variable x, function f;(x) and
function f>(x)=08(x — a) located at different positions on the x-axis. After their
convolution and using [~ _d(x)dx = 1, we shall get

T fA()o(x —a—xdY =fi(x —a) T O(x —a—x)ax' =fi(x — a),

a |
1 8(x-a)
) , 07/
Fig. 5.13 Convolution a X
operation: function f;(x) b
convoluted with the other ; ;
function d(x—a) occupies the P (x—a)
position of the second i /\ —

function on axis x a X
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and function f;(x) is translated into function f;(x — a) keeping the same form, as
seen in the lower plot. If the second function consists of two delta functions, f>(x)=95
(x — a)+ d(x — b), we find our function fi(x) at both new positions, a and b, i. e.
f1(x) will be doubled. An arbitrary smooth function f>(x — x,,) can be represented as
a sum of n columns of different height or, more strictly, an infinite sum of delta-
functions f>(x — x,)=Xa,0(x — x,) (n=00). Then f;(x) will be distributed over the
whole sets of the columns, that is over the law given by the fo(x — x,,) function.

Going back to solid or liquid crystals we can say that the convolution procedure
distributes molecular density over the sites of the crystal lattice. On the left side of
Fig. 5.14, the two functions, the electron density of a molecule p,,.(r) and discrete
points of the lattice density piaice(r) =Z(r; — r;j) are shown separately (before
convolution). On the right side we see the result of their convolution. Note that the
convolution operation f;(x)* f>(x) is dramatically different from the multiplication
operation f(x)f>(x). An example is illustrated by Fig. 5.15, in which function f5(x) is
the same pjaice(r) function as in the previous picture and f;(x) is the so called box-
function. The latter is equal to 1 within its contour and 0 outside. The multiplication
selects only few d-functions from the whole lattice. On the contrary, the convolu-
tion translates pne into new functional space, namely the space of pjagice-

For the future discussion of the liquid crystal structure we need two important
theorems. The first of them, the theorem of convolution is formulated as follows: a
Fourier transform of convolution of two functions f1(x) and f>(x) is a product of their
Fourier transforms F(g)-F»(q):

S(fi'f) = S(fh) - S(f) = Fi(q) - F2(q) (5.31a)

Fig. 5.14 Convolution Pmol Plattice convolution  Pror* Plattice
Operation pmol>’< Prattice that
distribute molecular density
Pmol Over the sites of a crystal
lattice (filled symbols
represent molecules, O is the
reference point, r and r; are
radius-vectors of a molecule
and lattice points, T is vector
of translations)

A A A
©0000O0
Fig. 5.15 A multiplication ° 9‘0 '? ©o _ ‘.'0 §
operation with a box-function ©0Q 000 "~ o
/1 and function fo=pjaice(T) o000 000 w
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The second one called the theorem of multiplication is an inverse of the first: the
Fourier transform of the product of two functions f;(x) and f>(x) is convolution of
Fourier transforms of each of them F(q)*F,(q):

S - ) = S(h)'S(f) = Fi(q) Fa(q) (5.31b)

5.4.4 Self-Convolution

Let us make the inverse Fourier transform of the scattering intensity (5.23) and use
the properties of the Fourier integral:

S {F(q) - F'(q)} = p(r)"p(-1) = j pWp(r +u)du=P(r)  (532)

As a result, we obtain the convolution of the density function p(r) with the same
function inverted with respect of the origin of the reference frame p(—r). Note that
the minus sign appears due to different signs in the exponents for two complex
conjugates in (5.28). The P(r) function is known as density autocorrelation function
or the Paterson function when used in structural analysis. Thus, we may write the
inverse and direct Fourier transforms as follows:

P(r) = Jl(q)e’iqrdq (5.33)
and
I(q) = JP(r)eiqrdV (5.34)

It means that the scattering (or diffraction) intensity and the autocorrelation
function are reciprocal Fourier transforms similar to the reciprocal transforms of
scattering amplitude F(q) and density p(r). It should be noted that in statistical
physics one widely uses the density correlation function G(r) mentioned earlier
(5.26) that is related to the structure factor S(q) exactly as the Paterson function is
related to intensity of scattering /(q). Below we prefer to use G(r).

Resuming this section, remember that there are two approaches to calculate the
scattering intensity /(q):
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1. To make a Fourier transform of density p(r), in order to find the scattering field
amplitude F(q) = [ p(r)expi(qr)dV and then to make a product /(q) =
F(q) F*(q). v

2. To make a Fourier transform directly of density correlation function G(r), and
obtain intensity structure factor S(q) that, according to Eq. 5.25 is normalized
intensity /(q):.

=— 5.35
NF j%orm ( )
Further on we shall follow the first approach for discussion of crystals and the
second one for discussion of liquids and liquid crystals.

5.5 X-Ray Diffraction by Crystals

We begin this section with an example of the X-ray diffraction on the nematic,
smectic A and crystalline smectic B phases. In Fig. 5.16 there is a series of X-ray
photos of the same mesogenic compound at different temperatures. In this experi-
ment, the material flow induced by the electric current aligns molecular axes in the
nematic phase parallel to the field direction, which is horizontal, but in the SmA
phase parallel to the smectic layers. Correspondingly diffraction patterns of the
nematic and smectic phase considerably differ from each other. In the crystalline
SmB,; phase the picture shows the six-fold rotation axis perpendicular to the figure
plane. Below we shall discuss such pictures in detail, but let us begin with solid
crystals.

Electric field

Nematic Smectic A Smectic By,

Fig. 5.16 X-ray diffractograms of p-anisalamino-cinnamic acid in different phases, nematic,
smectic A and crystalline smectic B,
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5.5.1 Density Function and Structure Factor for Crystals

5.5.1.1 Density Function

In crystals this function has three-dimensional periodicity. For simplicity, here we
only consider the one-dimensional projection of the three-dimensional crystal. In
this case, the density function with period a is very simple

p(‘x) :p0+zpmcosmq0x7 40 :27'5/07

m

As shown in Fig. 5.17a it consists of density maxima with a constant amplitude. The
width of the peaks is governed by the thermal fluctuations of atoms, A = (kT/ B)'2
(B is a compressibility modulus). At room temperature, such fluctuations may be of the
order of 10% of the interatomic distances. At zero temperature the maxima would have
the size of atoms or molecules comprising a crystal.

5.5.1.2 The Structure Factor

According to (5.27) the amplitude of scattering F(q) for our one-dimensional
crystal is given by Fourier transform of density function p(x). Since we have only
the sum of cosine functions there are only discrete harmonics at wavevectors
q = mqo = 2nmja. The structure factor (5.25) is proportional to scattered light
intensity F(q)F*(q) and also consists of harmonics represented by Oo-functions
situated at the same wavevector values ¢ = 2mm/a and having amplitude p?,:

S(q) = Zp%ﬁ(‘l — mqo) (5.36)
a b
S(g)
2T N
9{:‘). \\\
l 9|2 \"“P::,IF
| P2 .\HH
— — __ 92 . 2 2*--..__
. : AL R S .
0 a 2a 3a r ler

o 4% 2q, 3q, 4q, 1

Fig. 5.17 Three-dimensional crystal considered along one direction: density function with equi-
distant maxima blurred by thermal fluctuations (a) and the angular spectrum of the structure factor
(b). The height of the 3-type maxima is given by squared amplitudes of the density harmonics and
is additionally modulated by both the molecular form-factor (MMF) and Debye-Waller factor
(DWF)
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The correspondent X-ray picture consists of a set of narrow discrete equidistant
spots at g = mgq, along the direction of periodicity. The angular spectrum of the
structure factor is shown schematically in Fig. 5.17b. The amplitudes of harmonics
depend mostly on the shape of the density curve and determine a number and
the height of the d-type maxima. The peak amplitudes are weakly modulated
by the molecular form factor (MFF) and additionally by thermal fluctuations
through the factor of Debye-Waller (DWF): for the one-dimensional case
I oc exp(—<u?>>q¢?/3) [1]. Here < u” > is the mean square amplitude of the ther-
mal oscillations of atoms proportional to temperature. Due to the exponential
factor, higher harmonics are much more sensitive to temperature and strongly
decrease Bragg diffraction intensity (but not the peak sharpness) with increasing
temperature.

5.5.2 A Crystal of a Finite Size

This case is important for thin crystalline films. At first, let us look at the simplest
infinite one-dimensional model of the crystal structure, Fig. 5.18, having only zero
and first harmonic of density,

p(x) = po + py cos(2nx/a).

The direct Fourier transform of this function is two delta functions with ampli-
tude py and p; located at ¢ = 0 and ¢ = 2x/a. It is shown in the Inset to Fig. 5.18.
Disregarding the zero Fourier harmonic the corresponding intensity of scattering
for the infinite one-dimensional crystal is:

1(q) = F(q)F*(q) = p1d(q — 2n/a).

A finite one-dimensional crystal is an analogue of a wave packet confined
between — A/2 and A/2 points, shown in Fig. 5.18. Its scattering amplitude

A)2
F(q) = J p; - cos(2nx/a) - exp(iqx)dx (5.37)
—A/2

p Pol

or P1
Fig. 5.18 Sine (or cosine) q=2nla ¢
form density function for an _— Po
infinite sample showing the 2p1 1 .
density wave components ‘ a !
po and p; (main plot) and its A2 0 A2

angular spectrum (inset) 0 X
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Within these limits, direct integrating is difficult. However, the scattering ampli-
tude may be found using the convolution theorem (Eq. 5.31a). The integral may be
presented as a convolution f;(x)*f> (x) where f;=p; (like in case of parallelepiped)
and f, = cos(2nx/a). Applying the convolution theorem we obtain the scattering
amplitude from the two amplitudes found earlier, see Eqs. 5.29 and 5.36 form = 1:

Flg) = S () (0] = Fr(q)Fa(q) = plA% 5(g o)

We have again found the scattering field amplitude in the form of sine integral.
The correspondent intensity spectrum is similar to that for the parallelepiped, see
Fig. 5.11b,

_ a2 zsmz[A(C]—QO)/z]

_ “(q) = A%p? . 5.38
I(q) =F(q)F"(q) =A"p Aa—a)/2] (5.38)

However, there is a shift of the entire parallelepiped diffraction spectrum by gq
on the wavevector scale; the curve for a parallelepiped without density modulation
is centered at ¢ = 0 whereas the curve for the modulated structure is centered at
q = qo- Such a shifted angular spectrum of diffraction intensity is very similar to
that observed on the freely suspended films of smectic A liquid crystals. It allows
the determination of both the smectic layer period and the film thickness.

5.6 Structure of the Isotropic and Nematic Phase

5.6.1 Isotropic Liquid

This is the other extreme case with respect to crystals. The density correlation
function G(r) is spherically symmetric decaying function. It is very instructive to
find, at first, the structure factor (5.26) for any function of the spherical symmetry.
We should use spherical frame with volume element dV = r*sinddpdddr:

2n P 50
S(q) = J dé J sin 90 J G(r)e 2 dr
0 0 0

Since qr = grcos=t we substitute sinv/di by —dt/qr and get

qr

o0 ' 2 [o.¢] .
S(g) =2=n J G(r)dr J ' dt = 4n J G(r)r2M
0 0

qr

dr
,
—qr q
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Now, we may use the simplest density correlation function for an isotropic
unstructured liquid in the form G(r) = p?r~'e™ where ¥ = £ ' is an inverse
value of the correlation length & comparable with molecular size [5]. Then, using
Euler formula and integrating over r-coordinate we find the structure factor of a
liquid without any short-range structure:

[o¢]
2mp? ol i - 2mp? 1 1
S((]) — 7'Ep J-e—m (elqr _ €7lql)dl” — 7'Cp ( - : )
iq iq \k—iqg K+Iiq)
0
4 p?
= pr (5.392)

The structure factor and intensity of scattering (5.25) have a spherically sym-
metric Lorentzian form centered at the zero wavevector g. = 0. The full width on
the half a maximum (FWHM) is equal to 2x=2/E.

In real liquids there is a short-range positional order because each particular
molecule has nearest neighbors forming few so-called coordination spheres. There-
fore, each selected molecule “feels” its nearest neighbors and the G-function
oscillates. For simplicity, we can take only the first harmonic of density oscillation
and write the density correlation function as follows:

G(r) = pj + pir~'exp(—r/&) cos2nr/a (5.39b)

This equation shows that positional correlations described by the cosine multi-
plier exponentially decay at a distance &, as shown in Fig. 5.19a. The scattering field
intensity of a liquid can be found from (5.39b) and (5.35) with the help of the
convolution theorem given by Eq. 5.31:

r r

1(q) = S[G(r)] = p} Jexp(iqr)dr + p? Jr‘l exp(—r/¢&) cos(2nr/a) exp(igr)dr
0 0
= p20(0) + P[S(r~te /%) S(cos 2nr /)

Fig. 5.19 Isotropic phase. Pair density correlation function (a) and the corresponding structure
factor (b)
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The first term for ¢ = 0 is not interesting (py can be found by other techniques,
e.g. by dilatometry). The product term with p,” is a result of the convolution
theorem and we already have the two Fourier transforms mentioned, namely, the
structure factor of unstructured liquid, that is Lorentzian (5.39a) and the structure
factor of a crystal that is delta-functions, Eq. 5.36:

4mp?
lg — qof* + &7

4mp?

I(g) x S(qg) x ———
(q) o< S(q) 212

*0(q —2n/a) = (5.40)

Thus, the structure factor of the liquid with a short-range periodicity is the two
Lorentzians centered at ¢ = ¢, =2n/a and g = —qo, Fig. 5.19b. Their positions are
a measure of the molecular size a and their widths are a measure of the characteris-
tic distance & for the short range molecular correlations. The total intensity of
scattering for positive ¢ is shown in Fig. 5.20a. Note that the curve for the total
intensity is slightly asymmetric because this function is a product of the form factor
and the structure factor according to Eq. 5.25.

An experimental X-ray pattern for a liquid looks like that shown in Fig. 5.20b.
The spot centered at ¢ = 0 is very strong and usually screened deliberately off.
What is of importance is a diffused ring located at scattering vector ¢ (or scattering
angle 9Jy) given by equation

2n 47 sin 19() . A
=—=—_""1e., a= .
=7 A ’ 2sin Yy

Therefore, the average molecular size a can be found from the angle ¥,.

5.6.2 Nematic Phase

The density correlation function for nematics has the same liquid-like form, but
anisotropic, namely, cylindrically symmetric. Along the two principal directions,

a b

meridian

Fig. 5.20 Isotropic phase. Angular dependence of structure factor (SF), molecular form factor (FF)
and total intensity of scattering (a) and a typical pattern of scattering observed in experiment (b)
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parallel and perpendicular to the director n = n,, the correlation lengths &, and
& L are different for the x and y directions:

Go(ry)ocri exp(—ry /&) cos qiry

in the z-direction:
G|(z) o< 27" exp(—z/¢&))) cos gz

In the simplest approximation, functions G, (r,) and G, (z) determine the
structure factor. The form-factor contributes to diffraction pattern negligibly for
small rod-like molecules comprising typical thermotropic nematics but may be
important for biological materials.

An X-ray pattern for a typical nematic with rod-like molecules taken with the
help of a photographic film is presented in Fig. 5.21a [6]. The molecules are
oriented vertically. Along the vertical, two spots are seen at small angles; they
correspond to small wavevector ¢, = 2m/ay. From this angle of diffraction one can
find a; (length of a rod-like molecule). Along the equator (horizontal line) the spots
are separated by larger distance, g, =2n/a, > ¢,. The ¢, position gives us diameter
of a molecule. Usually ay/a, =~ 4-5. Thus two molecular dimensions and two
correlation lengths can be found [7].

The equatorial spots are extended in the vertical direction and have the form
of arcs: the intensity decreases with increasing ¥-angle as shown in Fig. 5.21b.
This is a result of a non-ideal orientational order: the higher the order parameter
S, the shorter the arcs. From the diffractogram one can find the distribution of
intensity and calculate S [7]. In some cases, even the orientational distribution
function for molecules f(#}) can be calculated from experimental data as sche-
matically shown in Fig. 5.22. Generally, the shape of the function is determined
by different Legendre polynomials P,(cost), P4(cosd), etc. (see Section 3.3)
and, in principle, different order parameters P,, P4 etc. can be found from
experiment.

.
|

Fig. 5.21 Nematic phase. Typical photo [6] of a diffraction pattern for a nematic liquid crystal
with the director aligned vertically (a) and the scheme explaining this pattern (b)
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Fig. 5.22 Qualitative picture
of the orientational 1
distribution function
calculated from the angular
dependence of the diffracted
intensity along the arc
depicted in Fig. 5.22b

function f(0)

1
0 /6 /3 /2
Diffraction angle 6

5.7 Diffraction by Smectic Phases

5.7.1 Smectic A

Smectic A is a one-dimensional crystal and, at the same time, a two-dimensional
liquid. What kind of a diffraction pattern should it have? A naive expectation for a
thick (or infinite) sample of the smectic A phase is as follows. If we have a one
dimensional density wave in the z-direction p = p, cos(2nz/a) + ... and neglect
higher order terms, the intensity along the z-axis ought to be a single Bragg peak in
the form of the delta function located at ¢ = 2m/a as shown in the Inset to Fig. 5.18.
Note that an additional peak related to the p, term is always situated at ¢ = 0. For
the directions x and y perpendicular to the director there should be no difference
between the density correlation functions for smectic A and nematic phases.
Indeed, the naive expectation is correct for the x and y directions; we do have in
smectic A liquid like correlations G(x,y)ocexp(—r,/E ) and the Lorentzian struc-
ture factor, as in Fig. 5.19.

However, in experiment [8], instead of the delta-function form of the intensity
peaks along the z-direction 6(q — qo), quasi-Bragg singularities have been
observed with the tails described by a power-law as shown in Fig. 5.23a,

1(q) o (q) — q0) ™" (5.41a)

with small n~0.1, depending on temperature. Such a structure factor may be
understood if the density correlation function is not a constant but obeys a power
law of the type [8, 9]:

G(z) x z7" (5.41b)

Thus, instead of the true long-range order we have a quasi-long-range order with
the density correlation function (5.41b) qualitatively shown in Fig. 5.23b.

But what is a physical sense of parameter n? The answer is given by a theorem
related to a more general question, whether true one- or two- dimensional crystals
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I(q)

2n/a q

Fig. 5.23 Diffraction intensity (a) and density correlation function (b) for the smectic A phase
with a positional, quasi-long range, molecular order along the symmetry axis

exist in Nature at all, for example, stable one-dimensional smectic A or two-
dimensional discotic liquid crystals. Now we encounter a new type of order,
known earlier only theoretically.

5.7.2 Landau-Peierls Instability

We know that, at a finite temperature, the position of atoms or molecules in a crystal
(or liquid crystal) fluctuate that is density p(r) is a fluctuating value. With increas-
ing size of a crystalline sample or a distance with respect to a reference point, the
mean square displacement of atoms due to thermal fluctuations is growing. The
question to be answered is whether the crystalline structure is stable for the infinite
sample. Landau and Peierls [5] have found that the answer depends on dimension-
ality of crystals.

5.7.2.1 Displacement and Free Energy

Let u(x, y, z) is a vector of displacement of a small piece of a three-dimensional
crystal at its position x, y, z. A characteristic linear size of the piece is L. Our task is
to find an expression for the mean square value < u*(r) > of the displacement
[10]. We begin with the Fourier transform of u(x, y, z). Now each harmonic of
displacement has its amplitude u [cm] and wavevector q [em™1]:

u(r) =) ugexp(iqr) (5.42)
q

Here, the components of wavevector q acquire both positive and negative values
u_q =u, in the range of L' <lgl < a ' where a is a lattice constant. We are

interested in the additional free energy term OF originated from the displacement:

1 Au(r)]?
|4



5.7 Diffraction by Smectic Phases 103

Here, for simplicity, we use a scalar displacement u and a single elasticity
coefficient C; for a three-dimensional crystal without anisotropy. C; has an order
of magnitude 10'°-10"" erg/cm?® (or 10°~10"° J/m?). Note that 8F cannot depend on
displacement explicitly since any vector u = const corresponds to a shift of the
whole crystal and 8F = 0. Linear terms Ou/0x, etc. do not contribute to 8F because
OF has minimum at u = 0. Therefore, for small displacements, like in the Hooke
law, only terms quadratic with respect to the first derivatives are important. Now,
using (5.42) we find the Fourier expansion of derivatives

8” . iqr
=D (ia)e g

q

and insert them into Eq. 5.43 to obtain the expansion of the free energy

3F =130 Cutg (Vg [0 07
q Jq

Vv

Note that uqutq = uqitq" = |ug|* and the integral [ e @+9r@3r = V. . For q
= —(q’ the Kronecker symbol 8;; =1 and the integral e(‘l/uals the crystal volume V; for
q #-q' the symbol §;; =0 and the integral vanishes. Hence,

OF =Gy Zq2|uq|2 = ZéFq.
q q

From this equation and the equipartition theorem (0Fq) = kgT/2 we find the
Fourier component of the mean square displacement (in q-space):

o kT
=2 5.44
(') = 6. (5.44)

For the mean square displacement in the r-space

2 _ u 2 :L U 2\ 13
@) = 3 loaf) = 1y j<\ g

Here the summation is substituted by integration over the volume in the g-space
and (2m)? is a factor that relates the volumes in g- and r-spaces in three dimensions.
More generally, (2m)° is a factor for any space of D dimension: in the one
dimensional space (D = 1), the reciprocal lattice vector length is ¢ = (2n)/a, for
D = 2 the reciprocal lattice area is g,q, = (2m)*/ab, etc.

Finally, using Eq. 5.44, we can write the value of the mean square displacement
in the three dimensional r-space (d°q = 4ng°dq is a volume of a spherical layer in
the g-space):
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qmax
kgT a3 kT  owe  ksT (1 1
P (r)) = —2 J 9_ "Bl mfa _ KBT (

a4 _ o) =const (545
(27[)3C3 q2 27'52(: |27‘[/L TCC?, L) cons ( )
q‘“ln

For a space of dimensionality D, we obtain a more general expression:

Gma
kgT diq

W) =—2__ | =1 5.46)

(u(r)) 2’Cy ) 7 (

4min

Now, elastic coefficients C;, have different dimensions, particularly [erg-cm ]
for D = 2 and [erg-cm '] for D = 1.

5.7.2.2 Stability of Crystallographic Lattices of Different Dimensionality

Let us come back to the three dimensional crystal and Eq. 5.45. When crystal size L
increases to infinity (i.e. approaches the so-called thermodynamic limit), then

kgT
(u*(r)) — BT = const
nCa

and the mean square value of displacement remains independent of the crystal size.
From this equation, with kzT ~ 4 x 10~ erg and @ ~ 10~’ cm (molecular crystal)
we have small displacements of the other of u ~ 10~ c¢m (0.1 A). The crystalline
order does not blurred, i.e., remains true long-range order.

A two-dimensional crystal (D = 2) is nothing more than a single atomic or
molecular monolayer. The latter may be prepared from graphene or in the form of a
Langmuir film floating on water. For such a monolayer, d >q = 2mgdg is an area of
a ring with circumference 2ng and width dg and Eq. 5.46 takes the form:

kT L
nja _ In= (5.47)
a

2 _
<M (r)> - q - 27TC ‘ZH/L 27TC

qu\X
kT J dq _ ksT |
27‘EC2

Gmin

For L—oo, this integral diverges with its area logarithmically, that is very
slowly. Such a film has quasi-long-range order.

A one-dimensional crystal (D = 1) is a single chain of atoms or molecules
without any interaction with its surrounding. Eq. 5.46 reads:

Gma

ks T ]“dq_ ksT

2nCy ) ¢ 2nCy

Gmin

ke T
(—g =21 (5.48)

(w2 (r)) = i = G



5.7 Diffraction by Smectic Phases 105

For L—oo the mean square displacement grows linearly with the chain length
and only the short-range order may exist.

Recall that the smectic A phase is a three-dimensional phase which is simulta-
neously one-dimensional crystal in the direction along the layer normal and two-
dimensional liquid in the layer plane. So, the Eq. 5.46 cannot be applied to this
strongly anisotropic system. We shall consider this problem in detail after discussion
of anisotropic elastic properties of SmA in Chapter 8. Now we only mention that, in
comparison to the linearly divergent order of a one-dimensional chain given by
Eq. 548, the two- dimensional (x,y) liquid structure of smectic layers strongly
stabilizes the fluctuations along the smectic layer normal (z). As a result, the diver-
gence of fluctuations with a distance follows the logarithmic law with increasing size
of the SmA in the z-direction L, and the order become quasi-long-range. It is the order
that results in the power law seen in Fig. 5.23b. Correspondingly, the power index n
in Eq. 5.41 can be expressed in terms of SmA interlayer distance / or g, =2n// and
elastic moduli for layers compressibility B and director distortion K [11].

n ~ qeksT /87 (KB)'? (5.49)

The estimates result in the values of n of the order of 0.1-0.5.

5.7.3 “Bond” Orientational Order in a Single Smectic Layer
and Hexatic Phase

Imagine that we have a film only one molecule thick (a smectic monolayer with or
without tilt of molecules). In such a single layer, the nematic orientational order is
not discussed although some orientational order (or disorder) of long molecular
axes may be important. We are interested in a new type of quasi-long-range order
not forbidden by the Landau-Peierls theorem for the two-dimensional systems,
Eq. 5.47. A monolayer can be liquid-like i.e. its translational order is absent and
molecules may be situated chaotically at any place in the layer plane. Liquid-like
order means that not only the distances between molecules are not fixed but also no
correlation exists in their angular positions. However, at a reduced temperature the
full translational symmetry within the layer plane is broken only partially and the
true positional order is not installed. The new order describes the positions of
molecular gravity centers along the connecting lines or “bonds” (not to be confused
with chemical bonds). However, the distances between the molecules are not fixed.
For example, in Fig. 5.24 all the molecules in the neighbour areas 1 and 2 sit in the
points of hexagonal lattice but, at some distance from the reference area 1, the
positions of molecules in area 3 do not coincide with the lattice cross-points.
Nevertheless lattice vectors a and b still look along the grid lines and keep the
hexagonal order.
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Fig. 5.24 Schematic picture /V\m

of molecular ordering in a /\/\
single smectic layer with
liquid-like short range NANINL

positional order and quasi-
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Table 5.1 In-plane order parameters and correlations for two dimensional single layers

Order/layer type Liquid layer Hexatic layer Crystal layer
Positional order Liquid-like Liquid like Quasi-long range
Positional correlations exp(—r/€) exp(—r/&) 1

“Bond” orientation order Liquid-like Quasi-long range Long range
“Bond” correlations <\nj> exp(—r/€) 1 Const

A two-dimensional phase with a bond orientation order is called hexatic phase
[12, 13]. It has six-fold symmetry D¢y, and a new, two-component order parameter

Y = Wyexpi6o(r) (5.50)

where @(r) is the angle a local “bond” vector forms with a reference system. It is a
phase with a new order parameter and Wy is its amplitude. The mean square
displacements < (8¢)> > logarithmically decay with a distance from a reference
point following Eq. 5.47 although with a special, “bond” elastic modulus K,,,,,;. The
density correlation function follows the power law decay Gy (r) oc r™* due to
fluctuations in the “bond” angle. The temperature dependent amplitude ¥, of the
two-component order parameter V' takes the values between O and 1. Note the
analogy with the two-component order parameter of the smectic C phase, although
the symmetry of the two phases is different.

Depending on a material, single smectic monolayers can exist in two different
modifications, liquid-like and hexatic like. Properties of these monolayers are
shown in Table 5.1. Upon melting, a two-dimensional hexatic layer undergoes
the transition into the liquid-like layer. It is spectacular that hexatic layers like
liquid layers do not support the in-plane shear [14]. The layer can be sheared by as
small force (stress) as is wished.

5.7.4 Three-Dimensional Smectic Phases

5.7.4.1 Uniaxial Orthogonal

In three dimensions the situation is different, because there are interactions between
the layers that may stabilize more ordered phases. Now the in-plane ordering and
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the ordering along the layer normal in the three-dimensional, uniaxial, orthogonal
(without tilt) smectic phase should be discussed separately. The in-plane structural
characteristics of the smectic A phase and smectic By, hexatic phase are presented
in Table 5.2. Note that, in the three-dimensional hexatic phase, the quasi-long-range
hexatic order inherent to a single monolayer is substituted by the true long-range
hexatic order with constant correlation function Gy(r,). As to the out-of-plane
positional order in the hexatic phase, it is quasi-long-range with power law correla-
tions <p,p, > of the z~" type [14]. The same table is illustrated by Fig. 5.25. It is
seen how a continuous, blurred diffraction ring typical of the smectic A phase is
substituted by a six-spot diffraction pattern for the hexatic By, and then by a six-
point pattern for smectic B, (crystalline) phase. An example of the experimental
X-ray diffraction pattern for a thick layers of the smectic A and B, phases was
illustrated by Fig. 5.16.

On the other hand, the experiments with very thin free-suspended films of
smectics show that the crystalline order in certain substances with weak interlayer
interactions may exist only in the surface layers [11]. In thick films the smectic
layers are mostly liquid. However, within the same thin film one may observe the
layer-by-layer crystallization. For example, the entire sequence of phase transitions
SmA-SmBy,..-SmBy; is shifted downward as one advances into the bulk from the

Table 5.2 Order parameters and density correlations for three-dimensional smectic A, hexatic
Biex and crystalline B,

Order/uniaxial phase SmA Hexatic-Bpex Crystalline-B,
In-plane positional order liquid-like Liquid like Long-range
In-plane positional correlations exp(—r/&) exp(—r/&) const
In-plane “bond” orientation order exp(—r/€) Long range Long range
In-plane “bond” order correlations exp(—r/€) const const
Interlayer positional order Quasi-long range Quasi-long range Long range
Interlayer positional correlations z " z " const
a b c
{/ (\ ;"l\
J0
-~ .
¥ \ AR /
\‘f | w
I(q,)
&’1_ y | q}-‘ Ay

0

Fig. 5.25 Comparison of in-plane the diffraction patterns for the smectic A (a), smectic Byex (b)
and smectic B, (¢) phase. Below are qualitative dependencies of scattering intensity on the
diffraction angle for the three phases
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first (surface) layer to the second, third, etc. layers of the same film. It means that, in
the bulk, the liquid-like phase is more stable that the crystalline one and the surface
forces are very important.

5.7.4.2 Biaxial Orthogonal

In biaxial orthogonal smectics the symmetry is further reduced. For example, the
group theory predicts phase transitions from smectic A (symmetry D,y,) into
smectic A, with symmetry Csy, that is a biaxial SmA phase with a hindered rotation
of molecules about their longitudinal axes. It is also possible a transition from SmB
into an exotic SmB, phase with symmetry Ds;, due to specific distribution of
positive and negative electric charges alternating along the perimeter of the hexag-
onal elementary cell [15]. Such a phase has not been reported yet.

On cooling, the smectic By phase (symmetry Dgy,) can transit into smectic E
(SmE) with herringbone packing and point group symmetry C,y,. It is shown in
Fig. 5.26 together with a sketch of the characteristic X-ray diffractogram. In fact,
SmE is true crystalline phase.

5.7.4.3 Biaxial Tilted

When molecular axes (director) are tilted by some angle with respect to the smectic
normal we have the remarkable correspondence between the tilted and orthogonal
phases: SmC — SmA (both have liquid layer structure); SmF — SmBy,. (hexatic
layer structure); SmH — SmB,,y (crystalline layer structure).

As an example, consider the X-ray diffraction by the smectic C phase of p-di-
heptyloxyazoxybenzene [16]. Since always there is a possibility to align the
director by a magnetic field along a certain, well defined direction (e.g., vertical
as in Fig. 5.27) we expect that the diffraction pattern from the layered structure will
also be tilted through the same angle with respect to the vertical. However, as a rule,

Fig. 5.26 Smectic E phase. The herringbone structure (a) and corresponding diffraction pattern
(b) for two different directions of scattering, parallel (¢,) and perpendicular (¢, ) to the director. As
an example, the two Miller indices are shown only for ¢,. They mark Bragg reflections of the first
and second orders from the horizontal crystallographic planes
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Fig. 5.27 Smectic C phase in the magnetic film along the vertical direction, Hlln. Typical
diffractogram (a) and its scheme (b) showing the four-point picture of reflections from the smectic
layers and blurred nematic-like arcs corresponding to sketch (c) of the uniform director alignment
with broken smectic layers [16]

the layers are broken and acquire a tilt in two opposite directions as shown in sketch
Fig. 5.27c. Therefore, the diffraction pattern becomes symmetric (degenerate) with
respect to the vertical and, instead a pair of the first order spots, we see four spots on
photo (Fig. 5.27a). It is a so-called four-point pattern. The molecular tilt angle ¥) can
be found as shown in Fig. 5.27b. The broad arcs at the equatorial (horizontal) line
are due to orientational (nematic) order.
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Chapter 6
Phase Transitions

Liquid crystals manifest a number of transitions between different phases upon
variation of temperature, pressure or a content of various compounds in a mixture.
All the transitions are divided into two groups, namely, first and second order
transitions both accompanied by interesting pre-transitional phenomena and usually
described by the Landau (phenomenological) theory or molecular-statistical
approach. In this chapter we are going to consider the most important phase transi-
tions between isotropic, nematic, smectic A and C phases. The phase transitions in
ferroelectric liquid crystals are discussed in Chapter 13.

6.1 Landau Approach

In Fig. 6.1 we have an example of the experimental phase diagram for homologues
of 4-ethoxybenzene-4’-amino-n-alkyl a-methyl cinnamates [1]. We see that, with
increasing length of the alkyl chain, the temperature range of the nematic phase
between the isotropic and smectic A phase becomes narrower. This range is limited
by solid lines corresponding to the phase transitions between different phases. How
to explain this diagram? We may begin with the molecular properties and intermo-
lecular interaction and try to calculate the temperature range of stability of a
particular phase, the values of the order parameters and thermodynamic functions
such as free energy and others. This approach will be discussed in the end of this
chapter. Another approach is based on phenomenological description of the phase
transitions and called Landau theory of phase transitions. The key issue is the
symmetry of the phases and corresponding order parameters related to a particular
transition. Such an approach appeared to be very powerful and relatively simple.

Imagine a series of transitions between phases of different symmetry, as shown
in Fig. 6.2, for instance, with decreasing temperature. Our task is to select one of
these transitions, find the temperature behaviour of the order parameter and other
thermodynamic functions close to the phase transition [2]. To this effect, we should
make the following steps.

L.M. Blinov, Structure and Properties of Liquid Crystals, 111
DOI 10.1007/978-90-481-8829-1_6, © Springer Science+Business Media B.V. 2011
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Fig. 6.1 An example of the T
experimental phase diagram L
for a homological series of

cinnamate derivatives. The

scale of the abscissa means a 120
number of alkyl chains in the

tail of a particular molecule.

The lines show the location of

phase transition temperatures

EOBAAMC

Iso

100F T, |

alkyl chain length

ngh PT1 Low PT2 Even Next
symmetry symmetry lower PT
phase, phase, symmetry
n=0 — 5 | ny=0, — | phase, —
=0 n;#0,
1n,#0

Fig 6.2 Sequence of the phase transitions with decreasing temperature and lowering the phase
symmetry. A new order parameter m;, T, etc. is introduced for each new phase with lower
symmetry

1. From symmetry consideration we should choose a proper order parameter for
the lower symmetry phase (on account of molecular distribution functions).

2. Using smallness of the chosen parameter we expand the free energy density in
powers of this parameter, with only the first term temperature dependent.

3. The thermodynamic behaviour of the order parameter in the low symmetry
phase is found by a minimization procedure for free energy density.

4. With the order parameter found the free energy may be written explicitly.

5. Other thermodynamic functions are found from the temperature behaviour of the
free energy.

As to free energy, below we shall use the Helmholtz free energy F = U — TS
(U, S and T are total energy, entropy and temperature, respectively) that is more
appropriate for discussion of the systems in terms of temperature and volume V
(or density p) at constant pressure p. In a more general case, the thermodynamic
potential (or Gibbs free energy) ® = F 4 pV appears to be more suitable for an
expansion, e.g. when varying pressure p.
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Fig. 6.3 Disorder—order High-T phase Low-T phase
transition in Cu—Au alloy.

In the low temperature, low
symmetry phase, the atom of
gold is more often occupies
the central position in the
cubic lattice

Consider, as an example, a disorder-order transition in Cu-Au (8:1) alloy. In this
case, we can choose the simplest (scalar) order parameter 1, which is a normalized
difference between probabilities to find either gold or copper atoms in the center of
the cubic cell, see Fig. 6.3. In the higher temperature (and higher symmetry) phase
an atom of gold has equal probability to be at any lattice site included the central
one (but not between the sites), and order parameter n = 0. In the ideally ordered,
zero-temperature phase, an Au atom is always in the central position and n = 1.
Generally, in the low-temperature phase, the central position is more often popu-
lated by a gold atom than by a particular copper atom and 0 < n < 1.

Neglecting the mass density change at the transition, the Landau expansion for
the free energy density is

1 1 1
g(T,m) = g(T,0) +2n + SA(T)n? +2Bn’ + 2 Cn' + - (6.1)

Here g(T, 0) is free energy of the high-temperature phase and the fractional form
of (1/2), (1/3), etc. coefficients is adopted for convenience. In equilibrium, function
g(T, n) must have a minimum value, therefore at any temperature:

dg d2g

Thus, derivative of (6.1) is
A+ATM+Bn?+Cn 4 =0

From here we conclude that coefficient A in the expansion must be zero;
otherwise, the non-zero derivative of free energy dg(T, n = 0)/dn = A would be
present also in the high symmetry phase. However, the presence of such an
additional constant term in the high symmetry phase would smooth its own energy
minimum what is senseless.

As to the “leading” coefficient A(T) in Eq. 6.1, in the high symmetry phase, it
must be positive to provide a minimum of free energy at n = 0. On the other hand, it
must be negative to provide a minimum of the free energy density in the low
symmetry phase at a finite value of order parameter  # 0, Fig. 6.4a. Thus, in
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Fig. 6.4 The forms of the
free energy density in the high
symmetry (A > 0) and low
symmetry (A < 0) phases

(a) and the temperature
dependence of the first term in
the Landau expansion (b)

general case, when not only temperature is varied but pressure p, composition X,
etc., the coefficient A(T, p, X..) should change sign at the phase transition. There-
fore, for a transition at temperature T = T, we can make an expansion of coeffi-
cient A in a Taylor series over temperature (for p, X = const close to T,.) and write

. dA
A=a(T—-T,) with a:ﬁn>0

as sketched in Fig. 6.4b.
Now the excess of the free energy density acquired by the low symmetry phase
at the transition is

1 1 1
Ag = g(T,m) — g(T,0) = 5a(T —T)m? - 53”3 + ch“ 4 (6.2)

Here the minus sign at the B-term is taken for convenience. The thermodynamic
stability condition reads:

dA

This equation has three roots: n = 0 for the high-symmetry phase and

B+ [B? — 4aC(T — T,)]'""
2C

n= (6.4)

for the low symmetry phase. Therefore, the correct temperature dependence of
the order parameter is found using only symmetry arguments! Note that coefficients
a, B and C are independent of temperature, although their physical sense (molecular
nature) is unknown. They may only be found experimentally or using some
microscopic molecular models.

Consider a particular case of B = 0. Then in the low symmetry phase,

~Ja(T.—1T)]"?
n= j:[c] (6.5)
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Thus, if the cubic term is absent in the expansion, the system becomes insensitive to
the sign of the order parameter. Moreover, the parameter must change continuously at
the phase transition from zero to a finite value. Such a n = 41 symmetry corresponds
to second order transition (a case of the N-SmA or SmA-SmC transitions). At second
order transitions the symmetry changes abruptly but thermodynamic functions change
continuously (only their temperature derivatives may change stepwise).

When B # 0 the two non-zero roots are different, there is no longer n = +1
symmetry; the order parameter and other thermodynamic functions change discon-
tinuously. This situation corresponds to first order transition (a case of the Iso-N
transition). There is, however, a possibility to discuss the first order transition even
for B = 0 when the order parameter is symmetric: to this effect we should put
C < 0, ignore the fifth order term (D = 0) and add a sixth order term. Then we have
the Landau expansion of the following type:

1 1 1
Ag=5a(l =Tom® = 7Cn* + 2 En’ + - - (6.6)

This biquadratic equation also describes discontinuity of thermodynamic proper-
ties at temperature T,.. We shall discuss such a case later.

6.2 Isotropic Liquid—-Nematic Transition

6.2.1 Landau-De Gennes Equation

What is known from experiments on this transition?

1. There is only a small jump of density at transition temperature Ty, about 0.3%.
Therefore, the density can approximately be considered constant at both sides of
the transition; the pressure is also considered constant.

2. The order parameter is not symmetric, its magnitudes S,.x = +1, Spin = —1/2.
This asymmetry generates the cubic term, coefficient B must be finite, and the
first order transition is expected.

3. The tensor form of the order parameter should be taken into account, in the
simplest case, the uniaxial one [3, 4]:

Qs = S(nap — 1/38.p) 6.7)

With that order parameter, the Landau-de Gennes expansion of free energy
reads:

1 1 1
8N = 8Iso t+ EAQO(BQBSL - gBQaBQBgan + ZC(Qu[iQﬁa)z A= a(T - Tc*) (6.8)
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Here T.* is virtual second order transition temperature. In real substances it is
slightly below Ty;. Coefficients B and C are independent of 7. Now we choose a
proper coordinate system wherein matrices Qg in Eq. 6.8 become diagonal. Then
we contract indices (reduce tensor valence) by multiplying the diagonal elements
and writing the traces Qy3Qp, = (2/3)S” and QypQp, 0. = (2/9)S°. Then, we have
equations for the excess of the normalized free energy density (in units [erg/cm’] or
[J/m3] in the SI system) [5, 6]:

v — 810 1 £\ o2 2 PR S
Ag=2"""2"—=_q(T — T. ——=B 3 .
g T 3a( )S 77 7+ 9CS (6.9)
and stability equation:
dAg I > 2 .3
—=a(T-T.")S—=B = = 1
s a( S 3 S +3CS 0 (6.10)

6.2.2 Temperature Dependence of the Nematic
Order Parameter

Equation 6.10 has three solutions: S = 0 for the isotropic phase and

B 24aC(T — T.*)]"/?
= 1= ) 6.11
Sz 4C{ { B2 } ©.1D)

for the nematic phase. First of all, we should establish which sign is correct in
solutions (6.11). It is a bit tricky. We define a certain temperature 7, (not necessar-
ily equal to T.*), at which free energy of the nematic and the isotropic phases are
equal, i.e. Ag in Eq. 6.9 is zero. Assuming T = T, we multiplied Eq. 6.10 by S/3
and subtract it from Eq. 6.9. Then we get

1
9

As seen from Eq. 6.11, only negative sign in front of brackets can give us S. = 0
at T. = T.* that is at the same characteristic temperature. Another solution of
Eq. 6.12, namely, S. = B/3C, if substituted into Eq. 6.11, results in branch S,

1
ﬁBSi =-CS! or S3(CS. —B/3) =0 (6.12)

I _ [, _24aC(T - T.") 12
3 B2

with a new characteristic temperature 7. = T.* + B?/27aC. This solution shows a
positive jump of S = B/3C at a temperature T that is higher than the “second order
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transition” temperature 7.*. Hence S, from (6.11) is a more stable solution than S_.
Therefore, we take sign (+) in solution (6.11) of stability equation:

_a1/2
= g [1- 2 E) 613

Finally, from (6.13) we find one more critical temperature: T.* = T,* + B?/
24aC that is even higher than T, and there is no other real solutions of the stability
equation. Totally, we have now three characteristic temperatures:

T,* (virtual second order transition) < T, = T.* + B*/27aC (Ag = 0) <T." =
T.* + B%/24aC (jumpof S).

Within the range of T.* < T." a hysteresis in the order parameter should be
observed upon the heating and cooling scans. Such hysteresis is often observed
under polarization microscope in the form of two-phase textures. If a sample is
placed between crossed polarizers, dark spots of the isotropic phase sharply con-
trasts with bright nematic background (like in Fig. 1.3c) or vice versa. The temper-
ature behaviour of function S(7) is shown in Fig. 6.5a. In the figure:

ST =B/4C(atT. "), S.=B/3C(atT=T,), S*=B/2C(atT =T,*) (6.14)
Hence, the universal ratio S./S* = 2/3 is valid for any expansion up to the fourth

order term and 7.* can be found by plotting S vs temperature. By the way, in
experiment, the phase transition point Ty; is associated with temperature 7.

T°C

Fig. 6.5 (a) Temperature dependence of the order parameter in the Landau-de Gennes model; (B)
and (C) are coefficients of the expansion. Ty; =~ T, is experimental value of the isotropic—nematic
phase transition temperature corresponding to equality of free energy densities for the two phases.
(b) Experimental dependence of the order parameter for SCB and the characteristic temperature
points T.*, T. and T." defined in accordance with the model of panel (a)
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6.2.3 Free Energy

It is instructive to look at the free energy density dependence on the nematic order
parameter, Eq. 6.9, on both sides of the phase transition. To this effect we need
Landau expansion coefficients @, B and C. We may find them, at least, approximately
from the experimental dependence of order parameter on temperature S(7). Let us take
as an example a nematic compound p-pentyl-cyano-biphenyl (5CB). Function S(T)
has been measured earlier by both the optical and nuclear magnetic resonance
techniques [7]. The Landau coefficients may be found from this curve as follows.
Using the values of the order parameter S*, S and S* expressed in terms of coefficients
B and C, we can mark the corresponding temperatures T*, T, and T* on the experi-
mental plot, as shown in Fig. 6.5b. The highest temperature point of the nematic phase
is T" = 35.3°C where, according to the model, S* = B/4C. In the experimental plot
S = 0.3 and, assuming B = 1, we find C = 0.838. Then, using the difference
between the two characteristic temperatures from the experimental plot (b),

T.—T* = B*/27aC = 33.7°C — 22.7°C = 11°C,

we find @ = 0.004. Now we have all necessary data to plot the normalized free
energy Ag(S). If necessary, the absolute values of free energy may be found by
multiplying the dimensionless Landau coefficient B by the free energy density of
the isotropic phase giso = (pn/Na/M) kg Tn;. (Where kg is Boltzmann constant, Ny,
Avogadro number, M molecular weight, py; the density at the transition tempera-
ture). In our example, M = 249, py; ~ 1 g/cm3, Ty = T.~ 307 Kand gjs, =~ 1 X
10% erg/em® or 1 x 107 J/m? in the SI system.

The result of Ag(S) calculation is shown in Fig. 6.6. Considering a cooling
process from the stable isotropic phase we shall better understand the physical
sense of the three critical temperatures. For T > T.* (dot curve 3 in the figure) the
absolute minimum is situated at S = 0 and this corresponds to the stable isotropic
phase. As the temperature approaches T, from above, in the range of T, < T < T.*,
a second minimum appears above the abscissa axis, which corresponds to the

. 1
3
0.004 - : |
N 2 |

Fig. 6.6 Normalized free S I
energy of 5CB as a function of 0.002 1 !
order parameter S in the . B ‘ ,'
vicinity of the N-I transition at Ag 0.000 —= N
different temperatures: T .* N I’
(curve 1), T, (curve 2) and T, ~0.002 4 \ . 11
(curve 3). The curves are N /
calculated with dimensionless 5CB N /
Landau expansion coefficients —0.004 1

a=0.004,B =1and
C = 0.838 obtained from the
experimental curve S(T)
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Stable Overcooled Overheated Stable
Nematic Isotropic
phase phase (metastable) Phase

(metastable)

|
. I .
Isotropic | Nematic
|
|
|

v

T,* T, T.*

c

Fig. 6.7 Sequence of phase states observed during the up-and-down temperature scan that
manifests a temperature hysteresis near the N—I transition

overheated (metastable) nematic phase with at S > 0. At T = T.. the two minima have
the same zero free energy density (solid line 2), but between them there is a barrier
shown by the arrow. The right minimum for S # 0 corresponds to the stable nematic
state and the left one with § = 0 represents the overcooled (metastable) isotropic state.
Between T, and T.* the two minima coexist. Finally, for T < T.* the left minimum
disappears, the metastable isotropic phase becomes unstable and the nematic state
becomes absolutely stable (dash curve 1 with a deep minimum). Fig. 6.7 illustrates the
sequence of the intermediate phases in the proximity of the NI transition.

6.2.4 Physical Properties in the Vicinity of the N-Iso
Transition

Physical properties of substance close to N-I phase transition may be related to the
parameters of Landau expansion [8]. For example we can calculate an entropy
density change at the transition temperature 7, from Eq. 6.9 and S. = B/3C:

a(gN —g1w) - 1 a32

AT = - _
ar |, 3¢ 21c?

Correspondingly, the latent heat of the N-Iso transition is

aB?
27C?

As we have seen above, Landau expansion coefficients a, B and C can be found
from the measurements of order parameter S(T) and AH by different techniques,
such as microscopy (for 7T,), differential scanning calorimetry (for T, and AH),
refractometry or NMR (for S,.).

Two other calculated temperature dependencies are shown in Fig. 6.8 with the
characteristic temperatures discussed above. The excess of the specific heat in the
nematic phase C), = a$ (825 / 8T2) p 18 shown in Fig. 6.8a. The temperature depen-
dence obtained from Eq. 6.13 follows a law C), (T(,+7T)7” 2 with a step at 7, in
agreement with experiment [8]. With decreasing temperature C, achieves a plateau
equal to @*/2C. Another important characteristic is structural susceptibility (not to

AH = AST, = ———T,
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Fig. 6.8 Temperature a
dependencies of heat capacity

(a), and inverse value of

nematic-like structural

susceptibility ' (b) in the Co
vicinity of N-I phase
transition
T
b 1
¢
e e - . :
7 | T
< !

T T, T+

be confused with the electric xz or magnetic susceptibility y,,) determining the
development of order parameter fluctuations in the isotropic phase (short-range
order [3]) near the transition to the nematic phase (™' = 9?Ag/0S?. This is a
steepness of the free energy (dot curve 3 in Fig. 6.6) close to its minimum.
Above T, the order parameter is small, S — 0, and the terms with $3 and $* in
Eq. 6.9 may be disregarded. Then the inverse susceptibility (' = 2/:;,a(T —T,)
follows the Curie law  oc 1/T, see Fig. 6.8b.

This susceptibility can be studied in the isotropic phase by electro-optical
or magneto-optical techniques. Indeed, anisotropy of the electric and magnetic sus-
ceptibilities is proportional to the order parameter S, see Eq. 3.15. For example, nematic
liquid crystal acquires an additional free energy — (1/2))(3H2 = —(l/2))(”maXSH2 in
the magnetic field parallel to the director (¥ ax 1S anisotropy of magnetic susceptibility
for the ideal nematic). Then, on account of Eq. 6.9, the energy in the isotropic phase
with a short-range nematic order is given by

1. 1
~MH2S 4 —a(T — T,.%)S?

Ag(iso) = —
g(iso) = -5 3

After minimization we obtain the contribution of the magnetic field to the order
parameter

3xznax H2
SH ==

4a(T — T.")
that may be related to a change of the refraction index parallel to the field. The
appearance of the birefringence on(H) in the isotropic liquid induced by the
magnetic effect is called Cotton-Mouton effect. Its electric field analogue is Kerr
effect. In both cases, on follows the Curie law and the Landau coefficient @ may be
found from these experiments. Note, however, that the numerical coefficient (3/4)
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depends on arbitrariness of numerical coefficients in the original Landau expansion
(6.8). We should also underline that here we did not discuss any effects of fluctua-
tions of the order parameter in space 8S(r); the S-value was considered dependent
only on temperature and magnetic field.

In the frame of Landau theory we can also consider the influence of the external
magnetic or electric field on the N-I phase transition temperature. Imagine that we
apply the electric field E along the director of a nematic and increase temperature.
In the case of positive dielectric anisotropy €,, even a weak field changes the
symmetry of both phases to conical (C,.,), and, strictly speaking, the phase transition
vanishes. However, in the continuous temperature dependence of the order parame-
ter, a characteristic inflection point appears that may be considered as an apparent
N-I phase transition temperature 7. The latter may be changed with an applied field.

As the equation for the enthalpy is given by 0Ag/0T=—AH/T. we may write the
discontinuity of the free energy density as dAg=—AHJT/T.. When E I n there is a
difference between quadratic-in-field energy terms in the nematic and isotropic
phases Agr = (1/8m)(gy faiSO)Ez. From comparison of the two contributions, the
field induced shift 6T of the transition temperature T, is given by [9]:

For nematics with high positive dielectric anisotropy the difference g,—¢;,, ~ 10
is substantial and, for a typical value of AH ~ 2.5 x 107 erg/cm®, the shift ATy ~
1K is expected for a field strength of 500 statV/cm (or 1.5 x 10’ V/m) in agreement
with experiment [9].

Concluding this section I would like to underline the significance of coefficient B
in the Landau expansion:

1. For B = 0, the free energy is symmetric with respect to £n and we have a
second order transition. For small B # 0 the transition is called weak first order
transition because the discontinuity of the order parameter is small and T.*
becomes close to 7.

2. The biaxiality of molecules influences the value of B and, in turn, a variation of
B may provide, at least, theoretically the biaxiality of the nematic phase.

3. Flexibility of mesogenic molecules also strongly influences B.

6.3 Nematic-Smectic A Transition

6.3.1 Order Parameter

As both the nematic and smectic A phases have quantitatively similar orientational
order, we may fix the free energy of the nematic phase and assume the orientational
order parameter to be equal in both phases, S5 = Sn. Then we introduce a new
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Fig. 6.9 Below: A schematic
picture of molecular packing
in the vertically oriented
smectic layers. Above:
Average density p modulated
with amplitude p; and period

[ of the density wave -2 0 2 |/ g2 z
I
core tails

order parameter because, in the smectic A phase, a new symmetry element appears,
namely, one-dimensional positional order. Recall that, in the SmA phase, local
density is modulated, Fig. 6.9,

2nmz
3p(z) = p(2) = po =D _ Pm COS( —+ %)

Here / is interlayer distance and p,, is the infinite set of possible complex order
parameters (amplitudes and phases of density harmonics with m = 1,2,3 ...) In
fact, usually the modulation is not deep and, in the simplest approach, we can leave
only the first strongest Fourier harmonic with m = 1 and the role of highest
harmonics will be discussed later. Then,

8p(z) = py cos<¥+cpl> (6.15)

This density wave is usually considered as a complex order parameter p; =
exp (im) of the smectic A phase in the Landau expansion or free energy at the
SmA-N phase transition. Typically, when there is no distortion, one assumes
¢, = 0 at z = 0 and operates only with the wave amplitude p; as the real part of
the order parameter.

6.3.2 Free Energy Expansion

Due to symmetry +p; the free energy density is expanded over even powers of p;
that is without B-term:

1

4Cp‘l‘+--- with A = a(T — Tya),a > 0 (6.16)

1
8smA = &N + EAP% +

Assuming gn = const, after minimization of (6.16) with respect to p; we have

8gSmA _

pila(T — Tya) +Cpil =0 (6.17)
891
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Solution p; = 0 corresponds to the positionally symmetric (not modulated)
nematic phase. The other two solutions correspond to the positionally ordered
SmA phase with a continuous growth of the order parameter:

M] 2 (6.18)

=4
P1 [ C

The temperature dependence of p; may be found from the intensity of the X-ray
diffraction at the Bragg angle determined by period / of the smectic layers. The
experimental data on p;(Ty4 — T) for cholesteryl nonanoate [10] (solid bold curve)
are compared with the corresponding theoretical dependence (dash line) in
Fig. 6.10a. Note that the helical structure of the cholesteric is disregarded because
locally, on the scale of the size /, the nematic and cholesteric phases are indistin-
guishable. From this plot we can find p; = 0.31 at Ty, — T =10°C.

Therefore, with Ty, = 348 K and found ratio a;/C; = 0.01 we can plot the free

energy in arbitrary units. To this effect, let us write Eq. 6.16 in the dimensionless
form:

8smA — 8N 2 4
EsmA Z 8N _ (s — T)p% 4 0.143p% 4 - --
1/2aTNA ( ) 1 1
a
0.015 -
N
0.6 1 N
AN
AN
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g £ 0.005 -
T I 5
oy o
0.2
0.000
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ot ~0.005 -+t ————r
30 40 50 60 70 80 -0.6-0.4-0.2 0.0 0.2 04 0.6
T(°C) p4 (arb. u.)

Fig. 6.10 (a) Theoretical (dash curve) and experimental (solid curve) dependence of the smectic
A order parameter p; on temperature; Ty4 = 75°C for cholesteryl nonanoate [10]. (b) Free energy
of a smectic A as a function of order parameter p; for different temperatures: 10°C below the
transition (curve 1), T = Ty, (curve 2) and 10°C above Ty, (curve 3)
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The dependencies of the dimensionless free energy on the order parameter at
T < Tya (curve 1), T = Tya (curve 2) and T > Ty4 (curve 3) are presented in
Fig. 6.10b. The energy is symmetric about p; = 0. For T > T the higher symmetry
nematic state is stable; curve 3 at finite p; in the nematic manifests short-range
smectic order effect. For T < T, in the smectic A state, the two minima in curve 1
situated exactly at p;= 4 0.31 reflect the symmetry of the energy with respect to
the phase (0 or m) of the density wave.

We can also discuss the structural susceptibility in the more symmetric
(nematic) phase near the SmA-N transition.

62
)= ag;‘ = a(T — Tys) (6.19)
P1

It is a special layer formation susceptibility: close to the phase transition the
nematic is very sensitive to the spatially periodic molecular field, which induce
the density wave with period /. In order to study this phenomenon one is
tempted to use an external spatially periodic force with the same period, but,
at present, it is technically impossible. Therefore, we cannot find the Landau
coefficient a above Ty, using some analogy with the Kerr or Cotton-Mouton
effects.

However, there is a great deal of studies of pre-transitional effects by the
calorimetric and X-ray scattering techniques showing that, in the vicinity of
second order N—A transition, a strong fluctuations of the smectic order occur. It
means that the order parameter changes in time and space p;=p(r, t). For
example, a character of the functional dependence of heat capacity at the
nematic—smectic A transition may be very different, varying from a simple
step to the divergent cusp-like maximum [11]. The experiment shows that
N-A transition may be second or first order. This depends on the width of the
temperature range of the intermediate nematic phase between smectic A and
isotropic phases: the narrower the range the closer the N—A transition to the first
order.

6.3.3 Weak First Order Transition

In reality, the N—A transition is, as a rule, weak first order transition. There are, at
least, two ways to understand this in framework of Landau approach. We still use
the same smectic order parameter p, but include additional factors, either (a)
higher harmonics of the density wave, or (b) consider the influence of the
positional order on the orientational order of SmA, the so-called interaction of
order parameters.
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6.3.3.1 Role of Higher Order Fourier Components

We keep equality of nematic orientational order parameters in both phases Sy = Sa,
and take only the amplitude of the second harmonic p, of the density wave as an
additional SmA order parameter

8p(2) = py cos(2™7)) + py cos(77))

Therefore we have two order parameters (for the same transition) and the free
energy density is:

1 1 1 1
gsma = 8 + 5 A1PT +5A2p3 — Bpips + 7 Cipt +7Caps + Crapips
with A = a, (T — Tl); Ay = az(T — Tz)7 (6.20)

For a typical situation p; > p,, it is sufficient to take only one cross-term with
coefficient B. Coefficients a; and a, are assumed positive and, in addition, we
assume 1| > T, because on cooling, the first Fourier harmonic appears at higher
temperature, and afterwards, at a lower temperature, the single harmonic law is
violated and p, appears. The minimization of (6.20) with respect to p, results in

agSmA

Dp, — A2P2+ Capa — Bpi+2C1pip, =0 (621)
2

Due to smallness of p,, the second and fourth terms are small and we can find p,:

B
P2~ Pt (6.22)

Then, substituting p, into expression (6.20) for free energy and omitting the
terms with p,®, we obtain a biquadratic equation of the (6.6) type:

1 1 /2B 1
e _ 2_ (= 41+ -D,p 6.23
gSA—gN+2A1P1 4< L C1>pl+6 1P (6.23)

where D, = 12C;,B%*/A,”. Like in the case of Eq. 6.6, the condition for first order
transition is

2B, €y >0,

otherwise, the transition is second order. Therefore, an appearance of small terms
with p, in the free energy (6.20) results in a weak first order N-SmA transition.
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6.3.3.2 Interaction of Two Order Parameters

Experiment shows that:

1. The narrower a range of the nematic phase in a homological series of different
compounds (as an example see Fig. 6.11a) the stronger are first order features of
the N-SmA transition. In some sense, the SmA phase “feels” the proximity of
the isotropic phase. In other words, we may say that, in the isotropic phase, there
are traces of both nematic and smectic A short-range order.

2. Appearance of the positional order in the SmA phase is accompanied by an
increase in the orientational order, AS = S, — Sy. The reason is denser molecular
packing within the smectic layers that is more favorable for higher S, Fig. 6.11b.

On account of AS, the free energy density of smectic A may be written as
follows:

1

8smA = 8N + )

1 1
Arp? + EAZ(AS)2 — Bp3(AS) + g pt (6.24)

Now we make minimization with respect to AS and obtain

ag SmA
OAg

B
= AyAS — Bp? =0 or AS = ™ p? (6.25)
2

Hence, we arrive at exactly the same form the Eq. 6.23 has.

Therefore we again obtain the first order transition for 2B? /A2 —Cy >0 and
second order for 2B2/A2 — C1 <0 and a tricritical point for 2B2/A2 —C;=0.
The tricritical point (TCP) is located in the continuous phase transition line
separating the nematic and smectic A phases [12], see a phase diagram schema-
tically shown in Fig. 6.12. Such a point should not be confused with the triple
point common for the isotropic, nematic and SmA phases. In Fig. 6.12, for
homologues with alkyl chains shorter than /.., the N-SmA transition is second
order and shown by the dashed curve. With increasing chain length the nematic
temperature range becomes narrower (like in Fig. 6.1) and, at TCP, the N-SmA
transition becomes first order (solid curve).

Fig. 6.11 Sequence of
phases on the temperature SmA
scale (a) and qualitative

dependence of orientational

order parameter S in the

nematic and smectic A phases b
(b). With increasing M

increment AS the N-A AS
transition acquires more SmA 1 N Iso
features of first order
transition T

Iso




6.3 Nematic—Smectic A Transition 127

Fig. 6.12 Phase diagram
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6.3.4 Re-entrant Phases

As a rule, increasing pressure or decreasing temperature promotes a denser, more
ordered phase. There are, however, cases when, upon increasing pressure or
decreasing temperature, the smectic A phase is substituted by the nematic phase
[13]. Therefore, a more symmetric phase reappears or “re-enters” into consider-
ation. An example [14] is shown in Fig. 6.13. Following the horizontal line at
constant pressure of about 2 kbar (1bar = 10° dyn/cm? or 10° Pa) from the right to
the left we begin from the nematic phase then, with decreasing temperature, cross
the SmA phase and enter again the nematic phase. Similar sequence is observed on
the down-up way along the vertical line at constant temperature. Such an abnormal
behavior can be explained with a molecular model, Fig. 6.14. In fact, reentrant
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Fig. 6.14 Packing of molecular dimers in the nematic (a), smectic A (b) and reentrant nematic (c)
phases. The middle part of dimers formed by rigid biphenyl cores is broader than their end parts
formed by molecular tails and the length of the dimers depends on the pressure and temperature

phases are observed in liquid crystals with strongly asymmetric polar molecules
such as p-octyloxy-p’-cyanobiphenyl (80CB). They form pairs of antiparallel
dipoles (or molecular dimers as earlier shown in Fig. 3.9) whose length may depend
on temperature and pressure. Such dimers are building elements of mesophases.
Then a subtle change in the dimer geometry determines the packing structure shown
in Fig. 6.14 that explains the re-entrance phenomena.

6.4 Smectic A-Smectic C Transition

6.4.1 Landau Expansion

In the smectic C phase a new feature appears, a uniform molecular tilt that is
characterized by the two-component order parameter 3 exp(i¢) [15]. For simplicity,
we can fix the azimuth angle ¢ and operate with a real order parameter 3:

1 1 1
8smc = 8sma + EMz + 1&94 + EMG (6.26)

The odd terms are absent due to the +£9 symmetry. After minimization with

respect to 3 we get
C C

that is the same temperature dependence of the order parameter 3 as presented in
Fig. 6.10a. The inverse “soft-mode” susceptibility for the uniform tilt

(== =a(l —Tca), (6.27)
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as expected, has the same linear temperature dependence as in nematics, see
Eq. 6.10 and SmA. This is a typical picture for second order transition.

However, if you take into account the “interaction” of SmA and SmC order
parameters, a cross term p%192 would result in the appearance of the NAC triple
point in the phase diagram [8, 16], see Fig. 6.15. In this case, the phase transition
lines might correspond to either second or first order transitions; it depends on
parameters of the Landau expansion. In experiment, such a phase diagram may be
observed when a content of binary mixtures is varied.

6.4.2 Influence of External Fields

In the framework of the Landau theory one can analyze the influence of a magnetic
or an electric field on the phase symmetry and order parameters [17]. Here we
consider the magnetic field influence on the temperature of the smectic A—C
transition [11]. Let the magnetic field is applied along the smectic layer normal.
Then, it is sufficient to add the field term to the expansion (6.26).

1 1
8smC = gsma + EG(T — Tea)9* — EXa(H")z

We assumed small tilt angles and disregard the term with coefficients C and D.
For small 9 the scalar product is Hn(1 —9%/2) and after minimization we obtain

a(T — TCA)’L9 + XHHZ’LQ = 0

Finely, the temperature shift of the A—C phase transition point by the magnetic
field is given by:

1
T = (Tea =~ 1,H") =0 (6.28)
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Therefore, for positive y, (or €, in case of the electric field) the transition
temperature reduced with increasing field.

6.5 Dynamics of Order Parameter

6.5.1 Landau-Khalatnikov Approach

Going back to the beginning of this section, let us recall the conditions of the
thermodynamic equilibrium giving the free energy density minimum: dg/dn = 0
and d*n/dn* >0.What would happen if these conditions are not fulfilled? For
example, due to disturbance by an external field, the order parameter of the system
may become different from the equilibrium value. Then, after switching the field
off, the order parameter will relax to its equilibrium value. The problem is how
to find its relaxation time? Below we shall only consider the second order transition
and only a weak deviation from the equilibrium, i.e., small values of derivative
dgldn.

We neglect fluctuations of the order parameter, and assume that there is a simple
linear relationship between a torque dg/dm and a relaxation rate dn/dt. Physically it
means that the steeper potential well g(n) (larger dg/dn), the faster is relaxation
(larger dn/dt) of the induced order parameter. Hence the Landau—Khalatnikov
equation reads

dn_ 98

i~ T (6.29)

where the rate controlling coefficient I' is considered to be independent of
temperature.
6.5.2 Relaxation Rate

The relaxation rate can be found from the equilibrium Landau expansion (6.1)
without B-term:

1 1
g=go=§a(T—Tc)n2+ZCn4+---

Its solution for T < T, has been found above. The equilibrium value of the order
parameter is:

i = [a(T. - T)/C]"/? (6.30)
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Eq.(6.29) reads:

d
7’: = —T[a(T — T)n + Cn’] (6.31)
It is convenient to introduce a difference of the order parameters for the distorted
and equilibrium medium 6n =n — 7.
Then, for the high symmetry (high T) phase, 1 = 0 and the linearized
Landau—Khalatnikov equation for 6n is given by:

dn on
— =~ —Ta(T-T.)on=—— 6.32
7 a( )dn . (6.32)
with a characteristic relaxation time
1
Ty = S (6.33)

TaT-T.) a(T-T.)
Coefficient y = I~ is a kind of friction coefficient (viscosity for liquid crystals)
controlling the relaxation process. In the Gauss system [y] = s.erg/cm® = g.cm/s or

Poise. In the SI system [y] = s-JJ/m> = s:N/m? or Pa-s (1 Pa-s = 10 P).
For the low-symmetry phase we make linearization of the right part of Eq. 6.31

—I[(T = To)a+Cn?] = —=I[(T — To)a + C(7> + 2750 + - - )]

In the brackets, only term 2701C includes increment 6m. Thus we keep it and
then ignore higher order term with (81)%:

ddny, — _Tm2CRsn = —20C(R + 8n)Adn ~ —2ICH%N

Finally, using Eq. 6.30 for the equilibrium order parameter, we exclude C and
obtain for the low-symmetry phase:

ddn on
— =2Ia(T -T,)on = —— 6.34
o a( )on . (6.34)
with a relaxation time
1
- -7 (6.35)

T 2a(T.—T) 2a(T.—T)

The results (6.33) and (6.35) are of principal importance. We already know that
at the second order transition the structural susceptibility diverges (Curie law). Now
we see that relaxation times diverge as well, i.e., on approaching the transition from
any side, the relaxation of the order parameter becomes slower and slower and, at
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the transition, in the linear approximation considered above, the relaxation times
are infinite (softening of the transition).

Had we taken higher order terms of om into account, the divergence would
disappear. The Curie-type order parameter relaxation has been studied on a typical
nematic (5CB), see Fig. 6.16. The measurements have been made using a pulse
pyroelectric technique [18]. As the nematic—isotropic transition in SCB is weak first
order, it clearly demonstrates some features of the softening: the relaxation time of
the orientational order parameter on the nematic side of the NI transition increases
five times.

There are also other reasons that truncate the order parameter divergence such
as spatial inhomogeneities or external fields. For example, to describe a spatial
inhomogeneous system, a term quadratic in the gradient of the order parameter
G(Vn)? must be added to the density of free energy and all the Landau
expansion should be integrated over the system volume:

1 1
F= J[go+5a(T— Tom? +ZC”4 +G(Vn)* +--Jav (6.36)

Then in the relaxation equation an additional term appears. E.g., in the low-
symmetry phase, at T < T,:

odn _ [dn
= = (T - 2FGA(8n))

where A is Laplace operator. Then, the inhomogeneous distribution of 1(r) can be
expanded in the Fourier series of spatial harmonics and, for each Fourier compo-
nents with number m, we have different Landau—Khalatnikov equations

din, __n,

dt T
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with different relaxation times

Ti = % + I'Gm? (6.37)

Therefore, at T = T,, the relaxation time becomes finite. We meet the same
situation in the helical phases as well.

6.6 Molecular Statistic Approach to Phase Transitions

The problem is to derive the equation of state and thermodynamic functions of a
particular liquid crystal phase from properties of constituting molecules (a form, a
polarizability, chirality, etc.). The problem we are going to discuss is one of the
most difficult in physics of liquid crystals and the aim of this chapter is very modest:
just to introduce the reader to the basic ideas of the theory with the help of
comprehensive works of the others [2, 5, 19]. To consider the problem quantita-
tively we need special methods of the statistical physics. In this context, the most
useful function is free energy F, which is based microscopically on the so-called
partition function, see below. For the partition function, we need that energy
spectrum of a molecular system, which is relevant to the problem under consider-
ation. The energy spectrum is related to the entropy of the system and we would like
to recall the microscopic sense of the entropy.

6.6.1 Entropy, Partition Function and Free Energy

6.6.1.1 Entropy

We consider a small but macroscopic part of a larger molecular system. Even under
equilibrium conditions such a subsystem can be found in any of a tremendous
number n of statistical configurations or quantum states [2]. Any change in a
position, velocity or internal motion of a particular molecule will bring our macro-
scopic subsystem in the new state with energy E,. The set of corresponding energy
levels is extremely dense as pictured schematically in Fig. 6.17 and we may consider
a continuous distribution function w(E) = w(E,) of the probability for the subsys-
tem fo be in a state with energy E = E,. A number of the levels below a particular
energy E is I'(E). Now we would like to relate the entropy to this energy spectrum.
By definition, the dimensionless entropy is given by

s = InAT'(E) (6.38)

where Al is the so-called statistic weight of a macroscopic state of our molecular
subsystem related to the formidable number of the microscopic quantum states.
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Fig. 6.17 Energy levels of a macroscopic quantum subsystem, probability w(E) for the subsystem
to be in a state £, and probability W(E) for the subsystem to be within the energy interval between
E and E + dE, more or less realistic and approximated by a rectangular

The probability for a molecular subsystem to have energy in the interval between E
and E + dF reads:

w(E) (6.39)

where dI'/dE is density of possible states on the energy scale. Since the energy of
our subsystem under fixed experimental conditions fluctuates only negligibly about
the average value <E>, the density of states and probability w(E) have extremely
sharp maxima at E = <E>, close to d-function shown as “realistic” function in
Fig. 6.17. Therefore, the normalization condition may be written as

JW(E)dE ~ W((E)AE = 1 (6.40)

On the other hand, the number of the quantum states A" in the AFE interval is:

Al = dr({E)) AE, that means AE = AT’ dE
dE dar

(E))

. Now the condition (6.40) on

account of (6.39) results in:

_dr((E)) dE_
WE)) - AE = = =2 w({E)) - AT e = 1

Hence w({E))AT" = 1 and the dimensionless entropy is found to be related to the
distribution function w(E,,)

s=InATl' = —Inw((E)) = —(Inw(E,)) (6.41)

The transformation of average values in (6.41) follows from the statistical
independence of the events described by a distribution function (for wi, = wiw,,
Inw;, = Inw; + Inwy,, etc.).
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To have the entropy in the Boltzmann form we write
S = kBS = —k3<ll’l W(En)> (642)

Dimension of entropy is [erg/K] or [J/K]. To have an idea of the entropy value,
let us take a tremendous number of points in the phase space, e.g. 10'°’. Then,
s =230and S = 3-10" ' erg/K are extremely small values with respect to experi-
mentally measured quantities.

