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Epigraph

Ego plus quam feci, facere non possum

Marcus Tillius Cicero
English, translation close to the original

More than I have done, I cannot do

or maybe it better sounds like this in standard English

I cannot do more than I have done
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Foreword

Liquid crystals have found an important place in modern life. Just look around: we

see them in our clocks, computer displays, TV screens, telephones and calcula-

tors, car dashboards, photo-cameras, etc. Other applications include slide projec-

tion systems, spatial light modulators, temperature sensors and even liquid crystal

lasers. In all these technical innovations, which appeared over the life of only a

single generation, liquid crystals occupy a key position. This is because they

consume a barely perceptible amount of energy when they change their state

under external influences such as temperature, electric field, mechanical stress

or whatever. In addition, there are very important biological aspects of liquid

crystals.

The army of people working in the liquid crystal field continues to grow. The

first conferences held during the early part of the last century involved only tens of

participants; then, later, a few hundreds. More recently a wide river of principal

liquid crystal conferences has given rise to several subsidiary, but also quite broad

streams of meetings: Worldwide Conferences, European conferences, conferences

of National Liquid Crystal societies, separate conferences on chemistry (sometimes

only on chirality problems), optics, photonics and ferroelectricity of liquid crystals.

Each of such meetings attracts hundreds of participants, but of different profiles:

chemists, physicists, engineers for radio- and optoelectronics, biologists and phy-

sicians.

In recent years a group of several excellent top-level books have been published

on the physics of liquid crystals and many others, dealing with particular problems

related to physics of liquid crystals. Popular books on liquid crystals are very

scarce; only three of them are mentioned in the list presented in Chapter 1.

Evidently, there is a huge gap between the first group of books and the second.

The monographs have been written by theoreticians at a very high level using the

advanced mathematical apparatus of modern physics. The popular books are

written vividly without a single formula. If we consider the books as training

devices, the second group is designed for children’s school sports, the first for

Olympians. But what about the intermediate levels?
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This is the gap I would like to try to fill. The book proposed to bridge the gap has

been written by an experimentalist who, through all his life, has tried to understand

and explain to his students the complexity of liquid crystal physics using either

simple analogies or going back to the very first principles we have studied in middle

and high schools. In this book there is no sentence starting with “It is easy to

show. . ..”; either it has been shown, or explained by simple analogy. In fact I only

use mathematics at the level of engineering high school. In those cases when I need

something more (for example, the Fourier transform, tensor algebra or variation

calculus) I carefully explain all the details. In addition there are about 300 drawings

clarifying the text. The aim of the book is modest: it is to introduce to a reader the

most important ideas related to the structure and physical properties of liquid

crystals, including some of the theoretical aspects. The book is intended for a

wide spectrum of scientists, including experimental physicists, physical chemists,

engineers, and especially, for undergraduate students and Ph.D. students.

The book consists of three parts: Structure, Physical Properties, and Electro-

Optics of liquid crystals. Of course, I am aware that electro-optical properties may

be regarded as physical properties. However they are particularly relevant for

modern technology and correspond more to the author’s own interests. For these

reasons, electro-optic properties deserve a more honorable position. In the Part I,

after a brief introduction, there is a short first chapter devoted to symmetry, the

concept used throughout the book. In Chapter 2 we discuss the molecular aspects

and the fundamental issue for all liquid crystal phases (or mesophases), the problem

of the orientational distribution of molecules. In Chapter 3 there is a general

description of the most important liquid crystal phases, beginning with the nematic

phase and ending with chiral and achiral ferroelectric phases. After reading that

chapter, the reader who only wishes to make a slight acquaintance with liquid

crystals may quit or, at least, have a rest.

Chapter 4 will introduce the reader to the basic concepts of the X-ray analysis of

crystals and its applications to particular liquid crystal phases. It should be noted

that in the present literature this problem is not adequately dealt with anywhere, and

this chapter attempts to rectify this deficiency. Chapter 5 covers phase transitions,

one of the key problems of the liquid crystal physics, and which has been widely

discussed in other texts at very different levels. In this chapter I give only a detailed

explanation of the basic concepts of the phase transitions between most important

mesophases.

Chapter 6 heralds the second part of the book and introduces the reader to

anisotropy of the magnetic and electric properties of mesophases. Following in

Chapter 7 there is a focus on the anisotropy of transport properties, especially of

electrical conductivity. Without these two chapters (Chapters 6 and 7), it would be

impossible to discuss electro-optical properties in the third section of the book.

Further, Chapters 7 and 8 deal with the anisotropy of the properties of elasticity and

viscosity. Chapter 8 is more difficult than the others, and in order to present the

theoretical results as clearly as possible, the focus is on the experimental methods

for the determination of Leslie viscosity coefficients from the viscous stress tensor

of the nematic phase. Chapter 9 terminates the discussion of the anisotropy of
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physical properties. Here, the case in point is the interaction of liquid crystals,

mostly nematics, with a solid substrate. The problems of interfaces, especially,

surface polarization and anchoring conditions occupies the central place here and

the chapter is, in fact, a bridge between the second and third parts of the book.

Finally the three remaining Chapters 10–12 are devoted to optics and electro-

optics of, respectively, nematic, cholesteric and smectic (ferroelectric and antiferro-

electric) phases. In contrast to my earlier book published byWiley in 1983, only the

most principal effects have been considered and the discussion of the underlying

principles is much more detailed.

Throughout the book the Gauss system of units is used, although all numerical

estimates of quantities have been made in both systems, Gauss and International

(SI). The referenced bibliography is rather small, because I deliberately included

only books, review articles and the seminal papers that paved the way for further

investigations. All these literature sources are presented with their titles.

This book was written over a long period of 10 years before and during my

teaching course (2003–2009) of liquid crystal physics to Ph.D. students in Calabria

University (CU) (Italy). Among the students there were not only physicists but

chemists and engineers and even biologists. I have tried to make my course serious,

simple and interesting, but it is for others to decide if I have succeeded. I am

indebted to Prof. Roberto Bartolino for his invitation to work in Italy and to his

co-workers (Profs. G. Cipparrone, R. Barberi, C. Umeton, C. Versace, G. Strangi

and Drs. M. de Santo, A. Mazzulla, P. Pagliusi, F. Ciuchi, M. Giocondo and many

others) who were always friendly and attentive to any of my problems and from

whom I learned a lot of new things concerning both science and life. I would like to

express also many thanks to my coworkers from the Institute of Crystallography,

Russian Academy of Sciences Drs. M.I. Barnik, V.V. Lazarev, S.P. Palto, B.I.

Ostrovsky, N.M. Shtykov, B.A. Umansky, S.V. Yablonsky and S.G. Yudin with

whom I had the pleasure to work on liquid crystals for many years and have this

pleasure now. I am always thankful to my friends-colleagues Guram Chilaya,

Dietrich Demus, Elizabeth Dubois-Violette, George Durand, David Dunmur,

George Gray, Etienne Guyon, Wolfgang Haase, Wim de Jeu, Efim Kats, Mikhail

Osipov, Alexander Petrov, Sergei Pikin, Ludwig Pohl, Jacques Prost, and Katsumi

Yoshino for fruitful discussions of many topics related and more frequently not

related to liquid crystals but making our life in science more colorful.

Foreword xi



.



Contents

1 Introductory Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Part I Structure of Liquid Crystals

2 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Point Group Symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Symmetry Elements and Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Point Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Continuous Point Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Translational Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Mesogenic Molecules and Orientational Order . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Molecular Shape and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Shape, Conformational Mobility and Isomerization . . . . . . . . . . . . . . . 19

3.1.2 Symmetry and Chirality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Electric and Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Intermolecular Interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Orientational Distribution Functions for Molecules . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Molecules with Axial Symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Lath-Like Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Principal Orientational Order Parameter (Microscopic Approach). . . . . . 33

3.5 Macroscopic Definition of the Orientational Order Parameter . . . . . . . . . . 35

3.5.1 Tensor Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.2 Uniaxial Order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.3 Microscopic Biaxiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Apparent Order Parameters for Flexible Chains . . . . . . . . . . . . . . . . . . . . . . . . . 39

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xiii



4 Liquid Crystal Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Polymorphism Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Polarized Light Microscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.2 Differential Scanning and Adiabatic Calorimetry

(DSC and AC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.3 X-Ray Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Main Calamitic Phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Nematic Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Classical Smectic A Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 Special SmA Phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.4 Smectic C Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.5 Smectic B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Discotic, Bowl-Type and Polyphilic Phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Role of Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Lyotropic Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 General Remarks on the Role of Chirality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Cholesterics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7.1 Intermolecular Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.7.2 Cholesteric Helix and Tensor of Orientational Order . . . . . . . . . . . 58

4.7.3 Tensor of Dielectric Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7.4 Grandjean Texture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7.5 Methods of the Pitch Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.8 Blue Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.9 Smectic C* Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.9.1 Symmetry, Polarization and Ferroelectricity . . . . . . . . . . . . . . . . . . . . 65

4.9.2 Helical Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.10 Chiral Smectic A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.10.1 Uniform Smectic A* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.10.2 TGB Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 Spontaneous Break of Mirror Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Structure Analysis and X-Ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Diffraction Studies and X-Ray Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 General Consideration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.2 X-Ray Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 X-Ray Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.1 Scattering by a Single Electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.2 Scattering by Two Material Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.3 Scattering by a Stack of Planes (Bragg Diffraction). . . . . . . . . . . . . . . 80

5.2.4 Amplitude of Scattering for a System of Material Points . . . . . . . . . 81

5.2.5 Scattering Amplitude for an Atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Diffraction on a Periodic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Reciprocal Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xiv Contents



5.3.2 Intensity of Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.3 Form Factor and Structure Factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Fourier Transforms and Diffraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.2 Example: Form Factor of a Parallelepiped . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.3 Convolution of Two Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4.4 Self-Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 X-Ray Diffraction by Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5.1 Density Function and Structure Factor for Crystals . . . . . . . . . . . . . . . 95

5.5.2 A Crystal of a Finite Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Structure of the Isotropic and Nematic Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6.1 Isotropic Liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6.2 Nematic Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7 Diffraction by Smectic Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.7.1 Smectic A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.7.2 Landau-Peierls Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7.3 “Bond” Orientational Order in a Single Smectic Layer

and Hexatic Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7.4 Three-Dimensional Smectic Phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Landau Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Isotropic Liquid–Nematic Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.1 Landau-De Gennes Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.2 Temperature Dependence of the Nematic Order Parameter . . . . . 116

6.2.3 Free Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2.4 Physical Properties in the Vicinity of the N–Iso Transition . . . . . 119

6.3 Nematic–Smectic A Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.1 Order Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.2 Free Energy Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.3 Weak First Order Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3.4 Re-entrant Phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 Smectic A–Smectic C Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4.1 Landau Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4.2 Influence of External Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5 Dynamics of Order Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5.1 Landau-Khalatnikov Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5.2 Relaxation Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.6 Molecular Statistic Approach to Phase Transitions. . . . . . . . . . . . . . . . . . . . . 133

6.6.1 Entropy, Partition Function and Free Energy . . . . . . . . . . . . . . . . . . . . 133

6.6.2 Equations of State for Gas and Liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.7 Nematic–Isotropic Transition (Molecular Approach) . . . . . . . . . . . . . . . . . . 140

6.7.1 Interaction Potential and Partition Function . . . . . . . . . . . . . . . . . . . . . 140

6.7.2 Onsager’s Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Contents xv



6.7.3 Mean Field Approach for the Nematic Phase. . . . . . . . . . . . . . . . . . . . 143

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Part II Physical Properties

7 Magnetic, Electric and Transport Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.1 Magnetic Phenomena. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.1.1 Magnetic Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.1.2 Diamagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.1.3 Paramagnetism and Ferromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.2 Dielectric Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2.1 Permittivity of Isotropic Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.2.2 Static Dielectric Anisotropy of Nematics and Smectics . . . . . . . . . 161

7.2.3 Dipole Dynamics of an Isotropic Liquid. . . . . . . . . . . . . . . . . . . . . . . . . 165

7.2.4 Frequency Dispersion of e|| and e⊥ in Nematics . . . . . . . . . . . . . . . . . 170

7.3 Transport Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.3.1 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.3.2 Diffusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.3.3 Electric Conductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8 Elasticity and Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.1 Tensor of Elasticity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.1.1 Hooke’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.1.2 Stress, Strain and Elasticity Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.2 Elasticity of Nematics and Cholesterics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.2.1 Elementary Distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.2.2 Frank Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.2.3 Cholesterics and Polar Nematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.3 Variational Problem and Elastic Torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.3.1 Euler Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.3.2 Application to a Twist Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.3.3 “Molecular Field” and Torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.3.4 Director Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

8.4 Defects in Nematics and Cholesterics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.4.1 Nematic Texture and Volterra Process. . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.4.2 Linear Singularities in Nematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

8.4.3 Point Singularities and Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.4.4 Defects in Cholesterics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

8.5 Smectic Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.5.1 Elasticity of Smectic A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.5.2 Peierls Instability of the SmA Structure . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.5.3 Defects in Smectic A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

8.5.4 Smectic C Elasticity and Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

xvi Contents



9 Elements of Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

9.1 Hydrodynamic Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

9.2 Hydrodynamics of an Isotropic Liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

9.2.1 Conservation of Mass Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

9.2.2 Conservation of Momentum Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

9.2.3 Navier-Stokes Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

9.3 Viscosity of Nematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

9.3.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

9.3.2 Measurements of Leslie coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

9.4 Flow in Cholesterics and Smectics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

9.4.1 Cholesterics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

9.4.2 Smectic A Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

10 Liquid Crystal – Solid Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

10.1 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

10.1.1 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

10.1.2 Surface Properties of a Liquid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

10.1.3 Structure of Surface Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

10.2 Surface Energy and Anchoring of Nematics . . . . . . . . . . . . . . . . . . . . . . . . . 271

10.2.1 Easy Axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

10.2.2 Variational Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

10.2.3 Surface Energy Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

10.2.4 Extrapolation Length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

10.3 Liquid Crystal Alignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

10.3.1 Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

10.3.2 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

10.3.3 Berreman Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Part III Electro-Optics

11 Optics and Electric Field Effects in Nematic and Smectic A

Liquid Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

11.1 Optical Properties of Uniaxial Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

11.1.1 Dielectric Ellipsoid, Birefringence and

Light Transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

11.1.2 Light Absorption and Linear Dichroism. . . . . . . . . . . . . . . . . . . . . . 294

11.1.3 Light Scattering in Nematics and Smectic A. . . . . . . . . . . . . . . . . 299

11.2 Frederiks Transition and Related Phenomena . . . . . . . . . . . . . . . . . . . . . . . . 304

11.2.1 Field Free Energy and Torques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

11.2.2 Experiments on Field Alignment of a Nematic . . . . . . . . . . . . . . 306

11.2.3 Theory of Frederiks Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

11.2.4 Generalizations of the Simplest Model . . . . . . . . . . . . . . . . . . . . . . . 312

Contents xvii



11.2.5 Dynamics of Frederiks Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

11.2.6 Backflow Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

11.2.7 Electrooptical Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

11.3 Flexoelectricity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

11.3.1 Flexoelectric Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

11.3.2 Converse Flexoelectric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

11.3.3 Flexoelectric Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

11.4 Electrohydrodynamic Instability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

11.4.1 The Reasons for Instabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

11.4.2 Carr-Helfrich Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

12 Electro-Optical Effects in Cholesteric Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

12.1 Cholesteric as One-Dimensional Photonic Crystal . . . . . . . . . . . . . . . . . . . 343

12.1.1 Bragg Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

12.1.2 Waves in Layered Medium and Photonic Crystals. . . . . . . . . . . 347

12.1.3 Simple Analytical Solution for Light Incident Parallel

to the Helical Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

12.1.4 Other Important Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

12.2 Dielectric Instability of Cholesterics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

12.2.1 Untwisting of the Cholesteric Helix . . . . . . . . . . . . . . . . . . . . . . . . . . 358

12.2.2 Field Induced Anharmonicity and Dynamics of the Helix . . . 364

12.2.3 Instability of the Planar Cholesteric Texture . . . . . . . . . . . . . . . . . 366

12.3 Bistability and Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

12.3.1 Naive Idea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

12.3.2 Berreman–Heffner Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

12.3.3 Bistability and Field-Induced Break of Anchoring. . . . . . . . . . . 375

12.4 Flexoelectricity in Cholesterics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

13 Ferroelectricity and Antiferroelectricity in Smectics . . . . . . . . . . . . . . . . . . 381

13.1 Ferroelectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

13.1.1 Crystalline Pyro-, Piezo- and Ferroelectrics . . . . . . . . . . . . . . . . . . 381

13.1.2 Ferroelectric Cells with Non-ferroelectric Liquid Crystal . . . 386

13.1.3 Phase Transition SmA*–SmC* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

13.1.4 Electro-Optic Effects in Ferroelectric Cells . . . . . . . . . . . . . . . . . . 398

13.1.5 Criteria for Bistability and Hysteresis-Free Switching . . . . . . . 407

13.2 Introduction to Antiferroelectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

13.2.1 Background: Crystalline Antiferroelectrics

and Ferrielectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

13.2.2 Chiral Liquid Crystalline Antiferroelectrics . . . . . . . . . . . . . . . . . . 413

13.2.3 Polar Achiral Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

xviii Contents



Chapter 1

Introductory Notes

First my middle school teachers and then my high school teachers told me that

substances could be in the form of gases, liquids and crystalline solids, between

which, on cooling, transitions could occur in the following sequence: gas !
liquid ! crystal. And I believed them, although even then liquid crystals had

already been around for a respectable time. Today we tell students that if an

organic substance consists of rod-like molecules, it may, on cooling, change

from a gas to a normal (isotropic) liquid, then into a strange anisotropic liquid

(called a nematic liquid crystal), see Fig. 1.1.

Further cooling may cause the anisotropic liquid to change into a lamellar

structure, like a stack of paper, but with thin liquid sheets. Something that is a one-

dimensional crystal, but within the stack is a two-dimensional liquid. This is

the smectic A phase with molecules standing upright within the layer. Such layers

easily slide on each other. These three phases have been identified by Friedel [1]. On

further cooling the molecules may decide to tilt a little giving rise to the smectic C

phase, the tilt angle of which increases with decreasing temperature.

But this is not all. In other substances, further cooling the smectic A phase results

in the layers breaking up into hexagons but still sliding easily over each other; this is

the smectic Bhex phase. Only at even lower temperatures does the sample acquire a

normal crystalline structure. Thus instead of two phase transitions gas-liquid and

liquid–crystal we have found four or five transitions between different phases.

Other substances manifest other sequences. For instance, in organic compounds

having disc-like molecules we find a columnar phase built of liquid molecular

columns packed in a two-dimensional crystalline structure. It is a one-dimensional

liquid along the columns, and, at the same time, a two-dimensional crystal. An

ancient Greek temple with liquid columns would be a good model of the columnar

phase. Today we define liquid crystals as fluids with a certain long-range order in

their molecular arrangement (i.e. they are anisotropic liquids). Each mesophase is

a macroscopically uniform intermediate state between an isotropic liquid and a

crystalline solid. The history of liquid crystals began with the observation by

Reinitzer [2] of a strange phase intermediate between the liquid melt and the

crystalline phase upon heating and cooling cholesteryl benzoate. The samples of

this compound were sent by Reinitzer to O. Lehmann (Karlsruhe) who was an

expert in polarizing microscopy. In Fig. 1.2 we can see the nice photos of the two

L.M. Blinov, Structure and Properties of Liquid Crystals,
DOI 10.1007/978-90-481-8829-1_1, # Springer ScienceþBusiness Media B.V. 2011
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founding-fathers of the liquid crystal community taken from the book on liquid

crystal history written by Prof. Sonin [3].

It was Lehmann who, having investigated the gift of Reinitzer, understood that

he was dealing with a new state of matter. Lehmann also observed such intermedi-

ate phases in other substances and, at first, gave them the name fliebende Kristalle
(crystals showing fluidity) [4]. Later he decided that the term fl€ussige Kristalle
(liquid crystals) corresponds better to the essence of mesophases and used it as a

title of the very first book on liquid crystals [5] (for more details about history of

liquid crystals see [6, 7]).

Today we know that the cholesterol esters consist of helical (chiral) molecules,

and on cooling from the isotropic phase they undergo a transition into another phase

called a cholesteric phase. This shows unique optical properties. In Fig. 1.3a we see
a photo-image of a 20 mm thick polycrystalline layer of cholesteryl acetate viewed

in a polarizing microscope. Upon heating the substance melts, that is it becomes

Fig. 1.1 From left to right: molecular structure of isotropic, nematic, smectic A and smectic C

phases

Fig. 1.2 Photos of Friedrich Reinitzer (left) and Otto Lehmann (right)
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fluid but optically anisotropic and shows bright diffraction colours, Fig. 1.3b. With

increasing temperature we observe a phase transition to the isotropic phase. The

latter is not birefringent, and therefore looks black between crossed polarizers.

In Fig. 1.3c we see black drops on the bright background of the superheated

cholesteric phase.

It should be noted that the appearance of the “cholesteric” phase of Reinitzer was

different from the appearance of the classical cholesteric phase shown in Fig. 1.3b.

The phase was opaque and had blue tint. It took a century to decipher its structure:

it appears to be a blue phase (see Chapter 4) with a structure of liquid lattice

consisting exclusively of defects of an initially ideal helical structure. This phase is

periodic and shows Bragg diffraction of light in all the three principal directions.

Therefore, Reinitzer has discovered the first generic photonic crystal! At present, a

study of photonic crystals, mostly artificial, is one of the hot topics in physics [8].

The timing of the discovery of liquid crystals was unlucky. It coincided with the

period when the beautiful foundations of modern physics were being laid, but the

stone with the mark “liquid crystals” was somehow lost in controversy. Only now,

through the enormous efforts of several generations of scientists, has the missing

stone of liquid crystals been inserted in its legitimate place in the foundation

of Science. And among those who put liquid crystals into the mainstream of physics

there were such giants as F. Leslie, A. Saupe and especially P.G. de Gennes

(The Nobel Prize in Physics, 1991).

The early book of de Gennes [9] and the subsequent one written together with

Prost [10] may be highly recommended to physicists. During the work on the

present book I used them frequently as well as the other excellent books on liquid

crystal physics [11–14]. The reader can also find a great deal of interesting

information on particular problems related to the physical properties of mesophases

in monographs [15–21]. For newcomers I would recommend a nice, philosophically

tinted book by P. Collings [22], a piece of art prepared by A.S. Sonin in Russian

[23], and a slightly more scientific book written for schoolboys by S.A. Pikin and

myself [24] (in Russian and Spanish). The literature for further reading is given at

the ends of relevant chapters.

Fig. 1.3 Photo-image of a 20 mm thick polycrystalline layer of cholesteryl acetate placed between

two cover glasses in crystalline phase (a), cholesteric phase (b) and at the transition from the

cholesteric to isotropic phase (c)
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Chapter 2

Symmetry

The concept of symmetry is equally important for understanding properties of

individual molecules, crystals and liquid crystals [1]. The symmetry is of special

importance in physics of liquid crystal because it allows us to distinguish numerous

liquid crystalline phases from each other. In fact, all properties of mesophases are

determined by their symmetry [2]. In the first section we consider the so-called

point group symmetry very often used for discussion of the most important liquid

crystalline phases. A brief discussion of the space group symmetry will be

presented in Section 2.2.

2.1 Point Group Symmetry

2.1.1 Symmetry Elements and Operations

There are only few symmetry elements, which generates a number of symmetry

operations [3, 4]. We may illustrate them by their applications to simple geometri-

cal objects.

(a) Proper rotation axis of nth-order, Cn

Consider first rotational symmetry. Let us take an equilateral triangle and rotate it

clockwise about its center by 360�/3 ¼ 120�, Fig. 2.1a. The new triangle would be

undistinguishable from the original one (but not identical). The symmetry element
we used is the proper rotation axis of order 3 (C3-axis). The same triangle can be

rotated by a half of the full turn about one of the three other axes (medians going out

of each vertex), Fig. 2.1b. The corresponding symmetry element is a C2 axis

(rotation angle 360�/2, n ¼ 2). For a square, we can find one C4 axis and four C2

axes, for a hexagonal benzene molecule one C6 axis and six C2 axes.

The symmetry element C3 may generate two other symmetry operations. For

instance, applying C3 rotation twice we again obtain an indistinguishable triangle.

Symbolically, C3
2 means rotation by 2 � 2p/3 ¼ 240�. The same C3 rotation

applied three times result in the exactly the same triangle. Therefore C3
3 is one of

L.M. Blinov, Structure and Properties of Liquid Crystals,
DOI 10.1007/978-90-481-8829-1_2, # Springer ScienceþBusiness Media B.V. 2011
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the identity operations, C3
3 ¼ E. Generally, the identity operation corresponds to

doing nothing with any figure and can also be obtained with C2 or C4 axes or with

any axis of order n: C2
2 ¼ C4

4 ¼ Cn
n ¼ E.

(b) A plane of symmetry, s

This element generates only one operation, a reflection in the plane as in a mirror,

Fig.2.2. Repeated twice this operation results in the initial structure that is s2 ¼ E.
Taking again our triangle we can see that plane s interchanges points 1 and 3

leaving point 2 at the same place. Such symmetry is called bilateral symmetry.
There may be several symmetry planes and they designated either as sh (the plane

perpendicular to the axis Cn with highest number n) or sv (plane containing the

Cn axis). By convention, the Cn axis with highest number n is taken as a vertical,

therefore, indices h and v mean “horizontal” and “vertical”. In our figure we see

the sv plane, and the plane of the triangle is sh. Note that a chiral object, for

instance a hand, has no mirror plane (however, two hands in praying position have a

mirror plane between them [4]).

• C3

1

2

3

• C3

1

23

C2

1

2
b

a

3

C2

2

1 3

Fig. 2.1 Rotational

symmetry. The illustration of

operations made by proper

rotation axes of third (a) and

second (b) order

1

2

3

σσvC3

σσh

Fig. 2.2 Bilateral symmetry.

Plane sv (vertical) is plane
of reflection that contains

the axis of the highest order

C3 for the equilateral triangle.

After applying this element

points 1 and 3 exchange

their positions. Plane of

the triangle is reflection

plane sh (horizontal)
perpendicular to C3
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(c) Inversion center, I

This symmetry element I generates an operation of inversion through a point called
the inversion center, Fig. 2.3. Therefore now we deal with inversion symmetry. We

can take any point of an object and connect it by a straight line with the center O.

Then, along the same line behind the center and at the equal distance from it we

must find the point equivalent to the first one. A good example is a parallelogram.

Note, that two inversions result in the identical object, I2 ¼ E.

(d) Improper rotation, Sn

This element is also called a rotation–reflection axis or mirror–rotation axis. It

consists of two steps, a rotation through 1/n of the full turn followed by reflection in
a plane perpendicular to the rotation axis, Fig. 2.4. A molecule of ethane in the

staggered configuration is a good illustration of S6 rotation–reflection axis, see the

figure. Note, that this object has neither C6 axis nor s plane on their own. But after

combined operations C6 (60� clockwise) and s we obtain an indistinguishable

object with interchanged positions of all hydrogen atoms. Therefore S6, and,

more generally, Sn is independent symmetry operation. Like element Cn, element

S6 may generate several operations, for instance, S6
2 ¼ C3 because this operation

consists of rotation by 2 � 2p/6 ¼ 120� ¼ 2p/3 and identity operation s2 ¼ E.
Totally, S6

2 ¼ C3E. Other examples are: S3
2 ¼ C3

2; S3
3 ¼ s; S3

4 ¼ C3; S3
6 ¼ E.

Finally, we have five independent symmetry elements: identity E, proper rotation
axisCn, symmetry planes, inversion center I and rotation–reflection axis Sn, generating
single (elements E, s, I) or multiple (elements Cn, Sn) symmetry operations.

O

1

1’2

2’

3

3’

Fig. 2.3 Inversion symmetry.

Point O is inversion center and

the inversion operation

exchanges positions of points

1–10, 2–20, 3–30 etc.

C

C

H1

H2

H3

H4

H5 H6 C

C
H1 H2

H3

H5

H6

H4
C

C
H4

H5

H6

H3

H1 H2

C6

30o

σσ

Fig. 2.4 Improper rotation. Axis connecting points C–C is a rotation–reflection axis S6. An ethane

molecule has a symmetry element including two subsequent operations, the rotation of the whole

structure through an angle of 30� with a subsequent reflection by plane s. After this the left and
right sketch become identical
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2.1.2 Groups

Now, for each geometrical object or a molecule we can write a set of symmetry
operations, which transform the object into its equivalent formal representation. Let

consider three examples.

(i) Water molecule, Fig. 2.5a. It has the C2 axis, two symmetry planes and

together with identity element we have a full set of symmetry operations E,
C2, s, s0. As we shall see soon this set corresponds to symmetry group C2v.

(ii) The next is an ion [Co(NH3)4ClBr]
+3 shown in Fig. 2.5b. Its set of symmetry

operations is E, C4, C4
2, C4

3, 4sv (group C4v).

(iii) Finally we take a flat borate molecule BCl3 having the symmetry of an

equilateral triangle, therefore allowing the following operations:

E, C3, C3
2, C2, C2

0
, C2

00
, sh, S3, S3

2, sv, sv

0
, sv

00
(group D3h).

Some operations belong to the same classes (see below), therefore we may write

the set in a more compact way: E, 2C3, 3C2, sh, 3S3, 3sv.

It is essential that any element of each set of operations can be obtained by a

combination of other elements from the same set. Application of the subsequent

symmetry operations is calledmultiplication. For a water molecule we can write the

corresponding multiplication table, Table 2.1. For instance, the multiplication of

operations C2 from the first row and the first column corresponds to the identity

operation, C2 � C2 ¼ E, shown in the table. Further, C2s ¼ s0 and sC2 ¼ s0, so
these operations commute in our particular case. Generally they may not commute

and the order of operations is important (by convention, multiplication operation

C2s means that first we apply operation s and then C2).

H

O
H

σv
C2

σ’v

a
z

x
y

C4

H3N

NH3
H3N

NH3
Br

Cl

b

Co

Fig. 2.5 Set of symmetry operations and the structure for water molecule belonging to group C2v

(a) and the structure of ion Co(NH3)4ClBr]
+3 belonging to group C4v (b)

Table 2.1 Multiplication table for symmetry elements of water molecule

E C2 s s0

E E C2 s s0

C2 C2 E s0 s
s s s0 E C2

s0 s0 s C2 E
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In the mathematical sense, each set of the operations shown above and, more

generally, characterizing the symmetry of objects of different shape forms a group.
So, what is a group? A set of elements A, B, C, etc. form a group if there is a rule for

combining any two elements to form their “product” AB (or A � B) such that:

– Every “product” of two elements is an element of the same set.

– There is a unit element E such that EA ¼ AE ¼ A.
– The associative law is valid, that is A(BC) ¼ (AB)C, etc.
– Each element A has its inverse element A�1 belonging to the same set such that

AA�1 ¼ A�1A ¼ E.

The group “product” might be different (multiplication, addition, permutation,

space rotation, etc).

For example, a set of integers including negative, zero and positive numbers

�1, . . ., �n, . . ., �3, �2, �1, 0, 1, 2, 3, . . ., n, . . .,1 form a group under addition
as a group operation. Indeed, all the group rules are fulfilled:

A þ B ¼ C (e.g. 2 þ 18 ¼ 20) belongs to the same set,

evidently A þ (B þ C) ¼ (A þ B) þ C
E ¼ 0 (e.g., 0 þ A ¼ A, that is addition of zero changes nothing)

Aþ (�A)¼ 0¼ E (under addition as group operation (�A) symbolically means A�1)

This group contains infinite number of elements, therefore it is an infinite group
or group of infinite order.

Another example is a set of four 2 � 2 matrices that form a finite group of order

4 (because we have four elements in the group) under multiplication operation (it

may directly be checked using the rule for matrix multiplication):

A ¼ 1 0

0 1

� �
;B ¼ 0 1

�1 0

� �
;C ¼ �1 0

0 �1

� �
;D ¼ 0 �1

1 0

� �
(2.1)

Here the identity element is matrix A, the associative law for matrices is always

valid, the inverse matrices are B for D and vice versa (BD ¼ DB ¼ A), elements

A and C are inverses on their own (AA ¼ A, CC ¼ A). It is interesting that there is a
one-to-one correspondence between the elements of the group of our four matrices

and the elements of the group of complex numbers 1, i, �1, �i. The two groups

have the same multiplication table. For example, the product of the elements of the

first group (matrices) B1C1 ¼ D1 corresponds to the product B2C2 ¼ D2 of the

second group (numbers). Therefore, we say that these two groups are isomorphic.
The concept of isomorphism is very important. Here, we are interested in the

groups of elements whose products are symmetry operations. Each set of symmetry

operations is a group, which may be represented by a group of matrices isomorphic

to our group. To demonstrate this, let us go back to group C2v in Fig. 2.5a and pay

attention to the coordinate system: this is the basis for representation of the selected
group in the matrix form. Since the water molecule is two-dimensional the group

will be represented by 4 � 4 matrices. We shall consider the hydrogen–oxygen

2.1 Point Group Symmetry 11



bonds as vectors x, y and the symmetry operation will transform them into vectors

x’and y’. The identity operation E does not change anything, and this operation is

represented by the unit matrix E:

E ¼ 1 0

0 1

� �
;C2 ¼ 1 0

0 �1

� �
; sv ¼ 1 0

0 �1

� �
; s0v ¼

1 0

0 1

� �
(2.2)

The C2 operation exchanges only y-projections of the two vectors, and this is

given by matrix C2. In our particular case, the result of sv operation is the same and

the corresponding matrices C2 and sv are equal. Operation sv
0 does not change

positions of the two vectors and is matrices E and sv
0 are identical. The sums of the

diagonal elements of a matrix is a trace or a character of the matrix. Our matrices

have the following characters 2, 0, 0, 2 corresponding to one of possible representa-

tions of group C2v.

Therefore, we can operate with the matrices using a powerful apparatus of modern

mathematics and obtain important results not at all evident from the beginning. Such

a theory of group representations will not be considered here although that theory is

very powerful and widely used not only in crystallography [2] but in many areas of

physics [1, 5, 6]. In this section we shall only list the sets of symmetry operations

corresponding to the most important point symmetry groups. The term “point”

reflects the fact, that under any operation of the groups listed, at least, one point of

the object is not changed. For comparison, when an object is translated in space we

should discussed its translational symmetry and corresponding space symmetry
groups [7].

2.1.3 Point Groups

Generally, there is infinite number of point groups, but not all of them correspond to

real physical objects such as molecules or crystals. For example, only 32 point

groups are compatible with crystal lattices. Each of them is labeled by a certain

symbol according to Sch€onflies or according to the International classifications. The
Sch€onflies symbols are vivid and more often used in scientific literature. Here we

present only those point groups we may encounter in the literature on liquid

crystals.

In the Table 2.2 the Sch€onflies symbols are given on the left side, symmetry

operations (not symmetry elements) are given on the right side. As we see a number

of symmetry operations increases from top to bottom. Therefore, we say that D6h is

more symmetric phase than, say, C2h. The capital letter D (with index n¼ 2, 3, 6, . . .)
is used when n number ofC2 axes appear, which are perpendicular to the principal Cn

axis. All symmetry operations except sd have been discussed above. The operation

sd appears in D4h, D6h etc. to distinguish between vertical reflection planes sv

containing the C2 axes and additional planes (also vertical) passing along bisectors

between already available pairs of the C2 axes.

12 2 Symmetry



For the sake of brevity, some operations form classes consisted of conjugate

symmetry operations. For example, consider the C3v group: operation 2C3 includes

two conjugate operations C3 and C3
2 (not two C3 axes!). The definition of the

conjugate elements of a group is as follows: we say operations A and B of a group

are conjugate and belong to the same class if XAX�1¼ B where X is any of the same

group operations and X�1 is its inverse operation. Therefore, B is similarity

transform of A (note, that XX�1 ¼ E). Note that single operation E forms the

class on its own because, for any X, XEX�1 ¼ EXX�1 ¼ E.
Since operation s is equal to its own inverse, it is convenient to use it as X and

analyze whether operations Cn. form a class or not. For example, consider NH3

molecule (group C3v) whose projection along the C3 axis is shown in Fig. 2.6. Let us

take point P and, at first, make twice C3 operation to arrive at point P0. Then, we
start again from point P and, guided by arrows in the figure, make operation

sC3s
�1. We again arrive at point P0. Therefore sC3s

�1 ¼ C3
2, and operations

C3 and C3
2 belong to the same class. Now, since from the C3 symmetry is evident

that C3 is inverse of C3
2, we may find a conjugate of s: C3sC3

2 ¼ s00. Finally, all
symmetry operations for the C3v group, i.e. E, C3, C3

2, s, s0, s00 can be combined in

three classes E, 2C3, 3s, as shown in Table 2.2.

C3

P

P¢ Operation

dC3s = C3

s¢¢

s¢

s

s

2
Fig. 2.6 The procedure

illustrating that, in NH3

molecule (group C3v),

operations C3 and C3
2, belong

to the same class and

operations s, s0, s00 belong to
another class

Table 2.2 Some point groups with Sch€onflies and international symbols

Sch€onflies symbol International Symmetry operations

C1 1 E

Cs or C1h m E, sh

Ci or S2 �1 E, I

C2 2 E, C2

C2h 2/m E, C2, I, sh

C2v mm E, C2, sv, sv
0

C3v 3m E, 2C3, 3sv

D2h mmm E, 3C2, I, sh, sv, sv
0

D3h
�6m2 E, 2C3, 3C2, sh, 2S3, 3sv

D6h 6/mmm E, 2C6, 2C3, C2, 3C2
0, 3C2

00, I, 2S3, 2S6, sh, 3sd, 3sv

2.1 Point Group Symmetry 13



2.1.4 Continuous Point Groups

There are also so-called continuous point groups, which include rotations of

objects (or coordinate systems) by infinitesimal angles. Therefore the number of

their elements tends to a limit that is infinity and the groups themselves are infinite.

The continuous point groups were introduced by P. Curie and can be represented by

physical objects [3]. Totally there are seven continuous groups. They are important

for description of very symmetric liquid crystalline phases such as nematic,

smectic A and polar nematic phase the existence of which is still under discussion.

There are also continuous space groups describing helical (chiral) phases, see

below. For the beginning consider the groups of cones. The symmetry of an

immobile cone, see Fig. 2.7a, is C1v (or 1m according to the International

classification). It includes an infinite order axis C1, an infinite number of symme-

try planes sv like the ABC plane but has no sh plane. Therefore, the C1-axis has

properties of a genuine vector. We say this axis is a polar axis and the phase is also
polar, in particular, it may possess spontaneous polarization. In the liquid crystal

physics this group would describe the polar nematic phase, the very existence of

which is still questionable. The rotating cone, see Fig. 2.7b, has polar symmetry

reduced toC1 (or1) because the only symmetry element is a rotation axis Cn with

n ¼ 1. Due to rotation there is no symmetry plane. The cone may rotate either

clockwise or anti-clockwise and we can say that it has two enantiomorphic

modifications.

The next is a series of cylinders. The immobile cylinder has symmetry elements

shown in Fig. 2.8a: a rotation axis of infinite order C1, an infinite number of C2

axes perpendicular to C1, a horizontal symmetry plane sh and infinite number of

vertical symmetry planes sv. Its point group D1h (or 1/mm) corresponds

to symmetry of the conventional (non-chiral) nematic or smectic A phase. A

rotating cylinder, Fig. 2.8b, has no C2 axis perpendicular to the C1 rotation axis

but has a horizontal symmetry plane sh (no chirality). Its point group symmetry is

C1h (or 1/m). A twisted cylinder, Fig. 2.8c, is chiral therefore has lost all

symmetry planes but still has the C1 axis and infinite number of C2 axes perpen-

dicular to C1. Therefore, according to Sch€onflies, it keeps the D letter and its

symmetry group is D1 (or 12) corresponding to chiral cholesteric or chiral

smectic A* phase. Both the twisted and rotating cylinders may be encountered in

b
C∞

a

C∞

A

B

C

Fig. 2.7 Continuous groups

of cones: symmetry elements

of an immobile cone C1v

(a) and group of a rotating

cone C1 (b)
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two enantiomorphic modifications. Note that all cylinders and cones are optically

uniaxial.

The two objects shown in Fig. 2.9 are spheres made of different materials. The

sphere (b) is made of non-chiral material. Such a sphere has full orthogonal

symmetry group O(3) or Kh (i.e. 11m): infinite number of C1 axes, infinite

number of reflection planes passing through the center of the sphere, an inversion

center. Any isotropic achiral liquid has this point symmetry group. However,

liquids consisting of chiral molecules, which rotate the light polarization plane

(like some sugar solutions), have lower symmetry, Fig. 2.9a; they belong to the full

rotational group R(3) or K (or11) because they have lost all symmetry planes and

the inversion center. To conclude, the full list of seven continuous point groups

includes (in the order of reducing symmetry): spheres (Kh, K), cylinders (D1h,

C1h, D1,), and cones (C1v and C1).

2.2 Translational Symmetry

(a) Crystals made of atoms with spherical symmetry

Such crystals have only translational (i.e., positional) order and no orientational

order. Their structure is characterized by (i) the point group symmetry of an

elementary cell which includes rotations, reflections and inversion as group opera-

tion and (ii) the group of translations which includes vectors with their addition as a

group operation. The translation vector is T¼ n1a + n2b + n3c where a, b, c are unit

Fig. 2.9 Continuous groups

of spheres: group of a chiral

sphere K or R (a) and group

of achiral (having mirror

symmetry) sphere Kh or O (b)

cba

σh

σv C∞

C2

Fig. 2.8 Continuous groups

of cylinders: symmetry

elements of an immobile

cylinder, group D1h (a), the

group of a rotating cylinder

C1h (b) and chiral group of a

twisted cylinder D1 (c)
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vectors and ni are integers. For example, n1 ¼ 2, n2 ¼ 1, n3 ¼ 1, see Fig. 2.10. The

overall symmetry (the crystal group) is determined by combination of all these

elements.

(b) Molecular crystals

Due to anisometric (particularly elongated) shape of molecules, these crystals

possess both the translational and orientational order. The latter is determined by

Euler angles W, F such molecules form with respect to selected coordinate frame as

shown in the right part of Fig. 2.11. The third Euler angleC describing rotation of a

molecule about its longest axis is not shown for simplicity. The point group

symmetry includes this orientational order.

(c) Plastic crystals and liquid crystals

A loss of the orientational order of a molecular crystal due to free rotation of

molecules around x, y and z-axes with the positional order remained results in

plastic crystals. The point group symmetry increases to that characteristic of

crystals with spherical atoms. However, such crystals are much softer. An example

is solid methane CH4 at low temperature.

A loss of the translational order (at least, partially) results in liquid crystals
of different rotational and translational symmetry. On heating, one can observe

step-by-step melting and separate phase transitions to less ordered phases of

enhanced symmetry. On cooling, correspondingly one observes step-by-step “crys-

tallization”. An isotropic liquid is the most symmetric phase, it has full translational

and orientational freedom, and this can be written as a product of group multipli-

cation, O(3) � T(3), where O(3) is the full orthogonal symmetry (infinite and

c

a

b
T

Fig. 2.10 The translation

vector T ¼ n1a þ n2b þ n3c
with n1 ¼ 2, n2 ¼ 1, n3 ¼ 1;

(a), (b) and (c) are unit basis

vectors

a

c

a

x

z

Φ

b

y

q

Fig. 2.11 Molecular crystal

with rigidly fixed molecules

(a) and Euler angles W and F
(b) for a particular molecule
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continuous) group and T is the full infinite continuous group of translations [8].

Upon cooling, a series of phase transitions occurs, and each time the symmetry is

reduced. Each new point symmetry group is a subgroup of O(3) and a new group of

translations is a subgroup of T(3). For example, on transition to the nematic phase

the translational freedom is not confined but the rotational symmetry is lowered and

the full symmetry is reduced to D1h � T(3).

In Fig. 2.12a one-dimensional periodic structure is shown in the three-dimensional

space. The curve line having point group C1h (or Cs) is repeated with a certain period

along the horizontal axis. Such translation may be symbolically written as T1
3. It is

the same space group the smectic A phase has, see Fig. Int.1 in Chapter 1. In

Fig. 2.12b the two-dimensional hexagonal lattice in the three-dimensional space

(T2
3) is presented. We shall discuss later the smectic B phase having this type of

the hexagonal order of molecules.

It should be noted that cholesteric liquid crystals (chiral nematics) having point

group symmetry D1 are also periodic with the pitch considerably exceeding a

molecular size. The preferable direction of the local molecular orientation, i.e. the

director oriented along the C1 axis, rotates additionally through subsequent infini-

tesimal angles in the direction perpendicular to that axis. Hence a helical structure

forms with a screw axis and continuous translation group.

(d) Classification of liquid crystals

Liquid crystals can be classified according to

(i) Their mean of formation: thermotropic (change of temperature and pressure),

lyotropic (change of the molecular concentration in water and some other

solvents), carbonized (change of polymerization degree), some rare special

mechanisms (e.g., formation of chain structures in some inorganic substances).

(ii) Molecular shape, as discussed in Chapter 2, like rod-like or calamitic (from

Greek kalamoz thatmeans “cane”), discotic, banana- or bent-like, dendrites, etc.

(iii) Optical properties (uniaxial, biaxial, helical).

(iv) Chemical classes (biphenyls, Schiff bases, pyrimidines, tolanes, etc).

(v) The symmetry of a liquid crystalline phase which determines physical properties

of the phase. This classification is a generalization of the earlier one suggested

by G. Friedel. In Chapter 3 we consider symmetry and structure of the most

important liquid crystalline phases.

∞

b
∞

∞

∞aFig. 2.12 One-dimensional

(a) and two-dimensional (b)

periodicity in the three-

dimensional space
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Chapter 3

Mesogenic Molecules and Orientational Order

3.1 Molecular Shape and Properties

A great variety of organic molecules can form liquid crystalline phases. They are

called mesogenic molecules and belong to different chemical classes, see the

comprehensive book by G. Gray on chemical aspects [1] and his review articles

[2, 3]. The discussion of more recent achievements in the chemistry of liquid

crystals may be found in beautifully illustrated article by Hall et al. [4].

3.1.1 Shape, Conformational Mobility and Isomerization

Figure 3.1 represents the characteristic types of mesogenic molecules. Among them

are rods, laths, discs, helices which are more popular for physical investigations and

technological applications and also main-chain and side-chain polymers. We may

add to this list banana- or bent-shape molecules and dendrimers [4] that recently

become very popular.

Rigid rods (a), laths (b) and disks (c) have no conformational degree of freedom.

They are very convenient for theoretical discussions and computer simulations of

the mesophase structure. Closer to reality are rods (or disks) with flexible tails

(hydrocarbon chains) shown in Fig. 3.2a, which facilitate formation of layered

liquid crystal phases. As an example of conformational degrees of freedom of

flexible molecular fragments is the trans–cis isomerization. In sketch 3.2b trans-
form is on the left, cis-form in the middle, a combination of the two on the right.

The rotational isomerization is another example: in sketch 3.2c the internal rotation

of phenyl rings about the single bond in a biphenyl moiety is sketched.

A molecule having the same chemical structure can exist in different atomic

configurations [5]. It forms different stereoisomers either mesogenic or not. One

important example is a molecule of cyclohexane (CH in Fig. 3.3) having all the

bonds single. The cyclohexane can acquire a form of either chair or trough to be

compared with a flat form of the benzene molecule having conjugated single and

double bonds. Moreover, the cyclohexane molecule reveals another type of

L.M. Blinov, Structure and Properties of Liquid Crystals,
DOI 10.1007/978-90-481-8829-1_3, # Springer ScienceþBusiness Media B.V. 2011
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isomerization. The hydrogen atoms marked by t and c letters are in nonequivalent

positions with respect to the longest molecular axes: only the trans-position is

compatible with that axis. It is known that atoms in different positions have

different chemical reactivity. For instance, the –COOH group can be attached to

the cyclohexane moiety in the trans-position. Then, a combination of the chair CH

structure with the trans-position of that group, due to a chemical reaction, results in

an elongated overall structure of the new-synthesized molecule, which is more

appropriate for liquid crystal formation. In addition, elongated dimers can form due

to H-bonds between –COOH groups, see below.

b

a

c

Fig. 3.2 Different degrees

of freedom for non-rigid

mesogenic molecules:

molecules with flexible tails

(a), trans-, cis- and combined

trans-cis isomerisation of the

flexible chains (b); rotational
isomerism of biphenyl

moiety (c)

c t

tc
a b c

Fig. 3.3 Rigid benzene molecule (a) and chair (b) and trough (c) isomeric forms of a cyclohexane

molecule

a b c d e f

jihg

Fig. 3.1 Different forms of mesogenic molecules: rods (a), lath-like (b), discs (c), swallow-tail (d),
bowls (e) double swallow-tails (f), main-chain (g) and comb-like (h) polymers, propellers (i) and
spirals (j)
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3.1.2 Symmetry and Chirality

The word chirality originates from Greek wiros (hand). Chiral objects (and

molecules) have no mirror symmetry (no one mirror plane). Examples of such

objects are spirals, propellers, screws, hands. Note that the symmetry of a liquid

crystal phase is not the same as the symmetry of constituent molecules but they

often share some symmetry elements. As an example let us look at the symmetry of

a “brick” and a “building” in Fig. 3.4. They are different although it is not a

convincing example, because our tower has not been erected by self-assembling

of bricks.

Chiral molecules, only left or only right, form chiral phases, left and right chiral

molecules in equal amount form achiral (enantiomorphic) phases [6]. Consider a

chiral molecule of a popular compound DOBAMBC (D(or L)-p-decyloxybenzyli-
dene-p0-amino-2methylbutyl cinnamate). It has an asymmetric carbon in its tail and

form a chiral SmC* phase in the range of 95–117�C, Fig. 3.5a. A molecule with a

chiral tail looks like an ice-hockey stick and forms a helical liquid crystal phase.

Left and right forms of a chiral tail result in the left and right handedness of a

molecule Fig. 3.6. On the other hand, chirality of cholesterol esters is exclusively

due to a curvature of the molecular skeleton Fig. 3.5b.

The synthesis of chiral molecules is a real challenge. There are, at least, three

different approaches.

(i) A chemist needs simple chiral molecules as initial or intermediary reagents.

They can be found among natural substances because the Nature selects left or

right forms. For example, left (or right) amino acids can be used. Then the

synthesis can be continued until the left (or right) form of the final chiral product

is obtained.

D2h

D¥h

a b

Fig. 3.4 Illustration of

different symmetry (D2h and

D1h) of a brick (a) and an

architectural “masterpiece”

made from the same bricks (b)
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(ii) As shown by Pasteur, chiral solutes can crystallize from a solution in the form

of left and right optically active crystals and left and right chiral isomers can be

separated.

(iii) The synthesis can be made in the chiral conditions (e.g., in a chiral solution,

like a cholesteric liquid crystal, or on special substrates, or using a chiral, one

directional stirring, etc.).

(iv) Chirality can be created optically by circularly polarized light.

3.1.3 Electric and Magnetic Properties

(a) Polarizability

All atoms and molecules can be polarized by an electric field. The polarization

(induced dipole of a unit volume) is P¼ aEwhere a is molecular polarizability. For

spherically symmetric atoms or molecules (like C60 fullerenes) the polarizability is

a scalar quantity (tensor of zero rank) and P||E. In general case of lath-like mole-

cules, aij is a second rank tensor (9 components) andPj¼ aijEi. By a proper choice of

the reference frame the tensor can be diagonalized

a

C8H17-CH=CH-(CH2)11)OCO

Cr-26oC-Ch-41oC-Iso

Cholesteryl acetate

CH=NC10H21 CH=CH-COO-CH2-C*

H

CH3

asymmetric carbon

b

C2H5

Fig. 3.5 Chemical formulas of two important chiral molecules: DOBAMBC (a) and cholesteryl

acetate (b)

C2H5

H

CH3

Left

C2H5

H

CH3

RightFig. 3.6 Asymmetric

carbon and its left

or right surrounding
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aij ¼
axx 0 0

0 ayy 0

0 0 azz

������
������

and components axx, ayy and azz represent three principal molecular polarizabilities.

For molecules having cylindrical symmetry (rods or disks) with the symmetry axis

z, only two different components remain axx ¼ ayy ¼ a⊥ and azz ¼ a||.

(b) Permanent dipole moments

If a molecule has an inversion center it is non-polar and its dipole moment (a vector,

i.e., a tensor of rank 1) pe ¼ 0. In a less symmetric case pe is finite. It is measured in

units Debye and in the Gauss system 1D ¼ 10�18 CGSQ�cm (3.3 � 10�30 C�m in SI

system). More vividly, 1D corresponds to one electron positive and one electron

negative charges separated by a distance of �0.2 Å. The dipole moment of a

complex molecule can be estimated as a vector sum of the moments of all intra-

molecular chemical bonds, pe ¼ S pi. Consider two classical examples shown in

Fig. 3.7.

(i) A molecule of 5CB (4-pentyl-40-cyanobiphenyl) has a longitudinal electric

dipole moment about 3D due to a triple –C�N bond.

(ii) A molecule of MBBA (4-methoxy-benzylidene-40-butylaniline) has a trans-

verse dipole moment due to the methoxy-group and, of course, both molecules

have anisotropic polarizabilities.

The vector of a permanent dipole moment pe and polarizability tensor aij
describe the linear (in field) electric and optical properties. The nonlinear properties

are described by tensors of higher ranks (this depends on the number of fields

included). For instance, the efficiency of mixing two optical waves of frequencies

o1 and o2 is determined by polarization Pk(o3) ¼ gijk Ei(o1) · Ej(o2) where Ei(o1)

and Ej(o2)j are amplitudes of two interacting fields. Here gijk is a third rank tensor of
the electric hyperpolarizability.

(c) Magnetic moments

A magnetic field induces magnetic moments in a molecule: pmi ¼ mikHk. The

diamagnetic susceptibility tensor mik has the same structure as the tensor of

C5H11 CN
pe

5CB    Cr-22oC-N-35oC-Iso

CH=N C4H9

H3C

O

pe
MBBA    Cr-21oC-N-47oC-Iso

a

b

Fig. 3.7 The most popular

among physicists molecules

5CB (a) and MBBA (b)
forming liquid crystals at

room temperature. Note

strictly longitudinal and

almost transverse direction of

the dipole moments of the two

molecules with respect to

their long molecular axes
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molecular polarizability with three or two different principal components. Some

molecules possess permanent magnetic moments. For instance, the moments origi-

nate from unpaired electron spins in the inner shells of such metal atoms as M¼Ni,

Co, Fe, etc. in metal-mesogenic compounds (Fig. 3.8).

Another case is free radicals with permanent magnetic moments of such molec-

ular groups as –NO, in which unpaired electron spins are located on oxygen atoms.

Stability of such radicals is provided by sterical screening of a reaction center from

the surrounding medium by bulky chemical groups (like methyl one). Such a

radical can be a fragment of an elongated mesogenic molecule. It should be

noted, however, that the field orientation of spin moments is almost decoupled

from the molecular skeleton motion (in contrast to electric moments of molecular

groups). The simultaneous orientation of spins and molecular skeletons by a

magnetic field takes place only if the so-called spin-orbital interaction is significant.

3.2 Intermolecular Interactions

Atoms in an organic molecule are mostly bound by covalent bonds with high intra-

molecular interaction energy W ~ 1012 erg/M (or 100 kJ/M in SI units). In units

more convenient for a physicist: W ¼ 105 J/(1.6 � 10�19 � 6.02 � 1023) � 1 eV/

molecule. Intermolecular interactions are essentially weaker, of the order of

0.01–0.1 eV. Their nature can be quite different. A good example is 5CB forming

molecular dimers, Fig. 3.9, due to interaction between two dipoles located on the

two cyano-groups. Below we shall briefly consider the most important mechanisms

of interactions between liquid crystal molecules. For the more advanced discussion

of intermolecular potentials see [7].

CH3(CH2)n
S S

SS

M
(CH2)nCH3.

Fig. 3.8 An example of a molecule of metal-mesogenic compounds

Fig. 3.9 A structure of a dimer formed by two molecules of compound 5CB due to dipole-dipole

interaction. Pe and aij are molecular dipole and polarizability
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(a) Electrostatic interaction

At a large distance from a system of charges, the electric field around the system

can be expanded in a series of multipoles, see Fig. 3.10. Correspondingly the

electrostatic molecular interactions can be classified by interaction energy as

follows [8]:

Monopole (q) – monopole (q) (Coulomb energy): W ~ q2/r
Monopole (q) – electric dipole (pe): qpe/r

2 (Fixed dipole)

q2pe
2/r4 (Free rotating dipole)

Dipole (pe) – dipole (pe) (Keesom energy): p1p2/r
3 (Fixed dipoles)

p1
2p2

2/kTr6 (Free rotating dipoles)

Monopole (q) – induced dipole: q2a/r4

Dipole (pe) – induced dipole (Debye energy): p1
2a/r6

Dipole–quadrupole, quadrupole–quadrupole, etc.

These general formulas can be used in the molecular theory of formation of

mesophases.

(b) Dispersion interaction

This is also dipole–dipole interaction but between oscillating, not permanent

dipoles. It is a pure quantum-mechanical effect of oscillatory motion of electrons

in the ground state. It is described by the London formula (here n is a frequency of a
single oscillator considered):

U1;2 ¼ � 3ðhnÞa2
4r6

In a more general case one has a sum of different oscillators. The dispersion

interactions are partially responsible for the well known attractive term a/V2

between neutral molecules in the Van der Waals equation of state

ðpþ a=V2ÞðV � bÞ ¼ RT. The corresponding energy is of the order of 0.1 kJ/M

or 10�4 eV/mol. By the way, the repulsive term (V � b) in the same equation that

takes into account the excluded volume effect b is due to the steric interaction

discussed next.

(c) Steric interaction and intermolecular potential

Classically, one can consider atoms or molecules as non-penetrable for other atoms

or molecules, Fig. 3.11. In fact it is a quantum-mechanical effect related to the Pauli

principle. For spherical molecules, the Lennard-Jones (or 6–12) potential is often

used [8, 9]:

octupolemonopole dipole quadrupole

Fig. 3.10 Structures of

different molecular

multipoles, which could be

responsible for the interaction

of mesogenic molecules
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UðxÞ ¼ eðx�12 � x�6Þ

where x¼ r/R, R and e are the equilibrium distance and interaction energy shown in

the figure. For elongated molecules consisting of several atoms, the Gay–Berne

potential shown in Fig. 3.12 is more realistic. This potential takes into account a

mutual orientation of elongated molecules. From the same figure one may see how

the equilibrium distance and the depth of the energy minimum differ for differently

oriented molecules.

(d) Hydrogen bonds

This either intra- or intermolecular bond arises between strongly electro-negative

atoms, such as oxygen or nitrogen, chlorine and fluorine. These atoms can be bound

by a mediator, a proton that is partially forms a covalent bond with one of such

atoms but also strongly interacts with the other electronegative atom. In this

situation, an electrostatic interaction plays the dominant role but with some admix-

ture of the covalent bond. To some extent, a proton has common orbital for the

two connected atoms. A well-known example is water where oxygen atoms form

V-d-W

ε

r

r–12

Steric

attraction

R

U

r–6

Fig. 3.11 The form of the

Lennard-Jones potential for

interaction of two spherical

molecules located at a

distance r from each other

Fig. 3.12 Gay–Berne potential U(r) as a function of intermolecular distance r between elongated
molecules. Black ellipsoids mimic the pairs of interacting molecules in different geometry of

interaction. Both scales are arbitrary
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a network using the hydrogen atoms as bridges between them. A typical energy of

the hydrogen bond is rather high, 10–50 kJ/M, i.e. 0.1–0.5 eV/molecule.

Hydrogen bonds can be responsible for formation of molecular dimers which, in

turn, become building blocks for liquid crystal phases as shown Fig. 3.13a. Without

O. . .H bonding, short molecules of benzoic acids would never form the nematic or

SmC phases as they, in fact, do. Another example is the derivative of the cyclohexane-

carboxylic acid (CHCA) shown in Fig. 3.13b Such cyclohexane-type dimers form

the nematic phase with very low optical anisotropy. In the molecule (monomer) the

cyclohexane moiety is in the chair-form and the –C4H9 and –COOH groups are in

the trans-positions (t) as explained in Fig. 3.3. Such a dimer (trans-isomer) may be

considered as rod-like. The corresponding cis-isomer would have a strongly bent-

shape structure hardly compatible with liquid crystal phase. By the way, similar but

reversible trans–cis–trans photo-isomerization is observed in compounds with azo-

(–N¼N–) or azoxy-(–N¼NO–) bridges between phenyl rings. Such compounds

may be used for the light control of the liquid crystal structure and properties.

(e) Hydrophilic and hydrophobic interactions

These interaction, although very important, are not as fundamental as the others.

They are related to the affinity to water. Hydrophilic interactions include the same

electrostatic, steric and H-bond interactions and all of them are, generally speaking,

electromagnetic. The hydrophobic “interaction” is an entropy effect; there is no

special repulsive force. For example, oil and water are immiscible. Merely water

molecules feel more comfortable among the same neighbors, to which they form a

network of H-bonds. If an oil molecule with its long hydrocarbon tail were

incorporated into water, it would destroy the network and reduce the entropy of

the mixture.

C5H11 C

O...H-O

O-H...O
C C5H11

a hydrogen bond

a

b

C
4H

9

H
9C

4

O H

H

O

C
O

O
C

Fig. 3.13 The role of the hydrogen bond in formation of dimers of benzoic acid molecules (a) and
cyclohexane-carboxylic acid molecules (b)
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3.3 Orientational Distribution Functions for Molecules

The translational and orientational degrees of freedom can be treated separately

(this follows from fundamentals of group theory which states that groups of translations

and rotations are subgroups of the crystalline space groups: P(r, O) ¼ P(r)� P(O).
Here� is a symbol of the group product. In particular case of the isotropic liquid or
nematic phase (no positional order) P(r, O)¼ rP(O) where r¼ constant is density.

Generally, a one-particle distribution function P(r, O) represents a probability to
find a molecule with orientation O at position r. Here O includes three Euler angles

C, F and # as shown in Fig. 3.14. This probability is assumed to be independent of

other particles. In the figure, x, y, z is a Cartesian laboratory frame, the z-axis is
taken as a reference: usually it coincides with one of the symmetry axis of a

molecular system. For a nematic phase discussed in this chapter, such a symmetry

axis coincides with the preferable axis of orientation of molecules. This axis is

called the director, a unit axial vector with head and tail indistinguishable, n ¼ �n.
We say the director has head-to-tail symmetry. If there is no interaction with

surrounding, the director may take any direction and its realignment cost no energy

(no energy gap to overcome). Such a gapless orientational motion that restores the

spherical symmetry of the isotropic phase is called a Goldstone mode. Evidently,

that the direction of the director may be fixed by a weak magnetic field or by

interaction with the surfaces, and our z-axis is assumed to be fixed by some external

factor.

The frame x, Z, z is attached to a molecule. Then Euler angles correspond to

– Deflection of the longitudinal molecular z-axis from axis z (angle #)
– Rotation of the molecular shortest Z- axis about its own longitudinal z-axis

(angle C)

– Precession of the longitudinal z-axis within a cone surface around z (angle F)

In this chapter we consider only an orientational distribution function f(O) [10,
11]. Why do we need it? Because it is a kind of a bridge between the microscopic

and macroscopic descriptions of the nematic phase. We define a value

normal to
z,ζ plane

Euler angels

ζ

η
Ψ

φ

θ

ζ

x

y

z

Fig. 3.14 Euler angles of the

molecular frame x, Z, z with
respect to the Cartesian

laboratory frame x, y, z
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f Oð ÞdO ¼ f F; #;Cð Þ sin# dF d# dC (3.1)

as a fraction of molecules in the “angular volume” with Euler angles between F and

dF, # and d#, C and dC. Function f(O) is a single-particle function because

molecules are considered to be independent, i.e. any correlation in their motion is

disregarded. The total probability to find a molecule with any orientation equals 1:

ð
f ðOÞdO ¼

ð2p
0

dF
ðp
0

sin#d#

ð2p
0

dC � f ðF; #;CÞ ¼ 1 (3.2)

We can use this normalization condition to find the f(O) function, at least, for
the isotropic liquid or isotropic liquid crystal phase. Indeed, in this case there is

no angular dependence of f(O) i.e. f(F,#,C) ¼ const. After integrating we find:

f(F,#,C)iso ¼ 1/8p2.
And what about optically uniaxial phases? In the case of a nematic, the molecu-

lar distribution is independent of the precession angle (F ¼ const) but may depend

on angle C. For a smectic A, in the first approximation, the orientational distribu-

tion function is the same as for the nematic. However, there is some interaction

between the translational and orientational degrees of freedom that can be taken

into account as a correction to f(#,F). At first, consider a distribution function for a
uniaxial phase consisting of axially symmetric molecules [12].

3.3.1 Molecules with Axial Symmetry

The molecules either have a generic infinite rotation axis (cones, rods, rotational

ellipsoids, spherocylinders or discs) or acquire this average uniaxial form due

to free rotation around the longitudinal molecular axis z. Then f(O) becomes

C-independent [13]: f ¼ f(#)/4p2 with f(#) ¼ f(p � #), see Fig. 3.15. This figure

shows that angle 0 and p are equally and the most populated by molecules and these

two angles correspond to the condition n ¼ �n. The angles close to p/2 are the less
populated. Now our task is to find the form of f(#) and relate it to experimentally

measured parameters.

As any axially symmetric function, f(#) can be expanded in series of the

Legendre polynomials Pi(cos#)

f ð#Þ ¼ ð1=2Þ 1þ a1P1ðcos#Þ þ a2P2ðcos#Þ þ a3P3ðcos#Þ þ a4P4ðcos#Þ þ :::½ �
(3.3)

Recall that the Legendre polynomials of general formula

PðxÞ ¼ 1

2nn!
� d

n½ðx2 � 1Þn�
dxn

, n ¼ 0, 1, 2, . . . are solutions of the Legendre equation

ð1� x2Þy00� 2xy0 þ nðnþ 1Þy ¼ 0, which are orthogonal to each other. The condi-

tion for orthogonality reads:
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ð1

�1

PmðxÞPnðxÞdx ¼ 0 for m 6¼ n and

ð1

�1

½PmðxÞ�2dx ¼ 2

2mþ 1
(3.4)

The Legendre polynomials Pm(x) are tabulated for x ¼ 0–1. In our case, the

polynomials depend on angle # with x ¼ cos# and the integration should be made

from p to 0. For even or odd m the polynomials are even or odd functions of cos#,
respectively:

P0(cos #) ¼ 1

P1(cos #) ¼ cos#
P2(cos #) ¼ (1/2)(3cos2# � 1)

P3(cos #) ¼ (1/2)(5cos3# � 3cos#)
P4(cos #) ¼ (1/8)(35cos4# � 30cos2# þ 3), etc.

Each function has a particular symmetry (like electron shells in atoms have their

own symmetry s, p, d, etc.). The angular dependencies of the first two polynomials

are plotted in Fig. 3.16.

In order to find numerical coefficients aL we multiply both sides of Eq. (3.3) by

PL(cos#) and integrate over #, using the orthogonality of Legendre polynomials,

Eq.(3.4):

ð0

p

PLðcos#Þf ð#Þdðcos#Þ ¼ 1

2

ð0

p

aL½PLðcos#Þ�2dðcos#Þ ¼ aL
2Lþ 1

L¼ 0;1;2; . . .

Now we obtain

aL ¼ ð2Lþ 1Þ

Ð0
p
PLðcos#Þf ð#Þ sin#d#

Ð0
p
f ð#Þd cos#

(3.5)

Fig. 3.15 Form of the

molecular distribution

function over the polar

Euler angles #
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with the normalization condition (3.2) in denominator. As to the numerator, it is just

the average value of polynomial PL(cos#) written in the form of the theorem of
average. Finally we obtain numerical coefficients:

aL ¼ ð2Lþ 1Þ � hPLðcos#Þi (3.6)

Note that <PL(cos#)> are #-dependent numbers, not functions. Finally we can

write the orientational distribution function for a uniaxial medium composed of
uniaxial molecules:

f ð#Þ ¼ ð1=2Þ 1þ 3hP1ðcos#ÞiP1ðcos#Þ þ 5hP2ðcos#ÞiP2ðcos#Þþ
7hP3ðcos#ÞiP3ðcos#Þ þ 9hP4ðcos#ÞiP4ðcos#Þ þ :::

" #
(3.7)

The set of amplitudes aL may be considered as a set of order parameters for the

medium discussed. All of them together provide a complete description of f(#).
For uniaxial molecules with inversion center (i.e. having head-to tail symmetry

of a cylinder) the odd terms disappear:

f ð#Þ ¼ ð1=2Þ 1þ 5hP2ðcos#ÞiP2ðcos#Þ þ 9hP4ðcos#ÞiP4ðcos#Þ þ :::½ � (3.8)

or briefly:

f ð#Þ ¼ f ðcos#Þ ¼
X1
0

1

2
ð4lþ 1ÞS2lP2lðcos#Þ with l ¼ 0; 1; 2::: (3.9)

As mentioned above, coefficients S2L are unknown numbers: S0 � 1, S1 ¼
<P1(cos#)> ¼ <cos#>, S2 ¼ <P2(cos#)> � (1/2) <3cos2# � 1>, S4
¼<P4(cos#)> � (1/8)<35cos4# � 30cos2# + 3>, etc. Therefore, instead of
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Fig. 3.16 Angular dependencies of the first two Legendre polynomials in polar coordinates
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unknown function f(#) we can operate with unknown numbers that can easier be

found from experiment.

3.3.2 Lath-Like Molecules

The phase is still uniaxial with head-to-tail symmetry, i.e., its distribution function

is independent of the precession angle F that is fðOÞ ¼ fð#;CÞ=2p . However,

nuclear magnetic resonance (NMR) shows that the free rotation of molecules about

their long axes (angle C) is, to some extent, hindered as shown in Fig. 3.17a. In

the figure the preferable direction of the longest molecular axes (director) is parallel

to z. Then we can distinguish among two different cases of local molecular

orientation with two projections Sz of a short molecular axis onto the director,

either large as in Fig. 3.17b or, in fact, zero (Fig. 3.17c).

As a consequence, the refraction index component perpendicular to the director

n⊥ is larger in case b than in case c, and the component n|| is smaller. Therefore, the

optical anisotropy Dn ¼ n|| � n⊥ in case b is smaller. To take the new situation into

account, two local order parameters are introduced for the uniaxial nematic phase,
one is the same as discussed above for the longitudinal molecular axes (S ¼ Szz),
and the other describes the local order of the shortest molecular axes that is local
biaxiality (D):

SBB ¼ 1

2
3cos2#� 1
� �

D ¼ Sxx � S�� ¼ 3

2
sin2# cos 2C
� � (3.10)

For the ideal nematic with sin# ¼ 0 and Szz ¼ 1 there is no difference between

cases b and c. The locally (microscopically) biaxial nematic phase should not be

confused with macroscopically biaxial phases to be discussed in the next section.

Z

s
Sz

Sz= 0

l

S

Z

long
axis

short
axis

a b c

Fig. 3.17 Local packing of lath-like molecules that hinders rotation of individual molecules about

their longest axes (a) and illustration of a large (b) or zero (c) projections Sz of a short molecular

axis onto the director axis z. s and l are the shortest and longest axes of a lath-like molecule
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3.4 Principal Orientational Order Parameter
(Microscopic Approach)

We discuss nematics, therefore n ¼ �n (no polarity) and f(#) is cylindrically

symmetric function (point group D1h). We would like to know this function

for each particular substance at variable temperature but, unfortunately, f(#) (that
is all amplitudes S2l in expansion (3.9)) is difficult to measure. We may, however,

limit ourselves with one or few leading terms of the expansion and find approximate

form of f(#).
For instance, why not to take S0 or S1? For conventional nematics they are

useless because S0 is angle independent and S1 ¼ <cos#> is an odd function

incompatible with n ¼ �n condition. By the way, S1 is very useful for discussion of

phases with polar order, in which the head-to-tail molecular symmetry is broken

(e.g., in phases with the conical symmetry C1v instead of cylindrical symmetry

D1h).

The next is coefficient S2¼ (1/2)<3cos2#�1> introduced by Tsvetkov [14] that

describes the quadrupolar order. It looks suitable, at least, when we consider

important particular cases:

(i) For the ideal nematic with all rod-like molecules parallel to each other

<cos2#> ¼ 1 and S2 ¼ 1.

(ii) For complete orientational disorder <cos2#> ¼ 1/3, S2 ¼ 0 and this corre-

sponds to the isotropic phase.

(iii) There is another possible molecular orientation also corresponding to<cos2#>
¼ 1/3 and S2¼ 0: it is a “magic” orientation (see below), that would correspond

to the nematic phase with finite higher S2l coefficients.
(iv) One can put all molecules in the plane perpendicular to the principal axis

and then everywhere # ¼ p/2, <cos2#> ¼ 0 and S2 ¼ �1/2. The phase with

S2 ¼ �1/2 would still be conventional nematic phase, but such nematics have

not been found yet. However, by evaporation of organic compounds consisted

of rod-like molecules onto a solid substrate, one can prepare amorphous solid

films of the D1h symmetry which would mimic the nematic phase with S2 �
�1/2, see Fig. 3.18.

From (i) to (iv) we conclude that, as the first approximation to the microscopic

orientational distribution function of a nematic, we can take from Eq. (3.9) only one

term with l ¼ 1 and S2 ¼ (1/2) <3cos2# � 1>:

f ð#Þ ¼ f ðcos#Þ � ð1=2Þð4Lþ 1ÞS2P2ðcos#Þ ¼ ð5=2ÞS2P2ðcos#Þ (3.11)

The function (3.11) with coefficient 5/2 ignored is shown in Fig. 3.19 for two

different values of S2. The curves marked as S2 ¼ 1 and S2 ¼ 0.6 correspond to the

ideal and typical nematics, respectively. For the isotropic phase the corresponding

curve would coincide with zero line.
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Parameter S2 can be found from the anisotropy of magnetic susceptibility,

optical dichroism and birefringence, NMR, etc. The determination of higher order

parameters requires for more sophisticated techniques. For instance, S4 can be

found from Raman light scattering [15], luminescence or other two-wave interac-

tion optical experiments. Data on S6, S8 are not available at present. In some cases,

the X-ray scattering can even provide f(#) as a whole but with limited accuracy.

To illustrate the importance of higher order terms, particularly S4, consider two

molecular distributions shown in Fig. 3.20. On the left side, all molecules of a

virtual nematic phase are at the same angle # ¼ 54.73 deg, therefore f (#) / d(# �
54.73). For this “magic” orientation, cos2#¼ 1/3, cos4#¼ 1/9 and S2¼ 0, S4¼�7/18

(see Legendre polynomials P2 and P4 written above). On the right side, the

molecules of another virtual nematic are scattered over angles around # ¼ 54.73

deg in such a special way that the average <cos2#> calculated with new f(#)
function is again equal to 1/3 and, as before, S2 ¼0. However, <cos4#> calculated

with new f(#) and new S4 is different from�7/18. Therefore to distinguish between

zS  = –1/2

x

y

Fig. 3.18 Illustration of a

virtual nematic phase with

order parameter S ¼ �1/2
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Fig. 3.19 Orientational distribution function of molecules for two different values of order

parameter S2
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two molecular distributions we have to take into account at least S4 or as many S2l
coefficients as possible.

3.5 Macroscopic Definition of the Orientational
Order Parameter

3.5.1 Tensor Properties

Generally, properties of liquid crystals depend on direction, they are tensorial.

Some of them (like density in nematics) may be scalar. A scalar is a tensor of

rank 0. It has one component in a space of any dimensionality, 10¼ 20¼ 30 . . .¼ 1.

Other properties, like spontaneous polarization P (e.g., in chiral smectic C*)

are vectors, i.e., the tensors of rank 1. In the two-dimensional space they have 21

¼ 2 components, in the 3D space there are 31 ¼ 3 components. For instance in

the Cartesian system P ¼ iPx + jPy + kPz. Such a vector can be written as a row

(Px, Py, Pz) or as a column. Properties described by tensor of rank 2 have 22 ¼ 4

components in 2D space and 32 ¼ 9 components in the 3D-space. They relate two

vector quantities, such as magnetization M and magnetic induction B, M ¼ wB,
where w is magnetic susceptibility. Each of the two vectors has three components

and, generally, each component (projection) Ma (a ¼ x,y,z) may depend on each of

Bb components (b ¼ x,y,z):
Mx ¼ wxxBx þ wxyBy þ wxzBz;My ¼ wyxBx þ wyyBy + wyzBz;Mz ¼ wzxBx þ wzyBy þ

wzzBz or in the matrix form:

M1

M2

M3

������
������ ¼

w11 w12 w13
w21 w22 w23
w31 w32 w33

������
������ �

B1

B2

B3

������
������

The matrix representation can be written in a more compact form

Ma ¼
X
b

wabBb ¼ wabBb: (3.12)

nnFig. 3.20 Illustration of

importance of higher order

terms: the two very different,

virtual molecular

distributions have the same S2
order parameter but differ by

the values of higher order

parameters S4, S6, etc.
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Here a, b ¼ 1, 2, 3 and, following Einstein, the repeated index b means

summation over b.
The magnetization was only taken as an example. Many other properties

(dielectric susceptibility, electric and thermal conductivity, molecular diffusion,

etc.) are also described by second rank tensors of the same (quadrupolar) type wab.
Microscopically, such properties can be described by single-particle distribution

functions, when intermolecular interaction is neglected. There are also properties

described by tensors of rank 3 with 33 ¼ 27 components (e.g., molecular hyperpo-

larizability gijk) and even of rank 4 (e.g., elasticity in nematics, Kijkl) with 34 ¼ 81

components. Microscopically, such elastic properties must be described by many-

particle distribution functions.

As physical properties of the matter are independent of the chosen frame, suffixes

a and b can be interchanged. Therefore, wab¼ wba and only 6 components of wab are
different, three diagonal and the other three off-diagonal. Such a symmetric tensor

(or matrix) can always be diagonalized by a proper choice of the Cartesian frame

whose axes would coincide with the symmetry axes of the LC phase. In that

reference system only three diagonal components w11, w22 and w33 are finite.

3.5.2 Uniaxial Order

For a uniaxial phase (nematic, discotic nematic, SmA, SmB, etc.) with the symme-

try axis along z, all properties along x and y are the same and w11¼ w22 6¼ w33. The
corresponding matrix

wab ¼
w? 0 0

0 w? 0

0 0 wII

������
������ (3.13)

has only two different components and the relevant physical quantity can be

decomposed into two parts, the mean value <w> ¼ (1/3)( w|| þ 2w⊥) and the

anisotropic part Dw ¼ wa ¼ w|| � w⊥.
The anisotropic part of tensor (3.13) is

wðaÞab ¼ wab � hwidab

where dab is second rank unit tensor with trace dxx þ dyy þ dzz ¼ 3. Hence, the

anisotropy tensor is traceless, has dimension of the w value and becomes zero in the

isotropic phase:

waab ¼
w? 0 0

0 w? 0

0 0 wII

������
�������

hwi 0 0

0 hwi 0

0 0 hwi

������
������ ¼

�1=3wa 0 0

0 �1=3wa 0

0 0 2=3wa

�������

�������
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In principle, this tensor might be used as orientational order parameter for a

uniaxial phase, however, its dimensionless form would be more preferable. Therefore,

we normalize anisotropy wa to the maximum possible anisotropy corresponding to

the ideal molecular alignment as in a solid crystal at absolute zero temperature.

Then we arrive at the order parameter tensor [16]:

Qab ¼ wðaÞab

wmax
ab

¼ wa
wmax
a

�
�1=3 0 0

0 �1=3 0

0 0 2=3

������
������ (3.14)

Here S ¼ wa=w
max
a is a scalar modulus of the order parameter dependent on the

degree of molecular (statistical) order whereas the tensor shows the orientational

part of the order parameter. With such an approach, the macroscopic and micro-

scopic definitions of the order parameter would coincide if we assume

S ¼ wa=w
max
a ¼ S2 ¼ <P2ðcos#Þ> ¼ 1

2
3cos2#� 1
� �

(3.15)

The experimental values of the orientational order parameter found macroscop-

ically for conventional nematics from the magnetic or optical anisotropy are

in good agreement with those calculated from microscopic data (NMR, Raman

spectroscopy).

Order parameter tensor can be written using the director components na (a¼x,y,z).

Qab ¼ wa
wmax
a

ðnanb � 1

3
dabÞ ¼ Sðnanb � 1

3
dabÞ (3.16)

For example, for n||z the director components are (0, 0, 1) and from (3.16) we

immediately get the form (3.14). Here we clearly see the two components of the

order parameter, the scalar amplitude S and the orientational part (in parentheses).

n3

n2
n1

Fig. 3.21 Packing of

molecules in a macroscopic

nematic biaxial phase of

symmetry D2h
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3.5.3 Macroscopic Biaxiality

In contrast to quite commonmicroscopically biaxial nematics belonging to point group

D1h and discussed in the previous section, the macroscopically biaxial phase (group

D2h) shown in Fig. 3.21 has unequivocally been found only in lyotropic nematics [17]

formed by some biphilic (or amphiphilic) molecules in water solutions [18]. Some

other cases are still under discussion (nematics formed by metallomesogens, banana-

like [19] or polymer molecules [20]). Strictly speaking, cholesteric liquid crystals (or,

more generally, chiral nematics) may be regarded as weakly biaxial. Less symmetric

phases such as smectic C, smectic E, etc. are, of course, macroscopically biaxial.

In macroscopically biaxial phase all the three components of a physical property

are different, e.g., w11 6¼ w22 6¼ w33, the trace of tensor wab is w11 þ w22 þ w33 ¼
3<w> and the tensor itself can be written as wab ¼ 3<w>Qab with the traceless

order parameter tensor

Qab ¼
�ð1=3ÞðQ1 � Q2Þ 0 0

0 �ð1=3ÞðQ1 þ Q2Þ 0

0 0 ð2=3ÞQ1

������
������ (3.17)

Fig. 3.22 A molecule of

potassium (K) laurate with

deuterium (D) label (a) and a

structure of the lyotropic

lamellar phase (b)
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Fig. 3.23 Lamellar lyotropic

phase of potassium laurate:

orientational order parameter

for individual links of the

molecular chain as a function

of the distance of the link

from the potassium atom
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Now the biaxial nematic phase has two order parameters Q1 and Q2 and, in

general, three different phases can be distinguished, namely, isotropic (Q1¼ Q2¼ 0),

uniaxial nematic (Q1,Q2 ¼ 0) and biaxial nematic (Q1,Q2) phases. Note that biaxial

molecules may form both biaxial and uniaxial phases; the latter appear due, for

instance, to free rotation of biaxial molecules around their long molecular axes. As

to the uniaxial molecules, they may also form either uniaxial (as a rule) or biaxial

phases; the latter may be formed by biaxial dimers or other “building blocks”

formed by uniaxial molecules.

3.6 Apparent Order Parameters for Flexible Chains

When molecules are not so simple as rigid rods or discs, one may introduce

apparent partial order parameters different for different molecular moieties. This

is especially evident for lyotropic liquid crystals [21], such as, for instance, the

lamellar phase formed by surfactants in water, see Fig. 3.22b. A good example is a

water solution of potassium laurate. A flexible hydrocarbon chain K–CH2–

CH2–CD2–CH2–. . . can be deuterated with a position of deuterium label varied

along the chain, as shown by in Fig. 3.22a. Then, by the NMR technique sensitive

only to deuterium nuclei, the apparent order parameter of the corresponding chain

link can be determined. As shown in Fig. 3.23, it decreases with increasing the

distance from the potassium atom due to flexibility of the hydrocarbon chain. Thus,

we can say that the hydrocarbon tail is “solid” at the left end and “liquid” at the right

one [22].
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Chapter 4

Liquid Crystal Phases

This chapter presents a review of different liquid crystal phases. The main attention

is paid to the thermotropic liquid crystals, which manifest rich polymorphism upon

variation of temperature. Moreover, the thermotropic phases are subdivided into

rod-like or calamitic and discotic ones; the latter are discussed only briefly. At first,

we discuss achiral media with lyotropic phases included and then consider the role

of chirality.

4.1 Polymorphism Studies

The polymorphic transformations can be studied by different techniques that are

illustrated below by some characteristic examples.

4.1.1 Polarized Light Microscopy

It is very simple and vivid method [1]. One can observe characteristic streaks

(Schlieren-textures) showing particular macroscopic defects, e.g., disclinations

and establish the phase symmetry. In Fig. 4.1a the characteristic defects of the

nematic phase (disclinations), are well seen. Fan-shape texture of the smectic C

phase is shown in Fig. 4.1b. One can also distinguish between different types of

uniform molecular orientation in different liquid crystal preparations using a cono-

scopy technique (microscopic observations in the convergent light beam): in this

case symmetry of the pattern corresponds to the texture symmetry.

A very useful technique is a study of miscibility of different substances [2]. As a
rule, only identical phases are mixed with each other (nematic with nematic,

smectic A (SmA) with SmA, SmC with SmC etc.). Therefore, using a well inves-

tigated substance as a reference, one can make a preliminary conclusion about a

structure of a new compound not doing X-ray and other cumbersome structural

studies. For instance, by mixing with a reference liquid crystal, it was concluded

L.M. Blinov, Structure and Properties of Liquid Crystals,
DOI 10.1007/978-90-481-8829-1_4, # Springer ScienceþBusiness Media B.V. 2011
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that substance p-methoxy-p0-pentylstilbene (MOPS), see Fig. 4.2, has the SmB

(below 110�C), Nematic (110–125�C) and Isotropic (above 125�C) phases.

4.1.2 Differential Scanning and Adiabatic Calorimetry
(DSC and AC)

These techniques are widely used in investigations of phase transitions. DSC allows

the express measurements of the transition enthalpy and determination of the phase

transition type. For example, at the SmB-Cr (crystal) transition a great amount of

enthalpy is released as evident from Fig. 4.3. Therefore, with high probability, this

transition is of strong first order, the others shown in the figure (Isotropic phase-

SmA and SmA–SmB) are not as strong and may be referred to as weak first order

transitions. True second order transitions may not be seen in DSC plots due to

negligibly small transition enthalpy. Specific features of such transitions are studied

by adiabatic calorimetry (e.g., anomaly in heat capacitance) and dilatometry

(density changes at transitions).

Fig. 4.1 Textures of the nematic (a) and smectic C (b) phases observed with a polarization

microscope
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Fig. 4.2 Miscibility

diagram: Ref and Inv mean

the reference compound with

well known phase sequence

and unknown compound to

be investigated. Starting with

molar content c ¼ 1 and

proceeding to the left while

measuring phase transition

temperatures one finally

arrives at c ¼ 0 with

complete phase diagram,

therefore, having information

about the unknown

compound
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4.1.3 X-Ray Analysis

This is a very powerful method [3, 4] and later we shall discuss it in detail in

Chapter 5. Here, only a schematic picture is presented, Fig. 4.4. An X-ray beam

passes through a liquid crystal preparation and the diffracted beams form a cone

with 2# angle at the apex and are registered by a photodetector. In this particular

example a smectic A liquid crystal is not oriented and the presented pattern is

an analog of a Lauegram observed on crystalline powders. First we see a very

sharp ring at small angles. It is a fingerprint of a lamellar structure. Like in solid

crystals, the X-ray beam of wavelength l can be reflected from stacks of parallel

molecular layers according to the Bragg law to be discussed in Section 5.2.2:

2dhkl sin# ¼ m; lm ¼ 1; 2; 3; . . . , where h, k, l are Miller indices (001, 002, etc.

in our case), d is interlayer distance and # is the diffraction angle. From this formula

d can be found from the #-angle measured: for instance, if 2# � 3� for m¼1 (first

order reflection), then sin# � 0.026 and l � 0.1 nm, d � 1.9 nm. Thus, the

interlayer distance corresponds to the length of the molecule and the phase is an

Fig. 4.3 Qualitative example

of a DSC spectrum: latent

heat of transitions as a

function of temperature

Shutter

IPS

BDR

Fig. 4.4 Scheme of an X-ray diffractogram for a smectic A phase. The beam is impinged on the

sample perpendicularly to the figure plane and forms a cone of diffraction. The directly transmitted

beam is blocked by a shutter. The sharp ring BDR means the small-angle Bragg diffraction ring
while IPS means diffuse wide-angle in-plane scattering halo
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orthogonal smectic. A diffuse ring at wide angle shows that the in-plane structure is

liquid like therefore the phase is most probably SmA. The average intermolecular

distance in the transverse direction may be estimated from the radius of the diffuse

ring using the same formula.

4.2 Main Calamitic Phases

4.2.1 Nematic Phase

The isotropic phase formed by achiral molecules has continuous point group

symmetry Kh (spherical). According to the group representations [5], upon cooling,

the symmetry Kh lowers, at first, retaining its overall translation symmetry T(3) but

reduces the orientational symmetry down to either conical or cylindrical. The cone

has a polar symmetry C1v and the cylinder has a quadrupolar one D1h. The

absence of polarity of the nematic phase has been established experimentally. At

least, polar nematic phases have not been found yet. In other words, there is a head-

to-tail symmetry taken into account by introduction of the director n(r), a unit axial
vector coinciding with the preferred direction of molecular axes dependent on

coordinate (r is radius-vector).
The nematic phase is characterized by the following properties:

(i) n(r)¼�n(r) (absence of polarity) and, in the Cartesian system shown in Fig. 4.5a

the director has components (nx, ny, nz) ¼ (0, 0, 1).

(ii) Point group symmetry is D1h (according to Sch€onflies) or 1/mm (interna-

tional). There are one 1-fold rotation axis, i.e., the director axis, the infinite

number of vertical symmetry planes containing n and one mirror plane

perpendicular to n. The same symmetry has a discotic nematic phase. The

z

ϑ

n
n^

n

a b c

Fig. 4.5 The nematic phase: molecular orientation (a), optical indicatrix (b) and characteristic

microscopic texture (c)
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orientational order is characterized by a tensor discussed in Chapter 3 whose

amplitude (order parameter) is S ¼ (1/2)<3cos2Y � 1> (here Y is an angle

the individual molecule forms with the direction n).
(iii) Translational symmetry is T(3), the translational motion of molecules is

possible in any direction, therefore, the density is independent of coordinates,

r ¼ const, and the nematic phase is the most fluid one. For this reason it is the

most interesting for applications to displays.

(iv) It is optically uniaxial phase, as a rule positively uniaxial, nz ¼ n|| > nx ¼ ny ¼
n⊥. The optical indicatrix presented in Fig. 4.5b has a form of the prolate

ellipsoid contrary to oblate optical ellipsoid typical of discotic nematics

which, as a rule, are optically negative. The dielectric ellipsoid is discussed

in more detail in Section 11.1.1.

(v) The nematic phase has very characteristic microscopic texture observed with

crossed polarizers. In Fig. 4.5c we can see typical point disclinations, the

nuclei of divergent brushes or threads. The threads (Greek nema) have given
the name “nematic” to the phase considered. The structure of disclinations is

accounted for by modern theory of elasticity, Section 8.4.

4.2.2 Classical Smectic A Phase

The classical SmA phase can form on cooling the nematic phase or directly from

the isotropic phase. Now we meet a new feature: the phase becomes periodic in one

direction. In Fig. 4.6 the interlayer distance equal in this case to period is marked by

letter d. Thus, the SmA phase is simultaneously a one-dimensional solid and a two-
dimensional liquid. There is no correlation between molecular positions in the

neighbor layers. Such a phase predominantly forms by more or less symmetric

molecules with long alkyl chains.

The SmA phase is characterized by the following properties:

(i) As in the nematic phase, n(r)¼�n(r). In the figure the director has components

(nx, ny, nz) ¼ (0, 0, 1).

y

Smectic Az

x

d

Fig. 4.6 A lamellar structure

of the thermotropic smectic A

phase
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(ii) The point group symmetry is also D1h. However, the translational invariance

retains only in two directions and the symmetry group is different from that of

nematics: D1h � T(2).

(iii) The density is independent of x and y, rx, ry¼ const, however, rz is a periodic
function along the normal to smectic layers z. It has to be even function

because there is a symmetry plane perpendicular to the director (e.g. it can

be the middle plane of the three layer system shown in the Figure):

rðzÞ ¼ r0 þ
P1
n
rn cos nqz. Here n ¼ 1, 2, 3, . . . and q ¼ 2p/d is the wave-

vector of the periodic structure. The modulation of density is not very strong,

rn < r0 and, to the first approximation, the density wave may be represented

by a single harmonic (n ¼ 1):

rðzÞ ¼ r0 þ r1 cos qz (4.1)

The value of r1 is usually taken as translational order parameter, see

Section 6.3.

(iv) The orientational order parameter has the same form as in nematics, but its

absolute value is larger SA > SN. The phase is optically positive.

(v) Typical texture of the SmA is shown in Fig. 4.7a. We see here the so-called

“fans” consisted of “focal-conic” domains. Such domains are originated from

a layered structure [1, 6]. Although layers are more or less rigid, they can be

bent and may form cylinders and tori with central disclination lines (G1) or

more complex structures with disclinations of the G2 type. The sketches in

Fig. 4.7b represent projections of the tori on the x,z-plane perpendicular to G1

(upper sketches) and on the y,z-plane including G1 (lower sketches).

4.2.3 Special SmA Phases

The structure of the so-called de Vries phase is shown in Fig. 4.8. It is a uniaxial

smectic A phase (group D1h) with very strong molecular tilt (about �20�) in any

Fig. 4.7 Smectic A: fan-shape texture (a) and the structure of typical defects (b)
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azimuthal direction. The local molecular tilt is correlated along a certain distance x
within a smectic layer but on average the tilt is zero. Properties of this phase are

different from those of the classical SmA, for example, the birefringence is smaller,

i.e., nz is closer to nx, ny than in SmA. The dielectric response is also spectacular. De

Vries phase formed by chiral molecules manifests very interesting electrooptical

effects.

Some compounds consisting of molecules with longitudinal permanent dipoles

form locally polar smectic A phases and also so-called frustrated phases. In Fig. 4.9

are shown three structure A1, A2 and Ad which have the same point group symmetry

but differ by translational symmetry due to specific packing of the molecules. The

A1 phase is the classical SmA discussed above: its interlayer distance, i.e., the

structure period, is equal to molecular length. Dipoles are antiparallel within each

nonpolar layer. A2 is a smectic with polar layers and antiparallel (sometimes-called

antiferroelectric) packing of molecular dipoles in the neighbor layers. Phase Ad

represents a more general intermediate case. The spectacular orientation of dipoles

results in modulation of charge density along the smectic normal and the period of

the charge density wavemay be different from the period of the mass density wave.
Therefore, there are two waves along the smectic normal, a density one and the

electric polarization one. These waves can be incommensurate that is the ratio of

z

ξ

Fig. 4.8 Structure of a

uniaxial smectic A phase with

very strong molecular tilt (de

Vries phase). x is tilt

correlation length

A1 A2 Ad

Amod

Fig. 4.9 Structure of polar

smectic A phases A1, A2 and

Ad and a frustrated phase Amod
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their periods is not an integer, e.g., 1 < l0/l < 2. In some cases, two tendencies,

namely, a formation of either monolayer or bilayer structure are in conflict and the

resulting phase is “frustrated” or, in other words, is modulated not only along the

normal to the layers but also along the smectic plane like the phase Amod shown in

the same figure.

4.2.4 Smectic C Phase

In the SmC phase the longitudinal molecular axes are tilted from the smectic layer

normal by an angle #, Fig. 4.10. The phase has the following properties:

(i) The director n coincides with the direction of molecular axes and, as before,

n ¼ �n. Its components are (nx, ny, nz) ¼ (sin#cosF, sin#sinF, cos#). The
projection of n onto the smectic layer plane is called c-director, c ¼ sin#exp
(�iF). The c-director is taken as a two-component order parameter of the C-

phase. Sin# and F may be considered as the amplitude and phase of the tilt

angle (sign � determines a sign of rotation). In experiment, angle # varies

from 0� to 45�.
(ii) The point group symmetry is C2h or 2/m (a twofold axis x and a symmetry plane

zy). The symmetry group is C2h � T(2).

(iii) The density wave has the same form (4.1) as that of the SmA phase.

(iv) The spatial positions of molecules in neighbor layers are uncorrelated but their

tilt is correlated.

(v) The phase is optically biaxial, Fig. 4.11a, there is no rotation axis coinciding

with the director and n1 6¼ n2 6¼ n3 (z is the smectic normal).

(vi) In SmC the director is free to rotate along the conical surface with an apex angle

2#, therefore, as in a nematic, the Schlieren-texture is observed seen in the

central part of Fig. 4.11b. On the other hand, the smectic structure reveals the

fan-shape texture seen in the left-bottom corner of the same figure.

Smectic C z

x

ϑ

Φ
y

c-director

n

LAYERS

Fig. 4.10 Smectic C.

Molecular structure (a) and
definition of the c-director (b)
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4.2.5 Smectic B

In this phase we have:

(i) Head-to-tail symmetry n ¼ �n.
(ii) One sixfold rotation z-axis, one mirror plane perpendicular to that axis and 12

mirror planes including the sixfold axis. Six of them connect the hexagon

angles as shown in Fig. 4.12a and, the other six bisect the angles between those

planes. The point group symmetry is D6h (or 6/mmm) and the phase has the

following properties:

(a) Optical uniaxiality n|| 6¼n⊥ and, as a rule, nz > nx ¼ ny.
(b) Three-dimensional density wave along x, y and z axes:

rðx; y; zÞ ¼ rII cosðqIIzÞ � r? cosðq?xÞ � r? cosðq?yÞ (4.2)

with different density modulation depth parallel and perpendicular to the

director. In this respect Smectic B should be referred to as a three dimensional

z

x y

O

n3

n2n1

n"

n'

P
Wave Normal

b

a

θ

Fig. 4.11 The optical indicatrix (a) and the microscopic texture (b) of the SmC biaxial phase

SmB symmetry plane

symmetry
plane6–fold axis

a b

Fig. 4.12 Structure (a) and a microscopic texture (b) of the smectic B (SmB) phase
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crystal. However, the situation is not as simple and dependent on correlation

in molecular positions in neighbor layers. If such correlations do exist, we deal

with a normal 3D crystal having a very small shear modulus corresponding to

the velocity gradient ∂vx,y/∂z. If there is no interlayer molecular correlations,

the phase is called hexatic and will be considered in Section 5.7.3 in more

detail.

(iii) A typical, so-called mosaic texture of the SmB is shown in Fig. 4.12b.