Up to now we considered number AT of the quantum states or “cells” in a
multidimensional configuration or phase space, formed by coordinates ¢; and
momenta p; (i = 1,2.../) where [ is the number of degrees of freedom. Each cell
had volume of A’ (h = 2nh is Planck constant). In general, these states include
all possible degrees of freedom, such as translational and rotational motion of all
molecules, their internal (atomic) motion, interactions with other molecules, etc.
Now, in the classical limit, instead of AT" we introduce a volume in the phase space
ApAq, in which a subsystem evolves in time. Additionally, to have the absolute
value of the entropy, we introduce the volume of the elementary cell in the phase
space (27h)' and write the dimensionless entropy in the form

ApAq

s=1In (2nh)/ (6.43)

6.6.1.2 Partition Function and Free Energy

In the quantum-mechanical case, a probability w(E,) for a subsystem to have
energy E, in a quantum state is given by the Gibbs distribution:

wo =2V exp(~Enfi ) (6.44)

where Z is a constant to be found from normalization procedure

an =z Zexp(—En/kBT) =1,

and called a partition function that includes all degrees of freedom of the subsystem:
z=Y exp(~En /kBT) (6.45)

Using Eqgs. 6.42 and 6.44 we write entropy in the form

S = ks nw(E,)) = k(2™ exp(~Enfiy 7)) = ~kpinz 4 L
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equivalent to
(E) =TS = kgTInZ". (6.46)

As the macroscopic definition of the free energy is F = (E) — TS, we relate the
free energy to partition function:

F=kgTInZ ' = —kzTInZ (6.47)

Finally, on account of (6.45) the free energy acquires a desired microscopic
form:

F=—ksTny_exp(—Enfp7) (6.48)

This formula is a base for calculation of all thermodynamic functions of any
system if the energy spectrum of the latter is known. We shall illustrate this
approach considering two simple systems, the ideal gas and a liquid, both consisted
of spherical particles.

In the classical case, instead of discrete distribution w,, (E,,) we have a continu-
ous probability function p (p,q) that is probability to have a subsystem with given
momentum p and co-ordinate ¢ in the configuration space:

p(p,q) = Aexp(—E0: ) 1)

and, in the expression for the free energy, instead of the partition function we have a
configuration integral

/
F= —kBTan exp(—E(P»‘I)/kBT)dF

where dI” = dp; dq,»/(2nh)l and prime (/) means integrating over physically
different states. To avoid (/) we may integrate over all states of N particles
(molecules) but afterward to divide the result by the number of permutations
Nl: [/..dr = (1/N) [ ..dT

6.6.2 [Equations of State for Gas and Liquid

6.6.2.1 Ideal Gas of Spherical Particles

To illustrate the technique, consider an ideal gas of N spherical, point-like, non-
interacting particles or molecules without internal degrees of freedom. The partition
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function takes into account only the translational motion with three degrees of
freedom (no rotation assumed for spherical particles):

N
1
Zic =Y _exp(=Frfiyr) = 15 <Z exp(gk/kBT)> (6.49)
n M k

Here, k states of energy €, belong to an individual particle and the summation
should be made over all these states. Since particles do not interact, the statistic sum
for N independent particles is a product of N sums calculated for each particle. As
explained above, to exclude identical sum corresponding to the same state of the
gas, the number of permutation N/ is introduced in the denominator.

The translational motion of a particle is classic and the kinetic energy of one
molecule is & (py, py,p:) = (pi + p; + p?)/2m. Therefore, the summation may be
substituted by integration over the phase space (V is the physical volume of the gas):

SSon(-ir) -S| [ [0 i)
Vo p

k

kaT 3/2 3

Note that, in the triple integral, each integral with respect to p; with limits
(—00,00) has the known Gaussian form: [ exp(—ax?)dx = /m/a and
MT) = (2n)" 1) (mksT)"/* -

Now the partition function for N molecules is found:

—3N

N!

A TNYN

Zic = TN

Jdrldrz...dr,v = (6.50)

In (6.50) integrating is made over N-dimensional coordinate space of volume V"
Then, the free energy (6.47) reads:

F =kgT(3NInA(T) = NInV + InN!) = —ksTN(InV — InN — 3InA(T) + 1)

Here we used the Stirling formula for large N (InN!=NIn(N/e),
e=2718...)
Now we can find pressure

NkgT
Vv

and obtain the equation of state for the ideal gas with particle concentration or
number density p=N/V:

p,GV = NkBT or pig = pkBT (651)
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6.6.2.2 Equation of State for a Dense Gas or a Liquid

If we would like to discuss a non-ideal dense gas of interacting hard spheres of a
finite size, we should introduce a concept of excluded volume to take into account
the repulsion of molecules at short intermolecular distances and write the energy of
attraction between molecules at large distances. Then the partition function of type
(6.48) will include two additional contributions and becomes quite cumbersome.
Nevertheless it allows the discussion of the Van der Waals equation of state

p = [NkgT/(V — b)] — a/V? (6.52)

on the microscopic level and find the physical sense of parameters a (for attraction)
and b (for repulsion) introduced by Van der Waals phenomenologically. For a
simple liquid consisting of hard spherical molecules the equation of state may be
written in terms of number density p:

P =Dus — 3 Jop’ (6.53)

Here, the first and second terms describe correspondingly positive pressure due
to molecular repulsion and negative pressure due to molecular attractive forces. Our
task is to understand the microscopic sense of parameters p,, (index means hard
spheres) and Jy. Therefore we need a proper partition function.

Let u(r;) is repulsive and —W(r;) attractive parts of the intermolecular potential
for molecules i and j; then the partition function for N spherically symmetric
particles of mass m and radius r( reads [5]:

7\‘73N N
zZ= T Jdrl... drNeg{exp [I/QB Z W(rkl)] } (6.54a)

kAl

Here P =1/kgT, A is given above when discussing the ideal gas,
e;; = exp[—Pu(r;j)]. This function can be written shortly as a product of the part
Z, including solely repulsive interactions and the thermal average of the term
describing attraction between different particles k and /:

Z=12 <exp [1/2[3 > W(rk,)] > (6.54b)

KAl

First we estimate only the repulsive part Z, and then the attractive one.

In Eq. 6.54a, averaging over ensemble (reference system) depends on the type of
the ensemble. In the simplest case, we take as a reference the system of hard spheres
with repulsive potential of the type of a hard wall, shown in Fig. 6.18a, namely,

Forr; < 2rq: u(r,-j) =ooande; =0
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Fig. 6.18 Hard core a
intermolecular potential (a) and u
illustration of the excluded
volume for two spherical
particles of radius 7 (b)

0

2ry r

and
forry > 2ro: u(r;) =0ande; = 1

Next, since the hard spheres (or molecules) have their own volume V,, = (4/3)Trr3
and touch each other, the free volume for their translational motion is reduced. As
seen in Fig. 6.18b the presence of sphere 1 reduces the available volume for sphere
2 by 8V,,,. This value is common for two spheres; therefore, the excluded volume per
one sphere is 4V/,,.. It means that the volume of the whole system is diminished down
to the value of V. — 4NV,,,. Then the partition function (6.50) for the ideal gas of point
spheres, which corresponds to the same translational degrees of freedom may be
corrected for the excluded volume or a packing fraction n=pV,,:

ATV - 4n)V

% N!

(6.55)

Therefore, the part of free energy related to hard sphere repulsion is expressed in
terms of density of particles p =N/V that on account of Stirling formula is given by

Fus = —kgTInZy = NkgT[3Ink +Inp — 1 — In(1 — 4n))]

From here the repulsive part of pressure is found

_ OFy _ NkgT  NkgT
P = Ty TV ANy, V(1 —4n)
~ pkgT(1 +4n 4 16> +64n° +-- ) (6.56)

The approximation is correct for small density p, i.e. small packing fraction 1.
Note that for n=0, we obtain the equation of state (6.51) for the ideal gas p=pkpT.

Now we try to estimate the attractive term (a thermal average) in the partition
function (6.54a). Due to enormous mathematical difficulties, we get rid of the
summation:

<exp [1/2[3 Z W(i'k/)] > = exp [1/2BNpJ0} (6.57)

KAl
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In fact, instead of summation we have averaged the potential W(ry) with the
hard-sphere radial density distribution function pys familiar to us from the discus-
sion of density correlation function of isotropic liquids in Chapter 5. As a result, we
obtain a new constant Jo = [ W(r)p,,(r)dr. From (6.57) the contribution to free
energy due to attraction is found:

1 1
Fuur = —kgT| ——=NpJy | = — —N2J,
1t B (ZkBT p o) oV 0

The pressure due to attractive forces is given by

Pany = —OF atr/gy = I/QNZJO(_l/VZ) = —1/29210

Finally, we obtain the equation of state for interacting hard spheres (attraction
and repulsion):

p= —=Jop® (6.58)

This equation corresponds to both the equation of state for liquids (6.53) and the
Van der Waals equation (6.52). However, the phenomenological parameters a and b
in (6.52) acquired physical sense. Parameter b = 4NpV,, is related to particular
molecular volume and density of spheres (molecules), parameter a = N°J/2 points
to the properly averaged potential describing molecular attraction.

Thus, we have seen how intermolecular interactions can be taken into account
for description of non-ideal gases and even liquids. Now we are much closer to
liquid crystals.

6.7 Nematic-Isotropic Transition (Molecular Approach)

6.7.1 Interaction Potential and Partition Function

Consider the simplest case, namely, the nematic phase consisting of uniaxial rod-
like molecules. Generally, the intermolecular interaction again consists of the
repulsive and attractive parts but both of them become anisotropic. The potential
of pair molecular interaction can be written in the following general form:

Wip = Wia(ri2, 01, ¢y, 02, ;) (6.59)

Note that Euler angle ¥ is not considered due to the rod-like form of a molecule;
the other angles are shown in Fig. 6.19a. Vector r, connects the gravity centers of
rods. If the particular form of Wy, is known, it can be used for calculation of the
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Fig. 6.19 Geometry of a b
interaction between two rod-like \
molecules (a) and geometry of a a,

spherocylinder (b) -
9
b2 X O
n\~2 A

N
kg

partition function for N molecules with numbers & and /. The partition function may
be written in analogy to expression (6.54a) for simple liquids:

Z = Zug <exp ll/zﬁ > W(rk,akal)] > (6.60)

KAl

Again this function includes the repulsive multiplier Z;z and the attractive part.
The repulsive part may be considered as a reference for calculation of the thermal
average necessary for the attractive part. To find Z,, we may operate with an
excluded volume, although even for hard rods (suffix HR) it is very difficult to
calculate it. The total procedure is enormously complicated because, even for Zyz
known, it requires multiple averaging over (a) all orientations of molecule 1, (b) all
orientations of molecule 2, and (c) all distances ry,.

Below we shall consider two extreme cases, long hard rods without attraction
and rod-like molecules without repulsion. The first approach (by Onsager) may be
applied to very long molecules like tobacco mosaic viruses and calls for hard
mathematics [20]. We shall discuss it very schematically in the next section. The
second one (by Maier and Saupe [21]) appeared to be simpler but very powerful and
can be applied to many typical nematic liquid crystals. We shall consider it in the
subsequent Section 6.7.3.

6.7.2 Onsager’s Results

Consider a medium consisting of elongated, cylindrically symmetric hard-core
molecules in the form of spherocylinders. For spherocylinders shown in
Fig. 6.19b we may introduce parameter

x=L+D) (6.61)

that reduces to x = 2D for spherical particles discussed above. A rod has kinetic
energy of translations p*/m and rotation about its short axes py>/2I and p¢2/2l
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(angles ¢ and 0 are in Fig. 6.19a, I is moment of inertia). Therefore, a rod has five
degrees of freedom. In addition rods k and / interact with each other. The interaction
potential is uy; = oo if they overlap each other and uy; = 0 without overlapping.
The Hamiltonian of the system consisting of N rods is given by

N N

and the partition function can be written as

1 N
ZHR = W J [drdp,dpe,dpd,lde,dd), exp(—BH)] (663)

Onsager used a low-density expansion, that is small packing factor n=pV,,.
After a cumbersome calculation procedure he has found the excluded volume
Vm/(aiaj) that depends on orientation of the rods. Then, using (6.63) and several
approximations concerning averaging, the free energy and the equation of state for
hard spherocylinders have been found.

At that stage a uniaxial, orientational order parameter S is introduced in terms of
the mean square projections a,, . of molecular vector a:

(@) = (a3) = (1/3)(1 = 8); (a2) = (1/3)(1 +25)
The order parameter depends on the packing fraction and temperature. With

increasing density or decreasing temperature the isotropic phase is substituted by
the nematic phase. The equation for S is found in terms of 1 and v.

S(28° —S —1+3/81y) (6.64)
where factor y includes the molecular anisotropy x:

2(x — 1)

= n(3x —1)

Equation 6.64 has three solutions, S = 0 for the isotropic phase and

1 3 1\ 2
— 4 (1-— -
S 4 4-( 3nv> (6.65)

for the nematic phase. The solution with sign (4) is stable. A critical condi-
tion 3ny=1 corresponds to the transition from the isotropic to the nematic phase.
It is solely determined by molecular parameter y (or x) and packing density
dependent on temperature. The qualitative temperature dependencies are shown
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Fig. 6.20 Onsager model: S
order parameter dependence on
molecular packing factor n for
two values of spherocylinder
anisotropy ratio x = 4 (dash
curve)and x = 11 (solid curve).
S. = 0.25 is the amplitude of
the order parameter jump at the
phase transition

in Fig. 6.20. For very elongated molecules (x = 11) the phase transition appears at
much smaller packing density (compare with the curve for x = 4). There is no
solution for short spherocylinders anisotropy x < 3.08. The order parameter
changes discontinuously with a jump (S, = 0.25) at the isotropic-nematic transition
point (first order transition).

6.7.3 Mean Field Approach for the Nematic Phase

6.7.3.1 Interaction Potential and Partition Function

The potential of pair molecular interaction (6.59) is too difficult to deal with.
Much simpler is to use symmetry of the phase of interest (nematic) and construct
the form of potential energy of a molecule as if it interacts not with other
surrounding molecules but with an average molecular field. This is an essence
of the mean field approximation [1]. The single molecule potential represents the
mean field of all intermolecular forces acting on a given molecule. In this case, we
neglect the intermolecular short-range order. Such theories have appeared to
be very powerful in the physics of solid state, for instance in magnetism, ferro-
electricity and superconductivity.

Consider the nematic phase. It has cylindrical symmetry and the orientational
order parameter <P,> = 1/2<3c:05219 - 1> with angle 9 between a molecular long
axis and the symmetry axis (the director n). The tasks of the molecular theory is to
use the symmetry arguments and properties of molecules and (a) to find the
temperature dependence of <P,> (T), (b) to calculate thermodynamic and other
properties in terms of <P,>, (c) to discuss the phase transition from finite <P,>
to zero (N—Iso transition), and (d) to discuss the role of the higher order parameters
<P4>, <Pg> etc.

The key problem is a form of the interaction potential. The two-pair potential
(6.59) is too complicated and we would like to substitute it by a single molecule
potential:

1. Atfirst, the pair potential W, is expanded into two series of spherical harmonics
Y, and Y,. Then the dependence of Wi,(r;;) on the intermolecular distance
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becomes separated from the dependence of W, on molecular orientation. Then
only the difference between two angles ¢;—d, is considered essential, but not
each of the two angles. In addition, due to head-to-tail symmetry, only even
terms are left in the expansion. Fortunately, the coefficients of the expansion
decrease rapidly with the number of a harmonic.

2. Then, a new, polar coordinate frame was introduced based on the director n as a
polar axis. To obtain the single molecular potential W, as a function of the first
molecule orientation with respect to n, one has to take three successive averages
of W1,: (a) over all orientations of intermolecular vector r, (b) over all orienta-
tions of molecule 2, and (c) over all intermolecular separations Irl.

Finally, the single-molecule potential has been found in the form of expansion
over Legendre polynomials:
Wi (cos ) = v(P3)Py(cos¥) + u(Ps)Ps(cos ) + 6™ + - - - terms (6.66)
In the simplest case, we use only the first term:

Wi(cos ) = —v(P;)Pa(cos V). (6.67)

Its form is shown in Fig. 6.21. P,(cos9) is a universal function varying from —1/2 to
+1 and v <P,> is a number determining the depth of the potential well. Note that
parameter v depends on properties of a molecule (shape, electronic structure, etc.).

The even function f(cos 1)) given by the Gibbs distribution describes the proba-
bility for a molecule to be at an angle 9 with respect to the director n:

Wios )

_ o1 _
flcosd) =2 exp( T

-<P, >P, (cos8

Fig. 6.21 The dimensionless
form of the nematic mean field
potential as a function of
molecular angle 9 at three
different values of <P,> =0
(horizontal line), 0.5 (dot | |
curve) and 1 (solid curve) —n/2 0 0=n/2
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The probability to find the molecule at any angle 3 within 0 and © equals unity.
From here we find the single-molecule partition function

1
9
zZ= Jexp (— M) dcos? (6.68)
ks T

The configuration integral includes only one degree of freedom (3-orientation).
Other degrees are ignored because we are only interested in an excess of free energy
of the nematic phase with respect to the isotropic phase. At this stage Eq. 6.67 is not
yet helpful for the calculation of thermodynamic parameters since it includes
unknown value of <P,> in the mean-field potential W. However, using the theo-
rem of average, <P,> may be written in the form valid for any weight function f
(cos9d):

1
(Py) = JPz(cos 9)f (cos ¥)d cos (6.69)
0

Now we combine (6.67), (6.68) and (6.69) and obtain the self-consistent equa-
tion for the determination of the orientational order parameter <P,> as a function
of kgT}/v:

1
| P2(cos¥) exp {W} dcos
0 B
(Pa) = (6.70)

1
fexp {M} dcos
i kgT

The equation is complicated but we can vary kgT/v and, for each given value,
calculate numerically <P,> by integrating over 9. The result is universal and
shown in Fig. 6.22.

Now we can summarize some preliminary, but important conclusions:

1. The two branches correspond to two ordered phases, one is nematic with positive
<P»> > 0, and the other phase (not observed yet) with negative <P,>. The
positive branch corresponds to the results of the Landau approach, see Fig. 6.5.

2. At T, the order parameter <P,> increases by a jump from O to 0.429, therefore,
the N-Iso transition is first order transition.

3. The N-Iso transition takes place at kzT./v = 0.222. From this value and a
typical experimental transition temperature 7. = 400K we can estimate
the height of the potential barrier v = kzT./0.222 = (1.38 - 10~'¢ - 400) /0.222
=2.5-10"Perg = 0.15eV. However, the molecular nature of parameter v is not
clear yet and we cannot calculate the partition function and free energy. It should
be discussed using specific molecular models.
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Fig. 6.22 Mean field model
of the nematic phase:
temperature dependence of
the order parameter. The two
branches correspond to stable
nematic phase with positive
order parameter (solid line),
and unstable phase with

negative order parameter 00fF-==-==-===-mmm S
(dash line). Order parameter —
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6.7.3.2 Maier-Saupe Theory

The results of the simplest mean field approach are very impressing. However,
some experimental observations, e.g., different temperature dependencies of the
order parameter for different substances, a discontinuity of density at the N-Iso
transition have not been explained. The main disadvantages of the simplest theory
are (a) lack of the density (or volume) dependence of <P,> showing a jump at the
transition; (b) an oversimplified form of the potential well; and (c) pure phenome-
nological nature of the depth of the potential well v.

If we come back to Eq. 6.66, then with additional terms (fourth, sixth, etc.) we
can find a new partition function and calculate more precisely the thermodynamic
parameters (free energy, entropy, etc.). Indeed, the results of such calculations fit
much better the experimental data on <P,> and <P,> for different materials
[22]. But what about the nature of parameters v and u? For the first and most
important of them, the answer is given by the Maier—Saupe theory [21].

All physics of the intermolecular interactions is included in potential W,. Its
general dependence on density (or volume V) is not known. However, a dependence
of the form W x —A/Vz is consistent with the typical 7 °~-dependence of intermo-
lecular attractive energy (for instance, in the Lennard-Jones potential '>~°). The
V™2 form is a result of averaging over three-dimensional volume. This law is valid
for London dispersion forces related to “induced dipole — induced dipole” interac-
tions. Since elongated molecules have anisotropic (tensorial) polarizabilities, the
idea of Maier and Saupe was to describe their interaction in terms of anisotropic
dispersion forces. On account of the molecular volume term, V,, = V/N, the mean
field potential (6.67) takes the form:

Wi = —Af2(P2)P(cos V) (6.71)

This form allows for separation of effects related to packing of molecules (V,,,),
their ordering (<P,>) and molecular spectral properties (A). The coefficient A was
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considered as a constant to be found from experiment. It can also be estimated from
the theory of dispersion forces. The classical formula for the interaction energy
between the oscillating dipole of one atom with another, neutral atom (or a
spherical molecule):

w(r) =— =—— (6.72)

Here o is frequency of oscillating electron in the first atom, o, is polarizability of
the second atom, r is distance between the two. This result is in qualitative
agreement with a quantum—mechanical theory developed by London. For calcula-
tion of parameter A in (6.71) Maier and Saupe used this basic formula, but in
addition they took the anisotropy of molecular polarizability Aa into account. It is
Ao, that determines the stability of the nematic phase.

The Maier—Saupe theory is very successful in explanation of density jump at T;.
It can also explain some correlation between the thermal stability of the nematic
phase and the anisotropy of molecular polarizability Aa. Up to now it is very
popular among chemists although there are some substances (e.g., cyclohexyl-
cyclohexanes), which have a very stable nematic phase but Ao ~ 0. Its main
drawback is a neglect of short-range (steric) effects taken into account, for instance,
by hard-rod Onsager-type models. On the contrary, the hard-rod models do not take
long-range interaction into account. The two approaches taken together result in
more realistic predictions. However, in general, due to complexity of the problem,
all such models present only semi-quantitative picture [23].
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Physical Properties



Chapter 7
Magnetic, Electric and Transport Properties

Some properties of liquid crystals depend mainly on properties of individual
molecules and approximately obey the additivity law. Thus, molecular properties
can be translated, of course with some precautions, onto the properties of a
mesophase on account of the symmetry of the latter. Quantitatively, the relevant
phenomenological characteristics such as magnetic and dielectric susceptibilities,
electric and thermal conductivity, diffusion coefficients, etc. can be calculated by
averaging molecular parameters with the corresponding single-particle distribution
function. Other properties of liquid crystals such as elasticity or viscosity dramati-
cally depend on intermolecular interactions and the corresponding many-particle
distribution functions have to be taken into account. Here we shall start with a
discussion of the properties of the first sort. Moreover, we shall limit ourselves
mostly to the phases of highest symmetry (uniaxial nematics and smectic A) whose
properties are represented by second-rank tensors, discussed in Section 2.5.
Throughout this chapter, the director field is considered to be non-distorted, n(r) =
constant.

7.1 Magnetic Phenomena

7.1.1 Magnetic Anisotropy

In the Gauss system, magnetic induction B = pH where H is magnetic field strength.
The magnetic permeability p = 1 + 4my where x is dimensionless magnetic sus-
ceptibility. Except ferromagnetic materials, 4wy << 1. e.g., for p-azoxyanisole
<y>=—5 x 1077, therefore p ~ 1.

By definition, a magnetic moment of substance per unit volume is magnetization
M = yH. For an anisotropic material, the magnetization vector components are
M, = y,sHp and the contribution to the free energy density of the mesophase from
the magnetic field is given by [1]:
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H, Hyg
1
8magn = — JHadMa = — JHOCXxﬁdHﬁ = _§XacﬂHo'H/f
0 0
For uniaxial phases y,3 = 8.8 + 1 Nanp, therefore
1 2 2
Smaen = =5 |1 H? + 74(naH,)| (7.1)
or in the vector form
1 2 2
8magn = ) [XLH + %,(Hn) } (7.2)

Here Hn = Hcoso where o is the angle between the director and magnetic field.
The second term determines an orientation of the director in the field: for y, > O the
director n tends to align parallel to the field; for y, < 0 it tends to be perpendicular
to H. A sign of y, is determined by competition of diamagnetic and paramagnetic
terms.

7.1.2 Diamagnetism

Diamagnetism is caused by an additional electric current induced by a magnetic
field in a molecule. The diamagnetic contribution to g is negative, independent
of permanent magnetic moments of molecules and is present in all molecular
materials [2].

7.1.2.1 Single Electron

Consider a classical model of a current i caused by a rotating electron in the absence
of a magnetic field, see Fig. 7.1. When an external magnetic field is applied, an
additional, namely, induced current appears due to the Lorentz force acting on a
moving electron. The induced current component i tries to screen the external field

Fig. 7.1 Diamagnetism of I/\
a single electron: electron :\P H
rotation creates current i in ’ N\JJ

the magnetic field absence

1
and the additional current \\ \/ ! .
i Oi

i is induced by the magnetic
field H

zf 11



7.1 Magnetic Phenomena 153

H = H, (the Lenz law). In fact, 6i comes about due to precession of electronic
orbits with angular frequency according to the Larmor theorem:

_eH
© 2m,c

oL (7.3)

where e/2m,c =y [cm'?g~'"?] is gyromagnetic ratio, e and m. are the charge and

mass of an electron, ¢ is light velocity. Such a precession of an electron is
equivalent to a diamagnetic current:

5= O cH

2n 4dnm,c?

Generally, the magnetic moment of a frame with current is p,, = I x s where
s is vector of the current loop area (s = <p2>). Therefore, the induced moment
and the susceptibility of single electron moving along the contour perpendicular to
H are given by

2

P e
(0 (0°) = () 7). Toagn = = ~ gz (0°)

. e’H
Pm = W
Here, there is no component of the current along z and <p>> is mean square of
the distance between the electron and the field axis z. For a circular electron orbit of
radius 7, we have <p®> = </*>. In a more general case of electron orbits tilted
with respect to H, the mean square distance between the electron and the nucleus is
<> = <>+ <P+ <P

7.1.2.2 Molecules

For spherically symmetric molecules with electron orbit radius r, <x*> = <y*>
= <z*> and <p®> = (2/3) <r*>. Then the magnetic susceptibility of a spherical
molecule having Z electrons is

Ze?
6m,c?

(r*) (7.4)

Yma gn —

For cylindrical molecules with length L and diameter D, Yiagn is a tensor with
principal components

I Ze? Ze?

=—— (DY and vyt ~=—
2m362< >an ’Ymagn 4meC2

(L* + D?) (1.5)

magn
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Hence, the diamagnetic anisotropy of a uniaxial liquid crystal phase with
orientational order S and n, molecules per unit volume can be found:

; n,Ze>
rat = =5 =5 S[(D%) = K17 + D?)] (7.6)
M, C
According to (7.6), anisotropy x4 may be either positive or negative depending
on the molecular geometry. A very important structural unit of liquid crystal
molecules, a benzene ring has negative diamagnetic susceptibility with the maxi-
mum absolute value along its normal due to the maximum &i current along the ring
perimeter. For this reason, elongated molecules containing two or three benzene
rings have negative susceptibility with minimum absolute value along their longi-
tudinal axes that is along the director. For such molecules <L* 4+ D*>/2 exceeds
<D?*> in (7.6) and calamitic uniaxial phases formed by several benzene fragments
have positive diamagnetic anisotropy y“. along longitudinal axes. Typically, in
nematic and SmA phases shown in Fig. 7.2, the diamagnetic susceptibilities are
almost independent of temperature.

In some rare cases, e.g., when a calamitic phase consists of solely aliphatic
compounds or cyclohexane derivatives, its anisotropy XZi“ is very small and can
even vanish. As to the discotic mesophases, they have, as a rule, negative diamag-
netic anisotropy 74 = y{'* — 7{ < 0 due to a considerably larger value of the
susceptibility component perpendicular to the director (for discotics 74 would be

closer to zero line than xﬁ"‘ in the plot similar to Fig. 7.2).

Fig. 7.2 Qualitative

temperature dependences of 0
the principal components

of diamagnetic (negative)

and paramagnetic (positive)

susceptibility for calamitic

compounds in the isotropic,

nematic and SmA phases
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7.1.3 Paramagnetism and Ferromagnetism

7.1.3.1 Paramagnetism

The susceptibility of paramagnetic substances is mostly determined by permanent
magnetic moments p,,, which are aligned by the magnetic field. The field induced
magnetization is determined by the total projection of n, molecular magnetic
moments in a unit volume onto the field axis

Mparq = nypm(cos )

where 0 is an angle between individual dipole p,, and field H. In the isotropic phase
such a distribution is given by the Langevin formula [3]:

| exp(—p,,H/kgT) cos 0dQ
(cos8) =

) J exp(—p, H/kgT)dQ = L(pmH /kgT)
Q

= cth(p,H /ksT) — (ksT /pmH) (1.7)

Here x = p,H/kgT and L(x) = cth(x)—(1/x) is the Langevin function. Forx << 1,
cth(x) = 1/x + x/3 -... and <cos0> = x/3. Therefore, for a weak magnetic field,
pmH << kgT, the magnetization is:

_ nvpran
para — 3kBT

(7.8)

What is a nature of p,, in a molecular system? The molecular paramagnetism is
mostly originated from the unpaired electron spins. The magnetic moment for a free
electron spin is

Py = —8 lpg\/s(s+1)

where s is spin quantum number, p; = ¢ h/2m€ ¢ 1s Bohr magneton for electron and
g = 2.0023 is Lande factor. According to (7.8), the spin magnetization and suscep-
tibility follow the Curie law, yocT ™'

g ups(s +1)
3ksT

g ups(s +1)

M, =n,
s =0 s T

H and y, = n, (7.9)

Typical temperature dependencies of paramagnetic susceptibility ¥”““ are pic-

tured in the same Fig. 7.2 in comparison with %% The order of magnitude of both
x¥ and yP“* is 107". As far as the nature of the paramagnetic anisotropy is
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concerned, it should be noted that in molecules the unpaired spins are almost free to
rotate. Therefore, their alignment, e.g. by an external magnetic field, needs not be
accompanied by alignment of molecular skeletons. In reality, however, there is
some coupling between spins and molecular axes. The g-factor becomes a tensor
due to interaction of the unpaired electron spins with the angular momentum of
molecular orbitals (the so-called spin-orbit interaction). This is a reason for the
anisotropy of paramagnetic susceptibility of liquid crystals. For a uniaxial phase,
the paramagnetic anisotropy is given by

2
ara n, S(S + 1)
2 = BkTs(g2L ~g) (7.10)

where S is the orientational order parameter and (g3 — gﬁ) is anisotropy coming
from the g value. The latter determines a sign of paramagnetic anisotropy xhe.
Like diamagnetic anisotropy xf’”, yb¥“may be either positive or negative depending
on orientation of the g-tensor with respect to the director. For instance, y2““ < 0 for
elongated calamitic complexes of copper II with d” electron configuration. Differ-
ent compounds of this sort can be oriented either perpendicular or parallel to the
magnetic field depending on competition with the positive diamagnetic contribu-
tion. On the other hand, vanadyl (VO) d' complexes manifest both yb@4 > 0 and

y%a > 0 and are always oriented along the magnetic field.

7.1.3.2 Ferromagnetism

The ferromagnetism of organic compounds has been observed only recently. These
are compounds containing Fe, Ni, Co atoms and the ferromagnetic state is found at
very low temperatures (few K), at which a liquid crystal state is not observed yet.
However, ferromagnetic materials can be prepared from colloidal suspensions of
small solid ferromagnetic particles, even nanoparticles (e.g., magnetite Fe,O5 or
ferrite Fe;O,4) in liquids. Such solutions are called ferrofluids. Since these particles
have permanent magnetic moments p,,, under a magnetic field they can be oriented.
In ferrofluids they form chains, which are arranged in ordered patterns.

The same particles can be introduced into liquid crystals, e.g. into nematics [4].
If the guest particles are elongated they may be aligned by a liquid crystal (host)
even in the absence of the magnetic field, e.g. by a surface treatment (without
macroscopic magnetization). The external magnetic field will orient the magnetic
moments of particles, which, in turn, orient the liquid crystal matrix. Such nematic
suspensions of particles show very interesting magneto-optical properties (a guest-
host effect in ferrofluids).
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7.2 Dielectric Properties

7.2.1 Permittivity of Isotropic Liquids

Liquid crystals are anisotropic fluids and the discussion of their dielectric properties
is based on the fundamental ideas obtained for isotropic liquids. We recall the
relevant results.

7.2.1.1 Dielectric Spectrum

The Maxwell equations for the electromagnetic field in conductive materials such
as organic liquids read:

cuﬂE:_E.aH ¢ OE 4n
c

Here E and H are vectors of electric and magnetic field strength, () and p(w)
are frequency dependent dielectric and magnetic permittivities, G is permanent
conductivity. In the second equation, the two terms describe the displacement and
Ohmic current, respectively.

In the limit of ® = 2nf — oo no dynamic process in medium can follow the
field; the electric polarization P = ®E vanishes (i.e. dielectric susceptibility
x¥ — 0) and the displacement vector D = (1 + 4my®)E coincides with E, that is
e =1 + 4my"® — 1. With decreasing frequency, fast electronic processes have
enough time to follow the field and, at optical frequencies, € = n” (n is refraction
index) shows peculiarities related to electronic absorption bands (normal and
abnormal dispersion). With further decreasing frequency other processes such as
molecular rotations and vibrations begin to contribute to the electric polarization
and £ = n” again increases, see Fig. 7.3.

On the other hand, since for the sine-form field 0E/0t x oFE the role of
permanent conductivity ¢ decreases with increasing frequency, in the high fre-
quency limit ® >> 1/t = 4nG/e a material can be considered as non-conductive.
The time ty; = €/4nc is called Maxwell dielectric relaxation time. Later we shall
meet it again under another name ‘“space charge relaxation time”.

7.2.1.2 Local Field, Clausius-Mossotti and Onsager Equations

The vectors of electric displacement D and polarization P are also coupled by the
additional Maxwell equation:

D E+4nP P oe—1
=—=—_""=1+47P/E and === 7.12
£=% 3 +4nP/E and g E= an (7.12)
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Fig. 7.3 Qualitative frequency spectrum of the dielectric permittivity

Fig. 7.4 Lorentz model for
the local field. Polarization of
an ellipsoidal form dielectric
sample and appearance of
depolarizing field E; (a),
Lorentz cavity field E, and
the field of individual
molecules within the cavity
E; (b)

How can we relate these macroscopic quantities to the microscopic parameters
of molecules such as polarizability or a dipole moment? With some precautions, the
polarization of an isotropic liquid may be found as a sum of the field induced
molecular dipole moments whose number coincides with the amount of dipolar
molecules in the unit volume n, = pNa/M (p is mass density, N is Avogadro
number, M is molecular mass):

P=> p,=n1En (7.13)

ny

Here v is average molecular polarizability (generally, v;; is a tensor), Ejoc is a
local electric field acting on each molecule and p, is a field induced electric dipole
in a molecule. So, if we find E,,. we could calculate P and then the value of €, using
Eq. 7.12, and known macroscopic field E in the sample, see Fig. 7.4a.
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The local field can be found, e.g., from some models, particularly the Lorentz
model [3]. For its discussion we select a single molecule and surround it by a
fictitious spherical cavity shown in Fig. 7.4b. Then E,,. is a sum of four fields:

Eioe =Eo+E| +E; + E; (7.14)

Here, Eg is an external field created by charges located outside of the sample;

E,=—kP is a depolarizing field from the charges formed at the external surfaces
(upper sketch);

E, is the Lorentz field coming from the charges at the inner surfaces of the cavity;
and

E; is the field from all molecules inside the cavity except that one we have selected.

The depolarization field is opposite to the external field and factor k is generally
a tensor dependent on the shape of the sample. For samples in the form of the
ellipsoid, oriented with one of its axes along the field, depolarizing factors become
scalars k; dependent on the ratios of ellipsoid axes. For instance, for a spherical
sample k = 4n/3, for a thin plate with the field perpendicular to its surface, k = 4n.

From Fig. 7.4a follows that the macroscopic field in the sample E = Ey+
E; = E(—kP. When polarization P is very high, the macroscopic field is consider-
ably reduced. The Lorentz field E, is parallel to the external field and, for a
spherical cavity, is equal exactly to +4nP/3. Therefore, when both the sample
and the cavity are spherical,

Eioc = Eo —4 nP/3 44 nP/3 + E; = E¢ + E;.

Due to high symmetry, for all isotropic liquids (and all cubic crystals), field E;
acting on the selected molecule from its neighbors is exactly compensated. Thus,
for a spherical isotropic sample the local field is equal to the external field:

Eloc = EO

For an isotropic sample of an arbitrary form, the depolarization field E, is form-
dependent and E,,. should be written as

Eo =Eo+E, +41P/3=E+4 nP/3 (7.15)

It should be noted that, if a sample is connected directly to the electric voltage
source (fixed potential difference across electrodes), there is no depolarization
charges on the external surfaces of the sample. In this case, E; = 0 and the local
field acting on a molecule in the cavity is given by

Eic = Eo+4 nP/3 = (2E +D)/3 = Eo( & +2)/3. (7.16)
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With the local field found, we obtain a relation between the macroscopic field in
the sample E, polarization P and the local field acting on a particular molecule, see
Egs. 7.13 and 7.15:

4
P = n,yEie = n,y(E + ?EP). (7.17)

Solving the latter for P we find the microscopic value of electric susceptibility:

P nyYy

E v

X ==—7 (7.18)
E —nyy

This equation has a singularity at y — 3/4nn,: for large enough molecular
polarizability the macroscopic susceptibility and, consequently, polarization
become infinite. This phenomenon is called polarization catastrophe. In a more
subtle approach, the polarization remains finite and exists even in the absence of the
external field (spontaneous polarization Pg). The spontaneous polarization is
responsible for pyro- and ferroelectricity in solid and liquid crystals, however it is
not observed in the isotropic liquid (see Chapters 4 and 13).

Finally, combining (7.18) with definition& = 1 + 4my" we arrive at the Clausius-
Mossotti equation (N4, is Avogadro number):

e—1 dmn,  4npNy,
e+2 3 T 3m

(7.19)

This equation relates the macroscopic value of dielectric permittivity € to
microscopic parameters of medium. For instance, from measurements of capaci-
tance of a liquid by a dielectric bridge one finds dielectric constant and then
calculates molecular polarizability .

Molecular polarizability includes electronic Y., and orientational v, parts. The
first of them is frequency and temperature independent and, at optical frequencies,
the Lorenz-Lorentz formula is valid:

n? —1  4npN,
242 3M

(7.20)

The second, dipolar part of polarizability is related to the orientational suscepti-
bility of permanent dipole moments p. and can be found from the Langevin
equation (7.7) as in the case of paramagnetism (only p,, is substituted by p.):

n,p*E
dip = 3/2ng (7.21)
We see that the dipolar susceptibility obeys the Curie law:
2
Yor = 728 (7.22)

T BkgT
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Using the last three equations one can find molecular parameters 7y, and p, from
independent measurements of density, refraction index and temperature depen-
dence of dielectric permittivity at a low frequency.

The Clausius-Mossotti equation is based on the simplest (Lorentz) form of the
local field. In reality, the induced dipole in the selected molecule also creates an
additional, reaction field that modifies the cavity field. On account of these factors
Onsager has obtained the following equation for dielectric permittivity

4PN,
e—1=
M

p2
Fh F— 7.23

where the cavity / and reaction field F factors are:

(25+1)(nz+2)
h=3e/2e+1, F="5"—rpm"

The Onsager equation agrees quite well with experimental data on liquids and
liquid crystals and will be generalized for calculations of the tensor &;; in nematic
liquid crystals.

7.2.2 Static Dielectric Anisotropy of Nematics and Smectics

7.2.2.1 Maier-Meier Theory

In experiment on nematic liquid crystals, both positive and negative anisotropy &, is
observed, the sign depending on chemical structure. The magnitude of ¢, is often
proportional to orientational order parameter S. In the isotropic phase the anisotropy
disappears. Typical temperature dependencies of g, and €, are shown in Fig. 7.5.
These observations can be accounted for by the Maier-Meier theory [5]. The latter
is based on the following seven assumptions:

1. the molecules are spherical with radius a, but their polarizability is tensorial,
Yo=Y —vL>0

2. the point molecular dipole p. makes an angle [ with the axis of maximum
molecular polarizability

3. anematic liquid crystal has a center of symmetry and characterized by orienta-
tional quadrupolar order parameter S

4. the analysis is performed within the framework of Onsager’s theory of polar
liquids, and the mean dielectric susceptibility <e> was taken for the calculation
of the Onsager factors / and F, introduced above

5. the dielectric anisotropy is assumed to be small, g, = lg-¢ | << <e>

6. when calculating the reaction field the tensor nature of electronic polarizability
Yij was neglected and the average value <y> = (y) + 2v,)/3 was used

7. the interaction between molecules is disregarded
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Fig. 7.5 Typical temperature 30~
behavior of principal
dielectric permittivities for
two nematic liquid crystals, w
one with positive (solid lines)
and the other with negative
(dash lines) dielectric 201~
anisotropy
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With these restrictions, Maier and Meier have calculated two principal compo-
nents of dielectric permittivity and dielectric anisotropy:

__ 4npNy ) p: 1 2
g —1= A Fh{(y} + /3YaS+F3kBT[1 2(1 3cos”P)S]
_ 4pN4 1 p? 2
g, — 1= M Fh{(y} /3YaS +F3kBT[1 + (1 = 3cos”B)S]
47pN, 2
€ =& — &L = il AFh Y. — F Pe [(1 —300523) S (7.24)
2kpT

The equations have the Onsager form. In the isotropic phase, S = 0, g, = ¢, =
€iso and equation (7.24) reduces to (7.23). The theory results in the following
conclusions:

1. The average molar dielectric susceptibility of the nematic phase (¢ — 1)M /4np
is independent of parameter S and equal to the molar susceptibility of the
isotropic phase <&€> y = €;5,. Thus, the theory cannot explain a discontinuity
of <&> at the Iso-N transition shown in Fig. 7.6 by a dashed line.

2. For a specific value of the angle (B &~ 55) between the dipole moment and the
axis of maximum polarizability of the molecule, given by 1 — 3cos?*f = 0, the
contribution from the orientational polarization to €, becomes zero [6]. For
somewhat larger value of the angle B determined by condition

2

12 2
Ya = F o2z [(1 = 3eos?) =0,
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Fig. 7.6 Discontinuity of the
average dielectric
permittivity at the nematic —
isotropic phase transition for a
nematic with negative
dielectric anisotropy

Fig.7.7 Location of a molecular dipole moment with respect to the longitudinal molecular axis of
a molecule. Note that in the Maier-Meier theory the dipole moment forms angle 3 with the axis of
maximum polarizability of a spherical molecule

the dielectric anisotropy completely vanishes. This agrees with experiment: the

anisotropy changes sign with a change of the angle B the dipole forms with the long

molecular axis, Fig. 7.7, which, indeed, is the axis of maximum polarizability for
rod-like molecules. For nematics with molecules having large longitudinal dipole
moment, the anisotropy is positive, €, > 0. For molecules with large transverse

dipole moment ¢, < O.

3. The temperature dependence of average dielectric permittivity <e> enters the
equations both explicitly (term kzT') and through S (the additional contribution
from & and F is weak) while g, is directly proportional to S. The latter corre-
sponds to the uniaxial symmetry of the dielectric permittivity with a tensor form
of Eq. 3.16.

€ = (&) + gqnanp — (1/3)8,p] = €108 + €a(nynp) (7.25a)

Note that
(e) = (g +2e1)/3=¢1 +g/3—c1/3=¢1 +5&,/3

Using Eq. 7.25a one can calculate the value of the dielectric permittivity £(3,¢)
of a uniaxial phase at any angle with respect to the director. Let the director is
rigidly fixed by a strong magnetic field along the z-axis, n = (0, 0, 1). Then the
single term n.,n, = 1 is finite and Eq. 7.25a has a familiar form:

g, 0 O 0 0 O g, 0 O
e=|10 ¢ O0OJJ+10 0 O})=|0 € O
0 0 ¢ 0 0 g 0O O g
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Assume that a very weak electric field is applied at angles 3 and ¢, respectively,
to the z and x axes: E = (Ecos3cos@, Ecosdsing, Ecosd). Then we can calculate
the components of the displacement vector:

D, e, 0 O Esin3cosqp  FEe)sinBcoso
Dy,=(0 € 0 |- Esindsing = Eg, sinOsin @
D, 0 0 g Ecosd Egcosd

and find D? = D? + D§ + D? = e2E? = E*(% sin?9 + sﬁcosz“)). Hence, the dielec-
tric permittivity &(3,¢) is found to be independent of the azymuthal angle ¢ as
expected for a uniaxial material:

e(9) = (8isin28 + 8ﬁcos28)1/2. (7.25b)

It is evident that the same formula (7.25b) is valid for any properties of uniaxial
phases described by a tensor of the type (7.25a) such as magnetic susceptibility,
thermal and electric conductivity, diffusion and others.

The displacement can be written in the vector form as D = ¢, E + &,(nE)n and
the electric field contribution to the free energy density is given by:

ED __Eip_ gy (7.26)

8el = C8n 87 87

to be compared with the magnetic counterpart (7.2).

7.2.2.2 SmA Phase and the Role of the Positional Order

Generally speaking, the Maier-Meier theory [5] explains all essential static dielec-
tric properties of the nematic phase [7, 8]. The transition from the nematic to the
smectic A phase is accompanied by an increase in the orientational order S. When
molecules do not possess very large longitudinal dipoles, the set of Maier-Meier
equations is still valid even in the SmA phase. Typically, the dielectric anisotropy
increases proportionally to S, as shown in Fig. 7.8. In this case, a periodicity of the
smectic A density is not important. However, in many compounds, on approaching
the SmA phase, the dielectric anisotropy decreases despite increasing orientational
order [9]. It can even change sign either in the nematic or in the smectic phase as
shown in Fig. 7.9.

This effect originates from the anisotropic dipole-dipole correlations not
accounted for by the Maier-Meier theory operating with a single particle distribu-
tion function. When, with decreasing temperature, the smectic density wave p(z)
develops (even at the short-range scale) the longitudinal dipole moments prefer to
form antiparallel pairs and the “apparent” molecular dipole moment becomes
smaller. This would reduce positive €,. Theoretically, dipole-dipole correlations
may be taken into account by introducing the so-called Kirkwood factors.
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Fig. 7.8 Typical temperature SmA I N
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7.2.2.3 Smectic C Case

The point group symmetry of the SmC phase (C,y) is different from that of the N
and SmA phases (D). Now the tensor of dielectric permittivity is represented by a
biaxial ellipsoid with three different components €, €, and €5 as shown in Fig. 7.10.
The component €3 is parallel to the director (e3 = g), €; is parallel to the symmetry
axis C,, and ¢, is perpendicular to the both €5 and €,. The biaxiality, however, is
weak €, = ¢,.

7.2.3 Dipole Dynamics of an Isotropic Liquid

To set the stage for discussion of frequency dispersion of liquid crystal permittivity
we turn back to the isotropic liquids. First we shall find a characteristic relaxation
time for molecular dipoles and then discuss real and imaginary components of the
permittivity [10].

7.2.3.1 Dipole Relaxation

An applied electric field reduces the symmetry of an isotropic liquid from Kj, to
C.v and creates anisotropy in the angular distribution function of dipoles; the
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Fig. 7.10 Three principal €5
permittivities of the biaxial
SmC phase; €5 is parallel to
the director, &, is parallel

to symmetry axis C,, and g,
is perpendicular to the both
€3 and &

Fig. 7.11 Angular
distribution of molecular
dipoles in the isotropic phase
without external field (dash
curve sphere) and with the
electric field applied (solid
line)

distribution function becomes elongated in the field direction, Fig. 7.11. If we forget
for a while about the role of temperature then the angular motion of the dipoles in
the electric field E can be described by equation of motion:

d*9 ds .
- + gz = —p,Esin$ (7.27)

Here, 9 is the decreasing with time angle between the dipole and E and & is a
friction coefficient for a change of 9 angle [g.cm?s™']. Usually, due to high
viscosity of a liquid, the inertial term may be neglected. Then

d_S_ _peEsins
dr 3

Since the contribution of the considered dipole to the field-induced polarization
is given by its projection on the E-axis, p,” = p,cos9, the rate of the increase of this
projection is

dpt d9 Esin®9
Pe _ pesm8— pi 5121

dt
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From here the kinetic equation may be written for the electric field induced
polarization in the system of n, dipoles in a unit volume with initial arbitrary
orientation:

dPg _ mpr(vsin29> P (7.28)
dt < (7))

The second term on the right of (7.28) i.e. the dipole disorienting factor describes
the relaxation of dipoles due to a finite temperature. The multiplier <sin>9> may be
considered as a numerical coefficient £ ~ 2/3, as if the distribution function is
spherical even in the electric field. In fact, a more precise value was found by Debye
by averaging the Pg value over 3 with the field-induced dipole distribution function
shown qualitatively in Fig. 7.11. Since the thermal motion of dipolar molecules
destroys the field induced polar order, we introduce a thermal relaxation time tp, as
the first (linear) approximation of the relaxation rate. In order to find this time, we
should exclude P from the kinetic equation.

In the steady-state regime, dPg/dt = 0, and the value of the dipole polarization is

ZanLZ,E
3¢

This value may be compared with that found from the Langevin formula, see
Eq. 7.21. From the comparison, the relaxation time for molecular dipoles is found:

_t
2kgT

PE:’ED

(7.29)

T (7.30)

Now, if we assume that a dipolar molecule has a spherical form of volume @/3)na’
and rotates in continuous medium with viscosity 1 [units g.cm~'s~' (Poise)], then
the friction force may be written as & = 8nna’ and 1p = 4nna® /kpT. This model is
very simple, however, it predicts a correct magnitude and temperature dependence
of relaxation times for dipoles in an isotropic liquid.

In the dispersion region ® ~ 1!, molecular dipoles follow the electric field with
some lag, i.e. the orientational component of polarization P has some phase
retardation with respect to field E. Therefore, the dielectric permittivity becomes
complex functions of frequency

e =¢ +i¢ (7.31)

The imaginary part describes dissipation of energy due to molecular friction. It is
called dielectric losses and equivalent to appearance of non-Ohmic electric con-
ductivity. The frequency dependence of £* can be written in the form of the Debye
dispersion law [10]

& —g(o0) = ‘g(?)__—izf;‘j) (7.32)
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where €(0) and €(oc0) correspond respectively to zero frequency and to the frequen-
cies essentially exceeding the relaxation frequency region, ® >> 15! (in that
range, €(co) = n?, n is refraction index, as shown in Fig. 7.3).

The two components of the permittivity are:

, €(0) —¢g(o0 s 1€(0) —g(o0)]mt
sy 1B Ol

and the corresponding spectra of €’ and €” are illustrated by Fig.7.12a. The ratio of
the two components determines the phase angle, Fig.7.12b:

8//

g —g(00)

tanp = = ®1p (7.34)

7.2.3.2 Debye and Cole-Cole Diagrams

Very often a rotation of a complex molecule includes a motion of different
molecular dipoles and the dielectric spectrum £”(®) is not as simple as shown in
the picture. It becomes somewhat blurred and the correspondent time tp cannot be
found with sufficient accuracy. In order to improve the analysis, a simple procedure
is used based on the Debye Eq. 7.32.

Note that sin$ =tand/+4/1 + tan’$ and cos ¢ = 1/4/1 + tan?d. Then the

equations (7.33) can be cast in the new form:
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Fig. 7.12 Frequency dependence of the real (solid line) and imaginary (dash curve) parts of the
dielectric permittivity of an isotropic liquid (a) and the definition of the phase angle ¢ (b)
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S et b deos2 o sindeosd — bin2
or
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The new equations may be regarded as the parametric representation of the
equation of a circle of radius R with a center at xq, yo: x = x9 + Rcos2¢
and y = yo + R sin2¢ with angle ¢ related to frequency by Eq. 7.34. Consequently,
plotting the experimental dependence of £” against €’ at different frequencies @ should
give us a semi-circle (¢” > 0) with its center at a point & = [e(c0) + £(0)], €' =0
and a radius [e(co) — £(0)], as shown by the Debye diagram, Fig.7.13a. If, in the
experiment, the points do lie on such a circle we can find the single dipole relaxation
time from any particular point on the circle using Eq. 7.34.

In a number of cases, the experimental points also form a part of a circle with a
center that, however, lies below the &” axis, see Cole-Cole diagram in Fig. 7.13b.
Then the frequency dependence of the dielectric permittivity can be described by
the empirical equation

£(0) — &()

&'(0) —&(o0) =+ o) "

(7.36)

where the angle nh/2 defines the posmon of the center. The relaxation time can be
found from the relationship wtp = (V/u) " after location of the circle center. For
h = 0, v/u = tan¢ and the Cole-Cole equation reduces to the Debye equation. The
parameter 4 tends to increase with the number of degrees of freedom in the
molecule (for example, through the rotation of the dipole moments of various
molecular groups) or with increasing temperature.

In a mixture of different dipolar molecules with strongly different relaxation
times, several maxima of €” will be observed and several characteristic semi-circles
can be drawn. As a rule, the relaxation times do not differ so much and the

el el
3

®2
0)1 (,\)1

3 20 v
£(w0) £(0) € (o) ZN2 £(0) e

Fig. 7.13 The Debye (a) and Cole-Cole (b) diagrams for calculations of characteristic dipole
relaxation times



170 7 Magnetic, Electric and Transport Properties

corresponding maxima in the dielectric spectra are not resolved. In this case, the
Debye and Cole-Cole diagrams are very useful for calculations of different tp.

7.2.4 Frequency Dispersion of €, and € |, in Nematics

7.2.4.1 Relaxation Modes

Basically the experimental observations of dielectric relaxation in nematics are
consistent with Fig.7.14. There are three characteristic modes: the rotation of
molecules about short molecular axes (the lowest frequency ©; ~ 10° Hz); the
precession of long molecular axes about the director n (the middle frequency
Wy ~ 108 Hz); and the fast rotation of molecules about long molecular axes (the
highest frequency m; ~ 10° Hz) [6]. The corresponding dielectric spectra are
shown in Fig.7.15. The most striking feature is strong retardation of the permittivity
component parallel to the director, i.e. g-relaxation, 1 = 0)1’1 = j||Tiso (retardation
factor j; = 10-100) and some acceleration of €, -relaxation 7, = ®5 = T
(acceleration factor j, ~ (0.5) with respect to the e-relaxation in the isotropic

Fig. 7.14 Three characteristic relaxation modes for rotation of molecules in nematic liquid
crystals: slow rotation about short molecular axes with frequency ®;; the precession of long
molecular axes about the director n with middle frequency m,; and fast rotation of molecules about
long molecular axes with frequency ®;

Fig. 7.15 Spectra of
principal dielectric
permittivities for nematic
phase. Characteristic
dispersion ranges correspond too -
to relaxation modes with 1
frequencies ®;, @, and m;
illustrated by Fig. 7.14 log ®
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phase. Moreover, a growth of t,(T) with decreasing temperature (i.e., with increas-
ing S) is much faster than that predicted by the Arrhenius law for viscosity.

Evidently, the nematic order strongly influences the relaxation of g, and ¢, .
An individual rod-like molecule feels the nematic potential curve W(cos3), (see
Fig. 6.21), whose form is an inverse of the molecular distribution function in
Fig. 3.15. In fact, each molecule moves in the potential well of the depth about
0.15 eV with a minimum centered at 3 ~ 0 or m. This prevents deviation of the
molecule through large angles from the director n. A primitive, but useful mechan-
ical model for this situation is a rod-like molecule in a rubber tube, Fig. 7.16. For 3
deviation from 0 to m/2 the molecule has to overcome a high barrier Wy and its
angular velocity and frequency decreases dramatically down to ®; (case a). The
retardation factor depends on the height of the barrier. Theoretically this can
approximately be written as

kT Wy
= — Xp —
=y Pt

This expression gives a correct order of magnitude for the retardation factor (for
Wy = 0.16eV and T = 400K, kgT/Wx =~ 0.21 and the retardation factor is about
25). Note that the retardation is controlled not by a molecular dipole moment, but
rather by a molecular shape.

For rotation of the same molecule about its long axis (frequency ®s3) there is no
barrier (case b). To some extent, such rotation in the nematic phase is even easier
than in the isotropic phase (friction is less). Therefore, instead of retardation we
have acceleration, j, < 1.

When rigid molecules precess (case ¢) about the director at small § angles within
the flat potential minimum they are more or less free. Therefore, frequency w, cor-
respond to a quite fast molecular motion and the precession contributes to both g
and € (case c). All the three dispersion regions are observed by dielectric spectros-
copy techniques [11].
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Fig. 7.16 A mechanical model that helps to understand the process of retardation or acceleration
of molecular rotation in the nematic potential: slow hindered rotation of molecule at the angles
9 = m/2 (a), fast accelerated rotation about long molecular axes at the angles 3 =~ 0 or © (b) and
quite fast molecular precession within small $-angles (c)
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7.2.4.2 Dual Frequency Addressing

Experiments show that with increasing molecular length jj-factor increases dramat-
ically. For terphenyl derivatives, frequency ®, can be shifted down to 1-10 kHz.
The simple theory discussed above does not consider a molecular length but
intuitively it is understandable in the framework of the same mechanical model.
The low frequency dispersion of g, is seen in Fig. 7.17 against the background of
almost constant €, . Therefore there is an inversion point for the sign of dielectric
anisotropy at a certain frequency fin,; €, > 0 for f < fi,, and €, < O for f > fi,,.
This is very interesting for display applications because an external field of low
frequency (say, at 1 kHz) aligns the director (that is the optical axis) along the field,
while at an enhanced frequency (say, at 10 kHz) the director is aligned perpendicu-
lar to the field. Changing frequency of the field one can switch the director very fast
because, in this, so-called dual-frequency addressing regime, the director always
suffers a torque &,E> from a strong field and the switching rate is high 7' oc g,E2.
Since the field is never switched off, the slowest process of the director free
relaxation is excluded.

7.3 Transport Properties

7.3.1 Thermal Conductivity

According to Fourier law, the scalar coefficient of thermal conductivity k relates
the thermal flux density Q [in erg/cm’s] to the gradient of temperature Q = —k V T
[units of k: erg/cm.s.K]. The corresponding thermal diffusion coefficient [in cm?/s]
includes density of substance p and heat capacitance C}, (at constant pressure)

th = k/pcp

and determines the time Tt of the heat transfer over the distance Lt called a thermal
diffusion length:

2
w="L1hp, (7.37)

Fig. 7.17 Spectra of
principal dielectric
permittivity components
showing the inversion of the
sign of dielectric anisotropy
at a particularly low
frequency f,,
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This formula comes about from the general expression for the diffusion (ran-
dom) process, like the Brownian motion, and relate average distance passed by a
random-walking particle to time t (x*) = 2Dt derived by Einstein and Smolu-
chowski in the beginning of twentieth century. The temperature dependence of the
thermal conductivity in the nematic and smectic A phase resembles that of the
magnetic susceptibility [12]. A good example is p-octyl-p’-cyanobiphenyl (8CB),
see Fig. 7.18. No such sharp anomalies in & at the phase transitions are observed as
manifested, for instance, by the specific heat discussed in Section 6.2.4. The reason
is that the thermal conductivity is mainly determined by a single-particle molecular
distribution function whereas the specific heat dramatically depends on the long-
range fluctuations of the order parameter.

In anisotropic phases the magnitude of the thermal flux depends on the direction
of gradient VT:

oTr
Ql - klj 6_Xj .

In the case of a uniaxial phase, the thermal conductivity tensor has a familiar
form (7.25a): kjj = k. 8;; + kynin;, where k, = k)| — k>0 for calamitic phases and
k, < 0 for discotic ones.

At present the coefficients k; and £, are measured by sophisticated techniques
such as a.c. adiabatic calorimetry, photoacoustic and photopyroelectric methods.
The latter is very sensitive and allows the measurements using small amounts of
liquid crystals [13]. The idea is demonstrated by Fig. 7.19. The light beam (shown
by arrows) of intensity / is modulated by a chopper according to the law of
I = I,cosmt and absorbed by black paint on the bottom of a quartz block. The
heat flux traverses the properly aligned liquid crystal layer (LC) and reaches a
crystalline pyroelectric detector. The latter generates an electric signal at frequency
. A lock-in amplifier (LA) analyzes the amplitude and phase of the signal. The
measured amplitude provides the thermal energy reached the detector; the phase

Iso

Fig. 7.18 Anisotropy of -
thermal conductivity of 8CB
in the nematic and smectic A
phases (Adapted from [12]) Tiec)

30 35 40 45
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Fig. 7.19 Scheme of the

( light D light chopper
set-up for measuring thermal absorber | I —
conductivity and specific <y *-
heat in liquid crystals quartz l l :

block py

LA

Pyrodetector

contains information on the time of the heat transfer T related to thermal diffusion
coefficient by Eq. 7.37.

7.3.2 Diffusion

The diffusion is a kinetic process of molecular transport due to a gradient of
molecular concentration c. The coefficient of diffusion D relates the flux of particles
to their concentration gradient (first Fick law):

J=-DVc

Note that, in contrast to hydrodynamic processes, there is no mass transport
during the diffusion process, the mass velocity v(x,y,z) = 0 and the mass density is
constant. For this reason, the diffusion in anisotropic media is described by a
simplest second rank tensor D;;:

Oc

/= "Pigg
]

D,‘j = DLazf/ +Danin]~ Da = DH —DL

Microscopically, the diffusion in the isotropic and the nematic phase is thermally
activated. However, in this case, the Arrhenius-type process with activation energy
AE is not related to the orientational potential Wcos6. In fact, this process is
controlled by another potential barrier, namely, the barrier for translational jumps
of a molecule from site to site:

AE
D; o< A;exp T
B

Coefficient A;, however, depends on molecular orientation function.

Recall the Stokes law, related the force (F) acting on a sphere of radius R to
velocity of the sphere in a viscous liquid, v = F/4nnR (n is viscosity of the liquid).
Roughly, by analogy with the sphere in viscous liquid, the diffusion coefficient is
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a b

syringe

. dye
hole in glass

n AL 1
LC glasses
Al /

Fig. 7.20 Anisotropy of diffusion amplitudes A; for a cylindrical molecule (a) and a simple
technique for measurements of anisotropy of diffusion coefficients D\/D for a dye dissolved in a
nematic liquid crystal

proportional to the corresponding molecular dimension. In the nematic phase a
cylindrical molecule of length L and diameter D is typically aligns parallel to the
director as in Fig. 7.20a. Then the diffusion is also easier (faster) along the director,
Aixl/mD > A Lo<1/(LD)U2. Consequently, the ratio D\/D , xL/D > 1 and anisot-
ropy D, = Dy-D, > 0. Evidently, the order parameter influences the anisotropy
of diffusion; roughly D,xS and for S — 0, Dy = D, = Djs,. For nematics at
room temperature, typical values of diffusion coefficient are Djy, ~ 107° cmz/s,
DD, =~ 1-2.

For smectics the situation is different, because an additional potential barrier W,,.
(for translations) appears for molecules penetrating smectic layers. For instance, in
a smectic A, the component parallel to the layers (D , ) follows the same Arrhenius
law with approximately same activation energy AFE as for nematics, however, for
the D, component, the activation energy is roughly 4E + W, and the diffusion
anisotropy becomes negative:

D L Uy
o = exp( =2 ) <1,D) — D, <0
DLOCDGXP( kBT) =

The diffusion coefficient can be measured by several techniques. One of them is
very simple, see Fig. 7.20b. A small amount of a dye solution in a liquid crystal is
introduced through a hole in a top glass of a sandwich cell filled with the same
liquid crystal. The latter is oriented homogeneously, therefore, using a microscope,
one can observe the diffusion of dye parallel and perpendicular to the director. After
some time Tp, a dye stain acquires an elliptic form and the ratio of ellipse axes
provides the ratio of diffusion coefficients (/,// 1)? = Dy/D, . The absolute value of,

e.g., Dy can be found from the well known solution of the diffusion equation,

rIU) = lﬁ /2D);. In the same way, a small amount of a cholesteric liquid crystal can

be introduced into a nematic and a spot is observed, in which the initially homoge-
neous texture is substituted by an inhomogeneous (e.g., fingerprint) cholesteric
texture. The self-diffusion of liquid crystal molecules is studied using quasi-elastic
neutron scattering or a spin-echo technique.
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7.3.3 Electric Conductivity

7.3.3.1 Mobility of Ions

Now we are dealing with the current term 4noE/c in the Maxwell equation
(7.11) for curlH. The overwhelming majority of liquid crystalline phases (nematic,
smectic A, C, B, etc.) may be considered as weak electrolytes. The charge carriers
are ions, which move rather slowly in the electric field. There are some interesting
publications concerning columnar discotic phases, in which high mobility of charge
carriers has been reported. In principle, in such well-ordered columns of organic
molecules, the electron or hole conductivity is possible. Electronic processes are
faster than ionic ones and may be studied by a time-of-flight technique. However,
below we shall consider only ionic processes as the most important issue for major
number of mesophases [14].

The electric conductivity of a liquid is related to the drift velocity vg of ions with
a charge ¢; moved by field E. The current density depends on concentration of ions
n, in a unit volume of the liquid:

J = ngive (7.38)

Units of j: [em™ x CGSQ x cm/s] = [CGSI/cm?] or [A/m?] in the SI system.
In the linear regime, vy = PE where coefficient L is called ion mobility. Hence,
the conductivity is

o =g = qun (7.39)

The mobility of ions and their diffusion coefficient are coupled by the Einstein
relationship:

n=4ifg, 7D (7.40)

and both of them depend on viscosity of a liquid. Note that the energy kg7 at room
temperature is about 0.025 eV and the factor kg7/q has dimension of voltage. For
ions with charge g; = e (charge of an electron) and typical diffusion coefficient of
organic liquid D ~ 5 x 10~ cm?/s, the ion mobility u ~ 6 x 10~ cm?*/statV.s (or
2 x 107 m*/V-s in the SI system).

In a liquid crystal, the anisotropy of diffusion results in an anisotropy of mobility
and, consequently, conductivity. The corresponding tensor for a uniaxial phase has
a standard form:

Gij = GLSij —+ Ga}’l,'nj

Like in the case of diffusion, the anisotropy of conductivity 6, = ), — G can be
positive (e.g., in conventional nematics) or negative (in smectic A, discotic
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mesophases). In typical nematics at room temperature, 6, ~ 1.2-1.6 depending on
the type of ions and their concentration. Generally, G, is proportional to the
orientational order parameter, as for other transport phenomena under discussion.

7.3.3.2 Ion Concentration

Where do ions emerge from? Their sources can be different:

1. a residual concentration of ionic impurities can remain after the synthesis of a
substance

2. aliquid crystal material can deliberately be doped with some compounds

3. ions can be created by an external electric field either in the bulk (due to the field
ionization of neutral molecules) or at the electrodes. The latter is more probable:
electrons or holes are injected from an electrode and almost immediately (within
1077 to 10 ¥ s) trapped by neutral molecules of a liquid crystal forming negative
or positive ions. Before their recombination the ions participate in the electric
current

Consider a doping process. Let an organic salt AB of volume concentration ¢
[cm ] is introduced into an isotropic solvent. The salt will dissociate to yield
anions A~ and cations B* with a subsequent recombination, according to the
reaction AB<A™ + B™. Then the mass action law reads:

Kpc(1 — o) = Kg(ac)?

Here the rate of the ion dissociation is on the left-hand side (o is the degree of
ionization), and the rate of their bimolecular recombination is on the right-hand side
(oc = n,"'=n,” is a volume concentration of ions), K and Ky are corresponding
dissociation and recombination constants. The temperature dependent ionization
coefficient can be written as follows:

K=%—zc o =Kl (7.41)

and the degree of ionization is given by

L KK+ 4c/K)'?

. (7.42)

Consider three particular cases:

1. For very small concentration of a dopant ¢ — 0 and the first term of the square
root expansion [1 + (2¢/K)] results in o« — 1. The recombination is absent and
the concentration of ions is n, " =n,” = ¢

2. For higher concentration of salt, the situation depends on the ionization coef-

ficient. If K is large (strong electrolytes) then again 4c¢/K << 1, « — 1 and

nt=n =c¢
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3. If, however, K is small (weak electrolyte), 4c/K >> 1 the numerator of Eq. 7.42
is approximately equal to —K + (4cK)"?, the degree of ionization a=—K/2 +
(K/c)"* and

nt=n, =cu=vVKc—K/2 (7.43)

v

Figure 7.21 illustrates a dependence of the ion concentration on concentration of
a salt. It is well seen how the linear dependence becomes sub-linear. A typical value
of K is on the order of 10"’ cm ™.

7.3.3.3 Current-Voltage Curve for Thin Cells

When investigating electro-optical effects, usually we have to deal with the layer
thickness of a liquid crystals in the range of 1-50 pm and with the electric field
strengths of 10* to 10° V/em (~30-300 statV/cm in the Gauss system). In such
instances the field induced drift of charge carriers to electrodes cannot be neglected.
However, in many cases, we may still neglect electro-chemical processes at the
electrodes.

Assume the simplest ionization-recombination model with field independent K,
and Ky coefficients in a weak or intermediate electric field. The strong field limit
will be discussed separately. In the case of o << 1, the volume ion concentration

n,* =n,” = n, (cm ) is governed by equation
dn, E _
;f = Kpc — Kgn? — wn (7.44)

where d is the gap between the electrodes, p* and 1~ are mobilities of the positive
and negative ions, and ¢ is the concentration of a dopant. The third term on the
right-hand side describes the process of ion drift to the electrodes. It has a typical
form of —n,/t [em s 1.

ntn~
ntn=vKc
I
I
ntn=c |
. o I
Fig. 7.21 Qualitative |
dependence of either positive :
or negative ion concentration | 4c/K=1
on concentration ¢ of a salt | ¢
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In the steady-state regime, the same equation can be written in the form

& W v (7.45)

where 15 = 1/Kp, TR = 1/Kgn,, Tt = 2d/(W*+p7)E are characteristic times for
ionization of molecules, recombination of ions and ion transit to electrodes. Con-
sider again three particular cases.

In the low field regime (region 1), Tt is large, the third term may be neglected.
Then from (7.45) we have the previous result n2 = (Kp/Kg)c = Kc and conductiv-
ity (7.39) is field independent:

o1 =q(u' +p )VKe (7.46)

This corresponds to region 1 of the current-voltage curve in Fig. 7.22.

For intermediate fields (region 2), the drift term is important but the recombina-
tion rate may be neglected, because the field rapidly removes the generated ions.
Now the ion concentration is given by

n :T—TC: dKDC
2y (W )E

and the apparent conductivity is field dependent

_ qdKpc
- E

o> (7.47)

Fig. 7.22 Current-voltage a.c., / 3
curve for a thin layer of a 7
weak electrolyte between /
plane electrodes. Solid /
curve corresponds to a direct /
current (d.c.) in weak (1), 2
intermediate (2) and strong
(3) field regimes. Dash branch
is a part of the same curve for
an alternating (a.c.) field E

tga=c
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Therefore, with increasing field, the current density saturates at the value
j=02E =qdKpc

This regime is designated as region 2 in the same figure. The order of magnitude
of the ion transit time is 17 = d*/pU ~ 2.5ms (d = 10 pum, U = 10 V, p = 4.10~°
m?/V S).

For the a.c. current at angular frequency ® > 1/tr, the drift term may be
neglected from the beginning. Then, according to Eq. 7.45, the ohmic regime
with constant Kp and Ky is valid not only for weak but for intermediate fields as
well. In Fig. 7.22, it is pictured by the dash line.

In a strong field, coefficient Kp becomes a function of E due to the field induced
ionization of molecules. Then we cross again the recombination term in (7.45) and
get

E(p +p ¢
KD(E)C—%”)nvzo or n‘,(E):%

and the current acquires the form
j=qE(W" +p )n(E) = qcdKp(E).

It depends on the field only implicitly through dissociation constant Kp.
Further, the zero-field dissociation constant is described by the equation

w
Kp(E =0) = K) exp (— kB—T>

where W is the electrostatic binding energy of the ion pair. Now, if we assume that
the field reduces the energy barrier by AW ~ constE'/? (exactly as in the Schottky
model for the barrier at the metal-insulator contact), then Kp would depend
exponentially on the square root of the field strength. Then the current would also
exponentially depend on +/F and proportional to the cell thickness for a given field
strength:

BE1/2
Jj = const - Kg exp( ks ) (7.48)

This corresponds to violation of the current saturation regime and region 3 in
Fig. 7.24.

This simple picture qualitatively agrees with the experimental data. For instance,
the linear current growth at low fields with subsequent saturation and further strong
increase of the current is often observed in the direct current (d.c.) regime. On the
other hand, due to simplicity of the model (as the injection and space charge
phenomena are not taken into account) it is not easy to obtain precise quantitative



7.3 Transport Properties 181

data and determine relevant material parameters. A technical problem is to avoid
uncontrollable impurities. High purity of a liquid crystal material with low conduc-
tivity is always desirable, because, if necessary, a well controllable conductive
dopants can be introduced on purpose.

7.3.3.4 Frequency Dependence of Ionic Conductivity

In conventional liquids and liquid crystals, the ionic conductivity has no dispersion
up to microwave or even optical frequencies. It can be shown by consideration of
the equation for the ion oscillation under an external electric field (force gEexp

(iwr)):

% = qE exp(—iot) — &Ev (7.49)

mi;

Here v is velocity of an ion of mass m; and —&v is a friction force; in this case,
there is no elastic restoring force familiar from the problem of a pendulum.
Substituting to (7.49) a solution in the form of v = v exp(—i®t) we obtain

vo(& — iom;) = gE

From here, introducing inverse relaxation time of ions 1:,-_1 = &/m; we find the
complex amplitude of ion velocity

qE qT‘_lE . qE
- = ' & 7.50
Pl i) T (e 1) o mi(w? +1;7%) (750
and the complex conductivity
201 2. .2
or = 0 +i00" = gny = —A T 7.51
+1 qnyv il + 0222 +1 il + 0 3) (7.51)

Therefore, for frequencies ® << 1; the ionic conductivity is constant, G = qznv/i.
The friction coefficient can be estimated from the Stokes formula for the friction
force

Fe = ¢&v = 6mrony (7.52)

where rg is radius of a spherical ion and n is viscosity of the liquid: § = 6nnrg =
2x 1077 g/s (we take ro = 5A =5 x 10 *cmand viscosity n = 0.1P). Therefore,
in the framework of the Stokes model, the ion conductivity and mobility at ® << T;
can be written as
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2
- qn,

6mron”’ and ;= gn, = Yorron (7.53)
Numerically, for ¢ = e = 4.8 x 107" CGSQ and £ ~ 2 x 1077 g/s we get
the order of magnitude for the mobility p; ~ 2.4 x 10~ cm?*/statV-s (or 0.8 x 10~°
m?/V-s) that is close to typical experimental data.
Finally, we estimate the ion translational relaxation time for spherical molecules
in a viscous liquid:

T=m/g = mi/6nr077 (7.54)

Typically a mass of an organic molecule (or ion) is n; = Mm, ~ 4 X 107*%g
(here M =~ 200 is molecular mass, m,, is proton mass) and, indeed, the estimated
relaxation time is very short 7; &~ 2 x 10~'>s. Thus, the dispersion of the ionic
conductivity can only occur in the range of optical frequencies where the physical
sense of the friction force is doubtful. By the way, the Stokes approximation seems
to be quite good at lower frequencies.

7.3.3.5 Conductivity due to Dielectric Losses

Let us go back to the complex dielectric permittivity ex = &' + ie”. Here &”
describes dielectric losses, i.e. energy dissipation in the range of Debye relaxation
of dipoles. We can 1ntroduce a parameter op = g’ /471’ which has dimension of
electric conductivity ([s™ ] in the Gauss system and [F/ms = C/V-m:s = A/V-m =
Qflmfl] in the SI system and, in fact, is indistinguishable from the a.c. ohmic
conductivity. The values of €’ and op are essential in the frequency range of
dispersion of the €' component, as we have seen in Section 7.2.4.

What has been said is true for both isotropic liquids and liquid crystals. How-
ever, in liquid crystals, due to their specific anisotropy, the ratio

” op = (¢”)o)/(¢" LoL) dramatically depends on frequency and, at least,

theoretically can vary from +o0o to —oo. It is seen from a qualitative picture in
Fig 7.23. Due to strongly different dispersion frequency range for real components
¢y and ¢, the band maxima for 1mag1nary components £’y and &”, are well
separated and the ratios &”,/e”, (and GD /op) at the maxima are very large. In
addition, at a certain frequency ., the anisotropy of both £’ — &”, and G‘l‘) —op
changes sign.

The high anisotropy of op can influence the electro-optical behaviour of
nematics even at low frequencies, especially for those materials, which have a
low frequency inversion of dielectric anisotropy &,. An example is shown in
Fig. 7.24 related to a material with ¢, inversion at f = 700 kHz. The electric
conductivity begins to deviate from the ionic, low frequency plateau at 200 Hz
and 10 kHz for the longitudinal and transverse components, respectively. At f = 10
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Fig. 7.23 Qualitative frequency spectra of two components of dielectric permittivity € (a) and

¢” (b), and corresponding anisotropy of imaginary component of dielectric permittivity ", — &”

(¢) and real a.c. conductivity G‘D — 05 (d) in the Debye relaxation range. ®;,, is inversion

frequency, at which anisotropy ¢,” and o}, — 6}, changes sign

kHz the ratio of the two conductivity components reaches 400. The law for the
conductivity growth at ®tp < 1 can be derived from the Debye formula (7.32) and
allows Tp to be determined.

o’ [e(0) — e(c0)]0’tp
T 4m 4rn

op (7.55)

Such a great growth of conductivity anisotropy dramatically influences the
electro-optical behaviour of nematics in this frequency interval.
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Fig. 7.24 Low frequency
spectrum of the principal
components of real a.c.
conductivity o) and o, for a
typical nematic liquid crystal
having frequency dispersion
of g, in the 1 MHz range

f (Hz)

It is instructive to compare the ratio o)/c, = 1.5 for ionic processes with a
much higher ratio Gl[l) /op & 10* — 10 for the conductivity due to dielectric losses.
In the first case, the orientational nematic potential Wy does not influence the
translational motion of ions and &/c . In the second case, the losses €/ come in
from the field induced alignment of the longitudinal molecular axes against the
potential barrier and dramatically depend on Wy whereas losses €| caused by
molecular rotation about the longitudinal molecular axes are independent of Wy.
Therefore, ratios €”,/¢” | (and G‘L‘) /op) are very large.

7.3.3.6 Space Charge Relaxation

Many phenomena in liquid crystals such as formation of double electric layers at
interfaces, screening any electric polarization by ions, triggering electro-hydrody-
namic processes, etc. are related to the so-called space charge. The latter can be
imagined as a cloud of a non-compensated charge, say, positive +dq(r) at some
place in medium with a coordinate r. The charge of the opposite sign, —dq(r) is
situated in another place, see Fig. 7.25a. The total charge is zero but the electrical
neutrality is disturbed locally.

In strongly conductive materials, like metals, the local electric current in the
medium will immediately restore the charge neutrality everywhere. If the local
neutrality is disturbed in weakly conductive materials, it takes some time to restore
it. It is very easy to find this time. Consider a capacitor with a gap d, capacitance C
and charge +¢, on the limiting plates of area A, Fig.7.25b. At first, the dielectric is
assumed to be ideal, c = 0. Upon connecting the external resistor R the charge will

relax producing current / given by equation
I dg dU U
S dt T dt R’

Hence, g = CU = g exp(—t/RC), that is the charge relaxes with time constant
RC.
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Fig. 7.25 Formation of space charge in a weakly conductive material (a) and the capacitor-
resistance circuit for the calculation of charge relaxation time (b)

The same charge would relax with time constant RC even without the external
resistance if the material inside is conductive with the same resistance R. In that
case the relaxation time can be expressed as follows (A and d are area and thickness

of the sample):
d €A €
—RC=[—2=) . [2Z2)="2_ )
R ¢ (GA) <4nd) dnc (7.56)

We can see that relaxation time Ty is independent of the sample dimensions and
includes only material parameters, namely, specific conductivity ¢ and dielectric
constant (real part € = &’). This time is called space charge relaxation time. It is the
same Maxwell dielectric relaxation time we met in Section 7.2.1. Note that time Ty
has no relation to the dispersion frequency of ionic conductivity (t;)', neither to
Debye dipole relaxation time.

As the space charge relaxation in medium is caused by the counter motion of
positive and negative charge carriers in a diffusion process, there should be a
characteristic diffusion length related to this motion:

De

Lp = (2D1)"? = o

(7.57)

Recalling the Einstein relationship D = pkgT/q; and © = g;n,1 where ¢; is
charge of a particle (e.g. ion) we obtain

kBTS

L p—
b 2ng*n,

(7.58)

This is a so-called Debye screening length playing a crucial role in any phenom-
ena related to the local disturbance of the electric neutrality. For instance, of great
technical importance are metal-dielectric contacts or p-n semiconductor junctions
or contacts between liquid crystal and colloidal particles or metal electrodes. For
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liquid crystals, due to anisotropy of €, the length Lj is also different for two
principal directions (Il and L to the director).

7.3.3.7 Measurements of Anisotropy €, (®) and o,(®)

A widely spread technique includes a dielectric bridge (DB) measuring the capaci-
tance and conductance of a liquid crystal cell at various frequencies (typically
1-10° Hz) and temperatures. A small thermostat with a liquid crystal cell is placed
in the gap between two poles of a magnet. The thickness of the liquid crystal layer
should be fairly large (~100 um) to avoid effects of boundaries. The electrodes must
have high conductivity (e.g., made of gold) and must not be covered by any aligning
layers. The amplitude of the a.c. voltage across the electrodes must be small enough
(usually about 0.1 V) to avoid any influence of the electric field on the liquid crystal
alignment. The orientation of the liquid crystal director is fixed by the external
magnetic field of high enough strength (H > 2 kOe), therefore, one always has nll
H. In Fig. 7.26 the magnetic field is directed vertically but the cell is rotated about
the horizontal axis. In that way, the cell normal (i.e., the direction of E) is installed
either parallel to H for measurements of ¢, and o, (as shown in the figure) or
perpendicular to it for measurements of €, and 5.

7.3.3.8 Characteristic Times Related to the Discussed Phenomena (Resume)

In the present chapter we have met many characteristic times related to different
physical processes. It will be useful to collect them altogether:

C 1L
ME_ I0 »_O_[)_O_ _C_O_O()_.__i:—.
L [

_________ JRURR S U EN

v A 4 vH

Fig. 7.26 Scheme of the setup for measurements of the principal components of dielectric
permittivity and electric conductivity using a dielectric bridge (DB)
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1=L

General expression for a time of diffusion of a particle along distance

2
/2D L (D is diffusion coefficient).

Ty = L? /2D,/1 _ pCpL2 /2 i Thermal diffusion time (p, C;, and k are density, specific heat and

thermal conductivity).

7 = % (KrKp C)*l/ 2 Langevin time for chemical relaxation (Kp, Kr are dissociation and

recombination rates for ions, ¢ is solute concentration).

T = L? / U Voltage induced transit time for charge carriers with mobility p.
=" /u
™ =¥Yne Maxwell space charge relaxation time, € and o are dielectric
permittivity (real part) and conductivity.
T = m[/é Relaxation (collision) time for motion of ions of mass m; and friction
coefficient &.
1 = 4nna’® /k T Debye relaxation time of dipoles in a liquid (a is molecular radius, 1 is
B viscosity of medium).
TIH) = jj; Té =jitp Debye relaxation times in a liquid crystal (jy, j, are amplification
factors).
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Chapter 8
Elasticity and Defects

8.1 Tensor of Elasticity

8.1.1 Hooke’s Law

Liquids have a finite and very high (as compared to gases) compressibility modulus
and zero static shear modulus. For example, a boat floating on water can easily be
shifted just by a finger. Even very viscous liquids, for instance, polymers, rubber,
and, surprisingly, stain-glass windows have no static shear modulus although they
have a dynamic shear modulus at a short time scale or at high frequencies. In fact, to
shear a liquid, we should not overcome any potential barrier. In contrast to liquids,
the isotropic solids, e.g., ceramics or fine polycrystalline materials have not only
compressibility modulus but also one shear modulus finite. As to single crystals,
they have many elastic moduli; the lower symmetry the larger a number of their
moduli.
What about liquid crystals?

1. In nematic liquid crystals we see a novel feature. There is no shear modulus as in
isotropic liquids, but the orientational, for example, torsional elasticity appears.
Such elasticity is also characteristic of crystals but, in that case, the corresponding
moduli are much smaller than the other moduli. The orientational elasticity
determines almost all fascinating properties and applications of nematics.

2. Other liquid crystal phases combine many types of elasticity of solid crystals
with orientational elasticity and we encounter enormous variations of the mag-
nitude of elasticity moduli from almost zero to that typical of three-dimensional
crystals.

Everything that is discussed below is based on the Hooke law. Consider a very
simple example, a one-dimensional reversible extension of a long rod with cross-
section A along the x-axis, see Fig. 8.1. The force per unit area

F / Uy
Gx:_:K_:K_":KM (81)
A L X
L.M. Blinov, Structure and Properties of Liquid Crystals, 189
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Fig. 8.1 Illustration of the
linear one-dimensional F
displacement of a solid

material under an external
force (Hooke’s law) L ird

causes a relative displacement I/L or u,/x at any point p(x) with corresponding
proportionality coefficient that is elastic modulus K. Therefore, in the simplest one-
dimensional case, the Hooke law relates the two vector projections, the stress o,
and ghe relative deformation (strain) u, by scalar Young modulus K (dyn/cm?® or
N/m?):

o, = Ku, (8.2)

The elastic energy accumulated in the volume L due to the deformation is given by

and the density of elastic energy in the one-dimensional case is given by

w1,

The stress always causes strain and fundamental Egs. (8.2) and (8.3) have to be
generalized to describe anisotropic media.

8.1.2 Stress, Strain and Elasticity Tensors

8.1.2.1 Stress Tensor

Generally, any vector of a surface force acting on a body can be decomposed into
tangential (fy, f;, shear) and normal (f, pressure) components (index j = x, y, z) as
shown in Fig. 8.2a. In its turn, the element of surface A is a vector characterized by
its area A and outward-directed unit vector s that has also three projections in the
Cartesian laboratory frame (index 7). Therefore, the second rank stress tensor [1] is
defined as

oy = (8:4)
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Fig. 8.2 Vector of force F acting on a body and its tangential (f,, f,, shear) and normal (f,
pressure) components (a) and the nine components of the stress tensor (b). Note that the surface
element vector is directed outward from the bulk

(dimension of pressure, dyn/cm? or N/m? in the SI system)

Generally 6;; has 3 X 3 = 9 components, illustrated by Fig. 8.2b. The diagonal
components (G, G»,, O33) corresponds to pressure, off-diagonal ones correspond to
shear. Since G;; is symmetric tensor (G; = G;;), only six components are different.
Usually, in addition to the surface forces, the volume forces like gravitation or electric
force are included into the stress tensor.

8.1.2.2 Strain Tensor

We consider a piece of soft matter in which the distortion is not uniform in space
but rather local [2]. Any displacement of point p to point p’ caused by the stress
tensor and shown in Fig. 8.3a—c can be considered as a combintion of four basic
displacements. They are (1) translations, (2) rotation of the entire body as a solid
piece without deformation, (3) shear distortion, (4) expansion or compression.

Now we are going to discuss the components of the correspondent tensors
(translation is excluded). We go back to Eq. (8.2) and instead of u./x = I/L write:
Uy = ey X or Ouy = e, Ox

For small distortions, the coefficient e,, = du,/Ox will be a function of x, y, z,
describing an extension along the x-axis. Along y- and z-axes the extensions wil be
described by coefficients

Ouy ou,
Oy = —, 0, =
R

(8.5)

The diagonal tensor coefficients with equal suffixes describe compression-dila-
tation.
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Fig. 8.3 A non-deformed body (a) and illustration of difference between a shear distortion (b) and
pure body rotation (c)

There is also shear distortion, which can be described by angles 6/2 as shown in
Fig. 8.3b. In this case, the displacement along the y-direction is proportional to x
and vice versa:

0
U, = Ey; u, = Ex and u, = e, y; i, = ey,X

with the same angle for e, = e, = 0 /2. However, we cannot yet define ey and ey,
as simple derivatives of type (Ou,/0y) or (Ju,/0x) because similar displacements
describe the pure rotation of the body without any deformation as shown in
Fig. 8.3c.

0 0
Uy ziy,uy = —EX
Note the opposite sign for the 0 angle in the u, component. To obtain the pure
shear we may construct a combination

1 (0u, n Ouy
Co = =5 ax oy

Then the negative displacements (rotation) will be excluded and positive (shear)
remains unchanged. Even more generally, we construct two combinations, one for
pure shear

1 8Mj 8ui
e,-j = E (8_x, + a—xj> (86)

and the other for pure rotation
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1 (Ou; Ou;

which are, in fact, symmetric (shear) and antisymmetric (rotation) parts of the
common tensor describing “shear + rotation”.

Finally, the total strain is described by a symmetric second rank (3 x 3) strain
tensor ey with diagonal elements Ou;/Ox; (8.5) related to expansion/compression
and off-diagonal elements Ou,;/0x; (8.6) related to shear.

8.1.2.3 Tensor of Elasticity

For small strain, the relationship between the strain and stress is linear as in the
Hooke law [3]:

Cjj = ZKl'jklek/ =Kijuex (8.8)
Tl

Here, the right part of the equation is abbreviation of the middle part suggested
by Einstein: since symbols k and [ appear twice as suffixes at K;;;; and ey,., we may
remember this and remove a bulky symbol of the sum. By this convention, we
always must make a summation over the repeated suffixes. The elasticity tensor
Kji; is a fourth rank tensor with 9 x 9 = 81 components (81 mathematically
possible elastic moduli!). However, even in crystals of the lowest symmetry (the
triclinic system) due to physical equivalence of K, = Kjjx;= Kjix = Ky, a number
of moduli reduces to 21.

With enhanced phase symmetry a number of moduli further reduces and we

have:

— Six moduli for the tetragonal system (e.g., of symmetry Dyy,)

— Five moduli for hexagonal system (Dgp,)

— Three moduli for cubic system (O): one for compression and two for shear,
namely, perpendicularly to cube edge and to cube diagonals, respectively)

— Two for isotropic solid (compressibility and shear)

— One for an isotropic liquid (compressibility)

The density of elastic distortion energy (a scalar quantity) is quadratic in strain:

1
8dist = 5 ijkiWij Uk (8.9)

After summation over all suffixes we have maximum 21 scalar terms in the
lowest symmetry case. For the isothermal processes, g5, gives a direct contribution
to the free energy of the system.
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8.2 [Elasticity of Nematics and Cholesterics

8.2.1 Elementary Distortions

The static continuum theory of elasticity for nematic liquid crystals has been
developed by Oseen, Ericksen, Frank and others [4]. It was Oseen who introduced
the concept of the vector field of the director into the physics of liquid crystals and
found that a nematic is completely described by four moduli of elasticity K, K55,
K33, and K>, [4,5] that will be discussed below. Ericksen was the first who under-
stood the importance of asymmetry of the stress tensor for the hydrostatics of
nematic liquid crystals [6] and developed the theoretical basis for the general
continuum theory of liquid crystals based on conservation equations for mass,
linear and angular momentum. Later the dynamic approach was further developed
by Leslie (Chapter 9) and nowadays the continuum theory of liquid crystal is called
Ericksen-Leslie theory. As to Frank, he presented a very clear description of the
hydrostatic part of the problem and made a great contribution to the theory of
defects. In this Chapter we shall discuss elastic properties of nematics based on the
most popular version of Frank [7].

8.2.1.1 Specific Features of Elasticity of Nematics

As already mentioned, for the fixed direction of the nematic director n the shear
modulus is absent because the shear distortion is not coupled to stress due to the
material “slippage” upon a translation. The compressibility modulus B is the same
as for the isotropic liquid. New feature in the elastic properties originates from the
spatial dependence of the orientational part of the order parameter tensor, i.e.
director n(r). It is assumed that the modulus S of the order parameter Qj;(r) is
unchanged. In Fig. 8.4 we can see the difference between the translation and
rotation distortion of a nematic.

................
— e — — —

Fig. 8.4 A difference between the translation (a) and rotation (b) distortion of a nematic: there is
no elastic modulus for translation of a moving layer with respect of the immobile layer but the
twist of the upper layer with respect to the bottom one is described by the twist elastic modulus
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Let us assume that a liquid is incompressible, B—oo, and discuss orientational
(or torsional) elasticity of a nematic. In a solid, the stress is caused by a change in
the distance between neighbor points; in a nematic the stress is caused by the
curvature of the director field. Now a curvature tensor dn;/dx; plays the role of
the strain tensor u;;. Here, indices i, j = 1, 2, 3 and x; correspond to the Cartesian
frame axes. The linear relationship between the curvature and the torsional stress
(i.e., Hooke’s law) is assumed to be valid. The stress can be caused by boundary
conditions, electric or magnetic field, shear, mechanical shot, etc. We are going to
write the key expression for the distortion free energy density g related to the
“director field curvature”. To discuss a more general case, we assume that g
depends not only on quadratic combinations of derivatives 0n,/0x;, but also on their
linear combinations:

on; lK on; On

P . 8.10
il 0x; Ony ( )

8aist = Kij 8_x, + 3

As we shall see further on, the terms linear in ani/axj, allow us to discuss not
only conventional nematics with D, symmetry but also some “biased” nematic
phases. For example, we can discuss the phases with a spontaneous twist (choles-
terics with broken mirror symmetry) or a spontaneous ‘“‘splay” (uniaxial polar
nematics with broken head-to-tail symmetry, n # —n). For a standard nematic
only quadratic terms will remain.

8.2.1.2 Elementary Distortions

Consider elementary distortions of a nematic. The undistorted director n = (0, 0, 1)
is aligned along the z-axis, Fig. 8.5a. For instance, at a distance 6x from the origin of
the Cartesian frame O the director has been turned through some angle in the zOx
plane like in Fig. 8.5b. The relative distortion is then described by the ratio of dn,,
an absolute change of the x-component of the director, to distance dx, over which
the distortion occurs. In the same sketch, but in the zOy plane we see similar fan-
shape or splay distortion dny. Thus for the two elementary splay distortions we
write:

ony on,
=day; [ = as;

Ox Y9y

When discussing the deviations of the director dn, and dny at a distance dz from
O illustrated by Fig. 8.5c. we define two elementary bend distortions:

on, On,
= a3; = = de;

0z 30z
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Fig. 8.5 Elementary a
distortions of the director field

for particular geometry (a)

with n Il z: splay (b), bend (c) |41
and twist (d) In | I
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In the same way, in Fig. 8.5d we see two elementary twist distortions (minus
appears due to different signs of dn, and 6n, for the same handedness of rotation
about x and y axes).

ony _ . _ony
ay P ox

= ay;

Now the components of the director field n.(x,y,z) and n,(x,y,z) can be expressed
in terms of the six relative distortions mentioned (only six but not nine because of
our assumption n, = const = 1). For small deviations, we get:

ne = aix + ay + aszz + O(rz);
ny = asx + asy + agz + O(r?);
n.=1+0(?);

where O(r?) describes higher order terms depending on % = x* + y* + 2%,

8.2.1.3 Curvature Distortion Tensor

From consideration of the simple case with a particular choice of the z-axis parallel
to the director and n,~1+..., 5nz/axj ~0, we construct a “reduced” curvature

an,-_(anx/ax On, /Oy 8nX/82>:(a1 a a3>

istortion tensor n;; = 3+ =
distortion tensor 7;; = 5 Ony/0x Ony/Oy Ony/0z as as ag



8.2 Elasticity of Nematics and Cholesterics 197

Here, symbol “comma” between suffixes in n; ; means spatial derivatives. In the
general case, with three missing elementary distortions ay, as, and ag the curvature
distortion tensor is given by:

a ay as
njj = as ds dg (811)
ay dg dog

With this tensor we may turn back to Eq. (8.10) for energy density and discuss
two strain tensors, K;; and Kjj,.

8.2.2 Frank Energy

8.2.2.1 Elasticity Tensors

(i) K;; tensor. Since g4, ia a scalar, the tensor of elasticity coefficients Kj; is also of
the second rank with nine components. This tensor has no quadrupolar symmetry
like the familiar order parameter tensor Q. However due to the uniaxial symmetry,
particularly, polar conical symmetry, the energy g, is invariant with respect to the
rotation of our frame about the z-axis (X’ =y, y’ = x, 27 = z). Thus, this tensor
reduces to the form

(K K
K = (-Kz K1> (8.12)

At this stage, two moduli K; and K, remain finite, for a spontaneous splay and
twist, respectively (virtual polar cholesteric).

However, when molecules have mirror symmetry (achiral molecules), the inver-
sion center appears and g;,, becomes invariant with respect to the following frame

transformation: x’ = —x,y’ = —y, z” = —z. As aresult, modulus K, vanishes and we
have a tensor corresponding to a polar nematic:
(K1 O

K = ( 0 K1> (8.13)

(modulus K, remains, however, in the cholesteric phase).

(ii) Ky, tensor. Generally it has 81 components, however, for nllz in Eq. (8.11)
coefficients a; 39 = 0 and due to this only 36 components remain. Now we can
again apply the symmetry arguments. A conventional nematic has a uniaxial
symmetry. This further reduces the quantity of moduli down to 18. Among them
only five coefficients are independent, namely K, K»,, K33, K>4 and K, (K5 =
Ky 1—K2—K>34):
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K K> 0 —Ki» Kis 0
K12 K» 0 Koy K> 0
0 0 K33 0 0 0
Ky — 14
yhm —Kip Ky O Ky —Kp» 0 @19
Kis Kp O —Ki> Ky 0
0 0 0 0 0 K33

Next, taking the head-to-tail symmetry into account we make the following
transformation of the frame: x’ = x, y’ = y, z7 = —z. Now coefficients K|,
disappear. At this atage, only four different moduli are left, K, K7, K33, Ko4.

8.2.2.2 Elastic Energy of the Conventional Nematic for nllz

First let us go back to the same particular case with a constraint zllz, and discuss the
free energy of a conventional (uniaxial, nonpolar) nematic liquid crystal. We
combine elementary distortions corresponding to splay (a; + as), bend (a3 + a¢)
and twist (a, + a4) and present the free energy as a sum of these combinations
squared.

1

8dist =5 Kii(ar + as)’ + Kn(ay + as)” + K3 (as + 06)2} (8.15a)

Now, we would like to write the same in a more compact vector form. To do this,
consider vector forms for each of the three contributions.
Let us write the divergence of vector n = (0, 0, 1) with dn, = 0:
On, On,

divn = — 4 2
vn 8x+8y

Evidently, this corresponds to the splay term (a; + as). Now we write curln under
condition dn, = 0

curln = f%i + Ony + %f Onx k
0z 529 ox 0Oy

and see that it does not fit to any of terms in Eq. (8.15a). However, the scalar
product

n-curln = —n %—Fn %4_,1 %_% ~ %_8’%
Tz Y 0z “\ox 0Oy T\ Ox dy

with neglected the first two products of the second order of magnitude fits to the
twist term (a, + a4)! Finally the vector product
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(3}1,‘, . Ony )
n x curln = — i+—j

0z 0z

under condition n,, n, << n. ~ 1) fits to the bend term. Indeed, despite sign
“minus” and the vector form it contributes to the quadratic bend term of the
“reduced” free energy:

1 on,  On,\ on,  Ony\ on N (0n,\
8dist = 5 [Ku (g-ﬁ-a—y) +K» (8_y - E) + K33 (82) + (E)

(8.15b)

8.2.2.3 Frank Formula

To have the free energy density in a more general form including all the nine
elementary distortions a;, as. . . ao we should add the terms 0n,/0z, 0n,/Ox and On,/
Oy and rewrite the Eq. (8.15b) in the vector notations for arbitrary distortion of n
with respect to the Cartesian frame. Then we obtain Frank formula for the density
of elastic energy in the general vector form:

1

Sais = 5 [1{11(divn)2 + Kxn(n- curln)2 + K33(n x curln)z] (8.16)

Here, we have splay, twist and bend terms corresponding to a particular bulk
distortion. In experiment, they can be realized in different way using variable cell
geometry and boundary conditions. For example, such distortions may be created
mechanically as shown in Fig. 8.6. The important condition is to anchor the director
firmly at the boundaries.

But what about the K,4 term? The so-called saddle-splay modulus K4 is
important only for particular situations, in which a distortion has a two- or three-
dimensional structures such as nematic droplets in the isotropic solutions [8] or blue
phases [9]. The free energy term including modulus K, is a so-called “divergence”
term because it has a form of divn to the first degree. Hence, if one performs the

Fig. 8.6 Splay, bend and twist distortions in nematics confined between two glasses that align
liquid crystal at the surfaces either homogeneously (for splay and twist) or homeotropically (for
bend)
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minimization of the free energy using the Euler-Lagrange variation procedure
(Section 8.3), the divergence term 0n/0Oz would contribute only to the boundary
conditions and, in the one-dimensional geometry, the contribution of the saddle-
splay elasticity vanishes. However, in a more complex geometry the coefficient K54
becomes important. For example, in very thin films with tangential (planar along x)
boundary conditions on one side and homeotropic (along z) on the other side, a
uniform hybrid structure in the xz-plane is not stable. Instead, the absolute mini-
mum of the free energy is realized for a periodic structure of linear defects (stripe
domains) with distortion in the film plane xy [10].

The nematic elastic moduli have dimension of force. The three moduli in Frank
energy (8.16) are always positive, modulus K,, may be positive or negative.
Roughly, all of them are of the same order of magnitude that may be estimated
from the molecular interaction energy W divided by intermolecular distance [ ~ 5
A. If for W we take the temperature of nematic-isotropic transition (kzT ~ 0.033 eV
at T = 400 K), the elastic modulus would be K~W/I ~ 1-10°° dyn (Gauss system)
or 1.107"" N (ST system). If we take the nematic potential Wy = 0.15 eV the
estimated modulus would be five time larger. The experimental values are in the
range of 1077 — 107 dyn. The data on elastic moduli for most popular liquid
crystals (p-azoxyanisol (PAA), p-methoxy-benzylidene-p’-butylaniline (MBBA)
and pentyl-cyanobiphenyl (5CB) are collected in the Introduction to book [11].

8.2.3 Cholesterics and Polar Nematics

8.2.3.1 Cholesterics

If molecules are chiral, the coefficient K, from tensor (8.12) becomes finite.
Formally it is possible to add it to the Frank energy introducing a scalar quantity
qo = K»/K», and obtain the following expression:

1 .
aist = 3 K11 (dlvn)2 + K> (n - curln + q0)2 + K33(n x curln)z] (8.17)

Then, expanding the second term K (n - curln)2 + 2K5qo(n - curln) + Kzzq(z)
we note that the last item is not interesting because independent of distortion and
the gradient term K»,¢go(n - curln) is the only one that distinguishes the free energy
of a cholesteric from that of the nematic. For a cholesteric with a pure twist along
the z-axis, the components of the director are n = (cos@z, sin@z, 0). This results in
ncurln = —d@/dz. Then, for any form of ¢(z), the twist contribution to elastic
energy density (8.17) is given by

1 d 2
Gaist(z) = §K22< (ZEZ) — qO) (8.18)
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The minimum of (8.18) corresponds to the equilibrium helical (harmonic)
structure with wavevector ¢y = do/dz and pitch Py = 2mn/qo. Equation (8.18) is
correct as long as Po>>a where a is molecular size. In the opposite case, local
biaxiality becomes important (practically, Po ~ 1 pm, a ~ 1 nm).

8.2.3.2 Polar Nematics

In precisely the same way, a spontaneously splay-deformed structure must corre-
spond to the equilibrium condition with finite coefficient K| # 0 in tensor (8.13).
The corresponding term should be added to the splay term with (divm)?. If the
molecules have, e.g., pear shape they can pack as shown in Fig. 8.7b. In this case,
the local symmetry is C., (conical) with a polar rotation axis, which is compatible
with existence of the spontaneous polarization. However, such packing is unstable,
as seen in sketch (b), and the conventional nematic packing (a) is more probable.
The splayed structure similar to that pictured in Fig. 8.7b can occur close to the
interface with a solid substrate or when an external electric field reduces the overall
symmetry (a flexoelectric effect).

8.3 Variational Problem and Elastic Torques

8.3.1 Euler Equation

Consider a nematic liquid crystal layer confined between two glass plates. This
structure is of great technical importance. The most of liquid crystalline displays are
based on it. The directors at opposite walls (z = 0 and z = d) are rigidly fixed at

a Nematic b Polar nematic

i

Fig. 8.7 Packing of conical (pear-shape) molecules in the conventional nematic phase (a) and in
a hypothetical polar nematic phase (b)

(s
Ca

0
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right angle to each other, therefore such a cell is called n/2-twist nematic cell.
Along x and y the layer is infinite, the director n(z) depends only on one coordinate.
How to find a director distribution along the z-axis?

For simplicity we ignore the influence of external fields. The problem is to find
that distribution of the director angle @(z) over cell thickness, which satisfies the
minimum of the elastic free energy F for fixed boundary conditions. This is a
typical variational problem although very simple in our particular case. The idea of
a variational calculation is not to find a value of the integral of a function g(z, @, ¢©’)
over the interval 0 < z < d for known ¢(z), but to find such an unknown function
¢(z) that provides the minimum of the integral. Due to the great importance of this
mathematical problem for liquid crystals consider it in more detail.

Consider a functional F (scalar number, e.g. it might be free energy of the liquid
crystal sample):

F= s 0(). 0/ @) (8.19)

Here g is a function of all the three arguments z, ¢(z) and d¢/dz. The equation is
valid for any continuous function g(z) with continuous derivatives g’, g” defined
within interval [a, b]. For instance, g might be density of free energy of a liquid
crystal per unit volume, ¢(z) be an angle the director forms with a selected
reference axis and d the thickness of the sample. The values of function g are
fixed at both ends of the interval ¢(a) = ¢, and ¢(b) = @,,. In our simplest example,
infinitely strong anchoring of the director is assumed at the boundaries.

Our task is to find the necessary condition for the extremum of the functional F.
Let us assume that function ¢(z) in Fig. 8.8 corresponds to an extremum of F, i.e.
F = F ey for @©(2) (actually, for physical reasons an extremum to be found corre-
sponds to a minimum). Then we introduce a new, probe function ¢(z) + on(z)
where o is a small numerical parameter and 1(z) is an arbitrary function equal to
zero at both ends of the [a, b] interval. The additional item an(z) is called variation
of ©(z) function that will result in variation 0F of functional F. Now if we vary o,
the functional F changes. Therefore, after substituting the new functions with
variable o into g(z), we obtain F as a function of parameter o:

4 9(z)

Fig. 8.8 Illustration of
variation procedure: one
searches for such a function Pa :
¢(z) that satisfies to an o(z) 0(x)+an(z)
extremum of functional : '
(8.19). @(z) +an(z) is R
arbitrary probe function a b

~7 :
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b
Flo) = jg[z, $(@) + an(z), ¢ () + ' (2))dz (8.20)

Next we shall explore a new idea: as we vary ¢(z) + on(z) and the functional F
reaches an extremum then the varied function F(o) must have an extremum at ot = 0
(due to the assumption that ¢(z) corresponds to Fey,). Therefore, the derivative dF/
da = 0 at oo = 0. Hence, after differentiation (8.20) with respect to o under the
integral, we obtain the expression valid at o = 0:

b
’ o dF o 8g 12 ag AY) _
FO =% = | [ e + o oW @0, G2

a

where we used

g—i =7 ffw) . a(d)azw’) = 3—5) -1 (for o = 0) and the same for the term with ¢’.

Integrating by parts the second term in (8.21) we get:

F(0) = jg—;j, (et [j—jmn]z— Tmz)% (o)

] o4 2

The first term is zero because 1(z) = O at the ends of the interval [a, b]. And since
n(z) is arbitrary, the expression in the brackets under the integral must be zero.
Hence, we arrive at the differential Euler equation:

Q

dg d 0g

What have we gained? Very much! Now, in order to find the function ¢(z)
corresponding to g,,;, we have to solve a second order differential equation (8.22),
instead of solving an integral-differential equation (8.19). Two arbitrary constants
are to be found from the boundary conditions given for @(z).

8.3.2 Application to a Twist Cell

To illustrate the variation technique that is very useful for subsequent discussions
of electro-optical effects, consider a simplest example. For a twist cell shown in
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Fig. 8.9 Twist cell in the zero a
field: geometry of the problem

(a) and the calculated

distribution of angle ¢(z)

(i.e. the director angle) over

the cell thickness (b) i//

|Q

Fig. 8.9a, we are interested in the coordinate dependence of the azimuthal director
angle ¢(z), which is rigidly fixed at the two boundaries, ©(0) = 0, ¢(d) = /2. The
equilibrium director distribution to be found corresponds to the minimum of the
elastic free energy for the cell as a whole. First, we should write an expression for
the density of Frank elastic energy. The director at any point z is given by
n = cos ¢(z)i + sin ¢(z)j. There is no z-component, n, = 0, even no pretilt at the
boundaries.

The free energy per unit area in the x, y plane is very simple because we have no
derivatives over x and y, therefore

ony ‘ d d
curln:f&iJran'j:fcosd)—qslfsm ('b
dz

0z 0z

d do\
ncurln = _d¢ and (ncurln)® = <—¢) .
dz dz

From here and Eq. (8.17), the density g4;s and the total Frank energy are given by

d
1 d¢ 1 Aoy
i = 5K ( dz) F=y | (E) dz (8.23)
0

To find @(z) we should write the Euler equation for functional (8.23). In that
equation we have neither z nor ¢(z) given explicitly and should only use differenti-
ation with respect to ¢’(z). Now Euler’s equation reads:

d 0g a’¢ B
g = g =0 (8.24)

This equation may be considered as a balance of torques in the bulk, although in
this particular case, the elastic forces are balanced by the fixed boundary conditions
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and the rotation of the director is possible only together with the cell substrates.
After the first integration we obtain:

qg=d¢/dz = const =C (8.25)

This is an important result showing a linear distribution of azimuthal angle over
the layer thickness. The second integration gives us the value of the constant. It
depends on the difference between the azimuthal angles fixed at the opposite
boundaries. In our cell, ¢; = 0 at z = 0 and ¢, = /2 at z = d. Therefore
¢ = Cz = nz/2d; this linear dependence is illustrated by Fig. 8.9b. Equation
(8.25) is valid for any uniform twist distortion; for instance, for nematics twisted
through angles m/4 or m the functions ¢ = (nz/4d) and ¢ = (nz/d), respectively. The
linear dependence remains even in the case of non-rigid boundary conditions,
however, external magnetic or electric fields can easily distort such a uniform
distribution.

It is instructive to calculate the value of the elastic energy (per unit area) of a
typical twisted cell, discussed above. Using (8.23), the free energy is given by

d
1 2 7I2K22
= — T =
P Kt = T
0

Taking cell thickness d = 10 pum (10 >cm), K», = 3-10~7 dyn (or 3-10~ "2 N) we
find F ~ 3.7-10 % erg/cm® or 0.37 pJ/m? in SI units.

The example of the variational procedure considered in this section was very
simple, because we operated only with one independent variable (angle ¢). Some-
time one needs to minimize the energy with respect to two variables; in fact, we met
this case in Section 6.3.3 for an infinite medium. For two variables, the system of
two Euler equations can be constructed using the same procedure as earlier.
However, very often one deals with some constraints as, for example, in the case
of the director that has three projections satisfying the constraint n% + n}2 +n?=1.
In such cases the Lagrange multipliers are introduced to solve the variational
problem, however this, more general Euler — Lagrange approach will not be used
in this book.

8.3.3 “Molecular Field” and Torques

The director n of a nematic can be re-aligned from its equilibrium position by an
external magnetic (or electric) field because these fields exert torques onto n. If the
field is strong enough and magnetic Y, or dielectric €, anisotropy is positive,
the director will be aligned along the field. On the other hand, being deflected
from the equilibrium state by on, the director relaxes back due to elasticity. It looks
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like the director feels a sort of “molecular field” that causes it to rotate back to the
equilibrium position. The “molecular field” should not be confused with the mean
field used in the molecular theory and characterized by the nematic potential curve
discussed in Chapters 3 and 6.

Mathematically the “molecular” field vector h can be found using the Euler-
Lagrange approach by a variation of the elastic and magnetic (or electric) parts of
the free energy with respect to the director variable n(r) (with a constraint of n’=
1). For the elastic torque, in the absence of the external field, the splay, twist and
bend terms of h are obtained [9] from the Frank energy (8.16):

hsplay = K11V(divll)
Wpena = K33{[(n X cirln) x curin] 4+ curln x (n x cirln)}
} .

n}

hyise = —K2{[(n - cirln - m) - curln] 4+ curl[(n - cirln - n)

In the one-constant approximation K;; = K», = K33 = K and the expression for
the molecular field becomes very simple, similar to (8.24):

hyie = KV?n (8.26)

This approximation is useful when solving problems related to the field behavior
of liquid crystals. In the thermodynamic equilibrium, the director is always aligned
along the molecular field vector, nllh. When there is an external electric or magnetic
field (see for details Section 11.2.1), the corresponding terms given by

he = —:—; (En)E  hy = —y,(Hn)H (8.27)

should be added to the molecular field. Such a non-zero sum of all these vectors
creates a torque exerted on the director

I'=nx Zhi (8.28)
which causes the director rotation. Actually the torque due to the molecular field
can be balanced by other (e.g. viscous) torques. In this way, we can write a torque

balance equation.

n x Zhi + viscous torque + others =0 (8.29)

8.3.4 Director Fluctuations

This is another important example of a successful application of the theory of
elasticity. In Section 11.1.3 we shall discuss the nature of strong light scattering by
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nematics. In fact, such scattering is caused by small values of the Frank elastic
moduli. The latter results in strong thermal fluctuations of the director. Here, we
consider a simple approach to calculation of the amplitude of the director fluctua-
tions suggested by de Gennes [12].

We again consider the director n, oriented along the z-axis. Its fluctuating part
has components (7, 1y, 0). The total Frank elastic energy, related to the fluctuations
in volume V, is given by the integral of free energy density (8.15b):

1 on,  On, ’ on,  On, ; on, ’ Ony ’
Fﬁj{“(aﬁa—y)*’(ﬂ(ay‘a el ) e ) |
Vv

(8.30)

The Fourier harmonics 7, and ny of the director fluctuating field are represented
by volume integrals (q is wavevector):

n(q) = Jnx(r) exp(iqr)dr and n,(q) = Jny(r) exp(iqr)dr (8.31)
v v

Now the corresponding free energy is represented by a sum of the ¢ harmonics:

1

2
w2 {Kuln(@a + m(@al + Kaln @y - ny(q)q.?

+ K2 |In@)P + In (@] }

The g-vector consists of three components (¢, ¢y, ¢,) and the obtained quadratic
form for n,(q) and n,(q) is complicated because it is not diagonal. However, it can
be made diagonal if one takes a simplified geometry corresponding to the symmetry
of a scattering experiment. To this effect, de Gennes selected new coordinate axes:
the axis e, was chosen to be perpendicular to the ng (i.e. to z-axis) and simulta-
neously perpendicular to the scattering vector q, as shown in Fig. 8.10a. The other
axis e; was chosen to be perpendicular to the z-axis and e,. Now the g-vector is
resolved not into three components but only into two: ¢, = ¢ and ¢, (Il and L to the
director). Correspondingly we have two normal modes of fluctuations.

In Fig. 8.10b, we see that the fluctuation mode 7;(q) is a mixture of the splay and
bend distortions, and the component 7,(q) is a mixture of twist and bend distortions.
This may be clarified as follows: the splay-bend (SB) mode on the left side of
Fig. 8.10b corresponds to realignment of the molecules within the g,z-plane as g
evolves and there is no twist here. In contrast, on the right side of the same figure the
molecules are deflected from the gz-plane of the figure; therefore, the twist and bend
are present but the splay is absent (TB mode).
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Fig.8.10 New coordinate axes, e; and e, appropriate to the normal modes of director fluctuations
in a nematic liquid crystal (a) and the structure of the normal modes, namely splay-bend (SB) and
twist-bend modes (TB)

€4

After the transform to the new variables n,(q) (o = 1, 2) the equation for the free
energy reads:

F=%§jiﬂmwﬂmm+mﬁ) (8.32)

q o=1,2

Here K, is the combination of Frank elastic moduli K;; and K»,.

The last equation has a remarkable feature: the different Fourier components of
fluctuations are decoupled because they are normal modes for the system. This
allows us to apply the principle of equipartition, according to which the energy of
each mode is equal to kg7/2. Therefore, for each mode with o = 1, 2, the final
equation for the mean-square magnitude of the director fluctuations reads:

kgT
na(@)) =V (8.33)
< * > K33fIﬁ + Kyq?

The latter transformation is based on the Gibbs distribution that gives us the
probability of the mean square value |n,(q)|*for a particular director fluctuation
with wavevector q when the average value (|n,(q)|*)for all fluctuations is known:

W X exp

_V(K3BCIﬁ+K:xq2L)‘not(q)|2 — exp|— |non(q)|2
kT ~ P @l

From Eq. (8.33) for the mean square amplitude of the director fluctuations, we
can derive the amplitude of the fluctuations of the dielectric tensor and then find the
cross-section for the light scattering, see Section 11.1.3. The de Gennes description
of the director fluctuations in the continuous medium [12] was a strong argument
against the so-called swarm models of liquid crystals. That model was based on the
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concept of rather large blocks (or swarms) with the molecules uniformly aligned
within a swarm and variable orientation of swarms as a whole [13]. Such disconti-
nuity was considered to be responsible for the strong light scattering by nematics.
Nowadays the continuous theory is the corner-stone of the physics of liquid crystal.

8.4 Defects in Nematics and Cholesterics

8.4.1 Nematic Texture and Volterra Process

8.4.1.1 Textures

The concept of defects came about from crystallography. Defects are disruptions of
ideal crystal lattice such as vacancies (point defects) or dislocations (linear defects).
In numerous liquid crystalline phases, there is variety of defects and many of them
are not observed in the solid crystals. A study of defects in liquid crystals is very
important from both the academic and practical points of view [7,8]. Defects in
liquid crystals are very useful for (i) identification of different phases by micro-
scopic observation of the characteristic defects; (ii) study of the elastic properties
by observation of defect interactions; (iii) understanding of the three-dimensional
periodic structures (e.g., the blue phase in cholesterics) using a new concept of
“lattices of defects”; (iv) modelling of fundamental physical phenomena such as
magnetic monopoles, interaction of quarks, etc. In the optical technology, defects
usually play the detrimental role: examples are defect walls in the twist nematic
cells, shock instability in ferroelectric smectics, Grandjean disclinations in chole-
steric cells used in dye microlasers, etc. However, more recently, defect structures
find their applications in three-dimensional photonic crystals (e.g. blue phases), the
bistable displays and smart memory cards.

Generally, microscopic observations reveal different types of defects, which
may be O-dimensional (points), one-dimensional (lines) and two-dimensional
(walls). Typical nematic textures are

1. The thread texture usually observed in thick layers
2. Schlieren texture observed in thin cells

In Fig. 8.11 an example is given of a Schlieren texture in the nematic phase
observed under a polarisation microscope. The polariser and analyser are always
crossed and their positions with respect to photos (a) and (b) differ by 45° as shown
by small crosses. On both photos characteristic brushes (threads) are seen origi-
nated and terminated at some points. The points are linear singularities (disinclina-
tions or just disclinations) to be discussed below. Note the difference between a
number of brushes originated or terminated in different points: only two brushes in
points 1 and 5 and four brushes in points 2, 3 and 4. It is evident that the pictures
discussed are related to the local orientation of the director, i.e. to the structure of
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Fig. 8.11 Schlieren texture observed between crossed polarizer and analyzer. Orientation of
polarizers differs in photos (a) and (b) by 45°

Fig. 8.12 Volterra process in
nematic liquid crystal placed

1
—_ - | —
between two glasses with side —_ 1 —
. . — —
view (a) and top view (b). . RS I . RENPRt
i «— =
The part of the nematic shown — «— —_
. > —
by arrows directed from the «— —
e —

right to the left was initially
removed (virtually), turned by
angle 1 about the Q-axis and
put back into the empty
cavity. A plane wall 3% and a
linear disclination loop L are
formed

the director field n(r). To understand the nature of the brushes, let us form some
defects artificially.

8.4.1.2 Volterra Process

The major part of the arrows directed to the right in Fig. 8.12a correspond to the
initial orientation of the director ng in the planar nematic slab. However, the part of
the slab shown by arrows directed to the left is virtually taken from the sample by
some “mysterious force”, turned about axis Q through angle © and put back into the
slab. After this operation called Volterra process, the director is everywhere again
parallel to ng due to the ng = —n, symmetry and such a structure in each of the two
parts (initial and turned) is topologically stable. However, in the close proximity of
the plane 3, on the scale of molecular size, the director changes its orientation by
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n. The plane 3 parallel to the substrate and horizontal in sketch (a) is called a wall
defect or just a wall.

There is also a vertical wall around the block shown by a dot-line loop in the
xy-projection in sketch (b) below. The wall ¥ is not seen under microscope, but
the loop L surrounding the reoriented area and called a disclination is well seen as a
thin line. Very often the reoriented area surrounded by the vertical wall takes all the
thickness between the glasses without formation of wall %= within the bulk.

The rotation angle Q is not necessarily equals 7, it may be 27, 37 or, more
generally Q = 2n - s where s is strength of a disclination. The disclinations of
strength s = +£1/2 or £1 are observed very often, however, those of strength
s = £3/2 or even %2 are very rare.

8.4.2 Linear Singularities in Nematics

8.4.2.1 Disclination Strength

Consider a disclination with its ends fixed at the opposite plates of a planar nematic
cell. Such a disclination “connects” the two glass plates as in Fig. 8.13a. If we are
looking at it from the top along the z-direction we can see the director distribution n
(x, ) in the xy-plane around the disclination. In a polarization microscope, in the
same cell, we can see different n(x, y) patterns corresponding to disclinations shown
in Fig. 8.14. A point in the middle of each sketch shows the disclination under
discussion that has its own strength s.

The strength of a disclination is defined as follows. We traverse the disclination
line along the closed contour counterclockwise as shown in sketch (b) and count the
angle A¢ the director acquires as a result of the traverse. It is evident that after the
full turn A$p = mn where m =0, 1, 2. .. and, by convention, the strength s = m/2. In
fact, we deal with a solution of the Laplace equation, see the next paragraph. Let us
count A¢ from the horizontal axis in Fig. 8.14. Then, upon the traverse in the
counter-clockwise direction, for disclinations of strength s = +1/2 and s = +1, the

Fig. 8.13 Two disclinations a

fixed by their end at the two | |
glasses limiting a layer of a Y
nematic liquid crystal. They P12 L
interact with each other by the
elastic force proportional to
1/p12 (a). The structure of the |
director field n(r) near the

two disclinations of positive

and negative strength and four

dark brushes corresponding to

the s = £1 disclinations (b)
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§=+l §=—

Fig. 8.14 Structure of the director field n(r) around a disclination of different strength s. The
values of s = £1/2 and +1 are shown under each sketch

director angle changes through +n and £2m, respectively. The presence of dis-
clinations of strength s = £1/2 is a characteristic feature of any liquid crystalline
phases with head-to-tail symmetry, n = —n.

Note that the dark brushes in Fig. 8.11 mark the areas where the director is either
parallel or perpendicular to a polariser crossed with analyser. Therefore, a number
of brushes attached to a disclination (either 2 or 4 in the photo) is N = 4s. In
Fig. 8.13b the scheme is shown of the four brushes attached to two disclinations of
opposite sign (s = 1) corresponding to Fig. 8.14a, b. As to the sign of s, it can be
established by a rotating of a pair of crossed polarisers: for their clockwise rotation
the brushes rotate either clockwise (sign +) or anticlockwise (sign —). Note the
analogy with the electric charges: s = +1 corresponds to a source and s = —1 to a
drain. Correspondingly the director lines are divergent or convergent. The lines of
n(r) are similar to the electric field lines, see Fig. 8.13b. Defects of the same strength
but opposite sign may annihilate with each other as the electric charges of opposite
sign do. It happens, e.g., at temperatures close to the nematic-isotropic transition.

8.4.2.2 The Director Field Around Disclination

The problem is to find the distribution of the director around a disclination [14]. To
solve it we can use the elasticity theory discussed in Section 8.3. Let a liquid crystal
layer is situated in the x, y plane of drawing, and singularity L is parallel to the
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Fig. 8.15 Geometry for
calculation of the director
distribution around a
disclination L. ¥ is the
azimuthal angle for an
arbitrary point r in the x, y
plane of the nematic layer; @
is the director angle in point r

normal z to the layer, see Fig. 8.15. Point L is chosen as the reference system center
and r is radius-vector of an arbitrary point  characterized by length p and angle V.
We are going to relate the director angle ¢(r) to the radius-vector angle W(r). The
components of the director field n(r) in the x,y-plane are independent of z:

n(r) = [cos o(x,y), sinp(x,y), O].

In the one-constant approximation, the distortion free energy per unit volume is

given by
1 oL ; 140} Y
8aisr(r) =K l(a) + <a_y> (8.34)

Now we introduce a cylindrical coordinate frame: x = pcos ¥,y = psin'? and
z, write down the gradient of ¢ in that frame

Jdp . 1 0¢p - 0o -
i 4 Bl o K
Ve ap p+p oY ‘Haz

and substitute it in 8.34. Then, neglecting the z-dependence, we get the free energy

density
oY 1 Y
99\ 1 (90|
op p2 \ ¥

Further, if we consider the most important practical cases (see Figs. 8.11 and
8.14), we find that the director angle ¢ does not change too much with distance p
from the disclination, but changes very strongly with angle V. Therefore we can
leave only the second term, that is the angular part, especially important for small p:

1
gdist(pv ‘Pa Z) = EK
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(W) =K~ %) (8.35)
8dist =5 o2 \ow .

The corresponding Euler equation (8.24)

2
Kg—\ljg —0 (8.36)

has the general solution ¢ = AY + @,. As follows from Fig. 8.14, the change of
angle ¢ by 21 corresponds to the same director field, and the first arbitrary constant
A must satisfy condition A = 1, +2, ... for any nematic liquid crystals (a polar
nematic included). For unpolar ones (e.g., conventional nematics) A = +1/2, +1,
+3/2 ... Therefore, A = s (the disclination strength) and the director angle at any
azimuth ¥ is found:

¢ =s¥+ ¢, (8.39)

For instance, s = 0 corresponds to a uniform state with the director oriented at
angle ¢ with respect to the x-axis. In the case of s = +1/2 shown in Fig. 8.14a,
counting ¥ counterclockwise from the horizontal line x where ¢y = 0 and Wy = 0,
we find from (8.39) that the director changes its direction from O to © as shown in
the figure by two arrows.

8.4.2.3 Energy of a Disclination

We are interested in the elastic energy stored around the disclination per its unit
length, I = 1, see Fig. 8.16. The free energy is given by the same Eq. (8.35) and the
limits for integration correspond to the sample radius p,.x and a core of the
disclination a that is excluded from consideration:

2n Pmax
1 1 (doV
Fasa = 5K j dys j p2<d:‘;) pdp (8.40)
0 a

As do/d¥ = s, the energy of a disclination per unit length
Faiser = nKs? In (Pma/;) (8.41)

diverges logarithmically when p—oo. However, this condition is not realistic
because all preparations have finite limits and there are also additional confinements
due, for instance, to other defects, etc. In practice, pyax = 10 — 100 um, @ =~ 10 nm,
In(Pmax/a@) ~ 10 and F 4, ~ 30 K ~ 3.107> erg/cm (or 3.107'° J/m).



8.4 Defects in Nematics and Cholesterics 215

Fig. 8.16 Geometry for z|
calculation of the energy of a -
linear disclination with radius | |

a (I =1 is unit length) /‘LILJ /\P

| =1

If there are two disclinations separated by distance p,, then the energy of their
interaction per unit thickness of the sample L = 1 (see Fig. 8.13a) follows from
(8.41):

Wiy ~ —27Ks;s2 In P12/, (8.42)

The force of interaction between them dW/dp is proportional to 1/p;,. Here we
see an analogy with the force of interaction between two infinite parallel wires
carrying electric currents. For disclinations of opposite sign 515, < 0 the interaction
energy is positive and decreases with decreasing distance. Therefore such disclina-
tions attract each other.

8.4.3 Point Singularities and Walls

8.4.3.1 Point Singularities in the Bulk (Hedgehogs)

There are some military applications of hedgehogs like a barbed wire or hedgehogs
against tanks, Fig. 8.17a. In the peaceful field of liquid crystals, at a certain
temperature, hedgehogs are observed in spherical drops of nematics floating in an
isotropic liquid. A conoscopic image of such a drop is shown in the same figure (b).
The liquid provides an alignment of the director perpendicular to the boundary.
Then, in the centre of the drop, appears a point defect (c) called hedgehog that has
radial distribution of the director around it. Two such hedgehogs interact with each
other very specifically: their interaction energy is proportional to the distance
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Fig. 8.17 Hedgehogs. Some military applications (a), a conoscopic image of a spherical nematic
drop floating in an isotropic liquid (b), and the structure of the director inside the drop with a point
defect in the center called a hedgehog (c)

NN\ == U2
e ~ —

Fig. 8.18 Boodjooms. Structure of the director with two boodjooms in a nematic drop with
tangential alignment of molecules at the surfaces (a), linear disclination with a point defect at
the boundary of a nematic layer (b), and the same point defect (boodjoom) after annihilation of the
linear disclination (c)

between them, as between two quarks. Such an interesting analogy has been
discussed in the literature [15].

8.4.3.2 Point Singularities at the Surfaces (Boodjooms)

A variation of temperature or the chemical content of the isotropic solvent for the
nematic drops results in a change of the alignment of the liquid crystal at the drop
boundary from perpendicular (homeotropic) to parallel (homogeneous). Then the
director pattern within the drop changes from that containing one singular point in
the centre (hedgehog, Fig. 8.17¢) to the new pattern with two singular points at the
“north” and “south” poles. These are defects with a funny name boodjooms, coming
from L. Carrol’s story “Alice in the Wonderful Land”, are seen in Fig. 8.18a.
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Another example is formation of boodjooms at the cell surfaces. Now we are
interested not in the linear disclinations responsible for the Schlieren texture but in
their nuclei at the solid substrates limiting a liquid crystal cell. The linear disclina-
tions of strength s = £1 may annihilate within the bulk due to some reconstruction
of the director field induced, for instance, by temperature or a flow of the material.
For example, a bulk disclination of strength s = +1 shown by the solid vertical line
in Fig. 8.18b disappears but its nuclei localized at the surfaces transform into new,
surface defects. Fig. 8.18c illustrates the situation at one of the two surfaces. The
escaped line leaves behind it a boodjoom. We meet such a situation in thick planar
cells where the Schlieren textures with four brushes are observed.

8.4.3.3 Walls

Walls are two-dimensional defects or planes separated area of the liquid crystals
with different director alignment. We met them once when having discussed the
Volterra process. Another well known example is the so-called hybrid cell, in which
the initial alignment of the director is parallel to one boundary surface 9(0) = n/2
and perpendicular to the other 9(d) = 0. In such a cell, the structure of the director
field in the bulk is degenerate in the sense that the elastic energy is the same for the
two director patterns shown in Fig. 8.19. Between the two orientations with +9(z) or
—3(2), there is a defect plane (a wall) where the director changes its orientation
within a very narrow layer. When we look at the texture in a polarization micro-
scope (top view in the same figure) we can see thin lines separating the area with
£3(z) tilt. The total areas occupied by the +3 and —3 domains are approximately
equal. At the normal incidence of light, the areas of different tilt look similarly but
the walls between them are well seen. Such degeneracy in hybrid cells can be
removed by special treatment of a planar surface providing a small pretilt angle 3(0)
< m/2.

Another example is a twist nematic cell with a planar orientation of the director
at both boundaries 3 = n/2 differing by their azimuth, ¢ = 0 and n/2. In such cells,
the areas with the director twist in the bulk by angle +m/2 and —m/2 have the same

: +90 OIU 0 Top view
190
ZZ\ =22 =
x wall

Fig. 8.19 Walls. Hybrid nematic cell with planar and homeotropic director alignment at opposite
boundaries with a wall between the two degenerate patterns differing by a tilt angle sign (a), and
the top view on the different tilt areas surrounded by walls (b)
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energy. They are separated by walls, which scatter light. In the display technology,
a small amount of a chiral impurity is added to a nematic material in order to
remove the degeneracy.

8.4.4 Defects in Cholesterics

8.4.4.1 Singular 7- and A-Lines in the Planar Texture

We have briefly discussed the cholesteric Grandjean texture in Section 4.7.4. In that
case the defects appear in the wedge-type cells having continuously changing
thickness. But even in the planar cholesteric texture observed along the helical
z-axis, we may see some defects, namely, singular lines which are more complex
than the corresponding disclinations in the nematic phase. A cholesteric may be
represented by a stuck of quasi-layers with interlayer distance Py/2. Therefore, we
can use some concepts of dislocation theory from the solid state physics. To
understand the appearance of such defects consider again the Volterra process [16].

In Fig. 8.20a we see a stack of the quasi-layers with vertical helical axis. The
dash and dot lines show the orientation of the director parallel and perpendicular to
the plane of drawing, respectively. We make a virtual cut S along a dash line
terminated by point L and then separate two lips as shown by two arrows in the
figure. The borders of the gap S; and S, are turned correspondingly up and down
through angles +m/2. Then we add some cholesteric material to the right of the
S1—S, line with layers orientated parallel to the initial helical axis. Note that the
director is not discontinuous at S;—S line, Fig. 8.20b. Finally, the structure relaxes
and we arrive at a new situation with linear defect T~ shown in sketch (c). The
director is discontinuous at the core of line L where nLL. This singular line
(disclination) is called 1~ -line. If, from the beginning, we had made a cut S
along the neighbour quasi-layer with the director perpendicular to the cut (shown

a b S, c
I I
_________________________________________ [ H ’
__________________________ / | _________z'(.-'/./
_____________________________________ 5 F -
________ e— 1§ _— ! -4
IS SR S 2'\1 """"""""""""" -,L : :'_‘"_"_";‘:'_‘"_"_'"'L, N "._‘\\\
—————————————————————————— \ ' . : \\ \\ -
......................................... [ H \
Vil

S,

Fig. 8.20 Volterra process. A stack of the cholesteric quasi-layers with vertical helical axis and a
cut S shown by the solid line terminated in point L (a). The cut is open up-down and the cholesteric
material is added on the right of the cut (b). The final structure of the quasi-layers after relaxation
leaving a line defect T~ (c)
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Fig. 8.21 Structure of the director field around different singular lines (disclinations) in a
cholesteric liquid crystal: T, A~ and t*, A*. Signs (—) and (+) correspond to different Volterra
processes

by dots) and repeated exactly the same procedure, we would arrive at another
structure with a new distribution of the director and a singular line called A~ -
line. The latter has no core because the director nllL is continuous at this disclina-
tion. The structures of the director around the t~ - and A~ -lines are compared in
Fig. 8.21 (lower plot). There are also t"- and A" singular lines shown in Fig. 8.21
(upper plot) which can be obtained using another type of the Volterra process, see
[16] for details.

8.4.4.2 Defects in the Polygonal or Fingerprint Textures

When the limiting glasses are treated by a surfactant, the director aligns perpendic-
ular to boundaries. Such an alignment (homeotropic) is, in principle, hardly com-
patible with the helical structure shown in the Inset to Fig. 8.22 and a number of
defects form. A typical polygonal texture (another name is finger-print texture) is
shown in the photo (same figure). By measuring the distance / between neighbour
stripes we can determine the pitch of the helix from the microscopic observations
(Po = 2 ). Another type of defects in this geometry is focal-conic domains related
to the quasi-lamellar structure of a cholesteric. They are not so well pronounced as
similar domains in the genuine lamellar phases, such as the smectic A phase, and we
shall see their features in the next Section.

Earlier in Section 4.8 we discussed the blue phases observed in cholesterics close
to the transition to the isotropic phase. The whole appearance of the blue phase is
owed to the defects, which form a three dimensional lattice.
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Fig. 8.22 Microscopic
finger-print texture of the
cholesteric phase observed in
geometry shown in the Inset;
arrows indicate the direction
of the incident light on the
texture

8.5 Smectic Phases

8.5.1 Elasticity of Smectic A

8.5.1.1 Free Energy

SmA is a one-dimensional lamellar crystal with the interlayer distance almost
rigidly fixed. In order to discuss elasticity we need an additional variable that
would describe the lamellar structure. Consider a small distortion of smectic layers
[17]. In Fig. 8.23 dash and solid lines indicate undisturbed and distorted layers,
respectively. Short rods perpendicular to the lowest solid line indicate local direc-
tors, which are always perpendicular to the layers. Now, we introduce a layer
displacement along the z-axis, u = u.. In fact, it is a scalar field u,(x, y, z), depending
generally on all the three co-ordinates. Its derivatives describe two types of elasticity:

1. Elasticity Ou/0z corresponding to a change in the interlayer distance due to
compressibility along z

2. Elasticity due to layer curvature Ou/Ox and Ou/0y. As seen from the figure, the
director angle 9 in the x, z plane for small distortions is given by ¢ ~ du/0x
= —-on~ —n,.

Due to uniaxiality, the same is true for n, and all the three components are

6u<<1 ou
ny=——-<<ljny = ——
X y ay

<<l;n, =1 (8.43)
ox
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Fig. 8.23 Distortion of
smectic layers (solid lines)
from their equilibrium
position (dash lines). In the
SmA phase, the director
shown by short rods crossing
the lower layer is always
parallel to the layer normal

a Splay b Bend

Fig. 8.24 A splay (a) and bend (b) distortion of smectic A

The distortion free energy density can be expanded around its equilibrium value
go, but, in the simplest case, only quadratic components are held:

1 _[ou} 1 Ou  *u ;
Laist = o + EB (82) + EKII <8xz + 8y2) (8.44)

Here B and K, are moduli of layer compressibility and layer curvature, respec-
tively.

Why does the free energy density acquire this particular form? First, in the
curvature term with modulus K;;, we must use the second derivatives because the
first derivatives correspond to a pure rotation of all the layers that does not cost
energy. The higher derivatives are ignored for small distortions. For the compress-
ibility term, the first derivative (Ou/0z) is sufficient. Second, both the compressibil-
ity and the curvature terms must be squared due to head-to-tail symmetry and
parabolic form of the density increment gg;-go as a function of distortion (Hooke’s
law). However, the question arises why is only splay modulus K;; taken into
account in (8.44) and not the other two Frank moduli K,, and K3;. Considering
the splay and bend distortions of the SmA phase in Fig. 8.24 we can see that
only the splay distortion is allowed because it leaves the interlayer distance and the
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layer thickness unchanged. The bend would evidently change an interlayer dis-
tance, / # [’ or [”, that would require too much energy. The absence of twist
corresponds to scalar product n-curln = 0 in the Frank energy (8.16). This condition
is fulfilled for the director components n, = —0u/0x and n, = —0u/0y, n, = 1
because curln = (0°u/0z0y)i — (0?u/0z0x)j and n = k. Thus, in (8.44) we may
hold the single curvature modulus K.

The order of magnitude of the splay modulus is the same as that in nematics K
~1077=10"%dyn (or 107'>= 10" N in SI system). Modulus B found for a liquid
crystal 8OCB at temperature 60°C is B = 8-10° erg/cm? (or 8-:10° J/m’ in the SI
system) [18]. In that experiment, the compression-dilatation distortion of smectic
layers was induced by an external force from a piezoelectric driver.

8.5.1.2 Wave-Like Distortion

It is very instructive to consider a behaviour of the smectic layers attached to a
corrugated surface. This would explain why the uniform smectic phase is much
more transparent than the nematic phase. The geometry is shown in Fig. 8.25a.
A solid substrate is assumed to have a one-dimensional cosine-form relief:

z(x) = acos gx

with a period A = 2m/q. We are interested in a distance L (penetration length) along
z, at which the distortion is smoothed out. In other words, how far do smectic layers
“feel” the influence of the surface? The distortion of the layers is given by:

u(x,z) = up(z) cosgx  with  up(z =0) =a.

a b

Z).

)
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X

2rn/q

—>x
Fig. 8.25 Distortion of a homeotropically aligned SmA liquid crystal by a corrugated surface of
solid boundary plate with the dotted line pictured an exponential decay of the distortion (a) and the

wave-like splay distortions in a thin layer with the arrows indicating the direction of the induced
local pressure (b)
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The elastic energy density averaged over the x,y-plane reads:

1 (duyY 1
8dist = EB (d—zo) (cos’qx) + §K 1 1q4u3<cos2qx)

_Lpl(dmY 2 (8.45)
—47 |\ sd %o '
Here <cos’gx> = 1/2 and
12
h = (Ku/B) (8.46)

is a smectic characteristic length (A ~ 1 nm).
Now we make minimisation of (8.45) writing the Euler equation

J¢ _ d (08 _ )24 dn, I _
m—$(m> =20 q"up — - 2uy’ = 0 and get
d2u0

- A2ty =0 (8.47)

This equation has a solution: uy(z) = acexp(—z/L,). Thus, the distortion “pro-
pagates” into the bulk over a penetration distance

1 A?
L,=——=—— 4
P 4m2h, (8.482)

This distance is quite large. For instance, for period of the surface relief A = 1
pum and smectic length A = 1 nm, the penetration length is 2.5 mm and the larger the
period of a distortion the longer the penetration length.

The result obtained has very interesting consequences: (i) to have well aligned
SmA samples, very flat glasses without corrugation are needed; (ii) even small dust
particles or other inhomogeneities create characteristic defects in the form of semi-
spheres (see Fig. 8.29b below) and well seen under an optical microscope; (iii)
layers are often broken (not bent) by external factors: in particular, strong molecular
chirality may result in the formation of defect phases like twist-grain-boundary
phase; (iv) the thermal fluctuations of director in smectic A phase are weak and the
smectic samples are not as opaque as nematic samples. In fact there is a critical cell
thickness for short-wave fluctuations.

Consider a SmA layer of thickness d between two glasses, Fig. 8.25b. Flat
surfaces stabilise the parallel arrangement of the layers while thermal fluctuations
excite wave-like splay distortions. In thin cells these fluctuations are markedly
suppressed: for d>>L, they are very strong, for d<<L, they are quenched for any
wavevector. For a fixed cell thickness, we can find a critical wavevector ¢g. for
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surviving fluctuations. Assume that the critical penetration length L. = d/n. Then,
from (8.46), the critical wave vector is

ge = (/L)' = (n/dn)'" (8.48b)

For typical values of d ~ 10 pm and A ~ 1 nm, ¢, ~ 1.8-10’ m ' and only those
fluctuations survive whose period is less than A < A, = 21/g. ~ 0.35 pm.

8.5.2 Peierls Instability of the SmA Structure

In Section 5.7.2 we discussed a general problem of stability of one, two- and three-
dimensional phases. Here, we shall analyze stability of the smectic A liquid crystal,
which is three-dimensional structure with one-dimensional periodicity. The ques-
tion of stability is tightly related to the elastic properties of the smectic A phase.
Consider a stack of smectic layers (each of thickness /) with their normal along the
z-direction. The size of the sample along z is L, along x and y it is L | , the volume is
V = L,°L. Fluctuations of layer displacement u(r) = u(z, r,) along z and in both
directions perpendicular to z can be expanded in the Fourier series with wavevec-
tors ¢, and ¢, (normal modes):

U, = Ju(r) exp(iqr)dr

Then, on account of (8.44), the free energy of distortion in the volume Q = (2n)3/V
in the wavevector space (¢, gy, ¢,), Which is a sum (or an integral in the g-space) of
the energy of all normal modes, reads:

1
Feo [ aB + Kb luta)F (849
2(2m) 2

The Gibbs distribution gives us probability of the mean square value |u(q)|* for a
particular fluctuation of the layer distortion when the average value (|u(q)|*) for all
fluctuations is known:

V(Bg? +an1>|u<q>|2] e [_ u(a)f ]

w o exp|—
[ ksT <|u(q)]>

From this equality and using Eq. (8.49), the mean-square average of the fluctua-
tion amplitude is found
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Fig. 8.26 Cylindrical

coordinates selected for a z
stack of smectic layers that
becomes unstable in the
infinitely thick sample 1z ¢ y
/ G
X
kgT d?
(1P(q)) = —— J T (8.50)
(2m) QBCIZ +Kuq|

In fact, we used the equipartition theorem showing that each normal mode has
the same energy kgT/2. Factor 1/2 disappeared from (8.50) because each u(q)
corresponds to two fluctuation modes with wavevectors £¢. The integration should
be made in cylindrical co-ordinates according to the symmetry of SmA, for
geometry see Fig. 8.26:

p= /> +¢>=q.V2 dp=+2dg, and pdp =2q,dq.,

Now the limits of integration are changed:

2 2m 2 2
ZESQZSTR —n<ql<—and0<¢><2n
dao

Here aq is radius of a rod-like molecule. However, we can assume infinitely large
sample in the x, y direction, L | — 00 and, in addition, ay—0. Then, after introducing
= (K11/B)"* and integrating over ¢ we obtain the double integral:

27!/1 o)
a7 [[ 2t or T
47 ) ) Bg> + Kiqt  4n’Ky, A2+t
w0 :

(8.51)

dm
K4m?

— -
k arctan 7! |0 7 Where we put

o0
The integral over ¢, has a form J

0
k= q./\ and m = g% ,dm = 2q, dq, . Now, integrating over ¢, using dq, = Adk,
we arrive at the final result:
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27/l
kT A kgTh; . L kgT L
2 B s B s B
= dk = In-=————1In-— 8.52
<u (q)> 47‘[2[(11 J 2k 87TK11 nl SH(BK”)I/Z nl ( )
2mh/L

This formula shows that, when the size of the sample along the layer normal
increases to infinity (L—o0) the average mean square magnitude of the fluctuation
in the interlayer distance diverges, <u2(q)> —00. Formally, the ideal smectic A
structure becomes unstable. However, the divergence is logarithmic that is very
smooth. Such fluctuations destroy the true long-range positional order along z.
Instead, the quasi-long range positional order forms that was discussed in Sec-
tion 5.7.2. In experiments, the quasi-long range order manifests itself by deviation
of the X-ray Bragg reflections from the -function form.

8.5.3 Defects in Smectic A

There are many types of defects originated from the layered structure of the smectic
A phase. Here, we shall only present a brief survey of the most important cases.

8.5.3.1 Steps and Dislocations

Steps are observed at the edge of the drop of a smectic preparation on a surfactant
covered glass, as shown in Fig. 8.27. In the blown part of the same figure, the
structure of each step containing a single m-disclination is seen. In the three
dimensional picture of Fig. 8.28, we can see a difference between the n-disclination
and another defect, called an edge dislocation which is typical of solid crystals. In
the smectic A, and additional smectic layer is incorporated between two other
molecular layers, and the edge of the irregular layer forms such a dislocation.

Free surface  gmA layers

n-disclination

———— ) ) — step
[ |

[TITTTITITITIS
[TITTTITTTTTT I
[TTTTTTTTITTITIATIN

[TTTTTTTTTTTINTTT I
~— —

Zoom

glass

Fig. 8.27 Steps at the edge of a drop of the smectic A phase (leff); the structure of each step
containing a single m-disclination is seen in the blown part (right)
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n—disclination dislocation

Fig. 8.28 Illustration of the difference between a m-disclination and an edge dislocation in the
smectic A

e Yele

Smectic layers

Fig. 8.29 Structure of some defects in the SmA phase, namely, cylinder (a), semi-sphere (b), and
radial hedgehog (c) and a monopole in SmC (d)

8.5.3.2 Cylinders, Tores, Hedgehogs

Many structural defects compatible with the incompressible smectic layers can be
observed under a microscope. Among them are cylinders, tores and hemispheres
observed at the surfaces, radial hedgehogs observed in smectic drops, etc. Three of
them are presented in Fig. 8.29a—c. Note that in all defect structures of this type, the
splay distortion plays the fundamental role but bend and twist are absent. Other, more
special defects, namely, the walls composed of screw dislocations, are observed in
the TGBA phase.