4.3 Discotic, Bowl-Type and Polyphilic Phases

One should distinguish between the discotic nematic, ND phase shown in Fig. 4.13b

and several discotic columnar phases, e.g. that shown in Fig. 4.13a. The discotic

nematics form on cooling the isotropic phase consisting of disc-like molecules,

e.g. of triphenylen type, see Fig. 4.14. The symmetry reduces from T(3) � O(3) to

T(3)�D1h. The new phase is not miscible with calamitic nematics despite the same

symmetry: n ¼ �n, point group D1h, r ¼ const, optical uniaxiality. However,

hydrodynamic properties of discotic nematics are quite different from those of

calamitic nematics. A columnar phase is an example of a two-dimensional (2D)

crystal and 1D liquid, a lattice of liquid threads. The translational motion of

molecules is allowed only along their normals, the translation group is T(1) and

the point group can be different. For example it is D6h for an orthogonal hexagonal

phase or C2h for a tilted phase. We meet even more phases formed by disc-like

molecules, namely Isotropic I, nematic ND, D0 (columnar orthogonal), Dt (columnar

tilted) and K (crystalline) ones.

z

y

x

n

a b

Fig. 4.13 Structure of

discotic columnar (a) and
nematic (b) phases

R
R

R = OCOC11H23

R
R

R

R

C D0 D1 D2 I80°c 93°c 110°c 122°c

Fig. 4.14 Molecular formula

and a phase sequence of a

triphenylene compound
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Amolecule that, in principle, may form a bowl phase should itself have the bowl

form like that seen in Fig. 4.15a [7]. Molecular bowls may have different symmetry

as shown on the top of Fig. 4.15b and the corresponding phases could be either

uniaxial or biaxial. The packing of bowls into the columns may have specific

features. For example, when all molecules in the column are oriented bottom

down then the head-to-to tail symmetry is broken and the column has conical, i.e.

polar symmetry C1v, Fig. 4.15c. Only polar columns may form ferroelectric or

antiferroelectric phases shown in Fig. 4.15d.

Actually, such bowl phases are still to be found. However, polar achiral phases

have been observed in the so-called polyphilic compounds [8]. The rod-like mole-

cules of these compounds consist of distinctly different chemical parts, a hydro-

philic rigid core (a biphenyl moiety) and hydrophobic perfluoroalkyl- and alkyl-

chains at opposite edges. Such molecules form polar blocks that, in turn, form a

polar phase manifesting pyroelectric and piezoelectric properties with a field-

induced hysteresis characteristic of ferroelectric phases.

4.4 Role of Polymerization

There are two types of polymers, which form thermotropic liquid crystals, the side-

chain, Fig. 4.16a and the main-chain polymers, Fig. 4.16b. In the side-chain

polymers the mesogenic units are attached to a backbone by more or less flexible

chains. In the main-chain polymers mesogenic units are incorporated into the

polymer backbone and separated from each other by flexible chains [9, 10]. Flexible

chains (spacers) are necessary to provide a certain freedom to mesogenic moieties

to form an ordered state. For the side-chain polymer to be in the nematic or smectic

R= alkyl

ferro- antiferro-
Packing

R R R R R R

a

d

BOWLS

uniaxial biaxial

n π –n n = –n

b

c

Fig. 4.15 Possible bowl phases: forms of molecules (a) and bowls (b), polar and non-polar

columns consisting of bowl molecules (c), and two types of column packing, ferroelectric (left)
and antiferroelectric (right) (d)
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phase is quite natural, because mesogenic units can easily be arranged parallel to

each other, Fig. 4.17a. However, even in the main chain polymers with long enough

flexible spacers between the mesogenic groups, the latter can form nematic and

even smectic phases and the flexible backbones are forced to acquire the liquid

crystalline structure, Fig. 4.17b.

In the same way one can synthesized liquid crystalline copolymers in which

mesogenic groups alternate with some functional groups like chiral, polar, photo-

chromic, luminescent, etc., groups useful for various applications especially in

nonlinear optics. For example, incorporating chromophores, manifesting a light-

induced intramolecular charge transfer, one can develop materials with enhanced

nonlinear susceptibility, so-called w(2)- or w(3)-materials capable of wave mixing,

generation of light harmonics, etc. Polymer liquid crystals with photochromic

moieties, showing reversible and multiple photo-induced cis–trans–cis isomeriza-

tion, are very perspective for holographic grating recording, polarimetry, optical

Fig. 4.16 Structure of

polymer chains appropriate

for side-chain (a) and main-

chain (b) polymer liquid

crystals

a bFig. 4.17 Scheme of packing

of main chain polymer

mesogenic groups in the

nematic (a) and smectic A

(b) phases

52 4 Liquid Crystal Phases



information processing, lasers without mirrors and so on. The nematic phase formed

by main-chain polymers can be used in a technological process of manufacturing

extra strong polymer fibers, because the material goes through draw plates in the

well-oriented nematic state and the fiber contains less defects.

Polymers can form the same thermotropic phases as low-molecular mass com-

pounds (nematic, smectic A, C, B, chiral phases as well). Despite the same

symmetry, physical properties of polymer liquid crystals are very specific. They

are very viscous due to the entangling of long polymer chains hindering the

translational motion (flow). On cooling the polymer liquid crystal acquire a glassy
state very useful for many applications. For example, one can create some macro-

scopic structures in the nematic phase very sensitive to external fields (for instance,

a grating, or a field induced polar, pyroelectric structure) and then froze it into the

glassy state which is not crystalline but mechanically solid and use the latter for

applications. You can also make cholesteric polymer doped with a proper lumines-

cent dye for laser devices with distributed feedback (due to natural periodicity of

the helical structure). Some polymer liquid crystals can be as elastic as rubber

(elastomers). They have very good prospects as piezoelectric materials as well as

materials having mechanically tunable optical properties.

4.5 Lyotropic Phases

Lyotropic liquid crystalline phases form by water solutions of amphiphilic (particu-

larly biphilic) molecules [11, 12]. The building blocks of those phases are either

bilayers, Fig. 4.18, or micelles. The form of the micelles can be spherical or

cylindrical, Fig. 4.19a, b. For low concentration of oil in water, the micelles are

normal (sketch (a), tails inside, polar heads outside, in water). For high concentration,

the structure is inversed ((b) and (c), water and polar heads inside, tails outside).

Examples of the structure of some typical lyotropic phases (lamellar, cubic, hax-

agonal) are shown in Fig. 4.20. Under a microscope they show characteristic features,

hydrophilic
heads

hydrophobic
tails

hydrophilic
headsFig. 4.18 Bilayers formed by

biphilic molecules having

polar hydrophilic heads and

hydrophobic tails
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e.g., a fan-shape texture is typical of the hexagonal lyotropic phase presented in

Fig. 4.21.

There is also a group of the so-called lyotropic nematics. They are intermediate

between the isotropic micellar phase and structured (lamellar or hexagonal) phases

and can be formed by both discotic and calamitic molecules. The lyotropic nematics

can be aligned by an electric or magnetic field and show Schlieren texture as

thermotropic nematics. The building blocks of these mesophases are vesicles or

similar mesoscopic objects. From the symmetry point of view the nematic phases

can be uniaxial or biaxial, as shown in Fig. 4.22. In fact, the biaxial nematics have

been found unequivocally only in the lyotropic systems [13].

Fig. 4.19 Micelles: spherical normal (a), cylindrical inverse (b) and spherical inverse (c)

Fig. 4.20 Lamellar, cubic and hexagonal lyotropic phases

Hexagonal
lyotropic phase

Fig. 4.21 Microphotograph

of the hexagonal lyotropic

phase texture
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4.6 General Remarks on the Role of Chirality

Chirality is lack of mirror symmetry. The name came from Greek word for “hand”.

W.H. Thomson (Lord Kelvin) defined it as follows: “any geometrical figure has

chirality if its image in a plane mirror cannot be brought into coincidence with

itself”. Examples of chiral phases are the cholesteric, schematically shown in

Fig. 4.23, and smectic C* ones (the asterisk at letter C is used to distinguish this

phase from the achiral smectic C). Unfortunately there is no quantitative definition

of chirality [14]. The chirality of a molecule results in a spatial modulation of liquid

crystalline phases. Table 4.1 shows how the point group symmetry is changed when

the achiral liquid crystal material is doped with a chiral compound. The isotropic

liquids formed by chiral molecules, e.g. sugar solutions in water, have continuous

a b

Fig. 4.22 Structure of lyotropic nematics: a phase Nd is formed by disc-like blocks (a) and phase
Ne by cylindrical rod-like blocks (b)

P0

Fig. 4.23 Structure of the cholesteric phase. Each sheet models a cross-section of the helical

structure within one period of the helix P0. The helix axis is directed from the left to the right. The

short bars show orientation of chiral molecules within each sheet

Table 4.1 Point group

symmetry of main achiral

and chiral phases

Phase/ chirality Achiral Chiral

Isotropic Kh K

Nematic or smectic A D1h D1
Smectic C C2h C2
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group symmetry K (no mirror plane). Experimentally, this can be recognized by a

rotation of the polarization plane of transmitted light (optical activity). In case of

the racemic solution with equal amount of the right and left isomers of the same

molecule, the symmetry is Kh and the optical activity is absent.

The nematic phase has point group symmetry D1h. If we add some amount of

chiral, e.g., right-handed molecules, the symmetry is reduced from D1h to D1
(symmetry of a twisted cylinder). Such a phase is called chiral nematic phase.
Chiral molecules used as a dopant (solute) in nematic solvent considerably modify

the nematic surrounding and the overall structure becomes twisted with a helical

pitch P0 incommensurate with a molecular size a, P0 6¼ na (n is an integer) and

usually P0 � a. Typically, a < 10 nm, P0 ¼ 0.1–10 mm.

The pitch of the helix depends on concentration c of a dopant; for small c P0
�1�

ac and a is called helical twisting power of the dopant [15]. However, with

increasing c the dependence becomes nonlinear and the helix handedness can

even change sign (the case of cholesteryl chloride dopant in p-butoxybenzyli-
dene-p0-butylaniline, BBBA, see Fig. 4.24). The same chiral, locally nematic

phase with a short pitch in the range of 0.1–1 mm is traditionally called cholesteric
phase because, at first, it has been found in cholesteryl esters. Such short-pitch

phases manifest some properties of layered (smectic) phases.

The smectic C* phase formed by chiral molecules (SmC* phase) has also a

helical superstructure having a pitch incommensurate with the smectic layer thick-

ness. Theoretically chiral phases can also be formed by achiral molecules due to

very specific packing [16]. For instance, three achiral rod-like molecules of differ-
ent length may form a chiral trimer or a tripod due to Van der Waals interactions

between their fragments, see Fig. 4.25a, and such trimers, in their turn, may form a

kind of helical structure. Another example is bent-core or banana like-molecules [17]
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that can form a smectic multidomain system with right and left domains depending

on the direction of the tilt of long molecular axes l with respect to the x,z-plane
Fig. 4.25b. On the other hand, chiral molecules can be packed in such a way that the

phase would lose their optical anisotropy, for example in the so-called blue phase

(see below) or optically isotropic SmC* phase.

4.7 Cholesterics

4.7.1 Intermolecular Potential

Basically the structure of the molecules forming nematic and cholesteric phases is

similar. However, chiral molecules possess a certain chiral asymmetry that results

in asymmetry of intermolecular interactions. This asymmetry is weak and, there-

fore, the helical pitch is much larger than a molecular size. Consider now an

interaction potential V(f) between two rod-like molecules (1) and (2) as a function

of the twist angle f between their long molecular axes, see Fig. 4.26a. Molecule (1)

is considered to be fixed. The twist corresponds to rotation of the longitudinal axis

of molecule (2) about the axis connecting gravity centers of the two molecules. For

achiral molecules, the two-particle potential curveW(f) is symmetric, Fig. 4.26b. It

may be described in terms of the Legendre polynomial P2 and order parameter S:

W12ðfÞ ¼ �vSP2ðcosfÞ (4.3)

x

l

z

y

baFig. 4.25 Hypothetical chiral

trimers formed by rod like

molecules due to specific Van

der Waals interaction (a) and
achiral bent-core molecules

capable of formation chiral

domains (b)
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Fig. 4.26 Interaction of two rod-like molecules, one molecule (1) on the top of the other (2) at an

angle f (a). The forms of the interaction potential in different models: for achiral molecules

harmonic (b), and anharmonic (c) and harmonic potential for chiral molecules (c)

4.7 Cholesterics 57



For chiral molecules the mirror symmetry is broken and such a curve cannot be

symmetric. We can distinguish three cases:

(i) The interaction is still harmonic but centered at a finite angle f0 6¼ 0 as in

Fig. 4.26d:

W12ðfÞ ¼ �vSP2 cosðf� f0Þ: (4.4)

This is a “classical” cholesteric with local nematic structure. The value of

f0 determines the equilibrium pitch (a is the diameter of a rod-like molecule):

P0 ¼ 2pa
�

:f0
(4.5)

(ii) The potential is centered at f0¼ 0 but the interaction is anharmonic and cannot

be described in terms of cylindrically symmetric functions. In this case, the

equilibrium pitch is determined by an average fav shown in Fig. 4.26c.

(iii) Both (i) and (ii) factors contribute to chirality together.

Of course, in each case a particular form of the potential curve depends on

chemical structure of constituting molecules. For instance, in nemato-cholesteric

mixtures, V(f) depends on the structure of both a nematic matrix and a chiral dopant.

4.7.2 Cholesteric Helix and Tensor of Orientational Order

We can imagine a cholesteric as a stuck of nematic “quasi-layers” of molecular

thickness a with the director slightly turned by df from one layer to the next one. In

fact it is Oseen model [18]. Such a structure is, to some extent, similar to lamellar

phase. Indeed, the quasi-nematic layers behave like smectic layers in formation of

defects, in flow experiments, etc. Then, according to the Landau–Peierls theorem,

the fluctuations of molecular positions in the direction of the helical axis blur the

one-dimensional, long-range, positional (smectic A phase like) helical order but in

reality the corresponding scale for this effect is astronomic.

In the first approximation, the parameter of the local orientational order of a
cholesteric liquid crystal is the same uniaxial traceless tensor Qij ¼ Sðninj � dij=3Þ
as in the nematic phase with the director axis always lying in the x,y-plane, e.g.
along the x direction at a selected cross-section of the helix:

~Q ¼ S

þ2=3 0 0

0 �1=3 0

0 0 �1=3

0
B@

1
CA

In the helical structure this tensor, as well as the tensor of the dielectric

anisotropy (ellipsoid) rotates upon the translation along the z-axis as shown in
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Fig. 4.27. Then, the components of the director are n ¼ (cosqz, sinqz, 0). In the

uniaxial approximation, there are only two principal components of the local

dielectric tensor, e|| and e⊥ and two refraction indices, n|| and n⊥ ¼ nz. As a rule

n|| > n⊥, and a uniaxial cholesteric is locally optically positive. For the overall

helical structure, one can introduce average refraction indices, one along the helical

axis nz ¼ n⊥, and the other perpendicular to it, nx,y
2 ¼ (1/2)(n||

2 + n⊥
2). Thus the

helical axis becomes the optical axis. As a rule, nz � 1.5 and nx,y � 1.6 and the

overall helical structure is usually optically negative.

4.7.3 Tensor of Dielectric Anisotropy

In general, however, tensor ~Qij is biaxial but the biaxiality is small, on the order of

x/P0 where x is the length corresponding to nematic correlations. This correlation

length may be found, for example, from the light scattering in the isotropic phase

close to the transition to the nematic phase. Then, at each point, that is locally, the
anisotropic part of dielectric susceptibility tensor is biaxial and traceless de1 þ
de2 þ de3 ¼ 0 with de2 � de3.

d~e ¼
de1 0 0

0 de2 0

0 0 de3

0
@

1
A ¼ de1

2

2 0 0

0 �1þ Z 0

0 0 �1� Z

0
@

1
A (4.6)

Here Z is a measure of biaxiality

Z ¼ d e2 � d e3ð Þ= d e1 ¼ 2 d e2 þ d e1ð Þ= d e1
¼ 2 d e2 þ d e1ð Þ þ 1: (4.7)

Particularly, for Z ¼ 0 we return to the nematic tensor of dielectric anisotropy

with factor 2/3 included in de1:

d~̂e ¼ de1
1 0 0

0 �1=2 0

0 0 �1=2

0
@

1
A (4.8)

y x

n

z

δε2
δε1

δε3

Fig. 4.27 Helical stricture of

the ellipsoid of dielectric

permittivity for a cholesteric

liquid crystal (a very weak

biaxiality is determined by

component de3)
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To obtain the tensor of the cholesteric helical structure one should imagine that

the local tensor rotates in the laboratory co-ordinate system, or, alternatively, to

introduce a rotating co-ordinate system. In the latter case, one should make trans-

formation

d~e ¼ ~Rfd~e ~R�1
f (4.9)

where ~Rf; ~R
�1
f are the matrix of rotation about the z-axis and its inverse matrix,

respectively. Both matrices are known from the textbooks on the matrix algebra:

~Rf ¼
cosf � sinf 0

sinf cosf 0

0 0 1

2
4

3
5 ~R�1

f ¼
cosf sinf 0

� sinf cosf 0

0 0 1

2
4

3
5 (4.10)

Note that for our rotation matrix, which is antisymmetric, the inverse matrix is

equal to the transposed one. Now using Eqs. (4.9) and (4.10) we write

d~e¼ ~Rfd~e ~R�1
f ¼

cosf �sinf 0

sinf cosf 0

0 0 1

������
������ �de

1 0 0

0 �1=2 0

0 0 �1=2

0
@

1
A �

cosf sinf 0

�sinf cosf 0

0 0 1

������
������

and then multiply the dielectric tensor first by the inverse matrix on the right and

then multiply the rotation matrix from the left side by the result of the first

operation. Next, we obtain the tensor of dielectric anisotropy of a locally uniaxial
cholesteric.

d~e ¼ de
4

1þ 3 cos 2f 3 sin 2f 0

3 sin 2f 1� 3 cos 2f 0

0 0 �2

0
@

1
A (4.11)

Finally, we can write the tensors of the orientational order parameter ~Qij in the

rotating frame for locally uniaxial and biaxial cholesteric liquid crystal (ChLC):

Uniaxial ChLC:

~Quni
ij ¼ 3

8
S

1þ 3 cos 2f 3 sin 2f 0

3 sin 2f 1� 3 cos 2f 0

0 0 �2

0
@

1
A (4.12)

Biaxial ChLC

~Qbi
ij ¼

3

8
S

1þ Zþ ð3� ZÞ cos 2f ð3� ZÞ sin 2f 0

ð3� ZÞ sin 2f 1þ Z� ð3� ZÞ cos 2f 0

0 0 �2� 2Z

0
@

1
A
(4.13)

with Z defined by Eq. (4.7)
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4.7.4 Grandjean Texture

This interesting texture is observed in the so-called Cano wedges formed by two

optically polished glasses with a gap filled by a cholesteric liquid crystal (CLC). Let

the equilibrium helical pitch of the CLC in a bulky sample is P0. In the wedge the

molecules are oriented along its acute edge. Since the boundary condition are fixed

the equilibrium pitch can only be undistorted when the layer thickness is exactly

equal to d0 ¼ mP0/2 where m is an integer as shown in Fig. 4.28a. In the close

proximity of each d’ value, the helix can still fit to the boundary conditions at the

cost of some pitch compression or dilatation. Therefore rather large areas form with

the same number of half-turns within the gap, which are marked by numbers m¼ 0,

1, 2, 3 in Fig. 4.28b. These are Grandjean zones separated by the defects called

disclinations (thin lines seen in the photo, Fig. 4.28c). At each disclination, the

number of half-turns changes usually by one. In the zero zone, the cholesteric is

unwound but its properties (e.g., elastic moduli) in this quasi-nematic area are

different from the corresponding achiral nematic. Grandjean textures are very

P

3P0/2

3P0/2

P0/2

P0/2 P0 d2P0

P0

m =0 m = 1 m = 2 m = 3 m = 4

a

b

cFig. 4.28 A wedge type cell

filled with a cholesteric (a)
with Grandjean zones marked

by numbers 0, 1, 2, 3, 4 . . .
and the disclination lines

shown by arrows. The

distance dependence of the

helix pitch in different zones

with numbers m is

schematically shown in

sketch (b). Photo of

disclinations limiting the

Grandjean zones (c)
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useful as an experimental tool: one can study and compare different physical,

especially electrooptical effects at different thickness under the same conditions

(same material, alignment, ambient conditions, fields, etc.) One can also observe

the Grandjean zones on preparations without cover slips because a drop of a CLC

has an edge with decreasing thickness. Since the free surface can also align liquid

crystals the Grandjean zones form in this natural wedge at the border of the

preparation. By the way, in smectics such zones exist in a form of microscopic

steps, which could be measured by an atomic force microscope (AFM).

4.7.5 Methods of the Pitch Measurements

Due to its periodic structure cholesteric liquid crystals manifest very interesting

optical properties. In fact, a cholesteric is one-dimensional photonic crystal having

forbidden frequency bands (stop-bands) for a particular circular polarization. This

band appears due to the Bragg diffraction of light on the helical structure. In the

vicinity of the stop band a giant optical rotation of light is observed. Since the pitch

of the helix can easily be changes by external factors such as composition, temper-

ature, UV light, mechanical tension, electric and magnetic field, a variety of tunable

optical devices (like filters and lasers) has been suggested. We shall discuss the

optical properties of cholesterics in detail in Chapter 12.

The key parameter for the tunability is the helical pitch P0, which can be found

from the measurements of

(i) The wedge thickness in the centers of Grandjean zones, P0 ¼ 2d0/m, as shown
in Fig. 4.28.

(ii) The angular position of diffraction spots for the light incident perpendicularly

to the helical axis Fig. 4.29a. Such a texture is formed by the so-called

homeotropic boundary conditions with liquid crystal molecules oriented per-

pendicularly to the plane glasses. Due to the head-to-tail symmetry the period

of the optical properties is P0/2 and wavevector of the optical structure q0 ¼
4p/P0. The diffraction spots are located at angles �2y symmetric with respect

k0 k0

k
q

z

2θ

a

I0’ k0 IT’ k0

b

Fig. 4.29 Measurements of the pitch of the helix in a cholesteric. (a) Geometry for monochro-

matic light diffraction on the focal-conic texture. The pitch is found from the angle 2# between the

incident and diffracted beams with wavevectors k0 and k; (b) Spectral measurements of the light

transmission by a planar cholesteric texture (I0 and IT are intensities of the incident and transmitted

beam)
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to the incident beam (zero order diffraction). The modulus of the scattering

wavevector is q ¼ 2k0m sin ym=2 where incident light vector k0 ¼ o/c. The
first order diffraction (m ¼ 1) is very intense and, using angle pm¼1 and the

wavevector conservation law q ¼ q0, the pitch can be found P0 ¼ l0=m sin#.
(iii) The spectral position of the selective reflection or transmission band l0 in the

planar texture formed by the homogeneous, planar boundary conditions with

molecules oriented parallel to the glasses, Fig. 4.29b. In this case, we may use

unpolarised light and the Bragg condition for one of the circular polarizations

ml ¼ ml0=hni ¼ 2ðP0=2Þ sin#0;m ¼ 1; 2; 3::: (4.14)

with incident angle #0¼ p/2 and m¼ 1. Therefore, P0 ¼ l0=<n>where<n>
is related to the two principal refraction indices n|| and n⊥ parallel and

perpendicular to the director: <n> ¼ (n|| + n⊥)/2.
(iv) The distance between stripes observed under a polarization microscope in the

fingerprint texture, shown in Fig. 4.30. Again due to the head-to-tail symmetry

the distance between stripes equals a half-pitch.

4.8 Blue Phases

These phases were an enigma of the centuries. Since the experiments of Reinitzer

[19] up to recent times it was not clear whether it was a special texture of the known

cholesteric phase or a thermodynamically new phase. The textures of the blue

phases are often of blue color, Fig. 4.31. Properties of the blue phases are very

interesting from the fundamental point of view.

(i) There are three blue phases BPI, BPII and BPIII (or foggy) phase [20]. All blue

phases are usually observed in rather a narrow temperature interval between

the isotropic phase and cholesteric (Ch) phase. Recently, however, a wide

Fig. 4.30 A fingerprint

texture of a cholesteric liquid

crystal seen in a polarization

microscope (the distance

between stripes equals a

half-pitch)
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temperature blue phases have been prepared using stabilization of the helical

structure by a polymer network [21]. A typical example of a phase diagram is

shown in Fig. 4.32 [20]. In the diagram, the abscissa is a percentage of the

racemic component in a mixture with a chiral component of the same com-

pound.

(ii) X-ray diffraction shows that local order is liquid-like.

(iii) Drops of a BP1 show facets typical of solid crystals seen in Fig. 4.31.

(iv) Blue phases strongly rotate the light polarization plane.

(v) Despite properties (iii) and (iv) the blue phases do not show any birefrin-

gence. Blue phases are optically isotropic.

(vi) BP1 and BPII show the optical reflections similar to the X-ray reflections

from solid crystals. Bragg reflections correspond to the three-dimensional

periodicity at the micrometer scale like in three-dimensional photonic band-

gap crystals.

(vii) The phase transition between the isotropic and a blue phase III is accom-

panied by a very blurred anomaly in specific heat (H), and there are also

Fig. 4.31 A texture of blue

phase BPI

ISO

BPI

ChBPII

BPIII
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Fig. 4.32 A phase diagram

showing phase transition lines

between the isotropic, BPIII,

BPII, BP1 and cholesteric

phase: x is percentage of the
racemic component in a

racemic-chiral mixture
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noticeable H anomalies between the BPIII and BPI phases [22] and also at

the BP-cholesteric phase transition. This means that we deal not with

different textures of the cholesteric phase but with different phases.

(viii) NMR spectra of BP are different from those of the Ch phase.

It has been concluded that blue phases I and II are three-dimensional periodic

structures, formed by pieces of the helix, a kind of regular lattice of defects having a
period comparable with the wavelength of visible light. How such a phase can be

modeled? One of the most interesting models is a defect structure made of double-
twist cylinders as building blocks [23]. The helical structure forms in two direc-

tions, Fig. 4.33a. Such cylinders can be packed either in the body-centered lattice

forming the BPI phase as shown in Fig. 4.33b or in more symmetric simple cubic

lattice, Fig. 4.33c that may correspond to the high temperature BPII blue phase. The

foggy phase is, more probably, amorphous. It is important that the concept of a

lattice of defects is quite general and can be used in other areas of physics of the

condensed matter (theory of melting, theory of phase transitions, superfluidity and

Abrikosov vortices, structure of amorphous medium, etc).

4.9 Smectic C* Phase

4.9.1 Symmetry, Polarization and Ferroelectricity

The chirality of molecules breaks the mirror symmetry C2h of the achiral smectic C

phase. The only symmetry element left is a twofold rotation axis C2, and the point

symmetry group becomes C2 instead of C2h. The structure of a single smectic C*

layer is shown in Fig. 4.34. As in achiral smectic C, the molecules in the layer obey

head-to-tail symmetry, the director n coincides with average orientation of

molecular axes and form angle # with the smectic normal h.

Fig. 4.33 Double-twist cylinder (a) and the structure of the body-centered cubic phase BP1 (b)
and simple cubic phase BPII (c), both consisted of double-twist cylinders (adapted from [22])
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The smectic C and C* order parameters are the same, the two-component tilt

#exp(ij). However, the plane of the figure is no longer a mirror plane and the C2

axis is a polar axis directed forward or backward with respect to the tilt plane h,n.
This depends on a sign of handedness. Such symmetry allows for the existence of

the spontaneous polarization vector Ps (that is a dipole moment of a unit volume)

directed along the polar axis. Thus, each SmC* layer is polar and possess pyroelec-

tric properties. Moreover, the direction of Ps can be aligned by an electric field in

any direction. At a certain boundary conditions provided by e.g. aligning glasses,

the layer manifests two memory states, and, under this condition, each smectic layer

may be considered ferroelectric, for details see Chapter 13. For small tilt angles, the

value of the spontaneous polarization is proportional to # as illustrated in Fig. 4.35

by experimental curves for the DOBAMBC (for formula see Fig. 3.5a), the first

liquid crystal ferroelectric compound synthesized in Orsay (France) following ideas

of Meyer [24]. The value of Ps in DOBAMBC is rather small, about 6 nC/cm2 at

room temperature, however, nowadays there have been synthesized many com-

pounds with Ps of several hundreds nC/cm
2.

4.9.2 Helical Structure

Due to chiral intermolecular interaction the overall multi-layered structure of

smectic C* becomes twisted, like in cholesterics. The twist angle of the tilt plane is

C2 axis 

h ϑ

n

Fig. 4.34 Structure of a

single monolayer of chiral

smectic C*. Rotation axis C2

is polar axis. Chiral molecules

are tilted through angle # the

director n forms with layer

normal h

10

5

0
30 20 10 0

0

10

20
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DOBAMBC

Ps , nC/cm2

Ps

Tc - T, K

q

q, deg

Fig. 4.35 Correlation of

temperature dependencies of

the molecular tilt # and

spontaneous polarization Ps

for a ferroelectric compound

DOBAMBC (for the formula

see Fig. 3.5a)
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j ¼ qz ¼ 2pz=P0

that is the tilt plane rotates about z upon translation along z, Fig. 4.36. The period

(pitch) of the helical superstructure P0 is incommensurate to the thickness of a

molecular layer. The helicity is a secondary phenomenon. By proper mixing left

and right molecular isomers one can compensate for helicity. For racemic mixtures,

this is trivial and results in the achiral SmC structure with unpolar layers. However,

we can mix right and left isomers of chemically differentmolecules. In this case, the

helicity is compensated for, but not the polarity of layers. Alternatively, one

can compensate for the spontaneous polarization but keep the helical structure as

it is [25].

In the helical structure, the optical ellipsoid of the smectic C* phase rotates

together with the tilt plane. Like in cholesterics, we can imagine that helical turns

form a stuck of equidistant quasi-layers that results in optical Bragg reflections in

the visible range. Therefore, like cholesterics, smectic C* liquid crystals are one-

dimensional photonic crystals. However, in the case of SmC*, the distance between

the reflecting “layers” is equal to the full pitch P0 and not to the half-pitch as

in cholesterics, because at each half-pitch the molecules in the SmC* are tilted in

opposite directions. Hence, we have a situation physically different from that in

cholesterics.

In Fig. 4.37 the location of the Bragg reflections on the optical wavelength scale

is compared for a cholesteric and smectic C* (ySmC* ¼ 25�) liquid crystals. The

spectra have been calculated numerically using the Palto’s software [26] with the

same parameters for both materials: P0 ¼ 0.25 mm, sample thickness d ¼ 4 mm and

principle refraction indices 1.73 and 1.51. The calculations are made for normal and

oblique light incidence angles of a¼ 0 (dash line), and 45� (solid lines). The Bragg
formula (3.14) is valid for both materials. However, at the light incidence along the

helical axis (a ¼ 0) , the left edge of the first order Bragg reflection (m ¼ 1) in

the cholesteric corresponds to l0 ¼ P0<n>� 380 nm but, in the smectic C* phase, the

first order corresponds to the full pitch l0 ¼ 2P0<n>� 730 nm. At this wavelength

P0

Smectic C*

Fig. 4.36 Helical structure of

the chiral smectic C* phase;

P0 is a pitch of the helix
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and a ¼ 0, the band is invisible (forbidden) due only to the coincidence of effective

refraction indices for the same absolute value of the tilt |�ysmC*|. The band at about

380 nm is the second diffraction order (m ¼ 2). In the smectic C* phase, the first

order Bragg diffraction band appears only at an oblique light incidence, see the

transmission minimum at about 680 nm for a ¼ 45� in the same figure. Such a shift

to the shorter waves of both m¼ 1 and m ¼ 2 bands in the smectic C* (as well as of

m ¼ 1 band in the cholesteric) increases with increasing angle of light incidence.

4.10 Chiral Smectic A*

4.10.1 Uniform Smectic A*

This is a chiral smectic A* with symmetry D1. Its properties are similar to those of

the achiral SmA. However, close to the transition to the smectic C* phase, the chiral

smectic A* phase shows interesting pretransitional phenomena in the dielectric and

electrooptical effects (the so-called soft dielectric mode and electroclinic effect).

They will be discussed in Chapter 13.

4.10.2 TGB Phase

This phase consists of uniform SmA* blocks separated by defect walls [22]. At each

wall, the normal to smectic layers in one blocks turns through a small angle with
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Fig. 4.37 Comparison of the

calculated transmission

spectra of a cholesteric (top
panel) and smectic C*

(bottom panel) for two angles

of incoming light incidence:

dashed curves for a ¼ 0

(along the helical axis), solid

curves for a ¼ 45� with
respect to the helical axis.

Both materials have helical

pitch 0.25 mm, refraction

indices n|| ¼ 1.73 and n|⊥ ¼
1.51, cell thickness 4 mm. Tilt

angle for the SmC* is 25�
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respect to the layer normal in the preceding block as very schematically shown in

Fig. 4.38. From such blocks, a helical structure forms. Thus, the phase is twisted,

consists of grains and has defects in a form of grain boundaries. That is why it is

called a twist-grain-boundary or TGB phase. We should distinguish among the

TGBA and TGBC phases based, respectively, on the smectic A* or smectic C*

structure of their blocks. The TGB phases having a helical pitch shorter than light

wavelength are optically isotropic. Such substances, especially based on side-chain

polymers with photochromic moieties are interesting for optical information

recording and applications to holography.

4.11 Spontaneous Break of Mirror Symmetry

This phenomenon has been discovered in the liquid crystal phases consisting of

so-called banana (or bent-core) shape molecules [17, 27]. A mechanical model in

Fig. 4.39a illustrates the idea. Each of the two dumb-bells has symmetry D1h with

infinite number of mirror planes containing the longitudinal rotation axis and one

mirror plane perpendicular to that axis. Imagine now that one of the dumb-bells is

lying on the table and we try to put another one on the top of the first one parallel to

TGBA phase

Fig. 4.38 Schematic picture

of the block structure of the

twist-grain-boundary smectic

A* (TGBA) phase

Left

Left

a b
W

domains
rightRight

homogeneous
achiral

phase

– q0 q0

q

Fig. 4.39 A mechanical model of two interacting dumb-bells illustrating a break of the mirror

symmetry (a) and the potential curves with two minima corresponding to two possible azimuthal

angles between the dumb-bells (b). The same curves qualitatively illustrate the energy of the

achiral phase and two chiral domains (left- and right-handed) as functions of the tilt angle # of

molecules in the smectic layer
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the other. Such a construction, although unstable, would have mirror symmetry. In

reality, the dumb-bells will form a kind of a chiral propeller, left or right, shown in
the figure. The reason is that the gravitational potential energy of the upper dumb-

bell is lower in a chiral construction. Due to this, the mirror symmetry is broken.

Since the formation of right- and left-hand propellers is equally probable, the

potential energy roughly has a shape of a two minima curve, see Fig. 4.39b, that

will also be discussed below.

Something similar happens with achiral banana or bent-shape molecules. Chem-

ical formula of a typical compound is given in Fig. 4.40. In this particular case, the

dipole moment is approximately directed from up to down. The molecules have

banana-like shape and located within the plane of the drawing forming a single

layers with long molecular axes perpendicular to the smectic plane, Fig. 4.41. Such

a monolayer is achiral and can be unpolar (a) or polar (b). Note that the polar achiral
layer possesses spontaneous polarization Ps located within the figure plane and

directed depending on the sign of molecular dipole moment (to the right in the

figure). If the direction of Ps can be switched by an external electric field between

two stable positions the monolayer is ferroelectric. A stuck of unpolar or polar

layers may form either an unpolar or polar smectic phase. An example (a polar

phase) is shown in Fig. 4.41c. Packing of polar layers with opposite in-plane

directions of Ps results in the antiferroelectric phase, like in chiral antiferroelectrics

(see Chapter 13).

Cl

O

O

H

N

H29C14

O

O

H

N

C14H29

Fig. 4.40 Chemical formula of a typical bent-shape molecule. The electro-negative Cl atom is

responsible for the molecular dipole moment directed approximately down close to the vertical

axis

Ps=0

a

b

c

Ps > 0

Fig. 4.41 Structure of single

non-polar (a) and polar

(b) smectic layers formed by

bent-shape molecules: the

longitudinal axes are aligned

upright and the plane of the

figure is mirror plane. Possible

polar three-dimensional

smectic biaxial phase (c)
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Fig. 4.42 Breaks of the mirror symmetry by the molecular tilt. Due to the collective tilt of

molecules the zy plane is no longer a mirror plane. Three vectors, namely, molecular dipole

moment Ps, the normal to the layers h and the director n form the right-handed triple of vectors.

For the tilt angle equal to (�#) the triple changes the sense of chirality, i.e. becomes left-handed.

As a result, right-handed and left-handed domains are observed

Table 4.2 Symmetry and structural features of the most popular thermotropic liquid crystal

phases consisting of rod-like molecules (for the nomenclature we follow [28])

Symbol Symmetry Structural features

I or Iso Kh � T(3) Ordinary liquid phase with full rotational and translational

symmetry

I (chiral) K � T(3) Liquid consisted of chiral molecules showing rotation of linearly

polarized light

N D1h � T(3) Uniaxial nematic phase possessing long range orientational order

and no translational order

Nb D2h � T(3) Biaxial nematic phase possessing long range orientational order

and no translational order

N* or Ch D1 � T(3) Chiral nematic or cholesteric phase with twist axis perpendicular

to the director and macroscopic periodicity

SmA D1h � T(2) Uniaxial lamellar smectic A phase possessing one-dimensional

periodicity along the director (i.e. layer normal). Quasi-long-

range positional order along the layer normal and two-

dimensional liquid-like order within the layer plane

SmA* D1 � T(2) Optically active, chiral version of SmA phase

SmC C2h � T(2) Optically biaxial, tilted, lamellar phase: the director forms an

angle with the normal to layers. Quasi-long-range positional

order along the layer normal and two-dimensional liquid-like

structure within the layer plane

SmC* C2 � T(2) Optically active chiral analogy of SmC phase showing

macroscopic periodicity with twist axis perpendicular to

smectic layers. Quasi-long-range positional order along the

layer normal and two-dimensional liquid-like structure within

the layer plane. Single layers of the same symmetry may form

different phases in the bulk: ferroelectric (SmC*),

antiferroelectric (SmCA*) and ferrielectric (SmCg*).

TGBA* or D1 � T(2) or Twist-grain-boundary (chiral) phases consisted of twisted grains

or blocks of the smectic A* (or C*) phases with defect walls

(boundaries) between them

TGBC* C2 � T(2)

SmBhex D6h � T(1) A stack of interacting hexatic layers with three-dimensional, long-

range, sixfold, bond orientational order and liquid-like

positional correlations within the layers

(continued)
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Now we are ready to discuss spontaneous break of mirror symmetry. An achiral

phase is spatially uniform and has mirror symmetry, i.e. its potential energy has a

minimum located at zero tilt angle #, see Fig. 4.39b. With decreasing temperature,

the same molecules can acquire a collective tilt, some of them become tilted to the

left with respect to the smectic layer normal (positive # in Fig. 4.42), the others to

the right (negative #) in equal amounts. In fact, due to the tilt a triple of non

coplanar vectors occurs, the vector of layer normal h, the vector of polarization Ps

and the director n, that is necessary condition for chirality. This results in a break of
the uniform structure and formation of right-handed and left-handed ferroelectric
domains. Now the potential energy has two minima at the tilt angles +# and �# for

the two types of domains, like in Fig. 4.39b. The banana phases manifest remark-

able electrooptical properties; for example, upon application of a d.c. voltage, the

directors rotate in opposite direction in the domains of opposite chirality.

In conclusion of this chapter we demonstrate Table 4.2, in which the most

important liquid crystal phases and their structural properties are listed.
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Chapter 5

Structure Analysis and X-Ray Diffraction

5.1 Diffraction Studies and X-Ray Experiment

5.1.1 General Consideration

The diffraction of the electromagnetic waves or the de Broglie waves of electrons

and neutrons on a liquid, liquid crystalline or crystalline structures results in a

characteristic pattern from that one can restore a distribution of density in space or

density function r(r) [1, 2]. What kind of density we speak about?

The electron density is probed by electromagnetic waves, as in optics. In fact, the

same theory of light diffraction and dispersion is relevant to the X-ray diffraction

for wavelengths comparable to the size of atoms. For X-rays, the wavelength lX �
0.5–1 Å depends on material of the anticathode in an X-ray tube. In a synchrotron,

the electromagnetic wave spectrum is very large and determined by the speed of

moving electrons. From the experiment we can find the density (or number) of

electrons in atomic shells.

An electric potential of a substance is probed by charge particles emitted, for

example, by an electronic gun or an accelerator. The electron beam is scattered by

the electric potential of positive nuclei and negative electrons and the maximum

positive potential corresponds to the center of an atom. The electrons in the beam

have the de Broglie wavelength le dependent on their velocity v, i. e. on the

accelerating voltage V, namely, eV ¼ meve
2/2 ¼ W

le ¼ h
.
men ¼ h

.
2meWð Þ1=2: (5.1)

Here me is electron mass and h is Planck’s constant. Hence, for electron energy

W ¼ 1 eV–10 keV, the wavelength is le � 10–0.1 Å. From this diffraction

experiment we can find the distribution of the electric potential correlated to

some extent with the distribution of the mass density. Another technique for

mapping the local electric potential is Atomic Force Microscopy [3].

The distribution of the mass of nuclei almost equal to the full mass density is

probed by neutron beams. To this effect, one can use the so-called thermal or cold
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neutrons with energyW� 0.05 eV provided by nuclear reactors. The corresponding

wavelength is in the proper range for structure analysis, ln ¼ 1–1.5 Å, because the

mass of a neutron is large, mn ¼ 1840me.

All these techniques have certain advantages and disadvantages. The electron

diffraction experiment requires for vacuum or low pressure gas, and thin films, very

often on conductive substrates (otherwise the surface is charged by incoming

electrons). On the other hand, the interaction between charges is very strong and

one may operate with small samples and short expositions and, due to short

wavelengths, the spatial resolution can be very high. In addition, the data process-

ing is sometimes simpler due to a small curvature of the Ewald sphere to be

discussed later. Using electrons even light atoms like hydrogen are well seen.

Neutron diffraction requires for larger samples (linear dimension about 1 cm)

and the reactors producing short lifetime (minutes) cold neutrons are expensive. On

the other hand, in contrast to X-rays, neutrons are sensitive to isotopes and atoms

with slightly different atomic mass, such as Co and Ni. In addition, a neutron has an

intrinsic magnetic moment about two Bohr magnetons, pm ¼ 1.9 mB. For this

reason, neutrons strongly interact with magnetic moments of electrons and nuclei.

Thus, a neutron experiment provides a unique possibility for studying different

magnetic structures, spin effects, para- and ferro-magnetism. However, the X-ray

technique is the most universal for the structure analysis. In fact, the majority of

structures of crystals from the simplest ones to those formed by protein molecules

were found by the X-ray diffraction.

5.1.2 X-Ray Experiment

One can use conventional low intensity sources (X-ray tubes) providing very narrow

spectral lines, but low intensity. A set-up consists of an X-ray tube (X), beam

collimators (C), one or several monochromators (M), a detector (D) and a data

acquisition system (PC). A sample is installed in a camera with controllable tempera-

ture, Fig. 5.1. In the case of a liquid crystal, a magnetic or electric field is necessary

for the sample orientation. Historically, for a long time, fluorescent screens and

S

N

C PC

M

X

D

Fig. 5.1 A set-up for a study of X-ray diffraction on liquid crystals: X-ray tube (X), beam

collimators (C), mirrors (M), a detector (D) and a data acquisition system (PC). A sample is

represented by a stack of parallel layers placed in a camera with controllable temperature installed

between the poles of a magnet
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photographic films were primary tools for detecting X-rays. The latter are two-

dimensional, very cheap and sensitive but their processing requires densitometers

for the image digitizing. Since few decades, point detectors have been using every-

where based on the proportional and scintillation counters both one- and two-dimen-

sional. Automatic two-dimensional detectors are very convenient because they grasp

the entire diffraction pattern and save a lot of time.

Nowadays, however, synchrotrons are available that provide million times

higher intensity and wide spectrum of the polarized emission. One can use different

wavelength ranges and short expositions when studying dynamic processes. Of

course, there are not so many synchrotron accelerators all over the world but they

have many output beams, as shown in Fig. 5.2, and attached are many experimental

stations. Such a work is usually organized at the international level.

What does an X-ray diffraction experiment bring about? In fact, a lot:

1. Number of diffraction peaks on a diffractogram, their precise positions and the

symmetry of the pattern

2. The peak amplitudes I and areas A under peaks as functions of temperature,

pressure, external fields, etc.

3. The peak profile that is the profile of the diffraction intensity I(q) within a

particular diffraction spot, which is a function of the diffraction angle or

scattering wavevector q. The key problem of X-ray analysis is how to relate

I(q) to the electron density function or density correlation function that takes into
account thermal fluctuations.

5.2 X-Ray Scattering

5.2.1 Scattering by a Single Electron

Protons and electrons are charge particles interacting with electromagnetic waves

and their number and particular location determine the amplitude of scattered waves.

As the electrons are very light they contribute much stronger to X-ray scattering than

protons (nuclei). In fact intensity of scattering is even measured in electron units.

Therefore, scattering by a single electron deserves a brief consideration.

Fig. 5.2 A geometry of

electromagnetic wave

emission from an accelerator

of relativistic particles

(synchrotron). R is radius of

the synchrotron ring. X-ray

emission in the form of the

cone is delivered to one of the

many experimental stations
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Let linearly polarized, plane electromagnetic wave of amplitude E0 is incident

on a free electron, Fig. 5.3. The equation of oscillatory motion of the electron about

the centre of coordinate is:

meðd2r=dt2Þ ¼ ðme=eÞðd2d=dt2Þ ¼ eE0 cosðotþ aÞ (5.2)

where vector r is displacement of the electron that creates a dipole moment d ¼ er.
The current produced by moving electron is proportional to its velocity v, i.e.
j ¼ ev ¼ dd/dt, which, in turn, is a source the electromagnetic field in point P [4].

E ¼ 1

c2R0

½ð€d� nÞ � n� ¼ e2

mc2R0

½ðE0 � nÞ � n� (5.3)

Vector ðE0 � nÞis perpendicular to vector n and has modulus E0sing where

g¼(p/2)�y. Therefore, the modulus of the scattered field amplitude is E0cos2y.
Note that the angle between the wavevectors of incident and scattered wave is

assumed to be 2y according to the convention adopted below (see Fig. 5.4) and used

throughout the book.

The energy flux is given by the Pointing vector

S ¼ ðc=4pÞE2n (5.4)

and the dipolar emission energy incident on a small surface element df ¼ R2
0dO in a

solid angle dO is given by dW ¼ Sdf ¼ ðc=4pÞE2R2
0dO. After substituting E

2 ¼ E2

from Eq. 5.3 we find the intensity of the scattered, polarized wave.

dW ¼ e4E2
0

4pm2c3
cos22ydO (5.5)

γ

E

r

R0

P

n

x

z

E0

2θ

Fig. 5.3 Geometry of

scattering linearly polarized

electromagnetic wave by a

single electron. The incident

wave field E0 causes

oscillatory displacement r of
an electron and the scattered

wave is detected in point P

k

r

qk0r

k0

k0

k

k
kr

′ q
qFig. 5.4 Illustration of an

electromagnetic wave

scattering by two material

points: k0 and k are vector of

incident and scattered waves,

q is vector of scattering
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Now, normalizing Eq. 5.5 by the Pointing vector of the incident wave E0 we find

the differential cross-section of one-electron scattering:

dse ¼ e2=mec
2

� �2
cos 2ydO (5.6)

The emission of the dipole is symmetric with respect to the dipole axis x,
Fig. 5.3, and has the 1-form in the xz plane (no emission exactly along the

x-axis). It is spectacular that the cross section is independent of frequency.

In order to obtain the total cross-section of scattering we should integrate the

diagram over j from 0 to 2p and over 2# from 0 to p in the polar coordinates with

the vertical polar axis x. The angle g¼(p/2) � 2y will be a polar angle and angle j
an azimuthal angle in the zy plane. Then, with a volume element dO¼singdgdj, the
integral

ÐÐ
sin3gdgd’ ¼ 8p=3 and the overall scattering cross-section of an electron

irradiated by a linearly polarized light is given by the Thomson formula:

se ¼ 8p
3

e2

mec2

� �2

(5.7)

Since we are mostly interested in scattering unpolarised X-ray radiation we

should average Eq. 5.7 over all directions of vector E perpendicular to the direction

of the wavevector of the incident wave k0, i.e. around the z-axis. Then we find the

differential cross-section of one-electron scattering in unpolarized light:

dse ¼ 1
2
e2=mec

2
� �2ð1þ cos22yÞdO (5.8)

As to the total cross-section of scattering by free electron irradiated by unpo-
larized light, it is described by the same Thomson formula (5.7) that is easy to check

by integrating (5.8) over 2y (from 0 to p) and over j (from 0 to 2p).

5.2.2 Scattering by Two Material Points

Let the plane wave with wavevector k0 is incident onto two scattering points fixed

at O and O0, see Fig. 5.4. The center of the reference polar coordinate system is at

point O and point O0 is characterized by radius-vector r. Both points are sources of

secondary spherical waves propagating in all directions (Huygens’ principle). The

mechanism of scattering is not important because now we consider a very general

geometry of wave scattering, not its amplitude. Consider a wave with wavevector k
scattered by two points at angle 2y with respect to k0 and introduce the wavevector
of scattering (or diffraction) as a difference between the two vectors

q = k� k0 (5.9)

5.2 X-Ray Scattering 79



It is equal to the momentum taken by a fixed material point. In our case, modulus

|k| ¼ |k0| (i.e. l¼l0). This corresponds to elastic scattering because the points do

not take energy from the photons and the light frequency remains unchanged.

Hence, as seen from the figure the scattering wavevector amplitude is

q ¼ 2k0 sin y ¼ 4p sin y
l0

(5.10)

and the scattering angle between incident and scattered waves is 2y.
This is very general equation that will be used further on. From the same figure

we can extract another useful relationship between the q-vector and the wave path

difference D accumulated along the distance between the particles. It is just a

difference of two scalar products:

D ¼ kr� k0r = k� k0ð Þr = qr (5.11)

5.2.3 Scattering by a Stack of Planes (Bragg Diffraction)

Let an electromagnetic wave is incident on the system of two parallel planes at an

angle y with respect to the planes. Then, as seen in Fig. 5.5, the scattering vector is

again described by Eq. 5.9. Now, let us introduce a new vector, a wavevector of the
structure with period d: q0 ¼ 2p/d. Then, at a certain “resonance” angle y0 the

wavevectors of scattering and structure coincide:

ð4p=lÞ sin y0 ¼ 2p=d or 2d sin y0 ¼ l (5.12)

The same condition can easily be found by comparison of the wave path

difference 2dsin# with wavelength l.
For a stack of layers we will have m multiple reflections and equation

ml ¼ 2d sin y0; m ¼ 1; 2; 3::: (5.13)

θ

k0

dsinθ

d

θ

k0

k

q

d

Fig. 5.5 Bragg scattering (or

reflection) of an

electromagnetic wave by a

stack of parallel planes in

vacuum (d is period of the

stack structure, q is vector of

scattering)
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called Bragg (sometimes Bragg-Wulf) formula for the diffraction (resonance)

angles of X-ray scattering from the stack of planes. For example, it could be crystal

planes (h k l) or smectic layers with interlayer distance d.
This interlayer distance can be found as d¼l/2sin#0 from the X-ray experiment

measuring the angle of the first-order diffraction spot (m ¼ 1) or from higher order

reflections. It is convenient to plot the diffracted beam intensity as a function of q;
then different diffraction orders are located at equidistant positions, as shown in

Fig. 5.6:

q ¼ 4p=lð Þ sin# ¼ mq0 ¼ 2pm=d

Note that Eqs. 5.9–5.11 tell us nothing about the amplitude of waves and the

intensity of scattering because we used only the momentum conservation law.

5.2.4 Amplitude of Scattering for a System of Material Points

Generally, the amplitude of a wave scattered by material point O and measured at

any distant point P (R) corresponds to the Huygens principle:

Fp ¼ 1

R
fO exp ikR (5.14)

and is determined by a scattering efficiency fO of the point O (depending on its

electron mass), a distance R between the scattering center and point P and a

wavevector k of a scattered wave (through multiplier expikR). Below we shall

disregard term (1/R) (it may be taken into account if necessary) but always operate

with vector of scattering q ¼ k � k0 having in mind that k0 has fixed direction

along the selected coordinate axis. It is vector q that is responsible for all the

interfering scattered beams propagating in direction to point P as was shown for two

scattering points, see Eq. 5.11.

Consider now N scattering points having different scattering efficiency fj and
located at different distances rj from one of the scattering points O selected as

I

0

Smectic A

q0 q2q0 3q0

1st order

2nd 
3rd 

Fig. 5.6 Illustration of the

Bragg diffraction with the

qualitative angular diffraction

spectrum of the smectic A

phase
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a reference, Fig. 5.7a. All these points contribute to scattering in q direction defined

by Eq. 5.10. Then the amplitude of the field of N scattering points “measured” at

point P is superposition of all N- amplitudes:

FpðqÞ ¼
XN
j¼1

fj exp iðqrjÞ (5.15)

Here q is the wavevector of scattering defined by Eq. 5.9 for two material points.

Now we make a generalization, i.e. consider a body with continuous density of
scattering points r(r) (that is density of electrons, atoms and molecules). Then the

scattering amplitude is an integral over the scattering volume in the three-dimensional

r-space shown by dash line in Fig. 5.7a:

FðqÞ ¼
ð
V

rðrÞ exp iðqrÞdV (5.16)

Thus, the amplitude of scattering in point P is just a Fourier integral of the

electron density function (generally complex). The variation of the position of point

P means variation of scattering vector q, therefore suffix P at FP(q) is skipped. At
each q we collect total amplitude of scattering from all the body with density r(r)
usually situated far from point P. In the Cartesian system:

FðqÞ ¼
ððð
V

rðx; y; zÞ exp iðqxxþ qyyþ qzzÞdxdydz (5.17)

k

rj
O

to  P

a b
Z

sin qÔl (Å–1)

15
Cl

Na

O
N
C
H

10

5

0
0.2 0.4 0.6 0.8 1

Fig. 5.7 (a) Geometry of scattering by several objects with vectors rj between them and the beams

scattered in direction to point P; (b) angular dependencies of scattering intensity by different

atoms. The plot shows strong scattering in forward and back directions and the weak scattering in

the direction perpendicular to the incident beam
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5.2.5 Scattering Amplitude for an Atom

An atom has a spherical symmetry, therefore ra(r)¼ ra(r). However, the incident

beam propagating along the x-axis breaks the overall spherical symmetry of

scattering. In the spherical reference system, with radius r, polar angle # (0�p),
azimuthal angle c (0 � 2p), a volume element is dV ¼ r2 sin# d#dcdr and D¼qr
� qrcos#. The integral (5.16) is triple integral and, at first, we integrate with respect
to #:

ðp

0

eiqr cos# sin#d# ¼ � 1

iqr
eiqr cos#jp0¼

2

qr

eiqr � e�iqr

2i

� �
¼ 2 sin qr

qr

Next integrating with respect to j results in 2p. Now we should integrate (5.16)

with respect to r and find the angle (or q-) dependence of the field intensity scattered
by an atom

FðqÞ ¼
ð1

0

4pr2raðrÞ
sin qr

qr
dr (5.18)

We see that the scattering amplitude depends only on the modulus of q and is

spherically symmetric in the q-space. Since ra(r) is unknown there is no universal

formula for each atom but we can analyze two asymptotic cases:

for q ! 0; sin qr=qr ! 1 and Fð0Þ ¼
ð1

o

4pr2raðrÞdr ¼
ð1

o

raðrÞdV ¼ Z

and

for q ! 1; sin qr=qr ! 0; FðqÞ ! 0:

Indeed, according to (5.10), for a finite l0, the case of q!0 means y!0 (forward

scattering) the scattering amplitude is proportional to the number of electrons Z in

the atom. It means strong forward scattering as in case of a single electron. The

intensity of scattering will be proportional to Z2. However, for directions strongly

perpendicular to the primary beam the scattering is absent. This is a result of

interference of different scattered waves from individual electronic oscillators.

The calculated angular dependencies of scattering intensity for different atoms

are shown in Fig. 5.7b (in electron charge units) [2]. Since siny/l¼q/4p, see
Eq. 5.10, the abscissa is, in fact, the vector of scattering.
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5.3 Diffraction on a Periodic Structure

5.3.1 Reciprocal Lattice

Nowwe consider periodic crystalline structures. The simplest case is one-dimensional

structure realized, for instance, in the smectic A phase, see Fig. 5.8a: the density is

periodic along x with period a, and wavevector q ¼ qx ¼ h(2p/a), h is an integer.

Then the density function can be written as

rðxÞ ¼
X1
�1

dðx� haÞ

and in accordance with (5.16) the scattering amplitude is given by

FðqxÞ ¼
X1
h¼�1

1
a

ð
dðx� haÞeiqxxdx ¼ 1

a

X1
�1

eiqxha:

As exp(iqxha) ¼ 1 only for qx ¼ 2p/a (otherwise it equals 0) the same equation

may be rewritten as

FhðqxÞ ¼ FðqxÞ ¼ 1

a

X1
�1

dðqx � 2p
a
hÞ (5.19)

Therefore, F(q) is a set of the d-like peaks on the q-scale separated by distances

2p/a! These peaks form a one-dimensional reciprocal lattice with basic vector 2p/a,
shown in Fig. 5.8b.

In the three-dimensional-lattice, there are three basic vectors a, b, and c,
Fig. 5.9a, and we can introduce a concept of the reciprocal three-dimensional

lattice. It is a lattice in the wavevector space having the dimension of inverse length

for each coordinate in the inverse space. Such a lattice may be built by translations

of the elementary cell shown in Fig. 5.9b. The basic vectors of the reciprocal lattice

are a*, b*, c* and the vector of the reciprocal lattice is given by

H ¼ Hhkl ¼ ha� þ kb� þ lc� (5.20)

r(x)

a

x0

a

qx2π/a

1D reciprocal lattice

b

xa

1D lattice 

Fig. 5.8 Periodic density distribution (density wave) in one-dimensional crystal (a) and one-

dimensional direct and reciprocal lattices with periods a and 2p/a (b)
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where h, k, l are integers. Vector H is a fundamental characteristic of a three-

dimensional crystal. In the simplest case of a rectangular cell, the reciprocal lattice

has periods 2p/a, 2p/b and 2p/c. For crystals of other symmetry, a* ¼ 2p(b � c)/
(a�b� c), b* ¼ 2p(c � a)/(a�b � c), and c* ¼ 2p(a � b)/(a�b � c) where we see
in denominator the mixed product of the three vectors corresponding to the volume

of elementary cell.

When the crystal is irradiated by an X-ray beam, its lattice scatters the radiation

selectively. A strong diffraction is observed when the wavevector of scattering for a

particular angle (i.e. q) coincides with the vector of reciprocal lattice, as shown in

the Ewald sphere, Fig. 5.10. The condition

q ¼ k� k0 ¼ H

means the conservation of linear momentum of electromagnetic wave. Then,

according to (5.16) the amplitude of scattering is given by

Fhkl ¼ 1

Vc

ð
Vc

rðrÞ exp irHhkldV (5.21)

where integrating is taken over the volume Vc of a single crystallographic cell in the

direct space.

a

c

b

a

a*
c*

b*

bFig. 5.9 A crystal lattice cell

built on the a, b, c vector basis
(a) and a cell of the reciprocal

lattice based on vectors a*, b*,
c* (b)

k

k0

X-ray

electrons

a*

c*

H

2π/λ

Fig. 5.10 Projection of the Ewald sphere on the a*,c* plane in reciprocal lattice for crystal

irradiated by X-rays (solid semicircle) and electrons (dash line). Radius of the sphere is 2p/l.
Lattice vector H connects two points of the reciprocal lattice. When vector of scattering (k � k0)
coincides with H, a strong diffraction is observed at a particular angle defined by Eq. 5.10
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Hence, for the elastic scattering, the ends of the scattering vector of the scattered

beam k must coincide with the points of the reciprocal lattice determined by the

three-dimensional Ewald sphere [1] of radius k ¼ 2p/l0. The center of the sphere is
defined by the direction of k0 (horizontal in the figure) and one of the points. The

X-ray wavelengths are close to the periods of crystal lattices and the sphere

curvature is large. For electrons, the wavelength is much shorter, the sphere radius

of the corresponding Ewald sphere is longer and the sphere surface in the figure is

very flat.

5.3.2 Intensity of Scattering

Consider a three-dimensional crystal. For the scattering amplitude of a discrete

system of j atoms in an elementary cell we can write a formula similar to (5.15):

Fhkl ¼
XN
j¼1

fj exp iðHhklrjÞ; (5.22)

Now the summation is performed over all atoms in one cell and fj is scattering
efficiency of a particular atom. The vector Hhkl determines the angular positions of

the diffraction spots, the coefficient fj determines their form, i.e. the angular

distribution of the scattering intensity within the spot. But how to estimate the

scattered field intensity related to the energy dW/dO scattered at a certain angle # in

a unit solid angle?

The magnitude of the energy flux Q ¼ dW/dO scattered by an object is deter-

mined by the number of electrons in the object, their spatial configuration and the

differential cross-section of scattering by one electron, given by Eq. 5.8. The latter is

normalized to the energy of the primary X-ray beam and is independent of the

distance between an object and a detector. From the measurements of the flux we

can find the scattering efficiency of an atom fj, molecule or any object. The spatial

configuration of electrons determines the scattering amplitude (electric field strength)
at the detector and the flux of the energy is proportional to the squared modulus of the

complex amplitude that is |F(q)|2 ¼ F(q) F*(q). Therefore, for incident flux of

unpolarized beam Q0 ¼ 1, on account of (5.8), the scattered flux is given by

QðqÞ ¼ e2

mc2

� �2
1þ cos22#

2
jFðqÞj2

The differential intensity calculated in that way is related to a point in the

diffraction pattern corresponding to wavevector q. Usually, all multipliers are

excluded, although they can be taken into account when necessary (for example

cos22#), and the scattering intensity I(q) is expressed in relative, “electron units”

[electron2] as follows:

IðqÞ ¼ jFðqÞj2 ¼ FðqÞF�ðqÞ (5.23)
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The intensity can be found from the X-ray diffraction experiment and the result

compared with calculated diffraction pattern that is angular spectrum of the scat-

tered X-ray intensity. To this effect, we should make a Fourier transform F(q) of the
density function r(r) i.e. find the scattering amplitude and then take square of it,

I(q) ¼ |F2(q)|. This works well for solid crystals, but is not always convenient for

liquids, liquid crystals and other soft matter materials in which the thermal fluctua-

tions play a very substantial role. In such cases, the so-called density autocorrela-
tion function appears to be more convenient. However, before to proceed along that

way, we should separate two sources of scattering.

5.3.3 Form Factor and Structure Factor

These are key functions in the X-ray analysis. Let us take Eq. 5.15 for the scattering

amplitude of N scattering objects, e.g. by molecules forming a molecular crystal,

and write the scattering intensity

IðqÞ ¼ FðqÞF�ðqÞ ¼
XN
j

XN
k

fjðqÞfkðqÞ exp iqðrj � rkÞ

Here rj and rk are the same vectors corresponding to the distances shown in

Fig. 7a and sign minus at rk comes from the complex conjugation. Both summations

are made from 1 to N. The same equation may be presented in another form:

IðqÞ ¼
XN
j¼k

fjðqÞfkðqÞ exp iqðrj � rkÞ þ
XN
j 6¼

XN�1

k

fjðqÞfkðqÞ exp iqðrj � rkÞ (5.24)

In the first N terms j ¼ k, q(rj � rk) ¼ 0 and, this sum corresponds to the

intensity coming from the individual atoms or molecules without interference or

diffraction. Such scattering and corresponding terms exist even in the gas phase

(so-called, “gas component”). Thus f jðqÞfkðqÞ ¼ F2
formðqÞ is a smooth decaying

function of q like the square of the atom scattering amplitude shown in Fig. 5.7b.

The second term includes N � 1 times more terms than the first one and has very

sharp maxima at q(rj � rk) ¼ 2p due to periodicity of the crystal lattice. For

identical objects we may also extract fjfk ¼ F2
form(q) from the second sum symbols:

IðqÞ ¼ NF2
formðqÞ þ NF2

formðqÞ
XN
j 6¼

XðN�1Þ

k

exp iqðrj � rkÞ:

The normalized intensity is given by

IðqÞ
NF2

formðqÞ
¼ 1þ

XN
j6¼

XðN�1Þ

k

exp iqðrj � rkÞ ¼ SðqÞ (5.25)
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where S(q) is a structure factor determined by relative positions of the objects

(atoms or molecules) in a medium of given symmetry and the character of their

positional correlations. The normalized scattering intensity is given in “electron”

units.

From (5.25) we may conclude that the total intensity of scattering of a crystal is a

product of a sharp structure factor and a smooth form-factor that is a series of sharp

peaks with a smoothly decaying envelope fjfk. The structure factor can be found

from the experimental angular dependence of the scattering intensity. But what is

the relation between structure factor S(q) and density function?

Theoretically they are related by the Fourier transform

SðqÞ ¼
ð
GðrÞ expðiqrÞdV (5.26)

of a new function, the so-called density correlation function G(r). According to

(5.26) a diffraction structure factor S(q) related to intensity pattern may be calcu-

lated form the known G(r) function by direct Fourier transform (this is a direct
problem of the X-ray analysis). On the contrary, the density correlation function
G(r) may, in principle, be calculated from the measured function S(q) by the

inverse Fourier transform (an inverse problem). Below we shall use these proce-

dures, but, at first, let us consider the Fourier transforms and related operations

more carefully.

5.4 Fourier Transforms and Diffraction

5.4.1 Principle

We know several important examples of the Foutier transform in physics. For

instance, the time evolution of the electric signal f(t) may be related to the

frequency specrum F(o) of the same signal by a Fourier transform. In the diffrac-

tion study we relate spatial periodicity of a density r(r) to the spectrum of the

wavevectors (or angular spectrum) F (q) of the same structure. The direct Fourier

transform of density function is given by operation:

FðqÞ ¼
ð
V

rðrÞ expðiqrÞdV � =½r� (5.27)

The inverse Fourier transform of scattering amplitude is given by:

rðrÞ ¼ 1

ð2pÞ3
ð
q

FðqÞ expð�iqrÞdq � =�1½r� (5.28)
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Note that factor (2p)3 correspond to three-dimensional (3D) case. For 2D and 1D

cases we would have (2p)2 and (2p), respectively. However, very often the factor

(2p)D is skipped at all. The direct and inverse Fourier operators applied consecu-

tively restore the initial density function.

=�1½=½rðrÞ�� ¼ rðrÞ

We meet this case in technics. For instance, in an optical microscope, lenses

fulfil the direct and inverse Fourier transforms: the light is focused by a condenser

onto the object, then diffracted, then collected by an objective, and finally the image

is taken by a video camera and seen on a screen. The form of the object is seen as an

intensity pattern that is a flat distribution of the optical density, because the phases

of the waves forming the image are lost. A holographic technique, which always

uses an interference of scattered rays with a reference beam having a known phase,

allows the restoration of a volume image of the object.

Unfortunately, some important information is also lost in the X-ray diffraction

experiment:

1. The phases of scattered rays are not recorded

2. As density r is real quantity, F(q) ¼ F(�q), the scattering pattern is always

centrosymmetric (Friedel theorem)

3. A possible range of vectors of scattering q ¼ (4p/l)sin# is limited by qmax ¼ 4

p/l
4. An absence of lenses for the X-ray range restricts X-ray applications in compar-

ison with optics

Therefore, it is very difficult to solve the inverse problem mentioned above, that

is to find r(r) from the data on scattering intensity I(q), and one usually tries

different r(r) or G(r) model functions with subsequent calculations of S(q) and
then I(q) for comparison with experiment. Below we consider few examples of such

direct problem solutions.

5.4.2 Example: Form Factor of a Parallelepiped

Consider diffraction by a single transparent parallelepiped with edge lengths

A, B, C, Fig. 5.11a.

� A=2 	 x 	 A=2;�B=2 	 y 	 B=2;�C=2 	 z 	 C=2

Assume density r¼const within the parallelepiped and r¼0 outside of its

volume. According to Eq. 5.17, the scattering amplitude is

FðqÞ ¼
ðA=2

�A=2

ðB=2

�B=2

ðC=2

�C=2

r exp iðqxxþ qyyþ qzzÞdxdydz
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The integral over �A/2 < x < A/2:

r
ðA=2

�A=2

exp iqxxdx ¼ r
iqx

expðiqxxÞjA=2�A=2 ¼ Ar
sinðAqx=2Þ
ðAqx=2Þ ¼ ArDxðA; qxÞ (5.29)

The plot of scattered field amplitude Dx is shown in the upper part of Fig. 5.11b.

It is the so-called sine-integral function. The scattering intensity is shown in the

lower part of the figure. Integrating over the y and z co-ordinates we obtain the

three-dimensional scattering amplitude F(q)¼ rVDxDyDz and intensity I(q)¼
r2V2(DxDyDz)

2.

Note that, for infinitely thick parallelepiped (A!1), there is no diffraction, only

directly transmitted beam is left and the integral becomes d-function. Generally, the
larger parallelepiped dimensions the narrower is the central peak. We shall come

back to this point when discussing the diffraction on thin layers of a smectic

A liquid crystal.

Consider two interesting particular cases shown in Fig. 5.12:

1. In the top left sketch, the parallelepiped is degenerated into the infinitely thin

plane with dimensions A!1, B!1, C!d(z). All its density is concentrated in

a

C

B
A

b

qx

1

1

qx

Δz

Δ

4π
Α

Fig. 5.11 Geometry of the

parallelepiped discussed (a)
and the patterns (b) of the
diffraction amplitude (above)
and intensity (below)

z

y
x

qz

qx

qy

ρ00∞

F∞∞0

z

y

x

qz

qx

qy

ρ∞∞0

F00∞

a b

Fig. 5.12 Fourier transforms

(lower drawings) of a plane

into a line (a) and a line into a
plane (b)
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plane x,y that symbolically can be written as r110 Then, scattering field

amplitude F(q) ¼ F001 is degenerated into a line along the z-axis, as shown

in the bottom left sketch. The square of the field amplitude corresponds to the

form-factor of an infinite square (or roughly speaking, to a very large square-like

molecule).

2. Density r001 is concentrated along the z line, C!1, A!d(x), B!d(y). Then
F(q) ¼ F110, that is the scattering amplitude is degenerated into the qx, qy-
plane with Dz !d(qz), see right sketches. The intensity pattern corresponds to

the form-factor of an infinite rod (or, roughly speaking, to a very long rod-like

molecule).

5.4.3 Convolution of Two Functions

The structure of a molecular or a liquid crystal is a result of convolution of two
density functions, the density of a group of atoms in a molecule and periodic density

function of a lattice. Let us look at the convolution procedure. By definition, the

convolution of two functions f1(x) and f2(x) is given by the expression

QðxÞ ¼ f1ðxÞ�f2ðxÞ ¼
ð1

�1
f1ðx0Þf2ðx� x0Þdx0 (5.30)

Here, the asterisk means the convolution operation. Such a convolution gives

distribution of one function over a law given by the other. For example, on the

top of Fig. 5.13 there are two functions of the same variable x, function f1(x) and
function f2(x)¼d(x � a) located at different positions on the x-axis. After their

convolution and using
R1
�1 dðxÞdx ¼ 1, we shall get

ð1

�1
f1ðx0Þdðx� a� x0Þdx0 ¼ f1ðx� aÞ

ð1

�1
dðx� a� x0Þdx0 ¼f1ðx� aÞ;

a
δ(x–a)

f1(x)
xa

b
f1(x–a)

a x

Fig. 5.13 Convolution

operation: function f1(x)
convoluted with the other

function d(x�a) occupies the
position of the second

function on axis x
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and function f1(x) is translated into function f1(x � a) keeping the same form, as

seen in the lower plot. If the second function consists of two delta functions, f2(x)¼d
(x � a)+ d(x � b), we find our function f1(x) at both new positions, a and b, i. e.
f1(x) will be doubled. An arbitrary smooth function f2(x � xn) can be represented as
a sum of n columns of different height or, more strictly, an infinite sum of delta-

functions f2(x � xn)¼Sand(x � xn) (n¼1). Then f1(x) will be distributed over the

whole sets of the columns, that is over the law given by the f2(x � xn) function.
Going back to solid or liquid crystals we can say that the convolution procedure

distributes molecular density over the sites of the crystal lattice. On the left side of

Fig. 5.14, the two functions, the electron density of a molecule rmol(r) and discrete
points of the lattice density rlattice(r) ¼Sd(ri � rj) are shown separately (before

convolution). On the right side we see the result of their convolution. Note that the

convolution operation f1(x)* f2(x) is dramatically different from the multiplication

operation f1(x)f2(x). An example is illustrated by Fig. 5.15, in which function f2(x) is
the same rlattice(r) function as in the previous picture and f1(x) is the so called box-

function. The latter is equal to 1 within its contour and 0 outside. The multiplication

selects only few d-functions from the whole lattice. On the contrary, the convolu-
tion translates rmol into new functional space, namely the space of rlattice.

For the future discussion of the liquid crystal structure we need two important

theorems. The first of them, the theorem of convolution is formulated as follows: a

Fourier transform of convolution of two functions f1(x) and f2(x) is a product of their
Fourier transforms F1(q)�F2(q):

=ðf1�f2Þ ¼ =ðf1Þ � =ðf2Þ ¼ F1ðqÞ � F2ðqÞ (5.31a)

convolution
→

•

• •
j

• •

• • • •

• • • •

• • • •

r ri

O

ρρmol ρρlattice ρρmol* ρρlattice

i
T

Fig. 5.14 Convolution

operation rmol*rlattice that
distribute molecular density

rmol over the sites of a crystal

lattice (filled symbols

represent molecules, O is the

reference point, r and ri are
radius-vectors of a molecule

and lattice points, T is vector

of translations)

Fig. 5.15 A multiplication

operation with a box-function

f1 and function f2¼rlattice(r)
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The second one called the theorem of multiplication is an inverse of the first: the

Fourier transform of the product of two functions f1(x) and f2(x) is convolution of

Fourier transforms of each of them F1(q)*F2(q):

=ðf1 � f2Þ ¼ =ðf1Þ�=ðf2Þ ¼ F1ðqÞ�F2ðqÞ (5.31b)

5.4.4 Self-Convolution

Let us make the inverse Fourier transform of the scattering intensity (5.23) and use

the properties of the Fourier integral:

=�1fFðqÞ � F�ðqÞg ¼ rðrÞ�rð�rÞ ¼
ð
rðuÞrðrþ uÞdu ¼ PðrÞ (5.32)

As a result, we obtain the convolution of the density function r(r) with the same

function inverted with respect of the origin of the reference frame r(�r). Note that
the minus sign appears due to different signs in the exponents for two complex

conjugates in (5.28). The P(r) function is known as density autocorrelation function
or the Paterson function when used in structural analysis. Thus, we may write the

inverse and direct Fourier transforms as follows:

PðrÞ ¼
ð
IðqÞe�iqrdq (5.33)

and

IðqÞ ¼
ð
PðrÞeiqrdV (5.34)

It means that the scattering (or diffraction) intensity and the autocorrelation

function are reciprocal Fourier transforms similar to the reciprocal transforms of

scattering amplitude F(q) and density r(r). It should be noted that in statistical

physics one widely uses the density correlation function G(r) mentioned earlier

(5.26) that is related to the structure factor S(q) exactly as the Paterson function is

related to intensity of scattering I(q). Below we prefer to use G(r).
Resuming this section, remember that there are two approaches to calculate the

scattering intensity I(q):
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1. To make a Fourier transform of density r(r), in order to find the scattering field

amplitude FðqÞ ¼ Ð
V

rðrÞ exp iðqrÞdV and then to make a product I(q) ¼
F(q) F*(q).

2. To make a Fourier transform directly of density correlation function G(r), and
obtain intensity structure factor S(q) that, according to Eq. 5.25 is normalized

intensity I(q):.

SðqÞ ¼ =½GðrÞ� ¼ IðqÞ
NF2

form

(5.35)

Further on we shall follow the first approach for discussion of crystals and the

second one for discussion of liquids and liquid crystals.

5.5 X-Ray Diffraction by Crystals

We begin this section with an example of the X-ray diffraction on the nematic,

smectic A and crystalline smectic B phases. In Fig. 5.16 there is a series of X-ray

photos of the same mesogenic compound at different temperatures. In this experi-

ment, the material flow induced by the electric current aligns molecular axes in the

nematic phase parallel to the field direction, which is horizontal, but in the SmA

phase parallel to the smectic layers. Correspondingly diffraction patterns of the

nematic and smectic phase considerably differ from each other. In the crystalline

SmBcr phase the picture shows the six-fold rotation axis perpendicular to the figure

plane. Below we shall discuss such pictures in detail, but let us begin with solid

crystals.

Fig. 5.16 X-ray diffractograms of p-anisalamino-cinnamic acid in different phases, nematic,

smectic A and crystalline smectic Bcr
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5.5.1 Density Function and Structure Factor for Crystals

5.5.1.1 Density Function

In crystals this function has three-dimensional periodicity. For simplicity, here we

only consider the one-dimensional projection of the three-dimensional crystal. In

this case, the density function with period a is very simple

rðxÞ ¼ r0 þ
X
m

rm cosmq0x; q0 ¼ 2p=a;

As shown in Fig. 5.17a it consists of densitymaximawith a constant amplitude. The

width of the peaks is governed by the thermal fluctuations of atoms, D � (kT/b)1/2

(b is a compressibility modulus). At room temperature, such fluctuationsmay be of the

order of 10%of the interatomic distances. At zero temperature themaximawould have

the size of atoms or molecules comprising a crystal.

5.5.1.2 The Structure Factor

According to (5.27) the amplitude of scattering F(q) for our one-dimensional

crystal is given by Fourier transform of density function r(x). Since we have only
the sum of cosine functions there are only discrete harmonics at wavevectors

q ¼ mq0 ¼ 2pm/a. The structure factor (5.25) is proportional to scattered light

intensity F(q)F*(q) and also consists of harmonics represented by d-functions
situated at the same wavevector values q ¼ 2pm/a and having amplitude r2m:

SðqÞ ¼
X
m

r2mdðq� mq0Þ (5.36)

Fig. 5.17 Three-dimensional crystal considered along one direction: density function with equi-

distant maxima blurred by thermal fluctuations (a) and the angular spectrum of the structure factor

(b). The height of the d-type maxima is given by squared amplitudes of the density harmonics and

is additionally modulated by both the molecular form-factor (MMF) and Debye-Waller factor

(DWF)
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The correspondent X-ray picture consists of a set of narrow discrete equidistant

spots at q ¼ mq0 along the direction of periodicity. The angular spectrum of the

structure factor is shown schematically in Fig. 5.17b. The amplitudes of harmonics

depend mostly on the shape of the density curve and determine a number and

the height of the d-type maxima. The peak amplitudes are weakly modulated

by the molecular form factor (MFF) and additionally by thermal fluctuations

through the factor of Debye-Waller (DWF): for the one-dimensional case

I / expð�<u2>q2=3Þ [1]. Here < u2 > is the mean square amplitude of the ther-

mal oscillations of atoms proportional to temperature. Due to the exponential

factor, higher harmonics are much more sensitive to temperature and strongly

decrease Bragg diffraction intensity (but not the peak sharpness) with increasing

temperature.

5.5.2 A Crystal of a Finite Size

This case is important for thin crystalline films. At first, let us look at the simplest

infinite one-dimensional model of the crystal structure, Fig. 5.18, having only zero

and first harmonic of density,

rðxÞ ¼ r0 þ r1 cosð2px=aÞ:

The direct Fourier transform of this function is two delta functions with ampli-

tude r0 and r1 located at q ¼ 0 and q ¼ 2p/a. It is shown in the Inset to Fig. 5.18.

Disregarding the zero Fourier harmonic the corresponding intensity of scattering

for the infinite one-dimensional crystal is:

IðqÞ ¼ FðqÞF�ðqÞ ¼ r21dðq� 2p=aÞ:

A finite one-dimensional crystal is an analogue of a wave packet confined

between � A/2 and A/2 points, shown in Fig. 5.18. Its scattering amplitude

FðqÞ ¼
ðA=2

�A=2

r1 � cosð2px=aÞ � expðiqxÞdx (5.37)

q=2π/a q
ρ1

ρ0

0

1

2

ρ

x

2ρ1

A/2–A/2 0

ρ0

a

Fig. 5.18 Sine (or cosine)

form density function for an

infinite sample showing the

density wave components

r0 and r1 (main plot) and its

angular spectrum (inset)
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Within these limits, direct integrating is difficult. However, the scattering ampli-

tude may be found using the convolution theorem (Eq. 5.31a). The integral may be

presented as a convolution f1(x)*f2 (x) where f1¼r1 (like in case of parallelepiped)

and f2 ¼ cos(2px/a). Applying the convolution theorem we obtain the scattering

amplitude from the two amplitudes found earlier, see Eqs. 5.29 and 5.36 for m ¼ 1:

FðqÞ ¼ =½f1ðxÞ�f2ðxÞ� ¼ F1ðqÞF2ðqÞ ¼ r1A
sinðAq=2Þ
ðAq=2Þ � dðq� q0Þ

We have again found the scattering field amplitude in the form of sine integral.

The correspondent intensity spectrum is similar to that for the parallelepiped, see

Fig. 5.11b,

IðqÞ ¼ FðqÞF�ðqÞ ¼ A2r21
sin2½Aðq� q0Þ=2�
½Aðq� qoÞ=2�2

(5.38)

However, there is a shift of the entire parallelepiped diffraction spectrum by q0
on the wavevector scale; the curve for a parallelepiped without density modulation

is centered at q ¼ 0 whereas the curve for the modulated structure is centered at

q ¼ q0. Such a shifted angular spectrum of diffraction intensity is very similar to

that observed on the freely suspended films of smectic A liquid crystals. It allows

the determination of both the smectic layer period and the film thickness.

5.6 Structure of the Isotropic and Nematic Phase

5.6.1 Isotropic Liquid

This is the other extreme case with respect to crystals. The density correlation

function G(r) is spherically symmetric decaying function. It is very instructive to

find, at first, the structure factor (5.26) for any function of the spherical symmetry.

We should use spherical frame with volume element dV ¼ r2sin#djd#dr:

SðqÞ ¼
ð2p

0

df
ðp

0

sin#dy
ð1

0

GðrÞeiqrr2dr

Since qr ¼ qrcos#¼t we substitute sin#d# by –dt/qr and get

SðqÞ ¼ 2p
ð1

0

GðrÞdr
ðqr

�qr

eit
r2

qr
dt ¼ 4p

ð1

0

GðrÞr2 sin qr
qr

dr
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Now, we may use the simplest density correlation function for an isotropic

unstructured liquid in the form GðrÞ ¼ r2r�1e�kr where k ¼ x�1 is an inverse

value of the correlation length x comparable with molecular size [5]. Then, using

Euler formula and integrating over r-coordinate we find the structure factor of a

liquid without any short-range structure:

SðqÞ ¼ 2pr2

iq

ð1

0

e�kr eiqr � e�iqr
� �

dr ¼ 2pr2

iq

1

k� iq
� 1

kþ iqÞ
� �

¼ 4pr2

q2 þ k2
(5.39a)

The structure factor and intensity of scattering (5.25) have a spherically sym-

metric Lorentzian form centered at the zero wavevector qc ¼ 0. The full width on

the half a maximum (FWHM) is equal to 2k¼2/x.
In real liquids there is a short-range positional order because each particular

molecule has nearest neighbors forming few so-called coordination spheres. There-

fore, each selected molecule “feels” its nearest neighbors and the G-function
oscillates. For simplicity, we can take only the first harmonic of density oscillation

and write the density correlation function as follows:

GðrÞ ffi r20 þ r21r
�1 expð�r=xÞ cos 2pr=a (5.39b)

This equation shows that positional correlations described by the cosine multi-

plier exponentially decay at a distance x, as shown in Fig. 5.19a. The scattering field
intensity of a liquid can be found from (5.39b) and (5.35) with the help of the

convolution theorem given by Eq. 5.31:

IðqÞ ¼ =½GðrÞ� ffi r20

ðr

0

expðiqrÞdr þ r21

ðr

0

r�1 expð�r=xÞ cosð2pr=aÞ expðiqrÞdr

¼ r20dð0Þ þ r21½=ðr�1e�r=xÞ�=ðcos 2pr=aÞ�

G(r)
exp(–r/ x)

Dq = 2/ x

0 0– q – q0 q0 qa 2a r

S(q)
a b

Fig. 5.19 Isotropic phase. Pair density correlation function (a) and the corresponding structure

factor (b)
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The first term for q ¼ 0 is not interesting (r0 can be found by other techniques,

e.g. by dilatometry). The product term with r1
2 is a result of the convolution

theorem and we already have the two Fourier transforms mentioned, namely, the

structure factor of unstructured liquid, that is Lorentzian (5.39a) and the structure

factor of a crystal that is delta-functions, Eq. 5.36:

IðqÞ / SðqÞ / 4pr21
q2 þ x�2

� dðq� 2p=aÞ ¼ 4pr21
jq� q0j2 þ x�2

(5.40)

Thus, the structure factor of the liquid with a short-range periodicity is the two

Lorentzians centered at q ¼ qo ¼2p/a and q ¼ –q0, Fig. 5.19b. Their positions are
a measure of the molecular size a and their widths are a measure of the characteris-

tic distance x for the short range molecular correlations. The total intensity of

scattering for positive q is shown in Fig. 5.20a. Note that the curve for the total

intensity is slightly asymmetric because this function is a product of the form factor

and the structure factor according to Eq. 5.25.

An experimental X-ray pattern for a liquid looks like that shown in Fig. 5.20b.

The spot centered at q ¼ 0 is very strong and usually screened deliberately off.

What is of importance is a diffused ring located at scattering vector q0 (or scattering
angle #0) given by equation

q0 ¼ 2p
a

¼ 4p sin#0

l
i.e:; a ¼ l

2 sin#0

:

Therefore, the average molecular size a can be found from the angle #0.

5.6.2 Nematic Phase

The density correlation function for nematics has the same liquid-like form, but

anisotropic, namely, cylindrically symmetric. Along the two principal directions,

Fig. 5.20 Isotropic phase. Angular dependence of structure factor (SF), molecular form factor (FF)

and total intensity of scattering (a) and a typical pattern of scattering observed in experiment (b)
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parallel and perpendicular to the director n ¼ nz, the correlation lengths x|| and
x⊥are different for the x and y directions:

G?ðr?Þ / r�1
? expð�r?=x?Þ cos q?r?

in the z-direction:

GjjðzÞ / z�1 expð�z=xjjÞ cos qjjz

In the simplest approximation, functions G⊥(r⊥) and G|| (z) determine the

structure factor. The form-factor contributes to diffraction pattern negligibly for

small rod-like molecules comprising typical thermotropic nematics but may be

important for biological materials.

An X-ray pattern for a typical nematic with rod-like molecules taken with the

help of a photographic film is presented in Fig. 5.21a [6]. The molecules are

oriented vertically. Along the vertical, two spots are seen at small angles; they

correspond to small wavevector q|| ¼ 2p/a||. From this angle of diffraction one can

find a|| (length of a rod-like molecule). Along the equator (horizontal line) the spots

are separated by larger distance, q⊥¼2p/a⊥> q||. The q⊥ position gives us diameter

of a molecule. Usually a||/a⊥ � 4–5. Thus two molecular dimensions and two

correlation lengths can be found [7].

The equatorial spots are extended in the vertical direction and have the form

of arcs: the intensity decreases with increasing #-angle as shown in Fig. 5.21b.

This is a result of a non-ideal orientational order: the higher the order parameter

S, the shorter the arcs. From the diffractogram one can find the distribution of

intensity and calculate S [7]. In some cases, even the orientational distribution

function for molecules f(#) can be calculated from experimental data as sche-

matically shown in Fig. 5.22. Generally, the shape of the function is determined

by different Legendre polynomials P2(cos#), P4(cos#), etc. (see Section 3.3)

and, in principle, different order parameters P2, P4 etc. can be found from

experiment.

Fig. 5.21 Nematic phase. Typical photo [6] of a diffraction pattern for a nematic liquid crystal

with the director aligned vertically (a) and the scheme explaining this pattern (b)
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5.7 Diffraction by Smectic Phases

5.7.1 Smectic A

Smectic A is a one-dimensional crystal and, at the same time, a two-dimensional

liquid. What kind of a diffraction pattern should it have? A naive expectation for a

thick (or infinite) sample of the smectic A phase is as follows. If we have a one

dimensional density wave in the z-direction r ¼ r1 cosð2pz=aÞ þ ::: and neglect

higher order terms, the intensity along the z-axis ought to be a single Bragg peak in

the form of the delta function located at q ¼ 2p/a as shown in the Inset to Fig. 5.18.
Note that an additional peak related to the r0 term is always situated at q ¼ 0. For

the directions x and y perpendicular to the director there should be no difference

between the density correlation functions for smectic A and nematic phases.

Indeed, the naive expectation is correct for the x and y directions; we do have in

smectic A liquid like correlations G(x,y)/exp(�r⊥/x⊥) and the Lorentzian struc-

ture factor, as in Fig. 5.19.

However, in experiment [8], instead of the delta-function form of the intensity

peaks along the z-direction dðqjj � q0Þ, quasi-Bragg singularities have been

observed with the tails described by a power-law as shown in Fig. 5.23a,

IðqÞ / ðqjj � q0Þ�2þ�
(5.41a)

with small Z~0.1, depending on temperature. Such a structure factor may be

understood if the density correlation function is not a constant but obeys a power

law of the type [8, 9]:

GðzÞ / z�� (5.41b)

Thus, instead of the true long-range order we have a quasi-long-range order with

the density correlation function (5.41b) qualitatively shown in Fig. 5.23b.

But what is a physical sense of parameter Z? The answer is given by a theorem

related to a more general question, whether true one- or two- dimensional crystals

1
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Fig. 5.22 Qualitative picture

of the orientational

distribution function

calculated from the angular

dependence of the diffracted

intensity along the arc

depicted in Fig. 5.22b
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exist in Nature at all, for example, stable one-dimensional smectic A or two-

dimensional discotic liquid crystals. Now we encounter a new type of order,

known earlier only theoretically.

5.7.2 Landau-Peierls Instability

We know that, at a finite temperature, the position of atoms or molecules in a crystal

(or liquid crystal) fluctuate that is density r(r) is a fluctuating value. With increas-

ing size of a crystalline sample or a distance with respect to a reference point, the

mean square displacement of atoms due to thermal fluctuations is growing. The

question to be answered is whether the crystalline structure is stable for the infinite

sample. Landau and Peierls [5] have found that the answer depends on dimension-

ality of crystals.

5.7.2.1 Displacement and Free Energy

Let u(x, y, z) is a vector of displacement of a small piece of a three-dimensional

crystal at its position x, y, z. A characteristic linear size of the piece is L. Our task is
to find an expression for the mean square value < u2(r) > of the displacement

[10]. We begin with the Fourier transform of u(x, y, z). Now each harmonic of

displacement has its amplitude u [cm] and wavevector q [cm�1]:

uðrÞ ¼
X
q

uq expðiqrÞ (5.42)

Here, the components of wavevector q acquire both positive and negative values

u�q ¼ u�q in the range of L�1 < |q| < a�1 where a is a lattice constant. We are

interested in the additional free energy term dF originated from the displacement:

dF ¼ 1

2
C3

ð
V

@uðrÞ
@r

� �2
d3r (5.43)

2p/a

G(r)

r –h

I(q)

q 0 a 2a 3a r

a b

Fig. 5.23 Diffraction intensity (a) and density correlation function (b) for the smectic A phase

with a positional, quasi-long range, molecular order along the symmetry axis
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Here, for simplicity, we use a scalar displacement u and a single elasticity

coefficient C3 for a three-dimensional crystal without anisotropy. C3 has an order

of magnitude 1010–1011 erg/cm3 (or 109–1010 J/m3). Note that dF cannot depend on

displacement explicitly since any vector u ¼ const corresponds to a shift of the

whole crystal and dF ¼ 0. Linear terms ∂u/∂x, etc. do not contribute to dF because

dF has minimum at u ¼ 0. Therefore, for small displacements, like in the Hooke

law, only terms quadratic with respect to the first derivatives are important. Now,

using (5.42) we find the Fourier expansion of derivatives

@u

@r
¼

X
q

ðiqÞeiqruq

and insert them into Eq. 5.43 to obtain the expansion of the free energy

dF ¼ 1
2

X
q

X
q0

C3uquq0 ð�1Þqq0
ð
V

eiðqþq0Þrd3r:

Note that uquq0 ¼ uquq
� ¼ juqj2 and the integral

Ð
V

eiðqþq0Þrd3r ¼ Vdqþq0. For q

¼�q0 the Kronecker symbol dii¼1 and the integral equals the crystal volume V; for
q 6¼-q0 the symbol dij ¼0 and the integral vanishes. Hence,

dF ¼ 1
2
VC3

X
q

q2juqj2 ¼
X
q

dFq:

From this equation and the equipartition theorem hdFqi ¼ kBT=2 we find the

Fourier component of the mean square displacement (in q-space):

hjuqj2i ¼ kBT

VC3q2
(5.44)

For the mean square displacement in the r-space

hu2ðrÞi ¼
X
q

hjuqj2i ¼ V

ð2pÞ3
ð
hjuqj2id3q

Here the summation is substituted by integration over the volume in the q-space
and (2p)3 is a factor that relates the volumes in q- and r-spaces in three dimensions.

More generally, (2p)D is a factor for any space of D dimension: in the one

dimensional space (D ¼ 1), the reciprocal lattice vector length is q ¼ (2p)/a, for
D ¼ 2 the reciprocal lattice area is qxqy ¼ (2p)2/ab, etc.

Finally, using Eq. 5.44, we can write the value of the mean square displacement

in the three dimensional r-space (d3q ¼ 4pq2dq is a volume of a spherical layer in

the q-space):
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hu2ðrÞi ¼ kBT

ð2pÞ3C3

ðqmax

qmin

d3q

q2
¼ kBT

2p2C3

qj2p=a
2p=L ¼

kBT

pC3

1

a
� 1

L

� �
¼ const (5.45)

For a space of dimensionality D, we obtain a more general expression:

hu2ðrÞi ¼ kBT

ð2pÞDCD

ðqmax

qmin

ddq

q2
(5.46)

Now, elastic coefficients CD have different dimensions, particularly [erg�cm�2]

for D ¼ 2 and [erg�cm�1] for D ¼ 1.

5.7.2.2 Stability of Crystallographic Lattices of Different Dimensionality

Let us come back to the three dimensional crystal and Eq. 5.45. When crystal size L
increases to infinity (i.e. approaches the so-called thermodynamic limit), then

hu2ðrÞi ! kBT

pCa
¼ const

and the mean square value of displacement remains independent of the crystal size.

From this equation, with kBT � 4 � 10�14 erg and a � 10�7 cm (molecular crystal)

we have small displacements of the other of u � 10�9 cm (0.1 Å). The crystalline

order does not blurred, i.e., remains true long-range order.
A two-dimensional crystal (D ¼ 2) is nothing more than a single atomic or

molecular monolayer. The latter may be prepared from graphene or in the form of a

Langmuir film floating on water. For such a monolayer, d 2q ¼ 2pqdq is an area of
a ring with circumference 2pq and width dq and Eq. 5.46 takes the form:

hu2ðrÞi ¼ kBT

2pC2

ðqmax

qmin

dq

q
¼ kBT

2pC2

ln j2p=a
2p=L ¼ kBT

2pC2

ln
L

a
(5.47)

For L!1, this integral diverges with its area logarithmically, that is very

slowly. Such a film has quasi-long-range order.

A one-dimensional crystal (D ¼ 1) is a single chain of atoms or molecules

without any interaction with its surrounding. Eq. 5.46 reads:

hu2ðrÞi ¼ kBT

2pC1

ðqmax

qmin

dq

q2
¼ kBT

2pC1

ð�q�1Þj2p=a
2p=L ¼

kBT

4p2C1

L (5.48)
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For L!1 the mean square displacement grows linearly with the chain length

and only the short-range order may exist.

Recall that the smectic A phase is a three-dimensional phase which is simulta-

neously one-dimensional crystal in the direction along the layer normal and two-

dimensional liquid in the layer plane. So, the Eq. 5.46 cannot be applied to this

strongly anisotropic system. We shall consider this problem in detail after discussion

of anisotropic elastic properties of SmA in Chapter 8. Now we only mention that, in

comparison to the linearly divergent order of a one-dimensional chain given by

Eq. 5.48, the two- dimensional (x,y) liquid structure of smectic layers strongly

stabilizes the fluctuations along the smectic layer normal (z). As a result, the diver-
gence of fluctuations with a distance follows the logarithmic law with increasing size

of the SmA in the z-direction L, and the order become quasi-long-range. It is the order

that results in the power law seen in Fig. 5.23b. Correspondingly, the power index Z
in Eq. 5.41 can be expressed in terms of SmA interlayer distance l or q0 ¼2p/l and
elastic moduli for layers compressibility B and director distortion K [11].

� � q20kBT=8pðKBÞ1=2 (5.49)

The estimates result in the values of Z of the order of 0.1–0.5.

5.7.3 “Bond” Orientational Order in a Single Smectic Layer
and Hexatic Phase

Imagine that we have a film only one molecule thick (a smectic monolayer with or

without tilt of molecules). In such a single layer, the nematic orientational order is

not discussed although some orientational order (or disorder) of long molecular

axes may be important. We are interested in a new type of quasi-long-range order

not forbidden by the Landau-Peierls theorem for the two-dimensional systems,

Eq. 5.47. A monolayer can be liquid-like i.e. its translational order is absent and

molecules may be situated chaotically at any place in the layer plane. Liquid-like

order means that not only the distances between molecules are not fixed but also no

correlation exists in their angular positions. However, at a reduced temperature the

full translational symmetry within the layer plane is broken only partially and the

true positional order is not installed. The new order describes the positions of

molecular gravity centers along the connecting lines or “bonds” (not to be confused
with chemical bonds). However, the distances between the molecules are not fixed.

For example, in Fig. 5.24 all the molecules in the neighbour areas 1 and 2 sit in the

points of hexagonal lattice but, at some distance from the reference area 1, the

positions of molecules in area 3 do not coincide with the lattice cross-points.

Nevertheless lattice vectors a and b still look along the grid lines and keep the

hexagonal order.
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A two-dimensional phase with a bond orientation order is called hexatic phase
[12, 13]. It has six-fold symmetry D6h and a new, two-component order parameter

C ¼ C0 exp i6jðrÞ (5.50)

where j(r) is the angle a local “bond” vector forms with a reference system. It is a

phase with a new order parameter and C0 is its amplitude. The mean square

displacements < (dj)2 > logarithmically decay with a distance from a reference

point following Eq. 5.47 although with a special, “bond” elastic modulus Kbond. The

density correlation function follows the power law decay GCðrÞ / r��C due to

fluctuations in the “bond” angle. The temperature dependent amplitude C0 of the

two-component order parameter C takes the values between 0 and 1. Note the

analogy with the two-component order parameter of the smectic C phase, although

the symmetry of the two phases is different.

Depending on a material, single smectic monolayers can exist in two different

modifications, liquid-like and hexatic like. Properties of these monolayers are

shown in Table 5.1. Upon melting, a two-dimensional hexatic layer undergoes

the transition into the liquid-like layer. It is spectacular that hexatic layers like

liquid layers do not support the in-plane shear [14]. The layer can be sheared by as

small force (stress) as is wished.

5.7.4 Three-Dimensional Smectic Phases

5.7.4.1 Uniaxial Orthogonal

In three dimensions the situation is different, because there are interactions between
the layers that may stabilize more ordered phases. Now the in-plane ordering and

b

ϕ
1

a

a

b

3

2

Fig. 5.24 Schematic picture

of molecular ordering in a

single smectic layer with

liquid-like short range

positional order and quasi-

long range hexatic order

Table 5.1 In-plane order parameters and correlations for two dimensional single layers

Order/layer type Liquid layer Hexatic layer Crystal layer

Positional order Liquid-like Liquid like Quasi-long range

Positional correlations exp(�r/x) exp(�r/x) r��

“Bond” orientation order Liquid-like Quasi-long range Long range

“Bond” correlations <cc> exp(�r/x) r�� Const
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the ordering along the layer normal in the three-dimensional, uniaxial, orthogonal

(without tilt) smectic phase should be discussed separately. The in-plane structural
characteristics of the smectic A phase and smectic Bhex hexatic phase are presented

in Table 5.2. Note that, in the three-dimensional hexatic phase, the quasi-long-range

hexatic order inherent to a single monolayer is substituted by the true long-range

hexatic order with constant correlation function GCðr?Þ. As to the out-of-plane

positional order in the hexatic phase, it is quasi-long-range with power law correla-

tions <rzrz > of the z�� type [14]. The same table is illustrated by Fig. 5.25. It is

seen how a continuous, blurred diffraction ring typical of the smectic A phase is

substituted by a six-spot diffraction pattern for the hexatic Bhex and then by a six-

point pattern for smectic Bcr (crystalline) phase. An example of the experimental

X-ray diffraction pattern for a thick layers of the smectic A and Bcr phases was

illustrated by Fig. 5.16.

On the other hand, the experiments with very thin free-suspended films of

smectics show that the crystalline order in certain substances with weak interlayer

interactions may exist only in the surface layers [11]. In thick films the smectic

layers are mostly liquid. However, within the same thin film one may observe the

layer-by-layer crystallization. For example, the entire sequence of phase transitions

SmA-SmBhex-SmBcr is shifted downward as one advances into the bulk from the

Table 5.2 Order parameters and density correlations for three-dimensional smectic A, hexatic

Bhex and crystalline Bcr

Order/uniaxial phase SmA Hexatic-Bhex Crystalline-Bcr

In-plane positional order liquid-like Liquid like Long-range

In-plane positional correlations exp(�r/x) exp(�r/x) const

In-plane “bond” orientation order exp(�r/x) Long range Long range

In-plane “bond” order correlations exp(�r/x) const const

Interlayer positional order Quasi-long range Quasi-long range Long range

Interlayer positional correlations z�� z�� const

Fig. 5.25 Comparison of in-plane the diffraction patterns for the smectic A (a), smectic Bhex (b)
and smectic Bcr (c) phase. Below are qualitative dependencies of scattering intensity on the

diffraction angle for the three phases
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first (surface) layer to the second, third, etc. layers of the same film. It means that, in

the bulk, the liquid-like phase is more stable that the crystalline one and the surface

forces are very important.

5.7.4.2 Biaxial Orthogonal

In biaxial orthogonal smectics the symmetry is further reduced. For example, the

group theory predicts phase transitions from smectic A (symmetry D1h) into

smectic Ab with symmetry C2h, that is a biaxial SmA phase with a hindered rotation

of molecules about their longitudinal axes. It is also possible a transition from SmB

into an exotic SmBq phase with symmetry D3h due to specific distribution of

positive and negative electric charges alternating along the perimeter of the hexag-

onal elementary cell [15]. Such a phase has not been reported yet.

On cooling, the smectic Bhex phase (symmetry D6h) can transit into smectic E

(SmE) with herringbone packing and point group symmetry C2h. It is shown in

Fig. 5.26 together with a sketch of the characteristic X-ray diffractogram. In fact,

SmE is true crystalline phase.

5.7.4.3 Biaxial Tilted

When molecular axes (director) are tilted by some angle with respect to the smectic

normal we have the remarkable correspondence between the tilted and orthogonal

phases: SmC � SmA (both have liquid layer structure); SmF � SmBhex (hexatic

layer structure); SmH � SmBcryst (crystalline layer structure).

As an example, consider the X-ray diffraction by the smectic C phase of p-di-
heptyloxyazoxybenzene [16]. Since always there is a possibility to align the

director by a magnetic field along a certain, well defined direction (e.g., vertical

as in Fig. 5.27) we expect that the diffraction pattern from the layered structure will

also be tilted through the same angle with respect to the vertical. However, as a rule,

Fig. 5.26 Smectic E phase. The herringbone structure (a) and corresponding diffraction pattern

(b) for two different directions of scattering, parallel (q||) and perpendicular (q⊥) to the director. As
an example, the two Miller indices are shown only for q||. They mark Bragg reflections of the first

and second orders from the horizontal crystallographic planes
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the layers are broken and acquire a tilt in two opposite directions as shown in sketch

Fig. 5.27c. Therefore, the diffraction pattern becomes symmetric (degenerate) with

respect to the vertical and, instead a pair of the first order spots, we see four spots on

photo (Fig. 5.27a). It is a so-called four-point pattern. The molecular tilt angle # can

be found as shown in Fig. 5.27b. The broad arcs at the equatorial (horizontal) line

are due to orientational (nematic) order.
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Chapter 6

Phase Transitions

Liquid crystals manifest a number of transitions between different phases upon

variation of temperature, pressure or a content of various compounds in a mixture.

All the transitions are divided into two groups, namely, first and second order

transitions both accompanied by interesting pre-transitional phenomena and usually

described by the Landau (phenomenological) theory or molecular-statistical

approach. In this chapter we are going to consider the most important phase transi-

tions between isotropic, nematic, smectic A and C phases. The phase transitions in

ferroelectric liquid crystals are discussed in Chapter 13.

6.1 Landau Approach

In Fig. 6.1 we have an example of the experimental phase diagram for homologues

of 4-ethoxybenzene-40-amino-n-alkyl a-methyl cinnamates [1]. We see that, with

increasing length of the alkyl chain, the temperature range of the nematic phase

between the isotropic and smectic A phase becomes narrower. This range is limited

by solid lines corresponding to the phase transitions between different phases. How

to explain this diagram? We may begin with the molecular properties and intermo-

lecular interaction and try to calculate the temperature range of stability of a

particular phase, the values of the order parameters and thermodynamic functions

such as free energy and others. This approach will be discussed in the end of this

chapter. Another approach is based on phenomenological description of the phase

transitions and called Landau theory of phase transitions. The key issue is the

symmetry of the phases and corresponding order parameters related to a particular

transition. Such an approach appeared to be very powerful and relatively simple.

Imagine a series of transitions between phases of different symmetry, as shown

in Fig. 6.2, for instance, with decreasing temperature. Our task is to select one of

these transitions, find the temperature behaviour of the order parameter and other

thermodynamic functions close to the phase transition [2]. To this effect, we should

make the following steps.
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1. From symmetry consideration we should choose a proper order parameter for

the lower symmetry phase (on account of molecular distribution functions).

2. Using smallness of the chosen parameter we expand the free energy density in

powers of this parameter, with only the first term temperature dependent.

3. The thermodynamic behaviour of the order parameter in the low symmetry

phase is found by a minimization procedure for free energy density.
4. With the order parameter found the free energy may be written explicitly.

5. Other thermodynamic functions are found from the temperature behaviour of the

free energy.

As to free energy, below we shall use the Helmholtz free energy F ¼ U � TS
(U, S and T are total energy, entropy and temperature, respectively) that is more

appropriate for discussion of the systems in terms of temperature and volume V
(or density r) at constant pressure p. In a more general case, the thermodynamic

potential (or Gibbs free energy) F ¼ F þ pV appears to be more suitable for an

expansion, e.g. when varying pressure p.

EOBAAMC

Iso

N

SmA
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100
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2 4 6 8 10
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Fig. 6.1 An example of the

experimental phase diagram

for a homological series of

cinnamate derivatives. The

scale of the abscissa means a

number of alkyl chains in the

tail of a particular molecule.

The lines show the location of

phase transition temperatures

PT1 PT2Low
symmetry
phase,
η1≠0,
η2=0
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symmetry
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η=0

Next
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η1≠0,
η2≠0 

Fig 6.2 Sequence of the phase transitions with decreasing temperature and lowering the phase

symmetry. A new order parameter Z1, Z2, etc. is introduced for each new phase with lower

symmetry
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Consider, as an example, a disorder-order transition in Cu-Au (8:1) alloy. In this

case, we can choose the simplest (scalar) order parameter Z, which is a normalized

difference between probabilities to find either gold or copper atoms in the center of

the cubic cell, see Fig. 6.3. In the higher temperature (and higher symmetry) phase

an atom of gold has equal probability to be at any lattice site included the central

one (but not between the sites), and order parameter Z ¼ 0. In the ideally ordered,

zero-temperature phase, an Au atom is always in the central position and Z ¼ 1.

Generally, in the low-temperature phase, the central position is more often popu-

lated by a gold atom than by a particular copper atom and 0 < Z < 1.

Neglecting the mass density change at the transition, the Landau expansion for

the free energy density is

gðT;ZÞ ¼ gðT; 0Þ þ lZþ 1

2
AðTÞZ2 þ 1

3
BZ3 þ 1

4
CZ4 þ � � � (6.1)

Here g(T, 0) is free energy of the high-temperature phase and the fractional form

of (1/2), (1/3), etc. coefficients is adopted for convenience. In equilibrium, function

g(T, Z) must have a minimum value, therefore at any temperature:

dg

dZ
¼ 0 and

d2g

dZ2
> 0

Thus, derivative of (6.1) is

lþ AðTÞZþ BZ2 þ CZ3 þ � � � ¼ 0

From here we conclude that coefficient l in the expansion must be zero;

otherwise, the non-zero derivative of free energy dg(T, Z ¼ 0)/dZ ¼ l would be

present also in the high symmetry phase. However, the presence of such an

additional constant term in the high symmetry phase would smooth its own energy

minimum what is senseless.

As to the “leading” coefficient A(T) in Eq. 6.1, in the high symmetry phase, it

must be positive to provide a minimum of free energy at Z¼ 0. On the other hand, it

must be negative to provide a minimum of the free energy density in the low

symmetry phase at a finite value of order parameter Z 6¼ 0, Fig. 6.4a. Thus, in

High-T phase Low-T phase

Au

Cu

Fig. 6.3 Disorder–order

transition in Cu–Au alloy.

In the low temperature, low

symmetry phase, the atom of

gold is more often occupies

the central position in the

cubic lattice
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general case, when not only temperature is varied but pressure p, composition X,
etc., the coefficient A(T, p, X..) should change sign at the phase transition. There-

fore, for a transition at temperature T ¼ Tc, we can make an expansion of coeffi-

cient A in a Taylor series over temperature (for p, X ffi const close to Tc) and write

A ¼ a T � Tcð Þ with a ¼ dA

dT

����
Tc

> 0

as sketched in Fig. 6.4b.

Now the excess of the free energy density acquired by the low symmetry phase

at the transition is

Dg ¼ gðT;ZÞ � gðT; 0Þ ¼ 1

2
aðT � TcÞZ2 � 1

3
BZ3 þ 1

4
CZ4 þ � � � (6.2)

Here the minus sign at the B-term is taken for convenience. The thermodynamic

stability condition reads:

dDg
dZ

¼ aðT � TcÞZ� BZ2 þ CZ3 þ � � � ¼ 0 (6.3)

This equation has three roots: Z ¼ 0 for the high-symmetry phase and

Z ¼ B� ½B2 � 4aCðT � TcÞ�1=2
2C

(6.4)

for the low symmetry phase. Therefore, the correct temperature dependence of

the order parameter is found using only symmetry arguments! Note that coefficients

a, B and C are independent of temperature, although their physical sense (molecular

nature) is unknown. They may only be found experimentally or using some

microscopic molecular models.

Consider a particular case of B ¼ 0. Then in the low symmetry phase,

Z ¼ � aðTc � TÞ
C

� �1=2
(6.5)

h

g

A>0

A<0

a

Tc

T

A

bFig. 6.4 The forms of the

free energy density in the high

symmetry (A > 0) and low

symmetry (A < 0) phases

(a) and the temperature

dependence of the first term in

the Landau expansion (b)
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Thus, if the cubic term is absent in the expansion, the systembecomes insensitive to

the sign of the order parameter. Moreover, the parameter must change continuously at

the phase transition from zero to a finite value. Such a Z¼�1 symmetry corresponds

to second order transition (a case of the N-SmA or SmA-SmC transitions). At second

order transitions the symmetry changes abruptly but thermodynamic functions change

continuously (only their temperature derivatives may change stepwise).

When B 6¼ 0 the two non-zero roots are different, there is no longer Z ¼ �1

symmetry; the order parameter and other thermodynamic functions change discon-

tinuously. This situation corresponds to first order transition (a case of the Iso-N

transition). There is, however, a possibility to discuss the first order transition even

for B ¼ 0 when the order parameter is symmetric: to this effect we should put

C < 0, ignore the fifth order term (D ¼ 0) and add a sixth order term. Then we have

the Landau expansion of the following type:

Dg ¼ 1

2
aðT � TcÞZ2 � 1

4
CZ4 þ 1

4
EZ6 þ � � � (6.6)

This biquadratic equation also describes discontinuity of thermodynamic proper-

ties at temperature Tc. We shall discuss such a case later.

6.2 Isotropic Liquid–Nematic Transition

6.2.1 Landau-De Gennes Equation

What is known from experiments on this transition?

1. There is only a small jump of density at transition temperature TNI, about 0.3%.

Therefore, the density can approximately be considered constant at both sides of

the transition; the pressure is also considered constant.

2. The order parameter is not symmetric, its magnitudes Smax ¼ þ1, Smin ¼ �1/2.

This asymmetry generates the cubic term, coefficient B must be finite, and the

first order transition is expected.

3. The tensor form of the order parameter should be taken into account, in the

simplest case, the uniaxial one [3, 4]:

Qab ¼ Sðnab � 1=3dabÞ (6.7)

With that order parameter, the Landau-de Gennes expansion of free energy

reads:

gN ¼ gIso þ 1

2
AQabQba � 1

3
BQabQbgQga þ 1

4
CðQabQbaÞ2 A ¼ aðT � Tc

�Þ (6.8)
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Here Tc* is virtual second order transition temperature. In real substances it is

slightly below TNI. Coefficients B and C are independent of T. Now we choose a

proper coordinate system wherein matrices Qab in Eq. 6.8 become diagonal. Then

we contract indices (reduce tensor valence) by multiplying the diagonal elements

and writing the traces QabQba ¼ (2/3)S2 and QabQbgQga ¼ (2/9)S3. Then, we have
equations for the excess of the normalized free energy density (in units [erg/cm3] or

[J/m3] in the SI system) [5, 6]:

Dg ¼ gN � gIso
gIso

¼ 1

3
aðT � Tc

�ÞS2 � 2

27
BS3 þ 1

9
CS4 (6.9)

and stability equation:

dDg
dS

¼ aðT � Tc
�ÞS� 1

3
BS2 þ 2

3
CS3 ¼ 0 (6.10)

6.2.2 Temperature Dependence of the Nematic
Order Parameter

Equation 6.10 has three solutions: S ¼ 0 for the isotropic phase and

S� ¼ B

4C
1� 1� 24aCðT � Tc

�Þ
B2

� �1=2( )
(6.11)

for the nematic phase. First of all, we should establish which sign is correct in

solutions (6.11). It is a bit tricky. We define a certain temperature Tc (not necessar-
ily equal to Tc*), at which free energy of the nematic and the isotropic phases are

equal, i.e. Dg in Eq. 6.9 is zero. Assuming T ¼ Tc, we multiplied Eq. 6.10 by S/3

and subtract it from Eq. 6.9. Then we get

1

27
BS3c ¼

1

9
CS4c or S3c CSc � B=3ð Þ ¼ 0 (6.12)

As seen from Eq. 6.11, only negative sign in front of brackets can give us Sc ¼ 0

at Tc ¼ Tc* that is at the same characteristic temperature. Another solution of

Eq. 6.12, namely, Sc ¼ B/3C, if substituted into Eq. 6.11, results in branch S+

1

3
¼ 1� 24aCðT � Tc

�Þ
B2

� �1=2

with a new characteristic temperature Tc ¼ Tc* þ B2/27aC. This solution shows a

positive jump of S ¼ B/3C at a temperature Tc that is higher than the “second order
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transition” temperature Tc*. Hence S+ from (6.11) is a more stable solution than S�.
Therefore, we take sign (þ) in solution (6.11) of stability equation:

S ¼ B

4C
1þ 1� 24aCðT � Tc

�Þ
B2

� �1=2( )
(6.13)

Finally, from (6.13) we find one more critical temperature: Tc
+ ¼ Tc* þ B2/

24aC that is even higher than Tc and there is no other real solutions of the stability

equation. Totally, we have now three characteristic temperatures:

Tc
� ðvirtual second order transitionÞ< Tc ¼ Tc

� þ B2
�
27aC ðDg = 0Þ< Tc

þ ¼
Tc

� þ B2
�
24aC ðjump of SÞ:

Within the range of Tc* < Tc
+ a hysteresis in the order parameter should be

observed upon the heating and cooling scans. Such hysteresis is often observed

under polarization microscope in the form of two-phase textures. If a sample is

placed between crossed polarizers, dark spots of the isotropic phase sharply con-

trasts with bright nematic background (like in Fig. 1.3c) or vice versa. The temper-

ature behaviour of function S(T) is shown in Fig. 6.5a. In the figure:

Sþ ¼ B=4C atTc
þð Þ; Sc ¼ B=3C atT ¼ Tcð Þ; S� ¼ B=2C atT ¼ Tc

�ð Þ (6.14)

Hence, the universal ratio Sc/S* ¼ 2/3 is valid for any expansion up to the fourth

order term and Tc* can be found by plotting S vs temperature. By the way, in

experiment, the phase transition point TNI is associated with temperature Tc.

TNI

Tc
*Tc Tc T

B/4C
B/3C

B/2C

S

+

a

20 25 30 35
0.0

0.2

0.4

0.6
T

c

S

ToC

Tc*

Tc
+

5CB

b

Fig. 6.5 (a) Temperature dependence of the order parameter in the Landau-de Gennes model; (B)

and (C) are coefficients of the expansion. TNI � Tc is experimental value of the isotropic–nematic

phase transition temperature corresponding to equality of free energy densities for the two phases.

(b) Experimental dependence of the order parameter for 5CB and the characteristic temperature

points Tc*, Tc and Tc
+ defined in accordance with the model of panel (a)
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6.2.3 Free Energy

It is instructive to look at the free energy density dependence on the nematic order

parameter, Eq. 6.9, on both sides of the phase transition. To this effect we need

Landau expansion coefficients a, B and C. We may find them, at least, approximately

from the experimental dependence of order parameter on temperature S(T). Let us take
as an example a nematic compound p-pentyl-cyano-biphenyl (5CB). Function S(T)
has been measured earlier by both the optical and nuclear magnetic resonance

techniques [7]. The Landau coefficients may be found from this curve as follows.

Using the values of the order parameter S*, Sc and S
+ expressed in terms of coefficients

B and C, we can mark the corresponding temperatures T*, Tc and T+ on the experi-

mental plot, as shown in Fig. 6.5b. The highest temperature point of the nematic phase

is T+ ¼ 35.3	C where, according to the model, S+ ¼ B/4C. In the experimental plot

S ¼ 0.3 and, assuming B ¼ 1, we find C ¼ 0.838. Then, using the difference

between the two characteristic temperatures from the experimental plot (b),

Tc � T� ¼ B2=27aC ¼ 33:7oC� 22:7oC ¼ 11oC,

we find a ¼ 0.004. Now we have all necessary data to plot the normalized free

energy Dg(S). If necessary, the absolute values of free energy may be found by

multiplying the dimensionless Landau coefficient B by the free energy density of

the isotropic phase giso ¼ (rNINAv/M) kB TNI. (where kB is Boltzmann constant, NAv

Avogadro number, M molecular weight, rNI the density at the transition tempera-

ture). In our example, M ¼ 249, rNI � 1 g/cm3, TNI ¼ Tc � 307 K and giso � 1 

108 erg/cm3 or 1 
 107 J/m3 in the SI system.

The result of Dg(S) calculation is shown in Fig. 6.6. Considering a cooling

process from the stable isotropic phase we shall better understand the physical

sense of the three critical temperatures. For T > Tc
+ (dot curve 3 in the figure) the

absolute minimum is situated at S ¼ 0 and this corresponds to the stable isotropic

phase. As the temperature approaches Tc from above, in the range of Tc < T < Tc
+,

a second minimum appears above the abscissa axis, which corresponds to the

–0.4 –0.2 0.0 0.2 0.4 0.6 0.8 1.0

–0.004

–0.002

0.000

0.002

0.004

5CB

Δg

S

1

2

3

Fig. 6.6 Normalized free

energy of 5CB as a function of

order parameter S in the
vicinity of the N–I transition at

different temperatures: Tc*
(curve 1), Tc (curve 2) and Tc

+

(curve 3). The curves are

calculated with dimensionless

Landau expansion coefficients

a ¼ 0.004, B ¼ 1 and

C ¼ 0.838 obtained from the

experimental curve S(T)
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overheated (metastable) nematic phase with at S > 0. At T ¼ Tc the twominima have

the same zero free energy density (solid line 2), but between them there is a barrier

shown by the arrow. The right minimum for S 6¼ 0 corresponds to the stable nematic

state and the left one with S ¼ 0 represents the overcooled (metastable) isotropic state.

Between Tc and Tc* the two minima coexist. Finally, for T < Tc* the left minimum

disappears, the metastable isotropic phase becomes unstable and the nematic state

becomes absolutely stable (dash curve 1 with a deep minimum). Fig. 6.7 illustrates the

sequence of the intermediate phases in the proximity of the NI transition.

6.2.4 Physical Properties in the Vicinity of the N–Iso
Transition

Physical properties of substance close to N–I phase transition may be related to the

parameters of Landau expansion [8]. For example we can calculate an entropy

density change at the transition temperature Tc from Eq. 6.9 and Sc ¼ B/3C:

DS ¼ � @ðgN � gIsoÞ
@T

����
Tc

¼ � 1

3
aS2c ¼ � aB2

27C2

Correspondingly, the latent heat of the N–Iso transition is

DH ¼ DSTc ¼ � aB2

27C2
Tc

As we have seen above, Landau expansion coefficients a, B and C can be found

from the measurements of order parameter S(T) and DH by different techniques,

such as microscopy (for Tc), differential scanning calorimetry (for Tc, and DH),
refractometry or NMR (for Sc).

Two other calculated temperature dependencies are shown in Fig. 6.8 with the

characteristic temperatures discussed above. The excess of the specific heat in the

nematic phase Cp ¼ aS @2S
�
@T2

� �
P
is shown in Fig. 6.8a. The temperature depen-

dence obtained from Eq. 6.13 follows a law Cp / (Tc
+�T)�1/2 with a step at Tc in

agreement with experiment [8]. With decreasing temperature Cp achieves a plateau

equal to a2/2C. Another important characteristic is structural susceptibility (not to

Tc
+TcTc*

Stable
Nematic
phase

Overcooled
Isotropic
phase
(metastable)

Overheated
Nematic
(metastable)

Stable
Isotropic
Phase

T

Fig. 6.7 Sequence of phase states observed during the up-and-down temperature scan that

manifests a temperature hysteresis near the N–I transition
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be confused with the electric wE or magnetic susceptibility wM) determining the

development of order parameter fluctuations in the isotropic phase (short-range

order [3]) near the transition to the nematic phase z�1 ¼ @2Dg
�
@S2. This is a

steepness of the free energy (dot curve 3 in Fig. 6.6) close to its minimum.

Above Tc the order parameter is small, S ! 0, and the terms with S3 and S4 in

Eq. 6.9 may be disregarded. Then the inverse susceptibility z�1 ¼ 2=3aðT � TcÞ
follows the Curie law z / 1/T, see Fig. 6.8b.

This susceptibility can be studied in the isotropic phase by electro-optical

or magneto-optical techniques. Indeed, anisotropy of the electric and magnetic sus-

ceptibilities is proportional to the order parameterS, see Eq. 3.15. For example, nematic

liquid crystal acquires an additional free energy � (1/2)waH
2 ¼ �(1/2)wamaxSH

2 in

themagnetic field parallel to the director (wmax is anisotropy of magnetic susceptibility

for the ideal nematic). Then, on account of Eq. 6.9, the energy in the isotropic phase

with a short-range nematic order is given by

DgðisoÞ ¼ � 1

2
wmax
a H2Sþ 1

3
aðT � Tc

�ÞS2

After minimization we obtain the contribution of the magnetic field to the order

parameter

SH ¼ 3wmax
a H2

4aðT � Tc
�Þ

that may be related to a change of the refraction index parallel to the field. The

appearance of the birefringence dn(H) in the isotropic liquid induced by the

magnetic effect is called Cotton-Mouton effect. Its electric field analogue is Kerr

effect. In both cases, dn follows the Curie law and the Landau coefficient a may be

found from these experiments. Note, however, that the numerical coefficient (3/4)

Cp

Tc* Tc T+

T

T
a2/2C

–1

a

b
z

Fig. 6.8 Temperature

dependencies of heat capacity

(a), and inverse value of

nematic-like structural

susceptibility w�1 (b) in the

vicinity of N–I phase

transition
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depends on arbitrariness of numerical coefficients in the original Landau expansion

(6.8). We should also underline that here we did not discuss any effects of fluctua-

tions of the order parameter in space dS(r); the S-value was considered dependent

only on temperature and magnetic field.

In the frame of Landau theory we can also consider the influence of the external

magnetic or electric field on the N–I phase transition temperature. Imagine that we

apply the electric field E along the director of a nematic and increase temperature.

In the case of positive dielectric anisotropy ea, even a weak field changes the

symmetry of both phases to conical (C1v), and, strictly speaking, the phase transition

vanishes. However, in the continuous temperature dependence of the order parame-

ter, a characteristic inflection point appears that may be considered as an apparent

N–I phase transition temperature Tc. The latter may be changed with an applied field.

As the equation for the enthalpy is given by ∂Dg/∂T¼�DH/Tc we may write the

discontinuity of the free energy density as dDg¼�DHdT/Tc. When E || n there is a

difference between quadratic-in-field energy terms in the nematic and isotropic

phases DgE ¼ (1/8p)(e|| �eiso)E
2. From comparison of the two contributions, the

field induced shift dTE of the transition temperature Tc is given by [9]:

DTE ¼ ðejj � eisoÞE2

8p � DH
For nematics with high positive dielectric anisotropy the difference e||�eiso � 10

is substantial and, for a typical value of DH � 2.5 
 107 erg/cm3, the shift DTE �
1K is expected for a field strength of 500 statV/cm (or 1.5
 107 V/m) in agreement

with experiment [9].

Concluding this section I would like to underline the significance of coefficient B
in the Landau expansion:

1. For B ¼ 0, the free energy is symmetric with respect to �Z and we have a

second order transition. For small B 6¼ 0 the transition is called weak first order

transition because the discontinuity of the order parameter is small and Tc*
becomes close to Tc.

2. The biaxiality of molecules influences the value of B and, in turn, a variation of

B may provide, at least, theoretically the biaxiality of the nematic phase.

3. Flexibility of mesogenic molecules also strongly influences B.

6.3 Nematic–Smectic A Transition

6.3.1 Order Parameter

As both the nematic and smectic A phases have quantitatively similar orientational

order, we may fix the free energy of the nematic phase and assume the orientational

order parameter to be equal in both phases, SA ¼ SN. Then we introduce a new
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order parameter because, in the smectic A phase, a new symmetry element appears,

namely, one-dimensional positional order. Recall that, in the SmA phase, local

density is modulated, Fig. 6.9,

drðzÞ ¼ rðzÞ � r0 ¼
X
m

rm cos
2pmz
l

þ jm

� 	

Here l is interlayer distance and rm is the infinite set of possible complex order

parameters (amplitudes and phases of density harmonics with m ¼ 1,2,3 . . .) In
fact, usually the modulation is not deep and, in the simplest approach, we can leave

only the first strongest Fourier harmonic with m ¼ 1 and the role of highest

harmonics will be discussed later. Then,

drðzÞ ¼ r1 cos
2pz
l

þ j1

� 	
(6.15)

This density wave is usually considered as a complex order parameter r1 ¼
exp (ip) of the smectic A phase in the Landau expansion or free energy at the

SmA–N phase transition. Typically, when there is no distortion, one assumes

j1 ¼ 0 at z ¼ 0 and operates only with the wave amplitude r1 as the real part of

the order parameter.

6.3.2 Free Energy Expansion

Due to symmetry �r1 the free energy density is expanded over even powers of r1
that is without B-term:

gSmA ¼ gN þ 1

2
Ar21 þ

1

4
Cr41 þ � � � with A ¼ aðT � TNAÞ; a > 0 (6.16)

Assuming gN ¼ const, after minimization of (6.16) with respect to r1 we have

@gSmA
@r1

¼ r1½aðT � TNAÞ þ Cr21� ¼ 0 (6.17)

core tails

r(z)

r
0

l 3l/2l/20–l/2

r

r
1

z

Fig. 6.9 Below: A schematic

picture of molecular packing

in the vertically oriented

smectic layers. Above:
Average density r modulated

with amplitude r1 and period

l of the density wave
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Solution r1 ¼ 0 corresponds to the positionally symmetric (not modulated)

nematic phase. The other two solutions correspond to the positionally ordered

SmA phase with a continuous growth of the order parameter:

r1 ¼ � aðTNA � TÞ
C

� �1=2
(6.18)

The temperature dependence of r1 may be found from the intensity of the X-ray

diffraction at the Bragg angle determined by period l of the smectic layers. The

experimental data on r1(TNA � T) for cholesteryl nonanoate [10] (solid bold curve)
are compared with the corresponding theoretical dependence (dash line) in

Fig. 6.10a. Note that the helical structure of the cholesteric is disregarded because

locally, on the scale of the size l, the nematic and cholesteric phases are indistin-

guishable. From this plot we can find r1 ¼ 0.31 at TNA � T ¼10	C.
Therefore, with TNA ¼ 348 K and found ratio a1/C1 ¼ 0.01 we can plot the free

energy in arbitrary units. To this effect, let us write Eq. 6.16 in the dimensionless

form:

gSmA � gN
1=2aTNA

¼ ðTNA � TÞr21 þ 0:143r41 þ � � �
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Fig. 6.10 (a) Theoretical (dash curve) and experimental (solid curve) dependence of the smectic

A order parameter r1 on temperature; TNA ¼ 75	C for cholesteryl nonanoate [10]. (b) Free energy

of a smectic A as a function of order parameter r1 for different temperatures: 10	C below the

transition (curve 1), T ¼ TNA (curve 2) and 10	C above TNA (curve 3)
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The dependencies of the dimensionless free energy on the order parameter at

T < TNA (curve 1), T ¼ TNA (curve 2) and T > TNA (curve 3) are presented in

Fig. 6.10b. The energy is symmetric about r1 ¼ 0. For T � Tc the higher symmetry

nematic state is stable; curve 3 at finite r1 in the nematic manifests short-range

smectic order effect. For T < Tc, in the smectic A state, the two minima in curve 1

situated exactly at r1¼ � 0.31 reflect the symmetry of the energy with respect to

the phase (0 or p) of the density wave.

We can also discuss the structural susceptibility in the more symmetric

(nematic) phase near the SmA-N transition.

w�1
NA ¼ @2gA

@r21
¼ aðT � TNAÞ (6.19)

It is a special layer formation susceptibility: close to the phase transition the

nematic is very sensitive to the spatially periodic molecular field, which induce

the density wave with period l. In order to study this phenomenon one is

tempted to use an external spatially periodic force with the same period, but,

at present, it is technically impossible. Therefore, we cannot find the Landau

coefficient a above TNA using some analogy with the Kerr or Cotton-Mouton

effects.

However, there is a great deal of studies of pre-transitional effects by the

calorimetric and X-ray scattering techniques showing that, in the vicinity of

second order N–A transition, a strong fluctuations of the smectic order occur. It

means that the order parameter changes in time and space r1¼r1(r, t). For

example, a character of the functional dependence of heat capacity at the

nematic–smectic A transition may be very different, varying from a simple

step to the divergent cusp-like maximum [11]. The experiment shows that

N–A transition may be second or first order. This depends on the width of the

temperature range of the intermediate nematic phase between smectic A and

isotropic phases: the narrower the range the closer the N–A transition to the first

order.

6.3.3 Weak First Order Transition

In reality, the N–A transition is, as a rule, weak first order transition. There are, at

least, two ways to understand this in framework of Landau approach. We still use

the same smectic order parameter r1 but include additional factors, either (a)

higher harmonics of the density wave, or (b) consider the influence of the

positional order on the orientational order of SmA, the so-called interaction of

order parameters.
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6.3.3.1 Role of Higher Order Fourier Components

We keep equality of nematic orientational order parameters in both phases SN ¼ SA,
and take only the amplitude of the second harmonic r2 of the density wave as an

additional SmA order parameter

drðzÞ ¼ r1 cosð2pz=lÞ þ r2 cosð4pz=lÞ

Therefore we have two order parameters (for the same transition) and the free

energy density is:

gSmA ¼ gN þ 1

2
A1r21 þ

1

2
A2r22 � Br21r2 þ

1

4
C1r41 þ

1

4
C2r42 þ C12r21r

2
2

with A1 ¼ a1ðT � T1Þ; A2 ¼ a2ðT � T2Þ; (6.20)

For a typical situation r1 > r2, it is sufficient to take only one cross-term with

coefficient B. Coefficients a1 and a2 are assumed positive and, in addition, we

assume T1 > T2 because on cooling, the first Fourier harmonic appears at higher

temperature, and afterwards, at a lower temperature, the single harmonic law is

violated and r2 appears. The minimization of (6.20) with respect to r2 results in

@gSmA
@r2

¼ A2r2 þ C2r32 � Br21 þ 2C12r21r2 ¼ 0 (6.21)

Due to smallness of r2, the second and fourth terms are small and we can find r2:

r2 �
B

A2

r21 (6.22)

Then, substituting r2 into expression (6.20) for free energy and omitting the

terms with r1
8, we obtain a biquadratic equation of the (6.6) type:

gSmA ¼ gN þ 1

2
A1r21 �

1

4

2B2

A2

� C1

� 	
r41 þ

1

6
D1r61 (6.23)

where D1 ¼ 12C12B
2/A2

2. Like in the case of Eq. 6.6, the condition for first order

transition is

2B2�
A2

� C1 > 0;

otherwise, the transition is second order. Therefore, an appearance of small terms

with r2 in the free energy (6.20) results in a weak first order N–SmA transition.
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6.3.3.2 Interaction of Two Order Parameters

Experiment shows that:

1. The narrower a range of the nematic phase in a homological series of different

compounds (as an example see Fig. 6.11a) the stronger are first order features of

the N–SmA transition. In some sense, the SmA phase “feels” the proximity of

the isotropic phase. In other words, we may say that, in the isotropic phase, there

are traces of both nematic and smectic A short-range order.
2. Appearance of the positional order in the SmA phase is accompanied by an

increase in the orientational order, DS ¼ SA � SN . The reason is denser molecular

packing within the smectic layers that is more favorable for higher S, Fig. 6.11b.

On account of DS, the free energy density of smectic A may be written as

follows:

gSmA ¼ gN þ 1

2
A1r21 þ

1

2
A2ðDSÞ2 � Br21ðDSÞ þ

1

4
C1r41 (6.24)

Now we make minimization with respect to DS and obtain

@gSmA
@DS

¼ A2DS� Br21 ¼ 0 or DS ¼ B

A2

r21 (6.25)

Hence, we arrive at exactly the same form the Eq. 6.23 has.

Therefore we again obtain the first order transition for 2B2
�
A2 � C1 > 0 and

second order for 2B2
�
A2 � C1 < 0 and a tricritical point for 2B2

�
A2 � C1 ¼ 0.

The tricritical point (TCP) is located in the continuous phase transition line

separating the nematic and smectic A phases [12], see a phase diagram schema-

tically shown in Fig. 6.12. Such a point should not be confused with the triple
point common for the isotropic, nematic and SmA phases. In Fig. 6.12, for

homologues with alkyl chains shorter than lcr, the N–SmA transition is second

order and shown by the dashed curve. With increasing chain length the nematic

temperature range becomes narrower (like in Fig. 6.1) and, at TCP, the N–SmA

transition becomes first order (solid curve).

T

NSmA Iso

a

T

S
ΔS

IsoNSmA

b

Fig. 6.11 Sequence of

phases on the temperature

scale (a) and qualitative

dependence of orientational

order parameter S in the

nematic and smectic A phases

(b). With increasing

increment DS the N–A
transition acquires more

features of first order

transition

126 6 Phase Transitions



6.3.4 Re-entrant Phases

As a rule, increasing pressure or decreasing temperature promotes a denser, more

ordered phase. There are, however, cases when, upon increasing pressure or

decreasing temperature, the smectic A phase is substituted by the nematic phase

[13]. Therefore, a more symmetric phase reappears or “re-enters” into consider-

ation. An example [14] is shown in Fig. 6.13. Following the horizontal line at

constant pressure of about 2 kbar (1bar ¼ 106 dyn/cm2 or 105 Pa) from the right to

the left we begin from the nematic phase then, with decreasing temperature, cross

the SmA phase and enter again the nematic phase. Similar sequence is observed on

the down-up way along the vertical line at constant temperature. Such an abnormal

behavior can be explained with a molecular model, Fig. 6.14. In fact, reentrant

iicr

T

Tcr

N

TIN

Iso

TIA
TCP

SmA

TNA

Fig. 6.12 Phase diagram

“isotropic liquid–nematic

–smectic A” with a tricritical

point TCP at temperature Tcr
and length lcr of alkyl chains
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Fig. 6.13 Phase diagram

“isotropic phase (Iso)–nematic

(N)–smectic A (SmA)–reentrant

nematic (Re-N)” of p-octyloxy-

cyanobiphenyl in the

pressure–temperature

coordinates [14]
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phases are observed in liquid crystals with strongly asymmetric polar molecules

such as p-octyloxy-p0-cyanobiphenyl (8OCB). They form pairs of antiparallel

dipoles (or molecular dimers as earlier shown in Fig. 3.9) whose length may depend

on temperature and pressure. Such dimers are building elements of mesophases.

Then a subtle change in the dimer geometry determines the packing structure shown

in Fig. 6.14 that explains the re-entrance phenomena.

6.4 Smectic A–Smectic C Transition

6.4.1 Landau Expansion

In the smectic C phase a new feature appears, a uniform molecular tilt that is

characterized by the two-component order parameter W exp(ij) [15]. For simplicity,

we can fix the azimuth angle j and operate with a real order parameter W:

gSmC ¼ gSmA þ 1

2
A#2 þ 1

4
C#4 þ 1

6
D#6 (6.26)

The odd terms are absent due to the �W symmetry. After minimization with

respect to W we get

# ¼ � A

C

� 	1=2

¼ aðT � TcÞ
C

� �1=2

that is the same temperature dependence of the order parameter W as presented in

Fig. 6.10a. The inverse “soft-mode” susceptibility for the uniform tilt

z�1
C ¼ @2gC

@#2
¼ aðT � TCAÞ; (6.27)

Fig. 6.14 Packing of molecular dimers in the nematic (a), smectic A (b) and reentrant nematic (c)

phases. The middle part of dimers formed by rigid biphenyl cores is broader than their end parts

formed by molecular tails and the length of the dimers depends on the pressure and temperature
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as expected, has the same linear temperature dependence as in nematics, see

Eq. 6.10 and SmA. This is a typical picture for second order transition.

However, if you take into account the “interaction” of SmA and SmC order

parameters, a cross term r21#
2 would result in the appearance of the NAC triple

point in the phase diagram [8, 16], see Fig. 6.15. In this case, the phase transition

lines might correspond to either second or first order transitions; it depends on

parameters of the Landau expansion. In experiment, such a phase diagram may be

observed when a content of binary mixtures is varied.

6.4.2 Influence of External Fields

In the framework of the Landau theory one can analyze the influence of a magnetic

or an electric field on the phase symmetry and order parameters [17]. Here we

consider the magnetic field influence on the temperature of the smectic A–C

transition [11]. Let the magnetic field is applied along the smectic layer normal.

Then, it is sufficient to add the field term to the expansion (6.26).

gSmC ¼ gSmA þ 1

2
aðT � TCAÞ#2 � 1

2
waðHnÞ2

We assumed small tilt angles and disregard the term with coefficients C and D.
For small W the scalar product is Hn(1�W2/2) and after minimization we obtain

aðT � TCAÞ#þ waH
2# ¼ 0

Finely, the temperature shift of the A–C phase transition point by the magnetic

field is given by:

T � ðTCA � 1

a
waH

2Þ ¼ 0 (6.28)

T
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Fig. 6.15 Phase diagram

“nematic- smectic A- smectic

C” with the triple NAC point

at temperature T* and mixture

concentration M*
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Therefore, for positive wa (or ea in case of the electric field) the transition

temperature reduced with increasing field.

6.5 Dynamics of Order Parameter

6.5.1 Landau-Khalatnikov Approach

Going back to the beginning of this section, let us recall the conditions of the

thermodynamic equilibrium giving the free energy density minimum: dg=d� ¼ 0

and d2�=d�2 > 0.What would happen if these conditions are not fulfilled? For

example, due to disturbance by an external field, the order parameter of the system

may become different from the equilibrium value. Then, after switching the field

off, the order parameter will relax to its equilibrium value. The problem is how

to find its relaxation time? Below we shall only consider the second order transition

and only a weak deviation from the equilibrium, i.e., small values of derivative

dg/dZ.
We neglect fluctuations of the order parameter, and assume that there is a simple

linear relationship between a torque dg/dZ and a relaxation rate dZ/dt. Physically it
means that the steeper potential well g(Z) (larger dg/dZ), the faster is relaxation

(larger dZ/dt) of the induced order parameter. Hence the Landau–Khalatnikov
equation reads

d�

dt
¼ �G

@g

@�
(6.29)

where the rate controlling coefficient G is considered to be independent of

temperature.

6.5.2 Relaxation Rate

The relaxation rate can be found from the equilibrium Landau expansion (6.1)

without B-term:

g ¼ g0 ¼ 1

2
aðT � TcÞZ2 þ 1

4
CZ4 þ � � �

Its solution for T < Tc has been found above. The equilibrium value of the order

parameter is:

�Z ¼ aðTc � TÞ=C½ �1=2 (6.30)
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Eq.(6.29) reads:

dZ
dt

¼ �G½aðT � TcÞZþ CZ3� (6.31)

It is convenient to introduce a difference of the order parameters for the distorted

and equilibrium medium dZ ¼ Z� �Z:
Then, for the high symmetry (high T) phase, �Z ¼ 0 and the linearized

Landau–Khalatnikov equation for dZ is given by:

dZ
dt

� �GaðT � TcÞdZ ¼ � dZ
t

(6.32)

with a characteristic relaxation time

ths ¼ 1

GaðT � TcÞ ¼
g

aðT � TcÞ (6.33)

Coefficient g ¼ G�1 is a kind of friction coefficient (viscosity for liquid crystals)

controlling the relaxation process. In the Gauss system [g] ¼ s.erg/cm3 ¼ g.cm/s or

Poise. In the SI system [g] ¼ s�J/m3 ¼ s�N/m2 or Pa�s (1 Pa�s ¼ 10 P).

For the low-symmetry phase we make linearization of the right part of Eq. 6.31

� GZ½ðT � TcÞaþ CZ2� ¼ �GZ½ðT � TcÞaþ Cð�Z2 þ 2�ZdZþ � � �Þ�

In the brackets, only term 2��d�C includes increment dZ. Thus we keep it and

then ignore higher order term with (dZ)2:

ddZ=dt ¼ �GZ2C�ZdZ ¼ �2GCð�Zþ dZÞ�ZdZ � �2GC�Z2dZ

Finally, using Eq. 6.30 for the equilibrium order parameter, we exclude C and

obtain for the low-symmetry phase:

ddZ
dt

¼ 2GaðT � TcÞdZ ¼ � dZ
t

(6.34)

with a relaxation time

tls ¼ 1

2GaðTc � TÞ ¼
g

2aðTc � TÞ (6.35)

The results (6.33) and (6.35) are of principal importance. We already know that

at the second order transition the structural susceptibility diverges (Curie law). Now

we see that relaxation times diverge as well, i.e., on approaching the transition from
any side, the relaxation of the order parameter becomes slower and slower and, at
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the transition, in the linear approximation considered above, the relaxation times

are infinite (softening of the transition).

Had we taken higher order terms of dZ into account, the divergence would

disappear. The Curie-type order parameter relaxation has been studied on a typical

nematic (5CB), see Fig. 6.16. The measurements have been made using a pulse

pyroelectric technique [18]. As the nematic–isotropic transition in 5CB is weak first

order, it clearly demonstrates some features of the softening: the relaxation time of

the orientational order parameter on the nematic side of the NI transition increases

five times.

There are also other reasons that truncate the order parameter divergence such

as spatial inhomogeneities or external fields. For example, to describe a spatial

inhomogeneous system, a term quadratic in the gradient of the order parameter

G(rZ)2 must be added to the density of free energy and all the Landau

expansion should be integrated over the system volume:

F ¼
ð
½g0 þ 1

2
aðT � TcÞZ2 þ 1

4
CZ4 þ GðrZÞ2 þ � � ��dV (6.36)

Then in the relaxation equation an additional term appears. E.g., in the low-

symmetry phase, at T < Tc:

@dZ
@t

¼ � dZ
t

� 2GGDðdZÞ
� 	

where D is Laplace operator. Then, the inhomogeneous distribution of dZ(r) can be
expanded in the Fourier series of spatial harmonics and, for each Fourier compo-

nents with number m, we have different Landau–Khalatnikov equations

ddZm

dt
¼ � dZm

tm
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Fig. 6.16 Softening of the

N–I phase transition:

relaxation time of the

orientational order parameter

as a function of temperature

in p-pentyl-cyanobiphenyl
(5CB)

132 6 Phase Transitions



with different relaxation times

1

tm
¼ 1

t
þ GGm2 (6.37)

Therefore, at T ¼ Tc, the relaxation time becomes finite. We meet the same

situation in the helical phases as well.

6.6 Molecular Statistic Approach to Phase Transitions

The problem is to derive the equation of state and thermodynamic functions of a

particular liquid crystal phase from properties of constituting molecules (a form, a

polarizability, chirality, etc.). The problem we are going to discuss is one of the

most difficult in physics of liquid crystals and the aim of this chapter is very modest:

just to introduce the reader to the basic ideas of the theory with the help of

comprehensive works of the others [2, 5, 19]. To consider the problem quantita-

tively we need special methods of the statistical physics. In this context, the most

useful function is free energy F, which is based microscopically on the so-called

partition function, see below. For the partition function, we need that energy

spectrum of a molecular system, which is relevant to the problem under consider-

ation. The energy spectrum is related to the entropy of the system and we would like

to recall the microscopic sense of the entropy.

6.6.1 Entropy, Partition Function and Free Energy

6.6.1.1 Entropy

We consider a small but macroscopic part of a larger molecular system. Even under

equilibrium conditions such a subsystem can be found in any of a tremendous

number n of statistical configurations or quantum states [2]. Any change in a

position, velocity or internal motion of a particular molecule will bring our macro-

scopic subsystem in the new state with energy En. The set of corresponding energy

levels is extremely dense as pictured schematically in Fig. 6.17 and we may consider

a continuous distribution function w(E) ¼ w(En) of the probability for the subsys-

tem to be in a state with energy E ¼ En. A number of the levels below a particular

energy E is G(E). Now we would like to relate the entropy to this energy spectrum.

By definition, the dimensionless entropy is given by

s ¼ lnDGðEÞ (6.38)

where DG is the so-called statistic weight of a macroscopic state of our molecular

subsystem related to the formidable number of the microscopic quantum states.

6.6 Molecular Statistic Approach to Phase Transitions 133



The probability for a molecular subsystem to have energy in the interval between E
and E þ dE reads:

WðEÞ ¼ dGðEÞ
dE

wðEÞ (6.39)

where dG/dE is density of possible states on the energy scale. Since the energy of

our subsystem under fixed experimental conditions fluctuates only negligibly about

the average value <E>, the density of states and probability w(E) have extremely

sharp maxima at E ¼ <E>, close to d-function shown as “realistic” function in

Fig. 6.17. Therefore, the normalization condition may be written as

ð
WðEÞdE � WðhEiÞDE ¼ 1 (6.40)

On the other hand, the number of the quantum states DG in the DE interval is:

DG ¼ dGðhEiÞ
dE

DE; that means DE ¼ DG
dE

dGðhEiÞ : Now the condition (6.40) on

account of (6.39) results in:

WðhEiÞ � DE ¼ dGðhEiÞ
dE

wðhEiÞ � DG dE

dGðhEiÞ ¼ 1

Hence wðhEiÞDG ¼ 1 and the dimensionless entropy is found to be related to the
distribution function w(En)

s ¼ lnDG ¼ � lnwðhEiÞ ¼ �hlnwðEnÞi (6.41)

The transformation of average values in (6.41) follows from the statistical

independence of the events described by a distribution function (for w12 ¼ w1w2,

lnw12 ¼ lnw1 þ lnw2, etc.).

E

ΔE

ΔE

E E E
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Area=1

W(E)W(E)w(E)
States

0

Realistic

Real

<E>

Fig. 6.17 Energy levels of a macroscopic quantum subsystem, probability w(E) for the subsystem
to be in a state En and probabilityW(E) for the subsystem to be within the energy interval between

E and E þ dE, more or less realistic and approximated by a rectangular
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To have the entropy in the Boltzmann form we write

S ¼ kBs ¼ �kBhlnwðEnÞi (6.42)

Dimension of entropy is [erg/K] or [J/K]. To have an idea of the entropy value,

let us take a tremendous number of points in the phase space, e.g. 10100. Then,

s ¼ 230 and S ¼ 3�10�14 erg/K are extremely small values with respect to experi-

mentally measured quantities.

Up to now we considered number DG of the quantum states or “cells” in a

multidimensional configuration or phase space, formed by coordinates qi and

momenta pi (i ¼ 1,2. . .l) where l is the number of degrees of freedom. Each cell

had volume of hl (h ¼ 2p�h is Planck constant). In general, these states include

all possible degrees of freedom, such as translational and rotational motion of all

molecules, their internal (atomic) motion, interactions with other molecules, etc.

Now, in the classical limit, instead of DG we introduce a volume in the phase space

DpDq, in which a subsystem evolves in time. Additionally, to have the absolute

value of the entropy, we introduce the volume of the elementary cell in the phase

space 2p�hð Þl and write the dimensionless entropy in the form

s ¼ ln
DpDq

2p�hð Þl (6.43)

6.6.1.2 Partition Function and Free Energy

In the quantum-mechanical case, a probability w(En) for a subsystem to have

energy En in a quantum state is given by the Gibbs distribution:

wn ¼ Z�1 exp �En

.
kBT


 �
(6.44)

where Z is a constant to be found from normalization procedure

X
n

wn ¼ Z�1
X
n

expð�En

.
kBTÞ ¼ 1;

and called a partition function that includes all degrees of freedom of the subsystem:

Z ¼
X
n

expð�En

.
kBTÞ (6.45)

Using Eqs. 6.42 and 6.44 we write entropy in the form

S ¼ �kB lnwðEnÞh i ¼ �kB ln Z�1 exp �En

.
kBT


 �D E
¼ �kB ln Z

�1 þ hEi
T

;
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equivalent to

hEi � TS ¼ kBT ln Z�1: (6.46)

As the macroscopic definition of the free energy is F ¼ hEi � TS; we relate the
free energy to partition function:

F ¼ kBT ln Z�1 ¼ �kBT ln Z (6.47)

Finally, on account of (6.45) the free energy acquires a desired microscopic
form:

F ¼ �kBT ln
X
n

expð�En=kBTÞ (6.48)

This formula is a base for calculation of all thermodynamic functions of any

system if the energy spectrum of the latter is known. We shall illustrate this

approach considering two simple systems, the ideal gas and a liquid, both consisted

of spherical particles.

In the classical case, instead of discrete distribution wn (En) we have a continu-

ous probability function r (p,q) that is probability to have a subsystem with given

momentum p and co-ordinate q in the configuration space:

rðp; qÞ ¼ A expð�Eðp; qÞ=kBTÞ

and, in the expression for the free energy, instead of the partition function we have a

configuration integral

F ¼ �kBT ln

ð=
exp �Eðp; qÞ=kBT

 �

dG

where dG ¼ dpi dqi
�
2p�hð Þl and prime (/) means integrating over physically

different states. To avoid (/) we may integrate over all states of N particles

(molecules) but afterward to divide the result by the number of permutations

N!:
Ð =

:::dG ¼ ð1=N!Þ Ð :::dG

6.6.2 Equations of State for Gas and Liquid

6.6.2.1 Ideal Gas of Spherical Particles

To illustrate the technique, consider an ideal gas of N spherical, point-like, non-

interacting particles or molecules without internal degrees of freedom. The partition
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function takes into account only the translational motion with three degrees of

freedom (no rotation assumed for spherical particles):

ZIG ¼
X
n

expð�En=kBTÞ ¼
1

N!

X
k

expð�ek=kBTÞ
 !N

(6.49)

Here, k states of energy ek belong to an individual particle and the summation

should be made over all these states. Since particles do not interact, the statistic sum

for N independent particles is a product of N sums calculated for each particle. As

explained above, to exclude identical sum corresponding to the same state of the

gas, the number of permutation N! is introduced in the denominator.

The translational motion of a particle is classic and the kinetic energy of one

molecule is ekðpx; py; pzÞ ¼ ðp2x þ p2y þ p2z Þ=2m: Therefore, the summation may be

substituted by integration over the phase space (V is the physical volume of the gas):

X
k

exp �ek=kBT

 �

¼
X
k

1

2p�hð Þ3 e

ð
V

ð ð ð
p

exp �p2x þ p2y þ p2z
.
2mkBT


 �
dpxdpydpzdV

¼ V
mkBT

2p�h2

� 	3=2

¼ VlðTÞ3:

Note that, in the triple integral, each integral with respect to pi with limits

(�1,1) has the known Gaussian form:
R1

�1
exp �ax2ð Þdx ¼ ffiffiffiffiffiffiffiffi

p=a
p

and

lðTÞ ¼ 2pð Þ1=2�h= mkBTð Þ1=2
Now the partition function for N molecules is found:

ZIG ¼ l�3N

N!

ð
dr1dr2:::drN ¼ l�3NVN

N!
(6.50)

In (6.50) integrating is made over N-dimensional coordinate space of volume VN.

Then, the free energy (6.47) reads:

F ¼ kBTð3N ln lðTÞ � N lnV þ lnN!Þ ¼ �kBTNðlnV � lnN � 3 lnlðTÞ þ 1Þ

Here we used the Stirling formula for large N ðlnN! ffi N lnðN=eÞ;
e ¼ 2.718. . ..)

Now we can find pressure

p ¼ �@F=@V ¼ NkBT

V

and obtain the equation of state for the ideal gas with particle concentration or

number density r¼N/V:

pIGV ¼ NkBT or pIG ¼ rkBT (6.51)
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6.6.2.2 Equation of State for a Dense Gas or a Liquid

If we would like to discuss a non-ideal dense gas of interacting hard spheres of a

finite size, we should introduce a concept of excluded volume to take into account

the repulsion of molecules at short intermolecular distances and write the energy of

attraction between molecules at large distances. Then the partition function of type

(6.48) will include two additional contributions and becomes quite cumbersome.

Nevertheless it allows the discussion of the Van der Waals equation of state

p ¼ ½NkBT=ðV � bÞ� � a=V2 (6.52)

on the microscopic level and find the physical sense of parameters a (for attraction)
and b (for repulsion) introduced by Van der Waals phenomenologically. For a

simple liquid consisting of hard spherical molecules the equation of state may be

written in terms of number density r:

p ¼ phs � 1
2
J0r2 (6.53)

Here, the first and second terms describe correspondingly positive pressure due

to molecular repulsion and negative pressure due to molecular attractive forces. Our

task is to understand the microscopic sense of parameters phs (index means hard

spheres) and J0. Therefore we need a proper partition function.

Let u(rij) is repulsive and –W(rij) attractive parts of the intermolecular potential

for molecules i and j; then the partition function for N spherically symmetric

particles of mass m and radius r0 reads [5]:

Z ¼ l�3N

N!

ð
dr1::: drNe

N
ij exp 1=2b

X
k 6¼l

WðrklÞ
" #( )N

(6.54a)

Here b ¼ 1=kBT; l is given above when discussing the ideal gas,

eij ¼ exp½�buðrijÞ�: This function can be written shortly as a product of the part

Z0 including solely repulsive interactions and the thermal average of the term

describing attraction between different particles k and l:

Z ¼ Z0 exp 1=2b
X
k 6¼l

WðrklÞ
" #* +

(6.54b)

First we estimate only the repulsive part Z0 and then the attractive one.

In Eq. 6.54a, averaging over ensemble (reference system) depends on the type of

the ensemble. In the simplest case, we take as a reference the system of hard spheres

with repulsive potential of the type of a hard wall, shown in Fig. 6.18a, namely,

For rij � 2r0 : u rij
� � ¼ 1 and eij ¼ 0
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and

for rij � 2r0 : u rij
� � ¼ 0 and eij ¼ 1

Next, since the hard spheres (or molecules) have their own volume Vm ¼ (4/3)pr3

and touch each other, the free volume for their translational motion is reduced. As

seen in Fig. 6.18b the presence of sphere 1 reduces the available volume for sphere

2 by 8Vm. This value is common for two spheres; therefore, the excluded volume per

one sphere is 4Vm. It means that the volume of the whole system is diminished down

to the value of V � 4NVm. Then the partition function (6.50) for the ideal gas of point

spheres, which corresponds to the same translational degrees of freedom may be

corrected for the excluded volume or a packing fraction Z¼rVm:

Z0 ¼ l�3NVNð1� 4ZÞN
N!

(6.55)

Therefore, the part of free energy related to hard sphere repulsion is expressed in

terms of density of particles r ¼N/V that on account of Stirling formula is given by

Fhs ¼ �kBT ln Z0 ¼ NkBT½3 ln lþ ln r� 1� lnð1� 4ZÞ�

From here the repulsive part of pressure is found

phs ¼ � @Fhs

@V
¼ NkBT

V � 4NVm
¼ NkBT

Vð1� 4ZÞ
� rkBTð1þ 4Zþ 16Z2 þ 64Z3 þ � � �Þ (6.56)

The approximation is correct for small density r, i.e. small packing fraction Z.
Note that for Z¼0, we obtain the equation of state (6.51) for the ideal gas p¼rkBT.

Now we try to estimate the attractive term (a thermal average) in the partition

function (6.54a). Due to enormous mathematical difficulties, we get rid of the

summation:

exp 1=2b
X
k 6¼l

WðrklÞ
" #* +

� exp 1=2bNrJ0
h i

(6.57)

r2r0

0

u

a

2ro

1 2

ro

bFig. 6.18 Hard core

intermolecular potential (a) and

illustration of the excluded

volume for two spherical

particles of radius r0 (b)
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In fact, instead of summation we have averaged the potential W(rkl) with the

hard-sphere radial density distribution function rhs familiar to us from the discus-

sion of density correlation function of isotropic liquids in Chapter 5. As a result, we

obtain a new constant J0 ¼
Ð
WðrÞrhsðrÞdr: From (6.57) the contribution to free

energy due to attraction is found:

Fattr ¼ �kBT
1

2kBT
NrJ0

� 	
¼ � 1

2V
N2J0

The pressure due to attractive forces is given by

pattr ¼ �@Fattr=@V ¼ 1=2N
2J0ð�1

�
V2Þ ¼ �1=2r

2J0

Finally, we obtain the equation of state for interacting hard spheres (attraction
and repulsion):

p ¼ rkBT
1� 4Z

� 1

2
J0r2 (6.58)

This equation corresponds to both the equation of state for liquids (6.53) and the

Van der Waals equation (6.52). However, the phenomenological parameters a and b
in (6.52) acquired physical sense. Parameter b ¼ 4NrVm is related to particular

molecular volume and density of spheres (molecules), parameter a ¼ N2J0/2 points
to the properly averaged potential describing molecular attraction.

Thus, we have seen how intermolecular interactions can be taken into account

for description of non-ideal gases and even liquids. Now we are much closer to

liquid crystals.

6.7 Nematic–Isotropic Transition (Molecular Approach)

6.7.1 Interaction Potential and Partition Function

Consider the simplest case, namely, the nematic phase consisting of uniaxial rod-

like molecules. Generally, the intermolecular interaction again consists of the

repulsive and attractive parts but both of them become anisotropic. The potential

of pair molecular interaction can be written in the following general form:

W12 ¼ W12ðr12; y1;f1; y2;f2Þ (6.59)

Note that Euler angleC is not considered due to the rod-like form of a molecule;

the other angles are shown in Fig. 6.19a. Vector r12 connects the gravity centers of

rods. If the particular form of W12 is known, it can be used for calculation of the
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partition function for Nmolecules with numbers k and l. The partition function may

be written in analogy to expression (6.54a) for simple liquids:

Z ¼ ZHR exp 1=2b
X
k 6¼l

WðrklakalÞ
" #* +

(6.60)

Again this function includes the repulsive multiplier ZHR and the attractive part.

The repulsive part may be considered as a reference for calculation of the thermal

average necessary for the attractive part. To find ZHR, we may operate with an

excluded volume, although even for hard rods (suffix HR) it is very difficult to

calculate it. The total procedure is enormously complicated because, even for ZHR
known, it requires multiple averaging over (a) all orientations of molecule 1, (b) all

orientations of molecule 2, and (c) all distances r12.

Below we shall consider two extreme cases, long hard rods without attraction

and rod-like molecules without repulsion. The first approach (by Onsager) may be

applied to very long molecules like tobacco mosaic viruses and calls for hard

mathematics [20]. We shall discuss it very schematically in the next section. The

second one (by Maier and Saupe [21]) appeared to be simpler but very powerful and

can be applied to many typical nematic liquid crystals. We shall consider it in the

subsequent Section 6.7.3.

6.7.2 Onsager’s Results

Consider a medium consisting of elongated, cylindrically symmetric hard-core

molecules in the form of spherocylinders. For spherocylinders shown in

Fig. 6.19b we may introduce parameter

x ¼ ðLþ DÞ=D; (6.61)

that reduces to x ¼ 2D for spherical particles discussed above. A rod has kinetic

energy of translations p2/m and rotation about its short axes py
2/2I and pf

2/2I

21

a2
a1

θ2 θ1φ2

φ1

r12

a b

D

L

Fig. 6.19 Geometry of

interactionbetween two rod-like

molecules (a) and geometry of a

spherocylinder (b)
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(angles j and y are in Fig. 6.19a, I is moment of inertia). Therefore, a rod has five

degrees of freedom. In addition rods k and l interact with each other. The interaction
potential is ukl ¼ 1 if they overlap each other and ukl ¼ 0 without overlapping.

The Hamiltonian of the system consisting of N rods is given by

H ¼
XN
k¼1

Tk þ 1

2

XN
k;l¼1

ukl (6.62)

and the partition function can be written as

ZHR ¼ 1

N! 2p�hð Þ5N
ð

drdpidpyi dpfi
dyidfi exp �bHð Þ
 �N

(6.63)

Onsager used a low-density expansion, that is small packing factor Z¼rVm.
After a cumbersome calculation procedure he has found the excluded volume

VexclðaiajÞ that depends on orientation of the rods. Then, using (6.63) and several

approximations concerning averaging, the free energy and the equation of state for

hard spherocylinders have been found.

At that stage a uniaxial, orientational order parameter S is introduced in terms of

the mean square projections ax,y,z of molecular vector a:

ha2xi ¼ ha2yi ¼ ð1=3Þð1� SÞ; ha2z i ¼ ð1=3Þð1þ 2SÞ

The order parameter depends on the packing fraction and temperature. With

increasing density or decreasing temperature the isotropic phase is substituted by

the nematic phase. The equation for S is found in terms of Z and g.

Sð2S3 � S� 1þ 3=8ZgÞ (6.64)

where factor g includes the molecular anisotropy x:

g ¼ 2ðx� 1Þ2
pð3x� 1Þ

Equation 6.64 has three solutions, S ¼ 0 for the isotropic phase and

S� ¼ 1

4
� 3

4
1� 1

3Zg

� 	1=2

(6.65)

for the nematic phase. The solution with sign (þ) is stable. A critical condi-

tion 3Zg¼1 corresponds to the transition from the isotropic to the nematic phase.

It is solely determined by molecular parameter g (or x) and packing density

dependent on temperature. The qualitative temperature dependencies are shown
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in Fig. 6.20. For very elongated molecules (x ¼ 11) the phase transition appears at

much smaller packing density (compare with the curve for x ¼ 4). There is no

solution for short spherocylinders anisotropy x < 3.08. The order parameter

changes discontinuously with a jump (Sc ¼ 0.25) at the isotropic-nematic transition

point (first order transition).

6.7.3 Mean Field Approach for the Nematic Phase

6.7.3.1 Interaction Potential and Partition Function

The potential of pair molecular interaction (6.59) is too difficult to deal with.

Much simpler is to use symmetry of the phase of interest (nematic) and construct

the form of potential energy of a molecule as if it interacts not with other

surrounding molecules but with an average molecular field. This is an essence

of the mean field approximation [1]. The single molecule potential represents the

mean field of all intermolecular forces acting on a given molecule. In this case, we

neglect the intermolecular short-range order. Such theories have appeared to

be very powerful in the physics of solid state, for instance in magnetism, ferro-

electricity and superconductivity.

Consider the nematic phase. It has cylindrical symmetry and the orientational

order parameter <P2> ¼ 1=2 3cos2#� 1
� �

with angle W between a molecular long

axis and the symmetry axis (the director n). The tasks of the molecular theory is to

use the symmetry arguments and properties of molecules and (a) to find the

temperature dependence of <P2> (T), (b) to calculate thermodynamic and other

properties in terms of <P2>, (c) to discuss the phase transition from finite <P2>
to zero (N–Iso transition), and (d) to discuss the role of the higher order parameters

<P4>, <P6> etc.

The key problem is a form of the interaction potential. The two-pair potential

(6.59) is too complicated and we would like to substitute it by a single molecule

potential:

1. At first, the pair potentialW12 is expanded into two series of spherical harmonics

Y1 and Y2. Then the dependence of W12(r12) on the intermolecular distance

Fig. 6.20 Onsager model:

order parameter dependence on

molecular packing factor Z for

two values of spherocylinder

anisotropy ratio x ¼ 4 (dash
curve) and x ¼ 11 (solid curve).
Sc ¼ 0.25 is the amplitude of

the order parameter jump at the

phase transition
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becomes separated from the dependence of W12 on molecular orientation. Then

only the difference between two angles f1�f2 is considered essential, but not

each of the two angles. In addition, due to head-to-tail symmetry, only even

terms are left in the expansion. Fortunately, the coefficients of the expansion

decrease rapidly with the number of a harmonic.

2. Then, a new, polar coordinate frame was introduced based on the director n as a

polar axis. To obtain the single molecular potential W1 as a function of the first

molecule orientation with respect to n, one has to take three successive averages

of W12: (a) over all orientations of intermolecular vector r, (b) over all orienta-

tions of molecule 2, and (c) over all intermolecular separations |r|.

Finally, the single-molecule potential has been found in the form of expansion

over Legendre polynomials:

W1ðcos#Þ ¼ vhP2iP2ðcos#Þ þ mhP4iP4ðcos#Þ þ 6th þ � � � terms (6.66)

In the simplest case, we use only the first term:

W1ðcos#Þ ¼ �vhP2iP2ðcos#Þ: (6.67)

Its form is shown in Fig. 6.21. P2(cosW) is a universal function varying from�1/2 to

þ1 and v <P2> is a number determining the depth of the potential well. Note that

parameter v depends on properties of a molecule (shape, electronic structure, etc.).

The even function f ðcos#Þ given by the Gibbs distribution describes the proba-

bility for a molecule to be at an angle W with respect to the director n:

f ðcos#Þ ¼ Z�1 exp �Wðcos#Þ
kBT

� 	

Fig. 6.21 The dimensionless

form of the nematic mean field

potential as a function of

molecular angle W at three

different values of <P2> ¼ 0

(horizontal line), 0.5 (dot
curve) and 1 (solid curve)
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The probability to find the molecule at any angle W within 0 and p equals unity.

From here we find the single-molecule partition function

Z ¼
ð1

0

exp �Wðcos#Þ
kBT

� 	
d cos# (6.68)

The configuration integral includes only one degree of freedom (W-orientation).
Other degrees are ignored because we are only interested in an excess of free energy

of the nematic phase with respect to the isotropic phase. At this stage Eq. 6.67 is not

yet helpful for the calculation of thermodynamic parameters since it includes

unknown value of <P2> in the mean-field potential W. However, using the theo-
rem of average, <P2> may be written in the form valid for any weight function f
(cosW):

hP2i ¼
ð1

0

P2ðcos#Þf ðcos#Þd cos# (6.69)

Now we combine (6.67), (6.68) and (6.69) and obtain the self-consistent equa-

tion for the determination of the orientational order parameter <P2> as a function

of kBT/v:

hP2i ¼

Ð1
0

P2ðcos#Þ exp vhP2iP2ðcos#Þ
kBT

� �
d cos#

Ð1
0

exp
vhP2iP2ðcos#Þ

kBT

� �
d cos#

(6.70)

The equation is complicated but we can vary kBT/v and, for each given value,

calculate numerically <P2> by integrating over W. The result is universal and

shown in Fig. 6.22.

Now we can summarize some preliminary, but important conclusions:

1. The two branches correspond to two ordered phases, one is nematic with positive

<P2> > 0, and the other phase (not observed yet) with negative <P2>. The

positive branch corresponds to the results of the Landau approach, see Fig. 6.5.

2. At Tc the order parameter <P2> increases by a jump from 0 to 0.429, therefore,

the N–Iso transition is first order transition.

3. The N–Iso transition takes place at kBTc/v ¼ 0.222. From this value and a

typical experimental transition temperature Tc ¼ 400K we can estimate

the height of the potential barrier v ¼ kBTc=0:222 ¼ ð1:38 � 10�16 � 400Þ=0:222
¼ 2:5 � 10�13erg ¼ 0:15eV:However, the molecular nature of parameter v is not
clear yet and we cannot calculate the partition function and free energy. It should

be discussed using specific molecular models.
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6.7.3.2 Maier–Saupe Theory

The results of the simplest mean field approach are very impressing. However,

some experimental observations, e.g., different temperature dependencies of the

order parameter for different substances, a discontinuity of density at the N–Iso

transition have not been explained. The main disadvantages of the simplest theory

are (a) lack of the density (or volume) dependence of <P2> showing a jump at the

transition; (b) an oversimplified form of the potential well; and (c) pure phenome-

nological nature of the depth of the potential well v.
If we come back to Eq. 6.66, then with additional terms (fourth, sixth, etc.) we

can find a new partition function and calculate more precisely the thermodynamic

parameters (free energy, entropy, etc.). Indeed, the results of such calculations fit

much better the experimental data on <P2> and <P4> for different materials

[22]. But what about the nature of parameters v and m? For the first and most

important of them, the answer is given by the Maier–Saupe theory [21].

All physics of the intermolecular interactions is included in potential W1. Its

general dependence on density (or volume V) is not known. However, a dependence
of the form W1 / �A

�
V2 is consistent with the typical r-6-dependence of intermo-

lecular attractive energy (for instance, in the Lennard-Jones potential r12�6). The

V�2 form is a result of averaging over three-dimensional volume. This law is valid

for London dispersion forces related to “induced dipole – induced dipole” interac-

tions. Since elongated molecules have anisotropic (tensorial) polarizabilities, the

idea of Maier and Saupe was to describe their interaction in terms of anisotropic
dispersion forces. On account of the molecular volume term, Vm ¼ V/N, the mean

field potential (6.67) takes the form:

W1 ¼ �A
�
V2
m
hP2iP2ðcos#Þ (6.71)

This form allows for separation of effects related to packing of molecules (Vm),

their ordering (<P2>) and molecular spectral properties (A). The coefficient A was

1.0

0.5

0.0

–0.5

0.0 0.2 0.4 0.6 0.8 1.0

T/TNI

N

S=0.429

Iso

<
P

2 
(c

os
 θ
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Fig. 6.22 Mean field model

of the nematic phase:

temperature dependence of

the order parameter. The two

branches correspond to stable

nematic phase with positive

order parameter (solid line),
and unstable phase with

negative order parameter

(dash line). Order parameter

discontinuity at S ¼ 0.429

indicates the first order N–I

transition
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considered as a constant to be found from experiment. It can also be estimated from

the theory of dispersion forces. The classical formula for the interaction energy

between the oscillating dipole of one atom with another, neutral atom (or a

spherical molecule):

wðrÞ ¼ � 2�hoa20
r6

¼ � C

r6
(6.72)

Here o is frequency of oscillating electron in the first atom, a0 is polarizability of
the second atom, r is distance between the two. This result is in qualitative

agreement with a quantum–mechanical theory developed by London. For calcula-

tion of parameter A in (6.71) Maier and Saupe used this basic formula, but in

addition they took the anisotropy of molecular polarizability Da into account. It is

Da that determines the stability of the nematic phase.

The Maier–Saupe theory is very successful in explanation of density jump at TNI.
It can also explain some correlation between the thermal stability of the nematic

phase and the anisotropy of molecular polarizability Da. Up to now it is very

popular among chemists although there are some substances (e.g., cyclohexyl-

cyclohexanes), which have a very stable nematic phase but Da � 0. Its main

drawback is a neglect of short-range (steric) effects taken into account, for instance,

by hard-rod Onsager-type models. On the contrary, the hard-rod models do not take

long-range interaction into account. The two approaches taken together result in

more realistic predictions. However, in general, due to complexity of the problem,

all such models present only semi-quantitative picture [23].
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Physical Properties



Chapter 7

Magnetic, Electric and Transport Properties

Some properties of liquid crystals depend mainly on properties of individual

molecules and approximately obey the additivity law. Thus, molecular properties

can be translated, of course with some precautions, onto the properties of a

mesophase on account of the symmetry of the latter. Quantitatively, the relevant

phenomenological characteristics such as magnetic and dielectric susceptibilities,

electric and thermal conductivity, diffusion coefficients, etc. can be calculated by

averaging molecular parameters with the corresponding single-particle distribution
function. Other properties of liquid crystals such as elasticity or viscosity dramati-

cally depend on intermolecular interactions and the corresponding many-particle
distribution functions have to be taken into account. Here we shall start with a

discussion of the properties of the first sort. Moreover, we shall limit ourselves

mostly to the phases of highest symmetry (uniaxial nematics and smectic A) whose

properties are represented by second-rank tensors, discussed in Section 2.5.

Throughout this chapter, the director field is considered to be non-distorted, n(r) ¼
constant.

7.1 Magnetic Phenomena

7.1.1 Magnetic Anisotropy

In the Gauss system, magnetic induction B ¼ mHwhereH is magnetic field strength.

The magnetic permeability m ¼ 1 þ 4pw where w is dimensionless magnetic sus-

ceptibility. Except ferromagnetic materials, 4pw << 1. e.g., for p-azoxyanisole

<w> ¼ �5 � 10�7, therefore m � 1.

By definition, a magnetic moment of substance per unit volume is magnetization

M ¼ wH. For an anisotropic material, the magnetization vector components are

Ma ¼ wabHb and the contribution to the free energy density of the mesophase from

the magnetic field is given by [1]:
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gmagn ¼ �
ðHa

0

HadMa ¼ �
ðHb

0

HawabdHb ¼ � 1

2
wabHaHb

For uniaxial phases wab ¼ w?dab þ wananb, therefore

gmagn ¼ � 1

2
w?H

2 þ waðnaHaÞ2
h i

(7.1)

or in the vector form

gmagn ¼ � 1

2
w?H

2 þ waðHnÞ2
h i

(7.2)

Here Hn ¼ Hcosa where a is the angle between the director and magnetic field.

The second term determines an orientation of the director in the field: for wa > 0 the

director n tends to align parallel to the field; for wa < 0 it tends to be perpendicular

to H. A sign of wa is determined by competition of diamagnetic and paramagnetic

terms.

7.1.2 Diamagnetism

Diamagnetism is caused by an additional electric current induced by a magnetic

field in a molecule. The diamagnetic contribution to wab is negative, independent

of permanent magnetic moments of molecules and is present in all molecular

materials [2].

7.1.2.1 Single Electron

Consider a classical model of a current i caused by a rotating electron in the absence
of a magnetic field, see Fig. 7.1. When an external magnetic field is applied, an

additional, namely, induced current appears due to the Lorentz force acting on a

moving electron. The induced current component di tries to screen the external field

δii

ρ

δH

H

Fig. 7.1 Diamagnetism of

a single electron: electron

rotation creates current i in
the magnetic field absence

and the additional current

di is induced by the magnetic

field H
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H ¼ Hz (the Lenz law). In fact, di comes about due to precession of electronic

orbits with angular frequency according to the Larmor theorem:

oL ¼ eH

2mec
(7.3)

where e=2mec ¼ g [cm1/2g�1/2] is gyromagnetic ratio, e and me are the charge and

mass of an electron, c is light velocity. Such a precession of an electron is

equivalent to a diamagnetic current:

dI ¼ �e
oL

2p
¼ � e2H

4pmec2

Generally, the magnetic moment of a frame with current is pm ¼ dI � s where
s is vector of the current loop area (s ¼ p <r2>). Therefore, the induced moment

and the susceptibility of single electron moving along the contour perpendicular to

H are given by

pem ¼ � e2H

4mec2
r2
� �

; r2
� � ¼ x2

� �þ y2
� �

; gemagn ¼
pem
H

¼ � e2

4mec2
r2
� �

Here, there is no component of the current along z and <r2> is mean square of

the distance between the electron and the field axis z. For a circular electron orbit of
radius r, we have <r2> ¼ <r2>. In a more general case of electron orbits tilted

with respect to H, the mean square distance between the electron and the nucleus is

<r2> ¼ <x2> + <y2> + <z2>.

7.1.2.2 Molecules

For spherically symmetric molecules with electron orbit radius r, <x2> ¼ <y2>
¼ <z2> and <r2> ¼ (2/3) <r2>. Then the magnetic susceptibility of a spherical

molecule having Z electrons is

gmagn ¼ � Ze2

6mec2
r2
� �

(7.4)

For cylindrical molecules with length L and diameter D, gmagn is a tensor with

principal components

gjjmagn ¼ � Ze2

2mec2
D2
� �

and g?magn ¼ � Ze2

4mec2
L2 þ D2
� �

(7.5)
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Hence, the diamagnetic anisotropy of a uniaxial liquid crystal phase with

orientational order S and nv molecules per unit volume can be found:

wdiaa ¼ � nvZe
2

2mec2
S D2
� �� 1

2
L2 þ D2
� �� �

(7.6)

According to (7.6), anisotropy wdiaa may be either positive or negative depending

on the molecular geometry. A very important structural unit of liquid crystal

molecules, a benzene ring has negative diamagnetic susceptibility with the maxi-

mum absolute value along its normal due to the maximum di current along the ring
perimeter. For this reason, elongated molecules containing two or three benzene

rings have negative susceptibility with minimum absolute value along their longi-

tudinal axes that is along the director. For such molecules <L2 þ D2>/2 exceeds

<D2> in (7.6) and calamitic uniaxial phases formed by several benzene fragments

have positive diamagnetic anisotropy wdiaa . along longitudinal axes. Typically, in

nematic and SmA phases shown in Fig. 7.2, the diamagnetic susceptibilities are

almost independent of temperature.

In some rare cases, e.g., when a calamitic phase consists of solely aliphatic

compounds or cyclohexane derivatives, its anisotropy wdiaa is very small and can

even vanish. As to the discotic mesophases, they have, as a rule, negative diamag-

netic anisotropy wdiaa ¼ wdiajj � wdia? < 0 due to a considerably larger value of the

susceptibility component perpendicular to the director (for discotics wdia? would be

closer to zero line than wdiajj in the plot similar to Fig. 7.2).

N IsoSmAc

cpara

cdia

cdia

cpara
||

<c>para
~T–1

<c>dia

⊥

⊥

||
T

0
Fig. 7.2 Qualitative

temperature dependences of

the principal components

of diamagnetic (negative)

and paramagnetic (positive)

susceptibility for calamitic

compounds in the isotropic,

nematic and SmA phases
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7.1.3 Paramagnetism and Ferromagnetism

7.1.3.1 Paramagnetism

The susceptibility of paramagnetic substances is mostly determined by permanent

magnetic moments pm, which are aligned by the magnetic field. The field induced

magnetization is determined by the total projection of nv molecular magnetic

moments in a unit volume onto the field axis

Mpara ¼ nvpm cos yh i

where y is an angle between individual dipole pm and fieldH. In the isotropic phase

such a distribution is given by the Langevin formula [3]:

cos yh i ¼

Ð
O
expð�pmH=kBTÞ cos ydOÐ
O
expð�pmH=kBTÞdO ¼ LðpmH=kBTÞ

¼ cthðpmH=kBTÞ � ðkBT=pmHÞ (7.7)

Here x ¼ pmH/kBT and L(x) ¼ cth(x)�(1/x) is the Langevin function. For x << 1,

cth(x) � 1/x + x/3 -. . . and <cosy> � x/3. Therefore, for a weak magnetic field,

pmH << kBT, the magnetization is:

Mpara ¼ nvp
2
mH

3kBT
(7.8)

What is a nature of pm in a molecular system? The molecular paramagnetism is

mostly originated from the unpaired electron spins. The magnetic moment for a free
electron spin is

pem ¼ �g mB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsþ 1Þ

p

where s is spin quantum number, mB ¼ e�h=2mec is Bohr magneton for electron and

g ¼ 2.0023 is Lande factor. According to (7.8), the spin magnetization and suscep-

tibility follow the Curie law, w/T�1:

Ms ¼ nv
g2m2Bsðsþ 1Þ

3kBT
H and ws ¼ nv

g2m2Bsðsþ 1Þ
3kBT

(7.9)

Typical temperature dependencies of paramagnetic susceptibility wpara are pic-

tured in the same Fig. 7.2 in comparison with wdia. The order of magnitude of both

wdia and wpara is 10�7. As far as the nature of the paramagnetic anisotropy is
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concerned, it should be noted that in molecules the unpaired spins are almost free to

rotate. Therefore, their alignment, e.g. by an external magnetic field, needs not be

accompanied by alignment of molecular skeletons. In reality, however, there is

some coupling between spins and molecular axes. The g-factor becomes a tensor

due to interaction of the unpaired electron spins with the angular momentum of

molecular orbitals (the so-called spin-orbit interaction). This is a reason for the

anisotropy of paramagnetic susceptibility of liquid crystals. For a uniaxial phase,
the paramagnetic anisotropy is given by

wparaa ¼ nvm2Bsðsþ 1Þ
kBT

Sðg2? � g2jjÞ (7.10)

where S is the orientational order parameter and ðg2? � g2jjÞ is anisotropy coming

from the g2 value. The latter determines a sign of paramagnetic anisotropy wparaa .

Like diamagnetic anisotropy wdiaa , wparaa may be either positive or negative depending

on orientation of the g-tensor with respect to the director. For instance, wparaa < 0 for

elongated calamitic complexes of copper II with d9 electron configuration. Differ-

ent compounds of this sort can be oriented either perpendicular or parallel to the

magnetic field depending on competition with the positive diamagnetic contribu-

tion. On the other hand, vanadyl (VO) d1 complexes manifest both wparaa > 0 and

wdiaa > 0 and are always oriented along the magnetic field.

7.1.3.2 Ferromagnetism

The ferromagnetism of organic compounds has been observed only recently. These

are compounds containing Fe, Ni, Co atoms and the ferromagnetic state is found at

very low temperatures (few K), at which a liquid crystal state is not observed yet.

However, ferromagnetic materials can be prepared from colloidal suspensions of

small solid ferromagnetic particles, even nanoparticles (e.g., magnetite Fe2O3 or

ferrite Fe3O4) in liquids. Such solutions are called ferrofluids. Since these particles
have permanent magnetic moments pm, under a magnetic field they can be oriented.

In ferrofluids they form chains, which are arranged in ordered patterns.

The same particles can be introduced into liquid crystals, e.g. into nematics [4].

If the guest particles are elongated they may be aligned by a liquid crystal (host)

even in the absence of the magnetic field, e.g. by a surface treatment (without

macroscopic magnetization). The external magnetic field will orient the magnetic

moments of particles, which, in turn, orient the liquid crystal matrix. Such nematic

suspensions of particles show very interesting magneto-optical properties (a guest-

host effect in ferrofluids).
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7.2 Dielectric Properties

7.2.1 Permittivity of Isotropic Liquids

Liquid crystals are anisotropic fluids and the discussion of their dielectric properties

is based on the fundamental ideas obtained for isotropic liquids. We recall the

relevant results.

7.2.1.1 Dielectric Spectrum

The Maxwell equations for the electromagnetic field in conductive materials such

as organic liquids read:

curlE ¼ � m
c
� @H
@t

and curlH ¼ þ e
c
� @E
@t

þ 4p
c
sE (7.11)

Here E and H are vectors of electric and magnetic field strength, e(o) and m(o)
are frequency dependent dielectric and magnetic permittivities, s is permanent

conductivity. In the second equation, the two terms describe the displacement and

Ohmic current, respectively.

In the limit of o ¼ 2pf ! 1 no dynamic process in medium can follow the

field; the electric polarization P ¼ wEE vanishes (i.e. dielectric susceptibility

wE ! 0) and the displacement vector D ¼ (1 + 4pwE)E coincides with E, that is
e ¼ 1 þ 4pwE ! 1. With decreasing frequency, fast electronic processes have

enough time to follow the field and, at optical frequencies, e ¼ n2 (n is refraction

index) shows peculiarities related to electronic absorption bands (normal and

abnormal dispersion). With further decreasing frequency other processes such as

molecular rotations and vibrations begin to contribute to the electric polarization

and e ¼ n2 again increases, see Fig. 7.3.

On the other hand, since for the sine-form field ∂E/∂t / oE the role of

permanent conductivity s decreases with increasing frequency, in the high fre-

quency limit o >> 1/tM ¼ 4ps/e a material can be considered as non-conductive.

The time tM ¼ e/4ps is called Maxwell dielectric relaxation time. Later we shall

meet it again under another name “space charge relaxation time”.

7.2.1.2 Local Field, Clausius-Mossotti and Onsager Equations

The vectors of electric displacement D and polarization P are also coupled by the

additional Maxwell equation:

e ¼ D

E
¼ Eþ 4pP

E
¼ 1þ 4pP=E and wE ¼ P

E
¼ e� 1

4p
(7.12)
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How can we relate these macroscopic quantities to the microscopic parameters
of molecules such as polarizability or a dipole moment? With some precautions, the

polarization of an isotropic liquid may be found as a sum of the field induced

molecular dipole moments whose number coincides with the amount of dipolar

molecules in the unit volume nv ¼ rNA/M (r is mass density, NA is Avogadro

number, M is molecular mass):

P ¼
X
nv

pe ¼ nvgEloc (7.13)

Here g is average molecular polarizability (generally, gij is a tensor), Eloc is a

local electric field acting on each molecule and pe is a field induced electric dipole

in a molecule. So, if we find Eloc we could calculate P and then the value of e, using
Eq. 7.12, and known macroscopic field E in the sample, see Fig. 7.4a.

Fig. 7.4 Lorentz model for

the local field. Polarization of

an ellipsoidal form dielectric

sample and appearance of

depolarizing field E1 (a),
Lorentz cavity field E2 and

the field of individual

molecules within the cavity

E3 (b)

Fig. 7.3 Qualitative frequency spectrum of the dielectric permittivity
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The local field can be found, e.g., from some models, particularly the Lorentz
model [3]. For its discussion we select a single molecule and surround it by a

fictitious spherical cavity shown in Fig. 7.4b. Then Eloc is a sum of four fields:

Eloc ¼ E0 þ E1 þ E2 þ E3 (7.14)

Here, E0 is an external field created by charges located outside of the sample;

E1¼�kP is a depolarizing field from the charges formed at the external surfaces

(upper sketch);

E2 is the Lorentz field coming from the charges at the inner surfaces of the cavity;

and

E3 is the field from all molecules inside the cavity except that one we have selected.

The depolarization field is opposite to the external field and factor k is generally
a tensor dependent on the shape of the sample. For samples in the form of the

ellipsoid, oriented with one of its axes along the field, depolarizing factors become

scalars ki dependent on the ratios of ellipsoid axes. For instance, for a spherical

sample k ¼ 4p/3, for a thin plate with the field perpendicular to its surface, k ¼ 4p.
From Fig. 7.4a follows that the macroscopic field in the sample E ¼ E0þ

E1 ¼ E0�kP. When polarization P is very high, the macroscopic field is consider-

ably reduced. The Lorentz field E2 is parallel to the external field and, for a

spherical cavity, is equal exactly to þ4pP/3. Therefore, when both the sample

and the cavity are spherical,

Eloc ¼ E0 � 4 pP=3þ 4 pP=3þ E3 ¼ E0 þ E3:

Due to high symmetry, for all isotropic liquids (and all cubic crystals), field E3

acting on the selected molecule from its neighbors is exactly compensated. Thus,

for a spherical isotropic sample the local field is equal to the external field:

Eloc ¼ E0

For an isotropic sample of an arbitrary form, the depolarization field E1 is form-

dependent and Eloc should be written as

Eloc ¼ E0 þ E1 þ 4 pP=3 ¼ Eþ 4 pP=3 (7.15)

It should be noted that, if a sample is connected directly to the electric voltage

source (fixed potential difference across electrodes), there is no depolarization

charges on the external surfaces of the sample. In this case, E1 ¼ 0 and the local

field acting on a molecule in the cavity is given by

Eloc ¼ E0 þ 4 pP=3 ¼ 2E0 þ Dð Þ=3 ¼ E0 eþ 2ð Þ=3: (7.16)
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With the local field found, we obtain a relation between the macroscopic field in

the sample E, polarization P and the local field acting on a particular molecule, see

Eqs. 7.13 and 7.15:

P ¼ nvgEloc ¼ nvgðEþ 4p
3
PÞ: (7.17)

Solving the latter for P we find the microscopic value of electric susceptibility:

wE ¼ P

E
¼ nvg

1� 4p
3
nvg

(7.18)

This equation has a singularity at g ! 3=4pnv: for large enough molecular

polarizability the macroscopic susceptibility and, consequently, polarization

become infinite. This phenomenon is called polarization catastrophe. In a more

subtle approach, the polarization remains finite and exists even in the absence of the

external field (spontaneous polarization Ps). The spontaneous polarization is

responsible for pyro- and ferroelectricity in solid and liquid crystals, however it is

not observed in the isotropic liquid (see Chapters 4 and 13).

Finally, combining (7.18) with definition e ¼ 1 þ 4pwE we arrive at theClausius-
Mossotti equation (NAv is Avogadro number):

e� 1

eþ 2
¼ 4pnv

3
g ¼ 4prNAv

3M
g (7.19)

This equation relates the macroscopic value of dielectric permittivity e to

microscopic parameters of medium. For instance, from measurements of capaci-

tance of a liquid by a dielectric bridge one finds dielectric constant and then

calculates molecular polarizability g.
Molecular polarizability includes electronic gel and orientational gor parts. The

first of them is frequency and temperature independent and, at optical frequencies,

the Lorenz-Lorentz formula is valid:

n2 � 1

n2 þ 2
¼ 4prNA

3M
gel (7.20)

The second, dipolar part of polarizability is related to the orientational suscepti-

bility of permanent dipole moments pe and can be found from the Langevin

equation (7.7) as in the case of paramagnetism (only pm is substituted by pe):

Pdip ¼ nvp
2
eE

3kBT
(7.21)

We see that the dipolar susceptibility obeys the Curie law:

gor ¼
p2e

3kBT
(7.22)
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Using the last three equations one can find molecular parameters gel and pe from
independent measurements of density, refraction index and temperature depen-

dence of dielectric permittivity at a low frequency.

The Clausius-Mossotti equation is based on the simplest (Lorentz) form of the

local field. In reality, the induced dipole in the selected molecule also creates an

additional, reaction field that modifies the cavity field. On account of these factors

Onsager has obtained the following equation for dielectric permittivity

e� 1 ¼ 4prNA

M
Fh gel þ F

p2e
3kBT

� �
(7.23)

where the cavity h and reaction field F factors are:

h ¼ 3e=2eþ 1; F ¼ 2eþ 1ð Þ n2 þ 2ð Þ
3 2eþ n2ð Þ

The Onsager equation agrees quite well with experimental data on liquids and

liquid crystals and will be generalized for calculations of the tensor eij in nematic

liquid crystals.

7.2.2 Static Dielectric Anisotropy of Nematics and Smectics

7.2.2.1 Maier-Meier Theory

In experiment on nematic liquid crystals, both positive and negative anisotropy ea is
observed, the sign depending on chemical structure. The magnitude of ea is often
proportional to orientational order parameter S. In the isotropic phase the anisotropy
disappears. Typical temperature dependencies of e|| and e⊥ are shown in Fig. 7.5.

These observations can be accounted for by the Maier-Meier theory [5]. The latter
is based on the following seven assumptions:

1. the molecules are spherical with radius a, but their polarizability is tensorial,

ga ¼ gjj � g?>0

2. the point molecular dipole pe makes an angle b with the axis of maximum

molecular polarizability

3. a nematic liquid crystal has a center of symmetry and characterized by orienta-

tional quadrupolar order parameter S
4. the analysis is performed within the framework of Onsager’s theory of polar

liquids, and the mean dielectric susceptibility <e> was taken for the calculation

of the Onsager factors h and F, introduced above

5. the dielectric anisotropy is assumed to be small, ea ¼ |e||-e⊥| << <e>
6. when calculating the reaction field the tensor nature of electronic polarizability

gij was neglected and the average value <g> ¼ ðgjj þ 2g?Þ=3 was used

7. the interaction between molecules is disregarded
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With these restrictions, Maier and Meier have calculated two principal compo-

nents of dielectric permittivity and dielectric anisotropy:

ejj � 1 ¼ 4prNA

M
Fh hgi þ 2=3gaSþ F

p2e
3kBT

½1� 1

2
ð1� 3cos2bÞS�

	 


e? � 1 ¼ 4prNA

M
Fh hgi � 1=3gaSþ F

p2e
3kBT

½1þ ð1� 3cos2bÞS�
	 


ea ¼ ejj � e? ¼ 4prNA

M
Fh ga � F

p2e
2kBT

½ð1� 3cos2bÞ
� �

S (7.24)

The equations have the Onsager form. In the isotropic phase, S ¼ 0, e|| ¼ e⊥ ¼
eiso and equation (7.24) reduces to (7.23). The theory results in the following

conclusions:

1. The average molar dielectric susceptibility of the nematic phase he� 1iM=4pr
is independent of parameter S and equal to the molar susceptibility of the

isotropic phase <e> N ¼ eiso. Thus, the theory cannot explain a discontinuity

of <e> at the Iso-N transition shown in Fig. 7.6 by a dashed line.

2. For a specific value of the angle (b � 55
�
) between the dipole moment and the

axis of maximum polarizability of the molecule, given by 1� 3cos2b ¼ 0, the

contribution from the orientational polarization to ea becomes zero [6]. For

somewhat larger value of the angle b determined by condition

ga � F
p22

2kBT
½ð1� 3cos2bÞ ¼ 0;
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ε

Fig. 7.5 Typical temperature

behavior of principal

dielectric permittivities for

two nematic liquid crystals,

one with positive (solid lines)
and the other with negative

(dash lines) dielectric
anisotropy
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the dielectric anisotropy completely vanishes. This agrees with experiment: the

anisotropy changes sign with a change of the angle b the dipole forms with the long

molecular axis, Fig. 7.7, which, indeed, is the axis of maximum polarizability for

rod-like molecules. For nematics with molecules having large longitudinal dipole
moment, the anisotropy is positive, ea > 0. For molecules with large transverse
dipole moment ea < 0.

3. The temperature dependence of average dielectric permittivity <e> enters the

equations both explicitly (term kBT ) and through S (the additional contribution

from h and F is weak) while ea is directly proportional to S. The latter corre-

sponds to the uniaxial symmetry of the dielectric permittivity with a tensor form

of Eq. 3.16.

e
_ ¼ hei þ ea½nanb � ð1=3Þdab� ¼ e?dab þ eaðnanbÞ (7.25a)

Note that

hei ¼ ðejj þ 2e?Þ=3 ¼ e? þ ejj=3� e?=3 ¼ e? þ ea=3

Using Eq. 7.25a one can calculate the value of the dielectric permittivity e(W,j)
of a uniaxial phase at any angle with respect to the director. Let the director is

rigidly fixed by a strong magnetic field along the z-axis, n ¼ (0, 0, 1). Then the

single term nznz ¼ 1 is finite and Eq. 7.25a has a familiar form:

e
_ ¼

e? 0 0

0 e? 0

0 0 e?

0
@

1
Aþ

0 0 0

0 0 0

0 0 ea

0
@

1
A ¼

e? 0 0

0 e? 0

0 0 ejj

0
@

1
A

N Iso

TTc

εiso

ω e⊥

e||

Fig. 7.6 Discontinuity of the

average dielectric

permittivity at the nematic –

isotropic phase transition for a

nematic with negative

dielectric anisotropy

Pe

β

Fig. 7.7 Location of a molecular dipole moment with respect to the longitudinal molecular axis of

a molecule. Note that in the Maier-Meier theory the dipole moment forms angle b with the axis of

maximum polarizability of a spherical molecule
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Assume that a very weak electric field is applied at angles W and j, respectively,
to the z and x axes: E ¼ (EcosWcosj, EcosWsinj, EcosW). Then we can calculate

the components of the displacement vector:

Dx

Dy

Dx

¼
e? 0 0

0 e? 0

0 0 ejj

0
@

1
A �

E sin W cosj
E sin W sinj

E cos W
¼

Ee? sin y cosj
Ee? sin y sinj

Eejj cos W

and find D2 ¼ D2
x þ D2

y þ D2
z ¼ e2E2 ¼ E2ðe2?sin2Wþ e2jjcos

2WÞ: Hence, the dielec-
tric permittivity e(W,j) is found to be independent of the azymuthal angle j as

expected for a uniaxial material:

eðWÞ ¼ ðe2?sin2Wþ e2jjcos
2WÞ1=2: (7.25b)

It is evident that the same formula (7.25b) is valid for any properties of uniaxial

phases described by a tensor of the type (7.25a) such as magnetic susceptibility,

thermal and electric conductivity, diffusion and others.