8.5.3.3 Focal-Conics

These are the most striking features of smectic textures [19]. Smectic layers of
constant thickness (incompressible, modulus B—oo) form surfaces called Dupin
cyclides. We have seen some of them, which have the form of tori including
disclinations, see Fig. 4.7b. Such cyclides can fill any volume of a liquid crystal
by cones of different size. An example is a focal-conic pair, namely, two cones with
a common base. The common base is an ellipse with apices at A and C and foci at O
and O’, see Fig. 8.30a. The hyperbola B-B’ passes through focus O. The focus of
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Fig. 8.30 Focal-conic defect structure in SmA: A pair of cones with a common elliptical base and
a hyperbola connecting cone apices (a); cross-section of the upper cone by plane ABC with gaps
between lines (Dupin cyclides) indicating the smectic layers (b); filling the space of the sample by
cones of different size (c¢)

Fig. 8.31 Photos of some focal conic textures: polygonal (a); and fan-shape (b) textures

the hyperbola C coincides with the apex of the ellipse C. Using multiple lines such
as BD and B’D one can build two conical surfaces with apices at B and B’.

The bulk of the cones is filled by smectic layers. Fig. 8.30b represents the cross-
section of the upper cone by plane ABC. Note that along the line OB smectic layers
are continuous although their slope is changed. Using such cones all the space
occupied by a liquid crystal can be filled, Fig. 8.30c. It is very fascinating that such
“mathematical structures” are indeed observed in experiment! A variety of
observed focal conic textures is very large. The microscopic photos in Fig. 8.31,
illustrate two of them. Photo (a) shows rather large but short polygons (polygonal
texture) and photo (b) demonstrates the so-called fan-shape texture with very
narrow, elongated polygons.

8.5.4 Smectic C Elasticity and Defects

8.5.4.1 Elastic Energy

In the smectic C phase the director is free to rotate about the normal z to the smectic
layers. In the general case, the smectic layers are considered compressible. The elastic
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Fig. 8.32 Smectic C. Definition of rotation axes Q,, Q, and Q. (a) and layer distortion 1 = u(x)

energy of the smectic C phase may be analysed in terms of four variables, the
compressibility y = 0u/0z (u = u,) as in smectics A, and three axial vectors ;(r)
shown in Fig. 8.32a; the x-axis coincides with the c-director. Then, according to
Fig. 8.32b, the derivatives of layer distortion u = u(x) are given by:

g g
ox 7 Ox  Ox?

The sign minus takes into account the sense of rotation about the y-axis. By
analogy

Ou o0Q, 0*u
— =0, and x_ -
oy My Ty

and the rotation through angle Q, about the z-axis does not create distortion u.
The free energy density of distortion must be a quadratic function of V. It

consists of three groups of terms describing (1) the nematic-like distortion of the

c-director (g.), (2) distortion of the smectic layers (g;) and (3) the cross terms (g.;):

8 =8¢+ 8+ 8

Totally we obtain 4 + 4 + 2 = 10 elastic moduli [9]. When the interlayer distance
is fixed, only four nematic-like moduli are left (with dimension [energy/length]).

8.5.4.2 Defects in Smectics C

Like in the nematic phase, the textures of SmC reveal blurred Schlieren patterns
with linear singularities of strength s = £1. The singularities of s = £1/2 are not
observed due to the reduced symmetry (C,y,) of the SmC phase. Chiral smectics C*
are periodic structures and the helical pitch can be measured under a microscope
either from the Grandjean lines or as a distance between the lines indicating
periodicity, like in Fig. 8.22 for the cholesteric phase. On the other hand, like in
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Fig. 8.33 Smectic C phase: the uniform structure (a) and the structure with chevrons and a
disclination between them (b)

Fig. 8.34 A typical
appearance of the zigzag
defect in the chiral SmC*
phase

SmA phase, the stepped drops as well as polygonal and fan-shape textures are also
observed.

Normally, the smectic C phase should form the lowest energy uniform texture
shown in Fig. 8.33a. However, more often we see so-called chevrons, see
Fig. 8.33b, which usually form on cooling from the smectic A phase. In both
cases, at the boundaries, molecules are aligned parallel to the surface without any
tilt. The apex of a particular chevron can be oriented either to the left or to the right.
The areas of the left and right chevrons are separated by a disclination line having a
form of a zigzag. In the same figure, the core of such a line is pictured by the point.
When observed from the top the zigzag defects are seen. One of such a zigzag is
demonstrated by photo, Fig. 8.34. Such zigzag defects play the detrimental role in
the displays based on SmC* ferroelectric liquid crystals.

Upon transition from the SmA to the SmC phase, due to appearance of the
molecular tilt, radial hedgehogs discussed in Section 8.5.3 transform into other
defects, called monopoles. Their characteristic feature is a disclination line going
from the centre along a radius, Fig. 8.29d. The name “monopole” was inherited
from the Dirac magnetic monopole, an isolated magnetic charge in the form of the
hedgehog with an adjacent singularity in the field of the magnetic vector-potential
A(r). The mathematical treatment of the magnetic monopole (not discovered yet)
and SmC monopole observed in smectic drops is very similar [15].
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Chapter 9
Elements of Hydrodynamics

9.1 Hydrodynamic Variables

We shall discuss here the macroscopic dynamics of liquid crystals that is an area of
hydrodynamics or macroscopic properties related to elasticity and viscosity. With
respect to the molecular dynamics, which deals, for example, with NMR, molecular
diffusion or dipolar relaxation of molecules, the area of hydrodynamics is a long
scale, both in space and time. The molecular dynamics deals with distances of about
molecular size, a ~ 10 A i.e., with wavevectors about 10’ cm™!, however, in the
vicinity of phase transitions, due to critical behaviour, characteristic lengths of
short-range correlations can be one or two orders of magnitude larger. Therefore, as
a limit of the hydrodynamic approach we may safely take the range of wavevectors
g < 10° cm™" and corresponding frequencies ® < ¢,g ~ 10°- 10° = 10"'s™! (¢, is
sound velocity).

In the hydrodynamic limit one considers only those variables whose relaxation
times decrease with increasing wavevector of the corresponding visco-elastic
modes. For instance, a small vortex made by a spoon in a glass of tea relaxes faster
than a whirl in a river, or, after a tempest, short waves at the sea surface disappear
faster then waves with a large period. The relaxation of cyclones in atmosphere
takes days or weeks. As a rule, the hydrodynamic relaxation times follow the law
t~Aq 2. The strings of a guitar also obey the same law.

For the isotropic liquid, one introduces five variables related to the corresponding
conservation laws. The variables are density of mass p, three components of the
vector of linear momentum density mv, and density of energy E. When electric
charges enter the problem, the conservation of charge must be taken into account.
Then we are in the realm of electrohydrodynamics.

For nematic liquid crystals, the symmetry is reduced and we need additional
variables. The nematic is degenerate in the sense that all equilibrium orientations of
the director are equivalent. According to the Goldstone theorem the parameter of
degeneracy is also a hydrodynamic variable; for a long distance process ¢g—0 and
the relaxation time should diverge, t—oc0. In nematics, this parameter is the director
n(r), the orientational part of the order parameter tensor. For a finite distortion of
the director over a large distance (L—o00), the distortion wavevector ¢g—0 and the
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orientational relaxation requires infinite time. By the way, the magnitude S of the
order parameter tensor is not a hydrodynamic variable. The director field n(r) is
indeed an independent variable, because it may rotate even in the immobile nematic
phase, for example, in the case of the pure twist distortion induced by a magnetic
field. On the other hand a flow of the nematic can influence the vector field n(r) and
vice versa. Thus, two variables v(r) and n(r) are coupled. Together with two
components of the director (due to the constraint n®> = 1) the number of hydrody-
namic variables for a nematic becomes seven [1,2].

For discussion of dynamics of lamellar smectic phases it is important to include
another variable, the layer displacement u (r) [3] or, more generally, the phase of
the density wave [4]. This variable is also hydrodynamic: for a weak compression
or dilatation of a very thick stack of smectic layers (L—o0) the relaxation would
require infinite time. On the other hand, the director in the smectic A phase is no
longer independent variable because it must always be perpendicular to the smectic
layers. Therefore, total number of hydrodynamic variables for a SmA is six. For the
smectic C phase, the director acquires a degree of freedom for rotation about the
normal to the layers and the number of variables again becomes seven.

Why we are interested in hydrodynamics? Because we are interested in variety
of flow phenomena in different geometry, the variety of viscosities of liquid crystals
in different regimes, enormous viscosity of helical and layered structures, under-
standing of thermal convection, flow instabilities, etc. Moreover, in an external
electric field, the electrohydrodynamic instabilities arise which need a background
for their interpretation. At first, however, we recall hydrodynamics of an isotropic
liquid.

9.2 Hydrodynamics of an Isotropic Liquid

Our task is to derive the equation for motion of the isotropic liquid in order to
prepare a soil for discussion the dynamic properties of nematics. In this Section, we
follow the approach [5] using two conservation laws.

9.2.1 Conservation of Mass Density

Consider conservation of mass density, p(x, y, z, t). The mass continuity equation
comes from consideration of the balance of the mass density in the volume V and its
flux through the surface surrounding the volume with subsequent application of the
Gauss theorem:

% — _Vpv + sources ©.1)
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Here the velocity v(x, y, z, f) of a liquid is “measured” in a particular fixed point
in space x, y, z. It is not the velocity of a small unit volume of moving liquid.
“Sources” mean the presence of sources and sinks in the volume discussed. If we
are not interested in propagation of sound i.e. ignore a local compression and
dilatation we may put dp = 0 and p = const. Then, it is the case of incompressible
liquid:

0p/0t = —pVv + sources

and, in the stationary regime, divv = sources.
For the subsequent discussion let us write down the continuity equation in the
tensor form:

dp _ Ipvy)
pri o, + sources 9.2)

9.2.2 Conservation of Momentum Density

9.2.2.1 Ideal Liquid

Consider now the conservation of momentum density (or linear momentum vector
pv). First we write this law for the ideal (without viscosity) liquid in two different
presentations. The Lagrange form of the equation of motion of the element of liquid
coincide with the Newton form (mdv/dt=F):

d
p% — —grad p+f 9.3)

Here, p is scalar pressure, vector f is the volume force in (dyn/cmS) coming, e.g.,
from the gravity, electric or magnetic field (e.g., for gravity force f = pg) and vector
v is velocity of moving liquid particle as if the measuring device is placed on the
particle. However, in hydrodynamics, the velocity is usually considered as a vector
field defined in each point of the space. The change of velocity dv within time
interval dt consists of two terms: one of them, namely, (0v/0¢)dt is taken at fixed
coordinates x, y, z of the reference point and the other part is delivered by different
particles arriving from the neighbor points located at a distance dr = dxi + dyj +
dzk from the reference point (the so-called convective term):

dx(0v/0x) + dy(0v/dy) + dz(0v/0z) = (drV)v.

Therefore, the total velocity in the reference point satisfies the equation
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dv _Ov

=2 (W, 9:4)

where (vVv) is called convection term. Correspondingly the equation of the motion
of an ideal liquid in the Euler form is given by:

ov

P +p(VV)v=—grad p +f 9.5)

The same equation can be written in the tensor form:

Bvl- . 8\/,' 8p .
pa - _pVJ 8)(1' B 8)(,— +fl (96)

Now we define the rate of the momentum change:

opv_ v op
o Yoo
or in tensor notations

o ow o,
6tplip 1

and rewrite this rate on account of Egs. (9.6) and (9.2):

opv; v Apv) Oop
8t h pv]@xj Vi 8xj Gx,» +ﬁ (97)

Using identityOp/0x; = 8;;0p/0x; with Kronecker symbol §;; we may present
the result in the compact form of the law of momentum conservation for the ideal
liquid:

9 o
afp T a)(fj

+fi 9.8)

where a symmetric second rank tensor
IT;; = pd;; + pvivj, 9.9)

is called tensor of momentum density flux (in units dyn/cm2). It includes only the
reversible part of the momentum transfer, because there is no energy dissipation by
the flow of the ideal liquid. Note that the form of Eq. (9.8) is very similar to the form
of density conservation law (9.2).
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9.2.2.2 Viscous Liquid

For viscous liquids the law for the mass conservation remains unchanged. As to the
momentum density conservation, it keeps the same form (9.8) but tensor I1;; should
be changed to take the dissipation into account. Now we write

H,‘j = P‘Sij + pviv; — G?j = —0Cjj + pviv; (9.10)
The new tensor

called stress tensor, includes the pressure term -pd;; and the term o}; called viscous
stress tensor. The latter describes the irreversible transfer of momentum in a
moving liquid.

Now let us try to imagine the form of tensor o;;. In Fig. 9.1, the upper part of the
liquid is moving, the lower part is immobile. The components of c’; are the
tangential shear forces acting on a unit area having its normal along the x;-axis
while the liquid moves along the x;-axis. This force is caused by the gradients of
momentum 0pv;/0x; (or just velocity gradients Ov;/Ox; in case of incompressible
liquid with constant p) otherwise there is no friction force. The momentum is
transferred from upper to lower layers (momentum flux). The correct form of this
tensor should exclude the rotation of a liquid as a whole because such a rotation
does not result in friction at all. Therefore we write a symmetric shear rate tensor for
the incompressible liquid as we did earlier Eq. (8.6) when we discussed the shear
distortion of the solid (soft) matter [6]:

L ov: Oy
Aj = 3 <8x, + (()x,) (9.12)

Then, for not very strong gradients, there should be linear relationship between
o’ and A; and we may write

o, = n(g—;j’—kg—;’l) where i,j=x,y,z (9.13)

Fig. 9.1 Geometry of shear
of isotropic liquid and
illustration of the component
o';; of the viscous stress
tensor

unit area

TT.ov=0
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Here n is shear viscosity coefficient. For the case shown in the Fig. 9.1, x; = x,
X; = z, the velocity has only component v, and the gradient of velocity has a simple
form 0v,/0z. Then o', = M0v,/0z. The dynamic viscosity coefficient 1 is
measured in Poise (g‘sflcmfl). Sometimes one uses the so-called kinematic
viscosity 1/p measured in Stokes (cm?s~'). The SI unit for dynamic viscosity is
Pa-s (N-m2s). Numerically 1 Pa-s =10 P.

A more general form of the viscous stress tensor (for compressible liquid) has
two different terms, one is the same corresponding to shear (9.13) with viscosity N
and the other is compressibility with viscosity coefficient called second viscosity .
Both the coefficients are positive scalars.

By defining the shape of a selected small volume in the moving liquid, e.g., a
cube, we clearly see that the viscous force acting on the cube arises from the
differences in stress tensors on opposite faces of the cube. Consequently, the
force is determined by the spatial derivatives of tensor II;; including ’;; as seen
from Egs. 9.8 and 9.10. The viscous tensor in turn, according to Eq. (9.13), is
proportional to spatial derivatives of the velocity v. Hence, in many simple cases,
the viscous force is given by vector nV?v.

9.2.3 Navier-Stokes Equation

In the next step, the equation of motion for an isotropic, incompressible, and
viscous liquid may be cast in different forms depending on the dimensionless
Reynolds number

Re = pvl/n 9.14)

where [ is a characteristic dimension of the flow structure, for instance a tube
diameter. In the case of relatively low velocity of a viscous liquid in narrow
capillaries (Re < 1), the convection term in (9.5) is disregarded, and Eq. (9.8) on
account of (9.10) becomes the well known Navier-Stokes equation:

o 5
pg‘;:—Vp+f+77V2V (9.15)

where @p is vector of pressure gradient and f is an external volume force.

As a simple example, consider a spherical particle of radius R, moving by an
external force f with given velocity in a viscous liquid with Re < 1. Then dv/dt = 0,
gradient of pressure is absent and the external force is equal to the friction force:

f = —nViv. (9.16)

If the particle is moving in the z-direction with velocity vy, the velocity of the
liquid v,(r) decreases from v, to O as a function of the polar transverse coordinate 7.
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By integrating the right part of the last equation over r, Stokes has found the
relationship between the acting force and the velocity of the particle:

f=6nR,mv, 9.17)

By measuring velocity of a spherical particle sinking in a liquid under gravity
force the viscosity of the liquid can be found (the buoyancy effect should be taken
into account). Note that in Section 7.3.3, using an electric field as an action force,
the same Stokes’ law has been applied (with some precautions) to evaluation of
velocity and mobility of spherical ions in isotropic liquids or nematic liquid crystals

For large Reynolds numbers, Re = pvl/n>1 the flow in no longer laminar and
even becomes turbulent. Then, the convective term (vV)v should be added to the
left part of the Navier-Stokes equation

p%+p(vV)V: —Vp +f+nViy (9.18)
This situation is encountered in the physics of electrohydrodynamic instabilities.
Resuming the discussion of isotropic liquids note that the four basic equations

for conservation of mass and momentum include only four material parameters:
mass density p, compressibility B, viscosity 1 and second viscosity {. Other two
parameters, namely, thermal conductivity k and specific heat capacity C, (or Cy)
would come about as soon as the energy conservation law is applied to thermal
processes. So, the isotropic liquid is completely described by six parameters.

9.3 Viscosity of Nematics

9.3.1 Basic Equations

Here the discussion of viscous properties of nematic liquid crystals is based on the
approach developed by F. Leslie [7]. For the nematic phase we have the equation
for conservation of mass, the modified equations for conservation of momentum
and energy E and one additional equation for conservation of the angular momen-
tum of the director [8,9]. Totally there are seven equations: two for scalar quantities
(p and E), three for momentum (mv) and two for director (due to condition n’= 1),
which completely describe the hydrodynamics of nematics. In this case

1. The equation for mass conservation for an incompressible nematic can still be
used in the form of divv = 0.

2. The dissipation related to the pure director rotation has to be taken into account
when writing the conservation energy equation. In addition, the heat transfer
becomes anisotropic and the thermal conductivity is described by two coeffi-
cients K, and k| .
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3. Instead of the equation for conservation of the linear momentum for the director,
the conservation of the angular momentum is used. Leslie had taken into account
not only the velocity gradients, but also the orientation of the director n and its
relative rotation rate N. In fact, vector N is linear director velocity with respect to
the liquid that may rotate itself:

_dn

=" [® X n] 9.19)

Figure 9.2 shows the case in that the director n(f) rotates faster than liquid
particles. In the figure, r(f) and v are radius-vector and linear velocity of a liquid
particle, @ = (1/2)curlv is angular velocity of liquid, (@ X n) is that component of
director linear velocity, which is solely caused by rotating liquid and dn/df = (€2 X
n) is total linear velocity of the director with respect to immobile laboratory frame
(in the figure > o is angular velocity of the director in the laboratory frame).

The second rank viscous stress tensor found by Leslie for the incompressible
nematic phase consists of nine matrix elements, each of them having the form:

!
Gy = ouninimnAg + damiNi + azniN;

+0€4A,‘j + 0(5l’ljl’lpAp,‘ + cx6n,-npApj (9.20)

with i,j =x, y, z. The corresponding six viscosity coefficients o; are called Leslie
coefficients. In fact, only five of them are independent, because due to Parodi’s
relationship og — o5 = o + a3 [10].

Let us look more carefully at each term in a particular tensor component G’ ;.
The three terms including the velocity gradient tensor A;; are related to shear due
to the mass flow in different director configurations. Among them the term with o,
is the only one that is independent of n and N. Therefore, it exists even in the
isotropic phase and o4 = 21. The terms with o, and o3 depend only on the director
components and director rate (velocity) components N but do not contain velocity
gradients; they describe a physical situation involving pure director rotation without

Fig. 9.2 Mutual rotation of a small spherical volume of a nematic liquid crystal and the director n
rotating within this volume (v and w are linear and angular velocity of small liquid volume; dn/dt
and € are linear and angular velocities of the director with respect to immobile laboratory frame
(here Q > w)
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flow. For example, it could be a famous Frederiks transition used in display
technology, if the director reorientation is so slow that a relatively weak effect of
the mass transfer (i.e. backflow effect) is neglected.

According to the form of tensor ¢’;; (9.20), oy is independent of the nematic
order parameter Q, coefficients a5, o3, o5, 0 are proportional to Q, and oy Q2 (the
latter is usually smaller than the others). The values of the Leslie coefficients for a
popular liquid crystal E7 at 25°C are (in Poise, 1 P = 0.1 Pa-s): oy = —0.18, o, =
—1.746, a3 = —0.214, a4 = 1.736, a5 = 1.716, ag = o + o3 + a5 = 0.244.

¢ 4. Finally, the equation of motion for the director of a nematic has no analogy in

a system of equations for isotropic liquid and is given by
L]

oQ
I5r=[nxh-T 9.21)

Here 7 is “moment of inertia for the director” and € is vector of total angular
velocity of the director, dn/dt = ({2 x n) as shown in Fig. 9.2. Equation (9.21) is
formally analogous to the Newton equation

ldw/dt = M-G

for rotational motion of a solid body in viscous medium with angular frequency w,
a torque of external force M and a frictional torque G.

In our case, the first term (n x h) on the right side of (9.21) describes the torque
exerted on the director due to both an external field and the elastic forces of the
nematic, that is due to the molecular field h discussed in Sections 8.3.3 and 11.2.1.
This torque has the same form as the external torque M x H exerted by the
magnetic field H on the magnetization M of substance. Vector I' in (9.21) describes
a frictional torque consisting of two parts related to the director velocity N rela-
tively liquid and to the liquid velocity gradient or shear rate tensor A;; given by
Eq. (9.12):

I =n x [y;N + 7,A4;n] (9.22)

The coefficients of friction for the director have the dimensions of viscosity and
are particular combinations of Leslie coefficients, y; = o3 — alp, V2 = 03 + 0.

It is significant that only two coefficients of viscosity enter the equation for
motion of the director. One (7y,) describes the director coupling to fluid motion. For
example, if the director turnes rapidly under the influence of the magnetic field,
then, due to friction, this rotation drags the liquid and creates flow. It is the backflow
effect that will be described in more details in Section 11.2.5. The other coefficient
(71) describes rather a slow director motion in an immobile liquid. Therefore, the
kinetics of all optical effects caused by pure realignment of the director is deter-
mined by the same coefficient y;. However a description of flow demands for all the
five viscosity coefficients.
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9.3.2 Measurements of Leslie coefficients

9.3.2.1 Laminar Shear Flow

When the nematic flows through a capillary its apparent viscosity depends on the
velocity of flow, more precisely, on shear rate. M. Miesowicz made first experi-
ments on properly aligned nematics by a strong magnetic field and found different
viscosity coefficients for differently aligned preparations [11]. The idea is illu-
strated in Fig. 9.3. The liquid crystal layer of thickness d is placed between two
plates. The upper plate is moving along x with velocity v,, but the lower plate is
immobile. This creates a gradient of velocity or shear rate dv./dy = (vy/d), hence
v(y) = (vp/d)y. The correspondent component of the viscous tensor is given by

ol = ndvx/dy (9.23)

where n is an apparent viscosity coefficient independent of shear rate. In fact,
Miesowicz used slowly oscillating upper plate in the x-direction and measured
damping of the oscillations. The director was fixed by a strong magnetic field either
along z (geometry a) or along y (geometry c¢). Without field, the shear itself orients
the director along x (geometry b). Using this technique the three flow viscosities
coefficients n, = 3.4, n, = 2.4 and n. = 9.2 cP have been measured for p-
azoxyanisole at 122°C and, nowadays they are called Miesowicz coefficients.

It would be very instructive to relate the experimental (Miesowicz) and theoreti-
cal (Leslie) coefficients of viscosity. Our task now is to use the viscous tensor (9.20)
and find the relationships between the coefficients for each of the three basic
orientations of the director, namely n, = 1, n, = 1, or n, = 1. At first, we shall
prepare some combinations of parameters useful in all the geometries mentioned:

1. As we have only one component of shear dv,/dy the tensor of shear (9.12) for our
geometry becomes very simple:

y vy >

—

w0 [ (”8 - @ "

k4 X

Fig. 9.3 Miesowicz’s experiment. Upper plate oscillates in the x-direction and one measures
damping of the oscillations. The director is fixed by a strong magnetic field either along z (n.,
geometry a) or along y (n,, geometry c). Without field, the shear itself aligns the director along x
(geometry b)
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2. Vectors n,A,; and nyA;:
npApi = mpApe = [0,ny(vo/2d),0];  npAy = nyApy = [n:(vo/2d),0,0]; (9.24b)

(here, multiplying the corresponding matrices we used a column n,=(n,, ny, n.)
and the first and second rows of (9.24a).
3. Scalar products:

ninyAyi = ny*(vp/2d) and nin,A,; = n*(vp/2d) (9.24¢)

4. Vector w = (1/2)curlv for v = (vyy/d, 0, 0): o = (0, 0, —vy/2d).
5. Director velocity N (9.19) in the steady state conditions (dn/dt=0):

N = —[o x n] = (—nyvy/2d, nvp/2d,0) = (vo/2d)(—nyi + n.j) (9.244d)

Now we are ready to consider the three geometries with different director

alignment marked by symbols with letters 7., n,, n, in Fig. 9.3.

Geometry (a), n, = 1 (Director Perpendicular to the Shear Plane)

In this case n, = n, =0. Hence, N = 0 and terms with coefficients o, and o3 in
viscous tensor (9.20) vanish. Terms with as, o also disappear because vector npA,,
has only x- and y-components and forms zero scalar product with n, = (0, 0, 1). The
term with o, also vanish because n;nA;; is a scalar, in front of which there is a
product n;n; = nmn, = 0. It is only finite when the director has both x and y
projections finite.

Therefore, in (9.20) we have only one finite term for the viscous stress tensor
component:

(9.25)
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and
N, = 04/2.

We see that a nematic liquid crystal behaves as an isotropic liquid when the
plane of the shear (y,z) is perpendicular to the director.

Geometry (b), n, = 1 (Director in the Shear Plane Parallel to the Velocity of Upper
Plate)

In this case, n, = n, = 0 and N = N,, = (v¢/2d)n,. The term with o;vanishes due to

nny, = 0. The term o,n;N; = an,N, also vanishes due to n, = 0. Then, according to
(9.24c¢), the term

0(5}’ljl’lpAp,‘ = O(5}’lzy(\)()/2d) =0.

What is left? The “isotropic” term o4v(/2d is always finite. The term osnN; =
a3n Ny, = ai3v/2d, and, according to (9.24c), the term o6 n;1,A,; = de > (vol2d) =
deVo/2d . Therefore, three terms contribute to 6”7,y

cs;y = 3N, + (o4 + 0t6)Ary = (013 + 04 + 06) 0y (9.26)

and

Ny = %(0(3 + oy + 0(6)

Geometry (c), n, = 1 (Director in the Shear Plane Perpendicular to the Upper Plate
Velocity)

In this case, n, = n, =0 and N= N, = (—nyvy/2d, 0, 0). The term with o, is again
absent, and o, o3 vanish because azn;N; = azn N, = 0 and aenin,A, = dg nzx(vO/
2d) = 0.
Now, the terms ain;N; = opnyN, = —apv/2d, and asnn,A,j = os nyz(vo/Zd) =05
(vo/2d) contribute to ¢’,,, as well as the “isotropic” term o4v/2d. Hence,
G;y = 0Ny + (o4 + 05)Ayy = (=02 + oy + 05)Y0hy 9.27)

and

Ne = %(70& + o4 + 055)



9.3 Viscosity of Nematics 245

Therefore, the viscous tensor component G’y corresponding to shear dv,/dy has
been found for all the three geometries.

With the Miesowicz technique one can measure three combinations of the
Leslie viscosity coefficients from Eqgs. (9.25) to (9.27). On account of the Parodi
relationship, to find all five coefficients, one needs, at least, two additional mea-
surements. In particular, the ratio of coefficients o3/0, can be measured by
observation of the director field distortion due to capillary flow of a nematic.
The last combination y; = a3 — o, can be found from the dynamics of director
relaxation.

9.3.2.2 Poiseuille Flow in Magnetic Field

The mass of an isotropic liquid with density p and viscosity 1 flowing out from the
cylindrical capillary of radius R and length L in a time unit is governed by the
Poiseuille-Stokes law,

npp'R*

= nR%py =
Q =R pv 8LM

(9.28a)

where v is the flow velocity and p’ is the fixed difference in pressure between the
open ends of the capillary. From this law the velocity of liquid is given by

/2 2
v=PR e = VPR /e (9.28b)

where Vp = p'/L is the pressure gradient.

In a strong magnetic field, the director of overwhelming majority of liquid
crystals aligns parallel to the field. This is widely used in viscosimetry of liquid
crystals. The Poiseuille flow in nematic liquid crystals has carefully been studied by
Gahwiller [12]. In the experimental scheme of Fig. 9.4, a flat capillary is placed
between poles of a magnet. The flow velocity is directed along z. The cross-section
of the capillary is not a square; in the ideal case, a < b and one deals with the well-
defined shear rate 0v,/0x (in the discussed experiment, a = 0.4 mm, b = 40 mm). In
the absence of the field, the director is solely oriented by shear flow n = n,. This
corresponds to case b with Miesowicz viscosity coefficient n, = 1, = (1/2)( 03 + 04
+ 06). When the director is oriented by field H in the y-direction perpendicularly to
side a, i.e., to the shear plane, as shown in the figure, it does not interact with the
shear (case a, N3 = N, = 04/2.). When the capillary is turned by 90 degrees so that
its short side allH,, the director is oriented along the shear rate (case ¢) and the
Miesowicz coefficient n; = N, = (1/2)(—ay, + o4 + o5) is measured. Therefore, for
properly selected parameters of a capillary, both experiments discussed give the
same results.
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Fig. 9.4 Geometry of the Gahwiller experiment. A flat capillary is placed between S and N poles
of a magnet. The flow velocity is directed along —z and due to condition a<b the shear rate has
only 0v,/0x component. The magnetic field is fixed along y and the cell with a liquid crystal may
be rotated about the z-axis by 90°

-
o

Fig. 9.5 Shear (a) and Poiseuille (b) flow in thin planar capillary filled with nematic liquid crystal.
Dash lines show distribution of the v, velocity component while the solid lines represent the
director profile at high shear rate. Non-distorted close-to-surface layers are marked by e

9.3.2.3 Capillary Flow and Determination of o, and o3

For a study of liquid crystals, flat plane capillaries with transparent plates are very
convenient, because in this case we can create and observe a proper orientation of
the director. There can be distinguished a simple shear flow and the Poiseuille flow,
both shown in Fig. 9.5. As discussed above, the shear flow occurs when the upper
plate is moving with constant velocity v, and the lower plate is fixed. Then, for
small vq, the profile of velocity of isotropic liquid is linear (the dash line in
Fig. 9.5a). The Poiseuille flow occurs when the liquid is moved between two
immobile plates under an external pressure, as discussed in the previous paragraph.
In this case the profile has a form of parabola (the dash line in Fig. 9.5b). In both
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cases, for an isotropic liquid, the viscosity is independent of the shear rate 0v,/0z
that is the flow is Newtonian.

The latter is not true for liquid crystals. Imagine that initially we have a uniform
alignment of the director. In the case, shown in Fig. 9.5, such alignment is home-
otropic that is perpendicular to the plates, although it is not important, as we shall
see below. In the absence of external fields, the shear and Poiseuille flows distort the
initial uniform alignment (solid lines in the figure). This is a result of coupling
between the flow and the director. The flow causes realignment of the director
everywhere except thin boundary layer. With increasing shear rate the director in
the bulk becomes more and more parallel to the limiting plates. For a simple shear
flow, in the limit of infinite shear rate the direction of the director saturates at angle
9, depending on three Leslie coefficients [8]:

Yi_ G2 —03

cos2=——=——— (9.29a)
Y2 Os — dg

Using the Parodi relationship we get

1-— 0(3/0(2 - 1 —tanzes

26, = - ,
cos 1 +o3/0p 1+ tan?6;

from which we arrive at the saturation angle 6:
tan J; = O‘3/&2 (9.29b)

As a rule, a5 is large and negative but o3 is one or two orders of magnitude
smaller and usually also negative. Therefore angle 0, is small (in SCB 6, ~ 1.5°).
However, the measurements of 3¢ by optical methods allows the determination of
the ratio oz/ot,.

It is interesting that, in some materials, in a certain temperature range, o3 can
change sign and become positive. Then the flow is no longer laminar and a flow
instability in the form of director tumbling is observed. How can we explain the
sign inversion of nematic viscosity? We should remember that o3 is a special
coefficient that describes coupling a flow with the director. For the flow rate
fixed, this coefficient defines the direction of director rotation and depends on
both a molecular form and, short-range smectic-like fluctuations [13]. Figure 9.6

Fig. 9.6 A picture of
collisions of ellipsoidal
molecules that may
qualitative explain different
signs of the director rotation
for negative o, and positive
a3 coefficients
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may help to understand this. Imagine that dark molecules move to the left along x
and the bright ones are immobile. Then a shear appears. When the director is
perpendicular to flow (case o) then, after collisions with dark molecules, the
bright ones rotate anti-clockwise (this corresponds to negative a,). When the
director is parallel to the flow (case a3), collisions with dark molecules may
result in the clockwise rotation of the bright molecules (then oy is positive). Note,
that flow independent coefficient for the director rotation y, = o3 — o, is always
positive.

9.3.2.4 Determination of vy,

In the simplest case, one follows the relaxation of the director without flow of a
liquid. It is sufficient to consider only the equation for the director motion (9.21). In
the simplest geometry of Fig. 9.7, a planar nematic layer of thickness d is confined
between two glasses. The boundary conditions on both glasses correspond to the
fixed alignment of the director n parallel to the y-axis. We create a distortion of the
liquid crystal by a magnetic field applied along the x-axis. The distortion occurs
only within the xy-plane and is described by the azimuthal angle ¢ between the
director and the y-axis. The director components are (sin®, cos®, 0). In the field
slightly exceeding the threshold for distortion, the distortion angle follows a
harmonic law ¢ = @gcos(nz/d) shown by the dash line in the figure. When the
field is switched off, the distortion relaxes and we can follow the dynamics of the
director relaxation by, e.g., an optical technique.

To describe this effect we should write Eq. (9.21) for the director motion, i.e., the
balance of torques. However, up to now, nobody has observed any effect related to
the inertia of the director. Such effects would result in oscillatory character of the
director relaxation. The inertial term for the director in a unit volume can be
estimated as a sum of the inertia moments of the molecules in this volume. Let
consider a spherical ball of 1 cm® volume (diameter D ~ 1.2 cm). The typical
molecular volume is V,, = M/pN,, ~ 1072! cm?, the molecular diameter « is about

039

H,

n
>

Light

twist effect that may be used
for observation of director
relaxation and determination ||
of viscosity coefficient ;.

Dash line shows the distortion .-
profile in the magnetic
field H, -d2

7
Fig. 9.7 Geometry of the O
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10~7 cm and the moment of inertia of a molecule is pV,,a>. We have a sum of n =
1/V,, cm ™ molecular moments of inertia in the ball, i.e. & = npV,a*> = pa® =
10~"* g/cm. At the same time, the moment of inertia of the ball as a whole is of the
order of pD? ~ 1 g/cm. The difference between the two estimations is 14 orders of
magnitude! For a particle of 1 um?® volume, the ratio would still be as high as 10°.
Indeed the director has almost no inertia and its motion in rather viscous liquid
crystals is strongly overdamped. Therefore, one can always assume / ~ 0. Then
Eq. (9.21) becomes simpler:

mxh -T=0 (9.30)

As during relaxation the external field is switched off, the molecular field
includes only the elastic torque. For the pure twist distortion and our geometry,
the molecular field vector h is opposite to the magnetic field, i.e. directed opposite
to x- axis. Its absolute value is K2262<p/622 (Section 8.3.3). The torque (n x h) is
directed along z and has the same absolute value.

The viscous torque is given by Eq. (9.22). Due to the absence of flow it contains
only one term, namely,

I'=vy,[n xN] (9.31)

where the angular velocity of the director is (n X N) = (n X dn/dt) = (n x [ x n])
= Q = de/dt directed along z (here the formula for the double vector product a x b
x ¢ = b(ac) — c(ab) was used).

Then the equation of motion reads [14]:

¢ o¢
Kpn—=7—+ 32
2oy =Ny, 9.32)
The solution has the following form
¢ = @gcos g exp(~Yfy) (9.33)

Substituting this form into (9.32) we find the characteristic relaxation time:

v1d° Y1

T= 2Ky Kng® (9.34)
In conclusion, from the measurements of 1 the coefficient y; = a3 — o, could be
found if the cell thickness and elastic modulus are known. Note that y; coefficient is
the most important for applications. Then, using data on the ratio of a3/, we can find
a3 and o, separately. Further, using the known coefficient for the isotropic phase
viscosity oy = 21, the coefficients a5 = 21, — 21, + o, and og = 21, — 2N, — U3
can be calculated and, for the particular nematic liquid crystal, the applicability of
the Parodi relationship ag — o5 = o+ o3 verified. As to o it can be found from
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the Poiseuille flow in the magnetic field oriented at some angle @ with respect to the
y-axis in the xy plane (Fig. 9.4) in order to have finite both n; = n, and n; = n,

director components in tensor (9.20). However o is usually smaller than the other
coefficients and often can be ignored.

9.4 Flow in Cholesterics and Smectics

9.4.1 Cholesterics

The equations for hydrodynamics of cholesterics are basically the same as for
nematics, but there are some specific features related to the helical structure.

94.1.1 Shear

Consider shear in three basic geometries shown in Fig. 9.8. In each sketch the helix
axis h is aligned differently with respect to plane xy of the shear rate [15].

Geometry I, hllx, sy, = Ov,/0x|/h and v_Lh

In the left part of the figure, the helical axis is parallel to the velocity gradient
(shear) shown by two arrows. When cell thickness is less than the cholesteric pitch,
d < Py, and the rate of shear is small, then an effective viscosity is given by
averaging two Miesowicz coefficients:

N = NaMp/My + Ny

I II IIL

Fig. 9.8 Three different geometries of a shear of a cholesteric liquid crystal: helical axis hllx (I),
hllz (II) and hilly (III)
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For higher shear rates the helix is unwound, the director becomes almost parallel
to the flow lines (nllv) and ny=n;, as in nematics.

Geometry II, hllz, s,, = Ov,/Ox_Lh and v1h

In the middle part of the figure, the helical axis is perpendicular to the flow direction
and the effective viscosity at low shear rate equals

N = 3(1y + 1.)-

At high shear rate, due to helix unwinding, we again have Ny =~ n; = 1. For
small distortions, in both cases, the disturbed helical structure relaxes with a rate of
the general hydrodynamic form

2
©="kpg2 = NP0k (9.35)

Geometry III, hlly, s, = Ov,/0x||h, and vilh

In the right part of the figure, the direction of the flow coincides with the helical
axis. This case is especially interesting because it results in the so-called permeation
effect.

9.4.1.2 Permeation Effect

In experiments with cholesteric liquid crystals (geometry III), extraordinary high
viscosity My is observed, few orders of magnitude higher than the viscosity of the
isotropic phase or a non-twisted nematic. It seems surprising because the local
structure of nematics and cholesterics is the same. In addition such a flow is
strongly non-Newtonian: with increasing shear rate (s) nyy decreases, as schema-
tically shown in Fig. 9.9. In the case of the Poiseuille flow, the viscosity depends
also on the radius of a capillary.

The explanation of these observations has been given in terms of the so-called
permeation effect [16]. Helfrich assumed that the helical structure with wavevector
qo is fixed by the boundary conditions at the walls of a cylindrical capillary of
radius R. Schematically it is shown by “fixation points” at each period of the helix
in Fig. 9.10a. The liquid crystal flows out of the capillary with a constant velocity
vllqo. Therefore, the mass of the liquid of density p escaping the capillary in a time
unit is given by Q = nR?pv. The flow velocity is considered to be uniform along the
capillary radius (except the boundary layer [ < R). At the same time molecules
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are free in the bulk and may rotate about the z-axis. In such a situation the director
¢(z) = goz must rotate like a screw with angular velocity Q:

Q:Z_ﬁf:‘;_f%:qov, (9.36)
and this rotation exerts a friction torque from the capillary walls on the director:
I'=vy,Q.

The work Vpv made by the external pressure gradient Vp must be equal to the
energy dissipated in unit volume and unit time due to the friction y,(de/df)* =
v,Q%. Therefore, Vpv = v,Q* = y,v?q}.

From here, we obtain the relationship between the pressure gradient and flow
velocity of a cholesteric:

Vp = qu%v (9.37a)
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Note that the Poiseuille-Stokes equation for an isotropic liquid (9.28b) or for a
nematic would give us

_ 8

VP="Ta

(9.37b)

From comparison of the last two formulas we can find the apparent viscosity for
a cholesteric:

2
Napp = 71 (@0R) /8 =ik, 9.38)

According to this simplest theory, the amplification factor due to chirality can be
as high as k, ~ 107 (R =0.1 cm, gy = 2n/Py = 10° cmfl). The coefficient kj, is
called permeation coefficient because the molecules permeate through the fixed
cholesteric quasi-layers. In reality &, is smaller than 107 due to a non-ideal helical
structure, surface defects, non-uniform velocity profile etc., but, nevertheless, the
effect is very remarkable.

9.4.2 Smectic A Phase

9.4.2.1 Flow and Viscosity

For the smectic A phase the permeation effect is even more important [16]. In fact,
with the layers fixed at the walls of a capillary, a smectic may flow only as a whole,
like a plug, without velocity gradients, Fig. 9.10b. The velocity is again given by
equation Vp = k,v, where k;, is the permeation coefficient depending on the
smectic characteristic length A given by Eq. (8.46), conventional nematic viscosity
N and temperature:

k N Tm-T
P T A2 T
A NA

(9.39)

The smaller the temperature difference Ty, — T, the smaller is the smectic order
parameter, that is the amplitude of the density wave. Consequently, the permeation
coefficient in SmA should decrease upon approaching the SmA-N transition.
Indeed, in experiment, very close to Ty, the Poiseuille flow is observed, as in the
nematic phase, but already at Tya — T > 0.3 K the plug flow occurs with apparent
viscosity two orders of magnitude larger than n.

If both the compressibility and the permeation effect are disregarded, the
structure of the viscous stress tensor oj; is identical for the SmA and nematic phases
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Fig. 9.11 Two geometries for easy flow in Smectic A: flow velocity in both cases is in the layer
plane but shear is either perpendicular to layers (a) or parallel to them (b). For the flow velocity
along the layer normal the permeation effect is observed, see Fig. 9.10b

T l pressure
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Fig. 9.12 Undulation or ’\Q?
wave-like instability in the —_y

smectic A layer subjected to a
dilatation-compression
distortion

due to the same point group symmetry, Dooy,. There are five independent viscosity
coefficients for SmA as for a nematic [17]. However, tensor (9.20) can only be used
when the velocity has no component along the layer normal z as shown by examples
in Fig. 9.11 for velocity v, and gradient 0v,/0z in case (a) and velocity v, and
gradient Ov, /Ox in case (b). In these two examples of the Poiseuille flow the
viscosities are given by

Mo = alto+ 1 =20 + ) and m, =L,

New viscosity coefficients p; and A; are related to Leslie coefficients. In particu-
lar, po = o4 (viscosity of an isotropic liquid). Viscosimetry of SmA liquid crystals is
difficult. For instance, in geometry (a), the upper and lower plates should be parallel
with a great accuracy (few nanometers); otherwise defects appear. However, for
several compounds the correspondent viscosities have been measured. In geometry
(b) there was found a shear rate threshold: above the threshold the isotropic
behaviour (o4) was observed. At lower rates, defects control a flow.
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9.4.2.2 Undulation Instability

In the experiment, it is possible to create a dilatation of the smectic layers with
piezoelectric drivers. Evidently, an increase of the interlayer distance would cost
a lot of energy. Instead, at a certain critical dilatation y. = 2m\,/d, where

s = (Kqj /B)]/ ?, a wave-like or undulation distortion is observed as illustrated by
Fig. 9.12. The wavevector of the distortion is proportional to inverse geometrical
average of cell thickness and smectic characteristic length, ¢, = 7/ V/Asd. There-
fore, a typical undulation period is about 0.3 pm (d ~ 10 pm, A; ~ 0.01 pm) and
may be observed optically. A similar instability arises in cholesterics under the
influence of the magnetic or electric field, see Section 12.2.3.
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Chapter 10
Liquid Crystal — Solid Interface

10.1 General Properties

10.1.1 Symmetry

Now we are interested in phenomena at an interface between a liquid crystal and
another phase (gas, liquid or solid) [1, 2]. Why is it important? First, the structure of
a liquid crystal in a thin interfacial layer is different from that in the bulk and
manifests many novel features. Second, the interface plays a decisive role in
applications, because liquid crystals are always used in a confined geometry.
There are two approaches to the surface problems, microscopic and macroscopic.
In the first approach, we are interested in a structure and properties of interfacial
liquid crystal layers at the molecular level; in the second one, we ignore the
microscopic details and use only symmetry properties and the concept of the
director.

What does occur at the interface? Consider, for example, a contact of a liquid
crystal with a solid substrate shown in Fig. 10.1. We notice that

(i) There is a change in symmetry; the interface is not a mirror plane, there is a
new, polar vector, namely the normal h to the interface. Therefore, an
interfacial layer has properties of a polar phase.

(i) The properties change continuously along the surface normal for the phase of
the same symmetry. Macroscopically we can consider a change of order
parameters with distance. In a particular case of the nematic phase, both the
absolute value of the orientational order IQl = S and the direction of the
director n can depend on distance from the interface. The positional order
can also change.

(iii)) The molecules at the surface are in different surrounding in comparison with
those in the bulk. Therefore, the molecular interactions and, hence, the
thermodynamic properties are also different. Even new liquid crystal phases
can form at the surface. For instance, if in the bulk a uniaxial nematic is stable,
at the surface it could be transformed in either a uniaxial smectic A or biaxial
nematic.

L.M. Blinov, Structure and Properties of Liquid Crystals, 257
DOI 10.1007/978-90-481-8829-1_10, © Springer Science+Business Media B.V. 2011
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(iv) The elastic moduli such as K»4 and K5 often neglected in the description of
bulk properties becomes important at the interface.

10.1.2 Surface Properties of a Liquid

As throughout the book, at first we review properties of isotropic liquids at an
interface and then switch to liquid crystals.

10.1.2.1 Surface Tension

Due to a difference in molecular forces in the bulk and at the interface, there is an
excess of energy in a surface layer. For instance, one should make a work to
increase an interface A between a gas and a liquid. When a chemical composition
of the contacting phases is fixed, the surface tension is

dF

G:a

(10.1)

where the free energy of the surface /' = E — TS takes into account not only a
change in the internal energy E but also entropy S.

The surface tension determines capillary effects, wetting phenomena and a shape
of liquid drops, in particular, the spherical shape of small radius drops when the
gravity is not essential. The corresponding excess pressure in a drop of radius p is
Ap = 2c/p (Laplace-Young formula). Small drops of the nematic phase are,
strictly speaking, not spherical due to anisotropy of the surface tension but practi-
cally they may be considered spherical. The surface tension of both a liquid crystal
and a solid substrate determines orientation of the liquid crystal director on the
substrate.
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10.1.2.2 Adsorption

The adsorption is a non-uniform spatial distribution of different chemical species at
an interface between different media [3]. The situation at the liquid—gas interface is
illustrated by Fig. 10.2. If there is some concentration of surface-active (surfactant)
molecules in water, they “prefer” to leave the bulk and go to the surface. The reason
is that water does not like such guests, because surfactant molecules destroy a
network of hydrogen bonds formed by water molecules. The break of the network
would cost considerable decrease in entropy. Therefore, water pushes its guests out
to the surface. Then, at the water surface, we see a peak of concentration of
surfactant molecules. In this way the total surface energy is reduced and the surface
tension decreases. For instance, the excess of foreign molecules on the water
surface creates a certain pressure on a floating barrier in a Langmuir trough and
the barrier shifts in the direction of the pure water surface. The so-called surface
pressure exerted onto the barrier is 1 = 6y — ¢ where Gy is surface tension of pure
water. Measuring the temperature dependence m(7T) one can study single mono-
layers of liquid crystalline compounds forming on water different two-dimensional
phases as discussed in Section 5.7.3.

In liquid crystal cells the adsorption of impurities from the bulk to a liquid
crystal — glass (or other solid substrates) interfaces can change conditions for
alignment of the liquid crystal and often results in a misalignment of liquid crystals
undesirable for displays. On the other hand, using adsorption phenomena and
Langmuir-Blodgett technology one can prepare ultra-thin polymer films on the
solid substrates. Such films can be rubbed by soft brushing or scribed by Atomic
Force Microscopes or modified by polarised light for desirable alignment of liquid
crystals. In some cases, a “negative” adsorption is observed when foreign molecules
are expelled from the surface into the bulk. Such desorption increases surface
tension. Adsorption of ions at the electrodes of a liquid crystal cell may create a
space charge at the interface that dramatically influences conditions for the current
flow through a liquid crystal especially at low frequencies.

Fig. 10.2  Adsorption of O o O
surfactant molecules (black O O
spheres) at the interface O O
between water (white - —0 0—0 =9
spheres) and air. The curve C 9 0 (o) 08 0
qualitatively pictures the OOOOOO @) O
surfactant concentration as a O 0 O 0 OO
function of the distance z @) OOO O
from the interface shown by 9 OOOOO OOO
the dash line (* ) O
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Fig. 10.3 Surface tension in a three-phase system. Illustration of the Neumann triangle (a) and
Young law (b) and the three cases of wetting phenomena: non-wetting (c), partial wetting (d) and
complete wetting (e)

10.1.2.3 Wetting

Consider a drop of a liquid on a soft substrate, Fig. 10.3a [3]. There are three phases
in contact: liquid (1), gas (2) and soft substrate (3). The soft substrate could be an
elastomer or a liquid different from the liquid (1). At any point of the contact line
the equilibrium condition is the vector sum of the corresponding tensions for each
pair of contacting phases:

G2+ 063 +33=0

This is a so-called Neumann triangle valid for any three phases.

When a substrate is solid, see Fig. 10.3b, the vertical component of its deforma-
tion is negligible and we may only consider the equilibrium of horizontal projec-
tions of the surface tension vectors (Young’s law):

O12COS0p = Op3 — O3 (102)

and the ratio (0,3 — ©13)/01, determines the equilibrium contact angle o.

The surface tension at a liquid-solid interface ;3 may be controlled by temper-
ature, composition of the liquid or adsorption. We can distinguish three different
cases, shown in Fig. 10.3c—e: non-wetting (c), partial wetting (d) and complete
wetting (e). The three cases are characterized by their equilibrium contact angles:
oy = M; T > 0y > 0; op = 0, respectively.

The spreading parameter S = G,3 — (013 — Gj) determines a wetting transi-
tion: for S > 0 one observed complete wetting, for S < 0 the wetting is partial. The
wetting transition is often observed with volatile liquids on solid substrates. The
dynamics of the complete wetting is very interesting: at first, a microscopically thin
precursor forms that advances rather fast over the substrate followed by a macro-
scopic edge of the liquid film. Afterwards all amount of liquid forms a uniform
layer. This has been observed in both isotropic and nematic liquids [4].

10.1.3 Structure of Surface Layers

The most interesting case is a contact of a nematic liquid crystal with a solid
substrate because in most devices a nematic is sandwiched between transparent
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glasses, conductive or non-conductive. The interaction with a substrate causes
many effects such as a change in the orientational order parameter, appearance of
a short range positional order, appearance of a surface dipolar layer, etc. [5].

10.1.3.1 Surface Induced Change in the Orientational Order Parameter

A qualitative picture, Fig. 10.4, shows the distance dependencies of the orienta-
tional order parameter for homeotropically aligned nematic liquid crystal at the
solid substrate. The problem is to explain such dependencies [6]. The influence of
the surface on the orientational order parameter may be discussed in terms of the
modified Landau—de Gennes phase transition theory. Consider a semi-infinite
nematic of area A being in contact with a substrate at z = 0 and uniform in the x
and y directions. When writing the free energy density a surface term -Wd(z)S must
be added to the standard expansion of the bulk free energy density:

ds Wd(z)S

2
g =2go(S) +K* (E) - (10.3)

where
0(S) = a(T — T*)S* + bS? + ¢S*

is a uniform part of the free energy density, which describes the first order N-I phase
transition, 7* is “virtual second order” transition temperature for the bulk, a, b, ¢ are
Landau expansion coefficients and K* is a new “gradient” elastic modulus, other
than Frank moduli K;;. The surface term is chosen in the spirit of the mean field
theory with a cylindrically symmetric potential of a substrate

W(9,z) = W8(2)(Ps(cos ).

Here 9(z) is Dirac delta function, showing that the surface potential W = W
(z = 0) is short-range, 9 is an angle between the longitudinal axis of a rod-like
molecule and the director at the surface ng. The surface potential W may be positive
as in Fig. 10.4a or negative, Fig. 10.4b. In this consideration, a change of the

a b
[ ~| s Shuik
% So /
¢
0 V4
S Sbuik
0 w

z

Fig. 10.4 Qualitative dependencies of the orientational order parameter of the nematic phase on
the distance z from the surface. The positive (a) and negative (b) surface potential W has the form
of the d-function. The temperature is fixed
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mesophase symmetry, in particular, an appearance of the polar axis in the nematic
phase is disregarded.
The free energy per unit area is given by

x 2
pi= [ sy () a0 104
0

Now we need two minimizations: (i) over function S(z) with fixed Sy (z = 0) and
(ii)) over the boundary value S,. In our case, the standard Euler equation

OFas — 4. (OFfagr) = 0 reads:

d’s
"(S) = 2K* — = 0. 10.5
gO ( ) dZZ ( )
Its first integral: K* (%)2 =go(S)+C
The constant C is found from dS/dz|, = 0,i.e. C = —go(Spun)-
Then we get:
ds\*  go(S) — go(Spun)
2 u
— == 10.10
%0 (dz> T, (10-10)

Here, we have introduced a surface correlation length, marked off in Fig. 10.4:

%\ 1/2
§05<K) , (10.11)

aTN1

with the first order transition temperature Ty, in the bulk. Now Eq. (10.10) for the
free energy density becomes dimensionless.

Next, we substitute (10.10) into (10.4) and after minimization dF/dS, = 0 find
the condition 2[go(So) — go(Swux)]"/> = W/A. Using this condition the equation
(10.10) may be integrated with the proper limits:

So

(de(\)u) 12 J
S(z)

das _z
[g0(S) — gO(Sbulk)]]/z &o

(10.12)

This equation has been solved numerically [6] for the order parameter S(z,T,S,)
depending on the distance z from the boundary, the surface potential (included in
So) and temperature (included in g,(S;,x)). The found distance dependence is
similar to that shown in Fig. 10.4a for the positive surface potential. The calculated
thickness of the surface layer is about 10&,.
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Fig. 10.5 Calculated order parameter at the surface Sy as a function of temperature. The numbers
at the curves corresponds to different surface potential in dimensionless units: W = 0 (1), 0.0056
(2),0.008 (3),0.01 (4), W, = 0.01078 (5), 0.012 (6), 0.017 (7). Note that at W, the discontinuity of
the first order N-Iso phase transition disappears (adapted from [7])

The surface order parameter S, shows very interesting features. Fig. 10.5 illus-
trates the calculated dependence of Sy on temperature with parameters of a liquid
crystal S5CB. The different curves correspond to the different values of the surface
potential. According to the positive sign of the surface potential W, we see an
expected increase in the orientational order in the surface nematic phase (negative
values of T-Ty). Further, the increasing potential W shifts the N-I transition point to
higher temperatures. At W = W, the phase transition at the surface disappears and
the surface order parameter becomes a continuous function of temperature. For high
values of the surface potential, the orientational order at the interface remains finite
even at temperatures well above the N-I transition point in the bulk.

The picture predicted by this figure has been confirmed by birefringence mea-
surements on the isotropic phase [7]. Such measurements are much more precise
than attempts to measure the influence of an interface on the order parameter in the
nematic phase, because the isotropic phase has no background birefringence com-
ing from the bulk. For nematic preparations with the director homogeneously
aligned along the surface of a solid substrate, the birefringence is observed at
temperatures markedly exceeding the N-I transition point, Fig. 10.6. Moreover, it
depends on the surface potential as predicted by theory.

The thickness of the “quasi-nematic” layers adjacent to the substrate and shown
in the Inset to Fig. 10.6 can be estimated from the observed birefringence. For two
boundaries the phase retardation & between the ordinary and extraordinary rays is
given by

4n{An)§,

20 ~
by
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Fig. 10.6 Temperature dependence of birefringence of thin surface layers in the isotropic phase.
Surface potential W, > W, > W3. Inset: geometry of birefringence measurements with molecules
aligned parallel to the surfaces and the gradient of the order parameter S(z) within the surface
layers

where A is light wavelength and <An> is average optical anisotropy of the surface
layers. For typical values of An ~ 0.1-0.2, £ ~ 4-10 nm.

Some solid surfaces induce disorder in nematic liquid crystals. It means that the
order parameter at the interface is lower than the bulk value. For instance, evapo-
rated SiO layers of a certain thickness due to their roughness decrease the order
parameter of MBBA from the bulk value S, ~ 0.6 down to Sy ~ 0.1-0.2. In some
cases, the surface order parameter may be equal to zero (surface melting).

10.1.3.2 Surface-Induced Smectic Ordering

Let the director of the nematic phase is perpendicular to a flat interface. Then we
can anticipate two effects. First, a polar surface layer should appear due to the break
of the cylindrical symmetry, n # — n. Second, due to some positional correlation
of the centers of molecules in several layers adjacent to the surface, the nematic
translational invariance can be broken. It means that the surface induces the short-
range smectic A order. In the framework of the Landau theory, the smectic order
decays with distance from the interface according to the exponential law

p1(z) = p1(0) exp(—z/A;)

where both the smectic wave amplitude p, and smectic correlation length A induced
by the surface increase with decreasing temperature 7. More precisely, both the
parameters depend on the proximity (T — Tna) to the nematic — smectic A
transition because at T = Tya, As — 00 and the smectic phase becomes stable
everywhere.
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In the X-ray experiments on nematic 8CB, the smectic ordering was observed at
the free surface (air-nematic interface). The same phenomenon has also been
observed at the solid-nematic interface by the X-ray, an electrooptical technique
and molecular force measurements. The principle of the latter is shown in Fig. 10.7.
For two mica cylinders submerged in nematic liquid crystal, their interaction force
measured with a balance oscillates with a distance between the cylinders and the
period of oscillations was found to be equal to molecular length /. This clearly
shows the periodicity in density characteristic of a smectic phase [8].

A powerful technique for the study of molecular orientation at the surface is
scanning tunnel microscopy (STM): a weak tunnel electric current (of the order of
0.1 nA) is measured between an extremely sharp (atomic size) tip and the conduc-
tive substrate. The motion of the tip over the surface is controlled by piezoelectric
drivers and a computer. As a result, we can see a current pattern correlating with the
surface relief. For example, on cooling the 11th and 12th homologues of cyanobi-
phenyl from the isotropic phase to a room temperature smectic phase, different
types of surface layers are formed on conductive MoS, substrates [9]: a compound
11CB having intermediate nematic phase forms single-row monolayers whereas
compound 12CB forms double-row ones, see Fig. 10.8. The structure of mono-
layers depends on substrate properties and temperature and the latter can control the
realignment of a liquid crystal in the bulk, i.e. cause anchoring transitions [10].

10
|
I
1
S5FI 1
[J] |
o I
I.E 1 n
Fig. 10.7 Periodic force oH—+ | AL
between two mica cylinders N e
separated by nematic liquid : l,'
crystal with molecules 5 1 ]
aligned perpendicular to —E L 1
fnec peip 0 5 10 15

cylinder surfaces as a function
of the gap between the latter

Fig. 10.8 Scanning Tunnel Microscope images of smectic compounds on MoS, substrates taken
at room temperature and showing the one-row (for 11CB) or two-rows (for 12CB) molecular
organization
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10.1.3.3 Polar Surface Order and Surface Polarization

The interfaces in general, and particularly with solid substrates break the head-
to-tail symmetry of a liquid crystal phase and induce polar orientational order.
The symmetry is reduced to the conical group C.,. The latter allows a finite value
of the second-order nonlinear susceptibility 7y, responsible for the second optical
harmonic generation [11]. This phenomenon has been observed in experiments on
generation of the second harmonic in a ultrathin nematic layers on a solid substrate
as shown in Fig. 10.9.

The polar order parameter is the first Legendre polynomial P; = (Lh) = cos 6
where L is a new polar vector parallel to n and called polar director. The polar order
contributes to the elastic surface energy linearly while the quadrupolar (nematic)
order contributes quadratically with a sign dependent on surface treatment:

F(P,) = —o0,(Lh) = —c, cosb

F(P,) = £iW(Lh)* = £lW(nh)* = £lWcos*0 (1019
where angle 0 is counted from the external normal to the nematic layer h [7].
Therefore, both contributions to the free energy vanish when both L and n perpen-
dicular to h. However, when L,n || h the two contributions can compete with each
other. For instance, for 0 = 0 the linear term is negative and favors this alignment
(homeotropic) but, the quadratic term with positive sign at W is unfavorable. It
could be a reason for an oblique alignment of the director often observed at the free
surface of a nematic.

Note that the polar vector reflects only polar symmetry of the interfacial layer
and may be associated with the conical (not rod-like) form of the molecules.
However, when the electric charges are involved in the game, the same polar
order may results in appearance of the macroscopic surface electric polarization
P,..¢ that is the dipole moment of a unit volume [units: CGS(charge)~cm/cm3 =
CGSQ/cm? = StatV/cm, or C/m” in SI system]. When an electric field is applied to
a liquid crystal the surface polarization contributes to the free energy of a surface
layer

F<Psur_'f) = _Psu)fE (1014)
© Glass 26
...... - .~ —..\ Polar
layer
NLC

Fig. 10.9 Optical second harmonic generation by a polar layer at the interface between nematic
liquid crystal and glass: due to non-linear interaction with surface layer the incident beam of
frequency o is partially converted into the beam of frequency 2®»



10.1 General Properties 267

The problem of the surface polarization have been raised [12] macroscopically
in connection with the bulk flexoelectric distortion [13] discussed in the next
chapter. On the microscopic level, we can distinguish between three different
mechanisms of Py, explained with the help of Fig. 10.10.

Tonic Polarization

A monolayer of ionic species can be adsorbed at the interface with a solid substrate
(a Helmholtz monolayer), Fig. 10.10a. A diffuse layer of ions of the opposite sign
with density p(z) provides the overall electrical neutrality. This mechanism is not
specific for liquid crystals, it takes place in the isotropic liquids as well. However, in
liquid crystals the surface field E = 4nP, can interact with the director and
change orientation of the latter. Qualitatively, the ionic polarization can be esti-
mated as Py, = gnEp where n is the number of charges ¢ and £p is a characteristic
(Debye) length for the charge distribution.

Dipolar Polarization

It comes in due to a polar interaction of dipoles with a substrate. A head or a tail of a
molecule may have different chemical affinity to the substrate material, Fig. 10.10b.
The molecules with electric dipole moment p. form a dipolar monolayer whose
polarization Pg,.r = p.n depends on the surface density of dipoles n. The polar layer
thickness is determined by the characteristic diffusion length &; = (2D1)'? where
D is a molecular diffusion coefficient and t is a characteristic time for molecular
rotation. We can encounter the same mechanism in isotropic liquids, however, in

a b c
«— & —>
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Fig. 10.10 A schematic picture of the charge distribution as a function of the distance from the
liquid crystal—solid interface for ionic (a), dipolar (b) and quadrupolar (¢) mechanisms of surface
polarization Pg¢
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liquid crystals the diffusion coefficients and relaxation times are different for
different director orientation and different dipolar structure of the constituent
molecules. For longitudinal and transverse molecular dipoles, the same character-
istic times t; and T, are involved, which we met before when having discussed
dielectric properties in Section 7.2.4.

Ordoelectric (Quadrupolar) Polarization

This polarization is related to the quadrupolar nature of any uniaxial phase,
Fig. 10.10c. In the conventional nematic phase of symmetry D., and order
parameter tensor (), each molecule or a building block may, on average, be
represented by a quadrupole, and the phase may be characterized by a tensor of
density of the quadrupolar moment

O = — a0 = —quuS(nin; — Sif3) (10.15)

Here § is nematic order parameter amplitude and g,,S is the modulus of tensor

Qqu (see Eq. 3.16), q,, being a scalar coefficient with dimension [charge/cm].
Recall now that polarization is a gradient of charge density for any charge distribu-
tion (dipolar, quadrupolar, etc.). Therefore, the gradient of the orientational order
parameter creates the polarization:

P=—4.V0 (10.16)

This may be illustrated by appearance of the electric polarization in a hybrid cell,
in which the quadrupolar molecules are oriented differently at the opposite inter-
faces, namely, homogeneously on the right plate and homeotropically on the left
one Fig. 10.11. The molecular quadrupoles have an elongated form with positive
charges at the apices. Therefore negative and positive charges are accumulated at
the left and right plates, respectively, and the bulk polarization vector P(z) has its
z-projection oriented from right to left. Note that in a hybrid cell the polarization
occurs due to a change of the orientational part of tensor Q i.e. the director n(r)
without a change of its amplitude S. In this case we deal with a flexoelectric
polarization [13], see for details Section 11.3.1. The flexoelectric mechanism
may also be responsible for the surface polarization.

A change of the order parameter modulus S(r) can also create polarization, for
example due to transformation of the ellipsoidal shape of Q tensor in space. In this
case we deal with the so-called ordoelectric polarization [14]. Indeed, decreasing S
value results in less extended (less prolate) ellipsoid form without reorientation of its
principal axes. Such a transformation may be caused by a scatter of the rigid
molecular quadrupoles with respect to the director axis: the stronger the scatter,
the lower is the quadrupole order S and the less prolate ellipsoid Q. This is illustrated
by Fig. 10.12: in sketch (a) the order parameter is stronger at the surface and
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Fig. 10.11 A hybrid cell ]
illustrating the appearance
of polarization due to the
gradient of quadrupolar
density of charge (the
molecular quadrupoles touch |

the left and right surfaces by
their (4) and (—) sides, @

respectively)

Sbulk

N Spuik
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Fig. 10.12 Ordoelectric surface polarization. In sketch (a) the order parameter is larger at the
surface and smaller in the bulk; in sketch (b) the order parameter is smaller at the surface than in
the bulk. Corresponding gradient curves S(z) for a nematic liquid crystal are qualitatively pictured
in the bottom sketches. Vectors m,, and my, show the directions of the surface polarization

decreases in the bulk due to statistical misalignment of quadrupolar molecules. On
the contrary, in sketch (b) the order parameter is lower at the surface than in the bulk.

According to Eq. (10.16) the gradient of the order parameter amplitude VS(z)
will inevitably result in the surface ordoelectric polarization:

1
Psmf = Qqu(vs) (ninj - g&j) (10.17)



270 10 Liquid Crystal — Solid Interface

For a fixed orientation of n, the surface polarization is a function of VS(z) and
has dimension [CGSQ/cm? or C/m? in the SI system]. The sign of Py, depends on
the sign of the gradient VS that is on a technique of liquid crystal alignment and,
evidently, on the sign of molecular quadrupoles. In Fig. 10.12 the direction of the
ordoelectric polarization in the two cases is given by vectors m, (planar alignment)
and my, (homeotropic alignment).

The surface polarization can be measured by different means. The most straight-
forward one is based on the pyroelectric technique [15]. To measure Py, one has to
deal only with one surface of a cell with uniform director alignment, either planar or
homeotropic at both interfaces. The main idea is to use a spatially dependent
temperature increment in order to separate the contributions to the pyroelectric
response coming only from the surface under study and not from the opposite one.
By definition, the pyroelectric coefficient is Yy = dP/dT where P is macroscopic
polarization of a liquid crystal and T is temperature. If we are interested only in the
polarization originated from the orientational order we can subtract the “isotropic”
contribution to y and calculate P in the nematic or SmA phases by integrating the
pyroelectric coefficient, starting from a certain temperature 7; in the isotropic phase:

T
P(T) = Jy(T)dT (10.18)
T;

In order to measure y(7T) we have to change temperature by a small amount AT
and record a pyroelectric response in the form of voltage U}, across the load resistor
R shunted by input capacitance and cell capacitance. The most convenient, dynamic
regime of y measurements is based on heating the sample surface of area A by
absorbed light of a pulse laser, Fig.10.13. The light is absorbed by a semitransparent
electrode or by a dye dissolved in the liquid crystal. For a very fast (in comparison
with RC) jump of temperature, to the end of a laser pulse #,, the pyroelectric voltage
reaches the magnitude AYAT/C and pyroelectric coefficient can be found at a given
temperature. Then, on cooling the cell from the isotropic phase the temperature
dependence y(T) is found and, after integrating according to (10.18), we obtain
P = Pg,s. An example of temperature dependence of Py, integrated over the cell

Nd-YAG laser Cell

o
10k Osc

Fig. 10.13 Setup for the measurements of the surface polarization by a pyroelectric technique:
short pulse of a Nd-YAG laser heats the polar surface layer of a liquid crystal and the pyroelectric
current is detected by an oscilloscope
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Fig. 10.14 Experimental temperature dependence of surface polarization in 8OCB liquid crystal
having the nematic and smectic A phase; planar (curve 1) and homeotropic (curve 2) alignment

Fig. 10.15 Easy direction for A
the equilibrium alignment of
the director (nf)) at the surface
and definition of the zenithal
(99) and azymuthal (¢p)
director angles

thickness is shown in Fig. 10.14 for two types of alignment, planar (curve 1) and
homeotropic (curve 2). Note that the temperature behaviour of the two polarizations
is quite different close to the N-SmA transition. We may guess that few dipolar
smectic layers formed at the interface contribute stronger to P, than a not
stratified nematic surface layer.

10.2 Surface Energy and Anchoring of Nematics

10.2.1 Easy Axis

Let the interface be in the xy-plane, as shown in Fig.10.15. The equilibrium position
of the director n (the so-called easy direction or easy axis) is defined by the zenithal
(99) and azymuthal (¢;)) angles counted from the z and x axes, respectively. At the
free surface of the nematic the easy direction appears spontaneously but at the
nematic-solid interface it is predetermined by a specific treatment of the solid
surface. We can distinguish the homeotropic (3 = 0), planar (3 = n/2) and tilted
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(0 < 9) < m/2) alignment. In turn, the planar orientation can be homogeneous
with a unique angle ¢j), multistable when several easy directions are possible at a
crystalline or specially prepared substrate, or degenerate if all ¢p-angles are equally
probable and the cylindrical symmetry exists with respect to the surface normal.
The same is true for the projections of the director on the xy plane in the case of the
tilted orientation. Further on the angle of the director at the surface will be counted
from the easy axis although other conventions may be used as, for instance, above
in connection with Eq. (10.13).

Surface free energy of the nematic phase F*(3°,d%)is minimal for the easy
direction (8 = 9, ¢* = ¢;)). The anisotropy of the surface energy is a characteris-
tic feature of liquid crystals, F* = F% + F%. Here, two terms represent the isotropic
and anisotropic parts. They differ from each other by several orders of magnitude.
The isotropic part, which is, in fact, the surface tension introduced earlier is of the
order of 100 erg-cm 2 (or 0.1 J-m~2). The values for F' °-energy are scattered over
five orders of magnitude from 10~ to 1 erg-cm > (or 10 *— 10> J-m ). F3 shows
how much energy one has to spend in order to deflect the director from the easy
direction, to which it is anchored in the ground state. That is why the anisotropic
part of the surface energy is usually referred to as anchoring energy.

In order to consider any mechanical or electro-optical effects for a liquid crystal
layer placed between two solid substrates one must solve a problem of the distribu-
tion of the director over the layer with allowance for the boundary conditions. The
standard variational procedure allows such calculations when the surface energy
depends only on orientation of the director (angles 9° and ¢*) at both boundaries
but not on their spatial derivatives.

10.2.2 Variational Problem

For consistency we go back to the problem of the twisted cell discussed in
Section 8.3.2, however, the director angles ¢ at the boundaries will be not constant
but can be changed due to elastic and external torques. Let a nematic layer be
confined by two plane surfaces with coordinates z; = —d/2 and z, = +d/2 and the
director is allowed to be deviated only in the xy-plane through angle ¢ (there is no
tilt, the angle 3 = m/2 everywhere, and the azimuthal anchoring energy is finite).

+d/2

0
F(o) = J g(@,a—(Zp)derF‘i((p‘) + F3(¢%) (10.19)

—d/2

Here, g is Frank energy density, F] , are surface energies at opposite boundaries.
Our task is to find the equilibrium alignment of the director everywhere between
and at the solid surfaces. It is determined by minimization of the integral equation
(10.19), i.e. by solution of the correspondent differential Euler equation for the bulk
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Og d Og
= —— | =0 10.20
o i [0 1o
with boundary conditions
0g ] oF, [ Og } OF,
—— | +—=0and |——=>—| +—==0 (10.21)
{@(&P/@Z) 1 00, 0(0@/0z2)|, 0@,

The first terms in both Egs. (10.21) correspond to the contribution from the bulk
to the surface energy. How to understand the influence of the bulk on the surface? In
fact, the two equations (10.21) represent the balance of elastic and surface torques
at each boundary (indices 1 and 2). One of them comes from the bulk elasticity and
deflects the director from the easy axis. The other is a torque from the surface forces
that tries to hold the director at its equilibrium (easy) direction. The two equations
themselves are brought about from the minimization procedure.

Let show it using mathematics. As was said, the boundary conditions are not
fixed and the free energy depends on them. Let ¢(z) be a solution of the Euler
equation for F(@) with fixed boundary conditions i.e. Eq. (10.20). Now we shall
make variation of the boundary conditions in order to find the minimum of free
energy with the surface terms included.