The displacement can be written in the vector form as D ¼ e?Eþ eaðnEÞn and

the electric field contribution to the free energy density is given by:

gel ¼ �ED

8p
¼ � e?

8p
E2 � ea

8p
ðnEÞ2 (7.26)

to be compared with the magnetic counterpart (7.2).

7.2.2.2 SmA Phase and the Role of the Positional Order

Generally speaking, the Maier-Meier theory [5] explains all essential static dielec-

tric properties of the nematic phase [7, 8]. The transition from the nematic to the

smectic A phase is accompanied by an increase in the orientational order S. When

molecules do not possess very large longitudinal dipoles, the set of Maier-Meier

equations is still valid even in the SmA phase. Typically, the dielectric anisotropy

increases proportionally to S, as shown in Fig. 7.8. In this case, a periodicity of the

smectic A density is not important. However, in many compounds, on approaching

the SmA phase, the dielectric anisotropy decreases despite increasing orientational

order [9]. It can even change sign either in the nematic or in the smectic phase as

shown in Fig. 7.9.

This effect originates from the anisotropic dipole-dipole correlations not

accounted for by the Maier-Meier theory operating with a single particle distribu-

tion function. When, with decreasing temperature, the smectic density wave r(z)
develops (even at the short-range scale) the longitudinal dipole moments prefer to

form antiparallel pairs and the “apparent” molecular dipole moment becomes

smaller. This would reduce positive ea. Theoretically, dipole-dipole correlations

may be taken into account by introducing the so-called Kirkwood factors.
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7.2.2.3 Smectic C Case

The point group symmetry of the SmC phase (C2h) is different from that of the N

and SmA phases (D1h). Now the tensor of dielectric permittivity is represented by a

biaxial ellipsoid with three different components e1, e2 and e3 as shown in Fig. 7.10.
The component e3 is parallel to the director (e3 ¼ e||), e2 is parallel to the symmetry

axis C2, and e1 is perpendicular to the both e3 and e2. The biaxiality, however, is

weak e1 � e2.

7.2.3 Dipole Dynamics of an Isotropic Liquid

To set the stage for discussion of frequency dispersion of liquid crystal permittivity

we turn back to the isotropic liquids. First we shall find a characteristic relaxation

time for molecular dipoles and then discuss real and imaginary components of the

permittivity [10].

7.2.3.1 Dipole Relaxation

An applied electric field reduces the symmetry of an isotropic liquid from Kh to

C1v and creates anisotropy in the angular distribution function of dipoles; the

SmA N Iso

ε⊥

ε||

ε
T

Fig. 7.8 Typical temperature

behavior of the principal

dielectric permittivities in the

nematic and SmA phases
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Fig. 7.9 Anomalous

temperature behavior of the

principal dielectric

permittivities within the

nematic and SmA phase in

di-n-heptyl-azoxybenzene
(Adapted from [7])
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distribution function becomes elongated in the field direction, Fig. 7.11. If we forget

for a while about the role of temperature then the angular motion of the dipoles in

the electric field E can be described by equation of motion:

I
d2W
dt2

þ x
dW
dt

¼ �peE sin W (7.27)

Here, W is the decreasing with time angle between the dipole and E and x is a

friction coefficient for a change of W angle [g.cm2s�1]. Usually, due to high

viscosity of a liquid, the inertial term may be neglected. Then

dW
dt

¼ � peE sin W
x

Since the contribution of the considered dipole to the field-induced polarization

is given by its projection on the E-axis, pe
E ¼ pecosW, the rate of the increase of this

projection is

dpEe
dt

¼ �pe sin W
dW
dt

¼ p2e
Esin2W

x

e3

e1

e2

Fig. 7.10 Three principal

permittivities of the biaxial

SmC phase; e3 is parallel to
the director, e2 is parallel
to symmetry axis C2, and e1
is perpendicular to the both

e3 and e2

f (0)

f (E)

E

Fig. 7.11 Angular

distribution of molecular

dipoles in the isotropic phase

without external field (dash
curve sphere) and with the

electric field applied (solid
line)
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From here the kinetic equation may be written for the electric field induced

polarization in the system of nv dipoles in a unit volume with initial arbitrary

orientation:

dPE

dt
¼ nvp

2
eEhsin2Wi

x
� PE

tD
(7.28)

The second term on the right of (7.28) i.e. the dipole disorienting factor describes

the relaxation of dipoles due to a finite temperature. The multiplier<sin2W>may be

considered as a numerical coefficient k � 2/3, as if the distribution function is

spherical even in the electric field. In fact, a more precise value was found by Debye

by averaging the PE value over W with the field-induced dipole distribution function

shown qualitatively in Fig. 7.11. Since the thermal motion of dipolar molecules

destroys the field induced polar order, we introduce a thermal relaxation time tD, as
the first (linear) approximation of the relaxation rate. In order to find this time, we

should exclude PE from the kinetic equation.

In the steady-state regime, dPE/dt ¼ 0, and the value of the dipole polarization is

PE ¼ tD
2nvp

2
eE

3x
(7.29)

This value may be compared with that found from the Langevin formula, see

Eq. 7.21. From the comparison, the relaxation time for molecular dipoles is found:

tD ¼ x
2kBT

(7.30)

Now, if we assume that a dipolar molecule has a spherical form of volume (4/3)pa3

and rotates in continuous medium with viscosity Z [units g.cm�1s�1 (Poise)], then

the friction force may be written as x ¼ 8pZa3 and tD ¼ 4p�a3=kBT. This model is

very simple, however, it predicts a correct magnitude and temperature dependence

of relaxation times for dipoles in an isotropic liquid.

In the dispersion region o � t�1
D , molecular dipoles follow the electric field with

some lag, i.e. the orientational component of polarization P has some phase
retardation with respect to field E. Therefore, the dielectric permittivity becomes

complex functions of frequency

e� ¼ e0 þ ie00 (7.31)

The imaginary part describes dissipation of energy due to molecular friction. It is

called dielectric losses and equivalent to appearance of non-Ohmic electric con-

ductivity. The frequency dependence of e* can be written in the form of the Debye
dispersion law [10]

e� � eð1Þ ¼ eð0Þ � eð1Þ
1� iotD

(7.32)
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where e(0) and e(1) correspond respectively to zero frequency and to the frequen-

cies essentially exceeding the relaxation frequency region, o >> t�1
D (in that

range, e(1) ¼ n2, n is refraction index, as shown in Fig. 7.3).

The two components of the permittivity are:

e0 ¼ eð1Þ þ eð0Þ � eð1Þ
1þ o2t2D

e00 ¼ ½eð0Þ � eð1Þ�otD
1þ o2t2D

(7.33)

and the corresponding spectra of e0 and e00 are illustrated by Fig.7.12a. The ratio of

the two components determines the phase angle, Fig.7.12b:

tanf ¼ e00

e0 � eð1Þ ¼ otD (7.34)

7.2.3.2 Debye and Cole-Cole Diagrams

Very often a rotation of a complex molecule includes a motion of different

molecular dipoles and the dielectric spectrum e00(o) is not as simple as shown in

the picture. It becomes somewhat blurred and the correspondent time tD cannot be

found with sufficient accuracy. In order to improve the analysis, a simple procedure

is used based on the Debye Eq. 7.32.

Note that sinf ¼ tanf=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2f

p
and cosf ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2f

p
. Then the

equations (7.33) can be cast in the new form:

ε*

ε’–ε(∞)
0

φ

ba

0.01  0.1 1 10 100

ε(0)+ε(∞)

ε(0)−ε(∞)

2

2

ε′(0)

ε

ε′(∞)

ε′′

ε”ε′

ωτD

Fig. 7.12 Frequency dependence of the real (solid line) and imaginary (dash curve) parts of the
dielectric permittivity of an isotropic liquid (a) and the definition of the phase angle f (b)
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e0 � eð1Þ
eð0Þ � eð1Þ ¼ cos2f ¼ 1

2
þ 1

2
cos 2f

e00

eð0Þ � eð1Þ ¼ sinf cosf ¼ 1
2
sin 2f

or

e0 ¼ eð1Þ þ eð0Þ
2

þ eð0Þ � eð1Þ
2

cos 2f e00 ¼ eð0Þ � eð1Þ
2

sin 2f (7.35)

The new equations may be regarded as the parametric representation of the

equation of a circle of radius R with a center at x0, y0: x ¼ x0 þ R cos 2f
and y ¼ y0 þ R sin 2f with angle f related to frequency by Eq. 7.34. Consequently,

plotting the experimental dependence of e00 against e0 at different frequencieso should

give us a semi-circle (e00 > 0) with its center at a point e0 ¼ 1
2
½eð1Þ þ eð0Þ�; e00 ¼ 0

and a radius 1
2
½eð1Þ � eð0Þ�, as shown by the Debye diagram, Fig.7.13a. If, in the

experiment, the points do lie on such a circle we can find the single dipole relaxation

time from any particular point on the circle using Eq. 7.34.

In a number of cases, the experimental points also form a part of a circle with a

center that, however, lies below the e00 axis, see Cole-Cole diagram in Fig. 7.13b.

Then the frequency dependence of the dielectric permittivity can be described by

the empirical equation

e�ðoÞ � eð1Þ ¼ eð0Þ � eð1Þ
1þ ðiotDÞ1�h

; (7.36)

where the angle ph/2 defines the position of the center. The relaxation time can be

found from the relationship otD ¼ v=u

 �1�h

after location of the circle center. For

h ¼ 0, v/u ¼ tanf and the Cole-Cole equation reduces to the Debye equation. The

parameter h tends to increase with the number of degrees of freedom in the

molecule (for example, through the rotation of the dipole moments of various

molecular groups) or with increasing temperature.

In a mixture of different dipolar molecules with strongly different relaxation

times, several maxima of e00 will be observed and several characteristic semi-circles

can be drawn. As a rule, the relaxation times do not differ so much and the

ba
e //e //

e (∞) e (∞)e (0) e (0) e /e / ph /2

u
v

ω2

2

ω2

ω3

ω1ω1

f f

Fig. 7.13 The Debye (a) and Cole-Cole (b) diagrams for calculations of characteristic dipole

relaxation times
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corresponding maxima in the dielectric spectra are not resolved. In this case, the

Debye and Cole-Cole diagrams are very useful for calculations of different tD.

7.2.4 Frequency Dispersion of e|| and e⊥ in Nematics

7.2.4.1 Relaxation Modes

Basically the experimental observations of dielectric relaxation in nematics are

consistent with Fig.7.14. There are three characteristic modes: the rotation of

molecules about short molecular axes (the lowest frequency o1 � 106 Hz); the

precession of long molecular axes about the director n (the middle frequency

o2 � 108 Hz); and the fast rotation of molecules about long molecular axes (the

highest frequency o3 � 109 Hz) [6]. The corresponding dielectric spectra are

shown in Fig.7.15. The most striking feature is strong retardation of the permittivity

component parallel to the director, i.e. e||-relaxation, tjj ¼ o�1
1 ¼ jjjtiso (retardation

factor j|| ¼ 10–100) and some acceleration of e⊥-relaxation t? ¼ o�1
3 ¼ j?tiso

(acceleration factor j⊥ � 0.5) with respect to the e-relaxation in the isotropic

n

Pt

Pi

ω2 ω3

ω1

Fig. 7.14 Three characteristic relaxation modes for rotation of molecules in nematic liquid

crystals: slow rotation about short molecular axes with frequency o1; the precession of long

molecular axes about the director nwith middle frequency o2; and fast rotation of molecules about

long molecular axes with frequency o3

ω1

ω2

ω3

ε^(0)

log ω

ε^

^

ε'
ε||

ε||(0)

0

n2 
||

n2 

Fig. 7.15 Spectra of

principal dielectric

permittivities for nematic

phase. Characteristic

dispersion ranges correspond

to relaxation modes with

frequencies o1, o2 and o3

illustrated by Fig. 7.14
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phase. Moreover, a growth of t||(T ) with decreasing temperature (i.e., with increas-

ing S) is much faster than that predicted by the Arrhenius law for viscosity.

Evidently, the nematic order strongly influences the relaxation of e|| and e⊥.
An individual rod-like molecule feels the nematic potential curve W(cosW), (see
Fig. 6.21), whose form is an inverse of the molecular distribution function in

Fig. 3.15. In fact, each molecule moves in the potential well of the depth about

0.15 eV with a minimum centered at W � 0 or p. This prevents deviation of the

molecule through large angles from the director n. A primitive, but useful mechan-

ical model for this situation is a rod-like molecule in a rubber tube, Fig. 7.16. For W
deviation from 0 to p/2 the molecule has to overcome a high barrier WN and its

angular velocity and frequency decreases dramatically down to o1 (case a). The
retardation factor depends on the height of the barrier. Theoretically this can

approximately be written as

jjj ¼ kBT

WN
exp

WN

kBT

This expression gives a correct order of magnitude for the retardation factor (for

WN ¼ 0.16eV and T ¼ 400K, kBT/WN � 0.21 and the retardation factor is about

25). Note that the retardation is controlled not by a molecular dipole moment, but

rather by a molecular shape.

For rotation of the same molecule about its long axis (frequency o3) there is no

barrier (case b). To some extent, such rotation in the nematic phase is even easier

than in the isotropic phase (friction is less). Therefore, instead of retardation we

have acceleration, j⊥ < 1.

When rigid molecules precess (case c) about the director at small W angles within

the flat potential minimum they are more or less free. Therefore, frequency o2 cor-

respond to a quite fast molecular motion and the precession contributes to both e||
and e⊥(case c). All the three dispersion regions are observed by dielectric spectros-
copy techniques [11].

Fig. 7.16 A mechanical model that helps to understand the process of retardation or acceleration

of molecular rotation in the nematic potential: slow hindered rotation of molecule at the angles

W � p/2 (a), fast accelerated rotation about long molecular axes at the angles W � 0 or p (b) and
quite fast molecular precession within small W-angles (c)
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7.2.4.2 Dual Frequency Addressing

Experiments show that with increasing molecular length j||-factor increases dramat-

ically. For terphenyl derivatives, frequency o1 can be shifted down to 1–10 kHz.

The simple theory discussed above does not consider a molecular length but

intuitively it is understandable in the framework of the same mechanical model.

The low frequency dispersion of e|| is seen in Fig. 7.17 against the background of

almost constant e⊥. Therefore there is an inversion point for the sign of dielectric

anisotropy at a certain frequency finv; ea > 0 for f < finv and ea < 0 for f > finv.
This is very interesting for display applications because an external field of low

frequency (say, at 1 kHz) aligns the director (that is the optical axis) along the field,

while at an enhanced frequency (say, at 10 kHz) the director is aligned perpendicu-

lar to the field. Changing frequency of the field one can switch the director very fast

because, in this, so-called dual-frequency addressing regime, the director always

suffers a torque eaE
2 from a strong field and the switching rate is high t�1 / eaE

2.

Since the field is never switched off, the slowest process of the director free

relaxation is excluded.

7.3 Transport Properties

7.3.1 Thermal Conductivity

According to Fourier law, the scalar coefficient of thermal conductivity k relates

the thermal flux density Q [in erg/cm2s] to the gradient of temperatureQ ¼ �kr! T
[units of k: erg/cm.s.K]. The corresponding thermal diffusion coefficient [in cm2/s]

includes density of substance r and heat capacitance Cp (at constant pressure)

Dth ¼ k
�
rCp

and determines the time tT of the heat transfer over the distance LT called a thermal

diffusion length:

tth ¼ L2T
�
2Dth

(7.37)

ε||

ε^
εa > 0

εa < 0

ε

10 kHz1 kHz ffinv
0

Fig. 7.17 Spectra of

principal dielectric

permittivity components

showing the inversion of the

sign of dielectric anisotropy

at a particularly low

frequency finv
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This formula comes about from the general expression for the diffusion (ran-

dom) process, like the Brownian motion, and relate average distance passed by a

random-walking particle to time t hx2i ¼ 2Dt derived by Einstein and Smolu-

chowski in the beginning of twentieth century. The temperature dependence of the

thermal conductivity in the nematic and smectic A phase resembles that of the

magnetic susceptibility [12]. A good example is p-octyl-p0-cyanobiphenyl (8CB),
see Fig. 7.18. No such sharp anomalies in k at the phase transitions are observed as

manifested, for instance, by the specific heat discussed in Section 6.2.4. The reason

is that the thermal conductivity is mainly determined by a single-particle molecular

distribution function whereas the specific heat dramatically depends on the long-

range fluctuations of the order parameter.

In anisotropic phases the magnitude of the thermal flux depends on the direction

of gradient rT:

Qi ¼ �kij
@T

@xj
:

In the case of a uniaxial phase, the thermal conductivity tensor has a familiar

form (7.25a): kij ¼ k?dij þ kaninj, where ka ¼ kjj � k?>0 for calamitic phases and

ka < 0 for discotic ones.

At present the coefficients k|| and k⊥ are measured by sophisticated techniques

such as a.c. adiabatic calorimetry, photoacoustic and photopyroelectric methods.

The latter is very sensitive and allows the measurements using small amounts of

liquid crystals [13]. The idea is demonstrated by Fig. 7.19. The light beam (shown

by arrows) of intensity I is modulated by a chopper according to the law of

I ¼ Imcosot and absorbed by black paint on the bottom of a quartz block. The

heat flux traverses the properly aligned liquid crystal layer (LC) and reaches a

crystalline pyroelectric detector. The latter generates an electric signal at frequency

o. A lock-in amplifier (LA) analyzes the amplitude and phase of the signal. The

measured amplitude provides the thermal energy reached the detector; the phase

Fig. 7.18 Anisotropy of

thermal conductivity of 8CB

in the nematic and smectic A

phases (Adapted from [12])
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contains information on the time of the heat transfer tT related to thermal diffusion

coefficient by Eq. 7.37.

7.3.2 Diffusion

The diffusion is a kinetic process of molecular transport due to a gradient of

molecular concentration c. The coefficient of diffusionD relates the flux of particles

to their concentration gradient (first Fick law):

J ¼ �D~rc

Note that, in contrast to hydrodynamic processes, there is no mass transport

during the diffusion process, the mass velocity v(x,y,z) ¼ 0 and the mass density is

constant. For this reason, the diffusion in anisotropic media is described by a

simplest second rank tensor Dij:

Ji ¼ �Dij
@c

@xj
Dij ¼ D?dij þ Daninj Da ¼ Djj � D?

Microscopically, the diffusion in the isotropic and the nematic phase is thermally

activated. However, in this case, the Arrhenius-type process with activation energy

DE is not related to the orientational potential Wcosy. In fact, this process is

controlled by another potential barrier, namely, the barrier for translational jumps

of a molecule from site to site:

Di / Ai exp � DE
kBT

� �

Coefficient Ai, however, depends on molecular orientation function.

Recall the Stokes law, related the force (F) acting on a sphere of radius R to

velocity of the sphere in a viscous liquid, v ¼ F/4pZR (Z is viscosity of the liquid).

Roughly, by analogy with the sphere in viscous liquid, the diffusion coefficient is

quartz
block

light
absorber

LC

Pyrodetector

light chopper 

LA

Fig. 7.19 Scheme of the

set-up for measuring thermal

conductivity and specific

heat in liquid crystals
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proportional to the corresponding molecular dimension. In the nematic phase a

cylindrical molecule of length L and diameter D is typically aligns parallel to the

director as in Fig. 7.20a. Then the diffusion is also easier (faster) along the director,

A||/1/pD > A⊥/1/(LD)1/2. Consequently, the ratio D||/D⊥/L/D > 1 and anisot-

ropy Da ¼ D||-D⊥ > 0. Evidently, the order parameter influences the anisotropy

of diffusion; roughly Da/S and for S ! 0, D|| ¼ D⊥ ¼ Diso. For nematics at

room temperature, typical values of diffusion coefficient are Diso � 10�6 cm2/s,

D||/D⊥ � 1–2.

For smectics the situation is different, because an additional potential barrierWtr

(for translations) appears for molecules penetrating smectic layers. For instance, in

a smectic A, the component parallel to the layers (D⊥) follows the same Arrhenius

law with approximately same activation energy DE as for nematics, however, for

the D|| component, the activation energy is roughly DE þ Wtr and the diffusion

anisotropy becomes negative:

Djj
D?

/ L

D
exp � Utr

kBT

� �
<1;Djj � D?<0

The diffusion coefficient can be measured by several techniques. One of them is

very simple, see Fig. 7.20b. A small amount of a dye solution in a liquid crystal is

introduced through a hole in a top glass of a sandwich cell filled with the same

liquid crystal. The latter is oriented homogeneously, therefore, using a microscope,

one can observe the diffusion of dye parallel and perpendicular to the director. After

some time tD, a dye stain acquires an elliptic form and the ratio of ellipse axes

provides the ratio of diffusion coefficients (l||/l⊥)
2 ¼ D||/D⊥. The absolute value of,

e.g., D|| can be found from the well known solution of the diffusion equation,

tjjD ¼ l2jj=2Djj. In the same way, a small amount of a cholesteric liquid crystal can

be introduced into a nematic and a spot is observed, in which the initially homoge-

neous texture is substituted by an inhomogeneous (e.g., fingerprint) cholesteric

texture. The self-diffusion of liquid crystal molecules is studied using quasi-elastic

neutron scattering or a spin-echo technique.

A||

A⊥n

a b
syringe

dye 

LC

hole in glass

spacer

glasses

Fig. 7.20 Anisotropy of diffusion amplitudes Ai for a cylindrical molecule (a) and a simple

technique for measurements of anisotropy of diffusion coefficients D||/D⊥ for a dye dissolved in a

nematic liquid crystal
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7.3.3 Electric Conductivity

7.3.3.1 Mobility of Ions

Now we are dealing with the current term 4psE=c in the Maxwell equation

(7.11) for curlH. The overwhelming majority of liquid crystalline phases (nematic,

smectic A, C, B, etc.) may be considered as weak electrolytes. The charge carriers
are ions, which move rather slowly in the electric field. There are some interesting

publications concerning columnar discotic phases, in which high mobility of charge

carriers has been reported. In principle, in such well-ordered columns of organic

molecules, the electron or hole conductivity is possible. Electronic processes are

faster than ionic ones and may be studied by a time-of-flight technique. However,

below we shall consider only ionic processes as the most important issue for major

number of mesophases [14].

The electric conductivity of a liquid is related to the drift velocity vE of ions with
a charge qi moved by field E. The current density depends on concentration of ions

nv in a unit volume of the liquid:

j ¼ nqivE (7.38)

Units of j: [cm-3 � CGSQ � cm/s] ¼ [CGSI/cm2] or [A/m2] in the SI system.

In the linear regime, vE ¼ mE where coefficient m is called ion mobility. Hence,
the conductivity is

s ¼ j=E ¼ qimn (7.39)

The mobility of ions and their diffusion coefficient are coupled by the Einstein
relationship:

m ¼ qi=kBTD (7.40)

and both of them depend on viscosity of a liquid. Note that the energy kBT at room

temperature is about 0.025 eV and the factor kBT/q has dimension of voltage. For

ions with charge qi ¼ e (charge of an electron) and typical diffusion coefficient of

organic liquid D � 5 � 10�7 cm2/s, the ion mobility m � 6 � 10�3 cm2/statV.s (or

2 � 10�9 m2/V�s in the SI system).

In a liquid crystal, the anisotropy of diffusion results in an anisotropy of mobility

and, consequently, conductivity. The corresponding tensor for a uniaxial phase has

a standard form:

sij ¼ s?dij þ saninj

Like in the case of diffusion, the anisotropy of conductivity sa ¼ sjj � s?can be
positive (e.g., in conventional nematics) or negative (in smectic A, discotic
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mesophases). In typical nematics at room temperature, sa � 1.2–1.6 depending on

the type of ions and their concentration. Generally, sa is proportional to the

orientational order parameter, as for other transport phenomena under discussion.

7.3.3.2 Ion Concentration

Where do ions emerge from? Their sources can be different:

1. a residual concentration of ionic impurities can remain after the synthesis of a

substance

2. a liquid crystal material can deliberately be doped with some compounds

3. ions can be created by an external electric field either in the bulk (due to the field

ionization of neutral molecules) or at the electrodes. The latter is more probable:

electrons or holes are injected from an electrode and almost immediately (within

10�5 to 10�8 s) trapped by neutral molecules of a liquid crystal forming negative

or positive ions. Before their recombination the ions participate in the electric

current

Consider a doping process. Let an organic salt AB of volume concentration c
[cm�3] is introduced into an isotropic solvent. The salt will dissociate to yield

anions A� and cations B+ with a subsequent recombination, according to the

reaction AB,A� þ B+. Then the mass action law reads:

KDcð1� aÞ ¼ KRðacÞ2

Here the rate of the ion dissociation is on the left-hand side (a is the degree of

ionization), and the rate of their bimolecular recombination is on the right-hand side

(ac ¼ nv
+¼nv

� is a volume concentration of ions), KD and KR are corresponding

dissociation and recombination constants. The temperature dependent ionization
coefficient can be written as follows:

K ¼ KD

KR
¼ a2c

1�a or c ¼ K 1�að Þ
a2 (7.41)

and the degree of ionization is given by

a ¼ �K þ K 1þ 4c=Kð Þ1=2
2c

(7.42)

Consider three particular cases:

1. For very small concentration of a dopant c ! 0 and the first term of the square

root expansion [1 þ (2c/K)] results in a ! 1. The recombination is absent and

the concentration of ions is nv
+¼nv

� ¼ c
2. For higher concentration of salt, the situation depends on the ionization coef-

ficient. If K is large (strong electrolytes) then again 4c/K << 1, a ! 1 and

n+ ¼ n� ¼ c
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3. If, however, K is small (weak electrolyte), 4c/K >> 1 the numerator of Eq. 7.42

is approximately equal to �K þ (4cK)1/2, the degree of ionization a¼�K/2 þ
(K/c)1/2 and

nþv ¼ n�v ¼ ca ¼
ffiffiffiffiffiffi
Kc

p
� K=2 (7.43)

Figure 7.21 illustrates a dependence of the ion concentration on concentration of

a salt. It is well seen how the linear dependence becomes sub-linear. A typical value

of K is on the order of 1019 cm�3.

7.3.3.3 Current-Voltage Curve for Thin Cells

When investigating electro-optical effects, usually we have to deal with the layer

thickness of a liquid crystals in the range of 1–50 mm and with the electric field

strengths of 104 to 105 V/cm (�30–300 statV/cm in the Gauss system). In such

instances the field induced drift of charge carriers to electrodes cannot be neglected.

However, in many cases, we may still neglect electro-chemical processes at the

electrodes.

Assume the simplest ionization-recombination model with field independent KD

and KR coefficients in a weak or intermediate electric field. The strong field limit

will be discussed separately. In the case of a << 1, the volume ion concentration

nv
+ ¼ nv

� ¼ nv (cm
�3) is governed by equation

dnv
dt

¼ KDc� KRn
2
v �

Eðmþ þ m�Þ
d

nv; (7.44)

where d is the gap between the electrodes, m+ and m� are mobilities of the positive

and negative ions, and c is the concentration of a dopant. The third term on the

right-hand side describes the process of ion drift to the electrodes. It has a typical

form of –nv/t [cm
�3s�1].

n+n–,

4c/K=1 c

n+n–= c

n+n–=÷Kc

,

,

Fig. 7.21 Qualitative

dependence of either positive

or negative ion concentration

on concentration c of a salt

178 7 Magnetic, Electric and Transport Properties



In the steady-state regime, the same equation can be written in the form

dnv
dt

¼ c

tD
� nv
tR

� 2nv
tT

¼ 0 (7.45)

where tD ¼ 1/KD, tR ¼ 1/KRnv, tT ¼ 2d/(m++m�)E are characteristic times for

ionization of molecules, recombination of ions and ion transit to electrodes. Con-

sider again three particular cases.

In the low field regime (region 1), tT is large, the third term may be neglected.

Then from (7.45) we have the previous result n2v ¼ ðKD=KRÞc ¼ Kc and conductiv-
ity (7.39) is field independent:

s1 ¼ qðmþ þ m�Þ
ffiffiffiffiffiffi
Kc

p
(7.46)

This corresponds to region 1 of the current-voltage curve in Fig. 7.22.

For intermediate fields (region 2), the drift term is important but the recombina-

tion rate may be neglected, because the field rapidly removes the generated ions.

Now the ion concentration is given by

nv ¼ tT
2tD

c ¼ dKDc

ðmþ þ m�ÞE

and the apparent conductivity is field dependent

s2 ¼ qdKDc

E
(7.47)

j

a.c.

d.c.

tgα = σ

E

1

3

2

Fig. 7.22 Current-voltage

curve for a thin layer of a

weak electrolyte between

plane electrodes. Solid

curve corresponds to a direct

current (d.c.) in weak (1),

intermediate (2) and strong

(3) field regimes. Dash branch

is a part of the same curve for

an alternating (a.c.) field
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Therefore, with increasing field, the current density saturates at the value

j ¼ s2E ¼ qdKDc

This regime is designated as region 2 in the same figure. The order of magnitude

of the ion transit time is tT ¼ d2/mU � 2.5ms (d ¼ 10 mm, U ¼ 10 V, m ¼ 4.10�9

m2/Vs).

For the a.c. current at angular frequency o > 1/tT, the drift term may be

neglected from the beginning. Then, according to Eq. 7.45, the ohmic regime

with constant KD and KR is valid not only for weak but for intermediate fields as

well. In Fig. 7.22, it is pictured by the dash line.

In a strong field, coefficient KD becomes a function of E due to the field induced

ionization of molecules. Then we cross again the recombination term in (7.45) and

get

KDðEÞc� E mþþ m�ð Þ
d nv ¼ 0 or nvðEÞ ¼ dKDðEÞc

mþþ m�ð ÞE

and the current acquires the form

j ¼ qE mþ þ m�ð ÞnvðEÞ ¼ qcdKDðEÞ:

It depends on the field only implicitly through dissociation constant KD.

Further, the zero-field dissociation constant is described by the equation

KDðE ¼ 0Þ ¼ K0
D exp � W

kBT

� �

where W is the electrostatic binding energy of the ion pair. Now, if we assume that

the field reduces the energy barrier by DW � constE1/2 (exactly as in the Schottky

model for the barrier at the metal-insulator contact), then KD would depend

exponentially on the square root of the field strength. Then the current would also

exponentially depend on
p
E and proportional to the cell thickness for a given field

strength:

j ¼ const � K0
D exp

bE1=2

kBT

� �
(7.48)

This corresponds to violation of the current saturation regime and region 3 in

Fig. 7.24.

This simple picture qualitatively agrees with the experimental data. For instance,

the linear current growth at low fields with subsequent saturation and further strong

increase of the current is often observed in the direct current (d.c.) regime. On the

other hand, due to simplicity of the model (as the injection and space charge

phenomena are not taken into account) it is not easy to obtain precise quantitative
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data and determine relevant material parameters. A technical problem is to avoid

uncontrollable impurities. High purity of a liquid crystal material with low conduc-

tivity is always desirable, because, if necessary, a well controllable conductive

dopants can be introduced on purpose.

7.3.3.4 Frequency Dependence of Ionic Conductivity

In conventional liquids and liquid crystals, the ionic conductivity has no dispersion

up to microwave or even optical frequencies. It can be shown by consideration of

the equation for the ion oscillation under an external electric field (force qEexp
(iot)):

mi
dv

dt
¼ qE expð�iotÞ � xv (7.49)

Here v is velocity of an ion of mass mi and �xv is a friction force; in this case,

there is no elastic restoring force familiar from the problem of a pendulum.

Substituting to (7.49) a solution in the form of v ¼ v0 expð�iotÞ we obtain

v0ðx� iomiÞ ¼ qE

From here, introducing inverse relaxation time of ions ti
�1 ¼ x/mi we find the

complex amplitude of ion velocity

v0 ¼ qE

miðt�1
i � ioÞ ¼

qt�1
i E

miðo2 þ t�2
i Þ þ io

qE

miðo2 þ t�2
i Þ (7.50)

and the complex conductivity

s� ¼ s0 þ ios00 ¼ qnvv ¼ q2nvti
mið1þ o2t2i Þ

þ io
q2nvt2i

mið1þ o2t2i Þ
(7.51)

Therefore, for frequencieso << ti the ionic conductivity is constant,s ¼ q2nv/x.
The friction coefficient can be estimated from the Stokes formula for the friction

force

Fx ¼ xv ¼ 6pr0�v (7.52)

where r0 is radius of a spherical ion and Z is viscosity of the liquid: x ¼ 6pZr0 �
2� 10�7 g/s (we take r0 ¼ 5Å ¼ 5� 10�8 cm and viscosity Z ¼ 0.1P). Therefore,

in the framework of the Stokes model, the ion conductivity and mobility at o << ti
can be written as
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s ¼ q2nv
6pr0Z

; and mi ¼ s=qnv ¼ q=6pr0Z (7.53)

Numerically, for q ¼ e ¼ 4.8 � 10�10 CGSQ and x � 2 � 10�7 g/s we get

the order of magnitude for the mobility mi � 2.4� 10�3 cm2/statV�s (or 0.8� 10�9

m2/V�s) that is close to typical experimental data.

Finally, we estimate the ion translational relaxation time for spherical molecules

in a viscous liquid:

ti ¼ mi=x ¼ mi=6pr0� (7.54)

Typically a mass of an organic molecule (or ion) is mi ¼ Mmp � 4 � 10�22g

(here M � 200 is molecular mass, mp is proton mass) and, indeed, the estimated

relaxation time is very short ti � 2 � 10�15s. Thus, the dispersion of the ionic

conductivity can only occur in the range of optical frequencies where the physical

sense of the friction force is doubtful. By the way, the Stokes approximation seems

to be quite good at lower frequencies.

7.3.3.5 Conductivity due to Dielectric Losses

Let us go back to the complex dielectric permittivity e� ¼ e0 þ ie00. Here e00

describes dielectric losses, i.e. energy dissipation in the range of Debye relaxation

of dipoles. We can introduce a parameter sD ¼ oe00=4p, which has dimension of

electric conductivity ([s�1] in the Gauss system and [F/m�s ¼ C/V�m�s ¼ A/V�m¼
O�1m�1] in the SI system and, in fact, is indistinguishable from the a.c. ohmic

conductivity. The values of e00 and sD are essential in the frequency range of

dispersion of the e0 component, as we have seen in Section 7.2.4.

What has been said is true for both isotropic liquids and liquid crystals. How-

ever, in liquid crystals, due to their specific anisotropy, the ratio

sjj
D

.
s?
D ¼ ðe00jjojjÞ

�ðe00?o?Þ dramatically depends on frequency and, at least,

theoretically can vary from þ1 to �1. It is seen from a qualitative picture in

Fig. 7.23. Due to strongly different dispersion frequency range for real components

e0 || and e0⊥, the band maxima for imaginary components e00 || and e00⊥ are well

separated and the ratios e00 ||/e00⊥ (and sjj
D=s

?
D) at the maxima are very large. In

addition, at a certain frequency oinv, the anisotropy of both e00 || � e00⊥ and sjj
D � s?

D

changes sign.

The high anisotropy of sD can influence the electro-optical behaviour of

nematics even at low frequencies, especially for those materials, which have a

low frequency inversion of dielectric anisotropy ea. An example is shown in

Fig. 7.24 related to a material with ea inversion at f ¼ 700 kHz. The electric

conductivity begins to deviate from the ionic, low frequency plateau at 200 Hz

and 10 kHz for the longitudinal and transverse components, respectively. At f ¼ 10
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kHz the ratio of the two conductivity components reaches 400. The law for the

conductivity growth at otD < 1 can be derived from the Debye formula (7.32) and

allows tD to be determined.

sD ¼ oe00

4p
¼ eð0Þ � e 1ð Þ½ �o2tD

4p
(7.55)

Such a great growth of conductivity anisotropy dramatically influences the

electro-optical behaviour of nematics in this frequency interval.

a

b

c

d

ω

ω

ω

ω

ω⊥

e ′⊥

e ′′⊥

e′′′||

e ′||

ω||

ωinv

s ∼ ω e

e′
e′

e′
||  

−e
′ ⊥

s
|| –

s
D

D

T

Fig. 7.23 Qualitative frequency spectra of two components of dielectric permittivity e0 (a) and
e00 (b), and corresponding anisotropy of imaginary component of dielectric permittivity e00 || � e00⊥
(c) and real a.c. conductivity sjj

D � s?
D (d) in the Debye relaxation range. oinv is inversion

frequency, at which anisotropy ea00 and sjj
D � s?

D changes sign
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It is instructive to compare the ratio s||/s⊥ � 1.5 for ionic processes with a

much higher ratio sjj
D=s

?
D � 102 � 103 for the conductivity due to dielectric losses.

In the first case, the orientational nematic potential WN does not influence the

translational motion of ions and s||/s⊥. In the second case, the losses e00jj come in

from the field induced alignment of the longitudinal molecular axes against the

potential barrier and dramatically depend on WN whereas losses e00? caused by

molecular rotation about the longitudinal molecular axes are independent of WN.

Therefore, ratios e00 ||/e00⊥ (and sjj
D=s

?
D) are very large.

7.3.3.6 Space Charge Relaxation

Many phenomena in liquid crystals such as formation of double electric layers at

interfaces, screening any electric polarization by ions, triggering electro-hydrody-

namic processes, etc. are related to the so-called space charge. The latter can be

imagined as a cloud of a non-compensated charge, say, positive þdq(r) at some

place in medium with a coordinate r. The charge of the opposite sign, �dq(r) is
situated in another place, see Fig. 7.25a. The total charge is zero but the electrical

neutrality is disturbed locally.

In strongly conductive materials, like metals, the local electric current in the

medium will immediately restore the charge neutrality everywhere. If the local

neutrality is disturbed in weakly conductive materials, it takes some time to restore

it. It is very easy to find this time. Consider a capacitor with a gap d, capacitance C
and charge 	q0 on the limiting plates of area A, Fig.7.25b. At first, the dielectric is
assumed to be ideal, s ¼ 0. Upon connecting the external resistor R the charge will

relax producing current I given by equation

I ¼ dq

dt
¼ C

dU

dt
¼ U

R
:

Hence, q ¼ CU ¼ q0 exp �t=RCð Þ, that is the charge relaxes with time constant

RC.

Fig. 7.24 Low frequency

spectrum of the principal

components of real a.c.

conductivity s|| and s⊥ for a

typical nematic liquid crystal

having frequency dispersion

of e|| in the 1 MHz range
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The same charge would relax with time constant RC even without the external

resistance if the material inside is conductive with the same resistance R. In that

case the relaxation time can be expressed as follows (A and d are area and thickness
of the sample):

tM ¼ RC ¼ d

sA

� �
� eA

4pd

� �
¼ e

4ps
(7.56)

We can see that relaxation time tM is independent of the sample dimensions and

includes only material parameters, namely, specific conductivity s and dielectric

constant (real part e ¼ e0). This time is called space charge relaxation time. It is the
same Maxwell dielectric relaxation time we met in Section 7.2.1. Note that time tM
has no relation to the dispersion frequency of ionic conductivity (ti)

�1, neither to

Debye dipole relaxation time.

As the space charge relaxation in medium is caused by the counter motion of

positive and negative charge carriers in a diffusion process, there should be a

characteristic diffusion length related to this motion:

LD ¼ ð2DtÞ1=2 ¼
ffiffiffiffiffiffiffiffi
De
2ps

r
(7.57)

Recalling the Einstein relationship D ¼ mkBT=qi and s ¼ qinvm where qi is
charge of a particle (e.g. ion) we obtain

LD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe

2pqi2nv

s
(7.58)

This is a so-called Debye screening length playing a crucial role in any phenom-

ena related to the local disturbance of the electric neutrality. For instance, of great

technical importance are metal-dielectric contacts or p-n semiconductor junctions

or contacts between liquid crystal and colloidal particles or metal electrodes. For

+δq
–δq

a

R

+q0
–q0ε,σ

b

Fig. 7.25 Formation of space charge in a weakly conductive material (a) and the capacitor-

resistance circuit for the calculation of charge relaxation time (b)
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liquid crystals, due to anisotropy of e, the length LD is also different for two

principal directions (|| and ⊥ to the director).

7.3.3.7 Measurements of Anisotropy «a (v) and sa(v)

A widely spread technique includes a dielectric bridge (DB) measuring the capaci-

tance and conductance of a liquid crystal cell at various frequencies (typically

1–106 Hz) and temperatures. A small thermostat with a liquid crystal cell is placed

in the gap between two poles of a magnet. The thickness of the liquid crystal layer

should be fairly large (~100 mm) to avoid effects of boundaries. The electrodes must

have high conductivity (e.g., made of gold) and must not be covered by any aligning

layers. The amplitude of the a.c. voltage across the electrodes must be small enough

(usually about 0.1 V) to avoid any influence of the electric field on the liquid crystal

alignment. The orientation of the liquid crystal director is fixed by the external

magnetic field of high enough strength (H 
 2 kOe), therefore, one always has n||
H. In Fig. 7.26 the magnetic field is directed vertically but the cell is rotated about

the horizontal axis. In that way, the cell normal (i.e., the direction of E) is installed
either parallel to H for measurements of e|| and s|| (as shown in the figure) or

perpendicular to it for measurements of e⊥ and s⊥.

7.3.3.8 Characteristic Times Related to the Discussed Phenomena (Resume)

In the present chapter we have met many characteristic times related to different

physical processes. It will be useful to collect them altogether:

T°C

H

DB

Fig. 7.26 Scheme of the setup for measurements of the principal components of dielectric

permittivity and electric conductivity using a dielectric bridge (DB)
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t ¼ L2
�
2D

General expression for a time of diffusion of a particle along distance

L (D is diffusion coefficient).

tth ¼ L2
�
2Dth

¼ rCpL
2�
2k

Thermal diffusion time (r, Cp and k are density, specific heat and
thermal conductivity).

tL ¼ 1
2
ðKRKDcÞ�1=2 Langevin time for chemical relaxation (KD, KR are dissociation and

recombination rates for ions, c is solute concentration).

tT ¼ L2
�
mU

Voltage induced transit time for charge carriers with mobility m.

tM ¼ e=4ps Maxwell space charge relaxation time, e and s are dielectric

permittivity (real part) and conductivity.

ti ¼ mi=x Relaxation (collision) time for motion of ions of mass mi and friction

coefficient x.

tD ¼ 4pZa3�
kBT

Debye relaxation time of dipoles in a liquid (a is molecular radius, Z is

viscosity of medium).

tjjD ¼ jjjtD; t?D ¼ j?tD Debye relaxation times in a liquid crystal (j||, j⊥ are amplification

factors).
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Chapter 8

Elasticity and Defects

8.1 Tensor of Elasticity

8.1.1 Hooke’s Law

Liquids have a finite and very high (as compared to gases) compressibility modulus

and zero static shear modulus. For example, a boat floating on water can easily be

shifted just by a finger. Even very viscous liquids, for instance, polymers, rubber,

and, surprisingly, stain-glass windows have no static shear modulus although they

have a dynamic shear modulus at a short time scale or at high frequencies. In fact, to

shear a liquid, we should not overcome any potential barrier. In contrast to liquids,

the isotropic solids, e.g., ceramics or fine polycrystalline materials have not only

compressibility modulus but also one shear modulus finite. As to single crystals,

they have many elastic moduli; the lower symmetry the larger a number of their

moduli.

What about liquid crystals?

1. In nematic liquid crystals we see a novel feature. There is no shear modulus as in

isotropic liquids, but the orientational, for example, torsional elasticity appears.

Such elasticity is also characteristic of crystals but, in that case, the corresponding

moduli are much smaller than the other moduli. The orientational elasticity

determines almost all fascinating properties and applications of nematics.

2. Other liquid crystal phases combine many types of elasticity of solid crystals

with orientational elasticity and we encounter enormous variations of the mag-

nitude of elasticity moduli from almost zero to that typical of three-dimensional

crystals.

Everything that is discussed below is based on the Hooke law. Consider a very
simple example, a one-dimensional reversible extension of a long rod with cross-

section A along the x-axis, see Fig. 8.1. The force per unit area

sx ¼ F

A
¼ K

l

L
¼ K

ux
x
¼ Ku (8.1)

L.M. Blinov, Structure and Properties of Liquid Crystals,
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causes a relative displacement l/L or ux/x at any point p(x) with corresponding

proportionality coefficient that is elastic modulus K. Therefore, in the simplest one-

dimensional case, the Hooke law relates the two vector projections, the stress sx

and the relative deformation (strain) ux by scalar Young modulus K (dyn/cm2 or

N/m2):

sx ¼ Kux (8.2)

The elastic energy accumulated in the volume L due to the deformation is given by

W ¼
ðl

0

Fdl ¼
ðl

0

AK

L
ldl ¼ Kl2

2L
A ¼ Ku2x

2
LA ¼ 1

2
Ku2xV

and the density of elastic energy in the one-dimensional case is given by

g ¼ W

V
¼ 1

2
Ku2x : (8.3)

The stress always causes strain and fundamental Eqs. (8.2) and (8.3) have to be

generalized to describe anisotropic media.

8.1.2 Stress, Strain and Elasticity Tensors

8.1.2.1 Stress Tensor

Generally, any vector of a surface force acting on a body can be decomposed into

tangential ( fx, fy, shear) and normal ( fz, pressure) components (index j ¼ x, y, z) as
shown in Fig. 8.2a. In its turn, the element of surface A is a vector characterized by

its area A and outward-directed unit vector s that has also three projections in the

Cartesian laboratory frame (index i). Therefore, the second rank stress tensor [1] is

defined as

sij ¼ si fj
A

(8.4)

F

lL

.px

Fig. 8.1 Illustration of the

linear one-dimensional

displacement of a solid

material under an external

force (Hooke’s law)
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(dimension of pressure, dyn/cm2 or N/m2 in the SI system)

Generally sij has 3 � 3 ¼ 9 components, illustrated by Fig. 8.2b. The diagonal

components (s11, s22, s33) corresponds to pressure, off-diagonal ones correspond to

shear. Since sij is symmetric tensor (sij ¼ sji), only six components are different.

Usually, in addition to the surface forces, the volume forces like gravitation or electric

force are included into the stress tensor.

8.1.2.2 Strain Tensor

We consider a piece of soft matter in which the distortion is not uniform in space

but rather local [2]. Any displacement of point p to point p’ caused by the stress

tensor and shown in Fig. 8.3a–c can be considered as a combintion of four basic

displacements. They are (1) translations, (2) rotation of the entire body as a solid

piece without deformation, (3) shear distortion, (4) expansion or compression.

Now we are going to discuss the components of the correspondent tensors

(translation is excluded). We go back to Eq. (8.2) and instead of ux/x ¼ l/L write:

ux ¼ exxx or @ux ¼ exx@x
For small distortions, the coefficient exx ¼ @ux=@x will be a function of x, y, z,

describing an extension along the x-axis. Along y- and z-axes the extensions wil be
described by coefficients

eyy ¼ @uy
@y

; ezz ¼ @uz
@z

(8.5)

The diagonal tensor coefficients with equal suffixes describe compression-dila-

tation.

fx
fz

fy

F

s
z

x

y

szz

syz

sxz

szx

syx

sxx

syy
szy

sxy

a b

Fig. 8.2 Vector of force F acting on a body and its tangential ( fx, fy, shear) and normal ( fz,
pressure) components (a) and the nine components of the stress tensor (b). Note that the surface
element vector is directed outward from the bulk
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There is also shear distortion, which can be described by angles y/2 as shown in

Fig. 8.3b. In this case, the displacement along the y-direction is proportional to x
and vice versa:

ux ¼ y
2
y; uy ¼ y

2
x and ux ¼ exyy; uy ¼ eyxx

with the same angle for exy ¼ eyx ¼ y=2: However, we cannot yet define exy and eyx
as simple derivatives of type (∂ux/∂y) or (∂uy/∂x) because similar displacements

describe the pure rotation of the body without any deformation as shown in

Fig. 8.3c.

ux ¼ y
2
y; uy ¼ � y

2
x

Note the opposite sign for the y angle in the uy component. To obtain the pure

shear we may construct a combination

exy ¼ eyx ¼ 1

2

@uy
@x

þ @ux
@y

� �

Then the negative displacements (rotation) will be excluded and positive (shear)

remains unchanged. Even more generally, we construct two combinations, one for

pure shear

eij ¼ 1

2

@uj
@xi

þ @ui
@xj

� �
(8.6)

and the other for pure rotation

.P P
. .P’

q-2

q-2 q-2

q-2

a b c

u
P. .P’

u

Fig. 8.3 A non-deformed body (a) and illustration of difference between a shear distortion (b) and
pure body rotation (c)
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oij ¼ 1

2

@uj
@xi

� @ui
@xj

� �
(8.7)

which are, in fact, symmetric (shear) and antisymmetric (rotation) parts of the

common tensor describing “shear + rotation”.

Finally, the total strain is described by a symmetric second rank (3 � 3) strain
tensor ekl with diagonal elements ∂ui/∂xi (8.5) related to expansion/compression

and off-diagonal elements ∂ui/∂xj (8.6) related to shear.

8.1.2.3 Tensor of Elasticity

For small strain, the relationship between the strain and stress is linear as in the

Hooke law [3]:

sij ¼
X
k;l

Kijklekl ¼Kijklekl (8.8)

Here, the right part of the equation is abbreviation of the middle part suggested

by Einstein: since symbols k and l appear twice as suffixes at Kijkl and ekl., we may

remember this and remove a bulky symbol of the sum. By this convention, we

always must make a summation over the repeated suffixes. The elasticity tensor

Kijkl is a fourth rank tensor with 9 � 9 ¼ 81 components (81 mathematically

possible elastic moduli!). However, even in crystals of the lowest symmetry (the

triclinic system) due to physical equivalence of Kijkl ¼ Kjikl¼ Kijlk ¼ Kklij, a number

of moduli reduces to 21.

With enhanced phase symmetry a number of moduli further reduces and we

have:

– Six moduli for the tetragonal system (e.g., of symmetry D4h)

– Five moduli for hexagonal system (D6h)

– Three moduli for cubic system (O): one for compression and two for shear,

namely, perpendicularly to cube edge and to cube diagonals, respectively)

– Two for isotropic solid (compressibility and shear)

– One for an isotropic liquid (compressibility)

The density of elastic distortion energy (a scalar quantity) is quadratic in strain:

gdist ¼ 1

2
Kijkluijukl (8.9)

After summation over all suffixes we have maximum 21 scalar terms in the

lowest symmetry case. For the isothermal processes, gdist gives a direct contribution
to the free energy of the system.
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8.2 Elasticity of Nematics and Cholesterics

8.2.1 Elementary Distortions

The static continuum theory of elasticity for nematic liquid crystals has been

developed by Oseen, Ericksen, Frank and others [4]. It was Oseen who introduced

the concept of the vector field of the director into the physics of liquid crystals and

found that a nematic is completely described by four moduli of elasticity K11, K22,

K33, and K24 [4,5] that will be discussed below. Ericksen was the first who under-

stood the importance of asymmetry of the stress tensor for the hydrostatics of

nematic liquid crystals [6] and developed the theoretical basis for the general

continuum theory of liquid crystals based on conservation equations for mass,

linear and angular momentum. Later the dynamic approach was further developed

by Leslie (Chapter 9) and nowadays the continuum theory of liquid crystal is called

Ericksen-Leslie theory. As to Frank, he presented a very clear description of the

hydrostatic part of the problem and made a great contribution to the theory of

defects. In this Chapter we shall discuss elastic properties of nematics based on the

most popular version of Frank [7].

8.2.1.1 Specific Features of Elasticity of Nematics

As already mentioned, for the fixed direction of the nematic director n the shear

modulus is absent because the shear distortion is not coupled to stress due to the

material “slippage” upon a translation. The compressibility modulus B is the same

as for the isotropic liquid. New feature in the elastic properties originates from the

spatial dependence of the orientational part of the order parameter tensor, i.e.

director n(r). It is assumed that the modulus S of the order parameter QijðrÞ is

unchanged. In Fig. 8.4 we can see the difference between the translation and

rotation distortion of a nematic.

Fig. 8.4 A difference between the translation (a) and rotation (b) distortion of a nematic: there is

no elastic modulus for translation of a moving layer with respect of the immobile layer but the

twist of the upper layer with respect to the bottom one is described by the twist elastic modulus
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Let us assume that a liquid is incompressible, B!1, and discuss orientational

(or torsional) elasticity of a nematic. In a solid, the stress is caused by a change in

the distance between neighbor points; in a nematic the stress is caused by the

curvature of the director field. Now a curvature tensor dni/dxj plays the role of

the strain tensor uij. Here, indices i, j ¼ 1, 2, 3 and xi correspond to the Cartesian

frame axes. The linear relationship between the curvature and the torsional stress

(i.e., Hooke’s law) is assumed to be valid. The stress can be caused by boundary

conditions, electric or magnetic field, shear, mechanical shot, etc. We are going to

write the key expression for the distortion free energy density gdist related to the

“director field curvature”. To discuss a more general case, we assume that gdist
depends not only on quadratic combinations of derivatives ∂ni/∂xj, but also on their
linear combinations:

gdist ¼ Kij
@ni
@xj

þ 1

2
Kijlm

@ni
@xj

� @nl
@nm

(8.10)

As we shall see further on, the terms linear in ∂ni/∂xj, allow us to discuss not

only conventional nematics with D1h symmetry but also some “biased” nematic

phases. For example, we can discuss the phases with a spontaneous twist (choles-

terics with broken mirror symmetry) or a spontaneous “splay” (uniaxial polar

nematics with broken head-to-tail symmetry, n 6¼ �n). For a standard nematic

only quadratic terms will remain.

8.2.1.2 Elementary Distortions

Consider elementary distortions of a nematic. The undistorted director n ¼ (0, 0, 1)

is aligned along the z-axis, Fig. 8.5a. For instance, at a distance dx from the origin of

the Cartesian frame O the director has been turned through some angle in the zOx
plane like in Fig. 8.5b. The relative distortion is then described by the ratio of dnx,
an absolute change of the x-component of the director, to distance dx, over which
the distortion occurs. In the same sketch, but in the zOy plane we see similar fan-

shape or splay distortion dny. Thus for the two elementary splay distortions we

write:

@nx
@x

¼ a1;
@ny
@y

¼ a5;

When discussing the deviations of the director dnx and dny at a distance dz from
O illustrated by Fig. 8.5c. we define two elementary bend distortions:

@nx
@z

¼ a3;
@ny
@z

¼ a6;
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In the same way, in Fig. 8.5d we see two elementary twist distortions (minus

appears due to different signs of dny and dnx for the same handedness of rotation

about x and y axes).

@nx
@y

¼ a2;� @ny
@x

¼ a4;

Now the components of the director field nx(x,y,z) and ny(x,y,z) can be expressed
in terms of the six relative distortions mentioned (only six but not nine because of

our assumption nz ¼ const ¼ 1). For small deviations, we get:

nx ¼ a1xþ a2yþ a3zþ Oðr2Þ;
ny ¼ a4xþ a5yþ a6zþ Oðr2Þ;
nz ¼ 1þ Oðr2Þ;

where O(r2) describes higher order terms depending on r2 ¼ x2 + y2 + z2.

8.2.1.3 Curvature Distortion Tensor

From consideration of the simple case with a particular choice of the z-axis parallel
to the director and nz�1+. . ., ∂nz/∂xj �0, we construct a “reduced” curvature

distortion tensor ni;j ¼ @ni
@xj

¼ @nx=@x @nx=@y @nx=@z
@ny=@x @ny=@y @ny=@z

� �
¼ a1 a2 a3

a4 a5 a6

� �
:

Fig. 8.5 Elementary

distortions of the director field

for particular geometry (a)
with n || z: splay (b), bend (c)
and twist (d)
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Here, symbol “comma” between suffixes in ni,j means spatial derivatives. In the

general case, with three missing elementary distortions a7, a8, and a9 the curvature
distortion tensor is given by:

ni;j ¼
a1 a2 a3
a4 a5 a6
a7 a8 a9

0
@

1
A (8.11)

With this tensor we may turn back to Eq. (8.10) for energy density and discuss

two strain tensors, Kij and Kijlm.

8.2.2 Frank Energy

8.2.2.1 Elasticity Tensors

(i) Kij tensor. Since gdist ia a scalar, the tensor of elasticity coefficients Kij is also of

the second rank with nine components. This tensor has no quadrupolar symmetry

like the familiar order parameter tensor Q. However due to the uniaxial symmetry,

particularly, polar conical symmetry, the energy gdist is invariant with respect to the
rotation of our frame about the z-axis (x’ ¼ y, y’ ¼ x, z’ ¼ z). Thus, this tensor
reduces to the form

Kij ¼ K1 K2

�K2 K1

� �
(8.12)

At this stage, two moduli K1 and K2 remain finite, for a spontaneous splay and

twist, respectively (virtual polar cholesteric).
However, when molecules have mirror symmetry (achiral molecules), the inver-

sion center appears and gdist becomes invariant with respect to the following frame

transformation: x’¼�x, y’¼�y, z’¼�z. As a result, modulus K2 vanishes and we

have a tensor corresponding to a polar nematic:

Kij ¼ K1 0

0 K1

� �
(8.13)

(modulus K2 remains, however, in the cholesteric phase).

(ii) Kijlm tensor. Generally it has 81 components, however, for n||z in Eq. (8.11)

coefficients a7,8,9 ¼ 0 and due to this only 36 components remain. Now we can

again apply the symmetry arguments. A conventional nematic has a uniaxial

symmetry. This further reduces the quantity of moduli down to 18. Among them

only five coefficients are independent, namely K11, K22, K33, K24 and K12 (K15 ¼
K11�K22�K24):
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Kijlm ¼

K11 K12 0

K12 K22 0

0 0 K33

�K12 K15 0

K24 K12 0

0 0 0

�K12 K24 0

K15 K12 0

0 0 0

K22 �K12 0

�K12 K11 0

0 0 K33

0
BBBBBBB@

1
CCCCCCCA

(8.14)

Next, taking the head-to-tail symmetry into account we make the following

transformation of the frame: x’ ¼ x, y’ ¼ y, z’ ¼ �z. Now coefficients K12

disappear. At this atage, only four different moduli are left, K11, K22, K33, K24.

8.2.2.2 Elastic Energy of the Conventional Nematic for n||z

First let us go back to the same particular case with a constraint n||z, and discuss the
free energy of a conventional (uniaxial, nonpolar) nematic liquid crystal. We

combine elementary distortions corresponding to splay (a1 + a5), bend (a3 + a6)
and twist (a2 + a4) and present the free energy as a sum of these combinations

squared.

gdist ¼ 1

2
K11ða1 þ a5Þ2 þ K22ða2 þ a4Þ2 þ K33ða3 þ a6Þ2
h i

(8.15a)

Now, we would like to write the same in a more compact vector form. To do this,

consider vector forms for each of the three contributions.

Let us write the divergence of vector n ¼ (0, 0, 1) with dnz ¼ 0:

divn ¼ @nx
@x

þ @ny
@y

Evidently, this corresponds to the splay term (a1 + a5). Now we write curln under

condition dnz ¼ 0

curln ¼ � @ny
@z

iþ @nx
@z

jþ @ny
@x

� @nx
@y

� �
k

and see that it does not fit to any of terms in Eq. (8.15a). However, the scalar

product

n � curln ¼ �nx
@ny
@z

þ ny
@nx
@z

þ nz
@ny
@x

� @nx
@y

� �
� @ny

@x
� @nx

@y

� �

with neglected the first two products of the second order of magnitude fits to the

twist term (a2 + a4)! Finally the vector product
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n� curln ¼ � @nx
@z

iþ @ny
@z

j

� �

under condition nx, ny << nz � 1) fits to the bend term. Indeed, despite sign

“minus” and the vector form it contributes to the quadratic bend term of the

“reduced” free energy:

gdist ¼ 1

2
K11

@nx
@x

þ @ny
@y

� �2
þ K22

@nx
@y

� @ny
@x

� �2
þ K33

@nx
@z

� �2
þ @ny

@z

� �2" #" #

(8:15b)

8.2.2.3 Frank Formula

To have the free energy density in a more general form including all the nine

elementary distortions a1, a2. . . a9 we should add the terms ∂nz/∂z, ∂nz/∂x and ∂nz/
∂y and rewrite the Eq. (8.15b) in the vector notations for arbitrary distortion of n
with respect to the Cartesian frame. Then we obtain Frank formula for the density

of elastic energy in the general vector form:

gdist ¼ 1

2
½K11ðdivnÞ2 þ K22ðn � curlnÞ2 þ K33ðn� curlnÞ2� (8.16)

Here, we have splay, twist and bend terms corresponding to a particular bulk

distortion. In experiment, they can be realized in different way using variable cell

geometry and boundary conditions. For example, such distortions may be created

mechanically as shown in Fig. 8.6. The important condition is to anchor the director

firmly at the boundaries.

But what about the K24 term? The so-called saddle-splay modulus K24 is

important only for particular situations, in which a distortion has a two- or three-

dimensional structures such as nematic droplets in the isotropic solutions [8] or blue

phases [9]. The free energy term including modulus K24 is a so-called “divergence”

term because it has a form of divn to the first degree. Hence, if one performs the

Fig. 8.6 Splay, bend and twist distortions in nematics confined between two glasses that align

liquid crystal at the surfaces either homogeneously (for splay and twist) or homeotropically (for

bend)
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minimization of the free energy using the Euler-Lagrange variation procedure

(Section 8.3), the divergence term ∂n/∂z would contribute only to the boundary

conditions and, in the one-dimensional geometry, the contribution of the saddle-

splay elasticity vanishes. However, in a more complex geometry the coefficient K24

becomes important. For example, in very thin films with tangential (planar along x)
boundary conditions on one side and homeotropic (along z) on the other side, a

uniform hybrid structure in the xz-plane is not stable. Instead, the absolute mini-

mum of the free energy is realized for a periodic structure of linear defects (stripe

domains) with distortion in the film plane xy [10].
The nematic elastic moduli have dimension of force. The three moduli in Frank

energy (8.16) are always positive, modulus K24 may be positive or negative.

Roughly, all of them are of the same order of magnitude that may be estimated

from the molecular interaction energy W divided by intermolecular distance l � 5

Å. If forW we take the temperature of nematic-isotropic transition (kBT� 0.033 eV

at T ¼ 400 K), the elastic modulus would be K�W/l � 1�10�6 dyn (Gauss system)

or 1�10�11 N (SI system). If we take the nematic potential WN � 0.15 eV the

estimated modulus would be five time larger. The experimental values are in the

range of 10�7 – 10�6 dyn. The data on elastic moduli for most popular liquid

crystals (p-azoxyanisol (PAA), p-methoxy-benzylidene-p’-butylaniline (MBBA)

and pentyl-cyanobiphenyl (5CB) are collected in the Introduction to book [11].

8.2.3 Cholesterics and Polar Nematics

8.2.3.1 Cholesterics

If molecules are chiral, the coefficient K2 from tensor (8.12) becomes finite.

Formally it is possible to add it to the Frank energy introducing a scalar quantity

q0 ¼ K2/K22 and obtain the following expression:

gdist ¼ 1

2
½K11ðdivnÞ2 þ K22ðn � curlnþ q0Þ2 þ K33ðn� curlnÞ2� (8.17)

Then, expanding the second term K22ðn � curlnÞ2 þ 2K22q0ðn � curlnÞ þ K22q
2
0

we note that the last item is not interesting because independent of distortion and

the gradient term K22q0ðn � curlnÞ is the only one that distinguishes the free energy

of a cholesteric from that of the nematic. For a cholesteric with a pure twist along

the z-axis, the components of the director are n ¼ (cosjz, sinjz, 0). This results in
ncurln ¼ �dj/dz. Then, for any form of j(z), the twist contribution to elastic

energy density (8.17) is given by

gdistðzÞ ¼ 1

2
K22

djðzÞ
dz

� q0

� �2

(8.18)
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The minimum of (8.18) corresponds to the equilibrium helical (harmonic)

structure with wavevector q0 ¼ dj/dz and pitch P0 ¼ 2p/q0. Equation (8.18) is

correct as long as P0>>a where a is molecular size. In the opposite case, local

biaxiality becomes important (practically, P0 � 1 mm, a � 1 nm).

8.2.3.2 Polar Nematics

In precisely the same way, a spontaneously splay-deformed structure must corre-

spond to the equilibrium condition with finite coefficient K1 6¼ 0 in tensor (8.13).

The corresponding term should be added to the splay term with (divn)2. If the
molecules have, e.g., pear shape they can pack as shown in Fig. 8.7b. In this case,

the local symmetry is C1v (conical) with a polar rotation axis, which is compatible

with existence of the spontaneous polarization. However, such packing is unstable,

as seen in sketch (b), and the conventional nematic packing (a) is more probable.

The splayed structure similar to that pictured in Fig. 8.7b can occur close to the

interface with a solid substrate or when an external electric field reduces the overall

symmetry (a flexoelectric effect).

8.3 Variational Problem and Elastic Torques

8.3.1 Euler Equation

Consider a nematic liquid crystal layer confined between two glass plates. This

structure is of great technical importance. The most of liquid crystalline displays are

based on it. The directors at opposite walls (z ¼ 0 and z ¼ d ) are rigidly fixed at

Fig. 8.7 Packing of conical (pear-shape) molecules in the conventional nematic phase (a) and in
a hypothetical polar nematic phase (b)

8.3 Variational Problem and Elastic Torques 201



right angle to each other, therefore such a cell is called p/2-twist nematic cell.

Along x and y the layer is infinite, the director n(z) depends only on one coordinate.
How to find a director distribution along the z-axis?

For simplicity we ignore the influence of external fields. The problem is to find

that distribution of the director angle j(z) over cell thickness, which satisfies the

minimum of the elastic free energy F for fixed boundary conditions. This is a

typical variational problem although very simple in our particular case. The idea of

a variational calculation is not to find a value of the integral of a function g(z, j, j’)
over the interval 0 � z � d for known j(z), but to find such an unknown function
j(z) that provides the minimum of the integral. Due to the great importance of this

mathematical problem for liquid crystals consider it in more detail.

Consider a functional F (scalar number, e.g. it might be free energy of the liquid

crystal sample):

F ¼
ðb

a

gðz;fðzÞ;f0ðzÞÞdz (8.19)

Here g is a function of all the three arguments z, j(z) and dj/dz. The equation is
valid for any continuous function g(z) with continuous derivatives g’, g” defined

within interval [a, b]. For instance, g might be density of free energy of a liquid

crystal per unit volume, j(z) be an angle the director forms with a selected

reference axis and d the thickness of the sample. The values of function g are

fixed at both ends of the interval j(a)¼ ja and j(b)¼ jb. In our simplest example,

infinitely strong anchoring of the director is assumed at the boundaries.

Our task is to find the necessary condition for the extremum of the functional F.
Let us assume that function j(z) in Fig. 8.8 corresponds to an extremum of F, i.e.
F ¼ Fextr for j(z) (actually, for physical reasons an extremum to be found corre-

sponds to a minimum). Then we introduce a new, probe function fðzÞ þ a�ðzÞ
where a is a small numerical parameter and Z(z) is an arbitrary function equal to

zero at both ends of the [a, b] interval. The additional item aZ(z) is called variation
of j(z) function that will result in variation dF of functional F. Now if we vary a,
the functional F changes. Therefore, after substituting the new functions with

variable a into g(z), we obtain F as a function of parameter a:

j(z)+ah(z)

j(z)

j(z)

z
a b

jb

ja

Fig. 8.8 Illustration of

variation procedure: one

searches for such a function

j(z) that satisfies to an

extremum of functional

(8.19). jðzÞ þ a�ðzÞ is
arbitrary probe function
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FðaÞ ¼
ðb

a

g½z;fðzÞ þ a�ðzÞ;f0ðzÞ þ a�0ðzÞ�dz (8.20)

Next we shall explore a new idea: as we vary fðzÞ þ a�ðzÞ and the functional F
reaches an extremum then the varied function F(a) must have an extremum at a¼ 0

(due to the assumption that j(z) corresponds to Fextr). Therefore, the derivative dF/
da ¼ 0 at a ¼ 0. Hence, after differentiation (8.20) with respect to a under the

integral, we obtain the expression valid at a ¼ 0:

F0ð0Þ ¼ dF

da
¼

ðb

a

@g

@f
ðz;f;f0Þ�ðzÞ þ @g

@f0 ðz;f;f0Þ�0ðzÞ
� �

dz ¼ 0; (8.21)

where we used
@g
@a ¼ @g

@ðfþa�Þ � @ðfþa�Þ
@a ¼ @g

@f � � (for a ¼ 0) and the same for the term with j’.
Integrating by parts the second term in (8.21) we get:

F0ð0Þ ¼
ðb

a

@g

@f
� �ðzÞdzþ @g

@f0 �ðzÞ
� �b

a

�
ðb

a

�ðzÞ d
dz

@g

@f0

� �
dz

¼ @g

@f0 �ðzÞ
� �b

a

þ
ðb

a

�ðzÞ @g

@f
� d

dz

@g

@f0

� �� �
dz ¼ 0

The first term is zero because Z(z)¼ 0 at the ends of the interval [a, b]. And since
Z(z) is arbitrary, the expression in the brackets under the integral must be zero.

Hence, we arrive at the differential Euler equation:

@g

@f
� d

dz

@g

@f0 ¼ 0 (8.22)

What have we gained? Very much! Now, in order to find the function j(z)
corresponding to gmin we have to solve a second order differential equation (8.22),

instead of solving an integral-differential equation (8.19). Two arbitrary constants

are to be found from the boundary conditions given for j(z).

8.3.2 Application to a Twist Cell

To illustrate the variation technique that is very useful for subsequent discussions

of electro-optical effects, consider a simplest example. For a twist cell shown in
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Fig. 8.9a, we are interested in the coordinate dependence of the azimuthal director

angle j(z), which is rigidly fixed at the two boundaries, j(0) ¼ 0, j(d) ¼ p/2. The
equilibrium director distribution to be found corresponds to the minimum of the

elastic free energy for the cell as a whole. First, we should write an expression for

the density of Frank elastic energy. The director at any point z is given by

n ¼ cosfðzÞiþ sinfðzÞj: There is no z-component, nz ¼ 0, even no pretilt at the

boundaries.

The free energy per unit area in the x, y plane is very simple because we have no

derivatives over x and y, therefore

curln ¼ � @ny
@z

iþ @nx
@z

j ¼ � cosf
df
dz

i� sinf
df
dz

j;

ncurln ¼ � df
dz

and (ncurlnÞ2 ¼ df
dz

� �2
:

From here and Eq. (8.17), the density gdist and the total Frank energy are given by

gdist ¼ 1

2
K22

df
dz

� �2
; F ¼ 1

2

ðd

0

K22

df
dz

� �2
dz (8.23)

To find j(z) we should write the Euler equation for functional (8.23). In that

equation we have neither z nor j(z) given explicitly and should only use differenti-
ation with respect to j’(z). Now Euler’s equation reads:

� d

dz

@g

@f0 ¼ �K22

d2f
dz2

¼ 0 (8.24)

This equation may be considered as a balance of torques in the bulk, although in

this particular case, the elastic forces are balanced by the fixed boundary conditions

d

d
x

y

z

z0

f

f(z)

π/2

a bFig. 8.9 Twist cell in the zero

field: geometry of the problem

(a) and the calculated

distribution of angle j(z)
(i.e. the director angle) over

the cell thickness (b)

204 8 Elasticity and Defects



and the rotation of the director is possible only together with the cell substrates.

After the first integration we obtain:

q ¼ df=dz ¼ const ¼ C (8.25)

This is an important result showing a linear distribution of azimuthal angle over

the layer thickness. The second integration gives us the value of the constant. It

depends on the difference between the azimuthal angles fixed at the opposite

boundaries. In our cell, j1 ¼ 0 at z ¼ 0 and j2 ¼ p/2 at z ¼ d. Therefore
f ¼ Cz ¼ pz=2d; this linear dependence is illustrated by Fig. 8.9b. Equation

(8.25) is valid for any uniform twist distortion; for instance, for nematics twisted

through angles p/4 or p the functions j¼ (pz/4d) and j¼ (pz/d), respectively. The
linear dependence remains even in the case of non-rigid boundary conditions,

however, external magnetic or electric fields can easily distort such a uniform

distribution.

It is instructive to calculate the value of the elastic energy (per unit area) of a

typical twisted cell, discussed above. Using (8.23), the free energy is given by

F ¼ 1

2

ðd

0

K22
p=2d
� �2

dz ¼ p2K22

8d

Taking cell thickness d¼ 10 mm (10�3cm), K22 ¼ 3�10�7 dyn (or 3�10�12 N) we

find F � 3.7�10�4 erg/cm2 or 0.37 mJ/m2 in SI units.

The example of the variational procedure considered in this section was very

simple, because we operated only with one independent variable (angle j). Some-

time one needs to minimize the energy with respect to two variables; in fact, we met

this case in Section 6.3.3 for an infinite medium. For two variables, the system of

two Euler equations can be constructed using the same procedure as earlier.

However, very often one deals with some constraints as, for example, in the case

of the director that has three projections satisfying the constraint n2x þ n2y þ n2z ¼ 1:
In such cases the Lagrange multipliers are introduced to solve the variational

problem, however this, more general Euler – Lagrange approach will not be used

in this book.

8.3.3 “Molecular Field” and Torques

The director n of a nematic can be re-aligned from its equilibrium position by an

external magnetic (or electric) field because these fields exert torques onto n. If the
field is strong enough and magnetic wa or dielectric ea anisotropy is positive,

the director will be aligned along the field. On the other hand, being deflected

from the equilibrium state by dn, the director relaxes back due to elasticity. It looks
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like the director feels a sort of “molecular field” that causes it to rotate back to the

equilibrium position. The “molecular field” should not be confused with the mean

field used in the molecular theory and characterized by the nematic potential curve

discussed in Chapters 3 and 6.

Mathematically the “molecular” field vector h can be found using the Euler-

Lagrange approach by a variation of the elastic and magnetic (or electric) parts of

the free energy with respect to the director variable n(r) (with a constraint of n2 ¼
1). For the elastic torque, in the absence of the external field, the splay, twist and

bend terms of h are obtained [9] from the Frank energy (8.16):

hsplay ¼ K11rðdivnÞ
hbend ¼ K33f½ðn� cirlnÞ � curln� þ curl½n� ðn� cirlnÞg
htwist ¼ �K22f½ðn � cirln � nÞ � curln� þ curl½ðn � cirln � nÞ� � ng

In the one-constant approximation K11 ¼ K22 ¼ K33 ¼ K and the expression for

the molecular field becomes very simple, similar to (8.24):

hdist ¼ Kr2n (8.26)

This approximation is useful when solving problems related to the field behavior

of liquid crystals. In the thermodynamic equilibrium, the director is always aligned

along the molecular field vector, n||h. When there is an external electric or magnetic

field (see for details Section 11.2.1), the corresponding terms given by

hE ¼ � ea
4p

ðEnÞE hH ¼ �waðHnÞH (8.27)

should be added to the molecular field. Such a non-zero sum of all these vectors

creates a torque exerted on the director

G ¼ n�
X

hi (8.28)

which causes the director rotation. Actually the torque due to the molecular field

can be balanced by other (e.g. viscous) torques. In this way, we can write a torque

balance equation.

n�
X

hi þ viscous torque þ others ¼ 0 (8.29)

8.3.4 Director Fluctuations

This is another important example of a successful application of the theory of

elasticity. In Section 11.1.3 we shall discuss the nature of strong light scattering by
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nematics. In fact, such scattering is caused by small values of the Frank elastic

moduli. The latter results in strong thermal fluctuations of the director. Here, we

consider a simple approach to calculation of the amplitude of the director fluctua-

tions suggested by de Gennes [12].

We again consider the director n0 oriented along the z-axis. Its fluctuating part

has components (nx, ny, 0). The total Frank elastic energy, related to the fluctuations
in volume V, is given by the integral of free energy density (8.15b):

F ¼ 1

2

ð
V

K11

@nx
@x

þ @ny
@y

� �2
þ K22

@nx
@y

� @ny
@x

� �2
þ K33

@nx
@z

� �2
þ @ny

@z

� �2" #( )
dr

(8:30)

The Fourier harmonics nx and ny of the director fluctuating field are represented

by volume integrals (q is wavevector):

nxðqÞ ¼
ð
V

nxðrÞ expðiqrÞdr and nyðqÞ ¼
ð
V

nyðrÞ expðiqrÞdr (8.31)

Now the corresponding free energy is represented by a sum of the q harmonics:

F ¼ 1

2V

X
q

n
K11jnxðqÞqx þ nyðqÞqyj2 þ K22jnxðqÞqy � nyðqÞqxj2

þ K33q
2
z

h
jnxðqÞj2 þ jnyðqÞj2

io

The q-vector consists of three components (qx, qy, qz) and the obtained quadratic
form for nx(q) and ny(q) is complicated because it is not diagonal. However, it can

be made diagonal if one takes a simplified geometry corresponding to the symmetry

of a scattering experiment. To this effect, de Gennes selected new coordinate axes:

the axis e2 was chosen to be perpendicular to the n0 (i.e. to z-axis) and simulta-

neously perpendicular to the scattering vector q, as shown in Fig. 8.10a. The other

axis e1 was chosen to be perpendicular to the z-axis and e2. Now the q-vector is
resolved not into three components but only into two: qz¼ q|| and q⊥ (|| and⊥ to the

director). Correspondingly we have two normal modes of fluctuations.

In Fig. 8.10b, we see that the fluctuation mode n1(q) is a mixture of the splay and

bend distortions, and the component n2(q) is a mixture of twist and bend distortions.

This may be clarified as follows: the splay-bend (SB) mode on the left side of

Fig. 8.10b corresponds to realignment of the molecules within the q,z-plane as q
evolves and there is no twist here. In contrast, on the right side of the same figure the

molecules are deflected from the qz-plane of the figure; therefore, the twist and bend
are present but the splay is absent (TB mode).
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After the transform to the new variables na(q) (a¼ 1, 2) the equation for the free

energy reads:

F ¼ 1

2V

X
q

X
a¼1;2

jnaðqÞj2 K33q
2
jj þ Kaq

2
?

� 	
(8.32)

Here Ka is the combination of Frank elastic moduli K11 and K22.

The last equation has a remarkable feature: the different Fourier components of

fluctuations are decoupled because they are normal modes for the system. This

allows us to apply the principle of equipartition, according to which the energy of

each mode is equal to kBT/2. Therefore, for each mode with a ¼ 1, 2, the final

equation for the mean-square magnitude of the director fluctuations reads:

jnaðqÞj2
D E

¼ V
kBT

K33q2jj þ Kaq2?
(8.33)

The latter transformation is based on the Gibbs distribution that gives us the

probability of the mean square value naðqÞj j2for a particular director fluctuation

with wavevector q when the average value h naðqÞj j2ifor all fluctuations is known:

w / exp �
VðK33q

2
jj þ Kaq

2
?ÞjnaðqÞj2

kBT

" #
¼ exp � jnaðqÞj2

<jnaðqÞj2>

" #

From Eq. (8.33) for the mean square amplitude of the director fluctuations, we

can derive the amplitude of the fluctuations of the dielectric tensor and then find the

cross-section for the light scattering, see Section 11.1.3. The de Gennes description
of the director fluctuations in the continuous medium [12] was a strong argument

against the so-called swarm models of liquid crystals. That model was based on the

SB

n
q

q

z

zq^

e1

e2

q||
TB

2π/q

a b

Fig. 8.10 New coordinate axes, e1 and e2 appropriate to the normal modes of director fluctuations

in a nematic liquid crystal (a) and the structure of the normal modes, namely splay-bend (SB) and

twist-bend modes (TB)
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concept of rather large blocks (or swarms) with the molecules uniformly aligned

within a swarm and variable orientation of swarms as a whole [13]. Such disconti-

nuity was considered to be responsible for the strong light scattering by nematics.

Nowadays the continuous theory is the corner-stone of the physics of liquid crystal.

8.4 Defects in Nematics and Cholesterics

8.4.1 Nematic Texture and Volterra Process

8.4.1.1 Textures

The concept of defects came about from crystallography. Defects are disruptions of

ideal crystal lattice such as vacancies (point defects) or dislocations (linear defects).

In numerous liquid crystalline phases, there is variety of defects and many of them

are not observed in the solid crystals. A study of defects in liquid crystals is very

important from both the academic and practical points of view [7,8]. Defects in

liquid crystals are very useful for (i) identification of different phases by micro-

scopic observation of the characteristic defects; (ii) study of the elastic properties

by observation of defect interactions; (iii) understanding of the three-dimensional

periodic structures (e.g., the blue phase in cholesterics) using a new concept of

“lattices of defects”; (iv) modelling of fundamental physical phenomena such as

magnetic monopoles, interaction of quarks, etc. In the optical technology, defects

usually play the detrimental role: examples are defect walls in the twist nematic

cells, shock instability in ferroelectric smectics, Grandjean disclinations in chole-

steric cells used in dye microlasers, etc. However, more recently, defect structures

find their applications in three-dimensional photonic crystals (e.g. blue phases), the

bistable displays and smart memory cards.

Generally, microscopic observations reveal different types of defects, which

may be 0-dimensional (points), one-dimensional (lines) and two-dimensional

(walls). Typical nematic textures are

1. The thread texture usually observed in thick layers

2. Schlieren texture observed in thin cells

In Fig. 8.11 an example is given of a Schlieren texture in the nematic phase

observed under a polarisation microscope. The polariser and analyser are always

crossed and their positions with respect to photos (a) and (b) differ by 45� as shown
by small crosses. On both photos characteristic brushes (threads) are seen origi-

nated and terminated at some points. The points are linear singularities (disinclina-

tions or just disclinations) to be discussed below. Note the difference between a

number of brushes originated or terminated in different points: only two brushes in

points 1 and 5 and four brushes in points 2, 3 and 4. It is evident that the pictures

discussed are related to the local orientation of the director, i.e. to the structure of
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the director field n(r). To understand the nature of the brushes, let us form some

defects artificially.

8.4.1.2 Volterra Process

The major part of the arrows directed to the right in Fig. 8.12a correspond to the

initial orientation of the director n0 in the planar nematic slab. However, the part of

the slab shown by arrows directed to the left is virtually taken from the sample by

some “mysterious force”, turned about axis O through angle p and put back into the

slab. After this operation called Volterra process, the director is everywhere again

parallel to n0 due to the n0 ¼ �n0 symmetry and such a structure in each of the two

parts (initial and turned) is topologically stable. However, in the close proximity of

the plane S	, on the scale of molecular size, the director changes its orientation by

Fig. 8.11 Schlieren texture observed between crossed polarizer and analyzer. Orientation of

polarizers differs in photos (a) and (b) by 45�

L

W·

y

x

x
y

z

n0

L

n0

S±

a

b

Fig. 8.12 Volterra process in

nematic liquid crystal placed

between two glasses with side

view (a) and top view (b).
The part of the nematic shown

by arrows directed from the

right to the left was initially

removed (virtually), turned by

angle p about the O-axis and
put back into the empty

cavity. A plane wall S	 and a

linear disclination loop L are

formed
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p. The plane S	 parallel to the substrate and horizontal in sketch (a) is called a wall

defect or just a wall.
There is also a vertical wall around the block shown by a dot-line loop in the

xy-projection in sketch (b) below. The wall S	 is not seen under microscope, but

the loop L surrounding the reoriented area and called a disclination is well seen as a
thin line. Very often the reoriented area surrounded by the vertical wall takes all the

thickness between the glasses without formation of wall S	 within the bulk.

The rotation angle O is not necessarily equals p, it may be 2p, 3p or, more

generally O ¼ 2p � s where s is strength of a disclination. The disclinations of

strength s ¼ 	1/2 or 	1 are observed very often, however, those of strength

s ¼ 	3/2 or even 	2 are very rare.

8.4.2 Linear Singularities in Nematics

8.4.2.1 Disclination Strength

Consider a disclination with its ends fixed at the opposite plates of a planar nematic

cell. Such a disclination “connects” the two glass plates as in Fig. 8.13a. If we are

looking at it from the top along the z-direction we can see the director distribution n
(x, y) in the xy-plane around the disclination. In a polarization microscope, in the

same cell, we can see different n(x, y) patterns corresponding to disclinations shown
in Fig. 8.14. A point in the middle of each sketch shows the disclination under

discussion that has its own strength s.
The strength of a disclination is defined as follows. We traverse the disclination

line along the closed contour counterclockwise as shown in sketch (b) and count the

angle Df the director acquires as a result of the traverse. It is evident that after the

full turn Df¼ mp where m¼ 0, 1, 2. . . and, by convention, the strength s¼ m/2. In
fact, we deal with a solution of the Laplace equation, see the next paragraph. Let us

count Df from the horizontal axis in Fig. 8.14. Then, upon the traverse in the

counter-clockwise direction, for disclinations of strength s ¼ 	1/2 and s ¼ 	1, the

Lr12

·

· ·

·

aFig. 8.13 Two disclinations

fixed by their end at the two

glasses limiting a layer of a

nematic liquid crystal. They

interact with each other by the

elastic force proportional to

1/r12 (a). The structure of the
director field n(r) near the
two disclinations of positive

and negative strength and four

dark brushes corresponding to

the s ¼ 	1 disclinations (b)
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director angle changes through 	p and 	2p, respectively. The presence of dis-

clinations of strength s ¼ 	1/2 is a characteristic feature of any liquid crystalline

phases with head-to-tail symmetry, n ¼ �n.
Note that the dark brushes in Fig. 8.11 mark the areas where the director is either

parallel or perpendicular to a polariser crossed with analyser. Therefore, a number

of brushes attached to a disclination (either 2 or 4 in the photo) is N ¼ 4s. In
Fig. 8.13b the scheme is shown of the four brushes attached to two disclinations of

opposite sign (s ¼ 	1) corresponding to Fig. 8.14a, b. As to the sign of s, it can be

established by a rotating of a pair of crossed polarisers: for their clockwise rotation

the brushes rotate either clockwise (sign +) or anticlockwise (sign �). Note the

analogy with the electric charges: s ¼ +1 corresponds to a source and s ¼ �1 to a

drain. Correspondingly the director lines are divergent or convergent. The lines of

n(r) are similar to the electric field lines, see Fig. 8.13b. Defects of the same strength

but opposite sign may annihilate with each other as the electric charges of opposite

sign do. It happens, e.g., at temperatures close to the nematic-isotropic transition.

8.4.2.2 The Director Field Around Disclination

The problem is to find the distribution of the director around a disclination [14]. To

solve it we can use the elasticity theory discussed in Section 8.3. Let a liquid crystal

layer is situated in the x, y plane of drawing, and singularity L is parallel to the

Fig. 8.14 Structure of the director field n(r) around a disclination of different strength s. The
values of s ¼ 	1/2 and 	1 are shown under each sketch
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normal z to the layer, see Fig. 8.15. Point L is chosen as the reference system center

and r is radius-vector of an arbitrary point r characterized by length r and angleC.

We are going to relate the director angle f(r) to the radius-vector angle C(r). The
components of the director field n(r) in the x,y-plane are independent of z:

nðrÞ ¼ ½cosjðx; yÞ; sinjðx; yÞ; 0�:

In the one-constant approximation, the distortion free energy per unit volume is

given by

gdistðrÞ ¼ 1

2
K

@j
@x

� �2
þ @j

@y

� �2" #
(8.34)

Now we introduce a cylindrical coordinate frame: x ¼ r cosC; y ¼ r sinC and

z, write down the gradient of f in that frame

rj ¼ @j
@r

� r* þ 1

r
� @j
@C

�~cþ @j
@z

~k

and substitute it in 8.34. Then, neglecting the z-dependence, we get the free energy
density

gdistðr;C; zÞ ¼ 1

2
K

@j
@r

� �2
þ 1

r2
@j
@C

� �2" #
:

Further, if we consider the most important practical cases (see Figs. 8.11 and

8.14), we find that the director angle f does not change too much with distance r
from the disclination, but changes very strongly with angle C. Therefore we can

leave only the second term, that is the angular part, especially important for small r:

y

x
L

r

n(r)

φ

ρ

Ψ

Fig. 8.15 Geometry for

calculation of the director

distribution around a

disclination L. C is the

azimuthal angle for an

arbitrary point r in the x, y
plane of the nematic layer; j
is the director angle in point r
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gdistðCÞ ¼ 1

2
K

1

r2
@j
@C

� �2
(8.35)

The corresponding Euler equation (8.24)

K
@2j

@c2
¼ 0 (8.36)

has the general solution j ¼ ACþ j0: As follows from Fig. 8.14, the change of

angle f by 2p corresponds to the same director field, and the first arbitrary constant

A must satisfy condition A ¼ 	1, 	2, . . . for any nematic liquid crystals (a polar

nematic included). For unpolar ones (e.g., conventional nematics) A ¼ 	1/2, 	1,

	3/2 . . . Therefore, A ¼ s (the disclination strength) and the director angle at any

azimuth C is found:

j ¼ sCþ j0 (8.39)

For instance, s ¼ 0 corresponds to a uniform state with the director oriented at

angle f0 with respect to the x-axis. In the case of s ¼ +1/2 shown in Fig. 8.14a,

counting C counterclockwise from the horizontal line x where f0 ¼ 0 and C0 ¼ 0,

we find from (8.39) that the director changes its direction from 0 to p as shown in

the figure by two arrows.

8.4.2.3 Energy of a Disclination

We are interested in the elastic energy stored around the disclination per its unit

length, l ¼ 1, see Fig. 8.16. The free energy is given by the same Eq. (8.35) and the

limits for integration correspond to the sample radius rmax and a core of the

disclination a that is excluded from consideration:

Fdiscl ¼ 1

2
K

ð2p

0

dc
ðrmax

a

1

r2
dj
dc

� �2
rdr (8.40)

As dj/dC ¼ s, the energy of a disclination per unit length

Fdiscl ¼ pKs2 ln rmax=a
� �

(8.41)

diverges logarithmically when r!1. However, this condition is not realistic

because all preparations have finite limits and there are also additional confinements

due, for instance, to other defects, etc. In practice, rmax � 10 – 100 mm, a � 10 nm,

ln(rmax/a) � 10 and Fdiscl � 30 K � 3.10�5 erg/cm (or 3.10�10 J/m).
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If there are two disclinations separated by distance r12, then the energy of their

interaction per unit thickness of the sample L ¼ 1 (see Fig. 8.13a) follows from

(8.41):

W12 � �2pKs1s2 ln r12=a (8.42)

The force of interaction between them dW/dr is proportional to 1/r12. Here we
see an analogy with the force of interaction between two infinite parallel wires

carrying electric currents. For disclinations of opposite sign s1s2 < 0 the interaction

energy is positive and decreases with decreasing distance. Therefore such disclina-

tions attract each other.

8.4.3 Point Singularities and Walls

8.4.3.1 Point Singularities in the Bulk (Hedgehogs)

There are some military applications of hedgehogs like a barbed wire or hedgehogs

against tanks, Fig. 8.17a. In the peaceful field of liquid crystals, at a certain

temperature, hedgehogs are observed in spherical drops of nematics floating in an

isotropic liquid. A conoscopic image of such a drop is shown in the same figure (b).

The liquid provides an alignment of the director perpendicular to the boundary.

Then, in the centre of the drop, appears a point defect (c) called hedgehog that has

radial distribution of the director around it. Two such hedgehogs interact with each

other very specifically: their interaction energy is proportional to the distance

l=1

2a

z

x

r
Y

dr

Fig. 8.16 Geometry for

calculation of the energy of a

linear disclination with radius

a (l ¼ 1 is unit length)
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between them, as between two quarks. Such an interesting analogy has been

discussed in the literature [15].

8.4.3.2 Point Singularities at the Surfaces (Boodjooms)

A variation of temperature or the chemical content of the isotropic solvent for the

nematic drops results in a change of the alignment of the liquid crystal at the drop

boundary from perpendicular (homeotropic) to parallel (homogeneous). Then the

director pattern within the drop changes from that containing one singular point in

the centre (hedgehog, Fig. 8.17c) to the new pattern with two singular points at the

“north” and “south” poles. These are defects with a funny name boodjooms, coming

from L. Carrol’s story “Alice in the Wonderful Land”, are seen in Fig. 8.18a.

Fig. 8.17 Hedgehogs. Some military applications (a), a conoscopic image of a spherical nematic

drop floating in an isotropic liquid (b), and the structure of the director inside the drop with a point
defect in the center called a hedgehog (c)

a b c

Fig. 8.18 Boodjooms. Structure of the director with two boodjooms in a nematic drop with

tangential alignment of molecules at the surfaces (a), linear disclination with a point defect at

the boundary of a nematic layer (b), and the same point defect (boodjoom) after annihilation of the

linear disclination (c)
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Another example is formation of boodjooms at the cell surfaces. Now we are

interested not in the linear disclinations responsible for the Schlieren texture but in

their nuclei at the solid substrates limiting a liquid crystal cell. The linear disclina-

tions of strength s ¼ 	1 may annihilate within the bulk due to some reconstruction

of the director field induced, for instance, by temperature or a flow of the material.

For example, a bulk disclination of strength s ¼ +1 shown by the solid vertical line

in Fig. 8.18b disappears but its nuclei localized at the surfaces transform into new,

surface defects. Fig. 8.18c illustrates the situation at one of the two surfaces. The

escaped line leaves behind it a boodjoom. We meet such a situation in thick planar

cells where the Schlieren textures with four brushes are observed.

8.4.3.3 Walls

Walls are two-dimensional defects or planes separated area of the liquid crystals

with different director alignment. We met them once when having discussed the

Volterra process. Another well known example is the so-called hybrid cell, in which

the initial alignment of the director is parallel to one boundary surface W(0) ¼ p/2
and perpendicular to the other W(d) ¼ 0. In such a cell, the structure of the director

field in the bulk is degenerate in the sense that the elastic energy is the same for the

two director patterns shown in Fig. 8.19. Between the two orientations with +W(z) or
�W(z), there is a defect plane (a wall) where the director changes its orientation

within a very narrow layer. When we look at the texture in a polarization micro-

scope (top view in the same figure) we can see thin lines separating the area with

	W(z) tilt. The total areas occupied by the +W and �W domains are approximately

equal. At the normal incidence of light, the areas of different tilt look similarly but

the walls between them are well seen. Such degeneracy in hybrid cells can be

removed by special treatment of a planar surface providing a small pretilt angle W(0)
< p/2.

Another example is a twist nematic cell with a planar orientation of the director

at both boundaries W ¼ p/2 differing by their azimuth, j ¼ 0 and p/2. In such cells,
the areas with the director twist in the bulk by angle +p/2 and �p/2 have the same

Top view

-J

+J
d

wall

-J +J

x

z
a b

Fig. 8.19 Walls. Hybrid nematic cell with planar and homeotropic director alignment at opposite

boundaries with a wall between the two degenerate patterns differing by a tilt angle sign (a), and
the top view on the different tilt areas surrounded by walls (b)
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energy. They are separated by walls, which scatter light. In the display technology,

a small amount of a chiral impurity is added to a nematic material in order to

remove the degeneracy.

8.4.4 Defects in Cholesterics

8.4.4.1 Singular t- and l-Lines in the Planar Texture

We have briefly discussed the cholesteric Grandjean texture in Section 4.7.4. In that

case the defects appear in the wedge-type cells having continuously changing

thickness. But even in the planar cholesteric texture observed along the helical

z-axis, we may see some defects, namely, singular lines which are more complex

than the corresponding disclinations in the nematic phase. A cholesteric may be

represented by a stuck of quasi-layers with interlayer distance P0/2. Therefore, we

can use some concepts of dislocation theory from the solid state physics. To

understand the appearance of such defects consider again the Volterra process [16].

In Fig. 8.20a we see a stack of the quasi-layers with vertical helical axis. The

dash and dot lines show the orientation of the director parallel and perpendicular to

the plane of drawing, respectively. We make a virtual cut S along a dash line

terminated by point L and then separate two lips as shown by two arrows in the

figure. The borders of the gap S1 and S2 are turned correspondingly up and down

through angles 	p/2. Then we add some cholesteric material to the right of the

S1–S2 line with layers orientated parallel to the initial helical axis. Note that the

director is not discontinuous at S1–S2 line, Fig. 8.20b. Finally, the structure relaxes

and we arrive at a new situation with linear defect t� shown in sketch (c). The

director is discontinuous at the core of line L where n⊥L. This singular line

(disclination) is called t� -line. If, from the beginning, we had made a cut S

along the neighbour quasi-layer with the director perpendicular to the cut (shown

L

–
L LS

S1

S1

S2

S2

a cb

t

Fig. 8.20 Volterra process. A stack of the cholesteric quasi-layers with vertical helical axis and a

cut S shown by the solid line terminated in point L (a). The cut is open up-down and the cholesteric
material is added on the right of the cut (b). The final structure of the quasi-layers after relaxation
leaving a line defect t� (c)
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by dots) and repeated exactly the same procedure, we would arrive at another

structure with a new distribution of the director and a singular line called l� -

line. The latter has no core because the director n||L is continuous at this disclina-

tion. The structures of the director around the t�- and l�-lines are compared in

Fig. 8.21 (lower plot). There are also t+- and l+ singular lines shown in Fig. 8.21

(upper plot) which can be obtained using another type of the Volterra process, see

[16] for details.

8.4.4.2 Defects in the Polygonal or Fingerprint Textures

When the limiting glasses are treated by a surfactant, the director aligns perpendic-

ular to boundaries. Such an alignment (homeotropic) is, in principle, hardly com-

patible with the helical structure shown in the Inset to Fig. 8.22 and a number of

defects form. A typical polygonal texture (another name is finger-print texture) is
shown in the photo (same figure). By measuring the distance l between neighbour

stripes we can determine the pitch of the helix from the microscopic observations

(P0 ¼ 2 l). Another type of defects in this geometry is focal-conic domains related

to the quasi-lamellar structure of a cholesteric. They are not so well pronounced as

similar domains in the genuine lamellar phases, such as the smectic A phase, and we

shall see their features in the next Section.

Earlier in Section 4.8 we discussed the blue phases observed in cholesterics close

to the transition to the isotropic phase. The whole appearance of the blue phase is

owed to the defects, which form a three dimensional lattice.

Fig. 8.21 Structure of the director field around different singular lines (disclinations) in a

cholesteric liquid crystal: t�, l� and t+, l+. Signs (�) and (+) correspond to different Volterra

processes
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8.5 Smectic Phases

8.5.1 Elasticity of Smectic A

8.5.1.1 Free Energy

SmA is a one-dimensional lamellar crystal with the interlayer distance almost

rigidly fixed. In order to discuss elasticity we need an additional variable that

would describe the lamellar structure. Consider a small distortion of smectic layers

[17]. In Fig. 8.23 dash and solid lines indicate undisturbed and distorted layers,

respectively. Short rods perpendicular to the lowest solid line indicate local direc-

tors, which are always perpendicular to the layers. Now, we introduce a layer

displacement along the z-axis, u¼ uz. In fact, it is a scalar field uz(x, y, z), depending
generally on all the three co-ordinates. Its derivatives describe two types of elasticity:

1. Elasticity ∂u/∂z corresponding to a change in the interlayer distance due to

compressibility along z
2. Elasticity due to layer curvature ∂u/∂x and ∂u/∂y. As seen from the figure, the

director angle W in the x, z plane for small distortions is given by # � @u=@x
¼ �dn � �nx:

Due to uniaxiality, the same is true for ny and all the three components are

nx ¼ � @u

@x
<<1; ny ¼ � @u

@y
<<1; nz � 1 (8.43)

k0

z

Fig. 8.22 Microscopic

finger-print texture of the

cholesteric phase observed in

geometry shown in the Inset;
arrows indicate the direction
of the incident light on the

texture
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The distortion free energy density can be expanded around its equilibrium value

g0, but, in the simplest case, only quadratic components are held:

gdist ¼ g0 þ 1

2
B

@u

@z

� �2
þ 1

2
K11

@2u

@x2
þ @2u

@y2

� �2
(8.44)

Here B and K11 are moduli of layer compressibility and layer curvature, respec-

tively.

Why does the free energy density acquire this particular form? First, in the

curvature term with modulus K11, we must use the second derivatives because the

first derivatives correspond to a pure rotation of all the layers that does not cost

energy. The higher derivatives are ignored for small distortions. For the compress-

ibility term, the first derivative (∂u/∂z) is sufficient. Second, both the compressibil-

ity and the curvature terms must be squared due to head-to-tail symmetry and

parabolic form of the density increment gdist-g0 as a function of distortion (Hooke’s

law). However, the question arises why is only splay modulus K11 taken into

account in (8.44) and not the other two Frank moduli K22 and K33. Considering

the splay and bend distortions of the SmA phase in Fig. 8.24 we can see that

only the splay distortion is allowed because it leaves the interlayer distance and the

l

z

x

u

–nx

q = ¶–¶
u–x

q = –nx

Fig. 8.23 Distortion of

smectic layers (solid lines)
from their equilibrium

position (dash lines). In the

SmA phase, the director

shown by short rods crossing

the lower layer is always

parallel to the layer normal

Splay Bend

l’

l’’

l

ba

Fig. 8.24 A splay (a) and bend (b) distortion of smectic A
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layer thickness unchanged. The bend would evidently change an interlayer dis-

tance, l 6¼ l’ or l”, that would require too much energy. The absence of twist

corresponds to scalar product n�curln¼ 0 in the Frank energy (8.16). This condition

is fulfilled for the director components nx ¼ �∂u/∂x and ny ¼ �∂u/∂y, nz ¼ 1

because curln ¼ (∂2u/∂z∂y)i � (∂2u/∂z∂x)j and n ¼ k. Thus, in (8.44) we may

hold the single curvature modulus K11.

The order of magnitude of the splay modulus is the same as that in nematics K11

� 10�7 – 10�6 dyn (or 10�12 – 10�11 N in SI system). Modulus B found for a liquid

crystal 8OCB at temperature 60�C is B ¼ 8�106 erg/cm3 (or 8�105 J/m3 in the SI

system) [18]. In that experiment, the compression-dilatation distortion of smectic

layers was induced by an external force from a piezoelectric driver.

8.5.1.2 Wave-Like Distortion

It is very instructive to consider a behaviour of the smectic layers attached to a

corrugated surface. This would explain why the uniform smectic phase is much

more transparent than the nematic phase. The geometry is shown in Fig. 8.25a.

A solid substrate is assumed to have a one-dimensional cosine-form relief:

zðxÞ ¼ a cos qx

with a period L¼ 2p/q. We are interested in a distance L (penetration length) along
z, at which the distortion is smoothed out. In other words, how far do smectic layers

“feel” the influence of the surface? The distortion of the layers is given by:

uðx; zÞ ¼ u0ðzÞ cos qx with u0ðz ¼ 0Þ ¼ a.

z

d

z

x

x2p /q

a b

Fig. 8.25 Distortion of a homeotropically aligned SmA liquid crystal by a corrugated surface of

solid boundary plate with the dotted line pictured an exponential decay of the distortion (a) and the
wave-like splay distortions in a thin layer with the arrows indicating the direction of the induced

local pressure (b)
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The elastic energy density averaged over the x,y-plane reads:

gdist ¼ 1

2
B

du0
dz

� �2
hcos2qxi þ 1

2
K11q

4u20hcos2qxi

¼ 1

4
B

du0
dz

� �2
þ l2s q

4u20

" #
(8.45)

Here <cos2qx> ¼ 1/2 and

ls ¼ K11=B

� 	1=2
(8.46)

is a smectic characteristic length (l � 1 nm).

Now we make minimisation of (8.45) writing the Euler equation
@g
@u0

� d
dz

@g
@u0

0

� 	
¼ 2l2s q

4u0 � d
dz 2u0

0 ¼ 0 and get

d2u0
dz2

� l2s q
4u0 ¼ 0 (8.47)

This equation has a solution: u0ðzÞ ¼ a expð�z=LpÞ: Thus, the distortion “pro-

pagates” into the bulk over a penetration distance

Lp ¼ 1

q2ls
¼ L2

4p2ls
(8.48a)

This distance is quite large. For instance, for period of the surface relief L ¼ 1

mm and smectic length l¼ 1 nm, the penetration length is 2.5 mm and the larger the

period of a distortion the longer the penetration length.

The result obtained has very interesting consequences: (i) to have well aligned

SmA samples, very flat glasses without corrugation are needed; (ii) even small dust

particles or other inhomogeneities create characteristic defects in the form of semi-

spheres (see Fig. 8.29b below) and well seen under an optical microscope; (iii)

layers are often broken (not bent) by external factors: in particular, strong molecular

chirality may result in the formation of defect phases like twist-grain-boundary

phase; (iv) the thermal fluctuations of director in smectic A phase are weak and the

smectic samples are not as opaque as nematic samples. In fact there is a critical cell

thickness for short-wave fluctuations.

Consider a SmA layer of thickness d between two glasses, Fig. 8.25b. Flat

surfaces stabilise the parallel arrangement of the layers while thermal fluctuations

excite wave-like splay distortions. In thin cells these fluctuations are markedly

suppressed: for d>>Lp they are very strong, for d<<Lp they are quenched for any

wavevector. For a fixed cell thickness, we can find a critical wavevector qc for
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surviving fluctuations. Assume that the critical penetration length Lpc ¼ d/p. Then,
from (8.46), the critical wave vector is

qc ¼ 1=Lcpls
� �1=2 ¼ p=dlsð Þ1=2 (8.48b)

For typical values of d � 10 mm and l � 1 nm, qc � 1.8�107 m�1 and only those

fluctuations survive whose period is less than L < Lc ¼ 2p/qc � 0.35 mm.

8.5.2 Peierls Instability of the SmA Structure

In Section 5.7.2 we discussed a general problem of stability of one, two- and three-

dimensional phases. Here, we shall analyze stability of the smectic A liquid crystal,

which is three-dimensional structure with one-dimensional periodicity. The ques-

tion of stability is tightly related to the elastic properties of the smectic A phase.

Consider a stack of smectic layers (each of thickness l) with their normal along the

z-direction. The size of the sample along z is L, along x and y it is L⊥, the volume is

V ¼ L⊥
2L. Fluctuations of layer displacement u(r) ¼ u(z, r⊥) along z and in both

directions perpendicular to z can be expanded in the Fourier series with wavevec-

tors qz and q⊥ (normal modes):

uq ¼
ð
uðrÞ expðiqrÞdr

Then, on account of (8.44), the free energy of distortion in the volumeO¼ (2p)3/V
in the wavevector space (qx, qy, qz), which is a sum (or an integral in the q-space) of
the energy of all normal modes, reads:

F ¼ 1

2ð2pÞ3
ð
O

d3q Bq2z þ K11q
4
?

� �juðqÞj2 (8.49)

The Gibbs distribution gives us probability of the mean square value uðqÞj j2 for a
particular fluctuation of the layer distortion when the average value h uðqÞj j2i for all
fluctuations is known:

w / exp �VðBq2z þ K11q
4
?ÞjuðqÞj2

kBT

" #
¼ exp � juðqÞj2

<juðqÞj2>

" #

From this equality and using Eq. (8.49), the mean-square average of the fluctua-

tion amplitude is found
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u2ðqÞ
 � ¼ kBT

ð2pÞ3
ð
O

d3q

Bq2z þ K11q4?
(8.50)

In fact, we used the equipartition theorem showing that each normal mode has

the same energy kBT/2. Factor 1/2 disappeared from (8.50) because each u(q)
corresponds to two fluctuation modes with wavevectors 	q. The integration should
be made in cylindrical co-ordinates according to the symmetry of SmA, for

geometry see Fig. 8.26:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q
¼ q?

ffiffiffi
2

p
; dr ¼

ffiffiffi
2

p
dq? and rdr ¼ 2q?dq?;

Now the limits of integration are changed:

2p
L

� qz � 2p
l
;
2p
L?

� q? � 2p
a0

and 0 � j � 2p

Here a0 is radius of a rod-like molecule. However, we can assume infinitely large

sample in the x, y direction, L⊥!1 and, in addition, a0!0. Then, after introducing

ls ¼ (K11/B)
1/2 and integrating over j we obtain the double integral:

u2ðqÞ
 � ¼ kBT

4p2

ðð
2q?dqzdq?
Bq2z þ K11q4?

¼ kBT

4p2K11

ð2p=l

2p=L

dqz

ð1

0

2q?dq?
l�2
s q2z þ q4?

(8.51)

The integral over q⊥ has a form
Ð1
0

dm
k2þm2 ¼ 1

k arctan
m
k j10 ¼ p

2k where we put

k ¼ qz=ls and m ¼ q2?; dm ¼ 2q?dq?: Now, integrating over qz using dqz ¼ lsdk,
we arrive at the final result:

z

r

qz
y

x

j

Fig. 8.26 Cylindrical

coordinates selected for a

stack of smectic layers that

becomes unstable in the

infinitely thick sample
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u2ðqÞ
 � ¼ kBT

4p2K11

ð2pl=l

2pl=L

pls
2k

dk ¼ kBTls
8pK11

ln
L

l
¼ kBT

8pðBK11Þ1=2
ln
L

l
(8.52)

This formula shows that, when the size of the sample along the layer normal

increases to infinity (L!1) the average mean square magnitude of the fluctuation

in the interlayer distance diverges, <u2(q)> !1. Formally, the ideal smectic A

structure becomes unstable. However, the divergence is logarithmic that is very

smooth. Such fluctuations destroy the true long-range positional order along z.
Instead, the quasi-long range positional order forms that was discussed in Sec-

tion 5.7.2. In experiments, the quasi-long range order manifests itself by deviation

of the X-ray Bragg reflections from the d-function form.

8.5.3 Defects in Smectic A

There are many types of defects originated from the layered structure of the smectic

A phase. Here, we shall only present a brief survey of the most important cases.

8.5.3.1 Steps and Dislocations

Steps are observed at the edge of the drop of a smectic preparation on a surfactant

covered glass, as shown in Fig. 8.27. In the blown part of the same figure, the

structure of each step containing a single p-disclination is seen. In the three

dimensional picture of Fig. 8.28, we can see a difference between the p-disclination
and another defect, called an edge dislocation which is typical of solid crystals. In

the smectic A, and additional smectic layer is incorporated between two other

molecular layers, and the edge of the irregular layer forms such a dislocation.

Free surface SmA layers

Zoom

step

p-disclination

glass

Fig. 8.27 Steps at the edge of a drop of the smectic A phase (left); the structure of each step

containing a single p-disclination is seen in the blown part (right)
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8.5.3.2 Cylinders, Tores, Hedgehogs

Many structural defects compatible with the incompressible smectic layers can be

observed under a microscope. Among them are cylinders, tores and hemispheres

observed at the surfaces, radial hedgehogs observed in smectic drops, etc. Three of

them are presented in Fig. 8.29a–c. Note that in all defect structures of this type, the

splay distortion plays the fundamental role but bend and twist are absent. Other, more

special defects, namely, the walls composed of screw dislocations, are observed in

the TGBA phase.

8.5.3.3 Focal-Conics

These are the most striking features of smectic textures [19]. Smectic layers of

constant thickness (incompressible, modulus B!1) form surfaces called Dupin
cyclides. We have seen some of them, which have the form of tori including

disclinations, see Fig. 4.7b. Such cyclides can fill any volume of a liquid crystal

by cones of different size. An example is a focal-conic pair, namely, two cones with

a common base. The common base is an ellipse with apices at A and C and foci at O

and O’, see Fig. 8.30a. The hyperbola B–B’ passes through focus O. The focus of

π–disclination dislocation

a b

Fig. 8.28 Illustration of the difference between a p-disclination and an edge dislocation in the

smectic A

Smectic layers

L

a b c d

Fig. 8.29 Structure of some defects in the SmA phase, namely, cylinder (a), semi-sphere (b), and
radial hedgehog (c) and a monopole in SmC (d)
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the hyperbola C coincides with the apex of the ellipse C. Using multiple lines such

as BD and B’D one can build two conical surfaces with apices at B and B’.

The bulk of the cones is filled by smectic layers. Fig. 8.30b represents the cross-

section of the upper cone by plane ABC. Note that along the line OB smectic layers

are continuous although their slope is changed. Using such cones all the space

occupied by a liquid crystal can be filled, Fig. 8.30c. It is very fascinating that such

“mathematical structures” are indeed observed in experiment! A variety of

observed focal conic textures is very large. The microscopic photos in Fig. 8.31,

illustrate two of them. Photo (a) shows rather large but short polygons (polygonal
texture) and photo (b) demonstrates the so-called fan-shape texture with very

narrow, elongated polygons.

8.5.4 Smectic C Elasticity and Defects

8.5.4.1 Elastic Energy

In the smectic C phase the director is free to rotate about the normal z to the smectic

layers. In the general case, the smectic layers are considered compressible. The elastic

Fig. 8.30 Focal-conic defect structure in SmA: A pair of cones with a common elliptical base and

a hyperbola connecting cone apices (a); cross-section of the upper cone by plane ABC with gaps

between lines (Dupin cyclides) indicating the smectic layers (b); filling the space of the sample by

cones of different size (c)

Fig. 8.31 Photos of some focal conic textures: polygonal (a); and fan-shape (b) textures
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energy of the smectic C phase may be analysed in terms of four variables, the

compressibility g ¼ ∂u/∂z (u ¼ uz) as in smectics A, and three axial vectors Oi(r)
shown in Fig. 8.32a; the x-axis coincides with the c-director. Then, according to

Fig. 8.32b, the derivatives of layer distortion u ¼ u(x) are given by:

� @u

@x
¼ Oy and � @Oy

@x
¼ @2u

@x2

The sign minus takes into account the sense of rotation about the y-axis. By
analogy

@u

@y
¼ Ox and

@Ox

@y
¼ @2u

@y2

and the rotation through angle Oz about the z-axis does not create distortion u.
The free energy density of distortion must be a quadratic function of rV. It

consists of three groups of terms describing (1) the nematic-like distortion of the

c-director (gc), (2) distortion of the smectic layers (gl) and (3) the cross terms (gcl):

g ¼ gc þ gl þ gcl

Totally we obtain 4 + 4 + 2¼ 10 elastic moduli [9]. When the interlayer distance

is fixed, only four nematic-like moduli are left (with dimension [energy/length]).

8.5.4.2 Defects in Smectics C

Like in the nematic phase, the textures of SmC reveal blurred Schlieren patterns

with linear singularities of strength s ¼ 	1. The singularities of s ¼ 	1/2 are not

observed due to the reduced symmetry (C2h) of the SmC phase. Chiral smectics C*

are periodic structures and the helical pitch can be measured under a microscope

either from the Grandjean lines or as a distance between the lines indicating

periodicity, like in Fig. 8.22 for the cholesteric phase. On the other hand, like in

Wx

Wy

Wy

x x
y

y

u 
(x

)

z

J

c

nWz

a b

Fig. 8.32 Smectic C. Definition of rotation axes Ox, Oy and Oz (a) and layer distortion u ¼ u(x)

8.5 Smectic Phases 229



SmA phase, the stepped drops as well as polygonal and fan-shape textures are also

observed.

Normally, the smectic C phase should form the lowest energy uniform texture

shown in Fig. 8.33a. However, more often we see so-called chevrons, see

Fig. 8.33b, which usually form on cooling from the smectic A phase. In both

cases, at the boundaries, molecules are aligned parallel to the surface without any

tilt. The apex of a particular chevron can be oriented either to the left or to the right.

The areas of the left and right chevrons are separated by a disclination line having a

form of a zigzag. In the same figure, the core of such a line is pictured by the point.

When observed from the top the zigzag defects are seen. One of such a zigzag is

demonstrated by photo, Fig. 8.34. Such zigzag defects play the detrimental role in

the displays based on SmC* ferroelectric liquid crystals.

Upon transition from the SmA to the SmC phase, due to appearance of the

molecular tilt, radial hedgehogs discussed in Section 8.5.3 transform into other

defects, called monopoles. Their characteristic feature is a disclination line going

from the centre along a radius, Fig. 8.29d. The name “monopole” was inherited

from the Dirac magnetic monopole, an isolated magnetic charge in the form of the

hedgehog with an adjacent singularity in the field of the magnetic vector-potential

A(r). The mathematical treatment of the magnetic monopole (not discovered yet)

and SmC monopole observed in smectic drops is very similar [15].

Fig. 8.33 Smectic C phase: the uniform structure (a) and the structure with chevrons and a

disclination between them (b)

Fig. 8.34 A typical

appearance of the zigzag

defect in the chiral SmC*

phase
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Chapter 9

Elements of Hydrodynamics

9.1 Hydrodynamic Variables

We shall discuss here the macroscopic dynamics of liquid crystals that is an area of

hydrodynamics or macroscopic properties related to elasticity and viscosity. With

respect to the molecular dynamics, which deals, for example, with NMR, molecular

diffusion or dipolar relaxation of molecules, the area of hydrodynamics is a long

scale, both in space and time. The molecular dynamics deals with distances of about

molecular size, a � 10 Å, i.e., with wavevectors about 107 cm�1, however, in the

vicinity of phase transitions, due to critical behaviour, characteristic lengths of

short-range correlations can be one or two orders of magnitude larger. Therefore, as

a limit of the hydrodynamic approach we may safely take the range of wavevectors

q � 106 cm�1 and corresponding frequencies o � csq � 105� 106 ¼ 1011s�1 (cs is
sound velocity).

In the hydrodynamic limit one considers only those variables whose relaxation

times decrease with increasing wavevector of the corresponding visco-elastic

modes. For instance, a small vortex made by a spoon in a glass of tea relaxes faster

than a whirl in a river, or, after a tempest, short waves at the sea surface disappear

faster then waves with a large period. The relaxation of cyclones in atmosphere

takes days or weeks. As a rule, the hydrodynamic relaxation times follow the law

t~Aq�2. The strings of a guitar also obey the same law.

For the isotropic liquid, one introduces five variables related to the corresponding

conservation laws. The variables are density of mass r, three components of the

vector of linear momentum density mv, and density of energy E. When electric

charges enter the problem, the conservation of charge must be taken into account.

Then we are in the realm of electrohydrodynamics.
For nematic liquid crystals, the symmetry is reduced and we need additional

variables. The nematic is degenerate in the sense that all equilibrium orientations of

the director are equivalent. According to the Goldstone theorem the parameter of

degeneracy is also a hydrodynamic variable; for a long distance process q!0 and

the relaxation time should diverge, t!1. In nematics, this parameter is the director

n(r), the orientational part of the order parameter tensor. For a finite distortion of

the director over a large distance (L!1), the distortion wavevector q!0 and the

L.M. Blinov, Structure and Properties of Liquid Crystals,
DOI 10.1007/978-90-481-8829-1_9, # Springer ScienceþBusiness Media B.V. 2011
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orientational relaxation requires infinite time. By the way, the magnitude S of the

order parameter tensor is not a hydrodynamic variable. The director field n(r) is
indeed an independent variable, because it may rotate even in the immobile nematic

phase, for example, in the case of the pure twist distortion induced by a magnetic

field. On the other hand a flow of the nematic can influence the vector field n(r) and
vice versa. Thus, two variables v(r) and n(r) are coupled. Together with two

components of the director (due to the constraint n2 ¼ 1) the number of hydrody-

namic variables for a nematic becomes seven [1,2].

For discussion of dynamics of lamellar smectic phases it is important to include

another variable, the layer displacement u (r) [3] or, more generally, the phase of

the density wave [4]. This variable is also hydrodynamic: for a weak compression

or dilatation of a very thick stack of smectic layers (L!1) the relaxation would

require infinite time. On the other hand, the director in the smectic A phase is no

longer independent variable because it must always be perpendicular to the smectic

layers. Therefore, total number of hydrodynamic variables for a SmA is six. For the

smectic C phase, the director acquires a degree of freedom for rotation about the

normal to the layers and the number of variables again becomes seven.

Why we are interested in hydrodynamics? Because we are interested in variety

of flow phenomena in different geometry, the variety of viscosities of liquid crystals

in different regimes, enormous viscosity of helical and layered structures, under-

standing of thermal convection, flow instabilities, etc. Moreover, in an external

electric field, the electrohydrodynamic instabilities arise which need a background

for their interpretation. At first, however, we recall hydrodynamics of an isotropic

liquid.

9.2 Hydrodynamics of an Isotropic Liquid

Our task is to derive the equation for motion of the isotropic liquid in order to

prepare a soil for discussion the dynamic properties of nematics. In this Section, we

follow the approach [5] using two conservation laws.

9.2.1 Conservation of Mass Density

Consider conservation of mass density, r(x, y, z, t). The mass continuity equation

comes from consideration of the balance of the mass density in the volume V and its

flux through the surface surrounding the volume with subsequent application of the

Gauss theorem:

@r
@t

¼ �rrvþ sources (9.1)
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Here the velocity v(x, y, z, t) of a liquid is “measured” in a particular fixed point

in space x, y, z. It is not the velocity of a small unit volume of moving liquid.

“Sources” mean the presence of sources and sinks in the volume discussed. If we

are not interested in propagation of sound i.e. ignore a local compression and

dilatation we may put dr ¼ 0 and r ¼ const. Then, it is the case of incompressible
liquid:

@r=@t ¼ �rrvþ sources

and, in the stationary regime, divv ¼ sources.

For the subsequent discussion let us write down the continuity equation in the

tensor form:

@r
@t

¼ � @ðrvjÞ
@xj

þ sources (9.2)

9.2.2 Conservation of Momentum Density

9.2.2.1 Ideal Liquid

Consider now the conservation of momentum density (or linear momentum vector

rv). First we write this law for the ideal (without viscosity) liquid in two different

presentations. The Lagrange form of the equation of motion of the element of liquid

coincide with the Newton form (mdv/dt¼F):

r
dv

dt
¼ �grad pþ f (9.3)

Here, p is scalar pressure, vector f is the volume force in (dyn/cm3) coming, e.g.,

from the gravity, electric or magnetic field (e.g., for gravity force f¼ rg) and vector
v is velocity of moving liquid particle as if the measuring device is placed on the

particle. However, in hydrodynamics, the velocity is usually considered as a vector
field defined in each point of the space. The change of velocity dv within time

interval dt consists of two terms: one of them, namely, (∂v/∂t)dt is taken at fixed

coordinates x, y, z of the reference point and the other part is delivered by different

particles arriving from the neighbor points located at a distance dr ¼ dxi þ dyj þ
dzk from the reference point (the so-called convective term):

dxð@v=@xÞ þ dyð@v=@yÞ þ dzð@v=@zÞ ¼ ðdrrÞv:

Therefore, the total velocity in the reference point satisfies the equation
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dv

dt
¼ @v

@t
þ ðvrÞv; (9.4)

where (vrv) is called convection term. Correspondingly the equation of the motion

of an ideal liquid in the Euler form is given by:

r
@v

@t
þ rðvrÞv ¼ �grad pþ f (9.5)

The same equation can be written in the tensor form:

r
@vi
@t

¼ �rvj
@vi
@xj

� @p

@xi
þ fi (9.6)

Now we define the rate of the momentum change:

@rv
@t

¼ r
@v

@t
þ @r

@t
v

or in tensor notations

@

@t
rvi ¼ r

@vi
@t

þ @r
@t

vi

and rewrite this rate on account of Eqs. (9.6) and (9.2):

@rvi
@t

¼ �rvj
@vi
@xj

� vi
@ðrvjÞ
@xj

� @p

@xi
þ fi (9.7)

Using identity@p=@xi � dij@p=@xj with Kronecker symbol dij we may present

the result in the compact form of the law of momentum conservation for the ideal

liquid:

@

@t
rvi ¼ � @Pij

@xj
þ fi (9.8)

where a symmetric second rank tensor

Pij ¼ pdij þ rvivj; (9.9)

is called tensor of momentum density flux (in units dyn/cm2). It includes only the

reversible part of the momentum transfer, because there is no energy dissipation by

the flow of the ideal liquid. Note that the form of Eq. (9.8) is very similar to the form

of density conservation law (9.2).
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9.2.2.2 Viscous Liquid

For viscous liquids the law for the mass conservation remains unchanged. As to the

momentum density conservation, it keeps the same form (9.8) but tensorPij should

be changed to take the dissipation into account. Now we write

Pij ¼ pdij þ rvivj � s0
ij ¼ �sij þ rvivj (9.10)

The new tensor

sij ¼ �pdij þ s0
ij (9.11)

called stress tensor, includes the pressure term -pdij and the term s0
ij called viscous

stress tensor. The latter describes the irreversible transfer of momentum in a

moving liquid.

Now let us try to imagine the form of tensor s0
ij. In Fig. 9.1, the upper part of the

liquid is moving, the lower part is immobile. The components of s’ij are the

tangential shear forces acting on a unit area having its normal along the xj-axis
while the liquid moves along the xi-axis. This force is caused by the gradients of

momentum ∂rvi/∂xj (or just velocity gradients ∂vi/∂xj in case of incompressible

liquid with constant r) otherwise there is no friction force. The momentum is

transferred from upper to lower layers (momentum flux). The correct form of this

tensor should exclude the rotation of a liquid as a whole because such a rotation

does not result in friction at all. Therefore we write a symmetric shear rate tensor for
the incompressible liquid as we did earlier Eq. (8.6) when we discussed the shear

distortion of the solid (soft) matter [6]:

Aij ¼ 1

2

@vi
@xj

þ @vj
@xi

� �
(9.12)

Then, for not very strong gradients, there should be linear relationship between

s’ij and Aij and we may write

s0
ij ¼ �

@vi
@xj

þ @vj
@xi

� �
where i; j ¼ x; y; z (9.13)

unit area

σ′ij

v = 0

vi

xi

xj

Fig. 9.1 Geometry of shear

of isotropic liquid and

illustration of the component

s0
ij of the viscous stress

tensor
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Here Z is shear viscosity coefficient. For the case shown in the Fig. 9.1, xi ¼ x,
xj ¼ z, the velocity has only component vx and the gradient of velocity has a simple

form ∂vx/∂z. Then s’xz ¼ Z∂vx/∂z. The dynamic viscosity coefficient Z is

measured in Poise (g�s�1cm�1). Sometimes one uses the so-called kinematic

viscosity Z/r measured in Stokes (cm2s�1). The SI unit for dynamic viscosity is

Pa�s (N�m�2s). Numerically 1 Pa�s ¼10 P.

A more general form of the viscous stress tensor (for compressible liquid) has

two different terms, one is the same corresponding to shear (9.13) with viscosity Z
and the other is compressibility with viscosity coefficient called second viscosity z.
Both the coefficients are positive scalars.

By defining the shape of a selected small volume in the moving liquid, e.g., a

cube, we clearly see that the viscous force acting on the cube arises from the

differences in stress tensors on opposite faces of the cube. Consequently, the

force is determined by the spatial derivatives of tensor Pij including s’ij as seen
from Eqs. 9.8 and 9.10. The viscous tensor in turn, according to Eq. (9.13), is

proportional to spatial derivatives of the velocity v. Hence, in many simple cases,

the viscous force is given by vector Zr2v.

9.2.3 Navier-Stokes Equation

In the next step, the equation of motion for an isotropic, incompressible, and

viscous liquid may be cast in different forms depending on the dimensionless

Reynolds number

Re ¼ rvl=Z (9.14)

where l is a characteristic dimension of the flow structure, for instance a tube

diameter. In the case of relatively low velocity of a viscous liquid in narrow

capillaries (Re � 1), the convection term in (9.5) is disregarded, and Eq. (9.8) on

account of (9.10) becomes the well known Navier-Stokes equation:

r
@v

@t
¼ �~rpþ f þ �r2v (9.15)

where ~rp is vector of pressure gradient and f is an external volume force.

As a simple example, consider a spherical particle of radius Rp moving by an

external force fwith given velocity in a viscous liquid with Re� 1. Then dv/dt¼ 0,

gradient of pressure is absent and the external force is equal to the friction force:

f ¼ ��r2v: (9.16)

If the particle is moving in the z-direction with velocity v0, the velocity of the

liquid vz(r) decreases from v0 to 0 as a function of the polar transverse coordinate r.
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By integrating the right part of the last equation over r, Stokes has found the

relationship between the acting force and the velocity of the particle:

f ¼ 6pRpZvz (9.17)

By measuring velocity of a spherical particle sinking in a liquid under gravity

force the viscosity of the liquid can be found (the buoyancy effect should be taken

into account). Note that in Section 7.3.3, using an electric field as an action force,

the same Stokes’ law has been applied (with some precautions) to evaluation of

velocity and mobility of spherical ions in isotropic liquids or nematic liquid crystals

For large Reynolds numbers, Re ¼ rvl/Z>1 the flow in no longer laminar and

even becomes turbulent. Then, the convective term (vr)v should be added to the

left part of the Navier-Stokes equation

r
@v

@t
þ rðvrÞv ¼ �~rpþ f þ Zr2v (9.18)

This situation is encountered in the physics of electrohydrodynamic instabilities.

Resuming the discussion of isotropic liquids note that the four basic equations

for conservation of mass and momentum include only four material parameters:

mass density r, compressibility b, viscosity Z and second viscosity z. Other two
parameters, namely, thermal conductivity k and specific heat capacity Cp (or CV)

would come about as soon as the energy conservation law is applied to thermal

processes. So, the isotropic liquid is completely described by six parameters.

9.3 Viscosity of Nematics

9.3.1 Basic Equations

Here the discussion of viscous properties of nematic liquid crystals is based on the

approach developed by F. Leslie [7]. For the nematic phase we have the equation

for conservation of mass, the modified equations for conservation of momentum

and energy E and one additional equation for conservation of the angular momen-

tum of the director [8,9]. Totally there are seven equations: two for scalar quantities

(r and E), three for momentum (mv) and two for director (due to condition n2 ¼ 1),

which completely describe the hydrodynamics of nematics. In this case

1. The equation for mass conservation for an incompressible nematic can still be

used in the form of divv ¼ 0.

2. The dissipation related to the pure director rotation has to be taken into account

when writing the conservation energy equation. In addition, the heat transfer

becomes anisotropic and the thermal conductivity is described by two coeffi-

cients k|| and k⊥.
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3. Instead of the equation for conservation of the linear momentum for the director,

the conservation of the angular momentum is used. Leslie had taken into account

not only the velocity gradients, but also the orientation of the director n and its

relative rotation rateN. In fact, vectorN is linear director velocity with respect to

the liquid that may rotate itself:

N ¼ dn

dt
� ½o� n� (9.19)

Figure 9.2 shows the case in that the director n(t) rotates faster than liquid

particles. In the figure, r(t) and v are radius-vector and linear velocity of a liquid

particle, v ¼ (1/2)curlv is angular velocity of liquid, (v � n) is that component of

director linear velocity, which is solely caused by rotating liquid and dn/dt ¼ (V �
n) is total linear velocity of the director with respect to immobile laboratory frame

(in the figure V > v is angular velocity of the director in the laboratory frame).

The second rank viscous stress tensor found by Leslie for the incompressible

nematic phase consists of nine matrix elements, each of them having the form:

s0
ij ¼ a1ninjnknlAkl þ a2njNi þ a3niNj

þa4Aij þ a5njnpApi þ a6ninpApj (9.20)

with i,j ¼x, y, z. The corresponding six viscosity coefficients ai are called Leslie
coefficients. In fact, only five of them are independent, because due to Parodi’s
relationship a6 � a5 ¼ a2 þ a3 [10].

Let us look more carefully at each term in a particular tensor component s’ij.
The three terms including the velocity gradient tensor Aij are related to shear due

to the mass flow in different director configurations. Among them the term with a4
is the only one that is independent of n and N. Therefore, it exists even in the

isotropic phase and a4 ¼ 2Z. The terms with a2 and a3 depend only on the director

components and director rate (velocity) components N but do not contain velocity

gradients; they describe a physical situation involving pure director rotation without

dn /dt

v(t2)

v(t1) n(t1)

r

Ω

n(t2)

Fig. 9.2 Mutual rotation of a small spherical volume of a nematic liquid crystal and the director n
rotating within this volume (v and v are linear and angular velocity of small liquid volume; dn/dt
and V are linear and angular velocities of the director with respect to immobile laboratory frame

(here V > v)
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flow. For example, it could be a famous Frederiks transition used in display

technology, if the director reorientation is so slow that a relatively weak effect of

the mass transfer (i.e. backflow effect) is neglected.

According to the form of tensor s’ij (9.20), a4 is independent of the nematic

order parameterQ, coefficients a2, a3, a5, a6 are proportional toQ, and a1/Q2 (the

latter is usually smaller than the others). The values of the Leslie coefficients for a

popular liquid crystal E7 at 25	C are (in Poise, 1 P ¼ 0.1 Pa�s): a1 ¼ �0.18, a2 ¼
�1.746, a3 ¼ �0.214, a4 ¼ 1.736, a5 ¼ 1.716, a6 ¼ a2 þ a3 þ a5 ¼ 0.244.

l 4. Finally, the equation of motion for the director of a nematic has no analogy in

a system of equations for isotropic liquid and is given by
l

I
@O
@t

¼ ½n� h� � G (9.21)

Here I is “moment of inertia for the director” and V is vector of total angular

velocity of the director, dn/dt ¼ (V � n) as shown in Fig. 9.2. Equation (9.21) is

formally analogous to the Newton equation

Ido=dt ¼ M�G

for rotational motion of a solid body in viscous medium with angular frequency v,
a torque of external force M and a frictional torque G.

In our case, the first term (n � h) on the right side of (9.21) describes the torque
exerted on the director due to both an external field and the elastic forces of the

nematic, that is due to the molecular field h discussed in Sections 8.3.3 and 11.2.1.

This torque has the same form as the external torque M � H exerted by the

magnetic fieldH on the magnetizationM of substance. Vector G in (9.21) describes

a frictional torque consisting of two parts related to the director velocity N rela-

tively liquid and to the liquid velocity gradient or shear rate tensor Aij given by

Eq. (9.12):

G ¼ n� ½g1Nþ g2Aijn� (9.22)

The coefficients of friction for the director have the dimensions of viscosity and

are particular combinations of Leslie coefficients, g1 ¼ a3 – a2, g2 ¼ a3 þ a2.
It is significant that only two coefficients of viscosity enter the equation for

motion of the director. One (g2) describes the director coupling to fluid motion. For

example, if the director turnes rapidly under the influence of the magnetic field,

then, due to friction, this rotation drags the liquid and creates flow. It is the backflow

effect that will be described in more details in Section 11.2.5. The other coefficient

(g1) describes rather a slow director motion in an immobile liquid. Therefore, the

kinetics of all optical effects caused by pure realignment of the director is deter-

mined by the same coefficient g1. However a description of flow demands for all the

five viscosity coefficients.
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9.3.2 Measurements of Leslie coefficients

9.3.2.1 Laminar Shear Flow

When the nematic flows through a capillary its apparent viscosity depends on the

velocity of flow, more precisely, on shear rate. M. Miesowicz made first experi-

ments on properly aligned nematics by a strong magnetic field and found different

viscosity coefficients for differently aligned preparations [11]. The idea is illu-

strated in Fig. 9.3. The liquid crystal layer of thickness d is placed between two

plates. The upper plate is moving along x with velocity v0, but the lower plate is

immobile. This creates a gradient of velocity or shear rate dvx/dy ¼ (v0/d), hence
vx(y) ¼ (v0/d)y. The correspondent component of the viscous tensor is given by

s0
xy ¼ Zdvx=dy (9.23)

where Z is an apparent viscosity coefficient independent of shear rate. In fact,

Miesowicz used slowly oscillating upper plate in the x-direction and measured

damping of the oscillations. The director was fixed by a strong magnetic field either

along z (geometry a) or along y (geometry c). Without field, the shear itself orients

the director along x (geometry b). Using this technique the three flow viscosities

coefficients Za ¼ 3.4, Zb ¼ 2.4 and Zc ¼ 9.2 cP have been measured for p-
azoxyanisole at 122	C and, nowadays they are called Miesowicz coefficients.

It would be very instructive to relate the experimental (Miesowicz) and theoreti-

cal (Leslie) coefficients of viscosity. Our task now is to use the viscous tensor (9.20)

and find the relationships between the coefficients for each of the three basic

orientations of the director, namely nx ¼ 1, ny ¼ 1, or nz ¼ 1. At first, we shall

prepare some combinations of parameters useful in all the geometries mentioned:

1. As we have only one component of shear dvx/dy the tensor of shear (9.12) for our
geometry becomes very simple:

v0

nz nx nyvx(y)

z

y

x

Fig. 9.3 Miesowicz’s experiment. Upper plate oscillates in the x-direction and one measures

damping of the oscillations. The director is fixed by a strong magnetic field either along z (nz,
geometry a) or along y (ny, geometry c). Without field, the shear itself aligns the director along x
(geometry b)
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2Aij ¼ 2Axy

¼
@vx=@x

@vx=@y
@vx=@z

@vy
�
@x

@vy
�
@y

@vy
�
@z

@vz=@x
@vz=@y

@vz=@z

2
664

3
775þ
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2
64

3
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¼
0 v0=d 0

v0=d 0 0

0 0 0

2
4

3
5 (9.24a)

2. Vectors npApi and npApj:

npApi ¼ npApx ¼ 0; ny v0=2dð Þ; 0� �
; npApj ¼ npApy ¼ nx v0=2dð Þ; 0; 0½ �; (9.24b)

(here, multiplying the corresponding matrices we used a column np¼(nx, ny, nz)
and the first and second rows of (9.24a).

3. Scalar products:

njnpApi ¼ ny
2 v0=2dð Þ and ninpApj ¼ n2x v0=2dð Þ (9.24c)

4. Vector v ¼ (1/2)curlv for v ¼ (v0y/d, 0, 0): v ¼ (0, 0, �v0/2d).
5. Director velocity N (9.19) in the steady state conditions (dn/dt¼0):

N ¼ �½o� n� ¼ ð�nyv0=2d; nxv0=2d; 0Þ ¼ v0=2dð Þð�nyiþ nxjÞ (9.24d)

Now we are ready to consider the three geometries with different director

alignment marked by symbols with letters nx, ny, nz in Fig. 9.3.

Geometry (a), nz ¼ 1 (Director Perpendicular to the Shear Plane)

In this case nx ¼ ny ¼0. Hence, N ¼ 0 and terms with coefficients a2 and a3 in

viscous tensor (9.20) vanish. Terms with a5, a6 also disappear because vector npAxy

has only x- and y-components and forms zero scalar product with nz ¼ (0, 0, 1). The

term with a1 also vanish because nknlAkl is a scalar, in front of which there is a

product ninj ¼ nxny ¼ 0. It is only finite when the director has both x and y
projections finite.

Therefore, in (9.20) we have only one finite term for the viscous stress tensor

component:

s0
xy ¼ Z

dvx
dy

¼ a4Axy ¼ a4
2
� v0
d

(9.25)
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and

Za ¼ a4=2:

We see that a nematic liquid crystal behaves as an isotropic liquid when the

plane of the shear (y,z) is perpendicular to the director.

Geometry (b), nx ¼ 1 (Director in the Shear Plane Parallel to the Velocity of Upper

Plate)

In this case, ny ¼ nz ¼ 0 and N ¼ Ny ¼ (v0/2d)nx. The term with a1vanishes due to
nxny ¼ 0. The term a2njNi ¼ a2nyNx also vanishes due to ny ¼ 0. Then, according to

(9.24c), the term

a5njnpApi ¼ a5n2y v0=2dð Þ ¼ 0:

What is left? The “isotropic” term a4v0/2d is always finite. The term a3niNj ¼
a3nxNy ¼ a3v0/2d, and, according to (9.24c), the term a6 ninpApj ¼ a6 n

2
x(v0/2d) ¼

a6v0/2d . Therefore, three terms contribute to s’xy:

s0
xy ¼ a3Ny þ ða4 þ a6ÞAxy ¼ ða3 þ a4 þ a6Þv0=2d (9.26)

and

�b ¼ 1
2
ða3 þ a4 þ a6Þ

Geometry (c), ny ¼ 1 (Director in the Shear Plane Perpendicular to the Upper Plate

Velocity)

In this case, nx ¼ nz ¼0 and N¼ Nx ¼ (�nyv0/2d, 0, 0). The term with a1 is again
absent, and a6, a3 vanish because a3niNj ¼ a3nxNy ¼ 0 and a6ninpApj ¼ a6 n

2
x(v0/

2d) ¼ 0.

Now, the terms a2njNi¼ a2nyNx¼�a2v0/2d, and a5njnpApj¼ a5 ny
2(v0/2d)¼ a5

(v0/2d) contribute to s’xy, as well as the “isotropic” term a4v0/2d. Hence,

s0
xy ¼ a2Nx þ ða4 þ a5ÞAxy ¼ ð�a2 þ a4 þ a5Þv0=2d (9.27)

and

�c ¼ 1
2
ð�a2 þ a4 þ a5Þ
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Therefore, the viscous tensor component s’xy corresponding to shear dvx/dy has
been found for all the three geometries.

With the Miesowicz technique one can measure three combinations of the

Leslie viscosity coefficients from Eqs. (9.25) to (9.27). On account of the Parodi

relationship, to find all five coefficients, one needs, at least, two additional mea-

surements. In particular, the ratio of coefficients a3/a2 can be measured by

observation of the director field distortion due to capillary flow of a nematic.

The last combination g1 ¼ a3 � a2 can be found from the dynamics of director

relaxation.

9.3.2.2 Poiseuille Flow in Magnetic Field

The mass of an isotropic liquid with density r and viscosity Z flowing out from the

cylindrical capillary of radius R and length L in a time unit is governed by the

Poiseuille-Stokes law,

Q ¼ pR2rv ¼ prp0R4

8LZ
(9.28a)

where v is the flow velocity and p’ is the fixed difference in pressure between the

open ends of the capillary. From this law the velocity of liquid is given by

v ¼ p0R2�
8LZ ¼ rpR2�

8Z (9.28b)

where rp ¼ p0=L is the pressure gradient.

In a strong magnetic field, the director of overwhelming majority of liquid

crystals aligns parallel to the field. This is widely used in viscosimetry of liquid

crystals. The Poiseuille flow in nematic liquid crystals has carefully been studied by

G€ahwiller [12]. In the experimental scheme of Fig. 9.4, a flat capillary is placed

between poles of a magnet. The flow velocity is directed along z. The cross-section
of the capillary is not a square; in the ideal case, a� b and one deals with the well-
defined shear rate ∂vz/∂x (in the discussed experiment, a¼ 0.4 mm, b¼ 40 mm). In

the absence of the field, the director is solely oriented by shear flow n ¼ nz. This
corresponds to case bwith Miesowicz viscosity coefficient Z2¼ Zb¼ (1/2)( a3 + a4
+ a6). When the director is oriented by field H in the y-direction perpendicularly to

side a, i.e., to the shear plane, as shown in the figure, it does not interact with the

shear (case a, Z3 ¼ Za ¼ a4/2.). When the capillary is turned by 90 degrees so that

its short side a||Hy, the director is oriented along the shear rate (case c) and the

Miesowicz coefficient Z1 ¼ Zc ¼ (1/2)(�a2 + a4 + a5) is measured. Therefore, for

properly selected parameters of a capillary, both experiments discussed give the

same results.
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9.3.2.3 Capillary Flow and Determination of a2 and a3

For a study of liquid crystals, flat plane capillaries with transparent plates are very

convenient, because in this case we can create and observe a proper orientation of

the director. There can be distinguished a simple shear flow and the Poiseuille flow,

both shown in Fig. 9.5. As discussed above, the shear flow occurs when the upper

plate is moving with constant velocity v0 and the lower plate is fixed. Then, for

small v0, the profile of velocity of isotropic liquid is linear (the dash line in

Fig. 9.5a). The Poiseuille flow occurs when the liquid is moved between two

immobile plates under an external pressure, as discussed in the previous paragraph.

In this case the profile has a form of parabola (the dash line in Fig. 9.5b). In both

a
b

vz

Hyy

x

z

h1

h2

h3

SN

Fig. 9.4 Geometry of the G€ahwiller experiment. A flat capillary is placed between S and N poles

of a magnet. The flow velocity is directed along –z and due to condition a�b the shear rate has

only ∂vz/∂x component. The magnetic field is fixed along y and the cell with a liquid crystal may

be rotated about the z-axis by 90	

Fig. 9.5 Shear (a) and Poiseuille (b) flow in thin planar capillary filled with nematic liquid crystal.

Dash lines show distribution of the vx velocity component while the solid lines represent the

director profile at high shear rate. Non-distorted close-to-surface layers are marked by e
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cases, for an isotropic liquid, the viscosity is independent of the shear rate ∂vx/∂z
that is the flow is Newtonian.

The latter is not true for liquid crystals. Imagine that initially we have a uniform

alignment of the director. In the case, shown in Fig. 9.5, such alignment is home-

otropic that is perpendicular to the plates, although it is not important, as we shall

see below. In the absence of external fields, the shear and Poiseuille flows distort the

initial uniform alignment (solid lines in the figure). This is a result of coupling

between the flow and the director. The flow causes realignment of the director

everywhere except thin boundary layer. With increasing shear rate the director in

the bulk becomes more and more parallel to the limiting plates. For a simple shear

flow, in the limit of infinite shear rate the direction of the director saturates at angle

Ws depending on three Leslie coefficients [8]:

cos 2ys ¼ � g1
g2

¼ � a2 � a3
a5 � a6

(9.29a)

Using the Parodi relationship we get

cos 2ys ¼ 1� a3=a2
1þ a3=a2

¼ 1� tan2ys
1þ tan2ys

;

from which we arrive at the saturation angle ys:

tan Ws ¼ a3=a2 (9.29b)

As a rule, a2 is large and negative but a3 is one or two orders of magnitude

smaller and usually also negative. Therefore angle ys is small (in 5CB ys � 1.5	).
However, the measurements of Ws by optical methods allows the determination of

the ratio a3/a2.
It is interesting that, in some materials, in a certain temperature range, a3 can

change sign and become positive. Then the flow is no longer laminar and a flow

instability in the form of director tumbling is observed. How can we explain the

sign inversion of nematic viscosity? We should remember that a3 is a special

coefficient that describes coupling a flow with the director. For the flow rate

fixed, this coefficient defines the direction of director rotation and depends on

both a molecular form and, short-range smectic-like fluctuations [13]. Figure 9.6

a2<0

a

a3>0

b
Fig. 9.6 A picture of

collisions of ellipsoidal

molecules that may

qualitative explain different

signs of the director rotation

for negative a2 and positive

a3 coefficients
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may help to understand this. Imagine that dark molecules move to the left along x
and the bright ones are immobile. Then a shear appears. When the director is

perpendicular to flow (case a2) then, after collisions with dark molecules, the

bright ones rotate anti-clockwise (this corresponds to negative a2). When the

director is parallel to the flow (case a3), collisions with dark molecules may

result in the clockwise rotation of the bright molecules (then a3 is positive). Note,
that flow independent coefficient for the director rotation g1 ¼ a3 � a2 is always
positive.

9.3.2.4 Determination of g1

In the simplest case, one follows the relaxation of the director without flow of a

liquid. It is sufficient to consider only the equation for the director motion (9.21). In

the simplest geometry of Fig. 9.7, a planar nematic layer of thickness d is confined

between two glasses. The boundary conditions on both glasses correspond to the

fixed alignment of the director n parallel to the y-axis. We create a distortion of the

liquid crystal by a magnetic field applied along the x-axis. The distortion occurs

only within the xy-plane and is described by the azimuthal angle j between the

director and the y-axis. The director components are (sinj, cosj, 0). In the field

slightly exceeding the threshold for distortion, the distortion angle follows a

harmonic law j ¼ j0cos(pz/d) shown by the dash line in the figure. When the

field is switched off, the distortion relaxes and we can follow the dynamics of the

director relaxation by, e.g., an optical technique.

To describe this effect we should write Eq. (9.21) for the director motion, i.e., the

balance of torques. However, up to now, nobody has observed any effect related to

the inertia of the director. Such effects would result in oscillatory character of the

director relaxation. The inertial term for the director in a unit volume can be

estimated as a sum of the inertia moments of the molecules in this volume. Let

consider a spherical ball of 1 cm3 volume (diameter D � 1.2 cm). The typical

molecular volume is Vm ¼M/rNav � 10�21 cm3, the molecular diameter a is about

Light

Hx

y

z

+d/2–d/2 0

ϕ0

Fig. 9.7 Geometry of the

twist effect that may be used

for observation of director

relaxation and determination

of viscosity coefficient g1.
Dash line shows the distortion

profile in the magnetic

field Hx
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10�7 cm and the moment of inertia of a molecule is rVma
2. We have a sum of n ¼

1/Vm cm�3 molecular moments of inertia in the ball, i.e. S ¼ nrVma
2 ¼ ra2 ¼

10�14 g/cm. At the same time, the moment of inertia of the ball as a whole is of the

order of rD2 � 1 g/cm. The difference between the two estimations is 14 orders of

magnitude! For a particle of 1 mm3 volume, the ratio would still be as high as 106.

Indeed the director has almost no inertia and its motion in rather viscous liquid

crystals is strongly overdamped. Therefore, one can always assume I � 0. Then

Eq. (9.21) becomes simpler:

½n� h� � G ¼ 0 (9.30)

As during relaxation the external field is switched off, the molecular field

includes only the elastic torque. For the pure twist distortion and our geometry,

the molecular field vector h is opposite to the magnetic field, i.e. directed opposite

to x- axis. Its absolute value is K22∂
2j/∂z2 (Section 8.3.3). The torque (n � h) is

directed along z and has the same absolute value.

The viscous torque is given by Eq. (9.22). Due to the absence of flow it contains

only one term, namely,

G ¼ g1½n� N� (9.31)

where the angular velocity of the director is (n�N)¼ (n� dn/dt)¼ (n� [V� n])
¼V¼ dw/dt directed along z (here the formula for the double vector product a� b
� c ¼ b(ac) � c(ab) was used).

Then the equation of motion reads [14]:

K22

@2j
@z2

¼ g1
@f
@t

(9.32)

The solution has the following form

j ¼ j0 cos
pz=d expð�t=tÞ (9.33)

Substituting this form into (9.32) we find the characteristic relaxation time:

t ¼ g1d
2

p2K22

¼ g1
K22q2

(9.34)

In conclusion, from the measurements of t the coefficient g1 ¼ a3 � a2 could be
found if the cell thickness and elastic modulus are known. Note that g1 coefficient is
the most important for applications. Then, using data on the ratio of a3/a2 we can find
a3 and a2 separately. Further, using the known coefficient for the isotropic phase

viscosity a4 ¼ 2Za, the coefficients a5 ¼ 2Zc � 2Za þ a2 and a6 ¼ 2Zb � 2Za � a3
can be calculated and, for the particular nematic liquid crystal, the applicability of

the Parodi relationship a6 � a5 ¼ a2þ a3 verified. As to a1 it can be found from
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the Poiseuille flow in the magnetic field oriented at some angle j with respect to the

y-axis in the xy plane (Fig. 9.4) in order to have finite both ni ¼ nx and nj ¼ ny
director components in tensor (9.20). However a1 is usually smaller than the other

coefficients and often can be ignored.

9.4 Flow in Cholesterics and Smectics

9.4.1 Cholesterics

The equations for hydrodynamics of cholesterics are basically the same as for

nematics, but there are some specific features related to the helical structure.

9.4.1.1 Shear

Consider shear in three basic geometries shown in Fig. 9.8. In each sketch the helix

axis h is aligned differently with respect to plane xy of the shear rate [15].

Geometry I, h||x, syx ¼ @vy=@xjjh and v⊥h

In the left part of the figure, the helical axis is parallel to the velocity gradient

(shear) shown by two arrows. When cell thickness is less than the cholesteric pitch,

d � P0, and the rate of shear is small, then an effective viscosity is given by

averaging two Miesowicz coefficients:

ZI ¼ ZaZb=Za þ Zb:

Fig. 9.8 Three different geometries of a shear of a cholesteric liquid crystal: helical axis h||x (I),
h||z (II) and h||y (III)
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For higher shear rates the helix is unwound, the director becomes almost parallel

to the flow lines (n||v) and ZI�Zb as in nematics.

Geometry II, h||z, syx ¼ @vy=@x?h and v⊥h

In the middle part of the figure, the helical axis is perpendicular to the flow direction

and the effective viscosity at low shear rate equals

�II ¼ 1
2
ð�b þ �cÞ:

At high shear rate, due to helix unwinding, we again have ZII � ZI � Zb. For

small distortions, in both cases, the disturbed helical structure relaxes with a rate of

the general hydrodynamic form

t ¼ g1
�
K22q

2
0
¼ g1P

2
0
�
K22p2 (9.35)

Geometry III, h||y, syx ¼ @vy=@xjjh, and v||h

In the right part of the figure, the direction of the flow coincides with the helical

axis. This case is especially interesting because it results in the so-called permeation

effect.

9.4.1.2 Permeation Effect

In experiments with cholesteric liquid crystals (geometry III), extraordinary high

viscosity ZIII is observed, few orders of magnitude higher than the viscosity of the

isotropic phase or a non-twisted nematic. It seems surprising because the local

structure of nematics and cholesterics is the same. In addition such a flow is

strongly non-Newtonian: with increasing shear rate (s) ZIII decreases, as schema-

tically shown in Fig. 9.9. In the case of the Poiseuille flow, the viscosity depends

also on the radius of a capillary.

The explanation of these observations has been given in terms of the so-called

permeation effect [16]. Helfrich assumed that the helical structure with wavevector

q0 is fixed by the boundary conditions at the walls of a cylindrical capillary of

radius R. Schematically it is shown by “fixation points” at each period of the helix

in Fig. 9.10a. The liquid crystal flows out of the capillary with a constant velocity

v||q0. Therefore, the mass of the liquid of density r escaping the capillary in a time

unit is given byQ ¼ pR2rv. The flow velocity is considered to be uniform along the

capillary radius (except the boundary layer l � R). At the same time molecules
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are free in the bulk and may rotate about the z-axis. In such a situation the director

j(z) ¼ q0z must rotate like a screw with angular velocity O:

O ¼ dj
dt

¼ dj
dz

� dz
dt

¼ q0v; (9.36)

and this rotation exerts a friction torque from the capillary walls on the director:

G ¼ g1O.
The work rpv made by the external pressure gradient rp must be equal to the

energy dissipated in unit volume and unit time due to the friction g1(dj/dt)
2 ¼

g1O
2. Therefore, rpv ¼ g1O

2 ¼ g1v
2q20:

From here, we obtain the relationship between the pressure gradient and flow

velocity of a cholesteric:

rp ¼ g1q
2
0v (9.37a)

v = const

P0

R
q0 Z

a
R

v

bFig. 9.10 Poiseuille flow in a

cylindrical capillary with

permeation effect in the

cholesteric (a) and smectic A

(b) phases

Fig. 9.9 Comparison of the

dependencies of the viscosity

coefficient on shear rate for

the cholesteric and isotropic

phases
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Note that the Poiseuille-Stokes equation for an isotropic liquid (9.28b) or for a

nematic would give us

rp ¼ 8vZ
R2

(9.37b)

From comparison of the last two formulas we can find the apparent viscosity for

a cholesteric:

Zapp ¼ g1ðq0RÞ
2
.
8 ¼ g1kp (9.38)

According to this simplest theory, the amplification factor due to chirality can be

as high as kp � 107 (R ¼ 0.1 cm, q0 ¼ 2p/P0 � 105 cm�1). The coefficient kp is
called permeation coefficient because the molecules permeate through the fixed

cholesteric quasi-layers. In reality kp is smaller than 107 due to a non-ideal helical

structure, surface defects, non-uniform velocity profile etc., but, nevertheless, the

effect is very remarkable.

9.4.2 Smectic A Phase

9.4.2.1 Flow and Viscosity

For the smectic A phase the permeation effect is even more important [16]. In fact,

with the layers fixed at the walls of a capillary, a smectic may flow only as a whole,

like a plug, without velocity gradients, Fig. 9.10b. The velocity is again given by

equation rp ¼ kpv, where kp is the permeation coefficient depending on the

smectic characteristic length ls given by Eq. (8.46), conventional nematic viscosity

Z and temperature:

kp ¼ Z

l2s
� TNA � T

TNA
(9.39)

The smaller the temperature difference TNA � T, the smaller is the smectic order

parameter, that is the amplitude of the density wave. Consequently, the permeation

coefficient in SmA should decrease upon approaching the SmA-N transition.

Indeed, in experiment, very close to TNA the Poiseuille flow is observed, as in the

nematic phase, but already at TNA � T > 0.3 K the plug flow occurs with apparent

viscosity two orders of magnitude larger than Z.
If both the compressibility and the permeation effect are disregarded, the

structure of the viscous stress tensor sij is identical for the SmA and nematic phases
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due to the same point group symmetry, D1h. There are five independent viscosity

coefficients for SmA as for a nematic [17]. However, tensor (9.20) can only be used

when the velocity has no component along the layer normal z as shown by examples

in Fig. 9.11 for velocity vy and gradient ∂vy/∂z in case (a) and velocity vy and

gradient ∂vy /∂x in case (b). In these two examples of the Poiseuille flow the

viscosities are given by

Za ¼ 1=2ðm0 þ m2 � 2l1 þ l4Þ and Zb ¼ 1=2m0

New viscosity coefficients mi and li are related to Leslie coefficients. In particu-
lar, m0¼ a4 (viscosity of an isotropic liquid). Viscosimetry of SmA liquid crystals is

difficult. For instance, in geometry (a), the upper and lower plates should be parallel

with a great accuracy (few nanometers); otherwise defects appear. However, for

several compounds the correspondent viscosities have been measured. In geometry

(b) there was found a shear rate threshold: above the threshold the isotropic

behaviour (a4) was observed. At lower rates, defects control a flow.

z

y x

a b

Fig. 9.11 Two geometries for easy flow in Smectic A: flow velocity in both cases is in the layer

plane but shear is either perpendicular to layers (a) or parallel to them (b). For the flow velocity

along the layer normal the permeation effect is observed, see Fig. 9.10b

2π/qx
x

pressure

Fig. 9.12 Undulation or

wave-like instability in the

smectic A layer subjected to a

dilatation-compression

distortion
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9.4.2.2 Undulation Instability

In the experiment, it is possible to create a dilatation of the smectic layers with

piezoelectric drivers. Evidently, an increase of the interlayer distance would cost

a lot of energy. Instead, at a certain critical dilatation wc ¼ 2pls=d, where

ls ¼ ðK11=BÞ1=2, a wave-like or undulation distortion is observed as illustrated by

Fig. 9.12. The wavevector of the distortion is proportional to inverse geometrical

average of cell thickness and smectic characteristic length, qx ¼ p=
ffiffiffiffiffiffiffi
lsd

p
. There-

fore, a typical undulation period is about 0.3 mm (d � 10 mm, ls � 0.01 mm) and

may be observed optically. A similar instability arises in cholesterics under the

influence of the magnetic or electric field, see Section 12.2.3.
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Chapter 10

Liquid Crystal – Solid Interface

10.1 General Properties

10.1.1 Symmetry

Now we are interested in phenomena at an interface between a liquid crystal and

another phase (gas, liquid or solid) [1, 2]. Why is it important? First, the structure of

a liquid crystal in a thin interfacial layer is different from that in the bulk and

manifests many novel features. Second, the interface plays a decisive role in

applications, because liquid crystals are always used in a confined geometry.

There are two approaches to the surface problems, microscopic and macroscopic.

In the first approach, we are interested in a structure and properties of interfacial

liquid crystal layers at the molecular level; in the second one, we ignore the

microscopic details and use only symmetry properties and the concept of the

director.

What does occur at the interface? Consider, for example, a contact of a liquid

crystal with a solid substrate shown in Fig. 10.1. We notice that

(i) There is a change in symmetry; the interface is not a mirror plane, there is a

new, polar vector, namely the normal h to the interface. Therefore, an

interfacial layer has properties of a polar phase.

(ii) The properties change continuously along the surface normal for the phase of

the same symmetry. Macroscopically we can consider a change of order

parameters with distance. In a particular case of the nematic phase, both the

absolute value of the orientational order |Q| ¼ S and the direction of the

director n can depend on distance from the interface. The positional order

can also change.

(iii) The molecules at the surface are in different surrounding in comparison with

those in the bulk. Therefore, the molecular interactions and, hence, the

thermodynamic properties are also different. Even new liquid crystal phases

can form at the surface. For instance, if in the bulk a uniaxial nematic is stable,

at the surface it could be transformed in either a uniaxial smectic A or biaxial

nematic.

L.M. Blinov, Structure and Properties of Liquid Crystals,
DOI 10.1007/978-90-481-8829-1_10, # Springer ScienceþBusiness Media B.V. 2011
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(iv) The elastic moduli such as K24 and K13 often neglected in the description of

bulk properties becomes important at the interface.

10.1.2 Surface Properties of a Liquid

As throughout the book, at first we review properties of isotropic liquids at an

interface and then switch to liquid crystals.

10.1.2.1 Surface Tension

Due to a difference in molecular forces in the bulk and at the interface, there is an

excess of energy in a surface layer. For instance, one should make a work to

increase an interface A between a gas and a liquid. When a chemical composition

of the contacting phases is fixed, the surface tension is

s ¼ dF

dA
(10.1)

where the free energy of the surface F ¼ E� TS takes into account not only a

change in the internal energy E but also entropy S.
The surface tension determines capillary effects, wetting phenomena and a shape

of liquid drops, in particular, the spherical shape of small radius drops when the

gravity is not essential. The corresponding excess pressure in a drop of radius r is

Dp ¼ 2s/r (Laplace-Young formula). Small drops of the nematic phase are,

strictly speaking, not spherical due to anisotropy of the surface tension but practi-

cally they may be considered spherical. The surface tension of both a liquid crystal

and a solid substrate determines orientation of the liquid crystal director on the

substrate.

Symm 1–2 Symm 2Symm 1

h

n

Ss

z

SsS

x

Fig. 10.1 A liquid crystal

phase at the interface with an

isotropic phase (gas, liquid,

amorphous solid) with a

surface layer of thickness x
and a qualitative dependence

of an order parameter (e.g.

orientational) on the distance

z from the surface (Ss) to the

bulk (SB) values (n is

director)
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10.1.2.2 Adsorption

The adsorption is a non-uniform spatial distribution of different chemical species at

an interface between different media [3]. The situation at the liquid–gas interface is

illustrated by Fig. 10.2. If there is some concentration of surface-active (surfactant)

molecules in water, they “prefer” to leave the bulk and go to the surface. The reason

is that water does not like such guests, because surfactant molecules destroy a

network of hydrogen bonds formed by water molecules. The break of the network

would cost considerable decrease in entropy. Therefore, water pushes its guests out

to the surface. Then, at the water surface, we see a peak of concentration of

surfactant molecules. In this way the total surface energy is reduced and the surface

tension decreases. For instance, the excess of foreign molecules on the water

surface creates a certain pressure on a floating barrier in a Langmuir trough and

the barrier shifts in the direction of the pure water surface. The so-called surface

pressure exerted onto the barrier is p ¼ s0 � s where s0 is surface tension of pure

water. Measuring the temperature dependence p(T) one can study single mono-

layers of liquid crystalline compounds forming on water different two-dimensional

phases as discussed in Section 5.7.3.

In liquid crystal cells the adsorption of impurities from the bulk to a liquid

crystal – glass (or other solid substrates) interfaces can change conditions for

alignment of the liquid crystal and often results in a misalignment of liquid crystals

undesirable for displays. On the other hand, using adsorption phenomena and

Langmuir-Blodgett technology one can prepare ultra-thin polymer films on the

solid substrates. Such films can be rubbed by soft brushing or scribed by Atomic

Force Microscopes or modified by polarised light for desirable alignment of liquid

crystals. In some cases, a “negative” adsorption is observed when foreign molecules

are expelled from the surface into the bulk. Such desorption increases surface

tension. Adsorption of ions at the electrodes of a liquid crystal cell may create a

space charge at the interface that dramatically influences conditions for the current

flow through a liquid crystal especially at low frequencies.

C

Z

Fig. 10.2 Adsorption of

surfactant molecules (black
spheres) at the interface
between water (white
spheres) and air. The curve C
qualitatively pictures the

surfactant concentration as a

function of the distance z
from the interface shown by

the dash line
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10.1.2.3 Wetting

Consider a drop of a liquid on a soft substrate, Fig. 10.3a [3]. There are three phases

in contact: liquid (1), gas (2) and soft substrate (3). The soft substrate could be an

elastomer or a liquid different from the liquid (1). At any point of the contact line

the equilibrium condition is the vector sum of the corresponding tensions for each

pair of contacting phases:

~s12 þ~s23 þ~s13 ¼ 0

This is a so-called Neumann triangle valid for any three phases.

When a substrate is solid, see Fig. 10.3b, the vertical component of its deforma-

tion is negligible and we may only consider the equilibrium of horizontal projec-

tions of the surface tension vectors (Young’s law):

s12 cos a0 ¼ s23 � s13 (10.2)

and the ratio ðs23 � s13Þ=s12 determines the equilibrium contact angle a0.
The surface tension at a liquid-solid interface s13 may be controlled by temper-

ature, composition of the liquid or adsorption. We can distinguish three different

cases, shown in Fig. 10.3c–e: non-wetting (c), partial wetting (d) and complete

wetting (e). The three cases are characterized by their equilibrium contact angles:

a0 ¼ p; p > a0 > 0; a0 ¼ 0, respectively.

The spreading parameter S ¼ s23 � (s13 � s12) determines a wetting transi-
tion: for S > 0 one observed complete wetting, for S < 0 the wetting is partial. The

wetting transition is often observed with volatile liquids on solid substrates. The

dynamics of the complete wetting is very interesting: at first, a microscopically thin

precursor forms that advances rather fast over the substrate followed by a macro-

scopic edge of the liquid film. Afterwards all amount of liquid forms a uniform

layer. This has been observed in both isotropic and nematic liquids [4].

10.1.3 Structure of Surface Layers

The most interesting case is a contact of a nematic liquid crystal with a solid

substrate because in most devices a nematic is sandwiched between transparent

a
2

3

σ23

σ12

σ13

1
c α0=π

α0 =0e

0<α0<πd

σ23 2
1

b σ12

σσ13

α0

3

Fig. 10.3 Surface tension in a three-phase system. Illustration of the Neumann triangle (a) and
Young law (b) and the three cases of wetting phenomena: non-wetting (c), partial wetting (d) and
complete wetting (e)
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glasses, conductive or non-conductive. The interaction with a substrate causes

many effects such as a change in the orientational order parameter, appearance of

a short range positional order, appearance of a surface dipolar layer, etc. [5].

10.1.3.1 Surface Induced Change in the Orientational Order Parameter

A qualitative picture, Fig. 10.4, shows the distance dependencies of the orienta-

tional order parameter for homeotropically aligned nematic liquid crystal at the

solid substrate. The problem is to explain such dependencies [6]. The influence of

the surface on the orientational order parameter may be discussed in terms of the

modified Landau–de Gennes phase transition theory. Consider a semi-infinite

nematic of area A being in contact with a substrate at z ¼ 0 and uniform in the x
and y directions. When writing the free energy density a surface term -Wd(z)Smust

be added to the standard expansion of the bulk free energy density:

g ¼ g0ðSÞ þ K� dS

dz

� �2

�WdðzÞS
A

(10.3)

where

g0ðSÞ ¼ aðT � T�ÞS2 þ bS3 þ cS4

is a uniform part of the free energy density, which describes the first order N-I phase

transition, T* is “virtual second order” transition temperature for the bulk, a, b, c are
Landau expansion coefficients and K* is a new “gradient” elastic modulus, other

than Frank moduli Kii. The surface term is chosen in the spirit of the mean field

theory with a cylindrically symmetric potential of a substrate

WðW; zÞ ¼ WdðzÞhP2ðcos WÞi:

Here d(z) is Dirac delta function, showing that the surface potential W ¼ W
(z ¼ 0) is short-range, W is an angle between the longitudinal axis of a rod-like

molecule and the director at the surface ns. The surface potentialWmay be positive

as in Fig. 10.4a or negative, Fig. 10.4b. In this consideration, a change of the

S0
S0

Sbulk

Sbulk

W

W

0

0

S
(z

)

a b

S
(z

)

x

x z

z

Fig. 10.4 Qualitative dependencies of the orientational order parameter of the nematic phase on

the distance z from the surface. The positive (a) and negative (b) surface potentialW has the form

of the d-function. The temperature is fixed
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mesophase symmetry, in particular, an appearance of the polar axis in the nematic

phase is disregarded.

The free energy per unit area is given by

F=A ¼
ð1

0

g0ðSÞ þ K� dS

dz

� �2
" #

dz�WS0
A

(10.4)

Now we need two minimizations: (i) over function S(z) with fixed S0 (z ¼ 0) and

(ii) over the boundary value S0. In our case, the standard Euler equation
qF=qS� d=dzðqF=qS0Þ ¼ 0 reads:

g0
0ðSÞ � 2K� d

2S

dz2
¼ 0: (10.5)

Its first integral: K� dS
dz

� �2 ¼ g0ðSÞ þ C
The constant C is found from dS=dzjz!1 ¼ 0; i:e: C ¼ �g0ðSbulkÞ:
Then we get:

x20
dS

dz

� �2

¼ g0ðSÞ � g0ðSbulkÞ
aTNI

(10.10)

Here, we have introduced a surface correlation length, marked off in Fig. 10.4:

x0 �
K�

aTNI

� �1=2

; (10.11)

with the first order transition temperature TNI in the bulk. Now Eq. (10.10) for the

free energy density becomes dimensionless.

Next, we substitute (10.10) into (10.4) and after minimization dF/dS0 ¼ 0 find

the condition 2½g0ðS0Þ � g0ðSbulkÞ�1=2 ¼ W=A. Using this condition the equation

(10.10) may be integrated with the proper limits:

ðaT0
NIÞ1=2

ðS0

SðzÞ

dS

g0ðSÞ � g0ðSbulkÞ½ �1=2
¼ z

x0
(10.12)

This equation has been solved numerically [6] for the order parameter S(z,T,S0)
depending on the distance z from the boundary, the surface potential (included in

S0) and temperature (included in g0(Sbulk)). The found distance dependence is

similar to that shown in Fig. 10.4a for the positive surface potential. The calculated

thickness of the surface layer is about 10x0.
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The surface order parameter S0 shows very interesting features. Fig. 10.5 illus-

trates the calculated dependence of S0 on temperature with parameters of a liquid

crystal 5CB. The different curves correspond to the different values of the surface

potential. According to the positive sign of the surface potential W, we see an

expected increase in the orientational order in the surface nematic phase (negative

values of T-TNI). Further, the increasing potentialW shifts the N-I transition point to

higher temperatures. AtW ¼ Wc, the phase transition at the surface disappears and

the surface order parameter becomes a continuous function of temperature. For high

values of the surface potential, the orientational order at the interface remains finite

even at temperatures well above the N-I transition point in the bulk.

The picture predicted by this figure has been confirmed by birefringence mea-

surements on the isotropic phase [7]. Such measurements are much more precise

than attempts to measure the influence of an interface on the order parameter in the

nematic phase, because the isotropic phase has no background birefringence com-

ing from the bulk. For nematic preparations with the director homogeneously

aligned along the surface of a solid substrate, the birefringence is observed at

temperatures markedly exceeding the N-I transition point, Fig. 10.6. Moreover, it

depends on the surface potential as predicted by theory.

The thickness of the “quasi-nematic” layers adjacent to the substrate and shown

in the Inset to Fig. 10.6 can be estimated from the observed birefringence. For two

boundaries the phase retardation d between the ordinary and extraordinary rays is

given by

2d � 4phDnix0
l
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0
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Fig. 10.5 Calculated order parameter at the surface S0 as a function of temperature. The numbers

at the curves corresponds to different surface potential in dimensionless units: W ¼ 0 (1), 0.0056

(2), 0.008 (3), 0.01 (4),Wc ¼ 0.01078 (5), 0.012 (6), 0.017 (7). Note that atWc the discontinuity of

the first order N-Iso phase transition disappears (adapted from [7])
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where l is light wavelength and <Dn> is average optical anisotropy of the surface

layers. For typical values of Dn � 0.1–0.2, x � 4–10 nm.

Some solid surfaces induce disorder in nematic liquid crystals. It means that the

order parameter at the interface is lower than the bulk value. For instance, evapo-

rated SiO layers of a certain thickness due to their roughness decrease the order

parameter of MBBA from the bulk value Sb � 0.6 down to S0 � 0.1–0.2. In some

cases, the surface order parameter may be equal to zero (surface melting).

10.1.3.2 Surface-Induced Smectic Ordering

Let the director of the nematic phase is perpendicular to a flat interface. Then we

can anticipate two effects. First, a polar surface layer should appear due to the break

of the cylindrical symmetry, n 6¼ � n. Second, due to some positional correlation

of the centers of molecules in several layers adjacent to the surface, the nematic

translational invariance can be broken. It means that the surface induces the short-

range smectic A order. In the framework of the Landau theory, the smectic order

decays with distance from the interface according to the exponential law

r1ðzÞ ¼ r1ð0Þ expð�z=lsÞ

where both the smectic wave amplitude r1 and smectic correlation length ls induced
by the surface increase with decreasing temperature T. More precisely, both the

parameters depend on the proximity (T � TNA) to the nematic ! smectic A

transition because at T ¼ TNA, ls ! 1 and the smectic phase becomes stable

everywhere.
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Fig. 10.6 Temperature dependence of birefringence of thin surface layers in the isotropic phase.

Surface potentialW1 > W2 > W3. Inset: geometry of birefringence measurements with molecules

aligned parallel to the surfaces and the gradient of the order parameter S(z) within the surface

layers
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In the X-ray experiments on nematic 8CB, the smectic ordering was observed at

the free surface (air-nematic interface). The same phenomenon has also been

observed at the solid-nematic interface by the X-ray, an electrooptical technique

and molecular force measurements. The principle of the latter is shown in Fig. 10.7.

For two mica cylinders submerged in nematic liquid crystal, their interaction force

measured with a balance oscillates with a distance between the cylinders and the

period of oscillations was found to be equal to molecular length l. This clearly

shows the periodicity in density characteristic of a smectic phase [8].

A powerful technique for the study of molecular orientation at the surface is

scanning tunnel microscopy (STM): a weak tunnel electric current (of the order of

0.1 nA) is measured between an extremely sharp (atomic size) tip and the conduc-

tive substrate. The motion of the tip over the surface is controlled by piezoelectric

drivers and a computer. As a result, we can see a current pattern correlating with the

surface relief. For example, on cooling the 11th and 12th homologues of cyanobi-

phenyl from the isotropic phase to a room temperature smectic phase, different

types of surface layers are formed on conductive MoS2 substrates [9]: a compound

11CB having intermediate nematic phase forms single-row monolayers whereas

compound 12CB forms double-row ones, see Fig. 10.8. The structure of mono-

layers depends on substrate properties and temperature and the latter can control the

realignment of a liquid crystal in the bulk, i.e. cause anchoring transitions [10].
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Fig. 10.7 Periodic force

between two mica cylinders

separated by nematic liquid

crystal with molecules

aligned perpendicular to

cylinder surfaces as a function

of the gap between the latter

Fig. 10.8 Scanning Tunnel Microscope images of smectic compounds on MoS2 substrates taken

at room temperature and showing the one-row (for 11CB) or two-rows (for 12CB) molecular

organization
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10.1.3.3 Polar Surface Order and Surface Polarization

The interfaces in general, and particularly with solid substrates break the head-

to-tail symmetry of a liquid crystal phase and induce polar orientational order.

The symmetry is reduced to the conical group C1v. The latter allows a finite value

of the second-order nonlinear susceptibility w2 responsible for the second optical

harmonic generation [11]. This phenomenon has been observed in experiments on

generation of the second harmonic in a ultrathin nematic layers on a solid substrate

as shown in Fig. 10.9.

The polar order parameter is the first Legendre polynomial P1 ¼ ðLhÞ ¼ cos y
where L is a new polar vector parallel to n and called polar director. The polar order

contributes to the elastic surface energy linearly while the quadrupolar (nematic)

order contributes quadratically with a sign dependent on surface treatment:

FðP1Þ ¼ �spðLhÞ ¼ �sp cosy

FðP2Þ ¼ �1
2
WðLhÞ2 ¼ �1

2
WðnhÞ2 ¼ �1

2
Wcos2y

(10.13)

where angle y is counted from the external normal to the nematic layer h [7].

Therefore, both contributions to the free energy vanish when both L and n perpen-

dicular to h. However, when L,n || h the two contributions can compete with each

other. For instance, for y ¼ 0 the linear term is negative and favors this alignment

(homeotropic) but, the quadratic term with positive sign at W is unfavorable. It

could be a reason for an oblique alignment of the director often observed at the free

surface of a nematic.

Note that the polar vector reflects only polar symmetry of the interfacial layer

and may be associated with the conical (not rod-like) form of the molecules.

However, when the electric charges are involved in the game, the same polar

order may results in appearance of the macroscopic surface electric polarization

Psurf that is the dipole moment of a unit volume [units: CGS(charge)�cm/cm3 ¼
CGSQ/cm2 ¼ StatV/cm, or C/m2 in SI system]. When an electric field is applied to

a liquid crystal the surface polarization contributes to the free energy of a surface

layer

FðPsurf Þ ¼ �PsurfE (10.14)

Polar
layer

Glass

NLC 

2ωω

Fig. 10.9 Optical second harmonic generation by a polar layer at the interface between nematic

liquid crystal and glass: due to non-linear interaction with surface layer the incident beam of

frequency o is partially converted into the beam of frequency 2o
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The problem of the surface polarization have been raised [12] macroscopically

in connection with the bulk flexoelectric distortion [13] discussed in the next

chapter. On the microscopic level, we can distinguish between three different

mechanisms of Psurf, explained with the help of Fig. 10.10.

Ionic Polarization

A monolayer of ionic species can be adsorbed at the interface with a solid substrate

(a Helmholtz monolayer), Fig. 10.10a. A diffuse layer of ions of the opposite sign

with density r(z) provides the overall electrical neutrality. This mechanism is not

specific for liquid crystals, it takes place in the isotropic liquids as well. However, in

liquid crystals the surface field E ¼ 4pPsurf can interact with the director and

change orientation of the latter. Qualitatively, the ionic polarization can be esti-

mated as Psurf ¼ qnxD where n is the number of charges q and xD is a characteristic

(Debye) length for the charge distribution.

Dipolar Polarization

It comes in due to a polar interaction of dipoles with a substrate. A head or a tail of a

molecule may have different chemical affinity to the substrate material, Fig. 10.10b.

The molecules with electric dipole moment pe form a dipolar monolayer whose

polarization Psurf ¼ pen depends on the surface density of dipoles n. The polar layer
thickness is determined by the characteristic diffusion length xd ¼ (2Dt)1/2 where
D is a molecular diffusion coefficient and t is a characteristic time for molecular

rotation. We can encounter the same mechanism in isotropic liquids, however, in
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Fig. 10.10 A schematic picture of the charge distribution as a function of the distance from the

liquid crystal–solid interface for ionic (a), dipolar (b) and quadrupolar (c) mechanisms of surface

polarization Psurf
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liquid crystals the diffusion coefficients and relaxation times are different for

different director orientation and different dipolar structure of the constituent

molecules. For longitudinal and transverse molecular dipoles, the same character-

istic times t|| and t⊥ are involved, which we met before when having discussed

dielectric properties in Section 7.2.4.

Ordoelectric (Quadrupolar) Polarization

This polarization is related to the quadrupolar nature of any uniaxial phase,

Fig. 10.10c. In the conventional nematic phase of symmetry D1h and order

parameter tensor Q
_

, each molecule or a building block may, on average, be

represented by a quadrupole, and the phase may be characterized by a tensor of
density of the quadrupolar moment

Q
_

qu ¼ �qquQ
_ ¼ �qquSðninj � dij

�
3Þ (10.15)

Here S is nematic order parameter amplitude and qquS is the modulus of tensor

Q
_

qu (see Eq. 3.16), qqu being a scalar coefficient with dimension [charge/cm].

Recall now that polarization is a gradient of charge density for any charge distribu-

tion (dipolar, quadrupolar, etc.). Therefore, the gradient of the orientational order

parameter creates the polarization:

P ¼ �qqurQ
_

(10.16)

This may be illustrated by appearance of the electric polarization in a hybrid cell,

in which the quadrupolar molecules are oriented differently at the opposite inter-

faces, namely, homogeneously on the right plate and homeotropically on the left

one Fig. 10.11. The molecular quadrupoles have an elongated form with positive

charges at the apices. Therefore negative and positive charges are accumulated at

the left and right plates, respectively, and the bulk polarization vector P(z) has its
z-projection oriented from right to left. Note that in a hybrid cell the polarization

occurs due to a change of the orientational part of tensor Q
_

i.e. the director n(r)
without a change of its amplitude S. In this case we deal with a flexoelectric
polarization [13], see for details Section 11.3.1. The flexoelectric mechanism

may also be responsible for the surface polarization.

A change of the order parameter modulus S(r) can also create polarization, for

example due to transformation of the ellipsoidal shape of Q
_

tensor in space. In this

case we deal with the so-called ordoelectric polarization [14]. Indeed, decreasing S
value results in less extended (less prolate) ellipsoid formwithout reorientation of its

principal axes. Such a transformation may be caused by a scatter of the rigid

molecular quadrupoles with respect to the director axis: the stronger the scatter,

the lower is the quadrupole order S and the less prolate ellipsoidQ
_

. This is illustrated

by Fig. 10.12: in sketch (a) the order parameter is stronger at the surface and
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decreases in the bulk due to statistical misalignment of quadrupolar molecules. On

the contrary, in sketch (b) the order parameter is lower at the surface than in the bulk.

According to Eq. (10.16) the gradient of the order parameter amplitude rS(z)
will inevitably result in the surface ordoelectric polarization:

Psurf ¼ qquðrSÞ ninj � 1

3
dij

� �
(10.17)
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illustrating the appearance

of polarization due to the

gradient of quadrupolar
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Fig. 10.12 Ordoelectric surface polarization. In sketch (a) the order parameter is larger at the

surface and smaller in the bulk; in sketch (b) the order parameter is smaller at the surface than in

the bulk. Corresponding gradient curves S(z) for a nematic liquid crystal are qualitatively pictured

in the bottom sketches. Vectors mp and mh show the directions of the surface polarization
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For a fixed orientation of n, the surface polarization is a function of rS(z) and
has dimension [CGSQ/cm2 or C/m2 in the SI system]. The sign of Psurf depends on

the sign of the gradient rS that is on a technique of liquid crystal alignment and,

evidently, on the sign of molecular quadrupoles. In Fig. 10.12 the direction of the

ordoelectric polarization in the two cases is given by vectors mp (planar alignment)

and mh (homeotropic alignment).

The surface polarization can be measured by different means. The most straight-

forward one is based on the pyroelectric technique [15]. To measure Psurf one has to

deal only with one surface of a cell with uniform director alignment, either planar or

homeotropic at both interfaces. The main idea is to use a spatially dependent

temperature increment in order to separate the contributions to the pyroelectric

response coming only from the surface under study and not from the opposite one.

By definition, the pyroelectric coefficient is g ¼ dP/dT where P is macroscopic

polarization of a liquid crystal and T is temperature. If we are interested only in the

polarization originated from the orientational order we can subtract the “isotropic”

contribution to g and calculate P in the nematic or SmA phases by integrating the

pyroelectric coefficient, starting from a certain temperature Ti in the isotropic phase:

PðTÞ ¼
ðT

Ti

gðTÞdT (10.18)

In order to measure g(T) we have to change temperature by a small amount DT
and record a pyroelectric response in the form of voltage Up across the load resistor

R shunted by input capacitance and cell capacitance. The most convenient, dynamic

regime of g measurements is based on heating the sample surface of area A by

absorbed light of a pulse laser, Fig.10.13. The light is absorbed by a semitransparent

electrode or by a dye dissolved in the liquid crystal. For a very fast (in comparison

with RC) jump of temperature, to the end of a laser pulse tp, the pyroelectric voltage
reaches the magnitude AgDT/C and pyroelectric coefficient can be found at a given

temperature. Then, on cooling the cell from the isotropic phase the temperature

dependence g(T) is found and, after integrating according to (10.18), we obtain

P ¼ Psurf . An example of temperature dependence of Psurf integrated over the cell

10k Osc 

CellNd-YAG laser 

Fig. 10.13 Setup for the measurements of the surface polarization by a pyroelectric technique:

short pulse of a Nd-YAG laser heats the polar surface layer of a liquid crystal and the pyroelectric

current is detected by an oscilloscope
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thickness is shown in Fig. 10.14 for two types of alignment, planar (curve 1) and

homeotropic (curve 2). Note that the temperature behaviour of the two polarizations

is quite different close to the N-SmA transition. We may guess that few dipolar

smectic layers formed at the interface contribute stronger to Psurf than a not

stratified nematic surface layer.

10.2 Surface Energy and Anchoring of Nematics

10.2.1 Easy Axis

Let the interface be in the xy-plane, as shown in Fig.10.15. The equilibrium position

of the director n (the so-called easy direction or easy axis) is defined by the zenithal
ðWs0Þ and azymuthal (fs

0) angles counted from the z and x axes, respectively. At the
free surface of the nematic the easy direction appears spontaneously but at the

nematic-solid interface it is predetermined by a specific treatment of the solid

surface. We can distinguish the homeotropic (Ws0 ¼ 0), planar (Ws0 ¼ p=2) and tilted
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Fig. 10.14 Experimental temperature dependence of surface polarization in 8OCB liquid crystal

having the nematic and smectic A phase; planar (curve 1) and homeotropic (curve 2) alignment
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Fig. 10.15 Easy direction for

the equilibrium alignment of

the director ðns0Þ at the surface
and definition of the zenithal

ðWs0Þ and azymuthal (fs
0)

director angles
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(0 < Ws0 < p=2) alignment. In turn, the planar orientation can be homogeneous

with a unique angle fs
0, multistable when several easy directions are possible at a

crystalline or specially prepared substrate, or degenerate if all fs
0-angles are equally

probable and the cylindrical symmetry exists with respect to the surface normal.

The same is true for the projections of the director on the xy plane in the case of the
tilted orientation. Further on the angle of the director at the surface will be counted

from the easy axis although other conventions may be used as, for instance, above

in connection with Eq. (10.13).

Surface free energy of the nematic phase FsðWs;fsÞis minimal for the easy

direction ðWs ¼ Ws0;f
s ¼ fs

0Þ. The anisotropy of the surface energy is a characteris-
tic feature of liquid crystals, Fs ¼ Fs

iso þ Fs
a. Here, two terms represent the isotropic

and anisotropic parts. They differ from each other by several orders of magnitude.

The isotropic part, which is, in fact, the surface tension introduced earlier is of the

order of 100 erg�cm�2 (or 0.1 J�m�2). The values for Fs
a-energy are scattered over

five orders of magnitude from 10�5 to 1 erg�cm�2 (or 10�8 – 10�3 J�m�2). Fs
a shows

how much energy one has to spend in order to deflect the director from the easy

direction, to which it is anchored in the ground state. That is why the anisotropic

part of the surface energy is usually referred to as anchoring energy.
In order to consider any mechanical or electro-optical effects for a liquid crystal

layer placed between two solid substrates one must solve a problem of the distribu-

tion of the director over the layer with allowance for the boundary conditions. The

standard variational procedure allows such calculations when the surface energy

depends only on orientation of the director (angles Ws and fs) at both boundaries

but not on their spatial derivatives.

10.2.2 Variational Problem

For consistency we go back to the problem of the twisted cell discussed in

Section 8.3.2, however, the director angles j at the boundaries will be not constant

but can be changed due to elastic and external torques. Let a nematic layer be

confined by two plane surfaces with coordinates z1 ¼ �d/2 and z2 ¼ þd/2 and the

director is allowed to be deviated only in the xy-plane through angle j (there is no

tilt, the angle W ¼ p/2 everywhere, and the azimuthal anchoring energy is finite).

FðjÞ ¼
ðþd=2

�d=2

g j;
qj
qz

� �
dzþ Fs

1ðjsÞ þ Fs
2ðjsÞ (10.19)

Here, g is Frank energy density, Fs
1;2 are surface energies at opposite boundaries.

Our task is to find the equilibrium alignment of the director everywhere between

and at the solid surfaces. It is determined by minimization of the integral equation

(10.19), i.e. by solution of the correspondent differential Euler equation for the bulk
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qg
qj

� d

dz

qg
qðqj=qzÞ

� �
¼ 0 (10.20)

with boundary conditions

� qg
qðqj=qzÞ

� �
1

þ qF1

qj1

¼ 0 and
qg

qðqj=qzÞ
� �

2

þ qF2

qj2

¼ 0 (10.21)

The first terms in both Eqs. (10.21) correspond to the contribution from the bulk

to the surface energy. How to understand the influence of the bulk on the surface? In

fact, the two equations (10.21) represent the balance of elastic and surface torques

at each boundary (indices 1 and 2). One of them comes from the bulk elasticity and

deflects the director from the easy axis. The other is a torque from the surface forces

that tries to hold the director at its equilibrium (easy) direction. The two equations

themselves are brought about from the minimization procedure.

Let show it using mathematics. As was said, the boundary conditions are not

fixed and the free energy depends on them. Let j(z) be a solution of the Euler

equation for F(j) with fixed boundary conditions i.e. Eq. (10.20). Now we shall

make variation of the boundary conditions in order to find the minimum of free

energy with the surface terms included.

For example, we can calculate a derivative ∂F/∂j1. If we fix z1, z2 and j2 and

change only j1, the new solution for j(z) will get an increment dj(z). Correspond-
ingly the free energy will get an increment DF. Ignoring highest order terms and

using dj0 � (dj)0 we obtain:

DF ¼
ðz2
z1

qg
qj

djþ qg
qj0 dj

0
� �

dz (10.22)

The second term of (10.22) can be integrated by parts:

DF ¼ qg
qj0 dj

				
z2

z1

þ
ðz2
z1

qg
qj

� q
qz

qg
qj0

� �
djdz (10.23)

Note that the expression under the integral vanishes because g(j) satisfies the
Euler equation (10.20). In addition, dj (z2) ¼ 0, because j2 is fixed. Finally, the

change in the bulk free energy due to variation of j1 is given by

DF ¼ � qg
qj0 dj

				
z1
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and the elastic torque exerted by the bulk on the j-director at the surface is given by

qF
qj1

¼ � qg
qj0

				
z1

: (10.24)

This is a contribution to be equalized by the surface torque qFs=qjjz1 . The same

is valid for the opposite boundary at z2, see Eqs. (10.21). Thus, two expressions

(10.21) are indeed torque balance equations for the director angle j at the two

boundaries.

10.2.3 Surface Energy Forms

In order to solve equations (10.20) and (10.21) we must know the explicit angular

dependence of functions Fs
1 and Fs

2. Their simplest form is the so-called Rapini
energy [16]:

Fs ¼ Fs
iso þ 1

2
Wsin2djs (10.25)

Here, djs ¼ js � js
0 is an angle of director deflection from the equilibrium

angle js
0 and W is usually referred to as anchoring energy.

When both angles Ws and jsare changed, two Rapini energies should be intro-

duced: Azimuthal (for fixed Ws):

Fj
a ðWsÞ ¼ 1

2
WjðWÞsin2ðjs � js

0Þ (10.26a)

Zenithal (for fixed js):

FW
z ðjsÞ ¼ 1

2
WWðjÞsin2ðWs � Ws0Þ (10.26b)

The zenithal anchoring is often called polar, but this word is misleading because

polar anchoring is related to polar director L as given by Eq. (10.13). Thus, the

Rapini form corresponds to the sine-squared shape potential well for any director

deviation b (dWs or djs) from the easy direction (Ws0;j
s
0):

Fb
a ¼ 1

2
Wsin2b (10.27)

This function is shown by curve 1 in Fig. 10.16.

The Rapini term is the first one (j ¼ 1) in an expansion of Fs in the Legendre

polynomial series in terms of sin2jb:

Fs ¼ Fs
iso þ

X
j

Wjsin
2jb; j ¼ 1; 2:3::: (10.28)
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To improve agreement with experiment, higher order terms of expansion (10.28)

are used and this change the angle dependence of the energy as shown by curve 2 in

Fig. 10.16 (for both j ¼ 1 and 2 terms with ratioW2/W1 ¼ 0.5). Some experimental

data could be fitted better with other shapes of the surface potential, for example,

with the elliptic sine-squared shape, 0 	 k 	 1 [1]: Fs
a ¼ 1

2
Wsn2ðb; kÞ:

Surely, this form is more general because it reduces to Rapini’s one for k ¼ 0,

however, it requires numerical calculations. The corresponding angle dependence

(for k close to 1) is shown by curve 3 in Fig. 10.16.

When the surface energy depends not only on the director itself but also on its

spatial derivatives, Fs ¼ Fsðjs; qj=qz

			
s
Þ, then the so-called divergent elastic moduli

K13 and K24 should be taken into account. In such cases, boundary conditions may

become non-local in the sense that, for a finite cell thickness d and potential W, a

situation at a boundary z1 influences the conditions at the opposite boundary z2.

10.2.4 Extrapolation Length

Consider again an important and fairly simple example: a twisted structure with a

rigid boundary condition at z ¼ 0 (easy axis y, j1 ¼ 0, W1 ! 1) and soft bound-

ary condition at z ¼ d (easy axis x, j2 ¼ p/2, anchoring energy W2 ¼ W0).

Fig. 10.17a clarifies the corresponding geometry. Due to the bulk elastic torque

acting on the director at z ¼ d, the director deflects from the easy axis through angle

jd, and forms the angle p/2 � jd with the y-axis. Our task is to find the profile of

j(z) for different W0. The free energy is

F ¼ 1
2
K22

ðd

0

dj
dz

� �2

dzþ 1
2
W0ðp=2� jdÞ2 (10.29)

Here we use Rapini surface energy (10.25) and approximation sin(p/2 � jd)

� (p/2 � jd).

Fig. 10.16 Shapes of the

surface potential curves:

Rapini potential (1),

Legendre expansion with two

terms (2) and elliptic-sine

profile (3)
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The Euler equation for the bulk is the same as earlier, see Eq. (8.24):

� K22

q2j
qz2

¼ 0 (10.30)

The first boundary condition is j ¼ 0 at z ¼ 0; the second one represents the

torque balance at z ¼ d according to Eq. (10.21) and (10.29):

K22

qj
qz

				
d

þW0ðp=2� jdÞ ¼ 0 (10.31)

The general solution of the bulk equation (10.30) is a straight line fðzÞ ¼ Azþ B
with B ¼ 0 due to j ¼ 0 at z ¼ 0 and jðdÞ ¼ jd ¼ Ad. Now the second boundary

condition reads:

K22A�W0ðp=2� AdÞ ¼ 0 that is A ¼ pW0

2ðK22 þW0dÞ :

Finally, we find the dependence of the twist angle on the z-coordinate in a twist

cell with soft director anchoring at one boundary:

jðzÞ ¼ Az ¼ pW0z

2ðK22 þW0dÞ ¼
pz

2ðd þ K22

W0
Þ ¼

p
2ðd þ bÞ z: (10.32)

Recall that for rigid director anchoring on both boundaries we had fðzÞ ¼ pz=2d,
see Section 8.3.2. Now, however, the situation is different and the solid line j(z) in
Fig. 10.17b shows the new profile. If we extrapolate j to p/2, the profile would

correspond to a virtual cell with rigid anchoring on both interfaces and enlarged

apparent thickness d0 ¼ d þ b. The additional thickness b ¼ K22/W0 is called extrap-
olation length and it is a measure of the anchoring strength, very useful for dis-

cussion of different field effects. For typical values of K22 � 10�6 dyne (or 10�11 N

x

y

z

d
b

d

φ(z)

nφ=0 π/2
π–
2 

– φd
π–
2 

– φd

φ

zO

a b

Fig. 10.17 Twisted structure with a rigid boundary condition at z ¼ 0 and soft boundary

condition at z ¼ d. The geometry of the director distortion (a) and illustration of the extrapolation
length b and linear dependence of the director angle f(z) (b)
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in SI system) andW0 varied in the range of 10
�3 – 1 erg/cm2 (or 10�3 – 1 mJ/m2) the

values of extrapolation length b ¼ 10�3 – 10�6 cm (10–0.01 mm).

10.3 Liquid Crystal Alignment

10.3.1 Cells

In most practical applications and when examining liquid crystals, the sandwich

type cells pictured in Fig. 10.18a are used. A flat capillary with a thickness of 1–100

mm is made from two glass plates with transparent electrodes. The separation

between the plates is fixed by means of an insulating spacer (Mylar, mica, Teflon,

polyethylene, etc.). To fix a very narrow gap (about 1–3 mm) glass bids or pieces of

thin glass threads of proper diameter are placed between glasses. In sandwich cells

light is incident along the direction of the electric field or, if required, at a specified

angle to it. Sometimes, e.g., when investigating the flexoelectric effect, cells with a

planar arrangement of electrodes are more suitable, see Fig. 10.18b. In that case, to

reduce an applied voltage, the separation between the electrodes, which are made

of metallic foil or metal evaporated in vacuum, is in the range from tens of microns

to few millimeters, however, even for a millimeter gap, the amount of light passing

through the cell is often insufficient. A more convenient cell has interdigitated

electrodes, which can be either transparent or opaque, see Fig. 10.18c. The

electrodes are deposited by photolithography methods. In such structures, a large

light aperture is achieved with relatively small distances (about 10 mm) between

the electrodes and one can operate with low voltages to have quite strong field

strength.