For example, we can calculate a derivative 0F/0@,. If we fix z;, z, and ¢, and
change only @4, the new solution for ¢(z) will get an increment d¢(z). Correspond-
ingly the free energy will get an increment AF. Ignoring highest order terms and
using 8¢’ ~ (3¢p) we obtain:

)

0g og
AF = | (22 - 10.22
J(a(p5®+a(p,8cp)dz (10.22)

71
The second term of (10.22) can be integrated by parts:
5]

2 0g 0O Og

7

0g

Note that the expression under the integral vanishes because g(¢) satisfies the
Euler equation (10.20). In addition, 8¢ (z,) = 0, because @, is fixed. Finally, the
change in the bulk free energy due to variation of ¢, is given by
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and the elastic torque exerted by the bulk on the @-director at the surface is given by

oF _ ¢ (10.24)

o, 09|,

This is a contribution to be equalized by the surface torque OF°/ 6(p|21. The same
is valid for the opposite boundary at z,, see Eqs. (10.21). Thus, two expressions
(10.21) are indeed torque balance equations for the director angle ¢ at the two
boundaries.

10.2.3 Surface Energy Forms

In order to solve equations (10.20) and (10.21) we must know the explicit angular
dependence of functions F§ and F%. Their simplest form is the so-called Rapini
energy [16]:
F’ = F, + 1Wsin*3¢° (10.25)
Here, 6¢° = ¢° — @}, is an angle of director deflection from the equilibrium
angle ¢ and W is usually referred to as anchoring energy.

When both angles 9* and @*are changed, two Rapini energies should be intro-
duced: Azimuthal (for fixed 9%):

FO(9°) = Iw°(9)sin’(o* — @) (10.26a)
Zenithal (for fixed ¢°):
F¥(¢*) = 1W®(@)sin®(§° — 9) (10.26b)
The zenithal anchoring is often called polar, but this word is misleading because
polar anchoring is related to polar director L as given by Eq. (10.13). Thus, the
Rapini form corresponds to the sine-squared shape potential well for any director
deviation B (89° or 8¢*) from the easy direction (8,¢}):
FB = lwsin®B (10.27)
This function is shown by curve 1 in Fig. 10.16.

The Rapini term is the first one (j = 1) in an expansion of F* in the Legendre
polynomial series in terms of sin®p:

F' =Fy,+> Wsin¥B, j=1,23.. (10.28)
J
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Fig. 10.16 Shapes of the 2 1&3
surface potential curves: W
Rapini potential (1), 1.0 1
Legendre expansion with two 3
terms (2) and elliptic-sine 1-
profile (3)

0.5 2

0 P
/4 T2
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To improve agreement with experiment, higher order terms of expansion (10.28)
are used and this change the angle dependence of the energy as shown by curve 2 in
Fig. 10.16 (for both j = 1 and 2 terms with ratio W,/W; = 0.5). Some experimental
data could be fitted better with other shapes of the surface potential, for example,
with the elliptic sine-squared shape, 0 < k < 1 [1]: F%, = iWsn?(, k).

Surely, this form is more general because it reduces to Rapml s one for k = 0,
however, it requires numerical calculations. The corresponding angle dependence
(for k close to 1) is shown by curve 3 in Fig. 10.16.

When the surface energy de% ends not only on the director itself but also on its
spatial derivatives, F* = F*(¢*, 9?/y,| ), then the so-called divergent elastic moduli
K5 and K5, should be taken into account. In such cases, boundary conditions may
become non-local in the sense that, for a finite cell thickness d and potential W, a
situation at a boundary z; influences the conditions at the opposite boundary z.

10.2.4 Extrapolation Length

Consider again an important and fairly simple example: a twisted structure with a
rigid boundary condition at z = 0 (easy axis y, ¢; = 0, W; — o0) and soft bound-
ary condition at z = d (easy axis x, ¢, = m/2, anchoring energy W, = Wy).
Fig. 10.17a clarifies the corresponding geometry. Due to the bulk elastic torque
acting on the director at z = d, the director deflects from the easy axis through angle
(g, and forms the angle ©/2 — @4 with the y-axis. Our task is to find the profile of
¢(z) for different Wy,. The free energy is

d
d 2
Fe i (d—‘zp) dz + Wo(Th — 0,)? (10.29)
0

Here we use Rapini surface energy (10.25) and approximation sin(n/2 — @4)
~ (/2 — Q).
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8

Fig. 10.17 Twisted structure with a rigid boundary condition at z = 0 and soft boundary
condition at z = d. The geometry of the director distortion (a) and illustration of the extrapolation
length b and linear dependence of the director angle ¢(z) (b)

The Euler equation for the bulk is the same as earlier, see Eq. (8.24):

¢
—Kyn—=0 10.30
252 ( )

The first boundary condition is ¢ = 0 at z = 0; the second one represents the
torque balance at z = d according to Eq. (10.21) and (10.29):

0
KnZl| +Wol"h = 94) =0 (1031)
Zla
The general solution of the bulk equation (10.30) is a straight line ¢p(z) = Az + B
withB = 0dueto @ = Oatz = 0and ¢(d) = ¢, = Ad. Now the second boundary
condition reads:

. nWo
KnA —Wo(Yp —Ad) =0thatisA = —————.
2 0< /2 ) 2(K22 + W()d)

Finally, we find the dependence of the twist angle on the z-coordinate in a twist
cell with soft director anchoring at one boundary:

()= A nWoz Tz b
z) = Az = = = Z.
? 2(Kn +Wod)  2(d+%2) "~ 2(d+b)

(10.32)

Recall that for rigid director anchoring on both boundaries we had ¢(z) = nz/2d,
see Section 8.3.2. Now, however, the situation is different and the solid line @(z) in
Fig. 10.17b shows the new profile. If we extrapolate ¢ to m/2, the profile would
correspond to a virtual cell with rigid anchoring on both interfaces and enlarged
apparent thicknessd = d + b. The additional thickness b = K,,/W, is called extrap-
olation length and it is a measure of the anchoring strength, very useful for dis-
cussion of different field effects. For typical values of K», ~ 10~® dyne (or 10™"' N
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in SI system) and W, varied in the range of 10°-1 erg/cm2 (or 107> = 1 mJ/m?) the
values of extrapolation length » = 107> = 10~° cm (10-0.01 pm).

10.3 Liquid Crystal Alignment

10.3.1 Cells

In most practical applications and when examining liquid crystals, the sandwich
type cells pictured in Fig. 10.18a are used. A flat capillary with a thickness of 1-100
pm is made from two glass plates with transparent electrodes. The separation
between the plates is fixed by means of an insulating spacer (Mylar, mica, Teflon,
polyethylene, etc.). To fix a very narrow gap (about 1-3 pm) glass bids or pieces of
thin glass threads of proper diameter are placed between glasses. In sandwich cells
light is incident along the direction of the electric field or, if required, at a specified
angle to it. Sometimes, e.g., when investigating the flexoelectric effect, cells with a
planar arrangement of electrodes are more suitable, see Fig. 10.18b. In that case, to
reduce an applied voltage, the separation between the electrodes, which are made
of metallic foil or metal evaporated in vacuum, is in the range from tens of microns
to few millimeters, however, even for a millimeter gap, the amount of light passing
through the cell is often insufficient. A more convenient cell has interdigitated
electrodes, which can be either transparent or opaque, see Fig. 10.18c. The
electrodes are deposited by photolithography methods. In such structures, a large
light aperture is achieved with relatively small distances (about 10 um) between
the electrodes and one can operate with low voltages to have quite strong field
strength.

Glasses

— Spacers
P

Electrodes

1

Fig. 10.18 Electrooptical cells of sandwich (a) and planar type (b) and the structures with
in-plane interdigitated electrodes (c)
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10.3.2 Alignment

10.3.2.1 Planar Homogeneous and Tilted Alignment

Most commonly, a planar alignment is produced by mechanical rubbing of the
surface of the glass with paper or cloth (Chatelain’s method [17]) or using special
machines with rotating brushes. The pressure under the brushes and their angular
velocity is well controlled. The rubbing creates a mechanical nano-relief on the
polymer coating of a glass or an electrode material in the form of ridges and
troughs, Fig. 10.19, which promotes the orientation of molecules along these
formations. In other words, rubbing creates an easy axis for the director n. The
technique is very simple, provides sufficiently strong anchoring of the director to
the surface but, in the display technology, requires additional washing and drying
the substrates. Another contact method is pattering the aligning layers with molec-
ular size resolution by scribing a polymer coated surface by a cantilever of an
atomic force microscope. The quality of alignment is very good, but the process is
rather slow. Good results are obtained by evaporation of metals or oxides (e.g., SiO)
onto the surface at oblique incidence, Fig. 10.20a. This method can also be applied
to the orientation of various smectic mesophases.

A very important technique for optical device technology is photo-alignment of
photosensitive polymers illuminated by polarized light [18]. Such a technique is
non-contact and allows the design of multi-pixel structures using photo-masks. In
some substances (polymers included) the absorbed light causes directional destroy-
ing molecules. In other materials, the light induces a molecular realignment result-
ing in an optical anisotropy of the film promoting the alignment of the liquid crystal

Rubbing

Fig. 10.19 A mechanical nano-relief obtained as a result of unidirectional rubbing the polymer
surface; long polymer molecules are schematically represented by ellipsoids

a LC molecules b | | I I

OOOOO OO{O Surfactant
0°0°0%% % . \l l

7070 SO

== E== | Glasses
A

Fig. 10.20 Schemes of the planar homogeneous alignment of a nematic by an obliquely evapo-
rated thin film of SiO (a) and homeotropic alignment by a monolayer of surfactant molecules (b)
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contacting the film. Laser ablation and ion beam irradiation of polymers seem to be
competing alignment techniques for displays [19].

A tilted orientation of molecules at a given angle to the surface is achieved using
layers of SiO produced by oblique evaporation at a very large angle (80-90 deg)
between the normal to the surface and the direction to the SiO source. Tilted
orientation of the nematic liquid crystal molecules can also be achieved by using
photosensitive films irradiated by obliquely incident light.

10.3.2.2 Homeotropic Alignment

Carefully cleaned or etched glass surfaces are conducive to a homeotropic orienta-
tion. Some crystalline cleavages (Al,03, LiNbO3) also align nematics homeotropi-
cally. However, the most popular technique for the homeotropic alignment is
utilization of surfactants. The mechanism of homeotropic alignment by an ultrathin
(even monomolecular) layer of a surfactant is demonstrated in Fig. 10.20b. An
alignment layer can be obtained by withdrawing the substrate from the solution of
surfactant, by polymerization of the organosilicon films directly on the substrate,
and, in particular, by using a plasma discharge. Moreover, surfactant molecules can
be introduced directly into the liquid crystal (e.g. lecithin or alkoxybenzoic acids)
where they form the aligning layers by adsorption at the interface with a substrate.

10.3.2.3 Multistable Alignment

When a nematic is put in contact with a crystalline substrate, the surface of which
possesses the N-fold rotational symmetry (e.g., N = 6 for mica, N = 4 for NaCl),
the director is free to choose any of those N easy axes. In experiments, the
orientation depends on the pre-history of the sample. A director field n(r) in a
nematic drop put on the surface of a crystal acquires the same N-fold symmetry. In a
sandwich cell, when crystalline axes of the opposite interfaces coincide, different
domains are observed, with uniform structure or twisted through an angle 2n/N
[20]. Using a properly oriented external in-plane field one can switch domains from
one of the possible N orientations to another. Thus we have multistable alignment.
When the crystalline axes of the opposite interfaces do not coincide, many domains
with different twist angles are possible.

Vacuum evaporation of SiO films onto glass substrates at a grazing angle can
also result in multistable alignment. Usually, the evaporation provides either the
planar (L to the evaporation plane) or tilted (in the evaporation plane) orientations.
However, in a certain range of the incidence angle of the SiO beam and thickness of
a film the bistable alignment is achieved. The director is aligned at a certain polar
angle to a substrate and takes one of the two azimuthal angles located symmetri-
cally with respect to the evaporation plane. The electric field can switch the director
from one stable position to the other; thus the electrically controlled surface
bistability has been demonstrated [21]. Multistable alignment can also be achieved
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by combination of several factors, e.g., using a microrelief in the form of a
diffraction grating and treatment of the aligning film by polarized UV light.

The change in the director alignment at the surface can occur spontaneously
when temperature is varied (anchoring transition) due to the adsorption or desorp-
tion phenomena discussed earlier. However, close to the phase transition to the
isotropic phase, the order parameter and other related properties (surface tension,
elasticity) are markedly changed. Due to this, close to the transition, a nematic
liquid crystal aligned by a fluoropolymer with very low anchoring energy continu-
ously changes the angle of the alignment at the interface from zero to n/2 demon-
strating a continuous anchoring transition [22].

10.3.3 Berreman Model

The macroscopic theory of elasticity can explain why longitudinal ridges and
troughs on the surface of a glass are conducive to the planar homogeneous align-
ment of nematic liquid crystals [23]. For simplicity, a sinusoidal shape is chosen for
the cross-section of a surface relief with the wavevector ¢ directed along x, see
Fig. 10.21a:

a(x) = A sin gx (10.33)

The amplitude A is assumed to be small and the components of the director n at
any distance from the surface remain in the figure plane at an angle 6(x,z) with
respect to the x-axis: n, = cosd ~ 1, n, = 0, n, = sin3 =~ 3. With a distance z
from the surface the amplitude of the relief decreases and deeply in the bulk the
director is parallel to the x-axis. From Fig. 10.21a, we can see that such a director
field requires some energy due to elastic bend distortion. If the director were
parallel to the grooves n = n, everywhere as in Fig. 10.21b the director field
would be uniform with zero elastic energy. Therefore Berreman has calculated
the extra energy for the geometry (a) with respect to the case (b).

a 0 b,
nlly

. O O O O
Fig. 10.21 Berreman model 2n

[23] illustrating an elastic free q
energy difference between the

two configurations of the

director, perpendicular (a) O 0O O O
and parallel (b) to grooves of N N
the surface relief

ay
~Y
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At the surface (z = 0) the z-component of the director is assumed to be tangen-
tial to the relief (strong anchoring boundary condition):

3(z=0) =n.(x) = a%x = Agcosgx (10.34)

In the one constant approximation (K;; = K), the Frank distortion energy (8.15)
can be written in terms of the angle 9:

09\*>  [09\’
(5) . (&) 1 (1035)

The minimization gives us the Laplace equation:

K

gdzz

%9 %9 _,
-+ —=V’3=0 10.36
ox2 072 v ( )
with a solution
3(x,z) = Ag cos(gx) exp(—qz) (10.37)

that satisfies the boundary condition (10.34) and the second boundary condition of
9 =0atz— oo.
Then, we find derivatives

09
— = —Aq’ singx - exp(—qz);

9
o — = —Aq” cos gx - exp(—qz),

0z

and substitute them into (10.35) to obtain the energy density
K .\ a2
84 = E(ACI )" exp(—2qz). (10.38)

Hence, the major part of the elastic energy is concentrated within a layer of n/g
thickness. Integrating over z we find for the total elastic energy per unit area

1
—KA%P (10.39)

)
Fd = Jgd(z)dz = 4
0

Thus, the orientation of the director perpendicular to the grooves costs an excess
elastic energy quadratically dependent on the relief depth A and inversely propor-
tional to the cube of its period A = 2n/g. For typical values of A = 1 nm, A = 20
nm and modulus K =10~° dyn, F; = 8.107° erg/cm2 (or 8.1072 mJ/mz), which is
close to experimental data. If a relief is two-dimensional in the x- and y-direction
(e.g. at an etched surface) the director acquires the most profitable, homeotropic
alignment along the z-axis.
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Chapter 11
Optics and Electric Field Effects in Nematic
and Smectic A Liquid Crystals

11.1 Optical Properties of Uniaxial Phases

11.1.1 Dielectric Ellipsoid, Birefringence and Light Transmission

11.1.1.1 Dielectric Ellipsoid

We begin with the electric displacement vector D; = g;E; where i, j = x, Y/, z/ are
Cartesian coordinates and the summation over repeated indices is inferred. The
tensor of dielectric permittivity is symmetric €; = ¢;;and generally (even for biaxial
medium) has six independent components. If an insulator is placed in the electric
field, the stored electric energy density is given by

1 1
8electr = EE ‘D= gEigijEj 11.n

or
88etect = EvEy + EyyEy + 22E5 + 28y 2EyEy + 2802 EvEx + 280y EvEy
This is an equation of an ellipsoid arbitrary oriented with respect to any Carte-

sian frame [1]. The frame may be chosen in such a way that the ellipsoid will be

oriented with its principal axes along the co-ordinate axes. In the new frame x, y, z,
the tensor is diagonal that is all the off-diagonal terms vanish:

8M8etect = €y + EyyEy + €E7 (11.2)

The same energy may be expressed in terms of the electric displacement vector
components:

D> D; Dp?
8MGetect = —> + — + —= (11.3)
Exx Eyy €2z
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Fig. 11.1 Dielectric ellipsoid
for a biaxial medium

and now the constant energy curves (8mg...,) form ellipsoids in the space D,,
Dy, D.,.

Finally we go back to the x ,y, z space replacing vector D//8mg.c; by vector r.
Then we obtain the dielectric ellipsoid shown in Fig. 11.1 with three semi-axes
equal to v/€3, /€3, /€3 and satisfying to equation

2P 2

—t+—=1 (11.4)
€1 %) €3

From this ellipsoid we can find /¢ for any direction specified by radius-vector r,
see the figure. For example such an ellipsoid corresponds to the biaxial phase of the
SmC liquid crystal. In this case all the three semi-axes are differente, =€, # &, = Eyy
# &3 =¢,,. For auniaxial phase (nematic, smectic A) the ellipsoid degenerates into an
ellipsoid of revolution that is invariant for rotation about, e.g., the z-axis. For an
isotropic liquid or a cubic crystal the ellipsoid degenerates into a sphere of radius /€.

At optical frequencies & = n* and the same ellipsoid becomes the so-called
“optical indicatrix” with its semi-axes exactly equal to refraction indices n,, n, and ns.

2 2 2
4L+ =1 (11.5)
nyo ony g

Therefore, electromagnetic waves with polarization vectors along x, y or z axes
propagate with three different velocities ¢/n;, ¢/n, and c¢/n3. In addition, two waves
with the same wave normal h but orthogonal polarizations s propagate in different
directions; the wavevector of the ordinary ray is parallel to the normal, k,llh, but
wavevector Kk, for the extraordinary ray forms an angle with h. It means that the
Snell law is not fulfilled for the extraordinary index of biaxial crystals. This results
in a double refraction phenomenon. For biaxial crystals the double refraction occurs
even at normal light incidence onto their surface; for uniaxial ones only at oblique
incidence.

11.1.1.2 Extraordinary Index of a Birefringent Layer

The most interesting for applications are uniaxial phases in which ny = n, =n, and
n3 = ny. For k Il n, z (n is the director) light of any polarization propagates along the
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optical axis with the same velocity c¢/n, (no extraordinary ray). For example, this
corresponds to the normal incidence of light onto homeotropically aligned nematic
layer (case a in Fig. 11.2). For an arbitrary angle between k and n, the beam of
unpolarised light can always be decomposed into two beams. The ordinary ray with
electric polarization vector e L n propagates with velocity c/n, independent of the
incidence angle. The extraordinary ray propagates with velocity c/n,; Index n,
depends on the incident angle and can be found from the optical indicatrix. For
example, in Fig. 11.2b, a nematic liquid crystal has a tilted orientation with an angle
o between the light vector e and the director n. Then the refraction index for the
extraordinary ray as a function of the tilt angle 3 = 1/2 — o between n and z is given
by:

anJ_

\/nﬁcoszf} + n? sin®9

ne(9) (11.6)

Here n; and n, are principal refractive indices of the nematic (semi-axes of the
ellipsoid).

This result came about from the consideration of the ellipsoid cross-section in
plane (n, k) and the position of point P on the indicatrix, see Fig. 11.3. The
projections of the segment n.(3) on the semi-axes of the ellipse are

X=n.(9)cosY, Z=n,(9)sin3and ¥ =0

The point P is situated on the indicatrix, therefore, from (11.5) we obtain the
expression

T A TR

incidence on a planar layer of
a nematic liquid crystal with O
homeotropic (a) and tilted (b) O
alignment (k is light O O O O Vi o O e
propagation vector, e is light
polarization vector, n is the l l
director)

Fig. 11.3 The geometry for
calculation of the
extraordinary refraction index
n.(9) for the tilted nematic
shown in Fig. 11.2b. Z and X
are projections of segment OP
on the long and short ellipsoid
axes
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n2(9)cos’9 N n2(9)sin’9

and then arrive at Eq. (11.6):
~1/2
) <00529 N sin28> nny
Re\V) =\ =72~ T3~ =
ny n nﬁcosZS + n?sin?9

For example, for the homeotropic orientation, 3 = 0 and n,3) = n,; for
homogeneous planar alignment 3 = 1/2 and n,(3) = ny.

11.1.1.3 Light Ellipticity

Consider the normal incidence of unpolarised monochromatic light of wavelength A
onto a homogeneously aligned (n Il x) nematic or SmA layer of thickness d. The
layer is between the polariser (P) and an analyser (A) with an arbitrary angle
between them, Fig. 11.4. We are interested in the light polarization and intensity of
the transmitted beam [2]. The reflected light intensity is negligible (few percents of
the incident intensity), the absorption in a liquid crystal, is absent and both
polarizers and analyser considered to be ideal.

The amplitude E of the linearly polarised light beam after a polarizer can be
projected onto the two principal directions of the nematic, parallel and perpendicu-
lar to the optical axis x:

Ey=a=Ecos@;E; =b = Esino; (11.7)

The ordinary and extraordinary rays passing the layer acquire an additional
phase shifts equal, respectively, to 2mn.d/A and 2mn.d/A, therefore their phase
difference is & = ( 27/ ) (ne — ny)d.

Generally, the interférence of two fields results in an elliptic polarization. It can
be shown if we consider time dependencies of the fields. After the liquid crystal
layer, the output fields are:

Fig. 114 Transmission of a —t—, b Eppooo. E
unpolarised light tl.lrough a ——t— !
homogeneously aligned z == = )
nematic (or smectic A) layer; ——t———— A-M E v
geometry of experiment with — A P-axis ¢
polarizer P and analyser A (a) Y X Y

and definition of characteristic
angles ¢ and y, (b)
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X =acosot,y = bcos(wt — d) = b(cos ot cos d + sin wzsin ) (11.8)

From these two equations for we obtain y/b — cos ¢ cos & = sin ®f sin & and
. . X
sin ¢ - sin & _r_x cos 0
b a

or

2 2
.2 . 2 Y 2wy X 2
Sin“®t - sin“d = == — — c0s 8 + — cos~ 0.
b?>  ba a?
In addition, using cose®f = x/a we may write cos2? - sin>d = ';'—isinz&
Now we make a sum of the last two equations and exclude the time dependence.
Then we arrive at the equation for the output field (but before an analyser) in the

form of the equation for an ellipse:

X2 2 2x .
;—F?’)—z—a—bycosﬁzsmzé (11.9)

The orientation of the ellipse axes depends on polarizer angle ¢ (through @ and
b) and phase retardation d. Consider few interesting consequences of (11.9).

Case 1 Corresponds to the So-Called A/4 Plate

The layer thickness satisfies the condition (n, — n,)d = A/4, i.e., d = 7/2, and the
ellipse becomes oriented along the principal axes of the nematic layer and the ratio
of its semi-axes depends only on polarizer angle ¢:

AENIR A (11.10)

Particularly, for ¢ = £mn/4 i.e. a = £b the equation for an ellipse degenerates
into the equation for a circumference:

¥ 4+y =4 (11.11)

The light beam transmitted through the layer becomes left or right circularly
polarised. Thus a A/4 plate converts the linear polarization to one of the possible
circular polarizations, left or right dependent on a sign of parameter b as illustrated
by Fig. 11.5. Note that, in the figure, the right polarization corresponds to the
electric vector of light e rotating clockwise for an observer looking at the incoming
beam (according to the convention used in many classical books, for instance
in [2,3]). However, more recently, another convention is often used according to
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Fig. 11.5 Right and left Light
circular polarization of light 4

according to the classical
convention (according to the
modern connection the
handedness is reversed)

which the right polarization of light follows the right screw law [4]. Personally, I
like more the second one, however, throughout the book we follow the traditional
convention.

Case 2 Corresponds to the A Plate

The layer thickness satisfies the condition (n, —n,)d = /4, i.e., 6 = 2mn. Then,
according to (11.9), the ellipse degenerates into the straight line ¥/, — Y/, = 0 or
y = xb/a = x-tan@. This means that after the cell the light is linearly polarised. The
same equation is valid for 6 = 2kn where k is any integer. The angle ¢ is determined

by the angular position of polarizer; for @ = m/4 the cell transmit light without
change of polarization, y = x.

11.1.1.4 Light Transmission (Cell Between Polarizers)

The transmitted light intensity is calculated as follows. The analyser can only
transmit the field components parallel to its axis, that is projections of E; and E |
on the analyser direction A, see again Fig. 11.4:

Eﬁ =Ecos@cos(¢ —y); E} =Esinosin(¢ — y); (11.12)

The total light intensity / after an analyser is a result of interference of the two
rays

I=1+11 +2(1111)" cos . (11.13)
Then

I = E*{[cos ¢ cos(¢ — y)]* + [sin@sin(p — y)]* + Zsin 2@ sin2(¢p — y) cos 8}
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and using cos’(2¢ — ) = 4[1 + cos2(2¢ — )] and cosd = (1 - 2sin*3) we find
the transmitted intensity:

I = E*[cos®y — sin 29 sin 2(¢ — y)sin®9)] (11.14)

Consider again two important particular cases:
Case a, parallel polarizers, A Il P. In this case y = 0 and

Iy = E*(1 — sin®2¢ - sin*%%) (11.15)

There are maxima of transmission for ¢ = 0, /2, m.. .etc, and [, (max) = E2,
when the incoming polarization coincides with the principal axes x or y. Between
them there are minima of transmission corresponding to ¢ = w/4, 3n/4, 5n/4. ...
Their intensities /;; (min) = E? c052(8/2) do not show full darkness (except a special
value for phase retardation when c052(6/2) =0).

Case b, crossed polarizers, A L P. Now y = m/2 and

I, = E%in*2¢ - sin*%) (11.16)

Now minima for ¢ = 0, /2, m... correspond to complete darkness and the
maximum intensity is observed at ¢ = m/4, 3n/4, Sn/4... This case is the most
interesting because provides a high contrast for a cell under a microscope. Let us
select the angle @ = m/4 between the director and polarizer. Then we have
maximum light intensity after analyser

(11.17)

The light intensity has an oscillatory character as a function of cell thickness d,
optical anisotropy An = n.-n, and wavelength A. This can be used for measure-
ments of An.

11.1.1.5 Measurements of Birefringence of Nematics

For example, we can use a wedge form cell, in which thickness d(x) changes along
the optical axis of a nematic, see Fig. 11.6. The nematic director is parallel to x, the
polarizer P is installed at an angle of 45° to the x-axis and analyser A is crossed with
polarizer. If such a cell is illuminated by a filtered light of wavelength A, then, a
series of contrast interference stripes is seen which are parallel to the y-direction.
The dark stripes correspond to dAn/A =0, 1, 2 .. k and the distance between them is
constant, / = Asina/An where o is the angle of the wedge. The latter can be found
from the “stripes of equal thickness” in a part of the wedge not filled with the
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Fig. 11.6 Scheme of simple measurements of optical anisotropy An = ny -n, by observation of
interference lines in a wedge-form nematic cell placed between cross polarisers (o: wedge angle;
P: polarizer; A: analyzer; M; microscope; k: order of interference). The same scheme can easily be
modified to measure refraction indices 7, and 7, separately as explained in the text

Fig. 11.7 Temperature
dependencies of the
transmitted light intensity /,,
and phase retardation &
(above) and principal
refraction indices (below)

7

An Nigo
n

nematic. With known wedge angle one can also use the “stripes of equal thickness”
for measurements of », and n, separately: to this effect the electric vector of a
linearly polarised light should be installed parallel or perpendicular to the director
and analyser is not used.

The temperature dependence of An = ny-n, where nyand n, are principal indices
of a nematic (lower plot in Fig. 11.7) can simply be measured using geometry of
Fig. 11.4. A cell with fixed thickness d about 30 pm and well-aligned nematic (or a
smectic with intermediate nematic phase) is heated up to the isotropic phase. Due to a
decrease in An with increasing temperature, the transmitted intensity oscillates and
these oscillations can be numbered as 1,2,3..k counted from the isotropic phase. This
way the phase retardation 6(T) = 2ndAn(T)/A = 2w, 4w, 6m. . .2kn can be plotted as a
function of temperature and An(T) found from Eq. (11.17), see upper plot in
Fig. 11.7. The absolute values of n;5, and n, can easily be found with a refractometer
although one can meet some problems with refractometry of 7. We can also change
the direction of the director by external factors (electric and magnetic fields, acoustic
vibrations, flow of a liquid crystal) and follow these changes by birefringence
measurements with high accuracy. For a comprehensive review of experimental
data on optical properties of liquid crystal see [5].
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11.1.1.6 Twist Structure

Consider one more particular case related to elliptic polarization of light that passes
a birefringent layer. Let the layer be very thin, d—0 and the principal axis of the
layer forms an angle ¢ with the input linear polarization. Then we go back to the
general form of the ellipse (11.9) and using smallness of phase shift  (cosd ~ 1 — &
~ 1 and sin*3 ~ &%) get

X2 y2 2xy 2
—4+=——(1—-90)=0". 11.1
az—i_b2 ab( 8) =3 (11.18)

Neglecting 6 << 1 in parentheses we obtain

SR S (11.19)

This equation describes a straight line

b bSZEsmd)

y%;x— ECOSd)x—bF):xtand)—bS

showing that the outgoing beam is linearly polarised and its electric vector forms a
small angle bd with respect to the vector of the linearly polarised incident beam.
So, there is no ellipticity!

Now imagine a stack of very thin plates or layers, in which the director turns by a
small angle upon proceeding from one layer to the next one. Then, after each
passage of a successive plate, the electric vector of the beam rotates through a small
angle and such a stack of plates “guides” the light polarisation. We can prepare such
a “stack” using different boundary conditions for alignment of the nematic. For
instance, if the directors at the top and bottom glasses are strictly perpendicular to
each other, the nematic is twisted through angle ©t/2, as discussed in Section 8.3.2. It
is of great importance that the light polarization follows the n/2-twisted structure at
any wavelength. This is so-called “waveguide” or Mauguin regime [6]. When light
leaves the entire nematic cell its electric vector is turned through m/2 with respect to
the electric vector of the incident beam. It is evident that, a planar cell is non-
transparent when installed between crossed polarizers with polarizer P parallel (or
perpendicular) to the director, because an analyser absorbs light almost completely,
Fig. 11.8a. A homeotropic cell is also non-transparent when observed through
crossed polarizers. On the contrary, a twist cell completely transmits light under
the same conditions, Fig. 11.8b.
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Fig. 11.8 A planar cell installed between crossed polarizers is non-transparent (a) whereas a twist
cell rotates the linear polarization through /2 and transmits light (b). Polarizer P is parallel to the
director at the input plate

11.1.2 Light Absorption and Linear Dichroism

11.1.2.1 Extinction Index, Absorption Coefficient, Optical Density

An electromagnetic wave propagating with velocity v in a medium is described by
the wave equation:

1 °E
v

Assuming E(r, f) = E(r)exp(—iot) we exclude the time dependence and get the
Helmbholtz equation:

2
AE + e 2 E = 0
c

where € and p are dielectric and magnetic permeability and ¢ light velocity in

vacuum.
For the plane wave E(r) o« expikr and we obtain the dispersion relation:

k* = gpw?/c?. For the absorbing medium the wavevector amplitude k becomes
complex:

s = (gp)1/2§% (n+m)§ (11.20)

The absorbing medium can be described in terms of a complex refraction index
n* = n + ix where n is real refraction index and x is real extinction index. For non-
magnetic medium p ~ 1 and (n + ix)? = n? — K2 4 2ink = ex = € + &” we find
the relations between the components of £* and n*:

n* —k*> =¢ and 2nk = € (11.21)

From (11.21) it is seen how any kind of energy dissipation contributes to real part of
the dielectric permittivity € at optical frequencies.
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The dimensionless extinction index k can be related to the absorption coefficient
Oups (cm™') by the well-known Buger law for the light intensity / transmitted
through an absorbing layer of thickness z (the reflection is ignored):

I = Iy exp(—0taps2) (11.22)

Indeed, comparing (11.22) with a general form for imaginary part of Imk* =
iKkm/c, we find

2 4
I oc (Eexpikz)’ = B2 exp(—=—z) = E? exp(— = k)
C A

and then obtain

2K® _ 4k
c 2

Olapy = (11.23)

In experiment, a spectrometer usually measures the so-called absorbance or
optical density D of a sample with thickness d:

D = logIOIO/] = loglol/T = Ogpsdlog e = 0.4340,,,d (11.24)

Note that here, the losses due to reflection from and scattering in the sample are
disregarded.

This relationship may be used for calculation of the absorption coefficient o
and extinction coefficient x from measured values of D. A typical absorption
spectrum of a liquid crystalline substance in the isotropic phase is shown in
Fig. 11.9a. In the UV part of the spectrum, the absorption originates from molecular
electronic transitions (with vibronic structure). Except for dyes, the long-wave edge
of organic compounds is situated at about 250-350 nm depending on particular
molecular structure. As a rule, liquid crystalline materials are transparent in the

a b c

AO-Oresn

IR

Fig. 11.9 Typical absorbance spectrum of a mesogenic compound (in the isotropic phase) with
absorption bands in the visible and infrared spectra (a), typical molecular moieties responsible for
the UV and IR absorption (b) and characteristic polarization absorption spectra (dichroism) in the
nematic phase (c)
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visible and near IR range (400-2,500 nm) although thick layers can strongly scatter
light. Some IR absorption bands are very characteristic; they are caused by vibra-
tions related to particular molecular bonds, e.g., -C = O, -C-F, -C = N, -C-H,
stretch vibration of benzene ring, etc. Such bands can be used for identification of
substances by IR spectroscopy.

Each particular electronic or vibrational band originates from a quantum transi-
tion between two energy states i/ and j characterised by a transition dipole moment
P, that is a vector. The molecule only absorbs light when (ep,,) # 0, i.e., when there
is a non-zero projection of the light electric vector e onto p,,. The absorption cross-
section of a molecule G, in (sz) units is proportional to Ip,,l2 and can be related
to the absorption coefficient and a number of molecules in a unit volume 7, [cm73]
aS Ogps = O(abs/nw

11.1.2.2 Linear Dichroism

Generally, the transition moment can be oriented at an arbitrary angle to the
molecular frame but the symmetry imposes some constraints. Consider a cyanobi-
phenyl compound as an example, see Inset to Fig. 11.9b. This molecule, has two
transitions especially interesting for us.

1. The electronic transition between the © and ©* states of a m-electron delocalized
over the biphenyl moiety due to a chain of conjugated single and double bonds.
2. The vibration transition of the triple bond C=N in the cyano-group.

For both transitions the dipole moment p,, is directed exactly along the longitu-
dinal molecular axis. Thus, if such molecules form the nematic phase, the absorp-
tion coefficient would depend on the average angle between the light polarization
vector e and the longitudinal molecular axes, i.e., between e and the director n.

As a result, the absorption acquires properties of a second rank tensor with two
principal components o,y and o, (Il and L to m). The qualitative absorption
spectra for two polarizations are shown in Fig. 11.9c. For the isotropic phase, due to
complete averaging over oscillator directions the tensor degenerates into a scalar
Agps = (Cxahsll'*'zaahxl)/s‘

We can introduce a dichroic ratio K = 0 ,g/%aps1 OF, in terms of the optical
density, K = Dy/D . In the isotropic phase K = 1. In the nematic phase, if the
alignment were ideal (S = 1) the dichroic ratio would be infinite, K—oco. Thus we
can use a factor similar to ratio S = g,/g,”*" (see Section 3.5.2)

Olabs|| — OlabsL K—-1
Olapbs|| +20ps1. K +2

Sabs = (11.25)

as a measure of the orientational order parameter of the nematic or SmA phase.
Experiments [7] show that, for a properly selected absorption bands with p,. |l n or
P« L none can obtain Sy, values very close to S measured by other techniques such
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as NMR, magnetic anisotropy or birefringence. Moreover, if the angle 3 between
the longitudinal molecular axis / and selected moment p,, is known the parameter
Sabs can still be found using a correction factor dependent on f:

Sabs - (1 —%sin2B> = §—+; (11.26)

When p;; forms with / a “magic” angle B, ~ 54.7° the dichroism is not observed
at all (K = 1), for B < B, the dichroic ratio K > 1; for f > B,, K < 1. For small
angles B formula (11.26) works quite well. Note that the order parameter S is the
fundamental characteristic of a liquid crystal microscopically related to a more or
less rigid molecular skeletons. Therefore, S,,s = S should be considered as a value
independent of the electronic oscillator angle f.

Sometimes it is difficult to perform measurements in the UV or IR range on a
pure liquid crystal. Then, genuine orientational order parameter of the mesophase S
can be estimated using dichroism of guest dye molecules dissolved in a liquid
crystal. Then the dichroism measurements can be made in the visible range where
good quality polarisers and fast spectrometers are available. However, the dye
molecules should have molecular structure similar to that of the liquid crystal
molecules; only in this case S,,s(dye) =~ S.

11.1.2.3 Kramers — Kronig Relations

The real and imaginary parts of the complex refraction index n*(®) = n(®) + ix(®)
are related to each other through the Kramers-Kronig relation:

n(w) — 1 :%J ue®) g, (11.27)

Here ® and u are the same angular frequencies lettered differently in order to
perform a proper integration [8,9].

Mathematically, integral Kramers-Kronig relations have very general character. They
represent the Hilbert transform of any complex function g(w) = &¢'(0) + ig” ()
satisfying the condition € * (®) = &(—m)(here the star means complex conjugate).
In our particular example, this condition is applied to function n(®) related to
dielectric permittivity €(®). The latter is Fourier transform of the time dependent
dielectric function &(¢), which takes into account a time lag (and never advance) in
the response of a substance to the external, e.g. optical, electric field. Therefore the
Kramers-Kronig relations follow directly from the causality principle.

For practical purpose, the Eq. (11.27) is very useful because, using a spectro-
scopic technique, it is much easier to measure the frequency dependence of the
extinction index x(®) than the frequency dependence of the real value of refraction
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index n(®). In the ideal case, having k(w) at any wavelength (A = 2nc/®) from O to
00, we would obtain exact n(®) values over the whole spectrum from the UV to
microwave range. In practice, however, the accuracy is limited by an experimen-
tally available range of k(w). On the other hand, very often the frequency range of
the desirable values of n(®) is also limited and the calculation technique may still be
applied.

Consider a typical absorption spectrum o,,,(A) measured in the range from A to
A; shown in Fig. 11.10a. It corresponds to a liquid crystal (in the isotropic phase)
with some amount of a dye dissolved in it. The liquid crystal has a strong absorption
in the UV whereas the dye has UV absorption similar to that of the liquid crystal,
but additionally absorbs in the visible range. We meet such a situation in the display
technology (guest-host effect) or in the technology of non-linear optical materials.
The spectrum of n(A) qualitatively corresponding to o,,s(A) is shown below. Such a
picture follows from the light dispersion theory and from Eq. (11.27). The back-
ground value ny, is provided by all short-wave absorption bands not included in the
spectrum (A < Ag). That part of the whole spectrum is unknown.

Going from the left to the right along the wavelength axis (i.e. ®—0) we
subsequently meet regions of anomalous and normal dispersion located on the left
and right slopes of each absorption band. It is very important, that the structure of the
n(A) curve in the vicinity of each absorption band a,,,(A) is determined exclusively
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Fig. 11.10 Kramers-Kronig relations: (a) Qualitative spectra of absorbance of an isotropic liquid
with admixture of a dye in the UV and visible range (above) and corresponding spectrum of the
refraction index (below); (b) Experimental polarization spectra of absorption coefficient o, for a
nematic liquid crystal E7 doped with a small amount of dye Chromene (upper plot) and
corresponding spectra of the increment of refraction indices & for two polarizations calculated
with Eq. (11.29) (lower plot). For both plots symbols (e) and (0) mean linear polarizations parallel
and perpendicular to the director
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by the spectral features of that particular band and, with increasing A, the value of

n()\) is systematically growing upon crossing each new band encountered.
Therefore, for the practical purpose, using o, = 2 K®/c, we can rewrite

Eq. (11.27) for a limited spectral range u,—u related to our experiment as follows [10]:

e f o(u)

n(®) :nb+; Juz—wzdu (11.28)
up
or in terms of the wavelength:

P
n(d) =np+-— Jia( ) sdi! (11.29)

2n b

= ( /i)

It is easy to calculate numerically a spectral dependence of n(A)-n,. The only
problem is to find ny,. A practical way is to measure rn, at a convenient wavelength,
using, say, a laser and after this, to pin the whole spectrum to this particular point.

The technique described can also be applied to measuring the dispersion of each
principal components n; and n, of the refraction index for nematic or SmA liquid
crystals using spectral data on principal absorption coefficients. An example of our
measurements and calculations is shown in Fig. 11.10b. On the upper plot are
presented the experimental polarization absorption spectra o,,,(A) (Il and L to the
director) of a homogeneously oriented, 10 um thick cell filled with nematic liquid
crystal mixture E7 doped with 0.5% of lasing dye Chromene. On the lower plot, the
spectra of the refraction index increment & = n — n,, calculated for each polarization
are given. We see that a small amount of dye substantially changes the refraction
index of the mixture in the vicinity of its absorption bands (by 5-107° in the
maximum). Such an effect can influence the performance of the liquid crystal dye
lasers. Note that, for solid anisotropic films of dyes, o,,.(A) may reach values as
high as 10 pm~' and the corresponding increment & (at absorption maxima)
approaches 0.4 — 0.5 (compare with n, ~ 2).

11.1.3 Light Scattering in Nematics and Smectic A

Light scattering in nematics is very strong. A thick (hundreds of micrometer)
homeotropically oriented preparation between crossed polarisers does not look
black under a microscope but rather sparking at random. In the beginning of the
liquid crystal history it was taken as a strong argument in favour of the so-called
“swarm” model. Later Chatelain [11] made a series of careful experiments using
polarised light. He observed strong anisotropy of light scattering in nematics. When
the electric vector of the scattered light s was perpendicular to the electric vector of
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incident light f, light scattering was 10° times stronger than in the isotropic liquid.
For s Il f, the scattering was much weaker but still considerably stronger than in the
isotropic phase.

Where does such a strong scattering anisotropy originate from? It is evident that
the optical anisotropy of nematic liquid crystals plays the crucial role. In fact, the
scattering is caused by fluctuations of the director n, i.e. the local orientation of the
order parameter tensor. The local changes in orientation of n imply local changes in
orientation of the optical indicatrix.

11.1.3.1 Isotropic Phase

Let us recall the reason for the light scattering in gas or in isotropic liquid. In that
case, we deal with fluctuations of the mass density. They can be represented by a
sum of normal elastic vibration modes (Fourier harmonics) with wavevector q and
frequency Q. When such a particular mode interacts with light of frequency ® and
wavevector k the conservation laws for energy and momentum read:

Q=0 -wand £q=k' -k (11.30)
where o’ and K’ are frequency and wavevector of the scattered light. When Q << ®

we have a case of quasi-elastic scattering with k' = K. Then, we have the same
Eq. (5.10) for the wavevector of scattering,

q = 2ksin20 = 2(®"Y.) sin 26, (11.31)
where n is refraction index, ¢ velocity of light and 20 is the angle between k’ and K,

Fig. 11.11a. Note that, in this case, normal vibrations are nothing more than sound
waves with velocity v, and simple dispersion law Q = v,q. The frequency shift

Ao = Q = +qvy, = F20n (VS/C) sin 20 (11.32)
due to interaction of the incident light wave with the sound wave results in the

appearance of two satellites on both sides of the main frequency (Rayleigh line),
namely, ® + Q and ® — Q called Mandelshtam-Brillouin doublet.

Fig. 11.11 Geometry of a
quasi-elastic scattering in

general (a) and scattering on k

the director fluctuations with q
director nllz, and vectors of k

incident (f) and scattered (s)
light polarizations
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It follows from the theory of elastic scattering (@ = ') that, for small modula-
tion or fluctuation of dielectric permittivity (de << &), the differential cross
section for the scattered light per unit solid angle around &’ is given by

o \’r._ 2
o= (W) [fs(q)s} (11.33)

where f and s are polarisation vectors of the incident and scattered light and €(q)is
the spatial Fourier component of the dielectric permittivity, which scatters light
with wavevector q. This expression is independent of the physical mechanism of
scattering and can be found in textbooks on optics. For scalar € (mass density
fluctuations) and f_Ls, ¢ = 0 because the incident field E; has no projection on the
induction vector Dy = ¢E; = 0. In this type of scattering, maximum scattering
intensity is observed when polarizations of the incident and scattered light coincide
with each other, flls.

11.1.3.2 Nematic Phase

The strong light scattering by nematics is due to specific properties of their
dielectric tensor (n; and n; are components of the director, see Section 7.2.2):

€ = 5L81j + Sa(l’l,‘nj) (11.34)

Consider a slab of a nematic with the director n = ny + 6n having small
fluctuating components n,, n, << n, = 1, see Fig. 11.15b. The slab is illuminated
by a light beam along the x-direction with linear polarization in the y,z plane, f = f,;j +
f.k. The scattered beam propagates in the same direction and has polarization
s = syj + s.k. We would like to find the “polarization structure” of the scattering
cross-section oy. To this effect, we only take the anisotropic part of the dielectric
tensor responsible for fluctuations and s <+ f scattering. Using Eq. (11.33) we have

n% Ny NN 0

_ 2
Of X 8- 8q(nong) -f =g, | myne  ny myn: |- | fy
NN nny n? I

nunyfy + nenf.
=g, | mfy+nnf.

nnyfy + nzf

Then, neglecting second order terms 7,7, and ny2 and non-fluctuating term with

2 .
n,” ~ 1 we obtain:

z

Of X £4(8yj + 5:K) - (mfid + nyfij + nyfik) = eany(s,f: + s:fy) (11.35)
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Now we see that only fluctuations of the director in the y-direction are essential,
dn = ny, because n. — fluctuations are not related to the director realignment and n, —
fluctuations are not seen by the transverse light wave incident from the x-direction.

Considering the term s,f. + s.f, we can distinguish two important particular
cases:

Case A: flingllzand f 1L dn

Then only the first term remains in Eq. 11.35. It means that there is no scattering
with polarization s Il f and the maximum scattering corresponds to s, thatis s L f

Case B: f L ng

Then we have only the second term with f;, and again there is no scattering with
polarization s Il f. The maximum scattering corresponds to s, that is s L f. Indeed,
maximum scattering by the director fluctuation is always takes place whens L fin
agreement with experiments on liquid crystals and in contrast to the case of
scattering by the density fluctuations in liquids and gases.

As to the large amplitude of light scattering in nematics it is explained by very
low elasticity of the nematic phase with respect to the director distortion that is
small Frank moduli K;; discussed below in Section 8.2. The strict theory of light
scattering in the static and dynamic regime has been developed by de Gennes
[12]. His expression for the mean square amplitude of the director fluctuations has
been discussed earlier, see Eq. (8.33). Using that equation and the tensor of
dielectric anisotropy (11.34), de Gennes found the amplitude of the dielectric
tensor fluctuations. After substitution of the dielectric tensor (11.34) into
Eq. (11.33) the differential cross-section for the light scattering by a nematic
was given by

G —\/(‘C"‘“ﬂ)2 T f 4 sih) (11.36)
> Anc?) Kuqh+Keq? 7 '

We can see that large optical anisotropy (factor € in the first multiplier) and
small energy terms (Kq° in denominator of the second multiplier) are responsible
for the high intensity of scattering. In addition, due to the factor of ¢°, especially
strong scattering is observed in small solid angles around the incident beam.
Finally, the polarization factor (the third multiplier) makes the scattering extremely
anisotropic. Eq. (11.36) is useful for the determination of elastic moduli from the
intensity of scattering in different geometries and the viscosity coefficients from the
optical frequency spectra of scattering [13].
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11.1.3.3 Smectic A Phase

The SmA phase has the same symmetry and the same dielectric ellipsoid as in
nematics, therefore, everything said above about the birefringence and dichroism is
valid for the SmA phase. However, due to specific elastic properties of the layered
structure, the director fluctuations are strongly quenched, and the SmA preparations
are much more transparent than the nematic ones. This is related to specific elastic
properties of the lamellar SmA phase [14].

According to Fig. 8.23 in Section 8.5.1, a fluctuation component of the layer
displacement u, = u along the x-direction (within the smectic layer) is described by
u(x) = ucosq x. Since the director angle 9 ~ Ou/0x = g, u, the free energy
density in Eq. (8.49) can be rewritten in terms of the 3,-angle fluctuations:

2

1
aist(q) = 5 (B 1 +K11qi> -9 (11.37)

7

For a cell of thickness d the z-component of the fluctuation wavevector is ¢, =
mm/d, see Fig. 11.12a where the corresponding harmonics are marked off by the
numbers 1, 2, 3, etc. For fluctuations along the x-axis, there is a critical vector
equals g. = (/dhy)"? (Eq. 8.48b), and, according to Egs. (8.50) and (11.37), the
intensity of the scattered light is given by

ksT B ksT
Ki (g +2420 ) Kn(al+mal/al)

I (92) = (1138)

This formula predicts that, in the SmA phase, in a typical geometry of
Fig. 11.12b, scattering vanishes in two limits:

1. For large scattering angles 20 and wavevectors ¢,

q1>>qc, I l/qi —0

Fig. 11.12 Light scattering by the smectic A phase. Fluctuating elastic modes in the z and x
directions in a planar cell with director ng Il z (a) and typical geometry of scattering on fluctuating
smectic layers (b)
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2. For small scattering angles 260—0:
7t

0
m%q -

g1 — Oand I x 7]

C

The maximum scattering occurs at some resonance values of the wavevector
g1 = m'?q.. In fact, light propagating along z probes different ¢, modes with the
number m. However, in comparison with nematics, well aligned, defect-free SmA
liquid crystals are weakly scattering.

11.2 Frederiks Transition and Related Phenomena

11.2.1 Field Free Energy and Torques

Consider a nematic liquid crystal with director n = (1, 0, 0) aligned along the x-axis,
Fig. 11.13. The liquid crystal is placed in the magnetic field oriented at an angle o
with respect to the director, H = (Hcosa, 0, Hsina), the diamagnetic anisotropy
Ya = Y — %o being positive. We are interested in the excess free energy of the
nematic due to the magnetic field. First we find the magnetization vector:
M = yH = (yH cosa)i + (3 H sina)k
=y [(Hsina)k + (H cos a)i] + y,(H cos a)i

or, on account of (Hn) = cosa and n = i, we obtain the magnetisation vector in the
form

M=y H+ y,(Hn)n (11.39)
When, instead of the magnetic field, an electric field is applied at some angle to
the director of a nematic liquid crystal, in analogy to (11.39), the electric polariza-

tion P is given by

P=7"E+ y£(En)n (11.40)

Fig. 11.13 Vector diagram z H
for calculations of ) o
magnetisation and free energy \ _

of a nematic liquid crystal in a 74/ n o x
magnetic field
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The magnetic field exerts a torque on the magnetisation:
I'y =M xH=y,(Hn)n x H (11.41)

that directed along the y-axis in Fig. 11.13. Correspondingly, the electric field E
exerts the torque on the polarization P:

rE=PxE:X§(En)nxE::i(En)an (11.42)
Y

Note that, from the tensor form € = 1 + 4n')EE, follows ¢, = 411)(5 because the
unity is included in the isotropic part of tensor €.

In each particular situation, these torques may be balanced by the elastic, surface
or viscous torques. The magnetic and electric field torques may be obtained
differently. Using minimisation of the free energy with respect to the director one
obtains the “molecular field” introduced earlier, see Eq. (8.27) and then finds the
torques as vector products with the director. Let us show it. The magnetic free
energy density is given by

H H
1
&y = — JMdH =— J [x ,H+ y,(Hn)n]dH = ~3 [XLHZ + xa(Hn)z] (11.43)
0 0

The first term in (11.43) is independent of the director; the absolute value of the
second one is maximal for H Il n that correspond to the minimum of magnetic free
energy. Minimisation of (11.43) results in a vector of the “molecular field”

ogn
hy =—"—=-— H)H
H on Xa(n )

directed along H and coinciding with (8.27). The torque exerted by the “molecular
field” on the director will be

I'y =hy xn=y,(Hn)n x H (11.44)

that coincides with (11.41).
For the fixed electric field applied to the sample from the electrodes, instead of
Helmbholtz free energy one should minimise the thermodynamic potential density:

H

1
o= gy [ D= e P () (1145)
0
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By analogy, the “molecular field” coming from minimisation of (11.45) is given
by (8.27) and the corresponding torque exerted by hg on the director is equal
to (11.42):

FE:hExn::—a(En)an (11.46)
T

Example: Let the electric field 1 V/um is applied at an angle of oo = m/3 to the
director of liquid crystal SCB (¢, = 6.7, gy = +19.7). What are the values of the free
energy density and the electric torque? We use the Gauss system: E = 1/(300-10~%) =
33.3 statV/cm, (En) = Ecos(nt/3); the energy(11.45) and torque (11.46) are g = (6.7
+ 13-0.25)E%/81 = 439 erg/cm’ (or 43.9 J/m? in the SI system) and 'y = (13/4n)-
E*cos(n/3)-sin(n/3) = 493 erg/em’ (49.3 J/m? in the SI system).

11.2.2 Experiments on Field Alignment of a Nematic

We shall discuss a very important macroscopic effect used in almost all the types of
modern displays. In his original experiment Frederiks [15] used a liquid crystal p,p’-
azoxyanisol (PAA), the grandfather of all other nematics, Fig. 11.14c. It was
oriented homeotropically in a wedge-form gap between a flat and convex glasses
as shown in Fig. 11.14a, b. The cell with PAA was placed between crossed
polarizers, heated up to about 120°C and observed with an optical system. All
this construction was installed between the poles of a magnet. In the figure, a
magnetic field H was oriented horizontally. In the absence of the field the cell
looked black. With increasing field H the PAA realignment began very sharply at a
certain critical field strength H. depending on the gap thickness d. Therefore, the
birefringence appeared and the optical pattern resembled the Newton rings, but the
contrast was much higher. It was shown that product H.d = const.

Cr-1180C-N-1359C-Iso

Fig. 11.14 Experiment by Frederiks. Homeotropically aligned nematic PAA in a weak (a) and a
strong (b) magnetic field and the correspondent optical pictures seen between crossed polarizers;
above a certain field a distortion occurs that causes the interference pattern. (¢) The chemical
formula of PAA (p,p’-azoxyanisol)
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What is the physics of the observed phenomenon? In the absence of an external
field, the elastic free energy is minimal for the vertical alignment of the director. We
know that PAA has positive anisotropy of magnetic susceptibility and the magnetic
field should align the director horizontally. However, such a rotation of the director
seems impossible as the magnetic torque I'y; is zero because, according to (11.44),
the molecular field equals hy = —y,(Hn)H and, in the experiment, H L n results in
(Hn) = 0. Therefore, the system must accumulate some threshold amount of the
magnetic field energy and then, accompanied by a small thermal fluctuation of the
director, abruptly change its state so that the elastic and magnetic field forces will
be in balance satisfying the minimum of free energy. This abrupt field-induced
change of the director alignment is called Frederiks transition. The threshold field
is proportional to the inverse thickness of the nematic layer and this will be
discussed below.

In practice we meet numerous situations, but there are three basic geometries
shown in Fig. 11.15. All upper sketches correspond to H < H., lower ones to
H > H_.In case (a), initially n, = 1, n, = 0, n, = 0 and just above the threshold the z-
component of the director appears. The distortion 0n,/0z = cos3 corresponds to the
splay term in the Frank energy (modulus K;). In case (b), initially n, = 1, n, = 0,
n, = 0 and above the threshold, the component 7, appears. The term 0n,/0z = sin3
corresponds to the bend term (modulus K33). In both the cases, with further increase
of H > H_ the distortion becomes of the mixed type. In case (c), initially n, = 1,
n, = 0, n, = 0 but above the threshold, n, appears. The term On,/0z corresponds to
the twist term (angle @, modulus K55). In this simple geometry, the twist distortion
is “pure”; it does not mixed with bend or splay.

11.2.3 Theory of Frederiks Transition

Our task now is to find the threshold field strength for the distortion and the
distribution of the director n(z) over the cell thickness above the threshold. This
time we shall take an initial homeotropic alignment, case (b) in Fig. 11.15. In its
modern form, the theory was developed by Saupe [16].

=
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Fig. 11.15 Three basic

configurations of the director —/= :: it E::
and the magnetic field for the ::jf: I fE i::,
. s = | HHY
Frederiks transition onset, = 9?: X, i ;::I
I ,

namely, splay (a), bend
(b) and twist (c¢)
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11.2.3.1 Simplest Model

The geometry of the problem is illustrated in more details by Fig. 11.16. A plane
nematic layer with normal z and thickness d is confined between two infinitely wide
plates. The magnetic field is applied along x. The molecules are rigidly fixed
(anchoring energy W—o0) at the opposite boundaries (394 = 0). When the field
exceeds the critical one (H.), the director turns through an angle 3(z) in the direction
of H. Due to the up-and-down symmetry of our cell, the deflection angle must be
symmetric with respect to the middle of the cell and the maximum deflection
3,, = 3(d/2) occurs at z = d/2 as shown schematically by the dot curve.

Our task is to find an analytical expression for 3(z) at different fields. The scheme
is as follows. First we shall write a proper integral equation for the free energy.
Then, following the variational procedure discussed in Section 8.3, we compose the
Euler equation corresponding to the free energy minimum and solve this differential
equation for 9(z). To simplify the problem we use the one-constant approximation
K| = K3, = K33 = K. In our geometry, 3 = n, and only one derivative, namely the
bend term with On,/0z, is essential in the Frank free energy form (8.15):

d

|
F=-
2

0

The magnetic part of the energy is given by Eq. (11.43).
Thus we have an integral equation for F = F(z,9,9’). The Euler equation of the
general form

dz

2
K(d8> — XastinzS(z)] dz (11.47)

OF Q9 0F _
08 0zdy
gives us the expression
—2y,H?sin 9 cos 9 — KEZ@ =0
0z 0z
9I‘VI V4 n
9

iE 000000 g 2 2 g—»
d/27: H,
7 0000000

0 1

Fig. 11.16 Magnetic field induced Frederiks transition in a homeotropically aligned nematic
liquid crystal. Below the threshold the director is parallel to z; magnetic field is in the x-direction.
Dot line shows the distortion above the threshold with maximum angle 9,, in the middle of the cell
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Therefore we obtain the differential equation, which express the balance of the
elastic and magnetic torques:

2

§227‘3+sin80059:0 (11.48)

where & is the so-called magnetic field coherence length.

1 /K
gzﬁ\/% (11.49)

We can easily check by differentiation that the first integral of (11.48) is
09\’ 1.
(62) = —g (sin*98(z) — C).

As in the middle of the cell 03/0z|,, = 0, the arbitrary constant C is easily
found:

C = sin9,,.
Hence,

ZJT? — é (sin®9,, — sin®9)"/? (11.50)

The next step is to integrate (11.50). We can do it for the lower half of the cell
0- d/2 (dashed area in Fig. 11.16):

S
d_ Jd—SZF(sms,,,> (11.51)
28 ) sin®9,, — sin’*9

First order elliptic integrals F(k) are tabulated and our problem is solved. In
Fig. 11.17a the distribution of the director is qualitatively shown for increasing field
from H = 0 to Hy,.

11.2.3.2 Threshold Condition

However, to make the result more transparent we shall look more carefully at a
simpler case of small distortions. From Fig. 11.17a one can see that, for a small
distortion, the director profile has a sine form. Consider, at first, a very severe
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a b
| Hy /2
o0
~ 5}
N Z
D ®s
T/4
z = 1
0 1 2 H/H,

Fig. 11.17 (a) Qualitative picture of the director distribution over the cell thickness with
increasing magnetic field from H = 0 to H, in the form of elliptic-sine functions (homeotropic
alignment, 3y = 0). (b) Absence of the threshold field for the initial tilted director alignment;
calculation of the maximum distortion angle 9,, changing with variation of the initial uniform
director tilt 3¢: no tilt (curve 1 showing threshold at H/H,. = 1), tilt angle $¢ = 1.7° (curve 2), 10°
(curve 3), 50° (curve 4)

approximation sind ~ 3, and sin3,,, &~ 3,,,. Then the torque balance equation (11.48)
reads:

262

g S+9=0. (11.52)

Evidently the general solution is a harmonic function, e.g. 9§ = 9,,singz + B with
wavevector ¢ = Tt/d. From the boundary condition at z = 0 or z = d we immediately
find B = 0. Substituting 3 = 9,,singz into the approximate equation we get

— ¢ +1=0.

As we are interested in the extremely small 3-angles, this result gives us the
threshold condition,

d
E =— (11.53a)
T
or, according to (11.49), the threshold magnetic field is given by
K
=" = (11.53b)
d\ Za

Thus we have obtained a nice result in complete agreement with the Frederiks
measurements, H.d = const, but we have not found yet the amplitude 3, of the sine-
form solution.
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We can find 9,, going back to the strict equation (11.51), and using the second
approximation, take sind ~ 9 — 9°/3!+. . ., (and same for sin9,,). Then, neglecting
terms of the order of 9° and higher,

fsin29,, — sin29 ~ (/92 — 97 /1 - 92+ 9?)

12

and using expansion (1—x)~ '“ ~ 1 + x/2+. . .we obtain

1 L8, + 9

/sin?9,, — sin?9 /92 — ¢

Now the equation (11.51) takes the approximate form:

S Y . 9 )
d dd dd 5 ds 1 9°d9
z_a = ) ) ~ +68m e g ey
o Vsin 3, — sin“9 0 \/9 — 9 92— 9 92 —9?
Finally, using standard integrals
3m
J diﬁ) = arc:sini Sm— r
o 2
and
O
92d8 9 S 2 9 S 32
Jiz_, 92 — 9|+ arcsin_— —04om.”
92 _ g2 2 0o 2 Snly 2 2
we arrive at the expression
d n1+w+%+ n1+%+
2672 6 12 2 4 7
and finally to the form:
d4_&_H 1+8—’2”+ (11.54)
ng & Heo 4" '

The result contains two terms, the first one presents the same threshold condition
d = &, already found above and the sum of the first and the second term allows us
to find the amplitude of the low-field sine-form distortion:
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O P R
SmN\/&:n_Z o= [ (11.55)

This form shows that the distortion develops at H > H_. smoothly, without a jump
as in the case of second order thermodynamic transitions.

11.2.4 Generalizations of the Simplest Model

Equations (11.53a) and (11.55) have been derived using several assumptions:

1. The electric field case has not been considered and that situation is more difficult
for two reasons. First the dielectric anisotropy &, can be comparable with
average <e> and therefore the field in a distorted nematic is no longer uniform
in the z-direction. In addition, a liquid crystal can be conductive, and this can
result in some specific features, for example, there could be a flow of mass even
in the steady-state regime.

2. A difference in Frank elastic constants was ignored.

3. The field direction was selected along one of the principal axis of the liquid
crystal.

4. The infinitely strong anchoring was assumed.

5. A steady-state situation was only considered. For example, a transient flow of a
nematic (backflow) that occurs even in the case of the magnetic field was
disregarded.

Below we shall consider qualitatively other situations (all of them are easily
modeled numerically).

11.2.4.1 Electric Field Case

Now the free energy density has a form (11.45) wherein, due to a large €, the field E
becomes dependent on coordinates. In this case, one should operate with electric
displacement D. For example, in the case of the Frederiks transition and the splay
geometry of Fig. 11.15a the field strength is:

_4nD. 4nD,
& g;sin®9(z) + g cos 9(z)

E(z)

Evidently, that the correction does not influence the threshold condition:

4dnK
€4

E.=

(11.56)

Ul
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Thus, in full analogy with (11.53b), the threshold voltage U. = E.d is indepen-
dent of thickness! However, already at relatively small amplitude of the director
deflection from its initial orientation, 3,, depends on ¢, and one should correct
Eq. (11.54) for dielectric anisotropy €,/€ :

U 1 .
:_z1+—(1+8—>9,2n (11.57)
U.

E
Ec 4 €1

11.2.4.2 Anisotropy of Elastic Properties

The Saupe solution (11.51) is not valid for different K;; and K33. To take into
account a ratio of Kk = K33 — K;;/ K;; one more term should be added to the
approximate form (11.57). Then we arrive at an even more correct form [17]:

E 1 €
— i+ (1+2 9 11.58
E. +4< +8L+K> m ( )

For positive k the initial slope of the 3(z) curves in Fig. 11.17a would be steeper,
for ¥ < 0 smoother.

11.2.4.3 Oblique Field or Tilted Alignment

If the electric (or magnetic) field is applied at a certain angle to the director in the
initial state, it creates a finite torque on the director and the Frederiks transition
becomes “thresholdless”. The same situation occurs if the field is applied along the
cell normal z but the initial alignment of a nematic is tilted at an angle 0 < 3¢ < m/2.
With increasing magnetic field the director deflection angle 3,, in the middle of the
cell is growing without threshold as shown in Fig. 11.17b (results of calculations,
MBBA, d = 24 pm [18]).

11.2.4.4 Weak Anchoring

When the anchoring energy W is finite and the field is applied, the director at the
surface has a certain freedom to turn under the action of the elastic torque from the
bulk. Then, the profile of 3(z) changes. The sine-form is still can be taken as an
approximation but its half-period is no longer equal to cell thickness d. Instead we
have d + 2b where b = K;;/W* is the surface extrapolation length already discussed
in Section 10.2.4. Figure 11.18 clarifies the situation. Therefore, the threshold field
for the weak anchoring conditions is reduced according to formula:
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Fig. 11.18 Profiles of the
director angle 3(z) in the same
magnetic field for rigid (curve
1) and weak (curve 2)
anchoring in the cell
geometry shown on the left

b I bl z
side d+2b

T K
H.= — 11.
- d+2b \/ Ya (11.59)

In principle, the measurements of this threshold allow us to find the value of b
and then W*. However, very thin cells have to be used to have d comparable with b
(less than 1 um). Note that, at the ordinate axes, curve 2 cuts angles 3 and 3, off.
They depend on the anchoring strength that can be different at either interfaces. The
general solution of the same problem for arbitrary fields (up to saturation of
distortion, i.e. break of anchoring) is also known [19] and we discuss it below.

0(z)

11.2.4.5 Break of Anchoring

Equation (11.53a) states that, for the infinitely strong anchoring, the threshold for
the director field distortion is determined by equality of the field coherence length &
(magnetic or electric) to the characteristic length of the cell d or, more precisely, to
the reciprocal wavevector of the weak distortion d/n. Equation (11.59) points out
that, for a weak anchoring, one reaches the threshold with increased characteristic
length (d + 2b) and, consequently, field coherence length . = (d + 2b)/m. For
infinitely weak anchoring, & — oo and the distortion is thresholdless.

Now the question arises, how strong should be the field in order to force the
director to be parallel to the field everywhere in the cell, including near-surface
regions. Surely, for infinitely strong anchoring (b = 0), such a field is infinite and,
for b— o0, the threshold tends to zero. Therefore, for b >> d the value of nt/b can be
taken as a wavevector of the uniform distortion throughout the cell and, by analogy
with Eq. (11.53a), we may write the threshold condition for the director saturation

b K

&b:;:nWs

(11.60)

or the break-of-anchoring field. The formulas for the magnetic and electric fields
sufficient to overcome surface energy Wy and to break anchoring are given by:
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1 4z
H,=Ws /—and E, = W/ — 11.61
b W“XaK and E), W‘Hga[( ( )

Here, for the threshold estimation, we used an isotropic approximation with
elastic modulus K. A precise value of the saturation field can be obtained without
such an approximation. For a homogeneous planar cell it can be found from the

equation [20]:
s Esat Kll 1/2
2 Er \K33

Here E,,/E represents the ratio of the saturation field E,,, = E,, to the Frederiks
transition field (electric or magnetic). As Ey,/Er ~ d/b > 1, the left part of
Eq. (11.62) is close to 1. Therefore, assuming K;; = K33 = K, we turn back to
Egs. (11.60) and (11.61). In the next chapter we shall meet the break of anchoring
effect when discussing bistable devices.

cth

_ 1Ky Esa (Kn>1/2 (1162

- W Er \Ks;

11.2.5 Dynamics of Frederiks Transition

It is simpler to examine the dynamics of the Frederiks effect for the experimental
geometry of Fig. 11.15c, since a pure twist distortion is not accompanied by the
backflow effect (see the next Section). For a twist distortion we operate with
the azimuthal director angle @(z) (sing =~ n,) and the equation for rotation of the
director that expresses the balance of elastic, magnetic field and viscous torques is
given by

2

0
K> @

GLo)
2

1, H? sin @ cos ¢ = “/15- (11.63)

Here, the first two terms came from minimisation procedure of the free energy,
see Egs. (8.15) and (11.43) and the viscous term was discussed earlier, see
Egs. (9.31) and (9.32) [21]. In terms of the phase transition theory, Eq. (11.63)
may be regarded as the Landau-Khalatnikov equation discussed in Section 6.5.1. It
describes the director rotation in magnetic field H with rotational viscosity y; =
o, — o3 and without the director inertia term. In the limit of small ¢-angles, it
reduces to the linear form:

o 2 o
Kpy—+y HQo=7v,— 11.64
nas TLH =17 ( )

with general solution @ = @,, exp(#/tr) sin(nz/d). By substitution this into (11.64)
we find the characteristic time for the director reaction to the field:
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71 Y1
T = 11.65
B L H? — K2 | &2 Kn(E2 -8 ( )

c

where the field coherence length (11.49) includes the twist modulus K,,.
At the threshold (§ = &) there is a singularity, Tg—o0. Above the Frederiks
transition threshold H > H. and tr is positive and distortion rises. When
the applied field is switched off, the field induced distortion relaxes with the
decay time

_ Y1
K»nq?

(11.66)

(72

as for a typical hydrodynamic mode.

When the distortion is weak it is described only by the single Fourier harmonic
with wavevector ¢ = 2n/A where A = 2d. With increasing field, the distortion
is characterised by elliptic-sine functions, Fig. 11.17a, with higher harmonics.
Therefore we have multiple odd sine harmonics with wavevectors ¢,, = mmn/d
(m=1,2,3...). Then, according to (11.66), each harmonic decays with its own
time, the higher the number m the faster is the decay (in analogy with string of a
guitar):

m __ V1 _
TD—W,W1—1,2,3... (1167)

11.2.6 Backflow Effect

We know that the shear-induced flow of a nematic liquid strongly influences the
alignment of the director (Section 9.3.2), i.e. there is a coupling of the two vector
fields, the director n(r) and velocity of the liquid v(r). It is quite natural to think that
the opposite effect should also exist. Indeed, one observes a strange, not monotonic
director rotation during its relaxation from the field-induced quasi-homeotropic
alignment to the initial, field-off planar one. Normally, the elastic force should
smoothly rotate the director from 6 = 0 (parallel to the cell normal) to 90°, but, in
experiment, the director angle may exceed 90° during the relaxation. As a result, in
the optical transmission one observes a characteristic bump.

The reason for this is a flow of the nematic, which is lunched by the director
rotation. The flow arises in the beginning of the director relaxation process when the
elastic torque exerted on the director is very high near both interfaces due to a
strong curvature of the director field. However, the curvature at the two interfaces
has different sign, see Fig. 11.19a, where 83(z) = (n/2) — 3. Therefore, the flow of
nematic fluid coupled to the director rotation (backflow) at the two interfaces is
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Fig. 11.19 Backflow effect. The profile of the director in the field-on regime with steep parts close
to interfaces at z = 0 and z = d (a). The direction of the torques is shown by small arrows in the
right part of sketch (b) and a profile of the velocity is shown by thin arrows in the left part of the
sketch. The strongest gradient of velocity is in the middle of the cell (dash arrows)

opposite. It is shown in Fig. 11.19b by velocity arrows. In the middle of the cell the
gradient of velocity (shear) is very strong (shown by dash arrows). No wander that,
in the middle of the cell, where the elastic torque is weak, the flow-induced torque
prevails and rotates the director to the angles 0 exceeding 90°.

It is interesting that, although the same effect is also observed during the director
relaxation from the field-on planar texture to the field-off homeotropic one, it is
much weaker. Note that, in the first case, we deal with the bend distortion near
surfaces (torque Mg), but, in the second case, with the splay one (torque Mg). In
both cases, a strong elastic torque rotates the director, let say, with the same angular
rate N. However, due to friction a viscous torque appears, which is exerted by
rotating molecules onto adjacent parts of the liquid crystal. The absolute value of
the viscous torque related to the bend distortion M, = 1(y, — y,)N = —aN con-
siderably exceeds the torque related to the splay M; = %(yl + 7v,)N = a3N because
lopI>>losl. Therefore, the backflow is especially important for the initial home-
otropic orientation. Note that there is no backflow for the twist distortion that does
not change the position of the centers of gravity of the molecules.