Glasses

Spacers

Electrodes

LC

a

b

c

Fig. 10.18 Electrooptical cells of sandwich (a) and planar type (b) and the structures with

in-plane interdigitated electrodes (c)
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10.3.2 Alignment

10.3.2.1 Planar Homogeneous and Tilted Alignment

Most commonly, a planar alignment is produced by mechanical rubbing of the

surface of the glass with paper or cloth (Chatelain’s method [17]) or using special

machines with rotating brushes. The pressure under the brushes and their angular

velocity is well controlled. The rubbing creates a mechanical nano-relief on the

polymer coating of a glass or an electrode material in the form of ridges and

troughs, Fig. 10.19, which promotes the orientation of molecules along these

formations. In other words, rubbing creates an easy axis for the director n. The
technique is very simple, provides sufficiently strong anchoring of the director to

the surface but, in the display technology, requires additional washing and drying

the substrates. Another contact method is pattering the aligning layers with molec-

ular size resolution by scribing a polymer coated surface by a cantilever of an

atomic force microscope. The quality of alignment is very good, but the process is

rather slow. Good results are obtained by evaporation of metals or oxides (e.g., SiO)

onto the surface at oblique incidence, Fig. 10.20a. This method can also be applied

to the orientation of various smectic mesophases.

A very important technique for optical device technology is photo-alignment of

photosensitive polymers illuminated by polarized light [18]. Such a technique is

non-contact and allows the design of multi-pixel structures using photo-masks. In

some substances (polymers included) the absorbed light causes directional destroy-

ing molecules. In other materials, the light induces a molecular realignment result-

ing in an optical anisotropy of the film promoting the alignment of the liquid crystal

n Rubbing

Fig. 10.19 A mechanical nano-relief obtained as a result of unidirectional rubbing the polymer

surface; long polymer molecules are schematically represented by ellipsoids

LC molecules

Surfactant

SiO

Glasses

a b

Fig. 10.20 Schemes of the planar homogeneous alignment of a nematic by an obliquely evapo-

rated thin film of SiO (a) and homeotropic alignment by a monolayer of surfactant molecules (b)
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contacting the film. Laser ablation and ion beam irradiation of polymers seem to be

competing alignment techniques for displays [19].

A tilted orientation of molecules at a given angle to the surface is achieved using

layers of SiO produced by oblique evaporation at a very large angle (80–90 deg)

between the normal to the surface and the direction to the SiO source. Tilted

orientation of the nematic liquid crystal molecules can also be achieved by using

photosensitive films irradiated by obliquely incident light.

10.3.2.2 Homeotropic Alignment

Carefully cleaned or etched glass surfaces are conducive to a homeotropic orienta-

tion. Some crystalline cleavages (Al2O3, LiNbO3) also align nematics homeotropi-

cally. However, the most popular technique for the homeotropic alignment is

utilization of surfactants. The mechanism of homeotropic alignment by an ultrathin

(even monomolecular) layer of a surfactant is demonstrated in Fig. 10.20b. An

alignment layer can be obtained by withdrawing the substrate from the solution of

surfactant, by polymerization of the organosilicon films directly on the substrate,

and, in particular, by using a plasma discharge. Moreover, surfactant molecules can

be introduced directly into the liquid crystal (e.g. lecithin or alkoxybenzoic acids)

where they form the aligning layers by adsorption at the interface with a substrate.

10.3.2.3 Multistable Alignment

When a nematic is put in contact with a crystalline substrate, the surface of which

possesses the N-fold rotational symmetry (e.g., N ¼ 6 for mica, N ¼ 4 for NaCl),

the director is free to choose any of those N easy axes. In experiments, the

orientation depends on the pre-history of the sample. A director field n(r) in a

nematic drop put on the surface of a crystal acquires the same N-fold symmetry. In a

sandwich cell, when crystalline axes of the opposite interfaces coincide, different

domains are observed, with uniform structure or twisted through an angle 2p/N
[20]. Using a properly oriented external in-plane field one can switch domains from

one of the possible N orientations to another. Thus we have multistable alignment.

When the crystalline axes of the opposite interfaces do not coincide, many domains

with different twist angles are possible.

Vacuum evaporation of SiO films onto glass substrates at a grazing angle can

also result in multistable alignment. Usually, the evaporation provides either the

planar (⊥ to the evaporation plane) or tilted (in the evaporation plane) orientations.

However, in a certain range of the incidence angle of the SiO beam and thickness of

a film the bistable alignment is achieved. The director is aligned at a certain polar

angle to a substrate and takes one of the two azimuthal angles located symmetri-

cally with respect to the evaporation plane. The electric field can switch the director

from one stable position to the other; thus the electrically controlled surface

bistability has been demonstrated [21]. Multistable alignment can also be achieved
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by combination of several factors, e.g., using a microrelief in the form of a

diffraction grating and treatment of the aligning film by polarized UV light.

The change in the director alignment at the surface can occur spontaneously

when temperature is varied (anchoring transition) due to the adsorption or desorp-

tion phenomena discussed earlier. However, close to the phase transition to the

isotropic phase, the order parameter and other related properties (surface tension,

elasticity) are markedly changed. Due to this, close to the transition, a nematic

liquid crystal aligned by a fluoropolymer with very low anchoring energy continu-

ously changes the angle of the alignment at the interface from zero to p/2 demon-

strating a continuous anchoring transition [22].

10.3.3 Berreman Model

The macroscopic theory of elasticity can explain why longitudinal ridges and

troughs on the surface of a glass are conducive to the planar homogeneous align-

ment of nematic liquid crystals [23]. For simplicity, a sinusoidal shape is chosen for

the cross-section of a surface relief with the wavevector q directed along x, see
Fig. 10.21a:

aðxÞ ¼ A sin qx (10.33)

The amplitude A is assumed to be small and the components of the director n at

any distance from the surface remain in the figure plane at an angle y(x,z) with
respect to the x-axis: nx ¼ cosW � 1, ny ¼ 0, nz ¼ sinW � W. With a distance z
from the surface the amplitude of the relief decreases and deeply in the bulk the

director is parallel to the x-axis. From Fig. 10.21a, we can see that such a director

field requires some energy due to elastic bend distortion. If the director were

parallel to the grooves n ¼ ny everywhere as in Fig. 10.21b the director field

would be uniform with zero elastic energy. Therefore Berreman has calculated

the extra energy for the geometry (a) with respect to the case (b).

x x

z z

n II y

A

q
2π

θa b

Fig. 10.21 Berreman model

[23] illustrating an elastic free

energy difference between the

two configurations of the

director, perpendicular (a)
and parallel (b) to grooves of

the surface relief
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At the surface (z ¼ 0) the z-component of the director is assumed to be tangen-

tial to the relief (strong anchoring boundary condition):

W z ¼ 0ð Þ ¼ nzðxÞ ¼ qa=qx ¼ Aq cos qx (10.34)

In the one constant approximation (Kii ¼ K), the Frank distortion energy (8.15)

can be written in terms of the angle W:

gd ¼ K

2

qW
qz

� �2

þ qW
qx

� �2
" #

(10.35)

The minimization gives us the Laplace equation:

q2W
qx2

þ q2W
qz2

¼ r2W ¼ 0 (10.36)

with a solution

Wðx; zÞ ¼ Aq cosðqxÞ expð�qzÞ (10.37)

that satisfies the boundary condition (10.34) and the second boundary condition of

W ¼ 0 at z ! 1.

Then, we find derivatives

qW
qx

¼ �Aq2 sin qx � expð�qzÞ; qW
qz

¼ �Aq2 cos qx � expð�qzÞ;

and substitute them into (10.35) to obtain the energy density

gd ¼ K

2
ðAq2Þ2 expð�2qzÞ: (10.38)

Hence, the major part of the elastic energy is concentrated within a layer of p/q
thickness. Integrating over z we find for the total elastic energy per unit area

Fd ¼
ð1

0

gdðzÞdz ¼ 1

4
KA2q3 (10.39)

Thus, the orientation of the director perpendicular to the grooves costs an excess

elastic energy quadratically dependent on the relief depth A and inversely propor-

tional to the cube of its period L ¼ 2p/q. For typical values of A ¼ 1 nm, L ¼ 20

nm and modulus K ¼10�6 dyn, Fd ¼ 8.10�2 erg/cm2 (or 8.10�2 mJ/m2), which is

close to experimental data. If a relief is two-dimensional in the x- and y-direction
(e.g. at an etched surface) the director acquires the most profitable, homeotropic

alignment along the z-axis.
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Part III

Electro-Optics



Chapter 11

Optics and Electric Field Effects in Nematic
and Smectic A Liquid Crystals

11.1 Optical Properties of Uniaxial Phases

11.1.1 Dielectric Ellipsoid, Birefringence and Light Transmission

11.1.1.1 Dielectric Ellipsoid

We begin with the electric displacement vector Dj ¼ eijEi where i, j ¼ x0, y0, z0 are
Cartesian coordinates and the summation over repeated indices is inferred. The

tensor of dielectric permittivity is symmetric eij ¼ ejiand generally (even for biaxial
medium) has six independent components. If an insulator is placed in the electric

field, the stored electric energy density is given by

gelectr ¼ 1

8p
E � D ¼ 1

8p
EieijEj (11.1)

or

8pgelect ¼ ex0x0E2
x0 þ ey0y0E2

y0 þ ez0z0E2
z0 þ 2ey0z0Ey0Ez0 þ 2ex0z0Ex0Ez0 þ 2ex0y0Ex0Ey0

This is an equation of an ellipsoid arbitrary oriented with respect to any Carte-

sian frame [1]. The frame may be chosen in such a way that the ellipsoid will be

oriented with its principal axes along the co-ordinate axes. In the new frame x, y, z,
the tensor is diagonal that is all the off-diagonal terms vanish:

8pgelect ¼ exxE2
x þ eyyE2

y þ ezzE2
z (11.2)

The same energy may be expressed in terms of the electric displacement vector

components:

8pgelect ¼ D2
x

exx
þ D2

y

eyy
þ D2

z

ezz
(11.3)
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and now the constant energy curves (8pgelect) form ellipsoids in the space Dx,

Dy, Dz,.

Finally we go back to the x ,y, z space replacing vector D=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pgelect
p

by vector r.
Then we obtain the dielectric ellipsoid shown in Fig. 11.1 with three semi-axes

equal to
p
e3,
p
e3,
p
e3 and satisfying to equation

x2

e1
þ y2

e2
þ z2

e3
¼ 1 (11.4)

From this ellipsoid we can find
p
e for any direction specified by radius-vector r,

see the figure. For example such an ellipsoid corresponds to the biaxial phase of the

SmC liquid crystal. In this case all the three semi-axes are different e1¼ exx 6¼ e2¼ eyy
6¼ e3¼ ezz. For a uniaxial phase (nematic, smectic A) the ellipsoid degenerates into an

ellipsoid of revolution that is invariant for rotation about, e.g., the z-axis. For an
isotropic liquid or a cubic crystal the ellipsoid degenerates into a sphere of radius

p
e.

At optical frequencies e ¼ n2 and the same ellipsoid becomes the so-called

“optical indicatrix”with its semi-axes exactly equal to refraction indices n1, n2 and n3.

x2

n21
þ y2

n22
þ z2

n23
¼ 1 (11.5)

Therefore, electromagnetic waves with polarization vectors along x, y or z axes
propagate with three different velocities c/n1, c/n2 and c/n3. In addition, two waves

with the same wave normal h but orthogonal polarizations s propagate in different

directions; the wavevector of the ordinary ray is parallel to the normal, ko||h, but
wavevector ke for the extraordinary ray forms an angle with h. It means that the

Snell law is not fulfilled for the extraordinary index of biaxial crystals. This results

in a double refraction phenomenon. For biaxial crystals the double refraction occurs

even at normal light incidence onto their surface; for uniaxial ones only at oblique

incidence.

11.1.1.2 Extraordinary Index of a Birefringent Layer

The most interesting for applications are uniaxial phases in which n1¼ n2¼ n⊥ and

n3¼ n||. For k || n, z (n is the director) light of any polarization propagates along the

z

x

y

r

Öe(r)

Öe3

Öe2

Öe1
Fig. 11.1 Dielectric ellipsoid

for a biaxial medium
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optical axis with the same velocity c/n⊥ (no extraordinary ray). For example, this

corresponds to the normal incidence of light onto homeotropically aligned nematic

layer (case a in Fig. 11.2). For an arbitrary angle between k and n, the beam of

unpolarised light can always be decomposed into two beams. The ordinary ray with

electric polarization vector e ⊥ n propagates with velocity c/no independent of the
incidence angle. The extraordinary ray propagates with velocity c/ne; Index ne
depends on the incident angle and can be found from the optical indicatrix. For

example, in Fig. 11.2b, a nematic liquid crystal has a tilted orientation with an angle

a between the light vector e and the director n. Then the refraction index for the

extraordinary ray as a function of the tilt angle W¼ p/2� a between n and z is given
by:

neðWÞ ¼
njjn?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2jjcos
2Wþ n2?sin

2W
q (11.6)

Here n|| and n⊥ are principal refractive indices of the nematic (semi-axes of the

ellipsoid).

This result came about from the consideration of the ellipsoid cross-section in

plane (n, k) and the position of point P on the indicatrix, see Fig. 11.3. The

projections of the segment ne(W) on the semi-axes of the ellipse are

X ¼ neðWÞ cos W; Z ¼ neðWÞ sin W and Y ¼ 0

The point P is situated on the indicatrix, therefore, from (11.5) we obtain the

expression

ea
k

kb

e

J
a

n
Fig. 11.2 Normal light

incidence on a planar layer of

a nematic liquid crystal with

homeotropic (a) and tilted (b)
alignment (k is light

propagation vector, e is light
polarization vector, n is the

director)

ne(ϑ)

k

ϑ
z

xX

Z

n

O
P

Fig. 11.3 The geometry for

calculation of the

extraordinary refraction index

ne(W) for the tilted nematic

shown in Fig. 11.2b. Z and X

are projections of segment OP

on the long and short ellipsoid

axes
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n2eðWÞcos2W
n2?

þ n2eðWÞsin2W
n2jj

¼ 1

and then arrive at Eq. (11.6):

neðWÞ ¼ cos2W
n2?
þ sin2W

n2jj

 !�1=2
¼ njjn?ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2jjcos
2Wþ n2?sin

2W
q

For example, for the homeotropic orientation, W ¼ 0 and ne(W) ¼ n⊥; for

homogeneous planar alignment W ¼ p/2 and ne(W) ¼ n||.

11.1.1.3 Light Ellipticity

Consider the normal incidence of unpolarised monochromatic light of wavelength l
onto a homogeneously aligned (n || x) nematic or SmA layer of thickness d. The
layer is between the polariser (P) and an analyser (A) with an arbitrary angle w
between them, Fig. 11.4. We are interested in the light polarization and intensity of

the transmitted beam [2]. The reflected light intensity is negligible (few percents of

the incident intensity), the absorption in a liquid crystal, is absent and both

polarizers and analyser considered to be ideal.

The amplitude E of the linearly polarised light beam after a polarizer can be

projected onto the two principal directions of the nematic, parallel and perpendicu-

lar to the optical axis x:

Ejj ¼ a ¼ E cosj;E? ¼ b ¼ E sinj; (11.7)

The ordinary and extraordinary rays passing the layer acquire an additional

phase shifts equal, respectively, to 2pnod/l and 2pned/l, therefore their phase

difference is d ¼ 2p=l
� �

ðne � noÞd.
Generally, the interference of two fields results in an elliptic polarization. It can

be shown if we consider time dependencies of the fields. After the liquid crystal

layer, the output fields are:

A

P

xy

z

E⊥

χ

ϕ x

y

E||

E

A-axis

P-axis

baFig. 11.4 Transmission of

unpolarised light through a

homogeneously aligned

nematic (or smectic A) layer;

geometry of experiment with

polarizer P and analyser A (a)
and definition of characteristic

angles j and w (b)
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x ¼ a cosot; y ¼ b cosðot� dÞ ¼ bðcosot cos dþ sinot sin dÞ (11.8)

From these two equations for we obtain y=b� cosot cos d ¼ sinot sin d and

sinot � sin d ¼ y

b
� x

a
cos d

or

sin2ot � sin2d ¼ y2

b2
� 2xy

ba
cos dþ x2

a2
cos2d:

In addition, using cosot ¼ x/a we may write cos2ot � sin2d ¼ x2

a2 sin
2d.

Now we make a sum of the last two equations and exclude the time dependence.

Then we arrive at the equation for the output field (but before an analyser) in the

form of the equation for an ellipse:

x2

a2
þ y2

b2
� 2xy

ab
cos d ¼ sin2d (11.9)

The orientation of the ellipse axes depends on polarizer angle j (through a and

b) and phase retardation d. Consider few interesting consequences of (11.9).

Case 1 Corresponds to the So-Called l/4 Plate

The layer thickness satisfies the condition ðne � noÞd ¼ l=4; i.e., d ¼ p/2, and the

ellipse becomes oriented along the principal axes of the nematic layer and the ratio

of its semi-axes depends only on polarizer angle j:

x2

a2
þ y2

b2
¼ 1 (11.10)

Particularly, for j ¼ �p/4 i.e. a ¼ �b the equation for an ellipse degenerates

into the equation for a circumference:

x2 þ y2 ¼ a2 (11.11)

The light beam transmitted through the layer becomes left or right circularly

polarised. Thus a l/4 plate converts the linear polarization to one of the possible

circular polarizations, left or right dependent on a sign of parameter b as illustrated
by Fig. 11.5. Note that, in the figure, the right polarization corresponds to the

electric vector of light e rotating clockwise for an observer looking at the incoming

beam (according to the convention used in many classical books, for instance

in [2,3]). However, more recently, another convention is often used according to

11.1 Optical Properties of Uniaxial Phases 289



which the right polarization of light follows the right screw law [4]. Personally, I

like more the second one, however, throughout the book we follow the traditional

convention.

Case 2 Corresponds to the l Plate

The layer thickness satisfies the condition ðne � noÞd ¼ l; i.e., d ¼ 2p. Then,
according to (11.9), the ellipse degenerates into the straight line x=a� y=b ¼ 0 or

y ¼ xb/a ¼ x�tanj. This means that after the cell the light is linearly polarised. The

same equation is valid for d¼ 2kpwhere k is any integer. The angle j is determined

by the angular position of polarizer; for j ¼ p/4 the cell transmit light without

change of polarization, y ¼ x.

11.1.1.4 Light Transmission (Cell Between Polarizers)

The transmitted light intensity is calculated as follows. The analyser can only

transmit the field components parallel to its axis, that is projections of E|| and E⊥

on the analyser direction A, see again Fig. 11.4:

EA
jj ¼ E cosj cosðj� wÞ; EA

? ¼ E sinj sinðj� wÞ; (11.12)

The total light intensity I after an analyser is a result of interference of the two

rays

I ¼ IAjj þ IA? þ 2ðIAjj IA?Þ1=2 cos d: (11.13)

Then

I ¼ E2f½cosj cosðj� wÞ�2 þ ½sinj sinðj� wÞ�2 þ 1
2
sin 2j sin 2ðj� wÞ cos dg

Fig. 11.5 Right and left

circular polarization of light

according to the classical

convention (according to the

modern connection the

handedness is reversed)
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and using cos2ð2j� wÞ ¼ 1
2
½1þ cos 2ð2j� wÞ� and cosd ¼ (1 - 2sin2d

2
Þ we find

the transmitted intensity:

I ¼ E2½cos2w� sin 2j sin 2ðj� wÞsin2d=2� (11.14)

Consider again two important particular cases:

Case a, parallel polarizers, A || P. In this case w ¼ 0 and

Ijj ¼ E2ð1� sin22j � sin2d=2Þ (11.15)

There are maxima of transmission for j ¼ 0, p/2, p. . .etc, and I|| (max) ¼ E2,

when the incoming polarization coincides with the principal axes x or y. Between
them there are minima of transmission corresponding to j ¼ p/4, 3p/4, 5p/4. . ..
Their intensities I|| (min) ¼ E2 cos2(d/2) do not show full darkness (except a special

value for phase retardation when cos2(d/2) ¼ 0).

Case b, crossed polarizers, A ⊥ P. Now w ¼ p/2 and

I? ¼ E2sin22j � sin2d=2 (11.16)

Now minima for j ¼ 0, p/2, p. . . correspond to complete darkness and the

maximum intensity is observed at j ¼ p/4, 3p/4, 5p/4. . . This case is the most

interesting because provides a high contrast for a cell under a microscope. Let us

select the angle j ¼ p/4 between the director and polarizer. Then we have

maximum light intensity after analyser

I?ðmaxÞ ¼ E2sin2
d
2
¼ E2sin2

pðne � noÞd
l

(11.17)

The light intensity has an oscillatory character as a function of cell thickness d,
optical anisotropy Dn ¼ ne-no and wavelength l. This can be used for measure-

ments of Dn.

11.1.1.5 Measurements of Birefringence of Nematics

For example, we can use a wedge form cell, in which thickness d(x) changes along
the optical axis of a nematic, see Fig. 11.6. The nematic director is parallel to x, the
polarizer P is installed at an angle of 45� to the x-axis and analyser A is crossed with

polarizer. If such a cell is illuminated by a filtered light of wavelength l, then, a
series of contrast interference stripes is seen which are parallel to the y-direction.
The dark stripes correspond to dDn/l¼ 0, 1, 2 .. k and the distance between them is

constant, l ¼ lsina/Dn where a is the angle of the wedge. The latter can be found

from the “stripes of equal thickness” in a part of the wedge not filled with the
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nematic. With known wedge angle one can also use the “stripes of equal thickness”

for measurements of n|| and n⊥ separately: to this effect the electric vector of a

linearly polarised light should be installed parallel or perpendicular to the director

and analyser is not used.

The temperature dependence ofDn¼ n|| -n⊥where n|| and n⊥ are principal indices

of a nematic (lower plot in Fig. 11.7) can simply be measured using geometry of

Fig. 11.4. A cell with fixed thickness d about 30 mm and well-aligned nematic (or a

smectic with intermediate nematic phase) is heated up to the isotropic phase. Due to a

decrease in Dn with increasing temperature, the transmitted intensity oscillates and

these oscillations can be numbered as 1,2,3..k counted from the isotropic phase. This

way the phase retardation d(T)¼ 2pdDn(T)/l¼ 2p, 4p, 6p. . .2kp can be plotted as a

function of temperature and Dn(T) found from Eq. (11.17), see upper plot in

Fig. 11.7. The absolute values of niso and n⊥ can easily be found with a refractometer

although one can meet some problems with refractometry of n||. We can also change

the direction of the director by external factors (electric and magnetic fields, acoustic

vibrations, flow of a liquid crystal) and follow these changes by birefringence

measurements with high accuracy. For a comprehensive review of experimental

data on optical properties of liquid crystal see [5].

niso

n||

TNI

T

T

Itr

n⊥

δ(T)

Δ n

... 3 2 1 = K
Fig. 11.7 Temperature

dependencies of the

transmitted light intensity Itr
and phase retardation d
(above) and principal

refraction indices (below)

k k+1

α

P

A
x

y

light

M
z

Fig. 11.6 Scheme of simple measurements of optical anisotropy Dn ¼ n|| -n⊥ by observation of

interference lines in a wedge-form nematic cell placed between cross polarisers (a: wedge angle;
P: polarizer; A: analyzer; M; microscope; k: order of interference). The same scheme can easily be

modified to measure refraction indices n|| and n⊥ separately as explained in the text
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11.1.1.6 Twist Structure

Consider one more particular case related to elliptic polarization of light that passes

a birefringent layer. Let the layer be very thin, d!0 and the principal axis of the

layer forms an angle j with the input linear polarization. Then we go back to the

general form of the ellipse (11.9) and using smallness of phase shift d (cosd� 1� d
� 1 and sin2d � d2) get

x2

a2
þ y2

b2
� 2xy

ab
ð1� dÞ ¼ d2: (11.18)

Neglecting d << 1 in parentheses we obtain

x

a
� y

b
¼ d: (11.19)

This equation describes a straight line

y � b

a
x� bd ¼ E sinf

E cosf
x� bd ¼ x tanf� bd

showing that the outgoing beam is linearly polarised and its electric vector forms a

small angle bd with respect to the vector of the linearly polarised incident beam.

So, there is no ellipticity!

Now imagine a stack of very thin plates or layers, in which the director turns by a

small angle upon proceeding from one layer to the next one. Then, after each

passage of a successive plate, the electric vector of the beam rotates through a small

angle and such a stack of plates “guides” the light polarisation. We can prepare such

a “stack” using different boundary conditions for alignment of the nematic. For

instance, if the directors at the top and bottom glasses are strictly perpendicular to

each other, the nematic is twisted through angle p/2, as discussed in Section 8.3.2. It
is of great importance that the light polarization follows the p/2-twisted structure at
any wavelength. This is so-called “waveguide” or Mauguin regime [6]. When light

leaves the entire nematic cell its electric vector is turned through p/2 with respect to
the electric vector of the incident beam. It is evident that, a planar cell is non-

transparent when installed between crossed polarizers with polarizer P parallel (or

perpendicular) to the director, because an analyser absorbs light almost completely,

Fig. 11.8a. A homeotropic cell is also non-transparent when observed through

crossed polarizers. On the contrary, a twist cell completely transmits light under

the same conditions, Fig. 11.8b.
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11.1.2 Light Absorption and Linear Dichroism

11.1.2.1 Extinction Index, Absorption Coefficient, Optical Density

An electromagnetic wave propagating with velocity v in a medium is described by

the wave equation:

DE� 1

v2
q2E
qt2
¼ 0:

Assuming E(r, t) ¼ E(r)exp(�iot) we exclude the time dependence and get the

Helmholtz equation:

DEþ em
o2

c2
E ¼ 0

where e and m are dielectric and magnetic permeability and c light velocity in

vacuum.

For the plane wave E(r) / expikr and we obtain the dispersion relation:

k2 ¼ emo2=c2: For the absorbing medium the wavevector amplitude k becomes

complex:

k� ¼ ðemÞ1=2 o
c
� ðnþ ikÞo

c
(11.20)

The absorbing medium can be described in terms of a complex refraction index

n* ¼ n + ik where n is real refraction index and k is real extinction index. For non-
magnetic medium m � 1 and nþ ikð Þ2 ¼ n2 � k2 þ 2ink ¼ e� ¼ e0 þ e00 we find

the relations between the components of e* and n*:

n2 � k2 ¼ e0 and 2nk ¼ e00 (11.21)

From (11.21) it is seen how any kind of energy dissipation contributes to real part of

the dielectric permittivity e0 at optical frequencies.

A

P

z

x

ba

Fig. 11.8 A planar cell installed between crossed polarizers is non-transparent (a) whereas a twist
cell rotates the linear polarization through p/2 and transmits light (b). Polarizer P is parallel to the

director at the input plate
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The dimensionless extinction index k can be related to the absorption coefficient

aabs (cm�1) by the well-known Buger law for the light intensity I transmitted

through an absorbing layer of thickness z (the reflection is ignored):

I ¼ I0 expð�aabszÞ (11.22)

Indeed, comparing (11.22) with a general form for imaginary part of Imk* ¼
iko/c, we find

I / ðE exp ikzÞ2 ¼ E2 expð� 2ko
c

zÞ ¼ E2 expð� 4p
l
kzÞ

and then obtain

aabs ¼ 2ko
c
¼ 4pk

l
(11.23)

In experiment, a spectrometer usually measures the so-called absorbance or
optical density D of a sample with thickness d:

D ¼ log10
I0=I ¼ log10

1=T ¼ aabsdlog10e ¼ 0:434aabsd (11.24)

Note that here, the losses due to reflection from and scattering in the sample are

disregarded.

This relationship may be used for calculation of the absorption coefficient aabs
and extinction coefficient k from measured values of D. A typical absorption

spectrum of a liquid crystalline substance in the isotropic phase is shown in

Fig. 11.9a. In the UV part of the spectrum, the absorption originates from molecular

electronic transitions (with vibronic structure). Except for dyes, the long-wave edge

of organic compounds is situated at about 250–350 nm depending on particular

molecular structure. As a rule, liquid crystalline materials are transparent in the

Fig. 11.9 Typical absorbance spectrum of a mesogenic compound (in the isotropic phase) with

absorption bands in the visible and infrared spectra (a), typical molecular moieties responsible for

the UV and IR absorption (b) and characteristic polarization absorption spectra (dichroism) in the

nematic phase (c)
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visible and near IR range (400–2,500 nm) although thick layers can strongly scatter

light. Some IR absorption bands are very characteristic; they are caused by vibra-

tions related to particular molecular bonds, e.g., -C ¼ O, -C-F, -C 	 N, -C-H,

stretch vibration of benzene ring, etc. Such bands can be used for identification of

substances by IR spectroscopy.

Each particular electronic or vibrational band originates from a quantum transi-

tion between two energy states i and j characterised by a transition dipole moment

ptr that is a vector. The molecule only absorbs light when (eptr) 6¼ 0, i.e., when there

is a non-zero projection of the light electric vector e onto ptr. The absorption cross-

section of a molecule sabs in (cm2) units is proportional to |ptr|
2 and can be related

to the absorption coefficient and a number of molecules in a unit volume nv [cm
�3]

as sabs ¼ aabs=nv.

11.1.2.2 Linear Dichroism

Generally, the transition moment can be oriented at an arbitrary angle to the

molecular frame but the symmetry imposes some constraints. Consider a cyanobi-

phenyl compound as an example, see Inset to Fig. 11.9b. This molecule, has two

transitions especially interesting for us.

1. The electronic transition between the p and p* states of a p-electron delocalized
over the biphenyl moiety due to a chain of conjugated single and double bonds.

2. The vibration transition of the triple bond C	N in the cyano-group.

For both transitions the dipole moment ptr is directed exactly along the longitu-

dinal molecular axis. Thus, if such molecules form the nematic phase, the absorp-

tion coefficient would depend on the average angle between the light polarization

vector e and the longitudinal molecular axes, i.e., between e and the director n.
As a result, the absorption acquires properties of a second rank tensor with two

principal components aabs|| and aabs⊥ (|| and ⊥ to n). The qualitative absorption

spectra for two polarizations are shown in Fig. 11.9c. For the isotropic phase, due to

complete averaging over oscillator directions the tensor degenerates into a scalar

aabs ¼ (aabs||+2aabs⊥)/3.
We can introduce a dichroic ratio K ¼ aabs||/aabs⊥ or, in terms of the optical

density, K ¼ D||/D⊥. In the isotropic phase K ¼ 1. In the nematic phase, if the

alignment were ideal (S ¼ 1) the dichroic ratio would be infinite, K!1. Thus we

can use a factor similar to ratio S ¼ ea/ea
max (see Section 3.5.2)

Sabs ¼
aabsjj � aabs?
aabsjj þ 2aabs?

¼ K � 1

K þ 2
(11.25)

as a measure of the orientational order parameter of the nematic or SmA phase.

Experiments [7] show that, for a properly selected absorption bands with ptr || n or

ptr⊥ n one can obtain Sabs values very close to Smeasured by other techniques such
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as NMR, magnetic anisotropy or birefringence. Moreover, if the angle b between

the longitudinal molecular axis l and selected moment ptr is known the parameter

Sabs can still be found using a correction factor dependent on b:

Sabs � 1� 3

2
sin2b

� �
¼ K � 1

K þ 2
: (11.26)

When pij forms with l a “magic” angle bm � 54.7� the dichroism is not observed

at all (K ¼ 1), for b < bm the dichroic ratio K > 1; for b > bm K < 1. For small

angles b formula (11.26) works quite well. Note that the order parameter S is the

fundamental characteristic of a liquid crystal microscopically related to a more or

less rigid molecular skeletons. Therefore, Sabs 	 S should be considered as a value

independent of the electronic oscillator angle b.
Sometimes it is difficult to perform measurements in the UV or IR range on a

pure liquid crystal. Then, genuine orientational order parameter of the mesophase S
can be estimated using dichroism of guest dye molecules dissolved in a liquid

crystal. Then the dichroism measurements can be made in the visible range where

good quality polarisers and fast spectrometers are available. However, the dye

molecules should have molecular structure similar to that of the liquid crystal

molecules; only in this case Sabs(dye) � S.

11.1.2.3 Kramers – Kronig Relations

The real and imaginary parts of the complex refraction index n�ðoÞ ¼ nðoÞ þ ikðoÞ
are related to each other through the Kramers-Kronig relation:

nðoÞ � 1 ¼ 2

p

ð1

0

ukðuÞ
u2 � o2

du (11.27)

Here o and u are the same angular frequencies lettered differently in order to

perform a proper integration [8,9].

Mathematically, integral Kramers-Kronig relations have very general character. They

represent the Hilbert transform of any complex function eðoÞ ¼ e0ðoÞ þ ie00ðoÞ
satisfying the condition e � ðoÞ ¼ eð�oÞ(here the star means complex conjugate).

In our particular example, this condition is applied to function n(o) related to

dielectric permittivity e(o). The latter is Fourier transform of the time dependent

dielectric function e(t), which takes into account a time lag (and never advance) in

the response of a substance to the external, e.g. optical, electric field. Therefore the

Kramers-Kronig relations follow directly from the causality principle.

For practical purpose, the Eq. (11.27) is very useful because, using a spectro-

scopic technique, it is much easier to measure the frequency dependence of the

extinction index k(o) than the frequency dependence of the real value of refraction
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index n(o). In the ideal case, having k(o) at any wavelength (l ¼ 2pc/o) from 0 to

1, we would obtain exact n(o) values over the whole spectrum from the UV to

microwave range. In practice, however, the accuracy is limited by an experimen-

tally available range of k(o). On the other hand, very often the frequency range of

the desirable values of n(o) is also limited and the calculation technique may still be

applied.

Consider a typical absorption spectrum aabs(l) measured in the range from ls to
ll shown in Fig. 11.10a. It corresponds to a liquid crystal (in the isotropic phase)

with some amount of a dye dissolved in it. The liquid crystal has a strong absorption

in the UV whereas the dye has UV absorption similar to that of the liquid crystal,

but additionally absorbs in the visible range. We meet such a situation in the display

technology (guest-host effect) or in the technology of non-linear optical materials.

The spectrum of n(l) qualitatively corresponding to aabs(l) is shown below. Such a
picture follows from the light dispersion theory and from Eq. (11.27). The back-

ground value nb is provided by all short-wave absorption bands not included in the

spectrum (l < ls). That part of the whole spectrum is unknown.

Going from the left to the right along the wavelength axis (i.e. o!0) we

subsequently meet regions of anomalous and normal dispersion located on the left

and right slopes of each absorption band. It is very important, that the structure of the

n(l) curve in the vicinity of each absorption band aabs(l) is determined exclusively
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Fig. 11.10 Kramers-Kronig relations: (a) Qualitative spectra of absorbance of an isotropic liquid

with admixture of a dye in the UV and visible range (above) and corresponding spectrum of the

refraction index (below); (b) Experimental polarization spectra of absorption coefficient aabs for a
nematic liquid crystal E7 doped with a small amount of dye Chromene (upper plot) and

corresponding spectra of the increment of refraction indices d for two polarizations calculated

with Eq. (11.29) (lower plot). For both plots symbols (e) and (o) mean linear polarizations parallel

and perpendicular to the director
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by the spectral features of that particular band and, with increasing l, the value of
n(l) is systematically growing upon crossing each new band encountered.

Therefore, for the practical purpose, using aabs ¼ 2 ko/c, we can rewrite

Eq. (11.27) for a limited spectral range u1–u2 related to our experiment as follows [10]:

nðoÞ ¼ nb þ c

p

ðu2
u1

aðuÞ
u2 � o2

du (11.28)

or in terms of the wavelength:

nðlÞ ¼ nb þ 1

2p2

ðls

ll

aðl0Þ
1� l0=l

� �2 dl0 (11.29)

It is easy to calculate numerically a spectral dependence of n(l)–nb. The only

problem is to find nb. A practical way is to measure nb at a convenient wavelength,
using, say, a laser and after this, to pin the whole spectrum to this particular point.

The technique described can also be applied to measuring the dispersion of each

principal components n|| and n⊥ of the refraction index for nematic or SmA liquid

crystals using spectral data on principal absorption coefficients. An example of our

measurements and calculations is shown in Fig. 11.10b. On the upper plot are

presented the experimental polarization absorption spectra aabs(l) (|| and ⊥ to the

director) of a homogeneously oriented, 10 mm thick cell filled with nematic liquid

crystal mixture E7 doped with 0.5% of lasing dye Chromene. On the lower plot, the

spectra of the refraction index increment d¼ n� nb calculated for each polarization
are given. We see that a small amount of dye substantially changes the refraction

index of the mixture in the vicinity of its absorption bands (by 5�10�3 in the

maximum). Such an effect can influence the performance of the liquid crystal dye

lasers. Note that, for solid anisotropic films of dyes, aabs||(l) may reach values as

high as 10 mm�1 and the corresponding increment d (at absorption maxima)

approaches 0.4 – 0.5 (compare with nb � 2).

11.1.3 Light Scattering in Nematics and Smectic A

Light scattering in nematics is very strong. A thick (hundreds of micrometer)

homeotropically oriented preparation between crossed polarisers does not look

black under a microscope but rather sparking at random. In the beginning of the

liquid crystal history it was taken as a strong argument in favour of the so-called

“swarm” model. Later Chatelain [11] made a series of careful experiments using

polarised light. He observed strong anisotropy of light scattering in nematics. When

the electric vector of the scattered light s was perpendicular to the electric vector of
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incident light f, light scattering was 106 times stronger than in the isotropic liquid.

For s || f, the scattering was much weaker but still considerably stronger than in the

isotropic phase.

Where does such a strong scattering anisotropy originate from? It is evident that

the optical anisotropy of nematic liquid crystals plays the crucial role. In fact, the

scattering is caused by fluctuations of the director n, i.e. the local orientation of the

order parameter tensor. The local changes in orientation of n imply local changes in

orientation of the optical indicatrix.

11.1.3.1 Isotropic Phase

Let us recall the reason for the light scattering in gas or in isotropic liquid. In that

case, we deal with fluctuations of the mass density. They can be represented by a

sum of normal elastic vibration modes (Fourier harmonics) with wavevector q and

frequency O. When such a particular mode interacts with light of frequency o and

wavevector k the conservation laws for energy and momentum read:

O ¼ o0 � o and � q ¼ k0 � k (11.30)

where o0 and k0 are frequency and wavevector of the scattered light. When O<< o
we have a case of quasi-elastic scattering with k0 � k. Then, we have the same

Eq. (5.10) for the wavevector of scattering,

q ¼ 2k sin 2y ¼ 2 on=c
� �

sin 2y; (11.31)

where n is refraction index, c velocity of light and 2y is the angle between k0 and k,
Fig. 11.11a. Note that, in this case, normal vibrations are nothing more than sound

waves with velocity vs and simple dispersion law O ¼ vsq. The frequency shift

Do ¼ O ¼ �qvs ¼ �2on vs=c
� �

sin 2y (11.32)

due to interaction of the incident light wave with the sound wave results in the

appearance of two satellites on both sides of the main frequency (Rayleigh line),
namely, o þ O and o � O called Mandelshtam-Brillouin doublet.
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Fig. 11.11 Geometry of

quasi-elastic scattering in

general (a) and scattering on

the director fluctuations with

director n||z, and vectors of

incident (f) and scattered (s)
light polarizations
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It follows from the theory of elastic scattering (o ¼ o0) that, for small modula-

tion or fluctuation of dielectric permittivity (de << e⊥), the differential cross
section for the scattered light per unit solid angle around k0 is given by

s ¼ o2

4pc2

� �2

fe
_ðqÞs

h i2
(11.33)

where f and s are polarisation vectors of the incident and scattered light and e
_ðqÞis

the spatial Fourier component of the dielectric permittivity, which scatters light

with wavevector q. This expression is independent of the physical mechanism of

scattering and can be found in textbooks on optics. For scalar e (mass density

fluctuations) and f⊥s, s ¼ 0 because the incident field Ei has no projection on the

induction vector Ds ¼ eEs ¼ 0. In this type of scattering, maximum scattering

intensity is observed when polarizations of the incident and scattered light coincide

with each other, f||s.

11.1.3.2 Nematic Phase

The strong light scattering by nematics is due to specific properties of their

dielectric tensor (ni and nj are components of the director, see Section 7.2.2):

e
_ ¼ e?dij þ eaðninjÞ (11.34)

Consider a slab of a nematic with the director n ¼ n0 þ dn having small

fluctuating components nx, ny << nz � 1, see Fig. 11.15b. The slab is illuminated

by a light beam along the x-direction with linear polarization in the y,z plane, f¼ fyjþ
fzk. The scattered beam propagates in the same direction and has polarization

s ¼ syj þ szk. We would like to find the “polarization structure” of the scattering

cross-section sfs. To this effect, we only take the anisotropic part of the dielectric

tensor responsible for fluctuations and s f scattering. Using Eq. (11.33) we have

sfs / s � eaðnanbÞ � f ¼ eas �
n2x nxny nxnz

nynx n2y nynz

nznx nzny n2z

0
B@

1
CA �

0

fy

fz

0
B@

1
CA

¼ eas �
nxnyfy þ nxnzfz

n2y fy þ nynzfz

nznyfy þ n2z fz

0
B@

1
CA

Then, neglecting second order terms nxny and ny
2 and non-fluctuating term with

nz
2 � 1 we obtain:

sfs / eaðsyjþ szkÞ � ðnxfziþ nyfzjþ nyfykÞ ¼ eanyðsyfz þ szfyÞ (11.35)
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Now we see that only fluctuations of the director in the y-direction are essential,

dn¼ ny, because nz – fluctuations are not related to the director realignment and nx –
fluctuations are not seen by the transverse light wave incident from the x-direction.

Considering the term syfz + szfy we can distinguish two important particular

cases:

Case A: f || n0||z and f ⊥ dn

Then only the first term remains in Eq. 11.35. It means that there is no scattering

with polarization s || f and the maximum scattering corresponds to sy that is s ⊥ f

Case B: f ⊥ n0

Then we have only the second term with fy and again there is no scattering with

polarization s || f. The maximum scattering corresponds to sz that is s ⊥ f. Indeed,
maximum scattering by the director fluctuation is always takes place when s ⊥ f in
agreement with experiments on liquid crystals and in contrast to the case of

scattering by the density fluctuations in liquids and gases.

As to the large amplitude of light scattering in nematics it is explained by very

low elasticity of the nematic phase with respect to the director distortion that is

small Frank moduli Kii discussed below in Section 8.2. The strict theory of light

scattering in the static and dynamic regime has been developed by de Gennes

[12]. His expression for the mean square amplitude of the director fluctuations has

been discussed earlier, see Eq. (8.33). Using that equation and the tensor of

dielectric anisotropy (11.34), de Gennes found the amplitude of the dielectric

tensor fluctuations. After substitution of the dielectric tensor (11.34) into

Eq. (11.33) the differential cross-section for the light scattering by a nematic

was given by

sa ¼ V
eao2

4pc2

� �2
kBT

K33q2jj þ Kaq2?
ðsyfz þ szfyÞ (11.36)

We can see that large optical anisotropy (factor e2a in the first multiplier) and

small energy terms (Kq2 in denominator of the second multiplier) are responsible

for the high intensity of scattering. In addition, due to the factor of q2, especially
strong scattering is observed in small solid angles around the incident beam.

Finally, the polarization factor (the third multiplier) makes the scattering extremely

anisotropic. Eq. (11.36) is useful for the determination of elastic moduli from the

intensity of scattering in different geometries and the viscosity coefficients from the

optical frequency spectra of scattering [13].
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11.1.3.3 Smectic A Phase

The SmA phase has the same symmetry and the same dielectric ellipsoid as in

nematics, therefore, everything said above about the birefringence and dichroism is

valid for the SmA phase. However, due to specific elastic properties of the layered

structure, the director fluctuations are strongly quenched, and the SmA preparations

are much more transparent than the nematic ones. This is related to specific elastic

properties of the lamellar SmA phase [14].

According to Fig. 8.23 in Section 8.5.1, a fluctuation component of the layer

displacement uz ¼ u along the x-direction (within the smectic layer) is described by

uðxÞ ¼ u cos q?x. Since the director angle Wf � qu=qx ¼ q?u, the free energy

density in Eq. (8.49) can be rewritten in terms of the Wf-angle fluctuations:

gdistðqÞ ¼ 1

2
B
q2z
q2?
þ K11q

2
?

� �
� W2f (11.37)

For a cell of thickness d the z-component of the fluctuation wavevector is qz ¼
mp/d, see Fig. 11.12a where the corresponding harmonics are marked off by the

numbers 1, 2, 3, etc. For fluctuations along the x-axis, there is a critical vector

equals qc ¼ (p/dls)
1/2 (Eq. 8.48b), and, according to Eqs. (8.50) and (11.37), the

intensity of the scattered light is given by

I / hW2i ¼ kBT

K11 q2? þ l�2s
q2z
	
q2?

� � ¼ kBT

K11 q2? þ m2q4c=q
2
?

� � (11.38)

This formula predicts that, in the SmA phase, in a typical geometry of

Fig. 11.12b, scattering vanishes in two limits:

1. For large scattering angles 2y and wavevectors q⊥

q?>>qc; I / 1
	
q2? ! 0

K0
K

q^

2qx

d

z m=1 m=2 m=3
a b

Fig. 11.12 Light scattering by the smectic A phase. Fluctuating elastic modes in the z and x
directions in a planar cell with director n0 || z (a) and typical geometry of scattering on fluctuating

smectic layers (b)
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2. For small scattering angles 2y!0:

q? ! 0 and I / q2?
m2q4c

! 0

The maximum scattering occurs at some resonance values of the wavevector

q? ¼ m1=2qc. In fact, light propagating along z probes different qz modes with the

number m. However, in comparison with nematics, well aligned, defect-free SmA

liquid crystals are weakly scattering.

11.2 Frederiks Transition and Related Phenomena

11.2.1 Field Free Energy and Torques

Consider a nematic liquid crystal with director n¼ (1, 0, 0) aligned along the x-axis,
Fig. 11.13. The liquid crystal is placed in the magnetic field oriented at an angle a
with respect to the director, H ¼ (Hcosa, 0, Hsina), the diamagnetic anisotropy

wa ¼ w|| – w⊥ being positive. We are interested in the excess free energy of the

nematic due to the magnetic field. First we find the magnetization vector:

M ¼ w^H ¼ ðwjjH cos aÞiþ ðw?H sinaÞk
¼ w?½ðH sin aÞkþ ðH cos aÞi� þ waðH cos aÞi

or, on account of (Hn) ¼ cosa and n ¼ i, we obtain the magnetisation vector in the

form

M ¼ w?Hþ waðHnÞn (11.39)

When, instead of the magnetic field, an electric field is applied at some angle to

the director of a nematic liquid crystal, in analogy to (11.39), the electric polariza-

tion P is given by

P ¼ wE?Eþ wEa ðEnÞn (11.40)

x

z

y

H

n

a
Fig. 11.13 Vector diagram

for calculations of

magnetisation and free energy

of a nematic liquid crystal in a

magnetic field
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The magnetic field exerts a torque on the magnetisation:

GH ¼M
H ¼ waðHnÞn
H (11.41)

that directed along the y-axis in Fig. 11.13. Correspondingly, the electric field E
exerts the torque on the polarization P:

GE ¼ P
 E ¼ wEa ðEnÞn
 E ¼ ea
4p
ðEnÞn
 E (11.42)

Note that, from the tensor form e
_ ¼ 1þ 4pw_

E
, follows ea ¼ 4pwEa because the

unity is included in the isotropic part of tensor e
_
.

In each particular situation, these torques may be balanced by the elastic, surface

or viscous torques. The magnetic and electric field torques may be obtained

differently. Using minimisation of the free energy with respect to the director one

obtains the “molecular field” introduced earlier, see Eq. (8.27) and then finds the

torques as vector products with the director. Let us show it. The magnetic free

energy density is given by

gH ¼ �
ðH

0

MdH ¼�
ðH

0

½w?Hþ waðHnÞn�dH ¼ � 1

2
½w?H2 þ waðHnÞ2� (11.43)

The first term in (11.43) is independent of the director; the absolute value of the

second one is maximal for H || n that correspond to the minimum of magnetic free

energy. Minimisation of (11.43) results in a vector of the “molecular field”

hH ¼ qgH
qn
¼ �waðnHÞH

directed along H and coinciding with (8.27). The torque exerted by the “molecular

field” on the director will be

GH ¼ hH 
 n ¼ waðHnÞn
H (11.44)

that coincides with (11.41).

For the fixed electric field applied to the sample from the electrodes, instead of

Helmholtz free energy one should minimise the thermodynamic potential density:

gE ¼ � 1

4p

ZH

0

DdE ¼� 1

8p
½e?E2 þ eaðEnÞ2� (11.45)
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By analogy, the “molecular field” coming from minimisation of (11.45) is given

by (8.27) and the corresponding torque exerted by hE on the director is equal

to (11.42):

GE ¼ hE 
 n ¼ ea
4p
ðEnÞn
 E (11.46)

Example: Let the electric field 1 V/mm is applied at an angle of a ¼ p/3 to the

director of liquid crystal 5CB (e⊥¼ 6.7, e||¼ þ19.7). What are the values of the free

energy density and the electric torque?We use the Gauss system: E¼ 1/(300�10�4)¼
33.3 statV/cm, (En) ¼ Ecos(p/3); the energy(11.45) and torque (11.46) are g ¼ (6.7

þ 13�0.25)E2/8p ¼ 439 erg/cm3 (or 43.9 J/m3 in the SI system) and GE ¼ (13/4p)�
E2cos(p/3)�sin(p/3) ¼ 493 erg/cm3 (49.3 J/m3 in the SI system).

11.2.2 Experiments on Field Alignment of a Nematic

We shall discuss a very important macroscopic effect used in almost all the types of

modern displays. In his original experiment Frederiks [15] used a liquid crystal p,p0-
azoxyanisol (PAA), the grandfather of all other nematics, Fig. 11.14c. It was

oriented homeotropically in a wedge-form gap between a flat and convex glasses

as shown in Fig. 11.14a, b. The cell with PAA was placed between crossed

polarizers, heated up to about 120�C and observed with an optical system. All

this construction was installed between the poles of a magnet. In the figure, a

magnetic field H was oriented horizontally. In the absence of the field the cell

looked black. With increasing fieldH the PAA realignment began very sharply at a

certain critical field strength Hc depending on the gap thickness d. Therefore, the
birefringence appeared and the optical pattern resembled the Newton rings, but the

contrast was much higher. It was shown that product Hcd ¼ const.

Fig. 11.14 Experiment by Frederiks. Homeotropically aligned nematic PAA in a weak (a) and a

strong (b) magnetic field and the correspondent optical pictures seen between crossed polarizers;

above a certain field a distortion occurs that causes the interference pattern. (c) The chemical

formula of PAA (p,p0-azoxyanisol)
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What is the physics of the observed phenomenon? In the absence of an external

field, the elastic free energy is minimal for the vertical alignment of the director. We

know that PAA has positive anisotropy of magnetic susceptibility and the magnetic

field should align the director horizontally. However, such a rotation of the director

seems impossible as the magnetic torque GH is zero because, according to (11.44),

the molecular field equals hH ¼ �waðHnÞH and, in the experiment,H⊥ n results in

(Hn) ¼ 0. Therefore, the system must accumulate some threshold amount of the

magnetic field energy and then, accompanied by a small thermal fluctuation of the

director, abruptly change its state so that the elastic and magnetic field forces will

be in balance satisfying the minimum of free energy. This abrupt field-induced

change of the director alignment is called Frederiks transition. The threshold field

is proportional to the inverse thickness of the nematic layer and this will be

discussed below.

In practice we meet numerous situations, but there are three basic geometries

shown in Fig. 11.15. All upper sketches correspond to H < Hc, lower ones to

H>Hc. In case (a), initially nx¼ 1, ny¼ 0, nz¼ 0 and just above the threshold the z-
component of the director appears. The distortion ∂nz/∂z¼ cosW corresponds to the

splay term in the Frank energy (modulus K11). In case (b), initially nz ¼ 1, ny ¼ 0,

nx ¼ 0 and above the threshold, the component nx appears. The term ∂nx/∂z ¼ sinW
corresponds to the bend term (modulus K33). In both the cases, with further increase

of H > Hc the distortion becomes of the mixed type. In case (c), initially nx ¼ 1,

nz ¼ 0, ny ¼ 0 but above the threshold, ny appears. The term ∂ny/∂z corresponds to
the twist term (angle j, modulus K22). In this simple geometry, the twist distortion

is “pure”; it does not mixed with bend or splay.

11.2.3 Theory of Frederiks Transition

Our task now is to find the threshold field strength for the distortion and the

distribution of the director n(z) over the cell thickness above the threshold. This

time we shall take an initial homeotropic alignment, case (b) in Fig. 11.15. In its

modern form, the theory was developed by Saupe [16].

n
n nH H H

q d

x

z

a b c

Fig. 11.15 Three basic

configurations of the director

and the magnetic field for the

Frederiks transition onset,

namely, splay (a), bend
(b) and twist (c)
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11.2.3.1 Simplest Model

The geometry of the problem is illustrated in more details by Fig. 11.16. A plane

nematic layer with normal z and thickness d is confined between two infinitely wide
plates. The magnetic field is applied along x. The molecules are rigidly fixed

(anchoring energy W!1) at the opposite boundaries (W0,d ¼ 0). When the field

exceeds the critical one (Hc), the director turns through an angle W(z) in the direction
of H. Due to the up-and-down symmetry of our cell, the deflection angle must be

symmetric with respect to the middle of the cell and the maximum deflection

Wm ¼ W(d/2) occurs at z ¼ d/2 as shown schematically by the dot curve.

Our task is to find an analytical expression for W(z) at different fields. The scheme

is as follows. First we shall write a proper integral equation for the free energy.

Then, following the variational procedure discussed in Section 8.3, we compose the

Euler equation corresponding to the free energy minimum and solve this differential

equation for W(z). To simplify the problem we use the one-constant approximation

K11 ¼ K22 ¼ K33 ¼ K. In our geometry, W � nx and only one derivative, namely the

bend term with ∂nx/∂z, is essential in the Frank free energy form (8.15):

F ¼ 1

2

ðd

0

K
dW
dz

� �2

� waH
2sin2WðzÞ

" #
dz (11.47)

The magnetic part of the energy is given by Eq. (11.43).

Thus we have an integral equation for F ¼ Fðz; W; W0Þ. The Euler equation of the
general form

qF
qW
� q
qz

qF
qW0
¼ 0

gives us the expression

� 2waH
2 sin W cos W� K

q
qz

2
qW
qz
¼ 0

n

Hx

z
ϑ

0

d/2

d

ϑm

Fig. 11.16 Magnetic field induced Frederiks transition in a homeotropically aligned nematic

liquid crystal. Below the threshold the director is parallel to z; magnetic field is in the x-direction.
Dot line shows the distortion above the threshold with maximum angle Wm in the middle of the cell
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Therefore we obtain the differential equation, which express the balance of the

elastic and magnetic torques:

x2
q2W
qz2
þ sin W cos W ¼ 0 (11.48)

where x is the so-called magnetic field coherence length.

x ¼ 1

H

ffiffiffiffiffi
K

wa

s
(11.49)

We can easily check by differentiation that the first integral of (11.48) is

qW
qz

� �2

¼ � 1

x2
ðsin2WðzÞ � CÞ:

As in the middle of the cell qW=qzjd=2 ¼ 0, the arbitrary constant C is easily

found:

C ¼ sin2Wm:

Hence,

dW
dz
¼ 1

x
ðsin2Wm � sin2WÞ1=2 (11.50)

The next step is to integrate (11.50). We can do it for the lower half of the cell

0- d/2 (dashed area in Fig. 11.16):

d

2x
¼
ðWm
0

dWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2Wm � sin2W

p ¼ Fðsin WmÞ (11.51)

First order elliptic integrals F(k) are tabulated and our problem is solved. In

Fig. 11.17a the distribution of the director is qualitatively shown for increasing field

from H ¼ 0 to H4.

11.2.3.2 Threshold Condition

However, to make the result more transparent we shall look more carefully at a

simpler case of small distortions. From Fig. 11.17a one can see that, for a small

distortion, the director profile has a sine form. Consider, at first, a very severe
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approximation sinW� W, and sinWm� Wm. Then the torque balance equation (11.48)
reads:

x2
q2W
qz2
þ W ¼ 0: (11.52)

Evidently the general solution is a harmonic function, e.g. W¼ Wmsinqzþ B with

wavevector q¼ p/d. From the boundary condition at z¼ 0 or z¼ d we immediately

find B ¼ 0. Substituting W ¼ Wmsinqz into the approximate equation we get

� x2q2 þ 1 ¼ 0:

As we are interested in the extremely small W-angles, this result gives us the

threshold condition,

xc ¼
d

p
(11.53a)

or, according to (11.49), the threshold magnetic field is given by

Hc ¼ p
d

ffiffiffiffiffi
K

wa

s
(11.53b)

Thus we have obtained a nice result in complete agreement with the Frederiks

measurements,Hcd¼ const, but we have not found yet the amplitude Wm of the sine-

form solution.

d z
0 d/2

H=0

H1

H2

H3

H4

q(
z)

q m
(d

eg
)

p /4

p /2

0 1

1

2

2

3

H/Hc

4

a b

Fig. 11.17 (a) Qualitative picture of the director distribution over the cell thickness with

increasing magnetic field from H ¼ 0 to H4 in the form of elliptic-sine functions (homeotropic

alignment, W0 ¼ 0). (b) Absence of the threshold field for the initial tilted director alignment;

calculation of the maximum distortion angle Wm changing with variation of the initial uniform

director tilt W0: no tilt (curve 1 showing threshold at H/Hc ¼ 1), tilt angle W0 ¼ 1.7� (curve 2), 10�

(curve 3), 50� (curve 4)
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We can find Wm going back to the strict equation (11.51), and using the second

approximation, take sinW � W � W3/3!þ. . ., (and same for sinWm). Then, neglecting
terms of the order of W6 and higher,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2Wm � sin2W

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2m � W2

q
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

3
ðW2m þ W2Þ

q

and using expansion (1�x)�1/2 � 1 þ x/2þ. . .we obtain

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2Wm � sin2W

p � 1þ 1
6
ðW2m þ W2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2m � W2

q �

Now the equation (11.51) takes the approximate form:

d

2x
¼
ðWm
0

dWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2Wm � sin2W

p �
ðWm
0

dWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2m � W2

q þ 1

6
W2m

ðWm
0

dWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2m � W2

q þ 1

6

ðWm
0

W2dWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2m � W2

q

Finally, using standard integrals

ðWm
0

dWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2m � W2

q ¼ arcsin
W
Wm






Wm

0

¼ p
2

and

ðWm
0

W2dWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2m � W2

q ¼ �W
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2m � W2

q 




Wm

0

þ W2m
2

arcsin
W
Wm






Wm

0

¼ 0þ W2m
2
� p
2

we arrive at the expression

d

2x
� p

2
1þ W2m

6
þ W2m

12
þ :::

� �
¼ p

2
1þ W2m

4
þ ::

� �

and finally to the form:

d

px
¼ xc

x
¼ H

Hc
� 1þ W2m

4
þ ::

� �
(11.54)

The result contains two terms, the first one presents the same threshold condition

d¼ xcp, already found above and the sum of the first and the second term allows us

to find the amplitude of the low-field sine-form distortion:
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Wm �
ffiffiffiffiffiffi
4d

xp

s
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
xc
x
� 1

s
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H

Hc
� 1

r
(11.55)

This form shows that the distortion develops atH>Hc smoothly, without a jump

as in the case of second order thermodynamic transitions.

11.2.4 Generalizations of the Simplest Model

Equations (11.53a) and (11.55) have been derived using several assumptions:

1. The electric field case has not been considered and that situation is more difficult

for two reasons. First the dielectric anisotropy ea can be comparable with

average <e> and therefore the field in a distorted nematic is no longer uniform

in the z-direction. In addition, a liquid crystal can be conductive, and this can

result in some specific features, for example, there could be a flow of mass even

in the steady-state regime.

2. A difference in Frank elastic constants was ignored.

3. The field direction was selected along one of the principal axis of the liquid

crystal.

4. The infinitely strong anchoring was assumed.

5. A steady-state situation was only considered. For example, a transient flow of a

nematic (backflow) that occurs even in the case of the magnetic field was

disregarded.

Below we shall consider qualitatively other situations (all of them are easily

modeled numerically).

11.2.4.1 Electric Field Case

Now the free energy density has a form (11.45) wherein, due to a large ea the field E
becomes dependent on coordinates. In this case, one should operate with electric

displacement D. For example, in the case of the Frederiks transition and the splay

geometry of Fig. 11.15a the field strength is:

EðzÞ ¼ 4pDz

ez
¼ 4pDz

e?sin2WðzÞ þ ejj cos WðzÞ

Evidently, that the correction does not influence the threshold condition:

Ec ¼ p
d

ffiffiffiffiffiffiffiffiffi
4pK
ea

r
(11.56)
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Thus, in full analogy with (11.53b), the threshold voltage Uc ¼ Ecd is indepen-

dent of thickness! However, already at relatively small amplitude of the director

deflection from its initial orientation, Wm depends on ez and one should correct

Eq. (11.54) for dielectric anisotropy ea/e⊥:

E

Ec
¼ U

Uc
� 1þ 1

4
1þ ea

e?

� �
W2m (11.57)

11.2.4.2 Anisotropy of Elastic Properties

The Saupe solution (11.51) is not valid for different K11 and K33. To take into

account a ratio of k ¼ K33 � K11/ K11 one more term should be added to the

approximate form (11.57). Then we arrive at an even more correct form [17]:

E

Ec
� 1þ 1

4
1þ ea

e?
þ k

� �
W2m (11.58)

For positive k the initial slope of the W(z) curves in Fig. 11.17a would be steeper,
for k < 0 smoother.

11.2.4.3 Oblique Field or Tilted Alignment

If the electric (or magnetic) field is applied at a certain angle to the director in the

initial state, it creates a finite torque on the director and the Frederiks transition

becomes “thresholdless”. The same situation occurs if the field is applied along the

cell normal z but the initial alignment of a nematic is tilted at an angle 0< W0< p/2.
With increasing magnetic field the director deflection angle Wm in the middle of the

cell is growing without threshold as shown in Fig. 11.17b (results of calculations,

MBBA, d ¼ 24 mm [18]).

11.2.4.4 Weak Anchoring

When the anchoring energy Ws is finite and the field is applied, the director at the
surface has a certain freedom to turn under the action of the elastic torque from the

bulk. Then, the profile of W(z) changes. The sine-form is still can be taken as an

approximation but its half-period is no longer equal to cell thickness d. Instead we

have d + 2b where b ¼ Kii/W
s is the surface extrapolation length already discussed

in Section 10.2.4. Figure 11.18 clarifies the situation. Therefore, the threshold field

for the weak anchoring conditions is reduced according to formula:
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Hc ¼ p
d þ 2b

ffiffiffiffiffi
K

wa

s
(11.59)

In principle, the measurements of this threshold allow us to find the value of b
and then Ws. However, very thin cells have to be used to have d comparable with b
(less than 1 mm). Note that, at the ordinate axes, curve 2 cuts angles W0 and Wd off.
They depend on the anchoring strength that can be different at either interfaces. The

general solution of the same problem for arbitrary fields (up to saturation of

distortion, i.e. break of anchoring) is also known [19] and we discuss it below.

11.2.4.5 Break of Anchoring

Equation (11.53a) states that, for the infinitely strong anchoring, the threshold for

the director field distortion is determined by equality of the field coherence length x
(magnetic or electric) to the characteristic length of the cell d or, more precisely, to

the reciprocal wavevector of the weak distortion d/p. Equation (11.59) points out

that, for a weak anchoring, one reaches the threshold with increased characteristic

length (d + 2b) and, consequently, field coherence length xc ¼ (d + 2b)/p. For
infinitely weak anchoring, xc!1 and the distortion is thresholdless.

Now the question arises, how strong should be the field in order to force the

director to be parallel to the field everywhere in the cell, including near-surface

regions. Surely, for infinitely strong anchoring (b ¼ 0), such a field is infinite and,

for b!1, the threshold tends to zero. Therefore, for b>> d the value of p/b can be
taken as a wavevector of the uniform distortion throughout the cell and, by analogy

with Eq. (11.53a), we may write the threshold condition for the director saturation

xb ¼
b

p
¼ K

pWs
(11.60)

or the break-of-anchoring field. The formulas for the magnetic and electric fields

sufficient to overcome surface energy Ws and to break anchoring are given by:

d

b b z
d + 2b

q(z)
2

1

HFig. 11.18 Profiles of the

director angle W(z) in the same

magnetic field for rigid (curve

1) and weak (curve 2)

anchoring in the cell

geometry shown on the left

side
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Hb ¼ Ws

ffiffiffiffiffiffiffiffi
1

waK

s
and Eb ¼ Ws

ffiffiffiffiffiffiffiffi
4p
eaK

r
(11.61)

Here, for the threshold estimation, we used an isotropic approximation with

elastic modulus K. A precise value of the saturation field can be obtained without

such an approximation. For a homogeneous planar cell it can be found from the

equation [20]:

cth
p
2

Esat

EF

K11

K33

� �1=2
" #

¼ pK33

Wsd
� Esat

EF

K11

K33

� �1=2

(11.62)

Here Esat/EF represents the ratio of the saturation field Esat ¼ Eb to the Frederiks

transition field (electric or magnetic). As Esat/EF � d/b � 1, the left part of

Eq. (11.62) is close to 1. Therefore, assuming K11 ¼ K33 ¼ K, we turn back to

Eqs. (11.60) and (11.61). In the next chapter we shall meet the break of anchoring

effect when discussing bistable devices.

11.2.5 Dynamics of Frederiks Transition

It is simpler to examine the dynamics of the Frederiks effect for the experimental

geometry of Fig. 11.15c, since a pure twist distortion is not accompanied by the

backflow effect (see the next Section). For a twist distortion we operate with

the azimuthal director angle j(z) (sinj � ny) and the equation for rotation of the

director that expresses the balance of elastic, magnetic field and viscous torques is

given by

K22

q2j
qz2
þ waH

2 sinj cosj ¼ g1
qj
qt

: (11.63)

Here, the first two terms came from minimisation procedure of the free energy,

see Eqs. (8.15) and (11.43) and the viscous term was discussed earlier, see

Eqs. (9.31) and (9.32) [21]. In terms of the phase transition theory, Eq. (11.63)

may be regarded as the Landau-Khalatnikov equation discussed in Section 6.5.1. It

describes the director rotation in magnetic field H with rotational viscosity g1 ¼
a2 � a3 and without the director inertia term. In the limit of small j-angles, it
reduces to the linear form:

K22

q2j
qz2
þ waH

2j ¼ g1
qj
qt

(11.64)

with general solution j ¼ jm expðt=tRÞ sin pz=dð Þ. By substitution this into (11.64)
we find the characteristic time for the director reaction to the field:
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tR ¼ g1
waH2 � K22p2=d2

¼ g1
K22ðx�2 � x�2c Þ

(11.65)

where the field coherence length (11.49) includes the twist modulus K22.

At the threshold (x ¼ xc) there is a singularity, tR!1. Above the Frederiks

transition threshold H > Hc and tR is positive and distortion rises. When

the applied field is switched off, the field induced distortion relaxes with the

decay time

tD ¼ g1
K22q2

(11.66)

as for a typical hydrodynamic mode.

When the distortion is weak it is described only by the single Fourier harmonic

with wavevector q ¼ 2p/L where L ¼ 2d. With increasing field, the distortion

is characterised by elliptic-sine functions, Fig. 11.17a, with higher harmonics.

Therefore we have multiple odd sine harmonics with wavevectors qm ¼ mp/d
(m ¼ 1, 2, 3 . . .). Then, according to (11.66), each harmonic decays with its own

time, the higher the number m the faster is the decay (in analogy with string of a

guitar):

tmD ¼
g1

K22m2q2
;m ¼ 1; 2; 3::: (11.67)

11.2.6 Backflow Effect

We know that the shear-induced flow of a nematic liquid strongly influences the

alignment of the director (Section 9.3.2), i.e. there is a coupling of the two vector

fields, the director n(r) and velocity of the liquid v(r). It is quite natural to think that
the opposite effect should also exist. Indeed, one observes a strange, not monotonic

director rotation during its relaxation from the field-induced quasi-homeotropic

alignment to the initial, field-off planar one. Normally, the elastic force should

smoothly rotate the director from y ¼ 0 (parallel to the cell normal) to 90�, but, in
experiment, the director angle may exceed 90� during the relaxation. As a result, in
the optical transmission one observes a characteristic bump.

The reason for this is a flow of the nematic, which is lunched by the director

rotation. The flow arises in the beginning of the director relaxation process when the

elastic torque exerted on the director is very high near both interfaces due to a

strong curvature of the director field. However, the curvature at the two interfaces

has different sign, see Fig. 11.19a, where dW(z) ¼ (p/2) � W. Therefore, the flow of

nematic fluid coupled to the director rotation (backflow) at the two interfaces is
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opposite. It is shown in Fig. 11.19b by velocity arrows. In the middle of the cell the

gradient of velocity (shear) is very strong (shown by dash arrows). No wander that,

in the middle of the cell, where the elastic torque is weak, the flow-induced torque

prevails and rotates the director to the angles y exceeding 90�.
It is interesting that, although the same effect is also observed during the director

relaxation from the field-on planar texture to the field-off homeotropic one, it is

much weaker. Note that, in the first case, we deal with the bend distortion near

surfaces (torque MB), but, in the second case, with the splay one (torque MS). In

both cases, a strong elastic torque rotates the director, let say, with the same angular

rate N. However, due to friction a viscous torque appears, which is exerted by

rotating molecules onto adjacent parts of the liquid crystal. The absolute value of

the viscous torque related to the bend distortion Mb ¼ 1
2
ðg1 � g2ÞN ¼ �a2N con-

siderably exceeds the torque related to the splay Ms ¼ 1
2
ðg1 þ g2ÞN ¼ a3N because

|a2|>>|a3|. Therefore, the backflow is especially important for the initial home-

otropic orientation. Note that there is no backflow for the twist distortion that does

not change the position of the centers of gravity of the molecules.

If we are going to discuss the problem of the director relaxation with allowance

for the backflow, we should write two equations of motion, one for the director and

the other for the mass of liquid [22]. Each of the equations should include coupling

terms describing influence of the director motion on the flow and vice versa.
According to Fig. 11.19, the splay and bend distortions take place in the xz plane
and the vector of flow velocity is assumed to have only one component, v ¼ vx(z)
parallel to the substrates because the y -component is forbidden by symmetry

and the z-component should vanish according to the mass continuity equation

(divv ¼ 0). Therefore, in the absence of an external force and neglecting the

convective term and pressure in the tensor of momentum density flux (9.10), the

equation for momentum conservation (9.8) is given by:

r
qvx
qt
¼ qs0xz

qz
¼ q

qz
A
qW
qt
þ B

qvx
qz

� �
(11.68)

Here, director n ¼ (sinW � W, 0, cosW � 1), the term with friction coefficient B is

the standard Navier-Stokes terms (9.15) of the type r∂v/∂t ¼ �∂2v/∂z2 (B is

dq (z) Vx(z)

Vx(z)z

ns

p /20

d

torque

x

a b

Fig. 11.19 Backflow effect. The profile of the director in the field-on regime with steep parts close

to interfaces at z ¼ 0 and z ¼ d (a). The direction of the torques is shown by small arrows in the

right part of sketch (b) and a profile of the velocity is shown by thin arrows in the left part of the

sketch. The strongest gradient of velocity is in the middle of the cell (dash arrows)
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combination of Leslie coefficients coming from the viscous stress tensor for

nematics s0xz (9.20)). The coupling term with friction coefficient A takes into

account the influence of the director rotation with angular velocity N ¼ ∂W/∂t on
the flow acceleration controlled by Leslie coefficients a2 and a3 (backflow effect).

The second equation describes the relaxation of the director

g1
qW
qt
¼ K

q2W
qz2
� A

qvx
qz

(11.69)

It is the same general equation (9.22) for director motion adapted to our simple

situation: we have the familiar form (9.32) for the elastic and viscous torques and, in

addition, the coupling term with the same coefficient A describing the torque

exerted on the director by shear ∂vx/∂z.
Numerical solution of the two equations results in the time variation of the

velocity vx(z) and director W(z) along the cell thickness as shown in the same

Fig. 11.19 for a particular time t. At a certain moment, the angle W in the middle

of the cell may cross zero (vertical line) and change sign. In the figure the profile of

velocity is antisymmetric. The question arises how this symmetry is consistent with

initial symmetry of the cell. The symmetry is indeed broken locally on the scale of

one vortex. But in the neighbor area the direction of the director rotation is different

and the flow velocity has an opposite sign. Therefore the total dynamic symmetry of

the whole cell is consistent with boundary conditions. The backflow effect consid-

erably influences the dynamic of the director relaxation and this phenomenon is used

in bistable displays (Chapter 12). By controlling the velocity of flow using a special

form of the applied voltage one can select one of the two final stable field-off states.

11.2.7 Electrooptical Response

If a nematic liquid crystal has negligible conductivity the results of Sections

11.2.1–11.2.5 for the Frederiks transition induced by a magnetic field may be directly

applied to the electric field case. To this effect, it suffices to substituteH by E and all

components of magnetic susceptibility tensor wij by correspondent components of

dielectric permittivity tensor eij. From the practical point of view the electrooptical

effects are much more important and further on we discuss the optical response of

nematics to the electric field.

11.2.7.1 Splay-Bend Distortions

We discuss the splay-bend distortion induced by an electric voltage applied to a

cell similar to that shown in Fig. 11.16 using two transparent electrodes at z ¼ 0

and z ¼ d. The distortion is easy to observe optically for the cell birefringence.

The splay-bend cell behaves like a birefringent plate discussed in Section 11.1.1

but now the plate birefringence is controlled by the field. The optical anisotropy
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Dn(z) ¼ ne � no depends on the angle of the director W(z), which has a certain

distribution over the cell thickness. In the absence of the twist, the splay-bend

distortion is limited by the x,z-plane, the ordinary refraction index is independent of
W, no ¼ n⊥, but the extraordinary index ne(W) given by Eq. (11.6) becomes a

function of position z of the dielectric ellipsoid within the cell thickness.

neðzÞ ¼
njjn?

n2jjcos
2WðzÞ þ n2?sin

2WðzÞ
h i1=2 (11.70)

The corresponding phase retardation is obtained by integrating (11.70) over the

cell thickness:

d ¼ 2p
l

ðd

0

½neðzÞ � noÞdz ¼ 2pdhDni
l

(11.71)

The averaged value of <Dn> and, consequently, d are voltage dependent.

Usually a liquid crystal cell equipped with thin tin dioxide (SnO2) or indium-tin-oxide

(ITO) electrodes is placed between two crossed polarizers and illuminated by

filtered white light or laser light (for example, of a He-Ne laser, l ¼ 632.8 nm)

and the transmitted intensity is recorded using a photodetector, Fig. 11.20. The

output light intensity depends on the angle f between the axis of the polarizer and

the projection of the director on the cell plane and on the phase retardation d(U)
controlled by voltage:

I ¼ I0sin
22j � sin2 dðUÞ

2

The oscillations of I (U) are well seen in the experimental plot, Fig. 11.21. The

measurements were made at 27�C on 55 mm thick cell filled with a mixture having

ea ¼ 22. From the I (U) curve, the field dependence of the phase retardation d(U)
and the Frederiks transition threshold Ucwere obtained. In turn, from Ec¼Uc/d and
Eq. (11.56) the splay elastic constant K11 was found. The bend modulus K33 was

calculated from the derivative dd/dU. The same material parameters may be found

for the whole temperature range of the nematic phase.

Polarizer LC cell Analyzer

He-Ne laser
Photodiode or
photomultiplier

Fig. 11.20 A typical set-up for electrooptic measurements of liquid crystal physical parameters
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Note that the voltage necessary to modulate monochromatic light by 2p (between
two spikes) is less than 0.1 V. The modulation by p or 2p can also be obtained in

dynamics, during switching the field on and off. The oscillograms are shown in

Fig. 11.22. By proper selection of the voltage shape and using the dual frequency

mode of addressing (for materials with frequency inversion of sign of dielectric

anisotropy), one can modulate the optical transmission as fast as 1 ms. Of course,
solid state modulators are much faster, but we should not forget that a liquid crystal

cell may consist of thousands pixels and be controlled by low voltages. Such

regimes are used for image processing in adaptive optics and other applications.
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Fig. 11.21 The oscillating experimental curve I(U) (right axis) is voltage dependent intensity of

the light transmitted by the 50 mm thick planar nematic cell placed between crossed polarizers (the

logarithmic voltage scale for I(U) is the bottom axis). The pointed curve is the voltage dependence

of phase retardation d calculated from curve I(U) with a Frederiks transition threshold at Uc (the

scale for d(U) is on the top axis and its argument i.e. voltage is on the left axis)
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Fig. 11.22 Dynamic of the

electrooptical response of a

planar nematic cell: the

voltage pulse U (upper plot)
and the transient intensity of

transmitted monochromatic

light I (lower plot)
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11.2.7.2 Twist and Supertwist Effects

Let the director at the two opposite electrodes be aligned along x and y, respec-
tively. As discussed in Sections 8.3.2, for strong anchoring at the boundaries, the

azimuthal angle j in the bulk changes linearly with z. Then, under condition Dnd/l
> 1 such a twisted layer rotates the polarization vector of light of any wavelength l
through the angle p/2. This is the waveguide regime already discussed in Sec-

tion 11.1.1. With typical values of Dn � 0.15, l � 0.5 mm, this regime takes place

for cell thickness d > 3 mm. Therefore, a typical twist cell of thickness about 5 mm
placed between crossed polarizer and analyser oriented, respectively along x and y,
is completely transparent (with some attenuation due to non-ideal polarizers).

However, upon application of a voltage, the director is realigned along the field,

the twist cell no longer rotates the light polarization, and the outgoing light is

completely absorbed by the analyser. For parallel polarizers, on the contrary, the

OFF-state is dark and the ON-state bright. It is important that the so-called twist

effect is almost insensitive to light wavelength [23].

Twist cells are widely used in modern technology of simple, low-informative

displays (watches, calculators, telephones, dashboards, etc). Their advantages are

high contrast, simplicity and stability. But for high information displays their

contrast characteristics are not steep enough. This hampers the application of twist

cells to multiplexing schemes. Multiplexed displays use electrodes in the form of

the x,ymatrix and each pixel is situated on an intersection of the x and y bars. When

a selected pixel is activated by voltage U, other pixels along the same x and y bars
inevitably activated by voltage U/2 (the so-called cross-talk effect). Therefore, to

activate solely one selected pixel, the contrast curve must be steep and the larger the

number of bars in a matrix the steeper should be the contrast curve. For this reason,

the cells with an initial director twist angle larger than p/2, the so-called supertwist
cells are more preferable for high information content displays. In addition they

show better angular characteristics but, unfortunately, they are more sensitive to the

cell gap and have longer response times.

11.2.7.3 Guest-Host Effect

This effect is a version of the splay-bend Frederiks transition, but it is observed in

liquid crystals doped with dyes. The liquid crystalline matrix (the host) is subjected

to the influence of a field; the function of the dye (the guest) is to enable the effect to

be seen with only one polarizer or even without any.

In the Fig. 11.23a a typical electro-optical cell is shown with a homogeneous

alignment of a nematic and ea> 0. A small amount (few percents) of a proper dye is

dissolved in the liquid crystal. The dye molecules are elongated in shape, and the

dipole moment of their long-wave optical transition is parallel to the long molecular

axis. In the absence of a field, the optical density of the cell varies with the linear

polarization of the light e from D|| (e || n) to D⊥ (e ⊥ n). When a voltage exceeding

the threshold for the Frederiks transition is applied to the cell, the liquid crystal is

11.2 Frederiks Transition and Related Phenomena 321

http://Sections&nbsp;8.3.2


realigned along the field and so the dye molecules are reoriented. If the field is

strong enough, the optical densities for light of both polarizations become the same,

Fig. 11.23b. Therefore, for the light polarised along the initial alignment of the

director, the field induced decrement of density DD(E) ¼ D||(0) – D⊥(0) is very

large. The ratio of the corresponding transmitted light intensities for the field-on

and field-off states can be as high as 100. This effect is interesting for colour

displays. For more detailed information about various electrooptical effects and

liquid crystal displays and other devices see [24].

11.3 Flexoelectricity

We know that the quadratic-in-field coupling of an electric field to the dielectric

tensor contributes to the free energy density with the term gE ¼ �eaE2=8p. When

liquid crystals possess macroscopic electric polarization P (spontaneous or induced

by some external, other than electric field factors), then an additional, linear-in-field

term gE ¼ �PE is added to the free energy density. One of such a source of the

macroscopic electric polarization is orientational distortion of a liquid crystal.

11.3.1 Flexoelectric Polarization

11.3.1.1 Dipolar and Quadrupolar Flexoelectricity

Let us look at Fig. 11.24. In the upper two sketches, we can see undistorted nematic

liquid crystals with pear- and banana-shape molecules. Such nematics in the bulk

D
D

DD

n(E)

n0

D^(0)

D||(0)

D||(E)

D^(E)

e

+ –

e

ll

a bFig. 11.23 Guest-host effect.

Field-off (a) and field-on (b)
cell configurations and

absorbance spectra for a

nematic liquid crystal doped

with a dye having elongated

molecules shown by small

black spherocylinders
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are non-polar due to free or partially hindered rotation of molecules (even polar)

about all their axes. Imagine now that, in the absence of the electric field, the same

nematics are subjected to the splay (left) or bend (right) distortions, respectively.

For example, such distortion arises spontaneously in wedge form cells with rigid

boundary conditions for the director. For a moment we may forget that molecules

have dipoles. Nevertheless, due to the change in symmetry from cylindrical D1h to

conical C1v (for splay) or to C2v (for bend), in both cases the corresponding polar

axes appear. Their directions are shown by long vertical arrows. It is not surprising

because the splay (ndivn) and bend (n 
 curln) distortions are vectors.
The new polar symmetry allows for the existence of macroscopic polarization,

large or small, depending on the magnitude of the strain and molecular dipole

moments shown by small arrows. Due to the distortions, the densest packing of our

pears and bananas results in some preferable alignment of molecular skeletons in

such a way that molecular dipoles look more up than down. By definition, the dipole

moment of the unit volume is electric polarization. These simple arguments brought

R. Meyer to the brilliant idea of piezoelectric polarization [25]:

Pf ¼ e1n divn� e3ðn
 curlnÞ (11.72)

The term piezoelectric was borrowed from the physics of solids by analogy to

the piezoelectric effect in crystals without center of symmetry. As a rule, the

piezoelectric polarization manifests itself as a charge on the surfaces of a crystal

due to a translational deformation, e.g. compression or extension. Piezo-effects are

also characteristic of polar liquid crystalline phases, e.g., of the chiral smectic C*

phase. The polarization, we are interested now, is caused by the mechanical

curvature (or flexion) of the director field, and, following De Gennes, we call it

flexoelectric.
In Eq. (11.72) there are two terms related, respectively to the splay and bend

distortions with corresponding flexoelectric coefficients e1 and e3. Indeed, the divn

Spled Bend

z

x
Polar axis

–

+
–

+

a

b

Fig. 11.24 Dipolar

flexoelectric polarization.

Pear-shape and banana-shape

molecules in undistorted

nematic liquid crystals

without any polar axes (a) and
appearance of polar axes and

flexoelectric polarization

along the z-direction in the

same nematics due,

correspondingly, splay and

bend distortion (b)
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is scalar and vector Pf (splay) coincides with the director n. In the case of bend, with
director components (nx¼1, 0, 0), the curvature vector curln ¼ (∂nx/∂z)j (along y)
and n 
 curln ¼ nx(∂nx/∂z)k, therefore vector Pf (bend) is also directed along z, as
shown in the same figure. Note, that the twist distortion corresponding to scalar

product n�curln cannot create polarization.

Now, what would happen if molecules have no dipole moments? Would flex-

oelectricity be observed? Generally yes, because in addition to the dipolar mecha-

nism, there is, at least, one more, namely, the quadrupolar one. An example is

shown in Fig. 11.25: a splay distortion creates additional positive charges at the

bottom of the ensemble of quadrupoles due to an enhanced packing density. The

upper part is less positively charged, therefore polarization Pf is directed down [26].

A similar difference in the negative charge density will be seen for the bend

distortion. Now, if we introduce the density of the quadrupole moment, as a sum

of molecular quadrupole moments in a unit volume that is a tensor of quadrupole

density, see Eq. (10.17), then its gradient is the vector of flexoelectric polarization.

Since this tensor is proportional to the orientational order parameter Q
_

, the quad-

rupolar contribution to the flexoelectric polarization (for e ¼ e1 + e3 in the first

approximation) is given by:

PQ
f ¼ erQ_ (11.73)

Wealready discussed this case in relation to the surface polarization (Section 10.1.3).

Generally both dipolar and quadrupolar mechanisms contribute to Pf but the

temperature dependence of the corresponding coefficients is different, eq / S(T)
for the quadrupolar mechanism, but ed/ S2(T) for the dipolar one. The flexoelectric
coefficients have the dimension of (CGSQ/cm or C/m) and the order of magnitude,

e ~ 10�4 CGS units (or ~3 pC/m). The flexoelectricity is also observed in the SmA

phase [27].
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a bFig. 11.25 Quadrupolar

flexoelectric polarization.

Undistorted nematic phase

consisted solely of molecular

quadrupoles (a) and
appearance of a polar axis and

flexoelectric polarization due

to splay distortion (b). Note
that in the lower part of (b)
the density of positive charges

is larger than in the upper part

whereas in sketch (a) these
densities are equal
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11.3.1.2 A Hybrid Cell

The director at one of the boundaries of a hybrid cell is aligned homeotropically, at

the opposite boundary homogeneously as was shown earlier in Fig. 10.11. There-

fore, a hybrid cell has intrinsic bend-splay distortion and must have a projection

of the macroscopic polarization along the cell normal. We can clearly see in

Figs. 10.11 and 11.25 how the quadrupolar polarization emerges. The molecules

may have positive (e0 > 0) quadrupoles shown in Fig. 11.25 or negative ones

(e0 < 0) seen in Inset to Fig. 11.26b.

For a hybrid cell the flexoelectric polarization can easily be calculated. In

Fig. 11.26a, the profile of the director is n(z) with boundary conditions W(0) ¼ p/2 and

W(d) ¼ 0. These angles are rigidly fixed. The components of the director are nx ¼
sinW, ny ¼ 0, nz ¼ cosW. To calculate the polarization we have to find distribution

Pf(z) using Meyer’s equation (11.72), and after integrating over z, to obtain total

polarization of the cell. In the considered geometry:

n ¼ i sin WðzÞ þ k cos WðzÞ; divn ¼ � sinW
dW
dz

; curln ¼ cos W
dW
dz

j;

n
 curln ¼ ð�i cos Wþ k sin WÞ cos W dW
dz

Then splay and bend polarization contributions are:

Psplay
f ¼ �e1 sin W dW

dz
� i sin Wþ k cos Wð Þ

Pbend
f ¼ �e3 cos W dW

dz
ð�i cos Wþ k sin WÞ

Pz
RL
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Fig. 11.26 A scheme of a hybrid cell that supports the splay-bend distortion and manifests the

flexoelectric polarization (a) and an experimental temperature dependence of the sum of flexo-

electric coefficients in the nematic phase of liquid crystal 5CB (b)
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Combining the x and z components we obtain projections of the total flexo-

electric polarization on the x- and z- axes with Pfy ¼ 0:

Pfx ¼ �e1sin2Wþ e3cos
2W

� � dW
dz

(11.74a)

Pfz ¼ �1
2
ðe1 þ e3Þ sin 2W dW

dz
(11.74b)

From (11.74) we see, that the z-component depends on the sum e ¼ e1 + e3 and,
for negative e, Pfz should be directed from the homeotropic to planar interface.

After integrating over cell thickness the average cell polarization along z is given by

Pfz

� � ¼ 1

d

ðd

0

Pfzdz ¼ e1 þ e3
4d

ðcos 2Wd � cos 2W0Þ ¼ � e1 þ e3
2d

: (11.75)

Therefore, if we could measure the z-component of the polarization of a hybrid

cell we find e ¼ e1 + e3. The main problem is screening the polarization by free

charges. What we do measure is a change in polarization, induced by some external

factors, but not polarization itself.

11.3.1.3 Measurements of Pf

It is not difficult to measure the temperature derivative dPf /dT that is pyroelectric

coefficient within the temperature range of the nematic phase. Then, integrating it

over temperature from the temperature point where Pf ¼ 0 we can find Pf(T). As a
zero point, any temperature Ti within the isotropic phase may be taken.

We measure pyroelectric coefficient g¼ dPf/dT, using heating the hybrid cell by
short (~10 ns) laser pulses, as shown in Fig. 10.13. The only difference from the

surface polarization measurements is using a hybrid cell instead of uniform (planar

or homeotropic) cells [28]. The laser pulse produces a temperature increment about

DT� 0.05 K and the flexoelectric polarization changes. To compensate this change,

a charge passes through the external circuit and the current i¼ dq/dt is measured by

an oscilloscope. From the identity (A is cell area)

i ¼ qq
qt
¼ A

qP
qt
¼ A

qP
qT

qT
qt
¼ Ag

qT
qt

the polarization is given by

Pf ðTÞ ¼
ðT

Ti

gðTÞdT: (11.76)
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With a short laser pulse, the derivative ∂T/∂t is just a jump, therefore, pyroelec-

tric coefficient g(T) can be easily calculated at any temperature of the nematic

phase. An example of the Pf(T) dependence is shown in Fig. 11.26b. The maximum

value of e for 5CB is �3.6�10�4 CGS (or –12 pC/m). It means that the molecular

quadrupole has the form shown in the Inset to the same figure. There are some other

methods to find the sum of the flexoelectric coefficients based, e.g., on the electro-

optical techniques but they are not as straightforward as the pyroelectric technique.

For conventional nematics the order of magnitude �10�4 CGS of the flexo-

electric coefficient is quite reasonable. There are, however, nematics composed of

bent-shape (banana-like) molecules with transverse dipole moments for which three

orders of magnitude larger flexoelectric coefficient has been reported [29]. If such a

material is placed between two flexible polymer sheets covered with electrodes and

subjected to periodic bending, the current in the range of few nA is observed. The

reason for such a giant effect is probably related to the formation of big polar

clusters in the nematic phase, that is to a short-range order effect related to the break

of quadrupolar symmetry similar to the break of mirror symmetry that discussed in

Section 4.11. Whatever mechanism is, the effect may be useful for micro-devices

converting mechanical energy in the electric one.

11.3.2 Converse Flexoelectric Effect

11.3.2.1 Uniform Distortion

As has been shown, the splay and bend distortions of a nematic create electric

polarization. There is also a converse effect; the external electric field causes a

distortion due to the flexoelectric mechanism. For example, if the banana-shape

molecules with transverse dipoles are placed in the electric field, the dipoles are

partially aligned along the field and their banana shape induces some bend. This

effect takes place even in nematics with zero dielectric anisotropy.

Let the director of a nematic liquid crystal be aligned homeotropically (n || z) and
the uniform field E || x as shown in Fig. 11.27a. For negative ea, in the absence of

the flexoelectric effect, such a situation is stable at any field strength. However, in

experiment [30] the bend distortion is observed and its magnitude calculated. For

zero anchoring energy and small distortions, the components of the director

are:nz ¼ cos yðzÞ � 1; nx ¼ sin yðzÞ � yðzÞ and ny ¼ 0, hence,

divn ¼ qnz=qz ¼ � sin WqW=qz; and n divn � � sin WqW=qzk;

curln ¼ qnx=qzj ¼ qW=qzj; and n
 curln ¼ k
 qW=qzj ¼ �qW=qzi:

Therefore, for a small distortion, we can leave only the x-component of the total

flexoelectric polarization (11.72):
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Pfx � e3
qy
qz

For ea¼ 0, the free energy density in the bulk includes only the flexoelectric and

the elastic (bend) terms:

g ¼ �PfxEþ K33

2
� qy

qz

� �2

¼ K33

2
� qy

qz

� �2

� e3E
qW
qz

(11.77)

Here we ignore the surface energy (Ws ¼ 0) and the director is free to deflect at

both boundaries perpendicular to z. According to Euler equation (8.22), the mini-

misation over ∂W/∂z results in the torque balance:

0� d

dz
K33

qW
qz
� e3E

� �
¼ 0 or K33

qW
qz
� e3E

� �
¼ const (11.78)

Hence

qy
qz
¼ e3E

K33

þ C1;

In zero field ∂W/∂z ¼ 0 everywhere, therefore C1 ¼ 0,

y ¼ e3E

K33

z and Pf ¼ e23E

K33

¼ const (11.79)

Here z ¼ 0 is taken in the middle of the layer. The resulting distortion angle is

shown in Fig. 11.27b. In the middle of the cell the director keeps its equilibrium

z

0

d/2 d/2

Jm

-Jm

0

no

ne(z)

Ws¹0
Light

z

Ex

a b

-

Fig. 11.27 Converse flexoelectric effect: (a) Structure of the electrooptical cell. (b) Distribution
of the director angle over the cell thickness pictured by lower straight lines for zero (solid line) and
finite (dot line) anchoring energies, respectively. The upper curves show spatial dependence of two

principal refraction indices no (dash line) and ne (z) (solid line)
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orientation and the maximal deflection angles of the director occur at the restricting

surfaces,

ym ¼ � e3Ed

2K33

:

Such an antisymmetric distortion differs from the symmetric distortion charac-

teristic of the Frederiks transition. It is instructive to compare these two cases. In

Fig. 11.28 the space distributions of the director n and its x-projection nx¼ sinW� W
are pictured for the Fredericks transition (a) and flexoelectric effect (b); the anchor-
ing energy at both surfaces is infinitely strong in case (a) and finite in case (b).

Note that, in the free energy density expansion (11.77), the flexoelectric term is

proportional to the first derivative ∂W/∂z. Therefore, upon integration over the cell

thickness, it gives only surface energy termsW(W�d/2). Correspondingly, the torque
balance (11.78) shows the absence of the flexoelectric torque in the bulk of a cell for

the uniform field Ex:

d

dz
K33

qW
qz
� e3Ex

� �
¼ K33

d2W
dz2

(11.80)

Evidently, the distortion comes in from the boundaries. It means that weak

anchoring of a nematic liquid crystal at the surfaces is a necessary condition for

the one-dimensional distortion considered. It is interesting that, for a finite, but

weak anchoring, the linear profile of W(z) remains, although the maximum values

Wm at the glass surfaces (z ¼ –d/2 and +d/2) reduces. The higher the anchoring

energy the smaller is Wm. In experiment this may look like a decrease in an effective

flexoelectric coefficient. The profiles of the director angles and refraction indices

are shown in Fig. 11.27b, the solid and dotted lines for W correspond toWs ¼ 0 and

Ws > 0, respectively.

Fig. 11.28 Comparison of the distortion profile (molecular picture below and angle W(z) above)
for the Frederiks transition with infinite anchoring energies (a) and flexoelectric effect with finite

anchoring energies (b) (homeotropic initial director alignment in both cases)
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11.3.2.2 Electrooptical Properties

Due to the linear profile of W(z) it is very easy to calculate the phase retardation of

the initially homeotropic cell for the normal light incidence, k||z. Without electric

field, the longest axis of the dielectric ellipsoid coincides with the director axis z.
Therefore, refraction index for any polarization is no¼ n⊥. With increasing field Ex,

due to deflection of the director within plane xz, the y- and x-components of the

refraction index will correspond to the ordinary and extraordinary rays, ny ¼ no ¼
n⊥, nx(z) ¼ ne(z). Integration provides us with the average extraordinary index:

<ne> ¼ 1

d

ðd=2

�d=2

n?njj

n2?sin
2Wþ n2jjcos

2W
� �1=2 dz

For small distortions, expanding sinW� W, cosW� 1�W2/2!, cos2W� 1�W2+.. we
obtain

<ne> ¼ 1

d

ðd=2

�d=2

n?

1� 1� n2?
.
n2jj

� �
W2


 �1=2 dz

� 1

d

ðd=2

�d=2

n? þ n?
2

1� n2?
.
n2jj

� �
W2


 �
dz

Substituting y ¼ e3Ez=K33 from (11.79) (case of zero anchoring energy) and

integrating we obtain

<ne> � n? þ n?
2d

1� n2?
.
n2jj

� �
e3E

K33

� �2 ðd=2

�d=2

z2dz with

ðd=2

�d=2

z2dz ¼ d3

12

Finally the phase retardation d ¼ 2pd(ne�no)/ l:

d ¼ 2p
l

e3
K33

� �2

1� n2?
n2jj

 !
n?d3

24
E2 (11.81)

The dependencies d/ d3 and d/ E2 agree well with experiment [30]. Therefore,

in principle, we can find e3 from the measured value of the cell retardation because

usually K33 is known from the Frederiks transition threshold. However, in a real

experiment it is almost impossible to have zero anchoring energy. For the finite

anchoring energy, we can only find ratio e3/Ws and the accuracy of determination
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of e3 depends on the value of Ws, which varies within several orders of magnitude

and is difficult to measure with sufficient accuracy. Another factor that may

influence the estimation of flexoelectric coefficients is the surface polarization

discussed above. When the dielectric anisotropy is finite the distortion has a more

complicated character due to a competition of the dielectric (as for Frederiks

transition) and flexoelectric torques [31].

The flexoelectric effect can also be observed in other geometries. For example,

the field can be applied along the normal of an electrooptical cell. For a home-

otropic cell, the splay flexoelectric distortion shown in Fig. 11.29a is observed for

ea � 0 and weak anchoring energy, at least, at one interface. Another interesting

geometry where the splay flexoelectric distortion is also possible is a planar

homogeneous alignment of the director with asymmetric anchoring: it is strong

on the top and weak at the bottom, see Fig. 11.29b. In both cases, the surface

flexoelectric torque is equal to (e1 þ e3)EWs [31].

11.3.2.3 Dynamics of the Flexoelectric Effect

Consider the same bend distortions caused by field Ex and shown in Fig. 11.28 and

assume that distortions are small. What happens if we switched the field off? In the

torque balance equation for “Frederiks” distortion (a), we shall have two contribu-

tions, elastic and viscous:

K33

q2W
qz2
¼ g1

qW
qt

(11.82)

with general solution W ¼ Wm exp t=t sin qz where q ¼ p=d. In this case, we have a

relaxation process with a single spatial Fourier harmonic and the characteristic bulk

E=0 E=0
E E

qs qs

z=d/2

z=–d/2 z=–d/2

z=d/2W1Æµ

W2Æ0 W2Æ0

W1Æµ

z

x

a b

Fig. 11.29 Conversed flexoelectric effect in cells with homeotropic (a) and homogeneous (b)
director alignment and electric field applied along the cell normal. Weak anchoring energy at the

bottom plate allows the flexoelectric deflection of the director Ws at the surface propagating up in

the vertical direction (ea ¼ 0)
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relaxation time is basically controlled by the cell thickness: tbulk ¼ g1=K33q
2

¼ g1d
2=p2K33. For the finite anchoring the situation is similar; we should just

substitute thickness d by d + 2b where b is surface extrapolation length given by

b ¼ K33/W
s. For the anchoring energies W s� 10�3 – 10�2 erg/cm2 (homeotropic

alignment), b� 10�3 – 10�4cm, d þ 2b � 30 mm (3�10�3 cm), g1 � 1 P, and K33�
10�6 dyn, the relaxation time is tbulk ¼ g1/K33q

2 � 1 s.