If we are going to discuss the problem of the director relaxation with allowance
for the backflow, we should write two equations of motion, one for the director and
the other for the mass of liquid [22]. Each of the equations should include coupling
terms describing influence of the director motion on the flow and vice versa.
According to Fig. 11.19, the splay and bend distortions take place in the xz plane
and the vector of flow velocity is assumed to have only one component, v = v,(z)
parallel to the substrates because the y -component is forbidden by symmetry
and the z-component should vanish according to the mass continuity equation
(divv = 0). Therefore, in the absence of an external force and neglecting the
convective term and pressure in the tensor of momentum density flux (9.10), the
equation for momentum conservation (9.8) is given by:

A% g
TR

v, 3. O (,08 v
P =5 _62( > (11.68)

Here, director n = (sind ~ 3, 0, cosd ~ 1), the term with friction coefficient B is
the standard Navier-Stokes terms (9.15) of the type pdv/0t = nd*v/0z> (B is
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combination of Leslie coefficients coming from the viscous stress tensor for

nematics o', (9.20)). The coupling term with friction coefficient A takes into

account the influence of the director rotation with angular velocity N = 09/0¢ on

the flow acceleration controlled by Leslie coefficients o, and o3 (backflow effect).
The second equation describes the relaxation of the director

3% o9 v,
Y1 5 7K622 —A 2 (11.69)

It is the same general equation (9.22) for director motion adapted to our simple
situation: we have the familiar form (9.32) for the elastic and viscous torques and, in
addition, the coupling term with the same coefficient A describing the torque
exerted on the director by shear 0v,/0z.

Numerical solution of the two equations results in the time variation of the
velocity v(z) and director 3(z) along the cell thickness as shown in the same
Fig. 11.19 for a particular time z. At a certain moment, the angle 9 in the middle
of the cell may cross zero (vertical line) and change sign. In the figure the profile of
velocity is antisymmetric. The question arises how this symmetry is consistent with
initial symmetry of the cell. The symmetry is indeed broken locally on the scale of
one vortex. But in the neighbor area the direction of the director rotation is different
and the flow velocity has an opposite sign. Therefore the total dynamic symmetry of
the whole cell is consistent with boundary conditions. The backflow effect consid-
erably influences the dynamic of the director relaxation and this phenomenon is used
in bistable displays (Chapter 12). By controlling the velocity of flow using a special
form of the applied voltage one can select one of the two final stable field-off states.

11.2.7 Electrooptical Response

If a nematic liquid crystal has negligible conductivity the results of Sections
11.2.1-11.2.5 for the Frederiks transition induced by a magnetic field may be directly
applied to the electric field case. To this effect, it suffices to substitute H by E and all
components of magnetic susceptibility tensor y; by correspondent components of
dielectric permittivity tensor €;. From the practical point of view the electrooptical
effects are much more important and further on we discuss the optical response of
nematics to the electric field.

11.2.7.1 Splay-Bend Distortions

We discuss the splay-bend distortion induced by an electric voltage applied to a
cell similar to that shown in Fig. 11.16 using two transparent electrodes at z = 0
and z = d. The distortion is easy to observe optically for the cell birefringence.
The splay-bend cell behaves like a birefringent plate discussed in Section 11.1.1
but now the plate birefringence is controlled by the field. The optical anisotropy
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An(z) = n, — n, depends on the angle of the director 3(z), which has a certain
distribution over the cell thickness. In the absence of the twist, the splay-bend
distortion is limited by the x,z-plane, the ordinary refraction index is independent of
3, n, = n,, but the extraordinary index n.(3) given by Eq. (11.6) becomes a
function of position z of the dielectric ellipsoid within the cell thickness.

nn
ne(z) = =L 7 (11.70)

njicos?8(z) + nzlsinz\‘}(z)}

The corresponding phase retardation is obtained by integrating (11.70) over the
cell thickness:

_ 2nd(An)

d
J[ne(Z) —no)dz = ——— (11.71)
0

2
=7

The averaged value of <An> and, consequently, & are voltage dependent.
Usually a liquid crystal cell equipped with thin tin dioxide (SnO,) or indium-tin-oxide
(ITO) electrodes is placed between two crossed polarizers and illuminated by
filtered white light or laser light (for example, of a He-Ne laser, A = 632.8 nm)
and the transmitted intensity is recorded using a photodetector, Fig. 11.20. The
output light intensity depends on the angle ¢ between the axis of the polarizer and
the projection of the director on the cell plane and on the phase retardation d(U)
controlled by voltage:

5(U)

I = Iysin®2¢ - sin® >

The oscillations of I (U) are well seen in the experimental plot, Fig. 11.21. The
measurements were made at 27°C on 55 um thick cell filled with a mixture having
€, = 22. From the I (U) curve, the field dependence of the phase retardation d(U)
and the Frederiks transition threshold U, were obtained. In turn, from E. = U_./d and
Eq. (11.56) the splay elastic constant K;; was found. The bend modulus K33 was
calculated from the derivative dd/dU. The same material parameters may be found
for the whole temperature range of the nematic phase.

Polarizer LC cell  Analyzer

Photodiode or
photomultiplier

He-Ne laser

Fig. 11.20 A typical set-up for electrooptic measurements of liquid crystal physical parameters
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Fig. 11.21 The oscillating experimental curve /(U) (right axis) is voltage dependent intensity of
the light transmitted by the 50 um thick planar nematic cell placed between crossed polarizers (the
logarithmic voltage scale for /(U) is the bottom axis). The pointed curve is the voltage dependence
of phase retardation & calculated from curve I(U) with a Frederiks transition threshold at U, (the
scale for 3(U) is on the top axis and its argument i.e. voltage is on the left axis)
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Note that the voltage necessary to modulate monochromatic light by 27t (between
two spikes) is less than 0.1 V. The modulation by © or 27 can also be obtained in
dynamics, during switching the field on and off. The oscillograms are shown in
Fig. 11.22. By proper selection of the voltage shape and using the dual frequency
mode of addressing (for materials with frequency inversion of sign of dielectric
anisotropy), one can modulate the optical transmission as fast as 1 ps. Of course,
solid state modulators are much faster, but we should not forget that a liquid crystal
cell may consist of thousands pixels and be controlled by low voltages. Such
regimes are used for image processing in adaptive optics and other applications.
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11.2.7.2 Twist and Supertwist Effects

Let the director at the two opposite electrodes be aligned along x and y, respec-
tively. As discussed in Sections 8.3.2, for strong anchoring at the boundaries, the
azimuthal angle ¢ in the bulk changes linearly with z. Then, under condition And/A
> 1 such a twisted layer rotates the polarization vector of light of any wavelength A
through the angle m/2. This is the waveguide regime already discussed in Sec-
tion 11.1.1. With typical values of An = 0.15, A ~ 0.5 pum, this regime takes place
for cell thickness d > 3 um. Therefore, a typical twist cell of thickness about 5 pm
placed between crossed polarizer and analyser oriented, respectively along x and y,
is completely transparent (with some attenuation due to non-ideal polarizers).
However, upon application of a voltage, the director is realigned along the field,
the twist cell no longer rotates the light polarization, and the outgoing light is
completely absorbed by the analyser. For parallel polarizers, on the contrary, the
OFF-state is dark and the ON-state bright. It is important that the so-called twist
effect is almost insensitive to light wavelength [23].

Twist cells are widely used in modern technology of simple, low-informative
displays (watches, calculators, telephones, dashboards, etc). Their advantages are
high contrast, simplicity and stability. But for high information displays their
contrast characteristics are not steep enough. This hampers the application of twist
cells to multiplexing schemes. Multiplexed displays use electrodes in the form of
the x,y matrix and each pixel is situated on an intersection of the x and y bars. When
a selected pixel is activated by voltage U, other pixels along the same x and y bars
inevitably activated by voltage U/2 (the so-called cross-talk effect). Therefore, to
activate solely one selected pixel, the contrast curve must be steep and the larger the
number of bars in a matrix the steeper should be the contrast curve. For this reason,
the cells with an initial director twist angle larger than /2, the so-called supertwist
cells are more preferable for high information content displays. In addition they
show better angular characteristics but, unfortunately, they are more sensitive to the
cell gap and have longer response times.

11.2.7.3 Guest-Host Effect

This effect is a version of the splay-bend Frederiks transition, but it is observed in
liquid crystals doped with dyes. The liquid crystalline matrix (the host) is subjected
to the influence of a field; the function of the dye (the guest) is to enable the effect to
be seen with only one polarizer or even without any.

In the Fig. 11.23a a typical electro-optical cell is shown with a homogeneous
alignment of a nematic and €, > 0. A small amount (few percents) of a proper dye is
dissolved in the liquid crystal. The dye molecules are elongated in shape, and the
dipole moment of their long-wave optical transition is parallel to the long molecular
axis. In the absence of a field, the optical density of the cell varies with the linear
polarization of the light e from D) (e lln) to D, (e L n). When a voltage exceeding
the threshold for the Frederiks transition is applied to the cell, the liquid crystal is
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Fig. 11.23 Guest-host effect. a
Field-off (a) and field-on (b) 41
cell configurations and
absorbance spectra for a
nematic liquid crystal doped
with a dye having elongated
molecules shown by small
black spherocylinders

realigned along the field and so the dye molecules are reoriented. If the field is
strong enough, the optical densities for light of both polarizations become the same,
Fig. 11.23b. Therefore, for the light polarised along the initial alignment of the
director, the field induced decrement of density AD(E) = Dy(0) — D, (0) is very
large. The ratio of the corresponding transmitted light intensities for the field-on
and field-off states can be as high as 100. This effect is interesting for colour
displays. For more detailed information about various electrooptical effects and
liquid crystal displays and other devices see [24].

11.3 Flexoelectricity

We know that the quadratic-in-field coupling of an electric field to the dielectric
tensor contributes to the free energy density with the term gz = —&,E*/87. When
liquid crystals possess macroscopic electric polarization P (spontaneous or induced
by some external, other than electric field factors), then an additional, linear-in-field
term gz = —PE is added to the free energy density. One of such a source of the
macroscopic electric polarization is orientational distortion of a liquid crystal.

11.3.1 Flexoelectric Polarization

11.3.1.1 Dipolar and Quadrupolar Flexoelectricity

Let us look at Fig. 11.24. In the upper two sketches, we can see undistorted nematic
liquid crystals with pear- and banana-shape molecules. Such nematics in the bulk
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Fig. 11.24 Dipolar
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are non-polar due to free or partially hindered rotation of molecules (even polar)
about all their axes. Imagine now that, in the absence of the electric field, the same
nematics are subjected to the splay (left) or bend (right) distortions, respectively.
For example, such distortion arises spontaneously in wedge form cells with rigid
boundary conditions for the director. For a moment we may forget that molecules
have dipoles. Nevertheless, due to the change in symmetry from cylindrical D, to
conical C, (for splay) or to C,, (for bend), in both cases the corresponding polar
axes appear. Their directions are shown by long vertical arrows. It is not surprising
because the splay (ndivn) and bend (n x curln) distortions are vectors.

The new polar symmetry allows for the existence of macroscopic polarization,
large or small, depending on the magnitude of the strain and molecular dipole
moments shown by small arrows. Due to the distortions, the densest packing of our
pears and bananas results in some preferable alignment of molecular skeletons in
such a way that molecular dipoles look more up than down. By definition, the dipole
moment of the unit volume is electric polarization. These simple arguments brought
R. Meyer to the brilliant idea of piezoelectric polarization [25]:

P; = eyndivn — e3(n X curin) (11.72)

The term piezoelectric was borrowed from the physics of solids by analogy to
the piezoelectric effect in crystals without center of symmetry. As a rule, the
piezoelectric polarization manifests itself as a charge on the surfaces of a crystal
due to a translational deformation, e.g. compression or extension. Piezo-effects are
also characteristic of polar liquid crystalline phases, e.g., of the chiral smectic C*
phase. The polarization, we are interested now, is caused by the mechanical
curvature (or flexion) of the director field, and, following De Gennes, we call it
flexoelectric.

In Eq. (11.72) there are two terms related, respectively to the splay and bend
distortions with corresponding flexoelectric coefficients e; and e3. Indeed, the divn
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is scalar and vector P, (splay) coincides with the director n. In the case of bend, with
director components (n,=1, 0, 0), the curvature vector curln = (0n,/0z)j (along y)
and n x curln = n,(0n,/02)k, therefore vector P, (bend) is also directed along z, as
shown in the same figure. Note, that the twist distortion corresponding to scalar
product n-curln cannot create polarization.

Now, what would happen if molecules have no dipole moments? Would flex-
oelectricity be observed? Generally yes, because in addition to the dipolar mecha-
nism, there is, at least, one more, namely, the quadrupolar one. An example is
shown in Fig. 11.25: a splay distortion creates additional positive charges at the
bottom of the ensemble of quadrupoles due to an enhanced packing density. The
upper part is less positively charged, therefore polarization P;is directed down [26].
A similar difference in the negative charge density will be seen for the bend
distortion. Now, if we introduce the density of the quadrupole moment, as a sum
of molecular quadrupole moments in a unit volume that is a tensor of quadrupole
density, see Eq. (10.17), then its gradient is the vector of flexoelectric polarization.
Since this tensor is proportional to the orientational order parameter Q, the quad-
rupolar contribution to the flexoelectric polarization (for e = e; + e3 in the first
approximation) is given by:

pr = eVO (11.73)

We already discussed this case in relation to the surface polarization (Section 10.1.3).
Generally both dipolar and quadrupolar mechanisms contribute to P, but the
temperature dependence of the corresponding coefficients is different, e, o< S(T)
for the quadrupolar mechanism, but e, o< S*(T) for the dipolar one. The flexoelectric
coefficients have the dimension of (CGSQ/cm or C/m) and the order of magnitude,
e ~ 10~* CGS units (or ~3 pC/m). The flexoelectricity is also observed in the SmA
phase [27].

Fig. 11.25 Quadrupolar a b

flexoelectric polarization. @
Undistorted nematic phase

consisted solely of molecular

quadrupoles (a) and y )

appearance of a polar axis and %

flexoelectric polarization due

to splay distortion (b). Note

that in the lower part of (b)

the density of positive charges

is larger than in the upper part ) l P,
\

whereas in sketch (a) these
densities are equal
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11.3.1.2 A Hybrid Cell

The director at one of the boundaries of a hybrid cell is aligned homeotropically, at
the opposite boundary homogeneously as was shown earlier in Fig. 10.11. There-
fore, a hybrid cell has intrinsic bend-splay distortion and must have a projection
of the macroscopic polarization along the cell normal. We can clearly see in
Figs. 10.11 and 11.25 how the quadrupolar polarization emerges. The molecules
may have positive (ey > 0) quadrupoles shown in Fig. 11.25 or negative ones
(ep < 0) seen in Inset to Fig. 11.26b.

For a hybrid cell the flexoelectric polarization can easily be calculated. In
Fig. 11.26a, the profile of the director is n(z) with boundary conditions 3(0) = w/2 and
3(d) = 0. These angles are rigidly fixed. The components of the director are n, =
sin3, n, = 0, n. = cos9. To calculate the polarization we have to find distribution
P/(z) using Meyer’s equation (11.72), and after integrating over z, to obtain total
polarization of the cell. In the considered geometry:

d9 d9
n =isinY(z) + kcos 9(z); divn = — sinSd—; curln = cosSd—j;
z z

dd
n x curln = (—icos 9 + ksin3) cos Sd—
z
Then splay and bend polarization contributions are:

, ds
P‘;.’”“} = —e sinSd—~ (isin9 + kcos 9)
: z

d9
Pt = —es cos §—~(~icos § +Ksin §)
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Fig. 11.26 A scheme of a hybrid cell that supports the splay-bend distortion and manifests the
flexoelectric polarization (a) and an experimental temperature dependence of the sum of flexo-
electric coefficients in the nematic phase of liquid crystal SCB (b)
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Combining the x and z components we obtain projections of the total flexo-
electric polarization on the x- and z- axes with Py, = 0:

d9
P = (—elsinZS + e3c0528) % (11.74a)
Z

d9
Pp. = —j(e1 + e3) sin 28— (11.74b)
Z

From (11.74) we see, that the z-component depends on the sum e = ¢ + ¢35 and,
for negative e, Py should be directed from the homeotropic to planar interface.
After integrating over cell thickness the average cell polarization along z is given by

| d
(Pr) = y JPdez _a ;;e3 (cos29,; — cos29y) =
0

e+ e3

11.
2d (11.75)

Therefore, if we could measure the z-component of the polarization of a hybrid
cell we find ¢ = e; + e5. The main problem is screening the polarization by free
charges. What we do measure is a change in polarization, induced by some external
factors, but not polarization itself.

11.3.1.3 Measurements of P;

It is not difficult to measure the temperature derivative dP;/dT that is pyroelectric
coefficient within the temperature range of the nematic phase. Then, integrating it
over temperature from the temperature point where Py = 0 we can find P{T). As a
zero point, any temperature 7; within the isotropic phase may be taken.

We measure pyroelectric coefficient y = dP/dT, using heating the hybrid cell by
short (~10 ns) laser pulses, as shown in Fig. 10.13. The only difference from the
surface polarization measurements is using a hybrid cell instead of uniform (planar
or homeotropic) cells [28]. The laser pulse produces a temperature increment about
AT = 0.05 K and the flexoelectric polarization changes. To compensate this change,
a charge passes through the external circuit and the current i = dg/dt is measured by
an oscilloscope. From the identity (A is cell area)

. dq _oP  dPOT QT
T T

the polarization is given by

T
PH(T) = Jy(T)dT. (11.76)
T;
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With a short laser pulse, the derivative 0T/0t is just a jump, therefore, pyroelec-
tric coefficient y(T) can be easily calculated at any temperature of the nematic
phase. An example of the P{T) dependence is shown in Fig. 11.26b. The maximum
value of e for 5CB is —3.6-107* CGS (or =12 pC/m). It means that the molecular
quadrupole has the form shown in the Inset to the same figure. There are some other
methods to find the sum of the flexoelectric coefficients based, e.g., on the electro-
optical techniques but they are not as straightforward as the pyroelectric technique.

For conventional nematics the order of magnitude ~10~* CGS of the flexo-
electric coefficient is quite reasonable. There are, however, nematics composed of
bent-shape (banana-like) molecules with transverse dipole moments for which three
orders of magnitude larger flexoelectric coefficient has been reported [29]. If such a
material is placed between two flexible polymer sheets covered with electrodes and
subjected to periodic bending, the current in the range of few nA is observed. The
reason for such a giant effect is probably related to the formation of big polar
clusters in the nematic phase, that is to a short-range order effect related to the break
of quadrupolar symmetry similar to the break of mirror symmetry that discussed in
Section 4.11. Whatever mechanism is, the effect may be useful for micro-devices
converting mechanical energy in the electric one.

11.3.2 Converse Flexoelectric Effect

11.3.2.1 Uniform Distortion

As has been shown, the splay and bend distortions of a nematic create electric
polarization. There is also a converse effect; the external electric field causes a
distortion due to the flexoelectric mechanism. For example, if the banana-shape
molecules with transverse dipoles are placed in the electric field, the dipoles are
partially aligned along the field and their banana shape induces some bend. This
effect takes place even in nematics with zero dielectric anisotropy.

Let the director of a nematic liquid crystal be aligned homeotropically (n Il z) and
the uniform field E || x as shown in Fig. 11.27a. For negative &,, in the absence of
the flexoelectric effect, such a situation is stable at any field strength. However, in
experiment [30] the bend distortion is observed and its magnitude calculated. For
zero anchoring energy and small distortions, the components of the director
are:n, = cos 0(z) = 1;n, = sin0(z) ~ 6(z) and n, = 0, hence,

divn = a”z/az = —sin 969/32; and ndivn ~ — sin 969/azk;
curln = a”X/azj = a‘(}/azj; and n X curln = k X a‘(}/azj = —aS/aZi.

Therefore, for a small distortion, we can leave only the x-component of the total
flexoelectric polarization (11.72):
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Fig. 11.27 Converse flexoelectric effect: (a) Structure of the electrooptical cell. (b) Distribution
of the director angle over the cell thickness pictured by lower straight lines for zero (solid line) and
finite (dot line) anchoring energies, respectively. The upper curves show spatial dependence of two
principal refraction indices n,, (dash line) and n, (z) (solid line)
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For ¢, = 0, the free energy density in the bulk includes only the flexoelectric and
the elastic (bend) terms:

B Ky (00\° Ks (00)° a9

Here we ignore the surface energy (W, = 0) and the director is free to deflect at
both boundaries perpendicular to z. According to Euler equation (8.22), the mini-
misation over 09/0z results in the torque balance:

071 K33@7€3E = 0 or K33@7€3E = const (11.78)
dz 0z Oz

Hence

00 e;E
aZ K33 + b

In zero field 09/0z = 0 everywhere, therefore C; = 0,

esE eiE
0=—"—z and P;=->—=const (11.79)
K33 7" K

Here z = 0 is taken in the middle of the layer. The resulting distortion angle is
shown in Fig. 11.27b. In the middle of the cell the director keeps its equilibrium
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orientation and the maximal deflection angles of the director occur at the restricting
surfaces,

€3Ed
2K33

0, ==

Such an antisymmetric distortion differs from the symmetric distortion charac-
teristic of the Frederiks transition. It is instructive to compare these two cases. In
Fig. 11.28 the space distributions of the director n and its x-projection n, = sin3 ~ 9§
are pictured for the Fredericks transition (a) and flexoelectric effect (»); the anchor-
ing energy at both surfaces is infinitely strong in case (a) and finite in case (b).

Note that, in the free energy density expansion (11.77), the flexoelectric term is
proportional to the first derivative 09/0z. Therefore, upon integration over the cell
thickness, it gives only surface energy terms W(3. 4,). Correspondingly, the torque
balance (11.78) shows the absence of the flexoelectric torque in the bulk of a cell for
the uniform field E,:

d a9 d*9
E <Kgg & — €3EX> = K33 E (1 180)

Evidently, the distortion comes in from the boundaries. It means that weak
anchoring of a nematic liquid crystal at the surfaces is a necessary condition for
the one-dimensional distortion considered. It is interesting that, for a finite, but
weak anchoring, the linear profile of 3(z) remains, although the maximum values
9, at the glass surfaces (z = —d/2 and +d/2) reduces. The higher the anchoring
energy the smaller is 9,,,. In experiment this may look like a decrease in an effective
flexoelectric coefficient. The profiles of the director angles and refraction indices
are shown in Fig. 11.27b, the solid and dotted lines for 3 correspond to W = 0 and
Wy > 0, respectively.
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Fig. 11.28 Comparison of the distortion profile (molecular picture below and angle 3(z) above)
for the Frederiks transition with infinite anchoring energies (a) and flexoelectric effect with finite
anchoring energies (b) (homeotropic initial director alignment in both cases)
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11.3.2.2 Electrooptical Properties

Due to the linear profile of 3(z) it is very easy to calculate the phase retardation of
the initially homeotropic cell for the normal light incidence, kllz. Without electric
field, the longest axis of the dielectric ellipsoid coincides with the director axis z.
Therefore, refraction index for any polarization is n, = n, . With increasing field £,
due to deflection of the director within plane xz, the y- and x-components of the
refraction index will correspond to the ordinary and extraordinary rays, n, = n, =
n,, n(z) = n,(z). Integration provides us with the average extraordinary index:

d/2
1 I’ZLI’ZH
<ne> =-—

dz
12
d _an (nisin28 + nﬁcosz\g)

For small distortions, expanding sin3 = 3, cos9 ~ 1—9%/2!, cos?®9 =~ 1—9%+.. we
obtain

dj2
1
<ne> = — J s 7 dz
d —d/2 {1 - (1 —”i/ 2)32}
i
dj2
1 ny n? 2
T s (1)
—d)2

Substituting 6 = e3Ez/K33 from (11.79) (case of zero anchoring energy) and
integrating we obtain

, 42 dj2 5

n, 2 €3E 2 . 2 d

<np>%nL+ﬁ<l—”L/n2)(K—33> J z°dz  with J ZdZ:E
—d/2 —d/2

Finally the phase retardation & = 2nd(n,—n,)/ A:

2n [ e3 2 n\n.d®
S="2(=2) |1-= E? 11.81
A (K33) ( I’lﬁ 24 ( )

The dependencies & o d° and & o< E? agree well with experiment [30]. Therefore,
in principle, we can find e; from the measured value of the cell retardation because
usually K33 is known from the Frederiks transition threshold. However, in a real
experiment it is almost impossible to have zero anchoring energy. For the finite
anchoring energy, we can only find ratio es/W, and the accuracy of determination
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Fig. 11.29 Conversed flexoelectric effect in cells with homeotropic (a) and homogeneous (b)
director alignment and electric field applied along the cell normal. Weak anchoring energy at the
bottom plate allows the flexoelectric deflection of the director 3y at the surface propagating up in
the vertical direction (g, = 0)

of e3 depends on the value of W, which varies within several orders of magnitude
and is difficult to measure with sufficient accuracy. Another factor that may
influence the estimation of flexoelectric coefficients is the surface polarization
discussed above. When the dielectric anisotropy is finite the distortion has a more
complicated character due to a competition of the dielectric (as for Frederiks
transition) and flexoelectric torques [31].

The flexoelectric effect can also be observed in other geometries. For example,
the field can be applied along the normal of an electrooptical cell. For a home-
otropic cell, the splay flexoelectric distortion shown in Fig. 11.29a is observed for
€, > 0 and weak anchoring energy, at least, at one interface. Another interesting
geometry where the splay flexoelectric distortion is also possible is a planar
homogeneous alignment of the director with asymmetric anchoring: it is strong
on the top and weak at the bottom, see Fig. 11.29b. In both cases, the surface
flexoelectric torque is equal to (e; + e3)EJ [31].

11.3.2.3 Dynamics of the Flexoelectric Effect

Consider the same bend distortions caused by field £, and shown in Fig. 11.28 and
assume that distortions are small. What happens if we switched the field off? In the
torque balance equation for “Frederiks” distortion (a), we shall have two contribu-
tions, elastic and viscous:

%9 09

Kysoo =y, >
33622 Y1 ot

(11.82)

with general solution 3 = 9,, exp’/; sin gz where ¢ = n/d. In this case, we have a
relaxation process with a single spatial Fourier harmonic and the characteristic bulk
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relaxation time is basically controlled by the cell thickness: Ty, = v /K33q2
= v,d*/n*K3;. For the finite anchoring the situation is similar; we should just
substitute thickness d by d + 2b where b is surface extrapolation length given by
b = K53/W*. For the anchoring energies W ~ 107> — 102 erg/cm? (homeotropic
alignment), b ~ 1073 - 10 *cm, d + 2b ~ 30 pm (3-10% cm), vi~1P,and K33 =~
107° dyn, the relaxation time is T, = 71/K33q2 ~1s.

Equation (11.82) is valid for the flexoelectric distortion (b) as well, but it does
not have a sine-form profile and we cannot expect a simple relaxation process.
Moreover, this distortion is controlled by boundary conditions that generally
include the Rapini-type surface torque, elastic and flexoelectric torques:

K33 — + W36 —esE=0 (11.83)
Zl=xap2 =

For free relaxation, the term e3E = O but the Rapini terms W* at each surface
dramatically influence the relaxation process. The relaxation time of the director at
the surface 7 is controlled by the wavevector g, =~ m/b. For the same parameters as
above 1, = yl/K33qS2 ~ 1 —100 ms that is Ty << T, and relaxation process starting
from the surface propagates into the bulk. When an oscillating field is applied to a
cell the waves of the director realignment spread from the boundaries into the bulk
[32]. It is very convenient to observe the near-surface director oscillations using
total internal reflection technique [33]. With such a technique the flexoelectric
effect is observed at frequencies as high as 10 kHz.

11.3.3 Flexoelectric Domains

There is a very interesting example of the flexoelectric torque acting on the director
in the bulk. In a typical planar nematic cell the director is strongly anchored at both
interfaces, ng = (1, 0, 0) and the electric field is directed along z. The conductivity is
low and the dielectric anisotropy is either zero or small negative, such that the
dielectric torque may only weakly stabilize the initial planar structure. Upon the dc
field application, a pattern in the form of stripes parallel to the initial director
orientation in the bulk ngllx is observed in the polarization microscope. The most
interesting feature of these domains is substantial field dependence of their spatial
period as shown in Fig. 11.30 [34].

The period of the stripes and the threshold voltage for their appearance have been
found [35] by minimising the free energy of the nematic in an electric field, taking
into account the flexoelectric (PA) and dielectric sa(En)2/4n terms. The solution of
the torque balance equations for angles ¢ (counted from x within the xy plane) and §
(counted from x within the xy plane) has been found in the form of equations

¢ = @y sin(qy) cos(nz/d), 3 = 9y cos(qy) cos(nz/d)
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Fig. 11.30 Flexoelectric instability. Photos of flexoelectric domains with a period variable by
electric field (nematic cell thickness 12 pm)

The emergence of the pattern has a threshold character. The critical voltage and
the stripe width at the threshold are given by:

2nK
U, =2
le|(1 —p)
and
d/1 1/2
w,=2 (ﬂ) (11.84)
n\l—p
where
&K
T 4ne?
and
e=¢e +e3

Therefore, in a nematic with compensated anisotropy, &, ~ 0, the threshold
voltage is controlled exclusively by ratio K/e, therefore the flexoelectric coefficient
is easily found from the bulk effect, e ~ 2:10~* CGSE at room temperature [34].

It is very peculiar that the spatial distribution of the director field of the
modulated structure forms a chiral structure. This became evident much later [36]
when the numerical calculations had been made in the same geometry with director
components n, ~ 1, noy = cosqy, n’. = singy. Thus the projections of the director on
the zy plane, i.e. n, = ( n,, n.) rotate about the x-axis upon translation along the
y-axis. The corresponding picture is demonstrated in Fig. 11.31. The calculations
show that the chirality changes its handedness when the sign of the electric field
applied in the z-direction inverses. Therefore, we again see the field induced break
of the mirror symmetry.

As shown both in experiments and calculations, the domain period w decreases
with increasing voltage approximately as w ~ U ~'. This is a very rare or even
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Fig. 11.31 Flexoelectric n
instability. Periodic structure 02 ¢
of the field induced director
distribution along the y-axis
represented by projections 7,
and n,

y (10°m)

unique case: in fact, the “flexoelectric cells” discussed represent diffraction gratings
with period controlled by the electric field. Such gratings have been used for
processing of optical information.

11.4 Electrohydrodynamic Instability

In this Section, we shall briefly discuss the electrohydrodynamic (EHD) instabilities
of nematics, which are caused by an electric field induced flow of the substance.
There are many interesting critical phenomena of this sort discussed in detail
elsewhere [7,37,38], but here we shall consider in more detail only one but very
representative example of the EHD instability owed to the anisotropy of electric
conductivity.

11.4.1 The Reasons for Instabilities

Let us take a small volume of a liquid and consider two forces, the gravity force that
push that volume down and the buoyancy force that push it up. Such a situation
happens when a liquid is heated from below in a shallow pan: then, with increasing
temperature, warm bottom layers of the liquid tend to rise but the upper cool layers
tend to sink, Fig. 11.32a. Evidently, the two vertical forces (both along the z-axis)
counteract and we are tempted to conclude that warm liquid would penetrate
through the cold one. In reality, however, a nice steady-state periodic pattern of
flow is observed in the horizontal plane xy due to up and down vertical streams.
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Fig. 11.32 A convective instability caused by a temperature gradient (a) and electrohydrody-
namic instability caused by unipolar charge injection (b) in an isotropic liquid

Such a pattern occurs at a critical value of the vertical temperature gradient VT, and
has a form of a two-dimensional hexagonal lattice. This is another example of a
break of the symmetry of the system caused by convective hydrodynamic instabil-
ity, the so-called Benard instability.

Imagine now that there is a capacitor filled with an insulating liquid and the
electric field E is applied along the normal to the capacitor plates. Assume that the
lower electrode injects positive charges Q into the liquid, Fig. 11.32b, and there
appears the space charge discussed in Section 7.3.3. Then, under the action of the
electric field, the charged liquid layers will be pushed up against the counteracting
gravity force like in the previous example. To reduce the energy, the charge layer
will not move as an entire block but will be broken into vortices almost cylin-
drically symmetric about the z-axis. That results in a periodic distribution of the
space charge within the xy plane. Therefore, one again observes an appearance of
the convective instability, this time electrohydrodynamic one.

In both the cases considered, an optical contrast of the patterns observed in
isotropic liquids is very small. Certainly, the anisotropy of liquid crystals brings
new features in. For instance, the anisotropy of dielectric or diamagnetic suscepti-
bility causes the Fredericks transition in nematics and wave like instabilities in
cholesterics (see next Section), and the flexoelectric polarization results in the field-
controllable domain patterns. In turn, the anisotropy of electric conductivity is
responsible for instability in the form of rolls to be discussed below. All these
instabilities are not observed in the isotropic liquids and have an electric field
threshold controlled by the corresponding parameters of anisotropy. In addition,
due to the optical anisotropy, the contrast of the patterns that are driven by
“isotropic mechanisms”, i.e. only indirectly dependent on anisotropy parameters,
increases dramatically. Thanks to this, one can easily study specific features and
mechanisms of different instability modes, both isotropic and anisotropic. The
characteristic pattern formation is a special branch of physics dealing with a
nonlinear response of dissipative media to external fields, and liquid crystals are
suitable model objects for investigation of the relevant phenomena [39].

Assume that our capacitor is filled by a nematic mixture with ¢, ~ 0 well aligned
along the x-axis and let the same charge injection mechanism works. Then, in a dc
regime, the periodic flow will inevitably interact with the director. The maximum
realignment, i.e. the deflection of the director angle 3 in the z-direction, will be
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observed where the shear rate has maximum, namely, in the middle of the vortices
as shown by thick lines in Fig. 11.33a. On the contrary, the velocity is maximal
where the space charge is accumulated. Such a mechanism of the director alignment
is especially strong when the anisotropy of electric conductivity 6, = ) — 6 is
high. The conductivity induced torque M, may even exceed the dielectric torque if
dielectric anisotropy ¢, is not very strong. It is the torque, which is responsible, for
example, for alignment of the director in the nematic phase and smectic layers in
the SmA phase (in both cases along the flow lines) shown earlier in Fig. 5.16. The
same torque described by Carr et al [40] is responsible for the Carr-Helfrich
instability. The latter is also driven by the space charge, however, accumulated
due to anisotropy of conductivity in the bulk of the nematic without any injection.

11.4.2 Carr-Helfrich Mode

This mode is observed at the ac current at frequencies not exceeding the inverse of
the space charge relaxation time o, = 1/1, = 4nc/e. When a sine-form electric field
is applied to homogeneously oriented fairly conductive nematics with negative
dielectric anisotropy, a very regular vortex motion is often observed. In fact, such
vortices have a form of long rolls perpendicular to the initial alignment of the
director. They are usually called Williams domains [41], see photo in Fig. 11.33b.
The instability appears in thin cells (d = 10 — 100 pm) and has a well-defined
voltage threshold independent of thickness. Upon illumination, the rolls behave like
lenses: they form a diffraction grating and focus light onto the screen, Fig. 11.34.

|| <

20 pm

Fig. 11.33 Carr-Helfrich EHD instability in nematic liquid crystals: (a) onset of the instability
showing a competition of the elastic and hydrodynamic torques; (b) photo of Williams domains
observed at a voltage 7.5 V in a 20 pum thick cell filled with liquid crystal MBBA
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Fig. 11.34 Roll-type vortex
motion of a liquid crystal and
the pattern of black and white
stripes in the screen plane due
to diffraction on the roll
structure

11.4.2.1 The Instability Threshold in the Simplest Model

The physical mechanism of the instability is related to several coupled phenomena
discussed by Helfrich [42]. His elegant calculation of the instability threshold is
reproduced here for the simplest steady state one-dimensional model shown in
Fig. 11.33a. A homogeneously aligned nematic liquid crystal layer of thickness d
is stabilised by the rubbed surfaces of the limiting glasses. The dielectric torque is
considered negligible (¢, = 0). At first, a small director fluctuation 3(x) with a
period w, = d is postulated:

9(x) = 9, cos (11.85)

Wy

With the field applied, this fluctuation causes a slight periodic deflection of the
electric current lines along the director proportional to the anisotropy of conductiv-
ity o, = o] — 6.>0. This creates the x-component of the current that, in turn,
results in the accumulation of a space charge Q(x) close to the points where angle
9 = 0. Therefore, the x-component of the field (E,) emerges. The electric current
density is J; = o;E; where the tensor of the electric conductivity has a standard form:

Oij = 0.8 + Ganin

According to our geometry, E = (E,, 0, E,), n = (cos9, 0, sind) and the
conductivity is given by

6. —o (L0 ‘o cos’  cosYsind
S W | “\ cos 9sin 9§ sin®9

Then the x-component of the current for small 9 is given by

Je =6 E, + 6,Ec0s*9 + o,E. sin9cos 3 ~ o|Ex + o.E.8
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where the new component of electric field E, is related to the space charge
distribution Q(x) by the Poisson equation:

OE, 1
divE = — = —470(x) (11.86)
Ox SH

and J obeys the current conservation law:

E
disz%ZGH&—kGaEZ@:O (11.87)
Ox Ox Ox

Combining (11.85-11.87), we get the periodic space charge distribution over x:

o.1ES, |
O(x) = = Gy ™ (11..88)
Ao wy Wy

Due to the space charge and corresponding force —Q(x)E the nematic liquid
begins to move with a velocity v, determined by reduced form of the Navier-Stokes
equation (7.16):

Urw —Q(x)E; (11.89)
where n = (1/2) (04 + o5 _ ) is a combination of Leslie’s viscosity coefficients ;.

At a certain critical voltage the destabilising shear-induced torque M, = 0(0v./
0x), which comes from the interaction of a field driven charged volume of a liquid
with the director, becomes large enough to equalise the stabilising elastic torque.
This balance of the elastic and hydrodynamic torques is the condition for the onset
of instability:

09 ov.
K33@—0€2§ (11.90)

Integrating once Eq. (11.89) on account of (11.88) we obtain the shear rate

ov. E*c.e 9,
Pz _ Z:0aTm T (11.91)
Ox 4mno) Wy

and finally, combining (11.90) and (11.91) and using Eq. (11.85), we have an
equation for 9 equivalent to (11.52). It solution results in the threshold voltage for
the instability:

Uerit = Ecripd = (11.91)

Wy

Above the threshold a periodic pattern of vortices forms with a period of w, ~ d
along the x-axis. The entire process is governed by the anisotropy o, in the
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denominator. The threshold is diverged when anisotropy o, vanishes, e.g., in
nematics with a short-range smectic order close to the N-SmA phase transition.
The threshold is proportional to the ratio n/a, of the two viscosities. Roughly
speaking, they are proportional to each other, thus the threshold weakly depends on
viscosity and the instability may easily be observed in very viscous, e.g., polymer
liquid crystals. The reason is a compensation for the two effects: on the one hand, in
very viscous media the velocity of vortex motion is low (low 1) but, on the other
hand, the coupling between the flow and the director is strong (high o). A more
precise expression for the threshold voltage derived by Helfrich [42] includes also a
finite value of dielectric anisotropy. The dependencies predicted by the simplest
theory have been confirmed qualitatively by many experiments [7].

Going back to Fig. 11.33a we may see that, for the same structure of the director
fluctuation 9(z), when the field direction changes sign, the space charge sign is also
reversed. However, their product (the electric force Q(x)E) keeps its direction. It
means that the Carr-Helfrich instability may be observed at the ac voltage. Indeed,
in experiment the instability is observed up to the frequency o, = 4no)/g, corre-
spondent to the space charge oscillation along the x-axis. The theory of the ac
regime of the same instability requires the consideration of a set of two coupled
linear equations for the space charge Q(x) and curvature y(x) = 09/0x dependent
on time and the problem of the threshold has been solved for frequencies below and
above w, [43].

11.4.2.2 Behaviour Above the Threshold

At voltages higher than the threshold, the one-dimensional roll structure subse-
quently transforms in more complex hydrodynamic patterns. One can distinguish
the zigzag, fluctuating and other domain structures, which, in turn, are substituted
by a turbulent motion of a liquid crystal. To calculate the wavevectors and ampli-
tudes of the distortions a set of nonlinear equations must be solved. More generally,
the problem for describing a transition from a regular electrohydrodynamic vortex
motion to turbulence is a part of the classical problem concerning the transition
from the laminar to turbulent flow of a liquid. Some progress has been achieved in
understanding the nonlinear behaviour of nematics in terms of bifurcation mechan-
isms, phase transitions and dynamic chaos theory [44].

As known from general theory of dissipative dynamic systems, after a finite
number of bifurcations the system undergoes to the dynamic chaos. This scenario is
also observed in the electrohydrodynamic convective motion. With increasing
voltage the velocity of vortices increases rapidly and the periodic flow of a liquid
transforms to turbulence. Turbulent motion in nematic liquid crystals results in a
highly non-uniform distribution of the director accompanied by very strong,
dynamic scattering of light, briefly called DSL. The DSL effect have been initially
proposed for manufacturing field-controllable shutters and displays, and the semi-
nal paper [45] was the starting point for development of the modern technology of
liquid crystal materials and displays.
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Chapter 12
Electro-Optical Effects in Cholesteric Phase

12.1 Cholesteric as One-Dimensional Photonic Crystal

A cholesteric forms a helical structure and its optical properties are characterised
by the tensor of dielectric permittivity rotating in space. We are already familiar
with the form of the cholesteric tensor (see Section 4.7). It was Oseen [1] who
suggested the first quantitative model of the helical cholesteric phase as a periodic
medium with local anisotropy and very specific optical properties. First we shall
discuss more carefully the Bragg reflection from the so-called “cholesteric planes”.

12.1.1 Bragg Reflection

12.1.1.1 Experimental Data

The most characteristic features of cholesteric liquid crystals are as follows:

1. There is a strong rotation of the plane of polarisation of linearly polarised light
(¥ = 10-100 full revolutions per mm to be compared, e.g., with 24°/mm in
quartz). The sign of the optical rotation changes at a certain wavelength A of the
incident light as shown by curve OR in Fig. 12.1.

2. The regions of rotation with different handedness are not separated by an
absorption band as in typical gyrotropic materials. Instead, there is a band of a
selective reflection of the beam with a particular circular polarization, curve R in
Fig. 12.1. The beam with the opposite circular polarization is transmitted
without any change, therefore the reflection is negligible and not shown in the
plot. Only one band is observed in the wavelength spectrum without higher
diffraction orders.

3. The electric vectors of the circularly polarised incident and reflected light are
rotated in the same direction when viewed against the wavevectors of each
beam. In contrast, upon reflection from a conventional mirror the beam changes
the sign of rotation. An example is shown in Fig. 12.2. Note that, in this figure,
the circular light handedness is defined not conventionally: for the right circular
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Fig. 12.1 Spectra of optical OR
rotatory power (OR) and deg R
selective reflection (R) of a o0k - 1.0
planar cholesteric texture for
light propagation parallel to _10kF R - 0.5
the helical axis.
0 0
OR
10+
20 : - :
400 600 800

wavelength (nm)

R-screw helix
Linear

L.H E \ XXX
LH ,{ 00001

Fig. 12.2 Transmission and reflection of linearly polarized light through the planar cholesteric
structure. The linear light is decomposed into two circularly polarized components, left-handed (L.
H.) and right handed (R.H). In this particular case, the handedness is defined according to the
modern convention, see the text

polarization, the observer looking at the light source sees the counterclockwise
rotation of the light electric vector. This “new definition” (as discussed in
Section 11.1.1) is used here deliberately because I may suggest a mnemonic
rule: a right-hand circular beam goes as easily (i.e. transmitted) through the
right-hand helix as a right-hand screw goes into a right-hand female screw. And
this may be explained as follows: the right-hand circularly polarized light going
along the right helix does not see periodicity of the helix and, therefore, does not
diffract. In the figure we see the right-screw helical cholesteric structure that
transmit the right-hand (R.H.) circularly polarised light and completely reflects
the left circular polarized light (L.H.) without change of its handedness. By the
way, direct modelling of the light transmission or reflection results in exactly
that situation, which corresponds to the non-conventional case. Nevertheless,
further on we follow the old convention.

4. The wavelength of selected reflection A, (in vacuum) depends on the angle of
light incidence i measured from the layer normal, namely, Ay = 2(Po/2) <n>
cosi. It is the same Bragg condition discussed in Section 5.2.2, Ay = 2dsin®.
However, in the case of the X-ray diffraction on a stack of the layers in vacuum,
we used refraction index n = 1, sliding angle ® = (n/2) — i, and interlayer
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distance d instead of half-pitch Py/2. The factor Y2 appeared in a cholesteric
because, due to the head-to-tail symmetry n = —n, the period of its optical
properties is doubled.

We see that the optical properties of cholesterics are quite peculiar. How to
explain them on the quantitative basis?

12.1.1.2 The Simplest Model

Consider the optical properties of a cholesteric helix shown in Fig. 12.3a under the
following assumptions:

1. The light propagates along the helical axis z, and the helix is regarded as ideal,

corresponding to the sinusoidal form for the variation of the director.

2. The semi-infinite structure is assumed, bordered at the front plane by a dielectric
of the same refractive index as the average refractive index of the cholesteric
<n>. In such a case, we neglect the reflection from the front boundary.

. The optical anisotropy is small, i.e. ny &~ n, ~ <n> and An = n-n, < <n>.

4. The wavevectors of the incident light and the cholesteric helix have the same

amplitude, k; = qo.

(O8]

Now we would like to understand why only one diffraction maximum is
observed in the normal reflection from the cholesteric helix and why the reflected
light is circularly polarized. Therefore, at first, we write the Bragg condition on
account of possible higher diffraction orders:

miy = Py<n>cosi (12.1)

where m is the order of diffraction (i.e. reflection). By analogy with crystals,
the values of m = 2, 3... seem to allow the presence of higher order reflections.
However, the latter are not observed in experiment on the cholesteric structure for
the normal incidence of light (i = 0). This is a result of some selection rules: the
reflections with m = 2, 3,.. are forbidden due to a specific form of the dielectric
permittivity tensor of a cholesteric.

a b
< M w sk,
T W T e

Fig. 12.3 The geometry for discussion of the Bragg diffraction in a cholesteric (a) and illustration
of the wavevector conservation law (b). k; and k, are wavevectors of the incident and reflected
beams, qq is the helix wavevector
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To show this, it is necessary to insert the Fourier components €(q) of the
dielectric permittivity tensor €(g) of the cholesteric into the general formula for
the scattering cross section ¢ o< (r - g(q) - f )2 as already discussed for nematics in
Section 11.1.3. Here f and r are polarization vectors for the incident and reflected
light, q is the wavevector of scattering coinciding in this simple geometry with the
wavevector of the reflected wave [2].

Tensor &(q) is Fourier transform of cholesteric tensor £(r). The latter is obtained

from the nematic tensor ey(r) using the rotation matix R as explained in Sec-

tion4.7.3: € = kENk . The rotation matrix and local nematic tensor can be taken
in their simplest, “plane” form because now the director has only two non-zero
components (1, = sin(z), n, = cosd(z), n, = 0), and in our geometry only com-
ponents of the optical field Ex and E|, are of interest. Therefore

~ cosqoz —singoz g 0 cosqoz  singoz

- | o o) |
<&p> + % cos 2qoz % sin 2qoz

B { % sin2qoz <&p> — 3 cos 2qO2:|

1 0} €4 [cos 2qgoz  sin 2qoz }

singpz  €oSqoz —singpz cosqoz

(12.2)

- <82D>[0 1] "2

sin2qoz — cos2qoz

Here we introduced ¢, = g — 8 1, atwo-dimensional average (€;p) = (SH +e1)
and also used the expression cos?o = (1/2)(1 + cos2a). Note that the wavevector
of a cholesteric go = 2n/Py > 0 (right-handed helix). Left-handed helix is
described by g < 0.

As an example, we can apply the Fourier transform to a single component ¢, (z)
from tensor (12.2):

en(q) = (84/2) Jcos 2qoz) exp(iqz)dz (12.3)
v

Here, scattering vector q = Kk; — k, and the integral can only be non-zero (equal
to ¥5) if ¢ &+ 2¢qo = 0. Since k; = qo we have two possibilities: either Ik,| = gy +
2g9 =3qp or Ik,| = go — 2go =—¢qo. Only the second case satisfies the conservation
of energy i.e. frequency ® = clk,I/n = cqo/n. Therefore, our scattering vector is
q = 2qq as shown in Fig.12.3b.

For g = 4q, (m = 2) the integral is zero and the second order reflection is absent
(the same is true for all integers m > 2). Thus, only the first order reflection with
q = +2qq is possible and €,,(2¢o) = &,V /4.

From the structure of tensor & (12.2) it is seen that &,,=—¢,, and €,, = &,,. The
latter two are imaginary due to the Euler expansion of sin(2g,z). Therefore, for the
anisotropic part of the g(q)tensor in the wavevector space, we may write an
expression

&(q) = £(2q0) = le,VM
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where

and V is the sample volume. This form allows us to find the polarisation of the
reflected beam r. Indeed, the polarization vector of the reflected beam is given by

r= (”‘) =M- (};) = (’;tlfg) = (fo 4+ if,)i + (ifs = £,)§ = rid + 13

Ty

(12.4)

From Eq. (12.4) we see that r, = ir,. It means that the reflected light is circularly
polarised in agreement with experiment.

Therefore, the simplest model predicts the existence of one maximum of selec-
tive reflection centered at the wavelength /o = (n)Py and the circular polarisation
of the reflected beam. However, the spectral dependence of the selective reflection
and the magnitude of the angle of the light polarisation rotation by the cholesteric
structure can only be discussed by analysing the Maxwell equations for the optical
waves propagating in the periodic medium.

12.1.2 Waves in Layered Medium and Photonic Crystals

There are several examples of waves in periodic media:

Electron or neutron waves (¥-functions) in crystals

X-ray (electromagnetic) waves in crystals

Light waves in the natural media such as opal, mother-of-pearl, beetle shells, etc.
Light waves interacting with artificial diffraction gratings, one or two dimen-
sional and three dimensional photonic bandgap crystals, in particular, artificial
opals

5. Acoustic waves between periodically arranged columns in a theatre

el

A common feature of all these media is a spatial periodicity with a period
comparable to that of the external wave of any sort. In the three dimensional
case, the diffraction may result in light localisation and trapping like electrons
may be completely localised in a disordered metal (metal—insulator transition).

12.1.2.1 Hill and Mathieu Equations

Theoretically one should solve a wave equation with dielectric permittivity periodic
in one, two or three dimensions but, for simplicity, consider a medium with periodic
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Fig. 12.4 Periodic medium €
with modulation of scalar
dielectric permittivity
1
2
1 | l
0 I Z

modulation of dielectric permittivity in one direction, Fig. 12.4. A wave equation
for the electric field in the one-dimensional case is called Hill equation [3]:

d’E

o2
?—i—s(z)uc—zE:O (12.5)
where 1 ~ 1 is magnetic susceptibility. The analysis of the Hill equation is a large
area of mathematics. In the simplest case of the cosine (or sine) form of the spatial
modulation of the scalar parameter £(z) = gy + &; cos(2nz/l) shown in the figure,
we obtain a standard form of the Mathieu wave equation

d2

e + (N + ycos?E)E = 0 (12.6)
where [ is period of the structure, & = mz// is the normalised coordinate along the
z-axis and dimensionless parameters y and m are related to the amplitude of the
dielectric permittivity modulation €; and the average value of permittivity g, as
shown in Fig. 12.4,

and

The general solution of Eq. (12.6) is given by the Floquet-Bloch theorem as a
sum of products of a spatially periodic amplitudes A(E) and B(E) with oscillating
exponential functions

E(E) = D1A(E) expifE + D2B(E) exp(—ifg) (12.7)

where D; and D, are arbitrary constants. The solution describes two waves
with dimensionless wavevectors + B = +(//n)k = £(I/n)(w(n)/c) propagating in
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opposite directions. Due to periodicity of A and B, the electromagnetic waves can
be presented as a discrete sum of infinite numbers of spatial Fourier harmonics

m=+00

E= Y Asexpli(k+mqo)z], (12.8)

m=—0o0

where g is the vector of one-dimensional reciprocal lattice, gy = 2m/l, as discussed
in Section 5.3.1. Usually the periodicity of E on the wavevector axis allows one to
consider only the waves with wavevectors in the range — n/l < k < /l, i.e. in the
first Brillouin zone.

The Mathieu equation has no analytical solution despite € is scalar and its
solutions can only be found numerically. The crucial parameter is the depth of
the e-modulation.

1. When ¢; (i.e. y) is zero we have ordinary Maxwell equation for uniform
medium.

2. For very shallow g-relief, &, < €, y is small, 1 > 0 and the waves are propa-
gating although with velocities depending on the z-coordinate.

3. In the intermediate case €; < €y and Yy =~ m, we observe a photon energy (or
frequency) bands either allowed or forbidden for the wave propagation. There-
fore, there are some selection rules for the Bragg diffraction of electromagnetic
waves on the periodical structure. Here, we see a deep analogy with the Bloch -
de Broglie waves in crystals. For this reason we speak of photonic crystals.

4. For a very deep relief, € > €9/2, 1 < 0 and y > m, the waves cannot propagate
at all. In such a structure one may observe only evanescent waves.

From the analysis of the Mathieu equation, we can make the following general
conclusions which are useful for further discussion of cholesteric liquid crystals:

1. For a scalar ¢ there is no general analytical solution even for the one-dimensional
problem.

2. The wave characteristics are independent of the wave polarisation.

3. A monochromatic wave is superposition of infinite number of plane waves: one-
or two-waves approximations can only be used for waves with £ < t// (far from
the gaps).

4. There exists an infinite number of forbidden zones with the frequency gap A®
decreasing with increasing the zone number.

12.1.2.2 One Dimensional Photonic Band-Gap Structure (Modelling)

An example of the numerical solution of the Maxwell equations for a one-dimen-
sional photonic crystal is shown in Fig. 12.5a and b. I have modelled a stack of five
alternating layers, each with optical thickness of A/4: dielectric layers with thick-
ness d; = 0.075 pm and refraction index n,; = 2 and air gaps between them with
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thickness d,;; = 0.15 um and refraction index n,; = 1. In fact, I have verified the
analytical result of a seminal paper [4] using the Palto’s software [5] based on the
direct numerical solution of the Maxwell equations. In Fig. 12.5a the several band-
gap (or stop-bands) for the unpolarised light transmission are seen in the curve
marked off by the “stack”, which are separated by equal frequency intervals. The
width of the stop-bands is determined by the difference of the refraction indices
ng — ng; = 1: the larger the difference the wider the stop-band. Note that, within
the stop band, the transmission of the unpolarized beam completely vanishes.
For the stack considered here dyn; = d,;ng;,- = 0.15 um = A/4 and the position
of the first Bragg transmittance minimum (m = 1) is expected at Ag(m = 1) = 2
<n> (dg + daiy) = 2(dng + dgingy) = 0.6 um. It is instructive to compare the
results obtained for such a stack with the transmission of a slab of a cholesteric
liquid crystal whose Bragg diffraction wavelength is approximately located at the
same wavelength Ap as for the stack stop-band at m = 1. The cholesteric slab has
the following parameters: the pitch is P = 0.4 pm, slab thickness d = 20 pm (50
full helical turns), n, = 1.5, n, = 1.7, <n> =1.6, therefore, A\g = P<n> = 0.64 um.
The slab is bordered by infinitely thick glasses with refraction index n, = 1.5. We
see in Fig. 12.5a that in the cholesteric spectrum marked off by “CLC” there is a
stop-band corresponding to m = 1 and period P/2, as discussed above. Therefore a
cholesteric liquid crystal may be regarded as a one-dimensional photonic crystal.

a
1.0 A
8 0.8+
=
. . .(E“ 0.6 Stack

Fig. 12.5 Comparison of the IS
non-polarized light 2 04 cLC
transmission by a stack of S
dielectric layers and a 0.2 1
cholesteric liquid crystal 0.0 - ' ' ' ' ' '
(CLC). The two materials 0 1 ) 3 4 5 6
have the same Bragg o/o,
reflection frequency b

(numerical calculations, for
parameters see the text). (a) 1.0 4

Transmission spectra on the ® 0.8

frequency scale showing the §

absence of high harmonics in £ 0.6

the case of CLC; (b) blown g 0.4 1 cLe

transmission spectra at the § Stack

wavelength scale showing the = 021

flat form of the CLC Bragg 0.0

band and oscillations of T T
400 600 800

transmission at the edges of
the band Wavelength, nm



12.1 Cholesteric as One-Dimensional Photonic Crystal 351

As discussed in the previous section, indeed, there is only one stop-band in the
cholesteric transmission spectrum. This is only valid for the light propagating along
the helical axis. The minimum transmission of an unpolarized light is 0.5, because
one circular polarization is totally reflected. As in the case of a stack, the width of
the band is determined by the difference An = n, — n,. In the case of our
cholesteric, An = 0.2, that is much less than for the virtual stack modeled and,
for this reason, in Fig. 12.5 the cholesteric spectrum is much narrower than the stack
spectrum. However, anisotropy An = 0.2 is quite large for both liquid crystals and
real stacks made of alternating dielectric films. The structure of the cholesteric stop-
band on the wavelength scale is well seen in Fig. 12.5b: there is a wide plateau
between the two wavelengths corresponding to A, = Pn, and A, = Pn,. A number
of fringes on both sides of the stop-band increases with increasing slab thickness
and their amplitude is determined by the reflection coefficient between the chole-
steric and surrounding media. In our case, the fringes are not well seen because the
surrounding glasses have refraction index close to the average index of the chole-
steric.

12.1.3 Simple Analytical Solution for Light Incident Parallel
to the Helical Axis

Our task is to find the spectrum of eigenmodes propagating along the helical axis of
a cholesteric liquid crystal and discuss some consequences of that. It is very rare
and even unique case when, despite chirality and anisotropy of a medium, there is
an analytical solution found many years ago by De Vries [6]. Here, we follow a
rather simple and very elegant analytic solution of this problem given by Kats [7].

12.1.3.1 Wave Equations

We again consider an electromagnetic wave propagating parallel to the helical axis
of an infinite cholesteric medium (k Il qq Il z) in the geometry corresponding to
Fig. 12.3. Therefore non-zero components of the electric field E, and E, depend
only on z. The Helmholtz wave equation

PE 1 _0E

or_ T 12.9
22l (12.9)

is written using the dielectric permittivity tensor (12.2) with dimensionless dielectric
anisotropy 6 = (g — €.)/(g) + €.) = €,/2 <&p> where <gyp> = (g + €,)/2

g(z) = {8"" ‘C’XY} = (g3p) {(1 + 8 cos 2¢oz) 4 sin 2qpz

€y Eyy dsin2¢qoz (1 = dcos2qoz)
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For the field components we write

O’E, 1 O%E, O’E, O’E, 1 O’E, O’E,
a2 a2\ Tevga ) o Fa =gt T ga

Using E.(z,t) = Fy(z) expiot, E,(z,t) = Fy(z) expiot we exclude the time
dependence and, on account of &~ = ® <82D>/62, obtain the set of equations for
the field amplitudes, which contains all optical properties of the cholesteric:

O°F,

2 + k*[F + F 8 cos 2qoz + F\dsin2qpz) =0

2Z (12.10)
oF, K*[F, — F,d cos 2 F,8sin2qpz] =0

e + k°[Fy — Fyd cos 2qoz + F,dsin 2qoz] =

These equations become simpler if one introduces circular field components:
E,=F.+iFy, and E_=F,—iF, (12.11)
Then, Fy = X(E; + E_) and Fy = 5(E. — E_)

For the circular components on account of exp(Zfio) = cosa =+ isind,
Egs. (12.10) read:

o*F, ., .
52 + k°[F; + F_dexp(2igoz)] =0
z (12.12)

o*F. .
52 +k°[F_ + F dexp(—2igoz)] =0

12.1.3.2 Dispersion Relation

Now we shall look for a solution of Eq. (12.12) in a form compatible with the
Floquet-Bloch theorem:

F+:A+CXPI:(B+QO)Z (12.13)
F_ = A_expi(B— o)z

Here B is a wavevector of an electromagnetic wave, which can propagates in our
periodic structure (an eigenmode). Equations (12.13) state that, due to periodicity of
the medium, the difference in wavevectors of possible modes should be equal to the
“lattice vector” of the structure (f + ¢¢) — (B — ¢o) = 2¢o (remember, that, in a
cholesteric, the period of the e-modulation is Py/2). Substituting F', and F_ into
Eq. (12.12) we find
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[ — (B +q0)’JAs + K*A_ =0

(12.14)

SK*AL + [ — (B— q0)’]A- = 0.

The two equations have a non-trivial solution only if the corresponding determi-

nant (a;;ax,—a;»a,;) = 0. From this condition we have a biquadratic equation for

determination of the wave vector B as a function of k or frequency w. This is a
dispersion relation

B — 2012 + @)B* + (K> — ¢3)* — k*8* =0 (12.15)

Its solution for the wave vectors of the two propagating modes is given by

B> = I + g% £ ky\/Aq} + k2&° (12.16)

Note that the dispersion relation of the type P(w) is the key equation for
discussion of the spectrum of the photonic band-gap. Indeed the derivative
v, = dw/df is nothing else as the group velocity of light in the considered sample.
When this derivative tends to zero the velocity decreases and eventually the light
does not propagate. We say the light stops. The inverse ratio dfi/dw defines the
density of the possible wavevectors df} for the unit frequency interval do. It is so-
called density of optical f-modes (DOM) or density of photonic states (DOS), the
concept playing the principal role in calculation of properties of photonic crystals,
see, for instance [4,8]. Due to great importance of the dispersion relation, it is useful
to present it in a more familiar form of the frequency (i.e., photon energy) depend-
ing on wavevector. Since the wavevector of the incident light wave k = ®
<g,p> ?/c is proportional to light frequency, Eq. (12.15) may be rewritten as

K1 —8%) = 2k3(BP + ) + (B —¢2)* =0 (12.17)

After substituting the values of B into the field equations (12.13) we find the
analytical solution of the original wave equation (12.9). Usually § is small, about
0.01-01 but it is important for our consideration and cannot be ignored. However,
for a moment, consider a limit of infinitely small anisotropy, & — 0. Then from
Eq. (12.15) we have

B* = k> + g3 + 2kqo

that is four solutions for f: #; = &(k + o) and f8, = £(k — qo). Equivalently, from
Eq. (12.17) we get four solutions for k: ky = £(B+ ¢qo) and k, = £(B — ¢o). Four
solutions mean that, at any frequency o, we have four circularly polarised eigen-
waves shown in Fig. 12.6a. The four waves differ by their polarisation and direction
of propagation. The curve numbers in the figure corresponds to the following
wavevectors: —( — ¢o) (curve 1), —(B + qo) (curve 2), (B — go) (curve 3) and
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/.

B

Fig. 12.6 Dispersion relation for a cholesteric that has helical structure with wavevector gy. The
abscissa corresponds to the wavevectors of the eigenmodes propagating in the medium and the
ordinate is the frequency of the incident light proportional to its wavevector, k = w&"?/c. (a) Very
small optical anisotropy & — 0: two pairs of circularly polarized eigenmodes propagate in
opposite direction without diffraction and each pair consists of a right- and left polarized beams.
Note the absence of a stop-band on the w-scale at frequency wg. (b) Finite optical anisotropy o:
modes 2 and 3 propagating in opposite directions suffer diffraction on the periodic structure and a
stop-band appears with a frequency gap Ao = ©, — ®, centered at Bragg frequency wp

(B 4 qo) (curve 4). The dashed (1, 2) and solid (3, 4) lines correspond to back and
forward propagating waves, respectively, because their slopes corresponding to
group velocities dw/dp have different signs. The crossover of lines 2 and 3 at
B = 0and k = ¢, determines the Bragg frequency oy <ep> "*/c = go = 21/Py.

The situation changes when the optical anisotropy is finite. Consider a particular
case of small wavevectors B = 0. Then from Eq. (12.17) we have

2
(K= @)P — k=0 or kz:%zqg(lqcﬁ) (12.18)

Since both go and & = g,/2 <&p> are fixed material parameters and P = o?

<g&>p>/c?, the allowed frequency at B = 0 takes two values

g

(e2p)

O, = €qo

€1 .
and o, = cqo <STD> with | /g =n,\/eL =n

Between the two frequencies there is a gap. Above we have qualitatively
discussed an appearance of the forbidden frequency bands. Now, in Fig. 12.6b we
see the frequency gap formed by the corresponding dispersion curves. The width of
the gap

Ao = cqoAn/(n) (12.19)

determines the spectral interval of the Bragg diffraction where only two waves
(no. 1 and 4 in the figure) can propagate at any ®. The gap in Fig. 12.6b corresponds
to the minimum in the optical transmission at Ay, = 600-670nm in Fig. 12.5. The
other two waves (nos. 2 and 3) cannot propagate within the gap: due to the
diffraction they are completely reflected.
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12.1.3.3 Rotation of Linearly Polarised Light

Giant optical rotatory power is observed at wavelengths corresponding to the
slopes of the selective reflection curve. In some cases, its magnitude reaches 3°/um.
A sign of rotation changes at some wavelength within the reflection band, see
Fig. 12.1. In that figure, the reflection band (stop band for transmission) has no flat
top, the band is narrow because the particular cholesteric material has low optical
anisotropy An = 0.01.

The magnitude of the rotation angle per unit length can be found from the same
theory. To this effect, we consider the incident wave whose wavevector is far from
the Bragg resonance on both sides of the latter |k — go| > ¢o0. Then, the disper-
sion relation (12.16) for propagating waves becomes simpler if we use an expansion
A+0" 1+ 2

| S k38

2 2 2 2

=k +qy £ 2q0ky /1 +— =~ (k£ +—F..
p 90 q0 4q(2) ( q0) 440

Applying the same expansion for the second time, we find moduli of wavevec-
tors IB;l and IB,l:

1By = ( ) i
=(k+q)+—F——
8qo(k + qo) (12.20)
k3 8?
= k— _—

We can see that there are two modes with wavevectors B; — ¢gp and B> + ¢
compatible with dispersion relation (12.16). Further, according to Eqs. (12.14), the
field amplitude ratios for the two modes are dramatically different:

Ay _ 3k? and (B—q0)* — K2

12.21
A Brar - o2 R

Indeed A /A_ > 1 for the first wave and A, /A_ < 1 for the second wave.

We see that the two waves are nearly circular and polarised in opposite direc-
tions. The optical rotation ¥ of linearly polarised light per unit length is defined as a
half of the wavevector difference between the two circular waves with refraction
indices n;and n,

¥ = \/d = Ak/2

Therefore, from Eq. (12.20) we get

St jShe K82
Ak = — — = =
(IB1] = qo) = (IB2] + o) 8q0(k+qo)+8qo(k—qO) 4q0(k27q5)

(12.22)
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Remembering that &* = <ep> (2n/ho)* and & = &,/2(ep) = (nﬁ -n?)/
(nﬁ + n?), for the optical rotatory power we finally find

k25 mPo(nf — 1)

) a0 (1 - 40/2) 80+ ) (1-%32)

(12.23)

Here A is the wavelength of the linearly polarised incident light (in vacuum) and
g = = Py <ep>'?is the wavelength of the Bragg reflection maximum. In this
approximation, the value of \y diverges at A, — Ag, however, the formula describes
both the spectral shape and the magnitude of the optical rotation on both sides of the
Bragg reflection maximum (except the top of the reflection band) in agreement with
experimental data shown in Fig. 12.1.

12.1.3.4 Waveguide Regime

This case corresponds to a large pitch of a cholesteric with respect to the wave-
length Py > A that is a small wavevector of the helical structure and rather high
frequency of the incident light satisfying a condition of k0 > ¢o. Then, from
Eq. (12.16)

B* =k + 2 £ KPS ~ K> £ k%8

and, according to Egs. (12.14) for g, — 0 the ratio A, /A_ = k*8/+ k*8 = +1. This
corresponds to the linearly polarised waves with polarisation vector rotating in
space following the helical structure. We meet such a waveguide (or Mauguin)
regime [9] in cholesterics with very long pitch, Ay < Py(ny — n,) and also in the
case of the twisted nematic cell, already discussed in Section 11.1.1.

12.1.4 Other Important Cases

12.1.4.1 Cholesteric Slab of Finite Thickness

In thin cells there is an additional effect of the interference from the parallel
boundaries resulting in the spectral oscillations observed on both sides of the
Bragg maximum. Such fringes are well seen in Fig. 12.7, the corresponding
numerical calculations being made for the cholesteric slab of thickness 4 um. Of
course, in this case, the theory is more difficult [3].

12.1.4.2 Oblique Incidence of Light

When light impinges on a cholesteric at some angle i with respect to the helical axis,
the following new features should be mentioned:
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Fig. 12.7 Calculated 1.0
transmission spectra of a
cholesteric for non-polarized
light and different angles of
incoming light incidence: 5°,
45° and 60° with respect to
the helical axis. Both
materials have helical pitch
0.25 pm, refraction indices
m = 173and n, = 1.51,
cell thickness 4 pm
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1. The spectral maximum of the Bragg reflection Ag; is displaced to the short-wave
side with the increase of i, see Fig. 12.7.

2. An infinite number of reflections of higher orders emerge. The correspondent
minima of the transmission Ag,, A3 etc. are not seen in Fig. 12.7 because they
are deeply in the UV region. The frequency range of the reflection (energy gap)
is reduced with the order of reflection m and the peaks of reflections (or pits of
transmission) becomes sharper.

3. Higher orders of reflection have a complicated spectral and angular dependence.
There is a fine structure in the form of spectral satellites separated from the main
harmonic by a distance dependent on the incidence angle [3].

4. In the applied electric field the high order reflections may appear even
for the incident light propagating parallel to the helical axis as discussed in
Section 12.2.2.

12.1.4.3 Diffraction and Scattering

Diffraction on the one-dimensional helical structure. Such a structure can be
obtained from the initial quasi-planar texture with a small tilt (e.g. in the x-
direction) of the helical axis with respect to the cell normal z. A cholesteric should
have positive dielectric anisotropy. Then upon application of the strong electric
field E. the helix unwinds. After switching the field off, a one-dimensional helical
structure appears with the axis parallel to the cell boundaries. When white light is
incident onto that structure as shown in Fig. 4.29a the helix behaves as a diffraction
grating and iridescent colours are observed [10]. The spectral positions of the
diffraction maxima depend on the light incidence angle as expected from the
theory. For a monochromatic light the diffraction spots are located at angles +20,
which are symmetric with respect to the incident beam direction and satisfy the
conditions ¢ = 2mky sin 3 = go = 4n/Py. Therefore Py = Ag/msin Y, where Aq is
light wavelength in air. Note that the refraction index of the medium is not included
in the formula. In fact, it appears twice, once in the wavevector conservation law
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within the medium and then in the Snell law for the diffracted beam leaving the
medium for air. Therefore, n is compensated, at least, for small diffraction angles
20. The period of the optical properties in this geometry is close to Py/2 although
may depend on cell thickness. The first order diffraction (m = 1) is very intense, the
highest orders are much weaker (even should absent in the ideal case). By measur-
ing scattering angle 26 one can find the pitch of the helix.

Scattering by inhomogeneous focal-conic structure. When a white light beam
is incident at an angle o on a non-aligned layer of a short-pitch cholesteric liquid
crystal the scattered light shows iridescent colours. The reason lies in a light
diffraction from randomly oriented cholesteric planes. By averaging variable
Bragg conditions a formula has been derived [11] that relates the scattered wave-
length to the observation angle [:

A= Iy cos (1/2acos 822;( + 1/221005 Sg;)B) (12.24)

With this equation and knowing the angles of incidence o, and of reflection 3 of
monochromatic light, one can also determine the helical pitch of the cholesteric
liquid crystal.

When the pitch changes with variation of temperature the colours also change.
This phenomenon is used in thermography, a sensitive technique for measurements
of the distribution of temperature over various objects, for example, in medicine for
making temperature maps of human skin. In technics, cholesterics are used for the
estimation of the temperature distribution over plane electronic circuits and other
objects with a relatively flat surface.

12.2 Dielectric Instability of Cholesterics

In this chapter we consider the most characteristic phenomena related to the electric
field interaction with chiral, quasi-layered structure of cholesteric liquid crystals.

12.2.1 Untwisting of the Cholesteric Helix

12.2.1.1 De Gennes—Meyer Model for Field Induced Cholesteric—Nematic
Transition

In the simplest case, this transition is observed in a cholesteric with positive
dielectric or diamagnetic anisotropy in the electric or magnetic field applied
perpendicular to the helical axis. Let a helix has a pitch Py in the absence of a
field and the thickness of a sample is much larger than P. Therefore, the boundary
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conditions can be neglected. Such a model was investigated by Meyer and de
Gennes [12,13] for a cholesteric having anisotropy of magnetic susceptibility ¥,
and placed in magnetic field H perpendicular to the helical axis h. Inevitably, in the
initial state, in certain parts (A) of the helix, the molecules are arranged favourably
relative to the field, but in other parts (B) they are arranged unfavourably,
Fig. 12.8a. Due to y, > 0, the latter would tend to realign themselves along the
field.

With the field applied, regions A will increase in size and regions B decreased. A
decrease in the dimensions of the B regions would cost very large elastic energy
Kzz(a(p/az)z. In a strong field, regions B transforms into thin two-dimensional
defects (walls) perpendicular to z with the director turned by angle m across the
wall. If a number of regions B were reduced by increasing period (pitch) of the
structure, the total elastic energy would be lower. Therefore, our structure becomes
unstable: a strong field tries to expel all the walls from the helical structure. As a
result of such instability, at a certain critical field H,, the helical structure trans-
forms into a uniform (nematic) structure. We can say, that there occurs a cholesteric
to nematic phase transition with a threshold field H,,.

The threshold field can be calculated thermodynamically by comparison of the
free energy of the helical and uniform structures in the presence of the field. In our
geometry, the free energy density of a cholesteric in a magnetic field is

1
gch = 5 e

d 2
K <—(p _ q0> _ XaHzcosch] (12.25)

where ¢ is an angle between the field and the director. For the unwound, nematic-
like cholesteric, 0@/0z = 0, @ = 0 or 7, and the free energy density is given by

1
oy =5 [Kna(—q0)* = 2t#’] (12.26)
a b
H
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Fig. 12.8 Influence of a magnetic field H on the planar cholesteric texture having y, > 0. The
helical axis is parallel to z. Horizontal lines show the projections of the director parallel to H. Helix
unwinding according to de Gennes (a) and Meyer experiment (b)
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The difference between the two densities (12.25) and (12.26) reads

d 2
Ag =g —gn = 5 K (d—(p - 6]0) — Kanqp — o H* (cos* @ — 1)1
1 do d(P 2
—K ) H
=5 K2 (dz) qo0 Tz +27g sin’o

Introducing the field coherence length iz = K1 /y,H?* and integrating over one
period of the helix P along the z-axis we find the free energy

Po Po

AF 1 d

—Xde e JAgdz— J [Ei (d(zp) qo&? —+—s1n cp]d (12.27)
0

The Euler equation (8.22) corresponding to the minimal free energy density
(12.27) within a period of the structure reads:

d*¢ 1 do\* do
2—— — JR— _ f— 1 _
& P sin ¢p cos ¢ or 3 d (d) sm(pcosq)dz

This equation is easily integrated:

do\’ d
g? (d—(p> = stin(pcoscpd—q)dz = ZJsin(pcos odo =sin’e +C  (12.28)
z z
z ¢

For the particular periodic structure shown in Fig. 12.8a with angle ¢ counted
from the field H direction, the derivative d@/dz = 0 at any values of z where
¢ = 0 or m (middle points of regions A). Therefore, C = 0 and {(dop/dz) = +sing,
where for the right-handed helix the sign at the right side is either positive (if ¢
belongs to an interval from 0 to 1) or negative (if T < ¢@ < 2m). Then, substituting
Eq. (12.28) into Eq. (12.27) we find

AR T rdeN? T
2| (do ¢ 2 [ (do
A Y _ 0@ g = 9 _ 0)d
Al Kd) g dz] =2 [ ()
0 0

= 2§Jsin odo — qoéz J de = 2&(2 — nqok)
0 0

2K
Therefore AF = =2 (2 — mqo&) and the threshold condition (AF = 0) for the

helix unwinding reads
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2 2 K
H, = = [Ky
nqo Po \l %4

: (12.29)

This result is in good agreement with experiment. It tells us that, at H > H,,
cholesteric should become uniform. Moreover, for each value of H < H,, de
Gennes has estimated a stationary value of the pitch [12]:

7Pt

P(H) = Py|1+ 2o 0
() 0{ TR0k,

H* + } (12.30)

The results (12.29) and (12.30) are in very good agreement with experiments
made under thermodynamic equilibrium. Figure 12.8b shows the results obtained
by R. Meyer [14] on rather a thick cell (d = 130 pm) filled with a cholesteric
mixture based on p-azoxyanisol (PAA). The mixture was not oriented by bound-
aries and contained a number of defects. Meyer mentioned that, in order to reach the
equilibrium state for each value of magnetic field, “the tendency to hysteresis was
overcome by cycling the field while observing the cell”. This comment is very
important, because the hysteresis is a fingerprint of the topological constraints
discussed below.

For the electric field, in Egs. (12.29) and (12.30) we should substitute €,/4n for
% Therefore, if we apply magnetic field (or electric field more convenient for
practical purposes) to a cholesteric sample for a long enough time, we should
change the helical pitch of the sample according to Eq. (12.30). Such a field-
induced pitch tuning would be very promising for applicable to fast displays,
tunable photonic filters, diffraction gratings and lasers. Unfortunately, pitch tuning
may be realized only via an intermediate, very slow stage of the defect formation.

12.2.1.2 Topological Limitation

What is a reason for such a disappointing situation with tuning the helical pitch by
electric or magnetic field? It is very simple: despite the fact that field unwinding of
the cholesteric helix is thermodynamically profitable there is a strong topological
limitation on the unwinding process. It can be understood as follows. In Fig. 12.9
there is a helical structure of the director field n (shown by arrows) with vertical
helical axis h. We assume that the helix is either infinite or limited by two
boundaries with infinitely weak azimuthal anchoring at least at one of the bound-
aries. It means that there is no confinement, which would prevent a free rotation of
the non-anchored director at that boundary. Therefore unwinding the helix due, for
instance, to a heating process is possible.

Now, imagine that dielectric anisotropy is positive and we apply a certain
electric field E Lh to structure (a) with equilibrium pitch Py trying to increase the
pitch twice, Pg — 2P, as shown in sketch (b). To do this we must turn the director
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Fig. 12.9 Field behaviour of a b c

a cholesteric helix (g, > 0). T A A §
(a) Zero-field structure, & B > W
(b) unfavorable structure with Py Y« A : B E

a larger field induced pitch, l > B i g W
(c) favorable wall structure n A A

with unchanged pitch C——>E

Fig. 12.10 Helical structure Liaht
of a cholesteric liquid crystal 9

|

1

between two glass plates. On
the bottom plate, an array of
metal interdigitated
electrodes is deposited. The =
array is covered by a
polyimide layers and rubbed
to align the molecules in the
plane of the substrate. The
upper glass is also covered by
polyimide but not rubbed

stripe
electrodes

from the central favourable position A’( nllE, €, > 0) to the unfavourable position
B, where nLE, and this situation takes place within each period. Moreover, the
director must make a m/2-turn against the field to change its initial A position (at the
bottom) to new position A’. In other words, the director should overcome a high
potential barrier. Therefore, a very serious topological problem exists for the ideal
cholesteric helix. In reality, the structure (c) very often forms with favourable
orientation of the director everywhere. The positions of the walls W separating
areas where n differs by & are fixed and the energy of the structure (c) with the same
initial pitch Py is, of course, larger than the more profitable stationary structure with
an enhanced pitch.

The numerical modelling with software [5] and experiment [15] confirm this
picture. In the experiment, a cell was used pictured in Fig. 12.10. The dielectric
anisotropy of the material is €, =47.8 and the electric voltage is applied between
the in-plane interdigitated electrodes with a gap 20 pum. In calculations, both
the zenithal and azimuthal anchoring strengths at the bottom substrate is strong,
W.; = W, = 0.1 erg/em® At the upper substrate the zenithal anchoring energy
W, is also that strong, therefore the director is always confined within the plane of
substrates perpendicular to the helical axis. However, the azimuthal anchoring
energy at the second substrate is negligibly small W,, = 0.001 erg/cm? and pro-
vides easy rotation (sliding) of the director in the substrate plane.

Figure 12.11 shows the calculated distribution of the azimuthal angle ¢ for the
planar cholesteric structure of thickness d = 25P, however, only two periods are
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Fig. 12.11 Calculated director azimuth ¢ for the last two periods of the helix adjacent to the top
boundary of the cell (see Fig. 12.10). It repeatedly increases from 0° to 360° within each period P.
Without field the dependence ¢ (z) is linear. With increasing voltage the director is progressively
reoriented but the period remains unchanged. Cell parameters: thickness d = 4 um, pitch Py = 2.5 pm,
€, = 7.8, twist elastic modulus K>, = 9 x 10~/ dyn

shown for clarity. It is seen that, with increasing voltage, the director is progres-
sively realigned along the field direction but the period of the distorted helix
remains unchanged (some total shift of the curves along the z-coordinate is due
to boundary effects). Note that within each period there are horizontal parts of the
curves that correspond to very narrow ranges of angle ¢. These are field induced
defects (walls) having half-pitch periodicity which called m-solitons observed also
in SmC* materials (see Section 13.4.2).

The calculated field induced transmission of the same planar cholesteric texture
in the non-polarized light is shown in Fig. 12.12. It is clearly seen that, with
increasing field, the Bragg minimum is only slightly shifted to shorter wavelengths
due to a distortion of the helix seen in the previous figure and then disappeared at a
field of about 25V/pm. Therefore, in the absence of defects the field cannot increase
the period of the helix. An essential increase of the cell thickness does not influence
the result. The measurements of the field dependence of the transmission spectra of
a cholesteric with the same parameters have confirmed the absence of the red shift
of the Bragg minimum [15].

The characteristic field, at which the Bragg band disappears, is considerably
higher than the critical field (£, = 7 V/um) calculated from the thermodynamic
approach, see Eq. (12.29). However, the periodic structure with very thin defect
walls separating area of opposite director orientation (¢ = 0 or ) may still exist
but not seen optically. Metastable, non-unwound helical structures are also
observed at field strengths £ > E,, in experiments with short voltage pulses when
the defects have not enough time to form.
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Fig.12.12 Calculated optical transmission spectra of the planar cholesteric texture as functions of
the electric voltage applied (unpolarized light). Principal refraction indices used are n; = 1.550,
n, = 1.474, for other parameters see Fig. 12.11

12.2.2 Field Induced Anharmonicity and Dynamics of the Helix

Let us come back to Fig. 12.11. It is evident that a sufficiently strong electric field
perpendicular to the helical axis causes a snake-like picture of the director field with
the pitch of the helical structure remaining unchanged. It means that the distribution
of the x- and y- components of the director is no longer described by a simple sine
law but contains a contribution of higher harmonics. The amplitudes of the field
induced harmonics characterize a degree of the field-induced anharmonicity of the
helical structure. The higher harmonics of the helix had been observed long ago
[16], but only recently understood as very promising issue for applications. Indeed,
with an experimental cell of the type shown in Fig. 12.10 one can detect several
spectacular effects.

Let us simulate an appearance of the higher harmonics and optical properties of
the cholesteric structure with the following parameters typical of chiral materials
based on the well-known nematic mixture E7: helical pitch 0.4 pm, elastic modulus
K» =5 x 1077 dyn (or 5 pN); principal dielectric permittivity values g = 20,
€, = 8; refraction indices n; = 1.7, n, = 1.5. Cell thickness is d = 10 pm,
zenithal and azimuthal anchoring energies is strong (W,, = 0.1 erg/cm?) at both
boundaries. The electric voltage is applied across the in-plane electrodes separated
by a distance of / =20 pm, see Fig. 12.10. The helix is confined by two glasses with
refractive index n, = 1.5.

The inset to Fig. 12.13 shows the calculated space dependence of the x-component
of the director n,(z) within one period of the cholesteric structure. The voltage
applied to the in-plane electrodes is either 0 or 200 V (E = 10 V/um). As expected,
at the field applied, the apices of the curve n,(z) for U = 200 V become very flat.
The main plot of Fig. 12.13 represents the Fourier transform of the director
component n,(g/2m). In zero field, on the wavevector axis, the helix is represented
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Fig. 12.13 [nset: calculated
space dependence of the x-
component of the director
n,(z) within one period of the
cholesteric structure. Main
plot: Fourier transform 7,(q)
showing appearance of the
third harmonic of the helix in
a strong field. In both plots
solid lines correspond to zero
voltage, dot (or dash) curves
to U = 200 V. For parameters
see the text
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Fig. 12.14 Calculated
transmission spectra of a 1.0 1 P
planar cholesteric texture in
zero field and in field

E = 5.7 V/um applied
perpendicular to the helical
axis. Note appearance of the
strong second order photonic
stop-band even for non-
polarized light
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by a single harmonic at ¢/21 = go/21 = 1/Po = 2.5um ™~ '. At U = 200V, a strong
third harmonic of the distorted helix appears at ¢/2n = 3go/2n =3Py =7.5 pm ™"
The amplitude of the field induced third harmonic reaches the value as high as 27%
of the first harmonic amplitude at zero field. Note that characteristic relaxation time
of any elastic distortion mode is described by universal (hydrodynamic) formula
T = v/Kq?, where v is a rotational viscosity. Therefore, the higher the harmonic of
distortion the shorter is its relaxation time. This fact is of principal importance for
the fast devices based on the helix anharmonicity [15].

Figure 12.14 shows the calculated transmission spectra of a cholesteric mixture
in zero field and at £ = 5.7 V/um. In this case, the pitch is 0.4 pum and the cell
thickness d =10 pm. The incident light is circularly polarised. Upon application of
the field, a strong second Bragg reflection band emerges. The transmission is almost
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completely suppressed within a narrow spectral band. Within this range, using
electric field one can directly modulate light without polarizers.

The appearance of the high harmonics in the director distribution results in
considerably faster electro-optical switching. The dynamics of the cholesteric
helix in the electric field is described by the balance of viscous, elastic and electric
torques in the infinitely thick sample is given by

0 0 e o
yla—(f:Kzza—;f—kREzsm(pcoscp (12.31)

A low field only slightly changes the angle ¢ keeping only the first harmonic of
the structure with wavevector 27t/P,. Then, as soon as the field is switched off, the
helical structure @g(z) would relax to the field-off structure according to the same
equation (12.31) without the field term. With 0¢/0z = g, we find solution

K 2
@ = Qg singozexp (— 1/2‘10l>
1

and the field-free relaxation time

__N
K»q}

1 (12.32)

Note that in contrast to nematics T; is controlled by the helical pitch Py, = 2n/q,
and not by cell thickness d. At a strong field, the distortion involves several harmonics
with number m and wavevectors ¢,, = 2nm/P, and each harmonic relaxes with its
own time

Y1
m = 5 - 12.33
! K22m2q% ( )

For instance, the third harmonic of the distorted helix relaxes nine-times faster
than the first one and this agrees with experimental data showing submillisecond
response times of the cholesteric helix in the external electric field.

It is very spectacular that the electrooptical cell shown in Fig. 12.10 can provide
very high and spectrally tunable optical contrast between the field -off and -on
states. To this effect, we install the cell between two polarizers and each of them
should precisely be oriented at particular angles. Using variable optical anisotropy
the spectral band of high contrast may be done either very narrow and tunable (for
large An) or very wide for white light applications (small An).

12.2.3 Instability of the Planar Cholesteric Texture

For unwinding the helical structure, Eq. (12.29) relates the threshold coherence length
to a characteristic size of the system, namely, the pitch of the helix &, = Py/n*
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In Chapter 11 we have found that, for the Frederiks transition in nematics,
the threshold field coherence length is determined by the cell thickness, &g = d/m,
see Eq.(11.53). Now we shall briefly discuss another type of instability with a
threshold determined by the geometrical average of the two parameters mentioned
(Pod)"” [17].

Let both the helical axis and the electric field are parallel to the normal z of a
cholesteric liquid crystal layer of thickness d and ¢, >0. In the case of a very weak
field the elastic forces tend to preserve the original stack-like arrangement of the
cholesteric quasi-layers as shown in Fig. 12.15a. On the contrary, in a very strong
field, the dielectric torque causes the local directors to be parallel to the cell normal,
as shown in Fig. 12.15c¢. At intermediate fields, due to competition of the elastic and
electric forces an undulation pattern appears pictured in Fig. 12.15b. Such a
structure has two wavevectors, one along the z-axis (n/d) and the other along the
arbitrary direction x within the xy-plane. The periodicity of the director pattern
results in periodicity in the distribution of the refractive index. Hence, a diffraction
grating forms. Let us find a threshold field for this instability.

In the absence of the field, the director components are n = (cosgqyz, singyz, 0)
and gy = 0@/0z. For a small field perturbation, both the conical distortion appears
(angle 3) and the azimuthal angle ¢ slightly changes. The new components of the
director are:

ny = cos(qoz + @) A cos qoz — @ sin goz
ny = sin(qoz + @) = singoz + @ cos goz (12.34)
n; = 3 cos qoz

If we intend to calculate precisely the threshold field for the two-dimensional
distortion we should write the Frank free energy with the director components
(12.34) and the field term (g,/47)(En)? and then make minimization of the free
energy with respect to the two variables ¢ and 3 [18]. For a qualitative estimation of
the threshold we prefer to follow the simple arguments by Helfrich [17]. We
consider a one-dimensional (in layer plane xy) periodic distortion of a cholesteric
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Fig. 12.15 A planar cholesteric structure in the electric field parallel to the helical axis (g, > 0).
The local director orientation is shown by solid lines: field-off planar alignment (a), undulated
structure in a weak field £, > E > E,;, (b), and the homeotropic structure in the field exceeding the
threshold for helix unwinding E > E, (¢)
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with helical axis and electric field E parallel to axis z and layer thickness d > P,
Further, the deformation is assumed to be sinusoidal along both the x- axis (period
equals w) and the z-axis (half-period equals d). Hence, we have two variables: one
of them is the x- and z-dependent tilt angle 3 of the helical axis with respect to the
cell normal, see Fig. 12.15b,

0 = —0,, sin(nz/d) sin(2nx/w) (12.35a)

and the other is x- and z-dependent difference between the wavevectors of the
distorted and the equilibrium helix, Aq = ¢—qo (g0 = 21/Py):

Ag = Agy, cos(niz/d) cos(2nx/w) (12.35b)

The splay and bend distortions are described by angle 3 while the twist distortion
is related to a slight change of the period of the helical structure. The maximum
values of two variables 3,, and Ag,, are coupled to each other by equation

_2d Agn

w 4o

6”‘1

(12.36)

that can be understood with the help of Fig. 12.15b. Indeed, due to strong anchoring
the number of helical turns in the cell is fixed, but for the helical axis tilted through
angle 9 the helical pitch becomes larger (=P,/cos9) and the wavevector ¢ smaller
by Ag,,. In addition, for fixed cell thickness d and ¢, with decreasing period of
distortion w, the tilt angle 3,, will be larger because the sin(2m/w) function in
Eq. (12.35a) becomes sharper. Using Eq. (12.36) we have only one independent
variable.

Now we are looking for a difference between the elastic energies of structures (a)
and (b) in Fig. 12.15 irrespective of a source of the distortion. For a small distortion
and director compounds n, = cosd =~ 1, n, and n, = sin§ ~ 9 the highest order
terms for splay, bend and twist are divn = 09/0z, n x curln=—09/0x and
ncurln=—0n,/0z = Ag,,. Then, using Eqs. (12.35) we can write the Frank energy
density:

1

1
8elast = 3 831 + ZKZZ(AQm)Z

T\ 2 2m\ 2
Kll(g) +K33<;)

Here, the average values of <c0s29> = <sin’9> = 1/2 are used. As the cell
thickness is assumed to be large, d > w Helfrich discarded the splay term and the
elastic free energy density is reduced to the form

21\ 2
K| —
w

1 1
Zelast =3 92 4+~ Ky (Agw)*. (12.37a)

4
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When the electric field applied parallel to the helical axis is used to create the
distortion, the electric free energy density is given by:

of2)E>
gp = CEa/DE {1 n) 92 (12.37b)

It includes term (g, — €, )/2 because in the problem discussed, the torque is con-
trolled by anisotropy &, — €1, defined with respect to the helical axis as g, = €, and
€,n = (& + €.)/2 (in addition, small anisotropy &, < <g> is assumed).

On account of Egs. (12.36) and (12.37) the total free energy density reads

1

- 2 12.
8§=3 9 (12.38)

m

21\ 2 qow\ 2 e E?
Kul ) +2k (—) _
33(W> a5y 4r

Now we can find the period of the distortion using minimisation (12.38) with
respect to w (0g/0w = 0):

2K 1/2
w? = ( 33) (Pod) (12.39)
K»

This period is determined solely by the elastic forces. In fact, the instability
with the same period can be caused by other external factors, for example, by a
magnetic field or by an electrohydrodynamic process caused by conductivity of the
material [19].

Now the threshold field E,, for the instability can be found from Egs. (12.38)
and (12.39):

yjaf 2m /2
Ey = 2n(K2K33) / (Sﬂ)d) (12.40)

We can see that, for our one-dimensional distortion in the xy plane the threshold
coherence length &,, oc E;! o< \/Pod is determined by the geometrical average of
the two characteristic lengths. The numerical coefficients in Eq. (12.40) should not
be taken too seriously due to the qualitative nature of our consideration. Neverthe-
less, in experiment the distortion emerges at the fields higher than the Fredericks
transition threshold but lower than the helix unwinding one. As a rule, due to
rotational symmetry of the planar cholesteric texture having helical axis along z
we observe not a one-dimensional stripe pattern but a two-dimensional grid in the
xy plane, see Ref. [19].
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12.3 Bistability and Memory

12.3.1 Naive Idea

Let an electro-optical cell based on a liquid crystal, possesses two optically different
stable configurations having the same equilibrium elastic energy. Then imagine that
we can switch the cell between the two states by relatively short low-voltage pulses
and keep the structure in either state for an infinitely long time. Such a cell would
represent a bistable optical memory device. For instance, it may be a display
consuming very little energy from the voltage source because the source is used
only during switching. Such displays can also be useful for many applications from
small smart cards and electronic books to gigantic advertising tableaux.

The simplest but not the best idea of a bistable structure is shown in Fig. 12.16a.
A nematic liquid crystal layer of thickness d is placed between two plates and the
directors at the plates are aligned perpendicular to each other with ¢y = 0 and
¢4 = m/2. Assume the infinitely strong anchoring. Then the nematic is twisted left
or right by + m/2 or — m/2 and both the twisted structures have the same total
energy including the elastic and surface terms. The elastic distortion energy F, of a
structure twisted through angle ¢ has been calculated in Section 8.3.2:

K ¢?
F;, = 12.41
d 2d ( )

This energy is shown by the dashed parabola in Fig. 12.16b. If we release the
anchoring condition at the top interface, the nematic would relax to the uniform
structure with zero elastic energy. However, due to strong anchoring energy
W > F,, the total free energy of the twisted structure F' = F,; + W shows two
minima almost exactly at the +m/2 twist angles at the horizontal level of F(m/2).
If we realign the director at the top interface by an external force through an
angle £ the surface energy will dramatically increase. Therefore we have two
minima on the angular dependence of the total free energy with a barrier between
these stable states. We say that the cell is bistable.

>

/2 Angle ¢

Fig. 12.16 Bistable twist cell. Right- and left-handed twist-structures of a nematic liquid crystal
with the same elastic energy (a) and the angular dependence of total free energy (b)
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The two stable twist states have different optical properties. For example, the
electric vector of a linearly polarised light is rotated by the two structures in
opposite directions. If the Mauguin regime (dAn > L) is not strictly fulfilled the
two structures can be distinguished using crossed polarizers.

The problem, however, arises with the mechanism of selection of the right and
left structures. For example, if a nematic has positive dielectric anisotropy, the
applied electric field will align the director into the third, ON- state along the cell
normal, from which afterwards, in the absence of the field, it will relax to both
twisted stable states with equal probability. Actually a multi-domain structure
forms with many defects (walls) between domains. Of course, it is possible to
apply an in-plane electric field directed along the angle /4. Then, in the middle of
the cell, it will be parallel to the director in right-handed domains but perpendicular
to the director in the left-handed domains (or vice versa for the field angle of — w/4).
Due to this, the right domain will grow at the cost of the left one and finally the
overall right-handed twist structure will be restored. However, this process requires
a motion of the domain walls and, therefore, is very slow.

12.3.2 Berreman-Heffner Model

12.3.2.1 A Cell and Free Energy

We would like to consider this particular model in more detail because it demon-
strates interesting physical aspects of the bistability problem. Generally, chiral
nematics better suited to bistable devices as they have an additional degree of
freedom. By doping nematics with chiral compounds a variety of materials with
variable pitch can be prepared. The principal idea of Berreman and Heffner [20]
was to design a cell having two stable textures (states) with low enough energy
barrier between them. Then one can switch them by reasonable voltage. It has been
found that, using fine tuning the helical pitch to the cell thickness, the barrier
becomes especially low when, instead of cholesteric textures with directors parallel
or perpendicular to the cell normal z, the other textures were used with the director
strongly tilted with respect to z. For this purpose, the director at the transparent
electrodes was tilted using evaporation of silicon monoxide from a grazing direc-
tion. The zenithal angles of the director about 55° with respect to z were found to be
optimal.

In the test cells to be discussed below, the values of the helical pitch and the
tunable cell thickness are close to each other (about 28 pm). Therefore, as shown in
Fig. 12.17 the full pitch structure (n = 2) is the most stable (n means a number of
half-pitches). The elastic energy of the two states (n = 0 and n = 2) is calculated
with allowance for the twist, bend and splay distortions. Solid lines in Fig. 12.18
demonstrate dependencies of the elastic energy of the two states on thickness-to-
pitch ratio in the absence of an external field. In the figure, the free energy is
normalized to the unit cell area and factor d/K,,. It is seen that the free energy for



372

Fig. 12.17 Berreman—
Heffner bistable cell. Director
configuration of the cell with
two stable states (unwound
with n = 0 and twisted with
n = 2 half-turns) in the
absence of field and the
barrier state B in a weak
electric field

Fig. 12.18 Zero field free
energy of the states with
different number of half turns
n as a function of cell
thickness d normalized to
pitch Py. Solid lines show the
energy of the two stable states
to be switched. Low energy
(n = 1) state is excluded from
consideration for topological
reasons. B marks the high
energy barrier state playing
the dominant role in the field-
on state
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the states (n = 0) and (n = 2) is equal at the ratio of d/P, ~ 0.6. However, the
optimum cell thickness for the bistable operation found from experiment is larger,
doxp/P, = 0.89. It is that thickness, at which the energy of both states would reach
the barrier state (B) at relatively low voltage. The voltage dependence of the energy
for the cell of that particular thickness is shown in Fig. 12.19. Here voltage U is
normalized to the Frederiks transition threshold U,. With increasing U/U, the two
stable states, indeed, merge at U/U, ~ 1.8 (cross point). The energy of the barrier
state B is also changing and that curve also merges with the other two in point R at
U/U, =~ 2. Point R may be called the turn point, from which the system can relax to
one of the two states in the absence of voltage.
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Fig. 12.19 Voltage
dependence of the free energy
for the uniform (n = 0) and
twisted (n = 2) states. R is
the turn point from the barrier
state to one of the two stable
initial states

12.3.2.2 Backflow and Director Relaxation

But how to force the system relax to a particular state selected by an experimental-
ist? Berreman and Heffner [20] suggested to exploit the backflow effect discussed in
Section. 11.2.6. We know that, upon relaxation of the director from the field-ON
quasi-homeotropic state (barrier state B) to a field-OFF state, a flow appears within
the cell. The direction of the flow depends on the curvature of the director field,
which is more pronounced near the electrodes. Moreover it has the opposite sign at
the top and bottom electrodes, see the molecules distribution in state B in
Fig. 12.17. Due to this, the close-to-electrode flows create a strong torque exerted
on the director mostly in the middle of the cell that holds the director to be more or
less parallel to the boundaries in favour of the (n = 2) initial state in Fig. 12.17.

Therefore, if we switch the field off abruptly, the backflow will bring the system
into the twisted (n = 2) state. However, if we smoothly reduce the field to zero, the
backflow will be negligible and, according to Fig. 12.19, the system will follow
curve B (state B) downward and smoothly transform into state (n = 0). This
selection of the final state has been confirmed experimentally using different
forms of the voltage pulse either with the abrupt rear edge or the rear edge consisted
of several steps down.

12.3.2.3 Topological Problem and Trap States

Now let us go back to Fig. 12.18 and have a look at the dashed curve (n = 1) with
the lowest free energy in the field-OFF regime. An interesting question arises why
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Fig. 12.20 Three planar cholesteric structures with different number of helix half-turns. Struc-
tures (a) and (c) can be transformed into each other by continuous distortion. The central structure
(b) is topologically incompatible with the other two structures

this state is not used as one of the two stable states. Here we again meet a
topological problem related to helix untwisting. Consider for clarity a non-tilted
that is planar cholesteric texture with infinitely strong anchoring at two boundaries.
In Fig. 12.20 we see three possible structures, uniform one (n = 0) and two twisted,
the m-state (n = 1) and the 2m-state (n = 2). Note that the direction of arrows at the
opposite interfaces are the same in the (a) and (c) sketches but different in the
central (b) sketch. Therefore, we can continuously transform structure (a) into (c)
and vice versa. On the contrary, transformation of the central n-structure (n = 1)
into either left of right structure is impossible without break of anchoring, for
instance, at the bottom boundary. Such a transformation would take much higher
energy than the continuous transition.

We meet the same problem in the Berreman—Heffner non-planar cell: the =-
structure (n = 1) is topologically different from the two stable states. However,
despite a high barrier, both the uniform and the 2 states may little by little relax to
the “forbidden” lowest energy m-state. This is possible via slow formation of
intermediate defect states of the cholesteric structure. This will reduce the lifetimes
of both stable states; they become quasi-stable. The topologically forbidden n-state
behaves as a trap, and one needs strong voltage pulses to destroy the trap in order
to continue the bistable switching. It is a disadvantage of the Berreman—Heffner
model.

It would be better not to deal with such a trap state at all. To avoid it, there has
been suggested another configuration with the same quasi-stable states, uniform
0-state and twisted 2m-state, but now the ratio d/Py =~ 1 corresponds to the lowest
energy 2n-structure [21]. The system may stay for a long time in either state without
trapping and be switched at a low voltage from the beginning. However, now
another problem appears: the difference in energy of the 0- and 2r-states is larger
than in the previous case. Thus, the reliable selection of a desired memory state
using backflow becomes more difficult unless the liquid crystal has high ratio of
elastic constants K33/K», > 3. Such a material has been designed and the low-
voltage bistability demonstrated. In principle, in the bistable devices a dual-
frequency addressing regime discussed in Section 7.2.4 should be very efficient.
Indeed, using positive g, at low frequency, one can easily force the director to reach
the uniform homeotropic state. Operating with high frequency and negative ¢, it is
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easy to reach the planar 2n-state. However, at present, this technique is not used due
to complexity of the corresponding addressing circuits.

12.3.3 Bistability and Field-Induced Break of Anchoring

Using field-induced break of anchoring discussed in Section 11.2.4 one can over-
come topological problems [22]. The advantage is that we can design a cell with
two long living ground states having very high energy barrier between them. The
long-life states are very important in the display technology, because the ratio of
the switch-OFF and switch-ON times determines a number of addressed lines of the
screen or the so-called multiplexing of the display. Note that in a standard display,
switching of each pixel is controlled by a separate thin-film transistor that compli-
cates technology and increases price of the display.

Figure 12.21a and b shows schematically two ground states, the uniform one
(n = 0) and n-twisted (n = 1). As mentioned before the transitions between them
are topologically blocked. There is a small but principal difference between this
pair of states and the pair of the corresponding states in Fig. 12.20: at the top plate
the director is slightly tilted and the anchoring energy is made weak to facilitate the
break of anchoring. The optimum thickness-to-pitch ratio is d/P, =~ 1/4. This
means that the m/2-twist is the equilibrium state and costs no elastic energy and
the elastic energies of the two non-equilibrium stable states (0 and ) are higher and
nearly equal. With increasing voltage, at a certain critical value, the two non-
equilibrium states merge into one. In the new state, the director is uniformly aligned
along the field almost everywhere except at the bottom interface, Fig. 12.21c. When
the voltage is reduced the system reaches a bifurcation point, at which two scenarios
are possible depending on the rate of the voltage decay: fast decay causes a
backflow that drives the system into the m-twisted state (n = 1); smooth decay
results in the uniform state (n = 0).

In principle, topologically blocked states may exist for unlimited time. The main
problem is to break anchoring without breakdown of the sample. Anchoring is
broken when an electric field coherence length become comparable to a surface
extrapolation length. Therefore, a critical voltage U, necessary for the break of
anchoring is proportional to the anchoring energy. The latter should be as low as
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Fig. 12.22 Operation of BiNem® bistable device. Two stable states are the uniform (n = 0) and
n-twisted (n = 1). Anchoring is strong at the top plate and weak at the bottom one. A strong field
pulse E breaks anchoring and creates a transient quasi-homeotropic texture. If the rear edge of the
pulse is short, the backflow develops and the pulse writes a signal in the form of the n-twisted
texture. To erase the signal, a strong pulse with a step-like rear edge creates the same transient
state, which relaxes to the uniform stable texture due solely to the elastic force

possible. For instance, to have U, ~ 15 V the zenithal anchoring energy should be
as low as 0.2 erg/cm?. The shape of the voltage pulses is also important because the
system behaviour at the bifurcation point depends on the steepness of the rear edge.
Figure 12.22 shows the operation principle of the recently described bistable
display [23]. In this case the break of anchoring occurs at the bottom electrode
where the zenithal anchoring of the director is weak. Beautiful colour images,
stable in time and easily switchable have been demonstrated.

12.4 Flexoelectricity in Cholesterics

As has been mentioned in Section 11.3.1, the twist itself does not produce flexo-
electric polarization. However, an interesting flexoelectric effect is observed when
the twist distortion is combined with the splay-bend distortion [24,25]. In that case,
the cholesteric axis hy is homogeneously oriented in the plane of the cell along z,
see Fig. 12.23a, and an electric field is applied to transparent electrodes of a
sandwich cell along the x-axis, E_Lhy. The dielectric anisotropy is negative,
€, < 0. In the field-OFF state, the director components are parallel to the xy-
plane, n, = cos@, n, = sin@ and the conical distortions is absent, see Fig. 12.23
(b) for E = 0. If the cell is filled with a short pitch cholesteric Py = 2m/qq it
behaves like a uniaxial optical plate with the optical axis directed along hy. When
the field is applied, a periodic splay-bend distortion appears due to the flexoelectric
torque My = P/ in the surface regions. This distortion has been considered in
Section 11.3.2 for nematics. Interacting with the natural twist of the cholesteric, the
director leaves the xy-plane as shown in the picture. For the conical distortion the
new components of the director are given by

n, = cos ¢;n, = sin@ cos ¥;n. = —cos @ sin'¥


http://Section&nbsp;11.3.1
http://Section&nbsp;11.3.2

12.4 Flexoelectricity in Cholesterics 377

a

Fig. 12.23 Flexoelectric distortion in a cholesteric liquid crystal. (a) The d.c. field from the source
U is applied to the cell along the x-axis. (b) The field induced director distortion for positive and
negative field directed perpendicular to the plane of the figure along the x-axis; it is seen how the
cholesteric quasi-layers are tilted though angle ¥ from their field-OFF configuration within the x,
y-plane shown in the central sketch

The turn of the director everywhere through angle ¥ is equivalent to the turn of
the optical axis about the x-axis through the same angle. The sign and the magnitude
of the deviation angle ¥ depend on polarity and strength of the applied field,
respectively. It can be estimated as follows.

For weak anchoring and ¢, = 0 by analogy with a nematic (see Eq. 10.77), the
free energy of the distortion includes the elastic term due to the bend-distortion (we
assume K = K| = K33) and the flexoelectric term with an average coefficient e.
The second elastic term is due to the cholesteric helical structure (modulus K55):

2 2
g= lK % + 1Kzz qo0 — 99\ _ eEa—('D (12.42)
2\ 0Oy 2

Minimisation with respect to 0¢/0z results in 0¢/0z = go. Minimization with
respect to 0@/0y results in 0@/0y = eE/K, see analogy with Eq. (11.79) for
nematics. These two derivatives can be imagined as two projections of wavevector
k, which will show the direction of the field-induced helical axis. In zero field
k = qollhg, In the field-ON state the components of vector k are IklcosW = ¢, and
Iklsin¥ = eE /K , and these components define the position of the new optical axis.
Therefore, the angle of the optical axis rotation is given by

anw = £ (12.43)

qOK )

which is linear in the electric field E for small distortions.
The rise and decay of the flexoelectric distortion is controlled by periodicity of
the helix,

Y1
7= (12.44)
K»g}
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Therefore, for short pitch cholesterics with pitch about 0.3 pm, the characteristic
time of the director switching is short, T < 100 ps (y; = 1 P or 0.1 Pa-s in SI,
go = 2m/Po ~ 2 x10°cm " or2 x 10 m™", K>, ~ 3 x 10 "dynor3 x 107> N).
Indeed, experiments show that the effect of the realignment of the helical axis is less
than 100 ps, and the speed of the response is independent of the field strength.
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Chapter 13
Ferroelectricity and Antiferroelectricity
in Smectics

13.1 Ferroelectrics

13.1.1 Crystalline Pyro-, Piezo- and Ferroelectrics

The discussion of ferroelectricity in liquid crystalline phase is based on the concepts
developed for the solid crystals. Therefore, we have to start from a brief survey of
the elementary physics of ferroelectricity in crystals [1, 2].

13.1.1.1 Polarization Catastrophe in Liquids and Solids

In Section 7.2.1 we discussed polarization of molecular isotropic liquids. We
introduced the equations for dielectric permittivity € and dielectric susceptibility
%% and wrote the microscopic definition of the polarization vector P as a sum of
dipole moments in the unit volume n, = pNA/M (p is density, N is Avogadro
number, M is molecular mass):

8797E+4TCP g P e—1

=5 > LTEToa P:;pg:nyEloc. (13.1)

Here p. is the electric dipole induced by the electric field in a molecule having
mean molecular polarizability y. Then we used the Lorentz approximation for the
local field acting on a molecule and found corresponding field induced polarization.
From that we have obtained the electric susceptibility of the dielectric (Eq. 7.18):

xF =P/E =nyy/[1 — (4n/3)n,y] (13.2)

This formula is very important for the further discussion because it predicts the
“polarization catastrophe”. For small molecular polarizability y, susceptibility =
depends linearly on y. However, when y — 3/4nn,, the denominator of (13.2)
tends to zero and % diverges.
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Its physical sense is well seen from the equations (7.17) for P and E,,.. For a
fixed concentration of molecules and given local field, the polarization should be
linear function of y. However, with increasing P, E,, itself begins to grow and this
results in the non-linear, avalanche-like increase of susceptibility. Finally, for
small, densely packed molecules (n, is large) with high polarizability y, = would
tend to infinity. It means that an infinitesimally low field, even a small fluctuation of
a local field, may create a finite polarization. In other words, polarization may
appear spontaneously, without any applied field. The appearance of the spontane-
ous polarization is a necessary (but not sufficient) condition for phenomenon called
ferroelectricity.

What’s about liquid ferroelectric? Let us examine the qualitative criterion

k= (4/3)mnyy = (4/3)npyNa/M (13.3)

for the polarization catastrophe in liquids having non-polar molecules. In this case,
the Lorentz formula for the local field is approximately valid. We can take, e.g.,
liquid benzene (p ~ 0.9g/cm’, M = 78, electronic polarizability y. ~ 1.25 x
1072 cm ). Then k ~ 0.09 <<1 and liquid benzene cannot be polarised sponta-
neously. Even for hypothetical liquids consisted of smaller molecules with higher
electronic polarizability it would be difficult to reach criterion (13.3). More per-
spective are liquids whose molecules carry permanent dipole moments p., which
additionally contribute to y due to orientational polarizability v,,. Let us take liquid
nitrobenzene (p ~ 1.2g/cm’, M = 123) with quite a large dipole moment, p. ~ 4
Debye = 4-x 10718 CGS). The application of the Lorenz formula for E;,. would
result in equation (7.22) for orientational polarizability v,, = p?/3ksT ~ 1.3 x
107*cm ™ at room temperature. Then, coefficient k ~ 3.2 would exceed the
criterion for the polarization catastrophe, however, this is incorrect result, because
the Onsager reaction field discussed in Section 7.2.1 has not been taken into
account. In reality, the dipole—dipole interaction in nitrobenzene and other known
dipolar liquids is not sufficient to form a spontaneously polarised state.

In solid crystals, the situation is different because (i) their packing is denser; (ii)
ionic crystals consist of small ions of high polarizability; (iii) different ions interact
with each other forming large dipoles and (iv) there is a possibility to overcome the
limitation posed by the Lorenz formula for the local field. Indeed due to crystal
anisotropy, at least, for some directions the criterion for the polarisation catastrophe
is weaker. On the other hand, in solids there are strong elastic forces counteracting
the electric force and hindering displacement of ions. Nevertheless, a spontaneously
polarised state is quite typical of many crystals, the molecular organic crystals
included.

13.1.1.2 Pyro-, Piezo- and Ferroelectrics

Totally there are 32 crystallographic classes. Among them we can distinguish 11
unpolar classes, 11 neutral-polar classes and ten polar classes. Unpolar classes have
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Fig. 13.1 Examples of non- a b c

polar, piezoelectric and (o] (o}
pyroelectric crystals: calcite

(a), ZnS (b) and tourmaline

(¢). An arrow shows the

direction of the polar axis in

tourmaline

no polar directions at all. They have a centre of symmetry and show no polar
properties. The polarisation can be induced only by external electric field. An
example is calcite having inversion centre and symmetry D34 shown in Fig. 13.1a.

Piezoelectrics. In the neutral-polar classes there are polar directions (not axes),
which can be described by several vectors with their vector sum equal to zero. Such
crystals do not possess spontaneous polarization and do not manifest polar properties
(such as pyroelectric, photogalvanic or linear electrooptical effects); however, the
polarization can be induced not only by an electric field but also by a pure mechani-
cal stress. These crystals are called piezoelectrics. Examples are crystals of quartz or
ZnS having cubic symmetry with four polar direction but no polar axis, Fig. 13.1b.
Such crystals are used in technics as microphones, mechanical micro-motors and
sensors, etc.

Pyroelectrics. In a crystal belonging to polar classes there is only one polar axis with
a symmetry of the polar vector. These crystals are also piezoelectric, but, in addition,
manifest spontaneous polarization P and all other polar properties. Such crystals are
called pyroelectrics. An example is tourmaline having symmetry Cs, and shown in
Fig. 13.1c. Pyroelectric crystals are also used in techniques as piezoelectrics and also as
detectors of infrared light or a heat flow. There are many organic pyroelectric crystals,
e.g., p-nitroaniline, one of the best generators of the optical second harmonic.

Ferroelectrics. Speaking in terms of the polarisation catastrophe we can say that,
in the most of pyroelectrics k > 1, and the catastrophe occurs upon crystallisation of
the substance. In this case the polarisation is forever fixed along the direction of the
polar axis even upon variation of temperature or an external field. However, there are
some crystals belonging to the same point groups as pyroelectrics but having not so
stable spontaneous polarisation. The direction of Py, that is the direction of the vector
of polar axis, can be inverted by an external electric field. In fact, this direction is
degenerate and there are two equivalent energy states. One of the two minima of the
free energy may be selected by an external field and this is another type of bistability
in addition to discussed in Section 12.3.3. The switching between the two states is
characterised by a certain threshold and hysteresis. This possibility of the polarisa-
tion switching between two stable states is usually taken as a criterion to distinguish
such (soft) ferroelectrics from the normal (rigid) pyroelectrics. The bistability is the
sufficient condition for ferroelectricity [3].
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In ferroelectrics criterion k only slightly exceeds unity. For this reason, with
increasing temperature, the ferroelectric state or phase can be destroyed by the
phase transition into the non-ferroelectric (paraelectric) phase with zero spontane-
ous polarization. Sometimes this ferroelectric transition at temperature 7. is taken
as an additional criterion for ferroelectricity, although there are crystals, in which a
ferroelectric phase survives up to the crystal melting. Experimentally, close to T,
the dielectric constant very often obeys the Curie law, ¢ = C/ (T, — T), where C is
Curie constant. A good example of a ferroelectric crystal is BaTiO3, in which two
stable states are characterised by two different sites the Ti*" ion occupies in the
crystallographic lattice. Among crystalline ferroelectrics there are some organic
crystals and even polymers, e.g., poly-vinylidene-fluoride (PVDF), in which the
spontaneous polarisation is owed to collective alignment of the C-F dipoles
perpendicular to the backbone of the polymer.

13.1.1.3 Simplest Description of a Proper Ferroelectric

In the proper ferroelectrics, the spontaneous polarisation appears as a result of the
polarisation catastrophe or, in other words, due to electric dipole—dipole interac-
tions. There are also improper ferroelectrics, in particular, liquid crystalline ones, in
which a structural transition into a polar phase occurs due to other interactions and,
consequently, P, appears as a secondary phenomenon. We shall discuss this case
later. For simplicity, the square of spontaneous polarisation vector can be taken as a
scalar order parameter for the transition from the higher symmetry paraelectric
phase to the lower symmetry ferroelectric phase. Therefore, in the absence of an
external field, we can expand the free energy density in a series over P,*(T) and this
expansion for ferroelectrics is called Landau—Ginzburg expansion:

g=g0+1AP? +1BP! +1CPS - (13.4)

Here, gy is free energy of the paraelectric phase, A = a(T — T.), B, C are
Landau coefficients. As in Eq. (13.5) there is no any derivative, the conditions for
the free energy minimum are given by the simplest Euler equation 0g/0P, = 0 and
stability condition d2g/0P?>0:

AP, +BP? + CPY =0 and A+ 3BP>+5CP! >0 (13.5)

Consider the case of small P,. Then, the sixth order term is ignored and
g =80+ % AP} + 1 BP} 4 --- The plot of this function is very similar to that in
Fig. 6.10b for the free energy close to the SmA-nematic transition discussed in
Section 6.3. The phase transition occurs at A = 0. For A > 0 there are two minima
corresponding to finite values of the spontaneous polarisation in the ferroelectric
phase (curve 1 in the figure); for A < 0 only one minimum at zero P, corresponds to
the paraelectric phase (curve 3). Totally, we have only three solutions of Eq. (13.5):
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P, = 0 (for the paraelectric phase) and Py = +(—A/B)"* = +[(a/B)(T. — T)]"/?
(for the ferroelectric phase). Signs (&) mean that Pg can look in two opposite
directions and correspond to the two minima in the free energy. The square root
dependence of P, on temperature near the phase transition is a continuous function
characteristic of the second order transition like SmA-nematic transition, see
Fig. 6.10a or SmC-SmA transition. Such dependence is in accordance with many
experiments on ferroelectrics. When Py is not small we should return back to the
initial free energy expansion (13.5) and keep the sixth order term. A similar
situation has been already discussed in Section 6.2 for the isotropic — nematic
phase transition. Now Eq. (13.5) has five solutions and can explain a jump-like
growth of P with decreasing temperature, (as in Fig. 6.5), hysteresis of Py(T) close
to the transition temperature and specific features of other thermodynamic properties.

To discuss the electric field switching we add the field term gz = —PE to
(Eq. (13.4)) and make minimisation of free energy with respect to the total polari-
zation P = Py + P;, that includes the spontaneous and the field induced terms
P = P, + P;,. Then we obtain 0ggz/0P = —E or

E = AP + BP? + CP? (13.6)

This equation implicitly represents the dependence of polarization on the applied
electric field. Usually, the function P(E) can be found numerically with temperature
dependent coefficient A and constant B and C.

From Eq. (13.6) we can easily derive the Curie law for dielectric permittivity €
or susceptibility y = (¢ — 1)/4n. For small fields, we can leave only the first
term of the expansion E = AP. In the paraelectric phase P = P;, and
Pin = YpardE = E/a(T — T_). In the ferroelectric phase, for small fields, Py>> Py,
therefore P? ~ P? + 2P,P;, + - -- and (A + BP? + 2BP,P;,)(P; + P;,) = E. From
here, using formula for (P,)*=—A/B found above and leaving only linear terms in
P;,, we obtain E = —2AP;,.

Therefore, the Curie law is given by

Ypara = 1/a(T — T.)(for T > T, in paraelectric phase) (13.7)

Ypara = 1/2a(T —T.)(for T < T, in ferroelectric phase) (13.8)

The inverse susceptibility follows a linear dependence on temperature in both
the paraelectric and ferroelectric phases; a sign of the slope of function 1/x(T) in the
two phases is opposite and the magnitude of the slope is twice larger in the
ferroelectric phase in agreement with experiment. Note that the Curie law is valid
for both second and first order transitions, but the critical temperatures T, and T.*
the two cases may not coincide, like in Fig. 6.8b.

Now, going back to Eq. (13.6) we may discuss the P(E) dependence even for
strong fields. An example of such dependence is pictured qualitatively in Fig. 13.2.
The values of P at E = 0 on the vertical axis corresponds to & P. In the field range
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Fig. 13.2 Hysteresis type P A
dependence of total F
polarization P on electric field
E for a typical crystalline B
ferroelectric 2
3 H -
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between points G and H the function P(E) has three values. In reality, a hysteresis is
observed. With increasing field the curve follows the route DECFA, but, due to a
memory of state A, the back route AFBED does not coincide with the forward one.
As a result, a ferroelectric loop forms with width G-H. A half of the width is called
“coercive field”. We see that, upon application of the electric field, the spontaneous
polarization of the ferroelectric can be switched between two states £ P
corresponding to the two equivalent minima in the free energy. Therefore, the
ferroelectric demonstrates a bistability again in agreement with experiment. It is
very surprising how many experimental results on ferroelectricity can be explained
using such a simple theoretical consideration!

13.1.2 Ferroelectric Cells with Non-ferroelectric Liquid Crystal

13.1.2.1 Meyer’s Discovery

Year 1975 has been marked off by an outstanding publication of R. Meyer and his
French co-workers [4]. As has been discussed in Section 4.9, chirality of molecules
removes the mirror symmetry of any phase. The idea of Meyer was to apply this
principle to the SmC phase by making it chiral. He believed that if chiral molecules
formed a tilted smectic phase, its point group symmetry would reduce from C,, to C,
and the new phase would belong to pyroelectric class with a specific polar axis [5].

The chemists from Orsay have synthesised chiral compound p-decyloxybenzy-
lidene-p’-amino-2methylbutylcinnamate (DOBAMBC), Fig. 13.3. Indeed, in the
temperature range 95—117°C, this substance showed a linear electro-optical effect
characteristic of a pyroelectric phase. The effect was observed in thick home-
otropically oriented layers. Due to chiral structure of DOBAMBC molecules, the
SmC* phase had a spiral structure with the helical axis perpendicular to the limiting
glasses, Fig. 13.4a. Under a microscope the preparation showed a conoscopic cross
typical of a uniaxial phase, and, upon application of the in-plane electric field E,,
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Fig. 13.3 Chemical formula of DOBAMBC molecule which is chiral due to asymmetric carbon
C* and has a dipole moment p,. Below is a sequence of transition temperatures between crystal
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Fig. 13.4 Meyer’s experiment. Geometry of the cell with helical structure of DOBAMBC (a) and
two conoscopic images (b), one in the absence of the field (fop) and the other at E, = 672 V/mm
showing a shift of the conoscopic cross perpendicular to E,

the cross moved perpendicular to the field along the y-axis, Fig. 13.4b. The
direction of the cross shift changed with a change of the field polarity. The effect
was clearly related to the pyroelectric nature of the SmC* phase and existence of
the spontaneous polarisation interacting with the external field. Therefore, in 1975
for the first time, a polar liquid phase (of course, anisotropic) with finite spontane-
ous polarisation was reported.

The value of P, in DOBAMBC was very small, about 18 CGSQ/cm2 (or
60 uC/mz). It is 2,500 times less than P, in BaTiO5; (150 mC/mz). However,
nowadays there are SmC* materials with P, ~ 5 mC/m”. The magnitude of P,
depends on the molecular structure. A molecule should have a large transverse
dipole moment located close to the chiral moiety; otherwise the intra-molecular
rotation of chiral moiety with respect to the dipolar part would prevent, at least,
partial orientation of dipoles along the polar axis. For the same reason, a rotation of
molecules about their long molecular axes should be hindered. In DOBAMBC, the
smallness of Py is explained by rather free rotation of the chiral tail about the
—O—CH- bridge connecting the asymmetric carbon C* with the -C=0O dipolar
group shown by an arrow in Fig. 13.3.
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13.1.2.2 Goldstone Mode and Helicity of the Structure

As we discussed in Section 4.9, on a large scale, the SmC* phase acquires a helical
structure. This is not surprising, because, in the achiral SmC phase, the c-director of
the infinite stack of layers may look over any direction. The rotation of the SmC*
director about the smectic layer normal does not cost any energy. We meet the same
situation in nematics: when there is no external field and limiting surfaces, the
direction of the director n is not fixed and one can rotate it without spending any
energy. It is an elastic mode, the so-called Goldstone mode, trying to restore the
continuous symmetry D, — K, of the phase existing above the corresponding
transition (isotropic phase in case of nematics) [6]. Due to this non-energy demand-
ing rotation, any small amount of a chiral additive (considered as a perturbation)
would easily twist the nematic structure into the cholesteric.

The Goldstone mode in an achiral SmC tries to restore the symmetry of the
smectic A phase C,., — D, by free rotation of the director along the conical
surface with the smectic layer normal as a rotation axis. Thus, like chiral molecules
convert a nematic into a cholesteric, they convert an achiral SmC into chiral SmC*
without any phase transition. In addition, mixing left (L)- and right (R)-handed
additives results in a partial or complete compensation of the helical pitch both in
cholesterics and chiral smectic C*. For example, the L- and R- isomers of the same
molecule taken in the equal amounts would give us a racemic mixture, that is
achiral SmC without helicity and polarity.

What has been said above shows that the macroscopic helicity as such has no
direct relation to the polarity of the SmC* phase. One can select chiral molecules
without dipoles and construct a helical SmC* that will have a polar axis without
polarisation. But, is it possible to have finite polarisation without helical structure in
the bulk? Can we make a uniform polar phase with infinite helical pitch? The answer
is “Yes”. To this effect we should prepare a mixture of left-handed and right-handed
molecules of different chemical structure. An example is shown in Fig. 13.5 [7].
In this case, R-DOBAMBC is mixed with L-HOBACPC (p-hexyloxybenzylidene -
p’-amino-chloropropyl-cinnamate). The sample is rather thick, d = 200 pm. With a

Fig. 13.5 Phase diagram for 7 & Ps
the mixture of two chemically qo m™! nC/cm?
different left- and right-

handed compounds. Note that 1.0
at a certain concentration of
HOBACPC (¢ ~ 15%) the
spontaneous polarization Py 0.5
vanishes in the helical
structure (wavevector
qo ~ 0.8 pm’l); on the
contrary, at ¢ = 50-70%, the J T J J
helicity is compensated Right 0 Y 40 . 80  100% Left
(go = 0) but P, remains finite DOBAmMBC HOBACPC
(~5 nC/cm?)

no helicity d

10
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change in composition we observe two magic points: in one of them the helical pitch
is compensated and the helical vector ¢ = 0 (no helicity), in the other the spontane-
ous polarisation vanishes (no polarity). The two points do not degenerate into one
because molecular interactions responsible for polarity and chirality are different.
This result is very interesting from the practical point of view: it shows how to get
rid of the undesirable helical structure in liquid crystals electrooptical cells. It is also
significant from the theoretical point of view because it proves a possibility to have a
uniform polar liquid crystalline structure without any limiting substrates.

Such a polar phase would manifest the same Goldstone mode as an achiral SmC
does. The origin of the Goldstone mode in SmC* is not a helical structure, as often
stated in literature. On the contrary, the helicity originates from the Goldstone mode
due to its gapless nature (the absence of any energy gap for the c-director rotation
from one orientational state to the other). What is true that the same mode in the
SmC* phase is much better seen in the low frequency dielectric spectrum due to the
coupling of the director to the spontaneous electric polarisation of the chiral polar
phase. Particularly, in the helical structure, the Goldstone mode has a characteristic
(hydrodynamic) dependence of the relaxation frequency on the wavevector of the
helix, ® ~ qu, exactly like in cholesterics.

13.1.2.3 Smectic C* Phase and Criteria for Ferroelectricity

Is the SmC* phase ferroelectric? To answer this question we should look more
carefully at the criteria formulated for crystalline ferroelectrics:

1. All crystalline ferroelectrics without exceptions belong to one of the pyroelectric
classes and possess spontaneous polarisation (polar class).

2. Sometimes, a formation of domains with different direction of Py is also taken as
a pre-requisite of the ferroelectricity.

3. There is a distinct phase transition between the ferroelectric and the paraelectric
phase (there would be no exception from this rule if we consider even melting to
the liquid phase as such a transition).

4. There are two equivalent stable states (bistability) differed by the spontaneous
polarisation direction, between which we can switch the direction of P. It seems
there is no exception from this criterion among the crystalline ferroelectrics.

As we have seen, locally the smectic C* layers are polar, belonging to pyroelectric
class C,. Macroscopically SmC* either forms a helical structure or does not. So, we
can discuss a structure without helicity. In a sense, the formation of a helix is
equivalent to formation of ferroelectric domains which would reduce overall macro-
scopic polarisation. Thus we can consider the (1) (very important) and (2) (additional)
requirements fulfilled. As to the phase transition (3), we know that in the smectic A*
phase, even chiral, there is no polar axis, therefore that phase can be considered as a
paraelectric phase. The two-component order parameter of the A*—C* transition is
the same as the parameter of the A—C transition in an achiral substance, namely 3exp
(ip), where we recognise the tilt 3 and azimuth ¢ angles. The spontaneous
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polarisation is not considered as an order parameter, but this is not a limitation for, at
least, improper ferroelectricity. We just deal with a transition to improper pyroelectric
phase. Thus, the third criterion for ferroelectricity is also fulfilled.

The last criterion (4) is bistability. In the non-helical structure the direction of the
polar axis is fixed in the sense that the three vectors, the polar axis Py, the director n
and the smectic normal h form either right or left vector triple. This depends on
molecular handedness and cannot be changed. In this sense there is no bistability.
On the other hand, the Goldstone mode allows the thresholdless rotation of Pg
together with n about h through any angle by an infinitesimally low electric field.
So, a number of possible states is infinite.

The situation can be well modelled by a magnetic arrow, placed in a viscous
liquid: by realignment of an external magnetic field the arrow will follow the field
and eventually it takes the field direction (the time depends on liquid viscosity). Our
case can also be modelled by a pyroelectric crystal installed on the needle like the
magnetic arrow. Now the arrow is not magnetic but electric and follows an electric
field E. If the electrodes are fixed in the smectic layer plane, we can switch the
polarisation between two angular states, controlled by the positive and negative
field. Since the polarisation direction is rigidly coupled to the director (and the
optical axis) we would observe a linear electrooptical effect. The switching is faster
if we have stronger E, higher P, and lower viscosity and this is in agreement with
experiment. However, the two field controlled states are not intrinsically stable
states and, in the absence of the field, they can easily be destroyed by thermal
fluctuations or even by very weak chirality.

Therefore, in conclusion, we may say that the bulk smectic C* phase is, in
principle, a liquid pyroelectric, which, due to its fluidity, allows a thresholdless
realignment of its polarisation (and the director) by an external field. Strictly
speaking, it is not a ferroelectric in both the uniform and helical states. It may be
called a helielectric [8] to distinguish it from the conventional pyroelectric, how-
ever, this does not change anything. But why a large class of smectic C* materials is
called ferroelectric and under this name is widely used in modern technology?

13.1.2.4 Surface Stabilised Ferroelectric Cells

We can answer the last question if consider a construction of the so-called “surface
stabilised ferroelectric liquid crystal cell” or simply SSFLC cell [9]. Such SSFLC
cell is only few micrometers thin and, due to anchoring of the director at the
surfaces, the intrinsic helical structure of the SmC* is unwound by boundaries
but a high value of the spontaneous polarisation is conserved. The cell is con-
structed in a way to realise two stable states of the smectic C* liquid crystal using its
interaction with the surfaces of electrodes, see Fig. 13.6a. First of all, in the SSFLC
cell, the so-called bookshelf geometry is assumed: the smectic layers are vertical
(like books) with their normal h; parallel the z-axis. Then the director is free to
rotate along the conical surface about the h; axis as shown in Fig. 13.6b (Goldstone
mode). It is important that, to have a bistability, the director should be properly
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Fig.13.6 SSFLC cell. The structure of the cell with bookshelf alignment of smectic layers (a) and
the cone of the director n motion with two stable states +9 in the electrode plane yz (b). Note that
in sketch (a) the director in the cell plane yz is turned to the reader through angle +3 (shown by
thicker right parts of the rod-like molecules) in agreement with sketch (b). The double-head arrow
shows the optimum angular position of polarizer P

anchored at the electrodes. In the ideal case, the zenithal anchoring energy W,
should be relatively strong, but the azimuthal one W, should be zero. Thus, in the
absence of the external field, to have minimum W, the director n must be located
parallel to electrodes that is in plane yz intersecting the surface of the cone.
Therefore, there are only two stable positions for n, either angle +3 or —3.
Consequently, the spontaneous polarization P will be directed along the +x-axis,
i.e. either up or down in sketch (a).

In experiments, very often spatial domains appear in the initial field-off state of
approximately equal total area with the director oriented at +3 or —3. Under a
microscope, with a polariser P oriented, say, along the +3 direction, as shown in
Fig. 13.6b, and analyser A LP, the +3 domains look black and —3 domains bright.
When a sufficiently strong, square-wave electric field & E, is applied to electrodes,
P, is switched along the x-axis and, since the director is rigidly fixed to both the P,
and the conical surface, its projection on the yz-plane will oscillate between
+9 positions through total angle 293. Usually it sticks in one of the two stable
positions (memory states) as soon as the field is switched off. This process results in
a true bistable switching of P like in solid state ferroelectrics and, due to director
switching, a fast electrooptical effect with a good contrast is observed.

SSFLC cells are very convenient for measurements of the magnitude of P.
Indeed, upon switching the polarization by external voltage, a change of the surface
charge at the electrodes of area A creates an electric current i = dQ/dt = A dP/dt.
Therefore, applying a step voltage of sufficient amplitude to switch the polarization
from —P; (at t = —o0) to + P (at t = +00) and measuring the time dependence of
the current i(f) we find P by integrating the area under the i(#) function.

2P, =A"! J i(f)dt
Unfortunately, the ideal bookshelf structure is difficult to make. Usually the

electrodes are covered by polymer layers and rubbed unidirectionally. This pro-
vides a good alignment of the director along the electrodes and the “bookshelf”
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structure of the SmA* phase. Upon cooling the cell from the SmA* to SmC* phase
the director keeps its in-plane direction. Although the rubbing is appropriate for
strong zenithal anchoring it is incompatible with the requirement of zero azimuthal
anchoring of the director necessary for the genuine bistability. Moreover, upon the
passage of the SmA* — SmC¥* transition, the smectic layers become tilted or
acquire a chevron structure. The chevrons and accompanying zigzag defects have
been discussed in Section 8.5.4, see Figs. 8.33 and 8.34. These factors reduce the
performance of the SSFLC cells. Nevertheless, the principle of the bistable switch-
ing of the pyroelectric SmC* phase is realised in the SSFLC cells and such cells can
be considered as genuine ferroelectric cells.

13.1.3 Phase Transition SmA*-SmC*

13.1.3.1 Simplification

Due to low symmetry (C,) of the chiral smectic C* phase, its theoretical description
is very complicated. Even description of the achiral smectic C phase is not at all
simple. In the chiral SmC* phase two new aspects are very important, the spatially
modulated (helical) structure and the presence of spontaneous polarisation. The
strict theory of the SmA*-SmC* transition developed by Pikin [10] is based on
consideration of the two-component order parameter, represented by the c-director
whose projections (§;, &,) = (n.n,, n.n,) are combinations of the director compo-
nents 7, = sin Y cos @, n, = sin Y sin ¢, and n. = cos I

& = nn, = %sin 28cos o, &, =nmn, = %sin28 sin @ (13.9a)
or
¢ =1sin29(icos  + jsing). (13.9b)

Here, 3 is the tilt angle of the director with respect to the smectic layer normal
(and the helical axis z) and ¢ is the azymuthal angle counted from the x-axis. The
free energy of the SmC* includes both the helicity and polarization. Then, assuming
constant orientational order parameter Q, a linear relationship between the tilt and
polarisation and leaving only the lowest order terms in &, &, and gradients 0¢,/0z,
0&,/0z, one has fifteen terms in the equation for the free energy [11].

However, many interesting effects in ferroelectric cells may be described with-
out account of the helicity, in the approximation of a uniform SmC* structure (e.g.,
unwound by limiting surfaces or formed by mixtures with compensated helicity).
So, in this paragraph, we ignore all the space dependent terms i.e. consider a SmC*
structure with azimuthal angle ¢ — 0. Going back to Fig. 13.5 this approximation
may correspond to a ferroelectric mixture with gg =~ 0. Then the free energy is:
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1 1 P?
Gsmer = 80 + =AY +-BY* + — — nPY — PE (13.10)
2 4 2,

where 3 [in rad] is the tilt of the director, A = a(T — Ty) [in erg/cm3K] describes
the elasticity for 3-changes, P [in CGSQ/cm? or statV/em] is polarization, u [in
statV/cm] is the polarization-tilt coupling constant (or piezocoefficient), E is an
external electric field [statV/cm] applied perpendicular to the tilt plane, g, and
y, = (e, — 1)/4rn are the background energy of the SmA* phase and dielectric
susceptibility of the SmA* phase well above the A"—C* transition.

Equation (13.10) is principally different from the equation (13.4) for the free
energy of a solid ferroelectric. Here, the leading term of the expansion is related to
the tilt angle, but the appearance of the spontaneous polarisation (the secondary
effect) is taken into account by coupling term pP9. Term P%/2y , describes the
energy of the polarised dielectric. For a racemic phase, with spontaneous polariza-
tion P, = 0 and without coupling of the tilt to total polarisation P we would put
total polarization P = 0 in Eq. (13.10) because there is no additional contribution to
the field energy in the SmC phase above the background (SmA) term g¢_Therefore,
for the achiral SmC phase, minimisation of Eq. (13.10) with respect to the tilt angle
would provide the result obtained in Section 6.4.

% = A9 +B%and 9, = (a/B)l/z(To - T)l/2

13.1.3.2 Soft Mode for Smectic A*~Smectic C* Transition

Low field limit. Minimising Eq. (13.10) with respect to polarization P we find the
relation between the tilt and polarization:

P=y,pnd+7 E (13.11)

For discussion of the soft mode close to the phase transition we can assume small
9 angles, and a weak field E << p3. Then, substituting P =~ y , u93 in Eq. (13.10)
and ignoring term B9* we exclude P from the free energy difference between the
SmC* and SmA* phases:

Ag = (A—7.10%)9 -y LES (13.12)

N —

Note that the fourth and fifth terms in expansion (13.10) merge with the second
term and this results in renormalisation of the transition temperature.
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Now we minimise the free energy with respect to the tilt angle

A
ai\gg = (A= 71)8 -1 E=0

and arrive at the expression for the tilt angle linearly dependent on the field:

_ YLME _ YLME
A— Xllﬂ a(T - Tc')

= ¢.E (13.13)

where
Te=To+ .1 /a

We see, that the phase transition temperature increases, because the dipole—
dipole interactions (P*-term) stabilise the smectic C* phase. Note that the field
induced tilt angle (or electroclinic coefficient e.) diverges at a temperature 7. This
means, that at T, even infinitesimally low field would create a finite tilt. This is the
soft mode of the director motion: any small force (not necessary electric) would
cause the tilt of the director, because, at the transition, the medium becomes soft
with respect to the tilt. The corresponding dielectric susceptibility shows the
Curie—Weiss law:

P_ oz
. _P_ 13.14
T == 4T —T,) (13.14)

In reality, a growth of the induced tilt at the phase transition is limited by two
factors. In a strictly compensated non-helical ferroelectrics only B9* term in
expansion (13.10) is limiting. In the most practical cases, the helix cannot be
precisely compensated over the whole range of the smectic C* phase and a finite
wavevector g, = 2n/Py remains. Thus, in a more advanced theory, the space
dependent, chiral terms must be added to expansion (13.10). They renormalize
the transition temperature for the second time, and put a limit for the divergence of
the induced tilt:

o E N 2 K 2
9 — 21K Swith Ty, = T + 2L 4 20 (13.15)
a(T — Ten) + Koq; a a

Here, K, is an effective elastic modulus for the azimuthal motion of the director
in the SmC* phase that includes factor sin’9 [11]. Due to this factor, in the one-
constant approximation, which will be used below, K, ~ 10~7 dyn is roughly one
order of magnitude smaller than <K;;> for nematics. The third term in the equation
for T,, determins the difference in the transition temperatures for a helical and
unwound ferroelectric.



13.1 Ferroelectrics 395

With the chiral term in the expansion, the Curie type temperature dependence of
the low field soft-mode susceptibility in the smectic A phase becomes somewhat
smoothed:

2.2
ALK
Lsm = . (13.16)

a(T - T(?h) + K(pq%

At a low field with ignored term BS* in Eq. (13.10), the dynamics of the director
soft mode can be investigated using the Landau—Khalatnikov equation, see Sec-
tion 6.5.1. The corresponding equation describing the balance of the viscous and
elastic torques reads:

Yo % = —a(T —Te)9 (13.17)

Here, vg is the rotational viscosity for the 3-angle change. From this equation is
clear, that the inverse relaxation time of the soft mode (t,,,) " diverges at T,;, (on
the SmA* side of the transition):

Vs

Tom (SmAx) = aT—To)

(13.18)

Indeed, the Curie-type behaviour is in agreement with the experimental data [12]
obtained by the pyroelectric technique on a SmC* mixture with P; =~ 600 statV/cm
or 2 mC/m?, see Fig. 13.7. However, the maximum time at T, is limited by the
value of 1,,, = 13us. To account for this saturation the fourth order term B9 in the
free energy has to be taken into account.

g I3 415
5 1'% %
£ 3
I = =
5
0 45
10
Tch
: : ‘. 0
20 30 40 50 60
T (°C)

Fig.13.7 Experimental temperature dependence of the soft-mode relaxation time (main plot), and
demonstration of the Curie type behaviour of the inverse relaxation time on both sides of the phase
transition (inset) in accordance with Eqs. (13.18) and (13.19) depicted by solid lines. Experimental
parameters: chiral mixture with Py =~ 2 mC/m?, a = 510 Tm™3 K™}, T, = 49°C, cell thickness
10 pum, the rotational viscosity found is yg = 0.36 Pa-s or 3.6 P
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Strong field limit. For a very strong field, the helical structure is always
unwound, the BY* term in expansion (13.10) dominates over A9? term, and the
temperature dependencies of the induced tilt and susceptibility disappear:

v uEN/? P 1 //4ut 1/3
9= XL and y=—=- A E%3
B OE 3\ B

In fact, a strong field smears the soft mode behaviour and the phase transition
vanishes. All these results are in agreement with experiments on dielectric and
electrooptical properties owed to the soft mode in the chiral SmA* phase.

It is worth to mention that, in the higher symmetry SmA* phase, the soft mode is
the only one elastic mode for the director. It is related to the short-range elastic
excitations of the director tilt i.e. to the amplitude of the two-component order
parameter of the less symmetric phase SmC*. Therefore, the soft mode may be
called the amplitude mode and the corresponding excitation amplitudons [6, 13].
On the transition to the SmC* phase the continuous symmetry group D is broken
and the reduced symmetry C, of the SmC* phase allows the Goldstone mode. The
latter is related to the long-range excitations of the director azimuth i.e. the phase of
the SmC* order parameter. Such excitations may be called phasons. Note that in the
SmC* phase the soft and Goldstone modes coexist and have very different relaxa-
tion times.

13.1.3.3 Goldstone and Soft Modes in Sm C* Phase

In the SmC* phase the tiltis 3 = 35 + 63 where 9 and 63 are spontaneous and the
field induced tilt. In the absence of the field, 3 is constant and minimisation of
Eq. (13.10) with respect to P relates the spontaneous polarization to the tilt angle:

Py = XJ_H'SS

Then we exclude P = y, u9 from Eq. (13.10) and minimize that equation with
respect to 9:

(A - XL”Z + 392)9 = JLHE

In the low field limit, expanding (9 + 89)* we shall find the soft mode suscepti-
bility of the SmC* phase using exactly the same procedure as for crystalline
ferroelectrics, see Eq. (13.8):

el
261 (Tch — T)

Xsm =



13.1 Ferroelectrics 397

By analogy, instead of Eq. (13.18) for the soft-mode relaxation times on the
SmC* side of the A*—C* transition we have

V9

Tym(SmC*) = %l —To)

(13.19)

If we take into account the chiral terms, the low field susceptibility would
consists of two parts (the soft and Goldstone modes):

(1/2)7%p? (1/2)73p?
2a(Tep — T) + Koqj Koq3

L= Asm T Ag = (13.20)

The Goldstone mode does not show the explicit temperature dependence (in
reality, parameters K, o, |t depend on temperature but not critically) and the total
susceptibility manifests a quasi Curie type behaviour at temperature T, with a cusp
of amplitude

Lo = 100 /Koy (13.21)

qualitatively depicted in Fig. 13.8.

13.1.3.4 Measurements of Landau Expansion Coefficients

We can use Eqgs. (13.13) and (13.14) and find parameters a, %, and | in the SmA*
phase. For this we need slow, automatically made temperature scans through the
A* — C* phase transition with simultaneous measurements of SSFLC cell capaci-
tance, i.e. X,(T) and the electrooptical response i.e., field induced angle 3(T) at
frequency 0.1-1 kHz. Then the asymptotic behaviour of capacitance at temper-
ature T > T. provides us the value of dielectric constant and susceptibility
7, = (g1 — 1)/4m, and the ratio y¥,/e. = py. gives us the coupling constant p in
the vicinity of the transition. After this we can substitute the p value into any of the
two Egs. (13.13) and (13.14) and find the Landau coefficient a, e.g., from the slope
de='/dT = aly,, - Finally, with known coefficient a we can find coefficient B from the
temperature dependence of the spontaneous tilt angle measured by the electrooptical
switching technique 9; = (a/B)l/z(TO - T)l/2 in the SmC* phase.

Xmax

Fig. 13.8 Qualitative (1/2) Ymax
temperature dependence of
dielectric susceptibility in the
SmC* phase with the i
Goldstone mode plateau and : >
the soft mode cusp T
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13.1.4 Electro-Optic Effects in Ferroelectric Cells

In principle, the Pikin’s free energy [11] may be used for interpretation of almost all
electro-optic effects at any temperature of the SmC* phase including the phase
transition domain. However, for simplicity, it is more convenient to use different
variables for different effects. For discussion of the pre-transitional electroclinic
effect in the SmA* phase, one takes as a variable the tilt angle 3(7,E) assuming
helical vector gy = 0 i.e. constant azimuthal angle ¢. On the contrary, when
discussing the Deformed Helix Ferroelectric (DHF) and Clark—Lagerwall effects
observed in the SmC* phase well below the A*—C* transition, one assumes a tilt
angle 9 to be constant and operates with the director projection on the plane
perpendicular to the helical axis, the c-director. The latter may be represented by
a single variable, the azimuthal angle ¢ (T, E, r).