Equation (11.82) is valid for the flexoelectric distortion (b) as well, but it does
not have a sine-form profile and we cannot expect a simple relaxation process.

Moreover, this distortion is controlled by boundary conditions that generally

include the Rapini-type surface torque, elastic and flexoelectric torques:

K33

qy
qz






z¼�d=2

�Ws
i y



z¼�d=2

� e3E ¼ 0 (11.83)

For free relaxation, the term e3E ¼ 0 but the Rapini terms Ws at each surface

dramatically influence the relaxation process. The relaxation time of the director at

the surface ts is controlled by the wavevector qs � p/b. For the same parameters as

above ts¼ g1/K33qs
2� 1 – 100 ms that is ts<< tbulk and relaxation process starting

from the surface propagates into the bulk. When an oscillating field is applied to a

cell the waves of the director realignment spread from the boundaries into the bulk

[32]. It is very convenient to observe the near-surface director oscillations using

total internal reflection technique [33]. With such a technique the flexoelectric

effect is observed at frequencies as high as 10 kHz.

11.3.3 Flexoelectric Domains

There is a very interesting example of the flexoelectric torque acting on the director

in the bulk. In a typical planar nematic cell the director is strongly anchored at both

interfaces, ns¼ (1, 0, 0) and the electric field is directed along z. The conductivity is
low and the dielectric anisotropy is either zero or small negative, such that the

dielectric torque may only weakly stabilize the initial planar structure. Upon the dc

field application, a pattern in the form of stripes parallel to the initial director

orientation in the bulk n0||x is observed in the polarization microscope. The most

interesting feature of these domains is substantial field dependence of their spatial

period as shown in Fig. 11.30 [34].

The period of the stripes and the threshold voltage for their appearance have been

found [35] by minimising the free energy of the nematic in an electric field, taking

into account the flexoelectric (PfE) and dielectric ea(En)
2/4p terms. The solution of

the torque balance equations for angles j (counted from xwithin the xy plane) and W
(counted from x within the xy plane) has been found in the form of equations

j ¼ j0 sinðqyÞ cosðpz=dÞ; W ¼ W0 cosðqyÞ cosðpz=dÞ
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The emergence of the pattern has a threshold character. The critical voltage and

the stripe width at the threshold are given by:

Uc ¼ 2pK
jejð1� mÞ

and

wc ¼ d

p
1þ m
1� m

� �1=2

(11.84)

where

m ¼ eaK
4pe2

and

e ¼ e1 þ e3

Therefore, in a nematic with compensated anisotropy, ea � 0, the threshold

voltage is controlled exclusively by ratio K/e, therefore the flexoelectric coefficient
is easily found from the bulk effect, e � 2�10�4 CGSE at room temperature [34].

It is very peculiar that the spatial distribution of the director field of the

modulated structure forms a chiral structure. This became evident much later [36]

when the numerical calculations had been made in the same geometry with director

components nx� 1, n0y¼ cosqy, n0z¼ sinqy. Thus the projections of the director on
the zy plane, i.e. n⊥ ¼ ( ny, nz) rotate about the x-axis upon translation along the

y-axis. The corresponding picture is demonstrated in Fig. 11.31. The calculations

show that the chirality changes its handedness when the sign of the electric field

applied in the z-direction inverses. Therefore, we again see the field induced break

of the mirror symmetry.

As shown both in experiments and calculations, the domain period w decreases

with increasing voltage approximately as w ~ U –1. This is a very rare or even

Fig. 11.30 Flexoelectric instability. Photos of flexoelectric domains with a period variable by

electric field (nematic cell thickness 12 mm)
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unique case: in fact, the “flexoelectric cells” discussed represent diffraction gratings

with period controlled by the electric field. Such gratings have been used for

processing of optical information.

11.4 Electrohydrodynamic Instability

In this Section, we shall briefly discuss the electrohydrodynamic (EHD) instabilities

of nematics, which are caused by an electric field induced flow of the substance.

There are many interesting critical phenomena of this sort discussed in detail

elsewhere [7,37,38], but here we shall consider in more detail only one but very

representative example of the EHD instability owed to the anisotropy of electric

conductivity.

11.4.1 The Reasons for Instabilities

Let us take a small volume of a liquid and consider two forces, the gravity force that

push that volume down and the buoyancy force that push it up. Such a situation

happens when a liquid is heated from below in a shallow pan: then, with increasing

temperature, warm bottom layers of the liquid tend to rise but the upper cool layers

tend to sink, Fig. 11.32a. Evidently, the two vertical forces (both along the z-axis)
counteract and we are tempted to conclude that warm liquid would penetrate

through the cold one. In reality, however, a nice steady-state periodic pattern of

flow is observed in the horizontal plane xy due to up and down vertical streams.

Fig. 11.31 Flexoelectric

instability. Periodic structure

of the field induced director

distribution along the y-axis
represented by projections nz
and ny
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Such a pattern occurs at a critical value of the vertical temperature gradientrTc and
has a form of a two-dimensional hexagonal lattice. This is another example of a

break of the symmetry of the system caused by convective hydrodynamic instabil-

ity, the so-called Benard instability.
Imagine now that there is a capacitor filled with an insulating liquid and the

electric field E is applied along the normal to the capacitor plates. Assume that the

lower electrode injects positive charges Q into the liquid, Fig. 11.32b, and there

appears the space charge discussed in Section 7.3.3. Then, under the action of the

electric field, the charged liquid layers will be pushed up against the counteracting

gravity force like in the previous example. To reduce the energy, the charge layer

will not move as an entire block but will be broken into vortices almost cylin-

drically symmetric about the z-axis. That results in a periodic distribution of the

space charge within the xy plane. Therefore, one again observes an appearance of

the convective instability, this time electrohydrodynamic one.

In both the cases considered, an optical contrast of the patterns observed in

isotropic liquids is very small. Certainly, the anisotropy of liquid crystals brings

new features in. For instance, the anisotropy of dielectric or diamagnetic suscepti-

bility causes the Fredericks transition in nematics and wave like instabilities in

cholesterics (see next Section), and the flexoelectric polarization results in the field-

controllable domain patterns. In turn, the anisotropy of electric conductivity is

responsible for instability in the form of rolls to be discussed below. All these

instabilities are not observed in the isotropic liquids and have an electric field

threshold controlled by the corresponding parameters of anisotropy. In addition,

due to the optical anisotropy, the contrast of the patterns that are driven by

“isotropic mechanisms”, i.e. only indirectly dependent on anisotropy parameters,

increases dramatically. Thanks to this, one can easily study specific features and

mechanisms of different instability modes, both isotropic and anisotropic. The

characteristic pattern formation is a special branch of physics dealing with a

nonlinear response of dissipative media to external fields, and liquid crystals are

suitable model objects for investigation of the relevant phenomena [39].

Assume that our capacitor is filled by a nematic mixture with ea� 0 well aligned

along the x-axis and let the same charge injection mechanism works. Then, in a dc

regime, the periodic flow will inevitably interact with the director. The maximum

realignment, i.e. the deflection of the director angle W in the z-direction, will be

z

x
d

d
Ez

+ +
+
+

+
+

++ ++

+

+ +
+

+ +
+
+
+

+
+ + +

vz
- vz

T g –a b

Fig. 11.32 A convective instability caused by a temperature gradient (a) and electrohydrody-

namic instability caused by unipolar charge injection (b) in an isotropic liquid
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observed where the shear rate has maximum, namely, in the middle of the vortices

as shown by thick lines in Fig. 11.33a. On the contrary, the velocity is maximal

where the space charge is accumulated. Such a mechanism of the director alignment

is especially strong when the anisotropy of electric conductivity sa ¼ sjj � s? is

high. The conductivity induced torque My may even exceed the dielectric torque if

dielectric anisotropy ea is not very strong. It is the torque, which is responsible, for

example, for alignment of the director in the nematic phase and smectic layers in

the SmA phase (in both cases along the flow lines) shown earlier in Fig. 5.16. The

same torque described by Carr et al [40] is responsible for the Carr-Helfrich

instability. The latter is also driven by the space charge, however, accumulated

due to anisotropy of conductivity in the bulk of the nematic without any injection.

11.4.2 Carr-Helfrich Mode

This mode is observed at the ac current at frequencies not exceeding the inverse of

the space charge relaxation time oq¼ 1/tq¼ 4ps/e. When a sine-form electric field

is applied to homogeneously oriented fairly conductive nematics with negative

dielectric anisotropy, a very regular vortex motion is often observed. In fact, such

vortices have a form of long rolls perpendicular to the initial alignment of the

director. They are usually called Williams domains [41], see photo in Fig. 11.33b.

The instability appears in thin cells (d ¼ 10 – 100 mm) and has a well-defined

voltage threshold independent of thickness. Upon illumination, the rolls behave like

lenses: they form a diffraction grating and focus light onto the screen, Fig. 11.34.

–vz

vz

My

Ez

20 mm

z

x

y

x

q (x)

a b

Fig. 11.33 Carr-Helfrich EHD instability in nematic liquid crystals: (a) onset of the instability

showing a competition of the elastic and hydrodynamic torques; (b) photo of Williams domains

observed at a voltage 7.5 V in a 20 mm thick cell filled with liquid crystal MBBA
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11.4.2.1 The Instability Threshold in the Simplest Model

The physical mechanism of the instability is related to several coupled phenomena

discussed by Helfrich [42]. His elegant calculation of the instability threshold is

reproduced here for the simplest steady state one-dimensional model shown in

Fig. 11.33a. A homogeneously aligned nematic liquid crystal layer of thickness d
is stabilised by the rubbed surfaces of the limiting glasses. The dielectric torque is

considered negligible (ea ¼ 0). At first, a small director fluctuation W(x) with a

period wx � d is postulated:

WðxÞ ¼ Wm cos
px
wx

(11.85)

With the field applied, this fluctuation causes a slight periodic deflection of the

electric current lines along the director proportional to the anisotropy of conductiv-

ity sa ¼ sjj � s?>0. This creates the x-component of the current that, in turn,

results in the accumulation of a space charge Q(x) close to the points where angle

W ¼ 0. Therefore, the x-component of the field (Ex) emerges. The electric current

density is Ji¼ sijEjwhere the tensor of the electric conductivity has a standard form:

sij ¼ s?dij þ saninj

According to our geometry, E ¼ (Ex, 0, Ez), n ¼ (cosW, 0, sinW) and the

conductivity is given by

s_xz ¼ s?
1 0

0 1

� �
þ sa

cos2W cos W sin W
cos W sin W sin2W

� �

Then the x-component of the current for small W is given by

Jx ¼ s?Ex þ saExcos
2Wþ saEz sin W cos W � sjjEx þ saEzW

Fig. 11.34 Roll-type vortex

motion of a liquid crystal and

the pattern of black and white

stripes in the screen plane due

to diffraction on the roll

structure
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where the new component of electric field Ex is related to the space charge

distribution Q(x) by the Poisson equation:

divE ¼ qEx

qx
¼ 1

ejj
4pQðxÞ (11.86)

and J obeys the current conservation law:

divJ ¼ qJx
qx
¼ sjj

qEx

qx
þ saEz

qW
qx
¼ 0 (11.87)

Combining (11.85–11.87), we get the periodic space charge distribution over x:

QðxÞ ¼ saejjEzWm
4psjjwx

sin
px
wx

(11..88)

Due to the space charge and corresponding force �Q(x)E the nematic liquid

begins to move with a velocity vz determined by reduced form of the Navier-Stokes

equation (7.16):

�
q2vz
qx2
¼ �QðxÞEz (11.89)

where Z¼ (1/2) (a4 + a5 � a2) is a combination of Leslie’s viscosity coefficients ai.
At a certain critical voltage the destabilising shear-induced torque My ¼ a2(∂vz/

∂x), which comes from the interaction of a field driven charged volume of a liquid

with the director, becomes large enough to equalise the stabilising elastic torque.

This balance of the elastic and hydrodynamic torques is the condition for the onset

of instability:

K33

q2W
qx2
¼ a2

qvz
qx

(11.90)

Integrating once Eq. (11.89) on account of (11.88) we obtain the shear rate

qvz
qx
¼ E2

zsaejjWm
4p�sjj

cos
px
wx

(11.91)

and finally, combining (11.90) and (11.91) and using Eq. (11.85), we have an

equation for W equivalent to (11.52). It solution results in the threshold voltage for

the instability:

Ucrit ¼ Ecritd ¼
4p3K33sjj�
ð�a2Þejjsa


 �1=2
� d
wx

(11.91)

Above the threshold a periodic pattern of vortices forms with a period of wx � d
along the x-axis. The entire process is governed by the anisotropy sa in the
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denominator. The threshold is diverged when anisotropy sa vanishes, e.g., in

nematics with a short-range smectic order close to the N-SmA phase transition.

The threshold is proportional to the ratio Z/a2 of the two viscosities. Roughly

speaking, they are proportional to each other, thus the threshold weakly depends on

viscosity and the instability may easily be observed in very viscous, e.g., polymer

liquid crystals. The reason is a compensation for the two effects: on the one hand, in

very viscous media the velocity of vortex motion is low (low Z) but, on the other

hand, the coupling between the flow and the director is strong (high a2). A more

precise expression for the threshold voltage derived by Helfrich [42] includes also a

finite value of dielectric anisotropy. The dependencies predicted by the simplest

theory have been confirmed qualitatively by many experiments [7].

Going back to Fig. 11.33a we may see that, for the same structure of the director

fluctuation W(z), when the field direction changes sign, the space charge sign is also
reversed. However, their product (the electric force Q(x)E) keeps its direction. It
means that the Carr-Helfrich instability may be observed at the ac voltage. Indeed,

in experiment the instability is observed up to the frequency oq ¼ 4ps||/e|| corre-
spondent to the space charge oscillation along the x-axis. The theory of the ac

regime of the same instability requires the consideration of a set of two coupled

linear equations for the space charge Q(x) and curvature c(x) ¼ ∂W/∂x dependent
on time and the problem of the threshold has been solved for frequencies below and

above oq [43].

11.4.2.2 Behaviour Above the Threshold

At voltages higher than the threshold, the one-dimensional roll structure subse-

quently transforms in more complex hydrodynamic patterns. One can distinguish

the zigzag, fluctuating and other domain structures, which, in turn, are substituted

by a turbulent motion of a liquid crystal. To calculate the wavevectors and ampli-

tudes of the distortions a set of nonlinear equations must be solved. More generally,

the problem for describing a transition from a regular electrohydrodynamic vortex

motion to turbulence is a part of the classical problem concerning the transition

from the laminar to turbulent flow of a liquid. Some progress has been achieved in

understanding the nonlinear behaviour of nematics in terms of bifurcation mechan-

isms, phase transitions and dynamic chaos theory [44].

As known from general theory of dissipative dynamic systems, after a finite

number of bifurcations the system undergoes to the dynamic chaos. This scenario is

also observed in the electrohydrodynamic convective motion. With increasing

voltage the velocity of vortices increases rapidly and the periodic flow of a liquid

transforms to turbulence. Turbulent motion in nematic liquid crystals results in a

highly non-uniform distribution of the director accompanied by very strong,

dynamic scattering of light, briefly called DSL. The DSL effect have been initially

proposed for manufacturing field-controllable shutters and displays, and the semi-

nal paper [45] was the starting point for development of the modern technology of

liquid crystal materials and displays.
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Chapter 12

Electro-Optical Effects in Cholesteric Phase

12.1 Cholesteric as One-Dimensional Photonic Crystal

A cholesteric forms a helical structure and its optical properties are characterised

by the tensor of dielectric permittivity rotating in space. We are already familiar

with the form of the cholesteric tensor (see Section 4.7). It was Oseen [1] who

suggested the first quantitative model of the helical cholesteric phase as a periodic

medium with local anisotropy and very specific optical properties. First we shall

discuss more carefully the Bragg reflection from the so-called “cholesteric planes”.

12.1.1 Bragg Reflection

12.1.1.1 Experimental Data

The most characteristic features of cholesteric liquid crystals are as follows:

1. There is a strong rotation of the plane of polarisation of linearly polarised light

(C � 10–100 full revolutions per mm to be compared, e.g., with 24�/mm in

quartz). The sign of the optical rotation changes at a certain wavelength l0 of the
incident light as shown by curve OR in Fig. 12.1.

2. The regions of rotation with different handedness are not separated by an

absorption band as in typical gyrotropic materials. Instead, there is a band of a

selective reflection of the beam with a particular circular polarization, curve R in

Fig. 12.1. The beam with the opposite circular polarization is transmitted

without any change, therefore the reflection is negligible and not shown in the

plot. Only one band is observed in the wavelength spectrum without higher

diffraction orders.

3. The electric vectors of the circularly polarised incident and reflected light are

rotated in the same direction when viewed against the wavevectors of each

beam. In contrast, upon reflection from a conventional mirror the beam changes

the sign of rotation. An example is shown in Fig. 12.2. Note that, in this figure,

the circular light handedness is defined not conventionally: for the right circular
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polarization, the observer looking at the light source sees the counterclockwise
rotation of the light electric vector. This “new definition” (as discussed in

Section 11.1.1) is used here deliberately because I may suggest a mnemonic
rule: a right-hand circular beam goes as easily (i.e. transmitted) through the

right-hand helix as a right-hand screw goes into a right-hand female screw. And

this may be explained as follows: the right-hand circularly polarized light going

along the right helix does not see periodicity of the helix and, therefore, does not

diffract. In the figure we see the right-screw helical cholesteric structure that

transmit the right-hand (R.H.) circularly polarised light and completely reflects

the left circular polarized light (L.H.) without change of its handedness. By the

way, direct modelling of the light transmission or reflection results in exactly

that situation, which corresponds to the non-conventional case. Nevertheless,

further on we follow the old convention.

4. The wavelength of selected reflection l0 (in vacuum) depends on the angle of

light incidence i measured from the layer normal, namely, l0 ¼ 2(P0/2) <n>
cosi. It is the same Bragg condition discussed in Section 5.2.2, l0 ¼ 2dsinY.

However, in the case of the X-ray diffraction on a stack of the layers in vacuum,

we used refraction index n ¼ 1, sliding angle Y ¼ (p/2) � i, and interlayer

R-screw helix
L.H

R.H

L.H

Linear

R.H

Fig. 12.2 Transmission and reflection of linearly polarized light through the planar cholesteric

structure. The linear light is decomposed into two circularly polarized components, left-handed (L.

H.) and right handed (R.H). In this particular case, the handedness is defined according to the

modern convention, see the text

1.0
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400 600 800
wavelength (nm)

OR
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deg

–20

–10

0

10

20

R

R

Fig. 12.1 Spectra of optical

rotatory power (OR) and

selective reflection (R) of a

planar cholesteric texture for

light propagation parallel to

the helical axis.
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distance d instead of half-pitch P0/2. The factor ½ appeared in a cholesteric

because, due to the head-to-tail symmetry n ¼ �n, the period of its optical

properties is doubled.

We see that the optical properties of cholesterics are quite peculiar. How to

explain them on the quantitative basis?

12.1.1.2 The Simplest Model

Consider the optical properties of a cholesteric helix shown in Fig. 12.3a under the

following assumptions:

1. The light propagates along the helical axis z, and the helix is regarded as ideal,

corresponding to the sinusoidal form for the variation of the director.

2. The semi-infinite structure is assumed, bordered at the front plane by a dielectric

of the same refractive index as the average refractive index of the cholesteric

<n>. In such a case, we neglect the reflection from the front boundary.

3. The optical anisotropy is small, i.e. n|| � n⊥ � <n> and Dn ¼ n||-n⊥ � <n>.
4. The wavevectors of the incident light and the cholesteric helix have the same

amplitude, ki ¼ q0.

Now we would like to understand why only one diffraction maximum is

observed in the normal reflection from the cholesteric helix and why the reflected

light is circularly polarized. Therefore, at first, we write the Bragg condition on

account of possible higher diffraction orders:

ml0 ¼ P0<n>cosi (12.1)

where m is the order of diffraction (i.e. reflection). By analogy with crystals,

the values of m ¼ 2, 3. . . seem to allow the presence of higher order reflections.

However, the latter are not observed in experiment on the cholesteric structure for

the normal incidence of light (i ¼ 0). This is a result of some selection rules: the

reflections with m ¼ 2, 3,.. are forbidden due to a specific form of the dielectric

permittivity tensor of a cholesteric.

kr

ki

y z

x

q0

a
kr ki

q=2q0

b

Fig. 12.3 The geometry for discussion of the Bragg diffraction in a cholesteric (a) and illustration
of the wavevector conservation law (b). ki and kr are wavevectors of the incident and reflected

beams, q0 is the helix wavevector
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To show this, it is necessary to insert the Fourier components e(q) of the

dielectric permittivity tensor e
_ðqÞ of the cholesteric into the general formula for

the scattering cross section s / ðr � e_ðqÞ � fÞ2 as already discussed for nematics in

Section 11.1.3. Here f and r are polarization vectors for the incident and reflected

light, q is the wavevector of scattering coinciding in this simple geometry with the

wavevector of the reflected wave [2].

Tensor e
_ðqÞ is Fourier transform of cholesteric tensor e

_ðrÞ. The latter is obtained
from the nematic tensor e

_

NðrÞ using the rotation matix R
_

as explained in Sec-

tion 4.7.3: e
_ ¼ R

_

e
_

NR
_�1

. The rotation matrix and local nematic tensor can be taken

in their simplest, “plane” form because now the director has only two non-zero

components (nx ¼ sinf(z), ny ¼ cosf(z), nz ¼ 0), and in our geometry only com-

ponents of the optical field Ex and Ey are of interest. Therefore

e
_ðzÞ ¼ cos q0z � sin q0z

sin q0z cos q0z

� �
� ejj 0

0 e?

� �
� cos q0z sin q0z

� sin q0z cos q0z

� �

¼ <e2D>þ ea
2
cos 2q0z

ea
2
sin 2q0z

ea
2
sin 2q0z <e2D>� ea

2
cos 2q0z

� �

¼ he2Di
1 0

0 1

� �
þ ea

2

cos 2q0z sin 2q0z

sin 2q0z � cos 2q0z

� �
(12.2)

Here we introduced ea ¼ ejj � e?, a two-dimensional average he2Di ¼ 1
2
ðejj þ e?Þ

and also used the expression cos2a ¼ (1/2)(1 þ cos2a). Note that the wavevector
of a cholesteric q0 ¼ 2p/P0 > 0 (right-handed helix). Left-handed helix is

described by q0 < 0.

As an example, we can apply the Fourier transform to a single component exx (z)
from tensor (12.2):

exxðqÞ ¼ ðea=2Þ
ð
V

cosð2q0zÞ expðiqzÞdz (12.3)

Here, scattering vector q ¼ ki � kr and the integral can only be non-zero (equal
to ½) if q � 2q0 ¼ 0. Since ki ¼ q0 we have two possibilities: either |kr| ¼ q0 þ
2q0 ¼3q0 or |kr| ¼ q0 � 2q0 ¼�q0. Only the second case satisfies the conservation
of energy i.e. frequency o ¼ c|kr|/n ¼ cq0/n. Therefore, our scattering vector is

q ¼ 2q0 as shown in Fig.12.3b.

For q ¼ 4q0 (m ¼ 2) the integral is zero and the second order reflection is absent

(the same is true for all integers m � 2). Thus, only the first order reflection with

q ¼ þ2q0 is possible and exxð2q0Þ ¼ eaV=4:
From the structure of tensor e

_
(12.2) it is seen that eyy¼�exx and exy ¼ eyx. The

latter two are imaginary due to the Euler expansion of sin(2q0z). Therefore, for the
anisotropic part of the e

_ðqÞtensor in the wavevector space, we may write an

expression

e
_ðqÞ ¼ e

_ð2q0Þ ¼ 1
4
eaVM

_
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where

M
_ ¼ 1 i

i �1

� �

and V is the sample volume. This form allows us to find the polarisation of the

reflected beam r. Indeed, the polarization vector of the reflected beam is given by

r ¼ rx
ry

� �
¼ M

_ � fx
fy

� �
¼ fx þ ify

ifx � fy

� �
¼ ðfx þ ifyÞiþ ðifx � fyÞj ¼ rxiþ ryj

(12.4)

From Eq. (12.4) we see that ry ¼ irx. It means that the reflected light is circularly

polarised in agreement with experiment.

Therefore, the simplest model predicts the existence of one maximum of selec-

tive reflection centered at the wavelength l0 ¼ hniP0 and the circular polarisation

of the reflected beam. However, the spectral dependence of the selective reflection

and the magnitude of the angle of the light polarisation rotation by the cholesteric

structure can only be discussed by analysing the Maxwell equations for the optical

waves propagating in the periodic medium.

12.1.2 Waves in Layered Medium and Photonic Crystals

There are several examples of waves in periodic media:

1. Electron or neutron waves (C-functions) in crystals

2. X-ray (electromagnetic) waves in crystals

3. Light waves in the natural media such as opal, mother-of-pearl, beetle shells, etc.

4. Light waves interacting with artificial diffraction gratings, one or two dimen-

sional and three dimensional photonic bandgap crystals, in particular, artificial

opals

5. Acoustic waves between periodically arranged columns in a theatre

A common feature of all these media is a spatial periodicity with a period

comparable to that of the external wave of any sort. In the three dimensional

case, the diffraction may result in light localisation and trapping like electrons

may be completely localised in a disordered metal (metal–insulator transition).

12.1.2.1 Hill and Mathieu Equations

Theoretically one should solve a wave equation with dielectric permittivity periodic

in one, two or three dimensions but, for simplicity, consider a medium with periodic
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modulation of dielectric permittivity in one direction, Fig. 12.4. A wave equation

for the electric field in the one-dimensional case is called Hill equation [3]:

d2E

dz2
þ eðzÞmo

2

c2
E ¼ 0 (12.5)

where m � 1 is magnetic susceptibility. The analysis of the Hill equation is a large

area of mathematics. In the simplest case of the cosine (or sine) form of the spatial

modulation of the scalar parameter eðzÞ ¼ e0 þ e1 cosð2pz=lÞ shown in the figure,

we obtain a standard form of the Mathieu wave equation

d2E

dz2
þ ðZþ gcos2xÞE ¼ 0 (12.6)

where l is period of the structure, x ¼ pz/l is the normalised coordinate along the

z-axis and dimensionless parameters g and Z are related to the amplitude of the

dielectric permittivity modulation e1 and the average value of permittivity e0 as

shown in Fig. 12.4,

g ¼ ol
pc

� �2

e1

and

� ¼ ol
pc

� �2

ðe0 � e1Þ:

The general solution of Eq. (12.6) is given by the Floquet-Bloch theorem as a

sum of products of a spatially periodic amplitudes A(x) and B(x) with oscillating

exponential functions

EðxÞ ¼ D1AðxÞ exp ibxþ D2BðxÞ expð�ibxÞ (12.7)

where D1 and D2 are arbitrary constants. The solution describes two waves

with dimensionless wavevectors � b ¼ �ðl=pÞk ¼ �ðl=pÞðohni=cÞ propagating in

Fig. 12.4 Periodic medium

with modulation of scalar

dielectric permittivity

348 12 Electro-Optical Effects in Cholesteric Phase



opposite directions. Due to periodicity of A and B, the electromagnetic waves can

be presented as a discrete sum of infinite numbers of spatial Fourier harmonics

E ¼
Xm¼þ1

m¼�1
As exp½iðk þ mq0Þz	; (12.8)

where q0 is the vector of one-dimensional reciprocal lattice, q0 ¼ 2p/l, as discussed
in Section 5.3.1. Usually the periodicity of E on the wavevector axis allows one to

consider only the waves with wavevectors in the range � p/l 
 k 
 p/l, i.e. in the

first Brillouin zone.
The Mathieu equation has no analytical solution despite e is scalar and its

solutions can only be found numerically. The crucial parameter is the depth of

the e-modulation.

1. When e1 (i.e. g) is zero we have ordinary Maxwell equation for uniform

medium.

2. For very shallow e-relief, e1 � e0, g is small, Z > 0 and the waves are propa-

gating although with velocities depending on the z-coordinate.
3. In the intermediate case e1 < e0 and g � Z, we observe a photon energy (or

frequency) bands either allowed or forbidden for the wave propagation. There-

fore, there are some selection rules for the Bragg diffraction of electromagnetic

waves on the periodical structure. Here, we see a deep analogy with the Bloch -

de Broglie waves in crystals. For this reason we speak of photonic crystals.

4. For a very deep relief, e1 > e0/2, Z < 0 and g > Z, the waves cannot propagate
at all. In such a structure one may observe only evanescent waves.

From the analysis of the Mathieu equation, we can make the following general

conclusions which are useful for further discussion of cholesteric liquid crystals:

1. For a scalar e there is no general analytical solution even for the one-dimensional

problem.

2. The wave characteristics are independent of the wave polarisation.

3. A monochromatic wave is superposition of infinite number of plane waves: one-

or two-waves approximations can only be used for waves with k � p/l (far from
the gaps).

4. There exists an infinite number of forbidden zones with the frequency gap Do
decreasing with increasing the zone number.

12.1.2.2 One Dimensional Photonic Band-Gap Structure (Modelling)

An example of the numerical solution of the Maxwell equations for a one-dimen-

sional photonic crystal is shown in Fig. 12.5a and b. I have modelled a stack of five

alternating layers, each with optical thickness of l/4: dielectric layers with thick-

ness dd ¼ 0.075 mm and refraction index nd ¼ 2 and air gaps between them with
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thickness dair ¼ 0.15 mm and refraction index nair ¼ 1. In fact, I have verified the

analytical result of a seminal paper [4] using the Palto’s software [5] based on the

direct numerical solution of the Maxwell equations. In Fig. 12.5a the several band-

gap (or stop-bands) for the unpolarised light transmission are seen in the curve

marked off by the “stack”, which are separated by equal frequency intervals. The

width of the stop-bands is determined by the difference of the refraction indices

nd � nair ¼ 1: the larger the difference the wider the stop-band. Note that, within

the stop band, the transmission of the unpolarized beam completely vanishes.

For the stack considered here ddnd ¼ dairnair ¼ 0.15 mm ¼ l/4 and the position
of the first Bragg transmittance minimum (m ¼ 1) is expected at lB(m ¼ 1) ¼ 2

<n> (dd þ dair) ¼ 2(ddnd þ dairnair) ¼ 0.6 mm. It is instructive to compare the

results obtained for such a stack with the transmission of a slab of a cholesteric

liquid crystal whose Bragg diffraction wavelength is approximately located at the

same wavelength lB as for the stack stop-band at m ¼ 1. The cholesteric slab has

the following parameters: the pitch is P ¼ 0.4 mm, slab thickness d ¼ 20 mm (50

full helical turns), no ¼ 1.5, ne ¼ 1.7,<n>¼1.6, therefore, lB ¼ P<n> ¼ 0.64 mm.

The slab is bordered by infinitely thick glasses with refraction index ng ¼ 1.5. We

see in Fig. 12.5a that in the cholesteric spectrum marked off by “CLC” there is a

stop-band corresponding to m ¼ 1 and period P/2, as discussed above. Therefore a

cholesteric liquid crystal may be regarded as a one-dimensional photonic crystal.
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Fig. 12.5 Comparison of the

non-polarized light

transmission by a stack of

dielectric layers and a

cholesteric liquid crystal

(CLC). The two materials

have the same Bragg

reflection frequency

(numerical calculations, for

parameters see the text). (a)
Transmission spectra on the

frequency scale showing the

absence of high harmonics in

the case of CLC; (b) blown
transmission spectra at the

wavelength scale showing the

flat form of the CLC Bragg

band and oscillations of

transmission at the edges of

the band
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As discussed in the previous section, indeed, there is only one stop-band in the

cholesteric transmission spectrum. This is only valid for the light propagating along

the helical axis. The minimum transmission of an unpolarized light is 0.5, because

one circular polarization is totally reflected. As in the case of a stack, the width of

the band is determined by the difference Dn ¼ ne � no. In the case of our

cholesteric, Dn ¼ 0.2, that is much less than for the virtual stack modeled and,

for this reason, in Fig. 12.5 the cholesteric spectrum is much narrower than the stack

spectrum. However, anisotropy Dn ¼ 0.2 is quite large for both liquid crystals and

real stacks made of alternating dielectric films. The structure of the cholesteric stop-

band on the wavelength scale is well seen in Fig. 12.5b: there is a wide plateau

between the two wavelengths corresponding to lo ¼ Pno and le ¼ Pne. A number

of fringes on both sides of the stop-band increases with increasing slab thickness

and their amplitude is determined by the reflection coefficient between the chole-

steric and surrounding media. In our case, the fringes are not well seen because the

surrounding glasses have refraction index close to the average index of the chole-

steric.

12.1.3 Simple Analytical Solution for Light Incident Parallel
to the Helical Axis

Our task is to find the spectrum of eigenmodes propagating along the helical axis of

a cholesteric liquid crystal and discuss some consequences of that. It is very rare

and even unique case when, despite chirality and anisotropy of a medium, there is

an analytical solution found many years ago by De Vries [6]. Here, we follow a

rather simple and very elegant analytic solution of this problem given by Kats [7].

12.1.3.1 Wave Equations

We again consider an electromagnetic wave propagating parallel to the helical axis

of an infinite cholesteric medium (k || q0 || z) in the geometry corresponding to

Fig. 12.3. Therefore non-zero components of the electric field Ex and Ey depend

only on z. The Helmholtz wave equation

]2E

]z2
¼ 1

c2
e
_ ]2E

]t2
(12.9)

is written using the dielectric permittivity tensor (12.2) with dimensionless dielectric

anisotropy d ¼ (e|| � e⊥)/(e|| þ e⊥) ¼ ea/2 <e2D> where <e2D> ¼ (e|| þ e⊥)/2

e
_ðzÞ ¼ exx exy

eyx eyy

� �
¼ he2Di ð1þ d cos 2q0zÞ d sin 2q0z

d sin 2q0z ð1� d cos 2q0zÞ
� �
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For the field components we write

q2Ex

qz2
¼ 1

c2
exx

q2Ex

qt2
þ exy

q2Ey

qt2

� �
and

q2Ey

qz2
¼ 1

c2
eyx

q2Ex

qt2
þ eyy

q2Ey

qt2

� �

Using Exðz; tÞ ¼ FxðzÞ exp iot;Eyðz; tÞ ¼ FyðzÞ exp iot we exclude the time

dependence and, on account of k2 ¼ o2 <e2D>/c2, obtain the set of equations for

the field amplitudes, which contains all optical properties of the cholesteric:

q2Fx

dz2
þ k2½Fx þ Fxd cos 2q0zþ Fyd sin 2q0z	 ¼ 0

q2Fy

dz2
þ k2½Fy � Fyd cos 2q0zþ Fxd sin 2q0z	 ¼ 0

(12.10)

These equations become simpler if one introduces circular field components:

Eþ ¼ Fx þ iFy and E� ¼ Fx � iFy (12.11)

Then, Fx ¼ 1
2
ðEþ þ E�Þ and Fy ¼ 1

2iðEþ � E�Þ
For the circular components on account of exp(�ia) ¼ cosa � isina,

Eqs. (12.10) read:

q2Fþ
qz2

þ k2½Fþ þ F�d expð2iq0zÞ	 ¼ 0

q2F�
qz2

þ k2½F� þ Fþd expð�2iq0zÞ	 ¼ 0

(12.12)

12.1.3.2 Dispersion Relation

Now we shall look for a solution of Eq. (12.12) in a form compatible with the

Floquet-Bloch theorem:

Fþ ¼ Aþ exp iðbþ q0Þz
F� ¼ A� exp iðb� q0Þz

(12.13)

Here b is a wavevector of an electromagnetic wave, which can propagates in our

periodic structure (an eigenmode). Equations (12.13) state that, due to periodicity of

the medium, the difference in wavevectors of possible modes should be equal to the

“lattice vector” of the structure (b þ q0) � (b � q0) ¼ 2q0 (remember, that, in a

cholesteric, the period of the e-modulation is P0/2). Substituting Fþ and F� into

Eq. (12.12) we find
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½k2 � ðbþ q0Þ2	Aþ þ dk2A� ¼ 0

dk2Aþ þ ½k2 � ðb� q0Þ2	A� ¼ 0:
(12.14)

The two equations have a non-trivial solution only if the corresponding determi-

nant (a11a22–a12a21) ¼ 0. From this condition we have a biquadratic equation for

determination of the wave vector b as a function of k or frequency o. This is a

dispersion relation

b4 � 2ðk2 þ q20Þb2 þ ½ðk2 � q20Þ2 � k4d2	 ¼ 0 (12.15)

Its solution for the wave vectors of the two propagating modes is given by

b2 ¼ k2 þ q20 � k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4q20 þ k2d2

q
(12.16)

Note that the dispersion relation of the type b(o) is the key equation for

discussion of the spectrum of the photonic band-gap. Indeed the derivative

vg ¼ do/db is nothing else as the group velocity of light in the considered sample.

When this derivative tends to zero the velocity decreases and eventually the light

does not propagate. We say the light stops. The inverse ratio db/do defines the

density of the possible wavevectors db for the unit frequency interval do. It is so-
called density of optical b-modes (DOM) or density of photonic states (DOS), the

concept playing the principal role in calculation of properties of photonic crystals,

see, for instance [4,8]. Due to great importance of the dispersion relation, it is useful

to present it in a more familiar form of the frequency (i.e., photon energy) depend-

ing on wavevector. Since the wavevector of the incident light wave k ¼ o
<e2D>

1/2/c is proportional to light frequency, Eq. (12.15) may be rewritten as

k4ð1� d2Þ � 2k2ðb2 þ q20Þ þ ðb2 � q20Þ2 ¼ 0 (12.17)

After substituting the values of b into the field equations (12.13) we find the

analytical solution of the original wave equation (12.9). Usually d is small, about

0.01–01 but it is important for our consideration and cannot be ignored. However,

for a moment, consider a limit of infinitely small anisotropy, d ! 0. Then from

Eq. (12.15) we have

b2 ¼ k2 þ q20 � 2kq0

that is four solutions for b: b1 ¼�ðkþ q0Þ and b2 ¼�ðk� q0Þ. Equivalently, from
Eq. (12.17) we get four solutions for k: k1 ¼�ðbþ q0Þ and k2 ¼�ðb� q0Þ. Four
solutions mean that, at any frequency o, we have four circularly polarised eigen-

waves shown in Fig. 12.6a. The four waves differ by their polarisation and direction

of propagation. The curve numbers in the figure corresponds to the following

wavevectors: �(b � q0) (curve 1), �(b þ q0) (curve 2), (b � q0) (curve 3) and
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(b þ q0) (curve 4). The dashed (1, 2) and solid (3, 4) lines correspond to back and

forward propagating waves, respectively, because their slopes corresponding to

group velocities do/db have different signs. The crossover of lines 2 and 3 at

b ¼ 0 and k ¼ q0 determines the Bragg frequency oB <e2D>
1/2/c ¼ q0 ¼ 2p/P0.

The situation changes when the optical anisotropy is finite. Consider a particular

case of small wavevectors b � 0. Then from Eq. (12.17) we have

ðk2 � q20Þ2 � k4d2 ¼ 0 or k2 ¼ q20
ð1� dÞ � q20ð1� dÞ (12.18)

Since both q0 and d ¼ ea/2 <e2D> are fixed material parameters and k2 ¼ o2

<e2D>/c2, the allowed frequency at b ¼ 0 takes two values

oe ¼ cq0

ffiffiffiffiffiffiffiffiffiffiffi
ejj

he2Di
r

and oo ¼ cq0

ffiffiffiffiffiffiffiffiffiffiffi
e?

he2Di
r

with
ffiffiffiffiffi
ejj

p ¼ njj;
ffiffiffiffiffi
e?

p ¼ n?

Between the two frequencies there is a gap. Above we have qualitatively

discussed an appearance of the forbidden frequency bands. Now, in Fig. 12.6b we

see the frequency gap formed by the corresponding dispersion curves. The width of

the gap

Do ¼ cq0Dn=hni (12.19)

determines the spectral interval of the Bragg diffraction where only two waves

(no. 1 and 4 in the figure) can propagate at any o. The gap in Fig. 12.6b corresponds
to the minimum in the optical transmission at l0 ¼ 600–670nm in Fig. 12.5. The

other two waves (nos. 2 and 3) cannot propagate within the gap: due to the

diffraction they are completely reflected.

Fig. 12.6 Dispersion relation for a cholesteric that has helical structure with wavevector q0. The
abscissa corresponds to the wavevectors of the eigenmodes propagating in the medium and the

ordinate is the frequency of the incident light proportional to its wavevector, k ¼ oe1/2/c. (a) Very
small optical anisotropy d ! 0: two pairs of circularly polarized eigenmodes propagate in

opposite direction without diffraction and each pair consists of a right- and left polarized beams.

Note the absence of a stop-band on the o-scale at frequency oB. (b) Finite optical anisotropy d:
modes 2 and 3 propagating in opposite directions suffer diffraction on the periodic structure and a

stop-band appears with a frequency gap Do ¼ oo � oe centered at Bragg frequency oB
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12.1.3.3 Rotation of Linearly Polarised Light

Giant optical rotatory power is observed at wavelengths corresponding to the

slopes of the selective reflection curve. In some cases, its magnitude reaches 3�/mm.

A sign of rotation changes at some wavelength within the reflection band, see

Fig. 12.1. In that figure, the reflection band (stop band for transmission) has no flat

top, the band is narrow because the particular cholesteric material has low optical

anisotropy Dn � 0.01.

The magnitude of the rotation angle per unit length can be found from the same

theory. To this effect, we consider the incident wave whose wavevector is far from

the Bragg resonance on both sides of the latter jk � q0j � q0d. Then, the disper-
sion relation (12.16) for propagating waves becomes simpler if we use an expansion

(1 þ x)1/2 � 1 þ x/2:

b2 ¼ k2 þ q20 � 2q0k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2d2

4q20

s
� ðk � q0Þ2 þ k3d2

4q0
þ :::

Applying the same expansion for the second time, we find moduli of wavevec-

tors |b1| and |b2|:

jb1j ¼ ðk þ q0Þ þ k3d2

8q0ðk þ q0Þ

jb2j ¼ ðk � q0Þ � k3d2

8q0ðk � q0Þ

(12.20)

We can see that there are two modes with wavevectors b1 � q0 and b2 þ q0
compatible with dispersion relation (12.16). Further, according to Eqs. (12.14), the

field amplitude ratios for the two modes are dramatically different:

Aþ
A�

¼ dk2

ðbþ q0Þ2 � k2
and

ðb� q0Þ2 � k2

dk2
(12.21)

Indeed Aþ/A� � 1 for the first wave and Aþ/A� � 1 for the second wave.

We see that the two waves are nearly circular and polarised in opposite direc-

tions. The optical rotationC of linearly polarised light per unit length is defined as a

half of the wavevector difference between the two circular waves with refraction

indices n1and n2

C ¼ c=d ¼ Dk=2

Therefore, from Eq. (12.20) we get

Dk ¼ ðjb1j � q0Þ � ðjb2j þ q0Þ ¼ k3d2

8q0ðk þ q0Þ þ
k3d2

8q0ðk � q0Þ ¼
k4d2

4q0ðk2 � q20Þ
(12.22)
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Remembering that k2 ¼ <e2D> (2p/l0)
2 and d ¼ ea=2he2Di ¼ ðn2jj � n2?Þ=

ðn2jj þ n2?Þ, for the optical rotatory power we finally find

C ¼ k2d2

8q0 1� l20
�
l2B

� 	 ¼
pP0ðn2jj � n2?Þ

8l20ðn2jj þ n2?Þ 1� l20
�
l2B

� 	 (12.23)

Here l0 is the wavelength of the linearly polarised incident light (in vacuum) and

lB ¼ ¼ P0 <e2D>
1/2 is the wavelength of the Bragg reflection maximum. In this

approximation, the value of c diverges at l0 ! lB, however, the formula describes

both the spectral shape and the magnitude of the optical rotation on both sides of the

Bragg reflection maximum (except the top of the reflection band) in agreement with

experimental data shown in Fig. 12.1.

12.1.3.4 Waveguide Regime

This case corresponds to a large pitch of a cholesteric with respect to the wave-

length P0 � l0 that is a small wavevector of the helical structure and rather high

frequency of the incident light satisfying a condition of kd � q0. Then, from
Eq. (12.16)

b2 ¼ k2 þ q20 � k2d � k2 � k2d

and, according to Eqs. (12.14) for q0 ! 0 the ratio Aþ/A� ¼ k2d/� k2d ¼ �1. This

corresponds to the linearly polarised waves with polarisation vector rotating in

space following the helical structure. We meet such a waveguide (or Mauguin)
regime [9] in cholesterics with very long pitch, l0 � P0(n|| � n⊥) and also in the

case of the twisted nematic cell, already discussed in Section 11.1.1.

12.1.4 Other Important Cases

12.1.4.1 Cholesteric Slab of Finite Thickness

In thin cells there is an additional effect of the interference from the parallel

boundaries resulting in the spectral oscillations observed on both sides of the

Bragg maximum. Such fringes are well seen in Fig. 12.7, the corresponding

numerical calculations being made for the cholesteric slab of thickness 4 mm. Of

course, in this case, the theory is more difficult [3].

12.1.4.2 Oblique Incidence of Light

When light impinges on a cholesteric at some angle iwith respect to the helical axis,
the following new features should be mentioned:
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1. The spectral maximum of the Bragg reflection lB1 is displaced to the short-wave
side with the increase of i, see Fig. 12.7.

2. An infinite number of reflections of higher orders emerge. The correspondent

minima of the transmission lB2, lB3 etc. are not seen in Fig. 12.7 because they

are deeply in the UV region. The frequency range of the reflection (energy gap)

is reduced with the order of reflection m and the peaks of reflections (or pits of

transmission) becomes sharper.

3. Higher orders of reflection have a complicated spectral and angular dependence.

There is a fine structure in the form of spectral satellites separated from the main

harmonic by a distance dependent on the incidence angle [3].

4. In the applied electric field the high order reflections may appear even

for the incident light propagating parallel to the helical axis as discussed in

Section 12.2.2.

12.1.4.3 Diffraction and Scattering

Diffraction on the one-dimensional helical structure. Such a structure can be

obtained from the initial quasi-planar texture with a small tilt (e.g. in the x-
direction) of the helical axis with respect to the cell normal z. A cholesteric should

have positive dielectric anisotropy. Then upon application of the strong electric

field Ez the helix unwinds. After switching the field off, a one-dimensional helical

structure appears with the axis parallel to the cell boundaries. When white light is

incident onto that structure as shown in Fig. 4.29a the helix behaves as a diffraction

grating and iridescent colours are observed [10]. The spectral positions of the

diffraction maxima depend on the light incidence angle as expected from the

theory. For a monochromatic light the diffraction spots are located at angles �2y,
which are symmetric with respect to the incident beam direction and satisfy the

conditions q ¼ 2mk0 sin W ¼ q0 ¼ 4p=P0. Therefore P0 ¼ l0=m sin W, where l0 is
light wavelength in air. Note that the refraction index of the medium is not included

in the formula. In fact, it appears twice, once in the wavevector conservation law
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Fig. 12.7 Calculated

transmission spectra of a

cholesteric for non-polarized

light and different angles of

incoming light incidence: 5�,
45� and 60� with respect to

the helical axis. Both

materials have helical pitch

0.25 mm, refraction indices

n|| ¼ 1.73 and n⊥ ¼ 1.51,

cell thickness 4 mm
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within the medium and then in the Snell law for the diffracted beam leaving the

medium for air. Therefore, n is compensated, at least, for small diffraction angles

2y. The period of the optical properties in this geometry is close to P0/2 although

may depend on cell thickness. The first order diffraction (m ¼ 1) is very intense, the

highest orders are much weaker (even should absent in the ideal case). By measur-

ing scattering angle 2y one can find the pitch of the helix.

Scattering by inhomogeneous focal-conic structure.When a white light beam

is incident at an angle a on a non-aligned layer of a short-pitch cholesteric liquid

crystal the scattered light shows iridescent colours. The reason lies in a light

diffraction from randomly oriented cholesteric planes. By averaging variable

Bragg conditions a formula has been derived [11] that relates the scattered wave-

length to the observation angle b:

l ¼ P0hni
m

cos 1=2acos
sin a
hni þ 1=2acos

sin b
hni

� �
(12.24)

With this equation and knowing the angles of incidence a, and of reflection b of

monochromatic light, one can also determine the helical pitch of the cholesteric

liquid crystal.

When the pitch changes with variation of temperature the colours also change.

This phenomenon is used in thermography, a sensitive technique for measurements

of the distribution of temperature over various objects, for example, in medicine for

making temperature maps of human skin. In technics, cholesterics are used for the

estimation of the temperature distribution over plane electronic circuits and other

objects with a relatively flat surface.

12.2 Dielectric Instability of Cholesterics

In this chapter we consider the most characteristic phenomena related to the electric

field interaction with chiral, quasi-layered structure of cholesteric liquid crystals.

12.2.1 Untwisting of the Cholesteric Helix

12.2.1.1 De Gennes–Meyer Model for Field Induced Cholesteric–Nematic
Transition

In the simplest case, this transition is observed in a cholesteric with positive

dielectric or diamagnetic anisotropy in the electric or magnetic field applied

perpendicular to the helical axis. Let a helix has a pitch P0 in the absence of a

field and the thickness of a sample is much larger than P0. Therefore, the boundary
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conditions can be neglected. Such a model was investigated by Meyer and de

Gennes [12,13] for a cholesteric having anisotropy of magnetic susceptibility wa
and placed in magnetic fieldH perpendicular to the helical axis h. Inevitably, in the
initial state, in certain parts (A) of the helix, the molecules are arranged favourably

relative to the field, but in other parts (B) they are arranged unfavourably,

Fig. 12.8a. Due to wa > 0, the latter would tend to realign themselves along the

field.

With the field applied, regions A will increase in size and regions B decreased. A

decrease in the dimensions of the B regions would cost very large elastic energy

K22(∂j/∂z)
2. In a strong field, regions B transforms into thin two-dimensional

defects (walls) perpendicular to z with the director turned by angle p across the

wall. If a number of regions B were reduced by increasing period (pitch) of the

structure, the total elastic energy would be lower. Therefore, our structure becomes

unstable: a strong field tries to expel all the walls from the helical structure. As a

result of such instability, at a certain critical field Hu, the helical structure trans-

forms into a uniform (nematic) structure. We can say, that there occurs a cholesteric

to nematic phase transition with a threshold field Hu.

The threshold field can be calculated thermodynamically by comparison of the

free energy of the helical and uniform structures in the presence of the field. In our

geometry, the free energy density of a cholesteric in a magnetic field is

gCh ¼ 1

2
K22

dj
dz

� q0

� �2

� waH
2cos2j

" #
(12.25)

where j is an angle between the field and the director. For the unwound, nematic-

like cholesteric, ∂j/∂z ¼ 0, j ¼ 0 or p, and the free energy density is given by

gN ¼ 1

2
K22 �q0ð Þ2 � waH

2
h i

(12.26)
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Fig. 12.8 Influence of a magnetic field H on the planar cholesteric texture having wa > 0. The

helical axis is parallel to z. Horizontal lines show the projections of the director parallel toH.Helix
unwinding according to de Gennes (a) and Meyer experiment (b)
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The difference between the two densities (12.25) and (12.26) reads

Dg ¼ gch � gN ¼ 1

2
K22

dj
dz

� q0

� �2

� K22q
2
0 � waH

2ðcos2j� 1Þ
" #

¼ 1

2
K22

dj
dz

� �2

� 2q0
dj
dz

" #
þ 1

2
waH

2sin2j

Introducing the field coherence length x2 ¼ K22=waH
2 and integrating over one

period of the helix P0 along the z-axis we find the free energy

DF
waH2

¼ 1

waH2

ðP0

0

Dgdz ¼
ðP0

0

1

2
x2

dj
dz

� �2

� q0x
2 dj
dz

þ 1

2
sin2j

" #
dz (12.27)

The Euler equation (8.22) corresponding to the minimal free energy density

(12.27) within a period of the structure reads:

x2
d2j
dz2

¼ sinj cosj or
1

2
x2

d

dz

dj
dz

� �2

¼ sinj cosj
dj
dz

This equation is easily integrated:

x2
dj
dz

� �2

¼ 2

ð
z

sinj cosj
dj
dz

dz ¼ 2

ð
j

sinj cosjdj ¼ sin2jþ C (12.28)

For the particular periodic structure shown in Fig. 12.8a with angle j counted

from the field H direction, the derivative dj/dz ¼ 0 at any values of z where

j ¼ 0 or p (middle points of regions A). Therefore, C ¼ 0 and x(dj/dz) ¼ �sinj,
where for the right-handed helix the sign at the right side is either positive (if j
belongs to an interval from 0 to p) or negative (if p < j < 2p). Then, substituting
Eq. (12.28) into Eq. (12.27) we find

DF
waH2

¼
ðP0

0

x2
dj
dz

� �2

� q0
dj
dz

" #
dz ¼ x2

ð2p

0

dj
dz

� q0

� �
dj

¼ 2x
ðp

0

sinjdj� q0x
2

ð2p

0

dj ¼ 2xð2� pq0xÞ

Therefore DF ¼ 2K22

x
ð2� pq0xÞ and the threshold condition (DF ¼ 0) for the

helix unwinding reads
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xu ¼
2

pq0
or Hu ¼ p2

P0

ffiffiffiffiffiffiffi
K22

wa

s
: (12.29)

This result is in good agreement with experiment. It tells us that, at H > Hu

cholesteric should become uniform. Moreover, for each value of H < Hu, de

Gennes has estimated a stationary value of the pitch [12]:

PðHÞ ¼ P0 1þ w2aP
4
0

32ð2p4ÞK2
22

H4 þ :::

� �
(12.30)

The results (12.29) and (12.30) are in very good agreement with experiments

made under thermodynamic equilibrium. Figure 12.8b shows the results obtained

by R. Meyer [14] on rather a thick cell (d ¼ 130 mm) filled with a cholesteric

mixture based on p-azoxyanisol (PAA). The mixture was not oriented by bound-

aries and contained a number of defects. Meyer mentioned that, in order to reach the

equilibrium state for each value of magnetic field, “the tendency to hysteresis was

overcome by cycling the field while observing the cell”. This comment is very

important, because the hysteresis is a fingerprint of the topological constraints

discussed below.

For the electric field, in Eqs. (12.29) and (12.30) we should substitute ea/4p for

wa. Therefore, if we apply magnetic field (or electric field more convenient for

practical purposes) to a cholesteric sample for a long enough time, we should

change the helical pitch of the sample according to Eq. (12.30). Such a field-

induced pitch tuning would be very promising for applicable to fast displays,

tunable photonic filters, diffraction gratings and lasers. Unfortunately, pitch tuning

may be realized only via an intermediate, very slow stage of the defect formation.

12.2.1.2 Topological Limitation

What is a reason for such a disappointing situation with tuning the helical pitch by

electric or magnetic field? It is very simple: despite the fact that field unwinding of

the cholesteric helix is thermodynamically profitable there is a strong topological

limitation on the unwinding process. It can be understood as follows. In Fig. 12.9

there is a helical structure of the director field n (shown by arrows) with vertical

helical axis h. We assume that the helix is either infinite or limited by two

boundaries with infinitely weak azimuthal anchoring at least at one of the bound-

aries. It means that there is no confinement, which would prevent a free rotation of

the non-anchored director at that boundary. Therefore unwinding the helix due, for

instance, to a heating process is possible.

Now, imagine that dielectric anisotropy is positive and we apply a certain

electric field E⊥h to structure (a) with equilibrium pitch P0 trying to increase the

pitch twice, PE ! 2P0, as shown in sketch (b). To do this we must turn the director
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from the central favourable position A’( n||E, ea > 0) to the unfavourable position

B, where n⊥E, and this situation takes place within each period. Moreover, the

director must make a p/2-turn against the field to change its initial A position (at the

bottom) to new position A’. In other words, the director should overcome a high

potential barrier. Therefore, a very serious topological problem exists for the ideal

cholesteric helix. In reality, the structure (c) very often forms with favourable

orientation of the director everywhere. The positions of the walls W separating

areas where n differs by p are fixed and the energy of the structure (c) with the same

initial pitch P0 is, of course, larger than the more profitable stationary structure with

an enhanced pitch.

The numerical modelling with software [5] and experiment [15] confirm this

picture. In the experiment, a cell was used pictured in Fig. 12.10. The dielectric

anisotropy of the material is ea ¼þ7.8 and the electric voltage is applied between

the in-plane interdigitated electrodes with a gap 20 mm. In calculations, both

the zenithal and azimuthal anchoring strengths at the bottom substrate is strong,

Wz1 ¼ Wa1 ¼ 0.1 erg/cm2. At the upper substrate the zenithal anchoring energy

Wz2 is also that strong, therefore the director is always confined within the plane of

substrates perpendicular to the helical axis. However, the azimuthal anchoring

energy at the second substrate is negligibly small Wa2 ¼ 0.001 erg/cm2 and pro-

vides easy rotation (sliding) of the director in the substrate plane.

Figure 12.11 shows the calculated distribution of the azimuthal angle j for the

planar cholesteric structure of thickness d ¼ 25P0, however, only two periods are
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Fig. 12.9 Field behaviour of

a cholesteric helix (ea > 0).

(a) Zero-field structure,

(b) unfavorable structure with
a larger field induced pitch,

(c) favorable wall structure
with unchanged pitch
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Fig. 12.10 Helical structure

of a cholesteric liquid crystal

between two glass plates. On

the bottom plate, an array of

metal interdigitated

electrodes is deposited. The

array is covered by a

polyimide layers and rubbed

to align the molecules in the

plane of the substrate. The

upper glass is also covered by

polyimide but not rubbed
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shown for clarity. It is seen that, with increasing voltage, the director is progres-

sively realigned along the field direction but the period of the distorted helix

remains unchanged (some total shift of the curves along the z-coordinate is due

to boundary effects). Note that within each period there are horizontal parts of the

curves that correspond to very narrow ranges of angle j. These are field induced

defects (walls) having half-pitch periodicity which called p-solitons observed also

in SmC* materials (see Section 13.4.2).

The calculated field induced transmission of the same planar cholesteric texture

in the non-polarized light is shown in Fig. 12.12. It is clearly seen that, with

increasing field, the Bragg minimum is only slightly shifted to shorter wavelengths
due to a distortion of the helix seen in the previous figure and then disappeared at a

field of about 25V/mm. Therefore, in the absence of defects the field cannot increase

the period of the helix. An essential increase of the cell thickness does not influence

the result. The measurements of the field dependence of the transmission spectra of

a cholesteric with the same parameters have confirmed the absence of the red shift

of the Bragg minimum [15].

The characteristic field, at which the Bragg band disappears, is considerably

higher than the critical field (Eu ¼ 7 V/mm) calculated from the thermodynamic

approach, see Eq. (12.29). However, the periodic structure with very thin defect

walls separating area of opposite director orientation (j ¼ 0 or p) may still exist

but not seen optically. Metastable, non-unwound helical structures are also

observed at field strengths E > Eu in experiments with short voltage pulses when

the defects have not enough time to form.

3.2 3.4 3.6 3.8 4.0

0

90

180

270

360

500 V

222 V

U = 0

2nd boundary

A
ng

le
 f

 (d
eg

)

z-coordinate (mm)

Fig. 12.11 Calculated director azimuth j for the last two periods of the helix adjacent to the top

boundary of the cell (see Fig. 12.10). It repeatedly increases from 0� to 360� within each period P0.

Without field the dependence j (z) is linear. With increasing voltage the director is progressively

reoriented but the period remains unchanged. Cell parameters: thickness d ¼ 4 mm, pitchP0 ¼ 2.5mm,

ea ¼ 7.8, twist elastic modulus K22 ¼ 9 
 10�7 dyn
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12.2.2 Field Induced Anharmonicity and Dynamics of the Helix

Let us come back to Fig. 12.11. It is evident that a sufficiently strong electric field

perpendicular to the helical axis causes a snake-like picture of the director field with

the pitch of the helical structure remaining unchanged. It means that the distribution

of the x- and y- components of the director is no longer described by a simple sine

law but contains a contribution of higher harmonics. The amplitudes of the field

induced harmonics characterize a degree of the field-induced anharmonicity of the

helical structure. The higher harmonics of the helix had been observed long ago

[16], but only recently understood as very promising issue for applications. Indeed,

with an experimental cell of the type shown in Fig. 12.10 one can detect several

spectacular effects.

Let us simulate an appearance of the higher harmonics and optical properties of

the cholesteric structure with the following parameters typical of chiral materials

based on the well-known nematic mixture E7: helical pitch 0.4 mm, elastic modulus

K22 ¼ 5 
 10�7 dyn (or 5 pN); principal dielectric permittivity values e|| ¼ 20,

e⊥ ¼ 8; refraction indices n|| ¼ 1.7, n⊥ ¼ 1.5. Cell thickness is d ¼ 10 mm,

zenithal and azimuthal anchoring energies is strong (Wz,a ¼ 0.1 erg/cm2) at both

boundaries. The electric voltage is applied across the in-plane electrodes separated

by a distance of l¼20 mm, see Fig. 12.10. The helix is confined by two glasses with

refractive index ng ¼ 1.5.

The inset to Fig. 12.13 shows the calculated space dependence of the x-component

of the director nx(z) within one period of the cholesteric structure. The voltage

applied to the in-plane electrodes is either 0 or 200 V (E ¼ 10 V/mm). As expected,

at the field applied, the apices of the curve nx(z) for U ¼ 200 V become very flat.

The main plot of Fig. 12.13 represents the Fourier transform of the director

component nx(q/2p). In zero field, on the wavevector axis, the helix is represented
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Fig. 12.12 Calculated optical transmission spectra of the planar cholesteric texture as functions of

the electric voltage applied (unpolarized light). Principal refraction indices used are n|| ¼ 1.550,

n⊥ ¼ 1.474, for other parameters see Fig. 12.11
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by a single harmonic at q/2p ¼ q0/2p ¼ 1/P0 ¼ 2.5 mm�1. At U ¼ 200 V, a strong

third harmonic of the distorted helix appears at q/2p ¼ 3q0/2p ¼3P0 ¼7.5 mm�1.

The amplitude of the field induced third harmonic reaches the value as high as 27%

of the first harmonic amplitude at zero field. Note that characteristic relaxation time

of any elastic distortion mode is described by universal (hydrodynamic) formula

t ¼ g/Kq2, where g is a rotational viscosity. Therefore, the higher the harmonic of

distortion the shorter is its relaxation time. This fact is of principal importance for
the fast devices based on the helix anharmonicity [15].

Figure 12.14 shows the calculated transmission spectra of a cholesteric mixture

in zero field and at E ¼ 5.7 V/mm. In this case, the pitch is 0.4 mm and the cell

thickness d ¼10 mm. The incident light is circularly polarised. Upon application of

the field, a strong second Bragg reflection band emerges. The transmission is almost
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completely suppressed within a narrow spectral band. Within this range, using

electric field one can directly modulate light without polarizers.

The appearance of the high harmonics in the director distribution results in

considerably faster electro-optical switching. The dynamics of the cholesteric

helix in the electric field is described by the balance of viscous, elastic and electric

torques in the infinitely thick sample is given by

g1
qj
qt

¼ K22

q2j
qz2

þ ea
4p

E2 sinj cosj (12.31)

A low field only slightly changes the angle j keeping only the first harmonic of

the structure with wavevector 2p/P0. Then, as soon as the field is switched off, the

helical structure jE(z) would relax to the field-off structure according to the same

equation (12.31) without the field term. With ∂j/∂z ffi q0 we find solution

j ¼ jE sin q0z exp �K22q
2
0

g1
t

� �

and the field-free relaxation time

t1 ¼ g1
K22q20

(12.32)

Note that in contrast to nematics t1 is controlled by the helical pitch P0 ¼ 2p/q0
and not by cell thickness d. At a strong field, the distortion involves several harmonics

with number m and wavevectors qm ¼ 2pm/P0 and each harmonic relaxes with its

own time

tm ¼ g1
K22m2q20

: (12.33)

For instance, the third harmonic of the distorted helix relaxes nine-times faster

than the first one and this agrees with experimental data showing submillisecond

response times of the cholesteric helix in the external electric field.

It is very spectacular that the electrooptical cell shown in Fig. 12.10 can provide

very high and spectrally tunable optical contrast between the field -off and -on

states. To this effect, we install the cell between two polarizers and each of them

should precisely be oriented at particular angles. Using variable optical anisotropy

the spectral band of high contrast may be done either very narrow and tunable (for

large Dn) or very wide for white light applications (small Dn).

12.2.3 Instability of the Planar Cholesteric Texture

For unwinding the helical structure, Eq. (12.29) relates the threshold coherence length

to a characteristic size of the system, namely, the pitch of the helix xu ¼ P0/p
2.
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In Chapter 11 we have found that, for the Frederiks transition in nematics,

the threshold field coherence length is determined by the cell thickness, xF ¼ d/p,
see Eq.(11.53). Now we shall briefly discuss another type of instability with a

threshold determined by the geometrical average of the two parameters mentioned

(P0d)
1/2 [17].

Let both the helical axis and the electric field are parallel to the normal z of a
cholesteric liquid crystal layer of thickness d and ea >0. In the case of a very weak

field the elastic forces tend to preserve the original stack-like arrangement of the

cholesteric quasi-layers as shown in Fig. 12.15a. On the contrary, in a very strong

field, the dielectric torque causes the local directors to be parallel to the cell normal,

as shown in Fig. 12.15c. At intermediate fields, due to competition of the elastic and

electric forces an undulation pattern appears pictured in Fig. 12.15b. Such a

structure has two wavevectors, one along the z-axis (p/d) and the other along the

arbitrary direction x within the xy-plane. The periodicity of the director pattern

results in periodicity in the distribution of the refractive index. Hence, a diffraction

grating forms. Let us find a threshold field for this instability.

In the absence of the field, the director components are n ¼ (cosq0z, sinq0z, 0)
and q0 ¼ ∂j/∂z. For a small field perturbation, both the conical distortion appears

(angle W) and the azimuthal angle j slightly changes. The new components of the

director are:

nx ¼ cosðq0zþ jÞ � cos q0z� j sin q0z

ny ¼ sinðq0zþ jÞ � sin q0zþ j cos q0z

nz ¼ W cos q0z

(12.34)

If we intend to calculate precisely the threshold field for the two-dimensional

distortion we should write the Frank free energy with the director components

(12.34) and the field term (ea/4p)(En)
2 and then make minimization of the free

energy with respect to the two variables j and W [18]. For a qualitative estimation of

the threshold we prefer to follow the simple arguments by Helfrich [17]. We

consider a one-dimensional (in layer plane xy) periodic distortion of a cholesteric

Fig. 12.15 A planar cholesteric structure in the electric field parallel to the helical axis (ea > 0).

The local director orientation is shown by solid lines: field-off planar alignment (a), undulated
structure in a weak field Eu > E > Eth (b), and the homeotropic structure in the field exceeding the

threshold for helix unwinding E > Eu (c)
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with helical axis and electric field E parallel to axis z and layer thickness d � P0.

Further, the deformation is assumed to be sinusoidal along both the x- axis (period
equals w) and the z-axis (half-period equals d). Hence, we have two variables: one

of them is the x- and z-dependent tilt angle W of the helical axis with respect to the

cell normal, see Fig. 12.15b,

y ¼ �ym sin pz=dð Þ sin 2px=wð Þ (12.35a)

and the other is x- and z-dependent difference between the wavevectors of the

distorted and the equilibrium helix, Dq ¼ q�q0 (q0 ¼ 2p/P0):

Dq ¼ Dqm cos pz=dð Þ cos 2px=wð Þ (12.35b)

The splay and bend distortions are described by angle Wwhile the twist distortion

is related to a slight change of the period of the helical structure. The maximum

values of two variables Wm and Dqm are coupled to each other by equation

ym ¼ 2d

w
� Dqm
q0

(12.36)

that can be understood with the help of Fig. 12.15b. Indeed, due to strong anchoring

the number of helical turns in the cell is fixed, but for the helical axis tilted through

angle W the helical pitch becomes larger (�P0/cosW) and the wavevector q smaller

by Dqm. In addition, for fixed cell thickness d and q0, with decreasing period of

distortion w, the tilt angle Wm will be larger because the sin(2p/w) function in

Eq. (12.35a) becomes sharper. Using Eq. (12.36) we have only one independent

variable.

Now we are looking for a difference between the elastic energies of structures (a)

and (b) in Fig. 12.15 irrespective of a source of the distortion. For a small distortion

and director compounds nx ¼ cosW � 1, ny and nz ¼ sinW � W the highest order

terms for splay, bend and twist are divn ¼ ∂W/∂z, n 
 curln¼�∂W/∂x and

ncurln¼�∂ny/∂z ¼ Dqm. Then, using Eqs. (12.35) we can write the Frank energy

density:

gelast ¼ 1

8
K11

p
d

� 	2

þ K33

2p
w

� �2
" #

W2m þ 1

4
K22ðDqmÞ2

Here, the average values of <cos2W> ¼ <sin2W> ¼ 1/2 are used. As the cell

thickness is assumed to be large, d � w Helfrich discarded the splay term and the

elastic free energy density is reduced to the form

gelast ¼ 1

8
K33

2p
w

� �2
" #

W2m þ 1

4
K22ðDqmÞ2: (12.37a)
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When the electric field applied parallel to the helical axis is used to create the

distortion, the electric free energy density is given by:

gE ¼ ðea=2ÞE2

4p
W2m: (12.37b)

It includes term (e|| � e⊥)/2 because in the problem discussed, the torque is con-

trolled by anisotropy e||h� e⊥h defined with respect to the helical axis as e||h ¼ e⊥ and

e⊥h ¼ (e|| þ e⊥)/2 (in addition, small anisotropy ea � <e> is assumed).

On account of Eqs. (12.36) and (12.37) the total free energy density reads

g ¼ 1

8
K33

2p
w

� �2

þ 2K22

q0w

2d

� 	2

� eaE2

4p

" #
W2m (12.38)

Now we can find the period of the distortion using minimisation (12.38) with

respect to w (∂g/∂w ¼ 0):

w2 ¼ 2K33

K22

� �1=2

ðP0dÞ (12.39)

This period is determined solely by the elastic forces. In fact, the instability

with the same period can be caused by other external factors, for example, by a

magnetic field or by an electrohydrodynamic process caused by conductivity of the

material [19].

Now the threshold field Eth for the instability can be found from Eqs. (12.38)

and (12.39):

Eth ¼ 2pðK22K33Þ1=4 2p
eaP0d

� �1=2

(12.40)

We can see that, for our one-dimensional distortion in the xy plane the threshold
coherence length xth / E�1

th / ffiffiffiffiffiffiffiffi
P0d

p
is determined by the geometrical average of

the two characteristic lengths. The numerical coefficients in Eq. (12.40) should not

be taken too seriously due to the qualitative nature of our consideration. Neverthe-

less, in experiment the distortion emerges at the fields higher than the Fredericks

transition threshold but lower than the helix unwinding one. As a rule, due to

rotational symmetry of the planar cholesteric texture having helical axis along z
we observe not a one-dimensional stripe pattern but a two-dimensional grid in the

xy plane, see Ref. [19].
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12.3 Bistability and Memory

12.3.1 Naive Idea

Let an electro-optical cell based on a liquid crystal, possesses two optically different
stable configurations having the same equilibrium elastic energy. Then imagine that

we can switch the cell between the two states by relatively short low-voltage pulses

and keep the structure in either state for an infinitely long time. Such a cell would

represent a bistable optical memory device. For instance, it may be a display

consuming very little energy from the voltage source because the source is used

only during switching. Such displays can also be useful for many applications from

small smart cards and electronic books to gigantic advertising tableaux.

The simplest but not the best idea of a bistable structure is shown in Fig. 12.16a.

A nematic liquid crystal layer of thickness d is placed between two plates and the

directors at the plates are aligned perpendicular to each other with j0 ¼ 0 and

jd ¼ p/2. Assume the infinitely strong anchoring. Then the nematic is twisted left

or right by þ p/2 or � p/2 and both the twisted structures have the same total

energy including the elastic and surface terms. The elastic distortion energy Fd of a

structure twisted through angle j has been calculated in Section 8.3.2:

Fd ¼ K22j2

2d
(12.41)

This energy is shown by the dashed parabola in Fig. 12.16b. If we release the

anchoring condition at the top interface, the nematic would relax to the uniform

structure with zero elastic energy. However, due to strong anchoring energy

Ws � Fd, the total free energy of the twisted structure F ¼ Fd þ Ws shows two

minima almost exactly at the �p/2 twist angles at the horizontal level of Fd(p/2).
If we realign the director at the top interface by an external force through an

angle �djs the surface energy will dramatically increase. Therefore we have two

minima on the angular dependence of the total free energy with a barrier between

these stable states. We say that the cell is bistable.

Right Left

n n

ns

nsns

ns
F

0

Fd

/2– /2 Angle

a b

Fig. 12.16 Bistable twist cell. Right- and left-handed twist-structures of a nematic liquid crystal

with the same elastic energy (a) and the angular dependence of total free energy (b)
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The two stable twist states have different optical properties. For example, the

electric vector of a linearly polarised light is rotated by the two structures in

opposite directions. If the Mauguin regime (dDn > l) is not strictly fulfilled the

two structures can be distinguished using crossed polarizers.

The problem, however, arises with the mechanism of selection of the right and

left structures. For example, if a nematic has positive dielectric anisotropy, the

applied electric field will align the director into the third, ON- state along the cell

normal, from which afterwards, in the absence of the field, it will relax to both

twisted stable states with equal probability. Actually a multi-domain structure

forms with many defects (walls) between domains. Of course, it is possible to

apply an in-plane electric field directed along the angle p/4. Then, in the middle of

the cell, it will be parallel to the director in right-handed domains but perpendicular

to the director in the left-handed domains (or vice versa for the field angle of � p/4).
Due to this, the right domain will grow at the cost of the left one and finally the

overall right-handed twist structure will be restored. However, this process requires

a motion of the domain walls and, therefore, is very slow.

12.3.2 Berreman–Heffner Model

12.3.2.1 A Cell and Free Energy

We would like to consider this particular model in more detail because it demon-

strates interesting physical aspects of the bistability problem. Generally, chiral

nematics better suited to bistable devices as they have an additional degree of

freedom. By doping nematics with chiral compounds a variety of materials with

variable pitch can be prepared. The principal idea of Berreman and Heffner [20]

was to design a cell having two stable textures (states) with low enough energy

barrier between them. Then one can switch them by reasonable voltage. It has been

found that, using fine tuning the helical pitch to the cell thickness, the barrier

becomes especially low when, instead of cholesteric textures with directors parallel

or perpendicular to the cell normal z, the other textures were used with the director

strongly tilted with respect to z. For this purpose, the director at the transparent

electrodes was tilted using evaporation of silicon monoxide from a grazing direc-

tion. The zenithal angles of the director about 55� with respect to z were found to be
optimal.

In the test cells to be discussed below, the values of the helical pitch and the

tunable cell thickness are close to each other (about 28 mm). Therefore, as shown in

Fig. 12.17 the full pitch structure (n ¼ 2) is the most stable (n means a number of

half-pitches). The elastic energy of the two states (n ¼ 0 and n ¼ 2) is calculated

with allowance for the twist, bend and splay distortions. Solid lines in Fig. 12.18

demonstrate dependencies of the elastic energy of the two states on thickness-to-

pitch ratio in the absence of an external field. In the figure, the free energy is

normalized to the unit cell area and factor d/K22. It is seen that the free energy for
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the states (n ¼ 0) and (n ¼ 2) is equal at the ratio of d/Po � 0.6. However, the

optimum cell thickness for the bistable operation found from experiment is larger,

dexp/Po ¼ 0.89. It is that thickness, at which the energy of both states would reach

the barrier state (B) at relatively low voltage. The voltage dependence of the energy

for the cell of that particular thickness is shown in Fig. 12.19. Here voltage U is

normalized to the Frederiks transition threshold U0. With increasing U/U0, the two

stable states, indeed, merge at U/U0 � 1.8 (cross point). The energy of the barrier

state B is also changing and that curve also merges with the other two in point R at

U/U0 � 2. Point R may be called the turn point, from which the system can relax to

one of the two states in the absence of voltage.

Fig. 12.17 Berreman–

Heffner bistable cell. Director

configuration of the cell with

two stable states (unwound

with n ¼ 0 and twisted with

n ¼ 2 half-turns) in the

absence of field and the

barrier state B in a weak

electric field

W

B

30
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0 0.5 1

n =  0
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n = 1

n = 2

d/P0 

dexp

Fig. 12.18 Zero field free

energy of the states with

different number of half turns

n as a function of cell

thickness d normalized to

pitch P0. Solid lines show the

energy of the two stable states

to be switched. Low energy

(n ¼ 1) state is excluded from

consideration for topological

reasons. B marks the high

energy barrier state playing

the dominant role in the field-

on state
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12.3.2.2 Backflow and Director Relaxation

But how to force the system relax to a particular state selected by an experimental-

ist? Berreman and Heffner [20] suggested to exploit the backflow effect discussed in
Section. 11.2.6. We know that, upon relaxation of the director from the field-ON

quasi-homeotropic state (barrier state B) to a field-OFF state, a flow appears within

the cell. The direction of the flow depends on the curvature of the director field,

which is more pronounced near the electrodes. Moreover it has the opposite sign at

the top and bottom electrodes, see the molecules distribution in state B in

Fig. 12.17. Due to this, the close-to-electrode flows create a strong torque exerted

on the director mostly in the middle of the cell that holds the director to be more or

less parallel to the boundaries in favour of the (n ¼ 2) initial state in Fig. 12.17.

Therefore, if we switch the field off abruptly, the backflow will bring the system

into the twisted (n ¼ 2) state. However, if we smoothly reduce the field to zero, the

backflow will be negligible and, according to Fig. 12.19, the system will follow

curve B (state B) downward and smoothly transform into state (n ¼ 0). This

selection of the final state has been confirmed experimentally using different

forms of the voltage pulse either with the abrupt rear edge or the rear edge consisted

of several steps down.

12.3.2.3 Topological Problem and Trap States

Now let us go back to Fig. 12.18 and have a look at the dashed curve (n ¼ 1) with

the lowest free energy in the field-OFF regime. An interesting question arises why

R

W

U/Uc

B

n = 0

n = 2

d/P0 =0.89

30
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10

0
1 2

Fig. 12.19 Voltage

dependence of the free energy

for the uniform (n ¼ 0) and

twisted (n ¼ 2) states. R is

the turn point from the barrier

state to one of the two stable

initial states
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this state is not used as one of the two stable states. Here we again meet a

topological problem related to helix untwisting. Consider for clarity a non-tilted

that is planar cholesteric texture with infinitely strong anchoring at two boundaries.

In Fig. 12.20 we see three possible structures, uniform one (n ¼ 0) and two twisted,

the p-state (n ¼ 1) and the 2p-state (n ¼ 2). Note that the direction of arrows at the

opposite interfaces are the same in the (a) and (c) sketches but different in the

central (b) sketch. Therefore, we can continuously transform structure (a) into (c)

and vice versa. On the contrary, transformation of the central p-structure (n ¼ 1)

into either left of right structure is impossible without break of anchoring, for

instance, at the bottom boundary. Such a transformation would take much higher

energy than the continuous transition.

We meet the same problem in the Berreman–Heffner non-planar cell: the p-
structure (n ¼ 1) is topologically different from the two stable states. However,

despite a high barrier, both the uniform and the 2p states may little by little relax to

the “forbidden” lowest energy p-state. This is possible via slow formation of

intermediate defect states of the cholesteric structure. This will reduce the lifetimes

of both stable states; they become quasi-stable. The topologically forbidden p-state
behaves as a trap, and one needs strong voltage pulses to destroy the trap in order

to continue the bistable switching. It is a disadvantage of the Berreman–Heffner

model.

It would be better not to deal with such a trap state at all. To avoid it, there has

been suggested another configuration with the same quasi-stable states, uniform

0-state and twisted 2p-state, but now the ratio d/P0 � 1 corresponds to the lowest

energy 2p-structure [21]. The system may stay for a long time in either state without

trapping and be switched at a low voltage from the beginning. However, now

another problem appears: the difference in energy of the 0- and 2p-states is larger
than in the previous case. Thus, the reliable selection of a desired memory state

using backflow becomes more difficult unless the liquid crystal has high ratio of

elastic constants K33/K22 > 3. Such a material has been designed and the low-

voltage bistability demonstrated. In principle, in the bistable devices a dual-

frequency addressing regime discussed in Section 7.2.4 should be very efficient.

Indeed, using positive ea at low frequency, one can easily force the director to reach

the uniform homeotropic state. Operating with high frequency and negative ea it is

a cb

n = 0 n = 1 n = 2

Fig. 12.20 Three planar cholesteric structures with different number of helix half-turns. Struc-

tures (a) and (c) can be transformed into each other by continuous distortion. The central structure

(b) is topologically incompatible with the other two structures
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easy to reach the planar 2p-state. However, at present, this technique is not used due
to complexity of the corresponding addressing circuits.

12.3.3 Bistability and Field-Induced Break of Anchoring

Using field-induced break of anchoring discussed in Section 11.2.4 one can over-

come topological problems [22]. The advantage is that we can design a cell with

two long living ground states having very high energy barrier between them. The

long-life states are very important in the display technology, because the ratio of

the switch-OFF and switch-ON times determines a number of addressed lines of the

screen or the so-called multiplexing of the display. Note that in a standard display,

switching of each pixel is controlled by a separate thin-film transistor that compli-

cates technology and increases price of the display.

Figure 12.21a and b shows schematically two ground states, the uniform one

(n ¼ 0) and p-twisted (n ¼ 1). As mentioned before the transitions between them

are topologically blocked. There is a small but principal difference between this

pair of states and the pair of the corresponding states in Fig. 12.20: at the top plate

the director is slightly tilted and the anchoring energy is made weak to facilitate the

break of anchoring. The optimum thickness-to-pitch ratio is d/Po � 1/4. This

means that the p/2-twist is the equilibrium state and costs no elastic energy and

the elastic energies of the two non-equilibrium stable states (0 and p) are higher and
nearly equal. With increasing voltage, at a certain critical value, the two non-

equilibrium states merge into one. In the new state, the director is uniformly aligned

along the field almost everywhere except at the bottom interface, Fig. 12.21c. When

the voltage is reduced the system reaches a bifurcation point, at which two scenarios

are possible depending on the rate of the voltage decay: fast decay causes a

backflow that drives the system into the p-twisted state (n ¼ 1); smooth decay

results in the uniform state (n ¼ 0).

In principle, topologically blocked states may exist for unlimited time. The main

problem is to break anchoring without breakdown of the sample. Anchoring is

broken when an electric field coherence length become comparable to a surface

extrapolation length. Therefore, a critical voltage Ub necessary for the break of

anchoring is proportional to the anchoring energy. The latter should be as low as

a cb

n = 1n = 0
Fig. 12.21 Two long-living

topologically stable field-off

states (a, b) and the field

induced state (c) in a bistable

device using the break of

anchoring effect
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possible. For instance, to have Ub � 15 V the zenithal anchoring energy should be

as low as 0.2 erg/cm2. The shape of the voltage pulses is also important because the

system behaviour at the bifurcation point depends on the steepness of the rear edge.

Figure 12.22 shows the operation principle of the recently described bistable

display [23]. In this case the break of anchoring occurs at the bottom electrode

where the zenithal anchoring of the director is weak. Beautiful colour images,

stable in time and easily switchable have been demonstrated.

12.4 Flexoelectricity in Cholesterics

As has been mentioned in Section 11.3.1, the twist itself does not produce flexo-

electric polarization. However, an interesting flexoelectric effect is observed when

the twist distortion is combined with the splay-bend distortion [24,25]. In that case,

the cholesteric axis h0 is homogeneously oriented in the plane of the cell along z,
see Fig. 12.23a, and an electric field is applied to transparent electrodes of a

sandwich cell along the x-axis, E⊥h0. The dielectric anisotropy is negative,

ea 
 0. In the field-OFF state, the director components are parallel to the xy-
plane, nx ¼ cosj, ny ¼ sinj and the conical distortions is absent, see Fig. 12.23

(b) for E ¼ 0. If the cell is filled with a short pitch cholesteric P0 ¼ 2p/q0 it

behaves like a uniaxial optical plate with the optical axis directed along h0. When

the field is applied, a periodic splay-bend distortion appears due to the flexoelectric

torque Mf ¼ PfE in the surface regions. This distortion has been considered in

Section 11.3.2 for nematics. Interacting with the natural twist of the cholesteric, the

director leaves the xy-plane as shown in the picture. For the conical distortion the

new components of the director are given by

nx ¼ cosj; ny ¼ sinj cosC; nz ¼ � cosj sinC

P

A

ITO

ITO

n = 0 n = 1

Break of
anchoring

back-
flowelastic

E

Fig. 12.22 Operation of BiNem® bistable device. Two stable states are the uniform (n ¼ 0) and

p-twisted (n ¼ 1). Anchoring is strong at the top plate and weak at the bottom one. A strong field

pulse E breaks anchoring and creates a transient quasi-homeotropic texture. If the rear edge of the

pulse is short, the backflow develops and the pulse writes a signal in the form of the p-twisted
texture. To erase the signal, a strong pulse with a step-like rear edge creates the same transient

state, which relaxes to the uniform stable texture due solely to the elastic force
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The turn of the director everywhere through angle C is equivalent to the turn of

the optical axis about the x-axis through the same angle. The sign and the magnitude

of the deviation angle C depend on polarity and strength of the applied field,

respectively. It can be estimated as follows.

For weak anchoring and ea ffi 0 by analogy with a nematic (see Eq. 10.77), the

free energy of the distortion includes the elastic term due to the bend-distortion (we

assume K ¼ K11 ¼ K33) and the flexoelectric term with an average coefficient e.
The second elastic term is due to the cholesteric helical structure (modulus K22):

g ¼ 1

2
K

qj
qy

� �2

� 1

2
K22 q0 � qj

qz

� �2

� eE
qj
qy

(12.42)

Minimisation with respect to ∂j/∂z results in ∂j/∂z ¼ q0. Minimization with

respect to ∂j/∂y results in ∂j/∂y ¼ eE/K, see analogy with Eq. (11.79) for

nematics. These two derivatives can be imagined as two projections of wavevector

k, which will show the direction of the field-induced helical axis. In zero field

k ¼ q0||h0. In the field-ON state the components of vector k are |k|cosC ¼ q0 and
|k|sinC ¼ eE /K , and these components define the position of the new optical axis.

Therefore, the angle of the optical axis rotation is given by

tanC ¼ eE

q0K;
(12.43)

which is linear in the electric field E for small distortions.

The rise and decay of the flexoelectric distortion is controlled by periodicity of

the helix,

t ¼ g1
K22q20

(12.44)

z

x

+/ –U

h0 h0 h0

E > 0

a b

E = 0
E < 0

z

x

y

–

Fig. 12.23 Flexoelectric distortion in a cholesteric liquid crystal. (a) The d.c. field from the source

U is applied to the cell along the x-axis. (b) The field induced director distortion for positive and

negative field directed perpendicular to the plane of the figure along the x-axis; it is seen how the

cholesteric quasi-layers are tilted though angle C from their field-OFF configuration within the x,
y-plane shown in the central sketch
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Therefore, for short pitch cholesterics with pitch about 0.3 mm, the characteristic

time of the director switching is short, t < 100 ms (g1 � 1 P or 0.1 Pa�s in SI,

q0 ¼ 2p/P0 � 2
 105 cm�1 or 2
 107 m�1, K22 � 3
 10�7dyn or 3
 10�12 N).

Indeed, experiments show that the effect of the realignment of the helical axis is less

than 100 ms, and the speed of the response is independent of the field strength.
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Chapter 13

Ferroelectricity and Antiferroelectricity
in Smectics

13.1 Ferroelectrics

13.1.1 Crystalline Pyro-, Piezo- and Ferroelectrics

The discussion of ferroelectricity in liquid crystalline phase is based on the concepts

developed for the solid crystals. Therefore, we have to start from a brief survey of

the elementary physics of ferroelectricity in crystals [1, 2].

13.1.1.1 Polarization Catastrophe in Liquids and Solids

In Section 7.2.1 we discussed polarization of molecular isotropic liquids. We

introduced the equations for dielectric permittivity e and dielectric susceptibility

wE and wrote the microscopic definition of the polarization vector P as a sum of

dipole moments in the unit volume nv ¼ rNA/M (r is density, NA is Avogadro

number, M is molecular mass):

e ¼ D

E
¼ Eþ 4pP

E
; wE ¼ P

E
¼ e� 1

4p
; P ¼

X
n

pe ¼ ngEloc: (13.1)

Here pe is the electric dipole induced by the electric field in a molecule having

mean molecular polarizability g. Then we used the Lorentz approximation for the

local field acting on a molecule and found corresponding field induced polarization.

From that we have obtained the electric susceptibility of the dielectric (Eq. 7.18):

wE ¼ P=E ¼ nvg= 1� 4p=3ð Þnvg½ � (13.2)

This formula is very important for the further discussion because it predicts the

“polarization catastrophe”. For small molecular polarizability g, susceptibility wE

depends linearly on g. However, when g ! 3=4pnv, the denominator of (13.2)

tends to zero and wE diverges.

L.M. Blinov, Structure and Properties of Liquid Crystals,
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Its physical sense is well seen from the equations (7.17) for P and Eloc. For a

fixed concentration of molecules and given local field, the polarization should be

linear function of g. However, with increasing P, Eloc itself begins to grow and this

results in the non-linear, avalanche-like increase of susceptibility. Finally, for

small, densely packed molecules (nv is large) with high polarizability g, wE would

tend to infinity. It means that an infinitesimally low field, even a small fluctuation of

a local field, may create a finite polarization. In other words, polarization may

appear spontaneously, without any applied field. The appearance of the spontane-

ous polarization is a necessary (but not sufficient) condition for phenomenon called

ferroelectricity.

What’s about liquid ferroelectric? Let us examine the qualitative criterion

k ¼ 4=3ð Þpnvg ¼ 4=3ð ÞprgNA=M (13.3)

for the polarization catastrophe in liquids having non-polar molecules. In this case,

the Lorentz formula for the local field is approximately valid. We can take, e.g.,

liquid benzene (r � 0.9g/cm3, M ¼ 78, electronic polarizability ge � 1.25 �
10�23 cm�3). Then k � 0.09 <<1 and liquid benzene cannot be polarised sponta-

neously. Even for hypothetical liquids consisted of smaller molecules with higher

electronic polarizability it would be difficult to reach criterion (13.3). More per-

spective are liquids whose molecules carry permanent dipole moments pe which
additionally contribute to g due to orientational polarizability gor. Let us take liquid
nitrobenzene (r � 1.2g/cm3, M ¼ 123) with quite a large dipole moment, pe � 4

Debye ¼ 4�� 10�18 CGS). The application of the Lorenz formula for Eloc would

result in equation (7.22) for orientational polarizability gor ¼ p2e=3kBT � 1.3 �
10�22cm�3 at room temperature. Then, coefficient k � 3.2 would exceed the

criterion for the polarization catastrophe, however, this is incorrect result, because

the Onsager reaction field discussed in Section 7.2.1 has not been taken into

account. In reality, the dipole–dipole interaction in nitrobenzene and other known

dipolar liquids is not sufficient to form a spontaneously polarised state.

In solid crystals, the situation is different because (i) their packing is denser; (ii)

ionic crystals consist of small ions of high polarizability; (iii) different ions interact

with each other forming large dipoles and (iv) there is a possibility to overcome the

limitation posed by the Lorenz formula for the local field. Indeed due to crystal

anisotropy, at least, for some directions the criterion for the polarisation catastrophe

is weaker. On the other hand, in solids there are strong elastic forces counteracting

the electric force and hindering displacement of ions. Nevertheless, a spontaneously

polarised state is quite typical of many crystals, the molecular organic crystals

included.

13.1.1.2 Pyro-, Piezo- and Ferroelectrics

Totally there are 32 crystallographic classes. Among them we can distinguish 11

unpolar classes, 11 neutral-polar classes and ten polar classes. Unpolar classes have
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no polar directions at all. They have a centre of symmetry and show no polar

properties. The polarisation can be induced only by external electric field. An

example is calcite having inversion centre and symmetry D3d shown in Fig. 13.1a.

Piezoelectrics. In the neutral-polar classes there are polar directions (not axes),

which can be described by several vectors with their vector sum equal to zero. Such

crystals do not possess spontaneous polarization and do not manifest polar properties

(such as pyroelectric, photogalvanic or linear electrooptical effects); however, the

polarization can be induced not only by an electric field but also by a pure mechani-

cal stress. These crystals are called piezoelectrics. Examples are crystals of quartz or

ZnS having cubic symmetry with four polar direction but no polar axis, Fig. 13.1b.

Such crystals are used in technics as microphones, mechanical micro-motors and

sensors, etc.

Pyroelectrics. In a crystal belonging to polar classes there is only one polar axiswith
a symmetry of the polar vector. These crystals are also piezoelectric, but, in addition,

manifest spontaneous polarization Ps and all other polar properties. Such crystals are

called pyroelectrics. An example is tourmaline having symmetry C3v and shown in

Fig. 13.1c. Pyroelectric crystals are also used in techniques as piezoelectrics and also as

detectors of infrared light or a heat flow. There are many organic pyroelectric crystals,

e.g., p-nitroaniline, one of the best generators of the optical second harmonic.

Ferroelectrics. Speaking in terms of the polarisation catastrophe we can say that,

in the most of pyroelectrics k > 1, and the catastrophe occurs upon crystallisation of

the substance. In this case the polarisation is forever fixed along the direction of the

polar axis even upon variation of temperature or an external field. However, there are

some crystals belonging to the same point groups as pyroelectrics but having not so

stable spontaneous polarisation. The direction ofPs, that is the direction of the vector

of polar axis, can be inverted by an external electric field. In fact, this direction is

degenerate and there are two equivalent energy states. One of the two minima of the

free energy may be selected by an external field and this is another type of bistability

in addition to discussed in Section 12.3.3. The switching between the two states is

characterised by a certain threshold and hysteresis. This possibility of the polarisa-

tion switching between two stable states is usually taken as a criterion to distinguish

such (soft) ferroelectrics from the normal (rigid) pyroelectrics. The bistability is the

sufficient condition for ferroelectricity [3].

C C
a b cFig. 13.1 Examples of non-

polar, piezoelectric and

pyroelectric crystals: calcite

(a), ZnS (b) and tourmaline

(c). An arrow shows the

direction of the polar axis in

tourmaline
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In ferroelectrics criterion k only slightly exceeds unity. For this reason, with

increasing temperature, the ferroelectric state or phase can be destroyed by the

phase transition into the non-ferroelectric (paraelectric) phase with zero spontane-

ous polarization. Sometimes this ferroelectric transition at temperature Tc is taken
as an additional criterion for ferroelectricity, although there are crystals, in which a

ferroelectric phase survives up to the crystal melting. Experimentally, close to Tc
the dielectric constant very often obeys the Curie law, e ¼ C/ (Tc � T), where C is

Curie constant. A good example of a ferroelectric crystal is BaTiO3, in which two

stable states are characterised by two different sites the Ti4þ ion occupies in the

crystallographic lattice. Among crystalline ferroelectrics there are some organic

crystals and even polymers, e.g., poly-vinylidene-fluoride (PVDF), in which the

spontaneous polarisation is owed to collective alignment of the C–F dipoles

perpendicular to the backbone of the polymer.

13.1.1.3 Simplest Description of a Proper Ferroelectric

In the proper ferroelectrics, the spontaneous polarisation appears as a result of the

polarisation catastrophe or, in other words, due to electric dipole–dipole interac-

tions. There are also improper ferroelectrics, in particular, liquid crystalline ones, in

which a structural transition into a polar phase occurs due to other interactions and,

consequently, Ps appears as a secondary phenomenon. We shall discuss this case

later. For simplicity, the square of spontaneous polarisation vector can be taken as a

scalar order parameter for the transition from the higher symmetry paraelectric

phase to the lower symmetry ferroelectric phase. Therefore, in the absence of an

external field, we can expand the free energy density in a series over Ps
2(T) and this

expansion for ferroelectrics is called Landau–Ginzburg expansion:

g ¼ g0 þ 1
2
AP2

s þ 1
4
BP4

s þ 1
6
CP6

s þ � � � (13.4)

Here, g0 is free energy of the paraelectric phase, A ¼ a(T � Tc), B, C are

Landau coefficients. As in Eq. (13.5) there is no any derivative, the conditions for

the free energy minimum are given by the simplest Euler equation qg=qPs ¼ 0 and

stability condition q2g=qP2
s>0:

APs þ BP3
s þ CP5

s ¼ 0 and Aþ 3BP2
s þ 5CP4

s > 0 (13.5)

Consider the case of small Ps. Then, the sixth order term is ignored and

g ¼ g0 þ 1
2
AP2

s þ 1
4
BP4

s þ � � � The plot of this function is very similar to that in

Fig. 6.10b for the free energy close to the SmA-nematic transition discussed in

Section 6.3. The phase transition occurs at A ¼ 0. For A > 0 there are two minima

corresponding to finite values of the spontaneous polarisation in the ferroelectric

phase (curve 1 in the figure); for A < 0 only one minimum at zero Ps corresponds to

the paraelectric phase (curve 3). Totally, we have only three solutions of Eq. (13.5):
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Ps ¼ 0 (for the paraelectric phase) and Ps ¼ �ð�A=BÞ1=2 ¼ �½ða=BÞðTc � TÞ�1=2
(for the ferroelectric phase). Signs (�) mean that Ps can look in two opposite

directions and correspond to the two minima in the free energy. The square root

dependence of Ps on temperature near the phase transition is a continuous function

characteristic of the second order transition like SmA-nematic transition, see

Fig. 6.10a or SmC-SmA transition. Such dependence is in accordance with many

experiments on ferroelectrics. When Ps is not small we should return back to the

initial free energy expansion (13.5) and keep the sixth order term. A similar

situation has been already discussed in Section 6.2 for the isotropic – nematic

phase transition. Now Eq. (13.5) has five solutions and can explain a jump-like

growth of Ps with decreasing temperature, (as in Fig. 6.5), hysteresis of Ps(T) close
to the transition temperature and specific features of other thermodynamic properties.

To discuss the electric field switching we add the field term gE ¼ �PE to

(Eq. (13.4)) and make minimisation of free energy with respect to the total polari-

zation P ¼ Ps þ Pin that includes the spontaneous and the field induced terms

P ¼ Ps þ Pin. Then we obtain ∂gE/∂P ¼ �E or

E ¼ APþ BP3 þ CP5 (13.6)

This equation implicitly represents the dependence of polarization on the applied

electric field. Usually, the function P(E) can be found numerically with temperature

dependent coefficient A and constant B and C.
From Eq. (13.6) we can easily derive the Curie law for dielectric permittivity e

or susceptibility w ¼ (e � 1)/4p. For small fields, we can leave only the first

term of the expansion E ¼ AP. In the paraelectric phase P ¼ Pin and

Pin ¼ wparaE ¼ E=aðT � TcÞ. In the ferroelectric phase, for small fields, Ps>> Pin,

therefore P2 � P2
s þ 2PsPin þ � � � and ðAþ BP2

s þ 2BPsPinÞðPs þ PinÞ ¼ E. From
here, using formula for (Ps)

2¼�A/B found above and leaving only linear terms in

Pin, we obtain E ¼ �2APin.

Therefore, the Curie law is given by

wpara ¼ 1=a T � Tcð Þ for T > Tc in paraelectric phaseð Þ (13.7)

wpara ¼ 1=2a T � Tcð Þ for T < Tc in ferroelectric phaseð Þ (13.8)

The inverse susceptibility follows a linear dependence on temperature in both

the paraelectric and ferroelectric phases; a sign of the slope of function 1/w(T) in the
two phases is opposite and the magnitude of the slope is twice larger in the

ferroelectric phase in agreement with experiment. Note that the Curie law is valid

for both second and first order transitions, but the critical temperatures Tc and Tc*
the two cases may not coincide, like in Fig. 6.8b.

Now, going back to Eq. (13.6) we may discuss the P(E) dependence even for

strong fields. An example of such dependence is pictured qualitatively in Fig. 13.2.

The values of P at E ¼ 0 on the vertical axis corresponds to � Ps. In the field range
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between points G and H the function P(E) has three values. In reality, a hysteresis is
observed. With increasing field the curve follows the route DECFA, but, due to a

memory of state A, the back route AFBED does not coincide with the forward one.

As a result, a ferroelectric loop forms with width G-H. A half of the width is called

“coercive field”. We see that, upon application of the electric field, the spontaneous

polarization of the ferroelectric can be switched between two states � Ps

corresponding to the two equivalent minima in the free energy. Therefore, the

ferroelectric demonstrates a bistability again in agreement with experiment. It is

very surprising how many experimental results on ferroelectricity can be explained

using such a simple theoretical consideration!

13.1.2 Ferroelectric Cells with Non-ferroelectric Liquid Crystal

13.1.2.1 Meyer’s Discovery

Year 1975 has been marked off by an outstanding publication of R. Meyer and his

French co-workers [4]. As has been discussed in Section 4.9, chirality of molecules

removes the mirror symmetry of any phase. The idea of Meyer was to apply this

principle to the SmC phase by making it chiral. He believed that if chiral molecules

formed a tilted smectic phase, its point group symmetry would reduce from C2h to C2

and the new phase would belong to pyroelectric class with a specific polar axis [5].

The chemists from Orsay have synthesised chiral compound p-decyloxybenzy-
lidene-p0-amino-2methylbutylcinnamate (DOBAMBC), Fig. 13.3. Indeed, in the

temperature range 95–117�C, this substance showed a linear electro-optical effect

characteristic of a pyroelectric phase. The effect was observed in thick home-

otropically oriented layers. Due to chiral structure of DOBAMBC molecules, the

SmC* phase had a spiral structure with the helical axis perpendicular to the limiting

glasses, Fig. 13.4a. Under a microscope the preparation showed a conoscopic cross

typical of a uniaxial phase, and, upon application of the in-plane electric field Ex,

P

E

F

B

G O

ED

C

H

A
Fig. 13.2 Hysteresis type

dependence of total

polarization P on electric field

E for a typical crystalline

ferroelectric
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the cross moved perpendicular to the field along the y-axis, Fig. 13.4b. The

direction of the cross shift changed with a change of the field polarity. The effect

was clearly related to the pyroelectric nature of the SmC* phase and existence of

the spontaneous polarisation interacting with the external field. Therefore, in 1975

for the first time, a polar liquid phase (of course, anisotropic) with finite spontane-

ous polarisation was reported.

The value of Ps in DOBAMBC was very small, about 18 CGSQ/cm2 (or

60 mC/m2). It is 2,500 times less than Ps in BaTiO3 (150 mC/m2). However,

nowadays there are SmC* materials with Ps � 5 mC/m2. The magnitude of Ps

depends on the molecular structure. A molecule should have a large transverse

dipole moment located close to the chiral moiety; otherwise the intra-molecular

rotation of chiral moiety with respect to the dipolar part would prevent, at least,

partial orientation of dipoles along the polar axis. For the same reason, a rotation of

molecules about their long molecular axes should be hindered. In DOBAMBC, the

smallness of Ps is explained by rather free rotation of the chiral tail about the

–O–CH- bridge connecting the asymmetric carbon C* with the –C¼O dipolar

group shown by an arrow in Fig. 13.3.

C10H21O CH

Cr SmC SmA I
76°C 95°C 117°C

CH CH CH C2H5CH

CH3

N C O

O

*
*DOBAMBC

p
e

Fig. 13.3 Chemical formula of DOBAMBC molecule which is chiral due to asymmetric carbon

C* and has a dipole moment pe. Below is a sequence of transition temperatures between crystal

(Cr), SmC*, SmA and isotropic (I) phases

Fig. 13.4 Meyer’s experiment. Geometry of the cell with helical structure of DOBAMBC (a) and
two conoscopic images (b), one in the absence of the field (top) and the other at Ex ¼ 672 V/mm

showing a shift of the conoscopic cross perpendicular to Ex
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13.1.2.2 Goldstone Mode and Helicity of the Structure

As we discussed in Section 4.9, on a large scale, the SmC* phase acquires a helical

structure. This is not surprising, because, in the achiral SmC phase, the c-director of
the infinite stack of layers may look over any direction. The rotation of the SmC*

director about the smectic layer normal does not cost any energy. We meet the same

situation in nematics: when there is no external field and limiting surfaces, the

direction of the director n is not fixed and one can rotate it without spending any

energy. It is an elastic mode, the so-called Goldstone mode, trying to restore the

continuous symmetry D1h ! Kh of the phase existing above the corresponding

transition (isotropic phase in case of nematics) [6]. Due to this non-energy demand-

ing rotation, any small amount of a chiral additive (considered as a perturbation)

would easily twist the nematic structure into the cholesteric.

The Goldstone mode in an achiral SmC tries to restore the symmetry of the

smectic A phase C1h ! D1h by free rotation of the director along the conical

surface with the smectic layer normal as a rotation axis. Thus, like chiral molecules

convert a nematic into a cholesteric, they convert an achiral SmC into chiral SmC*

without any phase transition. In addition, mixing left (L)- and right (R)-handed

additives results in a partial or complete compensation of the helical pitch both in

cholesterics and chiral smectic C*. For example, the L- and R- isomers of the same

molecule taken in the equal amounts would give us a racemic mixture, that is

achiral SmC without helicity and polarity.

What has been said above shows that the macroscopic helicity as such has no

direct relation to the polarity of the SmC* phase. One can select chiral molecules

without dipoles and construct a helical SmC* that will have a polar axis without

polarisation. But, is it possible to have finite polarisation without helical structure in

the bulk? Can wemake a uniform polar phase with infinite helical pitch? The answer

is “Yes”. To this effect we should prepare a mixture of left-handed and right-handed

molecules of different chemical structure. An example is shown in Fig. 13.5 [7].

In this case, R-DOBAMBC is mixed with L-HOBACPC (p-hexyloxybenzylidene -
p0-amino-chloropropyl-cinnamate). The sample is rather thick, d ¼ 200 mm. With a

0

1.0

0.5

Right
DOBAmBC

Left 
HOBACPC

20

10

5

Ps

40 60 80 100%

m–1 

Ps
nC/cm2

no Ps

no helicity

Fig. 13.5 Phase diagram for

the mixture of two chemically

different left- and right-

handed compounds. Note that

at a certain concentration of

HOBACPC (c � 15%) the

spontaneous polarization Ps

vanishes in the helical

structure (wavevector

q0 � 0.8 mm�1); on the

contrary, at c ¼ 50–70%, the

helicity is compensated

(q0 ¼ 0) but Ps remains finite

(�5 nC/cm2)
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change in composition we observe two magic points: in one of them the helical pitch

is compensated and the helical vector q ¼ 0 (no helicity), in the other the spontane-

ous polarisation vanishes (no polarity). The two points do not degenerate into one

because molecular interactions responsible for polarity and chirality are different.

This result is very interesting from the practical point of view: it shows how to get

rid of the undesirable helical structure in liquid crystals electrooptical cells. It is also

significant from the theoretical point of view because it proves a possibility to have a

uniform polar liquid crystalline structure without any limiting substrates.

Such a polar phase would manifest the same Goldstone mode as an achiral SmC

does. The origin of the Goldstone mode in SmC* is not a helical structure, as often

stated in literature. On the contrary, the helicity originates from the Goldstone mode

due to its gapless nature (the absence of any energy gap for the c-director rotation
from one orientational state to the other). What is true that the same mode in the

SmC* phase is much better seen in the low frequency dielectric spectrum due to the

coupling of the director to the spontaneous electric polarisation of the chiral polar

phase. Particularly, in the helical structure, the Goldstone mode has a characteristic

(hydrodynamic) dependence of the relaxation frequency on the wavevector of the

helix, o � Kq2, exactly like in cholesterics.

13.1.2.3 Smectic C* Phase and Criteria for Ferroelectricity

Is the SmC* phase ferroelectric? To answer this question we should look more

carefully at the criteria formulated for crystalline ferroelectrics:

1. All crystalline ferroelectrics without exceptions belong to one of the pyroelectric

classes and possess spontaneous polarisation (polar class).

2. Sometimes, a formation of domains with different direction of Ps is also taken as

a pre-requisite of the ferroelectricity.

3. There is a distinct phase transition between the ferroelectric and the paraelectric
phase (there would be no exception from this rule if we consider even melting to

the liquid phase as such a transition).

4. There are two equivalent stable states (bistability) differed by the spontaneous

polarisation direction, between which we can switch the direction of Ps. It seems

there is no exception from this criterion among the crystalline ferroelectrics.

As we have seen, locally the smectic C* layers are polar, belonging to pyroelectric

class C2. Macroscopically SmC* either forms a helical structure or does not. So, we

can discuss a structure without helicity. In a sense, the formation of a helix is

equivalent to formation of ferroelectric domains which would reduce overall macro-

scopic polarisation. Thus we can consider the (1) (very important) and (2) (additional)

requirements fulfilled. As to the phase transition (3), we know that in the smectic A*

phase, even chiral, there is no polar axis, therefore that phase can be considered as a

paraelectric phase. The two-component order parameter of the A*–C* transition is

the same as the parameter of the A–C transition in an achiral substance, namely Wexp
(ij), where we recognise the tilt W and azimuth j angles. The spontaneous
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polarisation is not considered as an order parameter, but this is not a limitation for, at

least, improper ferroelectricity. We just deal with a transition to improper pyroelectric

phase. Thus, the third criterion for ferroelectricity is also fulfilled.

The last criterion (4) is bistability. In the non-helical structure the direction of the

polar axis is fixed in the sense that the three vectors, the polar axis Ps, the director n
and the smectic normal h form either right or left vector triple. This depends on

molecular handedness and cannot be changed. In this sense there is no bistability.

On the other hand, the Goldstone mode allows the thresholdless rotation of Ps

together with n about h through any angle by an infinitesimally low electric field.

So, a number of possible states is infinite.

The situation can be well modelled by a magnetic arrow, placed in a viscous

liquid: by realignment of an external magnetic field the arrow will follow the field

and eventually it takes the field direction (the time depends on liquid viscosity). Our

case can also be modelled by a pyroelectric crystal installed on the needle like the

magnetic arrow. Now the arrow is not magnetic but electric and follows an electric

field E. If the electrodes are fixed in the smectic layer plane, we can switch the

polarisation between two angular states, controlled by the positive and negative

field. Since the polarisation direction is rigidly coupled to the director (and the

optical axis) we would observe a linear electrooptical effect. The switching is faster

if we have stronger E, higher Ps and lower viscosity and this is in agreement with

experiment. However, the two field controlled states are not intrinsically stable

states and, in the absence of the field, they can easily be destroyed by thermal

fluctuations or even by very weak chirality.

Therefore, in conclusion, we may say that the bulk smectic C* phase is, in

principle, a liquid pyroelectric, which, due to its fluidity, allows a thresholdless

realignment of its polarisation (and the director) by an external field. Strictly

speaking, it is not a ferroelectric in both the uniform and helical states. It may be

called a helielectric [8] to distinguish it from the conventional pyroelectric, how-

ever, this does not change anything. But why a large class of smectic C* materials is

called ferroelectric and under this name is widely used in modern technology?

13.1.2.4 Surface Stabilised Ferroelectric Cells

We can answer the last question if consider a construction of the so-called “surface

stabilised ferroelectric liquid crystal cell” or simply SSFLC cell [9]. Such SSFLC

cell is only few micrometers thin and, due to anchoring of the director at the

surfaces, the intrinsic helical structure of the SmC* is unwound by boundaries

but a high value of the spontaneous polarisation is conserved. The cell is con-

structed in a way to realise two stable states of the smectic C* liquid crystal using its

interaction with the surfaces of electrodes, see Fig. 13.6a. First of all, in the SSFLC

cell, the so-called bookshelf geometry is assumed: the smectic layers are vertical

(like books) with their normal hs parallel the z-axis. Then the director is free to

rotate along the conical surface about the hs axis as shown in Fig. 13.6b (Goldstone
mode). It is important that, to have a bistability, the director should be properly
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anchored at the electrodes. In the ideal case, the zenithal anchoring energy Wz

should be relatively strong, but the azimuthal one Wa should be zero. Thus, in the

absence of the external field, to have minimum Wz the director n must be located

parallel to electrodes that is in plane yz intersecting the surface of the cone.

Therefore, there are only two stable positions for n, either angle þW or �W.
Consequently, the spontaneous polarization Ps will be directed along the �x-axis,
i.e. either up or down in sketch (a).

In experiments, very often spatial domains appear in the initial field-off state of

approximately equal total area with the director oriented at þW or �W. Under a
microscope, with a polariser P oriented, say, along the þW direction, as shown in

Fig. 13.6b, and analyser A⊥P, the þW domains look black and �W domains bright.

When a sufficiently strong, square-wave electric field � Ex is applied to electrodes,

Ps is switched along the x-axis and, since the director is rigidly fixed to both the Ps

and the conical surface, its projection on the yz-plane will oscillate between

�W positions through total angle 2W. Usually it sticks in one of the two stable

positions (memory states) as soon as the field is switched off. This process results in

a true bistable switching of Ps like in solid state ferroelectrics and, due to director

switching, a fast electrooptical effect with a good contrast is observed.

SSFLC cells are very convenient for measurements of the magnitude of Ps.

Indeed, upon switching the polarization by external voltage, a change of the surface

charge at the electrodes of area A creates an electric current i ¼ dQ/dt ¼ A dP/dt.
Therefore, applying a step voltage of sufficient amplitude to switch the polarization

from �Ps (at t ¼ �1) to þ Ps (at t ¼ þ1) and measuring the time dependence of

the current i(t) we find Ps by integrating the area under the i(t) function.

2Ps ¼ A�1

ð1

�1
iðtÞdt

Unfortunately, the ideal bookshelf structure is difficult to make. Usually the

electrodes are covered by polymer layers and rubbed unidirectionally. This pro-

vides a good alignment of the director along the electrodes and the “bookshelf”

Fig. 13.6 SSFLC cell. The structure of the cell with bookshelf alignment of smectic layers (a) and
the cone of the director n motion with two stable states �W in the electrode plane yz (b). Note that
in sketch (a) the director in the cell plane yz is turned to the reader through angle þW (shown by

thicker right parts of the rod-like molecules) in agreement with sketch (b). The double-head arrow
shows the optimum angular position of polarizer P
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structure of the SmA* phase. Upon cooling the cell from the SmA* to SmC* phase

the director keeps its in-plane direction. Although the rubbing is appropriate for

strong zenithal anchoring it is incompatible with the requirement of zero azimuthal

anchoring of the director necessary for the genuine bistability. Moreover, upon the

passage of the SmA* � SmC* transition, the smectic layers become tilted or

acquire a chevron structure. The chevrons and accompanying zigzag defects have

been discussed in Section 8.5.4, see Figs. 8.33 and 8.34. These factors reduce the

performance of the SSFLC cells. Nevertheless, the principle of the bistable switch-

ing of the pyroelectric SmC* phase is realised in the SSFLC cells and such cells can

be considered as genuine ferroelectric cells.

13.1.3 Phase Transition SmA*–SmC*

13.1.3.1 Simplification

Due to low symmetry (C2) of the chiral smectic C* phase, its theoretical description

is very complicated. Even description of the achiral smectic C phase is not at all

simple. In the chiral SmC* phase two new aspects are very important, the spatially

modulated (helical) structure and the presence of spontaneous polarisation. The

strict theory of the SmA*–SmC* transition developed by Pikin [10] is based on

consideration of the two-component order parameter, represented by the c-director
whose projections (x1, x2) ¼ (nznx, nzny) are combinations of the director compo-

nents nx ¼ sin W cosj, ny ¼ sin W sinj; and nz ¼ cos W:

x1 ¼ nznx ¼ 1
2
sin 2W cosj; x2 ¼ nzny ¼ 1

2
sin 2W sinj (13.9a)

or

c ¼ 1
2
sin 2W i cosjþ j sinjð Þ: (13.9b)

Here, W is the tilt angle of the director with respect to the smectic layer normal

(and the helical axis z) and j is the azymuthal angle counted from the x-axis. The
free energy of the SmC* includes both the helicity and polarization. Then, assuming

constant orientational order parameter Q, a linear relationship between the tilt and

polarisation and leaving only the lowest order terms in x1, x2 and gradients ∂x1/∂z,
∂x2/∂z, one has fifteen terms in the equation for the free energy [11].

However, many interesting effects in ferroelectric cells may be described with-

out account of the helicity, in the approximation of a uniform SmC* structure (e.g.,

unwound by limiting surfaces or formed by mixtures with compensated helicity).

So, in this paragraph, we ignore all the space dependent terms i.e. consider a SmC*

structure with azimuthal angle j ! 0. Going back to Fig. 13.5 this approximation

may correspond to a ferroelectric mixture with q0 � 0. Then the free energy is:
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gSmC	 ¼ g0 þ 1

2
AW2 þ 1

4
BW4 þ P2

2w?
� mPW� PE (13.10)

where W [in rad] is the tilt of the director, A ¼ a(T � T0) [in erg/cm3K] describes

the elasticity for W-changes, P [in CGSQ/cm2 or statV/cm] is polarization, m [in

statV/cm] is the polarization-tilt coupling constant (or piezocoefficient), E is an

external electric field [statV/cm] applied perpendicular to the tilt plane, g0 and

w? ¼ ðe? � 1Þ=4p are the background energy of the SmA* phase and dielectric

susceptibility of the SmA* phase well above the A*–C* transition.

Equation (13.10) is principally different from the equation (13.4) for the free

energy of a solid ferroelectric. Here, the leading term of the expansion is related to

the tilt angle, but the appearance of the spontaneous polarisation (the secondary

effect) is taken into account by coupling term mPW. Term P2/2w⊥ describes the

energy of the polarised dielectric. For a racemic phase, with spontaneous polariza-

tion Ps ¼ 0 and without coupling of the tilt to total polarisation P we would put

total polarization P ¼ 0 in Eq. (13.10) because there is no additional contribution to

the field energy in the SmC phase above the background (SmA) term g0. Therefore,
for the achiral SmC phase, minimisation of Eq. (13.10) with respect to the tilt angle

would provide the result obtained in Section 6.4.

qg
qW

¼ AWþ BW3and Ws ¼ a=Bð Þ1=2 T0 � Tð Þ1=2

13.1.3.2 Soft Mode for Smectic A*–Smectic C* Transition

Low field limit. Minimising Eq. (13.10) with respect to polarization P we find the

relation between the tilt and polarization:

P ¼ w?mWþ w?E (13.11)

For discussion of the soft mode close to the phase transition we can assume small

W angles, and a weak field E << mW. Then, substituting P � w?mW in Eq. (13.10)

and ignoring term BW4 we exclude P from the free energy difference between the

SmC* and SmA* phases:

Dg ¼ 1

2
A� w?m

2
� �

W2 � w?mEW (13.12)

Note that the fourth and fifth terms in expansion (13.10) merge with the second

term and this results in renormalisation of the transition temperature.
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Now we minimise the free energy with respect to the tilt angle

qDg
qW

¼ A� w?m
2

� �
W� w?mE ¼ 0

and arrive at the expression for the tilt angle linearly dependent on the field:

W ¼ w?mE
A� w?m2

¼ w?mE
a T � Tcð Þ ¼ ecE (13.13)

where

Tc ¼ T0 þ w?m
2
�
a

We see, that the phase transition temperature increases, because the dipole–

dipole interactions (P2-term) stabilise the smectic C* phase. Note that the field

induced tilt angle (or electroclinic coefficient ec) diverges at a temperature Tc. This
means, that at Tc even infinitesimally low field would create a finite tilt. This is the

soft mode of the director motion: any small force (not necessary electric) would

cause the tilt of the director, because, at the transition, the medium becomes soft
with respect to the tilt. The corresponding dielectric susceptibility shows the

Curie–Weiss law:

wsm ¼ P

E
¼ w2?m

2

a T � Tcð Þ (13.14)

In reality, a growth of the induced tilt at the phase transition is limited by two

factors. In a strictly compensated non-helical ferroelectrics only BW4 term in

expansion (13.10) is limiting. In the most practical cases, the helix cannot be

precisely compensated over the whole range of the smectic C* phase and a finite

wavevector qo ¼ 2p/P0 remains. Thus, in a more advanced theory, the space

dependent, chiral terms must be added to expansion (13.10). They renormalize

the transition temperature for the second time, and put a limit for the divergence of

the induced tilt:

W ¼ w?mE
a T � Tchð Þ þ Kjq20

with Tch ¼ T0 þ w?m2

a
þ Kjq

2
0

a
(13.15)

Here, Kj is an effective elastic modulus for the azimuthal motion of the director

in the SmC* phase that includes factor sin2W [11]. Due to this factor, in the one-

constant approximation, which will be used below, Kj � 10�7 dyn is roughly one

order of magnitude smaller than <Kii> for nematics. The third term in the equation

for Tch determins the difference in the transition temperatures for a helical and

unwound ferroelectric.
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With the chiral term in the expansion, the Curie type temperature dependence of

the low field soft-mode susceptibility in the smectic A phase becomes somewhat

smoothed:

wsm ¼ w2?m
2

a T � Tchð Þ þ Kjq20
: (13.16)

At a low field with ignored term BW4 in Eq. (13.10), the dynamics of the director

soft mode can be investigated using the Landau–Khalatnikov equation, see Sec-

tion 6.5.1. The corresponding equation describing the balance of the viscous and

elastic torques reads:

gW
qW
qt

¼ �a T � Tchð ÞW (13.17)

Here, gW is the rotational viscosity for the W-angle change. From this equation is

clear, that the inverse relaxation time of the soft mode (tsm)
�1 diverges at Tch (on

the SmA* side of the transition):

tsm SmA	ð Þ ¼ gW
a T � Tchð Þ (13.18)

Indeed, the Curie-type behaviour is in agreement with the experimental data [12]

obtained by the pyroelectric technique on a SmC* mixture with Ps � 600 statV/cm

or 2 mC/m2, see Fig. 13.7. However, the maximum time at Tch is limited by the

value of tsm � 13ms. To account for this saturation the fourth order term BW4 in the
free energy has to be taken into account.

20 30 40 50 60
0

5
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–5 0 5 10
0

1
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Tch

T (°C)

T, °C

Fig. 13.7 Experimental temperature dependence of the soft-mode relaxation time (main plot), and

demonstration of the Curie type behaviour of the inverse relaxation time on both sides of the phase

transition (inset) in accordance with Eqs. (13.18) and (13.19) depicted by solid lines. Experimental

parameters: chiral mixture with Ps � 2 mC/m2, a ¼ 5�104 J m�3 K�1, Tch ¼ 49�C, cell thickness
10 mm, the rotational viscosity found is gW ¼ 0.36 Pa�s or 3.6 P
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Strong field limit. For a very strong field, the helical structure is always

unwound, the BW4 term in expansion (13.10) dominates over AW2 term, and the

temperature dependencies of the induced tilt and susceptibility disappear:

W ¼ w?mE
B

� �1=3
and w ¼ qP

qE
¼ 1

3

w4?m
4

B

� �1=3
E�2=3

In fact, a strong field smears the soft mode behaviour and the phase transition

vanishes. All these results are in agreement with experiments on dielectric and

electrooptical properties owed to the soft mode in the chiral SmA* phase.

It is worth to mention that, in the higher symmetry SmA* phase, the soft mode is

the only one elastic mode for the director. It is related to the short-range elastic

excitations of the director tilt i.e. to the amplitude of the two-component order

parameter of the less symmetric phase SmC*. Therefore, the soft mode may be

called the amplitude mode and the corresponding excitation amplitudons [6, 13].

On the transition to the SmC* phase the continuous symmetry group D1 is broken

and the reduced symmetry C2 of the SmC* phase allows the Goldstone mode. The

latter is related to the long-range excitations of the director azimuth i.e. the phase of

the SmC* order parameter. Such excitations may be called phasons. Note that in the

SmC* phase the soft and Goldstone modes coexist and have very different relaxa-

tion times.

13.1.3.3 Goldstone and Soft Modes in Sm C* Phase

In the SmC* phase the tilt is W ¼ Ws þ dW where Ws and dW are spontaneous and the

field induced tilt. In the absence of the field, Ws is constant and minimisation of

Eq. (13.10) with respect to P relates the spontaneous polarization to the tilt angle:

Ps ¼ w?mWs

Then we exclude P ¼ w?mW from Eq. (13.10) and minimize that equation with

respect to W:

A� w?m
2 þ BW2

� �
W ¼ w?mE

In the low field limit, expanding (Ws + dW)2 we shall find the soft mode suscepti-

bility of the SmC* phase using exactly the same procedure as for crystalline

ferroelectrics, see Eq. (13.8):

wsm ¼ w2?m
2

2a Tch � Tð Þ
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By analogy, instead of Eq. (13.18) for the soft-mode relaxation times on the

SmC* side of the A*–C* transition we have

tsm SmC	ð Þ ¼ gW
2a T � Tchð Þ (13.19)

If we take into account the chiral terms, the low field susceptibility would

consists of two parts (the soft and Goldstone modes):

w ¼ wsm þ wG ¼ 1=2ð Þw2?m2
2a Tch � Tð Þ þ Kjq20

þ 1=2ð Þw2?m2
Kjq20

(13.20)

The Goldstone mode does not show the explicit temperature dependence (in

reality, parameters Kj, q0, m depend on temperature but not critically) and the total

susceptibility manifests a quasi Curie type behaviour at temperature Tch with a cusp
of amplitude

wmsm ¼ w2?m
2
�
Kjq

2
0 (13.21)

qualitatively depicted in Fig. 13.8.

13.1.3.4 Measurements of Landau Expansion Coefficients

We can use Eqs. (13.13) and (13.14) and find parameters a, w⊥ and m in the SmA*

phase. For this we need slow, automatically made temperature scans through the

A* ! C* phase transition with simultaneous measurements of SSFLC cell capaci-

tance, i.e. wsm(T) and the electrooptical response i.e., field induced angle W(T) at
frequency 0.1–1 kHz. Then the asymptotic behaviour of capacitance at temper-

ature T > Tc provides us the value of dielectric constant and susceptibility

w? ¼ ðe? � 1Þ=4p, and the ratio wsm/ec ¼ mw⊥ gives us the coupling constant m in

the vicinity of the transition. After this we can substitute the m value into any of the

two Eqs. (13.13) and (13.14) and find the Landau coefficient a, e.g., from the slope

de�1/dT ¼ a/w⊥. Finally, with known coefficient awe can find coefficient B from the

temperature dependence of the spontaneous tilt angle measured by the electrooptical

switching technique Ws ¼ ða=BÞ1=2ðT0 � TÞ1=2 in the SmC* phase.

(1/2)
max

max

Tch

T

Fig. 13.8 Qualitative

temperature dependence of

dielectric susceptibility in the

SmC* phase with the

Goldstone mode plateau and

the soft mode cusp
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13.1.4 Electro-Optic Effects in Ferroelectric Cells

In principle, the Pikin’s free energy [11] may be used for interpretation of almost all

electro-optic effects at any temperature of the SmC* phase including the phase

transition domain. However, for simplicity, it is more convenient to use different

variables for different effects. For discussion of the pre-transitional electroclinic

effect in the SmA* phase, one takes as a variable the tilt angle W(T,E) assuming

helical vector q0 ¼ 0 i.e. constant azimuthal angle j. On the contrary, when

discussing the Deformed Helix Ferroelectric (DHF) and Clark–Lagerwall effects

observed in the SmC* phase well below the A*–C* transition, one assumes a tilt

angle W to be constant and operates with the director projection on the plane

perpendicular to the helical axis, the c-director. The latter may be represented by

a single variable, the azimuthal angle j (T, E, r).

13.1.4.1 Electroclinic Effect in SmA

This electro-optical effect is related to the soft elastic mode just discussed [14]. For

observation of the electroclinic effect one should use a proper chiral material in a

standard planar cell with its normal along the x-axis and homogeneous alignment of

the director in the SmA* phase (e.g., by rubbing polymer layers on both transparent

electrodes in one direction, e.g., along the z-axis). In such a bookshelf structure the

smectic layer normal is also parallel to the z-axis and the layers themselves are

located in the x,y-plane, see Fig.13.9a. The electrooptical effect is observed in

polarised light of a laser or using a polarising microscope with crossed polarisers.

As discussed in the previous paragraph, the electric voltage applied to the electro-

des (along the x-axis) induces a tilt Wy of the director from the smectic normal

according to Eq. (13.13). The electroclinic coefficient is field independent,
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Fig. 13.9 Electroclinic effect in SmA* phase. The geometry of a bookshelf cell placed between

polarizer (P) and analyser (A); W is field controlled tilt angle of the director (a). Typical linear field
dependence of angle W(E) and characteristic soft-mode relaxation time independent of the field (b)
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proportional to the tilt-polarisation coupling constant m ¼ Ps/Ww⊥ and critically

dependent on temperature

ec ¼ w?m
a T � Tchð Þ ¼

Ps=W
a T � Tchð Þ (13.22)

The optical appearance of the electroclinic effect corresponds to a rotation of a

birefringent plate in the zy-plane through angle �W counted from the z-axis.
Therefore, the optical transmission depends on orientation of the polariser with

respect to the director (induced optical axis) and on the birefringence of a cell. As

seen from Fig.13.9a, the maximal switched transmission (and optical contrast)

is observed when the polariser is oriented along one of the �W positions (-W in

the figure). In this case, the switching angle is 2W and the transmission (see

Section 11.1.1) is given by:

T ¼ I=I0 ¼ sin24W � sin2d=2

For proper selected birefringence Dn at a given wavelength l and cell thickness

d, d/2 ¼ pDnd/l ¼ p/2 and the transmission is T ¼ sin24W. In the ideal case, when
there are neither light scattering nor reflections and the induced angle reaches

W ¼ 22.5�, the transmission is complete, T ¼ 1. Such wide induced angles W(E)
can, in principle, be reached very close to the phase transition (from the SmA*

side), but, in this case, its time characteristics are not very attractive. The reason is

in the properties of the soft mode.

The dynamics of the electroclinic effect is, in fact, the dynamics of the elastic

soft mode. From Eqs. (13.18) and (13.19) follows that the switching time of the

effect is defined only by viscosity gW and the term a(T � Tc) and is independent of

any characteristic size q�1 of the cell or material. It means that the relaxation of the

order parameter amplitude is not of the hydrodynamic type controlled by term Kq2

(K is elastic coefficient). For the same reason tW is independent of the electric field
in agreement with the experimental data, shown in Fig.13.9b. At present, the

electroclinic effect is the fastest one among the other electro-optical effects in

liquid crystals.

The coefficient gW is rotational viscosity of the director similar to coefficient g1
for nematics. In fact, it does not include a factor of sin2j and, in the same

temperature range, can be considerably larger than the viscosity gj for the Gold-

stone mode. This may be illustrated by Fig. 13.10: the temperature dependence of

viscosities gW and gj have been measured for a chiral mixture that shows the

nematic, smectic A* and smectic C* phases [15]. The pyroelectric and electro-

optic techniques were the most appropriate, respectively, for the measurements of

gW and gj describing the viscous relaxation of the amplitude and phase of the SmC

order parameter. The result of measurements clearly shows that gW is much larger

than gp and, in fact, corresponds to nematic viscosity g1.
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13.1.4.2 Helix Distortion and Deformed Helix Ferroelectric effect

To consider this effect we should leave our discussion of the phase transition and

consider the field interaction with the helical structure deeply in the SmC* phase.

Now the amplitude of the two-dimensional order parameter W is considered con-

stant, but the variation of the azimuthal angle j is essential. The helical structure

under discussion has the axis of the helix h||z, the electric field Ex is applied

perpendicular to the helical axis and the boundary conditions are not taken into

account. This corresponds to a thick cell with the geometry shown in Fig. 13.11a.

In the absence of field, the azimuth of the c-director is changed along the z-axis
as j(z) ¼ q0z and the polarization vector has projections onto the x,y-plane, Px ¼
sinq0z and Py ¼ cosq0z. Therefore, for E ¼ 0 the projections of the c-director and
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Fig. 13.11 Deformed Helix Ferroelectric effect. Scheme of observation of the effect (a) and the

picture of distortion of the helical structure (b) in the zero, positive and negative field. P and A are

polarizers and analyser, ITO means indium–tin oxide electrodes, I0 and I are intensities of

incoming and outgoing beams. Note that at E ¼ 0 the helix is harmonic, for 0 < |E| < |Eu|

anharmonic and for |E| > |Eu| unwound
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Ps-vector follow the harmonic law. This is shown for the cy(z)-component in the

middle of Fig. 13.11b. When the electric field is applied along the x-axis, it interacts
with the spontaneous polarisation tending to install the Ps-vector parallel to the

field. The distortion begins at an infinitesimally small field, then develops as shown

in the figure. Now the form of the helix has no longer a sine-form and, with

increasing field, the probability for the c-director to be aligned along þy becomes

larger than along –y; it is shown by wider and narrower dashed areas, respectively.

Then, the narrow areas transform into peaks called p-solitons [13]. In fact, the latter
are defects (walls) that, finally, at a certain critical field disappear, the helix

unwinds and the structure becomes uniform. Like in cholesterics, due to similar

topological problems, the helix unwinding has to be assisted by other structural

defects or thermal fluctuations.

In the stationary regime, for the balance of the elastic and electric torques we

have a sine-Gordon equation [16]:

Kj
q2jðzÞ
qz2

þ PsE sinjðzÞ ¼ 0 (13.23)

We guess, that in the low field regime the solution should have a form j(z) ¼
q0z þ dj(z) with dj << q0z. Substituting this in Eq. (13.23) we find

x2
q2djðzÞ
qz2

þ sin q0zþ djðzÞð Þ ¼ 0 (13.24)

with field coherence length x given by

x2 ¼ Kj

PsE
(13.25)

Neglecting dj in the second term of Eq. (13.24) and substituting solution of the

form dj ¼ A sin qoz therein we get

� Aq20x
2 sin q0zþ sin q0z ¼ 0

and obtain the amplitude A of the j-angle modulation by electric field: A ¼ q�2
0 x�2:

Finally the field dependence of the twist angle is given by:

j ¼ q0zþ PsE

Kjq20
sin q0z (13.26)

According to this result, for E ! 0, there is a small modulation of the helical

structure that is a deflection from the harmonic low without a change in the

structure period. With increasing field, the helix becomes distorted stronger and

the soliton structure appears. Now a solution of Eq. (13.23) may be found in the
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form of the elliptic functions or numerically. However, the critical field for the

complete helix unwinding can be estimated just from comparison of the electric

energy –PsE gained and the elastic energy Kjq
2
0 lost due to unwinding,

Eu � Kjq
2
0

�
Ps: (13.27a)

The exact solution of the same equation would give us a slightly lower critical

field:

Eu ¼ p2Kjq
2
0

16Ps
(13.27b)

For typical parameters Kj ¼ 10�7 dyn (10�12 N), pitch � 0.3 mm, i.e. q0 ¼ 2�
104 cm�1 ¼ 2 � 106 m�1, Ps ¼ 300 statC/cm2 (�1 mC/m2) the threshold field for

helix unwinding is about Eu ¼ 9 statV/cm (� 0.28 V/mm).

The Deformed Helix Ferroelectric (DHF) electrooptical effect [17] is observed

in short pitch materials. It is a particular case of a more general phenomenon of the

field induced helix distortion discussed above. The geometry of the cell showing

DHF-effect is the same as presented in Fig. 13.11a; the helical axis h||z is in the cell
plane and smectic layers are perpendicular to the substrates. To study the new

regime, the equilibrium pitch of the helix should be shorter than the visible light

wavelength P0 < l and the layer thickness d is much larger than P0. A light beam

with aperture a>> P0 and wavelength l passes through the cell along x. Due to the
shortness of the pitch, the helical structure is not seen under a microscope and the

cell behaves as a uniaxial plate with its optical axis directed along z in the absence

of field.

In an electric field �E the helical structure becomes strongly deformed, and

cosj(z) function oscillates between the two situations pictured in the sketches for

E > 0 and E < 0 in Fig. 13.11b. These oscillations cause variation of the local

refractive index which, being averaged over the entire cell, results in either clock-

or anticlockwise deviation of the optical axis from the z-axis in the plane of the cell
zy. The axis rotation angle a is proportional to PsE/Kjq0

2. As usual, the cell is

placed between two crossed polarisers and the first of them (P) is installed at the

same angle a to the z-axis. As the optical transmission is proportional to sin2a and

the helix distortion has no threshold, the DFH effect provides a smooth variation of

the angle a and transmission T that is the so-called grey scale. The effect takes place
up to the fields of helix unwinding Eu. The characteristic response times of the

effect in low fields E/Eu << 1 are independent of spontaneous polarization and

field strength and determined only by the rotational viscosity gj and helix pitch P0:

tc ¼
gj

Kjq20
¼ gjP

2
0

4p2Kj
(13.28)

Therefore at relatively low field a fast and reversible switching could be obtained

in the DHFmode. Note that the optics of the DHF effect is almost the same as that of
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the linear electro-optical effect in cholesterics described in Section 12.4. Moreover,

formula (13.28) is identical to Eq. (12.44). However, as the rotational viscosity of

SmC* phase sin2W times less than the rotational nematic viscosity [8, 15], the DHF

effect is faster than flexoelectric switching of cholesterics.

13.1.4.3 Frederiks Transition and Clark–Lagerwall Bistability

The switching of the director in the surface stabilised ferroelectric liquid crystal

cells (SSFLC) [8] has briefly been discussed in Section 13.1.2. Due to its impor-

tance for ferroelectric liquid crystal displays we shall discuss this effect in more

detail. The geometry of a planar cell of thickness d is shown in Fig.13.1.2. Now, the
helical structure is considered to be unwound. We are interested in the field and

time behaviour of the director or c-director given by angle j(x), and this process is

considered to be independent of z and y- coordinates. The smectic C* equilibrium

tilt angle W is assumed constant.

(i) Case of infinitely strong zenithal anchoring (Frederiks transition). First we
shall explain why, for the infinite zenithal anchoring of SmC* liquid crystal at the

boundaries of a SSFLC cell, the bistability is absent. Let define an easy axis parallel to

z fixed, for instance, by a rubbing procedure. Consider rather an artificial but simple

case of the infinitely strong zenithal anchoring strengthWz ! 1 and extremely weak

(hardly possible!) azimuthal strengthWa ! 0. In the zero field, due to strong zenithal

anchoring, the director n ought to be in one of the two stable states, left or right in the

zy-plane. Hence, angle j is either 0 or p for the c-director coincides with either þy
or –y. Then the n director forms eitherþW or�W angle counted from the z-axis and the

polarisation vector Ps⊥n is looking either up or down.

Assume that j ¼ 0, W ¼ þW and Ps is looking up. Then, with the electric field

directed down, the situation becomes unstable and, at a certain threshold field, due

to some j-fluctuation in the bulk and PsE ¼ PsEcosj interaction energy, a torque

appears, which drives the director along the conical surface with apex angle 2W.

ITO
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Sm
layers

d

y

x

z
0

Fig. 13.12 Clark–Lagerwall

effect in thin SSFLC cell.

Application of the electric
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switching of spontaneous

polarization Ps accompanied

by conical motion of the

director n. The projection of

the n-vector on plane xy is
c-director forming an angle j
with respect to y. W is the tilt

angle between n and the

smectic layer normal z
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The beginning of this motion is shown in Fig. 13.12 by curved arrows. In the strong

enough field, everywhere except surfaces, the final situation will correspond to

j ¼ p, W ¼ �W, Ps directed down. Then, with a change in the field polarity, the

process reverses.

The balance of the volume torques is expressed by the same sine-Gordon

equation (13.23) rewritten here for convenience:

Kj
q2jðxÞ
qx2

þ PsE sinjðxÞ ¼ 0 (13.29)

However the physics of the two phenomena is different. Now, there is no helix

and the elastic term Kjq
2j=qx2 corresponds to the uniform rotation of the

c-director in the bulk with fixed js angles at the boundaries. Thus, we deal with a

kind of the Frederiks transition, like in nematics, however, with another electrical

torque and the confinement for the director motion along the cone surface. The first

integral of Eq. (13.29) is given by:

x2

2

qj
qx

� �2

¼ cosjþ C (13.30)

where coherence length x is defined by Eq.(13.25). The range of the field-induced

j(x)-variation is 0-p. Due to the symmetry of our cell with respect to the middle

plane yz at d/2, the maximal c-director deviation from the z-axis is j(d/2) ¼ jm.

Therefore,

qj
qx

jd=2 ¼ 0; C ¼ � cosjm

and Eq.(13.30) takes the form: qj=qx ¼ ffiffiffi
2

p �
x

� �
cosj� cosjmð Þ1=2. The

corresponding integral

ðj

0

dj

cosj� cosjmð Þ1=2
¼ d

ffiffiffi
2

p

x
(13.31)

may be reduced to the Legendre form of the 1st kind elliptic integral. Its solution

may be found in the form of elliptic functions, which would give us the angle j as a

function of d
p
2/x and jm.

From Eq. (13.29) is seen that, at j ¼ 0, there is no electric torque exerted on the

director. Thus, there should be a threshold for the distortion as in the case of the

Frederiks transition in nematics. We can find the threshold field Ec, considering a

small distortion j ! 0. The equation

x2
q2j
qx2

þ j ¼ 0 (13.32)
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has solutions jðxÞ ¼ jm sin qxþ C where constant C ¼ 0 is found from the

boundary condition: j ¼ 0 for d ¼ 0. Substituting j(x) into (13.32) we find

�x2q2 þ 1 ¼ 0. As minimum value of q is fixed by rigid boundary conditions,

qmin ¼ p/d we arrived at the threshold condition 1/xc ¼ qmin. Hence, the threshold

field for the “quasi-Frederiks” transition is:

E	
F ¼ p2Kj

Psd2
(13.33)

For instance, forKj ¼ 10�7 dyn, d ¼ 2� 10�4 cm,Ps ¼ 300 statC/cm2 (1mC/m2),

the threshold field is EF* � 0.1 statV/cm, i.e. 3 kV/m. Due to a high value of Ps, the

Frederiks type distortion in SmC* can be observed at extremely low voltage across

the cell (Uc ¼ dEc � 30 mV for 10 mm thick cell). However, independently of the

field magnitude, after switching the field off, the distortion relaxes to the initial

uniform structure,j(x) ¼ 0. The relaxation time of the distorted structure is owed to

pure elastic, nematic-like torque and for small distortion only fundamental Fourier

harmonic is important,

t	F ¼ gj
�
Kjq

2
min ¼ gjd

2
�
Kjp

2: (13.34)

For larger distortions, the relaxation rate will be determined by the sum of the

ratesm=t	F of each harmonic with numberm. Evidently, there is no bistability in this
case.

(ii) Case of finite anchoring energy (Clark-Lagerwall bistability). In reality,

both the zenithal and azimuthal anchoring strengths are always finite, therefore the

surface terms should be added to the balance of torques. But what is the anchoring

energy for the smectic C* phase? In Section 10.2.3 we introduced the zenithal and

azimuthal anchoring energies Wz and Wa for the director n in both nematics and

cholesterics. But in this paragraph we operate with another variable, the c-director
or angle j and should reconsider the problem. In Fig. 13.13 the easy axis z is

situated in the substrate plane xy and the end of the director n ¼ 1 is confined to

move along the semicircle (dot line). The conical angle W between n and the easy

axis z is assumed to be fixed. The projection of the director on the substrate plane

O
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 y 
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Fig. 13.13 Geometry for

discussion of the anchoring

energies for the c-director.
a and b are the angles the

director n forms with the easy

axis z coinciding with the

normal to smectic layers; W is

the director tilt angle and AC

is the c-director forming

angle j with y-axis
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OB forms angles a and b with respect to n and easy axis z, respectively. Each
arbitrary point C on the semicircle is characterised by the only variable j used in

Eq. (13.29). Now we would like to make find the strength of anchoring for the c-
director in the SmC phase, no matter chiral or achiral.

In the Rapini approximation, the zenithal and azimuthal anchoring energies are

defined for the director n in terms of angles a and b:

Wz ¼ 1
2
W0

z sin
2a and Wa ¼ 1

2
W0

asin
2b (13.35)

Let express the same energies using angles W and j, which describe the motion

of the director in the smectic C* (or C) phase. Using the elementary geometry and

the fact that all angles OAC, OAB, OBC and CBA are equal to p/2, we find

Wz ¼ 1
2
W0

z sin
2W � sin2j and Wa ¼ 1

2
W0

a
sin2W�cos2j

1�sin2W�sin2j (13.36)

Typically W � 0.5 or less, and the j-angles for the anchored director at the

surface are even smaller (the case of the break of anchoring is discussed below).

Then the denominator of Wa is close to unity and we can approximately write

Wz � 1
2
W0

z sin
2W � sin2j ¼ 1

2
Wj

z sin
2j (13.37a)

and

Wa � 1
2
W0

asin
2W � cos2j ¼ 1

2
Wj

a cos
2j: (13.37b)

Note that the amplitudes of the anchoring energy Wj
z and Wj

a defined for the

azimuthal angle j include factor sin2W � 0.1, which, unfortunately, is often for-

gotten in the literature. This is very important for our discussion of bistability. For

simplicity and just to begin with, let assume that the azimuthal anchoring energy is

negligible.

If we are only interested in the Frederiks-type threshold we should add the

surface term �Wj
z j to Eq. (13.32). Then, a finite anchoring only increases the

apparent cell thickness by two extrapolation lengths bj: dapp ¼ d + 2bj where

bj ¼ Kj=W
j
z . For realistic values of Kj ¼ 10�7 dyn and Wz (measured for

nematics) � 0.1 erg/cm2 (Wj
z � 0.01 erg/cm2), the value of bj � 2 � 10�5 cm

(0.2 mm) is considerably less than a typical cell thickness (few micrometers) and the

second term in dapp is of minor importance.

To discuss a bistability, we should leave the small � j approximation and go

back to the equation (13.29) with the Rapini surface energy added.

Kj
q2jðxÞ
qx2

þ PsE sinjðxÞ � 1
2
Wj

z sin
2j ¼ 0 (13.38)
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Now we are interested in the strong field case when distortion has a specific form.

Like in nematics, well above the Frederiks transition, the director alignment is uniform

throughout the SSFLC cell thickness except two layers of thickness bj adjacent to

electrodes. To have a bistability we should break the initial zenithal anchoring, that is

reach the second critical field Ec, whose coherence length becomes comparable with

the surface extrapolation length, xc ¼ bj, see Section 11.2.4. Using the coherence

length from Eq. (13.25) the condition for the break of anchoring is given by

Kj

PsEc

� �1=2

¼ Kj

Wj
z

or Ec ¼
Wj

z

� �2
PsKj

(13.39)

Hence, for typical values of Kj ¼ 10�7 dyn, Ps ¼ 300 statC/cm2, Wj
z ¼ 0.01

erg/cm2, the break of anchoring occurs at Ec ¼ 3 statV/cm (or 0.1 V/mm).

Thus, we see, that for a typical value of Wj
z � 0.01 erg/cm2 (corresponding to

nematic anchoring as high as Wz � 0.1 erg/cm2) we only need a voltage as low as

U ¼ 0.2 V to break the zenithal anchoring in 2 mm thick cells. As soon as the initial

anchoring is broken, the director is driven by the same electric field into the new

stable position at j ¼ p. When the field is switched off the director is still held in

the new position by the zenithal anchoring until the field of the opposite polarity

switches it back to j ¼ 0. Thus, in SSFLC cells, we have real bistable switching at

rather low fields [18]. Such cells are unequivocally ferroelectric!

13.1.5 Criteria for Bistability and Hysteresis-Free Switching

13.1.5.1 Cells with No Insulating Layers

In real SmC* cells both Wj
z and Wj

a are finite. A finite azimuthal strength would

create an additional surface torque trying to move the director from its angular

positions at j ¼ 0 or j ¼ p to the easy axis z, Fig.13.13. On the cone surface, the

minimum anchoring energyWj
a corresponds to director position at j ¼ p/2 and the

minima of Wj
z are at j ¼ 0 and j ¼ p. But what will happen if Wj

z ¼ Wj
a ? It

follows from Eqs. (13.37) that the sumWj of the two anchoring energies with equal

amplitudes W

Wj ¼ Wsin2W sin2jþ cos2j
� � ¼ Wsin2W

becomes independent of j and the director is free to take any position on the cone

as though there were no anchoring at the substrates. Thus, due to a competition

between equal Wj
z and Wj

a , there is no stable states at j ¼ 0 and j ¼ p, and, of
course, no bistable switching. In fact, what does control the bistability is the

difference Wj
za between Wj

z and Wj
a ! Hence, the criterion for bistability is very

simple:
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1 > Wj
za ¼ Wj

z �Wj
a >0 (13.40)

As to dynamics of the response of a SSFLC cell to the alternating field, it is

controlled by Eq. (13.38) with the viscous gjdj/dt torque added. When the helical

structure of the SmC* is unwound in a thin cell (a typical case) one can neglect the

elastic torque ∂2j/∂x2. If, in addition, the anchoring energiesWj
z andW

j
a are reason-

ably weak, the electric field torque would solely be balanced by the viscous torque:

gj
dj
dt

¼ PsE sinj (13.41)

Here, the viscosity coefficient gj corresponds to the azimuthal motion of the

director. From this equation, for small distortions, we immediately find the time of

the response to an external field.

tj ¼ gj
PSE

(13.42)

For larger j the response is not exponential, however, controlled by the same

physical parameters with a numerical factor of 1–2. The viscosity gj can be found

from the measurements of kinetics of the optical transmission.

13.1.5.2 Role of Aligning Layers in Bistability

If one were capable to align a SmC* without insulating layers, e.g., by rubbing

uncovered electrodes or by smectic layer shearing, then, in a cell with Wj
za not

exceeding 0.01 erg/cm2, the bistable switching would be observed at voltages less

than 1V for Ps as low as 20 nC/cm2. However, as a rule, there are insulating

alignment layers covering the electrodes, which have their own capacitance. For

a given a.c. voltage U across the electrodes, such layers may dramatically change

both the amplitude and phase of field ELC on the liquid crystal layer. Field ELC may

even have the opposite sign with respect to voltage applied! Thus, the criterion for

the bistability (13.20) should also change.

Consider a two layer SSFLC cell, Fig.13.14, consisting of a liquid crystal layer

(white) and a single alignment insulating layer (grey); the latter mimics two

alignment layers of a typical experimental cell. For simplicity, both the liquid

crystal and aligning layers are assumed to be nonconductive and having constant

dielectric permittivities. The x-component of the dielectric displacement Dx and the

total potential difference along the close contour (the Maxwell and Kirchhof

equations, respectively) are given by:

eILEIL ¼ eLCELC þ 4pPx 
 Dx

dILEIL þ dLCELC ¼ U; (13.43)
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Here, suffices (IL) and (LC) mark insulating and liquid crystal layers, d is their

thickness, Px is x-component of spontaneous polarization parallel to the cell normal.

From this set we immediately find the electric field in each layer,

ELC ¼ eILU � 4pPxdIL
eLCdIL þ eILdLCð Þ and EIL ¼ eLCU þ 4pPxdLC

eLCdIL þ eILdLCð Þ : (13.44)

For Px 6¼ 0, even without an applied voltage (U ¼ 0, short circuited electrodes),

there are “built-in” electric fields in both liquid crystal and aligning layers and these

fields are opposite to each other.

Now, consider a switching process. Let, in the beginning, the director is close to

j ¼ 0 and polarization P is almost parallel to the electrodes i.e. Px component is

small). When the voltage is switched ON along positive x, at first, the field ELC

drives the polarization vector into the þ x-direction along the field, as shown in

Fig.13.14. Then the counteracting polarization term in Eqs. (13.44) reduces the ELC

field and increases field EIL and a charge on the insulating capacitor. This effect is

detrimental for devices because it increases the total voltage necessary to switch the

director completely from j ¼ 0 to j ¼ p. With sufficient voltage the state j ¼ p
is achieved and the director is temporary anchored at the new position. Let us see

now whether this state is stable or not.

When the voltage is switched OFF then, according to Eq. (13.44), the field ELC

changes its sign and drives the Ps vector in the opposite direction. Now, if Ps is large

and the torque Ps � ELC exerted on the polarization (and, consequently on the

director) in the OFF state is high enough, it would break anchoring at j ¼ p and,

under the influence of ELC, the director leaves the j ¼ p position and moves back

to j ¼ 0. The cycle is over and we are in the initial situation. It means that there is

no bistability for high enough Ps.

Therefore, if we would like to work in the bistable regime, we should avoid the

action of the reversed field. According to the first of the last two equations, it means

the condition of eILU>>4pPxdIL to be fulfilled, that is the alignment layers must be

as thin as possible, their dielectric constant (eIL) large and Ps of the SmC* small. The

latter would be in contradiction with a low threshold field for the bistability given by

Eq. (13.39). Indeed, in experiments, the genuine bistable switching is always

observed for liquid crystals with intermediate values of Ps � 20–40 nC/cm2.

There is, however, another way to fight with the inverse field. Both the alignment

and liquid crystal materials can be made conductive. The conductivity s would

screen the built-in field EIL and accelerate its relaxation. Then, for a voltage pulse of

x

Px

EIL

ELC

dLC

dIL

U

–

+
Fig. 13.14 A model showing

distribution of the electric

field strength over an aligning

insulating layer (EIL) and a

ferroelectric liquid crystal

layer (ELC) in a SSFLC cell.

The electric voltage U is

switched ON with polarity

shown by (+) and (�) signs
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duration exceeding tj given by Eq. (13.42), the built-in field would not prevent

bistable switching if

eLC=sLC > eIL=sIL (13.45)

This is an additional criterion for bistability valid for conductive (s > 0)

materials [19]. In experiments with very conductive alignment layers the bistability

is much easier to observe.

13.1.5.3 V-Shape Effect

In some applications the hysteresis and the threshold character of the director

switching are undesirable because they do not allow a grey scale to be realised.

The hysteresis-free switching means the zero coercive field for the director switch-

ing and the absence of bistability. Then one can observe the hysteresis-free V-shape

switching. In this case, the curve of the optical transmission as a function of the total

voltage on the cell T(U) acquires a shape of the letter “V” (no hysteresis) instead of
letter “W” characteristic of hysteresis. For the first time the hysteresis-like switch-

ing was observed in a chiral material having both SmC* and antiferroelectric

SmC*A phase at temperatures close to the phase transition between them [20] and

explained by a kind of frustration between the two phases having very low energy

barrier between them. However, the absence of hysteresis is also a characteristic

feature of the SmC* phase well below the phase transition temperature when a

special condition of Wj
z ¼Wj

a discussed above is fulfilled, although this case is

rather incident. Numerous experiments and modelling have unequivocally shown

that the hysteresis-free switching with a clear V-shape of the T(U) transmission

curve in the SmC* phase may always be achieved when one uses relatively

thick alignment layers and selects proper parameters for a liquid crystal and the

layers [21].

13.2 Introduction to Antiferroelectrics

13.2.1 Background: Crystalline Antiferroelectrics
and Ferrielectrics

Liquid crystal ferri and antiferroelectrics have many features discovered for years

of comprehensive studies of corresponding crystalline substances. Thus, it would be

convenient and instructive to begin with a short introduction in the structure and

properties of antiferroelectric crystals. A difference between ferro-, ferri and anti-

ferroelectrics is schematically shown in Fig. 13.15, where the three very simplified

410 13 Ferroelectricity and Antiferroelectricity in Smectics



structures are depicted. In ferroelectrics, the dipoles are oriented parallel to each

other everywhere, the period of the lattice is l, and, if each layer has spontaneous

polarization P0 then the resulting spontaneous polarization of such a ferroelectric

structure, Ps ¼ P0. An antiferroelectric may be represented as a combination of two

dipolar sublattices built in each other, as shown in Fig. 13.15b. The periods of each

sublattice and the entire structure are equal to 2l. An antiferroelectric has a higher

translational symmetry than a ferroelectric. In sketch (b), we can recognise the

additional planes of reflection situated exactly in the middle between any pair of

dipolar layers. Therefore, despite each layer is polar and have finite local polariza-

tion P0 6¼ 0, the macroscopic spontaneous polarization is absent Ps ¼ 0.

In some crystals the location of dipolemoments can even bemore complicated. For

example, in Fig. 13.15c, one layer with the dipoles looking down alternates with two

layers where the dipoles are looking up. Therefore we have three-layer periodicity 3l
with two antiparallel layers and one extra polar layer. Such a structure may be

considered as a mixture of the ferroelectric and antiferroelectric structures and is

called ferrielectric. In case (c), the ferroelectric fraction is one part per period, qF ¼ 1/3

and the spontaneous polarization is finite, Ps ¼ (1/3)P0. For pure antiferroelectric

phase qF ¼ 0/2 and for pure ferroelectric one qF ¼ 1/1 ¼ 1. More generally, for

different ferrielectric structures qF ¼ n/m, where m is the number of layers in the

unit cell (period) and n < m is the ferroelectric layer fracture per unit cell, both

being integers. Then, for both n and m ! 1, n/m ! 1, the difference between n
and m become smaller and smaller and the so-called Devil’s staircase forms.

With increasing temperature the order of dipoles in each sublattice decreases

and, at a certain temperature, a phase transition into the paraelectric phase occurs. It

may be either second or first order transition. In the paraelectric phase local

polarization P0 vanishes. The nature of the spontaneous polarization is similar in

solid ferro- and antiferroelectrics. In both cases, the dipole-dipole interactions are

dominant. For example, if dipoles are situated in the points of the body-centred

cubic lattice, they preferably orient parallel to each other and such a structure is

ferroelectric. However, the same dipoles placed into the points of a simple cubic

Fig. 13.15 Schematic structure of a ferroelectric (a), an antiferroelectric (b) and a ferrielectric (c).
Note that period of each structure is different: l, 2l and 3l, respectively
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lattice prefer to align anti-parallel to each other and form an antiferroelectric

structure. Very often the difference in electrostatic energy between the parallel

and anti-parallel dipolar structures is small and the phase transitions occur between

ferro- and antiferroelectric phases.

Such a transition of an antiferroelectric into a ferroelectric state can also be

observed in an electric field E exceeding a certain threshold EAF, Fig. 13.16,

because in the presence of the field the ferroelectric structure becomes more

favourable. When the polarity of the field changes, all dipoles are realigned

following the field. At large fields �E the two opposite ferroelectric states are

energetically equivalent. If the switching between �E is fast enough the polariza-

tion follows the dashed curve with the hysteresis characteristic of typical ferro-

electrics (like in Fig. 13.2). For slow field cycling, the antiferroelectric state has

enough time to recover at E < EFA and one observes a double hysteresis loop

indicative of the antiferroelectric nature of the ground state. The solid line in

Fig. 13.16 shows this type of tri-stable switching. Note that in low fields between

�EFA the antiferroelectric behaves as a conventional linear unpolar dielectric.

A difference between ferro- and antiferroelectrics may also be discussed in

terms of the soft elastic mode [3]. In the infinite ferroelectric crystal, there is no

spatial modulation of the spontaneous polarization (only dipole density is peri-

odic). Therefore, at the transition from a paraelectric to the ferroelectric phase,

both the wavevector q for oscillations of ions responsible for polarization and

the correspondent oscillation frequency o ¼ Kq2 tend to zero. We may say that the

soft elastic mode in ferroelectrics condenses at q ! 0. In antiferroelectrics,

the sign of the local polarization P0 alternates in space with wavevector

q0 ¼ 2p/2l ¼ p/l and the corresponding ion oscillation frequency is finite, o ¼
Kq0

2 ¼ Kp2/l2. It means that in antiferroelectrics the soft mode condenses at a

finite wavevector p/l and rather high frequency. As a result, in the temperature

dependence of the dielectric permittivity at low frequencies, the Curie law at the

phase transition between a paraelectric and antiferroelectric phases is not well

pronounced.

P

E

F

AF

EFA

EAF

Fig. 13.16 Typical

hysteresis-type dependence of

the total (spontaneous and

induced) polarization P as a

function of the external field

for a ferroelectric (dashed
curve) and antiferroelectric

(solid curve). Arrows show
the direction of the field

cycling
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13.2.2 Chiral Liquid Crystalline Antiferroelectrics

13.2.2.1 Discovery and Polymorphism

The very first observation of antiferroelectric properties in a chiral liquid crystalline

mixture was reported in 1982 [22]. The pyroelectric technique clearly showed the

absence of spontaneous polarization in the zero field and a growth of pyroelectric

coefficient gwith characteristic saturation at the field strength of about 0.5 V/mm. In

addition, the value of g was two orders of magnitude higher than the value of g for

the electroclinic effect in the SmA* phase. The original picture presented in that

paper is reproduced here without any changes, Fig. 13.17. We can see that, in the

field absence (ground state), the tilt of molecules alternates from layer to layer,

however, in the strong field, the tilt within the smectic layers is uniform. Nowadays

such pictures are called anticlinic and synclinic, respectively. The local polarization
is always perpendicular to the tilt plane and also alternates in the zero field as shown

by symbols l and �.

More impressive results, particularly, the tristable switching, were demons-

trated by Fukuda group [23]. In Fig. 13.18 we can see the chemical formula and

the phase diagram of MHPOBC. Different antiferroelectric and ferrielectric phases

in single compound 4-(L-methylheptyloxy-carbonyl)-40-octylbiphenyl-4-carboxyl-
ate (MHPOBC) were unequivocally shown to exist by optical and electrooptical

techniques, dielectric spectroscopy, X-ray analysis, etc. In this compound, addi-

tionally to the known SmA* and SmC* (SmCb* in the figure) phases, new phases

have been revealed: antiferroelectric SmCA* and SmCa* and ferrielectric SmCg*

phase. This work stimulated fast development of investigations in this area, see

review articles [24, 25]. As we see, MHPOBC reveals rich polymorphism and

becomes a model compound for further studies. Other liquid crystals made up of

chiral molecules that include three-benzene-ring cores and long tails with asym-

metric carbon atoms and dipole moments also show a variety of similar phases

(often called subphases). It has taken about 20 years to understand the structure of

these subphases although many subtle details are still under question.

Fig. 13.17 Field induced

switching between the

antiferroelectric structure (left
sketch) and two ferroelectric

structures with opposite tilt

and spontaneous polarization

Ps. The directions of �Ps

coincides with the field �Ex

directions [22]
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On account of the new experimental data and theoretical works, the same phase

sequence for (L)-MHPOBC well purified from the right-handed (D)-enantiomer may

be re-written as follows (for decreasing temperature) [26]:

Iso ! SmA	 ! SmC	a ! SmC	 ! SmC	FI2 ! SmC	FI1 ! SmC	A (13.46)

Here, ferrielectric SmC*FI1 and SmC*FI2 phases replace SmC*g and SmC*b
phases. Further on we shall repeatedly refer to this phase sequence.

13.2.2.2 Molecular Interactions

A variety of different phases emerging in narrow temperature interval and also

easily converted into each other by electric field (see below) testifies that different

inter-layer interactions have comparable energy. Moreover, molecules in one layer

may interact even with next-to-nearest layers. Figure 13.19 may help to understand

some hierarchy of interactions beginning from the nematics and going down with

temperature. It is instructive to assume that our molecules are elongated, biaxial,

Fig. 13.18 Chemical formula and the phase sequence of the compound MHPOBC demonstrating

a variety of transitions between ferro-, ferri- and antiferroelectric phases

Fig. 13.19 Intermolecular interactions responsible for formation of different liquid crystal phases:

attractive anisotropic van der Waals and repulsive steric interactions for nematics (a), van der

Waals (bifilic) and steric for SmA* (b), steric quadrupolar interaction for SmC* (c) and SmC*A (d)
owed to molecular biaxiality. The density is increasing in a sequence: orthogonal (b), synclinic (c)
and anticlinic (d) phases. An interlayer steric correlations in SmC* (e) are shown by displacements

of “grey molecules”. Note that the displacement of “gray molecules” may influence the next to

nearest layer via a kind of relay race mechanism
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chiral with relatively long tails and having transverse dipole moments. At relatively

high temperature of the nematic phase they rotate free and may be represented by

ellipsoids with tails showing translational invariance, sketch (a). Between such

ellipsoids the most important are the attractive anisotropic Van der Waals interac-

tions (of Maier-Saupe type, decaying with distance as r�6) and repulsive steric

ones. In the SmA* phase (b), due to decreasing thermal motion, the molecule form

layers because the specific core-to-core and tail-to-tail Wan-der-Waals interactions

may be more preferable, as very often observed in lyotropic systems (biphilic

effect). However, molecular rotation about the layer normal is still free and, for a

moment, the chirality may be ignored.

Remember now that our molecules are biaxial i.e. they have either a lath-like

form or a special form of the tails anti-symmetrically bent in the figure plane. Then,

with decreasing temperature, mostly due to steric reasons, they may acquire a

collective tilt and form a SmC* phase (c). Now, due to chiral symmetry C2 and

transverse molecular dipoles each smectic layer acquires spontaneous polarization

Ps and the helical arrangement of the layers on a micrometer scale. At even lower

temperature, specific packing of molecular tails can stabilise the antiferroelectric

phase. Indeed, the anticlinic arrangement of cores emerges (d) that increases

density and reduces entropy. The steric forces can also provide the molecular

interaction not only within the smectic layers but also between near neighbour

(NN) layers as qualitatively pictured in Fig. 13.19e. Moreover, it is also seen how

the distorted part is advanced up beyond the boundary of a neighbour layer. It

means that the steric correlations may also be installed between next-to-nearest

neighbours (NNN).
Similarly, the electrostatic correlations may be installed between NN and NNN

layers. Note that P0 is a large collective dipole moment lying, due to chirality, in the

layer plane, perpendicularly to the tilt plane. The energy between permanent

molecular dipoles decay with distance as r�3 (see Section 3.2). It seems that the

negative repulsive forces between parallel permanent dipoles may provide the long-

range interaction necessary for the antiparallel dipole packing i.e. antiferroelectric

order of the layers. However, it is known from electrodynamics, that the same

molecular dipoles oriented even in the same direction within a thin, infinitely wide

(smectic) layer do not create an electric field outside the layer (due to complete

compensation of the fields of individual dipoles). Therefore dipolar smectic layers

cannot interact directly with each other. Nevertheless, there is a long-range interac-

tion owed to fluctuations of P0 coupled to the director fluctuations. The latter are

long-wave Goldstone excitations requiring very low energy (Kq2) in the limit of

wavevectors q ! 0 as any hydrodynamic mode. It is that long-range coherent

polarization wave that, according to [27], installs necessary correlations responsible

for antiferroelectricity. There are other electrostatic interactions such as quadrupole–

quadrupole or flexoelectric ones. The latter emerges due to spatial modulation of

the tilt of molecules in the layered structure. Consider briefly few interesting

models that have been suggested for understanding polymorphism of tilted anti-

ferroelectric smectics.
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13.2.2.3 Models

Continuous models. With discovery of antiferroelectrics a question has arised

about the possible structures and order parameters describing the new phases.

Since all the structures are based on the single tilted SmC* layers of the same C2

symmetry, it was suggested to use the same c-director to characterised each pair of

neighbour layers (bilayer model [28]). Taking two neighbour layers i and i + 1, one

writes two order parameters, ferroelectric and antiferroelectric, both in terms of the

director components x(nxnz, nynz), see Eqs. (13.9a, b) where z is the normal to

smectic layers:

xF ¼ 1

2
xi þ xiþ1

� �
and xAF ¼ 1

2
xi � xiþ1

� �
(13.47)

Then, for paraelectric SmA phase both xF ¼ 0 and xAF ¼ 0, for ferroelectric

SmC* phase xF 6¼ 0 but xAF ¼ 0 as discussed in Section 13.1, for antiferroelectric

SmC*A phase xF ¼ 0 but xAF 6¼ 0, and for ferrielectric phases SmC*FI both xF 6¼ 0

and xAF 6¼ 0. Now the Landau expansion of the free energy in the vicinity of

transitions between the paraelectric, ferroelectric and antiferroelectric phases will

operate with two order parameters and both coefficients at the x2 terms in the free

energy are considered to be dependent on temperature:

1

2
aFx

2
F ¼ 1

2
aF T � TFð Þx2F and

1

2
aAFx

2
AF ¼ 1

2
aAF T � TAFð Þx2AF

The two polarizations PF and PAF may be taken as secondary order parameters

coupled with the genuine order parameters. As a result, depending of the model, the

theory predicts transitions from the smectic A phase into either the synclinic

ferroelectric phase at temperature TF or into an anticlinic antiferroelectric phase

at TAF. One intermediate ferrielectric phase is also predicted that has a tilt plane in

the i þ 1 layer turned through some angle j with respect to the tilt plane in the

i layer. The models based on the two order parameters are of continuous nature
(j may take any values) and, although conceptually are very important, cannot

explain a variety of intermediate phases and their basic properties.

Discrete models. The most advanced are discrete models that explicitly take into

account the interactions between nearest neighbour (NN) layers and even next to

nearest neighbour (NNN) layers. Among those approaches the most successful are

Ising models [24] and the XYmodels, particularly, the so-called clock model [6, 26].
Consider one of the most successive Ising models. From the electrooptic study it

was clear that between ferroelectric and antiferroelectric phases there are interme-

diate “subphases” of the mixed type. Thus, from the very beginning it was tempting

to classify the new phases using analogy with their crystalline counterparts. Such an

analogy is based on the assumption (even counter-intuitive) that there are SmC-like

(achiral) correlations of the type shown in Fig.13.19c, d. For certain molecular

parameters synclinic and anticlinic order may compete but the in-plane tilt configuration
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always remains. As mentioned above, such structures may be described in terms of

ferroelectric fraction qF, in analogy with the microscopic Ising model describing the

interaction energy of the up and down (or �) spins in one-dimensional lattice. In

Fig. 13.20, the “ferroelectric states” marked off by letter F have the same sign of the

molecular tilt in the neighbour smectic layers whereas the “antiferroelectric states”

with opposite tilt in neighbour layers marked by AF (here tilt angles �W play the

role of up and down spins). Microscopically, the interaction between nearest and

next to nearest layers is taken into account. The genuine ferroelectric F/F/F/F and

antiferroelectric AF/AF/AF/AF. . . .phases correspond to qF ¼ 1 and qF ¼ 0/1. The

sequences AF/AF/F/AF/AF/F. . . , AF/F/AF/F/AF/F. . . and AF/F/F/F/AF/FFF mean

ferrielectric phases with qF ¼ 1/3, 1/2, and 3/4, respectively. As in the case of

crystalline antiferroelectrics, for both n and m increasing the difference between

qF values becomes step-by-step smaller down to zero and the Devil staircase forms.

Note that in the limit of n/m ! 1 a ferrielectric becomes a ferroelectric.

In the Ising model, all the molecules are in the tilt plane but, despite such a

severe simplification, the electrooptic measurements and resonant X-ray scattering

[29] have confirmed the sequence of ferro- ferri- and antiferroelectric phases.

However, the same X-ray experiments clearly showed that the tilt planes in

different layers are not at all parallel. Moreover, in frameworks of the Ising models

the structure of the SmC*a phase could not be understood. Therefore, another

approach has been developed.

In the discrete clock model [26], one operates with the c-director lying in the XY
plane and the tilt plane in layer i þ 1 is allowed to be at a discrete angle j with

respect to the neighbour layer i. Therefore, for a ferroelectric structure j ¼ 0, for

antiferroelectricj ¼ p, for ferrielectric structure it could be 2p/3 or p/2 (by analogy
with a clock hand in the x, y plane). Correspondingly, SmC*, SmC*A, SmC*FI1 and

SmC*FI2 phases have unit cells of one, two, three or four smectic layers and the order

parameter is abruptly changed from layer to layer. Note that in any continuous model
a number of order parameters corresponds to a great number of layers in a unit cell

and even phenomenological theory becomes very complicated. Alternatively, in the

discrete clock model the interlayer interactions can be separated from the molecular

interactions within the smectic layer. Due to complexity of both types of interactions

they are modelled by phenomenological approximations based on the symmetry

arguments. The intra-layer interactions were considered most important: they

induce both smectic order and tilt. Inter-layer interactions between nearest layers

Fig. 13.20 Ising model.

Sequence of ferroelectric

(qF ¼ 1), ferrielectric

(qF ¼ n/m ¼ 2/8 ¼ 1/4, 1/3

and 3/4) and antiferroelectric

(qF ¼ 0) phases
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responsible for ferro- or antiferroelectricity are usually weak because transitions

between synclinic and anticlinic structures easily occur. Due to this, long range

interactions between next to nearest layers especially electrostatic and chiral ones

become very important.

All these interactions are taken into account in the discrete phenomenological

model. The chiral interaction is also included although its contribution is consid-

ered small. As the primary and secondary order parameters, the tilt vector xi and
polarization vector Pi for a single smectic layer i are taken into account. Both

parameters may vary from layer to layer, the tilt magnitude being constant and only

directions of xi and Pi change. Then Landau expansion for the free energy is written

as a sum of different energy terms for N layers, where N is a number of layers in a

unit cell. Further on, the polarization perpendicular to the tilt plane is excluded due

to weakness of the chiral interaction within a smectic layer and possible stable

structures have been found by minimisation of the free energy with respect to all tilt

order parameters xi.
As a result of numerical calculations [30], five phases shown in Fig. 13.21 have

been found. In the first two rows we find the symbols and types of the phases

whereas the third column represents the corresponding unit cells for the first four

phases in terms of smectic layer numbers (m) per one period of the structure. The

SmC*a phase is incommensurate in the sense that it has a short-pitch helical

structure with a period not coinciding with integer number of the smectic layers.

In the fourth column, a top view of the dielectric ellipsoid is presented for different

layers within each unit cell. All these phases are in agreement with sequence

Fig. 13.21 Classification and structure of ferro-, ferri and antiferroelectric phases. The third

column represents the number (m) of the smectic layers l in a unit cell (for SmC*a abbreviation

IC means incommensurate). In the right column the orientation of the dielectric ellipsoid is

presented for different layers within the unit cell viewed along the z-axis. The long-pitch helical

structure due to the molecular chirality is ignored for clarity, although it slightly influences the

value of angle j for the ellipsoids in the xy plane for each structure, see the next figure
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(13.46). Note that in our simplified picture the molecular chirality is ignored and its

role in the formation of long-pitch helix will be discussed below. The structure and

properties of the phases pictured in Fig. 13.21 may be summarised in order of

increasing temperature:

1. SmC*A: optically uniaxial antiferroelectric phase with period of 2l and zero

spontaneous polarization Ps. It manifests Bragg diffraction and optical rotatory

power (ORP).NN interactions prevail. The helical structure is shown in Fig. 13.22:

it is similar to that of SmC*, but the sign of helicity may be opposite.

2. SmC*FI1: biaxial ferrielectric phase with 3l periodicity and finite Ps. It manifests

ORP, which may change sign at a certain temperature.

3. SmC*FI2: uniaxial antiferroelectric phasewith 4l periodicity and zeroPs. However,

on account of chirality the phase acquires small Ps and ferrielectric properties.

4. SmC*: the helical, optically uniaxial phase, with period P0 >> l and finite Ps. It

manifests Bragg diffraction and ORP and familiar to us from Sections 4.9 and

13.1. The near-neighbour (NN) interactions prevail.
5. SmC*a: It is the most symmetric, antiferroelectric-type phase (Ps ¼ 0) that

borders SmA phase. It is helical but the helicity originates not from the molecu-

lar chirality but is due to specific NNN interactions. The pitch is short and

incommensurate to the layer periodicity. In Fig. 13.21 the top view on the first

five layers is shown and one may conclude that the helical pitch may be as short

as 5l , but it vary with temperature. Due to short helical pitch the phase does not

show ORP.

Figure 13.21 presents the picture of the dielectric ellipsoid orientation within

each unit cell that is at the nanometer scale. The weak molecular chirality results in

additional weak twisting of all structures with characteristic pitch of about

P0 � 0.1–1 mm. An example of a such twisted structure is shown in Fig. 13.22; it

is an antiferroelectric double-layer cell describing two geared helices upon rotation

about z-axis. The helices are shifted in phase by j ¼ p and have the same

handedness. On the molecular scale, due to molecular chirality, the c-director
turns from layer to layer by a small angle dj ¼ 2pl/P0, therefore, for l � 1nm,

Fig. 13.22 Chiral antiferroelectric SmC*A phase. Alternating tilt plane (a) and layer polarization

(b) and the long-pitch helical structure (c). Note that the unit cell consisting of two layers rotates as
a whole forming two geared helices of the same handedness. This type of rotation is controlled by

molecular chirality inherent in all phases shown in Fig. 13.21
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dj � 1�. Consequently, to have a more correct structures in Fig. 13.21 one should

present each ellipsoid configurations in the forth column as an overlapping stack of

the same configurations. Such stuck will consist of the same sketches turned m-
times through angle dj about the z-axis according to the number of layers (m) in a

unit cell [30, 31]. More recent publications confirm the picture presented here, see

[32] and references therein.

13.2.2.4 Electric Field Switching

Experimental data. Upon application of the external electric field, the transition

temperatures between different phases change [33]. It is seen in the field–temperature

phase diagram Fig. 13.23. First, we notice that all transition temperatures are shifted

considerably that confirms a subtle difference between the interactions responsible

for antiferroelectricity. In addition, the temperature range of the polar SmC* phase

becomes wider at the cost of the antiferroelectric SmCA* and unpolar SmCa*

phases. The range of ferrielectric SmCFI2* phase remains unchanged. It can be

understood as follows. As the smectic C* phase has high spontaneous polarization,

due to the –PsE term, its free energy is reduced by the electric field. Therefore, the

field stabilised the smectic C* phase and expands it temperature range. To some

extent, the ferrielectric phases with lower spontaneous polarization are also stabi-

lised by the field but not the antiferroelectric ones.

In the field-off state the macroscopic polarization of the antiferroelectric phase is

zero. With increasing field, the induced polarization, at first, increases linearly with

field and then, at a certain threshold, the antiferroelectric (AF) structure with

alternating molecular tilt transforms in the ferroelectric one (F) with a uniform

tilt, see Fig. 13.24a. Correspondingly, the macroscopic polarization jumps from a

low value to the level of the local polarization P0 [34]. The process is quite similar

to that observed in crystalline antiferroelectrics. With a certain precaution we can

speak about a field-induced AF-F non-equilibrium “phase transition”. The magni-

tude of the switched polarization in some antiferroelectric materials can be quite
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large, of about several hundred of nC/cm2. Upon a change in the field polarity, the

process reverses. Therefore, we have three distinct states, one stable antiferro-

electric state and two (plus and minus) ferroelectric states with a certain memory.

It should be noted that, in some materials, such a switching process between the

antiferroelectric and ferroelectric states could proceed via intermediate ferrielectric

states.

By a proper treatment of the electrodes, one can obtain a texture with a uniform

orientation of the smectic normal in one direction within the cell plane. Between the

crossed polarizers such a cell will be black if a polarizer is installed parallel to the

smectic normal. Upon application of the electric field, the antiferroelectric structure

becomes distorted. At low voltages of any polarity, the electrooptic response is

proportional to E2: the bottom part of the curves has symmetric parabolic form [35]

shown in Fig. 13.24b. Above the AF-F transition, the director acquires one of the

two symmetric angular positions (�W on the conical surface) typical of the SmC*

phase. At these two extreme positions the transmission is maximum. With increas-

ing temperature from T3 to T1 the AF–F threshold decreases due to a decrease of the

potential barrier separating structures with alternating and uniform tilt. It is natural

because within the SmC*A phase T1 is closer to the range of the SmC* phase than T2
or T3.

At high frequencies of the a.c. field, the total polarisation of the entire sample is

switched very fast and the ground, antiferroelectric state may be bypassed. Then the

switching occurs between the two ferroelectric states as in an SSFLC cell. With

increasing frequency (for example, from 100 Hz to 10 kHz) the double hysteresis

loop is substituted by a single loop typical of ferroelectrics as shown in Fig. 13.16

by the solid and the dashed curves.

Theoretical consideration. We shall consider a simple and instructive theory of

the switching of a helix free antiferroelectric phase [36]. The smectic layers normal

h is aligned along the rubbing direction z in the plane of the cell (bookshelf

geometry in Fig. 13.25). The tilt has the amplitude � W and its phase F changes

Fig. 13.24 Tri-stable switching of an antiferroelectric liquid crystal. Typical hysteresis-type

dependence [34] of the total polarization P as a function of the external field (a) and optical

transmission-voltage curves [35] measured at three different temperatures (T1 > T2 > T3) in the

same SmC*A phase (b)
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by p in each subsequent layer. An applied electric field is within the smectic layer

plane parallel to the x-axis. Due to chirality, each layer possesses polarization P0

perpendicular to the tilt plane. The total polarization in the ground state is zero,

sketch (a). With increasing external filed a transition is observed from the antiferro-

electric (AF) ground state to the ferroelectric (F) field-induced state, sketch (b).

After transition, all vectors P0 are oriented along the field and the director azimuth

is the same in all smectic layers, F ¼ 0.

For simplicity we disregard a change in the W angle and focus our attention only

on azimuthal motion of the director. The density of the bulk free energy can be

taken in the form:

F ¼ 1

2
K

qFi

qy

� �2

þ qFi

qx

� �2
" #

þW cos Fiþ1 � Fið Þ � P0E cosFi (13.48)

Here, the first term describes the nematic-like elastic energy in one constant

approximation (K � KNsin
2W). This term allows a discussion of distortions below

the AF-F threshold (a kind of the Frederiks transition as in nematics in a sample of a

finite size). In fact, the most important specific properties of the antiferroelectric are

taken into account by the interaction potential W between molecules in neighbour

layers: the second term in the equation corresponds to interaction of only the nearest

layers (i) and (i þ 1). Let count layers from the top of our sketch (a); then for

odd layers i, i þ 2, etc. the director azimuth is 0, and for even layers i þ 1, i þ 3,

etc. the director azimuth is p. The third term describes interaction of the external

field Ex with the layer polarization P0 of the layer i as in the case of ferroelectric

cells. Although for substances with high P0 the dielectric anisotropy can be

neglected, the quadratic-in-field effects are implicitly accounted for by the highest

order terms proportional to P2.

The solution of Eq. (13.48) depends on further simplifications. If we assume

that the director in the odd layers with Fi ¼ 0 is unaffected by an external field and

only the azimuth in the even layers Fiþ1 is changed from p to 0, then, for an

infinitely thick sample (x ! 1), the free energy is independent of both x and Fi.

The corresponding torque balance equation reduces to the form with index (i þ 1)

omitted:

P0 P0

 y

 z

x

⊕

⊕

Ex=0  (AF) Ex>Eth (F)

ϑ Φ

a bFig. 13.25 Geometry for

discussion of the electric field-

induced ferroelectric–

antiferroelectric transition.

Antiferroelectric structure

(a) in the zero field and

ferroelectric structure at the

field exceeding the F–AF

transition threshold (b)
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K
q2F
qy2

þ ð2W � P0EÞ sinF ¼ 0 (13.49)

If we disregard the elastic, nematic-like term we would see that the distortion has

a threshold character with the threshold field Eth ¼ 2W=P0. It is easy to understand:

the AF–F threshold is achieved when the field energy is sufficient for the director in

even layers to overcome potential barrier W and change its azimuth from p to 0.

Above the threshold, Ex > Eth the uniform ferroelectric structure is installed.

At fields below EA�F, the macroscopic polarization is absent due to alternating

� P0, the first order term in polarization is absent and the distortion is controlled by

a higher order term proportional to P0
2E2. This explains the parabolic form of the

electrooptical response at the fields below AF–F threshold.

To describe the dynamics of F at constant W, the viscous torque with viscosity

coefficient gj should be added to the balance equation

gj
qF
qt

¼ K
q2F
qy2

þ ð2W � P0EÞ sinF: (13.50)

Assuming small field-induced F angles, sinF ! F, the inverse switching time

can be found in the vicinity of the AF–F transition. t�1
AF ¼ g�1

j ðP0E� 2WÞ. It shows
a divergence of the switching time at the threshold field, as observed in experi-

ments. When the field is switched off (Ex ¼ 0), the inverse time for the back

relaxation from the ferroelectric to the antiferroelectric state is controlled solely

by the interlayer potential t�1
FA ¼ 2W=gj. Surprisingly, this simple theory [36]

explains the most important experimental facts and can be applied to both chiral

and achiral (banana-type) antiferroelectrics.

13.2.3 Polar Achiral Systems

13.2.3.1 The Problem

As we know, chiral tilted mesophases, manifest ferroelectric (C*, F*, I* and other

less symmetric phases), antiferroelectric (SmCA*, SmCa*) and ferrielectric

(SmCFI*) properties. These properties owe to a tilt of elongated chiral molecules,

and polar ordering of the molecular short axes (and transverse dipole moments)

perpendicular to the tilt plane. The head-to-tail symmetry n¼�n is conserved. The

PS vector lies in the plane of a smectic layer perpendicularly to the tilt plane. Such

materials belong to improper ferro-, ferri and antiferroelectrics.

Since discovery of chiral ferroelectrics in 1975, a search for the achiral analo-
gues of liquid crystal ferro- and antiferroelectrics was a challenge to researchers,

both theoreticians and experimentalists and recently there was a great progress in

this area. The idea was to find a way to break non-polar symmetry D1h or C2h of
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achiral compounds and conserve a liquid crystalline state. For example, in materials

belonging to point group C1v the axis C1 is polar axis and polarization vector is

parallel to C1. In biaxial smectics of C2v symmetry the polar axis and polarization

vector is parallel to rotation axis C2. There were many theoretical suggestions to use

such a reduced symmetry reviewed in [37], however, only in 1992 the first polar

smectic liquid crystal showing all polar properties was synthesised [38]).

13.2.3.2 Achiral Ferroelectrics

It was an achiral lamellar mesophase formed by polyphilic compounds. The basic

chemical idea to form “building elements” of a polar phase was quite remarkable:

the so-called polyphilic effect has been realised. The word “polyphilic” is a general-

isation of the well-known term “biphilic” or “amphiphilic”. According to this

concept, chemically different moieties of a molecule tend to segregate to form

polar aggregates, lamellas or smectic layers. The latter can form a polar phase. As

shown in Fig.13.26a, a compound studied was made up of three distinct parts:

perfluoroalkyl and alkyl chains and a biphenyl rigid core. A fluorinated chains does

not like hydrocarbon chains and prefers to have another fluorinated chain as a

neighbour. The same is also true for the hydrocarbon chains preferring to be close to

each other. To some extent such a tendency is also characteristic of biphenyl

moieties. In this way the head-to-tail symmetry is broken at the molecular scale

and a polar smectic layer forms according to sketches (b) and (c) in the same figure.

In principle, such polar layers may be stacked either in a ferro- or antiferroelectric

structure.

Indeed, upon cooling from the isotropic through the smectic A phase, a metasta-

ble polar phase forms at temperature 82�C, which existed down to the room

temperature before the next heating cycle. The phase manifests all polar properties,

namely, pyroelectric and piezoelectric effects, repolarization current and optical

Fig. 13.26 Polyphilic effect. (a) An appropriate molecule having well-defined moieties hardly

compatible with each other: hydrophobic perfluoro- and alkyl- chains and a hydrophilic biphenyl

core. Below are shown a steric model and its schematic version used in sketches (b) and (c). The
latter illustrate unfavourable (b) and favourable (c) packing of molecules in aggregates or layers
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second harmonic generations. Ferroelectricity was demonstrated by the measure-

ments of the hysteresis in the acoustically induced piezo-electric response. The

subsequent X-ray investigations an infra-red spectroscopy have shown that the

phase consists of polar liquid-like layers having some blurred disordered structure.

The phase consists of mesoscopic domains with high spontaneous polarization

within each of those domains but almost averaged over a macroscopic sample.

Due to smallness of the overall Ps value and difficulties in the chemical synthesis

the polyphilic polar materials have not found practical applications. However, their

investigations stimulated activity in the search of new polar achiral liquid crystals,

especially based on bent-core molecules. In particular, the ferroelectric phase was

reported in an achiral compound [39]. Later, it has been understood that, in such a

compound, the conglomerates of left and right chiral domains emerged as a result of

spontaneous break of the mirror symmetry discussed in Section 4.11.

13.2.3.3 Achiral Antiferroelectrics

Achiral smectic materials with anticlinic molecular packing are very rare [40] and

their antiferroelectric properties have unequivocally been demonstrated only in

1996 [41]. The antiferroelectric properties have been observed in mixtures of two

achiral components, although no one of the two manifested this behaviour. In

different mixtures of a rod like mesogenic compound (monomer) with the polymer

comprised by chemically same rod-like mesogenic molecules a characteristic anti-

ferroelectric hysteresis of the pyroelectric coefficient proportional to the spontane-

ous polarization value has been observed; for an example see Fig.13.27a. Upon

application of a low voltage the response is linear, at a higher field a field-induced

AF–F transition occurs.

The absolute value of the Ps has been measured by the pyroelectric technique as

explained in Section 11.3.1 but with an applied d.c. electric field, exceeding the

AF–F transition threshold. The value of the observed polarization dramatically
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Fig. 13.27 Achiral antiferroelectric. Voltage dependence of pyroelectric coefficient describing

the double hysteresis loop (a) and dependence of the field-induced polarization on the content of a
monomer in the polymer–monomer mixtures (b)
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depends on the mixture composition: there is a very sharp maximum for the

polymer/monomer ratio 70:30 as shown in Fig.13.27b. The macroscopic polariza-

tion measured in the mesophase reaches the value of about 400 nC/cm2, that

requires a dipole moment projection onto the smectic plane of about 1 D per

mesogenic unit. Indeed, polar intermolecular hydrogen bonds provide such dipole

moments located at a small angle to the long axes of the tilted mesogenic groups.

The arrows in Fig.13.28 picture schematically the dipolar parts of the mesogenic

groups.

As shown by the X-ray diffraction, polymer-monomer mixture consists of SmC

bilayers. A bilayer is the principal unit cell having either non-polar C2h (a) or polar
C2v (b) symmetry. The former is incompatible with both ferroelectricity or anti-

ferroelectricity, because such a structure has an inversion centre. On the contrary, in

sketch (b) each bilayer is polar with P0 vector located in the tilt plane along the

y-axis. In a stack of such layers the direction of P0 alternates and the structure (b) is

antiferroelectric in its ground state. Only strong electric field Ey causes the transi-

tion to the ferroelectric structure shown in sketch (c) as observed in experiment.

Note that both the P0 and Ps ¼ S P0 vectors are always lying in the tilt plane.

The suggested bilayer antiferroelectric structure is compatible with the X-ray

diffraction data and the optical observation of the influence of a rather weak electric

field (below the AF–F transition) on freely suspended films of the same mixture

[42]. Only the structures with odd number of bilayers appeared to be field-sensitive

due to a finite polarization P0 of single bilayers. Therefore, the antiferroelectricity

of the polymer-monomer mixtures is confirmed by all possible experiments. The

role of the monomer admixture is explained as follows. As X-ray analysis shows,

pure polymer has only the bilayer smectic C phase shown in Fig.13.28a, which is

too symmetric to manifest polar properties. From the polarization and electrooptical

measurements it is evident that the monomer additive changes the packing of the

mesogenic groups and provokes the alternating tilt structure (b) in side-chain

polymer bilayers. This results in antiferroelectricity, although the molecular mech-

anism of such polymer–monomer interaction is not clear.

At the optimum concentration of the mixture the pyroelectric coefficient

reaches the value of 4 nC/cm2K exceeding that observed in the famous ferroelectric

crystalline copolymers PVDF-TrFE. On cooling down to the glassy state and

x
 y

z

P0 P0

P0–P0

E
a b c

Fig. 13.28 Non-polar dipolar structure of a bilayer and a lamellar phase (a) and antiferroelectric

phase (b) formed by polar bilayers. A strong electric field E applied along the y-axis converts the
antiferroelectric phase (b) into polar ferroelectric phase (c)
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subsequent removing the field, the pyroelectric coefficient may be kept stable for

years, and this material may be very useful as an easily formed pyroelectric glass.

13.2.3.4 Ferro- and Antiferroelectric Compounds Based on the Bent-Shape
Molecules

As discussed in Section 4.11, achiral molecules of the bent or banana shape may

form locally chiral phases in the form of the left- and right-handed domains. This is

a result of spontaneous break of the mirror symmetry [43].

Assuming the head-to-tail symmetry of a bent-shape molecule, the highest

symmetry of a uniaxial non-tilted smectic A layer is D1h. Then, according to

molecular packing presented in Fig.13.29a, the highest symmetry of the biaxial

polar layer is C2v: there is a rotation axis C2 parallel to x, and two symmetry planes xz
and xy. The layer polarization is possible along the C2 axis. Had the layer consisted

of the rod-like molecules tilted within the xz plane the symmetry would be C2h as in

SmC. However, when the bent-core molecules are tilted in the y-direction (forward

Fig. 13.29 Bent-shape molecules form polar smectic layers in the polar plane xz with polarization
Px (a). Upon cooling, the molecules can spontaneously acquire a tilt forward or back within the tilt

plane yz. The stack of the layers may be either synclinic SmCS or anticlinic SmCA (b). Addition-
ally, depending on the direction of polarization Px, both the synclinic and anticlinic structure may

have uniform (ferroelectric PF) or alternating (antiferroelectric PA) distribution of polarization

within the stack. In the field absence there are four structures marked by symbols below. Note that

the leftmost structure is chiral SmC* and rightmost structure is also chiral because, for any pair of

neighbours, the directions of the tilt and polarization change together leaving the same handedness

of the vector triple. In the electric field, the phase transitions from chiral SmCAPA* to chiral

SmCSPF* and from racemic SmCSPA to racemic SmCAPF structures are possible (shown by ark
arrows)
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or backward with respect to the drawing plane), both the reflection planes are lost.

Now each smectic monolayer becomes chiral, either left- or right-handed with

symmetry C2. In the right Cartesian frame forward (or backward) deviation corre-

sponds to the right (or left) sign of chirality because we have three non-coplanar

vectors, the smectic layer normal h, the director n (along the molecular long axis)

and polarization P0 (along x) that form a left or right triples.

In a stack of subsequent layers the tilt may be constant (synclinic structure) or

alternating (anticlinic structure). Both synclinic and anticlinic multilayer stacks can

further be subdivided into ferroelectric and antiferroelectric structures. The molec-

ular projections onto the tilt plane zy are shown in Fig. 13.29b. In ferroelectric

(symbol F) phases spontaneous polarization has the same direction in each layer

(synclinic chiral SmCsPF* and anticlinic achiral SmCAPF phases). In the antiferro-

electric (symbol A) phases the direction of polarization alternates (achiral synclinic

SmCsPA and chiral anticlinic SmCAPA* phases). In fact we have a conglomerate of

chiral and achiral phases both in either synclinic or anticlinic form.

As was said, each smectic layer is chiral, left or right, but the pair of layers might

be homogeneously chiral or racemic. The leftmost structure is typical chiral SmC*

structure and the rightmost structure is also chiral because in any pair of neighbours

the direction of the tilt and polarization change together leaving the same handed-

ness of the vector triple. The two middle stacks are racemic because left and right

vector triples alternate from layer to layer. As usual, the asterisks are added to the

symbols of each homogeneously chiral subphase. The electric field exceeding some

threshold (E > Etr) causes transitions between different structures: it transforms

SmCAPA* into SmCsPF* (both are homogeneously chiral) and the direction of the

tilt is controlled by the sign of E. The racemic SmCsPA phase may be transformed

into SmCAPF. As the field interacts with polarization, the final state is always

ferroelectric (PF) be it synclinic or anticlinic.

At present, eight different phases are known in banana compounds dependent on

particular in-plane packing symmetry and they usually labelled as B1, B2, . . .B8,

etc., counted from the isotropic phase [44]. Among them the B2 phase is especially

interesting, because it has low viscosity and can easily be switched by an electric

field with rather short switching times [45]. In fact, the B2 phase is basically a

conglomerate of chiral and achiral antiferroelectric structures SmCAPA* and

SmCAPA mixed with some percentage of the two ferroelectric structures.

Since the discovery of spontaneous break of mirror symmetry [39, 43], many

new, so-called banana-form compounds have been synthesised and hundreds of

papers published on that subject [44]. It became a hot topic in modern physics and

chemistry of liquid crystals. In the present book there is no space for discussion of

different aspects of this fascinating phenomenon and I have decided to finish my

narration here. I believe very soon the books shall appear devoted solely to this

important subject related not only to liquid crystals, but to the general problems of

chirality of the matter.

In conclusion of this chapter it should be stated that bistable and tristable

switching of ferro- and antiferroelectric liquid crystals is very fast and provides

long memory states. The latter allows one to design displays without semiconductor
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thin-film transistors used in each small pixels of a matrix with thousands rows and

columns. Such displays have been constructed and their feasibility demonstrated.

The beautiful pictures may be seen in references [8] (black and white) and [24] (in

colour). However, some disadvantages, such as not enough tolerance of smectic

structures to mechanical shots and temperature variations are still to be overcome.

Today smectic materials are indispensable for temperature stabilised optical space

modulators, image processors or image projectors and, in nearest future, will be

very useful as electronic paper.
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