13.1.4.1 Electroclinic Effect in SmA

This electro-optical effect is related to the soft elastic mode just discussed [14]. For
observation of the electroclinic effect one should use a proper chiral material in a
standard planar cell with its normal along the x-axis and homogeneous alignment of
the director in the SmA” phase (e.g., by rubbing polymer layers on both transparent
electrodes in one direction, e.g., along the z-axis). In such a bookshelf structure the
smectic layer normal is also parallel to the z-axis and the layers themselves are
located in the x,y-plane, see Fig.13.9a. The electrooptical effect is observed in
polarised light of a laser or using a polarising microscope with crossed polarisers.
As discussed in the previous paragraph, the electric voltage applied to the electro-
des (along the x-axis) induces a tilt 3, of the director from the smectic normal
according to Eq. (13.13). The electroclinic coefficient is field independent,

a | b
A 0 (deg) To(ks)
X 37 /O/O
1 2 0 o
A 2t ~o6 1.0
2SN o9
E n(E) I o
NN e
-1 p/o
21t o 0.2
P 1 1 1 1 1 1 1 1 1 1
I -60 -40 20 0 20 40 60

E (V/um)

Fig. 13.9 Electroclinic effect in SmA* phase. The geometry of a bookshelf cell placed between
polarizer (P) and analyser (A); 9 is field controlled tilt angle of the director (a). Typical linear field
dependence of angle 3(E) and characteristic soft-mode relaxation time independent of the field (b)
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proportional to the tilt-polarisation coupling constant y = P,/3y, and critically
dependent on temperature

) P,/9
e, = yans _ /

Tl —Ta)  aT —Ta) (1322

The optical appearance of the electroclinic effect corresponds to a rotation of a
birefringent plate in the zy-plane through angle +3 counted from the z-axis.
Therefore, the optical transmission depends on orientation of the polariser with
respect to the director (induced optical axis) and on the birefringence of a cell. As
seen from Fig.13.9a, the maximal switched transmission (and optical contrast)
is observed when the polariser is oriented along one of the +3 positions (-3 in
the figure). In this case, the switching angle is 29 and the transmission (see
Section 11.1.1) is given by:

T =1/l = sin*49 - sin26/2

For proper selected birefringence An at a given wavelength A and cell thickness
d, 5/2 = nAnd/) = w/2 and the transmission is T = sin’49. In the ideal case, when
there are neither light scattering nor reflections and the induced angle reaches
9 = 22.5°, the transmission is complete, 7 = 1. Such wide induced angles 3(F)
can, in principle, be reached very close to the phase transition (from the SmA*
side), but, in this case, its time characteristics are not very attractive. The reason is
in the properties of the soft mode.

The dynamics of the electroclinic effect is, in fact, the dynamics of the elastic
soft mode. From Eqgs. (13.18) and (13.19) follows that the switching time of the
effect is defined only by viscosity yg and the term a(T" — T.) and is independent of
any characteristic size ¢~ ' of the cell or material. It means that the relaxation of the
order parameter amplitude is not of the hydrodynamic type controlled by term Kq*
(K is elastic coefficient). For the same reason tg is independent of the electric field
in agreement with the experimental data, shown in Fig.13.9b. At present, the
electroclinic effect is the fastest one among the other electro-optical effects in
liquid crystals.

The coefficient vy is rotational viscosity of the director similar to coefficient v,
for nematics. In fact, it does not include a factor of sin2(p and, in the same
temperature range, can be considerably larger than the viscosity vy, for the Gold-
stone mode. This may be illustrated by Fig. 13.10: the temperature dependence of
viscosities yg and 7, have been measured for a chiral mixture that shows the
nematic, smectic A* and smectic C* phases [15]. The pyroelectric and electro-
optic techniques were the most appropriate, respectively, for the measurements of
vs and y,, describing the viscous relaxation of the amplitude and phase of the SmC
order parameter. The result of measurements clearly shows that yg is much larger
than v, and, in fact, corresponds to nematic viscosity 7.
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Fig. 13.10 Comparison of 80 °C 50 °C
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Fig. 13.11 Deformed Helix Ferroelectric effect. Scheme of observation of the effect (a) and the
picture of distortion of the helical structure (b) in the zero, positive and negative field. P and A are
polarizers and analyser, ITO means indium-tin oxide electrodes, Ip and I are intensities of
incoming and outgoing beams. Note that at E = O the helix is harmonic, for 0 < IEl < IE,|
anharmonic and for |E|l > |E,| unwound

13.1.4.2 Helix Distortion and Deformed Helix Ferroelectric effect

To consider this effect we should leave our discussion of the phase transition and
consider the field interaction with the helical structure deeply in the SmC* phase.
Now the amplitude of the two-dimensional order parameter 9 is considered con-
stant, but the variation of the azimuthal angle ¢ is essential. The helical structure
under discussion has the axis of the helix hllz, the electric field E, is applied
perpendicular to the helical axis and the boundary conditions are not taken into
account. This corresponds to a thick cell with the geometry shown in Fig. 13.11a.

In the absence of field, the azimuth of the c-director is changed along the z-axis
as @(z) = goz and the polarization vector has projections onto the x,y-plane, P, =
singyz and P, = cosqoz. Therefore, for E = 0 the projections of the c¢-director and
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P,-vector follow the harmonic law. This is shown for the ¢,(z)-component in the
middle of Fig. 13.11b. When the electric field is applied along the x-axis, it interacts
with the spontaneous polarisation tending to install the Pg-vector parallel to the
field. The distortion begins at an infinitesimally small field, then develops as shown
in the figure. Now the form of the helix has no longer a sine-form and, with
increasing field, the probability for the c-director to be aligned along +y becomes
larger than along —y; it is shown by wider and narrower dashed areas, respectively.
Then, the narrow areas transform into peaks called nt-solitons [13]. In fact, the latter
are defects (walls) that, finally, at a certain critical field disappear, the helix
unwinds and the structure becomes uniform. Like in cholesterics, due to similar
topological problems, the helix unwinding has to be assisted by other structural
defects or thermal fluctuations.

In the stationary regime, for the balance of the elastic and electric torques we
have a sine-Gordon equation [16]:

°o(2)
0z2

K, +PEsing(z) =0 (13.23)

We guess, that in the low field regime the solution should have a form ¢(z) =
qoz + 09(z) with 8¢ << goz. Substituting this in Eq. (13.23) we find

0%8¢(z)
0z2

g + sin(qoz + 89(z)) =0 (13.24)

with field coherence length & given by

K
2 ¢

Neglecting d¢ in the second term of Eq. (13.24) and substituting solution of the
form 8¢ = A sin g,z therein we get

— Ag3 &% singoz + singoz = 0

and obtain the amplitude A of the @-angle modulation by electric field: A = g,2¢& -2
Finally the field dependence of the twist angle is given by:

© = qoz + —— sinqoz (13.26)
Koq;

According to this result, for £ — 0, there is a small modulation of the helical
structure that is a deflection from the harmonic low without a change in the
structure period. With increasing field, the helix becomes distorted stronger and
the soliton structure appears. Now a solution of Eq. (13.23) may be found in the
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form of the elliptic functions or numerically. However, the critical field for the
complete helix unwinding can be estimated just from comparison of the electric
energy —P¢FE gained and the elastic energy Kq,qé lost due to unwinding,

E, ~ Koq3/Ps. (13.27a)

The exact solution of the same equation would give us a slightly lower critical
field:

1’ Koq3
E,=—210 (13.27b)
16P,

For typical parameters K, = 1077 dyn (10~ "2 N), pitch ~ 0.3 um, i.e. gy = 2 X
10 em™! =2 x 10 m™ !, P, = 300 statC/cm? (=1 mC/m?) the threshold field for
helix unwinding is about £, = 9 statV/cm (= 0.28 V/um).

The Deformed Helix Ferroelectric (DHF) electrooptical effect [17] is observed
in short pitch materials. It is a particular case of a more general phenomenon of the
field induced helix distortion discussed above. The geometry of the cell showing
DHF-effect is the same as presented in Fig. 13.11a; the helical axis hllz is in the cell
plane and smectic layers are perpendicular to the substrates. To study the new
regime, the equilibrium pitch of the helix should be shorter than the visible light
wavelength P, < A and the layer thickness d is much larger than P,. A light beam
with aperture a>> P, and wavelength A passes through the cell along x. Due to the
shortness of the pitch, the helical structure is not seen under a microscope and the
cell behaves as a uniaxial plate with its optical axis directed along z in the absence
of field.

In an electric field +F the helical structure becomes strongly deformed, and
cos(z) function oscillates between the two situations pictured in the sketches for
E >0 and E < 0 in Fig. 13.11b. These oscillations cause variation of the local
refractive index which, being averaged over the entire cell, results in either clock-
or anticlockwise deviation of the optical axis from the z-axis in the plane of the cell
zy. The axis rotation angle o is proportional to PSE/K(pqOZ. As usual, the cell is
placed between two crossed polarisers and the first of them (P) is installed at the
same angle o to the z-axis. As the optical transmission is proportional to sin®o and
the helix distortion has no threshold, the DFH effect provides a smooth variation of
the angle o and transmission T that is the so-called grey scale. The effect takes place
up to the fields of helix unwinding E,. The characteristic response times of the
effect in low fields E/E, << 1 are independent of spontaneous polarization and
field strength and determined only by the rotational viscosity Y, and helix pitch Py:

Yo _ ToPd
Koqi 4K,

(13.28)

c =

Therefore at relatively low field a fast and reversible switching could be obtained
in the DHF mode. Note that the optics of the DHF effect is almost the same as that of
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the linear electro-optical effect in cholesterics described in Section 12.4. Moreover,
formula (13.28) is identical to Eq. (12.44). However, as the rotational viscosity of
SmC* phase sin®9 times less than the rotational nematic viscosity [8, 15], the DHF
effect is faster than flexoelectric switching of cholesterics.

13.1.4.3 Frederiks Transition and Clark-Lagerwall Bistability

The switching of the director in the surface stabilised ferroelectric liquid crystal
cells (SSFLC) [8] has briefly been discussed in Section 13.1.2. Due to its impor-
tance for ferroelectric liquid crystal displays we shall discuss this effect in more
detail. The geometry of a planar cell of thickness d is shown in Fig.13.1.2. Now, the
helical structure is considered to be unwound. We are interested in the field and
time behaviour of the director or c-director given by angle ¢(x), and this process is
considered to be independent of z and y- coordinates. The smectic C* equilibrium
tilt angle 3 is assumed constant.

(i) Case of infinitely strong zenithal anchoring (Frederiks transition). First we
shall explain why, for the infinite zenithal anchoring of SmC* liquid crystal at the
boundaries of a SSFLC cell, the bistability is absent. Let define an easy axis parallel to
z fixed, for instance, by a rubbing procedure. Consider rather an artificial but simple
case of the infinitely strong zenithal anchoring strength W, — oo and extremely weak
(hardly possible!) azimuthal strength W, — 0. In the zero field, due to strong zenithal
anchoring, the director n ought to be in one of the two stable states, left or right in the
zy-plane. Hence, angle ¢ is either O or & for the c-director coincides with either +y
or —y. Then the n director forms either +3 or —3 angle counted from the z-axis and the
polarisation vector P L n is looking either up or down.

Assume that @ = 0, 9 = +3 and P is looking up. Then, with the electric field
directed down, the situation becomes unstable and, at a certain threshold field, due
to some @-fluctuation in the bulk and P;E = P Ecoso interaction energy, a torque
appears, which drives the director along the conical surface with apex angle 29.

glass
Fig. 13.12 Clark-Lagerwall S
effect in thin SSFLC cell. ITO -
Application of the electric Sm
field E between the ITO Iayersi
electrodes causes up-down

switching of spontaneous
polarization P; accompanied
by conical motion of the
director n. The projection of
the n-vector on plane xy is
c-director forming an angle @
with respect to y. 9 is the tilt
angle between n and the
smectic layer normal z
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The beginning of this motion is shown in Fig. 13.12 by curved arrows. In the strong
enough field, everywhere except surfaces, the final situation will correspond to
¢ = m, 3 = -9, P, directed down. Then, with a change in the field polarity, the
process reverses.

The balance of the volume torques is expressed by the same sine-Gordon
equation (13.23) rewritten here for convenience:

*o(x)

Ko ox?

+ P,Esing(x) =0 (13.29)

However the physics of the two phenomena is different. Now, there is no helix
and the elastic term Kq,ach /ox? corresponds to the uniform rotation of the
c-director in the bulk with fixed ¢, angles at the boundaries. Thus, we deal with a
kind of the Frederiks transition, like in nematics, however, with another electrical
torque and the confinement for the director motion along the cone surface. The first
integral of Eq. (13.29) is given by:

2 2
% @f) ~cos@ 4 C (13.30)

where coherence length & is defined by Eq.(13.25). The range of the field-induced
¢(x)-variation is 0-n. Due to the symmetry of our cell with respect to the middle
plane yz at d/2, the maximal c-director deviation from the z-axis is @(d/2) = @,
Therefore,

09
a|d/2 =0,C=—coso,

and Eq.(13.30) takes the form: 0¢/dx = (v2/¢)(cos ¢ — cos (pm)l/z. The
corresponding integral

]
J ¢ dv2 (13.31)

J (cos @ — cos (pm)l/2 &

may be reduced to the Legendre form of the 1** kind elliptic integral. Its solution
may be found in the form of elliptic functions, which would give us the angle ¢ as a
function of d\/2/¢ and ©,,,.

From Eq. (13.29) is seen that, at @ = 0, there is no electric torque exerted on the
director. Thus, there should be a threshold for the distortion as in the case of the
Frederiks transition in nematics. We can find the threshold field E., considering a
small distortion ¢ — 0. The equation

527+<p=0 (13.32)
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has solutions @(x) = @,, singx + C where constant C = 0 is found from the
boundary condition: ¢ = 0 for d = 0. Substituting @(x) into (13.32) we find
—&82¢* +1 =0. As minimum value of ¢ is fixed by rigid boundary conditions,
{min = T/d we arrived at the threshold condition 1/§. = ¢m;,. Hence, the threshold
field for the “quasi-Frederiks” transition is:

E:= (13.33)

For instance, for K, = 10” " dyn,d = 2 x 10*cm, P, = 300 statC/em” (1 mC/m>),
the threshold field is Eg* ~ 0.1 statV/cm, i.e. 3 kV/m. Due to a high value of P, the
Frederiks type distortion in SmC* can be observed at extremely low voltage across
the cell (U, = dE. ~ 30 mV for 10 um thick cell). However, independently of the
field magnitude, after switching the field off, the distortion relaxes to the initial
uniform structure, ¢(x) = 0. The relaxation time of the distorted structure is owed to
pure elastic, nematic-like torque and for small distortion only fundamental Fourier
harmonic is important,

T = Yo /Kopin = Vod" [ Kow". (13.34)

For larger distortions, the relaxation rate will be determined by the sum of the
rates m/t}. of each harmonic with number m. Evidently, there is no bistability in this
case.

(i) Case of finite anchoring energy (Clark-Lagerwall bistability). In reality,
both the zenithal and azimuthal anchoring strengths are always finite, therefore the
surface terms should be added to the balance of torques. But what is the anchoring
energy for the smectic C* phase? In Section 10.2.3 we introduced the zenithal and
azimuthal anchoring energies W, and W, for the director n in both nematics and
cholesterics. But in this paragraph we operate with another variable, the c-director
or angle ¢ and should reconsider the problem. In Fig. 13.13 the easy axis z is
situated in the substrate plane xy and the end of the director n = 1 is confined to
move along the semicircle (dot line). The conical angle 3 between n and the easy
axis z is assumed to be fixed. The projection of the director on the substrate plane

o=m/2| ¥

Fig. 13.13 Geometry for
discussion of the anchoring
energies for the c-director.

o and P are the angles the
director n forms with the easy
axis z coinciding with the
normal to smectic layers; 9 is
the director tilt angle and AC
is the c-director forming

Yy
angle ¢ with y-axis /777777777
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OB forms angles o and B with respect to n and easy axis z, respectively. Each
arbitrary point C on the semicircle is characterised by the only variable ¢ used in
Eq. (13.29). Now we would like to make find the strength of anchoring for the c-
director in the SmC phase, no matter chiral or achiral.

In the Rapini approximation, the zenithal and azimuthal anchoring energies are
defined for the director n in terms of angles o and f:

W. =1Wwlin’o and W, =1Wsin’B (13.35)
Let express the same energies using angles 3 and @, which describe the motion

of the director in the smectic C* (or C) phase. Using the elementary geometry and
the fact that all angles OAC, OAB, OBC and CBA are equal to nt/2, we find

WO _sin?d-cos’e (13.36)

L
2" a 1—sin?9-sinp

W. = 1W%in*9 - sin’p and W, =
Typically 3 ~ 0.5 or less, and the ¢-angles for the anchored director at the

surface are even smaller (the case of the break of anchoring is discussed below).

Then the denominator of W,, is close to unity and we can approximately write

W. ~ 1W2sin®9 - sin’p = 1 W?sin’¢ (13.37a)
and
W, ~ i Wlsin’§ - cos’@ = L Wcos’o. (13.37b)

Note that the amplitudes of the anchoring energy W®and WY defined for the
azimuthal angle ¢ include factor sin’9 ~ 0.1, which, unfortunately, is often for-
gotten in the literature. This is very important for our discussion of bistability. For
simplicity and just to begin with, let assume that the azimuthal anchoring energy is
negligible.

If we are only interested in the Frederiks-type threshold we should add the
surface term £+ W?¢@ to Eq. (13.32). Then, a finite anchoring only increases the
apparent cell thickness by two extrapolation lengths b®: dy,, = d + 2b® where
b® = K,/W?. For realistic values of K, = 10" dyn and W, (measured for
nematics) =~ 0.1 erg/cm2 W? ~ 0.01 erg/cmz), the value of »® ~ 2 x 107> cm
(0.2 um) is considerably less than a typical cell thickness (few micrometers) and the
second term in d,pp, is of minor importance.

To discuss a bistability, we should leave the small — ¢ approximation and go
back to the equation (13.29) with the Rapini surface energy added.

o’ o(x)
ox2

K, + P,Esin@(x) £ 1W?sin>¢ = 0 (13.38)
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Now we are interested in the strong field case when distortion has a specific form.
Like in nematics, well above the Frederiks transition, the director alignment is uniform
throughout the SSFLC cell thickness except two layers of thickness »® adjacent to
electrodes. To have a bistability we should break the initial zenithal anchoring, that is
reach the second critical field £, whose coherence length becomes comparable with
the surface extrapolation length, &, = b®, see Section 11.2.4. Using the coherence
length from Eq. (13.25) the condition for the break of anchoring is given by

K‘P 2 K‘P (W;P)z
= or £, =
PE, w? PK,

(13.39)

Hence, for typical values of K, = 1077 dyn, P, = 300 statC/cmz, w? = 0.01
erg/cm?, the break of anchoring occurs at E. = 3 statV/cm (or 0.1 V/um).

Thus, we see, that for a typical value of W? ~ 0.01 erg/cm? (corresponding to
nematic anchoring as high as W. ~ 0.1 erg/cm?) we only need a voltage as low as
U = 0.2V to break the zenithal anchoring in 2 pm thick cells. As soon as the initial
anchoring is broken, the director is driven by the same electric field into the new
stable position at @ = ©. When the field is switched off the director is still held in
the new position by the zenithal anchoring until the field of the opposite polarity
switches it back to ¢ = 0. Thus, in SSFLC cells, we have real bistable switching at
rather low fields [18]. Such cells are unequivocally ferroelectric!

13.1.5 Criteria for Bistability and Hysteresis-Free Switching

13.1.5.1 Cells with No Insulating Layers

In real SmC* cells both W?and WY are finite. A finite azimuthal strength would
create an additional surface torque trying to move the director from its angular
positions at @ = 0 or @ = 7 to the easy axis z, Fig.13.13. On the cone surface, the
minimum anchoring energy W2 corresponds to director position at ¢ = /2 and the
minima of W? are at ¢ = 0 and ¢ = n. But what will happen if W= W?? It
follows from Egs. (13.37) that the sum W* of the two anchoring energies with equal
amplitudes W

W® = Wsin®3 (sin’ + cos’p) = Wsin’9

becomes independent of @ and the director is free to take any position on the cone
as though there were no anchoring at the substrates. Thus, due to a competition
between equal W?and WP, there is no stable states at ¢ = 0 and ¢ = m, and, of
course, no bistable switching. In fact, what does control the bistability is the
difference W7 between W? and W?! Hence, the criterion for bistability is very
simple:
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00 > We =W —W>0 (13.40)

As to dynamics of the response of a SSFLC cell to the alternating field, it is
controlled by Eq. (13.38) with the viscous y,d¢/dt torque added. When the helical
structure of the SmC* is unwound in a thin cell (a typical case) one can neglect the
elastic torque 0°¢/0x”. If, in addition, the anchoring energies WPand WY are reason-
ably weak, the electric field torque would solely be balanced by the viscous torque:

d
y(pj(f:PsEsin(p (13.41)

Here, the viscosity coefficient v, corresponds to the azimuthal motion of the
director. From this equation, for small distortions, we immediately find the time of
the response to an external field.

)KD
To PsE ( )

For larger ¢ the response is not exponential, however, controlled by the same
physical parameters with a numerical factor of 1-2. The viscosity v, can be found
from the measurements of kinetics of the optical transmission.

13.1.5.2 Role of Aligning Layers in Bistability

If one were capable to align a SmC* without insulating layers, e.g., by rubbing
uncovered electrodes or by smectic layer shearing, then, in a cell with W2 not
exceeding 0.01 erg/cm?, the bistable switching would be observed at voltages less
than 1V for P, as low as 20 nC/cm?. However, as a rule, there are insulating
alignment layers covering the electrodes, which have their own capacitance. For
a given a.c. voltage U across the electrodes, such layers may dramatically change
both the amplitude and phase of field E; - on the liquid crystal layer. Field E; - may
even have the opposite sign with respect to voltage applied! Thus, the criterion for
the bistability (13.20) should also change.

Consider a two layer SSFLC cell, Fig.13.14, consisting of a liquid crystal layer
(white) and a single alignment insulating layer (grey); the latter mimics two
alignment layers of a typical experimental cell. For simplicity, both the liquid
crystal and aligning layers are assumed to be nonconductive and having constant
dielectric permittivities. The x-component of the dielectric displacement D, and the
total potential difference along the close contour (the Maxwell and Kirchhof
equations, respectively) are given by:

el = ecErc +4nPy = Dy
dpEp +dicErc = U, (13.43)
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Fig. 13.14 A model showing x

distribution of the electric o
field strength over an aligning T Ep~dyc
insulating layer (£;;) and a
ferroelectric liquid crystal ‘ Epc~dy T P,
layer (E.¢) in a SSFLC cell.

The electric voltage U is
switched ON with polarity
shown by (+) and (—) signs

Here, suffices (IL) and (LC) mark insulating and liquid crystal layers, d is their
thickness, P, is x-component of spontaneous polarization parallel to the cell normal.
From this set we immediately find the electric field in each layer,

e U — 4nP.d; ercU + 4nP.dic

ELC = and EIL = .
(eLcdi + endic) (ercdi + endic)

(13.44)

For P, # 0, even without an applied voltage (U = 0, short circuited electrodes),
there are “built-in” electric fields in both liquid crystal and aligning layers and these
fields are opposite to each other.

Now, consider a switching process. Let, in the beginning, the director is close to
¢ = 0 and polarization P is almost parallel to the electrodes i.e. P, component is
small). When the voltage is switched ON along positive x, at first, the field Ey ¢
drives the polarization vector into the + x-direction along the field, as shown in
Fig.13.14. Then the counteracting polarization term in Egs. (13.44) reduces the Ey ¢
field and increases field Ey and a charge on the insulating capacitor. This effect is
detrimental for devices because it increases the total voltage necessary to switch the
director completely from ¢ = 0 to ¢ = n. With sufficient voltage the state ¢ = 1
is achieved and the director is temporary anchored at the new position. Let us see
now whether this state is stable or not.

When the voltage is switched OFF then, according to Eq. (13.44), the field E} ¢
changes its sign and drives the P vector in the opposite direction. Now, if Py is large
and the torque P, x E;c exerted on the polarization (and, consequently on the
director) in the OFF state is high enough, it would break anchoring at ¢ = w and,
under the influence of E| ¢, the director leaves the ¢ = 7 position and moves back
to @ = 0. The cycle is over and we are in the initial situation. It means that there is
no bistability for high enough P..

Therefore, if we would like to work in the bistable regime, we should avoid the
action of the reversed field. According to the first of the last two equations, it means
the condition of &, U>>4nP,dy, to be fulfilled, that is the alignment layers must be
as thin as possible, their dielectric constant (g;;) large and P of the SmC* small. The
latter would be in contradiction with a low threshold field for the bistability given by
Eq. (13.39). Indeed, in experiments, the genuine bistable switching is always
observed for liquid crystals with intermediate values of Py ~ 20—40 nC/cm”.

There is, however, another way to fight with the inverse field. Both the alignment
and liquid crystal materials can be made conductive. The conductivity ¢ would
screen the built-in field E;; and accelerate its relaxation. Then, for a voltage pulse of



410 13 Ferroelectricity and Antiferroelectricity in Smectics

duration exceeding T, given by Eq. (13.42), the built-in field would not prevent
bistable switching if

€c/Orc > en/on (13.45)

This is an additional criterion for bistability valid for conductive (c > 0)
materials [19]. In experiments with very conductive alignment layers the bistability
is much easier to observe.

13.1.5.3 V-Shape Effect

In some applications the hysteresis and the threshold character of the director
switching are undesirable because they do not allow a grey scale to be realised.
The hysteresis-free switching means the zero coercive field for the director switch-
ing and the absence of bistability. Then one can observe the hysteresis-free V-shape
switching. In this case, the curve of the optical transmission as a function of the total
voltage on the cell T(U) acquires a shape of the letter “V” (no hysteresis) instead of
letter “W” characteristic of hysteresis. For the first time the hysteresis-like switch-
ing was observed in a chiral material having both SmC* and antiferroelectric
SmC* 4 phase at temperatures close to the phase transition between them [20] and
explained by a kind of frustration between the two phases having very low energy
barrier between them. However, the absence of hysteresis is also a characteristic
feature of the SmC* phase well below the phase transition temperature when a
special condition of W?=W? discussed above is fulfilled, although this case is
rather incident. Numerous experiments and modelling have unequivocally shown
that the hysteresis-free switching with a clear V-shape of the T(U) transmission
curve in the SmC* phase may always be achieved when one uses relatively
thick alignment layers and selects proper parameters for a liquid crystal and the
layers [21].

13.2 Introduction to Antiferroelectrics

13.2.1 Background: Crystalline Antiferroelectrics
and Ferrielectrics

Liquid crystal ferri and antiferroelectrics have many features discovered for years
of comprehensive studies of corresponding crystalline substances. Thus, it would be
convenient and instructive to begin with a short introduction in the structure and
properties of antiferroelectric crystals. A difference between ferro-, ferri and anti-
ferroelectrics is schematically shown in Fig. 13.15, where the three very simplified
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Fig. 13.15 Schematic structure of a ferroelectric (a), an antiferroelectric (b) and a ferrielectric (c).
Note that period of each structure is different: /, 2/ and 3/, respectively

structures are depicted. In ferroelectrics, the dipoles are oriented parallel to each
other everywhere, the period of the lattice is /, and, if each layer has spontaneous
polarization P then the resulting spontaneous polarization of such a ferroelectric
structure, Py = Py. An antiferroelectric may be represented as a combination of two
dipolar sublattices built in each other, as shown in Fig. 13.15b. The periods of each
sublattice and the entire structure are equal to 2/. An antiferroelectric has a higher
translational symmetry than a ferroelectric. In sketch (b), we can recognise the
additional planes of reflection situated exactly in the middle between any pair of
dipolar layers. Therefore, despite each layer is polar and have finite local polariza-
tion Py # 0, the macroscopic spontaneous polarization is absent Py = 0.

In some crystals the location of dipole moments can even be more complicated. For
example, in Fig. 13.15¢c, one layer with the dipoles looking down alternates with two
layers where the dipoles are looking up. Therefore we have three-layer periodicity 3/
with two antiparallel layers and one extra polar layer. Such a structure may be
considered as a mixture of the ferroelectric and antiferroelectric structures and is
called ferrielectric. In case (c), the ferroelectric fraction is one part per period, g = 1/3

and the spontaneous polarization is finite, P, = (1/3)P,. For pure antiferroelectric

phase g = 0/2 and for pure ferroelectric one g = 1/1 = 1. More generally, for
different ferrielectric structures g = n/m, where m is the number of layers in the
unit cell (period) and n < m is the ferroelectric layer fracture per unit cell, both
being integers. Then, for both n and m — oo, n/m — 1, the difference between n
and m become smaller and smaller and the so-called Devil’s staircase forms.

With increasing temperature the order of dipoles in each sublattice decreases
and, at a certain temperature, a phase transition into the paraelectric phase occurs. It
may be either second or first order transition. In the paraelectric phase local
polarization P, vanishes. The nature of the spontaneous polarization is similar in
solid ferro- and antiferroelectrics. In both cases, the dipole-dipole interactions are
dominant. For example, if dipoles are situated in the points of the body-centred
cubic lattice, they preferably orient parallel to each other and such a structure is
ferroelectric. However, the same dipoles placed into the points of a simple cubic
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lattice prefer to align anti-parallel to each other and form an antiferroelectric
structure. Very often the difference in electrostatic energy between the parallel
and anti-parallel dipolar structures is small and the phase transitions occur between
ferro- and antiferroelectric phases.

Such a transition of an antiferroelectric into a ferroelectric state can also be
observed in an electric field E exceeding a certain threshold Eag, Fig. 13.16,
because in the presence of the field the ferroelectric structure becomes more
favourable. When the polarity of the field changes, all dipoles are realigned
following the field. At large fields +E the two opposite ferroelectric states are
energetically equivalent. If the switching between *F is fast enough the polariza-
tion follows the dashed curve with the hysteresis characteristic of typical ferro-
electrics (like in Fig. 13.2). For slow field cycling, the antiferroelectric state has
enough time to recover at E < Ep, and one observes a double hysteresis loop
indicative of the antiferroelectric nature of the ground state. The solid line in
Fig. 13.16 shows this type of tri-stable switching. Note that in low fields between
+Fra the antiferroelectric behaves as a conventional linear unpolar dielectric.

A difference between ferro- and antiferroelectrics may also be discussed in
terms of the soft elastic mode [3]. In the infinite ferroelectric crystal, there is no
spatial modulation of the spontaneous polarization (only dipole density is peri-
odic). Therefore, at the transition from a paraelectric to the ferroelectric phase,
both the wavevector g for oscillations of ions responsible for polarization and
the correspondent oscillation frequency ® = Kg* tend to zero. We may say that the
soft elastic mode in ferroelectrics condenses at ¢ — 0. In antiferroelectrics,
the sign of the local polarization P, alternates in space with wavevector
qo = 2n/2] = 7/l and the corresponding ion oscillation frequency is finite, ® =
Kqo* = Kn/I>. Tt means that in antiferroelectrics the soft mode condenses at a
finite wavevector /[ and rather high frequency. As a result, in the temperature
dependence of the dielectric permittivity at low frequencies, the Curie law at the
phase transition between a paraelectric and antiferroelectric phases is not well
pronounced.
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13.2.2 Chiral Liquid Crystalline Antiferroelectrics

13.2.2.1 Discovery and Polymorphism

The very first observation of antiferroelectric properties in a chiral liquid crystalline
mixture was reported in 1982 [22]. The pyroelectric technique clearly showed the
absence of spontaneous polarization in the zero field and a growth of pyroelectric
coefficient y with characteristic saturation at the field strength of about 0.5 V/pum. In
addition, the value of ¥ was two orders of magnitude higher than the value of y for
the electroclinic effect in the SmA* phase. The original picture presented in that
paper is reproduced here without any changes, Fig. 13.17. We can see that, in the
field absence (ground state), the tilt of molecules alternates from layer to layer,
however, in the strong field, the tilt within the smectic layers is uniform. Nowadays
such pictures are called anticlinic and synclinic, respectively. The local polarization
is always perpendicular to the tilt plane and also alternates in the zero field as shown
by symbols ¢ and @.

More impressive results, particularly, the tristable switching, were demons-
trated by Fukuda group [23]. In Fig. 13.18 we can see the chemical formula and
the phase diagram of MHPOBC. Different antiferroelectric and ferrielectric phases
in single compound 4-(L-methylheptyloxy-carbonyl)-4’-octylbiphenyl-4-carboxyl-
ate (MHPOBC) were unequivocally shown to exist by optical and electrooptical
techniques, dielectric spectroscopy, X-ray analysis, etc. In this compound, addi-
tionally to the known SmA* and SmC* (SmCg* in the figure) phases, new phases
have been revealed: antiferroelectric SmCa* and SmC,* and ferrielectric SmC,*
phase. This work stimulated fast development of investigations in this area, see
review articles [24, 25]. As we see, MHPOBC reveals rich polymorphism and
becomes a model compound for further studies. Other liquid crystals made up of
chiral molecules that include three-benzene-ring cores and long tails with asym-
metric carbon atoms and dipole moments also show a variety of similar phases
(often called subphases). It has taken about 20 years to understand the structure of
these subphases although many subtle details are still under question.

Qy Ex=0 -E, +E,

X

| | - |
Fig. 13.17 Field induced ® //// @\\\\ @////
switching between the
antiferroelectric structure (left \\\\ / / / /
sketch) and two ferroelectric © \\\\ © ®
structures with opposite tilt
and spontaneous polarization <) / / / / Q\\\\ e////
P,. The directions of +P;
coincides with the field £E, @\\\\ Q\\\\ o5 / / / /
directions [22]
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Fig. 13.18 Chemical formula and the phase sequence of the compound MHPOBC demonstrating
a variety of transitions between ferro-, ferri- and antiferroelectric phases
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Fig. 13.19 Intermolecular interactions responsible for formation of different liquid crystal phases:
attractive anisotropic van der Waals and repulsive steric interactions for nematics (a), van der
Waals (bifilic) and steric for SmA* (b), steric quadrupolar interaction for SmC* (¢) and SmC*, (d)
owed to molecular biaxiality. The density is increasing in a sequence: orthogonal (b), synclinic (c)
and anticlinic (d) phases. An interlayer steric correlations in SmC* (e) are shown by displacements
of “grey molecules”. Note that the displacement of “gray molecules” may influence the next to
nearest layer via a kind of relay race mechanism

On account of the new experimental data and theoretical works, the same phase
sequence for (L)-MHPOBC well purified from the right-handed (p)-enantiomer may
be re-written as follows (for decreasing temperature) [26]:

Iso — SmA* — SmCsx, — SmC* — SmCspj; — SmCsg;; — SmCxy  (13.46)

Here, ferrielectric SmC*p;; and SmC*g, phases replace SmC*, and SmC#*g
phases. Further on we shall repeatedly refer to this phase sequence.

13.2.2.2 Molecular Interactions

A variety of different phases emerging in narrow temperature interval and also
easily converted into each other by electric field (see below) testifies that different
inter-layer interactions have comparable energy. Moreover, molecules in one layer
may interact even with next-to-nearest layers. Figure 13.19 may help to understand
some hierarchy of interactions beginning from the nematics and going down with
temperature. It is instructive to assume that our molecules are elongated, biaxial,
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chiral with relatively long tails and having transverse dipole moments. At relatively
high temperature of the nematic phase they rotate free and may be represented by
ellipsoids with tails showing translational invariance, sketch (a). Between such
ellipsoids the most important are the attractive anisotropic Van der Waals interac-
tions (of Maier-Saupe type, decaying with distance as r~®) and repulsive steric
ones. In the SmA* phase (b), due to decreasing thermal motion, the molecule form
layers because the specific core-to-core and tail-to-tail Wan-der-Waals interactions
may be more preferable, as very often observed in lyotropic systems (biphilic
effect). However, molecular rotation about the layer normal is still free and, for a
moment, the chirality may be ignored.

Remember now that our molecules are biaxial i.e. they have either a lath-like
form or a special form of the tails anti-symmetrically bent in the figure plane. Then,
with decreasing temperature, mostly due to steric reasons, they may acquire a
collective tilt and form a SmC* phase (c). Now, due to chiral symmetry C, and
transverse molecular dipoles each smectic layer acquires spontaneous polarization
P and the helical arrangement of the layers on a micrometer scale. At even lower
temperature, specific packing of molecular tails can stabilise the antiferroelectric
phase. Indeed, the anticlinic arrangement of cores emerges (d) that increases
density and reduces entropy. The steric forces can also provide the molecular
interaction not only within the smectic layers but also between near neighbour
(NN) layers as qualitatively pictured in Fig. 13.19e. Moreover, it is also seen how
the distorted part is advanced up beyond the boundary of a neighbour layer. It
means that the steric correlations may also be installed between next-to-nearest
neighbours (NNN).

Similarly, the electrostatic correlations may be installed between NN and NNN
layers. Note that P, is a large collective dipole moment lying, due to chirality, in the
layer plane, perpendicularly to the tilt plane. The energy between permanent
molecular dipoles decay with distance as r~3 (see Section 3.2). It seems that the
negative repulsive forces between parallel permanent dipoles may provide the long-
range interaction necessary for the antiparallel dipole packing i.e. antiferroelectric
order of the layers. However, it is known from electrodynamics, that the same
molecular dipoles oriented even in the same direction within a thin, infinitely wide
(smectic) layer do not create an electric field outside the layer (due to complete
compensation of the fields of individual dipoles). Therefore dipolar smectic layers
cannot interact directly with each other. Nevertheless, there is a long-range interac-
tion owed to fluctuations of P, coupled to the director fluctuations. The latter are
long-wave Goldstone excitations requiring very low energy (Kg?) in the limit of
wavevectors ¢ — 0 as any hydrodynamic mode. It is that long-range coherent
polarization wave that, according to [27], installs necessary correlations responsible
for antiferroelectricity. There are other electrostatic interactions such as quadrupole—
quadrupole or flexoelectric ones. The latter emerges due to spatial modulation of
the tilt of molecules in the layered structure. Consider briefly few interesting
models that have been suggested for understanding polymorphism of tilted anti-
ferroelectric smectics.
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13.2.2.3 Models

Continuous models. With discovery of antiferroelectrics a question has arised
about the possible structures and order parameters describing the new phases.
Since all the structures are based on the single tilted SmC* layers of the same C,
symmetry, it was suggested to use the same c-director to characterised each pair of
neighbour layers (bilayer model [28]). Taking two neighbour layers i and i + 1, one
writes two order parameters, ferroelectric and antiferroelectric, both in terms of the
director components E(nyn,, nyn,), see Egs. (13.9a, b) where z is the normal to
smectic layers:

(& — &) (13.47)

N —

(& +¢&y1) and Eup =

N =

& =

Then, for paraelectric SmA phase both £ = 0 and £, = 0, for ferroelectric
SmC* phase & # 0 but &4 = 0 as discussed in Section 13.1, for antiferroelectric
SmC#*, phase £ = 0but &4 # 0, and for ferrielectric phases SmC*y; both & # 0
and &,r # 0. Now the Landau expansion of the free energy in the vicinity of
transitions between the paraelectric, ferroelectric and antiferroelectric phases will
operate with two order parameters and both coefficients at the £ terms in the free
energy are considered to be dependent on temperature:

1

1 1 1
Eaﬂ;i = ECXF(T —Tr)E; and EaAFgfo = EO(AF(T — Tar)Eir

The two polarizations Pr and P4 may be taken as secondary order parameters
coupled with the genuine order parameters. As a result, depending of the model, the
theory predicts transitions from the smectic A phase into either the synclinic
ferroelectric phase at temperature T or into an anticlinic antiferroelectric phase
at T,r. One intermediate ferrielectric phase is also predicted that has a tilt plane in
the i + 1 layer turned through some angle ¢ with respect to the tilt plane in the
i layer. The models based on the two order parameters are of continuous nature
(¢ may take any values) and, although conceptually are very important, cannot
explain a variety of intermediate phases and their basic properties.

Discrete models. The most advanced are discrete models that explicitly take into
account the interactions between nearest neighbour (NN) layers and even next to
nearest neighbour (NNN) layers. Among those approaches the most successful are
Ising models [24] and the XY models, particularly, the so-called clock model [6, 26].

Consider one of the most successive Ising models. From the electrooptic study it
was clear that between ferroelectric and antiferroelectric phases there are interme-
diate “subphases” of the mixed type. Thus, from the very beginning it was tempting
to classify the new phases using analogy with their crystalline counterparts. Such an
analogy is based on the assumption (even counter-intuitive) that there are SmC-like
(achiral) correlations of the type shown in Fig.13.19¢c, d. For certain molecular
parameters synclinic and anticlinic order may compete but the in-plane tilt configuration
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always remains. As mentioned above, such structures may be described in terms of
ferroelectric fraction g, in analogy with the microscopic Ising model describing the
interaction energy of the up and down (or ) spins in one-dimensional lattice. In
Fig. 13.20, the “ferroelectric states” marked off by letter F have the same sign of the
molecular tilt in the neighbour smectic layers whereas the “antiferroelectric states”
with opposite tilt in neighbour layers marked by AF (here tilt angles +9 play the
role of up and down spins). Microscopically, the interaction between nearest and
next to nearest layers is taken into account. The genuine ferroelectric F/F/F/F and
antiferroelectric AF/AF/AF/AF. . . .phases correspond to gz = 1 and gz = 0/1. The
sequences AF/AF/F/AF/AFJF. .., AF/F/AF/F/AF/F. .. and AF/F/F/F/AF/FFF mean
ferrielectric phases with gr = 1/3, 1/2, and 3/4, respectively. As in the case of
crystalline antiferroelectrics, for both n and m increasing the difference between
qr values becomes step-by-step smaller down to zero and the Devil staircase forms.
Note that in the limit of n/m — 1 a ferrielectric becomes a ferroelectric.

In the Ising model, all the molecules are in the tilt plane but, despite such a
severe simplification, the electrooptic measurements and resonant X-ray scattering
[29] have confirmed the sequence of ferro- ferri- and antiferroelectric phases.
However, the same X-ray experiments clearly showed that the tilt planes in
different layers are not at all parallel. Moreover, in frameworks of the Ising models
the structure of the SmC¥*, phase could not be understood. Therefore, another
approach has been developed.

In the discrete clock model [26], one operates with the c-director lying in the XY
plane and the tilt plane in layer i 4+ 1 is allowed to be at a discrete angle ¢ with
respect to the neighbour layer i. Therefore, for a ferroelectric structure ¢ = 0, for
antiferroelectric ¢ = m, for ferrielectric structure it could be 2rt/3 or nt/2 (by analogy
with a clock hand in the x, y plane). Correspondingly, SmC*, SmC* 5, SmC*;; and
SmC*f;, phases have unit cells of one, two, three or four smectic layers and the order
parameter is abruptly changed from layer to layer. Note that in any continuous model
a number of order parameters corresponds to a great number of layers in a unit cell
and even phenomenological theory becomes very complicated. Alternatively, in the
discrete clock model the interlayer interactions can be separated from the molecular
interactions within the smectic layer. Due to complexity of both types of interactions
they are modelled by phenomenological approximations based on the symmetry
arguments. The intra-layer interactions were considered most important: they
induce both smectic order and tilt. Inter-layer interactions between nearest layers
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responsible for ferro- or antiferroelectricity are usually weak because transitions
between synclinic and anticlinic structures easily occur. Due to this, long range
interactions between next to nearest layers especially electrostatic and chiral ones
become very important.

All these interactions are taken into account in the discrete phenomenological
model. The chiral interaction is also included although its contribution is consid-
ered small. As the primary and secondary order parameters, the tilt vector &; and
polarization vector P; for a single smectic layer i are taken into account. Both
parameters may vary from layer to layer, the tilt magnitude being constant and only
directions of &; and P; change. Then Landau expansion for the free energy is written
as a sum of different energy terms for N layers, where N is a number of layers in a
unit cell. Further on, the polarization perpendicular to the tilt plane is excluded due
to weakness of the chiral interaction within a smectic layer and possible stable
structures have been found by minimisation of the free energy with respect to all tilt
order parameters &;.

As a result of numerical calculations [30], five phases shown in Fig. 13.21 have
been found. In the first two rows we find the symbols and types of the phases
whereas the third column represents the corresponding unit cells for the first four
phases in terms of smectic layer numbers () per one period of the structure. The
SmC*, phase is incommensurate in the sense that it has a short-pitch helical
structure with a period not coinciding with integer number of the smectic layers.
In the fourth column, a top view of the dielectric ellipsoid is presented for different
layers within each unit cell. All these phases are in agreement with sequence

Symbol | Type Unit cell Top view
SmC* Ferro 1/ ;15:1} s
SmC¥% | Antiferro 21 D
SmCx | Ferri1 31 %ID
SmCA‘:ji[2 Ferri 2 41 %

(

\

Fig. 13.21 Classification and structure of ferro-, ferri and antiferroelectric phases. The third
column represents the number (71) of the smectic layers / in a unit cell (for SmC*, abbreviation
IC means incommensurate). In the right column the orientation of the dielectric ellipsoid is
presented for different layers within the unit cell viewed along the z-axis. The long-pitch helical
structure due to the molecular chirality is ignored for clarity, although it slightly influences the
value of angle ¢ for the ellipsoids in the xy plane for each structure, see the next figure

(&
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(13.46). Note that in our simplified picture the molecular chirality is ignored and its
role in the formation of long-pitch helix will be discussed below. The structure and
properties of the phases pictured in Fig. 13.21 may be summarised in order of
increasing temperature:

1. SmC*,: optically uniaxial antiferroelectric phase with period of 2/ and zero
spontaneous polarization P,. It manifests Bragg diffraction and optical rotatory
power (ORP). NN interactions prevail. The helical structure is shown in Fig. 13.22:
it is similar to that of SmC*, but the sign of helicity may be opposite.

2. SmC#*g;: biaxial ferrielectric phase with 3/ periodicity and finite P;. It manifests
ORP, which may change sign at a certain temperature.

3. SmC*pp: uniaxial antiferroelectric phase with 4/ periodicity and zero P;. However,
on account of chirality the phase acquires small P and ferrielectric properties.

4. SmC*: the helical, optically uniaxial phase, with period P, >> [ and finite P,. It
manifests Bragg diffraction and ORP and familiar to us from Sections 4.9 and
13.1. The near-neighbour (NN) interactions prevail.

5. SmC*,: It is the most symmetric, antiferroelectric-type phase (P; = 0) that
borders SmA phase. It is helical but the helicity originates not from the molecu-
lar chirality but is due to specific NNN interactions. The pitch is short and
incommensurate to the layer periodicity. In Fig. 13.21 the top view on the first
five layers is shown and one may conclude that the helical pitch may be as short
as 5/, but it vary with temperature. Due to short helical pitch the phase does not
show ORP.

Figure 13.21 presents the picture of the dielectric ellipsoid orientation within
each unit cell that is at the nanometer scale. The weak molecular chirality results in
additional weak twisting of all structures with characteristic pitch of about
Py =~ 0.1-1 um. An example of a such twisted structure is shown in Fig. 13.22; it
is an antiferroelectric double-layer cell describing two geared helices upon rotation
about z-axis. The helices are shifted in phase by ¢ = m and have the same
handedness. On the molecular scale, due to molecular chirality, the c-director
turns from layer to layer by a small angle d¢ = 2mn//P,, therefore, for / ~ 1nm,

RERERERERER
RZRERZRERSIZR o
I N Pt e I i e o I ] P e
I P L ) b g DR I N g
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b

RPRPREPOR O’ ® P®

¢

Fig. 13.22 Chiral antiferroelectric SmC* 4 phase. Alternating tilt plane (a) and layer polarization
(b) and the long-pitch helical structure (c). Note that the unit cell consisting of two layers rotates as
a whole forming two geared helices of the same handedness. This type of rotation is controlled by
molecular chirality inherent in all phases shown in Fig. 13.21
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3¢ ~ 1°. Consequently, to have a more correct structures in Fig. 13.21 one should
present each ellipsoid configurations in the forth column as an overlapping stack of
the same configurations. Such stuck will consist of the same sketches turned m-
times through angle 8¢ about the z-axis according to the number of layers (m) in a
unit cell [30, 31]. More recent publications confirm the picture presented here, see
[32] and references therein.

13.2.2.4 Electric Field Switching

Experimental data. Upon application of the external electric field, the transition
temperatures between different phases change [33]. It is seen in the field—temperature
phase diagram Fig. 13.23. First, we notice that all transition temperatures are shifted
considerably that confirms a subtle difference between the interactions responsible
for antiferroelectricity. In addition, the temperature range of the polar SmC* phase
becomes wider at the cost of the antiferroelectric SmC,* and unpolar SmC,*
phases. The range of ferrielectric SmCprj;y* phase remains unchanged. It can be
understood as follows. As the smectic C* phase has high spontaneous polarization,
due to the —P E term, its free energy is reduced by the electric field. Therefore, the
field stabilised the smectic C* phase and expands it temperature range. To some
extent, the ferrielectric phases with lower spontaneous polarization are also stabi-
lised by the field but not the antiferroelectric ones.

In the field-off state the macroscopic polarization of the antiferroelectric phase is
zero. With increasing field, the induced polarization, at first, increases linearly with
field and then, at a certain threshold, the antiferroelectric (AF) structure with
alternating molecular tilt transforms in the ferroelectric one (F) with a uniform
tilt, see Fig. 13.24a. Correspondingly, the macroscopic polarization jumps from a
low value to the level of the local polarization P [34]. The process is quite similar
to that observed in crystalline antiferroelectrics. With a certain precaution we can
speak about a field-induced AF-F non-equilibrium “phase transition”. The magni-
tude of the switched polarization in some antiferroelectric materials can be quite

MHPOBC |
0.4r 4
E T 1
2
\>./ B
0.2r 4
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Fig. 13.23 Electric Crn Ca.
field-temperature phase 0 L . I . I .
118 120 122 124

diagram of MHPOBC
(Adapted from [33]) T(°C)
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Fig. 13.24 Tri-stable switching of an antiferroelectric liquid crystal. Typical hysteresis-type
dependence [34] of the total polarization P as a function of the external field (a) and optical
transmission-voltage curves [35] measured at three different temperatures (77 > T, > T3) in the
same SmC*, phase (b)

large, of about several hundred of nC/cm?. Upon a change in the field polarity, the
process reverses. Therefore, we have three distinct states, one stable antiferro-
electric state and two (plus and minus) ferroelectric states with a certain memory.
It should be noted that, in some materials, such a switching process between the
antiferroelectric and ferroelectric states could proceed via intermediate ferrielectric
states.

By a proper treatment of the electrodes, one can obtain a texture with a uniform
orientation of the smectic normal in one direction within the cell plane. Between the
crossed polarizers such a cell will be black if a polarizer is installed parallel to the
smectic normal. Upon application of the electric field, the antiferroelectric structure
becomes distorted. At low voltages of any polarity, the electrooptic response is
proportional to E*: the bottom part of the curves has symmetric parabolic form [35]
shown in Fig. 13.24b. Above the AF-F transition, the director acquires one of the
two symmetric angular positions (+9 on the conical surface) typical of the SmC*
phase. At these two extreme positions the transmission is maximum. With increas-
ing temperature from T to T the AF-F threshold decreases due to a decrease of the
potential barrier separating structures with alternating and uniform tilt. It is natural
because within the SmC* 5 phase T} is closer to the range of the SmC* phase than T,
or Ts.

At high frequencies of the a.c. field, the total polarisation of the entire sample is
switched very fast and the ground, antiferroelectric state may be bypassed. Then the
switching occurs between the two ferroelectric states as in an SSFLC cell. With
increasing frequency (for example, from 100 Hz to 10 kHz) the double hysteresis
loop is substituted by a single loop typical of ferroelectrics as shown in Fig. 13.16
by the solid and the dashed curves.

Theoretical consideration. We shall consider a simple and instructive theory of
the switching of a helix free antiferroelectric phase [36]. The smectic layers normal
h is aligned along the rubbing direction z in the plane of the cell (bookshelf
geometry in Fig. 13.25). The tilt has the amplitude & 3 and its phase @ changes
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Fig. 13.25 Geometry for a b
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by m in each subsequent layer. An applied electric field is within the smectic layer
plane parallel to the x-axis. Due to chirality, each layer possesses polarization Py
perpendicular to the tilt plane. The total polarization in the ground state is zero,
sketch (a). With increasing external filed a transition is observed from the antiferro-
electric (AF) ground state to the ferroelectric (F) field-induced state, sketch (b).
After transition, all vectors P are oriented along the field and the director azimuth
is the same in all smectic layers, ® = 0.

For simplicity we disregard a change in the 9 angle and focus our attention only
on azimuthal motion of the director. The density of the bulk free energy can be
taken in the form:

20", (00
Oy Ox

Here, the first term describes the nematic-like elastic energy in one constant
approximation (K ~ KNsinZS). This term allows a discussion of distortions below
the AF-F threshold (a kind of the Frederiks transition as in nematics in a sample of a
finite size). In fact, the most important specific properties of the antiferroelectric are
taken into account by the interaction potential W between molecules in neighbour
layers: the second term in the equation corresponds to interaction of only the nearest
layers (i) and (i 4+ 1). Let count layers from the top of our sketch (a); then for
odd layers i, i + 2, etc. the director azimuth is 0, and for even layers i + 1, i + 3,
etc. the director azimuth is . The third term describes interaction of the external
field E, with the layer polarization P of the layer i as in the case of ferroelectric
cells. Although for substances with high P, the dielectric anisotropy can be
neglected, the quadratic-in-field effects are implicitly accounted for by the highest
order terms proportional to P?.

The solution of Eq. (13.48) depends on further simplifications. If we assume
that the director in the odd layers with ®; = 0 is unaffected by an external field and
only the azimuth in the even layers ®; . is changed from = to O, then, for an
infinitely thick sample (x — ©0), the free energy is independent of both x and ©;.
The corresponding torque balance equation reduces to the form with index (i + 1)
omitted:

1
F==-K
2

+ WCOS(®i+1 — (D,) — P()E COoS (I),‘ (1348)
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o’ .
Ka—yz—k (2W — PyE) sin® = 0 (13.49)

If we disregard the elastic, nematic-like term we would see that the distortion has
a threshold character with the threshold field E,, = 2W /Py. It is easy to understand:
the AF-F threshold is achieved when the field energy is sufficient for the director in
even layers to overcome potential barrier W and change its azimuth from =« to 0.
Above the threshold, E, > Ej, the uniform ferroelectric structure is installed.

At fields below E,_f, the macroscopic polarization is absent due to alternating
=+ Py, the first order term in polarization is absent and the distortion is controlled by
a higher order term proportional to Py”E. This explains the parabolic form of the
electrooptical response at the fields below AF-F threshold.

To describe the dynamics of @ at constant 3, the viscous torque with viscosity
coefficient v, should be added to the balance equation

2

y@aag:KaaTq;—k (2W — PyE) sin @. (13.50)

Assuming small field-induced ® angles, sin® — @, the inverse switching time

can be found in the vicinity of the AF-F transition. 7} = y;l (PoE — 2W). It shows

a divergence of the switching time at the threshold field, as observed in experi-

ments. When the field is switched off (E, = 0), the inverse time for the back

relaxation from the ferroelectric to the antiferroelectric state is controlled solely

by the interlayer potential tz; = 2W/ Yo- Surprisingly, this simple theory [36]

explains the most important experimental facts and can be applied to both chiral
and achiral (banana-type) antiferroelectrics.

13.2.3 Polar Achiral Systems

13.2.3.1 The Problem

As we know, chiral tilted mesophases, manifest ferroelectric (C*, F*, I* and other
less symmetric phases), antiferroelectric (SmCp*, SmC,*) and ferrielectric
(SmCp/*) properties. These properties owe to a tilt of elongated chiral molecules,
and polar ordering of the molecular short axes (and transverse dipole moments)
perpendicular to the tilt plane. The head-to-tail symmetry n = —n is conserved. The
Ps vector lies in the plane of a smectic layer perpendicularly to the tilt plane. Such
materials belong to improper ferro-, ferri and antiferroelectrics.

Since discovery of chiral ferroelectrics in 1975, a search for the achiral analo-
gues of liquid crystal ferro- and antiferroelectrics was a challenge to researchers,
both theoreticians and experimentalists and recently there was a great progress in
this area. The idea was to find a way to break non-polar symmetry D ., or Cyy, of
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achiral compounds and conserve a liquid crystalline state. For example, in materials
belonging to point group C.., the axis C, is polar axis and polarization vector is
parallel to C.. In biaxial smectics of C,, symmetry the polar axis and polarization
vector is parallel to rotation axis C,. There were many theoretical suggestions to use
such a reduced symmetry reviewed in [37], however, only in 1992 the first polar
smectic liquid crystal showing all polar properties was synthesised [38]).

13.2.3.2 Achiral Ferroelectrics

It was an achiral lamellar mesophase formed by polyphilic compounds. The basic
chemical idea to form “building elements” of a polar phase was quite remarkable:
the so-called polyphilic effect has been realised. The word “polyphilic” is a general-
isation of the well-known term “biphilic” or “amphiphilic”. According to this
concept, chemically different moieties of a molecule tend to segregate to form
polar aggregates, lamellas or smectic layers. The latter can form a polar phase. As
shown in Fig.13.26a, a compound studied was made up of three distinct parts:
perfluoroalkyl and alkyl chains and a biphenyl rigid core. A fluorinated chains does
not like hydrocarbon chains and prefers to have another fluorinated chain as a
neighbour. The same is also true for the hydrocarbon chains preferring to be close to
each other. To some extent such a tendency is also characteristic of biphenyl
moieties. In this way the head-to-tail symmetry is broken at the molecular scale
and a polar smectic layer forms according to sketches (b) and (c) in the same figure.
In principle, such polar layers may be stacked either in a ferro- or antiferroelectric
structure.

Indeed, upon cooling from the isotropic through the smectic A phase, a metasta-
ble polar phase forms at temperature 82°C, which existed down to the room
temperature before the next heating cycle. The phase manifests all polar properties,
namely, pyroelectric and piezoelectric effects, repolarization current and optical
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Fig. 13.26 Polyphilic effect. (a) An appropriate molecule having well-defined moieties hardly
compatible with each other: hydrophobic perfluoro- and alkyl- chains and a hydrophilic biphenyl
core. Below are shown a steric model and its schematic version used in sketches (b) and (c). The
latter illustrate unfavourable (b) and favourable (c) packing of molecules in aggregates or layers
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second harmonic generations. Ferroelectricity was demonstrated by the measure-
ments of the hysteresis in the acoustically induced piezo-electric response. The
subsequent X-ray investigations an infra-red spectroscopy have shown that the
phase consists of polar liquid-like layers having some blurred disordered structure.
The phase consists of mesoscopic domains with high spontaneous polarization
within each of those domains but almost averaged over a macroscopic sample.
Due to smallness of the overall P value and difficulties in the chemical synthesis
the polyphilic polar materials have not found practical applications. However, their
investigations stimulated activity in the search of new polar achiral liquid crystals,
especially based on bent-core molecules. In particular, the ferroelectric phase was
reported in an achiral compound [39]. Later, it has been understood that, in such a
compound, the conglomerates of left and right chiral domains emerged as a result of
spontaneous break of the mirror symmetry discussed in Section 4.11.

13.2.3.3 Achiral Antiferroelectrics

Achiral smectic materials with anticlinic molecular packing are very rare [40] and
their antiferroelectric properties have unequivocally been demonstrated only in
1996 [41]. The antiferroelectric properties have been observed in mixtures of two
achiral components, although no one of the two manifested this behaviour. In
different mixtures of a rod like mesogenic compound (monomer) with the polymer
comprised by chemically same rod-like mesogenic molecules a characteristic anti-
ferroelectric hysteresis of the pyroelectric coefficient proportional to the spontane-
ous polarization value has been observed; for an example see Fig.13.27a. Upon
application of a low voltage the response is linear, at a higher field a field-induced
AF-F transition occurs.

The absolute value of the P has been measured by the pyroelectric technique as
explained in Section 11.3.1 but with an applied d.c. electric field, exceeding the
AF-F transition threshold. The value of the observed polarization dramatically
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Fig. 13.27 Achiral antiferroelectric. Voltage dependence of pyroelectric coefficient describing
the double hysteresis loop (a) and dependence of the field-induced polarization on the content of a
monomer in the polymer—-monomer mixtures (b)
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depends on the mixture composition: there is a very sharp maximum for the
polymer/monomer ratio 70:30 as shown in Fig.13.27b. The macroscopic polariza-
tion measured in the mesophase reaches the value of about 400 nC/cm?, that
requires a dipole moment projection onto the smectic plane of about 1 D per
mesogenic unit. Indeed, polar intermolecular hydrogen bonds provide such dipole
moments located at a small angle to the long axes of the tilted mesogenic groups.
The arrows in Fig.13.28 picture schematically the dipolar parts of the mesogenic
groups.

As shown by the X-ray diffraction, polymer-monomer mixture consists of SmC
bilayers. A bilayer is the principal unit cell having either non-polar C,y, (@) or polar
C,y (b) symmetry. The former is incompatible with both ferroelectricity or anti-
ferroelectricity, because such a structure has an inversion centre. On the contrary, in
sketch (b) each bilayer is polar with P, vector located in the tilt plane along the
y-axis. In a stack of such layers the direction of Py alternates and the structure (b) is
antiferroelectric in its ground state. Only strong electric field E,, causes the transi-
tion to the ferroelectric structure shown in sketch (c) as observed in experiment.
Note that both the Py and Py = X P, vectors are always lying in the tilt plane.

The suggested bilayer antiferroelectric structure is compatible with the X-ray
diffraction data and the optical observation of the influence of a rather weak electric
field (below the AF-F transition) on freely suspended films of the same mixture
[42]. Only the structures with odd number of bilayers appeared to be field-sensitive
due to a finite polarization Py of single bilayers. Therefore, the antiferroelectricity
of the polymer-monomer mixtures is confirmed by all possible experiments. The
role of the monomer admixture is explained as follows. As X-ray analysis shows,
pure polymer has only the bilayer smectic C phase shown in Fig.13.28a, which is
too symmetric to manifest polar properties. From the polarization and electrooptical
measurements it is evident that the monomer additive changes the packing of the
mesogenic groups and provokes the alternating tilt structure (b) in side-chain
polymer bilayers. This results in antiferroelectricity, although the molecular mech-
anism of such polymer—monomer interaction is not clear.

At the optimum concentration of the mixture the pyroelectric coefficient
reaches the value of 4 nC/cm’K exceeding that observed in the famous ferroelectric
crystalline copolymers PVDF-TrFE. On cooling down to the glassy state and
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Fig. 13.28 Non-polar dipolar structure of a bilayer and a lamellar phase (a) and antiferroelectric
phase (b) formed by polar bilayers. A strong electric field E applied along the y-axis converts the
antiferroelectric phase (b) into polar ferroelectric phase (c)
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subsequent removing the field, the pyroelectric coefficient may be kept stable for
years, and this material may be very useful as an easily formed pyroelectric glass.

13.2.3.4 Ferro- and Antiferroelectric Compounds Based on the Bent-Shape
Molecules

As discussed in Section 4.11, achiral molecules of the bent or banana shape may
form locally chiral phases in the form of the left- and right-handed domains. This is
a result of spontaneous break of the mirror symmetry [43].

Assuming the head-to-tail symmetry of a bent-shape molecule, the highest
symmetry of a uniaxial non-tilted smectic A layer is D.,. Then, according to
molecular packing presented in Fig.13.29a, the highest symmetry of the biaxial
polar layer is C,,: there is a rotation axis C, parallel to x, and two symmetry planes xz
and xy. The layer polarization is possible along the C, axis. Had the layer consisted
of the rod-like molecules tilted within the xz plane the symmetry would be C,, as in
SmC. However, when the bent-core molecules are tilted in the y-direction (forward

b 4 \
Synclinic Anticlinic

N /

| » F  AF F

AF
SmCgPF SmCgPy  SmC,Pp SmC,PS

Fig. 13.29 Bent-shape molecules form polar smectic layers in the polar plane xz with polarization
P, (a). Upon cooling, the molecules can spontaneously acquire a tilt forward or back within the tilt
plane yz. The stack of the layers may be either synclinic SmCg or anticlinic SmCy (b). Addition-
ally, depending on the direction of polarization P,, both the synclinic and anticlinic structure may
have uniform (ferroelectric Pr) or alternating (antiferroelectric P4) distribution of polarization
within the stack. In the field absence there are four structures marked by symbols below. Note that
the leftmost structure is chiral SmC* and rightmost structure is also chiral because, for any pair of
neighbours, the directions of the tilt and polarization change together leaving the same handedness
of the vector triple. In the electric field, the phase transitions from chiral SmCsPA* to chiral
SmCgPg* and from racemic SmCgP4 to racemic SmC,Pr structures are possible (shown by ark
arrows)
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or backward with respect to the drawing plane), both the reflection planes are lost.
Now each smectic monolayer becomes chiral, either left- or right-handed with
symmetry C,. In the right Cartesian frame forward (or backward) deviation corre-
sponds to the right (or left) sign of chirality because we have three non-coplanar
vectors, the smectic layer normal h, the director n (along the molecular long axis)
and polarization Py, (along x) that form a left or right triples.

In a stack of subsequent layers the tilt may be constant (synclinic structure) or
alternating (anticlinic structure). Both synclinic and anticlinic multilayer stacks can
further be subdivided into ferroelectric and antiferroelectric structures. The molec-
ular projections onto the tilt plane zy are shown in Fig. 13.29b. In ferroelectric
(symbol F) phases spontaneous polarization has the same direction in each layer
(synclinic chiral SmCPg* and anticlinic achiral SmC,Pg phases). In the antiferro-
electric (symbol A) phases the direction of polarization alternates (achiral synclinic
SmC,P, and chiral anticlinic SmCAPA* phases). In fact we have a conglomerate of
chiral and achiral phases both in either synclinic or anticlinic form.

As was said, each smectic layer is chiral, left or right, but the pair of layers might
be homogeneously chiral or racemic. The leftmost structure is typical chiral SmC*
structure and the rightmost structure is also chiral because in any pair of neighbours
the direction of the tilt and polarization change together leaving the same handed-
ness of the vector triple. The two middle stacks are racemic because left and right
vector triples alternate from layer to layer. As usual, the asterisks are added to the
symbols of each homogeneously chiral subphase. The electric field exceeding some
threshold (E > E,;) causes transitions between different structures: it transforms
SmCAPA* into SmC Pr* (both are homogeneously chiral) and the direction of the
tilt is controlled by the sign of E. The racemic SmCP phase may be transformed
into SmCaPg. As the field interacts with polarization, the final state is always
ferroelectric (Pg) be it synclinic or anticlinic.

At present, eight different phases are known in banana compounds dependent on
particular in-plane packing symmetry and they usually labelled as B, B,, .. .Bg,
etc., counted from the isotropic phase [44]. Among them the B, phase is especially
interesting, because it has low viscosity and can easily be switched by an electric
field with rather short switching times [45]. In fact, the B, phase is basically a
conglomerate of chiral and achiral antiferroelectric structures SmCaPA* and
SmC P4 mixed with some percentage of the two ferroelectric structures.

Since the discovery of spontaneous break of mirror symmetry [39, 43], many
new, so-called banana-form compounds have been synthesised and hundreds of
papers published on that subject [44]. It became a hot topic in modern physics and
chemistry of liquid crystals. In the present book there is no space for discussion of
different aspects of this fascinating phenomenon and I have decided to finish my
narration here. I believe very soon the books shall appear devoted solely to this
important subject related not only to liquid crystals, but to the general problems of
chirality of the matter.

In conclusion of this chapter it should be stated that bistable and tristable
switching of ferro- and antiferroelectric liquid crystals is very fast and provides
long memory states. The latter allows one to design displays without semiconductor
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thin-film transistors used in each small pixels of a matrix with thousands rows and
columns. Such displays have been constructed and their feasibility demonstrated.
The beautiful pictures may be seen in references [8] (black and white) and [24] (in
colour). However, some disadvantages, such as not enough tolerance of smectic
structures to mechanical shots and temperature variations are still to be overcome.
Today smectic materials are indispensable for temperature stabilised optical space
modulators, image processors or image projectors and, in nearest future, will be
very useful as electronic paper.
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spontaneous, 14, 35, 66, 67, 70, 160, 201,
383-393, 396, 401-403, 409, 411-413,
415, 419, 420, 425, 428
surface, 266-271, 324, 326
tilt-polarization coupling constant, 399
Polygonal texture, 219, 228, 230
Polyphilic compounds, 51, 424
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Potential
interlayer for antiferroelectrics, 423
two-pair potential, 143
Pre-transitional phenomena, 68, 111
Principle of equipartition, 208
Pyroelectric properties, 51, 383

Q

Quadrupolar moment, 268
Quadrupole, 24, 268-270, 324, 325, 327, 415
Quasi-Bragg singularities, 101

R
Raman light scattering, 34
Raman spectroscopy, 37
Rapini, A., 274, 275, 332, 406
Reciprocal lattice, 84-86, 103, 349
Re-entrance, 128
Re-entrant phases, 127-128
Refractometry, 119, 292
Relaxation time
Debye, for molecular dipoles, 167, 169, 187
for heat transfer, 172
Maxwell, dielectric, 185
for space charge, 157, 185, 336
for transit of ions, 180, 181
Reynolds number, 238, 239

S
Scanning tunnel microscopy (STM), 265
Scattering
amplitude, 81-91, 93, 95-97
dynamic for light, 339
intensity, 81-83, 86-90, 93, 98, 99, 107,
302
Raman, 34
wavevector, 80, 82, 85, 300
Schlieren texture, 41, 48, 54, 209, 210, 217
Schottky model, 180
Second harmonic
of density, 125, 322
optical, 266, 282, 383, 425
Selective reflection, 63, 343, 344, 347, 355
Shear
force, 237
modulus, 50, 189, 194
quasi-long range, 106
rate tensor, 237, 241
viscosity, 238
Short-range order
positional order, 98, 106, 261
smectic, 126, 339
Sine-Gordon equation, 401, 404

Index

Six-fold rotation axis, 49, 94
Smectic monolayer, 105, 106, 428
Smoluchowski, 173
Snell law, 286, 358
Soliton, 363, 401
Sound, 233, 235, 300
Space charge, 157, 180, 184-187, 259,
335-339
Specific heat, 64, 119, 173, 174, 187, 239
Stability equation, 116, 117
STM. See Scanning tunnel microscopy
Stokes
formula, 181
law, 174, 239
Strain, 190, 323
tensor, 191-193, 195, 197
Stripe domains, 200
Structure factor, 87-88, 93—-101
Supertwist cell, 321
Surface
bistability, 279
correlation length, 262
energy, 259, 266, 271-277, 314, 328, 329,
370, 406
polarization, 266271, 324, 326, 331
tension, 258-260, 272, 280
Surface stabilised ferroelectric liquid crystal
(SSFLC) cell, 390-392, 397, 403,
407409, 421
Surfactant, 39, 219, 226, 259, 278, 279
Susceptibility
diamagnetic, 23, 154, 335
dielectric, 36, 59, 157, 161, 162, 381, 393,
394, 397
for smectic layer formation, 124
soft mode, 128, 395, 396
structural at N-Iso transition, 162, 163
Switching, 130, 172, 320, 357, 366, 370,
374-376, 383, 385, 390, 391, 397, 399,
402, 403, 405, 407, 409, 410, 412, 413,
420423, 428
Symmetry
axes, 23, 28, 36, 102, 143, 166
bilateral, 8
conical, 33, 44, 51, 121, 197, 201, 266, 323
cubic, 65, 383
cylindrical, 23, 33, 44, 58, 99, 141, 143,
261, 264, 272, 335
groups, 7-17, 44, 4649, 55, 56, 65, 108,
165, 254, 386, 396
head-to-tail symmetry, 28, 32, 49, 62, 63,
65, 144, 195, 196, 212, 221, 345, 423,
424, 427
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mirror, 21, 55, 58, 65, 69-72, 195, 197, 327,
333, 386, 425, 427, 428
operations, 7-13
polar, 14, 44, 51, 266, 323
rotational, 7, 8, 15, 17, 71, 279
six-fold, 106
spherical, 15-16, 28, 83, 97, 98, 138, 153
+ symmetry, 115, 122
+ 9 symmetry, 128
translational symmetry, 12, 15-17, 45, 47,
71, 105, 411
Synchrotron, 75, 77
Synclinic, 413, 414, 416, 418, 427, 428

T
Tensor
of curvature distortion, 196—-197
of density of the quadrupolar moment, 268
of dielectric anisotropy, 59-60
of elasticity, 189-193, 197-198
of momentum density flux, 236, 317
of polarizability, 22, 23, 146, 161
strain, 191-193, 195, 197
stress, 190-191, 194, 237, 238, 240, 243,
253,318
symmetric, 36, 191, 236
of viscous stress, 237, 238, 240, 243, 253,
318
Theorem
of average, 31
of convolution, 92, 97-99
of multiplication, 93
Thermal diffusion coefficient, 172, 174
Thomson formula, 79
Topology
limitation, 361-364
trap, 373-375
Transition
anchoring, 265, 280
cholesteric-nematic, 358-361
ferroelectric, 384
second order, 42, 115-117, 121, 125, 126,
129-131, 261, 385
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virtual second order, 116, 117, 261
weak first order transition, 124—-127
wetting transition, 260
Tricritical point, 126, 127
Triple point, 126, 129
Twist structure, 293-294, 370, 371
Two-dimensional crystal, 1, 50, 104
Two-dimensional liquid, 1, 71, 101

A\
Van-der-Waals, 25, 56, 57, 138, 140, 414, 415
Vector
of displacement, 157, 164, 285
of reciprocal lattice, 84, 85, 103
Vesicle, 54
Virtual polar cholesteric, 197
Viscosity
coefficients, 238, 240-242, 245, 248, 252,
254, 302, 338, 408, 423
rotational, 315, 365, 395, 399, 402, 403
second viscosity, 238, 239
for shear, 247
tensor, 238, 242, 243, 245
Volterra process, 209-211, 217-219

w

Waveguide regime, 293, 321, 356
Wave-like distortion, 222-224
Wedge, of Cano, 61

Williams domains, 336

X
X-ray
diffraction, 64, 75-109, 123, 344, 426
diffractogram, 43, 94, 108
reflection, 64
resonant scattering, 417
scattering, 34, 77-83, 124, 417

Y

Young
law, 260
modulus, 190
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